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ious vdW correction methods. The experimental energy barrier
for diffusion is 130meV. [5] . . . . . . . . . . . . . . . . . . . . 67
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Abstract

A theoretical model for the diffusion of large molecules adsorbed on surfaces is devel-

oped. Starting from the classical equations of motion, a generalized non-Markovian

Langevin equation for the center of mass diffusive motion of an adsorbed molecule is

derived. In this model, the influence of the background on the molecule is separated

into an adiabatic force, and a rapidly fluctuating stochastic force with a correspond-

ing frictional damping term. The model accounts for energy exchange between the

center of mass motion and vibrational degrees of freedom of the molecule, and ex-

pressions for the friction coefficient in terms of vibrational properties of the molecule

and substrate are derived.

This stochastic model is first applied to a harmonically bound dimer diffusing in

one dimension. This simple model system allows for a systematic test of how the

diffusive motion of a molecule is affected by its vibrational degrees of freedom, and

specifically how important memory effects are in determining the diffusion coefficient.

It is found that coupling to molecular vibrations leads to increased frictional damping

and slower diffusion, and that memory effects are typically not important for small

molecules, but could be significant in large molecules.

The model is then used to study the diffusion of dithioanthracene on a Cu(111)

surface. Density functional theory is employed to calculate the adiabatic force and

vibrational properties, allowing for a first principles determination of all required

quantities in the stochastic model. The diffusion coefficient is calculated and com-

pared to scanning tunnelling microscopy measurements. Reasonable agreement with

experiment is obtained, and it is seen that the stochastic model gives an estimate

of the diffusion prefactor much closer to the measured value compared to standard

transition state theory.
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Chapter 1

Introduction

The thermal migration of atoms and molecules adsorbed at surfaces is an essential

process in any kind of surface reaction, such as crystal growth, desorption, and catal-

ysis. The direct experimental observation of the diffusion of individual atoms across

surfaces was first made possible by the invention of the field ion microscope (FIM)

in the 1950s [1]. The FIM allowed surface diffusion of metal atoms on metal surfaces

to be viewed in real time, and with atomic resolution. Since these early studies, the

development of the scanning tunnelling microscope (STM) has vastly extended the

range of systems for which surface diffusion can be observed. In particular, STM

experiments have provided powerful insights into the behaviour of organic molecules

adsorbed on metal surfaces in recent years. These systems are of interest for many

potential commercial applications, such as solar cells, organic light-emitting diodes,

and molecular electronics [2].

The STM can produce images of metal surfaces with atomic resolution, allowing

for a determination of molecular orientation with respect to the surface, and even

revealing conformational changes of molecules upon adsorption [3]. Such high reso-

lution images have revealed a variety of interesting behaviour in organic molecules

on metal surfaces, such as the formation supramolecular structures coordinated by

metal adatoms [4]. By taking a series of STM images and putting them together into

an “STM movie”, the diffusion of individual adsorbed molecules can be tracked on

clean surfaces over length scales of nanometers. Several unique phenomena related

to the surface diffusion of organic molecules have been revealed in this way, including

unidirectional migration of molecules along their molecular axis [5,6], and a so called

“lock and key” effect, where a diffusing molecule is immobilized by changing its ori-

entation on the surface via manipulation with the STM tip [7]. These complex and

varied phenomena originate from a sensitive interplay between the molecular struc-

ture and surface geometry. The aim of this thesis is to develop a consistent theoretical

1
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framework for the study of diffusion in these systems from first principles.

1.1 Surface Diffusion Theory

At a coarse-grained level, surface diffusion can be seen as a series of jumps between

stable adsorption sites on the surface. For a clean crystalline surface, such as those

typically employed in STM experiments, these sites will be arranged in a periodic

lattice. If the energy barrier ΔV between sites is large compared to the thermal

energy, ΔV � kT , the jumps will be separated by long periods of oscillatory motion

at the stable sites. In this case, the migration of adsorbed molecules in characterized

by a jump rate κ that has the Arrhenius form [8],

κ = κ0e
−ΔV/kT , (1.1)

where the prefactor κ0 is roughly temperature independent.

Surface diffusion at finite coverage can then be described by a lattice gas model [8–

10], in which the surface is represented by a lattice of sites that can be occupied by an

adsorbate. The microstate of the system is then described by a vector of occupancies

	n, 0 or 1 for each site. The probability P (	n, t) then obeys the following master

equation

dP (	n, t)

dt
=
∑
�n′

[P (	n′, t)W (	n′ → 	n)− P (	n, t)W (	n → 	n′)], (1.2)

where W (	n → 	n′) is the transition rate from state 	n to 	n′. These transition rates

are determined by the site-to-site jump rate κ, although the master equation (1.2)

also allows different rates κi for jumps spanning multiple sites, and depending on

adsorbate-adsorbate interactions.

At a more coarse-grained level, the system can be described by an adsorbate

density ρ(	r, t). In the limit of long-wavelength fluctuations in the density, the above

master equation leads to Fick’s law for diffusion [9, 11]

∂ρ

∂t
= ∇ · (Dc∇ρ), (1.3)

where Dc is the collective diffusion coefficient, which can be determined from the

transition rates W (	n → 	n′).
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The dynamics of surface diffusion at both low and high coverage is therefore

fundamentally determined by the site-to-site jump rate κ. The focus of this thesis is

the development of a method to calculate jump rates for adsorbed organic molecules,

accounting for the dynamics of internal molecular degrees of freedom.

1.2 Rate Calculations

There exist many approaches for calculating rates of thermally activated processes

described phenomenologically by the Arrhenius law (1.1) (see Ref. [12] for a review).

The simplest approach is transition state theory (TST), in which the jump rate is

calculated from equilibrium statistical mechanics considerations [12]. To find the

escape rate of an adsorbed particle from its adsorption site in TST, it is assumed

that the particle is in local thermal equilibrium so that the probability density is

given by the equilibrium distribution ρ(	r,	v) ∝ e−V (�r)/kT e−mv2/2kT , where V (	r) is a

potential energy describing the particle’s interaction with the surface. The rate is then

calculated as the flux of particles passing through some barrier region (usually taken

to be the saddle point on the potential energy surface connecting two neighboring

potential wells), normalized to the probability density in the potential well, i.e.

κTST =
# of particles at barrier with v > 0

# of particles at minimum
, (1.4)

where v > 0 means that the particle has a velocity pointing in the forward direction

across the barrier.

To illustrate the calculation of the TST jump rate, consider the simple model

system consisting of a particle diffusing in a one dimensional periodic potential V (x),

as shown in Fig. 1.1. Eq. (1.4) then leads to [12]

κTST =
e−ΔV/kT

∫∞
0

dvve−mv2/2kT∫ a

0
dxe−V (x)/kT

∫∞
−∞ dve−mv2/2kT

=
kT

h

1

Zvib

e−ΔV/kT , (1.5)

where Zvib is the vibrational partition function at the minimum of the potential well,

and h is Planck’s constant. In the harmonic approximation, Zvib = 2πkT/hω (where

ω is the harmonic vibration frequency at the minimum), and the jump rate becomes

κTST =
ω

2π
e−ΔV/kT . (1.6)
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Figure 1.1: One dimensional periodic potential V (x) for an adsorbed atom, with
energy barrier of height ΔV , and potential wells separated by length a.

The TST rate has the Arrhenius form of Eq. (1.1), i.e. a Boltzmann factor represent-

ing the probability to find the particle at the barrier, times a prefactor which can be

interpreted as an attempt frequency. In the harmonic approximation, the attempt

frequency is simply the vibration frequency at the minimum. For an N -dimensional

system, the rate generalizes in a straightforward way to [12]

κTST =
kT

h

Z
(b)
vib

Z
(m)
vib

e−ΔV/kT ≈ 1

2π

∏N
i=1 ω

(m)
i∏N−1

i=1 ω
(b)
i

e−ΔV/kT , (1.7)

where the labels (m) and (b) refer to the minimum and barrier regions, respectively.

Note that there is one less frequency ω
(b)
i at the barrier region, since motion in the

unstable direction is excluded.

TST provides a simple way to estimate the rate prefactor from properties of the

potential energy surface, however it is not always accurate. The prefactor estimated

from Eq. (1.7) is usually on the order of a typical vibration frequency for the diffusing

molecule, but measured prefactors can differ from this by several orders of magnitude.

For example, tetra-pyridal porphyrin molecules (TPyP) diffusing on a Cu(111) surface

were measured to have a rate prefactor of approximately 1012Hz [6]. When two TPyP
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molecules came together on the surface to form a stable dimer, the prefactor was seen

to increase by two orders of magnitude to 1014Hz. This is the opposite of what one

would naively expect from a TST estimation, since the vibration frequencies for the

dimer are expected to be lowered compared to the monomer (due to both its higher

mass, and the weaker inter-molecular force holding the dimer together).

TST relies on two main assumptions, the first of which is that once a particle

crosses the barrier, it is immediately captured by the neighboring well, i.e. that there

is no re-crossing of the barrier. This assumption is valid if energy exchange with the

surface is slow compared to the time scale for adsorbate motion, so that a particle

moving across the barrier will continue in the same direction until it leaves the barrier

region, without being turned around via interactions with the surface. Accounting for

the effects of such re-crossings will tend to lower the effective jump rate. The second

assumption is that the velocity distribution at the barrier is given by the equilibrium

thermal distribution. This assumption is valid if energy exchange with the surface is

fast compared to the time scale for adsorbate motion, so that the adsorbed particle

rapidly thermalizes at each site before making a jump. If this is not the case, the

jump rate can be affected in the following way. When the particle escapes over a

barrier it will be in an activated state with an unusually high energy; if the energy

exchange with the surface is not fast enough, it may escape over a second barrier

before it has time to relax back to a typical equilibrium state, resulting in several

jumps in rapid succession (which may be thought of as long jumps spanning multiple

lattice sites). This phenomenon has been observed in the surface diffusion of large

molecules on metal surfaces [13].

Due to the conflicting requirements for the assumptions made by TST, it can only

be valid in an intermediate regime, where energy exchange with the surface is not

too fast and not too slow. It is only in this regime that the dynamics of adsorbate

motion become unimportant and the escape rate can be calculated from equilibrium

considerations. Relaxing these assumptions, and accounting for effects such as long

jumps requires a more detailed consideration of the dynamics.

In a classical mechanical model (appropriate for the large molecules considered in

this thesis), the most detailed description of the dynamics is obtained by solving the

Newtonian equations of motion for the system consisting of the surface and adsorbed
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Figure 1.2: Displacement of an atom moving in the potential shown Fig. 1.1. The
trajectory is a solution of a one dimensional Langevin equation of the form (1.8) with
F (x) = sin(2πx/a) and γ = 1.

molecule, i.e. molecular dynamics (MD) simulations. For diffusion at low temper-

atures, however, MD simulations are not feasible due to the large difference in the

timescales for vibrational and diffusive motion. The time step in an MD simulation

must be chosen according to the shortest timescale in the system, which for surface

diffusion is typically the vibrations of the surface atoms. This frequency is many

orders of magnitude faster than the jump rate, making a direct simulation of surface

diffusion at low temperatures unfeasible.

Fig. 1.2 shows a typical trajectory followed by a particle diffusing along a surface

in one dimension, in which case the average force on the particle is described by a

periodic potential such as that shown in Fig. 1.1. The motion consists of rapid oscil-

lations around the minimum of the potential wells, punctuated by occasional jumps

between neighboring wells, with the jumps occurring on a time scale much longer

than the oscillations. For studies of surface diffusion, this short-time vibrational mo-

tion of the adsorbed particle is not of interest, nor is the vibrational motion of the

atoms making up the surface. A simplified description of the motion can therefore be
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obtained by replacing the microscopic force on the adsorbed particle with an effective

force which reproduces the statistics of the jumps between wells.

In such a stochastic approach, the equation of motion for a single adsorbed atom

takes the form of a Langevin equation [14,15],

m	̈r = 	F (	r)− γ	̇r + 	f(t), (1.8)

where 	F is the average force on the diffusing atom, i.e. the force on the atom with the

surface atoms at their equilibrium positions. The friction term and stochastic force

	f(t) account for the exchange of energy between the adsorbed atom and surface,

via surface phonons. The two terms are related through the fluctuation-dissipation

theorem [14,15],

〈f(t)f(t′)〉 = 2γkTδ(t− t′), (1.9)

ensuring the approach of a system described by Eq. (1.8) to thermal equilibrium. The

instantaneous decay of the correlations in the stochastic force 	f(t) is an approximation

(the Markov approximation) valid for systems where the motion of the substrate

atoms is fast compared to that of the adsorbed atoms. If the surface is treated as

an elastic continuum, a simple expression for the friction coefficient γ can be derived

from the microscopic equations of motion [15,16],

γ =
3π

2msω3
D

(
d2V

dx2

)2

, (1.10)

where ms is the mass of the surface atoms, and ωD is the Debye frequency of the

surface, and V (x) is the potential energy of the adsorbed atom. Models based on the

Langevin equation (1.8) [14,15,17,18], and equivalent approaches based on the Fokker-

Planck equation [16, 19, 20], or projection operaters [21, 22] have been widely used

to describe the surface diffusion of adsorbed atoms. These models can successfully

describe many aspects of surface diffusion, including those not accounted for in a

simple transition state theory (TST) approach, such as long jumps spanning multiple

lattice site, and non-Arrhenius behavior at high temperatures.

Applying this approach directly to an adsorbed molecule made up of N atoms

would result in N coupled Langevin equations of the type shown in Eq. (1.8). For a

large molecule, it becomes impractical to solve such a large set of coupled equations,
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particularly for the Fokker-Planck equation-based method described in Chapter 2,

for which only one or two-dimensional systems are tractable. For the purposes of de-

scribing surface diffusion, however, only overall center of mass motion of the molecule

is of interest. The internal molecular degrees of freedom (including both vibrations

and rotations) can therefore be treated as “background” degrees of freedom on the

same footing as the positions of the surface atoms, and will give rise to an additional

contribution to the friction coefficient and stochastic force in Eq. (1.8).

Large molecules may also have soft vibrational degrees of freedom that occur

on the same timescale as the center of mass motion. These can be either hindered

rotations and translations (as we will see in Chapter 5), or long wavelength bending

modes. In this case, the Markovian approximation employed in Eq. (1.8) is unrealistic,

and the equation of motion takes the more general form [14,15]

m	̈R = 	F (	R)−
∫ t

0

dt′Γ(t− t′) 	̇R(t′) + 	f(t), (1.11)

where 	R is the center of mass coordinate of the diffusing molecule. The stochastic

force f(t) has a finite correlation time, and is related to the memory function Γ(t− t′)

by [14,15]

〈f(t)f(t′)〉 = kTΓ(t− t′). (1.12)

We employ this stochastic model as the basis of our treatment of molecular surface

diffusion.

The connection between this picture of continuous adsorbate diffusion and the

discreet jump model described above is provided by the tracer diffusion coefficient. In

the long-time limit, the mean squared displacement of a particle undergoing random

thermal motion will increase linearly with time; the tracer diffusion coefficient is

defined as the proportionality constant,

Dt = lim
t→∞

〈|	r(t)− 	r(0)|2〉
4t

. (1.13)

For a particle undergoing a random walk of discreet jumps, the mean square dis-

placement will also increase linearly with time, proportional to the number of steps

N = tκ, i.e. 〈|	r(t)− 	r(0)|2〉 = tκ 〈l2〉, where 〈l2〉 is the mean square length of each
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jump (determined by the lattice constant). The tracer diffusion coefficient and jump

rate are then related by

Dt =
1

4
κ
〈
l2
〉
. (1.14)

A transport equation analogous to Fick’s law (1.3) can also be obtained for a

diffusing particle described by the Langevin equations (1.8) and (1.11). Though

the particle density ρ(	r) is not a meaningful quantity for an isolated particle, one

can consider the probability density ρ(	r,	v, t) for the particle to have position 	r and

velocity 	v. In the overdamped limit, the Markovian Langevin equation (1.8) leads to

the following equation for the marginal distribution ρ̄(	r, t) =
∫
d	vρ(	r,	v) [23, 24]

∂ρ̄

∂t
= ∇ · (D0∇− 	F (	r)/kT )ρ̄, (1.15)

where D0 = kT/γ is the tracer diffusion coefficient in the corresponding homogeneous

system (i.e. 	F = 0). Dt can then be calculated from Eq. (1.13) using the solution to

Eq. (1.15) in the long time limit. For general damping, the equation takes the form

of a Fokker-Planck equation for the distribution ρ(	r,	v, t) [23, 24].

The layout of the remainder of this thesis is as follows. In Chapter 2 we de-

rive the Langevin equations for adsorbed atoms that are the basis of our stochastic

model from the microscopic equations of motion for a system of atoms adsorbed on

a surface. We then show how to derive the Fokker-Planck equation corresponding to

Langevin dynamics, and give details of the numerical solution we employ to calculate

the diffusion coefficient Dt.

In Chapter 3 we derive an expression for the contribution of the internal degrees

of freedom of a diffusing molecule to the memory function Γ(t − t′) in Eq. (1.11),

and the resulting effective friction in the Markov limit. We apply this model to the

simplest molecular system, a dimer diffusing in one dimension, in order to elucidate

the qualitative effect the internal degrees of freedom can have on the diffusive motion.

In Chapters 4 and 5 we apply our stochastic model of surface diffusion to a sys-

tem of experimental interest, dithioanthracene diffusing on a Cu(111) surface. In

Chapter 4 we perform density functional theory calculations to obtain the necessary

potential energy and vibration frequencies for the stochastic model, and discuss some

issues with the accuracy of density functional theory calculations for surface adsorp-

tion problems. In Chapter 5 we then make use of the stochastic model to study the
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diffusion of dithioanthracene, comparing our results with experimental measurements

of the jump rate.

Finally, in Chapter 6 we give some concluding remarks as well as an outlook for

future studies.



Chapter 2

Theoretical Background

In this chapter we outline the necessary theoretical background for the stochastic

model of molecular surface diffusion developed in Chapter 3. The starting point for

this model is the Langevin equations (LE) for adsorbed atoms, introduced in Eq. (1.8),

and we begin with a derivation of the LE from the microscopic equations of motion

for the adsorbate-surface system in section 2.1. This derivation can be accomplished

with several different methods; here we use a method introduced by Zwanzig [14] for

a system where the background particles are treated in the harmonic approximation.

A more general method for obtaining Langevin equations is the use of projection

operators, and we briefly discuss this method in section 2.2.3.

As discussed in Chapter 1, an advantage of the stochastic approach is that the

fast vibrational motion of the surface atoms is eliminated. However, when solving

the LE for diffusion at low temperatures, one is still faced with the problem that the

timescale for jumps between neighboring potential wells is many orders of magnitude

longer than the timescale for vibrational motion within a well. For example, for

dithioanthracene diffusing on a Cu(111) surface (a system to be considered in the

next chapters) the vibrational frequencies are on the order of 1012Hz, while the jump

frequencies are on the order of 10−3 ∼ 10−1Hz. Direct integration of the LE therefore

becomes impractical for such systems.

Since the LE is stochastic in nature, its solution generates an ensemble of trajec-

tories rather than a single trajectory. Physical quantities of interest must then be

averaged over this ensemble. The diffusion coefficient, for example, can be calculated

from the position correlation function [25]

D = lim
t→∞

〈(x(t)− x(0))2〉
2t

, (2.1)

or equivalently in terms of the velocity correlation function, from the Green-Kubo

11
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relation [25]

D =

∫ ∞

0

dt 〈v(t)v(0)〉 . (2.2)

The averages in Eqs. (2.1) and (2.2) can be calculated by averaging over many trajec-

tories obtained by solving the LE. One can also consider the probability density for

the ensemble generated by solutions of the LE. The averages can then be calculated

as moments of this distribution, e.g.

〈v(t)v(0)〉 =
∫

dx

∫
dv

∫
dx0

∫
dv0ρ(x, v, t; x0, v0)vv0, (2.3)

where ρ(x, v, t; x0, v0) is the joint probability for the particle to have position x and

velocity v at time t, and initial position x0 and velocity v0. Rather than solving

the LE directly, an equation for the probability density ρ can be derived. In the

case of Markovian friction, this equation takes the form of a Fokker-Planck equation

(FPE) [23, 24],

∂ρ

∂t
= Lρ, (2.4)

where L is a second order differential operator in the position and velocity variables.

This FPE can be solved efficiently by the matrix continued fraction (MCF) method

of Risken [24], thus avoiding the problem of separation of time scales in the LE at

low temperatures.

In section 2.2, we will derive the FPE corresponding to the LE of Eq. (1.8), and

give the equation corresponding to the general non-Markovian LE of Eq.(1.11). We

will then outline, in section 2.3, the use of the MCF method to calculate the diffusion

coefficient in a periodic potential, appropriate for the treatment of surface diffusion.

2.1 Langevin Equation

Consider a system of adsorbed atoms with masses mi and positions 	ri. The atoms

of the solid have mass ms, and we denote their positions by 	Ri. To account for the

vibrations of the substrate atoms, we write

	Ri = 	R
(0)
i + 	ui, (2.5)
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where 	ui is the deviation from the equilibrium position 	R
(0)
i . The interactions between

the atoms are described by a potential energy V ({	ri}, {	ui}). The Newtonian equations

of motion for the system are

mi	̈ri = −∇riV ({	ri}, {	ui})
ms	̈ui = −∇ui

V ({	ri}, {	ui})
. (2.6)

Expanding the potential to second order in the displacements 	ui gives

V ({	ri}, {	ui}) = V0({	ri}) +
∑
i

	gi · 	ui +
1

2

∑
i,j

	uT
i ·Kij · 	uj, (2.7)

where 	gi = ∇ui
V |{�ui=0}, and Kij = ∇ui

∇uj
V |{�ui=0} . In the derivation that is to

follow, the second derivatives Kij must be assumed to be constant, while the 	gi’s can

depend on the adatom positions 	ri (i.e. a linear coupling between the adsorbed atoms

and the surface atoms is assumed). Now consider the normal mode coordinates qk for

the substrate vibrations, with corresponding vibration frequencies ωi and eigenvectors

q̂k. The potential then becomes

V ({	rn}, {qk}) = V0({	rn}) +
∑
k

φkqk +
1

2

∑
k

ω2
k|qk|2, (2.8)

where φk =
∂V
∂qk

∣∣∣
{qk}=0

. The equations of motion then become

mi	̈ri +∇riV0 +
∑
k

qk∇riφk = 0 (2.9)

q̈k + ω2
kqk + φ∗k = 0, (2.10)

where φ∗k denotes the complex conjugate of φk.

