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ABSTRACT 
 

Sampling requirements for the quality control (QC) of cement-based 

solidification/stabilization (S/S) construction cells do not currently consider the reliability 

of the hydraulic conductivity sample nor the explicit risk associated with actual flow 

through the cells.  This thesis addresses the issues associated with sampling requirements 

of a cement-based S/S construction cell during a QC program via probabilistic simulation 

and via theory taking into account the spatial variability associated with hydraulic 

conductivity of the entire cement-based S/S system. The sampling requirements are 

determined by considering a hypothesis test, having null that the constructed material is 

unacceptable, and targeting acceptable probabilities of making erroneous decisions. Two 

types of errors that may result in the hypothesis test are: 1) a Type I error where the 

sample data rejects the null hypothesis even though the null is correct, and 2) a Type II 

error where the sample data fails to reject the null hypothesis even though it is false. 

Probabilistic simulations are performed to examine the influence of a soil-cement 

material’s mean, variance, and correlation length on sampling requirements for a QC 

program of cement-based S/S construction cells. It is found that to achieve target Type I 

and Type II error probabilities, samples should be collected at higher frequencies when 

the mean hydraulic conductivity is close to the regulatory value, coefficient of variation is 

1.0 or less and the correlation length is at an intermediate value. An example is presented 

to illustrate how the results can be used in practice. An analytical approach is also 

presented for selecting the sample size for cement-based S/S construction cell’s QC 

program.  Analytical solutions are developed to compute the probabilities of Type I and 

Type II errors as a function of the number of samples taken and the statistics of the 

hydraulic conductivity field.  The solutions are verified by probabilistic simulations. A 

set of hydraulic conductivity field data of an existing cement-based S/S system is 

statistically analyzed to assess its spatial variability. A lognormal distribution is found to 

be a reasonable fit to the data. Recommendations are provided for conservative QC 

sampling requirements for that system.   
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CHAPTER 1 

1 INTRODUCTION 

1.1   GENERAL 

            Cement-based solidification/stabilization (S/S) is a source-controlled remediation 

technology in which cement is mixed with contaminated media such as soil, sediment, 

sludge, or industrial waste to minimize the migration of the contaminants and thereby to 

limit the contamination of groundwater and/or surface water. For a contaminated site, S/S 

may be performed by dividing the entire site into a number of smaller cells (which will be 

referred to as construction cells for this study) for quality control (QC) purposes. QC 

programs normally involve testing of individual construction cells for strength, hydraulic 

conductivity and leachability; each construction cell being approved if it is determined to 

have “passed” pre-established performance limits by a regulatory body.  

            In terms of hydraulic conductivity, the objective of the performance criteria is to 

ensure, with some certainty, a sufficiently small hydraulic flow. For one dimensional 

flow, the deterministic equation governing the total advective flow, Q , through a 

saturated S/S construction cell is given by Darcy’s law as follows,   

 iAkQ eff  (1.1) 

where effk  is the effective hydraulic conductivity of the construction cell, i  is the 

hydraulic gradient across the cell and A  is the area perpendicular to the direction of flow. 

The effective hydraulic conductivity, effk , is defined as the single value of hydraulic 

conductivity which yields the same total flow through the cell as does the actual spatially 

varying hydraulic conductivity field (see Fenton and Griffiths, 1993). To ensure that the 
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construction cell will perform effectively in restricting contaminant migration via 

advection, samples are collected and tested during construction in a QC program to 

establish adequate “performance”. In essence, the purpose is to ensure that the  effective 

hydraulic conductivity meets the given performance specification. If the estimated 

effective hydraulic conductivity is less than or equal to the regulatory hydraulic 

conductivity, critk , then the construction cell is considered to be acceptable. Otherwise it 

is deemed unacceptable and must be repaired or replaced.  

            The question is: How many samples should be taken in order to reliably make the 

decision regarding the construction cell being acceptable or unacceptable? In practice, 

samples are collected based on the sample density method (USACE, 2000), which 

requires a certain number of samples per unit volume. The required number of samples is 

not affected by the statistics of the sampled field. Since the randomness of a system 

increases as the variability of the material composing the system increases, it is logical to 

believe that sampling at the same frequencies over construction cells having different 

variability will result in different levels of reliability of the effective hydraulic 

conductivity estimate. This thesis aims to address the issues associated with sampling 

requirements of a cement-based S/S construction cell during a QC program to achieve a 

certain confidence in the decision (acceptable or unacceptable) regarding this cell based 

on the estimated effective hydraulic conductivity and the spatial variability associated 

with hydraulic conductivity of the entire cement-based S/S system. The purpose of this 

chapter is to provide  some background information about cement-based S/S systems and 

their QC sampling requirements and reliability prior to presenting the research work in 

the following chapters. 
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1.2   CEMENT-BASED S/S 

            Solidification/stabilization is a chemical treatment technology for contaminated 

material. USEPA (2000) defines solidification and stabilization separately, as follows:         

            Solidification involves the processes by which contaminants are entrapped within 

a solid cementitious matrix. Solidification may or may not accompany chemical 

processes (processes that involve chemical reactions). Contaminant migration is restricted 

by decreasing the surface area exposed to leaching and/or by encapsulating contaminated 

material within a low-permeability material.  

             Stabilization involves the processes by which contaminants are transformed into 

less soluble, mobile, or toxic forms. During stabilization, chemical reactions occur 

between  contaminants and the stabilizing agent.  

            S/S was employed in 24% of the source-controlled remediation at Superfund 

projects in the United States (USEPA, 2004). The performance of S/S treated material 

depend on many factors: waste type, water content, reagent type, reagent mix-ratio, 

curing time, and temperature (Conner and Hoeffner, 1998). Out of the different 

remediation technologies, Portland cement-based (which will be referred to as simply 

cement-based in this thesis) S/S has been widely applied since 1950. It was selected as 

one of the remediation technologies in the Sydney Tar Ponds project, a $400 million 

CAD clean-up project in Canada (http://en.wikipedia.org/wiki/Sydney_Tar_Ponds).  

            Cement-based S/S has the following advantages over other remediation 

technologies (Conner and Hoeffner, 1998; Shi and Spence, 2004; Paria and Yuet, 2006): 

 Low cost and ease of use, 

 Good physical and chemical stability, 
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 Low permeability, 

 Well known hydration reactions (reactions between cement and water in setting 

and hardening), 

 Availability and non-toxicity of chemical ingredients, 

 Good compressive strength, 

 Low leachability of some constituents, 

 High resistance to biodegradation. 

 

A brief overview of cement-based S/S process (ITRC, 2011) is presented below:  

            Cement-based S/S involves mixing cement, additives, and water with 

contaminated material using mechanical equipment. Additives with sorptive properties 

can be used to improve the performance of S/S processes to treat organic contaminants, 

since organic contaminants do not bond with the cementitious minerals formed by the 

hydration of cement. There are two methods to add cement to the contaminated material: 

dry and wet. In the dry method, cement is applied “dry” onto the contaminated material 

and then mixed. In the wet addition method, cement is mixed with water to form a grout 

or paste which is then mixed with contaminated material. Dry addition is more common 

and is feasible for shallow S/S applications. Cement-based S/S treatment process can be 

either in-situ (i.e., material remains in place when treatment is performed) or ex-situ (i.e., 

treatment is performed on excavated material). A variety of equipment is available for 

both in-situ and ex-situ S/S treatment processes. The choice of equipment depends on the 

characterstic of the contaminants and the geometry of the contaminated area. 
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            Common ex-situ mixing methods are pugmill and batch mixing. In pugmill 

mixing, contaminated material and cement are mixed in a trough-like mixing chamber 

which has two horizontal shafts with paddles attached to counter-rotating shafts. In batch 

mixing, a variety of vessels are used to mix batches of contaminated material with 

cement.   

            Common in-situ mixing methods are rotary mixing, excavator mixing, and auger 

mixing. In rotary mixing, cement is spread on top of the material, and a rotary mixer 

mixes the contaminated material and cement. While mixing, water is added either in front 

or behind the mixer as necessary. Excavator mixing is suitable for shallow depth (less 

than 6 m) and is performed by dividing the entire contaminated area into grid cells. The 

contaminated material and cement are mixed by the excavator bucket. Mixing 

homogeneity in excavator mixing depends on the expertise of the excavator operator and 

the amount of time spent mixing each grid cell. 

            Auger mixing is the most commonly used method for in-situ cement-based S/S 

process. In auger mixing, contaminated material is mixed with cement either by a single 

auger or array of augers. An auger treats a column of soil 0.6-3.7 m in diameter and up to 

20 m in depth. Both dry and wet methods are used for auger mixing. Dry mixing is 

suitable for low-strength soils with high moisture content, whereas wet mixing is suitable 

for soils with moisture content less than 60%. The treatment process is completed by 

executing a series of overlapping columns over the project area.  

            After mixing cement and/or additives to the contaminated material, the treated 

material is left to cure. In the in-situ process, the treated material is left in place whereas, 

in the ex-situ process, the treated material is spread on a waste consolidation cell in lifts 
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of uniform thickness, compacted and allowed to cure. The ex-situ treated material can be 

returned either to the original location or another location on the project area. 

1.3   QUALITY CONTROL PROGRAMS AND RELIABILITY 

            The sample density method (USACE, 2000) that is commonly used to specify the 

sampling frequency for the QC of S/S construction cells, requires a certain number of 

samples per unit volume (i.e., 1 hydraulic conductivity sample per 500 m3 of a cement-

based S/S construction cell). A construction cell is considered to be acceptable if the 

average of sampled hydraulic conductivities is less than or equal to 1×10-8 m/s, no 

individual sampled hydraulic conductivity is greater than 1×10-7 m/s, and no more than 

20% of the sampled hydraulic conductivities exceed 1×10-8 m/s (ITRC, 2011). 

            Unfortunately, the sample density method does not adjust for site variability. 

Performing simulations, Benson et al. (1994) found that samples should be collected at 

higher frequency for highly variable soils and for soils having the mean hydraulic 

conductivity at or close to the regulatory value. The sample density method may result in 

either “undersampling” or “oversampling” (Benson et al., 1994). Although Bensons’ 

findings are for compated clay liners which have variability in their composition due to 

the inherent and induced (due to construction) variability, they can also be used for 

similar constructed systems such as cement-based S/S construction cells.  

            The precision-of-estimator methods (the error of sampling and the sequential 

sampling methods (Richardson, 1992)), which are basically confidence interval methods, 

are used to select  the sample size for a QC program of waste-containment systems. In the 

error of sampling method , the sample size is determined prior to data collection, 

whereas, the predetermined sample size is adjusted based on the collected data in the 
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sequential sampling method. The goal of the precision-of-estimator methods is to select a 

sample size such that the estimate of the property of interest (e.g., hydraulic conductivity) 

will lie within certain bounds with a specified probability. For example, the precision-of-

estimator methods can be used to specify the sample size such that the estimate of the 

mean hydraulic conductivity does not vary by more than 5×10-9 m/s from the true mean 

(m/s) with a 95% probability. The advantage of the precision-of-estimator methods over 

the sample density method is that instead of considering the volume of the system, the 

precision of the estimate is considered in selecting the sample size.  

