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Abstract

Partially coherent sources have been widely used in speckle-free imaging, distortion-

less information transfer and optical communications in free space. In this thesis,

we introduce a novel class of partially coherent sources, the so-called optical coher-

ence gratings/lattices and study their propagation properties in free space. The novel

sources are constructed using the recently developed complex Gaussian representa-

tion of statistical pulses and beams. All novel sources generate either pulses with

statistically stationary or beams with statistically homogeneous coherence properties

in the source plane. Furthermore, the new class of sources shows periodic temporal or

spatial coherence properties. We explore paraxial propagation of the beams generated

by novel sources in free space. We give evidence of a novel phenomenon of periodicity

reciprocity between the source intensity and coherence properties. We expect the new

phenomenon to find applications to free-space optical communications.
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Chapter 1

Introduction

In 1960, the first functioning laser [1, 2] was deployed at Hughes Research Laborato-

ries. Since then, laser technology has developed quickly. Lasers are highly coherent

sources that have wide usage in laser biology, atomic physics, optical communications

and related fields. However, because these sources may cause speckle phenomena

in imaging [3, 4] and can be easily affected by turbulence during propagation [5, 6],

partially coherent sources are now being designed.

In 1978, E. Wolf discussed the relation between the state of coherence of the source

and the intensity distribution of the light it generates. He pointed out that sources

of different states of coherence can generate the same intensity distribution in the

far zone [7, 8]. At the same time, he proved that certain kinds of partially coherent

sources may generate light that has the same intensity distribution as the laser source

in the far zone [7, 9, 10]. Later, E. Wolf showed that under very general conditions,

the cross-spectral density of a statistically stationary source of any state of coherence

can be expressed as a superposition of coherent modes [13, 14, 15]. This new theory

opened a new perspective for analyzing partially coherent sources. Inspired by this

theory, the study of partially coherent sources has attracted a lot of attention to

date[11, 12].

The Gaussian-Schell Model (GSM) sources are useful for modeling highly direc-

tional partially coherent beams. In 1978, Wolf predicted that under suitable circum-

stances, this model would produce the same far-field optical intensity distribution as

does a fully coherent laser [7, 9, 10]. The GSM sources attracted particular interest

because the sources and fields they generate can be readily realized in a laboratory

[16, 17]. In 1993, Simon introduced a new type of partially coherent sources termed

Twisted Gaussian-Shell model (TGSM) sources. The twist phase of the new source

does not affect the intensity and coherence distribution in any transverse plane. How-

ever, the upper bound of the strength of the twist phase captures the subtle nature
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2

of this phase and distinguishes it from the other familiar phase curvature [18, 19].

In 1987, Gori evaluated the modes for a Schell-model planar source whose opti-

cal intensity distribution is an arbitrary circularly symmetric function and complex

degree of coherence is a zero order Bessel function. This source is called a Bessel-

correlated source and, like a coherent Bessel source, it can generate beams propagating

over a long distance with little spreading in free space [20].

In 2001, Ponomarenko introduced a new class of partially coherent sources with

a separable phase. This phase acquires a vortex structure on paraxial propagation

in free space. Similar to the GSM source, this partially coherent source shows shape

invariance on its paraxial propagation. However, unlike the GSM source, the spectral

degree of coherence of this partially coherent source is independent of the relative

orientation of the pair of points in the transverse plane [21].

The sources mentioned here cover all classes of partially coherent sources with

their cross-spectral densities known in a closed form. Most have been widely used in

speckle-free image formation, distortion-less information transfer, and optical com-

munications in free space. Partially coherent sources have proved able to reduce the

system bit error rate due to the radiance scintillations in the receiver focal plane aris-

ing due to the atmospheric turbulence [22]. In addition, some non-shape-invariant

partially coherent beams such as cos-Gaussian and cosh-Gaussian beams were shown

to form stable structures during short-distance propagation in the atmosphere [23].

Thus, partially coherent beams have been employed in optical communications in

atmospheric systems.

In this thesis, a class of partially coherent temporal/spatial sources, the so-called

optical coherence gratings/lattices is introduced and its propagation properties in

free space are examined. This new class of partially coherent sources has a Gaussian

intensity profile and is statistically stationary/homogeneous with periodic degree of

coherence. Further, this new class of sources have an interesting property, periodicity

reciprocity which can be used in robust free-space optical communications.

The remainder of the thesis consists of 5 chapters. Chapter 2 discusses the basic

concept of coherence and optical coherence in space-time and space-frequency do-

mains. It introduces Young′s interference experiment (used in studying coherence
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properties), discusses the representation of coherent modes, and reviews the prop-

erties of the GSM source as an example of a partially coherent source. Chapter 3

reviews partial coherence of non-stationary fields, demonstrating temporal coherence

properties with the Michelson interferometer and introducing a complex Gaussian

representation of statistical pulses. Chapter 4 describes the new class of partially

coherent sources with Gaussian intensity profiles and periodic coherence properties.

This chapter also presents the radiant intensity and complex degree of coherence

of this new source in temporal and spatial cases. Chapter 5 examines free-space

paraxial propagation of the fields generated by the source proposed in Chapter 4 and

demonstrates a novel phenomenon of the periodicity reciprocity between their inten-

sity profile and degree of coherence. It also explores the possibility of employing novel

sources in free space optical communications. Chapter 6 summarizes the thesis and

discusses potential future research directions.



Chapter 2

Statistically Stationary Sources in Space-Time and

Space-Frequency Domain

2.1 Young’s interference experiment

When two or more light waves combine, they form a pattern of light and dark regions.

This happens because the combined light fields have constructively or destructively

interfered. However, when we study the interference fringes, we find that some light

sources easily produce sharp interference fringes while others appear to have difficulty

producing them. Optical coherence can be used to describe the ability of light waves to

produce interference fringes. Generally, when two optical fields combine and produce

no interference fringes, they are said to be uncorrelated, whereas if they produce clear

interference fringes, they are said to be perfectly correlated. Furthermore when the

two light waves produce interference fringes between these two conditions, they are

said to be partially correlated. Based on different aspects, optical coherence can be

divided into spatial coherence and temporal coherence. Spatial coherence measures

the correlation of waves at pairs points on their propagation or the correlation of a

wave with a spatially shifted version of itself, while temporal coherence shows the

correlation of a wave at different times at the same position or the correlation of the

wave with the time-delayed version of itself.

Optical coherence is a physical concept that can be studied experimentally. Most

manifestations of coherence between optical fields are provided by the phenomena of

interference. Therefore, we can obtain information about source coherence with ex-

perimental observation of interference phenomena. There are two famous experiments

that highlight the two types of coherence. One is Young’s interference experiment,

and the other is the Michelson interference experiment. The first experiment describes

spatial coherence, while the second one measures the ability of light to interfere with

time delays which illustrates temporal coherence of light. In this chapter, we discuss
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spatial coherence with Young’s interference experiment, which deals with the ability

of a light field to interfere with a spatially-shifted version of itself.

Young’s double-slit interference experiment is named after its inventor, Thomas Young.

It plays an important role in both classical [24, 25] and quantum optics [26, 27, 68]

and connects many basic concepts in optical physics. A simple schematics of the ex-

periment is shown in Fig. 2.1. In the experiment, a light source is positioned behind a

screen containing two narrow pinholes. As light emerges from the pinholes Q1 and Q2

in plane A, the waves overlap and interference fringes are formed on the observation

screen B located some distance away from the pinholes. Usually, we can obtain a

pattern of bright or dark lines on the observation screen where light waves from the

pinholes interfere, constructively or destructively.

Figure 2.1: Illustrating Young’s interference experiment.

The experiment demonstrates that some kinds of sources can produce sharp inter-

ference fringes while other sources can hardly generate any interference fringes. The

ability of the sources to produce interference fringes is quantified by its degree of co-

herence. For example, sunlight which is a low spatial coherence source generates dim

interference fringes on the observation screen; while a highly coherent laser source

can produce sharp interference fringes. Hence, the visibility of interference fringes is

closely connected to the degree of coherence of the source.

In the experiment, the light waves emerge from the pinholes and travel to the

observation screen. Assuming the fields at the pinholes Q1 and Q2 can be expressed
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as V (Q1, t) and V (Q2, t), light reaches the point P on the observation screen after

t1 =
R1

c
, t2 =

R2

c
, (2.1)

respectively, where c is the speed of the light in free space, and Ri(i = 1, 2) is the

distance from the pinhole to the observation screen.

The field at point P is a superposition of two light waves traveling to the obser-

vation screen, which can be expressed as

V (P, t) = K1V (Q1, t− t1) +K2V (Q2, t− t2). (2.2)

It is worth noting that fluctuations of the wave field are very rapid and cannot be

measured directly. We can only measure average properties of the field. In this

chapter, we consider only statistically stationary sources. Since the properties of

statistically stationary sources depend only on the time difference τ (τ = t2− t1), the

intensity of light at point P in this experiment can be expressed as I(P ) = 〈I(P, t)〉 =
〈V ∗(P, t)V (P, t)〉 where the angle brackets denote ensemble averages. We then obtain

[28]

I(P ) = |K1|I(Q1) + |K2|I(Q2) + 2Re|K1||K2|Γ(Q1, Q2, t1 − t2), (2.3)

where I(Qj) = 〈V ∗(Qj, t)V (Qj, t)〉 are averaged intensities of light at each pinhole

and Kj(j = 1, 2) is a diffraction parameter based on the Huygens-Fresnel principle

[29]. The function

Γ(Q1, Q2, τ) = 〈V ∗(Q1, t)V (Q2, t+ τ)〉 , (2.4)

is known as the mutual coherence function of the field at two pinholes Q1, Q2.