The equations for qk are simply uncoupled driven harmonic oscillators, which can

be solved analytically. By substituting the solutions into Eq. (2.9) we will obtain a

set of Langevin equations for the adatom positions 	ri. Eqs. (2.10) have the solutions

qk(t) = qk(0) cos(ωkt) +
1

ωk

q̇k(0) sin(ωkt)− 1

ωk

∫ t

0

sin[ωk(t− t′)]φ∗k({	rn(t′)})dt′.
(2.11)

To make Eq. (2.9) take the form of a Langevin equation, we must rewrite (2.11) using
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integration by parts,

qk(t) =

[
qk(0) +

1

ωk

φ∗k({	rn(0)})
]
cos(ωkt) +

1

ωk

q̇k(0) sin(ωkt)− 1

ω2
k

φ∗k({	rn(t)})

+
1

ω2
k

∫ t

0

cos[ωk(t− t′)]
∑
j

∇rjφ
∗
k({	rn(t′)}) · 	̇rj(t′)dt′. (2.12)

Making use of these solutions, Eq. (2.9) becomes

mi	̈ri = −∇riVa −
∑
j

∫ t

0

Γij · 	̇rj(t′)dt′ + 	fi, (2.13)

where

Γij[{	rn(t)}, {	rn(t′)}, t− t′] =
∑
k

cos[ωk(t− t′)]
ω2
k

×∇riφk({	rn(t)})∇rjφ
∗
k({	rn(t′)}),

(2.14)

Va = V0 − 1

2

∑
k

|φk|2
ω2
k

, (2.15)

	fi({	rn(t)}, t) = −
∑
k

[(
qk(0) +

φ∗k({	rn(0)})
ω2
k

)
cos(ωkt) +

q̇k(0)

ωk

sin(ωkt)

]

×∇riφk({	rn(t)}).
(2.16)

Eq. (2.13) has the form of a generalized Langevin equation (GLE) for the ith adatom,

with memory function Γij and stochastic force 	fi. The stochastic nature of 	fi comes

from its dependence on the initial conditions qk(0), q̇k(0), which we denote collectively

by X. Assuming the system is initially in thermal equilibrium the probability of a

set of initial conditions is given by

ρ(X) =
1

Z
e−EX/kBT , (2.17)

where EX =
∑

k(|q̇k(0)|2/2 + ω2
k|qk(0)|2/2), and Z =

∫
dXe−EX/kBT is the partition

function. The average of a quantity A(X) is then given by

〈A〉 = 1

Z

∫
dXA(X)ρ(X). (2.18)

Using this averaging procedure, it is easy to show that the average force is zero,

〈	fi({	rn}, t)〉 = 0, (2.19)
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as expected for a Langevin force [23, 24].

The memory term and random force both arise from interaction of the adsorbed

atoms with the phonons, and they are related by the fluctuation-dissipation theorem

[23,24]

〈	fi({	rn(t)}, t)	fj({	rn(t′)}, t′)〉 = kBTΓij[{	rn(t)}, {	rn(t′)}, t− t′], (2.20)

which can be verified by making use of Eqs. (2.16) and (2.14). The memory term

therefore arises from the finite time correlations of the random force. If these cor-

relations decay quickly compared to the timescale of interest, the random force can

be treated as being uncorrelated in time, 〈	f(t)	f(t′)〉 ∼ δ(t − t′). The integral in the

memory term in Eq. (2.13) then disappears, and a simple friction term is recovered,

leading to the LE

mi	̈ri = −∇riVa −
∑
j

γij · 	̇rj + 	fi. (2.21)

This is termed the Markov approximation (a Markov process is one in which the state

of the system at time t + dt depends only on the state of the system at time t [23]),

and the stochastic force 	fi(t) is called white noise. The statistical properties of the

stochastic forces in this approximation are〈
	fi(t)

〉
= 0

〈
	fi(t)	fi(t

′)
〉
= 2kTγijδ(t− t′). (2.22)

If the surface vibrations are described within the Debye model, it can be shown that

the Markov approximation is valid in the limit that the Debye frequency ωD is fast

compared to the time scale of interest [15], and the friction coefficients are given by

the expression

γij =
3π

2msω3
D

∇riVa∇rjVa. (2.23)

This condition is usually satisfied for surface diffusion on metal surfaces, where typical

Debye frequencies are on the order of 1013Hz, while typical vibration frequencies for

adsorbates are on the order of 1012Hz.

The potential energy appearing in the LE (2.21) and GLE (2.13) is called the

adiabatic potential. In general, Va is defined by an average over the positions of the

substrate atoms in the following way

e−Va(�r)/kT =

∫
d	qe−V (�r,�q)/kT/Z. (2.24)
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The adiabatic potential defined in this way is the potential of mean force for the

adsorbed atoms,

〈∇riV ({	rn}, {qk}〉 = ∇riVa({	rn}), (2.25)

where the average is performed over the substrate degrees of freedom as in Eq. (2.18).

The expression for Va given in Eq. (2.15) is simply this average calculated using the

harmonic approximation to the potential, Eq. (2.8). Effects beyond the harmonic

approximation in the background degrees of freedom (including thermal expansion

of the surface) can therefore be incorporated into the GLE (2.13) by evaluating the

adiabatic potential using Eq. (2.24) rather than Eq. (2.15). This point is discussed

further in section 2.2 and later in Chapter 3.

2.2 Fokker-Planck Equation

In this section we consider the FPE for the probability density ρ(	r,	v, t) for a system

described by the LE’s derived in the previous section. This provides an alternative,

mathematically equivalent description of the system which is sometimes more conve-

nient to work with. For surface diffusion, the FPE description allows for a much more

efficient calculation of the diffusion coefficient, by avoiding the problem of separation

of time scales in the vibrational and diffusive motion.

2.2.1 Markovian Langevin Equation

We first consider the one-dimensional LE with Markovian friction,

mv̇ = F (r)− γv + f(t), (2.26)

where the stochastic force f(t) is Gaussian white noise, and satisfies

〈f(t)〉 = 0

〈f(t)f(t′)〉 = 2kTγδ(t− t′). (2.27)

Following Ref. [26], an equation for the probability density can be obtained by

considering the equation of motion for an arbitrary function of the position and

velocity y = g(r, v). Applying this transformation of variables to the above LE, and
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using the rules of Ito calculus [26] (for an equation of the form (2.26) where the

stochastic force has no velocity dependence, there is no difference between the Ito

and Stratonovich pictures [23]) gives

ẏ =
∂g

∂r
v +

∂g

∂v
(F − γv + f)/m+

∂2g

∂v2
kTγ

m2
. (2.28)

Upon taking the average of both sides, the term involving the stochastic force f(t)

will vanish, giving

∂〈y〉
∂t

=

〈
∂g

∂r
v

〉
+

〈
∂g

∂v
(F − γv)/m

〉
+

〈
∂2g

∂v2

〉
kTγ

m2
. (2.29)

This can be written in terms of the probability density ρ(r, v, t) as

∂〈y〉
∂t

=

∫
dr

∫
dv

[
∂g

∂r
v +

∂g

∂v
(F − γv)/m+

∂2g

∂v2
kTγ

m2

]
ρ(r, v, t)

=

∫
dr

∫
dv

[
−v

∂ρ

∂r
− (F/m)

∂ρ

∂v
+

γ

m

∂

∂v

(
v +

kT

m

∂

∂v

)
ρ

]
g(r, v), (2.30)

where integration by parts has been used in the second line. Since the left hand

side can be written as ∂〈y〉
∂t

=
∫
dr
∫
dvg(r, v)∂ρ

∂t
, and Eq. (2.30) must be true for any

function g(x, v), the following equation for the probability density must hold

∂ρ

∂t
= −v

∂ρ

∂r
− (F/m)

∂ρ

∂v
+

γ

m

∂

∂v

(
v +

kT

m

∂

∂v

)
ρ. (2.31)

This is the FPE for the probability density corresponding to the Langevin equation

(2.26).

For an N -dimensional system of Langevin equations,

M · 	̇v = 	F (	r)− γ · 	v + 	f(t),

〈
	f(t)

〉
= 0〈

	f(t)	f(t′)
〉
= 2kTγδ(t− t′)

, (2.32)

similar arguments lead to the following FPE

∂ρ

∂t
= −	v · ∇�rρ− 	F (	r) ·M−1 · ∇�vρ+∇�v ·M−1 · γ · (	v + kTM−1 · ∇�v

)
ρ. (2.33)

Here M is a matrix with the particle masses on the diagonal, and γ is a matrix of

friction coefficients.
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2.2.2 Generalized Langevin Equation

Consider now the GLE with memory,

M · 	̇v = 	F (	r)−
∫ t

0

dt′Γ(	r(t), 	r(t′), t− t′)	v(t′) + 	f(t), (2.34)

where the stochastic force 	f(t) is Gaussian, but with a finite correlation time, satis-

fying 〈
	f
〉
= 0,

〈
	f(t)	f(t′)

〉
= kTΓ(	r(t), 	r(t′), |t− t′|). (2.35)

The equation for the probability density in this case is considerably more complicated

than the FPE,

∂ρ

∂t
= −	v · ∇�rρ− 	F (	r) ·M−1 · ∇�vρ

+

∫ t

0

dt′
∫

d	r′
∫

d	v′∇�v ·M−1 ·Θ(	r, 	r′, t− t′) ·
(
	v′ + kTM−1 · ∇�v′

)
ρ(	r′, 	v′, t′),

(2.36)

where Θ(	r, 	r′, t − t′) = Γ(	r, 	r′, t − t′)ρ(	r,	v, t − t′|	r′, 	v′). This generalized FPE is

non-local in time, as well as the position and velocity variables. The presence of

the probability density ρ(	r,	v, t − t′|	r′, 	v′) in the memory function Θ also makes the

equation non-linear, greatly complicating its solution.

The need to work with a non-Markovian FPE such as Eq. (2.36) can sometimes

be avoided by explicitly including more degrees of freedom in the equations of mo-

tion. The source of the memory term in a non-Markovian equation is degrees of

freedom whose motion occurs on the same time scale as, or slower than, the degrees

of freedom of interest. For an adsorbed molecule, this could include vibrational or

rotational degrees of freedom that occur on the same time scale as center of mass mo-

tion, while surface vibrations are fast compared to center of mass motion. Explicitly

including these slow degrees of freedom in the equations of motion will then result

in a Markovian LE (or FPE) of higher dimensionality. In Chapter 3, we will take

advantage of this approach when studying a dimer in one dimension by working with

the two-variable Markovian FPE including both molecular degrees of freedom, rather

than the generalized FPE including only the center of mass coordinate.

In Chapter 5, where diffusion of a molecule with many vibrational degrees of

freedom is studied, this approach is no longer feasible. We will therefore consider an
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approximate solution for the jump rate in a system described by Eq. (2.36) in order

to estimate the importance of memory effects for diffusion. This approximation, the

Grote-Hynes theory [27], is valid when the energy barrier is large compared to kT ,

and the friction is not too small compared to typical vibration frequencies (both

assumptions are found to be valid for the system studied in Chapter 5). In the

Grote-Hynes approximation, the jump rate is given by

κ =
λ

ωb

ωm

2π
e−ΔV/kT , (2.37)

where ωm and ωb are the harmonic vibration frequencies at the minimum and barrier

regions, and λ is determined by the following equation

λ =
ω2
b

λ+ Γ̂(λ)/M
, (2.38)

where Γ̂(λ) is the Laplace transform of the memory function, and M is the total mass

of the molecule.

2.2.3 Projection Operator Methods

Generalized Langevin equations, and their corresponding generalized FPE’s, can also

be derived from the microscopic equations of motion using the projection operator

technique of Mori [28]. The basic idea of the Mori projection operator technique is to

derive an equation of motion for the “slow” variables Xi of the system of interest by

operating on the basic equations of motion with a projection operator that averages

out the effect of the “fast” variables (in the case of surface diffusion, the coordinates

and momenta of the vibrating atoms of the surface). The projection operator P̂i onto

the variable Xi is defined such that for some function of the microscopic variables A,

P̂iA = Xiχ
−1
ij 〈XjA〉 , (2.39)

where here, and for the rest of this section Einstein summation notation is used for

the repeated indices. 〈X〉 denotes the average of X over an equilibrium ensemble,

and χ is the susceptibility matrix, defined as

χij = 〈XiXj〉 . (2.40)
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The following equations of motion for the Xi can then be derived [28]

dXi

dt
(t) = ΩijXj(t)−

∫ t

0

dt′Γij(t− t′)Xj(t
′) + fi(t). (2.41)

The “adiabatic” or average force is given by the first term, while the effects of the

fast motion of the background particles are contained in the random forces fi and the

memory functions Γij. The various terms in Eq. (2.41) are given by

Ωij =
〈
ẊiXk

〉
χ−1kj

fi(t) = eiQ̂LQ̂tQ̂Ẋi

Γij(t− t′) =
〈
Q̂Ẋie

iQ̂LQ̂(t−t′)Q̂Ẋk

〉
χ−1kj , (2.42)

where Q̂ = 1−∑i P̂i can be thought of as projecting into a subspace orthogonal to the

variables Xi, in the sense that it is uncorrelated with all the Xi, i.e.
〈
Xi(Q̂A)

〉
= 0

for any quantity A. The operator L is the Liouville operator, defined so that the

microscopic equations of motion for the variables are given by

Ẋi = iLXi. (2.43)

In analogy to Eq. (2.20) for the random force of the usual GLE for surface diffusion,

the random forces here satisfy

〈fi(t)Xj〉 = 0 (2.44)

〈fi(t)fj(t′)〉 = Γikχkj. (2.45)

For a diffusing particle with position and velocity 	r and 	v, if one takes as the

variables Xi a set of functions complete in 	r and 	v, the projection operator method

gives a generalized Langevin equation of the type shown in Eq. (2.32), but with a

memory term that in general depends non-linearly on the velocity. The same method

can also be used to derive equations of motion for correlation functions of the variables

Xi. A generalized FPE corresponding to the Langevin equation can be derived in

this way, since the probability density can be thought of as the correlation function

ρ(	x, 	u, t) = 〈δ(	x− 	r(t))δ(	u− 	v(t))〉 , (2.46)

resulting in an equation of the form shown in Eq. (2.36). This approach has been

used by Ying et al. to study the surface diffusion of adatoms [21, 29]. Rather than
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working with the generalized FPE directly, they use the projection operator formalism

to derive equations of motion for correlation functions of interest.

The force appearing in the Langevin and Fokker-Planck equations obtained in the

projection operator method is exactly the adiabatic force defined in Eq. (2.24), which

can be shown from the expression for the force in Eq. (2.42). This provides a firm

justification for the approach mentioned above in section 2.1, where the effective force

in the Langevin equation obtained in the harmonic approximation is replaced with

the adiabatic force as defined in Eq. (2.24). It may seem questionable to combine

an equation of motion derived in the harmonic approximation with a force term

derived from a different model. However, using the projection operator method, an

equation of motion with a force term that is exactly the adiabatic force and with

the same form as the GLE derived in section 2.1 can be derived rigorously from the

microscopic equations of motion. The difference between the two equations lies in

the memory and stochastic force terms.

In the method of section 2.1, the memory term and stochastic force are given

by Eqs. (2.14) and (2.16), while in the projection operator method, they must be

evaluated using Eq. (2.42). The generalized Langevin equation Eq. (2.41) is a formally

exact equation of motion for the variables Xi (no approximations have been made in

deriving it). An exact evaluation of the random force and memory function would

therefore amount to a solution of the full N-body problem of the system of interest

plus the background particles, and so it is generally not possible. In order to make

use of this GLE, approximations for these terms must therefore be made. The formal

expressions in Eq. (2.42) are, however, difficult to deal with due to the presence of

the projection operators. The method given in section 2.1 for deriving the GLE can

then be viewed as a convenient approximation scheme for the memory and stochastic

force terms appearing in the GLE (2.41). This approximation is physically intuitive

and simple to apply, and allows one to avoid working directly with the expressions in

Eq. (2.42), which require an approximation to the complicated operator eiQ̂LQ̂t. The

approach of section 2.1 will be used later in Chapter 3 to account for differences in

vibrational entropy as a adsorbed dimer moves across the surface.
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2.3 Numerical Solution of Fokker-Planck Equation

To solve Eq. (2.33), the probability density is expanded in a complete set of functions

for each variable. For example, in one dimension, ρ(r, v, t) is written as

ρ(r, v, t) =
∑
n,ν

Cnν(t)φn(r)ψν(v). (2.47)

Provided an orthonormal set of functions φn for the position variable, and ψν for the

velocity variable are chosen, the coefficients Cnν are related to the probability density

by

Cnν(t) =
[
φnψν , ρ(t)

]
, (2.48)

where
[
A,B

]
is the inner product of A and B, defined by the integral

[
A,B

]
=

∫
dr

∫
dvA(r, v)B(r, v). (2.49)

The FPE then becomes a matrix equation,

∂

∂t
Cmμ(t) = Lmμ,nνCnν(t), (2.50)

where Lmμ,nν are the matrix elements of the Fokker-Planck (FP) operator in the

chosen basis,

Lmμ,nν =
[
φmψμ, Lφnψν

]
. (2.51)

The FPE in this form is solved by taking the Laplace transform of the equation,

giving

(z − Lmμ,nν)Ĉnν(z) = Cmμ(0), (2.52)

where Ĉnν(z) is the Laplace transform of Cnν(t), defined as

Ĉ(z) = L[C(t)](z) ≡
∫ ∞

0

dte−ztC(t). (2.53)

The matrix z − L can then be inverted to give the Laplace transform Ĉ(z).

To calculate correlation functions we will need to consider the conditional prob-

ability distribution ρ(r, v, t|r0, v0), the probability for the particle to have position



23

and velocity r, v at time t given initial position and velocity r0, v0. This conditional

distribution is the Green’s function of the FPE, i.e. the solution with initial condition

ρ(r, v, t = 0) = δ(r − r0)δ(v − v0). (2.54)

ρ(r, v, t|r0, v0) can be expanded in both sets of variables r, v and r0, v0, with coefficients

Cmμ,nν =
[
φm(r)ψμ(v)φn(r0)ψν(v0), ρ(r, v, t|r0, v0)

]
, (2.55)

and the FPE (2.52) becomes

(z − Lmμ,aα)Ĉaα,nν(z) = Cmμ,nν(0) = δm,nδμ,ν . (2.56)

The problem can be made more numerically tractable by choosing a favourable

set of basis functions for the expansion. For the velocity variables, Hermite functions

are the optimal choice, since the FP operator becomes tridiagonal in the indices

corresponding to these functions. That is, the elements of the matrix Lmμ,nν are zero

if ν > μ + 1 or ν < μ − 1. This allows the use of the efficient tridiagonal matrix

algorithm to solve the system (2.56). For the position variables, a Fourier series can

be used for coordinates where the force is periodic, or Hermite functions can again be

used for coordinates which the force confines to a finite region (such as for vibrational

coordinates).

This method is known as the matrix continued fraction method, since an appli-

cation of the tridiagonal matrix algorithm to the transformed FPE (2.56) gives the

solution to Ĉmμ,nν(z) in terms of a continued fraction of matrices derived from the FP

operator. See Ref. [24] for a detailed account of the MCF method, and e.g. Ref. [19]

for an application of the MCF method to diffusion in a periodic system.

2.3.1 Matrix Elements of the Fokker-Planck Operator

Use of the MCF method to solve the FPE requires a calculation of the matrix elements

of the FP operator. To calculate these matrix elements, it is convenient to introduce

the following scaled variables

r̄ =
2π

a
r t̄ =

2π

a

√
kT

m
t v̄ =

√
m

kT
v γ̄ =

a

2π

√
1

mkT
γ F̄ =

a

2πkT
F . (2.57)
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It will also be helpful to apply the following transformation to the FPE

L′ = eV (r)/2+v2/4Le−V (r)/2−v2/4 ρ′ = e−V (r0)/2−v20/4eV (r)/2+v2/4ρ. (2.58)

This transformation leaves the form of the FPE unchanged, so that ρ̇′ = L′ρ′. The

transformed FP operator then becomes

L′ = −(bD + b†D̂ + γb†b), (2.59)

in terms of the following differential operators,

b =
∂

∂v̄
+

1

2
v̄ b† = − ∂

∂v̄
+

1

2
v̄

D =
∂

∂r̄
+

1

2
F̄ (r̄) D̂ =

∂

∂r̄
− 1

2
F̄ (r̄). (2.60)

To solve the FPE, we must find the matrix elements of the operators b, b†, D, D̂ in

the chosen basis.

The b and b̂ operators can be recognized as the creation and annihilation operators

for the Hermite functions,

bψn(v̄) =
√
nψn−1(v̄) b†ψn(v̄) =

√
n+ 1ψn+1(v̄). (2.61)

where the ψn’s are defined as

ψn(v) =

√
n!

2n
√
2π

Hn(v/
√
2)e−v

2/4, (2.62)

and Hn are the Hermite polynomials. Looking at Eq. (2.58) for the FP operator, the

benefit of using Hermite functions as the basis for the velocity variable is now clear.

With this choice of basis, the matrix elements of b and b† can easily be found from

the properties given in Eqs. (2.61), and the matrix elements for the three terms in L′

take the following tridiagonal form

[bD]mμ,nν =
√
νδμ,ν−1Dmn (2.63)

[b†D̂]mμ,nν =
√
ν + 1δμ,ν+1D̂mn (2.64)

[γb†b]mμ,nν = γμδm,nδμ,ν . (2.65)

The matrix elements Dmn and D̂mn depend on the choice of basis for the position

variable, and in general must be evaluated numerically. However, for the 1D dimer

studied Chapter 3, they can be calculated analytically, and we give the resulting

matrix elements in Appendix A.



25

2.3.2 Calculation of Diffusion Coefficient

Physical quantities of interest can be calculated in terms of correlation functions

in the position and velocity variables. The quantity of most direct experimental

relevance for surface diffusion at low coverage is the tracer diffusion coefficient, which

is related to the jump rate as explained in Chapter 1. The simplest way to calculate

the diffusion coefficient from the FPE is to use the relationship

Dt =

∫ ∞

0

dt 〈v(t)v(0)〉 = lim
z→0

L[〈v(t)v(0)〉](z), (2.66)

where L[〈v(t)v(0)〉](z) is the Laplace transform of the correlation function.

The velocity autocorrelation function needed to calculate Dt is related to the

conditional probability distribution ρ(r, v, t|r0, v0) through

〈v(t)v(0)〉 =
∫

dr

∫
dv

∫
dr0

∫
dv0ρ(r, v, t|r0, v0)ρ0(r0, v0)vv0, (2.67)

where ρ0(r0, v0) is the initial probability distribution. To calculate the velocity au-

tocorrelation function, and then Dt, by solving the FPE, we wish to relate these

quantities to the coefficients Cmμ,nν(z). The Hermite function ψμ(v) with μ = 1 is

linear in the velocity,

ψ1(v) = ve−v
2/4. (2.68)

The velocity correlation function can therefore be related to the Cm1,n1(z) coefficients,

given by

Ci1,k1(z) =

∫ ∞

0

dte−zt
∫

dr

∫
dv

∫
dr0

∫
dv0ρ

′(r, v, t|r0, v0)φi(r)φk(r0)vv0e
−v2/4e−v

2
0/4.