            Menzies (2008) proposed a hypothesis test based method to determine QC sample 

sizes for soil liner systems. The work presented in this thesis for assessing QC sample 

sizes of cement-based S/S construction cells is also a hypothesis test based method, 

which is described  in more detail in the following chapters. Random fields are used to 

model the hydraulic conductivity fields in the hypothesis tests.  

1.4   RANDOM FIELDS 

            Random fields are commonly used to model spatially variable engineering 

properties (Fenton and Griffiths, 2008). Relatively simple, Gaussian-based, random fields 

are described by three parameters, the mean,  , the standard deviation,  , and the 

correlation length,  . Frequently, the standard deviation is expressed as a coefficient of 

variation,  , which is the ratio between the standard deviation,  , and the mean,  , 

  . The correlation length is the distance over which the property of interest is 

significantly correlated and beyond which is largely uncorrelated. Mathematically,   can 

be defined as the area under the correlation function (Vanmarcke, 1984); 
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   d





 (1.2) 

 where    is the correlation function which characterizes the spatial dependence 

between two points in the random field separated by a distance .  

          Smaller values of   imply a rapidly varying field, while larger values of   imply a 

slowly varying field. Figure 1.1 shows two random field (one-dimensional) realizations 

for two different values of . The figure on the left, having small  (i.e., 0.04), displays 

rapid variation in the field, while the figure on the right, having large  (i.e., 2.0), shows 

slow variation in the field (Fenton and Griffiths, 2008). 

  

Figure 1.1 Sample realizations of  tX  for two different correlation lengths 

             

In this research, the hydraulic conductivity field is represented using a two-

dimensional spatially variable random field. The hydraulic conductivity is assumed to be 

the local average over some volume. Local averaging reduces the variance of the random 

field. The final variance depends on the volume selected for local averaging, decreasing 

as the local averaging volume increases (Fenton and Griffiths, 2008). The variance 
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reduction function,  T , is used to express the amount of variance reduction when 

averaged over some length, .T  

1.5   BACKGROUND ON SAMPLING THEORY 

            The overall objective of QC sampling of cement-based S/S construction cells is to 

ensure that each cell will be acceptable (i.e., that its effective hydraulic conductivity, effk  

will be less than the regulatory hydraulic conductivity, critk ). The decision about whether 

a construction cell is acceptable or not is made on the basis of a set of samples taken from 

the cell.  This decision making process can be formulated as a hypothesis test where the 

null hypothesis  0H  is that the cell is unacceptable, so that the burden of proof is on 

showing that the alternative hypothesis  aH  is true, at an appropriate level of 

confidence. 

 
:

:o eff crit

a eff crit

H k

H

k

k k




 (1.3) 

            Two types of errors may result in making this decision about the acceptability of a 

cell: 1) concluding that the S/S construction cell is acceptable when it is not (Type I 

error), or, 2) failing to conclude that the S/S construction cell is acceptable when it 

actually is (Type II error). The challenge is to determine how many samples should be 

collected in order to ensure that the probability of making either type of error will be 

acceptably small.  

            Taking an infinite number of samples from the construction cell will eliminate 

any chances of making a decision error, but this is neither physically nor economically 

feasible. This means that some chance of error will always exist and so it is necessary to   
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relate the error probabilities with the number of samples taken in order to determine the 

number of samples required. 

            Analytical solutions exist to determine the sample size required to ensure that the 

probabilities of Type I and II errors are sufficiently small (see, e.g., chapter 8 of Devore,  

2008). These solutions, however, assume that the samples are independent. Since the 

construction cell hydraulic conductivity values are generally correlated, the existing 

analytical solutions cannot be used to determine required sample sizes for the quality 

control of construction cells. The goal of this study is to investigate how the probabilities 

of Type I and Type II errors change as a function of the number of samples taken within a 

construction cell. 

1.6   RESEARCH OBJECTIVES 

            This thesis has three distinct objectives: 

1) to perform probabilistic simulations to examine the influence of the correlation 

length, hydraulic conductivity mean and coefficient of variation on sampling 

requirements to achieve  target probabilities for Type I and Type II errors for the QC 

program of cement-based S/S construction cells;  

2) to develop analytical solutions to compute the probabilities of Type I and Type II 

errors as a function of the number of samples taken and the statistics of the 

hydraulic conductivity field. These solutions will allow the estimation of the sample 

size required for the QC program of cement-based S/S construction cells to achieve 

target Type I and Type II error probabilities; and 
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3) to statistically analyze the hydraulic conductivity field data of an existing cement-

based S/S system to assess its spatial variability and to provide recommendations for 

conservative sampling requirements for the QC program of that S/S system.  

1.7   THESIS ORGANIZATION 

This thesis is organized as follows: 

            Chapter 2 reports on a parametric study performed to examine the influence of 

correlation length, hydraulic conductivity mean and coefficient of variation on sampling 

requirements for the QC program of cement-based S/S construction cells using 

probabilistic simulations. The simulation employs a modified version of the two-

dimensional random finite element method (RFEM) program, mrflow2d (Fenton and 

Griffiths, 1993). Modifications made to mrflow2d for this study were to enable the 

sampling of the random field at prescribed locations. For a specific number of samples, 

the influence of correlation length, hydraulic conductivity mean and coefficient of 

variation on the probabilities of Type I and Type II errors are examined in Chapter 2. 

Plots are provided which can be used to estimate required number of samples and an 

example is presented to illustrate how the results can be used in practice.  

            Chapter 3 presents an analytical approach to estimate QC sample sizes required 

to achieve target Type I and Type II error probabilities in cement-based S/S consruction 

cells. Analytical solutions are developed to compute the probabilities of Type I and Type 

II errors as functions of the number of samples and the statistics of the hydraulic 

conductivity field. In order to validate the proposed analytical solutions, the analytically 

computed Type I and Type II error probabilities are compared to those estimated via 

probabilistic simulations in Chapter 2. An example is presented to illustrate how the 
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proposed analytical approach can be used in practice to assess required sample size for 

the QC program of cement-based S/S construction cells. 

            In Chapter 4, a set of hydraulic conductivity field data of an existing cement-

based S/S system is statistically analyzed to assess its spatial variability (described by a 

distribution and a correlation function). The spatial variability associated with the 

hydraulic conductivity data is then used to compute the Type I and Type II error 

probabilities associated with a specific number of samples using the analytical solutions 

presented in Chapter 3. Recommendations are provided in Chapter 4 for conservative 

sampling requirements for the QC program of that S/S system. 

            Chapter 5 summarizes the results presented in Chapters 2, 3, and 4 and draws 

conclusions from these results.  Chapter 5 also presents recommendations for further 

study. 
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CHAPTER 2 

2 A PARAMETRIC STUDY ON QUALITY CONTROL 

SAMPLE SIZES OF CEMENT-BASED 

SOLIDIFICATION/STABILIZATION  

2.1    GENERAL 

            This chapter aims to examine the influence of the correlation length and hydraulic 

conductivity mean and coefficient of variation on sampling requirements during a QC 

program of cement-based S/S of a construction cell via simulation. The goal is to 

determine the number of samples required to achieve a certain confidence in the decision 

(acceptable or not) about the cell based on the estimated effective hydraulic conductivity. 

            Random fields will be used here to model the hydraulic conductivity field. The 

sampling problem will be investigated by simulating possible realizations of the two-

dimensional hydraulic conductivity field, virtually sampling each realization at selected 

locations and then deciding whether the realization is acceptable or not on the basis of the 

sample results. An error in the decision is made if either the cell is deemed to be 

acceptable, when it is not (Type I error), or if the cell is deemed to be unacceptable, when 

it is actually acceptable (Type II error). As will be shown, the probability of making a 

decision error reduces as the number of samples increases, not surprisingly, and the task 

is to determine just how many samples are required to reduce the error probabilities to 

acceptable levels. 

            The random conductivity field realizations will be simulated using a method 

called Local Average Subdivision (LAS) (Fenton and Vanmarcke, 1990). The LAS 

algorithm preserves the spatial correlation, over the ensemble, between local averages of 

the property. LAS directly simulates realizations of ‘local’ averages. As mentioned 
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previously, local averaging reduces the variance of the random field. In the two-

dimensional model considered here, the final variance depends on the area selected for 

local averaging, decreasing as the local averaging area increases (Fenton and Griffiths, 

2008). Further details regarding the correlation structure and variance reduction used in 

the random field model can be found in Section 2.3. 

            Research relating to the sampling requirements for a QC program of cement-

based S/S construction cells is not available in literature, so far as the author is aware. 

Some research has been conducted on the sampling requirements for soil liner systems, 

which is similar to the requirements for cement-based S/S construction cells, as discussed 

next.  

            Benson et al. (1994) presented a method to select the number of samples that 

should be collected and tested during the construction of compacted soil liners in order to 

ensure reliable liners at some confidence level. Not surprisingly, they found that the 

accuracy of the estimate increases as the sample size increases and also showed that 

samples should be collected at higher frequency for soils having highly variable hydraulic 

properties as well as for soils with mean hydraulic conductivity close to the regulatory 

value. In their investigation, simulations were performed using a three-dimensional 

stochastic model with varying hydraulic conductivity mean, variance, and liner thickness. 

However, they did not explicitly consider the random field nature of the liner, that is 

independence between adjacent elements in their model was assumed for simplicity, i.e., 

they ignored the correlation between hydraulic conductivity values.  

            Menzies (2008) examined the influence of the correlation length on sampling 

requirements of soil liner systems in order to achieve target reliability against excessive 
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flow through the liner. Influences of the hydraulic conductivity mean and variance on 

sampling requirements were investigated using a two-dimensional stochastic model to 

perform simulations.  In Menzies’ study, two types of hypothesis test errors were 

considered, i.e., Type I where the sample data led to the conclusion that the liner was 

acceptable when it was not and Type II where the sample data suggested that the liner 

was unacceptable when it actually was acceptable. It was found that a “worst case” 

correlation length existed, which was about 5%-10% and 2%-3% of the liner size in any 

direction, that maximized the probabilities of Type I and Type II errors, respectively. 

Menzies (2008) also found that for a particular sample size, both types of error 

probabilities reached a maximum value when the mean hydraulic conductivity of the liner 

was close to the regulatory value, requiring more samples in this case to achieve the same 

reliability as obtained when the mean hydraulic conductivity is farther away from the 

regulatory value. In his stochastic model, Menzies used the arithmetic average of the 

hydraulic conductivity field to be the effective hydraulic conductivity, since for soil 

liners, the dimension parallel to the flow is thin relative to the dimension perpendicular to 

the  flow. He also assumed the correlation structure to be isotropic. This work extends 

that of Menzies’ to a case where the flow is in-plane so that geometric averaging is 

required. 

