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Abstract

We examine ways in which simplicial complexes can be used for describing, classifying,

and studying multigraded free resolutions of monomial ideals. By using homgenizations

of frames and dehomogenizations of resolutions we can, under appropriate circumstances,

describe the structure of a resolution of a monomial ideal by a simiplicial complex. We

discuss the successes and failures of this approach. We finish by applying the tools we

have presented to quasi-trees, providing a new proof to a theorem of Herzog, Hibi, and

Zheng which classifies monomial ideals with minimal projective dimension.
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Chapter 1

Introduction

This thesis is focused on introducing some of the theory involved in the study of monomial

ideals. Monomial ideals frequently lend themselves to combinatorial descriptions, which

makes them particularly interesting. The additional information gained from a combinato-

rial vantage point enriches the algebra, by allowing us to compute, classify, and analyze in

new and unique ways.

The first chapter focuses on the general algebraic landscape in which we are work-

ing, namely graded rings, modules, and complexes. We begin with the definition of the

standard graded and multigraded polynomial ring and reintroduce many of the basis facts

and definitions of ring and module theory within this context. We end the chapter with

minimal graded and multigraded free resolutions where we give a discuss uniqueness and

existence, describe some invariants that arise from these minimal resolutions, and some

choice theorems which will have particular relevance in later sections.

The second chapter is focused on the combinatorics that we need. We discuss simpli-

cial complexes, giving all the necessary preliminary definitions and discussing the algebraic

description of a simplicial complex as a complex of abelian groups and boundary maps. We

then give definitions and some results for simplicial trees and a quasi-trees.

The third chapter is the heart of the thesis, bringing together the algebraic and combi-

natorial information of the previous two chapters. We begin by describing homogenization,

which takes a simplicial complex and a monomial ideal I and returns a candidate for a res-

olution of I . We discuss under what conditions is this process effective and the successes

and failures of this approach in general. Later in the chapter we also provide ways to gener-

ate monomial ideals using simplicial complexes, giving us a method of classifying special

types of ideals about which we can make more pointed statements.

1
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The final chapter focuses on restricting theory of Chapter 3 to Quasi-trees. We con-

structively prove how to describe the minimal resolution of N (Δ∨) when Δ is a quasi-tree.

We also provide a new proof to a result given by Herzog, Hibi, and Zheng which classifies

monomial ideals with minimal projective dimension.



Chapter 2

Graded Objects

2.1 Rings and Ideals

Since the aim of this thesis is to characterize resolutions of some class of monomial ideals

in the polynomial ring S = k[x1, ..., xn] where k is a field, we will develop our theory in

this context. What this means going forward is that we will almost immediately restrict our

attention to polynomial rings and their quotient rings. After some introductory definitions

we will make this restriction more precise.

Definition 2.1. A graded ring (Z-graded ring) is a ring R with a direct sum decomposi-

tion R =
⊕

d∈ZRd as an abelian group, such that RiRj ⊂ Ri+j for i, j ∈ Z

Definition 2.2. A proper ideal, I of a graded ring R is called graded (or homogeneous) if

I has a direct sum decomposition I =
⊕

d∈Z Id as an abelian group such that Id = I ∩ Rd

for all d ∈ Z

With these definitions we could, for any ring R, set R = R0 (and Rd = 0 for d �= 0)

so that R and all its ideals are graded. Of course, if we are going to get any use out of

these definitions, we are going to want to be more restrictive in the rings and the gradings

of them that we consider.

If S = k[x1, ..., xn], then we say that a monomial is an element of the form m =

xα1
1 ...x

αn
n = xα, where αi ∈ N, has degree

∑n
i=1 αi ∈ N, denoted deg(m), and multide-

gree α = (α1, ..., αn) ∈ N
n, denoted mdeg(m). It is clear that

(m1 ·m2) = deg(m1) + deg(m2)

and

mdeg(m1 ·m2) = α1 + α2

3
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We also on occasion talk about lcm’s and gcd’s of multidegrees α1 and α2, by which we

mean

lcm(α1, α2) = mdeg
(
lcm(m1, m2)

)
gcd(α1, α2) = mdeg

(
gcd(m1, m2)

)
where mdeg(m1) = α1 and mdeg(m2) = α2. We say that a polynomial f ∈ S is ho-

mogeneous if every monomial in f has the same degree. We denote the collection of all

homogeneous polynomial of degree i in S by Si. From the definition we see that each Si

is a k-vector space whose basis is indexed by monomials of degree i with distinct multide-

grees. What this mean is that S =
⊕

d∈Z Si as an abelian group, with Sd = 0 for d < 0 and

that SiSj = Si+j . Therefore, S is a (N-) graded ring and we call this grading the standard

grading on S.

We can also talk about graded ideals of a graded ring. There are several equivalent

definitions we could use to define a graded ideal and we give them here.

Proposition 2.3 ([17], p.2). Let J be an ideal of the graded ideal R. The following are

equivalent:

1) J =
⊕

i∈N Ji, where Ji = J ∩Ri

2) If f ∈ J , then f = f1 + ... + fj where the fi are homogeneous and in J .

3) If J̃ is the ideal generated by all homogeneous elements in J then J = J̃

4) J has a system of homogeneous generators

If J satisfies any of these four condition, we say that J is a graded ideal.

Note that the definition of a graded ideal depends on the grading of R. If there are

more than one possible gradings for a ring R, then we must specify which grading we are

referring to when we say that J is a graded ideal of R. Also, if R is a graded ring and

J is a graded ideal of R, then the quotient ring R/J is also a graded ring, with graded

components (R/J)i = Ri/Ji.
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It will at times be useful to use a more refined grading than the standard grading.

Instead of considering S as the direct sum of the finite dimensional k-vector spaces, we

can consider it as the direct sum over the one dimensional k-vector spaces indexed by the

monomials of distinct multidegrees in S. If m ∈ S is a monomial, then we denote by Sm

the vector space to which it belongs. We see that S =
⊕

Sm and Sm·Sm′ = Smm′ . The only

way this decomposition differs from the definition of a graded ring is by the way we index

our direct sum. Since the monomials of S are defined by their multidegrees, which are in

one-to-one correspondence with the elements of Nn, we call this grading a multigrading or

N
n-grading of S (when we talk about modules we will use a Z

n-grading). The definition

for multigraded ideals and quotient rings is analogous to that of graded ideals.

It is worth taking note of what condition (4) of Proposition 2.3 tell us about multi-

graded ideals of the polynomial ring S. For and ideal I ⊆ S to be multigraded, we must

have that I has a system of homogeneous generators. But the homogeneous components

of I under the multigrading are Im = I ∩ Sm, and each Sm is a one dimensional k-vector

space with generatorm, i.e. an element in S is homogeneous with respect to the multigrad-

ing of S if and only if it is a scalar multiple of a monomial. Therefore, I is a multigraded

ideal of S if and only if it has a system of monomial generators, that is, if and only if I is a

monomial ideal.

For the rest of the material, we will consistently denote the polynomial ring in n

variables over the field k as S = k[x1, ..., xn], and use A,B, etc. to refer to the polynomial

ring in specific examples where the number of variables has been fixed. In each case, we

will use either the standard grading or the multigrading that we have described, and specify

which wherever it is unclear.

2.2 Graded Modules and Homomorphisms

In the following material we will use R to denote the quotient ringR = S/I of the polyno-

mial ring by a graded ideal with respect to either the standard grading or the multigrading

we have given.

To save ourselves from repetition and tedium, we will develop the theory in terms
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of graded objects (modules, homomorphisms, complexes, resolutions etc.) and take for

granted that what we present translates to multigraded objects in an obvious way, by de-

composing each Si into a direct sum of one dimensional vector spaces indexed by the

monomials of degree i. It is, however, worth reminding ourselves that we are working

towards describing monomial ideals. So, even though we stay in the more general setting

of standard graded rings and modules, we should keep in the back of our mind that the

modules we care about are specifically those of the form M = I or M = R = S/I where

I is a monomial ideal, and the grading is with respect to the multigrading on S.

Definition 2.4. For a graded ring R we define a graded R-module, M , to be an R-module

with a direct sum decomposition M =
⊕

d∈ZMd as an abelian group, such that RiMj ⊂
Mi+j for i, j ∈ Z

The Mi are called the homogeneous components of M . Elements of Mi are said to

have degree i. Since R0 = k and R0Mi = Mi, we see that each Mi is a k-vector space.

Furthermore, we can say the following about the structure of M ,

Proposition 2.5 ([17], p.5). For a graded R-module M ,

1) There exist a homogeneous set of generators of M .

2) The degrees of the elements in a system of homogeneous generators of M determine

the grading on M .

These facts may seem unsurprising, but they are worth mentioning. Specifically, we

will see that we may, in some cases, want to shift the degrees of homogeneous generators

of certain modules, so that we can get some desired properties. By the above proposition,

we will be altering the grading of the modules we are working with, and the way in which

we do this will be important. What we mean by shifting the degrees of the homogeneous

generators of a module is given by the following definition.

Definition 2.6. Let M be a graded R-module and let p ∈ Z. We denote by M(−p) the

graded R-module such that M(−p)d = Md−p for all d ∈ Z. We say that M(−p) is

the module M shifted p degrees, and we call p the shift. In the multigraded setting we
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denote a shift by the multidegree of a monomial m as either M(−m) or M(−α), where

α = mdeg(m) is the multidegree of m, and this shift is such that M(−m)m′ = Mm′/m,

where Mm′/m = 0 if the multidegree of m′/m has any negative exponents.

This is a well defined notion for a graded R-module M , since

RiM(−p)j = RiMj−p ⊆Mi+j−p =M(−p)i+j

Moreover, we see that M(−p) ∼= M . Since the elements of a module, and the relations

between them, are unchanged by a shift of degrees the map which sends x 	−→ x for every

x ∈ M is a well defined isomorphism. However, shifting is not a well defined notion on

a ring, since changing the degree of R0 = k will lead to problems with the grading under

multiplication. The way in which to approach such a scenario is to treat R as a module

over itself. This way, the action of R on R(−p) is still multiplication in R, but the grading

of R(−p) will be well defined.

Next we would like to turn our attention graded free modules, and the graded anal-

ogy to the fact that every module is the homomorphic image of a free module. In order

to to talk about this we first need to know what the graded versions of submodules and

homomorphism are.

Definition 2.7. IfM is a graded R-module, then a submoduleN ⊂M is said to be graded

(or homogeneous) ifN has a direct sum decompositionN =
⊕

d∈ZNd as an abelian group

such that Nd = N ∩Md for all d ∈ Z

Recall that, for ideals J ⊆ S, Proposition 2.3 gave four equivalent conditions that

tell us when J is graded. We can generalize these conditions to the setting of modules and

submodules and get the same result. This generalization extends to quotient modules as

well. That is, in the same way the quotient ring R = S/I inherits its grading from S by

setting Ri = Si/Ii, we get that the quotient module U =M/N , of graded modules M and

N , inherits it grading from M by setting Ui =Mi/Ni.

Definition 2.8. Let M , N be graded R-modules. A module homomorphism φ : M → N

is said to have degree i if φ(Md) ⊂ Nd+i for all d ∈ Z. We call such a homomorphism a
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graded homomorphism of modules.

A useful consequence of this definition is that a homomorphism, φ : M −→ N , is

graded if and only if it sends homogeneous elements ofM to homogeneous elements of N .

Proposition 2.9 ([17], p.8). If φ : M −→ N is a graded homomorphism of R-modules,

then ker(φ) is a graded submodule of M , im(φ) is a graded submodule of N .

Remark 2.10. If a graded module homomorphism φ : M −→ N has degree i, we can

consider how φ behaves when we apply it to M(−i), i.e. if ψ : M(−i) −→ M is the

canonical isomorphism between M(−i) and M which sends each element to itself, then let

φ′ = φ ◦ ψ. What we get is that

φ′(M(−i)d)) = φ ◦ ψ(M(−i)d) = φ(Md−i) ⊂ Nd−i+i = Nd

so that φ′ is a graded homomorphism of degree 0. Since M(−i) ∼= M , what this means

is that we can edit the degree of a graded R module homomorphism using shifted R-

modules. Under the right circumstances, we can do more than this, which we will show in

the following example.

Example 2.11. Let A = k[x, y], M = A⊕A, and φ : A⊕A −→ A be the homomorphism

which sends (f, g) 	→ x2yf + y4g.

We need to establish a grading on the modules we are using. For A, we use the

standard grading. For A⊕ A, we define (A⊕ A)d = Ad ⊕ Ad where Ad is the dth graded

component of A with respect to the standard grading. So an element (f, g) ∈ A ⊕ A is

homogeneous of degree d if and only if f and g are both homogeneous of degree d in

A with respect to the standard grading. With this grading we see that φ is not a graded

homomorphism, since it send the homogeneous element (1, 1) ∈M0 to the element x2y +

y4, which is not homogeneous with respect to the standard grading on A. However, M ∼=
M ′ = A(−3)⊕A(−4) under the mapping

ψ :M −→M ′

(f, g) 	−→ (f, g)
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With these shifts the dth graded component of M ′ is M ′
d = Ad−3 ⊕ Ad−4. Under this

grading an element (f, g) is homogeneous of degree d if and only if f is homogeneous of

degree d − 3, and g is homogeneous of degree d − 4, with respect to the standard grading

on A. We can define a new map

φ′ :M ′ −→ A

(f, g) 	−→ x2yf + y4g

In fact, φ = φ′ ◦ ψ, so φ and φ′ are essentially the same map, with the only difference the

way we treat the grading. It is no longer the case that (1, 1) is a homogeneous element in

M ′. When we apply φ′ to the homogeneous components of M ′ we get

φ′(M ′
d) = φ′(Ad−3 ⊕Ad−4) = x2yAd−3 + y4Ad−4 ⊆ A3Ad−3 + A4Ad−4

⊆ Ad + Ad = Ad

So φ′ is a graded module homomorphism of degree zero.

In the above example we had that the domain of φ was a graded free module and the

image of each basis element under φ was a homogeneous element. Under these conditions

we were able to adjust the grading of the domain so that that φ became a graded homomor-

phism of degree zero, even though it was unchanged as a map of sets. The method above

can be generalized in a rigorous way to give us the following result:

Theorem 2.12 ([17], p.9). Let M be a finitely generated graded R-module. Then M ∼=
F/U , where F is a finite direct sum of shifted free R-modules, U is a graded submodule of

F , and the isomorphism has degree 0.

This theorem is just the graded version of the fact that every module is the quotient

of a free module ([1], p.21). We will be able to use this fact to show that we can construct

a graded free resolution for any module (we will define what a graded free resolution is in

the next section).
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2.3 Chain Complexes and Free Resolutions

In this section we are going to define, as the title suggests, chain complexes, free resolu-

tions, and their graded versions.

