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ABSTRACT

The problem of massive fluid injection into a pre-existing fracture has many ap-
plications in petroleum industry including underground liquid waste disposal (e.g.,
hydraulic fracturing wastewater, supercritical CO2) and waterflooding to increase the
hydrocarbon recovery from a reservoir. Understanding the conditions leading to the
reactivation of pre-existing fractures and ensuing propagation is critical for a success-
ful injection project design, and it may also help to mitigate potential environmental
hazards, such as contamination of underground aquifers and induced seismicity.

Extensive analytical and numerical studies are carried out to quantify the tran-
sient pressurization and breakdown of a pre-existing fracture due to a fluid injection
in the context of unconventional hydraulic fracturing when the fluid diffusion can
vary over wide range of scales from 1-D to 2-D or 3-D. We establish the range of
the problem parameters and injection time when the fluid pressure is approximately
uniform along the crack. The pressure uniformity assumption allows for a simpler
and more accurate solution method (based on the Green’s function approach).

As the fracture is pressurized, the condition for the onset of propagation (the
breakdown condition) is eventually reached. We quantify how the breakdown depends
upon the problem parameters, such as fluid and rock properties, the in-situ stress,
and the fluid injection rate. The poroelastic effects on the transient pressurization
and initiation of the fracture in a critically over-pressured reservoir (i.e., when the
initial reservoir pore pressure p0 is approximately equal to the minimum confining
stress σ0) are also investigated. We show that the poroelastic effects will substantially
delay the breakdown time compared to the non-poroelastic case when the fracture
breakdown occurs at later stages of injection characterized by large-scale (2D) pore
pressure perturbation in the reservoir. Finally, we extend the analysis to the transient
pressurization of multiple fractures.

The results of this study are transportable to the production well test analysis of
a fractured well. The history of the transient pressurization prior to breakdown can
also be used to provide the initial conditions for the fracture propagation problem.

xi
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CHAPTER 1: INTRODUCTION

1.1 INJECTION OF A LOW VISCOSITY FLUID

The massive injection of a low viscosity fluid into a pre-existing fracture in permeable

rock has been practiced in the oil and gas industry for several decades. The injection

of water into a pre-existing fracture to displace the hydrocarbon toward the produc-

tion well [e.g., 1] or injection of petroleum related wastes (e.g., hydraulic fracturing

wastewater or CO2) into the deep geological underground formation for the purpose

of fluid storage [e.g., 2, 3] are among the most typical examples of injection of a low

viscosity fluid into fractured reservoirs. The injection of fluid into the underground

formation may cause the reactivation of pre-existing fractures and ensuing fracture

propagation.

One of the main challenges in mathematical modeling of hydraulic fracture reac-

tivation is to develop an appropriate model accounting for the massive fluid leak-off

into the formation. The problem of injection of a low viscosity fluid into a permeable

formation can be distinguished from conventional hydraulic fracturing (with gel-like

fluids) by the mechanism of fluid leak-off into the surrounding permeable rock. In

the latter, high viscosity and cake building properties of injected fluid limit leak-off

to a 1-D boundary layer incasing the crack [4, 5]. In the case of injection of low

viscosity fluid into a fracture, leak-off and related pore fluid diffusion will take place

over wider range of scales, from 1-D to 2 or 3-D necessitating a different approach

[6, 7, 8, 9]. Moreover, the high fluid leak-off and associated large-scale pore pres-

sure perturbation may significantly alter the mechanical properties of the formation

through the poroelastic effect [10].

Several studies have been performed to simulate the fracture propagation during

the injection of a low viscosity fluid in permeable rock. The complex nature of

1



mechanisms of interaction between fracture, fluid and rock during the fracture growth

had limited the simulation to numerical models [6, 11, 12]. Recent attempts have been

carried out to develop more universal analytical models [7, 8, 13]. In most approaches,

the mathematical modeling of fracture propagation was carried out assuming that

the fracture is initiated from a borehole [13, 9].

There are only a handful of papers investigating the transient pressurization of

a stationary and pre-existing fracture in permeable rock due to low viscosity fluid

injection. The history of the transient pressurization prior to breakdown can be used

to provide the initial conditions for the fracture propagation problem initiated from

a stationary and pre-existing fracture [e.g., 14].

An important class of pre-existing fractures is tensile joints that can occur in

underground formations due to various geological reasons [15, 16], one of which is

an excessive pore pressure in undercompacted rocks [17]. The pervasive existence

of subparallel arrays of tensile joints has been identified in a number of locations

[18, 19]. In elastic rock, joints are normally contained to specific bedding layers

and reach lateral dimensions many times their height [20]. On the other hand, the

previously induced, man-made hydraulic fractures constitute another class of pre-

existing fractures encountered during injection projects in depleted reservoir rock

formations.

1.2 OBJECTIVES AND ORGANIZATION OF THE RESEARCH

A comprehensive study is conducted to investigate the physical interaction between

the fluid, fracture and surrounding rocks during injection of a low viscosity fluid into a

pre-existing stationary fracture in a permeable rock. We mainly focus on modeling of

the reactivation of a pre-existing fracture when the viscous dissipation in the fluid flow

along the fracture is neglected. In other words, pressure is assumed to be uniform

along the fracture for the majority of the developed results. To substantiate the

2



pressure uniformity assumption in a non-propagating crack, we establish a parametric

range when the fluid pressure can be considered equilibrated along the fracture length.

The pressure uniformity assumption allows for a simpler and more accurate solution

method (based on the Green’s function approach).

The crack geometry in our study is assumed to be of the Perkins-Kern-Nordgren

(PKN) type [21]. Since the length of such a fracture is much larger than its height,

elastic response in any vertical section can be approximated by that of uniformly

pressurized plane-strain (Griffith’s) crack. Fracture height is assumed to span a

permeable (reservoir) layer sandwiched between impermeable (cap) rock layers.

In this study, two general reservoir conditions are considered. 1) A critically

over-pressured reservoir condition when the initial reservoir pore pressure p0 is ap-

proximately equal to the minimum confining stress σ0 (i.e., p0 � σ0). The pre-existing

crack in a critically over-pressured reservoir is initially mechanically-open. 2) A nor-

mal reservoir condition when the initial reservoir pore pressure p0 is smaller than the

minimum confining stress σ0 (i.e., p0 < σ0). In this case, the pre-existing fracture is

initially mechanically-closed.

The layout of the thesis is as following.

In Chapter 2, the mathematical formulation of the transient pressurization of a

non-poroelastic PKN crack due to fluid injection is presented. The basic assumptions

of the crack model are discussed.

In Chapter 3, the transient pressurization and initiation of a non-poroelastic

initially mechanically-open (or in a critically over-pressured reservoir) PKN crack are

quantified. We establish a criterion when the assumption of uniformly pressurized

crack is justified.

In Chapter 4, the mathematical formulation for a non-poroelastic fracture (Chap-

ter 3) is modified to account for the poroelastic effects. We investigate the poroelastic

effects on the transient pressurization and the onset of fracture propagation for an
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initially mechanically-open fracture.

In Chapter 5, we relax the assumption of an initially mechanically-open crack.

We consider the transient pressurization and breakdown of single non-poroelastic

initially-closed fracture, which can be either propped or not. The applicability of

uniformly pressurized assumption is again investigated. We also extend the analysis

to the pressurization of multi-fractured wells.

This study can improve the understanding of the physical processes involved

during the pressurization, breakdown and propagation of fractures in a permeable

and poroelastic medium.

1.3 BACKGROUND AND LITERATURE REVIEW

1.3.1 Background

The significant growth in global demand for natural gas and continuous decline of

conventional gas resources around the world encourage the investment into produc-

tion from unconventional gas reservoirs, such as tight sandstone, coal seams and

shale gas reservoirs. According to United States Energy Information Administration

(EIA) [22], in 2011 the shale gas resources represented 32 percent of natural gas

resources in the USA. These resources are also expected to significantly increase as

better geological information become available.

Due to the poor shale matrix permeability, gas production from these formations

usually requires special stimulation techniques. The primary technology extensively

used in petroleum industry to extract gas from shale formations is hydraulic frac-

turing. In this technique, a fluid is pumped from a borehole under high pressure to

create and propagate fractures in rock formation. These newly created conductive

channels may significantly improve the permeability of the formation [23].

The combination of horizontal drilling with hydraulic fracturing has revolution-

ized the shale gas industry. These technologies have increased shale gas production
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several fold and provided a greater access to difficult hydrocarbon resources. The

rapid development of shale gas formations has also brought controversy related to

potential environmental threats, which include the contamination of underground

water [24] and induced seismicity [25].

Hydraulic fracturing technique has been used in oil and gas industry for various

purposes. The first generation of hydraulic fracturing treatments aimed to bypass the

near-wellbore damage [23]. The latter is caused by the infiltration of the drilling-mud

in the vicinity of the wellbore leading to obstruction of the hydrocarbon flow [26, 27].

The hydraulic fracturing is used to bypass this zone by creating highly conductive

channels connecting the reservoir to the well. The application of hydraulic fractur-

ing technique was later extended to the tight gas formations (e.g., shales or tight

sandstone reservoirs)[23]. The purpose of hydraulic fracturing is not only bypass-

ing the damage zone. The massive fluid injection is used for creation of permeable

surfaces to increase the production from the tight gas reservoirs [23]. There are two

main types of fracturing fluids commonly used in the oil and gas industry. These are

the gel-like fluids and low viscosity fluids (e.g., slickwater). In the last two decades,

hydraulic fracturing using a low viscosity fluid has become mainstream in the shale

oil/gas developments.

The creation of hydraulic fractures during the injection of a low viscosity fluid

is not always desirable. The low viscosity fluid has been injected in subsurface for-

mations for various applications, such as disposals of industrial wastes (e.g., CO2,

hydraulic fracturing wastewater) to store the liquid wastes in proper underground

geological formations, or waterflooding processes to increase productivity from hy-

drocarbon reservoirs. In the latter, injection of the fluid at/above the fracturing

pressure is commonly considered to be a bad practice due to the potential environ-

mental risk associated with large injection volume for extended periods of time (e.g.,

contamination of underground water).
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The problem of the injection of a low viscosity fluid is significantly different from

a gel-like fluid injection in the mechanism of the fluid leak-off to the surrounding

formation. The latter is usually controlled by the nature of the injected fluid. For

example, during conventional hydraulic fracturing with a gel-like fluid, the mud cake

build-up properties of the gel will minimize the fluid loss to surrounding rock and

limit the related pore pressure diffusion to the vicinity of the fracture (i.e. the 1-D

diffusion). However, in the case of a low viscosity fluid injection, the leak-off and

related pore fluid pressure diffusion can take place over wider range of scales, from

the 1-D to 2 or 3-D.

1.3.2 Conventional hydraulic fracturing

1.3.2.1 Background

Hydraulic fracturing is performed by pumping a fluid through the annulus (wellbore)

under high pressure to create and propagate the fracture in rock formation. The

exposure of the fracturing fluid to the formation will cause the partial loss of the fluid.

With continuing the fluid injection, more permeable surfaces will be created until the

pumps are shut down. After the well shut-in, the “flowback” is typically performed

by lowering the pressure at the well in order to flow the fracturing fluid back to the

surface and “clean” the fracture. During the cleaning process, the net pressure along

the fracture is gradually reduced until the fracture becomes mechanically-closed. The

closure may significantly reduce the permeability of fracture. In order to prevent the

closure of fracture, propping agents mixed with the hydraulic fracturing fluid are

often used to hold the fracture open [23].

1.3.2.2 Hydraulic fracturing modeling

Since the early days when the concept of hydraulic fracturing was first introduced,

the mechanics of hydraulic fracturing has been progressively studied by many in-
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vestigators. The key issue is to accurately understand the interaction of the fluid,

fracture and the rock during the fracture propagation.

Early modeling

Following the pioneering work by Khristianovic & Zheltov [28] and Spence and Sharp

[29], many investigations were performed to construct rigorous analytical and numer-

ical solutions for simple fracture geometries. The most widely used fracture geometry

types are (Figure 1.1):

(1) KGD (Khristianovic, Zheltov, Geertsma, de Klerk) [28, 30] crack characterized

by infinite height such that any horizontal cross section is in the state of plane-strain

crack.

(2) Penny-shaped or radial crack.

(3) PKN (Perkins, Kern, Nordgren) crack, which assumes that the length of the

crack is much larger than its height [21]. These assumptions allow to approximate

any vertical section of the crack away from the fracture tips by that of a uniformly

pressurized plane-strain crack.

One of the seminal studies in the area of hydraulic fracture modeling was carried

out by Perkins and Kern [21] who studied the propagation of vertical fracture confined

between two impermeable layers. A solution that relates the fracture width to the

net pressure in fracture was constructed. They showed that the width of fracture at

any point along the fracture length is proportional to the net pressure at that point.

In their work, the exchange of the fluid with the surrounding rock (i.e., fluid leak-off)

was neglected. Nordgren [5] modified the work by Perkins and Kern by including the

fluid leak-off in the solution of the governing equations.

After Perkins and Kern [21] and Nordgren [5], the mathematical modeling of

conventional hydraulic fracturing has been extensively studied. The main objectives

of these investigations have been to evaluate the crack growth rate, fluid pressure

7



Figure 1.1: Simple fracture geometry shapes [31, 9].

evolution, and crack opening for various energy partition regimes. These limiting

regimes correspond to (i) viscosity-dominated regime when the energy required to

break the rock is negligible compared to viscous dissipation in the fluid, and (ii)

toughness-dominated regime when the fluid viscous loss along the fracture can be

considered to be negligible compared to the energy required to break the rock [32].

Advances in hydraulic fracturing modeling

A simplified mathematical model of crack propagation includes: 1) lubrication equa-

tion describing the flow of fluid in the fracture channel; 2) elasticity equation which

relates the deformation of the fracture to the net fluid pressure in the crack; 3) cri-

terion for fracture propagation. In case of fracture propagation in permeable rock,

the exchange of fluid with surrounding rock is also important.

The main mathematical challenges of the simultaneous solution of these equations

are: (i) the non-local behavior of elasticity, (ii) strong coupling between the lubrica-

tion equation and elasticity equation, and (iii) moving unknown problem boundaries;
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i.e., fracture and fluid fronts [33]. The solution of these equations can be used to

investigate the behavior at fracture tips, the far field region away from tips, and con-

struction of a boundary layer to match the near tip and far field regions for various

limiting propagation regimes [for the summary see, 32].

The difficulties involved in modeling of complex fracture geometries have limited

most of the studies to the simple fracture geometries where the fracture height is

specified or crack is assumed to be radial. However, the analysis of field data logs

shows that the fixed-height limitation may not always be representative of the actual

crack geometry. In other words, during hydraulic fracturing the fracture height may

grow before it is restrained [23]. The existing 3D models (e.g., 3D, Planar 3D and

Pseudo 3D model) accounting for fracture height growth attempt to address the pos-

sible limitations due to complex fracture geometry [12]. However, the mathematical

modeling of 3D fracture models still remains computationally intensive.

1.3.3 Unconventional hydraulic fracturing

By definition, hydraulic fracturing treatment using a low viscosity fluid (e.g., CO2

or “slickwater”) to drive the fracture in permeable formation is usually referred to

as unconventional hydraulic fracturing. This term is used to differentiate between

unconventional and conventional hydraulic fracturing. During conventional hydraulic

fracturing, a high viscosity fluid with the cake build-up property is used to propagate

the fracture, which helps to limit fluid losses to the surrounding rock; whereas in case

of unconventional hydraulic fracturing, no cake buildup is expected to form, and fluid

leak-off is not constrained.

Unconventional hydraulic fracturing is widely used in stimulation of the tight

formations in the last two decades. A typical fracturing fluid used to initiate and

propagate a hydraulic fracture in tight formations is “slickwater” which is primarily

composed of water. Additional chemicals can also be added to the water to provide
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other benefits to the fracturing process, one of which is reducing the friction of the

water in the pipe.

Unconventional hydraulic fracturing may also accidentally happen in many ap-

plications in the oil and gas industry where the fracturing is usually considered to be

undesirable. For example, injection of fluid above the fracturing pressure during the

underground disposal of industrial wastes is considered to be a bad practice.

One of the most typical wastes associated with petroleum industry is the wastew-

ater generated from hydraulic fracturing and produced (formation) water. With

the boom in shale gas production, the proper disposal of wastewater from hydraulic

fracturing has become one of the greatest challenges of the shale gas industry. The

amount of water required to drill a horizontal well in shale formations is estimated

to be 3 to 5 million gallons of water. The latter is estimated based on the 1500 hor-

izontal wells drilled in Marcellus shale, Pennsylvania [34]. Depending on geological

environment, 10 to 30 percent of the wastewater will be recovered. For example,

according to US Department of Environmental Protection (DEP), the shale gas in-

dustry produced 235 million gallons of wastewater from Marcellus shale in the second

half of 2010 [34].

Although the wastewater can be treated on the surface, the poor quality of the

wastes from hydraulic fracturing has limited the recycling options. Ultimately, the

underground disposal of wastewater has become one of the most common ways to

dispose of the wastewater. The wastewater can be injected either in new suitable

geological formations or in depleted and previously fractured reservoirs. Other typical

industrial wastes are liquid CO2 [35, 36] and drilling cuttings [37, 3, 2].

The possible environmental impacts associated with the deep well injection of

a fluid, such as contamination of underground aquifers [24] and induced seismicity

[38, 39, 40] necessitate comprehensive studies of the processes involved during the

injection of a low viscosity fluid. The above environmental risks may be directly
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related to fluid injections which result in pressurization of the formation above the

critical pressure required to break the rock (i.e., breakdown pressure) or reactivation

of pre-existing fractures. Pressure in excess of the breakdown pressure may lead to

the following scenarios 1) In the presence of pre-existing fractures, the formation

pressurization may lead to fracture reactivation and ensuing fracture propagation.

2) Alternatively, in the previously unfractured reservoir, may lead to the generation

of a new hydraulic fracture.

The focus of this research work is on the pressurization of the formation leading

to reactivation of the fracture and ensuing fracture propagation.

1.3.3.1 Injection of a low viscosity fluid into a pre-existing fracture

“Un-propped” fracture

The first category of pre-existing fractures is natural fractures. Originating from

various geological processes [18], the natural fractures are associated with (1) shearing

displacement mode (e.g., faults) and (2) opening displacement mode (“joints”) [41].

The latter are created by the formation pore pressure in excess of the minimum

principal stress. This may lead to creation of systematic sets of joints extending to

many meters in length [18].

Hydraulic fractures used to stimulate production from a now depleted reservoir

are another category of pre-existing fractures. The underground depleted oil and

gas reservoirs can be well suited for waste disposal purposes due to existence of the

reservoir and geological data and infrastructure (e.g., pipes, wells).

The injection of the fluid either into naturally or man-made fractures may lead

to reactivation of these fractures and ensuing fracture propagation. The detailed

knowledge of interaction between the fracture, fluid and surrounding rock from the

beginning of the injection time is critical for a successful injection project design.