In Eq.(2.3), the first two terms on the right-hand side represent the intensity of

the fields at point P when only one pinhole is open. Hence, the first of these two

terms can be written as

I(P ) = I(1)(P ), (2.5)

when the pinhole Q2 is closed.

Similarly, if Q1 is closed, the intensity at P is

I(P ) = I(2)(P ). (2.6)
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When we combine Eq.(2.5) and Eq.(2.6) with Eq.(2.4), the intensity of light at point

P can be rewritten as

I(P ) = I(1)(P ) + I(2)(P ) + 2Re
√
I(1)

√
I(2)γ(Q1, Q2, t1 − t2). (2.7)

Here

γ(Q1, Q2, τ) =
Γ(Q1, Q2, τ)√

Γ(Q1, Q1, 0)
√

Γ(Q2, Q2, 0)
. (2.8)

The quantity γ is known as the complex degree of coherence, while Eq.(2.7) is the

interference law for statistically stationary optical fields. It follows from Eq.(2.8) that

the absolute value of γ is bounded by unity. For |γ| is zero, the source is incoherent;

for |γ| is 1, the source is fully coherent; and for the other cases, the source is partially

coherent.

Using the envelope representation of narrow-band signals [30], Eq.(2.8) can be

represented in an alternative form

I(P ) = I(1)(P ) + I(2)(P ) + 2
√
I(1)

√
I(2)|γ(Q1, Q2, τ)| cos[α(Q1, Q2, τ)− δ], (2.9)

where

δ = ωτ, (2.10)

and ω is a mean frequency of light.

For commonly occurring symmetric situations when I(1)(P ) = I(2)(P ), the inter-

ference law Eq.(2.9) reduces to

I(P ) = 2I(1)(P ) {1 + |γ(Q1, Q2, τ)| cos[α(Q1, Q2, τ)− δ]} . (2.11)

In physics, the visibility of interference fringes is defined as [28]

v(P ) =
Imax(P )− Imin(P )

Imax(P ) + Imin(P )
. (2.12)

Here the maximum and minimum of the average intensity on the observation screen

at point P are given by

Imax(P ) = 2I(1)(P )[1 + |γ(Q1, Q2, τ)|], (2.13)

and

Imin(P ) = 2I(1)(P )[1− |γ(Q1, Q2, τ)|]. (2.14)
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Substituting from Eq.(2.13), Eq.(2.14) into Eq.(2.12), gives us an interesting result:

v(P ) = |γ(Q1, Q2, τ)|. (2.15)

This result relates the degree of coherence of the source to the visibility of interference

fringes. Therefore the visibility of interference fringes is a direct measure of spatial

coherence of the wave field. In Young’s interference experiment, Imax and Imin are

the intensity in the brightest and dimmest regions on the observation screen. If there

are no fringes in the experiment, the light waves at the two pinholes are uncorrelated.

If sharp fringes are generated on the observation screen, it means the light waves are

highly correlated. In essence, Young’s interference experiment provides a method to

determine spatial coherence of the wave field by directly measuring the intensity of

the fringe pattern.

2.2 The coherent mode representation in space-frequency domain

In section 2.1, coherence phenomena were described in terms of space-time correla-

tion functions, namely the mutual coherence function Γ(r1, r2, τ), and the complex

degree of coherence γ(r1, r2, τ). There is, however, an alternative description that

describes coherence phenomena in the space-frequency domain. The Fourier rep-

resentation does not exist for the sample functions of a stationary random process

because the Fourier integral does not converge. Thanks to the Wiener-Khintchine

theorem [14, 29, 31], for wide-sense-stationary random processes the spectral den-

sity and its autocorrelation function form a Fourier-transform pair. It then follows

that the cross-spectral density function is a Fourier transform of the mutual coher-

ence function.The new description has been proven to be very useful for providing

solutions to numerous problems.

In the space-time domain, the mutual coherence function of a statistically station-

ary optical field is defined as

Γ(r1, r2, τ) = 〈V ∗(r1, t)V (r2, t+ τ)〉 , (2.16)

where V (r, t) is a fluctuating function of space and time .
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According to the Wiener-Khintchine theorem [14], the cross-spectral density func-

tion is the Fourier transform of the mutual coherence function:

W (r1, r2, ω) =
1

2π

∫ +∞

−∞
Γ(r1, r2, τ)e

iωτdτ. (2.17)

For special cases, when r1 = r2 = r, the cross-spectral density function becomes the

spectral density

S(r, ω) = W (r, r, ω). (2.18)

By definition, the spectral degree of coherence can be expressed as

μ(r1, r2,ω) =
W (r1, r2,ω)√

S(r1,ω)
√
S(r2, ω)

. (2.19)

It can be shown that the magnitude of spectral degree of coherence is between zero

and one. When |μ| = 0, the field is completely incoherent; when |μ| = 1 the field is

completely coherent; and when 0 < |μ| < 1, the field is partially coherent.

In the 1980s, E. Wolf proposed a new theory of partial coherence [14]. In his

theory, he uses the Karhunen-Loeve expansion of a random process [32] to show that

a statistically stationary optical field of any state of coherence can be represented as

a superposition of coherent modes.

When we look back at the cross-spectral density function of Eq.(2.17), there are

several useful properties. First, assuming the cross-spectral density is a continuous

function of r1 and r2 in a certain domain D, |W (r1, r2, ω)|2 is necessarily bounded in

D, i.e, [32] ∫ ∫
D

|W (r1, r2, ω)|2dr1dr2 < ∞. (2.20)

It means the cross-spectral density is a Hilbert-Schmidt Kernel.

Second, the mutual coherence function satisfies

Γ(r2, r1, τ) = Γ∗(r1, r2, τ) (2.21)

implying that its Fourier transform function also follows

W (r2, r1, τ) = W ∗(r1, r2, τ), (2.22)

which is called a Hermitian symmetry.
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In addition, it has been shown in Ref [32] thatW (r1, r2, τ) is a nonnegative definite

function in the sense that for any function f(r)∫ ∫
D

W (r1, r2,ω)f
∗(r1)f(r2)d3r1d3r2 ≥ 0. (2.23)

According to Mercer’s theorem [14, 33, 34], any continuous, Hermitian, nonnegative

definite Hilbert-Schmidt kernel can be expressed as

W (r1, r2,ω) =
∑
n

λn(ω)φ
∗
n(r1,ω)φn(r2, ω), (2.24)

where{λn} are the eigenvalues and {φn} are orthonormal eigenfunctions of the integral

equation ∫
W (r1, r2,ω)φn(r1, ω)dr1 = λn(ω)φn(r2,ω), (2.25)

with the integration extending over the source. Eq.(2.24) is known as the coherent-

mode representation of the cross-spectral density [14]. This new expression plays

a very important role in optics. It provides a new method to analyze generation,

propagation and transformation of partially coherent light. Furthermore, it simplifies

numerical computations in statistical optics.

2.3 Gaussian Schell-model sources

As mentioned in Chapter 1, in order to avoid speckle formation in optical imaging,

partially coherent sources have been widely used in optics. Gaussian Schell-model

source(GSM) presents a convenient generic model. The GSM sources give rise to

exactly the same far-field optical intensity distributions as do fully coherent lasers

but with reduced spatial coherence [9, 10]. At the same time, GSM are easy to

generate in a laboratory which makes them particularly important in practice.

A planar secondary Gaussain Shell-model source is characterized by the property

that its spectral degree of coherence μ depends on the difference of in-plane position

vectors ρ′ = ρ2 − ρ1 [35]. Both the spectral intensity distribution and the spectral

degree of coherence are Gaussian. According to the definition, the cross-spectral

density function of this kind of sources is

W (0)(ρ′
1, ρ

′
2, ω) =

√
S(0)(ρ′

1, ω)
√

S(0)(ρ′
2, ρ)μ

(0)(ρ′
2− ρ′

1, ω), (2.26)
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where S(0) is the spectral density of the source and μ represents the spectral degree

of coherence of light vibrations at any pair of points in the source plane. Further,

the spectral density and the degree of coherence have Gaussian profiles that can be

expressed as

S(0)(ρ) = A exp(−ρ2/2σ2
s), (2.27)

and

μ(0)(ρ′) = exp(−ρ′2/2σ2
μ), (2.28)

respectively, where A, σs and σμ are the parameters that depend on the frequency of

the source.

Consider a random wave-field generated by a partially coherent source. Its free-

space propagation is governed by the homogeneous Helmholtz equation,

(∇2 + k2)V (R) = 0. (2.29)

Let V (R) be a monochromatic scalar wave field propagating in the positive z-direction.

It can be represented as

V (R) = v(ρ, z) exp(ikz), (2.30)

where ρ = (x, y) and k is the free-space wave number. In a transverse plane z =

constant, the cross-spectral density function can be expressed as

W (ρ1, ρ2; z) = 〈v∗(ρ1, z)v(ρ2, z)〉 , (2.31)

where the phase factor exp(ikz) is canceled out because of the complex conjugation.