            As mentioned above, the author has been unable to find literature dealing 

specifically with the sampling requirements for QC programs of cement-based S/S 

construction cells. This study aims to investigate this problem through the use of random 

field simulations.  
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2.2   PROBABILISTIC SIMULATIONS 

            The construction cells investigated in this study are designed to provide a barrier 

against horizontal flow and are thin (vertically) relative to their planar dimension, as 

shown in Figure 2.1. Because the cell is relatively thin, the flow is largely in the plane 

and a two-dimensional flow model is acceptably accurate. Since a two-dimensional flow 

model is also much faster, computationally, than a three-dimensional model, the two-

dimensional model will be used here.  The hypothesis test problem is thus studied here 

using Monte Carlo simulations employing a modified version of the two-dimensional 

random finite element method (RFEM) program, mrflow2d (Fenton and Griffiths, 2008). 

The original program was designed to analyze stochastic fluid flow problems and is 

described in Fenton and Griffiths (1993). The program is modified in this study to enable 

the sampling of the random field at prescribed locations. Also in the modified program, 

finite element method is not used to obtain the flow through the field, instead geometric 

avergage of the field is used to represent the flow, which is justified by Fenton and 

Griffiths (1993), Dagan (1982) and Gutjher et al. (1978). The mesh discretization used in 

the simulations is as shown in Figure 2.1. 

 

Figure 2.1: Illustration of mesh discretization used in the simulations 



17 

 

            The flow regime assumes that an impervious boundary exists on the top and 

bottom, and on the left and right, faces of Figure 2.1. A uniform unit pressure head was 

applied on the front face which directs the flow, Q, in the x  direction. The inputs to the 

model are the mean and standard deviation of point-scale hydraulic conductivity, 

correlation lengths (assumed isotropic), the number of elements in each direction, the 

element size, and the number and locations of the samples to be taken. Given these 

inputs, the RFEM model generates a random field of lognormally distributed hydraulic 

conductivity. The steps followed in the simulations are as follows: 

1. Given the mean, standard deviation and correlation length of the hydraulic 

conductivity at the point-scale, generate a realization of the local averages, iG , for 

mi ,......,2,1 , where m  is the specified number of elements in the model, using the 

Local Average Subdivision (LAS) algorithm (Fenton and Vanmarcke, 1990). Each 

local average, iG , is the arithmetic average of a standard Gaussian field, G over the 

i th element. 

2. The lognormally distributed hydraulic conductivity value, ik ,  is assigned to the i th 

element through the transformation  ikki Gk lnlnexp   , where kln  and kln  

are the mean and standard deviation of the logarithm of k  obtained from the 

specified mean and standard deviation k  and k  via the transformations: 

  22
ln 1ln kk    (2.1a) 

 
2
lnln

2

1
ln kkk    (2.1b) 

      where kkk    is the coefficient of variation. 
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3. Sample the field at the specified element locations. This is done simply by recording 

the value of jk  generated for the j th sampled element. Measurement error is 

assumed to be zero. 

4. Compute the geometric average, 
G

k , of the sample and the effective hydraulic 

conductivity of the entire conductivity field, 
eff

k  as follows, 
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      where 

n  number of samples taken from the random field, 


j

k  hydraulic conductivity of the j  th sampled element of the random field, 

m  number of elements of the random field, and 


i

k
 
hydraulic conductivity of the i  th element of the random field. 

    Fenton and Griffiths (1993) demonstrated that the geometric average was the best 

estimate of the effective hydraulic conductivity for relatively square flow regimes, where 

the effective hydraulic conductivity was defined by them to be the single value of 

hydraulic conductivity which yields the same total flow through the cell as does the 

actual spatially varying hydraulic conductivity field. Hence, geometric averages of the 

element hydraulic conductivities and the samples are used to obtain the actual and the 

predicted effective hydraulic conductivity of the random field, respectively. In other 

words, the effective hydraulic conductivity, 
eff

k , used in this study, closely approximates 
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the uniform (spatially constant) hydraulic conductivity value which yields the same total 

flow as computed through the actual spatially random hydraulic conductivity field. If 

criteff kk  , then the total flow through the cell exceeds the regulatory limit and the cell is 

unacceptable.  

            The geometric average, Gk , is the sample estimate of the effective hydraulic 

conductivity, effk . If critG kk  , then the cell is deemed to be acceptable, even though it 

may not be (Type I error). Alternatively, if critG kk  , then the cell is deemed to be 

unacceptable, even though it may actually be acceptable (Type II error). For each 

realization, the sample geometric average, Gk , and the effective hydraulic conductivity, 

effk  are compared to the regulatory hydraulic conductivity, critk . This comparison results 

in one of the following four outcomes being recorded for each realization: 

- The effective hydraulic conductivity of the random field is below the regulatory value 

and the sample data agrees with this  criteffcritG kkkk  . This is a favorable 

outcome. 

- Both Gk  and the actual effective hydraulic conductivity of the random field are above 

the regulatory value  criteffcritG kkkk  . This outcome will result in the cell 

being deemed to be unacceptable but is a favorable outcome since it is predicted by 

the sample.  

- Gk  is less than the regulatory hydraulic conductivity, while the actual effective 

hydraulic conductivity of the field exceeds the regulatory value 

 criteffcritG kkkk  . This is an unfavorable Type I error (cell is assumed 
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acceptable when it is not) resulting in the worst outcome of this hypothesis test, 

where an unsafe cell is deemed to be safe.  

- Gk  is greater than the regulatory value, while the actual effective hydraulic 

conductivity of the field is less than the regulatory value  criteffcritG kkkk  . 

This is an unfavorable Type II error (cell is assumed unacceptable when it is actually 

acceptable) which would require some unnecessary work, such as excavating the 

treated material and reapplication of the S/S process for the construction cell, 

resulting in a higher project cost. 

            Of the two types of errors, the Type I error is the worst from an environmental 

protection standpoint since it results in an unacceptable cell being accepted. The above 

steps are repeated over simn  realizations for each parameter set (as discussed in the next 

section) to estimate the probabilities of Type I  1p  and Type II  2p  errors, according 

to: 

 
simn

n
p 1

1   (2.4) 

 
simn

n
p 2

2   (2.5) 

where 1n  is the number of realizations where critG kk   while criteff kk   , 2n  is the 

number of realizations where critG kk   while criteff kk   , and simn  is the total number of 

realizations considered. 
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2.3   PARAMETRIC STUDY 

            In order to enable the results to be scaled to any desired regulatory hydraulic 

conductivity, critk , the mean of the point-scale hydraulic conductivity of the input 

distribution, k , and the effective hydraulic conductivity, effk , can be normalized by the 

regulatory hydraulic conductivity, critk .  

 
crit

k
k

k


   (2.6) 

 
crit

eff

eff
k

k
k   (2.7) 

 

where k  is the normalized mean hydraulic conductivity and effk   is the normalized 

effective hydraulic conductivity. 

            The correlation length, kln ,
 
can also be non-dimensionalized by dividing by the 

effective dimension of the construction cell, D , where XYD   and X and Y are the 

planar dimensions of the construction cell; 

 
D

k
k

ln
ln


   (2.8) 

            Non-dimensionalizing the correlation length allows the results to be scaled to any 

construction cell size so long as it has same (or similar) aspect ratio  YX  as used in this 

study, which is .1YX  If the region under consideration is not square, it is 

approximated by a square region of size .DD  

            Parametric variations considered in the simulations were as follows: 
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 Normalized mean hydraulic conductivity, k  0.01, 0.1, 0.9, 1.0, 1.1, 1.2, 1.4, 

1.6, 1.8, 2.0, 3.0, and 10.0, 

 Coefficient of variation, k  0.1, 1.0, 2.0, and 5.0, 

 Normalized correlation length, 
kln  0.01, 0.05, 0.1, 0.5, 1.0, 5.0, and 10.0, 

 Number of samples, n 1, 4, 9, 16, 25, and 49 (i.e., in increments of 2l , where l  

is the number of samples in each of  the x  and y directions). For each value of n , 

the field is sampled at equispaced locations, as illustrated in Figure 2.2. 

 

Figure 2.2: Sampling locations shown as small black squares 

 

            The lognormally distributed random hydraulic conductivity field is fully specified 

by its mean, its variance, and its correlation structure. In this study, the correlation 

between pairs of kln  values is assumed to be Markovian having the following separable 

correlation function (which is a product of two directional correlation functions – see, 

e.g., Vanmarcke, 1984, for more details.), 

      221121ln 2exp2exp,  k  (2.9) 
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in which i  is the distance between points in each coordinate direction, i 1 and 2. The 

decay rate parameters i , for i 1 and 2, are the directional correlation lengths. In this 

study, the correlation lengths are assumed to be equal; kln21   . 

            Since the correlation function is separable, its corresponding variance reduction 

function (see Vanmarcke, 1984) is also separable and can be written explicitly as the 

product: 

      YXYXk  ,ln  (2.10) 
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and similarly for  Y . 

            Regarding the finite element model, a sensitivity analysis was performed in order 

to examine the influence of the element size on the output quantities of interest (i.e., the 

probabilities of Type I and Type II errors). A domain of size (1×1) was discretized into 

32×32, 64×64, 72×72, 80×80, 104×104, 128×128, and 256×256 elements. All mesh 

resolutions gave similar results (see Appendix A). Based also on reasonable computing 

time, a (64×64) element density was selected for all simulations. The number of 

realizations selected was simn 25000 for all parameter sets considered. This means that 

the standard deviation of any probability estimate is   simnpp ˆ1ˆ  , where p̂  is the 

estimated probability, which, for small p̂  is approximately p̂0063.0 . In other words, 

the Monte Carlo simulation can reasonably accurately estimate p̂  down to about 

1/10000. 
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2.4   RESULTS 

2.4.1    INFLUENCE OF CORRELATION LENGTH ON ERROR PROBABILITIES  

            It is instructive to first consider the probabilities of Type I and II errors at the 

limiting values of kln . At the lower limit, when kln  is equal to 0, points within the field 

will have no correlation with each other, which means that the kln  field is white noise 

(Fenton and Griffiths, 2008). In this case, any local average of kln  will consist of an 

infinite number of independent values whose average is a non-random constant (equal to 

the median) so that one (local average) sample is sufficient to completely specify the 

effective hydraulic conductivity of the field. That is, the probability of making any type 

of error (i.e., either Type I or Type II) will be zero on the basis of one or more samples if 

kln 0.
 
At the other extreme, when kln , points within the random field are 

perfectly correlated with each other which means that they are all equal if the field is 

stationary, as assumed here. In this case, the field can be represented by a single (random) 

hydraulic conductivity value so that one sample is sufficient to predict the actual effective 

hydraulic conductivity of the entire field, resulting in error probabilities again being equal 

to 0. At intermediate correlation lengths (i.e., between zero and infinity), the probabilities 

of Type I and II errors are non-zero and will be affected by the number of samples taken 

– fewer samples will result in larger error probabilities. Figure 2.3 shows the influence of 

the normalized correlation length on the probability of a Type I error for different 

numbers of samples ( n 1, 4, 9, 16, 25, and 49) for k 1.0 and k 1.0. Each point on 

the plot is obtained using 25000 realizations and indicates that, for given number of 

samples, as the correlation length increases the probability of a Type I error at first 

increases and then decreases, as expected. For example, when k 1.0, k 1.0, and 
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n 4, the probability of a Type I error increases from close to 0 at a normalized 

correlation length of 0.1 to a maximum value of 0.0362 at a normalized correlation length 

of 1.0, and then decreases to 0.0190 when the normalized correlation length reaches 10.0. 

