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Abstract

An industry problem regarding autoclave packing and scheduling in a composites
manufacturing facility is examined. The hill-climbing method is modified and applied to
solving the packing of autoclaves, which is a modified bin packing problem. A mixed-integer
linear program is formulated and applied to solve the scheduling of autoclave loads
throughout the planning horizon. The scheduling problem takes into account utilization of
resources at steps prior to the curing process, autoclave blackout times for anticipated
downtime, weekend overtime, tool desired recycle times, incentivizes the creation of usable
gaps, and minimizes peak power consumption. Both the autoclave packing problem and the
scheduling problem are combined in a software which has been tested and delivered to
industry. Solution of the mixed-integer linear program makes use of cloud technology to

allow for flexible licensing options of an expensive state-of-the-art mathematical solver.
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Chapter 1 Introduction

The research in this thesis was completed in the context of an industry partner who for
confidentiality will remain anonymous and will be referred to as The Industry Partner (TIP).
TIP manufactures composite parts for the aerospace industry. Composite parts are made up
of several layers of different materials bound together by resin. For the resin to bind the
layers both heat and pressure must be applied for several hours, this process is called curing
and is done via the use of specialized machines called autoclaves. The size, initial cost, and
energy usage of autoclaves make them some of the most expensive pieces of equipment to

run in the facility.

This thesis will examine the processes surrounding the curing of composite parts in the
aerospace industry and then analyze the objectives regarding autoclave packing and
scheduling. A heuristic is developed to tackle the Autoclave Packing Problem (APP) and is
followed by a mixed-integer program (MIP) to handle the scheduling side of the problem.
From the literature examined in section 2.0, this problem has never been tackled to this
extent before. This research brings together more knowledge about the APP than previous
attempts at solving it, develops an MIP to solve the scheduling problem, and makes use of
emerging cloud technologies to deliver an implementable solution. The solution was
delivered to TIP in the form of a program that could solve their autoclave packing and
scheduling problem. Computational results for a test case of both the packing and
scheduling algorithms are shown and discussed. From the work shown here it will be evident
that autoclave packing and scheduling is a very difficult problem to tackle, however with the
right tools and approaches it is possible to yield better results than experienced human

operatofs.



1.1 Background

TIP manufactures composite parts for the acrospace industry. Their customers include some
of the largest aerospace companies in the world. They produce items such as wing tips, flaps,
nose shells, and other structural and fuselage components. Their products are mostly made
from carbon fiber and resin, which requires a curing process to be fully fused together and
harden. This curing process takes place in autoclaves or ovens, although for the purposes of
this study the ovens were ignored. Awaiting increases in demand, and realizing that their
autoclaves are currently near maximum capacity while running under the current processes,
TIP had requested help in improving the efficiency of their curing process. First a project
between Dalhousie, two Industrial Engineering final year students, and TIP was carried out
(Devine & Milne, 2014). This initial study determined that the autoclaves were the
bottleneck of their operation. They also mapped out the process and recommended to
change from a push system to a pull system. To aid in this process they provided a manual
scheduling tool that helped a planner schedule the autoclaves and determine which parts that

go inside them easily.

Figure 1: Large autoclave at TIP (TIP, 2015)



Autoclaves are large pressure and heat vessels, an example from TIP is shown in Figure 1.
Every part requires a specific heat and pressure profile to cure, this is commonly referred to
as a recipe. A typical heat profile is shown in Figure 2. Parts for similar applications usually
follow the same recipe and are cured together as long as they fit within the physical and

other constraints of the autoclave.

Temperature

/ \

Time

Figure 2: Typical Heat Profile for Autoclave Cure

The process of producing a composite part starts in the Kit Cutting department where rolls
of several materials, mostly carbon fiber, are cut to form the different layers of a part. Layers
that form a single part are packed together as a kit. These kits then are transferred to the
layup department responsible for the customer who ordered that part. Experienced layup
personnel trained in that specific part’s manufacturing then lay up the different layers of the
part onto a mould. These moulds will follow the part through the curing centre until they
reach demoulding. Then when enough parts to fill an autoclave load have been laid up they
are sent to the autoclave centre and get loaded together into an autoclave. They cure with the
same recipe for several hours in the autoclave and then proceed to demoulding where the
cured part and the mould are separated. The mould is cleaned and made available for

another part to be laid up on it.
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This process as described follows a push system, where parts move on to the next station as
they are completed. This has been the cause, in large part, of inefficiencies in processes
downstream. For example, if parts arrive at the autoclave department sporadically they may
get cured in several batches. Each cure costs money due to heating up the autoclave, as well
as often underutilizing capacity of the autoclave. The cost to heat up an autoclave is
relatively fixed to a recipe and autoclave, mostly independent from the number of parts in
the cure. This is due to the mass of the autoclave being much larger than the mass of the
parts as well as the cost of pressurizing a certain volume being fixed. Therefore reducing the
number of cures and making more effective use of the capacity for each cure has the
potential to significantly reduce the overall cost to produce the parts and to increase the

throughput capacity of the plant.

1.2 Production of Composites

Here we give a brief description of the manufacturing process for advanced composites.
This description is mostly based on Gutowski (1997). Other good references include Harper
(1996) and Mazumdar (2001). There are several methods of manufacturing composites. The
first difference is in the laying of the fiber structure that makes up the part. The two major
variants are linear or interlaced laying of the fiber. The linear structure is laid up sheets of
aligned fibers that are usually impregnated with a resin. The interlaced structure is produced
through a weaving process and can produce 2D or 3D structures. In the process considered
in this project only the linear structure is found, thus the explanation of the interlaced
structure manufacturing process will not be part of this report. However a good explanation

the interlaced structure process can be found in Gutowski (1997)

The second difference in manufacturing composites is the wetting of the fiber structure.
This can be either online or offline and constitutes when the resin is placed into the fiber.
Off-line wetting is most common at TIP, although some on-line wetting does take place for

some materials. Materials that go through the off-line wetting process are usually called



“prepregs” for “pre impregnated”. These materials must be refrigerated until they are used,

given that they have a limited material life.

The third critical difference is thermoset and thermoplastic parts. Thermoset parts require
heat to trigger a chemical reaction that solidifies the parts. Thermoplastic parts on the other
hand solidify via a cooling process. All parts at TIP are thermoset parts and use autoclaves to

provide the necessary heat and pressure for the chemical reaction to take place.

The several layers of fiber structures are laid up on tools by hand. Ply material properties are
usually not isotropic, therefore layers are laid in different directions to account for the
material properties. The most dimensionally critical side of the part is laid on the tool face,
while the other side is covered by a vacuum bag that aids in reducing voids during the curing
process by applying uniform pressure as is shown in Figure 3. Once laid up, the part and tool

are placed inside an autoclave to cure. This triggers a chemical reaction in thermoset parts.

Vacuum hose hookup
Prepreg Plys

\acuum bag

Tool

Figure 3: Simplified Tool Schematic




1.3 Production Process at TIP

Using a linear thermoset pre-preg material, the process found in Figure 4 illustrates that used
at the TIP manufacturing facility. The sheets of material are cut into kits at the kit-cutting
operation. Fach kit contains the different layers required for a part. The roll of material is
taken out of the freezer to thaw and that is when the material shelf life begins. When the
shelf life runs out, the material is obsolete if it has not been cured. The material is then cut

into the kits and the kits are sent to the layup room.

Tool clean-up
Tool Tool

Downstream

Kit Cutting [ Layup —* Curing Centre —= Demolding [ HI e

Figure 4: General Workflow of Plant Processes

Then the hand-layup and curing process takes place. The main steps here are: cleaning of
layup tool surface, apply the different layers that make up the part, attach vacuum bag and
seal, load tool into autoclave, turn on autoclave, wait for cycle, turn off autoclave, unload
from autoclave. Resources for a more complete and detailed list of hand-layup and autoclave
processes are available in literature (Harper, 1996). Finally the part is removed from the tool
(demolded) and the tool is cleaned. The cured part then follows downstream processes,
such as trimming, drilling, painting, assembly and testing before being shipped off to the

customer (Devine & Milne, 2014).

At TIP there are several autoclaves of widely varying size, and given a diverse customer mix
there is a also a wide variety of parts. There are also several layup rooms, with each layup
room serving a different customer. Parts vary in several aspects including size, recipe, cure

time, material, as well as the number of cures in a few occasions. Some parts are two-stage



cures, where a part is laid up and is cured, followed by another layup and a final cure. These
kinds of operations are called re-entrant from the autoclave perspective since the part enters
the autoclave two times. They are not common at TIP and are almost exclusively restricted
to one layup room which has very stable demand. Due to the complexity surrounding these,
as well as the stable demand, there are cure slots scheduled permanently for these parts

several times per week.

Currently the process of scheduling the autoclaves actually starts with layup Program
Production Leaders (PPLs) and Program Managers (PMs) agreeing on an acceptance of the
workload. Each program has a Production Planner (PP) who schedules the work for their
own areas independently. Simultaneously, the Curing PPL begins assigning cure slots for the
upcoming week based on meeting the requirements for the top priority programs as
identified by the Production Director. While determining cure slots care is taken to stagger
cure start times whenever possible in order to reduce peak power consumption. If possible
usable gaps, unscheduled slots of 4 or more hours, are also left to provide a slot in case later
changes must be made. A draft cure schedule is submitted to all PPs and PPLs (by
Wednesday) and a meeting is scheduled to allocate any remaining cure slots (no later than
Friday). Conflicts are dealt with by discussion and a schedule is finalized at this meeting.
However, the schedule continues to change as layup PPLs approach the autoclave PPL
throughout the week to make additional changes. Some reasons for the changes are as
follows: tooling issues, kitting/material issues, attendance or manpower issues, work delays,
work completed early, scrap replacement, Critical Parts, Aircraft on Ground (AOG), Plane
on assembly (POA), material outlife issues or material testing. A similar but separate meeting
happens with the kit-cutting department to ensure material flows into the layup rooms on
time. An Aircraft On Ground (AOG) situation occurs when a part must be produced
urgently to accommodate an aircraft that is waiting for repair; a POA is a similar situation
related to the assembly of new aircraft. These are rare, but production of any AOG/POA
part is critical and supplants any production schedule. Cures in an autoclave will not be

stopped (preemption is not allowed), but any cure slot that is needed will be taken to service



the AOG/POA part. Critical Parts are identified (tagged) during the production sequence.
There are many reasons why a part can become critical; usually it involves an elevated
Internal or External need for the part. In most cases Critical Parts will not supplant any cure

schedule, but they are processed as first priority throughout other areas of production.

Given the current process, the layup rooms ensure first that they have correctly levelled their
manpower requirements for every day. This sometimes results in less than full loads in the
autoclaves, resulting in more cures throughout the week. Any change to scheduling the
autoclave cures based first on full loads must also take into account the manpower levelling

requirements at the layup rooms.

1.4 Previous Work at TIP

A 5th year Industrial Engineering group worked on an earlier version of this research
(Devine & Milne, 2014). This study helped to formally identify the problem as well as many
constraints and objectives. The team identified the autoclave centre as the bottleneck of the
operation and provided a semi-automatic Excel tool that allows the user to manually add
parts to a bin and determine when that bin will be cured. As parts are added from the
demand list, the list of parts that can also be added to that same cure is reduced based on the
packing constraints (recipe, volume, etc.). Several statistics can be tracked for the bins and

cure schedule in general.

A key recommendation from the team’s report is to move from a push system to a pull
system that is driven by the cure centre. The recommendation is due to the cure centre being
the most expensive operation as well as the bottleneck of the plant. They also state that a
mathematical model could better optimize the process, which is in part the reason for the
research included in this thesis. Moving to a pull system would require the creation of
batches of parts to be cured together as well as scheduling these batches in a manner that is

more favorable to the efficiency of the autoclave centre.



1.5 Thesis Outline and Results

Making the appropriate use of the autoclaves through load creation and load scheduling is
the focus of this thesis, it is organized as follows. Chapter 2 shows a collection of relevant
literature to the solution of the autoclave packing and scheduling problem. It presents brief
explanations of relevant solution approaches including mixed-integer linear programming

and metaheuristics. Previous work relating to scheduling of autoclaves is also presented.

Chapter 3 presents the reader with two solution approaches to the autoclave packing and
scheduling problem, the ideal and the proposed. The ideal solution approach is unobtainable
due to several factors explained, and therefore the proposed model is presented. Solutions

for the packing and scheduling portions of the problem are presented separately.

Chapter 4 discusses the information, features, and software structure required to implement
the proposed model at TIP. Information regarding all the inputs to the program,
assumptions, and modifications to data are presented. The output from the software is then
presented. An overview of how both cloud computing and flexible licensing of the

mathematical solver are used in this thesis is also shown in this chapter.

Chapter 5 displays the computational results from the software when used with real data
from TIP. The data itself is hidden due to confidentiality, however the performance of the
model running under different parameters is examined and the ideal parameters to use are

selected.

Finally, chapter 6 presents the conclusion. Section 6.1 includes a list of future projects that
could be completed to improve the performance and expand the scope of the optimization

models. Sections of code for the proposed model are found in the Appendices section.
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Chapter 2 Literature Review

This chapter will provide an overview of some literature relevant to the autoclave packing
and scheduling problem. Section 2.1 provides an introduction to Theory of Constraints, an
idea which shows why improvement at the curing centre, the bottleneck at TIP, is necessary.
Section 2.2 will discuss the reasoning behind production planning and examine push and pull
systems. Section 2.3 will discuss literature relating to the general scheduling problem,
showing the different methods of dealing with material balances and time representations. It
will also explain some common scheduling objectives. Section 2.4 will discuss the Bin
Packing Problem. Section 2.5 will discuss the Batching Problem. Section 2.6 and section 2.7
give a brief introduction to mixed-integer linear programming and meta-heuristics since
these are tools used in solving the autoclave packing and scheduling problem. Section 2.8
shows some of the common mathematical programming languages available which are used
to describe mixed-integer linear programs. Section 2.9 then presents a few of the most
prominent commercial and noncommercial mathematical solvers used to solve mixed-integer
linear programs and shows a performance comparison between them. Section 2.10 explains
the concept behind cloud computing and how some mathematical solvers use it to provide
flexible licensing options. Finally, section 2.11 presents previous work done in the field of

the autoclave packing and scheduling.

2.1 Theory of Constraints

The theory of constraints, proposed by Goldratt, Cox, and Whitford, is centered around the
notion that every organization has at least one constraint that is preventing it from making
more of what it needs to make, usually profit (Goldratt, Cox, & Whitford, 2004). Constraints
can be in anything from demand and sales department to manufacturing and supply chain. It
provides a five step process to improve the performance of organizations based on this

theory. A key piece of insight provided is that “an hour lost at a bottleneck is an hour lost
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for the entire system” which serves to elevate the importance of improving the constraint

operation as much as possible.

FProcess
Capacity

T

Process 1 Process 2= Constraint Process 3

Figure 5: Illustration of Bottleneck Process Dictating Maximum Throughput

The five step process designed by Goldratt, Cox, and Whitford and explained in their book
“The Goal” is as follows:
1. Identify the system’s bottlenecks.
a. In Figure 5 this would be Process 2.
2. Decide how to exploit the bottlenecks.

a.  This could be by reducing or eliminating downtime or making the process
more efficient in some way.

3. Subordinate everything else to the above decision.

a. All other non-constraint processes should behave to support the maximum
efficiency of the constraint process.

4. Elevate the system’s bottlenecks.

a. If steps 2 and 3 have not relieved the bottleneck then adding more capacity
or substituting the process may be required. These are more expensive and
time-consuming improvements.

5. If, in a previous step, a bottleneck has been broken go back to step 1.
a.  Once a bottleneck has been broken a new one surfaces, to continuously

improve the next bottleneck should be identified and the process repeated.
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One method of subordinating non-constraints to a constraint process is to shift from
pushing work to the constraint process to having the constraint process pull the work.
However, this also involves pushing of work from the constraint downstream. This is

explained further in the next section.

2.2 Production Planning

Production planning is needed to coordinate the different processes, inventories, and
resources that work together to form a final product. The proper coordination of these
resources leads to lowered costs and a production process that is better able to meet
customer expectations. Anthony’s hierarchy splits managerial activities into three areas:
strategic planning, tactical planning, and operational control (Silver et al., 1998). When
applied to a production system, the strategic planning area takes a very long term view (2+
years) and generally accomplishes decisions surrounding acquisition of resources. The
tactical planning area plans for utilization of resources and typically makes decisions for a 6
to 24 month planning horizon. The operational control area makes decisions for a very short
term planning horizon that are very detailed, such as individual resource scheduling. This
final area of operational control is the focus of this thesis; therefore, this section will explore

short-term production planning and control systems.

2.2.1 Push and Pull Systems

In a push system, production planning is done for all levels of production in advance, while
in a pull system products are only produced at a level when the next level requests it. Both
systems have advantages and disadvantages. Push systems are able to forecast demand and
use this to inform production decisions as well as to determine lot sizes to their advantage
and thus reduce setup and batch costs. However, push systems tend to have a much higher

level of work-in-process inventory than pull systems since push systems do not place a cap
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on work-in-process. Pull systems reduce work-in-process inventory which leads to a
reduction of associated costs like holding costs and outdated work-in-process. Pull systems
are also able to quickly pinpoint quality issues before large batches of defective products
build up. This is due to their more piece by piece flow instead of batches that are more
associated with push systems. Two common pull systems are examined in the next couple
paragraphs, ConWIP and Kanban, followed by a description of Materials Requirements
Planning (MRP), a push system.

ConWIP is the simplest way to establish an WIP cap. A maximum amount of WIP is
established for a production line or process and new materials are not released into the
process until the WIP is below the established maximum amount. This creates an hybrid
push-pull system where materials within the production line controlled by ConWIP are
pushed from one step to the next, but the line as a whole pulls material into it when one
leaves the process. This process results in almost constant WIP (Spearman, Woodruff, &

Hopp, 1990).

The Kanban system was developed at Toyota, the word kanban is Japanese for “card”. The
system runs on a set of cards where production authorization cards are attached to finished
goods inventory. When a part is removed from finished goods inventory the card is sent
back to the workstation that feeds the inventory point. This card gives authorization to
produce a new part to replace the one just taken out of inventory. This system feeds back
and parts are pulled through the system as they are required. Two types of cards were used
in the original system, production cards and move cards. Production cards authorize the
production of a part, which triggers production of a part if the necessary components are
available. Move cards trigger the move of material to a stockpoint from a previous step or
inventory, stockpoints are where components necessary for production are kept. Although
traditionally cards are moved back and forth throughout the plant to trigger these
authorizations with newer technology this system can be computerized and card movements

done instantaneously (Hopp & Spearman, 2011; Nahmias & Olsen, 2015).
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A typical push system is Materials Requirements Planning (MRP) where a master production
schedule based on forecasted demand is converted to a build schedule using a set of rules.
The build schedule defines when and how many parts will be built at each level of
production. This system works with both end items, or items that are sold to customers or
exit the production facility, and lower-level items which are WIP or raw materials. The bill of
materials defines the relationship of which and how many lower-level items are required to

build an end item.

There is a large amount of literature surrounding production planning and scheduling.
However, it is beyond the scope of this thesis to review it in detail. The textbooks by Hopp
and Spearman as well as Nahmias and Olsen are excellent references for those wishing more

detail.

2.3 Scheduling Problem

The scheduling of tasks is a very active area of research in academia as well as industry. This
is mainly due to the wide variety of real-world problems that relate to scheduling, as well as
the impact that a good schedule can have on system performance. There are many ways to
formulate a scheduling model using linear integer programming, however the two main
decisions address how material balances will be handled as well as how time will be
represented. The following two sections explore these decisions in detail. The third section

discusses the different objectives that can be present in a scheduling problem.

2.3.1 Material Balances

Two main ways of dealing with material balances exist. The monolithic approach
simultaneously deals with optimization of the batches as well as determining what goes in
each batch. The second approach creates the batches first, then uses this as input to

determine when to schedule these batches.
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Monolithic approaches are further broken down into two models: state-task network (STN)
and resource-task network (RTN). RTN based representations consume and release
resources at the start and end of tasks. STN instead uses a directed graph with “(i) state
nodes representing feeds, intermediates and final products; (if) task nodes representing the
process operations which transform material from one or more input states into one or
more output states and; (iii) arcs that link states and tasks indicating the flow of materials”

(Méndez et al., 2000).

Given that both of these approaches simultaneously deal with the creation of batches as well
as the batch scheduling, this yields a very large and complex model. Due to this, only small
problems or those with a short time-horizon have been be solved using these methods
(Méndez et al., 20006). In the TIP case, using a monolithic method would attempt to both

determine the optimal autoclave packings and schedule them in the same model.

The second approach uses lots that are pre-specified. Since the lots are created
independently from the schedule, a global optimal solution cannot be guaranteed. However,
“this two stage approach can address much larger practical problems than monolithic
methods” (Méndez et al., 20006). By breaking up the problem the scheduling portion only has
to deal with how resources are allocated to the lots, making the problem much smaller and

easier to solve.

2.3.2 Time Representations

There are two main options as to how to represent time: continuously or using discrete
intervals. Continuous time representations can usually better represent the problem at hand,
however they can be much harder to solve. Several ways of modelling continuous time
representations exist, including: global time intervals, global time points, unit-specific time

events, time slots, and precedence-based (Castro & Grossmann, 2005; Castro & Grossmann,
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20006; Gupta & Karimi, 2003; Méndez et al., 20006). For discrete time the only way is using

time intervals.

There are several continuous-time representations available in academic literature. However,
most are only applied to small to medium-sized problems (Castro & Grossmann, 2005;
Castro & Grossmann, 2006; Floudas & Lin, 2004; Gupta & Karimi, 2003). The discrete time
representation using time intervals can handle large problems. However, if the time intervals
do not exactly line up with task times the task times must be rounded up. This creates an
approximation of the problem, resulting in suboptimal solutions to the real problem (Castro
& Grossmann, 2006). A solution to this is increasing the number (decreasing the width) of

time intervals, which can lead to a very large problem.

2.3.3 Scheduling Objectives

Many objective functions have been studied for scheduling problems, these range from
makespan minimization which has been studied extensively to profit maximization (or its
counterpart cost minimization). Makespan minimization attempts to schedule all tasks in the
shortest amount of time possible. Profit maximization (and cost minimization) usually
involve constraints that determine the latest time tasks can take place at or penalize tasks
scheduled after a certain time, but their objective is mostly to maximize profit (minimize
cost) from the completion of these tasks. Other objective functions can attempt to minimize
average or maximum task lateness assuming that tasks have a due date (Floudas & Lin, 2004,
Maravelias & Grossmann, 2003; Méndez et al., 2006; Simpson & Abakarov, 2009; Ye, Li,
Chen, Ma, & Leng, 2014).
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2.4 Bin Packing Problem

The classical Bin Packing Problem (BPP) consists of a set of items that need to be packed
into a set of bins, each with capacity C, such that the number of bins used is minimized and
none of the physical constraints are violated (Coffman Jr, Csirik, Galambos, Martello, &
Vigo, 2013). The BPP is within a larger class of problems called order independent
minimum grouping problems (Lewis, 2009) . Most literature regarding the BPP focuses on
one or two dimensions, usually with identical bin sizes (J. V. de Carvalho, 2002; J. V. de
Carvalho, 1999; S. Martello, Pisinger, & Vigo, 2000; S. Martello & Toth, 1990). However
work with non-identical bin sizes also exists (J. V. de Carvalho, 2002; Friesen & Langston,

1986; Haouari & Serairi, 2009; Kang & Park, 2003; Murgolo, 1987).

The BPP is traditionally an NP-Complete problem, thus making it very difficult to solve in
large instances (Garey & Johnson, 1979). NP-Complete is a class of problems theorized
impossible to solve in polynomial time, therefore named Non-Polynomial (NP) Complete.
Although the lack of evidence of an algorithm that can solve these problems in polynomial
time is not proof that they cannot be solved in polynomial time, it is generally agreed upon
by the scientific community that certain problems fall in this realm (Blum & Rivest, 1992).
Solving small NP-Complete problems to optimality is possible, however as the problem size
grows solution times will grow dramatically, often making it impossible to reach an optimal

solution. To solve these large problems usually heuristics or meta-heuristics are used.

The complexity intrinsic to the Autoclave Packing Problem (APP) is greater than that of the
traditional BPP given the additional constraints as well as the need to level out the demand
for autoclave resources. Given that the BPP is NP-Complete, optimally solving the APP is

likely to be at least equally difficult.
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2.5 Batching Problem

There are two batching problems in literature, the serial-batching problem and the
parallel-batching problem. The serial-batching problem is where a set of jobs only requires
one setup time if they are part of the same job family. Jobs are completed and can move on
independently. In the parallel-batching problem, jobs of a particular batch both start and end
the process together, often the machine process cannot be interrupted (preemption is not
allowed). In literature this is known as the scheduling of the batch processor (SBP). The SBP
problem is the one that will be discussed in this section as it is most relevant to the problem

at TIP.

The SBP, or parallel-batching problem, is found in many industries. Predominantly research
in this area has focused on the semiconductor industry, however it is also found in
metalworking, show-manufacturing, helicopter-part production, and ceramics (Fanti et al.,
1996; Koh et al, 2004; Luh et al, 1997; Ram & Patel, 1998). This problem must deal with
how the batches are created as well as the scheduling of these batches in the time-horizon to
best suit the objectives (usually makespan minimization). The creation of batches, while
minimizing the time-horizon, carries an implied Bin Packing Problem. Additional difficulty is
added to the problem as the batches are also scheduled simultaneously. A very thorough
literature review on the subject relating to the semiconductor industry analyses the research
in this area (Mathirajan & Sivakumar, 2000). Due to the difficulty of the problem, research in
this area has dealt mostly with small single-machine (76% of articles in literature review),
while a few others have dealt with two-machine problems and almost none tackle more than
two machines. If multiple machines are considered, usually these have identical capacity.
Little research exists for multiple machine problems with non-identical capacity. Capacity in
all papers considered in the literature review used only a single capacity constraint (usually
volume). Most papers studied in the literature review use heuristics (66%) instead of

mathematical programming (30%) or simulation (4%).
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While research in this field is related to the problem at TIP, no article was found that dealt
with the level of complexity found in the problem at TIP. Most research considered at most
two machines, often identical, and with only one capacity dimension. The problem at TIP
has more than two machines which are not identical and have several capacity dimensions
(Volume, thermocouples, tools, etc.). In addition, none of the problems integrate complex
constraints such as manpower levelling, absolute minimum tool recycle times, desired tool

recycle times, energy minimization, and other constraints found in the problem at TIP.

2.6 Mixed-Integer Linear Programming

Linear programming is used on problems that are linear in nature, therefore no “if”
statements, multiplication or division of decision variable is allowed. All constraints and the
objective function must be expressed linearly. A key word here is “expressed” since many

nonlinear problems can be linearized by creative modelling techniques or approximations

(Williams, 1999).

Mixed-Integer Linear Programs (MILP) deal with special subset of optimization problem
where some of the decision variables must take on integer values instead of being allowed
continuous values. Being able to take on only integer values greatly increases the types of
problems that can be modelled. Especially useful are binary variables which can be used to
turn constraints on or off depending on situations. Although there is an improvement in
terms of modelling possibilities this also introduces an additional level of complexity over
continuous optimization, both making it more difficult to find feasible solutions but also to
prove optimality (Eiselt & Sandblom, 2000). MILPs are frequently used to model problems
such as network problems, facility location problems, Bin Packing Problems and
resource-task scheduling problems among others (Pochet & Wolsey, 2006; Salkin & Mathur,
1989).
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Continuous linear programming models are easily solved by modern solvers using the
simplex method, however for MILP models more sophisticated techniques are used. Most
techniques rely on an initial “lower bound” computed by the relaxation of the integer
program into a continuous program approximation and solved with the simplex method, this
is followed by cutting-plane methods as well as branch-and-bound enumeration. Significant
literature is available on these methods (Balas, 1971; Belov & Scheithauer, 2000; J. V. de
Carvalho, 1999; Eiselt & Sandblom, 2000; S. Martello & Toth, 1990; Salkin & Mathur, 1989).

Branch and bound is at the core of all integer programming solvers. This method works by
solving the linear relaxation of the integer program where all integer variables are made
continuous. Once the linear relaxation is solved one of several things can happen. The first is
that the optimal solution to the linear relaxation is integer, in which case the optimal solution
to the integer problem has been found. The second is that there is no solution to the linear
relaxation in which case the model is infeasible. The third option is that some or all of the
variables for the linear relaxation are non-integer. In this case branching occurs, where at
least one non-integer variable is set to be integer. For example if a decision variable is found
to have a value of 3.8 in the linear relaxation two branches occur at 3 and at 4. This method
is repeated until all variables are integer. If at any point a linear relaxation yields a worse
result than an already found integer solution that branch is fathomed (the bounding section
of the name). This is because any integer solution will always be worse or equal to the linear
relaxation, never better. Therefore no better integer solution than the linear relaxation can

result from this branch (Lawler & Wood, 1966).

