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Abstract

Semiconductor quantum dots have been featured in a number of proposals for

quantum computing because of the advantages afforded by confinement on the

nanoscale, such as well separated, discrete energy levels and ease of optical ma-

nipulation. In addition, they can leverage established semiconductor fabrication

techniques and, like the quantum dots used in this work, can be designed to match

the telecommunication band, improving the scalability and potential integration

of the platform into existing technologies. This thesis work applied optical pulse

engineering to manipulate exciton qubits in self-assembled InAs quantum dots.

Optimal quantum control theory was used to design pulse shapes that imple-

ment high fidelity single-qubit and two-qubit operations, with constraints on the

numerical optimization that ensure that the pulses can be accurately implemented

using a commercial 4f pulse shaper. In the case of single-qubit operations, the

results showed that two uncoupled qubits can be manipulated in parallel using a

single phase-shaped laser pulse, provided their optoelectronic properties are suf-

ficiently different. It was demonstrated that targeted differences in inversion and

phase between the qubits can be achieved on an ultrafast timescale with high fi-

delity. In the case of two-qubit operations, the controlled-rotation gate was opti-

mized using amplitude-only and phase-only pulse shaping schemes. The shaped

pulses for both schemes were shown to produce higher fidelity operations.

The ability to implement robust state inversion on short timescales is particularly

useful for technologies such as ultrafast optical switches, single-photon sources, and

entangled-photon sources. This work has demonstrated state inversion in a single

InAs quantum dot via adiabatic rapid passage using linearly chirped laser pulses.

The achieved gate times were an order of magnitude shorter than previous demon-

strations. Theoretical predictions of the dependence of the inversion efficiency of

the exciton on the sign of the pulse chirp were also verified experimentally, allow-

ing for the identification of phonon-mediated dephasing as the dominant source of

decoherence.
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Chapter 1

Introduction

Previous decades have borne witness to vast improvements in information process-

ing speeds, memory capacity, and display resolution, driven in part by the expo-

nential increase in density of transistors, memory elements, and pixels in electronic

devices. However, this paradigm for technological progress will be challenged as

device elements approach the size of single atoms or molecules, a regime in which

quantum mechanics governs device function. A computer that makes direct use

of quantum mechanical phenomena would operate on completely different princi-

ples. Such a computer would not be intended to supplant classical computers, but

rather, the great promise of quantum computers is that they may be able to outper-

form their classical counterparts for certain important computational tasks such as

integer factorization and searching of databases.

The fundamental building block of a quantum computer, and the quantum ana-

logue of the classical bit, is the quantum bit (or qubit) consisting of two quantum

mechanical states |0〉 and |1〉 (see Fig. 1.1(a)). It differs from the binary classical bit

in that the qubit can exist in a coherent superposition of the two states. In general,

a system of n qubits can exist in a superposition of 2n states. It is this ability to be

in multiple states at the same time that allows for parallel processing on a massive

scale. The single-qubit superposition state can be written as |Ψ〉 = C0 |0〉 + C1 |1〉,
where C0 and C1 are complex probability amplitudes. The state is a pseudospin that

can be represented geometrically on the so-called Bloch sphere by writing the state

as |Ψ〉 = cos (θ/2) |0〉+ sin (θ/2)e−iφ |1〉, where the azimuthal angle φ represents the

relative phase between the basis states and the polar angle θ determines the relative

occupation (see Fig. 1.1(b)). A further distinction between classical and quantum

bits is that two distinct qubits can be entangled to generate strong correlations be-

tween them, such that the measurement of the state of one qubit dictates the state

of the entangled partner. Quantum computing in the gate model is carried out by

1



2

Figure 1.1: (a) Two-level system comprising the qubit with states |0〉 and |1〉. (b)
Representation of the qubit on the Bloch sphere. The vector that represents the
state |Ψ〉 is a unit vector that lies on the surface of the sphere and is defined by the
azimuthal angle φ and the polar angle θ. The south and north poles denote the pure
states |0〉 and |1〉, respectively, while every other point represents a superposition
state.

manipulating the wave function of the system of qubits as prescribed by a given

algorithm, using a series of single-qubit gates that modify the state of one qubit,

and two-qubit gates that entangle the qubits. The problem is encoded such that

measurement of the state of the qubits at the end of the algorithm provides the

solution.

Algorithms that exploit the principles of superposition and entanglement have

already been developed for tasks such as integer factorization (developed by Shor

[1]) and fast searching of databases (developed by Grover [2]). Another application

that is currently under research is the use of a quantum computer to debug software

[3]. Perhaps the most promising application of quantum computing, envisioned by

Richard Feynman, is the simulation of multi-particle quantum systems [4]. The

challenge is to discover efficient, scalable multiple-qubit systems upon which to

implement these algorithms.

The discussions thus far have focused on the gate model of quantum comput-

ing, where qubits are manipulated by a sequence of universal gates to implement

a quantum algorithm. Other approaches such as adiabatic quantum computation,

complex instruction set computing, and measurement-based quantum computation

operate on different principles. In adiabatic quantum computing, the solution to the

problem is designed such that it is the ground state of a set of interacting qubits.
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The qubits are then annealed from a simple fiducial state to the desired final state

by adjusting the Hamiltonian adiabatically. This technique is employed by the com-

pany D-Wave Systems, that uses superconducting qubit based quantum processors

to solve optimization problems [5]. In complex instruction set quantum computing,

several universal gates are replaced with a single shaped gate. It has been shown

that this approach can significantly reduce the number of steps required to carry out

a quantum algorithm compared to the gate model. Furthermore, by transferring the

complexity of the algorithm to the optical control pulse, for which arbitrary control

is already experimentally accessible, this approach may accelerate the development

of multiqubit gates using existing qubit systems [6]. For example, this approach has

been used together with control pulses engineered via femtosecond pulse shaping

to implement a multiple input AND gate involving 6 qubits encoded in the coupled

rovibrational eigenstates of a lithium molecule [7]. Lastly, in measurement-based

quantum computing, one prepares a 2D lattice of spins in a specific entangled quan-

tum state and then performs a sequence of single-qubit measurements to perform

the computation [8].

The physical requirements for the development of a successful quantum com-

putation platform depend on the computational approach adopted. For instance

within the gate model, the demands imposed on any viable physical implementa-

tion of a quantum computer were enumerated by DiVinenzo in Ref. [9]. The first

requirement is that the system be built on a scalable architecture of qubits with well

characterized physical properties. Additionally, it must be possible to initialize and

read out the state of a given qubit. It is also critical that the required gate manip-

ulations be performed within the decoherence time of the qubit. This translates

into twin efforts to minimize the influence of the decoherence by isolating the qubit

from its environment while simultaneously pursuing faster manipulation schemes.

Lastly, a universal set of quantum gates, such as the combination of single-qubit and

the two-qubit controlled-NOT (C-NOT) gates, into which any quantum algorithm

can be decomposed, must be developed for the platform. The requirements on the

other computational approaches are not as well known, but clearly there will still

be a need for well-characterized, coupled qubits and precise control of the resulting

physical system.
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There are a number of qubit candidates under active development that may

enable the development of useful quantum computing platforms, including those

based atomic/molecular systems and others based on solid state approaches. Plat-

forms based on solid state qubits have the advantage that they can leverage existing

fabrication techniques. This will prove to be beneficial when the platforms have to

be scaled up to a large number of qubits and integrated with classical computing

technologies. Qubit platforms under development include nitrogen-vacancy centers

in diamond [10], ion traps [11], superconducting loops [12], dopants in silicon

[13], and semiconductor quantum dots (QDs) [14]. The nitrogen-vacancy center

in diamond is a point defect consisting of a substitutional nitrogen atom and an

adjacent lattice vacancy. An electron spin trapped in the vacancy serves as the qubit

and can be manipulated using laser light in the presence of an external magnetic

field. (See Ref. [10] for a recent review of the field.) In the ion trap platform, the

spin state of an ion, electrically levitated in a vacuum, is used as the qubit. Adjacent

ions are coupled through mutual electric repulsion and the spin state of individual

ions can also be manipulated using laser light. (See Ref. [11] for a recent review of

the field.) Superconducting circuits employ superconducting loops interrupted by

Josephson junctions. The quantized charge, phase, or flux of Cooper pairs across

the junction can serve as the qubit. Magnetic biases are used to control the state

of the qubit and they are coupled to each other through mutual inductance or ca-

pacitance. (See Ref. [12] for a recent review of the field.) For silicon dopant based

qubits, the spin state of either the donor’s nucleus or its outermost electron may

be used as a qubit. Single-electron transistors can be used to read out the quan-

tum state. (See Ref. [13] for a recent review.) The stages of development toward

a fault-tolerant quantum computer, focusing on the gate model of quantum com-

puting, and the progress that scientists have made using these qubit platforms are

discussed in Appendix A. This thesis aims to further the semiconductor QD based

platform where confined charge or spin states can be used as qubits.
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1.1 Semiconductor Quantum Dots

1.1.1 Bulk Semiconductor Properties

The electronic properties of a semiconductor quantum dot can be understood by

first considering the nature of the electron states in their bulk constituents. The

regular arrangement of atoms in a semiconductor crystal creates a periodic po-

tential for the electron. The resulting wave functions are Bloch waves, Ψν,k(r) =

e−ik·ruν,k(r), corresponding to the product of a plane wave with wave vector k and

a function uν,k(r) that has the periodicity of the lattice. In a semiconductor at 0K,

the fully occupied bands are called valence bands and the unoccupied bands are

called conduction bands. The energy separation between the top valence band and

the lowest conduction band is called the band gap energy (Eg). (See Fig. 1.2(a).)

The material is transparent to light with frequencies below Eg, but for optical ex-

citation above this energy, an electron can be promoted from the valence band to

the conduction band, leaving a hole (absence of electron) in the valence band. The

value of Eg is determined by the elements that form the crystal. For instance, in-

dium arsenide (InAs) and gallium arsenide (GaAs) have band gaps of 0.35 eV and

1.42 eV, respectively, at 300K.

1.1.2 Quantum Confinement

To realize a quantum dot within a semiconductor, one must introduce a spatially

varying potential that localizes electrons and holes to a region of space that is com-

parable to the de Broglie wavelength (typically 20 nm or less). The spatially varying

potential creates a physical manifestation of the particle-in-a-box problem of el-

ementary quantum mechanics. The lowest energy states for electrons and holes

in such a structure corresponding to “standing waves” and the associated energy

states are discrete levels. A series of confined levels exist for each band ν of the

corresponding bulk crystal. A schematic band structure of a semiconductor quan-

tum dot is shown in Fig. 1.2(b), where the z-dependence of the bulk band edges

of the valence band and the conduction band are shown together with the discrete

confined valence and conduction states.

There are a variety of ways to realize a spatially-varying potential, resulting
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Figure 1.2: (a) Schematic of the band structure of a typical direct band gap semicon-
ductor such as GaAs or InAs. The bands indicate allowed energies at a particular
wave vector k for the electron. At 0K, the valence band (v) states are occupied
and the conduction band (c) is empty. Optical excitation with a photon of energy
greater than the band gap energy Eg, will excite an electron from the valence band
to the conduction band. (b) Schematic band structure diagram of an InAs/GaAs
self-assembled QD, showing the band edges as a function of position as well as the
confined valence and conduction levels. The z-direction is the growth direction of
the semiconductor heterostructure. The WL indicated by the grey band consists of a
continuum of delocalized states. (c) Schematic diagram of an InAs QD embedded in
a GaAs matrix. The wetting layer is a graded layer of InGaAs that can support states
localized to a two-dimensional layer perpendicular to the ẑ direction, in the plane
of the QDs. Typical dimensions for the QD are shown. (d) Atomic force microscope
image of the InAs quantum dots prior to capping with GaAs. Image courtesy of
Dennis Deppe.

in different types of semiconductor quantum dots. For instance, lateral QDs are

created by using patterned electrical gates to create a potential well in a two-

dimensional electron gas (2DEG). The 2DEG is a thin conducting layer of semi-

conductor (typically GaAs) where carriers are free to move in two dimensions but

confined in the third. A region of lower potential is formed in the 2DEG by applying

a voltage to electrical gates arranged in a triangle. This leads to discrete electron
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energy states that can be optically and electrically manipulated. Colloidal QDs

are nanocrystals synthesized from solution, by nucleation of the required chemi-

cal compounds. For such quantum dots, the potential well is created by the in-

terface between the semiconductor and the outside vacuum. Quantum dots can

also be grown using epitaxial techniques that provide sub-monolayer control over

the growth process. The first type of epitaxial QD is called an interface fluctu-

ation quantum dot (IFQD). It is formed by growing a partial monolayer of one

type of semiconductor on a substrate of another type of semiconductor, after which

more of the substrate material is deposited on top. This results in the formation

of monolayer high islands. The difference in the energy of the band extrema in

the two different semiconductors (typically GaAs and aluminum gallium arsenide

(AlGaAs)), called band offsets, creates potential steps that confine the carriers in

the lower band gap region, corresponding to the localized islands. A related type

of QD to IFQDs are self-assembled quantum dots (SAQDs). These are grown using

the Stranski-Krastanov growth mode, which makes use of the difference in lattice

constant between the two different semiconductor materials, resulting in a strain-

driven self-assembly process. In this case, one semiconductor material is deposited

using molecular beam epitaxy onto a substrate material. For example, in the case of

InAs QDs embedded in a GaAs matrix, indium and arsenide atoms are sublimated

through an ultra-high vacuum and deposited on a heated, spinning GaAs substrate

(also epitaxially grown). Due to the 7% lattice mismatch between InAs and GaAs,

it forms a strained monolayer of InAs. Beyond a critical thickness it becomes en-

ergetically favourable for the strained layer to nucleate into nanoscale islands (see

Fig. 1.2(c) and Fig. 1.2(d)). The islands sit on an InAs wetting layer and have lat-

eral dimensions on the order of 20 nm and heights on the order of 5 nm. The band

offsets between the InAs islands and the surrounding GaAs creates the potential

used for quantum confinement.

Lateral QDs have a relatively large spatial extent (∼100 nm). As a result, the

energy level spacing is only about 2meV. To realize optically-controlled quantum

bits using the confined energy states, a larger level spacing is desirable. All three

of the other quantum dot types (colloidal QDs, IFQDs, and SAQDs) have much

larger energy spacing (∼10’s of meV or larger), which makes them good candidates
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for optical control. Colloidal QDs offer ease of synthesis, however the existence

of dangling bonds at the surface and other surface states can lead to rapid non-

radiative recombination of the electron and hole following optical excitation. As a

result, the decoherence time is relatively short in such QDs.

IFQDs and SAQDs have exceptionally good optical properties because the po-

tential well is created by the interfaces between semiconductors. In this case,

high quality interfaces lead to low rates of non-radiative recombination and thus

longer coherence times in comparison to colloidal QDs. IFQDs are characterized

by a fairly large dipole moment (∼100Debye), and have radiative transitions be-

tween the confined hole and electron levels in the near-infrared, compatible with

high-efficiency silicon optical detectors. As a result, these QDs have been impor-

tant for early demonstrations of coherent control [15, 16, 17, 18, 19, 20]. The

random spatial and size distribution of IFQDs make them unlikely to be used in

scalable quantum computing applications. In contrast, SAQDs can be engineered

by varying the growth conditions to tailor the ground state transition energy and

the degree of inhomogeneity [21]. In addition, advances in nano-template growth

techniques now allow for site-selected quantum dots with more control over the

QD properties [22]. Laser annealing has been used to further tune the electronic

properties [23, 24]. SAQDs have a lower dipole moment than IFQDs (∼5× lower),

making optical experiments on them more challenging. Nevertheless, due to all of

the above advantages, they have been the focus of the majority of recent coherent

control experiments on semiconductor QDs. In this thesis work, the experiments

and theoretical calculations all focus on InAs/GaAs SAQDs.

1.1.3 Optical Properties of SAQDs

The band offsets between the valence and conduction bands of InAs and GaAs pro-

vide a 3D confining potential well for carriers trapped in the QD, with a 100–300meV

potential well for the electrons and 30–100meV potential well for the holes [25].

The strong confinement results in a set of discrete atomic-like states with opti-

cal transitions between the valence and conduction states characterized by elec-

tric dipole moments ∼20Debye. SAQDs may be grown under conditions that yield
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optical transitions between the valence and conduction states that match telecom-

relevant wavelengths (1.3μm and 1.55μm, representing the minimum dispersion

and absorption wavelengths, respectively, for optical fibers). This makes them com-

patible with existing photonic and telecommunication infrastructure, a feature that

would greatly simplify the ultimate integration of a quantum device using SAQDs

with classical technologies. These properties greatly facilitate optical control and

therefore SAQDs lend themselves to a number of optoelectronic applications such

as single-photon sources [26], cellular imaging [27], QD lasers [28, 29], entangled-

photon sources [30], solar cells [31], and all-optical switches [32]. Their large

moments also allow for manipulation using ultrafast optical pulses.

For SAQDs, the random nature of the self-assembly process results in stochas-

tic variations in the QD size, composition and concomitant optoelectronic proper-

ties. As discussed above, there has been considerable progress in the development

of growth techniques to tailor the properties of the resulting QD distribution. To

provide a perspective on such variations, the typical spread of ground state transi-

tion energies for our QD samples is ∼20meV, corresponding to a 1% variation in

QD size. The advantages of SAQDs are accompanied by the challenges associated

with learning to control fragile quantum states in a solid state environment, where

qubits can lose coherence due to interactions with defects, coupling to phonons, and

many body effects. Schemes designed to mitigate these effects have been developed

[33, 34, 35, 36, 37] and will be critical to storage and processing of quantum infor-

mation in these systems.

To describe the response of an InAs/GaAs SAQD to laser excitation, the nature

of the confined quantum states of the relevant valence and conduction bands must

be taken into account. For a III-V semiconductor like InAs or GaAs, the optical

properties are governed by the top three valence bands and the lowest conduction

band. These bands are derived from the bonding and antibonding states of the GaAs

molecule. The three valence bands are referred to as the heavy-hole, light-hole,

and spin-orbit split-off bands (see Fig. 1.3(a)). The extrema of the heavy-hole and

light-hole bands are degenerate in the bulk semiconductor. The edge of the spin-

orbit split-off band occurs at lower energies due to the spin-orbit interaction. The

names “heavy-hole” and “light-hole” refer to the differing curvature of these bands,
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which determines a different effective mass for carriers in each band. Quantum

confinement in the quantum dot leads to the discretization of each of the three

valence bands and the conduction band into associated confined levels. The strain

present in the quantum dot as a result of the self-assembly process, together with

the larger effective mass of the heavy-hole band in comparison to the light-hole

band, has the consequence that the confined heavy-hole states are the highest in

energy of all of the valence states in the QD. As a result, the lowest-energy optical

transitions in the quantum dot are between the heavy-hole and conduction states,

such that we can restrict our attention to the heavy-hole and conduction levels

only. (More details regarding the influence of other valence levels will be discussed

in Ch. 2.)

The optical selection rules of an SAQD are dictated by the optical selection rules

of the associated bulk crystal, which are in turn determined by the orbital and

spin angular momenta of the band states. The three valence bands are character-

ized by an orbital angular momentum l = 1, while the conduction band has an

orbital angular momentum of l = 0. The spin state of the carrier in one of these

bands is determined by the total angular momentum, including both orbital angu-

lar momentum and spin. For the conduction band, the total angular momentum is

j = 1/2, and there are two spin projections with mj = ±1/2. For the heavy-hole

band, the total angular momentum is j = 3/2, and the corresponding “spin” states

have mj = ±3/2. The optical selection rules involving the heavy-hole and con-

duction levels in the quantum dots are depicted schematically in Fig. 1.3(b). The

dipole matrix elements for these transitions are circularly-polarized. As a result,

circularly-polarized light excites carriers (both electrons and holes) with a single

spin projection.

1.2 Realizing Qubits in SAQDs

States confined in the potential well of an SAQD can be used to create a qubit.

Consider an electron (with spin angular momentum mj = 1/2) that is optically

excited to the conduction band using a circularly-polarized σ− photon, creating a

hole in the heavy hole valence band (with angular momentum mj = −3/2). (Note:

The spin projections in Fig. 1.3(b) indicate electron states. The corresponding hole
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Figure 1.3: (a) Schematic of the band structure for GaAs in the vicinity of the band
gap, with C band, HH band, LH band, and SO band. Eg is the band gap energy and
�ΔSO is the split-off energy. (b) Optical selection rules for zone-center transitions
between the heavy-hole band and the conduction band. The angular momentum of
the states and the polarizations of the transitions (right- or left- circularly polarized,
denoted by σ±) are indicated.

spin projections are opposite of the electron spin that was removed from he valence

level.) Confinement and Coulomb interactions results in the creation of a bound

two-particle state of the electron and hole called the exciton. The absence or pres-

ence of this exciton state can be used to form a qubit. A qubit can also be realized

using the absence or presence of an exciton with opposite spin (composed of an

electron with mj = −1/2 and a hole with mj = 3/2). Alternatively, in the presence

of a static magnetic field B = B0ẑ it is possible to use the projection of a carrier

spin as the qubit (e.g. mj = ±1/2 if the carrier is a conduction band electron or

mj = ±3/2 if the carrier is a hole in the heavy hole band).

Theoretical proposals to encode qubits in SAQDs that can be manipulated by

light include charge-based qubits based on the absence or presence of an exciton

[38, 39, 40], spin-based qubits that use the spin states of single carriers (electron or

hole) split by a magnetic field [41, 42, 43, 44, 45], and hybrid approaches that use

exciton qubits for computation and spin qubits for information storage [46]. This

thesis work concerns the optical control of exciton qubits. A description of this type

of qubit is introduced in the next section. To provide a complete perspective of the

use of SAQDs in quantum computing, spin-based qubits are also described in the

subsequent section.
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Exciton Transitions in Neutral QDs

The optoelectronic properties of an SAQD are determined by the constituent atoms,

as described above, as well as the symmetry of the QD. QDs with different sym-

metry (e.g. round or elongated in the plane of the QD layer) may be achieved by

varying the growth conditions. The energy level diagram for optically-allowed exci-

ton transitions in a cylindrically symmetric, lens-shaped QD is shown in Fig. 1.4(a).

The crystal ground state (i.e. no excitons) is indicated by the state |00〉. The two de-

generate, orthogonally spin-polarized exciton states |↑⇓〉 and |↓⇑〉 are composed of

a conduction band electron with spin-angular momentum mj = ±1/2 (indicated as

↑ and ↓), and a heavy hole with angular momentum mj = ±3/2 (indicated as ⇑ and

⇓). As discussed above, corresponding optical transitions exist associated with the

light-hole band, however, due to strain and quantum confinement, the lowest con-

fined hole levels have heavy-hole character. Therefore, we will restrict our attention

to the heavy-hole to conduction transitions. The single exciton states of each spin

species (↑⇓ and ↓⇑) are optically coupled to the bound biexciton state |↑⇓↓⇑〉 and

the energy required to create the second exciton is reduced by the binding energy

of the biexciton, �Δ. This allows for the transitions to be selectively addressed us-

ing pulse energy and polarization to distinguish between them, and therefore either

ground state to exciton transition can be used as a qubit.

InAs QDs grown on the (001) surface of GaAs under the most typical growth con-

ditions have been observed to have a truncated pyramidal structure that is asym-

metric, with their long and short axes aligned along the [110] and [11̄0] directions

in the plane of the quantum dots, respectively [47]. The broken symmetry results

in eigenstates that are symmetric and antisymmetric combinations of the spin po-

larized exciton states: |01〉 = (|↑⇓〉 − |↓⇑〉)/√2 and |10〉 = (|↑⇓〉 + |↓⇑〉)/√2. The

electron-hole exchange interaction lifts the degeneracy of the exciton states with a

fine structure splitting of �δ ≈ 100μeV [25]. The resulting optical selection rules

are shown in Fig. 1.4(b). The orthogonal exciton eigenstates are coupled by light

that is polarized linearly, along each of the long (x) and short (y) axes of the QD.

For asymmetric dots, the crystal ground state and one of the exciton states can be

used as a qubit. Due to the coupling to the biexciton states, such a qubit scheme

requires a narrow bandwidth pulse to enable selective excitation of each species of
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Figure 1.4: Energy level diagram and optical selection rules for excitons confined to:
(a) spherically symmetric QDs, and (b) elongated (asymmetric) QDs. For symmetric
QDs, the exciton states (|↑⇓〉, |↓⇑〉) are degenerate and the transitions are coupled
by circularly polarized light (σ±). The binding energy of the biexciton state (|↑⇓↓⇑〉)
is �Δ. For elongated QDs, the transitions are linearly polarized (Πx,y) and the
exciton states are symmetric and antisymmetric superpositions of |↑⇓〉 and |↓⇑〉,
denoted by |10〉 and |01〉, respectively.

exciton. Selective excitation may also be achieved using pulse shaping techniques,

as discussed in one of the topics of this thesis work.

QDs that possess cylindrical symmetry are of interest for the generation of en-

tangled photon pairs [30] while QDs with broken symmetry can find application as

single photon sources [48]. Either level scheme can be used to realize a controlled-

rotation (C-ROT) gate using two qubits in the same QD [39, 38].

Spin-based Qubits in Charged QDs

The spin states of a single carrier (electron or hole) confined to a QD can also

be used as a qubit. They can be implemented using charged QDs which contain

one excess electron or hole due to doping and/or the application of a bias using

a gate. A magnetic field is applied to generate a Zeeman splitting between the

spin eigenstates of the built-in electron or hole. For optical control there are two

geometries of interest: (i) the Faraday geometry, where the external magnetic field

is parallel to the growth and optical axis (z), and (ii) the Voigt geometry, where the

magnetic field is applied in plane (x), perpendicular to the growth and optical axis.

The energy level diagram for the case of a negatively-charged QD in the Faraday
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Figure 1.5: Energy level diagram and optical selection rules for spin states in (a) the
Faraday geometry, and (b) the Voigt geometry for a QD charged with an electron. In
the Faraday geometry, the external magnetic field is parallel to the growth direction
(labelled z), resulting in circularly polarized transitions (σ±) between the electron
spin states (|↑〉z, |↓〉z) and the trion states (|↑↓⇑〉z, |↑↓⇓〉z). The states are split by
the Zeeman energy �δe,h. In the Voigt geometry, the magnetic field is perpendicular
to the growth direction (B = B0x̂) and the spin states are aligned with the x axis.
The electron spin states (|↑〉x, |↓〉x) are coupled by linearly polarized light (Πx,y),
forming a double Λ system.

and Voigt geometries are shown in Fig. 1.5(a) and (b), respectively. Corresponding

diagrams exist for positively charged QDs, but for illustrative purposes we will focus

on negatively charged QDs here. The external magnetic field, Bext, generates a

Zeeman splitting �δe,h = μBge,hBext of the electron (hole) states, where μB is the

Bohr magneton and ge (gh) is the Landé g-factor. In both the Faraday and Voigt

geometries, optical control of the spin state of the individual carrier is realized by

using the optical transition from the single carrier state to a trion state. A trion is a

charged exciton, composed of an electron-hole pair and an additional carrier (hole

or electron). In the Faraday geometry, each spin state is optically coupled to a trion

state by circularly polarized selection rules, whereas in the Voigt geometry, the spin

states are coupled by linearly polarized light to each other via a trion state, forming

two Λ systems. The methods used for spin initialization and for coherent control

differ for the two geometries, as described in Sec. 1.4.3.

1.3 Experimental Characterization and Optical Control Techniques

1.3.1 Characterization of QD Optical Transitions

Prior to use in coherent control experiments, the QDs of interest must be charac-

terized to determine the electronic structure of the relevant confined states. The
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Figure 1.6: Excitation scheme for (a) PL spectroscopy, and (b) PLE spectroscopy.
The horizontal axis denotes the growth direction and the vertical axis indicates
increasing energy. For PL spectroscopy, the laser pulse excites carriers in the sur-
rounding matrix material, some of which are captured by the QD. When electrons
and holes recombine, the emitted PL identifies the transition. In the case of PLE
spectroscopy, the excitation wavelength is scanned across an excited state transi-
tion while monitoring the PL emitted from the ground state transition. If the ex-
cited state decays into the ground state, a peak in the PL will be observed when the
excitation laser is resonant with the excited state.

transition energies can be determined using photoluminescence (PL) spectroscopy,

as depicted in Fig. 1.6(a). The excitation source, which can be pulsed or continuous-

wave, is tuned above the band gap of the semiconductor material surrounding the

QD (also referred to as the barrier material), exciting carriers that subsequently re-

lax into the discrete states of the QDs. The PL emitted from the recombination of

electron hole pairs is spectrally resolved to identify the transitions of interest.

The transition energy of excited states that decay to a ground state can be

identified using photoluminescence excitation (PLE) spectroscopy (see Fig. 1.6(b)),

where the frequency of the excitation laser is swept through the resonance of the

excited state while measuring the PL intensity emitted from the ground state. The

laser wavelength corresponding to the maximum in ground state PL intensity iden-

tifies the excited state transition.

1.3.2 Methods of Quantum State Readout

A number of experimental techniques have been developed to monitor the occupa-

tion of the exciton state and demonstrate coherent control.

The approach taken in this work is to measure the incoherent photon emitted
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from the s-shell exciton, following optical control of the p-shell exciton [49, 50, 51,

52]. This approach has also been used most extensively in the literature due to

its relative simplicity. The associated excitation geometry is shown in Fig. 1.7(a).

Photoexcited excitons in the p-shell decay non-radiatively into the s-shell [25]. The

PL intensity from the subsequent radiative decay of the s-shell exciton provides a

measure of occupation of the p-shell at the end of the laser pulse. The advantage of

this technique is that the energy difference between the excited and ground state

exciton, which is approximately 85meV in our samples, allows for strong suppres-

sion of scattered laser light using a wavelength filter and monochromator. This

simplification of the quantum state readout supports the primary focus of this work,

namely the development of advanced optical quantum control techniques.

Other groups have used photocurrent measurements to measure the s-shell ex-

citon occupation [53, 54]. The scheme used for photocurrent readout is depicted

in Fig. 1.7(b). The quantum dots are embedded in a photodiode structure with a

tunable voltage bias that controls the charge state of the QD and the tunnelling

rate of the photoexcited carriers. An optically excited exciton in the QD is dissoci-

ated by the bias voltage and the constituent electron and hole tunnel into opposite

contacts, resulting in a current. The total current measured for a given excitation

pulse provides a measure of the occupation of the exciton state at the end of the

excitation pulse. This method is highly efficient since there are few sources of loss

for the detected current. Disadvantages of this method include a background signal

that is proportional to the incident optical power and an inability to discriminate

between carriers that tunnel from different states. This method of quantum state

readout also has the important disadvantage that the exciton measurement by dis-

association is destructive and therefore lowers the coherence time of the qubit being

manipulated.