(2.69)

The integrand, written here in terms of the scaled probability ρ′, can be rewritten as

ρ(r, v, t|r0, v0)φi(r)φk(r0)e
−v20/2e−V (r0)/2eV (r)/2vv0

= ρ(r, v, t|r0, v0)ρeq(r0, v0)NeV (r0)/2eV (r)/2φi(r)φk(r0)vv0,

where ρeq(r0, v0) = e−V (r0)e−v
2
0/2/N is the equilibrium probability density, with the

normalization factor

N =
√
2π

∫
dre−V (r). (2.70)
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The velocity autocorrelation function can be recovered by making use of the expan-

sions of e−V (r)/2 and e−V (r0)/2 in terms of the basis functions φm(r), φn(r0), so that,

e.g.,

e−V (r)/2 =
∑
m

Pmφm(r), (2.71)

with Pm =
[
φm, e

−V/2]. We then have

L[〈v(t)v(0)〉](z) =
∑
m,n

PmCm1,n1(z)Pn/N . (2.72)

With this expression, the coefficients Cm1,n1(z) obtained from a solution of the FPE

(2.56) can be used to calculate the diffusion coefficient.

2.4 Summary

The LE derived in section 2.1, its corresponding FPE derived in section 2.2, and the

solution method outlined in 2.3 form the basic theoretical framework used for the

remainder of this thesis. In Chapter 3 we will extend the method of section 2.1 to

derive a GLE for molecular surface diffusion, and use it to study diffusion in a simple

model system. In the later chapters we will use the same method to study surface

diffusion in a system of experimental interest, dithioanthracene on Cu(111).



Chapter 3

Stochastic Model for Surface Diffusion of Molecules

In this chapter we extend the method outlined in the previous chapter to obtain

an equation for the center of mass motion of an adsorbed molecule. Following an

approach similar to the one used in section 2.1, we derive a GLE for the center of mass

coordinate of a molecule, its internal (vibrational and rotational) degrees of freedom

giving rise to a memory term and stochastic force. The memory function (or friction

coefficient in the Markov approximation) in this GLE has two contributions: one

from the surface phonons, and one from molecular degrees of freedom. Although the

contribution from the phonons can usually be treated in the Markov approximation,

due to the typically shorter time-scale for surface vibrations compared to the motion

of adsorbates, internal molecular motion may occur on a time-scale that is not fast

compared to center of mass motion. Memory effects can then become important, and

we test the accuracy of the Markov approximation below.

After deriving the GLE for center of mass molecular motion, we apply it to study

the diffusion of a dimer in one dimension (1D). This simple model is a logical start-

ing point for an application of our stochastic model since it is the simplest possible

molecular system, having only one internal degree of freedom. Although simplistic,

the 1D dimer model qualitatively captures all of the relevant physics for molecular

surface diffusion, namely the coupling of center of mass motion to internal molecu-

lar degrees of freedom which may occur on the same time scale as, or slower than,

center of mass motion. Physically, the 1D dimer could represent, for example, the

diffusion of dimers of W and Re atoms along channels on the W(211) surface [30,31],

or could be a simplified model for the diffusion of dimers of larger molecules, such as

the dimers of porphyrin molecules observed to diffuse unidirectionally on the Cu(111)

surface [6].

An advantage of the simplicity of the 1D dimer model is that the full equations

of motion for the molecule (i.e. with the center of mass and vibrational motion

27
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both solved for explicitly) can be solved directly, due the low dimensionality of the

system. This allows for a systematic test of the accuracy of the stochastic treatment

of the internal molecular degrees of freedom, as well as the accuracy of the Markov

approximation. Studying diffusion in the 1D dimer will allow us to make some wide-

reaching qualitative statements about how internal degrees of freedom can affect

surface diffusion in molecules.

3.1 Model

To make the derivation of the GLE for molecules simple and transparent we first

consider the 1D dimer, and later extend the treatment to an arbitrary molecule. The

starting point for our derivation is the set of Markovian Langevin equations for the

adsorbed atoms, as derived in Chapter 2. For a dimer consisting of atoms of mass

m1, m2 with coordinates x1, x2, the set of Langevin equations (2.21) becomes

m1ẍ1 =
∂V

∂x1

− γ11ẋ1 − γ12ẋ2 + f1(t)

m2ẍ2 =
∂V

∂x2

− γ21ẋ1 − γ22ẋ2 + f2(t).

(3.1)

As discussed in Chapter 2, the potential energy V (x1, x2) represents the average

interaction between the dimer and the surface, while the friction coefficients γij and

stochastic forces fi(t) account for the phonon-mediated energy exchange with the

surface. The stochastic forces f1(t), f2(t) have the properties shown in Eq. (2.22),

〈fi(t)〉 = 0

〈fi(t)fj(t′)〉 = 2kTγijδ(t− t′).
(3.2)

Rewriting Eqs. (3.1) in terms of the center of mass coordinate r = (m1x1 +

m2x2)/M and the relative coordinate s = x1 − x2 − � (where � is the equilibrium

dimer length) gives

Mr̈ = −∂V

∂r
− γrrṙ − γrsṡ+ fr(t)

μs̈ = −∂V

∂s
− γsrṙ − γssṡ+ fs(t),

(3.3)

where M = m1 + m2, and μ = m1m2/(m1 + m2). The new friction coefficients are
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given by

γrr = γ11 + γ12 + γ21 + γ22

γrs =
m2

M
γ11 − m1

M
γ12 +

m2

M
γ21 − m1

M
γ22

γsr =
m2

M
γ11 +

m2

M
γ12 − m1

M
γ21 − m1

M
γ22

γss =
m2

2

M2
γ11 − m1m2

M2
γ12 − m1m2

M2
γ21 +

m2
1

M2
γ22.

(3.4)

Note that if the initial matrix of friction coefficients is symmetric, γ12 = γ21, then so

is the transformed matrix, γrs = γsr. We will assume this to be true in the following.

The stochastic forces are given by

fr(t) = f1(t) + f2(t)

fs(t) =
m2

M
f1(t)− m1

M
f2(t),

(3.5)

and have the statistical properties given in Eqs. (3.2), now with i, j → r, s.

For a dimer that does not deform strongly in the diffusion process, we can expand

the potential V (r, s) to quadratic order in the relative coordinate s, giving

V (r, s) = V0(r) + φ(r)s+
1

2
μω2s2, (3.6)

with φ(r) = ∂V
∂s
|s=0. The vibration frequency ω is here assumed to be constant along

the diffusion path; in section 3.2.3 we show how a vibration frequency that changes

with center of mass position, i.e. ω = ω(r), can be accounted for approximately.

With the approximation (3.6), the Langevin equations become

Mr̈ = −V ′0(r)− γrrṙ − γrsṡ− φ′(r)s+ fr(t) (3.7)

μs̈+ γssṡ+ μω2s = −φ(r)− γsrṙ + fs(t), (3.8)

where the primes denote differentiation with respect to r. We will refer to Eqs. (3.7),(3.8)

as the harmonic approximation (HA).

Note that Eq. (3.8) is the equation of motion for a damped, driven harmonic

oscillator, and the formal solution can be written as

s(t) = e−ηt/2
(
s0 cos(Ωt) +

η/2s0 + ṡ0
Ω

sin(Ωt)

)

+

∫ t

0

dt′[−φ[r(t′)]− γrsṙ(t
′) + fs(t

′)]e−η/2(t−t
′) sin(Ω(t− t′))

Ωμ
,

(3.9)
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where η = γss/μ, Ω =
√
ω2 − (η/2)2, and s0, ṡ0 are the initial conditions for the

relative coordinate. The term involving φ[r(t′)] can be rewritten using integration by

parts to give

s(t) = −φ[r(t)]

μω2
+ e−ηt/2

(
[s0 +

φ0

μω2
] cos(Ωt) +

η/2[s0 +
φ0

μω2 ] + ṡ0

Ω
sin(Ωt)

)

+

∫ t

0

dt′φ′[r(t′)]
e−η/2(t−t

′)

μω2

(
cos(Ω(t− t′)) +

η

2Ω
sin(Ω(t− t′))

)
ṙ(t′)

+

∫ t

0

dt′[−γrsṙ(t
′) + fs(t

′)]e−η/2(t−t
′) sin(Ω(t− t′))

Ωμ
.

(3.10)

The solution for ṡ(t) can be obtained by differentiation, and upon substitution into

Eq. (3.7) one obtains a generalized Langevin equation of the form

Mr̈ = −dU

dr
−
∫ t

0

dt′Γ[r(t), r(t′), t− t′]ṙ(t′) + F (t). (3.11)

The effective potential U(r) is given by

U(r) = V0(r)− φ(r)2

2μω2
, (3.12)

and the memory function and stochastic force have the form Γ = 2γrrδ(t− t′) + Γvib

and F (t) = fr(t) + Fvib(t). The contributions to the memory function and stochastic

force from the molecular vibrations are given by

Γvib[r(t), r(t
′), t− t′] = φ′[r(t)]φ′[r(t′)]a(t− t′)

+ γrs(φ
′[r(t)] + φ′[r(t′)])ȧ(t− t′) + γ2

rsä(t− t′)
(3.13)

Fvib(t) = −(φ′[r(t)]a(t) + γrsȧ(t))μω
2

(
s0 +

φ0

μω2

)

+ (φ′[r(t)]ȧ(t) + γrsä(t))μṡ0

+

∫ t

0

dt′(φ′[r(t)]ȧ(t− t′) + γrsä(t− t′))fs(t′)

, (3.14)

where

a(t) =
e−ηt/2

μω2
[cos(Ωt) + η/(2Ω) sin(Ωt)], (3.15)

and ȧ and ä are time derivatives of a.

Note that the effective potential U(r) is simply the potential energy V (r, s) of

Eq. (3.6) evaluated at the dimer length s that minimizes the potential at a given r,
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U(r) = V (r, s0(r)), where s0(r) = −φ(r)/ω2. Similarly, the memory function can be

written in terms of s′0(r) = −φ′(r)/ω2, the slope of the minimum energy path. The

vibrational memory function Γvib will therefore be more significant for systems that

follow a curved path through the coordinate space as diffusion proceeds.

The stochastic nature of Fvib(t) comes from the dependence on the initial condi-

tions s0, ṡ0, and averages are calculated as averages over these initial conditions with

the equilibrium probability density

ρ(s0, ṡ0) =
e−E(r0,s0,ṙ0,ṡ0)/kT∫

ds0
∫
dṡ0e−E(r0,s0,ṙ0,ṡ0)/kT

=
μω

2πkT
e−(

1
2
μṡ20+

1
2
μω2(s0+φ0/μω2)2)/kT .

(3.16)

Using this probability density, the averages〈
s0 +

φ0

μω2

〉
= 〈ṡ0〉 = 0〈(

s0 +
φ0

μω2

)2
〉

=
kT

μω2

〈
ṡ20
〉
=

kT

μ

(3.17)

can be used to show that the stochastic force F (t) satisfies the fluctuation-dissipation

theorem

〈F (t)〉 = 0

〈F (t)F (t′)〉 = kTΓ[r(t), r(t′), |t− t′|].
(3.18)

When the memory function decays to zero on a time scale that is fast compared

to the time scale for center of mass motion of the dimer, the Markov approximation

(MA) for the memory function can be used. In this approximation, φ′[r(t′)] may be

replaced with φ′[r(t)], and the integral term in the generalized Langevin equation

becomes∫ t

0

dt′Γvib[r, t− t′]ṙ(t′) ≈
(∫ ∞

0

dt′Γvib[r, t
′]
)
ṙ(t) = γss

(
1

μω2

dφ

dr

)2

−2γrs
1

μω2

dφ

dr
.

(3.19)

The Langevin equation in the MA therefore reads

Mr̈ = −dU

dr
− γeffṙ + F (t), (3.20)
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where the effective friction coefficient is γeff = γrr + γvib, with

γvib = γss

(
1

μω2

dφ

dr

)2

− 2γrs
1

μω2

dφ

dr
, (3.21)

and the stochastic force satisfies

〈F (t)〉 = 0

〈F (t)F (t′)〉 = 2kTγeffδ(t− t′).
(3.22)

We now generalize the above approach to a large molecule of many atoms. For a

molecule described by the center of mass coordinate 	r and normal mode vibrational

coordinates si, the potential is expanded as in Eq. (3.6),

V (	r, si) = V0(	r) +
∑
i

(
φi(	r)si +

1

2
ω2
i s

2
i

)
, (3.23)

with φi =
∂V
∂si

|�s=0. Here ωi are the normal mode vibration frequencies, calculated with

the center of mass held fixed at some reference value. In analogy to Eqs. (3.3), the

equations of motion for the molecule become

M	̈r = −∇�rV0 − γrr · 	̇r −
∑
i

(	γriṡi +∇�rφi(	r)si) + 	fr(t) (3.24)

s̈i +
∑
j

γij ṡj + ω2
i si = −φi(	r)− 	γri · 	̇r + fi(t) (3.25)

For the case where the off-diagonal damping coefficients γij vanish for i 
= j, the equa-

tions of motion for the normal modes decouple and the derivation proceeds exactly

as above. The resulting GLE is

M	̈r = −∇�rU −
∫ t

0

dt′Γ[	r(t), 	r(t′), t− t′] · 	̇r(t′) + 	F (t), (3.26)

where the effective potential and memory function are simply a sum over terms of

the form in Eqs. (3.12) and (3.13), one for each normal mode, i.e. U(r) = V0(r) −∑
i φi(r)

2/2ω2
i , and

Γvib[	r(t), 	r(t
′), t− t′] =

∑
i

(
∇�rφi[	r(t)]∇�rφi[	r(t

′)]ai(t− t′)+

(∇�rφi[	r(t)]	γri + 	γri∇�rφi[	r(t
′)]
)
a′i(t− t′) + 	γri	γria

′′
i (t− t′)

) (3.27)
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with a stochastic force 	F (t) that has the required statistical properties shown in

Eqs. (3.18). In the MA, the effective friction becomes

γeff = γrr +
∑
i

(
γii

∇φi

ω2
i

∇φi

ω2
i

− 	γri
∇φi

ω2
i

− ∇φi

ω2
i

	γri

)
. (3.28)

For general damping, the off-diagonal damping coefficients γij couple the normal

modes together and the derivation of the GLE is more complicated. We carry out

this derivation in Appendix B, and show that in the MA the effective friction has a

similar form,

γeff = γrr +
∑
i,j

γij
∇φi

ω2
i

∇φj

ω2
j

−
∑
i

(
	γri

∇φi

ω2
i

+
∇φi

ω2
i

	γri

)
. (3.29)

To calculate properties of a system described by a Langevin equation, one can

make use of the corresponding Fokker-Planck equation (FPE) for the probability

density ρ(	x,	v, t), as discussed in Chapter 2. The FPE corresponding to Eqs. (3.1) is

∂ρ

∂t
= −	v · ∇�xρ− 	F ·M−1 · ∇�vρ+∇�v ·M−1 · γ · (	v + kTM−1 · ∇�v

)
ρ, (3.30)

where ∇�x and ∇�v are gradients with respect to the positions x1 and x2 of the atoms,

and their velocities v1 and v2. 	F = −∇�xV is the force and M and γ are matrices

of the masses and friction coefficients. The FPE (3.30) is mathematically equivalent

to the Langevin equations (3.1) and sometimes provides a more convenient way to

calculate properties of the system. This is especially true when considering the dif-

fusion coefficient at low temperatures, where the molecule will oscillate around the

minimum of the potential for a long time before escaping to a neighboring well. The

Langevin equations (3.1) must then be integrated for a prohibitively large number of

time steps to describe diffusion.

In the HA, the generalized Langevin equation (3.11) does not correspond to an

FPE of the type (3.30), and one must use the FPE corresponding to the coupled

equations of motion (3.7),(3.8). The HA therefore does not provide any reduction

in computational complexity compared to the exact solution when solving the FPE.

On the other hand, in the MA, the Langevin equation (3.20) corresponds to an FPE

of the type (3.30) with the vibrational coordinates eliminated. The MA therefore

greatly simplifies the calculation for large molecules.
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The generalized Langevin equations (3.11),(3.26) along with the expressions for

the memory function shown in Eqs. (3.13),(3.27) represent the central result of this

chapter. In the next section, we will test the accuracy of this approach by comparing

the numerical solution of Eq. (3.11) to that of the full equations of motion, Eqs. (3.1).

We will also check the accuracy of the MA, Eq. (3.20), to determine the importance

of memory effects.

3.2 Results

We now apply the model outlined above to study the diffusion of a dimer consisting

of two identical atoms bound by a harmonic force of frequency ω. For the potential

we take a cosine with a barrier of height Vb. We then have the following parameters

for Eqs. (3.1)

m1 = m2 = m,

γ11 = γ22 = γ, γ12 = γ21 = 0,

V (x1, x2) =
1
2
Vb cos(2πx1/a) +

1
2
Vb cos(2πx2/a) +

1
2
μω2(|x1 − x2| − �)2,

(3.31)

which gives

M = 2m, μ = m/2

γrr = 2γ, γss = γ/2 γrs = γsr = 0

V0(r) = Vb cos(π�/a) cos(2πr/a), φ(r) = −π/aVb sin(π�/a) cos(2πr/a).

(3.32)

To assess the accuracy of the stochastic treatment of the internal molecular vi-

brations derived in section 3.1, we will now compare three different solutions:

1. Eqs. (3.3), the two-dimensional equations of motion for the dimer.

2. Eq. (3.11), the one-dimensional generalized Langevin equation, with non-Markovian

friction term arising from the influence of the vibrational motion of the dimer.

3. Eq. (3.20), the Markovian approximation to Eq. (3.11).

To compare the three solutions, we calculate the center of mass diffusion coeffi-

cient, defined as

D = lim
t→∞

〈(r(t)− r(0))2〉
2t

, (3.33)
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by making use of the appropriate FPE for each of the three cases. We solve the FPE

by the matrix continued fraction method [24], and obtain D by making use of its

relationship to the velocity autocorrelation function

D =

∫ ∞

0

dt 〈ṙ(t)ṙ(0)〉 . (3.34)

In the calculations that follow, we scale all lengths by a
2π
, masses by m and times

by a
2π

√
m
Vb
. The results are presented in the following scaled variables

�̄ =
2π

a
�, ω̄ =

a

2π

√
m

Vb

ω, γ̄ =
a

2π

1√
mVb

γ, D̄ =
2π

a

√
m

Vb

D, V̄ =
V

Vb

(3.35)

3.2.1 Harmonic Approximation

Figs. 3.1, 3.2, and 3.3 show the diffusion coefficient calculated in the low, moderate

and high friction regimes for different values of the equilibrium dimer length �̄. It

can been seen from the three figures that both the HA and MA approach the exact

calculation as the dimer vibration frequency ω̄ is increased. This is expected, since

when the internal force in the dimer is strong compared to the interaction with the

surface, the dimer will be held close to its equilibrium length, and the anharmonic

contributions to the restoring force (due to the cosine term in the potential V (r, s))

will not be important. In this stiff dimer limit, the vibrational motion will also occur

on a time scale much faster than the center of mass motion, so motion in the two

coordinates should be mostly decoupled. In particular, the HA is expected to be

accurate when ω̄ is large compared to the characteristic vibration frequency of the

interaction potential, defined by

ω̄2
0 = 2

∂2V̄

∂s̄2

∣∣∣∣
s̄=0

= −1

2
cos(r̄) cos(�̄/2). (3.36)

The frequency ω̄0 is largest for a dimer that is commensurate with the lattice spacing

of the surface, �̄ = 2π, where it has a maximum value of ω̄0 = 1/
√
2, and smallest

for an incommensurate dimer, �̄ = π where it goes to zero. Physically, this occurs

because for a commensurate dimer the forces on the two atoms are equal, while for an

incommensurate dimer, the forces point in opposite directions and therefore cancel

each other and give no center of mass force. The HA should therefore be expected

to be accurate to lower dimer frequency ω̄ for an incommensurate dimer. This can
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be seen in Fig. 3.1 for the incommensurate dimer, where the diffusion coefficient

in the HA has the correct qualitative trend at low ω̄, while in Fig. 3.2 with the

intermediate dimer length �̄ = 1.6π, the HA gives the wrong trend at low ω̄. For

the exactly commensurate dimer shown in Fig. 3.3, the function φ(r) goes to zero,

and the motion in the r and s coordinates is completely uncoupled in the HA. The

diffusion coefficient is therefore independent of the frequency ω̄.

1 2 3 4
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¯ D

1 2 3 4

0.2

0.3

0.4
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¯ D

1 2 3 4

ω̄

0.04
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0.10

¯ D

Exact

HA

MA

Figure 3.1: Comparison of the exact diffusion coefficient to the HA and MA as a
function of dimer vibration frequency ω̄ for an incommensurate dimer (�̄ = π) at
temperature kT/Vb = 1.0. The three panels, from top to bottom, are for low friction
(γ̄ = 0.2), moderate friction (γ̄ = 1.0), and high friction (γ̄ = 5.0).

At the low temperatures that are experimentally relevant for surface diffusion, the

diffusion coefficient has the Arrhenius form,

D = D0e
−ΔE/kT , (3.37)

where ΔE is the potential energy barrier over which the molecule must escape, andD0
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Figure 3.2: Same as Fig. 3.1, but for a dimer of intermediate length (�̄ = 1.6π).

is a prefactor that is independent of temperature. When comparing the diffusion of

the dimer to that of a monomer, both the energy barrier and prefactor can be affected.

For example, the energy barrier for a commensurate dimer will be approximately twice

that for a monomer, while the barrier for an incommensurate dimer can be smaller

than the monomer barrier. The prefactor for the dimer will depend on the detail

of the dynamics of the molecular vibrations. In order to separate these effects, we

will calculate the prefactor and barrier, comparing the exact solution to the HA and

MA. First, though, we consider the accuracy of the MA compared to the HA in order

to gauge the importance of the memory effects in the generalized Langevin equation

(3.11).
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Figure 3.3: Same as Fig. 3.1, but for a commensurate dimer length �̄ = 2π. In all
three panels, the MA and HA curves are indistinguishable.

3.2.2 Markov Approximation

From Figs. 3.1, 3.2, and 3.3 it can be seen that the MA provides a reasonable approxi-

mation to the solution of the generalized Langevin equation (3.11) for all cases tested.

The accuracy is best when both the friction γ̄ and frequency ω̄ become large. This

can be understood by looking at the expression (3.13) for the memory function that

appears in the generalized Langevin equation. In the high frequency limit ω̄ → ∞ the

vibrational part of the memory function Γvib becomes negligible, since the functions

a(t) and ȧ(t) are inversely proportional to ω̄, and ä(t) becomes proportional to 1/ω

upon integration. In this limit, the vibrational motion of the molecule has no effect

on the center of mass motion, and the molecule can simply be treated as a rigid body.