For a beam-like field, v(ρ, z) is a slowly varying function of z.In the paraxial approx-

imation, the term ∂2v/∂z2 in Eq.(2.29) can be neglected. Then one can readily show

that v(ρ, z) obeys the so-called parabolic equation [29]

(∇2
ρ + 2ik

∂

∂z
)v(ρ, z) = 0. (2.32)

Following the well-known solution to the parabolic equation [37], we can obtain

v(ρ, z) =
−ik

2πz

∫ ∫ ∞

−∞
v(ρ′, 0) exp[ik(ρ− ρ′)2/2z]dρ′. (2.33)

Here, v(ρ, 0) is the optical field in the source plane. It then follows at once from

Eq.(2.33) and Eq.(2.31) that

W (ρ1, ρ2; z) =

(
k

2πz

)2 ∫ ∫ ∫ ∫ ∞

−∞
W (0)(ρ′

1, ρ
′
2, ω)

× exp
{−ik[[(ρ1− ρ′

1)
2 − (ρ2− ρ′

2)
2]/2z]

}
dρ′

1dρ
′
2.

(2.34)
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On substituting from Eq.(2.26)-(2.28) into Eq.(2.34), we can obtain after tedious but
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5

z/k s
(b)

R
(z
)/k
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(z
)

=

=1.2
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=0.3

=0.1
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=1.2=0.8=0.3

=0.1

Figure 2.2: Behavior of (a) the expansion coefficient Δ(z) and (b) the radius of the
curvature R(z) of the Gaussian Schell-model beam.

straightforward algebra, the transverse cross-spectral density of GSM beam as [36]

W (ρ1, ρ2, ; z) =
A

[Δ(z)]2
exp

{
−(ρ1 + ρ2)

2

8σ2
s [Δ(z)]2

}
× exp

{
−(ρ1− ρ2)

2

2σ2
μ[Δ(z)]2

}
exp

{
−i

k(ρ2
1− ρ2

2)

2R(z)

}
,

(2.35)

where

Δ(z) =

[
1 + (

z

kσsσt

)2
]1/2

, (2.36)

R(z) = z

[
1 + (

kσsσt

z
)2
]
, (2.37)

and
1

σ2
t

=
1

4σ2
s

+
1

σ2
μ

. (2.38)

The optical intensity in any transverse plane z = const is given by

I(ρ, z) = W (ρ, ρ, z) =
A

[Δ(z)]2
exp

{
− ρ2

2σ2
s [Δ(z)]2

}
. (2.39)
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The complex degree of coherence can then be expressed in the form

μ(ρ1, ρ2, z) = exp

{
−(ρ1− ρ2)

2

2σ2
μ[Δ(z)]2

}
exp

{
−i

k(ρ2
1− ρ2

2)

2R(z)

}
. (2.40)

It has been shown elsewhere [38] that w(z) = 2σIΔ(z) and R(z) are the beam

width and the radius of wavefront curvature respectively which describe the evolution

of the GSM beam. The ratio α = σμ/σs is a measure of the degree of global coherence

of light across the source plane z = 0. The case α → ∞ corresponds to a completely

coherent GSM beam, while the case α → 0 represents a nearly incoherent GSM

beam. The behavior of the beam width and the radius of curvature as a function of

the dimensionless variable z/kσs for several values of α is shown in Fig2.3.

It is seen in Fig. 2.3 that with a fixed value of σs, the beam width for any partially

coherent GSM beam is larger than that for a fully coherent GSM beam. At the same

time, the magnitude of the radius of curvature for a partially coherent GSM beam is

always smaller than that for a fully coherent GSM beam.



Chapter 3

Coherence Properties of Non-Stationary Sources

3.1 Michelson interferometer and temporal coherence of pulse

In chapter 2, the theory of coherence for statistically stationary sources was discussed.

A different situation exists when the source is non-stationary. At present, only a few

studies have been carried out on coherence of non-stationary sources[39, 40, 41]. Ac-

cording to the second-order coherence theory of non-stationary sources, temporal co-

herence properties of pulse trains can be characterized by two-time mutual coherence

function, defined as [42, 43]

Γ(r; t1, t2) = 〈E∗(r; t1)E(r; t2)〉 . (3.1)

Usually, this is a 3 × 3 matrix function. However, it is sufficient to consider one

component of the coherence matrix for linear polarized pulse. The optical intensity

of the random field is defined as

I(r; t) = Γ(r; t, t) =
〈|E(r; t)|2〉 . (3.2)

One can further introduce a normalized form of the mutual coherence function as

γ(r; t1, t2) =
Γ(r; t1, t2)√
I(r; t1)I(r; t2)

. (3.3)

Here γ is known as the complex degree of coherence between field fluctuations at one

point in space and two instants of time. It can be shown that 0 ≤ |γ| ≤ 1. The lower

limit indicates complete incoherence while the upper limit implies full coherence at

the appropriate space-time points. When the intensity of two pulses are equal, the

visibility of interference fringes equals to the absolute value of the complex degree of

coherence. Inspired by this characteristic, Micheson’s interferometer can be used to

measure temporal coherence of pulse trains.

The Michelson interferometer is well-known for its use by Albert Michelson and

Edward Morley in their famous 1887 Michelson-Morley experiment [44]. The config-

uration was to have detected Earth’s motion through the supposed luminousness of

14



15

aether, which many physicists at that time believed was the medium through which

light waves propagated. Nowadays, the Michelson interferometer is a standard tool for

measuring temporal coherence of statistical sources. In analogy to spatial coherence,

temporal coherence is a measure of average correlations between a wave amplitude

and its replica delayed by τ . It entails wave correlations at a given point in space

at different instance of time. However, in the case of pulses, the time delay intro-

duced here means relative temporal intensities of the two interfering copies of the

pulse change with time, and the visibility of interference fringes is time-dependent. It

means the time-integrated visibility is not a true measure of temporal coherence for

pulse trains. Recently, it has been shown that the standard Michelson interferometer

is adequate to estimate temporal coherence of pulse trains [45].

Fig.3.1 is the setup of an equal-path-length Michelson interferometer which is

employed to measure temporal coherence of pulses. It consists of two plane mirrors

A and B, a beam-splitter and an observation screen. Both plane mirrors are tilted

at a small angle ±θ as shown in the figure. Spatial interference fringes form on the

observation screen.

Beam
-Sp

litt
er

A

B

Observation screen

O

X

X

Incident Pulse

Figure 3.1: The setup of the Michelson interferometer.

Assuming a plane-wave pulse is incident on the interferometer, the observed field
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is [46]

V (x;ω) =
1√
2
V0(ω)[exp(iαωx) + exp(−iαωx)], (3.4)

where α = sin θ/c, and V0(ω) is the frequency-domain representation of the incident

pulse. The two-frequency cross-spectral density function associated with the pulse is

defined as

W (x, ω1, ω2) = 〈V ∗(x;ω1)V (x;ω2)〉 , (3.5)

where the brackets denote averaging over an ensemble of random pulses. Using the

average and difference frequency coordinates ω = 1
2
(ω1 + ω2), Δω = ω2 − ω1 and the

generalized Wiener-Khintchine theorem for non-stationary sources [47, 48, 49], the

mutual coherence function in the observation plane is [46]

Γ(x; t,Δt) =
1

2
[Γ0(t,Δt+ 2αx) + Γ0(t,Δt+ 2αx) + Γ0(t+ αx,Δt) + Γ0(t− αx,Δt)].

(3.6)

Here Γ0(t,Δt) =
√
I0(t−Δt/2)I0(t+Δt/2)γ0(t,Δt) is the mutual coherence func-

tion associated with the incident pulse train and γ0(t,Δt) is the complex degree of

coherence of the incident field. Therefore, the intensity distribution reads [46]

I(x; t) =
1

2
[I0(t+ αx) + I0(t− αx) +

√
I0(t− αt)I0(t+ αt)γ0(t, 2αt)

+
√
I0(t− αt)I0(t+ αt/)γ0(t,−2αt)].

(3.7)

Hence, the visibility, defined as [28]

v(x; t) =
Imax(x, t)− Imin(x, t)

Imax(x; t) + Imin(x; t)
, (3.8)

can be shown to be given by the expression

V (x) =
2
√
I0(t+ αx)I0(t− αx)

I0(t+ αx) + I0(t− αx)
|γ0(t, 2αx)|. (3.9)

Here, Δt = 2αx implies the time difference of the pulse which is related with the

angle of two plane mirrors.

It is clear that Eq.(3.9) shows the visibility of fringes corresponding to the time

difference of the pulse train. Hence, it is clear from Eq.(3.9) that if I0(t) is known,

the complex degree of coherence γ0 can be obtained from the measurement of the

visibility. Furthermore, the mutual coherence function can be constructed from the

measurement of the intensity of interference fringes which determines all the second-

order coherence characteristics of the pulse train.
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3.2 Complex Gaussian Representation of Statistical Pulses

In a coherent-mode decomposition of coherence theory, the mutual coherence function

of the pulse can be expanded into a Mercer-type series as [14]

Γ(t1, t2) =
∑
n

λnφ
∗
n(t1)φn(t2), (3.10)

where {λn} are the eigenvalues and {φn} are the eigenfunctions of the integral equa-

tion ∫ ∞

−∞
Γ(t1, t2)φn(t1)dt1 = λnφn(t2). (3.11)

The modes of the pulse can be obtained by solving the integral equation Eq.(3.11).

