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Abstract 

 

Bader's quantum theory of atoms in molecules (QTAIM) is used to evaluate local atomic 

stabilities in clusters of molecules. The total energy of a molecular system is decomposed 

into atomic contributions determined quantum mechanically through evaluation of the 

electron density contained within atomic basins. Stability is defined by changes in the 

atomic energy. These stabilities are used to interpret energetic changes within molecules 

as they form non-covalent interactions, including hydrogen bonding, beryllium bonding 

and halogen bonding, as well as combined instances of each. The stabilities are then 

represented using a unique method of visualization, whereby atom size represents the 

magnitude of the energy change and atom colour represents sign of energy change 

(positive or negative). Local stabilities in small methanol (MeOH)n=2-4, formaldehyde 

(H2C=O)n=2-4, and water (H2O)n=2-6 clusters reveal a clear increase in the magnitude of 

atomic stability when cooperative interactions are present. This energy increase is not 

observed for non-cooperative or anti-cooperative interactions in formaldehyde and water 

clusters. For methanol clusters the cooperative stability is clearly localized at the 

hydroxyl group. Local atomic and molecular energies give new insight into the 

interaction of water wires with alkali metals, alkaline earth metals and halide ions and, 

finally, local atomic stabilities show the existence of strong cooperative effects for 

beryllium-hydrogen bond interactions and beryllium-halogen bond interactions, which 

are in some cases very intense.   
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Chapter 1 Introduction 

 

In the broad range of topics studied using computational methods, the importance of 

water and the role of solvation cannot be overstated. It is known that solvation can affect 

the stability and conformation of systems like proteins and nanostructures, and solvation 

studies typically focus on the effect of the solvent on the solute. But there is also the 

question of how these solutes can in turn impact the energy and structure of the 

surrounding solvent. This becomes very important for protein folding, where the entropy 

and enthalpy of solvation play a critical role in formation of secondary and tertiary 

protein structure. Many commonly used computational methods give poor predictions of 

water behaviour on local levels. A deeper understanding of water’s local stability and 

configuration in the presence of solute molecules is of primary interest. Evaluating these 

local stabilities is difficult because most analyses report total energies, either obtained 

experimentally in bulk or theoretically using a variety of approaches. A unique solution 

to this problem is found in Bader’s quantum theory of atoms in molecules (QTAIM) [1], 

which provides a well-established method to partition total molecular electron densities 

into non-overlapping local values that can be attributed to the atoms in the molecules. 

From the local atomic values it is possible to evaluate local stability in the molecule 

through changing atomic energies. Matta et al. [2] demonstrated this in a study of bond 

dissociation of aliphatic hydrocarbons. Later, Taylor et al. [3] evaluated local stabilities 

for folded telomere structures and then visually represented the results in a way that 

highlighted important areas of stabilization and destabilization. In this thesis, the QTAIM 

local stability analysis is extended to consider water-water and water-solute interactions.  

The structure of this thesis is as follows. Chapter 2 introduces some properties of 

water and its hydrogen bonding interactions, with a discussion of experimental 

approaches for the observation of hydrogen bonds and water molecules. Chapter 3 

introduces technical details regarding the computational evaluation of molecules, with a 

special focus on QTAIM in Section 3.8. In Chapter 4 and Chapter 5, QTAIM is used to 

evaluate local stabilities within small water clusters from n=2-5 [4] and six minima on the 

water hexamer potential energy surface [5]. Chapter 6 and Chapter 7 present a study of 

the water dimer and trimer interacting with two BeX2 derivatives [6] and a series of water 
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wires interacting with alkali, alkaline earth metal and halide ions. Chapter 8 and Chapter 

9 demonstrate atomic energy analysis of the cooperativity present in a range of non-

covalent interactions, including hydrogen bonding [7] and beryllium bonding combined 

with halogen bonding [8]. The majority of these chapters have been published in peer 

reviewed journals and are presented in this thesis as-published, with introductory and 

summarizing sections included for each chapter. This thesis concludes with some 

proposed future work and finally a summary of important conclusions. 

Each molecular system studied here is of key importance in the literature: small water 

clusters have long been test cases for benchmarking new methods, the water hexamer 

may provide a model for the behaviour of liquid water, water wires have an integral role 

in transport across cell membranes, and cooperativity is one of the most important and 

common characteristics shared by non-covalent interactions. Yet perhaps the most 

exciting aspect of this thesis is the opportunity to quantitatively evaluate local energy 

changes in molecular systems on the basis of the electron density – a real, physical 

observable. In this way, Bader’s quantum theory of atoms in molecules serves as a unique 

bridge between experiment and theory [9]. 
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Chapter 2 Water, Hydrogen Bonds and Cooperativity 

 

What a fascinating thing, water. That such a small molecule can hold so many answers 

and yet hide so many secrets. Water has a large array of unusual properties in pure form 

and as a solvent [10]. Some of these properties include: a liquid-phase density maximum, 

an unusually high boiling point and high heat capacity, a low coefficient of thermal 

expansion, non-monotonic compressibility with temperature, an unusually high number 

of crystalline polymorphs, and an unusual preferential arrangement around hydrophobic 

solutes which results in a negative entropy change for the solvent. Although many 

properties of water can be measured experimentally, at the molecular level the behaviour 

of water is still unknown. The unique properties of water are generally attributed to the 

nature of its hydrogen bond (H-bond) network. The hydrogen bond is a curious 

phenomenon that has historically been difficult to describe conclusively [11]. In 2011, an 

IUPAC task force published a report which provided an internationally recommended 

definition of the hydrogen bond (designated as X—H∙∙∙Y) [12]: The hydrogen bond is an 

attractive interaction between a hydrogen atom from a molecule or a molecular fragment 

X–H in which X is more electronegative than H, and an atom or a group of atoms in the 

same or a different molecule, in which there is evidence of bond formation. They define 

several criteria necessary for the presence of a hydrogen bond, including: an electrostatic 

charge-transfer interaction that leads to formation of a partially covalent bond between H 

and Y; a polarization of the X—H bond resulting in an increase in the H∙∙∙Y bond 

strength due to increasing electronegative character of Y; an optimal X—H∙∙∙Y angle of 

180o; an increasing X—H bond length and decreasing H∙∙∙Y bond length indicating a 

strengthening of the hydrogen bond (often observed through a red-shift in the IR spectra 

of the bond vibrations); characteristic NMR signatures that include pronounced 

deshielding for H in X—H; and, finally, to be experimentally observed, H-bond 

formation should have a Gibbs energy greater than the thermal energy in the system.1 

                                                 

1 The IUPAC recommendation states that: “For hydrogen bonding to have any practical significance, it 

should be thermally stable. Hence, a hydrogen-bonded complex, between donor and acceptor molecules, 

produced in a supersonic beam or a cryogenic matrix, may not be found in a room temperature mixture of 

the two molecules” [12]. 
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Note that these are guideline criteria and there is an element of subjectivity in the 

interpretation of each case. 

When several hydrogen bonds are present in a system a phenomenon called 

cooperativity can be observed. Cooperativity is a deviation from the pairwise additivity of 

the bonding interactions, so that the combined stability of a hydrogen-bonded system 

containing cooperative bonds can be greater than the sum of the isolated individual 

bonds. This is especially observed in small water clusters; in particular, the trimer 

through pentamer water clusters are most stable in cyclic arrangements where each water 

can accept a H-bond from and donate a H-bond to its neighbouring waters [13]. 

Cooperativity also provides increased stability in biological systems such as DNA and 

protein secondary structures [14, 15]. Not all hydrogen bonding interactions are 

cooperative. In some arrangements it is possible for several H-bonds to have a net 

stability that is equivalent to, or even lower than, the sum of the isolated interactions. 

These are referred to as non-cooperative and anti-cooperative interactions, respectively 

[7].  

Although much is known about hydrogen bonds and water structures, they are 

notoriously difficult to model correctly using available theoretical methods. Their 

dependence on long-range interactions renders many of the commonly applied 

computational methods unusable, as they do not easily account for diffuse effects [16]. 

The methods that can account for these interactions are often too expensive to be applied 

to systems larger than a few molecules [17]. Furthermore, hydrogen bonds are highly 

sensitive to quantum effects, and the distinct possibility of quantum proton tunnelling 

must also be considered [18]. Nevertheless, improved equipment, increasing computer 

power and growing knowledge of the nature of hydrogen bond networks continuously 

builds our repertoire of information. 

2.1 Experimental Observations of Hydrogen Bonds and Water 

The experimental study of water has changed considerably since the early 18th 

century, when it was first noted that combining two parts hydrogen gas and one part 

common air with a measure of energy would produce a “dew-like substance” [19]. 

Today, we have tools that allow us to see inside those dew droplets and observe the very 
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water molecules as they perform their complicated dance. The following sections 

highlight some current experimental methods used to study water and hydrogen bonds. 

The rapid dynamics of the small water molecule combined with its ability to establish H-

bonds in a large variety of ways makes it a particularly difficult molecule to observe and 

measure. This overview is separated into two sections: measurement of hydrogen bonds 

and measurement of water. Although many of the methods used to observe water 

molecules are analogous to those used to observe H-bonds in larger structures, the 

purpose of the second section is to highlight the experimental difficulty in pinpointing the 

presence of the water molecule itself, which lends some explanation as to why inclusion 

of water has been largely neglected in experimental practices (and also theoretical 

analyses). The reader is referred to [20] for a more detailed description of each method.  

2.1.1 Observing Hydrogen Bonds 

Experimental measurements of hydrogen bonds began early in the 20th century. 

Calorimetric results showed strikingly different latent heats of evaporation for H2O, HF, 

and NH3, compared to liquids of similar substances but whose interaction was 

predominantly due to van der Waals forces.2 There are two categories predominant in 

hydrogen bond (HB) observation: absorption methods and emission or scattering 

methods. These methods are summarized in Table 2.1. 

 

                                                 

2 van der Waals forces are non-covalent interactions between molecules which can be either attractive or 

repulsive. They include permanent dipole interactions, permanent dipole and induced dipole interactions 

(polarization), and induced dipole interactions (dispersion).  
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Table 2.1  Methods for experimental analyses of hydrogen bonds (HBs). 

 

Absorption Methods 

Microwave Spectroscopy - 3-300 GHz frequency range 

- Requires gas phase samples at low temperature 
with a permanent electronic dipole  

- Very precise; provides fundamental data on HB 
geometry and proton transfer  

- Restricted to simple molecules because of gas-
phase criterion 

IR spectroscopy - 400-4000 GHz  range 

- Requires simple compounds with little spectra 
overlap 

- Less expensive equipment than microwave 
spectroscopy but gives lower resolution   

Nuclear Magnetic 

Resonance (NMR) 
- 100-1000 MHz frequency range 

- Can observe spectra in solution environments 

- Very precise; high resolution 

- Provides structural determination of 
macromolecules (including proteins) 

- Can directly observe HBs in proteins [21] 

X-ray absorption 

spectroscopy 
- 1020 Hz frequency range 

- Requires stable X-ray beam 

- Atom-specific probe, can indirectly provide 
precise local structural information 

- Some controversy surrounds the limits of XAS 
sensitivity for HB analysis in water [22] 

Emission (Scattering) Methods 

X-ray and Neutron 

Diffraction 
- Can be applied to very small crystalline samples 

- Small scattering factor for H means low 
precision for HBs (improved by deuterium 
substitution) 

- Precise determination of the structure of 
crystalline molecular complexes 

- Useful for liquids, e.g. to provide O-O distances 
to determine of average HB values 

Raman spectroscopy - Generally used for intermonomer symmetric 
vibrations below 400 GHz  

- Complementary to IR 

- Not sensitive to HBs, but useful for situations 
such as studying liquid water or other aqueous 
media where hypersensitivity is undesirable  

Incoherent Neutron 

Scattering 
- Generally accessible outside of IR region, below 

400 GHz 

- Complicated to implement 

- Takes advantage of the exceptionally large 

incoherent cross-section scattering of H-atom  

- Reports H-atom vibrations 

6
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2.1.2 Observing Water Molecules 

Most approaches described in this subsection are applicable to the analysis of water in 

macromolecular species such as proteins. Some macroscopic global experimental 

approaches are listed as well as the classical molecular methods and, finally, a more 

detailed description of the uses of IR is given. 

2.1.2.1 Global Methods  

Useful for the study of macroscopic quantities, global methods do not provide 

information at a molecular level. 

 

Thermogravity and calorimetry are generally used together. Thermogravity yields 

sorption isotherms by measuring the weight of water molecules that naturally embed in a 

sample in a saturated (humid) environment. Calorimetry is used to measure phase 

transitions as the temperature is varied. These phase transitions have indicated that 

embedded water clusters in the sample exhibit properties differing from those of bulk 

water [23]. Enthalpies of formation of H-bonds formed by the water molecules that have 

been inserted in the sample are often higher than corresponding enthalpies in liquid 

water. 

 

Dielectric measurements require frequencies less than a few GHz. They analyze 

collective motion in a sample, returning the conductivity of the sample at varying levels 

of hydration. This conductivity is a result of proton transfers and is highly sensitive to 

isotope substitution. At a critical value of hydration (~0.2) the conductivity of some 

proteins begins to increase exponentially [24]. This threshold is closely related to the 

occurrence of enzyme activity and may be a result of the ability of water to form a 2D 

conductive sheath around the protein [20]. 

2.1.2.2 Classical Molecular Methods  

These methods include X-ray and neutron scattering and NMR spectroscopy and can 

yield information on a molecular level.  
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X-ray scattering requires perfect ordering of crystals and is useful for specific cases such 

as ice and crystalline hydrates. When water is the only species present in the sample, 

radial distribution functions can provide averaged distance information. This is well 

documented for liquid water and various forms of ice. Because of their inherent disorder, 

it is difficult to obtain precise water data for many biological macromolecules. There are 

specific cases where water molecules have been identified using X-rays, such as the 

observation of proton wires in bacteriorhodopsin [25, 24], and cases where the water 

molecules may form a sort of “structural bridge” between two potentially H-bonding 

groups which are far apart. Note that in these cases the water molecules are the point of 

structural order rather than disorder, and this generally requires a presence of a minimum 

of water molecules so that disordered waters do not disrupt the observations.  

 

Neutron scattering is complementary to X-ray scattering, with the advantage that 

hydrogen atoms can be substituted for deuterium, with improved precision for isolating 

positions of D-bonds. Small-angle neutron scattering (SANS) can detect small clusters of 

H2O molecules. Although the small angle limits the resolution, a process of elimination 

combining H and D scattering patterns can be used to determine the position of these 

atoms with better precision (sometimes referred to as isotopic contrast approach). 

Inelastic neutron scattering (INS) is useful for determining water structure in low 

frequency regions where IR and Raman encounter difficulties. These methods have been 

applied to hydration dynamics of proteins [26]. 

 

NMR spectroscopy can observe H-bonding directly in small samples through chemical 

shifts or indirectly by establishing relaxation times for known groups. This is useful for 

H2O molecules when embedded in a macromolecule because the H-bond dynamics are 

more rapid than those of the non-water H-bonds of the macromolecule itself. The method, 

called relaxometry or nuclear magnetic relaxation dispersion (MRD), is useful for 

hydration dynamics of proteins and some synthetic polymers [27]. MRD has been useful 

in understanding the role of water molecules in protein folding. 
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2.1.2.3 Vibrational Spectroscopy  

The methods discussed in this section are predominantly IR-based. This method has 

developed into a sensitive and precise approach to observe the presence of hydrogen 

bonds in water-solute interactions. 

 

Attenuated total reflection (ATR) passes the IR beam through a high refractive index 

crystal that undergoes total reflection. The diluted IR beam reduces the ratio of 

transmitted to incident intensity so that the ATR analysis can achieve a much higher 

signal-to-noise ratio than transmission-based IR. ATR is a useful method for observing 

bulk water because it avoids the oversaturation limit. This has been applied in 

determining the similar density of the liquid water H-bond network and the ice H-bond 

network. Because IR can be performed on solvated species, it is a great advantage in the 

study of ions in solution as well as the structure of water at various interfaces. Hydrating 

water molecules can be discerned from bulk water because of their varying H-bond 

strengths. 

 

IR spectroscopy on thin samples minimizes the amount of sample rather than the light 

passing through it. This is particularly effective for studying the hydration of 

macromolecules with a total water thickness of less than 1 µm, avoiding the presence of 

bulk water contaminating the spectra. It is possible to obtain a quantitative measure of the 

water molecules present in the sample as well as the nature of the bonding interactions. 

 

Time-resolved nonlinear IR spectroscopy. With this method it is possible to obtain 

information about the dynamics of the environment surrounding the H-bond vibrations as 

well as the nature of the vibrations themselves. Furthermore, this method is isotope-

sensitive: deuterated species have a significantly different relaxation time for various 

bending and stretching vibrations. H/D substitution/dilution methods are especially useful 

for resolving the structure and dynamics of water around solvated ions and simple 

organic molecules. 
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Near infrared (NIR) and Raman spectroscopic methods are also useful tools for the 

observation of water and water-interactions, complementary to IR measurements. They 

absorb in a region of much lower saturation and can therefore provide information similar 

to that of ATR but at a lower cost because they are much simpler to implement. Although 

they are effective in a very limited range, they are useful for analysis of water presence in 

the food and medicine industries.  

 

Sum frequency generation vibrational spectroscopy (SFG) is a powerful tool for 

evaluating molecular information at liquid interfaces [28]. It is a nonlinear spectroscopic 

analysis involving simultaneous evaluation in the visible-UV region and the IR region. 

This method has proven particularly useful for evaluation of the solvation properties of 

ions at vapor-liquid and liquid-liquid interfaces, with special attention to hydrogen bond 

orientation in these environments [29]. A special case of SFG is second harmonic 

generation (SHG), which has also been used to probe air-water interfaces. 

 

Although there have been incredible advances in the equipment and techniques for 

experimental observation of water and water interactions, many of these approaches 

require highly specialized equipment and are difficult if not impossible to perform on a 

broad spectrum of samples. In light of this, the benefits of the relatively low-cost 

implementation of theoretical methods become very evident, either to supplement 

available experimental data, or to make predictions about details inaccessible to 

experiment. 
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Chapter 3 Theoretical Methods 

 

An overview of some theoretical methods has been included in this section to outline 

the inherent strengths and limitations of the methods used within this thesis. In the 

following section the Schrödinger equation and its development into Hartree‒Fock theory 

is briefly explained. Post-Hartree Fock methods and density-functional theory are then 

introduced as well as basis sets and solvent models. Methods to evaluate the potential 

energy surface of clusters and molecules are introduced next. The chapter concludes with 

an in-depth look at Bader’s quantum theory of atoms in molecules. These theoretical 

methods have been included because they are largely applied in the following research. 

The reader is also referred to the resources referenced in the chapter for more in-depth 

discussions of the chapter material. 

3.1 The Schrödinger Equation and More 

The ability to describe chemical phenomena using computational methods began with 

Schrödinger’s combination of the de Broglie equation with wave behaviour equations, 

yielding mathematical expressions (called wavefunctions) that could successfully 

represent the behaviour of electrons [30]. These wavefunctions are single-valued, 

continuous and finite, and have to be normalized so that they integrate to the exact 

number of electrons present in the system. To satisfy the Pauli exclusion principle, the 

wavefunctions are also antisymmetric with respect to the permutation of any two 

electrons. The Schrödinger model thus turned the one-dimensional Bohr model of atoms 

into a three-dimensional model capable of exactly describing a system of electrons, 

protons and neutrons. Written in operator form, the time-independent Schrödinger 

equation is 

 𝐻̂Ψ = 𝐸Ψ (3.1)  

where Ĥ is the Hamiltonian, E is the energy of the system, and Ψ is an N-body 

wavefunction. The Hamiltonian is a quantum mechanical equivalent to the classical total 

energy, but with the kinetic (T) and potential (V) energy terms replaced by their 



 

12 

 

respective quantum operator representations, 𝑇̂ =
𝑝2

2𝑚
 and 𝑉̂ = 𝑉, where 𝑝̂ is the 

momentum operator, 𝑝̂ = −𝑖ℏ∇, and m is mass. This yields the expression 

 
𝐻̂ =  𝑇̂ + 𝑉̂ =  

−ℏ2

2𝑚
 ∇2 + 𝑉(𝑟) (3.2)  

The Schrödinger equation is simplified by applying the Born-Oppenheimer (BO) 

approximation [31] and considering only the time-independent solution; however, 

because of the quantum behaviour of electron-electron interactions, even with these 

approximations it is too complicated for practical application. This solution to the 

Schrödinger equation can therefore be solved only for simple, one-electron systems, e.g. 

the hydrogen atom. 

Hartree‒Fock (HF) theory presented the first approximation yielding a manageable 

solution. If the wavefunction is represented as a single Slater determinant of N orbitals, 

𝜓𝑁, that satisfy the Pauli exclusion principle due to its antisymmetry, i.e.: 

 

Ψ =
1

√𝑁!
 ||

𝜓1(𝑥1) 𝜓1(𝑥2)
𝜓2(𝑥1) 𝜓2(𝑥2)

… 𝜓1(𝑥𝑁)
… 𝜓2(𝑥𝑁)

⋮ ⋮
𝜓𝑁(𝑥1) 𝜓𝑁(𝑥2)

⋮
… 𝜓𝑁(𝑥𝑁)

|| (3.3)  

(space and spin coordinates are included in the x variable), then applying the Hamiltonian 

to this wavefunction will yield a set of Hartree‒Fock equations which are one-electron 

equations resembling single-particle Schrödinger equations. They include a kinetic 

energy contribution, an electron-nuclear interaction, an electrostatic potential arising from 

the distribution of N electrons, and an exchange term which guarantees that like-spin 

electrons will avoid each other: 

 
𝜀𝑖𝜓i(𝐫) = (−

1

2
∇2 + Vnuc(𝐫))𝜓i(𝐫) + ∑∫d𝐫′

|𝜓j(𝐫
′)|2

|𝐫 − 𝐫′|
j

 𝜓i(𝐫)

− ∑δσiσj∫d𝐫
′
𝜓j
∗(𝐫′)𝜓i(𝐫

′)

|𝐫 − 𝐫′|
j

 𝜓j(𝐫) 

(3.4)  

Here 𝜀𝑖 is the energy eigenvalue associated with 𝜓i(𝐫),  r represents the electron 

coordinates, Vnuc is the electron-nuclear potential and i and j are two electrons.  

To solve this expression numerically it is first assumed that the one-electron solutions for 

a multi-electron atom will closely resemble the one-electron solutions for the hydrogen 
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atom (i.e. an atomic orbital), and then the unknown molecular orbitals (𝜓𝑖) are expressed 

as some linear combination of a finite (basis) set of these atomic-like orbitals, called basis 

functions, 

 

𝜓𝑖 =∑cik𝜙k

M

k

 (3.5)  

where 𝜙k are the atomic orbital representations and cik are orbital coefficients. This is the 

linear combination of atomic orbitals (LCAO) approximation. Combining the LCAO 

approximation with the HF equations yields the Roothaan-Hall equations: 

 

∑(Fμν − εiSμν)cνi = 0

η

ν

 (3.6)  

where 𝜀𝑖 are orbital energies, S is an overlap matrix between the basis functions, and F is 

the Fock matrix: 

 𝐹𝜇𝜈 = 𝐻𝜇𝜈 +∑∑𝐶𝜆𝑎𝐶𝜎𝑎
∗

𝜆𝜎𝑎

[2(𝜇𝜈|𝜎𝜆) − (𝜇𝜆|𝜎𝜈)] (3.7)  

The first term, 𝐻𝜇𝜈, is a one-electron Hamiltonian matrix and the second term 

incorporates the electron repulsion missing from the one-electron term. The Fock 

operator yielding this matrix is a combination of the one-electron Hamiltonian operator 

(ℎ ̂ =
−∇2

2
+ ∑

−𝑍𝐴

𝒓𝑖𝐴
𝐴  ), the Coulomb operator (𝐽 = ∫d𝐫′

|𝜓j(𝐫
′)|2

|𝐫−𝐫′|
), and the exchange operator 

(𝐾 𝜓i(𝐫) = ∫ d𝐫
′ 𝜓j

∗(𝐫′)𝜓i(𝐫
′)

|𝐫−𝐫′|
 𝜓j(𝐫)): 

 𝐹̂ = ℎ̂ +∑ [2𝐽 − 𝐾̂]
𝑛

 (3.8)  

The methods that derive from the solutions to the Roothaan-Hall equations are 

Hartree‒Fock or ab initio methods and the corresponding energy is the Hartree‒Fock 

energy. While relatively easy to obtain, and applicable to fairly large systems (the 

computing cost for HF scales as N4, where N is the number of basis functions), in 

Hartree‒Fock theory each electron can only see the others as an average potential. This 

removes any possibility of correlation between the electrons and results in an 

overestimation of the electron-electron repulsion, yielding an energy that is too high. The 

correlation energy is defined as the difference between the HF energy and experiment. 
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Note that HF theory fails especially in situations of bond breaking or bond formation, as 

the electrons will not be correctly localized on the nuclei when the bond is stretched.  

3.2 Post Hartree‒Fock Methods 

Post Hartree‒Fock methods have been developed which greatly improve the original 

limitations. These methods are generally of two classes: variational and perturbative. 

Both methods have unique advantages and are commonly implemented in the literature. 

In variational methods the ground state energy (E0) is known to be a minimum of the 

expectation value of all possible trial functions 𝜓(x):  

 
E0  ≤  ∫𝜓

∗(x)Ĥ𝜓(x)dx (3.9)  

By variation of these trial functions one can optimize the expression to find the lowest 

energy, yielding a good estimate to the Hamiltonian. Variational methods include 

configuration interaction (CI) and multi-configurational self-consistent field (MC-SCF). 

They are systematic, accurate, and converge to the correct answer, but can be very CPU 

intensive and non-size consistent. 

An alternative method is a perturbative approach. Perturbation techniques first 

separate the exact equation into two parts: an exactly solvable expression that will yield 

an approximate solution, and an expression that corrects the first expression but cannot 

itself be exactly solved. Consider the equation 

 𝐻̂ =  𝐻̂0 + 𝑉̂ (3.10)  

𝐻̂ gives the exact but unsolvable expression, 𝐻̂0 gives the solvable but inexact 

expression, and 𝑉̂ is the perturbation that corrects 𝐻̂0. This perturbation is assumed to be 

small compared to 𝐻̂0. Commonly used perturbative approaches include the MPN 

methods developed by Møller and Plesset in the 1930’s and the coupled cluster (CC) 

approaches3, which derive from the many electron theory (MET) originally developed by 

Sinanoğlu in 1961. These methods are generally efficient and are size-consistent; 

                                                 

3 Although not strictly categorized as perturbative, CC methods are closely related to many-body 

perturbative approaches and often include perturbative approximations.   
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however, they can be non-convergent and are not always appropriate for complex 

species. For example, CC methods rely heavily on the choice of a good starting 

reference (𝐻̂0), and MP methods oscillate around convergence, meaning there is no 

guarantee that MP3 (third order MP theory) will provide a more accurate result than MP2 

(second order MP theory). Second-order perturbations are considered acceptable for 

accurate results with relatively reasonable scaling. For benchmarking quality calculations, 

coupled cluster methods are generally used. The most common CC method is CCSD(T), 

which is based on an iterative solution of the single and double (SD) excitations with a 

non-iterative perturbative correction for the triples (T). The CCSD(T) approach is a good 

compromise between the chemical accuracy of the higher-order CCSDT (full triples) 

method and the computational efficiency of low order many-body perturbation theory 

(MBPT). Even with this compromise the CCSD(T) method scales at N7. The scaling 

behaviour of some ab initio methods are listed in Table 3.1. 

 

Table 3.1: Scaling behaviour of some ab initio methods.  

Scaling Behavioura Method 

N4 HF 

N5 MP2 

N6 MP3, CISD, CCSD, QCISD 

N7 MP4, CCSD(T), QCISD(T) 

N8 MP5, CISDT, CCSDT 

N9 MP6 

N10 MP7, CISDTQ, CCSDTQ 
aN is the number of basis functions. 

3.3 Møller-Plesset Perturbation Theory 

Because the Møller-Plesset perturbative method is frequently used in this thesis it will 

be discussed in further detail. This approach is based on the many-body Rayleigh-

Schrödinger perturbation theory. To begin, consider that the nature of the ground state 

Hartree‒Fock approximation to the Schrödinger solution yields an exactly solvable 

expression that is slightly incorrect due to the missing electron correlation. The electron 

correlation energy, however, is generally only a small percent of the total energy 
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(typically about 1%); such a small correction could thus be considered a perturbation of 

the exact solution. The Hartree‒Fock approximation is thus an ideal starting point for a 

perturbative investigation of the exact solution to the Schrödinger equation. In 1934, 

Møller and Plesset [32] demonstrated a simplified approach to obtain the perturbative 

corrections by combining the treatment of the Hartree-Fock solution as a zeroth order 

approximation to the energy, together with Brillouin’s theorem, which states that the first 

order correction to the energy and charge density will be equal to zero. 

Møller-Plesset perturbation theory (MP) is desirable in part because of its size 

extensivity, meaning that it can be easily compared over calculations involving varying 

numbers of electrons, and the predicted energy for every order of perturbation of the 

system scales with the number of non-interacting particles present in the system. A very 

important characteristic of the MP method is that it evaluates diffuse systems and can 

correctly evaluate reaction barriers at relatively low cost. MP methods also include the 

dispersion interactions of electrons, which are not accounted for in many popular density-

functional theory methods. Because of the computational cost of higher order MP (i.e. 

fourth order and greater), most calculations are restricted to small or medium sized 

systems calculated at the second order (MP2).  

3.4 Density-functional Theory 

An important property of the wavefunction is its description of the probability density, 

which is the foundation for density-functional theory (DFT). The probability density 

gives the probability of finding an electron within a small volume element dr, while all 

other N-1 electrons have position and spin defined as averages by the wavefunction: 

 
ρ(𝐫) = N∫ |Ψ(𝐱1, 𝐱2, … , 𝐱N)|

2 ds1d𝐱2…d𝐱N. 
(3.11)  

The probability density integrates to the number of electrons in the system and vanishes 

at infinity. The electron density is a physically observable quantity and can be measured 

experimentally, e.g. using X-ray diffraction. To define the probability of not one but two 

electrons, having defined spins 𝜎1and 𝜎2, within two small volumes dr1 and dr2, with the 
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remaining N-2 electrons having averaged-out positions and spins, the pair density is 

written as: 

 
ρ2(𝐱1, 𝐱2) = N(N − 1)∫⋯∫|Ψ(𝐱1, 𝐱2, … , 𝐱N)|

2d𝐱3…d𝐱N 
(3.12)  

The pair density integrates to the number of pairs in the system and also vanishes at 

infinity.  

Hohenberg and Kohn proved two ground-breaking theorems in 1964 [33]. The first is 

that every external potential is associated with a unique electron density and every 

electron density is associated with a unique external potential. The second states that the 

total density ρ(r) can be used as a trial variation function in multi-electron theory, 

indicating that any positive definite N-representable trial density that integrates over all 

space to give the total number of electrons in the system will have an energy greater than 

the ground state energy. The first theorem shows that all properties of an N-electron 

system can be considered as functionals of the potential (v) because the potential maps to 

the wavefunction (v→Ψ) and the wavefunction determines all properties. The ground 

state energy functional is written as: 

 
E0 =  E[ρ(𝐫)] = T[ρ(𝐫)] + Vee[ρ(𝐫)] + ∫Vextρ(𝐫) 

(3.13)  

where T[ρ(𝐫)] is the electronic kinetic energy, Vee[ρ(𝐫)] is the electron-electron 

interaction, and ∫Vextρ(𝐫) is the energy of the electron-nucleus interactions resulting 

from the external potential. The second theorem requires Ev(ρ
′) ≥ Ev(ρ) for all v-

representable trial densities of ρ′.  

A difficulty in DFT arises because the Hohenberg-Kohn (HK) theorems require an 

exact form of a functional that maps the ground state density with the ground state 

energy, but give no indication of how to construct this functional. Also, the requirement 

of potential-representability (as well as N-representability) is very difficult to satisfy in 

practice. Kohn and Sham published the solution to this v-representability problem in 

1965 [34], introducing a noninteracting system of electrons with the same density (ρ(r)) 

as the interacting system. It assumes that the resulting noninteracting v-representabilities 

from this density can be mapped onto interacting v-representabilities.  It is thus possible 

to set up a noninteracting reference system with a Hamiltonian in which there is an 
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effective local potential that will yield the exact density of the interacting system. The 

wavefunction of the non-interacting electrons is just the correlation-free Slater 

determinant, consisting of N Kohn-Sham orbitals, 𝜓𝑖
KS. These are similar to the orbitals 

described in Hartree‒Fock theory except that rather than approximating the true N-

electron wavefunction they exactly represent the N-electron noninteracting wavefunction. 

From the Kohn-Sham orbitals one can obtain the density (as in HF theory): 

 

ρ0(𝐫) =  2∑(𝜓𝑖
KS

N

𝑖=1

)2 
(3.14)  

This noninteracting system can also be used to define the exact noninteracting kinetic 

energy, T0(ρ), which is related to the interacting kinetic energy, T(ρ), by a small 

correction term, ΔTc: 

 
T0(ρ) = −

1

2
∑2 

𝑖

∫𝜓𝑖∇
2𝜓𝑖 = T(ρ) − ΔTc 

(3.15)  

By replacing the electron-electron interaction energy, Vee(ρ), with the exactly known 

classical Coulomb repulsion energy of the charge distribution, J(ρ), the original HK 

ground state energy can be rewritten as: 

 
E0 = T(ρ) + Vee(ρ) = T0(ρ) + J(ρ) + Exc(ρ) 

(3.16)  

Here the Exc is the exchange-correlation energy and represents all non-classical 

contributions to the energy, including electron-electron interaction and corrections for 

self-interactions and the noninteracting kinetic energy, ΔTc. Recall that T0(ρ) and J(ρ) 

are exact solutions for the non-interacting system, and therefore Exc, a relatively small 

percentage of the total energy, is the only expression that needs to be approximated.  

This remarkable solution to the HK problem is only useful if there is a way to 

approximate the functional which yields an accurate value for Exc. Quality of the “density 

functional” is thus hinged on the quality of the chosen exchange-correlation functional. 

The heart of developing density-functional theory is centered on finding better and better 

approximations to Exc. This is no simple challenge as there is no systematic way to 

improve the approximate functionals. Despite this, theoreticians have formulated 

approaches that can very accurately incorporate the exchange-correlation interaction 

between electrons in most systems. For a detailed review of the progression of their 
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development, from local density approximations (LDA) through generalized gradient 

approximations (GGA) to hybrid functionals such as the ever popular B3LYP, the reader 

is referred to Koch and Holthausen’s text: A Chemist’s Guide to DFT [35]. For a detailed 

discussion of the nature of Exc, including the character of the “electron hole” and other 

insightful discussions the reader is referred to Chapter 6 of this same reference, as well as 

section 6.4 in Jensen’s Introduction to Computational Chemistry [36]. 

A major concern for DFT methods was their initial inability to include dispersion 

interactions. Because of their accessibility and efficiency, DFT methods are commonly 

applied to large biological systems including proteins and enzymes. Although DFT can 

represent the stationary states of these systems at very low cost, weak interactions such as 

hydrogen bonding and van der Waals interactions are common in these systems and early 

DFT failed to correctly represent these important non-covalent interactions. This can be 

partially circumvented by including an empirical dispersion term, such as has been 

developed by Grimme [37] and Wu and Yang [38], or the exchange-hole dipole moment 

(XDM) dispersion correction of Becke and Johnson [39, 40]. Empirical corrections add 

minimal costs and can yield very good approximations. Reference [41] provides a 

thorough discussion of some current DFT-based techniques for including dispersion. 

3.5 Basis Sets 

Due to the impact of choosing the correct basis set on the calculation’s accuracy, the 

fundamentals of basis sets should be introduced. Recall that the wavefunction, Ψ, was 

originally represented as a Slater determinant, which is an antisymmetrized product of the 

orbitals that represent the electrons in the system. These orbitals are in turn described by 

a linear combination of a finite set of functions known as basis functions: 

 

𝜓𝑖 =∑cik𝜙k

M

k

 
(3.17)  

The shape of these orbitals can be defined in many plausible ways. A “minimal” basis 

set is defined as the simplest way of describing each electron in the system using atomic 

orbitals. For a minimal basis, Slater-type orbitals (STOs) were originally applied because 

they correctly describe the shape of an atomic orbital:  
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𝜙k =  𝐴𝑒

−𝛼𝑟 
(3.18)  

However, STOs have a complicated description, including a discontinuity (cusp) at their 

apex which makes their application in practice very difficult. The next best 

approximation is a Gaussian type orbital (GTO), which approximates the shape of the 

STO but does not have a discontinuous cusp (see Figure 3.1) and is much simpler to 

describe. In order to better approximate the shape of the STO (because this represents the 

actual shape of the desired atomic orbital) the primitive GTOs can be factorized into 

Cartesian parts and a linear combination of several different GTOs having different 

exponential values can be used to describe one STO. These are referred to as contracted 

GTOs (cGTOs). The notation STO-nG denotes that n Gaussians have been used to 

represent each STO in a minimal basis set.  

 
Figure 3.1: On left: STO s-orbital for hydrogen plotted in blue showing cusp at r = 0 

(center of nucleus) as well as one GTO orbital plotted in red showing that ∆𝜙i 

approaches zero at the nucleus. On right: GTO expansion (STO-3G) in black nearly 

reproduces STO (blue) except at r = 0 (nuclear cusp). Dashed lines are the three GTO 

wavefunctions that comprise the STO-3G basis set. 

Minimal basis sets are centered on the nuclei and provide an accurate description for 

atoms in spherical or near-spherical environments. They are, however, insufficient to 

accurately describe polarized molecular systems where the electron density may be 

shifted away from the atom center (into bonding regions, for example). This shortcoming 

can be rectified by splitting the description of the atomic orbitals in the minimal basis into 
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two or more contraction/expansion functions which have different radial extents. If only 

the valence electrons are split they are termed split-valence functions, simplifying the 

calculation by assuming that the core electrons can be well-represented by the atomic 

orbital (a fairly accurate assessment). Polarization is included by increasing the angular 

flexibility of the basis functions through supplementing heavy atoms with a set of d 

functions and hydrogen atoms with a set of p functions. An increased angular flexibility 

on the hydrogen atoms is particularly important for describing weakly interacting systems 

such as van der Waals interactions and hydrogen bonds. Diffuse functions (with low 

exponential values) can be included to increase the range of the valence orbitals. These 

are also important for weak interactions such as van der Waals forces and hydrogen 

bonds. 

John Pople developed one of the most commonly applied basis sets, made popular by 

the Gaussian suite of programs. This set optimizes the orbital coefficients at a Hartree‒

Fock level, with the s and p contracted GTOs associated with the same quantum number 

given the same exponential constant (note that the coefficients for these cGTOs are 

different). Pople’s nomenclature for basis functions has standardized the terminology for 

general application. The Pople basis set can be described by the formula: k-nlmG, where 

k describes the number of primitives used for the core atomic orbitals; n, l, and m 

describe the type of splitting and number of primitives that are used for the valence 

function; and G refers to the gaussian type orbitals. The basis used can be supplemented 

with terms for inclusion of polarization (*) and diffuse functions (+). For example, the 

popular 6-31+G(*) basis set has 6 primitives used for each core orbital, 3 primitives and 1 

primitive for each split valence, and a diffuse set of functions (+) plus one polarization set 

of functions (*) added to non-hydrogen atoms only.  