The mechanical and hydraulical behavior of the fracture during injection may
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strongly depend upon the initial state of the net fluid pressure (p0 − σ0) defined

as the difference between the reservoir ambient pore pressure (p0) and minimum

principal stress (σ0). The crack can be initially subjected to a negative net pressure

(i.e. the normal stress is exceeding the pore pressure). In this case, the interaction

of the fracture rough surfaces may significantly affect the fluid transport through the

channel due to smaller cross sectional area and the longer tortuous path [42].

Ideally for the purpose of fluid flow modeling, a fracture can be represented by

two parallel plates separated by a gap. This assumption allows to significantly reduce

the complexity of mathematical models in fluid transport problems. For example,

the parallel plate approximation has been extensively used in studies of mechanically-

open fluid-driven fractures where the fluid pressure along the fracture is exceeding

the minimum principal stress. The parallel plate theory results in the so-called “cubic

law”, where the volumetric flow rate through a fracture is proportional to the cube of

the aperture [e.g., 43, 44]. For mechanically-closed fractures, the validity of parallel

plate approximation for fracture with surfaces in partial contact has been the subject

of various investigations [45, 46, 47]. These studies have shown that the fluid trans-

port in mechanically-closed fractures subjected to low to moderate effective stress

can be well approximated by the cubic law [48, 47], while the significant departures

from the cubic law were observed for larger effective stress acting on the fracture.

“Propped” fracture

The knowledge of fracture deformation with pressure during the fluid injection is

only relevant for an un-propped fracture. The use of proppant to keep the fracture

open is a common practice in the petroleum industry. The study of interaction of a

propped fracture with surrounding rock has been extensively carried out in analysis of

post-fracture production data in fractured wells. The transient pressure analysis can

provide valuable information on hydraulic fracture properties, such as fracture length,
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height, and propped opening [49, 50]. This information can be used to improve the

hydraulic fracturing design.

Some of the seminal contributions to the analysis of transient production data

from fractured wells were by Gringarten et al. [49] and Cinco-Ley et al. [50].

Gringarten et al. considered a propped fracture from which a fluid was produced

via the crack inlet. The pressure distribution was considered to be uniform along the

fracture. In other words, the fracture is assumed to be highly conductive such that the

viscous pressure loss along the crack could be neglected. The validity of the uniform

pressure distribution assumption was studied in details by Cinco-Ley et al. [50]. They

considered the general problem of transient data analysis for a finite-conductivity

fracture, and identified conditions when the assumption of infinite-conductivity frac-

ture could be justified. Although the injection and production problems can be

mathematically similar, the knowledge of fracture reactivation, including re-opening,

fracture breakdown, and ensuing fracture propagation become irrelevant in produc-

tion problems. In injection problems, it is crucial to investigate the condition leading

to reactivation of pre-existing fractures.

1.3.4 Low viscosity fluid injection versus gel-like fluid injection

The problem of the injection of a low viscosity fluid is different from gel-like fluid

injection mainly by the mechanism of the fluid leak-off to the surrounding formation.

The latter is usually controlled by the nature of the injected fluid. For example,

during conventional hydraulic fracturing (i.e., fracturing using a gel-like fluid), the

mud cake build-up properties of the fracturing fluid will minimize the fluid loss to

surrounding rock by limiting the leak-off diffusion to the vicinity of the fracture (i.e.

1-D diffusion). However, in the case of low viscosity fluid injection, the leak-off and

related pore fluid diffusion will take place over wider range of scales, from 1-D to 2

or 3-D (Fig. 1.2).
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Figure 1.2: Leak-off diffusion pattern during the injection of a low viscosity fluid.

1.3.4.1 Diffusion mechanism

The engineering properties of the fluid used to propagate the fracture during the

conventional hydraulic fracturing aim to minimize the amount of fluid loss to the

formation. The fracturing fluid is designed to build a filter cake characterized by low

permeability to limit the diffusion to the close vicinity of the pressurized fracture.

In this context, the rate of leak-off rate can be mathematically represented by a 1-D

diffusion model [4]. The 1-D model may significantly reduce the complexity of the

problem. In contrast, in applications such as waste disposal or supercritical CO2 in-

jection into the deep geological underground formation (examples of unconventional

hydraulic fracturing), large volume of fluid leak-off is favored [51]. The fluid diffusion

follows a 1-D diffusion pattern during the early injection times when the diffusion

length scale is small compared to the crack length. As injection continues, the dif-

fusion length scale becomes greater or of the same order of magnitude as the crack

scale (2-D diffusion) invalidating the 1-D assumption.
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1.3.4.2 Energy dissipation mechanism

In the modeling of fluid-driven fractures, two limiting energy partition regimes can be

identified. 1) Toughness-dominated regime where the dissipation of energy to break

the rock is greater than the energy dissipated in the viscous fluid flow. 2) Viscosity-

dominated regime where the dissipated energy in the rock is negligible compared to

the energy dissipation in the fluid flow [32]. The viscosity-dominated regime is favored

in the case of fracture propagation driven by a high viscosity fluid. Conversely, for

the low viscosity fluid the dissipation of energy associated with fracturing of rock may

dominate the energy needed for fluid flow into the crack. As a result, the fracture

toughness is important in evaluating the propagation driven by a low-viscosity fluid.

Possible exceptions include the cases with high injection rates and/or late stages of

fracture growth, when the dissipation in the fluid flow may be substantial [52, 8].

1.3.4.3 Poroelasticity

The massive fluid leak-off during injection of low viscosity fluid over extended period

of time can modify the mechanical response of the porous media [10]. Specifically,

the increase of pore pressure in the surrounding porous rock leads to rock dilation,

which its effect on the closing fracture can be modified by additional confining stress,

referred to as “poroelastic” backstress [53]. The existence of the coupling between

fluid diffusion and deformation adds another layer of difficulty to the modeling of the

problems related to injection of a low viscosity fluid into permeable rock. The poroe-

lastic rock dilation may be considered negligible in conventional hydraulic fracturing

where diffusion is limited to a small zone near the crack walls.
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1.3.5 Mechanics of low viscosity fluid injection

1.3.5.1 Leak-off model

The now standard equation used to characterize the fluid leak-off rate was given by

Carter [4]. In his model, the fluid exchange rate to the formation adjacent to the

fracture is anticipated to be proportional to the inverse square-root of time with a

constant proportionality referred to as the Carter leak-off coefficient. The Carter

leak-off model was originally derived to characterize the fluid loss to the formation

when there is a thin layer of cake build-up formed on fracture walls. The cake layer

has very low permeability which limits the fluid leak-off to a small zone near the

fracture walls. This implies that the diffusion of the fluid can be simply represented

by a 1-D model. The high contrast of permeabilities between the filter cake and

surrounding rock establishes an approximate constant pressure boundary condition.

The Carter leak-off model is extensively used in design of conventional hydraulic

fracturing in permeable formations [54, 55]. However, application of the Carter’s

model to fracture propagation without significant cake on the fracture walls (e.g.,

low viscosity fluid injection) may lead to overestimation of fracture propagation rate

[6, 13]. As an alternative, the pressure-dependent 1-D diffusion model has been used

to forecast the fluid leak-off for early times when the diffusion is still 1-D [56, 13].

For the large injection time, the full 2 or 3-D leak-off diffusion models should be

considered.

The injection of a low viscosity fluid in a crack with 2 or 3-D leak-off has been

investigated by several authors. Detournay and Cheng [57] considered the fundamen-

tal solution of a stationary crack subjected to a step pressure increase when the fluid

diffusion pattern varies from the 1-D to 2-D. Their results confirmed that the 1-D

fluid diffusion pattern is only valid when the size of diffusion zone is small compared

to the crack length. The diffusion pattern changes from the 1-D to the full 2-D at

large injection times.
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Murdock and Germanovich [14] carried out an experimental and theoretical stud-

ies of a stationary fracture intersecting a wellbore. Initially, the crack is mechanically-

closed. As injection starts and crack is pressurized, the opposing fracture surfaces are

initially in contact and are gradually unloaded until the crack becomes mechanically-

open. The mechanically-open crack is analyzed under plane-strain conditions. The

numerical results of the model are validated by experiment.

Grodeyev and Zazovsky [52] investigated propagation of a vertical crack with

constrained height (PKN fracture) in the viscosity-dominated regime and under the

condition of 2-D leak-off diffusion. In their study, the process of initiation and prop-

agation is not addressed. Instead, the authors focus on self-similar solutions for

fracture propagation of the form � = �0 (1 + At)1/4, where A is related to injection

rate and material parameters of the problem, while the initial crack length �0 is

undetermined in their solution (presumably related to the crack initiation problem).

Gordeyev and Entov [8] constructed a self-similar solution for plane strain and

penny-shaped cracks assuming that the pressure along the fracture remains constant

and the crack length evolves according to � ∝ t1/2. The self-similar formulation

provides the exact solution for the fluid leak-off rate and the pressure distribution

in the surrounding rock for large injection time when the leak-off diffusion is 2-D or

3-D.

Kovalyshen [9] carried out a comprehensive study of penny-shaped crack propa-

gation in various asymptotic regimes. First, he defined an auxiliary problem in which

an impulse pressure is applied inside a stationary crack. The asymptotes of the fluid

leak-off rate for a crack subjected to a pressure impulse were derived for small and

large injection times, respectively. A convolution integral approach was used to find

the solution for the fluid leak-off rate in the transient pressurization problem. This

solution then was used to predict the crack length growth for different propagating

scenarios. A similar approach based on fundamental solution of a crack subjected to
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an impulse pressure was used by Berchenko et al. [58] to investigate the problem of

natural hydraulic fracture propagation characterized by full 2-D diffusion.

1.3.5.2 Poroelastic model

The theory of poroelasticity accounts for coupling of the elastic deformation of porous

medium and pore fluid diffusion. The key mechanisms in coupling between the pore

fluid and the rock are: 1) rock dilation due to the pore pressure increase; 2) temporal

increase of pore pressure due to mechanical compression of the rock [59, 10].

In the context of hydraulic fracturing, there are only handful of papers inves-

tigating the effect of poroelasticity on fracture propagation. Detournay et al. [60]

considered the poroelastic effects on a propagating PKN fracture. The classical

Carter’s leak-off theory was used to account for exchange of fluid with surrounding

rock. Their study suggests that the poroelastic backstress can significantly increase

the breakdown pressure. The results obtained by Detournay et al. [60] were also

confirmed by Boone et al. [61]. Number of studies also considered the 1-D pressure

dependent leak-off model instead of Carter’s leak-off model to investigate the effect

of poroelasticity on the propagation process [e.g., 62].

Study of poroelastic effects on crack propagation is not limited to propagation

problems with the 1-D leak-off diffusion. Detournay and Cheng [57] investigated the

poroelastic effects for a stationary crack subjected to step pressure increase. They

showed that the diffusion is nearly uncoupled from stress changes and the effects of

poroelasticity on pore pressure diffusion can be reasonably neglected.

Kovalyshen [9] considered the propagation of a penny-shaped crack in poroelastic

medium with 3-D leak-off. The generated back stress was evaluated for various

propagating regimes. He showed that the fracture arrest may be expected at long

injection times when the leak-off diffusion is 3-D.
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CHAPTER 2: MATHEMATICAL FORMULATION

2.1 PROBLEM SETTING

In this Chapter, the mathematical formulation of the transient pressurization for a

pre-existing stationary non-poroelastic PKN crack due to the fluid injection is de-

scribed. The modifications of mathematical formulation to account for the poroelastic

effects will be discussed in Chapter 4.

We consider a pre-existing crack of length 2� and height h within a linearly elas-

tic, permeable rock characterized by the Young’s modulus E, Poisson’s ratio ν and

toughness KIc (Fig. 2.1). The crack is aligned perpendicular to the minimum in-situ

stress σ0 and is loaded internally by fluid pressure p, generated by the fluid injection

at the crack center at a constant rate Qo. The following assumptions are used in

this work. 1) The crack height is small compared to the length, such that the defor-

mation field in any vertical cross-section that is not immediately close to the crack

edges (x = ±�) is approximately plane-strain, and the fluid pressure is equilibrated

within a vertical crack cross-section (the PKN assumptions). 2) The minimum in-

situ stress σ0 and the initial reservoir pore pressure p0 are uniform along the crack.

3) The crack is confined between two impermeable layers, which, together with the

assumption of pressure equilibrium within a vertical crack cross-section, suggests a

2-D fluid diffusion within the permeable reservoir rock layer. 4) The injected and

reservoir fluids have similar rheological properties.

19



σ0

σ0

impermeable
 cap-rock

permeable
rock layer

2�

permeable
rock layer

p
y

z
x

w

Q0

impermeable
 cap-rock

h

Figure 2.1: Injection into a pre-existing fingerlike crack with length 2� and height h
(� � h).

2.2 FRACTURE OPENING

The opening of a PKN crack is related to the net fluid pressure p̄ = p− σ0 by:

w(x, z) = (w0 +Δw(p̄(x)))

√
1− 4z2

h2
, (2.1)

where Δw is the induced crack width expressed as a function of the net fluid pressure

p. Note that an opening distribution scaled by value w0 has been added in (2.1) to

Δw. The former reflects the “neutral” hydraulic opening available to the flow when

the net fluid pressure is zero (i.e. p̄ = 0).

For the particular case of a mechanically-open PKN crack, the induced crack

width Δw is given by the elasticity relation [5]

Δw =
2hp̄

E ′ , (2.2)

where E ′
= E/ (1− ν2) is plane-strain modulus.

20



Expressions for the height-averaged crack opening

w̄ (x) =
1

h

ˆ h/2

−h/2

w (x, z) dz =
π

4
(w0 +Δw(p̄(x))) , (2.3)

and the fracture volume

Vcrack =
πh

4

(
2w0�+

ˆ �

−�

Δw(p̄(x))dx

)
, (2.4)

follow from (2.1)

2.3 BREAKDOWN CONDITION

In view of the plane-strain conditions approximately valid away from the edges

(|�− x| � h) of a fingerlike crack of height h (Fig. 2.1), the internal energy stored

in a thin slice of thickness dx centered at x can be approximated by Ups(x)dx, where

Ups(x) =
πh2p̄2(x)

4E ′ (2.5)

is the internal energy of the solid (per unit extent in the x-direction) in the presence

of a uniformly pressurized vertical Griffith crack of height h. Contributions to the

total internal energy U stored in the elastic space from the regions near the x = ±�

edges (where the plane-strain approximation is not applicable) of a fingerlike crack

are small compared to the contributions from the rest of the crack. Thus,

U �
ˆ �

−�

Ups(x)dx. (2.6)

Evaluating energy release rate corresponding to the symmetric extension of the crack

length by 2d� and corresponding crack surface increment of dΣ = 2hd� (Appendix
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A) we get

G =

(
∂U

∂Σ

)
p

≈ 2Ups(�)

2h
=

πh p̄2(�)

4E ′ , (2.7)

A special case of (2.7) corresponding to a uniform net pressure along the crack has

been extensively used in the fracture mechanics of composites [e.g., 63].

The breakdown (onset of propagation) and the ensuing fracture propagation in

mobile equilibrium requires that the energy release rate G (equation (2.7)) is equal

to the fracture energy of the rock Gc = K2
Ic/E

′ (expressed here in terms of the

rock toughness parameter KIc). Resulting breakdown/propagation condition can be

written in terms of the net pressure value at a finger-crack tip as

p̄ (�) = p̄B ≡ 2KIc√
πh

. (2.8)

We note in passing that similar forms of the PKN fracture propagation condition have

been proposed previously from ad hoc consideration of the tip region of a fingerlike

crack. For example, Nolte [64] suggested that the tip pressure is approximately that

of a propagating radial fracture with the diameter equal to the finger-crack height,

i.e. p̄ (�) =
√

π/2hKIc, a value about 10% larger than given by (2.8). Propagation

condition in the form of (2.8) is preferred here as it follows directly from the global

energy balance for a fingerlike crack, and does not require any ad hoc assumptions

about the nature of its near-tip region.

2.4 FLUID CONTINUITY

2.4.1 Local fluid continuity

The flow of fluid inside the PKN crack is governed by the height-averaged form of

the local mass conservation equation

∂w̄

∂t
+ ḡ = −∂q̄

∂x
, (t > 0, |x| < �) , (2.9)
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where w̄, q̄, and ḡ are the height-averaged crack opening (equation (2.3)), volumetric

flow rate in the crack channel, and fluid leak-off rate, respectively. In view of the

Poiseuille’s law, v (x, z) = −(w2 (x, z) /12μ)(∂p/∂x), and crack opening equation

(2.1), the height-averaged flow rate can be expressed as [e.g., 65]

q̄ (x) =
1

h

ˆ h/2

−h/2

w (x, z) v (x, z) dz = − w̄3

π2μ

∂p

∂x
. (2.10)

Substituting (2.10) in (2.9) yields

∂w̄

∂t
+ ḡ =

1

π2μ

∂

∂x

(
w̄3 ∂p

∂x

)
. (2.11)

Initial and boundary conditions for the constant-rate of injection (Q0) problem are,

accounting for the symmetry,

p̄|t=0 = 0, q̄|x=0+ = − w̄3

π2μ

∂p̄

∂x

∣∣∣∣
x=0

=
Q0

2
, q̄|x=� = − w̄3

π2μ

∂p̄

∂x

∣∣∣∣
x=�

= 0, (2.12)

where the last equation prescribes a no-fluid-flow condition at the crack tip.

2.4.2 Global fluid continuity

The global fluid volume balance in the fracture is given by:

V (t) = ΔVcrack (t) + Vleak (t) , (2.13)

where V (t) = Q0t is the cumulative injected volume, ΔVcrack (t) = Vcrack (t) −
Vcrack (t = 0) is the dilation of crack volume from the start of injection (t = 0), and

Vleak is the cumulative leak-off volume, which can be expressed as:

Vleak (t) = h

ˆ t

0

ˆ �

−�

ḡ
(
x

′
, t

′
)
dx

′
dt

′
. (2.14)
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2.5 DIFFUSIVITY EQUATION AND BOUNDARY INTEGRAL REP-

RESENTATION

Pore pressure evolution in permeable rock surrounding the “leaky” fracture is de-

scribed by the diffusion equation [66], and the leak-off boundary condition:

∂p

∂t
= −α∇2p, −k

μ

∂p

∂y

∣∣∣∣
y=0+

=
1

2
ḡ (x, t) , (2.15)

where α = k/ (μφct) and S = φct are diffusivity and fluid storage coefficients, re-

spectively, expressed in terms of the formation permeability k, bulk compressibility

ct, and porosity φ. Due to the presence of the impermeable cap rock boundaries

at z = ±h/2 and pressure equilibrium in a vertical cross-section (∂p/∂z = 0), the

diffusion problem is two dimensional (2-D). The general 2-D boundary integral for

the pressure perturbation due to a distribution of instantaneous sources ḡ(x, t) along

a crack, y = 0 and |x| ≤ �, is given (in the plane of the crack) by [67]

p(x, t)− p0 =

tˆ

0

�ˆ

−�

ḡ
(
x

′
, t

′)
4πSα (t− t′)

exp

(
−

∣∣x− x
′∣∣2

4α (t− t′)

)
dx

′
dt

′
. (2.16)

24



CHAPTER 3: TRANSIENT PRESSURIZATION OF A NON-

POROELASTIC AND MECHANICALLY-OPEN FRACTURE

3.1 OBJECTIVES

In this Chapter, we study transient pressurization due to the injection of a fluid at

a constant volumetric flow rate into a pre-existing, stationary crack (Fig. 2.1) in a

critically over-pressured reservoir, p0 � σ0.