In resonance fluorescence, the laser pulse is resonant with the s-shell exciton

from which photon emission is detected after radiative decay. The corresponding

geometry for quantum state readout is shown in Fig. 1.7(c). The challenge is to

measure the single photon emitted from the QD in the presence of the intense

scattered laser light at the same wavelength. A number of methods have been

developed in recent years to aid in discrimination between the PL emitted from
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the QD and the incident pump light. These include detection at an orthogonal

polarization to the excitation source, and using a laser beam that is incident on the

sample at a large angle such that a spatial filter can be used [55]. Recent techniques

have also used excitation on the edge of the semiconductor wafer in which the QD

layer is contained in a vertical planar microcavity. In this case the PL is detected

normal to the surface [56].

For quantum dot ensembles the most widely used method for detecting the ex-

citon occupation or spin is time-resolved pump-probe spectroscopy. A schematic

showing this detection scheme is provided in Fig. 1.7(d). An intense pump pulse

is used to excite the exciton, and the subsequent temporal dynamics of the exciton

state can be monitored by measuring the optical properties of a weak probe pulse

as a function of the delay between the pair of pulses. The change in intensity of the

transmitted probe pulse provides information about the exciton occupation in the

QD, while the change in probe polarization can be used to infer the exciton spin

polarization. For measurements in QD ensembles, the small change in the optical

properties of the probe pulse caused by excitons in each QD is easy to detect and

so this approach has been used extensively [57, 58, 59, 60, 61]. For single QDs,

this technique is quite challenging due to the low optical signals involved. This

technique was used by Stievater et al. to demonstrate Rabi rotations in the s-shell

of a single GaAs IFQD [15]. In this measurement, the large optical dipole moment

of the IFQD studied aided in the observation of the change in transmission caused

by the exciton occupation. The extension of this technique to SAQDs that have

a smaller optical dipole moment is a challenging proposition. It was nevertheless

recently achieved using a phase-sensitive homodyne detection technique [62].

1.4 Coherent Control of Qubits in SAQDs

This section provides an overview of methods of coherent control of fundamental

quantum states in semiconductor quantum dots, including a summary of past ex-

perimental demonstrations. This thesis work is focused on the optical control of

excitons, however, approaches for controlling spin-based qubits are also summa-

rized to give a broader view of the field of quantum control in QDs. The physical

processes that cause dephasing of each type of qubit are also highlighted.
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Figure 1.7: Exciton detection schemes: (a) p-shell excitation and s-shell detection.
The excited state decays non-radiatively into the s-shell exciton state. The PL from
subsequent radiative recombination is detected. (b) Band structure of the sample
under a bias voltage for photocurrent detection. The exciton is optically excited in
the s-shell. The sloping bands cause exciton ionization and result in the carriers
tunnelling out of the QD, producing a current that can be measured. (c) In reso-
nance fluorescence measurements, the excitation and detection both occur on the
s-shell transition. One approach to suppressing the scattered pump light is to ex-
cite and detect on the orthogonally polarized transitions. In this case, a polarizer
may be used to suppress the pump light. Spin-flip scattering at a rate Γxy populates
the orthogonal exciton state that decays radiatively. (d) For pump-probe measure-
ments, the probe measures the pump-induced change in the probe pulse optical
characteristics (intensity, polarization) as a function of the delay between the pump
and probe pulses.

1.4.1 Exciton Qubit Control

Rabi Rotations

The dynamics of a qubit under the influence of a strong driving field can be de-

scribed in terms of the motion of the Bloch vector, U, defined as U = (u, v, w) =

(2Re{C0C
∗
1}, −2 Im{C0C

∗
1}, |C1|2 − |C0|2) on the Bloch sphere (see Fig. 1.1(b)).

Lines of longitude are lines of constant phase difference between states |0〉 and

|1〉, i.e., a fixed value of φ. The lines of latitude mark lines of constant inversion

(| sin (θ)|2 − | cos (θ)|2), determined by the difference in occupation of states |1〉 and

|0〉. Under the influence of an optical control field, U rotates about a torque vector
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defined by the driving field with components Λ = (−Re{ΩR},− Im{ΩR},Δ), where

Δ = ω10 − ωl is the detuning of the laser field from the transition, ΩR = μE0(t
′)/�

is the Rabi frequency, μ is the dipole moment of the transition and E0(t) is the

electric field strength of the light field. Therefore, the qubit can be manipulated

by applying a laser field to rotate the Bloch vector to a desired final state. The

dynamics of the Bloch vector, i.e. the rotation axis and speed of rotation, will de-

pend on the instantaneous phase, amplitude, and detuning of the electric field. For

example, laser light that is resonant with the |0〉 to |1〉 transition will rotate the

Bloch vector about a fixed axis on the equatorial plane of the sphere. The angle

through which the Bloch vector rotates is given by integral of the field amplitude,

Θ(t) =
∫ t

−∞ dt′ ΩR(t
′) = (μ/�)

∫ t

−∞ dt′ E0(t
′), and is called the pulse area. The re-

sulting oscillations in the occupation of state |1〉 are called Rabi oscillations and the

probability of being in the upper state is given by |C1|2 = sin2 [Θ(t)/2].

Rabi oscillations were measured by Flagg et al. using a CW laser tuned to the

exciton transition of a QD confined to a microcavity [63]. The exciton occupation

was measured indirectly through the second-order correlation (g2(τ)) of the emitted

photons (see Fig. 1.8(a)). The g2(τ) intensity is proportional to the occupation of

the exciton state at time τ after a photon has been emitted from the QD, which

initializes the qubit in the crystal ground state. They found that the spacing of the

peaks as a function of τ scaled proportionally with
√

Pavg, as predicted by theory. A

fit to the data is used to extract a relaxation time of 227 ps and a dephasing time of

132 ps for the qubit.

For pulsed laser sources, the total angle of rotation at the end of the pulse is

Θ(∞). There have been a number of demonstrations of pulsed Rabi rotations in

recent years [15, 64, 53, 65, 19, 66, 67, 68, 69]. Figure 1.8(b) shows measurements

of Rabi rotations of the exciton occupation as a function of the pulse area. The

measurements were carried out by Ramsay et al. using the photocurrent detection

technique [69]. Data taken at different temperatures, which are offset for clarity,

show the effect of phonon-mediated dephasing. The red curves are fits to data

using a theory that models excitation-induced dephasing associated with coupling

to longitudinal acoustic (LA) phonons.
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Figure 1.8: (a) Second order correlation, g2(τ), of photons emitted from an SAQD
driven by a CW laser field, for increasing laser power in multiples of P0. The g2(τ)
intensity is proportional to the exciton occupation at time τ after the emission of a
photon from the QD, which initializes the qubit in the |00〉 state. The lines are a fit to
theory that provides a measure of the relaxation time T1 = 227 ps and a dephasing
time of T2 = 132 ps. Adapted with permission from Ref. [63]. Copyrighted 2009 by
Macmillan Publishers Ltd: Nature Physics. (b) Photocurrent measurements of Rabi
rotations of an exciton as a function of the pulse area. The red lines are a fit to
theory that includes an intensity-dependent dephasing mechanism that is mediated
by LA phonons. The curves for increasing temperature are offset for clarity. Adapted
with permission from Ref. [69]. Copyrighted 2010 by the American Physical Society.

Multi-Axis Control of the Bloch Vector

Consecutive rotations about two different axes gives complete control of a qubit,

providing the ability to target any desired final state. Typically, this is carried out

using two pulses, resonant with the desired transition and separated by time τ us-

ing a path-stabilized Michelson interferometer that maintains a fixed relative phase

between the pulses. If the first pulse rotates the Bloch vector about the x̂ direction,

the second pulse, with a phase difference φ = ωlτ will rotate the vector about the
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cos(φ)x̂ + sin(φ)ŷ direction. Such experiments are referred to as Ramsay interfer-

ence measurements and can also be used to perform quantum-state tomography to

determine the three components of the Bloch vector.

Multi-axis qubit control has been demonstrated in single QDs by a number of

groups [49, 52, 70, 71, 72]. Figure 1.9(a) shows the results of Ramsay interference

measurements for a p-shell exciton in a GaAs IFQD measured by Bonadeo et al.

[49]. The exciton occupation is measured via the s-shell photoluminescence signal,

which is detected as a function of the phase difference (φ), and the excited state

occupation (|C1|2). The occupation oscillates as |C1|2 = [1 + cos (φ) exp (−τ/T2)]/2,

where T2 is the transverse dephasing time of the qubit. By measuring the decay of

the Ramsay interference fringe contrast as a function of τ , one can determine the

dephasing time of the exciton in the QD. For example, a fit to the data in Fig. 1.9(a)

gives a T2 time of 40 ps for the p-shell exciton.

Wu et al. performed quantum state tomography on an exciton qubit in a GaAs

IFQD, using differential transmission measurements to measure the occupation of

|1〉 [20] (see Fig. 1.9(b)). They used a π/2 pulse to generate an equal superposition

of the crystal ground state and an exciton state. A second delayed π/2 pulse was

used to project the state onto the z axis and read out the u and v components of the

Bloch vector.

Two-axis control can also be achieved using a resonant pulse that rotates the

qubit about the x-axis, and a detuned laser pulse that rotates the Bloch vector about

the z-axis via the ac- or optical-Stark effect [17]. Provided the detuning is much

larger than the Rabi frequency, the change in occupation induced by the second

pulse will be weak. Unold et al. [17] used differential reflectivity measurements

in a GaAs IFQD to measure phase shifts up to π radians generated by the ac-Stark

effect.

Quantum State Inversion Using Adiabatic Rapid Passage

The ability to implement a π gate with high efficiency is of importance for technolo-

gies such as ultrafast optical switches, and robust single- and entangled-photon

sources. It is also of importance for dynamical decoupling schemes that mitigate
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Figure 1.9: (a) Ramsay interference data obtained using excitation of a p-shell ex-
citon in a GaAs IFQD by two phase-locked pulses. The black dots indicate the mag-
nitude of the PL intensity as a function of delay τ between the pulses. The black
curves are a fit to the maxima and minima of the interferogram, used to extract
the dephasing time of the qubit. The top inset shows a schematic of the Michel-
son interferometer that generates the phase-locked pulses. The bottom left inset
shows the pulse polarizations and delay. The bottom right inset shows an expanded
view of the interferogram at a coarse delay of 40 ps. Adapted with permission from
Ref. [49]. Copyrighted 1998 by the American Association for the Advancement of
Science. (b) Quantum state tomography on an exciton qubit in a GaAs IFQD. Plot
(i) shows results of differential transmission measurements of the exciton occupa-
tion as a function of delay between the π/2 pump pulse and the weak probe pulse.
Plot (ii) shows the interferogram taken at a pump-probe delay of 10 ps while chang-
ing the fine delay between the two phase-locked pump π/2 pulses. The horizontal
lines are the projections on the z axis that allows for a read-out of the x and y com-
ponents of the Bloch vector. Adapted with permission from Ref. [20]. Copyrighted
2006 by the American Physical Society.

dephasing of the exciton associated with coupling to the phonon bath. In these dy-

namical decoupling schemes, the exciton is subjected to rapid pairs of π pulses. An

optical method of achieving a π gate is adiabatic rapid passage (ARP), which uses a

frequency swept laser pulse to invert the qubit. In contrast to the control schemes

discussed in the preceding subsections, for ARP the optical torque vector (and thus

the axis about which the Bloch vector rotates) changes as a function of time as the

relative magnitudes of the detuning and bare Rabi frequency change. It also differs

in that the system remains in one of the instantaneous eigenstates as a function of

time and evolves through an anticrossing. ARP has recently been demonstrated for

an exciton qubit in a single InGaAs SAQD by two different groups [73, 74]. The

experimental apparatus and photocurrent measurement results from Ref. [74] are
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Figure 1.10: Demonstration of adiabatic rapid passage. (a) Schematic of experi-
mental apparatus. The laser pulses are chirped using a grating pair and focused
onto the QD that is embedded in a Schottky diode structure. The band diagram for
the structure under bias is shown on the right. The photocurrent provides a measure
of the exciton occupation. (b) Photocurrent measurements as a function of

√
Pavg

(∝ Θ) for a transform-limited pulse (black dots) and a chirped laser pulse (red
squares). The orientation of the Bloch vector is indicated for a transform-limited
and chirped laser pulse. Adapted with permission from Ref. [74]. Copyrighted 2011
by the American Physical Society.

shown in Fig. 1.10. The authors Wu et al. used a grating pair to chirp the laser

pulse, i.e. introduce a time-dependent instantaneous frequency, and measured the

exciton occupation for Rabi rotations and ARP as a function of pulse area using the

photocurrent technique [74]. The signature of ARP is the insensitivity of the exciton

occupation to pulse area beyond a threshold value. This insensitivity implies that

the exciton inversion via ARP is robust to variations in laser power.

The evolution of the quantum state during ARP can also be described in the

so-called dressed states picture, where the dynamics are expressed in terms of the

instantaneous eigenstates of the system (QD + light), |Ψ+;N〉 and |Ψ−;N〉, that are

split in energy by �|Λ| as shown in Fig. 1.11(a). Observation of these Rabi split

states in the frequency domain can be used to demonstrate strong-field coupling

and the ability to control the exciton qubit. Figure 1.11(b) and (c) show two meth-

ods used to detect these states. For observation of the Autler-Townes doublet, a

strong pump field creates the dressed states while a probe pulse monitors the ab-

sorption due to transitions from a witness state. In the case of the Mollow triplet,

the transitions of interest are between dressed state manifolds that differ by one

photon. The frequency of the probe pulse is swept to measure the absorption of the

four transitions of interest: two that occur at ωl and two that occur at ωl ± Λ.
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Figure 1.11: Rabi-split dressed states: (a) The dressed states with N photons,
|Ψ±, N〉, are split by �Λ where the effective Rabi frequency Λ =

√
Ω2

R +Δ2, which
is determined by the bare Rabi frequency, ΩR, and the detuning of the pulse from
the transition, Δ. Manifolds with different numbers of photons are split by ωl. (b)
Observed transitions for the Autler-Townes doublet are due to transitions from a
witness state to the Rabi-split states. (c) Observed transitions for the Mollow triplet
are due to transitions between the four states of manifolds that differ by one pho-
ton. Two of the transitions have the same energy, ωl, so the absorption spectrum
will have a peak ratio of 1 : 2 : 1.

The Autler-Townes doublet and Mollow triplet have been observed for excitons

confined to SAQDs [50, 75, 76, 77, 78, 79, 80]. The Autler-Townes doublet was

first observed for the p-shell exciton [50]. It has since been demonstrated by: (i)

pumping and probing the orthogonal exciton states [75], and (ii) pumping the

exciton to biexciton transition while probing the ground state to exciton transition

[76, 77, 78, 79]. The Mollow triplet was first observed in differential transmission

measurements of an exciton in an InAs SAQD [75] but has since been observed in

resonance fluorescence measurements in a InAs SAQD [80]. Figure 1.12(a) and

(b) shows results of experimental measurements of the Autler-Townes doublet and

Mollow triplet observed by Xu et al. [75]. In both measurements, the splitting

between the states is observed to be proportional to
√
Pavg, as predicted by theory.

Conditional Operations

In addition to single-qubit operations, a universal circuit model quantum computer

also requires pair-wise two-qubit logic operations such as C-ROT gates or C-NOT

gates. Entangling operations can be demonstrated in the four-level system shown

in Fig. 1.4(b) using the two orthogonally polarized excitons [38]. The C-ROT logic

gate applies a π gate with a phase shift of π radians to the second qubit if and only
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Figure 1.12: Observation of Rabi-split state in the frequency domain. A strong
pump pulse creates the dressed states while a weak probe monitors the absorption
of the transitions. (a) The Autler-Townes doublet observed on an exciton transition
while probing the orthogonally-polarized exciton transition that shares the com-
mon ground state |00〉. (b) Mollow triplet observed for transitions between dressed
state manifolds. The inset shows that the state splitting increases linearly with field
strength. Adapted with permission from Ref. [75]. Copyrighted 2007 by the Amer-
ican Association for the Advancement of Science.

if the first qubit is in the |1〉 state. This operation was first demonstrated by Li et

al. in a GaAs IFQD [16] using differential transmission methods and later in an

InAs SAQD by Boyle et al. using the photocurrent measurement technique [81].

Figure 1.13(a) and (b) show the logic operation of the C-ROT gate and experimen-

tal results from Ref. [81], respectively. Pre-pulses (with a pulse area of π rad) were

used to prepare the four pure qubit states and a spectrally narrow, Πx polarized

pulse was used to carry out the logic operation.

Other two-qubit demonstrations include Rabi oscillations between the crystal

ground state and the biexciton state using a two-photon transition [82]. Biexci-

tons can be created sequentially by first exciting one of the exciton transitions, e.g.,

|00〉-|01〉, followed by excitation of the exciton to biexciton |01〉-|11〉 transition. In

contrast, the two-photon transition demonstrated in Ref. [82] creates two excitons

simultaneously with a laser pulse with half the energy of the ground state to biexci-

ton transition, i.e., ωl = ω00−01−Δ/2. The results in Fig. 1.14(a) and (b) show Rabi

oscillations for the exciton and biexciton, highlighting the slower increase of biexci-

ton population and a lower period of Rabi oscillation of the biexciton in comparison
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Figure 1.13: (a) Conditional logical for the C-ROT gate in the four-level exciton-
biexciton system performed by an operational x-polarized laser pulse. (i) |00〉 is
decoupled from the pulse due to the difference in energy. (ii) A pre-pulse initializes
the system in the |10〉 state but is decoupled from the operational pulse due to
the polarization. (iii) A pre-pulse initializes the system in the |10〉 state that is
driven to the |11〉 state by the operational pulse. (iv) Two sequential pre-pulses
are used to initialize the system in the |11〉 state that is driven to the |10〉 state by
the operational pulse. (v) Action of the C-ROT operator on the four states. (b)
Photocurrent spectrum as a function of the laser detuning for no pre-pulse (blue
dots), cross-polarized pre-pulse (red x) and co-polarized pre-pulse (black squares).
When the pulse is tuned to the X0 − 2X0 transition, photocurrent is only observed
if a pre-pulse populates the X0 state. In the absence of a pre-pulse or for a cross-
polarized pre-pulse, there is no change to the system. (QD B and QD C are adjacent
QDs not used in the demonstration.) Adapted with permission from Ref. [81].
Copyrighted 2008 by the American Physical Society.

to the Rabi oscillation of the exciton.

While the exciton-biexciton four-level system can be used to demonstrate two-

qubit logic operations, a scalable architecture will require coupling between mul-

tiple, spatially distinct, uncoupled quantum dots. Proposals for extending C-ROT

operations to excitons in different QDs have been presented [83, 84, 85] but have

not yet been demonstrated experimentally. Coupling between qubits to enable con-

ditional operations can be achieved via dipole-dipole interactions in the presence

of a static electric field [83], through exchange of photons through a microcavity

[42, 85], or through Coulomb interactions of closely spaced quantum dots [84].

1.4.2 Dephasing Times of Excitons

The number of gate operations that can be implemented on a qubit is fundamen-

tally limited by the coherence time of the qubit. The coherence time of an exciton
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Figure 1.14: (a) Exciton Rabi oscillations measured in an InAs SAQD, using the pho-
tocurrent method of quantum state readout for the exciton, as a function of pulse
area, and (b) two-photon Rabi oscillations in the same QD between the ground
state and the biexciton state measured as a function of pulse area. The dashed
line shows a theoretical curve for the two-photon process without taking into ac-
count any excitation-induced dephasing. Adapted with permission from Ref. [82].
Copyrighted 2006 by the American Physical Society.

at low temperatures is limited by the radiative lifetime of the electron-hole pair,

with QD size-dependent dephasing times measured to be between 400 and 1000 ps

[86, 87, 88]. Since laser pulses with shorter durations are readily available, the

quality of the quantum control process on an exciton in a QD can be very high

(i.e. the associated optical gate can be made to have a high fidelity) through the

use of an ultrashort laser pulse for quantum state control. However, as the data

in Fig. 1.8(b) indicates, the Rabi oscillations are also damped by a source of de-

phasing that depends on the driving field intensity (at a fixed pulse width). Such

an intensity-dependent process is referred to as excitation-induced dephasing. There

are two potential sources of intensity-dependent damping, including: (i) interac-

tions with carriers in the wetting layer that are generated by crossed transitions

[64], and (ii) interactions with longitudinal acoustic phonons [89, 90]. Recent ex-

periments have confirmed the dominance of phonon-mediated dephasing for the

p-shell and s-shell exciton [91, 54, 69]. The influence of such an excitation-induced
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dephasing process on the quantum control of excitons may be minimized by us-

ing dynamical decoupling techniques [92, 46, 35]. Such techniques are effective

provided that the time between π pulse is short compared to the correlation time

associated with the phonons.

1.4.3 Spin Qubit Control

Qubit Control in Gate-Patterned QDs

The first proposal for QD-confined spin qubits envisioned their implementation in

lateral QDs, where the electrostatic potential applied via patterned gates controls

the strength of coupling between adjacent qubits [41]. The qubits were manip-

ulated using electron spin resonance to drive Rabi oscillations via rf fields in the

Faraday geometry. Single qubit operations including initialization, coherent con-

trol, and measurement [93, 94, 95, 96], and multiple-qubit operations have also

been demonstrated [97, 98]. However, because the electrostatic potentials can only

capture a single type of carrier, they do not permit optical control or conversion of

spins to flying qubits (photons).

Optical Control Schemes for Spins in QDs

Spin qubits can be realized in charged SAQDs where the optically allowed transition

to the trion state allows for state manipulation using optical pulses (see Fig. 1.5).

Spin initialization in the Voigt geometry can be achieved using a vertically-polarized

CW laser field that excites the trion state, which subsequently decays with equal

probability into the spin-up and spin-down single carrier spin states. Continued

pumping will shelve the spin state in the |↑〉x state, where it is decoupled from the

laser field (see Fig. 1.15(a)). In the Faraday geometry, one can use the same ap-

proach but it relies on small imperfections in the selection rules, which is a result

of a spin-flip transition to the |↑〉z state. Time-resolved detection schemes for single

spins include Kerr and Faraday rotation, for which the change in polarization state

of a linearly polarized probe pulse is measured. This change is caused by the differ-

ence in phase shift for the σ± components of the pulse and the polarization rotation
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Figure 1.15: (a) Spin initialization and measurement in the Voigt geometry is car-
ried out by continuously pumping one of the electron to trion transitions with a
narrow CW laser. For initialization, the trion state will decay at a rate Γx/2 into
the oppositely polarized spin state with 50% probability, where it will be decoupled
from the laser pulse. For measurement of the state after manipulation, the steady
state photon count indicates whether the system was in |↓〉x. (b) A broadband cir-
cularly polarized pulse, detuned from the trion transition by Δ, will couple the spin
states via a stimulated Raman transition. (c) The coupling scheme in (b) decouples
the trion states from the dynamics and allows for Rabi oscillations between the spin
states at an effective Rabi frequency Ωeff = |ΩHΩV|/Δ.

can be measured using a polarizing beam splitter and balanced photodetectors. Al-

ternatively, a steady state measurement of the spin state can be made by continuing

to pump the system with the CW laser to create the trion state. The count rate of the

emitted photons when the trion relaxes will then provide a measure of whether the

system was in a spin-up or spin-down single carrier spin state prior to excitation.

In the Voigt geometry (see Fig. 1.5(b) and (c)), a circularly-polarized, detuned,

broadband pulse can be used to couple the |↑〉x and |↓〉x states via a stimulated

Raman transition. The circular polarization ensures that the probability amplitudes

from the two Λ transitions add constructively, while the large detuning (Δ) pre-

vents occupation of the trion states. The laser pulse can be used to generate ro-

tations of the qubit about an axis in the x-y plane at an effective Rabi frequency

(Ωeff = |ΩHΩV|/Δ). In conjunction with the Larmor precession about the z axis,

this provides complete control over the qubit.

This approach to coherent control of spin qubits has been demonstrated by sev-

eral groups [99, 100, 101, 102]. Figure 1.16(a) and (b) present experimental

demonstrations of coherent control of the electron spin by Press et al. in Ref. [99].

Figure 1.16(a) shows Rabi oscillations of the electron spin state occupation as a
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Figure 1.16: (a) Rabi oscillations of electron spin states measured in an InAs SAQD,
where the quantum state readout of the electron spin state was achieved by mea-
suring the photon count rate on the associated trion transition for increasing pulse
area. The variation of the power required for successive rotations of the Bloch vec-
tor associated with the spin qubit varies due a breakdown of the two-level model
when the occupation of the trion state become non-negligible. (b) Ramsay inter-
ference measurements using two pulses. The plot is a colour map of the photon
count from the trion transition as a function of the pulse area Θ and the delay time
between the pulse pair. Adapted with permission from Ref. [99]. Copyrighted 2008
by Macmillan Publishers Ltd: Nature Letters.

function of pulse area, while Fig. 1.16(b) shows a contour plot of the spin state oc-

cupation as a function of the pulse area and the delay between two pulses used for

optical control. Similar demonstrations have been made for control of hole spins in

SAQDs [103, 104, 105].

Multi-qubit operations have also been realized involving spin-based qubits in

charged QDs. These include exchange-coupled spin qubits controlled using a tunnel

barrier between vertically stacked QDs [106] and an all-optical controlled-phase

gate for electrons [106] and holes [107].

1.4.4 Dephasing of Spin Qubits in SAQDs

The primary dephasing mechanism for electron spin qubits in a semiconductor QD

results from the contact hyperfine interaction with the fluctuating Overhauser field
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of the nuclear spins, which in turn produces variations in the Zeeman splitting.

Methods of mitigating dephasing via this process include: (i) polarizing the nuclear

spins to reduce random fluctuations in the Overhauser field, and (ii) using a hole

spin for which the p-shell nature of the wave function reduces overlap with the nu-

cleus. In the first case, the distribution of the nuclear spin bath can be narrowed by

pumping with circularly polarized light to generate a dynamic nuclear polarization,

with demonstrations of up to 60% net polarization [108]. In these systems, pure

dephasing for electrons in SAQDs is on the order of 3μs [109] while spin-relaxation

times are on the order of 20ms [58]. In the case of hole spins, the reduced overlap

with the nucleus does reduce the hyperfine interaction, however it does not com-

pensate for mixing between the light-hole and heavy-hole states, which increases

dephasing. The decoherence time for a single hole spin in a QD has been measured

to be 1.1μs [110] and spin-relaxation times of 0.5μs [103] have been measured.

1.5 Scope of the Thesis

In this section, the work carried out for this doctoral dissertation is placed in the

context of past optical quantum control experiments in semiconductor QDs. A broad

perspective of this context is provided in Sec. 1.5.1 followed by a more detailed dis-

cussion appropriate for each of the three topics covered in this thesis in Sec. 1.5.2-

1.5.4. This is followed by a summary of the accomplishments within this thesis

work in Sec. 1.5.5.

1.5.1 Thesis in Context of Existing Work

The previous sections highlighted experimental demonstrations of single- and two-

qubit control in SAQDs. These demonstrations have, with the exception of ARP,

used transform limited (TL) pulses, i.e. pulses with constant phase. The use of TL

pulses to control the qubit restricts the dynamics to sequential rotations about fixed

axes that lie in the equatorial plane of the Bloch sphere [49, 52, 70, 71, 20, 72, 111].

In addition, the control pulses have thus far been restricted to optical pulses with

a duration of several picoseconds or longer so as to avoid unintended dynamics in

nearby optical transitions. However, with the use of subpicosecond control pulses
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and pulse shaping [112], this restriction may be alleviated since the laser pulse may

be designed, taking into account the final state for all optical transitions simultane-

ously coupled by the laser pulse. The central idea is to manipulate the phase and

amplitude of the control Hamiltonian, by shaping the phase and amplitude of the

excitation laser pulse to achieve a desired final state of the exciton or spin of the

quantum state in the QD at the end of the laser pulse. This form of control can also

be used to replace multiple single-qubit and two-qubit quantum gates with a single

transformation of a multi-qubit system by a shaped laser pulse, as in the case of

complex instruction set quantum computing [6].

The science of controlling the evolution to bring a quantum system to a desired

final state is called optimal quantum control (OQC) [113, 114]. This approach is

now routinely used in the control of a variety of physical processes. It is particu-

larly useful for intractable system Hamiltonians, where powerful adaptive feedback

algorithms are employed, for example, to target specific pathways in chemical re-

actions [115, 116], detect molecular species while suppressing a background signal

[117], and for the generation of high harmonics [118, 119]. OQC has also been

employed to achieve high fidelity quantum gates for applications in quantum infor-

mation processing in different qubit platforms. It has been used to optimize single-

and multiple-qubit [120, 121, 122] gates in ion trap qubits, multiple-qubit gates

in superconducting qubits [123], spin entanglement gates in nitrogen vacancies

[124], and multiple-input AND gates in molecular qubits [7]. The work presented

in this thesis aims to further the use of OQC and pulse shaping for exciton qubits

confined to SAQDs.

1.5.2 Studies of Parallel Quantum Control in Multiple QDs

This thesis builds upon the recent experimental demonstrations of π and 2π parallel

gates in uncoupled semiconductor QDs using a single laser pulse [125]. In that

work, the controlling laser pulse was numerically optimized using OQC and then

implemented experimentally in InAs SAQDs using control of the p-shell transition

and detection of the s-shell PL [125]. Shaping enabled the achievement of differing

occupations of the excitons in two different QDs (one ending in |1〉 and the other

in |0〉) with high fidelity despite differing dipole moments and transition energies
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in each QD. In this thesis work, I have shown using theoretical simulations that,

in addition to population transfer to the poles of the Bloch sphere as was carried

out in Ref. [125], OQC can also be used to target desired final states with arbitrary

(prescribed) occupations and relative phases, provided the QDs have sufficiently

different optoelectronic properties. The findings of this study suggest that more

than 10 QDs may be controlled using a single laser pulse with a sufficiently complex

phase functional, limited only be the energy resolution of the pulse shaping system.

Quantum gates designed in such a manner could either be implemented directly

in experiments, or improve the speed of convergence of experimentally optimized

evolutionary algorithms by providing seeding candidates. The advances in ultrafast

control of multiple qubit systems using a single shaped pulse (instead of several

phase-locked pulses) should promote scalability in QD systems by reducing the laser

resources and experimental infrastructure required to manipulate qubits.

This work has been submitted to Physical Review B, and the submitted manuscript

is presented in Ch. 4.

1.5.3 Numerical Optimization of C-ROT Gate Using Femtosecond Pulse

Shaping Techniques

In addition to single-qubit operations, I have also demonstrated that OQC can be

used to numerically optimize the two-qubit C-ROT gate involving two excitons in a

single QD. Having recently been demonstrated experimentally [16, 81], the C-ROT

gate provides a useful test case that illustrates the effectiveness of pulse shaping as

an approach to optimizing the fidelity and speed of elementary quantum control

process involving semiconductor QD states. In recent theoretical work by Chen et

al. [39], the C-ROT gate was numerically optimized using two phase-locked pulses.