However, solving the integral equation is a formidable mathematical task. At the same

time, analogous with the Glauber-Sudarshan P-representation in quantum optics,

the mutual coherence function of any partially coherent pulse can be expressed as an

integral over an over-complete non-orthogonal set of complex Gaussian pulses [50].

We start by considering a time delayed by ts Gaussian pulse with the carrier

frequency shifted to ωs. Its temporal profile is given by

ψ(t; ts, ωs) = A exp

[
−(t− ts)

2

2t2∗

]
eiωst, (3.12)

where A is a real amplitude and t∗ is the width of the pulse. Using the dimensionless

variables, T = t/t∗, Ts = ts/t∗ and Ωs = ωst∗, we obtain the following Gaussian

profile

ψα(T ) =
e−(Imα)

π1/4
exp

[
−(T −√

2α)2

2

]
. (3.13)

Here a complex displacement α conveniently combines time delay and frequency shift

viz

α =
1√
2
(Ts + iΩs). (3.14)

We choose the amplitude A such that ψα(T ) is normalized to unity,∫ ∞

−∞
dT |ψα(T )|2 = 1. (3.15)

It can be shown [50] that {ψα(T )} form an over-complete, complete but non-orthogonal,

set such that ∫
d2αψ∗

α(T1)ψα(T2) = δ(T1 − T2). (3.16)
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It was also shown in Ref [50] that the mutual coherence function of any partially

coherent pulse, defined as

Γ(T1, T2) = 〈V ∗(T1)V (T2)〉 , (3.17)

can be represented as

Γ(T1, T2) =

∫
d2αP(α)ψ∗

α(T1)ψα(T2), (3.18)

where P(α)is a nonnegative function to guarantee non-negative definiteness of Γ. It

is worth noticing that Eq(3.18) is reversible and inverting Eq. (3.18) we can obtain

the classical P distribution function as [50]

P(α) =
e|α|

2

π2

∫
d2βe|β|

2

exp[β × α− α× β]

×
∞∫

−∞

dT1

∞∫
−∞

dT2Γ(T1, T2)ψ
∗
−β(T1)ψβ(T2)

(3.19)

Eq.(3.18) is a complex Gaussian representation of statistical pulses that can solve

problems to find the appropriate complex Gaussian representation for any statistical

pulse. It has been shown in [50] that the complex Gaussian pulses are not only

mathematically well-behaved and physically realizable, but they also maintain their

shapes on propagation in free space and linear media. In addition, the complex

Gaussian representation can be employed to discover new partially coherent sources

or represent the sources with given mutual coherence functions. In the following

chapters, it is shown [51, 52] how one can generate novel partially coherent sources

with nontrivial properties using the presented complex Gaussian representation of

statistical pulses.
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There has lately been growing interest in designing novel partially coherent opti-

cal sources catering to a multitude of applications to optical communications, image

transfer, and optical lithography, among others. Until recently, there have been known

only a few classes of such sources, either spatial or temporal. Indeed, apart from sem-

inal Gaussian Schell-model sources [32], only a few other classes emerged for which

closed form analytical expressions for their cross-spectral densities or two-time corre-

lation functions can be obtained. Twisted Gaussian Schell-model sources [53], which

can be represented viz coherent mode decompositions of either Hermite-Gaussian [54]

or Laguerre-Gaussian [55] modes, Bessel-correlated [20], modified-Bessel-correlated

sources, generating partially coherent vortex fields [21], as well as dark and antidark

diffraction-free sources [56] comprised all such known classes until late. All just men-

tioned partially coherent sources were either constructed or analyzed theoretically

using the classic coherent mode representation of optical coherence theory [32]. Some

such sources have also been experimentally realized to date [58, 59].

The introduction of a general representation for partially coherent sources, ensur-

ing the generated fields to have bona fide correlation properties, has given new impe-

tus to the field [60]. A multitude of partially coherent spatial and temporal sources

were devised using the prescriptions of [60], including Gaussian sources with non-

uniform correlations [61], flat-top field generating sources [62], Bessel-and Laguerre-

Gaussian [63], circular cosine-Gaussian [64, 65], rectangular multi-Gaussian [66], tem-

poral sources with tunable coherence profiles [67], and difference-Gaussian [69] Schell-

model sources. In addition, new independent-elementary-source decomposition [70]
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and complex Gaussian representation (CGR) [50] were introduced. While being par-

ticular forms of [60], the novel representations nonetheless open up alternative avenues

for partially coherent source design. In particular, the CGR was shown to provide a

convenient vehicle to devise trains of partially coherent pulses [50]. Moreover, due to

over-completeness of the CGR modes, any partially coherent source has a CGR as

was shown in [50]. Yet, the CGR power for new partially coherent source synthesis

has barely been explored to date.

In this Letter, we employ the CGR to construct wide classes of temporal and

spatial partially coherent sources which we term optical coherence gratings and lat-

tices. All novel sources generate either statistically stationary pulses or statistically

homogenous beams with Gaussian intensity profiles in the source plane. Thus, they

are all of a Schell-model type. Yet, their coherence properties are periodic in time or

space, and hence the name optical coherence gratings or lattices. In the temporal case,

novel sources generate periodic trains of quasi-monochromatic components. In the

spatial case, the novel sources give rise to periodic arrays of highly directional beams

in the far zone of the source. The discovered sources can find applications to optical

imaging with partially coherent light, optical information transfer through natural

environments–where partially coherent pulses/beams are more robust in presence of

media fluctuations–and to optical lithography, to name but a few.

Temporal coherence gratings.–According to the CGR, a two-time correlation func-

tion of any partially coherent source can be represented as [50]

Γ(T1, T2) =

∫
d2αP(α)ψ∗

α(T1)ψα(T2), (4.1)

where α = Reα + iImα is a complex variable; d2α ≡ d (Reα ) d (Imα), P(α) is a

nonnegative function to guarantee non-negative definiteness of Γ [32, 60, 50]. Here-

after, we will use dimensionless time and frequency variables, T = t/τp and Ω = ωτp,

where τp is a temporal width of the pulse, and assume any time variables to be scaled

to τp. In the dimensionless variables, complex Gaussian modes,

ψα(T ) =
e−(Imα)2

π1/4
exp

[
−(T −√

2α)2

2

]
, (4.2)

form an overcomplete, complete but non-orthogonal, set such that∫
d2αψ∗

α(T1)ψα(T2) = δ(T1 − T2). (4.3)
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As was discussed in detail elsewhere [50], the complex variable α incorporates time

delays and frequency shifts of constituting Gaussian pulses.

Let us restrict ourselves to source classes for which the distribution function P
has the form

P(α) =
∑
n

νnδ(α− αn), νn ≥ 0. (4.4)

It then follows from Eqs. (4.1) and (4.4) that

Γ(T1, T2) =
∑
n

νnψ
∗
αn
(T1)ψαn(T2). (4.5)

We note that Eq. (4.5) is in the form of pseudo-mode expansion discussed in [71] and

νn characterizes energy distribution among the pseudo-modes.

A particularly interesting family of partially coherent Schell-model sources arises

with the choice

αn = iImαn = i
πn

a
√
2
, (4.6)

implying that there is no time delay, but consecutive Gaussian modes have equal

relative frequency shifts. It follows from Eqs. (4.2), (5.6) and (4.6), after elementary

algebra, that each such source has a Gaussian intensity,

I(T ) ≡ Γ(T, T ) = I0e
−T 2

; I0 =
1√
π

∑
n

νn, (4.7)

and its temporal degree of coherence, defined as [32]

γ(T1, T2) ≡ Γ(T1, T2)√
I(T1)I(T2)

, (4.8)

can be expressed as

γ(T1, T2) =

∑
n νn exp

[
iπn

a
(T2 − T1)

]∑
n νn

. (4.9)

We can infer from Eq. (4.9) that (i) discovered optical coherence gratings are statis-

tically stationary and (ii) their coherence properties are time-periodic with a charac-

teristic period of a (in scaled variables).

The energy spectrum, defined as [72]

S(Ω) =

∫ +∞

−∞
dT1

∫ +∞

−∞
dT2 Γ(T1, T2)e

iΩ(T1−T2), (4.10)
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reveals energy distribution among monochromatic components of the source. It fol-

lows from Eqs. (4.10), (4.8), and (4.9) after a straightforward algebra that up to an

immaterial factor, energy spectra of novel sources are given by

S(Ω) ∝
∑
n

νne
−(Ω−πn/a)2 . (4.11)

It is a periodic Gaussian frequency comb with distinct quasi-monochromatic compo-

nents which fail to overlap for a sufficiently small period a of the coherence grating.

Figure 4.1: Modulus of the temporal degree of coherence given by Eq. (4.12) for (a)
N = 2 and (b) N = 20.

Figure 4.2: Energy spectrum in arbitrary units for the case ofN = 20 equally weighted
modes with the period a = 0.25.

Quantitative features of discovered coherence gratings and resulting statistical

frequency combs depend on the mode energy distribution νn. Consider, for instance,

a grating of finite number N of equally weighted complex Gaussians with νn = ν =

const. Such a distribution yields a closed-from expression for γ such that

|γ(T1, T2)| =
∣∣∣∣∣ sin

[
πN
2a
(T2 − T1)

]
N sin

[
π
2a
(T2 − T1)

]∣∣∣∣∣ , (4.12)
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which is displayed in Fig. 1 for two values of N . For large enough N , Eq. (4.12)

is reminiscent of a classic pattern generated by illuminating a diffraction grating

with a coherent plane wave in the far zone of the grating [30]. A quick glance at

Fig.1b confirms the conclusion. The corresponding energy spectrum is exhibited in

Fig. 2. It is clearly seen in the figure that the spectrum represents a periodic train of

quasi-monochromatic components, provided the number of coherence grating lobes is

sufficiently large, N � 1, and their period sufficiently small, a < 1.