The probability continues to decrease thereafter to 0 as 
kln (not shown). The 

highest error probability occurs at a “worst case” correlation length, in this case at about 


kln 1.0. Since the actual correlation length is rarely, if ever, known at any site, the 

practical importance of the existence of a “worst case” correlation length is that it can be 

used to produce sampling plans which are conservative, that is, guaranteed to have error 

probabilities no higher than specified in the sampling design. 

            Figure 2.3 also shows that for given correlation length, the probability of a Type I 

error decreases as the number of samples increases. For example, when k 1.0, k

1.0, and 
kln 0.5, the probability of a Type I error decreases from 0.0322 when n 4 to 

 

Figure 2.3: Influence of correlation length on the probability of a Type I error for 

mean and coefficient of variation of 1.0 

 

0

0.025

0.05

0.075

0.1

0.01 0.1 1 10

P
[T

y
p

e 
I 

E
rr

o
r]

Normalized Correlation Length, θʹlnk

µʹk = 1.0

νk = 1.0

n = 1 n = 4 n = 9

n = 16 n = 25 n = 49



26 

 

0.0092 when n 49. When 
kln 0.01 and 0.1, the probability of a Type I error of close 

to 0 is obtained for all number of samples.  

            Figure 2.3 also indicates that the probability of a Type I error will decrease 

towards 0 as correlation length increases beyond the worst case for one or more samples, 

as expected.  

            Figure 2.4 illustrates the influence of the normalized correlation length on the 

probability of a Type II error for various numbers of samples ( n 1, 4, 9, 16, 25, and 49) 

for k 1.0 and k 1.0. Similar to Figure 2.3, a “worst case” correlation length occurs 

at an intermediate correlation length, in this case at around 10% to 50% of the field 

dimension. For example, when k 1.0, k 1.0, and n 4, the probability of a Type II 

error starts at 0.0296, increases to 0.1818, and then drops back down to 0.0232 for 
kln  

0.01, 0.1, and 10.0, respectively.  

 

 

Figure 2.4: Influence of correlation length on the probability of a Type II error for 

mean and coefficient of variation of 1.0 
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            Figure 2.4 also shows that an increase in the number of samples decreases the 

probability of a Type II error. For example, when k 1.0, k 1.0, and 
kln 0.5, the 

probability of a Type II error decreases from 0.1471 when n 4 to 0.0346 when n 49. 

The converging nature of the plots on both sides of the worst case indicates that at very 

low and high correlation lengths, the probability of a Type II error tends to 0, which is as 

expected. 

            Similar trends to those shown in Figures 2.3 and 2.4 are seen for all other 

parameter set combinations considered and the results are included in Appendix B. The 

“worst case” correlation lengths occur at about 0.1 to 5 times the field dimension for 

Type I errors and at about 0.01 to 10 times the field dimension for Type II errors. In 

general, the “worst case” correlation length is somewhere between 0.01 and 1.0 times the 

field dimension. For most of the following comparisons, an intermediate worst case 

correlation length of 
kln 0.5 has been selected. 

2.4.2 INFLUENCE OF MEAN ON ERROR PROBABILITIES  

            When the mean hydraulic conductivity of the random field is much less than the 

regulatory hydraulic conductivity, both the effective hydraulic conductivity and the 

sample geometric average will almost always be less than the regulatory value so that the 

probabilities of Type I and II errors will be small. Similarly, when the mean hydraulic 

conductivity is much higher than the regulatory value, both the effective hydraulic 

conductivity and the sample geometric average will almost always be higher than the 

regulatory value so that, again, the probabilities of Type I and II errors will be small.  The 

highest decision error probabilities will occur when the mean hydraulic conductivity is 

close to the regulatory value. Figures 2.5 and 2.6 illustrate the influence of the mean on 
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the probabilities of Type I and Type II errors, respectively, for k 1.0, 
kln 0.5, and 

n 4, 16, and 49. For given number of samples, the highest probability of a Type I error  

 

Figure 2.5: Influence of mean on the probability of a Type I error 

 

Figure 2.6: Influence of mean on the probability of a Type II error 
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in Figure 2.5 occurs when the mean hydraulic conductivities are about 1.7 times the 

regulatory value. For example, in the case where k 1.0, 
kln 0.5, and n 4, the 

probability of a Type I error reaches a maximum of about 0.15 when k 1.7.  

Similarly the highest probabilities of a Type II error (Figure 2.6) are observed when 

k 1.1. For example, for k 1.0, 
kln 0.5, and n 4, the probability of a Type II 

error reaches a maximum of about 0.15 when k 1.1. 

2.4.3 INFLUENCE OF COEFFICIENT OF VARIATION ON ERROR PROBABILITIES 

            Figures 2.7 and 2.8 illustrate the influence of the coefficient of variation on the 

probabilities of Type I and II errors, respectively, for k 1.0, 
kln 0.5, and varying .n

Points on the plots are obtained using 25000 realizations. The figures show that both 

Type I and Type II error probabilities (mostly) decrease with increasing coefficients of 

variation. For example, for k 1.0, 
kln 0.5, and n 4, probabilities of Type I and 

Type II errors decrease from 0.0322 to 0.0106 and from 0.1472 to 0.1181, respectively, 

when the coefficient of variation increases from 1 to 2. However, the probability of Type 

II errors does tend to show a maximum at around a coefficient of variation of 1.0, so that 

this value of k  seems to be a “worst case” for the probability of Type II errors.  The  

probability of a Type I error drops back down to 0 as 0k  (not shown), and it is 

found that the probability of a Type I error begins to decrease below 1.0k , so that the   

coefficient of variation of 0.1 is the “worst case” for the probability of Type I errors.  
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Figure 2.7: Influence of coefficient of variation on the probability of a Type I 

error 

 

 
Figure 2.8: Influence of coefficient of variation on the probability of a Type II 

error 
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of the construction cell. When the entire cell is sampled at every point, the probability of 

making a decision error will be zero. Figures 2.9 and 2.10 show the influence of the 

number of samples on the probabilities of making a Type I and a Type II error, 

respectively for different normalized means (i.e., k  0.01, 0.1, 0.9, 1.0, 1.1, and 10.0), 

k 1.0 and 
kln 0.5. These figures indicate that as the number of samples increase, the 

probabilities of Type I and Type II errors decrease as expected. Also as expected, the 

probabilities of both types of errors are very close to zero when the normalized mean is 

far from 1.0. 

 

Figure 2.9: Influence of number of samples on the probability of a Type I error 
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Figure 2.10: Influence of number of samples on the probability of a Type II error 
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Figure 2.11: Comparison of the simulation results for the probability of a Type I 

error between a (10 m×10 m) and a 1×1 cell 

 

 

Figure 2.12:  Comparison of the simulation results for the probability of a Type II 

error between a (10 m×10 m) and a 1×1 cell 
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2.6 SUMMARY AND CONCLUSIONS 

            In this chapter, Monte Carlo simulations are performed using a modified version 

of the two-dimensional random finite element method (RFEM) program, mrflow2d, to 

examine the influence of the correlation length, hydraulic conductivity mean and 

coefficient of variation on sampling requirements for a QC program of cement-based S/S 

construction cells.  The modification made to the program enables the sampling of the 

random field at prescribed locations. Also in the modified program, instead of using the 

finite element method, geometric average of the field is used to obtain the flow through 

the field. 

            Based on the results obtained in this study, the following conclusions can be 

drawn: 

 For a specific number of samples in the QC program, the greatest probability of 

making an error in the hypothesis test occurs at a “worst case” correlation length, 

indicating that more samples are required at this correlation length. The “worst 

case” correlation lengths are found to be 0.1 to 5 times the effective construction 

cell dimension (square root of the construction cell area) for the probability of a 

Type I error and 0.01 to 10 times the effective construction cell dimension for the 

probability of a Type II error. In general, the “worst case” correlation length is 

somewhere between 0.01 and 1.0 times the field dimension. The worst case 

correlation length leads to conservative sampling requirements to achieve target 

hypothesis error probabilities.  

 For a specific number of samples, the greatest error probabilities occur when k  

is approximately 1.7 for Type I errors and 1.1 for Type II errors. This suggests 
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that more samples are required when the normalized mean hydraulic conductivity 

is in the range 1.1 to 1.7 in order to ensure that cells are properly identified as 

being unacceptable or acceptable (note that although the population mean k  

may be above critk , individual cells may very well have criteff kk  ). For  a 

constant number of samples, the probabilities of Type I and Type II errors rapidly 

approach zero when the mean hydraulic conductivity deviates significantly from 

the regulatory value (e.g. k  0.01, 0.1, and 10.0). This, of course, implies that 

targeting the mean hydraulic conductivity well below the regulatory value is 

desirable, although possibly more expensive. Note that targeting a lower mean 

hydraulic conductivity may have no benefits with respect to the required number 

of QC samples, since the worst case must always be assumed prior to sampling. 

 Increasing the number of samples is effective in decreasing both Type I and Type 

II error probabilities, which, of course, agrees with statistical theory. 

 For a specific number of samples, an increase in the hydraulic conductivity 

coefficient of variation, k , generally results in a decrease in probabilities of 

Type I and Type II errors, at least when k 1.0 and 1k . This reduction in 

error probability is largely because the resistance to flow increases as k  

increases, due to downstream blockages, so that the value of effk  decreases with 

increasing k . The general implication is that when k  is approximately 1.0, 

more samples will be required to achieve acceptably small error probabilities 

when k  is 1 or less. 
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 The good agreement obtained between the simulation results for both Type I and 

Type II error probabilities for a (10 m×10 m) construction cell and a 1×1 

construction cell indicates the scalability of the simulation results presented in this 

chapter. 
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CHAPTER 3 

3  AN ANALYTICAL APPROACH TO ASSESS QUALITY 

CONTROL SAMPLE SIZES OF CEMENT-BASED 

SOLIDIFICATION/STABILIZATION  

 

3.1    GENERAL 

            In Chapter 2, probabilistic simulations were performed to examine the influence 

of correlation length, hydraulic conductivity mean and coefficient of variation on the 

probabilities of a Type I and a Type II error for a specific number of samples taken from 

cement-based S/S construction cells during a QC program. Plots provided in Chapter 2 

can be used to assess the sampling requirements for the QC program of cement-based S/S 

construction cells to achieve target error probabilities (i.e., Type I and Type II) about the 

decision regarding the acceptance or rejection of the cells. This chapter aims to develop 

an analytical approach to assess the required sample size for the QC programs of cement-

based S/S construction cells. Analytical solutions will be developed to compute the 

probabilities of Type I and Type II errors as  a function of the number of samples taken 

and the statistics of the hydraulic conductivity field. The soutions will be verified by the 

probabilistic simulations of Chapter 2. An example will be presented to illustrate how the 

proposed method can be used in practice to estimate the required sample size for the QC 

program of cement-based S/S construction cell.  

