
BIOMIMETIC METAMORPHIC FRAMEWORK FOR SECURITY
IN RESOURCE-CONSTRAINED WIRELESS NETWORKS

by

Raghav Vemagal Sampangi

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

at

Dalhousie University
Halifax, Nova Scotia

March 2015

c© Copyright by Raghav Vemagal Sampangi, 2015

To my Parents,

and

the Divine Force within us all.

ii

Table of Contents

List of Tables . viii

List of Figures . xi

Abstract . xiv

List of Abbreviations and Symbols Used xv

Acknowledgements . xx

Chapter 1 Introduction . 1

1.1 Overview . 1

1.2 Resource-Constrained Wireless Networks 2
1.2.1 Radio Frequency Identification (RFID) 2
1.2.2 Wireless Body Area Networks (WBAN) 4
1.2.3 A Look Back at Resource-Constrained Wireless Networks . . . 6

1.3 Thesis Contributions . 7

1.4 Outline . 8

Chapter 2 Background and Related Work 9

2.1 Overview . 9

2.2 Information Security Principles . 9

2.3 Security in Resource-Constrained Wireless Networks 12
2.3.1 Privacy and Security in RFID Systems 13
2.3.2 Privacy and Security in WBAN Applications 14
2.3.3 Elements of Security in Resource-Constrained

Wireless Networks . 15
2.3.4 Standards Governing Proposals for RFID Systems and WBAN

Applications . 18
2.3.5 Security in Resource-Constrained Wireless Networks: Summary 27

2.4 Related Work . 29
2.4.1 Pseudorandom number generation-based techniques 30
2.4.2 Pseudonym-based techniques 30
2.4.3 Hash (or Keyed Hash)-based techniques 31
2.4.4 Physical Characteristics-based techniques 32

iii

2.4.5 Biometric techniques . 34
2.4.6 Certificateless techniques . 35
2.4.7 Symmetric Encryption-based techniques 36
2.4.8 Hybrid techniques . 37
2.4.9 Frameworks . 38

2.5 Summary . 39

Chapter 3 Research Focus . 41

3.1 Motivation . 41

3.2 Research Objectives . 42

3.3 Hypotheses . 43

3.4 Summary . 44

Chapter 4 Proposed Framework . 45

4.1 Overview . 45

4.2 Proposed Framework . 45

4.3 Summary . 48

Chapter 5 Proposed Component Algorithms 51

5.1 Chapter Overview . 51

5.2 Preliminaries . 51
5.2.1 Biomimetics . 51
5.2.2 State Identifiers . 52

5.3 GeM2: Improved Key Generation and Mutual Authentication Algo-
rithm based on Gene Transfer and Genetic Mutation 53
5.3.1 Overview . 53
5.3.2 GeM1: The Predecessor of GeM2 54
5.3.3 GeM2: Improved Key Generation and Mutual Authentication

Algorithm . 58
5.3.4 Summary . 63

5.4 Butterfly1: Encryption Scheme Featuring Pseudorandom Numbers and
Butterfly Seed Generation . 64
5.4.1 Overview . 64
5.4.2 Butterfly Seed Generation Algorithm for PRNG 64

iv

5.4.3 Encryption Scheme Featuring PRNG and Butterfly Seed Gen-
eration . 67

5.4.4 Summary . 72

5.5 HiveSec1: Algorithm for Security Inspired by Beehives and
Bee Swarms . 74
5.5.1 Overview . 74
5.5.2 HiveSec1: The Concept . 74
5.5.3 HiveSec1: Security Inspired by Bees 75
5.5.4 BeeSwarm: Mechanism for Protection Against Attacks 90
5.5.5 Summary . 93

5.6 Extending the Proposals to WBAN 94
5.6.1 Using GeM2 in WBANs . 95
5.6.2 Using Butterfly1 in WBANs 96
5.6.3 Using HiveSec1 in WBANs . 97

5.7 Summary . 98

Chapter 6 Synthesis: Integrating the Proposed Concepts 100

6.1 Overview . 100

6.2 GeM2, Butterfly1 and HiveSec1 in the Metamorphic Framework for
Security . 100

6.3 Use Case 1: RFID Application for Location Identification and
Guidance . 106
6.3.1 Overview . 106
6.3.2 Application for Location Identification and Guidance 106

6.4 Use Case 2: WBAN Application for Remote Monitoring of High-Risk
Pregnancies . 108
6.4.1 Overview . 108

6.5 Summary . 110
6.5.1 Revisiting our Hypotheses . 110

Chapter 7 Evaluation and Results . 113

7.1 Overview . 113

7.2 Proof of Concept Implementation . 113
7.2.1 Implementation Details . 113
7.2.2 Evaluation of Algorithm Choices 116
7.2.3 Uniqueness of Keys Generated 120
7.2.4 Evaluation of Similarity Between Keys 124

v

7.2.5 Evaluation of Key Randomness and Unpredictability 137

7.3 Security Evaluation of the Proposals 144
7.3.1 Security Analysis . 144
7.3.2 Communication Protocol Analysis using Scyther 144
7.3.3 Results: Protocol Analysis using Scyther 148
7.3.4 Results: Security Analysis . 158
7.3.5 Behavior Under Attack . 162

7.4 Comparative Assessment . 164
7.4.1 Overview . 164
7.4.2 Implementation Details . 165
7.4.3 Key Similarity . 166
7.4.4 Key Randomness . 169
7.4.5 Security . 171
7.4.6 Summary . 173

7.5 FPGA Implementation . 174
7.5.1 Evaluation of Hardware Resource Utilization 176
7.5.2 Results . 178

7.6 Summary . 190

Chapter 8 Discussion . 193

8.1 Proposed Framework: A Summary 193
8.1.1 Algorithm choice . 194
8.1.2 Dynamic key generation . 194
8.1.3 Key unpredictability . 195
8.1.4 Attack detection . 198
8.1.5 Resource utilization . 198

8.2 Implications for Practice . 199

8.3 Benefits and Challenges . 201

8.4 Summary . 204

Chapter 9 Conclusions and Future Work 205

9.1 Concluding Remarks . 205

9.2 Future Work . 206

9.3 Final Thoughts . 207

vi

Appendix A Assessment Using NIST Statistical Test Suite:
Detailed Results . 209

Appendix B FPGA-based Simulation of our Proposals 218

Appendix C Logic Circuit Utilization Estimation 226

Appendix D Publications . 229

D.1 Published . 229

D.2 Manuscripts Under Review . 229

Appendix E Copyright Permissions . 231

Bibliography . 241

vii

List of Tables

Table 2.1 Security Goals [1] . 13

Table 2.2 Known Attack Classification [2, 3] 28

Table 4.1 Example Illustrating Generation of Algorithm Choice (Ca) . . . 48

Table 5.1 Example to illustrate the proposed Butterfly Seed Generation
algorithm . 66

Table 5.2 Message Code (MC) format and description 70

Table 5.3 Message Code (MC) format and description 82

Table 7.1 Characteristics and environment of the computer used for the
proof of concept implementation 114

Table 7.2 Configurations tested using the proof of concept implementation 115

Table 7.3 Summary of algorithm choices by the proposed framework (con-
figurations C4 – C7) . 117

Table 7.4 Summary of key uniqueness . 121

Table 7.5 Summary of similarity between keys 126

Table 7.6 NIST STS Assessment: Summary of results (Number of se-
quences out of 10000 that passed each test) 142

Table 7.7 Known network attacks [4] [5] 145

Table 7.8 Parameter settings used for evaluation of the proposed algo-
rithms using Scyther . 146

Table 7.9 Algorithm parameters and their implementations in Scyther . . 147

Table 7.10 Results: Evaluation of the GeM2 protocol using Scyther 149

Table 7.11 Results: Evaluation of the Butterfly1 communication protocol
using Scyther . 151

Table 7.12 Results: Evaluation of the HiveSec1 communication protocol us-
ing Scyther . 153

7.13 Evaluation of the proposed framework using Scyther 155

viii

Table

Table 7.14 Summary: Security goals satisfied by the algorithms and frame-
work configurations . 159

Table 7.15 Performance of the proposals with respect to known network
attacks . 161

Table 7.16 Summary of similarity between keys 166

Table 7.17 NIST STS Assessment: Summary of results (Number of se-
quences out of 10000 that passed each test) 170

Table 7.18 Features of a Slice in Spartan-6 [6] 174

Table 7.19 Logic resources in one CLB [6] 175

Table 7.20 Spartan-6 (XC6SLX45T) logic resources [6] 175

Table 7.21 Characteristics / environment of the computer used for the VHDL
implementation . 177

Table 7.22 FPGA Implementation: HDL Synthesis Summary 180

Table 7.23 FPGA Implementation: Advanced HDL Synthesis Summary . . 181

Table 7.24 FPGA Implementation: Summary of results (resources used in
an optimized implementation) 182

Table 7.25 Gate Count Estimates . 185

Table 7.26 Logic Circuit Estimation (generic) 185

Table 7.27 Memory Consumption Estimation (generic, in bits) 187

Table A.1 Uniformity of P-values and Proportion of Passing Sequences (C1)210

Table A.2 Uniformity of P-values and Proportion of Passing Sequences
(C2(Ki)) . 210

Table A.3 Uniformity of P-values and Proportion of Passing Sequences
(C2(KT)) . 211

Table A.4 Uniformity of P-values and Proportion of Passing Sequences
(C3(KS)) . 211

Table A.5 Uniformity of P-values and Proportion of Passing Sequences
(C3(KO)) . 212

Table A.6 Uniformity of P-values and Proportion of Passing Sequences
(C4(K,Ki, KS)) . 212

ix

Table A.7 Uniformity of P-values and Proportion of Passing Sequences
(C4(K,KT , KO)) . 213

Table A.8 Uniformity of P-values and Proportion of Passing Sequences
(C5(K,Ki)) . 213

Table A.9 Uniformity of P-values and Proportion of Passing Sequences
(C5(K,KT)) . 214

Table A.10 Uniformity of P-values and Proportion of Passing Sequences
(C6(K,KS)) . 214

Table A.11 Uniformity of P-values and Proportion of Passing Sequences
(C6(K,KO)) . 215

Table A.12 Uniformity of P-values and Proportion of Passing Sequences
(C7(Ki, KS)) . 215

Table A.13 Uniformity of P-values and Proportion of Passing Sequences
(C7(KT , KO)) . 216

Table A.14 Uniformity of P-values and Proportion of Passing Sequences —
Keys generated using the proposal by Liu and Kwak [7] 216

Table A.15 Uniformity of P-values and Proportion of Passing Sequences —
Keys generated using the proposal by Zhu and Khan [8] 217

Table A.16 Uniformity of P-values and Proportion of Passing Sequences —
Keys generated using the proposal by Dong et al. [9] 217

Table B.1 Algorithms and Algorithm Numbers (represented by algorithm[1:0])
used in the Simulation . 218

Table C.1 Logic Circuit Estimation: Configuration, C1 226

Table C.2 Logic Circuit Estimation: Configuration, C2 226

Table C.3 Logic Circuit Estimation: Configuration, C3 227

Table C.4 Logic Circuit Estimation: Configuration, C4 227

Table C.5 Logic Circuit Estimation: Configuration, C5 227

Table C.6 Logic Circuit Estimation: Configuration, C6 228

Table C.7 Logic Circuit Estimation: Configuration, C7 228

x

List of Figures

Figure 1.1 A Typical RFID System . 3

Figure 1.2 A Typical WBAN System [10] 5

Figure 2.1 Working of a Symmetric cryptosystem 10

Figure 2.2 Working of an Asymmetric cryptosystem 11

Figure 4.1 Overview of the Multi-Algorithm Framework 46

Figure 4.2 Illustration of Algorithm Choice Process 48

Figure 5.1 Overview of GeM1 [11] . 54

Figure 5.2 Key Generation in GeM1 [11] 57

Figure 5.3 Communication Protocol in GeM1 [12] 57

Figure 5.4 Key Generation in GeM2 [12] 59

Figure 5.5 Overview of working of the proposed encryption scheme [13] . 68

Figure 5.6 Working of the proposed encryption scheme [13] 71

Figure 5.7 Conceptual Illustration of the Seed Generation in HiveKey . . 76

Figure 5.8 Conceptual Illustration of Seedhives 77

Figure 5.9 Use of Timestamp to Determine Choice of Parent/Child Seeds 77

Figure 5.10 Extraction of Components C1 and C2 [14] 85

Figure 5.11 Generation of Message Signatures [14] 85

Figure 5.12 HiveSign: Operational Modules/Units [14] 86

Figure 5.13 HiveSec1: Protocol of Operation 88

Figure 6.1 Algorithm Choice Logic with GeM2, Butterfly1 and HiveSec1 101

Figure 6.2 Framework: Protocol of Operation 102

Figure 6.3 Conceptual Illustration of the Framework Modules with GeM2,
Butterfly1 and HiveSec1 . 104

xi

Figure 7.1 Variation in algorithm choices for Configuration C4, when con-
sidering all 10240 key sequences generated (a), and only 108
key sequences (b) . 117

Figure 7.2 Variation in algorithm choices for Configuration C5, when con-
sidering all 10240 key sequences generated (a), and only 108
key sequences (b) . 118

Figure 7.3 Variation in algorithm choices for Configuration C6, when con-
sidering all 10240 key sequences generated (a), and only 108
key sequences (b) . 118

Figure 7.4 Variation in algorithm choices for Configuration C7, when con-
sidering all 10240 key sequences generated (a), and only 108
key sequences (b) . 119

Figure 7.5 Plot illustrating patterns in unique keys generated, per 10240
keys in all configurations . 122

Figure 7.6 Plot illustrating patterns in unique keys generated, per 108 /
10240 keys in all configurations 123

Figure 7.7 Variation in average SSI for all configurations 127

Figure 7.8 SSI Variation (Configuration C1) 128

Figure 7.9 SSI Variation (Configuration C2, key = sj) 128

Figure 7.10 SSI Variation (Configuration C2, key = Ki) 129

Figure 7.11 SSI Variation (Configuration C2, key = KT) 130

Figure 7.12 SSI Variation (Configuration C3, key = KS) 131

Figure 7.13 SSI Variation (Configuration C3, key = KO) 131

Figure 7.14 SSI Variation (Configuration C4, keys = {K,Ki, KS}) 132

Figure 7.15 SSI Variation (Configuration C4, keys = {K,KT , KO}) 133

Figure 7.16 SSI Variation (Configuration C5, keys = {K,Ki}) 133

Figure 7.17 SSI Variation (Configuration C5, keys = {K,KT}) 134

Figure 7.18 SSI Variation (Configuration C6, keys = {K,KS}) 134

Figure 7.19 SSI Variation (Configuration C6, keys = {K,KO}) 135

Figure 7.20 SSI Variation (Configuration C7, keys = {Ki, KS}) 135

Figure 7.21 SSI Variation (Configuration C7, keys = {KT , KO}) 136

xii

Figure 7.22 Variation in average SSI . 167

Figure 7.23 SSI Variation for the proposal by Liu and Kwak [7] 168

Figure 7.24 SSI Variation for the proposal by Zhu and Khan [8] 168

Figure 7.25 SSI Variation for the proposal by Dong et al. [9] 169

Figure B.1 Simulation of GeM2 using Xilinx ISim 219

Figure B.2 Simulation of Butterfly1 using Xilinx ISim 220

Figure B.3 Simulation of HiveSec1 using Xilinx ISim 221

Figure B.4 Simulation of Framework (GeM2, Butterfly1, HiveSec1) using
Xilinx ISim . 222

Figure B.5 Simulation of Framework (GeM2, Butterfly1) using Xilinx ISim 223

Figure B.6 Simulation of Framework (GeM2, HiveSec1) using Xilinx ISim 224

Figure B.7 Simulation of Framework (Butterfly1, HiveSec1) using Xilinx
ISim . 225

xiii

Abstract

Contemporary mobile devices are being increasingly integrated with technologies such
as RFID (radio frequency identification) and WBAN (wireless body area networks)
that enable object identification and sensing in the Internet of Things (IoT). These
technologies facilitate many applications such as efficient management of users’ health,
remote monitoring and asset tracking. Communication in these applications is mainly
wireless, making it critical to ensure security. Important elements of security include
data encryption, key management and authentication. Although sophisticated cryp-
tography is the straightforward solution to achieve security goals, some IoT entities
are limited in their ability to perform the necessary computations, owing to trade-offs
between managing available resources and keeping them cost-effective.

The primary objective of this thesis is to propose a new metamorphic multi-
algorithm framework for security in resource-constrained wireless networks. Our pro-
posals draw inspiration from biological/natural systems and chaos theory to achieve
security through unpredictability. While the state-of-the-art is focused on employing
standard cryptographic techniques and customizing them for lightweight applications,
our framework facilitates security through a dynamic, context-dependent choice of one
of the algorithms for key management and authentication. Three new algorithms,
which emphasize dynamic key management and unpredictability, are proposed as
part of our framework. These are standalone algorithms that could be employed in
resource-constrained networks either independently for generating keys and authen-
tication parameters, or as part of the framework to increase the overall uncertainty,
and consequently, security.

We analyze and assess each constituent algorithm and the possible framework con-
figurations to verify that the choice of algorithms are at random, the keys generated
remain unpredictable, and the resource utilization is low. We use a proof of concept
implementation to generate keys and analyze them to assess algorithm choices, use
Sörensen’s Similarity Index (SSI) and NIST (National Institute of Standards and
Technology) Statistical Test Suite to assess key sequence unpredictability and ran-
domness, respectively, and use hardware implementation to assess resource utiliza-
tion. Results encourage use of our framework and individual algorithms in resource-
constrained applications, and its generic design implies that it can be extended and
adapted for use in other non-resource-constrained application environments as well.

xiv

List of Abbreviations and Symbols Used

+ Addition operation

AND Logical AND operation

E() Encryption Function

EK() Encryption, with Key, K

FO Optional data field (HiveSec1 algorithm)

ID Identifier or Identification number

KG Group-wise key (WBANs)

KO Outer-envelope key (HiveSec1 algorithm)

KS Encryption key (HiveSec1 algorithm)

KT Data transfer key (Butterfly1 algorithm)

Ki Data encryption key (Butterfly1 algorithm)

Keyx Generic key, interchangeably used

Lx Location coordinate (latitude or longitude)

M Message

M1 Message transmitted by initiator (HiveSec1 algo-
rithm)

M2 Message transmitted by responder (HiveSec1 algo-
rithm)

MC Message Code

P Periodicity of the pseudorandom number generator

SSN Session sequence number

SA Actual seed

SC Chosen child seed

SL Left parent seed

SR Right parent seed

SeedG Seed to generate group-wise key (WBANs)

V ER 1-bit version code

• Bitwise logical AND operation

δ New session duration

xv

δ0 Default session duration

εIE Initiator error response

εRE
Responder error response

ηt Tag number

⊕ Bitwise logical XOR operation

‖ Concatenation operation

φ() Butterfly seed transformation function

θi Message signature (Butterfly1 algorithm)

εE Threshold to classify a message as an attack

∨ Bitwise logical OR operation

asv Authentication Synchronization Vector (GeM1 and
GeM2 algorithms)

ci Ciphertext

cipheri Ciphertext, interchangeably used

em Encrypted message (GeM1 and GeM2 algorithms)

f() Combination function

g() Pseudorandom Number Generation Function

genLimit Generation Limit, pattern deciding parent key up-
dates

h() Hash Function

i Message sequence number, Butterfly1 algorithm

j Butterfly seed state identifier

mi Message or encrypted message, interchangeably
used

msignI Initiator message signature

msignR Responder message signature

n Key size or length in bits

nAlg Number of available algorithms in the framework

nδ Session identifier

numX First pseudorandom sequence generated by pseudo-
random number generator

xvi

patternasv Pattern used to generate authentication-
synchronization vector

s Pseudorandom number generator state, derived
from ts (HiveSec1)

se Pseudorandom number generator state additive
component

sO1 Pseudorandom number generator state, derived
from ts0 (HiveSec1)

sinit Initial pseudorandom number generator seed

tx Timestamp

ACK Acknowledgement

ASIC Application Specific Integrated Circuit

BCU Body Central Unit, or the WBAN hub

BSU Body Sensor Unit, or a WBAN sensor

CLB Configurable Logic Block

CRC Cyclic Redundancy Check

DNA Deoxyribonucleic Acid

EPC Electronic Product Code

FPGA Field-Programmable Gate Array

HDL Hardware Description Language

IEEE Institute of Electrical and Electronics Engineers

IoT Internet of Things

xvii

LSB Least Significant Bit

Main Key A main key, or encryption key, is the continuously
changing key, used for encrypting messages during
a communication session.

MSB Most Significant Bit

NFC Near-Field Communication

NIST National Institute of Standards and Technology

PAR Place and Route

PRNG Pseudorandom Number Generator

PS Personal Server

RF Radio Frequency

RFID Radio Frequency Identification

RNG Random Number Generator

Session Key An optional session key is used to encrypt a message
containing a component encrypted using a Main
Key and other parameters. Session keys may re-
main common for a pre-determined session dura-
tion.

SSI Sörensen’s Similarity Index

STS Statistical Test Suite

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuits

WBAN Wireless Body Area Network

WSN Wireless Sensor Network

xviii

XOR Bitwise logical Exclusive-Or (XOR) operation

XST Xilinx Synthesis Tool

xix

Acknowledgements

My interest to pursue a Ph.D. was fueled by my interactions with my supervisor, Dr.

Srinivas (Srini) Sampalli, whose support, feedback and guidance encouraged me to

create what I present in this thesis. I am ever grateful that he gave me a chance

to work with him and learn from him not only technological aspects, but humility

and other attributes to become a better person as well. I also sincerely thank my

committee members, Dr. Nur Zincir-Heywood, Dr. Vlado Keselj and Dr. Robert

Beiko, who were gracious in their comments and suggestions, while driving me to

further improve my work.

I would also like to thank Dr. Mauro Conti, from University of Padua, Italy,

for graciously agreeing to be the external examiner, and for his thought-provoking

suggestions and questions, which definitely contributed to making my thesis better.

Special thanks also go to the anonymous reviewers of my papers that were pub-

lished during this journey. Their suggestions and comments contributed to improving

my work a great deal.

My work would not have been possible if not for the support and funding given

by The Boeing Company. I sincerely thank everyone on the Boeing team, who gave

feedback, and helped me create what I present in this thesis. I would also like to

thank Dr. Kirstie Hawkey, coordinator of the Mobile Graphics sub-project of the

Boeing project for her words of support and encouragement during my years as a

student member of this project.

Every day at the Faculty of Computer Science and our research lab, MYTechLab,

has been an honour and a privilege, and I thank Dr. Sampalli, the Faculty and

the Boeing project for making it happen. I would also like to thank the Faculty

graduate administrators Ms. Menen Teferra and Ms. Vidhya Ramamoorthy for

making the whole process easier. Special thanks also to Ms. Alicia Kirk from the

Faculty of Graduate Studies, who worked tirelessly to coordinate and help with my

thesis defence and submission.

I would like to extend special thanks to Dr. Musfiq Rahman (who is now the

xx

Assistant Professor at Thompson Rivers University, BC), Saurabh Dey, Jayagopal

Narayanaswamy and Jeremy Porter who were always around for brainstorming. Thanks

also to Darshana Upadhyay from Nirma University for her help and suggestions as I

worked on my experiments. I would also like to thank all members of MYTechLab

for all the discussions and fun, which contributed to making my Ph.D. journey an

enjoyable experience.

Over the years, I have also had the opportunity to work with the computer science

student societies and organizing committees, and with several members of the faculty

and staff in different activities. It has truly been a privilege working with all of you,

for I have learned from each interaction, and I hope I have become a better person as

a result. All of this made my student experience rewarding and I thank you for the

opportunity.

Well, none of this would have happened if it wasn’t for my parents who gave me

life. Special thanks to my parents, Dr. Sowbhagyalakshmi and Kamalakar, because

their constant emotional, spiritual support and guidance have made me the person I

am today, and be able to write this thesis.

Having thanked everyone and everything we can see, talk to and perceive, one

cannot ignore thanking the Divine force that resides in us all. Some might call it the

laws of nature, some others might call it God, a few others might not acknowledge it

at all, but there is some force that is keeping us alive and giving us the opportunity

to experience all these marvellous aspects of life. I bow my head in gratitude for this

life and this amazing opportunity.

Thank you all for an awesome experience.

xxi

Chapter 1

Introduction

1.1 Overview

Ava is an employee at a futuristic technology company. As part of her daily work

routine, she uses multiple Radio Frequency Identification (RFID) tags to access dif-

ferent tools and parts of the building in which she works. She also uses her company’s

RFID-based application to guide her to specific tasks in appropriate locations. Re-

cently, however, she was diagnosed with a medical condition and her doctor, Ben,

advised her to be under constant monitoring. Understanding that her career was

equally important, he advised her to wear wireless body sensors and use her cellular

phone as part of a Wireless Body Area Network (WBAN) application to remotely

monitor her health. Glad that she could work while her doctor was monitoring her

health, she went back to her daily routine.

This situation, a portion of it or something similar, could be part of daily activities

for many people around the world. Technology solutions such as RFID and WBANs

are only two of the many applications that have contributed to making our activities,

and hence our lives, convenient and easier to manage. Many such ‘productivity’ appli-

cations are already based on wireless communication, and using mobile devices such

as cellular phones, tablet and laptop computers. Thus, although the infrastructure

foundation of organizations would entirely be wired networks, wireless networks and

their associated security challenges will continue to attract much research attention.

Furthermore, the advent of cloud computing has enabled organizations with little

infrastructure to deploy their systems almost entirely on the cloud, making them rely

on security offerings by the cloud service providers.

Most of our security needs are met by standard symmetric and asymmetric cryp-

tographic algorithms, which have succeeded in securing most aspects of contemporary

communication. These algorithms use increased computations and complexity as a

means to offer better security. However, resource constraints imposed by devices such

1

2

as RFID tags or wireless body sensors, or even smartphones in some cases, increase the

challenge to deploy such standard algorithms. Thus, security in resource-constrained

wireless networks already are and will continue to be of significant interest in the

future.

1.2 Resource-Constrained Wireless Networks

Wireless networks are said to be resource-constrained if their physical design imposes

restrictions on their ability to store a large amount of information or to perform

complex computations. Essentially, such networks and associated entities would have

limited memory and computational power, some of which might be necessitated by the

absence of on-chip power sources (in devices such as passive RFID tags) or longevity

of the entity (as with wireless sensors or wireless body sensors). In this section, we

present an overview of RFID systems as well as WBAN systems, exploring the need

for creative and lightweight security solutions in both.

1.2.1 Radio Frequency Identification (RFID)

Radio Frequency Identification (RFID) is one of the technologies that is at the fore-

front of emerging wireless technologies. It is one of the fundamental elements in the

“Internet of Things” and has inspired new technologies such as near field communi-

cations (NFC). The core feature of RFID is the ability to identify and locate objects

uniquely among a set of other objects. This technology is extensively used in the

retail industry and has more recently been used in healthcare applications.

The entity central to an RFID system (illustrated in Figure 1.1) is an electronic

circuit known as RFID tag. Tags are simple electronic circuits whose main function

is to respond to querying entities called RFID readers with a unique number. RFID

readers are devices that send electromagnetic signals to the tags in a manner similar

to querying an entity to know an answer. The electromagnetic signals transmitted by

readers energize the tags sufficiently long (similar to an on-demand power source) so

that they can respond with the unique number. On receiving the tag’s response, the

reader then forwards it to the backend enterprise server, which uses middleware for

data cleaning/extraction from the response and retrieves detailed information about

3

the object represented by the tag. The server then responds to the reader with this

information [15].

Figure 1.1: A Typical RFID System

RFID systems are classified into different types depending on the types of tags

that are employed in said systems. RFID tags themselves are broadly categorized as

passive tags, semi-passive tags, and active tags, based on the absence or presence of

on-chip power sources [15, 16]. Passive tags do not have an on-chip power source,

which limits them from performing complex computations and from initiating com-

munication with readers. Passive tags, therefore, are dependent on electromagnetic

signals sent by readers to energize them, and they respond with the data in the brief

time when they are energized. Active tags, on the other hand, have an on-chip power

source, and can, thus, either initiate the communication with a reader themselves,

or can respond to a request from the reader. Semi-passive tags have an on-chip

power source, however still require the energy from the reader for broadcasting their

message.

Passive RFID tags perform one basic function — respond to any query by any

reader, and possibly perform tasks as instructed by the reader. Such a functionality,

coupled with the lack of resources for performing sophisticated authentication of the

incoming instructions, makes passive tags vulnerable to a range of attacks, such as

replay attack, tag killing, tag over-writing, etc. Furthermore, readers with high signal

strength, also referred to as “rogue” readers, can read information from any tag, even

if separated by a large distance. This further increases the vulnerability of the tags,

increasing doubts in their widespread acceptance. When it comes to security in an

RFID system, therefore, this inability makes RFID tags the weakest link.

4

Another classification of RFID tags is based on the computational capabilities

[17]. Tags belonging to “full-fledged” class are able to perform complex cryptogra-

phy including public key cryptography, hashes and complex symmetric cryptogra-

phy; while tags in “simple” class have the ability to perform simpler computations

such as pseudorandom number generation (PRNG) and hashing. “Lightweight” tags

can perform pseudorandom number generation and operations such as CRC (Cyclic

Redundancy Check), but do not support either complex cryptography or hashing.

“Ultra-lightweight” tags are severely limited in their computational abilities and are

capable of only simple bitwise logical operations such as AND, OR, Exclusive-OR

(XOR), and so on.

Resource limitations, thus, not only limit a tag’s ability to perform complex com-

putations, but also limit their ability to verify the authenticity of the other commu-

nicating entity (i.e. reader and/or server), which in all likelihood could instruct the

tag to make changes to its internal state and if rogue, could in doing so render the

tag useless. Although RFID readers and servers might possess the ability to perform

complex cryptographic operations to be able to verify each other, the limits in the

abilities of a tag require newer (lightweight) security proposals to be able to verify all

entities involved, and to keep the system safe from unwarranted use.

1.2.2 Wireless Body Area Networks (WBAN)

Sensor networks are comprised of sensors (or detecting elements) that sense the en-

vironment in which they are placed, record data about the environment, and relay

the recorded data to a central monitoring station or base station, where data is ag-

gregated. A simple example for this would be the monitors connected to patients in

critical care units in hospitals, which monitor their parameters such as blood pressure,

oxygen saturation, heart function, among others. Typically, such a system would have

wired leads, which record the specific parameter, connected to the monitor (inclusive

of the signal processor) where recorded data is processed and displayed. This is an

example for a wired sensor network.

Wired sensor networks, however, limit the deployment zone for the application of

interest. Nevertheless, advances in wireless technologies have given rise to wireless

sensors, which can be deployed in remote locations, and data monitored at a central

5

Figure 1.2: A Typical WBAN System [10]

location. A Wireless Sensor Network (WSN) is a set up in which a group of sensors are

equipped with independent power sources and processing circuits intended to ‘sense’

or record data about specific parameters in the environment where they are deployed.

WSNs, thus, enable deploying sensors in environments that can be considered out

of human reach, for example, in a battlefield to help in detecting the presence and

movement of humans or any other animals, thereby contributing to real-time tracking

of a battlefield [18].

One noble application area for WSNs is healthcare. The remote monitoring feature

of WSNs can be used to monitor health of persons remotely, and this has led to the

birth of Wireless Body Area Networks (WBANs). In WBANs, sensors are used to

record and relay health data to hospitals or other monitoring stations, from where

healthcare professionals can remotely monitor the health parameters of patients or

other individuals. In a remote healthcare setting, this enables doctors to monitor

patients continuously, and keep tabs on events that could aggravate and potentially

prove fatal to the patient at a future time. Another particularly useful application

of WBANs is in the military, where commanding officers could monitor the health of

soldiers in the field.

In WBANs, a sparse network of sensors (referred to as ‘Body Sensor Units’, BSUs)

6

are deployed either directly on the human body, inside the body or embedded in

everyday clothes, to record and transmit health data. BSUs record and transmit

data to a Body Central Unit (BCU) or the “WBAN hub” [19], which aggregates

data sent by all BSUs and relays the aggregation to a hospital monitoring station.

However, a BCU does not have sufficient infrastructure to relay the data directly to

a monitoring station, and therefore, uses a Personal Server (PS) as an intermediary.

A personal server could be either fixed or mobile, typical examples of which include

cellular phones, personal digital assistants (PDAs), desktop or laptop computers [20].

A typical set up of wireless body area networks is as illustrated in Figure 1.2, with

BSUs — S1 (heart rate, measured in beats per minute, bpm), S2 (blood pressure

in millimeters of Mercury, mmHg), and S3 (blood glucose level in milligrams per

decilitre, mg/dl), and S0 being the BCU, using cellular phone as a personal server.

The fact that WBAN sensors reside on the human body implies that the on-chip

power sources or batteries have to have longer lives, so as to not cause inconvenience

to the user in case of battery replacement. This is particularly true in case of ap-

plications where long-term monitoring of a person is required (for example, remote

monitoring of high-risk individuals [21] with ischaemic heart disease [22] or with sus-

pected pregnancy-induced hypertension [23]). This further implies that the design

of BSUs must be optimized in their resource utilization, thereby making WBANs

resource-constrained. WBAN sensors have several constraints, including restrictions

on size and power consumption, electromagnetic power, latency, reliability, but most

important of all, security and privacy of user health data [24][25].

1.2.3 A Look Back at Resource-Constrained Wireless Networks

We have presented two of the many systems that have severe resource restrictions

imposed due to a multitude of reasons. Such systems, although able to perform their

functions, need to be protected against unwarranted accesses and attacks. For exam-

ple, an RFID application to grant role-based access to resources has to be protected to

preserve unauthorized accesses to resources in an organization, while WBAN applica-

tions need to be protected against data modification and unauthorized data accesses.

Therefore, research on strengthening data privacy and security of resource-constrained

wireless networks has assumed focus in the recent years.

7

Some of the existing research [26, 27] has focused on using pre-shared secrets

and simple bitwise operations such as XOR (exclusive-OR) to perform computa-

tions for authentication, while most others [28, 29, 30] use entities such as enter-

prise servers (RFID) or monitoring stations (WBAN) to generate and send encryp-

tion/authentication parameters to tags or sensors, respectively, to accomplish security.

Although such systems rely on the quality of the backend infrastructure (servers or

monitoring stations) being secure, one can never ignore the presence of ‘rogue’ entities

in the communication path between the servers and tags/sensors, who could monitor

and potentially hijack the conversation or manipulate data or in the worst case, bring

down the system.

1.3 Thesis Contributions

We consider Kerckhoffs’s principle as one of the motivating factors for our work,

according to which we would need to assume that all information about an cryp-

tographic algorithm is available for everyone’s perusal [31]. This, in addition to

standards and specifications [32, 33, 19] publishing the details of implementations of

algorithms to be employed by systems claiming conformance, makes keys and associ-

ated authentication parameters more important to the overall security of the system.

Typical key management protocols require entities exchanging either key derivation

parameters [34] or exchanging key materials themselves [8] to agree on the keys to

be used for encryption/decryption. However, the wireless communication medium

leaves transmitted packets open to be ‘sniffed’ by attackers, who could employ addi-

tional computing resource to crack these keys. This leads us to believe that design

of systems with a metamorphic structure, i.e. changing at random instances, would

increase the security in a system. Basically, we are referring to reconfigurable security

architectures, with continually changing (context-dependent) internal system states.

In this thesis, we present a new metamorphic modular security framework, which

envelopes three algorithms offering solutions to multiple security goals, such as key

management, authentication and integrity verification.

The key management algorithms proposed in this thesis are based on the fun-

damental concept of eliminating the need for actual key exchange. We believe in

8

generating new keys at both the sender and the receiver instead of actually exchang-

ing keys; a concept justified by the Diffie-Hellman Key Exchange algorithm [34]. This

is because generating keys with only a few parameters exchanged, removes the de-

pendency on a secure communication channel to ensure security. This way, the two

communicating entities may still be secure despite the channel being compromised,

although this is undesirable. The entities maintaining the state of key generation in-

dependent also ensures that they can verify each other’s authenticity, while increasing

the overall unpredictability associated with the system, hence making it more secure.

The focus of this thesis is also simplicity, which is necessitated by the resource

restrictions imposed by the application environments we have considered. For this

purpose, we draw inspirations from natural/biological concepts, and propose mecha-

nisms that mimic some of them. This has enabled us to design ‘lightweight’ security

proposals, reducing the resources required for implementation, but increasing the

overall security of the system.

1.4 Outline

The rest of this thesis is organized as follows — we present a detailed discussion on

security in general and as applied to resource-constrained wireless networks (such as

RFID and WBAN systems), in addition to summarizing the associated specifications

and standards, in Chapter 2, followed by a summary of the scope of our work, motiva-

tion and objectives in Chapter 3. We present our proposal of the new reconfigurable

security framework in Chapter 4, followed by a description of its constituent algo-

rithms in Chapter 5. We summarize the framework and the algorithms, and discuss

their application — individually, as well as collectively, in Chapter 6. In Chapter 7,

we present the results obtained from our analyses and discuss their implications in

Chapter 8, before discussing concluding remarks in Chapter 9. Detailed results of the

NIST randomness assessment, simulation results from hardware assessment, details of

the hardware complexity assessment, list of publications from our work and copyright

permissions to include published material in this thesis are presented in Appendices

A, B, C, D and E, respectively.

Chapter 2

Background and Related Work

2.1 Overview

Our work, as discussed previously, proposes an overall reconfigurable security frame-

work for resource-constrained wireless networks, with an objective to accomplish mul-

tiple security objectives with simple logical operations. In this chapter, we briefly

discuss some of the general information security principles. We then present a brief

discussion on the aspects of security in resource-constrained wireless networks, specif-

ically, as applied to RFID systems and WBAN applications, before summarizing var-

ious key management schemes and authentication protocols used in these resource-

constrained wireless networks. Although our proposal is a ‘security’ framework in-

cluding all aspects of information security such as key management, encryption and

authentication (referred to collectively as an encryption scheme), the focus is mainly

key management and authentication — key management, since a publicly available

encryption algorithm is only as good as the key, and authentication, which is primarily

to be established (using generated keys and message signatures) among communicat-

ing entities to ensure secure (trust-based) communication. The proposals in our work

are designed to work with any symmetric encryption algorithm.

2.2 Information Security Principles

Securing information communicated between a sender and a receiver involves en-

crypting the information to convert the message into a form unrecognizable to an

unauthorized entity, using either a symmetric key or an asymmetric key encryption

algorithm [35, 1]. Symmetric key algorithms work by using a single secret key for

both encryption and decryption of the message. The sender and receiver come to an

agreement over the key used for encryption through a key agreement/management

process, where the keys used could be pre-shared, exchanged and agreed upon prior

9

10

Figure 2.1: Working of a Symmetric cryptosystem

to the communication, or generated independently at the sender and receiver. The

encryption itself is accomplished by confusion and diffusion, applying substitution

and permutation operations on the data, in addition to specific processing using the

key. Figure 2.1 illustrates the typical working of a symmetric cryptosystem, with the

sender and receiver using a pre-shared key for encryption and decryption.

Asymmetric key algorithms, on the other hand, accomplish security by using two

different (mathematically related) keys for encryption and decryption. These algo-

rithms involve each entity having a publicly available/accessible key called the public

key and a secret private key, known only to that entity. When an entity, Alice, wants

to communicate with another entity Bob, she uses Bob’s public key to encrypt the

information, which Bob can access by decrypting the ciphertext using his private key.

Asymmetric key cryptography depends on the presence of a trusted certificate au-

thority that ‘certifies’ public-private key pairs, which essentially forms the public key

infrastructure (PKI). The presence of two keys, especially when generated by trusted

certificate authorities, facilitates user authentication and generation of digital mes-

sage signatures, which help in ascertaining the integrity of the communicated message.

In contrast to symmetric cryptosystems, encryption in asymmetric cryptosystems ac-

complishes security using complex mathematical operations and relatively large prime

numbers as keys. The working of a typical asymmetric cryptosystem is illustrated in

11

Figure 2.2: Working of an Asymmetric cryptosystem

Figure 2.2.

Historically, security of information would be accomplished by hiding both the en-

cryption algorithm and the key used, a well-known example being the Enigma cipher

machine, used by the German military prior to and during World War II [36]. How-

ever, with most present day encryption algorithms being published, and some stan-

dardized by recognized agencies, the most important aspect of the encryption process

remains retaining the keys secret. In this context, the keys include the (shared) secret

key in symmetric cryptosystems and the private key in asymmetric cryptosystems.

Thus, key agreement between communicating entities is essential to ensuring security

in any scenario, since the security of a cryptosystem/encryption algorithm that is

publicly available will depend on the security of the keys used (Kerckhoff’s principle

[31]).

Once a message is encrypted using the key, the next objective becomes ascertain-

ing that the received message is the same as the sent message (message integrity). To

accomplish this, a straightforward way is to use integrity check algorithms, i.e. mes-

sage digests (MDs) and message authentication codes (MACs). As discussed earlier,

the presence of two keys, typically verified by a certificate authority, makes message

integrity verification almost an implicit functionality in asymmetric cryptosystems.

However, it becomes a critical (additional) component in symmetric cryptosystems.

12

Mathematical one-way hash functions have been a popular means of “signing” mes-

sages in symmetric cryptosystems, since they help in generating unique digests of

each message, with very low probability of collisions. Collision in this case refers to

a scenario when two inputs produce the same output. The design of these hash algo-

rithms mandates low collisions and their design is based on the avalanche effect, i.e.

a one bit change in the input must lead to a significant change in the corresponding

output. Thus, MDs help accomplish verification of message integrity in most applica-

tions. Several MD algorithms, including MD5, SHA-3 (Secure Hashing Algorithm),

RIPEMD, are popularly used [35]. However, some applications might necessitate the

use of mechanisms to ensure that the messages are “authenticated”, i.e. providing

the means of detecting any changes to the transmitted message, since the entities

use a pre-shared secret key to generate the MAC. The general principles of Hashed-

MAC (HMAC) algorithms are based on concatenating the key with the message and

hashing this pair. Their ability to sign messages and any other components, with or

without a key, enables hash (or keyed hash) algorithms to be a popular choice for

entity authentication as well, particularly in resource-constrained networks.

Thus, the overall objective of cryptosystems is to ensure end-to-end security of the

information. A good encryption scheme, including algorithms for key management,

encryption, authentication and message signature generation, must be able to satisfy

the generic security goals summarized in Table 2.1.

Having discussed generic security principles in this section, we explore security as

applied to resource-constrained wireless networks in the next section.

2.3 Security in Resource-Constrained Wireless Networks

The term resource-constrained wireless networks encompasses a wide variety of tech-

nologies and applications that are disparate, and have varying requirements. Such re-

quirements could include resource (memory and computational ability) requirements,

data storage requirements, but have a common security requirement. Since much of

the resource-constrained wireless networks, such as RFID systems, WBAN systems,

Vehicular Ad-hoc Networks (VANETs) and the like, are created as autonomous sys-

tems to facilitate one independent activity in our lives, they are all in some way

related to peoples’ personal data. This places an emphasis on protecting data being

13

Table 2.1: Security Goals [1]

Security Goal Description

Confidentiality Eavesdropping on communicated data packets

must not be fruitful to an adversary

Integrity The message sent by the sender must be the same as

the message received by the receiver

Authentication Validation of the sender by the receiver (vice-versa)

Non-repudiation A communicating entity cannot later deny that a

message sent originated at its location

Forward security Adversary should not be able to derive future keys,

given a knowledge of a contiguous set of previously

used keys

Backward security Adversary should not be able to generate previous

keys, given a knowledge of a contiguous set of future keys

communicated in such systems, thereby preserving the privacy of the individual(s) in

question. In this section, we explore such requirements, following which we discuss

some of the existing work in two resource-constrained systems, namely, RFID systems

and WBAN applications.

2.3.1 Privacy and Security in RFID Systems

RFID tags are central to RFID systems. These simple electronic circuits often have

no other functionality than to respond to reader (or interrogator) queries. They are

severely resource-constrained and typically store unique identifiers (IDs), which help

in identifying objects uniquely among a set of other RFID tagged similar/dissimilar

objects [15]. Their hardware simplicity implies that they are resource-constrained and

any bit of improvement in efficiency or re-use in circuits would be beneficial. Security

in passive RFID tag-based systems is, therefore, always a critical factor to ensure

the overall success of the application. This makes it challenging to deploy complex

algorithms, which require a high degree of computation for achieving security. On the

other end of the scale, simple algorithms may prove easier for an adversary to crack.

With RFID tags being deployed to assist in identifying objects uniquely, care must

14

be ensured to protect the privacy of this ‘object’. Often, this ‘object’ is a person using

a tagged product in their daily life, or an organization representative using a tagged

product for protected access to certain resources. Thus, if the responses of an RFID

tag do not change with time, it would be very easy to ‘track’ its movements, thereby

compromising the user’s privacy. This requires making the tag responses time-variant,

which requires that the key refreshes or updates be frequent. Furthermore, since many

of the RFID protocols use key management/encryption for authentication, the need

to protect such key exchange messages assumes priority. Ideally, tags and other active

entities in the communication should be able to generate keys on their own, without

having to exchange keys, increasing the security of the system, and protecting the

privacy of the user.

2.3.2 Privacy and Security in WBAN Applications

WBAN sensors are placed on (or in) a person’s body and record sensitive health data

about that person. Such data, therefore, must not be accessible to anyone other than

the person him/her-self, their family and healthcare professionals. Access control,

thus, becomes a primary security goal for WBAN systems, and is closely followed

by confidentiality, integrity, dependability and authentication [37]. However, there

is always a compromise between functionality and security. This is mainly because

the system application might be toward monitoring a health condition requiring con-

tinuous monitoring of the person’s health parameters, while the sensor’s ability to

record data might limit the sophistication of the security solution used to protect the

data it records. This is necessitated by the constraints on storage, computation and

longevity of the sensor itself.

Furthermore, with the data recorded by the sensors having a direct impact on

the health of an individual, the security and functionality requirements need to be

carefully balanced so as to secure the data, protect the individual’s privacy and to

facilitate longevity of the sensors. Ideally, as with RFID tags, body sensor communi-

cations must be secured using time-variant keys and strong encryption algorithms.

15

2.3.3 Elements of Security in Resource-Constrained

Wireless Networks

As discussed in the Section 2.2, conventional systems rely on the following broad

techniques for security — either on using shared secret keys and complex substitu-

tion/permutation functions as with symmetric cryptosystems, or on longer key-pairs

and complex mathematical functions as with asymmetric cryptosystems. However,

restrictions in resource-constrained wireless networks limit the size of keys that can

be used, and the type of operations that can be performed while ensuring security

and longevity. Each fundamental element of security, thus, needs to be customized

and adapted for application in resource-constrained wireless networks. In this sub-

section, we discuss how data encryption, key management and authentication are

accomplished in resource-constrained wireless networks.

Data Encryption

Confidentiality is the primary goal of any information security scheme. Encrypting

data using either symmetric or asymmetric key algorithms helps accomplish confi-

dentiality, and the various processes employed are typically linked in a manner to

satisfy several goals highlighted in Table 2.1. In resource-constrained wireless net-

works, sophistication in the encryption algorithm used is dependent on the resources

available and the security need for specific applications. Some of the solutions for

encryption in resource-constrained wireless networks include ‘lightweight’ solutions

based on stream ciphers [38] or adapting AES (Advanced Encryption Standard) to

function as a stream cipher for lightweight body sensors [39], optimized block cipher-

based encryption algorithms such as SEED [40], Tiny Encryption Algorithm (TEA)

[41] or extended TEA [42], authenticated encryption solutions [43], encryption based

on chaotic sequences [44], and lightweight AES-based solutions [45]. A few solutions

consider a hybrid approach to encryption such as using a combination of AES and

Elliptic Curve Cryptography (ECC) [46, 47], while some have even explored adapting

asymmetric encryption for resource-constrained applications [48, 49, 50].

In many other approaches [51, 52, 8, 12, 13, 10] however, the Exclusive-OR (XOR)

function is used for encryption. The key aspect of XOR that makes it almost an obvi-

ous choice for encryption in resource-constrained applications is its involutory nature

16

(XOR is its own inverse). When XOR is used for encryption, its decryption algorithm

is also XOR, thereby facilitating the use of the encryption circuit for decryption as

well. Using other logical operations such as AND, OR, etc. requires constructing sep-

arate circuits for encryption and decryption, making XOR easier to implement on low

resource devices. Furthermore, ensuring random and frequently updated secret keys

makes XOR a secure choice for encryption, as observed with stream ciphers [35, 1].

Key Management

Typically, key agreement is a separate phase prior to the communication in resource-

constrained wireless networks, or is in a way combined with the message exchange

protocol to reduce the overhead. This most common approach involves the trusted

enterprise entity or the server performing key updates and exchanging key materials

with the resource-constrained entity prior to or during their communication [8, 53,

54, 55, 56, 57], or in some other cases, could involve using pre-shared secrets or

initialization vectors in pseudorandom number generators (PRNGs) [58, 59, 60]. As

noted by Rahman [61], key management typically involves the following phases:

• Key Setup: This is the phase prior to the actual key generation or communica-

tion, involving communicating entities agreeing on key materials, initialization

vectors, algorithms, etc. In some cases [62], this could involve a separate regis-

tration phase.

• Key Exchange: This is the actual key exchange and agreement. If using syn-

chronized PRNGs, this might be an implicit process, or in other cases, it might

involve an additional phase where keys are exchanged between the entities.

• Key Refresh: Entities could communicate for varying lengths of time. Typically,

communication for longer durations involve entities refreshing or updating their

encryption keys, so as to make it harder for unauthorized entities to crack the

keys being used.

• Key Revocation: In some cases, ensuring system protection might necessitate

“eviction” of entities that are compromised. Key revocation techniques help in

updating the system to a new state, with or without changes to the compromised

entities.

17

Although these key management phases [61] were discussed by Rahman in the

context of wireless sensor networks (WSNs), these phases broadly guide the design of

key management approaches in other resource-constrained wireless networks such as

RFID and WBANs. Furthermore, with resource restrictions limiting the sophistica-

tion of the encryption algorithms used in RFID tags or WBAN sensors, key manage-

ment becomes a critical element of security in resource-constrained wireless networks.

Application specific requirements might guide the actual key management processes

in place, however, in general, keys need to be regularly updated to ensure high un-

predictability and therefore, high security.

Authentication

It is essential in communication systems for entities to verify the legitimacy or authen-

ticity of each other, more so in resource-constrained systems as the servers typically

have the ability to control the actions of the resource-constrained entities. For ex-

ample, in RFID systems, a tag would first need to ascertain that the server (or a

server-verified reader) is authentic, before performing key updates or other actions.

Similarly, the server needs to know that the tag is authentic to ensure that the commu-

nication is not controlled by an unauthorized entity. In some systems, only one-way

authentication is ensured, for example a server verifying the RFID tag. This could be

the case when systems assume the trustworthiness of the server. However, it is essen-

tial in all systems for both entities to authenticate each other, or accomplish mutual

authentication, since it adds to the overall trustworthiness of the communication.

Asymmetric key cryptosystems implicitly facilitate mutual authentication by using

trusted certificate authority verified key pairs and digital signatures. While normal

encryption requires the sender to encrypt data using the public key of the receiver,

digital signatures are signed by the sender by encrypting the message hash using

the sender’s private key. This enables the receiver to decrypt the message hash

using the sender’s public key, facilitating entity authentication and message integrity

verification. However, this is not possible with symmetric cryptosystems, since the

same pre-shared or agreed key is used for both encryption and decryption. This

scenario is further complicated in resource-constrained systems due to limitations in

their computational abilities [35, 1].

18

In many symmetric key systems including resource-constrained applications, the

key agreement scheme is used in combination with other operations, such as hash,

to accomplish authentication [52, 9, 63, 55, 56]. In RFID systems, with much of

the sensitive data about the tag being stored on the backend server, key agreement

schemes are typically used for authentication of entities. However, this is contrary to

the requirements in WBAN systems, where data recorded by each sensor is sensitive

and critical, since medical decisions are based on the recorded data.