While solving the branch and bound tree a “gap” parameter can be calculated. This gap
indicates how far the currently best-found integer solution is from the best known bound on
the optimal solution. It is calculated by dividing the value of the best linear relaxation minus
the value of the best integer solution over the value of the best integer solution. When this
gap reaches 0, an optimal solution has been found. Frequently solvers will have a default

tolerance where a solution will be deemed optimal once the gap is below a certain point,
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typically 1e-04. A further improvement upon branch and bound is the implementation of
cutting planes into the procedure which is common in mathematical solvers. This leads to
the method called branch and cut. Cutting planes add linear inequalities as constraints which
help bring the linear relaxation closer to an integer solution and thus speed up the procedure

(Gilmore & Gomory, 1961; Jinger et al., 2009; Wolsey & Nemhauser, 2014).

Sometimes MILPs have a property called symmetry. Symmetry is found in a problem when
“its variables can be permuted without changing the structure of the problem” (Margot,
2010). In non-mathematical terms, consider three loads being scheduled on a machine.
Loads 2 and 3 have the exact same contents, but one is called Load 2 and one is called Load
3. Scheduling them in the sequence 1-2-3 and 1-3-2 would have no impact on the actual
operations at the machine, however the MILP would view those as two different solutions.
This example has one symmetry. In large problems thousands of symmetries can occur;
these can result in a much larger solution space for the mathematical solver to explore.
Identitying and reducing these symmetries in the problem formulation stage can greatly help

the solver reach a solution faster.

2.6.1 Goal Programming

Goal programming can be used within MILPs when there are multiple objectives in a
problem. In these cases there exist constraints, but also separately there are goals. The
objective function measures if goals are met, and penalizes if they are not. There exist several
approaches to meeting these goals. The lexicographic minimum method attempts to satisfy
objectives in a set priority structure where the first objective to be satisfied is infinitely more
important than the second, and the second infinitely more important than the third and so
forth. A second method is using the weighting of objectives, where each objective function
term is given a weight to show the relative importance versus other objective function terms.
The weighting of objectives is based on utility theory, where each term holds a certain utility
or value. There are several other methods of dealing with multi-objective optimization,

however in this thesis the weighting of objectives will be used. Several good articles and
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books exist on this topic (Flavell, 1976; Ignizio, 2004; Ignizio & Cavalier, 1994; Tamiz et al.
1998).

2.7 Heuristics and Meta-Heuristics

When MILP is not able to solve the given problem either at all or requires too much time to
solve for the application at hand, heuristics and meta-heuristics are a good alternative.
Heuristics are policies, rules of thumb, that provide a simpler method to solving a problem
and are usually much faster. However, they do not guarantee optimality. Sometimes
heuristics can provide a ‘worst case’ scenario, where they guarantee that the solution is no
worse than X% away from optimal. A good list for heuristics and meta-heuristics for the
BPP can be found in Coffman et al. (2013). A brief description of first-fit, best-fit,
shortest-processing-time, simulated annealing, genetic algorithms, tabu search, theory of
constraints heuristic, ant colony optimization, and the hill-climbing method is shown in the
following sections. Many other heuristics and meta-heuristics exist, however these are the

most common and most relevant to the problems discussed in this report.

2.7.1 Heuristics

Heuristics can be categorized into two broad categories, general and problem-specific.
General heuristics can be applied to almost any problem (greedy algorithm), while
problem-specific heuristics are only applicable to a class of problems. First-fit and best-fit
are usually problem-specific to Bin Packing Problems, but with modifications they can also
be used to schedule. Shortest processing time (SPT) is specific to scheduling problems. The
Theory of Constraints (TOC) heuristic is even more problem-specific as it is meant to

schedule autoclaves with re-entrant operations.
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2.7.1.1 First-Fit and Best-Fit

The First Fit heuristic packs each item into the lowest indexed bin in which it fits. If there
isn’t a bin where it fits a new bin is created . Best-Fit attempts to pack the item in the bin
which will end up most full (but not exceeding capacity), if no bin can accommodate the
item a new bin is created (Coffman Jr. et al., 2013; Johnson, 1974). Both of these are
formulations of a greedy algorithm, where the local optimum solution is always selected.
Although they are not guaranteed to produce globally optimal results, the heuristics run very
fast. These two heuristics can be also used to schedule jobs on machines; in this case jobs are
fed into the heuristic and scheduled into either the first machine they can be done on

(First-Fit) or the best machine to process that job (Best-Fit).

2.7.1.2 Shortest Processing Time (SPT)

Shortest Processing Time is a heuristic usually utilized for single-machine scheduling. It
schedules the jobs that must be processed in a machine by having the one with the shortest
processing time first and all after have non-decreasing processing times. This heuristic is very
fast for single-machine scheduling of jobs given that all it needs to do is sort the jobs in

order of processing time and is good for just-in-time systems (Lee, 1991).

2.7.1.3 Theory of Constraints (TOC) Heuristic

Ye et al. proposed a heuristic in 2014 that could deal with reentrant operations in autoclave
scheduling. Reentrance is sometimes found in composites manufacturing when a part is laid
up, then cured, then laid up and cured at least once more. The TOC heuristic is based on
priority rules, and its objective is to maximize “the mean comprehensive utilization of all

autoclaves, and at the same time shortening the makespan as possible”(Ye et al., 2014).



24

2.7.2 Meta-Heuristics

Meta-heuristics insert randomness and typically run a basic heuristic multiple times, either
having the latest solution as the best one or keeping a log of solutions and then picking the
best one thus far at the end of the run. Meta-heuristics always give better solutions than just
running the underlying heuristic once, and given the speed at which heuristics run, a
meta-heuristic can have thousands of iterations in just a few seconds. Some common
meta-heuristics are discussed below as well as some not so common ones that proved useful
in solving the TIP problem. While most of the meta-heuristics discussed here are general
and can be applied to a broad range of problems, the hill-climbing method is
problem-specific to the Bin Packing Problem.

2.7.2.1 Simulated Annealing
Originally this method was developed independently by both Kirkpatrick et. al and Cerny

(Kirkpatrick, Scott and Gelatt, C Daniel and Vecchi, Mario P and others, 1983; Cernjr, 1985).
Since then several an articles have applied simulated annealing heuristic to job shop
scheduling (Osman and Potts, 1989; Van Laarhoven, Aarts, & Lenstra, 1992). Although
good, their results show very long computing times are required for good solutions, even in

the case of moderately sized problems.

Simulated Annealing works by exploring the neighbourhood around a given solution, then
picking a solution in that neighbourhood. If the new solution is better than the given
solution it is accepted and the process starts again. If not, it is accepted based on probability.
This probability of acceptance is positively correlated to the temperature at that time and
negatively correlated with how much worse the proposed solution is. The temperature is
regularly decreased according to a cooling schedule, thereby reducing the probability of
acceptance of non-improving solutions. The initial solution can be generated by a heuristic,
or a linear relaxation of an integer program that although infeasible is penalized for

infeasibilities. This heuristic is sometimes very fast, and in very large problem instances can
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provide a good solution where other methods struggle, it is also very easy to program. It is
however very parameter sensitive, in particular the cooling schedule must be carefully

designed (Bertsimas & Tsitsiklis, 1993; Eiselt & Sandblom, 2000; Hajek, 1988).

2.7.2.2 Genetic Algorithms

Genetic algorithms (GA) work very similarly to simulated annealing, however they are
inspired in biology rather than metallurgy. For each iteration a set of possible solutions are
present, a few of the best are selected to be the parents of the next iteration. Children are
produced from these parents by selecting certain pieces of the two parents at random. The
children and parents both continue on to the next iteration. Sometimes randomness is also
inserted into the children via a mutation, where a part of the genome that makes up the
solution is altered randomly. This mutation procedure allows genetic algorithms to make
jumps across the solution space, while the parent-child relationship makes it search locally
for an optimum (Eiselt & Sandblom, 2000). One drawback to genetic algorithms is the
required tuning of parameters such as mutation rate, selection of next parents in an iteration,
and others. This parameter tuning can greatly influence the performance of the algorithm

and is very problem-specific.

2.7.2.3 Tabu Search

Tabu search, also called Steepest Descent Mildest Ascent method, was independently
developed by Glover and Hansen (Glover, 1989; Glover, 1990; Hansen & Jaumard, 1990).
The algorithm starts with an initial solution and much like simulated annealing searches the
neighbourhood around that solution for the next one. Tabu search will search the whole
neighbourhood and then select the most improving move; if no improving moves are
available, then the least costly non-improving move is selected. This is in contrast to just
selecting a random move like simulated annealing would do. Having this non-random

procedure introduces the possibility of cycling between several solutions, to prevent this a
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tabu list of moves that not allowed is kept. Several parameters and policies to keep this list

exist (Eiselt & Sandblom, 2000).

2.7.2.4 Ant Colony Optimization
First developed by Dorigo (1996), the latest version by Levine and Ducatelle includes an

augmented local-search algorithm which yields very good results (Dorigo, Maniezzo, &
Colorni, 1996; Levine & Ducatelle, 2004). The basic approach mimics how ants search for
food. It uses a combination of heuristic information and a pheromone trail that is reinforced
by the quality of the solution to build new and better solutions. Whereas initially this method
was used to solve the well-known Travelling Salesman Problem (TSP), it can also be

successfully applied to the Bin Packing Problem.

For the TSP the pheromone trail is encoded as a matrix of values which describe the
favorability of visiting city j after city i. A similar concept is used when applying ant colony
optimization to the BPP, where the pheromone matrix describes the favorability of having
items of size i and size j in the same bin. This is especially good for solving problems that
have identical bin sizes, but the structure breaks down when using variable bin sizes (Levine

& Ducatelle, 2004).

2.7.2.5 Hill-Climbing Method
The hill-climbing method works based on a greedy algorithm (Lewis, 2009). First, unsorted

items are inserted into bins on a first-fit rule, if it does not fit in any bins a new bin is
created. Then the algorithm applies a problem-specific local optimization whose objective is
to “improve the quality” of the bin packings. All this is done while preserving feasibility.
Finally the items from the bins go through the algorithm again, being fed into it in either the
order of the groupings or a random order of the groupings, while keeping the items within
each bin in sequential order. Doing this process of re-inserting the items to the heuristic in

this manner always yields a lesser or equal number of bins in each permutation according to
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the following theorem: “If each set of items Ui € U (for i=1,..., G) is considered in turn, and
all items u € Ui are fed one-by-one into the greedy algorithm, the resultant solution U will be
feasible, with |U| |U|” (Lewis, 2009). The process stops when a user-specified stopping rule

is met, usually number of iterations.

2.8 Mathematical Programming Languages

When a mathematical program is formulated it must then be translated into a mathematical
programming language to be communicated to the solver. Some languages are not
compatible with some solvers, therefore the decision between language and solver must be
made taking both into account. This section reviews some of the prominent mathematical
programming languages, the next section will discuss optimization packages that can be used

with these solvers.

a) AMPL

AMPL is an acronym for “A Mathematical Programming Language”, this language is
developed by Robert Fourer, David M. Gay, and Brian W. Kernighan at AT&T Bell
Laboratories. It continues to be developed, marketed, sold, and maintained by AMPL

Optimization (Fourer, Gay, & Kernighan, 1990).

b) GMPL
GMPL is also called GNU Mathprog, this language is open source and based on the AMPL
standard in Fourer et al. (1990). It is designed to be used with the GLPK open source solver

but can also be used to generate models for other solvers (Pokutta, 2010).

c) GAMS
GAMS is an acronym for “General Algebraic Modeling System”, it is developed and sold by
the GAMS Development Corporation (GAMS Development Corporation, 2015). Its
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structure is similar to AMPL but provides access to a wider class of nonlinear problems

(Brooke et al., 1998).

d) JuMP

JuMP is a mathematical programming language based on the Julia programming language.
Julia is a language for technical computing and is very fast. It is designed for parallelization
and distributed computation (Bezanson, Karpinski, Shah, & Edelman, 2015). It is a free

language to use under the MPL License (Lubin, Dunning, & Huchette, 2014).

e) PulLP

This language is based on Python programming language and is used as a module that is
installed onto Python. It was created by Stuart Mitchell at Stuart Mitchell Consulting and
Michael O’Sullivan and Iain Dunning at the University of Auckland. The main advantage of
this language is that pre-processing and post-processing work for the model can be done in
the same interface. It is highly customizable and open source (Mitchell, O’Sullivan, &

Dunning, 2011).

f) Pyomo

This language is also, like PulLP, based on Python. It was developed by William Hart,
Jean-Paul Watson at Sandia National Laboratories along with David Woodruff at University
of California Davis. The language has extensive documentation available and is very intuitive
for Python users. It also has extensions for stochastic programming and distributed

computation (Hart, Watson, & Woodruff, 2011; Hart et al., 2012).

2.8.1 Pyomo

The mathematical modelling work included in this thesis is described in the appendices using
Pyomo. This language was selected among the several discuss in the previous section due to
several advantages. One of the main advantages is that the language is based on Python,

allowing several pre-processing steps and integration with other code sections to happen
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seamlessly. Additionally errors in code are easier to identify than with other languages. Both
Pyomo and PuL.P are based on Python, however the Pyomo community was found to be
more active and provide more support. Early tests also found Pyomo to work faster than
PuL.P on a given mathematical model. Finally, Pyomo also provides an easy method of
changing solvers (a single line of code is changed) which was important in early stages where
the solver to be used was not yet identified. A brief tutorial on how Pyomo constraints are

created and interpreted is found in section 4.2.1 Pyomo Basics.

2.9 Optimization Packages

Several optimization packages are available to solve linear integer programs. Three main
ones are described below with the first two being commercial solvers and the last one being

a free open-source solution.

a) Gurobi

Gurobi was developed by Robert Bixby, Zonghao Gu, and Edward Rothberg and first
released in 2009 (Gurobi Optimization). It is written in C but like CPLEX can be connected
to from multiple programming languages. This is a commercial solver with multiple licensing
options. Due to the impressive performance that Gurobi has, its ability to make use of cloud
computing to provide flexible licensing options, and its easy availability for academic

research (during development), this solver was selected to tackle the scheduling problem at

TIP.

b) CPLEX
CPLEX was developed by Robert Bixby in 1987, and through a series of acquisitions it is
now owned, updated, and sold by IBM. This is a commercial solver with multiple licensing

options. There are several ways to connect to CPLEX through multiple programming

languages (IBM).
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c) GLPK
GLPK stands for GNU Linear Programming Kit (Pokutta, 2010). It is a free open source
solver easily available online. It can be connected to from multiple programming languages

as well. Its performance is below that of the commercial solvers Gurobi and CPLEX.

Figure 6 and Figure 7 show the relative performance of each of these in a test scaled to
Gurobi’s performance. For this test the following versions were used: Gurobi 4.6.1, CPLEX
12.4.0.0, and GLPK 4.47 (Meindl & Templ, 2012). Clearly due to the running time and the
percentage of instances solved, Gurobi’s overall performance is the best among the

considered optimization packages.
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Figure 6: Running Time of Optimization Packages Scaled to Gurobi (Meindl & Templ,
2012)
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Figure 7: Percentage of Test Instances Solved (Meindl & Templ, 2012)

2.10 Cloud Computing

Cloud computing allows the purchase of computational power in a scalable way with a
pay-as-you-go manner. This allows developers, companies, and the I'T industry to not worry
about the capital expenses required in launching a new product or service. The risk of having
undersized in-house computing for a product that exceeds usage expectations or oversized
in-house computing for a product that fails is no longer an issue. Instead large companies
like Amazon, IBM, and Google have launched cloud computing services Amazon Web
Services (AWS), BlueMix, and Google AppEngine respectively (Amazon Web Services ;
Google ; IBM). They all provide different levels of integration, technical knowledge
necessary for usage, and price. The main advantage they have over standard data centers is
that due to their size they obtain massive utilization increases due to statistical multiplexing,
spot market instances, and time shifting of their own computing needs (Armbrust et al.,

2010).
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In addition to the standard licenses discussed for the CPLEX and Gurobi optimization
packages both have cloud computing options available. CPLEX costs $10 USD per hour
online and Gurobi costs $25 per hour online (Gurobi Optimization, ; IBM, 2015). Their
platforms are slightly different. CPLEX is hosted on IBM servers and the optimization
software can be called through a web interface or an Application Programming Interface
(API) call. Gurobi must run on AWS’s servers, thus an instance must be started and a
compute server loaded on. There is more technical work required to run Gurobi on the
cloud than CPLEX on the cloud, but it also allows the user to specify the hardware that the

software runs on.

Cloud computing is used in conjunction with Gurobi to solve the mathematical model
discussed in this thesis. This is deployed on AWS, the details of this are discussed in the
Implementation section. Cloud computing is used due to several important benefits it
provides that are worth the added system complexity. From a financial perspective it allows
the use of flexible licensing for mathematical solvers which, for the expected use (1 hour
about 3 times per week) at TIP, provide cost savings. From a development standpoint it
allows to easily update files remotely, it also lays the groundwork to allow different users at
TIP to access optimization services from multiple locations. Finally, from a computational
standpoint, it allows access to very well maintained, backed-up, high-performance computers

at a low cost.

2.11 Previous Work on Autoclave Packing and Scheduling

Few work was found in literature regarding autoclave packing and scheduling for composite
manufacturing plants. Section 2.11.1 presents work done at Aerospace Technologies of
Australia which uses an MIP model to schedule autoclave loads. Section 2.11.2 examines a
paper which uses a heuristic to schedule autoclave loads. Section 2.11.3 examines the

Simul-8 commercial software application for autoclave packing which uses heuristics as well
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as simulation for autoclave packing and scheduling. Work done by the Lockheed Artificial
Intelligence Centre on this subject is presented in Section 2.11.4. Finally, a paper dealing with

on-line autoclave packing and scheduling is presented in section 2.11.5.

2.11.1 AeroSpace Technologies of Australia (ASTA)

Panton and Beaumont from the University of South Australia and Monash University
respectively, developed an integer program for the scheduling of autoclave loads at ASTA in
1997. The problem they faced is similar to the one at TIP. Orders for parts in the problem
were “usually regular and known months in advance”, the company “feels that the autoclave
cell is the bottleneck”, and the number of tools is an important constraint. All of these

features are also present at the TIP problem.

The team tackled the problem by enumerating 30 autoclave loads that would fill or nearly fill
the assigned autoclave. Then the team designed an integer program that would attempt to
schedule all loads as early as possible within the time-horizon established as shown in below

(Panton & Beaumont, 1997).

Indices:
1...1 for autoclave loads

1...v for autoclaves

1....s for shifts

Sets:
i autoclave loads

j autoclaves

k shifts

Parameters:

a;; binary, 1 if logical set i can go into autoclave j



p, integer, penalty parameter for late scheduling
b, integer, demand for logical set 1
¢, integer, longest cycle time for tools associated with logical set i

n,; integer, number of shifts to process logical set i in autoclave |

Variables:

X; . binaty. 1 if logical set i is started in autoclave j in shift k, 0 otherwise.

Objective:

Minimize 7

Constraints:
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Constraint set (1) ensures demand for logical set i is satisfied. Constraint set (2) ensures tool

recycle times are met. Constraint set (3) ensures autoclaves are processing at maximum one

logical set at a time. Constraint set (4) is the objective function Z to be minimized. If p,=k

then there is a penalty associated with scheduling jobs late. This formulation uses a discrete

time interval of 8 hours as shown by the “k” shifts set (Panton & Beaumont, 1997).

The problem being solved at ASTA had approximately 114 loads per month that were being

scheduled around blackout periods. Blackout periods were used to schedule a large portion

of very regular and single-product cures that would not be scheduled by the formulation

provided by the researchers. These 114 loads equated to approximately 693 hours of
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cure-time on the five autoclaves at ASTA (Panton & Beaumont, 1997). For comparison, TIP
cures approximately three times this amount every month on a similar number of autoclaves.
Additionally the TIP problem has a more varied product mix as it requires the creation of
new loads every month, instead of being able to enumerate 30 good loads and use those.
There are also more complex constraints that stem from the objectives discussed in section

3.1.2.2 Scheduling Objectives that are present in the TIP problem but not at ASTA.

2.11.2 Scheduling Method for Reentrant Autoclave Moulding Operations

Ye et al designed a heuristic for scheduling of composite parts to be cured in autoclaves.
Their heuristic uses priority rules to determine which pieces are scheduled when and
simultaneously solves the autoclave packing problem and scheduling problem. It can also
handle parts which have “reentrant” operations where multiple iterations of layup followed
by curing must take place. The scheduling objective is “maximizing the mean comprehensive
utilization of all autoclaves, and at the same time shortening the makespan as possible” (Ye
et al., 2014). Given that the method used is a heuristic no mathematical model is provided in

this paper.

The problem at TIP also includes reentrant operations; however, these are minimal and in
most cases restricted to parts that have a very stable demand. Reentrant operations are not
included in the proposed model of this thesis given the difficulty of incorporating them into
the model as well as their minimal use. Therefore these are cured in designated slots that are
permanently scheduled and can be blacked out by the user to restrict the model from
scheduling other loads during those times. More information on this is found in subsection

4.4.7 Blackout Calendar of the Implementation section.
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2.11.3 Simul-8 Planner

The Simul-8 Planner is a planning and scheduling tool based on simulation (Hindle &
Duffin, 2000). It was developed by the Visual8 Corporation. It can simulate the entire
composites manufacturing facility and identify how well a schedule will affect different steps
of the process. The Simul-8 Planner uses sets of rules (a heuristic) to create schedules, this
set of rules can be changed by the user. It also supports manual overrides to these rules. In
the planner autoclaves run on a bus schedule to ensure resources are available on either end
of the cure cycle for load and unload processes. When a given cycle on the autoclaves is
ready to start, the system searches which parts are compatible to enter the autoclave as a
batch. If several batches are available the one with the least slack time (hours left on material
outlife) is selected. The paper referenced here does not provide indications as to the specific

heuristics used in scheduling nor does it show computational results of any kind.

2.11.4 Lockheed Artificial Intelligence Centre

Two systems relating to autoclave packing and scheduling have been published by
researchers from the Lockheed Artificial Intelligence Centre. Clavier is a system developed
by Hennessy and Hinkle (1992) for autoclave packing. The second system, a case-based
scheduler, uses the results from Clavier and applies heuristics to it to create a schedule for

the production process, including the autoclaves.

Clavier uses case-based reasoning which compares the current set of parts to be cured,
ordered by priority, to previous sets of parts that have been cured. If an exact match is
found, then that is the load recommended. However, if an exact match is not found, it uses
similar sets to propose a new load to the autoclave operator. The operator can then either
accept or reject it, if accepted it gets added to the database of previously cured parts. The
software takes into account the parts’ layout within the autoclave as well as several heating
characteristics experienced during the cure. These heating characteristics do not need to be

taken into account in the TIP case as recipes are all assumed to work properly for the
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autoclaves they are rated for. The Clavier system was implemented at a composites
manufacturing facility, however its use was changed as operators simply ran the software
without restricting it to the set of parts currently at the curing centre. Operators then

produced and cured full loads on the autoclaves and stored any excess parts for future use.

The second system, the case-based scheduler, uses the results from Clavier to create a
schedule (Cook et al, 1990). It takes the loads created by Clavier and then applies a heuristic
that arranges the loads on a schedule. One example given in the article is to arrange loads
such that parts that take the longest to process are scheduled first. In this process resources
are allocated to loads as required to monitor their usage. Following that process, a local
improvement heuristic identifies decision points and improves the schedule by making
changes based on a set of rules. Once no further changes can be made, or the scheduled is
deemed “good enough” by operators, the system stops. The article does not explicitly show
the heuristics used, present computational results, or show the size of problems that can be

solved by these methods.

2.11.5 Heuristics for Multi-Server Batch Operations

Two papers were found in the field of parallel-batching problems dealing with aerospace
applications very similar to those at TIP (Van Der Zee et al., 1997; Van Der Zee et al. 2001).
Both papers conduct on-line scheduling, similar to that done by the Clavier system. The
look-ahead heuristics provided have a cost minimization objective which takes into account
waiting costs as well as setup costs. The 1997 paper is able to deal with multiple machines as
long as they are identical. The 2001 paper presents a new heuristic which is better suited to
handle non-identical machines. The methods presented here lack a way of dealing with
several important aspects of the problem at TIP such as material outlife, energy costs,
manpower levelling, complex autoclave packing rules, among others. Given the simple
characteristics of the problem considered in these papers, it was not possible nor was it

attempted to adapt these methods to solve the problem at TIP.
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Chapter 3 Solution Approach

There are two main industrial engineering problems to solve here. The first is a modified Bin
Packing Problem to determine what parts go into an autoclave load, the APP (Dyckhoff,
1990). The second problem deals with scheduling these loads around several constraints.
These two problems can be solved either simultaneously or in series. If solved
simultaneously the computation time may be prohibitively high, but yield a better solution. If
solved in series, with the APP solution being the input of the scheduling problem, the
computational time is less but the solution is just an upper bound on the true optimal

solution.

The objective of the APP in this case is not entirely to minimize the total number of loads.
Since there are several autoclaves with different compatibilities for parts, some autoclaves
might have several times more loads associated with them than others if the only objective
were to minimize the total number of loads. Given that the scheduling problem attempts to
minimize makespan, another objective of the APP is to balance the utilization of all
autoclaves. Therefore the objective is to balance the utilization of all autoclaves while
keeping the number of loads to a minimum. Several constraints exist with respect to parts

and autoclaves. These are listed below:

e Parts have a recipe with which they must be cured. Recipes which are not compatible
with others must be cured separately.

e Autoclaves have thermocouple ports, and parts have differing numbers of
thermocouples. The sum of all part thermocouples must not exceed the
thermocouple ports available in an autoclave.

e The volume of all parts in an autoclave must not exceed 80% of the volume in an
autoclave. This helps make all packings feasible given the complex geometry of the

parts (Devine and Milne, 2014).
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e Parts must individually be able to physically fit into the autoclave. This has been
taken care of by pre selecting which autoclaves a part can fit into.

e Parts must be on tools when cured. The total number of a particular tool used in a
single cure must not exceed the number of tools available.

e Certain parts cannot be cured with certain other parts, including replicas of

themselves in some cases.

The objective of the scheduling problem is to minimize the overall cost and create a
schedule that will be flexible to changes subject to the constraints of the problem. Frequently
the objective of other scheduling problems, especially in job shops, is to minimize the
makespan. However, minimizing makespan is not a priority for TIP, since parts have specific
due dates and producing beforehand will just consume space at the facility. The aspect of
due dates is solved prior to scheduling since demand is given to the model on a weekly basis

and is therefore not included in the model.

In our approach to solving the TIP problem, the scheduling problem was solved after the

APP. This scheduling problem has the following constraints:

e All autoclave loads must be scheduled within the week specified.

e Autoclave packings are only able to be scheduled on autoclaves for which they are
compatible.

e Autoclaves cannot be scheduled to run more than one load at a time.

e All the tools used in a load have a certain recycle time post-curing for which they
cannot be used to allow for cleaning. Therefore more tools than available at a given
time cannot be used.

e There are blackout periods for which no work can be scheduled on the autoclaves.
This is for maintenance or other programs not included in this optimization to be
done.

e Re-scheduling must be kept to a minimum as changes are done to the schedule.
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A more detailed explanation of the solution approaches and results for both problems will

take place in the following pages.

3.1 Mathematical Models

The problem at TIP can be described using mixed integer linear programming (MILP) to be
solved. Several different formulations can be carried out; in the following section the ideal
formulation will be described followed by the problems which prevent this ideal formulation
from being implemented. Then the proposed model, including separate formulations for

autoclave packing and scheduling, will be shown.

3.1.1 Ideal Model
The ideal formulation for this problem would take into account both the APP and

scheduling problem as a single model. This is necessary so trade-offs between individual
autoclave utilization, manpower utilization, overtime, peak power, and schedule flexibility
can all take place simultaneously. The ideal formulation would also use a continuous time
model or discrete time model with very short time intervals. This would prevent rounding up
of cure cycle times that can lead to suboptimal solutions. For example if two 1.5 hour cures
are necessary these can take place in a total of three hours, but if rounding to the nearest
hour were to take place they would be scheduled in a total of four hours. The Autoclave
Packing Problem (APP) adds additional complexity to the BPP, a known NP-Complete
problem, and given the large problem size at TIP is very difficult to solve (Garey & Johnson,
1979). Adding a scheduling problem to an NP-Complete problem and solving them
simultaneously using integer programming is impractical and would prove very difficult to
solve in large instances. This difficulty of the large size of the resulting solution space is
compounded by symmetry that would be present in the problem. Symmetry can present
itself in multiple situations in this problem. While solving the APP autoclave loads could be

created which have different indices but have identical contents. Then again in the
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scheduling side when several identical loads are scheduled they can produce lots of symmetry

in the problem.