Definition 2.13. A complex (chain complex) M ofR-modules is a sequence ofR-module

homomorphisms:

M : ... M2 M1 M0 M−1 M−2 ...∂1 ��∂3 �� ∂2 �� ∂0 �� ∂−1 �� ∂−2 ��

such that ∂i ◦ ∂i+1 = 0 for all i ∈ Z. The collection of maps ∂ = {∂i} is called the

differential of M

It is an obvious consequence of the definition that im(∂i+1) ⊂ ker(∂i). Since images

and kernels are modules themselves, and one is a submodule of the other, we can take their

quotient if we like, and often this is a useful thing to do. We give these quotients a name.

Definition 2.14. The homology of a complex M is defined to be the collection of modules

Hi(M) = ker(∂i)/im(∂i+1). The elements of ker(∂i) are called cycles and the elements of

im(∂i+1) are called boundaries. For each i, we call Hi the ith homology module of M.

The complex M is called exact, or acyclic, if Hi(M) = 0 (which is equivalent to saying

ker(∂i) = im(∂i+1) for all i ∈ Z.

Note that we did not specify that R, or the modules in M, be graded. Of course, we

can, and will, refine the definition of chain complexes to suit a graded context.

Definition 2.15. A complex M is said to be graded if each Mi in M is a graded module

and, each ∂i has degree 0,

The fact that we require each module to be graded is of no surprise, but requiring each

map in the differential to have degree 0 might seem unnecessarily restrictive. However, we

recall that if the differential does not have degree 0, we can apply shifts to each module so

that it does, without making any real change to the map (see Example 2.11). The upshot of



11

doing this is that we are able to put a grading on the complex:

...
...

...

. . . Mi+1,j Mi,j Mi−1,j . . .

. . . Mi+1,j−1 Mi,j−1 Mi−1,j−1 . . .

. . . Mi+1,j−1 Mi,j−1 Mi−1,j−1 . . .

...
...

...

∂i ��∂i+2 �� ∂i+1 �� ∂i−1 ��

∂i ��∂i+2 �� ∂i+1 �� ∂i−1 ��

∂i ��∂i+2 �� ∂i+1 �� ∂i−1 ��
⊕ ⊕ ⊕

⊕ ⊕ ⊕

⊕ ⊕ ⊕

⊕ ⊕ ⊕

where each row is now a complex of k-vector spaces between the graded components of

equal degree in each Mi. If this complex were multigraded then each row would be a

complex of one dimensional vector spaces. We will a denote grading of M as
⊕

d∈Z Md,

where each Md is the k-vector space complex on the degree d graded components of the

Mi (the notation is similar when we use a multigrading, replacing the d’s with monomials

m). We call each Md the dth graded component of M. This grading comes with a rather

nice property.

Proposition 2.16 ([17], p.16). A graded complex M is exact if and only if each Md is

exact.

This is a very beneficial result, since it reduces questions we will have about graded

complexes and resolutions (resolutions are complexes with some extra properties) to ques-

tions about sequences of vector spaces, which are generally much easier to work with.

When we begin to look specifically at monomial ideals and their resolutions, many of the

results we get are proven via this reduction.

Definition 2.17. A free resolution of an R-module M is an chain complex of the form

F : ... F2 F1 F0 0
∂1 ��∂3 �� ∂2 �� ��

such that each Fi is a free R-module (isomorphic to a direct sum of copies of R), H0(F) ∼=
M , and Hi(F) = 0 for i ≥ 1. If M and F are graded, and the isomorphism H0(F) ∼= M
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has degree 0, then we say that F is a graded free resolution of M . We define the length

of F to be max{i | Fi �= 0}.

We should make clear that the length of a free resolution need not be finite. Also,

note that since each ∂i is a homomorphism between free modules, we can describe each ∂i

completely using matricies.

Example 2.18. Let A = k[x1, x2, x3, x4] and I = (x1x2, x2x3, x4), then a graded free

resolution of A/I is

0 A(−4)

A(−3)
⊕

A(−3)
⊕

A(−3)

A(−2)
⊕

A(−2)
⊕

A(−1)

A 0

[ x4−x3
x1

]
����

[
x3 x4 0
−x1 0 x4
0 −x1x2 −x2x3

]
�� [ x1x2 x2x3 x4 ] �� ��

We can easily show that every differential map is graded, has degree 0, and that ∂i ◦ ∂i+1 =

0. To illustrate this, we examine the map

∂3 :A(−4) −→ A(−3)⊕ A(−3)⊕ A(−3)

f 	−→ (x4f,−x3f, x1f)

If f is homogeneous of degree d in A(−4), then it is homogeneous of degree d − 1 in

A(−3), so that deg(xif) = d in A(−3). This means ∂3 is homogeneous and has degree 0.

Moreover, if we apply ∂2 to ∂3(f) we get

∂2(∂3(f)) = ∂2((x4f,−x3f, x1f))
= (x3(x4f) + x4(−x3f),−x1(x4f) + x4(x1f),−x1x2(−x3f)− x2x3(x1f))

= (0, 0, 0)

Repeating these calculations for the other ∂i’s will verify our claim. What is left to show is

that the 0th homology complex isA/I (this is clear from the definition of ∂1) and that the ith

homology complex is 0 when i ≥ 1 (so far we only know that im(∂i+1) ⊆ ker(∂i) but have

not shown equality). With our current understanding of free resolutions, this is possible

to prove, but would require some computational diligence. We will spare the details, and
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return to this example in a later section, where we will have the tools to show that this

complex is exact without having to do the calculations.

We know what a graded free resolution of a graded module is but we do not yet know

how to find one, or if it is even possible to find one for any given graded module. If M is

a finitely generated graded R-module, then we can always find a graded free resolution of

M .

Construction 2.19 ([17], p.17). Given a graded finitely generated R-module M , we will

construct a graded free resolution of M by induction on homological degree.

Step 0

Choose homogeneous generators m1, ..., mr of M . Define a free R-module

F0 = R(−a1)⊕ ...⊕ R(−ar)

where ai = deg(mi) for i = 1, ..., r. For 1 ≤ j ≤ r denote, by fj , the basis element of

R(−aj). Thus, deg(fj) = aj . Define the map

d0 : F0 −→ M

fj 	−→ mj

for 1 ≤ j ≤ r.

Assume by induction, that Fi and di are defined.

Step i+ 1

Set Mi+1 = ker(di) ⊆ Fi. Choose homogeneous generators l1, ..., ls of Mi+1 (note that

sinceFi is a finitely generated module over the Noetherian ringR = S/I , Fi is a Noetherian

R-module, so such a finite generating set for ker(di) exists). Define a free module

Fi+1 = R(−c1)⊕ ...⊕ R(−cs)
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where ci = deg(li) for i = 1, ..., s. For 1 ≤ j ≤ s denote by gj the basis element of

R(−cj). Thus, deg(gj) = cj . Define the map

di+1 : Fi+1 −→Mi+1 ⊂ Fi

gj 	−→ lj

for 1 ≤ j ≤ s. We see that this construction is such that each di has degree 0, ker(di) =

im(di+1) when i ≥ 1, and M ∼= F0/im(d1) = H0(F) (and this map has degree 0). Hence

what we have constructed is the graded free resolution of M

F : ... F2 F1 F0

M

0
d1 ��d3 �� d2 ��

d0 ���
�

�
� ���

�
�

��

It is often useful to follow up with an example to help clarify what it is that we are

actually doing. This would require us to compute the kernel of each of the di and to do this

we would need to make a detour into Gröbner basis theory. This is too far from the main

focus of this thesis and is not useful for the constructions of resolutions we will discuss

in later sections. So, we will take for granted that computing the kernel of each di can be

calculated and forgo providing an example (to see how to do this see [5], section 4.4).

Remark 2.20. Instead of considering a free resolution F of an R-module M as a sequence

of maps, we can also consider it as a single R-module

F =
⊕
i≥0

Fi

where the differential is now a module homomorphism ∂ : F 	−→ F . Since each Fi is a

free module we see that F is a free module, and if we fix a basis for each of the Fi, then the

union of these bases becomes a basis for F . In later sections (and in keeping consistency

with the terminology used by Peeva and Velasco in [17], [18]), when we refer to the basis

of a free resolution, it will be the basis of theR-module F , formed as the union of the bases

of the Fi, to which we are referring. Moreover, if F is (multi)graded and the basis that we
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are referring to is (multi)homogeneous with respect to this grading, then we say that F has

a (multi)homogeneous basis.

There is no need for F to be a resolution for this idea to hold its meaning. If we have

a complex, possibly not exact, of free modules then we can define its basis in exactly the

same manner.

2.4 Minimal Free Resolutions

Free resolutions provide us with new information about a module. However, we may have

more than one free resolution of a given module. A natural question to ask is: Given an

R-module M , what information (if any) is consistent across all free resolutions of M?

Moreover, is there an obvious candidate for the free resolution of M which best presents

this information? In our setting of graded free resolutions of gradedR-modules, whereR ∼=
S/I and graded with respect to the standard grading (or multigrading) on the polynomial

ring S, the answer to both of these questions is yes. The answer to our second question is

given by the following definition.

Definition 2.21. A graded free resolution of a graded finitely generated R-module M is

minimal if ∂i+1(Fi+1) ⊆ mFi for all i ≥ 0 (recall that m = (x1, ..., xn)).

We should make a couple of comments about this definition. The first is that it is in

no way clear from the definition why such a condition would make a resolution minimal, or

what exactly is being minimized. The legitimacy of the definition will be made clear after

we give few more results and definitions. The second comment is that, since each ∂i in a

free resolution can be represented by a matrix, minimality amounts to checking that each

of these matrices has entries in m.

Example 2.22. Let R = k[x]/(x3) and M = k = R/xR. The graded free resolution of M

... R(−4) R(−3) R(−1) R 0
x2 �� x ��x ���� ��

is minimal, since the differential map at each step is either multiplication by x or by x2,

both of which lie in the maximal ideal (x) ⊂ R.
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A first step in showing that, for a graded R-module M , a minimal resolution is of M

is a useful object to study, is to show that they exist. Not only is this the case, but we may

also show that they satisfy uniqueness properties as well.

Theorem 2.23 ([17] p.29). The graded free resolution we built in Construction 2.19 is

minimal if and only if at each step we choose a minimal homogeneous system of generators

for the kernel of the differential.

Theorem 2.24 ([17], p.30). Let M be a graded finitely generated R-module. Up to an

isomorphism, there exists a unique minimal graded free resolution of M

Remark 2.25. If F and G are two minimal graded free resolutions of M , Theorem 2.24

tells us that they are isomorphic chain complexes. This means that we have the commuta-

tive diagram

... F2 F1 F0 0

... G2 G1 G0 0

∂1 ��∂3 �� ∂2 �� ��

∂1 ��∂3 �� ∂2 �� ��

∼=
��

∼=
��

∼=
��

Since ∂i and ∂i are all maps of degree 0, we get that the isomorphisms between each

Fi and Gi have the same degree. We also have the commutative diagram

F0 H0(F) M

G0 H0(G) M

φ �� ψ ��

φ

��
ψ

��

∼=
��

idM
��

where φ, ψ, φ, ψ, and idM all have degree 0. Therefore, the isomorphism F0
∼= G0 has

degree 0 and, as a result, so do the isomorphisms Fi ∼= Gi. Theorem 2.12 tells us that there

are degree zero isomorphisms Fi ∼= Gi
∼= ⊕

p∈ZR(−p)βi,p for every i ≥ 0. This, being

true for all minimal graded free resolutions, motivates the following definition.

Definition 2.26. The ith Betti number of M over R is defined as βRi (M) = rank(Fi),

where the Fi are the free modules which appear in the minimal graded free resolution F of

M . Since F is graded, each free module Fi is a direct sum of modules of the form R(−p).
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We define the graded Betti numbers of M by

βRi,p(M) = number of summands in Fi of the form R(−p)

for an integer p. Similarly, If F is multigraded, we define the multigraded Betti numbers

of M to be

βRi,m(M) = number of summands in Fi of the form R(−m)

for a monomial m. The definition tells us that for a fixed i, βRi (M) =
∑

p β
R
i,p(M) =∑

m β
R
i,m(M). Furthermore, if our minimal resolution admits a multigrading, we will have

that for each i,

Fi =
⊕
m∈R

R(−m) =
⊕
p∈Z

⊕
m∈Rp

R(−m) =
⊕
p∈Z

R(−p)

and we conclude that βRi,p(M) =
∑

m∈Rp
βRi,m(M). We now have the information needed

to make sense of why minimal resolutions are called minimal.

Theorem 2.27 ([5], p.72). Let M be a finitely generated graded R-module and F a (not

necessarily minimal) graded free resolution of M , with Fi =
⊕

pR(−p)bi,p for each i ∈ Z.

Then

βi,p(M) ≤ bi,p

for all i, p ∈ Z.

The inequality still holds when we sum over p and we get the same result for the

βRi (M). So, the minimality of a graded free resolution is with respect to the ranks of the

free modules at each step. If F is a graded free resolution of a module M with length k

then, for all j ∈ N, rank(Fk+j) = 0 ≥ βRk+j(M) ≥ 0. This means that a minimal graded

free resolution of M is minimal with respect to length as well and we give this minimal

length its own distinction.
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Definition 2.28. The projective dimension of an R-module M is defined as

pdR(M) = max{i | βRi (M) �= 0}

where the βRi (M) are the Betti numbers of M .

Remark 2.29. Let F be the free resolution of M

F : · · · F3 F2 F1 F0 0
∂2 ��∂4 �� ∂3 �� ∂1 �� ��

Since F is exact, we get that each of the differential maps ∂i factors through ker(∂i−1) for

i ≥ 2, and ∂1 factors through ker(ε). This gives us the following commutative diagram.

... F3 F2 F1 F0 0

ker(ε)ker(∂1)ker(∂2)

0 0 0 0

∂2 �� ∂1 ��∂3 ��∂4 �� ��

∂1
���

��
�� �������

�������
∂2
���

��
��∂3

���
��

�� �������

���
��

��

���
��

��

���
��

���������

�������

�������

Where Fi+1 −→ Fi −→ ker(∂i−1), 0 −→ ker ∂1 −→ Fi, and Fi −→ ker(∂i−1) −→ 0 are

exact. What this means is that not only do we have a free resolution for M , we have a free

resolution for ker(ε) and each ker(∂i) (up to a shift of indicies). If F is minimal, so are the

resolutions we get for ker(ε) and ker(∂i).