Figure 4.3: Magnitude of the temporal degree of coherence (a) and the energy spec-
trum in arbitrary units (b) for the case when the modes are distributed according to
νn = λn/n! with λ = 5 and a = 0.25.

Another instructive example is furnished by an infinite number of CGs weighted

according to νn = λn/n! where λ > 0 is a free parameter. The corresponding temporal

degree of coherence sums to

|γ(T1, T2)| = exp

{
−2λ sin2

[
π(T2 − T1)

2a

]}
. (4.13)

We show the temporal degree of coherence and energy spectrum in Fig. 3. It is seen

in the figure that this source possesses diffraction grating-like coherence properties

resulting in a periodic energy spectrum as well. Unlike the case in Fig. 2, however,

the spectral train is amplitude modulated here. Owning to qualitative agreement

between the two cases, we can conclude that the whole class of sources, specified

by (4.9), gives rise to optical coherence gratings.

Spatial coherence lattices.–A 2D generalization of the above describes spatial sources

producing random beams. In the space-frequency representation, we seek the cross-

spectral density of a beam field ensemble at a pair of points ρ1 and ρ2 in the source
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Figure 4.4: Magnitude of the spectral degree of coherence for a spatial coherence lat-
tice composed of N = 20 equally weighted modes; the aspect ratio of lattice constants,
aX/aY = 0.7.

plane in a factorized form

W (ρ1,ρ2) =
∏

s=X,Y

W (s1, s2). (4.14)

Here X = x/σI, Y = y/σI are dimensionless Cartesian coordinates scaled to an arbi-

trary spatial scale in the transverse pane of the beam; all spatial scales are assumed

to be normalized to σI henceforth. As it will become clear in the following, σI does

in this case coincide with the rms width of the source intensity profile. By analogy

with the temporal case, each factor in the cross-spectral density product (5.1) can be

expressed in terms of pseudo-modes as

W (s1, s2) =
∑
ns

νnsψ
∗
αns

(s1)ψαns
(s2), (4.15)

where

ψαns
(s) =

e−(Imαns )
2

π1/4
exp

[
−(s−√

2αns)
2

2

]
. (4.16)

It follows at once from the definition of the spectral degree of coherence [32, 73]

that

μ(ρ1,ρ2) ≡
W (ρ1,ρ2)√
I(ρ1)I(ρ2)

. (4.17)

Eqs. (4.15) and (4.16), (4.17), and a 2D analog of (4.6) yield a Gaussian source

intensity profile,

I(ρ) ≡ W (ρ,ρ) ∝ e−(X2+Y 2), (4.18)

justifying the identification of the scaling length with the rms source width, and the
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source coherence pattern in the form

μ(ρ1,ρ2) =
∏

s=X,Y

∑
ns
νns exp

[
iπns

as
(s2 − s1)

]
∑

ns
νns

. (4.19)

In particular, the spectral degree of coherence magnitude of an optical lattice with

νns = ν = const, 0 ≤ ns ≤ N , can be written explicitly as

|μ(ρ1,ρ2)| =
1

N2

∣∣∣∣∣∣
∏

s=X,Y

sin
[
πN
2as

(s2 − s1)
]

sin
[

π
2as

(s2 − s1)
]
∣∣∣∣∣∣ . (4.20)

To illustrate the spectral degree of coherence behavior, we display in Fig. 4, |μ| for
a spatial coherence lattice composed of N = 20 equally weighted Gaussian beams

with the lattice aspect ratio aX/aY = 0.7. The lattice-like coherence behavior is

transparent from the figure.

Figure 4.5: Radiant intensity distribution of a spatial coherence lattice composed of
N = 20 modes distributed according to νnX,Y

= λnX,Y /nX,Y ! with λ = 5 and a = 0.25;
the aspect ratio of lattice constants, aX/aY = 0.7.

The far-field angular distribution, generated by new sources, is specified by the

radiant intensity J which can be expressed in the paraxial approximation as [32]

J(k) =

∫
dρ1

∫
dρ2 W (ρ1,ρ2) exp[ik · (ρ1 − ρ2)], (4.21)

where k is a 2D wave vector in the transverse plane of the source. Owning to a math-

ematical analogy between Eqs. (4.10) and (4.21), the radiant intensity distribution of

a spatial coherence lattice can be expressed as

J(k) ∝
∏

s=X,Y

∑
ns

νns e
−(Ks−πns/as)2 , (4.22)
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where KX,Y = kx,yσI. The radiant intensity is displayed in Fig. 5 in arbitrary units

assuming the same weight distributions for the modes in the X and Y -directions,

νnX
= νnY

= λnX,Y /nX,Y !. For sufficiently small lattice constants aX,Y that we used,

the angular distribution of the source radiation pattern is seen in the figure to be an

amplitude modulated periodic lattice of highly directional individual lobes.

In summary, we introduced novel classes of partially coherent Schell-model spa-

tial and temporal sources. New temporal sources, temporal coherence gratings, have

Gaussian intensity profiles and periodic coherence properties, yielding periodic en-

ergy spectra in the form of frequency combs. New spatial sources, spatial coherence

lattices, also have Gaussian intensity profiles and lattice-like spectral degrees of coher-

ence. The latter circumstance causes them to generate lattice-like radiation patterns

composed of highly directional individual lobes. Temporal coherence gratings and in-

duced frequency combs can find metrology and optical communications applications.

Spatial coherence lattices can be used for material processing, robust (speckle-free)

imaging with partially coherent light and distortion-less information/image transfer

through fluctuating natural environments such as the turbulent atmosphere.
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5.1 Abstract

We examine paraxial propagation of recently introduced optical coherence lattices in

free space and demonstrate a novel phenomenon of periodicity reciprocity between

their intensity and coherence properties. The periodicity reciprocity arises because

an aperiodic source intensity profile of an optical coherence lattice evolves into a

lattice-like far-field profile, while the periodic spectral degree of coherence at the

source becomes aperiodic on free-space propagation. We discuss how the discovered

periodicity reciprocity can make optical coherence lattices attractive for robust free-

space optical communications.

5.2 Introduction

Owning to the immunity of partially coherent beams to speckle formation in op-

tical imaging and their robustness to natural media fluctuations, research into op-

tical communications with partially coherent light has recently enjoyed a renais-

sance. In particular, the potential of propagation-invariant (diffraction-free) coherent

and partially coherent beams and pulsed beams for distortion-less free-space infor-

mation/image transfer applications has been recognized [74, 75]. Moreover, spe-

cial classes of diffraction-free partially coherent beams, such as dark diffraction-free

beams [56], can serve as versatile optical traps for neutral nano-particles or even
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atoms. Shape-invariant (self-similar) partially coherent beams can also be useful in

free-space speckle-free image transfer and free-space optical communications. Sev-

eral prominent classes of self-similar partially coherent beams have been discov-

ered to date, including Gaussian Schell-model [60, 76], and twisted Gaussian Schell-

model [18, 55, 58] beams. By the same token, partially coherent modified-Bessel

vortex beams [21], separable vortex beams [59] as well as some others [71] are shape

invariant because they admit a coherent-mode decomposition [32] in terms of self-

similar Laguerre-Gaussian [21, 59] or Hermite-Gaussian [71] modes.

Although non-shape-invariant partially coherent beams are fairly useless for opti-

cal communication applications, they can possess desirable attributes for far-field co-

herence or radiation pattern generation on demand. For instance, while J0-correlated

partially coherent beams have drastically evolving coherence properties on free-space

propagation [20, 77], various families of multi-Gaussian Schell-model beams can ei-

ther form a flat-top radiation pattern [62] or split on propagation [63]. On the other

hand, non-uniformly correlated Gaussian beams can have their peak intensity po-

sitions shift upon free-space propagation [61]. Some non-shape-invariant partially

coherent beams were shown to form stable structures on short-distance propagation

through the turbulent atmosphere [23, 78, 64].

Partially coherent beams with periodic cross-spectral densities present yet an-

other important class. The significance of such beams for imaging is revealed by the

existence of Lau [69, 79] and Talbot [79, 80, 81, 82, 83, 84] self-imaging effects for

partially coherent light. In the first instance, self-imaging arises on paraxial prop-

agation of light generated by completely incoherent sources with periodic intensity

profiles. In the second instance, though, the periodicity of scalar cross-spectral den-

sities [79, 80, 82, 83] or cross-spectral density tensors [84] for polarized or partially

polarized sources, respectively, is required for self-imaging. Lately, a new class of

partially coherent beams, optical coherence lattices (OCL), was introduced [51] using

recently developed complex Gaussian representation (CGR) of statistical pulses and

beams [50]. The newly discovered OCLs have aperiodic (Gaussian) intensity profiles

and statistically homogeneous, periodic coherence properties, precluding Talbot self-

imaging in free space. The natural question then arises: Can OCLs be useful for

optical imaging, communications, or information transfer?
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To address this issue, we examine free-space evolution properties of OCLs in this

work. In particular, we explore how the intensity profile and spectral degree of coher-

ence of an OCL change on paraxial propagation. We discover periodicity reciprocity

between the intensity and coherence properties of optical coherence lattices. The

new phenomenon manifests itself when an aperiodic, Gaussian intensity profile of the

source evolves into a periodic array of lobes in the far zone, whereas the initially pe-

riodic spectral degree of coherence loses its periodicity on lattice propagation. Thus,

the spectral degree of coherence periodicity at the source is transferred to the far-field

intensity profile periodicity. We suggest that the phenomenon can find applications

to robust free-space optical communications.