The associated proposed experimental scheme in the theoretical work by Chen et

al. requires the use of stabilized delay lines and independent control over the band-

width of the individual pulses. This proposed implementation is further compli-

cated by the use of two separately optimized, synchronous laser sources as well as a

stabilized Michelson interferometer. The approach taken in this thesis work differs

in that it uses a single laser pulse, optimized using optimal quantum control and

general pulse shaping techniques, to implement the gate. The goal of my project
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was to develop general amplitude- and phase-shaping protocols that could be eas-

ily implemented with a single mode-locked femtosecond oscillator and a standard

commercially available pulse shaping system. I designed numerically optimized

pulses to implement the C-ROT gate in the four-level exciton-biexciton system of

Fig. 1.4(b). The optoelectronic properties of the confined states were determined

using strain-dependent k·p theory for realistic physical parameters of a SAQD. The

theoretical results show that amplitude- and phase-shaping schemes provide con-

siderable improvements in fidelity over TL pulses with similar gate times. The ad-

dition of dephasing to the theoretical model was found to have a minimal effect

on the gate fidelity, reflecting the benefits of subpicosecond gate times. The results

presented in this thesis work lay the groundwork for the implementation of pulse

shaping in other quantum control processes, including two-photon Rabi rotations

of biexcitons [126] and schemes for dynamical decoupling [92, 46, 35].

This work was published in Physical Review B (R. Mathew et al., Phys. Rev. B

84, 205322 (2011)). The associated manuscript is reproduced with permission in

Ch. 5.

1.5.4 Robust State Inversion in a Single QD Using ARP

I have also employed femtosecond pulse shaping to: (i) experimentally demon-

strate robust state inversion in SAQDs via ARP using chirped (frequency-swept)

laser pulses with a subpicosecond time duration; and (ii) to gain insight into the

role of phonons in dephasing of excitons in QDs through measurement of the de-

pendence of the exciton inversion efficiency on the sign of the laser pulse chirp.

Both of these goals were achieved using much shorter control pulses than in past

demonstrations of ARP (∼20 fold).

Fast and robust state inversion is of technological importance because it finds

application in efficient single- and entangled-photon sources [48, 127], all-optical

switches [128, 129] and quantum gates [130, 131, 132, 133, 134]. Building on

demonstrations in atomic systems [135, 136], ARP was recently demonstrated in

SAQDs [73, 74], representing a ground-breaking achievement, however, the control

pulses were of duration 15–40 ps. In this thesis work, I used wide bandwidth control

pulses to demonstrate ARP in a single QD experimentally using a subpicosecond
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gate time. This achievement of a ∼20 fold reduction in gate time is useful for

quantum computing applications because it permits more optical operations within

the decoherence time of the exciton. The demonstration of fast, high fidelity π gates

will also be critical to future demonstrations of dynamical decoupling schemes that

are designed to isolate the qubit from its environment [33, 34, 35, 36, 37], since a

rapid succession of ultrashort π pulses are required for such schemes.

The role of phonons in dephasing of excitons in quantum dots has been the fo-

cus of considerable theoretical and experimental research in recent years [25, 69,

89, 137, 138, 139, 140, 141, 130, 142, 143, 144, 145, 129, 146]. The efficiency

of inversion via ARP has been predicted to depend on the sign of the pulse chirp

at low temperature due to the differing rates of phonon absorption and emission

[139, 140, 138]. This theoretical prediction indicates that experimental demon-

stration of ARP with both signs of chirp would provide important new insight into

the role of phonons in dephasing for exciton qubits. However, prior to this thesis

work the demonstrations of ARP used only negative pulse chirp. Using femtosecond

pulse shaping techniques I have observed, for the first time, the predicted difference

in inversion efficiency for positively- and negatively-chirped pulses. The result has

confirmed the dominance of phonon-mediated dephasing in SAQDs and demon-

strated that these effects can be mitigated by the correct choice of the sign of the

pulse chirp at low temperatures. In this work, I also showed through theoretical

simulations of the quantum state dynamics incorporating excitation induced de-

phasing via LA phonons that phonon-mediated dephasing in the regime of strong

(and rapidly-varying) Rabi energies persists for negative pulse chirp, suggesting

that multiphoton emission and non-Markvoian effects play an important role.

This work was published in Physical Review B (R. Mathew et al., Phys. Rev. B

90, 035316 (2014)). The associated manuscript is reproduced with permission in

Ch. 6.

1.5.5 Summary of Thesis Work

To summarize the contributions made in this thesis, I have used numerical pulse

shaping and optimal quantum control to demonstrate that a single laser pulse can
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be used to manipulate multiple uncoupled exciton qubits that are confined to dif-

ferent quantum dots. The results showed that it is possible to specify the phase

and occupation of the different qubits, provided that the quantum dots could be

distinguished by either their transition energy or dipole moment. The same ap-

proach was also used in theoretical simulations to demonstrate the C-ROT gate for

two excitons confined to a single quantum dot, with realistic optoelectronic param-

eters that were obtained using k·p theory. The use of shaped pulses in this case

improved the fidelity of the operation, compared to unshaped pulses with a similar

pulse width. In both applications, the use of a single shaped pulse to control mul-

tiple qubits, in place of multiple phase-locked pulses, should promote scalability in

QD systems. In the third project, I experimentally demonstrated adiabatic rapid pas-

sage for an exciton confined to an InGaAs QD, using pulses that are over an order

of magnitude shorter than previous experimental demonstrations of this method

of control in single QDs. Control over the sign of the pulse chirp also allowed for

the observation of the theoretically predicted difference in inversion efficiency for

positively- and negatively-chirped control pulses, and the concomitant identifica-

tion of phonon-mediated dephasing as the dominant source of decoherence. Faster

ARP gates will be of benefit to single- and entangled-photon technologies, and for

future demonstrations of dynamical decoupling techniques in QD systems.

1.6 Structure of the Thesis

The outline of the thesis is as follows: Chapter 2 begins with a review of the the-

ory of the optical control of exciton qubits in SAQDs, including pulse shaping ap-

proaches to the optimization of gate fidelity. Chapter 3 describes the experimental

apparatus and methods used in this thesis work. Building upon recent experimental

work [125], Chapter 4 presents the use of OQC to theoretically optimize simultane-

ous high fidelity single-qubit quantum gates in uncoupled QDs. This manuscript has

been submitted to Physical Review B. Chapter 5 presents the results of OQC applied

to the theoretical optimization of the C-ROT two-qubit gate in the exciton-biexciton

system. This work was published in Physical Review B. Chapter 6 presents the use

of ultrafast ARP to implement high fidelity π gates and includes both experimental
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results and theoretical simulation incorporating LA phonon-mediated excitation-

induced dephasing. The results were published in Physical Review B. Conclusions

and future outlook are presented in Chapter 7.



Chapter 2

Background and Theory

Self assembled quantum dots are nanometer-sized semiconductor structures with

abrupt material discontinuities. Confinement of charge carriers in these structures

creates a discrete spectrum of energy states akin to an atom. However, in con-

trast to atoms, the spatial extent of the wave functions extends over tens of atoms,

providing a dipole moment that is an order of magnitude larger. This enhanced

light-matter interaction facilitates optical control of the quantum states using ultra-

fast optical pulses. The electronic and optical properties of the QDs can be tuned via

their size and composition, both of which can be controlled through the growth pro-

cess. The combination of atom-like spectra and tunability makes SAQDs useful for

fundamental studies of light-matter interactions in a solid state environment. As a

scalable architecture that can leverage existing semiconductor fabrication technolo-

gies, interact with photons, and operate at telecommunication wavelengths, QDs

could also be used to implement qubits in a quantum computing platform. This

chapter provides the theoretical background necessary to understand optical state

manipulation in semiconductor SAQDs. Section 2.1 describes the fabrication tech-

nique used to create SAQDs. Section 2.2 discusses the electronic and optical prop-

erties of the bulk constituents. The effects of confinement on the optoelectronic

properties are discussed in Sec. 2.3. Sec. 2.4 describes the use of strain-dependent

k·p theory to calculate the energies and wave functions of the confined eigenstates.

Sec. 2.5 provides an overview of coherent control techniques using ultrafast optical

pulses, and Sec. 2.6 describes the theory of optimal quantum control of qubits using

pulse shaping techniques.

2.1 Fabrication and Samples

The QD samples studied in this work were grown using molecular beam epitaxy

(MBE), a growth technique used to fabricate high quality, single crystals. In MBE,

38
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the constituent elements of the crystal are heated to their sublimation point, where-

upon the evaporated atoms travel through an ultra-high vacuum and condense on a

substrate. The long mean-free paths resulting from the ultra-high vacuum environ-

ment allows for submonolayer control of the deposition rates. SAQDs are formed

by a growth process called Stranski-Krastanov (SK) growth as depicted in Fig. 2.1,

where a lattice mismatch between the substrate and the deposited film makes it en-

ergetically favourable for the strained film to nucleate, forming nanoscale islands.

For example, when an InAs film is deposited on a GaAs substrate, the strain in-

duced by the 7% lattice mismatch is relieved after a critical thickness (typically

a few monolayers) by the nucleation of nanoscale islands with base dimensions

on the order of 20–40 nm and heights on the order of 5–10 nm. (The lattice con-

stants for GaAs and InAs are 0.565325 nm and 0.60583 nm, respectively, resulting in

a compressive strain when a few monolayers of InAs is deposited onto a GaAs sub-

strate.) SK growth is an inherently stochastic process, resulting in a distribution

of the QD physical properties (dimensions, composition, and residual strain) and a

concomitant distribution of its electronic and optical properties (transition energies

and optical dipole moments). Cross-sectional scanning-tunnelling microscopy mea-

surements of the structures have found that the InAs/GaAs nanostructures tend to

form truncated pyramids with a graded stoichiometric composition that is indium

rich in the center and gallium rich at the outer edges [47]. Capping the InAs QDs

with GaAs serves to terminate the chemical bonds on the surface, which would

otherwise provide an effective pathway for non-radiative carrier relaxation. The

two-dimensional, graded, InGaAs layer that surrounds the dot is called the wetting

layer, and can support delocalized states confined to two dimensions.

2.2 Electronic Structure and Optical Properties of III-V Semiconductors

The quantum dots studied in this work are composed of two direct band gap III-V

semiconductors, namely GaAs and InAs, that possess a face-centered cubic (FCC)

zinc-blende crystal structure (see Fig. 2.2(a)). The first Brillouin zone for this lattice

and the high symmetry points and lines are shown in Fig. 2.2(b).
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Figure 2.1: Stranski-Krastanov growth mode: (a) A few strained monolayers of
InAs are deposited on a GaAs substrate. (b) After a critical thickness the strain
is relieved by the formation of nanometer-sized islands on a thin layer of InGaAs
called the wetting layer. (c) The quantum dots grow as more InAs is deposited, and
(d) are capped with GaAs.

Figure 2.2: (a) FCC lattice structure for GaAs. The positions of the atoms (blue for
Ga and maroon for As), the covalent bonds (black solid lines), and crystal directions
are indicated. (b) The corresponding first Brillouin zone in reciprocal space. Γ
denotes �k = 0 at the zone center. Other high symmetry points are indicated by
Roman letters and the symmetry lines are indicated by Greek letters.

In a perfect semiconductor crystal, the potential V (r) experienced by every elec-

tron in a band is identical and the Hamiltonian is given by,[
p2

2m0

+ V (r)

]
ψν,k(r) = Eν,kψν,k(r), (2.1)

where m0 is the rest mass of the electron, ψν,k(r) is the wave function, and Eν,k is

the energy of an electron in an eigenstate denoted by the band ν and wave vector

k. The potential describes the ion cores and therefore exhibits the periodicity of the
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lattice i.e., V (r) = V (r + R), where R is a lattice vector of the crystal. Therefore,

the solutions to the Schrödinger equation take the form of Bloch functions,

ψν,k(r) = eik·ruν,k(r), (2.2)

that are the product of a plane wave with wave vector k, modulated by the cell

function uν,k(r), that also exhibits the periodicity of the lattice. The cell function

represents the atomic part of the wave function and is different for each band.

For example, in GaAs and InAs, the highest three valence bands, namely the HH,

LH and SO bands, originate from bonding p-type orbitals while the lowest C band

originates from an anti-bonding s-type orbital. A schematic of the band structure

of GaAs near the Γ point is shown in Fig. 2.3(a) where each line denotes allowed

energies and wave vectors for a single band. The valence and conduction bands

are separated by a band gap, Eg, that results from Bragg scattering of the electron

with the crystal lattice when its de Broglie wavelength is equal to twice the lattice

spacing. In GaAs, the band gap at a temperature of 300K is 1.42 eV. InAs, on the

other hand, has a smaller band gap of 0.35 eV at the same temperature. It is this

difference in band gap energy, along with the band offsets for the conduction and

valence bands, that allows for the confinement of carriers in InAs/GaAs QDs.

2.2.1 Band Edge States and k·p Theory

The nature of the states near the band gap has important implications for the elec-

tronic and optical properties of any semiconductor. InAs and GaAs exhibit direct

band gaps, i.e., the minimum of the conduction band occurs at the same wave vec-

tor as the maximum of the valence band (the Γ point at k = 0), making it an

excellent choice for optoelectronic devices that benefit from the enhanced coupling

with light. k·p theory is a semi-empirical method for obtaining highly accurate

solutions for the states and the energy dispersion near the band extrema. In this

approach, the electron and hole states near the band edge are expanded in the com-

plete basis of the zone-center cell functions {uν,0(r)} using perturbation theory. The

Schrödinger equation for the cell function, is given by,[
p2

2m0

+
�
2k2

2m0

+
�

m0

k·p+ V (r)

]
uν,k(r) = Eν,kuν,k(r). (2.3)
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Figure 2.3: (a) Schematic of the band structure for GaAs in the vicinity of the band
gap, with C band, HH band, LH band, and SO band. The band gap Eg and the split-
off energy �ΔSO at a temperature of 300K are indicated. (b) Optical selection rules
for zone-center transitions between the valence bands and the conduction band.
The polarizations of the transitions are right- or left- circularly polarized (σ±). The
relative intensities, as determined by the Clebsch-Gordan coefficients, are indicated
in circles.

For a non-degenerate band such as the lowest conduction band, the cell functions,

to second order in perturbation theory, are given by,

uν,k(r) = uν,0(r) +
�

m0

∑
ν′ �=ν

|〈ν,0|k·p |ν ′,0〉|2
Eν,0 − Eν′,0

uν′,0(r). (2.4)

For states away from k = 0, the second term results in mixing of zone-center cell

functions from other bands. The energy eigenvalues are given by,

Eν,k = Eν,0 +
�
2k2

2m0

+
�
2

m2
0

∑
ν′ �=ν

|〈ν,0|k·p |ν ′,0〉|2
Eν,0 − Eν′,0

. (2.5)

Near the band extrema, the carriers move as if they were free particles with an

effective mass m∗
ν , that encapsulates the interaction of the carriers with the lattice.

This is called the effective mass approximation and the energies for the conduction

and valence bands are given by,

Ec,k = Eg +
�
2k2

2m∗
c

,

Ev,k = −�
2k2

2m∗
v

.

(2.6)
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Comparison with Eqn. 2.5 shows that electrons in the conduction band have an

effective mass
1

m∗
c

=
1

m0

+
2

m2k2

∑
ν′ �=ν

| 〈ν,0|k·p |ν ′,0〉 |2
Eν,0 − Eν′,0

. (2.7)

In GaAs, conduction band electrons have an effective mass of m∗
c = 0.063m0 while

holes in the valence band have an effective mass m∗
v = 0.51m0. To calculate the

energies and wave functions for the degenerate valence bands, one must either use

non-degenerate perturbation theory or approaches such as the Kane model where

the Hamiltonian, which includes the spin-orbit interaction, is diagonalized in the

finite basis consisting of the conduction band and the three highest valence bands.

The approximation that the other bands can be ignored is assumed to be valid as

their contribution decreases with increasing energy separation.

2.2.2 Angular Momentum and Optical Selection Rules

The discussion thus far has ignored the angular momentum of the states which

dictates the optical selection rules. For each Bloch state, there are two allowed an-

gular momentum projections, leading to two “spin” subbands for each band. The

total angular momentum for an eigenstate of the crystal Hamiltonian is dictated by

the total angular momentum of the cell functions that form the basis. As previously

mentioned, the zone-center cell function for the conduction band has s-type sym-

metry, with orbital angular momentum quantum number l = 0, while the valence

band has p-type symmetry, with an orbital angular momentum of l = 1.

Away from the Γ point, the mixing of the states implies that valence bands are

not pure angular momentum states. The matrix elements of the dipole operator

between states |ν,k〉 and |ν ′,k′〉 are given by,

dν,ν′,k,k′ = 〈ν ′,k′| (−er) |ν,k〉 ,

=
−i�e

m(Eν,k − Eν′,k′)
〈ν ′,k′|p |ν,k〉 .

(2.8)

For optical transitions, k ≈ k′ because the photon has negligible momentum relative

to the carriers, so that near the band edge the optical properties of the material are

determined by the matrix elements of p between the zone-center cell functions,
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given by,

dν,ν′,0,0 =
−i�e

m(Eν,0 − Eν′,0)
pν,ν′,0,0. (2.9)

The resulting optical selection rules for transitions between the valence and conduc-

tion bands are illustrated in Fig. 2.3(b). The transitions are coupled to circularly

polarized light (σ±), as dictated by the angular momentum projections of the states

and the relative intensities of transitions (indicated by the numbers in circles) are

determined by the Clebsch-Gordon coefficients .

2.3 Effects of Confinement on Electronic and Optical Properties

The confinement of carriers to dimensions smaller than its de Broglie wavelength

has profound consequences for the electronic and optical properties of the mate-

rial. The SAQDs used in this work are droplets of InAs embedded in a GaAs matrix.

Three-dimensional confinement of electrons and holes to dimensions smaller than

its Bohr radius (∼12 nm for electrons in GaAs) results in a discrete spectra, with

energy level spacings greater than the average thermal energy kBT/2, even up to

room temperature. Figure 1.2(b) and (c) shows a simplified band structure diagram

and schematic of an InAs/GaAs QD. Quantum dots are nanostructures containing

on the order of 104 atoms with material discontinuities, so an accurate calculation of

the energy levels and wave functions typically requires the use of computationally

intensive methods such as eight-band, strain-dependent k·p theory with realistic

models for the QD shape, size and composition. However, a qualitative understand-

ing of the confined states can be developed using a series of approximations that

reduce the complexity of the system, allowing for analytical solutions.

2.3.1 Envelope Functions

The first approximation is that the quantum dot, despite its reduced dimensions, can

still be treated as a bulk sample insomuch as the potential experienced by electrons

in a given band is still identical. The confined single-particle states can then be

expressed in terms of the Bloch functions of Eqn. 2.2, such that,

Ψsp =
∑
k

Cν,ke
ik·ruν,k(r). (2.10)
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This is known as the envelope function approximation and is valid when the dot

dimensions are much larger than the lattice constant. It is also assumed that the

cell functions have a weak k dependence such that Eqn. 2.10 can be expressed as,

Ψsp = uν,0(r)
∑
k

Cν,ke
ik·r

= uν,0(r)fsp(r),

(2.11)

where fsp(r) ≡
∑

k Cν,ke
ik·r is the single particle envelope function. In the effective

mass approximation, the envelope functions can be obtained by solving[
p2

2m∗ + Veff(r)

]
fsp(r) = Efsp(r), (2.12)

where Veff(r) is the effective potential seen by the carrier, and E is the energy of the

state. The QDs in question are typically flattened lens- or pyramid-shaped structures

with vertical dimensions that are smaller than the in-plane lateral dimensions. They

have also been found to exhibit approximately equidistant energy spacings between

excited states. Therefore, an appropriate choice for the confinement potential Veff(r)

is an infinite square well in the ẑ growth direction and a harmonic potential in the

lateral plane of the dot, such that in cylindrical coordinates,

Veff(r) =

⎧⎨
⎩

1
2
m∗ω2

0(x
2 + y2); −L/2 ≤ z ≤ L/2

∞ otherwise,

where L is the height of the QD and �ω0 is the energy spacing between harmonic

oscillator states. The solution to Eqn. 2.12 is given by,

fsp(r) = AHnx(x)Hny(y) exp

[−(x2 + y2)

2k2

]
cos

(πz
L

)
, (2.13)

where A is a normalization constant, Hn are the Hermite polynomials, and k ≡√
m∗ω0/�. The corresponding energy levels are,

Enx,ny ,nz = Ein plane + Ez

= �ω0 (nx + ny + 1) +
�
2n2

z

8m∗L2
.

(2.14)

Due to strong vertical confinement, only the ground state excitation (nz = 1) along

the z-direction is found in the quantum dot. The wave functions are labelled using

the nomenclature of atomic physics such that angular momentum eigenstates l = 0,

±1, ±2,. . . are labelled as s, p, d,. . . , respectively.
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2.3.2 Optical Transitions

Excitation of QDs with laser pulses can create a bound exciton (electron-hole pair).

In the strong confinement approximation, it is assumed that the contribution to the

exciton binding energy resulting from the Coulomb interaction between the electron

and hole, which scales as 1/L, can be ignored when compared with the contribution

from the confinement energy, which scales as 1/L2. This is valid for small dots

where the quadratic term due to confinement dominates. This assumption implies

that the two-particle state can be written as the product of the single-particle states.

It is further assumed that the strain breaks the degeneracy between the heavy-hole

and light-hole states to the extent that mixing between the two can be ignored, and

the hole state can be written in terms of the zone center cell function |uh〉 ≡ |uHH,0〉,
associated with the heavy hole. Written in Dirac notation, we have,

|Ψeh〉 = |Ψe〉 |Ψh〉 ,
= |uh〉 |fh〉 |ue〉 |fe〉 ,

(2.15)

where |ue〉 = |uC,0〉. In the two-particle picture, the probability for an optical tran-

sition is given by,

P = | 〈Ψeh| ε̂ · p |0〉 |2, (2.16)

where ε̂ is the polarization vector of the light field and |0〉 is the crystal ground

state, also called the vacuum state. In the single particle picture, this is equivalent

to,

P = | 〈Ψe| ε̂ · p |Ψh〉 |2. (2.17)

It is assumed that since the envelope functions vary slowly on the scale of a unit

cell, the momentum operator only acts on the cell functions, giving,

P = | 〈ue| ε̂ · p |uh〉 |2| 〈fe|fv〉 |2,
= ε̂ · (x̂± iŷ)μeh| 〈fe|fv〉 |2,

(2.18)

where μeh is the dipole moment. As indicated in Fig. 2.3(b), transitions between the

heavy-hole valence band and the conduction band are circularly polarized. How-

ever, for dots that do not possess rotational symmetry, the exchange interaction

induces mixing of the angular momentum eigenstates, altering the selection rules

as outlined in the following section.
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2.3.3 Multi-Particle Interaction

Due to the strong spatial localization, the contribution of the direct Coulomb in-

teraction to the binding energy is typically around 10meV [147]. The exchange

Coulomb interaction between the electron and hole is typically two orders of mag-

nitude smaller and leads to the fine structure splitting of the exciton states. The

Hamiltonian describing electron-hole exchange for an electron with spin Se and a

hole with spin Jh is given by [148],

Hexch = −
∑

i=x,y,z

(
aiJh,i · Se,i + biJ

3
h,i · Se,i

)
. (2.19)

The four exciton states can be labelled by the total angular momentum projec-

tions M = Se,z + Jh,z. For an exciton formed by a conduction electron (Se = 1/2,

Se,z = ±1/2) and a valence heavy hole (Jh = 3/2, Jh,z = ±3/2), the total angular

momentum projection is either M = |2| or M = |1|. The |M | = 2 states cannot

couple to light that carries a spin-angular momentum of � and are therefore called

“dark excitons”, whereas the |M | = 1 states are optically active and called “bright

excitons”. The exchange interaction can be written in the exciton basis {|−1〉, |+1〉,
|−2〉, |+2〉} as

Hexch =
1

2

⎛
⎜⎜⎜⎜⎜⎝
+δ0 δ1 0 0

δ1 +δ0 0 0

0 0 −δ0 δ2

0 0 δ2 −δ0

⎞
⎟⎟⎟⎟⎟⎠ (2.20)

where δ0 = −3/4(az+9bz/4), δ1 = 3/8(bx− by), and δ2 = 3/8(bx+ by). The constants

az, bx, by, and bz are material parameters The Hamiltonian is block diagonal in this

basis, which means that there is no mixing between the bright and dark excitons

but the interaction introduces a splitting between them of 2�δ0. For rotationally

symmetric dots (D2d symmetry), bx = by, resulting in degenerate bright states and

circularly-polarized selection rules (see Fig. 2.4(a)). (The splitting between the

dark states, �δ2, persists despite symmetry due to the exchange interaction.) How-

ever, for elliptical dots with broken symmetry, angular momentum is no longer a

good quantum number and the eigenstates are symmetric and antisymmetric com-

binations of the two |M | = 1 states and split from each other by �δ1 (which is on the

order of 100μeV). The resulting eigenstates, are labelled |10〉 = (|+1〉 − |−1〉)/√2
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and |01〉 = (|+1〉+ |−1〉)/√2 and couple to linearly-polarized light (Πx, Πy) aligned

along the major and minor axes of the quantum dot (see Fig. 2.4(b)).

It is also possible to optically excite a biexciton in a QD. The energy of the exciton

to biexciton transition will differ from that of ground state to exciton transition by

the binding energy of the biexciton, �Δ, which can be positive (binding) or negative

(anti-binding) and are typically on the order of a few meV [149].

Figure 2.4: Energy level diagram and optical selection rules for excitons confined
to: (a) spherically symmetric QDs, and (b) asymmetric QDs. For symmetric QDs,
the bright exciton states (|↑⇓〉, |↓⇑〉) are degenerate and coupled to the ground state
(|00〉) and biexciton state (|↑⇓↓⇑〉) by circularly polarized light (σ±). The exciton
states are not optically coupled to each other but transitions can occur due to spin-
flip scattering. The dark states (|D1,2〉) are split by the exchange interaction and
are not optically coupled to other transitions. However, recent experiments have
shown that they can be generated via a metastable biexciton state and coherently
controlled [150]. For asymmetric QDs the exciton states (|01〉, |10〉) are symmet-
ric and antisymmetric superpositions of the symmetric bright exciton states. The
exchange interaction introduces a splitting �δ1 between them.

Short optical pulses, resonant with the exciton transition, but with a bandwidth

that is comparable to, or larger than Δ, can result in the excitation of the biexciton

and lead to a breakdown of the two-level model. It has been shown that the occu-

pation of the biexciton can be suppressed by using circularly polarized light [151].

For example, for excitation with σ+ light, the state at t = 0 is given by,

|ψ(t = 0)〉 = 1√
2
(|10〉+ i |01〉) . (2.21)

For small times relative to the inverse fine structure splitting in frequency, the exci-

ton is in the |↑⇓〉 state and the σ+-polarized pulse cannot excite the biexciton state



49

due to the Pauli exclusion principle. In effect, the small splitting energy relative to

the transition frequency �ω10, transforms the selection rules into that of a symmetric

quantum dot for short times. For longer times relative to the inverse fine structure

splitting in frequency, the state evolves into an admixture of |↑⇓〉 and |↓⇑〉, allowing

for the creation of a biexciton.

|ψ(t)〉 = e−iω10t

√
2

(
e−iδt/2 |10〉+ ie+iδt/2 |01〉)

= e−iω10t [cos (δt/2) |↑⇓〉+ i sin (δt/2) |↓⇑〉] .
(2.22)

In addition to excitation via the exciton states, the biexciton can also be gen-

erated using a two-photon absorption from the ground state |00〉 using light with

frequency ω00−10 −Δ/2, i.e., half the frequency of the direct transition.

2.4 Eight-Band, Strain-Dependent k·p Theory

While the approximations invoked in Sec. 2.3 provide a qualitative picture of the

optoelectronic properties of a QD, more accurate calculations of the confined states

are typically carried out using k·p theory, including the contribution from multiple

bands and the effects of the residual strain field [152, 153, 154]. The first project in

this thesis (see Chap. 5) used eight-band, strain-dependent k·p theory to explore the

tunability of the biexciton binding energy in an InAs/GaAs QD. The k·p computer

code used in this work was developed by Craig Pryor and Michael Flatté at the

University of Iowa. The computational method and implementation are described

in detail in Ref. [153] and Ref. [154].

The procedure for calculating the energies and wave functions using this method

is as follows. First, a realistic QD geometry and composition is defined on a discrete

three-dimensional grid. Next, the elastic energy of the system, given by,

Eelast =
1

2

∫
[Cxxxx(ε

2
xx + ε2yy + ε2zz) + Cxxxx(εxxεyy + εxxεzz + εyyεzz)

+ 2Cxyxy(ε
2
xy + ε2xz + ε2yz)] d

3x,

(2.23)

is minimized as a function of the displacement of the atoms, which provides an

estimate of the residual strain field. The constants Cijkl are elastic constants of

the material and εij is the strain tensor. In addition to mixing, the strain field
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also induces a polarization P, which creates an electrostatic potential Vp(r). The

potential can be calculated using Poisson’s equation, which is given by,

∇ ·P = ∇[εS(r)∇Vp(r)], (2.24)

where εS(r) is the static dielectric constant. The total Hamiltonian to be diagonal-

ized is given by,

Htot = H0(r) +Hs(r)− eVp(r), (2.25)

where H0(r) is the k·p Hamiltonian, and Hs(r) is the strain Hamiltonian. The form

of the Hamiltonian in the eight-band basis of the doubly-degenerate conduction,

heavy hole, light hole and split-off bands, is given in Ref. [154]. The single-particle

electron and hole wave functions, {ϕe(re), ϕh(rh)}, and energies {Eh0, Ee0} are

determined in the envelope approximation, by solving the Schrödinger equation on

the discrete grid using finite-difference methods to estimate derivatives.

The properties of multi-particle states are calculated using the Hartree method,

which assumes that the state can be written as a product of single-particle states.

The wave functions and energies are found using a self-consistent iterative approach

that solves the Schrödinger equation for the electron or hole in the potential created

by the other particle. This provides an estimate of the direct Coulomb interaction

between the particles. For example, in this approximation, the exciton wave func-

tion can be written as ψ(r) = ϕe(re)ϕh(rh) and the potentials are found by solving

Poisson’s equation, given by,

4πe|ϕe(r)|2 = ∇[εS(r)∇Vh(r)],

−4πe|ϕh(r)|2 = ∇[εS(r)∇Ve(r)],
(2.26)

where Ve and Vh are the potential experienced by the electron and hole, respec-

tively. The energy and wave function of each particle in the potential of the other is

determined by solving the Schrödinger equation,

{Htot + eVh(rh)}ϕh(rh) = Ehϕ(rh),

{Htot − eVe(re)}ϕe(re) = Eeϕ(rh).
(2.27)

Equations 2.26 and 2.27 are solved iteratively until convergence of the energies to

an acceptable threshold. The binding energy of the exciton is given by,

Eexc,bind = [Eh0 + Ee0 − Eh − Ee]/2, (2.28)
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where the factor of 1/2 avoids double counting of the Coulomb interaction.