In particular, if M = S/I then, for a minimal free resolution of M , F0 = S and

ker(ε) = I . From what we have just seen, we can conclude that the minimal free resolution

of S/I will give us a minimal free resolution of I as well. Moreover, we have that

pd(I) = pd(S/I)− 1 and βi,p(I) = βi+1,p(S/I)

This is a fact that we will exploit when we study monomial ideals in later sections.
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Example 2.30. Recall the minimal graded free resolution from example 2.18

0 A(−4)

A(−3)
⊕

A(−3)
⊕

A(−3)

A(−2)
⊕

A(−2)
⊕

A(−1)

A 0

[ x4−x3
x1

]
����

[
x3 x4 0
−x1 0 x4
0 −x1x2 −x2x3

]
�� [x1x2 x2x3 x4 ] �� ��

The graded Betti numbers A/I and I are:

β0,0(A/I) = 1

β0,1(I) =β1,1(A/I) = 1

β0,2(I) =β1,2(A/I) = 2

β1,3(I) =β2,3(A/I) = 3

β2,4(I) =β3,4(A/I) = 1

and all others are zero. The total Betti numbers are

β0(A/I) = β0,0(A/I) = 1

β0(I) =β1(A/I) = β1,1(A/I) + β1,2(A/I) = 1 + 2 = 3

β1(I) =β2(A/I) = β2,3(A/I) = 3

β2(I) =β3(A/I) = β3,4(A/I) = 1

and all the others are zero. We also see that pdR(I) = 2 and pdR(A/I) = 3.

We now know that for a finitely generated graded R-module M a minimal graded

free resolutions always exists, it is unique up to isomorphism, and we know how to go

about constructing one, though the construction algorithm may never terminate. With this

in mind we often call a minimal graded free resolution of M “the” minimal graded free

resolution of M .

While this is relatively satisfying, we may wish to be greedy and ask for more. The

more that we ask for is that our minimal graded free resolutions be finite. We already saw in

Example 3 that this is not always the case for finitely generated R-modules (R, as always,
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is graded and of the form S/I). So, the question is, what further restrictions do we need

to make in order to get this result? One possibility is to restrict ourselves to the standard

graded polynomial ring S.

Theorem 2.31 (Hilbert’s Syzygy Theorem, [5], p.68). Let S = k[x1, ..., xn]. If M is a

finitely generated S-module, then any minimal graded free resolution of M has length at

most n.

Since ideals are also submodules of S, and S is Noetherian (Hilbert’s basis theorem,

see [5] p.5), we have that this result hold for all ideals of S and in particular all monomial

ideals. Moreover, Construction 2.19 provides us with an algorithm which will allow us to

compute a minimal free resolution for each ideal in S.

2.5 Regular Elements

Is this section we briefly discuss regular elements and regular sequences (See [17] for a

more detailed account). Colloquially, a regular element is a ring element which is a non-

zero divisor on a module M . What this means precisely is

Definition 2.32. Let M be an R-module. An element r ∈ R is said to be M-regular if

rm �= 0 for all m �= 0, m ∈ M .

A natural extension of this definition is that of a regular sequence.

Definition 2.33. Let M be an R-module. A sequence f = fi, ..., fq of elements of R is

called an M-regular sequence if the following two conditions are satisfied.

1) fi is a regular element of M/(f1, ..., fi−1)M , for i = 1, ..., q

2) M/fM �= 0

It is important to note that, in general, regular sequences are sensitive to the order of

the elements in the sequence.

Example 2.34. Let M = R = k[x, y, z] and consider the elements x, y(1− x), z(1 − x).

Then the sequence x, y(1−x), z(1−x) is an M-regular sequence. To show this, we begin
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with x. Since k[x, y, z] is a domain, x is clearly an M-regular element. To show that the

other elements are regular we first observe that

M

xM
=

R

(x)
=
k[x, y, z]

(x)
∼= k[y, z]

and under this isomorphism

y(1− x) 	−→ y, z(1− z) 	−→ z

Since y is regular on k[y, z] and z is regular on k[y, z]/y ∼= k[z] we can conclude that

x, y(1− x), z(1− x) is a regular sequence.

If we now look at the sequence y(1 − x), z(1 − x), x then we have that y(1 − x)

is regular on M but z(1 − x) is not regular on M/y(1 − x)M ∼= k[x, y, z]/(y(1 − x))

since y · z(1 − x) = z · y(1 − x) = 0 in k[x, y, z]/(y(1 − x)) and y, z(1 − x)0 �= 0 in

k[x, y, z]/(y(1− x)). So, y(1− x), z(1 − x), x is not an M-regular sequence.

However, for a graded R-module M , if each fi ∈ m is homogeneous and belongs to

the maximal ideal m, then every permutation of f1, ..., fq is again an M-regular sequence

([17], p.53).

One feature of regular elements, and the feature which we will focus on, is that we can

use them to manipulate free resolutions in a predictable manner. These manipulations will

allow us to take a free resolution of an R-module M , and form a resolution of M/(f)M ,

where f is an M-regular element. Before we can explicitly state these results, we need to

define what it means to take a tensor product of a chain complex and a module.

Let U be an R-module and let M be the complex of R-modules

M : ... Mi Mi−1 Mi−2 Mi−3 ...∂i−1 ��∂i+1 �� ∂i �� ∂i−2 �� ∂i−3 ��
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We can define a new chain complex M⊗ U as the complex

M⊗ U : ... Mi ⊗ U Mi−1 ⊗ U Mi−2 ⊗ U ...∂i−1⊗1U ��∂i+1⊗1U �� ∂i⊗1U �� ∂i−2⊗1U ��

Where 1U is the identity map on U .

Theorem 2.35 ([17], p.84). Let M be an R-modules and f ∈ R be both R-regular and

M-regular. If F is a free resolution of M over R, then F ⊗R R/(f) is a free resolution of

M/fM over R/(f). In addition, if f is homogeneous and F is graded, then F ⊗R R/(f)

is graded. Furthermore, if F is minimal and f ∈ m then F⊗R R/(f) is minimal.

Remark 2.36. Let R, M , f , and F be as above. If f ′ ∈ R is such that its image in

R/(f) is R/(f)-regular and M/fM-regular (i.e. f, f ′ is both an R-regular sequence and

an M-regular sequence) then we can apply Theorem 2.35 to get that

(
F⊗R

R

(f)

)
⊗R/(f)

R/(f)

f ′(R/(f))
∼= F⊗R

(
R

(f)
⊗R/(f)

R/(f)

f ′(R/(f))

)
∼= F⊗R

R/(f)

f ′(R/(f))

Is a free resolution of
M/fM

f ′(M/fM)
over

R/(f)

f ′(R/(f))
. Using the fact that

f ′
(
R

(f)

)
∼= (f ′) + (f)

(f)

and

f ′
(
M

fM

)
∼= f ′M + fM

fM

we can conclude that
R/(f)

f ′(R/(f))
∼= R

(f, f ′)

and
M/fM

f ′(M/fM)
∼= M

(f, f ′)M

Therefore, we can say that if f, f ′ is both an R-regular and M-Regular sequence, then

F ⊗R R/(f, f
′) is a free resolution of M/(f, f ′)M . Also, as Theorem 2.35 says, if f

and f ′ are also homogeneous and in the maximal ideal m, then F ⊗R R/(f, f
′) will be a
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minimal resolution. Moreover, by repeating the above arguments we can extend the results

of Theorem 2.35 to regular sequences of any length.



Chapter 3

Simplicial Complexes and Simplicial Trees

3.1 Simplicial Complexes, Simplicial Chain Complexes

Definition 3.1. Let V = {v1, ..., vn} be a finite set. A (finite) simplicial complex, Δ,

on V is a collection of non-empty subsets of V such that F ∈ Δ whenever F ⊆ G for

some G ∈ Δ and {vi} ∈ Δ for i = 1, ..., n. The elements of Δ are called faces. Faces

containing one element are called vertices and maximal faces are called facets. For each

face F ∈ Δ, we define dim(F ) = |F | − 1 to be the dimension of the face F . We define

dim(Δ) = max{dim(F ) : F ∈ Δ} to be the dimension of the simplicial complex Δ. If

Δ is a simplicial complex with only 1 facet and r vertices, we call Δ an r-simplex.

Definition 3.2. A simplicial complex Δ with vertex set V = {v1, ..., vn} is connected if

for every vi, vj ∈ V there is a sequence of faces F0, ..., Fk such that vi ∈ F0, vj ∈ Fk and

Fi ∩ Fi+1 �= ∅ for i = 0, ..., k − 1.

It is easy to see from the definition that a simplicial complex can be described com-

pletely by its facets, since every face is a subset of a facet and every subset of every facet is

in a simplicial complex. So, for a simplicial complex Δ with facets F0, ..., Fq, we use the

notation 〈F0, ..., Fq〉 to describe Δ.

Also, we can, and often will, present a simplicial complex geometrically when the

dimension is small enough. We describe 0-dimensional facets as points, 1-dimensional

facets as lines, 2-dimensional facets as solid triangles, and 3-dimensional facets as solid

tetrahedrons. Intersecting these shapes at the appropriate subfaces will give us all of the

information we need to describe a simplicial complex (see [16],Chapter 1). This is best

shown through example.

24
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Example 3.3. If Δ is the simplicial complex whose facets are {v1, v2}, {v1, v3}, and

{v2, v3, v4}. Then we have the following representation for Δ:

Figure 3.1: Geometric representation of a simplicial complex

Another way we can describe a simplicial complex is by building a chain complex

which is specific to the simplicial complex we are working with. It is worth mentioning

here that while we will use terminology related to modules to maintain consistency with

previous definitions and ideas discussed in this thesis, abelian groups are Z-modules and

vice versa. So while we will proceed to discuss complexes of Z-modules, we are in fact

giving a description in terms of abelian groups. The objects we will be describing are as

follows:

Construction 3.4 ([10], pp.104-106). Let Δ be a simplicial complex on the vertex set

{v0, ..., vn}. Let Ck(Δ) be the free Z-module whose basis is indexed by the k-dimensional

faces of Δ. For each k ∈ {1, ..., n} we define a map ∂k : Ck(Δ) → Ck−1(Δ) as follows:

If F ∈ Δ is the k-dimensional face on the vertices {vi0 , ..., vik}, with corresponding basis

element eF ∈ Ck(Δ), then

∂k(eF ) =

k∑
j=0

(−1)jeF\{vij }

If we set Ck+1(Δ) and C(−1)(Δ) to be the 0 module, with maps ∂k+1 = ∂0 = 0 then we get

a sequence of module homomorphisms:

C(Δ) : 0 Ck(Δ) ... C2(Δ) C1(Δ) C0(Δ) 0
∂2 ��∂k �� ∂3 �� ∂1 �� ����
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We call this the simplicial chain complex of Δ and we call the homology module

Hi(C(Δ)) = Hi(Δ) = ker(∂i)/im(∂i+1)

the ith simplicial homology module of Δ.

Definition 3.5. The f -vector of a d-dimensional simplicial complex Δ is the sequence

f(Δ) = (f0, ..., fd) =
(
rank(C0(Δ)), ..., rank(Cd(Δ))

)
, so that each fi is the number of

i-dimensional faces of Δ.

It is not clear from the definition that this is in fact a chain complex. It can be shown,

by a calculation that is more tedious than enlightening, that ∂i−1◦∂i = 0 for i = 1, ..., k = 1,

and we conclude that:

Proposition 3.6 ([10], p.105). C(Δ) is a chain complex of Z-modules (abelian groups).

Remark 3.7. Every simplicial complex Δ gives rise to a chain complex of free Z-modules,

but it is not the case that every chain complex of Z-modules gives rise to a simplicial

complex. The question my then arise: If we are given a chain complex of free Z-modules,

can we determine if this chain complex has the form C(Δ) for some simplicial complex

Δ?

If a chain complex of free Z-modules were of the form C(Δ), the rank of each Ci

would determine the number of i-dimensional faces, and the differential maps ∂i+1 and ∂i

would indicate how each of these i-dimensional faces attaches to faces of dimension i + 1

and dimension i. This gives us good indication as to what the simplicial complex Δ would

have to be.

Example 3.8. Let Δ be the 3-simplex and C(Δ) be the simplicial chain complex

C(Δ) : 0 Z
1

Z
3

Z
3 0

[
1−1
1

]
����

[
1 1 0−1 0 1
0 −1 −1

]
�� ��

We can reconstruct Δ using only information present in C(Δ).
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SinceC0(Δ) = Z
3 we know that Δ has three vertices (0-dimensional faces), call them

v0, v1, and v2. Also, since C1(Δ) = Z
3 we know that Δ has three 1-dimensional faces (i.e.

edges), call them F0, F1, and F2 for the moment. Applying the definition of the differential

in Construction 3.4 to F0 we get

∂1(eF0) =

1∑
j=0

(−1)jeF0\{vij } = eF0\{vi0} − eF0\{vi1}

and applying the matrix given in C(Δ), which is also ∂1, to the basis element eF0 we get

⎡
⎢⎢⎢⎣
−1 −1 0

1 0 −1

0 1 1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
1

0

0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
−1

1

0

⎤
⎥⎥⎥⎦ = e{v1} − e{v0}

Upon comparing the two resulting expression we conclude that vi0 = v0 and vi1 = v1 and

so F0 = {v0, v1} (the edge between v0 and v1). Repeating this process for F1 and F2 we

find that F1 = {v0, v2}, and F2 = {v1, v2}.

Lastly, we see that Δ has a single 2-dimensional face, F3. Again, we will compare

our two definitions of ∂2 to deduce what F3 is. From the definition, we have

∂2(eF3) =

2∑
j=0

(−1)jeF3\{vij } = eF3\{vi0} − eF3\{vi1} + eF3\{vi2}

and the map from the chain complex of Δ is

⎡
⎢⎢⎢⎣

1

−1

1

⎤
⎥⎥⎥⎦
[
1
]
=

⎡
⎢⎢⎢⎣

1

−1

1

⎤
⎥⎥⎥⎦ = eF0 − eF1 + eF2

So F3\{vi0} = F0 = {v0, v1}, F3\{vi1} = F2 = {v0, v1}, and F3\{vi2} = F2 = {v1, v2},

and we see that vi0 = v2, vi1 = v1, and vi2 = v0, meaning F3 = {v0, v1, v2}. We now know
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what all of our faces are, and our simplicial complex is the 3-simplex

Δ =
{{v0}, {v1}, {v2}, {v0, v1}, {v0, v2}, {v1, v2}, {v0, v1, v2}}

Which is exactly what we expect.

It should be mentioned that not every finite chain complex of free Z-modules de-

scribes a simplicial complex, so we cannot always apply the methods of Example 3.8 to

any chain complex of Z and recover a simplicial complex.