Thom Dunning later considered that because the Pople basis set were optimized using 

Hartree‒Fock, they may not perform well for correlated systems. He optimized basis sets 

using correlated configuration interaction wavefunctions, designed to converge smoothly 

as they approached the complete basis set limit (i.e. an infinite number of basis 

functions). These are called correlation consistent basis sets and have nomenclature that 

differs from the Pople basis sets. For example, “cc-pVXZ” describes a “correlation 

consistent, polarized valence X-zeta basis” where X refers to the level of splitting of the 
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valence functions: double (D), triple (T), quadruple (Q), 5, 6, 7, and so on. The Dunning 

basis sets include polarization by definition.  It is also possible to augment the basis set 

with diffuse functions using the aug- prefix. One diffuse function of each function type in 

use for a given atom is added. For example, the aug-cc-pVTZ basis places s, p, and d 

diffuse functions on hydrogen atoms, and p and d, or d and f diffuse functions on B 

through Ne and Al through Ar, respectively.  

3.5.1 Basis Set Superposition Error 

A further concern with respect to the accuracy of the chosen basis set is the possibility 

that the overlap of unoccupied orbitals might lower the energy of a complex with respect 

to its infinitely separated fragments. This is called the basis set superposition error 

(BSSE). The nature of this error is a result of the ability for basis functions present on one 

fragment to augment those on the second fragment, improving the accuracy of the energy 

calculated for the interacting structure. This augmentation is not present for the separated 

fragments and therefore the conditions for the comparison are no longer equal. In a very 

small way it is similar to evaluating pieces of a reaction using different basis sets and 

then directly comparing their energies.  

One of the most common solutions to this error is the counterpoise (CP) correction as 

proposed by Boys and Bernardi [42]. In the CP correction scheme a single point energy 

for the separated fragments is calculated within the presence of the basis set for the 

complex. The extra empty orbitals are usually called ghost orbitals. This modification can 

only partially correct for BSSE because the presence of the empty orbitals may influence 

the geometry of the fragment complex, which is unaccounted for. Some modified 

schemes incorporate a geometry optimization with the ghost orbitals present in an attempt 

to improve the accuracy of the CP corrections [43, 44]. 

There are some cases where BSSE corrections are intentionally not included; for 

example, if it is generally known that a theory or method overestimates interaction 

energies the BSSE can provide a “fortuitous cancellation of errors”. Benchmark studies 

also reveal that as the size of the basis set increases the BSSE is minimized [45]; for 

systems with very large basis sets it may not be necessary to include a BSSE correction.  
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3.6 Solvent Models 

The importance of solvent interactions, combined with increases in computing 

capacity, has prompted researchers to develop a variety of methods for including a 

solvent-like environment. These methods range from the dramatically simplified effect of 

treating the solvent as a uniform polarizable medium, to explicitly including the solvent 

molecules at varying levels of theory. Although ideal, the computational cost of including 

explicit solvent molecules at the quantum chemical level is often prohibitive. Reducing 

the solvent representation to an empirical or semi-empirical model is possible using, for 

example, QM/MM and ONIOM methods4, and is often implemented in situations where 

the physical presence of the solvent molecule may be important (e.g. for waters inside an 

enzyme pocket). In order to provide a more complete description of the current 

approaches that classically include explicit solvent, an entry in the appendices has been 

included to briefly describe properties of some common water models. See Appendix A.1 

for further information. 

 Even the simplified approach of a continuum model can have profound effects on the 

final structure of optimized systems. Bond lengths are altered and charge separations are 

stabilized, e.g., zwitterionic glycine is more stable when modeled with an implicit solvent 

than in gas phase, correlating with experiment. Energies are also affected dramatically, 

especially when ions are present: the effect of implicit solvation on an ion can change the 

total stability by hundreds of kJ mol-1. This method is applied in Chapter 7 and the 

following section will therefore introduce continuum solvation models, in particular the 

polarizable continuum model used for self-consistent reaction fields (PCM-SCRF) as 

                                                 

4 QM/MM is a combined quantum mechanics and molecular mechanics method which allows the area of 

interest (the solute) to be represented quantum mechanically and the solvent area to be represented using a 

molecular mechanics description. ONIOM is a method available in the Gaussian code, originally developed 

by Morokuma and coworkers [154]. The acronym stands for “Our own N-layered Integrated molecular 

Orbital and molecular Mechanics”. 
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applied in the Gaussian 09 program.5 Further information on this and other models is also 

available in several reviews and reports [46-50]. 

3.6.1 Continuum Models 

Continuum models treat the solvent as a uniform polarizable medium surrounding a 

cavity which contains the solute molecule. The free energy of solvation is a sum of the 

energy required to form the cavity and the dispersion/repulsion and electrostatic 

interactions between solute and solvent: 

 

 
Δ𝐺𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛 = Δ𝐺𝑐𝑎𝑣𝑖𝑡𝑦 + Δ𝐺𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛−𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑜𝑛 + Δ𝐺𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 

(3.19)  

Several factors affect how Δ𝐺𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛 is evaluated. These include cavity definition 

and how its contribution is calculated, calculation of the solute’s charge distribution, and 

the description of the electric medium. For SCRF calculations, the step-wise quantum 

optimization of the solute molecule presents the need for communication between the 

changing solute and responding solvent: the calculated electronic structure of the solute 

will induce a solvent response which in turn influences the solute’s electronic structure, 

and thus must be evaluated at each optimization step. The ease of this evaluation depends 

partially on the cavity description, which should have a physical meaning, exclude the 

solvent and contain as much as possible of the solute charge distribution.  A simple 

spherical cavity can be solved analytically, as in the Onsager model; however, the 

crudeness of this approach yields very poor accuracy. The default method in Gaussian 09 

is the integral equation formalism (IEF) PCM [51], and uses van der Waals (vdW) radii 

to define the cavitation term and then defines the dispersion-repulsion term by tracing out 

the solvent accessible surface (SAS) along a parameter-scaled vdW surface with a probe 

sphere that has its radii adjusted to reflect the solvent (see Figure 3.2). This describes the 

non-solvent accessible cavities which may be present in the solute. The solvent excluded 

surface (SES) is used to evaluate the electrostatic term. Evaluation of the surface charges 

                                                 

5 Not only is there a wide variety of available solvent models, the implementation in quantum chemistry 

modelling software is also diverse. For example, the Q-Chem implementation of an IEF-PCM model is in 

some respects wholly different from the Gaussian 09 algorithm. 
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(defining the reaction field) is achieved by tessellating the SES and calculating one point 

charge per surface element. The IEF method is a combination of Gaussian’s original 

dielectric PCM (D-PCM) with inclusion of a careful outlying charge correction that 

renders it less sensitive to diffuse solute charge distributions. 

 

 
 

Figure 3.2: Solvent accessible and solvent excluded surfaces defined by a probe 

molecule and the atomic van der Waals surface of the solute molecule. 

3.7 Potential Energy Surfaces and Minimization Techniques 

The methods used for minimum energy searches (MESs) [52] and to describe potential 

energy surfaces (PESs) become increasingly important when exploring highly 

complicated PESs, such as in water cluster minimizations. Minimum energy searches 

attempt to locate the global or local energy minimum of a molecule. The potential energy 

surface represents the relationship between the geometry of a molecule and its energy. In 

quantum mechanics this energy is defined using the wavefunction associated with the 

arrangement of nuclei. The PES is used to define stationary points corresponding to 

stable minima and transition structures, and to map the lowest energy pathways between 

them. This information can be represented graphically as in Figure 3.3. Valleys show 

lowest energy paths between stationary points, saddle points are transition states, and the 

paths connecting them are reaction coordinate paths. The lowest points in a valley or 

depression are the local minima and the lowest point on the PES is the global minimum.  
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Figure 3.3: Example potential energy surface for the reaction of two species A and B. 

The red line traces out the reaction coordinate path (graphic reproduced from [53]). 

The type of stationary point can be determined through the Hessian index, which is the 

number of negative eigenvalues present in the force constant matrix. This also 

corresponds to what are called “imaginary vibrational frequencies”. A stable minimum 

should have a Hessian index of zero and transition states have Hessian indexes of 1. It is 

possible to follow the negative eigenvalues represented in the Hessian index to travel to 

stable minima.  

Computational packages employ various algorithms to search for the local and global 

minima on this PES. Probably the most well-known algorithm used for minimum energy 

searching is the Berny optimizer [54] available in the Gaussian program, although other 

approaches are available. For large systems such as proteins or explicitly solvated 

molecules the PES is often too complicated to evaluate using quantum mechanics (QM) 

and molecular mechanics (MM) approaches can be used to obtain a reasonable starting 

point for subsequent QM analysis. These approaches minimize a potential energy 

function, which describes the energy of the system as a function of the nuclei based on 

classical parameters. Because there is no electronic description, quantum phenomena 

such as covalent bond-breaking cannot occur. Several classes of minimization methods 
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commonly applied in MM minimization techniques include search, gradient, and Newton. 

See Table 3.2 for a brief description of these approaches. 

Table 3.2: Minimization techniques commonly used in molecular mechanics to isolate 

local and global minima on a PES. 

Method Advantages Disadvantages 

   

Search methods use only values 

of the function itself. Often 

used as a starting point when 

the system is far from the 

minimum 

- Very simple code to 

implement 

- Will always find a 

minimum 

- Slow and inefficient for 

large numbers of 

optimized variables (i.e. 

anything greater than 10) 

Gradient methods use values of 

the function as well as its 

gradient. A “conjugated 

gradient approach” is the most 

commonly used. 

- Have a greater 

convergence rate than 

search methods 

- Do not require a large 

amount of memory 

- May fail to converge 

 

Newton methods use values of 

the function as well as first and 

second derivatives.  

- Rapid convergence 

 

- Extensive memory 

requirements for 2nd 

derivatives 

 

There is also the possibility that the minimum found will be a local minimum rather 

than a global minimum. One method to search for the global minimum is simulated 

annealing, which involves increasing the temperature to provide enough energy to allow 

the structure to move out of a local minimum valley, and then very slowly cooling the 

system in an attempt to allow the structure to reach the global minimum conformation. 

Monte Carlo simulations can also be useful for global minima searches where non-

physical transitions are required; in this method a large number of conformations are 

sampled and the lowest energy structures are reported [55].  
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3.8 Quantum Theory of Atoms in Molecules 

The electron density of an atom in a molecule or crystal determines its additive contribution to all 

properties of the total system, its transferability being determined by a paralleling degree of 

transferability in the atom’s virial field, the virial of the Ehrenfest force exerted on its electron 

density. 

 

 – R. F. W. Bader [56] 

 

The quantum theory of atoms in molecules (QTAIM) was developed by Richard Bader 

and his collaborators over the course of several decades, beginning in 1963. The insight 

into the electronic makeup of molecules resulting from this theory has proven it to be a 

very useful tool for interpreting many chemical phenomena. In this chapter several 

concepts contained within QTAIM theory are explored. These include: the physics of 

molecules and atoms defined as open systems; the concept of an atom’s virial field and 

the importance of the Ehrenfest forces acting on its electron density; the ability to define 

the properties of an atom-within-a-molecule using the Heisenberg equation of motion; 

and the principle of stationary action. While this chapter cannot possibly cover all the 

details of QTAIM, it should introduce sufficient theory for an understanding of some of 

its strengths, limitations, and applications. Armed with these concepts the reader will be 

able to critically assess the research presented in later chapters based on QTAIM analysis. 

For a more thoroughly complete description of QTAIM and its varied applications the 

reader is referred to references such as [1] and [57]. 

3.8.1 Topology and Quantum Chemistry 

All observable properties of a molecule can be determined by its electron density. The 

electron density of a molecule is a function of the density of its electrons described in real 

space, 𝜌(𝒓). It is a physical, three-dimensional “object” that can be measured using 

experimental methods. The foundation of QTAIM stems from the ability to describe this 

density using a topological approach, yielding details about the nature of the attractive 

and repulsive interactions that guide the electronic and nuclear components of any 

molecular (or atomic) system.  The electron density topology is dominated by the 
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presence of nuclear attractors. The surface decays rapidly away from these points, 

resulting in a distinct pattern of peaks and valleys; see for example the electron density of 

the water trimer, Figure 3.4, which includes a contour map as well as a three-dimensional 

representation of the density in the plane of the central hydrogens. 

Gradient vectors of the electron density, ∇𝜌(𝒓), define trajectories containing 

information of physical importance. Sets of these trajectories terminate at the maxima 

found at each nucleus, which is why the nuclei are termed attractors. These trajectories 

(also called gradient paths) trace out defined basins within the molecular system; a basin 

encompasses a set of gradient paths terminating at an attractor. Each attractor (nucleus) is 

thus associated with its surrounding basin and an “atom” is defined as the combination of 

a basin with its nuclear attractor (see Figure 3.5). The surface bounding the basin is 

defined by a zero-flux condition (∇𝜌(𝒓) ⋅ 𝒏 = 0, see eq. 3.26) and is not crossed by any 

gradient vector.  

 

 

Figure 3.4 Electron density of water trimer in the plane of the three central hydrogens as 

a contour map (left) and projected in three dimensions (right).  
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Figure 3.5: Water monomer showing bond paths (in blue), atomic basins described by 

gradient paths terminating at nuclear attractors (red=oxygen, grey=hydrogen), and the 

interatomic surfaces (black lines) defining the boundaries of the atomic basins. 

As in any topology terminology, points where the gradient is zero ( ∇𝜌(𝒓) = 0) are 

considered critical points and indicate either the maxima at the nuclei or local maxima, 

minima, and saddle points in the valleys between nuclei. Nuclear maxima are called 

nuclear critical points (NCP). The remaining critical points are defined by their Hessian 

matrix, consisting of the second derivatives of 𝜌(𝒓) which are elements of the tensors 

∇∇𝜌(𝒓) and can be diagonalized and written as: 

 

Λ =

(

 
 
 
 

𝜕2𝜌

𝜕𝑥′2
0 0

0
𝜕2𝜌

𝜕𝑦′2
0

0 0
𝜕2𝜌

𝜕𝑧′2)

 
 
 
 

 =  (

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

) (3.20)  

𝜆1, 𝜆2, 𝜆3 are the curvatures of the density at critical points and describe the changing 

terrain of the surrounding electron density. Critical points are assigned a rank (ω) and a 

signature (σ) based on the value and sign of their curvature values, written as (ω, σ). The 

rank is the number of non-zero values for the curvatures6 and the signature is the net sign 

of the sums of the curvatures’ signs. The rank and signature of the critical points defines 

                                                 

6 Cases where zero curvatures are present at a critical point indicate a mathematical instability and 

generally are not found in equilibrium charge distributions. Careful attention should be paid to any critical 

point with ω<3.   



 

31 

 

their type: nuclear, bond, ring, or cage. The four types of stable critical points are 

summarized in Table 3.3. 

Table 3.3: Rank and signature values for stable critical points, their corresponding 

density description, and the critical point type they describe. 

(ω, σ) Type of  𝝆 Type of critical point 

(3,-3) 𝜌 is a local maximum Nuclear critical point (NCP) 

(3,-1) 

𝜌 is a maximum in one plane and a 

minimum along a third axis 

perpendicular to this plane 

Bond critical point (BCP) 

(3,+1) 
𝜌 is a minimum in one plane and a 

maximum along a third axis 

perpendicular to this plane 

Ring critical point (RCP) 

(3,+3) 𝜌 is a local minimum Cage critical point (CCP) 

 

    The total number of all critical points is restricted by the Poincaré-Hopf relationship 

for isolated molecules and the Morse equation for infinite crystals7: 

 
nNCP − nBCP + nRCP − nCCP = {

1 isolated molecule

0 infinite crystal
 (3.21)  

Sets of lines that either connect critical points or originate at infinity and terminate at 

critical points are instructive in defining the bonding interactions between atoms and the 

interatomic surfaces that separate the atoms. The path of maximum electron density 

connecting two nuclei is called a bond path and generally describes a chemical bond. 

Information regarding the nature of this bond can be determined by the properties of the 

critical point corresponding to a maximum along this bond path (the bond critical point). 

An example of critical points and bond paths is shown in Figure 3.6. If only the nuclear 

attractor critical points and the lines of maximum density (bond paths) connecting them 

are represented it is called the molecular graph; this recovers the network of bonds that 

would generally be applied under chemical considerations. 

                                                 

7 Note that satisfaction of this relationship is not a guarantee that all possible critical points have been 

isolated. It is possible (although unlikely) that two missing critical points could cancel, e.g. if a RCP and a 

CCP were missing. 
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Figure 3.6: Molecular graph (on left) and molecular graph plus critical points (on right) 

for water hexamer prism. Critical points are labelled as in Table 3.3. 

The bond critical point is a special case in the topology of a molecule because the 

traditional character of a bond, such as in covalent, ionic, and weak interactions, can be 

recovered by evaluating its properties and the properties of the electron density at the 

critical point. Returning to the Hessian matrix, (3.20), the trace of this Hessian is the 

Laplacian of the density: 

 
∇2𝜌(𝒓) = ∇ ∙ ∇𝜌(𝒓) =

𝜕2𝜌

𝜕𝑥2
+
𝜕2𝜌

𝜕𝑦2
+
𝜕2𝜌

𝜕𝑧2
= 𝜆1 + 𝜆2 + 𝜆3 (3.22)  

In cases where ∇2𝜌(𝒓) < 0 at the BCP there is an open shell interaction, such as in 

covalent bonds. Polar bonding, i.e. C—X (X = O, N, F), can have an accumulation of 

density at the BCP but the Laplacian at this BCP may be of either sign. When electron 

density is depleted between the nuclei, as in the case where ∇2𝜌(𝒓) > 0, then it is a 

closed shell interaction, such as ionic or hydrogen bonding. The plane in which the 

density accumulates can also yield information as to the character of the bond. This is 

determined by the ellipticity of the bond, ε: 

 
𝜀 =

𝜆1
𝜆2
− 1 (3.23)  

Cylindrically symmetrical bonds occur when 𝜆1 = 𝜆2 and are typical of single or triple 

bond interactions. Double bonds show a deviation from 𝜆1 = 𝜆2, indicating an increase in 

π-character of the bond.  
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The value of the electron density at the bond critical point (ρBCP) is related to the 

strength of the chemical bond between the two nuclei: the bond order (BO).8 The 

relationship between ρBCP and BO is dependent on the nature of the interacting nuclei, 

and can generally be defined as: 

 BO = 𝑒A(ρBCP−B) (3.24)  

where A and B are constants specific to the nature of the bonding atoms. Another 

measure of the bond order is the electron delocalization between the bonded atoms. This 

“delocalization index” is an evaluation of the amount of exchange that occurs between 

the electrons in the basin of atom A and the electrons in the basin of atom B. It is defined 

for closed shell systems as: 

 
𝛿(𝐴, 𝐵) = 2|𝐹𝛼(𝐴, 𝐵)| + 2|𝐹𝛽(𝐴, 𝐵)| (3.25)  

where 𝐹𝜎is the Fermi correlation. This is described in detail in section 1.7.6 in reference 

[57].  

The ρBCP values for hydrogen bonds (HB-BCPs) can range over two orders of 

magnitude, i.e. ~0.002 a.u. to ~0.2 a.u. [11], and linear relationships between the bond 

strength and ρBCP have been reported for hydrogen bonded systems [58]. The lower end 

of the HB-BCP range corresponds to weak closed-shell interactions with positive ∇2𝜌 

values and the upper end corresponds to very strong interactions with negative ∇2𝜌 

values, indicating covalent bonding properties [11]. The water dimer has hydrogen bond 

BCP that is in the middle of this spectrum, 0.0247 a.u. at the MP2/aug-cc-pVTZ level of 

theory [4]. 

3.8.2 Partitioning the Electron Density Into Atomic Contributions 

QTAIM can describe a system of critical points and bond paths that represent the 

interacting subunits of a molecule using only the observable physical density in real space 

and without any qualitative or quantitative derivations in the form of molecular or atomic 

                                                 

8 The bond order is a method of quantifying the amount of bonding interaction between two atoms. It is 

defined as ½ the difference between the number of bonding electrons and the number of anti-bonding 

electrons present in the bond.  
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orbitals. Although it seems evident that the 𝜌(𝒓) topology can describe the chemical 

nature of the atoms in their molecules, it is imperative to prove the ability to construct 

this topology from purely quantum mechanical methods. If the atom is to truly exist as 

the fundamental building block of a molecule, the topological atom and the quantum 

atom must coincide within that molecule [1]. The following discussion justifies this 

within the zero-flux principle, followed by a description of atomic properties that are 

available because of this partitioning ability. 

In QTAIM, an atom is defined quantum mechanically as a region of real space (Ω) 

containing a nucleus that is bounded by surfaces through which there is a zero flux in the 

gradient vector field of the electron density. The zero-flux boundary condition is: 

 
∇ρ(𝐫s) ∙ n(𝐫s) = 0, for every point 𝐫s on the surface S(𝐫s) (3.26)  

The surfaces may be bounded by other atoms (interatomic surfaces) or may be bounded 

by infinity. These atoms are considered open systems: they are subject to fluctuations in 

charge and momentum felt through their boundaries. This status as an open system is the 

key to exactly partitioning the molecule into substituent atoms.  

The Schwinger principle (a generalization of the principle of stationary action) yields a 

variational derivation of Heisenberg’s equation of motion for any observable [59]. The 

relevance of the Schwinger principle for QTAIM is that it allows one to derive a quantum 

description of an open system, but only on the condition that the system satisfies the 

boundary conditions in equation 3.26. The derivation results in an identical expression for 

the change in action and content for both open and isolated systems, indicating that the 

total-molecular isolated system and its constituent atomic closed systems are described by 

the same physics (with the necessary constraint of the zero-flux condition). With this 

understanding, the molecular species that is partitioned into atomic basins will have 

measurable values for electronic properties such as atomic charges, volumes, energies, 

and the degree of electron delocalization between two basins. In mathematical terms, if 

these properties are said to be the expectation value of some operator 𝑂̂, the Schwinger 
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principle allows us to say that its expectation value, 〈Ô〉, averaged over all space, is the 

sum of the expectation values for 𝑂̂ averaged over all the atoms in the molecule9, 

 

〈Ô〉𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 = ∑ (N∫ ∫{
1

2
[Ψ∗ÔΨ + (ÔΨ)∗Ψ]dτ′} d𝐫

 

Ωi

)

𝑎𝑙𝑙 𝑎𝑡𝑜𝑚𝑠 𝑖𝑛
𝑡ℎ𝑒 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒

𝑖

=  ∑ (N∫ 𝜌
𝑂
 d𝐫

 

Ωi

)

𝑎𝑙𝑙 𝑎𝑡𝑜𝑚𝑠 𝑖𝑛
𝑡ℎ𝑒 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒

𝑖

=  ∑ O(Ωi)

𝑎𝑙𝑙 𝑎𝑡𝑜𝑚𝑠 𝑖𝑛
𝑡ℎ𝑒 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒

𝑖

 

(3.27)  

 

meaning that the molecular expectation value is also the summation of the atomic 

expectation values for that molecule. The ability to partition the molecular species into 

exact and chemically meaningful atomic basins opens up a wealth of applications for this 

method, including atomic population and charge, atomic volume, atomic kinetic energy, 

the Laplacian, and total atomic energy. These atomic properties will be described briefly 

in the following section. The reader is also referred to references [1] and [57] for a more 

detailed analysis of the further applications, in particular section 1.8 in [57]. The 

following definitions will closely follow the text from that section. 

3.8.3 Atomic Properties 

If Ô is a one-electron operator (or a sum of one-electron operators), then the average of 

a property O over an atomic basin Ω, O(Ω), is: 

 
O(Ω) = 〈Ô〉Ω = 

N

2
∫ d𝐫∫dτ′ [Ψ∗ÔΨ + (ÔΨ)

∗
Ψ]

 

Ω

 (3.28)  

The atomic population can be easily obtained by setting the operator Ô to 1̂, giving 

 
N(Ω) = ∫ρ(𝐫) d𝐫

 

Ω

 (3.29)  

Note that this can also be written explicitly in terms of the electron spin populations. The 

atomic charges, q(Ω), are simply obtained by subtracting the electron atomic population 

from the atomic nuclear charge, ZΩ: 

 q(Ω) = ZΩ − N(Ω) (3.30)  

                                                 

9 ∫ dτ′ symbolizes integration over the coordinates of all electrons but one and summation over all spins. 
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The atomic volume is defined by the interatomic surfaces and an appropriately chosen 

isodensity surface where the basin would otherwise extend to infinity. The atomic kinetic 

energy, T(Ω), can be described using either the Schrödinger kinetic energy operator: 

 
K(Ω) =  −

ℏ2

4m
N∫ d𝐫∫dτ′ [Ψ∇2Ψ∗ +Ψ∗∇2Ψ]

 

Ω

 (3.31)  

or the gradient kinetic energy operator: 

 
G(Ω) =  −

ℏ2

2m
N∫ d𝐫∫dτ′ ∇𝑖

 

Ω

Ψ∗ ∙ ∇𝑖Ψ (3.32)  

Though both descriptions of the kinetic energy differ locally, they will integrate to the 

same value over all space. The local difference between them is a term proportional to the 

Laplacian, L(Ω): 

 L(Ω)  =  K(Ω) −  G(Ω) 

            =  −
ℏ2

4m
N∫d𝐫 [∇2 ρ(𝐫)

 

Ω

] 

            =  −
ℏ2

4m
N∫dS(Ω, 𝐫) ∇ρ(𝐫)  ∙  n(𝐫) 

            =  0 ∀ ∇ρ(𝐫) ∙  n(𝐫) = 0                    

(3.33)  

Integration over proper open quantum systems that exactly conserve the zero-flux 

condition (i.e. atomic basins) reduces the Laplacian to zero and the kinetic energy 

expectation values are equal: 

 K(Ω) =  G(Ω) =  T(Ω) (3.34)  

Satisfaction of this equality is a good measure for the accuracy of the integration results.  

3.8.4 Atomic Energies 

Because of its importance in later chapters, the atomic energy, E(Ω), deserves further 

discussion. The atomic energy for an atom in a molecule at its equilibrium geometry 

relies on satisfaction of an atomic virial theorem which applies to the potential energy 

density, Υ(𝐫). Also called the virial field, Υ(𝐫) is the effective potential field experienced 

by an electron at a point r in a many-particle system: 

 Υ(𝐫) = N∫𝑑𝜏′{𝜓∗(−𝒓 ∙ ∇𝑉̂)𝜓} = −𝒓 ∙ ∇𝜎 (3.35)  

−∇𝜎 is related to the force density (see section 6.1 in reference [1]). This virial field 

differs from the traditional description of the potential energy, V(r), which expresses the 
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total electron-nuclear attractive and electron-electron and nuclear-nuclear repulsive 

energies, in that it also contains the virials of the external (Feynman) forces acting on the 

nuclei [60]. These virial forces vanish at equilibrium geometry. Υ(𝐫) is always negative 

and its integral over all space gives the total potential energy of the molecule. There is a 

relation between the local statement of the virial field, the kinetic energy and the 

Laplacian: 

 ℏ2

4m
∇2ρ(𝐫) = 2G(𝐫) + Υ(𝐫) (3.36)  

where G(r) is the kinetic energy for the system from (3.32).  

The partitioning of a total molecular energy into atomic subunits is no trivial matter 

and relies on the ability to express the whole system as proper open sub-units. Recall that 

the molecular kinetic energy density can be expressed in two ways: apply the Schrödinger 

operator to give K(r), 

 
K(𝐫) =  −

ℏ2

4m
N∫dτ′ [Ψ∇2Ψ∗ +Ψ∗∇2Ψ] (3.37)  

or apply the gradient kinetic energy operator to give G(r), 

 
G(𝐫) =  −

ℏ2

2m
N∫dτ′∇Ψ∗ ∙ ∇Ψ (3.38)  

These equations yield 

 
K(𝐫) =  G(𝐫) −

ℏ2

4m
∇2ρ(𝐫) (3.39)  

Partitioning the molecule into some arbitrary volume, ω, and integrating over this volume 

gives 

 
𝐾(ω) = G(ω)  −

ℏ2

4m
N∫ dr ∇ ∙ ∇ρ

 

ω

 (3.40)  

The volume integral can be transformed into a surface integral using Gauss’s theorem 

 
K(ω) = G(ω)  −

ℏ2

4m
N∫dS(ω, 𝐫)∇ ρ ∙ n(𝐫) (3.41)  

From (3.41) the kinetic energy values are only equivalent when the surface vanishes for 

∇ρ ∙ n(𝐫) = 0, which relies on ω being a proper open system, Ω. 

Returning to the local virial theorem (3.36), integration over Ω results in a statement of 

the atomic virial: 

 −2T(Ω) = Υ(Ω) (3.42)  
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Recall that in the absolute equilibrium minima, where there are no Feynman forces acting 

on the nuclei, the virial equals the average potential energy of the molecule, V = Υ, and 

(3.42) becomes  

 V(Ω) = −2T(Ω) (3.43)  

The total atomic energy E(Ω) is the sum of the kinetic and potential atomic energies. 

From (3.34), the atomic kinetic energy is K(Ω) = G(Ω) = T(Ω) and from above, (3.43), 

the potential energy is V(Ω) = −2T(Ω). Therefore 

 
E(Ω) = T(Ω) − V(Ω) = T(Ω) − 2T(Ω) = −T(Ω) =

1

2
V(Ω) (3.44)  

Summation of all atomic energies over the molecule will yield the total molecular energy. 

The outcome of E(Ω) = −T(Ω) =
1

2
V(Ω) relies on the evaluation of an electron 

density arising from a perfectly equilibrated system (because of the virial theorem 

restriction). In practice, there will remain some forces on the nuclei which will cause the 

ratio of −V T⁄  to deviate from 2. If this deviation is small, it can be corrected by scaling 

the energies with the virial ratio (𝛾 = −V T⁄ ) by introducing a scale factor, (1 − 𝛾), to 

the energy at the end of a wavefunction calculation. This scaling, however, can lead to 

forces on the nuclei and make the energy nonstationary with respect to the variational 

parameters in the wavefunction [61, 62]. For very accurate evaluations of the atomic 

energies it is possible to introduce a self-consistent virial scaling (SCVS) [63]. This 

variationally scales the electronic and nuclear coordinates during the self-consistent 

optimization so that at each step the wavefunction will satisfy the molecular virial 

theorem, resulting in an ab initio wavefunction or first order density matrix that yields a 

satisfied virial theorem (see Appendix A.2 for details on implementing SCVS in 

Gaussian 09).  

In the following chapters, changes in atomic energies (ΔE(Ω)) are used to define local 

stabilities in molecules. Building on the chemical convention that a decrease in the 

energy of a system indicates an increase in stability for that system [64], a negative 

energy change for an atom (i.e. ΔE(Ω) < 0) is defined here as stabilizing, and a positive 

atomic energy change is destabilizing [3]. Note that while a large increase in energy may 

indicate a large “destabilization”, this destabilization could be paired with an even larger 

nearby stabilization, indicating an overall favourable interaction. For example, in the case 
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of the water dimer [4] the hydrogen atom involved in the H-bond has an increase in 

energy (i.e. is destabilized), yet the H-bond is overall stabilizing because of the even 

greater lowering in energy for the oxygen atoms involved.  

3.8.5 Some Practical Considerations for the Application of AIMAll 

There are several software packages that implement Bader’s QTAIM analysis of 

molecular systems. Some of these include: Bader Charge Analysis from the Henkelman 

Group at University of Texas at Austin [65], ABINIT from the ABINIT Group [66], and 

Amsterdam Density Functional (ADF) from Vrije Universiteit in Amsterdam and the 

University of Calgary in Canada [67]. ADF also has a third party program, Xaim from 

Universitat Rovira I Virgili in Spain [68], which can be used for QTAIM analysis. Many 

research groups also employ unpublished codes written “in-house”. This thesis applies 

the AIMAll software package from McMaster University in Canada [69]. This began as 

code written by Richard Bader’s research group, and then was heavily modified and 

extended by Todd A. Keith. The program is easy to implement, reliable, robust, and 

relatively fast and efficient. There is also excellent support available from Dr. Keith. As 

with any software there are particular tips that help ensure proper use and therefore 

correct results. Because QTAIM may not be as globally recognized as other popular 

software used in this report, it is prudent to include some advice so that an individual may 

repeat or continue the research here, or apply these techniques to their own interests. 

More details (and much of the following discussion) can be found on the AIMAll 

website: aim.tkgristmill.com, as well as some details in Appendix A.3.  

AIMQB (the integration code in the AIMAll package) requires an accurate electron 

density, readily obtained via computational analysis. The Gaussian 09 program [70] was 

used for all calculations in this thesis. The necessary density information is stored in a 

checkpoint file created during the calculation, and this can be formatted to produce 

a .fchk file that AIMQB can read and subsequently use to produce the appropriate 

wavefunction file (.wfx, .wfn) for the AIM analysis. The .wfx files are currently limited 
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to the first order electron density matrix, expressed in a molecular orbital (MO) basis.10 

For HF or KS-DFT the MOs are the canonical SCF spatial or spin orbitals. In the case of 

post-SCF cases such as MP2, they are the natural (spin) orbitals, i.e. the eigenvectors of 

the first order (alpha and beta) density matrix. Note that for single-determinate methods 

like HF and KS-DFT the first order density matrix can determine all properties of the 

system, however for post-SCF multi-determinate methods the first-order density matrix 

provides only one-electron properties and two-electron density properties must be 

estimated from the one-electron density matrix.11 

With respect to accuracy of the calculations, the success of the integrations is 

confirmed in two ways: the atomic integrations correctly reproduce the total number of 

electrons, and the integrated values of the atomic Lagrangian, L(A), approach zero. Due 

to numerical integration errors this will generally never be exact. AIMAll will report a 

“significant integration error” if any value of L(A) is greater than 0.01 a.u., if the sum of 

all L(A)s is greater than 0.01 a.u., or if the difference in molecular charge and the sum of 

atomic charges, q(A), is greater than 0.01 a.u. A “potentially significant integration error” 

is reported if any of these values are between 0.002 and 0.01 a.u. These accuracy criteria 

should be evaluated to suit the needs of the results. For the data presented in this report, 

all L(A) values must be less than 0.001 a.u. to be considered acceptable. If this target is 

not met, the “problem atoms” are re-integrated using a more accurate integration method 

available in AIMAll (such as 1st or 3rd order Promega or, as a last resort, Sculpt), a finer 

interatomic surface mesh, or a higher basin quadrature.  

3.8.6 Energy Scaling for DFT Wavefunctions 

As described above, the virial theorem for a molecule at a stationary state on the 

potential energy surface reduces to −V T⁄ = 2, where V and T are the potential and 

kinetic energies, respectively, giving an expression for atomic energy, E(Ω),  

                                                 

10 Molecular orbitals are expressed in terms of their normalized linear expansion in raw primitive Cartesian 

Gaussian basis functions. 
11 In AIMAll, the two-electron density properties are estimated using the Müller approximation of the two-

electron density matrix in terms of natural orbitals of the one-electron density matrix [350]. 
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 𝐸(Ω) = −𝑇(Ω) = −
1

2
𝑉(Ω) (3.43)  

By definition, the sum of E(Ω) for all atoms in a molecule returns the molecular energy, 

E. Because the wavefunctions used in practice are approximate, there will be some 

deviation from this virial relationship and summation of E(Ω) does not exactly yield E. 

Ideally, one would minimize this deviation by applying self-consistent virial scaling, 

SCVS [63, 71], however, in practice this can be very computationally costly and 

furthermore is not currently available for DFT methods in the Gaussian 09 software. An 

alternative and much cheaper approach is to simply scale the final atomic energy 

components by the amount of deviation from the virial relationship, 

 𝐸𝑠𝑐𝑎𝑙𝑒𝑑(Ω) = 𝑇(Ω)(1 + 𝛾) (3.44)  

where 𝛾 = −𝑉 𝑇⁄ . This provides satisfactory results for comparison of energies in 

different systems because (1 + 𝛾) is usually small and 𝛾 generally scales linearly with 

𝑇(Ω). In the case of Kohn-Sham (KS) DFT, the kinetic energy is obtained from KS 

molecular orbitals (KS-MOs) and 𝑇(Ω) is actually 𝑇0(Ω), the non-interacting kinetic 

energy. This deviates from the total kinetic energy by 

 𝑇(Ω) = 𝑇0(Ω) + 𝛥𝑇𝐶(Ω) (3.45)  

Where 𝛥𝑇𝐶(Ω) is the correlation kinetic energy contained in the exchange-correlation 

functional [72-73]. 

The implication for QTAIM analysis is that the relationship used to define the scaling 

factor is no longer 𝑉 𝑇⁄ = 𝛾, but is actually 𝑉 𝑇0⁄ = 𝛾 and is thus missing 𝛥𝑇𝐶(Ω), which 

can vary in size depending on the atom and may be positive or negative [13]. The use of 

(1 + 𝛾) to scale the energies now becomes only a first approximation to the correct 

energy and will either over- or underestimate the actual value [13]. Because of this, it 

may be prudent in some cases to make use of unscaled energies, with the understanding 

that these atomic energies may not sum to yield the total molecular energy (see, for 

example, Chapter 9). 
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Chapter 4 Visualizing Internal Stabilization in Weakly Bound Systems 

Using Atomic Energies: Hydrogen Bonding in Small Water 

Clusters 

 

 

Reprinted with permission from L. Albrecht, R. J. Boyd, J. Phys. Chem. A, (2012), 116 (15), 3946–3951. 

DOI: 10.1021/jp301006g. Copyright 2012 American Chemical Society.  

 

This chapter presents the first study applying atomic energies to evaluate local properties 

of a set of hydrogen-bonded water clusters. It demonstrates that the changes in local 

(atomic) energies can reflect the cooperativity that is observed in water-water hydrogen 

bonding. Global minimum clusters (H2O)n, n=2−5, provide a well-studied test-set for 

evaluating the QTAIM energy analysis, and the level of theory used (MP2/aug-cc-pVTZ) 

has been previously established as a reliable and accurate method for evaluation of water 

clusters. Total energies as well as geometries are used to support the atomic energies results. 

The method of visualization, whereby atom size represents the magnitude of energy change 

and atom colour represents sign of energy change (positive or negative), is also presented 

as a useful tool for visual inspection of local stabilities of the systems. 

 

  

http://pubs.acs.org/doi/abs/10.1021/jp301006g
http://pubs.acs.org/doi/abs/10.1021/jp301006g
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4.1 Abstract 

Atomic energies are used to visualize the local stabilizing and destabilizing energy 

changes in water clusters. Small clusters, (H2O)n, from n=2 to 5, at MP2/aug-cc-pVTZ 

geometries are evaluated using energies defined by the quantum theory of atoms in 

molecules (QTAIM). The atomic energies reproduce MP2 total energies to within 0.005 

kcal mol-1. Oxygen atoms are stabilized for all systems and hydrogen atoms are 

destabilized. The increased stability of the water clusters due to hydrogen bond 

cooperativity is demonstrated at an atomic level. Variations in atomic energies within the 

clusters are correlated to the geometry of the waters and reveal variations in the hydrogen 

bond strengths. The method of visualization of the energy changes applied here is 

especially suited for application to large biomolecules. 