We start with investigating the conditions when the pressure drop in the crack

is negligible, and, therefore, the pressure along the crack can be considered approxi-

mately uniform.

3.2 CONDITIONS FOR A UNIFORM PRESSURE DISTRIBUTION

ALONG THE CRACK

3.2.1 Case of impermeable rock

Considering the case of impermeable rock first, the fluid flow along the fracture

is described by lubrication equation (2.11) with ḡ = 0. We can define the non-

dimensional time (τ = t/t∗), coordinate (ξ = x/�), and pressure (Π = p/p∗) us-

ing the characteristic time t∗ =
(
μ�5h4/E

′
Q3

0

)1/4, length �, and pressure p∗ =(
μQ0E

′3�/h4
)1/4 scales, respectively, and non-dimensionalize the lubrication equa-

tion (2.11) and initial-boundary conditions (2.12) accordingly. Note that the induced

crack width for a mechanically-open fracture (2.2) is used to obtain the height average

crack opening (equation (2.3)a). The resulting normalized equations, parametrized

by a single non-dimensional neutral opening parameter

W0 = w0

(
E

′

μQ0�

)1/4

, (3.1)

and numerical method of their solution are discussed in Appendix B.
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Figure 3.1a shows the evolution of the normalized pressure with time at selected

positions ξ along the crack in an impermeable rock in the case when the neutral crack

opening is null (W0 = 0). The solution assuming a uniform pressure distribution

along the crack (as later obtained in Section 3.4) is shown by a dashed line for

comparison. As expected, for large enough time, the pressure equilibrates along

the crack. We can define “uniformity” pressure (Πuni) and time (τuni) thresholds

corresponding to the 5% difference between the inlet and the tip values of pressure.

Based on the numerical solution (Fig. 3.1a), the dimensional uniformity pressure and

time are

p̄uni = 1.94

(
μQ0�E

′3

h4

)1/4

, tuni = 5.89

(
μ�5h4

E ′Q3
0

)1/4

, (3.2)

respectively.

Allowing for a non-zero neutral opening (Appendix B) shows that the uniformity

pressure and time are decreasing functions of W0 (Fig. B.1). In other words, the

uniformity values for W0 = 0 reported in (3.2) provide the upper bound of the

uniformity conditions for the case of impermeable rock.

3.2.2 Case of permeable rock

Relaxing the assumption of impermeable rock and solving the corresponding set of

equations numerically (Appendix B), we can show that the uniformity pressure p̄uni

remains practically unchanged from its value for the impermeable case (equation

(3.2)), if

K = k

(
�1/3E

′

Q0μ

)3/4

� 1. (3.3)

Here, K is a non-dimensional permeability parameter, and, as we exemplify further,

condition (3.3) is typically satisfied for reservoir applications. We also note that

the uniformity time tuni does depend on K in the range (3.3) (see Appendix B for

details). An example of pressure evolution with time in the case of a permeable rock

26



Ξ � 0 0.1

�uni � 1.94
Τuni � 5.89

0.5 1

� � 0

0.001 0.01 0.1 1 10
0.0

0.5

1.0

1.5

2.0

2.5

3.0
p� �
p �

Ξ � 0 0.1 10.5

�uni � 2.01

Τuni � 1000

� � 0.1

0.001 0.1 10 1000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Τ�t�t�

p� �
p �

Π
=
p̄
/
p
∗

Π
=
p̄
/
p
∗

τ = t/t∗
(b)

(a)

Figure 3.1: Injection at a constant rate into a crack in (a) impermeable rock (K =
0), and (b) permeable rock (K = 0.1): evolution of the normalized net pressure
Π = p̄/p∗ with normalized time τ = t/t∗ at selected positions along the crack ξ =
x/� = 0 (inlet), 0.1, 0.5, 1 (tip) in the case of zero neutral crack opening (W0 =

0). The characteristic pressure and time scales are p∗ =
(
μQ0E

′3�/h4
)1/4 and t∗ =(

μ�5h4/E
′
Q3

0

)1/4, respectively. Marked points correspond to the onset of approximate
pressure uniformity in the crack.
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with K = 0.1 is shown in Fig. 3.1b.

In summary, we showed that the solution based on the uniformity pressure as-

sumption is approximately valid when p̄ � p̄uni, with p̄uni given by (3.2)a, and, in

particular, it can be used to predict the breakdown when p̄B � p̄uni.

3.3 AUXILIARY PROBLEM: STEP PRESSURE INCREASE IN CRACK

In order to facilitate the solution of the transient pressurization problem, we first

revisit the fundamental solution to an auxiliary problem of a step pressure increase

in crack, due to Detournay and Cheng [57], and introduce a new result for the large

time asymptote of this problem. This fundamental solution is then used to formulate

and solve a convolution integral equation governing the solution for the transient

pressurization.

Consider a fracture subjected to a step pressure increase,

p = 1, (|x| < �, y = 0, t > 0). (3.4)

To facilitate solution of (2.16) with (3.4), we rewrite it in the normalized form

1 =
1

π

τˆ

0

1ˆ

−1

ψ(ξ
′
, τ

′
) exp

(
−
∣∣ξ − ξ

′∣∣2
τ − τ ′

)
dξ

′
dτ

′

τ − τ ′ , (3.5)

where the non-dimensional time (τ), coordinate (ξ), leak-off rate (ψ), and cumulative

leak-off volume (Φ) are defined as,

τ =
t

t∗
, ξ =

x

�
, ψ =

ḡ

ḡ∗
, Φ =

Vleak

V∗
, (3.6)

in terms of the respective scales,

t∗ =
�2

4α
, �, ḡ∗ =

4αS

�
, V∗ = Sh�2. (3.7)
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After applying Laplace transform, (3.5) becomes

1

s
=

2

π

1ˆ

−1

ψ̂(ξ
′
, s)K0

(
2
√
s|ξ − ξ

′ |
)
dξ

′
, (3.8)

where K0 is the modified Bessel function of the second kind, s is the transform

variable, and ψ̂(ξ, s) is the Laplace image of ψ(ξ, τ).

Before integral convolution equation (3.8) is treated numerically, it is useful to

consider its small and large time asymptotes. When the characteristic length scale for

fluid diffusion
√
αt is small compared to the crack size �, or in terms of the normalize

time, τ 
 1, the fluid diffusion pattern is approximately 1-D, and the solution for

the normalized leak-off rate is given by [57, 67]:

ψ(τ) =
1√
πτ

(τ 
 1). (3.9)

As time increases, the 1-D fluid diffusion pattern is no longer valid and a 2-D fluid

diffusion pattern must be considered. For long enough injection time, we establish

in Appendix C the asymptotic expressions for the fluid leak-off rate in the Laplace

domain,

ψ̂(ξ, s) = − 1√
1− ξ2

1

s (ln(s/4) + 2γ)
(s 
 1), (3.10)

(γ ≈ 0.5772 is the Euler’s constant), and the time,

ψ(ξ, τ) =
1√

1− ξ2

(
1

ln 4τ − γ
− π2

6

1

(ln 4τ − γ)3
+ ...

)
, (τ � 1), (3.11)

domains. Equation (3.11) improves on the earlier O(1/ ln τ) result [57], and allows

for much more accurate representation of the large-time leak-off solution.

The solution of (3.8) for the intermediate values of Laplace variable s is obtained

numerically by Gauss-Chebyshev quadratures (Appendix D). The result is inverted
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to the time domain using Stehfest algorithm [68]. Figure 3.2 shows the numerical

solution ψ(ξ, τ), contrasted to the small (3.9) and large time asymptotes (3.11).

The normalized cumulative leak-off volume,

Φ (τ) =

ˆ τ

0

ˆ 1

−1

ψ (ξ, τ) dξdτ, (3.12)

is shown on Fig. 3.3. Its small time asymptote follows from (3.9) in the form

Φ (τ) =
4√
π

√
τ , (τ 
 1). (3.13)

The large-time asymptote follows from integration of (3.12) with ψ(ξ, τ) given by

(3.11),

Φ(τ) ≈
(
π

4
− π3

48

)
eγ Ei (ln 4τ − γ)+

π3τ

12

[
1

ln 4τ − γ
+

1

(ln 4τ − γ)2

]
+..., (τ � 1),

(3.14)

where Ei is the exponential integral function.

3.4 TRANSIENT PRESSURIZATION PROBLEM: CONSTANT RATE

OF INJECTION INTO A CRACK

Assuming a uniform pressure along the crack, i.e. p̄ � p̄uni, where p̄uni given by (3.2)a,

the cumulative leak-off volume Vleak can be obtained by applying the Duhamel’s

theorem [67]

Vleak (t) =

tˆ

0

Vaux (t− t′)
dp̄

dt′
dt

′
, (3.15)

where Vaux(t) = �2hS Φaux(4αt/�
2) is the cumulative leak-off volume of the fracture

subjected to a unit step pressure increase, with Φaux(τ) given in Fig. 3.3.

The elastic dilation of the finger crack volume due to the uniform net pressure
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Figure 3.2: Comparison of the numerical solution for the normalized leak-off rate in
the auxiliary problem of an instantaneous step pressure increase with (a) the small
time (equation (3.9)), and (b) the large-time (equation (3.11)) asymptotes shown as
dashed red lines. The time and leak-off rate scales are t∗ = �2/4α and ḡ∗ = 4Sα/�,
respectively.
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p̄ > 0 is obtained from (2.4) as:

ΔVcrack (t) =
πh2�

E ′ p̄ (t) . (3.16)

In view of (3.15) and (3.16), the global volume balance (2.13) can be expressed as:

Q0t =
πh2�

E ′ p̄ (t) + �2hS

tˆ

0

Φaux

(
4α(t− t

′
)

�2

)
dp̄

dt′
dt

′
. (3.17)

Equation (3.17) governs the evolution of the net pressure in the crack, p̄ = p̄ (t), and

its solution is sought next.

The problem is characterized by three lengthscales: the time-dependent diffusion

length ∼
√
4αt, crack height h, and crack half-length � (� � h). We, therefore,

anticipate three different end-members, namely, the crack-storage-dominated regime

when
√
4αt 
 h, the 1-D leak-off dominated regime when h 
 √

4αt 
 �, and the

2-D leak-off dominated regime when
√
4αt � �. It is then convenient to define the

corresponding “1-D” and “2-D leak-off” time and net-pressure scales as

t1 =
1

(SE ′)2
h2

4α
, p1 =

Q0t1
h2�

E
′

(3.18)

t2 =
�2

4α
, p2 =

Q0t2
�2h

1

S
, (3.19)

such that the three end-member regimes correspond to t 
 t1 (storage), t1 
 t 

t2 (1-D leak-off), and t � t2 (2-D leak-off), respectively. The pressure scales in

(3.18) and (3.19) follow from balancing the injection volumes over the corresponding

characteristic times, i.e. Q0t1 and Q0t2, with the crack-storage ΔVcrack and the leak-

off Vleak volumes, respectively.

Let us write the governing equation (3.17) in the 2-D scaling, (3.19), using non-
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dimensional variables Π = p̄/p2 and τ = t/t2,

τ = πAΠ(τ) +

τˆ

0

Φaux(τ − τ
′
)
dΠ(τ

′
)

dτ ′ dτ
′
. (3.20)

Its solution in Laplace domain is given by

Π̂(s) =
1

s2
(
πA+ s Φ̂aux(s)

) , (3.21)

where

A =
p1
p2

=

√
t1
t2

=
1

SE ′
h

�
(3.22)

is the dimensionless parameter with the meaning of a scaled crack aspect-ratio, which

is expected to be small for fingerlike cracks since h 
 � and SE
′ � 1 for rock. Note

that Π̂ and Φ̂aux are the Laplace images of Π and Φaux, respectively.

For τ = t/t2 
 1, Φaux (τ) � 4
√

τ/π, and (3.20) can be solved explicitly by the

Laplace transform method. This solution is more conveniently written in the 1-D

scaling, (3.18),

p̄

p1
=

π

4

[
Erfc

(
2

π

√
t

t1

)
exp

(
4

π2

t

t1

)
− 1

]
+

√
t

πt1
, (t 
 t2) . (3.23)

The solution in the storage (t 
 t1) and the 1-D leak-off (t1 
 t 
 t2)1 dominated

regimes are recovered as appropriate end-members of (3.23)

p̄

p1
=

t

πt1
, (t 
 t1) ,

p̄

p1
=

√
t

πt1
− π

4
, (t1 
 t 
 t2) . (3.24)

For τ = t/t2 � 1, the storage term (∝ A) in equations (3.20) and (3.21) is

negligible, and Φ̂aux(s) = π/s2 [ln (4/s)− 2γ], as follows from integrating (3.10) over
1Existence of 1-D leak-off regime relies on separation of timescales, t1 
 t2, or A 
 1 (equation

(3.23))
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Figure 3.4: Evolution of the normalized net pressure p̄/p1 during the transient
pressurization of a crack for various values of the crack aspect ratio parameter
A = h/(�SE

′
). The 1-D (equation (3.23)) and 2-D (equation (3.25)) leak-off asymp-

totic solutions are shown by black and red dashed lines, respectively. The dotted line
shows the early time storage-dominated solution, (equation (3.24)a). The 1-D pres-
sure and time scales are p1 = Q0E

′
t1/h

2� and t1 = (1/SE
′
)2(h2/4α), respectively.

the crack length. Resulting solution for the 2-D leak-off dominated regime is

p̄

p2
=

1

π

[
ln

4t

t2
− γ

]
, (t � t2) . (3.25)

In the intermediate time range, t1 � t � t2, solution is obtained by numerically eval-

uating the inverse Laplace transform of (3.21). Figure 3.4 shows the solution for the

transient pressurization for several values of the aspect ratio parameter A, contrasted
to the 1-D (equation (3.23)) and the 2-D (equation (3.25)) leak-off asymptotic solu-

tions shown by dashed lines. The dotted line shows the early time storage-dominated

solution (equation (3.24)a).
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The “uniformity” pressure (equation (3.2)a) expressed in the 1-D scaling,

p̄uni
p1

= 7.76
K

A , (3.26)

(K and A are the previously defined non-dimensional permeability (equation (3.3))

and crack aspect-ratio (equation (3.22)) parameters, respectively), can be used to-

gether with the solution in Fig. 3.4 to infer the “uniformity” time tuni/t1.

Extension of the solution to the plane-strain (KGD) crack

Although the main focus of this paper is on fingerlike (h 
 �) cracks, we note that

our transient pressurization solution can be easily translated to the case of the plane-

strain, KGD (Khristianovic, Zheltov, Geertsma, de Klerk [28, 30]) crack (h � �).

This is accomplished by replacing the expression (3.16) for the elastic crack volume

ΔVcrack in global balance for fingerlike crack (3.17) by the volume of the plane-strain

crack of height h and half-length � [e.g., 69],

ΔVcrack (t) =
2πh�2

E ′ p̄ (t) , (h � �) . (3.27)

The plane-strain crack solution is obtained from the fingerlike crack solution pre-

sented in the above by replacing the 1-D-leak-off time and pressure scales2, (3.18),

with

tKGD
1 =

(
2

SE ′

)2
�2

4α
, p1 =

Q0t
KGD
1

2�2h
E

′
, (3.28)

respectively, and parameter A, (3.22), with AKGD = 2/SE
′
.

Application in well testing analysis of fractured wells

It is worthwhile to mention that the results of this study can be used in the production

pressure transient data analysis (well testing) of a propped hydraulic fracture (i.e. a
2Note that the 2-D scales, (3.19), are the same for the two crack geometries.
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fracture filled with particulate materials during the fracturing treatment, which pur-

pose is to prevent/minimize the fracture closure during production pressure decline.)

The pressure transient formulation in the production context is obtained from the in-

jection problem by reversing the direction of volumetric flow rate Q0 and reasonably

neglecting changes of a propped hydraulic fracture volume (in response to pressure

decline in production). Thus, we can use the analysis of this study in production

well testing of a fractured well by nullifying the storage term in global volumetric

balance equation (3.20), i.e. setting A = 0, and changing the sign of the left hand

side (i.e., flow reversal).

3.5 BREAKDOWN CALCULATION EXAMPLE

Consider synthetic example of fracture breakdown calculations for a supercritical CO2

injection in a sandstone formation characterized by porosity φ = 0.17, permeability

k = 13 md, minimum in-situ stress σ0 = 30.8 MPa, ambient pore pressure p0 = 20

MPa, rock toughness KIc = 1 MPa m1/2, Young’s modulus E = 6 GPa, Poisson’s

ratio ν = 0.2, and average reservoir temperature T = 900C [70, 71]. The supercritical

CO2 is assumed to be injected at the total mass flow rate ṁ = 100 t/day into a single

vertical, fingerlike fracture with half-length � = 50 m, height h = 20 m (assumed to

span the height of the sandstone layer), and neutral hydraulic opening w0 = 0.4 mm.

The latter value corresponds to the measured neutral opening of a highly weathered

fracture [72].

Assuming an over-pressurized reservoir, p0 � σ0, the supercritical CO2 can be

considered as an incompressible fluid until the onset of propagation, forecasted to

take place when the fluid net-pressure reaches breakdown value p̄B � 0.25 MPa

(based on equation (2.8) and the assumed values of reservoir/fracture parameters).

The representative values for the supercritical CO2 properties are calculated at the

breakdown pressure pB = 31.05 MPa and average reservoir temperature T = 900C:
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density ρ̄ = 714 kg/m3, viscosity μ = 0.06 cp, and bulk compressibility ct = 15.9

GPa.

In view of the above, we have Q0 = 0.0016 m3/s (volumetric injection rate),

S = 2.7 GPa-1 (storage), α = 0.08 m2/s (diffusivity coefficient), t1 = 4.4 seconds

(time scale), p1 = 2.2 KPa (pressure scale), A = 0.024 (non-dimensional aspect ratio

parameter), K = 0.14 (non-dimensional permeability parameter), and W0 = 2.4

(non-dimensional neutral hydraulic crack opening parameter). The corresponding

upper bound of the uniformity pressure is p̄uni,W0=0 = 0.1 MPa (equation (3.26)),

while the actual value for this particular example (W0 = 2.4) can be inferred from

Fig. B.1, p̄uni = 0.05 MPa. Since p̄B > p̄uni, the analysis based on the pressure

uniformity assumption is deemed to be valid. Locating the point with p̄B/p1 = 112

(and on A = 0.024) on Fig. 3.4 (point A), the onset of the fracture propagation is

forecasted at tB/t1 = 3.6 × 106, or in tB � 183.3 days from the beginning of the

injection.

We note possible limitations of our solution in application to realistic reservoir

injection scenarios are related to the assumptions of (i) a critically pressurized reser-

voir (ambient pore pressure equal to the minimum in-situ stress, p0 � σ0), (ii) neg-

ligible poroelastic (backstress) effects [10], and (iii) a single injected fracture (or

non-interacting multiple fractures). In view of the first assumption, the predicted

breakdown time tB from our analysis is a lower bound for a more realistic reservoir

case with p0 < σ0, when the value of tB in our analysis has to be augmented by the

time it takes to pressurize the fracture to p = σ0.