Remark 3.9. (See [10], pp.109-110) The chain complex of a nonempty simplicial complex

is never exact. The best case scenario is thatHi(C(Δ)) = 0 for i ≥ 1, andH0(C(Δ)) = Z.

To remedy this we can set C(−1) = Z and define ∂0(evi) = 1 for each basis element evi

in C0. We can verify that this is still a chain complex, which we call the augmented

simplicial chain complex of Δ, and we denote it as C̃(Δ; k). The homology modules of

the augmented simplicial chain complex of Δ are called the reduced homology modules

of Δ and the ith one is denoted H̃i(Δ) (even though Hi(Δ) = H̃i(Δ) when i ≥ 1).

Definition 3.10. A simplicial complex Δ is called acyclic when H̃i(Δ) = 0 for all i ≥ 0

It may seem that this distinction between the chain complex and the augmented chain

complex of a simplicial complex is a waste of time, since it does not tell us anything

new about our simplicial complex. However, when we begin to use simplicial complexes

as a tool for finding free resolution of monomial ideals, augmented chain complexes and

reduced homology will be the more appropriate definitions to work with.

Another consideration we might make is regarding the use of free Z-modules in the

simplicial chain complex. We could have, in our definition, defined the chain group as free

k-modules, for some field k (or something more exotic than this if we like, see [10], p.153).

The choice of Z is due to topological considerations, and the development of the theory in

this regard. If we choose to work over a field as opposed to Z then the combinatorial

description of our simplicial complex that is contained in the chain complex will still be

preserved (that is, we will still be able to reconstruct a simplicial complex from its chain

complex). This is because the coefficients of our differential are always ±1, which are
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elements of every field. Since we are interested in exploiting combinatorial properties of

simplicial complexes, and not topological properties, this generalization to working over a

field will be one which we will make.

This does not mean that there will be no consequences in making this generalization.

While the differential maps remain relatively unchanged, what can change are the homol-

ogy modules of the complex. If, for example, Hn(Δ) = 2Z, for some simplicial complex

Δ and some n ∈ Z, when working over the integers, then we would have that Hn(Δ) = 0

if we are working over the field Z/2Z. So, homology is sensitive to the choice of the field

we are working with. To be clear about our context, we denote by Hn(Δ; k), the homology

of Δ with coefficients in k (and we denote the chain groups by Cn(Δ; k) when we need to

be clear about our context. Again, see [10], p.153 for details).

For our treatment of monomial ideals, we have defined the S to be the polynomial ring

over some field k, which we do not specify, which means that k could have any possible

characteristic. However, being unable to explicitly say what the characteristic of k is, we

typically present the information as though k has characteristic zero, noting which results

and calculations are dependent on the characteristic of k.

3.2 Simplicial Trees and Quasi-trees

In the main result of our investigation, we focus on two specific types of simplicial com-

plexes, called simplicial trees and quasi-trees. They are the simplicial complex analogy of

a graph tree. In fact, we can view graphs as 1-dimensional simplicial complexes, and when

we do, the definition we make for simplicial trees will give us graph trees when we restrict

to the 1-dimensional case. In order to define what a simplicial tree is and describe some of

its properties, we are going to need some definitions.

Definition 3.11. For a simplicial complex Δ with vertex set V and W ⊆ V , we define the

induced subcomplex on W in Δ, denoted ΔW , to be the set ΔW = {F ∈ Δ|F ⊆W}

Definition 3.12. For a simplicial complex Δ, we define a subcollection of Δ to be a sim-

plicial complex whose facets are also facets of Δ. If Δ has facets F1, ..., Fq, then the

subcollection which has facets Fi1, ..., Fik is the simplicial complex 〈Fi1 , ..., Fik〉
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Both of the above definitions describe some type of subcomplex of a simplicial com-

plex. The first definition uses the smallest faces of the complex and works up, the second

definition uses the maximal faces of the complex and works down. This allows for the

subcomplexes they define to be quite different.

Example 3.13. If Δ is the following simplicial complex

Figure 3.2: A simplicial complex (example of subcomplexes)

Then we can describe two subcomplexes of Δ as follows: The first complex is the

induced subcomplex ΔW on the vertex set W = {v0, v1, v2}, and the second is the subcol-

lection 〈F1, F2〉.

Figure 3.3: Induced subcomplex vs. Subcollection

Clearly these subcomplexes are quite different. ΔW is a simplicial complex on three

vertices. It has 3 facets, none of which are facets of Δ, and dim(ΔW ) = 1 �= dim(Δ). On

the other hand, 〈F1, F2〉 is a simplicial complex on four vertices. It has 2 facets, both of

which are facets of Δ, and dim(〈F1, F2〉) = 2. Moreover, ΔW cannot be described as a

subcollection of Δ, and 〈F1, F2〉 cannot be described as the induced subcollection in Δ of

any subset W ⊆ {v0, v1.v2.v3}.

Definition 3.14. (Faridi, [6]) A facet F of a simplicial complex Δ is called a leaf if either

F is the only facet of Δ or for some facet G ∈ Δ we have that F ∩ (Δ \ 〈F 〉) ⊆ G. In the

second scenario, the facet G is said to be the joint of F .
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To be clear, by Δ \ 〈F 〉 we mean the subcollection of Δ that is generated on all

the facets of Δ with the exception of F (i.e. if Δ = 〈F, F1, ..., Fq, 〉, then Δ \ 〈F 〉 =

〈F1, ..., Fq〉). In the above example, neither Δ nor ΔW contained a leaf. However, in

〈F1, F2〉 both F1 and F2 are leaves.

If a facet F of a simplicial complex Δ is a leaf, then F necessarily has a free vertex,

which is a vertex of Δ that belongs to exactly one facet. If the leaf F of Δ did not have a

free vertex then all vertices of F would belong to Δ \ F ⊂ G, and we would conclude that

F is a subface of G, hence not a facet.

We are now ready to define a simplicial tree and describe some of its properties.

Definition 3.15. (Faridi, [6]) A connected simplicial complex Δ is a simplicial tree if

every nonempty subcollection of Δ has a leaf. If Δ is not necessarily connected, but every

subcollection has a leaf, then Δ is called a forest.

Example 3.16. Consider the simplicial tree Γ, and simplicial complex Δ (not a simplicial

tree)

Figure 3.4: Example of when a complex is a simplicial tree

We see that Γ and Δ each have a leaf, and that Γ is a simplicial tree. Upon further

inspection of Δ, we find that the subcollection 〈F0, F1, F2〉 does not have a leaf, hence Δ

is not a simplicial tree.

It is clear from the definition that if Δ is a simplicial tree and Γ is a subcollection

of Δ, then Γ is a simplicial forest. We are also able to show the following properties of

simplicial trees.

Theorem 3.17 (Faridi, [9]). An induced subcomplex of a simplicial tree is a simplicial

forest.



32

Proposition 3.18 (Faridi, [9]). Simplicial trees are acyclic.

The above two properties will give good justification as to why we wish to study

simplicial trees in the context of resolutions of monomial ideals. When we develop the

idea of generating resolutions from simplicial complexes we will find that, because of these

properties, when we restrict to simplicial trees things simplify nicely and we are able to give

some classifications. One of the properties of simplicial trees that we will make particular

use of is that whenever Δ is a simplicial tree we can always order the facets F1, ..., Fq of Δ

so that Fi is a leaf of the induced subcollection 〈F1, ...Fi〉. Such an ordering on the facets

is called a leaf order and it is used to make the following definition.

Definition 3.19. (Zheng, [24]) A connected simplicial complex Δ is a quasi-tree if Δ has

a leaf order. If Δ has a leaf order but is not connected, we say that Δ is a quasi-forest.

It follows from the definitions of simplicial trees and quasi-that every simplicial tree

is also a quasi-tree. To show that not every quasi-tree is a simplicial tree we provide the

following example.

Example 3.20. Let Δ be the following simplicial complex.

Figure 3.5: quasi-tree that is not a simplicial tree

The ordering given on the facets of Δ satisfies definition 3.19 so Δ is a quasi-tree.

However, the subcollection 〈F1, F3, F4〉 does not have a leaf, hence Δ is not a simplicial

tree.

Equivalently, we could have defined quasi-trees to be simplicial complexes such that

every induced subcomplex has a leaf. The equivalence of these definitions is proven below.
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Proposition 3.21. A simplicial complex Δ with vertex set V is a quasi-forest if and only if

for every subset W ⊂ V , ΔW has a leaf.

Proof. (⇒) Since Δ has a leaf order, we may label the facets of Δ, F0, ..., Fq, so that Fi is

a leaf of Δi = 〈F0, ..., Fi〉 . For a subset W ⊂ V , choose the smallest i such that W is a

subset of the vertex set of Δi, which we will denote Vi.

We claim that the complex induced on W in Δi is ΔW . It is clear that (Δi)W ⊆ ΔW .

To see the converse, let F be a face of ΔW , then F ⊆ Fj for some facet Fj ∈ Δ. If j ≤ i

then F ∈ Δi and we are done. If j > i then let Fk be the joint of Fj in Δj and note that

k < j. Since F ⊆W ⊆ Δi ⊆ Δj \〈Fj〉 we have that F ⊆ Fj ∩
(
Δj \〈Fj〉

) ⊂ Fk. If k ≤ i

then we are done. If not we may iterate this argument as many times as necessary until we

get a facet Fa ∈ Δi for which F ⊆ Fa. Hence (Δi)W = ΔW .

We will show that Fi ∩W is a leaf of ΔW . Since Fi ∈ Δi, Fi ∩W is a face of ΔW .

Also, Vi = Vi−1∪{free vertices of Fi inΔi} which means thatW∩{free vertices of Fi inΔi} �=
∅, otherwise W would be contained in the vertex set of Δi−1. Therefore Fi ∩W is not a

subset of any other face in ΔW , i.e. Fi ∩W is a facet of ΔW . If Fj is the joint of Fi in

Δi, then for any face F ∈ Δ, F ∩ Fi ∩W ⊂ Fj ∩ Fi ∩W . This means that any facet of

ΔW (except for Fi ∩W ) that contains Fj ∩ Fi ∩W is a joint for Fi ∩W in ΔW , since the

faces of ΔW are also faces of Δ. If no such facet exist (except for Fi ∩W ) then Fi ∩W is

disjoint from the rest of ΔW . In either scenario, Fi ∩W is a leaf of ΔW .

(⇐) This is done by induction on the size of the vertex set V of Δ. For |V | = 1 or 2,

a quick inspection shows that all simplicial complexes with vertex set V have a leaf order

and every induced subcomplex has a leaf. Now assume that every simplicial complex on

≤ n vertices for which every induced subcomplex has a leaf is a quasi-forest.

Suppose Δ is a simplicial complex on n+ 1 vertices and that every induced subcom-

plex of Δ has a leaf. Since Δ is an induced subcomplex of itself, it also has a leaf, call it

F , with free vertices v1, ..., vk. The simplicial complex Δ \ 〈F 〉 is given by the induced

subcomplex ΔW where W = V \{v1, ..., vk}. Every induced subcomplex of ΔW has a leaf

and ΔW is a simplicial complex on ≤ n vertices, hence ΔW has a leaf order G1, ...., Gj .

This gives us a leaf order G1, ...., Gj, F for Δ.



Chapter 4

Monomial Ideals

Now that we have some knowledge about monomial resolutions and simplicial complexes,

we are ready to begin developing the theory that is of most interest to us; using the combi-

natorial properties of simplicial complexes to study monomial ideals. We should, however,

introduce some basic concepts, notation, and definitions that will be used throughout the

rest of the thesis.

Every monomial ideal in S has a unique minimal set of monomial generators. When

we say that I = (m1, ..., mr) is a monomial ideal, what is meant is that m1, ..., mr are

monomials and they are the unique minimal set of monomial generators for I . If we con-

sider the set

LI =
{
lcm(mi1 , ..., mij ) | {i1, ..., ij} ⊆ {1, ..., r}}

Where lcm(∅) is defined to be 1, then what we get in this case is a partially ordered set,

ordered under divisibility. In fact, this set has even more structure.

Definition 4.1. Let (P,≤) be a partially ordered set. For x, y, z ∈ P we say that z is the

join (least upper bound) of x and y if

1) x ≤ z and y ≤ z

2) If w ∈ P , x ≤ w and y ≤ w, then z ≤ w.

Similarly, we say that z is the meet (greatest lower bound) of x and y if

1) z ≤ x and z ≤ y

2) If w ∈ P , w ≤ x and w ≤ y, then w ≤ z.

Definition 4.2. A partially ordered set P is called a lattice if every pair of element has a

meet and a join. If P has a least element 0̂ then the elements that cover 0̂ in the Hasse

34
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diagram of P are called the atoms of P (for our purposes, these are the elements joined by

an edge to 0̂ in the Hasse diagram).

For a monomial ideal I the set LI is a lattice, which we call the lcm-lattice of I . The

element 1 ∈ I takes the role of 0̂ and the atoms of LI are the minimal generators of I .

Example 4.3. Let I be the ideal (x1x2, x1x3, x1x4, x2x3x4) The Hasse diagram of LI

Figure 4.1: The lcm-lattice of (x1x2, x1x3, x1x4, x2x3x4)

4.1 Frames and Homogenization

We will first focus on a technique which will take a simplicial complex on r vertices and a

monomial ideal with r generators to a chain complex of free S-modules. This is done using

a process called homogenization on the augmented simplicial chain complex with coeffi-

cients in k, for a given simplicial complex. Under the right conditions, this construction

will yield a resolution for our ideal in question, though it need not be minimal.

Definition 4.4. (Peeva, Velasco, [18]) Let U be a complex of finite dimensional k-vector

spaces with differential ∂ and a fixed basis (see Remark 2.20), such that

1) Ui = 0 for i < 0 and there is a j ∈ N for which Ui = 0 when i > j

2) U0 = k

3) U1 = kr

4) ∂1(ej) = 1 for every basis vector ej in U1



36

We call such a complex a frame (or an r-frame).

If, for some simplicial complex Δ on vertex set {v1, ..., vr}, we consider the aug-

mented simplicial chain complex with coefficients in k then what we get is a frame, with

the caveat that we will need to shift the homological degree of the complex by 1 (i.e. re-

index). Conditions (2) and (4) comes from the augmentation of the complex, condition (3)

comes from C0 (now C1) having a basis indexed by the vertices of Δ. Condition (1) is

satisfied when we re-index, because our complexes are assumed to be finite.

It should be noted that not all frames correspond to simplicial chain complexes. It

is also not the case that simplicial chain complexes are the only combinatorial/topological

object from which we can derive frames. There are merits to considering these other objects

but we will not be referring to them in what follows.