4.2 Introduction 

Biochemical processes such as protein folding and enzyme docking rely on a delicate 

balance of weakly stabilizing interactions [14]. Although the total energy change during 

these processes is typically very small, it may involve large local energy fluxuations [74-

75]. These localized energy changes can be a result of weak interactions such as 

hydrogen bonding, π-stacking, van der Waals forces, steric interferences and hydrophobic 

interactions, and may either stabilize or destabilize the system. Current experimental 

techniques such as X-ray crystallography [76] and NMR [77] provide atomic-level 

resolution of protein structures, allowing researchers to identify specific protein 

interactions. Combined with computational simulation, an understanding of these 

interactions leads to the development of highly specific target molecules designed to 

manipulate biological systems, especially in the area of drug design [78]. The ability to 

understand, and therefore manipulate, protein interactions would be enhanced with an 

understanding of the localized energy changes occurring in the system as the proteins 

interact [79-81]. This local energy is not readily available with traditional methods since 

they report total energy changes for the system, either obtained experimentally in bulk or 

theoretically using ab initio, density functional, semi-empirical or empirical approaches. 
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Small model systems are often used to observe the interaction energies of isolated species 

within proteins; however, they do not represent the important long-range interactions 

necessary for protein stability [82]. Evaluating protein systems through use of atomic 

energies would accurately represent the local areas of stabilization and destabilization 

crucial for understanding intermolecular interactions. 

A well-established method for atomic energy evaluation is Bader’s quantum theory of 

atoms in molecules (QTAIM) [1]. QTAIM has been applied in a number of situations to 

assess the implications of atomic energy changes, such as in the breaking of carbon-

carbon bonds [2] and a study of the conformation and tautomerization of amino acids 

[83]. These reports focus on either strong bonding interactions or intramolecular 

interactions in small molecules. Previously in our group, we have applied the QTAIM 

method to evaluate the guanine quadruplex formation in the study of telomeres [3]. Areas 

of stabilization and destabilization within this large system were highlighted through a 

study of the changing atomic energies after folding. Furthermore, Taylor et al. [3] 

introduced a novel graphical way of representing these atomic energy changes and the 

resulting analysis has proven beneficial to the study of telomeric species [84]. The use of 

atomic energies to assess local areas of biochemical stability in weakly interacting 

species remains a fairly novel concept and shows great promise for future studies. 

To explore the effectiveness and versatility of the atomic energy changes approach it 

is instructive to examine in detail small water clusters for which a large amount of 

experimental and theoretical data is available [45, 85-97]. The hydrogen bonding ability 

of water makes it a uniquely complicated substance that is difficult to measure exactly 

and to study theoretically. Water clusters exhibit cooperative enhancement, whereby the 

average hydrogen bond strength increases with an increase in the number of hydrogen 

bonds present in the system [13, 97-98]. This cooperativity is partially responsible for an 

increased stability observed in many large hydrogen bonded systems, including protein 

substructures [15]. Analysis of hydrogen bonded systems should reflect the potential 

cooperative nature of the bonding interactions. We report here the atomic energy changes 

in water molecules as they interact to form minimum energy clusters, (H2O)n, n=2-5. Our 

intent is to represent changes in atomic stability and thus localized system stability by 

estimating changes in atomic energies using the quantum theory of atoms in molecules 
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approach, and furthermore to visualize these changes using the approach of Taylor et al. 

[3]. 

4.3 QTAIM Atomic Energies 

Bader and his colleagues have shown that it is possible to partition the electron density 

of a molecular system into constituent open systems bounded by zero-flux surfaces [1, 

57, 99-103]. These open systems, called atomic basins, describe the physical properties of 

atoms in molecules. Integration over the atomic basins yields atomic information such as 

population and energy. The QTAIM method has been applied in a wide variety of 

systems, both theoretical and experimental [60, 104-108]. Of particular importance to this 

study, it is an effective tool for evaluating weak bonding interactions. 

4.4 Computational Details 

Single point energy calculations were performed on a set of global minima water 

systems, (H2O)n, n=1-5, at the MP2/aug-cc-pVTZ level of theory using Gaussian 09 [70]. 

The geometries were obtained from a benchmark analysis reported by Santra et al. at the 

same level of theory [109]. As a source of reference data, Møller-Plesset Perturbation 

theory [32] has widely been applied to examine hydrogen bonded systems. It is a suitable 

method to obtain accurate structural and electronic values for hydrogen bonded water 

clusters to within 0.001 Å and 0.01 kcal mol-1 [45, 89, 96, 109]. The choice of the 

augmented correlation-consistent polarized triple zeta basis set, as defined by Dunning 

and coworkers [110], produces very accurate results for water systems [96, 109]. The 

MP2 energies reported herein reproduce results from previous studies [45, 109], and were 

corrected for basis set superposition error (BSSE) via the counterpoise (CP) correction 

method of Boys and Bernardi [42]. The uncorrected and a priori CP-corrected MP2 

values for the dissociation energy of the water dimer are known to overshoot or 

undershoot, respectively, the complete basis set value [109, 111-112]. While the 

magnitude of this error decreases with an increase in basis set size, it will also increase 
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with cluster size [45]. We therefore provide both corrected and uncorrected values in this 

study.  

MP2 generated wavefunctions were analyzed using the AIMAll suite of programs to 

calculate atomic energies [69]. Atomic energies are also reported with a CP-type BSSE 

correction. The accuracy of QTAIM analysis is greatly dependent on the satisfaction of 

the atomic and molecular virial theorems. As described by Cortés-Guzmán and Bader 

[71], the atomic virial theorem states that the energy of an atom in a molecule, E(A), is 

equal to its negative kinetic energy, T(A), and must satisfy the ratio γ = -V/T = 2, where 

V is the total potential energy for an equilibrium geometry. Since this is rarely exactly 

satisfied with post Hartree‒Fock calculations, atomic energy values are scaled by a factor 

of (1-γ). As a measure of the accuracy of the integrations, the Laplacian of the electron 

density should integrate to zero. This ensures that the sum of atomic kinetic energies 

exactly yields the molecular kinetic energy [113]. The accuracy threshold for integration 

of atomic basins was maintained at a Laplacian value of 1x10-4 a.u. for all atoms. 

Graphics were created using the VMD software [114]. 

4.5 Results and Discussion 

The optimized water structures are shown in Figure 4.1. Hydrogen bonds are denoted 

by dashed lines. The interaction energies, ΔEn, for the formation of water clusters are 

defined as the difference between the electronic energy of the cluster, En, and the energy 

of an appropriate number of monomers, nE(H2O), where E(H2O) is the energy of a water 

molecule and n is the number of water molecules present in the cluster:  

 ∆E = En − nE(H2O) (4.1)  

Stabilization energies for the atoms, ΔE(A), are defined as the difference between the 

energy of an atom in a water cluster, E(A)cluster, and the energy of the same atom in a 

water molecule, E(A)H2O: 

 ∆E(A) = E(A)cluster − E(A)H2O (4.2)  

The total energies and interaction energies are reported in Table 4.1. Atomic energies 

and stabilization energies are reported in Table 4.2. Stabilized and destabilized atoms are 

indicated by negative and positive energy changes, respectively. The effect of the BSSE 
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correction is to lower the magnitude of the computed energy change. The BSSE corrected 

values are included in italics in the tables. The En values obtained from the QTAIM 

calculations recover the uncorrected MP2 energies to within 0.005 kcal mol-1 for all 

systems and BSSE corrected energies to within 0.02 kcal mol-1 for all systems except the 

dimer, which differs by 0.23 kcal mol-1. The corrected virial ratio values for all water 

clusters are within 0.0016 of the exact value of 2. The sum of BSSE corrected atomic 

energies recovers the total cluster BSSE corrected QTAIM energies exactly, for all 

systems. 

 
 

Figure 4.1 MP2 optimized water clusters: (i) dimer, (ii) trimer, (iii) tetramer, (iv) 

pentamer. Labels A-E correspond to the waters within the clusters. Bridging and non-

bridging hydrogens are labeled for the dimer. 

 

Table 4.1 Total MP2 and QTAIM energies En and interaction energies ΔEn for water 

monomer and water clusters (H2O)n, n=1-5.a,b 

 

 

  En ΔEn 

 MP2 QTAIM MP2       QTAIM 

H2O -76.328992  -76.328992      

(H2O)2 -152.666241 -152.665858 -152.666252 -152.665499 -5.18 -4.94 -5.19 -4.72 

(H2O)3 -229.012934 -229.010823 -229.012939 -229.010837 -16.29 -14.96 -16.29 -14.97 

(H2O)4 -305.361536 -305.357823 -305.361542 -305.357821 -28.59 -26.26 -28.60 -26.26 

(H2O)5 -381.704873 -381.707835 -381.704864 -381.707801 -37.60 -39.45 -37.59 -39.43 
a En values are in hartrees, ΔEn values are in kcal mol-1. b Values in italics are BSSE corrected.   
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Table 2.1  Methods for experimental analyses of hydrogen bonds (HBs). 

 

Table 4.2 QTAIM atomic energies E(A) and atomic stabilization energies ΔE(A) for water clusters (H2O)n, n=1-5.a,b 

 

   

    E(A)  ΔE(A) 

Cluster Non-bridging hydrogen Bridging hydrogen Oxygen 

Non-bridging 

hydrogen 

Bridging 

hydrogen Oxygen 

H2O 

  -0.348833    -75.631383     
 

   

(H2O)2 

 A -0.340323 -0.340604   -75.656839 -75.655837  5.34 5.17   -15.97 -15.35 

 A -0.340322 -0.340603      5.34 5.16     

 B -0.354490 -0.354474 -0.326909 -0.327168 -75.647369 -75.646812  -3.55 -3.54 13.76 13.60 -10.03 -9.68 

(H2O)3 

 A -0.345342 -0.345957 -0.313550 -0.313990 -75.678977 -75.677228  2.19 1.81 22.14 21.87 -29.87 -28.77 

 B -0.345282 -0.345876 -0.313380 -0.313872 -75.679132 -75.677328  2.23 1.86 22.25 21.94 -29.96 -28.83 

 C -0.345793 -0.346383 -0.313384 -0.313833 -75.678100 -75.676368  1.90 1.54 22.25 21.96 -29.32 -28.23 

(H2O)4 

A-Dc -0.345446 -0.345981 -0.301514 -0.302456 -75.693425 -75.691018  2.13 1.79 29.69 29.10 -38.93 -37.42 

(H2O)5 

 A -0.346747 -0.347197 -0.297251 -0.298363 -75.696276 -75.693764  1.31 1.03 32.37 31.67 -40.72 -39.14 

 B -0.346189 -0.346631 -0.297301 -0.298456 -75.697534 -75.694957  1.66 1.38 32.34 31.61 -41.51 -39.89 

 C -0.345680 -0.346142 -0.297062 -0.298197 -75.698606 -75.696032  1.98 1.69 32.49 31.78 -42.18 -40.57 

 D -0.345437 -0.345893 -0.297360 -0.298503 -75.698524 -75.695958  2.13 1.85 32.30 31.58 -42.13 -40.52 

 E -0.346861 -0.347332 -0.297219 -0.298288 -75.696818 -75.694314  1.24 0.94 32.39 31.72 -41.06 -39.49 

 

a E(A) values are in hartrees, ΔE(A) values are in kcal mol-1, values in italics are BSSE corrected.  b Labels A-E correspond to labeling in Figure 4.1.  
 c Waters in the tetramer are equivalent due to symmetry. 
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Figure 4.2 shows the atomic energy changes of the water clusters schematically; 

stabilized and destabilized atoms are red and blue, respectively, and the sphere diameter 

is proportional to the magnitude of ΔE(A). This style of representation, introduced by 

Taylor et al. [3], provides a useful method of visual analysis for observing localized areas 

of energy change within complicated systems. It is evident from visual inspection that 

cluster formation stabilizes the oxygen atoms and destabilizes the hydrogen atoms, with 

the exception of the non-bridging hydrogen attached to the donor oxygen in the dimer 

system. In this case the non-bridging hydrogen attached to the donor oxygen shows a 

stabilization of -3.55 kcal mol-1. The uniqueness of the dimer system can be attributed to 

its non-cyclic nature. In the remaining cyclic water clusters the destabilization of the non-

bridging hydrogens is significant: 1.91 to 2.23 kcal mol-1 for the trimer and tetramer, and 

1.31 to 2.13 kcal mol-1 for the pentamer.  

 

Figure 4.2 Localized energy changes for cluster formation: (i) dimer, (ii) trimer, (iii) 

tetramer, and (iv) pentamer. Stabilized atoms are red and destabilized atoms are blue. 

The sphere diameter is proportional to ΔE(A). 

There is strong evidence for the presence of charge transfer (CT) in the formation of 

hydrogen bonds [13, 98, 115-116]. In the CT description due to Weinhold [116], the lone 

pair on the accepting oxygen interacts with an empty hydride antibond of the donating O-

H atoms, nO σ*
OH. Occupancy of the antibonding orbital raises the energy of the O-H 

species while stabilizing the oxygen. The stabilization increases as the cluster size 

increases, as a result of hydrogen bond cooperativity. This can be described through 

changing cluster geometry: decreasing O…O distances coupled with increasing O-H 

covalent bond lengths indicate a weakening of the covalent OH bond and strengthening 
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of the H…O hydrogen bond interaction. Furthermore, there is an increasingly linear O-

H…O angle as the size of the ring increases. These properties are well supported by the 

atomic energy changes observed here. The destabilization of the bridging hydrogens 

increases from 13.76 kcal mol-1 in the dimer to an average of 22.21, 29.70, and 32.38 kcal 

mol-1 in the trimer, tetramer and pentamer, respectively. The oxygen atoms are 

significantly stabilized by -15.97 and -10.03 kcal mol-1 in the dimer and an average of -

29.71, -38.95, and -41.52 kcal mol-1 in the trimer through pentamer, respectively. Figure 

4.3 illustrates these changes in atomic energies as cluster size increases. It is evident that 

as the number of hydrogen bonded waters in the system increases, the magnitude of 

ΔE(A) increases for all atoms and tends towards a maximum amount. This is consistent 

with the exponential form of the cooperativity effect [117]. Furthermore, the energy 

difference between the bonding atoms increases in the same manner as the average 

hydrogen bond strength within the clusters. For example, the difference in ΔE(A) 

between the oxygen and bridging hydrogens of the trimer is approximately 51.9 kcal mol-

1, versus that of the tetramer at 68.6 kcal mol-1
 and pentamer at 73.9 kcal mol-1. This 

supports the hypothesis of previous studies applying atomic energy changes, whereby it 

was stated that a greater local change in atomic energy corresponded to a greater amount 

of local stabilization or destabilization [3, 13]. 

 

Figure 4.3 Change in atomic energy ΔE(A), for all atoms in clusters (H2O)n, n=2-5. 

ΔE(A) is averaged over the waters in each cluster. In the dimer average, the non-

bridging hydrogen attached to the donating water is not included. 

We have also considered QTAIM and natural population analysis (NPA) atomic 

charges, q(A). The change in atomic charge, Δq(A), is evaluated in the same manner as 

the change in atomic energy: Δq(A) = q(A)cluster – q(A)H2O. These values are represented 
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in Figure 4.4. It is obvious that the atomic charges for bridging hydrogens and oxygens 

reflect the trends observed in the atomic energies: the magnitude of Δq(A) increases as 

the system stability increases. As expected, NPA charges are ~25% smaller than QTAIM 

charges and their Δq(A)s are diminished (atomic charges are available in the supporting 

information). For the dimer through pentamer systems, the QTAIM (NPA) change in 

atomic charge increases for bridging hydrogens from 0.038 to 0.079 e (0.014 to 0.041 e) 

and decreases for oxygens from  -0.028 to -0.083 e (-0.017 to -0.050 e). The QTAIM 

(NPA) Δq(A)s for non-bridging hydrogens are 0.014 e (0.012 e) for the dimer and 0.004 

to 0.005 e (0.009 to 0.010 e) for the trimer through pentamer. Interestingly, the NPA 

Δq(A)s for non-bridging hydrogens in the trimer through pentamer systems are nearly 

twice the QTAIM Δq(A)s, and remain consistent for both NPA and QTAIM for the 

trimer through pentamer (± 0.001 e). The non-bridging hydrogens thus do not reflect the 

same trend in Δq(A) as is observed in ΔE(A). 

 

Figure 4.4 Change in atomic charge Δq(A), for all atoms in clusters (H2O)n, n=2-5. 

Δq(A) is averaged over the waters in each cluster. In the dimer average, the non-

bridging hydrogen attached to the donating water is not included. QTAIM charges are 

solid bars, NPA charges are patterned bars. 

The QTAIM energy of a water molecule within a cluster, EW, is defined as the 

summation of the energies of the constituent atoms in that water molecule: 

 EW = ΣE(A)W (4.3)  

 The stabilization of a water molecule due to cluster formation, ΔEW, is defined as the 

difference between the energy of the water molecule within the cluster and a free water 

molecule, E(H2O): 
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 ΔEW = EW − E(H2O) (4.4)  

The molecular energies and stabilization energies for the waters in all clusters are 

reported in Table 4.3. The average hydrogen bond energy, EAVEHB, is the energy of 

formation for the cluster, ΔEn, divided by the number of hydrogen bonds present in the 

system, nHB: 

 
EAVEHB =

ΔEn
nHB

 
(4.5)  

ΔEW and EAVEHB are plotted in Figure 4.5. The cooperative effect is generally quantified 

by the increase in the average hydrogen bond strength, i.e. EaveHB. Figure 4.5 

demonstrates that by directly calculating the molecular energy change of the hydrogen 

bonded waters (ΔEW) we reproduce the same hydrogen bond energy changes as was 

obtained from averaged energies. Thus the change in molecular energy, as defined 

through atomic energies, represents the stabilization observed from cooperativity.  

 

 

Figure 4.5 Total QTAIM energy changes of water molecules (ΔEW), and average 

hydrogen bond energy (EAVEHB), for water clusters (H2O)n, n=2-5. ΔEW values are 

averaged over the waters in each cluster. 
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Table 4.3 QTAIM energies, EW, stabilization energies, ΔEW, and average hydrogen 

bond energies, ΔEAVEHB, for water monomer and clusters (H2O)n, n=1-5.a,b
 

                EW     ΔEW       ΔEAVEHB 
          

 H2O -76.328992        

(H2O)2         

A -76.337484 -76.337044  -5.29 -5.02    

B -76.328768 -76.328455  0.18 0.37  -5.19 -4.72 

(H2O)3         

A -76.337874 -76.337181  -5.53 -5.10  -5.43 -4.99 

B -76.337784 -76.337067  -5.49 -5.04    

C -76.337263 -76.336571  -5.16 -4.73    

(H2O)4         

A-Dc -76.340378 -76.339448  -7.11 -6.53  -7.15 -6.57 

(H2O)5         

A -76.340274 -76.339324  -7.08 -6.48  -7.52 -7.89 

B -76.341024 -76.340044  -7.55 -6.94    

C -76.341348 -76.340372  -7.75 -7.14    

D -76.341320 -76.340354  -7.74 -7.13    

E -76.340898 -76.339934  -7.47 -6.87    
a EW values are in hartrees, ΔEW and ΔEAVEHB  values are in kcal mol-1. b Values in italics are BSSE 

corrected. c Waters in the tetramer are equivalent due to symmetry. 

 

It is interesting to note that the values of ΔE(A) are not consistent for all waters within 

each cluster. In the trimer system the ΔE(A) values for the oxygens vary by about 0.7 

kcal mol-1, non-bridging hydrogens by 0.3 kcal mol-1, and bridging hydrogens are 

consistently destabilized within 0.1 kcal mol-1. The changes in energies for atoms in the 

pentamer vary by up to 1.5 kcal mol-1, 0.9 kcal mol-1, and 0.2 kcal mol-1 for the oxygens, 

non-bridging hydrogens and bridging hydrogens, respectively. These atomic energy 

variations are reflected in the water molecules: ΔEW values for the trimer system differ by 

up to 0.4 kcal mol-1 and the pentamer by 0.7 kcal mol-1. The tetramer does not show any 

variation in ΔEW or ΔE(A). Although these energy differences are close to a limit of 

accuracy previously stated by Bader in 1987 (~1 kcal mol-1) [103], it has been recently 

reported that there exists a variation in hydrogen bond strengths within the different water 

clusters [118]. Considering this, and the precision of the QTAIM energies with respect to 

MP2 energies, we conclude that these atomic energy differences are not simply numerical 

artifacts. 
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These molecular and atomic energy differences are furthermore correlated with the 

slight geometrical differences observed in the clusters. Referring to Figure 4.1, we see 

that the puckered trimer adopts C1 symmetry with two hydrogens pointing above the 

oxygen plane, and one below. Waters A and B are slightly more stabilized than water C, 

by ~0.4 kcal mol-1. As a hydrogen bond acceptor, water C has the least favourable 

geometry: the hydrogen bond between waters A and C slightly lengthened (0.02 Å) and 

more bent (2.5°) compared to the other two hydrogen bonds in the system (geometries for 

the optimized clusters are available in the supporting information). The pentamer system 

also has a puckered ring and adopts C1 symmetry. Waters B and E, which have a ΔEW of 

-7.55 and -7.47 kcal mol-1, respectively, and C and D, which have a ΔEW of -7.75 and -

7.74 kcal mol-1, respectively, adopt mirrored configurations. The water molecule at the 

peak of the pentamer structure (A) has the lowest amount of stabilization, -7.08 kcal mol-

1.  As a hydrogen bond acceptor, water A has the least favourable geometry: the hydrogen 

bond between A and E is slightly elongated (0.01Å), with a bond angle slightly more bent 

(2.5-3.3°) than the other hydrogen bonds present. The tetramer shows no relevant 

variation in the atomic or molecular QTAIM energies, which is expected due to its S4 

symmetry. Considering that the symmetrical tetramer is the only structure for water 

clusters n=2-6 that does not undergo an experimentally observed bifurcation of hydrogen 

bonds [119], it is possible that this observation of atomic energy distribution may indicate 

sites of preferential protonation or structural transformation, and could be explored in 

more depth. What is most relevant for this work is that the reported atomic energies are 

able to quantify the geometrical differences observed in the water cluster systems.  

4.6 Conclusions 

We demonstrate the use of atomic energies to describe the internal energy changes in 

weakly bound systems, applied to water clusters, (H2O)n, from n=2 to 5. The reported 

energies obtained from the quantum theory of atoms in molecules method reproduce 

highly accurate MP2/aug-cc-pVTZ values to within 0.005 kcal mol-1. The change in 

atomic energies is correlated to a change in atomic stability within the clusters and 

reflects the overall increased stability due to hydrogen bond cooperativity. The variations 
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in atomic energies observed within the clusters are attributed to slight differences in the 

geometry of the waters, and may prove useful as a predictive method for the preferential 

site of protonation or transformation in water clusters. The atomic energy changes can be 

represented graphically in order to easily view important energetic changes occurring in 

the system. This method of evaluating energy change is shown to be a direct way of 

evaluating the areas of stabilization and destabilization in weakly bound systems, and will 

be of benefit for studies of larger and more complicated biomolecular structures. 
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4.8 Chapter Summary and Relevance 

In this chapter atomic energies were successfully used to visualize the local energy changes 

in small water clusters. MP2/aug-cc-pVTZ total energies are accurately reproduced at the 

atomic level, to within 0.005 kcal mol−1. It is found that the energy change for oxygen 

atoms is always negative, indicating oxygen stabilization in hydrogen bonding, and the 

energy change for hydrogen atoms is always positive, indicating hydrogen destabilization 

in hydrogen bonding. The hydrogen bond cooperativity – demonstrated by a non-linear 

increase in stability of the water clusters as the number of hydrogen bonds increases – is 

reflected by a similar non-linear change in stability for the oxygen and hydrogen atoms. 

Small variations in atomic energies within the water clusters are correlated to the geometry 

of the interacting water molecules and reveal variations in hydrogen bond strengths, in 

particular for the pentamer cluster. Finally, the visual depiction incorporating a colour-

coded and size-dependent representation of the relative energy changes provides a striking 

picture of the distribution of stability within the water clusters. This first study of small 

clusters with QTAIM energies has proven to be a reliable and insightful approach to the 

study of hydrogen bond cooperativity. 
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Chapter 5 Atomic Energy Evaluation of Eight Low-Lying Water 

Hexamer Structures 

 

 

 

Reprinted with permission from L. Albrecht, S. Chowdhury, R. J. Boyd, J. Phys. Chem. A, (2013) 117(41), 

10790-9, DOI: 10.1021/jp407371c. Copyright 2013 American Chemical Society.  

 

Having established the capacity for QTAIM atomic energies to represent cooperativity in 

simple, linear hydrogen bonding, as well as the suitability of the MP2/aug-cc-pVTZ 

method for this analysis of water molecules, we further explore the utility of QTAIM 

energies in more complicated hexamer systems. The (H2O)6 potential energy surface (PES) 

is extremely complex, with over 15 structural motifs representing local minima that are 

within 3 kcal mol−1 of the global minimum. The hexamer PES has undergone intense 

experimental as well as computational analysis, and contains a further dimension of 

hydrogen bonding where a water molecule may have up to three bonding partners and the 

opportunity to interact cooperatively or anti-cooperatively. The eight lowest energy water 

hexamers (prism, cage, boat 1, boat 2, bag, chair, book 1 and book 2), will be evaluated in 

a similar manner as in Chapter 4. This chapter was a collaborative effort; the contribution 

of this author was supervision of the ab inito calculations, performing the QTAIM 

calculations and drafting and editing the manuscript. 

  

http://pubs.acs.org/doi/abs/10.1021/jp407371c
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5.1 Abstract 

Atomic energies are used to describe local stability in eight low-lying water hexamers: 

prism, cage, boat 1, boat 2, bag, chair, book 1, and book 2. The energies are evaluated 

using the quantum theory of atoms in molecules (QTAIM) at MP2/aug-cc-pVTZ 

geometries. It is found that the simple, stabilizing cooperativity observed in linear 

hydrogen-bonded water systems is diminished as clusters move from nearly planar to 

three-dimensional structures. The prism, cage and bag clusters can have local water 

stabilities differing up to 5 kcal mol-1 as a result of mixed cooperative and anti-

cooperative interactions. At the atomic level, in many cases a water may have a largely 

stabilized oxygen atom but the net water stability will be diminished due to strong 

destabilization of the water’s hydrogen atoms. Analysis of bond critical point (BCP) 

electron densities shows that the reduced cooperativity results in a decrease in hydrogen 

bond strength and an increase in covalent bond strength, most evident in the prism. The 

chair, with the greatest cooperativity, has the largest average electron density at the BCP 

per hydrogen bond, while the cage has the largest total value for BCP density at all 

hydrogen bonds. The cage also has the second largest value (after the prism) for covalent 

bond critical point densities and an oxygen-oxygen BCP which may factor into the 

experimentally observed stability of the structure.  

5.2 Introduction  

The current understanding of the exceptional properties of water is founded in part on 

studies of small-to-large water clusters. The combined theoretical and experimental 

analyses of the past decades [17, 120-124] provide insight into the complex interactions 

that define essential hydrogen bonding (HB) in water, particularly the cooperative 

behaviour that is a result of non-additive contributions to the HB total energy [10, 13, 91, 

116, 125-134]. Characterization of hydrogen bonding within small water clusters reveals 

a unique distribution of the stability for each cluster size and configuration. These studies 

are important for a variety of applications, for example understanding water behaviour at 

biomembrane surfaces, inside enzyme active sites, and the formation of clathrate hydrates 



 

59 

 

in the atmosphere. Characterization of water clusters is also necessary for the continuing 

development of force field methods. It is now possible to directly study small water 

clusters in the gas phase using a variety of experimental methods, and low energy 

structures for the hexamer, heptamer and nonamer water clusters have recently been 

isolated [135-136].  The water hexamer in particular has garnered significant interest (see 

references cited in reference [137], as well as references [138-151]) because it is the first 

water cluster to have a three-dimensional (3D) configuration as its global minimum 

structure; this is possibly a result of the additive components in HBs being more 

important than non-additive components for a 3D configuration [13]. This shift in the 

character of water’s hydrogen bonding approaches its expected behaviour in bulk water 

[152-153]. The potential energy surface (PES) of the water hexamer is very complicated, 

containing many minima in a narrow energy range. For example, there are over 15 

structural motifs representing local minima that are within 3 kcal mol-1 of the global 

minimum [150]. Characterization of the true global minimum energy structure for the 

hexamer water cluster has been the source of intense debate over the past two decades, 

with theoretical reports ranging between the cage and prism structures. A recent 

experimental study concludes that the cage is the minimum energy structure [135] while 

theoretical reports maintain that the prism has the lowest energy (before zero-point 

energy correction) [148, 151].  

A further aspect of water cluster research is that, along with finding minima on PESs, 

it is necessary to understand the distribution of stability within each cluster configuration 

that allows one particular arrangement of water molecules to be more stable than another 

slightly different arrangement. To that end, there are several theoretical approaches which 

consider the distribution of energetics within water clusters. One such approach is to use 

theoretical energy decomposition analyses (EDAs) to determine individual contributions 

to bond strength. These are usually based on the seminal work of Kitaura and Morokuma 

[154] and have been developed in many ways to decompose the interaction energies 

[155-162].  In general, the complicated approaches of EDA models often require 

simplifying assumptions so that application to even moderately sized structures is 

feasible. For example, the contributions to the total energy from four-body or higher 

interactions in water clusters are generally presumed negligible [132] and so these higher 
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order terms are often truncated in the EDAs. Four-body effects, however, can impact the 

interaction energy of the water hexamer by up to 4.4% [13], a significant amount for the 

PES of the hexamer.  An unambiguous picture of the stability within water clusters 

requires a direct analysis of their substituent energy properties, without truncation or 

fitted model assumptions. 

We report atomic and molecular stabilities in a quantitative fashion using Bader’s 

quantum theory of atoms in molecules (QTAIM) analysis [1]. This approach has been 

demonstrated in previous reports to accurately describe energy changes at an atomic level 

[3, 4, 6]. We evaluate the eight lowest energy isomers of the water hexamer: prism, cage, 

boat 1, boat 2, bag, chair, book 1, and book 2. These clusters represent 2D through 3D 

geometries, including a range of hydrogen bond configurations, yet remain within 3 kcal 

mol-1 on the hexamer potential energy surface. See Table 5.1 for the relative energy 

ordering of the hexamers as well as the number of hydrogen bonds per cluster. Using 

QTAIM topology we provide a distinct picture of the atomic stabilization within each 

water hexamer configuration to show that the small energy range for such a large 

variation in cluster geometries is a result of competing cooperative and anti-cooperative 

interactions present in the 3D clusters. We apply a simple method of visualization to 

represent the distribution of stabilization within the complicated water clusters [3]. 

Table 5.1 Relative stabilities of eight water hexamers and the number of hydrogen 

bonds formed in each cluster. 
Hexamer Boat 2 Boat 1 Chair Bag Book 2 Book 1 Cage Prism 

Relative stabilitya 2.62 2.53 1.59 1.29 0.78 0.46 0.06 0.00 

Number of HBs 6 6 6 7 7 7 8 9 
a 

Stability is relative to the interaction energy for the prism structure, in kcal mol-1. 

5.3 Computational details 

The hexamers were optimized at the MP2/aug-cc-pVTZ level of theory [32] using 

Gaussian 09 Rev.C.01 [70]. Cartesian coordinates for the structures were obtained from a 

study by Chen and Li [149]. No symmetry constraints were applied in the optimization 

and all final geometries have C1 symmetry. It has been reported previously that enforcing 

C2 symmetry for the boat structures will increase the energy by ~0.015 kcal mol-1 [148]; 
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we do not constrain our optimizations as it is important for the QTAIM analysis that there 

are no residual forces on the atoms resulting from a non-equilibrium structure. The 

influence of zero-point energy (ZPE) vibrations in water hexamers can be large enough to 

impact their stability order [148]; however, Dahlke et al. [163] report that ZPE 

corrections at the MP2 level do not reproduce the CCSD(T) relative energy ordering, 

despite having the lowest error of any methods tested in the study. The QTAIM analysis 

does not include ZPE corrections, nor are thermal or entropic contributions present in the 

atomic breakdown of the molecules. 

Self-consistent virial scaling (SCVS) was implemented for all optimizations to ensure 

that the wavefunctions fully satisfy the virial theorem, as outlined in reference [71]. The 

MP2 wavefunctions generated were analyzed using the AIMAll suite of programs [69] to 

calculate atomic energies according to Bader’s quantum theory of atoms in molecules [1]. 

The accuracy threshold for atomic basin integrations was maintained at a Laplacian value 

of 1x10-4 a.u. for all atoms, giving a maximum per atom error of 0.06 kcal mol-1. To 

gauge the impact of SCVS, we also compared our results to non-SCVS calculations. The 

non-SCVS values for the atomic energies deviate from SCVS values by up to 1.7 kcal 

mol-1 for the oxygen atoms and 0.24 kcal mol-1 for the hydrogen atoms, about 0.1% of the 

individual atomic energy. The atomic kinetic energies used in this discussion have been 

scaled post-calculation using a virial factor to account for any remaining deviation from 

virial satisfaction (this value is essentially zero for the SCVS calculations but was 

implemented so as to remain consistent with other discussions). Relevant atomic 

properties and virials for all systems (scaled and unscaled) are available in the supporting 

information, as well as bond critical point data and geometries for the hexamer structures. 

The graphical descriptions of the atomic energy changes in Figures 5.2-5.6 were 

generated using the VMD software to represent the atomic energy changes quantitatively 

[114].  

Previous reports conclude that the basis set superposition error (BSSE) will decrease 

the MP2 energy by ~1 kcal mol-1
 consistently for each hexamer configuration [149]. The 

complete basis set value is presumed to lie between the corrected and uncorrected energy 

[45, 109, 111-112]. For the hexamers, the energy ordering of the configurations does not 

change with inclusion of BSSE corrections, either for total energies or for substituent 
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energetic contributions [149]. Furthermore, Ramirez et al. [90] have suggested that 

counterpoise corrections fail for some hydrogen bonding clusters. We therefore chose not 

to include a BSSE correction.  

5.4 Results and Discussion 

The atomic energy changes were obtained in the same manner as in previous reports, 

[4, 6] whereby the change in energy per atom is the difference between the energy of the 

atom (A) in the isolated water monomer and the energy of the same atom in a water 

cluster: ΔE(A) = E(A)cluster - E(A)monomer. The atomic energy changes for all atoms and for 

the atoms summed into their respective waters are reported in Table 5.2 and Table 5.3. In 

the following discussion we divide the hexamer clusters into systems according to their 

geometries: two-dimensional (2D) are the chair, boat 1 and boat 2 systems and three-

dimensional (3D) are bag, book 1, book 2, cage, and prism structures. Note that although 

the boat structures have been classified as “2D”, they are not truly planar, having a bend 

across the plane of the waters of ~113º. Hydrogens participating in a hydrogen bond are 

HB-hydrogens and those that are not participating in a hydrogen bond are non-HB 

hydrogens. 2D systems have only two HBs per water, however in the 3D systems one 

water may participate in up to three hydrogen bonds by either donating or accepting an 

extra HB. These multiple-bonding water types are represented in Figure 5.1 as single 

donor, single acceptor (sd,sa); single donor, double acceptor (sd,da); and double donor, 

single acceptor (dd,sa). In the following discussion the atomic energy stabilities will be 

first discussed for the 2D systems (chair and boat), then the 3D systems (book, bag, cage 

and prism), and then a general discussion of the bond critical points (BCPs) in the 

QTAIM topology follows.  
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Table 5.2. Atomic energy changes (kcal mol-1) for atoms in the hexamer clusters. 
water labela A B C D E F 

atomb 
O H1 

H2 

O H1 

H2 

O H1 

H2 

O H1 

H2 

O H1 

H2 

O H1 

H2 

Prism -47.7 12.4 -33.9 12.5 -38.2 28.8 -37.5 11.4 -37.7 25.0 -48.4 36.6 

  23.3  15.0  3.3  16.2  5.1  5.7 

Cage -37.6 26.6 -47.8 15.0 -42.8 30.2 -35.0 14.9 -48.5 35.6 -38.3 27.3 

  2.0  23.6  5.1  13.1  5.8  3.0 

Book 1 -35.8 26.6 -48.1 35.6 -44.6 33.9 -44.2 33.9 -47.2 25.2 -34.7 25.7 

  2.2  5.4  2.6  2.0  12.9  1.0 

Book 2 -35.9 26.2 -47.5 34.9 -43.7 33.8 -43.8 33.4 -45.7 23.7 -35.6 26.6 

  2.7  5.2  2.5  2.1  12.7  1.3 

Bag -47.1 37.7 -31.1 22.4 -47.6 19.0 -29.7 21.1 -46.2 35.6 -46.0 34.5 

  4.2  1.3  19.0  1.5  2.5  2.2 

Chair -43.0 33.5 -43.0 33.4 -43.0 33.5 -43.0 33.5 -43.0 33.4 -43.0 33.5 

  1.8  1.8  1.8  1.8  1.8  1.8 

Boat 1 -42.5 32.8 -41.5 32.8 -41.5 33.1 -41.5 33.1 -42.7 33.4 -42.5 32.8 

  1.9  1.9  1.1  1.1  1.6  1.9 

Boat 2 -41.9 32.9 -41.7 32.5 -43.0 33.5 -41.9 32.9 -41.7 32.5 -43.0 33.5 

  1.3  1.8  2.0  1.3  1.8  2.0 

a Labels A-F correspond to the waters indicated in Figures 5.2-5.6. b Hydrogen atom can be HB-hydrogens 

(H1) or non-HB hydrogens (H2). Occurrences where both hydrogen atoms participate in HBs are labeled in 

their respective figures. 

 

Table 5.3. Total energy change (kcal mol-1) for each water molecule in hexamer 

clusters, defined as the sum of the water’s constituent atoms. Total energy (ΔEtotal) is the 

sum of all constituent atomic energy changes in each cluster. 

 cluster A B C D E F ΔEtotal 

Prism -12.0 -6.5 -6.1 -9.9 -7.6 -6.0 -48.0 

Cage -9.0 -9.2 -7.4 -7.1 -7.2 -8.0 -48.0 

Book 1 -7.0 -8.1 -7.1 -8.4 -9.1 -7.9 -47.6 

Book 2 -7.0 -7.5 -7.4 -8.3 -9.3 -7.7 -47.2 

Bag -5.2 -7.5 -9.6 -7.1 -8.2 -9.3 -46.7 

Chair -7.7 -7.7 -7.7 -7.7 -7.7 -7.7 -46.4 

Boat 1 -7.8 -7.3 -7.6 -7.8 -7.3 -7.6 -45.5 

Boat 2 -7.8 -7.4 -7.5 -7.8 -7.4 -7.5 -45.4 

 

 



 

64 

 

 

Figure 5.1 Bonding arrangements for multiply bonded water molecules in 3D structures. 

Each water can have up to three neighbour waters, and may either i) donate one 

hydrogen bond and accept one hydrogen bond (single donor, single acceptor, sd,sa), ii) 

donate one hydrogen bond and accept two hydrogen bonds (single donor, double 

acceptor, sd,da), or iii) donate two hydrogen bonds and accept one (double donor, single 

acceptor, dd,sa).  

5.4.1 2D Structures: chair, boat 1, and boat 2 

 

Figure 5.2 Localized energy changes for 2D hexamer cluster formation: i) chair, ii) boat 

1, iii) boat 2. Stabilized atoms are red and destabilized atoms are blue. The sphere 

diameter is proportional to the atomic energy stabilization, ΔE(A), so that an atom with 

a larger energy change will have a larger sphere radius. The bottom row shows the 

deviation from planarity in the boat vs. chair clusters. 

A visual representation of the atomic energy changes within the 2D clusters (chair, 

boat 1 and boat 2) is shown in Figure 5.2. As with previous reports, the oxygen atoms (in 

red) are stabilized at the expense of the hydrogen atoms (in blue) and the HB-hydrogens 

have a much greater destabilization than the non-HB hydrogens. Each water in a cluster 
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has been labelled from A-F. For these systems the stabilization of each atom type is 

relatively uniform: oxygens are stabilized by ~-42 kcal mol-1, HB-hydrogens are 

destabilized by ~33 kcal mol-1, and non-HB hydrogens are destabilized by ~2 kcal mol-1. 

