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Abstract 

The material handling system of a specialized production line is evaluated using a 

discrete-event simulation model. The object-oriented simulation model is built to allow 

changes to machine programmable logic, machine interaction effects, operator 

behaviours, and changeover policies. A second simulation model also allows for 

generalized production control parameters to be specified. The limitations of the current 

system are outlined and several opportunities for improving daily throughput are 

identified. To further understand and analyze the system, an artificial neural network 

simulation metamodel is developed and trained. To reduce the solution domain in 

training, a conditional Latin hypercube design is used. A strong network structure is 

identified through experimentation, and the performances of several training algorithms 

are compared. Finally, a simulated annealing algorithm is used with the trained and 

validated metamodel to determine reasonable production parameters for the system. 
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Chapter 1: Introduction 

The genesis of this thesis was a project with a manufacturer aimed at exploring the role of 

simulation in the company. As discussed below, this evolved into the detailed simulation 

of one particular line within the company. The line is complex and we chose to 

implement the simulation using the flexible, open source, and process-based discrete-

event simulation language SimPy, a package based on the Python language (Python 

Software Foundation, 2015). A detailed description of this simulation model and a 

demonstration of its capabilities form a major part of this thesis. Once the project with the 

manufacturer was complete, we decided to investigate if this simulation could serve as 

the basis for analysis of production control procedures on this line. The framework we 

chose for this investigation was the Production Authorization Card (PAC) framework 

developed by MacDonald and Gunn (2011) based on the original work by Buzacott and 

Shanthikumar (1992). This involved extensive simulations, the design and creation of a 

simulation metamodel, the use of neural network techniques to fit several metamodels, 

and the use of a chosen metamodel with an optimization procedure to demonstrate the 

concept of optimizing the parameters of the implemented PAC System. Our 

implementation of the PAC System does not rigorously adhere to the MacDonald and 

Gunn framework but it does demonstrate the concepts on a real production line. 

 

1.1 Background on the Manufacturer 

In the summer of 2014, a manufacturer was investigating the feasibility of a new trolley 

configuration for one of the production lines at their manufacturing facility. The 

manufacturer makes a highly specialized product and does not wish for details of the 

process to be revealed. For this reason, products are referred to as MProds (manufactured 

products) throughout the thesis. There were some concerns that the current serial trolley 

configuration of the material handling system (MHS) for the production line could not 

meet the anticipated future demand.  Dalhousie University was asked to evaluate the 

MHS to determine its capability for five future product line configurations.  

 

The MHS consists of several overhead monorail trolleys, which are used to transfer 

MProds from a group of MProd-building machines to a specialized automated storage 
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and retrieval system (AS/RS), henceforth referred to as the Transit-Keeping machine 

(TK). The MHS then transfers MProds from the TK to one of the 30 curing machines that 

are part of the production line. Fig. 1 shows how MProds begin construction on MProd-

building machines in group A, and then are sent to a paired machine in group B. Once 

construction is complete in machine group B, an overhead trolley (trolley A) transfers the 

MProd to a weight scale. If the MProd is within weight tolerances, a second overhead 

trolley (trolley B) transfers the MProd to the input of the TK. When a MProd is required 

by a curing machine in group C, one of three overhead trolleys (E, F, or P) transfers the 

MProd from the output of the TK to a staging area called pre-cure. There are three 

parallel pre-cure areas, which serve as staging areas for three parallel groups of 10 curing 

machines. When a MProd is required from one of the pre-cure areas, the appropriate 

trolley (E, F, or P) will transfer the MProd to a ground trolley aligned with the nearest 

curing machine, referred to as a chariot, which facilitates the exchange of MProds with 

the curing machines. The three chariots are not depicted in Fig. 1. 
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Figure 1: The production line 

 

Several days of system observation and discussion with operators revealed that the 

operation of the MHS was complex, due to interactions between machines, the diversity 

of possible product mixes, and the potential and unknown impact of operator behaviour 

on the system. Further, since a detailed and accurate analysis was desired by the 
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company, it was decided that a discrete-event simulation model was the best approach for 

analysing the capability of the production line. 

 

At the beginning of the project, trolley B and the TK were identified by experts at the 

company as possible bottlenecks for the production line. The TK was of particular 

interest due to the complexity of its movements, its interactions with other machines, and 

its programmable logic.  Early simulations of the MHS indicated that trolley B and the 

TK would both operate at very high utilization under anticipated future demand. 

However, as development of the simulation model continued, several other issues in the 

production line became manifest. Operator behaviour and decision-making in MProd-

building, the repair areas, and curing, as well as poor production control between curing 

and MProd-building were shown through simulation to cause variance in the system 

which leads to significantly lower system throughput. Simulation results indicated that 

although the MHS in the production line is capable of handling anticipated future demand 

under simulated conditions, the high utilization of the TK for some product mixes is a 

risk in the real system. In short, results showed that it is necessary to mitigate or eliminate 

the sources of variation elsewhere in the production line to ensure that the whole system 

is capable of meeting future production targets. 

 

As indicated above, there were two closely related simulation models developed in 

Python to model system behaviours for this production line. The first simulation model, 

aimed at meeting the needs of the manufacturer, is used to determine the capability of the 

MHS for five anticipated future system configurations. A production control system is 

not included. The second simulation model incorporates the generalized production 

control scheme and a more sophisticated MProd-building process. Its purpose is to assess 

the impact of various production controls on the production line. An artificial neural 

network (ANN) is used to model the second simulation, and the ANN is used as the 

objective function of a simulated annealing algorithm to determine production control 

parameters. The methodologies and results of the computational experiments undertaken 

are described in detail in this thesis and provide a framework for future analysis of 

complex systems using artificial neural network simulation metamodels. 
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1.2 Thesis Outline 

In Chapter 2, background methodologies are explained, providing a foundation for the 

modelling work performed in later chapters. First, discrete-event simulation is explained 

and a brief historical perspective is given on simulation. In particular, the merits of 

object-oriented design are examined. Chapter 2 also includes a discussion on the 

optimization of production coordination parameters, and describes Buzacott and 

Shanthikumar’s generalized production control system, the production authorization card 

(PAC) System in detail. Finally, background information is given on simulation 

metamodelling and artificial neural networks (ANNs), including a brief overview of 

ANN training techniques. 

 

In Chapter 3, the production line and the main simulation model are described in detail, 

including a description of the model classes and modifiable parameters. The data used in 

the model is also described.  Statistically significant results and findings from the 

simulation model are given and represented visually, when possible. The simulation 

results show that the production line is capable of handling anticipated future production 

requirements without changes to the layout. However, the results also indicate that 

operator behaviours, changeover policies, production control policies, and stock levels 

have a significant impact on average daily throughput.  

 

In Chapter 4, the second, modified simulation model is developed and used to investigate 

the effects of a production control system on the production line. First, the effect of 

structure on the performance of an artificial neural network (ANN) is examined in the 

development of a metamodel of the second simulation. To design a set of training 

experiments in Chapter 4, the ANN training set is derived using a Latin-hypercube 

design. The performance comparison of different network structures uses mean squared 

error (MSE), overtraining, and computational time as its primary measures. Ultimately, 

an ANN structure with two hidden layers is found to outperform a similarly complex 

structure with a single hidden layer. Six ANN training algorithms are compared for the 

two hidden layer structure, and the Levenburg-Marquardt algorithm is shown to train 

networks to have lower MSE than networks trained by other algorithms. Finally, an 
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approach to determining reasonable production parameters using a simulated annealing 

search is outlined.  
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Chapter 2: Literature Review on Background Methodologies 

During the development of the first simulation model, research was focused on prior 

approaches to production line modelling and optimization. Historical approaches to 

simulation modelling were examined and the principles of object-oriented programming 

were also considered. As work with the first simulation model was nearing completion, 

the research became more focused on the issues of line control. After the development of 

the second simulation model, ANN training algorithms and experiment design techniques 

were researched to support the development of an ANN metamodelling framework.  

 

2.1 Discrete-Event Simulation 

Discrete-event simulation modelling is one of the two popular simulation approaches for 

operations research analysis of processes, the other approach being system dynamics 

(Beaumont and Pidd 1984). Often, either one of the two approaches are a valid simulation 

approach, although the fundamentals of each approach differs significantly. Discrete-

event simulation represents entities in the model as they move through queues and 

processes at discrete moments in time, while in system dynamics, systems are modelled 

as stocks and flows in continuous time (Tako and Robinson 2010). Due to these 

differences, discrete-event simulation has traditionally been used in manufacturing and in 

the service industry, while systems dynamics is more often used for conceptual or larger 

scale models, as are found in the fields of economics, supply chain, or environmental 

management (Tako and Robinson 2008). 

 

2.1.1 Event Scheduling Approach to Discrete-Event Simulation Modelling 

In discrete-event simulation, the current state of the system can be described by a set of 

state variables, which change instantaneously as opposed to continuously (Law 2007). 

Discrete-event event simulation can be viewed as a list of events which are scheduled to 

occur at a set point in time. The simulation runs by advancing time to process the next 

scheduled event, which could trigger more events to be added to the event list. When the 

event list becomes empty, the simulation is over. The time at which state variables 

change values is determined using the simulation clock. In discrete-event simulation, the 
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clock does not advance continuously like a clock in the real world. Instead, the clock 

jumps forward to the next moment in time that an event is scheduled to occur on the 

event list (i.e. whenever the state of the system changes). The event is then processed, 

state variables may change, additional events are scheduled on the event list, and then the 

clock advances to the next scheduled event. For example, imagine a discrete-event 

simulation model of a car wash. An event could be the beginning of the first soap cycle, 

which takes 2 minutes to complete. The discrete event simulation model will process the 

first event, which begins the soap cycle, and change a state variable to record that the 

soap cycle is underway.  A second event will be scheduled on the event list for 2 minutes 

in the future, when the soap cycle is going to be finished. Then, assuming that the 

completion of the soap cycle is the next event in the event list, the model will 

instantaneously advance the clock by 2 minutes. Scheduling events using an event list 

and using the event list to advance to discrete moments in time on the simulation clock 

allows discrete-event simulation to be very efficient. No processing time is wasted 

stepping through time when there are no events to process.  

 

Sometimes it is useful to limit how many entities can be served at one time. In discrete-

event simulation, it is possible to define several types of finite resources which serve this 

purpose. In the car wash example, if there are only two car wash stations, perhaps it 

would be convenient to define a resource with a capacity of two, so that only two cars can 

use the car wash at one time in the model. Other resource types include continuous 

resources, and resources with non-FIFO (first in first out) queues. 

 

One of the advantages of discrete-event simulation modelling is that it can account for 

randomness in processes. Returning to the car wash example: in the real world, the soap 

cycle will not take exactly 2 minutes every time. The process time may depend on the car 

wash operator, or the process may have some random variation. The variation can be 

modelled using an appropriately chosen statistical distribution. A random number 

generator is used to sample from the distribution and return a process time. For the car 

wash example, this means that for one car, the soap cycle may take 2.1 minutes, while for 

the next car, the cycle may only take 1.8 minutes. Models which account for probabilistic 
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process in this manner are referred to as stochastic simulation models. Conversely, a 

simulation model without any probabilistic processes is referred to as a deterministic 

simulation model. Most discrete-event simulation models are stochastic models.  

 

In discrete event-simulation, output measures and other statistics are recorded using 

statistical counters throughout the simulation model. Due to the stochastic nature of many 

discrete-event simulation models, the output measures are random variables. Thus, 

multiple runs, or replications of the model are required to construct confidence intervals 

on each statistic. It is therefore necessary to determine when to terminate one replication 

and begin another. One termination condition could be an empty event list. For example, 

if there is a simulation model of a car wash, and the car wash closes for the day, no more 

cars will arrive and the event list becomes empty. This termination condition works well 

for some models, but for others, such as a model of a 24-hour production system, it is 

necessary to specify an end time, which can be done by scheduling an end-of-simulation 

event at a time where enough data has been collected for that replication. There is a 

problem that can arise with systems that operate at a steady state, such as a 24-hour 

production system. When a replication is started, in most cases the system will not be at a 

steady state. In these cases, it is desirable to begin recording statistics only once the 

transient period is complete and steady state has been reached. There are various 

techniques for identifying the end of the transient period, also referred to as the warm-up 

period. For further discussion of discrete-event simulation modelling techniques, see Law 

(2007).   

 

2.1.2 The Process Approach to Discrete-Event Simulation Modelling 

The definition of discrete-event simulation using the event list and time advancement 

techniques as developed in Chapter 2.1.1 is a traditional approach to simulation 

modelling, referred to as the event-scheduling approach to simulation modelling. An 

alternative approach to simulation modelling is the process approach, which “views the 

simulation in terms of the individual entities involved” (Law 2007). Using the process 

approach, process and entities are defined as classes in the simulation model. In computer 

programming, a class is a programmed template for creating objects with similar 
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behaviours (Gamma 1995). Each object created using the class, commonly referred to as 

an instance of the class, may contain different parameter values which differentiate it 

from other instances of the same class, but it will contain the same functionality and 

attributes as the other instances. In simulation modelling, separate instances of each 

process class are defined as needed to structure the model, and instances of entity classes 

flow through the system and interact with other objects. For example, in a discrete-event 

simulation model of a manufacturing facility, such as the one introduced in Chapter 1, 

there is a class for curing machines. While each curing machine is different, they share 

the same basic attributes and functionality. An instance of the curing machine class is 

created for each curing machine which assigns its parameter values to differentiate it 

from the other curing machine class instances. Machines A and B are specified in a 

similar manner. Then, entities are created by an arrivals process, flow through the system 

and are processed by objects. A simulation model using the process approach can be 

viewed as a collection of objects which all operate within their own specified functions, 

yet interact with each other by exchanging entities and sending and receiving signals. 

However, even when modelling a simulation with the process approach, the simulation 

operates behind the scenes using the same mechanisms as the event-scheduling approach. 

 

2.1.3 Object-Oriented Programming for Simulation Modelling 

Object-oriented programming is an approach to computer programming where programs 

are composed of objects that interact with one another (Kindler and Krivy 2011). Recall 

that objects are instances of classes which can be composed of variables, functions, or 

data structures. Robinson (2005) advocates object-oriented programming approaches to 

keep code simple and interchangeable. It is clear that well-designed objects lead to code 

which is easier to understand and maintain. Although there is no guarantee that an object-

oriented model runs faster, an object-oriented model is cleaner, easier to modify, and 

easier for a third party to read and understand. An object-oriented design is required for 

the process approach to discrete-event simulation models. Eldabi and Paul (2005) 

describe four steps to developing an object-oriented simulation model. First, the 

programmer should begin by identifying and building the major components of the model 

separately, without worrying about the inner detail and complexity. This manifests itself 
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in the form of the objects and classes in the simulation model. At this stage, design 

decisions should be considered given the system being modelled. For example, for the 

production line introduced in Chapter 1, the programmer would need to decide whether to 

model trolley A, the weigh scales, and trolley B as one class with several functions, or as 

three separate classes. Step two is to assign the behaviour of each entity, without 

including unnecessary details that risk overcomplicating the model at the conceptual 

stage. However, it is also advisable to ensure that all of the functionality for each entity is 

included. The third step is to add the detailed logic for each entity. The final step is to 

fine-tune the model parameters to get the desired system performance (Eldabi and Paul 

2005). 

 

2.1.4 Advancements in Discrete-Event Simulation 

Robinson (2005) presents a brief history of discrete-event simulation. Four distinct 

periods are identified. In the late 1950s and 1960s, the first simulation programs were 

written and the first simulation software was released. Of particular interest is Simula, as 

it is considered the first object-oriented programming language. Simula later inspired the 

development of several of the object-oriented languages, including C++.  In the 1970s, 

simulation software continued to improve, and the concept of visual interactive 

simulation was proposed. By the 1980s, many different simulation packages, such as 

Arena, Flexsim, and AutoMod had been developed and released, predecessors of 

commonly used packages today (Robinson 2005).  At this stage, hardware was 

sufficiently advanced that simulation models could be run for reasonably complex 

systems. As hardware continued to improve in the 1990s, visual interactive modelling 

improved and was part of many simulation packages. With a visual interactive modelling 

system (VIMS), the user could create animations and develop the model visually. This 

meant that the user did not necessarily need to be a strong programmer to develop a 

simulation model, and could often create a simple model by dragging and dropping pre-

constructed objects. Of course, models with complexity still require programming for 

most packages.  
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Introduced in the 1990s, simulation optimization is recognized as a significant step 

forward for discrete-event simulation for process design. Simulation optimization is the 

process of finding the combination of input variable values that gives the highest 

expected value for the model performance measures, without necessarily running the 

simulation model for each possible combination of inputs (Carson and Maria 1997). 

There are several approaches to simulation optimization, including gradient based search 

methods, stochastic optimization approaches, response surface methodologies, and 

heuristic approaches. Gosavi (2013) examines the various approaches to simulation 

optimization in detail. Response surface methodologies are further explored in Chapter 

2.3.  

 

There are dozens of discrete-event simulation packages available today, including open 

source packages in many common programming languages. Generally, commercial 

software offers enhanced features, such as a visual development environment, or built in 

tools for simulation optimization and animation. Swain (2013) has performed a survey of 

modern simulation packages to compare the strengths and weaknesses. 

 

The modern, open source simulation package SimPy (Welcome to SimPy, 2014) is based 

on ideas from Simula and SIMSCRIPT, both of which are very early simulation packages 

from the 1960s (Nance 1993). For complex model components, it is often necessary to 

explicitly define certain functions even for VIMS packages. When there are many 

complex components which must be explicitly defined, it may be better to explicitly 

define the entire model. In SimPy, all functions must be defined by the programmer in 

the Python programming language. SimPy also offers a process-based approach to 

discrete-event modelling, which is advantageous given the object-oriented nature of the 

production system that is being modelled for this project. The built-in synchronization 

tools in SimPy are particularly useful for some of the interactions that must be replicated 

as part of the programmable logic in the system. In addition, SimPy is open source, which 

offers a considerable advantage in the context of this project because it is free, the project 

sponsor can distribute the model at will, and can modify behaviours of the model. 

Finally, SimPy is written in Python, so other open source packages can be integrated with 
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the simulation model to provide additional functionality, including an animation, a user 

interface, plots, and statistical analysis tools.  

 

2.2 Optimization of Coordination System Parameters in Manufacturing 

There have been many systems proposed for controlling and coordinating production. 

However, there is no guarantee that implementing a given system will be optimal for the 

manufacturing process under consideration. To address this issue, Buzacott and 

Shanthikumar (1992) propose a generalized approach to production coordination. The 

system, called the Production Authorization Card (PAC) Coordination System, provides 

the framework to achieve optimal coordination for all multiple-cell production systems. 

While there are other coordination systems which have been proven optimal or near-

optimal for certain production systems, the PAC System is a notable approach because it 

does not require the designer to select a coordination scheme a priori. Buzacott and 

Shanthikumar point out that none of the coordination systems which currently exist 

actually provide a basic framework to compare them to other coordination schemes, or an 

approach to selecting the best coordination scheme for a given manufacturing system. 

The PAC System provides a generalized approach to this problem such that common 

coordination schemes are all special cases of the PAC System which can be derived with 

an appropriate choice of PAC parameters. 

 

The PAC Coordination System works for a multiple-cell manufacturing system. This 

means that the manufacturing system must be modelled as a series of alternating product 

stores and cells, beginning with a product store which represents suppliers and ending 

with a product store which represents the customer. Cells send requisition tags to stores, 

informing stores that they require a certain part as soon as possible. Usually, the cell will 

have sent an order tag to the product store, informing them that they will be 

requisitioning a part in the future. If there is no advance warning, the cell sends the order 

and requisition tags together. Upon receiving an order tag from a cell, a product store can 

send a Production Authorization (PA) card to the cells that supply the parts that will be 

needed to meet the order. Sometimes, other conditions need to be met before sending a 
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PA card, such as waiting for a certain amount of time before sending the PA card or 

waiting until the number of PA cards issued for the product is below the maximum. 

 

Order tags can be cancelled using cancellation notes. Requisition tags turn into material 

tags on arrival at the cell which requisitioned the part. A material tag also accompanies 

each part as it reaches the store. It serves as an identifier for the part, and knowing the 

number of material tags in a cell means that the inventory level is known for each part. 