Definition 4.5. (Peeva, Velasco, [18]) For a monomial ideal I = (m1, ..., mr), with lcm-

latticeLI , let G be a multigraded complex of finitely generated free multigraded S-modules

with differential d and a fixed multihomogeneous basis with multidegrees in LI , such that

1) Gi = 0 for i < 0 and there is a j ∈ N for which Gi = 0 when i > j

2) G0 = S

3) G1 = S(−m1)⊕ ...⊕ S(−mr)

4) d1(ej) = mj for each basis element ej of G1

We call such a complex an I-complex.

Remark 4.6. The four conditions of Definition 4.5 guarantee that H0(G) = S/I , which

makes G a candidate for a free resolution of S/I which, as we saw in Remark 2.29, is

equivalent to finding a free resolution of I . The only other property of an I-complex is that

it has a multihomogeneous basis with multidegrees in LI .

We also see that the definition of a frame is similar to the definition of an I-complex,

and we can relate the two as follows.
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Construction 4.7 (Peeva, Velasco, [18]). Let I = (m1, ..., mr) be a monomial ideal, and

let

U : 0 kbt ... kb2 kb1=r k 0�� ∂3 �� ∂1 ��∂t �� ∂2 �� ��

be an r-frame, with differential ∂. We will inductively construct an I-complex

G : 0

bt⊕
j=1

S(−αt,j) ...
b2⊕
j=1

S(−α2,j)
b1=r⊕
j=1

S(−α1,j) S 0�� d3 �� d1 ��dt �� d2 �� ��

with differential d and multidegrees αj , via the following:

1) Set G0 = S and G1 = S(−m1) ⊕ ... ⊕ S(−mr) and d1(ej) = mj for each basis

element ej of G1

2) At the ith step (for i ≥ 2), Let v1, ..., vbi and u1, ..., ubi−1
be the given bases of Ui and

Ui−1 respectively, and let u1, ..., ubi−1
be the basis of Gi−1 =

bi−1⊕
j=1

S(−αi−1,j) chosen

at the previous step of the induction. We define Gi
∼= Sbi with basis v1, ..., vbi . If

∂i(vj) =

bi−1∑
s=1

as,jus where as,j ∈ k, then set

i) mdeg(vj) = lcm{mdeg(us)|as,j �= 0}, and note that lcm(∅) = 1

ii) Gi =

bi⊕
j=1

S(−mdeg(vj))

iii) di(vj) =
bi−1∑
s=1

as,j
mdeg(vj)

mdeg(us)
us

We say that the complex G is obtained from U by I-homogenization (or that G is the

I-homogenization of U).

This construction is weighed down by notation, but is not nearly as tedious as it may

seem. It is more instructive to consider an example of homogenization before trying to

decipher the precise details of the above construction.
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Example 4.8. Let I = (x1x4, x1x2, x1x3, x2x3x4). Suppose we would like to I-homoge-

nize the following 4-frame

0 k k4 k4 k 0

[ 1−1
1
0

]
����

⎡⎣ 1 1 0 1−1 0 1 0
0 −1 −1 0
0 0 0 −1

⎤⎦
�� [ 1 1 1 1 ] �� ��

The first thing we do is choose an ordering on the monomial generators of I . We will, for

simplicity, use the order in which they appear in our presentation, i.e. m1 = x1x4, m2 =

x1x2, etc. The first step in our algorithm tells us to define G0 = S and G1 = S(x1x4) ⊕
S(x1x2)⊕S(x1x3)⊕S(x2x3x4). Step 2 tells us how to define the differential which, since

G0 is one copy of S with no shift, will send the homogeneous basis element with degree

mi to mi. So, our partially homogenized chain complex is:

0 k k4

S(−x1x4)
⊕

S(−x1x2)
⊕

S(−x1x3)
⊕

S(−x2x3x4)

S 0

[ 1−1
1
0

]
����

⎡⎣ 1 1 0 1−1 0 1 0
0 −1 −1 0
0 0 0 −1

⎤⎦
�� [x1x4 x1x2 x1x3 x2x3x4 ]�� ��

To determine what happens with G2 and d2 we see that (using the notation described in the

algorithm) ∂2(v1) = u1 − u2. So we set

mdeg(v1) = lcm(mdeg(u1),mdeg(u2)) = lcm(x1x4, x1x2) = x1x2x4

d2(v1) = (x1x2x4/x1x4)u1 − (x1x2x4/x1x2)u2 = x2u1 − x4u2

If we make similar calculations for the other basis elements we get

0 k

S(−x1x2x4)
⊕

S(−x1x3x4)
⊕

S(−x1x2x3)
⊕

S(−x1x2x3x4)

S(−x1x4)
⊕

S(−x1x2)
⊕

S(−x1x3)
⊕

S(−x2x3x4)

S 0

[ 1−1
1
0

]
����

⎡⎣ x2 x3 0 x2x3−x4 0 x3 0
0 −x4 −x2 0
0 0 0 −x1

⎤⎦
�� [ x1x4 x1x2 x1x3 x2x3x4 ]�� ��

and we can repeat this process for G3 and d3 to get the complete I-homogenization of this
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frame

0 S(−x1x2x3x4)

S(−x1x2x4)
⊕

S(−x1x3x4)
⊕

S(−x1x2x3)
⊕

S(−x1x2x3x4)

S(−x1x4)
⊕

S(−x1x2)
⊕

S(−x1x3)
⊕

S(−x2x3x4)

S 0

[ x3−x2
x4
0

]
����

⎡⎣ x2 x3 0 x2x3−x4 0 x3 0
0 −x4 −x2 0
0 0 0 −x1

⎤⎦
�� [x1x4 x1x2 x1x3 x2x3x4 ]�� ��

Remark 4.9. The first remark we should make about homogenization is that the order

we put on the monomial generators of the ideal has a direct consequence on the prop-

erties of the homogenization. In particular, for a frame U and monomial ideal I , the I-

homogenization of U may result in a resolution of I with respect to one ordering of the

generators and may fail to be a resolution with respect to another ordering on the genera-

tors.

The second remark is that, when our frame is C̃(Δ; k) for some simplicial complex Δ

and field k, we can represent the I-homogenization of a frame pictorially. In the simplicial

chain complex of Δ the basis for each chain group is indexed by the faces. So when we

homogenize, it is like attaching a multidegree to each face of the complex, which is the

lcm of the subfaces. Moreover, if homogenizing the frame of a simplicial complex results

in a resolution, then we can bound the Betti numbers βi(I) by the number of faces of Δ

of dimension i, i.e. by the entries of the f -vector of Δ. If the resolution is minimal, then

these values would be equal (note that these are the Betti numbers for I to which we refer

and not S/I).

Example 4.10. Let us consider the same ideal I and frame as in the previous example. The

frame that we used is actually the C̃(Δ; k) for the following simplicial complex Δ

Figure 4.2: A simplicial complex (example of I-homogenization)

Picking an order on the generators of I is equivalent to giving each vertex of Δ a monomial

label. The order we had chosen gives us
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Figure 4.3: Partial I-homogenization of a simplicial complex

As we already mentioned, when we homogenize, what we end up doing is assigning a

multidegree to each of the faces of Δ. If a face F had dimension d, then the homogenization

algorithm tells us to set

mdeg(F ) = lcm(mdeg(G) | G is a subface of F )

and working backwards we can describe the multidegree of F , with respect to the genera-

tors of I , as

mdeg(F ) = lcm(mdeg(mi) |mi ∈ F )

so the complete homogenization of our current example is

Figure 4.4: Full I-homogenization of a simplicial complex

Since we can deduce the differential maps of the simplicial chain complex for Δ from

this pictorial representation, we can similarly deduce the differential of the I-homogen-

ization of Δ (up to a change of sign of the entries in each ∂i). This means that all the

information needed to describe the I-homogenization of C̃(Δ; k) is available in this pre-

sentation. In fact, since the multidegrees of each face is determined by the labels on its

vertices, the homogenization of C̃(Δ; k) is completely determined by the ordering of the

generators of I (i.e. the labelling of the vertices of Δ). Typically, we will just label the

vertices, and not the faces, of a simplicial complex in order to denote the homogenization
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with respect to that choice of ordering on the vertices.

We now know how to get from an r-frame (in particular, from a simplicial complex),

and monomial ideal I , to a chain complex of free S-modules which may or may not be

a resolution of I . Determining whether or not we do indeed get a resolution amounts to

examining specific subcomplexes of our r-frame. In order to do this, we need to be able to

get from an I-complex back to an r-frame.

Definition 4.11 (Peeva, Velasco. [18]). Let G be an I-complex. We call U = G ⊗S

S/(x1 − 1, ..., xn − 1) the frame of G (or the dehomogenization of G).

The generators of (x1 − 1, ..., xn − 1) equate xi and 1 in the above tensor product.

This means that each Gi in G becomes a k-vector space of the same rank as Gi, and each

differential map becomes the matrix of the coefficients of its entries. Since the definition of

an I-complex and an r-frame are so similar, it is not surprising that the dehomogenization

of the an I-complex yields an r-frame, where r is the number of minimal generators of I .

Example 4.12. Using the same I and Δ as the previous two examples we got the I-complex

0 S(−x1x2x3x4)

S(−x1x2x4)
⊕

S(−x1x3x4)
⊕

S(−x1x2x3)
⊕

S(−x1x2x3x4)

S(−x1x4)
⊕

S(−x1x2)
⊕

S(−x1x3)
⊕

S(−x2x3x4)

S 0

[ x3−x2
x4
0

]
����

⎡⎣ x2 x3 0 x2x3−x4 0 x3 0
0 −x4 −x2 0
0 0 0 −x1

⎤⎦
�� [x1x4 x1x2 x1x3 x2x3x4 ]�� ��

The dehomogenization of this complex gives us the frame

0 k k4 k4 k 0

[ 1−1
1
0

]
����

⎡⎣ 1 1 0 1−1 0 1 0
0 −1 −1 0
0 0 0 −1

⎤⎦
�� [ 1 1 1 1 ] �� ��

which is just the frame that we started with before homogenizing. It may come as no

surprise that when we dehomogenized the homogenization of a frame, it returned to us the

frame we began with and it can be shown that this is always the case.

Proposition 4.13 (Peeva, Velasco, [18]). Let I = (m1, ..., mr) be a monomial ideal. If G

is the I-homogenization of a frame U, then U is the frame of G
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Remark 4.14. The converse statement of Proposition 4.13 need not be true. In Example

4.8 we gave an I-homogenization G of a frame. To show that the converse of Proposition

4.13 does not hold it would suffice to present an I-complex G′ with the same frame as G,

but which cannot be constructed via I-homogenization. Consider the complex

G′ : 0 S(−x1x2x3x4)

S(−x1x2x3x4)
⊕

S(−x1x2x3x4)
⊕

S(−x1x2x3x4)
⊕

S(−x1x2x3x4)

S(−x1x4)
⊕

S(−x1x2)
⊕

S(−x1x3)
⊕

S(−x2x3x4)

S 0

[ 1−1
1
0

]
��

⎡⎣ x2x3 x2x3 0 x2x3−x3x4 0 x3x4 0
0 −x2x4 −x2x4 0
0 0 0 −x1

⎤⎦
��

[x1x4 x1x2 x1x3 x2x3x4 ] �� ��

��

We can easily verify that conditions (1)−(4) of Definition 4.5 are satisfied, and this com-

plex has a multihomogeneous basis with multidegrees in LI , so G′ is an I-complex. The

dehomogenization of this I-complex is

0 k k4 k4 k 0

[ 1−1
1
0

]
����

⎡⎣ 1 1 0 1−1 0 1 0
0 −1 −1 0
0 0 0 −1

⎤⎦
�� [ 1 1 1 1 ] �� ��

So the frame matches that G as well. However, if it were possible to construct G′ via

I-homogenization, G′
0 and G′

1 determine that the ordering on the generator of I be the

same order that we chose when finding the I-homogenization G. As mentioned in the

comments at the end of Example 4.10, this choice of ordering completely determines the I-

homogenization. Therefore, since G′ �= G, we can conclude that G′ cannot be constructed

via homogenization.

As mentioned before, we can determine whether or not the I-homogenization of a

frame is a resolution by considering certain subcomplexes of the frame we begin with. The

subcomplexes that we are interested in are the following.

Definition 4.15. Let G be an I-complex, where I is a monomial ideal, and let m ∈ I be a

monomial. Denote by G(≤ m) the subcomplex of G that is generated by the multihomo-

geneous basis elements whose multidegrees divide m.
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These subcomplexes are worth considering because of our next theorem.

Theorem 4.16 (Peeva, Velasco, [18]). Let G be an I-complex.

1) For each monomial m ∈ I , the component of G of multidegree m is isomorphic to

the frame of the complex G(≤ m).

2) The complex G is a free multigraded resolution of S/I if and only if for all multide-

grees m ∈ LI the frame of the complex G(≤ m) is exact.

This theorem is quite useful, since it tells us exactly when a homogenized frame

yields a resolution. The first statement is proved by interpreting how the frame of the

complex G(≤ m) is determined and comparing it to the definition of the component of

G of multidegree m. With the first statement in hand we see, by Proposition 2.16, that

G is a resolution if and only if G(≤ m) is exact for each multidegree m, and noting that

G(≤ m) ∼= G(≤ m′) for some m′ ∈ LI .

Example 4.17. If we recall example 2.18 in section 2.3 we had the complex

0 A(−x1x2x3x4)
A(−x1x2x3)

⊕
A(−x1x2x4)

⊕
A(−x2x3x4)

A(−x1x2)
⊕

A(−x2x3)
⊕

A(−x4)
A 0

[ x4−x3
x1

]
����

[
x3 x4 0
−x1 0 x4
0 −x1x2 −x2x3

]
�� [x1x2 x2x3 x4 ]�� ��

and we made the claim that this was indeed a graded free resolution of A/I , but we did

not show that this complex was exact, since it would require computing the kernels of the

differential matricies explicitly. Now, however, if we recognize the fact that this complex

is the I-homogenization of the simplex on three vertices

Figure 4.5: The I-homogenization of the simplex on 3 vertices

we may apply the results of our last theorem. Moreover, when we have that our complex is

the I-homogenization of C̃(Δ; k), for some simplicial complex Δ, the frame of G(≤ m)
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is given by the induced subcomplex ΔW , where W = {mi |mdeg(mi) divides m} (Peeva,

[18]). When the simplicial complex and vertex label are clear, we will denote these induced

subcomplexes as Δm, when it is not clear we will maintain the G(≤ m) notation. For our

specific example, all induced subcomplexes of Δ fall into one of three possible cases:

Figure 4.6: All induced subcomplexes of the simplex on three vertices

All of these are contractible, hence acyclic. This means the reduced homology is always

zero and the frame of each G(≤ m) is exact, so that we do indeed have a multigraded free

resolution of A/I .