3.6 SUMMARY OF CHAPTER RESULTS

Important applications of injection of a low viscosity fluid into a pre-existing fracture,

such as waterflooding, wastewater and supercritical CO2 injection for geological stor-

age, necessitate a comprehensive study of mechanical and hydraulically properties of
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fractures from the beginning of injection.

To this end, we have studied model describing the transient pressurization of an

un-propped fingerlike crack in a critically over-pressured reservoir. We established

the range of the problem parameters and injection time when the fluid pressure is

approximately uniform along the crack. Assuming uniform pressure distribution, we

first revisited the auxiliary problem of a crack subjected to step pressure increase

[57], which then allowed us to formulate and solve for the transient crack pressur-

ization (due to constant rate of injection) using the Green’s function approach. As

the fracture is pressurized, the condition for the onset of propagation (the break-

down condition) is eventually reached. We have quantified how the breakdown of a

fingerlike fracture depends upon the rock and fluid properties, the in-situ stress and

the fluid injection rate; and how one can translate these results to another (KGD)

fracture geometry. An example of the breakdown calculations for a supercritical CO2

injection into a fingerlike crack was also considered.
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CHAPTER 4: POROELASTIC EFFECTS ON THE TRAN-

SIENT PRESSURIZATION OF A MECHANICALLY-OPEN

FRACTURE

4.1 OBJECTIVES

The primary focus of this Chapter is to investigate the poroelastic effects on the

transient pressurization and onset of fracture propagation for a fingerlike crack in

a critically over-pressured reservoir (i.e., p0 � σ0). In Chapter 3, we assumed that

a fluid is injected into a pre-existing fracture while the poroelastic effects were ne-

glected. However, during injection of a low viscosity fluid characterized by large fluid

leak-off to the surrounding rock, the mechanical properties of the formation can be

modified due to the poroelastic effects. The dilation of porous rock as the result of

increase in the pore pressure is one of the key mechanism of interaction between the

fluid and the porous rock [10]. The dilation of the rock may lead to the generation

of an additional confining stress (“backstress”).

In this Chapter, the following assumptions are used. 1) The fluid pressure in the

fracture is assumed to be spatially uniform (i.e., viscous dissipation in the flow is

negligible). The parametric range corresponding to the validity of this assumption

was established in Chapter 3. 2) The initial hydraulic opening of the fracture cor-

responding to zero initial net loading is neglected. The effect of the latter on the

transient pressurization was investigated in Chapter 3. 3) The weak coupling of the

pore pressure to the stress changes is neglected [57].

The mechanical response of crack to the transient pressurization p = p(t) can be

obtained using Green’s function approach, where the Green’s function corresponds to

the solution of an auxiliary problem of a unit step pressure change in a crack [53, 57],

which we revisit in the following.
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4.2 POROELASTIC AUXILIARY PROBLEM (STEP PRESSURE CHANGE

IN THE CRACK)

Following Detournay and Cheng [53, 57], the loading on the crack can be decomposed

into two fundamental modes. Mode 1 corresponds to a unit rise of normal traction

at the crack surface with no pore pressure change:

Mode 1: σ(1)
yy = −1, p(1) = 0, (|x| < �, y = 0, t > 0). (4.1)

Mode 2 corresponds to a step pore pressure increase along the crack with no stress

change:

Mode 2: σ(2)
yy = 0, p(2) = 1, (|x| < �, y = 0, t > 0). (4.2)

Simple superposition of solutions under the mode 1 and mode 2 loadings can be

used to find the fracture opening, fracture volume, cumulative leak-off volume, and

generated poroelastic backstress in the auxiliary problem of step pressure change in

the crack.

The mode 1 and 2 poroelastic solutions were obtained for a plane-strain crack

in [57] and later extended by the same authors to the case of a fingerlike crack [53].

These latter solutions (particularly for that mode 2 loading) relied on the assumption

of 1-D pore pressure diffusion, which limits their applicability. In the following we

recount main results of [53] and extend their solution by relaxing the 1-D assumption.

The following discussion of the transient poroelastic response of a crack due to a

step loading will make use of two fundamental timescales:

t1D =
h2

4α
, t2D =

�2

4α
, (4.3)

which pertain to the pore pressure diffusion on the spatial scales corresponding to

the fingerlike crack height (h) and half-length (� � h), respectively. These timescales
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therefore can be associated with the 1-D (on the scale h or smaller) and 2-D (on the

scale � or large) diffusion.

4.2.1 Poroelastic mode 1 crack opening

The response of the crack to the mode 1 unit loading can be approximated as purely

elastic on the assumption of small (negligible) solid-to-fluid poroelastic coupling [53,

57]. The corresponding average opening over a given x cross-section of a poroelastic

fingerlike crack due to the mode 1 is given by

w̄(1)(x, t) =
πh

2E ′ . (4.4)

The aforementioned assumption neglects the difference between the initial (undrained)

response to the mode 1 loading and the final, after a time transient, drained response,

as given by (4.4); and can be justified when the values of the Poisson’s ratio of poroe-

lastic solid under drained and undrained conditions are similar [53].

4.2.2 Poroelastic mode 2 crack opening

The mode 2 component of the opening can be obtained using the reciprocity [53]

w̄(2)(x, t) =
2b

h

∞̂

0

h/2ˆ

−h/2

p(2)(x, y, t)ε(1) (y, z) dydz, (4.5)

where b is the Biot coefficient, ε(1) is the mode 1 elastic volumetric deformation

corresponding to the field around uniformly pressurized plane-strain crack section

ε(1) (y, z) =
2 (1− 2ν)

πE ′ (1− ν)

h/2ˆ

−h/2

2z
′
(z − z

′
)dz

′

√
h2 − 4z′2 [(z − z′)2 + y2]

, (4.6)

and p(2)(x, y, t) is the pore pressure change due to the mode 2 loading.
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Due to the presence of the impermeable cap rock boundaries at z = ±h/2 and

pressure equilibrium in a vertical cross section (∂p/∂z = 0), the pore pressure diffu-

sion problem is two dimensional. The mode 2 pore pressure field can be expressed as

a convolution integral in space (along the crack) and time of the instantaneous point

source solution [67]

p(2)(x, y, t) =

tˆ

0

�ˆ

−�

ḡ(2)(x
′
, t

′
)

4πSα(t− t′)
exp

(
−(x− x

′
)2 + y2

4α(t− t′)

)
dx

′
dt

′
, (4.7)

where ḡ(2) is the mode 2 local fluid leak-off rate, which solution,

ḡ(2)(x, t) =
4αS

�
ψ(2)

(
x

�
,

t

t2D

)
, (4.8)

is expressed here in terms of the normalized leak-off rate ψ(2)(ξ, τ) function of the

normalized position along the crack ξ = x/� and time τ = t/t2D (where timescale

t2D = �2/4α, (4.3)). The latter was obtained in Chapter 3 and shown in Fig. 3.2.

Substituting expression (4.6) for ε(1) in (4.5) and integrating in z allows to find

the general expression for the average opening in mode 2 [53], which is expressed

below as a multiple of the mode 1 opening value, (4.4),

w̄(2)(x, t) = −2ηF (x, t)w̄(1), (4.9)

where η = b (1− 2ν) /2 (1− ν) is the poroelastic stress coefficient, and

F (x, t) =
8

πh

∞̂

0

p(2)(x, y, t)G (2y/h) dy, G (χ) = 1−
√

χ

2

√√
4 + χ2 − χ (4.10)

are the temporal and spatial influence functions, respectively. Note that F (x, t) is

varying from 0 and 1 as time varies from 0 to ∞.
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Evaluation of influence function F (x, t)

The problem of finding the crack opening due to the mode 2 loading has been reduced

to evaluating the influence function F (x, t) given by an integral (4.10) of the pore

pressure field (equations (4.7) with (4.8) and Fig. 3.2).

Detournay and Cheng [53] considered the early-time asymptotics of the pore

pressure solution, when the spatial scale of the leak-off diffusion diffusion in the

direction normal to the crack plane ∼ √
αt is small compared to the crack half-length

�, given by the well-known 1-D diffusion solution [67]

t 
 t2D : p(2)(x, y, t) ≈ Erfc
(

y

2
√
αt

)
(4.11)

with t2D = �2/4α been the previously defined 2-D diffusion timescale, (4.3). This

leads to an approximate expression for the influence function [53]

t 
 t2D : F (x, t) � F1D (t/t1D) , F1D(τ) ≡ 4

π

∞̂

0

Erfc
(

χ

2
√
τ

)
G (χ) dχ,

(4.12)

where t1D = h2/4α is the previously defined 1-D diffusion timescale, (4.3). Although

integral expression for F1D(τ) does not appear to be treatable analytically, a useful

closed-form analytical expression can be obtained for its Laplace transform (t/t1D →
s):

F̂1D(s) =
4

πs3/2

(
1 +

π

2

[
J1(

√
s) cos

√
s+Y1(

√
s) sin

√
s
])

(4.13)

where J1 and Y1 are Bessel functions of the first and second kind, respectively, and

’hat’ denotes the Laplace image.

The analytical solution of the 1-D influence function to the first order (O(1)) is

given by

F̂1D(s � 1) ≡ 4

πs3/2
, F1D(t 
 t1D) ≡ 8

√
t/t1D

π3/2
. (4.14)
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In the general case, when the diffusion is not limited to 1-D, we substitute expres-

sion (4.7) with (4.8) for p(2) into expression (4.10) for the influence function F (x, t),

and apply Laplace transform (t/t2D → s) to find:

F̂ (ξ, s) =
8

π2

1ˆ

−1

ψ̂(2)(ξ
′
, s)H(ξ, ξ′, s)dξ

′
, (4.15)

where

H(ξ, ξ′, s) ≡
∞̂

0

K0

(
2
√

s [(ξ − ξ′)2 + (h/2�)2χ2]
)
G(χ)dχ. (4.16)

We tabulate function H(ξ, ξ′, s) numerically using Mathematica software, and then

use this tabulation together with the previously tabulated leak-off rate solution

ψ̂(2)(ξ
′
, s) (shown on Figure 3.2) to evaluate the integral in F̂ (x, s) by the Gauss-

Chebyshev method, as detailed in Chapter 3. The latter is then inverted to the time

domain using the Stehfest algorithm [68].

Function F (x, t) depends on a single parameter, crack aspect ratio h/�. Numerical

solution F (x, t) is shown on Figure 4.1 for the case with h/� = 0.1, where it is also

contrasted to the 1-D asymptote, (4.12), shown by dashed lines. As expected, F (x, t)

is closely approximated by the 1-D asymptote at early times everywhere along the

crack with the exception of the near fracture tip regions (where the diffusion is

inherently 2-D). This bulk approximation does deteriorate somewhat with increasing

time, but still remains a fairly good, “first order” representation of F even for t ∼ t2D

(note that for this example, t2D/t1D = (�/h)2 = 100) when the diffusion is fully 2-D.

This surprising result can be understood by the recorse to the original expression

for the mode 2 opening (4.5), for which influence function F (x, t) is a proxy. In the

integral for the former, the pore pressure field p(2)(x, y, t) is weighted by the mode 1

volumetric strain field ε(1)(x, y, t), which tends to zero at distances y from the fracture

plane in excess of few crack heights h. Thus, the influence of the “2-D character” of
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Figure 4.1: Comparison of the general numerical solution for the influence function
F (x, t) with its 1-D asymptote (equation (4.12)) for the case with h/� = 0.1. The
time scale is t1D = h2/4α.

the pore pressure distribution at spatial scales ∼ � (i.e. much larger than h) on the

crack opening is dampened by the vanishing strain at these scales, resulting in the

approximate validity of the 1-D asymptote for F (x, t) even when the pore pressure

field is effectively 2-D.

The evolution of the crack-average of the influence function 〈F 〉 (t) = (1/2�)×
´ �
−�

F (x, t)dx is shown on Fig. 4.2a for various values of the aspect-ratio ratio h/�.

(Note that the case with h/� = 1 contradicts the assumption of a fingerlike crack

geometry, and, therefore, shown for reference only). The overall goodness of the

crack-average 〈F 〉 (t) approximation by its 1-D asymptote (4.12), shown in Fig. 4.2

by the dashed line, is evident for all but very large times (t � t2D).

In contrast to the above behavior of the crack-average value, and owing to the

inherently two-dimensionality of the near crack tip regions (Fig. 4.1), the tip value of

the influence function, F (x = ±�, t) is significantly different from the 1-D asymptotic

solution at all times (Fig. 4.2b).
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Figure 4.2: Evolution of (a) the crack-average of the influence function, 〈F 〉 (t), and
(b) the tip value of the influence function, F (x = ±�), with normalized time for
various values of the crack aspect ratio h/�. The timescale is t1D = h2/4α.
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As we will further show in Section 4.3, the transient pressurization problem due to

the prescribed rate of fluid injection into the crack is fully defined by the fluid volume

balance in the crack, and, therefore, depends only on the crack-averaged influence

function 〈F 〉 (t). Thus, the 1-D version of this function (which has an advantage of

having an analytical expression in the Laplace domain) can be used with confidence.

On the other hand, the onset of a fingerlike crack propagation is defined by the tip

value of the net fluid pressure p− σ0 − σb, and, therefore, the full solution (and not

its 1-D asymptote) for F (x = ±�, t) will be necessary to determine the initiation of

crack growth accurately.

4.2.3 Total crack opening and volume

The total crack opening in the auxiliary problem, averaged over a given x cross-

section of a poroelastic fingerlike crack, is given by the superposition of the mode 1,

(4.4), and mode 2, (4.9), solutions:

w̄aux(x, t) = w̄(1)(x, t) + w̄(2)(x, t) =
πh

2E ′ (1− 2ηF (x, t)) . (4.17)

The poroelastic effects on the crack opening (i.e., w̄(2)) can be likened to that of

the additional confining stress (“backstress”) acting across the fracture plane in the

purely elastic material [53],

σaux
b (x, t) = 2ηF (x, t), (4.18)

such that (4.17) can be written as

w̄aux(x, t) =
πh

2E ′ (1− σaux
b (x, t)). (4.19)
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The corresponding total crack volume is

V aux
crack(t) = h

ˆ �

−�

w̄aux(x, t)dx =
π�h2

E ′ (1− 2η 〈σaux
b 〉 (t)) , (4.20)

where 〈σaux
b 〉 (t) is the spatial average of σaux

b (x, t).

4.2.4 Cumulative leak-off volume

The pore pressure diffusion is assumed to be uncoupled from the stress changes (i.e.,

V
(1)
leak � 0). Hence, the cumulative leak-off volume in the auxiliary problem is given

by

V aux
leak (t) � V

(2)
leak (t) = h�2S Φ(2)

(
t

t2D

)
, (4.21)

where the normalized leak-off function Φ(2), has been previously tabulated in Fig.

3.3.

4.3 TRANSIENT PRESSURIZATION OF THE CRACK (CONSTANT

VOLUMETRIC INJECTION RATE)

The fracture response F to transient pressurization problem p = p(t) can be obtained

from the auxiliary solution Faux by convolution [67]

F (x, y, z, t) =

tˆ

0

Faux (x, y, z, t− t′)
dp

dt′
dt

′
, (4.22)

where Faux is fracture response in the auxiliary problem.

We apply (4.22) to the injected volume balance

V (t) = Vcrack (t) + Vleak (t) , (4.23)
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where V (t) = Q0t, t ≥ 0, and Q0 is the constant injection rate, to find

Q0t =

tˆ

0

V aux
crack (t− t′)

dp

dt′
dt

′
+

tˆ

0

V aux
leak (t− t′)

dp

dt′
dt

′
. (4.24)

Equation (4.24) with the auxiliary crack (V aux
crack) and leak-off (V aux

leak ) volumes given

by (4.20) and (4.21), respectively, governs the evolution of fluid pressure in the crack

p = p(t).

Q0t =
πh2�

E ′

tˆ

0

(1− 2η 〈F 〉 (t− t′))
dp

dt′
dt

′
+ h�2S

tˆ

0

Φ(2)

(
4α(t− t)

′

�2

)
dp

dt′
dt

′
. (4.25)

4.3.1 Transient pressurization calculation

In solving (4.24), we will make use of the following two sets of characteristic time

and pressure scales (see Chapter 3)

t1 =
t1D

(SE ′)2
=

1

(SE ′)2
h2

4α
, p1 =

Q0t1
h2�

E
′

(4.26)

t2 = t2D =
�2

4α
, p2 =

Q0t2
�2h

1

S
. (4.27)

In view of the above scales, three different end-members, namely, the crack-storage-

dominated regime (t 
 t1), the 1-D leak-off dominated regime (t1 
 t 
 t2), and

the 2-D leak-off dominated regime (t � t2) are anticipated.

Governing equation (4.24) with (4.20)-(4.21) can be written in the 1-D scaling,

(4.27), using non-dimensional variables Π = (p− σ0)/p1 and τ = t/t1 as

τ = π

τˆ

0

(1−2η 〈F 〉 (t1(τ − τ ′)))
dΠ(τ

′
)

dτ ′ dτ
′
+

1

A

τˆ

0

Φ(2)(A2(τ − τ
′
))
dΠ(τ

′
)

dτ ′ dτ
′
. (4.28)
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where

A =
p1
p2

=

√
t1
t2

=
1

SE ′
h

�
, (4.29)

is s non-dimensionless number (equation (3.22)).

The solution of (4.28) in Laplace domain (t/t1 → s) is given by

Π̂(s) =
1

s2
1

π
(
1− 2ηs(SE ′)2 ˆ〈F 〉((SE ′)2s)

)
+ s Φ̂(2)(s/A2)/A3

. (4.30)

For t1 
 t 
 t2, Φ̂
(2)
1D (s/A2) � 2A3s−3/2 (see Chapter 3), and F̂1D (equation (4.13))

can be used to numerically obtain the 1-D pressure solution from (4.30) using the

Stehfest algorithm [68]. We also noticed that the first-order asymptote of F̂1D (equa-

tion (4.14)a) results in reasonable approximation of the 1-D pressure solution. The

relative percentage error in calculation of 1-D pressure solution obtained using the

first order asymptote of F̂1D (equation (4.14)a) and fully defined F̂1D (equation (4.13))

is illustrated in Fig. 4.3. This approximation allows to conveniently write the closed

form solution of 1-D pressure asymptote in the 1-D scaling as

p̄

p1
=

π

4(1− 4η′)2

[
Erfc

(
2(1− 4η

′
)

π

√
t

t1

)
exp

(
4(1− 4η

′
)2

π2

t

t1

)
− 1

]

+

√
t

π(1− 4η′)2t1
, (t1 
 t 
 t2) (4.31)

where η′
= η/SE

′ is the effective poroelasticity stress coefficient. Note that the 1-D

non-poroelastic solution previously obtained in Chapter 3 (equation (3.23)) can be

recovered from (4.31) by nullifying the poroelastic term in (4.31) by letting η = 0.