            The analytical approximations to the probabilities of Type I and Type II errors 

will be presented in the next section. 
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3.2    ANALYTICAL SOLUTIONS FOR THE PROBABILITIES OF TYPE I AND TYPE II   ERRORS 

            As mentioned previously, random fields are commonly used to model spatially 

variable engineering properties (Fenton and Griffiths, 2008) and will be used here to 

model the soil hydraulic conductivity field. The resulting random field can be 

conditioned on the samples taken from the field. The resulting conditional distributions of 

effk  and Gk  can in turn be determined analytically and used to estimate the probabilities 

of making Type I or II errors in the approval decision process, leading to the 

determination of the number of samples required to achieve target error probabilities. 

            In this study, the random hydraulic conductivity field is assumed to be two-

dimensional. This two-dimensional assumption is reasonable, as discussed in Chapter 2, 

if the conditioned layer is thin relative to its planar area. In the site modelling, the field is 

broken up into m  elements and each element hydraulic conductivity is assumed to be the 

geometric average of point-scale hydraulic conductivity over that element and is assumed 

to be lognormally distributed (as assumed in the simulations). The lognormal assumption 

of hydraulic conductivity is reasonable for the hydraulic conductivity of S/S sites, as will 

be shown in Chapter 4 through a statistical analysis of a real site. 

            The probabilities of a Type I and a Type II error will be mathematically 

formulated in the next sub-section. 

3.2.1 MATHEMATICAL FORMULATIONS OF THE PROBABILITIES OF A TYPE I AND A 

TYPE II   ERROR 

            For the hypothesis test considered in this thesis, the probability of a Type I error, 

1p , can be defined as, 
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  criteffcritG kkkkp  P1  (3.1) 

            Similarly, the probability of a Type II error, 2p , can be defined as, 

  criteffcritG kkkkp  P2  (3.2) 

            where Gk  and effk  are as defined by Eq’s (2.2) and (2.3), respectively.  

            As assumed in the simulations, both the predicted, Gk  and the actual effective 

hydraulic conductivity, effk , of the random field are assumed here to be the geometric 

averages of the sample and element hydraulic conductivities, respectively.  

            In Eq’s (3.1) and (3.2), both Gk  and effk  are assumed to be lognormally 

distributed, which means that the logarithms of the sample geometric average, Gkln , and 

the actual effective hydraulic conductivity, effkln , are normally distributed with means 

of 
Gkln  and 

effkln , respectively, and standard deviations of 
Gkln  and 

effkln , 

respectively, and covariance  effG kkCov ln,ln . The lognormal assumption is reasonable 

for both predicted and the actual effective hydraulic conductivities, since they are 

approximated by the  geometric averages of the lognormally distributed sample and 

element hydraulic conductivities, respectively (Fenton and Griffiths, 2008). 

            Assuming Gkln  and effkln  follow a bivariate normal distribution, 

 ,,lnln vuf
Gkeffk  the probabilities of Type I and Type II errors can be expressed as, 

 dudvvufp
critk

critk
Gkeffk 



ln

ln
lnln1 ,  (3.3) 

 dudvvufp
critk

critk

Gkeffk ,
ln

ln

lnln2  




 (3.4) 
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 where,  

 
 

 
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
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




 22

22
lnln 2

12

1
exp

12

1
, vuvuvuf

Gkeffk 


     (3.5) 

 
effkeffkru lnln  ,  

GkGksv lnln  , and   is the correlation 

coefficient between effkln  and Gkln , and all other terms are as defined 

previously. The means and standard deviations of effkln  and Gkln  and   are 

defined in Appendix C. 

 

            There is no closed form solution for the integral of the bivariate normal 

distribution. An approximate method proposed by Owen (1959) to obtain the bivariate 

normal probability is used in this study to obtain the probabilitites of a Type I error and a 

Type II error defined by Eq’s (3.3) and (3.4), respectively.  

3.2.2  SOLUTION METHOD 

            Owen (1959) proposed an approximate method for obtaining the bivariate normal 

probability. The solutions obtained by Owen (1959) were for the bivariate normal 

probability,  
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h w
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22

22
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1
;, 


  (3.6) 

where u  and v  are defined above and are standard normal random variables and   is the 

correlation coefficient between the normally distributed random variables corresponding 

to u  and v  (i.e., effkln  and Gkln ). The approximation to  ;, whB  is as follows 

 
         wh awTahTwhwhB ,,

2

1

2

1
;,   (3.7) 
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 if 0hw  or if ,0hw h  or 0w , and  
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 if 0hw  or if ,0hw h  or 0w ,  

where  
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 (3.10b) 

and   is the standard normal cumulative distribution function.  

Eq’s (3.10a) and (3.10b) are valid for 1ha  and 1wa , respectively.  

When 1ha ,  hahT ,  is defined by Eq. (3.10c). 
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Similarly, when 1wa ,  wawT ,  is defined by Eq. (3.10d). 
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




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




h

h
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haT
1

,  in Eq. (3.10c) can be defined by Eq. (3.10a) replacing h  by hha  and ha  by 

ha

1
 in Eq. (3.10a). 

Similarly, 





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




w

w
a

waT
1

,  in Eq. (3.10d) can be defined by Eq. (3.10b) replacing w  by wwa

and wa  by 
wa

1
 in Eq. (3.10b). 

            Using Owen (1959)’s method for obtaining the bivariate normal probability, as 

presented above, the probability of a Type I error, is 
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The probability of a Type II error is 
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where 

 

Gk

Gkcritk
h

ln

lnln




  (3.13a) 



43 

 

 
effk

effkcritk
w

ln

lnln




  (3.13b) 

ha , wa ,  hahT , , and  wawT ,  have the same meanings as Eq’s (3.9a), (3.9b), (3.10a), 

and (3.10b), respectively, and 

effk

effkr
u

ln

ln




  and .

ln

ln

Gk

Gks
v




  

Derivations of Eq’s (3.11) and (3.12) are presented in Appendix D. 

3.3   VERIFICATION  

            The type of probabilistic analyses presented in the previous section could be 

performed using simulation programs such as the modified version of a two-dimensional 

random finite element method (RFEM) program, mrflow2d, as presented in Chapter 2. It 

requires significant time and expertise to complete a simulation for a set of statistical 

parameters. The advantage of the analytical solutions presented in this chapter is that they 

enable one to quickly compute the probabilities of Type I and Type II errors for a specific 

number of samples and the statistics of the random field. However, the developed 

analytical solutions given by Eq’s (3.11) and (3.12) need to be verified, which is done in 

this chapter by comparing to probabilistic simulations. 

            Simulations are performed using a modified version of the two-dimensional 

random finite element method (RFEM) program, mrflow2d, following the method 

described in Section 2.2.  

            For a 20 m×20 m random field, discretized into 256×256 elements, parametric 

variations considered in the simulations were: 

Normalized point-mean hydraulic conductivity, k 0.5, 1.2, and 1.5, 
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Coefficient of variation, k 0.5, 1.0, and 2.0,  

Correlation length, kln 1 m, 3 m, and 10 m, 

Number of samples, n 1, 4, 25, and 100 (i.e., in increments of 2l , where l is as defined 

in Chapter 2). 

For all number of samples, the field is sampled at equispaced locations. Specifically,  

for the j th sample in the x  direction, where,  lj ,.....,2,1 , the sampled element number 

in the x  direction, xsi , is given by: 

 
j

l

m
i x
xs 












1
 (3.14) 

where xm  is the number of elements in the x  direction. The sampled element number in 

the y  direction is computed similarly. 

            A separable Markovian correlation function, having an associated variance 

reduction function is assumed in the simulations here, as was assumed in Chapter 2.  

            For all parameter sets considered, the probabilities of Type I and Type II errors 

estimated via simulation are compared to those computed analytically using Eq’s (3.11) 

and (3.12), respectively, as illustrated in Figures 3.1 and 3.2, respectively. Excellent 

agreements are obtained between the theory and the simulation for both probabilities of a 

Type I and a Type II error for all parameter sets considered, indicating that the proposed 

analytical solutions can be used to compute the probabilities of Type I and Type II errors 

with reasonable confidence. The small discrepancies seen in Figures 3.1 and 3.2 are 

likely due to natural sampling variation. 
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Figure 3.1: Comparison between the theory and simulation for the probability of a 

Type I error 

 

 

 

 

Figure 3.2: Comparison between the theory and simulation for the probability of a 

Type II error 

 

  

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5

P
[T

y
p

e 
I 

E
rr

o
r-

T
h
eo

ry
]

P[Type I Error-Simulation]

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5

P
[T

y
p

e 
II

 E
rr

o
r-

T
h
eo

ry
]

P[Type II Error-Simulation]



46 

 

3.4   PROCEDURE TO SELECT SAMPLE SIZE 

            The analytical solutions presented in Section 3.2 to compute the probabilities of 

Type I and Type II errors (i.e., Eq’s (3.11) and (3.12), respectively) can be used to 

estimate the sample size required for the QC program of cement-based S/S construction 

cell to achieve target Type I and Type II error  probabilities.  

            The following steps can be taken to select the sample size, given the desired 

probabilities of Type I and Type II errors and the statistics of the random hydraulic 

conductivity field. 

1. For the specified k  and k , compute 
2
ln k  and kln  using Eq’s (2.1a) and 

(2.1b), respectively. 

2. Computing       YXYXk  ,ln , where  X  and  Y  can be computed 

using Eq. (2.11), compute 
effk  and 

effk  using Eq’s (C.1) and (C.2), 

respectively. 

3. Compute 
effkln  and 

effkln using Eq’s (C.4) and (C.3), respectively. 

4. Choose a specific sample size and compute 
Gkln  and 

Gkln  using Eq’s (C.5) 

and (C.6), respectively. Computation of 
Gkln  requires computations of the 

variance reduction function over the element,      yxyxk   ,ln , where 

x  and y  are the dimensions of the element in the x  and y directions, 

respectively, and    





n

i

n

ij
j

jik
n 1 1

ln2

1
xx , where 

       kjyiykjxixjik xxxx lnlnln 2exp2exp   xx . Compute  x  
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using Eq. (2.11), replacing X  in Eq. (2.11) by x . Compute  y in a similar 

manner.  

5. Compute ρ using Eq. (C.7).  

6. Compute h , w , ha , and wa  using Eq’s (3.13a), (3.13b), (3.9a), and (3.9b), 

respectively. When 1ha , compute  hahT ,  using Eq. (3.10a), and when 1ha , 

compute  hahT ,  using Eq. (3.10c). Similarly, compute  wawT ,  using Eq’s 

(3.10b) and (3.10d), when 1wa , and 1wa , respectively. 

7. Compute the probabilities of a Type I  1p  and a Type II  2p  error using Eq’s 

(3.11) and (3.12), respectively. 

8. If the computed probabilities of both Type I and Type II errors reach the targeted 

values, then the chosen sample size can be considered as the required one, 

otherwise, choose another sample size and repeat steps 1-7 until target values are 

reached for both probabilities of a Type I and a Type II error. 