Surplus tags wait with excess products at stores until they are cancelled with the next 

requisition tags. Finally, process tags are used to authorize material movement and part 

processing, and are generated in the cell upon the arrival of the part. The system is best 

explained through the use of cards and tags, but can be implemented electronically, and 

also easily simulated. 

 

The PAC Coordination System has several parameters which can be adjusted to achieve 

an optimal coordination scheme. First, the requisition delay between a store receiving an 

order tag and its corresponding requisition tag can be adjusted. Second, the static 

inventory limits for each product store can be set at each store for each product. This is 

equivalent to the number of material tags at each store given that there has been no 

demand for a long time. This number has to be zero or positive. Third, Buzacott and 

Shanthikumar (1992) suggest that it is possible to introduce a delay between the product 

store receiving an order tag and generating a PA card. This is generally not used in any 

standard schemes. Fourth, there can be a limit imposed on the total number of PA cards 

issued for a given product at a given cell. This allows for more specific limits on work-in-

process at the cell. Finally, restrictions can be imposed on the distribution of PA cards 

and requisition tags by creating a minimum and/or maximum batch size for each. For 

requisition tags, it is also possible to impose the restriction that all of the requisition tags 

in a batch must be fulfilled and sent back to the cell as a batch, rather than individually.  

 

Buzacott and Shanthikumar (1992) describe under which parameter values the PAC 

Coordination System behaves like a make-to-order system, a base stock system (BSS), a 

material requirements planning controlled system, a locally controlled system, an integral 
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control system, and other common control schemes. However, they do not describe how 

to achieve optimal parameter values in the PAC Coordination System. 

 

MacDonald and Gunn (2011), however, provide a framework for the analysis and 

parameter selection of the PAC System. MacDonald and Gunn begin by explaining that a 

discrete-event simulation model is necessary to measure the system performance of a 

complex, real-world production line. Using the simulation model, the paper suggests 

developing neural network metamodels as an approach to optimization. In the context of 

the PAC System, the neural network metamodel would be a surface which represents the 

value of a single performance measure as a function of all of the PAC parameters 

required for the production line. A metamodel is created for each performance measure. 

Exchange curves, representing the optimal tradeoffs can then be created for any pair of 

performance measures to make policy decisions. 

 

To begin analyzing the system under study for the selection of optimal PAC parameters, 

it is important to define a domain within which the optimal value for each parameter will 

exist. Reducing the domain by eliminating redundant, inefficient, or unstable values 

reduces the number of simulation runs needed to construct the neural network metamodel 

later on. There are two main parameters which should be considered for each product 

store. There is k, the number of process tags at each store, and z, the initial (and 

maximum) inventory at each store. Other parameters like delays and batching could also 

be considered from Buzacott and Shanthikumar (1992). 

 

2.3 Artificial Neural Networks as Simulation Metamodels 

Simulation metamodels are mathematical functions that approximate the relationships 

between the key input parameters of a particular simulation model to the expected value 

of performance measures and outcomes (Friedman 1997). Approximate expected 

response models, or metamodels, provide a simpler, surrogate model to the simulation 

which can be evaluated much more quickly than a full simulation replication. They can 

be used as an aid in simulation optimization (Hurrion 1997), or as an operational tool for 

management to quickly understand the implications of any production decision which has 
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been included as an input variable to the model. Simulation metamodels have been 

applied in several fields, including risk analysis (Badiru and Sieger 1996), manufacturing 

systems design (Chen and Yang 2002), supply chain analysis (Cigolini et al. 2011), and 

production control (Kuo et al.  2007).  

 

Wang and Shan (2007) describe several techniques for metamodelling. Polynomial 

regression, stochastic Kriging, multivariate adaptive regression splines, radial basis 

functions, support vector regression, artificial neural networks (ANNs), and genetic 

programming (GP) have all been used to create approximate response models. 

Polynomial regression has been shown to lose accuracy as the number of decision 

variables increases, unless it is based on a theoretical model (Durieux and Pierreval 

2004). ANNs are the predominant approach in simulation metamodelling since they do 

not require any underlying assumptions or knowledge about the relationships between 

input parameters and performance measures, and they are generally more efficient than 

other approaches (Can and Heavey 2011). Computational experiments have been carried 

out by Sabuncuoglu and Touhami (2010) which indicate that ANNs are effective 

metamodels for determining the system performance of a job shop scheduling simulation 

model. Hurrion and Birgil (1999) showed that ANNs provided more accurate predictions 

more efficiently than regression metamodels. ANN simulation metamodels are used as 

part of a framework for optimal production control (MacDonald and Gunn 2011). For a 

discrete-event simulation model of an automated material handling system with 23 input 

parameters, an ANN was chosen as the metamodel (Kuo et al.  2007). Although there is 

some evidence that GP can generalize better than ANNs in some cases (Can and Heavey 

2011), using ANNs appears to be a strong approach for metamodelling complex discrete-

event simulations.   

 

ANNs are structures of connected nodes and neurons, which are inspired by a simple 

analogy of the brain (Illingworth 1989). There are three layers of nodes: the input layer, 

where input parameters Xi enter the network, the hidden layer, where inputs are weighted, 

summed, and transformed at each neuron, and the output layer (see Fig. 2).  
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Figure 2: An ANN with a single hidden layer  

 

At each neuron j in the hidden layer, there is an adaptive weight (Wij). The adaptive 

weights are used to multiply the value of each input node i before summing the total of 

all weighted input values. Then, a bias bj is added to each value and the value is 

transformed by an activation function ƒ which has been set a priori. If there are multiple 

hidden layers, the weighting, summing, and transforming process is repeated, except that 

the inputs to the next hidden layer are the final values from the previous hidden layer. 

The final values of each of the final hidden layer neurons are weighted and summed at 

each output node k. For a feed-forward (acyclic) ANN with a single hidden layer, if vj is 

the value at each hidden neuron j: 

 

𝑣𝑗 =  𝑓 (𝑏𝑗 +  ∑ 𝑊𝑖𝑗 × 𝑋𝑖

∀ 𝑖

)                 (1) 

 

Then, the value of output node vk is as follows (adapted from MacDonald and Gunn 

2011): 

𝑣𝑘 =  ∑ 𝑊𝑗𝑘 × 𝑣𝑗

∀ 𝑗

                   (2) 
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It is necessary to specify the number of neurons at each layer as well as the number of 

hidden layers a priori. In simulation metamodelling, the number of input nodes 

corresponds to the number of key parameters to be considered as part of the ANN. 

Similarly, the number of output nodes corresponds to the number of key measures in the 

simulation model. However, it is common practice to train a separate neural network for 

each performance measure, thus leaving a single output node (Barton 1998). There is no 

established procedure to specify number of hidden layers, as well as the number of 

neurons per layer. The iterative process of modifying the weights and biases of an ANN 

is referred to as a training algorithm (Hagan et al. 1996). The training algorithm uses a set 

of training data for which each sample in the set specifies the target system output for a 

full set of input parameter values. Supervised learning then takes place, in which the 

weights and biases are adjusted to improve the mean squared error of the ANN output 

relative to the target output. The entire training dataset is examined each training run, 

with the goal of minimizing the difference between the value at the output of the neural 

network and the expected output from the training dataset.  

 

Multi-layer networks are more powerful than single-layer networks, and can be trained to 

approximate functions arbitrarily well (Hagan et al. 1996). However, if the ANN 

becomes too complex, it risks overtraining, which will limit its ability to accurately 

represent inputs which were not present in the training set (Sabuncuoglu and Touhami 

2010). This is an important consideration in simulation metamodelling, since any useful 

application of the metamodel depends on its ability to generalize; that is to represent the 

entire input space reasonably well, not just the training set.  

 

There are several classes of training algorithms for ANNs, which differ principally in the 

methodology used to modify the weights. Gradient-based training algorithms are 

“probably the most famous iterative methods for efficiently training neural networks in 

scientific and engineering computation” (Livieris and Pintelas 2013). Most gradient-

based methods require a learning rate L to be specified before training begins. The 

learning rate modifies how quickly weights will converge in the direction of gradient gn, 

where a weight at run n, Wn is updated using the following equation: 
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𝑊𝑛 = 𝑊𝑛−1 − 𝐿 × 𝑔𝑛                (3) 

 

The neural network training process can be treated as an unconstrained large scale 

minimization problem. From this perspective, it is easy to see that the gradient descent 

algorithm in Eq. (3) is just the standard steepest descent algorithm, where the learning 

rate represents the step size. Although a higher learning rate, or step size, will cause error 

to reach a minimum more quickly, higher learning rates also decrease the likelihood that 

the training algorithm will find some minima (Mukherjee and Routroy 2012). Smaller 

learning rates will take longer to converge, but are likely to produce better results. For 

some algorithms, the learning rate changes as training progresses in order to produce 

convergence. 

  

For the classic gradient-based algorithm, backpropagation, the sign and magnitude of the 

gradient are used to calculate the weights in the current period. Some other variations of 

gradient-based propagation algorithms such as Manhattan Propagation and Resilient 

Propagation (RPROP+) only use the sign of the gradient. The method of calculating the 

magnitude of the change to the weights varies between algorithms, but the key idea 

behind these approaches is that they are resistant to making changes to the weights which 

are undesirably large. For example, RPROP+ individually tracks magnitudes for each 

weight value in the ANN. The gradient is used to determine how each of the magnitudes 

should change over time.  

 

Another way to resist large changes to the weights is to add a momentum coefficient M to 

Eq. (3) which helps to smooth the oscillation of weight values: 

 

𝑊𝑛 = 𝑀 × 𝑊𝑛−1 − 𝐿 × 𝑔𝑛                    (4) 

 

As the value of the momentum coefficient approaches one, the adaptability of the ANN 

training is slowed significantly, while low or zero values of the momentum coefficient 

can cause instability. One sensible way to select a value for the momentum parameter 
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could then be to start near zero and let the momentum increase towards one as training 

progresses.  

 

The quasi-Newton class of algorithms, inspired by Newton’s method, uses the gradient to 

approximate derivatives and update the weights. There are several hybrid training 

algorithms which resemble gradient-based approaches, such as Quickprop and the 

Levenberg-Marquardt (LM) algorithm.  The LM algorithm uses a combination of first-

order and second-order methods which has been shown to converge in fewer iterations 

than backpropagation (McLoone and Irwin 1999). Algorithms such as the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) algorithm use true quasi-Newton approaches. The 

BFGS algorithm and its various adaptations use second-order derivative methods which 

at each iteration compute approximations to the Hessian matrix of size A x A, where A is 

the total number of weights and biases. Although these algorithms converge in fewer 

iterations than gradient-based algorithms, they can be memory inefficient for large ANNs 

(Mukherjee and Routroy 2012). The Scaled Conjugate Gradient (SCG) algorithm also 

uses an approximation to the second order derivative, but avoids the line search of the 

BFGS algorithm by using an approach similar to the LM algorithm (Moller 1993). The 

SCG algorithm is considered to be part of the conjugate gradient family of algorithms. 

Generalized Barzilai-Borwein algorithm (GBB) for unconstrained minimization problems 

avoids most of the expensive line search of the BFGS algorithm, while also incorporating 

a changing step length which is calculated at each iteration (Raydan 1997). Likas and 

Stafylopatis (2000) and McLoone and Irwin (1999) provide thorough derivations of 

several second-order quasi-Newton training algorithms.  

 

Although second-order based algorithms have been shown to have a computational 

advantage over gradient-based algorithms for some problems, neither class of algorithm 

can guarantee that a global minimum error will be achieved. 

 

Since neither gradient-based and quasi-Newton approaches can guarantee achieving a 

global minimum, evolutionary algorithms (EAs) have been explored as a means to 

overcome this limitation. Genetic algorithm (GA) based implementations of training 
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algorithms which did not use gradient information were examined by Mandischer (2002). 

He found that evolutionary strategies (ESs) could only compete with gradient-based 

approaches for small problems. While ESs without gradient information were useful for 

small problems or problems using activation functions which were non-differentiable, in 

general they took much longer and were less reliable than other approaches (Mandischer 

2002). 

 

One inventive ES is the NeuroEvolution of Augmenting Topologies (NEAT) algorithm, 

which evolves both the weights and the topology of the ANN during training (Stanley 

and Miikkulainen 2002). The NEAT algorithm begins with a minimal ANN structure, 

then grows incrementally, using crossover and mutation to innovate. The incremental 

growth of topology mechanism is convenient because it removes the necessity of 

specifying the number of hidden layers and hidden nodes. Similarly to the ideas behind 

compositional GA (Watson and Pollack 2003), the NEAT algorithm improves solutions 

and generates more complex solutions simultaneously. The NEAT algorithm also has the 

ability to restart when it reaches a local minimum. Experimental comparisons have 

shown that the NEAT algorithm is faster and reaches the error threshold more frequently 

than other ESs (Stanley and Miikkulainen 2002). 
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Chapter 3: Development of the Simulation Model 

3.1 Detailed Description of the Production Line 

The production line begins in the preparation (prep) department. Here, base product is 

prepared for later stages of manufacturing. There are hundreds of different products 

produced in prep, providing all of the raw materials for the four principal production lines 

in the plant. 
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Figure 3: (reproduced) The production line 

 

For the reader’s convenience, the diagram in Chapter 1 is reproduced here for the 

production line under study. This line separates from the other three production lines at 

the MProd-building stage of production. There are two sets of MProd-building machines, 

where each machine in the first set is paired with another in the second set. At the first 

set, machine group A, an operator constructs the base structure of the MProd from base 

products. The MProd at this stage is referred to as a carcass. The semi-manual 

construction process takes 20-25 minutes per carcass on most of the machines in group 

A, although there is some variation in the level of machine assistance. There are ten 

machines in machine group A. All but one of the machines in group A can only construct 

one carcass at a time. However, there is one newer machine which can construct several 

carcasses simultaneously. This machine has a much higher rate of production than the 

other machines in group A, and is paired with two B machines as a result. After the 

carcass is constructed, further construction operations take place on the second set of 

machines, machine group B. Here, a different operator adds additional base product, and 
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reshapes the MProd. This semi-manual process requires an operator for the majority of 

the 10-15 minutes required per MProd. However, there is a stage in the process where the 

operator has 2-3 minutes of available time while the machine processes the carcass. After 

the process is completed, the MProd is now called a cover. Carcasses are transferred 

between A and B machines via a rotating storage point, called a tree. There is a tree 

between each A and B machine. After the processes at machine group B are complete, 

the covers are transferred to a tipper, which re-orients the cover for pickup from an 

overhead monorail trolley called trolley A.  

 

Trolley A services all of the machines in machine group B first-come-first-serve, unless a 

specific instance of a cover has been manually configured to have priority over the other 

covers. Trolley A transports covers along a monorail to one of two available weigh 

scales. When Trolley A is within a certain distance of the weigh scales, trolley B cannot 

enter the area. In the simulation model, the presence of a trolley in the weigh scales area 

is tracked using a single variable. When the variable value changes from occupied to 

available, the trolley that is leaving the area sends a signal to the other trolley, alerting it 

that the variable has changed. When trolley A is not present, Trolley B picks up covers 

from the weigh scales and deposits good covers into the configured input slot of the TK. 

While trolley B is at the weigh scales, trolley A cannot enter the area. If the MProd was 

not within weight tolerance limits, or if the MProd-building operator designated the cover 

as defective at the MProd-building stage, the cover will not be dropped in the TK input. 

Defective covers are instead deposited into a repair area which has space for up to six 

covers without any operator intervention. If all six repair slots are filled, and another 

defective cover arrives, the cover will remain in the weigh scale area, reducing the weigh 

scales to one available slot. If a second defective cover arrives, the weigh scale area will 

become full, and the MHS will cease to operate until an operator intervention clears the 

repair area. Ideally, the repair operator empties the repair area before it becomes full, 

although there is no formal notification system to alert the repair operator when the repair 

area becomes full. When the repair operator arrives to intervene, trolley B is called upon 

to pick up and move covers to a tipper, where they can be repaired and sent to the TK, 

removed from the system for a future repair, or scrapped. Sometimes, if there are many 
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covers to be repaired, the TK is used to store defective covers temporarily (see Chapter 

3.3.3 for how the repair circuit was modelled). 

 

The TK operates on an internal monorail. It has a separate input and output and can store 

up to 124 covers. Although a cover is eligible to be stored in any empty location, TK 

pods are required to store and retrieve covers. A TK pod is a pallet which is designed to 

hold MProds so that they can be easily picked up and put down by the TK. Due to the 

requirement that an empty TK pod be present for trolley B to drop a cover into the TK 

input, there is the possibility of some delays to trolley B if it needs to wait for the TK to 

bring an empty TK pod. The output is slightly more complex than the input. The output 

occupies two slots, and it has the ability to act independently from the main TK trolley. 

For instance, if the TK drops a TK pod with a cover on the upper output slot for pickup 

from an external monorail trolley, then after the cover has been picked up, the output 

mechanism will relocate the empty TK pod to the bottom output slot for pick-up by the 

TK later. This mechanism has the advantage of freeing the upper section of the output for 

another TK pod and cover drop off much more quickly than if the output was static. The 

TK has four possible actions, in order of priority: 

 

1. Retrieve TK pod with cover from storage slot and place on the upper output slot 

2. Retrieve TK pod with cover from input and store in an empty slot 

3. Retrieve empty TK pod from storage slot and place on the input 

4. Retrieve empty TK pod from lower output slot and store in an empty slot 

 

If, when executing action 3, there is an empty TK pod on the lower output slot, the TK 

will retrieve that TK pod and move it directly to the input. This will reduce the time 

required for a complete TK cycle. When the TK is highly utilized, a typical cycle will be 

actions 2-1-(4-3) and repeat, where actions 4 and 3 are combined as described.  

 

When the TK places an empty TK pod on the input slot, it checks for a signal from 

trolley B that another cover is on the way. If trolley B has sent the signal that it is on the 

way with another cover, then the TK will wait 20 seconds for trolley B to arrive directly 



24 

 

above the input and begin depositing the cover. If trolley B has not arrived within 20 

seconds, the TK will perform the next action on its list. Many times, the TK was 

observed leaving just a second or two before trolley B would have arrived. This is 

inefficient for several reasons: the TK was idle for 20 seconds unnecessarily, and the 

sped-up cycle, for which actions 4 and 3 are combined, is often interrupted for several 

cycles. 

 

When the TK is performing action 1, it will select the next product code that will be 

required in curing once a pre-cure slot becomes available for the appropriate group of ten 

curing machines (E, F, or P). Further, it will always select the cover which fits the 

product code requirement and which has been stored for the longest period of time. The 

purpose of this rule is to help prevent occurrences where a cover is stored in the TK for a 

very long period of time and becomes structurally asymmetric due to sagging from its 

own weight, necessitating a repair. However, frequently there are covers that fit the 

product code requirement which would necessitate a much shorter cycle time. All of the 

TK programmable logic control code can be modified, most of it without much difficulty. 

 

As alluded to above, covers are cured by one of 30 curing machines in machine group C 

arranged in parallel rows of ten called E line, F line, and P line. After curing, MProds exit 

the system to cool. After the TK places a cover on the output and the appropriate trolley 

(E, F, or P) retrieves the cover and places it in a staging area called pre-cure. Although 

only one trolley can access the TK output at one time, there are three parallel pre-cure 

areas, each of which has storage space for six covers. Trolley E services pre-cure area E 

and is also responsible for transporting covers to the E line of curing machines when 

requested. Similarly, trolleys F and P also service their respective pre-cure areas and 

curing machines. The TK will try to output covers such that all three pre-cure areas are 

full, with the next six covers to be requested by the next six available curing machines.  

 

There is an alternate route to pre-cure which allows some covers to bypass the TK (see 

DC on Fig. 1). If this option is active, then trolley B will sometimes drop a cover into a 

direct cell outside of the TK, where it can be picked up by trolley E, F, or P. Generally, 
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this is only used when a shortage has occurred and MProds must be rushed to curing, but 

it is an option which could reduce TK cycles if configured correctly. 