The solution in the storage (t 
 t1) dominated regime is recovered as appropriate

end-member of (4.31)
p̄

p1
=

t

πt1
, (t 
 t1) . (4.32)

For t/t2 � 1, the storage is negligible and 1-D scaling is not an appropriate scaling to
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Figure 4.3: The relative percentage error in calculation of 1-D pressure solution
obtained using the first order asymptote of F̂1D (equation (4.14)a) and fully defined
F̂1D (equation (4.13)). The 1-D time scale is t1 = (1/SE

′
)2(h2/4α).

normalize (4.28), and 2-D scaling should be used. However, we can nullify the storage

term in equations (4.28) and (4.30), and use Φ̂(2)
2D(s/A2) � πA/(s2 [ln (4A2/s)− 2γ])

expressed in 1-D scaling (see Chapter 3) to obtain the 2-D leak-off asymptote. Re-

sulting solution for the 2-D leak-off dominated regime follows (after inversion back

to the time domain):

p(t)− σ0

p2
=

1

π

[
ln

4t

t2
− γ

]
. (t � t2) (4.33)

In the intermediate time range, t1 � t � t2, solution is obtained by numerically

evaluating the inverse Laplace transform of (4.30). Figure 4.4a shows the evolution

of the normalized pressure (p−σ0)/p1 with normalized time t/t1 during the transient

pressurization of the crack for several values of the crack height to length ratio h/�.

For the numerical calculations, we choose a representative values of poroelasticity

stress coefficient η = 0.3 (e.g., [10]) and SE
′
= 10. The 1-D (equation (4.31)) and
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2-D leak-off (equation (4.33)) asymptotics are shown by the dashed lines. The dotted

line shows the early time storage-dominated solution (equation (4.32)).

4.3.1.1 Significance of poroelastic effects on the evolution of the pressure

in the crack

In Chapter 3, the evolution of the pressure in the crack assuming negligible poroe-

lastic coupling was calculated. To underline the poroelastic effects on the transient

pressurization calculations, we illustrate in Fig. 4.4b the evolution of the ratio of the

poroelastic to non-poroelastic pressure (Chapter 3) solutions with normalized time

for the given fracture height to length ratios. As Fig. 4.4b shows, the poroelastic and

non-poroelastic pressure solutions are only different by 5% at most. In other words,

the poroelastic effects in the evolution of the fluid pressure in the crack in response

to injection is very weak. This surprising results allow to confidently formulate the

fluid pressure evolution assuming negligible poroelastic coupling.

4.3.2 Backstress calculation

Using the convolution (4.22), we obtain expression for the backstress with the aux-

iliary solution (4.18)

σb (x, t) = 2η

tˆ

0

F (x, t− t′)
dp

dt′
dt

′
. (4.34)

As mentioned earlier, the influence function F approaches 1 at large time when the

leak-off diffusion is fully 2-D. In view of corresponding pressure asymptote (4.33),

the large-time asymptote of backstress is simply

σb (x, t) � 2η(p(t)− σ0) =
2ηp2
π

[
ln

4t

t2
− γ

]
(t � t2) , (4.35)

Fig. 4.6 illustrates an example of the numerical calculations of the backstress at the

crack tip (x = �) normalized by the net pressure in the crack for various crack height
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Figure 4.4: (a) Evolution of the normalized pressure (p−σ0)/p1 with normalized time
t/t1 during the transient pressurization of a crack for various values of the height to
length ratio h/�. The 1-D (equation (4.31)) and 2-D leak-off (equation (4.33)) asymp-
totic solutions are shown by dashed lines, respectively. The dotted line shows the
early time storage-dominated solution, (equation (4.32)). (b) Evolution of the ratio
of the poroelastic to non-poroelastic pressure solutions in the crack with normalized
time for various values of the height to length ratio h/�. The representative values
SE

′
= 10 and η = 0.3 are used for numerical calculations. The 1-D pressure and

time scales are p1 = Q0E
′
t1/h

2� and t1 = (1/SE
′
)2(h2/4α), respectively.
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Figure 4.5: Evolution of the backstress at the crack tip (x = �) normalized by the
net pressure in the crack with normalized time t/t1 for various crack height to length
ratios h/�. The representative values SE ′

= 10 and η = 0.3 are used for numerical
calculations. The time scale is t1 = (1/SE

′
)2(h2/4α).

to length ratios h/�. As Fig. 4.6 shows, the generated backstress at early times is

only a small fraction of the fluid pressure. However, the ratio of the backstress to

fluid pressure will considerably increase at later injection time. From the asymptotic

solution (4.35), it is evident that this ratio can not exceed 2η. As it will be further

discussed in Section 4.4, the onset of fracture initiation is defined by the net fluid

pressure p − σ0 − σb at the crack tip, and therefore the initiation of crack can be

significantly affected by the poroelastic effects.

4.3.3 Fracture volume calculation

The poroelastic crack volume can be expressed as

Vcrack(t) =
π�h2

E ′ (p− σ0 − 〈σb〉) , (4.36)
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Figure 4.6: Evolution of the ratio Vcrack/V
np
crack with normalized time t/t1 during the

transient pressurization of a crack for various values of the crack height to length
ratio h/�. The representative values SE ′

= 10 and η = 0.3 are used for numerical
calculations. The time scale is t1 = (1/SE

′
)2(h2/4α).

where 〈σb〉 is the spatial average of backstress σb (equation (4.34)). Due to weak

poroelastic effects on the fluid pressure evolution, the fracture volume can be linked

to non-poroelastic crack volume V np
crack by

Vcrack(t) = V np
crack(t)

(
1− 〈σb〉

p− σ0

)
, (4.37)

where V np
crack = π�h2(p−σ0)/E

′ . Figure 4.6 shows the evolution of the ratio Vcrack/V
np
crack

with normalized time t/t1 for various values of the crack height to length ratio h/�.

4.4 BREAKDOWN CONDITION

The propagation criterion of a fingerlike crack subjected to a non-poroelastic net

loading p̄ = p − σ0 was introduced in Chapter 2 (equation (2.8)). The extension of

the propagation criterion to the case of a poroelastic crack can be carried out by
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introducing the backstress to the net loading, i.e.,

p̄ (x, t) = p (x, t)− σ0 − σb (x, t) . (4.38)

4.4.1 Example

Previously, we considered an example of the initiation of fracture propagation from a

pre-existing fingerlike crack due to injection of supercritical CO2 in a critically over

pressured reservoir (p0 � σ0). In the following, we revisit this example, now in the

context of poroelastic reservoir (Chapter 3).

It was assumed that the supercritical CO2 is injected in a sandstone formation

characterized by porosity φ = 0.17, permeability k = 13 md, minimum in-situ stress

σ0 = 30.8 MPa, ambient pore pressure p0 = 20 MPa, rock toughness KIc = 1 MPa

m1/2, Young’s modulus E = 6 GPa, Poisson’s ratio ν = 0.2, and average reservoir

temperature T = 900C [70, 71].

The supercritical CO2 is assumed to be injected at the total mass flow rate ṁ =

100 t/day into a single vertical, fingerlike fracture with half-length � = 50 m, height

h = 20 m (assumed to span the height of the sandstone layer). The calculated values

of relevant problem parameters are Q0 = 0.0016 m3/s (volumetric injection rate),

S = 2.7 GPa-1 (storage), E ′
= 6.25 (Young’s modulus) α = 0.08 m2/s (diffusivity

coefficient), t1 = 4.4 seconds (1D time scale), t2 = 2.1 mins (2D time scale), p1 = 2.2

KPa (1D pressure scale), p2 = 91.7 KPa (2D pressure scale), h/� = 0.4 (crack height

to length ratio), and A = 0.024 (non-dimensional aspect ratio parameter).

Figure 4.7 shows the evolution of the net loading p̄ = p−σ0−σb on the crack cal-

culated at the crack tip (x = �) with the normalized time for the given example. The

poroelastic solution is contrasted to the reference non-poroelastic solution (Chapter

3).

Locating the point where p̄(x = �) = p̄B, p̄B/p1 = 112 on Fig. 4.7 (point B for
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a poroelastic crack), the onset of the fracture propagation is forecasted at tB/t1 =

1.5 × 1011, or in tB � 2099 years from the beginning of the injection. In practical

terms, obtained value for the onset of propagation is orders of magnitude larger than

realistic injection times (years).

By contrast, the propagation initiation time calculated for a non-poroelastic crack

for the same problem (point A) was at tB/t1 = 3.6×106, or in tB � 183.3 days. This

indicates that the poroelastic effects have significant effects on the onset of fracture

propagation.

We also note that the poroelastic calculations based on the 1-D approximate form

of the influence function, (F1D) result in prediction propagation onset time (point C

on Fig. 4.7) which is about one order of magnitude larger than the value obtained

using the full form of the influence function F . This indicates the use of full (2-D)

poroelastic influence function is necessary to correctly predict fracture propagation.

4.5 SUMMARY OF CHAPTER RESULTS

Pressurization of an underground formation during injection of a low viscosity fluid

(e.g., liquid waste injection and waterflooding) may lead to reactivation of pre-

existing fractures and ensuing fracture propagation. In this Chapter, the poroe-

lastic effects on the transient pressurization and onset of fracture propagation of a

stationary pre-existing fingerlike crack in a critically over-pressured reservoir were

investigated. We first revisited the auxiliary problem of a crack subjected to mode

1 (traction) and mode 2 (pore pressure) poroelastic loadings [53]. We extended the

auxiliary problem solution by relaxing the 1-D diffusion assumption to account for

full (2-D) pore pressure. The solution to the auxiliary problem of a crack subjected

to a step pressure increase is then used via the Green’s function approach to formu-

late the solution for the transient pressurization (i.e., evolution of the pressure in the

crack) due to constant volumetric rate of injection. The poroelastic crack volume and
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Figure 4.7: Evolution of the normalized net pressure at the crack tip p̄(�)/p1 =
(p(x = �, t) − σ0 − σb(x = �, t))/p1 with normalized time t/t1 during the transient
pressurization of a crack for poroelastic and non-poroelastic cracks for the crack
breakdown calculation example. The dashed line corresponds to the net loading
calculation using the approximate 1-D influence function. The representative values
h/� = 0.4, A = 0.024, and η = 0.3 are used for numerical calculations. The 1-D
pressure and time scales are p1 = Q0E

′
t1/h

2� and t1 = (1/SE
′
)2(h2/4α), respectively.
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generated backstress are calculated subsequently. Comparison of the behavior of a

fingerlike crack due to fluid injection in non-poroelastic (Chapter 3) and poroelastic

reservoirs shows that the poroelastic effects on the evolution of the fluid pressure

in the crack is almost negligible. However, the poroelasticity can have significant

effects on the crack opening (and, therefore volume), due to poroelastic backstress.

The poroelastic effects on the onset of fracture initiation during a supercritical CO2

injection project was also investigated. It was shown that the poroelasticity has

significant impacts on the onset of fracture propagation.
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CHAPTER 5: TRANSIENT PRESSURIZATION OF A CLOSED

FRACTURE

5.1 OBJECTIVES

In Chapter 3, we considered the transient pressurization of a pre-existing fracture

in a critically over-pressured reservoir (i.e., p0 � σ0). In this Chapter, we relax the

assumption of a critically over-pressured reservoir. We assume that the fracture is ini-

tially subjected to a negative net fluid pressure (i.e., (p0 − σ0) < 0) and it is initially

mechanically closed. There are two classifications of initially mechanically-closed

fractures, “un-propped” fractures where the opposing fracture surfaces are initially in

contact preventing the complete closure of fracture, and “propped” fractures where

the proppant is used to hold the fracture open.

During the transient pressurization of a pre-existing un-propped fracture, two

different loading phases are expected. 1) The loading phase when the fracture surface

contacts will be gradually reduced until the fracture becomes mechanically-open. The

latter takes place when the pressure along the fracture becomes equal to the minimum

confining stress (i.e., condition of crack re-opening). 2) The loading phase when the

pressure along the crack exceeds the minimum confining stress. The pressurization of

the fracture above the minimum confining stress will eventually lead to the fracture

breakdown.

Although, un-propped hydraulic fracturing has been reported in reservoir stimu-

lation (improvements of reservoir connectivity to the well) [73, 74], it is a common

practice to inject proppant during hydraulic fracturing to hold the fractures open

once the treatment is finished.

The mechanism of the transient pressurization of propped fractures is significantly

different from that of un-propped ones. Thus, during injection and related pressur-
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ization of a propped fracture, the condition of fracture re-opening is to be achieved

when the pressure along the crack becomes equal or greater than the breakdown

pressure.

Indeed, proppant is mixed with hydraulic fracturing fluid and it is placed inside

the fracture when fracture is propagating. During the propagation of a hydraulic

fracture, the pressure along the fracture is either equal (i.e., when crack propagates

in toughness-dominated regime) or greater (i.e., when crack propagates in viscosity-

dominated regime) than the breakdown pressure. To re-pressurize a propped fracture,

now in a depleted reservoir, the pressure along the crack should be raised to the

level of the pressure existed at the time of proppant placement (i.e., during fracture

propagation). Hence, the condition of fracture breakdown (onset of propagation) is

to be reached while the propped crack still remains mechanically-closed.

In this Chapter, the pressurization and the onset of fracture propagation is quan-

tified for propped and un-propped closed fractures in a non-poroelastic reservoir.

5.2 CASE OF PROPPED FRACTURE

We make use of the following assumptions in this Section. 1) The deformation of the

propped fracture due to fluid injection is neglected. In other words, fracture has zero

compressibility. 2) The dependence of the propped fracture conductivity on pressure

is negligible. 3) The proppant thickness (or, initial propped fracture aperture) is

uniform along the entire fracture.

5.2.1 Conditions for a uniform pressure distribution along the crack

Consider a propped PKN fracture characterized by proppant permeability kf . Fluid

is injected in the fracture at a constant volumetric flow rate Q0. The flow of fluid

inside the fracture can be described by the lubrication equation. Due to negligible

fracture compressibility, the fracture dilation due to fluid injection can be neglected.
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The latter allows to nullify the storage term in the lubrication equation.

The evolution of the pore fluid pressure due to fluid leak-off along the crack is

described by the diffusivity equation (2.15). The lubrication equation (2.11) with

boundary conditions (2.12) and diffusivity equation (2.15) can be simultaneously

solved to evaluate the transient pressurization in the crack.

We define the non-dimensional time (τ = t/t∗), x coordinate (ξ = x/�), y co-

ordinate (χ = y/�), and pressure (Π = (p − p0)/p∗) using the characteristic time

t∗ = �2/4α, length �, and pressure p∗ = Q0�μ/kf w̄h scales, respectively to normalize

the lubrication equation (2.11), initial and boundary conditions (2.12), and diffusiv-

ity equation (2.15). The resulting normalized equations, parametrized by a single

non-dimensional propped fracture conductivity

(kf w̄)D =
kf w̄

k�
(5.1)

and numerical method of their solution are discussed in Appendix E.

Figure 5.1 shows the evolution of the normalized pressure with time at selected

positions ξ along the crack in the case with (kf w̄)D = 100. The 1-D and 2-D pressure

asymptotic solutions (as obtained in Appendix E) are shown by a dashed line for

comparison. As expected, for large enough time, the pressure equilibrates along the

crack.

We define “uniformity” pressure (Πuni) and time (τuni) thresholds corresponding

to the 5% difference between the inlet and the tip values of pressure. We can show

that the uniformity pressure puni is approximately given by

puni − p0 ≈ 5
Q0�μ

kf w̄h
, (5.2)

if,

(kf w̄)D =
kf w̄

k�
� 1. (5.3)
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Figure 5.1: Evolution of the normalized net pressure Π = (p−p0)/p∗ with normalized
time τ = t/t∗ at selected positions along the crack ξ = x/� = 0 (inlet), 0.55, 1 (tip) in
the case of a propped fracture with (kf w̄)D = kf w̄/k� = 100. The characteristic time
and pressure scales are t∗ = �2/4α, p∗ = Q0�μ/kf w̄h, respectively. Marked point
corresponds to the onset of approximate pressure uniformity in the crack.
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As it will be later shown in the breakdown example for a propped fracture, the

condition (5.3) is typically satisfied for practical reservoir applications. We also

notice that the uniformity time tuni does depend on (kf w̄)D (see Appendix E for

details).

In this Section, we showed that the condition of the pressure uniformity is ap-

proximately satisfied when p � puni, with puni given by (5.2), and it can be used to

predict the breakdown if pB � puni. Note that the condition of fracture propagation

is achieved prior to the condition of fracture re-opening for a “propped” fracture.

5.2.2 Transient pressurization: constant rate of injection into a crack

Assuming a uniform pressure distribution along the crack, the transient pressuriza-

tion of the fracture can be obtained from (3.17) by nullifying the storage term. The

latter is due to the negligible compressibility of a propped fracture. Figure 5.2 illus-

trates the evolution of normalized pressure (p−p0)/p2 with normalized time t/t2 due

to fluid injection into propped fracture. Note that p2 and t2 are the 2-D pressure and

time scales (equation (3.19)), respectively.

5.3 CASE OF UN-PROPPED FRACTURE

5.3.1 Conditions for a uniform pressure distribution along the crack

In this Section, we establish a criterion for the onset of pressure uniformity in the

case of un-propped and mechanically-closed fracture.

5.3.1.1 Case of impermeable rock

Lubrication equation (2.11) with ḡ = 0 can be used to describe the flow of fluid inside

the fracture channel. Unlike the propped fracture case where the fracture deformation

can be reasonably neglected, the un-propped fracture requires an appropriate model

to account for the hydraulic aperture change with pressure.
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Figure 5.2: Evolution of pressure (p − p0)/p2 with time t/t2 during the transient
pressurization of a closed propped fracture: The 2-D time and pressure scales are
t2 = �2/4α, p2 = Q0t2/�

2hS, respectively.

There are several relations in literature describing the deformation of a mechanically-

closed fracture with change in the net fluid pressure p̄ = p−σ0 [e.g., 75, 42, 76]. In our

analysis, we use the following relation between the change of the hydraulic opening

Δw and p̄ suggested by Bandis et al. [76]

Δw =
(w0 − wini)p̄

p∗ − p̄
, (5.4)

where p∗ = kni(w0 − wini) is a characteristic value of the net pressure, expressed in

terms of the initial normal crack stiffness kni and the initial hydraulic opening wini.

Representative values of kni, wini and w0 for a highly weathered fracture in sandstone

and limestone formations are shown in Table 5.1, after [76]. As Table 5.1 indicates,

the values of wini are small compared to w0. In this study, in order to reduce the

number of parameters, we neglect wini compared to w0 in Bandis’ equation (5.4).

We define the non-dimensional time (τ = t/t∗), coordinate (ξ = x/�), and pressure
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Type of formation kni, MPa/mm w0, mm wini, mm
Sandstone 2.3 0.4 0.03
Limestone 3.8 0.225 0.082

Table 5.1: Summary of values used in Bandis’ equation [76].