3.1.2 Proposed Model

Given the reasons stated in the previous section for not solving the APP and the scheduling
problem together, the proposed modelling approach deals with them separately. The
proposed model uses a discrete time formulation instead of the ideal model’s continuous
time. Continuous time approaches require complex formulations of resource constraints
which often use several big-M terms and can lead to difficulty in solving the problem.
Discrete time models do not have this problem and solve much faster, due to this they are

recommended in literature for large problems (Méndez et al., 2006).

First an autoclave packing heuristic to group sets of parts into loads will be discussed. Then
a scheduling model will be discussed where the loads created by the autoclave packing

heuristic are scheduled in the time horizon.

3.1.2.1 Autoclave Packing Problem Formulation

The problem at TIP is three dimensional, has non-identical bin sizes, and has other
idiosyncratic constraints mentioned in the Introduction section. However, a simplification of
the problem is achievable by only considering the volume of the autoclaves and parts as the
physical constraint to the parts fitting in the autoclaves. The volume of the parts is
approximated by using the length, width, and height of the part on the tool. Given the
wasted space due to complex geometries the volume of the autoclaves is reduced by 20% in
these calculations. Tests were carried out and the 20% value was found to produce feasible
autoclave packings. This simplification was confirmed by the Cure Centre Program
Production Leader as reasonable and necessary. Additionally, the objective of the problem at

TIP is not purely to minimize the total number of loads but to also balance the utilization of
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all autoclaves. Therefore there are two sections to the APP objective function, to minimize

the total number of bins and to balance the utilization among autoclaves.

The balancing of the utilization is accomplished by picking an autoclave with the lowest
“weighted time”, as calculated with the formula below, according to the autoclave packings
already created. This formula was developed by the researcher and validated with the

stakeholders at TIP.

Weighted Time=(1+0.1*au_priority)*au_time

For example, if autoclave 1 has 100 hours in it and is priority 1 while autoclave 2 has 50
hours allocated to it but is priority 2 for the part then the “weighted time” for autoclave 1 is
110 while autoclave 2 is 60. This helps balance between having an even utilization across all
autoclaves and using the autoclaves with the best priority for a given set of parts. The
weighted time function also takes into account blackout times in the au_time component as
assigned work, blackout times will be discussed further in the implementation section. The
weight of 0.1 for the au_priority section of the weighted time formula was obtained by trial
and error and consultation with the Cure Centre PPL. The autoclave priorities are
determined by the Cure Centre PPL, these take into account how well the current product

mix fits in the autoclave as well as the relative cost of completing a run with each autoclave.

A modified version of the hill-climbing method discussed in the Meta-Heuristics section was
developed and applied to the APP. Some modifications were necessary to carry this out.
First it should be noted that the basic hill-climbing method yields an equal or lesser number
of bins in each permutation. However, given that more than one limiting factor (volume,
thermocouples, recipe max loads, etc.) is being considered, this is not always the case in the
modified version. Instead it only improves some of the time, with an occasional increase in

the number of bins. The pseudo code including the constraints of the problem is shown
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below in Figure 8. The full code is available in Appendix Al and makes use of the Bin Class

object in Appendix A2.

The objective is to minimize the total number of bins while keeping a balance between

autoclave priority and autoclave utilization. The constraints are as follows:

1.
2.

Parts must be cured in a load with the right recipe.

Total number of thermocouples in an autoclave must be less than or equal to total
number required by the parts in the load.

Volume of autoclave must be less than or equal to total volume of parts and tools.
Volume used here is decreased by 20% to account for packing of complex
geometries in a cylindrical tube.

Tool length must be less than autoclave length.

Number of parts in a load must be less than or equal to load’s “Max Per Load”
parameter.

Number of identical tools in a load must not exceed number of tools available.

There must be enough tools to hold all parts.



Start new iteration with items in some initial order:

Place items in first bin it fits in.
Item fits if:
-Enough thermocouples are available
-Item geometry is able to go into autoclave that bin uses
-The right recipe is used
-The number of parts in the load is less than the “Max per Load” for the recipe
-Current tools in bin have excess capacity OR:
-More tools are available AND

-There is enough space for the new tool

If item does not fit:
-A new bin is created for that item.
-The new bin uses the autoclave with the lowest weighted time:
-Weighted time=(1+0.1*au_priority)*au_time
-au_time="Total time of autoclave for currently created bins for each

autoclave

After all items are placed:
Conduct local improvement:
-Split all bins into two groups:
-A: Are less than or equal to 30% full by volume
-B: Are more than 30% full by volume
-Attempt to move items from group A into B to create fuller bins.
-Less full bins may be no longer required in future iterations.

Save the iteration as complete. Move on to the next.

For the next iteration randomize the order of bins, then take out all items from the

bins in that order and attempt to place them in the new bins with that order.

Stop iterations when desired number of iterations is reached. Best solution thus far

in terms of number of bins is selected.

Figure 8: Pseudo-Code for Hill-Climbing Algorithm

44
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3.1.2.2 Scheduling Objectives

As the proposed model is separated into the scheduling problem and autoclave packing
problem, the different objectives for both optimization problems will be discussed. This
section will elaborate on the different objectives within the scheduling problem. Given that
there are multiple objectives they must be balanced within the objective function by
weighting their values accordingly. This aspect will be further discussed in the next section

where the objective function is presented.

1. Minimize overtime

Overtime (OT) presents a cost for TIP in terms of people requiring to work additional hours
at a premium rate. Given that the autoclave centre runs on three shifts, it only registers
overtime when loads are started on the weekend. There are two components to this. One is
minimizing the number of loads that start on overtime, the second is to reduce the number
of overtime shifts required in total. This reduces both the amount of people required in the
plant for a given shift, since there is less work that must be carried, out as well as the

frequency at which people come in for overtime.

2. Minimize rescheduling

As changes are made to the schedule due to unforeseen circumstances like added demand,
delays, or AOG situations, there may be a need to change the schedule. However, given that
a problem may have several very different optimal solutions an effort must be made to make
the solution to the rescheduled problem as similar as possible to the original schedule by
minimizing changes. There are two ways to account changes, by the total number of changes
made (regardless of magnitude) or the sum of the magnitude of all changes. The former is
preferred by all stakeholders and leads to a few loads changing times by several hours or
even days. The latter would move the cure times of many loads to accommodate changes,
but each load’s cure time may be only a few hours different than before. These are best
illustrated in Figure 9 below as load E is added to a pre-existing schedule. In this example

Load E could have been inserted manually (Manual creation of loads is further discussed in
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section 4.7.4) to be scheduled during that week due to changes in customer demand.
Minimizing the number of changes moves load B by a moderate amount forward, for
example 5 time units. However, by moving both B and C in the magnitude of changes they
can collectively move a total of 3 time units which minimizes the magnitude of changes. The
minimization of the number of changes and not the magnitude, is preferred by stakeholders

due to the coordination effort required for each move.

Oiriginal A B (. I

Minimize Mumber of

.||||1|.r-|_ urmhber i A b c D
Changes
Minimize Magnitude of

Time

Figure 9: Different Rescheduling Methods When Inserting Load E

3. Usable gaps

As the schedule is created there are unused gaps between loads on a given autoclave. These
unused gaps, if large enough, can be used to schedule or reschedule work without needing to
modify the cure times for other loads. The minimum time to schedule a load is four hours,
therefore any gap that is less than four hours is wasted time. The creation of usable gaps
within the schedule provides it a certain level of flexibility that is desired. Figure 10 shows
how a schedule without usable gaps would require rescheduling of the loads as load E is
added, if usable gaps are already built into the schedule the scheduling of this load would
leave all other loads unaffected. These usable gaps are achieved by the creation of dummy
loads. Dummy loads contain no parts, use no recipe, and are only part of the scheduling
problem. Several potential dummy loads are assigned to each autoclave, and if possible to be
scheduled they are. When a load must be rescheduled, the dummy load can be taken out and

the real load scheduled in its place.
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Figure 10: Demonstration of Usable Gaps When Inserting Load E

4. Peak Power

There are two main portions to the electricity bill that companies pay. The first is total usage
which is a sum of the power consumed. The second is the peak power charge which is the
maximum power drawn at any given time in a 24-hour period and is billed daily. Figure 11
shows two autoclaves running one cure every day. In the first day peak power is not
accounted for in the schedule and both loads on different autoclaves start at the same time.
In this example this results in a peak power of 20 kilowatts (KW). On day two, the same two
loads are run but their start times are separated so they do not overlap. This results in a
much reduced peak power of 10KW. Although both days use the same amount of energy in
total, the peak power they use is very different. For peak power, day two is much more

preferable than running a schedule like day 1.
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Figure 11: Demonstration of Two Peak Power Scenarios
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5. Manpower Levelling

Scheduling production of the parts that go into each of the loads at the layup stage is not
directly included in the optimization. In order to ensure that the schedules provided by the
optimization do not negatively impact the layup areas too much, it is necessary to even out
every area’s workload throughout the week. This is done by setting as an objective to
minimize the maximum workload on any given day for every area. Figure 12 below shows an
example of the maximum workload identified for a given week. By bringing this upper
bound down, the work should be evened out throughout the week and not concentrated on
only a few days. It is important to measure the manpower levelling in terms of percentage of
manpower available so areas with differing numbers of manpower do not contribute
different amounts towards the objective function. Otherwise, this would lead to smaller

areas ending up with more uneven schedules.
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Figure 12: Example of Manpower Levelling at Layup Areas

6. Desired Tool Recycle Times

The absolute minimum tool recycle times are hard constraints that must be met. A tool
cannot be taken out of an autoclave, demoulded, laid up, and be ready for curing before a set
minimum amount. However, this minimum amount may not be the best for all areas within
the production process to work together. If possible, a few extra hours allows for jobs not to
be rushed through and this is possible through proper planning. In addition to the absolute
minimum tool recycle time, information is provided on the desired tool recycle time for each
tool, a time which all stages of production can comfortably meet. A good schedule would

meet all, if not most, of the desired tool recycle times.

7. Early Starts

Setting a load to be cured on Monday morning at 2am is feasible in many situations, but
usually undesirable. This is because meeting this cure time would require the parts to be laid
up on Friday and have them wait throughout the weekend, with the potential of having

material outlife issues if the material runs out of shelf-life post thawing. Due to this, it is
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preferable that loads be scheduled such that they can be laid up in the same week as they are
cured. Scheduling a part so it can be laid up in the same week as it is cured depends on two
factors: the maximum number of shift-hours required for all parts in the load, the shift
schedule for the area laying up the part. Propetly identifying these desired earliest start times
and adhering to them in a good schedule minimizes the WIP that is kept over the weekend
and the potential for material outlife issues. Suppose that a layup room works on a one shift
schedule where only day shift is worked. In Figure 13, “A” and “B” are loads to be cured at
those times and the black lines preceding them are the shift-time required to build those
loads. Load “A” here would be violating the earliest start preference, given that the layup
room would be unable to make the parts that week to be cured at that time slot. Load “B”
would not be, since the layup room has sufficient time that week to lay up the required parts

on the Monday day shift to be cured that afternoon.

|

S —

I I
1 1

o=
Sunday Monday Monday Time
Midnight Day Shift Day Shift
Starts Ends

Figure 13: Example on Early Starts in a Week
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3.1.2.3 Scheduling Formulation

The Mixed-Integer Linear Program formulation is done using discrete time slots of hours to
schedule the autoclave packings. The resources used and considered in the model are the
autoclaves, energy, tools, and to a certain extent manpower in the layup rooms. The full

mathematical model is shown below.

Sets:

P=Parts “z” to be packed

(19524

Au=Autoclaves “j” available for packing

W= Set of all weeks “w”

L=Set of all loads “1”

DL=Dummy logical sets “i”’. Subset of L.

LL_=Set of loads “1” to be scheduled in week “w”. Subset of L.
Ar=Set of “r” available areas (layup)

S=Set of all “k” available times.

(13 b

SW_=Set of timeslots “k” in week “w

€c,_2

ILL =Set of loads “1” that part “z” is in.

€Cy

blkt=Set of blocked off times for each autoclave
weekends=Set of times “k” which fall on a weekend

€C
1

Wsame=Set of pairs of loads “1” that are identical in terms of autoclaves and tools

[1312)
1

Wsomesame=Set of pairs of loads “1” that are not in Wsame but both use at least one tool
to its maximum capacity

AUX2=Set of all loads “1” that can be scheduled at time “k”. Used for tool recycle time
constraints..

AUX3_1=8et of possible pairs of loads “i” starting or running at times “k”. This aids in
dealing with loads that start late on Sunday and end on Monday. Used for autoclave cycle
time constraints.

AUXG6=Set of all load “1” and time “k” pairs in violation of blocked off times for autoclave

(1382

J
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Parameters:
MaxInWeek = Last time slot in week “w”
MinInWeek =First time slot in week “w”

WinS,=Week that timeslot “k” belongs to

({4

MPA =Manpower for area “r
SAR,=Number of shifts for area “r”
S_Time=Start time of day shift

MPL,=Manpower reqd load “1”

11322}
1

ALS,=Layup area for load
C(i”

PL, =Binary, 1 if part “z” is in load
A=Indicates which LS’s are in autoclave “j.

C,=Int, absolute minimum tool recycle time for each P,.
CD _=Int, desired tool recycle time for each P,.

[1312)
1

sh,=Full shifts required to complete job
sh_h,=Hours in excess of full shifts required to complete job “1”

tools,=Int, number of tools available for P,.

n=Int, Cycle time for L,

Wsametime=Minimum time units apart that a pair of Wsame autoclave packings can be
scheduled at given tool recycle times

Wsomesametime=Minimum time units apart that a pair of Wsomesame autoclave packings
can be scheduled at given tool recycle times

Earliest=FEarliest time “k” that load “i”” can be scheduled if laid up the same week as curing

11924
1

Repenalize=1 if rescheduling load “1”” should be penalized, 0 otherwise.

Variables:

(13 b

Load_; =Binary, 1 if L, is scheduled in week “w” at time “k”, O otherwise.

OT= Integer, number of starts on weekend

(13 2

SatWeekend =Binary, 1 if saturday shift is used for OT on week “w”, 0 otherwise.
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SunWeekend =Binary, 1 if sunday shift is used for OT on week “w”, 0 otherwise.
Energy =Integer, counts peak power usage within each week “w”

Tool_Inf =Integer, slack variable to represent tool infeasibility for tool “z”
Au_Inf=Integet, slack variable to represent autoclave infeasibility for autoclave “j”
Resched=Integer, number of bins which were rescheduled in the model

I7332)
1

Early=Binary, 1 if parts in load “1” are not able to be laid up in week they are cured, 0

otherwise.
MP_lvl =Non-negative real, manpower leveler per week “w”” per area “r”
Desired_Tool_Rec,=Non-negative real, counts number of violations of desired tool recycle

time for tool “z”

Before,;=Binary, 1 if bin “i” is scheduled before bin “ii”, 0 otherwise.

The objective of the MILP is in simplest terms to schedule all loads feasibly and at the
lowest cost. Since actual costs were not available work was completed with the TIP team to
identify relative weights of the different variables such as to produce a good schedule for
them that took into account the preferences of different stakeholders. The weights (a, to a,,)
are placeholders for values that can be changed based on the implementation and depend on
the process managet’s priorities. This objective function is based on the weighting of
objectives, as discussed in section 2.6.1 Goal Programming.

Minimize : a; * OT —a, % Y > > Load, ;, +ay* % Energy,
weW i€DLNLL,, keS wew

tay = Y Tool Inf, +asx Y Au_Inf;+agx 3 > MP_lvl,,

z€P Jj€Au weWw  redr

+a; % Y, Desired _Tool Rec. + ag * Resched +aq * Y, Early,
z€P i€L

+ > ay, * SatWeekend,, + a,, * SunW eekend,,
weW

The first term penalizes each start that takes place during overtime hours, namely on the

weekend. The second term provides an incentive to scheduling dummy loads, this is required
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since the constraints leave it up to the optimization to determine which and how many
dummy loads are scheduled. The third term penalizes the Energy,  variable for every week,
disincentivizes the optimization from scheduling two autoclave starts on the same hour. The
fourth and fifth terms represent slack variables for the tools and autoclave resources, the
weights a, and a, should accordingly be large enough to make them the first priority of the
model. If either of these two terms is present the model is infeasible and the infeasibilities
are reported to the user. The sixth term, MP_Ivl  penalizes the peak manpower for each
area used in a week. This penalization makes the layup manpower smoother throughout the
week. The seventh term, Desired_Tool_Rec, penalizes schedules that do not meet the
desired tool recycle times but only the absolute minimum tool recycle times. The eighth
term, Resched, penalizes rescheduling of bins. This term is appropriately weighted above the
reward given for scheduling dummy nodes so that dummy nodes are eliminated instead of
rescheduling more autoclave packings. The ninth term, Early,, penalizes scheduling an
autoclave packing to be cured at a time when the layup room for that autoclave packing
could not have laid it up in that week. The final two terms, SatWeekend  and SunWeekend ,
penalize the number of shifts required on the weekend. Thus if a single load is starts on a
Saturday shift it gets the penalty of 8 plus the penalty of 4 due to the OT term. This system
makes sure that a greater penalty is accumulated for starting on different days of the

weekend since employees would be required to come in on different days to start them.

The constraints of the MILP proposed are as follows. These are named according to the

system used in the Pyomo code as shown in Appendix A3 in order to maintain consistency.

Cl: 3 Load,, =1 Y weW, i€LL, if DL;<>1
keSwW,,

C101: Y Load, <1 Y weW, i€LL, if DL;=1
keSw,,

The constraint C1 ensures that all bin packings that are not dummy loads are scheduled in

the week that they are meant for. Constraint C101 allows the opportunity to schedule
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dummy bins in each week, but does not require all dummy bins to be scheduled. This is due
to dummy loads being only present to increase schedule flexibility in case rescheduling is

necessary; if there is no space to fit a dummy load the model will not become infeasible.

t=min(C.,ss—k)
: <
C2,: (X . > Loadyy,s. i mintit.ss-1) x PL,;_)/tools. <1 +Tool Inf,
=0 i€AUX: Zmirz(kﬂ,ss— 1)

VkeSW,, zeP.

t=min(C,ss—k)
( > > Load
=0 1€AUX2, i it 55-1)

C2 « PL, )/tools, <1 +Tool Inf.

wowt1 W inSys,i,min(k+t,ss—1)

VkeSW, USW,,., , z€P.

t=min(CD.,ss—k)
C22,:( > > Load

' min(i+.ss-1) * PL, )/tools. <1 +Desired_Tool Rec.
=0 ieAUX2

WinSy.s,i,

‘min(k+t,ss—1)

VkeSW,, zeP.

t=min(CD,,ss—k)
C22 ( > > Load

wowt] « PL, )/tools, <1 +Desired_Tool Rec,
' =0 i€AUX2 ’

W inS ., i,min(k+t,ss—1)
‘min(k+t,ss=1)

VkeSW,, USW,, ., , z€P.
The constraints shown above make use of auxiliary set AUX2. Auxiliary sets like this one
can be created by preprocessing to narrow down which variables or parameters a constraint
must use when the mathematical expressions to define this set of variables or parameters are
complex. A more in depth explanation of auxiliary sets can be found in section 4.2.1 Pyomo
Basics. Constraint C2, and C22 are only present when a single week (week 0) is being
scheduled. At all other times constraints C2 ., and C22 ., are activated for every week
from week O to the penultimate week being scheduled. The C2 constraints ensure that the
absolute minimum tool recycle times are met. These count for every time interval present
and every tool that could be used at that time how many tools are being used, by dividing
that by the total number of tools available that number should be less than or equal to one.
In contrast, the C22 constraints give the Desired_Tool_Rec variable a positive value for each

violation of the desired tool recycle time; it is calculated in a similar fashion as the absolute
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minimum recycle time constraint C2. The C22 constraint is not perfect since a single
violation for a tool (not infeasible, but the slack variable Desired_Tool_Rec being 1) will
enable other violations to go unpenalized, however due to computational time and the
unlikeliness that this happens it was decided to leave it as is. The same happens for the C2
constraint, however here a slack variable being 1 does make the model infeasible. The model
will still compute since the slack variable is explicit and the infeasibility will be reported to

the user to help identify potential issues. This is further explained in the Implementation

section.
C3,: > Loadyy; ;< 1 +Au_Inf;, Vj€du,keSW,
ikk€AUX3_1;, o
C3,, 41 - > Loadyy; ;< 1 +Au_Inf; Vj€Au,keSW, USW .,

i kk€AUX3 1,

Constraint C3, is only present when a single week (week 0) is being scheduled. Like C2 and

C22, at all other times C3_ _, is activated for every week from week 0 to the penultimate

w,w+
week being scheduled. This set of constraints ensures that two load’s run times do not
overlap in the same autoclave. It does this by summing the Load variable for all pairs (i,kk)
of loads that if started would either start at or be running at time k. If more than one

occupies the autoclave at the same time the Au_Infj variable is turned on for that autoclave,

indicating an infeasibility and being reported to the user, like in the C2 constraint.

C4: > Load,,;, < Energy, VweW, keSW,,
i€LNLLywif DL=0 v

The constraint C4 counts the highest number of simultaneous starts in each week and

this number is penalized in the objective function for each week.

cs: Y Y > Load,,;, < OT

weWw i€LNLL, k € weekendsnSW,,
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Constraint C5 counts the number of overtime (OT) starts for the schedule. The OT variable
is penalized in the objective function.
C6: Y  Loadyy ;=0 Vjedu

(i.k)eAUX;
Constraint C6 does not allow loads to to start or run during blackout times. It uses the
AUXGO6 auxiliary set to identify the times when starting a load would interfere with a blackout

period.

C7: Z (1- LoadWKLi, i, Biiter,..scheduled) <= Resched
i€L if Rpenalize=1 and DL <>1

Constraint C7 penalizes the rescheduling of loads where the Rpenalize parameter for that
load is 1. This parameter comes from the AWS_d.p pickle file and can be changed by the

user as required.

Earliest;

C8: > Loadyy; ;. < Early;  VieL
k=Min1nWeekWKLi v

Constraint C8 uses the Farly, variable which is penalized in the objective function to
disincentivize loads from being scheduled at a time when they would require to be laid up
the previous week by the layup room. This is done to decrease the likelihood of material

o
1

outlife issues. The parameter Earliest defines the earliest time load “i” can be scheduled to
be cured if laid up that week. When calculating this parameter in preprocessing the different

layup room’s shift schedules are taken into account.

k=WKL7%24+(d+1)x24

co: ( > > Loadyk; ;% MPL)/(MPA, « SAR, %« 8) < MP_Ivl,,,
€L if ALS=r  k=WKLxTx24+dx24 v

VYweW, redr, dexrange(0,7)
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Constraint C9 calculates the highest manpower required from a each layup room on a single
day for every week. By penalizing this variable, this reduces the peak manpower required,

thus making it easier for layup rooms to have an even workload throughout the week.

f=wT24+5x24+17
c1o: > > Load,, ; , < SatWeekend,, « 100 VweW
i€LL,  k=wx7+24+5%24 o
k=w7%24+5x24+24
Cll1: 3 > Load,, ; < SunWeekend,, » 100  VweW

i€LL, k=wxTx24+5524+17

Constraints C10 and C11 calculate loads that cause employees to come in on the weekend.
In contrast to C5 where each overtime load is calculated and penalized in the objective
function, these constraints count overtime shifts. By penalizing these Saturday and Sunday
overtime shifts in the objective function the program incentivizes that if several autoclave

loads must be started on a weekend they be done on a single day.

Cl12: Y Load,;; xk +wsame_time,; < 3 Load,
keSw,, keSw,,

Pk 1 YweWw,(i,ii)eWsame,,

i,

Constraint 12 is present to reduce symmetry in the mathematical model and help it achieve
better results faster, it does not limit the real solution in any way. Using the list Wsame of
pairs of bins that are exactly the same it simply restricts one to be scheduled before the
other, with the minimum tool recycle time separating them. Therefore the option of

€C ¢
1

scheduling them with “ii” before “i” is removed, reducing the solution space. The
computational improvement this constraint yields will be further explained in the Results

section.

C13: % Load,;; * k +wsomesame_time;; = > Load,
keSW,, keSw,,

0+ (MaxInWeek, + 1) « (1 — Before, ;) VweWw,(i,ii)eWsame,,

¥k -1 <

i,



59

C14 : Before; + Before;; == 1 NweW, (i, ii)eW somesame,

Constraints 13 and 14 generalize what constraint 12 does for identical bins to those bin pairs
where both use the maximum number of tools available for one or more tools. Given that
they are both using the maximum number of tools available it is impossible for their tool
recycle times to overlap in any way, therefore one must be strictly scheduled before or after
the other while separated by the tool recycle time. A binary variable called Before turns

constraint 13 on or off depending on which one is scheduled before the other.

3.1.3 Proposed Model Cost vs Ideal Cost

Given that the model that uses houtly approximations this requires the rounding up of cure
times to the nearest hour. This creates a perceived increase in cure-time demand by the

model. This perceived increase was calculated with the equation shown below.

> (Cure Time,

all recipes

recipe TOUnded up to nearest time interval— Cure Time,,.,,,)

Perceived [ncrease =
> Cure Time

all recipes recipe

Using the recipe cure-times provided by TIP, and making the assumption that all recipes are
used equally, the following table describes the loss of capacity under different discrete-time
approximation methods. Although this is not an exact calculation given the previously stated
assumption it does provide an idea of the magnitude of the time cost of scheduling using
certain discrete time intervals. As can be seen below in Table 1, there is a large jump from
using a time interval of 1 hour to 30 minutes. Therefore it may be of interest in the future to

explore the possibility of modifying the model for a 30 minute time interval.



Table 1: Perceived Increase in Cure-Time Demand Due to Discrete Time Intervals

Time Interval Perceived Increase in Cure-Time
Demand

1 minute 0%

15 minutes 0.42%

30 minutes 1.56%

1 hour 7.22%

2 hours 16.15%

3.2 Other Methods Attempted

Other methods were attempted in the early stages of this research to better understand the

problem and see if these methods provided a better or faster solution. The methods

60

described in this section were found to have a lower performance than the proposed model

methods.

3.2.1 Integer Program for Bin Packing

A binary integer program to solve the APP was considered. This program was coded using

Pyomo and its objective was to minimize the number of bins used, therefore being a Bin

Packing Problem as opposed to the one in the APP proposed model which also contained a

secondary objective to also level out the load between autoclaves.
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Table 2: Sets, Parameters, and Variables for Integer Bin Packing

Sets:

B=list of all possible bins per autoclave, b
Au= list of all possible autoclaves, |
Parts= list of all parts, z

Types= list of all part types, t

R= list of all recipes, ¢

right_type=list of parts z where

Au_FeasZ’j:1

Parameters:

Recipes, =Identifies which recipe is
attached to which part, binary

PVolume =Volume of part z, integer
PThermos, =Thermocouples needed by
part z, integer

Priotity, =Priority level of autoclave j for
part z

Au_Feas, ;=If part z can go in autoclave |

AuTime,;=Time in autoclave j for part z
PType,=Part type for part z
Tools,=Number of tools for part type t
MaxPTool =Max parts per tool for type t
AuVolume=Volume of autoclave j
AuThermos;=Thermocouples available in

autoclave j

Variables:

vBinRec, ; =Binary, if bin b on autoclave j
uses recipe c.

vPart, | =Binary, if part z goes into bin b of
autoclave j.

vBinOpen, ;=Binary, if bin b of autoclave

is being used.
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Objective:
Minimize : Y % vBinOpen,

beB je€Au

Constraints:

Cl: % > vParty,; =1 Vi€Parts
beB jedu ’

C2: 3 vBinRec,; =1 VbeEB, jedu

CER

C3: (2-vPart,,; = vBinRec,; ) 21 V beB, j€Au ,(z€Parts, cER)N(Recipes, . = 0)

C4: >, PVolume: xvPart,, . < AuV olume; VbeB, j€Au
ZE€ rightitypej ’
CS: >, PThermos. x vPart,,; < AuThermos; VbeB, j€Au
z € right_type; ’
C6 : > vPart,, ; £ MaxPTool, x Tools, N DEB, je€du,t€Types

z € right_type;

C7: > vPart,,; <200xvBinOpen,; VbeB, jedu

z€Parts

C8: vBinOpen,,_, ; < vBinOpen,, ;  Vj€Au, b€B if b <>0

C1 ensures that every part has a bin such that demand is met. C2 restricts each bin to have
exactly one recipe. C3 ensures the right recipe for a part is attached to the bin it goes into.
C4 and C5 ensure the parts fit into the autoclaves in terms of volume and thermocouples
required. C6 makes sure that enough tools are available for the parts that go into a single bin.
C7 uses 200 as a Big-M term to allow up to 200 parts to go into a cure if that bin is opened.
C8 removes some symmetry in the problem by allowing only consecutive indices from 0 to

be used for open bins.