Cai et al. [64] propose a set of rules for designing and evaluating authentication

proposals for RFID systems, considering prevalent security issues and the security

objectives that need to be satisfied by such schemes. The rules suggest the protocols

— (a) are lightweight (lightweight rule), (b) facilitate authentication of each entity by

the other (mutual authentication rule), (c) facilitate key updates following successful

authentication (key update rule), (d) ensure synchronization of states to accomplish

proper key updates and authentication (synchronization rule), (e) should facilitate

deployment in an application scenario with a large number of tags (scalability rule), (f)

ensure only authenticated readers be included in the communication (confidentiality

rule), (g) introduce randomization in transmitted information (indistinguishability

rule), and (h) must ensure the information remains valid (data integrity rule). R-

RAPSE essentially translates various security goals to specific objectives that must

be considered when designing authentication schemes. While their proposal is in the

context of RFID systems, its generic rules enable its use in designing authentication

schemes for all resource-constrained wireless networks.

2.3.4 Standards Governing Proposals for RFID Systems and WBAN

Applications

Increased awareness about and emphasis on developing technologies for the Internet

of Things (IoT) paradigm have meant that autonomous object identification and per-

sonal data management technologies such as RFID and WBANs are increasing in

their popularity. Standardization organizations and working groups are working to

guide the process of developing products using these technologies, releasing regula-

tions and guidelines for creating each aspect of data management, communication and

security. EPCglobal is working on developing a standard for use of RFID technology

19

and sharing data over the Internet [65], while the use of wireless sensors for health-

care and other applications is governed by the specifications released by Task Group

6 of the IEEE 802.15 working group [66] (IEEE 802.15 works towards specifications

for wireless personal area networks, WPAN [19]). In this section, we summarize the

security considerations specified by these agencies.

EPCglobal RFID Tag Security Specifications

Standard overview

A conglomerate of organizations that develops and maintains standards for supply

chain management, EPCglobal [65] works to employ and standardize the use of elec-

tronic product codes (EPC) to better manage and uniquely identify physical objects.

RFID technology is currently being used as a key component in this effort, particularly

due to its non-line of sight operation and reduced costs [15]. EPCglobal categorises

RFID tags as [16]:

• Class-0/Class-1: Identity tags — passive tags with minimum features including

EPC identifier (with optional minimal security);

• Class-2: Higher-functionality tags — passive tags that support authenticated

access control in addition to EPC identifier;

• Class-3: Battery-assisted passive tags, or, semi-passive tags — have all the

features of higher-functionality tags, with the presence of an on-chip power

source; and,

• Class-4: Active tags — possesses all features of semi-passive tags, in addition

to being able to initiate communications with readers or interrogators.

The specification and standardization process for RFID application in supply chain

management is ongoing, with the current specifications including those for commu-

nication in Class 0 and Class 1. Class 0 tags are used in applications where data is

written only once and read many times and are governed by the EPCglobal Class

0 tag specifications [67], while Class 1 tags facilitate multiple read and write oper-

ations. The functional specifications for Class 1 tags are currently in their second

“generation” (Generation 2 version 2, referred to as Gen2v2), with enhancements to

20

include basic security and error correction features, including optional support for

cryptographic suites [32]. Cryptographic suites, if used, are suggested to be one of

the following — (a) As specified by ISO/IEC (International Standards Organization/

International Electrotechnical Commision) in the standard specification 29167-1:2014

[33], under security services for RFID air interfaces; (b) As specified by GS1 (GS1 is

one of the collaborating organizations in EPCglobal); or, (c) As specified/chosen by

the tag manufacturer [32]. The specifications for higher classes of tags have not been

formalized and are in the early stages of definition [68].

Tag communication is typically ‘queried’ by an interrogator or RFID reader, with

the exception of active tags. Their responses are powered by the electromagnetic

signal sent by the reader and are accomplished through backscattering. All commu-

nication in an RFID system are with the most-significant bit (MSB) sent first. During

the communication, a reader might ‘instruct’ the tag to perform certain actions, e.g.

sleep or kill through access passwords stored in the tag’s reserved memory. To verify

such commands, the tag first verifies the command using CRC (cyclic redundancy

check), following any authentication processes that may be implemented by the ap-

plication. According to the specification, the maximum size of any tag response is

capped at 32 kbits (32× 1024 = 32768 bits). The specification also enables manufac-

turers to set an optional “security timeout” feature, which the tag could enable based

on failed attempts to kill the tag, or failed authentication, key update and other such

processes. Depending on the security needs of the application, the manufacturers can

set the timeout value, which is “measured relative to the last rising edge of the last

bit” [32] of the response by the reader that caused the tag to enter the timeout phase.

EPCglobal Gen2v2 specification requires a tag to implement random number gen-

erators (RNG) or pseudorandom number generators (PRNG) for inventory and pass-

word operations, which are required to generate 16 bit random sequences. However,

such generators would be in addition to any cryptographically secure RNG/PRNG

that may be required by the implementations of the optional cryptographic suite.

If the tag implements security, the following optional “security access commands”

may be used to secure the communication between the readers and tags — (a) Au-

thenticate, to ensure one-way or mutual authentication; (b) AuthComm, which allows

authenticated communication; (c) SecureComm, which employs solutions deployed in

21

the cryptographic suite to accomplish secure (encrypted) communication; (d) KeyUp-

date, which allows readers (and servers) to change the key stored on the tag; (e)

TagPrivilege, allowing the reader to access and modify privileges for access passwords

or keys.

Cryptographic suites, as discussed earlier, are optional. However, if present, they

could be one or more, which defines the security of the communication between a

reader and a tag. On authentication, a tag enters the ‘secured’ state and the commu-

nicated messages are encapsulated. To conform to the standards, the manufacturer

choosing to implement cryptographic suites is required to ensure that the authenticate

and key update processes proceed as specified by the specification or the independent

cryptographic suite chosen.

ISO/IEC 29167-1:2014 Security services for RFID air interfaces

The ISO/IEC 29167-1:2014 [33] standard suggests the means for the functionality for

tags to be untraceable (with a new special mode called, untraceability mode, to hide

part or all of its identity), able to certify authenticity (by using techniques to generate

certificates for authentication), able to encrypt data, and ensure secure access to

data and functions in its memory. One of the key elements of the specification is the

implementation of cryptographically secure RNG or PRNG as specified in ISO/IEC

18031 [72], since much of the key generation and other processes in the cryptographic

suites are dependent on (pseudo)random numbers. A cryptographic suite, as defined

in this specification, is a scheme or a mechanism to apply the cryptographic functions

in the algorithm to generate the (ciphertext) output. This specification suggests the

use of one (or more) of the following cryptographic suites, depending on the security

requirements of the application (Note that as on January 1, 2015, several of these

standard specifications are still under various stages of development, with only one

of the cryptographic suite specifications being published [73]):

• Advanced Encryption Standard, 128 bit mode of operation (AES-128) [74].

This specification is under development and will be as specified in ISO/IEC

29167 - Part 10;

• PRESENT-80 [75].

This specification is complete and published as ISO/IEC 29167 - Part 11 [76];

22

• ECC-DH (Diffie-Hellman Key Exchange using Elliptic Curve Cryptography,

also referred to as ECDH) [77].

This specification is under development and will be as specified in ISO/IEC

29167 - Part 12;

• Grain-128A (Grain-128 stream cipher with authentication) [78].

This specification is under development and will be as specified in ISO/IEC

29167 - Part 13;

• AES, used in OFB (output feedback) mode of operation (AES OFB).

This specification is under development and will be as specified in ISO/IEC

29167 - Part 14;

• XOR (Exclusive-OR).

This specification is under development and will be as specified in ISO/IEC

29167 - Part 15;

• Elliptic Curve Digital Signature Algorithm - ECDH (ECDSA-ECDH) [79].

This specification is under development and will be as specified in ISO/IEC

29167 - Part 16;

• cryptoGPS.

This specification is under development and will be as specified in ISO/IEC

29167 - Part 17;

• RAMON [80, 81, 82].

This specification is under development and will be as specified in ISO/IEC

29167 - Part 19;

Discussion

The primary application of RFID tags is object identification. The standards being

proposed by EPCglobal is to ensure a common data management mechanism so as

to make it easier for organizations worldwide to better manage their manufacturing

/retail processes. However, developments in information technologies continue to

facilitate use of RFID in other applications, including and perhaps most importantly,

the Internet of Things. This is primarily aided by the ability of an RFID tag to

23

help identify any object (to which it is tagged) in the world uniquely. Although its

benefits are profound, this has the potential for misuse by agencies who wish to ‘track’

a person using an object that is tagged. This calls for standards organizations such as

EPCglobal and ISO/IEC to propose guidelines to maintain the data exchange secure,

in order to ensure user privacy. That said, RFID tags are resource-constrained, with

limits to the storage, power and size, which restricts the type of security that can

be deployed. Accomplishing security through (sophisticated) cryptography “impacts

power consumption and processing time for the RFID components and may degrade

system performance” [33], which would inevitably mandate increase in resources,

thereby increasing the cost. The trade-off between cost, application functionality and

security therefore, guides the design of RFID tags, and is primarily one of the main

reasons why the security suites are still classified as ‘optional’ services [32, 33].

IEEE 802.15.6: Wireless Body Area Networks Security Specifications

Standard overview

The IEEE 802.15.6 standard specification provides various guidelines for designing

the communication between a node (WBAN sensor) and a hub (WBAN body cen-

tral node). We summarize the security specifications of the standard in this section.

Primarily, the communication between nodes and hubs might be one of the follow-

ing modes [66, 83]: (a) Level 0 – unsecured, with data transmission in “unsecured

frames”; (b) Level 1 – authentication but not encryption, with facility for verification

of message integrity and authenticity, but not confidentiality and privacy protection;

or (c) Level 2 – authentication and encryption, with messages being secure, authenti-

cated and encrypted. Nodes and hubs are required to store (or generate) a pre-shared

master key, which is activated during the security association prior to communication,

while they are required to generate “pairwise temporal keys” once per communication

session. If the chosen mode is either level 1 or level 2, each message is required to

support the specific type of data security.

In the communication modes suggested in the standard specification, the nodes

can be in an inactive or “sleep” state, to be ‘woken up’ by the hub for communication;

a function similar to passive/active RFID tags, which are ‘woken up’ by the signals

from the readers.

24

The security association between nodes and hubs (interchangeably and collectively

referred to in this thesis as ‘entities’) includes the entities agreeing on the security

association protocol, on the security level and the cipher function to be used. IEEE

802.15.6 suggests the use of either AES-128 or Camellia-128 encryption algorithms,

with a possibility for extending the choice by fourteen more algorithms with changes to

requirements and standard updates. When using either of the supported encryption

algorithms, the entities can use one of the following security association and key

agreement protocols:

• Master key pre-shared association — The entities use the pre-shared master key

to generate the pairwise temporal key on association;

• Unauthenticated association — This mode is based on Diffie-Hellman (DH) key

exchange that employs elliptic curve public key cryptography (ECC)-based key

generation. The node, in this case, does not authenticate the hub, but continues

with the security association, by computing the master key using a cipher-based

message authentication code (CMAC) function.

• Public key hidden authentication — Also based on DH key exchange employing

ECC. This is similar in its master key computation to the unauthenticated

association process, however, the authentication and key agreement process is

preceded by the node secretly sending its public key to the hub.

• Password authentication association — Also based on DH key exchange em-

ploying ECC. In this mode, the entities store a pre-shared password that is

used to authenticate the association and hence, the master key generation. In

a manner similar to the public key hidden authentication, the node transmits

its public key that is “scrambled” by the password to the hub, which is then

used to compute the DH key for communication.

• Display authenticated association — Also based on DH key exchange employing

ECC. This mode involves the node computing a number called “witness”, using

a nonce, the addresses of the node and the hub, and its public key components.

This is transferred to the hub and the security association proceeds as with the

25

unauthenticated association, by generating a master key using CMAC. Follow-

ing generation of the master key, the hub computes the witness and compares

its value to the one sent by the node prior to the association. If authentication

and association are successful, the entities display a 5-digit decimal number

(also computed using CMAC of the entity nonces and the temporary DH key)

on their user interfaces.

Following the association phase, the entities compute a pairwise temporal key

(PTK) for the remainder of the session, until one of the entities requests disassocia-

tion. The entities compute the PTK by extracting a 128 bit value from the CMAC

function using the master key to encrypt the entity addresses and their nonces, and

the PTK control field value (extracted from the first frame sent by the initiator during

PTK creation). The PTK creation process involves entities computing three keys

using the CMAC function — PTK, Key confirmation key (KCK) and a final key,

P . While PTK and KCK are generated using the master key, P is generated using

KCK and is used to compute a keyed MAC for authentication. Following PTK

generation, the hub may generate and distribute a “group temporal key” to be used

for multicast transmissions to the sensor nodes. The standard specifies using AES

CCM (Counter with Cipher-block-chaining message authentication code) mode [85]

for encryption of messages and for authentication, and facilitates the use of other

(non-AES) cipher functions, if required.

Discussion

The IEEE 802.15.6 standard specification specifies the norms for designing and secur-

ing communications among sensors in WBANs, should the application be recognized

to conform to said standard. We can wonder as to whether WBANs can still be

considered resource-constrained networks when the sensors are expected to support

sophisticated encryption algorithms such as AES and even public key cryptography

in the ECC-based Diffie-Hellman key exchange process. Stringent security measures

are necessary to protect data, especially when WBANs are used for remote health

monitoring, which justifies the standard specification. However, the implementation

of such sensors in real-time applications encounters several practical challenges, in

addition to the security challenges to be addressed by the protocols suggested in the

26

security specification of IEEE 802.15.6, including but not limited to [21]:

• Power management : The standard specifies sleep/inactive stages for power

management, and hence, resource optimization. However, in some healthcare

applications, it might be challenging to include longer inactive stages for sensors.

Examples include remote monitoring of high-risk individuals with ischaemic

heart disease [22] or with suspected pregnancy-induced hypertension [23]. When

monitoring such individuals, it is expected that their health be monitored in

real-time, considering that although there might not be a need for immediate

admission to healthcare facilities, regular monitoring and threshold-based alerts

help prevent medical emergencies.

• Sensor data validation: Validating data recorded by the sensors is critical as

errors could lead to false alarms. The responsibility of data validation must be

shared by all sensors, the hub and the server at the monitoring station.

• Interference and collisions : Although the standard specifies the use of collision

avoidance schemes, random access and contention mechanisms used by sensors

to transmit data to the hub in practical applications will encounter collisions,

especially in a sensor-rich environment.

• Human-centric challenges : The key challenge, perhaps, is “human-centric”, re-

lating to the adoption of WBAN applications by individuals. First and foremost

challenge is the cost. The more the security and functionality, the more will be

the cost, owing to the manufacturing and management costs. This is closely

followed by ease of use. Perhaps another component adding to the cost, related

to ease of use, is the ease of maintenance. Sensors are battery powered and it

might be inconvenient for a user if the battery needs to be frequently replaced.

WBANs thus, can still be classified as resource-constrained, considering the var-

ious factors to be taken into consideration in the design of applications, and the

potential trade-offs resulting therefrom.

27

2.3.5 Security in Resource-Constrained Wireless Networks: Summary

We have considered two resource-constrained wireless networks with varying security

and application needs, both of which have three ‘tiers’ of devices, which we classify as

— (a) resource-constrained entities (RFID tags and WBAN sensors), (b) intermedi-

aries (RFID readers and WBAN personal servers), and (c) powerful entities (backend

servers). While powerful entities are assumed to have all resources at their disposal,

with no expected constraints, resource-constrained entities are restricted in their com-

putational and storage abilities, as discussed earlier. For much of the communication,

the intermediaries merely perform the action of relaying information from the pow-

erful entities to the resource-constrained entities and vice-versa. This in many cases,

leads researchers to consider that the entity is secure or assume that it is securely

connected with the server [54]. However, with the communication channel being

wireless in nature, one cannot assume any of the constituent entities as being ideal or

secure. It has to be noted that the communication between these intermediaries and

the servers could employ traditional symmetric or asymmetric cryptography, and is

beyond the scope of our work.

The various restrictions and trade-offs in designing these systems leave them vul-

nerable to several attacks. These attacks can be broadly classified into physical layer

attacks, network & transport layer attacks and application layer attacks [2, 3, 5],

as per the various abstraction layers in a protocol stack as highlighted in the OSI

model [86]. We summarize these attacks in Table 2.2 and describe them briefly in the

paragraphs that follow.

• Physical layer attacks : These attacks involve interference to the physical de-

vices (tags, sensors), to disrupt their communication. Examples include signal

jamming or interference, RFID tag killing and sensor tampering.

• Data link layer attacks : These attacks involve unauthorized monitoring and

manipulation of the communication channel by an adversary. A common attack

applicable to RFID and WBANs is the collision attack, where an adversary

transmits invalid data packets to collide with valid packets.

• Network & Transport layer attacks : These attacks are typically the case of the

adversary exploiting the vulnerabilities in the communication between various

28

Table 2.2: Known Attack Classification [2, 3]

OSI Layer Possible Attacks [2, 3] Applicable System(s)

Physical
Jamming RFID, WBAN

Tampering RFID, WBAN

Data link Collision RFID, WBAN

Network & Transport

Eavesdropping RFID, WBAN

Selective forwarding RFID, WBAN

Sybil WBAN

Sinkhole WBAN

Wormhole WBAN

Replay/Spoofing/altering RFID, WBAN

Reader impersonation RFID

De-synchronization RFID, WBAN

Hello Flooding/Flooding RFID, WBAN

Application
Unauthorized reads RFID

Malicious code injection RFID, WBAN

entities and the lack of strong security mechanisms. These include eavesdrop-

ping (adversary monitors all data transfer between verified entities), selective

forwarding (adversary monitors and selectively forwards data packets), sybil

attack (compromised node fabricates new node identities or impersonates valid

existing node identities), sinkhole attack (compromised node circulates false

routing information, forcing other nodes to select routes through the compro-

mised nodes; this could lead to selective forwarding), wormhole attack (com-

promised nodes fake a shorter route to ‘hijack’ a packet, giving verified nodes

an illusion of a shorter communication route), replay/spoofing/data alteration

attack (adversary captures packets, spoofs verified entities and replays captured

packets, with or without modification, to an authorized entity after some de-

lay), reader impersonation (or, rogue readers), de-synchronization (adversary

attempts to disrupt existing communication sessions to de-synchronize entities’

states), and hello flooding/flooding (adversary causes resource exhaustion using

hello packet or other packet flooding).

29

• Application layer attacks : These include attacks such as unauthorized reading

of tags and sensor data, and data modification by adversaries on tags and

sensors without (write) protection. These may also involve attacks such as buffer

overflows, malicious code injection to the various components of the system.

• Other attacks : Typically, most of the common attacks on the resource-constrained

systems such as RFID and WBANs are not on one layer alone. They usually

encompass all the layers and affect the system. Such attacks include covert

channels, denial of service, analysis of the patterns in the packet traffic, crypto

attacks, side channel attacks, replay attacks, attacks on secrecy and authenti-

cation, etc.

Several research proposals have explored a variety of mechanisms to address the

security challenges associated with deploying resource-constrained wireless network

applications; some are even formalized by the specified standards. Rapid ongoing

improvements in technology development could ultimately result in reducing the con-

straints on such devices, and the focus therefore, has to be on solving the problems

keeping in mind the resource-constraints that exist today, but also ensuring that the

proposals can be scaled should there be no such constraints in the days to come.

In the next section, we elaborate on some of the contemporary proposals for key

management and authentication in RFID systems and WBAN applications.

2.4 Related Work

The literature available on security in RFID and WBANs helps us categorize the re-

search on the basis of the specific techniques used to accomplish key management and

authentication as follows — (a) Key management based on pseudorandom number

generation (similar to “rolling or hopping code [89, 90]”), (b) Pseudonym-based tech-

niques, (c) Hash (or keyed hash)-based techniques, (d) Physical characteristics-based

techniques, (e) Biometric techniques, (f) Certificateless techniques, (g) Symmetric

encryption-based techniques, (i) Hybrid techniques, and (j) Frameworks.

30

2.4.1 Pseudorandom number generation-based techniques

Pseudorandom number generators (PRNGs) are a popular choice for cryptographic

algorithms for key generation, since they generate unique sequences given different

seeds, and can often operate for long periods without repeating sequences. Several

PRNGs and their variants have been known to be secure for cryptographic applica-

tions [58, 60], and researchers are working towards adapting them for several RFID

applications [59]. Due to the constraints of RFID tags, several lightweight PRNG

algorithms are also in the works. Two such algorithms are proposed by Martin et

al. [93]. Their implementations use non-linear filter functions to ensure dispersion

of bits in the resultant random sequence. An essential aspect in design of PRNGs is

the feedback polynomial, which decides the tap positions for feedback, in the linear

feedback shift register (LFSR) implementations of PRNGs. An interesting approach

has been adopted by Melià-Segúı et al. [94], where they use multiple polynomials

and a “polynomial selector” to achieve unpredictability in the generated pseudoran-

dom numbers. The polynomial selector is implemented in the manner of a “wheel”,

with the appropriate polynomial being selected by a true random number (TRN).

The TRN is the output of a function based on physical characteristics such as ther-

mal noise, etc. Their approach combines the true randomness provided by physical

characteristics of a circuit with deterministic LFSR for security. It must be noted,

however, that PRNG-based techniques help accomplish only key generation and man-

agement, requiring them to be combined with other techniques such as hash-based or

trusted-third party-based approaches for authentication.

2.4.2 Pseudonym-based techniques

Resource-constrained security sometimes relies on the use of pseudonyms, or autho-

rized changing of entity IDs, using either a synchronized PRNG or other techniques

for generating pseudonyms. In an approach employing pseudonyms, Molnar et al.

[95] introduce the concept of time-limited delegation for RFID tags, where a tag gen-

erates different pseudonyms, that enables a trusted server to authenticate the tag.

The server delegates the responsibility of tag authentication to an authorized reader

by giving it a set of pseudonyms that it can use to verify the tag for a specified amount

of time. Their work employs the “tree of secrets” concept to choose (and verify) the

31

appropriate pseudonym. The nodes of a binary secret tree has secret keys in each

node, and each tag maintains a counter pointing to a leaf of the tree, which in turn

represents a pseudonym. Therefore, a particular pseudonym can be used to repre-

sent one tag, depending on its present state and the pseudonym. The work by Juels

[53] uses a concept called “pseudonym throttling”, which is essentially a challenge-

response scheme. In this, a tag stores a short list of pseudonyms, αi, while the verifier

(trusted server) authenticates itself by sending a key, βi, in response to which, the

tag responds with an authentication key, γi. βi and γi are unique to each αi. Being

a challenge-response protocol, it relies on the ability of the verifier to update these

values following successful mutual authentication. One-time pads in their scheme

facilitate pseudonym updates, and these are directed by the verifier on successful

authentication. Although pseudonym-based techniques facilitate mutual authentica-

tion, the pseudonyms are typically generated by the trusted server, and care needs to

be ensured in the transfer of these pseudonyms to the resource-constrained entities

over a wireless channel.

2.4.3 Hash (or Keyed Hash)-based techniques

Hashes, especially keyed hashes, in particular are popular ways of accomplishing au-

thentication in symmetric algorithms. Dong et al.’s work on RFID authentication [9]

employs the new SHA-3 standard (Keccak algorithm) [96] to compute the message

digests using a concatenation of pseudorandom numbers, keys and the tag ID. Pseu-

dorandom numbers are updated with each communication and are sent in the open,

along with the hash containing an internally updated key. The key is updated on suc-

cessful mutual authentication of the entities. The authors discuss various cases of op-

eration, accounting for loss of tag acknowledgement messages and de-synchronization

attempts. Hashing algorithms are also employed by Hakeem et al. [63] for authenti-

cation in their proposal, where they use timestamps for key generation. Their work

relies on two separate timestamps, one each generated at the server/reader and the

tag. Their work also employs a linear feedback shift register (LFSR) to update keys.

The first part of the protocol depends on each entity authenticating the other based

on the difference in timestamps between the previous acknowledged timestamp and

the current timestamp, and the XOR value of this timestamp difference with the

32

secret tag key, kt. Tag authentication by the server involves the tag sending a hash

of its ID and the upper half of the secret key, K. Key updates at the server and the

tag involves updating two secret keys and the timestamp, where the keys are updated

using the previous values as seeds to the LFSR, while the current timestamp becomes

the new stored timestamp value at the tag.

2.4.4 Physical Characteristics-based techniques

Physical characteristics of RFID tags, such as electrical characteristics, are factors

that can provide true randomness and uniqueness. This, along with deterministic al-

gorithms, can help in achieving a high degree of security. The proposal by Choi et al.

[97] capitalizes on the fact that a PUF (Physically Unclonable Function) may result in

different outputs for the same input, depending on the nature of physical characteris-

tics under consideration. Their approach pre-computes encrypted challenge-response

pairs using the PUF-based encryption function, using random numbers generated by

both the server and tag as inputs. They also present a protocol for authentication.

Jung and Jung’s work [52] involves a scheme that uses keyed hash algorithms

and physically unclonable functions (PUF) for mutual authentication between the

server and the tag. The initial set up involves a challenge-response message exchange

between the server and the tag, where the tag responds with a random number

generated using the PUF output as the seed. Normal communication phases involve

exchange of messages containing hash values computed using combined parameters

such as the tag and server IDs, and tag and server timestamps. From the description,

although it seems as if the tag timestamp, Tt, is generated at the tag, it must be noted

that passive RFID tags are not always ‘alive’ or active, which makes it unreasonable

to expect an always online clocking source on the tag. Also employing PUFs for

authentication is Akgün et al.’s work [54]. Their scheme uses a temporary PUF

value, x, that is computed during each communication phase for authentication. They

use random numbers generated by the reader (assumed to be securely connected to

the database) and the tag, in addition to the PUF, x, and the message, M1, for

authentication. M1 is computed through pseudorandom number generation using the

keys, k′j,k determined by the tag evaluating PUF with input S (the random seed).

The security of this scheme lies in the fact that PUFs are employed to accomplish

33

authentication. However, one thing to be noted is that the fact that a reader and/or

server, which instructs the tag to perform specific tasks, such as internal state updates

or instructing it to ‘sleep’ (rendering it ineffective), is never authenticated by the tag.

An alternative approach to using physical characteristics is presented by Huey et

al. [51]. Their work uses the received power of the tag during the initial communi-

cation as the ‘electronic fingerprint’ for the tag. This electronic fingerprint is used in

combination with the tag’s electronic product code to compute a cyclic redundancy

check (CRC) output, which is used as the primary authentication component. This is

XOR-ed with a changing key, ki, to generate the parameter, Mi, used by both tag and

the server to authenticate the other entity. However, the CRC component remains

constant throughout the communication, with only the key being updated. With the

messages, Mi being XORs between a constant parameter and a changing key, their

protocol remains vulnerable to de-synchronization attacks, and in determining the

CRC component through analysis of a contiguous set of communicated messages.

Shi et al.’s work [98] exploits physical characteristics for security and (one-way) au-

thentication in WBANs. Rather than having the sensors depending on cryptography

for authentication, their work, BANA, considers using physical layer characteristics

unique to the sensors; specifically, the variation in received signal strength (RSS) in

the communication channel. The WBAN controller unit authenticates the on-body

sensor nodes based on expected variations in received signal strengths of their individ-

ual responses and based on a threshold on the response time. The authors claim that

attackers would experience “larger fluctuations due to multipath effect and Doppler

spread than on-body sensors”, making it a feasible authentication scheme. Mutual

authentication among sensors or between sensors and the controller unit does seem

to impact the limited resources, especially sensor battery life, in the long run, since

BANA expects all sensors to compute the average RSS variations and authenticate

other entities. This is mainly because authentication is an independent functionality

in these sensors, which are required to include separate deployments of key manage-

ment and encryption algorithms. Although the design of BANA is innovative in using

physical channel characteristics for authentication, the need for separate implemen-

tation for key management implementation imposes an additional overhead on the

resource-constrained sensors.

34

2.4.5 Biometric techniques

WBANs implicitly support biometric techniques for key generation and authentica-

tion, since they record and store physical data about an individual. The unique

variation in most health parameters such as electrocardiogram (ECG) signals can be

used to uniquely identify an individual, especially when the system is interfaced with

a mechanism to extract key features of the recorded signals.

The (improved) fuzzy vault technique [99] uses a fuzzy extractor to extract “uni-

form randomness” from its input, with the rationale that small changes to the input

will not cause the extracted output to be different, as long as the changed input re-

mains “reasonably close to the original” [99] input. Zhang et al. [100] extend this

work for application in WBANs, focusing on the “intercommunication and authen-

tication between sensors” [100]. Their key generation is based on extracting feature

(F) from the person’s ECG signal and generating a monic polynomial with root, F .

Their work (ECG-IJS), like the improved fuzzy vault technique [99] is based on ac-

complishing security by retaining a subset of the coefficients of the monic polynomial

a secret. ECG-IJS works on the assumption that the communicating sensors on the

human body that employ this technique have the ability to extract ECG signals or

are connected to ECG sensors. Authentication in ECG-IJS is accomplished through

verification of the hash of the data, encryption key and the subset of the coefficients.

Although fuzzy extraction promises increased security in normal WSN applications,

when it comes to applying ECG-IJS in WBANs, one needs to consider the compu-

tational overheads added to the resource-constrained data collection sensors by the

polynomial arithmetic and the additional overhead of attaching ECG sensors to each

sensor on the body that collects data. This is especially true in cases that require

continuous remote monitoring of a person’s health, as discussed earlier.

ECG signals are also used in the work by Venkatasubramanian et al. [101], pri-

marily for generating encryption keys. In their work, sample values of ECG data

are taken from a particular interval of the recorded ECG signal and coefficients are

extracted using Fast Fourier Transform. Following this, a feature vector is gener-

ated using these coefficients and is used to generate the encryption key. The focus

of their work is securing the inter-sensor communication within the BAN. Sensors

in the network agree upon a common key generated using the ECG signal. While

35

Venkatasubramanian et al.’s work focuses on inter-sensor communication, Mana et

al.’s work [102, 103] uses ECG signals to generate keys for encrypting data communi-

cated among the sensors placed on the body, and between the sensors and the server

at the monitoring station, as a way to accomplish end-to-end security.

While the works discussed in this subsection so far employ one biometric data

recorded by the sensors, the work by Sampangi et al. [10] considers a WBAN with

multiple sensors to record various parameters, such as heart rate, blood glucose level,

etc. Their work involves the body central node sending data recorded by the various

sensors in a single encrypted frame (with several fields to store data) to the moni-

toring station. The keys used for encryption are generated at both the sensors and

the server by a random choice of one of the data fields from one of five previously

acknowledged data frames, termed “reference frames”. Reference frames are updated

by replacing the oldest reference frame with the latest acknowledged data frame. This

emphasizes data freshness, and uses the random choices of the frame fields and subtle

variations in data in these fields (if any) to establish adaptive and changing keys for

each communication, with the unique biometric data facilitating authentication.

2.4.6 Certificateless techniques

Message digests, digital signatures and third party certificates are common forms of

accomplishing authentication among communicating entities. A different approach

to accomplish this is a ‘certificateless’ manner, proposed by Liu et al. [55]. This

is accomplished by a “public key generator” (PKG), an entity that computes and

distributes public system parameters, including its public key. A signing entity gen-

erates its partial public and private keys, while using its identifier, id, as the other

partial public key and requesting the corresponding partial secret key from the PKG.

The certificateless signature generated by the signer includes the hash of the mes-

sage, the output of an exponential function applied on the public key of the PKG

and the signer, its partial secret key, and a random integer. Their authentication pro-

tocols assume the presence of a certificate authority (CA) and an environment that

supports public key infrastructure. The protocols are designed to work at the ap-

plication provider (typically the monitoring station) and the WBAN client (personal

server). Both entities employ the certificateless signature mechanism to authenticate

36

each other. One aspect to note is that with WBAN data updates being periodic, it

is unclear whether this scheme is designed to authenticate entities on each update.

This is because mutual authentication using public key infrastructure, regardless of

how secure it is, will place an increased load on the already resource-constrained en-

tity, whether it is a personal server or a sensor. While their approach appears to be

difficult to be deployed on the sensors for authentication, their application to secure

the communication between the personal server and the application provider would

be reasonable, considering the current (and expected future) improvements to mobile

devices.

2.4.7 Symmetric Encryption-based techniques

While symmetric encryption techniques such as AES are typically used to achieve

confidentiality, Pham et al. [104] use it to accomplish a challenge-response mutual

authentication scheme for RFID systems. Authentication in their approach is accom-

plished using pre-shared secret keys, and verification of ciphertexts using the current

seed and entity ID. The pre-shared secret key used to encrypt all messages between

the server, reader and the tag. The internal seed, s, in the tag and the server is

updated on successful authentication, and used to ensure synchronization and future

authentication. Perhaps the biggest assumption of their work is in considering that

the ability of a passive RFID tag facilitates performing complex computations, includ-

ing several rounds of encryption, as required in AES, while keeping the production

costs low.

The work by Zhu and Khan [8] is a symmetric key management protocol, that

supports authentication. It features a common key that is shared among the server

and all RFID tags, and another key that is specific to each tag that is updated after

successful authentication. Their scheme employs a block-wise key update mechanism,

in which authentication is followed by updates to the 32 bit blocks (subkeys) of a 128

bit key, one at a time. The authentication involves the tag sending its encrypted

ID combined (XOR) with the updated subkeys (message m1), and on successful

authentication of the tag, the server responding with a combination of the ID and

the updated subkey, encrypted by the new key (message m2). One thing to note is

that their algorithm is prone to de-synchronization attacks, since the tag update is

37

contingent on server authentication based on m2. If an adversary were to block m2

and transmit an unrelated m2′, the tag would not be able to authenticate the server,

causing it to roll back its key update, thereby disrupting future communication.

2.4.8 Hybrid techniques

A key generation and authentication scheme using rotating ‘carousel’ is proposed by

Kuroda et al. [105]. In their work on security in WBANs, communicating entities

share the carousel structure, and in them store a value computed using the sensed data

and random data. The final key is generated using a hash function on the value chosen

at random from the carousel. After an initial verification phase, where the sensor

sends the seed to the personal server (referred to as coordinator) for verification, the

sensor updates its key using a (synchronized) random carousel rotation, and transmits

the data encrypted by this key to the coordinator. The main drawback of this scheme

is the one-way authentication of the sensor by the coordinator. While it might be

reasonable to expect sensor nodes to be limited in their abilities, it would be essential

to protect the actions they might take due to instructions by an unauthorized entity,

especially when these sensors/actuators act based on and directly affect the health of

the user.

Kovacevic et al. [56] choose a different approach to security in WBANs. Their

scheme, referred to as LIRA (Light channel for sensor Initialization and Radio chan-

nel for Authentication), uses the visible light channel from a light source to establish

secret keys and uses the wireless radio channel for authentication of the communi-

cating entities. They use a multi-touch screen as the light source, employing on-off

keying modulation to transmit the secret keys to the body sensors, which detect and

recognize the key pattern using light detectors. The (mutual) authentication phase

involves the body controller unit and the sensors exchanging pseudorandom numbers,

node IDs and a keyed-hash (using the agreed secret key) of these parameters, and

verifying each other. While LIRA is an innovative approach employing light channel

to exchange secret key materials, this scheme adds an additional burden on the user

to remove the sensors from their deployed locations on the body, place it on the light

source, generate and exchange keys, and replace them on the body, which could be a

significant inconvenience for users. Furthermore, the protocol requires that the secret

38

keys be exchanged in the open, via a light source (e.g. a multi-touch screen tablet

computer), which is a potential major vulnerability.

While public key infrastructure (PKI) might seem to be an improbable choice for

deployment on the current generation of WBAN sensors without additional strain

on available resources, a reasonable approach explored by Liu et al. [55], would be

to use PKI between the personal server and the backend monitoring station. Such

a combination has also been proposed by Drira et al. [106], with identity-based en-

cryption (IBE) for communication between the mobile personal server and the mon-

itoring station (extra-body communication), and symmetric cryptography employed

for communication between the sensors and mobile personal server (intra-body com-

munication). In their work, intra-body communication is enforced as a one-hop com-

munication between individual sensors and the personal server. Authentication and

key establishment takes place in two phases — (a) between mobile personal server

and backend server, using IBE for authentication and Elliptic Curve Diffie-Hellman

(ECDH) technique for key agreement, and (b) authentication of all three entities,

and establishment of keys between sensors-mobile node, sensors-backend server and a

three party key using ECDH. A similar approach has been adopted by Liu and Kwak

[7], employing ECDH for key agreement and AES (Advanced Encryption Standard)-

based techniques to accomplish authentication among the entities. These approaches

are balanced between completely symmetric cryptography and completely asymmet-

ric cryptography for security in WBANs. However, given that these require all entities

including sensors to perform computations such as exponentiation and Elliptic Curve

Cryptography point multiplication, we can expect that they will impose additional

overhead to the already resource-constrained devices.

2.4.9 Frameworks

Our discussion up to this point has focused on individual algorithms and combinations

thereof to accomplish key management and authentication in RFID systems and

WBAN applications. In this section, we explore algorithm frameworks, or a collection

of algorithms used to accomplish a single or several security goals.

A multi-algorithm encryption framework for active RFID tags has been proposed

by Zhou et al. [110], an improvement of which is a generic optimized proposal for

39

reconfigurable security co-processor work by Li et al. [111]. In their work, the con-

trol and data logic module chooses one of four encryption algorithms, namely AES,

DES/3DES (Data Encryption Standard), RSA (Rivest-Shamir-Adleman) public key

cryptosystem, and ECC (Elliptic Curve Cryptography)-based cryptosystem. Their

work is deployed in an FPGA (Field Programable Gate Array)-based active RFID

tag, where the design allows for reconfigurability and customization. The control/data

logic module chooses the applicable encryption algorithm, in addition to the appro-

priate memory module, initializes the FPGA-based execution unit and performs the

encryption. Their use of FPGA-based design is based on the reconfigurability ra-

tionale of the work by Jones et al. [112]. Jones et al. argue that a silicon-based

implementation is not suggested for the design to be (re-)configurable. However,

when we consider low resource devices such as passive RFID tags, one does not have

any other option than implementing the custom security algorithms on silicon chips.

Reconfigurability in such cases, can be accomplished by using hardware switches that

can route data to the appropriate ‘path’ of the chosen algorithm for processing. This

is the rationale we adopt in designing our framework for security.

The specified ISO/IEC 29167-1:2014 standard for RFID security [33] and IEEE

802.15.6 for WBANs [19] provide means for manufacturers to deploy multiple en-

cryption algorithms on the devices as part of the respective security suites. From

the available algorithms, the entities can select one for use for a particular session,

during security association. When agreeing on the algorithm to be used, however,

the choice is typically communicated in plaintext, available for an eavesdropper to

learn about the system states. This reduces the overall uncertainty associated with

the system. The approach we adopt, however, involves a random choice of one of

the available algorithms, based on a previously agreed and synchronized timestamp,

which increases the overall unpredictability and thus, the security of the system.

2.5 Summary

In this chapter, our focus was on recalling some of the general principles of informa-

tion security and exploring how these apply to and are affected by specific require-

ments of resource-constrained wireless networks. Restrictions on utilization of the

available resources on resource-constrained entities make these systems vulnerable to

40

several attacks as explored in Section 2.3.5. Their vulnerabilities stem from the fact

that design of such applications are based on trade-offs between application func-

tionality, battery optimizations to ensure longevity (limiting RFID tags and WBAN

sensors from staying ‘alive’ or active for longer times during communication), and se-

curity. There is no doubt that sophisticated cryptographic solutions, especially those

included in the standard specifications discussed in Section 2.3.4, are extremely effec-

tive, as has been observed in other domains, however, the demands (and restrictions)

of these systems most of which are dictated by the overall cost and size of the sys-

tem, make such proposals infeasible. Our rationale behind choosing RFID (passive

tag-based) systems and WBAN applications used for remote health monitoring of

individuals for our work is that if security proposals are designed to as to increase

security while consuming less resources in these systems, they can be scaled to other

resource-constrained applications by slight modifications, depending on the needs of

the particular system.

The research contributions discussed in this chapter emphasize the need for pre-

serving privacy of individuals using these applications and some of the existing so-

lutions. Though much of these existing proposals are designed for specific appli-

cations and the corresponding needs, in our thesis, we propose a generic modular,

reconfigurable, multi-algorithm framework that addresses the needs of all resource-

constrained systems. The novelty of our proposal is in its reconfigurability, both

in terms of providing means to customize the security framework on a resource-

constrained system and in its unpredictable choices of the constituent algorithms. To

the best of our knowledge, ours is the first multi-algorithm, dynamically reconfigurable

framework suggested for key management and authentication in resource-constrained

wireless networks, such as RFID and WBANs, although a framework for encryption

has been proposed by Zhou et al. in RFID systems [110]. Even though encryption

algorithms are implicitly associated with key management and authentication algo-

rithms, our framework is focused on key generation rather than exchange, does not

depend on the servers to generate these parameters, and is independent of the encryp-

tion algorithms used. We discuss the motivation behind our work and the research

objectives in the next chapter. Following this, we present our framework in the next

chapter, followed by a description of each of its constituent algorithms.

Chapter 3

Research Focus

3.1 Motivation

As discussed in Chapter 2, resource-constrained wireless networks typically have at

least one entity without constraints, a.k.a. the powerful entity, which performs much

of the sophisticated computations and behaves as a master node. In RFID systems,

the backend server is the powerful entity, while its counterpart in WBANs is the

monitoring station or the base station. In such architectures, it is common for the

master node to send much of the information such as encryption keys and authenti-

cation parameters (we refer to this process as security association) to the resource-

constrained entities, such as the RFID tags or the WBAN sensors. In both cases,

there is an intermediary entity, a.k.a. the middle man, which relays information from

the resource-constrained entities to the powerful entity, and vice-versa. The RFID

reader dons this role in RFID systems, while the cellular phone (or laptop computer)

personal server performs the same function in WBANs.

To summarize, resource-constrained wireless networks have security associations

over the air, an intermediary to relay information back and forth on the system, and

computationally limited entities such as tags or sensors.

This being the case, interception of such security associations by unauthorized

agents could leave the system vulnerable to attacks including, but not limited to

— data modification, entity tracking (that also constitutes an intrusion of privacy),

or disruption in service, which could ultimately lead to information capture, session

hijacking, selective forwarding, etc. These attacks hamper the normal operation of

such systems and would lead to financial, informational losses, and potentially, health

risks in case of WBANs.

A comprehensive security technique for any system would include all constituent

entities having the ability to authenticate their peers, and have sufficient computa-

tional abilities to be able to generate encryption parameters independently, rather

41

42

than having to rely on the ‘powerful entities’ to perform computations for them. In

other words, a secure system is comprised of computationally independent entities,

responsible for their own security.

3.2 Research Objectives

In our thesis, we propose a new security framework for resource-constrained wireless

networks, with a focus on the following objectives:

• Reconfigurability : The proposed framework will have the logic to dynamically

and automatically choose one of the available algorithms for key generation and

mutual authentication;

• Modularity : The proposed framework will be composed of modular security

mechanisms that work independently as standalone systems, as well as collec-

tively, bound by the proposed framework. This modularity will also facilitate

reconfigurability and reduced resource utility due to re-use;

• Independent (and dynamic) key generation: The constituent security modules

will have independent key generation and management logic, which prevents

the need for key exchange messages, and facilitates dynamic key generation.

Key generation will be dynamic in that the keys will be generated based on the

current conditions (determined by parameters such as timestamp);

• Mutual authentication: The key generation logic in the constituent security

modules will facilitate generation of authentication parameters that help entities

validate the authenticity of each other;

• Deterministic, with unpredictability : The proposed framework (and constituent

modules) will work in a way to keep the system deterministic (to facilitate

mutual authentication), and ensure high unpredictability owing to changing

states (to ensure higher security).

43

3.3 Hypotheses

The main objective in our thesis is to create an environment that facilitates higher

security independence to resource-constrained entities, while removing the need for

exchange of key generation and authentication parameters. This is in addition to

having a modular-reconfigurable framework as a foundation, with high unpredictabil-

ity to ensure security and being computationally simple to ensure applicability to

resource-constrained entities. The state-of-the-art emphasizes separate communica-

tion phases for key agreement and/or selection of one of the algorithms from a suite

of algorithms, necessitates entities to perform complex computations, or requires the

resource-constrained entities to depend on the backend server for generation of en-

cryption keys/authentication parameters. This adds a communication overhead in

an already constrained application environment. Our framework (discussed in the

next chapter) includes a mechanism to automatically (and depending on the context)

choose one of the available algorithms. The algorithms that are proposed as a part

of our framework (discussed in Chapter 5) are designed in a way to ensure contin-

uous key updates, synchronized with the server. The design of the framework and

the algorithms is simple, in that the operations performed by entities would include

bitwise logical operations and simple arithmetic operations.

This leads us to hypothesize that:

H1: Algorithm choice: Choice of the algorithm in the proposed framework used will

be (pseudo)random and context-dependent, with each constituent algorithm

being equi-probable, i.e. having equal probability of being chosen in a large

number of trials.

H2: Dynamic key generation: Encryption keys generated by the proposed frame-

work and the constituent algorithms will be updated with every communicated

message.

H3: Key unpredictability : Encryption keys generated by the constituent algorithms

(and hence, the framework when it employs them) will be unpredictable to an

unauthorized entity.

44

H4: Attack detection: All algorithms in the proposed framework will be able to de-

tect attacks, including replay attacks, data modification, and multiple requests

that will constitute Denial-of-Service (DoS) by overwhelming the entity.

H5: Resource utilization: The proposed algorithms (and hence, the framework when

it employs them) will be efficient in their utilization of the available memory

and logical resources on a resource-constrained device.

3.4 Summary

In this chapter, we discussed the motivation for our work, as well as the overall

objectives of our research, followed by listing the hypotheses that we are testing

in our research. In the following chapters, we discuss our proposed framework in

detail and present a description of each of its constituent modules, which form the

foundation towards accomplishing the objectives stated in this chapter. We will then

revisit our hypotheses in Chapter 6, where we also describe techniques to evaluate

them and discuss expected results.

Chapter 4

Proposed Framework

4.1 Overview

The main concept in our work is a metamorphic framework for choosing appropriate

algorithms for security in resource-constrained wireless networks. Inspired by the

functioning of a chameleon, which changes its colour based on the colour of its sur-

roundings, our framework is aimed at choosing an algorithm at random from the set of

available algorithms. Although our framework might not be direct in its adaptation of

the mechanism by which a chameleon changes its colour, it relies on a (pseudo)random

choice of an algorithm dependent on the context of communication, i.e. based on a

combination of the entity ID, the time of the communication (timestamp) and an

incrementing number that is specific to the entity. We introduce our framework in

this chapter.

4.2 Proposed Framework

Let us consider a conventional scenario with a system having one pre-defined algo-

rithm for each aspect of security. Most systems use such an architecture and this

works when all parameters other than encryption keys are pre-defined. In such cases,

the uncertainty of the system operation remains limited. However, algorithms such

as IPSec [86] (and the ISO/IEC 29167-1:2014 and IEEE 802.15.6 standard specifica-

tions [33, 66]) are considerably better in the security that they offer than the former,

with the entities choosing one of the pre-agreed algorithms just as the communication

session begins. We derive motivation for our proposed framework from this aspect

of being able to change algorithms, and dynamically so, while removing the need

for explicit agreements between entities, which would normally require an algorithm

agreement message exchange prior to the session.

45

46

Figure 4.1: Overview of the Multi-Algorithm Framework

Figure 4.1 illustrates the overview of our proposed framework. Imagine a situ-

ation in which the system has nAlg encryption schemes, each being a composite of

algorithms to accomplish key management, encryption and authentication. Central

to our framework is a mechanism to choose one of the available algorithms automat-

ically and in a synchronous manner. We refer to this as the algorithm choice logic.

This logic uses a unique combination of the ID (identifier) of the resource-constrained

entity, the initial deploy-time timestamp (t0) and an incrementing integer number,

rac, in the range 0...(nAlg − 1), to determine which of the nAlg schemes will be chosen

to generate keys for data encryption and generate authentication parameters for a

particular message transfer. The integer rac has a modulus of nAlg, i.e. it ‘wraps

around’ on reaching nAlg (Equation (4.1)).

rac = (rac + 1) mod nAlg (4.1)

The choice aspect of the algorithm choice logic is accomplished by a pseudorandom

number generator, g(), that uses a combination of the ID, t0 and rac as the seed. This

seed, seedac, is generated as summarized by Equation (4.2).

seedac = ID ⊕ t0 ⊕ rac (4.2)

47

Here, ID is the identification number associated with the resource-constrained entity

(e.g. RFID tag or WBAN sensor); t0 is the deploy-time timestamp; and, rac is the

incrementing integer number, whose computation is explained by Equation (4.1). ⊕
represents the Exclusive-OR (XOR) operation.

The chosen algorithm, Ca, is determined by generating a pseudorandom number

using seedac as the seed for g(). The number generated has a modulus of nAlg.

Ca = g(seedac) mod nAlg (4.3)

The deploy-time timestamp, t0, is the timestamp that is stored on the resource-

constrained entity just prior to deploying it in its application environment. This is

among the first pre-shared attributes, along with the ID and the initial encryption

parameters associated with each algorithm. During the course of operation in two of

the proposed constituent algorithms, i.e. Butterfly1 and HiveSec1, the initial times-

tamp, t0, is updated at random. This will ensure that the system state remains

unpredictable to an observer and will be discussed further in the corresponding chap-

ter. We employ the same timestamp in the algorithm chooser logic to re-use the

stored and synchronized data, and to capitalize on the added uncertainty it provides.

This specific combination of numbers, i.e. the timestamp, t0, the incrementing num-

ber, rac, and the ID, changes continuously owing to increments in rac and at random

with changes to t0. This ensures that the nAlg algorithms have a fair chance in being

chosen for a specific encryption cycle.

To better explain this scenario, let us consider that there are 3 algorithms (nAlg =

3), the ID is 36 (hexadecimal), and t0 = 17 (hexadecimal). Table 4.1 summarizes

possibilities of how the seeds change, thus, changing the pseudorandom number that

is generated, and hence the algorithm chosen.

The operation of the seed generation and the corresponding pseudorandom num-

ber generation are illustrated by Figure 4.2. We can imagine the function of the

algorithm choice logic in Figure 4.1 to be realized using an n− to− 1 Demultiplexer,

with Ca being used as the select input to choose one of the nAlg algorithms that will

be used to generate keys for message encryption and generate parameters for authen-

tication. Note that a demultiplexer is a logic circuit entity that is used to drive the

input to one of the nAlg available output ports [113].

48

Figure 4.2: Illustration of Algorithm Choice Process

Our framework can be tweaked to include more (or reduced) choice in algorithms,

depending on the application needs and the extent of constraints on the available

resources. Thus, our framework has an implicit support to scalability, with minimal

changes necessary to accommodate more algorithms in the framework. The changes

would be in updating the algorithm chooser logic, specifically by updating nAlg and

a possible change to the circuit to extract Ca using modulo operation. Algorithm 1

summarizes the working of the algorithm choice logic in our framework (for a case

when number of algorithms, nAlg = 3).

4.3 Summary

In this chapter, we proposed a new framework to employ multiple algorithms to ac-

complish key generation and authentication on a resource-constrained device, and a

Table 4.1: Example Illustrating Generation of Algorithm Choice (Ca)

ID (bits) rac (bits) ts0 (bits) seedac Ca

36 (00110110) 0 (00000000) 17 (00010111) 21 g(21) mod 3

36 (00110110) 1 (00000001) 17 (00010111) 20 g(20) mod 3

36 (00110110) 2 (00000010) 17 (00010111) 23 g(23) mod 3

36 (00110110) 0 (00000000) 17 (00010111) 21 g(21) mod 3

36 (00110110) 1 (00000001) 29 (00101001) 1E g(1E) mod 3

36 (00110110) 2 (00000010) 49 (01001001) 7E g(7E) mod 3

49

Algorithm 1 Algorithm Choice

1: procedure ChooseAlgorithm

2: rac← rac

3: t0← t0

4: nAlg← 3

5: //Generate seed:

6: rac← (rac + 1) mod nAlg

7: seedAC← rac ⊕ t0 ⊕ ID

8: CA← g(seedAC) mod nAlg

9: //Choose algorithm:

10: if CA = 0 then

11: //Algorithm chosen = algorithm 1

12: else if CA = 1 then

13: //Algorithm chosen = algorithm 2

14: else if CA = 2 then

15: //Algorithm chosen = algorithm 3

mechanism to choose one out of the nAlg algorithms that might be deployed. This is

an attempt to include uncertainty at an algorithm choice level, which when combined

with varying internal states of each algorithm, would make the system more secure

owing to the increased unpredictability. Our framework is reconfigurable, in that it

has the ability to dynamically choose one of the available algorithms to secure each

communicated message, or it has the ability to change its structure for each message.