(Π = (p− σ0)/p∗) using the characteristic time t∗ = h�w0/Q0, length �, and pressure

p∗ = kniw0 scales, respectively, to normalize lubrication equation (2.11) and initial-

boundary conditions (2.12), (see Appendix E for details). The resulting normalized

equations depend on namely, the non-dimensional rate number

Q =
Q0μ�

hw4
0kni

, (5.5)

and non-dimensional initial net pressure,

Π0 =
p0 − σ0

kniw0

. (5.6)

Note that a typical range of the non-dimensional rate number for practical applica-

tions is Q � 10−4 (as it will be shown in the breakdown example for un-propped

fracture).

Figure 5.3a shows an example of numerical calculations for the transient pres-

surization of an un-propped fracture in an impermeable reservoir carried out for

representative values of the non-dimensional rate number Q = 10−4 and initial net

pressure Π0 = −5 (e.g., p0 − σ0 ≈ −5 MPa and kniw0 ≈ 1 MPa). The details of

the numerical calculations are described in Appendix E. The transient pressurization

solution assuming a uniform pressure distribution along the crack (as later obtained

in Section 5.3.2) is shown by a dashed line for comparison. As Fig. 5.3a shows, the

pressure is equilibrated along the crack before the condition of the fracture re-opening

(i.e., p = σ0) is reached.

To obtain the condition of pressure uniformity, we define a threshold in which the
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Figure 5.3: Injection at a constant rate into an un-propped crack in (a) impermeable
rock (k = 0), and (b) permeable rock (k = 10−3 md): evolution of the normalized net
pressure Π = (p − σ0)/p∗ with normalized time τ = t/t∗ at selected positions along
the crack ξ = x/� = 0 (inlet), 0.5, 1 (tip). Selected non-dimensional parameters are
Q = 10−4, Π0 = −5, and Ac = 0.087. The characteristic pressure and time scales are
p∗ = kniw0 and t∗ = h�w0/Q0, respectively. Marked points correspond to the onset
of approximate pressure uniformity in the crack.
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on (σ0 − p0) /kniw0 for selected values of Q = 10−6, 10−4, 10−2 in the case of a
mechanically-closed and un-propped fracture in impermeable rock.

pressure at the inlet and tip are 5% different. Figure 5.4 illustrates the dependence

of the non-dimensional uniformity pressure (puni − p0) / (σ0 − p0) on (σ0 − p0) /kniw0

for various non-dimensional rate numbers Q. As Fig. 5.4 shows, the dependence of
the uniformity pressure on the non-dimensional rate number Q is diminished with

increase of the initial effective stress (i.e., σ0 − p0). The asymptote of the uniformity

pressure for large value of the effective stress is given by:

puni ≈ σ0, σ0 � p0. (5.7)

We also note that for typical reservoir applications, Q � 10−4 and σ0−p0 � 0, the uni-

formity pressure condition is always reached before the crack becomes mechanically-

open (Fig. 5.4), i.e,
puni − p0
σ0 − p0

≤ 1, Q � 10−4. (5.8)
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5.3.1.2 Case of permeable rock

In order to investigate the effect of formation permeability on the onset of the uni-

formity pressure, we include the leak-off term in lubrication equation (2.11). Prob-

lem solution depends on four group parameters, namely non-dimensional rate num-

ber Q = Q0μ�/kniw
4
0h, non-dimensional initial net pressure Π0 = (p0 − σ0)/kniw0,

closed-fracture aspect ratio Ac = 1/kniS�, and non-dimensional un-propped fracture

conductivity (kf w̄)D = w3
0/k�.

For numerical calculations, we used the following values of the parameters: Q =

10−4, and Π0 = −5. We also use representative values for the fracture half-length

� = 50 m, fracture stiffness kni = 2.3 MPa/mm, neutral opening w0 = 0.4 mm, and

storage S = 10−10 Pa-1. Calculated corresponding value of the closed-fracture aspect

ratio is, Ac = 0.087.

Using the above selected values for the problem parameters, numerical calcu-

lations are carried out for various values of the formation permeability in order to

evaluate the onset of the pressure uniformity. We showed that the uniformity pressure

remains almost unchanged from its value for the impermeable case (i.e., k = 10−8

md) (Fig. 5.5). The latter is only confirmed for the reservoirs with small formation

permeability (i.e., when k 
 1 md). Unfortunately, due to numerical difficulties,

we could not carry out the numerical calculations for the higher values of reservoir

permeabilities. As it was previously shown in Chapter 3, the uniformity pressure

in impermeable/low permeable reservoirs gives the higher bound of the uniformity

pressure. One may expect the uniformity pressure to decline with large enough k

and approach the initial reservoir pore pressure (puni → p0 ) in the limit of k → ∞.

An example of pressure evolution with time in the case of permeable rock (k =

10−3 md) is shown in Fig. 5.3b.
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Figure 5.5: Effect of the formation permeability on the uniformity pressure p̄uni/p∗ =
(puni−σ0)/p∗. Selected values of non-dimensional parameters areQ = 10−4, Π0 = −5,
and Ac = 1/kniS� = 0.087. The characteristic pressure is p∗ = kniw0.

5.3.2 Transient pressurization: constant rate of injection into a crack

In this Section, the transient pressurization of an un-propped fracture before and

after the crack re-opening (i.e., p = σ0) is obtained assuming a uniform pressure

distribution along the crack.

5.3.2.1 Before crack re-opening

We use the global volume balance equation (2.13) to evaluate the transient pressur-

ization of the crack. The general expression for the fracture dilation �Vcrack(t) is

obtained from (2.4) as:

�Vcrack =
πh�

2
(Δw(p̄)−Δw(p̄0)) . (5.9)
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In view of (3.15) and (5.9), the global volume balance (2.13) for the particular scenario

of constant injection rate (Q0) can be expressed as

Q0t =
πh�

2
(Δw(p̄)−Δw(p̄0))+

tˆ

0

Vaux(t− t
′
)
dp̄(t

′
)

dt′
dt

′
, (p̄ = p− σ0, t ≤ to) , (5.10)

where to is the onset of crack re-opening, and Vaux(t) = �2hS Φaux(4αt/�
2) is the

cumulative leak-off volume of the fracture subjected to a unit step pressure increase,

with Φaux given in Fig. 3.3.

Substitution of Δw from Bandis’ equation (5.4) allows to rewrite (5.10) as

Q0t =
πh�w0

2

(
p̄

kniw0 − p̄
− p̄0

kniw0 − p̄0

)

+

tˆ

0

Vaux(t− t
′
)
dp̄(t

′
)

dt′
dt

′
, (p̄ = p− σ0, t ≤ to) . (5.11)

Similarly to the treatment of a mechanically-open crack (Chapter 3), three length-

scales can be defined for this problem: The time-dependent diffusion length ∼
√
4αt,

stiffness lengthcale 1/kniS, and crack half-length �. Similarly, the three different

end-members, namely, the crack-storage-dominated regime when
√
4αt 
 1/kniS,

the 1-D leak-off dominated regime when 1/kniS 
 √
4αt 
 �, and the 2-D leak-off

dominated regime when
√
4αt � � are anticipated.

Here, we define the corresponding closed-crack 1-D and 2-D leak-off time and

net-pressure scales as

t1c =
(1/kniS)

2

4α
, p1c =

Q0knit1c
h�

, (5.12)

t2c = t2 =
�2

4α
, p2c = p2 =

Q0t2c
�2h

1

S
. (5.13)
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Note that the corresponding 2D leak-off time and net-pressure scales for a mechanically-

closed and mechanically-open fractures are identical (equation (3.19)).

Transient pressurization calculations

We formulate (5.11) in the 2-D scaling (5.13) with Π = (p− σ0)/p2c and τ = t/t2c,

τ =
π

2
Ac

(
Π

1−DΠ
− Π0

1−DΠ0

)
+

τˆ

0

Φaux

(
τ − τ

′
) dΠ

(
τ

′)
dτ ′ dτ

′
, (5.14)

where D = Q0/ (4k
2
niS

2h�αw0) is a non-dimensional number, which is very small for

reservoir applications (i.e., D 
 1) (see the discussion of typical values of problem

parameters in Section 5.5.2), Π0 = (p0 − σ0)/p2c, and

Ac =
p1c
p2c

=

√
t1c
t2c

=
1

kniS�
(5.15)

is the closed-crack aspect-ratio previously defined in Section 5.3.1.2. The latter is

small (i.e., Ac < 1 ) for reservoir applications since 1/kniS � � for rock.

The formulation of the transient pressurization (5.14) for the special case when

D 
 1 can be simplified to

τ =
π

2
Ac (Π− Π0) +

τˆ

0

Φaux

(
τ − τ

′
) dΠ

(
τ

′)
dτ ′ dτ

′
, (5.16)

with the solution in Laplace domain given by

Π̂(s) =
1

s2
(
πAc/2 + sΦ̂aux(s)

) +
Π0

s
. (5.17)

Note that the solution of the transient pressurization of a mechanically-open fracture

(equation (3.21)) can be recovered from (5.17) by setting Ac = 2A and Π0 = 0.

The transient pressurization solution in the leak-off dominated regime can be
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obtained by nullifying the storage term (i.e., setting Ac = 0) in (5.17).

Figure 5.6 illustrates the solution for pressure (5.17) in the 2-D scaling. In the

numerical calculations, we use two values of initial normalized pressure Π0 = (p0 −
σ0)/p2c = −1 and −2. For each assigned value of Π0, the numerical calculations are

carried out for various values of Ac. The dashed line corresponds to the solution of

the transient pressurization in the leak-off dominated regime; Ac = 0.

As Fig. 5.6 shows, the effect of Ac on the transient pressurization of the crack

diminishes with increase of the absolute value of the initial normalized pressure. We

may observe that the storage effect (i.e., Ac = 0) can be neglected by the time the

fracture is re-opened (i.e., p = σ0), if

|p̄0/p2c| � 1. (5.18)

The above condition can be expanded in terms of the original problem parameters

as:
hk (σ0 − p0)

μQ0

� 0.25. (5.19)

As we will further show in the breakdown example calculations for the case of un-

propped, closed-fracture, condition (5.18) is valid for reservoir applications. Hence,

the details of fracture deformation during the transient pressurization of the fracture

can be approximately neglected by the time of fracture re-opening.

5.3.2.2 After crack re-opening

In this Section, we assume that the storage effect on the transient pressurization of

the crack before the onset of crack re-opening is neglected (i.e., condition (5.19) is

assumed to apply).

In view of (3.15) and (3.16), the global volume balance (2.13) after the onset of
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Figure 5.6: Evolution of normalized pressure p̄/p2c = (p − σ0)/p2c with normalized
time τ = t/t2c during the transient pressurization of an un-propped and mechanically-
closed fracture for various values of closed-crack aspect-ratio Ac and two values of the
initial normalized pressure p̄0/p2c = −1, and −2. The red dashed line corresponds to
the solution of the transient pressurization in the leak-off dominated regime (Ac = 0).
The 2-D time and pressure scales are t2c = �2/4α, p2c = Q0t2c/�

2hS, respectively.
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fracture re-opening can be expressed as

Q0t =
πh2�

E ′ p̄(t) +

toˆ

0

Vaux

(
t− t

′
) p̄(t

′
)

dt′
dt

′
+

tˆ

to

Vaux(t− t
′
)
dp̄(t

′
)

dt′
dt

′
, (p̄ = p− σ0, t ≥ to) (5.20)

Using the dimensionless pressure Π = (p − σ0)/p2c and time τ = t/t2c expressed in

the 2-D scaling (equation (5.13)), allows to normalize (5.20) as

τ = πAΠ(τ) +

τoˆ

0

Φaux(τ − τ
′
)
dΠ(τ

′
)

dτ ′ dτ
′
+

τˆ

τo

Φaux(τ − τ
′
)
dΠ(τ

′
)

dτ ′ dτ
′
. (5.21)

where A = h/�SE
′ (equation (3.22)), and τo = to/t2c is the normalized re-opening

time. The solution of (5.21) depends on non-dimensional parameters, Π0 and A.
Figure 5.7 shows the solution of the transient pressurization in the crack after the

fracture re-opening. Numerical calculations are carried out for Π0 = (p0 − σ0)/p2c =

−1 and various values of the crack aspect-ratio A. The details of the numerical

method are described in Appendix E.

As Fig. 5.7 shows, the storage effect on the transient pressurization of the crack

is negligible for the entire range of time shown.

In summary, we established a criterion (equation (5.19)) which can be used to

investigate the significance of the storage effects on the transient pressurization of

the crack before and after the re-opening.
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p̄0 = (p0 − σ0)/p2c = −1 and various crack aspect-ratio A. The 2-D time and
pressure scales are t2c = �2/4α, p2c = Q0t2c/�

2hS, respectively.

5.4 EXTENSION OF THE ANALYSIS TO MULTIPLE FRACTURES

In petroleum industry, the preferred method of completion during the hydraulic frac-

ture treatment is multistage fracturing in which an array of parallel fractures is cre-

ated from a borehole. In addition, in naturally fractured reservoirs, systematic sets

of nearly parallel natural fractures are often observed. In this Section, we investigate

the transient pressurization of multi-fractured wells.

We define a problem in which an infinite linear array of fractures is hydraulically

connected to a horizontal borehole (Fig. 5.8). The pre-existing fractures character-

ized by the half-length � and height h are uniformly distributed with spacing d. A

low viscosity fluid is injected into a borehole at a constant volumetric flow rate which

is assumed to be distributed equally among the fractures. Flow rate into a single

fracture is denoted by Q1
0.
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Figure 5.8: Infinite number of fractures characterized by the half-length � and height
h uniformly distributed at a distance d.

To aid the analysis of injection into an infinite linear array of fractures, we define

an equivalent problem of fluid injection into a strip (infinite in the direction of x) of

thickness d from two line sources of length 2� located on the each side of the strip

(Fig. 5.9). The rest of the strip boundary is impermeable (i.e., no-flow boundary).

The transient pressurization solutions of the permeable strip and the infinite linear

array of fractures are identical.

Figure 5.10 shows the evolution of the normalized pressure (p − p0)/(Q
1
0/4hSα)

with normalized time 4αt/d2 for various values of the normalized strip thickness d/�.

The small time pressure asymptotic solution, marked as early linear flow on Fig. 5.9,

is the 1-D asymptote of the transient pressurization solution for a single fracture

given by:

p− p0 =
Q1

0

2
√
πhS�

√
α

√
t. (5.22)

The latter corresponds to the injection times when the fractures have not yet inter-

acted.

We also note that the numerical solution of the transient pressurization problem

converges to an asymptote at the later injection time (marked as late linear flow on

Fig. 5.9). This asymptote is approximately given by:

p− p0 =
Q1

0

2hSd
√
α

√
t. (5.23)
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1
0/4hSα) with

normalized time (4α/d2)t for several values of the non-dimensional distance d/� in
the case of a permeable strip.

The details of the numerical calculations for the strip problem are described in Ap-

pendix F.

In summary, the strip solution can be used to obtain the transient pressurization

of multiple fractures due to a fluid injection when the number of pre-existing fractures

are sufficiently large. In case of injection into a finite number of fractures, the strip

analysis is expected to be valid until times when the diffusion lengthscale becomes

comparable or exceeds the fracture wellbore interval.

5.5 EXAMPLES OF THE BREAKDOWN CALCULATIONS

5.5.1 Propped fracture case (wastewater injection)

Consider a synthetic example of wastewater injection into a depleted hydraulically

fractured sandstone reservoir characterized by: porosity φ = 0.18, permeability k =

5.1 md, minimum in-situ stress σ0 = 30 MPa, initial reservoir pore pressure p0 =
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20 MPa, rock toughness KIc = 1 MPa m1/2, fluid viscosity μ = 1 cp, and bulk

compressibility ct = 10−9 pa-1. We assume that the wastewater is injected at a

constant volumetric rate Q0 = 0.001 m3/sec into a single propped hydraulic fracture

characterized by the fracture half-length � = 28 m, fracture conductivity kf w̄ = 4.4

d-m, and fracture height h = 18 m [50].

The calculated values of the parameters are S = 0.18 GPa-1 (storage), α = 0.028

m2/s (diffusivity coefficient), (kf w̄)D = 30.8 (dimensionless propped fracture con-

ductivity), t2 = 1.92 hours (2D time scale), p2 = 2.72 MPa (2D pressure scale),

and pB = 30.27 MPa (breakdown pressure). The corresponding value of the uni-

formity pressure is puni = 21.77 MPa (equation (5.2)). Since pB > puni, the anal-

ysis based on the pressure uniformity assumption is valid. Locating the point with

(pB − p0) /p2 = 3.8 on Fig. 5.2 (point A), the onset of the fracture propagation is

forecasted at tB/t2 = 68358, or in tB � 15 years.

5.5.2 Un-propped fracture case (supercritical CO2 injection)

In Chapter 3, a synthetic example of the breakdown calculation during supercrit-

ical CO2 injection into a single un-propped fracture in a critically over-pressured

sandstone reservoir was considered (In Salah project, Algeria). In the following, we

revisit this example, now in the context of naturally fractured reservoir with a normal

reservoir condition (i.e., p0 < σ0).

The supercritical CO2 is injected from a 1.5 km interval of a horizontal well aligned

in the direction of the minimum confining stress. The horizontal well has intersected

a pervasive array of pre-existing parallel natural fractures oriented perpendicular to

the direction of the minimum confining stress (and, hence, well axis). The fracture

density is reported to be 1/m. Hence, the total number of fractures intersected by

the wellbore is n � 1500. The actual rate of CO2 injection in this project was

ṁ = 3500 t/day. The sandstone formation has the with overall thickness of 20 m
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(target zone for injection) consists of 5 horizontal layers of different thicknesses with

some fractures span only one layer of the formation while other fractures span two

layers. For the sake of simplicity, we assume that fractures have the same height,

h = 10 m. The initial normal fracture stiffness is assumed to be kni = 2.3 MPa/mm

(see Table 5.1 for the un-propped fracture properties in a sandstone reservoir).

Using the representative values for the supercritical CO2 properties calculated

at the breakdown pressure value (Section 3.5), the calculated values of the related

parameters are: Q0 = 0.057 m3/s (total volumetric injection rate), Q1
0 = 3.78× 10−5

(volumetric injection rate per fracture), Q = 1.92 × 10−4 (non-dimensional rate

number), (p0 − σ0) /kniw0 = −11.74 (non-dimensional initial net pressure), d/� =

0.02 (non-dimensional fracture spacing), Ac = 0.003 (closed-crack aspect-ratio), A =

0.011 (open-crack aspect-ratio), and D = 1.5× 10−5.

Since the calculated non-dimensional rate number is Q � 10−4 the condition of

pressure uniformity is arrived at before the crack re-opening/breakdown (see Section

5.3), and, therefore, the analysis of the transient pressurization based on the pressure

uniformity is valid.

We check the validity of condition (5.19) to see whether the effects of the fracture

storage before and after fracture re-opening on the transient pressurization can be

neglected. We have hk (σ0 − p0) /μQ
1
0 = 619 � 0.25 (Equation (5.19)). Hence,

the effect of storage on the transient pressurization calculations can be reasonably

neglected.

Since the number of fractures in this example is sufficiently large (i.e., n = 1500),

the strip (infinite array of cracks) analysis can be used to estimate the onset of fracture

breakdown. Locating the point with (pB − p0) /(Q
1
0/4hSα) = 2532.5 on Fig. 5.10

(point A), the onset of the fracture propagation is forecasted at (4α/d2)tB = 5.9×106,

or in tB � 213.4 days.