 

At a constant time interval before a curing machine will require a cover in pre-cure, the 

curing machine sends a request to its trolley (E, F, or P) to bring the cover from the pre-

cure area to a small monorail transporter called a curing chariot. The curing chariot 

brings the cover to the appropriate curing machine. When the curing machine opens, 

there is an exchange of cover for cured MProd. The chariot does not need to wait for the 

operator to perform its part in the exchange. Automated curing machines, such as those in 

line P, perform the entire exchange without an operator intervention. Most of the curing 

machines in lines E and F require an operator to place a small metallic identifier inside 

the curing machine before approving the transfer of the new cover from a holding device 

into the curing machine. This process is a legislative requirement that only applies to 

MProds being sold to certain customers. Press operators tend not to service curing 

machines immediately for several reasons which are discussed in Chapter 4, meaning that 

curing machines occasionally remain idle for short periods throughout the day. MProds 

usually take 50-100 minutes to cure, depending on their size, composition, and other 

characteristics. The cure time does not vary, and is a known length of time for each 

MProd. 

 

The MProd production line can build a diverse mix of products. Usually, 8-20 different 

types of MProds are produced at any given time. Machines in groups A and B are capable 

of building two or three different products with fast changeover times between products 

under most circumstances. Curing machines, however, contain a mould for a specific 

product code. Changing moulds takes 4-6 hours and does not usually occur more than 

once per month for each curing machine. These changeovers are not considered as part of 

the simulation model. 

 

3.2 Detailed Description of the Simulation Model 

When designing the simulation model, there was some effort to adhere to object-oriented 

programming standards. The class TK found in Appendix B is an example of one of the 
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classes that adheres to an object-oriented design standard. Appendix G gives program 

flow charts for most of the major classes. This design allows the model to be more easily 

used for other related purposes in the future. The company wished to be able to use the 

simulation model to evaluate decisions, so a user interface was created which allows a 

non-programmer to change several parameters. This user interface was written using the 

Python open source package PyQt4; screen shots can be seen in Appendix C. To evaluate 

performance and learn about system behaviour, statistical tracking was included 

throughout almost all of the objects.  

 

3.2.1 Exclusions 

Although it is not difficult to include machine breakdowns in the model, they are 

excluded from the runs for which results are reported. This was done for several reasons. 

First, breakdowns are rare on the production line, accounting for less than 1% of machine 

time for most machines. Second, the alternatives being considered for the MHS will have 

similar or worse reliability than the current system, so this assumption does not bias the 

results. Third, data was not readily available for breakdowns due to their infrequent 

occurrences and the lack of a standardized tracking process. This made it very difficult to 

determine a reasonable statistical distribution for breakdowns.  

 

Machines in group C have a start-up time if the interior temperature drops below a certain 

value due to lack of use. The start-up time and the temperature threshold and drop-off 

rates depend on several variables, and distributions are not known for these values. 

Fortunately, machines in group C are usually highly utilized, so the probability of 

requiring a start-up time is very low. This start-up time was not included in the simulation 

model. 

 

3.2.2 Structure 

The simulation model is written using SimPy in Python. Every machine type is its own 

class. A list of classes in the model, along with a brief description of each is found in 

Table 1. MProds are modelled as tuples, which are passed between machines. A tuple is a 

Python object which behaves like an array of values. In Python terminology, tuples are 
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not mutable. This means that although changing a part of the tuple can be done, this 

requires a somewhat awkward series of steps. Contained in the tuple is the identifying 

information for the MProd. This consists of i) a serial number, ii) time of construction, 

iii) time of TK entry, and iv) product type. A better way to model MProds would have 

been as instances of a general MProd class. This would have simplified the modelling 

process, since MProds acquire new attributes as they travel through the production line, 

necessitating the program to rewrite and restructure tuples at multiple stages in the 

current implementation.  

 

Table 1: List of classes in the simulation model  

Class Description 

Animation Contains the model animation. 

MProd_Building_Operators Contains MProd building operator parameters, 

including break times, shift changes, and other activity 

details (see Chapter 3.3.8).  

Machine_A Requires a resource res_Machine_A_Operator to 

construct carcasses as permitted/requested. Can be 

controlled using PAC System and changeover between 

products. 

Machine_B Requires a resource res_Machine_B_Operator to 

construct covers from carcasses on the tree. Can be 

controlled using PAC System and changeover between 

products. 

Demand As an alternative to using Machine_A and Machine_B, 

this class provides a high level of realistically 

distributed demand to trolley A. 

g Stores model configuration information. 

PAC Contains PAC parameters and settings which can be 

configured within the class and through the 

populate_initial_inventories() function. 

DirectCell Accepts MProds as a tuple from trolley B as an 

alternative path to pre-cure, bypassing the TK. 

Repair_Operator Repairs MProds in the repair areas and calls trolley B 

to move repaired MProds to the TK. 

Inspector The quality inspector occasionally finds imperfect 

covers in pre-cure and requests Trolley_EFP objects to 

place the imperfect covers in the reject cells for repair. 

Trolley_B Fetches MProds from the weight scales as a tuple and 

places the MProd on the TK input or in the repair area. 



28 

 

Class Description 

Trolley_A Fetches MProds from tippers as a tuple and brings 

them to the weight scales. 

Trolley_EFP Fetches MProds from the TK output as a tuple and 

places them in pre-cure upon request from the 

Monorail_System. Fetches MProds from pre-cure and 

gives them to the curing chariot upon request from 

Curing_Machine objects managed through the 

Monorail_System. 

TK Performs 4 main tasks: Input jobs, output jobs, get 

empty TK pod for input, and put away output TK pod. 

There are parallel operators in this class. Task priority 

can be set by the user. Output jobs are served in a 

queue of requests from Curing_Machine objects 

managed through the Monorail_System as space 

becomes available in pre-cure. 

Scale Holds MProds as tuples between Trolley_A and 

Trolley_B. 

Monorail_System Prioritizes requests from the Curing_Machine objects 

and places the next request in the TK output queue 

when there is a pre-cure cell available, the necessary 

trolley is idle, and no other trolley is currently in the 

TK output area. 

Curing_Machine Can be set to manual or automatic. When in manual, 

requires a resource res_Operator to close the machine 

and cure a MProd. Exchanges cured MProds with 

covers on a Chariot. Sends cover requests to the 

Monorail_System. 

Chariot Transports covers after receiving from a Trolley_EFP 

object to a Curing_Machine. Exchanges MProds. 

Curing_Press_Operator Contains curing operator behaviours and service times 

(see Chapter 3.3.6). 

 

There are also several functions which are independent of the classes. These functions 

serve to initialize the model, manage statistics, and other miscellaneous purposes. A high 

level process map for the important classes in the model is in Appendix G. 

 

On the production line, one machine must frequently wait for the actions of another 

machine or for the actions of an operator. To communicate these triggers can be tricky to 

implement. In the model, triggers have been communicated using generic SimPy events, 

which causes the class to wait at the event statement for a trigger to that event from 
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another place in the code. The class is essentially dormant or passivated while it is 

waiting for a trigger from elsewhere in the code. To make this work, it is necessary to 

ensure that all other classes contain the appropriate triggers in the appropriate places in 

their logic. An alternative approach would be to enter a loop which checks for a resume 

condition at a set interval. Both approaches were tested and the first method is 

computationally much more efficient, although somewhat more difficult to implement. 

 

Extensive statistics tracking has been built into the simulation model. The following were 

metrics are tracked for each machine: 

 Working time 

 Time spent waiting for jobs 

 Time spent waiting due to downstream delays 

 Utilization 

 Throughput 

 

Other tracked metrics include:  

 For curing machines and machines A and B the amount of time spent waiting for 

an operator 

 Repair time 

 Total time in the system for each MProd 

 Time that the line is stopped due to the repair circuit 

 

These metrics allow users to understand what events are causing time to be lost to each 

machine. The statistics tracking is also useful for the debugging, verification, and 

validation of the simulation model. Optionally, stock levels at each stage or other metrics 

can be tracked over time, and plots can be generated from this data.  

 

3.2.3 Parameters 

There are many parameters which are configurable both through the user interface and 

directly in the Python code. Configurable parameters include: 
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 PAC Parameters 

o Simulation mode: Select either the mode for analyzing maximum 

throughput, or the mode which includes Machines A and B, and uses the 

PAC Coordination System. 

o Number of process tags per store: Limit the number of PA cards at the 

preceding cell. 

o Batch size: Issue PA cards in batches of this size. 

o Initial stock in the TK: The initial stock in the TK determines the 

theoretical maximum stock level of the TK using the PAC System 

 Simulation Options 

o Number of replications: A higher number of replications will typically 

narrow the confidence intervals on results 

o Warm-up period: Define the length of the transient period for which 

statistics should not be recorded for each replication 

o Time per replication: Days per replication. This must be larger than the 

warm-up period to get statistical results  

 Machine and Operator Options 

o Direct cell on/off: Turning on the direct cell allows trolley B to 

occasionally bypass the TK. The purpose is to reduce TK cycles. 

o Repair circuit on/off: Repair operator services defective MProds 

immediately when the repair circuit is off. 

o Number of pre-cure cells per line: Six is the default value.  

o Machine speed for each machine: Increasing speed will speed up a 

machine. Decreasing will slow them down. 

o Operator efficiency for each operator type: Increasing efficiency will 

speed up operators. Decreasing will slow them down. 

o Changeover policies: Select a different changeover policy for machines in 

machine bank A 

o TK logic: Change the priorities of the TK 

o Number of empty slots in the TK: A number from 1 to 10 is reasonable 

here. This effectively reduces the capacity of the TK 
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 Product Mix Options 

o Fully specify configuration of products to machines 

 Debugging and Animation 

o General debugging on/off: Toggles text debug for trolleys, curing 

machines 

o Repair circuit debugging on/off: Toggles text debug for repair operations 

o Extended statistics printing on/off: Toggles text debug for statistics 

tracking 

o TK debugging on/off: Toggles text debug for the TK 

o Production control and machine groups A and B debugging on/off: 

Toggles text debug for machines A, B, and PAC System 

o Animation on/off: Toggles the animation on or off 

o Animation speed: Speed up or slow down the animation 

o Animation update interval: Change how often the animation updates 

o Plotting interval: Change how frequently data is recorded for plots 

 

3.2.4 Animation 

The simulation animation was also useful in showing that the model was working 

properly, and also served as a visual tool to help to communicate with management. The 

animation, written in Python using the open source package Tkinter, runs in parallel with 

the simulation. First, a canvas of objects which resembles the actual production line is 

created as the base for the animation. As the location of MProds in the simulation model 

changed, the animation updated to show which type of product was located on which 

product slot. This was not difficult to program, as all that was required was to animate 

variable values as they changed in the simulation. In the animation, each color represents 

a different product type, and trolleys are represented using circles instead of squares. A 

screen shot from the animation is shown below in Fig. 4. In the upper left corner of the 

animation, the tippers slots from machine group B are represented. Further down the line, 

where trolley A and trolley B meet, the two weigh scales are represented. A repair area is 

displayed before the TK. Every product slot in the TK is represented in the bottom left of 

the animation. Finally, on the right side of the animation, the three parallel pre-cure and 
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curing lines are shown. The main differences between the animation in Fig. 4 and the 

system diagram in Fig. 1 are that in the animation, machines A and B are only 

represented in terms of the tipper slots, and the TK is shown in more detail. 

 

 

Figure 4: Simulation Animation 

 

3.3 Simulation Model Data 

3.3.1 Trolley A Demand 

The simulation model can be run in two different modes. The first mode ignores the 

limitations of machine groups A and B, and produces MProds for trolley A to pick up at 

the tippers. This mode is intended to test the capability of the MHS. The second mode 

considers machine groups A and B in detail. The second mode also allows the production 

line to be controlled by PAC parameters to test various production control policies, and 

will be discussed in Chapter 4. 

 

When the simulation is in the first mode, machine groups A and B do not exist. Instead, 

MProds appear at the tippers according to a discrete probability distribution, shown in 

Appendix A. This distribution was fitted using two months of tipper timestamp data 

acquired from a production tracking database. The data was aggregated by 15-minute 
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interval throughout the day and fitted to a discrete probability distribution because the 

multi-modal demand pattern would have been difficult to model using continuous 

distributions. An additional benefit to using a discrete probability distribution is that the 

15-minute interval selected provides sufficient resolution to see the effects of regular 

breaks and shift change, but it is not so narrow that the data is noisy. The discrete 

probability distribution helps to represent the effects of breaks and shift changes on the 

production output from machine group B. To apply the distribution to each type of 

MProd in a product mix, the magnitude of the number of MProds to be produced in a 

given interval is scaled using the demand for that MProd in curing, such that MProds are 

produced at a higher production rate than the production rate in curing as seen in the 

following pseudocode: 

 

now <- current simulation time 
dailyAvg = wklyDemand/7 
While simulation is running: 
 prob = dailyAvg*discreteProbDist(now) 
 If random.uniform(0,1) < prob OR Skip == True: 
  Wait random.uniform(0,5) minutes 

If the TK is not at limit for this product AND there is room in 
the tipper: 

   Produce MProd 
   Skip = False 
  Else: 
   Skip = True 
  End If 

Wait until a total of 5 minutes have passed since the beginning 
of this iteration 

 End If 
End While 

 

3.3.2 Trolley Service Times 

Service times for trolleys A, B, E, F, and P were determined using PLC data from a 

previous study performed in 2013. To ensure that these times are still valid, observations 

were done with a stopwatch on all trolleys. In the simulation model, deterministic times 

are used for all trolley movements. Unfortunately, to preserve confidentiality, it is not 

possible to include real data from the time studies. However, some modified data is 

provided from the time studies to provide evidence that using deterministic times for 

trolley movements is reasonable, although not as precise as using a probabilistic 
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distribution. Trolley travel times are between 45 and 120 seconds in reality, depending on 

the trolley, the origin, and the destination. Data is provided for trolley B, since trolley B 

is the most important trolley to model accurately to its high level of utilization and its 

interactions with the TK. For an ordinary trolley B cycle, an MProd is transported from 

the scales to the TK input. The PLC study data for this specific movement for trolley B is 

summarized in Fig.5 below. 

 

 

Figure 5: Observed travel time for trolley B between the weigh scales and the 

TK input 

 

The data has a sample mean of 0.977, a sample standard deviation of 0.0213, and a 

coefficient of variation of 0.0218. Notice that the distribution appears bimodal. This is 

because the two pick-up locations for trolley B (the two weigh scales) are not 

differentiated in the study. The first peak represents the nearer of the two weigh scales to 
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the TK, while the second peak represents the furthest weigh scale from the TK. Trolley B 

travels more frequently to the furthest weigh scale because trolley A prefers to drop 

MProds in that slot. Trolley A will only drop a MProd to the nearer of the two weigh 

scale slots when the further one is occupied. 

 

Excluding the single observation at 1.06 min as an outlier, possibly due to a sensor 

alignment issue when the trolley arrived at the input, and excluding travel times below 

0.96 min, since they are likely observations for the nearer scale, the mean travel time 

becomes 0.981 min with a sample standard deviation of 0.0083 min. In the simulation 

model, the extra travel time to reach the further weigh scale is taken into account when 

trolley B travels to that scale. At this stage, it might be reasonable to model the travel 

time using the normal distribution, and this could have been done. However, the decision 

was taken to use deterministic times due to the low variation present in trolley travel 

times. Using the above example, and assuming a normal distribution, 99.74% of the time 

the true travel time will be within 1.5 seconds of the mean. To provide an indication of 

the level of variation present for trolleys other than trolley B, Table 2 provides a 

summary of standard deviation as a percentage of the travel time. This table contains data 

for the principal trolley movements. For example, trolley A may be travelling to any of 

the nine machines in group B, from either of the two weigh scales. This means that there 

are 18 different travel times possible for trolley A, all modelled deterministically. In this 

case, the time from either one of the two weigh scales to the third closest machine B is 

selected, because it has the most data points in the study. Similarly to trolley B, the 

standard deviation is probably overstated, due to the PLC study not differentiating 

between the two weigh scales. The slightly larger coefficient of variance for trolley F 

may be attributable to its smaller sample size. 
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Table 2: Sample standard deviation of trolley travel time 

Trolley Standard deviation as a percentage of the mean travel time 

A 2.7% 

B 0.84% 

E 1.3% 

F 3.1% 

P 1.7% 

 

3.3.3 Repair Circuit 

There is very little historical data available for the repair circuit. To model the repair 

circuit, parameters were estimated from discussion with the repair circuit operator. Some 

of the parameter values were later validated through discussion with other operators, and 

a few parameters were estimated by consensus at a plant meeting. Since the purpose of 

modelling the repair circuit is to determine whether or not it can have an effect on daily 

throughput, the repair circuit in the model does not need to be a precise replication of the 

real repair circuit. Consensus values can at least provide an indication of the impact that 

the repair circuit has on production output. MProds were determined to require repairs 

with probability of 0.02 (2%). The repair operator is programmed to check the status of 

the repair cells every 45 minutes, except when the repair operator is doing repairs. If 

there are at least five repair cells out of six that are full, then the repair operator will 

begin to service the MProds. If it is during the day shift, the repair operator will repair all 

of the MProds and transfer them to the TK. If it is not the day shift, the repair operator 

will clear the MProds to another area until the day shift operator comes in to do repairs. 

Repairs sometimes require the use of trolley B, depending on the origin cell and 

destination cell when moving MProds during the repair process. These requests for 

trolley B take priority over its normal operations. The repair time for a single MProd is 

modelled using a triangular distribution, with a lower bound of five minutes, a median of 

ten minutes, and an upper bound of 20 minutes. Depending on the location of the MProd, 

a forklift may be needed. The time for a forklift to arrive is modelled using a uniform 

distribution with a lower bound of ten minutes and an upper bound of 40 minutes. 
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3.3.4 Transit-Keeping Machine 

Initially, TK travel times were taken from a company study from 2013 that used PLC 

data. The TK was represented in the model as a simplified version. However, during the 

validation process, it became evident that the simplification of the TK was not giving 

sufficient information about the true behaviour of the system. For example, the TK can 

save some cycle time by transporting an empty TK pod from the output directly to the 

input to receive a new cover. Additionally, due to the placement of the TK input and 

output, as the TK becomes more full, cycle times increase (Fig. 4 shows the location of 

the TK input and output). 

 

The TK was re-coded in the simulation model to mirror the PLC code precisely (see 

Appendix B). It can now be given some initial stock and its behaviour can easily be 

observed using the simulation animation (for further discussion, see Chapter 3.4). TK 

movement was timed with a stopwatch and is represented in the simulation model. A 

function was fit for the vertical and horizontal travel times in the TK. This function was 

developed using the observation that the TK can move vertically and horizontally 

simultaneously. It also moves in each direction using an independent mechanism from 

the other directional mechanism. Knowing this, vertical TK travel can be modelled 

separately from horizontal TK travel, and the actual travel time is the larger of the 

horizontal travel time and the vertical travel time. A linear function was fit to the vertical 

movement because it reaches a constant velocity very quickly, while a quadratic function 

was fitted to the horizontal movement because the acceleration has a larger role. The 

Python code used to determine the travel time is as follows, where x is the horizontal 

position and y is the vertical position:  

 

a = -0.0019*((x[i]-x[j])**2) + 0.0409*(abs(x[i]-x[j])) + 0.0604 
b = 0.0546*(abs(y[i]-y[j])) + 0.0452 
d = 0.003*abs(x[i]-x[j])+0.25 

if abs(x[i]-x[j]) <= 9.0: 
TravelTime = max(a,b)/60. 

else: 
TravelTime = max(d,b)/60. 
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3.3.5 Machine Bank C 

To model the operation of machine bank C, PLC data is used for press opening times, 

cover/MProd exchange times, and other machine activities. This data is taken from 

studies performed by the manufacturer and cannot be shared in this thesis. Cure times are 

deterministic, and are taken from a company database. 

 

There are several processes modelled using the available data which are listed in Table 3 

below. A Kolmogorov-Smirnov goodness of fit test was conducted for each distribution 

was conducted after first grouping samples into bins. For the goodness of fit test, the null 

hypothesis is that the data is consistent with the specified distribution, while the alternate 

hypothesis is that it is not. Using a significance level of 95%, a p-value of less than 0.05 

would indicate that the null hypothesis should be rejected. For all distributions, the p-

value is greater than 0.05, so we cannot reject the null hypothesis. 