If I is a monomial ideal and Δ is a simplicial complex, then we say that Δ supports

a resolution of I (or that I has a resolution supported on Δ) when the I-homogenization

of the augmented chain complex of Δ is a resolution of S/I .

Remark 4.18. If, for some monomial ideal I and simplicial complexΔ, the I-homogeniza-

tion of C̃(Δ; k) were a resolution, we would also like to know if it is minimal. We recall

that the differential of C̃(Δ; k) is such that

∂(eF ) =
t∑

j=0

(−1)jeF\{vij }

where F = {vi0, ..., vit}, and eF is the basis element of Ct indexed by F . The homogeniza-

tion of ∂ would give

d(eF ) =
t∑

j=0

(−1)j
mdeg(eF )

mdeg(eF\{vij })
eF\{vij }

=

t∑
j=0

(−1)j
lcm{mdeg(eF\{vil}) | vil ∈ F}

mdeg(eF\{vij })
eF\{vij }
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The minimality condition for a resolution is that d(eF ) ∈ m for every multihomogenous

basis element eF . Therefore, we would need to check that

lcm{mdeg(eF\{vil}) | vil ∈ F}
mdeg(eF\{vij })

∈ m

for every vij ∈ F . To state it more directly, we give the following proposition

Proposition 4.19 ([3]). Let I be a monomial ideal and let Δ be a simplicial complex. If

the I-homogenization of C̃(Δ; k) is a resolution, then it is minimal if and only if for every

face F ∈ Δ, G ⊂ F , we have that mdeg(G) �= mdeg(F ).

Note that mdeg(eF ) and mdeg(F ) are referring to the same thing, but we use the

latter for convenience.

We saw in our above example that when we want to determine whether or not the

homogenization of a simplicial complex is a resolution we need to check whether or not

certain induced subcomplexes are acyclic. If our simplicial complex is a simplicial tree,

then we know that it is acyclic. We also know that every induced subcomplex is a forest,

and since a connected forest is a tree (hence acyclic) we get the following result.

Theorem 4.20 (Faridi, [9]). Let Δ be a simplicial tree and I = (m1, ..., mr) be a monomial

ideal. The I-homogenization of C̃(Δ; k) is a multigraded free resolution of S/I if and only

if Δm is connected for every m ∈ LI .

Example 4.21. Consider the I and Δ we had in example 4.10 and let F be the I-homogeniz-

ation of C̃(Δ; k) where m1 = x1x4, m2 = x1x2, m3 = x1x3, m4 = x2x3x4. Let G be the

I-homogenization of C̃(Δ; k) where m1 = x2x3x4, m2 = x1x2, m3 = x1x3, m4 = x1x4

Figure 4.7: Two homogenizations of the same frame
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We would like decide whether or not these homogenizations are also resolutions and,

if they are, whether or not the resolutions they give are minimal. We notice that Δ is a

simplicial tree (in fact, all simplicial complexes with 2 or less facets are simplicial trees),

so we can apply the results of theorem 4.20. The lcm-lattice of I is

Figure 4.8: The lcm-lattice of I

and it is easy to see that F(≤ m) and G(≤ m) will be a single vertex (hence connected)

when m is one of the generators of I . This means that we only need to check that the

frames of F(≤ m) and G(≤ m) are connected when m ∈ {x1x2x3, x1x2x4, x1x3x4,
x1x2x3x4}. Checking these gives
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Figure 4.9: All subcomplexes of F and G induced by elements of LI

We see that that frames of G(≤ x1x2x4) and G(≤ x1x3x4) are not connected, so G

is not a resolution of S/I . However, the frame for each F(≤ m) is connected, and we can

conclude that F is a resolution of S/I . Moreover, the only faces of Δ that have the same

multidegree are the two facets. Since neither is a subface of the other, we may conclude

that F is minimal as well.

Remark 4.22. In general, suppose Δ is a simplicial tree and we homogenize C̃(Δ; k) with

respect to some labelling of the vertices by monomials. If Δm is not connected for some

m ∈ LI then there are two vertices, with monomial labels mi and mj which divide m, that

are not connected in Δm. Since m′ = lcm(mi, mj) divides m, we see that Δm′ cannot

be connected either. This means that, if Δ is a simplicial tree, it is sufficient to check the

multidegrees m such that m = lcm(mi, mj) for every pair of vertex labels of Δ.

4.2 Resolutions of Monomial Ideals

In the previous section we developed a way of building I-complexes via the I-homogenizat-

ion of frames. Moreover, we have given a criterion for when the I-homogenization of a

frame is a resolution and gave specific examples where the I-homogenization was suc-

cessful in finding a free resolution and examples where this failed to be the case. What

we would like to do is give more precise statements about the success or failure of the I-

homogenization. This amounts to imposing restrictions on the structures that we start with,

be it the monomial ideal I or the frame which we choose to homogenize.

For our discussion, we will always restrict the frame of our resolution to be of the form

C̃(Δ : k) for a simplicial complex Δ. What we would like to do is, for a given monomial
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ideal I = (m1, ..., mr), determine effective ways of choosing a simplicial complex Δ on r

vertices for which the I-homogenization of C̃(Δ : k).

Definition 4.23 (Taylor, [21]). Let I = (m1, ..., mr) be a monomial ideal and let Δ be the

simplex on r vertices. The I-homogenization of C̃(Δ; k) is called the Talyor resolution,

and we denote it by TI .

The name “Taylor resolution” certainly suggests that this I-homogenization yields a

resolution of S/I , and this can be shown quite easily. The simplex Δ on r vertices has

only one facet, therefore it is a simplicial tree. Moreover, the underlying graph of Δ is the

complete graph on r vertices. If for some monomial m, we have that mi, mj ∈ Δm, then

by definition, mi, mj , and lcm(mi, mj) divide m. Since lcm(mi, mj) is the multidegree of

the edge between mi and mj , we may conclude that Δm is connected for every m ∈ LI .

So, by Theorem 4.20, we see that this is indeed a resolution of S/I .

Example 4.24. The complex from Example 2.18 and Example 4.17 is the I-homogenization

of the simplex on three vertices. Therefore, it is the Taylor resolution of I .

Not only was this example a resolution, it was minimal as well. More often than

not, this is far from the case. While we are more interested in minimal resolutions of

ideals, there are still advantages to having the Taylor resolution at our disposal. The most

prominent is its simplicity and effectiveness. The simplex has a structure that is very easy

to describe and, because of its symmetry, will work regardless of the ordering you put on

the generators of I , which is not the case with most simplicial complexes.

There is another simplicial complex whose frame we can always homogenize to get

a resolution of a monomial ideal. It has the trade off of being a bit more computationally

tedious than the Taylor resolution, but it gives a resolution that provides a better bound (or

at the very least, the same bound) on the Betti numbers of an ideal.

Construction 4.25 (Lyubeznik, [14]). Let I be a monomial ideal, and fix a total ordering

≺ on the minimal generators of I . Label the minimal generators of I as m1, ..., mr so that

mi ≺ mj whenever i < j. Let G be I-homogenization of the r-simplex Δ, i.e. G is the

Taylor resolution of I . For each face F of Δ, define min(F ) = min≺{mi : mi divides
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mdeg(F )} (note that min(F ) need not be a vertex of F ). We say that a face F is rooted

if for every nonempty subface G ⊆ F we have that min(G) ∈ G. Set ΛI,≺ = {F ∈
Δ : F is rooted}. The rooted property gives us that ΛI,≺ is a simplicial complex, which

we call the Lyubeznik simplicial complex, and its corresponding sub-complex in G (the

I-homogenization of ΛI,≺) the Lyubeznik resolution of I , which we denote LI,≺

Again, we have defined this I-homogenization to be a resolution, which is always the

case. The proof relies on showing that the frame of every induced subcomplex LI,≺(≤ m)

is a cone, hence acyclic, and the result follows by Theorem 4.16.

We should note that the I-homogenization of is with respect to the same ordering, ≺,

on the generators of I . Also, we should note that this construction works for any ordering,

but the resolutions that we get may differ with different orderings of the generators of I .

Example 4.26. Let I = (x1x5x6, x2x4x6, x3x4x5, x4x5x6). We give three Lyubeznik reso-

lutions of I under three different monomial orderings (recall that these visual presentations

determine an I-complex by using the simplicial complex to indicate a frame, and using the

labelling of the vertices to indicate the order on the generators of I by which we homoge-

nize, see Example 4.10).

Figure 4.10: The Lyubeznik resolution of I , under three different monomial orders

Because the generator x4x5x6 divides the multidegree of every edge, its position in

the ordering determines what edges stay and what edges are left out. Also, note that none
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of these resolutions are the Taylor resolution of I , and that the rightmost resolution is the

minimal resolution of I .

In this small example, we were able to quickly point out which generators played an

important role in what resolution we obtained. Seeing this, we could make a good guess as

to what ordering will give us the smallest resolution of S/I . As it stands, this is most that

we can hope for, that is, there are currently no methods for determining what ordering of

the monomial generator will work best, save for trail and error and some heuristic reasoning

([15], Remark 6.4).

4.3 The Scarf complex

We now have an easy way of generating resolutions of a monomial ideal I via the Taylor

complex. The Lyubeznik complex generated a resolution of I , that was closer to being

a minimal resolution of I , by removing non-rooted faces with respect to some monomial

order. We may wonder if there is a way in which to further remove faces in order to get a

minimal resolution for I which is supported on a simplicial complex. The answer is no, not

in general, and we will discuss this soon. However, the question is still worth considering

and will lead us to some useful theory.

If we recall Proposition 4.19 we see that for a monomial ideal I , if we consider the

Taylor resolution of I then it is minimal if no face has the same multidegree as one of its

subfaces. So what we would like to do, in parallel to the construction of the Lyubenik res-

olution, is pick a collection of these faces which will give us another simplicial complex,

Γ, such that no face and subface share the same multidegree in the Taylor resolution, then

I-homogenize Γ. If the I-homogenization of Γ is a resolution, then it is minimal. The sim-

plicial complex we use, and the I-complex we get, are given by the following definition.

Construction 4.27 (Bayer, Peeva, Sturmfels, [2]). Let I = (m1, ..., mr) be a monomial

ideal, and G be the I-homogenization of the r-simplex Δ, i.e. the Taylor resolution of I .

Let ΓI denote the following simplicial complex

ΓI = {F ∈ Δ : mdeg(F ) �= mdeg(G), ∀G ∈ Δ}
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We call ΓI the Scarf simplicial complex of I , and its I-homogenization the Scarf complex

of I , which we will also denote ΓI . The multidegrees of the multihomogeneous basis (see

Remark 2.20) of the Scarf complex are called the Scarf multidegrees.

Proposition 4.19 tells us that if a simplicial complex Δ supports a resolution of a

monomial ideal I , and for every pair of faces G ⊂ F in Δ, mdeg(G) �= mdeg(F ). Since

all faces of the Scarf complex have distinct multidegrees, we get the following result.

Theorem 4.28 (Bayer, Peeva, Sturmfels, [2]). Let I be a monomial ideal. If the Scarf

complex of I is a resolution of S/I then this resolution is minimal.

The statement of Theorem 4.28 suggest that the Scarf complex of a monomial ideal is

not always a resolution. However, if for a monomial ideal I we get that the Scarf complex

of I is a resolution, then we call it a Scarf resolution.

Example 4.29. Consider I and F from Example 4.21. We saw that F was the multigraded

minimal free resolution of I , so let us see how this compares to both the Taylor resolution

and the Scarf complex of I = (x1x4, x1x2, x1x3, x2x3x4).

Figure 4.11: The Taylor resolution, minimal free resolution, and Scarf complex of I

Even if we did not have the minimal free resolution of I to compare ΓI to, we would

still be able to see right away that the Scarf simplicial complex of I is not acyclic, hence

ΓI cannot support a resolution of I (this is a consequence of Theorem 4.16, using m =

x1x2x3x4). We should also note that ΓI is a subcomplex of F. It can be shown that this is

always the case.

Theorem 4.30 ([17], p.231). Let F be a minimal multigraded free resolution of I . Then ΓI

is a subcomplex of F.
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This theorem is proven via the Taylor resolution. Since the Taylor resolution gives

an upper bound on the betti numbers of F, we can embed both F and ΓI in TI and make

comparisions as subcomplexes of a common complex. What this theorem tells us is that,

for any monomial ideal, we can find simplicial complexes whose I-homogenizations give

upper and lower bounds on the betti numbers of I (see [15] for a full proof).

Unlike the Taylor resolution, which is always a simplex, the structure of the Scarf

complex is much less predictable. In fact, nearly every simplicial complex can appear as

the support of the Scarf complex of some monomial ideal. Exactly which complexes do

and do not arise in such a case is given by the following theorem.

Theorem 4.31 (Phan, [19]).

1) A finite simplicial complex with r vertices is the Scarf complex of a monomial ideal

if and only if it is not the boundary of the simplex on r vertices.

2) A finite simplicial complex Δ supports a Scarf resolution if and only if Δ is acyclic.

The forward implication of (1) in Theorem 4.31 can be proven by assigning to each

simplicial complex Δ which is not the boundary of a simplex, an ideal JΔ, for which the

dehomogenization of the Scarf complex of JΔ is C̃(Δ; k). The ideal JΔ can be described

as follows (as given in [17], p.233).

For each face F ∈ Δ, introduce a variable xF and consider the polynomial ring

k[xF |F ∈ Δ, F �= ∅]. For each vertex v ∈ Δ we can introduce a monomial

mv =
∏

v 
∈F∈Δ
xF

and define JΔ to be the ideal (mv | v ∈ Δ) ⊂ k[xF |F ∈ Δ, F �= ∅]. We call JΔ the

nearly-Scarf ideal of Δ (Peeva, Velasco, [18]) and the Scarf complex of JΔ is Δ.

The nearly-Scarf ideal JΔ is not the only monomial ideal whose Scarf complex is the

simplicial complex Δ, however, there are features of nearly Scarf ideals which make them

interesting to consider. Particularly, we can show that the lcm-lattice of JΔ consists of the

Scarf multidegrees of JΔ and the top element
∏

F∈Δ xF . We can use this fact to construct,
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from the JΔ-homogenization of Δ, the minimal free resolution of S/JΔ.