Furthermore, this metamorphic behavior is deterministic for a synchronized and au-

thenticated entity, however remains unpredictable for an unauthorized observer.

As discussed in Chapter 2, the main focus of our framework is key management

and mutual authentication, with the generated keys and authentication parameters

being compatible to work with any symmetric encryption algorithm. To accomplish

this, we propose three algorithms for key management and authentication in Chapter

5, each discussed as independent algorithms designed to work with encryption and

hash algorithms as part of complete encryption schemes. The primary goals of these

50

algorithms are modularity and re-usability, which will ensure simplicity, while guaran-

teeing high unpredictability. In Chapter 6, we summarize as to how these algorithms

will work as part of our framework discussed in this chapter.

Chapter 5

Proposed Component Algorithms

5.1 Chapter Overview

In this chapter, we first introduce some of the preliminary concepts of our work, in-

cluding the concept of Biomimetics, which is one of the foundational concepts of our

work, before presenting each constituent algorithm of the metamorphic framework

proposed in Chapter 4. The first algorithm, GeM1 [11], was proposed as a key man-

agement and mutual authentication algorithm based on gene mutation and transfer.

Owing to certain limitations of GeM1, we improved the algorithm and present it in

this chapter as GeM2 [12]. Following this, we propose a new way to update pseudo-

random number generator (PRNG) seeds, näıvely based on the Butterfly effect from

Chaos theory, and present an encryption scheme based on the same. We refer to this

as Butterfly1 [13]. Finally, we propose a new algorithm for multiple aspects of secu-

rity called HiveSec1, which is inspired by the functioning of beehives and bee swarms.

With our GeM2 and Butterfly1 approaches initially proposed for RFID systems, we

discuss extending them for use in WBAN systems in Section 5.6.

5.2 Preliminaries

5.2.1 Biomimetics

Systems we observe in nature are independent in existence and functionally complete.

Man made objects are only used to assist one such complete and independent system,

a.k.a. humans, in the functions that we perform. In other words, the systems we cre-

ate need to ‘mimic’ our own abilities to carry out certain functions. Extending this

concept to our cohabitants on this planet, we can derive inspirations from other nat-

ural systems/processes to create better systems to assist us. This process of adopting

biological processes, such as working principle of a neuron, ascent of sap in plants and

so on, in fields such as engineering, robotics, electronics, etc. to create new systems

51

52

is referred to as Biomimetics [114], which literally translates to mimicking biological

concepts.

Biomimetics has been used to create many systems that we use in our daily lives,

such as aircraft — Leonardo da Vinci based his designs of flying machines on the

ability of birds to fly, Velcro — whose design was derived from the hooked seeds of

the burdock plant, anti-reflective surfaces — which are created using polythene sheets

mimicking insect eyes, wings and leaves of plants. These are only a few examples

chosen from a variety of other solutions to which we have grown accustomed.

No formal framework exists to specifically use biological concepts in other dis-

ciplines. The basic principle in creating such bio-mimicking systems is to carefully

observe and understand the concepts and draw inspirations for designing appropriate

systems.

In our work, we draw inspiration from natural processes to accomplish specific

functions to generate keys and authentication parameters. In GeM2, we draw inspi-

ration from the transfer of genes and their possible mutation in key generation, while

our HiveSec1 proposal is inspired by the symmetrical hexagonal structure of beehives

and on bee swarms. Furthermore, the working of our proposal is inspired by the

manner in which a chameleon changes its colour depending on the context, i.e. its

surroundings.

5.2.2 State Identifiers

A (deterministic) PRNG is analogous to a Finite State Machine; particularly, the

Mealy Sequential Machine [113]. In this, the system output depends on the present

state and the present inputs. This is appropriate since the output of a PRNG at any

instant depends on the seed that is input and the pseudorandom sequence that it has

generated until that instant. However, it can be argued that it is similar to a Moore

Sequential Machine (in which the output only depends on the current state) if the

seed is considered to be a constant.

The unpredictability of a deterministic system can be increased by dynamically

demanding the system to generate the output from a specific state as desired. The

unpredictability further increases when we change the input to the system, in addition

to demanding the output from a specific state. This way, it will make it harder for an

53

observer, with partial knowledge about the system, to be able to determine the exact

output of the next system state. This is particularly useful in cryptography, where it

is desired that the adversary not be able to decode the parameters associated with a

particular state of the cryptosystem.

In our approach, we employ numeric state identifiers. The initial state, say S0, is

“0”, the next state, S1 is “1”, and so on. In our approach, we use state identifiers

to help in generating encryption keys on demand and message signatures. Use of

state identifiers helps entities using our algorithms be able to generate synchronized

parameters that can be used for key generation, message integrity verification and

mutual authentication.

5.3 GeM2: Improved Key Generation and Mutual Authentication

Algorithm based on Gene Transfer and Genetic Mutation

5.3.1 Overview

As with any computer program, characteristics or attributes of living organisms are

functions that are decided by instructions. In biology, such instructions translate

to the genetic code or genetic instructions that are contained in a basic molecular

structure called deoxyribonucleic acid (DNA). DNA contains genetic information that

help an organism realize its functions such as development, digestion and so on.

When organisms procreate, this genetic information is passed on from the parent to

the progeny. Therefore, DNA plays a significant role in continuity of species and

in preserving characteristics of each species. This phenomenon by which genetic

information is transferred from one generation to the next is referred to as gene

transmission [115, 116].

During such transmission, factors in the environment internal or external to the or-

ganism could result alterations to these genes, and such alterations could be passed on

to subsequent generations. Such alterations, which could be evolutionary or abrupt,

are called mutations. Thus, in general, characteristics of a generation of any organism

are transferred from one generation to another by means of gene transmission and

the transferred characteristics may include mutations as well.

GeM1 [11] is a protocol that mimics the concept of ‘generations’ and genetic

54

Figure 5.1: Overview of GeM1 [11]

mutation. This proposal was intended for RFID systems, specifically on lightweight

or heavyweight that tags have the ability to perform minimally complex computations

such as one-way hash function, and have sufficient storage capacity. We discuss GeM1

in the next section.

5.3.2 GeM1: The Predecessor of GeM2

In GeM1, our focus was to create a new algorithm that focused on eliminating key

exchange messages, and providing independent linked key updates using current com-

ponents such as PRNGs in a way that would make the system state unpredictable for

an adversary, yet keep it deterministic for the communicating entities to authenticate

each other and synchronize their states.

GeM1 requires communicating entities (Alice, the tag and Bob, the server) to pre-

share a ‘parent’ key, referred to as the initial key, IK. During their communication,

this key is used to compute “new keys”, NK, or ‘generations’. The parent and

generation numbers specify the state of the system, implying that given an initial key

and specific values of parent and generation, an entity could generate the appropriate

parameters. Figure 5.1 illustrates an overview of the operation of GeM1.

55

Let us begin our discussion of GeM1 with state i considered to be the current syn-

chronized state of Alice and Bob. The communication begins with a reader querying

Alice. On reception of this query, Alice performs the following operations:

Step-1: Alice uses the currently synchronized encryption key, ki, to encrypt its en-

crypted ID, ID. We choose to further encrypt an already encrypted ID stored

on the tag to add another layer of security. Thus, it results in the encrypted

message, em, given by Equation (5.1).

em = Eki (ID) (5.1)

Step-2: Alice then updates her key using a concept mimicking gene mutation and

transfer [11], where the currently synchronized key is considered as the parent

key and changes, or ‘mutations’, are introduced to the bit patterns in a way

to preserve the parent key patterns yet change the pattern strategically. This

means that the bit pattern of the parent key is masked and possible changes

introduced only to those bits that were ‘0’ in the parent key. The mutation is

computed as summarized by Equation (5.2).

mutation = numX • ¬ki (5.2)

Here, ¬ki is the logical inverse of the current key, ki, generated in an attempt to

preserve the current key patterns. numX is the first pseudorandom sequence,

respectively, generated by the PRNG, g(), with a specific seed, sdi, as summa-

rized by Equation (5.3).

numX = g (sdi)first 128bit sequence (5.3)

The seeds, sdi, used are Fibonacci numbers [117]. The initial seeds are loaded

(and synchronized) on the entities at deploy time, and their update is by adding

the two previous seeds to generate the next, i.e. as defined by the linear recur-

rence equation with the polynomial coefficients being 1 [118]. The seed update

is defined by Equation (5.4). We use this seed update mechanism to introduce

an additional layer of uncertainty in our approach.

sdi = sdi−1 + sdi−2 (5.4)

56

Step-3: A PRNG is used to introduce these changes. If the changes introduced result

in a key, kX , that is the same as a pre-stored pattern called genLimit, then, the

system forces an ‘evolution’ of keys by changing the parent key. Thus, it forces

a refresh in the key generation cycle. This process is summarized by Equation

(5.5).

ki+1 =

kX if kX 6= genLimit

kY if kX = genLimit
(5.5)

Here, kX and kY are intermediate keys that are generated based on Equations

(5.6) and (5.7).

kX = ki ⊕ mutation (5.6)

kY = numY • kX (5.7)

numY is the second pseudorandom sequence generated by the PRNG, g(), with

a specific seed, sdi, as summarized by Equation (5.8). Note that the first PRNG

sequence is numX (Equation (5.3)).

numY = g (sdi)second 128bit sequence (5.8)

Step-4: Next, the algorithm generates the authentication-synchronization vector,

asvi, by using the numX pattern and a pre-shared pattern called the patternasv,

as explained in Equation (5.9). Following this, it updates the seed, sdi.

asvi = h (numX ⊕ patternasv) (5.9)

Step-5: To maintain a local record of the state of the system, Alice and Bob maintain

two variables, p and g, to represent parent and generation states, respectively.

In case the key is updated, g is incremented by ‘1’, while in case of an ‘evolution’

i.e. change in parent key, p is incremented and g is reset to ‘0’.

After the above processes, Alice responds to Bob with the message, M1, summa-

rized in Equation (5.10).

M1 = p ‖ g ‖ em ‖ tagSignature (5.10)

Where, ‖ represents concatenation operation and asvi is sent as the tagSignature.

57

Figure 5.2: Key Generation in GeM1 [11]

Figure 5.3: Communication Protocol in GeM1 [12]

On receiving this message, Bob first short-lists candidate tags based on the p and

g values. Next, Bob generates the key using the p and g values, and the current states

of the chosen candidate tags. It then uses the keys to decrypt the encrypted message,

em. At this point, Bob is able to verify the tag using the encrypted tag ID. Bob then

58

verifies the new state after updating the key using tagSignature. Following this,

Bob generates an acknowledgement message, MA, comprising of an acknowledgement

pattern encrypted using the new key, ki+1, and sends it along with the information

about the object represented by Alice to the reader. The reader retains the informa-

tion about the object and forwards the acknowledgement message, MA, to Alice, who

uses this to validate Bob.

Thus, GeM1 facilitates mutual authentication and dynamic-independent key gen-

eration at the communicating entities. The key generation process in GeM1 is illus-

trated in Figure 5.2 and the communication protocol is summarized in Figure 5.3.

5.3.3 GeM2: Improved Key Generation and Mutual Authentication

Algorithm

Our evaluation of GeM1 proved that the algorithm was secure and was able to offer

better security through increased unpredictability. However, since keys were linked

and genLimit was set to a pattern of all ‘1’ bits, it proved to have a concealed

vulnerability. It meant that we were allowing the keys to grow until (or converge at)

a point when all bits of the keys (or most bits of a key) were ‘1’ to force an ‘evolution’

of the parent key, introducing a predictable pattern in an otherwise unpredictable

environment.

As an attempt to overcome this flaw, we worked on modifying the linking between

keys and on changing the way parent keys evolve. Essentially, we accomplished this

by setting generation limit as the integer count of the number of ‘child’ keys a ‘parent’

key can have, i.e. limiting that a parent key can have up to a maximum of genLimit

child keys. The value of genLimit can be set based on the needs of the application.

It is the maximum number of child keys that can be generated using a parent key,

keeping in mind that the more the number of child keys for a parent, the likelihood of

key repetition increases (in our implementation and assessment, we set genLimit = 5,

given that there are 128 bits in the keys and with the expectation that the likelihood

of key repetition within a genLimit of 5 would be minimum). This was instead of

the mechanism in GeM1 to let the keys evolve/converge towards a specific pattern.

Figure 5.4 illustrates the operations involved in the key generation process in GeM2.

GeM2 works mostly the same as GeM1, however, the first important change is

59

Figure 5.4: Key Generation in GeM2 [12]

in the addition of a new memory segment called parentKey to store the parent key.

This is necessary because in GeM2, a parent can have a limited number of child keys

or no child key at all, but if it does have child keys, it can have up to genLimit child

keys. This defines its improvement over GeM1 — we do not have linked “generations”

of keys. In the context of GeM1, linked generations of keys was the manner in which

keys were updated, i.e. each new key became the parent key of the subsequent key,

which led to their evolutions converging at a pattern of all bits being ‘1’.

In a state i of communication between entities Alice and Bob, GeM2 works as

follows. Note that Alice uses the currently synchronized encryption key, ki, to encrypt

its encrypted ID, ID, to generate the encrypted message, em (similar to GeM1,

Equation (5.1)).

60

Key update

The key generation module first generates a random number (rpc) between ‘0’ and ‘1’

to determine if current parent key will have any further child keys (Equation (5.11)).

rpc =

0 parent can have up to genLimit child keys

1 parent key update, i.e. evolution
(5.11)

If rpc = 0:

• If the current generation count, g, is not equal to genLimit, it generates a new

key by first preserving the parent key pattern by generating its inverse (¬ki)
and creating a mutation pattern from it. The mutation pattern is created by

using the inverse of the key and logically AND-ing it with the random number

(as explained in Equation (5.12)).

mutation = numX • ¬parent key (5.12)

• This mutation pattern is applied to the current parent key by XOR operation

to generate the new key, K = ki+1 (as summarized by Equation (5.13)), and

generation count, g, is incremented by 1.

K = ki+1 = parent key ⊕mutation (5.13)

Here, ⊕ represents XOR operation between the parent key and the mutation

pattern.

• However, the current generation count, g, being equal to genLimit forces a

parent key change or refresh or what we refer to in the current context as an

‘evolution’ of the parent key, as discussed next.

If rpc = 1 or if the generation count is equal to genLimit, the algorithm goes

through a parent key refresh. To generate a new parent key, GeM2 generates a new

random number, numX, and combines it with the current parent key using the XOR

operation. This is summarized by Equation (5.14). In this case, the parent key also

becomes the new key, K.

K = parentKeynew = parentKeycurrent ⊕ numX (5.14)

61

numX = g(sdi), is the random number generated by PRNG, g(), with seed sdi,

as explained by Equation (5.3).

The authentication vector is then generated in a manner similar to GeM1 (Equa-

tion (5.9)). Following this, the algorithm updates the seed, sdi.

Seed Updates

One of the important aspects in this algorithm is the updates to PRNG seeds with

each key generation. We accomplish this using a ‘Fibonacci-like’ seed update mech-

anism, as defined by the linear recurrence equation with the polynomial coefficients

being 1 [118]. This is governed by Equation (5.4). Initially, Fibonacci numbers were

chosen for use as the seed generation algorithm for pseudorandom number generation

in GeM1, owing to their ability to grow at an exponential rate. In GeM2, we modified

this to be a simple application of the linear recurrence equation, instead of Fibonacci

sequence as in GeM1, which meant that when the either of the previous seeds reach

the maximum possible value upon update, they can simply wrap around and start

afresh. This means that this wrap around effect will be at random, adding another

layer of unpredictability, thus increasing the overall security of the system.

GeM1 and GeM2 include seed updates with each message transmission to ensure

that the full PRNG state keeps changing continuously. This is a way to make it

harder for an unauthorized entity to ‘guess’ or ‘crack’ the system state.

Data Encryption

As with GeM1, encryption of the (already encrypted) ID to generate em is governed by

Equation (5.1). Data encryption can be accomplished using any symmetric encryption

algorithm. However, in our approach, we have used XOR for encryption due to its

simplicity and involutory property, i.e. if XOR is used for encryption, its decryption

algorithm is also XOR. This helps in reducing the overhead on resource-constrained

devices.

Mutual Authentication, Synchronization and Message Integrity

Similar to GeM1, mutual authentication of authentication is guaranteed by asv. The

asv is a parameter that is computed using numX, which is generated afresh for each

62

communication. With the key being generated using numX, it indirectly represents

the current state of the system and hence, the key, which together represents the

communicating entity. This is the main reason why asv is able to assist in mutual

authentication, since only verified entities with synchronized states will be able to

generate the correct value of asv.

Synchronization is an important activity in our approach given that there are

no key exchanges, and that the entities need to be in the same state to successfully

authenticate each other. If the entity states are not synchronized, it is highly likely

that the protocol might fail due to de-synchronization. To avoid this, our approach

provides an implicit synchronization feature. Both entities store three key states

in memory, i.e. two immediate previous keys (prevKey1 and prevKey2) and their

associated states (seeds, parent and generation values), and the corresponding states

for the current key. This is done taking into account noise in practical deployment

environments, which could result in some frames being lost in transmission. However,

even in such scenarios, we assume that even if frames are lost, they may not be lost

more than three times consecutively, since the system would sense that there is either

an attempt to de-synchronize or an error in the channel.

The reason behind the number “3” is to give enough room for the tag-server pair to

accommodate any lost frames, while not so as to facilitate repeat or replay attacks.

On successful authentication, the entities are synchronized with the values of the

current parent, generation and the encryption key and discard the previous values.

This is because once synchronized, the previous keys are not required by either the

tag or the server, and any future query by a reader with one of the previous keys

would imply that it is an attempt at a replay attack.

When verified and synchronized entities communicate, the message is encrypted

with a new key for each transmission. This ensures that it is in a way context

specific, thereby making the combination of asv and em a unique way to represent a

message for that transaction. This, in a näıve manner, helps entities employing GeM2

accomplish message integrity verification, in addition to mutual authentication.

63

Algorithm 2 Key Generation and Encryption Using GeM2

1: procedure GEM2KeyGenEncrypt

2: //Encrypt:

3: em← ID ⊕ ki

4: //Update Keys:

5: sdi ← sdi−1 + sdi−2

6: numX ← g(sdi)

7: rpc ← g(pc choice)

8: //pc choice is the seed for PRNG generating rpc

9:

10: if rpc = 0 then

11: if g 6= genLimit then

12: //Child Key Generation

13: mutation← numX • ¬parent key
14: ki+1 ← parent key ⊕ mutation

15: else

16: //Parent Key Evolution

17: parent key new = parent key ⊕ numX

18:

19: //Generate ASV

20: asvi ← h(numX ⊕ patternasv)

5.3.4 Summary

GeM2 (summarized in Algorithm 2) is thus, an enhancement to GeM1, with an ob-

jective of reducing the linking between keys, introducing more random choices for key

updates to increase unpredictability, which in turn facilitates entities to accomplish

mutual authentication without exchange of keys and other internal state parameters.

GeM2 also ensures that the keys do not converge at any specific pattern and that a

unique encryption key will be generated for every frame. This further ensures that

consecutive keys will not be similar to each other. The GeM2 algorithm, thus, can

be applied to a variety of applications, including other resource-constrained wireless

networks such as WBANs.

64

5.4 Butterfly1: Encryption Scheme Featuring Pseudorandom Numbers

and Butterfly Seed Generation

5.4.1 Overview

In this section, we discuss a new encryption scheme that uses pseudorandom number

generators, a strategic way of updating their seeds and system state identifiers to

accomplish several security goals. We derive our inspiration from the “Butterfly

effect”. Butterfly effect is a concept in chaos theory, defined by Poulin [119] as

“hypersensitivity to perturbation”. This means that in a non-linear deterministic

system, if the initial conditions are changed ever so slightly, there will be drastic

changes in the output of a later state. The algorithm we describe in this section

features a PRNG seed update mechanism that is a näıve adaptation of the concept

of Butterfly effect. This was also proposed as an independent security proposal for

RFID systems, but can be extended to other resource-constrained wireless networks

such as WBANs.

In our approach, we adapt the concept of Butterfly effect to update the seed of

the PRNG, use state identifiers to record the current state of the system, and (re-

)use PRNG to generate keys. This is an attempt to demonstrate a simple encryption

scheme for resource-constrained wireless networks.

5.4.2 Butterfly Seed Generation Algorithm for PRNG

PRNGs are employed by cryptographic algorithms typically for generating encryption

keys or nonces for other purposes. PRNGs are inherently deterministic [120, 121].

Their application is common in lightweight systems that have severe resource con-

straints that limit their ability to perform sophisticated computations for achieving

security (e.g. lightweight passive RFID systems) [59, 60, 93, 94]. Their determin-

istic nature, combined with a changing seed can make the PRNG into a powerful

authentication and a simple key generation system, useful for RFID applications.

A PRNG, g(), with periodicity, P , that generates an n-bit number given an m-

bit seed can be used as an authentication and key management system if Alice and

Bob (synchronized with an initial seed) are able to demand specific random numbers

from each other. For example, consider that Alice demands that Bob respond with

65

the 23rd random number. Bob responds with the 23rd random number and includes

a demand that Alice respond with the 49th random number, and so on. This is a

näıve approach to mutual authentication. However, if the seed were to change in a

particular way after the period, P , we can increase system unpredictability, thereby

improving the security. However, an obvious question that arises is the following —

would the change in a seed require either regular communication between the hosts

or some other costly mechanism to change or generate a new seed for the PRNG?

This could lead to another uncertainty — how can we ensure that the entities are

synchronized?

We propose the Butterfly seed generation algorithm as an attempt to answer both

questions. We interpret and apply the concept of Butterfly effect in our approach as

follows — if even one bit of the seed of the PRNG is changed, the sequences generated

by the PRNG would be significantly different. The proposed seed generation algorithm

employs state identifiers to update the PRNG seed, paving the way for a simple

scheme for key generation and message signature generation. Use of state identifiers

ensures that the entities are always synchronized and that they can demand the

authentication parameters and/or encryption keys that need to be used by the other.

This algorithm, thus, provides a simple solution to both the questions that were

presented above.

In the Butterfly algorithm, PRNG seeds are updated just by changing one bit

in the previously agreed seed. If m is the number of bits in the seed and the PRNG

generates an n-bit number as its output, then, the periodicity of the PRNG increases

from P to (m+1)×P . Although this is not a direct replication of the Butterfly effect

or the implementation of the mathematical theory governing it, we can see that the

change in one bit of the seed can enable us to generate a completely different set of

random numbers. Furthermore, there would be no predictable pattern in the seed to

an adversary (if he does not know the initial seed) — it would depend on the initial

seed, and a bit of the seed would be changed at the end of each period of the PRNG

(or on demand). We illustrate the concept with an example. Consider a hypothetical

PRNG, g() that takes a 6-bit (m = 6) seed, S, and generates a sequence of 16-bit

(n = 16) random numbers, governed by Equation (5.15):

r = { g(S) } (5.15)

66

Table 5.1: Example to illustrate the proposed Butterfly Seed Generation algorithm

SEED (S) Random number sequence

S0 = 1 0 0 1 0 1 r0 = { g(S0) }
S1 = 1 0 0 1 0 0 r1 = { g(S1) }
S2 = 1 0 0 1 1 0 r2 = { g(S2) }
S3 = 1 0 0 0 1 0 r3 = { g(S3) }
S4 = 1 0 1 0 1 0 r4 = { g(S4) }
S5 = 1 1 1 0 1 0 r5 = { g(S5) }
S6 = 0 1 1 0 1 0 r6 = { g(S6) }

Here, “{· · · }” is used to represent a sequence of pseudorandom number numbers.

Let the initial seed be S = 100101. Table 5.1 illustrates the changing seed, with the bit

highlighted by boldface indicating the changing bit. Note that in our implementation,

the seed is updated by changing bits one at a time, beginning with the least-significant

bit (LSB) until it reaches the most-significant bit (MSB). To summarize, the Butterfly

seed generation can be thought of as a function φ() that transforms a PRNG seed

into a variant of the same, as indicated by equation 5.16.

Sj = φ(S) (5.16)

Although the different seeds (S0, S1, · · · S6) are in the range 0 ≤ Si ≤ 2m − 1,

where m is the number of bits of the seed, we have to note that subsequent seeds are

not very similar to the previous seeds. Furthermore, j indicates the number of bits

that are transformed, i.e. if j = x, the x least significant bits are inverted, bit-wise

beginning with the LSB.

Such design of a seed update mechanism allows flexibility in implementation, fa-

cilitating varying levels of unpredictability. This is because the implementation could

take one of the following forms — (a) with each seed update, only one bit, identified

by j can be inverted, which would mean that the implementation would only need to

offset to the particular bit and invert it, something that can be realized using shift

registers (on hardware), applicable in severely resource-constrained applications; or,

(b) with each seed update, all bits until and including the bit j can be inverted, im-

plying that it would change the seed significantly, leading to higher unpredictability.

An additional unpredictable element can be introduced in the choice of j. In simple

67

implementations, j could be merely an incrementing number that identifies the posi-

tion of the bit to be inverted. In an alternative implementation, it could be a number

chosen at random that indicates the specific bit (or set of bits) to be changed.

In this section, we proposed a means of updating seeds using state identifiers to

increase the unpredictability of a pseudorandom number generator, which ultimately

leads to increased security.

5.4.3 Encryption Scheme Featuring PRNG and Butterfly Seed

Generation

In this section, we propose a simple encryption scheme and protocol for communica-

tion that employ the Butterfly seed generation algorithm discussed previously. This

scheme has multiple levels of operation, and each level performs a function similar

to enclosing the data (input to that level) in an envelope. This mechanism is used

for key generation and to accomplish security goals such as authentication, message

confidentiality and data integrity using just one pseudorandom number generator cir-

cuit. Figure 5.5 illustrates an overview of the working of the proposed encryption

scheme. Of the various modules in this scheme, i.e. key management, data encryp-

tion, message signature generator and state information modules, all modules, except

the encryption module, use PRNG for their respective functions. This is our attempt

to re-use an existing function for multiple purposes.

Consider a PRNG, g(), initialised with a seed, sinit. The current seed is sj, sinit,

using the Butterfly algorithm for seed updates. Each seed, sj, can generate P

random numbers. Each message has a message sequence number, i. Therefore, the

ith message to be transmitted would be mi, which is computed as follows:

mi = M ⊕ sj (5.17)

Here, M is the actual message and sj is the updated seed. This is analogous to

enclosing the message in an envelope. Let ti be the timestamp and θi be the message

signature of mi. For each tag, T , the server stores the associated key states and tag

IDs in a database. The database row mapping the ID of a specific tag to its attributes

is identified by a tag number, ηt, which is different from the tag ID. Note that our

encryption scheme does not exchange the tag’s ID during communication.

68

Figure 5.5: Overview of working of the proposed encryption scheme [13]

Key management

Our scheme uses two keys — KT , the transfer key and Ki, the data encryption key.

The data encryption key (Ki) is generated using equation 5.18. This is the key used

to encrypt the message, mi (or enclose the data within another envelope).

Ki = g(f(φ(sj), ti)) (5.18)

φ() is the Butterfly seed transformation function (Equation (5.16)). To reiterate,

if j = 1, it means that the second bit from the LSB has been transformed, and so

on. f() is a function to combine the transformed seed and the timestamp. This is

achieved by an XOR operation. Since our algorithm is modular in nature, f() can be

changed as required by any implementation without affecting other modules in the

scheme.

The transfer key, KT , is used to encrypt the final message that the tag responds

with (or add a final envelope over the data), and is generated also by a PRNG using

sj as the seed. Generation of KT is summarized by Equation (5.19).

KT = g(sj) (5.19)

69

Data encryption

We use XOR for encryption (Equation (5.20)), because of its involutory property (it

is its own inverse, and hence can be used as the decryption function as well) and to

keep computations low.

cipheri = EKeyx(messagei) = messagei ⊕Keyx (5.20)

Here, cipheri is the cipher text generated when a message, messagei, is encrypted

using key, Keyx. The encryption function (EKeyx) used is XOR (represented by ⊕).

Keyx could be Ki when encrypting mi or KT when encrypting the combined message

prior to transmission.

Message signature generation

Typically, message digests are generated using hash functions [122]. However, PRNGs

have the ability to generate unique sequences given a specific seed. We exploit this

property of a PRNG and use it to generate a message signature, θi, as specified by

equation 5.21.

θi = g (f (sj, mi, ti)) (5.21)

Here, f() combines the seed (sj), message (mi) and the timestamp (ti). Note that

this is the same combination function used in key generation.

Essentially, we are re-using the modules and hardware to accomplish multiple

functions. Furthermore, with this message signature being dynamically generated

and dependent on timestamp, it helps our approach provide context (time, message,

entity)-specific signatures. In this case, entity-specific property is achieved by deploy-

ing different PRNG seeds on different devices and each having the possibility of being

in a different state, j.

State information management

The state information module (SM) updates and maintains sequence number, i, and

PRNG seed state, j. Our scheme also uses a 2-bit pattern called message code,

MC, which indicates the type of message being communicated. The format for MC

is summarized by Table 5.2. MC, along with the timestamp, ti and the message

sequence number, i, provides additional means to prevent replay attacks.

70

Table 5.2: Message Code (MC) format and description

MC Bit Pattern Description

MC = 0 00 First message sent by server to tag

MC = 1 01 Response sent by tag (equation 5.23)

MC = 2 10 Acknowledgement sent by server

MC = 3 11 Special message: Instructs tag to update

its PRNG seed with the new seed, provided

it is able to validate the server (equation 5.26)

Protocol of Operation

The proposed encryption scheme works as follows:

Step-1: The reader, R, requests the server for a connection request. The server then

encrypts the current timestamp, ti using the previously synchronized transfer

key, KT and forwards EKT
(ti) ‖MC (with MC = 0) to the reader.

Step-2: Reader queries the tag (T) with the encrypted timestamp, EKT
(ti) ‖MC.

The tag retrieves the ti using the previously synchronized transfer key. Following

this, the tag computes a random value for j, transforms the sinit to state sj

(Equation (5.16)). The tag then performs the XOR of its message M with sj

to generate the message to be transmitted, mi (Equation (5.22)).

mi = M ⊕ sj (5.22)

Step-3: Simultaneously, the tag generates the data encryption key, Ki (Equation

(5.18)), and the transfer key, KT (Equation (5.19)).

Step-4: Following this, the tag generates the encrypted message, ci (Equation (5.20))

and uses it to generate the message signature, θi.

Step-5: The transmitted message, MT is generated as defined by Equation (5.23):

MT = EKT
(ci ‖ ti ‖ i ‖ θi) ‖ j ‖MC ‖ ηt (5.23)

Where, EKT
() represents an additional round of encryption performed on a

concatenated message comprising of the cipher text (ci), message signature

71

Figure 5.6: Working of the proposed encryption scheme [13]

(θi), timestamp (ti), message sequence number (i), and MC = 1 to indicate tag

response. ‖ represents concatenation. The above steps and the working of the

proposed encryption scheme are summarized in Figure 5.6.

During decryption, the server uses the tag number, ηt to retrieve the attributes

of the specific tag, uses seed state identifier (j) to generate the transfer key (KT) to

decrypt the received message. It then (verifies and) uses timestamp (ti) to generate

the decryption key (Ki) and decrypts the message, mi. Following this, it computes

the message signature and verifies the integrity of the message. This ensures that

the tag is authenticated, as only a genuine tag could have generated a valid key with

state, sj, to have encrypted the said message. The server then recovers the message,

M by performing XOR (decryption) operation on mi and sj. When the tag is found

to be valid, the server retrieves information (INF) about the object, updates its

database entry corresponding to the tag with updated information (i.e. i). Server

then sends INF along with an encrypted acknowledgement (acki), containing the

current timestamp (ti+1) (Equations (5.24) and (5.25)):

cack = EKi
(ACK ‖ ti+1) (5.24)

acki = EKT
(cack ‖ i ‖ θi) ‖MC (5.25)

72

Here, cack is the acknowledgement cipher; KT and Ki are the same keys used by

the tag for synchronization; ACK is the pre-agreed acknowledgement pattern; ti+1

is the latest timestamp at the server; i is the previous sequence number at the tag

(also to ensure synchronization); and MC = 2 to indicate that the message is an

acknowledgement. On receiving the acknowledgement, the tag validates the server

and the states are synchronized.

Seed refresh

In case the server needs the tag to update its seed, it sends a seed refresh message,

msu, to the tag:

msu = EKT
(cu ‖ tu ‖ i ‖ θu) ‖ j ‖MC ‖ ηt (5.26)

Where, cu = EKi
(s′ ⊕ sj) is the seed update cipher, which is the result of encrypting

the XOR-ed combination of the new seed s′ and the old seed sj, using the key Ki

generated as specified by Equation (5.18); tu is the current (seed update) timestamp;

θu is the corresponding message signature; i is the updated sequence number, which is

one more than the previously synchronized sequence number; and, j is the Butterfly

state randomly chosen by the server for the current operation, with MC = 3.

5.4.4 Summary

The operation of the Butterfly1 algorithm is summarized in Algorithm 3. In this

section, we proposed a new encryption scheme employing PRNGs for key generation

and message signature generation, foundation for which is the proposed Butterfly al-

gorithm, based on a näıve adaptation of the Butterfly effect. This is an attempt to

re-use available functions to accomplish multiple functions such as key generation,

encryption, message signature generation, which results in achieving security objec-

tives such as confidentiality, integrity, (mutual) authentication, and non-repudiation

(by association). Simplicity and re-use of the Butterfly1 approach encourage its ap-

plication in other resource-constrained wireless applications.

73

Algorithm 3 Key Generation and Encryption Using Butterfly1

1: procedure BUTTERFLY1KeyGenEncrypt

2: //Butterfly Seed Update:

3: Choose j

4: sj ← φ(s)

5:

6: //Generate Keys:

7: Ki ← g(f(sj, ti))

8: KT ← g(sj)

9:

10: //Choose Appropriate Message Code (2 bits):

11: if Message is sent by server to tag then MC ← 00

12: else if Response sent by tag then MC ← 01

13: else if Acknowledgement sent by server then MC ← 10

14: else if Special message then MC ← 11

15:

16: if MC = 00 or MC = 01 or MC = 10 then

17: //First Encrypt:

18: mi ←M ⊕ sj

19: //Second Encrypt:

20: ci ← mi ⊕ Ki

21: //Generate Message Signature:

22: θi ← f(ti ‖ mi ‖ sj)

23: //Final Encrypt:

24: EKtCi← (ci ‖ ti ‖ i ‖ θi) ⊕ KT

25:

26: //Generate Message to be Transmitted:

27: MT ← EKtCi ‖ j ‖MC ‖ ηt
28: else if MC = 11 then

29: //Generate Seed Update Message:

30: msu = EKT
(cu ‖ tu ‖ i ‖ θu) ‖ j ‖MC ‖ ηt

74

5.5 HiveSec1: Algorithm for Security Inspired by Beehives and

Bee Swarms

5.5.1 Overview

Presented in this section is another new way of using pseudorandom number genera-

tors (PRNG) for security in a resource-constrained environment. Specifically, as with

the algorithms previously discussed, we propose this as an independent security pro-

posal for RFID systems. HiveSec1 includes with it a new mechanism to generate keys

and a mechanism to protect against attacks in progress (such as denial of service, DoS,

and replay attacks), and makes use of a message signature scheme called HiveSign for

entity authentication [14]. This approach is inspired by the symmetric (hexagonal)

structure of beehives and the concept of bee swarms. As with other algorithms pro-

posed in our thesis, HiveSec1 facilitates key generation at the entities instead of key

exchange. Although this proposal is a security solution including all aspects of infor-

mation security such as key management, encryption and authentication, the focus

is mainly key management and authentication — key management, since a publicly

available encryption algorithm is only as good as the key, and authentication, which

is primarily to be established (using generated keys and message signatures) among

communicating entities to ensure secure (trust-based) communication. HiveSec1 is

designed to work with any symmetric encryption algorithm.

5.5.2 HiveSec1: The Concept

A beehive is made up of hexagonal 3-dimensional structures that we refer to as honey

pods, which are actually constructed by bees using beeswax1. Each honey pod is used

by the bees to store honey, food and eggs. When forming a new colony, the queen

bee and the worker bees assemble at a specific location, in a process called swarming.

The worker bees then create the beehive using beeswax. Furthermore, if a colony of

bees is disturbed, a swarm of bees attack and sting any organisms in their path, as a

protective mechanism [124].

In HiveSec1, we propose modules for security that are based on these concepts. In

1Beeswax is produced by worker bees, and are a “complex mixture of saturated and unsaturated
linear and complex monoesters, hydrocarbons, free fatty acids, free fatty alcohols, and other minor
substances” [123].

75

particular, we draw inspiration from the hexagonal structure of the honey pods and

the mechanism in which bees attack when their hive is disturbed. In our approach,

we construct a hive of PRNG seeds (that we refer to as seedhives), where each honey

pod is a PRNG seed. We consider six such seedhives in our approach. Each time

an encryption key needs to be generated, we use the concept of disturbing one of the

seedhives at random, and using the chosen seed to generate a specific key (HiveKey

module). We employ the HiveSign message signature algorithm [14] to facilitate veri-

fication of the messages and keys. This design also facilitates a mechanism to protect

the system against attacks such as replay attacks or denial-of-service (DoS). This is a

näıve attempt to attack the attacker. This concept has enabled us to propose secure

modules for networks with/without resource constraints. The novelty of this approach

is in the mechanism used to generate the encryption keys, message signatures, state

identification (and session/session key updates), and protection against attacks.

5.5.3 HiveSec1: Security Inspired by Bees

HiveKey: Key Management

In HiveKey, we use a PRNG to generate a unique key for each communication based

on the following concept — consider six seedhives in a ‘neighbourhood’ (A, B, C, D,

E and F in Figure 5.7, which can be programmatically conceptualized as an array

of seeds). To illustrate the concept, we consider this structure to be similar to a

hexagon, with the seedhives at its vertices. Each seedhive in HiveKey is perceived

to consist of a finite number of seeds, each of them assumed to occupy one pod (as

illustrated in Figure 5.8). To generate a key, we ‘disturb’ (or, choose) one seedhive

at random and choose one seed from the hive (SC), and assume that this disturbance

also ‘disturbs’ part of the seedhives to the immediate left (SL) and right (SR) of SC .

The actual key generated would then be a combination of the three seed components,

SC , SL and SR. In Figure 5.7, we illustrate a case where seedhive A is disturbed, and

B and F are minimally disturbed (represented by red coloured segments in hives).

Seedhives

HiveKey requires storing six PRNG seeds, referred to as parent seeds, {p1, p2, p3, ..., p6}.
These are deployed in the communicating entities at deploy time. Each parent seed

76

Figure 5.7: Conceptual Illustration of the Seed Generation in HiveKey

is perceived to have either six (6) or eighteen (18) child seeds (or, children), based on

a 1-bit version code (V ER) (Figure 5.8). We say “perceived” to indicate that they

are not stored, but generated when required. They are generated as summarized in

equation 5.27, with cj being the xth pseudorandom sequence generated by the PRNG,

g(), using parent, pi as the seed.

cj = gx (pi) (5.27)

Therefore, we can perceive that a specific seedhive structure having either 6 or 18

child seeds exists, even though the only seed we have stored is the parent seed, pi. We

can perceive entities to have stored either 6× (1 parent+ 6 children) = 42 seeds or

6× (1 parent+ 18 children) = 114 seeds in total, depending on the version (Figure

5.8).

Seed chooser, a.k.a. the “hive disturber”

HiveKey uses timestamp to choose a seed from the seedhive (or, disturb the hive).

We use timestamp as the “hive disturber” or the parameter that chooses one seed

from the seedhives. Timestamps are sent in the messages sent by the communication

initiator and this helps in determining the version code (V ER), the seed and hence,

the key. We consider a 32-bit timestamp illustrated this in Figure 5.9. Here, tb31 is

the most-significant bit (MSB) and tb0 is the least-significant bit (LSB). We use nine

LSBs of the timestamp to derive the version code, and to identify the parent and

77

Figure 5.8: Conceptual Illustration of Seedhives

Figure 5.9: Use of Timestamp to Determine Choice of Parent/Child Seeds

child seeds.

On receiving a message from the communication initiator, the responder decodes

the timestamp and proceeds as follows:

• The version code (V ER) is the LSB of the timestamp.

– If V ER = 0, the parent seed, pi, will have six child seeds, cj (Figure 5.8

(a)).

– If V ER = 1, the parent seed, pi, will have eighteen child seeds, cj (Figure

5.8 (b)).

• The three LSBs of the timestamp (tb2, tb1, tb0) are used to determine the parent

seed. First, the integer equivalent of the 3-bit parent choice is determined. Since

there are six parent seeds stored in memory, the parent chosen, p is determined

as follows:

p = pb(decimal) mod 6 (5.28)

78

pb(decimal) indicates decimal representation of the 3-bit number, pb, and mod

represents modulus operation. The modulus operation is used in this case con-

sidering the fact that the range of integer equivalents of 3-bit binary numbers

is [0,7], while we need only numbers in the range [0,5] to represent the parent

seeds stored in HiveSec1.

• To determine the child number, x (i.e. child seed for the chosen parent, p),

HiveKey uses the three bit combination (cb1) in case of V ER = 0 (tb6, tb5, tb4)

or the five bit combination (cb2 ‖ cb1) in case of V ER = 1 (tb8, tb7, tb6, tb5, tb4)

(Equations (5.29a) and (5.29b), respectively). Note that ‖ represents concate-

nation operation.

x = cb1(decimal) mod 6 (5.29a)

x = (cb2 ‖ cb1)(decimal) mod 18 (5.29b)

• The algorithm then generates the child seed (as the chosen seed, SC) using

Equation (5.27).

Computation of Actual Key Generation Seed, SA

To generate the seed used for key generation, SA, we consider the two neighbours of

the chosen parent seed, the left parent (SL) and the right parent (SR). We assume

the following analogy from bees and beehives — when one seedhive is disturbed, 60%

of the left seedhive and 40% of the right seedhive are disturbed. Thus, we extract

60% of the MSBs (or, left-most bits) from the left parent, SL, and 40% of the LSBs

(or, right-most bits) from the right parent, SR, using bit-masks and the logical AND

operation (Equations (5.30a) and (5.30b)). Here, • represents the AND operation,

Left Mask is a bit pattern with 60% of the left-most bits set to 1, i.e. FFF...0, and

Right Mask is a bit pattern with 40% of the right-most bits set to 1, i.e. 0...FFF .

S ′L = SL • Left Mask (5.30a)

S ′R = SR • Right Mask (5.30b)

The actual seed is computed as summarized by Equation (5.31) (⊕ represents the

XOR operation and ∨ indicates the OR operation). SA is the actual seed that will

be used to generate the encryption key, KS.

SA = SC ⊕ (S ′L ∨ S ′R) ⊕ ts (5.31)

79

PRNG State, s, and Encryption Key, KS

HiveKey retrieves four LSBs (tb3, tb2, tb1, tb0) from the timestamp and assigns them

as the 4-bit PRNG state, s. The encryption key is then computed to be the sth

(pseudo)random sequence generated by the PRNG, g(), using SA as the seed (Equa-

tion (5.32)).

KS = gs (SA) (5.32)

Outer-envelope key, KO

In addition to the encryption key, KS, HiveSec1 makes use of an outer envelope

key, KO (determined similar to KS). In this case, however, we consider an initial

timestamp, ts0 (stored at deploy time), to determine the V ER code and child seed

number (using Equations (5.28), (5.29a) and (5.29b)). Next, the child seed, SCO, is

generated (Equation (5.27)), followed by choosing of left and right neighbours, SLO

and SRO (Equations (5.30a) and (). The actual key generation seed, SAO, is generated

using SCO, SLO, SRO and initial timestamp, ts0, in place of SC , SL, SR and timestamp,

ts, in Equation (5.31). Finally, the V ER and pb bits in ts0 are used to determine the

state, sO1.

sO = SO1 ⊕ se (5.33a)

KO = gsO (SAO) (5.33b)

The main difference in this key generation is use of the parameter, se (chosen at

random and sent by the initiator) in combination with sO1, to determine the actual

state, sO (Equation (5.33a)).

Seed Updates

One of the notable concerns with such a key generation mechanism is the probability

of chosen seeds, and hence the keys, being repeated. This occurs if the parent seeds

stored in the entities remain the same. HiveSec1 also includes a mechanism to update

the seeds, which are also determined at random, but specified by the initiator of

the communication (such as the server in an RFID system, or a body hub node

in WBANs). A 2-bit code called the Message Code is used to facilitate such seed

updates, while maintaining high unpredictability in the keys used for encryption.

This is discussed in detail next.

80

Algorithm 4 Key Generation Using HiveSec1

1: procedure HIVESEC1KeyGen

2: //Retrieve Timestamp (ts for computing KS and ts0 for computing KO)

3: tx ← appropriate timestamp

4: V ER← LSB of tx

5: parent index← INTEGER(tx(2) ‖ tx(1) ‖ tx(0))mod6

6: parent seed← parent seed array[parent index]

7:

8: if V ER = 0 then

9: child index← INTEGER(tx(6) ‖ tx(5) ‖ tx(4))mod6

10: else if V ER = 1 then

11: child index← INTEGER(tx(8) ‖ tx(7) ‖ tx(6) ‖ tx(5) ‖ tx(4))mod18

12: child seed← g(parent seed) //Generate child seed

13:

14: left parent = parent seed array[(parent index− 1)mod6]

15: S L′ ← left parent • Left Mask

16: right parent = parent seed array[(parent index+ 1)mod6]

17: S R′ ← right parent • Left Mask

18:

19: SA ← child seed⊕ (S L′ + S R′)⊕ tx //Actual key generation seed

20:

21: if Key is KS then

22: s← INTEGER(tx(3) ‖ tx(2) ‖ tx(1) ‖ tx(0))

23: s index← s

24: else if Key is KO then

25: sO = SO1 ⊕ se

26: s index← sO

27:

28: //Generate s indexth pseudorandom sequence as key

29: Keyx ← g(S A)

81

HiveKey (summarized in Algorithm 4) is thus a new and simple mechanism to

generate keys uniquely for each message exchanged. The two keys (KS and KO) are

used to ensure that the message remains confidential and the attributes to generate the

key remain a secret. It must be noted that HiveKey does not involve key exchanges,

but independent generation of keys at both the initiator and responder. Since key

generation depends on the time and parameters specific to each entity (such as the

seeds stored and the associated initial timestamps), unpredictability associated with

the keys is high.

State Information and Message Types

The state information module in HiveSec1 helps maintain the internal system state,

thereby facilitating synchronized key generation at the entities. This module is re-

sponsible for computing and maintaining the parameters representing the PRNG

state, i.e. s, sO and se sent by the initiator. These determine the exact state of the

PRNG to generate the respective keys. Additionally, this module also helps maintain

session parameters that will be described in the paragraphs that follow.

HiveSec1 facilitates the notion of sessions in each communication. Two terms

are important in this context — (a) Association, and (b) Session. A session is a

short duration of time (δ), where entities communicate with each other. The default

session duration is δ0 milliseconds and each session is identified by a session identifier,

nδ. Every session update (after δ = δ0 milliseconds, by default) increments nδ. An

association, on the other hand, is a session of longer duration, which is updated every

time there is an update to the initial timestamp, ts0. Thus, an association may have

multiple sessions.

A parameter called session sequence number, SSN , helps in identifying the se-

quence number of messages in a session. This is an integer that increments with

each new message. SSN is set to 1 when the initiator sends the first message, M1,

updated to 2 with the response M2 sent by the responder, and incremented by 1 with

each subsequent message. This is a counter to identify the message sequence number,

in a particular session, which also forms an important element in protection against

replay attacks.

82

Table 5.3: Message Code (MC) format and description

MC
Message Type Message Contents & Their Use

(Bit pattern)

MC = 0 Regular Message ts: Current timestamp;

(00) FO: Optional; will contain

message, encrypted with KS

as explained by Equation (5.45);

MC = 1 Special Message, ts: Timestamp to replace ts0;

(01) with δO FO: Contains the value of δO;

(No change in δ) δO is used as the duration of

the session, overriding default δ;

nδ and SSN are reset to 0;

MC = 2 Special Message, ts: Timestamp to replace ts0;

(10) with δO FO: Contains the value of δO;

(Change in δ) δO is used as the duration of

the session, overriding default δ;

nδ and SSN are reset to 0;

In this case, δO will replace δ;

MC = 3 Special Message ts: Timestamp to replace ts0;

(11) (Seed Update) FO: Contains new seed, encrypted

as explained by Equation (5.45);

pb bits from the new timestamp

(ts) indicates seed to be replaced;

Outer envelope key is derived

using previous value of ts0;

nδ and SSN are reset to 0;

Communication between entities may include several types of messages summa-

rized in Table 5.3. Each message type is identified by a 2-bit code called the Message

Code. The session identifier, nδ, is computed using the timestamp, ts, and the initial

timestamp, ts0, based on the message type:

• In case of a regular message, MC = 00:

– The entity computes the difference between the two timestamps, ts and

83

ts0, and determines the integer division of this difference with the default

value of δ, i.e.

nδ =
(ts − ts0)

δ
(5.34)

– This value of nδ is compared with the ideal session update value, nδ,ideal,

which is the previously used value of nδ incremented by 1.

– If nδ ≥ nδ,ideal, the session is considered to be updated.

• However, special messages (MC = 01 or MC = 10 or MC = 11) force an

association renewal for the system, which means that the default value of nδ

and SSN are reset to 0. Special messages may or may not change the value of

session duration, δ.

With this mechanism, HiveSec1 facilitates a system to include the notion of ses-

sions and associations implicitly. Automatic session updates also change authenti-

cation parameters as explained next. Furthermore, each communicated message in

a session generates a new KS. Key updates with each message ensures high unpre-

dictability and thus, increased security. The outer envelope key, KO, in contrast is

generated every time there is session update or an increment in nδ.

Message Signature Module: HiveSign

HiveSec1 also features a mechanism to generate message signatures, as a fingerprint

for a specific transaction between a sender, the time of communication and encryp-

tion parameters. For this, we employ the HiveSign algorithm [14], which helps in

verifying the integrity of the message and the encryption key, in addition to verifying

the authenticity of the sender. HiveSign generates a message signature, mSignEntity

(with Entity = I, for initiator and Entity = R, for responder), by generating a

unique component to be signed, extracted from the intended message, the key and

other parameters. The component to be signed is based on the value of V ER, which

is the LSB of the timestamp, ts.

Initiator Message Signature, mSignI

The initiator uses ts and KS, in addition to SSN and its ID, IDI , to compute the

message signature as follows:

84

• When V ER = 0: Most-significant half of ts and least-significant half of KS are

extracted using masks, as summarized by Equations (5.35) and (5.36), respec-

tively. Here, • represents logical AND operation, LEFT MASK HS is a pat-

tern with the most-significant half set to 1 (i.e. FFF...0), andRIGHT MASK HS

is a pattern with the least-significant half set to 1 (i.e. 0...FFF). Note that

this is different from the left/right masks used for seed extraction since these

extract 50% of the bits from left/right halves of the considered components,

while during the generation of the actual seed, SA, 60% of the left neighbour

and 40% of the right neighbour seed are extracted using the masks.