 

Table 3: Process time distributions for machine bank C  

Process Distribution (minutes) Notes P-value 

Close curing machine Normal(µ = 2.18, 

σ=0.305) 

Minimum = 1.23 

minutes 

0.079 

Cure Deterministic Varies by product N/A 

Open curing machine Triangular(3, 3.55, 5.42)  0.294 

Transfer MProd Normal(µ = 0.718, 

σ=0.0744) 

Minimum = 0.51 

minutes 

>0.15 

Complete transferring 

MProd 

0.1 + Exponential(µ = 

0.0293) 

 0.18 

Operator time Normal(µ = 0.899, 

σ=0.245) 

Minimum = 0.45 

minutes 

>0.15 

 

Another parameter, the call-to-press time, specifies when a MProd is called from pre-cure 

to be transported to the curing chariot. The values used as the defaults throughout this 

thesis are selected to reflect how this setting is being used in the current system, which is 

why they are different from one another. The values appear to be a function of the 
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physical configuration of the machines; however it is not known exactly how these values 

are chosen. The values are shown in the following Table, where each cell represents a 

curing machine: 

 

Table 4: Call-to-press defaults 

Line E F P 

Call-to-press time 

(seconds) 

130 70 163 

100 0 163 

100 43 163 

73 70 163 

70 70 163 

0 70 163 

0 70 163 

15 73 163 

100 73 163 

103 103 163 

 

3.3.6 Operator Behaviours 

To model the behaviour of curing press operators, data from a company time study was 

used in conjunction with several interviews with press operators. The company time 

study was used to determine how long the operator intervention should take. Since this is 

a company study, the data cannot be shared in this thesis. Real press operator behaviour 

is difficult to represent exactly in a simulated environment, considering the complexity 

and the variety of behaviours. However, several simplified operator behaviours have been 

modelled and the impacts of these behaviours can be examined through model results. 

 

Three behaviours have been modelled for curing press operators: 

 Type 0 operator: Operator who behaves as a resource in a simulation model. 

When a new task is requested, the operator immediately begins that task, and 

performs tasks in the order that they arrive.  
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 Type 1 operator: The second behaviour is similar to the first, except that there is a 

delay of one minute before starting a new task to account for travel time and 

inattentiveness. 

 Type 2 operator: The third behaviour which was modelled is probably the closest 

to real operator behaviour. Operators wait for three curing machines to open or for 

ten minutes to pass after the first machine opens before beginning to service any 

of them. Once the start condition has been met, the operator services all curing 

machines until there are no remaining jobs in the queue, then the counter is reset.  

 

In the simulation model, MProd-building operators are treated as a resource when the 

model is being run in the second mode with the detailed representation of build. When an 

operator is available, the operator will construct MProds. To test the impact of 

changeover decisions, five changeover policies were established for machine A operators. 

PA cards are discussed further in Chapter 4, but assume for now that a PA card is issued 

for a particular product code when an MProd exits the TK. 

  

The changeover policies are: 

 Policy 1: Switch only if the current product is out of PA cards and another 

product has at least one PA card 

 Policy 2: Change products if another product has equal or more PA cards than the 

current product  

 Policy 3: Change products if another product has one or more PA cards than the 

current product 

 Policy 4: Change products if another product has at least two more PA cards than 

the current product 

 Policy 5: Change products if another product has at least three more PA cards 

than the current product 

 

For all of these policies, if multiple products are eligible to be changed to, the product 

with the highest number of PA cards is chosen. If they have an equal number of PA 

cards, the product is randomly chosen.   
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3.3.7 Product Mixes 

Five realistic future product mixes were used to test the capability of the current system 

configuration. The mixes are typical of those created through discussion with the 

planning group and validated with help from the industrial engineering group. Again, for 

reasons of confidentiality, they may not represent any actual situation at the 

manufacturer. The five tested product mixes are included in Tables 5, 6, 7, 8, and 9. The 

product codes have been redacted and may not correspond with each other across tables. 

For example, P2 in Table 5 may not correspond with P2 in Table 6. In these tables, the 

cure time is a deterministic time, while the other time column is the sum of the means of 

several processes (see Table 3). The daily maximum column represents the maximum 

number of MProds that could be produced on an average day, given perfect operators and 

perfect product flow to curing. Only mixes 1, 2, and 4 can operate on the current 

production line. Mixes 3 and 5 were designed to test a configuration where MProds are 

produced for curing presses on another line. In the simulation model, these extra MProds 

exit the system after trolley A. 

 

Table 5: Product mix 1 

Product 
Number of 

curing presses 
Cure time 
(minutes) 

Other time 
(minutes) 

Daily maximum 

P1 6 83 8.05 94.9 

P2 3 77 8.05 50.8 

P3 3 77 8.05 50.8 

P4 2 81 8.05 32.3 

P5 2 70 8.05 36.9 

P6 2 77 8.05 33.9 

P7 1 70 8.05 18.5 

P8 2 75 8.05 34.7 

P9 2 89 8.05 29.7 

P10 1 95 8.05 14.0 

P11 3 80 8.05 49.1 

P12 3 95 8.05 41.9 

Daily maximum throughput 487.4 
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Table 6: Product mix 2 

Product 
Number of 

curing presses 
Cure time 
(minutes) 

Other time 
(minutes) 

Daily maximum 

P1 9 79 8.05 148.9 

P2 3 77 8.05 50.8 

P3 4 77 8.05 67.7 

P4 2 70 8.05 36.9 

P5 3 77 8.05 50.8 

P6 2 75 8.05 34.7 

P7 1 70 8.05 18.5 

P8 3 80 8.05 49.1 

P9 3 95 8.05 41.9 

Daily maximum throughput 499.2 

 

 

 

 

 

 

Table 7: Product mix 3 

Product 
Number of 

curing presses 
Cure time 
(minutes) 

Other time 
(minutes) 

Daily maximum 

P1 9 79 8.05 148.9 

P2 3 77 8.05 50.8 

P3 4 77 8.05 67.7 

P4 2 73 8.05 35.5 

P5 2 70 8.05 36.9 

P6 2 59 8.05 43.0 

P7 3 65 8.05 59.1 

P8 2 75 8.05 34.7 

P9 1 70 8.05 18.5 

P10 3 80 8.05 49.1 

P11 3 95 8.05 41.9 

Daily maximum throughput 586.1 

 

 

 



43 

 

 

Table 8: Product mix 4 

Product 
Number of 

curing presses 
Cure time 
(minutes) 

Other time 
(minutes) 

Daily maximum 

P1 6 77 8.05 101.6 

P2 3 77 8.05 50.8 

P3 3 77 8.05 50.8 

P4 2 85 8.05 31.0 

P5 2 81 8.05 32.3 

P6 2 80 8.05 32.7 

P7 3 70 8.05 55.4 

P8 3 75 8.05 52.0 

P9 3 80 8.05 49.1 

P10 3 70 8.05 55.4 

Daily maximum throughput 511.0 

 

 

 

 

 

 

 

Table 9: Product mix 5 

Product 
Number of 

curing presses 
Cure time 
(minutes) 

Other time 
(minutes) 

Daily maximum 

P1 9 79 8.05 148.9 

P2 3 77 8.05 50.8 

P3 4 77 8.05 67.7 

P4 3 73 8.05 53.3 

P5 3 70 8.05 55.4 

P6 3 59 8.05 64.4 

P7 3 65 8.05 59.1 

P8 2 75 8.05 34.7 

P9 1 70 8.05 18.5 

P10 3 80 8.05 49.1 

P11 3 95 8.05 41.9 

Daily maximum throughput 643.7 
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The simulation model has the capability to add additional product mixes for testing or 

production control parameter optimization. The new production mixes should be added 

using the user interface, and they can be saved for future use in a text file. 

 

3.3.8 Machine Banks A and B 

For the machines in banks A and B, the industrial engineering group standard times are 

used to determine work rates at each machine, while breaks, shift changes, and other 

events which are known to impact the work rate of operators are also included. In the 

simulation model, work rates are calculated separately from breaks and shift changes. 

Standard times vary from machine to machine due to variation between the machines 

themselves, as well differences in complexity of the products which are typically 

manufactured on each machine. Although the fixed standard times are not a perfect 

measurement of the true process time, the true process times are dependent on many 

factors which have not been fully studied. The standard times provide a time study based 

estimate which is believed to be reasonably accurate. In the simulation model, breaks and 

shift changes are modelled as work requests for operators. For example, at lunch time, a 

high priority request is sent to the top of all operators who are scheduled to go to lunch at 

this time. When the operator is finished their current task, they will then process the 

break task, which means they will not be at their post for the duration of the break. 

Operators for machine group A do not go on breaks, since breaks are covered for these 

operators. However, they still change shifts every 12 hours. All operators must attend 

morning meetings and fill out paperwork. Once again, durations for each of these events 

are from a company time study, from which data cannot be provided. In the simulation 

model, these events occur at scheduled times during the operator shift. 

 

3.4: Simulation Model Results 

3.4.1 Verification and Validation 

To verify that the simulation model was being developed in line with expectations, 

weekly meetings took place with the company during the development phase of the 

model. During these meetings, assumptions were assessed by a team of stakeholders and 

process experts to ensure that they were reasonable in the context of the model. A process 
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map of the simulation model logic was shown to the system experts, and feedback was 

received to ensure that the process logic in the simulation model was accurate to the logic 

in the real system. The use of the extensive text-based debugging built into the model 

helped to verify that the model was behaving as it was expected to. For instance, when 

the TK logic was being verified, model output similar to the output in Fig. 6 was shown 

to operators. The output describes, line by line, the actions of trolleys and the TK during 

a typical TK cycle. The blank rectangles can be read as “TK pod”, the terminology used 

in the model output is redacted. The TK begins by retrieving an empty TK pod from 

storage slot 62. The TK brings the empty TK pod to the input, slot 124, and places the 

empty TK pod in the input. Meanwhile, at the output, trolley E has arrived and is picking 

up a cover. Trolley B arrives with a new cover and places it on the input while the TK 

waits. The TK then takes the TK pod with the cover and stores it at slot 62. Then, the TK 

takes a TK pod with cover from slot 6 and places it on the upper output slot, 125. At this 

time, the empty TK pod from which trolley E picked up a cover earlier is now available 

at slot 126, which is the lower output slot. The TK identifies this opportunity to remove 

the empty TK pod from slot 126 and place an empty TK pod on the input, and does so. 

 

 

Figure 6: Debugging text output for a standard TK cycle 

 

Although this is just a small segment of what was reviewed with operators, this type of 

text output demonstrates to operators that the model is behaving as expected for various 
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situations that can occur during TK cycles. This text-based verification technique was 

used to present many of the model components, such as the trolley movements and 

operator behaviours to the process experts at the company. The experts could then point 

out which details, if any, seems inaccurate. This helps ensure that the model ultimately 

ends up faithfully reproducing actual system logic. 

  

Another verification technique which was used as part of the modelling process was to 

test the model output for a wide variety of inputs. Whenever a new feature or component 

was entered into the model, it was tested for several product mixes to ensure that it was 

behaving as expected. 

 

The simulation animation was also useful in showing that the model was working 

properly. The animation is particularly useful for verifying that the logic in the TK was 

working correctly, since every product slot in the TK is shown. By changing the update 

interval and the simulation speed, it is possible to watch the production line operate at 

very slow speeds where each movement can be carefully observed by seeing the variables 

update in each product slot, or at very fast speeds so that general observations can be 

made on the behaviour of the system, such as observations on where product tends to be 

located in the TK over longer periods of time. 

 

Validation of the model was done in several steps. First, it was necessary to ensure that 

the TK was processing MProds at its expected rate. When running at high production 

rates in the past, the TK was known to be able to process between 20 and 21 

MProds/hour according to an unknown distribution. When running the simulation model 

using mix 1, the mix thought to be closest to mixes used in the past, a 95% confidence 

interval on the capability of the TK can be constructed. With 10 simulation replications, 

type 2 operators, PAC System controls, and no restrictions on maximum TK stock except 

for its capacity of 124, and the repair circuit in effect, the TK processed 19.5 +/- 0.5 

MProds per hour. However, the TK was only utilized 94.6 +/- 2.0% of the time. If 

production rates had been slightly higher, the TK would have been nearer to the known 

processing rate. 
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The second validation check was for curing machine utilization. Using the same 

simulation parameters as above, which are meant to be as realistic as the simulation can 

be, the 95% confidence interval for achieved theoretical output was 95.72 +/- 2.1%. 

Historically, curing machines have been utilized between 90% and 92% of the time, 

according to an unknown distribution. The simulation model appears to be achieving 

better utilization than what is achieved by the real system. The difference between the 

values may be attributable to a combination of the exclusion of maintenance events, the 

exclusion of supply shortages in MProd-building, and possibly curing operator 

behaviours are more severe in reality than in the model. Another consideration is that mix 

1 probably has a longer average cure time than historical mixes. This explains why in the 

model, the curing machines are operating at a higher utilization while the TK is 

processing less MProds than historical has indicated. Regardless, the model results are 

reasonably close to what is observed in reality, and while the model should not be used to 

obtain precise estimates for anticipated production output, it is useful for measuring the 

relative impact of changes to the system. 

 

3.4.2 Warm-Up Period 

To select a warm-up period, Welch’s method (Welch 1983) is used to create an initial 

assessment. Welch’s method requires a key statistic to be recorded at a set interval while 

the model is running. For this model, throughput was recorded every four hours. Multiple 

simulation replications are executed, and then the statistics are averaged across 

replications. A three-interval moving average is then calculated using the averaged 

statistics. For the warm-up experiment, five runs of 20 days were executed. Mix 1 was 

used, with type 2 operators, and the repair circuit enabled. This configuration represents 

the most challenging output that the simulation model is thought to be able to reproduce. 

The output is seen in Fig. 7. 
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Figure 7: Warm-up period using Welch's method  

 

The end of the warm-up period is shown using the red vertical line. On this chart, there 

are four notable drops in production. These drops are due to major repair circuit 

congestion for one of the five runs. They do not indicate that the system is still in a 

transient state; repair circuit congestion can occur at any point in a production run. It 

appears that the warm-up period is about 7 intervals, or 28 hours.  However, the 

behaviour of the production line can vary, depending on production parameters, product 

mix, and initial conditions. Figures E1, E2, and E3 in Appendix E show how TK stock 

level traces can vary depending on production parameters. Due to this variance, a safety 

factor was applied and all statistical data in the first 96 hours is deleted for all of the 

simulation runs. 

 

3.4.3 Run Length 

To decide on an appropriate run length, several factors were considered. First, when 

simulation runs have the repair circuit activated, it is necessary to perform longer runs 
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since repair events should occur several times in order to produce a reasonable result. 

This can be seen in Fig. 7, where only four major repair events occurred in a 30 day 

replication. When the repair circuit was not active, long runs are not required because the 

system is quite stable. Thus, run lengths are chosen differently depending on the 

simulation parameters. For simulations without the repair circuit, often, a run length of 

only 14 days is chosen. For simulations with the repair circuit, the run length should be 

longer. Regardless of run length, several replications are performed to generate results 

and the warm-up period is deleted for each replication. 

 

3.4.4 Machine Utilization 

Results from the simulation model have shown some interesting system characteristics. 

One measurement of interest that the simulation model has established is that the TK has 

the highest machine utilization, with the exception of the curing machines. A simulation 

run with 30 replications and a warm-up period of 4 days was run in maximum throughput 

mode using Mix 1. The repair circuit is disabled to eliminate major repair events and 

operators are set to type 0. The 95% normal confidence interval widths are less than 

0.005 for each machine, and are therefore not shown. The 95% confidence intervals for 

high utilization machines are in Table 10. 

 

Table 10: Confidence intervals for machine utilization  

Machine 95% Confidence Interval 

Curing Presses [0.989,0.993] 

Trolley B [0.905,0.912] 

TK [0.952,0.960] 
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Figure 8: Average utilization of MHS machines and operators using Mix 1. 

From left to right: trolley A, trolley B, TK, trolley E, trolley F, trolley P, 

curing chariots, curing machine operator, curing machines.  

 

There are a few important observations to be taken from Fig. 8. First, although the curing 

machines have the highest utilization of all, this is both desirable and expected. The 

curing machines are the highest value machines and should be operating at maximum 

capacity when possible. Curing machines also define the maximum throughput for the 

line. If curing machines are not reaching 100% utilization, the line is losing productive 

capacity. Of course, in reality, the curing machines do not reach utilization levels of 99% 

because of inefficiencies in the production line. As mentioned above, the repair circuit is 

disabled and operators are set to type 0 for this simulation run, so that the capability of 

the MHS could be tested to its limits. Under these conditions, the throughput results are 

higher than what would be achieved in the real system.  

 

Trolley B appears to be very close to the TK in terms of utilization. However, upon 

further breakdown of trolley B time, approximately 5% of trolley B’s time is spent 
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waiting for the TK to bring an empty TK pod to the input, so it is clear that the TK is the 

MHS bottleneck. Several opportunities were identified for improvement of the TK. These 

improvement opportunities include: 

 Coordinating with MProd-building to maintain optimal inventory levels: establish 

a pull mechanism between curing and MProd-building to ensure the right 

products are built at the right time 

 Changing the priorities of TK depending on TK inventory levels for each product 

code: if the inventory is low for a certain product code, perhaps the TK can break 

the FIFO rule and select an MProd to minimize travel time 

 Using information on trolley status and timing to assist the TK in deciding which 

task to do next: reduce waiting for trolley B when it is not going to arrive on time, 

and make more efficient decisions when it comes to moving around empty TK 

pods.  

 Anticipating future TK demand to optimize the storage location of each cover for 

smaller travel times later: this idea requires further study 

 Optimizing the parameters governing the operation of the direct cell: this requires 

further study 

 Repairing covers more frequently so that the TK is not needed for storage of out-

of-weight covers 

 

It is not known how much of an impact that improvement to the TK could have on TK 

utilization. Several of these opportunities will definitely reduce average TK cycle times, 

and it is possible that only changes to the PLC code will be needed to implement 

changes. However, since the company did not wish to continue exploring these 

opportunities at this time, they were not assessed using the simulation model. If desired, 

it is not difficult to make changes to TK logic in the simulation model to test these 

opportunities in the future. 

  

3.4.5 Further Observations 

One of the findings from the simulation model is that small changes to operator 

behaviour can have a statistically significant impact on system throughput. For example, 
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a type 2 operator performs significantly worse than a type 0 or type 1 operator, as shown 

in the simulation runs in Table 11. For these simulation runs, 25 replications of 14 days 

each were run using Mix 1, and the repair circuit disabled.  

 

Table 11: Curing Operator Simulation Runs  

Operator Type 95% Confidence Interval for Average Daily Throughput 

Type 0 [480.9, 482.7] 

Type 1 [474.3, 476.1] 

Type 2 [468.9, 470.9] 

 

There is a substantial opportunity for improvement, since discussion with operators and 

supervisors indicates that many operators try to align curing presses for various reasons. 

These observations are supported by company data. Management in the curing area have 

reported as much as a 10% difference between the performances of two work crews, 

although the reason for the difference is not known. These simulation findings show that 

curing operators can be having an important impact on total throughput. 