When γ̄ (and therefore η̄) becomes large, the exponential term in a(t) quickly de-

cays to zero (see Eq. (3.15)), and the MA is accurate. However, when γ̄ becomes large

compared to ω̄ (i.e. the overdamped case), the effective frequency Ω̄ =
√
(η̄/2)2 − ω̄2
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Figure 3.4: Relative error in the MA (compared to the HA), for a dimer of length
�̄ = 1.6π at temperature kT/Vb=1.0.

becomes imaginary. In this case, the sin and cos terms in a(t) are replaced by hy-

perbolic functions and Ω̄ is replaced by Ω̄′ =
√

(η̄/2)2 − ω̄2. The memory function

will then contain a slowly decaying term proportional to e−((η̄/2)
2−Ω̄′2)t ≈ e−ω̄

2/η̄t. We

therefore expect the MA to be accurate in the regime

ω̄0 � γ̄ � ω̄. (3.38)

This trend can be seen in Fig. 3.4, where the relative error in the MA is shown (note

the cusp seen in each plot where the error in the MA goes to zero as it changes sign).

The worst error in the MA seen in Figs. 3.1 and 3.2 is in the low friction regime, for

small vibration frequency. In this regime, the MA seems to consistently overestimate

the diffusion coefficient. The diffusion coefficient is also slightly underestimated in

the high friction regime at low frequency. This can be understood qualitatively in the

following way. The Grote-Hynes formula gives an approximation to the escape rate

over a potential barrier in a system described by a generalized Langevin equation

of the type (3.11) [27]. The escape rate depends on the Laplace transform of the

memory function Γ̂(z) at a frequency of the order of the vibration frequency ω̄0 in

the barrier region, determined by solving the equation z2 + zΓ̂(z) = ω̄2
0. In contrast,
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Figure 3.5: Ratio of the Laplace transform of the memory function, as shown in
Eq. (3.39), to its zero-frequency value for ω̄ = 1.0.

the MA uses the zero-frequency (time integrated) value Γ̂(0).

The Laplace transform of the memory function (3.13) can be calculated approxi-

mately by holding the coordinate r constant,

Γ̂vib(z) =

∫ ∞

0

dte−ztΓvib(r, t)

=
1

(z + η/2)2 + Ω2

×
(
φ′(r)2

μω2
(z + η)− 2

γrs
η

φ′(r)
μΩ

− γ2
rs

μ
z

)
(3.39)

The Laplace transform evaluated at ω̄ = 1 is plotted in Fig. 3.5 for the same values of

the friction used in Figs. 3.1, 3.2, and 3.3. It is clear that at small γ̄, Γ̂vib(z) quickly

increases from its z = 0 value, resulting in an underestimation of the effective friction

in the MA and therefore an overestimation of the diffusion coefficient. On the other

hand, at large γ̄, Γ̂vib(z) decreases from its z = 0 value, resulting in an overestimation

of the effective friction and an underestimation of the diffusion coefficient. For a

given ω̄, the MA will be most accurate when the friction γ̄ is close to ω̄, i.e. when the

vibrations are close to being critically damped. When the vibrations are underdamped

or overdamped, the MA will overestimate or underestimate the diffusion coefficient,
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respectively. Note, however, that for vibration frequencies ω̄ � 1, the error in D̄ is

at worst around 10%. It therefore seems that the friction coefficient γ̄ would need to

be either very large or very small for the error in the MA to be significant, so long as

the molecular vibrations occur on a time scale approximately the same as, or faster

than the center of mass motion.

3.2.3 Energy Barrier and Prefactor

An example of an Arrhenius plot is shown in Fig. 3.6. It can be seen that at low

temperatures, the plot approaches the straight line expected for the Arrhenius form

shown in Eq. (3.37). The energy barrier and prefactor are calculated by differentiation

of ln(D̄) with respect to the (scaled) inverse temperature β = Vb/kT , and thus become

temperature dependent, i.e.

ΔĒ(T ) = −dln(D̄)

dβ
, D̄0(T ) = D̄eβΔĒ. (3.40)

In the regime ΔĒ � 1/β where thermally activated diffusion is observed, the pref-

actor and barrier should approach constant values. Fig. 3.7 shows the differential

prefactor and barrier for the system shown in Fig. 3.6. It can be seen that the

prefactor and barrier both approach their constant low temperature limit at around

Vb/kT � 10. Note also the pronounced compensation effect seen in many ther-

mally activated processes [32]. It is this low-temperature limit that we are inter-

ested in, as surface diffusion experiments typically have energy barriers in the range

Vb/kT = 20 ∼ 30 [5,6,33]. We now consider in detail the energy barrier and prefactor

for the cases of a dimer whose length is incommensurate with the lattice constant of

the surface, and one whose length is commensurate.

Incommensurate Dimer

Fig. 3.8 shows the energy barrier and prefactor for the incommensurate dimer with

�̄ = π. Both the HA and MA provide a good approximation to the prefactor and

barrier down to frequencies of ω ≈ 1. Interestingly, the HA gives an accurate calcu-

lation of the prefactor even down to low frequencies of ω ≈ 0.2, where it would not

necessarily be expected to be accurate. At very low frequencies, there is a turnover

and subsequent decrease of the prefactor in the MA calculation.
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Figure 3.6: Arrhenius plot for the MA solution with ω̄ = 2.0, �̄ = π, γ̄ = 1.0. The
dashed line shows the Arrhenius fit D̄ = D̄0e

−βΔĒ in the low temperature limit, with
ΔĒ = 0.70 and D̄0 = 0.82.

Figure 3.7: Differential prefactor and barrier calculated from the data shown in
Fig. 3.6.
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Figure 3.8: Energy barrier and prefactor for an incommensurate dimer (�̄ = π) as
a function of dimer vibration frequency ω̄, for a friction coefficient of γ̄ = 1.0 and
temperature Vb/kT = 9.0. In the upper panel, the HA and MA curves lie on top of
one another.

To understand the behavior of the HA and MA calculations of the prefactor,

consider the expression for the effective friction, Eq. (3.21). The additional friction

term due to the internal vibrations depends on the function φ(r), defined through the

expansion of the potential,

V (r, s) = V0(r) + φ(r)s+
1

2
μω2s2 = U(r) +

1

2
μω2

(
s+

φ(r)

μω2

)2

. (3.41)

In the present calculation with γrs = 0, the effective friction can therefore be written

as

γ = γrr + γss

(
ds0
dr

)2

, (3.42)

where s0(r) = −φ(r)/(μω2) is the value of the internal coordinate s along the mini-

mum energy path. The effect of the internal vibrations of the dimer on the center of

mass motion is to increase the friction, and Eq. (3.42) makes it clear that the increase
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in the friction is due to the dimer following a curved path through the coordinate

space as it crosses the energy barrier.

Intuitively it makes sense that a curved path would lead to a higher effective

friction for motion in the center of mass coordinate. As the dimer approaches the

transition state, energy will be dissipated as it moves in the center of mass coordinate,

due to the friction force. If it must also move in the relative coordinate there will

be additional energy dissipated since there is also friction in this coordinate, so that

the amount of energy dissipated for a given amount of motion in the center of mass

coordinate is higher, resulting in a higher effective friction coefficient. Stated more

simply, the effective distance the dimer needs to travel to cross the barrier is longer

for a curved path, and so more energy will be dissipated along the path, which is

equivalent to a higher friction coefficient.

Fig. 3.8 also shows, for comparison, the diffusion prefactor calculated without

the additional friction term shown in (3.42). In this stiff dimer approximation, the

effects of the vibrations on the center of mass motion are ignored, and the dimer is

treated as a rigid body. It can be seen that the effect of the higher friction is to lower

the prefactor, as expected (the barrier is unaffected). This lowering of the diffusion

coefficient for systems that follow curved paths has been observed before [34], where it

was attributed to the suppression of long jumps at low friction. Here the suppression

of long jumps, and subsequent lowering of the diffusion prefactor, is described in a

straightforward way by an increase in the effective friction coefficient according to the

simple formula (3.42). In this case the lowering of the diffusion prefactor also occurs

in the moderate and high friction regimes, where long jumps do not occur. We also

note that the term proportional to γrs in Eq. (3.21) can be negative, which can result

in a lower effective friction for systems with off-diagonal friction components.

As seen in Fig. 3.8, in the regime where the MA is accurate, the correction to

the prefactor provided by the additional friction term is relatively modest, becoming

large only in the small ω̄ region, where the MA begins to diverge from the exact

solution. The reason for this deviation as small ω̄ can be seen in Eq. (3.42). The

additional friction term becomes significant only when the minimum energy path has

a reasonably large curvature (i.e. the dimer length changes significantly as it moves

across the surface). However, the harmonic approximation for the potential energy
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requires that the dimer only make small deviations from its equilibrium length.

A more significant correction to the prefactor would be seen for a molecule with

several vibrational modes. For a molecule with N vibrational modes, the effective

friction is given by Eq. (3.28). Assuming, for simplicity, that ωi, γii and φi are the

same for all modes, the effective friction for a molecule diffusing in one dimension

becomes

γeff = γrr +Nγss

(
dso
dr

)2

. (3.43)

The more vibrational modes the molecule has, the higher the effective friction, and

the greater the effect on the prefactor.

To show the effect of this increase in effective friction we calculate the prefactor

with an increasing number of modes, while keeping the effective potential U(r) the

same. In Fig. 3.9 we show the ratio of the prefactor calculated for N vibrational

modes, D̄
(N)
0 to the prefactor calculated in the stiff dimer approximation, D̄

(0)
0 . It can

be seen that the lowering of the prefactor due to the higher effective friction becomes

more significant as the number of vibrational modes increases. For example, with

10 vibrational modes, there is an order of magnitude change in the prefactor when

ω̄ ≈ 0.65.

The effective friction term in Eq. (3.42) could also provide a significant correction

to the prefactor in any system that follows a significantly curved path as diffusion

proceeds. Some examples are diffusion of an atom on the bcc(110) surface studied

in Ref. [34], or a molecule that rotates as it diffuses, as seen for dithioanthrancene

adsorbed on a copper surface [5].

Commensurate Dimer

Fig. 3.10 shows the energy barrier and prefactor for a commensurate dimer with

�̄ = ā = 2π. The most distinctive feature in the graph of the prefactor is the peak

that occurs around ω̄ = 0.7, which both the HA and MA fail to reproduce. This

peak is related to a flattening of the potential energy surface in the direction of the

s-coordinate around the transition state as the frequency ω̄ decreases. To see this,

consider the potential energy, given by

V̄ (r̄, s̄) = cos(r̄) cos(s̄/2) +
1

4
ω̄2s̄2. (3.44)
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Figure 3.9: Ratio of prefactor calculated for N vibrational modes, D̄
(N)
0 , to prefactor

calculated in the stiff dimer approximation, D̄
(0)
0 , for a friction coefficient of γ̄ = 1.0

and temperature Vb/kT = 9.0.

At large ω̄, the transition state occurs at r̄ = 0, s̄ = 0, and the frequency in the s̄

coordinate is

ω̄2
t = 2

∂2V̄

∂s̄2
= ω̄2 − 1

2
. (3.45)

When ω̄2 → 1/2, the frequency goes to zero and then becomes imaginary, as the

transition state at r̄ = 0, s̄ = 0 becomes a local maximum. When ω̄2 ≈ 1/2, the

potential surface around the transition state is then very flat in the s-direction, which

makes it easier for the dimer to cross the barrier, and therefore raises the prefactor.

In the transition state theory (TST) this is seen as an entropy effect. The escape rate

in TST is given by

νTST =
kT

h

Z
(b)
vib

Z
(m)
vib

e−ΔV/kT =
kT

h
eΔS/ke−ΔV/kT , (3.46)

where ΔS is the change in entropy between the minimum and transition state. In

the harmonic approximation, this becomes for a dimer

νTST =
ω
(1)
m ω

(2)
m

2πωt

e−ΔV/kT , (3.47)
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Figure 3.10: Energy barrier and prefactor for a commensurate dimer (�̄ = 2π) as
a function of dimer vibration frequency ω̄, for a friction coefficient of γ̄ = 1.0 and
temperature Vb/kT = 9.0. In the upper panel the HA and MA curves lie on top of
one another, as do the Exact and MA with Va curves. In the lower panel the HA and
MA curves lie on top of one another.

where ω
(1)
m , ω

(2)
m are the normal mode frequencies at the minimum and ωt is the non-

imaginary frequency at the transition state. It can be seen that when the frequency

at the barrier, ωt becomes small, the entropy factor becomes large. This explains the

peak in the prefactor around ω̄ = 1. The HA and MA both make the assumption that

the frequency in the s-coordinate stays constant at ω̄ at all points on the potential

surface, and so they cannot capture this entropy effect.

We can take the change in curvature into account in the MA by replacing the

effective potential U(r) by the adiabatic potential Va(r), defined (in scaled units) by

exp(−βV̄a(r̄)) =

∫
ds̄ exp(−βV̄ (r̄, s̄)). (3.48)

Note that the effective potential U(r), given in Eq. (3.12), is simply the adiabatic po-

tential evaluated in the harmonic approximation with constant frequency ω̄, Eq. (3.6).
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We can instead evaluate Va(r) using the full potential V (r, s), which will take into

account the change in entropy between the minimum and transition state.

The prefactor and barrier resulting from the MA using Va(r) calculated in this

way are shown in Fig. 3.10. It is seen that calculation of the prefactor is much more

accurate using this approach, and the peak around ω̄ = 1.2 is reproduced. The barrier

is also quite accurate (it is indistinguishable from the exact calculation in Fig. 3.10).

For a dimer with a vibration frequency ω̄ ≈ 1/
√
2, the diffusion prefactor for the

dimer can increase above the value for the monomer of D̄
(M)
0 ≈ 2.1 (which can be

found by repeating the Arrhenius analysis for a single atom adsorbed in the cosine

potential). This effect was observed experimentally for the diffusion of porphyrin

monomers and dimers on a copper surface [6]. The present analysis shows that

this enhancement of the prefactor for dimers can be understood as the result of

an entropy difference between the minimum and transition state that occurs when

there is a particular matching between the strength of the forces holding the dimer

together and the forces between the dimer and the surface. When the frequency

is large, ω̄ � 1/
√
2, the dimer makes jumps from site to site as a unit, while for

small frequencies ω̄ � 1/
√
2, the diffusion proceeds by one atom jumping to the

neighboring site first, followed by the other. When the forces are matched such that

both types of diffusion are equally likely to occur, there is a large entropy difference

and resultant increase of the diffusion prefactor. The fact that the increase in the

prefactor seen here is much smaller than the two orders of magnitude seen in Ref. [6]

can be rationalized by the fact that the simple model system studied here only has

one vibrational degree of freedom, whereas the porphyrin monomers and dimers have

many. The combined effect of changes in all of the vibration frequencies near the

barrier will increase the entropy difference.

The effects of such entropy barriers have been seen before, e.g. in stochastic models

for diffusion [35], as well as a reaction rate model where the width of a bottleneck

region fluctuates according to a Langevin equation [36].

Intermediate Dimer Length

For a dimer of intermediate length, both the effects of the entropy difference and the

higher effective friction due to a curved diffusion path can be seen. Fig. 3.11 shows
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the prefactor for a dimer of length �̄ = 1.6π. Note that the decrease of the prefactor

at low ω̄, due to the increasingly curved diffusion path, is properly described by the

HA and MA, but they again fail to reproduce the increase in the prefactor resulting

from the entropy difference.
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Figure 3.11: Prefactor for a dimer of intermediate length (�̄ = 1.6π) as a function
of dimer vibration frequency ω̄,for a friction coefficient of γ̄ = 1.0 and temperature
Vb/kT = 9.0.

Fig. 3.11 also shows the prefactor calculated using the adiabatic potential, Eq. (3.48),

and again it is seen that the increase in the prefactor due to the entropy difference is

accurately reproduced. To show the influence of the effective friction term at small ω̄,

the prefactor calculated in the stiff dimer approximation using the adiabatic potential

is also shown. It can be seen that while the MA remains accurate even at small ω̄,

the stiff dimer approximation diverges from the exact calculation. This demonstrates

that by combining the formula (3.42) for the effective friction coefficient with an ac-

curate calculation of the adiabatic potential, our stochastic model can account for

both entropy effects and the effect of the curvature of the diffusion path.
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3.3 Conclusions

We can summarize the differences between the diffusion of a monomer and a dimer

as being of three types:

1. The energy barrier for the dimer will be different from that of the monomer,

and will depend mainly on the mismatch between the dimer length and the

lattice constant of the surface. A dimer with a length that is commensurate

with the surface will have a larger energy barrier than a monomer, and an

incommensurate dimer will have a smaller barrier.

2. The diffusion prefactor for the dimer can be affected by the presence of an en-

tropy difference between the minimum and transition state. This occurs when

the potential becomes flatter or more steep at the transition state in the vibra-

tional coordinate.

3. The diffusion prefactor can also be affected when the lowest energy path across

the potential surface is significantly curved. In the system studied here, this

has the effect of lowering the prefactor for incommensurate dimers. In general,

when the direction of easy crossing at the transition state does not lie on a

straight line between the minima the prefactor will be affected.

Effective 1D models for dimer diffusion have been described before [37, 38], and

these models can capture the effects 1 and 2. The advantage of the present approach

is that it can also account for 3, the lowering of the prefactor due to a curved diffusion

path. In the MA, the effect on the prefactor is captured in an effective friction term

that is given by the simple formula (3.42) involving the slope of the lowest energy

path across the potential surface.

The above results show that the approach outlined in Section 3.1 is applicable

as long as the molecular vibration frequencies are approximately the same order of

magnitude or larger than the vibration frequencies associated with the molecule-

surface interaction. This is typically true for, e.g., organic molecules adsorbed on

metal surfaces, where the molecule-surface interactions are weak compared to the

intramolecular forces.
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It was also seen that when this requirement is satisfied, the system is usually well

described by the Markov approximation. When there is a large mismatch between

the friction and the vibration frequencies (i.e. the molecular vibrations are either

strongly overdamped or underdamped), the non-Markovian nature of the memory

function can become important.

Although we have here studied dimer diffusion, the same approach can be applied

to any system that undergoes diffusive motion in one or more coordinates and vibra-

tional motion in other coordinates. In the remainder of this thesis we will apply this

model to the diffusion of dithioanthrancene on the Cu(111) surface, a system which

shows unidirectional diffusion and is therefore amenable to the approach used in this

chapter.



Chapter 4

Density Functional Theory Calculations

In order to apply the stochastic model of surface diffusion outlined in the previous

chapters to physical systems of interest, it is necessary to calculate the energetics

of the systems. To this end, we perform ab initio calculations of the energy and

vibration frequencies for 9,10-dithioanthracene (DTA) adsorbed on a Cu(111) surface.

The surface diffusion of organic molecules adsorbed on metal substrates, such as DTA

on Cu(111) can be observed by scanning tunnelling microscopy (STM) [5]. After the

molecules are deposited on the metal surface, a series of STM images with molecular

resolution can be used to observe the formation of supra-molecular structures, as well

as follow the diffusion of individual molecules at low coverage. An example of such

STM images for DTA on Cu(111) is shown in Fig. 4.1

DTA undergoes unidirectional surface diffusion on the Cu(111) surface, and is

therefore amenable to the one dimensional diffusion model studied in the previous

chapter. Interestingly, the direction of fast diffusion for DTA on Cu(111) is deter-

mined by the details of the molecule-surface interaction, rather than asymmetry of

the surface (e.g. diffusion along a step edge). The DTA molecules can diffuse along

any of the three equivalent close-packed directions on the Cu(111) surface, depend-

ing on which orientation they land on the surface with. The quasi-one dimensional

diffusion, and availability of experimental measurements of the energy barrier and

diffusion coefficient make DTA an ideal test case for our stochastic model of surface

diffusion.

In this chapter, we will outline the model used for the ab inito calculations, and

detail the results for DTA on Cu(111).

4.1 Model

To calculate energies and forces for use in a classical model of adatom dynamics, the

quantum mechanical system is treated in the Born-Oppenheimer approximation. In

52
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Figure 4.1: STM images for DTA on Cu(111), taken from Ref. [5]. Images A and
C show two DTA molecules before and after a jump at high resolution (48 × 48Å
area). The direction of the jumps, as well as the underlying Cu rows (not visible at
this resolution) are indicated in image A. Image B is the difference between A and
C, showing that the two molecules have jumped in opposite directions. Image D is a
lower resolution image (23 × 23nm area), showing the formation of ordered rows of
DTA.

this approximation, the nuclei of the atoms are treated as classical charged particles,

defining an external potential for the electrons in the system. The Schroedinger

equation for the electrons in this potential can then be solved to give an energy that

depends on the positions 	Ri of the nuclei, thus defining a potential energy for the

classical motion of the nuclei.

4.1.1 Born-Oppenheimer Approximation

Denoting the set of nuclear coordinates 	Ri by 	R, and the electronic coordinates 	ri by

	r, the Schroedinger equation for the system reads

Hψ(	R,	r) = Eψ(	R,	r). (4.1)

The Hamiltonian H is given by

H = −
∑
i

�
2

2Mi

∇2
Ri

−
∑
i

�
2

2me

∇2
ri
+
∑
i<j

ZiZje
2

4πε0|	Ri − 	Rj|
+
∑
i<j

e2

4πε0|	ri − 	rj|

−
∑
i,j

Zie
2

4πε0|	Ri − 	rj|
= Tnucl + Telec + V (	R,	r), (4.2)

where Mi and me are the masses of the nuclei and electrons, Zi are the atomic

numbers of the nuclei, and e is the electronic charge. The Hamiltonian consists of
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the nuclear kinetic energy Tnucl, the electronic kinetic energy Telec, and the potential

energy V (	R,	r). The potential energy V (	R,	r) = Ve-e(	r) + Ve-n(	R,	r) + Vn-n(	R) is

the sum of electron-electron repulsion, electron-nuclei attraction, and nuclei-nuclei

repulsion terms.