2.5 Coherent Control Using Ultrafast Optical Pulses

The work presented in this thesis considers the coherent excitation of a two-level

system, consisting of the vacuum crystal ground state and the confined exciton

state, labelled here as |0〉 and |1〉, respectively. This section presents a derivation of

the so-called optical Bloch equations (OBEs) —the equations of motion that govern

the laser-qubit interaction, based on the approach taken in Ref. [155]. We also

examine the role of dephasing, paying particular attention to excitation-induced

dephasing that results from the field-intensity dependent coupling of the qubit to

phonons in its solid state environment.

2.5.1 Optical Bloch Equations

An arbitrary superposition of the two-level system is written as,

|ψ(t)〉 = C0(t) |0〉+ C1(t) |1〉 , (2.29)

with complex probability amplitudes C0 and C1. The Hamiltonian for optical exci-

tation of this two-level system is given by,

Hsys = H0 +Hint, (2.30)

where H0 is the Hamiltonian describing the electronic structure of the unperturbed

multi-particle states, and Hint represents the interaction of the states with laser

light. In the {|0〉 , |1〉} basis, the unperturbed Hamiltonian is,

H0 =
�ω10

2
σz, (2.31)

where �ω10 = �(ω1 − ω0) is the transition energy between states |0〉 and state |1〉,
and σi are the Pauli matrices. The interaction Hamiltonian for the electric dipole

transition is given by,

Hint = −d · E(t), (2.32)

where d = −er, is the optical dipole moment operator. E(t) is the electric field of

the optical pulse, given by,

E(t) =
1

2

{
ε̂E0(t)e

−i[ωlt+φ(t)] + c.c.
}
. (2.33)
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where ε̂ is the polarization unit vector, E0(t) is the field envelope, ωl is the center

frequency of the laser, and φ(t) is the phase. Note that the electric field has been

expressed in the electric dipole approximation, which neglects the spatial variation

of the field strength across the dot. The matrix elements of the dipole operator are:

〈i|d |i〉 = 0 and 〈i|d |j〉 = dij = d∗
ji. For a linearly polarized transition, the dipole

element can be written as a real quantity d ≡ dij = dji [155]. The interaction

Hamiltonian can then be expressed in terms of the Pauli spin matrices as

Hint = −d · E(t)σx. (2.34)

The total Hamiltonian is then given by

H =
1

2
�ω10σz − d · E(t)σx. (2.35)

The Heisenberg equations of motion for the three Pauli matrices are then given by,

σ̇x = −ω10σy,

σ̇y = ω10σx +

(
2

�

)
d · E(t)σz,

σ̇z = −
(
2

�

)
d · E(t)σy.

(2.36)

The equations of motion can be written in terms of the expectation value of the

Pauli operators si = 〈σi〉, such that,

ṡx = −ω10sy,

ṡy = −ω10sx + κE(t)sz,

ṡz = −κE(t)sy,

(2.37)

where κ ≡ 2d · ε̂/�. (Note that this definition assumes that E(t) is linearly po-

larized such that ε̂ = ε̂∗.) Equations 2.37 describe the precession of the pseu-

dospin vector S = (sx, sy, sz), also called the Bloch vector, around a torque vector

ΛF (t) = (−κE(t), 0, ω10), such that

Ṡ(t) = ΛF (t)× S(t). (2.38)

The components of S can be expressed in terms of the probability amplitudes C0

and C1, as
sx(t) = 2Re{C0(t)C1(t)},
sy(t) = −2 Im{C0(t)C1(t)},
sz(t) = |C1(t)|2 − |C0(t)|2.

(2.39)
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The component sx (sy) are proportional to the real (imaginary) parts of the dipole

moment while sz is the population inversion of the two-level system. If the state

of the system remains normalized for all time, then the components of S satisfy

s2x(t) + s2y(t) + s2z(t) = 1.

The precession of S around Λ can be visualized on the Bloch sphere, a geometric

representation of the two-level system, shown in Fig. 2.5. The Bloch vector lies on

the surface of the sphere, which uniquely identifies any possible state of the two-

level system. As described in Sec. 1.4.1, lines of longitude mark lines of constant

phase between the two basis states, while lines of latitude mark a constant relative

amplitude. The south and north pole mark the states |0〉 or |1〉, respectively, while

the equator indicates an equal superposition of the states |ψ〉 = (|0〉+ eiφ |1〉)/√2.

Figure 2.5: Precession of the Bloch vector S around the torque vector Λ depicted
on the Bloch sphere. Control over the light field provides control over the direction
and speed of rotation.

Note that the vectors S and ΛF (t) are rapidly varying quantities. The vector S

rotates around ΛF (t) at a frequency |ΛF (t)| = √
[κE(t)]2 + ω2

10, while ΛF (t) varies

rapidly because κE(t) oscillates at the laser frequency, which is typically close to

resonance with the transition frequency ω10. These fast variations can be removed,

providing a more intuitive picture of the system dynamics, by moving to a coordi-

nate frame that rotates in the counter clockwise direction at the instantaneous laser

frequency ωinst ≡ ωl + φ̇(t) about the ẑ direction. The transformation is carried out

by writing ΛF (t) in terms of three vectors,

ΛF (t) = Λ+(t) +Λ−(t) +Λ0(t), (2.40)
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where
Λ+ = [−κE0(t) cos (ωinstt),−κE0(t) sin (ωinstt), 0],

Λ− = [−κE0(t) cos (ωinstt),+κE0(t) sin (ωinstt), 0],

Λ0 = [0, 0, ω10],

(2.41)

The vector Λ+ rotates counter clockwise about ẑ, while Λ− rotates clockwise about

ẑ. In a reference frame that is rotating counter clockwise at frequency ωinst, Λ+ is

stationary and Λ− rotates clockwise at a frequency 2ωinst. In this rotating reference,

the response of S to the fast variations associated with Λ− is negligible, allowing us

to ignore the resulting dynamics. The change to a rotating basis and the removal

of the non-resonant dynamics associated with Λ− is called the rotating wave ap-

proximation (RWA). The Bloch vector U in the RWA can be expressed in terms of S

as, ⎡
⎢⎢⎣
u

v

w

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

cosωinstt sinωinstt 0

− sinωinstt cosωinstt 0

0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣
s1

s2

s3

⎤
⎥⎥⎦ . (2.42)

The equations of motion for U is given by

U̇ = Λ×U, (2.43)

where the torque vector Λ, called the effective Rabi frequency, is defined as

Λ ≡ (−Ω, 0,Δ). (2.44)

Ω(t) ≡ κE0(t) is the bare Rabi frequency and Δ(t) ≡ ω10 − ωinst(t) is the instanta-

neous detuning of the laser from the transition. Expressing U̇ in terms of its vector

components, we have

u̇ = −Δv,

v̇ = Δu+ Ωw,

ẇ = −Ωv.

(2.45)

These equations are the OBEs that describe the dynamics of a two-level system

with the electric field of a laser pulse. Sec. 2.5.4 describes how these equations are

modified in the presence of dephasing that results from a coupling of the qubit to

its solid-state environment.
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2.5.2 Rabi Oscillations

In the case of resonant excitation with a CW laser beam (φ(t) = 0, Δ = 0), the Bloch

vector rotates about Λ, which points in the −x̂ direction, at the bare Rabi frequency

Ω(t) (see Fig. 2.6(a)). The angle Θ swept out by the Bloch vector is called the pulse

area and is given by,

Θ(t) =

∫ t

−∞
dt′ Ω(t′) =

μ

�

∫ t

−∞
dt′ E0(t

′). (2.46)

For a pulsed source, the total angle of rotation is Θ(∞). For example, if a qubit is in

the ground state, i.e., U = (0, 0,−1), then a pulse with an area Θ = π radians will

invert the two-level system. As a function of Θ, the inversion is given by,

w = 2 sin2 (Θ/2)− 1. (2.47)

The periodic inversions of the two-level system as a function of pulse area, plotted

in Fig. 2.6(b), are called Rabi oscillations.

Figure 2.6: Rabi rotations: (a) Rotation of the Bloch vector U around Λ by an angle
Θ, and (b) inversion, w, as a function of pulse area.

2.5.3 Adiabatic Rapid Passage

As described above, a resonant, transform-limited pulse with a pulse area of π ra-

dians can be used to invert a two-level system. However, this method is sensi-

tive to fluctuations in experimental parameters such as the optical dipole, laser

power, and laser detuning. Moreover, such a pulse would be unable to invert a
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inhomogeneously-broadened ensemble of QDs with high efficiency because of the

spread of transition energies and optical dipole moments. A more robust method

of state inversion that has a reduced sensitivity to these variations, is adiabatic

rapid passage. This approach differs from the Rabi method in that the detuning is

non-zero. Rather, the detuning changes as a function of time as the pulse is swept

through resonance, resulting in a rotation of the torque vector, Λ, about the ŷ axis,

as shown in Fig. 2.7(a). Provided the process is carried out adiabatically, the Bloch

vector will be “dragged” along, while precessing around Λ. The inversion is ro-

bust because at the end of the pulse, Λ points in the ẑ direction. One method of

Figure 2.7: State inversion using adiabatic rapid passage: (a) Dynamics of U and
Λ, and (b) inversion, w, as a function of pulse area.

achieving ARP is to use a linearly chirped pulse, for which the electric field is given

by,

E(t) =
1

2

{
ε̂E0(t)e

−i[ωlt+αt2] + c.c.
}
. (2.48)

where α is the temporal chirp rate. For such a pulse, the detuning of the pulse is

time dependent and is given by,

Δ(t) = ω10 − ωinst(t),

= ω10 − (ωl + 2αt),

= −2αt,

(2.49)

where it was assumed that the center frequency of the laser is resonant with the

transition, i.e., ωl = ω10. The effective Rabi frequency in this case is

Λ(t) = (−Ω(t), 0,−2αt). (2.50)



57

Consider excitation of a two-level system with a Gaussian pulse, with field strength,

E0(t) = E0 exp (−2 ln 2t2/τ 2), (2.51)

for which the torque vector undergoes a rotation about the ŷ axis. At early times the

torque vector will point in the −ẑ direction because the field strength is negligible

and the detuning is large and negative. At t = 0, the field strength is at its maximum

value and the detuning is zero such that the torque vector points in the −x̂ direction.

At late times, the field strength is once again negligible but the detuning is large and

positive such that the torque vector points in the +ẑ direction (see Fig. 2.7(a)). If

the Bloch vector follows the torque vector by precessing around it, the inversion can

be very efficient above a critical pulse area because the Bloch vector will also point

in the +ẑ direction. A signature of ARP and robust state inversion is the insensitivity

to pulse area above a certain threshold (see Fig. 2.7(b)). The requirements for

adiabaticity can be expressed mathematically as [156]:

Ω̇

Λ
� 1,

Δ̇

Λ
� 1.

(2.52)

A more intuitive description of the system dynamics during ARP can be obtained

in the so-called dressed states picture. In this approach, one solves the James-

Cummings Hamiltonian, based on a fully quantum mechanical model [157], to find

the time dependent eigenstates and eigenvalues of the coupled quantum dot-light

field system. In the RWA, the Hamiltonian is given by,

Ĥ =
1

2
�ω0σ̂z + �ωa†a+ �λ(σ+a+ σ−a†), (2.53)

where â† and â are the creation and annihilation operators of the light field, re-

spectively. The operators σ+ = |1〉 〈0| and σ− = |0〉 〈1| are the atomic transition

operators and λ is a measure of the atom-light coupling strength. The Hamiltonian

only couples the so-called bare states |0;N〉 and |1;N − 1〉, where |N〉 is the number

state of the light field with N photons. Diagonalizing the Hamiltonian provides the

energy eigenvalues, given by,

E±(t) = ±�

2

[
Ω2(t) + Δ2(t)

]1/2
. (2.54)
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This shows that the time-dependent splitting between the eigenstates is determined

by the magnitude of the effective Rabi frequency, given by Λ(t) (see Eqn. 2.44). The

instantaneous eigenstates, also called the dressed states, can be expressed in terms

of the bare states, and are given by,

|ψ+;N〉 = cos (Φ)eiφ/2 |0;N〉+ sin (Φ)e−iφ/2 |1;N − 1〉 ,
|ψ−;N〉 = − sin (Φ)e−iφ/2 |0;N〉+ cos (Φ)eiφ/2 |1;N − 1〉 ,

(2.55)

where tan (2Φ) ≡ Ω(t)/Δ(t), and φ(t) is the phase of the electric field as defined in

Eqn. 2.33. During ARP, the Hamiltonian (Eqn. 2.53) is evolved adiabatically such

that the system remains in one of the instantaneous eigenstates |ψ+;N〉 or |ψ−;N〉
for all time. In contrast, for resonant excitation with a TL pulse, the system is in

a superposition of |ψ+;N〉 and |ψ−;N〉. Figure 2.8(a) and (b) show the evolution

of the dressed state splitting for a resonant transform-limited pulse and a positively

chirped pulse, respectively.

In addition to providing robust inversion, ARP can also serve as a probe of the

strength of phonon-mediated dephasing in a system. This is because the sign of

the chirp parameter α dictates whether the system traverses the lower or upper

adiabatic branch. For positively-chirped pulses, the system traverses the lower

adiabatic branch, for which diabatic transitions to the upper branch via phonon

absorption are suppressed at low temperatures. For negatively-chirped pulses on

the other hand, the system traverses the upper adiabatic branch, for which dia-

batic transitions via phonon emission can occur in the vicinity of the anti-crossing.

Therefore the coupling to phonons will manifest itself as a difference in inversion

efficiency as a function of pulse area for positively- and negatively-chirped pulses

[138, 139, 140]. Other dephasing mechanisms, such as those stemming from inter-

actions with carriers trapped in the wetting layer depend on the field intensity and

pulse bandwidth [158], but would not exhibit a dependence of the sign of the pulse

chirp. Chapter 6 presents the results from an experimental demonstration of ARP

using subpicosecond optical pulses. The results also demonstrate for the first time,

the chirp-sign dependence of ARP, confirming the dominance of phonon-mediated

dephasing for exciton qubits confined to SAQD.
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Figure 2.8: Splitting of the dressed states for (a) a TL, resonant laser pulse, and (b)
a positively chirped pulse (α > 0). For the TL pulse, the system is in a superposition
of |ψ±;N〉, whereas for the positively chirped pulse the system traverses the lower
adiabatic branch, remaining in the state |ψ−;N〉 for all time.

2.5.4 Effects of Decoherence

A qubit can lose coherence due to interactions with its environment, placing a fun-

damental limit on the number of operations that can be performed before the in-

formation is lost. In the low excitation regime, these effects can be modelled using

phenomenological decay constants, γ1 = 1/T1 and γ2 = 1/T2, that describe the rates

of radiative recombination and dephasing due to elastic scattering, respectively. The

modified OBEs in this regime are given by,

u̇ = −Δv − γ2u,

v̇ = Δu+ Ωw − γ2v,

ẇ = −Ωv − γ1(w + 1),

(2.56)

resulting in an exponential decay of the coherence of the qubit. At low temper-

atures, it has been shown that the coherence time is limited only by the radiative

lifetime of the exciton, i.e. T2 = 2T1. In SAQDs, four-wave mixing experiments have

been used to measure T2 times between 400 ps and 1 ns, with a strong dependence

on confinement energy [86, 87, 88].

In the strong excitation regime, recent experiments [54, 69, 137] have uncov-

ered an excitation-induced dephasing mechanism that leads to a pulse-intensity de-

pendent damping of Rabi oscillations, beyond that predicted by the homogeneous

broadening of the exciton transition. It has been attributed to the coupling of the

qubit to its solid-state environment via phonons [90, 54, 130]. During manipula-

tion of the qubit, the pulse drives the charge configuration in the quantum dot at

the Rabi frequency, which results in an enhanced coupling to LA phonons at the
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same frequency via the deformation potential. The total Hamiltonian, including the

bath and interaction terms, is given by,

H = Hsys +
∑
q

�ωq b̂
†
q b̂q +

∑
q

�(gq b̂
†
q + g∗q b̂q) |1〉 〈1| , (2.57)

where gq is the exciton-phonon coupling strength and b̂q (b̂†q) are annihilation (cre-

ation) operators for phonons with momentum q and frequency ωq. Equations of

motion that do not require tracking of the full evolution of the environment can

be derived under the Born-Markov approximation, which assumes that: (i) the en-

vironment is a large system that is unaffected by coupling to the exciton, and (ii)

the correlation times of the phonons is much shorter than the time scales associ-

ated with the exciton dynamics. At this level of approximation, the model can only

account for single-phonon processes. For more details regarding the model, see

Ref. [90] and Ref. [137].

The spectral density of the interaction between LA phonons and an exciton de-

pends on the electron-phonon coupling form factor, which for identical Gaussian

electron and hole wave functions, is given by,

J(ω) = αω3e−(ω/ωc)2 , (2.58)

where α is a coupling constant, and ωc is a cut-off frequency that depends on the

spatial extent of the wave functions. The bath correlation function, K̃(t), can be

expressed in terms of J(ω) as,

K̃(t) =

∫ ∞

0

dω J(ω) coth

(
�ω

2kBT

)
cos (ωt), (2.59)

where kB is the Boltzmann constant and T is the temperature. The OBEs can be

expressed in terms of J(ω) and K(ω) =
∫∞
0

dt K̃(t)eiωt as,

u̇ = Δv −
(
ΔΩ

Λ2

)
Re[K(Λ)]w − πΩJ(Λ)

2Λ
−
(
Ω

Λ

)2

Re[K(Λ)]u,

v̇ = −Δu+ Ω

(
1 +

Im[K(Λ)]

Λ

)
w −

(
Ω

Λ

)2

Re[K(Λ)]v,

ẇ = −Ωv,

(2.60)

where the functions are evaluated at the time-dependent Rabi frequency Λ. These

equations show that the qubit suffers an intensity-dependent dephasing rate that
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arises from the real part of K(ω) and a renormalization of the rotation frequency

of the Bloch vector that results from the imaginary part of K(ω). Figure 2.9(a)

and (b) show the spectral dependence of the real and imaginary part of K(ω), for

different temperatures for a realistic coupling parameter (α = 0.025 ps2) and cut-off

frequency (�ωc = 1.3meV).

Note that this model for the exciton-phonon interaction predicts a decoupling

from the bath, provided the Rabi energy of the pulse exceeds the peak of the cor-

relation spectrum. However, the results from Ch. 6 suggest that for larger Rabi

frequencies, multi-phonon processes and non-Markovian effects, not included in

the model, may increase coupling to the phonon bath. The findings suggest that

simply increasing the Rabi frequency may not suffice for decoherence mitigation in

these systems.

Figure 2.9: Spectral dependence of (a) the real, and (b) imaginary part of the
bath correlation function a coupling constant α = 0.025 ps2 and a cut-off frequency
�ωc = 1.3meV. Re[K(�ω)] is responsible for dephasing and Im[K(�ω)] results in
a renormalization of the bare Rabi frequency. The strength of these effects are
observed to increase with increasing temperature.

Decoherence is one of the great challenges faced by quantum computation sys-

tems and finding strategies to reduce or control decoherence in the system is of crit-

ical importance. Interactions with the phonon bath can be understood to transiently

alter the resonance frequency of the qubit, resulting in an accumulated phase er-

ror. A promising approach towards limiting decoherence is dynamical decoupling,

the quantum equivalent of a classical noise filter. It employs a series of optical

pulses with a pulse area of π radians to periodically flip the qubit, changing the
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sign of the accumulated phase error [33, 35, 46, 92]. Provided the pulse spacing

is shorter than the correlation time of the phonon bath, the total phase error can

be greatly reduced. Compared to traditional quantum error correction techniques

DD is seen to be modest on resources [159], requiring only a few decoupling pulses

to significantly improve the coherence time. Hodgson et al. [46] showed that the

decoherence can be dramatically reduced if sufficiently rapid DD pulses (< 500 fs)

are employed. The predictions of Hodgson et al. could pave way for a scalable

computing system with greatly reduced phase errors. However, current optical con-

trol experiments have been limited to optical pulses longer than 5 ps, precluding

the demonstration of dynamical decoupling in these systems. The implementation

of fast, high fidelity π pulses via ARP, as described in Ch. 6, should prove to be

important for this effort.

2.6 Optimal Quantum Control Using Shaped Optical Pulses

The interaction of the exciton qubit with a TL laser pulse will rotate the qubit about

a fixed axis in the equatorial plane. Complete control of the qubit can be achieved

using two phase-locked TL pulses, designed to rotate the Bloch vector to an arbi-

trary point on the Bloch sphere. Alternatively, the evolution and final state of the

two-level system can be engineered by manipulating the amplitude and phase of the

optical pulse. In this work, we use a 4f pulse shaper, with a programmable, 128-

pixel spatial light modulator (SLM) at the Fourier plane, to provide a more versatile

form of control of the pulse properties and the concomitant system dynamics. A de-

tailed description of the experimental apparatus and related constraints is provided

in Sec. 3.4.

The 4f pulse shaper can be modelled as a linear filter [112]. In this case, the

action of the filter on the input pulse can be described in the time domain as the

convolution product,

Eout(t) = R(t)⊗ Ein(t), (2.61)

where Ein (Eout) is the electric field of the input (output) pulse, and R(t) is the

impulse response of the filter. However, for femtosecond pulses, it is difficult to

design optical elements that can apply the filter in the time domain. Instead, the
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pulse is shaped in the frequency domain such that,

Ẽout(ω) = M(ω)Ẽin(ω), (2.62)

where Ẽin (Ẽout) is the complex spectrum of the of the input (output) pulse, and

M(ω) is the transfer or mask function of the filter. As described in Sec. 3.4, the mask

is comprised of a horizontal polarizer, followed by two liquid-crystal SLMs, and then

another horizontal polarizer. The effect of the horizontal polarizers and voltage-

controlled liquid-crystal pixels can be described using the Jones matrix formalism.

The input beam Ein = Exx̂+ Eyŷ can be written as,

Ein =

[
Ex

Ey

]
. (2.63)

The mask function M modulates the input beam to produce the shaped output,

Eout. For a single pass through the SLM, the Jones matrix for the mask is given by

M = H · LPR(φ2, θ2) · LPR(φ1, θ1) ·H, (2.64)

where,

H =

(
1 0

0 0

)
, (2.65)

is the Jones matrix for a horizontal polarizer, and

LPR(φ, θ) =

(
eiφ/2 cos θ2 eiφ/2 cos θ2

eiφ/2 cos θ2 eiφ/2 cos θ2

)
, (2.66)

is the Jones matrix for a phase retarder with its optical axis at an angle θ, measured

from the positive x̂ axis, that imparts a phase retardance of φ radians. If the optical

axis of the first and second liquid-crystal array are at +π/4 and −π/4, respectively,

then the mask function is given by,

M(φ1, φ2) = ei(φ1+φ2)/2

[
cos

(
φ1−φ2

2

)
0

]
. (2.67)

Therefore, the output beam is given by,

Eout = x̂Ex cos

[
φ1(ω)− φ2(ω)

2

]
exp

[
i
φ1(ω) + φ2(ω)

2

]
, (2.68)
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showing that the pulse shaper provides independent control of the amplitude and

phase of the frequency components. Therefore, the mask function can be written

as,

M(ω) = AM(ω) exp [iΦM(ω)], (2.69)

where AM(ω) ≡ cos {[φ1(ω)− φ2(ω)]/2} is the amplitude mask and ΦM(ω) ≡ [φ1(ω)+

φ2(ω)]/2 is the phase mask.

Changes to either the amplitude or phase mask will shape the driving field and

therefore alter the qubit dynamics via the interaction Hamiltonian. As previously

mentioned, the science of manipulating the Hamiltonian to drive the system to a

desired final state is called optimal quantum control. Consider a quantum gate with

a desired target state defined by a density matrix ρI. If the pulse drives the system

to a final state with density maxtrix ρP, then the fidelity of the operation can be

defined as [16],

F = Tr[ρpρI ]. (2.70)

An optimization algorithm that manipulates the pulse shape via the mask function,

M(ω), can use the fidelity as the objective function that is to be maximized. The

frequency dependence of the mask can be parametrized using any convenient func-

tion. For example, the optimization routine used in Ch. 5 used a phase mask defined

by a cosine function, given by,

ΦM(ω) = α cos [γ(ω − ω10)− δ]. (2.71)

The parameters α, γ, δ and the pulse area Θ were optimized, subject to constraints

that restricted them to experimentally accessible values. The fidelity is now a func-

tion of these four variables, such that,

F = f(α, γ, δ,Θ). (2.72)

For a given initial vector qi = (αi, γi, δi,Θi), the optimization algorithm will drive

the parameters to local optima in fidelity Fopt = f(αopt, γopt, δopt,Θopt). The op-

timization routine is repeated for more initial vectors, distributed using a Sobol’

sequence, to provide sufficient coverage of the four-dimensional constrained pa-

rameter space. The local optima with the highest fidelity is then used to define the

optimal pulse shape.
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Pulse shaping is used to achieve quantum control in the three projects described

in this work. In Ch. 4, optimal quantum control theory is used to design pulses

that can implement simultaneous high fidelity gates in two uncoupled QDs using a

single laser pulse. The work presented in Ch. 5, applies optimal quantum control

to implement a C-ROT gate in the exciton-biexciton four-level system. In Ch. 6,

phase-only shaping is used to create chirped laser pulses for ARP.



Chapter 3

Experimental Methods

This chapter presents the experimental techniques used to demonstrate ARP as pre-

sented in Ch. 6. Section 3.1 begins with a description of the QD sample structure,

a discussion of the ensemble photoluminescence spectrum, and the technique used

to isolate single QDs from the ensemble. Sec. 3.2 describes how PL and PLE spec-

troscopy are used to elucidate the electronic structure of QDs. The apparatus used

to implement optical quantum control and read out the quantum state is presented

in Sec. 3.3. Sec. 3.4 discusses the function of the pulse shaper and the associated

experimental constraints. Sec. 3.5 describes the techniques used to characterize

the pulse, including the use of multiphoton intrapulse interference phase scan (MI-

IPS) to compensate for phase distortions, the knife-edge technique to measure the

focused spot-size of the laser, and intensity autocorrelations to determine the tem-

poral pulse width.

3.1 InAs/GaAs Quantum Dot Sample

The quantum dot sample studied in this work (labelled UCF-628, piece #7) was

grown using epitaxial techniques by Dennis Deppe at the University of Central

Florida. As described in Sec. 2.1(b), the structural and optical properties of QDs,

grown using the Stranski-Krastanov growth mode, depend on the growth condi-

tions that are employed. Figure 3.1 shows a schematic of the sample structure. The

sample is grown on an n-doped GaAs substrate with AlGaAs diffusion barriers. The

InAs QDs are embedded in a GaAs matrix. Figure 1.2(d) shows an AFM image prior

to capping with GaAs, taken by Dennis Deppe, for a sample grown under similar

conditions to UFC-628. The QDs were measured to have an average height of 5 nm

and a lateral width between 15 nm to 25 nm. The growth conditions were tailored to

produce a reduced areal density of QDs with s-shell transition wavelengths around

1.3μm at low sample temperature. Growing the samples at reduced temperature

66
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Figure 3.1: Schematic of the quantum dot structure used in this work. The
Al0.5Ga0.5As layers, with a higher band gap energy than GaAs (1.998 eV versus
1.424 eV at 300K), serves to trap photoexcited carriers within the GaAs layer that
surrounds the QD.

helped to eliminate intermixing of indium (In) and Ga, resulting in an indium-rich

core (almost pure InAs). The confinement energy was then shifted to lower values

by covering the QDs with In0.2Ga0.8As. The areal density was controlled by slowing

down the growth rate.

The spectral dependence of the ensemble PL intensity from UCF-628, measured

using PL spectroscopy at a sample temperature of 10K, is shown in Fig. 3.2(a).

(See Fig. 1.6(a) for a description of the experimental technique.) The PL spectrum

shows three distinct peaks and a shoulder on one of the peaks. PLE spectroscopy

helped identify them to be the result of a bimodal size distribution of QDs. Emis-

sion from the high-energy and low-energy subsets are indicated by red and blue

dashed vertical lines, respectively. The high-energy subset has a p-shell emission

peak at 1152 nm and a s-shell emission peak at 1220 nm, with an energy separation

of 60meV. The low-energy subset has a p-shell emission peak at 1190 nm and an

s-shell emission peak at 1294 nm, with an energy separation of 84meV. The large

energy separation between the p- and s-shells allows for effective suppression of

scattered laser light during coherent control experiments performed on the p-shell,

where the quantum state is read out via emission from the s-shell.

The large areal densities of QDs can make single-dot spectroscopy a challenging

proposition. For this reason, we elected to use the low-energy subset of QDs that

had an areal density of 1μm−2 (compared to 10μm−2 for the high-energy subset).

Even a diffraction-limited laser spot size (∼2μm) would excite 10–15 QDs in the

low energy subset and 100–150 QDs in the high energy subset. The isolation of
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Figure 3.2: (a) Spectrally-resolved ensemble PL from UFC-628-7. The sample has
a bimodal distribution of QDs sizes, resulting in a pair of s-shell and p-shell tran-
sitions, marked by the pairs of blue and red vertical lines. (b) Spectrally-resolved
micro-PL collected through the 0.4μm aperture S-15 on mask 12.

single QDs from the ensemble therefore requires the use of a spatial filter, which

is created by depositing an apertured metal mask on the sample. (Fabrication of

the mask was carried out by CMC Microsystems using electron-beam lithography.)

Figure 3.3 shows the pattern of apertures on the mask and a photograph of the

sample within the cryostat. Each of the numbered masks (1–25) have apertures of

a fixed radius as labelled on the schematic. The apertures are labelled by the mask

number and an alphanumeric label that denotes the row and column. Figure 3.2(b)

shows the spectrally resolved PL from the 0.4μm aperture S-15 on mask 12.

3.2 Photoluminescence and Photoluminescence Excitation Spectroscopy

Photoluminescence and photoluminescence excitation spectroscopy are two tech-

niques used to measure the electronic structure of quantum dots. The optical exci-

tation scheme for each technique is illustrated in Fig. 1.6. PL spectroscopy provides

a means of identifying the allowed transitions within the quantum dots. In this

technique, the wavelength of the laser source is tuned above the bandgap of GaAs

to create electron-hole pairs in the GaAs matrix surrounding the quantum dot. The

excited carriers relax via phonon emission and carrier-carrier scattering before re-

combining radiatively in one of the discrete transitions in a quantum dot. The

emitted light, or photoluminescence, is spectrally resolved using a spectrometer.

With the aid of a spatial filter, PL spectroscopy can be used to identify the transition

energies of confined states in single quantum dots. On the other hand, when the
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Figure 3.3: (a) Schematic of the apertured gold mask. The mask is divided into 25
sub-masks, each with an array of apertures of a defined radius (indicated below the
mask number). (b) Detail of a sub-mask with alphanumeric labelling scheme used
for aperture identification. Also shown are the “teeth” at the edges of the mask that
are used for ease of alignment. The dimensions of the mask features are indicated.
(c) Photograph of sample viewed through the ultra-thin window of the cryostat.

laser beam is used to excite an ensemble of QDs, it provides a means for identify-

ing the average separation between the ground and excited states and a measure

of the inhomogeneous broadening that results from variations in the QD size and

composition. Figure 3.2 shows spectrally resolved ensemble PL from the quantum

dot sample used in this work.