Theorem 4.32 (Peeva, Velasco, [18]). Let J be a monomial ideal in S whose lcm-lattice

consists of the Scarf multidegrees and a top element y. Let Γ be the Scarf complex of J ,

and

C̃(Γ; k) : 0 Cdim(Γ)(Γ; k) ... C0(Γ; k) C−1(Γ; k) 0�� �� �� ����

be the augmented chain complex of Γ, with coefficients in k and differential ∂. For each i,

choose a set {q1, ..., qp} of cycles in Ci(Γ; k) whose classes in H̃i(Γ; k) form a basis and

set

φi : k
dim(H̃i(Γ;k)) −→ ker(∂i), ej 	−→ qj

where the ej are the standard basis elements of kdim(H̃i(Γ;k)). Let U be the complex

U : 0 kdim(H̃dim(Γ)(Γ;k)) kdim(H̃dim(Γ)−1(Γ;k)) ⊕ Cdim(Γ)(Γ; k)

...

...

C0(Δ)⊕ kdim(H̃−1(Γ;k)) C−1(Δ) 0

�� ��

�� ����

��

with differential ∂⊕φ. The J-homogenization of the complex U is the multigraded minimal

free resolution of S/J .

Example 4.33. Consider the simplicial complex Γ:

Figure 4.12: Example of a nearly Scarf ideal

The nearly Scarf ideal of Γ is

JΓ = (x2x3x4x23x24x34, x1x3x4x13x34, x1x2x4x12x24, x1x2x3x12x13x23)



54

and the augmented chain complex C̃(Γ; k) is

0 k5 k4 k 0

⎡⎣ 1 1 0 0 0−1 0 1 1 0
0 −1 −1 0 1
0 0 0 −1 −1

⎤⎦
���� [ 1 1 1 1 ] �� ��

This complex is exact at C−1(Γ; k) and C0(Γ; k). If b1, ..., b5 form the standard basis for

C2(Γ; k) then a basis for H̃2(Γ; k) is generated by the elements q1 = b1 − b2 + b3 and

q2 = b3 − b4 + b5. So, following theorem 4.32, we make the exact chain complex

0 k2 k5 k4 k 0

⎡⎢⎣ 1 0−1 0
1 1
0 −1
0 1

⎤⎥⎦
����

⎡⎣ 1 1 0 0 0−1 0 1 1 0
0 −1 −1 0 1
0 0 0 −1 −1

⎤⎦
�� [ 1 1 1 1 ] �� ��

which is the simplicial chain complex of the simplicial tree

Figure 4.13: Filling in the homology of Γ, as per Theorem 4.32

If we JΓ-homogenize Δ using the labelling v1 = x2x3x4x23x24x34, v2 = x1x3x4x13x34,

v3 = x1x2x4x12x24, and v4 = x1x2x3x12x13x23 of the vertices of Δ, then the resulting

JΓ-complex is the minimal multigraded free resolution of JΓ.

Remark 4.34. As mentioned before, it is not always the case that a monomial ideal has a

minimal resolution supported on a simplicial complex. It was shown in (Velasco, [22]) that

if a simplicial complex Δ has certain topological properties, then the nearly Scarf ideal of

Δ does not have a resolution supported on a CW-complex, and the class of CW-complexes

contains all simplicial complexes.

This result tells us that the structure of resolutions of monomial ideals are not easily

described in generality using combinatorics. Another indication of such complexity is
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given in (Reiner, Welker, [20]), where it is shown that the structure of a minimal resolution

is sensitive to the characteristic of the field k over which the polynomial ring is defined.

We began this section by making restrictions on the frames that we consider, in order

to make more precise statements about resolutions of monomial ideals. This allowed us to

bound the Betti numbers of a monomial ideal from both above and below. However, we also

saw that with our restrictions we would be unable to describe minimal free resolutions of

monomial ideals in generality. A natural course of action is to try and determine for what

monomail ideals I are simplicial complexes sufficient for describing the free resolution

of I . The task would then be to find families of monomial ideals which share similar

properties, and for which the minimal resolution is supported on a simplicial complex. In

later sections, we will talk about some of the ways in which this can be done.

4.4 Polarization

Up to this point, all of the examples of monomial ideals have been squarefree. Also, while

much of the theory is not specific to squarefree monomial ideals, some of it certainly is.

This bias towards the squarefree case is deliberate, and with good reason. It turns out

that, if what we are interested in is finding minimal free resolutions of monomial ideals,

it is enough to study the squarefree ideals. This is because of a construction known as

polarization.

Construction 4.35 ([17], pp.89). Let I = (m1, ..., mr) be a monomial ideal. For any

monomial m = q1 · · · qn where qi = xcii for i = 1, ..., n. We say that

q̃i =

⎧⎪⎪⎨
⎪⎪⎩

1 if ci = 0,

xi

ci−1∏
j=1

ti,j if ci > 0

is the polarization of qi, m̃ = q̃1 · · · q̃n is the polarization ofm, and that Ipol = (m̃1, ..., m̃r)

is the polarization of I . Because of the additional variables, Ipol lives in the polynomial

ring Spol = S[x1, t1,1, ..., t1,p1, ..., xn, tn,1, ..., tn,pn] where pi = max{c | xc+1
i divides one

of m1, ..., mr}.
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Example 4.36. Let I = (x21x
3
3, x

3
2x

2
3) ⊂ k[x1, x2, x3]. Then the polarization of I is

Ipol = (x1t1,1x3t3,1t3,2, x2t2,1t2,2x3t3,1) ⊂ k[x1, t1,1, x2, t2,1, t2,2, x3, t3,1, t3,2]

We see that polarization will take an ideal and present it as a squarefree monomial

ideal in some larger polynomial ring. What is more important is knowing how information

about Ipol translates to information about I . Consider the ideal

J = {xi − ti,j|1 ≤ i ≤ n, 1 ≤ j ≤ pi}

in Spol. We see that J contains the relations between the ti,j’s and the xi’s they replaced

under polarization. The consequence of taking quotients gives

Spol

J
∼= S and

Spol

Ipol + J
∼= Spol

Ipol
⊗ Spol

J
∼= S

I

Taking this tensor product is referred to as depolarization. The generators of the ideal J

form an Spol-regular sequence of homogeneous elements (see [18], p.86), so combining the

isomorphisms above with Theorem 2.35 and Remark 2.36 gives us the following result.

Theorem 4.37 ([17], p.89). Let I be a monomial ideal of S. The minimal free resolution

of S/I can be attained from the minimal free resolution of Spol/Ipol by depolarization.

With this result we can conclude that, when it comes to finding resolutions of mono-

mial ideals, it is enough to focus on ideals with squarefree generators.

4.5 The Stanley-Reisner Ideal and The Alexander Dual

As previously discussed, there is a desire to describe families of monomial ideals. One way

to do this is by defining the Stanley-Reisner ideal of a simplicial complex. This allows us

to focus on any number of families of ideals, determined by known families of simiplicial

complexes.
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Definition 4.38 (Hochster, [13]). Let Δ be a simplicial complex on the vertex set {x1, ..., xr}.

The Stanley-Reisner ideal of Δ is defined to be N (Δ) = (xi1 · · ·xip |{xi1 , ..., xip} �∈ Δ).

The Stanley-Reisner ring is defined to be k[Δ] = S/N (Δ).

We see that the Stanley-Reisner ideal is a squarefree monomial ideal generated by the

minimal “non-faces” of Δ. The definition focuses on the going up containment of elements

of an ideal in contrast to the going down containment of faces in a simplicial complex. As

a result, the non-zero squarefree monomials in k[Δ] are in one-to-one correspondence with

the faces of Δ.

Example 4.39. Let Δ be the following simplicial complex

Figure 4.14: A simplicial complex (example of the Stanley-Reisner ideal)

The Stanley-Reisner ideal for Δ is

N (Δ) = (x1x4, x1x5, x3x4, x4x5, x1x2x4, x1x2x5, x2x3x4, x2x4, x3x4x5, x1x2x3x4,

x1x2x3x5, x1x2x4x5, x1x3x4x5, x2x3x4x5)

= (x1x4, x1x5, x3x4, x4x5)

Definition 4.40. For a simplicial complex Δ on the vertex set {x1, ..., xr} we define the

Alexander dual complex of Δ as Δ∨ = {{x1, ..., xr} \ τ | τ �∈ Δ}

The dual of a simplicial complex is again a simplicial complex. If τ ⊂ σ and τ �∈
Δ, then σ �∈ Δ either, since Δ is closed under taking subsets. If F ∈ Δ∨, then F =

{x1, ..., xr} \ τ , for some τ �∈ Δ and any subface of F is of the form {x1, ..., xr} \σ, where

τ ⊂ σ, which is also in Δ∨.
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We can get another squarefree monomial ideal from Δ by taking the Stanley-Reisner

ideal of the Alexander dual of Δ.

N (Δ∨) = (xi1 · · ·xip |{xi1, ..., xip} �∈ Δ∨)

If {xi1 , ..., xip} �∈ Δ∨ then it is not of the form {x1, ..., xr} \ τ where τ �∈ Δ. This would

mean that it is of the form {x1, ..., xr} \ τ for τ ∈ Δ. So we get that N (Δ∨) is generated

by the monomials which represent the compliments of the faces in Δ. Since τ ⊂ σ implies

that {x1, ..., xr} \ σ ⊂ {x1, ..., xr} \ τ we get that the monomials which correspond to the

complements of the facets in Δ generate N (Δ∨). We have shown that (see also Faridi [7])

Lemma 4.41. Let Δ = 〈F1, ..., Fq〉 be a simplicial complex on the vertex set V = {x1, ..., xn}.

The minimal generating set of N (Δ∨) is

{
∏
xi 
∈Fi

xi, ...,
∏
xi 
∈Fq

xi}

Example 4.42. If we use the same Δ as in the previous example, we get that the Alexander

dual of Δ is

Figure 4.15: The Alexander dual complex

and N (Δ∨) = (x1x4, x4x5, x1x3x5)

We now have a one-to-one correspondence between facets of Δ and minimal genera-

tors of N (Δ∨). Moreover, we will see that if we make restrictions on the structure of Δ, it

will allow us to prove results about N (Δ∨) via this correspondence.

Another feature of the Stanley-Reisner ideal of a simplicial complex Δ is Hochster’s

formula, which allows us to deduce the Betti numbers of IΔ. It can also be reformulated to
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give the Betti numbers of N (Δ∨) directly from the structure of Δ. In order to do this we

need to consider induced subcomplexes of Δ, which are described in Definition 3.11, and

the link of a set of vertices which we define now.

Definition 4.43. Let Δ be a simplicial complex, and W a subset of the vertex set of Δ. The

link of W is the set

lkΔ(W ) = {F | F ∪W ∈ Δ, F ∩W = ∅}

With this definition in hand we can state our result for calculating betti numbers of

Stanley-Reisner ideals.

Theorem 4.44 (Hochster’s Formula, [13]). Let Δ be a simplicial complex with vertex set

V . Then the following equations hold.

βi,j(N (Δ)) =
∑
A⊂V
|A|=j

dimk(H̃j−i−2(ΔA; k))

βi,j(N (Δ∨)) =
∑
A⊂V
|A|=j

dimk(H̃i−1(lkΔ(V \ A); k))

In a paper by Faridi ([8]), these formulas are interpreted for the case where Δ is a

simplicial tree. We would like to make specific note of the result for N (Δ∨).

Theorem 4.45 (Faridi, [8]). Let Δ be a simplicial tree with vertex set V of cardinality n.

Then N (Δ∨) has projective dimension 1, and its Betti numbers are

βi,j(N (Δ∨)) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∣∣{F ∈ Δ : F a facet, |F | = n− j}∣∣ i = 0∑
A⊆V
|A|=j

({# of connected components of lkΔ(Ac)} − 1) i = 1

0 otherwise

It should be noted that the statements made about N (Δ∨) when i = 0, 1 are true for

all simplicial complexes Δ and the statement for when i ≥ 2 is specific to the structure of

a simplicial tree.
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Quasi-Trees and Resolutions

In the last chapter we introduced Hochster’s formula, which provides us with information

about the graded Betti numbers of monomial ideals of the for N (Δ) and N (Δ∨). This

is certainly useful information, but it does not completely characterize the minimal free

resolution of N (Δ∨). For example, in a paper by Hibi, Kimura, and Murai ([12]) it was

shown that the total Betti numbers of a nearly Scarf ideal JΔ of any simplicial complex Δ

will always correspond to the entries of the f -vector of some acyclic simiplicial complex

Γ. However, we know that there are nearly Scarf complexes which cannot have a minimal

free resolution supported on a simplicial complex ([22]).

We also saw that if we apply Hochster’s formula to a simplicial tree Δ we get that

pd(N (Δ∨)) = 1. In this case, where the projective dimension is small, it is possible

to avoid some of the subtleties of characterizing the structure of the minimal resolution.

Specifically, the minimal resolution of N (Δ∨) is always supported on a simplicial complex

Γ. For Γ to support the minimal resolution of N (Δ∨) we would need dim(Γ) = 1, i.e. Γ

would have to be a graph. Moreover, since the frame of a resolution must be acyclic

(Theorem 4.16) it must be that G is a (graph) tree. We construct this tree in the proof

of Theorem 5.1. The construction we provide for the resolution of N (Δ∨), when Δ is a

simplicial tree, relies on the fact that Δ admits a leaf order, so the result extends to quasi-

trees.

Theorem 5.1. If Δ is a quasi-forest, then N (Δ∨) has a minimal resolution which is sup-

ported on a tree.

We will prove this by constructing a resolution of N (Δ∨) which is supported on a

graph tree. The minimality of this resolution is guaranteed by the following lemma.

60
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Lemma 5.2. If I is a monomial ideal which has a resolution supported on a tree T then

that resolution is minimal.

Proof. If m1, ..., mr are the minimal generators of I then T would have to have r vertices

and r − 1 edges. When we regard T as a simplicial complex we get the simplicial chain

complex

C(T ; k) : 0 kr−1 kr k 0
(11...1) ���� ∂2 �� ��

where ∂2 is a matrix in which every column has one entry equal to 1, one entry equal to

−1, and the rest equal to zero. Fix a basis ui,j for C(T ; k). The I-homogenization of T

would then give a resolution of I of the form

G : 0

r−1⊕
j=1

S(−α2,j)

r⊕
j=1

S(−α1,j) S 0�� d1 ��d2 �� ��

with multihomogeneous basis ei,j such that mdeg(ei,j) = αi,j . We know that

α1,j = mdeg(e1,j) = mdeg(mj)

for j = 1, ..., r and the α2,j are given by

α2,j = mdeg
(
lcm(mdeg(e1,s)| as,j �= 0)

)

where the as,j come from the boundary map

∂2(u2,j) =

q∑
s=1

as,ju1,s

For each j, exactly 2 of the as,j �= 0, so the multidegrees of the e2,j are actually of the

form mdeg(e2,j) = mdeg(lcm(mi1 , mi2)) where mi1 and mi2 are minimal generators of I .