 

The principal task of a curing operator is to place two small metallic identifiers on each 

side of the cover immediately before it is cured. The metallic identifiers imprint a serial 

number into the cured MProd, which is a legislated requirement for some MProds. For 

the MProds that do not require metallic identifier placements, the curing presses run on 

automatic mode, in which no operator intervention is required. Unlike manually operated 

curing presses, curing presses operating on automatic mode do not align presses and 

instead maintain a smooth flow of covers through pre-cure. A similar plant in another 

location of this corporation places the metallic identifiers on covers using a hot tool. This 

operation is performed by operators in machine bank B. This technique could be piloted 

in the production line under study so that rework percentage can be estimated and a 

financial case can be made to shift the metallic identifier placement process to the 

machine B operators in this plant. By moving this process, all curing machines can be 

placed on automatic, which eliminates the need for operator interventions. Note that 

operator type 0 behaviour in table 11 is similar to that of an automatic machine. 
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At the beginning of the project, there was a concern over the number of available pre-

cure slots. It was thought that due to there being only six pre-cure slots servicing ten 

curing machines, there would be times when a cover could not pass through curing when 

it was needed due to congestion in the pre-cure area. This does occur when curing press 

operators align most of the presses on a line to open at the same time, a behaviour which 

causes other issues as well. However, the simulated behaviour of operators had machines 

aligning in groups of three, so the simulation showed that the number of pre-cure cells 

did not have much of an effect on throughput, as can be seen below in Fig. 9. In this 

experiment, the simulation is run in the second mode, the repair circuit is disabled and 

curing press operators are set to type 2. Ten replications were completed for each 

configuration and the 95% confidence interval on average daily throughput is shown 

using error bars. The results show that increasing the number of pre-cure cells to more 

than six will not be likely to improve the system throughput. There are no error bars for 

six pre-cure cells per line because all runs gave the same average daily throughput. 
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Figure 9: Average daily throughput vs. number of pre -cure cells per line 

 

Another result of interest to management, the impact of TK stock level on the daily 

throughput in curing was quantified in the simulation model. Since the TK has longer 

cycle times as it becomes full, and since it is the bottleneck of the MHS, it has an impact 

on throughput. The TK capacity was limited to a fraction of its full capacity to estimate 

this impact, as seen in Fig. 10. In this experiment, maximum throughput mode is used, 

the repair circuit is disabled, and type 0 operators are used. Once again, ten replications 

are completed for each configuration and the 95% confidence interval on average daily 

throughput is shown with error bars. 
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Figure 10: Average daily throughput vs. TK capacity 

 

From the above figure, it is evident that the cycle time of the TK does have an effect on 

the average daily throughput, especially when the TK is allowed to fill near its capacity 

limit. This helps support the case that controlling the build rate and mix from MProd-

building is an important objective for the production line.  

 

Finally, the repair circuit will induce variation into the flow of MProds through the 

production line. A simulation run with the repair circuit active was completed for twenty 

simulation replications, with a replication length of 20 days, and a warm-up period of 4 

days, using type 0 operators. A second simulation run was completed with the same 

parameters, except with the repair circuit disabled. A summary of these runs is shown in 

Table 12. 
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Table 12: Repair circuit simulation runs 

Repair Circuit Average Daily Throughput 

(MProds) 

Variance 

(MProds
2
) 

Enabled 473.4  152.2  

Disabled 481.9  0.052  

 

Using a one-sided F test, the null hypothesis that the two configurations have equal 

variance is very firmly rejected. Although the company does not keep data on how long 

the production line goes down due to congestion at the repair circuit, the simulation 

model results suggest that the line stops an average of 2.8 hours per week, with a sample 

variance of 23.5 hours squared. This result, when compared to table 12, also indicates 

that most of the variation in the production line as modelled comes from the repair 

circuit. When the cost of repairing MProds more frequently is compared against the cost 

of lost production due to interference from the repair circuit, it is clear that the repair 

circuit should be carefully managed in the future. 

 

Management at the company decided that although utilization levels for machines in the 

MHS are high under future anticipated production mixes, the system is still capable at 

these levels. The above experiments indicate that there are opportunities to improve the 

performance of the production line through the management of resources and 

coordination of production between MProd-building and curing. 
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Chapter 4: The Development of a PAC Approach 

In Chapter 3, a detailed discrete-event simulation model of a production line was 

constructed using SimPy and the Python programming language. The purpose of the 

simulation model was to evaluate the throughput capability of the material handling 

system with the objective of identifying whether or not the production line was capable of 

handling an increase in throughput. Analysis of the system showed that the material 

handling system was capable of dealing with the anticipated future production 

requirements. However, findings from the simulation model indicate that operator 

behaviours, changeover policies, production control policies, and stock levels have a 

significant impact on average throughput. 

 

In the current production line, the MProd-building operators are rewarded based on the 

number of MProds that they produce in a single shift. The computer system allows them 

to check inventory in the TK for the product codes that their machine is capable of 

constructing, and they are supposed to do this checking and ensure that the inventory 

level does not drop “too low”. However, “too low” is not a standard quantity or level 

which is defined by management or agreed upon by all operators in MProd-building, nor 

is there a consistent framework for operators to make this judgment. Often, what happens 

is that operators construct many of the same MProd consecutively, perhaps even for the 

entire 12 hour shift. Operators are rewarded for this behaviour because it allows them to 

report high production numbers. This can cause inventory levels in the TK for some 

product codes to get very high, while others can get very low or even stock out. 

Additionally, since some raw materials are shared between product codes, sometimes by 

constructing many of the same product, the production line can stock out of a certain raw 

material, and the other product code that is supposed to be built cannot be built. How 

frequently this occurs is not documented; however it is thought to occur several times a 

day. The unbalanced stock levels in the TK have an effect on the utilization of curing 

machines and ultimately the total production of the line, even when product codes do not 

stock out. Operators in curing also have access to stock levels in the TK. When they 

observe stock getting low for a certain product; they may stop using one of the presses 

curing that product code even if there is sufficient stock to continue using the press for 
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another cycle. This action may be taken because the curing operator does not know why 

the stock is low; there may be five of that product code being constructed in MProd-

building, but the curing operator does not have this information. In conversations with 

both curing operators and MProd-building operators, they described how they will infer 

the production rate of the other by watching how stock levels change in the TK, and 

adjust their production rate. This means that it is possible that a curing operator could 

shut down a press, and then a MProd-building operator could note the decreased 

production rate in curing and choose to build less of that product code. This type of 

miscommunication can impact the production rate of the line as a whole. The problems 

exist due to a lack of production control mechanisms, current incentives for the MProd-

building operators, and a lack of direct communication between the two groups of 

operators.  

 

To investigate the impacts of a production control policy on the system, a second 

simulation model was constructed as an extension of the first model which allows for 

production to be controlled by modifying certain PAC parameters and operator 

behaviours. The PAC approach was chosen for this production line because it was not 

known which production control scheme may have performed best. The obvious 

requirement for this production line is a pull mechanism from curing back to MProd-

building to keep inventory levels at an appropriate level for all product codes in the TK. 

This pull mechanism should also regulate operator behaviours and improve 

communication down the line.   

 

Recall that the PAC System requires a production line to be composed of cells and stores, 

with PA cards authorizing the manufacture of products in cells. The production line can 

be modelled under the PAC framework such that machine group A and machine group B 

are considered the two production cells, while the inventory trees between group A and 

group B as well as the TK are considered the two product stores. Curing machines are 

represented in terms of a demand for product from the system. Information flow is 

configured in the simulation model such that PA cards are required to authorize the 

manufacture of a product in a cell. In the simulation model, it is possible to modify the 
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number of process tags at each cell, the initial inventory in the TK for each product code, 

and the batch size between any two cells. Modifying the number of process tags at each 

cell allows for limits to be set for work-in-process. Modifying the initial inventory in the 

TK initializes the system and sets the maximum stock for each product in the TK. The 

maximum stock for each product in the TK is limited to the initial stock because PA 

cards are only generated for MProd-building when a MProd exits the TK. Modifying the 

batch size requires requisition tags to accumulate in a store to the specified batch size 

before they are sent to the preceding cell. In the model, it is also possible to change non-

PAC parameters, such as the changeover policy governing the MProd-building machines, 

operator behaviours, and the number of operators for machine groups A and B.  

 

To learn more about how these parameters affect average throughput, an artificial neural 

network (ANN) metamodel is constructed as an estimator of the expected value function 

of the second simulation model. While the output of a simulation run is a random variable 

dependent on its inputs, the output of a metamodel is function of its inputs. Using an 

ANN metamodel allows us to search the input space for strong combinations of input 

parameters, from which production control policies can be derived. At the end of Chapter 

4, simulated annealing on the ANN inputs is used to identify some policies which might 

be adopted by the manufacturer.  

 

4.1 Experiment Design 

There are 25 simulation parameters which are taken as inputs for the ANN metamodel. 

These parameters could have been selected using screening experiments for significance, 

but instead were informally chosen based on which factors were thought to have the most 

impact on results from simulation runs. Ten of the inputs are binary policy variables 

which correspond to five mutually exclusive changeover policies in machine bank A, one 

binary variable which determines whether or not machine bank A and B can share 

operators, one binary variable which determines whether or not operator breaks in 

machine bank C are covered, and three mutually exclusive binary variables which 

determine operator behaviours in machine bank C. The binary variables for the five 

governing the changeover policy and the three governing bank C operators are modelled 
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as two variables in the experiment design phase, although they are treated separately in 

the neural network.  Twelve of the inputs correspond to the initial stock level of each of 

the 12 products in the TK. The remaining 3 inputs determine the total capacity of the TK, 

and the number of operators in machine banks A and B. Reasonable ranges have been set 

for each input variable, as seen in Table 13.  

 

Table 13: Simulation parameters and ranges 

Parameter Range Number of ANN inputs 

Initial stock level of products in TK [3,35], integer 12 

Number of unused slots in TK [0,10], integer 1 

Machine bank A changeover policy [0,1], binary 5 

Shared operators between machine banks A and B [0,1], binary 1 

Number of bank A operators [4, 10], integer 1 

Number of bank B operators [4,9], integer 1 

Bank C operator behaviour  [0,1], binary 3 

Bank C operator breaks covered [0,1] binary 1 

 

For the experiments in this chapter, the initial inventory on the trees between machine 

group A and machine group B is set to zero, the number of process tags at each cell is set 

high enough that work-in-process in not limited and PA cards are issued as MProds exit 

the TK, and the batch size is set to one. This is done to simplify the ANN training task. 

By making these changes, the system behaves like a base stock system (BSS) with 

additional cell internal rules, which are the changeover policies listed in Chapter 3.3.6. A 

diagram of the system behaviour under these conditions is shown in Fig. 11. 

 

Cell 1 
(A)

Store 1 
(Trees)

Cell 2 
(B)

Store 2 
(TK)

Order Tags

Order Tags

Curing DemandCell rules
Requisition tags

 

  Figure 11: Product and information flow in the production system with ANN 

configuration 
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A single performance measure is used since due to the high value of the products being 

manufactured most costs are insignificant compared to the value of producing additional 

products per day. Therefore, the performance measure used was the average daily 

throughput, henceforth referred to as throughput. Note that if it is desired, it is still 

possible to consider trade-offs between the number of operators and throughput, since the 

number of operators is included as an input parameter. The single output value and all 

parameters were normalized to the [0,1] range for ANN training. 

 

To generate a training dataset, several experiment design techniques were considered. A 

full factorial design is not feasible, since even if only two levels were considered for each 

non-binary variable, 2
17

 * 5 changeover policies * 3 operator behaviours = 1,966,080 

simulation runs would be required. A partial factorial design appears to be feasible, 

although factorial experiment design for ANN simulation metamodelling have been 

shown to be inferior to random and space-filling experiment designs (Alam et. al 2004, 

Hurrion and Birgil 1999). There is an additional consideration for the specific task at 

hand: not all combinations of initial stock levels of productions in the TK are feasible. 

There are 12 products which require storage space in the TK, and since the maximum 

stock level of each product is in the range [3, 35], 99.96% of random combinations of 

maximum stock levels will exceed the 124 product capacity of the TK. When the TK 

capacity is exceeded, blockages occur on the production line. Since it would not be 

desirable to waste simulation time on scenarios which would not occur in reality, it is 

necessary to limit the domain of the experiment design. Thus, the approach taken is as 

follows. 

 

First, a very large number of samples (40 million) are generated using a Latin hypercube 

design (LHD). Latin hypercube sampling (LHS) is a space-filling experiment design 

technique with some inherent randomness which was found to have a very good ANN 

predictive ability for simulation metamodelling (Alam et al. 2004). LHS divides the 

domain of all N variables M times, where M is the total number of design points (McKay 

et. al 1979). Figure 12 shows a possible LHD for N = 2 variables and M = 5 design 

points. Note that there is a sample for each row and column of the matrix. The LHD 
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design used in the present experiment iteratively generates samples using a heuristic, 

such that the smallest distance between any two samples in the sample space is 

maximized. The algorithm used is part of the open source package Python Design of 

Experiments (Baudin 2012). 

 

N1

N2

 

Figure 12: Latin hypercube sampling for 5 samples, 2 variables  

 

To use LHS with discrete variables, it is necessary to convert from continuous values 

back to discrete values after the samples are generated. To do this, for variables with less 

than M=32 partitions, it is necessary to round. So for a binary variable, any value from 

0.5 to 1 rounds to 1, and any value from 0 to 0.5 rounds to 0. Once the samples have been 

generated and converted back to discrete values, a subset S of the total samples are 

selected using the selection rule below, which ensures that only feasible samples are 

selected for subset S. In Eq. (5) below, input parameters for each generated sample x are 

denoted by the subscript v, where v corresponds to parameters in the sequence that they 

are presented in Table 13. For example, for a sample x, the value of its parameter “initial 

stock level of product 11” in the TK in x11, and while the value of its parameter “number 

of unused slots in the TK” is x13.   

 

𝑖𝑓 ∑ 𝑥𝑣 

12

𝑣=1

≤ 124 − 𝑥13 ;   𝑥 ∈ 𝑆         ∀ 𝑥               (5) 

 

In other words, if the sum of all of the product stock levels in the TK is less than the 124 

product capacity of the TK, then the sample should be included; otherwise, it should be 
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discarded. Also note that since the full sample space obeys a LHD, then the subset S will 

also approximately obey a LHD. 

 

By limiting the domain of the training set in this way, the training set will have a much 

higher point density in the regions of interest than would have otherwise been possible 

with the same number of samples. This should lead to a more accurate ANN in the 

regions of interest. However, there will also be an inherent bias towards training data for 

which parameters 1 through 12 sum to values closer to 124 – X13, since these samples are 

much more likely to have existed in the full sample space. Using the 7,986 samples in the 

full dataset, the histogram in Fig. 13 demonstrates the extent of this bias. 

 

 

Figure 13: Distribution of samples by maximum stock level in the TK 

 

It is clear that most samples have a maximum stock level above 100. While this may 

seem like a problematic bias, in simulation runs there are usually 15-30 PA cards pending 

for machine bank A, which in effect means that the TK stock is usually 30-40 below its 

maximum. Consider the case where the TK has a maximum stock level of 100. In this 

case, the maximum number of PA cards that can be pending is 100. In this situation, there 

are no MProds in the TK, in transit to the TK, or in machine group B. All MProds are 

either in pre-cure, curing, or have exited the system. However, this circumstance would 

not occur unless groups A and B stopped working for a long period of time. Normally, 

there will be far fewer PA cards pending, since groups A and B are working. The TK 
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stock level is further decreased by the number of MProds under construction, in the repair 

area, or in transit to the TK. Therefore, the observation that the TK stock tends to remain 

30-40 below its maximum seems sensible. It is suspected that the optimal region for any 

given production mix will have a maximum stock level above 100, so the way that the 

samples have been chosen means that the ANN will have very good resolution in this 

region.  

 

The simulation model was run for a single replication for all 7,986 training samples in 

subset S. While fewer design points could have been chosen in order to do more 

replications for each design point, it has been shown through experiments that 

distributing the simulation effort over several points in each region with a single 

replication on each point may result in better ANN simulation metamodels (MacDonald 

and Gunn 2012). The approach taken here differs by only simulating a single point in 

each region. This is possible due to the almost deterministic nature of the simulation 

model when the repair circuit is disabled, as seen in Table 12. Still, perhaps a better 

approach may have been to generate several separate LHD training sample sets so that 

there would be several samples for each region. 

 

At an average run time of 12 seconds per replication, the total simulation effort required 

26.6 hours of CPU time. The simulation model was set up to run replications 

automatically, changing parameter values each replication and storing the result in a text 

file as seen in the following pseudocode: 

 

Generate training set and store in text file 
Read in training set text file  
For each row in training set  
 Change parameters as specified 
 Do simulation replication 
 Record output 
End For 
Write output to text file 

 

 The training set is randomly partitioned by MATLAB as seen in Table 14 for each ANN 

training run, where the test and validation portions are each 15% of the total number of 

samples. Only the training set is used for training the ANN, while the test set is used to 
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determine training stop conditions. The validation set is independent, and is used to 

evaluate how well the ANN can generalize for other samples generated using the same 

LHD process. The throughput result of each simulation model replication in the training 

set is used as the desired value of the ANN during training. 

 

Table 14: Distribution of samples 

Data set Samples 

Training 5,590 

Test 1,198 

Validation 1,198 

 

4.2 Initial Comparison of Training Algorithms 

To select a good training algorithm for the task at hand, several training algorithms were 

compared using one hidden layer with 10 hidden nodes (see Fig. 14). Recall that the 

NEAT algorithm does not require a structure to be specified since the network structure is 

constructed as part of training process. A comparison of ANN training algorithms for this 

task is found in Chapter 4.6.  For now, assume that a single run is completed with each 

algorithm using random initial weights and biases. The logistic function is used to 

transform values at the hidden layer as seen in Eq. (6). 

 

𝑓(𝑥) =
1

1 +  𝑒−𝑥
                    (6) 

 

Although this may not be the ideal ANN structure for this task, by establishing a structure 

it is possible to perform a simple comparison between training algorithms before 

selecting one and then further refining the structure. 
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Figure 14: ANN with one hidden layer of ten hidden nodes  

 

The stopping criterion for GA and NEAT training was to end after 20 minutes of training. 

For RPROP+, BFGS, and LM, the stopping criterion was when MSE in the test set 

begins to increase; this is an indication that continuing may cause the ANN to overtrain. 

This method is suggested as a possible stopping criterion by Hagan et al. (1996). These 

stopping criteria were used for all of the experiments in this chapter. The implementation 

of the GA and NEAT in ENCOG (Encog Machine Learning Framework) is used for 

comparison with implementations of RPROP+, BFGS algorithm, and the LM algorithm 

in MATLAB (MATLAB & SIMULINK). The experiments were performed on a quad-

core Intel i5-2500K processor running at 3.3 GHz and the results are shown in Table 15. 
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Table 15: Comparison of training algorithms 

Algorithm Iterations  Time (s) Training 

MSE 

Validation 

MSE 

Parameter settings 

RPROP+ 470 2 5.2E-04 5.7E-04 MATLAB default 

BFGS 297 10 8.1E-04 1.0E-03 MATLAB default 

LM 106 14 2.1E-04 2.5E-04 MATLAB default 

GA 77 1,200 3.8E-04 3.5E-04 Mutation rate = 0.1 

Crossover rate = 0.0025 

NEAT 6 1,200 1.5E-02 1.5E-02 Population size = 10 

Generations = 10 

 

From the time taken to train, it appears that the evolutionary training algorithms are less 

efficient for this task than gradient-based or quasi-Newton training algorithms. The 

complex, multi-layer networks generated by the NEAT algorithm could have been used 

here to define the network architecture. Instead, a different approach is taken in the 

following section. The GA, gradient-based and quasi-Newton approaches have validation 

MSE values within the same order of magnitude. Without performing additional 

experiments, it cannot be said with confidence which of these three training algorithms is 

best for this task. The LM algorithm was selected to continue to examine and refine the 

structure of the ANN because it achieved the lowest validation MSE from the single run 

experiment, and did so within a reasonable amount of time. 