5.3 Problem formulation and preliminary analysis

We begin by recalling that the cross-spectral density of a beam field ensemble of

recently discovered [51] optical coherence lattices at a pair of points (X1, Y1) and

(X2, Y2) in the source plane can be expressed in a factorized form as

W (X1, Y1, X2, Y2, 0) =
∏

s=X,Y

W (s1, s2, 0). (5.1)

Here X = x/σI, Y = y/σI are dimensionless Cartesian coordinates scaled to the rms

width σI of the source intensity profile and we will drop an irrelevant dependence

of the cross-spectral density on frequency henceforth. Using the CGR of statistical

beams [50], each factor W (s1, s2, 0) can be expressed as

W (s1, s2, 0) =

∫
d2αPs(α)ψ

∗
α(s1, 0)ψα(s2, 0), (5.2)

where Ps is a nonnegative distribution function to guarantee non-negative definiteness

of W and d2α ≡ d (Reα ) d (Imα). The pseudo-modes {ψα(s, 0)} are normalized,∫
dsψ∗

α(s, 0)ψα(s, 0) = 1, (5.3)

and form an over-complete set such that∫
d2αψ∗

α(s1, 0)ψα(s2, 0) = δ(s1 − s2). (5.4)

In the OCL case [51], Ps has the form

Ps(α) =
∑
ns

νnsδ(α− αns), νns ≥ 0. (5.5)
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On substituting from Eq. (5.5) into (5.2), we arrive at a pseudo-mode expansion of

W (s1, s2, 0) in the form

W (s1, s2; 0) =
∑
ns

νnsψ
∗
αns

(s1, 0)ψαns
(s2, 0). (5.6)

Here the mode weight distributions νns specify the intensity associated with each

mode and

αns =
iπns

as
√
2
, (5.7)

where as is a (dimensionless) lattice constant in the s-direction and ns is an integer.

Each lattice pseudo-mode at the source can be expressed as

ψαns
(s, 0) =

e−(Imαns )
2

π1/4
exp

[
−(s−√

2αns)
2

2

]
. (5.8)

Next, let us recall that the cross-spectral density function of any partially coherent

beam ensemble, propagating in free space, obeys the paraxial Wolf equation [32] which

we re-write in the dimensionless form as

(2i∂Z +∇2
⊥2 −∇2

⊥1)W (X1, Y1, X2, Y2;Z) = 0. (5.9)

The dimensionless propagation distance Z is naturally measured in Rayleigh range

units zR corresponding to a fully coherent source of the width σI, zR = kσ2
I . Owning

to the separability of Eq. (5.9) in the Cartesian coordinates, we can factorize W in

any transverse plane Z = const > 0, i. e.,

W (X1, Y1, X2, Y2;Z) =
∏

s=X,Y

W (s1, s2;Z), (5.10)

where each factor can be expanded into the pseudo-modes as

W (s1, s2;Z) =
∑
ns

νns ψ
∗
αns

(s1, Z)ψαns
(s2, Z). (5.11)

On substituting from Eqs. (5.10) and (5.11) and separating spatial variables in the

transverse plane, we obtain a paraxial wave equation for each pseudo-mode as

(2i∂Z + ∂2
s )ψαns

(s, Z) = 0. (5.12)
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The appropriate solution to Eq.(5.12), subject to the initial condition at the

source (5.8), can be obtained in the form

ψαns
(s, Z) =

e−(Imαns )
2

π1/4(1 + iZ)1/2
exp

[
−(s−√

2αns)
2

2(1 + iZ)

]
. (5.13)

It follows from Eqs. (5.11) and (5.13), after elementary algebra, that the cross-spectral

density of an optical lattice in any transverse plane Z = const is given by Eq. (5.10)

with

W (s1, s2;Z) =
exp

[
i(s22−s21)

2R(Z)

]
√

π(1 + Z2)

∑
ns

νns exp

{
iπns

as

[
s2 − s1
σ2(Z)

]}
× exp

[
−(s1 − πnsZ/as)

2 + (s2 − πnsZ/as)
2

2σ2(Z)

]
. (5.14)

In Eq. (5.14), R(Z) and σ(Z) are dimensionless radius of the curvature and rms width

of the beam specified by the expressions

R(Z) = Z + 1/Z, σ(Z) =
√
1 + Z2. (5.15)

In particular, the intensity profile of an OCL field can be found as

I(X, Y ;Z) ≡
∏

s=X,Y

W (s, s;Z) =
1

π(1 + Z2)

∏
s=X,Y

∑
ns

νns exp

[
−(s− πnsZ/as)

2

σ2(Z)

]
.

(5.16)

A qualitative analysis of Eq. (5.16) indicates that an initially Gaussian beam starts

branching out into a Gaussian lattice with the individual Gaussian node intensities

decreasing in amplitude on propagation. Further, each Gaussian spreads and the dis-

tance between the adjacent lattice nodes increases. Over several Rayleigh distances,

the rates of node width spreading and adjacent node separation are both proportional

to Z. However, the latter exceeds the former, provided the lattice constant is small

enough, aX,Y ≤ π. Under the circumstances, the structural stability of the lattice is

no longer compromised. Otherwise, individual lattice nodes can start overlapping over

a certain propagation distance, resulting in annihilation of the overall beam lattice

structure. Hereafter, we will restrict our analysis to OCLs maintaining their lattice

structure in the far-zone due to their potential for free-space optical communications.

The spectral degree of coherence behavior follows from its definition [32, 68, 85]

μ(X1, Y1, X2, Y2;Z) =
W (X1, Y1, X2, Y2;Z)√

I(X1, Y1;Z)
√

I(X2, Y2;Z)
, (5.17)
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Figure 5.1: Intensity profile (in arbitrary units) of a uniformly distributed OCL for
several propagation distances Z. The lattice is composed of N = 10 lobes and the
lattice constant is a = 1.

together with Eqs. (5.10), (5.14) and (5.16). According to the van Cittert-Zernike

theorem of the optical coherence theory [28], the lattices must become progressively

more coherent on free-space propagation. In the following section, we illustrate the

evolution of lattice intensity and spectral degree of coherence for several nontrivial

cases.

5.4 The OCL intensity and spectral degree of coherence propagation in

free space

We first consider an OCL composed of a finite number N of uniformly distributed

complex Gaussian pseudo-modes such that

νnX
= νnY

= ν0 = const; 0 ≤ nX,Y ≤ N. (5.18)

Under these conditions, the lattice intensity profile and spectral degree of coherence
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Figure 5.2: Magnitude of the spectral degree of coherence of a uniformly distributed
OCL for several propagation distances Z. The lattice is composed of N = 10 lobes
and the lattice constant is a = 1.

at the source can be evaluated in closed forms as [51]

I(X, Y, 0) ∝ e−(X2+Y 2), (5.19)

up to an immaterial constant, and

|μ(X1, Y1, X2, Y2; 0)| =
∣∣∣∣∣ sin

[
πN
2a
(X2 −X1)

]
sin

[
πN
2a
(Y2 − Y1)

]
N2 sin

[
π
2a
(X2 −X1)

]
sin

[
π
2a
(Y2 − Y1)

]∣∣∣∣∣ , (5.20)

respectively. In deriving Eq. (5.20) we assumed, for simplicity, that the lattice con-

stants in the X- and Y -directions are the same, aX = aY = a.

Let us now display the behavior of the intensity and magnitude of the spectral

degree of coherence of the lattice on its evolution with Z according to Eqs. (5.14)

through (5.17). The intensity evolution is exhibited in Fig. 1, while the modulus of

the spectral degree of coherence is shown in Fig. 2.

As can be inferred from Fig.1, an originally aperiodic in intensity Gaussian beam

forms a lattice on propagation. In accord with the above qualitative analysis after
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Figure 5.3: Intensity profile (in arbitrary units) of a symmetric, non-uniformly dis-
tributed OCL for several propagation distances Z. The the lattice constant is a = 1
and the weight distribution parameter is λ = 5.

the intensity lattice has been formed, the lattice structure of the OCL remains intact,

provided the lattice constant is not too large. The subsequent propagation into the

far zone causes the lattice to expand and the individual node intensity maxima to

decrease. The more-or-less stable lattice structure is formed over the Rayleigh range.

A quick look at Fig. 2 prompts the conclusion that the lattice structure of the

source degree of coherence is destroyed on propagation, yielding an aperiodic spectral

degree of coherence with the portion of the beam having |μ| = 1 gradually increasing

on propagation. Thus, the OCLs become progressively more coherent in agreement

with the van Cittert-Zernike theorem. More instructively, however, we observe a

curious reciprocity between the periodicity of OCL intensity and spectral degree of

coherence. Indeed, while each lattice source has an aperiodic (Gaussian) intensity

profile and a periodic spectral degree of coherence, a periodic intensity profile and

aperiodic spectral degree of coherence emerge in the far zone of the source. We can

conclude that, at least for uniformly distributed OCLs, the periodicity is transferred
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Figure 5.4: Magnitude of the spectral degree of coherence of a symmetric, non-
uniformly distributed OCL for several propagation distances Z. The lattice constant
is a = 1 and the weight distribution parameter is λ = 5.

from the degree of coherence at the source to the far-field intensity.