This method of solving the APP proved to be feasible. However it proved difficult to prove

optimality of a solution. For example, in a small test case (approximately 2 days worth of
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production) the less than the lowest number of bins obtained after 1200 seconds of
computation was 22 bins. That number was initially computed after 45 seconds and the rest
of the time is spent bringing the lower bound up, reaching 59.1% gap after 1200 seconds.
The hill-climbing method in the proposed model section reached the solution of 22 bins in
less than 1 second. Therefore, given the simplicity of the hill-climbing method, its good
performance, and the lack of need for an advanced mathematical solver to provide a

solution, the IP method for solving the APP was not considered further.

3.2.2 Simulated Annealing for Scheduling

For scheduling of autoclave packings a simulated annealing approach was attempted. This
approach was tried eatly on and both the data used to test it as well as the constraints
included do not accurately represent the full problem. The method as developed over the
course of the project relied primarily on two variable vectors. The first vector represents the
sequence that loads are scheduled in. The second vector represents a “slack” vector, where
loads are scheduled later than the earliest time they can be scheduled at. The method starts
by computing these two vectors then feeding items from the sequence vector to a scheduling
function. This function determines the eatliest time that particular load can be scheduled
given all current loads already scheduled, then it adds that load’s slack time to the earliest

possible to arrive at the scheduled time as shown in the equation below.

Time,,,, = Earliest possible + slack,,

By going through this procedure the objective is essentially makespan minimization. The
slack times were included in the method to allow flexibility around scheduling during
weekends. Given that the algorithm could not foresee when weekends happened, or if it
would be necessary to schedule something on a weekend, it proved to have very poor

performance in terms of weekend overtime scheduling.
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This method proved to be very parameter sensitive, especially in respect to the cooling
schedule used. Several rudimentary cooling schedules were tried as well as several iterations
of the method were also run in an attempt to coax better solutions from it. However it
proved to be of worse performance than the preliminary MILP method that was refined into

the proposed model and thus work on simulated annealing for scheduling was discontinued.
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Chapter 4 Implementation

As of the time of this writing the project has been tested with realistic scale problems but has
not been fully implemented at TIP. However, the necessary steps to implement it have been
carried out and management is planning to fully implement the project in the following
months. Several adjustments, features, and data modifications were necessary to take the
proposed mathematical models and design a complete solution that could be used in an

operational environment.

To carry out the implementation at TIP it was necessary to conduct multiple plant visits.
Almost weekly meetings were held for a six month period. During these meetings work was
done with TIP to define the problem objectives and constraints. The limitations to
implementing any program that would be given to them were also identified. Once early
models were created, it was possible to use the output from these to help identify further
constraints. The output from eatly models was shown to several stakeholders and they were
able to point out system constraints which were being broken in the output since they were
not included in the model. These were then added to the model and the review process
started again. After several iterations of this process with different stakeholder groups it was
possible to arrive at a schedule and set of objective weights everyone agreed on would be
feasible and provide a good schedule. A further explanation on the objective weights is

found in 4.1 Objective Function.

A second important aspect of the implementation work done here was to verify the accuracy
of data being fed into the program. As shown later in section 4.4 Data Inputs, there are
several Excel sheets which contain various pieces of data. Given the large amount of data as
the learning curve in creating these documents, sometimes pieces of data that were entered
into the Excel sheets would be inaccurate. When the demand for a week that has already

passed and had been produced was fed into the model for testing purposes, sometimes it
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would return infeasible. This clearly was impossible and often resulted with the identification
of inaccurate data. This process required extensive troubleshooting, data modification, and

analysis of model inputs and outputs.

The following sections will provide details on how the proposed model was transformed
into a solution that would solve the TIP problem. Section 4.1 will present the objective
function weights used at TIP. Section 4.2 will discuss the programming languages used to
code the software that was delivered to TIP, including the proposed model. Section 4.3
presents the software structure used. Sections 4.4 and 4.5 and will present the data inputs
and outputs to the software. Any data shown in these sections is for demonstration purposes
only and is not real data due to confidentiality. Following the data inputs and outputs the
data modifications necessary to accurately represent the problem are explained. Section 4.6
presents data modifications necessary to make the provided data conform to model inputs.
Section 4.7 presents a list of software features that allow for modification on how the
problem is solved. Finally, section 4.8 presents a solution method to improve computational

performance of the problem.

4.1 Objective Function

A major step in implementation of the software at TIP was determining the right weights for
the objective function. The weights shown in the objective function below were obtained by
first setting priorities, for example the weight of 3 was given to Energy while the 0.3 was
given to the dummy load variables to ensure that the scheduling of dummy loads did not
lead to higher peak power. Similarly the Desired Tool Recycle Time variable was given a
weight of 2 while OT was given a weight of 4 to show that the reduction of overtime is more
important than meeting desired tool recycle times. While these initially were slightly
different, by going through several scheduling runs with the PPL’s and Cure Centre
personnel they provided feedback as to what would make a better schedule. The weights

were changed as necessary until the optimization provided a schedule that best suited their
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needs. Future work could refine the objective function so that it takes into account actual

costs, making the objective to minimize the cost of running the schedule.

Minimize : 4% OT =03 % ) > > Load, ;. +3 =+ Y Energy,
weW ieDLNLL, keS ” WeW

+1000 = 3 Tool Inf; +1000* 3 Au Inf;+4= ¥ ¥ MP_Ivl,

z€P j€Au weWw  redr

+2 % Y Desired Tool Rec, + 1.5 Resched +1.4x Y Early,

z€EP i€L

+ > 8= SatWeekend,, + 20 x SunW eekend,,

weW

4.2 Programming Languages

Due to the researcher’s familiarity with Python, its ease of programming, and its ability to
easily interface with thousands of pre-built modules including several mathematical
programming languages this language was chosen to build the software on. Two main
mathematical programming languages interface well with Python, these being PulL.P and
Pyomo. Both were tried in early stages and Pyomo proved to be a better option given its
ease of programming, speed, and active development. This last point is exemplified by the
fact that during the implementation phase of the project at least one large update to Pyomo

happened which changed its structure, resulting in simpler and more efficient coding,.

4.2.1 Pyomo Basics

A detailed description of one of the model constraints as coded in Pyomo will be provided
in this section. The full model as written in Pyomo is found in Appendix A3. The first
constraint of the proposed model, C1, is as follows:

Cl: > Load,;, =1 NV weW, i€LL, if DL,<>1
keSwW,,
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This constraint’s function is to ensure that all non-dummy loads are scheduled. The sum of
Load variables over all time intervals “k” during the week for which load “i”” should be
scheduled must sum to 1. This is carried out for every week “w”” and for all loads “1” within
that week that are not dummy loads. Dummy loads are used to increase schedule flexibility
and are thus dealt with separately in constraint 101. The C1 constraint is modelled in Pyomo

as shown below.

1 def set_initl ( model ):

2 return [( w, 1 ) for w in model . W for i in set ( model . LL [ w ])\
3 if model . DL [ i J<> 1]

4 model . AUX1 = cpr . Set ( dimen = 2 , initialize = set_init1l)

5

6 def conl_rule ( model , w , i ):

7 return sum ( model . Load [ w, 1, k ]\
8 for k in model . SW [ w ])==1
9 model . conl = cpr . Constraint ( model . AUX1 , rule = conl_rule , name = 'Conl'")

Lines 1 through 4 define an auxiliary set, while the constraint is constructed in lines 6
through 9. The auxiliary set is constructed via the use of a function, “set_init1”. The
function is given the model object, “model”, which is what contains all constraints,
parameters, variables and sets. Lines 2 and 3 define the contents of the auxiliary set. In this
case, the auxiliary set is a list of tuples, a pair of values, which stand for the week “w”” and

€C»
1

load number “i”. This pair is created for every week in model.W and for every load within

that week (denoted in line 2 by “for i in set (model. LL[w])), these loads “1”” are further

filtered to not include any dummy loads as shown in line 3.

Once the auxiliary set is created, the constraint itself must be defined. Line 6 through 8

define the function by which the constraint is created. This function is called for every pair

11312}
1

of “w” and “1” given to it, this is denoted by giving the inputs of model, “w”, and “1” to the

function in line 6. The constraint starts with the sum of the model.l.oad variable for all “k”

€€ o
1

in the week during which model “1”” is supposed to be scheduled as shown in lines 7 and 8.

This sum must equal 1 as stated in line 8. Finally, once the function has been declared it
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must be called over a given set of “w”” and “1” pairs. This set is the previously declared
auxiliary set AUXT1. Line 8 defines the object model.conl as a constraint (from the
cpr/Pyomo module) and gives it AUX1 to be called over. It also provides the function as a
rule over which AUX1 is called, finally it gives it a name “Conl1” by which it will appear in

any .LP file that is created.

4.3 Software Structure

The scheduling problem was modelled using a Mixed-Integer Linear Program (MILP) which
requires a mathematical solver to obtain a solution. To solve the MILP problem Gurobi
Cloud solver is used. This solver was selected due to its speed, ability to solve complex
problems, and flexible licensing option through their cloud service. For the TIP case the
on-demand cloud option was selected since using this option under the expected usage

yielded minimum cost.

Gurobi Cloud is deployed on Amazon Web Services (AWS), where a computer instance is
rented for approximately $1 per hour to run the software and the licensing of Gurobi Cloud
costs $25 per hour or part thereof. The AWS instance can be started and stopped
automatically using an Application Programming Interface (API) call. This allows TIP to
launch the program and all the solving. Instance starting, licensing of software, and instance

stopping is done in the background, without their involvement every time.

Due to the multiple computers interacting together a more complicated system is created. A
high-level view of how the software is structured is found in Figure 14. The data is contained
in Microsoft Excel sheets and those are read in by the local program on-site at TIP. The data
from these is stored in the pickle file which will be further discussed in Section 4.4.8. The
local program then calls the AWS side program to run any optimization required, and this

carries out the solving of the APP as well as creates the scheduling MIP. A third computer is
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then called which contains Gurobi Cloud and this one solves the MIP. Finally the solution is

sent back to the local computer and the output is shown to the user.

Gurobi Cloud
Solver

GUROBI
i QSuRos!
mbserwes

A

Y

AWS Side
Proaram

amazon python

A

\ i

Input Excel _| Local Program Model Outputs
Sheets

y
Y

python

Y

Pickle File

Figure 14: High-Level Software Structure

A workflow view of the whole process can be seen in Figure 15. This process is done via the
use of Secure Shell (SHH) calls, application programming interface (API) calls, and using
Gurobi’s own communication channels. AWS is the host used for the Gurobi Cloud solver
and uses one instance. Another instance was utilized to solve the APP, create the MILP
problem, and receive the MILP solution prior to it being downloaded to TIP’s computer. As
shown in Figure 14 the process starts at the local machine where inputs such as demand,
blackout periods, and other scheduling preferences are determined. At the local computer all
inputs that are sensitive are encoded and then the linux server on AWS is started via an API
call. The problem data is sent and the APP is solved on this computer. Following the APP
solution the MILP problem is coded using Pyomo and via another API call the Gurobi
Cloud Server is set up. Once the GCS is set up the MILP problem starts solving on it. Once

the MILP problem is solved the solution is downloaded to Pyomo and written out into a file
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which can be downloaded to the local machine. A message is sent to the local machine at
TIP that the problem has finished solving, this triggers the downloading of the solution file
and shuts down all AWS instances. Finally the solution is decoded and the results are

displayed to the user as shown in the Output section.

Gurohi A 5. Solye +
Cloud L Rt send back
Server .-
(Aws) [T

B
Linux I. 3. 4. Create 5. Starl
?;,ﬁ;g Solve MIP Gurobi+

B BPP problem  send

:";lj problem
Local 1. Get 2. Start
Machine | Inputs for  Linux and 5. Download

= | week, send solution,

~ | [Encode  problem decode, display

Figure 15: System Workflow View

In order to transfer the problem data between machines and store it between changes the
pickle file previously discussed was used (Python Software Foundation). This file structure
can store most of the data pertaining to a specific schedule. Other files like Areas.xlsx,
Autoclaves.xlsx, and Calendar.xlsx hold data which changes less often or must be manually

changed in Excel by the user and are also passed to the AWS server when needed.

4.4 Data Inputs

The major and ongoing task in implementing this model at TIP was to obtain the correct
data. Given the amount of model inputs, the team’s familiarity with Microsoft Excel, and the
ease of programming between Python and Excel it was decided to hold all data in Excel.
Standard relational tables were used to maintain data integrity. The following sheets were

created and populated with TIP’s information. Given the sensitive nature of this information
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all examples show made up data. The different data sheets and how they interact are shown
below in Figure 16 in an entity-relationship diagram. The Recipes List and
Recipes-Autoclaves entities shown in the diagram below are described in one Excel sheet

only, the Recipes List. Every other entity uses is described in its own Excel sheet.

:

AreaName Demand Sheet Recipe Number —H—
H
Shifts _’—H Blealiame Max Per Load
PK
People pershifi . i
s Part Number Recipes - Autoclaves
Parts List Demand (Units) H Recipe Number =4
Part Number H Autoclave Number
Tools List
Recipe Number = Processing Time
—H—H Tool Number
Tool Number =>4 . Priority

Tools Available

Description

Max Parts per Tool
Manpower Reqd Autoclave List

Desired Tool Recycle Time

Shift-Hrs Reqd Autoclave Number >+
Absolute Minimum Tool
Recycle Time

Thermos & Length Envelope
Length

Width Envelope

L Height E I
Blackout Calendar eight Enve lope

Height
tE Volume

Autoclave Number =H

Volume
7 Thermos
Autoclave Date-Time

Blackout (True/False}
Figure 16: Entity-Relationship Diagram for Data Input Sheets

4.4.1 Areas Sheet

A sheet containing the names of each of the layup areas is required, this sheet stores
parameters that are specific to each area. An example of this sheet is shown in Figure 17. It
also describes how many shifts per day each area is working given different areas work on
different shift schedules. The final piece of information is the number of people per shift

that each area has. Although these two parameters can change from week to week, it is not
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expected that they will change often and therefore are applied to the entire planning horizon.
Ideally however they could be changed on a weekly basis to allow transition periods to be
smoother. Finally this file also contains the start time of the day shift, default is 7AM. It also
has the same area information for a “dummy” area which is used to schedule usable gaps

and is used in constraint 2 of the proposed model.

Area name {MUST match People
area name in demand file) |Shifts{1,2 or 3] (per shift |Day Shift Start Time= 7
dummy don't delete/maodify this row

Areal
Area 2
Area 3
Aread
Area s
Areat

1
7
8
15
12

8.5
3

=R = R R W

Figure 17: Areas Sheet Example

4.4.2 Demand by Area
Demand sheets need to be provided by each of the Program Production Leaders (PPLs) for

their area for each week of the planning horizon. The sheet specifies the area name, which is
matched with the Areas Sheet, it then lists each of the part numbers to be produced that
week as well as the quantity required. For the PPL’s sake and to provide organization it also
lists the date of the Monday that starts that week. The program will scan the part number list
row by row until it finds an empty row and then stops, given this method it is necessary that
there are no gaps in this list. An example of one of these demand sheets is shown in Figure
18 with made up part numbers. Demand sheets are organized in folders by week, all demand
sheets in a folder for a week are read into the program. Each folder is named using the

YYYY month DD’ naming scheme where the month name is fully spelled out.
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AREA: Area 1 Name Week of:|  7/6/2015
DEMAND
PART NUMBER | (UNITS PER WEEK)
49155243 2
491552431 3

Figure 18: Demand Sheet Example

4.4.3 Parts List
The different part numbers that can be built are stored in the parts list sheet along with

several attributes which can be seen in Figure 19. The part numbers in the demand sheets
must match one in the parts list in order to be built. If they do not match an error showing
the missing part number in the parts list is shown. The recipe number and tool numbers are
linked to the recipe sheet and tools sheets which will be explained in the following sections.
The description typically shows the area name but at times is also used to describe the part,
this section is not used by the model and only there for data entry and manual query
purposes. The manpower required per part is described in this sheet. This information refers
to total amount of manpower which may include several operators. The shift-hours required
per part are also stated here and these are used in conjunction with the Early variable in
constraint 8. Shift hours can vary from manpower hours required due to number of
operators, resting time required while building the part, and other factors. Finally the number

of thermocouples required by the part are also provided.

Manpower o uet Hrs
PART NUMBER Recipe Number Tool Number Description Reqd Thermos

(Hrs/part) Reqd

49155243 15 T-001 Area 1 35 3.5 2

49155243-1 15 T-002 Area 1 25 2.5 2

49155243-2 15 T-003 Area 2 7 35 2

Figure 19: Parts List Sheet Example
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4.3.4 Recipes List

The recipes list contains the same recipe numbers as those provided in the parts list. These
link recipes to priority levels on autoclaves, autoclave runtimes, as well as max parts per load
for that recipe. An example with made up data of these is shown in Figure 20. The Max per
Load parameter is usually used to indicate customer specification constraints, when this
constraint is not applicable the value of 1000 is placed instead given that every load TIP
cures has a much lower number of parts than 1000 in it. This constraint is used in the APP.
The times shown for the autoclaves are in minutes. There are sometimes differences in times
between autoclaves as can be seen in the example below for recipe 4. These differences in
cure times are due to different autoclave heating and pressurizing rates. Finally the priority
for autoclaves is dictated by the preferences of the cure center PPL and are based on several

factors including their experience and cost of running these recipes on each autoclave.

Recipe |Max Per | Autoclave | Autoclave |Autoclave 3| Autoclave |Autoclave 2| Autoclave
Number | Load 1P-Time | 2P-Time P-Time 1 Priority | Priority | 3 Priority

1 ] 600 A, MNA 1 MNA 2
2 5 330 A, MNA 1 MNA MNA
K 1000 330 330 MNA 1 2 MNA
4 1000 360 330 330 2 1 3

Figure 20: Recipes List Sheet Example

4.4.5 Tools List

The tools list contains the same tool numbers as those provided in the parts list, an example
of this list is shown in Figure 21. Each tool number may have several physical copies of the
tool. Typically at TIP each copy is marked by a -1,-2,-3, etc on the tool number. This system
was modified so that the number of tools available showed the number of copies, not
different tool numbers followed by a dash and a number. Some tools can make several parts
at once, much in the same way that a single egg carton can carry a dozen eggs. This ability is

shown in the ‘Max Parts/Tool’ parameter and is used in the APP. The desired and absolute
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minimum tool recycle times are also parameters specified in this sheet. Finally the length,

width, and height of each tool as well as the volume are specified for use in the APP.

Tool Tools Desired Tool Absolute Minimum Tool

Number Available Max Parts/Tool Recycle Time (Hrs) Recycle Time (Hrs) Length Width Height Volume
T-001 1 1 24 20 24 14 8 2688
T-002 1 10 24 20 23 15 4 1380
T-003 2 1 48 40 36 17 7 4284

Figure 21: Tools List Example

4.4.6 Autoclave List

The autoclave list stores the relevant parameters specific to each autoclave, an example of
this can be seen in Figure 22. The length, width, and height of the inside of the autoclaves is
provided here. The volume provided is the product of these three attributes reduced by
20%. This reduction is used to account for space that cannot be possibly used given the
different part geometries, racking systems required, and the autoclave shape. The amount of
the reduction was originally set by Devine and Kyle at 25% but was later reduced to 20%

while fine-tuning the APP (Devine & Milne, 2014).

Length
Autoclave Envelope Width Height
number  (inches) Envelope Envelope Volume Thermos
1 200 55 62 545600 15
70 40 30 67200 40
3 100 45 45 162000 10

Figure 22: Autoclave List Example

4.4.7 Blackout Calendar

Due to maintenance, cures that are not scheduled by the model, and holidays it became
necessary to input times when autoclave loads could not be scheduled by the model. These
are shown by the blackout calendar shown in Figure 23. For each week of the planning
horizon a blank calendar is created for every autoclave as well as for the plant in general.
Times can be designated as “blackout” hours by placing a “B” in the corresponding cells.

These blackout times are used in constraint 6.
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2015-02-09 2015-02-10 2015-02-11 2015-02-12 2015-02-13 2015-02-14 2015-02-15 2015-02-16 2015-02-17
Autoclave 1 Mon Tues Wed Thurs Fri Sat Sun Mon Tues

m mmomommm
EEEELETEPPPO@ODD TS EEEEEEE

sssssssssssss5s5s5s5s£585:55¢3%

Figure 23: Blackout Calendar for Autoclave 1

The weekends are also pre-specified in this calendar for overtime. However, additional days
can also be labelled as “W”” such that there are penalties for scheduling loads during those
times. This feature can be used for holidays and other days where it is undesirable to
schedule a load but not impossible. This is displayed in the overall plant section of the sheet
as shown in Figure 24, the “W’s in the individual autoclave sheets are for reference only and

do nothing in the model.
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Figure 24: Overall Plant Calendar Sheet for Weekends

4.4.8 AWS_d pickle file
The program is designed to be updated and each new week must be added to the existing

schedule. Given this design it is required to store the data of the schedule between runs in a
form that Python can easily read. The ‘“AWS_d’ pickle file does just that by acting as the
program’s memory. The pickle file format that Python creates can store in a file any object,
in this case the file stores a dictionary which contains several other objects within it. At the
start of each run the pickle file is read and the program knows what the previous schedule
looked like, then any changes like adding or removing weeks of demand to the schedule can
be completed without recomputing the entire schedule. The structure within the dictionary

that is stored in the pickle file is shown below in Figure 25.
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AWS_d[ 'Weeks' ]=range(0,5)

AWS_d[ 'Tools ' ]=Dictionary of all tools, updated every time new demand is added
AWS_d[ 'Feasibility']=True/False depending on model feasibility

AWS_d[ 'FeasibilityData']=List of infeasibilities if model infeasible

AWS_d[ 'startTime' J=Datetime object with year, month, and day of first Monday
AWS_d[ 'BNum' ]=Bin number counter, ensures all bins created have unique numbers

for w in AWS_d[ 'Weeks']:
Aws_d[w]=Dictionary containing following:

AWS_d[w][ 'Start' ]=Date of week’s Monday
AWS_d[w]['Action']= Could be 'Empty','BPP_Done' ot 'Parts’
AWS_d[w]['BPP"']=Store the APP file
AWS_d[w]['Parts']=Stores demand when ‘Action’ is ‘Parts’
AWS_d[w][ 'DummyArea’]="dummy"'

Figure 25: AWS_d Pickle File Structure

As can be seen the file stores more than just the previous schedule, but also information
during the optimization. It is also used to pass information back and forth from the Amazon

Web Services (AWS) servers, this will be further explained in the SSH Calls section.

4.5 Output

The output optimization model has several outputs, mainly an updated version of the
AWS_d pickle file and an Excel sheet to provide schedule information to users. Additionally
a visualization of the schedule is possible, that will be covered in section 4.7.8 under

Software Features.

The Excel schedule is automatically created when the program finishes running and displays
the data of what each bin contains and when it is scheduled for. As shown in Figure 206, a

different sheet is created for each of the days in the planning horizon. Within each sheet the



cures are organized by autoclave number. Comment boxes for each cure display the

information relating to each cure such as parts, tools, and recipe numbers.
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A B @ D E F G H
1 Mon 2015-02-09
2 Cure Area
3
4 Autoclave 1 6 Start: 17:0CArea 1 Cure #6

13 Start: 0:0(

5 (U gin #: 6 Part Number 1 :2
b 14 Start: 9:0( Autoclave: Autoclave 1 Part Number 2 :2
7 Parts: Cure #13
8 il Part Number 1:2 Cure #14
9 Autoclave 2 18 Start: O:OE Part Number 2 -2 Cure #18
10 19 Start: 5:U£ Toalks Cure #19
11 20 Start: 16:( Tool 12 Cure #20
12 Tool 2 :2 Cure #28
- Area: Area 1
14 |Autoclave 3 Manpower: 30.0 hrs
= +iilongest Part MP: 8.0 hrs
16 Autoclave 4 28 Start: 0:0( Recipe: 1
L0 Time: 610 minutes
= Fixed Time (1=Yes): 0
19 Reschedule penalized: False
= Week: 0
21 Scheduled: 17
22
23
24
25
26
27
M 4 » ¥ | 9 Mon 10 Tues 11 Wed 12 Thurs 13 Fri 14 Sat 15 Sun 16 Mon 17 Tues 18 Wed 19 Thurs 20 Fri .~ 21 Sat 22 5un 23 Mon
Figure 26: Example Production Schedule Output
4.6 Data Modification

Given the limits of the data inputs some modification of how data was presented was

necessary. This was necessary in three areas: manpower levelling, tool-part interactions, and

recipes. These modifications in data input allow the software to more accurately model the

system at TIP while keeping the number of data inputs and parameters low.
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4.6.1 Manpower Levelling Modifications

Every layup area provides a demand sheet which is turned into autoclave packings. Then the
scheduling model attempts to level out the manpower usage of bins that are cured each day
throughout the planning horizon for bins that came from one demand sheet. This process
assumes that all layup personnel within an area are cross-trained to build all parts. However
this is not always the case, sometimes layup rooms will have segments within them that are
dedicated to build only certain parts. If the layup room’s demand is pooled together then
individual segments of the room may have drastically uneven workload throughout the week.
Due to this some layup rooms have been segmented into two or more areas for the purposes
of the optimization. They submit two or more demand sheets based on segments of the
layup room operate. This allows the optimization to better level out manpower requirements

throughout the week given layup personnel’s ability to build parts.

4.6.2 Tool-Part Interaction Modifications

Using the part and tool sheets provided, only certain part-tool relationships are possible to
describe. Figure 27 shows the part-tool relationships that are possible. The first one is a
standard one to one relationship. The second one a tool number has multiple physical tools
(captured in the “Tools Available” parameter of the Tools List). The third and fourth
relationships have multiple part numbers requiring the same tool, they can use the total

number of tools available together as a shared resource.
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Part ——— Tool# —— Tool

Part ——— Tool # —— Tool

— Tool

Part 1 :I— Tool # —— Tool
Part 2

Part 1 :I— Tool # =—— Tool
Part 2

— Tool

Figure 27: Diagram of Possible Part-Tool Relationships

Figure 28 below shows the part-tool relationships that are not possible to describe using the
part and tool sheets described previously. There are modifications required to the data to

make relationships of this type possible.

In the first case, two parts share a tool. For this case, it is necessary to merge the part
numbers into a single part number. This means the ability to create only one of the two parts
is lost in terms of the system, but the only effect this has is in terms of manpower levelling
for the area. For most cases where this was done, both part numbers were regularly

produced simultaneously on the same tool.

In the second case, a single part number uses two tool numbers. This is easily fixed by
merging the two tool numbers. This appeared infrequently and was due to an additional
small piece that was required to be placed on the tool. If only one of the two tools was also
to be used by another part number that could create issues but this case was never seen at

TIP.



83

The third case shows a part number having the ability to use one tool number and also the
option to use a second tool number . Another part number is only able to use the second
tool number but not the first. This second part prevents the merging of the tool numbers to
create something like the second case from the possible part-tool relationships in Figure 27
above. At TIP this case was very rare and usually the use of the second tool by the first part
number never actually happened. Therefore it was decided to lose the capability to schedule

the first part number on either tool number and not describe the “OR” relationship shown.

Part 1

+ = Tool # Tool
Part 2
Part =——— Tool # Tool

AMND
— Tool # —— Tool

Part Tool # —— Tool
|DR
Part Tool # Tool

Figure 28: Diagram of Indescribable Part-Tool Relationships

4.6.3 Recipe Modifications

Recipes designate a particular temperature and pressure profile that must be followed by
parts. However, when some parts have a much higher mass than others they get up to
temperature slower. Therefore although the same recipe is applied there may be defects in
parts if certain large and small parts are cured together. To create this break between large
and small parts recipes some recipes were divided. For example recipe “1” may be changed

to recipes “la” for large parts and “1b” for small parts. This prevents large and small parts



84

from mixing in a load. This recipe modification is necessary to carry out this segregation of
parts effectively and in a manner that is easy for users to understand and change when

needed.

4.7 Software Features

There are major differences between a mathematical model that can solve the mathematical
program and a software that can solve the industry problem. Apart from a user interface and
program robustness there exist other features which are necessary in the software to make it
useful. For TIP it was required that the program could handle a rolling time horizon, where
weeks were scheduled at a time and it could plan up to four weeks ahead. Given stakeholder
preferences and possibly constraints not included in the model, manual scheduling and
rescheduling of cures was also a necessary feature. Other features include the ability to
penalize rescheduling of cures, modification of cure contents, manually adding cures, fixing
the scheduled time of cures, and version control. These features will be discussed in more

detail in the following sections.

4.7.1 Rolling Time Horizon

The TIP problem will be solved at a minimum once per week as new demand is added. The
AWS_d structure (found in section 4.4.8) can hold a maximum of five weeks. This is so that
a new week can be added to the model and then the first week can be removed. When a new
week is added the process is simple, the w=4 section of the AWS_d file is updated to reflect
the new demand being added. However the optimization is only built to handle at most four
weeks, thus the first week (w=0) must be removed. Removing this week is done through the
user interface and it causes the AWS_d[‘StartTime’] value to be updated to that of week 1.
Then all the remaining weeks are cascaded down to fill in the void left by week 0. The

process of managing the rolling time horizon is almost without work by the user, the user
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must simply request to either add a new week or remove the first week. This aids data

integrity through minimal input by the user.