82



5.6 SUMMARY OF CHAPTER RESULTS

In this Chapter, we relaxed the assumption of a mechanically-open fracture to account

for the possibility of an initially closed fracture. We divided the realm of closed

fractures into two categories, namely, propped and un-propped closed fractures. This

is due to the difference in mechanics of fracture deformation in these two cases.

Initially, we obtained the parametric range when the condition of pressure uni-

formity in the crack is valid. Assuming a uniform pressure distribution along the

crack, the transient pressurization problems for propped and un-propped closed frac-

tures due to a fluid injection are formulated. For the case of un-propped fracture, we

obtained the parametric range when the crack storage effect on the transient pressur-

ization calculations before and after the crack re-opening is insignificant. The latter

allows for much more simpler formulation of the transient pressurization problem.

The analysis of the transient pressurization was then extended to multiple frac-

tures. We defined the problem of fluid injection into an infinite linear array of frac-

tures at a constant volumetric flow rate. We show that this problem is mathematically

equivalent to injection into a strip from its boundaries.

The analysis of the transient pressurization of initially closed crack(s) in this

Chapter was used to predict the onset of the crack propagation for the cases when

these cracks are either propped or un-propped.
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS

Extensive analytical and numerical studies were carried out to investigate the reac-

tivation of a PKN hydraulic fracture due to the massive fluid injection in permeable

rock. The objective was to quantify the transient pressurization and onset of fracture

breakdown due to fluid injection.

We initially considered a pre-existing, un-propped, non-poroelastic crack in a

critically over-pressured reservoir (Chapter 3). To formulate the problem, we revis-

ited the work by Detournay and Cheng [57] in which the transient pressurization of

a crack subjected to a step pressure increase was considered. The solution of this

problem was then used to construct a convolution integral governing the transient

pressurization of the crack due to a constant rate of injection. We derived the analyt-

ical expression for the large-time asymptotic of the fluid leak-off rate in the auxiliary

problem. The transient pressurization of the fracture was formulated assuming the

pressure is uniformly distributed along the fracture. We established the parametric

range when the condition of the pressure uniformity is justified. Pressure uniformity

allows for much simpler formulation of the transient pressurization using the Green’s

function approach.

In Chapter 4, we accounted for the poroelastic effects on the transient pressur-

ization and onset of fracture propagation in a critically over-pressured reservoir. We

first revisited the auxiliary problem of a crack subjected to mode 1 (traction) and

mode 2 (pore pressure) poroelastic loadings [53]. In the formulation of the auxil-

iary problem, we accounted for full (2-D) pore pressure by relaxing the 1-D diffusion

assumption of Chapter 3. We used the auxiliary problem to formulate the tran-

sient pressurization of the crack using the Green’s function approach. Comparison

of the transient pressurization solutions of poroelastic and non-poroelastic cracks

shows that the poroelastic effect on the evolution of the fluid pressure in the crack is
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negligible. However, the poroelasticity can have significant effects on the crack open-

ing (and, therefore volume) due to the generated backstress. We also showed that

the poroelastic effects will substantially delay the breakdown time compared to the

non-poroelastic case when the fracture breakdown occurs at later stages of injection

characterized by large-scale (2D) pore pressure perturbation in the reservoir.

In Chapter 5, we relaxed the assumption of a critically over-pressured reservoir.

We considered the transient pressurization of a crack initially subjected to a com-

pressive effective stress (i.e., p̄0 = p0 − σ0 < 0). The analysis is performed for the

cases when the crack is either propped or not. We first established the parametric

range when the condition of the pressure uniformity is reached. Assuming a uni-

form pressure distribution along the crack, we obtained the transient pressurization

of the propped and propped fractures due to a fluid injection. For an un-propped

fracture, we established the parametric range range when the storage effect on the

transient pressurization can be approximately neglected. We then extended the tran-

sient pressurization analysis to multiple fractures. We defined the problem of fluid

injection into an infinite linear array of fractures at a constant volumetric flow rate.

We show that this problem is mathematically equivalent to injection into a strip from

its boundaries. The analysis of the strip problem allows for simpler formulation of

the transient pressurization in multiple fractures.

6.1 RECOMMENDATIONS FOR FUTURE RESEARCH

In Chapter 5, we neglected the poroelastic effects on the transient pressurization

of propped and un-propped closed fractures. Future work should account for the

poroelastic effects on the transient pressurization of a mechanically-closed crack. We

may still expect that the onset of crack re-opening and breakdown to be substantially

delayed compared to the non-poroelastic case when the condition of the crack re-

opening and breakdown is reached at later injection time when the leak-off diffusion
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is essentially 2-D.

The study of hydraulic fracture reactivation was limited to a stationary pre-

existing crack in this work. As the condition of fracture breakdown is reached, the

fracture will propagate. The future work should consider the fracture propagation

problem. The objective will be to evaluate the crack growth rate from the onset of

propagation. We should note that the history of the transient pressurization prior to

breakdown can be used to provide the initial conditions for the fracture propagation

problem. The analytical solution of Gordeyev and Entov (1997) [8] can be used to

validate the numerical solution at large propagation time (the leak-off dominated

regime). The poroelastic effects on fracture propagation should also be investigated.

In this study, the transient pressurization of multiple fractures was investigated

assuming that the fluid is injected into an infinite array of fractures. The future

work will consider the problem of injection into a finite number of fractures. One

may use the superposition of instantaneous point sources distributed along each frac-

ture to formulate the transient pressurization of finite number of fractures. Similar

to treatment of the transient pressurization of a single fracture, we can define an

auxiliary problem in which the fractures are subjected to a step pressure increase.

The auxiliary problem allows one to evaluate the fluid leak-off from each fracture

which then can be used to construct the convolution integral governing the transient

pressurization of finite number of fractures.
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APPENDIX A: ENERGY RELEASE RATE OF AN INTER-

NALLY LOADED CRACK

The first law of thermodynamics in application to fracture states that the internal

energy (U) of the body V changes due to (i) the work of tractions pn = σjinjei on the

displacement increments dw at the body’s boundary S (inclusive of crack surfaces)

characterized by external normal n (dA(e)) and (ii) the energy released in extending

the surface of the crack(s) by dΣ (dA(e)
dΣ ≤ 0) [77]:

dU = dA(e) + dA
(e)
dΣ, (A.1)

U =

ˆ
V

(ˆ
σijdεij

)
dV, dA(e) =

ˆ
S

pndw dS (A.2)

Defining the energy release rate as

G ≡ −dA
(e)
dΣ

dΣ
, (A.3)

(A.1) can be rewritten as
dU

dΣ
=

ˆ
S

pndw

dΣ
dS −G (A.4)

Consider U and G to be functions of the crack surface area Σ and boundary

tractions, the latter - a function of a loading parameter(s) p. Variation of the in-

ternal energy when the crack is not propagating (fixed Σ condition) is equal to the

work of tractions on the corresponding change of displacements, i.e. (∂U/∂p)Σ =
´
S
pn (∂w/∂p)Σ dS. Expanding the derivative d/dΣ = (∂/∂Σ)p+(dp/dΣ)(∂/∂p)Σ in

(A.4) and using the latter (fixed Σ) result allow to reduce Eq. (A.4) to

(
∂U

∂Σ

)
p

=

ˆ
S

pn

(
∂w

∂Σ

)
p

dS −G (A.5)
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Further, using the well-known result of linear elasticity, stating that variation of the

internal energy under conditions of fixed boundary tractions is equal to a half of the

work of these tractions, i.e., (∂U/∂Σ)p = 1
2

´
S
pn (∂w/∂Σ)p dS, in (A.5), we arrive

to the result

G =

(
∂U

∂Σ

)
p

(A.6)

which is usually exposed in the literature in the framework of traction-free cracks [e.g.

78]. Essentially, (A.6) implies that the energy release rate associated with fracture

growth is a function of the instantaneous loading, and is, therefore, independent of

the loading history.
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APPENDIX B: NON-UNIFORM PRESSURE SOLUTION (VIS-

COUS PRESSURE DROP IN THE CRACK)

B.1 NORMALIZED EQUATIONS

Using the non-dimensional time (τ), coordinate (ξ), and pressure (Π) defined in Sec-

tion 3.2, and introducing the non-dimensional y coordinate (χ = y/�) , the lubrication

equation (2.11) and initial-boundary conditions (2.12) are normalized as

∂Π

∂τ
− 4K

π

∂Π

∂χ

∣∣∣∣
χ=0

=
1

16

∂2(W0/2+Π)4

∂ξ2
, (B.1)

Π|τ=0 = 0,
∂(W0/2+Π)4

∂ξ

∣∣∣∣
ξ=0+

= −16

π
,

∂(W0/2+Π)4

∂ξ

∣∣∣∣
ξ=1

= 0, (B.2)

respectively, where W0 is the non-dimensional neutral hydraulic opening parameter

(equation (3.1)), and K is the non-dimensional permeability parameter (equation

(3.3)). Note that the induced crack width for a mechanically-open fracture (equation

(2.2)) is used to obtain the height average crack opening (equation (2.3)).

The normalized form of the diffusivity equation (2.15),

∂Π

∂τ
= AK

(
∂2Π

∂ξ2
+

∂2Π

∂χ2

)
, (B.3)

completes the set of normalized governing equations (B.1)-(B.3). (HereA = h/(�SE
′
)

is the scaled crack aspect ratio parameter). The transient pressurization of fracture

in impermeable formation can be extracted as a special case from above formulation

by letting K = 0.
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B.2 NUMERICAL SCHEME

The adopted numerical method to solve (B.1)-(B.3) is based on the method-of-lines

approach in which the unknown field function Π is discretized in space but not in time.

This allows to reduce the system of PDEs, (B.1) and (B.3), to a system of ordinary

differential equations in time at the space discretization nodes. We use the central

finite-difference representation [e.g., 79] for a set of non-uniformly spaced grid points

{0 ≤ ξi < ∞, 0 ≤ χj < ∞}, i = 1, ...,M and j = 1, ..., N , spanning the quarter space

(owing to the problem symmetry). In view of (i) the initially high pressure gradient

near the fluid injection point (located at the crack inlet ξ = 0), and (ii) singular

leak-off rates at the crack tip (ξ = 1), as observed from the solutions neglecting

pressure drop in the crack (Sections 3.3-3.4), we use the ξ-mesh with logarithmically-

concentrated nodes near the inlet and near the tip of the crack, connected by the

intermediate region with uniform mesh. Outside of the crack (ξ > 1), we also make

use of logarithmic ξ-node spacing in order to span a computational domain which is

sufficiently large to model diffusion in the infinite space. For the same reason, we

use logarithmic grid spacing in the direction normal to the crack plane (χ-mesh).

The numerical results reported in this Appendix and Section 3.2 are based on the

computational domain with ξM = χN = 107 (as proved to be necessary for cases

when K is not small, and large injection time is required to achieve approximate

pressure uniformity), and the mesh with total M = 200 and N = 100 nodes in the ξ

and χ directions, respectively. We have verified robustness of the numerical solution

by carrying tests for a refined (doubled) discretization.

B.3 PARAMETRIC DEPENDENCE OF THE “UNIFORMITY” PRES-

SURE AND TIME

Figure B.1 illustrates the effect of the non-dimensional neutral hydraulic opening W0

on the “uniformity values” of the pressure (p̄uni/p∗) and time (tuni/t∗) for the case
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of impermeable rock (i.e., K = 0). (As per the main text, the “uniformity” values

correspond to the 5% maximum pressure variation along the crack, see, e.g., Fig.

3.1). Evidently, the case with zero neutral opening gives the upper bound of the

uniformity pressure and time.

The effect of non-zero rock permeability (quantified by the non-dimensional pa-

rameter K) on the uniformity pressure and time is illustrated in Fig. B.2 for a

reference case with zero neutral opening, W0 = 0, and the crack-aspect ratio pa-

rameter A = 0.01. The numerical results show that the uniformity pressure remains

almost unchanged from its value in the impermeable case, if K � 1. However, the

uniformity time tuni does change (increase) with K (Fig. B.2b).

For large values of K, computational time required to reach pressure uniformity

becomes prohibitively large, but one may expect the uniformity pressure to decline

with large enough K (e.g., K > 10), and approach the initial reservoir pore pressure

( puni → p0 or puni → 0) in the limit of K → ∞, as the uniformity time diverges in

the same limit.
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ratio parameter A = 0.01 and negligible neutral hydraulic opening W0 = 0.

102



APPENDIX C: LARGE-TIME ASYMPTOTE OF THE LEAK-

OFF RATE IN THE AUXILIARY PROBLEM

C.1 LAPLACE DOMAIN

Using asymptotic expression K0(z) = − ln(z/2)− γ, z 
 1 [80], to approximate the

Bessel kernel in (3.8) leads to:

1

s
= − 2

π

1ˆ

−1

ψ̂(ξ
′
, s)

(
ln(

√
s|ξ − ξ

′ |) + γ
)
dξ

′
, s 
 1. (C.1)

where γ is the Euler constant. Differentiating (C.1) in ξ, and inverting the resulting

Cauchy integral equation, 0 =
´ 1

−1
ψ̂(ξ

′
, s) dξ′/(ξ − ξ′), yields

ψ̂(ξ, s) =
C(s)√
1− ξ2

(C.2)

To constrain yet unknown function C(s), we substitute (C.2) back into (C.1) and

evaluate it at, e.g., ξ = 0,

1

s
= −2C(s)

π

ˆ 1

−1

ln |√sξ|+ γ√
1− ξ2

dξ (C.3)

Carrying out the integral in the above leads to the expression

C(s) = −1

s

1

ln(s/4) + 2γ
(C.4)

which together with (C.2) provides the asymptotic large-time solution to the auxiliary

problem in the Laplace domain, as recorded in (3.10).

C.2 INVERSION TO THE TIME-DOMAIN

Let us formally define the Laplace inverse of (C.4):
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c(τ) = L −1[C](τ). (C.5)

We suggest the following asymptotic expansion for c(τ):

τ � 1 : c(τ) =
∞∑
n=1

cn
(ln 4τ − 2γ)n

, c1 = 1 (C.6)

where in practice we will be interested in the first few terms of the series. (The im-

petus for suggesting the form (C.6) stems from the well-known leading order asymp-

totics, c(τ) = 1/ ln τ + O(1), τ � 1, which can be extracted by analogy from, e.g.,

the solution of the heat conduction problem from a circular hole due to imposed

temperature step [67]).

To furnish a proof of series expansion (C.6) and find the expansion coefficients,

consider the Laplace image of (C.6),

L [c](s) =
1

s

∞∑
n=1

cn

ˆ ∞

0

e−zdz

(ln z + 1/ε(s))n
, ε(s) ≡ sC(s) = − 1

ln(s/4) + 2γ

 1

(C.7)

where the integration variable has been changed from s to z = sτ . Expanding the

integrands in the small parameter ε(s) and integrating leads to the expansion, which

first three terms are shown as follows

L [c](s) =
1

s

(
c1 ε(s) + (c2 + γc1) ε

2(s) + (c3 + 2γc2 + (γ2 + π2/6)c1) ε
3(s) + ...

)
(C.8)

In view of c1 = 1 and of the definition of ε(s), the first term in the above series gives

the sought Laplace image C(s), while the values of coefficients cn with n > 1 are

selected such as to nullify the εn(s)/s terms in the expansion. Namely,

c2 = −γ, c3 = γ2 − π2

6
, c4 = −γ3 +

γπ2

2
− 2ζ(3), (C.9)
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and so on. Here ζ denotes the Riemann zeta function, ζ(3) ≈ 1.2021 [80].

C.2.1 Simplified form of the asymptotic expansion

The form (C.6) with (C.9) of the large-time expansion can be considerably simplified

by re-expanding it in a modified parameter (ln 4τ − γ) (compare to (ln 4τ − 2γ) in

(C.6)):

τ � 1 : c(τ) =
∞∑
n=1

c′n
(ln 4τ − γ)n

, c′1 = 1 (C.10)

where the corresponding coefficients given by

c′2 = 0, c′3 = −π2

6
, c′4 = −2ζ(3), (C.11)

and so on. Corresponding large-time expansion of ψ(ξ, τ) = c(τ)/
√

1− ξ2 with c(τ)

given by (C.10) and (C.11), truncated to the first three terms, is recorded in (3.11).
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APPENDIX D: NUMERICAL SOLUTION OF THE AUXIL-

IARY PROBLEM

This Appendix deals with the solution of integral equation (3.8) for the Laplace image

of the normalized leak-off rate (ψ̂(ξ, s)) in the auxiliary problem. This equation is

characterized by a logarithmically-singular kernel. Differentiation of (3.8) in ξ reduces

it to the following equation,

1ˆ

−1

G
(
2
√
s(ξ − ξ′)

)
ψ̂(ξ

′
, s) dξ

′
= 0, (D.1)

with a Cauchy-singular kernel G, which can be defined in terms of the modified Bessel

function of second kind as G(ζ) = sign(ζ)K1 (|ζ|). Furthermore, this kernel can be

explicitly decomposed in the sum of the Cauchy-singular and regular parts as,

G(ζ) =
1

ζ
+ sign(ζ) K̃1 (|ζ|) (D.2)

where

K̃1(ζ) = ln

(
ζ

2

)
I1 (ζ)− ζ

4

∞∑
k=0

[Ψ (k + 1) + Ψ (k + 2)]
ζ2k

4kk! (k + 1)!
, (D.3)

I1 is the Bessel function of the first kind, and Ψ is the digamma function [81].

Singular integral equation (D.1)-(D.2) lands itself to the solution by the Gauss-

Chebyshev quadrature method [82]. Namely, we seek the solution in the form

ψ̂ (ξ, s) =
1√

1− ξ2
f(ξ, s), (D.4)

where f is a bounded, continuous function of ξ, and the inverse-square-root-singular

prefactor is the fundamental function of the Cauchy integral. Substituting (D.4) into
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(D.1) with (D.2), we find that the singular integral takes a form approximable by a

Gauss-Chebyshev quadratures

n∑
i=1

1

n
f(ξ′i, s)

(
1

2
√
s(ξ − ξ′i)

+ sign(ξ − ξ′i)K̃1

(
2
√
s|ξ − ξ′i|

))
= 0, (D.5)

with n collocation points, ξ′i = cos (π (2i− 1) /2n), i = 1, ..., n, provided that ξ is

evaluated at points ξk = cos (πk/n), k = 1, ..., n − 1. This yields a system of n − 1

algebraic equations in n unknowns (values of f at ξ′i ’s).

An additional constraint is extracted from the original integral equation (3.8)

(which derivative (D.1) has been addressed in so far) by, first, integrating it in ξ

in order to eliminate the logarithmic singularity, and then writing the result in the

Gauss-Chebyshev quadratures:

n∑
i=1

1

n
f(ξ′i, s)A (ξ′i, s) =

1

s
, (D.6)

where A (ξ′, s) ≡ ´ 1

−1
K0 (2

√
s|ξ − ξ′|) dξ can be evaluated in the form

A (ξ′, s) =
1

2
√
s

[
F
(
2
√
s(1− ξ′)

)− F (−2
√
s(1 + ξ′))

]

with

F (ζ) ≡
ˆ ζ

0

K0 (|ζ|) dζ =
π

2
(ζ K0 (|ζ|) L−1 (ζ) + |ζ|K1 (|ζ|) L0 (ζ)) (D.7)

defined in terms of the modified Bessel (K’s) and Struve (L’s) functions.