C1 = ts • LEFT MASK HS (5.35)

C2 = KS • RIGHT MASK HS (5.36)

• When V ER = 1: Least-significant half of ts and most-significant half of KS are

extracted using the RIGHT MASK and LEFT MASK, respectively:

C1 = KS • LEFT MASK HS (5.37)

C2 = ts • RIGHT MASK HS (5.38)

• Using C1 and C2, the component to be signed (CSI) is determined as summa-

rized in Equation (5.39). Here, ∨ represents the logical OR operation, which is

used to combine the extracted components with the entity ID.

CSI = (C1 ∨ C2 ∨ IDI) ‖ SSN (5.39)

• Then, using V ER (ts0) (LSB of ts0), the message signature is computed as

follows (note: CSEntity = CSI , and mSignEntity = mSignI in this case):

– If V ER (ts0) = 0, the message signature is the output of a hash operation,

h(), performed on CSEntity.

msignEntity = h (CSEntity) (5.40)

– If V ER (ts0) = 1, the message signature is the output of PRNG function,

g(), performed using CSEntity as the seed.

msignEntity = g (CSEntity) (5.41)

85

Figure 5.10: Extraction of Components C1 and C2 [14]

Figure 5.11: Generation of Message Signatures [14]

Responder Message Signature, mSignR

mSignR includes the response (M) instead of ts, along with a half of KS chosen

at random. As with computing mSignI , C1 and C2 are extracted as summarized in

Equations (5.35) and (5.36) (or, Equations (5.37) and (), respectively. CSR is the

component to be signed, which is determined as a combination of C1, C2, IDR, SSN

and nδ, as summarized in Equation (5.42).

CSR = (C1 ∨ C2 ∨ IDR) ‖ nδ ‖ SSN (5.42)

86

Figure 5.12: HiveSign: Operational Modules/Units [14]

Then, based on V ER (ts0), either Equation (5.40) or Equation (5.41) is used to

compute the responder message signature, mSignR.

The message signatures are, therefore, a unique combination of parameters that

represent each communicating entity, the session, the message and the key, which

facilitates mutual authentication of entities, and the verification of the message and

the key. Its ability to represent each transaction uniquely is a measure to protect the

system against replay attacks.

The process of extracting the components C1 and C2 (in generation of both

msignI and msignR) is summarized by Figure 5.10, while the generation of the mes-

sage signatures themselves is illustrated by Figure 5.11. Figure 5.12 illustrates the

various operational modules/units in HiveSign.

Data Encryption

For our encryption scheme featuring HiveSec1 for key generation and authentication,

we use XOR as the encryption function, mainly as with other schemes proposed in

this thesis, for its involutory property and reduced resource usage. Encryption and

87

Algorithm 5 Encryption Using HiveSec1

1: procedure HIVESEC1Encrypt

2: //Determine level of encryption

3: //First level: KS is used for encryption the message

4: //Second level: KO is used to encrypt the already

5: // encrypted message and other parameters

6:

7: if First level of encryption then

8: Keyx ← HIV ESEC1KeyGen (generate KS)

9: else if Second level of encryption then

10: Keyx ← HIV ESEC1KeyGen (generate KO)

11:

12: cipheri ← EKeyx(mi) = mi ⊕ Keyx

decryption in HiveSec1 are summarized by Equations (5.43a) and (5.43a).

cipheri = EKeyx(mi) = mi ⊕ Keyx (5.43a)

decrypted message,m′i = EKeyx(mi) ⊕ Keyx (5.43b)

Here, mi is the message to be encrypted; Keyx is the encryption key, which could be

either KS or KO, and m′i is the decrypted message. Algorithm 5 summarizes data

encryption using HiveSec1.

Protocol of Operation

The protocol of operation in HiveSec1 is illustrated in Figure 5.13. When two enti-

ties, initiator (IDI) and responder (IDR), want to communicate using HiveSec1, the

operation proceeds as follows:

Step-1: M1 is the first message in a communication and is sent by the initiator. It

contains three components, namely — (a) a block encrypted using the outer

envelope key, KO, containing the current timestamp, ts, the initiator message

signature, msignI , and an optional field, FO; (b) followed by an unencrypted

and random 6-bit state variable, se; and, (c) an unencrypted 2-bit message code,

88

Figure 5.13: HiveSec1: Protocol of Operation

MC. The structure of M1 can be summarized as follows:

M1 = EKO
(ts ‖ msignI ‖ FO) ‖ se ‖MC (5.44)

Step-2: To construct M1, the initiator uses the following steps:

• The initiator first decides the type of message to be sent. Next, it re-

trieves timestamp, ts, and generates the encryption key, KS, as described

in Equations (5.28), (5.29a) (or 5.29b), (5.30a), (5.30b), (5.31) and (5.32).

• Simultaneously, it uses bits from the initial timestamp, ts0, and gener-

ates the outer-envelope key, KO, employing the techniques described in

Equations (5.28), (5.29a) (or 5.29b), (5.30a), (5.30b), (5.31), (5.33a) and

(5.33b).

• Following this, it determines the data portion to be encrypted, i.e. the

intended message. In HiveSec1, the initiator need not always send a data

portion in the regular message (MC = 00). If data is present however, it

is encrypted using key, KS, and included in the optional field (FO) of M1.

FO = EKS
(message) (5.45)

• In case of special messages, i.e. regular messages with δO (MC = 01 or

MC = 10) or seed update messages (MC = 11), the optional field is always

89

present and contains either the unencrypted value of δO or the encrypted

value of the new seed (the new seed is encrypted using KS, as summarized

in Equation (5.45)).

• Next, the initiator generates the message signature, msignI , using HiveSign.

• At this point, the initiator has in possession the timestamp, any encrypted

data and the message signature. This block of data is now encrypted using

the outer envelope key, KO, to generate the first component of the message,

M1.

• In case of seed update message (MC = 11), the initiator stores the gen-

erated value of KO for verification of the acknowledgement sent by the

responder. In this case, the outer envelope key is generated using the pre-

vious values of ts0 so that the responder can decrypt the sent message. The

seed is updated following receipt of the acknowledgement message.

• The initiator then attaches the remaining components, 6-bit state variable,

se and the message code, MC to this encrypted message and transmits it

as the message, M1.

Step-3: On receiving M1, the responder deciphers the message, as follows:

• It first retrieves the message code, MC, and the 6-bit state variable, se.

Following this, it generates the outer envelope key, KO, to decrypt the first

component of M1.

• It then retrieves the three sub-components, i.e. timestamp (ts), message

signature (msignI) and the optional field (FO - if present). The next step

is generation of the encryption key, KS, to decrypt the intended message

(if one is present).

• Based on the type of message, it proceeds with its tasks as follows:

– In case of a regular message (MC = 00), it computes its response,

encrypts it using KS, and generates the responder message signature,

msignR.

– In case of regular messages with δO (MC = 01 or MC = 10), it

updates delta, resets the session identifying parameters. Following

90

this, it computes its response, and encrypts it using KS, and updates

the initial timestamp, ts0, thereby forcing an association renewal.

– In case of a seed update message (MC = 11), it updates the seed as

indicated by Table 5.3 and updates the initial timestamp, ts0, forcing

an association renewal. Following this, it uses the mechanism sum-

marized by Equations (5.28)—(5.32) to generate a new key, KS. In

this case, since the current timestamp determines the parent seed to

be updated, the same parent seed is used to generate the key, KS,

using a random child seed there of, that is also determined by the

timestamp. This is only used for acknowledging the receipt and up-

date of the seed. This key, KS, is then used to encrypt the received

timestamp, ts, which also serves as an acknowledgement pattern. In

this special case, the same outer envelope key used to decrypt M1 is

also used as the outer envelope key while generating M2.

• At this time, the responder would have generated its encrypted response,

EKS
(MResponse), which could be the encrypted response or acknowl-

edgement. Following this, it generates the responder message signature,

msignR, using HiveSign as described earlier in this section.

Step-4: The responder then assembles the two components and computes message,

M2, and responds to the initiator.

M2 = EKO
(EKS

(MResponse) ‖ msignR) (5.46)

Step-5: Mutual Authentication: The entities use message signatures (msignI and

msignR) for authenticating each other. On receiving M1, the responder com-

putes message signature, msign′I , and attempts to validate the initiator by

checking whether msign′I = msignI . Subsequently, the initiator computes

msign′R and validates the received message (M2) and the responder by checking

whether msign′R = msignR.

5.5.4 BeeSwarm: Mechanism for Protection Against Attacks

Protecting an entity against attacks would involve two steps — (a) identification of

the attack, and (b) protection against the identified attack. The conventional and

91

effective form of protection is to preserve confidentiality and integrity of the message

using cryptographic techniques. However, cryptographic algorithms might not serve

to be effective for protection against attacks such as denial of service (DoS) or replay

attacks. HiveSec1 modules serve as means to accomplish security through increased

unpredictability in the computed encryption keys. We also go one step ahead and

propose a way to protect the entity against an attack in progress. The approach

we adopt is attacking the attacker, and the technique we propose is called BeeSwarm.

The “attacking the attacker” philosophy is derived from the concept of bees swarming

and attacking any creature in their way, when their hive is attacked or disturbed.

To attack an attacker, however, we would first need to identify that an attack is

in progress. The message signature module in HiveSec1 is designed to act as a shield

against replay attacks, and DoS attacks. HiveSec1 uses message signatures (msignI

or msignR) to identify any replay attacks, since their computation also includes nδ

and SSN as parameters.

BeeSwarm works based on one key assumption — if either the initiator or the

responder find εE consecutive messages to be erroneous, they flag the instance as a

possible attack. The rationale for this is as follows. In an ideal system, communication

would be error-free. However, in a real-life application, which need not be as ideal, one

cannot ignore external (noise) sources that have the potential to corrupt messages. In

HiveSec1, messages are encrypted using keys generated based on the timestamp. This

ensures that the same message encrypted on two separate occasions will yield different

ciphertexts. Thus, even in an imperfect (non-ideal) scenario, a system implementing

HiveSec1 will definitely be able to identify errors, i.e. the very first instance when

a sent message is erroneous. Implementations and standards in organizations would

dictate the tolerance of such errors, and hence, the value of εE. In our implementation,

we assume that a value of εE = 3 offers a balance (or a threshold) between classifying

messages as being communicated on an erroneous channel and classifying the system

as being under attack. Thus, if number of erroneous messages > εE, HiveSec1

classifies the system as being under attack, and initiates the BeeSwarm protocol.

The BeeSwarm protocol works on the following principle — the entity will flood

the attacker with a permitted number (nB) of non-meaningful responses. Each mes-

sage will be in the same structure as a normal message on the system, but the data

92

will be pseudorandom numbers, unrelated to either the actual message or keys. We

consider the permitted number of messages, nB, as part of the implementation to

accommodate for restrictions that might exist in resource-constrained systems. For

example, an RFID tag may be energized only for a specified period of time, or a

wireless sensor (or a wireless body sensor) might only be able to stay “alive” and re-

spond only for a specific period of time without exhausting its battery power and/or

increasing its surface temperature. Thus, after identifying an attack, the BeeSwarm

protocol works as follows:

• The entity uses SSN as a PRNG seed.

• If the entity is an initiator, it generates three random numbers to conform to

the syntax of message M1, as shown in Equation (5.44). The initiator error

response, εIE , is structured as shown in Equation (5.47).

εIE = εIE0
|| εIE1

|| εIE2
(5.47)

Here, εIEi
are the random numbers generated.

• In case the entity is a responder, it generates one random number to conform

to the syntax of the response, M2, as shown in Equation (5.46). The responder

error response, εRE
, is structured as shown in Equation (5.48), where εRE0

are

the random numbers generated.

εRE
= εRE0

(5.48)

• The entity then transmits this error response over the channel. It will con-

tinue to regenerate the random numbers and re-transmit the appropriate error

response up to a maximum of nB messages.

To summarize the BeeSwarm protocol, a communicating entity first identifies

the attack (and hence, the attacker) and bombards the attacker with a reasonably

large number of messages (similar to a swarm of bees), thereby turning an attacking

attempt into an attack on the attacker itself. The messages generated are simple

random numbers, with a new sequence being transmitted as each error response.

This, in addition to the fact that PRNG sequence generation is not very resource

93

Algorithm 6 BeeSwarm Protocol in HiveSec1

1: procedure HIVESEC1BeeSwarm

2: //Set PRNG seed

3: swarm seed← SSN

4:

5: if Entity is initiator then

6: swarm response← g(swarm seed) ‖ g(swarm seed) ‖ g(swarm seed)

7: else if Entity is responder then

8: swarm response← g(swarm seed)

9:

10: num responses← set based on duration or number of responses

11:

12: response count← 0

13: while response count! = num responses do

14: SEND TO SENDER (swarm response)

intensive, ensures that even a simple device, such as a passive RFID tag, can attack

the attacker, thereby attempting to protect the system. Algorithm 6 summarizes the

operation of BeeSwarm.

5.5.5 Summary

In this section, we described the HiveSec1 security modules that are used to generate

keys, message signatures and to protect a system under attack. To accomplish the

desired functionality and achieve unpredictability, we use multiple seeds, PRNG and

a mechanism derived from the concept of beehives to choose a combination of seeds

to generate keys for encryption. We perceive seeds to exist in the structure of a

“seedhive”, the size of which is dynamically determined by the timestamp. This key

generation process, though simple to illustrate and imagine, introduces complexity

for an adversary to guess or crack keys to attack the system. The overall algorithm

design is in a way that introduces a perception of complexity, when the actual system

concept is simple. This is a deliberate attempt to protect systems implementing

HiveSec1 from attacks such as replay and de-synchronization attacks.

94

HiveSec1 is aimed at improving security through combinations of operations with

random choices, be it for choosing seeds to generate keys or to choose different com-

ponents of messages and keys to generate the signature. Our approach is intended to

be low on resource consumption, facilitating its use in resource-constrained devices

without significant increase in available resources. Furthermore, our approach mod-

ular, in that it is can be deployed with any specific encryption algorithm and hash

algorithm, depending on the needs of the application.

5.6 Extending the Proposals to WBAN

RFID tags, especially passive tags, are even more resource-constrained than WBAN

on-body sensors. This is primarily because of the absence of an on-chip power source,

which limits the operating time of the tag. Our proposals, mainly GeM2 and But-

terfly1, were proposed for RFID systems as lightweight (independent) solutions for

security. HiveSec1, on the other hand, can be used in either RFID systems or WBAN

systems, or in any other network applications, owing to its session update mecha-

nism. In this section, we discuss as to how GeM2, Butterfly1 and HiveSec1 can be

extended/adapted to work in WBAN systems.

As discussed in Chapter 1, a WBAN consists of a set of on-body sensors, optional

actuators, personal server (intermediary) and the monitoring station. WBAN sen-

sors are connected to a power source (batteries), which enables them to perform the

required ‘sensing’ operation, among other tasks. However, the presence of a power

source does not imply that the sensors can be always on, since that would increase

the battery consumption and require frequent maintenance (battery replacement).

For optimal performance, sensors may be programmed to enter ‘sleep’ state follow-

ing message transmission, for a predetermined duration of time [66]. This, in a way,

makes them similar to active RFID tags.

Our approaches, GeM2, Butterfly1 and HiveSec1, can be used to protect the

communication between the sensor nodes and the WBAN body central node or the

hub (phase 1), and can also be employed for the communication between the hub and

the personal server (phase 2). With the personal server and the monitoring station

known to have higher computational abilities, we do not consider their security in the

purview of our work, although the key generation mechanisms proposed are generic

95

and can be used in that phase of communication as well.

5.6.1 Using GeM2 in WBANs

To use GeM2 in WBAN systems, we envision a scenario in which the hub and the

sensor nodes are initialized with the same initial parent key. This reduces the load

on the hub of having to store too many parent keys, depending on the number of on-

body sensors. One more assumption that we make is that the hub will store the initial

parent in a separate memory segment, in addition to the current (synchronized) state

parent keys of all on-body sensor nodes. This is to ensure that the hub is able to — (a)

regenerate associated parameters to identify any attempts of de-synchronization, (b)

demand any future or past state parameters such as asv to require a sensor to prove

itself in case it detects a potential attack, and (c) generate any parameters demanded

by the personal server/monitoring station, during the phase 2 of the communication.

Note that the reader role is eliminated in this extension of GeM2 to WBANs.

Any node when transmitting data to the hub in phase 1 will update its keys,

encrypt the current data using the generated key, generate the asv, and its commu-

nication with the hub is governed by the same protocol of operation described in

Section 5.3. In case the hub wishes to update the seed of any node, it updates the

seed internally first and transfers it to the node, using the last synchronized key and

asv for encryption and authentication, respectively. The acknowledgement then, will

include a key and asv generated using the newly updated seed.

Phase 2 communication between the hub and the personal server (or the moni-

toring station through the personal server) uses the initial parent key that is stored

in the hub. While initiating communication, the personal server or the hub will pick

a value of p and g at random and generate the corresponding key and asv, beginning

with the initial parent key as the first parent. Let us consider these values to be

pinitiator, ginitiator, kinitiator and asvinitiator. The receiver authenticates the sender and

validates the session using its stored value of the initial parent key and the received

values. Following this, it picks another set of values of p and g to compute the corre-

sponding values. Let us consider these values to be presponder, gresponder, kresponder and

asvresponder. On receiving these values, the initiator can authenticate the responder

and validate the session. They can communicate using any key that they generate in

96

this manner, throughout the session. If required and if the technology permits, the

same scheme of on-demand authentication and key generation can be used in phase

1 as well.

Thus, we can see that GeM2 is not only valuable as a lightweight mechanism in

RFID systems, but it can be employed in other resource-constrained environments

such as WBANs as well. The ability of GeM2 to be able to generate parameters

dynamically and facilitate on demand generation of parameters increases the over-

all uncertainty of the system, and hence the unpredictability, since keys are never

exchanged and seed updates are internal with each message transmission.

5.6.2 Using Butterfly1 in WBANs

As with GeM2, Butterfly1 too can be employed in both phase 1 and phase 2 commu-

nication in WBANs. When we consider phase 1, we assume that each sensor node

has a specific identifier (ID) that the protocol identifies as ηt and that each node has

a specific seed, sn that is stored at deploy time. The hub stores all these seeds and

IDs in memory, and maintains a separate seed for its own communication with the

personal server. Note that the reader role is eliminated in this extension of Butterfly1

to WBANs.

Butterfly1 also facilitates either entity to be able to demand the other generate

specific parameters for encryption and authentication. This begins with the random

choice of j at the initiator and retrieval of the timestamp (ti). If the initiator is the

sensor node, it computes the keys and the message signature based on the value of j

and ti, and transmits the encrypted recorded data to the hub as specified in Section

5.4. Following this, the hub authenticates the node using ηt and j, and sends an

acknowledgement on successful authentication, also as specified in Section 5.4. The

same mechanism can be applied when used in phase 2 of the WBAN communication,

with the personal server and the hub generating specific parameters on demand, as

decided by j and ti.

We can observe that the simplicity of the Butterfly1 algorithm enables us to extend

it to use with other resource-constrained application domains such as WBANs with

negligible changes/adaptations. If and when required, the size of the seeds (and hence,

the keys generated) can be increased to increase the security of the system.

97

5.6.3 Using HiveSec1 in WBANs

There are three ways in which HiveSec1 can be used in WBANs —

(a) having each sensor node store six parent seeds (as with RFID tags) and the hub

store a set of six seeds for each on-body sensor node, and potentially one set for

itself (if HiveSec1 is also used for phase 2),

(b) setting up the WBAN nodes to be a cluster in case there are six on-body sensors.

In this case, each node would have to store six parent seeds, the hub would also

store the same six seeds, in addition to one set of parent seeds for itself, if HiveSec1

is also used for phase 2, or,

(c) a combination of (a) and (b).

In case (a), the communication is governed by the same protocol discussed in

Section 5.5, with the feature of dynamic sessions now representing the security as-

sociation and the message transmission between each node and the hub. The seed

updates, if and when required, will also be as discussed in Section 5.5, with a spe-

cific seed of a particular node being updated each time. This is a straightforward

application of HiveSec1 to WBANs, without the need for any modifications.

Case (b), however, facilitates using only one set of parent seeds for all sensor nodes.

This will save memory utilization on the hub, and facilitate creation of a group-wise

key for broadcast communication. This would require that an additional key, called

the HiveSec1 Group Key, KG, be generated, as follows — the entities in the group,

i.e. the nodes and the hub, combine all the parent seeds, pi , to generate the group

seed, SeedG (the combination is done using XOR operation). Following this, they use

the deploy-time timestamp (ts0), to determine sg and generate the sthg pseudorandom

number for use as KG. This is summarized by Equations (5.49), (5.50) and (5.51),

respectively.

SeedG = p1 ⊕ p2 ⊕ p3 ⊕ p4 ⊕ p5 ⊕ p6 (5.49)

sg = Integer(ts0(3) ‖ ts0(2) ‖ ts0(1) ‖ ts0(0)) (5.50)

KG = gsg (SeedG) (5.51)

The limitation with this, though will be that if any of the sensors are physically

compromised, the whole network of nodes and the hub can be compromised. Physical

98

attacks can not be prevented by cryptographic solutions and separate tamper-proofing

mechanisms need to be employed to secure the sensors from such attacks.

A combination of both cases (a) and (b) can also be considered as case (c). This

provides a mechanism to not only increase the security of each node, due to the pres-

ence of a unique set of parent seeds for each node, but can also facilitate the creation

of a group-wise key as discussed earlier. This provides each node the ability to gen-

erate the group-wise key by itself, not requiring them to depend on the transmission

of such keys by the hub, although a simple extension of case (a) could be to include

the group-wise key transmission as a separate message type. In this case though,

the message code, MC = 3(11), would need to be modified to set FO to include the

encrypted group-wise key generated by the hub and timestamp, ts, set to the previous

acknowledged ts value to indicate group-key transmission.

We see that HiveSec1 not only facilitates direct application in WBANs, but also

has the potential for modification to support group-wise key generation with added

uncertainty, which can be separately generated on demand when both GeM2 and

Buttefly1 are used in WBANs.

5.7 Summary

The algorithms discussed in this chapter are independent, in their abilities to perform

as standalone algorithms for security in resource-constrained wireless networks, and

modular, having the ability for changing one or more of the internal modules (such

as encryption or hash algorithms) without affecting the overall design. These algo-

rithms are applicable to RFID systems as discussed in Sections 5.3, 5.4 and 5.5, and

can be extended for use in WBAN systems (and other resource-constrained networks)

as discussed in Section 5.6. Simplicity in their operation facilitates such easy adapta-

tions to different domains with very minimal modifications, while their mechanisms

of key/authentication parameter generation makes the system states unpredictable.

This adds to the overall security of the system, in addition to the type of PRNG,

encryption and message digest generation algorithms used.

Our thesis aims to include these standalone algorithms as constituents of the

framework proposed in Chapter 4, with the timestamps in Butterfly1 and HiveSec1

being used as part of the algorithm choice logic described by Equation (4.2). We

99

discuss their use with our framework and present an overall algorithm of operation

of the framework in the next chapter. We also discuss two use cases, discussing

how the framework and the constituent algorithms can be applied in those specific

applications.

Chapter 6

Synthesis: Integrating the Proposed Concepts

6.1 Overview

In the previous chapters, we have presented a discussion on the new metamorphic

framework for security, and its constituent algorithms. In this chapter, we discuss

the generic mechanism of using the constituent algorithms discussed in Chapter 5

with the framework presented in Chapter 4. Following this, we will explore two use

cases, where the proposed framework or the constituent algorithms can be applied.

Our framework is designed so that it can be deployed with its constituent algorithms

in any hardware implementation, and the simple mechanism described in Chapter 4

facilitates switching between the constituent algorithms at run time. Furthermore,

each algorithm proposed in this thesis is designed to independently secure resource-

constrained wireless networks, and therefore can be deployed as standalone algorithms

in various systems or collectively as part of the framework.

6.2 GeM2, Butterfly1 and HiveSec1 in the Metamorphic Framework for

Security

When GeM2, Butterfly1 and HiveSec1 are used in the proposed framework for secu-

rity, the algorithm choice logic (discussed in Section 4.2 on Page 45) can be visualized

as illustrated in Figure 6.1. The value of nAlg will be set to 3 in the computation of

rac (as defined in Equation (4.1)). The PRNG seed, seedac, would then depend on

the ID of the entity (RFID tag, WBAN sensor, RFID server or WBAN hub), and t0,

in this case will be updated as explained in Equation (6.1).

t0 =

ti if algorithm used for current transmission is Butterfly1

ts0 if algorithm used for current transmission is HiveSec1
(6.1)

Note that the value of t0 will be updated to the new value as specified in Equation (6.1)

following successful acknowledgement during the current transmission. This means

100

101

Figure 6.1: Algorithm Choice Logic with GeM2, Butterfly1 and HiveSec1

that for the current transmission, the key and other parameter generation processes

would use the previously stored (and acknowledged) value of t0, and update this value

following acknowledgement of the current message.

When using GeM2, Butterfly1 and HiveSec1 as part of our framework, the protocol

of operation is as follows for a communication of the ith message between Alice and

Bob (Figure 6.2):

Step-1: Alice retrieves the previously acknowledged and synchronized timestamp, t0,

and increments the stored value of rac, and computes the algorithm choice, Ca

using Equations (4.1), (4.2) and (4.3).

Step-2: The algorithms are chosen as per Equation (6.2).

Ca =


0 algorithm chosen = GeM2

1 algorithm chosen = Butterfly1

2 algorithm chosen = HiveSec1

(6.2)

Step-3: On choosing one of the available algorithms, Alice computes the encryption

keys and associated authentication parameters as explained in Chapter 5.

Step-4: Once messages to be transmitted are assembled as per the protocol of the

chosen algorithm, the framework verifies the length of the message to be trans-

mitted (MTI). For uniformity and to ensure uncertainty of the chosen algorithm,

102

Figure 6.2: Framework: Protocol of Operation

the length of the transmitted message is always considered to be the length (in

bits) of the longest message among all the algorithms. In our case, the longest

message transmitted is by Butterfly1. We consider this as λn. The framework

makes a decision on the transmitted message based on Equation (6.3).

Transmitted Message =

MTI if length(MTI) = λn

MTI ‖ g(SSN) if length(MTI) < λn

(6.3)

Here, g(SSN) is a pseudorandom number generated using SSN as the seed,

only to generate pseudorandom numbers (that have no meaning for the algo-

rithms) for padding the message to be transmitted so as to make it be of the

same length as the longest message. In case messages in Butterfly1 (or any other

algorithm) become longer than λn, they are broken into separate messages and

transmitted using the same mechanism.

103

Step-5: On receiving the ith message transmitted by Alice, Bob retrieves the times-

tamp, t0 and performs the same computations as Alice to choose the algorithm,

generate the keys and authentication parameters. The message integrity ver-

ification and entity authentication then proceeds as specified by the chosen

algorithm (discussed in Chapter 5). Note that on choosing the algorithm, Bob

will be able to discard the additional g(SSN) bits, if the algorithm used is

either GeM2 or HiveSec1.

Step-6: If Bob can authenticate Alice, Bob may respond with an encrypted acknowl-

edgement/response as specified by the chosen algorithm, which could lead to

session establishment or conclusion of a message transfer. On successful authen-

tication, Alice and Bob have synchronized states, and will be able to continue

with their communication.

Step-7: On the other hand, if Bob cannot authenticate Alice, action will proceed as

follows. Bob starts an internal counter, to keep track of the number of erroneous

messages or failed authentication attempts. If the next attempt results in a

successful authentication, the internal counter is reset to 0, and communication

proceeds as directed by the chosen algorithm. In case the counter reaches 3, Bob

invokes the BeeSwarm algorithm (Section 5.5.4) and responds with the allowed

number of meaningless responses, as an attempt to mitigate a potential attack.

Our framework is thus, able to utilize the best possible options from the available

algorithms to ensure security. By retaining the length of the transmitted message

to be a constant, our framework introduces an additional element of unpredictability

to an observer, while by using the BeeSwarm algorithm to attack the attacker (on

detection of a possible attack), it is able to use a mechanism not available in GeM2

or Butterfly1 to mitigate attacks. This is also made possible by the re-use and re-

configurability properties of our framework. The overall operation of the framework

with GeM2, Butterfly1 and HiveSec1 considered is summarized by Algorithm 7.

With the constituent algorithms being independent each having its own protocol

of operation, the framework modules can be conceptualized to be as illustrated in

Figure 6.3. Each algorithm will maintain its internal state in a specific segment

of the memory, which can be conceptualized to be a separate module. The seed

104

Figure 6.3: Conceptual Illustration of the Framework Modules with GeM2, Butterfly1
and HiveSec1

update algorithms, linear recursive mechanism used in GeM2 and bit-wise seed update

mechanism based on the Butterfly effect used in Butterfly1, can be conceptualized

to be located with the key management (and authentication) module. Both the seed

update module and key management (and authentication) modules would require

separate accesses to the memory to store current seed and key states, respectively. The

application module, which contains application specific parameters and functionality

that generates the data to be encrypted using the keys generated by our approach, can

be conceptualized to be able to access the storage, key management, data encryption

and message integrity modules for invoking specific functions, as and when required.

Such a highly modular approach to security will facilitate reconfigurability and re-use

of commonly used functions, to reduce the overall computational overhead, increasing

the system efficiency.

Having discussed the operation of the protocol when used with GeM2, Butterfly1

and HiveSec1 in this section, we consider two application use cases in the next section.

Under each application, we discuss as to how the framework and/or the independent

algorithms can be employed to ensure high security, due to unpredictability.

105

Algorithm 7 Operation of the Framework (with GeM2, Butterfly1 and HiveSec1)

1: procedure FrameworkOperation

2: //Invoke ChooseAlgorithm algorithm in Section 4.2

3: CA← ChooseAlgorithm()

4:

5: if CA = 0 then

6: //Algorithm chosen = GeM2

7: GEM2KeyGenEncrypt() //Section 5.3

8: //assemble message to be transmitted, MTI

9: else if CA = 1 then

10: //Algorithm chosen = Butterfly1

11: BUTTERFLY 1KeyGenEncrypt() //Section 5.4

12: //assemble message to be transmitted, MTI

13: else if CA = 2 then

14: //Algorithm chosen = HiveSec1

15: HIV ESEC1KeyGen() //Section 5.5

16: HIV ESEC1Encrypt() //Section 5.5

17: //assemble message to be transmitted, MTI

18:

19: if length(MTI) < λn then MTX ←MTI ‖ g(SSN)

20: else if λMTI = λn then MTX ←MTI

21: else if λMTI > λn then

22: //MTX consists of chunks of length, λMTI

23:

24: if authentication = failed then

25: AuthFailCounter + +

26: if AuthFailCounter = 3 then

27: //Invoke BeeSwarm algorithm in Section 5.5.4

28: HIV ESEC1BeeSwarm()

29: else if authentication = success then

30: TRANSMIT MESSAGE (MTX)

106

6.3 Use Case 1: RFID Application for Location Identification and

Guidance

6.3.1 Overview

Consider a scenario in which users need to navigate through a manufacturing plant.

The manufacturing process, and the intended application of the product X, imposes

severe restrictions on the placement of RFID tags on the manufactured products

themselves, owing to the use of steel and carbon fibre components. However, to keep a

track of the tools used in the manufacturing process, the manufacturing organization

places RFID tags on tool kits, with each kit known to have specific tools. Each

mechanic is authenticated prior to being given access to the tools, which also depends

on the access level of the mechanic.

6.3.2 Application for Location Identification and Guidance

We present an application in which the tools used and the location of the mechanic

are used to identify the task, and hence suggest an appropriate path for the mechanic

to determine the approximate location of the particular task. The working of this

application is as follows:

• The mechanic swipes his/her access card (containing an RFID tag) at location,

LX to access the tools. Here, LX is obtained by computing a concatenation of

latitude (Llt) and longitude (Lln), determined by the mobile device using WiFi

access point as reference and the received signal strength indicator (RSSI) to

determine the approximate location.

LX = Llt ‖ Lln (6.4)

• The mechanic’s card is authenticated and his/her access level is determined by

the server. On gaining access, the mechanic retrieves the tool kit (containing

tools used for the required task).

• The RFID tag on the access card and the reader at LX communicate with each

other using the proposed framework (or an appropriate algorithm) for validation

and data encryption.

107

• We assume that the mechanic has access to either a company approved mobile

device, smartphone or a tablet computer, running the application to identify

the location and suggest an approximate route for the location of the task. The

application is assumed to have a button to generate the route. Attached to the

mobile device is a short-range RFID reader that identifies the tools available in

the tool kit based on the RFID tag associated with the tool kit, when a route

is requested.

• When the mechanic presses the button in the application to generate the route,

the server uses the approximate current location of the user, uses the tag on

the tool kit to retrieve the location of the task, and dynamically constructs and

displays the route from the current location of the mechanic to the location of

the task.

In this application, security is an essential component since access to tools must

be granted only to authorized mechanics, with organization approved mobile devices.

Although the access control protocol itself is outside the purview of our work, we

assume that our framework is deployed for securing the communication between the

tags on the tool kits and the reader on the mobile device, and between the tag on

the access card and the server granting access. We discuss the feasibility of using our

framework and/or the constituent algorithms in the paragraphs that follow.

• Using the proposed framework : Our framework can be deployed in its entirety,

i.e. with all three constituent algorithms, or with algorithm pairs (GeM2-

Butterfly1, GeM2-HiveSec1, or Butterfly1-HiveSec1). We expect the communi-

cation between the mechanic’s access card and the reader at stations granting

the mechanic access to specific tools or locations would employ our framework

configurations (either with all three algorithms, C3 or with algorithm pairs,

C2). We introduced the possibility of using the framework with two algorithms

to provide flexibility for use in multiple application environments. We consider

that granting access is a more important task in this application domain, and

our framework provides the unpredictability required to ensure security of this

communication. The uncertainty associated with the choice of the algorithms

and the varying internal states of each algorithm in the framework makes this

108

a prime choice for securing this aspect of communication in the location iden-

tification and guidance application.

• Using the constituent algorithms : The algorithms proposed in this thesis can be

deployed as standalone security solutions to secure the communication between

the mobile short-range RFID reader and the tags on the tool kits. We suggest

the use of one of the possible algorithms and not the framework for this aspect of

communication because the tags on the tool kits could be just identity tags [16],

but still possess the ability to secure the communication using our lightweight

proposals. GeM2 can be deployed if a scheme such as a “rolling code” [89, 90] is

required since the key generation begins with one initial key and ‘evolves’ until

a particular state. If on demand parameter generation is desired, any of the

proposed algorithms can be deployed on the entities. Note that in this aspect

of communication in the application, emphasis is on authentication rather than

encryption, since the tags used are identity tags only to identify the tool kits

and might not be required to store sensitive information. Furthermore, this is

an additional security feature provided following authentication of the mechanic

(and hence, the associated mobile device/reader).

6.4 Use Case 2: WBAN Application for Remote Monitoring of

High-Risk Pregnancies

6.4.1 Overview

For this use case, we consider the application for remote monitoring of high risk

pregnancies that we had previously proposed [125]. We consider a situation in which

a pregnant woman, Ava, is being remotely monitored by her doctor. She is diabetic,

and her doctor, Ben, has identified a possible risk of pregnancy induced hypertension

and advised her to be on continuous monitoring. However, since she lives in a rural

location, she is being monitored by the doctor using a WBAN application, where the

doctor can monitor the health of both her unborn baby and her own.

The key aspects of communication in this application are as follows —

109

• There are sensors to record the Ava’s blood pressure, ECG (electrocardiograph),

blood glucose and fetal heart rate.

• The WBAN also has a BCU or a hub, which receives the recorded data period-

ically from the various sensors and transmits it to a personal server (Ava’s cell

phone). The data is then transmitted to and stored in the monitoring station.

• The WBAN monitoring station is programmed to send periodic updates and

emergency alerts (threshold-based), enabling Ben to monitor Ava’s health re-

motely.

Security becomes a critical requirement of this application with the data recorded

by the sensors representing Ava’s health at a particular instant of time and with

them being used to influence medical decisions. As discussed in Section 5.6, any of

the algorithms individually can be applied in this scenario. However, we consider the

following mechanism to accomplish security in this application — using the proposed

framework (C3) in the communication between the hub and the personal server, and

using HiveSec1 for securing the communication between the sensor nodes and the

hub.

• Using the proposed framework : As discussed in the RFID-based location iden-

tification and guidance application, the proposed framework (C3, with all al-

gorithms included) is the perfect candidate to secure messages just as they

leave the on-body WBAN (from the hub) towards the monitoring station, via

the personal server. This is a critical part of the communication because the

recorded data is being collected and transmitted to the monitoring station. The

framework’s ability to dynamically choose an algorithm to generate keys and

authentication parameters is suitable for this aspect of communication because

that would ensure that only Ava’s cellular phone that is authenticated by and

synchronized with the WBAN hub will be able to authenticate the WBAN data,

and forward it to the monitoring station.

• Using HiveSec1 for intra-WBAN communication: We suggest the use of HiveSec1

for securing the intra-WBAN communication, i.e. the communication between

sensors and the hub because it has the facility to generate/refresh group-wise

110

keys, as discussed in Section 5.6. Furthermore, using HiveSec1 allows the hub

to either use different parent seed sets for each sensor, or the cluster-based seed

storage/key generation mechanism, also facilitating the hub to switch between

these arrangements. The facility of automatically updating sessions (and there-

fore, session keys) enables each sensor to have a dynamically changing session

with the hub, increasing the overall security of the WBAN. This is further ben-

eficial since it removes the need for separate session update/change message

exchanges between entities, and consequently, reduces the associated overhead.

6.5 Summary

The strength of our proposals, as noted here is in the options available for deploy-

ment in different applications. Depending on the needs of various aspects of the

application, different elements of security may be deployed. If the communication

requires only authentication of entities with the devices not performing any data

exchange/encryption, any individual algorithm might be used for generating the au-

thentication parameters. The framework could also ideally be deployed in such a

scenario if resources were available. However, the framework or any constituent al-

gorithm may be used in any scenario involving exchange of sensitive information

that needs data to be encrypted and entities authenticated; although we envision the

framework being applied in such scenarios owing to the increased uncertainty and

consequently, security.

6.5.1 Revisiting our Hypotheses

Our framework and the constituent algorithms were designed with the goal of making

resource-constrained devices more ‘trustworthy’, by giving them the ability to gen-

erate parameters synchronous with a verified server. Our hypotheses, presented in

Chapter 3 (page 41), make broad predictions about the behavior of the framework

and its constituent algorithms. To test these hypotheses, we will use the following

assessments:

• We will evaluate algorithm choice (H1) by a proof of concept evaluation of

the proposed framework (and constituent algorithms), with random updates

111

in states and determining the algorithm used. We anticipate that the system

state updates will justify our claim and each algorithm will be chosen with a

probability of 1
nAlg

in the total number of trials. Here, nAlg is the number of

algorithms.

• We will evaluate the dynamic nature in key generation (H2) also using a proof of

concept evaluation of the framework (and constituent algorithms), and quantify

this measure using a uniqueness factor, υns, which is a measure of the number of

new keys generated in a given number of messages. We quantify it as specified

by Equation (6.5). We expect that the uniqueness factor will be 100% for the

main encryption keys in the algorithms.

υns =
number of new keys

total number of messages
(6.5)

• We evaluate key unpredictability (H3) using key similarity evaluation (with

similarity quantified by a number in the range 0.0 – 1.0) and key sequence

randomness assessment (based on the ability of the generated sequence to have

near equal presence of ‘1’ bits and ‘0’ bits). We anticipate that the keys will

be less similar to subsequent keys and that the key sequences will satisfy the

randomness criteria.

• In our proof of concept implementations, we will introduce an adversary entity,

which will inject messages previously transmitted (replay), attempt to inject

modified messages (data modification) and sending multiple requests (DoS), and

we expect each algorithm (hence, the framework) to detect such attacks. This

is our attempt to test our security hypothesis (H4). We expect our proposals

to pass the security assessment, be able to achieve security objectives and be

able to detect all considered attacks.

• We will evaluate resource utility by our proposals (H5) by deploying them

on a reconfigurable FPGA (Field-Programmable Gate Array), which helps in

assessing the amount of resources required by the proposals on Application

Specific Integrated Circuits (ASICs) in terms of an approximate gate count and

logical resources required for their implementation. Since our proposals employ

bitwise logical/simple arithmetic operations, we expect that our proposals are

112

efficient in terms of resource utility, and do not impose significant overheads for

memory, storage or computation.

Our framework and the constituent algorithms accomplish security through un-

predictability introduced by strategically combined logical operations. We discussed

this in the individual proposals of our algorithms and the framework, and we also

discussed their possible (adaptation and) applicability in real-time applications pre-

sented in this chapter. In the next chapter, we present the mechanisms we have

considered to evaluate our proposals and discuss the results obtained.

Chapter 7

Evaluation and Results

7.1 Overview

This chapter summarizes the methodologies used to evaluate our biomimetic meta-

morphic framework proposal for security in resource-constrained wireless networks

and the results obtained. We first discuss the proof of concept implementation and

the results obtained that help us ascertain our claims of unpredictability, followed

by a detailed security analysis, and by summarizing the resources utilized by our

framework as a whole and the individual constituent algorithms.

7.2 Proof of Concept Implementation

In order to be certain of the security offered by the keys generated by each algorithm

independently and the framework, we needed to establish that the concepts would

indeed perform as intended. Specifically, we accomplished this by:

• verifying the concept of each algorithm and the framework as a whole;

• evaluating algorithm choices (for the framework);

• verifying dynamic key generation (for the individual algorithms and the frame-

work);

• evaluating key similarity (using Sörensen’s Similarity Index (SSI), for the in-

dividual algorithms and the framework); and,

• assessing randomness associated with the keys.

7.2.1 Implementation Details

We implemented the functionality of each constituent algorithm and the framework

using Java programming language [126], and used Eclipse integrated development

113

114

environment (IDE) [127] for development. Table 7.1 summarizes the characteristics

and environment of the computer used for the proof of concept implementation.

Our implementation included a separate class file for each algorithm and for the

framework, and independent methods for accomplishing each function of the algo-

rithm/framework. Modularity is a central aspect in our proposal and we based this

implementation on the same concept. A separate file was used to manage static con-

stants. We used one test wrapper file to test all aspects of our proposal. We executed

the program to extract 10240 keys from the configurations summarized in Table 7.2.

While configurations C1 – C3 and C4 were mainly to evaluate each individual algo-

rithm and the overall framework, respectively, configurations C5 – C7 were used to

explore the performance of the framework when only two of the proposed constituent

algorithms were considered (all possible combinations) instead of all three together.

We performed this assessment because we wanted to explore the performance of our

framework in a scenario where the system deploying our framework required high

unpredictability, but did not necessarily possess the resources to deploy all three

algorithms. In all configurations where GeM2 is a component, the initial key was

set to 92EB8D6ECF7F808A705D1A4566991AF0, the initial seeds to compute the

PRNG seed were set to 14930352 and 24157817. In all configurations where Butter-

fly1 is a component, the PRNG used to choose the value of the variable j at random,

which decides the state of the seed (sj), was initialized to 192BC333250CCCFF ,

while the seed (s) itself was initially set to 12345678. For our HiveSec1 implementa-

tion, the six parent seeds of the ‘seedhive’ were initialized to 21365448FEA32DE0,

Table 7.1: Characteristics and environment of the computer used for the proof of
concept implementation

Processor Intel(R) Core (TM) i7-3632QM CPU @ 2.20 GHz

Installed memory (RAM) 16.0 GB (15.9 GB usable)

System type 64-bit Operating System, x64-based processor

Operating System Windows 8.1

Java Development Kit
1.7.0 update 40

(JDK) version

Eclipse version 4.3 (Kepler)

115

Table 7.2: Configurations tested using the proof of concept implementation

Configuration Description

C1 GeM2 algorithm

C2 Butterfly1 algorithm

C3 HiveSec1 algorithm

C4 Framework, containing GeM2, Butterfly1 and HiveSec1 algorithms

C5 Framework, containing GeM2 and Butterfly1 algorithms

C6 Framework, containing GeM2 and HiveSec1 algorithms

C7 Framework, containing Butterfly1 and HiveSec1 algorithms

F40925AB6B446781, E82745AEF95112DDC, 67A8366EFC8CC294, 48656CBCE

AA36291 and 998163AFE2A88A0A, while the seed for the PRNG when used to

choose the the value of se in HiveSec1 was set to 12345678FEDCBA98.

While generating the keys, we introduced random delays (0 to 2 seconds) between

key generation cycles, in order to emulate real-time data communication, and intro-

duced random key “refresh” cycles, forcing seed updates and system state changes.

We then used the generated keys to assess the various aspects of our proposal. Fur-

thermore, to programmatically extract the system timestamp, we used the standard

Java method, System.currentT imeMillis(). It is also to be noted that we used the

standard Java definitions of Random functions (defined in the Random class) for ex-

tracting pseudorandom sequences as and when required. The Random class in Java

also facilitates setting the value for the seed, which is a requirement for all our algo-

rithms. For the proof of concept, we also used SHA-1 (Secure Hash Algorithm) as

the hash algorithm, with a slightly modified implementation based on the definition

found in the SHA-1 online website [128], since our proposals are independent of the

type of PRNG or hash algorithm used.

Preliminary inspection of the program outputs justified that the algorithms (and

the framework) were performing as they were expected to, which led us to continue

with further assessment, which we describe in the following subsections.

116

7.2.2 Evaluation of Algorithm Choices

Methodology

In evaluating the proposals, specifically the framework (configurations C4 – C7), we

also logged the algorithm choices computed by the algorithm choice logic (Equations

(4.1), (4.2) and (4.3) in Chapter 4). We anticipated that the system state updates

cause each algorithm to be chosen with a probability of P (Alg) in the total number

of trials.

P (Alg) =
1

n(Alg)
(7.1)

Here, n(Alg) is the number of algorithms.

Results

Table 7.3 summarizes the count (key count) of each algorithm key generated by

the frameworks in a total of 10240 keys and the percentage of the total number of

keys the count represents. In our hypothesis (H1), we stated that each algorithm

would be equi-probable, with the algorithm choice probability represented by Equa-

tion (7.1). For configuration C4, the number of algorithms is 3, giving a probability,

P (Alg, C4) = 33.33%. For configurations C5 – C7, the number of algorithms is 2,

giving a probability, P (Alg, C5) = P (Alg, C6) = P (Alg, C7) = 50%. From Table

7.3, we can observe that the actual key count percentages obtained are very close in

value to the expected probabilities, with an average error of ±1.00%.

Figures 7.1 — 7.4 graphically illustrate the algorithm choices for each key genera-

tion cycle, summarized in Table 7.3. In these illustrations, the vertical axis represents

algorithms, where Algorithm 1 is GeM2, Algorithm 2 is Butterfly1 and Algorithm 3

is HiveSec1. Figures 7.1(a), 7.2(a), 7.3(a) and 7.4(a) represent the algorithm choices

for all 10240 keys in the respective configurations, while Figures 7.1(b), 7.2(b), 7.3(b)

and 7.4(b) illustrate a part (108 keys) of the total 10240 keys. We have included the

latter for each configuration to highlight the variation in key choices. Although the

key generation percentages are close to the expected probabilities, it can be noted

that the variation in algorithm choices, and hence, unpredictability is more in con-

figuration C4, while the amount of variations observed in configurations C5 – C7 are

lesser. Nevertheless, since the algorithms are chosen using a pseudorandom number

117

Table 7.3: Summary of algorithm choices by the proposed framework (configurations
C4 – C7)

Configurations GeM2 Butterfly1 HiveSec1 Totals

C4 (Key count) 3351 3446 3443 10240

C4 (Percentage) 32.72% 33.65% 33.62% 100%

C5 (Key count) 4917 5323 — 10240

C5 (Percentage) 48.02% 51.98% — 100%

C6 (Key count) 5230 — 5010 10240

C6 (Percentage) 51.07% — 48.93% 100%

C7 (Key count) — 5103 5137 10240

C7 (Percentage) — 49.83% 50.17% 100%

generator, algorithm choices are still unpredictable in configurations C5 – C7 al-

though the variation is less. Note that the illustrations shown in this section are only

to illustrate the variation in algorithm choices, and do not imply any specific ordering

of algorithms, since the choice of algorithms is dependent on the entity initiating the

communication and the time (indicated by timestamp).

In Figure 7.2, the algorithm choice is only between GeM2 and Butterfly1 (config-

uration C5), in Figure 7.3, the algorithm choice is only between GeM2 and HiveSec1

(configuration C6), and in Figure 7.4, the algorithm choice is only between Butterfly1

and HiveSec1 (configuration C7).

Figure 7.1: Variation in algorithm choices for Configuration C4, when considering all
10240 key sequences generated (a), and only 108 key sequences (b)

118

Figure 7.2: Variation in algorithm choices for Configuration C5, when considering all
10240 key sequences generated (a), and only 108 key sequences (b)

Figure 7.3: Variation in algorithm choices for Configuration C6, when considering all
10240 key sequences generated (a), and only 108 key sequences (b)

119

Figure 7.4: Variation in algorithm choices for Configuration C7, when considering all
10240 key sequences generated (a), and only 108 key sequences (b)

One thing to note is that even though the algorithm choices are unpredictable

to an unauthorized entity observing the communication (owing to changing internal

states of the variables used), it still remains deterministic to an authorized entity syn-

chronized with the sender, which facilitates mutual authentication, and key agreement

without the need for exchanging keys.

120

7.2.3 Uniqueness of Keys Generated

Methodology

To determine whether keys are unique, we compared the generated key streams for

repeated keys. Our expectation was that the system would generate unique keys for

each communicated message. Specifically, we expect this behavior for main encryption

keys such as, the new key, K, in GeM2, encryption key, Ki in Butterfly1, and the

encryption key, KS, in HiveSec1, and a combination of these keys in the framework

configurations, C4 — C7. We did not expect the seed sj and transfer key, KT in

Butterfly1 to exhibit the same behavior since we expect them to change as decided

by the server; similarly for the outer envelope key, KO, in HiveSec1, which we expect

to be the same for the duration of an automatically updating session. We quantified

this measure using a uniqueness factor, υns, which is a percentage measure of the

number of new keys generated in a given number of messages (Equation (6.5) on

Page 111).

Results

Table 7.4 summarizes the uniqueness assessment for each configuration we tested.

The table includes two sections, one summarizing the behavior of each configuration

for all 10240 keys and the second summarizing the behavior for the initial 108 keys.

We consider the latter as it helps better understand how each configuration generates

unique keys and whether there are instances when certain configurations generate the

same key, i.e. to examine any unexpected behavior. We illustrate the former case

(uniqueness behavior in 10240 keys) in Figure 7.5 and the latter case (uniqueness

behavior in 108 keys) in Figure 7.6.

Our expectation for this assessment was that the various configurations generate

as many unique keys as possible, ideally, 10240 unique keys. We observe that the

main keys, i.e. K in GeM2 (C1), Ki in Butterfly1 (C2) and KS in HiveSec1 (C3), and

their combination configurations (framework), C4(K,Ki, KS), C5(K,Ki), C6(K,KS)

and C7(Ki, KS) have an average of 10237.28 ≈ 10237 unique keys out of 10240 (or,

99.97%).

When we examine the algorithms individually, we observe that K in GeM2 (C1)

121

Table 7.4: Summary of key uniqueness
Configuration Uniqueness Measure Uniqueness Measure

(Keys considered) (Summary, 10240 Keys) (Initial 108 Keys)

Key count υns Key count υns
C1 (K) 10240 100.00% 108 100.00%

C2 (sj) 7656 74.77% 83 76.85%

C2 (Ki) 10235 99.95% 108 100.00%

C2 (KT) 6258 61.11% 68 62.96%

C3 (KS) 10237 99.97% 108 100.00%

C3 (KO) 9585 93.60% 102 94.44%

C4 (K,Ki, KS) 10239 99.99% 108 100.00%

C4 (K,KT , KO) 9909 96.77% 100 92.59%

C5 (K,Ki) 10238 99.98% 108 100.00%

C5 (K,KT) 8179 79.87% 81 75.00%

C6 (K,KS) 10236 99.96% 108 100.00%

C6 (K,KO) 9920 96.88% 104 96.30%

C7 (Ki, KS) 10236 99.96% 108 100.00%

C7 (KT , KO) 7982 77.95% 77 71.30%

generated the highest number of unique keys, 10240 / 10240 (100.00%), a behavior

expected from all main key configurations. We expect this from the main key config-

urations because the transfer and outer envelope keys in Butterfly1 and HiveSec1, re-

spectively, are dependent on the internal states of the updated seed sj and the session

identifier, nδ, respectively. However, the unique key shortfall for both Ki (Butterfly1)

and KS (HiveSec1), and the framework configurations, can be attributed to our use

of a random delay between successive key generation cycles. This random choice be-

tween 0 and 2 seconds between successive key generations means that the timestamp

could have been the same in case the delay was 0 seconds, making the keys identical.