3.5   USING THE PROPOSED METHOD TO OBTAIN QC SAMPLE SIZE: AN EXAMPLE 

            An example is provided in this section to clarify the method presented in the 

previous section  to assess QC sample size of cement-based S/S construction cell for 

achieving target Type I and Type II error probabilities.  

            Consider a cement-based S/S construction cell that has a plan area of 10 m×10 m. 

The mean hydraulic conductivity of the proposed cell is to be less than 1×10-8 m/s with a 

coefficient of variation of 1.0. An upper bound of 
8101 k m/s will be assumed here. 
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The correlation length is assumed to be 3 m in both planar directions. The regulatory 

requirement for the hydraulic conductivity of the cell is 1×10-8 m/s. It is necessary to 

determine the number of samples required to achieve a 5% probability for both Type I 

and Type II errors. 

           For statistical purposes, dividing the 10 m×10 m cell into 160×160 elements, each 

of size 0.0625 m×0.0625 m, and assuming only one sample from the centre of the 10 

m×10 m cell, the following computations are performed. 

            Given the mean and coefficient of variation of the point-scale hydraulic 

conductivity, the variance and mean of log- k  are as follows: 

 22
ln 1ln kk    

      11ln   

     = 0.6931  

2
lnln

2

1
ln kkk    

                         6931.0
2

1
101ln 8  

                        

                                                               = 7672.18  

            Using      YXYXk  ,ln , where 10YX m, 

 





















 1
2

exp
2

2 lnln
2

2
ln

kk

k
XX

X
X




 , and similarly for  Y , the variance reduction 

function over the cell is computed as 0.0650. Similarly, the variance reduction function 

over the element,  yxk  ,ln , where  yx 0.0625 m, is computed as 0.9727. 
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            The mean and standard deviation of the actual effective hydraulic conductivity, 

effk  of the field can be computed to be, 

   








 2
lnlnln ,

2

1
exp kkkeffk YX   

                       








 6931.00650.0
2

1
7672.18exp    

                                                    9102323.7    m/s 

                                              1,exp ln
2
ln

2  YXkkeffkeffk   

                                                           10650.06931.0exp102323.7
29    

                                                    9105532.1     

            The standard deviation and mean of log- effk can be computed as,  

                                             































2

ln 1ln

effk

effk

effk



  

                                                        




































2

9

9

102323.7

105532.1
1ln  

                                                        2123.0  

                                                2
lnln

2

1
ln

effkeffkeffk    

                                                            29 2123.0
2

1
102323.7ln  

 

                                                         = 7372.18  



50 

 

            Using            








n

i

n

ij
j

kjyiykjxix

n

i

n

ij
j

jik xxxx
1 1

lnln
1 1

ln 2exp2exp  xx , 

the mean and standard deviation of log- Gk  can be computed as follows: 

                                             7672.18lnln  kGk   

                                              

                    
















  





n

i

n

ij
j

jikkkkGk yxn
n 1 1

ln
2
lnln

2
ln2ln ,

1
xx  

                                                  16931.09660.06931.01
1

1
2

  

                                           = 8211.0  

            Using  

 
    ,,

1ln,ln

1 1 1
ln

2
lnln

2
ln

lnlnlnln 

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










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



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yxeffkGkeffkGk
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yxn

mnm

kkCov
xx




the correlation coefficient between log- effk  and log- Gk  can be computed as 0.3328. 

            hawh ,, , and wa  can be computed as follows: 

                                                   
 

Gk

Gk
h

ln

ln
8101ln








 

                                                       = 4220.0  

                                                 
 

effk

effk
w

ln

ln
8101ln








  

                                                     = 6320.1  
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22 11 



 





h

w
ah  

                                                     = 7476.3  

                                               
22 11 



 





w

h
aw     

                                                    = 0786.0   

            Since 1ha ,  hahT ,  can be computed using 

          











h

hhhh
a

haThahhahahT
1

,
2

1

2

1
,  as 0.1659, where

   
du

u

uha

a
haT

ha h

h

h 





















 1

0
2

22

1

1
2

1
exp

2

11
,


, is computed using 16-point Gauss 

quadrature as 0.0115. 

            Using 16-point Gauss quadrature,  
 

dv
v

vw

awT
wa

w 













0

2

22

1

1
2

1
exp

2

1
,


is 

computed as .0033.0  

                                                                                       

            The probabilities of a Type I  1p  and a Type II  2p  error are computed as, 

                                       wh awTahTwhp ,,
2

1

2

1
1   

                                          0033.01659.06320.1
2

1
4220.0

2

1
  

                                      = 0.0201 

                                        wh awTahThwp ,,
2

1

2

1
2   
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                                           0033.01659.04220.0
2

1
6320.1

2

1
  

                                       = 0.3052 

            Since the computed probability of a Type II error (30.52%) is greater than the 

target value (5%), the probabilities of Type I and Type II errors are further computed for 

the number of samples of 4, 9, 16, 25, and 49, locating the samples at equal spacing in 

both of the x  and y  directions of the cell. Table 3.1 presents computed Type I and Type 

II error probabilities for all number of samples (i.e., 1, 4, 9, 16, 25, and 49) and shows 

that both Type I and Type II error probabilities are less than 5% when the number of 

samples is 49. This suggests that 49 is the required number of samples for this example 

case. Table 3.1 also presents the Type I and Type II error probabilities assuming the 

correlation length to be the “worst case” i.e., 10 m for this example.  

Table 3.1 : The probabilities of Type I  1p  and Type II  2p  errors for kμ 1×10-8 

m/s, kν 1.0,  kθ 3 and 10 m, and varying n  

 

n  
k 3 m k 10 m 

1p  2p  1p  2p  

1 0.0201 0.3052 0.0601 0.1664 

4 0.0162 0.1889 0.0402 0.0996 

9 0.0136 0.1240 0.0303 0.0700 

16 0.0119 0.0883 0.0243 0.0539 

25 0.0095 0.0640 0.0210 0.0465 

49 0.0080 0.0437 0.0194 0.0377 
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The results presented in Table 3.1 shows that for a specific number of samples, the Type I 

error probability increases significantly, whereas, the Type II error probability decreases 

when the correlation length increases from 3 to 10 m, suggesting that for this particular 

case, the correlation length of 3 m corresponds to the overall “worst case”. When the 

correlation length is 10 m,  the number of samples of 25 can be suggested for this 

example case to achieve a 5% error probability for both Type I and II errors. 

3.6    SUMMARY  

            In this chapter, an analytical approach is proposed to estimate the sample size for 

the QC program of a cement-based S/S construction cell to achieve target Type I and 

Type II error probabilities for the hypothesis test considered in this study.  Analytical 

solutions are developed to compute the probabilities of Type I and Type II errors. The 

developed analytical solutions are functions of the number of samples taken and the 

statistics of the hydraulic conductivity field. For a range of parameter sets, the 

analytically computed probabilities of a Type I and a Type II error are compared to those 

estimated via probabilistic simulations and the comparison results in excellent agreement, 

allowing the probabilities of a Type I and a Type II error to be computed analytically 

with reasonable confidence. An example is presented to illustrate how the proposed 

method can be used in practice to assess QC sample size of cement-based S/S 

construction cell. 
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CHAPTER 4 

4 SPATIAL VARIABILITY ASSOCIATED WITH 

HYDRAULIC CONDUCTIVITY OF CEMENT-BASED 

SOLIDIFICATION/STABILIZATION: A CASE STUDY 

 

4.1 GENERAL 

            Statistical methods are used to analyze the probability of excessive hydraulic flow 

through systems and/or the risk associated with quality control (QC) of systems. In such 

analyses, the hydraulic conductivity is treated as a random field, which is described by a 

distribution and a correlation function (Vanmarcke, 1977). The correlation function is 

parameterized by the correlation length, kln , which is a measure of the degree of 

persistence between hydraulic conductivity values over space. In the reliability analyses, 

hydraulic conductivity is described probabilistically, since hydraulic conductivity is 

spatially variable both for natural soil (Byers and Stephens, 1983; Freeze and Cherry, 

1979) and compacted soil liners (Rogowaski et al., 1985; Benson, 1993). The distribution 

of hydraulic conductivity at a point is often found to be lognormal for both natural and 

compacted soils (Freeze, 1975; Krapac et al., 1989; Johnson et al., 1990; Benson et al., 

1993) and the  correlation length is found to be 1 to 3 m for compacted soil liners 

(Benson, 1991). Since no study is found in the literature which attempts to find the 

distribution and correlation length describing the spatial variability of hydraulic 

conductivity of cement-based S/S, a set of hydraulic conductivity data from an existing 

cement-based S/S system is statistically analyzed for this purpose in this study. The 
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spatial variability associated with hydraulic conductivity is then utilized to assess 

sampling requirements for the QC program of this case study.  

4.2 SITE 

             A site having an area of 31 hectares and an average depth of 3.9 m, was 

contaminated by 700,000 tonnes of coal-based contaminants generated from steel 

production over the past 100 years. The contaminated site has been treated using cement-

based S/S. During treatment, the site was divided into 2160 construction cells, of 

different areas, in order to keep the volume of each cell approximately constant (since the 

contaminated depth was different for different cells). During the QC program, multiple 

samples were collected from each cell and tested for hydraulic conductivity following 

ASTM D 5078. Each cell was approved individually if it was determined that the average 

of hydraulic conductivity measurements over each cell was at or below the regulatory 

value (i.e., 8101  m/s). As with most cement-based S/S projects, the number of samples 

taken from each cell to make this decision about the acceptance or rejection of the cell 

did not consider the risk of an erroneous decision associated with finite QC sampling. 

Figure 4.1 shows locations of centres of cells, which were considered as sampling 

locations of average hydraulic conductivity values over cells for this study.  
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Figure 4.1: Sampling locations of hydraulic conductivity data set shown as small 

black squares 

4.3 STATISTICAL ANALYSES 

            Out of the 2160 hydraulic conductivity values (each is the average of multiple 

hydraulic conductivity values over a cell), 2086 hydraulic conductivity values were 

reported. The statistical analyses performed in this study were based on the available set 

of 2086 hydraulic conductivity data in which the mean, variance and distribution were 

assumed stationary. The available hydraulic conductivity data was in the normalized form 

(i.e., hydraulic conductivity measured in m/s was normalized by the regulatory hydraulic 

conductivity, 
8101  m/s). 

            Statistical analyses performed in this study are presented in the following sub-

sections: 
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4.3.1   DISTRIBUTION 

            For the data set considered in this study, the hydraulic conductivity  K  was 

hypothesized as being lognormally distributed, which has the probability density function 

(PDF) as given below: 

 

 





















 


2

ln

ln

ln

ln

2

1
exp

2

1

K

K

K

K

k

k
kf






          0k  (4.1a) 

   0kf K           0k  (4.1b) 

where Kln  and Kln  are the mean and standard deviation of kln . 

            The goodness-of-fit was tested using the Chi-square and the Anderson-Darling 

(A-D) goodness-of-fit tests. The A-D test statistic is calculated as 

 
     nZZiA

n

i
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


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










 



1

1
2 1lnln12

2

1
 (4.2) 

where   ii XFZ ˆ  is the fitted CDF of  iX  for ni ,........,2,1 , and n  is the sample size. 