To determine whether the discovered periodicity reciprocity is generic to OCLs, we

will examine non-uniformly distributed OCL propagation. To this end, we consider

an OCL with a nonuniform distribution of pseudo-modes as

νns = Aλns
s

ns!
; ns ≥ 0, (5.21)

where A is a positive constant. The corresponding source intensity is again Gaussian

and the spectral degree of coherence at the source can be inferred from the Eqs. (5.14)

through (5.17) as well as (5.21) such that

|μ(X1, Y1, X2, Y2; 0)| = exp

{
−2

∑
s=X,Y

λs sin
2

[
π(s2 − s1)

2as

]}
. (5.22)

We can then display the nonuniform OCL intensity and spectral degree of coherence

behavior in Figs. 3 and 4. We assume, for simplicity, that the lattices are symmetric

with aX = aY = a and identically distributed along the X- and Y -axes such that

λX = λY = λ.
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Figures 3 and 4 reveal the same key trends as do Figs. 1 and 2. Namely, the ini-

tially aperiodic source intensity profile gives rise to a periodic lattice and the initially

periodic source spectral degree of coherence evolves into an aperiodic one. Thus,

periodicity reciprocity is confirmed for non-uniformly distributed lattices as well and

hence it appears to be a generic property of discovered OCLs. The only qualitative

difference in the evolution of nonuniform from uniform OCLs, which is manifest on

comparing Figs. 1 and 3, appears to be the intensity profile modulation of the former

caused by a nonuniform distribution of their pseudo-modes.

5.5 Conclusions

In this work, we have explored the intensity and spectral degree of coherence evolu-

tion of recently introduced optical coherence lattices. We have shown that while an

aperiodic source intensity profile of an OCL–which always happens to be Gaussian–

develops spatial periodicity on paraxial propagation in free space, the initially lattice-

like spectral degree of coherence loses its spatial periodicity on OCL propagation.

Thus, the OCL periodicity has a reciprocity property: coherence-periodic OCLs at

the source give rise to intensity-periodic far-field patterns. The discovered OCL pe-

riodicity reciprocity is shown to be generic for OCLs and it can be utilized in robust

free-space optical communications. Indeed, specific information, encoded in an OCL

via the periodicity of its spectral degree of coherence at the source, can be trans-

mitted through a free-space link. The periodicity reciprocity of OCLs ensures that

the encoded information is contained in the OCL far-field intensity pattern. The

information can then be decoded by simply interrogating the OCL far-field intensity

profile at the receiver.



Chapter 6

Conclusion

In this thesis, we introduce a new class of partially coherent temporal and spatial

sources, optical coherence gratings/lattices. We also examine the propagation prop-

erties of the new partially coherence sources in free space.

In the first paper, using the complex Gaussian representation, we construct a new

class of partially coherent sources in temporal and spatial domains. Novel sources

generate either pulses with statistically stationary or beams with statistically homo-

geneous coherence properties in the source plane. Further, the novel sources also

show periodic coherence properties. In particular, the new temporal sources, the so-

called optical coherence gratings, show diffraction grating-like coherence properties

corresponding to a periodic energy spectrum in the source plane. Meanwhile, the

new spatial sources, spatial coherence lattices, have a lattices-like spectral degrees

of coherence which cause them to generate lattice-like radiation patterns. We also

proved that spatial coherence lattices can produce periodic lattices of highly direc-

tional beams in the far zone.

In the second paper, we studied propagation properties of the newly discovered

spatial coherence lattices. We explored the intensity and the spectral degree of co-

herence of optical coherence lattices in several nontrivial cases and discovered an

interesting novel phenomenon, the periodicity reciprocity. In particular, an initially

Gaussian beam branches out into a Gaussian lattice with individual Gaussian mode

intensities decreasing in amplitude on free-space propagation. At the same time,

the periodicity of the complex degree of coherence of the source is destroyed dur-

ing propagation as the optical coherence lattices gradually become more coherent on

propagation. Thus, the periodicity can be transfered from the degree of coherence at

the source to the far-field intensity. In the thesis, we illustrate the evolution of the in-

tensity and complex degree of coherence in several cases and find that the periodicity

reciprocity occurs in each case.

37



38

We expect the periodicity reciprocity to make these new sources useful in robust

free-space optical communications. In the future, we hope to find more applications to

material processing, robust imaging with partially coherent light and distortion-less

information/image transfer through fluctuating media such as the turbulent atmo-

sphere.
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Appendix B

Analytical Expression for Optical Coherence Lattice

Pseudo-mode

The lattices pseudo-mode at the source plane can be expressed as

ψαns
(s, 0) =

e−(Imαns )
2

π1/4
exp

[
−(s−√

2αns)
2

2

]
. (B.1)

Here

αns =
iπns

as
√
2
, (B.2)

where as is a (dimensionless) lattice constant in the s-direction and ns is an integer.

Its Fourier(spectral) amplitude can be determined by the inverse Fourier trans-

form,

ψ̃(q, 0) =

∫ +∞

−∞

ds

2π
e−iqsψ(s, 0)

=
e−(Imαns )

2

√
2ππ1/4

exp

[
−q2 + 2

√
2iqαns

2

]
.

(B.3)

Here, we used the standard Gaussian integral∫ +∞

−∞
dxe−ax2+bx =

√
π

a
exp

[
b2

4a

]
, (B.4)

with a = 1/2 and b =
√
2αns − iq.

The optical lattices field propagation is governed by the paraxial wave equation

in the form

2i∂Zψ + ∂2
sψ = 0, (B.5)

which can be converted to the k−space as

2i∂Zψ̃ − q2ψ̃ = 0. (B.6)

Here the propagation distance Z is a dimensionless variable which is measured in

Rayleigh range units zR corresponding to a fully coherent source of the width σI ,
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zR = kσ2
I . Solving Eq (B.6),we can obtain

ψ̃(q, Z) = ψ̃(q, 0) exp

[
− iq2Z

2

]
=

e−(Imαns )
2

√
2ππ1/4

exp

[
−(1 + iZ)q2 + 2

√
2iqαns

2

]
.

(B.7)

Using the inverse Fourier transform, we obtain the expression for the lattice beam

envelope at any distance Z as

ψ(s, Z) =
e−(Imαns )

2

π1/4(1 + iZ)
exp

[
−(s−√

2αns)
2

2(1 + iZ)

]
. (B.8)



Appendix C

Numerical Coding for Novel Optical Coherence Gratings and

Lattices

**********************************************************************

**%%modulus of the temporal degree of

**%%coherence of the optical coherence grating

**********************************************************************

clc;

clear;

figure('numbertitle','off','color',[1,1,1]);

%%set parameters

x=0:0.01:10; %%time difference

subplot(1,2,1);

N=2;

u1=sin(N.*x)./(N.*sin(x));

u=abs(u1); %%mu

plot(x,u);

xlabel('$\frac{\pi}{2a}(T 2-T 1)$','interpreter','latex','fontsize',16);

ylabel('$ | \gamma |$','interpreter','latex','fontsize',16);
subplot(1,2,2);

N=20;

u1=sin(N.*x)./(N.*sin(x)); % %mu

u=abs(u1);

plot(x,u);

xlabel('$\frac{\pi}{2a}(T 2-T 1)$','interpreter','latex','fontsize',16);

*********************************************************************

**%%Energy spectrum of the pulse with finite

**%%number N of equally weighted modes

*********************************************************************

*********************************************************************
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clc;

clear;

figure('numbertitle','off','color',[1,1,1]);

% %set parameter

a=0.25; % %pulse period

N=20;%% case number

% % loop begin

u1=0;

x=0:0.01:100;

for i=1:N,

u1=u1+exp(-(x-pi*i/a).ˆ2);

end

plot(x,u1,'k');

xlabel('${\Omega}$','interpreter','latex','fontsize',16);
ylabel('energy spectrum','interpreter','latex','fontsize',16);

***********************************************************************

**% %magnitude of the spectral degree of coherence

**% %for a spatial coherence lattice

***********************************************************************

clear;

clc;

figure1=figure('numbertitle','off','color',[1,1,1]);

axes1=axes('Parent',figure1,'FontSize',18);

% %set parameter

N=20;

R=0.7;

xx=0:0.01:20;

yy=xx;

[x,y]=meshgrid(xx,yy);

u=abs(sin(N.*x)./(N.*sin(x)).*(sin(N.*R.*y)./(N.*sin(R.*y))));

surf(xx,yy,u);

shading interp;

xlabel('${\pi \over {2a X}}(X 2 - X 1)$','interpreter','latex','fontsize

',20);

ylabel('${\pi \over {2a Y}}(Y 2 - Y 1)$','interpreter','latex','fontsize

',20);
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zlabel('${\mid \mu \mid}$','interpreter','latex','fontsize',20);
**********************************************************************

**%%the radiant intensity distribution of

**%%a spatial coherence lattice

**********************************************************************

clear;

clc;

figure('numbertitle','off','color',[1,1,1]);