Consider now the eigenstates of the Hamiltonian H ′ = Telec + V (	R,	r),

H ′φn(	R;	r) = E ′n(	R)φn(	R;	r). (4.3)

This can be thought of as the Schroedinger equation for the electrons at fixed nuclear

coordinates 	R. Due to the dependence of the potential energy on the nuclear coordi-

nates, the eigenfunctions φn and eigenvalues En will also depend on 	R in a parametric

way. The full wave function ψ can then be expanded in terms of the φn’s,

ψ =
∑
n

an(	R)φn(	R;	r), (4.4)

giving rise to the following coupled equations for the an(	r) functions

∑
n

T
(mn)
nucl an + E ′mam = Eam, (4.5)

where the T
(mn)
nucl are matrix elements of the nuclear kinetic energy operator, averaged

over the electronic coordinates 	r only,

T
(mn)
nucl =

∫
d	rφm(	R,	r)Tnuclφn(	R,	r). (4.6)

In the Born-Oppenheimer approximation, the off-diagonal elements of T
(mn)
nucl are

neglected, so that that the equations for the an’s decouple. In the adiabatic approx-

imation, it is further assumed that the electrons occupy the instantaneous ground

state for a fixed nuclear configuration, so that only the ground state electronic wave

function φ0(	R,	r) is considered. The Schroedinger equation then becomes

Tnucla0 + E ′0a0 = Ea0. (4.7)

In a classical model, this Schroedinger equation is replaced with the classical equations

of motion for the nuclei in the potential E ′0(	R),

Mi
	̈Ri = −∇iE

′
0(	R) (4.8)
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The force on the ith nucleus can be calculated by the Hellman-Feynman theorem

	Fi = −∇�Ri
E ′0(	R) = −φ0∇�Ri

H ′φ0. (4.9)

The potential energy surface E ′0(	R) for the motion of the adsorbed molecule can

therefore be obtained by calculating the electronic ground state for different config-

urations of the molecule along its diffusion path on the surface. From the potential

energy surface, all properties of the system, including the friction and diffusion coeffi-

cients can be calculated. To calculate the electronic ground state, we employ density

functional theory.

4.1.2 Kohn-Sham Density Functional Theory

To obtain the ground state energy of a system of N electrons, the Schroedinger

equation must be solved for the N -electron wave function ψ(	r1, 	r2, . . . ). For systems

of more than a few electrons, this is not feasible. For example, for a system of 100

electrons (still a relatively small system), calculating the wave function on a very

course 10x10x10 spatial grid would require storing 1000100 = 10300 elements.

The problem of calculating the N -electron wave function is avoided in density

functional theory (DFT) by making use of the Hohenburg-Kohn theorems [39], which

allow one to calculate the ground state energy of an N -electron system from the

one-electron density n(	r) = N
∫
d	r2d	r3 . . . |ψ(	r, 	r2, 	r3, . . . )|2. As mentioned in the

previous section, the Hamiltonian for an N -electron system can be written as H =

T + Ve-e + Vext, where T is the kinetic energy, Vee is the electron-electron interaction

energy, and Vext = Ve-n+Vn-n is the external potential due to the interaction with the

nuclei. The Hohenburg-Kohn theorems then state

1. There is a one-to-one correspondence between the external potential Vext and

the ground state density n0(	r). This implies that the external potential, and

therefore all properties of the system are uniquely determined by the density.

In particular, the energy can be written as a functional of the density, E =

E[n(	r)] = T [n(	r)] + Ve-e[n(	r)] +
∫
d	rn(	r)Vext(	r).

2. The density n(	r) that minimizes the energy functional E[n(	r)] is the exact

ground state density, and the energy obtained is the exact ground state energy.

This allows for a variational calculation of the ground state energy.
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The first part of the energy functional F [n(	r)] = T [n(	r)] + Ve-e[n(	r)] is universal

in that it does not depend on the external potential, and is the same for any N -

electron system. Unfortunately, the Hohenburg-Kohn theorems do not provide any

means to determine the form of the energy functional, and there is no known scheme to

systematically improve an approximation to F [n(	r)], or to even estimate the accuracy

of a particular approximation a priori. There are, however, many approximations for

the energy functional that have been shown to give good accuracy on a wide range of

molecular and solid state systems. Issues related to the approximation of the energy

functional for molecules adsorbed on surfaces will be discussed in more detail below.

Once a particular form has been chosen for the energy functional F [n(	r)], the

ground state energy and density are found by minimizing the energy with respect to

variations of the density. The most popular scheme for carrying out this variational

calculation is the Kohn-Sham method [40].

In the Kohn-Sham formulation, the energy functional is re-written in the following

way

F [n] = T [n] + Ve-e[n] = T0[n] + EH [n] + Exc[n], (4.10)

where T0[n] is the kinetic energy of a non-interacting N -electron system, the Hartree

energy EH [n] is the classical electrostatic energy of a charge distribution n(	r), and

the remaining term Exc[n] is called the exchange-correlation energy. The density is

written in terms of single-particle orbitals φi(	r) as n(	r) =
∑

i|φi(	r)|2. The kinetic

energy T0 is then

T0[n] = −
∫

d	r
∑
i

�
2

2m
φi(	r)∇2φi(	r), (4.11)

and the Hartree energy is

EH [n] =
1

2

∫
d	r

∫
d	r′

e2n(	r)n(	r′)
4πε0|	r − 	r′| =

1

2

∫
d	rVH(	r)n(	r), (4.12)

where the Hartree potential VH(	r) has been defined. The exchange-correlation energy,

can be written formally as Exc[n] = T [n]− T0[n] + Ve-e[n]− EH [n].

The orbitals φi are determined by minimizing the energy under the constraint of

normalization,

δ

δφi

[
E[n(	r)]−

∑
i

εi(1−
[
φi, φi

]
)

]
= 0, (4.13)
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leading to the Kohn-Sham equations for the orbitals

− �
2

2m
∇2φi + VKS(	r)φi = εiφi. (4.14)

The Kohn-Sham potential is VKS = Vext + VH + Vxc, where the exchange correlation

potential is

Vxc(	r) =
δExc[n]

δn
. (4.15)

The Kohn-Sham equations have the form of single particle Schroedinger equations

for the orbitals φi, with a potential that however depends on the orbitals themselves,

through the density. These equations can be solved self-consistently to obtain the

density and ground state energy.

The form of the exchange-correlation energy functional Exc[n] is not known, and

it must be approximated. The most widely used approximation is the generalized

gradient approximation (GGA), in which Exc is written in terms of the local value of

the density, as well as its gradient,

EGGA
xc [n] =

∫
d	rvxc(n(	r), |∇n(	r)|)n(	r). (4.16)

The form of the vxc function is generally chosen so that Exc satisfies several known

conditions, such as the sum rule for the exchange-correlation hole, and scaling prop-

erties. The functional of Perdew, Burke, and Ernzerhof (PBE) [41] is a widely used

GGA functional constructed using this approach.

The GGA has been successful in describing many solid state and molecular sys-

tems, however it has some shortcomings. For the description of organic molecules

adsorbed on surfaces, the most important shortcoming is the failure to describe van

der Waals forces. When two atoms or molecules are well separated so that their

electron clouds are non-overlapping, the energy in the GGA falls off exponentially.

Due to dispersion forces between the atoms, the energy should rather fall off as 1/R6,

where R is the distance between the atoms.

This neglect of van der Waals forces causes GGA-type functionals to severely un-

derestimate the binding energy in some systems, such as weakly bound dimers and

layered solids such as graphite [42]. For organic molecules adsorbed on metal surfaces,

van der Waals forces are critical for obtaining accurate adsorption energies. For ben-

zene adsorbed on (111) surfaces of noble metals, the PBE functional underestimates
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the binding energy by about an order of magnitude [43–46]. Similar results for the

adsorption energies are seen for azobenzene adsorbed on metals, with also significant

changes in the adsorption geometry induced by the van der Waals forces [47–49].

Although it is now well understood that van der Waals forces are important for

determining the adsorption energy of organic molecules on surfaces, there has been

little work investigating the effect of these corrections on the energy profiles for migra-

tion of the adsorbed molecules. For DTA adsorbed on Cu(111), the molecule-surface

interaction is the result of a balance between the van der Waals-dominated interac-

tion between the carbon rings and the surface, and the stronger chemisorption-type

S-Cu bonding (which should be well-described by the GGA). An accurate description

of van der Waals forces may therefore be expected to be important in determining

the relative stability of different adsorption geometries, and hence the shape of the

potential energy curve for migration.

There are two basic approaches for including the van der Waals energy in DFT.

In the first approach, pairwise energy terms proportional to 1/R6 are added to the

DFT energy, with the coefficients for each term determined empirically or from more

accurate first principles calculations. In this approach the total energy is therefore

written as

E = EDFT −
∑
ij

Cij

R6
ij

fd(Rij, R
(0)
ij ), (4.17)

where Rij = |	Ri − 	Rj|, and R
(0)
ij is an empirical cutoff radius. The function fd is a

damping function which must be included to eliminate the divergence of the pairwise

terms as the atoms approach each other. The form of this function, as well as the

cutoff radii R
(0)
ij are arbitrary, and must be fit empirically to experimental data or

high accuracy quantum chemical calculations.

In the second approach, a non-local term is added to the exchange-correlation

functional, so that Exc is written as

Exc = E loc
xc + Enl

c , (4.18)

where the local part of the exchange-correlation E loc
xc is treated in the GGA, and the

non-local correlation energy part is written in terms of the density as

Enl
c =

1

2

∫
d	r

∫
d	r′φ(	r, 	r′)n(	r)n(	r′). (4.19)
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The kernel φ(	r, 	r′) is chosen to produce the correct asymptotic behavior for well

separated fragments.

Although the latest semi-empirical, and vdW-functional methods are approaching

quantitative accuracy for some systems, there is still a fairly large spread in the pre-

dicted binding energies and equilibrium geometries in many cases. We will therefore

test and compare several methods for van der Waals corrections in our calculations

for DTA on Cu(111).

4.1.3 Periodic Calculations

Extended systems, such as bulk solids or surfaces, can be represented by employing

periodic boundary conditions. The positions of the nuclei are periodically repeated,

resulting in a periodic external potential for the electrons. The Kohn-Sham orbitals

can then be written according to Bloch’s theorem

φn�k(	r) = ei
�k·�run�k(	r), (4.20)

where the wave vector 	k ranges over the Brillouin zone, and the un�k are periodic

functions. A convenient basis set for the periodic functions is the set of plane waves

ei�gl·r, where 	gl is a reciprocal lattice vector. The orbitals are then written as

φn�k(	r) =
∑
l

cnle
i(�k+�gl)·�r. (4.21)

The size of the basis set is determined by the maximum wave vector 	gl used, usually

specified as an energy cutoff Emax =
�
2

2m
|	gmax|2, and the sampling of 	k-points from the

Brillouin zone.

To obtain the total energy, in principle the energy eigenvalues En�k must be in-

tegrated over the Brillouin zone. In practice, the integral is replaced by a sum over

some discrete set of 	k-points,

E =
∑
n,�km

En�km
fn�km , (4.22)

where fn�km are the occupancies of each state φn�km
, and are 0 or 1 for an occupied

or unoccupied state, i.e. fn�km = Θ(Ef − En�km
), where Ef is the Fermi energy of

the system. In metals, the continuum of states at the Fermi level causes this sum
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to converge very slowly with respect to the number of 	k-points sampled. To speed

convergence, smearing methods are typically used, in which the step function in the

occupancies fn�km is replaced by a function that decays smoothly from 1 to 0, allowing

for partial occupancy of states near the Fermi level.

4.2 Results

In this section the results of calculations for DTA on the Cu(111) surface are shown.

Energy barriers for diffusion of DTA are calculated using several methods of account-

ing for van der Waals (vdW) interactions, and compared with experimental results.

Due to the small size of the energy barriers in this system, an important part of these

calculations is a careful test of the convergence of the results with respect to the basis

set and the size of the unit cell, and these tests are detailed at the end of this chapter.

Calculations shown in this section were performed with the VASP software pack-

age. The Cu(111) surface was represented by a supercell consisting of 5x4 primitive

surface unit cells and 3 layers, with a vacuum gap of 10Å between periodically re-

peated slabs. A single DTA molecule was placed on one side of the slab, with the

supercell employed leaving a separation of approximately 3-4Å between periodically

repeated DTA molecules. Tests with larger supercells showed that this is sufficient

to give the low coverage limit of energy barriers to within 10meV. Tests with up to

7 layers also showed that energy barriers are sufficiently converged at 3 layers. A

plane wave kinetic energy cutoff of 800eV and a 5 × 6 grid of k-points were used.

Relaxations were performed until the forces on all atoms were less than 0.01eV/Å.

Convergence tests showed that this gives energies converged to an accuracy of better

than 10meV.

4.2.1 Bulk Calculations

The first step in a surface calculation is determining the bulk lattice constant of the

solid. This is done by calculating the energy of the bulk system for several values of

the lattice constant a near the equilibrium value (for cubic crystals such as fcc Cu, only

one lattice constant needs to be adjusted). The resulting energies are then fit to an

equation of state to determine the ideal lattice constant. Here, the Birch-Murnaghan
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Table 4.1: Equilibrium lattice constants a0 (in Å) and bulk moduli B0 (in GPa) for
Cu, obtained by fitting to Eq. (4.23) for various van der Waals correction schemes.
Experimental values [50] are also shown for comparison.

PBE optPBE optb86b optb88 vdw-DF2 DFT-D2 TS0 TSS Expt.
a0 3.635 3.651 3.601 3.629 3.750 3.571 3.547 3.607 3.595
B0 137 130 149 139 103 148 171 213 142

equation of state is employed,

E(V ) = E0 +
9

16
V0B0

⎛
⎝B1

[
1

3

(
V0

V

)2

− 1

]3

+

[
1

3

(
V0

V

)2

− 1

]2 [
6− 4

3

(
V0

V

)2
]⎞⎠ ,

(4.23)

where V = a3 is the volume, V0 is the equilibrium volume, B0 is the bulk modulus

and B1 is the derivative of B0 with respect to pressure. The calculated values of

the energy E as a function of unit cell volume are fit to the above equation using

a least-squares procedure, giving a value for the equilibrium lattice constant ao =

V
1/3
0 , as well as the bulk modulus B0. Fig. 4.2 shows the resulting equation of state

curves for fcc Cu for a few of the vdW correction methods employed. The resulting

lattice constants and bulk moduli are shown in Table 4.1. Strictly speaking, this

method gives an estimate for the lattice constant at zero temperature, while real

metals undergo thermal expansion at finite temperatures. Copper has a linear thermal

expansion coefficient of approximately 10−5K−1, resulting in an expected increase in

the lattice constant of less than 1%. This does not significantly effect the energy of

the adsorbed DTA molecule (see Fig. 4.8), and so this effect is ignored in the present

calculations.

The different vdW correction methods shown in Table 4.1 consist of both semi-

empirical correction methods and non-local correlation functionals. The non-local

functionals are all based on the van der Waals density functional (vdW-DF) of Dion

et. al [51]. The vdW-DF2 functional is an alternate version of vdW-DF employing

the PW86 functional for the exchange, introduced when it was found that vdW-DF

tends to overestimate binding separations and underestimate the strength of hydrogen

bonding [52]. Both vdW-DF and vdW-DF2 tend to overestimate separation distances

for systems bound by vdW forces, and this trend is also observed in an overestimation

of the Cu lattice constant.



62

Figure 4.2: Energy versus volume curves for fcc Cu, for PBE without vdW corrections,
as well as the TS and TS-surf vdW corrections. Calculations were performed using a
400eV energy cutoff and a 21x21x21 k-point grid.

The optPBE, optb88 and optb86b functionals consist of the non-local correlation

part of vdW-DF, with exchange functionals that have been optimized for use with the

vdW-DF correlation. The optPBE and optb88 functionals [53] have been optimized

by fitting to the S22 set of accurate quantum chemical calculations of binding energies

for a set of weakly interacting dimers [54]. Both functionals slightly overestimate the

lattice constant of Cu, and underestimate the bulk modulus. These functionals were

found to have an accuracy similar to PBE for a range of solids [55]. The optb86b

functional was found to give improved accuracy over PBE for the description of

solids [55], including Cu. It has similar accuracy to optb88 for the s22 set.

Two semi-empirical vdW correction methods were tested. In the DFT-D2 method

of Grimme et. al [56], pairwise 1/R6 terms are added to the energy as in equa-

tion (4.17), where the C6 coefficients for each atom type are calculated from the

empirical formula C6 = 0.05NIpα in terms of the ionization potential Ip and polariz-

ability α (N takes the values 2,10,18,36,54 for the first 5 rows of the periodic table).
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The Fermi function is used for damping of the terms at short distances,

fd(Rij, R
(0)
ij ) =

sD

exp

[
−d

(
Rij

sRR
(0)
ij

− 1

)]
+ 1

. (4.24)

In the DFT-D2 method, the scaling parameter sR is set to unity, while sD is fit to a

set of reference data from accurate quantum chemical calculations. The parameter d

sets the sharpness of the cutoff at Rij � sRR
(0)
ij , and is set to d = 20 in the DFT-D2

method.

In the method of Tkatchenko and Scheffler (TS0) [57], the same pairwise form and

damping function are used, but the effect of polarization on the vdW interactions is

accounted for by introducing a dependence of the C6 coefficients and cutoff radii R
(0)
ij

on the local electron density around each atom. The basic idea of the TS method is

to define an effective volume for each atom according to the Hirshfeld partitioning,

V eff
i

V free
i

=

∫
d	rr3wi(	r)n(	r)∫
d	rr3nfree

i (	r)
wi(	r) =

nfree
i (	r)∑
j n

free
j (	r)

, (4.25)

where the “free” superscripts refer to the isolated atoms in vacuum. This effective

volume is then related to the effective polarizability αeff
i of each atom through V eff

i =

κeff
i αeff

i , where κeff
i is a proportionality constant. The C6 coefficients and cutoff radii are

rescaled according to Ceff
6i =

(
V eff

V free

)2

C free
6i , and R

(0)
i,eff =

(
V eff

V free

)1/3

R
(0)
i,free, an expression

derived from the Casimir-Polder integral for the C6 coefficients. In the TS method,

the scaling parameter for the C6 coefficients sD is taken to be unity, and the scaling for

the cutoff radii sR is taken as an empirical parameter, fit for each exchange-correlation

functional.

In a revised version of the method designed to treat organic molecules adsorbed

on surfaces (TSS) [58], the C6 coefficients for the substrate atoms are re-calculated

to reproduce screening effects. The vdW interaction energy for an atom or molecule

above a surface falls off as C3/z
3, where z is the height above the surface. In the TSS

method, the pairwise C6/R
6 terms between the atoms of the adsorbed molecule and

those of the surface are chosen to reproduce this effective C3/z
3 force, the relationship

between the coefficients being C ij
3 = ns

π
6
C ij

6 , where ns is the number of substrate

atoms per unit volume. The C3 coefficients are calculated using Lifshitz-Zaremba-

Kohn theory, which can account for many-body screening effects in the solid, and
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these coefficients are then used to calculate effective C6 coefficients for the atoms in

the solid.

From Table 4.1 it can be seen that both the DFT-D2 and TS0 methods underes-

timate the Cu lattice constant. The TSS method brings the lattice constant in line

with the experimental value, but significantly worsens the over-estimation of the bulk

modulus.

Although the main influence of vdW interaction in surface adsorption is an overall

attractive force that pulls the adsorbed molecule closer to the surface, an accurate

description of the substrate is still important in determining the energy landscape

seen by a diffusing molecule. This is particularly true in the case of DTA adsorbed on

Cu(111), where the energy barrier for diffusion depends sensitively on the fit between

the molecular geometry and substrate lattice constant, as will be discussed in detail

below.

4.2.2 DTA on Cu

DTA consists of an anthracene backbone with two S atoms attached to C atoms in

the central ring, shown in Fig. 4.3. Experimentally, DTA has been observed to adsorb

on the Cu(111) surface with its molecular plane parallel to the surface, and the long

axis of the anthracene backbone parallel to the close-packed [110] direction (as in the

T1 and T2 sites in Fig 4.3) [5]. At low temperatures a second stable configuration

was found, with the molecular axis rotated with respect to the Cu rows.

In DFT calculations at the PBE level, these rotated configurations, sites M1 and

M2 in Fig. 4.3, were found to be the stable minimum energy configurations for the

adsorbed DTA molecule. Configurations with the anthracene backbone aligned with

the Cu rows (T1 and T2 in Fig. 4.3) were found to be saddle points on the minimum

energy path between these two sites.

At the M1 and M2 sites, the S atoms lie near bridge sites, with one S atom

between a bridge site and an fcc-hollow site, and the other between a bridge site

and an hcp-hollow site. A similar arrangement was seen in DFT calculations for

thiophenol adsorbed on a Cu(111) substrate [59], and is also in agreement with the

preference for HS to adsorb at bridge sites on Cu(111) [60]. The M1 and M2 sites are

equivalent due to the symmetries of the surface and molecule (one can be obtained
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from the other by reflection about a plane in the perpendicular to the surface with

its normal along the [110] direction). Small differences (� 10meV) in the energies for

these two sites in calculations come from both the inherent numerical noise in the

calculations as well as interactions between periodically repeated images of the DTA

molecules, which breaks the equivalence of the two sites.

At the T1 and T2 sites, one of the S atoms lies near an on-top site. The higher

energy of this configuration at the PBE level is in line with the instability of the

on-top site for HS adsorbed on the Cu(111) surface [60]. At the T1 site, the centers

of the carbon rings of DTA sit above fcc-hollow sites, while at the T2 site the rings

sit above hcp-hollow sites. Although there is little difference in the energies of the T1

and T2 sites at the PBE level, there is still a slight preference for the T2 site, in agree-

ment with the preference for benzene to adsorb at hcp-hollow sites on Cu(111) [43].

Anthracene was observed to adsorb parallel to the close-packed directions on the

Cu(111) surface under solution [61], suggesting a preference of the anthracene back-

bone of DTA for the T1 and T2 sites, while the S atoms have a preference for the M1

and M2 sites.

Experimentally, it is observed that the preference of the anthracene backbone to

be aligned with the Cu rows wins out, and a T1/T2 like site is the stable adsorption

configuration. However, due to a severe underestimation of dispersion interactions

in standard GGA functionals such as PBE, neither of these sites is stable at the

PBE level. The need for an accurate description of vdW forces for adsorbed organic

molecules has been seen, e.g., in calculations of the adsorption energy of benzene on

noble metal surfaces, where PBE underestimates the adsorption energy by an order of

magnitude compared to experimental measurements, while including vdW corrections

brought the adsorption energies into close agreement with experiments [44].

Effect of van der Waals Corrections

When vdW corrections are introduced, the increased attraction between the carbon

rings and Cu surface results in an altered adsorption geometry, with DTA being

pulled significantly closer to the surface, as shown in Fig. 4.4. The average DTA-Cu

distances calculated for each vdW correction method are given in Table 4.2. The

bend about the central carbon ring is also significantly reduced, resulting in a more
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Figure 4.3: The two (symmetry equivalent) minimum energy sites, labelled M1 and
M2, and the two transition states, labelled T1 and T2, for DTA adsorbed on Cu(111).