This is acceptable since real-time delays between key generations (and message com-

munications) can be expected to be more than 0 seconds. Since this was the belief,

one could wonder why we chose to include 0 seconds within the range of acceptable

random delays in the proof of concept and our assessment. This was to take into

account the off-chance of two or more messages encrypted in rapid succession.

For additional key configurations, i.e. C2(sj), C2(KT), C3(KO), C4(K,KT , KO),

C5(K,KT), C6(K,KO) and C7(KT , KO), the lack of near 100% uniqueness can be

122

Figure 7.5: Plot illustrating patterns in unique keys generated, per 10240 keys in all
configurations

attributed to many factors. First and foremost, random choice of j — sj is the seed

that is modified as per the sender’s instruction. Since the choice of the variable j

was random, it could be the same for consecutive key generation cycles. This also

influences KT , since it is a pseudorandom number generated using sj as the seed.

Secondly, the choice and generation of KO is based on automatic session updates,

as specified in HiveSec1. This behavior is consistent with the framework configura-

tions C4(K,KT , KO), C5(K,KT), C6(K,KO) and C7(KT , KO), where transfer and

internal keys are considered.

Although these transfer and internal keys could remain constant, their state up-

dates remain unpredictable and the continuous updates to the encryption keys ensure

that the overall encrypted message remains unpredictable. Another layer of unpre-

dictability is added by the framework itself, which chooses one of these algorithms at

123

Figure 7.6: Plot illustrating patterns in unique keys generated, per 108 / 10240 keys
in all configurations

random for each key generation/message encryption cycle.

124

7.2.4 Evaluation of Similarity Between Keys

Methodology

According to Kerckhoff’s principle [31], the knowledge of the operational specifics of

a cryptosystem (except the key) must not reduce its security. Thus, it is essential to

ensure that there are no apparent patterns in the encryption keys that could compro-

mise the security of the cryptosystem. This led us to verify how similar consecutive

keys generated by each algorithm and the framework are, since our approaches use

varying logical operations to accomplish the desired functionality. The other reason

why this assessment is necessary is due to the approach of GeM2 to use a ‘parent key’

and derive future keys from that. To evaluate similarity between keys, we considered

keys generated by the system and compared pairs of keys. We used Sörensen’s Sim-

ilarity Index (SSI) [129] to quantify the amount of similarity between consecutive

keys. SSI is a measure of how similar the various pairs of keys are, i.e. it is the ratio

of twice the total similar characters in the two keys to the total size (in characters)

of each key. Equation (7.2) summarizes the computation of SSI.

SSI =
2× n(A ∩B)

n(A) + n(B)
(7.2)

Here, n(A∩B) represents the number of characters (or, numbers) in the key pair that

are same, n(A) and n(B) represent the total number of characters (or, numbers) in

each of the keys A and B of the key pair, respectively.

We computed SSI for each pair of keys, and compute the average SSI for each

configuration highlighted in Table 7.2. Furthermore, we divided each key into 32-bit

blocks (key substrings) and computed the SSI between each such block for the same

pair of keys. When comparing key substrings, we refer to the most significant 32-bit

block (bits 96...127) as substring1, the next block (bits 64...95) as substring2, the

block (bits 32...63) as substring3, and the least significant 32-bit block (bits 0...31)

as substring4.

To understand how SSI computation is useful in assessing the security of keys, let

us consider three example cases — (a) non-ideal, (b) ideal and (c) average, with 16-bit

keys, i.e. n(A) = n(B) = 16. In the non-ideal case, let us consider that the two consec-

utive keys are identical, e.g. Key1 = Key2 = 0123456789ABCDEF , implying that

n(A∩B) = 16. From Equation (7.2), we get SSInon−ideal = 1.0000. In the ideal case,

125

consider that Key1 = 376533A30ACC7653 and Key2 = F124489BDEF14FEB,

where both Key1 and Key2 are unequal, implying that n(A∩B) = 0, and therefore,

from Equation (7.2), we get SSIideal = 0.0000. In the average case, consider that

Key1 = 010124AC67899736 and Key2 = 5347BDEEA4330FFF , as might be the

case when keys are generated using (pseudo)random number generators. In this case,

the unique characters in Key1 are {0, 1, 2, 3, 4, 6, 7, 8, 9, A, C} and the same in Key2

are {0, 3, 4, 5, 7, A,B,D,E, F}, which results in n(A ∩B) = 5. From Equation (7.2),

we compute SSIaverage = 0.3125.

There are 32 characters, i.e. combinations of hexadecimal digits (0...9, A...F), in

total in a 128-bit key. Since (pseudo)random number generator output characters

are equi-probable, i.e. have equal probability of being one of all possible outputs, it

is reasonable to expect that there can be at least 10 characters that can be found

in both keys, despite them being different. If we substitute n(A ∩ B) = 10 and

n(A) = n(B) = 32 in Equation (7.2), we get an SSI value of 0.3125. Due to this

reason, our expectation was that both the framework and the individual algorithms

will generate dissimilar keys (when considered wholly or as 32-bit blocks), with an

average SSI value in the vicinity of 0.30, as we would need the similarity between

keys to be sufficiently low (at least less than 0.50) in order for the keys to be secure,

and the encrypted data to be safe from attacks. Low values of SSI also means that

the number of repeating characters in the key sequences is lesser, which also adds to

the security.

Results

Table 7.5 summarizes the average SSI values for 10240 keys for all configurations,

when keys are considered wholly (128 bits) or as four 32-bit blocks. Figure 7.7

illustrates these average SSI values, from which we can observe that the SSI for

full keys (128 bits) lie in the range 0.30 ≤ SSIav,fullkey ≤ 0.40, except for C2(sj),

which has a full key SSI value of 0.2092. Low average values of SSI indicate that

the keys generated by our algorithms and the framework are largely dissimilar. Next,

we discuss the similarity of each configuration, considering both full keys and 32-bit

blocks in each, and illustrating the variation in similarity between successive keys. It

has to be noted that the illustrations for each configuration contains only the initial

126

Table 7.5: Summary of similarity between keys

Configuration Average SSI (SSIav)

(Keys considered) Full Key Substring1 Substring2 Substring3 Substring4

C1 (K) 0.3040 0.3371 0.3315 0.3307 0.3312

C2 (sj) 0.2092 0.1250 0.1250 0.0936 0.7178

C2 (Ki) 0.3809 0.3279 0.3237 0.3277 0.3252

C2 (KT) 0.3833 0.5328 0.6167 0.6951 0.6271

C3 (KS) 0.3816 0.3271 0.3246 0.3259 0.3254

C3 (KO) 0.3847 0.3516 0.3587 0.3568 0.3526

C4 (K,Ki, KS) 0.3514 0.3125 0.3067 0.3109 0.3103

C4 (K,KT , KO) 0.3406 0.3069 0.3432 0.3624 0.3434

C5 (K,Ki) 0.3437 0.3285 0.3274 0.3280 0.3288

C5 (K,KT) 0.3437 0.4314 0.4767 0.5170 0.4806

C6 (K,KS) 0.3415 0.3287 0.3271 0.3280 0.3263

C6 (K,KO) 0.3442 0.3453 0.3426 0.3449 0.3420

C7 (Ki, KS) 0.3812 0.3262 0.3249 0.3255 0.3263

C7 (KT , KO) 0.3827 0.4391 0.4801 0.5195 0.4878

108 comparisons, as a way to illustrate the variability clearly within the confines of a

letter-sized page.

Figure 7.8 illustrates the SSI variation in the initial 108 comparisons of keys

generated by configuration C1 (GeM2). The variability in SSI is high, being centred

around 0.3000, which is as expected. In the keys generated by GeM2, the child

keys are expected to have the same base pattern bit as the parent key, with changes

(mutations) introduced in the other bits. This is one of the reasons why certain

successive keys appear to have increasing similarity with the previous keys, or the

similarity appears to “grow” to a certain point. However, GeM2 includes a mechanism

of random choice between generating a child key or a parent key refresh, which ensures

variability in SSI and unpredictability in key generation, thus adding to the security.

This variability can also be observed in the substring comparisons, representing

comparisons of the four 32-bit blocks of the keys. However, the observed similarity

has a larger range, 0.0000 ≤ SSIsubstrings ≤ 0.6000, with a few outlying values beyond

0.6000. This can be attributed to the reduced size of the block under comparison.

127

Figure 7.7: Variation in average SSI for all configurations

There are 8 characters in a 32-bit block and the more similar characters there are

in the blocks under comparison, the more the similarity between them. However,

increased variability in the similarity coefficients between successive keys (as observed

in the illustration) implies that even though the SSI range increases, the security is

not reduced.

Figures 7.9, 7.10 and 7.11 illustrate the variation of SSI in configuration C2 (But-

terfly1). One aspect that stands out when observing Figure 7.9 is the lack of variation

in substring1 and substring2. This is because the seed, sj, in the our proof of concept

implementation is a 64-bit number, which left the upper half of the 128-bit generic

SSI comparisons as 0s (note that all our assessments were performed with 128-bit

keys, and any lesser sized key was zero padded prior to the assessment). With all

characters being 0s, the SSI is constantly 0.1250. substring3 and substring4 vary,

albeit not considerably, as decided by a random choice of the state change variable, j

128

Figure 7.8: SSI Variation (Configuration C1)

Figure 7.9: SSI Variation (Configuration C2, key = sj)

129

Figure 7.10: SSI Variation (Configuration C2, key = Ki)

that is decided by the server. The increased similarity in substring4 can be attributed

to sj changing by a lower factor than other keys. The low value of SSI for the full

key comparisons for sj, thus, is dependent on the lack of variation in similarity in

substring1 and substring2. However, since sj is only one of the parameters that are

used to generate the encryption key, Ki, and transfer key, KT , and with its updates

controlled by the server, we can deduce that the lack of variability in similarity in

this case does not compromise the security of the overall system.

This aspect is justified by the increased variability in the similarity in keys, Ki and

KT . The full keys and each substring in Ki and KT display considerable variation,

which can be attributed to the changing timestamp and sj, respectively, that generate

these keys. We have to note that although there is a lack of variation in sj, PRNG

algorithms are designed in a way so as to change the outputs significantly with small

changes in the seed value; an aspect we capitalize on in our Butterfly1 proposal.

The keys generated by HiveSec1 are dependent on several factors, including the

timestamp, random choice of one of six parent seeds (and its neighbours), and one of

either 6 or 18 possible states of the child seeds, which are then used to generate the

130

Figure 7.11: SSI Variation (Configuration C2, key = KT)

final key. This ensures unpredictability in key generation. When considered with the

fact that the sessions update either at random or as decided by the session parameter,

nδ, and the use of initial timestamp (ts0), the unpredictability of the overall algorithm

remains high. Our similarity assessment of this algorithm highlights the increased

variability in similarity coefficients, with the full key SSI for KS centred around

0.3700 (Figure 7.12) and that for KO centred around 0.3800 (Figure 7.13).

The substring similarity remains similar to configuration C1 in KS, with most

substring SSIs in the range,0.0000 ≤ SSIsubstrings ≤ 0.6000, with a few exceptions.

However, when we observe the substrings for KO, we see some values being exactly

similar, i.e. with SSI = 1.0000. This is because in a single session, the outer envelope

key (KO) is not expected to change. Nevertheless, with the sessions changing as

mandated by the server (through se), the variability in the full keys overcomes any

lack thereof in the substrings, justifying our claim that the security remains high due

to varying similarity between consecutive keys.

The similarity of keys in the framework configurations C4, C5, C6 and C7 depend

on the following factors — the number of algorithms used in the framework (3 in C4

131

Figure 7.12: SSI Variation (Configuration C3, key = KS)

Figure 7.13: SSI Variation (Configuration C3, key = KO)

132

Figure 7.14: SSI Variation (Configuration C4, keys = {K,Ki, KS})

and 2 in C5, C6, C7), and on the random choice of one of the available algorithms.

The keys in these configurations are therefore, implicitly not expected to be similar

to each other. This is supported by the varying similarities in the keys generated by

the individual algorithms discussed previously, and by the plots of the SSI values

illustrated in Figures 7.14 — 7.21. The main key combination configurations in the

framework, i.e. C4(K,Ki, KS), C5(K,Ki), C6(K,KS) and C7(Ki, KS) all display a

high amount of variability in SSI coefficients, with an overall trend of the SSI values

being centred around 0.3700. The additional key configurations, i.e. C4(K,KT , KO),

C5(K,KT), C6(K,KO) and C7(KT , KO), display varied similarities, although they

are generally centred around 0.3850.

This exercise of determining the similarity between the keys leads us to believe that

all configurations have SSI values closer to the average (expected) case discussed in

Section 7.2.4. This goes to justify our claim that the “quantified” similarity between

keys is lower, in most cases less than 0.4000, adding to the unpredictability of keys

(if keys are not similar, it is less likely that an adversary might ‘guess’ the patterns

in the subsequent keys) and thus, adding to the security of our proposal.

133

Figure 7.15: SSI Variation (Configuration C4, keys = {K,KT , KO})

Figure 7.16: SSI Variation (Configuration C5, keys = {K,Ki})

134

Figure 7.17: SSI Variation (Configuration C5, keys = {K,KT})

Figure 7.18: SSI Variation (Configuration C6, keys = {K,KS})

135

Figure 7.19: SSI Variation (Configuration C6, keys = {K,KO})

Figure 7.20: SSI Variation (Configuration C7, keys = {Ki, KS})

136

Figure 7.21: SSI Variation (Configuration C7, keys = {KT , KO})

137

7.2.5 Evaluation of Key Randomness and Unpredictability

Methodology

Further to our assessment of similarity between consecutive keys (Section 7.2.4), we

wanted to study the overall randomness associated with the key sequences generated

by our proposed framework and its constituent algorithms. To evaluate the ran-

domness (and unpredictability) properties, we used the Statistical Test Suite (STS)

for Random and Pseudorandom Number Generators for Cryptographic Applications,

specified by the National Institute of Standards and Technology (NIST) [130]. Al-

though STS has been proposed to assess the randomness and unpredictability of ran-

dom and pseudorandom number generators, and our proposals are not intended to be

used as pseudorandom number generators, we use this assessment purely as a means

to assess the randomness properties associated with the key sequences generated by

our proposals.

For the purposes of tests using STS, we computed the binary values of the hex-

adecimal keys generated by our proof of concept implementation, using the same set

up detailed in Table 7.1 and for each configuration listed in Table 7.2.

STS assessment assumes that each sequence of keys, in our case 128-bit keys, is a

sequence of 1s and 0s. The test suite assesses randomness, i.e. the property of each

bit being chosen at random using a variety of statistical tests. It is expected that for

cryptographic applications, random and pseudorandom number generators must have

forward and backward unpredictability. Forward unpredictability implies that even

if an entity has a knowledge of a set of sequences generated by the PRNG under test,

the entity must not be able to predict the sequences that follow. Backward unpre-

dictability is the property of a PRNG to be safe from attacks intended at decoding

the seed given a knowledge of a set of output pseudorandom sequences.

When testing any PRNG algorithm, the null hypothesis that is tested by STS

is that the given sequence (and hence, the algorithm) is random, i.e. a “tentative

assumption of randomness” [130]. If the tests result in overwhelming support of the

algorithm being tested, the null hypothesis is not rejected. The randomness test

statistic and the corresponding critical value are determined by the STS, to assist in

the decision regarding the null hypothesis. For each test, the bit sequence is used to

138

compute the test statistic and α = 0.01. Each randomness test in STS computes a

P -value, which is a measure of the probability that the sequence being tested is more

random than that generated by a perfect random number generator. This means that

the sequence would “appear to have perfect randomness” for a value of P = 1.0, and

“appear to be completely non-random” for a value of P = 0.0.

For the STS tests, the bit sequence (of length n) is represented by:

ε = ε1, ε2, ε3, ..., εn (7.3)

It must be noted that the STS has been designed to evaluate long sequences

of bits, i.e. greater than 20000 bits, as would be expected from a (pseudo)random

number generator. Even though STS is expected to work with sequences with length

less than 20000 bits, we limit our assessment to evaluate the number of sequences

that pass each test, as an attempt to determine the unpredictability associated with

that configuration. For 10000 sequences (sample size, m), STS determines the range

of acceptable proportions, i.e. the confidence interval, as follows [130]:

Confidence interval, CI = p̂± 3

√
p̂(1− p̂)

m
(7.4)

Here, p̂ is (1 − α), with α being the significance level. In this assessment, α = 0.01

and sample size, m = 10000. The confidence interval is CI = 0.99± 3
√

0.99(1−0.99)
10000

=

0.99± 0.00298496. Therefore, for a set of sequences (and hence, configuration) to be

considered random, the minimum (acceptable) number of sequences that have to pass

the test are (0.99− 0.00298496)× 10000 = 0.98701504× 10000 ≈ 9870 sequences.

We use the following statistical tests, to assess the (10000 × 128-bit) sequences

generated using the various configurations listed in Table 7.2.

• Frequency (Monobit) Test:

This test is used to compute the proportion of 1s and 0s for the entire sequence.

Specifically, the test assesses whether the sequence being tested has an equal

number of 1s and 0s. The absolute value of the sum of the bit distribution is

first computed, i.e. Sn =
∑
Xi with Xi = +1 if a bit is 1 and Xi = −1 if a

bit is 0. The test statistic is the ratio of the absolute value to the length of the

bit string (n), i.e. sobs = Sn

n
. If the number of 1s and 0s in each sequence are

139

approximately equal in number, the value of the test statistic is nearer to 0.0,

resulting in high P -values, implying that the sequence appears to be random.

• Frequency Test within a Block:

This test is similar to the Frequency (Monobit) test. It is used to determine

the number of 1s in a set of M -bit blocks in the sequence. The proportion of

1s, πi, is computed as πi =
∑M

j=1 ε(i−1)M+j

M
, for 1 ≤ i ≤ N and N = b n

M
c =

number of non-overlapping blocks. Using πi, the test statistic is determined

as χ2(obs) = 4M
∑N

i=1(πi −
1
2
)2. As with the Frequency (Monobit) test, if the

number of 1s in each block is approximately equal in half of the length of the

block, the value of the test statistic is nearer to 0.0, resulting in high P -values,

implying that the block (and hence, the sequence) appears to be random.

For our assessment, we set the block size to be 32 bits, to be consistent with

the tests for similarity for the configurations.

• Runs Test:

A contiguous set of identical bits is referred to as a run, and the Runs test is

used to determine the number of such runs that exist in the sequence under

test. This test is used to determine if such runs are spread out in the sequence,

i.e. “whether the oscillation between 0s and 1s is too fast or too slow” [130].

First, the proportion of 1s, π is computed as π =
∑
εj
n

. Then, it proceeds

to determine if the sequence has passed the Frequency (Monobit) test. Runs

test is not performed if |π − 1
2
| ≥ τ , with τ = 2√

n
. Following this, if the

sequence passes the Frequency (Monobit) test, the test statistic is computed

as Vn(obs) =
∑n−1

k=1 r(k) + 1, with r(k) = 0 when εk = εk+1 and r(k) = 1

otherwise. The P -value is computed using the test statistic and when P < 0.01,

the sequence is considered to be non-random.

• Longest Run of Ones in a Block:

This test checks for the longest run of 1s in blocks of size, M bits, as a means

to verify if the length of such a run is the same as what would be generated

by a random sequence. For our assessment, the block size, M was set to 8

bits (predefined by STS, for a sequence length of 128 bits). The test statistic

is obtained as χ2(obs) =
∑K

i=0
(νi−Nπi)2

Nπi
. For a block size of M = 8 bits, STS

140

defines K = 3, N = 16 and πi are theoretical probabilities of K + 1 classes. νi

represents the frequencies of the longest runs of 1s in the categories ≤ 1, 2, 3 or

≥ 4, for M = 8 bits. Higher P -values (nearer to 1.0) indicate that the sequence

is considered random.

• Discrete Fourier Transform (Spectral Test):

A random sequence requires that periodic features (such as repetitive patterns)

not be present. This test is used to determine whether any such features exist, by

computing the “normalized difference (d) between the observed and expected

number of frequency components that are beyond the 95% threshold”. The

value of d is determined as d = (N1−N0)√
n(0.95)(0.05)/4

, with N0 being the expected

(95%) number of peaks when randomness is assumed that are less than the

threshold, T =
√

(log(1
0.05

))n, and N1 being the actual number of peaks that

are less than T . A low P -value indicates the presence of periodic features, and

hence means that the sequence under test must be considered non-random.

STS determines the uniform distribution of P-values as a summary P − valueT
computed using the complementary incomplete gamma function, igamc, using the

following expression:

P − valueT = igamc(
9

2
,
χ2

2
) (7.5)

Here, χ2 =
∑10

i=1
(Fi−s/10)2

s/10
, with Fi being the total number of P-values in the inter-

val, i, and i is the one of ten equal intervals between 0.0 and 1.0. If the resultant

P − valueT ≥ 0.0001, then, the P-values are considered to be uniformly distributed,

a characteristic desired in (pseudo)random number generators. However, to reiterate,

since our proposals are not intended to function as (pseudo)random number genera-

tors, we explore the acceptance with regard to the number of proportions that pass

each test. In the next section, we discuss the results obtained when we tested the

sequences generated by our algorithms using STS.

Results

We limited the analysis to the total number of sequences (out of 10000) that passed

each statistical test discussed in the previous section. To be consistent in our analysis,

141

we considered the following configurations (and keys) for assessment, and considered

a block size of 32 bits for the frequency test within a block.

• K generated by GeM2 (configuration C1);

• Ki and KT generated by the Butterfly1 algorithm (configuration C2);

• KS and KO generated by the HiveSec1 algorithm (configuration C3);

• Key combinations (K,Ki, KS) and (K,KT , KO) generated by the framework

with all three algorithms (configuration C4);

• Key combinations (K,Ki) and (K,KT) generated by the framework with GeM2

and Butterfly1 algorithms (configuration C5);

• Key combinations (K,KS) and (K,KO) generated by the framework with GeM2

and HiveSec1 algorithms (configuration C6);

• Key combinations (Ki, KS) and (KT , KO) generated by the framework with

Butterfly1 and HiveSec1 algorithms (configuration C7);

Table 7.6 summarizes the number of sequences from each configuration that passed

each statistical test, noting that according to Equation (7.4), the total number of

sequences that need to pass a test to be considered as unpredictable or random are

9870 out of 10000 (or, 98.70%).

We observe from Table 7.6 that although many configurations pass the 98.70%

criterion, some significantly, several configurations fail the test. We discuss how the

configurations performed in each test in the paragraphs that follow.

We observe that configurations C2, C3 and C7, with their different key combi-

nations outperform the others in the Frequency (Monobit) test. This goes to show

that the Butterfly1 and HiveSec1 key generation, and their combinations, proposals

perform better. We can also observe that GeM2 (configuration C1) performs poorly.

This was expected in the STS analysis because the concept of gene mutation and

transfer, as applied in this algorithm, makes the keys evolve keeping one key as the

“parent”. This implies that such a restricted evolution of keys limits the randomness

in the keys, although the keys output by GeM2 are low in terms of similarity between

consecutive keys and in terms of the unique keys generated. This behavior is carried

142

Table 7.6: NIST STS Assessment: Summary of results (Number of sequences out of
10000 that passed each test)

Configuration
FM Test1 FB Test2 Runs Test LR Test3 DFT Test4

(Keys considered)

C1 (K) 4998 5027 5140 5360 9933

C2 (Ki) 9895 9908 9906 9896 9862

C2 (KT) 9906 9906 10000 9917 10000

C3 (KS) 9908 9921 9907 9918 9857

C3 (KO) 9885 9930 9909 9904 9804

C4 (K,Ki, KS) 8288 8320 8342 8400 9856

C4 (K,KT , KO) 8299 8318 8365 8416 9917

C5 (K,Ki) 7555 7564 7623 7716 9885

C5 (K,KT) 7564 7572 7666 7724 9964

C6 (K,KS) 7405 7423 7482 7585 9876

C6 (K,KO) 7406 7427 7467 7573 9889

C7 (Ki, KS) 9885 9907 9880 9905 9837

C7 (KT , KO) 9901 9897 9951 9918 9909

1 : Frequency (Monobit) Test

2 : Frequency Test within a Block

3 : Longest Runs of Ones in a Block

4 : Discrete Fourier Transform (Spectral Test)

into configurations C4, C5 and C6, where GeM2 is a component. The improvement

due to Butterfly1 and HiveSec1 can be clearly observed when we compare the number

of sequences that passed the frequency test for configurations C4, C5, C6 and C7,

i.e. the framework configurations. We observe that both key combinations of C7

pass the test, while the success rate of C5 and C6 are lower. When we observe C4,

the performance in the test seems to be better compared to C5 and C6, due to the

presence of both Butterfly1 and HiveSec1.

The performance of each configuration in all other tests, except the Discrete

Fourier Transform test, is similar to the frequency test in that GeM2 performs poorly,

Butterfly1 and HiveSec1 outperform it considerably, and contribute to the improve-

ment in the performance of the framework even when GeM2 is included. In this

143

context, we refer to performance as being indicative of the number of sequences that

passed the test.

When we consider Discrete Fourier Transform test, however, we observe that al-

most all the configurations, including C1 (GeM2), pass this test. The configurations

that come close to the passing criterion are C2 (Ki), C3 (KS), C3 (KO) and C7

(Ki, KS). This indicates that the distributed periodic features come close to perform-

ing similar to a random sequence.

From our observations and from the data in Table 7.6, we can conclude that the

configurations C2, C3 and C7 prove to be acceptable, when considering the propor-

tions of test that pass the criterion (> 9870). However, detailed results (in Appendix

A) indicate that the summary P-values, i.e. P − valueT , representing the uniform

distribution of P-values is 0.0000 in all cases. The detailed result tables in Appendix

A also indicate the distribution of P-values in each of the ten equal intervals, Ci, be-

tween 0.0 and 1.0. We observe that although a set of sequences pass each test based

on the proportion criterion (> 9870), the distribution of P-values is not uniform.

Thus, although some of the proposals could be considered as having acceptable ran-

domness under proportionality criterion, they cannot be considered the same under

the P-value uniformity criterion.

Although certain configurations of the framework fail the STS assessment, we need

to recall to the fact that STS assesses individual sequences (of 128 bits each), to deter-

mine their randomness/unpredictability as characterized by their performance with

respect to each test. We also need to draw our attention to the fact that the overall

performance of a system employing the framework depends on the unpredictability

associated with the choice of the algorithm and the current time (as specified by the

timestamp), which is established to be high in unpredictability as per the previous

assessments.

144

7.3 Security Evaluation of the Proposals

We accomplish the evaluation of security of each individual algorithm and the frame-

work as a whole with an evaluation using Scyther protocol analyser, and using qual-

itative security analysis of the proposals based on the security goals they satisfy and

the attacks they prevent.

7.3.1 Security Analysis

We evaluate our proposals with respect to key security goals [1] (summarized in Table

2.1 found on page 13 of this thesis). These security goals are essential to communica-

tion systems and are expected to be satisfied by cryptosystems. In our assessment, we

first discuss how each individual algorithm and the framework configurations accom-

plish these security goals in our discussion of results obtained using Scyther protocol

analyser, and summarize the results in the section that follows.

We also assess the performance of each algorithm and the framework configura-

tions against known attacks that are relevant in resource-constrained systems, classi-

fied under various network attacks by Mitrokotsa et al. [4] and Chaudhry et al. [5]

(summarized in Table 7.7). Note that these attacks are a subset of attacks discussed

in Table 2.2 [2, 3] (found on page 28 in this thesis), it is our belief that an algorithm

that can prevent or foil these attacks can also successfully prevent the other attacks

listed in Table 2.2.

7.3.2 Communication Protocol Analysis using Scyther

A secure algorithm or a framework also depends on its capability to not be prone to,

or be capable of defending itself from, attacks during the communication. A way to

assess this is to evaluate the security of the communication protocol. To accomplish

this, we used a protocol analyser named Scyther [131, 132, 133, 134]. Scyther helps

verify the security of a message being transmitted from the sender to the receiver and

identifies whether there are any attacks that can be performed. Scyther is basically a

“blackbox” protocol testing suite, which assumes that the adversary has full access to

the channel, i.e. it employs the Dolev and Yao adversary model [131, 35]. The Dolev

and Yao model assumes that the cryptography is perfect, messages are abstract terms

145

Table 7.7: Known network attacks [4] [5]

Attack Description

Eavesdropping Unwarranted ‘listening’ to a communication in progress

Replay attack Attempts to replay previous messages, to gain access

Man-in-the-middle
An unauthorized entity acting as an intermediary, in the

communication, who may or may not modify messages

Tracking
Unauthorized entity tracks responses by the entity

to ‘profile’ activity of the associated user

Denial of Service Flooding the entity with information requests or

(DoS) overwhelming the system resources by other accesses

De-synchronization
Attempts to upset the synchronization of states in

the system entities

Dropped frames
A type of Man-in-the-middle attack; Unauthorized entity

selectively drops messages

and assumes full control for the adversary over the channel. The adversary entity

in Scyther thus, attempts to perform various attacks in an attempt to determine

how secure the protocol would be under such attack scenarios. We summarize the

configuration used in Scyther assessment in Table 7.8. Note that the number of runs

is set to “1” to indicate one communication session between the with the resource-

constrained entity sending its data and the server acknowledging its receipt, followed

by a seed update session.

We consider that it is sufficient to verify the security of the constituent algorithms,

as a way to assess the security of the framework. This is because the framework is

composed of the proposed algorithms, and the security of each constituent algorithm

contributes to the security of the overall framework. This is also due to the fact that

Scyther does not facilitate using random choices of algorithms within a framework,

such as the one proposed in this thesis. Scyther assesses the security of each message

that is communicated over the channel and checks the vulnerabilities of such mes-

sages, and since the working of our framework (and its security) is dependent on the

random choices of one of the available algorithms in the framework, we believe that

it will be sufficient to test the security of the constituent algorithms. Furthermore,

146

since the framework randomly chooses one of its constituent algorithms, it further in-

creases the unpredictability, and hence, security. However, we assess our framework

configurations, C4, C5, C6 and C7, albeit without the random choices and with each

algorithm chosen sequentially, i.e.

• in C4, GeM2 is used first, followed by Butterfly1 and HiveSec1;

• in C5, GeM2 is used first, followed by Butterfly1;

• in C6, GeM2 is used first, followed by HiveSec1;

• in C7, Butterfly1 is used first, followed by HiveSec1;

assuming that the random choice of algorithms in the framework will yield in the

above choices.

To evaluate each algorithm (and the framework), we have a set of claims [132, 134],

which are essentially the expected security behavior by each algorithm. These claims

are — secrecy, aliveness, weak-agree, non-injective synchronization and non-injective

agreement. We describe them below. Note that all claims, except secrecy, are common

for all algorithms.

Claim-1: Secrecy :

This goal helps verify whether the parameters expected to be secret in the transmit-

ted message, regardless of the algorithm employed, remains a secret as the message

traverses the communication channel. Since we have fundamentally different algo-

rithms, each algorithm ensures that some of its parameters remain a secret. However,

Scyther imposes some restrictions in terms of the variable names that can be used.

For example, θi is the message signature in Butterfly1. However, θ is a special symbol

Table 7.8: Parameter settings used for evaluation of the proposed algorithms using
Scyther

Parameter Value

Maximum number of runs 1

Matching type Find all type flaws

Search pruning Find all attacks

Maximum number of patterns per claim 10

147

Table 7.9: Algorithm parameters and their implementations in Scyther

GeM2 Butterfly1 HiveSec1

Parameter In Scyther as Parameter In Scyther as Parameter In Scyther as

K1 K1 sj sj KS KS

K2 K2 Ki ki KO KO

asv asv KT kt ts TS

K2 K2 mi mi message mi

asv asv ti ti Response mResponse

ID ID i i1 msignI msignI

ack ack θi theta msignR msignR

tu tinew

thetau theta1

that Scyther does not support. Hence, we used the word theta as its replacement.

We list the complete set of the parameters expected to be a secret by each algorithm

and their corresponding Scyther implementation names in Table 7.9.

Claim-2: Alive:

Aliveness is a a justification of whether a communicating entity has been active during

the communication, verified by the use of a common protocol. Specifically, communi-

cating entities are said to be alive if the algorithm being evaluated has been employed

to secure the previously communicated messages. This means that if Alice is the ini-

tiator of the communication for the ith message in a sequence of messages with entity

Bob, she will guarantee that Bob is alive if they had employed the same algorithm

(and hence, the protocol) for the previous (i− 1) messages.

Claim-3: Weakagree:

This claim is used further support the claim of aliveness. Continuing our previous

example, if Alice was the initiator in the communication of the ith message using

a particular algorithm (and hence, the protocol), Bob’s response using the same

protocol guarantees that the entities are in weak agreement, i.e. it suggests that

Bob may have been using the same protocol for the previous messages.

Claim-4: Non-injective Synchronization (Nisynch):

When entities communicate, it is an expectation on the part of either entity that the

148

other is honest and trusted. Thus, Alice would expect that the message reaches Bob

without any errors or modifications and thus, enable Bob to synchronize his system

state to that of Alice. Therefore, Nisynch is a means to check the synchronization

between the initiator and responder, specifically defined as a parameter that summa-

rizes the use of the proposed algorithm by the entities and that they are synchronized

during the said communication.

Claim-5: Non-injective Agreement (Niagree):

Synchronized entities further guarantee that the various variables used and the values

associated with them are agreed upon. Therefore, Niagree indicates that the entities

agree upon few of the session parameters during a given session.

It is to be noted that the security claims discussed below and the secrecy claims

summarized in Table 7.9 apply to the framework assessment as well. We discuss

the results of the assessment of various configurations using Scyther in the following

section.

7.3.3 Results: Protocol Analysis using Scyther

Configuration C1, GeM2

We summarize the results of evaluating GeM2 using Scyther protocol analyser in

Table 7.10. Our analysis substantiates our claims that GeM2 offers good security. In

the paragraphs that follow, we discuss the outcome for each of the claims and the

corresponding security goal the claim will impact.

Claim-1: Secrecy : GeM2 uses encryption using continuously changing keys, which

are randomly derived from previous keys. Use of synchronized PRNGs to generate the

choices as well as the keys ensures that encryption keys are generated independently

and maintained a secret, therefore assuring high unpredictability associated with the

system states. This ensures secrecy and thus, helps us accomplish confidentiality.

Claims-2, 3 and 4: Alive, Weakagree and Non-injective Synchronization (Nisynch):

Scyther validates our claims that the entities are running the same scheme (Weak-

agree) and all previous message sessions have used the proposed scheme (Alive).

Validation of these claims further justifies that the communicating entities are syn-

chronized in their continued use of GeM2. Their synchronization is facilitated by the

149

parent and generation state identifiers, p and g, that are sent along with the encrypted

message. This is a move to protect against replay attacks as well as de-synchronization

attacks.

Claim-5: Non-injective Agreement (Niagree): GeM2 relies on the entities pre-

sharing the initial key, IK, at deploy time. This is never shared openly or through

encrypted messages. The generation of all future encryption keys using GeM2 depends

on future states, derived through strategic linking beginning with IK, which makes

it harder for an adversary to guess the exact current state of the system. This claim

is verified by Scyther.

Authentication and Non-repudiation: GeM2 is proposed as a mutual authentica-

tion algorithm and we accomplish that goal through the use of the authentication

synchronization vector, asvi, as well as the parent and generation numbers. These

parameters ensure that for a particular set of values of parent and generation, there

is only one value of asvi, thereby helping both entities verify the authenticity of the

other. Furthermore, with the messages using encrypted IDs and pre-shared acknowl-

edgement patterns, encrypted using keys generated in the currently synchronized

state, GeM2 is able to näıvely accomplish non-repudiation as well (non-repudiation

Table 7.10: Results: Evaluation of the GeM2 protocol using Scyther

Claim
Initiator Responder

Status Status

Secret ID N∗WB NWB

Secret asv NWB NWB

Secret ack NWB NWB

Secret K1 NAV † NAV

Secret K2 NAV NAV

Alive NAV NAV

Weakagree NAV NAV

Nisynch NWB NWB

Niagree NWB NWB

∗ NWB : No attacks, within bounds
† NAV : No attacks, verified

150

in this case, is by association of the resource-constrained entity with the server, which

is assumed to be authentic/verified).

Forward and Backward security : To any unauthorized entity intercepting mes-

sages, GeM2 key generation process appears as a blackbox (pseudo)random number

generator. The random choices for parent key refresh and for determining the number

of child keys a parent key can have adds additional security to the system. Further-

more, the seed generator states are also updated continuously. In the event that an

adversary were to gain knowledge of either a contiguous set of previously used keys

or future keys, the adversary will still not have any knowledge of the internal PRNGs

that are used to make said choices. This means that the system state remains unpre-

dictable to an observer, thus maintaining security and preserving the privacy of the

user.

Configuration C2, Butterfly1

Table 7.11 summarizes the results of evaluation of our communication protocol using

Scyther. From our evaluation, we can see that all our claims were satisfied given the

parameters of the experiment. In the paragraphs that follow, we discuss the outcome

for each claim and the corresponding security goal the claim impacts.

Claim-1: Secrecy : With keys dynamically updated using timestamps, our protocol

ensures that all secrecy claims are valid. This implies that the secrecy of the message,

mi and the updated seed, s′, are both maintained a secret, thereby helping in achieve

confidentiality. It has to be noted that even the message signatures, θi and θu are

maintained a secret, since these are included in the second envelope encrypted with

KT , generated using seed sj. This implies that the integrity of the message can be

verified.

Claims-2 and 3: Alive and Weakagree: The protocol analyser validates our claims

that the entities are running the same scheme (Weakagree) and all previous message

sessions have used the proposed scheme (Alive).

Claim-4: Non-injective Synchronization (Nisynch): The analyser validates our

claim that the protocol and the scheme ensure that the internal key generation states

are synchronized in the communicating entities. This is possible due to the presence of

timestamps, sequence numbers and message codes, which not only protect the system

151

Table 7.11: Results: Evaluation of the Butterfly1 communication protocol using
Scyther

Claim
Initiator Responder

Status Status

Secret mi N∗WB NWB

Secret ti NWB NWB

Secret i NWB NWB

Secret i1 NWB NWB

Secret theta NWB NWB

Secret sj NWB NWB

Secret ki NWB NWB

Secret kt NWB NWB

Secret sjnew NWB NWB

Secret tinew NWB NWB

Secret theta1 NWB NWB

Alive NAV † NWB

Weakagree NAV NWB

Nisynch NWB NWB

Niagree NWB NWB

∗ NWB : No attacks, within bounds
† NAV : No attacks, verified

against replay attacks, but also render de-synchronization attacks ineffective. This is

supplemented by the multi-level enveloping technique employed by our scheme.

Claim-5: Non-injective Agreement (Niagree): The first seed, sinit is a central

attribute in our scheme. This is never shared openly or even through encrypted

messages. Its variant, sj is used for generating multiple keys, and a new seed, s′

is also communicated in an encrypted manner. This dependency on the initial seed

protects the scheme operation since it makes it harder for an adversary to guess

the particular state of a seed. This is an important pre-agreed parameter, and the

analyser validates our claim that the entities can agree upon important parameters

(such as s′) during communication using this protocol.

Authentication and Non-repudiation: While using our scheme, the receiver can

152

authenticate the communication initiating entity from the transmitted message, MT ,

using ηt, pre-shared secret seed, sj and the value of j to generate encryption keys

to decrypt the received data. By computing θi, it is able to confirm the identity of

the sender. Furthermore, the initiator can validate the responder on receipt of the

acknowledgement message, when it decrypts acki to generate θi that it had previously

sent. Thus, both entities can authenticate each other. Since the initial seed is pre-

shared and never exchanged, only a legitimate entity will be able to generate specific

values of θi, and the keys, Ki and KT .

This implies that for each entity to be in continuous synchronization, neither

of them can deny the messages they send. This, in a näıve manner, helps in ac-

complishing non-repudiation. Although symmetric cryptosystems cannot guarantee

non-repudiation without use of asymmetric components or digital signatures [35], our

approach facilitates non-repudiation by association. Since entities are communicat-

ing with a server with unlimited resources we assume the server to be authentic, and

by verifying itself to the server, the resource-constrained entity guarantees that the

messages sent by it are valid, if verifiable.

Forward and Backward secrecy : The use of timestamp to generate the encryption

key, Ki, continuous changes to the seed, sj, and hence the transfer key, KT , helps in

ensuring secrecy of data. Even if a contiguous set of keys were to be determined by

an adversary, it would be challenging to determine either past keys or future keys,

since the internal PRNG seed is not disclosed and the computed keys are dependent

on the changing parameters. Thus, our Butterfly1 algorithm helps preserve forward

and backward secrecy, adding to the overall security of the system.

Configuration C3, HiveSec1

We summarize the results of evaluating HiveSec1 using Scyther protocol analyser

in Table 7.12. Our analysis substantiates our claims of offering security with the

HiveSec1 concept. In the paragraphs that follow, we discuss the outcome for each of

the claims presented in Section 7.3.2 and the corresponding security goal the claim

will impact.

Claim-1: Secrecy : HiveSec1 uses two levels of encryption, and the keys used for

both levels are dependent on two different timestamp values, i.e. initial timestamp,

153

Table 7.12: Results: Evaluation of the HiveSec1 communication protocol using
Scyther

Claim
Initiator Responder

Status Status

Secret TS N∗WB NWB

Secret msignI NWB NWB

Secret mi NWB NWB

Secret mResponse NWB NWB

Secret KS NAV † NAV

Secret KO NAV NAV

Alive NAV NAV

Weakagree NAV NAV

Nisynch NWB NWB

Niagree NWB NWB

∗ NWB : No attacks, within bounds
† NAV : No attacks, verified

ts0, and the current timestamp, ts. This, coupled with the random choices of par-

ent/child seeds as proposed in HiveKey, ensures that the encryption keys keep chang-

ing for each message. This validates all our secrecy claims. This validation by Scyther

implies that the secrecy of all messages and other parameters such as timestamp and

message signature that are encrypted, remain a secret in the communication. This

helps us achieve confidentiality.

Furthermore, the two message signatures, msignI and msignR, contain different

(randomly chosen) portions of the message as well as the key, thereby helping us

accomplish message (and encryption key) integrity verification as well.

Claims-2 and 3: Alive and Weakagree: The protocol analyser validates our claims

that the entities are running the same scheme (Weakagree) and all previous message

sessions have used the proposed scheme (Alive).

Claim-4: Non-injective Synchronization (Nisynch): The analyser validates our

claim that the protocol and the scheme ensure that the initiator and the responder

states are synchronized. This is facilitated by the use of timestamps, session identi-

fiers, session sequence numbers and message codes, in addition to a dynamic choice of

154

PRNG seeds using the HiveKey parent/child seed choice concept. This not only pro-

tects the system against replay attacks, but also render attempts at de-synchronization

ineffective. This is further supplemented by the multi-level enveloping encryption em-

ployed by HiveSec1.

Claim-5: Non-injective Agreement (Niagree): The first set of parent seeds, {pi}, in

addition to the initial timestamp, ts0, are agreed upon by the entities at deploy time.

These are core elements in our algorithm. These are never shared openly or even, for

that matter, through encrypted messages. The choice of a single seed (and hence, its

neighbouring seeds) remains random and dependent on the current timestamp. Thus,

using multiple pre-shared PRNG seeds with random choice of some of them makes it

harder for an adversary to guess the state of the system, and hence, the keys used.

Scyther validates our claim that the entities can agree upon important parameters in

a communication employing HiveSec1.

Authentication and Non-repudiation: Entity authentication is facilitated by HiveSec1

through the message signatures, msignI and msignR. Message signatures contain the

current session, key, state and message parameters, in addition to the entity ID (IDI

and IDR). These parameters, along with the timestamp, ensure that there is only

one value of either message signature at a particular instant of time, for a particular

entity. Thus, since both entities can validate the other, it helps HiveSec1 accomplish

mutual authentication.

Furthermore, given that the parent seeds and initial timestamp are pre-shared

(and updated when necessary, through specific special messages), only a legitimate

initiator or responder will be able to generate specific values of encryption keys and

message signatures at a given instance of time. Thus, neither entity will be able to

deny any message that they had previously sent. This helps HiveSec1 accomplish

non-repudiation as well (by association).

Forward and Backward security : HiveSec1 features multiple parent seeds, and

maintains the number of child seeds and the choice of a child seed/its neighbours

random, and as decided by the current timestamp. This helps us substantiate our

claim that even with a knowledge of a continuous sequence of keys used previously,

an adversary will not be able to generate future keys. The same holds true for a

case when an adversary retrieves a sequence of keys used currently (or in the future)

155

to derive keys used previously. Thus, HiveSec1 is able to achieve both forward and

backward security, in addition to the other security goals.

Framework Configurations C4, C5, C6, C7

We summarize the results of evaluating the proposed framework (and various com-

bination configurations) using Scyther protocol analyser in Table 7.13. Our analysis

substantiates our claims of offering security with the framework. In the paragraphs

that follow, we discuss the outcome for each of the claims presented in Section 7.3.2

and the corresponding security goal the claim will impact.

The framework configurations employ all, or combinations of, the algorithms pro-

posed in our work, i.e. GeM2, Butterfly1 and HiveSec1. This means that the security

of the framework is dependent on the security offered by the individual constituent

algorithms, and at times, is improved by the framework. This is ascertained by the

results summarized in Table 7.13. On comparing these results with the results of the

individual algorithms summarized in Tables 7.10, 7.11 and 7.12, we observe that the

results for the various framework configurations are consistent with the results of the

individual algorithms. The framework configurations only provide an additional layer

of unpredictability since one of the algorithms in these configurations are chosen at

random based on several factors as discussed in Chapter 4. Next, we summarize our

observations regarding each claim.

Table 7.13: Evaluation of the proposed framework using

Scyther

Claim
C4 C5 C6 C7

In.1 Re.2 In. Re. In. Re. In. Re.

Claim: Secret

ID N∗WB NWB NWB NWB NWB NWB
- -

asv NWB NWB NWB NWB NWB NWB
- -

ack NWB NWB NWB NWB NWB NWB
- -

Continued on next page

156

Table 7.13 – continued from previous page

Claim
C4 C5 C6 C7

In.1 Re.2 In. Re. In. Re. In. Re.

K1 NAV † NAV NAV NAV NAV NAV - -

K2 NAV NAV NAV NAV NAV NAV - -

mi NWB NWB NWB NWB
- - NWB NWB

ti NWB NWB NWB NWB
- - NWB NWB

i NWB NWB NWB NWB
- - NWB NWB

i1 NWB NWB NWB NWB
- - NWB NWB

theta NWB NWB NWB NWB
- - NWB NWB

sj NAV NAV NAV NAV - - NAV NAV

ki NAV NAV NAV NAV - - NAV NAV

kt NAV NAV NAV NAV - - NAV NAV

sjnew NAV NAV NAV NAV - - NAV NAV

tinew NWB NWB NWB NWB
- - NWB NWB

theta1 NWB NWB NWB NWB
- - NWB NWB

TS NWB NWB
- - NWB NWB NWB NWB

msignI NWB NWB
- - NWB NWB NWB NWB

mi NWB NWB
- - NWB NWB NWB NWB

mResponse NWB NWB
- - NWB NWB NWB NWB

KS NAV NAV - - NAV NAV NAV NAV

KO NAV NAV - - NAV NAV NAV NAV

Claim: Alive

Alive NAV NAV NAV NAV NAV NAV NAV NAV

Claim: Weakagree

Weakagree NAV NAV NAV NAV NAV NAV NAV NAV

Claim: Nisynch

Nisynch NWB NWB NWB NWB NWB NWB NWB NWB

Continued on next page

157

Table 7.13 – continued from previous page

Claim
C4 C5 C6 C7

In.1 Re.2 In. Re. In. Re. In. Re.

Claim: Niagree

Niagree NWB NWB NWB NWB NWB NWB NWB NWB

∗ NWB : No attacks, within bounds

† NAV : No attacks, verified

- : Not Applicable for current configuration

1 : Initiator

2 : Responder

Claim-1: Secrecy : Parameters expected to be secret in each configuration remain a

secret, including and primarily the key generation parameters and intended messages;

a claim which holds true since none of these parameters are exchanged. As seen in

the algorithm assessments, the parameters including timestamps, IDs, messages and

the keys themselves are all ensured to be secret as shown in Table 7.13. This implies

that the framework configurations accomplish confidentiality.

Claims-2 and 3: Alive and Weakagree: Scyther validates our claims that the

entities are running the same configuration (Weakagree) and all previous message

sessions have used the proposed scheme (Alive).

Claim-4: Non-injective Synchronization (Nisynch): Our claim that the initiator

and responder states are synchronized in the framework configurations is also verified.

The synchronization in these configurations is dependent on the internal states of the

system, which requires that each algorithm states be synchronized. If any of the

states are not synchronized, the entities can recognize the error, and act as specified

by the deployment conditions. This guarantees protection against replay attacks and

de-synchronization attacks.

Claim-5: Non-injective Agreement (Niagree): The initial deploy-time parameters,

such as the initial seeds and initial timestamp, are never exchanged in the open. Each

158

synchronized update of the system states imply that these parameters are automat-

ically updated. Thus, the internal parameters that are essential in computing the

key materials are always in agreement in both entities, as long as they are synchro-

nized and authenticated. Scyther validates that the framework configurations are

synchronized, and that they are in agreement.

Authentication and Non-repudiation: Each algorithm used in the framework facili-

tates authentication, using message signatures and the authentication synchronization

vector. This ensures that the system states are synchronized (established by Scyther

assessment) and that the entities are (mutually) authenticated. Furthermore, the use

of pre-shared parameters and random choice of one of the available algorithms means

that the sender of each message cannot deny that it was sent from that particular

entity. Since keys are updated and potentially a different algorithm is chosen for

each key generation/encryption, it means that the internal states of each entity (for

each algorithm) are always updated to the latest (synchronized) version, as long as

they are authenticated. This, in a näıve manner helps the framework accomplish

non-repudiation (by association).

Forward and Backward security : To an observer without the knowledge of the

internal states, the framework as a whole appears as a ‘black-box’ sequence genera-

tion engine. This means that it ‘appears’ to be a sequence generator that generates

various keys and other parameters required to encrypt and sign messages. Unless the

observing entity has a knowledge of the internal states and the algorithms chosen,

knowledge of a contiguous set of keys either from the past or in the future would not

yield useful information about the future keys or previously used keys, respectively.

This is primarily due to the dependency on timestamp in the choice of algorithms

as well as updates to internal states of the framework. This re-configurable or meta-

morphic property of our framework not only provides high security, but guarantees

forward and backward secrecy as well.

7.3.4 Results: Security Analysis

From our discussions in the previous section, it is evident that the algorithms and the

framework configurations pass the various security requirements, as specified by the

security goals highlighted in Table 2.1. In Table 7.14, we summarize the performance

159

Table 7.14: Summary: Security goals satisfied by the algorithms and framework
configurations

Security Goal
Status in configurations

C1 C2 C3 C4 C5 C6 C7

Confidentiality

Integrity

Authentication

Non-repudiation A A A A A A A

Forward security

Backward security

A: Our proposals help accomplish non-repudiation in a näıve

way, by association with and verification by a server

of each algorithm with respect to these essential security goals.

One aspect to note is that our proposals accomplish non-repudiation in a näıve

way, meaning that although they don’t employ the use of trusted third parties, the

entities are implicitly capable of signing their messages. This is made possible by

the presence of a resourceful entity, i.e. the server, in resource-constrained networks.