4.7.2 Penalize Rescheduling

The program is designed to be run on a weekly basis with each time adding a week of
demand and removing a week since it is now in the past. Knowing the previous schedule
allows the optimization to make the minimal number of changes necessary when modifying
the schedule. Penalizing rescheduling is accomplished through constraint 7. Every autoclave
packing has an Rpenalize attribute which is set to either True or False. If a schedule is being
re optimized all autoclave packings with the Rpenalize set to True incur a penalty if they are
not scheduled at the time of the original schedule, as per constraint 7. This ensures that
changes to the schedule are minimal, only those required to maintain feasibility or to ensure

no large penalty costs are created.

This rescheduling penalty can also be applied to any week currently scheduled and is very
useful for when a new week is added to the model but the existing schedule should not be
changed. A feature to set the Rpenalize attribute for all autoclave packings in a week is

available through the user interface.

4.7.3 Fix Schedule

In the same way that changes to an existing schedule can be penalized, they can also be
prevented. A specific autoclave packing or an entire week can be fixed such that no changes
to this are done when running the optimization again. This helps when a week, or part of a
week, is in the past but changes must be made to the rest of the schedule which is yet to take
place. In the User Interface options to automatically fix a certain week, bin, or just whatever

portion of the schedule that is in the past are available.
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4.7.4 Manual Scheduling

No system is perfect and thus requires manual intervention every so often. When deadlines
are missed, priorities rearranged, or materials are unavailable, scheduled autoclave packings
must be changed. A feature in the user interface allows for manually scheduling or
rescheduling of autoclave packings. This feature is meant to be used when cure times are
missed, aircraft-on-ground (AOG) situations are encountered, or preferences differ from
that which the optimization model deems best. The manual rescheduling does not verify
feasibility of the schedule and must go through the again optimization to be verified but can
be used without verification if desired. It is recommended that rescheduling of the changed

bins be penalized or the bin schedule fixed prior to optimizing again.

4.7.5 Modify Cure

Another needed feature was to have the ability to manually modify a cure. Modifications
here include adding and removing part numbers from a cure as well as changing the
autoclave the bin is scheduled for. When a part number is added or removed the associated
tools are automatically updated as well. Changing cure autoclaves is also available through
the user interface. Changing autoclaves provides no guarantee that all the parts in the bin can
fit in the autoclave, a manual scheduling or reoptimization to ensure no other constraints are

violated should also take place.

4.7.6 Add Cure

Adding a completely new cure is a key feature that is also supported by the program. This
feature is mainly focused at adding demand was not foreseen, such as last minute changes or
AOG situations. Adding a cure must be followed by either manual scheduling or running the

optimization model again.
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4.7.7 Version Control

Given the complex nature of the program due to its various options and how it deals with
time it was deemed necessary to include a version control feature. This feature tracks any
change done to the AWS_d.p file and saves a copy of that file and the Calendar.xlsx file
along with a log of the changes done. With this log it is possible to undo changes and bring
the model back to a prior position in time if any mistakes were made. Also if the
optimization returns an infeasible solution no schedule is printed out, instead a message that
the model is infeasible is stated on the screen and the user is prompted to return the model

to a previous position using the version control feature.

4.7.8 Visualization of Schedule

The ability to visualize the schedule is needed in order to be able to get a general sense of
what the schedule looks like without needing to go into the details. Using the matplotlib
module within Python it was possible to create a visualization of the schedule where every
autoclave has a row and all cures within that autoclave are plotted in the row. An example of

the visualization if shown in Figure 29.
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Figure 29: Schedule Visualization Example

4.7.9 User Interface

Every program must have a user interface which is easy to understand, robust, and provides
easy access to the features which a user needs. The user interface for the program provided

to TIP is very simple but fulfills all these requirements. The interface is a command-line

interface, where options are presented to the user and they must choose one based on the

letter-based menu. For example, in Figure 30 the top portion outlines the current status of

the program, detailing which weeks” demand is loaded in, scheduled, or empty. Then the user

is prompted to select one of the options to continue, for example the user may type “A”



followed by the “Enter” key to add a week to the schedule. Each of these initial options

available may lead the user to sub-menus or complete tasks immediately if no further

instructions are required.
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Figure 30: User Interface Main Menu
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program is doing is displayed to the user as can be seen in Figure 31. Here the user can see

that weeks 0 and 1 are being optimized as well as the progress completed in that

optimization thus far.
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3 *Python 2.7.7 Shell* - olEd
File Edit Shell Debug Options Windows Help
B _iter[126] is not scheduled |

B_iter[127] is not scheduled
B_iter[128] is not scheduled

Solving weeks 0 and 1 39.5601633786
Changed value of parameter Heuristics to 0.8

Prev: 0.05 Min: 0.0 Max: 1.0 Default: 0.05
Changed value of parameter DisplayInterval to 10

Prev: 5 Min: 1 Max: 2000000000 Default: 5
Optimize a model with 68738 rows, 22576 columns and 2376421 nonzeros
Coefficient statisties:

Matrix range [1e-02, 3e+02]

Objective range [3e-01, le+03]

Bounds range [1e+00, le+00]

RHS range [1e+00, Ze+02]
Found heuristic solution: objectiwve 300.69
Presolve removed 55360 rows and 6546 columns
Presolve time: 4.66s
Presolved: 13378 rows, 16030 columns, 791803 nonzeros
Found heuristic solution: objective 239.5896740
Variable types: 96 continuous, 15934 integer (15934 binary)

Root simplex log...

Iteration Objective Primal Inf. Dual Inf. Time
15776 3.329269%4e+01 1.579043e+05 0.000000e+00 10s
23562 3.5078164e+01 0.000000e+00 0.000000e+00 16s

Root relaxation: objective 3.507816e+01, 23562 iterations, 10.84 seconds
Total elapsed time = 21.35s
Total elapsed time = 32.13s

Total elapsed time 47.24s
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | ©Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
] 0 35.07816 0 563 239.58967 35.07816 85.4% - 50s
H 1] 0 163.0304348 35.07816 78.5% - 51s

Figure 31: User Interface Displaying Optimization Running

Although this user interface is not graphical and provides limited options it is easy to use,
diagnose, and makes it easy to provide error logs. It was well adopted by the users at TIP
and given its simple coding any future features of the program can be easily added to the

user interface.

4.8 Implemented Models

The two problems, autoclave packing and scheduling, were modelled separately since both
are computationally difficult problems to solve as discussed in the Proposed Model section.
The APP was modelled using the hill-climbing method previously explained. The stopping
condition for the hill-climbing method was determined to be 500 iterations. Less iterations
could probably have been used but given the speed of the algorithm in completing these, the
potential cost of having more autoclave packings than are needed, and the relative time this
takes in comparison to the scheduling portion, a very conservative number of iterations was
set. This is further explained in the Computational Results section. This metaheuristic was

coded using Python and is solved without the need of a mathematical solver. The output
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from this is then used as one of the inputs to the scheduling problem, which was also
modelled in Python for easy integration and used Pyomo for mathematical modelling. The
scheduling problem uses Gurobi Cloud to compute a solution. Due to using Gurobi Cloud
and paying by the hour, as well as the possibility of needing to run several optimization runs
in a day, a self-imposed time limit on the optimization section of the program was set at 1

hour.

The autoclave packing for each week was completed individually within the program since
demand from one week cannot be packed with demand from a different week. Thus this
section of code is run for every week that is loaded into the program only once. The output

of these autoclave packings serve as the input to the scheduling program.

The scheduling program uses the same code provided in the Proposed Model section, but
the model was segmented into sections to improve computational performance. For a four
week scheduling model a total of three runs are completed as shown in Table 3. First all of
the parameters and constraints for the complete model are created, then most constraints for
weeks 2 and 3 are disabled. The disabled constraints are con2, con22, con3, and constraints 8
through 13 for those weeks. They are disabled by calling the “.deactivate()” function on the
constraint object. When re-activated the “.activate()” function is called on the constraint
object. Once weeks 0 and 1 are scheduled, the schedule for week 0 is fixed leaving week 1
scheduled but unfixed. Then constraints for week 2 are enabled and the optimization is run
again, this time having week 0 fixed, weeks 1 and 2 constrained, and week 3 mostly
unconstrained. Then the same procedure is repeated, fixing week 1 and enabling the
constraints for week 3. This leaves weeks 0 and 1 fixed, and weeks 2 and 3 constrained. This
final run is the solution output to the user. The constraints that are disabled and enabled
again during this procedure are constraints #2, 22, 3, 8,9,10,11,12 and 13. The rest of the
constraints remain enabled throughout the procedure. When less than four weeks are

provided this procedure is terminated earlier as required.



Table 3: Progression of Segmented Model Procedure

Week 0 Week 1 Week 2 Week 3
Run 1 Constrained Constrained Unconstraine | Unconstraine
d d
Run 2 Fixed Constrained Constrained Unconstraine
d
Run 3 Fixed Fixed Constrained Constrained
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Computationally the gains are due to limiting of the solution space the solver must consider.

Although this procedure decreases the total computational time required to solve the

problem it also creates a small potential loss of optimality since potential future options are

ruled out as the procedure fixes weeks. The potential loss is small due since the weeks are

almost independent given tool recycle times and the fact that scheduling loads on weekends

is discouraged so they are further disconnected. Additionally, given the self-imposed time

limit, this procedure provides better solutions than leaving the whole model run for the time

limit.
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Chapter 5 Results

The Proposed Model is scheduled to be implemented at TIP in the form shown in
Implementation section. Some small changes were done to Proposed Model which can be
seen in the Appendix A3, mainly the removal of infeasibility tracker variables for autoclave
and tool infeasibility. These were done to improve computational performance as can be
seen in the Computational Results section. Several meetings with the Program Production
Leaders (PPLs), Planners, and management have taken place to facilitate the transition from
the previous method of running the autoclave centre to the proposed one. At the time of
this writing, test schedules have been created and distributed to PPLs for review. If the
schedules look satisfactory then the program will be implemented approximately a month
after. This month is needed to provide necessary time for kit cutting to provide the right kits
for layup and for layup to ensure that the proper tools will be available to meet the
oncoming schedule. Time is also needed here to update the parts list, tools list, and recipes

list for parts that have not been previously encountered.

5.1 Computational Results

With both models built as discussed in the implementation section, computational
experiments were carried out to assess the performance of different sections of the models
as well as determine the best set of parameters. For autoclave packing, the number of
iterations to be run had to be calculated in a better manner than simply setting it to an
arbitrary number. For scheduling several constraints to improve performance by reducing
symmetry were tested as well as some parameters for the optimization. The results of these

tests are shown in the next two sections for autoclave packing and scheduling respectively.

All tests were run on a computer with an Intel Core 15-3550 CPU 3.7GHz with 8GB RAM

running Windows 8.



94
5.1.1 Autoclave Packing Computational Results
To determine the number of iterations that should be run for the APP as the stopping
criteria for the hill-climbing algorithm several runs were tried. The first two runs shown in
Figure 32 with 100 iterations show the variability in number of iterations to reach the
minimum. Given this a further experiment of 50 runs with 500 iterations each was
completed. 40 of the 50 reached the best solution in less than 200 iterations, and only one
did not reach the best solution in 500. Computing 500 iterations takes about 100 seconds
given the demand mix in the experiment, which was representative of what will be run in
practice. Due to the time it takes to run these iterations compared to the cost of obtaining a

wortse solution, the conservative stopping criteria of 500 iterations was selected.

As a demonstration, the autoclave packing algorithm was run with a sample of 135 unique
part numbers, with an aggregated demand of 328 individual parts. This is not a
representative sample but rather a small sample of parts used. It was not possible to obtain a

representative sample for the autoclave packing due to confidentiality issues.
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Figure 32: 100 Iteration Runs for APP

5.1.2 Scheduling Computational Results

The following results were obtained with the aforementioned computer and using Gurobi
6.0.4. Two tests were completed, both using a time limit of 3000 seconds and having the
MIP Focus parameter set to 1. For the segmented model each of the three runs had a time
limit of 1000 seconds. Both runs contain four weeks of demand, however the demand
contained and thus the autoclave packings are different so direct comparison between runs is
not possible. The purpose of the two runs is to compare how the different run parameters
perform under a new schedule and a penalized schedule problem. The penalized schedule

problem contains three previously scheduled weeks with penalties for rescheduling those as
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well as a fourth week that is unscheduled. The new schedule problem has four unscheduled

weeks only.

Instances

8388

50

30 B Instances

MNumberof Loads

20 A

ﬂ -
200 240 300 330 360 390 420 480 530 540 560 650
Load Cycle Time [minutes)

Figure 33: Distribution of Load Cycle Times for Four Week Run

The four week model has a total of 260 loads to be scheduled including dummy bins. The
penalized model also has the same 260 loads including dummy bins, of these 198 are already
scheduled and the non-dummy bins have penalties associated with rescheduling them. Figure
33 shows the distribution of load cycle times for both the four week run and the penalized

run.



Table 4: Computational Results for Scheduling

97

# | Type Warm | Constraints | Inf | Soln Gap Soln 4 | Gap
start Vars | Penalized | Penalized | wks 4wks

1 | Segmented | No FC-12,13,14 | No | 172.00 2.19% 166.28 | 1.60
%

2 | Segmented | No FC-12 No | 171.86 1.68% 166.41 | 1.14
%

3 | Segmented | No FC-13,14 No | 173.03 3.62% 166.06 | 1.71
%

4 | Segmented | No FC No [ 172.48 2.72% 166.28 | 2.48
%

5 | Segmented | No FC Yes | 172.59 2.81% 166.43 | 0.93
%

6 | Segmented | Yes FC No | 17248 2.72% 166.28 | 2.48
%

7 | Segmented | Yes FC Yes | 172.78 3.06% 167.78 | 1.35
%

8 | Full No FC No | 170.77 11.8% 170.85 | 30.5
%

9 | Full No FC Yes | 170.61 13.2% 172.59 | 30.0
%

10 | Full No FC-13,14 No [ 170.78 11.8% 172.61 | 28.2
%

11 | Full No FC-12,13,14 | No | 170.23 11.1% 167.76 | 26.1
%

12 | Full No FC-12 No [ 170.23 10.9% 166.84 | 27.9

%

As can be seen from Table 4, there are significant benefits to using the segmented model

when scheduling all new weeks. The average for the new solution run is 166.50 for the

segmented model while 170.13 for the full model. In the penalized model we see the
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opposite, where the full model has an average of 170.52 while the segmented model’s
average is 172.46. Although it obtained worse results under the penalized model, those were
only slightly higher, while in the new schedule model results were drastically better. The key
point to compare across models is the actual solution value, not the gap. The gap should
only be used to compare between models of the same type; this is due to the segmented
model’s fixing of the first two weeks when computing the last iteration and thus reducing the

number of possible solutions.

Table 5 below shows the problem size for selected runs. By seeing the presolved instances of
the segmented model and full model it is clear that the full model is much larger. This leads
to the superior solving capability of the segmented model since Gurobi can focus the same
computational capacity on a lesser number of variables and constraints. This is even more
evident as the model progresses into the third segment, where the segmented model has
nearly half as many variables as the full model. The Gurobi solution logs for the scheduling
of the 4 new weeks problem for both the segmented (#2) and full model (#12) are available
in Appendix B.

Table 5: Model Size for Segmented/Full Models for Selected Runs for 4 New Weeks

Constraints Variables
Segmented #2 before 67,210/ 117,998/ 147,100 44,580/ 33,324 / 22,068
presolve
Segmented #2 presolved 16,293 / 14,477/ 12,463 28,740 / 22,275 / 15,668
Full #12 before presolve 194,018 44,580
Full #12 presolved 28,263 32,055

As suggested by these computational results, as well as other runs we have done, the
segmented model with parameters in number 2 is the one that will be implemented at TIP.
This model is not perfect nor is it guaranteed to perform optimally over all demand-mixes

and it should continue to be revisited when major changes to the demand-mix happen.
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However, all solutions provided in the tests were feasible solutions which could be
implemented at the company. The degree preferences are adhered to, cost, and schedule

flexibility are the ones that determine the objective function.

Ideally more examples ranging from small to large models would be presented in
computational results, however given the limited amount of data available did not allow for
this. Additionally since this project is being implemented at a real facility, it was most

important to focus on a problem size that is representative of what TIP will be doing.
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Chapter 6 Conclusion

Creating efficient autoclave packings and schedules for composite manufacturing is a
difficult task. Many factors must be taken into account, from autoclave load balancing while
creating autoclave packings to peak power while scheduling loads across multiple autoclaves.
The software provided through this thesis work is proven to solve the packing and
scheduling problems at TIP. The proposed model has several benefits over previous work in
literature, previous practices at TIP, and provides an automated solution to two very
complex problems. Several heuristics and meta-heuristics could have been implemented but

none found could deal with all the intricacies of the system at TIP.

The proposed autoclave packing heuristic improves in several ways upon the methods
examined in the literature review section. The methods examined in this section either used
simple heuristics or used other methods which would have proven infeasible for the
problem at TIP. A new method was developed, based on the hill-climbing method by Lewis
(2009). The new method takes into account the multitude of constraints surrounding
autoclave packing (volume, thermocouples, recipes, etc.), the autoclave priority for each
recipe, and levels out the load between autoclaves while packing. Computational results

shown in section 5.1.1 show that the method works quickly and effectively.

The proposed scheduling model provides several improvements upon the work completed
before on autoclave scheduling. The only MIP model found which was designed for
autoclave scheduling was the one built for ASTA by Panton and Beaumont in 1997. The
proposed model developed in this research has several benefits over the ASTA model. First
it uses discrete time intervals of hours instead of complete shifts, this leads to much better
solutions as can be extrapolated from Table 1 in section 3.1.3. Secondly it uses the idea of
desired tool recycle times to better discern between hard constraints and soft constraints.

Thirdly it takes into account manpower levelling at the preceding operations. This helps
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accommodate them and reduce the risk of parts being late to the cure centre which could
lead to rescheduling. Fourthly the proposed model takes into account peak power, a major
cost for this energy intensive operation. Fifthly the proposed model penalizes scheduling of
loads which would cause overtime, both at the cure centre and layup rooms with the use of
the “OT” variable and the “Early” variable respectively. Finally the proposed model uses
specially-developed constraints to reduce symmetry in the problem, an idea that could have
been implemented to a much further benefit in the ASTA case given that autoclave loads in
their case were selected from a pre-built set. However, given the early nature of the work at
ASTA the computational capability would not have been available to solve a more complex

model like the one proposed in this work.

The model provided is easily adaptable to different situations. In case changes happen to the
system, these can be easily dealt with. Most changes like the addition of new areas are easily
controlled by the user, however other changes like the addition of new parameters or the
addition of an autoclave may require small changes in the code. Additionally, if any changes
were to happen where new constraints are necessary in the APP these can be easily modified
in the code as required. These changes leave the optimization structure and information

workflows intact.

The implementation of the software provided to TIP through the completion of this thesis
will continue to provide both operational as well as strategic planning improvements to the
company in years to come. This would not have been possible without recent advances in
cloud computing, flexible licensing options for optimization software, and the ease provided
by the Python programming language in tying all these together. Using cloud computing
provided significant benefits in implementation. The computational capacity was not present
in-house at TIP. Due to this the purchase of an expensive computer would have been
required as well as arrangements for proper maintenance. This is completely avoided by
renting computational power on the cloud. Additionally, since the research was conducted

by as a collaboration between an outside researcher and TIP, the ability to remotely run and
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update the program was important. A final important benefit was the ability to license

Gurobi by the hour instead of needing to purchase a full license.

This thesis has designed and explored a method for packing and scheduling autoclaves on a
scale previously unseen. This thesis has outlined the objectives and constraints regarding the
packing of autoclaves and provided a metaheuristic that is capable of meeting the
requirements of a real company. Previous works on autoclave scheduling have neglected
important scheduling objectives of minimizing peak power and overtime, levelling of layup
room manpowet, and providing schedules which allow for flexibility and rescheduling. This
thesis has explored these new aspects of autoclave packing and scheduling, provided a
working model, and has laid the groundwork for implementation of this model in a
manufacturing setting. There are limitations of the proposed model and these include
include the inability to handle reentrant operations and using one-hour discrete time
intervals. Reentrant operations are dealt with using blackout times, while the impact of using

one-hour discrete time intervals is shown in section 3.1.3.

With some modifications, the solution approach and models presented in this thesis could
be applied to other industries. These industries include semiconductor manufacturing,
shoemaking, helicopter-part production, metal-working necessitating the use of furnaces,
and ceramic manufacturing. The applications found through the literature review in these
areas often had less constraints on the problem than was needed by the autoclave packing
and scheduling problem. Therefore, by eliminating some constraints it is possible to modify

the models to apply to these other industries.

6.1 Future Work

Several expansions can be done onto the work presented here that were not carried out due
to time, data availability, and the interest in first implementing a basic model that was not

overly complicated. These expansions may yield great results in terms of financial rewards
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both through computational improvements, new features, as well as improved visibility

throughout the system.

1. Incorporate energy profiles for autoclave-recipe sets into energy calculation
This would improve upon the current constraint #4 that attempts to minimize the number
of simultaneous autoclave starts within the same hour. The current constraint fails to
account for autoclave power draw as well as the time over which the autoclave draws
different amounts of power. Currently for example starting the largest autoclave and the
smallest autoclave at the same time is penalized at the same amount that starting the two
smallest autoclaves is. Having energy profiles for autoclave-recipe sets would allow the
minimization of maximum power draw during a specific period. Additionally another area
where this could be used would be to better inform the “Autoclave Priority” parameter while

solving the APP to minimize cost.

2. Incorporate capability to deal with re-entrant operations
Some parts must be cured several times with layup steps in between. These parts are
currently dealt with using blackout periods which create loads that are not taken into account
in the manpower levelling and energy utilization calculations. Additionally, having the ability
to move these loads around within the program would allow for a better solution to be

provided since there would be less constraints on the optimization.

3. Expand model to include ovens
Ovens were not mentioned during this thesis work since they fall clearly outside the scope of
this project. However, their operation is very similar to that of the autoclaves and bringing
them into the program would have several benefits. Firstly, loads that are cured in ovens
also play a role in manpower levelling and energy utilization, but are not considered at the
moment. Secondly, the efficiency of the oven operation could be improved in the same way

the autoclaves were improved by this program.
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4. Create a complementary model to schedule layup operations
A complementary model that schedules layup operations would work in conjunction with
the proposed model to arrive at a schedule this is overall best for the plant. This would
reduce friction between the autoclave centre and layup operations since everyone’s priorities
would be taken into account. However, the autoclave centre’s priorities would need to

outweigh those of the layup room’s given that it is currently the bottleneck.

5. Reformulate objective function in terms of cost
The current objective function weights are based on relative importance of different
schedule aspects and have been tweaked into their current form through trial and error.
However, a company’s goal is to create a profit, not a good schedule. Therefore, given the
company’s goal and the fact that the autoclave centre does not directly generate revenue, an
objective function in terms of minimizing cost is more appropriate. This was not completed

during this project due to lack of information.

6. Create capacity analysis tool to estimate cost of taking on new demand
Although more demand is guaranteed to increase the revenues of TIP, it may prove
unprofitable if it pushes the production system past a certain point. New demand may
require the system to use high levels of peak energy, overtime, and create a much tighter
schedule that is not able to respond appropriately to disruptions. A capacity analysis tool that
is able to calculate this would prove to be very useful for TIP both in terms of long-term
capacity analysis but also in the bidding process for new work. This tool could also be used
to inform the specifications needed for a new autoclave given what will work best with
current and future demand mixes. This work would need to take place after reformulating

the objective function in terms of cost.

7. Keep a history log of both schedules and autoclave packings
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Keeping history logs is essential to several aspects of a company’s operation so the past can
be analyzed to forecast the future, identify mistakes and root causes, as well as better track
performance. Modifying the program to save a history log of these would require
establishing a database and identifying with the team what is and what is not relevant
information that should be saved. Identifying the proper format to best save it in to facilitate

future access is also important.

8. Create a feedback loop between the scheduling model and the autoclave packing
model
Currently the autoclave packing model runs without regard to how the bins will be
scheduled. If there was a feedback loop from the scheduling model to the autoclave packing
model then autoclave packing decisions could be made while being informed by the
consequences they have on the scheduling model. This could lead to much better overall

system performance.
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Appendix A

Al- BPP3.py
The metaheuristic implemented for the autoclave packing problem as programmed in

Python.

A2- BinClass.py
The Bin class object within Python is used as a platform for metaheuristic described in Al.
This object is also called in the building of the scheduling model to extract data about

autoclave loads.

A3-Proposed Scheduling Model as implemented
The proposed MILP scheduling model as programmed in Python using Pyomo, including
the segmented approach procedure. Does not include parameters initialization section due to

extensive length.



Al- BPP3.py

def Create_BPP(jj,w,bnum,parts,dummy,tools,blkt):
from random import randint, sample, uniform, seed
import time
import numpy as np
import operator
import openpyxl
import string
import gc
import pickle
from Bin_Class import New_Bin
#This last one imports the Bin_Class: New_Bin

#seed(50) #Set random number seed

def

def

def

print_nice(a): #prints dictionary/list nicely
if type(a)==dict:
for item in a:
print item, a[item] ,"\n"
else:
for item in a:
print item, "\n"

get_autoclaves(): #Imports autoclaves from .xlsx file
wb=openpyxl.load_workbook('Autoclaves.xlsx',data_only=True)
ws=wb.active

Columns=[]
j=e

for item in list(string.ascii_uppercase)[1:6]: #Creates dict:

Columns.append(item)
j+=1

i=2

while(1):
if ws['A%s'%i].value is None:

break
au[str(ws["A%s'%i].value)]={}
for j in Columns:
au[str(ws[ "A%s'%i].value)][str(ws['%s1'%j].value)]=\
ws[ "%s%s'%(j,1)].value

i+=1

sort_parts(): #Sorts by Recipe number

global sorted_parts

#print parts

sorted_parts=sorted(parts.iteritems(), key=lambda (x,y):\
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y[ 'Recipe Number'], reverse=False)

def au_time(autoclave,B_ins): #Returns length of time autoclave is loaded
t=b_au[autoclave] #blackout time initialized
#print "Au Time started:"
for item in B_ins:
if item.a==autoclave:
t+=item.time/60
return t

#Returns autoclave with highest priority for part
def au_priority(p,B_ins,nf_list):
#Load balancing:
1=[]
for item in au:
if item not in nf_list:
t=item+' Priority’
if p[1][t]«>0 and au[item][ 'Volume']>=\
tools[p[1][ 'Tool Number']]['Volume']:
1.append(item)#Autoclave number
if len(1l)==1: #If it only fits in one...create that one
return 1[0]
if len(1l)==0: #Part does not fit in any autoclave
#Print 20 times to get around buffering of data being returned.
#Makes sure it is displayed
for x in xrange(0,20):
print "Part does not fit into any autoclave for which recipe is

allowed"
print "Check the database for part, tool length, and recipe priorities"”
print p
print "Did not fit in: ", nf_list
raise
1_weight=[]

for item in 1:

t=item+' Priority’

#Appends weighted time

#Weighted time=(1+40.1*priority#)*time

#Example: Priority 1 time= 1.1%*time

1 weight.append((1+int(p[1][t])*0.1)*au_time(item,B_ins))

#print p[1][t]
" time:", au_time(item,B_ins)
return 1[1_weight.index(min(1_weight))]

#print item,

def put_item_in_bin(item, B_ins):
if len(B_ins)==0:#"0 Bins available"
return "NoFit"
for B in B_ins:
if B.query_fit(parts,tools,item[0]):
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B.add_part(parts,tools,item[0])
return "Fit"
return "NoFit"

def place_in_bins(P_ins,B_ins,instance):
n=0
for item in P_ins: #starts from big to small
if instance==0: #If first instance make duplicates to account for demand
r=int(item[1]["Demand"])
else:
r=1
for d in xrange(0@,r):
#print item
#print put_item_in_bin(item)

if (put_item_in_bin(item,B_ins)=="NoFit"):
#Didnt fit in any, create new bin
nf_list=[]
a_ins=au_priority(item,B_ins,nf_list)
vol=au[a_ins]["Volume"]
ther=au[a_ins]["Thermos"]
au_len=au[a_ins]["Length Envolope (inches)"]

B_ins.append(New_Bin(tools,a_ins,vol,au_len,ther,item[1]\
["Recipe Number"],n,w,item[1]['Area']))
n+=1

#If it doesn't fit in the bin created...

while (put_item_in_bin(item,B_ins)=="NoFit"):
#Probably doesnt fit due to tool length<

#autoclave length constraint.