The net stabilization for each water in the clusters is ~-8 kcal mol-1. This distribution of 

stabilization per water molecule is analogous to what was observed in the trimer through 

pentamer cyclic structures [4], however with a small increase in stability per water (~0.5 

kcal mol-1) as a result of the increased cooperativity in the larger systems.  

The consistent atomic stabilization is a result of a uniform HB environment where 

each water molecule donates one hydrogen and accepts one oxygen to form single donor, 

single acceptor (sd,sa) arrangements having similar HB geometries. The uninterrupted 

sd,sa chain allows for strong cooperative interactions and is the source of the increased 

stability in the 2D cyclic conformations, despite having fewer hydrogen bonds than the 

3D configurations. In fact, the more symmetrically balanced the sd,sa arrangement is, the 

greater the cooperativity that is observed; e.g. the chair configuration is more stable than 

the boat configurations. The enhanced cooperativity in the chair system is reflected in the 

total energy changes for its atoms: the chair has the largest values for the stabilization of 

its oxygens (-43 kcal mol-1) and the largest values for destabilization of donor hydrogens 

(~34 kcal mol-1) of the three 2D systems. In the slightly bent boat 1 and boat 2 systems, 

there is a small non-uniform distribution of energy, reflected in small differences in 

atomic stabilizations. Waters B and E donate into hydrogen bonds which are slightly 

lengthened (by ~0.01 A) with narrowed OH…O bond angles (by ~ 2.5o), have smaller 

amounts for ΔE(oxygen) and ΔE(hydrogen), and are slightly less stable overall. A 

lengthening of the hydrogen bond can indicate weakening bond strength, reflected also in 

the decrease in cooperative stability as indicated by smaller atomic energy changes. 

Interestingly, in the boat systems the most stabilized waters (A, D), which also have the 

largest change in their constituent atomic energies, donate HBs to the least stabilized 

waters (B, E), so that the weakening of one water results in a strengthening of its 

neighbour water. This effect becomes far more complicated in the three-dimensional 

systems.  
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5.4.2 3D Structures: book 1, book 2, bag, cage, prism 

 It is quickly recognized in the book 1, book 2, bag, cage and prism structures that the 

atomic stabilization in the three-dimensional systems is not as uniform as in the two-

dimensional systems. Energy changes for oxygen atoms in all 3D systems range from -49 

to -30 kcal mol-1, HB-hydrogens from 11 to 38 kcal mol-1 and non-HB hydrogens have 

destabilization values from 1 to 6 kcal mol-1. The net stabilization for individual waters is 

between -12 and -6 kcal mol-1 in the prism, -10 and -5 kcal mol-1 in the bag, and -9 and -7 

kcal mol-1 in the cage, book 1 and book 2.  

To interpret the large variations in atomic stabilities within the 3D water clusters we 

consider the environment of each water-water interaction and its resulting impact on the 

potential for cooperative enhancement of hydrogen bond strength. Although analysis of 

cooperativity is straightforward in the planar cyclic systems (each water has only one 

donor and one acceptor), the 3D hexamer geometries exhibit a combination of possible 

bonding arrangements where a water molecule may interact with up to three other water 

molecules by either donating or accepting hydrogen bonds. Each HB interaction can be 

classified as either largely cooperative or largely anti-cooperative: a cooperative 

interaction is stabilizing and an anti-cooperative interaction is destabilizing [127-128]. 

The stabilizing value of each interaction depends on the bonding character of the waters 

forming the hydrogen bond as well as the bonding interactions of their neighbouring 

waters [130-137]. Waters which donate two hydrogen bonds have an increased capacity 

for cooperativity and waters accepting two hydrogen bonds have a decreased capacity for 

cooperative stabilization.  

5.4.2.1 Book 1 and Book 2 

Figure 5.3 represents the atomic energy changes for book 1 and book 2. The book 

configurations could be considered transition structures between 2D and 3D, having an 

extra hydrogen bond splitting the simple cyclic cooperative environment into two rings. 

One water donates two and accepts one hydrogen bond (E) and its neighbour water must 

thus accept two hydrogen bonds and donate one (B). The double donating water has a 

strongly stabilized oxygen (-47 kcal mol-1 in book 1 and -46 kcal mol-1 in book 2) and 



 

67 

 

only moderately destabilized HB-hydrogens (25 and 13 kcal mol-1 for book 1 and 24 and 

13 kcal mol-1 for book 2) resulting in a net stabilization of -9 kcal mol-1 for each dd,sa 

water. The double accepting water (B) also has a strongly stabilized oxygen (-48 kcal 

mol-1), however, it has a significantly large destabilization for the non-HB hydrogen (5 

kcal mol-1) and this detracts from the overall stability of the water, resulting in a net 

stabilization of -7 kcal mol-1. 

 

Figure 5.3 Localized energy changes for 3D hexamer cluster formation: i) book 1, 

ii) book 2. Stabilized atoms are red and destabilized atoms are blue. The sphere 

diameter is proportional to the atomic energy stabilization, ΔE(A). The wireframe 

structures indicate hydrogen labelling for waters where both hydrogens participate 

in HBs; in all other cases H1 is the HB hydrogen and H2 is the non-HB hydrogen. 

The lower right image shows the deviation from planarity of the book clusters. 

 

 

This picture of water stability matches what is observed in various arrangements of 

water trimers and tetramers, where a double donor water arrangement is overall more 

stable than a double acceptor water [127]. It has been reported that double donating 

interactions are cooperatively stabilizing and double accepting interactions may be 

considered anti-cooperative and destabilizing [128]. It is interesting to note that it is the 

non-interacting hydrogen on water B that “pays the price” for the additional HB, while 

the oxygen remains largely stabilized. If we next consider the water which donates a 

hydrogen bond to the double donor (D) and the water receiving a hydrogen bond from the 

double donor (within the outer ring structure, F) they also have increased overall stability 

(8 kcal mol-1). Their stabilization at the atomic level, however, is quite different: the 

receiving water and its nearest neighbour (F and A) have a significantly lowered relative 

stability of their oxygen (only -35 to -36 kcal mol-1 vs. -46 and -47 kcal mol-1 in E) 

however a decreased destabilization of their HB-hydrogen (~26 kcal mol-1) results in the 



 

68 

 

net stabilization of -8 and -7 kcal mol-1. It may be that the second neighbour (A) has 

lowered ΔEs because it donates to a double accepting water. Considering HB lengths, the 

waters with shorter HBs show an increased stability, with the exception of water F. In 

this case its HBs are ~0.1 Å longer than neighbouring waters; however it has a net 

stability greater than expected (by about 1 kcal mol-1).  This may be attributed to the 

surprisingly small change in atomic energy of its non-HB hydrogen: ΔE(hydrogen) is 

only 1 kcal mol-1. These energetic observations indicate that the extra bond formed in the 

system has a cooperative effect on the waters which form the ring that donates to the 

double donor water, and an anti-cooperative effect on the waters which form the ring that 

receives from the double donor water.  

5.4.2.2 Bag 

 

 

Figure 5.4 Localized energy changes for formation of 3D bag hexamer. Stabilized 

atoms are red and destabilized atoms are blue. The sphere diameter is proportional to 

the atomic energy stabilization, ΔE(A). The wireframe structure indicates hydrogen 

labelling for waters where both hydrogens participate in hydrogen bonds; in all other 

cases H1 is the HB hydrogen and H2 is the non-HB hydrogen. 

Although the bag system has the same number of hydrogen bonds as the book 

systems, it has a lower net stabilization. Figure 5.4 represents the atomic energy changes 

in the bag configuration. As with the book systems, there are four waters which adopt 

simple single donor, single acceptor HB arrangements (B, D, E, F), one water which has 

a double donor, single acceptor arrangement (C), and one has a single donor, double 

acceptor arrangement (A). As in the book structures, the double donating water is the 



 

69 

 

most stabilized (-10 kcal mol-1) and the double accepting water is the least stabilized (-5 

kcal mol-1). The oxygen stabilization is similar (-48 kcal mol-1 for C and -47 kcal mol-1 

for A), and thus it is the hydrogen destabilization that determines the net stabilization: 

double donating C has both HB-hydrogens destabilized by 19 kcal mol-1 and double 

accepting A has a HB hydrogen destabilized by 38 kcal mol-1 and a non-HB destabilized 

by 4 kcal mol-1. Waters B and D are both sa,sd with similar neighbour environments: 

each receives from a dd,sa water and donates to a sd,da water and has a net stabilization 

of ~-7 kcal mol-1. The distribution of atomic values for these waters is similar as well: the 

oxygen in D is stabilized by -30 kcal mol-1 and in B by -31 kcal mol-1; the HB hydrogen 

in D is destabilized by 21 kcal mol-1  and in B by  22 kcal mol-1; and the non-HB 

hydrogen in D is destabilized by 2 kcal mol-1 and in B by 1 kcal mol-1. The slightly 

reduced stabilization of D vs. B can be understood in terms of slightly lengthened 

hydrogen bonds associated with D (0.03 and 0.02 Å longer). Waters E and F are both 

also sd,sa waters, however their neighbour environments differ from B and D in that E 

accepts from a double accepting water and F donates to a double donating water.  This is 

similar to the arrangements of C and D in the book systems where the recipient of a 

hydrogen bond from a double acceptor has a slightly lower stability than the water 

donating to a double donor: E has a net stabilization of -8 kcal mol-1 and F has a net 

stabilization of -9 kcal mol-1. The increased stability for these waters versus the 

analogous waters in the book structures is reflected by a greater stabilization of the bag E 

and F oxygen atoms (-46 kcal mol-1), the HB-hydrogens’ destabilization of 36 and 35 

kcal mol-1, and non-HB hydrogens’ destabilization of 3 and 2 kcal mol-1. It is apparent in 

the bag structure that for sd,sa environments the net stabilization depends largely on 

neighbouring waters, i.e. whether it receives a HB from a double donating or a double 

accepting water. As in the book structures, the double donating water is more stable than 

the double accepting water.  

 

5.4.2.3 Cage 

Figure 5.5 represents the atomic energy changes in the cage cluster. There are 8 

hydrogen bonds and an even distribution of bonding type environments for the waters: 
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two are single donors, single acceptors (F, A), two are double donors and single acceptors 

(B, D), and two are single donors but are double acceptors (C, E). 

 
Figure 5.5. Localized energy changes for formation of 3D cage hexamer. Stabilized 

atoms are red and destabilized atoms are blue. The sphere diameter is proportional to 

the atomic energy stabilization, ΔE(A). The wireframe structure indicates labelling for 

waters where both hydrogens participate in HBs; in all other cases H1 is the HB 

hydrogen and H2 is the non-HB hydrogen.  

In the cage system the impact of a neighbouring water on net stability is evident. 

Consider the two double donor waters B and D, having a stabilization of -9 kcal mol-1 and 

-7 kcal mol-1, respectively. The lower stability in D is a result of its neighbouring water 

molecules: it donates hydrogen bonds to two waters which are both double accepting 

oxygens, creating an anti-cooperative interaction. B donates to a sd,sa water (A) and to a 

dd,sa water (C), which allows for an enhanced cooperative interaction with A. Much 

larger values for the atomic stabilizations of B vs. D reinforce this cooperative picture: 

the oxygen is stabilized by -48 kcal mol-1 in B but only -35 kcal mol-1 in D and the HB-

hydrogens are destabilized by 24 and 15 kcal mol-1 in B, compared to 15 and 13 kcal mol-

1 in D. In the double accepting waters, E and C, the total stabilization is the same for both 

(7 kcal mol-1) however at the atomic level E’s larger oxygen stabilization (-49 kcal mol-1 

in E vs. -42 kcal mol-1 in C) is offset by  an equally larger HB hydrogen destabilization 

(36 kcal mol-1 for E vs. 30 kcal mol-1 for C). The non-HB hydrogen in E is slightly more 

destabilized than in C, 6 kcal mol-1 vs. 5 kcal mol-1. Since water E donates to a double 

donating water (B), it has a greater cooperative stability than C, which donates to a single 

donating, single accepting water (F). Comparing the two single donating, single 

accepting waters (F, A), water F donates to a double accepting water, receives from a 

double accepting neighbour, and is stabilized by -8 kcal mol-1. Water A donates to a 
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double donating water and receives from a double donating water and is stabilized by -9 

kcal mol-1. The atomic energy values for F and A are similar: oxygens are both stabilized 

by -38 kcal mol-1 and HB-hydrogens are both destabilized by 27 kcal mol-1; however, the 

non-HB hydrogen is destabilized by 3.0 kcal mol-1 in F and only 2.0 kcal mol-1 in A. The 

double donating system is slightly more cooperatively stabilized than the double 

accepting system. What is interesting is that the non-bonding hydrogen again pays the 

price for the less favourable double accepting interactions. The cage structure also has an 

interesting topology point which may affect the overall cluster stability: it has an oxygen-

oxygen bond critical point between waters D and B. The critical point topology of the 

clusters is discussed in a later section. 

5.4.2.4 Prism 

 
Figure 5.6 . Localized energy changes for formation of 3D prism hexamer. Stabilized 

atoms are red and destabilized atoms are blue. The sphere diameter is proportional to 

the atomic energy stabilization, ΔE(A). The wireframe structure indicates labelling for 

waters where both hydrogens participate in HBs; in all other cases H1 is the HB 

hydrogen and H2 is the non-HB hydrogen. 

Figure 5.6 represents the atomic energy changes in the prism configuration. In the 

prism system, there are no singly-accepting and singly-donating waters; instead, all 

waters interact with three other water molecules, either as double donor, single acceptors 

(A, B, D) or as single donor, double acceptors (C, E, F). The dd,sa waters A and D are 

highly stabilized, by -12 and -10 kcal mol-1, respectively, with atomic values of -48 and -

38 kcal mol-1 for oxygens in A and D respectively, 23 and 12 kcal mol-1 for the HB-

hydrogens in A and 16 and 11 kcal mol-1 for the HB-hydrogens in D. The strongly 

stabilized A receives from a single donor, double acceptor (F) and donates to one sd,da 
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and one dd,sa. Water D, which is slightly less stabilized than A and has smaller atomic 

energy changes, donates to two sd,sa waters, and has a reduced cooperative stability 

versus A. The final double donor, single acceptor water, B, has a total stabilization of 

only -6 kcal mol. The oxygen in B is stabilized by -34 kcal mol-1, and its HB-hydrogens 

are destabilized by 15 and 12 kcal mol-1. Although it is a double donor, which means an 

opportunity for increased cooperative stability, it receives a HB from a double donor and 

donates to two waters which are both double acceptors – these are anti-cooperative 

interactions and result in a lower net stabilization. Waters C, E and F also provide an 

interesting opportunity for analysis: E has a net stabilization of -8 kcal mol-1 and atomic 

stabilities of -38 kcal mol-1 for the oxygen, 25 kcal mol-1 for the HB hydrogen, and 5 kcal 

mol-1 for the non-HB hydrogen; C has a net stability of -6 kcal mol-1 and atomic 

stabilities of -38 kcal mol-1 for the oxygen, 29 kcal mol-1 for the HB hydrogen, and 3 kcal 

mol-1 for the non-HB hydrogen; and F has a net stabilization of -6 and atomic stabilities 

of -49 kcal mol-1 for the oxygen, 37 kcal mol-1 for the HB hydrogen, and 6 kcal mol-1 for 

the non-HB hydrogen. The atomic energy changes in C and E are similar for oxygens and 

HB-hydrogens whereas in F the oxygen and HB hydrogen have a much stronger 

stabilization and destabilization, a difference of about 10 kcal mol-1 each. Water F 

accepts one HB from a double donor water and one HB from a single donor water 

whereas waters C and E receive both of their hydrogen bonds from waters which are 

double donors. The large atomic energy changes in F (which only receives from one 

double donor) indicate that there is greater cooperativity present than in E and C. It is the 

large destabilization of F’s non-HB hydrogen that serves to give it a net lower stability, 

resulting from the anti-cooperative sd,da environment. It is particularly evident in the 

prism structure that the local stability of a water molecule is highly dependent on the type 

of bonding interactions with its neighbouring water molecules. In the prism case it is also 

evident that the stability of the non-HB hydrogen can have a significant impact on the 

overall stability of the water cluster. A further consideration regarding the electronic 

behaviour in these water interactions is the impact of higher order electron correlation 

(i.e. not available in MP2 analysis). These correlation effects influence the relative 

interaction energies of the six hexamer isomers discussed above [17-148] removing the 

near degeneracy of the prism and cage structures. The 3D structures are more stabilized 
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than the planar structures [88], with the largest influence of correlation observed for the 

planar structures [148]. Returning to our analysis of the cooperativity within each system, 

it is evident that these higher order correlation effects become most important when 

cooperativity is highest (planar, chair) and least important when it is diminished (3D, 

prism). The removal of near-degeneracy between the prism and cage isomers with 

inclusion of higher order correlation serves to emphasize the different interactions present 

in these systems that contribute towards their net stabilization. 

To summarize the bonding interactions in the 3D clusters, the distribution of atomic 

energies discussed for all systems show that 1) relative to the other waters within the 

cluster, a double donating water in general is more stabilized and a double accepting 

water in general is less stabilized, 2) the stability of any water depends largely on the 

bonding environment of its neighbouring waters so that donating or accepting a HB to or 

from a double donating water is more stabilizing than donating or accepting a HB to or 

from a double accepting water, and 3) an increased 3D character of the water clusters 

yields an increased destabilization of the non-HB hydrogens. The amount of cooperative 

enhancement in the stability of a water molecule within these clusters may be inferred 

through the magnitude of the differences in their substituent atomic stabilities [4]. 

5.4.3 Bond critical point analysis 

Previous reports have shown that the total electron density at bond critical points 

(BCPs) in water clusters is directly related to the overall stability of the structure [90]. 

We plot this relationship for the water hexamers in Figure 5.7. To further categorize the 

relative stabilities of the structures, total BCP densities were separated into contributions 

from either hydrogen bond (HOH…O) or covalent bond (O-H) critical points. With 

respect to the total bond critical point density, increasingly stable clusters have increased 

density at BCPs. Interestingly, the cage, which is slightly less stable than the prism, has a 

total BCP density that is slightly (0.004 a.u.) higher. The cause for this may in part be due 

to an O-O bond critical point in the cage structure which increases the total BCP density 

by 0.0049 a.u.; the O-O BCP is discussed in more detail in the next section. In the 

relationship between hydrogen bond critical points (HBCPs) and total stability the prism 
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is a clear deviant, with a much lower total HBCP density despite having the greatest 

number of hydrogen bonds. The cage has the highest total hydrogen bond critical point 

density. For total density at covalent bond critical points there is no clear linear relation 

between the total covalent BCP density and the overall stability for the clusters, however, 

it is evident that systems having larger total HBCP densities also have smaller total 

covalent BCP density, again with the exception of the cage and prism structures.  

 

Figure 5.7 Total electron densities for bond critical points plotted relative to the 

interaction energy of each hexamer cluster. Left panel: all BCPs in the cluster 

(including cage O-O BCP). Center panel: only covalent (O-H) BCP densities. Right 

panel: only hydrogen bond (OH...O) BCP densities. 

The stability distribution observed in the critical point densities reflects the 

cooperative influence on the hydrogen bonding in the clusters. Consider the prism, cage 

and chair systems, with nine, eight and six hydrogen bonds, respectively. The chair 

cluster has a simple donor acceptor arrangement forming hydrogen bonds that are 

enhanced by a strong cooperativity. The total density of the six HBCPs in the chair 

structure is 0.2537 a.u., which is 0.1055 a.u. greater than six “non-cooperative” HBs 

(defining a non-cooperative HB as that of an isolated water dimer, with HBCP density of 

0.0247 a.u.). Although the cage has complicated bonding interactions, an equal 

distribution of dd,sa, sd,sa and sd,da waters results in a minimal amount of anti-

cooperative interactions present and thus the possible cooperative interactions are 

maximized. The cage has a total HBCP density of 0.2620 a.u. which is 0.0644 a.u. greater 

than eight non-cooperative hydrogen bonds. For the prism, the equal number of double 

donor and double acceptor interactions, with no single donor, single acceptors, results in 

two strongly stabilized waters but also two waters which have a greatly reduced 
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stabilization from forced anti-cooperative interactions. The prism has a total HBCP 

density of 0.2543 a.u., which is only 0.0320 a.u. greater than would be expected for nine 

non-cooperative bonds. Considering the individual HBCP densities in the prism, we also 

note that there are five hydrogen bonds that have HBCP densities lower than that of the 

dimer. There are four such HBCPs in the cage, two in the bag, one in each book 1 and 

book 2, and none in the 2D chair and boat structures.  The bond critical point values for 

all structures can be found in Figure 5.8.  

 
Figure 5.8 Molecular graph plots of hexamer structures showing bond critical point 

electron density values (a.u.) for all hydrogen bonds plus O-O interaction in cage 

structure. The HBCP value for the dimer is 0.0247 a.u. Complete critical point data 

(including covalent bonds) is available in the supporting information. Plots were created 

using AIMAll. 

5.4.4 Oxygen-oxygen bond critical point 

As well as the expected covalent and hydrogen bond critical points in the cage water 

clusters, there is also an oxygen-oxygen (O-O) bond critical point found between waters 

D and B. Pakiari and Eskandari [164] studied a set of enol forms of cis-β-diketones and 

have provided detailed analysis on what constitutes a stabilizing O-O interaction for those 

systems, including bond lengths, density at BCPs and ellipticity. We note that in the cage 

cluster the O-O distance is 0.51 Å longer than the longest reported O-O distance in the 

Eskandari study (2.90 Å) and has a BCP density of 0.0049 a.u.,  just over half of their 
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reported lowest value (0.0088 a.u.). Jenkins et al. [165] have closely studied the critical 

point topology for clusters of 4, 5, and 6 waters. They report that structures containing O-

O critical points with highly strained bond paths (designated by the deviation of bond 

path length, BPL, from the bond length) can be more energetically stable if they obey 

Bernal-Fowler ice rules, but are otherwise unfavourable. In the cage cluster reported here 

the BPL deviation is very small, only 0.005 Å. Although Jenkins et al. do not discuss an 

O-O bond critical point for the cage structure, they report an O-O BCP in the boat 

structures which is not present in our evaluation at the SCVS MP2/aug-cc-pVTZ level. 

There is an O-O BCP in the boat structures when evaluated at the SCVS MP2/6-

311++G(d,p) level. This impact of type of basis set (e.g. Pople vs. Dunning) on the 

electron density topology is interesting given the level of theory. We note that the boat O-

O BCP, with a very small value of electron density (0.00024 a.u.) and very large 

ellipticity (2.33), is not a stable point in the density topology. The O-O BCP in the cage is 

present when evaluated with either Dunning or Pople basis sets. Despite the cage O-O 

BCP density being significantly larger than in the boat (0.00487 a.u. for the Dunning 

basis set using SCVS), one might still argue that this is not a stabilizing interaction for 

the cage structure due to its large ellipticity value (1.85). We would, however, like to 

point out that there is a low vibrational frequency (O-H-O bending) present in the cage 

structure that brings the oxygens closer by ~0.2 Å (unscaled). It is possible that this could 

become a stabilizing interaction when this vibrational mode is accessible to the cluster 

(i.e. at temperatures above 0 K). It could be argued that any geometry change will cause 

the marginally stable critical point to simply disappear (see reference [1], p. 84), however 

given the non-vanishing value of electron density at the BCP this is not likely. We 

conclude that this O-O BCP is a stable point on the cage topology and contributes to the 

overall stability of the cage structure. 

5.5 Summary and Conclusions 

In this report we used changes in atomic energies to describe the local stabilization of 

water molecules and their constituent atoms in eight low-lying water hexamer clusters: 

prism, cage, bag, book 1, book 2, chair, boat 1, and boat 2. The atomic energies provide 
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critical insight into the unequal distribution of stability within each cluster and a reduced 

potential for cooperative stability as the dimensionality of the clusters increases from 2D 

to 3D, where the hydrogen bonds may be either cooperatively stabilized or anti-

cooperatively destabilized. In the chair system, all hydrogen bonds are cooperatively 

stabilized to an equal extent, resulting in similar energy changes within each atom type 

(oxygens, hydrogen bonding (HB) hydrogens and non-HB hydrogens). In the boat 

systems, small deviations from symmetry result in similarly small deviations in 

distribution of atomic stability; narrowed OH…O angles and increased bond lengths 

reflect the lowered atomic stabilizations in the waters. For the 3D systems (boat 1, boat 2, 

bag, cage and prism), the atomic stabilization varies widely depending on the water in 

question and the bonding interactions of its neighbours. The number of HBs for each 

water, as well as the arrangement and number of hydrogen bonds formed by 

neighbouring waters, can enhance or diminish the net stabilization. In general, waters 

which donate both hydrogens to form double donating interactions have an increased 

stabilization and waters which accept two hydrogen bonds experience a decrease in 

stabilization, as a result of cooperative and anti-cooperative effects. Similarly, waters that 

interact with a double donor water are more stabilized than waters that interact with a 

double acceptor water. In many cases a water molecule may have a largely stabilized 

oxygen atom but an overall stabilization that is diminished due to the destabilization of 

the water’s hydrogen atoms. In the prism structure the formation of a maximum number 

of hydrogen bonds (with all waters either doubly donating or doubly accepting) comes at 

the price of a lowered overall decrease in the strength of most of these hydrogen bonds 

along with a large destabilization of the non-HB hydrogen atoms. 

 Bond critical point (BCP) electron densities indicate that the chair system has the 

greatest cooperative stability of the clusters, with the highest values of electron density at 

hydrogen bond BCPs and reduced covalent BCP densities. The cage is at a balance point 

having both large covalent BCP densities and large hydrogen bond BCP densities. The 

overall stability in the prism is largely due to strong covalent bonds rather than strong 

hydrogen bonds; it has the lowest average BCP density per HB. The cage structure also 

has an oxygen-oxygen bond critical point which may factor into the experimentally 

observed stability of the structure. 
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5.7 Chapter Summary and Relevance 

In this chapter, as in Chapter 4, it is found that the oxygen atoms are stabilized and the 

hydrogen atoms are destabilized in the water hexamers. The planar-like hexamer systems 

(chair and boat 1 and 2) continue the trend of a non-linear increase in atomic energy change 

as number of hydrogen bonds increases (cooperative stability) as was observed for the 

trimer to pentamer clusters. This cooperative trend is diminished when clusters change 

from nearly planar to three-dimensional. The prism, cage, and bag clusters can have local 

water stabilities differing up to 5 kcal mol−1 as a result of mixed cooperative and anti-

cooperative interactions. Atomic energies reveal that in many cases a water molecule may 

have a largely stabilized oxygen atom but the net water stability will be diminished due to 

the destabilization of the water’s hydrogen atoms. Analysis of bond critical point (BCP) 

electron densities shows that the reduced cooperativity results in a decrease in hydrogen 

bond strength and an increase in covalent bond strength, as is most evident in the prism. 

This chapter demonstrates that QTAIM energy analysis is a useful tool to evaluate a variety 

of complicated water-water hydrogen bond interactions. 
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Chapter 6 Cooperativity Between Hydrogen Bonds and Beryllium 

Bonds in (H2O)nBeX2 (n = 1–3, X = H, F) Complexes. A 

New Perspective. 

 

 

 

L. Albrecht, R. J. Boyd, O. Mó, M. Yáñez, Phys. Chem. Chem. Phys. (2012) 14, 14540-14547 (DOI: 

10.1039/C2CP42534C)  - Reproduced by permission of the PCCP Owner Societies 

 

The following chapter was a collaborative effort. The contribution from this author was 

to provide the QTAIM energies analysis and some discussion related to the atomic 

energies. The chapter is included in this thesis because it provides a useful example of the 

application of atomic energy analysis to small cluster systems which incorporate elements 

other than those in pure water clusters (beryllium and fluorine). It also demonstrates the 

use of a theoretical method other than MP2 for the analysis of atomic energies.  

  

http://pubs.rsc.org/en/Content/ArticleLanding/2012/CP/c2cp42534c#!divAbstract
http://pubs.rsc.org/en/Content/ArticleLanding/2012/CP/c2cp42534c#!divAbstract
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6.1 Abstract 

The interaction of BeX2 (X = H, F) with water molecules has been analyzed at the 

B3LYP/6-311+G(3df,2p)//B3LYP/6-31+G(d,p) level of theory. The formation of strong 

beryllium bonds between water molecules and the BeX2 derivative triggers significant 

electron density redistribution within the whole system, resulting in significant changes in 

the proton donor and proton acceptor capacity of the water molecules involved. Hence, 

significant cooperative and anti-cooperative effects are present, explaining why there is 

no case in which the global minimum corresponds to a tetracoordinated beryllium atom. 

In fact, the most stable clusters can be viewed as the result of the attachment of BeX2 to 

the water trimer and the water dimer, respectively, and not as the result of the solvation of 

the BeX2 molecule. We have also shown that the decomposition of the interaction energy 

into atomic components is a reliable quantitative tool to describe all the closed-shell 

interactions present in the clusters investigated herein, namely hydrogen bonds, beryllium 

bonds and dihydrogen bonds. Indeed, we have shown that the changes in the atomic 

energy components are correlated with the changes in the strength of these interactions, 

and they provide a direct quantitative measure of cooperative effects directly in terms of 

energies. 

6.2 Introduction 

Beryllium and its derivatives are extensively used in the chemical industry [166-167] 

[168]. Just to mention a few of their applications, elemental Be is employed as an 

alloying agent, in a low percentage, to produce age-hardening alloys such as BeCu [169] 

[170] with many applications in the electronics industry [171-173]. Its high melting point, 

low density and high thermal conductivity make it a useful material for heat dissipation 

[174-175]. Since the 1980's it has been used to fabricate lightweight mirrors with good 

dimensional stability [176-178]. Due to its low thermal neutron absorption, Be is also 

employed as moderator in nuclear reactors. Its oxide is a very good heat conductor, but at 

the same time is an excellent electrical insulator used in telecommunications and in 

ceramics [179-182]. Its chloride derivative catalyzes the Friedel-Crafts reaction and 
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forms many interesting complexes [166]. Be and its compounds are however very toxic, 

mainly if inhaled as dust leading to the so-called chronic beryllium disease [183-185]. 

This has motivated much interest in unraveling the mechanisms behind the high toxicity 

of this element. In some of these studies it has been suggested that Be acts as a 

"tetrahedral proton" displacing H+ from strong hydrogen bonds [186-190]. This implies 

that strong hydrogen bonds are an ideal binding site for Be. Besides, this new binding 

mechanism seems to explain how Be migrates through a biological system passing from 

one protein to another via exchangeable hydrogen bonds [190].  

These ideas are essentially based on the formal similarity between H+ and Be2+ ions. 

Furthermore, neutral beryllium derivatives have been shown to lead to very strong 

closed-shell interactions with typical Lewis bases, forming what have been named 

beryllium bonds [191] because of  their similarity with conventional hydrogen bonds, 

with which they share some common characteristics [191]. One of the most important 

signatures of many closed-shell interactions is cooperativity, reflected in changes in their 

strength when more than one of these interactions occurs in the same system. 

Cooperativity has been extensively studied in hydrogen bonded systems, [127, 192-208] 

but it is also present in other weak interactions [209]. In this respect, it has been shown 

very recently that cooperativity is rather strong between beryllium and inter- or intra-

molecular hydrogen bonds, in such a way that the strengths of both closed-shell 

interactions become mutually altered [210]. For instance, the intramolecular hydrogen 

bond (HB) holding together the imidazole dimer becomes significantly reinforced when 

the imidazole monomer acting as the proton donor forms a beryllium bond with BeH2 or 

BeF2 [210]. Also of importance, when the BeX2 molecule is attached to the imidazole 

acting as the HB acceptor, the HB cleaves and is replaced by a beryllium bond and a 

dihydrogen bond  (structure a in Scheme 1). One of the most important findings is that 

the complex in which Be is tetracoordinated to the two X ligands and the two imidazole 

molecules (structure b in Scheme 1) is not the global minimum on the potential energy 

surface, as might be expected [210]. 
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Scheme 1 

Hence, although Be has a clear propensity to be tetracoordinated [186, 188, 189, 211-

212], the formation of beryllium bonds may favor arrangements in which the level of 

coordination is clearly smaller, because of the significant electron density redistribution 

associated with the formation of beryllium bonds. 

Since water is ubiquitous in the physiological medium, significant attention was paid 

to the way in which Be2+ interacts with water. It seems well established that Be2+ forms 

tetracoordinated clusters when interacting with water [188, 212-213], followed by the 

deprotonation of one of the water molecules. It is not evident however whether this 

arrangement would be preferred when Be is already attached to two ligands but is still 

able to form stable beryllium bonds. Hence we have considered it of interest to 

investigate here the effects that beryllium bonds may produce on the hydrogen bonds 

which stabilize water clusters. For this purpose we have taken as suitable model systems 

the water dimer and the water trimer interacting with both BeH2 and BeF2.  

6.3 Computational details 

In our theoretical survey of the complexes between the water dimer and trimer with 

BeX2 (X = H, F)  we have used the B3LYP hybrid density functional method [214-215], 

because it has been shown to be well suited for the description of water clusters [196, 

216-217], provided that a sufficiently flexible basis set is used. As well, this hybrid 

functional provides a reliable description of beryllium bonds [191]. More importantly, 

B3LYP has been shown, using G4 calculations as a reference, to be a reasonable choice 

when trying to describe simultaneously beryllium bonds and hydrogen bonds [210]. In 

fact other functionals that performed better than B3LYP as far as the description of HBs 
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is concerned, such as X3LYP, M05-2X, M06-2X or B97-D methods, turn out to not be a 

good alternative when both beryllium bonds and hydrogen bonds coincide in the same 

system [210]. This is because they underestimate the strength of the former, but 

overestimate the strength of the latter, whereas the B3LYP approach slightly 

underestimates the strength of both closed-shell interactions [210]. Nevertheless, using 

the clusters of BeH2 with two water molecules as a suitable benchmark case we have 

verified that the relative stability order found at the B3LYP level is in agreement with the 

one obtained through CCSD(T)/cc-aug-pVQZ single point calculations carried out on 

CCSD/6-31+G(d,p) optimized geometries (see Table B.1 of the supporting information 

Appendix B.3).  

For the geometry optimizations and the evaluation of the harmonic vibrational 

frequencies a 6-31+G(d,p) basis set expansion was used. Final energies were evaluated in 

single point calculations carried out with a larger 6-311+G(3df,2p) basis set.  The 

harmonic vibrational frequencies were used to assert that the stationary points found were 

local minima (having no imaginary vibrational frequencies) on the corresponding 

potential energy surface (PES). The interaction energies (Eint) have been calculated by 

subtracting from the total energy of each complex the energies of the isolated monomers 

in their equilibrium conformation.  

Beryllium bonds are characterized by a significant charge transfer from the lone-pairs 

of the Lewis base (in this case the oxygen-lone pairs of a water molecule) towards the 

empty p orbital of Be and to the BeX* antibonding orbital of the BeX2 moiety [191]. An 

efficient way to quantify these charge transfer interactions is through the NBO second 

order interactions between the occupied orbitals of the Lewis base (the water cluster) and 

the empty orbitals of the BeX2 Lewis acid [218]. Also in the framework of this approach 

it is possible to calculate the Wiberg bond orders which also provide a good quantitative 

measure of the strength of the bond [219]. 

An alternative and complementary view can be obtained through the quantum theory 

of atoms in molecules (QTAIM) [1, 57], based on a topological analysis of the electron 

density.  Using this approach it is possible to define the so-called molecular graphs of the 

system as a three-dimensional plot, which shows the positions of the maxima of the 

density, associated with the positions of the nuclei, as well as the first-order saddle points 
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(usually called bond critical points, BCPs). The molecular graph is completed by adding 

the bond paths, which are the lines connecting two neighbor maxima, passing through the 

BCP between them. The electron density, the Laplacian of the density, and the energy 

density calculated at the BCPs provide useful information about the strength and nature 

of the interaction between two atoms in the molecular system.  

A further perspective is available within the framework of QTAIM is based on the 

evaluation of atomic energy components [3-4]. QTAIM defines atoms as open systems 

bounded by zero flux surfaces, called atomic basins. Integration over these basins yields 

very accurate atomic information. The QTAIM method is well documented and further 

technical details for atomic energy evaluation are described in reference [4]. It has been 

demonstrated [3-4] that atomic energies are a useful tool for describing internal energy 

changes in weakly bound systems. The changes in atomic energies correlate to changing 

atomic stabilities within the system, thus giving insight into the distribution of the 

stabilization and destabilization present in the BeX2:H2O moieties. The atomic energy 

changes for the clusters are calculated with respect to the energy of each atom as it exists 

in the BeX2 or H2O monomer. Gaussian 09 [70] was used to generate the B3LYP/6-

31+G(d,p) wave functions which were then analyzed using the AIMAll suite of programs 

to evaluate the QTAIM properties [69].  

6.4 Results and discussion  

The molecular graphs of the clusters formed by two and three water molecules with 

BeH2 are shown in Figure 6.1. The analogous graphs for the BeF2 complexes are shown 

in Figure B.1 of the supporting information (Appendix B.3). Figure 6.1 also includes the 

molecular graphs of BeH2, H2O:BeH2, water dimer and water trimer, in order to facilitate 

the discussion of cooperative effects. The nomenclature adopted hereafter is as follows: 

the water dimer:BeX2 clusters will be named in general as WD(BeX2). The different 

stable minima will be identified by adding a, b to this acronym, following a decreasing 

stability order. The same convention will be used to name the clusters involving three 

water molecules, the general acronym being in this case WT(BeX2).  
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Figure 6.1 Molecular graphs of H2O:BeH2, water dimer, and water trimer and the 

optimized clusters formed by two and three water molecules with BeH2. Red dots 

denote BCPs. Electron densities are in a.u. A and B denote respectively the BeH2 

molecule and the water molecule attached to through a beryllium bond.  

 

The corresponding optimized geometries are summarized in Table B.2 of the 

supporting information. Table B.3 collects the B3LYP/6-31+G(d,p) and B3LYP/6-

311+G(3df,2p) total energies. The interaction energies as well as the relative energies of 

the different complexes, referring to their corresponding global minima, are given in 

Table 6.1. The interaction energies of the water dimer and water trimer, as well as those 

of H2O:BeH2 and H2O:BeF2 are also reported to facilitate the analysis of the results. For 

the sake of simplicity, in what follows we will discuss in detail only the characteristics of 
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the BeH2 clusters, which can be easily extended to the clusters that involve BeF2 as the 

Lewis acid.  

Table 6.1 Interaction energies (Eint, kJ mol-1)a and relative stabilities (ΔG°298, kJ mol-1)b 

of the complexes formed between water dimer and water trimer with BeX2 (X = H, F). 

 
a The interaction energies for the water dimer and the water trimer at the same level of accuracy are: -25.1 

and -72.4 kJ mol-1, respectively. The interaction energies for complexes H2O:BeH2 and H2O:BeF2 are -77.6 

and -90.4 kJ mol-1, respectively. b Relative stabilities have been calculated at the B3LYP/6-

311+G(3df,2p)//B3LYP/6-31+G(d,p) level of theory. 

 

For WD(BeH2) complexes only two stable local minima have been located. 