With the server being one of the communicating entities and with the initial param-

eters being deployed on the devices without being exchanged, a verifiable parameter

generated by either entity at any point in the communication is trustworthy, as the

internal states are constantly updated and synchronized. This can be imagined to

be similar to a scenario where the server delegates the signing authorization to the

resource-constrained entity. Each successful verification of the resource-constrained

entity by the server ‘extends’ this signing authorization (i.e. authorization by associ-

ation). Furthermore, since our proposals ensure mutual authentication, the resource-

constrained entity can verify the authenticity of the server itself, thereby acknowledg-

ing this signing authorization (and its subsequent renewals). This lets us claim that

the proposals accomplish non-repudiation, i.e. neither entity can deny that a verified

message originated at that system.

Several attacks applicable to resource-constrained wireless networks were pre-

sented in Table 7.7. Further to our discussions in Section 7.3.3 detailing results

160

obtained using Scyther, we summarize the performance of our algorithms and frame-

work configurations with respect to each attack.

As discussed in the Scyther results, our proposals are able to reduce the effects of or

prevent replay attacks, de-synchronization and dropped frame attacks. Systems em-

ploying our algorithms and framework are also safe from tracking, an attack that has

the potential to compromise the privacy of individuals and organizations connected

to a particular resource-constrained entity. This is due to the continuous updates in

system states. This ensures that the system outputs are constantly changing, despite

in many cases the messages/replies remaining the same, implying that unauthorized

entities will not be capable of monitoring a particular resource-constrained entity, or

the individual/organization it is affiliated with.

Eavesdropping allows an unauthorized entity to monitor messages over a chan-

nel, with or without the intention of gaining access to the communication, i.e. with

or without it ‘graduating’ into a man-in-the-middle (MITM) attack. By being an

MITM, unauthorized entities will be able to monitor and modify any messages over

the channel. This requires the entity to be able to gain access to the system com-

munication, contingent on the eavesdropping attacks being successful and yielding

meaningful information about the system states. Our algorithm proposals ensure

that the internal key states are constantly changing, and without exchanging keys,

keeps adversaries from being able to decode messages over the channel. An additional

layer of complexity, and hence security, is introduced by the framework configurations,

which choose one of the available algorithms at random. This ensures that the overall

unpredictability of the system remains high, making the communications safe from

yielding meaningful information when eavesdropped. This further implies that the

ability of an adversary to gain entry into the system communication is significantly

reduced, if at all, making the system safe from MITM attacks as well.

By being able to detect and prevent attacks presented in Table 7.7, we can claim

that our proposals help secure systems against most attacks detailed in Table 2.2.

This is because our proposals ensure different internal states in all entities involved,

which means that for an adversary to impersonate an authorized node (as with Sink-

hole attack), an adversary must have knowledge of the internal states of all associated

devices. Any attempts to hijack a transmitted packet to a different route (as with

161

Table 7.15: Performance of the proposals with respect to known network attacks

Attack
Protection status in configurations

C1 C2 C3 C4 C5 C6 C7

Eavesdropping

Replay attack

Man-in-the-middle A A A A A A A

Tracking

Denial of Service B B B B B B B

De-synchronization ∗
Dropped frames ∗ C C C C C C

A: Continuous state updates ensure man-in-the-middle attack

remains unfruitful

B: Programmed to stop responding in case of many requests,

assuming these could be DoS attempts by flooding

C: Recognize attempts of dropped frames, since internal states

are expected to update with each key generation; Also a

mechanism to detect de-synchronization attempts

∗: Can recover from such attempts for up to three previously

stored key states, and can detect any further attempts for

de-synchronization/dropped frames

Wormhole attack) would result in the targeted device not responding to the message

also since the internal key states are different. Thus, even if one of the devices in

the system is physically compromised by tampering or jamming, the functioning of

the other devices will not be affected, thereby keeping the system secure. Further-

more, the design of our algorithms facilitate an entity ‘demanding’ that the other

entity generate a particular key (using {p, g} in GeM2, j in Butterfly1 and by using

timestamp, ts, in HiveSec1), which could help in the entities being able to generate

groupwise keys for broadcast messages, although not explored in this thesis because

our work is primarily on pairwise session keys between entities.

162

7.3.5 Behavior Under Attack

An attribute that is implicit in all our algorithm proposals is attack detection. This

is facilitated by changing system states that are synchronized on entity authentica-

tion. However, this will not prevent adversaries from launching attacks. Although

our proposals are aimed at improving system security through obscurity and constant

updates, they will still be prone to some attacks such as denial of service. In such

cases, our proposal can detect attacks using a threshold; however, they lack the ability

to prevent them. The threshold is based on acceptable repeats of messages or accept-

able invalid messages, i.e. messages that are not recognizable by the verified entities

in the system. This threshold is set a value of 3 in the current implementations, i.e. if

more than three repeated messages are received by either entity or if more than three

invalid messages are recognized by either entity, the particular entity ceases commu-

nication. This mechanism facilitates detection of a potential attack and its action,

i.e. ceasing communications, indicates the other entity that the other entity could

be under attack. This measure is particularly useful for resource-constrained entities,

which could be deployed in environments with varying security guarantees. Our al-

gorithm and framework proposals detect attacks based on these conditions 100% of

the time, guaranteeing attack detection under various scenarios.

The threshold value of 3 was set since GeM2 includes a scheme of storing the

current key and two previous keys for synchronization purposes. This mechanism

ensures that attempts to drop acknowledgement frames are tolerated, up to three

times with the system being able to recover from such attacks. This threshold can be

changed as required for the intended application.

However, this work on attack detection also led us to wonder if anything could

be done in addition beyond merely detecting (and/or recovering from) attacks. We

found our answer in the Bee Swarm approach described in Section 5.5.4 (on Page 90).

Applicable to the HiveSec1 algorithm and the framework configurations employing

HiveSec1, Bee Swarm is a technique by which the communicating entity attacks the

attacker, i.e. generates and responds to detection of potential attacks with some

meaningless random values with the same structure of an original message. The

entity responds for a predetermined amount of time, or transmits a predetermined

number of such meaningless messages, to the potentially invalid sender. This ensures

163

a minimal flooding of responses to the potential invalid sender, as an attempt to

misguide it regarding the system state. In our assessment, we had set the same

threshold of attack detection for Bee Swarms as well, which meant that if the entity

received 3 unexpected/invalid messages, it enables Bee Swarm module to respond with

meaningless messages. One might wonder what would happen in a system employing

the Bee Swarm module following a successful de-synchronization attack. In such

cases, either communicating entity will recognize that something has gone awry, and

will either attempt to recover from the issue or attempt to send an error message to

the server (if the detecting entity is not the server). Either way, the entities can still

detect that a potential attack is in progress and initiate corrective action.

Although Bee Swarm module is currently implemented only as a component of

the HiveSec1 algorithm (and, thus, as part of the corresponding framework configura-

tions), it is an independent module, which can be included as part of (and customized

to work with) all the other algorithms and framework configurations as well.

164

7.4 Comparative Assessment

7.4.1 Overview

The algorithms and framework configurations proposed in this thesis are intended for

application in resource-constrained wireless networks such as RFID tags and WBAN

applications. Specifically, we consider their application in improving key management

and authentication in RFID applications that could implement cryptographic suites

[32, 33] facilitating the application of the various framework configurations or in other

lightweight (Class-0/Class-1) applications that require minimalistic security, and in

WBAN applications that support the use of symmetric cryptography (especially in

master key pre-shared association) [66].

As discussed in Chapter 2, there have been several proposals for key management

and authentication in these two domains. In this chapter, we consider three such

proposals, namely, (a) block-wise key update and symmetric encryption approach

for RFID proposed by Zhu and Khan [8], (b) hash (SHA-3)-based key generation

and authentication approach for RFID proposed by Dong et al. [9], and (c) AES-

based key generation approach for WBANs proposed by Liu and Kwak [7]. We chose

these three approaches in particular for the following reasons — the proposal by

Zhu and Khan implements a linked key update mechanism, a concept accomplished

differently by GeM2 and Butterfly1; the approach by Dong et al. uses the recently

standardized SHA-3 algorithm and using hashes is a common way to generate keys;

and, the approach by Liu and Kwak uses AES based key generation, which is one

of the concepts included in the IEEE 802.15.6 standard. We implemented them

using Java, and use the results obtained to assess the key similarity using Sörensen’s

Similarity Index [129] and randomness properties using NIST STS [130]. We present

a comparison between these results and the results obtained from the same analyses

for our proposals (main key configurations only, discussed in Sections 7.2.4 and 7.2.5).

We also discuss the security offered by these protocols and how these differ compared

to our work.

165

7.4.2 Implementation Details

We implemented the functionality of the work by Zhu and Khan [8], Dong et al.

[9], and by Liu and Kwak [7], using Java programming language [126] and the same

development environment summarized in Table 7.1. We describe the details of these

implementations in the paragraphs that follow.

Impl. 1: To implement the XTEA encryption mechanism that is a part of the key

update cycle in the work by Zhu and Khan [8], we used the Java implementation

of the XTEA cipher created by Mueller, available online on Google Code [135].

Impl. 2: We used the implementation of Keccak message digest algorithm (which

NIST has published as SHA-3 [136]) made available online by Kocak on Github

[137], as part of our implementation of the proposal by Dong et al. [9].

Impl. 3: We used the Cipher class [138], which is a part of the Java Cryptography

Architecture [139] for the AES-CBC functionality required for the work by Liu

and Kwak [7].

The initial key was set to 92EB8D6ECF7F808A in Impl. 3, while in Impl.

1 and Impl. 2, it was set to 92EB8D6ECF7F808A705D1A4566991AF0. The

initialization vector was set to E36DC751D0433F05 in Impl. 3. In all imple-

mentations, the seed for the PRNG was set to 12345678FEDCBA98. Further-

more, in Impl. 2, we extracted the timestamp using the standard Java method,

System.currentT imeMillis(). Our choices for the initial keys, vectors and seeds

for PRNG were the same as used for implementations of our proposals discussed in

Section 7.2, to ensure uniformity in initial conditions.

We extracted 10240 key sequences from these implementations, and used them

to determine the SSI and randomness of the key sequences. We discuss the results

obtained from this exercise in the next section.

166

7.4.3 Key Similarity

Table 7.16 summarizes the average SSI values for 10240 keys for the main key con-

figurations in our proposals, and for those generated from Impl. 1, Impl. 2 and

Impl. 3. The numbers represent the average SSI when keys are considered wholly

(128 bits) or as four 32-bit blocks. Figure 7.22 illustrates these average SSI values,

from which we can observe that our proposals perform at par, if not better than the

other proposals. In terms of average full key SSI, all of our proposals (C1 — C7),

outperform the others; an exception with the average full key SSI for C3 being very

close to the average SSI of the keys generated by Dong et al.’s [9] proposal. When it

comes to individual substrings, we observe the same behavior, i.e. our configurations

perform at par, if not better than the other proposals (the average substring SSI

being 0.3251). The exception to this is GeM2 (configuration C1), where we see that

the average substring SSI is approximately 0.3326, a behavior we can attribute to

the minimal linking of keys between successive key generations.

The keys generated in the proposal by Zhu and Khan [8] includes a scheme of

updating the keys block-wise, which retains the other (non-updated) blocks of keys

similar to the previous keys. This is the reason why the average SSI - both full key

and substrings - are consistently higher (more so in the substrings where we see the

Table 7.16: Summary of similarity between keys

Configuration Average SSI (SSIav)

(Keys considered) Full Key Substring1 Substring2 Substring3 Substring4

C1 (K) 0.3040 0.3371 0.3315 0.3307 0.3312

C2 (Ki) 0.3809 0.3279 0.3237 0.3277 0.3252

C3 (KS) 0.3816 0.3271 0.3246 0.3259 0.3254

C4 (K,Ki, KS) 0.3514 0.3125 0.3067 0.3109 0.3103

C5 (K,Ki) 0.3437 0.3285 0.3274 0.3280 0.3288

C6 (K,KS) 0.3415 0.3287 0.3271 0.3280 0.3263

C7 (Ki, KS) 0.3812 0.3262 0.3249 0.3255 0.3263

Liu and Kwak [7] 0.3826 0.3256 0.3274 0.3253 0.3252

Zhu and Khan [8] 0.4110 0.6854 0.6866 0.6849 0.6877

Dong et al. [9] 0.3815 0.3267 0.3275 0.3239 0.3257

167

Figure 7.22: Variation in average SSI

average substring SSI being 0.6862). We illustrate the variation in similarity between

successive keys (initial 108 comparisons), for the proposals by Liu and Kwak [7], Zhu

and Khan [8], and Dong et al. [9] in Figures 7.23, 7.24 and 7.25, respectively.

With the average full key SSI for our proposals (main key configurations only)

being in the range 0 ≤ SSIav,full key ≤ 0.3900, we can conclude that successive key

sequences are somewhat dissimilar. Observing the variability of SSI in Figures 7.23,

7.24 and 7.25, and for our configurations in Figures 7.8 — 7.21, we can also infer that

the variability in full key SSI is more in our configurations, with increased variability

observed in the substring variability as well.

Our assessment of the similarity between keys was primarily to ascertain that our

proposals generate variable keys that are dissimilar from the subsequent/previous

keys, as a way to increase the overall unpredictability of the system implementing

these proposals. One could argue that any scheme implementing a pseudorandom

number generator and/or timestamps could inherit the randomness properties they

possess. However, we need to ascertain the dissimilarity of the keys generated in such

168

Figure 7.23: SSI Variation for the proposal by Liu and Kwak [7]

Figure 7.24: SSI Variation for the proposal by Zhu and Khan [8]

169

Figure 7.25: SSI Variation for the proposal by Dong et al. [9]

processes as a first step to assess the randomness of the key sequences, which could be

impacted by the other logical operations that are used in the proposals. Our results

help us conclude that the keys generated are indeed dissimilar, outperforming the

keys generated by other proposals.

7.4.4 Key Randomness

As with our assessment discussed in Section 7.2.5, we limited the analysis of the key

sequences generated by Zhu and Khan [8], Dong et al. [9], and by Liu and Kwak

[7], to the total number of sequences (out of 10000) that passed each statistical test

discussed in the previous section. To be consistent in our analysis, we performed the

same tests described in Section 7.2.5 and considered a block size of 32 bits for the

frequency test within a block.

Table 7.17 summarizes the number of sequences from each configuration that

passed each statistical test, recalling that according to Equation (7.4) (on Page 138),

the total number of sequences that need to pass a test to be considered as unpre-

dictable or random are 9870 out of 10000 (or, 98.70%).

170

Table 7.17: NIST STS Assessment: Summary of results (Number of sequences out of
10000 that passed each test)

Configuration
FM Test1 FB Test2 Runs Test LR Test3 DFT Test4

(Keys considered)

C1 (K) 4998 5027 5140 5360 9933

C2 (Ki) 9895 9908 9906 9896 9862

C3 (KS) 9908 9921 9907 9918 9857

C4 (K,Ki, KS) 8288 8320 8342 8400 9856

C5 (K,Ki) 7555 7564 7623 7716 9885

C6 (K,KS) 7405 7423 7482 7585 9876

C7 (Ki, KS) 9885 9907 9880 9905 9837

Liu and Kwak [7] 9913 9914 9888 9912 9837

Zhu and Khan [8] 9891 9892 9892 9886 9832

Dong et al. [9] 9898 9926 9890 9894 9833

1 : Frequency (Monobit) Test

2 : Frequency Test within a Block

3 : Longest Runs of Ones in a Block

4 : Discrete Fourier Transform (Spectral Test)

As observed in Section 7.2.5, GeM2 (and the framework configurations it is a part

of) seems to perform poorly with respect to the randomness within each key sequence.

We recall that the randomness assessment by NIST STS is based on the number of

1 bits in the sequence measured against the theoretical probability of occurrence of

a ‘1’ bit in the sequence (50%). On the other hand, keys generated by Butterfly1

and HiveSec1 pass the requirement of sequences passing each test being more than

9870 for a sample of 10000 sequences. Based on the results in Table 7.17, we also

observe that the sequences generated by Butterfly1 and HiveSec1 (and the framework

configuration C7) perform at par to sequences generated using AES (Liu and Kwak),

XTEA with blockwise key update (Zhu and Khan) and using SHA-3 (Dong et al.).

Our assessment of randomness in the key sequences is in addition to the similarity

assessment, and is mainly to evaluate how random the bits in the key sequences gener-

ated by our algorithm proposals are, which has a direct bearing on the security of the

system. The results lead us to infer that the mechanism of key updates used in GeM2,

171

which involves changing the ‘0’ bits in a parent key reduce the overall randomness (or

the property of having nearly equal proportion of 0s and 1s in the sequence), although

the scheme itself might be secure owing to the random key update mechanism and

the random choices involved. We also note that the use of timestamps and combina-

tion of multiple parameters to generate keys ensures that the keys are both dissimilar

and random. Furthermore, the framework configurations that implement these algo-

rithms tend to improve on the overall randomness of the system, as is evident with

the randomness assessment in this section. We can observe that although the overall

randomness is lower in configurations C5 and C6, the average performance (which

is a factor of the key sequences generated by all algorithms that are a part of that

configuration, including GeM2) is better than in C1 (only GeM2). This goes to show

that if the system supports, implementation of a multi-algorithm framework such as

the one proposed in this thesis ensures sufficient randomness in the key sequences and

improves the overall security offered by the system. The main contribution of such

a framework, perhaps, is the random choice associated with the algorithms based

simply on an internally updated timestamp value. This further adds to the overall

unpredictability associated with the system, thereby increasing the security.

7.4.5 Security

Having assessed the performance of our algorithm proposals on their key similarity

and key sequence randomness against the proposals by Zhu and Khan [8], Dong et

al. [9], and by Liu and Kwak [7], we now discuss how our algorithms fare in terms

of the overall security and ability to protect against attacks when compared to these

approaches.

Liu and Kwak’s protocol requires entities to transmit the random numbers used

in the open, in addition to the mandatory source/destination IDs (addresses). This

is a potential vulnerability because the session key generation is then only a factor of

determining the master key, since the algorithm is known (AES) and the inputs to

this algorithm are known (node addresses and the random numbers). The problem

then reduces to a brute force attempt to decipher the master key, which might not

be a challenging task given that one of the pre-association messages includes trans-

mission of the random numbers and the source/destination IDs, and the response of

172

encrypting a concatenation of these parameters, giving both the input and the output,

leaving only the key to be determined. Zhu and Khan’s protocol is a server initiated

key update mechanism, in which the key update messages sent by the server in their

approach includes the following — subkey to be updated, an XOR combination of the

subkey and its index, encrypted using the system key, KEYSY S. These messages are

not accompanied by any vector to either verify the entity of the sender or to verify the

integrity of the message. Although they include a mechanism to restore the old key

in the event of a detected attack or non-verification of the server, it does involve the

tag performing the system update first. A simple de-synchronization attack scenario

for their protocol would be as follows — server/reader sends key update message to

tag (m0); tag responds with encrypted acknowledgement pattern (m1) and generates

verification pattern (m2). Following this, the attacker waits for the reader to send m2

and drops the packet, only to transmit a separate random number in its place. When

m2 at the tag does not match with the received m2, the tag rolls back its update,

but the server would have progressed to the next key state. This de-synchronizes the

server and the tag states, disrupting future communication. The work by Dong et al.

however, is contrary to both these approaches, featuring only hash functions and XOR

operations, to exchange and agree on the key. Their approach also features linked key

updates, in that the updates to keys are based on using previously synchronized keys

for authentication, a threshold of one key stored for de-synchronization attempts.

We can see that the approaches by Liu and Kwak, and Zhu and Khan discussed

here are prone to attacks such as brute force key determination, de-synchronization,

selective forwarding and dropped frames. Their performance will be affected by these

attacks, which could potentially lead to other vulnerabilities listed in Table 2.2. The

work by Dong et al. may not be prone to these attacks, however, might not be scalable

to other environments such as WBANs.

On the other hand, our proposals maintain all key states a secret, with only the

state identifiers being communicated. All proposals include mechanisms to verify

either the key, the message or both, by means of signatures, and further ensure that

the system can prevent most attacks. Perhaps the biggest strength of our approaches

is the increased unpredictability due to the different state parameters used and the

presence of an overall framework to choose one of the algorithms at random.

173

7.4.6 Summary

In this section, we discussed the implementation of three key generation and authen-

tication proposals in RFID and WBAN systems, and presented a discussion on how

our algorithm proposals perform against them. We considered the same parameters

we used to assess our approaches, i.e. key similarity, key sequence randomness and

security analysis. From the results obtained, we can conclude that our algorithms

perform better, if not at par with the other approaches considered for comparison.

With the exception of GeM2, other algorithms also perform well when considering

the randomness in key sequences. The encouraging aspect of these results is that

the proposed framework works as expected, i.e. it improves the overall security by

unpredictability in the system states and the algorithm choices. Having explored the

security offered by our proposals in this section, we discuss resource utilization next,

which is another critical factor for resource-constrained wireless networks. Our assess-

ment of resource utilization is two-fold — assessment of resources used in a hardware

(optimized) implementation and estimation of gates used in a generic (non-optimized)

implementation.

174

7.5 FPGA Implementation

When security solutions need to be implemented on emerging wireless devices such

as RFID tags, they need to be hard-wired, i.e. the logic needs to be implemented

as part of the circuit of the tag. Although we have designed our algorithms and the

framework in a way as to be able to ‘plugged-in’ with existing circuits, they would

still need to be implemented as independent physical modules or as part of the larger

circuit of the device. This requires us to assess the hardware resource requirement

for each of our configurations.

One way to assess the resource utilization and to assist in implementing such

digital logic solutions to hardware is to test the implementation on configurable in-

tegrated circuits called Field-Programmable Gate Arrays (FPGA). An FPGA is an

integrated circuit with no specific function, which is mainly used to assist in the de-

sign of application specific integrated circuits (ASICs) [140, 113, 141]. FPGAs employ

logic gates and memory elements (programmable/configurable elements), referred to

as Configurable Logic Blocks (CLBs), that can be configured to accomplish the de-

sired functionality using programmable interconnects. Once the design is tested and

vetted, it can be used to (design and) manufacture custom ASICs for the particular

application. The main difference, thus between FPGAs and ASICs is that FPGAs

are re-programmable devices, while ASICs are not.

We used the Spartan-6 FPGA SP605 Embedded Kit [142] manufactured by Xilinx

Inc. to implement our framework and its constituent algorithms. The SP605 kit

includes in it the Xilinx XC6SLX45T-3FGG484 FPGA and ISE 13.4 Design Suite

Table 7.18: Features of a Slice in Spartan-6 [6]

Feature SLICEX SLICEL SLICEM

6-Input LUTs

8 Flip-flops

Wide Multiplexers

Carry Logic

Distributed RAM

Shift Registers

175

Table 7.19: Logic resources in one CLB [6]

Slices LUTs Flip-flops
Arithmetic and Distributed Shift

Carry Chains(2) RAM(1) Registers(1)

2 8 16 1 256 bits 128 bits

Notes:

1. SLICEM only.

2. SLICEM and SLICEL only.

Table 7.20: Spartan-6 (XC6SLX45T) logic resources [6]

Logic cells 43661

Total slices 6822

SLICEMs 1602

SLICELs 1809

SLICEXs 3411

Number of 6-input LUTs 27288

Maximum distributed RAM (Kb) 401

Shift registers (Kb) 200

Number of Flip-flops 54576

Embedded Edition IDE. Present day FPGAs, such as Spartan-6, have “Slices” as

the main logical component of the CLBs. CLBs in Spartan-6 contain two slices,

where a slice is composed of “four logic-function generators (or look-up tables, LUTs)

and eight storage elements (or, Flip-Flops)” [6]. The slices in CLBs include one

SLICEX and one of either SLICEL or SLICEM, the difference between the three

being the inclusion of additional logical elements such as multiplexers, carry logic,

distributed RAM and shift registers (The features of each type of slice is detailed in

Table 7.18). Furthermore, “interconnect resources” are used to connect the various

functional blocks in the FPGA. The Xilinx Synthesis Tool (XST), which is a part of

the Xilinx ISE Design Suite optimizes much of the interconnections between logical

blocks, allowing users the ability to optionally customize some resource routing, such

as clocking. Table 7.19 lists the available logic resources in each CLB, and Table 7.20

summarizes the available resources in the Spartan-6 SP605 kit (with XC6SLX45T)

that we used for our assessment.

176

To implement the functionality of our framework and its constituent algorithms,

we used VHDL (Very High Speed Integrated Circuit – VHSIC – Hardware Descrip-

tion Language) [113]. VHDL is a hardware description language (HDL) that helps in

modeling a digital system “at many levels of abstraction ranging from the algorith-

mic level to the gate level” [143]. Designers can either use concurrent or sequential

modeling to describe a digital system. The VHDL description of a digital system in-

cludes one external view (referred to as the entity) and one (or more) internal views,

where an external view is the set of interfaces the device would communicate with

other associated devices and the internal view is the actual functionality of the system

(referred to as the architecture).

In the next section, we summarize the implementation specifics of modeling our

algorithms and framework configurations using VHDL, following which we present

the results obtained by synthesizing and deploying them on Spartan-6 using Xilinx

ISE.

7.5.1 Evaluation of Hardware Resource Utilization

The objective of our hardware assessment was to first verify the functionality of the

system when deployed on FPGA (through simulation) and to assess the approximate

resource utility of our approaches when deployed on a reconfigurable logical circuit

such as the FPGA. Although our work is a security proposal and not primarily a

hardware proposal, our evaluation is an initial attempt to understand the overall re-

source utility when our framework and the constituent algorithms are implemented

on ASICs. FPGA assessment only provides an overview of the resources used by the

proposals, and the implementations can be used as foundations for further optimiza-

tion exercises and as a guideline for implementation on ASICs. In our assessment, we

implemented all the algorithms and the framework configurations, each configuration

listed in Table 7.2, using VHDL, on a different development environment (PC) than

the one used for the proof of concept implementation. The characteristics of the PC

used for this assessment are summarized in Table 7.21.

We implemented behavioral models our proposals using VHDL, using separate

processes for key generation and serial output extraction. We implemented proce-

dures to accomplish the following functionalities — (a) encryption (using XOR), (b)

177

Table 7.21: Characteristics / environment of the computer used for the VHDL im-
plementation

Processor Intel(R) Core(TM) i7 CPU 860 @ 2.80GHz

System type 64-bit Operating System, x64-based processor

Operating System Windows 7 - Service Pack 1 (build 7601)

Development Environment Xilinx ISE 13.4

Target Family Spartan6

Target Device XC6SLX45T-3FGG484

Simulation Environment Xilinx ISE Simulator (ISim)

pseudorandom number generation (using a modified implementation of the PRNG

algorithm proposed by Melià-Segúı et al. [94, 144], where we used only one of the

polynomials and implemented our own decoding logic to generate the pseudoran-

dom number), and (c) Sequential implementation of SHA-1 message digest algorithm

(implementation by Rainier, available online on Github [145]). We used XOR for

encryption and SHA-1 for message digest only as a proof of concept in this case.

We used the PRNG implementation proposed by Melià-Segúı et al. as it has been

proposed as a lightweight PRNG for RFID systems. We would like to reiterate that

our proposals are generic, and designed to work with any encryption, PRNG and

message digest algorithms. We defined these procedures in a VHDL package, which

facilitated using the same package definition for all our implementations. This was

to ensure consistency in and re-use of procedure definitions.

For the sake of consistency with our proof of concept implementation discussed in

Section 7.2, we used the following parameter initializations — for GeM2, the initial key

was set to 92EB8D6ECF7F808A705D1A4566991AF0, and initial seeds to compute

the PRNG seed were set to 14930352 and 24157817. In all configurations where But-

terfly1 is a component, the PRNG used to choose the value of the variable j at random,

which decides the state of the seed (sj), was initialized to 192BC333250CCCFF ,

while the seed (s) itself was initially set to 12345678. In all configurations where

HiveSec1 is a component, the six parent seeds of the ‘seedhive’ were initialized to

21365448FEA32DE0, F40925AB6B446781, E82745AEF95112dDC, 67A8366EFC

8CC294, 48656CBCEAA36291 and 998163AFE2A88A0A, while the seed for the

PRNG when used to choose the value of se was set to 12345678FEDCBA98.

178

Furthermore, we synchronized all data processing and input/output in our im-

plementations with the clock (33MHz) available on the Spartan-6 FPGA. This was

an exercise in optimizing the usage of available resources and to synchronize serial

input/output and data processing cycles. We used serial (bit-wise) input/output in

our implementation since each configuration/algorithm has different number of bits

that are output and because the FPGA has a maximum of 296 input-output blocks

available for use.

Our assessment was aimed at establishing that the presence of only lightweight

logical operations in our schemes would make them lightweight additional modules, to

systems that may already have implementations for encryption and hash operations.

This prompted us to use XOR as the encryption function, and available implementa-

tions for PRNG and the SHA-1 hash algorithm to realize the functionality and assess

the resource utility. We summarize the resource utilization results in the next section.

7.5.2 Results

Our first task after implementing our algorithms and framework configurations us-

ing VHDL was to assess the functionality. For this, we simulated the algorithms

using the Xilinx ISE Simulator (ISim). Waveforms generated by simulation of each

configuration, representing the inputs and outputs, can be found in Appendix B.

The estimation of hardware used by an algorithm helps us assess the logic blocks

(i.e. LUTs, Flip Flops, etc.) that are utilized in the implementation. This helps

in approximating resources that would be required on an ASIC implementation of

the same, thereby becoming a contributor to its size, utility and cost. When we

deployed our algorithms on the Spartan-6 FPGA, the PAR (Xilinx Place and Route)

tool generated a summary of device utilization, listing the available resources and the

amount of resources used by the particular implementation.

We present three results in this section obtained from this exercise:

• HDL synthesis summary (Table 7.22) — This summarizes the logic gates used

in the implementation. This provides the un-optimized number of standard

basic gates, and logical blocks such as registers, comparators and multiplexers

required during the initial step of the HDL synthesis process. Synthesis is a

process where the Xilinx Synthesis Tool converts the abstract VHDL model of

179

each configuration into an implementation in terms of logic gates [146].

• Advanced HDL Synthesis summary (Table 7.23) — This provides the optimized

resource usage. This is the result of further optimization by XST, where it

reduces the logic blocks used by ‘trimming’ Flip-Flops and latches, reducing

redundant registers, setting constant values (assumed in our implementations

for accomplishing the server/reader/WBAN hub aspect of the communication),

and converts the logic gate design obtained in the previous step into one that

uses registers and LUTs [146].

• Device utilization summary (Table 7.24) — This summarizes the approximate

number of slices/slice resources that are used in an optimized execution of the

various configurations, possibly affected by the synchronization with the clock,

taking into account assumed inputs, with optimizations for constant values.

Table 7.22 provides the logical resources that are estimated by XST in the initial

synthesis step. This accounts for all the resources needed for a parallel/concurrent im-

plementation of the various operations in each configuration. This takes into account

logical/arithmetic operations such as XOR, addition, comparisons, condition checks

(implemented using multiplexers), and registers used for storage and to represent

signals that carry data from one sub-process to another in each implementation.

One thing that stands out in Table 7.22 is the low resource use by our Butterfly1

proposal; an attribute that can be observed in the advanced HDL synthesis sum-

mary (Table 7.23) as well. This ‘curious case of Butterfly1’ can be attributed to

the simplicity in the design of the algorithm. This helps us accomplish the desired

functionality, while retaining unpredictability, and using less resources on hardware.

This enables us to claim that not only is Butterfly1 secure in terms of the randomness

in keys generated (Section 7.2.5) or its ability to mitigate attacks (Section 7.3), but

it is also truly not resource intensive. This makes it a prime candidate for imple-

mentation on resource-constrained devices. This non-resource intensiveness property

can also be observed in HiveSec1, which consumes slightly more resources than But-

terfly1. However, GeM2, which requires storing previous states for synchronization

purposes, requires more storage and addition operations, which is mainly due to the

Fibonacci-like mechanism of seed updates.

180

Table 7.22: FPGA Implementation: HDL Synthesis Summary

Parameter
Configurations

C1 C2 C3 C4 C5 C6 C7

Adders/Subtractors

128-bit adder 1 0 0 1 1 1 0

32-bit adder 304 0 1 611 305 611 307

4-bit adder 2 0 0 2 2 2 0

Registers

1-bit register 1 3 3 1 1 1 1

2-bit register 0 0 0 2 2 2 2

4-bit register 2 0 0 4 4 4 0

32-bit register 0 0 1 4 2 3 4

128-bit register 4 0 0 5 5 4 1

296-bit register 2 0 0 0 0 0 0

358-bit register 0 0 2 0 0 0 0

530-bit register 0 1 0 1 1 0 1

Comparators

4-bit comparator greater 1 0 0 1 1 1 0

Multiplexers (MUX)

128-bit 2-to-1 MUX 2 0 0 2 2 2 0

4-bit 2-to-1 MUX 3 0 0 4 4 4 0

1-bit 2-to-1 MUX 0 0 1 0 0 0 0

XORs

352-bit XOR2 0 1 1 2 1 1 2

128-bit XOR2 4 4 1 9 9 5 5

128-bit XOR3 4 4 1 1 0 1 01

32-bit XOR2 31 0 0 62 31 62 31

32-bit XOR3 42 0 0 84 42 84 42

32-bit XOR4 51 0 0 102 51 102 51

1-bit XOR9 1 2 1 4 4 1 2

1-bit XOR3 0 0 0 0 0 0 1

1-bit XOR2 0 8 0 0 0 0 0

181

Table 7.23: FPGA Implementation: Advanced HDL Synthesis Summary

Parameter
Configurations

C1 C2 C3 C4 C5 C6 C7

Macro Statistics

Accumulators 1 0 0 1 1 1 0

(128-bit)

Adders/Subtractors

128-bit adder 1 0 0 1 1 1 0

32-bit adder 0 0 0 1 1 1 1

4-bit adder 1 0 0 1 1 1 0

XORs (128-bit) 0 0 0 1 1 1 1

Counters
0 0 0 1 1 1 1

(32-bit,Up counter)

Comparators
1 0 0 1 1 1 0

(4-bit)

Multiplexers
2 0 0 2 2 2 0

(4-bit 2-to-1)

Registers
135 3 3 143 143 143 7

(Flip-Flops)

The resources required by the framework configurations are largely dependent on

the resources consumed by the individual algorithms that they include. While the

resources required by configurations C4, C5 and C6 are higher than C7, we can

observe that this is decided by the requirements of GeM2 in the former, and reduced

in the latter due to the requirements of Butterfly1 and HiveSec1.

XST optimization is mainly to ensure that the resources used by the circuit de-

sign is faster and consumes less logical elements. This optimization is an implicit

step in Synthesis and Implementation stages, which provides an estimate of required

resources. The optimization is notable in Table 7.23, where we see that the large

number of adders and registers, especially in the configurations employing GeM2,

are considerably reduced (as compared to Table 7.22). This takes into account the

reduction in redundant logical blocks and re-use of the various available resources on

the FPGA for accomplishing the required functionality in each configuration.

182

Table 7.24: FPGA Implementation: Summary of results (resources used in an opti-
mized implementation)

Parameter
Configurations

C1 C2 C3 C4 C5 C6 C7

Device Utilization Summary

Slice Registers
9 0 3 17 17 17 10

(available:54,576)

Slice LUTs
8 0 1 19 19 19 9

(available:27,288)

Occupied Slices
4 0 3 10 10 10 7

(available:6,822)

MUXCYs used
8 0 0 16 16 16 8

(available:13,644)

LUT Flip Flop pairs 6 0 1 13 13 13 6

(available) (10) (3) (3) (22) (22) (22) (13)

Bonded IOBs
3 3 3 5 5 5 5

(available:296)

BUFG/BUFGMUXs
1 0 1 1 1 1 1

(available:16)

Approximate Logic Cell and ASIC Gate Equivalent

Logic Cells
26 1* 19 64 64 64 45

(available:43,661)

ASIC Gate
390 15* 285 960 960 960 675

Equivalent

* Logical blocks occupied by the Butterfly1 implementation

(after it is optimized and packed by the Xilinx PAR tool)

is less than the resources of 1 complete slice

Following synthesis, we used the Xilinx PAR tool to deploy our designs on the

FPGA. This tool uses the optimized design generated by the Synthesis tool and maps

the design to specific circuit elements on the FPGA. This is done by using specific

sections on the FPGA as LUTs and registers, and by using other elements such as

the clock source and input/output pins for other aspects of the circuit. The PAR

183

tool provides the summary (Table 7.24) of design elements on the FPGA used for

implementing said designs.

We observe from Table 7.24 that the resources (slice registers, slice LUTs and

MUXCYs) utilized by our implementations are significantly lower (≤ 1%) than the

available resources on the Xilinx Spartan-6 FPGA. Note that MUXCY is a multiplexer

that is a component of a slice that helps in choosing one of the available inputs based

on the prevailing conditions. LUT Flip Flop pairs are allocated for each design and

we observe that of the total allocated, the utilization remains less than 60%. Note

that the number of available LUT Flip Flop pairs are allocated based on the total

slices occupied by the deployed design. Bonded IOBs are input-output blocks that

are assigned to our implementations during placement and routing. We note that the

total bonded IOBs in our implementations are less than 2% for all configurations,

while the clocking resources (global clock buffer, BUFG, or multiplexed global clock

buffer, BUFGMUX) used are less than 7%. The main reason why less resources are

used in our algorithms is the re-use of procedures for encryption and pseudorandom

number generation. This reduces the overall resource utility, which is reflected both

in the ‘Macro statistics’ in Table 7.23 and ‘Device utilization summary’ in Table 7.24.

An aspect that stands out among the results in Table 7.24 is the efficiency in re-

source utility by our Butterfly1 proposal (observed in HDL synthesis as well, Tables

7.22 and 7.23). This is largely possible owing to the re-use concept that is central

to this approach. By re-using PRNG and other operations for accomplishing various

functions in the protocol, the strain on the hardware is remarkably less. Following

Butterfly1 in terms efficiency are configurations C3 (HiveSec1) and C7 (framework

with Butterfly1 and HiveSec1). We must note that although the occupied slice esti-

mate for Butterfly1 is listed as 0, it is an approximate value rounded to the nearest

integer by Xilinx ISE. This just goes to show that the logical blocks occupied by the

Butterfly1 implementation (after it is optimized and packed by the Xilinx PAR tool)

is less than the resources of 1 complete slice. The results further support the concept

that re-using circuit components for various functions reduce the overall strain on the

device. In contrast, the configurations featuring GeM2 have a larger utilization of

the available resources, even though the utilization is less than 1% of the available

184

resources. In terms of registers (Flip-Flops), however, the utilization by these con-

figurations is higher, something that can be attributed to the storage of three (two

previous and one current) system states for synchronization purposes.

The number of occupied slices in the design report (Table 7.24) translates approx-

imately to the number of logic cells that the design might occupy when deployed as

part of a larger system-on-chip (SOC), or as an independent ASIC. A logic cell is a

“logical equivalent of a classic four-input LUT and a Flip Flop” [147]. This is a way

to measure the device capacity. On the FPGA we have used, Spartan-6 XC6SLX45T,

there are a total of 43661 logic cells available, which translates to approximately 1.6

logic cells per LUT [6], or approximately 6.4 logic cells per slice (given that there

are 6822 slices and 27288 LUTs in total). To compute the approximate logic cell

equivalent in Table 7.24, we consider the formula, 1 slice ≈ 6.4 logic cells, since a

slice is a unit that encompasses LUTs and Flip Flops (we round the result to the

nearest integer).

Furthermore, it is to be noted that the number of gates in an ASIC design helps

us approximate the area that the design might require on the ASIC. It has been

estimated that, 1 logic cell ≈ 15 ASIC gates [148]. This helps us approximate

the required number of ASIC gates for each configuration. ASIC gate equivalents

or NAND gate equivalents of the logic blocks denote the approximate number of

NAND gates required to realize the circuit (measured in terms of NAND gates be-

cause it is functionally complete, i.e. all logic blocks such as AND, OR, etc. can

be realized using NAND gates) [113]. We note that all our configurations have an

approximate gate count of less than 1000 gates, noting that these counts include key

generation function, encryption function (XOR) and message digest function (SHA-

1), thereby being a complete encryption scheme. These gate count estimates are very

much within the range of 200 - 3000 gates, which is suggested to be the available

gates for security solutions on resource-constrained devices [149, 150, 151]. Even if

one were to implement other encryption algorithms (in place of XOR) or a different

message digest algorithm (in place of SHA-1), the gate count estimates would not be

significantly affected by our key generation algorithms (and framework). To provide

some perspective for these gate equivalents, we have included the gate equivalents of

two algorithms included in the cryptographic suite specifications as part of ISO/IEC

185

Table 7.25: Gate Count Estimates
C1 C2 C3 C4 C5 C6 C7 PRESENT [75] Grain128 [78]

390 15 285 960 960 960 675 1570 1857

Table 7.26: Logic Circuit Estimation (generic)

Logic Configurations

Circuit C1 C2 C3 C4 C5 C6 C7

AND n-bit - n-bit n-bit n-bit n-bit n-bit

OR - - n-bit n-bit - n-bit n-bit

NOT n-bit 1-bit - n-bit n-bit n-bit n-bit

XOR n-bit n-bit n-bit n-bit n-bit n-bit n-bit

Addition n-bit n
2
-bit n-bit n-bit n-bit n-bit n-bit

Division - - n
2
-bit n

2
-bit - n

2
-bit n

2
-bit

MUX γ γ γ γ γ γ γ

PRNG α α α α α α α

Hash β - β β β β β

TOTAL 4n+ x1
3n+2

2
+ x2

9n
2

+ x1
11n
2

+ x1 4n+ x1
11n
2

+ x1
11n
2

+ x1

x1 : α + β + γ; and, x2 : α + γ

29167-1:2014 [33], namely PRESENT [75] and Grain128 [78], and presented the com-

parison in Table 7.25. Note that all results presented in Table 7.25 are for a key

size of 128 bits. We chose to include the gate equivalents reported by the respective

publications as a way to compare our results with what has been included as part of

the standard specification. This lets us ascertain that the overhead of our proposals

on resource-constrained devices or other devices will be considerably less as compared

to conventional approaches.

FPGA implementation, as observed here, gives an estimate of the total resources

that might be used by the various configurations under consideration. If one were to

consider a non-optimized design, i.e. a straightforward implementation of the logic

circuits in our algorithm proposals, one could estimate an approximate number of logic

gates required to realize the desired functionality. For this purpose, we summarize

(generically, for a key size of n bits) the various functions and logical operations

that are required to realize the functionality of our proposals in Table 7.26. This is

186

a generic estimate, different from the initial synthesis summary presented in Table

7.22, which lists the required logical elements without considering the potential for

re-use of certain elements.

Note that with details about number of slice registers and slice LUTs used, the

Xilinx XST and PAR tools provide an estimate of the resource utilization after syn-

thesis and following the placement of the design on the FPGA, respectively. However,

with some aspects in our implementations being constant, and XST optimizing the

use of registers and LUTs, the device utilization summary might not be a very accu-

rate representation of the resources used/required for ASIC implementations of our

proposals. Although we have provided an estimate of the number of gates for each

configuration, these gate count estimates must be taken with a grain of salt (some-

thing also considered to be an ‘unreliable’ source of resource estimates [153, 154]), as

other design constraints in actual ASIC implementations (such as the way a tempo-

rary clocking signal can be deployed on an RFID tag) might necessitate the use of

more gates/logical elements. These are approximate values and can only be used as

initial estimates, prior to a comprehensive assessment of actual ASIC resource usage.

A Note on Energy and Memory Consumption

An aspect that has been included in the HDL Synthesis summary in Table 7.22 is

memory consumption. XST summarizes the optimized memory consumption by the

various algorithm configurations in terms of register usage. This is a way to estimate

the number of registers that would be required when implementing our approaches

on ASICs, and hence, the memory overhead that they would impose on the device.

The summary of results presented in Table 7.24 indicate that our approaches are

memory efficient, although one needs to consider that the results presented here are

from an optimized implementation, following a stage of removal of redundant registers

and registers containing constant values (note that some registers contained constant

values in our implementation since we had to assume some of the functionality of the

resource-constrained device).

It should be noted that our FPGA implementation was only for the security pro-

posals presented in this thesis, and without the actual functionality that may be

present in either an RFID tag or a WBAN sensor. Thus, if one were to consider a

187

T
ab

le
7.

27
:

M
em

or
y

C
on

su
m

p
ti

on
E

st
im

at
io

n
(g

en
er

ic
,

in
b
it

s)

C
on

fi
gu

ra
ti

on
s

P
ar

am
et

er
C

1
C

2
C

3
C

4
C

5
C

6
C

7

I
D

n
-b

it
n

-b
it

n
-b

it
n

-b
it

n
-b

it
n

-b
it

n
-b

it

M
es

sa
ge

n
-b

it
n

-b
it

n
-b

it
n

-b
it

n
-b

it
n

-b
it

n
-b

it

K
ey

s
4
×
n

-b
it

2
×
n

-b
it

2
×
n

-b
it

8
×
n

-b
it

6
×
n

-b
it

6
×
n

-b
it

4
×
n

-b
it

S
ee

d
s

2
×
n

-b
it

n
-b

it
6
×
n

-b
it

9
×
n

-b
it

3
×
n

-b
it

8
×
n

-b
it

7
×
n

-b
it

T
im

es
ta

m
p

–
1
×
t-

b
it

2
×
t-

b
it

4
×
t-

b
it

2
×
t-

b
it

3
×
t-

b
it

4
×
t-

b
it

p
3
×

8-
b
it

–
–

3
×

8-
b
it

3
×

8-
b
it

3
×

8-
b
it

–

g
3
×

8-
b
it

–
–

3
×

8-
b
it

3
×

8-
b
it

3
×

8-
b
it

–

i
–

1
×

8-
b
it

–
1
×

8-
b
it

1
×

8-
b
it

–
1
×

8-
b
it

j
–

1
×
n

-b
it

–
1
×
n

-b
it

1
×
n

-b
it

–
1
×
n

-b
it

M
C

–
1
×

2-
b
it

1
×

2-
b
it

2
×

2-
b
it

1
×

2-
b
it

1
×

2-
b
it

2
×

2-
b
it

δ
–

–
n

-b
it

n
-b

it
–

n
-b

it
n

-b
it

n
δ,
id
ea
l

–
–

n 2
-b

it
n 2
-b

it
–

n 2
-b

it
n 2
-b

it

S
S
N

–
–

1
×

8-
b
it

1
×

8-
b
it

–
1
×

8-
b
it

1
×

8-
b
it

pa
tt
er
n
a
sv

n
-b

it
–

–
n

-b
it

n
-b

it
n

-b
it

–

a
sv

n
-b

it
–

–
n

-b
it

n
-b

it
n

-b
it

–

a
ck

n
-b

it
n

-b
it

n
-b

it
n

-b
it

n
-b

it
n

-b
it

n
-b

it

T
O

T
A

L
11
n

+
48

8n
+

10
2
9
n 2

+
10

5
7
n 2

+
68

17
n

+
58

4
7
n 2

+
58

4
1
n 2

+
20

188

generic design of our approaches, the various parameters/components that would con-

tribute to the overall memory consumption would include all the permanent storage

parameters (such as ID), variable parameters (such as keys, timestamps), and state

variables. We summarize such parameters and the estimated memory consumption

for each configuration under test in Table 7.27. Note that although messages could

have variable length, for this assessment, we have assumed the message length as n

bits. We have also assumed the length of the timestamp to be n bits.

Hardware and storage resource requirements of an algorithm impact the overall

energy consumed by a device implementing the algorithm since the device has to

expend energy in order to perform the required operations. Typically, a resource-

constrained device (such as an RFID tag or a WBAN sensor) would be in the off or

sleep state, and when active, it might need to expend energy to send/receive messages,

access memory blocks for data retrieval/storage and for any additional processing

(e.g. security, signal amplification, etc.) [155, 156]. The resources available on the

device (including the modules responsible for the electrical power), thus, are directly

responsible to the amount of energy requirement of the device.

The International Bureau of Weights and Measures defines 1 watt (W) of electrical

power as the “power which in one second gives rise to energy of 1 Joule (J)” [157].

Given that electrical power (P) is defined as the amount of work done by an electric

charge per unit time (Equation (7.6)), the amount of energy generated per watt is

computed as specified in Equation (7.7).

P = V · I (7.6)

E = P · t = V · I · t (7.7)

Here, V is the electric potential or voltage (measured in volts), I is the electric current

(measured in amperes, A) and t is the time (measured in seconds).

If n is the number of bits of data of message, M , to be transmitted and ω is the

data rate (measured in bits per second, bps), the total time (tTx in seconds) required

for transmission of M can be computed as:

tTx =
n

ω
(7.8)

If the resource-constrained device transmits ν such data packets, then, the total

189

transmission time will be:

tTx,total =
n

ω
× ν (7.9)

This is the total time for transmitting/relaying ν data packets, considering that the

time required for packet assembly (following sensing in case of WBANs) is negligible.

Following packet assembly, the time required for performing the security action1 as

decided by our framework or one of the constituent algorithms can be considered to

be tsecurity. Thus, the total time required by a resource-constrained entity to perform

the security action and transmission can be given by:

ttotal = tsecurity + tTx,total + trw = tsecurity +
nν

ω
+ trw (7.10)

Here, trw represents any minimal time required for data read/write operations from/to

memory.

Using the value for the total time from Equation (7.10) in Equation (7.7), we can

derive the total energy consumed by the resource-constrained entity as summarized

by Equation (7.11).

ERC = V · I · (tsecurity +
nν

ω
+ trw) (7.11)

Several factors can impact the total time, ttotal, and consequently, the energy, ERC ,

in a real-time resource-constrained application. This would first of all be impacted by

the type of resource-constrained application (i.e. RFID, WBAN, etc.), in addition to

any other application specific restrictions (such as limits on the maximum packet size,

data rate or available electric power). If a single packet (ν = 1) of size, n = 128 bits,

were to be written to the memory by an Impinj R© Monza R© X-8K Dura RFID tag

(which draws a nominal 80µA of current at 1.6V during write operation) [158], the

energy consumed for this write operation (assuming trw = 3.6ms) can be calculated

as:

ERFID,write = 1.6× 80× 10−6
(
tsecurity +

128× 1

400× 103
+ 3.6× 10−3

)
J

ERFID,write = 0.128× 10−3
(
tsecurity + 0.32× 10−3 + 3.6× 10−3

)
J

∴ ERFID,write = 0.128
(
tsecurity + 3.92× 10−3

)
mJ

1A security action constitutes the choice of algorithm, key generation, encryption and authenti-
cation vector/message signature generation in case of our framework.

190

Similarly, if the same packet were to be transmitted by a WBAN sensor employing

the IEEE 802.15.4 standard specification for communication, having PHY layer prop-

erties for North America, i.e. with a maximum data rate of 40kbps and a transmission

power of 1mW (min) [159] (assuming trw = 3.6ms), the energy can be computed as:

EWBAN,Tx = 1× 10−3
(
tsecurity +

128× 1

40× 10−3
+ 3.6× 10−3

)
J

∴ EWBAN,Tx =
(
tsecurity + 6.8× 10−3

)
mJ

Even though the energy consumption by the resource-constrained device is di-

rectly proportional to tsecurity, we expect that the overhead imposed by the tsecurity

component, which represents the time required to generate keys, encrypt/decrypt

data and generate authentication parameters, will be low due to the operations in

our approaches being simple logical/arithmetic operations. However, the exact im-

pact will depend on the type of application and any application-specific restrictions

on the resource-constrained entity.

7.6 Summary

Our evaluation was mainly aimed at establishing the security offered by the various

configurations listed in Table 7.2, and to estimate the resources required for imple-

menting them on ASICs. Our assessment of security and resource utility was preceded

by verification of the concept and assessment of the ability of the framework configu-

rations to choose its constituent algorithms, at random, with equal probability. This

was mainly to ensure that by using the mechanism to select the algorithm (described

in Chapter 4), the framework is not biased towards any specific algorithm included as

its constituent. Our assessment enabled us to conclude that the choices of algorithms

are reasonably spread out, i.e. algorithms having almost an equal probability of being

chosen. An aspect associated with our framework configurations is also the possibility

of the same algorithm being chosen for consecutive key generation processes, which

puts the onus on ensuring continuous key updates on each individual algorithm. With

our assessment of key uniqueness, we were able to establish that the main keys used for

encryption are always updated with each new message, which when combined with

possible choice of one in n available key generation algorithms, provides sufficient

unpredictability to the system, thereby increasing the overall security.