The set of equations (D.5) with ξ = ξk (k = 1, ..., n− 1) and (D.6) is solved using

the Newton-Raphson method for n = 100 and value of s varying from 10−5 to 104.

Once the discrete solution of f(ξ, s) (and ψ̂(ξ, s) via (D.4)) is obtained, it is inverted

to the time domain using the Stehfest algorithm [68].
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APPENDIX E: NON-UNIFORM PRESSURE SOLUTION (VIS-

COUS PRESSURE DROP IN THE CRACK) FOR THE TRAN-

SIENT PRESSURIZATION OF A CLOSED FRACTURE

E.1 CASE OF PROPPED FRACTURE

E.1.1 Normalized equations

Using the non-dimensional time (τ), x coordinate (ξ), y coordinate (χ), and pressure

(Π) defined in Section 5.2.1, the lubrication equation (2.11) and initial-boundary

conditions (2.12) are normalized as

−∂Π

∂χ

∣∣∣∣
χ=0

=
(kf w̄)D

2

∂2Π

∂ξ2
, (E.1)

with initial-boundary conditions:

Π|τ=0 = 0,
∂Π

∂ξ

∣∣∣∣
ξ=0+

= −1

2
,

∂Π

∂ξ

∣∣∣∣
ξ=1

= 0. (E.2)

Note that kf = w̄2/π2 is used to reformulate the lubrication equation (2.11) for a

propped fracture.

The normalized form of the diffusivity equation (2.16),

Π(ξ, τ) =
−1

2π

τˆ

0

1ˆ

−1

∂Π

∂χ

∣∣∣∣
χ=0

exp

(
−
∣∣ξ − ξ

′∣∣2
(τ − τ ′)

)
dξ

′
dτ

′

(τ − τ ′)
, (E.3)

completes the set of normalized governing equations (E.1)-(E.2).

Applying Laplace transform to the set of equations (E.1)-(E.2) results:

• Lubrication equation

−∂Π̂

∂χ

∣∣∣∣∣
χ=0

=
(kf w̄)D

2

∂2Π̂

∂ξ2
, (E.4)

with boundary conditions:

108



∂Π̂

∂ξ

∣∣∣∣∣
ξ=0+

= − 1

2s
,

dΠ̂

dξ

∣∣∣∣∣
ξ=1

= 0. (E.5)

• 2-D Diffusivity equation

Π̂ =
−1

π

1ˆ

−1

∂Π̂

∂χ

∣∣∣∣∣
χ=0

K0

(
2
√
s
∣∣∣ξ − ξ

′
∣∣∣) dξ

′
. (E.6)

E.1.2 Asymptotic solutions

E.1.2.1 Small-time asymptote

The special form of (E.6) when the leak-off diffusion is 1-D is given by [67]

∂Π̂

∂χ

∣∣∣∣∣
χ=0

= −2
√
sΠ̂. (E.7)

Substitution of (E.7) in (E.4) gives an ordinary differential equation which can be

analytically solved along with boundary conditions (E.5). The closed-form analytical

expression for Π̂ in Laplace domain is given by:

Π̂ (ξ, s) =
(kf w̄)

1/2
D

4

cosh
(
2(kf w̄)

−1/2
D s1/4(1− ξ)

)
s5/4 sinh

(
2(kf w̄)

−1/2
D s1/4

) . (E.8)

The expression (E.8) can be inverted in time domain using Stehfest algorithm [68].

E.1.2.2 Large-time asymptote

At long injection times, the pressure along the fracture will be equilibrated. The

large-time asymptote of uniformly pressurized fracture was previously obtained (Sec-

tion 3.4). This expression in terms of non-dimensional parameters defined in Section

5.2.1 is given by:

Π(τ) =
(kf w̄)D

4π
ln (4 exp (−γ) τ) . (E.9)
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E.1.3 Numerical solution

In order to accurately describe the behavior of fluid leak-off rate at the vicinity of

crack tips where the singularity behavior is observed, we introduce the following

expression for the leak-off rate:

∂Π̂

∂χ

∣∣∣∣∣
χ=0

=
a(s)√
1− ξ2

+
∂Π̂reg.

∂χ

∣∣∣∣∣
χ=0

, (E.10)

where a(s) is the strength of singularity at the crack tips and ∂Πreg./∂χ|χ=0 is the

regular (non-singular) part of the fluid leak-off rate. Substitution of the expression

(E.10) in (E.6) yields:

Π̂ (ξ, s) = − 2

π

1ˆ

−1

a(s)K0

(
2
√
s
∣∣ξ − ξ

′∣∣) dξ′√
1− ξ′2

−

2

π

1ˆ

−1

∂Π̂reg.

∂χ

∣∣∣∣∣
χ=0

K0

(
2
√
s
∣∣∣ξ − ξ

′
∣∣∣) dξ

′
(E.11)

The corresponding approximation of (E.11) is

πΠ̂j+1/2

2
= −a(s)B

(
ξj+1/2, s

)− N∑
i=1

∂Π̂reg.
i+1/2

∂χ

∣∣∣∣∣
χ=0

Ci+1/2(ξj+1/2, s) , (j = 1, ..., N),

(E.12)

where B (ξ, s) =
´ 1
−1

K0

(
2
√
s
∣∣ξ − ξ

′∣∣) /√1− ξ′2dξ
′ is tabulated numerically, and

Ci+1/2(ξ, s) = F (ξ, ξi+1, s)−F (ξ, ξi, s) where F (
∣∣ξ − ξ

′∣∣) = ´ ξ
′

0
K0(2

√
s
∣∣ξ − ξ

′∣∣)dξ′ is

previously obtained (equation (D.7)).

The adopted numerical scheme has been carried out for ξ ∈ [−1, 1] using N = 50

discretization nodes along the crack. This numerical scheme relies on the piecewise

constant approximation of normalized pressure Π̂ and leak-off ∂Π̂reg./∂χ
∣∣∣
χ=0

in the
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Laplace domain within the crack over the grid element ξj, (j = 1, ..., N). Note that

ξ1 = −1 and ξN+1 = 1. A uniformly equal space grids are used from ξ ∈ [−0.9, 0.9]

and a finer mesh scheme is used for the region near the crack tip.

For a pre-assigned value of s (E.12) can be written for Π̂ and ∂Π̂reg./∂χ
∣∣∣
χ=0

at the

grid elements midpoints ξi+1/2 = (ξi + ξi+1) /2, (i = 1, .., N). Due to the symmetry

with respect to the crack inlet, the pressure and fluid leak-off rate are only solved

along the half-crack length. This leads to a system of algebraic equations with N/2

equations. The (N/2 + 1)th equation can be obtained by letting ξ = 1.

To complete the system of equations, we use the discretized form of lubrication

equation (E.1). The second-order central difference for the space derivative is used

discretize the lubrication equation. In order to properly use the discretized form

of lubrication equation, a new system of grid points is defined. We include ξ = 0

and ξ = 1 to the set of grid mid points ξi+1/2 = (ξi + ξi+1) /2, (i = N/2 + 1, .., N)

perviously defined to discretize the general 2-D integral. The new grid points are

called ξ∗i (1, ...,m) where m = N/2 + 2, ξ∗1 = 0, and ξ∗m = 1.

The discretized form of lubrication equation is

− ∂Π̂reg.
i+1

∂χ

∣∣∣∣∣
χ=0

− a(s)√
1− ξ∗2i+1

=

(kf w̄)D
Δξ2

(
Π̂
(
ξ∗i+2, s

)− Π̂
(
ξ∗i+1, s

))−Δξ1

(
Π̂
(
ξ∗i+1, s

)− Π̂ (ξ∗i , s)
)

Δξ1Δξ2(Δξ1 +Δξ2)
, (i = 1, ..,m−2).

(E.13)

where Δξ2 = ξ∗i+2 − ξ∗i+1, Δξ2 = ξ∗i+1 − ξ∗i .

The first-order forward difference scheme is used to discretize the boundary con-

ditions
Π̂ (ξ∗2 , s)− Π̂ (ξ∗1 , s)

ξ∗2 − ξ∗1
= − 1

2s
, (E.14)
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and

Π̂ (ξ∗m = 1, s) = Π̂
(
ξ∗m−1, s

)
. (E.15)

For a pre-assigned value of s, the recurrence equation (E.13) and boundary conditions

(E.14) and (E.15) give another m = N/2+2 equations which together with previous

N/2 + 1 equations give N + 3 equations. The number of unknowns are N + 3.

Thus, (N + 3) equations with N + 3 unknowns can be numerically solved using the

Newton-Raphson method.

This procedure is repeated for several values of s. The numerical results for Π̂ and

∂Π̂reg./∂χ
∣∣∣
χ=0

at at each grid point ξ∗i (1, ...,m) are inverted in actual time domain

using the Stehfest algorithm [68].

E.1.3.1 Parametric dependence of the “uniformity” pressure and time

Figure E.1 shows the dependence of the uniformity pressure (p̄uni/p∗) and time

(tuni/t∗) on the non-dimensional fracture conductivity parameter (kf w̄)D (equation

(5.3)).

The approximate analytical expression for the uniformity pressure (Πuni) when

(kf w̄)D � 1 is given by (Fig. E.1a):

Πuni =
puni − p0

p∗
≈ 5 (E.16)

which can be expressed in the problem parameters as:

puni − p0 ≈ 5
Q0�μ

kf w̄h
. (E.17)

For the practical range of reservoir applications (i.e., (kf w̄)D � 1), the relative devia-

tion of the uniformity pressure from its value (E.16) is approximately ±20%. Hence,

the expression (E.16) can be approximately used to estimate the uniformity pressure

for the reservoir problems. However, the uniformity time tuni does change (increase)
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Figure E.1: Dependence of uniformity pressure Πuni = (puni − p0) /p∗ and time τuni =
tuni/t∗ on the fracture conductivity (kf w̄)D = kf w̄/k� during the transient pressur-
ization of a propped fracture. The pressure and time scales are p∗ = Q0�μ/kf w̄h and
time t∗ = �2/4α, respectively.
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with (kf w̄)D (Fig. E.1b).

E.2 CASE OF UN-PROPPED FRACTURE

E.2.1 Normalized equations

Using the non-dimensional time (τ), x coordinate (ξ), and pressure (Π) defined in

Section 5.3.1.1, and introducing the non-dimensional y coordinate (χ = y/�) the

lubrication equation (2.11) and initial-boundary conditions (2.12) are normalized as

∂

∂τ

(
1

1− Π

)
− 8

π

1

(kf w̄)DQ
∂Π

∂χ

∣∣∣∣
χ=0

=
1

16

1

Q
∂

∂ξ

(
1

(1− Π)3
∂Π

∂ξ

)
, (E.18)

Π|τ=0 = Π0,
1

(1− Π)3
∂Π

∂ξ

∣∣∣∣
ξ=0+

= −32

π
Q,

1

(1− Π)3
∂Π

∂ξ

∣∣∣∣
ξ=1

= 0, (E.19)

where Q = Q0 (μ�/hw
4
0kni), (kf w̄)D = w3

0/k�, and Π0 = (p − σ0)/kniw0. Note

that the height-averaged crack opening (i.e., w̄) (equation (2.3)) is formulated using

the Bandis’ equation (5.4) to be used in the lubrication equation (2.11) and initial-

boundary conditions (2.12).

The normalized form of the diffusivity equation (2.15),

∂Π

∂τ
=

Ac

(kf w̄)DQ
(
∂2Π

∂ξ2
+

∂2Π

∂χ2

)
, (E.20)

where Ac = 1/kniS� (equation (5.15)), completes the set of normalized governing

equations (B.1)-(B.3).

The details of numerical solutions of the governing equations (E.18)-(E.20) such

as, method of solution, space discretization, and number of grids, are similar to the

numerical treatment presented in Section B.2.

The transient pressurization of fracture in impermeable formation can be ex-

tracted as a special case from above formulation by letting (kf w̄)D = ∞.
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E.3 NUMERICAL SCHEME FOR THE TRANSIENT PRESSURIZA-

TION OF A UNIFORMLY PRESSURIZED CRACK (BEFORE

CRACK RE-OPENING)

We use the piecewise constant approximation method to solve (5.14). The latter can

be linearly discretized in time as

τk′ =
π

2
Ac

(
Πk′

1−DΠk′
− Π0

1−DΠ0

)
+

k
′−1∑
j=0

Φaux

(
τk′ − τj+1/2

)
(Πj+1 − Πj) , (E.21)

where k
′ is the number of discretized time steps required to obtain the transient

pressurization until the crack becomes mechanically-open (i.e., Π = 0) .

The algorithm to solve the above discretized equation is :

1. The representative values for D, Ac, and Π0 are selected.

2. We choose sufficient number of discretized time steps k′ .

3. Using the initial normalized pressure Π0 at τ = 0 and a given small time

increment Δτ , we obtain a linear equation with one unknown corresponding to the

normalized pressure at Δτ .

4. We select another time increment from previous time step to obtain a linear

equation which can be solved for a new pressure. We continue the procedure until

the condition of crack opening is reached.

E.4 NUMERICAL SCHEME FOR THE TRANSIENT PRESSURIZA-

TION OF A UNIFORMLY PRESSURIZED CRACK (AFTER CRACK

RE-OPENING)

Equation (5.21) can be linearly discretized as

τn = πAΠn +
k
′−1∑
j=0

Φaux(τn − τj+1/2) (Πj+1 − Πj)
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n−1∑
i=0

Φaux

(
τn − τi+1/2

)
(Πi+1 − Πi) . (E.22)

The algorithm to solve the above discretized equation is:

1. The representative values for A and Π0 are selected.

2. We choose n number of time steps with τn=0 = τo. The normalized pressure at

the onset of crack opening is zero, i.e., Π(τn=0) = 0. The choice of the number of the

time steps n depends on how far in time the numerical calculation are carried out.

3. Using a small time increment after the onset of crack opening and previously

developed normalized pressure before the crack becomes mechanically open (Section

E.3), we obtain a linear equation which can be solved for the normalized pressure

at the given time step. We continue the procedure for the new time increments and

solve for the new pressure.
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APPENDIX F: TRANSIENT PRESSURIZATION OF MULTI

FRACTURED WELLS

F.1 PERMEABLE STRIP PROBLEM

In this Section, the transient pressurization of the permeable strip (Fig. 5.9) due

to a fluid injection is obtained. We make use of the following assumptions. 1) The

pressure distribution along the fracture is uniform. 2) The storage effects on the

transient pressurization can be neglected.

F.1.1 Governing equations

The diffusivity equation (2.15) is used to describe the pore pressure change in the

problem of the permeable strip. The corresponding initial and boundary conditions

to solve the diffusivity equation are

• Initial condition

p = p0, |x| < ∞, |y| ≤ d

2
, t = 0. (F.1)

• Boundary condition
∂p

∂y
= 0, |x| > �, y = ±d

2
(F.2)

p = p(t), |x| ≤ �, y = ±d

2
, (F.3)

Note that the boundary condition (F.2) signifies the no-flow boundary assumption.

The global volume balance equation (2.13) with Vleak substituted from (2.14) is

used to complete the system of equations. This equation for the problem of the

permeable strip injected by a fluid at the constant volumetric flow rate Q1
0 is given

by
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Q1
0t = h

ˆ t

0

ˆ �

−�

ḡ(x, t)dxdt, ḡ (x, t) = −2k

μ

∂p

∂y

∣∣∣∣
y=±d/2

. (F.4)

Note that the storage term in (F.4) is nullified due to the negligible fracture volume

change.

F.1.2 Normalized equations

We define the non-dimensional time (τ = t/t∗), pressure (Π = (p − p0)/p∗), x coor-

dinate (ξ = x/�), y coordinate (χ = y/�) using the characteristic time t∗ = d2/4α,

length �, and pressure p∗ = Q1
0/4hSα scales, respectively. Introducing the non-

dimensional parameters in the diffusivity equation (2.15), initial-boundary conditions

(F.1)-(F.3), and the global volume balance equation (F.4) yield:

• Diffusivity equation
∂Π

∂τ
=

(
d

�

)2 (
∂2Π

∂ξ2
+

∂2Π

∂χ2

)
. (F.5)

• Initial condition

Π = 0, |ξ| < ∞, |χ| ≤ d

2�
, t = 0. (F.6)

• Boundary conditions
∂Π

∂χ
= 0, |ξ| > 1, χ = ± d

2�
, (F.7)

Π = Π(τ), |ξ| ≤ 1, χ = ± d

2�
. (F.8)

• Global volume balance equation

τ =
1

2

ˆ τ

0

ˆ 1

−1

∂Π

∂χ

∣∣∣∣
χ=±d/2�

dχdτ. (F.9)

It is more convenient to work in Laplace transform domain. Applying the Laplace

transform to (F.5)-(F.9) results
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sΠ̂ =

(
d

�

)2
(
∂2Π̂

∂ξ2
+

∂2Π̂

∂χ2

)
, (F.10)

∂Π̂

∂χ
= 0, |ξ| > 1, χ = ± d

2�
, (F.11)

Π̂ = Π̂(s), |ξ| ≤ 1, χ = ± d

2�
, (F.12)

1

s
=

1

2

ˆ 1

−1

∂Π̂

∂χ

∣∣∣∣∣
χ=±d/2�

dξ. (F.13)

The system of equations (F.10)-(F.13) can be simultaneously solved to find the pres-

sure evolution with time for the problem of the permeable strip.

F.1.3 Numerical calculations

The central finite-difference representation is used to discretize the diffusivity equa-

tion (F.10) into a set of non-uniformly spaced grid points {0 ≤ ξi < ∞, d/2� ≤ χj <

−d/2�}, i = 1, ...,M and j = 1, ..., N . Note that due to the symmetry with respect

to ξ, the numerical calculations are carried out in the half space (i.e., ξ > 0).

For fracture discretization in the region 0 < ξ < 1, a logarithmic grid spacing

with the concentrated nodes near the crack tip is used. The latter is necessary to

capture the singular leak-off rates at the crack tip (ξ = 1). Outside of the fracture

(ξ > 1), a logarithmic grid spacing is used to span a computational domain to model

diffusion in the infinite space. We also make use of a uniform grid spacing in the χ

direction (i.e., d/2� ≤ χ < −d/2�). The numerical results reported in Section 5.4 are

based on the computational domain with ξM = 107 and d/2� < χN < −d/2�, and the

mesh with total M = 200 and N = 50 nodes in the ξ and χ directions, respectively.

The discretization of the integral (F.13) is based on the simple piecewise constant
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approximation method in ξ direction.

For a pre-assigned value of s, the Newton-Raphson method is used to numerically

solve for Π̂i,j at each grid point in Laplace domain. The numerical results are inverted

in actual time domain using the Stehfest algorithm [68].
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