If the test statistic falls outside the critical region, the null hypothesis of lognormality is 

rejected. 

            A lognormal distribution with 30.1ln K  and 02.1ln K , where K   is the 

normalized hydraulic conductivity, is a reasonable fit to the data set (Figure 4.2), 

although the p - value of the Chi-square goodness-of-fit test for this fit is 0.0. The A-D 

test statistic for this fit is 8.20.  
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Figure 4.2: Frequency-density plot of hydraulic conductivity, with fitted 

lognormal distribution 

 

4.3.2   CORRELATION LENGTH 

            Figure 4.1 indicates that hydraulic conductivity data set used in this study to 

perform statistical analyses was irregularly scattered. Since the classical estimators for 

the correlation structure require equispaced data, the scattered hydraulic conductivity data 

set was transformed into a 5 m spaced data set, in both x  and y  directions, using linear 

interpolation method (see the MATLAB class “TriscatteredInterp”).  

            For a set of values, V , and corresponding locations, X , in two-dimensional 

space, the “TriscatteredInterp” first creates the Delaunay triangles at locations, X . The 

Delaunay triangles are such triangles that are formed by a set of points, P , in such a way 

that no point in P  lies within the circumcicle of any Delaunay triangle. An interpolant is 

then created which fits a surface of the form  XfV  , called the convex hull (the 

convex hull of a set Y of points in the Euclidean plane is the smallest convex set that 
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contains Y ). The interpolant always goes through the data points specified by the sample. 

The interpolant can be evaluated at any query location that falls within the hull. In this 

study, the interpolant created using the scattered hydraulic conductivity data set was 

evaluated at 5 m grid in two-dimensional space. The MATLAB code is presented in 

Appendix E. Two sub-sites having 5 m spaced hydraulic conductivity values, one on the 

left and the other on the right sides of the entire S/S site (areas enclosed by dashed lines 

in Figure 4.1), of sizes 205 m×125 m and 55 m×85 m, respectively, were chosen to 

estimate the directional and isotropic correlation lengths. 

            Different methods are available in the literature to estimate the correlation length. 

In one of the methods, the correlation length was estimated by best fitting the theoretical 

correlation model to the sample correlation function (Degroot and Beacher, 1993; Fenton, 

1999; Jaksa et al., 1999; Fenton and Griffiths, 2008; Wackernagel, H., 2003; Zhang et al., 

2008; Lloret et al., 2013). Vanmarcke (1977) proposed a method based on the variance 

reduction function. The variance reduction function based-method proposed by 

Wickremensinghe and Campanella (1993) was used in many studies to estimate the 

correlation length of Cone Penetration Test (CPT) data (Lloret et al., 2012; Lloret et al., 

2013).  Jaksa et al. (1993) used the technique of the semi-variogram to estimate the 

correlation length of CPT data of stiff, over-consolidated clay in the city of Adelaide. In 

Dasaka and Zhang (2012)’s study, random field theory was combined with the 

conventional estimation methods of correlation length. Phoon and Fenton (2004) used the 

bootstrap approach to estimate the sample correlation function. 

            In this study, using a set of hydraulic conductivity data obtained from an existing 

cement-based S/S system, the correlation length was estimated by best fitting the 
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theoretical correlation model to the sample correlation function. The exponentially 

decaying correlation function was used as the theoretical correlation model. 

            The exponentially decaying correlation model which was used to fit the sample 

correlation function, is given below: 

 
 







 







j
j

2
exp  (4.3) 

            The method of moments was used to estimate the sample correlation function. 

The directional moment estimators of the correlation function between two  hydraulic 

conductivity values of an existing cement-based S/S system, separated by distances  xj  

and yj  in the x  and y  directions, respectively, where 1,........,1,0  xnj  and  

1,........,1,0  ynj , in the x  and y  directions , respectively, are given by Eq’s (4.4) and 

(4.5) , respectively, and the isotropic moment estimator of the correlation function 

between two hydraulic conductivity values separated by a distance xj (assuming 

yx  ) in both x  and y  directions, where   1,max,........,1,0  yx nnj , is given by 

Eq. (4.6). 

 
 

  
  lji

yn

l

jxn

i
il

xyK

XX
jnn

xj ,
1 1

2 1ˆ

1
ˆ








  





  (4.4) 

 

 

 
  

  jil

xn

l

jyn

i
li

yxK

XX
jnn

yj 






  


 ,
1 1

2 1ˆ

1
ˆ


  (4.5) 

 

 
    

    

  

















    



















jil

xn

l

jyn

i
lilji

yn

l

jxn

i
il

yxxyK X

XXX

jnnjnn
xj

,

1 1
,

1 1
2 1ˆ

1
ˆ


  (4.6) 



61 

 

where Kilil kX   is the deviation in hydraulic conductivity about the mean, 
ilk  is the 

conductivity value interpreted at coordinates     yjxi  1,1 , xn  and yn  are the 

number of samples in the x  and y directions, respectively, and  yx 5 m in this 

case. The subscripts on X  index first the x  direction and second the y  direction. 

            For the 205 m×125 m sub-site having 5 m spaced hydraulic conductivity values, 

estimated x  and y  directions and isotropic correlation lengths are 16.0 m, 10.2 m and 

12.3 m, respectively. For the 55 m×85 m sub-site having 5 m spaced hydraulic 

conductivity values, estimated x  and y directions and isotropic correlation lengths are 

14.6 m, 8.9 m and 11.1 m, respectively. The isotropic correlation length is between x  and 

y  direction correlation lengths, as expected, because it is obtained by averaging over all 

data pairs in either direction. An average of estimated isotropic correlation lengths is 11.7 

m, or approximately 12 m. Figures 4.3 and 4.4 show directional and isotropic correlation 

functions, estimated using 205 m×125 m and 55 m×85 m sub-sites, respectively, at 

different lags. Figures 4.3 and 4.4 show that the curves become quite erratic at higher 

lags. This is typical since they are based on fewer sample pairs as the lag increases. 
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Figure 4.3: Directional and isotropic correlation functions at different lags, 

estimated using a 205 m×125 m sub-site having 5 m spaced hydraulic conductivity values 

  

 

Figure 4.4: Directional and isotropic correlation functions at different lags, 

estimated using a 55 m×85 m sub-site having 5 m spaced hydraulic conductivity values 
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4.4 ERROR PROBABILITIES 

            The probabilities of Type I and Type II errors were computed for different 

numbers of samples taken from a sub-site of the entire S/S site of size 55 m×85 m 

discretized into 2048×2048 elements each of size 
2048

55
 m×

2048

85
m. For computing the 

error probabilities for varying number of samples, for each number of samples, the 

samples were located at equal spacing in both of the x  and y  directions of the sub-site. 

For each number of samples, the sampled element numbers in the x  and y  directions 

were obtained using Eq. (3.14). The probabilities of Type I  1p  and Type II  2p  errors 

were computed using Eq’s (3.11) and (3.12), respectively. 

            The random field representing the hydraulic conductivity of a cement-based S/S 

system can be used to assess the reliability associated with QC sampling. The parameters 

of the random hydraulic conductivity field (i.e.,  k 0.47, k 1.7, and k 12 m) 

derived from the studied cement-based S/S system are used to compute the Type I and 

Type I error probabilities for the number of samples of  1, 4, 9, and 16, taken from the 55 

m×85 m sub-site of the existing S/S site. The results are presented in Table 4.1.  

            The results presented in Table 4.1 indicate that when the number of samples is 16, 

both Type I and Type II error probabilities are very very small when k  is known ahead 

of time to be 0.47. According to the current sampling requirements specified by the 

USACE (2000) for the QC program of cement-based S/S of 1 sample/500 m3, this 55 

m×85 m sub-site requires 36 samples (= (1/500) ×55×85×3.9). Thus, the current QC 

sampling regulation of cement-based S/S seems to be conservative for this particular S/S 

system (see Table 4.1), again if the value of k  is known to be much smaller than 1.0. 
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Table 4.1: The probabilities of Type I  1p  and Type II  2p  errors for kμ  0.47, 

kν 1.7, kθ 12 m and different n  over 55 m×85 m sub-site 

 

n  over 

55 m×85 m 

sub-site 

1p  2p  

1 less than 0.0001 0.1003 

4 less than 0.0001 0.0064 

9 less than 0.0001 0.0002 

16 less than 0.0001 less than 0.0001 

 

            However, the Type I and Type II error probabilities presented in Table 4.1 can not 

be obtained prior to the QC program, since the hydraulic conductivity mean, coefficient 

of variation and correlation length are unknown prior to QC sampling. In order to assess 

QC sampling requirements, the “worst case” hydraulic conductivity mean, coefficient of 

variation and correlation length need to be used in the determination of error 

probabilities. According to the results presented in Chapter 2, the “worst case” 

normalized mean and coefficient of variation of hydraulic conductivity are approximately 

1.5 and 1.0, respectively. As well as the “worst case” mean and coefficient of variation, a 

normalized mean of 1.0 is also considered to assess QC sampling requirements over the 

55 m×85 m sub-site. The “worst case” correlation lengths are 12 m and 68   8555  

m  (which correspond to the normalized correlation lengths of 0.17 and 1.0, respectively). 

The Type I and Type II error probabilities are computed for the number of samples of 1, 

4, 9, 16, 25, 36, 49, 64, 81, 100, 225, 400, 625, and 900. The results are presented in 

Tables 4.2 and 4.3. 
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Table 4.2: The probabilities of Type I  1p  and Type II  2p  errors for kμ 1.0, 

kν 1.0 , kθ 12 and 68 m, and varying n  

 

n  over  

55 m×85 m  

sub-site  

k 12 m k 68 m 

1p  2p  1p  2p  

1 0.0020 0.3357 0.0607 0.1692 

4 0.0017 0.2058 0.0408 0.1014 

9 0.0016 0.1224 0.0310 0.0716 

16 0.0015 0.0752 0.0250 0.0553 

25 0.0014 0.0488 0.0212 0.0452 

36 0.0013 0.0339 0.0179 0.0378 

49 0.0010 0.0244 0.0157 0.0325 

64 0.0009 0.0188 0.0140 0.0288 

81 0.0009 0.0151 0.0127 0.0259 

100 0.0009 0.0122 0.0115 0.0231 

225 0.0007 0.0059 0.0079 0.0154 

400 0.0005 0.0039 0.0062 0.0123 

625 0.0004 0.0031 0.0052 0.0107 

900 0.0004 0.0022 0.0041 0.0078 

       

            The results presented in Table 4.2 indicate that when k 1.0 and k 1.0, k

68 m is the “worst case” for all number of samples for the probability of a Type I error,  
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Table 4.3: The probabilities of Type I  1p   and Type II  2p   errors for kμ 1.5, 

kν 1.0 , kθ 12 and 68 m, and varying n  

 

n over  

55 m×85 m  

sub-site 

k 12 m k 68 m 

1p  2p  1p  2p  

1 0.3165 0.1737 0.1376 0.1158 

4 0.2449 0.1287 0.0888 0.0762 

9 0.2073 0.1136 0.0653 0.0567 

16 0.1769 0.1009 0.0516 0.0451 

25 0.1527 0.0904 0.0430 0.0378 

36 0.1336 0.0817 0.0363 0.0320 

49 0.1173 0.0736 0.0315 0.0278 

64 0.1051 0.0675 0.0280 0.0248 

81 0.0951 0.0622 0.0253 0.0224 

100 0.0862 0.0575 0.0227 0.0202 

225 0.0587 0.0418 0.0154 0.0137 

400 0.0447 0.0326 0.0122 0.0109 

625 0.0376 0.0276 0.0106 0.0094 

900 0.0298 0.0228 0.0079 0.0071 

 

and k 12 m is the “worst case” for the number of samples of 1 to 25, and for the rest 

of the number of samples (i.e., 36 to 900), k 68 is the “worst case” for the probability 



67 

 

of a Type II error. Sampling requirement to achieve target 5% probability for both Type I 

and Type II errors for k 1.0 and k 1.0 is 25 for both k 12 and 68 m. 