191

To assess the security of the key sequences themselves, we employed two assess-

ment strategies — first, we evaluated the similarity between keys, to determine how

similar consecutive keys were. This assessment showed that our proposals are able

to generate keys that are less similar to other keys in their vicinity (i.e. preced-

ing/succeeding keys). Following this assessment was our attempt to verify the ran-

domness of each key sequence using NIST Statistical Test Suite (STS). This assess-

ment illustrated the ability of our algorithms to generate keys with high randomness

properties, although keys generated by our GeM2 proposal, and framework configu-

rations it is a part of, were not successful in this assessment. This is primarily due to

the manner in which keys are updated in GeM2, i.e. mutations or changes are intro-

duced to the ‘0’ bits in parent keys, keeping child keys related to the parent, but not

to each other, therefore reducing the proportionality between ‘1’ bits and ‘0’ bits in

a key sequence and thus, its randomness. The NIST STS assessment also illustrated

the ability of the framework configurations to increase the overall randomness, despite

the inclusion of GeM2. This, and the standalone randomness of the framework when

GeM2 is not considered, displayed the ability of our framework to add an additional

‘layer’ of unpredictability over that associated with each individual algorithm. This

helps us justify our claim that our framework increases the overall security of the

system.

Our assessment also included evaluating the security of the communication proto-

col and the behavior of each configuration with respect to known attacks on resource-

constrained wireless networks. These helped us assess the ability of devices employing

our algorithms to operate in synchronous manner, ensuring message confidentiality,

along with other security goals such as message (and key, in HiveSec1) integrity veri-

fication, mutual authentication and non-repudiation by association. The satisfaction

of these security goals implies that our proposals are able to, in most cases ward off

and in the other cases mitigate the effects of possible attacks on resource-constrained

wireless networks. The security offered is the result of the employing continuous key

update mechanisms in each algorithm and hence, the framework, and due to the

ability of these key generation mechanisms to generate authentication parameters.

Furthermore, the ability of BeeSwarm in HiveSec1 to attack the attacker, albeit in its

own limited manner, adds to the overall security and becomes a last-ditch attempt

192

to mitigate attacks in case of persistent attacks.

However, the security offered by our proposals could also be impacted by the

required operations (arithmetic and logical) and storage, which led us to evaluate the

hardware resource utilization of each configuration. We did so by deploying behavioral

models of the configurations on the Xilinx Spartan-6 FPGA. Although this has been

suggested to not be a reliable way to assess resource utility by algorithms, it serves as

a way to estimate the required logic blocks for each configuration, becoming an initial

step toward deployment of these proposals as part of ASICs. This hardware resource

utility assessment enabled us to justify that the resources required by our proposals

are significantly less as compared to algorithms suggested for use by the ISO/IEC

29167-1:2014 [33] standard specification for RFID systems. Furthermore, with the

proposals being largely composed of logical operations, with very minimal use of

arithmetic operations, we can also claim that our proposals consume less resources

as compared with the more sophisticated security proposals, such as AES and RSA

(suggested by IEEE 802.15.6 [66] specification for WBAN systems).

Thus, our assessments justify our claims of security with low resource utility for

all algorithms and framework configurations. With low resource utility, the asso-

ciated implementation costs will be reduced, allowing manufacturers to be able to

include additional functionality for the applications. This, along with increased secu-

rity, makes our proposals ideal candidates for resource-constrained devices, possibly

reducing the need for the trade-off between security, functionality and longevity, in

such applications.

Chapter 8

Discussion

8.1 Proposed Framework: A Summary

We set out to propose a reconfigurable framework for security in resource-constrained

wireless networks that would provide a mechanism of dynamic key and other parame-

ter updates, as an attempt to increase security in these devices through unpredictabil-

ity. Each individual algorithm proposed in our work accomplishes the objectives of

modularity, dynamic (and continuous) key generation, facilitating mutual authen-

tication, and being deterministic only to authorized entities. These algorithms are

designed to work as standalone security solutions in various resource-constrained ap-

plications. They also form critical components of our proposed security framework.

Our framework combines these algorithms that bring with them varying levels

of unpredictability1. With its own ability to choose one of the available algorithms

at random while maintaining a constant length of the transmitted messages, the

framework increases the uncertainty associated with the system, thereby increasing

the security.

Our research was motivated by a need to remove key exchange messages, while fa-

cilitating resource-constrained devices to be able to dynamically choose from a set of

available algorithms for various aspects of security. This ability of dynamically being

able to choose algorithms is similar to the framework reconfiguring itself with each

message. The reconfigurable behavior makes our framework metamorphic, giving an

illusion as though the framework is changing its structure at random. In the sec-

tions that follow, we discuss the various aspects of our framework and its constituent

algorithms, describing how they impact our research goals and hypotheses.

1Level of unpredictability of an algorithm, in this context, is determined using the number of
internal states that are updated without parameter exchange. For example, HiveSec1 has a higher
level of unpredictability since each parent seed has the ability to generate up to 6 or 18 child seeds
depending on the timestamp. This is closely followed by GeM2 having internal PRNG seeds updates
based on the linear recurrence equation (Equation (5.4)) that are never exchanged, and Butterfly1
with its modifications decided at random to an internal PRNG seed.

193

194

8.1.1 Algorithm choice

With the decision to choose algorithms based on the timestamp, its own ID and a

constantly incrementing number, all algorithms that form a part of the framework

have an equal chance of being chosen for their specific function. This was observed

in our evaluation of the algorithm choices in Section 7.2.2. When we considered a

large number of key sequences (n = 10240), we found that the average probability

of the framework choosing each constituent algorithm is nearly equal, although when

consecutive key generations are considered, we observe that there could be times

when the framework chooses the same algorithm for more than one communication.

This is observed more when the choice of algorithms reduces (configurations C5, C6

and C7) as compared with configuration, C4. This does not affect the security of the

system in any way, since the independent algorithms possess the ability to continually

update the various parameters, such as encryption keys and authentication vectors.

This ensures that even if a few consecutive algorithm choices could be the same, the

security still remains high owing to changing states. Furthermore, with the algorithm

choices being decided by the bits of the timestamp, this behaviour need nor be what

will be observed in another test instance. This, in addition to the results in Section

7.2.2, confirms our hypothesis (H1) that in a large number of trials, the algorithms

have an equal chance of being chosen and ensure high security of the system.

8.1.2 Dynamic key generation

When we consider our framework, dynamic key generation is more of an inherited

attribute, mainly dependent on the ability of the constituent algorithms to generate

keys dynamically. Another aspect to consider in evaluating the dynamic nature of keys

generated by our framework are the type of keys, and how frequently they are expected

to be updated. For example, long-term session keys, such as the outer envelope key

in HiveSec1, KO, or the transfer key in Butterfly1, KT , might only change depending

on session updates or the value of the Butterfly1 seed update parameter, j, that is

chosen at random. This does not affect the security of the system since these are

keys used to encrypt an already encrypted set of data elements. These keys need not

be frequently updated, since their updates are ensured to be at random. The main

keys, on the other hand, such as K in GeM2, Ki in Butterfly1 and KS in HiveSec1

195

are expected to change with each key generation, as proposed in the description of

the algorithms. This expected behavior was consistent with the results discussed in

Section 7.2.3, where we found that the individual algorithms are able to generate new

keys for each key generation.

Another aspect we observed in our evaluation of dynamic key generation was that

the delay duration (chosen at random between 0 and 2 seconds) led to less than

100% unique key generation by Butterfly1 and HiveSec1 (Table 7.4 on Page 121).

This is possible due to the timestamp being a main factor in determining the keys

chosen. This behavior remains consistent when we observe the nature of the main

keys dynamically generated by the framework configurations. We set the delay to

a random choice between 0 and 2 seconds (both 0 and 2 included) to observe the

effect of multiple messages being transmitted within a fraction of a second. Despite

this possibility being very minimal in resource-constrained applications, we wanted

to explore how the framework (and the algorithms) would behave in such a scenario.

The impact of this behavior is very minimal, if at all, with less than 0.1% of the

keys generated being the same. In a long-term communication between entities, this

effect will be negligible, and possibly even non-existent depending on the random

choice of algorithms by our framework. The results obtained by our assessment of

the dynamic nature of generating main encryption keys in the individual algorithms

and the framework support our hypothesis, H2.

8.1.3 Key unpredictability

Unpredictability is an attribute that is perhaps central to our framework. This is

an aspect that defines the security of our proposals, since security of a published

cryptographic technique is dependent on the nature of the keys used. This is defined

by how related keys are to preceding and subsequent keys, and the randomness of

each individual key sequence. We chose two methods to assess the unpredictability

of the key sequences generated by our proposals based on this. First, we assessed

the similarity between consecutive keys using the Sörensen’s Similarity Index (SSI)

[129], which was a way of quantifying how similar (and therefore, dissimilar) keys

were to their preceding and subsequent keys. Following this, we assessed the average

randomness of key sequences based on statistical tests that are part of the NIST

196

Statistical Test Suite (STS) [130]. The randomness assessment was mainly to ensure

that the key sequences were both sufficiently random and dissimilar to subsequent

keys. The unpredictability of our proposals therefore, can be assessed by the behavior

of the key sequences they generate with respect to these tests.

The keys generated by our proposed algorithms, and hence the framework, are not

very similar to preceding/subsequent keys. We use the contentious word ‘very’ in the

previous sentence to indicate that the similarity is quantified by the characters present

in the keys, something limited by the set of available hexadecimal characters. With

each hexadecimal character having a 1
16

chance of being chosen for each character

position in a generated key, we evaluated the similarity considering both full keys

(of length 128 bits) and key blocks (four 32-bit blocks from the 128-bit key)2. Our

expectation was for the average similarity index values to be in the vicinity of 0.30

for keys to be reasonably dissimilar. We obtained an average full-key SSI of 0.3549

for the main keys and 0.3632 for transfer keys (not including sj), and an average key

block SSI of 0.3251 for the main keys and 0.4356 for the transfer keys not (including

sj). Although the full keys (main and transfer keys) are seemingly dissimilar with

SSI values in the vicinity of 0.3500, we observe that the average key block similarity

is increased, mainly due to the reduced variation in the block-wise SSI values of KT

and configurations using KT . Though this seems to reduce the block-wise dissimilarity

between keys, the security of the system employing only the Butterfly1 proposal or

any framework configuration using Butterfly1 would not be affected, since the data

encryption key is derived using timestamp, which increases the overall uncertainty,

reducing the impact of low dissimilarity between key blocks.

Our assessment of the randomness of key sequences (Section 7.2.5) further sup-

ports the unpredictability of most of our proposals. While Butterfly1, HiveSec1 and

the framework configuration employing only these algorithms pass the NIST STS cri-

terion for randomness in the tests considered, a somewhat surprising observation was

with regard to GeM2. Although the major improvement in GeM2 was with regard

to ‘unlinking’ the keys to an extent, the randomness tests still showed that the keys

generated by this proposal might not be as random or unpredictable as expected.

2Block-wise key assessment was required to assess the effort that would be required for an ad-
versary who has the knowledge of one block of the key to guess the remaining blocks, and therefore,
the full key.

197

Revisiting Section 5.3, we observe that though GeM2 removes the linking between

keys, the concept of generating keys requires that mutation patterns be applied to

bits that are ‘0’ in the parent keys, which means that GeM2 reduces the number of ‘0’

bits in the new key generated. This affects GeM2’s performance in the tests included

in NIST STS because they primarily depend on key sequences having an equal pro-

portion of ‘0’ bits and ‘1’ bits, with the tests verifying the possibility of a bit being

chosen at random in the sequence. Though a majority (on average, 51.32%) of the key

sequences generated by GeM2 fail the STS randomness tests (except the DFT test

for periodic elements), the positive from this exercise is the ability of the framework

(configurations C4, C5 and C6) to reduce its effect on the overall randomness of the

keys generated by the framework. We observe that the presence of other algorithms

improves the overall randomness of the keys generated by the framework configura-

tions, and are able to reduce any effect of an algorithm that might be classified as

failed by the STS assessment.

Considering the various results obtained in our study on the unpredictability of

the keys generated by the framework (and its constituent algorithms), we can say

that the behavior is satisfactory. This is because although our framework configu-

rations present increased unpredictability due to the available algorithm choices, the

behavior of the overall proposal is affected by GeM2. GeM2 includes mechanisms to

update various parameters internally, adding to the overall uncertainty of the system,

however, the sequences do not perform as expected in terms of proportionality of ‘1’

bits and ‘0’ bits. Therefore, although results obtained for Butterfly1, HiveSec1 and

the framework employing only these algorithms support hypothesis H3, GeM2 and

framework configurations that it is a part of, fail some of the tests. The positive de-

ductions from this exercise, as discussed earlier, include the ability of the framework

to reduce the effects of one algorithm that might perform poorly by combining the

positives of other algorithms, and to introduce sufficient uncertainty in the generated

key sequences (and implicitly state updates in the algorithms) to improve security of

the system.

198

8.1.4 Attack detection

Securing algorithms by cryptographic mechanisms is only one part of securing com-

munication between two entities. Although the keys generated by our framework

maintain a level of unpredictability, they assist in encrypting data. Also important in

securing communication between entities is the ability of an algorithm to provide the

means to detect data modifications (due to errors or unauthorized modifications) and

the means to mitigate any attacks. An implicit component in our proposals is the

generation of authentication parameters (asv in GeM2, θi in Butterfly1 and message

signatures in HiveSec1), which assist in entities verifying the messages sent and the

entity sending the message. Our proposals facilitate non-repudiation by association,

which is determined by their ability to mutually authenticate each other and being

able to verify the integrity of the messages communicated, and supported by the fact

that the initial parameters are never exchanged.

This, however, will not prevent unauthorized entities from attempting to disrupt

the communication or attacking the system in other possible ways. The facilities

to verify the authenticity of the entities and the message itself helps in determining

attacks such as data modification, replay, de-synchronization, etc. as discussed in

Section 7.3, while the presence of the BeeSwarm protocol as part of the framework

(and HiveSec1) helps entities mitigate possible attacks in progress.

Our framework therefore, is not only able to detect attacks (true for all individual

algorithm proposals as well), but is also able to attack an attacker as an attempt

to mitigate any possible attack (such as replay or DoS) in progress, to the extent

allowed by the resource constraints on the devices. Our assessment of security using

the Scyther protocol analyser and the security analysis exercise, thus support our

hypothesis (H4) that our proposals are able to detect attacks.

8.1.5 Resource utilization

One of the aspects necessary in resource-constrained applications such as RFID and

WBAN systems is longevity. Longevity is mainly determined by how long a particular

199

tag or sensor can function without the need for battery replacement or other mainte-

nance. This is essential since their deployment in real-time scenarios and their adopt-

ability by users is dependent on their ease of use and reduced need for frequent main-

tenance. Although our proposals are designed using simple logical operations (XOR,

AND, OR, NOT) and minimal use of mathematical functions (such as addition and

division), their deployment would also be contingent on them requiring less resources

on the ASIC on which they will be deployed. Our exercise on evaluating the resources

required (Section 7.5) substantiates our claims that the resources used by our frame-

work and the individual constituent algorithms are not excessive, supporting their

deployment in integrated circuits manufactured for a particular resource-constrained

application environment. Although the results obtained in our assessment support

our hypothesis (H5), it encourages us to further continue further optimization and

evaluation of our proposals, to reduce the resources necessary even further.

8.2 Implications for Practice

In practice, the type of security solution deployed in an application environment

depends on the type of data being communicated, whether the data are sensitive,

and are impacted by the resources (storage, computation and cost) that are available.

We have discussed two application scenarios and the possible applicability of our

proposals in those contexts in Chapter 6. However, the security solution deployed

in an application will entirely depend on a manufacturer’s perception of the security

needs in that application and on the impact on the manufacturing costs various

available solutions will have. Another aspect that will impact this decision is longevity

(as discussed in Chapter 2).

Our proposals are lightweight and include various mechanisms to maintain un-

predictability of the overall system state, which increases security, and their reduced

resource utilization (Section 7.5) is an added advantage. Using our solutions (frame-

work and individual algorithms) for key generation and authentication in practical

applications also promises accomplishing several security goals at minimal compu-

tational (and thus, resource) costs, which would mean that manufacturers will have

additional resources for increasing the functionality of the overall application.

200

An aspect that needs to be considered when discussing practical use of our pro-

posals is scalability; specifically, whether our algorithms can be used in scenarios that

have more sensors or more RFID tags and how they would impact the cost in each

case. Our proposals rely on uncertainty that is granted by continuously updating

states and in case of the framework, also on algorithms being chosen at random. In a

WBAN scenario, one possible example to consider is the use case discussed in Chap-

ter 6. Practical WBAN deployments will have limited sensors that record a specific

health parameter, somewhat similar to the application we considered. Our algorithms

can therefore be deployed in practical WBAN sensors and will not cause much impact

on their performance.

When we consider RFID applications, however, we need to consider the type of

tags and type of data being communicated by the tags. Would our proposals help in

keeping the same response by a tag different at different instances of time? Yes, as

discussed previously. But, one would need to determine the appropriate type of frame-

work or algorithms for use depending on the function of the tag, whether the data

stored on the tag is sensitive and whether the application environment is expected to

include mobile readers. One way of using the algorithms in a diverse environment,

including both fixed and mobile readers and varying functions for the tag, is discussed

in Chapter 6. One would still need to consider the number of tags that are present

in the organization. The number of tags, the communication protocol and thus, the

overhead on the server to be able to determine one tag out of the set of available

tags would definitely be an aspect to consider prior to deployment. Theoretically,

a server can be assumed to be a machine with limitless resources and the ability to

perform computations to deduce the correctness of a tag’s response. However, prac-

tically, one would need to consider how many such parallel computations the server

can perform. The presence of state identifiers and tag identifiers (ηt in Butterfly1)

help in potentially limiting the search space to identify and authenticate a particular

tag. Another aspect that then impacts the function is the ability of the mobile or

stationary reader to resolve its location and of the server to be able to send timestamp

for the tag to perform computations. This task is simpler when the tag is held very

close to the reader (as though through a ‘tapping’ action of the tag on the reader),

but the tag identity resolution complexity increases with increase in the number of

201

available tags in a particular ‘zone’ of an organization. Nevertheless, the search space

is still reduced owing to the resolution of the reader’s location and can be improved

by storing the locations of all deployed tags.

The needs of an application both in terms of resources and security are entirely

dependent on the environment in which it will be deployed. We can see that our

proposals may be adapted for deployment in practical scenarios without many changes

or the need to be concerned about the computational resources necessary; for, the

resource-constrained entity needs to authenticate and communicate with only one

server, and the server theoretically possesses the capacity to communicate with many

resource-constrained entities.

8.3 Benefits and Challenges

Having discussed the performance of our proposals and their practical applicability,

we now present some of the benefits and potential challenges that might necessitate

future investigation.

First and foremost, the concept we have proposed employs three fundamentally

different algorithms, with different design philosophies, working in the same ecosys-

tem. This serves as a means to show how such diverse systems can impact the secu-

rity of a system. Metamorphism makes the system change its structure and behavior

based on a parameter dependent on the current context (e.g. time and entity ID).

This dynamically changing structure and behavior of our framework is perhaps its

biggest strength, which increases the overall uncertainty associated with the system.

Furthermore, our proposals are independent of PRNG/Hash/Encryption propos-

als. They are intended to be deployed as additional (lightweight) module(s), to make

each of these or a combination into a secure one, able to accomplish multiple secu-

rity goals, including but not limited to confidentiality, integrity verification, mutual

authentication, as well as non-repudiation by association. This is in keeping with the

“modular” design of our proposals, which ensures replacement of any of the modules

without affecting the design of the overall system. This is the primary reason why we

have a framework that dynamically chooses between algorithms — in order to make

high security (through obscurity and unpredictable choices, of course) available to

resource-constrained devices.

202

With algorithms being chosen at random and several different state identifiers

in the entities, our framework helps in being able to assert that the message was

sent by a legitimate entity belonging to a given organizational/application network.

Successful communication is contingent on verification of the senders (and receivers),

and therefore any intermediaries, because state updates occur with each transmitted

message. If an intermediary is not authenticated at the server, either entity can detect

its attempts to modify data or replay previous frames, and can take necessary action

(including invoking the BeeSwarm protocol).

Our framework and the random choice of the constituent algorithms ensure that

the security remains high and introduces uncertainty/unpredictability detrimental to

the ability of a potential adversary retrieving any one or multiple keys. Although

the individual algorithms may sometimes necessitate updates to seeds, the security

is never compromised because of the constant length of the transmitted message

(Chapter 6), the constantly changing internal states and the choice of one of the

algorithms at random.

One of the aspects we have claimed in several places of this thesis is non-repudiation.

When employing symmetric cryptosystems, entities are considered to not be able to

guarantee non-repudiation. This necessitates the use of either asymmetric algorithms

for select phases of communication, or the use of certificate/trusted authorities [35].

Despite this, we claim that our proposals are able to accomplish non-repudiation by

association. This is because of the following reasons — (a) the shared initial secrets

(between the server and resource-constrained entities) and any further key materi-

als are never revealed, and (b) our framework uses the ID of the entity as one of

the parameters to choose the algorithm to be used for a particular communication.

This means that if an authenticated resource-constrained entity generates a specific

parameter using our proposed approaches, then it could only mean that it was able

to do so having gone through the exact state updates as the server. This further

means that the resource-constrained entity will not be able to deny that it was the

source of a verified/authenticated message. This security is also ensured because the

choice of the algorithm is always dependent on the previously synchronized value

of the timestamp, t0, which could either be updated when Butterfly1 is chosen or

HiveSec1 is chosen, making ‘guessing’ or ‘cracking’ the parameters challenging for an

203

unauthorized entity.

Furthermore, our proposals facilitate on demand authentication or key generation,

i.e. each entity can demand that the other reach a specific state to generate keys and

authentication parameters. This is a feature that can be made more explicit when

customizing the proposals for application in a specific domain.

Although there are several benefits of applying our proposals in resource-constrained

wireless networks, there are some challenges that restrict their application and neces-

sitate future investigation. Perhaps the first is the inability of GeM2 to be able to

generate sequences that can be characterized as random by the tests in NIST STS.

We have been able to identify one of the reasons for this behavior as the manner in

which the parent keys are linked to the possible child keys generated from it, which

reduces the number of ‘0’ bits in the new key sequence. This will necessitate future

investigation into different mechanisms of generating keys.

Another possible challenge is in the practical deployment of the algorithm in

an environment with many (in thousands or hundreds-of-thousands of) sensors or

tags. This would necessitate proper documenting of the approximate locations of the

tags and the ability of the readers to resolve their approximate location to achieve

successful communication. This might not be a challenge in WBANs, since there

are only a limited number of sensors that can be deployed on a human body, but,

it might be a factor that might need to be considered in RFID systems. Although

theoretically it is possible for a server to be able to resolve the identity of the tags

using the techniques specified in our thesis, there could be other practical factors that

might hinder performance.

An aspect that goes hand-in-hand with the practical deployment considerations is

physical device compromise. As discussed in Section 5.6, should a particular deploy-

ment of the framework or any constituent algorithm be configured to perform as part

of a cluster, physical device compromise would yield all security parameters, includ-

ing internal state parameters, which could compromise the overall system security.

Making such resource-constrained devices tamper-proof is therefore a very important

contributor to data security, although it is beyond the purview of our work.

204

8.4 Summary

The framework and the constituent algorithms proposed in this thesis have the po-

tential to be deployed in a variety of application scenarios, even when several aspects

of the considered application have varying security requirements. The performance

of our proposals in terms of key unpredictability and randomness is comparable to

some of the proposals in literature that employ standard algorithms such as AES [7]

and SHA-3 Hashing algorithm [9]. Furthermore, when compared to the suggested

algorithms for the security suite [75, 78], the resources required by our proposals for

deployment and operation are considerably low, making them ideal for deployment

in resource-constrained wireless networks.

In this chapter, we have presented a general discussion about the behavior of our

proposals under different conditions, identifying some of the strengths and research

challenges, and noting some of the aspects that can be improved in the future. In

the next chapter, we conclude our thesis, summarizing our work and presenting some

potential considerations for future research.

Chapter 9

Conclusions and Future Work

9.1 Concluding Remarks

Motivated by the need for security proposals that consume less resources, while pro-

viding high security by means of increased unpredictability, our work proposed a

metamorphic (or, reconfigurable) security framework. We draw inspiration for our

work from the manner in which a chameleon changes its colour in response to the

colour of its surroundings. Since resource-constrained devices would require circuits

to be pre-defined at deploy time, our framework is based on using multiple (modular)

security solutions that help in accomplishing reconfigurability in its operation. Our

framework uses a synchronized value of the timestamp, an incrementing integer and

the ID of the resource-constrained entity for choosing one of nAlg available algorithms.

However, just a framework that chooses one of nAlg algorithms might not be suffi-

cient to guarantee high unpredictability. Therefore, we also propose three algorithms

for security, with a main focus on dynamic key generation and authentication param-

eter computation. The three algorithms, namely, GeM2, Butterfly1 and HiveSec1,

are inspired by concepts from biology and chaos theory. We draw inspiration from

gene mutation and transfer in our design of GeM2, while Butterfly1 is inspired by the

Butterfly Effect. HiveSec1 on the other hand, draws inspiration from the symmetry in

the structure of beehives and functioning of bee swarms. Each algorithm is based on

a fundamentally different concept and our framework is a means of integrating them

to provide a mechanism for key generation (and thereby facilitating accomplishment

of several security goals), with high unpredictability. The unpredictability is due

to the varying internal states of each algorithm, and their ability to generate keys

independently at the sender and receiver without having to exchange keys or other

parameters. This dynamic and continuous key generation (rather than key exchange)

makes for an application environment with increased security due to the uncertainty

surrounding the choice of the next algorithm to be used for key generation and the

205

206

implicit unpredictability of the parameters resulting thereof.

Our assessment largely supports our claims of high unpredictability and increased

security, although our GeM2 proposal performs less than optimally when subjected

to randomness tests in the NIST Statistical Test Suite. Nevertheless, the effect of

any sub-optimal performance by one algorithm in the framework is mitigated by

the presence of other algorithms in the framework, as observed in Chapter 7. Our

results (presented in Chapter 7 and discussed in Chapter 8) support our claims of

increased security through unpredictability, while requiring less resources for ASIC

implementations of our algorithms and the framework. The benefits and strengths

of our framework (and constituent algorithms) seem to outweigh the limitations and

research challenges, while the challenges themselves become interesting opportunities

warranting future investigation. Our framework and the constituent algorithms can

be deployed in a variety of application domains that necessitate internal state updates

and independent key generation at the entities, of which we presented two examples

in Chapter 6 and discussed the applicability of our proposals in those scenarios.

While our framework and the constituent algorithms are designed to work as a

cohesive unit or as standalone algorithms as proposed, there is still opportunity to

extend, adapt and improve the proposals for achieving better security and higher

applicability, as discussed next.

9.2 Future Work

Perhaps the first scope for improvement is in exploring the possibility for improving

the randomness and unpredictability in the key sequences generated by GeM2. This

would include first identifying the exact cause of failure in the sequences that fail to

pass the randomness tests in NIST STS. This would be followed by exploring possible

ways to improve GeM2.

Though reconfigurability and modularity are inherent concepts in our approach,

it will also be worth exploring how modular and reconfigurable frameworks such as

the one proposed in our thesis can be made, i.e. an ideal reconfigurable framework

would include random choices between different internal modules of the framework.

An example of this could be choosing key generation module from Butterfly1 while

message signature from HiveSec1, and potentially even AES for encryption with the

207

standards pushing for the technology to be able to support sophisticated encryption

algorithms. Such high modularity and reconfigurability could of course result in

significant modifications to the algorithm choice logic and to the manner in which

the circuit could be implemented in hardware (on ASICs). This could mean that

the hardware resources necessary to ensure such high modularity may be higher than

what is required now, which is naturally an aspect to evaluate in the future.

Furthermore, another interesting aspect to explore is the application of this meta-

morphic framework for key generation with standard symmetric algorithms such as

AES [35], to be able to generate the main key, which is then used to compute the

keys for each round of encryption. This would be an interesting application to explore

since it would mean that the entities would be able to generate main keys indepen-

dently and possibly, on demand, leading to an increase in the overall unpredictability

of the system. This would also lead to us possibly exploring the use of our framework

(and constituent algorithms) in other, non-resource-constrained application domains

as well.

Although we presented the BeeSwarm approach to mitigate perceived attacks by

attacking the attacker, we will have to evaluate its practical use. The first aspect to

explore in this would be to evaluate the amount of time for which or the number of

frames that the entity can transmit. Despite this depending on the resources available

for a specific application, it would be worth exploring an approximate (ideal) number

of frames or the amount of time for which transmission of the meaningless frames has

to occur, in order to mitigate an attack.

One final aspect to explore is drawing inspiration from other natural processes that

could be capitalized in the framework, either in the algorithm choice logic or intro-

ducing an additional security module that could potentially result in more robustness

and increased security, owing to an added element of uncertainty.

9.3 Final Thoughts

Our work has centred around achieving reconfigurability and unpredictability using

simple functions, which results in reduced resource usage and increased security. Our

approach of drawing inspirations from other domains such as biology/natural systems

and chaos theory allows us to create such simple solutions. While our focus has been

208

in developing our proposals for application in resource-constrained wireless networks,

the design of each constituent algorithm and the framework are generic in nature,

which means that they could be extended and adapted for use in other (non-resource-

constrained) application environments as well.

In a world that is adopting more mobile technology solutions with each passing

day and that is encouraging creation of more solutions that require these devices to

talk among each other (in the Internet of Things paradigm), the need for distributed

and independent (device-specific) security management will continue to increase. Our

proposals are a step in addressing such security requirements, with each device em-

ploying them possessing the ability to manage their own security parameters and

demand vectors to be generated by any other device wanting to communicate with

it. We have proposed a new framework and three new standalone algorithms for ac-

complishing security through dynamic choices between algorithms in the framework,

during PRNG seed updates, and during key/message signature generation in each

algorithm, which improves the overall security of the system considerably due to the

increased uncertainty. Our proposals are not only suited for application in resource-

constrained devices/applications, but can be used in other non-resource-constrained

applications as well. Furthermore, the implicit features of our proposals facilitate cus-

tomization/adaptation for their use in several different application domains that may

be useful for researchers and manufacturers of resource-constrained wireless devices.

Appendix A

Assessment Using NIST Statistical Test Suite:

Detailed Results

In this Appendix, we provide detailed results obtained during our assessment of the

proposed algorithm configurations and the comparative assessment with the work by

Zhu and Khan [8], Dong et al. [9], and Liu and Kwak [7], using NIST Statistical Test

Suite (STS) [130]. Tables A.1 – A.16 give the results for uniformity of P-values and

the proportion of passing sequences. Summary numbers from these results have been

presented in Table 7.6 and Table 7.17.

209

210

T
ab

le
A

.1
:

U
n
if

or
m

it
y

of
P

-v
al

u
es

an
d

P
ro

p
or

ti
on

of
P

as
si

n
g

S
eq

u
en

ce
s

(C
1)

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

P
-V

al
u
e

P
ro

p
or

ti
on

S
ta

ti
st

ic
al

T
es

t

54
27

48
0

72
2

48
5

56
5

58
2

0
67

9
69

1
36

9
0.

00
00

*
49

98
/1

00
00

*
F

re
q
u
en

cy

54
19

53
9

48
4

59
5

56
7

31
3

66
8

46
9

51
4

43
2

0.
00

00
*

50
27

/1
00

00
*

B
lo

ck
F

re
q
u
en

cy

53
19

54
2

63
4

52
0

51
5

53
6

35
3

57
5

59
5

41
1

0.
00

00
*

51
40

/1
00

00
*

R
u
n
s

53
86

53
4

52
5

55
9

51
0

61
8

39
4

55
0

47
5

44
9

0.
00

00
*

53
60

/1
00

00
*

L
on

ge
st

R
u
n

19
95

66
5

0
29

54
0

16
69

0
0

27
17

0
0.

00
00

*
99

33
/1

00
00

*
F

F
T

T
ab

le
A

.2
:

U
n
if

or
m

it
y

of
P

-v
al

u
es

an
d

P
ro

p
or

ti
on

of
P

as
si

n
g

S
eq

u
en

ce
s

(C
2(
K
i)

)

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

P
-V

al
u
e

P
ro

p
or

ti
on

S
ta

ti
st

ic
al

T
es

t

92
3

93
4

14
74

97
3

10
97

12
29

0
13

30
13

58
68

2
0.

00
00

*
98

95
/1

00
00

F
re

q
u
en

cy

94
9

10
69

88
1

11
85

10
51

73
8

13
16

81
5

11
32

86
4

0.
00

00
*

99
08

/1
00

00
B

lo
ck

F
re

q
u
en

cy

10
44

10
54

11
24

10
06

94
4

10
32

72
9

11
01

11
28

83
8

0.
00

00
*

99
06

/1
00

00
R

u
n
s

94
2

10
46

10
21

10
52

10
47

12
19

76
8

10
78

90
5

92
2

0.
00

00
*

98
96

/1
00

00
L

on
ge

st
R

u
n

11
66

11
47

0
21

47
0

25
08

0
0

30
32

0
0.

00
00

*
98

62
/1

00
00

*
F

F
T

211

T
ab

le
A

.3
:

U
n
if

or
m

it
y

of
P

-v
al

u
es

an
d

P
ro

p
or

ti
on

of
P

as
si

n
g

S
eq

u
en

ce
s

(C
2(
K
T

))

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

P
-V

al
u
e

P
ro

p
or

ti
on

S
ta

ti
st

ic
al

T
es

t

40
9

15
5

66
97

47
1

39
0

48
5

0
57

0
52

0
30

3
0.

00
00

00
*

99
06

/1
00

00
F

re
q
u
en

cy

43
3

30
3

24
5

39
4

40
9

32
4

67
90

25
8

46
8

37
6

0.
00

00
00

*
99

06
/1

00
00

B
lo

ck
F

re
q
u
en

cy

23
7

39
5

59
6

32
0

40
0

39
2

66
42

32
2

53
5

16
1

0.
00

00
00

*
10

00
0/

10
00

0
*

R
u
n
s

32
5

66
81

37
0

47
1

49
6

37
7

31
6

28
8

33
1

34
5

0.
00

00
00

*
99

17
/1

00
00

L
on

ge
st

R
u
n

53
9

21
3

0
75

1
0

78
0

0
0

77
17

0
0.

00
00

00
*

10
00

0/
10

00
0

*
F

F
T

T
ab

le
A

.4
:

U
n
if

or
m

it
y

of
P

-v
al

u
es

an
d

P
ro

p
or

ti
on

of
P

as
si

n
g

S
eq

u
en

ce
s

(C
3(
K
S
))

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

P
-V

al
u
e

P
ro

p
or

ti
on

S
ta

ti
st

ic
al

T
es

t

90
7

91
5

14
51

93
4

10
50

12
37

0
13

66
14

46
69

4
0.

00
00

00
*

99
08

/1
00

00
F

re
q
u
en

cy

94
1

10
19

93
0

11
57

10
80

74
5

12
88

78
9

11
11

94
0

0.
00

00
00

*
99

21
/1

00
00

B
lo

ck
F

re
q
u
en

cy

99
2

10
20

11
76

10
22

91
9

10
57

68
7

10
94

11
59

87
4

0.
00

00
00

*
99

07
/1

00
00

R
u
n
s

91
0

10
75

10
36

10
74

10
17

12
06

76
6

10
96

89
5

92
5

0.
00

00
00

*
99

18
/1

00
00

L
on

ge
st

R
u
n

12
28

11
69

0
21

49
0

24
75

0
0

29
79

0
0.

00
00

00
*

98
57

/1
00

00
*

F
F

T

212

T
ab

le
A

.5
:

U
n
if

or
m

it
y

of
P

-v
al

u
es

an
d

P
ro

p
or

ti
on

of
P

as
si

n
g

S
eq

u
en

ce
s

(C
3(
K
O

))

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

P
-V

al
u
e

P
ro

p
or

ti
on

S
ta

ti
st

ic
al

T
es

t

90
7

97
8

14
29

99
7

10
68

11
66

0
13

41
13

78
73

6
0.

00
00

00
*

98
85

/1
00

00
F

re
q
u
en

cy

94
4

10
80

92
2

11
71

10
17

69
8

13
69

84
6

10
62

89
1

0.
00

00
00

*
99

30
/1

00
00

*
B

lo
ck

F
re

q
u
en

cy

10
13

10
33

10
65

10
15

10
30

10
22

70
0

11
10

11
86

82
6

0.
00

00
00

*
99

09
/1

00
00

R
u
n
s

96
4

10
25

10
04

10
35

10
39

12
11

80
0

11
12

91
1

89
9

0.
00

00
00

*
99

04
/1

00
00

L
on

ge
st

R
u
n

12
20

11
37

0
21

14
0

24
05

0
0

31
24

0
0.

00
00

00
*

98
04

/1
00

00
*

F
F

T

T
ab

le
A

.6
:

U
n
if

or
m

it
y

of
P

-v
al

u
es

an
d

P
ro

p
or

ti
on

of
P

as
si

n
g

S
eq

u
en

ce
s

(C
4(
K
,K

i,
K
S
))

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

P
-V

al
u
e

P
ro

p
or

ti
on

S
ta

ti
st

ic
al

T
es

t

24
12

75
9

12
44

76
8

94
1

99
6

0
11

16
11

72
59

2
0.

00
00

00
*

82
88

/1
00

00
*

F
re

q
u
en

cy

23
84

86
0

71
9

98
6

90
7

62
2

11
54

72
7

89
6

74
5

0.
00

00
00

*
83

20
/1

00
00

*
B

lo
ck

F
re

q
u
en

cy

24
06

86
7

99
8

86
3

79
7

84
2

60
2

92
7

97
1

72
7

0.
00

00
00

*
83

42
/1

00
00

*
R

u
n
s

24
15

81
0

84
3

91
1

83
2

10
26

62
7

97
4

76
3

79
9

0.
00

00
00

*
84

00
/1

00
00

*
L

on
ge

st
R

u
n

14
48

99
5

0
24

62
0

21
20

0
0

29
75

0
0.

00
00

00
*

98
56

/1
00

00
*

F
F

T

213

T
ab

le
A

.7
:

U
n
if

or
m

it
y

of
P

-v
al

u
es

an
d

P
ro

p
or

ti
on

of
P

as
si

n
g

S
eq

u
en

ce
s

(C
4(
K
,K

T
,K

O
))

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

P
-V

al
u
e

P
ro

p
or

ti
on

S
ta

ti
st

ic
al

T
es

t

22
29

50
8

30
13

63
4

71
1

76
7

0
81

9
85

8
46

1
0.

00
00

00
*

82
99

/1
00

00
*

F
re

q
u
en

cy

22
40

62
3

50
6

74
2

67
0

46
8

30
09

55
3

63
4

55
5

0.
00

00
00

*
83

18
/1

00
00

*
B

lo
ck

F
re

q
u
en

cy

21
78

65
6

76
9

62
0

59
4

67
5

26
27

66
7

72
1

49
3

0.
00

00
00

*
83

65
/1

00
00

*
R

u
n
s

22
14

27
84

62
5

69
6

64
1

75
8

49
8

61
2

58
6

58
6

0.
00

00
00

*
84

16
/1

00
00

*
L

on
ge

st
R

u
n

12
88

67
5

0
19

37
0

16
70

0
0

44
30

0
0.

00
00

00
*

99
17

/1
00

00
F

F
T

T
ab

le
A

.8
:

U
n
if

or
m

it
y

of
P

-v
al

u
es

an
d

P
ro

p
or

ti
on

of
P

as
si

n
g

S
eq

u
en

ce
s

(C
5(
K
,K

i)
)

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

P
-V

al
u
e

P
ro

p
or

ti
on

S
ta

ti
st

ic
al

T
es

t

30
92

69
6

11
38

73
1

79
4

91
6

0
10

21
10

78
53

4
0.

00
00

00
*

75
55

/1
00

00
*

F
re

q
u
en

cy

31
34

79
4

67
3

92
4

81
5

50
5

10
34

64
0

80
0

68
1

0.
00

00
00

*
75

64
/1

00
00

*
B

lo
ck

F
re

q
u
en

cy

30
42

81
3

91
6

76
4

76
7

80
7

56
1

83
2

85
8

64
0

0.
00

00
00

*
76

23
/1

00
00

*
R

u
n
s

30
94

81
8

76
8

84
6

73
7

91
6

60
9

83
6

67
2

70
4

0.
00

00
00

*
77

16
/1

00
00

*
L

on
ge

st
R

u
n

15
80

93
2

0
25

56
0

20
79

0
0

28
53

0
0.

00
00

00
*

98
85

/1
00

00
F

F
T

214

T
ab

le
A

.9
:

U
n
if

or
m

it
y

of
P

-v
al

u
es

an
d

P
ro

p
or

ti
on

of
P

as
si

n
g

S
eq

u
en

ce
s

(C
5(
K
,K

T
))

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

P
-V

al
u
e

P
ro

p
or

ti
on

S
ta

ti
st

ic
al

T
es

t

28
01

30
7

38
67

46
5

49
1

51
4

0
60

6
62

2
32

7
0.

00
00

00
*

75
64

/1
00

00
*

F
re

q
u
en

cy

28
24

40
8

32
3

50
3

48
0

31
4

39
37

35
3

47
1

38
7

0.
00

00
00

*
75

72
/1

00
00

*
B

lo
ck

F
re

q
u
en

cy

26
64

48
2

58
3

39
9

43
7

46
5

36
86

44
5

56
5

27
4

0.
00

00
00

*
76

66
/1

00
00

*
R

u
n
s

27
68

37
62

43
8

50
6

48
0

49
0

35
8

40
3

38
6

40
9

0.
00

00
00

*
77

24
/1

00
00

*
L

on
ge

st
R

u
n

12
18

45
3

0
18

53
0

12
17

0
0

52
59

0
0.

00
00

00
*

99
64

/1
00

00
*

F
F

T

T
ab

le
A

.1
0:

U
n
if

or
m

it
y

of
P

-v
al

u
es

an
d

P
ro

p
or

ti
on

of
P

as
si

n
g

S
eq

u
en

ce
s

(C
6(
K
,K

S
))

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

P
-V

al
u
e

P
ro

p
or

ti
on

S
ta

ti
st

ic
al

T
es

t

31
83

66
3

10
44

77
2

81
1

91
4

0
10

21
10

69
52

3
0.

00
00

00
*

74
05

/1
00

00
*

F
re

q
u
en

cy

32
50

78
3

66
1

92
2

79
9

48
4

10
11

62
9

81
5

64
6

0.
00

00
00

*
74

23
/1

00
00

*
B

lo
ck

F
re

q
u
en

cy

32
20

81
6

91
2

74
3

74
6

76
1

52
1

83
8

82
4

61
9

0.
00

00
00

*
74

82
/1

00
00

*
R

u
n
s

32
29

76
1

77
0

80
4

77
7

91
5

58
2

82
6

64
1

69
5

0.
00

00
00

*
75

85
/1

00
00

*
L

on
ge

st
R

u
n

15
41

96
0

0
25

84
0

20
91

0
0

28
24

0
0.

00
00

00
*

98
76

/1
00

00
F

F
T

215

T
ab

le
A

.1
1:

U
n
if

or
m

it
y

of
P

-v
al

u
es

an
d

P
ro

p
or

ti
on

of
P

as
si

n
g

S
eq

u
en

ce
s

(C
6(
K
,K

O
))

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

P
-V

al
u
e

P
ro

p
or

ti
on

S
ta

ti
st

ic
al

T
es

t

32
31

72
6

10
30

71
1

77
9

93
2

0
10

40
10

40
51

1
0.

00
00

00
*

74
06

/1
00

00
*

F
re

q
u
en

cy

32
01

83
3

71
0

85
3

81
8

47
9

97
3

60
9

85
2

67
2

0.
00

00
00

*
74

27
/1

00
00

*
B

lo
ck

F
re

q
u
en

cy

32
18

82
4

84
2

78
6

76
9

74
4

50
0

82
9

86
4

62
4

0.
00

00
00

*
74

67
/1

00
00

*
R

u
n
s

32
41

80
1

75
1

80
7

76
7

85
2

59
8

83
1

66
2

69
0

0.
00

00
00

*
75

73
/1

00
00

*
L

on
ge

st
R

u
n

15
23

93
1

0
25

79
0

21
25

0
0

28
42

0
0.

00
00

00
*

98
89

/1
00

00
F

F
T

T
ab

le
A

.1
2:

U
n
if

or
m

it
y

of
P

-v
al

u
es

an
d

P
ro

p
or

ti
on

of
P

as
si

n
g

S
eq

u
en

ce
s

(C
7(
K
i,
K
S
))

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

P
-V

al
u
e

P
ro

p
or

ti
on

S
ta

ti
st

ic
al

T
es

t

94
5

92
6

14
47

95
7

10
76

12
05

0
12

98
14

29
71

7
0.

00
00

00
*

98
95

/1
00

00
F

re
q
u
en

cy

98
4

10
35

87
7

11
10

10
40

78
8

13
36

85
7

10
92

88
1

0.
00

00
00

*
99

07
/1

00
00

B
lo

ck
F

re
q
u
en

cy

10
77

99
2

11
54

10
40

94
1

10
39

72
0

11
05

10
65

86
7

0.
00

00
00

*
98

80
/1

00
00

R
u
n
s

92
9

10
78

10
26

10
54

10
22

11
99

72
9

10
99

89
9

96
5

0.
00

00
00

*
99

05
/1

00
00

L
on

ge
st

R
u
n

12
54

11
16

0
21

65
0

24
70

0
0

29
95

0
0.

00
00

00
*

98
37

/1
00

00
*

F
F

T

216

T
ab

le
A

.1
3:

U
n
if

or
m

it
y

of
P

-v
al

u
es

an
d

P
ro

p
or

ti
on

of
P

as
si

n
g

S
eq

u
en

ce
s

(C
7(
K
T
,K

O
))

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

P
-V

al
u
e

P
ro

p
or

ti
on

S
ta

ti
st

ic
al

T
es

t

67
7

55
8

41
85

69
6

73
7

81
1

0
95

0
92

8
45

8
0.

00
00

00
*

99
01

/1
00

00
F

re
q
u
en

cy

70
7

65
2

58
0

72
9

73
9

52
8

41
43

54
4

78
5

59
3

0.
00

00
00

*
98

97
/1

00
00

B
lo

ck
F

re
q
u
en

cy

66
1

70
1

76
8

70
0

63
6

72
4

37
53

70
5

81
5

53
7

0.
00

00
00

*
99

51
/1

00
00

*
R

u
n
s

64
7

39
14

68
8

76
0

75
2

81
8

56
6

65
7

57
1

62
7

0.
00

00
00

*
99

18
/1

00
00

L
on

ge
st

R
u
n

83
9

69
7

0
14

57
0

15
88

0
0

54
19

0
0.

00
00

00
*

99
09

/1
00

00
F

F
T

T
ab

le
A

.1
4:

U
n
if

or
m

it
y

of
P

-v
al

u
es

an
d

P
ro

p
or

ti
on

of
P

as
si

n
g

S
eq

u
en

ce
s

—
K

ey
s

ge
n
er

at
ed

u
si

n
g

th
e

p
ro

p
os

al
b
y

L
iu

an
d

K
w

ak
[7

]

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

P
-V

al
u
e

P
ro

p
or

ti
on

S
ta

ti
st

ic
al

T
es

t

96
6

87
3

13
73

96
9

11
17

12
60

0
13

25
14

20
69

7
0.

00
00

00
*

99
13

/1
00

00
F

re
q
u
en

cy

97
5

10
25

90
0

11
63

98
3

74
5

13
53

84
7

11
04

90
5

0.
00

00
00

*
99

14
/1

00
00

B
lo

ck
F

re
q
u
en

cy

10
05

10
46

11
35

10
39

95
0

10
14

73
7

10
62

11
40

87
2

0.
00

00
00

*
98

88
/1

00
00

R
u
n
s

94
7

99
4

10
01

10
61

10
52

11
99

74
8

11
12

91
0

97
6

0.
00

00
00

*
99

12
/1

00
00

L
on

ge
st

R
u
n

12
11

12
02

0
21

22
0

23
66

0
0

30
99

0
0.

00
00

00
*

98
37

/1
00

00
*

F
F

T

217

T
ab

le
A

.1
5:

U
n
if

or
m

it
y

of
P

-v
al

u
es

an
d

P
ro

p
or

ti
on

of
P

as
si

n
g

S
eq

u
en

ce
s

—
K

ey
s

ge
n
er

at
ed

u
si

n
g

th
e

p
ro

p
os

al
b
y

Z
h
u

an
d

K
h
an

[8
]

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

P
-V

al
u
e

P
ro

p
or

ti
on

S
ta

ti
st

ic
al

T
es

t

89
3

89
3

14
52

92
4

10
93

12
43

0
13

46
14

34
72

2
0.

00
00

00
*

98
91

/1
00

00
F

re
q
u
en

cy

10
18

10
21

90
6

11
11

10
04

76
0

12
67

89
5

11
26

89
2

0.
00

00
00

*
98

92
/1

00
00

B
lo

ck
F

re
q
u
en

cy

10
16

96
3

11
44

10
13

94
0

10
47

71
6

11
23

11
68

87
0

0.
00

00
00

*
98

92
/1

00
00

R
u
n
s

96
0

10
14

96
5

10
64

10
11

12
18

80
9

11
19

88
3

95
7

0.
00

00
00

*
98

86
/1

00
00

L
on

ge
st

R
u
n

12
82

11
65

0
20

87
0

23
95

0
0

30
71

0
0.

00
00

00
*

98
32

/1
00

00
*

F
F

T

T
ab

le
A

.1
6:

U
n
if

or
m

it
y

of
P

-v
al

u
es

an
d

P
ro

p
or

ti
on

of
P

as
si

n
g

S
eq

u
en

ce
s

—
K

ey
s

ge
n
er

at
ed

u
si

n
g

th
e

p
ro

p
os

al
b
y

D
on

g

et
al

.
[9

]

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

P
-V

al
u
e

P
ro

p
or

ti
on

S
ta

ti
st

ic
al

T
es

t

94
3

94
1

14
11

97
7

11
27

11
77

0
13

45
13

99
68

0
0.

00
00

00
*

98
98

/1
00

00
F

re
q
u
en

cy

95
2

10
84

88
2

11
54

10
75

69
9

13
08

78
4

10
98

96
4

0.
00

00
00

*
99

26
/1

00
00

B
lo

ck
F

re
q
u
en

cy

10
27

10
33

11
12

98
5

94
9

10
40

75
1

10
63

11
83

85
7

0.
00

00
00

*
98

90
/1

00
00

R
u
n
s

96
7

10
57

10
12

10
39

10
57

12
17

77
2

10
51

88
6

94
2

0.
00

00
00

*
98

94
/1

00
00

L
on

ge
st

R
u
n

12
22

11
65

0
20

99
0

24
05

0
0

31
09

0
0.

00
00

00
*

98
33

/1
00

00
*

F
F

T

Appendix B

FPGA-based Simulation of our Proposals

In this Appendix, we present the outputs from simulation of our proposed algorithm

configurations using Xilinx ISim simulator included in the Spartan-6 FPGA SP605

Embedded Kit [142]. In our simulations, the input and output were both serial,

i.e. bit-wise, accumulated into a register prior to processing and prior to output,

respectively. The signal, enable, was used to start a particular key generation cycle,

culminating in the output of the encrypted bit sequence illustrated as the output in

each illustration. In the simulation of the framework configurations, C4 – C7, the

parameter algorithm[1:0] is a 2 bit number representing the algorithm choice. Table

B.1 summarizes the algorithm and their corresponding algorithm number, represented

by algorithm[1:0].