With this in mind we consider the boundary map

d2(e2,j) =

q∑
s=1

as,j
mdeg(e2,j)

mdeg(e1,s)
e1,s
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which tells us that the matrix representation of d2 has entries

[d2]s,j = as,j
mdeg(e2,j)

mdeg(e1,s)

If as,j = 0 then [d2]s,j = 0. If as1,j, as2,j �= 0 then we have thatmdeg(e2,j) = lcm(ms1 , ms2).

Since ms1 , ms2 are minimal generators of I we know that ms1 and ms2 strictly divide

mdeg(e2,j) = lcm(ms1 , ms2), so that [d2]s,j ∈ m for all s, j. By construction, all entries of

d1 are in m and we can conclude that this resolution is minimal.

Proof. (of Proposition 5.1): First we shall construct a tree T whose vertices will be labelled

by the monomial generators of N (Δ∨). Then we will show that the forest induced by the

lcm of any two of the vertex labels is connected. Theorem 4.20 and Remark 4.22 show that

this is sufficient to conclude that T supports a resolution of N (Δ∨).

To construct the tree we do the following:

1) Order the facets of Δ as F0, ..., Fq, so that Fi is a leaf of Δi = 〈F1, ..., Fi〉.

2) Start with the one vertex tree T0 = (V0, E0) where V0 = {v0} and E0 = ∅

3) For i = 1, ..., q do the following:

- Pick u < i such that Fu is a joint of the leaf Fi in Δi

- Set Vi = Vi−1 ∪ {vi}

- Set Ei = Ei−1 ∪ {(vi, vu)}

What we get is a graph T = (Vq, Eq) which, by construction, is a tree. To complete our

construction we determine a labelling of the vertices of T by which to homogenize. To do

this we label the vertex vi with the monomial

mi =
∏

xj∈W\Fi

xj

where W = {x1, ..., xn} is the vertex set of Δ. These labels are the monomial generators

of N (Δ∨), so we have constructed a tree and specified a labelling. The I-homogenization
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of T with respect to this labelling results in the I-complex FT . We are left with proving

that FT is a resolution.

Since T is a tree, and hence a simplicial tree, to show that FT supports a resolution of

N (Δ∨) it is sufficient to show that T is connected on the subgraphs Ti,j which are the in-

duced subgraphs on the vertices mk such that mk

∣∣lcm(mi, mj), for any minimal generators

mi, mj in I . We first observe that

lcm(mi, mj) =
∏

xl∈W\Fi∩Fj

xl

so that

mk

∣∣lcm(mi, mj) ⇐⇒ Fi ∩ Fj ⊂ Fk

Now, to show that every Ti,j is connected we first make the set

Ai,j = {0 ≤ k ≤ n : mk|lcm(mi, mj)} = {0 ≤ k ≤ n : Fi ∩ Fj ⊂ Fk}

and let l be the smallest integer in Ai,j . We will show that for each k ∈ Ai,j , there is a path

in Ti,j connecting vk and vl.

If k ∈ Ai,j, k �= l then we can consider the facet Fk in Δk which is a leaf, so it has a

joint FkJ for some kJ < k. Since l < k, Fl is a facet of Δk as well. This means that

Fi ∩ Fj ⊂ Fk ∩ Fl ⊂ FkJ =⇒ Fi ∩ Fj ⊂ FkJ =⇒ kJ ∈ Ai,j

Since kJ ∈ Ai,j for any joint of Fk ∈ Δk, it is true for the specific joint we used in Step (3)

of our construction of T . We may also conclude that kJ ≥ l, by the minimality of l. Hence

it is the case that the edge {vk, vkJ} ∈ T which in turn implies that {vk, vkJ} ∈ Ti,j . Since

l ≤ kJ < k, we can iterate this argument for kJ and its joint in ΔkJ , and so on, finitely

many times to get a path from vk to vl in Ti,j .

Remark 5.3. The first remark that we would like to make is that this result tells us that

the projective dimension of the ideal N (Δ∨) is 1 when Δ is a quasi-tree. This fact, along

with its converse (that is, if N (Δ∨) has projective dimension 1, then Δ is a quasi-forest)
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is already known, and was proven by Herzog, Hibi, and Zheng in [11] using different

methods. We will also show that the converse of Theorem 5.1 holds, again using different

methods than those given in [11]. In the proof provided by Herzog, Hibi, and Zheng the

authors worked with the Hilbert-Burch Theorem [4], interpreting aspects of this theorem in

the context of the Stanley-Reisner ring of the Alexander Dual of a quasi-tree.

The second remark is that in the construction of T , we had some choice as to what

joint we chose for a facet Fk in the simplicial complex Δk, hence the tree that we con-

structed is not unique. Furthermore, the proof follows through regardless of our choices,

so that any tree that we may have constructed would give us a resolution of N (Δ∨).

Example 5.4. Let Δ be the simplicial tree

Figure 5.1: Quasi-tree with many leaf orders

Every order on the facets of Δ is a leaf order, every facet is a leaf, and every facet is

the joint of every other facet. This means that if we use the construction given in the proof

of Theorem 5.1, we could produce any tree on four vertices. The monomial generators of

N (Δ∨) are x1x2x3, x1x2x4, x1x3x4, x2x3x4 and the lcm of any two of these generators

is x1x2x3x4, so that each Ti,j = T for any tree T we choose to consider. Hence, the Ti,j are

always connected and we get a minimal free resolution of N (Δ∨).

It was already mentioned that there is a converse statement to Theorem 5.1. In order

to to give a proof of this converse, we are going to need a couple of auxiliary results.

Theorem 5.5. A monomial ideal I has pd(I) = 1 if and only if I has a minimal resolution

supported on a (graph) tree
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Proof. (⇐) Clear.

(⇒) If pd(I) = 1 then S/I has a minimal resolution of the form

0 St Sr S 0
φ ���� ψ �� ��

Where φ(ei) = mi for the basis elements ei of Sr, and ψ(gj) = fj where the gj form a basis

of St and the fj form a minimal generating set of ker(φ). It is shown (see [5], Corollary

4.13) that ker(φ) can be generated (though not necessarily minimally) by the elements

lcm(mi, mj)

mi
ei − lcm(mi, mj)

mj
ej

Let f1, ..., ft be a minimal generating set of ker(φ) which have this form. This gives us a

complete description of the map ψ as a matrix with exactly two non-zero monomial entries

in each column with coefficients corresponding to those appearing in the fi (i.e one column

entry has coefficient 1 and the other has coefficient −1). Dehomogenizing this resolution

gives us the sequence of vector spaces

0 kt kr k 0
(11...1) ���� A �� �� (5.1)

which is exact (Theorem 4.16) and where A is a matrix in which every column has exactly

one entry which is 1, one entry which is -1, and the rest equal to zero. If we consider each

basis element of kr as a vertex and each basis element ei of kt as an edge between the two

verticies determined by the basis elements of kr to which ei is sent, we may construct a

graph G (as shown in Example 3.8) for which C̃(G; k) is the chain complex 5.1. Since

this chain complex is exact the graph G is acyclic, hence a tree (this would also imply that

t = r − 1).

Lemma 5.6. Let Δ be a simplicial complex with vertex set V = {x1, ..., xn}, let W =

{x1, ..., xt} ⊆ V , and let ΔW be the subcomplex of Δ induced on W . If m1, ..., mr

are the minimal generators of N (Δ∨) then the generators of N (
(ΔW )∨

)
are a subset

of {gcd(m1, x1 · · ·xt), ..., gcd(mr, x1 · · ·xt)}
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Before we begin it is worth noting that restricting to the first t vertices is notation-

ally convenient, but the statement will hold for any subset of V (just make an appropriate

relabelling of the vertices).

Proof. Recalling Lemma 4.41, we know that if we present Δ as 〈F1, ..., Fr〉 then the gen-

erators of N (Δ∨) have the form mi =
∏

xj∈V \Fi

xj . We also know that the facets of ΔW

are subsets of the facets of Δ, so we can present ΔW as 〈F i1 , ..., F is〉, where {i1, ..., is} ⊆
{1, ..., r} and F ij ⊆ Fij . Since F ij = Fij ∩W we get that

W \ F ij =W \ (Fij ∩W ) = (V \ Fij ) ∩W

and the generators of N (
(ΔW )∨

)
are

mij =
∏

xs 
∈F ij

xs∈W

xs =
∏

xs∈V \Fij

xs∈W

xs = gcd(mij , x1 · · ·xt)

so mij ∈ {gcd(m1, x1 · · ·xt), ..., gcd(mr, x1 · · ·xt)}.

Remark 5.7. In the above proof we used the fact that there is a correspondence between

the facets of ΔW and a subset of the facets of Δ. If Fq is a facet of Δ where q �∈ {i1, ..., is}
we still have that Fq ∩W is a face of ΔW . Therefore, Fq ∩W must be a subset of some

facet F ij of ΔW . With this information we can deduce that

gcd(mq, x1 · · ·xt) =
(
gcd(mij , x1 · · ·xt)

) ∏
xs∈Fij

\Fq

xs∈W

xs

This tells us that gcd(mq, x1 · · ·xt) ∈ N (
(ΔW )∨

)
. What this allows us to do is say that

N (
(ΔW )∨

)
=

(
gcd(m1, x1 · · ·xt), ..., gcd(mr, x1 · · ·xt)

)

With this fact we are able to prove the following corollary of Lemma 5.6.
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Corollary 5.8. Let Δ be a simplicial complex with vertex set V = {x1, ..., xn}. Let W =

{x1, ..., xt} for some t ≤ n and let S ′ = k[x1, ..., xt]. Then

S ′

N (
(ΔW )∨

) ∼= S

N (Δ∨)
⊗S

S

(xt+1 − 1, ..., xn − 1)

Proof. Let m1, ..., mr be the minimal generators for N (Δ∨). Remark 5.7 tells us that

N (
(ΔW )∨

)
=

(
gcd(m1, x1 · · ·xt), ..., gcd(mr, x1 · · ·xt)

)

Which is the same as saying that we can form the generators of N (
(ΔW )∨

)
by taking the

the generators of N (Δ∨) and setting the variables xt+1, ..., xn equal to 1. When we are

using quotient modules we can do this by adding the desired relations to the ideal by which

we are taking the quotient. Specifically, what we mean is

S ′

N (
(ΔW )∨

) ∼= S

N (Δ∨) +
(
xt+1 − 1, ..., xn − 1

)
Moreover, we have that

S

N (Δ∨) + (xt+1 − 1, ..., xn − 1)
∼= S

N (Δ∨)
⊗S

S

(xt+1 − 1, ..., xn − 1)

and we have our desired result.

With these additional results we are able to provide a new proof the following theo-

rem.

Theorem 5.9 (Herzog, Hibi, Zheng, [11]). Let Δ be a simplicial complex, then

pd(N (Δ∨)) = 1 if and only if Δ is a quasi-forest

Proof. (⇐) Follows from proposition 5.1.

(⇒) Without loss of generality let W = {x1, ..., xk}. Recalling Lemma 3.21, it is

enough to show that ΔW has a leaf to conclude that Δ is a quasi-forest. Let F be the
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minimal free resolution

0 Sr−1 Sr S 0���� �� ��

of S/N (Δ∨). The elements xt+1 − 1, ..., xn − 1 form an S/N (Δ∨)-sequence (see [17],

p.86), so we can use repeated applications of Theorem 2.35 described in Remark 2.36. The

result of this is the resolution

F⊗S
S

(xt+1 − 1, ..., xn − 1)

of S ′/N (
(ΔW )∨

)
, where S ′ = k[x1, ..., xt]. Since the length of the resulting resolution is

no greater than the length of F, we find that pd(N (
(ΔW )∨

)
) ≤ pd(N (Δ∨)) = 1.

If pd(N (
(ΔW )∨

)
) = 0, then it must be the case that N (

(ΔW )∨
)
= 0 which can only

happen if ΔW is a simplex, so it has a leaf.

If pd(N (
(ΔW )∨

)
) = 1, then Theorem 5.5 tells us that N (

(ΔW )∨
)

has a minimal

resolution supported on a tree T . Choose a labelling of the vertices of T for which the

N (
(ΔW )∨

)
-homogenization yields a resolution, let ml be the label of one of the free ver-

tices of T and let mj be the label of the vertex which shares an edge with ml. For any other

minimal generator mi of N (
(ΔW )∨

)
we must have that mj

∣∣lcm(ml, mi) or else we would

contradict the results of Theorem 4.20. In the proof of Theorem 5.1 we saw that

mj

∣∣lcm(ml, mi) ⇐⇒ F l ∩ F i ⊂ F j

Which is exactly the condition needed for F l to be a leaf of ΔW with joint F j . Hence, we

can conclude that Δ is a quasi-forest.

Corollary 5.10. Let I = (mi, ..., mr) be a squarefree monomial ideal such that

gcd({m1, ..., mk}) = 1. Then I has pd(I) = 1 if and only if I = N (Δ∨) for some

quasi-forest Δ.

Proof. I = N (Δ∨) for some simplicial complex Δ if and only if gcd({m1, ..., mr}) = 1

and the rest follows from Theorem 5.9.
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If f = gcd({m1, ..., mr}) �= 1 then we note that the ideal J = (m1/f, ..., mr/f)

has the same minimal resolution as I (in the sense that they are both homogenizations of

the same frame, see [18]), so we can apply the above results. This means that we have

essentially characterized the minimal resolutions for all monomial ideals with pd(I) = 1

using quasi-trees.
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Conclusion

The process of homogenizing frames is the key concept behind many of the constructions

that we have given, as well as others we have not discussed. Historically, many of these

constructions were treated individually, modifying an analogous process in each case. The

introduction of frames provides a common theoretical foundation on which we can speak

of all of these cases simultaneously.

In the fourth chapter we prove our main results by making general observations about

the structure of resolutions of monomial ideals I with pd(I) = 1, specifically that they

are always minimal and can be supported on a tree. Once we recognize this we can make

the correspondence between ideals of minimal projective dimension and ideals of the form

N (Δ) where Δ is a simplicial tree. The approach of Herzog, Hibi, and Zheng is based

on the Hilbert-Birch theorem (see [4], p.502), which classifies modules of pd(I) = 1, and

realizing components of this theorem in the setting of the Alexander dual of the Stanley-

Reisner ideal of a simplicial complex (see [11] for their proof). The proof presented here

has the added benefit of allowing us to explicitly construct the resolution of N (Δ∨) if Δ is

a quasi-tree.
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