 

4.3 Comparison by Number of Hidden Nodes 

To determine a good number of hidden nodes for this ANN, six runs of the LM algorithm 

using random initial weights and biases were completed for 1, 2, 3, 5, 7, 10, 15, 25, and 

50 hidden nodes. The results of these runs including sample standard deviation in 

brackets are found in Table 16. Trace plots of the first run for select numbers of hidden 

nodes are found in Appendix D.  
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Table 16: Comparison by number of hidden nodes  

Number 

of 

hidden 

nodes 

Iterations Time(s) Training MSE 

(MSET) 

Validation MSE 

(MSEV) 

𝑴𝑺𝑬𝑽 − 𝑴𝑺𝑬𝑻

𝑴𝑺𝑬𝑽
 

1 18(3.7) 1.2(0.4) 1.29E-2(1.79E-4) 1.29E-2(5.86E-4) -5.90E-3(5.00E-2) 

2 47(30.8) 3.3(2.5) 6.64E-3(1.31E-3) 6.84E-3(1.25E-3) 3.00E-2(6.00E-2) 

3 49.7(21.1) 3.7(1.9) 4.30E-4(1.95E-3) 4.30E-3(1.95E-3) 5.80E-4(4.30E-2) 

5 83.5(46.4) 7.8(4.5) 8.46E-4(5.88E-4) 8.76E-4(5.98E-4) 4.10E-2(3.90E-2) 

7 1412(54.9) 15(6.1) 4.20E-4(1.50E-4) 4.32E-4(1.49E-4) 2.90E-2(2.50E-2) 

10 227(291) 40(58) 3.20E-4(2.37E-4) 3.53E-4(2.56E-4) 9.50E-2(4.00E-2) 

15 143(103) 34(26) 1.84E-4(4.27E-5) 2.14E-4(4.39E-5) 1.40E-1(5.00E-2) 

25 153(82.8) 61(36) 1.18E-4(4.79E-5) 1.68E-4(4.48E-5) 3.20E-1(1.10E-1) 

50 76(26) 72(27) 1.18E-4(2.12E-5) 1.98E-4(4.44E-5) 3.90E-1(7.00E-2) 

 

In comparing the results of this experiment, the performance of the trained ANN on the 

validation set must be considered, while care must be taken that overtraining is avoided 

and that computation remains reasonably low. For all of the different numbers of hidden 

nodes tested, the training time would be considered reasonable under most circumstances. 

The performance of the trained ANN on the validation set is of particular interest, since 

the validation set represents how well the ANN can generalize. It is clear from the 

quartile box plot in Fig. 15 that one, two and three hidden nodes are worse than the others 

in terms of the performance of the validation set. Clearly, having three or less hidden 

nodes does not provide enough complexity to accurately model the underlying behaviour 

of the simulation model.  
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Figure 15: Validation MSE by number of hidden nodes  

 

It is interesting to note that the mean validation MSE drops as the number of hidden 

nodes rises, with the exception of 10 and 15 hidden nodes, and 25 and 50 hidden nodes. 

In these cases the difference in mean validation MSE are not significantly different. To 

measure overtraining, the following formula is used: 

 

𝑂𝑣𝑒𝑟𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 (𝑂𝑇) =  
𝑀𝑆𝐸𝑉 − 𝑀𝑆𝐸𝑇

𝑀𝑆𝐸𝑉
               (7) 

 

A comparison of the measure OT by number of hidden nodes is shown in Fig. 16.  



70 

 

 

Figure 16: Overtraining by number of hidden nodes  

 

For seven or less hidden nodes, there is little overtraining. For 10 and 15 hidden nodes, 

there is some overtraining, but the trade-off with improved performance may be 

worthwhile. However, the argument could be made that fewer hidden nodes is better so 

that overtraining is avoided entirely. As the number of hidden nodes continues to rise, it 

becomes clear that the ANN is overtraining significantly. 

 

To select a good number of hidden nodes for the task at hand, we must consider that 

needs of the manufacturer. To make a good production decision, especially considering 

the high value of the products being manufactured, absolute error of no worse than 1.0% 

is desired. Ideally then, a validation MSE of 0.0001 or better should be the target, while 

also seeking to minimize overtraining. Five or less hidden node ANNs will not achieve 
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the MSE target, while 25 or more hidden node ANNs will tend to overtrain. It seems then 

that 7, 10, or 15 hidden nodes are reasonable ANN structures for this task.  Since the 15 

hidden node ANNs were not significantly better in validation MSE than the 10 hidden 

node ANNs, while the 10 hidden node ANNs were significantly less overtrained, a 10 

hidden node architecture is preferable to 15 hidden nodes. A 10 hidden node ANN was 

ultimately selected, since the validation MSE comes significantly closer to the MSE 

target than the seven hidden node ANN. It would also have been reasonable to select the 

seven hidden node architecture to minimize overtraining. 

 

4.4 Comparison by Number of Hidden Layers 

It is common practice to use a single hidden layer for ANN simulation metamodelling. 

To test whether or not this standard assumption is valid, 10 training runs were executed 

using the LM algorithm for an ANN structure with a single hidden layer with 10 hidden 

nodes, and also for an ANN structure with two hidden layers with 7 hidden nodes per 

layer as in Fig. 17. 

 

 

Figure 17: Two layer ANN structure 
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Each ANN structure has a similar number of connections, including biases, as seen in 

Table 17. 

 

Table 17: ANN structures for comparison 

Number of 

hidden layers 

Nodes per 

hidden layer 

Total number 

of connections 

1 10 271 

2 7 246 

 

The results of the experiment are listed in Table 18.  

 

Table 18: Comparison by number of hidden layers  

Number of 

hidden 

layers 

Iterations Time(s) Training MSE 

(MSET) 

Validation MSE 

(MSEV) 

𝑴𝑺𝑬𝑽 − 𝑴𝑺𝑬𝑻

𝑴𝑺𝑬𝑽
 

1 143(76) 19(14) 3.53E-4(1.45E-4) 3.70E-4(1.44E-4) 5.10E-2(3.70E-2) 

2 164(68) 29(13) 1.16E-4(1.61E-5) 1.23E-4(1.65E-5) 6.00E-2(3.60E-1) 

 

Although there is no significant difference in the number of iterations required, the time 

required for training, or the overtraining measure, the two hidden layer architecture 

performs almost three times better in validation MSE. The box plot in Fig. 18 also 

illustrates the superior consistency of the two hidden layer architecture results; the sample 

standard deviation is lower by an order of magnitude.  
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Figure 18: Validation MSE by number of hidden layers  

 

For this particular task, it is evident that a two hidden layer ANN is a superior metamodel 

than a single hidden layer ANN of similar complexity. It is worth nothing that the 

simulations here are essentially deterministic with very little uncertainty. It remains to be 

seen if similar conclusions would hold if the simulations were much noisier. 

 

4.5 Metamodel Selection 

An ANN metamodel was trained using the two hidden layer, seven hidden nodes per 

layer architecture using simulation results based on product mix 1 (see table 5). The trace 

of MSE during training is found in Appendix D. The validation MSE for this ANN is 

0.00011, which is very close to the target MSE of 0.0001. A histogram of the error in Fig. 

19 shows that for the majority of samples, absolute error is within the desired bound of 

1%.  
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Figure 19: Error histogram for two hidden layer ANN structure 

 

Thus, this is the ANN used for analysis in Chapter 4.7.  

 

4.6 Comparison by Training Algorithm 

To select the best training algorithm for the task at hand, a structure with two hidden 

layers and seven hidden nodes at each layer is used for all runs, except the runs with 

evolving topology (NEAT).  

 

At each hidden node, a logistic activation function is used (see Eq. 5). For this study, ten 

runs were completed using RPROP+, SCG, LM, and BFGS, while two runs were 

performed for GA and NEAT. At the start of each run, all weights and biases are 

randomly assigned. The stopping condition for the GA and NEAT algorithms is 1,200 
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seconds of computation time, while the other algorithms stop training when the test MSE 

begins to rise. The implementation of the GA and NEAT in ENCOG is used for 

comparison with implementations of RPROP+, BFGS algorithm, and the LM algorithm 

in MATLAB.  

 

Table 19: Training algorithm experiment results  

Training 

algorithm 

Iterations Time(s) Training MSE 

(MSET) 

Validation MSE 

(MSEV) 

Parameter settings 

LM 139(34) 22(7) 1.10E-4(3.57E-5) 1.18E-4(7.12E-5) MATLAB default 

BFGS 360(85) 21(6) 3.33E-4(1.11E-4) 3.40E-4(9.66E-5) MATLAB default 

RPROP+ 781(298) 5(2) 3.80E-4(8.10E-5) 4.18E-4(1.01E-4) MATLAB default 

SCG 383(128) 5(2) 4.58E-4(1.76E-4) 4.69E-4(1.80E-4) MATLAB default 

GA1 77 1,200 3.80E-04 3.53E-04 Mutation rate = 0.1 

Crossover rate = 0.0025 

GA2 52 1,200 7.02E-04 6.60E-04 Mutation rate = 0.1 

Crossover rate = 0.0025 

NEAT1 6 1,200 1.52E-02 1.54E-02 Population size = 10 

NEAT2 15 1,200 6.27E-03 6.37E-03 Population size = 10 

 

It is clear from the results in Table 19 that the evolutionary training algorithms are less 

efficient for this task than gradient-based or second-order training algorithms. Perhaps if 

training had been allowed to continue, the NEAT approach would have achieved 

similarly low MSE, albeit much more slowly than the others. However, the GA training 

approach has a validation MSE in the same order of magnitude as the other approaches. 

Still, the GA algorithm takes much longer to train, and therefore it is inferior to the 

gradient-based or second-order training methods in its current implementation. Another 

approach could have been to define a structure using the NEAT approach and then use a 

gradient-based approach to train the network. Validation MSEs for the RPROP+, SCG, 

LM, and BFGS algorithms are shown as box plots in Fig. 20.  

 



76 

 

 

Figure 20: Validation MSE for gradient-based and second-order algorithms 

 

The LM algorithm is far superior to the BFGS, RPROP+, and SCG algorithms in terms of 

validation MSE. The LM also has a smaller sample standard deviation, indicating that it 

is also less dependent on the starting conditions. The LM algorithm achieves its 

impressive performance with fewer iterations than the other algorithms, but these 

iterations take longer to complete. Thus, computation time per run (rather than per 

iteration) is compared on the box plot in Fig. 21.  

 

 

Figure 21: Validation MSE for gradient-based and second-order algorithms 
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RPROP+ and SCG have an advantage in computation time over LM and BFGS when you 

consider how the length of time required to reach the stopping criterion. However, this 

advantage does not sufficiently compensate for the inferior validation MSE results, 

especially when each run takes less than a minute. For this task, the LM algorithm is 

sufficiently fast and clearly outperforms the other algorithms. However, care should be 

taken when selecting the LM algorithm as the number of connections in the ANN – the 

amount of memory required by the LM algorithm rises proportionally to the square of the 

number of connections. This is not an issue for the chosen network structure since this 

number is quite small. 

 

4.7 Neural Network Metamodel Results 

Once the ANN has been trained using the network structure specified in chapter 4.6, the 

ANN is then used for further analysis. In previous work, MacDonald and Gunn (2011) 

used exchange curves to evaluate the trade-offs between two competing performance 

measures. For example, inventory levels may be considered against reorder quantities, 

throughputs, or other variable which have competing values. However, for this system, 

inventory and staffing costs are insignificant compared to the value of producing 

additional throughput, so exchange curves do not help to determine production 

parameters. Instead, a simulated annealing algorithm [see Kirkpatrick et al. (1983) for 

original work, Bertstimas and Tsitsiklis (1994) for a description of the method and its 

behaviour] is used to generate solutions, and then the feasibility and accuracy of these 

solutions are assessed. Simulated annealing is a search technique for finding solutions 

that uses local improvement procedures, can escape local minima/maxima, and has the 

larger strategic purpose of performing a robust search of solution space (Gendreau and 

Potvin 2010). The ANN is used as the objective function to evaluate generated solutions 

and the neighbouring structure. 

 

Using a simulated annealing algorithm directly for each of the 25 input parameters will 

not lead to converging solutions across runs due to the size of the search space. However, 

it is possible to fix some of the inputs to reduce the size of the search space. Consider in 
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inventory control, the economic ordering quantity Q is proportional to the square root of 

demand, D, as seen in Eq. (8). 

 

𝑄 =  √𝑊𝐷                       (8) 

 

In this equation, W is a problem-specific parameter composed of costs. Using this 

principle, the stock level for each product code in the TK is assumed to be approximately 

proportional to the square root of the demand for that product in curing, although other 

possible rules could have been used to generate alternative tables. Under this assumption, 

all of the stock levels can be controlled by a single parameter, Stock_level, as seen in 

Table 20. The value of the variable Stock_level is an index to point to a set of maximum 

stock levels for products in the TK. Values are rounded to the nearest integer. 

 

Table 20: Stock level variable for simulated annealing  

Stock_level 1 2 3 4 5 6 7 8 9 

Max stock, P1 8 10 11 12 13 14 15 16 17 

Max stock, P2 6 7 8 9 9 10 11 12 12 

Max stock, P3 6 7 8 9 9 10 11 12 12 

Max stock, P4 5 5 6 7 7 8 9 9 10 

Max stock, P5 5 6 7 7 8 9 9 10 10 

Max stock, P6 5 6 6 7 7 8 9 9 10 

Max stock, P7 4 4 5 5 5 6 6 7 7 

Max stock, P8 5 6 6 7 8 8 9 10 10 

Max stock, P9 5 5 6 6 7 8 8 9 9 

Max stock, P10 3 4 4 4 5 5 5 6 6 

Max stock, P11 6 7 8 8 9 10 11 11 12 

Max stock, P12 6 6 7 8 8 9 10 10 11 

TK max stock 64 73 82 89 95 105 113 121 126 

 

Restricting the stocks levels in this manner, possibly considering a few alternative ways 

of constructing the stock level table could have been done as part of the LHD to simplify 

the ANN training task. The first 13 parameters described in table 13 could have been 

replaced with two variables, one for the stock levels themselves and another for the 

choice of which method is used to generate the stock levels.  The ANN would have been 

likely to be much more accurate in the search region where the maximum stock levels of 
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each product are approximately proportional to each other. It is preferable to restrict stock 

level parameters in some way for future ANN experiments. Regardless of the technique 

used to reduce the search space, simulated annealing can now be used to search the 

region for the best solution. Initially, when the search space was not limited, the 

simulated annealing algorithm failed to converge. In the following experiment, when the 

search space was limited, the results improved significantly.  

 

Twenty simulated annealing runs were carried out with random initial conditions. The 

parameter for the number of empty TK slots was fixed at 0, and a single parameter was 

used for stock levels as illustrated in Table 20. The parameters for changeover policy, 

number of operators, shared operators, and operator behaviours were free to change 

across their specified ranges. The simulated annealing algorithm considered neighbouring 

solutions to be any two solutions where only one parameter differs anywhere in its range. 

Thus, in the simulated annealing algorithm, only one parameter can be changed at a time. 

The pseudocode for the simulated annealing algorithm is found in Fig. 22. The full 

MATLAB code is found in Appendix F along with a table containing all of the 

experiment results. 

 

 

Figure 22: Pseudocode for the simulated annealing algorithm  

 

A summary of the experiment results is shown in Table 21 below. 
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Table 21: Summary of simulated annealing runs  

 Stock 
Parameter 

Changeove
r Policy 

Operator 
behaviour 

Shared 
operators 

Machine A 
operators 

Machine B 
operators 

Curing 
operator 

breaks 
covered 

Range 1-9 1-5 1-3 0-1 4-10 4-9 0-1 

Most 
common 
occurrence 

1 4 1 1 10 5 1 

Count of 
most 
common 
occurrence 

20 20 20 20 9 9 19 

 

Each of the simulated annealing runs converged to similar solutions. The main difference 

between runs is the number of machine A and machine B operators. All twenty runs 

ended with the stock level parameter set to a value of 1. This indicates that lower stock 

levels in the TK are preferred. This is a sensible result, since with lower stock levels, the 

TK cycle time is reduced and the production line runs more smoothly. However, lower 

stock levels may be a concern if variation is introduced in MProd-building or in curing, 

due to a higher probability of stock outs in the TK. This is probably why the most 

efficient curing operator behaviour and shared operators in MProd-building are preferred 

for all twenty runs. In addition, covering the breaks of curing operators is preferred for 

19/20 runs. These parameter choices reduce the variation in the system, and they appear 

to be preferred along with lower stock levels to achieve the best results.  

 

Another interesting result is that while a higher number of machine A and machine B 

operators appears to be preferred, the ANN metamodel does not necessarily select the 

maximum number of operators each time. This is probably because an operator is not 

needed for each machine, so the ANN is unable to identify exactly how many operators 

are ideal because it does not matter once the total number of operators reaches a certain 

value. The total number of operators between machine A and machine B is exactly 15 for 

all twenty runs. The results indicate that even though there are 19 machines to operate, 

only 15 operators are required for the production line to operate at full capacity.  
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The simulated annealing runs gave an average daily throughput of 479.19 MProds with a 

sample standard deviation of 0.075 MProds. Considering that the maximum observed 

average daily throughput for all of the 7,986 sample simulation runs was 483 MProds, the 

results appear to be both realistic and useful. If the stock levels had not been restricted, 

perhaps the simulated annealing algorithm would have been able to find better solutions. 

However, it would have been less likely to converge across runs. A direction for future 

research could be to examine whether restricting stock levels at the experiment design 

stage would improve ANN accuracy in these regions of interest. Further, it would be 

worthwhile to examine several different approaches to restricting stock levels in the TK. 

In this thesis, stock levels are chosen to be proportional to the square root of demand. 

However, linearly proportional stock levels would be another option. Minimum inventory 

levels could have also been established, which could be a third way to develop a stock 

level policy. 
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Chapter 5: Conclusion 

In this thesis, two closely related discrete-event simulation models are developed using 

SimPy and Python. The first detailed model is used to evaluate the capability of the MHS 

of a production line with five anticipated future production configurations. The 

limitations of the current system are outlined and several opportunities for improving 

daily throughput are identified.  The second simulation model adds additional detail to 

the build process and uses the PAC System to impose production control on the line. The 

object-oriented simulation model is built to allow changes to machine programmable 

logic, machine interaction effects, operator behaviours, and changeover policies.  

 

An ANN is then trained as a simulation metamodel. ANNs are a powerful tool for the 

metamodelling of complex simulations; however, care must be taken in the design of 

experiments to maximize the usefulness of the metamodel. In this case, by concentrating 

the samples in the regions of interest, carefully determining the ANN structure, and 

selecting a strong training algorithm, a sufficiently accurate metamodel was trained using 

simulation data. When considering how to structure an ANN for simulation 

metamodelling, this work demonstrates that it is important to consider validation MSE, 

the risk of overtraining, and real world requirements. If the number of hidden nodes is too 

low, the structure of the ANN will not be sufficiently complex for accurate training. 

Conversely, too many hidden nodes lead to overtraining and rapidly diminishing returns 

on computational time. It has been demonstrated that for this real-world task, an ANN 

structure with two hidden layers is superior to an ANN structure with a single hidden 

layer using an approximately equal number of connections. 

 

Using the trained ANN as the objective function, simulated annealing is used to search 

the input space for strong input parameters. The results of the twenty simulated annealing 

runs tended to converge to similar results for all runs, indicating that a global maximum 

result has likely been achieved. This result indicates a preference for parameters that 

could help to guide production decisions in the real system.  
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This research has expanded the knowledge of the capabilities and applications of neural 

networks as metamodels, an area that has been of significant interest to members of the 

Department of Industrial Engineering (MacDonald and Gunn 2011). Additionally, the 

Department has gained further insight into the power of designing a simulation model 

using Python, SimPy, and open source visualization tools.  This work has been an 

opportunity to apply concepts of production control systems generated by the application 

of the PAC System to the production line under study. This is one of the first actual 

applications that we are aware of.  

 

From the perspective of the manufacturing company, this work has contributed 

significantly to company knowledge of discrete event simulation modelling. Prior to this 

work, opportunities to apply simulation modelling were not always recognized because 

the modelling effort was not fully embedded in their actual production control and design 

decision processes. Now, as a result of this work, a group of engineers has been 

established to continue to apply simulation to other production lines and processes at the 

manufacturing facility. The company has gained insight into how simulation adds to the 

knowledge of current processes; instead of being focussed on one manufacturing cell, to 

produce a detailed and accurate model the modeller must completely understand the 

entire production line. Throughout this project, unexpected opportunities for 

improvement were identified and then subsequently quantified using the simulation 

model. These opportunities include: relocating the small metallic identifier placement 

process to tire-building, enhancing communication between tire-building and curing by 

establishing a production control system, establishing stock level targets for each product 

in the TK, managing the repair circuit, and improving the programmable logic of the TK. 

Research has demonstrated some of the value that simulation modelling presents, not just 

as a tool for analysis, but as an important part of continuously improving the efficiency 

and effectiveness of the production line.  