Interestingly, the less stable one corresponds to the structure in which Be appears 

tetracoordinated forming two beryllium bonds with the water molecules. As could be 

easily anticipated, the interaction energy for the WD(BeH2)b clusters is less than twice 

that of the H2O:BeH2 complex since, as shown by the electron densities at the BCP,  the 

two beryllium bonds in WD(BeH2)b are weaker than the one in H2O:BeX2. This is 

because in the former Be behaves as a double electron acceptor. The structure of the 

global minimum (WD(BeH2)a) results from the attachment of the BeX2 Lewis acid to the 

HB donor of the water dimer. For BeH2 this structure is stabilized through the formation 

of an (O···Be) beryllium bond and a dihydrogen bond between one of the protons of 

water molecule C and an H in the BeH2 moiety (note that for BeF2 this latter interaction 

is replaced by a H···F hydrogen bond). Accordingly, the interaction energy for the 

WD(BeH2)a complex is larger than the sum of the interaction energies calculated for 

water dimer and for the H2O-BeH2 complex. Note however, that the difference:  

Eint(WD(BeH2)a) - Eint(water dimer) - Eint(H2O:BeX2) (-35.5 kJ mol-1) does not measure 

the strength of this additional H···H bond because in the WD(BeH2)a complex non-

negligible cooperative effects appear. A perusal of its molecular graph clearly shows that 

both the OH···O hydrogen bond and the Be···O beryllium bond become reinforced with 

respect to the isolated water dimer and the H2O:BeH2 complex. Hence, the enhanced 

 WD(BeH2)s WD(BeF2)s WT(BeH2)s WT(BeF2)s 

S Eint Gº298 Eint Gº298 Eint Gº298 Eint Gº298 

A -138.2 0.0 -159.9 0.0 -195.3 0.0 -220.8 0.0 

B -122.9 14.2 -148.1 12.5 -190.4 2.5 -219.1 0.05 

C     -182.5 15.8 -214.0 11.7 

D     -169.4 17.7 -192.4 19.2 
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stability of the WD(BeH2)a complex with respect to WD(BeH2)b is not only due to the 

fact that the former is stabilized by three closed-shell interactions (one beryllium bond, 

one HB and one dihydrogen bond) instead of two (beryllium bonds), but also because two 

of these interactions are reinforced due to cooperativity effects. Indeed the beryllium 

bond becomes stronger in WD(BeH2)a than in H2O:BeH2 because the water molecule B 

interacting with the BeH2 molecule, is at the same time a proton donor to the water 

molecule C, enhancing its electron donor capacity. This reinforcement of the O···Be 

interaction is also reflected in the NBO characteristics of this bond. Whereas in the 

H2O:BeH2 complex the O-Be bond has a participation of 6% from the Be orbitals, its 

participation increases to 8% in the WD(BeH2)a cluster. Also the Wiberg bond order 

goes from 0.290 to 0.336. The OH···O HB becomes reinforced as well, because the water 

molecule B acting as the HB donor is simultaneously acting as an electron donor to Be, 

which strongly enhances its proton donor capacity. On the top of that, the donor acceptor 

capacity of water molecule C is enhanced because C is not only a proton acceptor with 

respect to B, but also a proton donor in the OH···HBe dihydrogen bond with respect to A. 

Again, this is reflected not only in the increase of electron density at the BCP from 0.025 

a.u. to 0.045 a.u., but also in the NBO second order orbital interaction energies, which 

show that while in the water dimer the interaction between the O lone pair of the HB 

acceptor and the OH* antibonding orbital of the HB donor is 29 kJ mol-1, the same 

interaction in the WD(BeH2)a cluster amounts to 81 kJ mol-1. 

Four different local minima have been located for BeH2 clusters involving three water 

molecules. The three less stable complexes arise from the solvation of WD(BeH2)a and 

WD(BeH2)b with a third water molecule. Starting from WD(BeH2)a, when the third 

water molecule solvates the water molecule B directly interacting with BeH2, one obtains 

the C2 symmetry structure WT(BeH2)b. If the third water molecule solvates water 

molecule C (the one not interacting with the BeH2 molecule) then the much less stable 

cluster WT(BeH2)d is obtained. Local minimum WT(BeH2)c arises from the solvation of 

the Be tretracoordinated WD(BeH2)b complex. Due to the symmetry of this complex, 

regardless of which water molecule is solvated  (B or C) the resulting cluster is the same. 

The global minimum WT(BeH2)a was obtained by attaching BeH2 to one of the oxygen 

atoms of the water trimer. Although the three oxygens in the water trimer are not strictly 
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equivalent, no matter which oxygen is chosen for the BeH2 attachment the optimization 

always yields WT(BeH2)a. It is important to notice that in this cluster, one of the HBs in 

the water trimer has been replaced by a beryllium bond and a dihydrogen bond. Similar to 

what was already found for WD(BeH2)a, in this case the cooperative effects are 

significant and responsible for the enhanced stability of this structure with respect to the 

tetracoordinated Be (WT(BeH2)b).  Indeed when the molecular graph of the complex 

WT(BeH2)a is compared with that of WD(BeH2)a, one may observe that besides the 

new, rather strong, HB formed  between C and D (electron density of 0.040 a.u.),  the 

electron density at the BCP of all the other closed-shell interactions increases: for the 

beryllium bond between A and B from 0.063 a.u. to 0.066 a.u., for the HB between B and 

C from 0.045 a.u. to 0.060 a.u. and for the dihydrogen bond between D and A, from 

0.023 a.u. to 0.031 a.u. These changes in the electron density distribution reflect the 

changes in the charge transfer between the monomers integrated in the cluster. In fact, 

going from WD(BeH2)a to WT(BeH2)a, the O-Be bond further increases the 

participation of Be orbitals from 8% to 9%, whereas the Wiberg  bond order goes from 

0.336 to 0.442. Similarly the NBO interaction energy between the O lone pair of water 

molecule C and the OH* antibonding orbital of the water molecule B increases from 81 

kJ mol-1in the WD(BeH2)a cluster to 140 kJ mol-1 in the WT(BeH2)a cluster. 

Cooperative effects also appear in cluster WT(BeH2)c. A comparison of its molecular 

graph with that of WD(BeH2)b shows that the beryllium bond between A and B is clearly 

reinforced  whereas the other beryllium bond (between A and C) remains unperturbed. 

Also, the HB between both water molecules B and D is stronger than in the water dimer. 

Conversely, the formation of WT(BeH2)b leads to both cooperative and anti-cooperative 

effects. The electron density at the beryllium bond critical point (between A and B) 

increases from 0.063 a.u. to 0.071 a.u., when going from WD(BeH2)a to WT(BeH2)b but 

the electron density at the HB critical points between the water molecules (C-B and B-D) 

and at the dihydrogen bond critical points (A-C and A-D) decreases from 0.045 a.u. to 

0.036 a.u. and from 0.023 a.u. to 0.020 a.u., respectively. The enhancement in the 

stability of the beryllium bond reflects the increase in the electron donor capacity of the 

water molecule interacting with BeH2 because it is acting as a double proton donor. For 

this same reason the HBs between this water molecule and the other two become weaker.    
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6.5 An alternative perspective in terms of atomic energy components 

In this section we will show that the decomposition of the total interaction energy into 

atomic energy components offers a new perspective for analysis of the bonding 

characteristics of different closed-shell interactions, also accounting for the observed 

cooperative effects. 

In Figure 6.2 we have plotted the same systems as in Figure 6.1, however the atoms 

are represented in a way to visually indicate the changes in atomic energy. Atoms 

experiencing a negative (stabilizing) energy change are red and atoms experiencing a 

positive (destabilizing) atomic energy change are blue. The size of the spheres 

representing the atoms is directly correlated to the magnitude of the atomic energy 

change. Thus a large red atom is greatly stabilized while a small blue atom is slightly 

destabilized. The values of the atomic energy changes have been labeled. The atomic 

energy changes are calculated with the respect to their value in the corresponding free 

monomer, evaluated in its equilibrium conformation. Atomic data for BeH2 and BeF2 

systems as well as graphs for the BeF2:H2O complexes are available in the supporting 

information (Appendix B.3). 

The first conspicuous fact is that in water clusters the oxygen atoms become stabilized, 

whereas all hydrogen atoms become destabilized. This result quantitatively confirms the 

idea that the hydrogen atoms strongly contribute to mitigate the electron density 

redistributions produced by charge donations, ionizations or changes in the 

electronegativity of the heavy atoms of a molecular system.  This explains for instance 

why the ring strain energy of the three-membered alkyl ring decreases dramatically on 

going from the perfluorinated cyclopropane molecule to unsubstituted cyclopropane, 

[220-221] or why the relative stability of carbocations and carboanions [222] decreases 

with their degree of substitution, and more recently why the interaction energies of 

C2H2F2 with CuF are weaker than those calculated for the unsubstituted parent 

compound, whereas for C2F2, which does not contain hydrogen atoms, gives the opposite 

result [223].  

 



 

91 

 

 

Figure 6.2 Change in atomic energy for the formation of water dimer, trimer, and 

BeH2:(H2O)n, n=1-3, systems. Values for the relative energy change of each atom are 

labeled (kJ mol-1). Stabilized atoms are red, destabilized atoms are blue. Atom size 

corresponds to the magnitude of energy change. A, B, C, and D denote labels as in 

Figure 6.1. For hydrogens which are hidden the energy is included in parentheses. The 

atomic energies for the atoms in BeH2 and H2O monomers are: Be (-3.78x105), H (-

2.02x103), and O (1.98x105), H (1.03x103), respectively, in kJ mol-1. Structures were 

prepared using VMD software [114]. 
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When a beryllium bond is formed, for instance in the H2O:BeH2 complex, the Be atom 

becomes systematically destabilized along with the hydrogen atoms attached to it, 

because the measure of stabilization is closely related to the accumulation of electron 

density on the atom in question. When a dihydrogen bond is formed, for instance in 

WD(BeH2)a, the hydrogen of water molecule B participating in the bond destabilizes 

more than the H present as a spectator. Conversely, the negatively charged hydrogen 

atom of A participating in the bond is stabilized with respect to the one not directly taking 

part in it. Similarly, the hydrogen atom which participates in a HB is the one which 

destabilizes the most. Let us consider, for instance, the water trimer. The three hydrogens 

participating in the hydrogen bonds have destabilization energies around 100 kJ mol-1, 

whereas for the H atoms which do not participate in the HBs these values are around 12 

kJ mol-1.  

Furthermore, the larger the destabilization of the H atom participating in a HB the 

stronger the HB. This is clearly seen when comparing the values for the water dimer and 

water trimer. In the former, the relative atomic energy of the H atom participating in the 

HB is 61 kJ mol-1, whereas in the latter these energies are around 100 kJ mol-1, as it 

corresponds to stronger HBs in the trimer than in the dimer. Similarly, the greater the 

destabilization of the Be atom the stronger the beryllium bond in which it participates. 

Compare, for instance the values of H2O:BeH2 with those of WD(BeH2)a).  

These results clearly show that the changes in the atomic energy components mirror 

the corresponding changes in the strength of hydrogen bonds, beryllium bonds and 

dihydrogen bonds and therefore they should be able to account for the cooperative 

effects. In the previous section we have shown that in cluster WT(BeH2)a cooperative 

effects reinforce the beryllium bond, the HB between B and C, and the dihydrogen bond 

between D and A. In perfectly harmony with these findings it is observed that on going 

from WD(BeH2)a to WT(BeH2)a the destabilization energy of the Be bond increases 

from 312 kJ mol-1 to 324 kJ mol-1 and at the same time the destabilization energy of the H 

of water molecule B participating in the HB, and the H atom of water molecule D 

participating in the dihydrogen bond also increases by 8.2 and 4.3 kJ mol-1, respectively. 

It is worth noting that in the dihydrogen bond, not only the H of the water molecule 

becomes more destabilized (by 4.3 kJ mol-1), but the H of the BeH2 moiety becomes less 
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destabilized (by 10.8 kJ mol-1). Finally, the atomic energy components also show that the 

new HB formed between water molecules C and D is weaker than the one present 

between B and C, since the destabilization energy of the H participating in the bond is 

48.2 kJ mol-1 smaller.  This is not surprising if one takes into account that molecule B 

transfers charge to Be and this dramatically enhances its intrinsic acidity and therefore its 

proton donor capacity. The same trends are observed for the complexes involving BeF2 as 

shown in Figure B.2 of the supporting information. This figure shows that going from 

WD(BeF2)a to WT(BeF2)a the destabilization energies of the Be atom and of the H 

atoms participating in the B-C and D-A HBs increase by 5.8, 18.4, and 10.9 kJ mol-1, 

respectively. Note that coherently, the stabilization energy of the fluorine atoms 

participating in the F···H HB increases, in absolute value, by 19.7 kJ mol-1. 

The atomic energy components also account for anti-cooperative effects. This is 

apparent form the calculated values of cluster WT(BeH2)b with respect to those of 

WD(BeH2)a, from which it derives. The Be destabilization energy in the former is 15.9 

kJ mol-1 larger than in the latter, indicating a clear cooperative effect. Conversely, the 

destabilization energy of the H atoms of molecules C and D participating in the HBs 

decreases by 5.9 kJ mol-1, indicating in this case some anti-cooperativity. The same 

applies to the H atoms of both water molecules participating in the dihydrogen bonds, 

whose destabilization energies decrease by 10.0 kJ mol-1. Coherently, the destabilization 

energy of the H atoms of the BeH2 moiety involved in these dihydrogen bonds increases 

by 6.1 kJ mol-1.  

It should be emphasized that the advantage of using atomic energy components to 

analyze cooperative effects, with respect to other methods that are based on the analysis 

of the electron density, is that they provide a quantitative measure of these effects directly 

in terms of energies. In fact, when the weak interactions involved in the cluster are of the 

same kind, as for instance in the water trimer, the calculation of the energy of each of the 

three HBs involved in this cluster using the atomic energy components is straightforward. 

Additional work, however, is required to see whether it would be possible to calculate the 

energy of the closed-interactions stabilizing the clusters when they have a different 

nature, as in WD(BeX2) or WT(BeX2) complexes.  
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6.6 Conclusions 

The interaction of BeX2 (X = H, F) with water molecules leads to the formation of 

strong beryllium bonds. The significant electron density redistribution these closed-shell 

interactions produce in the whole system results in significant changes in the proton 

donor and proton acceptor capacity of the water molecules involved. This is evident from 

significant cooperative and anti-cooperative effects. The existence of cooperativity 

actually explains why the tetracoordinated beryllium atom is not present in the global 

minimum of complexes with two or three water molecules. In fact, the most stable 

clusters can be viewed as the result of the attachment of BeX2 to the water dimer and the 

water trimer, rather than as the result of the solvation of the BeX2 molecule. Thus, in the 

WD(BeX2)a cluster the BeX2 molecule interacts with the water acting as a HB donor, 

strongly reinforcing the water-water interaction and closing a ring through the formation 

of a dihydrogen bond with the HB acceptor. Similarly WT(BeX2)a can be viewed as the 

result of replacing one of the HB in the water trimer with a beryllium bond plus a 

dihydrogen bond, also resulting in very large reinforcements of the water-water 

interactions.  

We have also shown that the decomposition of the interaction energies in atomic 

components is a very reliable tool to describe all these closed-shell interactions and that it 

could very likely be extended to other interactions, such as halogen bonds or agostic 

interactions. The changes in the atomic energy components are correlated with the 

changes in the strength of the interactions, and can therefore account for cooperative or 

anti-cooperative effects.  
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6.8 Chapter Summary and Relevance 

This chapter demonstrates that significant cooperative and anti-cooperative effects are 

present in the interaction of beryllium halides and its derivatives with small water clusters, 

which explains the lack of a tetrahedral global minimum for the beryllium interactions. 

Changes in the atomic energy components are correlated with changes in the strength of a 

variety of closed-shell interactions, including hydrogen bonds, beryllium bonds and di-

hydrogen bonds, and provide a quantitative measure of cooperative effects directly in terms 

of energies. 
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Chapter 7 Water Wires Interacting With One or Two Ions 

 

 

 

 

In the following chapter atomic energies are used to evaluate the local changes in water 

wires as they interact with ions. This local analysis, established in earlier chapters, allows 

the total stability of the water wire to be decomposed into contributions from the ion vs. 

contributions from the water molecules. An interesting trend is revealed: the stabilizing or 

destabilizing effect of the ions on the water molecules is correlated to the traditional 

classification of ions as structure makers or structure breakers. Visualization of atomic 

energy changes for the protonated water wires emphasizes the usefulness of this method 

for a simple visual assessment of local changes in stability. In the final section a counter 

ion is introduced to evaluate the effect of two opposing ions on the water wire. Bond critical 

point values as well as oxygen-oxygen bond distances are used to support atomic energy 

analysis. 
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7.1 Abstract 

Water wires provide a necessary function in cells involving the movement of water 

molecules and ions across membranes. We report a series of high level ab initio (MP2) 

calculations on (H2O)n water wires up to n=7, interacting with a set of halide ions and 

alkali and alkaline earth metal ions (X = Cl-, Br-, F-, H+, Li+, Na+, K+, Ca2+). We use 

Bader’s atoms in molecules analysis (QTAIM) to report the change in local (atomic) 

stability within the water wire after the ion is introduced. Interaction with F-, H+, Li+, and 

Na+ results in the net stabilization of water relative to a neutral water wire. Interaction 

with K+, Ca2+, Cl-, and Br- yields a net destabilization relative to the neutral water wires. 

These trends reproduce properties of kosmotropic vs. chaotropic ions. Protonation of the 

water wire results in a clear shift in the local stability, with an asymmetric distribution of 

energy as the wire increases in length. Hydrogen-bonding H atoms are always 

destabilized, but the atomic energy for the non-hydrogen bonded H atoms increases for 

cations and decreases for anions. We also evaluate systems containing two ions, NaCl 

and KCl, separated by an n=7 water wire. The local water stability in the presence of a 

counter ion is essentially the sum of the individual influences of each isolated ion.  

7.2 Introduction 

Water wires are chains of water molecules connected through hydrogen bonds. They 

can be isolated in metal-organic frameworks [224-226], are present in aqueous acid-base 

neutralization [227-228] and play a key role in the mechanisms of some enzymes [229] 

[230]. Of particular importance is the nature of water wires in various forms of 

confinement, including carbon or boron nanotubes [231-236], hydrophobic crystal 

channels [237], and peptide-based nanotubes [238-240]. This keen interest is due in part 

to the fundamental role of water wires in cell life. They have an active role in many 

biological systems including aquaporins [241], potassium channels [242] and proton 

channels [243-248]. These membrane pores provide the mechanism for the movement of 

water molecules, ions and H+ protons in and out of cells [249]. Hydrophilic functional 

groups lining channel pores may be incorporated into the hydrogen-bonded chains 
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crossing cell membranes and local environment likely has a large role in the stability and 

function of water wires. Computational studies on water wires will thus often include a 

representation of the membrane pore, employing molecular dynamics (MD) analysis to 

maintain computational efficiency. In the MD approach, chemical interactions are 

modelled using sophisticated empirical approximations (forcefields) and have the ability 

to simulate dynamic behaviour of water and ions in the channels. A key shortcoming of 

forcefield representation is an over-simplified description of water behaviour. Common 

models such as TIP3P and SPC/E describe water molecules as non-polarizable point 

charges constrained to a rigid geometry, quantum behaviour such as bond breaking and 

proton transfer is not possible, and the models are generally parameterized to reproduce 

bulk water properties (see Appendix A.1). This design significantly influences the final 

water structure [233]. For example, lack of polarizability can have a substantial effect on 

the dipoles of water wires inside Gramicidin A channels [250]. Care must be taken when 

interpreting reports of novel hydrogen bond environments for water-filled channels 

described using these methods. We note that some approaches, e.g. the MS-EVB 

approach [251], do allow bond-breaking/formation and have been successfully applied to 

describe proton channels, despite not including water properties such as electronic 

polarizability and nuclear quantization [252]. 

An alternative to the MD approach is to use ab initio methods to evaluate isolated 

water wires. Early calculations applied Hartree‒Fock (HF) analysis [253-254] to map the 

potential energy surface of proton transfer in water by evaluating the stability of 

H+(H2O)n wires in gas phase environment using frozen geometries. More recently, 

Patharasarthi et al. [255] fully optimized neutral water wires up to 20 molecules long 

using density-functional theory (DFT), HF and Møller-Plesset perturbation (MP2) 

approaches in gas phase to show that cooperativity increases at a much greater rate for 

water clusters than water wires. In fact, the systems of 3-7 waters did not form stable 

linear minima when optimized using the MP2 method but rather tended to optimize as 

clusters. Karakus et al. [256] used DFT to evaluate water wire formation in highly 

charged environments, in order to study water phenomena observed in mass spectrometry 

experiments. Sastry et al. employed DFT to study the subsequent binding energy of 

neutral clusters of water molecules [257] and chains of water interacting with a set of 
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mono- and divalent ions, considering the influence of ions on the cooperativity of the 

water interaction [258]. They found that cooperativity as well as the ions influence was 

reduced dramatically after addition of 2-3 water molecules.   

Membrane pore channels can be highly ion-selective, and many factors governing 

their ion selectivity are still unknown. In part, this is because the nature of ion-water 

interactions remains a unique area of chemical discovery [259-264]. A recent 

experimental study has shown that water interacts cooperatively with negative ions and 

anti-cooperatively with positive ions [265], further reinforcing our interest in the nature 

of ion influence on water. Evaluating the local response of waters to ions in a water wire 

environment would provide novel insight into the nature of these interactions, perhaps 

elucidating details of the mechanism behind the impressive ion selectivity of some 

membrane pores. Such a study also provides an interesting one-dimensional look at the 

general behaviour of ion-water solvation. 

In this report we evaluate the local properties of neutral water wires using MP2 

analysis and Bader’s quantum theory of atoms in molecules (QTAIM) [1]. We introduce 

a set of alkali, alkaline earth and halide ions to study how the waters within the water 

wires are influenced by positive or negative ions. Finally we evaluate two systems with 

paired-ion interactions to evaluate the influence of a counter ion. The QTAIM analysis 

provides the ability to isolate the properties of individual waters in each water wire and to 

directly compare the influence of the ions on the water wire. We also consider local 

bonding information obtained from bond critical point analysis as well as the geometries 

of the water wires. 

 

7.3 Computational Methods  

We study water wires up to 7 waters in length (~13 Å long) with a helix-type 

geometry. Although the length of a channel spanning a typical biomembrane may 

accommodate chains up to 20 waters long [266], the actual length of a water wire is likely 

to be less: either existing in a narrow region within a pore or interrupted by functional 

groups lining the channel of the pore. Additionally, the majority of studies on the 
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structure of hydration of ionic salts use a molar ratio of water to salts between 4-40, with 

a few studies up to 63 [261]. This corresponds to an approximate mean distance between 

ions of ~12 Å, on the order of a 7-water chain. The water wires were fully optimized 

using the MP2 method [32] with a Pople 6-311++G(d,p) basis set using Gaussian 09 [70]. 

An IEF-PCM water dielectric was included to help stabilize the water wires. The 

calculations also apply self-consistent virial scaling (SCVS) [61, 71] which improves the 

quality of the optimized wavefunction by simultaneously minimizing the energy with 

respect to a scaling factor for all coordinates, molecular orbital coefficients, and the 

molecular geometry [63]. After the wires were optimized, an ion was introduced at the 

appropriate end: H+, Li+, Na+, K+, Ca2+ at the hydrogen bond donor end, or F-, Cl-, Br- at 

the acceptor end, and these structures were then fully optimized using the same level of 

theory. Frequency calculations were used to ascertain that all structures evaluated were 

true minima on the very complicated water potential energy surface. We emphasize that 

these water structures are not global minima, which would likely adopt a clustered 

geometry, but do represent local minima. The wavefunctions were evaluated using 

AIMAll [69] to calculate critical points in the electron density topology and to 

decompose the topology into local atomic contributions. There are many resources which 

describe critical point analysis in detail, including the correlation between the properties 

of the electron density at a bond critical point (BCP) and the nature of that bond [57, 267-

272]. The local evaluation of atomic energies in water clusters has also been previously 

described in the literature [4-5, 7]. 

Local stability (ΔE(A)) of atoms in the neutral water wire (Wn) were evaluated relative 

to the energy of the isolated water monomer,  

 ΔE(atom in Wn) = E(atom in Wn) – E(atom in monomer) (7.1)  

where n is the number of waters in the water wire and E is its atomic energy. Local 

atomic stabilities for the water wires plus ions (Wn
X) are evaluated according to the 

change in atomic energy relative to the neutral water wire, 

 ΔE(atom in Wn
X) = E(atom in Wn

X) – E(atom in Wn) (7.2)  

where X is the interacting ion. ΔE(X) is evaluated relative to an isolated ion. A decrease 

in atomic energy (ΔE(A)<0) is stabilizing and an increase in energy (ΔE(A)>0) is 
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destabilizing. The results are visualized by plotting the molecular system using colour-

coded atoms, where an atom with ΔE(A)<0 is red and atom with ΔE(A)>0 is blue [3]. 

The size of the atom is also scaled so that it is proportional to the magnitude of energy 

change and relative atomic stabilities can be judged by visual inspection. A largely 

stabilized atom is represented by a large red sphere and a moderately destabilized atom is 

represented by a moderately sized blue sphere. If the energy change is very small (less 

than ±1 kcal mol-1) the atom is non-coloured (white) and will have a relative default 

sphere size of “1”. These figures were generated using the VMD program [114]. All 

reported atomic energies are scaled by (1 − 𝛾) [1], according to the virial relation  𝛾 =

−𝑉 𝑇⁄ = 2 where V and T are the potential and kinetic energies, respectively. 

We define total interaction energy (Eint) as,  

 Eint = [E(Wn
X)] – [nE(H2O) + E(X)], (7.3)  

The relative interaction energy (Eint
X) is for a neutral water wire interacting with an ion. 

This is defined as the difference between the neutral water wire and the water wire plus 

the ion: 

 Eint
X = [E(Wn

X)] – [E(Wn) + E(X)], (7.4)  

The relative interaction energy is equivalent to the sum of the atomic energy stabilities in 

the system, so that Eint 
X≡ ΣΔE(A), where E(A) is the energy of an atom in Wn

X. With 

respect to the effect of basis set superposition error (BSSE) on interaction energy, we use 

a large basis set which will minimize the BSSE [45]. Furthermore, it has been shown 

previously that while the effect of BSSE on water wires may lower the interaction 

energies slightly, all trends remained consistent for the sequential growth of the water 

wire [258].  
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7.4 Results and Discussion  

7.4.1 Neutral Water Wire 

 

Figure 7.1 Optimized structures of the neutral water wires. Molecular graphs (top) and 

local energy changes (bottom). Green dots in the molecular graphs are bond critical 

points. Densities at hydrogen bond critical points are labelled in a.u. For atomic 

stabilities, stabilized atoms are red and destabilized atoms are blue. The sphere diameter 

is proportional to the atomic energy stabilization, ΔE(A), so that an atom with a larger 

energy change is shown as a larger sphere. For energy changes less than ±1 kcal mol-1 

the sphere is coloured white. The hydrogen bond donor and hydrogen bond acceptor 

waters are indicated for the n=7 figure. The donor water will always be the first water 

from the left. 

The optimized structures of the neutral water wires are represented as molecular 

graphs and as atomic energy stabilities in Figure 7.1. Neutral water chains have been 

discussed in previous reports and we focus our discussion on the changing local (atomic 

or water) stabilities of each water wire as length increases, relative to the energy of the 

water monomer. Local water stability is the sum of the stabilities of the atoms 

compromising that water. From Table 7.1 it is clear that the stability of the initial 
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donating water (far left, Figure 7.1) decreases as the chain increases in length, from -2 

kcal mol-1 (stabilized) to +0.7 kcal mol-1 (destabilized), for n increasing from 2 to 7. The 

final accepting water (far right, Figure 7.1) decreases in stability from -3 to -0.5 kcal mol-

1. The central waters are the most stabilized, and also there is a slight asymmetry in the 

stability of the water wire, with the accepting side being more stable than the donating 

side. The non-hydrogen bonding hydrogen (HnHB) on the first donating water does not 

experience significant change in local energy for wires with n=3 or greater. In terms of 

bond critical point analysis, the strength of the hydrogen bond interaction increases as the 

chain length increases. This is indicated by increased electron density at the hydrogen-

bond bond critical points (HB-BCPs), predominantly at the center of the water wire. 

While the central waters have the strongest HB interaction, HB-BCPs also reflect the 

asymmetric distribution of the atomic stabilities: the HBs on the donating side are slightly 

stronger than the HBs on the accepting side. Previous reports have also indicated that 

HBs originating from the left or the right may have differing energies (depending on the 

local environment) [266]. 

Table 7.1. Energy per water in water wires n=2-7. 

W   E(W)a    

 n=2 n=3 n=4 n=5 n=6 n=7 

1 -1.8 -0.6 0.1 0.5 0.8 0.7 

2 -2.6 -7.3 -6.7 -6.4 -6.1 -5.9 

3  -1.6 -7.0 -6.8 -6.5 -6.3 

4   -1.1 -6.7 -6.6 -6.4 

5    -0.6 -6.5 -6.3 

6     -0.3 -6.2 

7      -0.5 

Tb -4 -9 -15 -20 -25 -31 
a Energy in kcal mol-1. E(W) = ΣE(H,O). b T is the total energy, 

T= ΣE(W) for Wn. 

 

7.4.2 Ion Interaction 

When the neutral water wires interact with an ion, each water will undergo a change in 

stability that depends on the nature of the ion. Cations interact with the oxygen at the 

donor end and anions interact with a hydrogen at the acceptor end. The energy changes 
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are defined relative to a neutral water wire, demonstrating the extent of the ion’s 

influence if it were to interact with a water wire already formed, e.g. in a membrane 

channel (notwithstanding the environmental effects of the channel itself).  The change 

relative to an isolated water monomer can be obtained by simple addition of the atomic 

stability of the neutral water wire (Wn) to the atomic stability of the water wire plus the 

ion (Wn
X). 

The total interaction energy (Eint) for each ion-plus-water wire is plotted against wire 

length, n, in Figure 7.2a. It is clear that the ions have an overall stabilizing influence on 

the water wires and that this stabilization is constant as the length of the water wire 

increases, with the exception of H+ where the influence of the extra proton on total 

stabilization becomes diminished as the chain length increases. The order of ion influence 

on net stability is F- > Cl- > Br- for anions and H+ > Ca2+ > Li+ > Na+ > K+ for cations. In 

terms of cooperativity (Ecoop=Eint/nHB, see Figure 7.2b), the neutral water wire shows the 

expected slight cooperativity [255] indicated by a gradual increase in interaction energy 

per hydrogen bond. For the water wires with the ion present, Ecoop is decreasing, most 

dramatically in the H+ case. This apparent loss of cooperativity is likely because the 

electrostatic ion interaction strongly overshadows the cooperativity of the hydrogen 

bonds in the water chain.  

 

Figure 7.2 Total interaction energy, Eint, for ions interacting with water wires n=2-7 (a), 

and average energy per HB, Ecoop=Eint/nHB, where nHB=number of hydrogen bonds (b). 

The x-axis is the number of water molecules in the chain. 

Changes in local atomic stability vs. the neutral water wire (Wn) can be obtained by 

decomposing the relative interaction energy into contributions from each oxygen and 

hydrogen atom. In Figure 7.3, the stability of each oxygen atom (O), hydrogen bonded 
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hydrogen atom (HHB), non-hydrogen bonded hydrogen atom (HnHB), and hydrogen atom 

interacting with an ion (HX) is plotted along the length of the water wire, for n increasing 

from 2 to 7 waters. The general shape of the curves, indicating the atomic stability 

moving from left to right along the water chain, is consistent for all n and the largest 

change in energy is clearly experienced by the atoms closest to the ion. After ~3 waters, 

the stabilities attain a constant value. The oxygen atoms are the largest contributor to the 

net stability of the water wire. Interestingly, the sign of the ion’s formal charge does not 

determine if the oxygen will be stabilized or destabilized: Br-, Cl- and K+ are 

destabilizing, while F-, Ca2+, Li+ and Na+ are stabilizing. The stability of the oxygens is 

also dependent on the length of the water wire; with the exception of Ca2+, as the water 

wire increases in length the energy change for oxygen decreases in magnitude, indicating 

more or less stability depending on the nature of the ion. This influence on oxygen 

stability is greatest for Cl- and K+, followed by Li+, Br- and Na+. For F- and Ca2+ the 

oxygen stability is influenced largely by proximity to the ion, and only minimally by the 

lengthening of the water wire.  

For the hydrogen atoms, it is clear that the local energy is not affected by the length of 

the water wire but depends only on proximity to the ion and the ion charge. This 

influence on stability approaches zero after ~3 waters from the ion. HHBs are destabilized 

regardless of ion type, however the HnHBs are destabilized for cation interaction but 

stabilized for anion interaction. In the cation systems, both hydrogens of the final 

accepting water molecule are destabilized between +10 to +4 kcal mol-1, with Li+ having 

the largest influence. In the anion systems HX is destabilized between +7 to +3 kcal mol-1 

while the non-interacting H on the same water is stabilized by -13 to -4 kcal mol-1. 

Fluoride has the largest influence on the stability of HX.  
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Figure 7.3 Local atomic stabilities for atoms in water wire interacting with ions. Each 

point on a line represents the stability of an oxygen, HHB, or HnHB atom in a water 

molecule along the water wire, plotted against the position of that water in the wire, for 

the set of Wn
X water wires, n=2-7. Oxygens are open circles, hydrogen bonded hydrogens 

(HHB) are open triangles and non-hydrogen bonded hydrogens (HnHB) are plus signs. For 

anions, the hydrogen interacting directly with the ion (HX) is marked as a cross. 

 

While atomic stabilities are useful to discuss the local source of stability in the water 

wires, it is also instructive to combine these stabilities in order to discuss the contribution 

to net stability from the water wire vs. from the ion. These values are represented in 

Figure 7.4. Eint
X for the ions-plus-water wire reveal a net stability invariant with respect 

to chain length. When the stability is divided into water vs. ion contributions, net stability 

for the water molecules shows a dependency on the nature of the ion as well as the length 

of the water wire. For Li+, Na+ and F-, the water chain has an increase in stability as the 

chain grows in length. For Br-, Cl-, K+, and Ca2+ the water chain is increasingly 
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destabilized. Despite having the greatest net stability, fluoride has only a minimal effect 

on the local energy changes of the waters and ion. 

  
Figure 7.4 a) Total stability for all waters in the wire, b) stability of the ion, c) net 

stability of the water wire vs. the neutral wire (Eint
X). The x-axis is length of water wire 

(n). 

7.4.3 BCP and Geometry 

Bond critical point analysis is a powerful tool for quantifying the strengths of 

hydrogen bonding interactions. It has been shown that the magnitude of electron density 

at the hydrogen-bond bond critical point (HB-BCP) is directly related to hydrogen bond 

strength [268, 271-272]. To supplement our atomic energy analysis we report the HB-

BCP values for each water wire (Figure 7.5). The shape of the plots for neutral water 

wires indicates greater HB strength in the center of the wire, with weaker HBs at the 

ends. Addition of the ions has the effect of increasing the electron density at the HB-

BCPs predominantly near the point of interaction (right acceptor side for anions and left 

donor side for cations). For F-, Cl-, Li+ and Ca2+ the shape of the curve changes vs. the 

neutral water: density at the HB-BCP nearest the ion is stronger than in the center of the 

wire, by a significant amount in the case of F-, Li+, and Ca2+. Ions Br-, Na+ and K+ 

maintain a slight maximum for the central HBs. The electron density of the HB furthest 

from the ion wire does not change vs. the neutral water value for all lengths n=3-7. It is 

n 
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clear that the ion influence on HB strength in the water wires is limited to the waters 

closest to the ion.  

 

 

Figure 7.5 Electron density at hydrogen bond critical points for each HB in Wn
X water 

wires. The x-axis indicates position of the HB in the water wire. The donating water 

(interacting with cations) is on the left and accepting water (interacting with anions) is 

on the right.  

We also include O-O distances for each water in W7 and W7
X in Figure 7.6. The 

influence of the ion on hydrogen bond length is clearly largest for the waters closest to 

the ion, which have a significantly shortened O-O bond. Comparing with Figure 7.5, it is 

clear that the density at HB-BCPs is increased for shortened O-O bonds. The ion which 

has the greatest influence on BCP density is fluoride, with a HB-BCP increase of 0.015 

a.u. The O-O distance for the HB nearest to the ion in W7
F- is shortened by the greatest 

amount among this series of ions (0.13 Å). Even with such a large influence on the initial 

water in the chain, the final water HB shows no significant influence from the fluoride’s 

presence. This agrees with the observed minimal change in the atomic stabilities for that 

final water. 
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a)   

b)   

Figure 7.6  O-O distances for HBs in W7 and W7
X water wires interacting with a) 

cations and b) anions. Labelled values are O-O distances in Å. The x-axis is the position 

of the HB in the water wires, beginning from the donor end. In the legend, W indicates 

the neutral water wire. 

7.4.4 Structure Makers and Breakers 

Although the impact of the ion decreases sharply after two or three water molecules, 

the overall energy of each water molecule is still influenced by the presence of the ion, 

with the oxygen atoms experiencing the most significant change in energy. This is the 

source of the overall stability of the Wn
X wires. What is interesting is that, as mentioned, 

the sign of the local oxygen stability does not correlate with the sign of the formal charge 

on the ion. Although the concept of kosmotropes and chaotropes has undergone 

significant reappraisal over recent years [261], we find it interesting to point out that there 

is an agreement between the historic division of ions into “structure makers” vs. 

“structure breakers” and the nature of the local stability in the water wires. Ions which are 

classified as kosmotropes (having a positive ordering effect on the surrounding waters), 

correspond to those ions which also have a stabilizing influence on the water in the water 

wires: Li+, Na+, F-. The ions which are chaotropes, which tend towards disordered 

surrounding water, are those ions which have a destabilizing influence on the water in the 

water wires: K-, Cl-, Br-. We stress that the net interaction between the water wires and 

ions is always stabilizing; however, it is interesting that the local nature of this interaction 

appears to reproduce a trend that has long pervaded the discussion of water-ion solvation. 
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7.4.5 H+ Interaction 

The nature of a proton interacting with a water wire is uniquely different from the 

interaction of the other ions. This is because the addition of H+ results in a proton transfer 

to a central water, resulting in the formation of a Zundel ion or a hydronium cation. 

Because of its importance in biological systems, proton transfer in water wires has been 

extensively studied [247, 251, 273-274]. While a comprehensive discussion of this 

phenomenon is beyond the scope of this report, atomic energy analysis offers a unique 

perspective of the proton transfer in the water wire and we will discuss these results. 

From plots of the local stabilities in Figure 7.7 it is clear that the oxygens are all 

stabilized and the hydrogen atoms are all destabilized. There is a clear shift in the local 

stability as the chain increases in length. The minimum at the second oxygen of the n=2-4 

water chain shifts to a minimum at the third oxygen for n=5-7, indicating that the H+ has 

migrated from the second to third water as chain length increases. The HHB stabilities 

show a clear peak for the Hs that bracket this protonated water. Note that when the length 

increases past n>4, the destabilization of the initial HHB has diminished considerably.  

HnHB stabilities also show a shift for the third water in the chains with n>3, with a 

maximum for the hydrogen attached to the newly protonated water molecule, and the 

HnHBs bracketing this water being similar. The visual representation of the local stabilities 

in Figure 7.8 clearly shows the movement of the proton as n increases. Notice that the 

largely stabilized oxygen is no further than 3 waters along the wire, even as n increases to 

7. 

We have also plotted the hydrogen bond critical point densities for Wn
H+ (Figure 7.9). 

It is clear that the protonated water wire has a significant increase in HB strength, skewed 

towards the beginning of the water wire. The greatest increase in HB-BCP (coinciding 

with the strongest HB) occurs either between the 2nd and 3rd water for n=3,4 or the 3rd and 

4th water for n=5-7. For the wires with an odd number of waters there are two HBs of 

nearly equal strength, for even numbered water chains there is clearly only one HB which 

is the most stable. 
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Figure 7.7 Local contributions towards the net stability from a) oxygen atoms, b) 

hydrogen-bonded hydrogen atoms, c) non-hydrogen bonded hydrogens atoms in Wn
H+. 