PLE spectroscopy provides a means of identifying the excited state transitions of

a QD. For this technique, the photoluminescence from the ground state is measured

as a function of the wavelength of the laser as it is scanned across the transition

of an excited state. For example, in this work, PLE spectroscopy was used to mea-

sure the transition energy of the p-shell exciton by measuring the PL intensity at
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the s-shell exciton transition. The p-shell state decays non-radiatively, via phonon

emission, into the s-shell exciton so the time-averaged PL from the s-shell provides

a measure of the occupation of the excited state.

3.3 Single-Dot Spectroscopy

The coherent control experiments on single quantum dots were carried out using

the control apparatus shown in Fig. 3.4. The laser source is a 76MHz infrared

(IR) optical parametric oscillator (OPO) generating pulses with a TL pulse width of

120 fs, that are resonant with the ground state to p-shell exciton transition in the

quantum dot of interest (λ0
∼=1160 nm). The pulses pass through a 4f pulse shaper

with a 128-pixel SLM in the Fourier plane (MIIPS Box 128 from Biophotonic Solu-

tions). (See Sec. 3.4 for more details regarding the pulse shaper.) A dichroic mirror

(DCM) is used to reflect the laser pulses into the vertical arm of the apparatus.

The pulses are focused onto the sample, which is held at 10K in a continuous flow

cryostat (ST-500 from Janis Research Company), using a high numerical aperture

microscope objective (100× Plan Apo, long working distance, near-infrared, high

resolution, infinity-corrected objective with 0.7 numerical aperture from Mitutoyo).

The sample is mounted on a 3D nano-positioner (ANP101 stages with ANC300 con-

troller from Attocube Systems AG) allowing the aperture containing the quantum

dot of interest to be positioned in the laser focus. The photoluminescence emitted

from the s-shell exciton, after non-radiative decay from the p-shell, is collected us-

ing the same microscope objective. The PL transmitted by the DCM is coupled into a

0.75m focal length spectrometer (from Princeton Instruments) where it is detected

using a 1024 -pixel liquid nitrogen cooled InGaAs charge-coupled device (CCD) ar-

ray detector (Symphony II IGA from Horiba Jobin Yvon). A long-pass filter placed

in the PL path further reduces the scattered pump light entering the spectrometer.

For the experiments described in Ch. 6, the pulse shaper is used to apply the

desired spectral chirp to the pulse. ARP is demonstrated by measuring the PL inten-

sity as a function of the average pulse power (
√

Pavg ∝ Θ) incident on the sample

which can be controlled using a variable neutral-density filter.
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Figure 3.4: Experimental setup used for quantum control experiments. The pulse
train from the IR OPO laser source goes through a 4f pulse shaper with a dual-mask
SLM where they are shaped. The shaped pulses are reflected by a DCM and focused
onto the sample using a high-resolution microscope objective lens. The sample is
held in a cryostat at 10K on a 3D nano-positioning stage. The emitted PL is filtered
to remove scattered laser light, and spectrally resolved using a spectrometer and
detected by an InGaAs CCD detector.

3.4 Femtosecond Pulse Shaping

The amplitude and phase of the optical pulses used to control the exciton qubit were

tailored using a femtosecond 4f optical pulse shaper, with a liquid-crystal SLM in

the Fourier plane (see Fig. 3.5(a)). The input pulses are spectrally dispersed by the

grating and focused by the curved mirror. The focused light passes through the SLM

and is reflected back by a planar mirror, such that it follows the same path as the

input beam but in reverse, with a slight vertical offset used to pick off the output.

Figure 3.5(b) shows a schematic of the SLM, which consists of four optical el-

ements, namely, two horizontal polarizers and two 128-pixel liquid crystal arrays

with orthogonally-oriented fast axes. The incoming light passes through the first

horizontal polarizer, through the liquid-crystal SLMs, and through a second hori-

zontal polarizer. The mirror reflects the beam back through the four optical ele-

ments to double the modulation induced by the SLM. The index of refraction of the
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Figure 3.5: (a) Schematic of the 4f pulse shaper. The shaper consists of a grating
that spectrally disperses the pulse. The spatially separated frequency components
are focused onto the Fourier plane by a curved mirror with a focal length of 50 cm.
The dual-mask SLM in the Fourier plane is used to shape the pulse. A planar mirror
behind the SLM reflects the beam with a slight vertical offset such that it can be
picked off at the output of the pulse shaper. (b) Schematic of the dual-mask SLM
with planar mirror at one end. Each SLM has 128 liquid-crystal pixels with a pixel
pitch of 100μm and inter-pixel gap of 2μm. The optical axis of each liquid-crystal
array is at ±45 ◦ with respect to the horizontal (indicated by red, double-arrowed
lines).

nematic liquid crystals can be controlled using electrodes. The change in the optical

phase produced by a given pixel on one of the SLMs is

φ(ω, V ) =
ωΔn(ω, V )l

c
, (3.1)

where c is the speed of light, l is the thickness of the crystal, and Δn is the change

in index of refraction that depends on the frequency ω and the applied voltage V .

As described in Sec. 2.6, the mask function for each pixel can be expressed in terms

of the phase retardance φ1 and φ2, imparted by the SLMs, and is given by,

M(ω) = cos

[
φ1(ω)− φ2(ω)

2

]
exp

[
i
φ1(ω) + φ2(ω)

2

]
,

= AM(ω) exp [iΦM(ω)].

(3.2)

The mask function provides independent control over the amplitude and phase of

the pulse spectrum, providing a versatile method for controlling the qubit dynamics.
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3.4.1 Experimental Constraints on Pulse Shaping

The previous section described the dual-mask spatial light modulator as an ideal

linear filter with infinite resolution, however, the finite spot-size of the frequency

components in the Fourier plane of the shaper restricts the resolution of the shap-

ing system and also results in the coupling of space and time. The full-width at

half maximum (FWHM) spot size of the spectral components at the SLM can be

expressed as,

w0 =
cos θi
cos θd

(
fλ

πwin

)
, (3.3)

where θi is the incident angle of light on the grating, θd is the diffracted angle, f

is the focal length of the curved mirror, λ is the wavelength, and win is the FWHM

spot size of the input beam. The spectral field amplitude after the mask is given by,

Ẽout∼Ẽine
−(x−αω)2/w2

0P (x), (3.4)

where x is the spatial coordinate in the Fourier plane, P (x) is the physical masking

function, and α = x/ω is the spatial dispersion given by,

α =
λ2f

2πcd cos (θd)
. (3.5)

Equation 3.4 is a non-separable function of the spatial coordinate and frequency.

This mask alters the spatial profile of the spectral components, leading to different

amounts of diffraction for different spectral components, and an output pulse that

has non-zero amplitudes in the higher order Hermite-Gaussian modes. Assuming

that a spatial filter can be used to isolate the fundamental Hermite-Gaussian mode,

the mask function can be written as follows:

M(ω) =

(
2

πw2
0

)1/2 ∫
dxP (x)e−2(x−αω)2/w2

0 . (3.6)

The convolution of the physical mask with the Gaussian intensity profile of the spec-

tral components has the effect of limiting the frequency resolution of the shaper to

δω ≈ (ln 2)1/2w0/α. In the time domain, this translates into a maximum tempo-

ral window, T , within which the impulse response of the filter can be accurately

implemented. The time window is specified by,

T =
4 ln 2

δw
=

4α(ln 2)1/2

w0

=
2(ln 2)1/2winλ0

cd cos θi
. (3.7)



74

The lower bound for the temporal window is set by the time-bandwidth product,

and is given by δt = 0.44/(Δf) where Δf is the pulse bandwidth. The ratio of

these limits defines a parameter η = T/(δt) called the complexity, that describes the

maximum number of spectral or temporal features that can be implemented. η can

be expressed in terms of the grating parameters as,

η =
Δλ

λ

π

(ln 2)1/2
win

d cos θin
. (3.8)

The plane ruled reflectance grating used in the pulse shaper has a blaze wave-

length of 1.2μm, a blaze angle of 22 ◦, and a groove period of d = 1/600mm. It is

used in the Littrow configuration as depicted in Fig. 3.5(a) such that θin = θd = 22 ◦.

The pulse has a center wavelength of λ0 = 1160 nm, a bandwidth of Δλ = 18 nm,

and an input beam size of win = 3.5mm. An estimate of the limitations placed

on the shaper system are presented in Tab 3.1 and show that the experiments are

conducted well within the limits of the shaping system. The longest pulse gener-

ated for the ARP measurements presented in Ch. 6 is ∼3 ps. Equations 3.7 and 3.8

show that the input beam can be expanded to increase the temporal window T and

complexity η because of the reduced spot-size in the Fourier plane.

Table 3.1: Experimental constraints imposed on the pulse shaping system as a result
of the finite spot size at the Fourier plane. (See text for details.)

Parameter Value
Spot size (w0) 61.5μm
Spatial dispersion (α) 23.1 cm · fs/rad
Frequency resolution (�δω) 0.145meV
Temporal window (T ) 12.5 ps
Complexity (η) 114

3.5 Pulse Characterization

The optical control of qubits requires precise knowledge of the pulse characteris-

tics, that in turn dictate the form of the interaction Hamiltonian. Characterization

includes measurements of the pulse spectrum intensity and phase, the pulse width

via the temporal intensity profile, and the focused beam waist at the sample. This

section describes the methods used to measure these properties.
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3.5.1 Dispersion Compensation Using MIIPS

It is of critical importance to the success of the quantum control experiments that

the optimal phase mask be applied to a dispersion-compensated pulse, i.e. to a pulse

Ein(t) that is transform-limited with φ(t) = 0 in Eqn. 2.33. However, propagation

of the pulses through optical elements in the experimental apparatus introduces

phase distortions that would frustrate any attempt to engineer the Bloch vector dy-

namics via control of the optical torque vector. We measure and compensate for

dispersion using a phase-retrieval technique called multiphoton intrapulse interfer-

ence phase scan. In contrast to two-beam techniques such as frequency-resolved

optical gating (FROG) [160] and spectral phase interferometry for direct electric

field reconstruction (SPIDER) [161], MIIPS [162] uses only a single pulse train

and can be implemented at an equivalent focus to the sample. It uses the phase-

dependence of the intensity of the second-harmonic generation (SHG) spectrum to

infer the unknown spectral phase, φ(ω), in the beam that must be compensated for

to obtain a TL pulse. The experimental apparatus used in this technique is shown

in Fig. 3.6. The laser beam passes through the 4f pulse shaper where a reference

phase function f(ω) is added to the pulse. The shaped laser beam is focused onto

a non-linear β barium borate (BBO) crystal to generate second harmonic light that

is focused into an optical fiber connected to a spectrometer. The SHG spectrum

provides feedback to the algorithm that determines the unknown phase, φ(ω).

The intensity of the SHG signal can be expressed in terms of the spectral field

strength E(ω) and phase ϕ(ω) = φ(ω) + f(ω) of the fundamental as [163],

I(2ω) ∝
∣∣∣∣
∫

|E(ω + Ω)||E(ω − Ω)| exp {i[ϕ(ω + Ω) + ϕ(ω − Ω)]} dΩ
∣∣∣∣
2

. (3.9)

The intensity at 2ω will be at a maximum when ϕ(ω + Ω) + ϕ(ω − Ω) = 0. A Taylor

expansion of ϕ(ω + Ω) + ϕ(ω − Ω) gives,

ϕ(ω + Ω) + ϕ(ω − Ω) = 2ϕ(ω) + Ω2ϕ(2)(ω) + . . .+
2

(2n!)
Ω2nϕ(2n) + . . . , (3.10)

where ϕ(n)(ω) = dnϕ(ω)/dωn. Second-order phase distortions will be compensated

by the reference function when f (2)(ω) = −φ(2)(ω). In experiments, a sinusoidal

reference function is chosen, such that,

f(ω) = α sin (γω − δ). (3.11)
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Figure 3.6: Experimental setup for MIIPS phase retrieval. The shaped pulses are
focused into a non-linear BBO crystal and the SHG light is focused into an optical
fiber coupled to a spectrometer. The spectral intensity data is used by the MIIPS
computer algorithm to determine the phase distortions.

The phase factor δ is varied between between 0 and 4π radians. In this manner,

f (2)(ω) is swept between ±αγ2. Typical values for the parameters of the reference

function are: α = 1.5π and γ = τ0, where τ0 is the pulse width of the TL pulse. The

linear chirp is compensated when f (2)(ω) cancels the phase distortions, such that,

φ(2)(ω) = −f (2)(ω) = −αγ2 sin [γω − δmax(ω)]. (3.12)

Figure 3.7 shows the so-called MIIPS trace: a plot of the SHG intensity as a function

of the SHG wavelength, λSHG, and the phase parameter, δ, for (a) a chirped pulse

and (b) a TL pulse.

The MIIPS trace also acts as a quick diagnostic tool, providing qualitative in-

formation about phase distortions in the pulse. For example, a TL pulse is charac-

terized by parallel lines spaced π radians apart, because for φ(2)(ω) = 0, the SHG

intensity has a maximum at δmax = γω ± π/2. The presence of second-order phase

distortions manifests itself as irregular spacing between the lines of δmax, while

third-order distortions change the slope. Once the unknown phase, φ(ω), is de-

termined by double integration of φ(2)(ω), a compensation mask function equal to
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Figure 3.7: Characterization of phase distortions. (a), (b) MIIPS trace for (a) a laser
pulse with phase distortions, and (b) a dispersion-compensated pulse. The plots
show the SHG intensity as a function of the phase δ of the sinusoidal reference
function, f(ω), and the second-harmonic wavelength. Unequal spacing between
the diagonal lines of high intensity indicate the presence of linear chirp, while vari-
ations in their slope indicates the presence of third-order phase distortions. (c), (d)
Intensity autocorrelations for (c) the uncompensated and (d) compensated pulses,
with pulse widths of 257 fs and 137 fs, respectively. The plots show the SHG intensity
as a function of the delay between the pulse pair.

−φ(ω) is added to the pulse. Higher order phase errors are removed by an iterative

process that measures δmax(ω) and retrieves higher-order phase errors. After six

iterations, the pulse width is typically restored to within 0.2% of the TL value, i.e.,

τ/τTL ≤ 1.002. Figure 3.7(c) and (d) show measured autocorrelation intensity for

a chirped laser pulse and dispersion-compensated pulse, with pulse widths of 257 fs

and 137 fs, respectively. (See Sec. 3.5.3 for a description of the autocorrelation

measurement technique.)
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3.5.2 Measurement of the Laser Spot Size

The average laser power, Pavg, required for a Θ radian Rabi rotation, is given by

[164],

Pavg =

(
1.76

τ0

)(
�Θ

μπ

)2

(πw2)(cε0n)νrep, (3.13)

where τ0 is TL pulse width for a sech2 pulse, μ is the dipole moment, w is the 1/e2

radius of the focused laser beam, n is the index of refraction of GaAs, and νrep is

the repetition rate of the laser. (All parameters are in International System of Units

(SI) units.) An effective method of reaching larger pulse areas, for a given average

power, is to minimize the laser spot size (w). In our experiment, w was determined

using a knife-edge measurement where the laser beam was scanned across the edge

of the deposited gold mask and onto the GaAs sample surface. The reflected laser

intensity was measured with an InGaAs photodiode using an optical chopper and

lock-in techniques. If the laser spot is assumed to have a Gaussian intensity profile

and the metal-to-semiconductor transition is modelled as a step function at x = x0,

the reflected intensity can be fit to the convolution of the two functions, such that,

I(x) = I0 +
ΔI

2
erfc

[√
2

(
x0 − x

w

)]
, (3.14)

where erfc(x) is the complementary error function, and ΔI is the difference in re-

flected intensity between the metallic and semiconductor surfaces. The QD sample

sits on a nano-positioning stage that can be moved by applying a voltage. To carry

out the spot-size measurement, one must first determine the step size of the stage

which varies with temperature and applied voltage. The calibration was carried out

by scanning across a row of alignment “teeth” (see Fig. 3.3 on the gold masks which

has a period of 20μm. Figure 3.8(a) shows the periodic variations in the reflected

laser intensity as a function of the number of steps taken on the stage. The step

size was determined to be 178 nm (at room temperature with an applied voltage

of 30V). The reflected laser intensity for the spot size measurement is shown in

Fig. 3.8(b) as circles. A fit to Eqn. 3.14 (blue curve) gives a spot size w = 1.7μm.
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Figure 3.8: (a) Attocube step size calibration curve showing reflected laser intensity
as a function of steps. (b) Reflected laser intensity (circles) as a function of the
Attocube stage position and a fit to the data (curve) using Eqn. 3.14.

3.5.3 Measuring Pulse Width

The experiments carried out in Ch. 6 examined the effects of increasing linear spec-

tral chirp on the transition to the ARP regime. An increase in chirp increases the

TL pulse width to, τp = τ0[1 + (4 ln 2φ′′)2/τ 40 ]
1/2 for a Gaussian pulse. The TL and

chirped pulse widths were measured using non-collinear autocorrelation. In this

technique, a beam splitter is used to create a copy of the pulse that travels down

a variable delay line consisting of a retroreflector mounted on a linear stage (see

Fig. 3.9(a)). The beams, propagating with wavevectors k1 and k2, are focused

onto the same spot on a non-linear BBO crystal to induce sum-frequency genera-

tion (SFG). Photons with energy �ω1 and �ω2 are annihilated and a single photon

with energy �(ω1 + ω2) and wavevector k1 + k2 is created. The intensity of the SFG

signal is measured as a function of the time delay between the pulses using a sili-

con photodetector and lock-in techniques. If the two pulse trains are identical, the

measured intensity is an autocorrelation of the field intensity of the beam, given by,

IAC(τ) ∝
∫ ∞

−∞
dt I(t)I(t− τ) (3.15)

The FWHM of the autocorrelation signal, τFWHM,AC, is proportional to that of the

optical pulse, with a deconvolution factor that is determined by the pulse shape.

For example, the FWHM pulse width of a Gaussian pulse is τFWHM = 0.707τFWHM,AC

[165]. Figure 3.7(c) and (d) show examples of measured autocorrelation signals

for a chirped laser pulse and dispersion-compensated pulse, respectively.
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Figure 3.9: Autocorrelation technique: the pulse is mixed with a copy in a nonlinear
BBO crystal. The SFG light emitted in the k1+k2 direction is measured by a silicon
detector using lock-in techniques as a function of the inter-pulse delay.
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4.1 Abstract

Recent experimental demonstration of a parallel (π, 2π) single qubit rotation on ex-

citons in two distant quantum dots [Nano Lett. 13, 4666 (2013)] is extended in nu-

merical simulations to the design of pulses for more general quantum state control,

demonstrating the feasibility of full SU(2) rotations of each exciton qubit. Our re-

sults show that simultaneous high-fidelity quantum control is achievable within the

experimentally-accessible parameter space for commercial Fourier-domain pulse

shaping systems. The identification of a threshold of distinguishability for the two

quantum dots (QDs) for achieving high-fidelity parallel rotations, corresponding to

a difference in transition energies of ∼0.25meV, points to the possibility of control-

ling more than 10 QDs with a single shaped optical pulse.

81
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4.2 Introduction

Optimal quantum control (OQC) describes the science of controlling the evolution

of quantum systems to transfer an initial state to a desired final state [113, 114].

(For a recent review, see Ref. [166].) In quantum systems controlled by laser fields,

one can use sophisticated pulse-shaping techniques coupled with closed-loop evolu-

tionary algorithms to manipulate the interaction Hamiltonian that governs the dy-

namics. Adaptive algorithms are particularly effective for the optimization of impre-

cisely characterized systems [167, 123] or for those with a numerically intractable

system Hamiltonian. They have, for example, been used to control chemical reac-

tion pathways [115, 116], to detect molecular species [117], and to generate high

harmonics [118, 119]. In the field of quantum information science, OQC may be

applied to the optimization of quantum gate fidelity and/or operating speed. This

approach has been applied in recent experiments involving multiple-qubit gates in

trapped ion systems [122] and superconducting qubits [123], as well as spin en-

tanglement in nitrogen vacancies [124]. OQC could also aid in the development

of complex instruction set approaches to quantum computing, wherein multiple

single- and two-qubit gates are replaced with a single system transformation, re-

ducing the time required to carry out the computation while exploiting the relative

ease of control pulse engineering [6]. Progress along these lines has been realized

in molecular qubit systems with the demonstration of a multiple-input AND gate

[7]. The achievement of such goals in scalable solid state systems is particularly

attractive due to the advantages of such platforms in terms of future integration

with classical technologies.

Among the solid state systems being explored for quantum-enabled device devel-

opment, semiconductor quantum dots offer a number of advantages. A QD-based

device architecture would leverage existing semiconductor and photonic fabrica-

tion infrastructure with the possibility of optically-mediated quantum state control

and readout at telecommunication wavelengths, facilitating integration with exist-

ing hardware. The implementation of short laser pulses for rapid manipulation of

QD excitations paves the way toward fast quantum gates and potential THz op-

eration rates. Demonstrations of fundamental quantum control processes involv-

ing charge and spin states in QDs have included single-qubit rotations of excitons
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[15, 53, 50, 52, 57], biexcitons [168, 82], and single carrier spins [99, 104], quan-

tum state tomography [49, 52, 70, 71, 20, 72, 111], manipulation of exciton spin

superpositions [169, 170], the establishment of entanglement between excitons

[16, 81, 171], and the use of an optical microcavity for selective control of QDs

within an ensemble [172]. These studies illustrate the ease of coherent optical con-

trol of quantum states within semiconductor QDs; however, the exclusive use of

control pulses with constant phase severely limits the scope and flexibility of the

quantum control process.

The extension of the above optical control experiments to tailored quantum state

control via OQC in QDs has been explored in recent years [173, 125, 174]. A

reduction in the control pulse duration for a C-ROT gate involving two exciton

qubits confined to a single QD [16, 38] to the subpicosecond regime was demon-

strated in numerical applications of OQC [174, 173], where pulse shaping ensured

the achievement of high-fidelity conditional dynamics despite the large pulse band-

width. General pulse shape engineering has also been applied experimentally in the

implementation of simultaneous π and 2π single qubit rotations in two uncoupled

QDs using a single laser pulse [125]. These proof-of-principle experiments demon-

strated the feasibility of parallel quantum computing enabled by the stochastic vari-

ations in optoelectronic properties that result from the quantum dot self-assembly

process. In this work, we numerically explore the ability to achieve independent

SU(2) control of excitons in a pair of quantum dots using a single shaped pulse.

Our calculations show that high fidelity parallel qubit rotations can be found for an

arbitrary choice of state inversions and phases of the two exciton qubits provided

the pair of QDs utilized have sufficiently different optoelectronic properties: A dif-

ference in either the dipole moment (∼2Debye) or transition energy (>0.25meV)

is sufficient, commensurate with typical variations in self-assembled quantum dot

ensembles [54, 175, 176, 57, 21]. These findings demonstrate the feasibility of

parallel quantum state control in systems of more than 10 quantum dots using con-

ventional laser and pulse shaping systems. The simultaneous manipulation of mul-

tiple qubits using a single shaped laser pulse would help reduce the required laser

resources for qubit control and promote scalability of these systems for quantum

information processing.
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4.3 Optimal Quantum Control: Numerical Methods

We model each QD as a two-level system, defined by states |0〉 and |1〉 that are

separated in energy by �ω10. The qubits possess an optical dipole moment μ10 =

〈1|μ |0〉, which allows for manipulation using an ultrafast laser pulse with an elec-

tric field given by

E(t) =
1

2
ε̂E0(t)

{
e−i[ωlt+φ] + e+i[ωlt+φ]

}
. (4.1)

Here ε̂ is a unit vector representing the polarization state of the laser field, E0(t) is

the field envelope, ωl is the center frequency of the laser pulse, and φ is the pulse

phase. The control Hamiltonian for the two-level system in the presence of the light

field is given in the rotating wave approximation (RWA) by

H =
Re[�ΩR]

2
σ̂x +

Im[�ΩR]

2
σ̂y +

�Δ

2
σ̂z, (4.2)

where �ΩR = (μ10 · ε̂) E0(t)e
−iφ is the complex Rabi energy, Δ = ω10 − ωl is the

detuning of the laser from the QD transition, and σ̂x,y,z are the Pauli spin matrices.

The resulting equation of motion for the Bloch vector s, where sj = 〈σ̂j〉, is

ṡ = s×Λ, (4.3)

which describes the rotation of the Bloch vector about a torque vector Λ = (−Re[ΩR],

−Im[ΩR], Δ) determined by the characteristics of the optical pulse.

During a Rabi rotation, for which Δ = 0 and φ is constant in time, the direction

of Λ does not change during the control pulse and the Bloch vector rotates about a

fixed axis. Shaping the laser pulse (e.g. by incorporating a time-dependent phase

φ(t)) leads to a time-dependent control vector Λ, thereby allowing for determinis-

tic control over the trajectory of the Bloch vector and/or the choice of target final

quantum state. We demonstrate the versatility of this approach to coherent control

of multiple solid state qubits by applying general pulse engineering to the optimiza-

tion of simultaneous single qubit rotations for excitons confined to two uncoupled

quantum dots, referred to as QD1 and QD2. This approach was used in Ref. [125]

to implement simultaneous (π, 2π) rotations, representing an experimental demon-

stration of independently specified occupation states. Here we extend this to the

design of numerically-optimized pulses for arbitrary SU(2) control of the two quan-

tum dot excitons.
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In the general case, the amplitude, phase and frequency of the control laser pulse

can be manipulated in either the time domain by using devices such as acousto-

optic modulators, or in the frequency domain by placing controllable elements in

the Fourier plane of a 4f pulse shaper. The most common approach for frequency-

domain shaping, for which the optimum pulse shapes obtained here are intended,

is to use a programmable liquid crystal spatial light modulator (SLM) containing an

array of nematic liquid crystal elements each with an electrically tunable index of

refraction [112]. The effect of the SLM in the Fourier plane on the laser pulse can

be described by a mask function M(ω) that alters the input pulse spectrum Ẽin(ω)

to produce an output spectrum, Ẽout(ω), given by

Ẽout(ω) = M(ω)Ẽin(ω). (4.4)

The input pulse spectrum Ẽin(ω) is the Fourier transform of a Gaussian pulse with

constant phase φ and a field envelope E0(t) = |E0| exp [−2 ln(2)t2/τ 2], with τ =

120 fs. A dual-mask SLM can provide independent control over the amplitude and

phase of the frequency components, such that the mask function can be defined in

terms of an amplitude mask AM(ω) and phase mask φM(ω), where

M(ω) = AM(ω) exp [iφM(ω)]. (4.5)

The desired form of AM(ω) and φM(ω) can be determined using numerical tech-

niques that optimize any desired attribute of the quantum control process. In this

work, we apply OQC to optimize the fidelity of parallel single qubit rotations in-

volving multiple uncoupled semiconductor QDs.

We apply a phase-only mask (AM(ω) = 1), which has the advantage of re-

ducing light losses in the system [173]. Any convenient function may be used to

parametrize φM(ω). Here we adopt a sinusoidal phase mask, given by

φM(ω) = α cos [γ(ω − ωl)− δ]. (4.6)

The parameters α, γ, δ, and the pulse area Θ = (μ · ε̂/�) ∫ +∞
−∞ E0(t) dt are optimized
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numerically subject to the following constraints:

0 ≤α ≤ π,

0 ≤γ ≤ 325 fs,

−π ≤δ ≤ π,

0 ≤Θ ≤ 8π.

(4.7)

The limits on α and γ are chosen to restrict the gradient in the phase |dφM(ω)/dω|max

to π/10 radians per pixel assuming the resulting optimized pulses are implemented

on a pulse shaping system containing a 128-pixel SLM. This is a conservative re-

quirement as commercial pulse shapers with a pixel count of 640 are readily avail-

able. (The implications of the resolution of the phase mask are discussed in more

detail below.) The constraints on Θ are intended to simplify the experimental im-

plementation, although Rabi rotations of up to 14π have been achieved in similar

QDs [69].

For a given choice of the parameters in Eqn. 4.6, the fidelity of the operation is

defined as F = Tr[ρPρI] = f(α, γ, δ,Θ), where ρP is the physical density matrix at

the end of the control process, calculated by integrating Eqn. 4.3, and ρI is the ideal

density matrix for the intended parallel single qubit rotation. We search for local

optima in fidelity Fopt = f(αopt, γopt, δopt,Θopt) by choosing initial vectors containing

the free parameters α, γ, δ, and Θ, denoted by qi = (αi, γi, δi,Θi), and using the

constrained optimization by linear approximations algorithm. We choose 500 initial

vectors using a Sobol’ sequence [177] to provide sufficient coverage of the four-

dimensional space defined by Eqn. 4.7. The parameters corresponding to local

optima with the highest fidelity determine the optimal pulse shape. In the RWA,

the phase of the qubit oscillates at a frequency Δ even after the end of the pulse.

Therefore, we determine the fidelity of the control process by reading the state

of the qubits at a fixed time t = 3ps after the arrival of the laser pulse (t = 0

in Eqn. 4.1). In experimental implementations of quantum algorithms, flexibility

in the timing of multiple control pulses would likely be exploited. The stringent

requirement of a fixed read time allows us to explore the quality of arbitrary final

state control under the most conservative conditions.
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4.4 Results and Discussion

4.4.1 Arbitrary Rotations of QD Excitons

Figure 4.1 presents exemplary results of parallel control of excitons in two different

QDs. For all results in this work, the laser pulse has a fixed tuning with �ωl =

1.0 eV. For the calculation in Fig. 4.1, the transition energies of the two QDs are

�ωQD1 = 1.00125 eV and �ωQD2 = 0.99875 eV, chosen to be within the bandwidth of

the controlling laser pulses, and the dipole moments are taken as μQD1 = 25Debye

and μQD2 = 28Debye, reflecting typical values for self-assembled QDs [57]. For

these results, the pulse is optimized assuming that the qubits are initialized in their

respective ground states (|ψQD1〉i = |0〉, |ψQD2〉i = |0〉) with a target set of final states

for the two QDs given by

|ψQD1〉f =
1

2

(
|0〉+ e−iπ/2

√
3 |1〉

)
, and

|ψQD2〉f =
1

2

(√
3 |0〉+ e−i3π/2 |1〉

)
.