 

This work has outlined a complete framework for the optimization of production control 

parameters in a real manufacturing facility. It has been demonstrated that an ANN can be 

used as a simulation metamodel for specialized or complex manufacturing systems 
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controlled by the PAC System. Further, the work has shown how the metamodel can be 

used as the objective function for a simulated annealing search to determine production 

parameters for the line. While this is significant, there are several opportunities to 

improve upon and expand this body of work. 

 

Future research could investigate the effectiveness of several methods for fixing stock 

levels relative to one another before training and during the search process. It would be 

worthwhile to examine the impact of using screening experiments to select variables to 

use in the neural network. It would also be interesting to see whether using non-

deterministic travel times for the trolleys have any impact on simulation results. 

 

For similar work in the future, researchers may wish to try using the generated NEAT 

structures and applying gradient-based algorithms to those structures to see if these 

structures can produce a more accurate network. It would also be worthwhile to try 

adding additional layers to the neural network to determine at what stage the network 

begins to overtrain. Applying the entire methodology to additional product mixes is also a 

logical next step for research to continue. Researchers or engineers working with this 

model may wish to modify the number of process tags at each cell to accommodate 

production control systems other than the base stock system. The simulation model can 

be used to test changes to TK logic and functionality. The model could also be enhanced 

to include prep and to model customer demand. By adding new production mixes to the 

model, the simulation model can continue to provide guidance for future production 

decisions.   
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Appendix A: Comparison of Trolley A Demands 

When the simulation is in the first mode, it uses a discrete probability distribution to 

determine how likely it is that a MProd is produced during each 15-minute interval. The 

distribution is fitted using historical data. The discrete probability distribution is shown in 

Fig. A1 below. 

 

 

Figure A 1: Discrete probability distribution for tipper output  divided into 

15-minute intervals 
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Appendix B: TK Class Python Code 

 

class TK(object): 
    def __init__(self,env): 
        self.env = env 
        self.name = "TK" 
        self.count = 0 
 
        ## Define output job queue 
        self.outputJobs = [] 
        q.heapify(self.outputJobs) 
 
        ## Define all possible product stations. 0 means no TK pod, 
        ## 1 means an empty TK pod, and a tuple indicates a cover. 
        self.s = 
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 
        
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 
        
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 
        1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0] 
        self.sLift = 0 
 
        ## Define other important variables 
        self.position = 0 
        self.travelTime = TKTravelTimes 
        self.slotList_in = TKSlotPriority_in 
        self.slotList_out = TKSlotPriority_out 
        self.TBStatus = 0 
        self.wait1 = self.env.event() 
        self.process = env.process(self.main_lift()) 
        self.next_easy = False 
        self.outputrunning = False 
        self.efpjobs = 0 
        self.waitfortrolley = self.env.event() 
        self.waitforB = self.env.event() 
        self.res_pc = [0,0,0] 
        self.busytrolley = [False, False, False] 
 
        ## Define stat tracking variables 
        self.throughput = 0 
        self.workingtime = 0.0 
        self.downtime = 0.0 
        self.idletimeA = 0.0 
        self.idletimeB = 0.0 
 
        ## Set up heaps for each dim code 
        self.Tkheaps = [] 
        self.dimdict = {} 
        for i in range(len(g.dim_codes)): 
            self.Tkheaps.append([]) 
            q.heapify(self.Tkheaps[i]) 
            self.dimdict.update({g.dim_codes[i]:self.Tkheaps[i]}) 
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        if debug_TK: 
            print "TK initialized." 
 
        ## Set up priority options 
        if not useGUI: 
            self.p_output_covers = 1 
            self.p_input_covers = 2 
            self.p_output_TKpod = 3 
            self.p_input_TKpod = 4 
        else: 
            self.p_output_covers = v[55] 
            self.p_input_covers = v[56] 
            self.p_output_TKpod = v[57] 
            self.p_input_TKpod = v[58] 
 
        self.pdict = {} 
        self.pdict.update({self.p_input_covers:self.check_for_input_job}) 
        self.pdict.update({self.p_output_covers:self.check_for_output_job}) 
        
self.pdict.update({self.p_input_TKpod:self.check_if_input_TKpod_needed}) 
        self.pdict.update({self.p_output_TKpod:self.check_for_output_TKpod}) 
        self.ptaskdict = {} 
        self.ptaskdict.update({self.p_input_covers:self.do_input_job}) 
        self.ptaskdict.update({self.p_output_covers:self.do_output_job}) 

              
self.ptaskdict.update({self.p_input_TKpod:self.get_empty_TKpod_for_input
}) 

        
self.ptaskdict.update({self.p_output_TKpod:self.put_away_output_TKpod}) 
 
    def output_mechanism(self): 
        """ 
        TKpods with covers destined for pickup from trolleys E/F/P trigger 
        the output mechanism for repositioning. 
 
        After pickup, the output mechanism places the empty TKpod on the lower 
        shelf for pickup. 
        """ 
        self.waitfor126 = self.env.event() 
        self.waitfortrolley = self.env.event() 
        self.waitforself = self.env.event() 
        if self.outputrunning == True: 
            yield self.waitforself 
        self.outputrunning = True 
        ## Get in position for pickup 
        yield self.env.timeout(46/3600./speedfactor_TK) 
        ## Pickup 
        if self.trigger_trolleys_output() == True: 
            yield self.env.timeout(0.212/60./speedfactor_TK) 
        else: 
            yield self.waitfortrolley 
            yield self.env.timeout(0.212/60./speedfactor_TK) 
        ## Place empty TKpod on lower shelf 
        if debug_TK: 
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            print "%s - Trolley just picked from 
output."%(timify(self.env.now)) 
 
        yield self.env.timeout(20/3600./speedfactor_TK) 
        if self.s[g.lower_output_slot] != 0: 
            yield self.waitfor126 
        self.s[g.upper_output_slot] = 0 
        ## Tell the MS and TK that the output is available again 
        if debug_TK: 
            print "%s - Output ready for new cover."%(timify(self.env.now)) 
        try: 
            MS.wait1.succeed() 
        except RuntimeError: 
            pass 
        try: 
            self.wait1.succeed() 
        except RuntimeError: 
            pass 
        ## Finish placing TKpod 
        yield self.env.timeout(26/3600./speedfactor_TK) 
        self.s[g.lower_output_slot] = 1 
        try: 
            self.wait1.succeed() 
        except RuntimeError: 
            pass 
        try: 
            PriorityTrolleys[1].tkfullwait.succeed() 
        except RuntimeError: 
            pass 
        ## Go back to ready position 
        yield self.env.timeout(10/3600./speedfactor_TK) 
        self.outputrunning = False 
        try: 
            self.waitforself.succeed() 
        except RuntimeError: 
            pass 
 
    def main_lift(self): 
        """ 
        Primary TK logic stream. 
        """ 
        if dCell: 
            global direct 
 
        while True: 
            if debug_TK: 
                print "%s - Reprioritizing..."%timify(self.env.now) 
 
            if self.next_easy: 
                yield self.env.process(self.ptaskdict[self.p_input_covers]()) 
                continue 
 
            if self.pdict[1](): 
                yield self.env.process(self.ptaskdict[1]()) 
                continue 
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            if self.pdict[2](): 
                yield self.env.process(self.ptaskdict[2]()) 
                continue 
 
            if self.pdict[3](): 
                yield self.env.process(self.ptaskdict[3]()) 
                continue 
 
            if self.pdict[4](): 
                yield self.env.process(self.ptaskdict[4]()) 
                continue 
 
            ## If there are no jobs to do, wait until something changes 
            self.wait1 = self.env.event() 
            if debug_TK: 
                print "%s - TK is waiting..."%timify(self.env.now) 
            yield self.wait1 
            continue 
 
    def do_output_job(self): 
        job = q.heappop(self.outputJobs) 
 
        ## See if it's in the direct cell 
        if dCell and DC.MProd!=None and job[5][4][2] == DC.MProd[4][2]: 
            self.send_order_tags(job[3]) 
            direct = True 
            out_MProd = job[5] 
            ## Don't take a cover from the TK 
            q.heappush(TK.dimdict[job[3]], out_MProd) 
            ## Tell the trolley to go get the MProd 
            q.heappush(queue_Trolleys[job[4]],(job[0],job[1], 
            out_MProd[2],out_MProd[3], out_MProd[4])) 
            self.efpjobs += 1 
            self.res_pc[job[4]] += 1 
            self.trigger_trolleys(job[4]) 
            yield self.env.timeout(0.00000000001) 
 
        else: 
            ## If the trolley for the first job is unavailable, pick another 
job 
            if self.busytrolley[job[4]] == True: 
                job = self.choose_trolley_strategically(job) 
            self.send_order_tags(job[3]) 
            ## Go to the slot of the dim code requested using FIFO 
            out_MProd = job[5] 
            destination = self.next_dim_code_slot(job) 
            yield self.env.process(self.travel_to(destination)) 
            if debug_TK: 
                print "%s - New position: 
%d"%(timify(self.env.now),self.position) 
            ## Pick up the cover 
            yield self.env.process(self.unstore_cover()) 
            ## Tell the next trolley to come 
            q.heappush(queue_Trolleys[job[4]],(job[0],job[1], 
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            out_MProd[2],out_MProd[3], out_MProd[4])) 
            self.efpjobs += 1 
            self.res_pc[job[4]] += 1 
            self.trigger_trolleys(job[4]) 
            ## Transport cover to the output 
            yield self.env.process(self.travel_to(g.upper_output_slot)) 
            if debug_TK: 
                print "%s - New position: 
%d"%(timify(self.env.now),self.position) 
            ## Place cover on output 
            yield self.env.process(self.store_cover(1)) 
            self.env.process(self.output_mechanism()) 
            self.throughput += 1 
 
    def do_input_job(self): 
        ## Go to the input 
        yield self.env.process(self.travel_to(g.input_slot)) 
        if debug_TK: 
            print "%s - New position: %d"%(timify(self.env.now),self.position) 
 
        if self.TBStatus == 2: 
            yield self.env.process(self.post_input_TKpod_placement_logic()) 
        else: 
            ## Pick up the TKpod 
            yield self.env.process(self.unstore_cover()) 
            ## Transport it to nearest empty slot 
            destination = self.nearest_empty(g.upper_output_slot) 
            yield self.env.process(self.travel_to(destination)) 
            if debug_TK: 
                print "%s - New position: 
%d"%(timify(self.env.now),self.position) 
            ## Put it away 
            yield self.env.process(self.store_cover(self.sLift)) 
 
    def put_away_output_TKpod(self): 
        ## Go to the lower output cell 
        yield self.env.process(self.travel_to(g.lower_output_slot)) 
        if debug_TK: 
            print "%s - New position: %d"%(timify(self.env.now),self.position) 
        ## Get the empty TKpod 
        yield self.env.process(self.unstore_cover()) 
 
        if self.s[g.input_slot] == 0: 
            ## Travel to the input 
            yield self.env.process(self.travel_to(g.input_slot)) 
            if debug_TK: 
                print "%s - New position: 
%d"%(timify(self.env.now),self.position) 
            ## Place empty on input 
            yield self.env.process(self.store_cover(1)) 
            self.trigger_tb() 
            yield self.env.process(self.post_input_TKpod_placement_logic()) 
 
        ## Otherwise, bring empty TKpod to storage 
        else: 
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            ## Go to empty slot as specified by logic in self.nearest_empty 
            destination = self.nearest_empty(g.input_slot) 
            yield self.env.process(self.travel_to(destination)) 
            if debug_TK: 
                print "%s - New position: 
%d"%(timify(self.env.now),self.position) 
            ## Store TKpod 
            yield self.env.process(self.store_cover(1)) 
 
    def get_empty_TKpod_for_input(self): 
        ## Travel to empty TKpod according to logic in self.nearest_TKpod 
        destination = self.nearest_TKpod(g.input_slot) 
        yield self.env.process(self.travel_to(destination)) 
        if debug_TK: 
            print "%s - New position: %d"%(timify(self.env.now),self.position) 
        ## Get the empty TKpod 
        yield self.env.process(self.unstore_cover()) 
        ## Travel to the input 
        yield self.env.process(self.travel_to(g.input_slot)) 
        if debug_TK: 
            print "%s - New position: %d"%(timify(self.env.now),self.position) 
        ## Place empty on input 
        yield self.env.process(self.store_cover(1)) 
        self.trigger_tb() 
 
        yield self.env.process(self.post_input_TKpod_placement_logic()) 
 
    def check_for_input_job(self): 
        if self.TBStatus == 2 and self.s[g.input_slot] == 1: 
            return True 
        try: 
            int(self.s[g.input_slot]) 
            if self.s[g.input_slot] != 0 and self.s[g.input_slot] != 1: 
                print "Error 111" 
                raise AttributeError 
            return False 
        except TypeError: 
            ## Do input job if it exists 
            return True 
 
    def check_for_output_job(self): 
        if len(self.outputJobs) > 0 and self.s[g.upper_output_slot] == 0 and ( 
        self.efpjobs == 0): 
            return True 
        else: 
            return False 
 
    def check_for_output_TKpod(self): 
        if self.s[g.lower_output_slot] == 1: 
            return True 
        else: 
            return False 
    def check_if_input_TKpod_needed(self): 
        if self.TBStatus > 0 and self.s[g.input_slot] == 0: 
            return True 
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        else: 
            return False 
 
    def post_input_TKpod_placement_logic(self): 
        if self.TBStatus > 0: 
            self.waitforB = self.env.event() 
            ## Wait 20 seconds to see if TB shows up 
            self.env.process(self.release_lift()) 
            start_wait = self.env.now 
            yield self.waitforB 
            ## If it still hasn't shown up, do another job 
            if self.TBStatus == 1: 
                self.idletimeA+=self.env.now-start_wait 
            ## If it's here and unloading, be a little patient 
            elif self.TBStatus == 2: 
                self.waitforB = self.env.event() 
                yield self.waitforB 
                self.next_easy = True 
                self.idletimeA+=self.env.now-start_wait 
            else: 
                try: 
                    int(self.s[g.input_slot]) 
                except TypeError: 
                    self.next_easy = True 
                    self.idletimeA+=self.env.now-start_wait 
                else: 
                    print "Error 6719" 
                    raise AttributeError 
        else: 
            yield self.env.timeout(0.00000000001) 
 
    def next_dim_code_slot(self,job): 
        next_cover = job[5][4] 
        for i in range(len(self.s)): 
            try: 
                if self.s[i][4] == next_cover: 
                    return i 
            except TypeError: 
                continue 
        print next_cover 
        print "Error 423" 
        raise AttributeError 
 
    def nearest_empty(self,near_this_slot): 
        """ 
        Returns location of nearest empty TK slot to the slot specified. 
        """ 
        if near_this_slot == g.input_slot: 
            for i in self.slotList_in: 
                if self.s[i] == 0: 
                    return i 
            print "No empty slots found!" 
            raise AttributeError 
        elif near_this_slot == g.upper_output_slot: 
            for i in self.slotList_out: 
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                if self.s[i] == 0: 
                    return i 
            print "No empty slots found!" 
            raise AttributeError 
 
    def nearest_TKpod(self,near_this_slot): 
        """ 
        Returns location of nearest empty TKpod to the slot specified. 
        """ 
        if near_this_slot == g.input_slot: 
            for i in self.slotList_in: 
                if self.s[i] == 1: 
                    return i 
            print "No empty TKpods found!" 
            raise AttributeError 
        elif near_this_slot == g.upper_output_slot: 
            for i in self.slotList_out: 
                if self.s[i] == 1: 
                    return i 
            print "No empty TKpods found!" 
            raise AttributeError 
 
    def store_cover(self,job): 
        """ 
        Store a TKpod in one of the TK storage slots. 
        """ 
        p = self.position 
        if self.s[p] != 0: 
            print "Error 91" 
            raise AttributeError 
 
        elif self.sLift == 1: 
            self.s[p] = 1 
            self.sLift = 0 
        else: 
            try: 
                int(job) 
            except TypeError: 
                self.s[p] = (job[0],self.env.now,"out",job[3],job[4]) 
                self.sLift = 0 
                q.heappush(self.dimdict[job[3]],( 
                            job[0],self.env.now,"out",job[3],job[4])) 
                try: 
                    MS.wait2.succeed() 
                except RuntimeError: 
                    pass 
        if p == g.upper_output_slot: 
            self.s[p] = self.sLift 
            self.sLift = 0 
 
        time = random.triangular(17,18,20)/3600. 
        yield self.env.timeout(time/speedfactor_TK) 
        self.workingtime += time 
 
        if debug_TK: 
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            print "%s - TKpod stored at: 
%d"%(timify(self.env.now),self.position) 
 
    def unstore_cover(self): 
        """ 
        Remove a TKpod from the TK storage slot at the current position. 
        """ 
        p = self.position 
 
        if self.s[p] == 0 or self.sLift != 0: 
            print "Error 486", self.s[p], self.sLift 
            raise AttributeError 
 
        elif self.s[p] == 1: 
            self.s[p] = 0 
            self.sLift = 1 
 
        elif len(self.s[p]) > 1: 
            self.sLift = self.s[p] 
            self.s[p] = 0 
 
        else: 
            print "Error 486b" 
            raise AttributeError 
 
        if self.next_easy: 
            if p != g.input_slot: 
                print "next_easy error" 
                raise AttributeError 
            else: 
                time = random.triangular(10,11,12)/3600. 
                yield self.env.timeout(time/speedfactor_TK) 
                self.workingtime += time 
                self.next_easy = False 
        else: 
            time = random.triangular(17,18,20)/3600. 
            yield self.env.timeout(time/speedfactor_TK) 
            self.workingtime += time 
 
        if p == g.lower_output_slot: 
            try: 
                self.waitfor126.succeed() 
            except RuntimeError: 
                pass 
 
        if debug_TK: 
            print "%s - TKpod retrieved from: 
%d"%(timify(self.env.now),self.position) 
 
    def choose_trolley_strategically(self,job): 
        q.heappush(self.outputJobs, job) 
        qcopy = deepcopy(self.outputJobs) 
        for i in range(len(self.outputJobs)+2): 
            try: 
                job = q.heappop(qcopy) 
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                if self.busytrolley[job[4]] == True: 
                    continue 
                else: 
                    popped = [] 
                    for j in range(i+1): 
                        if j == i: 
                            job = q.heappop(self.outputJobs) 
                            for k in popped: 
                                q.heappush(self.outputJobs, k) 
                        else: 
                            popped.append(q.heappop(self.outputJobs)) 
                    break 
            except IndexError: 
                job = q.heappop(self.outputJobs) 
                break 
        return job 
    def trigger_trolleys(self,m): 
        if m == 0: 
            try: 
                TE.wait1.succeed() 
            except RuntimeError: 
                pass 
            try: 
                TE.wait2.succeed() 
            except RuntimeError: 
                pass 
            try: 
                TE.wait3.succeed() 
            except RuntimeError: 
                pass 
        elif m == 1: 
            try: 
                TF.wait1.succeed() 
            except RuntimeError: 
                pass 
            try: 
                TF.wait2.succeed() 
            except RuntimeError: 
                pass 
            try: 
                TF.wait3.succeed() 
            except RuntimeError: 
                pass 
        elif m == 2: 
            try: 
                TP.wait1.succeed() 
            except RuntimeError: 
                pass 
            try: 
                TP.wait2.succeed() 
            except RuntimeError: 
                pass 
            try: 
                TP.wait3.succeed() 
            except RuntimeError: 
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                pass 
    def trigger_trolleys_output(self): 
        a = False 
        try: 
            TE.waitforoutput.succeed() 
            a = True 
        except RuntimeError: 
            pass 
        try: 
            TF.waitforoutput.succeed() 
            a = True 
        except RuntimeError: 
            pass 
        try: 
            TP.waitforoutput.succeed() 
            a = True 
        except RuntimeError: 
            pass 
        return a 
 
    def release_lift(self): 
        yield self.env.timeout(10./3600.) 
        try: 
            TK.waitforB.succeed() 
        except RuntimeError: 
            pass 
    def trigger_tb(self): 
        try: 
            PriorityTrolleys[1].waitforinput.succeed() 
        except RuntimeError: 
            pass 
 
    def travel_to(self,end): 
        time = self.travelTime[self.position][end] 
        self.position = end 
        self.workingtime += time 
        yield self.env.timeout(time/speedfactor_TK) 
 
    def send_order_tags(self, dim): 
        PAC.orderTags[PAC.sTK].append(dim) 
        create_PA_cards(PAC.sTK,PAC.cBNS,dim) 
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Appendix C: Simulation Model User Guide 

This section is intended to provide instructions for installation, and provide an overview 

of the functionality of the simulation model. 