For better clarity, the connecting lines for n=2-4 are dashed and for n=5-7 these lines 

are solid.  

Figure 7.8 Atomic energies for the set of water wires Wn
H+, n=2-7. See caption of Figure 

7.2 for further information. 



 

113 

 

 

Figure 7.9  Bond critical point values for hydrogen bonds in Wn and Wn
H+ for n=2-7. 

Values are in a.u. The HB-BCP density of the water dimer (ρ=0.0275 a.u.) is also 

included for reference. 

7.4.6 Paired-Ion Interactions 

An extremely interesting question regarding the nature of ions interacting with water 

wires is the influence that a counter ion will have on the local stability of the waters. We 

demonstrate this effect for the n=7 water wires interacting with Na+ and K+, including Cl- 

as the counter ion. The relative interaction energies of these systems are reported in Table 

7.2. Eint
X in this case is essentially the sum of the influences of the isolated cation and 

anion interacting with the water wire. Decomposing the interaction energy into local 

water stability, the graphs in Figure 7.10 show the net stabilities for the waters in the 

water wires, as well as stabilities of each oxygen and hydrogen atom. The local energy 

changes for the atoms in the paired-ion water wires are clearly the combination of the 

individual ions’ influence on the waters in the water wires. For example, the plot of 

atomic stabilities for HnHB in W7
KCl is a sum of the separate plots of HnHB for W7

K+ and 

W7
Cl-. The oxygen atoms are again influenced the most by the ions, with oxygen 

stabilization in W7
KCl and W7

NaCl clearly a sum of the single-ion interactions. If each 

isolated ion destabilizes the oxygen atoms, as in K+ and Cl-, the oxygen atoms of the 

paired-ion water wire (W7
KCl) will have an even greater destabilization. Alternatively, for 

W7
NaCl the Na+ stabilizes while Cl- destabilizes the oxygen atoms, and the combined 

result has an oxygen stabilization that lies between the isolated ion values. While the 

shape of the curves for the paired ion interactions are similar, the position of the curve for 
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NaCl is shifted to reveal greater local stabilization per water than KCl. Previous ab initio 

MD studies on NaCl and KCl solvation [264] report that while the structure of the 

solvation waters for these ion pairs is similar, average residence times in the first 

solvation shells was nearly double for NaCl vs KCl. The relative HB strengths, as 

determined by electron density at HB-BCPs, are summarized in Figure 7.11. The shape of 

the paired-ion curve clearly reveals the combined effects of each ion on the water wires. 

It would be very interesting to consider the influence of paired-ions for water wires 

shorter than n=7. 

Table 7.2 Interaction energies for isolated ion and paired-ion interaction with a neutral 

n=7 water wire. 

 

 
Figure 7.11  Bond critical point electron densities for hydrogen bonds in NaCl (top) and 

KCl (bottom) water wires. The x-axis indicates hydrogen bond position, where 1 

corresponds to the first H-bond. 

     Eint
X  W7

K+ W7
NA+ W7

CL+ W7
KCL W7

NACL W7 

net stability  -35.3 -35.3 -37.0 -42.0 -41.5 -30.8 

relative to W7  -4.5 -4.5 -6.2 -11.1 -10.7  
a Energies in kcal mol-1    
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(a) (b) (c) (d) 

    

    

    

    

    

    

    

    

(a) (b) (c) (d) 

 

 

 

 

 

 

 

 

 

 

Figure 7.10. Local atomic stabilities for NaCl (top) and KCl (bottom) water wires: (a) Stability per water, (b) stability per oxygen, (c) 

stability per hydrogen bonded hydrogen, (d) stability per non-hydrogen bonded hydrogen. The x-axis indicates position in water 

wire.  
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7.5 Conclusions 

In our report we have studied the local stability of one-dimensional helix-type water 

wires as they interact with a series of ions: X = Cl-, Br-, F-, H+, Li+, Na+, K+, Ca2+ as well 

as the paired NaCl and KCl ions. Stabilities are evaluated at the atomic level using 

Bader's quantum theory of atoms in molecules. Results show that the stability for the 

neutral wire is centered in the middle of the wire, having greater atomic energy changes 

for central waters. The accepting end of the water wire has slightly more stability than the 

donating end. When an ion is introduced at either the donor (cation) or acceptor (anion) 

end of the water wire, the local stability reveals the largest influence to be for the first 2-3 

waters in the water wire, trending towards a constant local stability for waters further 

from the ion. Oxygen atoms bear the majority of the energy change, and are 

stabilized/destabilized depending on the nature of the ion present. The energy change for 

oxygen atoms does not correlate to formal charge of the ion but rather follows the 

traditional trends of stabilizing kosmotropes (F-, H+, Li+, and Na+) vs. destabilizing 

chaotropes (K+, Cl-, and Br-). The local atomic stabilities reflect a large increase in 

hydrogen bond strength, also confirmed through increased hydrogen-bond bond critical 

densities and shortened bond distances. When a proton is introduced to a neutral water 

wire, an asymmetric shift is observed so that the H+ remains closest to the donor end of 

the water wire, and the energy changes are greater on the donor side. This is clearly 

represented using the atomic energies visualization. For the systems where the n=7 water 

wire interacts with a pair of ions (NaCl and KCl), the net stability for the waters can be 

clearly decomposed into the isolated contributions from individual ions. Although both 

ion-water wires have a net stabilization that is nearly equal, the curve for NaCl is reveals 

greater stabilization per water than KCl. 
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7.7 Chapter Summary and Relevance 

Previous studies have reported the short-range influence of ions on water wires by 

evaluating sequential hydrogen bond energies as the chain grows in length. The current 

analysis combines Bader’s QTAIM topology critical point analysis with local atomic 

energy changes to support this picture of a net short-range influence, however there is 

also an atomic energy change which increases as the wire increases in length. QTAIM 

energies also provide a unique picture of the classification of the local effects of the ions 

on the water molecules which correlates with structure maker vs. structure breaker ideas 

of ion solvation. Visualization of the QTAIM energies is a powerful tool to quickly 

demonstrates this, as well as to highlight the position of the greatest change in local 

stability when the water wire is protonated. The decomposition of the total energy into 

local parts is also useful in discussing the combined influence of two ions on a water 

wire.  
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Chapter 8 Atomic Energy Analysis of Cooperativity, Anti-

cooperativity, and Non-cooperativity in Small Clusters of 

Water, Methanol, and Formaldehyde. 

 

 

 

 

L. Albrecht and R. J. Boyd, Comp. Theo. Chem., (2014) In press. DOI: 10.1016/j.comptc.2014.08.022 – 

Reproduced with permission from The Journal of Computational Theoretical Chemistry. 

 

 

Chapters 4 and 5 revealed that, in the evaluation of cooperative water clusters, local 

stability increases with increasing cooperativity; however, there is also the question of the 

influence of changing cluster size on local stability. Is there a dependency for the local 

atomic energies on the size of the clusters? In order to further evaluate the capacity for 

atomic energy analysis to distinguish between cooperative and non-cooperative 

interactions, small clusters (n=2-4) of methanol, water and formaldehyde are evaluated 

next. These systems demonstrate, respectively, cooperative, anti-cooperative and non-

cooperative bonding interactions and therefore provide a useful test case for the influence 

of system size on atomic energy analysis of weak interactions. The following chapter was 

published as an invited article in a special issue of Computational and Theoretical 

Chemistry on "Understanding structure and reactivity from topology and beyond." 

  

http://www.sciencedirect.com/science/article/pii/S2210271X14003776
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8.1 Abstract 

The local and regional stabilities in clusters of water, methanol, and formaldehyde up 

to the tetramers have been analyzed from an atomic energy perspective. We optimize 

structures at the MP2/6-311++G(d,p) level with some CCSD(T)/6-311++G(d,p) single 

point energies, and then decompose the electronic densities into atomic parts using the 

atoms in molecules (AIM) approach. We consider the changes in atomic energy in the 

clusters vs. the isolated monomer. This method of analysis allows us to reveal the variety 

of stabilities within these hydrogen-bonded clusters, including indications of cooperative, 

anti-cooperative, and non-cooperative interactions. Cooperatively interacting clusters 

have increasing stability at the atomic level as the cluster size grows. This is not observed 

in the anti- and non-cooperative arrangements of water and formaldehyde clusters. The 

cooperativity in methanol clusters is dominated by the OH regions, with negligible energy 

change in the methyl regions. Formaldehyde clusters, including the lowest minimum 

“bucket” cluster, do not show significant cooperativity. Atomic energy analysis is 

supported with bond critical point data as well as charge and geometric values. We 

represent the local stability in the clusters using a simple visual approach that allows 

areas of increased or decreased stability to be easily interpreted. 

8.2  Introduction 

Characterizing the interactions in molecular systems normally involves interpreting 

changing geometries and evaluating total energies. Shortened bonds may reveal important 

areas of stability and decomposing the total energy in terms of electrostatics, charge 

transfer, or polarization can help us understand the sources of this stability. To add to 

these standard methods of analysis there is another powerful approach: Bader’s 

topological analysis of the electron density, as described in the atoms in molecules (AIM) 

theory [1, 57, 275]. The AIM approach provides access to a wealth of information about a 

molecular system directly from evaluation of its electron density. Many reports apply 

AIM, using electron density topology to describe properties such as group transferability, 

relationships between bond critical point values and bond strength, characteristics of 
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bonding interactions, and other applications that are well described in the literature [57, 

267-268, 271, 275-278].  In the AIM method, the electron density of a molecule is 

partitioned into atomic constituents from which local properties can be determined. This 

provides a way to directly evaluate the local (atomic) or regional (e.g. functional group) 

changes occurring as molecular systems interact. In this report we use a unique 

application of AIM density partitioning, one that takes advantage of the ability to 

evaluate the local energy of each atom in a molecule by integrating over its partitioned 

density [100]. By evaluating changes in atomic energies when molecules interact, we 

show that local and regional stabilities can be directly represented both inter- and 

intramolecularly. Furthermore, we represent this stability using a simple visual method 

that gives a direct picture of the changing energy within a system.  

To demonstrate the effectiveness of the atomic energy analysis we turn our attention to 

small clusters that can demonstrate either cooperative or non-cooperative interactions. 

Cooperativity is often described as a non-pairwise increase in stability observed when 

two or more weak interactions operate in concert. It plays an important role in the 

stability of many molecular clusters and is a central part of the behaviour of some 

molecules in condensed medium, e.g. in a solvent environment, as well as in processes 

such as protein folding and enzyme activity. Hydrogen-bonded interactions [12, 279-281] 

were perhaps the first cooperative systems to be observed, and their cooperativity has 

been well-studied using experimental, theoretical and combined approaches [13, 116, 

127-128, 130, 192, 196, 201-202, 282-293]. Cooperativity also exists between other 

kinds of weak interactions, such as halogen bonding [111, 209, 294-296] and ion-π [297-

298] interactions. Furthermore, the interplay of cooperativity between differing types of 

weak interactions is also an area of important study [298-299], e.g. hydrogen bonds plus 

halogen bonds [300-302], beryllium bonds plus hydrogen [6] or halogen bonds [8], and 

hydrogen bonds combined with ion-π interactions [299, 303]. The cooperative behaviour 

between two bonding interactions is not always a stabilizing association. It can instead 

result in what is often referred to as anti- or non-cooperative behaviour, where the 

combination of non-covalent interactions yields a system that is less stabilized than the 

isolated bonding interactions [299, 304]. This is observed in the linear HCN/HNC+ 

molecules [305], in some ion-π [303] interactions, and has been observed in various 
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arrangements of water clusters [5, 127-128]. Anti-cooperativity could have an important 

role in biological systems, inhibiting molecule docking or minimizing interaction strength 

despite the presence of multiple bonds that might otherwise be stabilizing. The balance of 

cooperative and anti-cooperative behaviour within small water clusters may be an 

important influence in the dynamic behaviour of bulk water [5]. 

Application of atomic energies to the study of cooperativity is particularly useful 

because it allows one to diagnose increased or decreased stability without needing to 

separate the system to explore it, as is the case in fragmentation methods [154, 162, 286, 

304]. This is particularly important because cooperative stability is a total molecular 

result that relies on many-body interactions of the third and higher orders [306] which are 

often approximated or truncated in energy decomposition approaches. These higher order 

interactions can have a considerable influence on the total energy, e.g. the third and 

fourth-order many-body interactions in water clusters can contribute more than 20% and 

4% to the total interaction energy, respectively [13]. 

We have previously used this atomic energy analysis to explore cooperative 

interactions in a variety of systems, including hydrogen bonding in water clusters [5-4] 

and beryllium bonding combined with hydrogen bonding [6] and halogen bonding [8]. To 

further explore the ability for atomic energies to represent cooperative behaviour in 

weakly interacting systems we present here calculations on three sets of small molecular 

clusters that encompass a range of strong to weak hydrogen bonding. Water, methanol 

and formaldehyde clusters from n=2-4 are optimized with MP2 theory and then evaluated 

at the atomic level. Water clusters in cooperative and anti-cooperative arrangement 

provide an interesting look at anti-cooperativity as well as a standard of comparison to 

previous studies. Methanol and formaldehyde deliver increased complexity in hydrogen 

bonding and furthermore formaldehyde clusters can adopt geometries that do not possess 

cooperative stability; we demonstrate this at the atomic level. We use atomic energies as 

well as other topological tools available in AIM to analyse the interactions in these 

clusters and then present their local stabilities visually in a simple and accessible way. 
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8.3 Computational Methods 

8.3.1  Wavefunction evaluation 

Previous analysis has demonstrated the suitability of Møller-Plesset second order 

perturbation theory [32] for the evaluation of cooperativity in water and methanol clusters 

[282, 290, 307]. Single point coupled cluster calculations were also performed on select 

systems (methanol and formaldehyde) to verify their energies (see supporting 

information, Table B.4 in Appendix B.4). We use a large triple zeta basis set including 

diffuse functions and polarizability on hydrogen and heavy atoms, 6-311++G(d,p), which 

is important for weak interactions. The large basis set was also chosen to minimize 

possible BSSE error [308]. We compare this Pople basis set to a similar Dunning basis 

set (aug-cc-pVTZ) which was previously shown to not require BSSE correction for weak 

interactions [304], and see that the Pople basis set provides a reasonable compromise for 

the range of structures evaluated (see supporting information, Table B.5). All molecules 

have been fully optimized and their vibrational frequencies evaluated to ascertain that 

they are stationary minima on their potential energy surfaces. Optimizations and 

frequency calculations were performed using Gaussian 09 [70]. 

Total stabilization of the clusters is defined by the interaction energy (Eint),  

 Eint = E(n-mer) – nE(monomer), (8.1)  

where “n-mer” refers to the dimer, trimer or tetramer (n=2-4). The total cooperativity 

(Ecoop) is sometimes defined as the difference between the average hydrogen bond (HB) 

energy and the energy of a single HB in the dimer structure: 

 Ecoop = EHB–Eint(dimer), (8.2)  

where EHB = Eint m⁄ , m = number of hydrogen bonds in the cluster. Although this is a 

useful method of comparison, it is not strictly accurate, as we will discover in the 

discussion of methanol clusters. 
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8.3.2 Atoms in molecules evaluation 

The atoms in molecules analysis requires an accurate evaluation of the wave function 

including proper minimization of nuclear forces to reduce deviation from the virial 

theorem. Ideally we would optimize the systems using self-consistent virial scaling 

(SCVS) [61, 71], which will simultaneously minimize the energy with respect to a 

scaling factor for all coordinates, molecular orbital coefficients, and the molecular 

geometry [63]. We have evaluated the largest of our systems with this approach to ensure 

that there is no significant deviation in accuracy of the wavefunction as the system size 

increases (see supporting information, Tables B.6 and B.7). All reported atomic energies 

are scaled by (1 − 𝛾), according to the virial relation  𝛾 = −𝑉 𝑇⁄ = 2. Local energy 

changes are evaluated by calculating the increase or decrease in atomic energy per atom 

in a cluster relative to the isolated monomer,  

 ΔE(atom) = E(atom in complex) – E(atom in monomer). (8.3)  

A decrease in energy (ΔE<0) is stabilizing and an increase in energy (ΔE>0) is 

destabilizing. The results are visualized by plotting molecular systems using colour-coded 

atoms [3], where an atom with ΔE<0 is red and atom with ΔE>0 is blue. The size of the 

atom is also scaled so that it is proportional to the magnitude of energy change. Thus, a 

largely stabilized atom is represented by a large red sphere and a moderately destabilized 

atom is represented by a moderately sized blue sphere. If the energy change is very small 

(less than ±1 kcal mol-1) the atom is colourless (white) and will have a default sphere size 

of “1”.  

AIM analysis also yields other important information from density topology, in 

particular the characterization of critical points. There are many resources which describe 

this analysis in detail, including the correlation between the properties of the electron 

density at a bond critical point (BCP) and the nature of that bond [267-271]. We will use 

this correlation to support our discussion of the relationship between local stability and 

atomic energy changes.  All AIM analyses were performed within the AIMAll suite [69]. 

Atomic energy figures were generated using the VMD program [114]. 
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8.4 Results and Discussion 

8.4.1 Water clusters 

We have previously reported an atomic energy analysis of water clusters from the 

dimer through to the hexamer [5-4], and the cooperativity in water clusters has also been 

extensively studied using other theoretical and experimental approaches. From the atomic 

energy perspective, cooperativity was represented by an increase in stabilization or 

destabilization of the atoms in the water molecules as the cluster size increased. To 

extend this analysis we evaluate here a linear trimer system that has a water molecule 

acting as a double donor: donating two hydrogen bonds and receiving none. This 

arrangement has previously been shown as anti-cooperative [127, 196]. We were unable 

to isolate the analogous trimer system with a central water accepting two HBs; in all 

attempts we found either a saddle point (with two imaginary vibrational frequencies) or 

the structure collapsed to the global minimum cyclic trimer. We next evaluate an anti-

cooperative tetramer system [128] where two waters are double donors and the remaining 

waters are double acceptors. Here, the double donating water should be more stabilized 

than the double acceptor [5, 130]. We also include atomic evaluation of the global 

minimum dimer, trimer and tetramer so that a direct comparison can be made at the 

current level of theory. A summary of the energy changes is compiled in Table 8.1. 
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Table 8.1 Summary of energy changes for water clusters.a 

Cluster 
ΔE(A) 

Enet(H2O) Eint EHB Ecoop 
O HHB HnHB 

Dimer 

A -14.3 14.6 -3.6 -3.3    

B -17.2 7.2 7.2 -2.7 -6.1 -6.1 -- 

Trimer 

Cyclic 

cooperative 

A -33.4 23.6 3.8 -6.0    

B -33.1 23.6 3.7 -5.8    

C -32.8 23.5 3.2 -6.0 -17.8 -5.9 0.2 

Linear 

anti-

cooperative 

A -25.3 10.9 10.9 -3.5    

B -15.0 5.7 5.7 -3.6    

C -15.0 5.7 5.7 -3.6 -10.7 -5.4 0.7 

Tetramer 
Cyclic 

cooperative 
-42.4 30.3 4.3 -7.8 -31.3 -7.8 -1.7 

Cyclic 

anti-

cooperative 

A -22.2 8.1 8.1 -6.0    

B -22.2 8.1 8.1 -6.0    

C -25.2 10.9 10.9 -3.4    

D -25.2 10.9 10.9 -3.4 -18.8 -4.7 1.4 
a Energies are in kcal mol-1. Labels A-D refer to monomers in the cluster, see Figure 8.1. ΔE(A) is the 

stabilization for atom A. HHB is the hydrogen-bonded hydrogen atom and HnHB is the non-hydrogen bonded 

hydrogen atom. Enet(H2O) is the sum of all atomic energy changes in a given water monomer. Eint = [E(n-

mer) – nE(monomer)] ≡ ΣΔE(A). EHB and Ecoop are defined in the text. 

 

Net energy stabilities for the monomers in the clusters show that waters which are HB 

acceptors in the linear trimer system are more stabilized than those in the dimer system 

(by ~ 1 kcal mol-1). Local atomic values show smaller energy changes for the accepting 

waters in the anti-cooperative trimer than in the dimer, by about 2 kcal mol-1. The 

donating water has essentially the same stabilization as that of the donor molecule in the 

dimer, although the local energy changes are greater in magnitude (by about 10 kcal mol-1 

for the oxygen and 4 kcal mol-1 for the hydrogen atoms). The electron densities at the 

hydrogen bond critical points (HB-BCPs, see Figure 8.1) are larger in the dimer, 

indicating anti-cooperative character. Comparing the two trimer clusters, the cyclic global 

minimum is more stable than the linear system by 7 kcal mol-1. The atomic energies in 

this cyclic cluster have larger stabilization for oxygen atoms (by up to ~8 kcal mol-1) and 

larger destabilization of the hydrogen atoms participating in the hydrogen bonds (by ~13 

kcal mol-1). The HB-BCPs are larger in the cyclic system, indicating stronger hydrogen 

bond formation.  
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Figure 8.1 Molecular graphs (left) and atomic stabilities (right) of water clusters: i) dimer, 

ii) cooperative cyclic trimer, iii) anti-cooperative linear trimer, iv) cooperative cyclic 

tetramer, v) anti-cooperative cyclic tetramer. Green dots in the molecular graphs are bond 

critical points. Electron densities at hydrogen bond critical points are labeled in a.u. 

Atomic energies are labeled in kcal mol-1. For clusters with symmetry, monomer energies 

are only labelled once. Labels and orientation for molecular graphs match those of the 

atomic energies. For atomic stabilities, stabilized atoms are red and destabilized atoms 

are blue. The sphere diameter is proportional to the atomic energy stabilization, ΔE(A), 

so that an atom with a larger energy change will have a larger sphere radius. For energy 

changes less than ±1 kcal mol-1 the sphere is coloured white. 

 

 

Comparing the anti-cooperative trimer cluster with its tetramer analogue, we notice 

right away that the HB-BCP densities in the tetramer system continue to decrease. This 

indicates that the four HBs in the tetramer are each weaker than the two formed in the 

trimer, indicating anti-cooperativity. This is opposite to the cyclic systems where density 

at HB-BCPs is significantly increased going from trimer to tetramer. The anti-cooperative 

tetramer cluster is more stable than the linear trimer system by 8 kcal mol-1. Atomic 

energies show that the net stabilization of the double donor waters in the tetramer are 

larger than those in the trimer and the double accepting waters are stabilized by about the 

same amount as the single accepting waters in the trimer. These double accepting waters 

have non-hydrogen bonded hydrogens (HnHB) that are more destabilized than those of the 

trimer (by 5 kcal mol-1) and an oxygen atom that is significantly more stabilized (by 10 

kcal mol-1). Compare this with the double donating waters, which have a reduced oxygen 

stabilization combined with a reduced hydrogen destabilization vs. the trimer. A greater 
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stability for double donating waters has been previously observed in water hexamer 

clusters [5]. Compared to the cooperative tetramer, the energy changes for the HHB and 

oxygen are significantly diminished, and the energy change for HnHB is increased. This 

indicates an overall anti-cooperative interaction. Local atomic energies thus reveal a 

varied distribution of stabilization for individual water molecules within the clusters. 

8.4.2   Methanol Clusters 

Methanol clusters have been the subject of many experimental studies but only a few 

theoretical explorations. Some of the discussion has focussed on the cooperativity 

observed in the formation of methanol clusters. Previous reports [282, 284, 290, 309] 

indicate that the hydrogen-bond interaction of the methanol clusters strengthens 

cooperatively as the cluster size increases. The role of the methyl group in the overall 

stability provides an interesting discussion for the atomic energy analysis. The bonding 

interactions of methanol are much more restricted than water, with only one HB donor 

per monomer. Although it is possible that a methanol could act as a double acceptor, we 

report atomic energy analyses for only the (cooperative) global minima of methanol 

clusters up to the tetramer. The energy changes are summarized in Table 8.2. 

Table 8.2  Summary of energy changes for methanol clusters.a 

 
ΔE(A) ΔEnet 

(Me) 

ΔEnet 

(OH) 
Enet Eint EHB Ecoop 

O C HOH  Htrans Hinner Houter 

Dimer 

A -21.2 7.5 16.4 -3.4 -1.6 -1.8 0.7 -4.8 -4.1    

B -11.2 -9.3 6.6 3.3 4.0 4.1 2.0 -4.6 -2.7 -6.8 -6.8  

Trimer 

A -34.7 0.4 24.5 -1.5 3.0 2.1 3.9 -10.2 -6.3    

B -35.3 1.9 24.6 -1.2 1.4 2.4 4.4 -10.6 -6.2    

C -34.9 1.9 24.5 -1.8 1.6 2.2 4.0 -10.4 -6.4 -18.9 -6.3 0.5 

Tetramer 

 -44.5 1.0 31.6 -2.1 2.9 2.7 4.4 -12.9 -8.5 -34.0 -8.5 -1.7 
a Energies in kcal mol-1. Labels A-D refer to monomers in the cluster, see Figure 8.2. ΔE(A) is the 

stabilization for atom A. ΔEnet(OH)=ΔE(O)+ΔE(H), similarly for ΔEnet(Me). ΔEnet=ΔEnet(OH)+ ΔEnet(Me). 

Htrans is the hydrogen that is trans to the OH…O bond, Hinner is the hydrogen atom that points over the ring 

(towards another hydrogen on the opposite monomer), Houter is the hydrogen that points away from the ring. 

Eint=[E(n-mer)–nE(monomer)]≡ΣΔE(A). EHB and Ecoop are defined in the text.  
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The energy changes of the dimer system differ slightly from the ring-like clusters and 

we will discuss those values first. In the dimer, one molecule can be considered a donor 

monomer and the other an acceptor monomer (A and B, respectively, in Figure 8.2). 

Atomic energy changes for carbon and oxygen show that the donor methanol has a 

destabilized carbon and stabilized oxygen (consistent with the ring clusters) whereas the 

acceptor methanol has both of these atoms stabilized. The methyl hydrogens on the donor 

monomer are stabilized by about -2 to -3 kcal mol-1, with the hydrogen trans to the OH 

group (Htrans) having the largest stabilization. The methyl hydrogens of the acceptor 

monomer are destabilized by about +4 kcal mol-1, and Htrans on the acceptor monomer is 

slightly less destabilized than its neighbour hydrogens. Bond critical point values for the 

donor monomer show an increase in density at the C‒O BCP and decrease in densities for 

the C-H and O-H BCPs (vs. the isolated monomer). The acceptor monomer is opposite 

this, with the C‒O BCP decreasing and the C-H BCPs increasing. The net energy change 

of the monomers is -2 kcal mol-1 for the donor and +4 kcal mol-1 for the acceptor. The 

local atomic energies show a variation in stabilization for the donor vs. acceptor 

methanols, concurrent with previous hydrogen-bonding analyses. Local differences in the 

methanol dimer have also been discussed previously using bond lengths and vibrations 

[290], and our results are in perfect agreement with this analysis.  

 
Figure 8.2  Molecular graphs (left) and atomic stabilities (right) of methanol clusters. i) 

dimer, ii) trimer, iii) tetramer. BCP densities in a.u. and energies in kcal mol-1. For 

clusters with symmetry, monomer energies are only labelled once. Labels and orientation 

for molecular graphs match those of the atomic stabilities. See the caption of Figure 8.1 

for further details.  
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For the cyclic clusters of the trimer and tetramer, the local atomic energy changes 

clearly represent cooperativity.  Each oxygen atom is stabilized, with an increase in 

stabilization for the oxygens in the trimer vs. the tetramer (-35 vs. -45 kcal mol-1, 

respectively). The alcohol hydrogen that forms the hydrogen bond (HOH) is concurrently 

destabilized, with the destabilization increasing from +16 kcal mol-1 in the dimer to +25 

kcal mol-1 in the trimer and +32 kcal mol-1 in the tetramer. As in the dimer, Htrans has the 

greatest stabilization (-2 kcal mol-1), whereas the remaining hydrogens are destabilized 

(+2 kcal mol-1). Bond critical point densities support the greater stabilization of Htrans, 

evident in the slight increase in density at the C-H BCP: +0.004 a.u. in the dimer, +0.003 

to 0.005 a.u. in the trimer, and +0.003 a.u. in the tetramer. There is also a small shift in 

the C-H stretching vibrations, of about 45-50 Hz (unscaled frequencies), for this 

hydrogen. Thus the atomic energy analysis is again in perfect agreement with previous 

reports.  

The net stabilization per each monomer in the clusters, defined as the sum of all 

atomic energy changes in a given water monomer, yields the average HB strength: -6.3 

kcal mol-1 in the trimer and -8.5 kcal mol-1 in the tetramer. It was surprising to note that 

trimer does not actually reveal a net cooperativity per HB if one considers only total 

energies: the average HB energy in the trimer is 0.5 kcal mol-1 less than the dimer 

hydrogen-bond energy. We tested the accuracy of the MP2 calculations using CCSD(T) 

single point calculations on the methanol clusters and found that the CCSD(T) results are 

nearly identical to the MP2 analysis (see Table 8.3). By considering regional energy 

changes we can further explore the sources of net stability. The energy changes of the 

alcohol group clearly indicate a cooperative stabilization: the stabilization of the OH 

group in the trimer is twice that of the OH in the dimer, and in the tetramer it is nearly 

three times that of the dimer. However, the net stabilization of the cluster depends on the 

energy change of all the atoms. Despite increased stabilization of the OH groups in the 

tetramer, the methyl groups in the tetramer and trimer are destabilized by about the same 

amount (about twice that of the accepting methanol group in the dimer). Thus, the 

cooperativity present in the trimer is masked because of local destabilization per methyl 

group. This methyl destabilization is likely a result of the smaller ring formation, where 

the methyl groups on the trimer are much closer together than in the alternating 
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arrangement of the tetramer. Notice that carbon atoms have a larger atomic 

destabilization in the trimer vs. the tetramer. The local energy analysis allows us to isolate 

these local and regional stabilities when discussing cooperativity in hydrogen-bonded 

systems. Simply decomposing the net interaction into only HB contributions could lead 

to incorrect assumptions about the cooperative character of the HBs alone. 

 

Table 8.3 MP2 and CCSD(T)//MP2 energies for methanol clustersa 

Cluster Energy (Ha) Eint  EHB  Ecoop 

Monomer -115.445220 (-115.477241) -- -- -- -- -- -- 

Dimer -230.901300 (-230.965263) -6.8 (-6.8) -6.8 (-6.8) -- -- 

Trimer -346.365781 (-346.461647) -18.9 (-18.8) -6.3 (-6.3) 0.5 (0.5) 

Tetramer -461.835152 (-461.962494) -34.1 (-33.6) -8.5 (-8.4) -1.7 (-1.6) 
a Energies in kcal mol-1 except where noted otherwise. All structures optimized at MP2/6-311++G(d,p). No 

ZPE correction. Values in italics are CCSD(T)/6-311++G(d,p)//MP2/6-311++G(d,p) single point 

evaluations. Definitions for energy terms as in Table 8.1. 

8.4.3 Formaldehyde clusters 

Formaldehyde is an interesting and important molecule that has only recently 

undergone much theoretical exploration [285, 293, 310-314]. Formaldehyde dimers have 

been measured experimentally [315] and ab initio and DFT calculations [314-317] 

reproduce a Cs geometry as the minimum energy dimer structure, matching the 

experimental results. There is also a planar C2h minimum with a side-by-side interaction 

(which we refer to as “stacked”) that lies within 1 kcal mol-1 of the Cs minimum. Larger 

clusters can demonstrate cooperative stabilization or non-cooperative stabilization, 

depending on the arrangement of the interacting monomers. The cooperativity in the 

formaldehyde clusters is diminished compared to that observed in similar systems of 

formamide clusters [318]. The case of formaldehyde provides an interesting test for the 

atomic energies analysis: will the energetic changes fully distinguish non-cooperative 

interactions from cooperative interactions at the atomic level? To investigate this we 

evaluate both dimer minima (Cs and C2h) as well as three types of trimer and tetramer 

geometries: circular clusters with only CH…O interactions, stacked clusters which adopt a 

side-by-side CH…O interaction, and a three-dimensional “bucket” cluster which 
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incorporates additional C‒O contacts as well as CH…O bonds (see Figure 8.3). The 

circular geometry has previously been shown to demonstrate cooperative stabilization, 

whereas the stacked geometry is reported to be a non-cooperative interaction. The atomic 

energies for the clusters can be found in Table 8.4. 

 

Figure 8.3 Molecular graphs (left) and atomic stabilities (right) of formaldehyde clusters. 

i) dimer Cs, ii) dimer C2h, iii) cyclic trimer, iv) cyclic tetramer, v) stacked trimer, vi) 

stacked tetramer, vii) bucket trimer, viii) bucket tetramer. Energies in kcal mol-1. For 

clusters with symmetry, monomer energies are only labelled once. Labels and orientation 

for molecular graphs match those of the atomic stabilities. See the caption of Figure 8.1 

for further details.  
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Table 8.4 Summary of energy changes in formaldehyde clusters.a 

Cluster 
ΔE(A) Enet 

(CH2O) 
Eint EHB Ecoop 

O C HHB HnHB 

Dimer 

Cs -1.2 -7.5 8.0 -0.9 -1.6 -3.2 -1.6 -- 

C2h 
A -2.3 -7.8 8.1 1.6 -0.5    

B -6.5 2.5 0.3 0.3 -3.4 -3.9 -2.0 -- 

Trimer 

Cyclic -1.6 -11.9 11.8 -0.6 -2.2 -6.7 -2.2 -0.7 

Stacked 

A -0.6 -7.5 7.7 -1.0 -1.4    

B -2.1 -15.1 7.0 7.0 -3.3    

C -0.6 -7.5 7.7 -1.0 -1.4 -6.16 -1.5 0.0 

Bucket 

A -3.0 -10.8 10.0 1.8 -2.0    

B -10.9 3.3 1.3 1.7 -4.6    

C -6.3 2.5 0.8 1.6 -1.4 -8.03 -- -- 

Tetramer 

Cyclic -2.8 -11.2 12.0 -0.5 -2.4 -9.5 -2.4 -

0.81 

Stacked 

A -0.6 -7.6 7.9 -1.0 -1.3    

B -1.8 -15.0 6.9 6.6 -3.3    

C -1.8 -15.0 6.9 6.6 -3.3    

D -0.6 -7.6 7.9 -1.0 -1.3 -9.17 -1.5 0.1 

Bucket 

A -6.5 -1.7 4.1 0.2 -3.8    

B -10.8 -3.2 6.4 3.0 -4.6    

C -6.7 -6.6 8.3 0.7 -4.2    

D -7.1 -2.5 5.1 2.6 -1.9 -14.48 -- -- 
a Energies in kcal mol-1. Labels A-D refer to monomers in the cluster, see Figure 8.3. ΔE(A) is the 

stabilization for atom A.  HHB is the hydrogen-bonded hydrogen atom and HnHB is the non-hydrogen 

bonded hydrogen atom. Enet(CH2O) is the sum of all atomic energy changes in that monomer. Eint = [E(n-

mer) – nE(monomer)] ≡ ΣΔE(A). EHB and Ecoop are defined in the text. 

 

For the dimers, the lowest energy Cs geometry has a C‒O contact as well as a CH…O 

bond whereas the C2h geometry has two CH…O bonds. Monomer A in the Cs dimer 

(which donates the hydrogen) has a stabilization very similar to that of the monomers in 

the C2h dimer, with the exception of an increased stabilization on the oxygen and a 

destabilization of HnHB by just under 2 kcal mol-1; this results in a very small monomer 

stability of only -0.5 kcal mol-1. The HB acceptor (monomer B) has a stabilization of -3.4 

kcal mol-1, which is more than twice the monomer stabilization in the C2h cluster. The 

local atomic energies in the C2h cluster are smaller than in monomer A, and have a 

stabilized carbon (+2 kcal mol-1) and a destabilized oxygen (-7 kcal mol-1). The 

hydrogens on monomer B have negligible energy change, despite a small increase in BCP 

density for the CH bond (+0.002 a.u.). The BCP value for the C=O bond is decreased as 
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well (by ~0.003 a.u.). A key difference between the two dimers is the CH…O and C‒O 

bond critical point densities. The Cs cluster has a CH…O BCP of 0.0127 a.u., which is 

0.005 a.u. larger than the CH…O bond in the C2h dimer. Although the Cs cluster is clearly 

the more stable of the two geometries, the C2h stacked geometry has similar bonding 

interactions as the cyclic and stacked clusters. We include it in the discussion to provide a 

comparison with the changing energies as these clusters increase in size. 

In the cyclic geometries, a small amount of cooperative stability is demonstrated as the 

cluster increases in size. The net stabilization per formaldehyde monomer about 0.7 kcal 

mol-1 greater in the trimer than in the C2h dimer, matching the small increase in stability 

per hydrogen bond. Considering the local atomic energies, some cooperativity is evident 

from the increasing magnitude of stabilization or destabilization per atom: carbon atoms 

are about 4 kcal mol-1 more stabilized and the HHB are about 4 kcal mol-1 more 

destabilized in the trimer vs. C2h dimer. An increase in density at the CH…O bond critical 

points of the trimer (by 0.002 a.u.) is supportive of minimal cooperativity. We also notice 

that the C=O BCPs have a reduced density: 0.392 a.u. in the trimer vs 0.394 a.u. in the 

C2h dimer.  Comparing the cyclic trimer with the cyclic tetramer, minimal cooperativity 

becomes even more evident. The average energy change per hydrogen bond is only about 

0.3 kcal mol-1 greater than the trimer system. Concurrently, the local energy changes are 

also minimal: oxygen atoms have only 1 kcal mol-1 increased stabilization and the 

remaining energy changes are nearly negligible. The net energy change per molecule is -

2.4 kcal mol-1 (only 0.2 kcal mol-1 more stable than in the trimer). Geometric parameters 

and BCP values also do not indicate serious increase in cooperativity at the tetramer level 

(see Table 8.5), with values nearly consistent for both systems. In fact, the only 

geometrical parameter with a non-negligible change is the CH…O hydrogen-bond 

distance, which is directly reflected by the oxygen energy change. 
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Table 8.5  Some geometric and topological properties of cyclic formaldehyde clusters. 

Propertya Dimer (C2h) Trimer Tetramer 

BCP(C=O) 0.394 0.392 0.392 

BCP(C-HHB) 0.281 0.282 0.283 

BCP(C-H) 0.277 0.277 0.277 

BCP(CH…O) 0.008 0.010 0.010 

R(C=O) 1.216 1.218 1.218 

R(C-HHB) 1.101 1.100 1.100 

R(C-H) 1.105 1.105 1.105 

R(CH…O) 2.580 2.419 2.408 
a BCP electron densities are in a.u., distances in Å, angles in degrees, HHB

 is the 

hydrogen involved in the HB in the ring. 

 

For the stacked geometries, the average stabilization per HB in the trimer and tetramer 

clusters is 1.5 kcal mol-1, which is not significantly different from that of the dimer (1.6 

kcal mol-1). Local atomic energy changes show a greater stabilization for the central 

formaldehyde molecules, i.e. those that do not have free hydrogens (B in the trimer and B 

and C in the tetramer). The atomic energies do not reveal cooperativity in the stacked 

clusters: increasing the number of hydrogen bonds does not reveal significantly different 

stabilization between the trimer and tetramer clusters. Net stability of central molecules 

for both trimer and tetramer are -3 kcal mol-1 and outer molecules are -1 kcal mol-1. The 

local atomic stabilizations are also essentially the same in both trimer and tetramer.  Bond 

critical point values agree with the atomic energy stabilization, with BCP densities 

consistent for both clusters.  