(4.8)

The final quantum states in Eqn. 4.8 contain different state inversions and phases

for the two QDs, providing a useful test to illustrate the OQC approach. Fig-

ure 4.1(a) shows the trajectory of the Bloch vector of QD1 (QD2) when driven

by the optimized laser field, represented by the black solid (red dashed) curves,

with the final quantum state of the two-dot system at the chosen read time of 3

ps indicated by the black (red) dot. The target final states in Eqn. 4.8 for QD1

(QD2) are indicated on the Bloch sphere by a black (red) cross. The optimal pulse,

characterized by parameters qopt = (0.312π, 235 fs, 0.373π, 3.25π), implements the

simultaneous qubit rotation with a fidelity of 0.996. This high fidelity is evident

on the Bloch spheres by the close proximity of the final states for each QD and

the respective target final states. Figure 4.1(b) shows the spectral intensity (black

solid curve) and phase (blue dashed curve) of the corresponding optimal pulse, and

Fig. 4.1(c) shows the resulting temporal field intensity. The temporal evolution of

the three components of the optical torque vector, Λ, that drives the qubit dynamics

of QD1 (QD2) are shown in Fig. 4.1(d) as solid (dashed) curves. The high-fidelity

control process depicted in Fig. 4.1(a), with a target final state that differs for the

two quantum dots in both inversion and phase, illustrates the efficacy of pulse shape
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control for independently tailoring the quantum state dynamics of the excitons in

the two quantum dots.

We explore the flexibility of this scheme for achieving a range of final states

by optimizing the fidelity as a function of the difference in inversion, denoted by

δsz = sz,QD2 − sz,QD1, taking sz,QD2 = −sz,QD1, and the difference in phase of the

two qubits, denoted by δφ = φQD2 − φQD1, taking φQD2 = −φQD1. The resulting

final state space spans all representative states on the Bloch spheres for the two

QDs. The input laser characteristics, QD initial states, transition frequencies, and

dipole moments are identical to those used for the calculated results in Fig. 4.1. The

featureless contour plot in Fig. 4.2(a) demonstrates that optimized pulses producing

high fidelity can be found for any choice of δsz and δφ within the defined parameter

space of Eqn. 4.7. This result indicates that arbitrary independent high-fidelity

control of the two quantum dot excitons is feasible using the OQC approach and

general pulse shape engineering.

4.4.2 Dependence on QD Optoelectronic Properties

Next we implement the control process in Eqn. 4.8 and allow the optoelectronic

properties of QD2 to vary while holding the properties of QD1 constant. The results

of these calculations are presented in Fig. 4.2(b). If the QDs have nearly identical

optoelectronic properties, it is impossible to find any pulse shape that drives the

qubits from the same initial state to two different final states with high fidelity,

leading to the dip in fidelity in Fig. 4.2(b) where the properties of QD1 and QD2

coincide. Nevertheless, for QDs with sufficiently different properties, optimized

pulses can be engineered to implement the parallel single qubit rotation with high

fidelity. In particular, it is not necessary to have a difference in both the dipole

moment and transition energy for the two QDs: a difference in either property will

suffice. This is evident from calculations that optimize the same control process

as in Fig. 4.1 as a function of the dipole moments while holding the transition

frequencies constant (Fig. 4.2(c)), and as a function of the transition frequencies

while holding the dipole moments constant (Fig. 4.2(d)). In all cases, we find that

control pulse shapes realizing high fidelity gates may be found within the accessible

parameter space of the pulse shaping system.
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Figure 4.1: Application of OQC to quantum control transferring the excitons in QD1
and QD2 from their respective ground states to the final states in Eqn. 4.8. (a) Bloch
sphere dynamics for QD1 (QD2) are indicated by a black solid (red dashed) curve.
(b) The spectral amplitude (phase) of the pulse are indicated by a black solid (blue
dashed) curve. (c) Temporal intensity of the shaped pulse. (d) The x, y, and z
components of Λ are indicated by black, blue, and red curves, respectively, with
solid curves corresponding to QD1 and the dashed curves corresponding to QD2.
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Figure 4.2: (a) Optimized fidelity as a function of the difference in phase and in-
version of the two qubits for the optoelectronic properties used in Fig. 4.1. (b), (c),
(d) Optimized fidelity of the quantum control process shown in Fig. 4.1 as a func-
tion of (b) the detuning of QD2 from the laser frequency (�ΔQD2 = �(ωQD2 − ωl))
and its dipole moment, while holding the properties of QD1 constant (�ωQD1 =
1.00125 eV and μQD1 = 25Debye), (c) the dipole moment of the two quantum
dots while holding the transition frequencies constant (�ωQD1 = 1.00125 eV and
�ωQD1 = 0.99875 eV), and (d) the detuning of the QD transitions from the laser
frequency while holding the dipole moments constant (μQD1 = 25Debye and
μQD2 = 28Debye).
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4.4.3 Parallel Quantum Control: Scaling the Approach

The optimization scheme described here may be extended to independent simulta-

neous control of excitons in more than two quantum dots. The results in Fig. 4.2(b)

show that independently addressing distinct QDs is possible provided that their op-

toelectronic properties are sufficiently different. Since the dipole moment and tran-

sition energy have been found to be systematically linked for self-assembled QDs

[178, 176], we will focus here on differences in the transition energy. The width of

the dip in fidelity in Fig. 4.2(b) versus transition energy is limited by the resolution

of the SLM, which was assumed to contain 128 pixels. The calculation of Fig. 4.2(b)

was repeated assuming a higher-resolution pulse shaping system incorporating a

640 pixel SLM. The results of these calculations are shown in Fig. 4.3. A larger

SLM resolution expands the available parameter space for α and γ in Eqn. 4.7 while

keeping the maximum phase change per pixel constant. In Fig. 4.3, the width of the

low-fidelity feature is below the resolution of the calculation mesh (0.25meV). For

typical self-assembled QD ensembles, the transition energy spread is in the range

30meV to 70meV depending on the growth conditions and type of barrier mate-

rial [54, 21]. Assuming a threshold distinguishability of 0.25meV in the transition

energy, this indicates that simultaneous control of several (>10) QDs should be

readily achievable. If combined with controllable entanglement between distant

quantum dots via microcavity modes [42], this approach may enable the realiza-

tion of complex instruction set quantum computing in a solid state system of QDs.

This would build upon recent progress involving molecular qubit systems, in which

a multiple-input AND gate was realized using six qubits encoded in the rovibra-

tional eigenstates of a lithium molecule [7]. One could foresee engineering the QD

ensemble size distribution to have a spread of transition energies that matches the

bandwidth of convenient commercial laser systems, in line with successful efforts

to obtain narrow energy distributions coinciding with telecommunications wave-

lengths for QD laser applications [21]. Numerically-optimized quantum control

involving three QDs is shown in Fig. 4.4, illustrating the flexibility of the OQC ap-

proach as the number of QDs is increased. The use of a more sophisticated phase

mask function rather than the simple sinusoidal mask used here, as well as the free-

dom to employ combined amplitude and phase control, would aid in optimizing the
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performance of parallel quantum control of multiple quantum dots.

Figure 4.3: Same calculation as in Fig. 4.2(b) taking the assumption of a higher
resolution pulse shaping system, incorporating a 640 pixel SLM.

4.4.4 Tolerance to Experimental Uncertainties

In the presence of uncertainties in experimental parameters, the fidelity of the con-

trol process will be reduced. The primary limitation on the sensitivity of the fidelity

to such non-ideal conditions is the choice here to impose a fixed read time (3 ps

after t = 0 in Eqn. 4.1) due to the rapid evolution of the phase of the exciton qubit

in any particular QD outside the pulse envelope. For instance, a laser tuning error

of 0.05 nm produces a drop in fidelity of 0.01 averaged over the parameter space

in Fig. 4.2(a). For comparison, the fidelity is much less sensitive to deviations in

laser intensity: A typical specification for mode-locked laser systems of 0.5% gives

a fidelity drop of only 0.001. In the implementation of circuit-model quantum com-

puting with multiple control pulses, one could minimize such errors experimentally

by incorporating active feedback on the relative time delays for different control

pulses. Small deviations in qubit phase could also be compensated for by imple-

menting empirical feedback to the pulse shaping system, so that the optimum mask

parameters may be adjusted via a genetic algorithm. Such an approach would

also benefit complex instruction set implementations. Quantum state readout via

differential transmission [62] or photocurrent [53] are only sensitive to the state
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Figure 4.4: Application of OQC to the simultaneous manipulation of excitons in
three QDs. For this calculation, the final state of the third quantum dot, QD3, with
�ωQD3 = 1.00005 eV and μQD3 = 24Debye, is |ψQD3〉f = (|0〉 + e−i3π/4 |1〉)/√2, while
for QD1 and QD2, the final states are given by Eqn. 4.8. (a) Bloch sphere dynamics
for QD1, QD2, and QD3 are indicated by the black solid curve, the red dashed
curve, and the blue dot-dashed curve, respectively. The optimal pulse in this case
is defined by qopt = (0.730π, 134 fs,−0.726π, 2.12π) and when implemented results
in a quantum gate fidelity of 0.985. (b) The spectral amplitude (phase) of the pulse
is indicated by a black solid (blue dashed) curve. (c) Temporal intensity of the
shaped pulse. (d) The x, y, and z components of Λ are indicated by black, blue,
and red curves, respectively, with solid curves corresponding to QD1, dashed curves
corresponding to QD2, and dot-dashed curves corresponding to QD3.
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occupations and so phase uncertainty would have no impact on the final quantum

state detection. We also note that, while biexciton dynamics are not included in the

present calculations, in full simulations of the coupled exciton-biexciton system it is

possible to build into the OQC optimization the need to have the occupation of the

biexciton state vanish at the end of the control pulse, as shown for the case of the

C-ROT gate in Ref. [174].

4.4.5 Influence of Dephasing

It is instructive to examine the influence of sources of dephasing of the exciton

qubit on the fidelity of the quantum control process. Calculations within the re-

laxation time approximation incorporating typical measured dephasing and recom-

bination times in InAs self-assembled QDs [86] indicate only a minor reduction in

fidelity (e.g. a drop from 0.996 to 0.991 for the test gate in Fig. 4.1), reflecting

the short time scale of the optical pulse relative to these decay times. We also

examine the effects of a power-dependent dephasing process, often referred to as

excitation-induced dephasing (EID), in which deformation potential coupling with

longitudinal acoustic phonons causes transitions between the dressed states of the

optically-driven quantum dot system [90, 69, 25, 137, 138]. Such a process leads

to damping of Rabi oscillations [69, 25], and a dependence of the exciton inversion

on the sign of pulse chirp in adiabatic rapid passage experiments [91, 179]. The

strength of the EID process is dictated by the real part of the exciton-phonon re-

sponse function, K(ω), which is evaluated at the instantaneous value of |Λ|. Taking

a linear dispersion relation for the bulk phonon modes of the barrier material (cho-

sen here as GaAs, appropriate for InAs/GaAs self-assembled quantum dots), and

assuming a spherical quantum dot for simplicity with a carrier wave function of the

form ψ(x) ∝ exp [−2 ln (2)x2/d2], the exciton-phonon response function is given by

[137],

Re[K(ω)] =
π

2
αω3e−ω2/ω2

c coth (ω/2kBT ), (4.9)

where α is a coupling constant that depends on the deformation-potential constants

of the barrier material, T is the temperature, and kB is the Boltzmann constant. The

exciton-phonon response function is characterized by a cut-off frequency, ωc, that

is inversely proportional to the spatial extent of the wave function, d [90]. This
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implies that the impact of EID on the fidelity of the quantum control process de-

pends on both the size of the quantum dot and the magnitude of the instantaneous

Rabi energy. Figure 4.5 shows the fidelity for the calculation shown in Fig. 4.1 as

a function of �ωc and d for T = 10K. For cut-off energies less than ∼1.38meV

(d > 5.76 nm), the reduction in fidelity is less than 2%. This error is quite modest,

but nevertheless would be reduced by incorporating EID into the OQC numerical

optimization due to the dependence of this process on the pulse shape. In addition,

the exploration of alternate mask parameterizations may be beneficial. The use of

engineered quantum dot distributions with a larger mean size would also reduce

the influence of EID and increase the fidelity of quantum control.

Figure 4.5: Fidelity for the calculation shown in Fig. 4.1 incorporating excitation-
induced dephasing caused by coupling to longitudinal acoustic phonons as a func-
tion of the cut-off energy, �ωc, of the exciton-phonon response. The phonon modes
of bulk GaAs are assumed, for which α = 0.027 ps2. The top x-axis shows the
corresponding width of the norm squared of the carrier wave function. Inset:
The calculated phonon response function taking �ωc = 1.38meV, corresponding
to d = 5.76 nm.

4.5 Conclusions

In conclusion, we have applied optimal quantum control in numerical simulations

of laser-driven dynamics of excitons in semiconductor quantum dots. Our findings



96

demonstrate the feasibility of independent, simultaneous SU(2) control of qubits

in two or more quantum dots using a single shaped laser pulse. Our results show

that pulse engineering with a simple sinusoidal phase mask leads to high-fidelity

parallel single qubit rotations over a wide range of optoelectronic properties and

final states, indicating that this is a versatile approach to multi-qubit control. Quan-

tum control processes optimized using this scheme could either be implemented

directly in experiments, as demonstrated in Ref. [125], or provide seeding candi-

dates for the initial population of a genetic feedback algorithm, which would aid in

the compensation for experimental uncertainties. The use of arbitrary pulse shaping

of broad-bandwidth control pulses builds upon the recent experimental demonstra-

tion of simultaneous (π, 2π) rotations [125] and a subpicosecond adiabatic rapid

passage gate [91]. The results presented here enhance the potential scalability of

QD-based platforms for quantum information applications.
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5.1 Abstract

Pulse-shaping protocols for subpicosecond optically-controlled quantum gates in

semiconductor quantum dots are reported. Our emphasis is the development of

shaping schemes for either amplitude or phase control of the pulse that are easily

implemented using commercial pulse shapers and femtosecond laser systems. We

illustrate the efficacy of our approach through simulations of a controlled-rotation

97
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gate in a realistic In(Ga)As quantum dot with electronic structure calculated using

eight-band, strain-dependent k·p theory. Our results show that amplitude- and

phase-shaping protocols both lead to substantial improvements in fidelity when

compared with transform-limited pulses with equivalent gate times. Dephasing was

found to have a minimal effect on the gate fidelities due to the ultrafast time scale

of the quantum operations.

5.2 Introduction

The pursuit of quantum control in semiconductor quantum dots (QDs) has been

the focus of a considerable body of research over the past decade [25]. In ad-

dition to enabling fundamental research into light-matter interactions, in which

the three dimensional quantum confinement provides atomic-like properties in a

solid state environment [180], semiconductor QDs may become the future build-

ing blocks of a quantum computing architecture. Fundamental qubits in individual

quantum dots may be realized using the quantum states of an exciton or individual

carrier spin [41, 181, 38, 39, 182, 183, 42, 40, 184, 44, 45]. Proposals in which

optical excitation may be used for both single-qubit rotations and two-qubit gates

[181, 38, 39, 182, 183, 42, 40, 184, 44, 45] are especially attractive as the exploita-

tion of established semiconductor and photonic device fabrication capabilities en-

hances the potential for scaling the architecture to a large number of qubits as well

as integrating it with existing computing technology. Furthermore, the use of short

optical pulses may lead to operating speeds in the THz range. Seminal demonstra-

tions of coherent optical control in QDs in recent years include single qubit rotations

involving excitons [15, 53, 50, 52, 57], biexcitons [168, 82], and single carrier spins

[99, 104], as well as quantum state tomography [20], the coherent manipulation

of an exciton spin superposition state [169], and the introduction of controllable

entanglement between excitons [16, 81, 171]. (For a recent review, see Ref [54].)

These advancements represent a powerful toolkit for implementations of quantum

hardware based on semiconductor QDs.

All of the above demonstrations of coherent optical control utilized transform-

limited (TL) optical pulses, for which the phase of the pulse is constant [165].

By harnessing the power of femtosecond pulse-shaping techniques [112], which
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allow full control over the temporal dependence of the amplitude and phase of

the pulse, one may achieve a much greater degree of flexibility in the manipu-

lation of the quantum state. In recent years, pulse shaping has been applied to

quantum control in atomic and molecular systems [185, 186, 187, 188, 189, 135],

in the control of chemical reactions [190, 191], and in various areas of nonlin-

ear optics, including electromagnetically-induced transparency [192, 193] and the

generation of high harmonics [194, 195, 119]. The potential utility of pulse shap-

ing in quantum computing is clearly illustrated by various proposals for quantum

gates based on adiabatic passage [183, 184, 134, 131], in which a linear chirp

(quadratic time-dependent phase) results in state evolution through an anticross-

ing, something that was very recently demonstrated involving exciton qubits in

self-assembled QDs [74, 73]. The implementation of a more general phase profile

may greatly benefit the efficiency, fidelity and speed of quantum state control be-

cause the control Hamiltonian itself can be tailored to optimize the physical process

involved [39, 40, 196, 197]. For example, in order to avoid unintended dynam-

ics associated with nearby states, optical control has been limited in experiments

to pulses with a duration of a few picoseconds or longer (e.g. in Ref. [73], 40 ps

pulses were used). The achievement of faster operation speeds using pulse-shaping

techniques would allow the full potential of optical control methods for quantum

operations to be exploited.

Here we develop general pulse-shaping protocols for optimizing the speed and

fidelity of optically-controlled quantum gates in self-assembled semiconductor QDs.

We focus here on the controlled-rotation (C-ROT) operation involving two exciton

qubits in a single QD [38]. The possibility of scaling such a system to qubits within

different QDs has been addressed in several recent proposals [181, 42, 45, 85, 84].

Exciton qubits are attractive due to the ease and efficiency of quantum state con-

trol using optical techniques, and have recently been shown to benefit from dy-

namical decoupling schemes as a means of reducing the effective decoherence rate

[92, 46, 35]. The C-ROT gate provides a test case that illustrates the effective-

ness of the pulse-shaping approach in a physical scenario that is readily accessible

using current optical techniques [16]. In a recent work by Chen et al. [39], the fi-

delity of the C-ROT operation was optimized through the use of two phase-locked,
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transform-limited pulses with independent bandwidth control of each pulse. The

implementation of this approach is complicated by the need for two separately op-

timized, synchronous laser sources, as well as a stabilized Michelson arrangement

[40]. Our emphasis here is to develop general amplitude- and phase-shaping pro-

tocols that could be easily implemented with a single mode-locked femtosecond

oscillator and a standard commercially available pulse shaper [198].1 We optimize

amplitude-shaping protocols and phase-shaping protocols separately and find that

either leads to a substantial enhancement in fidelity in comparison to transform-

limited pulses with an equivalent gate time. Dephasing is found to have a minimal

effect on the gate fidelity, even for T2 times as low as 10 ps, reflecting the benefits

of a subpicosecond gate time. Our findings may be easily extended to other op-

tical operations in QDs, including two-photon Rabi rotations of biexcitons [126],

adiabatic passage involving excitons [74, 73] or biexcitons [134], and schemes for

dynamical decoupling [92, 46, 35]. Further improvement is likely to be possible

when the amplitude and phase shape of the pulse are optimized together.

5.3 Conditional Exciton Dynamics

The C-ROT operation, originally proposed by Troiani et al. [38], is achieved using

the four-level system created by the vacuum ground state (|00〉), two oppositely po-

larized exciton states (|10〉 and |01〉) and the bound biexciton state (|11〉), as shown

in Fig. 5.1(a). The single exciton states |10〉 and |01〉 represent two qubits in each

quantum dot. In self-assembled In(Ga)As QDs, the anisotropic exchange interac-

tion together with a slight elongation of the dot lifts the degeneracy between the

single exciton states and leads to linearly-polarized optical selection rules, in which

|10〉 and |01〉 correspond to symmetric and antisymmetric combinations of spin-up

and spin-down excitons [180, 56]. In Fig. 5.1(a), Πx (Πy) indicates linearly polar-

ized excitation, with the polarization direction along [110] ([11̄0]), corresponding

to the long (short) axes of the QD. The exchange splitting (δ) is greatly exagger-

ated in Fig. 5.1(a) for clarity: it is typically found to be � 0.2meV in experiments

[199, 200], much smaller than the 12meV bandwidth of the optical control pulses

considered here. The biexciton state |11〉 corresponds to the bound state of two
1See e.g. the Silhouette ultrafast pulse shaper manufactured by Coherent Inc.
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excitons with opposite spin, and occurs at an energy lower than that required to

create two single excitons by an amount Δb, the biexciton binding energy.

Figure 5.1: (a) Energy level diagram for the exciton and biexciton system in a
QD - the vacuum ground state (|00〉), two single excitons (|01〉 , |10〉), and a biex-
citon (|11〉) with a binding energy of Δb. The arrows indicate optically allowed,
linearly polarized (Πx or Πy) transitions. (b) Unitary transformation matrix for the
C-ROT gate. (c) Truncated pyramid quantum dot structure and (d) InxGa1−xAs
composition profile within the dot. The composition is graded from high indium
concentration in the shape of an inverted triangle at the center of the dot to low
indium concentration at the base.

Conditional dynamics are realized in this system by exploiting the polarization

selection rules in Fig. 5.1(a), in conjunction with the energy separation between

the transitions associated with the excitation of a single exciton (|00〉 → |01〉 or

|10〉) and the excitation of a second exciton in the presence of the first exciton (|01〉
or |10〉 → |11〉). These transitions are separated in energy by the biexciton bind-

ing energy. Using laser excitation pulses with a spectral bandwidth that is narrow

compared to Δb, one can achieve both single qubit rotations and a C-ROT gate for

suitable choice of the carrier frequency of the laser pulse. For example, for a Πy-

polarized laser pulse tuned to the |10〉 to |11〉 transition, the state of the second

(target) bit will be rotated if and only if the first (control) bit is in state 1. Single
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qubit rotations (in which a bit is rotated regardless of the state of the other bit) are

achieved using bichromatic laser pulses with orthogonally-polarized components.

The transformation matrix for the C-ROT gate is shown in Fig. 5.1(b). The restric-

tion to narrow bandwidth excitation pulses ensures a high fidelity operation, but

at the expense of a large operation time. As we show in Sec. 5.6, this trade-off

between operation time and fidelity may be alleviated through the implementation

of pulse shaping.

5.4 Electronic Structure of Self-Assembled QDs

We model the QD as a truncated pyramid of InxGa1−xAs embedded in GaAs, with

its base in the (001) plane, and with its edges aligned along the [110] and [11̄0]

directions, as shown in Fig. 5.1(c). The dot has a height of 4.5 nm, length of

27 nm, and width of 20 nm, with the long axis along [110]. The facet angles for

projections onto the (110) and (11̄0) planes are 35 degrees and 25 degrees, respec-

tively (corresponding to facets with indices of {(1,−1, 2.020),(−1, 1, 2.020)} and

{(1, 1, 3.033),(−1,−1, 3.033)}). We use a graded indium composition within the dot

in the shape of an inverted pyramid. The contours in Fig. 5.1(d) mark nested,

constant-alloy composition layers with an angle of 45 degrees to the growth direc-

tion. The composition of the dot is graded in 16 increments from the innermost

layer at the top face where it is In-rich (x = 0.6) to the outermost layer at the base

where it is Ga-rich (x = 0.225) (i.e. a change in composition of Δx = 0.025 be-

tween layers). The dot shape and compositional profile is typical of In(Ga)As/GaAs

self-assembled QDs [201, 47, 202].

The confined single-particle states of the QD were calculated using an eight-

band, strain-dependent k·p Hamiltonian in the envelope approximation [152, 153,

154, 203], where the residual strain is found by minimizing the elastic energy in

the structure. The explicit form of the kinetic and strain Hamiltonians are given in

Ref. [153]. Multi-particle states are calculated within the Hartree approximation, in

which the wave functions are found by iteratively solving the Schrödinger equation

for a particle in the potential of the other carriers in the QD until the energy eigen-

values converge. The Hartree approach accounts for the direct Coulomb interaction

between the carriers, but does not capture the exchange interaction or the effects



103

of correlation. The fine-structure splitting is therefore introduced by hand. We take

a value of 150μeV, which is typical of values found in experiment [199]. We find

that the exact value of δ is inconsequential due to the fast time scale of the optical

control process relative to 1/δ. The matrix elements of the electric dipole opera-

tor are directly evaluated using the calculated multi-particle states. The biexciton

binding energy is evaluated using the difference between the transition energies

calculated using the multi-particle and single-particle wave functions. The results

of our electronic structure calculations are summarized in Table 5.1.

Table 5.1: Transition energies and electric dipole moments calculated using eight-
band, strain-dependent k·p theory. An empirical value was used for the fine-
structure splitting [199].

Parameter Value
Exciton transition energy (E00,10) 1.2723 eV
Biexciton transition energy (E10,11) 1.2739 eV
Binding energy (Δb) −1.6meV
Fine-structure splitting (δ) 150μeV
Dipole moment (d00,10) 22.76Debye
Dipole moment (d01,11) 22.98Debye

The biexciton binding energy is a crucial parameter for the design of optical con-

trol pulses for both the single qubit and C-ROT gates as it determines the relative

spacing of the optical transitions involved. A small value of Δb will require fine

spectral control of the pulse phase and amplitude. Experiments have shown that it

is possible to get both negative (anti-binding) and positive (binding) biexciton bind-

ing energies, with values of Δb ranging from 4.8meV to −6.3meV in self-assembled

In(Ga)As QDs [149]. This wide range of experimental values illustrates the strong

sensitivity of this parameter to the details of the QD structure and composition.

This sensitivity is further illustrated by the results in Fig. 5.2, which show electronic

structure calculations for a range of dot compositions and heights. Variations in

the biexciton binding energy in Fig. 5.2 reflect changes in the overlap of the elec-

tron and hole wavefunctions. The average indium composition in Fig. 5.2(a) is

varied by changing the maximum indium concentration at the top face of the dot

while maintaining an identical graded structure and compositional gradient Δx as
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in Fig. 5.1(d). There is a nonmonotonic dependence on average indium compo-

sition, reflecting relative shifts in the electron and hole wavefunctions due to the

nonuniform dot composition as the average indium content varies. The height of

the dot in Fig. 5.2(b) is varied by adding horizontal layers to the top of the dot with

a starting height of 2.5 nm while maintaining the same internal and external facet

angles, and spacing between layers. With this approach, material added to the top

simultaneously increases the height and the average indium composition because

the top face of the dot contains the indium-rich layers. (For a dot height of 4.5 nm,

the average indium composition is 0.5.) The results in Fig. 5.2(b) reflect a tendency

for the biexciton to become more tightly bound (smaller negative binding energies)

with increasing dot height. As our calculations neglect correlation effects, we can

only obtain qualitative information regarding the trends in Δb with QD structure

(e.g. the value we extract for the biexciton binding energy is consistently nega-

tive due to the overestimation of the effects of electron-electron repulsion [204]).

Nevertheless, these results suggest that Δb may be engineered through appropriate

choice of growth conditions. This is consistent with recent experiments, in which

Δb was tuned through control of the height of site-selected QDs [205]. The trends

observed in Fig. 5.2 for the exciton transition energy are determined by competi-

tion between changes in the dot compositional profile and the degree of quantum

confinement. In the numerical simulations of the C-ROT gate, we have allowed

the biexciton binding energy to vary, spanning the range of accessible experimental

values [149]. This will allow us to obtain flexible pulse-shaping protocols that may

be adapted to a particular QD during experimental implementation of the C-ROT

gate.

5.5 Optimization of the C-ROT gate

The interaction of a laser pulse with the QD is treated using the Liouville equation

for the density matrix ρ(t),

∂ρ

∂t
=

i

�
[ρ,H], (5.1)
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Figure 5.2: Exciton transition energy (circles) and biexciton binding energy (trian-
gles) for variations in (a) average indium composition; and (b) quantum dot height.
In varying the dot height, material was added to the top of the dot (see Fig. 5.1(d)),
while maintaining the same graded structure, until a complete pyramid was formed
(h = 6.5 nm).

where H is the total Hamiltonian, given by

H =
∑
i

�ωiPi,i − 1

2

∑
i �=j

μi,j · ε̂E0(t)

× {exp [−iωt− iΦ(t)] + exp [iωt+ iΦ(t)]}Pi,j.

(5.2)

The first term in Eqn. 5.2 describes the electronic structure for the unperturbed

system, consisting of the multiparticle eigenstates obtained using our k·p formal-

ism, where Pi,j is the associated projection operator |i〉 〈j|. The second term is the

control Hamiltonian associated with the laser field. We employ the rotating-wave

approximation to remove the non-resonant term in the interaction Hamiltonian and

make the change of variables ρi,j(t) → ρ̃i,j(t) to remove the fast variations in the
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coherences. Decay and decoherence are incorporated in the relaxation-time ap-

proximation. The resulting Bloch equations of the four-level system are given by

˙̃ρ01,01 = − i

2
(χ01,00ρ̃00,01 − χ00,01ρ̃01,00 + χ01,11ρ̃11,01 − χ11,01ρ̃01,11)

− γ01,01ρ̃01,01,

(5.3)

˙̃ρ10,10 = − i

2
(χ10,00ρ̃00,10 − χ00,10ρ̃10,00 + χ10,11ρ̃11,10 − χ11,10ρ̃10,11)

− γ10,10ρ̃10,10,

(5.4)

˙̃ρ11,11 = − i

2
(χ11,01ρ̃01,11 − χ01,11ρ̃11,01 + χ11,10ρ̃10,11 − χ10,11ρ̃11,10)

− γ11,11ρ̃11,11,

(5.5)

ρ̃00,00 = 1− ρ̃01,01 − ρ̃10,10 − ρ̃11,11, (5.6)

˙̃ρ01,00 = − i

2
[2(ω01,00 − ω)ρ̃01,00 + χ01,11ρ̃11,00 − χ10,00ρ̃01,10

+ χ01,00(ρ̃00,00 − ρ̃01,01)]− γ01,00ρ̃01,00,

(5.7)

˙̃ρ10,00 = − i

2
[2(ω10,00 − ω)ρ̃10,00 + χ10,11ρ̃11,00 − χ01,00ρ̃10,01

+ χ10,00(ρ̃00,00 − ρ̃10,10)]− γ10,00ρ̃10,00,

(5.8)

˙̃ρ10,01 = − i

2
[2ω10,01ρ̃10,01 + χ10,00ρ̃00,01 − χ00,01ρ̃10,00 + χ10,11ρ̃11,01

− χ11,01ρ̃10,11]− γ10,01ρ̃10,01,

(5.9)

˙̃ρ11,00 = − i

2
[2(ω11,00 − 2ω)ρ̃11,00 + χ11,01ρ̃01,00 − χ01,00ρ̃11,01 + χ11,10ρ̃10,00

− χ10,00ρ̃11,10]− γ11,00ρ̃11,00,

(5.10)

˙̃ρ11,01 = − i

2
[2(ω11,01 − ω)ρ̃11,01 + χ11,10ρ̃10,01 − χ00,01ρ̃11,00

+ χ11,01(ρ̃01,01 − ρ̃11,11)]− γ11,01ρ̃11,01,

(5.11)

˙̃ρ11,10 = − i

2
[2(ω11,10 − ω)ρ̃11,10 + χ11,01ρ̃01,10 − χ00,10ρ̃11,00

+ χ11,10(ρ̃10,10 − ρ̃11,11)]− γ11,10ρ̃11,10,

(5.12)

where ρi,i is the population in state |i〉, ρi,j is the coherence between states |i〉 and

|j〉, χi,j = μi,j · ε̂E0(t)/� is the Rabi frequency, and γi,j are the constant decay rates.