B_ins.pop() #Remove that bin
n-=1
#Add autoclave that wasnt feasible to list.
nf_list.append(a_ins)

#Try next autoclave in priority list
a_ins=au_priority(item,B_ins,nf_list)
vol=au[a_ins]["Volume"]
ther=au[a_ins]["Thermos"]
au_len=au[a_ins]["Length Envolope (inches)"]
B_ins.append(New_Bin(tools,a_ins,vol,au_len,\
ther,item[1]["Recipe Number"],n,w,item[1]["Area’']))
n+=1

def get_order(B_ins):
#Gets parts for every bin into new_order sequentially, the bins
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#are in random order though.
n_order=[]
for p in sample(range(©,len(B_ins)),len(B_ins)): #For every bin packed
for j in B_ins[p].parts: #For every part in bin
n_order.append((j,parts[j]))
return n_order

def local_improvement(B_ins):
#print "\nInitial length:",len(B_ins)
#B_ins has the big chunk of groups
#B_improv has the small groups taken out
B_improv=[]
cutoff=uniform(0.3,0.5)
for b in B_ins: #Put some items in B_improv
if b.vleft > cutoff*b.volume and\
b.tleft > cutoff*b.thermos:
#If less than 30% full
B_ins.remove(b)
B_improv.append(b)
for b in B_improv: #For each bin in improv list
while(True): #continues until broken
#print "started again”
e=0
for item in b.parts: #For each part in bins in improv list
if e==1: #Breaks out of for loop
#print "broke out"
break
for B in B_ins:#B in B_ins:
#For each bin in original
try:
if B.query_fit(parts,tools,item):

B.add_part(parts,tools,item) #Send part to new bin

b.remove_part(parts,tools,item )#Remove part from old bin
print "Improved locally"

e=1 #breaks out of next for
loop

break
except:

print "out of range...fix sometime,
doesn't REALLY impact performance"

if e==0:
break #Breaks the while loop
B_ins.extend(B_improv)
#print len(B_ins)
return B_ins #Returns list with local improvement done

def print_stats(m,p_binary):
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#m=B_iter[m] to get stats for
#p_binary= to print or not to print
v=0 #Total volume
t=0 #Total time
i=0 #number >30% empty
autoclaves_used=[]
for item in B_iter[m]:
v+=item.volume
t+=(item.time/60)
autoclaves_used.append(item.a) #Gets list of all autoclaves
if item.vleft > 0.3*item.volume and item.tleft>0.3*item.thermos:
i+=1
#print "v:",v, "t:",t,"\n"
unig=list(set(autoclaves_used)) #Gets list of autoclaves
autoclave counter=[]

autoclave_time=[]
autoclave_stats=[]
volume_constrained=0 #Counters for constraints:
thermo_constrained=0
for i in xrange(©,len(uniq)):
autoclave_counter.append(i)
autoclave_time.append(0)
for item in B_iter[m]:# in autoclaves_used:
if uniq[i]==item.a:
autoclave_counter[i]+=1
autoclave_time[i]+=item.time
volume_constrained+=item.vol_const
thermo_constrained+=item.thermo_const
autoclave_stats.append((uniqg[i],\
autoclave_counter[i], autoclave_time[i]))
makespan=max(autoclave_time)
if p_binary==1:
print "Volume: %s " %"{:,}".format(v)
print "Time: %s" %t
print "Number of bins >=30%% empty (Vol and Thermos) : %s" %i
print "Vol Const: %s \nThermo Const: %s" %\
(volume_constrained, thermo_constrained)
for item in autoclave_ stats:
print "Autoclave: %s, Loads: %s, Time: %s"%\
(item[@],item[1],item[2])
print "Makespan: ", makespan
print "Total # of bins: %s" %len(B_iter[m])
return v, t, i ,autoclave_stats,makespan, volume_constrained,
thermo_constrained
#Returns volume, time, # >30% empty, # of part placements restricted by vol
and thermos.

#Parameters and initialise
B_iter=[]
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au={} #Autoclaves
Ls=[]

1=[]

Volumes=[ ]
Times=[]
Makespans=[ ]
NBins=[]
#NBins_Time=[]

#Get data

sort_parts()
new_order=sorted_parts
get_autoclaves()

#Determines number of blackout times in this week for each autoclave
#Used in au_priority function
wk_hrs=xrange (w*168, (w+1)*168)
b_au={}
for item in au:

b_au[item]=len([k for k in set(blkt[item]) if k in wk_hrs])
print 'B_AU: ', b_au

#Start algorithm=greedy with local improvement

for j in xrange(0,3jj):
print j, time.clock()
B_iter.append([]) #Create a new iteration in list
place_in_bins(new_order,B_iter[j],j) #Initial sort
B_iter[j]=local_improvement(B_iter[j]) #Local improvement, overwrites bins
new_order=get_order(B_iter[j]) #Randomise order

stat=print_stats(j,1)

Volumes.append(stat[0]) #Store volume in list
Times.append(stat[1]) #Store time in list
Makespans.append(stat[4]) #Store makespan in list
NBins.append(len(B_iter[j])) #Store number of bins in list
#NBins_Time.append(time.clock()) #Get time bin was computed at

if j==0:

print "Starting: ", len(B_iter[0])
if j>0 and len(B_iter[j])>len(B_iter[j-1]):

print "Got worse somehow!", len(B_iter[j]), "t= %s"%time.clock()
if j>0 and len(B_iter[j])<len(B_iter[j-1]):

print "Got better!", len(B_iter[j]), "t= %s"%time.clock()

#RESULTS
print "\n\n\n\n###H#HH#H#FFRESULT SHHHHHHHHHE"
#Print stats for lowest volume

print "\nLowest Volume: ", min(Volumes)
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j=min(xrange(len(Volumes)), key=Volumes._ _getitem__)
print "Iter: %s"%j
print_stats(j,1)

#Print stats for lowest time

print "\nLowest Time: ", min(Times)
j=min(xrange(len(Times)), key=Times.__getitem__)
print "Iter: %s"%j

print_stats(j,1)

#Print stats for lowest makespan

print "\nLowest Makespan: ", min(Times)
j=min(xrange(len(Makespans)), key=Makespans.__getitem_ )
print "Iter: %s"%j

print_stats(j,1)

iter_to_return=j

#Print stats for lowest number of bins

print "\nLowest number of bins: ", min(NBins)
j=min(xrange(len(NBins)), key=NBins.__getitem_ )
print "Iter: %s"%j

print_stats(j,1)

iter_to_return=j

f=open('BPPoutput.txt’','a")
f.write("\nj= %s bins=%s"%(j,len(B_iter[j])))

g=open( 'BPPoutput2.txt', 'a")
g.write('\nj=%s , %s'%(j,NBins))

#Get list of autoclaves used
au_used=[]
for item in B_iter[]j]:
print "Number: ",item.num
if item.a not in au_used:
au_used.append(item.a)
print au_used

#Append 5 dummy bins per autoclave, for "usable gaps"
n=len(B_iter[j]) #reinitialize n to number of bins in run.
dummies=0
for item in au_used:
for i in xrange(0,3):
#'dummy' is the rangeset number for the dummy area.
#(parts_list,tools_list,autoclave,volume,thermos,rec,n,wk,area)
B_iter[j].append(New_Bin(tools,item,9,0,0,"0",n,w,dummy))
B_iter[j][n].time=240
n+=1
dummies+=1 #number of dummies appended
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#Create a tools list to pass
#Update Bin .num to match bnum to avoid repeats
tlist=[]
for i in B_iter[j]:

i.num=1i.num+bnum

for t in i.tools:

tlist.append(t)

tlist=1ist(set(tlist))
print tlist

bnum+=len(B_iter[j])

gc.collect() #Garbage collector

#0rder bin numbers

B_iter[j].sort(key=lambda x: x.num, reverse=False)

#print "j=",7j
#print "len:", len(B_iter[j])

return B_iter[j], au_used, bnum



A2- BinClass.py

class New Bin():

def __init_  (self,tools list,autoclave,volume,au_len,thermos,rec,n,wk,area):

def

self.num=n
self.a=autoclave
self.volume=volume#au[autoclave]["Volume"]
self.au_len=au_len #au[autoclave]["Length Envolope (inches)"]
#print "Autoclave: %s, Length: %s"%(self.a,self.au_len)
self.vleft=self.volume
self.thermos=thermos#au[autoclave]["Thermos"]
self.tleft=self.thermos
self.recipes=[]
self.recipes.append(rec)
self.parts=[]
self.tools=[]
self.tools_used={}
self.tools_cap_left={}
for t in tools_list:
self.tools used[t]=0
self.tools_cap_left[t]=0
self.manpower=0
self.area=area
self.time=0
self.longest_part=0 #Shift-hrs
#tself.Ashift=1 #Default is one shift
self.week=wk #No scheduled week
self.scheduled=None #No scheduled time
self.fixed=0 #Bin,Def=0, if 1 then scheduled time/week is fixed.
self.Rpenalize=False
self.thermo_const=0
self.vol_const=0
Bprint(self):
sp=""
unigp=set(self.parts)
for item in unigp:
sp+="\n %s :%s"%(item,self.parts.count(item))
st=""
unigt=set(self.tools)
for item in uniqt:
st+="\n %s :%s"%(item,self.tools.count(item))
print "Bin Number: ", self.num
print "Autoclave: ", self.a
print "Volume: ", self.volume
print "Vleft: ", self.vleft
print "Thermos: ", self.thermos
print "Tleft: ", self.tleft

print "Parts: ", sp
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print
print
print
print
print
print
print
print
print
print

"Tools: ", st
", self.area

"Area:
"Manpower:

, self.manpower

"Longest Part MP: ", self.longest_part

"Week: ", self.week

"Scheduled: ", self.scheduled
"Fixed in Opt (1l=yes): ", self.fixed

"Reschedule penalized:

"Recipes:
, self.time

"Time:

def Bwrite_parts(self):
#Returns a list of all parts, along with count

sp=[1]

unigp=

set(self.parts)

for item in unigp:

sp.append("

return sp

def Bwrite(self):

Sp=

unigp=set(self.parts)
for item in unigp:

sp+="\n %s :%s"%(item,self.parts.count(item))
st=""
unigt=set(self.tools)
for item in uniqt:

st+="\n %s :%s"%(item,self.tools.count(item))
return "\

\nBin #: %s\

\nAutoclave: %s\

\nParts: %s\

\nTools: %s\

\nArea: %s\

\nManpower: %s hrs\
\nLongest_Part_MP: %s hrs\
\nRecipe: %s\

\nTime: %s minutes\
\nFixed Time (1=Yes): %s \
\nReschedule penalized: %s \
\nheek: %s\

\nScheduled: %s \

"%(self.num, self.a, sp, st,self.area, self.manpower, self.longest_part,\
self.recipes[0@], self.time,self.fixed, self.Rpenalize, self.week,

self.scheduled)

def query_fit(self,parts_list,tools_list,p):
#Keep track of tools used in bin

for t in tools list:

, self.Rpenalize

, self.recipes

%s :%s"%(item,self.parts.count(item)))

if t not in self.tools_used:
print "added t= %s tool!!!"%t

self.tools_used[t]=0
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self.tools_cap_left[t]=0
#Verify constraints
if self.tleft>=parts_list[p]["Thermos"] and \
self.au_len>=tools_list[parts_list[p][ 'Tool Number']]['Length'] and \
parts_list[p][str(self.a+"' Priority')]<>@ and \
(parts_list[p]["Recipe Number"] in self.recipes) and \
(self.tools cap_left[parts_list[p]['Tool Number']]>0 or\
(self.tools_used[parts_list[p]['Tool Number']]<\
tools_list[parts_list[p]['Tool Number']]['Tools Available'] and \
self.vleft>=tools_list[parts_list[p][ 'Tool Number']]['Volume'])) and\
len(self.parts)<parts_list[p][ 'Max Per Load']:
return True
else:
#If designed to fit into autoclave, what restricted it?
if parts_list[p][str(self.a+' Priority')]<>0:
if self.vleft<=tools_list[parts_list[p][ 'Tool Number']]["Volume"]:
self.vol_const+=1 #Counts number constrained by Volume
if self.tleft<=parts_list[p]["Thermos"]:
self.thermo_const+=1 #Counts number constrainted by Thermos
return False
def add_part(self,parts_list,tools _list,p):
self.parts.append(p)
self.manpower+=parts_list[p][ 'Manpower Reqd (Hrs/part)']
self.time=max(self.time,parts_list[p][str(self.a+' P-Time')]) #Sets time
#Determine if a tool must be added with the part:
if self.tools_cap_left[parts_list[p]['Tool Number']]==0:
self.tools_used[parts_list[p]['Tool Number']]+=1
self.tools_cap_left[parts_list[p]['Tool
Number']]+=tools_list[parts_list[p]['Tool Number']]['Max Parts/Tool"]
self.tools.append(parts_list[p]['Tool Number']) #Add a tool for this part
to list
self.vleft-=tools_list[parts_list[p]['Tool Number']]['Volume'] #Reduce
volume only if tool is added
self.tleft-=parts_list[p]["Thermos"] #Reduce thermos only if tool is added
self.tools_cap_left[parts_list[p]['Tool Number']]-=1 #Reduce the tool capacity
left

#Update longest layup time for part in bin
if self.longest_part<parts_list[p]['Shift-Hrs Reqd']:
#print p, parts_list[p]['Shift-Hrs Reqd'], parts_list[p][ 'Manpower Reqd
(Hrs/part) ']
self.longest_part=parts_list[p][ 'Shift-Hrs Reqd']

#print [parts_list[p]['Manpower Reqd (Hrs/part)'] for p in self.parts]
#print "self.longest= ", self.longest_part

def remove_part(self,parts_list,tools list,p):
try:
self.parts.remove(p)
#Add manpower
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self.manpower-=parts_list[p][ 'Manpower Reqd (Hrs/part)']
#Add back tool capacity
self.tools_cap_left[parts_list[p]['Tool Number']]+=1
#Add back Thermos

self.tleft+=parts_list[p][ ' Thermos"]

#print "Thermos left after part removed: ", self.tleft

if self.tools_cap_left[parts_list[p][ 'Tool
Number']]>=tools_list[parts_list[p]['Tool Number']]['Max Parts/Tool']:
#Remove the tool
self.tools.remove(parts_list[p]['Tool Number'])
self.tools_used[parts_list[p][ 'Tool Number']]-=
#Reduce capacity
self.tools cap_left[parts_list[p]['Tool
Number']]-=tools_list[parts_list[p]['Tool Number']]['Max Parts/Tool"]
#Add back volume
self.vleft+=tools_list[parts_list[p][ 'Tool Number']]['Volume"]
#H#HHRECENT CHANGE###
#print "Remove_part: line 152 change, Bin Class.py"
#print [parts_list[p]['Manpower Reqd (Hrs/part)'] for p in self.parts]
if len(self.parts)>0:
#tprint [parts_list[p]['Shift-Hrs Reqd'] for p in self.parts]
self.longest_part=max([parts_list[jj][ 'Shift-Hrs Reqd'] for jj in
self.parts])
#print "self.longest=
except:
print "\nEXCEPT STATEMENT BEGINS"
print "p: ", p
print "parts: ",self.parts
print "tools: ",self.tools
print "self.tools used:",self.tools used
#print "tools used of p: ",self.tools_used[parts_list[p]['Tool Number']]
print "ERROR: removing tool"
print "RELOAD an older version to avoid further errors”

, self.longest_part

import time
time.sleep(10)
return @
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A3-Proposed Scheduling Model as Implemented

def CreateSchedule(AWS_d,wknds,blkt):
import amazon
S Start Gurobi COMPUTESERVER SR
Sch_ip=amazon.start_instance('Sch")
amazon.set_gur_license() #sets gurobi license

from random import randint

import time

import pyomo.environ as cpr

from pyomo.opt import SolverFactory, SolverStatus, TerminationCondition
import datetime

import calendar

from itertools import chain

import math

import pickle

#Save inputs for troubleshooting
pickle.dump([AWS_d,wknds,blkt],open("sched.p","wb"))
#AWS_d,wknds,blkt=pickle.load(open("sched_updated_4wks.p","rb"))
#tdecode=pickle.load(open("decode.p","rb"))

months={"'January': 1, 'February': 2, 'March': 3,
"April': 4,'May': 5,'June’':6,
'July':7,'August’': 8, 'September': 9,
'October': 10, 'November':11, 'December': 12}

print "Starting CreateSchedule"

THEHTE Get Data THEHE
B_iter=[]

wks=[] #Wks that contain BPPs
au_list=[]

dummies={}
for w in AWS_d[ 'Weeks"']:
if AWS_d[w]['Action']=="BPP_Done":
#dummies[w]=AWS_d[w][ 'DummyArea’]
for b in AWS_d[w]['BPP'][0]:
B_iter.append(b) #Add Bin to B_iter
au_check=b.a
if au_check not in au_list:
au_list.append(au_check)
wks . append(w)
tlist=AWS_d[ 'Tools"]

#Manpower import
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layup_manpower=AWS_d[ 'Layup_Manpower" ]
print layup_manpower

#Used to translate tool numbers to rangeset integers

t_ dict={}
t_dict2={}
i=0

for item in tlist: #Give each tool number an integer number
t_dict[item]=1
t_dict2[i]=item
i+=1

#Used to translate autoclave numbers to rangeset integers
au_dict={}
#Used to translate rangeset integers to autoclave numbers
au_dict2={}
i=0
for item in au_list:

au_dict[item]=1

au_dict2[i]=item

i+=1

#i#t###  Create Model S
model=cpr.ConcreteModel()

au=len(au_list) #number of autoclaves

ls=1len(B_iter) #number of logical sets

#minutes=1 #1= in hours, 60=in minutes, 4=in 15 minute intervals
ss=len(wks)*7*24 #Hrs in current model

p=len(tlist)

print "WKS: ", wks
weeks={}
for item in wks:
weeks[item]=xrange(item*168, (item+1)*168)

e Sets fizecisi
#Creates a list of all tools, z
model.P=cpr.RangeSet(0,p-1)

#Creates a list of all the autoclaves, j
model.Au=cpr.RangeSet(0,au-1)

#Creates a list of all weeks, w
model.W=cpr.RangeSet(0,len(wks)-1)

#Creates a list of all logical sets, i



model.L=cpr.RangeSet(0,1s-1)

#Creates a list of all available shifts, k
#1...s
model.S=cpr.RangeSet(0,ss-1)

#Creates a list of all available areas, r
areas=|[|

for i in AWS_d[ 'AreaShifts"]:
areas.append(i)
model.Ar=cpr.Set(initialize=areas)

b Parameters Fizi s
#Determines which LS are dummies
dum={}

for i in model.L:
if B_iter[i].area=="dummy':
dum[i]=1 #Dummy
else:
dum[i]=0 #Not a Dummy
model.DL=cpr.Param(model.L,initialize=dum)

#Determines the last slot in each week
wmax={}
for w in model.W:
wmax[w]=max(weeks[w])
model.MaxInWeek=cpr.Param(model.W, initialize=wmax)

#Determines the first slot in each week
wmin={}
for w in model.W:
wmin[w]=min(weeks[w])
#print "Min in week %s is %s"%(w,min(weeks[w]))
model.MinInWeek=cpr.Param(model.W, initialize=wmin)

#Logical sets in each week

Iwk={}

for w in model.W: #Create a list for each week
Twk[w]=[]

for i in model.L: #Add i to appropriate week list
lwk[B_iter[i].week].append(i)
#lwk [week_schedule[i]].append(i)

model.LL=cpr.Param(model.W,initialize=1wk)

#Week for each Logical Set
wkl={}
for w in model.W:

130



131

for i in model.LL[w]:
wkl[i]=w
model.WKL=cpr.Param(model.L,initialize=wkl)

#lLists of shifts k in each week
sinweek={}
for w in model.W:
sinweek[w]=[]
for k in model.S:
for w in model.W:
if k in weeks[w]:
#print w, k
sinweek[w].append(k)
model.SW=cpr.Param(model.W, initialize=sinweek)
print "SW[@]: ", model.SW[O]

#Determines week relating to time. Opposite of model.SW. k
wins={}
for w in model.W:
for k in model.SW[w]:
wins[k]=w
model.WinS=cpr.Param(model.S,initialize=wins)

#Manpower for each area

mpa={}

for i in model.Ar: #for every area
mpa[i]=1layup_manpower[i]

model.MPA=cpr.Param(model.Ar, initialize=mpa)

#Shifts for each area
model.SAR=cpr.Param(model.Ar, initialize=AWS_d['AreaShifts'])

#Start time of day shift
model.S_Time=AWS_d[ 'Day_Start']

#Manpower for each LS

mpl={}

for i in xrange(©@,1ls): #for every LS
mpl[i]=B_iter[i].manpower

model.MPL=cpr.Param(model.L,initialize=mpl)

#Area for each LS

als={}

for i in xrange(0,1s):
als[i]=B_iter[i].area

model.ALS=cpr.Param(model.L,initialize=als)

#Creates a list of which how many tool instances are in each logical set

pl={}

for i in xrange(9,1s): #For every LS
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for z in xrange(0,p): #initialize pl to ©
pl[i,z]=0
for item in B_iter[i].tools:
#print item
pl[i,t_dict[item]]=B_iter[i].tools.count(item) #add items to bin
model.PL=cpr.Param(model.L,model.P, initialize=pl)

#Gets list of logical sets that tool Z goes into.
il={}
for z in xrange(0,p):

il[{z]=[]

for i in xrange(0,1s):

if model.PL[(i,z)]<>0:
il[z].append(i)

model.IL=cpr.Param(model.P, initialize=il)

#Creates a list of lists that indicates which LS's i are in autoclave j
a={}
for j in xrange(9,au):

a[j]=[]
for i in model.L:

alau_dict[B_iter[i].a]].append(i)
model.A=cpr.Param(model.Au,initialize=a)

#Creates a list of tool recycle times
c={}
for item in tlist:
c[t_dict[item]]=int(tlist[item]\
["Absolute Minimum Tool Recycle Time (Hrs)'])
model.C=cpr.Param(model.P, initialize = c)

#Creates a list of desired tool recycle times
cd={}
for item in tlist:
cd[t_dict[item]]=int(tlist[item][ 'Desired Tool Recycle Time (Hrs)'])
model.CD=cpr.Param(model.P, initialize = cd)

#Creates a tools list, identifying number of tools for each part
tools_list={}
for item in tlist:

tools_list[t_dict[item]]=int(tlist[item][ 'Tools Available'])
model.tools=cpr.Param(model.P, initialize=tools_list)

#Creates a list of cycle times

n={}
for i in xrange(0,1s):
n[i]= int(cpr.ceil(B_iter[i].time/(60)))#originally in minutes

#Weekends- from Main2_AWS_side
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model.weekends=wknds#cpr.Param(initialize=wknds)

#Blackout- from Main2_AWS_side

blkt_trans={}

for item in au_list:
blkt_trans[au_dict[item]]=blkt[item]

model.blkt=cpr.Param(model.Au, initialize=blkt_trans)

print "Blackout: "

print blkt_trans

#Get list of bin packings that are in same week
#that are exactly the same in terms of tools
#Must also not be fixed
wsame={}
for w in model.W:
#for i in lwk[w]:
wsame[w]=[(i,ii) for i in lwk[w] for ii in lwk[w] if \
model.ALS[i]==model.ALS[ii] and\
set(B_iter[i].tools)==set(B_iter[ii].tools) and\
(B_iter[i].a==B_iter[ii].a) and\
B_iter[i].fixed<>1 and B_iter[ii].fixed<>1 and\
i<ii]

model.Wsame=cpr.Param(model.W, initialize=wsame)

#Get minimum time units apart that two bins that are exactly the same
#must be scheduled apart. Based on tool recycle times.
wsame_time={}
for w in model.W:
for i,ii in model.Wsame[w]:
#check only i since both are same
#For tools that are the same and bin uses maximum amount of tools available
try:
t=max([tlist[z]['Absolute Minimum Tool Recycle Time (Hrs)'] \
for z in B_iter[i].tools \
if sum(1 for zz in B_iter[i].tools if zz==z)/\
(model.tools[t_dict[z]])==1])
wsame_time[ (i,ii)]=t
print wsame_time[(i,ii)]
except:
wsame_time[ (i,1ii)]=0

#Get list of bin packings that share one tool and use all of that tool

#If in same area
#If not in wsame[w] already

#For every tool in there, if both are the same tool # and both use all of that tool
#If at least one of the circumstances in the above line happens,
#add to list.
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wsomesame={}
for w in model.W:
wsomesame[w]=[(i,ii) for i in lwk[w] for ii in lwk[w] \
if model.ALS[i]==model.ALS[ii] and \
i<>ii and\
((i,ii) not in wsame[w]) and ((ii,i) not in wsame[w]) and\
sum(1l for z in B_iter[i].tools\
for zz in B_iter[ii].tools \
if z==zz and ((sum(1l for zc in B_iter[i].tools if zc==z)+ \
sum(1l for zzc in B_iter[ii].tools if zzc==z))\
(2*model.tools[t_dict[z]]))==1\
)>=1]
model.Wsomesame=cpr.Param(model.W, initialize=wsomesame)

#Get minimum distance apart for bins in wsomesame
#For every tool in both bins

#If tools are the same and both bins use maximum number of tool available
wsomesame_time={}
for w in model.W:

for i,ii in model.Wsomesame[w]:

if i<ii:
wsomesame_time[ (i,ii)]=max([tlist[z]\

["Absolute Minimum Tool Recycle Time (Hrs)'] \
for z in B_iter[i].tools for zz in B_iter[ii].tools \
if z==zz and \

(((sum(1 for zc in B_iter[i].tools if zc==z)+ \
sum(1l for zzc in B_iter[ii].tools if zzc==z))/ \
(2*model.tools[t_dict[z]]))==1)])
#Dont do computation for other side, just copy
wsomesame_time[(ii,i)]=wsomesame_time[ (i,ii)]

i Variables i

#Create basic Load[w,i,k] variable
def set_init(model):

Initializes auxiliary set.
return [(w, i, k) for w in model.W for i in model.LL[w] \
for k in model.SW[w]]
model.AUX = cpr.Set(dimen=3, initialize=set_init)
model.Load = cpr.Var(model.AUX, within=cpr.Binary, name='vLoad")

#Create precedence binary variable, Before[w, i,ii]
def set_precendence(model):

return [(i,ii) for w in model.W for i,ii in model.Wsomesame[w]]
model.AUX_ Before=cpr.Set(dimen=2, initialize=set_precendence)
#Goes both ways. (i,ii) and (ii,i) are both in there.
model.Before=cpr.Var(model.AUX_Before, within=cpr.Binary, name='vBefore")
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#Variable identifies number of starts on weekend.
model.OT=cpr.Var(within=cpr.NonNegativeReals,name="vOT")

#hWeekend penalize per day (Sat, Sun)
model.SatWeekend=cpr.Var(model.W, within=cpr.Binary, name='vSatWeekend")
model.SunWeekend=cpr.Var(model.W, within=cpr.Binary, name='vSunWeekend")

#Variable used to penalize peak power usage
model.Energy=cpr.Var(model.W, within=cpr.NonNegativeReals,\
name="'vEnergy"')

#Infeasibility variables
model.Tool Inf=cpr.Var(model.P, within=cpr.NonNegativeReals, \
name="'vTool Inf")
model.Au_Inf=cpr.Var(model.Au, within=cpr.NonNegativeReals, \
name="'vAutoclave Inf')

#Reschedule penalized
model.Resched=cpr.Var(within=cpr.NonNegativeReals,name="'vResched")

#lLong items to layup at start of week penalized
model.Early=cpr.Var(model.L,within=cpr.NonNegativeReals,name="vEarly")

#Manpower leveler
model.MP_lvl=cpr.Var(model.W, model.Ar,within=cpr.NonNegativeReals,\
name="ManPower_Lv1")

#Desired Tool Recycle Time
model.Desired _Tool Rec=cpr.Var(model.P, within=cpr.NonNegativeReals,\
name="'vDesiredRecycleT")

#i####t  Objective HHHHH

model.obj = cpr.Objective(expr=4*model.OT\
-0.3*sum(model.Load[w,i,k]\
for w in model.W\
for i in set(model.DL).intersection(model.LL[w])\
for k in model.SW[w])\
+5*sum(model.Energy[w]\
for w in model.W)
+1000*sum(model.Tool_Inf[z]\
for z in model.P)\
+1000*sum(model.Au_Inf[j]\
for j in model.Au)\
+4*sum(model.MP_1v1[w,r]\
for w in model.W\
for r in model.Ar)\
+2*sum(model.Desired_Tool_Rec[z]\



for z in model.P)\
+1.5*model.Resched\
+1.4*sum(model.Early[i]\
for i in model.L)\
+8*sum(model.SatWeekend[w]\
for w in model.W)\
+20*sum(model.SunWeekend[w]\

for w in model.W),sense=cpr.minimize)

print "Adding constraints to model™
print M------- e

i Contraints i

#Create set for constraint 1
def set_initl(model):
return [(w, i) for w in model.W for i in set(model.LL[w])\
if model.DL[i]<>1]
model.AUX1 = cpr.Set(dimen=2, initialize=set_init1l)