The clustered geometries are the most stable of the three arrangements, by about 1 

kcal mol-1 for the trimer and 5 kcal mol-1 for the tetramer. In these systems there are C‒O 

contacts as well as CH…O hydrogen bonds, as was observed in the Cs dimer (for the 

trimer there is only one extra C‒O contact on molecule B, but in the tetramer system all 

molecules have a C‒O contact in addition to a hydrogen-bond interaction). In the trimer 

system, molecule A has a bifurcated hydrogen bond between the oxygens of the 

neighbouring molecules. The relatively large destabilization of this bifurcated hydrogen 

(+10 kcal mol-1) is matched by a large stabilization of its carbon center (-11 kcal mol-1) 

and only a minimal stabilization of the oxygen atom (-3 kcal mol-1). This is opposite to 

the other molecules in the cluster, which have largely stabilized oxygens (-6 to -10 kcal 
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mol-1) and minimally destabilized carbons (~ 3 kcal mol-1). It is also unlike the C and O 

stabilities in the planar and stacked systems that all have stabilized carbon atoms. The 

BCP density of the C-H bond that forms the bifurcated hydrogen is increased (0.282 a.u. 

vs. 0.278-0.280 a.u. for non-bifurcated CH bonds) and the C=O BCP density is decreased 

(0.392 a.u. vs. 0.393-0.395 a.u. in the other monomers), indicating a weakening of the 

C=O bond and strengthening of the CH bond. Monomer B and C in this trimer cluster 

have a bonding environment that is similar to the acceptor monomer in the Cs dimer, with 

the exception of the oxygen on B forming an extra interaction with the carbon on C. The 

atomic energies for B and C are also similar: a stabilized oxygen and destabilized carbon 

and hydrogens. There is an increased stabilization for the doubly interacting oxygen on 

monomer B, resulting in the largest net stability by about 2 kcal mol-1. With the exception 

of the hydrogen atoms, there is negligible difference for the atomic stabilities in monomer 

A of the trimer cluster and the analogous monomer B of the Cs dimer. This could be an 

indication that there is no cooperative stabilization present here. Indeed, the bond critical 

point densities are also essentially the same for both monomers.  

In the tetramer bucket arrangement there are three different bonding environments. 

The oxygen atom can form two interactions with two carbon atoms (B), one carbon and 

one hydrogen atom (C and D) or two hydrogen atoms (A). The net stabilities for the 

molecules in the cluster are about -4 kcal mol-1, with the exception of D which is only -2 

kcal mol-1. Molecule D also has the largest C=O BCP density, and the smallest CH BCP 

density (with concurrently larger and smaller bond distances). The oxygen of monomer B 

forms two C‒O contacts and has the largest stabilization in the cluster, as was also the 

case in the trimer cluster. 

Comparing the general energy changes for the molecules in the cluster arrangement vs. 

the planar or stacked system it is clear that there are different sources of stability for each. 

In the planar and stacked geometries it is the carbon atoms that undergo the greatest 

stability and the HHBs that undergo the majority of the destabilization; there is a minimal 

change in oxygen energy for these systems. In the cluster geometries, the ability to form 

C‒O contacts redistributes the energy changes so that the carbon atom now experiences 

relatively significant stabilization. The destabilization of the hydrogen atoms is also 

significantly less. The ability to form C‒O contacts dominates the lowest energy 
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structures for these small formaldehyde clusters, as was demonstrated for clusters from 

the dimer up to the tetramer. There is a very minimal amount of cooperative stability in 

the clusters, as is demonstrated by consistent atomic energy changes for each bond type 

despite the number of interactions formed per cluster. 

8.5 Conclusions 

We have evaluated the local and regional stabilities within clusters of water, methanol 

and formaldehyde from an atomic energy perspective, comparing our results with bond 

critical point (BCP) analysis and some geometrical parameters. Water clusters 

demonstrate both cooperative and anti-cooperative interactions. The cyclic, global 

minima for the water clusters are cooperative (as has been previously observed) and show 

increases in local stabilization and destabilization as cooperativity increases. The anti-

cooperative, double donating trimer has a stabilization that is only half what is found in 

the cyclic trimer, and local and regional energy changes are similarly reduced. The anti-

cooperative tetramer structure, with both double donating and double accepting water 

molecules, also has diminished energy changes and reduced electron density at bond 

critical points. From the atomic energy changes it is clear that the double donating water 

is more stabilized than the double accepting water; this is not observed from BCP 

densities because symmetry dictates that the hydrogen-bond BCPs are equivalent.  

In the methanol clusters the HB cooperativity defined by total interaction energy is 

surprisingly negative at the trimer level. We confirm our calculations using CCSD(T) 

single point energies. The local energy changes, however, strongly support cooperative 

stability for the OH groups, with increasing atomic stabilization (oxygens) and 

destabilization (hydrogens) as the cluster size increases. The methyl groups show 

negligible stability changes, however the hydrogen atoms trans to the OH…O bond have a 

consistently greater stabilization that the other hydrogens in the methyl group.  

For the formaldehyde clusters we consider two minima for the dimer. Our results 

agree with previous observations that the Cs orientation is more stable than the C2h. A 

small amount of cooperativity is present in the circular clusters, with slight increases in 

regional stabilities as well as increasing stabilization and destabilization at the atomic 
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level. The stacked geometries do not show any cooperativity, as is confirmed by both 

consistent atomic energies and BCP values. The bucket geometries, which can also 

incorporate C‒O contacts, are the most stable of the clusters. We compare energy 

changes for the C‒O contacts in the bucket geometries with the energy changes in the Cs 

dimer (which also has a C‒O contact), and do not find any significant difference in local 

stability, perhaps indicating that there is no cooperativity in these more stable systems.  
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8.7 Chapter Summary and Relevance 

In this chapter it is demonstrated that local changes in energy are a useful tool to 

distinguish between cooperative vs. non-cooperative and anti-cooperative interactions. 

Some key findings are as follows: when there is no cooperativity present in the bonding 

interaction, the local atomic energies remain consistent even as the clusters grow in size; 

atomic energy analysis of a symmetric cluster (such as the anti-cooperative water 

tetramer) provides insight into the distribution of stability that is not available using bond 

critical point values or bond lengths alone; and cooperativity can be localized at the 

functional group which constitutes the cooperative bonding species, such as the alcohol 

group in methanol clusters.  
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Chapter 9 Changing Weak Halogen Bonds into Strong Ones through 

Cooperativity with Beryllium Bonds 

 

 

 

 

Reprinted with permission from L. Albrecht, R. J. Boyd, O. Mó, M. Yáñez, J. Phys. Chem. A, (2014) 118 

(23), 4205–4213. DOI: 10.1021/jp503229u. Copyright 2013 American Chemical Society.  

 

This final chapter was a collaborative effort. The contribution from this author was to 

provide the QTAIM analysis and some discussion related to the atomic energies. The 

benchmarking associated with the QTAIM analysis is also contributed from this author. 

The relevance of this chapter is to provide an example of the application of QTAIM atomic 

energy analysis to evaluation of multiple non-equivalent closed-shell bonding interactions, 

and to demonstrate the usefulness of visualization of atomic energy changes for assessment 

of local stabilities. 

 

  

http://pubs.acs.org/doi/abs/10.1021/jp503229u
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9.1 Abstract 

The mutual interaction between beryllium bonds and halogen bonds within 

H2Be···FCl···Base complexes, where Base includes a wide set of N and O containing 

Lewis bases, has been studied at the M06-2X/6-31+G(d,p) level of theory. The reliability 

of this theoretical model was assessed by comparison with ab initio CCSD/aug-cc-pVTZ 

reference calculations. Cooperative effects were investigated within the framework of the 

atoms in molecules theory (AIM), by analyzing the topology of the electron density and 

the changes in the atomic energy components. The decomposition of the total stabilization 

energy into atomic components is found to be a very reliable tool to describe halogen bond 

interactions. Both the topological analysis of the electron density and the changes in the 

atomic energy components of the binding energy show the existence of strong cooperative 

effects between beryllium and halogen bonds, which are in some cases very intense. In 

general, there is a correlation between the intrinsic basicity of the Lewis base participating 

in the halogen bond and the resulting cooperativity, in the sense that the stronger the base 

the larger the cooperative effects.  

9.2 Introduction 

Cooperativity is one of the most important and common characteristics shared by non-

covalent interactions [6, 130, 127, 157, 192-194, 196, 200-202, 204-205, 207, 209, 279, 

284-285, 305, 313, 319-333]. It has long been recognized that the stability of water 

clusters and many other hydrogen bonded polymers has its origin in the fact that the 

interaction between a hydrogen bond (HB) acceptor and a HB donor is strengthened 

when one or both of them interact with an additional HB donor or HB acceptor, 

respectively. In addition to cooperativity, non-covalent interactions such as HBs, 

dihydrogen bonds [334], halogen bonds [294-295, 335], pnicogen bonds [198, 253, 336-

337], etc. share other common characteristics. In most cases these interactions involve 

closed-shell systems, with electrostatic and polarization or charge-transfer effects 

commonly contributing to their stability, although the magnitude of various contributions 

may vary within rather large limits. Recently, it has been shown that one of these closed-
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shell interactions – the so-called beryllium bond, which is formed when a typical Lewis 

base interacts with a BeXY derivative acting as a Be Lewis acid – can lead to rather high 

interaction energies [191]. The strength of beryllium bonds is not only electrostatic in 

origin but is also closely related to the large charge-transfer which usually takes place 

from the Lewis base towards the empty 2p orbital of Be and towards the BeX* (or BeY*) 

antibonding orbital. The obvious consequence of this charge transfer is a significant 

electron density redistribution in the Lewis base which leads to a dramatic enhancement 

of its intrinsic acidity [338]. Electron density redistributions are also responsible for the 

cooperativity found between beryllium bonds and hydrogen bonds when these non-

covalent interactions stabilize molecular clusters, as has been shown for the interaction of 

azole dimers [210] and water clusters with BeX2 derivatives [6]. Strong cooperative 

effects are also detected when the interaction takes place between ditopic monomers, 

such as (iminomethyl)beryllium hydride or (iminomethyl)beryllium fluoride 

[HC(BeX)=NH, X = H, F], in which the molecule has a terminal Lewis basic site (the 

imino group) and a terminal Lewis acidic site (the BeX group),  favouring the self-

assembling of the system to form  rather stable linear or circular polymers [339].  

At the opposite end of the scale as far as the strength of non-covalent interactions is 

concerned are the so-called halogen bonds [294-295, 335], where the center acting as a 

Lewis acid is a halogen atom. Many complexes stabilized through halogen bonds have 

been described in the literature. The aim of this paper is to analyze possible cooperative 

effects between rather weak interactions, such as halogen bonds, and rather strong 

interactions, such as beryllium bonds. This analysis will be carried out under the 

conventional perspective of the atoms in molecules (AIM) theory [1, 57] in terms of the 

topology of the electron density and its Laplacian. To further this discussion, we will also 

use an alternative perspective based on the evaluation of atomic energy components [3]. 

This is also available within the framework of the AIM theory and has been shown to be 

a rather reliable index to quantitatively describe internal energy changes in weak non-

covalent interactions, and has been successfully applied in the analysis of cooperativity 

between hydrogen bonds in water clusters [4-5] and hydrogen bonds and beryllium bonds 

in (H2O)nBeX2 (n = 1–3, X = H, F) complexes [6]. 
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The idea is to explore the changes undergone by the halogen bond in FCl···Base 

complexes when the FCl in turn forms a beryllium bond with BeH2 to yield 

H2Be···FCl···Base clusters. To define the set of Lewis bases to be investigated we 

consider it of interest to include compounds that present basic sites which are commonly 

found in biological systems. Hence, we have included a set of bases where the basic site 

is a carbonyl group in a variety of functional environments, namely formaldehyde, 

acetaldehyde, acetone, formamide, and formic acid. We also consider bases in which the 

basic site is an amino-type nitrogen. In this case we have included ammonia and its 

methyl derivatives to check the sensitivity of cooperativity between beryllium and 

halogen bonds to substituent effects. Finally, to investigate the effect of the hybridization 

of the basic site, we have included other nitrogen bases such as methanimine, hydrogen 

cyanide, imidazole and pyridine, in which the nature of the N basic site changes. To these 

sets we have added tetrahydrofuran as an example of a cyclic ether.  

9.3 Computational Details 

Since the aim of this study is to evaluate the changes in the strength of halogen bonds 

that interact cooperatively with beryllium bonds, the first step is to assess the appropriate 

theoretical method to describe these weak interactions. For this purpose we have chosen, 

as a benchmark set, N-bases in which the hybridization of the basic site changes, namely 

ammonia, methanimine and HCN, and also formaldehyde as a good prototype of a 

carbonyl base. The geometries of the complexes between FCl and the aforementioned 

benchmark compounds were optimized using the following ab initio theoretical models: 

MP2/aug-cc-pVTZ, CCSD/cc-pVTZ, CCSD/aug-cc-pVTZ, as well as the following 

density-functional theory (DFT) methods: B3LYP [214-215], M06 [340] and M06-2X 

[340] in combination with a 6-31+G(d,p) basis set expansion. For all the benchmark 

complexes the CCSD/aug-cc-pVTZ calculations were used as the common reference. 

Optimizations and benchmark calculations were performed without symmetry constraints 

using the Gaussian 09 program [70]. 

As shown in Figure B.3 of the supporting information (Appendix B.5), MP2 strongly 

overbinds the complexes, yielding halogen bonds that are up to 0.22 Å too short.  
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Conversely, CCSD/cc-pVTZ yields distances that are too long (up to 0.11 Å) showing the 

importance of the diffuse functions. The behavior of B3LYP is similar to that exhibited 

by MP2, although the optimized distances are slightly longer. No significant differences 

are observed when the B3LYP functional is replaced by the M06-2X one. However, the 

agreement between the CCSD/aug-cc-pVTZ halogen bond lengths and those obtained 

with the M06-2X functional is rather good, and deviations are almost constantly equal to 

0.03 Å, indicating that this functional is well suited for the description of weak non-

covalent interactions.  

The second step of our assessment focused on the basis set expansion. All molecule 

pairs were re-optimized at the M06-2X/6-311++G(d,p) level, followed with frequency 

evaluations and AIM analysis [69]. Some benchmark complexes were optimized at the 

M06-2X/6-311++G(2df,2pd) level, including complexes with acetone, formaldehyde, 

HCN, methanimine, and methylamine as base. Since we are interested in the use of 

atomic energy components, that is, the energy obtained for each atom through integration 

over the corresponding atomic basin as defined in the AIM theory framework [1], we 

have used as a suitable reference for this assessment the molecular virial ratio (see 

supporting information, Figure B.3 in Appendix B.5). It can be observed that using the 

larger 6-311++G(d,p) basis set will improve the virials significantly for the complexes, 

and that increasing the number of polarization functions to 2df,2pd yields minimal further 

improvement. Considering atomic stabilities (i.e. the effective change in each atom’s 

energy as BeH2 interacts with FCl-Base to form the H2Be···FCl···Base complex), the 

smallest basis set yields energy values very close to the large basis set with increased 

polarization functions (see Figure B.4 of the supporting information in Appendix B.5, as 

well as Figure B.5 and Section B.5.2 for further information on unscaled atomic energies 

and the AIM method). We conclude that the use of the smaller 6-31+G(d,p) basis set is a 

good compromise between economy and accuracy for this kind of analysis. The same 

basis set expansion has been used to obtain the corresponding molecular graphs, which 

are the ensemble of the critical points of the electron density, maxima (nuclei) and first 

order saddle points (bond critical points), and the zero gradient lines (∇𝜌 = 0) or bond 

paths connecting them. The charge transfer taking place between the interacting subunits 

has been calculated by means of the natural bond orbital (NBO) method [218]. 
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From the energetic viewpoint, cooperativity can also be also analyzed by means of the 

many-body interaction energy (MBIE) formalism [117, 126] in which the interaction 

energy of a ternary ABC complex can be obtained as the sum of two-body energy 

interactions: 

 Δ2𝐸(𝐴𝐵) = 𝐸(𝐴𝐵) = [𝐸(𝐴) + 𝐸(𝐵)] (9.1)  

(with similar expressions for BC and AC), and three-body energy interactions: 

 
Δ3𝐸(𝐴𝐵𝐶) = 𝐸(𝐴𝐵𝐶) − [𝐸(𝐴) + 𝐸(𝐵) + 𝐸(𝐶)]

− [Δ2𝐸(𝐴𝐵) + Δ2𝐸(𝐴𝐶) + Δ2𝐸(𝐵𝐶)] 
(9.2)  

In equations (1) and (2) E(A), E(B), E(AB) are computed with the geometries they have in 

the ternary complex. Note that the first two terms on the right side of eq. (9.2) define the 

interaction energy of the ternary complex: 

 𝐸𝑖𝑛𝑡 = 𝐸(𝐴𝐵𝐶) − [𝐸(𝐴) + 𝐸(𝐵) + 𝐸(𝐶)] (9.3)  

whereas the binding energy, Ebind, is given by a similar expression in which the energy of 

the monomers is computed at their equilibrium conformations. The MBIE analysis will 

be carried out at the M062X/6-31+G(d,p) level of theory. We have checked the reliability 

of this model for some suitable examples by using as a reference the values obtained at 

the CCSD(T)/aug-cc-pVTZ level of theory (See Table B.11 of the supporting information 

in Appendix B.5). 

9.4 Results and discussion 

The molecular graphs of the complexes are shown in Figures 9.1a-9.4a whereas the 

changes of the atomic energy components upon complex formation are shown in Figures 

9.1b-9.4b. The sum of atomic energy changes yields the total energy change for the 

complex formation. In part (a) of each figure, the first column shows the molecular graph 

of the complex between FCl and the Lewis base, stabilized by only a halogen bond. The 

second column shows the original complex now interacting with BeH2, allowing 

cooperative effects to arise between the new beryllium bond and the pre-existing halogen 

bond. In part (b) of each figure, the first column shows the changes in the atomic energies 
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when the FCl···Lewis base is formed, and the second column shows these changes when 

the H2Be··FCl···Lewis base complex is formed.   

9.4.1 Amines 

In Figure 9.1a the results for ammonia and its successive methyl derivatives are 

shown. Regarding the first column, we see the expected increase in strength of the Cl···N 

halogen bond with the number of methyl substituents, reflected in an increase of the 

electron density at the bond critical point (BCP). Consistently, the Cl···N internuclear 

distance decreases in the same order. The important result is found in the second column 

where we see that each halogen bond becomes stronger when the FCl molecule forms a 

beryllium bond with BeH2, and this reinforcement also increases with methyl 

substitution. In fact, whereas the electron density at the Cl···N BCP increases by 0.066 

a.u. in the ammonia cluster with BeH2 interaction, this increase becomes 0.075, 0.080 and 

0.081 a.u. for methyl-, dimethyl- and trimethylamine, respectively. Also importantly, the 

corresponding Be···F beryllium bonds are reinforced as well, and this reinforcement also 

increases with methyl substitution. Indeed, the electron density at the Be···F BCP for the 

isolated H2Be···FCl complex (not shown in the figure) is 0.023 a.u. and when this moiety 

interacts with a Lewis base to form the corresponding Cl···N halogen bond, the value of 

the electron density at the Be···F BCP increases to 0.062, 0.070, 0.074 and 0.077 a.u. for 

ammonia, methyl-, dimethyl- and trimethylamine, respectively.  

These cooperative effects are also well described by the atomic energy components, as 

shown in Figure 9.1b. In this alternative representation of the complexes, each atom is 

represented by a sphere whose diameter is proportional to the magnitude of the atom’s 

energy change. The sphere is red when the atom experiences a negative (stabilizing) energy 

change and blue if it experiences a positive (destabilizing) energy change. For atoms with 

an energy change of less than ±4 kJ mol-1 the sphere is left uncoloured. 
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   (a)      (b) 

Figure 9.1 Complexes involving ammonia, methyl-, dimethyl- and trimethylamine. a) 

Molecular graphs. Electron densities at the BCPs in a.u. b) Change in atomic energy 

upon formation of the complexes. Values for the relative energy change of each atom 

are labeled (kJ mol-1). Stabilized atoms are red, destabilized atoms are blue. Atom size 

corresponds to the magnitude of energy change. Structures were prepared using VMD 

software [114]. 

It is clear that in the H2Be··FCl···Lewis base complexes the BeH2 molecule as a whole 

is destabilized by the interaction, whereas both halogen atoms F and Cl become stabilized 

and this stabilization increases with methyl substitution. Using this perspective, the 

relative strengths of the beryllium and halogen bonds are reflected in the stabilization 

undergone by the F and Cl atoms of the FCl moiety and in the changes observed for the 

atomic energy components of the BeH2 group and the N atom of the Lewis base. Indeed, 

the strengthening of the halogen bond on going from ammonia to trimethylamine is 

reflected by increasing stabilization of the Cl atom and concomitant destabilization of the 

N atom of the base. Similarly, the strength of the beryllium bond is mirrored in the 

increasing stabilization of the F atom and the increasing destabilization of the BeH2 
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group. A comparison of the first and second column of Figure 9.1b shows  that the 

aforementioned changes for F and Cl atoms are larger in the H2Be···FCl···Base 

complexes than in the FCl···Base ones, due to cooperativity between beryllium and 

halogen bonds. Indeed, the strength of the halogen bond depends on the electron acceptor 

capacity of Cl which obviously increases when the FCl molecule forms a beryllium bond 

in which the F atom behaves as a Lewis base transferring charge to Be, and therefore 

enhancing the Lewis acidity of Cl. Reciprocally, the beryllium bond becomes also 

reinforced when a FCl molecule forms a halogen bond with a Lewis base, because the 

charge transferred from the Lewis base to FCl enhances the basicity of the fluorine center 

and therefore its electron donor capacity. In the FCl···Base complexes we see this 

manifest as an increase in the atomic destabilization of F, going from methyl- to 

trimethylamine. 

These changes in the electron donor and electron acceptor ability of the active centers 

within these complexes are easily detected by an NBO analysis. For example, for the 

FCl···NH3 complex the NBO analysis shows that this complex is stabilized through the 

interaction between the N lone-pair of the ammonia molecule and theFCl* antibonding 

orbital, the second-order interaction energy between these two orbitals being 137 kJ mol-1 

and the charge transfer amounting to 0.13 e. Consistently the F-Cl bond length increases 

from 1.639 Å in the isolated FCl molecule to 1.691 Å in the FCl···NH3 complex. 

Similarly, for the H2Be···FCl complex the NBO analysis reveals a charge transfer from 

one of the lone-pairs of the F atom towards the empty p orbital of Be and the BeH* 

antibonding orbital. Consistently, the BeH2 moiety in the H2Be···FCl complex departs 

slightly from linearity (the HBeH angle being 162.4º) and the BeH bonds become slightly 

longer. When both non-covalent interactions are allowed to interact by forming the 

H2Be···FCl···NH3 complex, the NBO analysis detects the formation of two new bonds, 

one  between Cl and N with 75% participation of the N orbitals and 25% of the Cl 

orbitals, and another very polar bond between F and Be, with 94% contribution of F 

orbitals. Hence, the Cl-N and the  Be-F internuclear distances shrink by 0.386 and 0.399 

Å, respectively, and the BeH2 group now becomes significantly bent (HBeH angle 

138.1º). Logically, the charge transfers involved in the formation of these two new bonds 

necessarily decrease the electron density at the F-Cl bond which becomes 0.249 Å longer 
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in the new complex.  

A final point of discussion is to consider the two-body components of the interaction 

energies. The same discussion of cooperativity that we interpret from the characteristics 

of the electron density is also observed through the decomposition of the total energy into 

its many-body contributions. These values are summarized in Table 9.1. 

Table 9.1 Binding energies, Ebind , interaction energies, Eint and the two- and three-body 

interaction energy components (2E and 3E) for ABC (A = BeH2, B = FCl, C = Lewis 

base) complexes. The values within parentheses correspond to the two-body interactions 

in the binary AB and BC complexes. All values are in kJ mol-1. 

Lewis Base Ebind Eint 2E(AB) 2E(BC) 2E(AC) Σ2E 3E 

NH3 -105 -231 -73 (-13) -80 (-56) -4 -157 -74 

Methylamine -139 -307 -94 (-13) -117 (-71) -5 -217 -90 

Dimethylamine -163 -369 -115 (-13) -151 (-85) -5 -272 -97 

Trimethylamine -173 -388 -129 (-13) -182 (-95) -5 -315 -73 

 

We notice right away that the interaction energies are much larger than the binding 

energies; this is because of a large distortion in the geometries of the three monomers 

when they form the complex. The value of 3E clearly shows that in all cases the 

interaction energy is much larger than the sum of the two-body components of the ternary 

complex. These two-body interactions are always dominated by the contributions of their 

nearest neighbors, AB and BC. The third component, AC, is relatively insignificant. 

Cooperativity is also reflected in the larger (absolute) values of the 2E terms when 

compared with the interaction energies in the free binary complexes, H2Be···FCl and 

FCl···Lewis base (values within parentheses). These data are in perfect agreement with 

our previous discussion: both the H2Be···FCl beryllium bond and the FCl···Lewis base 

halogen bond are reinforced through cooperativity, and this reinforcement steadily 

increases with the intrinsic basicity of the Lewis base attached to FCl.  

9.4.2 Different N Lewis bases 

Cooperativity between beryllium and halogen bonds clearly changes with the nature of 

the basic site of the Lewis base participating in the halogen bond. This is apparent when 
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the complexes formed by ammonia, methanimine and HCN are compared. As shown in 

Figures 9.2a,b the halogen bond formed is strongest with methanimine and weakest with 

HCN, but what is more important from the perspective of our study is that the 

reinforcement of both halogen and beryllium bonds, as a result of their cooperativity, 

follows the same trend: much larger in methanimine than in ammonia, and also larger 

than in HCN, as shown by the relative increase of the electron densities at the 

corresponding BCPs (See Figure 9.2a).  

 

 

  (a)           (b) 

Figure 9.2 Complexes involving ammonia, methanimine and HCN. a) Molecular 

graphs; b) Change in atomic energy upon formation of the complexes. Same 

conventions as in Figure 9.1. 

The same conclusion is reached by analyzing the atomic energy components (see 

Figure 9.2b). The stabilization of F and Cl is the largest for the methanimine complex and 

the smallest for the HCN complex. In fact, the Cl atom in the HCN complex is actually 

destabilized by the BeH2 interaction. The net stabilization of the atoms in the BeH2 and 

FCl atom groups within the HCN complex has a destabilization of +37 kJ mol-1. The 

same atoms in ammonia and methanimine are overall stabilized by -41 and -56 kJ mol-1, 

respectively. This feature points to some kind of anti-cooperative effect which cannot be 

detected just by looking at the electron densities at the BCPs. Indeed, from these electron 

densities the only thing we can conclude is that they increase much less for the HCN 
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Lewis base than for ammonia or methanimine. In terms of stability imparted by the 

formation of the beryllium bond, the binding energy for the interaction of BeH2 with 

FCl···HCN is much smaller (-26 kJ mol-1) than in the complexes involving ammonia (-75 

kJ mol-1) or methanimine (-96 kJ mol-1). We also note that the F-Cl interaction changes 

with the BeH2 interaction, actually becoming weaker the stronger the cooperative 

influence. What the analysis in terms of the atomic components is showing is that for 

HCN the lowered atomic stabilization comes not just from the formation of the beryllium 

and the halogen bonds, but also from the diminished influence of the F-Cl bond. For the 

complexes involving ammonia and methanimine, the overall cooperative reinforcements 

of the beryllium and halogen bonds are much larger than the weakening of the FCl bond. 

The discussion in terms of two-body interaction energies is again consistent with the 

picture obtained through the analysis of the electron density. The values summarized in 

Table 9.2 show a significant difference between binding and interaction energies. These 

values reach a maximum for methanimine, the most basic compound, and are 

significantly smaller for HCN, which is the weakest base of the three considered. Also in 

this case, as observed in the amines, the interaction energy is larger than the sum of the 

two-body components, which are again dominated by the nearest neighbor contributions.  

Table 9.2 Binding energies, Ebind, interaction energies, Eint, and the two- and three-body 

interaction energy components (2E and 3E) for ABC (A = BeH2, B = FCl, C = Lewis 

base) complexes. The values within parentheses correspond to the two-body interactions 

in the binary AB and BC complexes. All values are in kJ mol-1. 

Lewis Base Ebind Eint 2E(AB) 2E(BC) 2E(AC) Σ2E 3E 

NH3 -105 -231 -73 (13) -80 (56) -4 -157 -74 

Methanimine -122 -326 -95 (13) -118 (50) -5 -239 -87 

HCN -37 -70 -33 (13) -20 (20) -2 -55 -15 

 

Cooperativity is also large when dealing with nitrogen atoms belonging to aromatic 

rings as in the case of imidazole and pyridine (see Figure 9.3a,b). It is worth noting that 

these cooperative effects are particularly strong in the pyridine complex, where the 

electron density at the halogen BCP increases by 0.142 a.u. and the bond shrinks by 

0.501 Å (from 2.227 to 1.726 Å). Concomitantly, the beryllium bond is also reinforced 

significantly, its electron density increasing by 0.075 a.u. and the Be···F distance 
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shrinking 0.522 Å (from 2.000 to 1.478 Å). This indicates that the charge transfer from F 

towards Be is very large. The consequence is a dramatic enhancement of the 

electronegativity of the F atom, which recovers part of the charge transferred to BeH2 by 

depopulating the F-Cl bonding region, a phenomenon known as the bond activation 

reinforcement (BAR) rule [341]. Consistently, the electron density at the F-Cl BCP 

decreases dramatically and the F-Cl bond almost cleaves.  The near cleavage of the F-Cl 

bond favors the formation of a dihydrogen bond between one of the BeH2 hydrogen 

atoms and one of the CH hydrogens of the pyridine ring. Once more, this description is in 

agreement with the changes observed in the atomic energy components. As illustrated in 

Figure 9.3b, the stabilization of the Cl atom is much larger than in the methyl amines and 

methanimine, and similarly larger than in imidazole. As well, the stabilization of F is 

much larger in pyridine than in the complexes involving other N-containing Lewis bases. 

It is also worth noting that the formation of the aforementioned dihydrogen bond between 

the BeH2 group and the aromatic ring is reflected in a dramatic destabilization of the CH 

hydrogen of the ring with respect to the other ring hydrogens (+315 vs. +30 to +59 kJ 

mol-1) and also by a larger destabilization of the hydrogen atom attached to Be which 

participates in the dihydrogen bond, with respect to the one that does not participate in 

this interaction (+94 vs. +62 kJ mol-1). 

 
                  (a)                          (b) 

Figure 9.3 Complexes involving imidazole and pyridine. a) Molecular graphs; b) 

Change in atomic energy upon formation of the complexes. Same conventions as in 

Figure 9.1.  
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9.4.3  Carbonyl bases 

In general terms, the behavior observed for complexes involving different carbonyl 

Lewis bases is similar to the one described above for N-containing Lewis bases. By 

comparing the results for formaldehyde, acetaldehyde and acetone it is apparent that both 

perspectives – the molecular graphs and the atomic energy components – indicate an 

increase in the cooperativity between beryllium and halogen bonds with increasing 

number of methyl substituents (See Figure 9.4). In addition, both descriptions indicate 

that substitution by an amino group, going from formaldehyde to formamide also leads to 

an enhancement of cooperativity, whereas substitution by a hydroxyl group on going 

from formaldehyde to formic acid has the opposite effect: smaller changes in BCP values 

and reduced energy changes for Be, F and Cl. It is worth noting that, as discussed above 

for HCN, here again the cooperative effect is largely diminished when analyzing the 

atomic energy components of formic acid: The chlorine has a negligible energy change, 

the sum of the atomic energies of the H2Be···FCl group is destabilizing (+9 kJ mol-1), and 

the F-Cl bond critical point has a much smaller decrease in electron density. These results 

clearly ratify that cooperativity between beryllium and halogen bonds is a general 

phenomenon that depends on the intrinsic basicity of the Lewis base, and that in general 

the stronger the base the larger the cooperative effects.  

It is also interesting to emphasize that some subtle effects are detected with the two 

approaches we are considering for our analysis. For instance, for the 

H2Be···FCl···acetaldehyde complex, the topology of the electron density shows the 

existence of an intramolecular hydrogen bond between a hydrogen atom of the methyl 

group and the Cl atom, and also of a dihydrogen bond between the same methyl hydrogen 

and one of the hydrogen atoms in the BeH2 group. The analysis of the changes in the 

atomic energy components shows that this methyl hydrogen atom in the 

H2Be···FCl···acetaldehyde complex is more destabilized (63 kJ mol-1) than the other two 

(25 kJ mol-1), and that concomitantly the H atom of the BeH2 group interacting with it is 

also more destabilized (24 kJ mol-1) than the other one (15 kJ mol-1). 
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     (a)                  (b) 

 Figure 9.4 Complexes involving carbonyl bases: formaldehyde, acetaldehyde, acetone, 

formamide, formic acid and tetrahydrofuran. a) Molecular graphs; b) Change in atomic 

energy upon formation of the complexes. Same conventions as in Figure 9.1.  

Finally, it is interesting to note that the complex with tetrahydrofuran becomes 

symmetric when it interacts with BeH2. In the FCl··· tetrahydrofuran complex the FCl 

molecule practically aligns with the O atom of tetrahydrofuran, the FClO angle being 

177.1º, yet the complex has no symmetry, belonging to the C1 point group. However, in 

the H2Be···FCl···tetrahydrofuran complex, not only the FClO arrangement remains 

practically linear (FClO angle = 176.1º), but the whole complex has Cs symmetry, 

because the H2BeFClO group lies in a symmetry plane which bisects the H2C-CH2 bond 

of the five-membered ring opposite to the O atom. This arrangement seems to favor a 

stabilizing non-bonding interaction between the negatively charged hydrogen attached to 

Be with the positively charged H atoms of the H2C-CH2 mentioned above.  
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9.5 Conclusions 

In agreement with previous studies of water clusters interacting with beryllium 

hydride, the decomposition of the interaction energies into atomic components is found to 

be a very reliable tool to describe different closed-shell interactions such as halogen 

bonds. Both the topological analysis of the electron density and the changes in the atomic 

energy components of the interaction energy show the existence of strong cooperative 

effects between beryllium and halogen bonds. In some cases this cooperativity is so 

intense that halogen or beryllium bonds that were initially rather weak, for example 

between FCl and pyridine and between H2Be and FCl, become both much shorter and 

stronger because of their mutual interaction. In general, there is some correlation between 

the intrinsic basicity of the Lewis base participating in the halogen bond and the 

cooperativity, in the sense that the stronger the base the larger the cooperative effects. 

This explains why cooperativity increases with methyl substitution either for N or for O 

containing bases, and why it increases when a methyl group is replaced by an amino 

group, which enhances the basicity of the system through the conjugation of the amino 

lone-pair with the basic site. Also interestingly, the analysis in terms of atomic energy 

components permits the quantification of some anti-cooperative effects, undetectable 

using only bond critical point electron densities. 
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9.7 Chapter Summary and Relevance 

In this chapter the decomposition of interaction energies into atomic components is found 

to be a useful tool to describe halogen bonds combining with beryllium bonds. There is a 

general correlation between the intrinsic basicity of the Lewis base participating in the 

halogen bond and the cooperativity, in the sense that the stronger the base the larger the 

cooperative effects. These cooperative effects were effectively demonstrated by 

visualization of the increase in the local energy changes for the interacting atoms.  
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Chapter 10 Future Work 

 

Initially this thesis was meant to include a chapter on the local energy changes in 

water molecules as they solvate the amino acids, evaluated using Car-Parinello molecular 

dynamics (CPMD) and QTAIM analysis. This largely came about because of interesting 

discussion surrounding the important role of water in protein folding. The project was not 

completed, largely due to time limitations because the necessary groundwork for the 

QTAIM energy analysis had to be completed before a discussion of larger systems could 

be made with confidence. While the project did not make it past the preliminary CPMD 

stage, it would be wonderful in the future to use AIM to explore any correlation between 

the local influence of the amino acids on their solvating water’s structure and the role of 

each amino acid’s solvation in the folding of proteins. 

One other project which remains to be completed is a benchmark evaluation of the 

atomic energies in a large series of diatomic and triatomic homo- and hetero-molecular 

systems. Although the local analysis of water clusters and other systems which involve 

hydrogen bonding has been well-explored in this thesis, it would be beneficial to explore 

the nature of systems containing a larger variety of atoms. Some calculations for this 

project have been completed, however the analysis remains to be finished.  

It is my hope that the future will see further exploration of chemical phenomena using 

the quantum theory of atoms in molecules energy analysis.  
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Chapter 11 Conclusions 

 

In this thesis, electron density topology as described in the quantum theory of atoms in 

molecules was used to evaluate the local energy changes in a range of systems including 

water clusters, water wires interacting with alkali, alkaline earth metal and halide ions, 

small systems demonstrating cooperative, non-cooperative and anti-cooperative hydrogen 

bonding interactions, and closed-shell interactions combining beryllium, hydrogen and 

halogen bonding. The energy changes reflect atomic stabilities and are used to create a 

visual representation of the local stability for systems with interactions as described 

above. Important conclusions from each thesis chapter are summarized below. 

In Chapters 4 and 5, evaluation of water clusters (H2O)n=2-6 reveals that, relative to the 

water monomer, all oxygen atoms have a decrease in atomic energy (indicating 

stabilization) and hydrogen atoms increase in atomic energy (indicating destabilization), 

with the exception of the water dimer. Hydrogen bond cooperativity for the cyclic 

clusters is demonstrated at an atomic level by an increase in energy change that matches 

the increase in stability. Small variations in atomic energies within these clusters are 

correlated to water geometry and reflect variations in hydrogen bond strengths. In the 

water hexamers, the simple cooperativity that was observed in the cyclic systems is 

diminished as the linearity and symmetry of the hydrogen bond interactions are lost. The 

prism, cage and bag clusters demonstrate a large range of local water stabilities, due to 

multiple bonding partners and competing cooperative and anti-cooperative interactions.  

Analysis of the interaction between BeX2 (X = H, F) and the water dimer and trimer in 

Chapter 6 reveals a significant electron density redistribution within the whole system, as 

a result of the formation of strong beryllium bonds between water molecules and the 

BeX2 derivative. There is a substantial change in the proton donor and proton acceptor 

capacity of the water molecules involved. Cooperative and anti-cooperative effects are 

again demonstrated at the atomic level through the atomic stability analysis. The changes 

in the atomic energy components are correlated with the changes in the strength of these 

interactions, providing a quantitative measure of cooperative effects directly in terms of 

energies.  
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In the study of water wires interacting with a set of alkali, alkaline earth metal and 

halide ions (Chapter 7), local stability within the water wire reveals that, relative to the 

neutral water wire, water is stabilized when interacting with F-, H+, Li+, and Na+ ions and 

destabilized when interacting with K+, Ca2+, Cl-, and Br- ions. These trends match 

properties of kosmotropic vs. chaotropic ions. Visualization of the changing atomic 

energies clearly represents increased local stability at the position of the proton for the 

protonated water wires. Systems that contain two ions separated by an n=7 water wire 

demonstrate that the local water stability in the presence of a counter ion is essentially the 

sum of the individual influences of each isolated ion.  

In Chapter 8, atomic stabilities were evaluated for cooperative, anti-cooperative and 

non-cooperative clusters of methanol, water and formaldehyde, respectively. While the 

cooperatively interacting clusters show increasing stability at the atomic level as the 

cluster size increases, this is not observed in non-cooperative arrangements of 

formaldehyde. This indicates that the atomic energy analysis can correctly represent these 

non-covalent interactions. Furthermore, the atomic energy analysis was able to reveal 

local stability insight that was not available using BCP or total energy analysis alone. The 

changes in the atomic energy components correlate with changing types of interactions, 

providing a direct, quantitative evaluation of cooperative effects in terms of energies. 