The objective of quantum control is to tailor the control Hamiltonian to achieve

the desired multiparticle state of the system at the end of the laser pulse. This can
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be achieved experimentally, for example, using a 4f pulse shaper [112], as shown in

Fig. 5.3. The manipulation of the pulse shape is carried out in the Fourier plane by

a spatial light modulator (SLM), which may be equipped with one or two voltage-

controlled liquid-crystal retarders. When two liquid-crystal retarders are used in

conjunction with polarizers on the input and output of the SLM, full control of the

amplitude and phase of the pulse is possible. The action of the SLM in this case may

be described as the product of frequency-dependent amplitude (AM(ω)) and phase

(ΦM(ω)) masks:

M(ω) = AM(ω) exp [iΦM(ω)]. (5.13)

The effect of this mask on the pulse at the Fourier plane is given by

Ẽout(ω) = Ẽin(ω)M(ω) (5.14)

where Ẽin(ω) is the Fourier transform of the input pulse, taken to be transform-

limited:

Ein(t) =
1

2
ε̂E0(t) exp (−iω0t). (5.15)

The pulse envelope is chosen to have the form: E0(t) = |E0|sech(1.76t/τ), with

τ = 150 fs, which is consistent with the typical output from commercially available

femtosecond laser systems operating in the wavelength range of interest. Ẽout(ω)

is the Fourier transform of the output (shaped) pulse used for quantum control.

Phase-only SLM configurations minimize light losses, and for this reason we de-

velop pulse-shaping protocols involving phase-only control as well as amplitude-

only control. This will provide the greatest degree of flexibility in the experimental

implementation of the phase masks presented in Sec. 5.5.1.

We optimize the phase and amplitude masks using the constrained optimization

by linear approximations (COBYLA) algorithm [206]. The objective function to be

maximized by the optimization routine is the fidelity of the quantum gate, given by

F = Tr[ρPρI], (5.16)

where, ρP is the physical density matrix at the end of the laser pulse and ρI is

the ideal density matrix [16]. Equation 5.16 is applied to the C-ROT operation

by averaging the fidelity over four initial states, corresponding to an occupation of

unity for each of the four levels in the system, with all other density matrix elements
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Figure 5.3: 4f pulse shaper consisting of two diffraction gratings, two lenses, and
an optical mask shown as a spatial light modulator (SLM). The distance f is the
focal length of the lenses. Manipulation of the pulse shape is carried out in the
Fourier plane.

equal to zero. In this case, a pure initial system state is assumed; i.e. we do not

model the quantum state initialization, assuming it to have been carried out with

a fidelity of unity. The time dynamics of the system are calculated by integrating

Eqns. 5.3–5.12 over the duration of the pulse. We define the fidelity, F , as a function

of a vector q, the components of which describe the mask function M(ω), such that

F = f(q1, ..., qi, ..., qn). (5.17)

The components of the vector q are subject to constraints dictated by experimen-

tal limitations, as described below for each shaping scheme. We use a Sobol’ se-

quence [177, 207] to populate the n-dimensional parameter space with initial vec-

tors {qinit}, each describing different forms of the masking function, M(ω). For each

vector, Eqns. 5.3–5.12 are integrated to determine the density matrix at the end of

the laser pulse, and this density matrix is inserted into Eqn. 5.16 to calculate the

fidelity. The optimization routine drives the system to a local optimum in fidelity by

varying the components of q. We find that the optimal solution is found uniquely for

a population of 500 (or more) initial vectors, indicating that the parameter space is

adequately spanned for each shaping scheme.

5.5.1 Phase Control Scheme

A scheme for quantum control in which the only degree of freedom is the phase

of the pulse offers some advantages: (i) light losses in the shaping system will be
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minimized; and (ii) such a system avoids deleterious effects associated with rejected

light in the shaping system. The phase mask we utilize here has the following

dependence on the individual frequencies ω within the pulse:

ΦM(ω) = α cos[γ(ω − ω10,11)− δ]. (5.18)

Here ω10,11 is the transition frequency resonant with the |10〉 to |11〉 transition, and

α, γ, δ, and the total pulse area (Θ = (μ · ε̂/�) ∫ +∞
−∞ E0(t) dt) are taken as free

parameters, so that the fidelity is a function of four variables:

F = f(α, γ, δ,Θ). (5.19)

The following constraints are imposed:

0 ≤α ≤ π,

0 ≤γ ≤ 315 fs,

−π ≤δ ≤ π,

π/2 ≤Θ ≤ 6π.

(5.20)

The limits on α and γ were chosen to restrict |dΦM(ω)/dω|max to approximately

π/10 radians per pixel for a 128-pixel SLM, representing a readily accessible phase

gradient for typical pulse-shaping systems. Θ was allowed to vary up to 6π radians

as it was found that multiple Rabi oscillation cycles provided access to higher fideli-

ties, as discussed in Sec. 5.6. 6π radians is considered to be a good compromise for

achieving high fidelities with experimentally accessible pulse fluences [14].

5.5.2 Amplitude Control Scheme

The amplitude mask function we employ here has the following form:

AM(ω) =

∣∣∣∣ exp
[
−
(

ω − ω10,11

Δω1/(2 ln 2)1/2

)2
]
− A0 exp

[
−
(

ω − ω00,10

Δω2/(2 ln 2)1/2

)2
]∣∣∣∣. (5.21)

Equation 5.21 represents the destructive interference of simultaneous bichro-

matic Gaussian pulses centered at photon energies E10,11 = �ω10,11, and E00,01 =

�ω00,01, with full-width at half maximum frequency bandwidths Δωi, and a rela-

tive amplitude factor A0. For simplicity, we set ΦM(ω) in Eqn. 5.13 equal to zero.
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The analytical form in Eqn. 5.21 was inspired by the results in Ref. [39], in which

a similar four-level system was considered, and the C-ROT gate was optimized by

separately controlling the pulse durations of two phase-locked Gaussian pulses. The

amplitude mask in Eqn. 5.21 is a more general form and is easily implemented using

a single mode-locked oscillator and a commercial pulse shaper.

The fidelity is maximized in a four-dimensional parameter space:

F = f(Δω1,Δω2, A0,Θ). (5.22)

The free parameters Δωi, A0 and Θ are subject to the following constraints:

6.08 ≤�Δωi ≤ 12.2meV,

0.0 ≤A0 ≤ 1.0,

π/2 ≤Θ ≤ 6π.

(5.23)

The maximum limit on the bandwidths Δωi is determined by the spectral content

of the initial transform-limited optical pulse, while the minimum limit restricts the

total pulse operation time. The restrictions on Θ were kept the same as for the phase

control scheme, so that the effectiveness of the two schemes could be compared.

It should be noted that it is not possible to enforce a constant maximum rate of

change, |dAM(ω)/dω|max, for all binding energies. We nevertheless verified that the

spectral amplitude features obtained for the optimal pulse shapes are sufficiently

slowly varying to be well reproduced by a standard 128-pixel SLM.

5.6 Results and Discussion

5.6.1 Optimized Quantum Control Pulses

Figure 5.4 shows the results for the optimum pulse shape using the phase-only

control scheme for a biexciton binding energy of 2.5meV. In order to quantify

the efficacy of the pulse-shaping protocols presented in this work, we compare the

gate performance for the shaped pulse to that for a TL pulse with an equivalent

gate time.2 The optimized parameters for the shaped pulse are: α = 0.511π rad,

2The gate time for a given excitation pulse was determined by normalizing the intensity profile
and determining the width of a square pulse with the same total area.
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γ = 325 fs, δ = 0.243π rad, and Θ = 5.780π rad. These data correspond to a gate

time of 555 fs for the TL and shaped pulses. The population dynamics are shown in

the two upper panels in Fig. 5.4 for two initial conditions: (i) ρ10,10(t = 0) = 1, and

(ii) ρ00,00(t = 0) = 1. As discussed in Sec. 5.3, the objective of the C-ROT gate is to

flip the state of the target (second) bit if and only if the control (first) bit is 1. This

implies that the optical pulse should effect a π Rabi rotation between |10〉 and |11〉
if the system is initially in either |10〉 or |11〉 and have no effect if the system is in

|00〉 or |01〉 at t = 0.

For ρ10,10(t = 0) = 1 (top row of panels in Fig. 5.4) the first bit is 1 at time

t = 0. In this case, the C-ROT gate must flip the second bit so that the occupation

ρ11,11 = 1 at the end of the pulse. As seen in Fig. 5.4(a), the shaped pulse carries

out this operation with a high fidelity. The occupations ρ11,11 and ρ10,10 are flipped

such that ρ11,11 starts at 0 and ends at approximately 1 while ρ10,10 starts at 1 and

ends at approximately 0. The occupation for the non-target state (ρ00,00) starts at

0 and after some transient occupation is returned to approximately 0. For the TL

pulse in Fig. 5.4(b), an incomplete transfer of occupation between ρ10,10 and ρ11,11

occurs and the residual occupation in ρ00,00 is non-zero, resulting in lower fidelity.

For the second initial condition, ρ00,00(t = 0) = 1 (second row of panels in

Fig. 5.4), the first bit is 0 at t = 0, so an ideal pulse would return the system to

its initial state. The shaped pulse is also able to perform this operation with high

fidelity as seen in Fig. 5.4(a). The occupations ρ11,11 and ρ10,10 start at 0 at time

t = 0 and both are returned to approximately 0 after some transient dynamics. Ad-

ditionally, the occupation in ρ00,00 starts at 1 and is returned to 1. The TL pulse is

ineffective for this operation as it permanently reduces the occupation ρ00,00, result-

ing in residual values of the occupations ρ11,11 and ρ10,10 at the end of the pulse. The

state evolution for the initial condition ρ11,11(t = 0) = 1 is linked to the evolution

for ρ10,10(t = 0) = 1 as these state occupations are exchanged in the C-ROT and so

only the dynamics for ρ10,10(t = 0) = 1 are shown for clarity. The optical selection

rules for a Πy-polarized pulse preclude laser-induced dynamics for the fourth initial

condition ρ01,01(t = 0) = 1 (see Fig. 5.1(a)).

The temporal and spectral properties of the shaped and TL control laser pulses

are shown in the two lower panels of Fig. 5.4. The TL pulse with an equivalent
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gate time has a narrower frequency spectrum than the shaped pulse and a constant

phase. The sinusoidal phase modulation for the shaped pulse results in a structured

intensity profile and concomitant intermediate state dynamics. The improvement

in fidelity afforded by the shaping protocol is nevertheless considerable, reaching a

value of 0.964 in comparison to 0.866 for the TL pulse.

Figure 5.4: Population dynamics and control pulse characteristics for (a) the op-
timal phase-shaped pulse, and (b) the TL pulse. Panels (i) and (ii) show the pop-
ulation dynamics for the initial conditions ρ10,10(t = 0) = 1 and ρ00,00(t = 0) = 1,
respectively. The third panel shows the temporal envelope of the electric field in-
tensity of the control pulse. The bottom panel shows the amplitude (solid curves)
and phase (dashed curves) profiles for the control pulse.

An alternative view of the state dynamics is provided by the Bloch vector repre-

sentation, shown in Fig. 5.5(a) and Fig. 5.5(b) for the phase-shaped and TL pulses,

respectively. The solid line indicates the Bloch vector corresponding to the first

qubit for ρ00,00(t = 0) = 1, while the dashed curve corresponds to the second qubit

for ρ10,10(t = 0) = 1. The complex trajectories in Fig. 5.5(a) reflect the interme-

diate state dynamics in Fig. 5.4(a). The increased efficacy of the C-ROT operation
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for the phase-shaped pulse is evident in Fig. 5.5(a) as the second qubit undergoes

a half-cycle rotation for ρ10,10(t = 0) = 1 (dashed curves) while the first qubit is

returned to the initial state for ρ00,00(t = 0) = 1 (solid curves). The higher fidelity

obtained with the phase-shaping protocol relative to the TL pulse is also illustrated

by the truth tables in Fig. 5.5(c) and Fig. 5.5(d). The TL pulse leads to inferior con-

trol of the conditional dynamics because the wide spectral bandwidth relative to

Δb prevents discrimination between the target and non-target states in the optical

excitation process.

Figure 5.5: Bloch vector representations of the first qubit for ρ00,00(t = 0) = 1
(solid curve) and the second qubit for ρ10,10(t = 0) = 1 (dashed curve) for the (a)
phase-shaped pulses, and (b) TL pulse. Truth table of the gate operation for the (c)
optimal phase-shaped pulse, and (d) TL pulse.

Figure 5.6 shows the results for the optimal amplitude-shaped pulse for the

same binding energy of 2.5meV. The optimized parameters for the shaped pulse

are: �Δω1 = 6.083meV, �Δω2 = 12.166meV, A0 = 0.772, and Θ = 3.6π rad. The

gate time for the data in Fig. 5.6 is 335.5 fs for both shaped and TL pulses. The

Bloch vector and truth table results corresponding to the state dynamics in Fig. 5.6

are shown in Fig. 5.7. The fidelity of the C-ROT gate for the amplitude-shaped

pulse is 0.967, in comparison with a value of 0.689 for the TL pulse, illustrating a

dramatic improvement with pulse shaping.

The amplitude mask in Eqn. 5.21 is a superposition of two Gaussians that are
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π out of phase with each other. From the bottom panel in Fig. 5.6, it is clear

that the optimum condition for high fidelity corresponds to the generation of a

node in the pulse spectrum resonant with the |00〉 → |10〉 transition (occurring at

974.5 nm). The optimum pulse parameters therefore result in perfect destructive

interference between the two terms in Eqn. 5.21 at ω = ω00,10. Such a cancella-

tion effect was also found in Ref. [39] for a similar 4-level scheme involving pure

exciton spin states in cylindrically-symmetric quantum dots. Our results for the

level scheme in Fig. 5.1(a), for which the ground state is coupled to the biexciton

via the intermediate state |01〉, and for which our more general amplitude mask

in Eqn. 5.21 permits relative amplitude control between the two terms, indicates

that the cancellation effect is a general consequence of the use of this bichromatic

control scheme. As described in the next section, our findings also verify that the

spectral node tracks the |00〉 → |10〉 transition as Δb is varied. (In Ref. [39] Δb

was fixed). Unlike the amplitude shaping scheme, for which there exists a simple

interpretation of the improvement in fidelity introduced by pulse shaping in terms

of destructive light interference at ω00,10, for the phase-only shaping protocol the

pulse spectrum is unaffected by the shaping mask and consequently no such sim-

ple interpretation exists. In contrast to the case of a TL pulse, in which the Rabi

rotation on the Bloch sphere occurs about a fixed axis in the x-y plane, the intro-

duction of a time- (and frequency-) dependent phase in the control pulse will lead

to the motion of the Rabi control vector during the operation. In conjunction with

the freedom to perform more than one full Rabi cycle in our shaping protocol, this

leads to a complex motion of the Bloch vector, as evident in Fig. 5.5(a). Optimiza-

tion of the fidelity only requires that the system reach the target state at the end of

the control pulse. The phase-only shaping scheme used in Eqn. 5.18 was chosen for

its simplicity of implementation and for the ease of monitoring the control pulses

using common pulse measurement techniques.3 We expect that another choice of

phase mask function would lead to similar improvements in fidelity provided suffi-

ciently rapid phase variations may be generated within the experimental constraints

of conventional SLMs. The ability to tailor the coherent state dynamics using only

control over the pulse phase, illustrated here for exciton qubits in self-assembled

3In a follow-up paper (A. Gamouras, R. Mathew and K. C. Hall, unpublished) we describe the
experimental characterization of pulse shapes using multiphoton intrapulse interference phase scan.
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quantum dots, highlights the power and flexibility of pulse shaping in tailoring the

light-matter interaction.

Figure 5.6: Population dynamics and control pulse characteristics for (a) the op-
timal amplitude-shaped pulse, and (b) the TL pulse. Panels (i) and (ii) show the
population dynamics for the initial conditions ρ10,10(t = 0) = 1 and ρ00,00(t = 0) = 1,
respectively. The third panel shows the temporal envelope of the electric field in-
tensity of the control pulse. The bottom panel shows the amplitude (solid curves)
and phase (dashed curves) profiles for the control pulse.

5.6.2 Dependence on Biexciton Binding Energy

The variation of the fidelity and gate time with the size of the binding energy of

the biexciton is shown in Fig. 5.8 for the optimum shaped and TL pulses. The gate

fidelity is independent of the sign of Δb, indicating that only the magnitude of the

energy separation between the |00〉 → |10〉 and |10〉 → |11〉 transitions is important.

The phase- and amplitude-shaped pulses outperform the TL pulses for the full range

of binding energies investigated. The pulse parameters corresponding to the data in

Fig. 5.8 are shown in Table 5.2 and Table 5.3 for the phase- and amplitude-shaping
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Figure 5.7: Bloch vector representations of the first qubit for ρ00,00(t = 0) = 1
(solid curve) and the second qubit for ρ10,10(t = 0) = 1 (dashed curve) for the (a)
amplitude-shaped pulses, and (b) TL pulse. Truth table of the gate operation for
the (c) optimal amplitude-shaped pulse, and (d) TL pulse.

protocols, respectively. The pulse parameters for positive and negative binding en-

ergies were found to be similar, and so only the trends for positive binding energies

are provided. For the phase-shaped pulses, the decrease in the sinusoidal amplitude

α and frequency γ with increasing Δb in Table 5.2 occurs because less rapid changes

in the phase are required for a high fidelity operation between increasingly distant

transitions. The phase δ, while having a critical influence on the temporal pulse pro-

file and the resulting dynamics, does not have a discernible trend. We observe that

Θ > π in all cases, indicating that the target quantum state is reached after multiple

cycles of the Bloch vector. As Δb increases, the pulse center-frequency tracks the

|10〉 → |11〉 transition, and therefore the pulse energy at the |00〉 → |10〉 transition

decreases. A greater overall pulse energy is then needed to reach the desired final

state for all initial conditions simultaneously, leading to the increase in Θ with Δb

in Table 5.2. Our calculations indicate that further increasing the binding energy

to values that are larger than the pulse bandwidth causes the optimum value of

the pulse area to decrease towards π radians (e.g. Θ = 4.44π for Δb = 12meV and

Θ = π for Δb = 24meV), as expected because in this trivial limit the undesired



117

transition is not coupled to the laser field. We note that the meaning of the opti-

mized pulse parameters are questionable for Δb ≈ 0, likely accounting for the two

anomalous points around Δb = 0 in the results for the amplitude mask in Fig. 5.8.

Figure 5.8: (Top) Fidelity for the optimal phase-shaped pulses (diamonds), and op-
timal amplitude-shaped pulses (circles) is shown as a function of the biexciton bind-
ing energy. The fidelities of the corresponding TL pulses with equivalent gate times
are also shown for the phase-shaped pulses (×), and amplitude-shaped pulses (+).
(Bottom) Gate time of optimal phase-shaped (diamonds) and amplitude-shaped
(circles) pulses as a function of binding energy.

As seen in Table 5.3, the amplitude-shaping protocol is ineffective for small Δb.

The fidelity nevertheless increases rapidly as the separation between the transi-

tions increases: A fidelity near unity is already achieved for Δb > 1.5meV. The

bandwidth of the first Gaussian function is nearly constant at the lower limit of

the imposed constraint because a narrow function maximizes the fraction of light

contributing to the |10〉 → |11〉 Rabi rotation. In contrast, the bandwidth of the sec-

ond term increases to its maximum value as Δb increases. A large value for �Δω2

maximizes the overlap of the pulse bandwidth of the second pulse with that of the
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first pulse. However, it is not clear why this overlap is advantageous for increas-

ing the fidelity. The optimum values for A0 in Table 5.3 ensure that destructive

interference at the |10〉 → |11〉 transition is complete. The pulse area, Θ, decreases

monotonically with Δb in Table 5.3, reflecting the relaxed requirements for high

fidelity operation. This reduction in Θ also leads to a decrease in the fraction of

light reflected by the pulse shaper in imposing the amplitude-shaping scheme.

Table 5.2: The optimum pulse parameters obtained for the phase-shaping protocol
for a range of values of the biexciton binding energy. The resulting C-ROT gate time
(GT) is also shown.

Δb (meV) F α (π rad) γ (fs) δ (π rad) Θ (π rad) GT (fs)
0.00 0.617 0.460 325.0 -0.770 3.617 555.7
0.25 0.658 0.600 325.0 0.854 5.841 584.1
0.50 0.709 0.602 325.0 0.841 5.769 583.3
0.75 0.759 0.603 325.0 -0.165 5.759 583.2
1.00 0.805 0.606 325.0 0.832 5.758 583.8
1.25 0.844 0.608 325.0 -0.168 5.765 584.5
1.50 0.875 0.610 325.0 0.832 5.759 585.3
1.75 0.897 0.613 325.0 -0.165 5.771 586.7
2.00 0.925 0.507 325.0 -0.758 5.775 555.0
2.25 0.947 0.509 325.0 -0.757 5.779 555.2
2.50 0.964 0.511 325.0 0.243 5.780 555.3
2.75 0.974 0.513 323.3 -0.758 5.790 554.2
3.00 0.979 0.514 324.5 0.245 5.782 489.2
3.25 0.980 0.522 301.6 0.218 5.945 555.0
3.50 0.980 0.525 293.1 -0.791 6.000 532.4
3.75 0.975 0.526 291.2 -0.794 6.000 531.1
4.00 0.966 0.527 289.9 -0.796 6.000 530.3

It should be noted that the amplitude-shaping protocol provides shorter gate

times (by ∼ 30% on average) than the phase-shaping protocol, while the phase-

shaping scheme avoids the deleterious effects associated with the rejected light in

the pulse shaper. As only two shaping schemes are investigated here, it is reasonable

to expect a further improvement in the overall gate characteristics with the general-

ization of the shaping protocol to include simultaneous control over the amplitude

and phase of the pulse. Improvements in gate performance may also be achieved

using phase-only control schemes with a more complex choice for the phase mask

function than that used here. The simple shaping schemes we have implemented
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Table 5.3: The optimum pulse parameters obtained for the amplitude-shaping pro-
tocol for a range of values of the biexciton binding energy. The resulting C-ROT
gate time (GT) is also shown.

Δb (meV) F �Δω1 (meV) �Δω2 (meV) A0 Θ(π rad) GT (fs)
0.00 0.594 6.967 9.428 0.902 5.843 325.2
0.25 0.629 6.099 6.458 0.898 5.889 472.1
0.50 0.680 6.083 6.744 0.899 6.000 452.3
0.75 0.737 6.083 7.085 0.900 6.000 436.7
1.00 0.795 6.083 7.572 0.902 6.000 405.7
1.25 0.855 6.083 8.340 0.900 6.000 392.1
1.50 0.913 6.083 9.780 0.897 6.000 364.4
1.75 0.962 6.190 11.121 0.885 6.000 348.5
2.00 0.968 6.083 11.991 0.850 5.029 338.2
2.25 0.966 6.083 12.166 0.815 4.318 336.4
2.50 0.967 6.083 12.166 0.772 3.600 335.5
2.75 0.973 6.083 12.166 0.728 3.048 352.3
3.00 0.979 6.083 12.166 0.685 2.683 370.9
3.25 0.983 6.083 12.166 0.643 2.400 384.7
3.50 0.986 6.083 12.166 0.603 2.175 395.2
3.75 0.990 6.083 12.166 0.566 1.998 402.7
4.00 0.992 6.083 12.166 0.530 1.857 406.7

serve to illustrate the power and flexibility of the pulse-shaping approach in achiev-

ing rapid, high-fidelity quantum operations on qubits in semiconductor quantum

dots.

5.6.3 Inclusion of Relaxation Effects

The effects of dephasing were examined by introducing relaxation to the model,

as discussed in Sec. 5.5. The population decay constants are set to values that are

typical of InxGa1−xAs dots [208]: T1 = 480 ps for the exciton states |01〉 and |10〉,
and T1 = 320 ps for the biexciton state |11〉 (i.e. γ01,01 = γ10,10 = T−1

1 for the sin-

gle excitons and γ11,11 = T−1
1 for the biexciton). As described in Sec. 5.5, these

effects are incorporated in the relaxation-time approximation. The longitudinal de-

cay times are held fixed while the T2 times (γ−1
ij for i �= j) are taken to be the same

for both exciton and biexciton states and are varied over a wide range up to the

radiatively-limited case. The fidelity was calculated by integrating Eqns. 5.3–5.12
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over 8 ps, with the pulse arriving at the center of the temporal window. The re-

sults of these calculations are shown in Fig. 5.9. We find that dephasing has only a

small impact on the fidelity in all cases, even down to the shortest decoherence time

considered (10 ps). This reflects the rapid nature of the C-ROT gate when ultrafast

optical pulses are used. The impact of dephasing depends only on the gate time,

giving a reduction of 6% for the phase-shaping scheme and 3% for the amplitude-

shaping scheme with a dephasing time of 10 ps. Dephasing times for exciton qubits

in semiconductor quantum dots in the range of several hundred picoseconds have

been measured experimentally at low temperature [86]. In conjunction with the

implementation of dynamical decoupling schemes for mitigating decoherence be-

tween gate operations [92, 46, 35], these results indicate the feasibility of high

fidelity quantum computing using subpicosecond optical gates and semiconductor

quantum dots.

Figure 5.9: Fidelity versus dephasing time T2 for the optimal phase-shaped pulses
(diamonds), and optimal amplitude-shaped pulses (circles), and the TL sech pulses
with gate time equivalent to that of the phase-shaped pulses (×), and amplitude-
shaped pulses (+).

5.7 Conclusions

In conclusion, we have studied the use of pulse-shaping protocols that can be eas-

ily implemented using commercially available femtosecond laser systems and pulse
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shapers. We demonstrated the use of these protocols for the C-ROT gate in a re-

alistic In(Ga)As quantum dot with electronic structure obtained using eight-band,

strain-dependent k·p theory. Our results show that engineering the pulse using sim-

ple amplitude-only and phase-only shaping schemes provides considerable improve-

ments in fidelity over a transform-limited pulse with the same operation time. The

power and flexibility of pulse-shaping systems, which provide independent control

of the pulse amplitude and phase, may be exploited to obtain further improvements

in gate performance through generalization to more complex shaping schemes. The

introduction of relaxation to the model was found to have a minimal effect on the

gate fidelity for experimentally relevant dephasing times, reflecting the advantages

of femtosecond optical pulses for quantum operations. Our results lay the ground

work for implementing pulse shaping in other quantum control processes, including

two-photon Rabi rotations, adiabatic passage, and schemes for dynamical decou-

pling.
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6.1 Abstract

We demonstrate adiabatic rapid passage on a subpicosecond timescale in a single

semiconductor quantum dot, enabling the exploration of a regime of strong (and

rapidly-varying) Rabi energies for optical control of excitons. An observed depen-

dence of exciton inversion efficiency on the sign of pulse chirp demonstrates the

dominance of phonon-mediated dephasing, which is suppressed for positive chirp

122
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at low temperature. Our findings will support the realization of dynamical decou-

pling strategies, and suggest that multi-phonon emission and/or non-Markovian

effects should be taken into account.

6.2 Introduction

Semiconductor quantum dots (QDs) are attractive for a variety of applications in

quantum information science as they offer atom-like properties in a solid state envi-

ronment, coupled with the ease and efficiency of quantum state manipulation using

coherent optical pulses [15, 50, 52, 100, 106, 209]. Adiabatic rapid passage (ARP)

provides a particularly effective strategy for achieving quantum state inversion in

these systems because, unlike optical control via Rabi oscillations [15, 50, 52], ARP

is insensitive to variations in the QD parameters (dipole moment, transition en-

ergy) that are inherent to the natural size variations present in such systems. The

robustness of quantum state inversion via ARP is due to the use of frequency-swept

optical pulses, which results in a transfer of the system through an anticrossing for

which the final state is uniquely identified with the exciton after the laser pulse

is over [136, 135, 129, 138, 130, 128]. Building upon demonstrations in atomic

systems [135, 136], ARP was recently achieved experimentally in single semicon-

ductor quantum dots [74, 73], paving the way for application to efficient single and

entangled photon sources [48, 127], quantum gates [130, 131, 132, 133, 134], all-

optical switches [128, 129] and the realization of a Bose-Einstein condensate in a

QD ensemble [210].

Despite this promise, quantum state control in QDs is impeded by coupling to

phonons, representing an intrinsic source of decoherence within the solid state en-

vironment. The need to both elucidate and mitigate phonon-mediated decoherence

processes in optical control experiments on semiconductor QDs has stimulated a

comprehensive research effort in recent years [69, 25, 137, 138, 139, 140, 141,

130, 89, 142, 143, 144, 145, 129, 146]. For ARP, the impact of phonons has recently

been predicted to depend on the magnitude of the peak Rabi energy during the con-

trol pulse as well as the direction of the sweep of the instantaneous pulse frequency

(i.e., the sign of the pulse chirp) [138, 139, 140]. The former prediction is consis-

tent with the observation of a drop in the final exciton occupation with increasing
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pulse area above the threshold for ARP [73, 74]. A dependence on pulse chirp, how-

ever, provides a more transparent means of distinguishing phonon-induced dephas-

ing from other sources of decoherence. In particular, in previous studies of damping

of Rabi oscillations, coupling of the optically excited exciton with phonons [69, 25]

or unintended carriers excited into the wetting layer [64, 211] have been identified

as potential sources of decoherence. For control via ARP, only the phonon-related

process depends on the sign of pulse chirp, allowing for the experimental isolation

of phonon-related decoherence effects in optical control.

In the experiments reported here, we show that phonons represent the primary

source of dephasing in optical control experiments on excitons in single semicon-

ductor QDs by revealing a dependence of the exciton inversion efficiency on the

sign of the control pulse chirp: For positively-chirped pulses, the system traverses

the lower-energy adiabatic branch, resulting in greater exciton inversion, consis-

tent with suppression of phonon emission processes. Our experiments also repre-

sent a demonstration of ARP in a new experimental regime of large Rabi energy

through the use of shorter optical pulses (representing a factor of � 20 reduction

in comparison to previous work [74, 73]). In addition to enabling a larger number

of quantum operations within the decoherence time, the ultrafast control pulses

used in the experiments reported here lay the groundwork for realizing decoher-

ence protection via dynamical decoupling [33, 35, 46, 92]. Comparison of our

experimental results with a theoretical model including phonon-mediated decoher-

ence [69, 25, 137] suggests the importance of multi-phonon emission processes

and non-Markovian effects, with implications for the theoretical design of optimal

control pulses that minimize decoherence. The use of short pulses also reduces the

magnitude of the spectral chirp required for ARP, facilitates the accurate applica-

tion of chirp via readily available commercial pulse shaping systems, and provides

a means to further optimize the quantum state evolution and to realize parallel

quantum gates on multiple quantum dots through the use of general pulse shaping

techniques [134, 141, 173, 174, 125].