#1 Each LS is scheduled
print "Adding #1 constraints"
def conl_rule(model,w,i):
return sum(model.Load[w,i,k]\
for k in model.SW[w])==
model.conl= cpr.Constraint(model.AUX1,rule=conl_rule, name='Conl")
print "Constraint 1 added", time.clock()

#Auxillary Set: for constraint 101
def set_init101(model):
return [(w, i) for w in model.W for i in set(model.LL[w])\
if model.DL[i]==1]
model.AUX101 = cpr.Set(dimen=2, initialize=set_init1e1)

#101 Dummy LS are optional to schedule
print "Adding #101 constraints"”
def conl10l rule(model,w,i):
return sum(model.Load[w,i,k]\
for k in model.SW[w]) <=1

model.conl@l= cpr.Constraint(model.AUX101, rule=conl@1_rule, name='Conl@l')

print "Constraint 101 added", time.clock()

#Auxillary Sets: for constraint 2
def set_init2_©(model):

return [(k) for k in set(model.SW[@])]
def set_init2_01(model):
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return [(k) for k in set(model.SW[@]).union(model.SW[1])]
def set_init2_12(model):

return [(k) for k in set(model.SW[1]).union(model.SW[2])]
def set_init2_23(model):

return [(k) for k in set(model.SW[2]).union(model.SW[3])]

#2 Sufficient TOOL recycle time is assigned
print "Adding #2 and #22 constraints”
def con2_rule(model, k,z):
a=[model.Load[model.WinS[k+t],i,min(k+t,ss-1)]*model.PL[i,z] \
for t in xrange(@,min(model.C[z],ss-k))\
for i in set(model.IL[z]).intersection(\
model.LL[model . WinS[min(k+t,ss-1)]])]
if len(a)<=model.tools[z]:
#print "Constraint 2: k= %s, z=%s feasible"%(k,z)
return cpr.Constraint.Feasible
else:
#print "Constraint 2 added, k=%s, z=%s"%(k,z)
return sum(a)/model.tools[z] <=1
#+ model.Tool Inf[z]

#22 Desired Tool recycle time is considered
#print "Adding #22 constraints”
def con22_rule(model, k,z):
a=[model.Load[model.WinS[k+t],i,min(k+t,ss-1)]*model.PL[i,z] \
for t in xrange(@,min(model.CD[z],ss-k))\
for i in set(model.IL[z]).intersection(\
model.LL[model .WinS[min(k+t,ss-1)]])]
if len(a)<=model.tools[z]:
return cpr.Constraint.Feasible
else:
return sum(a)/model.tools[z] <=1 + model.Desired_Tool Rec[z]

if len(wks)==1:
model.AUX2_0 = cpr.Set(dimen=1, initialize=set_init2_0)
model.con2_0= cpr.Constraint(model.AUX2_©, model.P, \
rule=con2_rule, name='Con2 0")
model.con22_0= cpr.Constraint(model.AUX2_0, model.P,\
rule=con22_rule, name='Con22_0")
print "Added #2,#22, constraints for week 0"
if len(wks)>=2:
model.AUX2_01 = cpr.Set(dimen=1, initialize=set_init2_01)
model.con2_01= cpr.Constraint(model.AUX2_01, model.P,\
rule=con2_rule, name='Con2_01')
model.con22 01= cpr.Constraint(model.AUX2 01, model.P,\
rule=con22_rule, name='Con22 01")
print "Added #2,#22constraints for weeks © and 1"
if len(wks)>=3:
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model.AUX2_12 = cpr.Set(dimen=1, initialize=set_init2_12)
model.con2_12= cpr.Constraint(model.AUX2_12, model.P, \
rule=con2_rule, name='Con2_12")
model.con22_12= cpr.Constraint(model.AUX2_12, model.P,\
rule=con22_rule, name='Con22_12")
print "Added #2,#22 constraints for weeks 1 and 2"
if len(wks)>=4:
model.AUX2_23 = cpr.Set(dimen=1, initialize=set_init2_23)
model.con2_23= cpr.Constraint(model.AUX2_23, model.P,\
rule=con2_rule, name='Con2_23")
model.con22_23= cpr.Constraint(model.AUX2_23, model.P,\
rule=con22_rule, name='Con22_23")
print "Added #2,#22 constraints for weeks 2 and 3"
print "Constraint #2,#22 added", time.clock()

#Create set for constraint 3
#List of possible Load[w,i,k]'s running at k.
def set_init3_1(model,j,k):
return [(i,kk) for i in set(model.L).intersection(model.A[7j]) \
for kk in model.SW[model .WKL[i]]\
if n[i]+kk>=k and kk<=k]
model.AUX3_1 = cpr.Set(model.Au, model.S, dimen=2, initialize=set_init3_1)

#3 Ensures autoclave CYCLE TIME is respected
print "Adding #3 constraints"
def con3_rule(model, j, k):
if len(model.AUX3 1[j,k])<=1:
return cpr.Constraint.Feasible
else:
return sum(model.Load[model .WKL[i], i, kk]\
for i,kk in model.AUX3_1[j,k])\
<= 1 #+ model.Au_Inf[j]
if len(wks)==1:
model.con3_0= cpr.Constraint(model.Au, model.AUX2_0,\
rule= con3_rule, name='Con3_1")
print "Added #3 constraints for week 0"
if len(wks)>=2:
model.con3_01= cpr.Constraint(model.Au, model.AUX2_01,\
rule= con3_rule, name='Con3_2")
print "Added #3 constraints for weeks © and 1"
if len(wks)>=3:
model.con3_12= cpr.Constraint(model.Au, model.AUX2_12,\
rule= con3_rule, name='Con3_3')
print "Added #3 constraints for weeks 1 and 2"
if len(wks)>=4:
model.con3_23= cpr.Constraint(model.Au, model.AUX2_23,\
rule= con3_rule, name='Con3_4")



print "Added #3 constraints for weeks 2 and 3"
print "Constraint 3 added", time.clock()

#Auxillary Set: set for constraint 4
def set_init4(model):

return [(w, k) for w in model.W for k in model.SW[w]]
model.AUX4 = cpr.Set(dimen=2, initialize=set_init4)

#4 Penalizes that start times to autoclaves are not different
print "Adding #4 constraints"
def con4_rule(model,w,k):
return sum(model.Load[w,i,k] \
for i in set(model.L).intersection(model.LL[w])
if model.DL[i]==0)<=model.Energy[w]
model.con4= cpr.Constraint(model.AUX4, rule= con4_rule, name='Con4d")
print "Constraint 4 added", time.clock()

#5 Penalizes starts on the weekends

print "Adding constraint #5"

def con5_rule(model):

return sum(model.Load[w,i,k] \
for w in model.W\
for i in set(model.L).intersection(model.LL[w]) \
for k in set(model.weekends).intersection(\
model.SW[w])) <=model.OT
model.con5=cpr.Constraint(rule= con5_rule, name='Con5")
print "Constraint 5 added", time.clock()

#Auxillary Set: all i's in violation of blocked off times
#at each timepoint for each autoclave
#Could return an empty list
def set_init6(model,j):
return [(i,k) for i in set(model.L).intersection(model.A[j]) \
for k in model.S.intersection(model.SW[model .WKL[i]])\
for kk in model.blkt[j]\
if n[i]+k+1>=kk and k<=kk]
print "Warning following is normal"
print "It's due to multiple violations of same constraint in preprocessing"
model.AUX6 = cpr.Set(model.Au, dimen=2, initialize=set_init6)

#6 Makes no run/starts on completely blocked off times.
print "Adding constraint #6"
def con6_rule(model,j):
if len(model.AUX6[]])>0:
return sum(model.Load[ (model .WKL[i],i,k)] \
for i,k in model.AUX6[j])==0
else:
return cpr.Constraint.Feasible

139
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model.con6=cpr.Constraint(model.Au, rule=con6_rule, name='Con6")
print "Constraint 6 added", time.clock()

#7 Penalizes if k has changed.
print "Adding constraint #7"
def con7_rule(model):
return sum((1-model.Load[model.WKL[i],i,B_iter[i].scheduled]) \
for i in model.L\
if B_iter[i].Rpenalize==True\
and model.DL[i]<>1)\
<=\
model.Resched
model.con7=cpr.Constraint(rule=con7_rule, name='Con7"')

#8 Penalizes starts near start of week for large layup items

print "Adding constraint #8"

def con8_rule(model,w, i):
n=int(math.ceil(B_iter[i].longest_part)) #get number of shift-hrs to complete
sh=0
#s_wk=model.WKL[i]*7*24

#tmodel.SAR[model.ALS[i]] is number of shifts for area
#Check if have to count number of complete shifts
if model.SAR[model.ALS[i]]<3:
#count number of shifts, and leave overflow
while n>8:
n-=8
sh+=1
#Assumes only day shift works on part
if model.SAR[model.ALS[i]]==1:
return sum(model.Load[w,i,k]\
for k in xrange(model.MinInWeek[w],\
model.MinInWeek[w]+int(sh*24)+n+model.S_Time))\
<=model.Early[i]
#Assumes day and evening shifts work on parts
if model.SAR[model.ALS[i]]==2:
return sum(model.Load[w,i,k]\
for k in xrange(model.MinInWeek[w],\
model.MinInWeek[w]+int(math.floor(sh/2))*24\
+sh%2*8+n+model.S_Time))\
<=model.Early[i]
#Since shifts are continuous, dont worry about shift times
if model.SAR[model.ALS[i]]==3:
return sum(model.Load[w,i,k]\
for k in xrange(model.MinInWeek[w],model.MinInWeek[w]+n))\
<=model.Early[i]

#9 Manpower Leveling Constraint
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print "Adding constraint #9"
def con9_rule(model, w, r, d):
if len([i for i in model.L if model.ALS[i]==r])==0:
print "Constraint #9- (%s,%s,%s) FEASIBLE"%(w,r,d)
return cpr.Constraint.Feasible
else:
return sum(model.Load[model .WKL[i],i,k]*model.MPL[i]\
for i in model.L if model.ALS[i]==r\
for k in xrange(model.WKL[i]*7*24+d*24,\
model . WKL[1i]*7%24+(d+1)*24))\
/(model.MPA[r]*model.SAR[r]*8)\
<= model.MP_1lvl[w,r]

#10 Overtime on Saturday, daily penalization
def conl1@_rule(model,w):
return sum(model.LlLoad[w,i,k]\
for i in model.LL[w]\
for k in xrange(w*7*24+5%24 ,w*7*24+5%24+17))\
<=\
model.SatWeekend[w]*100

#11 Overtime from Saturday 5pm to Sunday midnight, daily penalization
def conll_rule(model,w):
return sum(model.LlLoad[w,i,k]\
for i in model.LL[w]\
for k in xrange(w*7*24+5%24+17 ,w*7*24+7%24))\
<=\
model.SunWeekend[w]*100

#12 Symmetry restricting constraint for tool recycle time when bins are identical
#When bins use the maximum number of tools available they are further split
#by minimum
#tool recycle time
def conl2 rule(model, w,i,ii):
return sum(model.Load[w, i, k]*k for k in model.SW[w])+ wsame_time[(i,ii)] <= \
sum(model.Load[w, ii, k]*k for k in model.SW[w])+1

#13_most Removes some possibilities in an easier fashion than the #2 constraint
#Does not include any dummy bins
def conl3_rule(model, w, i, ii):
return sum(model.Load[w, i, k]*k for k in model.SW[w])+ \
wsomesame_time[i,ii]*model.Before[i,ii] - \
sum(model.Load[w, ii, k]*k for k in model.SW[w]) -1 \
<=\
0 + (model.MaxInWeek[©]+1)*(1-model.Before[i,ii])

#Segmented constraint calls
if len(wks)>=1:
#Constraint 12 and 13 Auxillary Sets
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#model.AUX12_@=cpr.Set(dimen=3, initialize=[(w,i,ii) for w in model.W\
for i,ii in model.Wsame[w] if w==0])
model.AUX13_O=cpr.Set(dimen=3, initialize=[(w,i,ii) for w in model.W
for i,ii in model.Wsomesame[w] if w==0])

model.con8 O=cpr.Constraint(set([0]), model.LL[O],\

rule=con8 rule, name='Con8 0')
model.con9_@=cpr.Constraint(set([0]), model.Ar, xrange(0,7),\

rule=con9_rule, name='Con9_0")
model.conl@_O=cpr.Constraint(set([0]), rule=conl®_rule, name='Conl® 0")
model.conll_O=cpr.Constraint(set([@]), rule=conll_rule, name='Conll 0")
model.conl2_O=cpr.Constraint(model.AUX12_0, rule=conl2_rule, name='Conl2_0")
model.conl3_O=cpr.Constraint(model.AUX13 0, rule=conl3_rule,name='Conl3 0")
print "Added #9-13 constraints for week 0"

if len(wks)>=2:
#Constraint 12 and 13 Auxillary Sets
#model.AUX12_1=cpr.Set(dimen=3, initialize=[(w,i,ii) for w in model.W\
for i,ii in model.Wsame[w] if w==1])
model.AUX13_1=cpr.Set(dimen=3, initialize=[(w,i,ii) for w in model.W\
for i,ii in model.Wsomesame[w] if w==1])

model.con8 1l=cpr.Constraint(set([1]), model.LL[1],\

rule=con8_rule, name='Con8 1")
model.con9_l=cpr.Constraint(set([1]), model.Ar, xrange(0,7),\

rule=con9_rule, name='Con9_1")
model.conl@_1=cpr.Constraint(set([1]), rule=conl®_rule, name='Conl0_1")
model.conll_l=cpr.Constraint(set([1]), rule=conll_rule, name='Conll_1")
#tmodel.conl2_1=cpr.Constraint(model.AUX12_1, rule=conl2_rule, name='Conl2_1")
model.conl3_1=cpr.Constraint(model.AUX13 1, rule=conl3_rule,name='Conl3 1")
print "Added #9-13 constraints for week 1"

if len(wks)>=3:
#Constraint 12 and 13 Auxillary Sets
#model.AUX12_2=cpr.Set(dimen=3, initialize=[(w,i,ii) for w in model.W\
for i,ii in model.Wsame[w] if w==2])
model.AUX13_2=cpr.Set(dimen=3, initialize=[(w,i,ii) for w in model.W\
for i,ii in model.Wsomesame[w] if w==2])

model.con8_2=cpr.Constraint(set([2]), model.LL[2],\

rule=con8_rule, name='Con8 2')
model.con9_2=cpr.Constraint(set([2]), model.Ar, xrange(0,7),\

rule=con9_rule, name='Con9_2")
model.conl@ 2=cpr.Constraint(set([2]), rule=conl®_rule, name='Conld 2')
model.conll 2=cpr.Constraint(set([2]), rule=conll_rule, name='Conll 2")
#tmodel.conl2 2=cpr.Constraint(model.AUX12_ 2, rule=conl2_rule, name='Conl2 2')
model.conl3_2=cpr.Constraint(model.AUX13_2,rule=conl3_rule,name="'Conl3_2")
print "Added #9-13 constraints for week 2"
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if len(wks)>=4:
#Constraint 12 and 13 Auxillary Sets
#model.AUX12_3=cpr.Set(dimen=3, initialize=[(w,i,ii) for w in model.W\
for i,ii in model.Wsame[w] if w==3])
model.AUX13_3=cpr.Set(dimen=3, initialize=[(w,i,ii) for w in model.W\
for i,ii in model.Wsomesame[w] if w==3])

model.con8_3=cpr.Constraint(set([3]), model.LL[3],\

rule=con8_rule, name='Con8_3")
model.con9_3=cpr.Constraint(set([3]), model.Ar, xrange(0,7),\

rule=con9_rule, name='Con9_3")
model.conl@ 3=cpr.Constraint(set([3]), rule=conl®_rule, name='Conld_3')
model.conll 3=cpr.Constraint(set([3]), rule=conll_rule, name='Conll 3")
#tmodel.conl2 3=cpr.Constraint(model.AUX12_3, rule=conl2_rule, name='Conl2_3"')
model.conl3 3=cpr.Constraint(model.AUX13 3, rule=conl3_rule,name='Conl3 3")
print "Added #9-13 constraints for week 3"

print "Constraints #9-13 added", time.clock()

#14 One must be before the other.
def conl4_rule(model, i,ii):
return model.Before[i,ii]+model.Before[ii,i]==1

model.conl4=cpr.Constraint(model.AUX_Before, \
rule=conl4_rule, \
name="'Conl4_rule")

#lLoad initial solution
#Fix anything that should be fixed.
for i in model.L:
if B_iter[i].scheduled<>None:
for k in model.SW[B_iter[i].week]:
if k<>B_iter[i].scheduled:
#print "Load[%s,%s,%s]"%(B_iter[i].week,i,k)
model.Load[B_iter[i].week,i, k]=0
else:
if B_iter[i].fixed==1:
print B_iter[i].num, "scheduled+fixed: ", k
else:
print B_iter[i].num, "scheduled: ", k

model.Load[B_iter[i].week,i,k]=1
if B_iter[i].fixed==1:
model.Load[B_iter[i].week,i,k].fixed=True
else:
print "B_iter[%s] is not scheduled"%i

def fix_week(w):
for i in model.LL[w]:
for k in model.SW[w]:
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model.Load[w,1i,k].fixed=True

#opt.symbolic_solver_labels = True
#tmodel.write('problem_whole.lp')
#Deactivate constraints except for the first week (week ©)
if len(wks)>=3:
model.con2_12.deactivate()
model.con22_12.deactivate()
model.con3_12.deactivate()
model.con8_2.deactivate()
model.con9_2.deactivate()
model.conl@_2.deactivate()
model.conll_2.deactivate()
#tmodel.conl2_2.deactivate()
model.conl3 2.deactivate()

if len(wks)>=4:

model.con2_23.deactivate()
model.con22_23.deactivate()
model.con3_23.deactivate()
model.con8_3.deactivate()

model.con9_3.deactivate()

model.conl@ 3.deactivate()
model.conll_3.deactivate()
#model.conl12_3.deactivate()
model.conl3_3.deactivate()

for w in model.W:
if w==3:

fix_week(0) #Fix values for WO
fix_week(1) #Fix values for W1
model.con2_23.activate()
model.con22_23.activate()
model.con3_23.activate()
model.con8_3.activate()
model.con9_3.activate()
model.conl@ 3.activate()
model.conll_3.activate()
#tmodel.conl2 3.activate()
model.conl3_3.activate()

if w==0 and len(wks)>1:
continue

if w==2:
fix_week (@) #Fix values for WO
model.con2_12.activate()
model.con22_12.activate()
model.con3_12.activate()
model.con8 2.activate()
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model.con9_2.activate()
model.conl@_2.activate()
model.conll_2.activate()
#model.conl2_2.activate()
model.conl3_2.activate()

print "\n\nSolving weeks %s and %s"%(w-1,w), time.clock()

opt = SolverFactory('gurobi', solver_io='python")
#opt.symbolic_solver_labels = False #Make them symbolic
#opt.options['ResultFile']="problem_weeks%s_%s.1lp'%(w-1,w)
opt.options[ 'MIPGap']=0.005

opt.options[ '"MIPGapAbs']=0.2

#topt.options[ 'Heuristics']=0.80

opt.options[ "MIPFocus']=1

opt.options[ ‘DisplayInterval']=10
opt.options['TimeLimit']=800

startsolve=time.clock()

results = opt.solve(model, tee=True) #, warmstart=True)
#print results.Solution.Status

print "Solved in: ", time.clock()-startsolve,
print "Retrieving results", time.clock()
#model.solutions.load_from(results)
#instance.load(results)

seconds"”

print "Tool Infeasibility= %s"%sum(model.Tool Inf[z].value for z in model.P)
for z in model.P:
if model.Tool _Inf[z].value >0:
print "Infeasible tool: ", z, model.Tool Inf[z].value
#Remove next line, works only with decode
#print "Tool ID:", decode[z]
#print tlist[z]'"''

if (results.solver.termination_condition == TerminationCondition.infeasible):
print "\nModel is infeasible\n"
AWS_d[ 'Feasibility']=False
pickle.dump(AWS_d,open('AWS d.p','wb"))
print "Wrote report" #Ends the connection

else:
#Model is feasible
T Report T
f=open('output.txt','w")
f.write("Bin ,Autoclave, Hour\n")
sch_results={}

for w in model.W:
for k in model.SW[w]:
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for j in model.Au:
for i in set(model.A[j]).intersection(model.LL[w]):
if model.lLoad[w,i,k]==1:
sch_results[i]=k #set time for load i
f.write("\n%s,%s,%s, n[i]= %s, Au ready again: %s,",\"
Tool ready again (if 24 hrs): %s"\
%(1i,au_dict2[j],k,n[i],str(k+n[i]),str(k+c[0])))
f.write(B_iter[i].Bwrite())
f.write("\n")
f.close()

print "model.Early[i]"
for i in model.L:
if model.Early[i].value<>0:
print i, model.Early[i].value

print "model.MP_lvl[w,r]"
for r in model.Ar:
for w in model.W:
print r,w, ": ", model.MP_lvl[w,r].value

#Inf=[]
""'"print "Tool Infeasibility= %s"%sum(model.Tool Inf[z].value for z in model.P)
for z in model.P:
if model.Tool_Inf[z].value >0:
print "Infeasible tool: ", t_dict2[z], model.Tool Inf[z].value
Inf.append(('Tool Infeasibility',t_dict2[z]))

print "Au Infeasibility= %s"%sum(model.Au_Inf[j].value for j in model.Au)
for j in model.Au:
if model.Au_Inf[j].value >@:
print "Infeasible Au: ", j, model.Au_Inf[j].value
Inf.append(('Autoclave Infeasibility',au_dict2[j]))

AWS_d[ 'Feasibility']=True

#Count number of desired recycle times unmet
drec=0
for z in model.P:
if model.Desired_Tool Rec[z].value<>0:
print "Drec: ",z,", : ",model.Desired_Tool_Rec[z].value
drec+=1

#Count number of changes to initial schedule
resch=0
for i in model.L:
if B_iter[i].scheduled<>None:
for k in model.SW[model.WKL[i]]:
if model.Load[model.WKL[i],i,k]==1 and \
B_iter[i].scheduled<>k:
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resch+=1

#Count number of dummy slots scheduled

n=0

for w in model.W:

for i in model.L.intersection(model.LL[w]):
if model.DL[i]==1:
for k in model.SW[w]:
if model.lLoad[w,i,k]==1:
n+=1

#Count instances where 2+ autoclaves started
en=0
for w in model.W:
for k in model.SW[w]:
j=0
for i in model.L.intersection(model.LL[w]):
if model.Load[w,i,k]==1 and model.DL[i]==0:
j+=1
if j>1:
en+=1
if j>=2:
print "Started %s autoclaves at once at time %s!"%(j,k)

#Count number of Saturdays and Sundays scheduled
wkends=[0,0] #Sat, Sun
for w in model.W:
print model.SatWeekend[w].value
print model.SunWeekend[w].value
wkends[0@]+=model.SatWeekend[w].value
wkends[1]+=model.SunWeekend[w].value

print "Scheduled %s dummy slots"%n
print "Rescheduled %s bins from original schedule"%resch
print "Scheduled %s OT starts"%model.OT.value
print "Saturday OT Weekends: %s"%wkends[@]
print "Sunday OT Weekends: %s"%wkends[1]
print "Number of 2+ concurrent autoclave starts: %s"%en
print "Number of desired tool recycle times not met: %s"%drec
for w in model.W:
print "Energy usage value for week %s: %s"%(w,model.Energy[w].value)

#B_iter=pickle.load(open('BPP_Pickle.p', "rb" ))
for item in sch_results:
B_iter[item].scheduled=sch_results[item]

for item in B_iter:
for b in AWS_d[item.week]['BPP'][0]:
if item.num==b.num:
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b.scheduled=item.scheduled
#print b.Bprint()

pickle.dump(AWS_d,open('AWS d.p', 'wb"))
print "solution decoded"

#Print line below is essential. The local computer scans for it to identify when
#solving is completed
print "Wrote report"
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Appendix B

B1- Computational Results from Segmented Scheduling Model
Shows the Gurobi log created when running the segmented scheduling model with

parameters in #2 from Table 5for the 4 new weeks trial.

B2- Computational Results of Full Model

Shows the Gurobi log created when running the full scheduling model with parameters in

#12 from Table 5for the 4 new weeks trial.
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B1- Computational Results from Segmented Scheduling Model

The segmented model runs three 1000 second runs, the first run is solving weeks 0 and 1
while leaving the rest unconstrained. This can also be seen as the best bound of the objective
function at the end of this run is 35, and after constraints are added to week 2 the best
bound jumps up to 97. This process is also evident in the third run. The gap in contrast gets
progressively smaller with each run, this is due to a number of variables being fixed every
time. In the second run, week 0 is completely fixed and therefore the variables are taken out
(also observable in the decreased number of variables in each run). As variables get fixed,
potential solutions are eliminated and the problem becomes easier to solve and therefore

reducing the gap is considerably easier.

Gurobi 6.0.4 (win64) logging started 07/30/15 15:57:43

Optimize a model with 67210 rows, 44580 columns and 2530018 nonzeros
Coefficient statistics:

Matrix range  [1e-02, 3e+02]

Objective range [3e-01, 1e+03]

Bounds range  [1e+00, 1e+00]

RHS range [1e+00, 2e+02]
Presolve removed 50917 rows and 15840 columns
Presolve time: 4.19s
Presolved: 16293 rows, 28740 columns, 988247 nonzeros
Variable types: 114 continuous, 28626 integer (28626 binary)
Found heuristic solution: objective 733.0240942

Root simplex log...

Iteration  Objective Primal Inf. Dual Inf.  Time
14603 1.9472006e+01 5.897403e+05 0.000000e+00  10s
27875  2.1569016e+01 1.966042e+04 0.000000e+00  20s
37276  2.2188764e+01 1.495826e+05 0.000000e+00  30s
46914  2.2286251e+01 1.919308e+03 0.000000e+00  40s
48591  2.2347470e+01 0.000000e+00 0.000000e+00  42s

Root relaxation: objective 2.234747e+01, 48591 iterations, 37.50 seconds
Total elapsed time = 53.05s
Total elapsed time = 65.22s
Total elapsed time = 72.24s



Nodes |

0 0 2234747
H 0 0
H 0 O

0 0 33.65110
H 0 0

0 0 3430798

0 0 34.54441

0 0 3456729

0 0 3456729
H 0 0
H 0 2

0 2 3456729

1 3 3473561

5 6 3495337

7 6 3495337
H 11 7

33 32 34.95337

48 41 34.95337

52 44 34.95337

76 66 34.95337
H 146 138

282
446
769
914
1046
1374
1877
2142
2144
2145
2146
2147
2148 2098
2149 2099
H 2149 1993
H 2149 1894

757

1028
1355
1839
2094
2095
2096
2097
2097

2151 1897 35.08670
2153 1896 35.08670
2163 1912 35.08670
2203 1935 35.08670

Current Node |
Expl Unexpl | Obj Depth Intlnf | Incumbent

272 36.41104 80 390 52.84457 34.95337 33.9%
438 41.05270 127 358 52.84457 34.95337 33.9%
41.09470 199 430 52.84457 34.95337 33.9%
902 41.13670 240 405 52.84457 34.95337 33.9%
41.18570
42.98170
45.84420
35.94437
45.54420
52.75254
51.66920
41.05270
45.54420
41.10520
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Objective Bounds |  Work
BestBd Gap | It/Node Time

01082 733.02409 22.34747 97.0% -
65.4893116 22.34747 65.9% - 84s
64.5706522 22.34747 65.4% - 102s

0 729 64.57065 33.65110 47.9% - 125s
60.6987319 33.65110 44.6% - 149s

0 766 60.69873 34.30798 43.5% - 155s

0 832 060.69873 34.54441 43.1% - 181s

0 771 60.69873 3456729 43.1% - 195s

0 485 60.69873 34.56729 43.1% - 226s
53.1862319 34.56729 35.0% - 238s
53.0112319 34.56729 34.8% - 20606s

0 485 53.01123 34.56729 34.8% - 2606s

1 572 53.01123 34.73561 34.5% 10140 274s

5 392 53.01123 34.95337 34.1% 2376 316s

6 403 53.01123 34.95337 34.1% 7947 320s
52.9278986 34.95337 34.0% 5413 321s
18 397 52.92790 34.95337 34.0% 2028 331s

22 413 52.92790 34.95337 34.0% 1463 341s

23 404 52.92790 34.95337 34.0% 1363 351s

29 391 52.92790 34.95337 34.0% 983 3063s

52.8445652 34.95337 33.9% 585 366s

367 372s

286 380s

222 392s

217 401s
218 410s
197 421s
170 432s
163 476s
162 564s
162 623s
162 631s
162 642s
162 654s
162 687s
719s
722s
249 768s
250 770s
252 790s
262 804s

81s

264 295 52.84457 34.95337 33.9%
334 134 52.84457 34.95337 33.9%
447 18 52.84457 34.95337 33.9%
59 485 52.84457 34.95337 33.9%
416 840 52.84457 34.95337 33.9%
284 732 52.84457 34.95337 33.9%
132 766 52.84457 34.95337 33.9%
134 753 52.84457 34.95337 33.9%
383 807 52.84457 34.95337 33.9%
232 511 52.84457 34.95337 33.9%

52.8373188 34.95337 33.8% 162

52.8373188 34.95337 33.8% 162
15 412 52.83732 35.08670 33.6%
16 484 52.83732 35.08670 33.6%
20 392 52.83732 35.08670 33.6%
25 372 52.83732 35.08670 33.6%



2299 1989 35.55337 38 411 52.83732 35.08670 33.6% 271 818s
H 2326 1911 52.7539855 35.08670 33.5% 273 818s
2435 1995 37.81004 51 387 52.75399 35.08670 33.5% 278 833s
2599 2096 38.56476 64 424 52.75399 35.08670 33.5% 283 857s
2984 2282 41.27504 88 313 52.75399 35.08670 33.5% 273 884s
H 3143 2260 52.7123188 35.08670 33.4% 276 884s
3565 2546 45.07504 152 138 52.71232 35.08670 33.4% 248 900s
4564 3133 45.71504 361 35 52.71232 35.08670 33.4% 211 928s
5579 3698 38.37354 85 400 52.71232 35.08670 33.4% 192 946s
H 5600 3605 52.7123188 35.08670 33.4% 192 947s
H 6123 3630 52.6706522 35.08670 33.4% 183 947s
6558 3980 52.20704 120 385 52.67065 35.08670 33.4% 175 965s
7335 4480 52.20704 182 258 52.67065 35.08670 33.4% 168 986s
7684 4787  cutoff 28 52.67065 35.08670 33.4% 173 1000s

Cutting planes:
Gomory: 7
Cover: 2
Clique: 74
MIR: 20
Flow cover: 13
GUB cover: 15
Zero half: 12

Explored 7963 nodes (1555323 simplex iterations) in 1000.10 seconds
Thread count was 4 (of 4 available processors)

Time limit reached
Best objective 5.267065217391e+01, best bound 3.508670289855e+01, gap 33.3847%

Gurobi 6.0.4 (win64) logging started 07/30/15 16:14:45

Optimize a model with 117998 rows, 33324 columns and 3621349 nonzeros
Coefficient statistics:

Matrix range [le-02, 5e+02]

Objective range [3e-01, 1e+03]

Bounds range  [1e+00, 1e+00]

RHS range [2e-01, 3e+02]
Found heuristic solution: objective 467.393
Presolve removed 103521 rows and 11049 columns
Presolve time: 5.72s
Presolved: 14477 rows, 22275 columns, 894944 nonzeros
Found heuristic solution: objective 338.5926659
Variable types: 110 continuous, 22165 integer (22165 binary)
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Root simplex log...