% %set the parameter

N=20;

R=0,7;

xx=0:0.05:20;

yy=0:0.05:20;

[x,y]=meshgrid(xx,yy);

i=1;

j=1;

a=0.5;

b=a/R;

u1=0;

u2=0;

for i=1:N

for j=1:N

u2=u2+exp(-(y-pi.*i./b).ˆ2);

j=j+1;

end

u1=u1+exp(-(x-pi.*i./a).ˆ2);

i=i+1;

end

u=u1+u2;

surf(xx,yy,u);

shading interp;

xlabel('${\pi \over {2a x}}(x 2 - x 1)$','interpreter','latex','fontsize

',20);

ylabel('${\pi \over {2a y}}(y 2 - y 1)$','interpreter','latex','fontsize

',20);

zlabel('Intensity','interpreter','latex','fontsize',20);



Appendix D

Numerical Coding for Optical Lattices Beams Propagate in

Free-Space

**********************************************************************

**% %the intensity profile of a uniformly distributed optical

**% %coherent lattices for different distance

**********************************************************************

clear;

clc;

% % set parameter

figure('numbertitle','off','color',[1,1,1])

vx=1;%v x

vy=1;%v y

ax=1;%a x

R=1;

ay=ax.*R;%a y

N=10;%n x &n y

subplot(3,2,1,'FontSize',14);

z=0;

u1=0;

u2=0;

xx=-5:0.1:5;

yy=-5:0.1:5;

[x,y]=meshgrid(xx,yy);

% %begin the loop

for i=1:N

for j=1:N

u2=u2+exp(-((y-pi.*j.*z./ay).ˆ2)./(1+z.ˆ2))./(pi.*(1+z.ˆ2));

end

u1=u1+exp(-((x-pi.*i.*z/ax).ˆ2)./(1+z.ˆ2))./(pi.*(1+z.ˆ2));

end

52



53

*************************************************

% % get the intensity

I=u1.*u2;

surf(xx,yy,I);

shading interp;

xlabel('X',...

'interpreter','latex','fontsize',24);

text(0.5,9,'z=0','fontsize',14);

ylabel('Y',...

'interpreter','latex','fontsize',24);

zlabel('Intensity',...

'interpreter','latex','fontsize',24);

view(20,40)

% %second plot

subplot(1,2,2,'FontSize',14);

z=0.3;

u1=0;

u2=0;

xx=-5:0.05:15;

yy=-5:0.05:15;

[x,y]=meshgrid(xx,yy);

for i=1:N

for j=1:N

u2=u2+exp(-((y-pi.*j.*z./ay).ˆ2)./(1+z.ˆ2))./(pi.*(1+z.ˆ2));

end

u1=u1+exp(-((x-pi.*i.*z/ax).ˆ2)./(1+z.ˆ2))./(pi.*(1+z.ˆ2));

end

% % get the intensity

I=u1.*u2;

surf(xx,yy,I);

shading interp;

xlabel('X','interpreter','latex','fontsize',24);

text(-10,30,'z=0.3','fontsize',14);

ylabel('Y','interpreter','latex','fontsize',24);

zlabel('Intensity','interpreter','latex','fontsize',24);

view(20,40)

**************************************************************
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**% %the spectral degree of coherence of a uniformly distributed

**% %optical coherent lattices for several propagation distance

**************************************************************

clear;

clc;

figure('numbertitle','off','color',[1,1,1])

N=10;

v s=1;

ax=1;

R=1;

ay=ax*R;

i=(-1).ˆ0.5;

x1=0;

y1=0;

% %seting the parameter

subplot(1,2,1,'FontSize',14);

z=0;

xx=-5:0.01:5;

yy=-5:0.01:5;

[x,y]=meshgrid(xx,yy);

% %get W

Wy=0;

Wx=0;

for j=1:N

Wy=Wy+exp(i.*(y1.ˆ2-y.ˆ2)./(2.*(z+1./z))).*exp(i.*pi.*j.*(y1-y)./(ay

.*(1+z.ˆ2))).*exp(-((y1-(pi.*j.*z./ay)).ˆ2+(y-(pi.*j.*z./ay)).ˆ2)

./(2.*(1+z.ˆ2)))./((pi.*(1+z.ˆ2)).ˆ0.5);%phase is (exp(i.*(y1.ˆ2-y

.ˆ2)./(2.*(z+1./z)))./(pi.*(1+z.*2)).ˆ0.5).*exp((i.*pi.*j.*(y-y1))

./((1+z.ˆ2).*ay)).*

end

for k=1:N

Wx=Wx+exp(i.*(x1.ˆ2-x.ˆ2)./(2.*(z+1./z))).*exp(i.*pi.*k.*(x1-x)./(ax

.*(1+z.ˆ2))).*exp(-((x1-(pi.*k.*z./ax)).ˆ2+(x-(pi.*k.*z./ax)).ˆ2)

./(2.*(1+z.ˆ2)))./((pi.*(1+z.ˆ2)).ˆ0.5);%phase is (exp(i.*(x1.ˆ2-x

.ˆ2)./(2.*(z+1./z)))./(pi.*(1+z.*2)).ˆ0.5).*exp((i.*pi.*k.*(x-x1))

./((1+z.ˆ2).*ax)).*

end

W=Wx.*Wy;

% % get I1
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u1=0;

u2=0;

for j=1:N

u2=u2+exp(-((y1-pi.*j.*z./ay).ˆ2)./(1+z.ˆ2));

end

for k=1:N

u1=u1+exp(-((x1-pi.*k.*z/ax).ˆ2)./(1+z.ˆ2));

end

I1=u1.*u2./(pi.*(1+z.ˆ2));

% % get I2

u1=0;

u2=0;

for j=1:N

u2=u2+exp(-((y-pi.*j.*z./ay).ˆ2)./(1+z.ˆ2));

end

for k=1:N

u1=u1+exp(-((x-pi.*k.*z/ax).ˆ2)./(1+z.ˆ2));

end

I2=u2.*u1./(pi.*(1+z.ˆ2));

% % plot the u

u=W./(((I1).ˆ0.5).*((I2).ˆ0.5));

U=abs(u);

surf(x,y,U);

shading interp;

xlabel('X','interpreter','latex','fontsize',24);

text(-10,10,'z=0','fontsize',14);

ylabel('Y','interpreter','latex','fontsize',24);

zlabel('${\mid \mu \mid}$','interpreter','latex','fontsize',24);
view(20,40)

% % second plot

subplot(1,2,2,'FontSize',14);

z=0.1; % % distance

x1=0;

y1=0;

xx=-10:0.1:10;

yy=-10:0.1:10;

[x,y]=meshgrid(xx,yy);

i=(-1).ˆ0.5;

% % get W
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Wy=0;

Wx=0;

for j=1:N

Wy=Wy+exp(i.*(y1.ˆ2-y.ˆ2)./(2.*(z+1./z))).*exp(i.*pi.*j.*(y1-y)./(ay

.*(1+z.ˆ2))).*exp(-((y1-(pi.*j.*z./ay)).ˆ2+(y-(pi.*j.*z./ay)).ˆ2)

./(2.*(1+z.ˆ2)))./((pi.*(1+z.ˆ2)).ˆ0.5);% %phase is (exp(i.*(y1.ˆ2-y

.ˆ2)./(2.*(z+1./z)))./(pi.*(1+z.*2)).ˆ0.5).*exp((i.*pi.*j.*(y-y1))

./((1+z.ˆ2).*ay)).*

end

for k=1:N

Wx=Wx+exp(i.*(x1.ˆ2-x.ˆ2)./(2.*(z+1./z))).*exp(i.*pi.*k.*(x1-x)./(ax

.*(1+z.ˆ2))).*exp(-((x1-(pi.*k.*z./ax)).ˆ2+(x-(pi.*k.*z./ax)).ˆ2)

./(2.*(1+z.ˆ2)))./((pi.*(1+z.ˆ2)).ˆ0.5);% % phase is (exp(i.*(x1.ˆ2-

x.ˆ2)./(2.*(z+1./z)))./(pi.*(1+z.*2)).ˆ0.5).*exp((i.*pi.*k.*(x-x1))

./((1+z.ˆ2).*ax)).*

end

W=Wx.*Wy;

% % get I1

u1=0;

u2=0;

for j=1:N

u2=u2+exp(-((y1-pi.*j.*z./ay).ˆ2)./(1+z.ˆ2));

end

for k=1:N

u1=u1+exp(-((x1-pi.*k.*z/ax).ˆ2)./(1+z.ˆ2));

end

I1=u1.*u2./(pi.*(1+z.ˆ2));

% % get I2

u1=0;

u2=0;

for j=1:N

u2=u2+exp(-((y-pi.*j.*z./ay).ˆ2)./(1+z.ˆ2));

end

for k=1:N

u1=u1+exp(-((x-pi.*k.*z/ax).ˆ2)./(1+z.ˆ2));

end

I2=u2.*u1./(pi.*(1+z.ˆ2));

% % plot the u

u=W./(((I1).ˆ0.5).*((I2).ˆ0.5));
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U=abs(u);

surf(x,y,U);

shading interp;

xlabel('X','interpreter','latex','fontsize',24);

text(-5,20,'z=0.1','fontsize',14);

ylabel('Y','interpreter','latex','fontsize',24);

zlabel('${\mid \mu \mid}$','interpreter','latex','fontsize',24);
view(20,40)