Figure 4.4: Optimized geometry for the T1 site calculated with PBE (left) and D2
(right).
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Table 4.2: Energy differences between the T1,T2, and M1 sites (in meV), and average
molecule-surface height (in Å) calculated with various vdW correction methods. The
experimental energy barrier for diffusion is 130meV. [5]

PBE vdW-DF2 optPBE optb88 optb86b DFT-D2 TSS
VT1 − VM1 197 46 149 171 179 187 151
VT2 − VM1 187 45 142 154 86 92 72
VT1 − VT2 10 1 7 17 93 95 79
〈dDTA-Cu〉 2.99 3.22 2.84 2.71 2.41 2.35 2.44

Figure 4.5: Energy of T1 and T2 sites relative to M1 for the various vdW correction
methods employed. The dashed lines show the uncorrected PBE results.

planar geometry. This was true for all tested vdW correction methods other than

vdW-DF and vdW-DF2, for which there was little change from the PBE geometries.

Going from optPBE to optb88 to optb86b, the height of DTA above the surface is

reduced. Both semi-empirical methods gave similar geometries to optb86b.

The energies of the T1 and T2 sites relative to M1 are shown in Fig. 4.5 (and

Table 4.2) for the different vdW correction methods. Two trends can be observed in

the relative energies of the T1, T2, and M1 sites upon introducing vdW corrections.

Firstly, all methods decrease the energy of the T1 and T2 sites relative to M1, con-

sistent with the prediction that the vdW forces should increase the strength of the

interaction between anthracene and the Cu surface, tending to align DTA with the
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Figure 4.6: Energy difference between the T1 and T2 sites as a function of the average
height of DTA above the Cu(111) surface, for the various vdW correction methods
employed. From left to right, the points are for DFT-D2, optb86b, TSS, optb88,
optPBE, PBE, vdW-DF2.
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Cu rows. Secondly, the methods that give a geometry with DTA closer to the surface

predict a lowering of the energy of the T2 site compared to T1. This can be seen

more clearly in Fig. 4.6, which shows the T1-T2 energy difference as a function of

the average height of DTA above the surface. The closer the C-rings of DTA get to

the surface, the larger the energy difference predicted between the T1 and T2 sites.

The lower energy of T2 compared to T1 is consistent with calculations for benzene

adsorbed on Cu(111), where the energy for benzene adsorbed above hcp-hollow sites

is slightly lower than above fcc-hollow sites. The lower energy of T2 is also consis-

tent with the experimental observation that the DTA molecule migrates via jumps

that span the full Cu-Cu distance, while T1 and T2 are separated by only half this

distance, implying that only one of these sites should be stable.

Although the vdW correction methods give the correct qualitative trend for the

energies of the T1 and T2 sites, all methods still predict M1 to be the lowest energy

site, in disagreement with experimental observations. The equilibrium distance be-

tween the C-rings of DTA and the surface is determined by the balance between vdW

attraction and Pauli repulsion as DTA approaches the surface. The trends observed

in Figs. 4.5 and 4.6 suggest that the energy of the T2 site depends sensitively on the

height of DTA above the surface, and is therefore strongly affected by the behavior

of the vdW forces at short distances.

In the semi-empirical vdW methods, this behavior can be adjusted in a simple

way by adjusting the cutoff radii for the pairwise terms in Eq. (4.17). There is no

way to determine the cutoff radii or the form of the damping function a-priori, so

they must be fit to accurate quantum chemical calculations or experiment. In the

TS0/TSS methods, this is accomplished by a uniform scaling of the cutoff radii for

each atom type (which are determined from the equilibrium separation of noble gas

dimers) by a single scaling parameter sR. In the original specification of the TS0

method, this parameter was determined by fitting to the binding energies of the s22

data set [54], which consists of weakly bound dimers of organic molecules. Although

very accurate values for the binding energies in this set were obtained with a value of

sR = 0.94, the transferability of this value to a molecule adsorbed on a metal surface

is not obvious.

We therefore investigate the effect of decreasing the cutoff radii by lowering the
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Figure 4.7: Energy of the T1 and T2 sites relative to M1, as a function of the cutoff
scaling parameter sR in the TSS method. The solid lines show barriers calculated
with a Cu lattice constant of a = 3.607Å, while the dashed lines show the barriers
calculated at the equilibrium lattice constant for each value of sR.

Table 4.3: Lattice constant a (in Å) and bulk modulus B (in GPa) for Cu as a function
of the cutoff scaling parameter sR in the TSS method.

sR 0.84 0.86 0.88 0.90 0.92 0.94
a 3.464 3.490 3.518 3.548 3.578 3.607
B 264 266 260 247 230 213

scaling parameter sR. Fig. 4.7 shows the energy of the T1 and T2 sites relative to

M1 as a function of sR. As sR decreases, the vdW attraction persists to shorter

C-Cu distances, resulting in DTA being pulled closer to the surface. There is a

corresponding lowering of the energy at the T1 and T2 sites relative to M1, with T2

eventually becoming lower in energy than M1 for sR � 0.84. The energy at the T2

site is also lowered with respect to the T1 site by lowering sR, and for sR ≈ 0.86

the energy difference between the T2 and T1 sites closely matches the experimental

energy barrier of 130meV.

While a lower value for sR seems to better reproduce the experimental energy bar-

rier and adsorption geometry for DTA, it also affects the description of the substrate,
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Figure 4.8: Energy of the T1 and T2 sites relative to M1, as a function of the Cu
lattice constant for the TSS method.

due to Cu-Cu vdW interactions. Table 4.3 shows the predicted lattice constant and

bulk modulus for Cu as a function of sR. It can be seen that the lattice constant

for Cu becomes smaller as sR is decreased, becoming as much as 3.6% smaller than

the experimental value for sR = 0.84. The overestimation of the bulk modulus by

the TSS method also becomes worse as sR is decreased. Although a less accurate de-

scription of the substrate is not a significant problem for the description of diffusion

of the adsorbed molecule, it can indirectly affect the calculated energy barriers by

introducing a mismatch between the spacing of the Cu atoms and the geometry of

the adsorbed molecule.

Experimentally, the spacing between neighboring hollow sites along the [110] di-

rection on Cu(111) is 2.54Å, while the spacing between the centers of the C-rings

of anthracene is 2.44Å. This extremely close match between the geometry of the

substrate and molecule suggests that the energy barriers may be sensitive to the Cu

lattice constant. To investigate this effect, we plot in Fig. 4.7 the energies for both

a fixed lattice constant of a = 3.607Å, and a lattice constant that is adjusted to the

equilibrium value at each sR. It can be seen that allowing the lattice constant to
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change as sR is varied lowers the energy of both T1 and T2 relative to M1, with

T1 being affected more strongly. This is also shown in Fig. 4.8, where the energies

are plotted as a function of Cu lattice constant, with a fixed sR = 0.94. The en-

ergy at T1 is seen to be strongly affected by the lattice constant, changing by more

than 20% for a change of only 0.1Å in the lattice constant. For calculations of diffu-

sion of DTA on Cu(111), we will therefore employ the TSS method with the cutoff

parameter sR adjusted to 0.84, and the lattice constant held constant at the value

3.607Å . Although such an ad-hoc adjustment of the fitting parameter sR should

not be expected to be transferable to other systems, for DTA on Cu(111) it gives an

energy curve that agrees well with all available experimental information, including

the energy barrier for diffusion, the adsorption geometry (including the precence of a

meta-stable configuration), and the jump length for surface migration.

Adiabatic Potential

The adiabatic potential Va(x) as a function of DTA center of mass position x along

the [110] direction is shown in Fig. 4.9. Va(x) was calculated by minimizing the energy

at fixed x while allowing the DTA molecule and the positions of the top two layers of

the Cu(111) slab to relax.

From Fig. 4.9 it can be seen that introducing vdW corrections to the DFT energy

lowers the energy of the T2 site substantially (and also shifts the site slightly to the left

in the center of mass coordinate). Lowering the empirical cutoff scaling parameter sR

causes the vdW forces to persist to shorter DTA-Cu distances, and further lowers the

energy of the T2 site, so that it becomes the global energy minimum. Although this

gives an energy curve that is agrees quite well with experiment, it is also possible that

the curve calculated by the unmodified TSS method is consistent with experimental

measurements.

The TSS method predicts that the T2 site is a transition state between sites M1

and M2, with a lower energy barrier than that at T1 (see Fig. 4.5). This lower barrier

implies that jumps between M1 and M2 via the T2 site will occur on a timescale

much faster than jumps via the T1 site. Using the experimental value of 4 × 109Hz

for the jump rate prefactor, and the predicted barrier of 72meV, the jump rate over

the T2 site would be on the order of 500-5000 Hz at the experimental temperature
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Figure 4.9: Adiabatic potential Va as a function of center of mass position of the DTA
molecule along the [110] direction of the Cu(111) surface. The curves shown were
calculated using PBE without vdW corrections, PBE with TS-surf semi-empirical
corrections, and TS-surf with the cutoff scaling parameter sR decreased from 0.94 to
0.84.
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range of 53-62K. Since this rate is fast compared to the scanning rate of the STM

used to image the DTA molecules, the image obtained would be an average over the

M1 and M2 sites. The STM images would therefore not appear to be tilted with

respect to the Cu rows, although they should appear to be elongated on one side,

as one the S atoms would span approximately one lattice constant on either side of

the on-top site. The resolution of the STM images from Ref. [5] makes it difficult to

discern whether this expected asymmetric appearance of the DTA molecules can be

observed. There is also the experimental observation of a second configuration at low

temperatures that is tilted with respect to the Cu rows. It is possible that the two

minima observed at low temperatures are in fact the M1 and M2 sites of Fig. 4.3 (it is

not specified in Ref. [5] whether two or three distinct configurations were observed).

4.2.3 Convergence Tests

The two parameters that control the size of the basis set in plane wave calculations are

the plane wave cutoff, and the sampling of the Brillouin zone. The basis set consists of

plane waves ei(�gl+
�k)·�r with reciprocal lattice vectors 	gl satisfying |	gl+	k|2 < 2m

�2
Ecut for

some energy cutoff Ecut. For sampling of the surface Brillouin zone, we use uniformly

spaced M×N grids of k-points, given in terms of the reciprocal lattice vectors 	b1 and

	b2 by

	kmn =
m

M
	b1 +

n

N
	b2, (4.26)

where m ranges from 0 to M − 1 and n from 0 to N − 1.

Since the energy differences between different relevant configurations of DTA on

Cu are on the order of only a few tens of meV’s, the basis must be chosen so that

the energy is converged to within less than this threshold. During geometry opti-

mizations, it was found that the energy at a local minimum was converged to within

approximately 1meV when all forces were less than 0.01meV/Å. The forces must

therefore be converged with respect to the basis set to within less than this threshold.

Accurate forces are also important for the calculation of vibration frequencies. In the

following we systematically test the convergence of the energy and forces with respect

to both the energy cutoff and the number of k-points sampled. We also make tests for

larger supercells to ensure that the energy is converged with respect to the coverage

of DTA and the number of layers.
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Figure 4.10: Error in energy and forces vs. number of k-points, for several values of
the smearing parameter σ (in eV). The k-points were chosen from N×N grids defined
according to Eq. (4.26); N is shown on the horizontal axis. The force plotted is the
z-component of the force on the atom in the top layer of the slab, with the atoms
at their bulk configuration. Plotted is the difference between the energy or force at
a given number of k-points, and the energy or force at the most dense k-point grid,
55× 55. These calculations employed an energy cutoff of 400eV.

K-point Grid

We first consider convergence of the energy and forces with respect to the number

of k-points for the primitive Cu(111) surface unit cell. These calculations were done

with the PBE functional without vdW corrections, but the conclusions should hold

for any of the vdW correction methods used, since it has been found that the inclusion

of these corrections has little effect on the electronic structure [62]. Fig. 4.10 shows

the energy as a function of the number of k-points for a 3 layer slab. The Brillouin

zone integration is performed using the Methfessel-Paxton method [63], for several

different smearing widths. A larger smearing width speeds convergence with respect

to the number of k-points, but too large a value will give incorrect energies and forces.

We find that for a smearing width of 0.4eV, the energy is converged to within 1meV

and forces to 5meV/Åfor a 25x25 grid of k-points.

The convergence with respect to the k-point sampling for DTA adsorbed on Cu

should behave similarly to pure Cu, since the orbitals associated with the DTA
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Figure 4.11: Error in energy and forces vs. number of k-points in irreducible Brillouin
zone, Nk, for the T2 configuration of Fig. 4.3. Circles are for N×N grids with N from
2 to 9, crosses are for 4×5, 5×6, and 8×10 grids, defined according to Eq. (4.26). The
energy error is the difference between the energy at a given number of k-points and
the largest number of k-points tested, the 8× 10 grid. The force error is the largest
difference in the Cartesian components of the force. These calculations employed an
energy cutoff of 400eV and a smearing width of σ = 0.4eV.

molecule are expected to be well localized around the molecule and not show sig-

nificant dispersion. The energies and forces for the 5 × 4 supercell employed in the

previous sections may therefore be expected to be converged for a 5 × 6 grid of k-

points, corresponding to a 25 × 24 grid in the primitive unit cell. From Fig. 4.11,

where the error in the energy and force is plotted for the T2 configuration of DTA on

Cu(111), it can be seen that this is indeed the case. For a 5× 6 grid of k-points, the

energy is converged to within 15meV, and the forces to within 5mev/Å. Since energy

differences between different configurations converge faster than the absolute value of

the energy, this level of accuracy is sufficient to resolve the small energy differences

of interest for the diffusion of DTA, which are on the order of 10meV. It should be

noted that this level of accuracy is well below the expected intrinsic error of DFT

with respect to experimental values, but is nonetheless required for a self-consistent

calculation of the energy barriers.
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Plane Wave Cutoff

For the “standard” cutoff of 400eV for which the pseudopotentials in VASP were

designed, the errors in the forces are approximately 0.04eV/Å. To achieve an accuracy

better than 0.005meV/Å, an higher energy cutoff of 800eV is required. Calculations

at the lower cutoff of 400eV can be used to obtain results that are qualitatively

correct, but the noise in the forces means that barriers calculated at this cutoff will

not be accurate to within more than approximately 10 ∼ 20meV (estimated from the

typical change in energy when relaxing a structure from maximum forces of 0.05eV/Å

to 0.01eV/Å with an 800eV cutoff). A 400eV cutoff was used to obtain the results in

Fig. 4.5 and Table 4.4.

Size of Supercell

In Table 4.4 we show the results of calculations for larger supercells, in order to ensure

that the low-coverage limit has been attained for a 5 × 4 supercell. The positions of

DTA and the upper two layers of the Cu slab were fully relaxed for the larger supercells

so that the maximum force was less than 0.01eV/Å. When going from a 5× 4 cell up

to a 7× 6 cell, the energy barriers at the T1 and T2 sites change by less than 10meV

(with the exception of the 6× 4 cell, which changes by ∼ 20meV). This is less than

the expected noise in the energies due to the smaller energy cutoff used, confirming

that the 5× 4 supercell is sufficiently large to simulate the low-coverage limit.

Table 4.4 also shows the results of calculations for a larger number of layers. For

these calculations the geometry was kept fixed, adding new layers of Cu atoms at

their ideal bulk positions. The energies of the T1 and T2 sites are raised slightly

when adding more layers, being fully converged by 5 layers. The underestimation

of the energies at T1 and T2 for the 3-layer slab, approximately 20 ∼ 30meV, is

quite small, and only slightly larger than the expected noise in the energies due to

the smaller energy cutoff used. For the calculation of the potential energy curve for

diffusion, as well as vibration frequencies, we therefore find that it is sufficient to use

a 5× 4× 3 supercell with a 5× 6 k-point grid and 800eV energy cutoff.
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Table 4.4: Energies of the T1 and T2 sites (in meV) relative to M1 using the TS-surf
method, for different sized supercells and number of layers. The first two numbers
in the “Size of supercell” column give the number of primitive surface unit cells of
Cu(111) included in the supercell (with the first number running parallel to the long
axis of DTA), and the third number giving the number of layers in the Cu slab. The
energy cutoff (in eV) and size of the k-point grid used are also shown.

Size of supercell Basis set ET1 − EM1 ET2 − EM1

5× 4× 3 400 / 5× 6 151 72
5× 5× 3 400 / 5× 5 144 61
6× 4× 3 400 / 4× 6 129 56
6× 5× 3 400 / 4× 5 146 63
7× 6× 3 400 / 4× 4 144 69
5× 5× 4 400 / 5× 5 196 91
5× 5× 5 400 / 5× 5 185 87
5× 5× 6 400 / 5× 5 186 86
5× 5× 7 400 / 5× 5 187 87

4.3 Conclusions

We have seen that, as expected from previous DFT studies of adsorbed organic

molecules, including vdW interactions significantly alters the energy profile for dif-

fusion of DTA on Cu(111). The attractive vdW forces between the Cu surface and

DTA molecule alter the adsorption geometry, pulling DTA closer to the surface. The

extent to which the geometry is affected was seen to vary significantly between the

different vdW correction methods tested. The vdW-DF and vdW-DF2 methods gave

adsorption geometries with DTA significantly further from the surface than other

methods, consistent with the already established overestimation of binding distances

observed for these functionals. Three versions of the non-local vdW functional with

optimized exchange were also tested, and gave smaller DTA-Cu distances going from

optPBE to optb88 to optb86b. The lattice constant for bulk Cu showed the same

trend, becoming smaller for optPBE to optb88 to optb86b. The two semi-empirical

methods tested gave geometries similar to optb86b.

In general, methods that gave adsorption geometries with smaller DTA-Cu dis-

tances also gave a larger energy barrier between the T1 and T2 sites. This is in better

agreement with the experimental observation that DTA migrates via jumps spanning

the full surface lattice constant, inconsistent with, e.g., the PBE curve of Fig. 4.9,
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which would predict jumps of half a lattice constant. All methods still, however,

predicted the M1/M2 sites to be the global minimum, contradicting the experimental

observation that DTA adsorbs parallel the the Cu rows (although another possible

explanation for this was suggested via a different interpretation of the STM images).

It was found that shortening the empirical cutoff radii for the vdW forces in one of the

semi-empirical methods resulted in a slightly smaller DTA-Cu distance, and lowered

the energy of the T2 site below M1/M2. This brings the energy curve into excellent

agreement with experimental measurements.

The sensitivity of the energy profile for diffusion to the cutoff radii (in the semi-

empirical methods) and exchange functional (in the vdW correlation functional meth-

ods) highlights the difficulty of obtaining accurate DFT calculations for systems domi-

nated by vdW interactions. DTA on Cu(111) presents a particularly difficult challenge

for DFT, since not only are the vdW interactions a significant part of the molecule-

surface interactions, but the correct balance between these forces, the Pauli repulsion

between the carbon rings and the surface, and the chemical bonding between the S

atoms and the surface is crucial in obtaining accurate geometries and energy barriers.

Although C6 coefficients for vdW interactions at large separations can be calculated

accurately from first principles, an accurate description of the crossover to the short-

ranged regime (well described by the GGA) remains a challenge. The barriers were

also seen to be quite sensitive to the Cu lattice constant, highlighting the need for an

accurate description of solids within any vdW correction scheme that is to be used

to study adsorption and surface diffusion.



Chapter 5

Diffusion of DTA

In this chapter we make use of the stochastic model derived in Chapter 3 and the

DFT calculations performed in Chapter 4 to calculate the diffusion coefficient of DTA

on Cu(111).

The starting point for our stochastic model is the set of Langevin equations for

the N atoms making up the diffusing molecule. Since the DTA molecule shows

unidirectional diffusion along the [110] direction of the surface [5], its position can be

specified by a single Cartesian coordinate x giving the centre of mass displacement

along this direction. The equations of motion for the molecule are then, as shown in

Eq. (3.24),

Mẍ = −∂V

∂x
− γxxẋ−

∑
n

γxnq̇n + fx(t) (5.1)

q̈n = − ∂V

∂qn
−
∑
m

γnmq̇m − γxnẋ+ fn(t), (5.2)

where qn are a set of normal mode vibrational coordinates. In Chapter 3 we showed

that this set of equations is equivalent to the generalized Langevin equation

Mẍ = −∂Va

∂x
−
∫ t

0

dt′Γ[x(t), x(t′), t− t′]ẋ(t′) + F (t), (5.3)

with the memory function Γ as defined in Eq. (B.13).

The adiabatic potential Va(x) can be calculated in a simple way using DFT, by

minimizing the energy at fixed x while allowing all other degrees of freedom to relax.

The memory function depends on the vibration frequencies of the molecule as well

as a set of coupling constants for each mode, both of which are determined from the

second derivatives of the DFT energy.

The memory function also depends on the friction coefficients γnm. The fric-

tion forces originate from phonon-mediated energy exchange between the solid and

adsorbed molecule, and a determination of γnm therefore requires a model for the

80
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phonon dynamics of the solid. For this we use the Debye model, and in section 5.2 we

show how to to combine this model with DFT calculations to calculate the friction

coefficients from first principles. In principle, the phonon frequency spectrum of the

solid could also be calculated using DFT, but such a detailed description of phonon

dynamics is not necessary for our purposes. The Debye model also gives an accurate

description of the low frequency phonons, which are most important in determining

the friction coefficient, as will be seen below. In section 5.3 we show the results of

calculations of the diffusion coefficient, and compare with experimental results, as

well as standard transition state theory.

5.1 Adiabatic Potential and Vibration Frequencies

The adiabatic potential is defined by a thermal average over the vibrational degrees

of freedom,

e−Va(x)/kT =

∫
dn	qe−V (x,�q)/kT/Z, (5.4)

where the vibrational coordinates 	q include both molecular vibrations and surface

phonons. In the harmonic approximation, Va is simply the potential energy evalu-

ated at the equilibrium values of the vibrational coordinates 	q at fixed x. We calculate

Va in this approximation, minimizing the energy of the adsorbed DTA molecule at

fixed centre of mass x while relaxing all other degrees of freedom for DTA, as well

as the first two layers of the three layer slab of Cu(111). The resulting energy curve,

shown in Chapter 4 is reproduced in Fig. 5.1. For numerical calculations, the poten-

tial Va(x) (as well as the effective friction γeff(x)) must be interpolated between the

calculated points. A cubic spline interpolation [64] was employed for this purpose for

the curves shown in Figs. 5.1 and 5.3. This interpolation is not unique, and introduces

additional uncertainty into the calculation. However, testing of alternative interpola-

tion methods (including monotonic piecewise cubic polynomials [65] and cubic splines

obtained by least square fitting with allowance for error in the data points [64]) found

that this uncertainty is small compared to the inherent numerical noise in the DFT

calculations, and so cubic spline fits were used throughout for their simplicity.

Both the vibration frequencies ωn and φ′n are calculated from the second deriva-

tives of the potential energy using DFT. We first calculate the Hessian matrix in
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Figure 5.1: Adiabatic potential Va as a function of centre of mass position of the DTA
molecule along the [110] direction of the Cu(111) surface.