Iteration  Objective

10048
25273
37948
51503
62344

9.4283671e+01
9.5895745e+01
9.6515779¢+01
9.6607817e+01
9.6629781e+01

Primal Inf. Dual Inf.

4.900670e+05
2.879208e+03
9.683992¢+03
6.937094e+03
0.000000e+00

Time

0.000000e+00
0.000000e+00
0.000000e+00
0.000000e+00
0.000000e+00

10s
20s
30s
40s
49s

Root relaxation: objective 9.662978e+01, 62344 iterations, 42.56 seconds
Total elapsed time = 50.96s

Nodes | Current Node |  Objective Bounds
Expl Unexpl | Obj Depth Intlnf | Incumbent

|  Work
BestBd Gap | It/Node Time

0 0 96.62978 0 914 338.59267 96.62978 71.5% - 55s
H 0 0 259.0961957 96.62978 62.7% 56s
H 0 O 193.6548913 96.62978 50.1% - 56s
H 0 0 114.8152174 96.62978 15.8% - 77s
0 0 9713396 01044 114.81522 97.13396 15.4% - 88s
H 0 0 112.1152174 97.13396 13.4% - 113s
0 0 97.28285 01083 112.11522 97.28285 13.2% - 124s
0 0 9739927 01105 112.11522 97.39927 13.1% - 143s
0 0 97.40992 01091 112.11522 97.40992 13.1% - 149s
H 0 0 111.8152174 97.40992 12.9% - 187s
0 0 9743914 01031 111.81522 97.43914 12.9% - 2006s

Cutting planes:
Gomory: 2
Cover: 9
Clique: 89
MIR: 25
GUB cover: 6
Zero half: 33

Explored 0 nodes (125082 simplex iterations) in 249.69 seconds
Thread count was 4 (of 4 available processors)

Solve interrupted
Best objective 1.118152173913e+02, best bound 9.743913576190e+01, gap 12.8570%

Gurobi 6.0.4 (win64) logging started 07/30/15 16:19:25

Optimize a model with 147100 rows, 22068 columns and 3411503 nonzeros
Coefficient statistics:
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Matrix range [le-02, 7e+02]

Objective range [3e-01, 1e+03]

Bounds range [1e+00, 1e+00]

RHS range [2e-01, 3e+02]
Found heuristic solution: objective 411.425
Presolve removed 134637 rows and 6400 columns
Presolve time: 5.60s
Presolved: 12463 rows, 15668 columns, 767049 nonzeros
Found heuristic solution: objective 303.0920293
Variable types: 92 continuous, 15576 integer (15576 binary)

Root simplex log...

Iteration  Objective Primal Inf. Dual Inf.  Time
13601  1.6114028e+02 4.432704e+04 0.000000e+00  10s
30949  1.6260294e+02 0.000000e+00 0.000000e+00  19s

Root relaxation: objective 1.626029e+02, 30949 iterations, 13.23 seconds
Total elapsed time = 20.86s

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth Intlnf | Incumbent BestBd Gap | It/Node Time

0 0 162.60294 0 651 303.09203 162.60294 46.4% - 25s

H 0 0 249.2173913 162.60294 34.8% - 25s

H 0 O 173.1387681 162.60294 6.09% - 42s
0 0 163.10051 0 785 173.13877 163.10051 5.80% - 55s
0 0 - 0 173.13877 163.10051 5.80% - 062s

Cutting planes:
Gomory: 4
Implied bound: 1
Clique: 99
MIR: 15
GUB cover: 8
Zero half: 23

Explored 0 nodes (65126 simplex iterations) in 62.61 seconds
Thread count was 4 (of 4 available processors)

Solve interrupted
Best objective 1.731387681159e+02, best bound 1.631005073207e+02, gap 5.7978%

Gurobi 6.0.4 (win64) logging started 07/30/15 18:36:05
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Optimize a model with 67210 rows, 44580 columns and 2530018 nonzeros
Coefficient statistics:

Matrix range [le-02, 3e+02]

Objective range [3e-01, 1e+03]

Bounds range [1e+00, 1e+00]

RHS range [1e+00, 2e+02]
Presolve removed 50917 rows and 15840 columns
Presolve time: 4.20s
Presolved: 16293 rows, 28740 columns, 988247 nonzeros
Variable types: 114 continuous, 28626 integer (28626 binary)
Found heuristic solution: objective 733.0240942

Root simplex log...

Iteration ~ Objective Primal Inf. Dual Inf.  Time
14366 1.9418261e+01 1.435839¢+05 0.000000e+00  10s
27480  2.1569001e+01 8.783346e+03 0.000000e+00  20s
36644 2.2188723e+01 2.128976e+05 0.000000e+00  30s
46282  2.2265352e¢+01 3.670737e¢+03 0.000000e+00  40s
48591 2.2347470e+01 0.000000e+00 0.000000e+00  43s

Root relaxation: objective 2.234747¢+01, 48591 iterations, 38.22 seconds
Total elapsed time = 54.03s
Total elapsed time = 66.35s
Total elapsed time = 73.45s

Nodes | Current Node |
Expl Unexpl | Obj Depth IntInf | Incumbent

Objective Bounds | Work
BestBd Gap | It/Node Time

0 0 2234747 01082 733.02409 22.34747 97.0% -
0 0 65.4893116 22.34747 65.9% - 86s
0 0 64.5706522 22.34747 65.4% - 104s
0 0 33.65110 0 729 64.57065 33.65110 47.9% - 127s
H 0 O 60.6987319 33.65110 44.6% - 150s
0 0 3430798 0 766 60.69873 34.30798 43.5% - 1506s
0 0 3454441 0 832 060.69873 34.54441 43.1% - 182s
0 0 3456729 0 771 60.69873 34.56729 43.1% - 196s
0 0 3456729 0 485 60.69873 34.56729 43.1% - 228s
0 53.1862319 34.56729 35.0% - 240s
2 53.0112319 34.56729 34.8% - 269s
0 2 3456729 0 485 53.01123 34.56729 34.8% - 2069s
1 3 3473561 1 572 53.01123 34.73561 34.5% 10140 278s
2 4 3484633 2 480 53.01123 34.84633 34.3% 5509 280s
5 6 3495337 5 392 53.01123 34.95337 34.1% 2376 323s
1 7 52.9278986 34.95337 34.0% 5413 329s

83s
H
H

H 0
H 0

H
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13
48
52
72
76

7 3495337 8 397 52.92790 34.95337 34.0% 4678 332s
22 413 5292790 34.95337 34.0% 1463 349s

41 34.95337
44 34.95337
65 34.95337
66 34.95337

23 404 5292790 34.95337 34.0% 13

63 359s

28 399 52.92790 34.95337 34.0% 1030 368s
29 391 5292790 34.95337 34.0% 983 372s

H 146 138

282 272 36.41104 80 390 52.84457 34.95337 33.9%

52.8445652 34.95337 33.9% 585

553 546 41.05270 151 350 52.84457 34.95337 33.9%
769 757 41.09470 199 430 52.84457 34.95337 33.9%
914 902 41.13670 240 405 52.84457 34.95337 33.9%

1046 1028 41.18570
1374 1355 42.98170
1877 1839 45.84420
2142 2094 35.94437
2144 2095 45.54420
2145 2096 52.75254
2146 2097 51.66920
2147 2097 41.05270
2148 2098 45.54420
2149 2099 41.10520
H 2149 1993

H 2149 1894

2151 1897 35.08670
2154 1897 35.08670
2163 1912 35.08670
2203 1935 35.08670
2299 1989 35.55337
H 2326 1911

2435 1995 37.81004
2599 2096 38.56476
2984 2282 41.27504
H 3143 2260

3227 2232 44.01504
3565 2546 45.07504
4564 3133 45.71504
5579 3698 38.37354
H 5600 3605

H 6123 3630

6558 3974 52.20704

Cutting planes:
Gomory: 7
Cover: 2
Clique: 74
MIR: 20

264 295 52.84457 34.95337 33.9%
334 134 52.84457 34.95337 33.9%
447 18 52.84457 34.95337 33.9%
59 485 52.84457 34.95337 33.9%
416 840 52.84457 34.95337 33.9%
284 732 52.84457 34.95337 33.9%
132 766 52.84457 34.95337 33.9%
134 753 52.84457 34.95337 33.9%
383 807 52.84457 34.95337 33.9%
232 511 52.84457 34.95337 33.9%

52.8373188 34.95337 33.8% 162

52.8373188 34.95337 33.8% 162
15 412 52.83732 35.08670 33.6%
16 413 52.83732 35.08670 33.6%
20 392 52.83732 35.08670 33.6%
25 372 52.83732 35.08670 33.6%
38 411 52.83732 35.08670 33.6%

52.7539855 35.08670 33.5% 273
51 387 52.75399 35.08670 33.5%
64 424 52.75399 35.08670 33.5%
88 313 52.75399 35.08670 33.5%

52.7123188 35.08670 33.4% 276
303 23 5271232 35.08670 33.4%
152 138 52.71232 35.08670 33.4%
361 35 5271232 35.08670 33.4%
85 400 52.71232 35.08670 33.4%

52.7123188 35.08670 33.4% 192

52.6706522 35.08670 33.4% 183
120 385 52.67065 35.08670 33.4%

375s

367 382s

257 393s
222 402s
217 411s
218 421s
197 432s
170 443s
163 490s
162 583s
162 645s
162 653s
162 665s
162 677s
162 713s
746s
749s
249 798s
250 800s
252 821s
262 8306s
271 851s
851s
278 865s
283 891s
273 919s
919s
270 920s
248 936s
211 966s
192 985s
985s
985s
175 1000s
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Flow cover: 13
GUB cover: 15
Z.ero half: 12

Explored 7201 nodes (1373014 simplex iterations) in 1000.16 seconds
Thread count was 4 (of 4 available processors)

Time limit reached
Best objective 5.267065217391e+01, best bound 3.508670289855¢+01, gap 33.3847%

Gurobi 6.0.4 (win64) logging started 07/30/15 18:53:10

Optimize a model with 117998 rows, 33324 columns and 3621349 nonzeros
Coefficient statistics:

Matrix range  [1e-02, 5e+02]

Objective range [3e-01, 1e+03]

Bounds range [1e+00, 1e+00]

RHS range [2e-01, 3e+02]
Found heuristic solution: objective 467.393
Presolve removed 103521 rows and 11049 columns
Presolve time: 6.32s
Presolved: 14477 rows, 22275 columns, 894944 nonzeros
Found heuristic solution: objective 338.5926659
Variable types: 110 continuous, 22165 integer (22165 binary)

Root simplex log...

Iteration ~ Objective Primal Inf. Dual Inf.  Time
8473  9.4241051e+01 5.921382e+03 0.000000e+00  10s
22573 9.5843709e+01 3.413751e+04 0.000000e+00  20s
33598 9.6413379e+01 7.471527e+04 0.000000e+00  30s
45358  9.6546499¢+01 4.150227e+03 0.000000e+00  40s
57052  9.6627473e+01 3.559046e+03 0.000000e+00  50s
62344 9.6629781e¢+01 0.000000e+00 0.000000e+00  55s

Root relaxation: objective 9.662978e+01, 62344 iterations, 48.40 seconds
Total elapsed time = 60.58s

Nodes | Current Node |  Objective Bounds |  Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 96.62978 0 914 338.59267 96.62978 71.5% - 063s

H 0 0 259.0961957 96.62978 62.7% - 064s
H 0 0 193.6548913 96.62978 50.1% - 064s
H 0 0 114.8152174 96.62978 15.8% - 87s



0 0 9713396 01044 114.81522 97.13396 15.4% -
112.1152174 97.13396 13.4% - 128s
0 0 97.28285 01083 112.11522 97.28285 13.2% -
0 0 97.39927 01105 112.11522 97.39927 13.1% -
0 0 97.40992 01091 112.11522 97.40992 13.1% -
111.8152174 97.40992 12.9% - 211s

H 0 O

H 0 0

~N U1 W — O O
B LW LN O

97.43914 01031 111.81522 97.43914 12.9% -
97.43914 01007 111.81522 97.43914 12.9% -
99.21618 1 973 111.81522 97.44823 12.8% 48610 357s
101.63613 2 799 111.81522 97.44823 12.8% 24845 376s
104.37728 3 634 111.81522 97.44823 12.8% 18239 389s
104.37728 5 552 111.81522 97.44823 12.8% 13158 390s

158

100s

140s
161s
168s

233s
308s

48 43 104.82705 20 494 111.81522 104.37728 6.65% 2216 400s

142 140 105.55505
220 215 105.55505
302 297 105.55505
H 303 298
H 304 299
306 303 105.55505
374 374 109.76505
495 485 109.81505
H 529 512
534 526 109.81505
588 569 109.81505
669 640 109.81505

52 455 111.81522 104.37728 6.65%
71 460 111.81522 104.37728 6.65%
99 462 111.81522 104.37728 6.65%

110.9152174 104.37728 5.89% 619

110.0228261 104.37728 5.13% 618
100 444 110.02283 104.37728 5.13%
118 413 110.02283 104.37728 5.13%
156 335 110.02283 104.37728 5.13%

109.8665761 104.37728 5.00% 511
167 231 109.86658 104.37728 5.00%
179 265 109.86658 104.37728 5.00%
180 272 109.86658 104.37728 5.00%

940 411s
719 421s
621 437s
437s

437s

617 441s
573 450s
520 464s
464s

509 470s
499 483s
505 497s

729 679  cutoff 181 109.86658 104.37728 5.00% 503 507s

790 733 109.81505

182 314 109.86658 104.37728 5.00%

508 514s

855 795 cutoff 10 109.86658 104.37728 5.00% 506 521s

935 856 104.51439

1043 940 109.76505 140 1031 109.86658 104.37728 5.00%

H 1044 893

1046 894 109.23533
1047 895 105.25505
1048 895 109.23533
H 1048 851

1050 853 105.55505
H 1050 810

1052 813 105.54255
1058 815 105.54255
1064 820 105.93898

Cutting planes:
Gomory: 4
Cover: 5
Clique: 121

11 540 109.86658 104.37728 5.00%

493 534s
479 6306s

109.2353261 104.37728 4.45% 479 705s

109 1003 109.23533 104.37728 4.45%
521024 109.23533 104.37728 4.45%
128 1055 109.23533 104.37728 4.45%

478 T75s
477 838s
477 872s

108.4339674 104.37728 3.74% 477 887s

76 977 108.43397 104.37728 3.74%

476 899s

108.3402174 104.37728 3.66% 476 931s

14 626 108.34022 104.37728 3.66%
17 526 108.34022 105.54255 2.58%
19 542 108.34022 105.54255 2.58%

704 981s
702 990s
699 1000s



MIR: 18
Flow cover: 1
GUB cover: 8
Zero half: 38

Explored 1084 nodes (881499 simplex iterations) in 1000.05 seconds
Thread count was 4 (of 4 available processors)

Time limit reached
Best objective 1.083402173913e+02, best bound 1.055425543478e+02, gap 2.5823%

Gurobi 6.0.4 (win64) logging started 07/30/15 19:10:21

Optimize a model with 147100 rows, 22068 columns and 3411503 nonzeros
Coefficient statistics:

Matrix range [le-02, 7e+02]

Objective range [3e-01, 1e+03]

Bounds range  [1e+00, 1e+00]

RHS range [2e-01, 3e+02]
Found heuristic solution: objective 424.292
Presolve removed 134637 rows and 6400 columns
Presolve time: 5.87s
Presolved: 12463 rows, 15668 columns, 767049 nonzeros
Found heuristic solution: objective 309.5253627
Variable types: 92 continuous, 15576 integer (15576 binary)

Root simplex log...

Iteration  Objective Primal Inf. Dual Inf.  Time
12255 1.5812718e+02 4.815001e+04 0.000000e+00  10s
31925 1.5970742e+02 9.223177e+03 0.000000e+00  20s
35020 1.5971972e+02 0.000000e+00 0.000000e+00  22s

Root relaxation: objective 1.597197e+02, 35020 iterations, 16.09 seconds

Nodes | Current Node |  Objective Bounds |  Work
Expl Unexpl | Obj Depth Intlnf | Incumbent BestBd Gap | It/Node Time

0 0 159.71972 0 610 309.52536 159.71972 48.4% - 30s
0 0 221.9840580 159.71972 28.0% - 31s
0 0 170.6615942 159.71972 6.41% - 406s
0 0 160.48036 0 774 170.66159 160.48036 5.97% - 77s
0 0 161.74203 0 795 170.66159 161.74203 5.23% - 112s
H 0 0 170.5782609 161.74203 5.18% - 124s
0 0 16191972 0 830 170.57826 161.91972 5.08% - 132s

H
H
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0 0 16197024 0 903 170.57826 161.97024 5.05% - 139s

0 0 161.97800 0 659 170.57826 161.97800 5.04% - 164s
H 0 0 170.1927536 161.97800 4.83% - 186s

0 0 16197800 0 619 170.19275 161.97800 4.83% - 221s
H 0 0 168.9449275 161.97800 4.12% - 228s

0 0 16197800 0 763 168.94493 161.97800 4.12% - 249s

0 0 162.11007 0 808 168.94493 162.11007 4.05% - 263s

0 0 162.16016 0 820 168.94493 162.16016 4.02% - 280s

0 0 162.16537 0 846 168.94493 162.16537 4.01% - 283s

0 0 16216925 0 684 168.94493 162.16925 4.01% - 295s
H 0 O 168.6449275 162.16925 3.84% - 318s

0 0 162.16925 0 627 168.64493 162.16925 3.84% - 347s

0 0 16216925 0 767 168.64493 162.16925 3.84% - 365s

0 0 162.22148 0 813 168.64493 162.22148 3.81% - 416s

0 0 16230662 0 832 168.64493 162.30662 3.76% - 438s

0 0 16232384 0 827 168.64493 162.32384 3.75% - 4406s

0 0 162.33994 0 683 168.64493 162.33994 3.74% - 460s

0 2 16233994 0 662 168.64493 162.33994 3.74% - 488s

2 3 163.69836 1 611 168.64493 163.69836 2.93% 8739 494s

3 3 16448159 2 491 168.64493 163.70603 2.93% 8823 500s

1215 164.52686 8 427 168.64493 164.49918 2.46% 2635 513s

27 28 164.53460 13 444 168.64493 164.52153 2.45% 1452 520s
173 179 164.63119 062 479 168.64493 164.52193 2.44% 484 532s
345 338 164.91205 98 479 168.64493 164.52193 2.44% 449 5406s
H 409 347 167.3137681 164.52193 1.67% 413 546s
H 508 4061 167.0137681 164.52193 1.49% 407 554s

588 539 165.17769 112 439 167.01377 164.52193 1.49% 432 5061s
H 594 529 166.4137681 164.52193 1.14% 430 561s

704 622 165.36961 132 393 166.41377 164.52193 1.14% 474 578s
774 679 165.49266 145 427 166.41377 164.52193 1.14% 501 588s
832 711 165.58756 158 431 166.41377 164.52193 1.14% 540 601s
1036 839 164.97518 81 659 166.41377 164.52193 1.14% 548 678s
1038 840 165.21892 76 627 166.41377 164.52193 1.14% 547 705s
1039 841 164.63119 39 777 166.41377 164.52193 1.14% 546 728s
1040 842 165.86618 126 785 166.41377 164.52193 1.14% 546 755s
1041 842 164.61330 18 830 166.41377 164.52193 1.14% 545 760s
1043 844 165.52386 93 689 166.41377 164.52193 1.14% 544 774s
1044 844 164.82982 14 689 166.41377 164.52193 1.14% 544 791s
1045 847 164.52193 12 507 166.41377 164.52193 1.14% 693 816s
1048 847 164.53998 13 442 166.41377 164.52193 1.14% (694 822s
1057 864 164.61368 17 390 166.41377 164.52193 1.14% 692 836s
1109 884 164.83330 32 224 166.41377 164.52193 1.14% 708 848s
1270 975 164.59006 20 510 166.41377 164.52193 1.14% 684 863s
1517 1105 165.33295 41 510 166.41377 164.52193 1.14% 641 878s
1659 1192 165.50791 062 432 166.41377 164.52193 1.14% 628 894s
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1818
1964
2152
2356
2525
2723

1290 166.33355
1329 166.40141
1381 164.86091
1470 164.61040
1574 164.96977
1667 165.12803

Cutting planes:
Gomory: 9
Cover: 4
Clique: 162
MIR: 26
GUB cover: 12
Zero half: 50

103 374 166.41377 164.52193 1.14%
125 307 166.41377 164.52193 1.14%
22 412 166.41377 164.52193 1.14%
23 508 166.41377 164.52193 1.14%
44 475 166.41377 164.52193 1.14%
71 444 166.41377 164.52193 1.14%

624 910s
635 930s
629 947s
609 967s
608 985s
602 1000s

Explored 2858 nodes (2132040 simplex iterations) in 1000.05 seconds
Thread count was 4 (of 4 available processors)

Time limit reached
Best objective 1.664137681159¢+02, best bound 1.645219341601e+02, gap 1.1368%
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B2- Computational Results of Full Model

The full model runs for a time limit for 3000 seconds, and arrives at larger gap than the
segmented model does for the same problem. This is due to more solutions being present
since variables are not fixed as they are in the segmented model as Gurobi progresses
through the problem. This also yields a much better lower bound, as can be seen at the end
of the solution at 120.3 in the full model but only 164.5 in the segmented model. If both
models were allowed to finish the full model would obtain a better solution since it can make
changes to all weeks when needed, as opposed to the segmented model which cannot.

Gurobi 6.0.4 (win64) logging started 07/31/15 00:00:52

Optimize a model with 194018 rows, 44580 columns and 6855772 nonzeros
Coefficient statistics:
Matrix range  [le-02, 7e+02]
Objective range [3e-01, 1e+03]
Bounds range  [1e+00, 1e+00]
RHS range [1e+00, 2e+02]
Found heuristic solution: objective 623.652
Presolve removed 165755 rows and 12525 columns (presolve time = 11s) ...
Presolve removed 165755 rows and 12525 columns
Presolve time: 11.27s
Presolved: 28263 rows, 32055 columns, 1734108 nonzeros
Found heuristic solution: objective 478.4952886
Variable types: 141 continuous, 31914 integer (31914 binary)

Root simplex log...

Iteration ~ Objective Primal Inf. Dual Inf.  Time
0 -6.5331000e+03 9.800253e+05 0.000000e+00 125
12321  1.0061086e+02 1.843730e+05 0.000000e+00  20s
21007 1.0338512e+02 4.828302e+03 0.000000e+00  30s
27774 1.0403499e+02 9.074958e+04 0.000000e+00  40s
34036 1.0403518e+02 2.719124e+05 0.000000e+00  50s
40399  1.0411472e+02 3.235931e+05 0.000000e+00  60s
46257 1.0422668e+02 2.365104e+03 0.000000e+00  70s
51812 1.0427327e¢+02 2.646165e+03 0.000000e+00  80s
53179 1.0427352e¢+02 0.000000e+00 0.000000e+00  83s

Root relaxation: objective 1.042735e+02, 53179 iterations, 71.02 seconds

Total elapsed time = 101.27s
Total elapsed time = 131.79s
Total elapsed time = 156.57s
Total elapsed time = 171.52s
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Nodes | Current Node |
Expl Unexpl | Obj Depth Intlnf | Incumbent

Objective Bounds |  Work
BestBd Gap | It/Node Time

0 0 104.27352 0 967 478.49529 104.27352 78.2% - 178s
H 0 0 286.6721014 104.27352 63.6% - 180s
H 0 O 185.6260870 104.27352 43.8% - 277s
0 0 110.50366 01570 185.62609 110.50366 40.5% - 320s
0 0 11576288 01628 185.62609 115.76288 37.6% - 409s
0 0 117.42651 01715 185.62609 117.42651 36.7% - 531s
H 0 0 171.0786232 117.42651 31.4% - 629s
0 0 118.24564 01607 171.07862 118.24564 30.9% - 673s
0 0 118.61951 01230 171.07862 118.61951 30.7% - 837s
0 2 118.61951 01230 171.07862 118.61951 30.7% - 1162s

H 1 3

2 4 120.60347
4 4 121.85082
6

169.8952899 118.62139 30.2% 20119 1244s
21389 169.89529 118.62786 30.2% 65071 1417s
31188 169.89529 118.62786 30.2% 37164 1445s
5 12392240 41084 169.89529 118.62786 30.2% 27336 1562s
8 4 12392240 51037 169.89529 118.77955 30.1% 27797 16406s
10 8 123.92240 61017 169.89529 118.77955 30.1% 22345 1766s

1310 124.01948
17 11 124.01948
25 19

29 24 124.02133
41 33 124.02480
63 54 124.02480
71 62 124.02480
75 66 124.02480
H 116 82

H

7 975 169.89529 120.37622 29.1% 24073 1825s
8 945 169.89529 120.37622 29.1% 20772 1855s
167.1474638 120.37622 28.0% 14911 1945s
14 959 167.14746 120.37622 28.0% 13977 2038s
18 1008 167.14746 120.37622 28.0% 10642 2104s
19 952 167.14746 120.37622 28.0% 7176 2245s
21 956 167.14746 120.37622 28.0% 6443 2292s
22 958 167.14746 120.37622 28.0% 6132 2370s
166.8474638 120.37622 27.9% 4201 2371s

137 129
172 163
203 194
260 252
332 324
396 387
432 425
530 522
610 600

124.07595
124.13970
124.35778
124.37296
124.37486
124.37515
125.00065
125.78343
124.73068

38 989 166.84746 120.37622 27.9% 4016 2441s
40 1017 166.84746 120.37622 27.9% 3600 2525s
441024 166.84746 120.37622 27.9% 3411 2573s
531005 166.84746 120.37622 27.9% 2896 2625s
94 910 166.84746 120.37622 27.9% 2459 2668s
120 965 166.84746 120.37622 27.9% 2189 2860s
123 980 166.84746 120.37622 27.9% 2305 2934s
154 949 166.84746 120.37622 27.9% 2011 2997s
115 832 166.84746 120.37622 27.9% 1877 3000s

Cutting planes:
Gomory: 10
Cover: 14
Clique: 207
MIR: 45
GUB cover: 31
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Z.ero half: 51

Explored 611 nodes (1502158 simplex iterations) in 3000.13 seconds
Thread count was 4 (of 4 available processors)

Time limit reached
Best objective 1.668474637681e+02, best bound 1.203762215380e+02, gap 27.8525%