In the final chapter, atomic energy analysis combined with an evaluation of bond 

critical points shows the existence of strong cooperative effects between beryllium and 

halogen bonds. There is a general correlation between the intrinsic basicity of the Lewis 

base participating in the halogen bond and the resulting cooperativity, in the sense that 

the stronger the base the larger the cooperative effects. This general correlation is 

supported by the atomic energies representation of increasing local stabilities for the 

systems with stronger Lewis bases. 

In conclusion, the atomic energy analysis made available through Bader’s QTAIM 

topological evaluation of the electron density is an exceptionally useful tool for 

evaluating the distribution of local stability in weakly interacting systems, in particular 

for hydrogen bonding and closed-shell interactions. Energy changes can reflect the 

cooperativity in these systems and the visualization of the resulting atomic stabilities 

provides a unique perspective of the nature of these chemical interactions. 
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Appendix A Supporting Information for Chapter 3 

A.1 Modelling Water Classically  

 

Water can be represented as a model species with several point charges or smeared 

charged regions centered either at nuclei or between nuclei to mimic the real electron 

distribution within the water molecule. Properties such as polarization can be implicitly 

included [342] and flexibility may be incorporated using harmonic or anharmonic bond 

stretching potentials, though these come with increasing computational expense. The 

water models most commonly applied for large-scale biochemical analysis are usually 

simple models such as TIP3P or SPC/E. Figure A.1 provides a comparison of the 

performance of some classical water models with respect to experimental values. They 

are classified into groups of rigid models (R), rigid and polarizable models (R,P), flexible 

models (F), and flexible and polarizable models (F,P). It is clear that even within model 

types, the performance can vary considerably.  
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Figure A.1 Some physical properties of water models. Model type is defined as 

F=flexible, P=polarizable, R=rigid. Horizontal dashed lines are the experimental 

properties, with values included on the left. Data was obtained from reference [343]. 

The dipole moment is the averaged bulk value. Self-diffusion is a measure of the 

influence of hydrogen bonds on translational movement. The density maximum is the 

temperature at which the model yields the highest density for bulk water. Notice that the 

SPC/E model fares surprisingly well for a simple rigid model.  

 

The large variety in performance of each model indicates that great care should be 

used in setting up a simulation. If the property of interest is heat transfer or dynamic 

ability involving water flow, a multi-site model such at TIP5P would be a good choice. 

For analyses requiring a dynamic response to temperature variation (for example in the 

heat denaturing of a protein), a simpler model such as TIP3P would be a wiser option 

[344]. No model has yet managed to reproduce all properties of bulk water with any great 

deal of accuracy. These errors in water models are derivative from the inherent 

differences between a classically modeled water system and “real” water molecules. 

Some of these characteristics, and the steps taken to account for them in the models, are 

listed below. 

3.0

1.5

0.0

200

100

0

4

2

0

0

-20

-40

Model

T
T

M
2
-F

S
W

F
LE

X
-A

I
T
IP

4
P
/2

0
0
5
f

T
IP

3
P
/F

w
S
P
C
/F

w
P
O

L5
/T

Z
S
W

M
4
-N

D
P

G
C
P
M

C
O

S
/D

C
O

S
/G

3
T

IP
4
P
-F

Q
P
P
C

S
ix

-s
ite

T
IP

5
P
-E

w
T

IP
5
P

T
IP

4
P
/2

0
0
5

T
IP

4
P
-E

w
T

IP
4
P

T
IP

3
P

S
P
C
/E

S
P
C

S
S
D

0

-50

-100

T
T

M
2
-F

S
W

F
LE

X
-A

I
T
IP

4
P
/2

0
0
5
f

T
IP

3
P
/F

w
S
P
C
/F

w
P
O

L5
/T

Z
S
W

M
4
-N

D
P

G
C
P
M

C
O

S
/D

C
O

S
/G

3
T

IP
4
P
-F

Q
P
P
C

S
ix

-s
ite

T
IP

5
P
-E

w
T

IP
5
P

T
IP

4
P
/2

0
0
5

T
IP

4
P
-E

w
T

IP
4
P

T
IP

3
P

S
P
C
/E

S
P
C

S
S
D

10

5

0

Dipole moment

2.95
Dielectric constant

78.40

Self-diffusion

2.30

Average configurational energy

-41.5

Density maximum

3.984

Expansion coefficient

2.53

F, P

F

R, P

R

type

Model



 

183 

 

Water molecules are highly polarizable and susceptible to the surrounding environment. 

Nearby ions, charges or reaction fields can affect the electron density within a real water 

molecule, redistributing it according to the surrounding environment. In some cases this 

promotes formation of elsewise unstable water structures, such as the long water chains 

observed in mass spectrometer experiments [256]. Although polarization is inherently an 

electronic property, there are several ways of including polarizability in classical water 

models [342]. This can include adjustment of partial atomic charges and introduction of 

dipoles at or near the oxygen charge center (see for example reference [345]). Many 

simple adjustments aim to improve correlation with bulk water behaviour. There may be 

consequential errors to this when describing the electrostatic interactions of water in non-

bulk environments, such as near biomolecules and membrane interfaces. More 

complicated ways to improve polarizability are also available, involving induced-dipole 

models, Drude-oscillator models, and fluctuating-charge models [346]. 

 

Water molecules in bulk liquid are non-equivalent.  

This is a result of polarization as well as the cooperative nature of the hydrogen bond. 

Each new bonding interaction from a water molecule (or a solute molecule) can either 

enhance or diminish the existing water hydrogen bonds, depending on the orientation of 

the water molecules. This is especially evident within small water clusters [5, 127]. The 

cooperative effect in water is an electronic effect, which is difficult to mimic using 

classical approaches. Polarizable models aid in providing a better description of the 

varying hydrogen bond strengths in water, however they do not reproduce possible 

changes in geometry, such as fluctuating bond lengths and angles. Flexible models allow 

variation in geometries, however they have been criticized because of their tendency to 

produce a narrowing of the HOH bond angle (to ~100° from 104°) [347]. It is worth 

noting that experimental and ab initio values for gas phase water clusters (often 

considered to be descriptive templates for true bulk water substructure) report that the 

HOH bond angle can be as narrow as 101° [135]. Considering that many rigid bulk water 

models fail to reproduce the proper complexity of the potential energy surface observed 

in bulk water, this progression in flexible models may prove useful.  
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Water is capable of proton transport 

This is the driving force behind many acid-base reactions, enzyme catalysis, and energy 

transfer and conversion processes in biomolecules, and it is perhaps the most complicated 

property of water. It involves the making and breaking of both covalent and hydrogen 

bonds, potential quantum effects such as proton tunneling and large zero point energies, 

and a protonic charge that can be delocalized over multiple water molecules (rather than 

the classical  definition of an isolated H3O
+ species). Proton transport is all but impossible 

to model using classical methods. Specialized models such as the Multistate Empirical 

Valence Bond Method (MS-EVB) [348] are capable of modelling proton transport using 

MD deterministic methods. Ab initio molecular dynamics (AIMD) models are also 

available; however, they require considerable computation time and are only realistic for 

small systems. Interpretation of AIMD results is also dependent on an understanding of 

the underlying quantum theory, and care must be taken in modeling the types of electron-

electron interactions as observed in hydrogen bonds. 

 

Water is more than just “H2O” 

Finally, even if a water model could capture all of the above properties, there would still 

remain serious difficulties in transferring models to real situations: “pure bulk water” 

does not consist purely of water molecules. It is a system of molecular species including 

ortho and para water molecules, isotopic contributions, and hydrogen ion and hydroxide 

species.  

 

Despite these shortcomings, the models developed in the past 40 years do allow us to 

mimic some of water’s behaviour and have proven invaluable in the understanding of 

biomolecular systems through their dependence on water. The answers to many 

experimental anomalies have been clarified through application of molecular modelling 

[349]. A more thorough review of current models in use, as well as their performance 

with respect to experimental observations, is available in reference [347], and a current 

discussion of water models (as well as many characteristics of water) is available in 

reference [343]. 
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A.2 SCVS Implementation in Gaussian 09 

The SCVS method was first available commercially in the Gaussian 09 (G09) program 

in version B.01 and improved in version C.01. There is no keyword, but sample inputs 

are available in test935-test939 and test945 in the G09 test directory included with the 

program installation. An example input for a SCVS optimization of formamide is 

provided in Figure A.2. 

Figure A.2 Sample input for SCVS implementation in Gaussian 09Rev.C.01 

(test937.com). 
#p opt=tight mp2(full)/6-311g** extralinks=l112 density=current 

int=readb 

 

Gaussian Test Job 937: 

Formamide mp2(full)/6-311G**//mp2(full)/6-311G** SCVS 

 

0 1 

 C                 -0.15457920    0.41470365    0.00000000 

 O                 -1.19796161   -0.26101347    0.00000000 

 N                  1.08304695   -0.16570783    0.00000000 

 H                 -0.15135510    1.52911778    0.00000000 

 H                  1.17773711   -1.15080964    0.00000000 

 H                  1.90345745    0.38153249    0.00000000 

 

 

A.3 Obtaining Accurate .wfn/.wfx Files from Gaussian 

Although it is preferable to use AIMQB to transform a formatted checkpoint file into a 

usable .wfx or .wfn file, in some instances (such as when pseudopotentials are present) it 

is necessary to use Gaussian 09 to write the .wfx or .wfn file. This can be achieved using 

the OUTPUT=WFX or OUTPUT=WFN command in the route section. If the .wfn file 

for a post-Hartree Fock calculation such as MP2 is generated in Gaussian 09 using a 

version older than B.01 then there are some important considerations. For post-SCF 

correlated calculations the virial ratio will be written incorrectly to the .wfn file, 

reflecting the SCF energy rather than correlated values. This must be manually updated to 

the correct virial using the total correlated energy (i.e., EUMP2) and the kinetic energy 

(KE). Note that this is not required for later versions of Gaussian or if AIMQB is used to 

write the .wfx file. The keyword DENSITY=CURRENT is required for post-SCF 

correlated methods, so that the natural orbitals of the correlated first order density matrix 
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are written to the .wfn file. In the case of a single point calculations, even if AIMQB is 

used to write the .wfx file it is necessary to include DENSITY=CURRENT in the 

Gaussian route section so that the correlated first-order density appears in the .chk file 

and thus .fchk file. Also for single point calculations, it is recommended that the FORCE 

keyword is included so that nuclear coordinate energy gradients will be written to 

the .fchk file. If an unrestricted post-SCF calculation is required (i.e. UMP2 or 

UCCSD(T), etc.), POP=NOAB must be included in the route section so that the alpha 

and beta natural spin orbitals of the first-order density matrix are written separately to the 

traditional AIM .wfn file. This is not required if the .fchk file is to be used by AIMQB to 

write the .wfx file. Finally, there is a small chance (in Gaussian03) that the molecular 

orbital coefficients will be written to the .wfn file in standard orientation but the nuclear 

coordinates will remain in the input orientation. This can be avoided by including the 

NOSYMM keyword, or by using AIMQB to write the .wfx file from the .fchk file. 
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Appendix B Supporting Information for Papers 

The supporting information for the majority of the chapters in this thesis is available 

online. In particular, information such as Cartesian coordinates for optimized structures 

and raw data for atomic properties can be accessed online using the doi for each paper. 

 

B.1 Chapter 4: Visualizing Internal Stabilization in Weakly Bound Systems 

Using Atomic Energies: Hydrogen Bonding in Small Water 

Clusters 

L. Albrecht, R. J. Boyd, J. Phys. Chem. A, (2012), 116 (15), 3946–3951. DOI: 10.1021/jp301006g. 

 

Supporting Information Available: Geometric parameters for MP2 optimized water 

molecules, QTAIM atomic properties, and NPA charges. This material is available free of 

charge via the Internet at http://pubs.acs.org. 

 

B.2 Chapter 5: Atomic Energy Evaluation of Eight Low-Lying Water 

Hexamer Structures  

L. Albrecht, S. Chowdhury, R. J. Boyd, J. Phys. Chem. A, (2013) 117(41), 10790-9, DOI: 

10.1021/jp407371c. 

 

Supporting Information Available: Geometric parameters for SCVS-MP2 optimized water 

hexamers and QTAIM atomic properties including bond critical point data. This material 

is available free of charge via the Internet at http://pubs.acs.org. 

 

B.3 Chapter 6: Cooperativity between hydrogen bonds and beryllium bonds 

in (H2O)nBeX2 (n = 1–3, X = H, F) complexes. A new 

perspective. 

L. Albrecht, R. J. Boyd, O. Mó, M. Yáñez, Phys. Chem. Chem. Phys. (2012) 14, 14540-14547 (DOI: 

10.1039/C2CP42534C). 

 

Additional supporting information: B3LYP/6-31+G(d,p) optimized geometries for the 

water dimer and trimer, and the (H2O)nBeX2 (n =1-3, X = H, F) complexes are available 

online at www.rsc.org/pccp.  

http://pubs.acs.org/doi/abs/10.1021/jp301006g
http://pubs.acs.org/
http://pubs.acs.org/doi/abs/10.1021/jp407371c
http://pubs.acs.org/doi/abs/10.1021/jp407371c
http://pubs.acs.org/
http://pubs.rsc.org/en/Content/ArticleLanding/2012/CP/c2cp42534c#!divAbstract
http://pubs.rsc.org/en/Content/ArticleLanding/2012/CP/c2cp42534c#!divAbstract
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Table B.1 CCSD(T)/aug-cc-pVQZ//CCSD/6-31+g(d,p) total  energies (E, hartrees) and 

relative free energies (ΔG, kJ mol-1) for WD(BeH2)a and WD(BeH2)b clusters. 

Cluster E G 

WD(BeH2)a -168.6327986 0.0 

WD(BeH2)b -168.6309422 5.6 

 

Table B.2 B3LYP/6-31+G(d,p) optimized geometries for the water dimer and trimer, 

and the (H2O)n BeX2 (n =1-3, X = H, F) complexes. Coordinates are in Å. 
(H2O)2 

8          0.007035   -0.004858   -0.097332 

1          0.051539   -0.001213    0.871549 

1          0.921804    0.004924   -0.391940 

8          -0.036388   -0.000158    2.801888 

1         -0.480854    0.761251    3.188979 

1          -0.463204   -0.772899    3.186401 

(H2O)3 

8          -0.101541    0.040752   -0.188709 

8          -0.104155    0.112758    2.597583 

8          2.297625   -0.086707    1.210611 

1          -0.459409    0.144352    0.712880 

1          0.855712    0.037268    2.435930 

1          1.678129   -0.061769    0.456557 

1          2.863824   -0.851074    1.071128 

1          -0.216065    0.760200    3.298802 

1          -0.521876    0.713425   -0.731370 

H2O:BeH2 

8          -0.005288   -0.086058    0.031365 

1          0.090649    0.043361    0.981203 

1          0.831224    0.032487   -0.431610 

4          -1.461878   -0.468328   -0.729727 

1          -2.416897   -0.554075    0.227869 

1          -1.217990   -0.569053   -2.058924 

H2O:BeF2 

8          0.006243   -0.109381    0.039354 

1          0.097696    0.050165    0.984616 

1          0.828029    0.051275   -0.436231 

4          -1.430742   -0.626080   -0.699025 

9          -2.428713   -0.762837    0.313671 

9          -1.189281   -0.761918   -2.100199 

WD(BeH2)a 
8          0.231893   -0.355351    0.065392 

1          0.432347   -0.257056    1.032568 

1          0.878889   -0.869867   -0.425130 

8          -0.176819    0.133774    2.562190 

1          0.071117    0.878418    3.118954 

1          -1.031620    0.365476    2.137819 

4          -1.310974   -0.039255   -0.407613 

1          -1.970435    0.480978    0.690091 

1          -1.574879   -0.353119   -1.694842 

WD(BeF2)a 
8          -0.010017    0.034757   -0.004271 

1          -0.046112    0.009449    0.991300 

1          0.877659   -0.015587   -0.368897 

8          -0.883847   -0.272349    2.404471 

1          -1.076897    0.353437    3.108835 

1          -1.720902   -0.444878    1.929394 

4          -1.386141   -0.441314   -0.782538 

9          -2.428108   -0.585736    0.231617 

9          -1.249944   -0.614030   -2.190441 

WD(BeH2)b 
8          0.304537   -0.040250   -0.037072 

1          0.170000   -0.165803    0.909899 

1          1.078731    0.522567   -0.157365 

4          -1.126013    0.800783   -0.711415 

1          -2.075746    0.721716    0.298837 

1          -0.590441    1.849569   -1.447553 

8          -1.703397   -0.356897   -1.950329 

1          -1.704272    0.084302   -2.808197 

1          -2.611625   -0.605349   -1.740576 

WD(BeF2)b 
8          0.017861   -0.006769    0.012679 

1          0.015296    0.012662    0.978246 

1          0.935105    0.014565   -0.288829 

4         -0.801538    1.459704   -0.580612 

8          -2.163994    0.881044   -1.569202 

1          -2.064318    1.231212   -2.463671 

1          -2.983005    1.230609   -1.195441 

9          0.142248    2.005527   -1.572662 

9          -1.453064    2.003772    0.624599 

WT(BeH2)a 
8          -0.827683    0.083689    0.074616 

8          0.287437    0.887919    2.262396 

WT(BeF2)a 
8          -0.028250    0.027247   -0.030927 

8          0.072458    0.028553    2.532292 
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8          2.199576   -0.877434    1.695828 

1          -0.462637    0.444054    0.943649 

1          1.092861    0.316417    2.258671 

1          1.704271   -1.366450    0.996093 

1          2.852349   -1.477902    2.065362 

1          -0.136975    0.765965    3.117031 

1          -1.429185    0.701403   -0.350782 

4           -0.289252   -1.218040   -0.739715 

1          0.677684   -1.897025   -0.031915 

1          -0.891914   -1.379670   -1.941900 

8          2.699190   -0.401141    2.545822 

1          -0.072476    0.025687    0.982083 

1          1.042671   -0.081777    2.706743 

1          2.810317   -0.486046    1.575322 

1          3.419055    0.150782    2.863962 

1         -0.381606   -0.635957    3.059658 

1          -0.839691    0.341338   -0.439828 

4          1.308890   -0.195358   -0.933229 

9          2.475327   -0.505945   -0.107312 

9          1.085779   -0.028414   -2.335528 

WT(BeH2)b 
8          0.283775    0.054532    0.308774 

1          0.107100    0.108950    1.272917 

1          1.176398    0.297623   -0.019611 

8          -1.167379   -0.276968    2.458295 

1          -1.670910    0.294853    3.045302 

1          -1.764328   -0.523872    1.723960 

4          -0.863284   -0.429113   -0.710910 

1          -2.032304   -0.733909   -0.055011 

1          -0.420297   -0.430796   -2.012225 

8          2.062638    0.515757   -1.551315 

1          1.282838    0.184650   -2.040023 

1          2.828460    0.052713   -1.903750 

WT(BeF2)b 
8        0.021612    0.034822    0.033028 

 1          -0.058286   -0.114557    1.001832 

1            0.894945   -0.114750   -0.395060 

8          -1.179101    0.041413    2.359225 

1          -1.109237    0.471667    3.215979 

1          -1.837810    0.539012    1.839335 

4          -1.084826    0.933459   -0.724780 

8          1.835702    0.211935   -1.847792 

1          1.095799    0.663529   -2.295747 

1          2.226300   -0.392317   -2.485442 

9          -0.680538    1.262990   -2 

9          -2.221351    1.237377    0.129047 

WT(BeH2)c 
8          0.159874   -0.449575    0.121021 

1          0.076286   -0.157034    1.061387 

1          0.692270    0.185488   -0.368030 

8          -0.919111    0.035527    2.478394 

1          -1.151170    0.850253    2.934092 

1          -1.669413   -0.174614    1.867314 

4          -1.406948   -0.675919   -0.581906 

1          -2.333360   -0.599734    0.489155 

1          -1.446556   -0.031491   -1.806540 

8          -1.429830   -2.421233   -1.006456 

1          -2.121690   -2.885423   -0.520600 

1          -1.638583   -2.479684   -1.946537 

WT(BeF2)c 
8          -0.016461    0.013474    0.018584 

1          -0.010186    0.044088    1.009334 

1          0.888184    0.031171   -0.312244 

8          -0.615930    0.581222    2.528472 

1          -0.151209    1.036058    3.236433 

1          -1.158324    1.251088    2.059041 

4          -0.947961    1.304548   -0.635112 

8          -2.268733    0.555991   -1.579772 

1          -3.118613    0.844953   -1.224240 

1          -2.188359    0.901825   -2.478376 

9          -1.695164    1.909980    0.528584 

9          -0.135357    1.960595   -1.674566 

WT(BeF2)d 
8          0.012415   -0.122697    0.049398 

1          -0.092572   -0.168611    1.048406 

1          0.904144   -0.286281   -0.268392 

8          -0.957059   -0.332416    2.391789 

1          -1.072113    0.397652    3.026301 

1          -1.785612   -0.397808    1.883284 

4          -1.357415   -0.334551   -0.823198 

1          -2.415549   -0.320963    0.064688 

1          -1.157889   -0.480706   -2.155757 

8          -1.310468    1.770723    4.249033 

1          -1.699249    2.620257    4.016735 

1          -1.575835    1.592357    5.157053 

WT(BeF2)d 
8          -0.020480    0.104705    0.008291 

1         -0.081595    0.055967    1.026376 

1          0.869150   -0.008011   -0.344076 

8          -0.734289   -0.226274    2.401041 

1          -0.912178    0.503055    3.027897 

1          -1.589775   -0.506165    2.020181 

4           -1.336934   -0.549844   -0.725830 

8          -1.240832    1.853233    4.214542 

1          -1.855019    2.572044    4.018121 

1          -1.337395    1.655869    5.154800 

9          -2.388749   -0.729809    0.273745 

9        -1.200535   -0.837213   -2.121250 
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Table B.3 B3LYP/6-311+G(3df,2p)//B3LYP/6-31+G(d,p) total energies (hartrees). 

water -76.463373 

water dimer -152.934352 

water trimer -229.41373 

BeH2 -15.9234856 

BeF2 -214.689368 

H2O:BeH2 -92.4161175 

H2O:BeF2 -291.1860227 

WD(BeH2)a -168.9017818 

WD(BeH2)b -168.896473 

WD(BeF2)a -367.674095 

WD(BeF2)b -367.6694464 

WT(BeH2)a -245.3850267 

WT(BeH2)b -245.3837711 

WT(BeH2)c -245.3815168 

WT(BeH2)d -245.3753606 

WT(BeF2)a -444.1586208 

WT(BeF2)b -444.158092 

WT(BeF2)c -444.1559868 

WT(BeF2)d -444.1479908 

 

 

Figure B.1 Molecular graphs of the optimized clusters formed by two and three water 

molecules with BeF2. Red dots denote BCPs. Electron densities are in a.u.. A and B 

denote respectively the BeH2 molecule and the water molecule attached to through a 

beryllium bond. 
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Figure B.2 Change in atomic energy for the formation of BeF2:(H2O)n, n=1-3, systems. 

Values for the relative energy change of each atom are labeled (kJ mol-1). Stabilized 

atoms are red, destabilized atoms are blue. Atom size corresponds to the magnitude of 

energy change. A, B, C, and D denote labels as in Figure 9.1. For hydrogens which are 

hidden the energy is included in parentheses. The atomic energies for the atoms in BeF2 

and H2O monomers are: Be (-3.7x105), F (-2.63x103), and O (1.98x105), H (1.03x103), 

respectively, in kJ mol-1.
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B.4 Chapter 8: Atomic Energy Analysis of Cooperativity, Anti-cooperativity, 

and Non-cooperativity in Small Clusters of Water, Methanol, 

and Formaldehyde. 

L. Albrecht and R. J. Boyd, Comp. Theo. Chem., (2014) In press. DOI: 10.1016/j.comptc.2014.08.022 –  

 

Supporting information available: Benchmark data for Dunning basis set, SCVS 

calculations, and CCSD(T)//MP2 vs. CCSD(T)//B3LYP energies are included below. 

Relevant AIM parameters including charges, scaled and unscaled energies, L(A) values, 

and BCP energy densities can be found online at 

http://dx.doi.org/10.1016/j.comptc.2014.08.022. 

 

B.4.1 Benchmark Calculations 

Methanol energies were optimized with B3LYP functional to compare our MP2 

values with previous studies. The CCSD(T) energies are closer to the MP2 energies 

regardless of which method is used to optimize the geometry (Table B.4). 

 

 

 

 

http://www.sciencedirect.com/science/article/pii/S2210271X14003776
http://dx.doi.org/10.1016/j.comptc.2014.08.022
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Table B.4 Comparison of CCSD(T) energies at B3LYP and MP2 optimized geometries for clusters of methanol, n=1-4. 

Method Monomer Dimer Trimer Tetramer 

Eintn E/nHB Coop 

n=2 n=3 n=4 n=2 n=3 n=4 n=3 n=4 

MP2/6-311++G(d,p) -115.445220 -230.901300 -346.365781 -461.835152 -6.8 -18.9 -34.1 -6.8 -6.3 -8.5 0.52 -1.7 

CCSD(T)6-

311++G(d,p)// 

MP2/6-311++G(d,p) 

-115.477241 -230.965263 -346.461647 -461.962494 -6.8 -18.8 -33.6 -6.8 -6.3 -11.2 0.51 -4.4 

B3LYP/6-311+G(d,p) -115.764942 -231.539165 -347.322080 -463.108123 -5.8 -17.1 -- -5.8 -5.7 -- 0.12 -- 

CCSD(T)6-

311++G(d,p)// 

B3LYP//6-311+G(d,p) 

-115.477186 -230.965001 -346.461358  -6.7 -18.7 -- -6.7 -6.2 -- 0.44 -- 

 

  

 

1
9
3
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Table B.5 Comparison of Pople and Dunning basis sets for selected water, methanol, and formaldehyde clusters. 

 

 

  E(Hartree) Eint (kcal mol-1) 

Water Monomer Dimer Trimer (cyclic) Trimer (anticoop) n=2 n=3 (cyc) n=3 (anti) 

MP2/6-311++G(d,p) -76.274920 -152.559525 -228.853104 -228.841888 -6.1 -17.8 -10.7 

MP2/aug-cc-PVTZ -76.328992 -152.666240 -229.012934 -229.001723 -5.2 -16.3 -9.3 

Methanol Monomer Dimer   n=2   

MP2/6-311++G(d,p) -115.445220 -230.901300   -6.8   

MP2/aug-cc-PVTZ -115.529008 -231.067846   -6.2   

Formaldehyde Monomer Dimer(C2h) Trimer (cyclic) Trimer (stacked) n=2 n=3 (cyc) n=3 (stacked) 

MP2/6-311++G(d,p) -114.241772 -228.488602 -342.736017 -342.735147 -3.2 -6.7 -6.2 

MP2/aug-cc-PVTZ -114.316410 -228.638766 -342.961202 -342.960701 -3.7 -7.5 -7.2 
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For the AIM analysis, SCVS scaling is preferable to minimize the forces on the 

wavefunction along with the energies during the SCF procedure. We found that the time 

it took for this minimization on all clusters was prohibitively long, however we have 

evaluated tetramer structures for each monomer set to compare the differences in scaled 

energies with and without SCVS scaling. Although the absolute values for the scaled 

atomic energies (K_scaled(Atom)) differ on average by up to 6 kcal mol-1 (Table B.6), 

the relative differences in energy for the cluster formation (ΔE(Atom)) differ by less than 

a kcal mol-1 (Table B.7). 

 

Table B.6 Average difference in energy (AVE) and standard deviation (STDEV) 

comparing the influence of SCVS on scaled atomic energies (K_scaled(A)) in tetramer 

and monomer clusters. Energies in kcal mol-1. 

Atom Energy (scaled) 
Water Methanol Formaldehyde 

AVE STDEV AVE STDEV AVE STDEV 

K_scaled(O) -0.265 0.018 5.181 0.235 5.713 0.095 

K_scaled(C)     -5.675 0.216 -5.916 0.079 

K_scaled(H) 0.153 0.036 0.152 0.036 0.165 0.018 

 

Table B.7 Average difference in energy (AVE) and standard deviation (STDEV) 

comparing the influence of SCVS on atomic energy stabilities for tetramer formation. 

ΔE(Atom)=E(atom in monomer) – E(atom in cluster). Energies in kcal mol-1. 

ΔE(Atom) 
Water Methanol Formaldehyde 

AVE STDEV AVE STDEV AVE STDEV 

ΔE(O) 0.046 0.000 0.588 0.000 0.237 0.001 

ΔE(C)     -0.539 0.002 -0.198 0.001 

ΔE(H) -0.014 0.039 -0.008 0.056 -0.017 0.019 
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B.4.2 Bond Critical Point Data 

Table B.8 Bond critical point electron densities for water clusters. 

Cluster 
Density at BCPa 

OHnHB OHHB OH…Ob 

Monomer 

 0.364   

Dimer  

A 0.365 0.356 
0.23 

B 0.362  

Trimer 

Cyclic cooperative 

A 0.363 0.349 0.024AB 

B 0.363 0.348 0.026BC 

C 0.363 0.348 0.025CA 

Linear anti-cooperative 

A  0.358  

B 0.362  0.021AB 

C 0.362  0.012AC 

Tetramer 

Cyclic cooperativec 0.362 0.339 0.034 

Cyclic anti-cooperative 

A  0.360 

0.019 
B  0.360 

C 0.360  

D 0.360  

a BCP densities in a.u. b Superscripts indicate interacting monomers.  c In cases where only one 
value is given for all monomers, the BCP densities are the same.  

 

Table B 9 Bond critical point electron densities for methanol clusters. 

Cluster 
Density at BCPa 

CO OH  OH…Ob C-Htrans C-Hinner C-Houter 

Monomerc 

 0.251 0.367 -- 0.283 0.278 0.278 

Dimer 

A 0.256 0.357 
0.028 

0.281 0.277 0.277 

B 0.243 0.364 0.281 0.280 0.280 

Trimer 

A 0.249 0.349 0.029AC 0.282 0.279 0.279 

B 0.250 0.348 0.030BA 0.282 0.278 0.279 

C 0.250 0.349 0.028CB 0.282 0.278 0.279 

Tetramerc 0.249 0.337 0.041 0.281 0.278 0.279 
a BCP densities in a.u. b Superscripts indicate interacting monomers.  c In cases where only one 

value is given for all monomers, the BCP densities are the same due to symmetry. 
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Table B.10 Bond critical point electron densities for formaldehyde clusters. 

  

Cluster 
Density at BCPa 

C=O CHHB CHnHB CH…Ob C…Ob 

Monomer 

 0.398 -- 0.277 -- -- 

Dimer 

Cs
c 0.394 0.281 0.277 0.008  

C2h 
A 0.394 0.280 0.278 

0.009 0.013 
B 0.395  0.279 

Trimer 

Cyclicc 0.392 0.282 0.277 0.010 -- 

Stacked 

A 0.394 0.281 0.277 .0.008 -- 

B 0.390 0.281 -- 0.008 -- 

C 0.394 0.281 0.277 0.008 -- 

Bucket 

A 0.392 0.282 0.278 
0.006AB 

0.013AB 
0.009AC 

B 0.393 -- 0.280 0.006BA 
0.013AB 

0.008BC 

C 0.395 -- 
0.280 

-- 0.008BC 
0.278 

Tetramer 

Cyclicc 0.392 0.283 0.277 0.010 -- 

Stacked 

A 0.394 0.281 0.277 0.008 -- 

B 0.391 0.281 -- 0.008 -- 

C 0.391 0.281 -- 0.008 -- 

D 0.394 0.281 0.277 0.008 -- 

Bucket 

A 0.393 0.281 0.278 

0.006AD 

0.013AB 0.009AC 

0.008AB 

B 0.392 0.280 0.280 0.008AB 
0.012BC 

0.013AB 

C 0.391 0.282 0.279 
0.009AC 0.012BC 

0.007CD 0.012CD 

D 0.0394 0.280 0.278 0.007CD 0.012CD 

a BCP densities in a.u. b Superscripts indicate interacting monomers.  c In cases 

where only one value is given for all monomers, the BCP densities are the same. 
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B.5 Chapter 9: Changing Weak Halogen Bonds into Strong Ones through 

Cooperativity with Beryllium Bonds 

from L. Albrecht, R. J. Boyd, O. Mó, M. Yáñez, J. Phys. Chem. A, (2014) 118 (23), 4205–4213. DOI: 

10.1021/jp503229u. 

 

Supporting information available: Benchmark evaluation and a discussion of atomic 

energy scaling is included below. Relevant AIM properties and Cartesian coordinates for 

all structures are included in the supporting information online at http://pubs.acs.org.   

 

B.5.1 Benchmark Data 

 

 

Figure B.3 Optimized bond distances (in Å) for complexes between FCl and different 

Lewis bases. Values in bold and italic were obtained at the CCSD/aug-cc-pVTZ  and 

MP2/aug-cc-pVTZ  levels of theory, respectively. The values within parentheses and 

brackets were obtained using the B3LYP and the M06-2X functionals, respectively. In 

both cases the 6-31+G(d,p) basis set was used. 

  

  

http://pubs.acs.org/doi/abs/10.1021/jp503229u
http://pubs.acs.org/doi/abs/10.1021/jp503229u
http://pubs.acs.org/
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Table B.11 Interaction energies, Eint and the two- and three-body interaction energy 

components (2E and 3E) for ABC (A = BeH2, B = FCl, C = Lewis Base) complexes 

calculated at the M062X/6-31+G(d,p) level. The values within brackets correspond to 

CCSD(T)/aug-cc-pVTZ calculations carried out on the M062X/6-31+G(d,p) optimized 

geometries . All values are in kJ mol-1. 

Lewis Base Eint 2E(AB) 2E(BC) 2E(AC) Σ2E 3E 

NH3 -231 

[-209] 

-73 

[-55] 

-80 

[-64] 

-4 

[-9] 

-157 

[-123] 

-74 

[-86] 

Methaneimine -326 

[-292] 

-95 

[-114] 

-118 

[-84] 

-5 

[-7] 

-239 

[-205] 

-87 

[-87] 

HCN -70 

[-67] 

-33 

[-28] 

-20 

[-21] 

-2 

[-2] 

-55 

[-52] 

-15 

[-16] 

 

Table B 12 Bond lengths (Å) for FCl, H2Be-FCl, FCl-Base and H2Be-FCl-Base 

complexes evaluated at M06-2X/6-31+G(d,p). 

Base 

FCl-Base Complex H2Be-FCl-Base Complex 

r(F-Cl) r(Cl-Base) r(Be-F) r(F-Cl) r(Cl-Base) 

Ammonia 1.691 2.360 1.602 1.888 1.974 

Methylamine 1.715 2.234 1.572 1.969 1.894 

Dimethylamine 1.731 2.177 1.557 2.026 1.858 

Trimethylamine 1.739 2.155 1.548 2.067 1.846 

Methanimine 1.687 2.338 1.559 2.019 1.796 

HCN 1.650 2.662 1.768 1.699 2.462 

Imidazol 1.697 2.289 1.570 2.053 1.845 

Pyridine 1.708 2.227 1.478 2.541 1.726 

Formaldehyde 1.655 2.526 1.709 1.734 2.230 

Acetaldehyde 1.656 2.526 1.660 1.781 2.092 

Acetone 1.659 2.500 1.631 1.821 2.007 

Formamide 1.661 2.463 1.640 1.803 2.041 

Formic Acid 1.653 2.544 1.723 1.724 2.276 

Tetrahydrofuran 1.663 2.410 1.639 1.812 2.029 

FCl  1.639     

BeFCl    2.000 1.659  
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Figure B.4 Virial ratio for set of complexes at four basis sets: 6-31+G(d,p), 6-311++G(d,p), 6-311++G(2df,2pd), aug-cc-pVTZ for 

representative systems. 
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Figure B.5 Unscaled atomic energy changes for the interaction BeH2 + FCl-Base → 

H2Be-FCl-Base for representative systems (Dunning basis set only for acetone and 

formaldehyde. Energy scale in kcal mol-1). 
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X-axis = unscaled atomic energies, Y-axis = scaled atomic energies (energy in kcal mol-1) 
sm =  6-31+G(d,p); bb = 6-311++G(d,p); bg = 6-311++G(2df,2pd). 

 

 

Figure B.6 Unscaled vs. scaled energies for representative systems at three basis sets, 

sm: 6-31+G(d,p), bb: 6-311++G(d,p), bg: 6-311++G(2df,2pd). 
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B.5.2 Scaled Atomic Energies and the AIM Method 

The virial theorem for a molecule at a stationary state on the potential energy surface 

reduces to −V T⁄ = 2, where V and T are the potential and kinetic energies, respectively. 

In AIM theory this can be extended to atoms, Ω, that are defined by zero-flux surfaces, 

giving atomic energy   

𝐸(Ω) = −𝑇(Ω) = −
1

2
𝑉(Ω) 

The sum of E(Ω) for all atoms in a molecule returns the molecular energy, E. Because the 

wavefunctions used in practice are approximate, there will be some deviation from this 

virial relationship and summation of E(Ω) does not exactly yield E. Ideally, one would 

remove or at least minimize this deviation by simultaneously minimizing the energy with 

respect to a scaling factor for all coordinates, molecular orbital coefficients, and the 

molecular geometry [63]. This procedure (self-consistent virial scaling, SCVS [71]) can 

be very computationally costly, and is not currently available for DFT methods such as 

M06-2X in the Gaussian 09 software. An alternative and much cheaper approach is to 

simply scale the final atomic energy components by the amount of deviation from the 

virial relationship, 

𝐸𝑠𝑐𝑎𝑙𝑒𝑑(Ω) = 𝑇(Ω)(1 + 𝛾) 

where 𝛾 = −𝑉 𝑇⁄ . This provides satisfactory results for comparison of energies in 

different systems because (1 + 𝛾) is usually small and 𝛾 generally scales linearly with 

𝑇(Ω). In the case of Kohn-Sham (KS) DFT, however, the kinetic energy is obtained from 

KS molecular orbitals (KS-MOs) where 𝑇(Ω) is now 𝑇0(Ω), the non-interacting kinetic 

energy. This deviates from the total kinetic energy by 

𝑇(Ω) = 𝑇0(Ω) + 𝛥𝑇𝐶(Ω) 

Here 𝛥𝑇𝐶(Ω) is the correlation kinetic energy contained in the exchange-correlation 

functional [72-73]. 

The implication for AIM analysis is that the relationship used to define the scaling 

factor is no longer 𝑉 𝑇⁄ = 𝛾, but is actually 𝑉 𝑇0⁄ = 𝛾 and is thus missing 𝛥𝑇𝐶(Ω), which 

can vary in size depending on the atom and may be positive or negative. The use of (1 +

𝛾) to scale the energies now becomes a first approximation to the correct energy and will 

either over- or underestimate the actual value [73]. In this report we choose to use 



 

207 

 

unscaled energy values to minimize any exaggeration of atomic energy change resulting 

from comparing an overestimated value in one complex with an underestimated value in 

another. We further minimize possible error by using a pruned ultrafine integration grid 

(99,590) and very tight convergence criteria (RMS force < 10-6 and RMS displacement < 

4x10-5). As an explorative tool for investigating changing local stabilities within 

molecules, the use of atomic energies remains highly useful and provides a great deal of 

insight that would be otherwise unattainable. We hope that in the future it will be possible 

to attain DFT-based energies that incorporate in some way the missing 𝑇𝐶(Ω). Both the 

scaled and unscaled atomic energy values have been included in this supporting 

information document, as well as other relevant data from the AIM analysis. 
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