 

Setup 

The file “prod-v1.0.py” is the version of the simulation model that has been delivered to 

the client. There are two necessary accompanying files: “Interface.py” and “config.txt”. 

All three of these files should be in a .zip folder in the electronic files accompanying this 

thesis. If “config.txt” is missing, create it as a blank text file.  

 

The model has been designed for use with Python 2.7 on a Windows 7 machine; however 

it should still be functional using Macintosh and Linux operating systems. Several open 

source packages are required to run the model. These are: 

 

 SimPy 3.0.5 

 Numpy 

 Scipy 

 Matplotlib 

 PrettyTable 

 PyQt4 

 Several packages which come default with Python 2.7.6 

 All dependencies of the above packages 

 

Once all of the above packages are installed and working correctly, the simulation model, 

user interface, and animation will operate as designed. To install Python, download the 

installer at this URL: https://www.python.org/download/releases/2.7.8/ and follow the 

installation instructions for your machine. Configure your machine so that ‘python’ is a 

path variable (see https://docs.python.org/2/using/windows.html). Then, install pip from 

here: https://pip.pypa.io/en/latest/installing.html. Pip will make it much easier to install 

the packages that are needed to run the simulation model. For example, to install the 

https://www.python.org/download/releases/2.7.8/
https://docs.python.org/2/using/windows.html
https://pip.pypa.io/en/latest/installing.html
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latest version of SimPy, all that is needed is to open the command line and type ‘pip 

install simpy’. Most packages will install this way, but if there is an error, please refer to 

the documentation for the specific package for detailed instructions.  

 

Operation 

Settings in the simulation model can be modified either through a user interface or 

directly in the Python code. It is recommended that the user interface is used to modify 

settings unless the user is a strong programmer. Modifying the source code may affect 

simulation results. To turn on the user interface, change the value of the global variable 

“useGUI” on line 53 to True.  

 

Settings are distributed between six tabs in the user interface. These screens are shown in 

the proceeding diagrams, although they have been redacted to preserve confidentiality. 

Hovering the mouse over each setting in the user interface will show a tooltip with a 

description of the setting and occasionally some recommendations for ranges. 

 

On the first tab shown in Fig. C1, it is important to select which simulation model is 

desired. Select either the mode for analyzing maximum throughput, or the mode which 

includes Machines A and B, and uses the PAC Coordination System. Also in this tab: 

 

 Number of replications: A higher number of replications will make results more 

statistically significant. 

 Warm-up period: It is recommended to use a warm-up period of at least 4 days. 

 Time per replication: Days per replication. This must be larger than the warm-up 

period to get statistical results. Anywhere from 2 weeks to 6 weeks is reasonable. 

 Direct cell on/off: Should reduce the utilization of the TK 

 Repair circuit on/off: Repair operator services defective MProds immediately 

when the repair circuit is off. 

 

 



106 

 

  

Figure C 1: First tab from the simulation user interface  

 

Another important setting is on the second tab, shown in Fig. C2. Here, the user should 

select whether or not the animation is enabled. Also in this tab: 

 

 Animation speed: Speed up or slow down the animation 

 Animation update interval: Change how often the animation updates 

 Plotting interval: Change how frequently data is recorded for plots 

 General debugging on/off: Toggles text debug for trolleys, curing machines 

 Repair circuit debugging on/off: Toggles text debug for repair operations 

 Extended statistics printing on/off: Toggles text debug for statistics tracking 

 TK debugging on/off: Toggles text debug for the TK 

 Production control and machine groups A and B debugging on/off: Toggles text 

debug for machines A, B, and PAC System 
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Figure C 2: Second tab from the simulation user interface  

 

On the third tab, it is necessary to select a production mix. By default, there will not be a 

production mix selected. If there are no production mixes in the “config.txt” file, the user 

must fully specify and save a new production mix. Once a production mix has been 

specified, and all other simulation settings are set as desired, click the “Start Simulation” 

button in the bottom left. This will begin the simulation. Figure C3 shows a correctly 

specified production mix. Instructions are included in the scroll box on the left side of the 

tab.  
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Figure C 3: Third tab from the simulation user interface  

 

The settings in the fourth tab are: 

 Machine efficiency for each machine: Increasing efficiency will speed up 

machines. Decreasing will slow them down. 

 Operator efficiency for each operator type: Increasing efficiency will speed up 

operators. Decreasing will slow them down. 

 Operator breaks covered: If operator breaks are not covered, curing press 

operators will go for lunch breaks, leaving presses unattended. 

 Operator behaviour: Alter the behaviour of curing press operators 
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Figure C 4: Fourth tab from the simulation user interface  

 

 

The settings in the fifth tab are: 

 TK capacity: Lowering this will keep the TK less full.  

 Number of empty slots in the TK: A number from 1 to 10 is reasonable here. This 

effectively reduces the capacity of the TK 

 Initial stock in the TK: Lowering this will keep the TK less full. This setting is 

locked because it serves the same purpose as the TK capacity setting. 

 Batch size: Issue PA cards in batches of this size. 

 Machine A/B Setup: Set process times and changeover times for each machine 

 Number of operators: Set number of operators for machines A and B 

 Changeover policies: Select a different changeover policy for machines in 

machine bank A 
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Figure C 5: Fifth tab from the simulation user interface  

 

The settings in the sixth tab are: 

o TK logic: Change the priorities of the TK 

o Number of pre-cure cells per line: Six is the default value.  
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Figure C 6: Sixth tab from the simulation user interface  

 

When the simulation is complete, statistics will be outputted in the Python Interpreter 

window or in the command line. It is recommended to use the Interpreter window, 

because tables do not format well in the command line. Only statistics from the most 

recent replication are displayed for individual machines, although the daily throughput 

numbers for each replication are displayed above the first table as a list in square 

brackets. The tables at the bottom of the output display some run settings, as well as 

confidence intervals on several key parameters across all replications. 
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Appendix D: Select Trace Plots of Training Runs 

In this section, select trace plots are shown for neural network training runs. 

 

 

Figure D 1: Training trace plot for one hidden node  
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Figure D 2: Training trace plot for three hidden nodes 
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Figure D 3: Training trace plot for five hidden nodes 
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Figure D 4: Training trace plot for ten hidden nodes 
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Figure D 5: Training trace plot for 25 hidden nodes 
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Figure D 6: Training trace plot for 50 hidden nodes 
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Figure D 7: Trace plot for training with two hidden layers, seven hidden 

nodes per layer 
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Appendix E: Trace Plots for Determining Appropriate Warm-

Up Period 

In this section, three trace plots of the stock level in the TK are shown under different 

scenarios to show how the production rate in MProd-building and production rate in 

curing affect TK stock levels in the transient period of the simulation. In Fig. E1, MProd-

building can produce MProds at a higher rate than curing, so there is a fairly steady stock 

level in the TK almost immediately. In Fig. E2, MProd-building can produce MProds at a 

very similar rate as curing. In this scenario, the stock level does not become steady for 

several days. In Fig. E3, curing can out-produce MProd-building, so the TK achieves a 

steady stock level quickly. 

 

Figure E 1: TK stock level is shown as a function of simulation hours. 

MProd-building easily keeps pace with curing demand, resulting in a short 

warm-up period. 



120 

 

 

Figure E 2: TK stock level is shown as a function of simulation hours. 

MProd-building barely keeps pace with curing, resulting in a longer warm -up 

period. 
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Figure E 3: TK stock level is shown as a function of simulation hours. 

MProd-building cannot keep pace with curing demand, resulting in a short 

warm-up period. 
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Appendix F: Simulated Annealing Code and Full Results 

The results from the simulated annealing runs are shown in full in the table below. The 

code which was used to generate solutions is included after the results. 

 

Table F 1: Full simulated annealing results  

Stock 
Paramet
er [1-9] 

Changeov
er Policy 
[1-5] 

Operator 
behaviour 
[1-3] 

Shared 
operators 
[0-1] 

Machine A 
operators 
[4-10] 

Machine B 
operators 
[4-9] 

Curing 
operator 
breaks 
covered 
[0-1] 

Output 

1 4 1 1 8 7 1 -0.98568 

1 4 1 1 10 5 1 -0.9859 

1 4 1 1 10 5 1 -0.9859 

1 4 1 1 10 5 1 -0.9859 

1 4 1 1 8 7 1 -0.98568 

1 4 1 1 9 6 1 -0.98575 

1 4 1 1 7 8 1 -0.98496 

1 4 1 1 10 5 1 -0.9859 

1 4 1 1 10 5 1 -0.9859 

1 4 1 1 10 5 1 -0.9859 

1 4 1 1 10 5 1 -0.9859 

1 4 1 1 9 6 1 -0.98575 

1 4 1 1 9 6 1 -0.98575 

1 4 1 1 7 8 1 -0.98496 

1 4 1 1 8 7 1 -0.98568 

1 4 1 1 10 5 1 -0.9859 

1 4 1 1 8 7 0 -0.98554 

1 4 1 1 9 6 1 -0.98575 

1 4 1 1 10 5 1 -0.9859 

1 4 1 1 8 7 1 -0.98568 
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function y = simanneal() 
    % Load in trained network 
    load('netonly.mat', '-mat'); 
    net = net; 

     
    % Set up other preliminaries 
    stockDict =[8   10  11  12  13  14  15  16  17 
            6   7   8   9   9   10  11  12  12 
            6   7   8   9   9   10  11  12  12 
            5   5   6   7   7   8   9   9   10 
            5   6   7   7   8   9   9   10  10 
            5   6   6   7   7   8   9   9   10 
            4   4   5   5   5   6   6   7   7 
            5   6   6   7   8   8   9   10  10 
            5   5   6   6   7   8   8   9   9 
            3   4   4   4   5   5   5   6   6 
            6   7   8   8   9   10  11  11  12 
            6   6   7   8   8   9   10  10  11]; 

  

       
    % Initialize SA 
    vars = [randi([1 9]) randi([1 5]) randi([1 3]) randi([0 1])... 
        randi([4 10]) randi([4 9]) randi([0 1])]; 
    varmax = [9 5 3 1 10 9 1]; 
    varmin = [1 1 1 0 4 4 0]; 
    w = vars; 
    evaluate(w); 
    output_w = output; 
    bestw = w; 
    bestoutput = output_w; 
    k = 0; 
    T = 0.50; 
    for tk = 1:200 
        for v = 1:7 
            for m = 1:5 
                if output_w < bestoutput 
                    bestw = w; 
                    bestoutput = output_w; 
                end 
                wp = w; 
                wp(v) = randi([varmin(v) varmax(v)]); 
                evaluate(wp); 
                output_wp = output; 
                if output_wp < output_w 
                    output_w = output_wp; 
                    w = wp; 
                elseif rand < exp((output_w-output_wp)/T) 
                    output_w = output_wp; 
                    w = wp; 
                end 
            end 
            T = 0.93*T; 
        end 
    end 

     
    y = horzcat(bestw, bestoutput); 
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    function evaluate(soln) 
        % Evaluate ANN 
        mix = stockDict(:,soln(1)); 
        mix = transpose(mix); 
        mix = (mix-3)/32.; 
        changeover = [0 0 0 0 0];  
        changeover(soln(2)) = 1; 
        behaviour = [0 0 0]; 
        behaviour(soln(3)) = 1; 
        sharedops = [soln(4)]; 
        ops1 = [soln(5)]; 
        ops1 = (ops1-4)/6.; 
        ops2 = [soln(6)]; 
        ops2 = (ops2-4)/5.; 
        opsbreaks = [soln(7)]; 

         

         
        input = transpose(horzcat(mix,[0],changeover,... 
            sharedops, ops1, ops2,behaviour, opsbreaks)); 
        output = -net(input); 
    end 

     
end 
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Appendix G: Process Maps of Major Model Classes 

In this section, the programmed flows of the major classes in the simulation model have 

been represented as process maps. While the process maps are fairly high level, the 

purpose of the maps is to show how these classes operate in the context of the model, not 

to exhaustively list all of the variable changes or interactions between classes. The classes 

that are excluded from this section are not relevant to the operation of the production line, 

and instead support other model functionalities, such as animation or statistical tracking.  

 

The classes in this section are as follows: 

 Machine_A 

 Machine_B 

 Trolley_A 

 Trolley_B 

 Repair_Operator 

 TK 

 Monorail_System 

 TrolleyEFP 

 Inspector 

 Curing_Chariot 

 Curing_Machine 

 Curing_Press_Operator 

 

Figure G 1 shows the programmed logic of the Machine_A class in the simulation model. 

When a PA card arrives for an instance of Machine_A for which the relevant product 

code is ready to be built, then if there is space on the tree and an operator is available, 

construction of the carcass begins immediately. If there is not space on the tree or if there 

is no available operator, the machine waits until both of these conditions are met. If there 

are no PA cards for the relevant product code and the machine is idle, then a product 

change may take place if conditions are met. 
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Figure G 1: Machine_A Process Map 
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The programmed logic of Machine_B in Fig. G2 is similar to the logic of the Machine_A 

class, except that a carcass must be available to begin the process. Instead of checking for 

space on a tree, instead there must be space on the tipper sling before construction begins.  

 

Change dimensions

PA cards?
Changeover 
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Wait for PA cards
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Construct cover
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No

Update PAC 
parameters

 

 

Figure G 2: Machine_B Process Map 
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The programmed logic of Trolley_A in Fig. G3 shows how trolley A takes jobs from its 

queue then travels to pick up the cover. It can only approach the scales when trolley B is 

not at the scales. Additionally, there must be space at the scales, otherwise trolley A will 

remain idle until space is cleared. 

Job in queue?

Travel to 
appropriate tipper

Pick up cover

Go near scales

Trolley B at 
scales?

Drop cover on scales

Space at scales?

Move to resting 
position, wait for job

Wait for trolley B to 
clear area

Wait for trolley B to 
remove a cover

No

Yes

No

Yes

No

Yes

 

 

 

Figure G 3: Trolley_A Process Map 

 



129 

 

The programmed logic of Trolley B in Figure G4 is more complex than Trolley_A. When 

a job is selected from the queue, the type of job must be determined. If the job is from the 

scales, then trolley A must be clear of the area. If the job is from the repair area, then the 

cover must be picked up in that location.  Once the MProd is picked up and there is space 

in the TK, then the trolley travels to the input, waits for an empty TK pod to be present, 

and drops off the MProd. However, if the MProd was defective, rather than proceeding to 

the TK, the trolley drops the MProd in the repair area. If there is no space in the repair 

area, the trolley waits for space to be cleared. Once the MProd is dropped in either the 

repair area or the TK, the next job is processed. 
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Figure G 4: Trolley_B Process Map 
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Occasionally the Repair_Operator class checks to see if enough MProds are defective to 

begin repairs. When this repair condition is met, the operator repairs covers at an interval 

determined by the necessity of forklifts, trolley B, and the complexity of the repair. 

 

Do other jobs

Repair condition 
met?

Repair cover

Need forklift?

Need trolley B?

No

Wait for forklift

Send job request to 
trolley B

More covers?Yes

No

Yes

Yes

No

Yes

No

 

Figure G 5: Repair_Operator Process Map 
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The programmed logic of the TK class in Fig. G6 follows the main stream of decisions 

represented by the decision blocks in the centre of the figure. If the TK is at the input and 

an input cover has arrived, then the TK does the input job, storing the cover in the nearest 

slot to the input. If instead, there is an output job in the queue, the TK will do this job 

first.  If the cover is already in the direct cell, then the TK returns to the beginning of its 

logic path. Otherwise, the TK travels to the oldest MProd that meets the product 

requirements, retrieves it, and delivers it to the output. After dropping off the TK pod and 

cover at the output, the parallel output process begins, where either trolley E, F, or P will 

pick up the MProd, at which time the empty TK pod is transported to the lower output 

slot by a separate mechanism. If there are no output jobs in the queue, and there is an 

input job in the queue, then the TK travels to the input, picks up the input cover once 

trolley B has dropped it off, and stores it in the empty slot nearest the input. The TK will 

only wait 20 seconds after arrival at the input for trolley B to arrive, after which it will 

return to the beginning of its logic path. If there are no input or output jobs in the queue, 

then the TK will remove an empty TK pod from the bottom of the output if it is present. 

The TK will store this TK pod in an empty slot, or preferably, on the output if it is empty 

and a cover is on its way. If there is no empty TK pod on the lower output slot, the TK 

will retrieve an empty TK pod from storage and place it on the output as part of the input 

job process. 
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Figure G 6: TK Process Map 
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The Monorail_System class in Fig. G7 acts as a queue manager for the TK. When there is 

space in pre-cure and no other output jobs in the TK queue, the job is sent to the TK. 
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Figure G 7: Monorail_System Process Map 
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The programmed logic of the TrolleyEFP class in Fig. G8 applies to trolleys E, F, and P. 

When there is a job in the queue, the trolley must determine if it is a job from pre-cure to 

curing or a job from the TK output to pre-cure. If the destination is curing, then the 

trolley picks up the cover from pre-cure, transports it to the chariot drop point, where it 

will wait until the chariot is in position for drop off. If the destination is pre-cure, the 

trolley first verifies that no other trolley is in the output area before travelling to the 

output, picking up the cover, and dropping it off in pre-cure. 
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Pick up cover, bring 
to open pre-cure 

slot

 

Figure G 8: TrolleyEFP Process Map 
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The Inspector class randomly selects covers to be rejected from pre-cure into the repair 

area. Inspections occur three times daily. 

 

Wait until next 
inspection time

Randomly select 
covers to need 

repair

Cover(s) need(s) 
repair?

Place cover(s) in 
repair area

Yes No

 

 

Figure G 9: Inspector Process Map 
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There are three instances of the Curing_Chariot class, one for each of the E, F, and P 

lines. The chariots wait for a job in the queue before travelling to the drop point and 

receiving a cover from either trolley E, F, or P. The chariot then travels to the appropriate 

curing machine where there is an exchange of cover for cured MProd.  

 

Wait for jobJob in queue?

Wait for trolley E, F, 
or P to drop cover

Bring cover to curing 
machine

Wait for curing 
machine to drop 

cured tire

Wait for curing 
machine to take 

cover

Yes

No

 

Figure G 10: Curing_Chariot Process Map 
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The programmed logic of the Curing_Machine class in Fig. G11 applies to all 30 

instances of the class in lines E, F, and P. Soon after beginning to cure a MProd, the 

curing machine informs the monorail system when curing will be complete. Curing 

continues, and at a fixed interval before curing is complete, the curing machine places a 

curing MProd request to either trolley E, F, or P. When the curing process is complete, 

the machine opens and the cured MProd is given to the chariot, once it has arrived. If the 

curing machine requires an operator, the operator is needed to begin the process of 

lowering the new cover into the curing machine. Once the cover is in place, the machine 

closes and the curing cycle begins again. 
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Begin curing MProd

Inform monorail 
system when curing 
machine will open 

next

Cure tire until it has 
X minutes remaining

Send command to 
trolley E, F, or P to 
bring in next cover 

from pre-cure

Finish curing MProd

Open

Wait for chariot to 
arrive and withdraw 

MProd

Wait for operator to 
press button for 
new cover to be 

dropped off

Manual?

Close

Wait for cover to be 
in place

 

Figure G 11: Curing_Machine Process Map 
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Each of the three programmed operator behaviours are found in the 

Curing_Press_Operator class in Fig. G12. Type 0 operators service presses immediately. 

Type 1 operators take 1 minute to react to and travel to the press before servicing it. Type 

2 operators wait for three open presses or ten minutes to pass since the first press has 

opened before servicing the presses. At this time, they do all jobs in the queue, including 

jobs that arrive while the operator is servicing presses.  

 

Operator type

Wait for job

Do job

Wait for job

Travel 1 minute to 
job

Do job

Wait for 3 jobs or 10 
minutes since first 

job

Do all jobs in queue

0

1

2

 

Figure G 12: Curing_Press_Operator Process Map 

 

 

 

 

 

 

 

 