Cartesian coordinates 	rn using a finite difference method. For the TST calculations

(discussed below in section 5.3), the vibration frequencies are calculated by diagonal-

izing this Hessian matrix. To obtain the vibration frequencies at constant center of

mass x required for the stochastic model, we make use of the center of mass frame

coordinates 	sn = 	rn − 	rcm. The Hessian matrix is transformed to a new set of coor-

dinates consisting of the center of mass vector 	rcm and the collection of 	sn, with one

of the 	sn’s being eliminated using
∑

n mn	sn = 0. The normal mode eigenvectors and

frequencies are then calculated by diagonalizing the sub-matrix of the Hessian exclud-

ing the rows and columns containing x-derivatives. The constants φ′n = ∂2V/∂x∂qn

are then calculated by projecting these columns onto the normal mode eigenvectors.

This method leads to position-dependent ωn(x) and φ′n(x), which can be calculated

at any value of the center of mass x; in the following calculations, we will consider the

minimum energy configuration and the transition state (sites T1 and T2 of Fig. 4.3).

The frequencies obtained for DTA in its minimum energy configuration using this

method are shown in Fig. 5.2. The eight high frequency modes are radial vibrations

of the hydrogen atoms, while the lowest frequency modes are frustrated rotations and
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Figure 5.2: Angular vibration frequencies ωn for DTA on Cu(111). The inset gives a
closer view of the low-frequency modes, which contribute most to the effective friction.

translations. It is these low-frequency modes that give the dominant contribution to

the effective friction.

5.2 Calculation of Friction

The memory function appearing in the generalized Langevin equation (5.3) depends

on the matrix of friction coefficients γmn for the frictional forces between the surface

and each atom making up the adsorbed molecule. The memory function has the form

Γ = Γcm + Γvib, with the centre-of-mass contribution coming from the corresponding

component of the friction matrix,

Γcm = 2γxxδ(t− t′) (5.5)

and Γvib depending on the γxm and γmn components for each vibrational mode.

The matrix of friction coefficients γmn originates from energy exchange between

the adsorbed atoms and surface. Below we consider in detail the calculation of the

contribution to γmn from surface phonons. For a single adsorbed atom, the phononic

friction coefficient takes a simple form that depends only on the adiabatic potential



84

and the Debye frequency of the solid [15, 16]. We will show below that this form

underestimates the friction for a large molecule, by comparison with a calculation of

γmn from a full consideration of the molecule-surface forces.

We also note that for diffusion at metal surfaces, excitation of electron-hole pairs

can also be an important source of energy exchange. Such effects can be included

in the present approach by a semi-classical scheme [66,67] in which the electron-hole

pairs give rise to a second contribution to the friction coefficient. In a DFT framework,

this results in the expression [68]

γelec = 2π�
∑
�k,n

∑
�k′,n′

∣∣∣∣〈ψ �k,n

∣∣∣ ∂VKS

∂x

∣∣∣ψ�k′,n′

〉∣∣∣∣
2

δ(εf − ε�k,n)δ(εf − ε�k′,n′), (5.6)

where VKS is the Kohn-Sham potential, and ψ�k,n and ε�k,n are the corresponding Kohn-

Sham orbitals and eigenvalues at the Fermi level εf . Previous studies employing this

approach have found γ/M ≈ 1THz for both hydrogen [68] and carbon monoxide [69]

above copper surfaces. Since this is an order of magnitude lower than the phonon-

mediated friction coefficients calculated below, we ignore the effect of electronic fric-

tion in diffusion calculations. Qualitatively, the effect would be a small increase in

the friction, and a corresponding small decrease in the diffusion coefficient.

If the matrix of friction coefficients γmn contains off-diagonal elements, it rep-

resents a generalized friction force that is not antiparallel to the velocity vector.

Although coupling to phonons generally leads to non-zero off-diagonal elements in

γmn, these are usually assumed to be zero in practice. In fact, it is typically assumed

that γmn is proportional to the identity matrix, i.e. that the friction force is given

by 	Ffric = −γ	v, where γ is a single constant. We therefore also investigate the effect

of off-diagonal elements in γmn on the effective friction coefficient for center of mass

diffusion.

We finally consider some issues related to the vibrational part of the memory

function, including which particular modes give the largest contribution, and the

importance of memory effects for the description of diffusion.
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5.2.1 Phonon-Mediated Friction Coefficients

In general, the equations of motion for the molecule (5.1) will contain a non-Markovian

friction term (as in Eq. (2.13)), with a corresponding memory function with compo-

nents Γmn(t). When the vibrations in the solid are treated in the harmonic approxi-

mation, the components of Γmn are given by [15, 21]

Γmn =
∑
ij

∂ 	F
(s)
i

∂qm
· C(Rij, t) ·

∂ 	F
(s)
j

∂qn
, (5.7)

where C(Rij, t) is the correlation function for the displacements 	ui of the substrate

atoms at lattice positions 	Ri and 	Rj,

C(Rij, t) =
1

kT
〈	ui(t)	uj(0)〉 . (5.8)

In the Markov approximation, Γmn is replaced with its time integrated value

γmn =

∫ ∞

0

dtΓmn(t) =
∑
ij

∂ 	F
(s)
i

∂qm
· C̄(Rij) ·

∂ 	F
(s)
j

∂qn
,

C̄(Rij) ≡
∫ ∞

0

dtC(Rij, t) (5.9)

and the Langevin equations (5.1) are recovered. In the harmonic approximation

employed in Eq. (5.9), the integrated correlation functions C̄(Rij) are independent

of the separation of the two atoms Rij. This can be seen by expanding C(Rij, t) in

terms of phonon modes, in which the displacements 	ui are given by [70]

	ui(t) =
∑
�k,j

Q�k,j v̂�k,je
−i�k·(�Ri−ω�k,j

t), (5.10)

where v̂�k,j is the polarization vector for the jth vibrational mode at wave vector 	k

with frequency ω�k,j, and Q�k,j are the normal mode amplitudes. Using the fact that〈
Q�k,jQ�k′,j′

〉
= kT

ω2
�k,j

δj,j′δ�k,−�k′ [70], the correlation functions become

C(Rij, t) =
∑
�k,j

cos(ω�k,jt)

msω2
�k,j

ei
�k·(�Ri−�Rj)v̂�k,j v̂

∗
�k,j
. (5.11)

When integrating over time, the cosine term becomes∫ ∞

0

dt cos(ω�k,jt) = lim
t→∞

sin(ω�k,jt)

ω�k,j

= πδ(ω�k,j), (5.12)
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leading to the Rij-independent value

C̄(Rij) = lim
ω→0

∑
j

πgj(ω)

2msω2
v̂0,j v̂

∗
0,j ≡ C̄0, (5.13)

in terms of the vibrational density of states gj(ω) for each mode. Note that C̄(Rij),

and therefore the friction coefficients γmn, depend only on the zero-frequency limit

of the phonon frequency spectrum. This is a justification for using the Debye model

for the phonon dynamics of the solid, since it accurately represents the low-frequency

part of the vibrational density of states, only becoming inaccurate near the edge of the

Brillouin zone where the dispersion deviates from the linear relationship ω�k,j = c|	k|.
In the bulk Debye model, C̄0 takes the value [15]

C̄0 =
3π

2msω3
D

I, (5.14)

where ms is the mass of the substrate atoms, ωD is the Debye frequency of the

substrate, and I is the identity matrix. It has been found that accounting for the

modified vibrational density of states near a surface by employing a surface Debye

model leads to a value for C̄0 that is larger than the bulk value by approximately a

factor of two [71, 72]. For simplicity, we therefore use Eq. (5.14) multiplied by this

factor in calculations of γmn.

With C̄(Rij) = C̄0, the sums over i and j in Eq. (5.9) can be performed, giving∑
i
	F
(s)
i = −∑

i
	F
(a)
i = −	Fcm, where 	F

(a)
i is the force on the ith atom of the molecule,

and we have defined 	Fcm to be the total force on the molecule. For a single atom in

one dimension, this results in the simple expression

γ = C̄0

(
∂2V

∂x2

)2

. (5.15)

This expression is convenient in that it only depends on the potential energy of the

diffusing atom V (x), the influence of the substrate being completely contained in

the constant factor C̄0, which for a simple solid can easily be estimated from bulk

properties according to Eq. (5.14).

For a molecule it is tempting to generalize Eq. (5.15) to a corresponding expression

for the effective friction, by replacing V with the adiabatic potential Va(x). The center

of mass contribution is in fact given by a similar expression,

γxx = C̄0

∣∣∣∣∣∂
	Fcm

∂x

∣∣∣∣∣
2

�q=�q0

. (5.16)
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Figure 5.3: Effective friction coefficient γeff for DTA on Cu(111) in the Markov ap-
proximation. The center of mass contribution γxx is shown separately, as well as the
effective friction calculated using only the diagonal elements of γmn.

Although this contains the forces on the molecule in all three Cartesian directions,

it might be assumed that they are approximately equal in magnitude, and using the

form Eq. (5.15) will be a reasonable approximation. However, contributions from

the vibrational degrees of freedom will raise the effective friction coefficient, and may

also introduce memory effects. We therefore calculate γmn from the full expression

Eq. (5.9), using the forces on substrate atoms 	Fi calculated from DFT. We will now

consider the influence of the molecular vibrations on the effective friction.

5.2.2 Influence of Molecular Vibrations

To see the effect of the molecular vibrations on the effective friction, we first consider

the Markov approximation, in which γeff = γxx + γvib. As shown in Chapter 3, the

vibrational contribution γvib is given by

γvib =
∑
m,n

γmn
φ′m
ω2
m

φ′n
ω2
n

− 2
∑
m

γrm
φ′m
ω2
m

, (5.17)
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with the friction coefficients γmn calculated from Eq. (5.9). Second derivatives of the

energy, calculated here using DFT, determine the ∂ 	Fi/∂qn appearing in Eq. (5.9), as

well as the vibration frequencies ωm and the φ′m = ∂2V/∂x∂qm. A specification of the

vibrational properties of the solid, through Eq. (5.14) then completes the description

of phonon-mediated friction.

Fig. 5.3 shows the friction coefficient calculated using this method for DTA on

Cu(111), using the configurations at the minimum and transition state of the potential

energy curve shown in Fig. 5.1 (the T1 and T2 sites shown in Fig. 4.3). Since the

derivation of the effective friction coefficient in Chapter 3 assumes constant friction

coefficients γmn for the vibrational degrees of freedom, but using Eq.(5.9) results in

position-dependent γmn, we therefore take the average value of the γmn’s calculated

at the T1 and T2 configurations. For comparison, both the total effective friction

γeff, and the center of mass contribution γxx alone are shown in Fig. 5.3. Note that

the inclusion of the vibrational contribution γvib raises the effective friction coefficient

by approximately 50% on average. Calculating γeff from the single-atom expression

(5.15) will therefore lead to an underestimation of the friction.

To investigate the importance of the off-diagonal components of γmn, we also

plot in Fig. 5.3 the effective friction calculated setting γmn = 0 for m 
= n. Note

that, although the position-dependence of γeff is affected by ignoring the off-diagonal

components, the average value is nearly the same, changing by less than 10%. For this

system, the off-diagonal components will therefore have little effect on the diffusive

motion of the molecule, and we ignore them in further calculations (the possible

impact of off-diagonal components for larger molecules is discussed further below).

This is especially useful when considering memory effects, since Γvib can then be

calculated using the simpler expression Eq. (3.27), rather than the more general

Eq. (B.13).

Another important consideration is the accuracy of the classical treatment of the

vibrational motion. At the low temperatures for which the STM observations of DTA

diffusion on Cu(111) were performed, the high frequency molecular vibrations seen in

Fig. 5.2 will be confined to the ground state, since kT � �ω. To see the influence of

these degrees of freedom on the effective friction, Fig. 5.4 shows the quantity φ′n/ω
2
n,

which determines the contribution of each mode to γvib. It can be seen that only
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Figure 5.4: Coupling constants φ′n/ω
2
n contributing to the effective friction through

Eq. (5.17).

the two lowest frequency modes give any significant contribution to γvib, confirming

that there is no unphysical energy transfer to the high-frequency vibrational modes

at low temperatures. The lowest frequency mode is a rotation of DTA in the plane of

the surface, while the second lowest frequency mode is overall translation along the

surface, perpendicular to the [110] rows. Both of these modes have �ω ≈ kT for the

experimental temperature range of T = 55K ∼ 65K.

5.2.3 Memory Effects

The influence of memory effects in Γvib can be estimated from the Grote-Hynes ap-

proximation, in which the escape rate of the molecule from the potential well is

determined by the Laplace transform of the memory function Γ̂(λ) at a frequency

determined by the equation

λ =
ω2
b

λ+ Γ̂(λ)/M
, (5.18)

with ωb being the unstable (imaginary) frequency at the top of the barrier between

two sites.
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Figure 5.5: Laplace transform of vibrational contribution to the memory function
Γvib.

Fig. 5.5 shows Γ̂(λ) for DTA on Cu(111), calculated from Eq. (3.27). The escape

rate (and consequently the diffusion coefficient) is determined by Γ̂(λ) at λ � ωb. Due

to the flat shape of the adiabatic potential in the barrier region (see Fig. 5.1), the

barrier frequency is quite small, ωb ≈ 2THz. It can be seen from Fig. 5.5 that Γ̂(λ) is

already very close to its zero-frequency limit for λ � ωb, and so memory effects will

not have a significant effect on the diffusion coefficient.

5.2.4 Off-Diagonal Friction Components

For a large molecule, off diagonal terms in γmn coupling together different modes that

are well separated spatially seems physically unreasonable. However, since C̄(Rij)

does not decrease with the distance between two substrate atoms, Eq. (5.9) predicts

that there will be no decrease in magnitude for the γmn components between two

well-separated modes. This is in fact an artifact of the Markov approximation.

Although the time-integrated correlation function has the same value C̄(Rij) = C̄0

regardless of the separation Rij, the time required for C̄(Rij) to approach this value

increases as the separation of the atoms increases, taking on the order of Rij/c, where

c is the sound speed in the solid. The Markov approximation is then only reasonable if
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this time is short compared to the timescale for motion of the adsorbate. The largest

separations Rij that must be considered are approximately the size of the adsorbed

molecule, in which case Rij/c is simply the time required for a lattice vibration to

travel across the area of the molecule. In other words, if the time required for a

phonon to traverse the adsorbed molecule is not short compared to the time scale of

interest, then the Markov approximation cannot be used to describe phonon-mediated

friction. For DTA on Cu(111), DFT predicts a vibration period for center of mass

motion of τvib ≈ 1ps, while Rij/c ≈ 0.2ps. DTA is therefore small enough for the

Markov approximation to be reasonable for calculating the elements of γmn.

For a larger molecule, memory effects can be taken into account by the Grote-

Hynes formula, Eq. (5.18). The effective friction is then determined from Eq. (5.9),

with the zero-frequency value C̄(Rij) = Ĉ(Rij, λ)|λ=0 replaced by Ĉ(Rij, λ), with λ

on the order of a typical vibration frequency for the molecule. Fig. 5.6 shows the

Laplace transform of C(Rij, t) evaluated in the Debye model, for several values of

Rij. It can be seen that although Ĉ(Rij, λ) has the same zero-frequency limit for any

Rij, it quickly tends to zero for finite λ when the separation Rij becomes large. For

a large molecule, this will have the effect of decreasing the off-diagonal elements of

γmn for well-separated modes, as expected.

5.3 Diffusion Coefficient

Making use of the calculations of the adiabatic potential Va(x) and effective friction

coefficient γeff shown in the previous sections, the Langevin equation (5.3) can now

be solved to calculate the diffusion coefficient of DTA on Cu(111), using the method

detailed in Chapter 2. In order to compare with experimental measurements, we

consider the site-to-site jump rate κ, related to the tracer diffusion coefficient by

Dt =
1
2
κ 〈l2〉. Since long jumps are not significant in this system, the mean square

jump length 〈l2〉 is simply the surface lattice constant a2.

Fig. 5.7 shows the jump rate as a function of inverse temperature, in the low

temperature regime of experimental interest, with experimental data shown for com-

parison. At low temperatures, the rate obeys the Arrhenius law κ = κ0e
−ΔV/kT ,

where ΔV is the energy barrier between sites. The rate only deviates from this be-

havior when kT � ΔV , which for this system corresponds to T � 1500K. At the
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Figure 5.6: The left panel shows the Laplace transform of the correlation function
C(Rij, t), evaluated for separations Rij of 0,1,5, and 10 lattice constants. Ĉ was
calculated in the bulk Debye model, and the x-axis is scaled by a typical vibration
frequency for DTA on Cu(111), ω ≈ ωD/10. The right panel shows Ĉ evaluated at
λ = ω, as a function of separation Rij
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Figure 5.7: Arrhenius plot of the jump rate calculated in the stochastic model, com-
pared with experimental data from Ref. [5].

experimental temperatures of 55 ∼ 65K, the rate is therefore predicted be very well

described by an Arrhenius law.

The rate prefactor κ0 and barrier ΔV can be calculated by Arrhenius fits as

discussed in Chapter 3. The barrier calculated in this way is equal to the static energy

barrier calculated from DFT, ΔV = 145meV, very close to the measured barrier of

ΔV = 130meV. Calculating an accurate prefactor is much more challenging, and its

value is strongly affected by the strength of the frictional damping, in contrast to the

barrier. We find a prefactor of κ0 = 0.27THz, with consideration of memory effects

leading to a reduction of less than 5%.

For comparison, we also consider a calculation of the prefactor by transition state

theory (TST),

κ0,TST = 2
kT

h

Zb

Zm

≈ 1

π

∏
i ωm,i∏
i ωb,i

, (5.19)

where Zb and Zm are the vibrational partition functions at the barrier and minimum

energy configurations. The right hand side gives the approximation in terms of the

harmonic vibration frequencies ωb,i and ωm,i at the barrier and minimum (a factor

of 2 is included in κ0,TST to account for the two possible jump directions). Due
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to its simplicity, the harmonic approximation to TST is widely employed in rate

calculations. For the present system, it gives a prefactor of κ0,TST = 3.4THz.

The measured value of the rate prefactor was κ0 = 0.004THz. Although the

prefactors calculated within our stochastic model are still larger than the experimental

value, they are nevertheless an order of magnitude closer than the TST estimate. The

overall jump rate κ also compares quite well with measured values, as seen in Fig. 5.7.

Barring a large difference in vibrational entropy between the minimum and transition

state, TST gives a prefactor that is on the order of a typical vibrational frequency for

the center of mass motion of the molecule, while the experimental prefactor is much

lower. Our stochastic model shows the correct trend of a prefactor that is lowered

compared to the molecular vibration frequencies, although the reduction is not as

dramatic as what is observed experimentally.

There are several factors that can affect the quantitative accuracy of the rate

calculation, including inaccuracies in the DFT calculations, anharmonic effects in the

molecular vibrations and phonons, and quantum effects. The most important factor

is the accuracy of the DFT calculations in determining the adiabatic potential. In the

low temperature limit, the rate in the stochastic theory can be written as κ0 = kγνeff,

where νeff is a TST-type effective vibration frequency in the well of the adiabatic

potential, and kγ is a factor that depends on the friction [73]. The shape of the

adiabatic potential near the minimum strongly affects νeff, and can cause significant

changes in the prefactor.

In the harmonic approximation, νeff is equal to the harmonic vibration frequency

at the bottom of the potential well; more generally, it is related to the vibrational

partition function, νeff = 2kT
h

1
Z
. The difference between this factor and the TST

prefactor in Eq. (5.19) is that the partition function can be calculated using the full

Va(x) curve, and therefore include anharmonic effects in the center of mass motion

(while other molecular degrees of freedom are treated in the harmonic approximation).

In the present system, this has the effect of lowering the effective vibration frequency

νeff, due to the flat shape of the potential well. An estimate of a lower bound on

νeff can be obtained by assuming a completely flat potential well, leading to νeff =√
kT

2πMa2
≈ 0.16THz, while the present calculations give νeff ≈ 0.80THz. An adiabatic

potential with a flatter potential well might therefore lower the prefactor by a factor
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of 5.

The factor kγ causes a reduction in the rate, accounting for the effects of recrossing

at the barrier, and our model gives kγ ≈ 0.3 for the present system. With a flat

potential, our model would then predict a prefactor of κ0 ≈ 0.025THz, quite close

to the experimental value. A higher friction coefficient from coupling to electronic

excitations would further lower the prefactor.

5.4 Conclusions

We have shown that our stochastic model of diffusion gives a fundamentally improved

description of the jump rate for DTA diffusing on Cu(111) compared to TST, bring-

ing it into near quantitative agreement with experiment. The rate prefactor in this

system is unexpectedly low, being several orders of magnitude smaller than the low-

est molecular vibration frequencies. In our approach, this lowering of the prefactor is

seen to result from the anharmonicity of the flat-bottomed potential well, as well as

frictional damping. This damping alters the dynamics of the diffusing molecule near

the barrier region, making recrossings significant, and lowers the prefactor in this case

by a factor of kγ ≈ 0.3.

Our approach includes the influence of the internal molecular degrees of freedom

on the frictional damping of center of mass motion. For the system considered here,

this leads to a increase of approximately 50% in the friction coefficient, with a cor-

responding decrease in the prefactor. This increase in the effective friction will be

significant whenever there is significant coupling between the center of mass motion

of a molecule and one or more of its internal degrees of freedom. As discussed in

Chapter 3, in the Markov approximation this leads to an increase in the effective

friction whenever the lowest energy path across the surface is significantly curved

through the coordinate space. In other words, when there is concerted motion of the

center of mass and other degrees of freedom as the molecule crosses the barrier. For

DTA, there is concerted motion of the center of mass and rotational motion as the

molecule pivots across the transition state, with one of its S atoms fixed near a bridge

site.

When there is such coupling to an internal mode with a vibrational frequency

that is slow compared to center of mass motion, memory effects will be significant.
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This results in a renormalization of the friction to the Laplace-transformed memory

function Γ̂(λ) at an appropriate frequency, which can result in a friction considerably

different from the zero-frequency Markov approximation. Such a situation could

conceivably arise for, e.g., a long molecule anchored to a substrate at one end, with

the other end extending freely from the surface. In that case one would expect low

frequency modes associated with rocking motion of the free end, which may be slow

compared to motion at the anchored end.

This calculation also highlights the inherent difficulty in calculating quantitatively

accurate rate prefactors. As pointed out above, the prefactor is highly sensitive to

the shape of the potential energy curve. Calculating such an energy curve from first

principles with sufficient accuracy is challenging, particularly for organic molecules

adsorbed at surfaces, where the inclusion of van der Waals forces in a DFT framework

is problematic. Nevertheless, we find that the consideration of energy exchange pro-

cesses between the surface and adsorbed molecule leads to a qualitative improvement

over TST, and overall reasonable agreement with experiment.