125

Figure 6.1: (a) Quantum state control and read-out scheme with ground state (|0〉),
p-shell exciton (|1〉), and s-shell exciton (|2〉). (b) Spectrally-resolved PL from the
s-shell. The arrow marks the s-shell emission for the QD studied here. (c) PL
intensity as a function of pulse area for increasing positive chirp. (d) PL intensity
at Θ = 2π as a function of the magnitude of the chirp (black circles) and a fit to
a saturation function (I = I0φ

′′/(φ′′ + φ′′
sat)), with φ′′

sat = 0.0083 ps2 (blue curve).
Inset: (top) Laser pulse spectrum (solid blue curve), dispersion compensation mask
(dashed red curve) and the chirp mask applied to the dispersion-compensated pulse
for φ′′ = 0.039 ps2 (solid red curve). (bottom) Measured pulse autocorrelation for
the transform-limited pulse with τ0 = 120 fs (dashed curve) and a chirped 910 fs
pulse with φ′′ = 0.039 ps2 (solid curve).
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6.3 Experimental Details

The sample under study is an InAs/GaAs quantum dot structure grown using molec-

ular beam epitaxy. We spectrally isolate single QDs from the ensemble using a

metallic mask with a 0.4μm aperture. The sample is held on a nanopositioning stage

in a continuous-flow cryostat at 10K. The optical source is a 76MHz optical para-

metric oscillator (OPO) generating 1.16 μm pulses with a dispersion-compensated

pulse width of 120 fs. Dispersion compensation [162] and the introduction of chirp

is achieved by passing the pulses through a 4f pulse shaper, with a dual mask,

128-pixel spatial light modulator at the Fourier plane. The laser pulses, resonant

with the crystal ground state (|0〉) to p-shell exciton (|1〉) transition in the QD (see

Fig. 6.1(a)), are focused onto the sample using a high-resolution objective lens (nu-

merical aperture 0.7). Relaxation to the s-shell exciton (|2〉) occurs non-radiatively

and the photoluminescence (PL) emitted from the s-shell is collected through the

same objective lens and detected using a 0.75m monochromator and InGaAs array

detector with a resolution of 30μeV. For the QD under study, the p-shell and s-shell

transitions are at 1.0688 eV and 0.9772 eV, respectively, determined using micro-

PL and PL excitation techniques. For further details on the sample structure and

experimental techniques, see Ref. [125].

6.4 Results

6.4.1 Ultrafast ARP

We demonstrate ARP by measuring the PL intensity as a function of the pulse area

(Θ) for increasing positive spectral chirp (φ′′), which is applied to a transform-

limited pulse using the pulse shaper 1. Here the linearly chirped laser pulse is given

by E(t) = 1
2
Ep(t) exp [−i(ωlt+ αt2)] where ωl is the center frequency of the laser

pulse and the frequency is swept at rate α, where α = 2φ′′/[τ 40 /(2 ln (2))
2 + (2φ′′)2],

τ0 is the transform-limited pulse width, and τp = τ0[1+(4 ln 2φ′′)2/τ 40 ]
1/2 is the width

of the chirped pulse. The results of these experiments are shown in Fig. 6.1(c).

A strongly-damped Rabi oscillation is observed for zero pulse chirp, a signature

1The average power required to reach a given pulse area is proportional to the laser pulse band-
width, limiting the maximum pulse area that avoids sample heating effects.
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of coherent manipulation of the exciton, as seen in previous work [15, 50, 52,

69, 211]. As the magnitude of the chirp is increased, the PL intensity for Θ > π

increases and a plateau in the emission emerges, corresponding to high inversion

efficiency over a wider range of Θ as φ′′ is increased. For the largest value of chirp

(φ′′ = 0.133 ps2), the PL intensity is nearly independent of pulse area above the

threshold for ARP. This trend was observed for both linearly and circularly-polarized

control pulses indicating that biexciton dynamics do not play a significant role,

consistent with previous studies of Rabi oscillations on the p-shell transition [211].

Figure 6.1(d) shows the PL intensity for a pulse area of 2π as a function of the

magnitude of the chirp (black circles), indicating a saturation behaviour.

Figure 6.2: PL intensity as a function of pulse area for φ′′ = +0.133 ps2 (blue
squares) and φ′′ = −0.133 ps2 (red circles). Inset: Illustration of the temporal evo-
lution of the energies of the dressed states for positively-chirped and negatively-
chirped pulses. The vertical dashed arrows represent diabatic transitions caused by
phonon emission.

The insensitivity of the exciton PL intensity to changes in pulse area for a suffi-

ciently large pulse chirp is a signature of adiabatic rapid passage and robust state

inversion [136, 135, 129, 138, 130, 128]. For ARP, coupling of a two-level system

with a light field may be understood in terms of the instantaneous eigenstates of

the system, the so-called dressed states |ψ+〉 and |ψ−〉. In the adiabatic regime,

the system remains in one of the dressed states while the admixture of the bare
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QD states (|0〉 and |1〉) is evolved to invert the two-level system. The energy split-

ting of the states is given by
√
Ω(t)2 +Δ(t)2, where Ω(t) = (

√
2 ln 2)(Θ/

√
πτ0τp)

exp [−2 ln (2)t2/τ 2p ] is the instantaneous Rabi frequency and Δ(t) = −2αt is the

detuning of the laser field from the transition. For the positive chirp applied in

the experiments in Fig. 6.1(c), the system evolves from the ground state to the

exciton through the anticrossing in state |ψ−〉, corresponding to traversal along

the lower-energy adiabatic branch (see inset to Fig. 6.2). Using the condition

φ′′
min ≈ πτ 20 /[2 ln (2)] from Ref. [138], we estimate the minimum chirp required to

achieve ARP to be 0.033 ps2 in our experiments, corresponding to a pulse width of

τp = 770 fs. This represents a reduction in the gate time for exciton inversion using

ARP by a factor of � 20 relative to previous demonstrations [73, 74]. The use of

broadband pulses in our experiments has also resulted in a lower threshold spectral

chirp (0.033 ps2 here, in comparison to ∼ 10 ps2 in Refs. [74, 73]). Furthermore, the

requisite chirp is much easier to implement with standard commercially available

frequency-domain pulse shapers when femtosecond pulses are used.

The achievement of ARP using subpicosecond pulses demonstrated here is greatly

beneficial for quantum computing applications because it permits more gate oper-

ations within the decoherence time [130, 131, 132, 133, 134, 120]. While this

benefit is universal, the protective effect of short pulse control is particularly evi-

dent for our experiments, in which efficient ARP is achieved for the first time on

the p-shell transition in a semiconductor QD despite a short energy relaxation time

to the s-shell [51, 212]. Our demonstration of a sub-picosecond gate also paves

the way for strategies for decoherence protection based on dynamical decoupling

[33, 35, 46, 92], for which faster gates lead to greater protection. The ease and

flexibility of pulse shaping in the femtosecond regime also permits more accurate

dispersion compensation [162] as well as the ability to pursue arbitrary (nonlin-

ear) phase control that can be used to optimize gate performance (e.g. fidelity,

speed) [134, 141, 173, 174, 125] and may enable parallel processing in solid state

qubit systems [125]. The use of broadband pulses is aided by the strong confine-

ment in the QDs studied here, which are characterized by a large energy separation

between the s-shell and p-shell transitions and between the p-shell and the wet-

ting layer transitions (90meV and 310meV, respectively). The latter separation is
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expected to strongly diminish sources of decoherence associated with coupling to

unwanted excitations in the wetting layer [64, 211].

6.4.2 Role of Phonons

In order to investigate the role of phonons in our experiments, measurements were

made of the dependence of the PL intensity on the sign of the pulse chirp (i.e. the

sign of α). The results of these experiments (for which |φ′′| = 0.133 ps2, well above

the threshold for ARP) are shown in Fig. 6.2. The PL intensity from the exciton

transition for negative pulse chirp (red circles) is lower than that for positive pulse

chirp (blue squares) by an amount that increases with increasing pulse area. This

chirp sign dependence is observed for both linearly and circularly-polarized excita-

tion, indicating a negligible role of biexcitons in this effect. For α < 0, the system

evolves from the ground state to the exciton through the anticrossing via the higher-

energy adiabatic branch. In this case, diabatic transitions can occur in the vicinity

of the anticrossing due to emission of phonons [69, 25, 137, 144, 141]. In contrast,

for α > 0, state evolution proceeds via the lower-energy adiabatic branch. Phonon

mediated transitions to the upper branch would occur through phonon absorption

in this case, which is suppressed at 10K [138, 139, 140]2. Phonon-mediated tran-

sitions between the adiabatic branches are a form of excitation-induced dephasing

(EID), since the decoherence rate is dictated by the characteristics of the optical

pulse. The results in Fig. 6.2 therefore indicate that coupling to phonons is the

primary mechanism limiting the efficiency of exciton inversion via ARP and that

proper choice of the sign of the pulse chirp can diminish such effects at low temper-

atures. The protective effect of the energy gap between the upper and lower energy

adiabatic branches should exist for temperatures T for which kBT � �Λ(t) where

Λ(t) =
√
Ω(t)2 +Δ(t)2 is the instantaneous value of the effective Rabi frequency. A

reduced exciton inversion for negative pulse chirp was observed within the range

of accessible temperatures in our experiments (≤ 25 K, limited by the noise floor of

the InGaAs detector and the micro-PL technique used here for quantum state read-

out). This is consistent with the large Rabi energies in our experiments, as �Λp is

2The suppression of phonon absorption follows from the large value of the minimum splitting be-
tween the dressed states during the control pulse [approximately 4 meV; see Fig. 6.3, inset] relative
to the thermal energy available at 10 K.
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approximately 7 meV, representing an enhancement of several orders of magnitude

compared to previous work [74, 73]. The strong driving conditions achieved in our

experiments through the use of subpicosecond control pulses is therefore beneficial

for the potential operation of devices that exploit ARP at elevated temperatures.

The identification of the physical process limiting the quality of quantum con-

trol is possible here because the sign of pulse chirp in ARP provides a means to

isolate phonon-related decoherence, as contributions to EID tied to wetting layer

excitations exhibit no such chirp sign dependence. The general conclusion of the

dominance of phonon coupling also translates to other control processes such as

Rabi rotations, for which the system is in a superposition of the upper- and lower-

energy dressed states during optical control. In the case of Rabi oscillations, distin-

guishing between the wetting layer and phonon contributions to EID represents a

more formidable challenge [69, 25, 64, 211, 146] as both mechanisms lead to sim-

ilar trends in the dependence of the dephasing rate on pulse bandwidth and Θ (for

small Θ). Recent measurements of Rabi oscillation damping over a broad range

of experimental conditions [69, 25] point to the dominance of phonon-mediated

EID, in agreement with the findings we report here. For ARP, the sensitivity of ex-

citon inversion efficiency on the sign of pulse chirp demonstrated here provides a

clear isolation of phonon-mediated EID. A weak decay at the highest pulse areas for

α > 0 in the results in Fig. 6.2 may indicate a weak contribution from the wetting

layer mechanism, which increases in strength with increasing Θ [64, 211], although

the broad range of pulse area with a relatively constant PL intensity in Fig. 6.2 is

promising for applications utilizing ARP for exciton inversion.

While the above results clearly indicate the dominant role of phonons in de-

phasing for optical control on single semiconductor QDs, the relatively unexplored

regime of strong (and rapid) driving of the coupled quantum dot-phonon system

achieved in our experiments may also be exploited in strategies for decoherence

mitigation. In particular, the influence of phonon-mediated dephasing is dictated by

the instantaneous value of Λ(t) for times during the state evolution in the vicinity of

the anticrossing, together with the frequency dependence of the phonon response

function (K(ω)) [144, 69, 25, 139, 138, 140]. The exciton-phonon coupling is

strongest when K(Λ) is significant since in this case the phonon modes can respond
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resonantly to laser-induced driving of the exciton at the effective Rabi frequency, re-

sulting in phonon-mediated transitions between the adiabatic branches. The finite

size of the exciton wave function within the quantum dot leads to a nonmonotonic

frequency dependence of K(ω) that translates into a nonmonotonic dependence of

the dephasing rate on the effective Rabi frequency: For small Λ, the phonon cou-

pling increases with Λ, while for sufficiently large Λ, the phonon coupling may be

reduced considerably due to the finite response time of the phonon bath. The latter

result favours the execution of optical control on very short time scales since the

peak value of Ω (and therefore of Λ) is given by Ωp = (
√
2 ln 2)(Θ/

√
πτ0τp), which

is strongly enhanced for a given pulse area in the experiments reported here due to

the small values of τp and τ0.

In order to gain insight into the transition between the regime of Rabi frequen-

cies considered in past demonstrations of ARP [73, 74] and the experiments in

Fig. 6.2, numerical simulations of the quantum state evolution were carried out

using a density matrix approach [174] in which deformation coupling to acoustic

phonons was included taking into account pure dephasing via the real part of the

complex phonon response function, following the model presented in Ref. [137].

The dependence of the exciton inversion efficiency on the sign of the pulse chirp

was calculated for four different values of τ0, taking φ′′ = 4πτ 20 /(2 ln 2); i.e. four

times the threshold chirp for ARP discussed above. For τ0 = 120 fs, this corresponds

to φ′′ = 0.131 ps2, reflecting the experimental conditions for the results in Fig. 6.2.

The results of these calculations are shown in Fig. 6.3(a)-(d). The general trends

are in line with the expected dependence on Ωp discussed above. For the largest

value of τ0 (825 fs, Fig. 6.3(a)), phonon-mediated dephasing results in a difference

between the exciton occupation for positive and negative chirp that increases with

increasing pulse area, similar to the trend observed experimentally (Fig. 6.2). As

τ0 decreases, the coupling to phonons becomes most prominent for lower values

of pulse area until τ0 = 120 fs, where the model indicates negligible coupling to

phonons, in contrast to the experimental results.

The quantitative deviations between the experimental results and the model

considered here (i.e. the pulse bandwidth at which good agreement is obtained)

provides new insight into coherent control in the strong field regime. In particular,
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the persistence of phonon-mediated dephasing in our experiments despite the large

instantaneous Rabi frequencies suggests that other physical processes not included

in the model of exciton-phonon coupling considered here may play a role and must

be considered in the design of control pulses to minimize exciton-phonon coupling.

While coupling to LO phonons [213, 129, 145] may contribute to the strong damp-

ing of the Rabi oscillation in the zero chirp results of Fig. 6.1(c), for the pulse

characteristics used in the experiments of Fig. 6.2, coupling to LO phonons may be

neglected since the peak Rabi energy remains below 7 meV (see inset to Fig. 6.3(d)).

While the addition of piezoelectric coupling would enhance the phonon mediated

dephasing somewhat [213], for the conditions of our experiments in which the

Rabi energy exceeds 4 meV during the control pulse it may also be necessary to

include multi-phonon emission processes, which are absent in the model due to

the perturbative treatment of exciton-phonon coupling [137, 142]. In addition, the

rapid variation of the laser pulse parameters in our experiments may necessitate

a more accurate treatment of non-Markovian (memory) effects in the dynamics of

the phonon bath than in the model considered here [89, 142, 143, 139, 141]. Our

findings suggest that simply increasing the Rabi frequency may not be enough for

decoherence mitigation when considering quantum state control at elevated tem-

peratures. Alternate techniques such as the so-called ‘bang bang’ protocol of dy-

namic decoupling with engineered pulse trains may provide a more effective strat-

egy [33, 35, 46, 92], for which the short time scale of ARP demonstrated here would

be an important asset.

6.5 Conclusions

In summary, we have demonstrated adiabatic rapid passage in a new experimental

regime by using control pulses that are more than an order of magnitude shorter

than those used in previous ARP experiments. The combination of a subpicosec-

ond control time with the robustness of ARP achieved in this work will support

the application of QDs in quantum information science by enabling more quantum

manipulations within the decoherence time. Our results demonstrate the dominant

role played by coupling to phonons in optical control experiments in single QDs by

isolating such effects from other sources of decoherence through a dependence of
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the exciton inversion efficiency on the sign of the control pulse chirp. The impor-

tance of phonon-mediated dephasing is confirmed despite the large instantaneous

Rabi frequencies in our experiments, which explore the limit of strong (and rapid)

driving of the coupled exciton-phonon system.
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Figure 6.3: Calculated occupation of the exciton for positively-chirped (solid blue
curve) and negatively-chirped (dashed red curve) pulses as a function of pulse area
for increasing pulse bandwidth (i.e. decreasing τ0). The chirp applied to each
pulse (dictating the chirped pulse duration τp) is four times the threshold value, as
described in the main text. (a) τ0 = 825 fs; (b) τ0 = 650 fs; (c) τ0 = 410 fs, Inset:
Spectral dependence of the real part of the phonon response function. (d) τ0 =
120 fs, Inset: Temporal evolution of the Rabi energy �Ω (dashed black curve) and
the effective Rabi energy �Λ (solid green curve) for a chirp of φ′′ = 0.133 ps2. Values
of material parameters governing the strength of phonon coupling were taken from
Ref. [138].
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Conclusion

Semiconductor quantum dots are a promising platform for the development of

quantum information processing systems. The advantages afforded by this system

include the scalability that is inherent to a solid-state architecture, the ability to

leverage existing semiconductor-processing facilities, the ease of integration with

classical semiconductor-based hardware, the tunability that permits operation at

telecommunication wavelengths, and the ability to interface with photon qubits.

Previous demonstrations of quantum state control in quantum dots, with the excep-

tion of demonstrations of adiabatic rapid passage, have employed transform-limited

pulses to manipulate the qubit. This thesis has advanced the field of quantum

state manipulation of exciton qubits confined to self-assembled InAs quantum dots

through numerical and experimental demonstrations of pulse engineering to im-

prove the speed and fidelity of quantum operations. Pulse shaping schemes that are

routinely employed in atomic and molecular systems are extended here to a solid

state qubit. The relatively simple electronic structure of QDs compared to the often

intractable systems for atoms and molecules, allows for numerical optimization of

engineered pulses to optimize fidelity. This thesis work has also used pulse shaping

to improve our understanding of exciton-phonon coupling in confined systems in

the strong-driving regime.

Optimal quantum control theory is the science of manipulating the system Hamil-

tonian to drive the quantum system to a desired final state at the end of the laser

pulse. The first component of this thesis work showed that optimal quantum con-

trol theory can be used to devise pulse shapes to implement simultaneous high-

fidelity operations for multiple exciton qubits confined to quantum dots. The pulse

shapes were numerically optimized for fidelity subject to constraints that ensured

that they can be accurately implemented on commercially available pulse shaping

system. The numerical simulations used a cosine, phase-only shaping mask and

134
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demonstrated that it is possible to implement high fidelity operations on two QDs

provided the two exciton qubits in those QDs have sufficiently different optoelec-

tronic properties. Pulses generated using this approach can either be implemented

directly or may be used to seed an initial population for a genetic algorithm that

maximizes the fidelity experimentally. The findings of thesis also indicated that

parallel control of > 10 QDs using this approach is feasible, limited only by the

resolution of the shaping system and the complexity of the phase function used in

the pulse shaping system. This demonstration should enhance the scalability of the

quantum-dot based architecture by reducing the laser resources required to control

multiple qubits.

In addition to single-qubit operations, this thesis also demonstrated that optimal

quantum control can be used to optimize the two-qubit C-ROT gate. This gate has

recently been demonstrated for the exciton-biexciton system in a single quantum

dot using long picosecond pulses and is an important test case to illustrate the ef-

fectiveness of pulse shaping. The theoretical work shows that pulse shaping enables

subpicosecond C-ROT operations using a single laser pulse. This removes the com-

plexity required for an implementation with transform-limited femtosecond pulses,

such as multiple laser sources and stabilized beam paths. The optoelectronic proper-

ties used to define the quantum dot were determined using k·p theory. The results

demonstrate that both amplitude- and phase-shaped pulses can be employed to

provide improvements in gate fidelity compared to a transform-limited laser pulses

with comparable gate times. The advantages afforded by the use of short pulses

include a reduced sensitivity of the fidelity to dephasing. The presented results lay

the groundwork for the implementation of pulse shaping for other control processes

in quantum dot systems.

This thesis work also encompassed the demonstration of adiabatic rapid passage

used linearly-chirped ultrafast laser pulses to implement robust state inversion of

the exciton state in a single quantum dot. The use of broadband pulses allowed for

π gates that were ∼20× faster than those in previous experimental demonstrations

of this quantum control process in single QDs. Faster π gates will permit more oper-

ations within the decoherence time and will be particularly useful for applications
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such as all-optical switches and single- and entangled-photon sources. The experi-

ments also confirmed the dominance of phonon-mediated dephasing by observing

for the first time, the predicted chirp-sign dependence of the inversion efficiency.

The persistence of phonon-mediated dephasing in the regime of strong and rapid

driving of the exciton-phonon system suggests that multi-phonon effects, piezoelec-

tric coupling, and non-Markovian effects may play a role in the dynamics. The

findings of this work further the implementation of dynamical decoupling schemes

as a means for mitigating the effects of decoherence of excitons in semiconductor

QDs by realizing the demonstration of ultrafast π gates in this system.

The advances presented in this thesis have built upon an existing body of work

and the impressive experimental demonstrations of recent years. The contributions

made by this thesis work to the field of state manipulation in quantum dots using

pulse engineering should promote the scalability of the quantum dot based comput-

ing platform. It has also provided an improved understanding of the nature of the

interactions of qubits with their solid state environment and laid the foundations

for demonstrations of experimental techniques to mitigate the resulting deleterious

effects.
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Appendix A

A Comparison of Progress Inovling Quantum Computing

Platforms

A fault-tolerant quantum computer [214] capable of solving important scientific

problems using the gate model of quantum computing may be more than a decade

away. Overcoming the engineering hurdles required to assemble the quantum pro-

cessor and supporting classical infrastructure will likely require progress across a

range of disciplines (physics, chemistry, engineering, computer science) as well

as a coordinated effort involving academic institutions and industry. Figure A.1

shows one possible representation of the various stages of development of a quan-

tum information processing device (adapted from Ref. [215]). The first stage in-

volves demonstrations of coherent control involving a single physical qubit, with

the ability to implement high fidelity arbitrary qubit rotations within the decoher-

ence time. In the next stage, it must be shown that multiple physical qubits can

be entangled and manipulated using a set of universal gates. The third stage in-

volves building the toolkit for quantum error correction (QEC). Classical bits can

be protected against errors by introducing redundancy. In quantum systems on the

other hand, the no-cloning theory precludes copying of qubit states [216]. Instead,

in QEC schemes, multiple physical qubits are entangled to create a single logical

qubit [217, 218, 219, 220]. Errors are detected via quantum non-demolition mea-

surements that, for example, measure the parity of pairs of physical qubits. The

number of physical qubits required per logical qubit is determined in part by the

desired error threshold [219]. The demonstration of QEC allows for the imple-

mentation of quantum memory elements that can be maintained for an arbitrarily

long quantum computation, provided the error rate remains below the prescribed

threshold. Having implemented quantum memory, one must demonstrate single-

and multiple-qubit operations on logical qubits. The last step involves the assembly

of a large array of logical qubits with the required interconnects and architecture for
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the implementation of quantum algorithms on a fault-tolerant quantum computer.

Chapter 1 provided a detailed review of the field of coherent control of spin and

exciton based qubits confined to quantum dots. It also briefly introduced alternate

qubit platforms that are under active development for quantum information pro-

cessing applications, including ion-traps qubits, superconducting qubits, nitrogen

vacancy (NV) center qubits, and silicon-dopant based qubits. Table A.1 shows an

overview of the progress made for the different platforms based on the stages of

development shown in Fig. A.1. For single- and multiple-qubit gates on physical

qubits, the references provided are review articles for the field. For demonstrations

of QEC, the table lists some of the most recent demonstrations. Currently, the most

advanced platforms are those based on trapped ion qubits where operations have

been performed on a single logical qubit protected by quantum error correction.

Figure A.1: Six stages of development of a quantum computer. (Adapted from
Ref. [215].)

For qubits based on phosphorous dopants in silicon (Si:P) and quantum dots,

quantum error correction schemes have not yet been implemented. Nevertheless,

there are reasons to be optimistic. The effects of decoherence for the qubit are a re-

sult of coupling to the environment. In the case of Si:P qubits, the primary source of
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dephasing is the fluctuating magnetic field created by Si-29 isotopes. Recent exper-

iments have shown that in enriched Si-28 systems, the dephasing time of the qubit

can be extended to 39mins at room temperature and up to 3 hrs at 4.2K [221]. Ad-

ditionally, dynamical decoupling, an open-loop control scheme for limiting errors,

has been demonstrated in this system [222]. In quantum dot based systems, de-

coherence is primarily due to coupling to LA phonons. It was shown numerically,

that dynamical decoupling schemes using just a few π pulses can serve to protect an

exciton qubit against decoherence between quantum gates [46]. The demonstra-

tion in this thesis of fast, robust π gates should enable demonstrations of dynamical

decoupling in the quantum dot platform, providing a method of long-term storage

of information.

Table A.1: Stages of development for qubit platforms (See Fig. A.1 and text for a
description of the various stages.)

Platform: Trapped ions Superconductors NV center Si dopants SAQDs
Stage 1 [11] [12] [10] [13] [14]
Stage 2 [11] [12] [10] [13] [14]

Stage 3 [223], [224]
[225], [226],
[227], [228] [229] X X

Stage 4 [230] X X X X
Stage 5 X X X X X
Stage 6 X X X X X



Appendix B

Discussion of Experimental Uncertainties

There are a variety of sources of experimental uncertainties in the measured micro-

PL signal from the quantum dots. These uncertainties are discussed in this ap-

pendix, together with their implications for the experimental results reported in

Ch. 6, in which adiabatic rapid passage was demonstrated using subpicosecond

control pulses.

For the experiments described in this thesis, the upper limit for the photons flux

from the quantum dot is set by the repetition rate of the laser to 76MHz. However,

due to inefficiencies in collection, only a small number of photons are detected at

the CCD. The largest losses occur because the majority of photons emitted from the

QD are not coupled into the collection optics. Half of the photons are lost because

only those emitted in the “forward” direction, toward the objective lens, can be col-

lected. Further, for light traversing the GaAs/vacuum boundary, the 16.7◦ critical

angle means that only 1% of the emitted photons leave the sample. These pho-

tons are collected by an objective lens, that despite being optimized for operation

at near-infrared wavelengths, transmits only 60% of the light at the emission wave-

lengths of 1.3μm. The collected PL is then expanded (using anti-reflection coated

lenses) to match the f-number of the monochromator. The light focused into the

monochromator is incident on a grating with an efficiency of ∼90%. The spectrally-

resolved frequency components are detected using a liquid-nitrogen cooled InGaAs

CCD with a quantum efficiency of 85% and a gain of 58 electrons/count. Taking into

account all of the discussed losses, an estimate of the upper limit for the collection

efficiency is 0.008%, indicating the challenging nature of experiments in this work.

The low light level as well as the need to work at 1.3μm for quantum state de-

tection makes the experiments in this thesis work more difficult than many previous

quantum control experiments, where it was more typical to work on either IFQDs
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(with large optical dipole moments and emission wavelengths matching more effi-

cient and less noisy silicon CCD or single-photon detectors) or SAQDs for which the

sample has been annealed to shift the ground state transition energies within the

range of silicon detectors. In our experiments, quantum dots with an emission close

to the telecommunication band at 1.3μm were chosen, despite the increased com-

plexity, since the use of such QDs would ease the eventual integration of quantum

chips with classical hardware. The QD emission around 1.3μm makes it necessary

to use an InGaAs CCD array. The sources of noise in a CCD detector include read

noise, dark noise, and fixed pattern noise. Read noise originates from the on-chip

amplifier and is inherent to the conversion of charge to a measured voltage. The

dark noise signal is due to thermally excited carriers and follows a Poissonian dis-

tribution. Small band-gap semiconductors such as InGaAs are particularly prone to

dark noise but its effect can be dramatically reduced by cooling the detector. The

CCD that was used in this work was cooled to 170K using liquid nitrogen. The pres-

ence of dark noise can also accentuate any non-uniformities in CCD pixels during

long exposures. Differences in the offset voltage or gain for each pixel can mani-

fest as a non-uniform, but fixed pattern across the detector. Table B.1 provides the

magnitude of these noise sources, measured by the manufacturer for the CCD used

in this work.

In the experiments, the DC offset of the background signal was removed by

measuring the pixel counts from the CCD while the laser source was blocked, using

the same integration time as that used for data collection (30 seconds). Five replicate

measurements of the background were taken and averaged to reduce the noise.

This averaged, pixel-dependent background was subtracted from all data collected

during experiments. The presence of stray light in the monochromator, from either

ambient light sources or reflected laser light, can also result in noise at the detector.

We reduce the reflected laser light intensity by using an optical filter in the beam

path prior to coupling into the monochromator. We reduce leakage of ambient light

through the housing by working in a low-light environment and by covering the

monochromator and detector with black cloth.

In addition to sources of noise inherent to the detector, fluctuations in the laser

intensity (ΔI ≈ 0.5%) and wavelength (Δλ ≈ 0.01 nm) can also introduce noise
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Table B.1: Noise sources for the CCD detector.

Parameter Value Units
Read Noise 532.7 e−rms
Dark Signal 6.72 ke−/sec

Fixed Pattern Noise 169.1 e−/sec

in the emitted PL intensity by virtue of unintended variations in the final quantum

state at the end of the laser pulse. Another source of noise is charge noise, resulting

from fluctuations in the quantum dot environment or occupancy that in turn lead

to fluctuations in the local electric field. This will manifest itself by a shift in the

transition frequency via the d.c. Stark effect [231]. The noise introduced by these

fluctuations in the PL intensity are reduced by measuring the PL signal three times

and averaging the result (after subtraction of the background).

Despite such uncertainties, a clear trend in the variation of the PL intensity from

the exciton in a given QD may be observed with respect to some varied experimen-

tal parameter. For example, consider the Rabi oscillation from Fig. 6.1(c) and the

data showing the chirp sign dependence from Fig. 6.2 that are reproduced here in

Fig. B.1. As previously mentioned, the measurements representing a data set col-

lected on a particular day are reported with an average of three points. This allows

for an estimate of the error in the measured values to be determined by taking

the standard deviation (σ) of the three data sets. The curves in each plot indicate

the average value, while the shaded regions indicate an estimate of the uncertainty

(±σ). Data that is collected on different days cannot be averaged because of vari-

ations in collection efficiency, spot size, and pulse width characteristics. However,

the observation of the same trend was verified on several experimental measure-

ment days for all results reported in this thesis. For example, for the trend with

respect to chirp sign for adiabatic rapid passage, reported in Fig. 6.2, the ratio of PL

intensity for positively- and negatively-chirped pulses at a pulse area of 3π radians

was found to be 1.13. Similar measurement made on two other experimental days

confirmed the chirp-sign dependent asymmetry, with ratios of 1.17 and 1.33.
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Figure B.1: PL intensity as a function of pulse area for (a) a Rabi rotation using
TL pulses, and (b) for positively- (blue) and negatively-chirped (red) pulses with
|φ′′| = 0.133 ps2 reported in Ch. 6 (see Fig. 6.1(c) and Fig. 6.2). The shaded regions
represent the uncertainty (±σ) in the PL intensity for the three averaged data sets
collected during the experiment.
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