Table B.1: Algorithms and Algorithm Numbers (represented by algorithm[1:0]) used
in the Simulation

Configuration
Algorithm number

Algorithm
(Bit representation)

C4

0 (00) or 3 (11) GeM2

1 (01) Butterfly1

2 (10) HiveSec1

C5
0 (00) or 3 (11) GeM2

1 (01) or 2 (10) Butterfly1

C6
0 (00) or 3 (11) GeM2

1 (01) or 2 (10) HiveSec1

C7
0 (00) or 1 (01) Butterfly1

2 (10) or 3 (11) HiveSec1

218

219

Figure B.1: Simulation of GeM2 using Xilinx ISim

220

Figure B.2: Simulation of Butterfly1 using Xilinx ISim

221

Figure B.3: Simulation of HiveSec1 using Xilinx ISim

222

Figure B.4: Simulation of Framework (GeM2, Butterfly1, HiveSec1) using Xilinx ISim

223

Figure B.5: Simulation of Framework (GeM2, Butterfly1) using Xilinx ISim

224

Figure B.6: Simulation of Framework (GeM2, HiveSec1) using Xilinx ISim

225

Figure B.7: Simulation of Framework (Butterfly1, HiveSec1) using Xilinx ISim

Appendix C

Logic Circuit Utilization Estimation

We estimated the logical circuit blocks that might be necessary for a conventional

(non-optimal, non-FPGA) design of our proposals. We list the requirements for each

configuration in Tables C.1 — C.7. Here, n is the size of the key in bits.

Table C.1: Logic Circuit Estimation: Configuration, C1
Logic Circuit Count

PRNG n bit ×1

Hash p bit ×1

Addition n bit ×1

AND n bit ×1

XOR n bit ×1

NOT (Invert) n bit ×1

MUX (Multiplexer) 2 : 1× 1

Table C.2: Logic Circuit Estimation: Configuration, C2
Logic Circuit Count

PRNG n bit ×1

Addition n
2

bit ×1

XOR n bit ×1

NOT (Invert) 1 bit ×1

MUX (Multiplexer) 2 : 1× 1

226

227

Table C.3: Logic Circuit Estimation: Configuration, C3
Logic Circuit Count

PRNG n bit ×1

Hash p bit ×1

Addition n bit ×1

Division n
2

bit ×1

AND n bit ×1

OR n bit ×1

XOR n bit ×1

MUX (Multiplexer)

2 : 1× 1

6 : 1× 1

18 : 1× 1

Table C.4: Logic Circuit Estimation: Configuration, C4
Logic Circuit Count

PRNG n bit ×1

Hash p bit ×1

Addition n bit ×1

Division n
2

bit ×1

AND n bit ×1

OR n bit ×1

XOR n bit ×1

NOT (Invert) n bit ×1

MUX (Multiplexer)

2 : 1× 1

6 : 1× 1

18 : 1× 1

Table C.5: Logic Circuit Estimation: Configuration, C5
Logic Circuit Count

PRNG n bit ×1

Hash p bit ×1

Addition n bit ×1

AND n bit ×1

XOR n bit ×1

NOT (Invert) n bit ×1

MUX (Multiplexer) 2 : 1× 1

228

Table C.6: Logic Circuit Estimation: Configuration, C6
Logic Circuit Count

PRNG n bit ×1

Hash p bit ×1

Addition n bit ×1

Division n
2

bit ×1

AND n bit ×1

OR n bit ×1

XOR n bit ×1

NOT (Invert) n bit ×1

MUX (Multiplexer)

2 : 1× 1

6 : 1× 1

18 : 1× 1

Table C.7: Logic Circuit Estimation: Configuration, C7
Logic Circuit Count

PRNG n bit ×1

Hash p bit ×1

Addition n bit ×1

Division n
2

bit ×1

AND n bit ×1

OR n bit ×1

XOR n bit ×1

NOT (Invert) 1 bit ×1

MUX (Multiplexer)

2 : 1× 1

6 : 1× 1

18 : 1× 1

Appendix D

Publications

D.1 Published

[PB1] R. V. Sampangi and S. Sampalli, “Tag-Server Mutual Authentication Scheme

based on Gene Transfer and Genetic Mutation”, Proceedings of the 2012 IEEE

Symposium on Computational Intelligence for Security and Defence Applica-

tions (CISDA 2012), July 2012, Ottawa, Canada [11].

[PB2] R. V. Sampangi and S. Sampalli, “RFID Mutual Authentication Protocols

based on Gene Mutation and Transfer”, in the Special issue on RFID & Internet

of Things of the Journal of Communications Software and Systems (JCOMSS),

Vol. 9, No. 1, March 2013 [12].

[PB3] R. V. Sampangi and S. Sampalli, “HiveSign: Dynamic Message Signatures for

Resource-Constrained Wireless Networks”, Proceedings of the 10th ACM Inter-

national Symposium on QoS and Security for Wireless and Mobile Networks

(Q2SWinet) 2014, September 2014, Montreal, Canada [14].

[PB4] R. V. Sampangi and S. Sampalli, “RFID Encryption Scheme Featuring Pseu-

dorandom Numbers and Butterfly Seed Generation”, Proceedings of the 22nd

International Conference on Software, Telecommunications and Computer Net-

works (SoftCOM) 2014, September 2014, Split, Croatia [13].

D.2 Manuscripts Under Review

[PR1] R. V. Sampangi and S. Sampalli, “HiveSec: Security in Resource-Constrained

Wireless Networks Inspired by Beehives and Bee Swarms”.

[PR2] R. V. Sampangi and S. Sampalli, “Butterfly Encryption Scheme for Resource-

Constrained Wireless Networks”.

229

230

[PR3] R. V. Sampangi and S. Sampalli, “Metamorphic Framework for Key Manage-

ment and Authentication in Resource-Constrained Wireless Networks”.

Appendix E

Copyright Permissions

Tag-Server Mutual Authentication Scheme based on Gene Transfer and

Genetic Mutation [11].

c© 2012 IEEE. Reprinted, with permission, from R. V. Sampangi and S. Sampalli,

Tag-Server Mutual Authentication Scheme based on Gene Transfer and Genetic Mu-

tation, Proceedings of the 2012 IEEE Symposium on Computational Intelligence for

Security and Defence Applications (CISDA 2012), July 2012.

In reference to IEEE copyrighted material which is used with permission in this

thesis, the IEEE does not endorse any of Dalhousie University’s products or ser-

vices. Internal or personal use of this material is permitted. If interested in reprint-

ing/republishing IEEE copyrighted material for advertising or promotional purposes

or for creating new collective works for resale or redistribution, please go to http://

www.ieee.org/publications_standards/publications/rights/rights_link.html

to learn how to obtain a License from RightsLink.

231

232

RFID Mutual Authentication Protocols based on Gene Mutation and

Transfer [12].

c© 2013 Croatian Communication and Information Society (CCIS). Reprinted,

with permission, from R. V. Sampangi and S. Sampalli, RFID Mutual Authentica-

tion Protocols based on Gene Mutation and Transfer, Journal of Communications

Software and Systems (JCOMSS), ISSN: 1845-6421, vol. 9, no. 1, March 2013, pp.

44-56.

233

Croatian
Ruđera
21000 S
Croatia

Split, Fe

Followi

Informa

author's

(ISSN:

Permiss

Archive

n Communi
Boškovića

Split

ebruary 10,

ing the re

ation Societ

s materials t

1845-6421)

sion is gran

es Canada.

ications and
32

2015.

P

equest of R

ty (CCIS),

that are pub

), vol. 9, no

nted for re

d Informatio

PERMISS

Raghav Ve

as a copyr

blished in th

. 1, March 2

euse in the

on Society,

SION STA

emagal Sa

right holder

he Journal o

2013, pp. 44

e Dalhousi

ATEMENT

ampangi, C

r, grants pe

of Commun

4-56.

e Universit

 JCOMS
Dr. s

T

Croatian Co

ermission w

ications Sof

ty library,

SS editorial
sc. Nikola R

ommunicati

with no cha

ftware and

and Librar

chair
Rožić

ion and

arges for

Systems

ries and

234

HiveSign: Dynamic Message Signatures for Resource-Constrained Wire-

less Networks [14].

Sampangi, R. V. and Sampalli, S. “HiveSign: Dynamic Message Signatures for

Resource-Constrained Wireless Networks, Proceedings of the 10th ACM Sympo-

sium on QoS and Security for Wireless and Mobile Networks (Q2SWinet ’14), pp.

33–40, c© Association for Computing Machinery, Inc. Reprinted by permission.

http://doi.acm.org/10.1145/2642687.2642699

235

ASSOCIATION FOR COMPUTING MACHINERY, INC. LICENSE
TERMS AND CONDITIONS

Feb 09, 2015

This is a License Agreement between Raghav V. Sampangi ("You") and Association for
Computing Machinery, Inc. ("Association for Computing Machinery, Inc.") provided by
Copyright Clearance Center ("CCC"). The license consists of your order details, the terms
and conditions provided by Association for Computing Machinery, Inc., and the payment
terms and conditions.

License Number 3565081504871

License date Feb 09, 2015

Licensed content publisher Association for Computing Machinery, Inc.

Licensed content publication Proceedings of the 10th ACM symposium on QoS and security for
wireless and mobile networks

Licensed content title HiveSign: dynamic message signatures for resource­constrained
wireless networks

Licensed content author Raghav V. Sampangi, et al

Licensed content date Sep 21, 2014

Type of Use Thesis/Dissertation

Requestor type Author of this ACM article

Is reuse in the author's own
new work?

Yes

Format Print and electronic

Portion Full article

Will you be translating? No

Order reference number None

Title of your
thesis/dissertation

Biomimetic Metamorphic Framework for Security in Resource­
Constrained Wireless Networks

Expected completion date May 2015

Estimated size (pages) 270

Billing Type Credit Card

Credit card info Visa ending in 0865

Credit card expiration 09/2017

Total 8.00 USD

Terms and Conditions

Rightslink Terms and Conditions for ACM Material

1. The publisher of this copyrighted material is Association for Computing Machinery, Inc.
(ACM). By clicking "accept" in connection with completing this licensing transaction, you

236

agree that the following terms and conditions apply to this transaction (along with the
Billing and Payment terms and conditions established by Copyright Clearance Center, Inc.
("CCC"), at the time that you opened your Rightslink account and that are available at any
time at).

2. ACM reserves all rights not specifically granted in the combination of (i) the license
details provided by you and accepted in the course of this licensing transaction, (ii) these
terms and conditions and (iii) CCC's Billing and Payment terms and conditions.

3. ACM hereby grants to licensee a non­exclusive license to use or republish this ACM­
copyrighted material* in secondary works (especially for commercial distribution) with the
stipulation that consent of the lead author has been obtained independently. Unless otherwise
stipulated in a license, grants are for one­time use in a single edition of the work, only with a
maximum distribution equal to the number that you identified in the licensing process. Any
additional form of republication must be specified according to the terms included at the
time of licensing.

*Please note that ACM cannot grant republication or distribution licenses for embedded
third­party material. You must confirm the ownership of figures, drawings and artwork prior
to use.

4. Any form of republication or redistribution must be used within 180 days from the date
stated on the license and any electronic posting is limited to a period of six months unless an
extended term is selected during the licensing process. Separate subsidiary and subsequent
republication licenses must be purchased to redistribute copyrighted material on an extranet.
These licenses may be exercised anywhere in the world.

5. Licensee may not alter or modify the material in any manner (except that you may use,
within the scope of the license granted, one or more excerpts from the copyrighted material,
provided that the process of excerpting does not alter the meaning of the material or in any
way reflect negatively on the publisher or any writer of the material).

6. Licensee must include the following copyright and permission notice in connection with
any reproduction of the licensed material: "[Citation] © YEAR Association for Computing
Machinery, Inc. Reprinted by permission." Include the article DOI as a link to the definitive
version in the ACM Digital Library. Example: Charles, L. "How to Improve Digital Rights
Management," Communications of the ACM, Vol. 51:12, © 2008 ACM, Inc.
http://doi.acm.org/10.1145/nnnnnn.nnnnnn (where nnnnnn.nnnnnn is replaced by the actual
number).

7. Translation of the material in any language requires an explicit license identified during
the licensing process. Due to the error­prone nature of language translations, Licensee must
include the following copyright and permission notice and disclaimer in connection with any
reproduction of the licensed material in translation: "This translation is a derivative of ACM­
copyrighted material. ACM did not prepare this translation and does not guarantee that it is
an accurate copy of the originally published work. The original intellectual property
contained in this work remains the property of ACM."

8. You may exercise the rights licensed immediately upon issuance of the license at the end
of the licensing transaction, provided that you have disclosed complete and accurate details
of your proposed use. No license is finally effective unless and until full payment is received
from you (either by CCC or ACM) as provided in CCC's Billing and Payment terms and

237

conditions.

9. If full payment is not received within 90 days from the grant of license transaction, then
any license preliminarily granted shall be deemed automatically revoked and shall be void as
if never granted. Further, in the event that you breach any of these terms and conditions or
any of CCC's Billing and Payment terms and conditions, the license is automatically revoked
and shall be void as if never granted.

10. Use of materials as described in a revoked license, as well as any use of the materials
beyond the scope of an unrevoked license, may constitute copyright infringement and
publisher reserves the right to take any and all action to protect its copyright in the materials.

11. ACM makes no representations or warranties with respect to the licensed material and
adopts on its own behalf the limitations and disclaimers established by CCC on its behalf in
its Billing and Payment terms and conditions for this licensing transaction.

12. You hereby indemnify and agree to hold harmless ACM and CCC, and their respective
officers, directors, employees and agents, from and against any and all claims arising out of
your use of the licensed material other than as specifically authorized pursuant to this
license.

13. This license is personal to the requestor and may not be sublicensed, assigned, or
transferred by you to any other person without publisher's written permission.

14. This license may not be amended except in a writing signed by both parties (or, in the
case of ACM, by CCC on its behalf).

15. ACM hereby objects to any terms contained in any purchase order, acknowledgment,
check endorsement or other writing prepared by you, which terms are inconsistent with these
terms and conditions or CCC's Billing and Payment terms and conditions. These terms and
conditions, together with CCC's Billing and Payment terms and conditions (which are
incorporated herein), comprise the entire agreement between you and ACM (and CCC)
concerning this licensing transaction. In the event of any conflict between your obligations
established by these terms and conditions and those established by CCC's Billing and
Payment terms and conditions, these terms and conditions shall control.

16. This license transaction shall be governed by and construed in accordance with the laws
of New York State. You hereby agree to submit to the jurisdiction of the federal and state
courts located in New York for purposes of resolving any disputes that may arise in
connection with this licensing transaction.

17. There are additional terms and conditions, established by Copyright Clearance Center,
Inc. ("CCC") as the administrator of this licensing service that relate to billing and payment
for licenses provided through this service. Those terms and conditions apply to each
transaction as if they were restated here. As a user of this service, you agreed to those terms
and conditions at the time that you established your account, and you may see them again at
any time at http://myaccount.copyright.com

18. Thesis/Dissertation: This type of use requires only the minimum administrative fee. It is
not a fee for permission. Further reuse of ACM content, by ProQuest/UMI or other
document delivery providers, or in republication requires a separate permission license and
fee. Commercial resellers of your dissertation containing this article must acquire a separate

238

license.

Special Terms:

Questions? customercare@copyright.com or +1­855­239­3415 (toll free in the US) or
+1­978­646­2777.

Gratis licenses (referencing $0 in the Total field) are free. Please retain this printable
license for your reference. No payment is required.

239

RFID Encryption Scheme Featuring Pseudorandom Numbers and Butter-

fly Seed Generation [13].

c© 2014 Faculty of Electrical Engineering, Mechanical Engineering and Naval Ar-

chitecture (FESB), University of Split. Reprinted, with permission, from R. V. Sam-

pangi and S. Sampalli, RFID Encryption Scheme Featuring Pseudorandom Numbers

and Butterfly Seed Generation, Proceedings of the 22nd International Conference

on Software, Telecommunications and Computer Networks (SoftCOM) 2014, ISSN:

1847-358X, September 2014, pp. 338-342.

240

Bibliography

[1] W. Stallings, Cryptography and Network Security: Principles and Practice,
5th ed. Prentice Hall, 2010.

[2] A. Mitrokotsa, M. R. Rieback, and A. S. Tanenbaum, “Classifying RFID attacks
and defenses,” Information Systems Frontiers, vol. 12, no. 5, pp. 491–505, 2010.

[3] S. Javadi and M. Razzaque, “Security and privacy in wireless body area
networks for health care applications,” in Wireless Networks and Security, ser.
Signals and Communication Technology, S. Khan and A.-S. Khan Pathan,
Eds. Springer Berlin Heidelberg, 2013, pp. 165–187. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-36169-2 6

[4] A. Mitrokotsa, M. R. Rieback, and A. S. Tanenbaum, “Classifying RFID attacks
and defenses,” Information Systems Frontiers, vol. 12, no. 5, pp. 491–505, 2010.

[5] J. Chaudhry, U. Qidwai, R. Rittenhouse, and M. Lee, “Vulnerabilities and
verification of cryptographic protocols and their future in wireless body area
networks,” in 2012 International Conference on Emerging Technologies (ICET),
Oct 2012, pp. 1–5.

[6] Spartan-6 FPGA Configurable Logic Block: User Guide, Xilinx Inc., February
2010.

[7] J. Liu and K. S. Kwak, “Hybrid security mechanisms for wireless body area
networks,” in 2010 Second International Conference on Ubiquitous and Future
Networks (ICUFN), June 2010, pp. 98–103.

[8] G. Zhu and G. Khan, “Symmetric key based RFID authentication protocol with
a secure key-updating scheme,” in 2013 26th Annual IEEE Canadian Confer-
ence on Electrical and Computer Engineering (CCECE), May 2013, pp. 1–5.

[9] Q. Dong, J. Zhang, and L. Wei, “A SHA-3 based RFID mutual authentication
protocol and its implementation,” in 2013 IEEE International Conference on
Signal Processing, Communication and Computing (ICSPCC), Aug 2013, pp.
1–5.

[10] R. V. Sampangi, S. Dey, S. R. Urs, and S. Sampalli, “A security suite for
wireless body area networks,” International Journal of Network Security and
its Applications (IJNSA), vol. 4, no. 1, pp. 97–116, 2012. [Online]. Available:
http://arxiv.org/abs/1202.2171

241

242

[11] R. Sampangi and S. Sampalli, “Tag-server mutual authentication scheme based
on gene transfer and genetic mutation,” in 2012 IEEE Symposium on Compu-
tational Intelligence for Security and Defence Applications (CISDA), 2012, pp.
1–8.

[12] R. V. Sampangi and S. Sampalli, “RFID mutual authentication protocols based
on gene mutation and transfer,” Journal of Communications Software and Sys-
tems, vol. 9, no. 1, p. 44, Mar. 2013.

[13] R. V. Sampangi and S. Sampalli, “RFID encryption scheme featuring pseudo-
random numbers and butterfly seed generation,” in 2014 22nd International
Conference on Software, Telecommunications and Computer Networks (Soft-
COM), Sept 2014, pp. 1–5.

[14] R. V. Sampangi and S. Sampalli, “HiveSign: Dynamic message signatures
for resource-constrained wireless networks,” in Proceedings of the 10th ACM
Symposium on QoS and Security for Wireless and Mobile Networks, ser.
Q2SWinet ’14. New York, NY, USA: ACM, 2014, pp. 33–40. [Online].
Available: http://doi.acm.org/10.1145/2642687.2642699

[15] R. Want, “An introduction to RFID technology,” IEEE Pervasive
Computing, vol. 5, no. 1, pp. 25–33, Jan. 2006. [Online]. Available:
http://dx.doi.org/10.1109/MPRV.2006.2

[16] EPCglobal, “Tag Class Definitions,” EPCglobal, p. 1, 2007.

[17] H.-Y. Chien, “Sasi: A new ultralightweight RFID authentication protocol pro-
viding strong authentication and strong integrity,” IEEE Transactions on De-
pendable and Secure Computing, vol. 4, no. 4, pp. 337–340, 2007.

[18] T. Bokareva, W. Hu, S. Kanhere, B. Ristic, T. Bessell, M. Rutten, and S. Jha,
“Wireless sensor networks for battlefield surveillance,” in in Proc. of the Land
Warfare Conference, 2006.

[19] IEEE 802.15. IEEE 802.15: WIRELESS PERSONAL AREA NETWORKS
(PANs). IEEE Standards Association. [Online]. Available: http://standards.
ieee.org/about/get/802/802.15.html

[20] T. O’Donovan, J. O’Donoghue, C. Sreenan, D. Sammon, P. O’Reilly, and
K. O’Connor, “A context aware wireless body area network (ban),” in 3rd
International Conference on Pervasive Computing Technologies for Healthcare,
2009. PervasiveHealth 2009, April 2009, pp. 1–8.

[21] D. T. H. Lai, B. Santhiranayagam, R. K. Begg, and M. Palaniswami, Eds.,
Healthcare Sensor Networks. CRC Press, 2011.

[22] H. Karppanen, “Ischaemic heart disease,” Drugs, vol. 28, no. 1, pp. 17–27, 1984.
[Online]. Available: http://dx.doi.org/10.2165/00003495-198400281-00003

243

[23] F. Pipkin and E. Symonds, “Pregnancy-induced hypertension,” in
Prostaglandins and their Inhibitors in Clinical Obstetrics and Gynaecology,
M. Bygdeman, G. Berger, and L. Keith, Eds. Springer Netherlands, 1986, pp.
337–366. [Online]. Available: http://dx.doi.org/10.1007/978-94-011-6734-5 16

[24] M. Chen, S. Gonzalez, A. Vasilakos, H. Cao, and V. C. Leung, “Body area
networks: A survey,” Mob. Netw. Appl., vol. 16, no. 2, pp. 171–193, Apr. 2011.
[Online]. Available: http://dx.doi.org/10.1007/s11036-010-0260-8

[25] B. Latré, B. Braem, I. Moerman, C. Blondia, and P. Demeester, “A survey on
wireless body area networks,” Wirel. Netw., vol. 17, no. 1, pp. 1–18, Jan. 2011.
[Online]. Available: http://dx.doi.org/10.1007/s11276-010-0252-4

[26] B. Defend, K. Fu, and A. Juels, “Cryptanalysis of two lightweight RFID au-
thentication schemes,” in Fifth Annual IEEE International Conference on Per-
vasive Computing and Communications Workshops, 2007. PerCom Workshops
’07., March 2007, pp. 211–216.

[27] J. Yu, G. Khan, and F. Yuan, “Xtea encryption based novel RFID security
protocol,” in 2011 24th Canadian Conference on Electrical and Computer En-
gineering (CCECE), May 2011, pp. 000 058–000 062.

[28] K. Osaka, T. Takagi, K. Yamazaki, and O. Takahashi, “An efficient and se-
cure RFID security method with ownership transfer,” in 2006 International
Conference on Computational Intelligence and Security, vol. 2, Nov 2006, pp.
1090–1095.

[29] Y.-Q. Gui, J. Zhang, and H. K. Choi, “An improved RFID security method
with ownership transfer,” in 2011 International Conference on ICT Conver-
gence (ICTC), Sept 2011, pp. 594–596.

[30] I. Vajda and L. Buttyn, “Lightweight authentication protocols for low-cost
RFID tags,” in In Second Workshop on Security in Ubiquitous Computing Ubi-
comp 2003, 2003.

[31] W. Trappe and L. C. Washington, Introduction to Cryptography with Coding
Theory. Pearson Prentice Hall, 2006.

[32] “EPC Radio-Frequency Identity Protocols Generation-2 UHF RFID,” EPC-
global Specifications, p. 152, 2013.

[33] “ISO/IEC 29167-1:2014 – Information technology – Automatic identification
and data capture techniques – Part 1: Security services for RFID air interfaces,”
International Standard, p. 10, Aug 2014.

[34] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE Transac-
tions on Information Theory, vol. 22, no. 6, pp. 644–654, Nov 1976.

244

[35] C. Paar and J. Pelzl, Understanding Cryptography. Springer Berlin Heidelberg,
2010.

[36] J. Wilcox, Solving the Enigma: History of the Cryptanalytic Bombe. Center
for Cryptologic History, National Security Agency, 2006.

[37] M. Li, W. Lou, and K. Ren, “Data security and privacy in wireless body area
networks,” IEEE Wireless Communications, vol. 17, no. 1, pp. 51–58, February
2010.

[38] Y. Luo, Q. Chai, G. Gong, and X. Lai, “A lightweight stream cipher wg-7 for
RFID encryption and authentication,” in 2010 IEEE Global Telecommunica-
tions Conference (GLOBECOM 2010), Dec 2010, pp. 1–6.

[39] F. Miao, L. Jiang, Y. Li, and Y.-T. Zhang, “A novel biometrics based secu-
rity solution for body sensor networks,” in 2nd International Conference on
Biomedical Engineering and Informatics, 2009. BMEI ’09., Oct 2009, pp. 1–5.

[40] H. Ko and C. Ramos, “A study on the encryption algorithm for RFID tag
(SEED : 8 rounds x 64 bits block),” in International Conference on Convergence
and Hybrid Information Technology, 2008. ICHIT ’08., Aug 2008, pp. 672–677.

[41] P. Israsena, “Design and implementation of low power hardware encryption for
low cost secure RFID using tea,” in 2005 Fifth International Conference on
Information, Communications and Signal Processing, 2005, pp. 1402–1406.

[42] J. Yu, G. Khan, and F. Yuan, “XTEA encryption based novel RFID secu-
rity protocol,” in 2011 24th Canadian Conference on Electrical and Computer
Engineering (CCECE), May 2011, pp. 000 058–000 062.

[43] Z. Jeddi, E. Amini, and M. Bayoumi, “A novel authenticated encryption al-
gorithm for RFID systems,” in 2013 Euromicro Conference on Digital System
Design (DSD), Sept 2013, pp. 658–661.

[44] M. Liu and Y. Wang, “RFID system information security based on chaotic en-
cryption,” in 2011 Third International Conference on Multimedia Information
Networking and Security (MINES), Nov 2011, pp. 499–502.

[45] T. Hongsongkiat and P. Chongstitvatana, “AES implementation for RFID tags:
The hardware and software approaches,” in 2014 International Computer Sci-
ence and Engineering Conference (ICSEC), July 2014, pp. 118–123.

[46] Y. Lin, K. Kang, and Y. Shi, “Research on encryption model based on AES
and ECC in RFID,” in 2013 International Conference on Computer Sciences
and Applications (CSA), Dec 2013, pp. 9–13.

[47] M.-J. Saarinen, “The bluejay ultra-lightweight hybrid cryptosystem,” in 2012
IEEE Symposium on Security and Privacy Workshops (SPW), May 2012, pp.
27–32.

245

[48] C. Piao, Z. Fan, C. Yang, and X. Han, “Research on RFID security protocol
based on grouped tags and re-encryption scheme,” in 2010 IEEE International
Conference on Wireless Communications, Networking and Information Security
(WCNIS), 2010, pp. 568–572.

[49] C. Tan, H. Wang, S. Zhong, and Q. Li, “IBE-Lite: A lightweight identity-based
cryptography for body sensor networks,” IEEE Transactions on Information
Technology in Biomedicine, vol. 13, no. 6, pp. 926–932, Nov 2009.

[50] P. Golle, M. Jakobsson, A. Juels, and P. Syverson, “Universal re-encryption
for mixnets,” in Topics in Cryptology CT-RSA 2004, ser. Lecture Notes in
Computer Science, T. Okamoto, Ed. Springer Berlin Heidelberg, 2004, vol.
2964, pp. 163–178.

[51] K. Huey, W. Ismail, and M. Rahman, “Fingerprint-based mutual authentication
RFID protocol,” in 2011 IEEE International Conference on Signal Processing,
Communications and Computing (ICSPCC), Sept 2011, pp. 1–4.

[52] S. W. Jung and S. Jung, “HRP: A hmac-based RFID mutual authentication
protocol using PUF,” in 2013 International Conference on Information Net-
working (ICOIN), Jan 2013, pp. 578–582.

[53] A. Juels, “Minimalist cryptography for low-cost RFID tags (extended ab-
stract),” in Security in Communication Networks, ser. Lecture Notes in Com-
puter Science, C. Blundo and S. Cimato, Eds., vol. 3352. Springer Berlin
Heidelberg, 2004, pp. 149–164.

[54] M. Akgun and M. Caglayan, “PUF based scalable private RFID authentica-
tion,” in 2011 Sixth International Conference on Availability, Reliability and
Security (ARES), Aug 2011, pp. 473–478.

[55] J. Liu, Z. Zhang, X. Chen, and K. S. Kwak, “Certificateless remote anonymous
authentication schemes for wireless body area networks,” IEEE Transactions
on Parallel and Distributed Systems, vol. 25, no. 2, pp. 332–342, Feb 2014.

[56] T. Kovacevic, T. Perkovic, and M. Cagalj, “Lira: A new key deployment scheme
for wireless body area networks,” in 2013 21st International Conference on
Software, Telecommunications and Computer Networks (SoftCOM), Sept 2013,
pp. 1–6.

[57] C. C. Tan, H. Wang, S. Zhong, and Q. Li, “Body sensor network
security: An identity-based cryptography approach,” in Proceedings of
the First ACM Conference on Wireless Network Security, ser. WiSec
’08. New York, NY, USA: ACM, 2008, pp. 148–153. [Online]. Available:
http://doi.acm.org/10.1145/1352533.1352557

246

[58] L. Blum, M. Blum, and M. Shub, “A simple unpredictable pseudo-random
number generator,” SIAM Journal on computing, vol. 15, no. 2, pp. 364–383,
1986.

[59] P. Peris-Lopez, E. San Millan, J. van der Lubbe, and L. Entrena, “Cryptograph-
ically secure pseudo-random bit generator for RFID tags,” in 2010 International
Conference for Internet Technology and Secured Transactions (ICITST), 2010,
pp. 1–6.

[60] R. Katti and S. Srinivasan, “Efficient hardware implementation of a new pseudo-
random bit sequence generator,” in IEEE International Symposium on Circuits
and Systems, 2009. ISCAS 2009., 2009, pp. 1393–1396.

[61] M. Rahman, “A novel scalable key management protocol for wireless sensor
networks,” April 2013. [Online]. Available: http://hdl.handle.net/10222/21683

[62] C.-L. Chen and Y.-Y. Deng, “Conformation of EPC class 1 generation 2
standards RFID system with mutual authentication and privacy protection,”
Engineering Applications of Artificial Intelligence, vol. 22, no. 8, pp. 1284 –
1291, 2009. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0952197608001814

[63] M. Hakeem, K. Raahemifar, and G. Khan, “A novel key management protocol
for RFID systems,” in 2013 9th International Wireless Communications and
Mobile Computing Conference (IWCMC), July 2013, pp. 1107–1113.

[64] Q. Cai, Y. Zhan, and J. Yang, “The improvement of RFID authentication
protocols based on r-rapse,” Journal of Networks, vol. 9, no. 1, 2014.

[65] EPCglobal. EPCglobal. GS1. [Online]. Available: http://www.gs1.org/
epcglobal

[66] “IEEE Standard for Local and metropolitan area networks - Part 15.6: Wireless
Body Area Networks,” IEEE Std. 802.15.6-2012, pp. 15 – 172, 2012.

[67] “Draft Protocol Specification for a 900 MHz Class 0 Radio Frequency Identifi-
cation Tag,” EPCglobal Specifications, pp. 1–49, 2003.

[68] SkyRFID Inc. (2014) RFID Gen 2 - What is it? - Smart RFID! SkyRFID Inc.
[Online]. Available: http://skyrfid.com/RFID Gen 2 What is it.php

[69] C. Bolan, “A review of the electronic product code standards for
RFID technology,” in Proceedings of the Seventh International Network
Conference (INC2008), 2008, pp. 171–178. [Online]. Available: http:
//www.cscan.org/openaccess/?id=179

[70] B. Fabian and O. Günther, “Security challenges of the epcglobal network,”
Commun. ACM, vol. 52, no. 7, pp. 121–125, Jul. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1538788.1538816

247

[71] D. Engels, Y. S. Kang, and J. Wang, “On security with the new gen2 RFID
security framework,” in 2013 IEEE International Conference on RFID (RFID),
April 2013, pp. 144–151.

[72] “ISO/IEC 18031:2011 – Information technology – Security techniques – Ran-
dom bit generation,” International Standard, p. 142, Nov 2011.

[73] ISO (International Organization for Standardization). Standards catalogue.
ISO (International Organization for Standardization). [Online]. Avail-
able: http://www.iso.org/iso/home/store/catalogue tc/catalogue tc browse.
htm?commid=45332&includesc=true&published=on&development=on

[74] “Advanced encryption standard (AES),” Federal Information Processing
Standards Publication 197 , Nov 2001. [Online]. Available: http://csrc.nist.
gov/publications/fips/fips197/fips-197.pdf

[75] A. Bogdanov, L. Knudsen, G. Leander, C. Paar, A. Poschmann, M. Robshaw,
Y. Seurin, and C. Vikkelsoe, “Present: An ultra-lightweight block cipher,”
in Cryptographic Hardware and Embedded Systems - CHES 2007, ser.
Lecture Notes in Computer Science, P. Paillier and I. Verbauwhede, Eds.
Springer Berlin Heidelberg, 2007, vol. 4727, pp. 450–466. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-74735-2 31

[76] “ISO/IEC 29167-11:2014 – Information technology Automatic identification
and data capture techniques Part 11: Crypto suite PRESENT-80 security
services for air interface communications,” International Standard, p. 10, Jul
2014.

[77] E. Barker, D. Johnson, and M. Smid, “Recommendation for pair-wise key
establishment schemes using discrete logarithm cryptography (revised),” NIST
Special Publication 800-56A, Mar 2007. [Online]. Available: http://csrc.nist.
gov/publications/nistpubs/800-56A/SP800-56A Revision1 Mar08-2007.pdf

[78] M. Ågren, M. Hell, T. Johansson, and W. Meier, “Grain-128a: A
new version of grain-128 with optional authentication,” Int. J. Wire.
Mob. Comput., vol. 5, no. 1, pp. 48–59, Dec. 2011. [Online]. Available:
http://dx.doi.org/10.1504/IJWMC.2011.044106

[79] “Digital signature standard (dss),” Federal Information Processing Standards
Publication 186-4 , Jul 2013. [Online]. Available: http://nvlpubs.nist.gov/
nistpubs/FIPS/NIST.FIPS.186-4.pdf

[80] Radio Frequency Identification: Security and Privacy Issues, ser. Lecture Notes
in Computer Science, 2014.

[81] M. O. Rabin, “Digitalized signatures and public-key functions as intractable
as factorization,” 1979. [Online]. Available: http://publications.csail.mit.edu/
lcs/pubs/pdf/MIT-LCS-TR-212.pdf

248

[82] P. L. Montgomery, “Modular multiplication without trial division,”
Mathematics of Computation, vol. 44, no. 170, pp. 519–521, Apr 1985. [Online].
Available: http://cseweb.ucsd.edu/classes/fa06/cse246/montgomery.pdf

[83] S. Ullah, M. Mohaisen, and M. A. Alnuem, “A review of ieee 802.15.6 mac,
phy, and security specifications,” International Journal of Distributed Sensor
Networks, vol. 2013, pp. 1–12, Nov 2013.

[84] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of Computation,
vol. 48, no. 177, pp. 203–209, Jan 1987.

[85] “Recommendation for Block Cipher Modes of Operation: The CCM Mode for
Authentication and Confidentiality,” NIST Special Publication 800-38C, May
2004.

[86] B. A. Forouzan, Data Communications and Networking. McGraw-HilI
Forouzan networking series, 2007.

[87] S. Saleem, S. Ullah, and K. S. Kwak, “Towards security issues and solutions
in wireless body area networks,” in 2010 6th International Conference on Net-
worked Computing (INC), May 2010, pp. 1–4.

[88] S. Saleem, S. Ullah, and H. S. Yoo, “On the security issues in wireless body
area networks,” International Journal of Digital Content Technology and its
Applications, vol. 3, no. 3, pp. 178–184, September 2009. [Online]. Available:
http://www.aicit.org/JDCTA/ppl/22.pdf

[89] Atmel Corporation. (2009) Avr411: Secure rolling code algo-
rithm for wireless link. [Online]. Available: http://www.atmel.com/
images/atmel-2600-avr411-secure-rolling-code-algorithm-for-wireless-link
application-note.pdf

[90] Microchip Technology Inc. (2001) Keeloq code hopping encoder. [Online].
Available: http://ww1.microchip.com/downloads/en/devicedoc/21143b.pdf

[91] N. Döttling, D. Lazich, J. Müller-Quade, and A. S. de Almeida, “Vulnerabilities
of wireless key exchange based on channel reciprocity,” in Proceedings of
the 11th International Conference on Information Security Applications, ser.
WISA’10. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 206–220. [Online].
Available: http://dl.acm.org/citation.cfm?id=1949945.1949964

[92] A. Miyaji and M. S. Rahman, “Kimap: Key-insulated mutual authentication
protocol for RFID,” CoRR, vol. abs/1209.5388, 2012.

[93] H. Martin, E. San Millan, L. Entrena, P. Lopez, and J. Castro, “Akari-x: A
pseudorandom number generator for secure lightweight systems,” in 2011 IEEE
17th International On-Line Testing Symposium (IOLTS), 2011, pp. 228–233.

249

[94] J. Melia-Segui, J. Garcia-Alfaro, and J. Herrera-Joancomarti, “Multiple-
polynomial lfsr based pseudorandom number generator for EPC gen2 RFID
tags,” in IECON 2011 - 37th Annual Conference on IEEE Industrial Electron-
ics Society, 2011, pp. 3820–3825.

[95] D. Molnar, A. Soppera, and D. Wagner, “A scalable, delegatable pseudonym
protocol enabling ownership transfer of RFID tags,” in Proceedings of the
12th International Conference on Selected Areas in Cryptography, ser. SAC’05.
Berlin, Heidelberg: Springer-Verlag, 2006, pp. 276–290.

[96] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. The keccak sponge
function family. [Online]. Available: http://keccak.noekeon.org/

[97] W. Choi, S. Kim, Y. Kim, Y. Park, and K. Ahn, “PUF-based encryption pro-
cessor for the RFID systems,” in 2010 IEEE 10th International Conference on
Computer and Information Technology (CIT), 2010, pp. 2323–2328.

[98] L. Shi, M. Li, S. Yu, and J. Yuan, “BANA: Body area network authentication
exploiting channel characteristics,” IEEE Journal on Selected Areas in Com-
munications, vol. 31, no. 9, pp. 1803–1816, September 2013.

[99] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, “Fuzzy extractors: How
to generate strong keys from biometrics and other noisy data,” SIAM
J. Comput., vol. 38, no. 1, pp. 97–139, Mar. 2008. [Online]. Available:
http://dx.doi.org/10.1137/060651380

[100] Z. Zhang, H. Wang, A. Vasilakos, and H. Fang, “Ecg-cryptography and authen-
tication in body area networks,” IEEE Transactions on Information Technology
in Biomedicine, vol. 16, no. 6, pp. 1070–1078, Nov 2012.

[101] K. Venkatasubramanian, Venkatasubramanian, A. Banerjee, and S. Gupta,
“EKG-based key agreement in body sensor networks,” in IEEE INFOCOM
Workshops 2008, April 2008, pp. 1–6.

[102] M. Mana, M. Feham, and B. A. Bensaber, “Trust key management scheme for
wireless body area network,” International Journal of Network Security, vol. 12,
no. 2, pp. 75–83, 2011.

[103] M. Mana, M. Feham, and B. A. Bensaber, “SEKEBAN (secure and efficient key
exchange for wireless body area network),” International Journal of Advanced
Science and Technology, 2009.

[104] T. A. Pham, M. Hasan, and H. Yu, “A RFID mutual authentication protocol
based on AES algorithm,” in 2012 UKACC International Conference on Control
(CONTROL), Sept 2012, pp. 997–1002.

250

[105] M. Kuroda, Y. Tamura, R. Kohno, and O. Tochikubo, “Empirical evaluation
of zero-admin authentication for vital sensors in body area networks,” in 30th
Annual International Conference of the IEEE Engineering in Medicine and Bi-
ology Society, 2008. EMBS 2008., Aug 2008, pp. 2349–2352.

[106] W. Drira, E. Renault, and D. Zeghlache, “A hybrid authentication and key es-
tablishment scheme for WBAN,” in 2012 IEEE 11th International Conference
on Trust, Security and Privacy in Computing and Communications (Trust-
Com), June 2012, pp. 78–83.

[107] J.-S. Cho, S.-S. Yeo, and S. K. Kim, “Securing against brute-force attack:
A hash-based RFID mutual authentication protocol using a secret value,”
Comput. Commun., vol. 34, no. 3, pp. 391–397, Mar. 2011. [Online]. Available:
http://dx.doi.org/10.1016/j.comcom.2010.02.029

[108] E.-J. Yoon, “Improvement of the securing RFID systems conforming to
EPC class 1 generation 2 standard,” Expert Systems with Applications,
vol. 39, no. 1, pp. 1589 – 1594, 2012. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0957417411010153

[109] S. Ahamed, E. Hoque, F. Rahman, F. Kawsar, and T. Nakajima, “Ya-srap:
Yet another serverless RFID authentication protocol,” in 2008 IET 4th Inter-
national Conference on Intelligent Environments, July 2008, pp. 1–8.

[110] J. Zhou, Y. Xu, and X. Li, “Reconfigurable and scalable security module of
active RFID for security-sensitive applications,” in 2010 The 2nd IEEE Inter-
national Conference on Information Management and Engineering (ICIME),
April 2010, pp. 135–140.

[111] C. Li, J. Zhou, Y. Jiang, C. Chen, Y. Xu, and Z. Luo, “A reconfigurable and
scalable architecture for security coprocessor,” in 2010 the 5th IEEE Conference
on Industrial Electronics and Applications (ICIEA), June 2010, pp. 1826–1831.

[112] A. K. Jones, R. Hoare, S. Dontharaju, S. Tung, R. Sprang, J. Fazekas, J. T.
Cain, and M. H. Mickle, “An automated, fpga-based reconfigurable, low-power
RFID tag,” Microprocess. Microsyst., vol. 31, no. 2, pp. 116–134, Mar. 2007.
[Online]. Available: http://dx.doi.org/10.1016/j.micpro.2006.03.002

[113] C. H. Roth, Jr., Digital Systems Design Using VHDL. PWS Publishing Com-
pany, 1998.

[114] J. F. Vincent, O. A. Bogatyreva, N. R. Bogatyrev, A. Bowyer, and A.-K. Pahl,
“Biomimetics: its practice and theory,” J. R. Soc. Interface, vol. 3, no. 9, pp.
471–482, Mar. 2006.

[115] A. J. F. Griffiths, J. H. Miller, D. T. Suzuki, R. C. Lewontin, and W. M.
Gelbart, An Introduction to Genetic Analysis. W. H. Freeman, 2000.

251

[116] G. S. L. Center. Tour of basic genetics. Learn.Genetics. [Online]. Available:
http://learn.genetics.utah.edu/content/basics/

[117] Fibonacci number. Wolfram MathWorld. [Online]. Available: http://
mathworld.wolfram.com/FibonacciNumber.html

[118] Linear recurrence equation. Wolfram MathWorld. [Online]. Available:
http://mathworld.wolfram.com/LinearRecurrenceEquation.html

[119] D. Poulin. A rough guide to quantum chaos. Department of Physics and
Institute for Quantum Computing, University of Waterloo. [Online]. Available:
http://www.iqc.ca/publications/tutorials/chaos.pdf

[120] U. Maurer, “A universal statistical test for random bit generators,”
Journal of Cryptology, vol. 5, no. 2, pp. 89–105, 1992. [Online]. Available:
http://dx.doi.org/10.1007/BF00193563

[121] R. C. Bishop, “On separating predictability and determinism,” Erkenntnis,
vol. 58, no. 2, pp. 169–188, 2003. [Online]. Available: http://www.igpp.de/
english/tda/pdf/DeterminismPrediction.pdf

[122] S.-S. Shen, H.-R. Liao, S.-H. Lin, and J.-H. Chiu, “A novel stream cipher with
hash function for the RFID device,” in 2011 Fifth International Conference on
Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), 2011,
pp. 532–536.

[123] F. Aguilar, H. Autrup, S. Barlow, L. Castle, R. Crebelli, W. Dekant, K.-H.
Engel, N. Gontard, D. Gott, S. Grilli, R. Gurtler, J. C. Larsen, C. Leclercq,
J.-C. Leblanc, F. X. Malcata, W. Mennes, M. R. Milana, I. Pratt, I. Rietjens,
P. Tobback, and F. Toldra, “Scientific opinion of the panel on food additives,
flavourings, processing aids and materials in contact with food (afc) on a request
from the commission on the safety in use of beeswax,” The EFSA Journal, pp.
1–28, 2007.

[124] M. J. Sommeijer, “Beekeeping with stingless bees: a new type of hive,” Bee
World, vol. 80, no. 2, pp. 70–79, 1999.

[125] R. V. Sampangi, “Enhancing security and reliability in wireless body area net-
works for remote health monitoring,” M. Tech. Project Report, International
School of Information Management, University of Mysore, 2011.

[126] Java. Oracle Corporation. [Online]. Available: http://www.java.com/en/

[127] Eclipse. The Eclipse Foundation. [Online]. Available: https://eclipse.org/

[128] SHA1-Online. SHA1 usage implementation in java: sha1 of a text
string and file’s sha1 checksum verification. [Online]. Available: http:
//www.sha1-online.com/sha1-java/

252

[129] T. Sorensen, “A method of establishing groups of equal amplitude in plant
sociology based on similarity of species content and its application to analyses
of the vegetation on Danish commons,” Biologiske Skrifter Kongelige Danske
Videnskabernes Selskab, vol. 5, no. 4, pp. 1–34, 1957.

[130] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson,
M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, A Statistical Test Suite
for Random and Pseudorandom Number Generators for Cryptographic Appli-
cations, National Institute of Standards and Technology (NIST).

[131] C. Cremers. The Scyther tool. Department of Computer Science, University of
Oxford. [Online]. Available: http://users.ox.ac.uk/∼coml0529/scyther/

[132] G. Lowe, “A hierarchy of authentication specifications,” in Proceedings., 10th
Computer Security Foundations Workshop, 1997., 1997, pp. 31–43.

[133] G. Hollestelle, “Systematic analysis of attacks on security protocols,”
Master’s thesis, Technische Universiteit Eindhoven, 2005. [Online]. Available:
http://alexandria.tue.nl/extra1/afstversl/wsk-i/hollestelle2005.pdf

[134] C. Cremers, Scyther User Manual, Department of Computer Science,
University of Oxford. [Online]. Available: https://github.com/cascremers/
scyther/blob/master/gui/scyther-manual.pdf

[135] Thomas Mueller. An implementation of the XTEA block cipher algorithm. H2
Group. [Online]. Available: https://code.google.com/p/h2database/source/
browse/trunk/h2/src/main/org/h2/security/XTEA.java

[136] E. Barker, D. Johnson, and M. Smid, “SHA-3 standard: Permutation-based
hash and extendable-output functions,” Federal Information Processing
Standards Publication, May 2014. [Online]. Available: http://csrc.nist.gov/
publications/drafts/fips-202/fips 202 draft.pdf

[137] Osman Kocak. The Keccak digest algorithm. [Online]. Avail-
able: https://github.com/kocakosm/pitaya/blob/master/src/org/kocakosm/
pitaya/security/Keccak.java

[138] Class Cipher. Oracle Corporation. [Online]. Available: http://docs.oracle.com/
javase/7/docs/api/javax/crypto/Cipher.html

[139] Java Cryptography Architecture (JCA) Reference Guide. Oracle Corporation.
[Online]. Available: http://docs.oracle.com/javase/7/docs/technotes/guides/
security/crypto/CryptoSpec.html

[140] S. D. Brown, R. J. Francis, J. Rose, and Z. G. Vranesic, Field-Programmable
Gate Arrays. Kluwer Academic Publishers, 1992.

253

[141] (2014) Field programmable gate array FPGA. Xilinx
Inc. [Online]. Available: http://www.xilinx.com/training/fpga/
fpga-field-programmable-gate-array.htm

[142] Getting Started with the Spartan-6 FPGA SP605 Embedded Kit, Xilinx Inc.,
June 2010.

[143] J. Bhasker, A VHDL Primer. P T R Prentice Hall, 1999.

[144] J. Melia-Segui, J. Garcia-Alfaro, and J. Herrera-Joancomarti, “J3gen: A prng
for low-cost passive RFID,” Sensors, vol. 13, no. 3, pp. 3816–3830, 2013.

[145] J. Rainier. SHA1 Sequential Implementation. [Online]. Avail-
able: https://github.com/JarrettR/FPGA-Cryptoparty/blob/master/
decrypt%20-%20sequential/main-s.vhd

[146] (2013) Xst user guide for virtex-6, spartan-6, and 7 series devices. Xilinx
Inc. [Online]. Available: http://www.xilinx.com/support/documentation/
sw manuals/xilinx14 7/xst v6s6.pdf

[147] 7 Series FPGA Configurable Logic Block: User Guide, Xilinx Inc., November
2014.

[148] (2014) All programmable low-end portfolio product selection guide. Xilinx
Inc. [Online]. Available: http://www.xilinx.com/publications/prod mktg/
low-end-portfolio-product-selection-guide.pdf

[149] P. Peris-lopez, J. C. Hernandez-Castro, J. M. Estevez-Tapiador, and A. Rib-
agorda, “RFID systems: A survey on security threats and proposed solutions,”
in PWC 2006. Springer, 2006, pp. 159–170.

[150] A. Juels and S. Weis, “Authenticating pervasive devices with human
protocols,” in Advances in Cryptology CRYPTO 2005, ser. Lecture Notes in
Computer Science, V. Shoup, Ed. Springer Berlin Heidelberg, 2005, vol. 3621,
pp. 293–308. [Online]. Available: http://dx.doi.org/10.1007/11535218 18

[151] M. O. (nee McLoone), “Low-cost SHA-1 hash function architecture for RFID
tags,” in Proceedings of the Workshop on RFID Security 2008 (RFIDsec 08,
2008, pp. 1–11.

[152] C. Rolfes, A. Poschmann, G. Leander, and C. Paar, “Ultra-lightweight
implementations for smart devices security for 1000 gate equivalents,”
in Smart Card Research and Advanced Applications, ser. Lecture Notes
in Computer Science, G. Grimaud and F.-X. Standaert, Eds. Springer
Berlin Heidelberg, 2008, vol. 5189, pp. 89–103. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-85893-5 7

[153] I. Kuon and J. Rose, Quantifying and Exploring the Gap Between FPGAs and
ASICs. Springer Science+Business Media, 2009.

254

[154] D. Brand and C. Visweswariah, “Inaccuracies in gate-level power estimation,”
1996. [Online]. Available: http://vlsicad.ucsd.edu/courses/ece260b-w05/pdf/
RC20520.pdf

[155] J. Elias and A. Mehaoua, “Energy-aware topology design for wireless body area
networks,” in 2012 IEEE International Conference on Communications (ICC),
June 2012, pp. 3409–3410.

[156] M. Salajegheh, S. Clark, B. Ransford, K. Fu, and A. Juels, “CCCP: Secure
remote storage for computational RFIDs,” in USENIX Security Symposium,
2009, pp. 215–230.

[157] International Bureau of Weights and Measures (BIPM), The International Sys-
tem of Units (SI). International Bureau of Weights and Measures (BIPM),
2006.

[158] Impinj R© Monza R© X-8K Dura Datasheet, Impinj, Inc., 2014.

[159] J. Y. Khan and M. R. Yuce, Wireless Body Area Network (WBAN)
for Medical Applications, ser. New Developments in Biomedical Engi-
neering, D. Campolo, Ed. InTech, 2010. [Online]. Available: http:
//www.intechopen.com/books/new-developments-in-biomedical-engineering/
wireless-bodyarea-network-wban-for-medical-applications

[160] J. Gutierrez, M. Naeve, E. Callaway, M. Bourgeois, V. Mitter, and B. Heile,
“Ieee 802.15.4: a developing standard for low-power low-cost wireless personal
area networks,” Network, IEEE, vol. 15, no. 5, pp. 12–19, Sept 2001.