Chapter 6

Conclusions

In this thesis we have presented a theoretical framework for the study of surface

diffusion of organic molecules. Our approach is based on the generalized Langevin

equation, in which the equations of motion for the N -body system consisting of the

molecule and substrate are simplified by singling out the centre of mass coordinate

of the diffusing molecule for explicit consideration. The influences of the remaining

degrees of freedom becomes a fluctuating force and dissipative force term acting on

the centre of mass. We have shown how to properly apply this formalism to a molecule

of arbitrary size with internal vibrational and rotational degrees of freedom.

For molecules, the stochastic and dissipative forces entering the Langevin equation

must account for energy exchange not only with surface phonons, but also between

the centre of mass motion of the molecule and its internal degrees of freedom. We

have seen that the nature of this energy exchange can be qualitatively different from

the phonon-mediated frictional forces usually employed in the Langevin approach

for molecules with “soft” vibrational modes. If some modes have frequencies on the

same order as, or smaller than those associated with centre of mass displacement, the

Markov approximation appropriate for phonon-mediated forces can become inaccu-

rate.

We first applied this approach to a simple model system consisting of a dimer in

a one-dimensional periodic potential. The benefit of studying a model such as this is

twofold: first of all, the simplicity allows for a systematic investigation of how centre

of mass transport of a molecule can be affected by its internal degrees of freedom.

For the dimer, the most important feature is the vibration frequency of its internal

mode. We showed in Chapter 3 that when this is on the same order as or smaller than

the frequency for centre of mass motion, the diffusion coefficient can be significantly

altered, and that this effect is stronger for molecules with more vibrational modes, see

Fig. 3.9. This suggests that for large planar molecules, which will always have “soft”
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vibration modes associated with long-range bending and twisting motion, accounting

for the effect of molecular vibrations on the centre of mass dynamics is important.

The second benefit of studying the one-dimensional dimer is that for a low dimen-

sion system such as this, the dynamics can be solved exactly in the full configuration

space of the molecule. This allows us to test the accuracy of the stochastic approach

(already well established for phonon-mediated diffusion) for the treatment of coupling

to internal molecular degrees of freedom. Good agreement between the stochastic

model and exact results was found.

In the second part of the thesis we applied the formalism developed in Chapters

3 and 2 to calculate the diffusion coefficient in a system of experimental interest. We

chose dithioanthracene adsorbed on Cu(111) as a test case for our model due to the

availability of experimental data for the diffusion rate, as well as the relatively small

size of the molecule. The modest size made it feasible to calculate the necessary input

parameters for the stochastic model (potential energy curve and vibration frequencies)

from first principles using density functional theory.

It was found that the qualitative predictions from the one dimensional dimer cal-

culations were borne out in these detailed calculations for a real system. The diffusion

coefficient was seen to be lowered as a result of contributions to the effective friction

from coupling of the centre of mass motion to frustrated rotational and translational

modes. Memory effects were found to not be significant in this system, but it was

also pointed out how they could be important for a larger molecule.

During the course of the density functional theory calculations, we also investi-

gated some issues related to the accuracy of various methods designed to add van der

Waals type interactions to DFT. It has been noticed before that standard GGA func-

tionals fail to adequately describe interactions between organic molecules and metal

surfaces, and we observed the same trend in our calculations. At the GGA level, DFT

incorrectly predicted the stable adsorption geometry, and in fact predicted a negli-

gible energy difference between the experimental minimum energy configuration and

the transition state. Including van der Waals corrections by several different methods

produced generally better agreement with experiment, but still predicted the experi-

mental minimum energy configuration to be unstable (although a possible alternative

way to reconcile these calculations with experiment through a re-interpretation of the
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STM images was noted).

We found that by adjusting the empirical cutoff radius scaling factor in one of the

van der Waals correction methods, better agreement of both the adsorption geometry

and energy barrier with experiment could be obtained. The sensitive dependence of

the relative stability of different adsorption sites on the cutoff of the van der Waals

forces at short interatomic distances was interpreted as being a result of competition

between van der Waals type and chemical bonding type forces. This sensitivity of an

experimentally observable quantity (namely the adsorption geometry) to the short

range crossover from van der Waals attraction to Pauli repulsion, as well as the

anomalously low diffusion prefactor makes dithioanthracene on Cu(111) a particularly

interesting system, as it appears to provide a stringent test of both van der Waals

correction methods in DFT, as well as statistical mechanics methods for calculating

rate prefactors.

Overall, good agreement was found between the predictions of our stochastic

model and experimental measurements for the diffusion rate of DTA. Moreover, it

was shown that this model is capable of capturing important physics relevant to the

diffusion of large molecules that is missing in transition state theory as well as the

usual Markovian Langevin equation based approaches.

6.1 Future Work

Due to the possible relevance of memory effects for large molecules, an important

direction for future work on this approach is a more adequate method for the solution

of the generalized Langevin equation with a non-Markovian friction kernel. In the

present work, the effect of memory on the diffusion coefficient was estimated by the

Grote-Hynes approximation. This approximation is, however not valid in the under-

damped regime in which long jumps spanning multiple lattice sites can occur. Such

long jumps have been observed before in the surface diffusion of large molecules [13],

and so an application of our model to such systems demands a more general treat-

ment of memory effects. The Grote-Hynes formula for the escape rate also relies on a

harmonic approximation to the adiabatic potential in the barrier region, which could

be a source of inaccuracy for systems with highly anharmonic potentials.

A full solution of the generalized Fokker-Planck equation shown in Eq. (2.36) is
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quite demanding due to its non-linear nature. Applying a method similar to the one

described in Chapter 2 for the Markovian Fokker-Planck equation would require a self-

consistent loop to treat the non-linear memory term. For one-dimensional diffusion

this approach is however possible due to the efficiency of the matrix continued fraction

method. A single calculation of the diffusion coefficient takes only a few seconds on

a standard PC, and so a self consistent solution of Eq. (2.36) seems feasible. For

surface diffusion in two dimensions, a different approach would likely be required.

Another weakness of the approach used here that can be easily addressed is the

calculation of the adiabatic potential in the harmonic approximation. This approxi-

mation fails in systems with a significant difference in vibrational entropy between the

minimum and transition state, as seen in Chapter 2. Although no such entropy differ-

ence was seen for DTA, it could be relevant in other systems. For example, this effect

was used to explain large differences in the diffusion prefactors between monomers

and dimers of porphyrin molecules on a copper surface [6]. Within a DFT framework,

such anharmonic contributions to the adiabatic potential could be calculated using

umbrella sampling [74], among other methods.

Extending the stochastic model of surface diffusion in these ways will allow for

an accurate calculation of diffusion coefficients and jump rates in a very general class

of systems. These jump rates can then be used as input for a lattice gas model, as

outlined in Chapter 1. In this approach, the physics of adsorbed organic molecules

can be modelled from first principles over the whole range of coverages from isolated

molecules to thin films.

Modelling the surface physics of adsorbed organic molecules at finite coverage

allows one to study the formation of the ordered structures often seen in STM experi-

ments (for DTA on Cu(111), e.g., the formation of rows and islands of DTA molecules

was observed [5]). In particular, the formation of nanostructured layers of organic

molecules coordinated by adsorbed metal atoms is an attractive area of investigation.

These systems show unique structural properties, such as formation of regular arrays

of cavities with tunable geometry and cavity size [4, 75, 76]. The ability to model

the formation of such structures from first principles is invaluable and should provide

powerful insights into these fascinating systems.
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Appendix A

Matrix Elements of FP Operator for Dimer

In this appendix we give the matrix elements of the FP operator for a dimer in 1D,

required for the MCF solution of the FPE used in Chapter 3. For the multidimen-

sional FPE of the type Eq. (2.33) describing the dimer in 1D, we use scaled variables

analogous to those introduced in section 2.3.1,

r̄i =
2π

a
ri t̄ =

2π

a

√
kT

m0

t v̄i =

√
mi

kT
vi γ̄ij =

a

2π

√
m0

mimjkT
F̄i =

a

2πkT
Fi,

(A.1)

where m0 is some reference mass. We also apply a transformation of the type shown

in Eq. (2.58), resulting in the transformed FP operator

L′ = −(biDi + b†iD̂i + b†iγijbj), (A.2)

where summation over the repeated indices is implied. The operators bi, b
†
i are the

creation and annihilation operators for the Hermite functions of each velocity variable

vi, satisfying the relationships shown in Eq. (2.61), and the operators Di, D̂i are

Di =
1√

mi/m0

(
∂

∂ri
+

1

2
Fi(	r)

)
D̂i =

1√
mi/m0

(
∂

∂ri
− 1

2
Fi(	r)

)
. (A.3)

The matrix elements of the FP operator L′ have a form analogous to that shown in

Eq. (2.65) for the 1D case. For the dimer in 1D described by the two coordintes r

and s, we have

[brDr]�m�μ,�n�ν =
√
νrδμr,νr−1δμs,νsD�m�n (A.4)

[b†rD̂r]�m�μ,�n�ν =
√
νr + 1δμr,νr+1δμs,νsD̂�m�n (A.5)

[γb†rbr]�m�μ,�n�ν = μrδμr,νrδμs,νsγ�m,�n, (A.6)

with similar expressions for the s-terms. Expressions for the matrix elements of the

Di and D̂i operators are given below.
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A.1 Dimer in One Dimension

For the dimer studied in Chapter 3, consisting of two identical atoms of mass m and

of equilibrium length �, the potential energy is

V (r, s) = Vb cos(r) cos((s+ �)/2) +
1

2
ks2, (A.7)

in terms of the centre of mass and relative coordinates r and s, as defined in Chapter 3.

The components of the corresponding force are

Fr(r, s) = −∂V

∂r
= Vb sin(r) cos((s+ �)/2)

Fs(r, s) = −∂V

∂s
= Vb/2 cos(r) sin((s+ �)/2)− ks. (A.8)

For the basis functions we choose a Fourier series in the r coordinate, and Hermite

functions in the s coordinate,

φms(s) =

√ √
kn!

2n
√
2π

Hms

(√
k

2
s

)
e−ks

2/4. (A.9)

The creation and annihilation operators for the φms functions are then

c =
1√
k

∂

∂s
+

1

2

√
ks c† = − 1√

k

∂

∂s
+

1

2

√
ks, (A.10)

which can be rearranged to obtain expressions for s and ∂/∂s,

s = (c+ c†)/
√
k

∂

∂s
= (c− c†)

√
k

2
(A.11)

The matrices Dr, Ds, D̂r, D̂s can then be evaluated, e.g.

[Dr]�m,�n =
1

2π

∫ 2π

0

dr

∫ ∞

−∞
dse−imrrφms(s)Deinrrφns(s). (A.12)

Making use of Eq. (A.11), the elements of the derivatives are

[
∂

∂r
]�m,�n = inrδmr,nrδms,ns (A.13)

[
∂

∂s
]�m,�n = δmr,nr

√
k

2
(
√
nsδms,ns−1 −

√
ns + 1δms,ns+1), (A.14)
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and the elements of the forces are

[Fr]�m,�n = −Vb

2
fns−ms(�/2) (iδmr,nr+1 + δmr,nr−1) e

−1/(8k)
√

ms!

ns!

(
i

2
√
k

)ns−ms

Lns−ms
ms

[
1

4k

]

[Fs]�m,�n = −Vb

4
fns−ms+1(�/2) (iδmr,nr+1 − δmr,nr−1) e

1/(8k)

√
ms!

ns!

(
i

2
√
k

)ns−ms

Lns−ms
ms

[
1

4k

]

−
√
k(
√
nsδms,ns−1 +

√
ns + 1δms,ns+1)δmr,nr

for ns > ms, [Fr]mrms,nrns = [Fr]mrns,nrms , [Fs]mrms,nrns = [Fs]mrns,nrms ,

(A.15)

where the Lα
n(x) are the associated Laguerre polynomials [77], and

fns−ms(�/2) =

⎧⎨
⎩cos(�/2) ns −ms even

i sin(�/2) ns −ms odd
. (A.16)

For the coefficients of the factor P = e−V (r,s)/2, one of the integrals can be evalu-

ated analytically, giving

[P ]�m =

∫ ∞

−∞
ds(−1)mrImr

(
Vb

2
cos((s+ �)/2)

)
e−ks

2/4φms(s), (A.17)

where Im(x) is the modified Bessel function of the first kind [77].

A.2 Dimer in One Dimension, Harmonic Approximation

In the harmonic approximation, the potential and forces become

V (r, s) = Vb cos(r) cos(�/2)− φ2(r)

2k
+

1

2
k

(
s+

φ(r)

k

)2

= Vb cos(r) cos(�/2)− V 2
b

16k
cos(2r) sin2(�/2) +

1

2
k

(
s+

φ(r)

k

)2

− V 2
b

16k
sin2(�/2),

φ(r) = −Vb

2
cos(r) sin(�/2),

Fr = Vb sin(r) cos(�/2)− V 2
b

8k
sin(2r) sin2(�/2)− Vb

2
sin(r) sin(�/2)

(
s+

φ(r)

k

)

Fs = −k

(
s+

φ(r)

k

)
(A.18)

For the basis functions we again take Fourier components for the r coordinate,

and Hermite functions for the s coordinate, but now use the shifted Hermite functions
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φms(s + φ(r)/k). Similar relations to those shown in Eq. (A.11) are then satisfied,

but with s replaced by s + φ(r)/k. Using this shifted version greatly improves the

convergence at small k.

The components of the derivatives are

[
∂

∂r
]�m,�n = inrδmr,nnδms,ns +

1

2
√
k
[φ′]�m(

√
nsδms,ns−1 −

√
ns + 1δms,ns+1)

[
∂

∂s
]�m,�n =

√
k

2
δmr,nr(

√
nsδms,ns−1 −

√
ns + 1δms,ns+1)

[φ′]�m =
Vb

2
sin(�/2)

(
δmr,nr+1

2i
− δmr,nr−1

2i

)
, (A.19)

and the components of the force are

[Fr]�m,�n =
Vb cos(�/2)

2i
(δmr,nr+1 − δmr,nr−1)δms,ns −

V 2
b

16ki
(δmr,nr+2 − δmr,nr−2)δms,ns

− Vb

4i
sin(�/2)(δmr,nr+1 − δmr,nr−1)(

√
νδms,ns−1 +

√
ns + 1δms,ns+1)/

√
k

[Fs]�m,�n = −
√
kδmr,nr(

√
nsδms,ns−1 +

√
ns + 1δms,ns+1). (A.20)

For the elements of P , the s-integral can be evaluated to give

[P ]�m =
1

2π

∫ 2π

0

dr exp

(
−Vb

2
cos(r) cos(�/2) +

V 2
b

32k
cos(2r) sin2(�/2) +

V 2
b

32k
sin2(�/2)

)

× e−mrr

(
2π

k

)1/4

δms,0, (A.21)

and similarly for the normalization factor N ,

N =

∫ 2π

0

dr exp

(
−Vb cos(r) cos(�/2) +

V 2
b

16k
cos(2r) sin2(�/2) +

V 2
b

16k
sin2(�/2)

)√
2π

k
.

(A.22)

A.3 Dimer in One Dimension, Markov Approximation

In the Markov approximation, the potential is that of the harmonic approximation

evaluated with s at it’s minimum energy value, s = −φ(r)/k,

V (r) = Vb cos(r) cos(�/2)− 1

2

φ(r)2

k(r)
(A.23)
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The matrix elements for D and D̂ can then be evaluated from those in the previ-

ous section. In the Markov approximation, the Fourier components of the position-

dependent friction γeff = γrr+γvib(r) are also required. For the 1D dimer, the effective

friction is

γeff(r) = γrr + γssφ
2(r)/k2 = γrr +

γssV
2
b

4k2
cos2(r) sin2(�/2), (A.24)

with Fourier components

[γeff]m,n = γrrδm,n +
γssV

2
b

16k2
sin2(�/2)(δm,n+2 + δm,n−2 + 2δm,n). (A.25)



Appendix B

Memory Function for General Damping

In this appendix we show how to derive the GLE found in section 3.1 for a molecule

described by a center of mass coordinate 	r and N internal coordinates. For simplic-

ity of notation we consider here unidirectional diffusion, so that the center of mass

coordinate is a scalar r; repeating the derivation for a molecule that diffuses in more

than one dimension introduces no additional complications.

First the potential is expanded to quadratic order in the internal coordinates,

V (r, 	s) = V0(r) + 	φ(r) · 	s+ 1

2
	sT ·K · 	s, (B.1)

where 	s is a column vector of the N internal coordinates (with corresponding row

vector 	sT ), and K is a matrix of force constants. The equations of motion for the

internal coordinates can be written

M · 	̈s+ γ · 	̇s+K · 	s = −	φ(r)− 	γrsṙ + 	fs(t), (B.2)

where M, and γ are matrices of the masses and damping coefficients, respectively.

The homogeneous solution is found by assuming the time dependence 	s(t) = 	xeλt,

where 	x is a constant vector, resulting in the generalized eigenvalue problem

λ2M · 	x+ λγ · 	x+K · 	x = 0. (B.3)

In the absence of damping forces, a set of eigenvectors 	xn and eigenvalues ω2
n can be

found that diagonalize M and K, and the equations of motion for the normal modes

decouple. However the eigenvectors 	xn will in general not diagonalize the matrix γ of

damping coefficients, and the normal modes will be coupled as shown in Eq. (3.24).

To find normal mode solutions, one rewrites the equations of motion in terms of

the 2N -dimensional vector 	zT = (	sT , 	̇sT ),

Mz · 	̇z +Kz · 	z = 	F , (B.4)
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where the matrices Mz and Kz and the force vector 	F are defined as

Mz =

(
γ M

M 0

)
Kz =

(
K 0

0 −M

)
	F =

(
−	φ− 	γrsṙ + 	fs

0

)
. (B.5)

The eigenvalue problem can then be written as

λMz · 	z +Kz · 	z = 0, (B.6)

and the eigenvectors 	zn and eigenvalues λn can be found such that

	zTm ·Mz · 	zn = δmn 	zTm ·Kz · 	zn = −λmδmn. (B.7)

The eigenvectors must also have the form 	zTn = (	xT
n , λn	x

T
n ), where 	xn are the length

N vectors that solve the eigenvalue problem (B.3). The solution is then written as

	z(t) =
∑

n qn(t)	zn, and Eqs.(B.4) and (B.7) can be used to find the equations of

motion for qn(t):

q̇n + λnqn = −Φn − Γnṙ + fn, (B.8)

where Φn = 	zTn · 	φ, Γn = 	zTn · 	γrs and fn = 	zTn · 	fs. The solutions for qn(t) are then

qn(t) = qn(0)e
λnt +

∫ t

0

dt′eλn(t−t′)[−Φn(r(t
′))− Γnṙ(t

′) + fn(t
′)]. (B.9)

The initial conditions qn(0) are related to the initial conditions for 	s, 	̇s by qn(0) =

	zn ·Mz · 	z(0).
With the formal solution for the internal motion of the molecule 	s(t), 	̇s(t) in hand,

the same procedure as in section 3.1 can be followed to obtain a GLE for the center

of mass motion. The solution is substituted into the equation of motion for r,

Mr̈ = −V ′0 − γrrṙ − 	γT
rs · 	̇s− 	φ′T · 	s+ fr(t) (B.10)

= −V ′0 − γrrṙ −
∑
n

(Φ′n + λnΓn)qn(t) + fr(t), (B.11)
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resulting in a GLE of the form in Eq. (3.11), with

U(r) = V0(r)− 1

2
	φT (r) ·K−1 · 	φ(r) (B.12)

Γvib[r(t), r(t
′), t− t′] =

∑
n

(Φ′n(r(t)) + λnΓn)(Φ
′
n(r(t

′)) + λnΓn)
eλn(t−t′)

−λn
(B.13)

Fvib(t) = −
∑
n

(Φ′n(r(t)) + λnΓn)

(
qn(0)− Φn(0)

λn

)
eλnt

−
∑
n

(Φ′n(r(t)) + λnΓn)

∫ t

0

dt′eλn(t−t′)Fn(t
′),

(B.14)

where the stochastic force F (t) has the statistical properties shown in Eq. (3.18). The

averages are calculated using the equilibrium probability distribution for the initial

conditions 	s(0), 	̇s(0),

ρ(	s, 	̇s) =
e−

1
2
�̇sT ·M·�̇s/kT− 1

2
(�sT+�φT ·K−1)·K·(�s+K−1·�φ)/kT

2π
√|M−1||K−1| , (B.15)

giving the averages〈
	s(0) +K−1 · 	φ(0)

〉
=
〈
	̇s(0)

〉
= 0〈

(	s(0) +K−1 · 	φ(0))(	sT + 	φT (0) ·K−1)
〉
= kTK−1〈

	̇s(0)	̇sT (0)
〉
= kTM−1.

(B.16)

The averages of the terms in F (t) can be related to the above averages by making

use of the following equality

qn(0)− Φn(0)

λn

= 	zTn ·Mz ·
(
	s(0) +K−1 · 	φ(0)

ṡ(0)

)
. (B.17)

The completeness of the eigenvectors 	zi is also useful when proving Eqs. (3.18). An

arbitrary matrix A can be expanded in the eigenvectors as A =
∑

m,n amn	zm	z
T
n , where

the elements are given by amn = 	zTm ·Mz · A ·Mz · 	zn. This property can be used to

show the following relations

∑
n

	xn	x
T
n = 0

∑
n

	xn	x
T
n

λn

= −K−1 ∑
n

	xn	x
T
n

λ2
n

= K−1 · γ ·K−1. (B.18)

By making use of (B.17) and (B.18), along with the orthogonality relations (B.7),

Eqs. (3.18) can, with some effort, be shown to be satisfied by the memory function

and stochastic force.
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To find the effective friction in the MA, first rewrite the memory function as

Γvib =
(
	φ′T (r(t)), 	γT

rs

)
·
(∑

n

	zTn 	zn
eλn(t−t′)

−λn

)
·
(
	φ′(r(t′))

	γrs

)
. (B.19)

In the MA, the memory function is replaced by its time-integrated value

∫ ∞

0

dt′Γvib(r, t
′) =

(
	φ′T (r(t)), 	γT

rs

)
·Q ·

(
	φ′(r(t′))

	γrs

)
, (B.20)

where Q =
∑

n 	zn	z
T
n /λ

2
n. Making use of Eqs. (B.18), the matrix Q is found to be

Q =

(
K−1 · γ ·K−1 −K−1

−K−1 0

)
. (B.21)

The effective friction is then

γeff = γrr +
∑
n

	φ′T ·K−1 · γ ·K−1 · 	φ′ − 2
∑
n

	γrs ·K−1 · 	φ′ (B.22)

= γrr +
∑
m,n

γmn
φ′m
ω2
m

φ′n
ω2
n

− 2
∑
m

γrm
φ′m
ω2
m

. (B.23)

Note that the above expression depends only on the vibration frequencies ωn in the

undamped system, found by diagonalizing the matrix of force constants K, so that in

the MA one avoids the need to explicitly solve the damped normal modes problem.