            The results presented in Table 4.3 indicate that when k 1.5 and k 1.0, for 

both Type I and Type II error probabilities, k 12 m is the “worst case” for all number 

of samples. Sampling requirements to achieve target 5% probability for both Type I and 

Type II errors for k 1.5 and k 1.0 are 25 and 400 when k 68 and 12 m, 

respectively, suggesting the number of samples of 400 over a 55 m×85 m sub-site of the 

entire S/S site to be conservative to achieve target 5% probability for both Type I and II 

errors. According to USACE (2000), sampling requirement over 55 m×85 m sub-site of 

36 seems to be unconservative to achieve 5% probabilitiy for both Type I and Type II 

errors for this assumed mean and coefficient of variation. 

4.5 SUMMARY AND CONCLUSIONS 

            In this chapter, a set of hydraulic conductivity data with corresponding locations 

obtained from an existing cement-based S/S system, is statistically analyzed to assess its 

spatial variability. The spatial variability of hydraulic conductivity is described by a 

random field with a certain distribution and correlation length. In order to make use of the 

classical estimators for the correlation structure (which are based on equispaced data), 

irregularly scattered hydraulic conductivity data set is interpolated onto a two-

dimensional 5 m grid using the linear interpolation method available in MATLAB under 

the class “TriscatteredInterp”. Two sub-sites having 5 m spaced hydraulic conductivity 

values of sizes 205 m×125 m and 55 m×85 m are used to estimate directional and 

isotropic correlation lengths. In order to assess QC sampling requirements, the spatial 
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variability of hydraulic conductivity of the system is then used to compute the error 

probabilities (i.e., Type I and Type II) for different numbers of samples taken from a 55 

m×85 m sub-site of the entire cement-based S/S site. The Type I and Type II error 

probabilities are also computed for the “worst case” conditions of hydraulic conductivity 

mean, coefficient of variation and correlation length, and varying number of samples to 

provide recommendations for conservative QC sampling requirements over 55 m×85 m 

sub-site.  

            The following conclusions can be drawn from this study: 

 A lognormal distribution with the mean and standard deviation of the logarithm of 

the normalized hydraulic conductivity of -1.30 and 1.02, respectively, is found to 

be a reasonable fit to the hydraulic conductivity data. 

 The x  and y  directions and isotropic correlation lengths are estimated to be 16.0 

m, 10.2 m, and 12.3 m, respectively, considering a 205 m×125 m sub-site having 

5 m spaced hydraulic conductivity values, and the x  and y  directions and 

isotropic correlation lengths are estimated to be 14.6 m, 8.9 m, and 11.1 m, 

respectively, considering a 55 m×85 m sub-site having 5 m spaced hydraulic 

conductivity values. An average isotropic correlation length is found to be 11.7 m, 

or approximately 12 m. 

 For the spatial variability of hydraulic conductivity of the S/S system, i.e., for 

k 0.47, k 1.7 , and k 12 m, the Type I error probabilities for any of the 

number of samples of 1, 4, 9, and 16 are found to be less than 0.0001, whereas, 

the Type II error probabilities for the number of samples of 1, 4, 9, and 16 are 

found to be 0.1003, 0.0064, 0.0002, and less than 0.0001, respectively. The 
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USACE (2000) sampling recommendation for the QC program of cement-based 

S/S found to be conservative for this particular case. 

 The probabilities of Type I and Type II errors computed for various number of 

samples and the “worst case” conditions of hydraulic conductivity mean (i.e., 1.0 

and 1.5 times the regulatory value), coefficient of variation (i.e., 1.0), and 

correlation lengths (i.e., 12 and 68 m) suggest the number of samples of 400 to be 

conservative to achieve 5% probability for both Type I and Type II errors. The 

USACE (2000) sampling recommendation for the QC program of cement-based 

S/S would be unconservative for this particular case.  
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CHAPTER 5 

5 CONCLUSIONS  
 

5.1 SUMMARY AND CONCLUSIONS 

             Sampling requirements for the quality control (QC) of cement-based 

solidification/stabilization (S/S) construction cells do not currently specify the sample 

size with a consideration of the accuracy of the estimated effective hydraulic conductivity 

of the cells from the samples, nor by considering the risk associated with drawing the 

wrong conclusions about the acceptability of the cells. Research related to the sampling 

requirements for the QC program of cement-based S/S construction cell and the spatial 

variability associated with the hydraulic conductivity of cement-based S/S systems is not 

available in literature. This thesis aims to address the issues associated with sampling 

requirements of a cement-based S/S construction cell during a QC program to achieve a 

certain confidence in the decision (acceptable or unacceptable) regarding each cell via 

simulation and via theory taking into account the spatial variability associated with 

hydraulic conductivity of the entire cement-based S/S system. In order to address the 

sampling issue, this study considers a hypothesis test, where the null hypothesis was that 

the S/S construction cell had an unacceptable flow rate. Two types of errors that resulted 

in the hypothesis test were: 1) a Type I error where the sample data rejected the null 

hypothesis even though the null was correct. This error results in the cell being deemed 

acceptable when it is actually not, and 2) a Type II error where the sample data failed to 

reject the null hypothesis even though it was false. This results in the cell being assumed 

unacceptable when it is actually acceptable.  The purpose of this study is to determine the 

number of samples required to achieve target probabilities for both Type I and Type II 
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errors. Probabilistic simulations performed in this thesis to assess sampling requirements 

for the QC programs of cement-based S/S construction cells to achieve target hypothesis 

test errors is an extension of Menzies (2008)’ work. In order to determine sampling 

requirements for QC programs of soil liner systems to achieve target Type I and Type II 

errors, Menzies (2008) considered the arithmetic average of the hydraulic conductivity 

field to be the effective hydraulic conductivity. The work presented in this thesis 

considers the geometric average of the hydraulic conductivity field to be the effective 

hydraulic conductivity, since flow was in-plane.  

A summary of conclusions drawn in this study is presented below: 

            The objective of Chapter 2 was to present a parametric study to examine the 

influence of hydraulic conductivity mean, coefficient of variation, and correlation length 

on sampling requirements during the QC program of a cement-based S/S construction 

cell by performing Monte Carlo simulations. The simulation employed a modified 

version of the two-dimensional random finite element method (RFEM) program, 

mrflow2d. The modification made to the program for this study enables the sampling of 

the random field at prescribed locations. Also in the modified version, finite element 

method is not used to obtain the flow through the field, instead geometric average of the 

field is used to represent the flow through the field. In order to perform a parametric 

study, a two-dimensional cement-based S/S construction cell was simulated. The 

influence of hydraulic conductivity mean, coefficient of variation and correltion length on 

both Type I and Type II errors was examined. It was found that, for a specific number of 

samples, the greatest Type I and Type II error probabilities occurred at some “worst case” 

correlation length, which was found to be 0.1 to 5 times the effective field dimension for 
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the probability of Type I errors and 0.01 to 10 times the effective field dimension for the 

probability of Type II errors. In general, the “worst case” correlation length is somewhere 

between 0.01 and 1.0 times the field dimension. This “worst case” correlation length 

would be conservative in designing sampling requirements to achieve a target reliability 

about the decision regarding approval of the cell.  

            Chapter 2 also showed that for a specific number of samples, the greatest error 

probabilities occurred at the normalized mean of point-scale hydraulic conductivity of 

about 1.7 for a Type I error and 1.1 for a Type II error, indicating more sample 

requirements at these mean hydraulic conductivities would be required. It was shown in 

Chapter 2 that both Type I and Type II error probabilities approached zero when the 

mean hydraulic conductivity was far below or far above the regulatory value (i.e., k  

0.01, 0.1, and 10.0), suggesting that in general the mean hydraulic conductivity should be 

targeted well below the regulatory value. As expected, increasing the number of samples 

was found to be effective in decreasing both Type I and Type II error probabilities. 

            For a specific number of samples, an increase in the hydraulic conductivity 

coefficient of variation resulted in a decrease in both Type I and Type II error 

probabilities when the normalized mean of point-scale hydraulic conductivity was 1.0. 

This suggests that when k  is approximately 1.0, more samples will be required to 

achieve acceptably small error probabilities when k  is 1.0 or less. 

            Simulations were performed considering a construction cell of dimension 1×1 in 

order to make the results scalable. An example (considering a 10 m×10 m cell) was 

presented to illustrate the scalability of the results presented in Chapter 2. The good 

agreement obtained between the simulation results for both Type I and Type II error 
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probabilities for a (10 m×10 m) construction cell and a 1×1 construction cell indicates the 

scalability of the simulation results presented in this chapter. 

           The goal of Chapter 3 was to develop an analytical approach for selecting the 

sample size required for a cement-based S/S construction cell’s QC program.  In order to 

meet this objective, analytical solutions were developed for computing the probabilities 

of Type I and Type II errors as a function of the number of samples taken and the 

statistics of the hydraulic conductivity field. In order to validate the proposed analytical 

solutions, the analytically computed Type I and Type II error probabilities were 

compared to those estimated via probabilistic simulations for a range of parameter sets 

and were found to have excellent agreement, allowing the Type I and Type II error 

probabilities to be computed analytically with reasonable confidence. An example was 

presented in Chapter 3 to illustrate how the proposed method can be used in practice to 

assess the required sample size for the QC program of cement-based S/S construction 

cells.  

            In order to address the deficiency in the literature about the spatial variability 

associated with hydraulic conductivity of cement-based S/S systems, Chapter 4 aimed to 

perform statistical analyses on a set of hydraulic conductivity data obtained from a real 

cement-based S/S system to assess its spatial variability. A lognormal distribution was 

found to be a reasonable fit to the data. The goodness-of-fit was tested using the Chi-

square and the Anderson-Darling tests. In order to estimate directional and isotropic 

ccorrelation lengths, irregularly scattered hydraulic conductivity data set was transformed 

into 5 m spaced data set in two-dimensions using the linear interpolation method 

available in MATLAB under the class “TriscatteredInterp”. The method followed by the 
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“TriscatteredInerp” to obtain interpolated hydraulic conductivity values is described in 

Chapter 3. Using two sub-sites having 5 m spaced hydraulic conductivity values of sizes 

205 m×125 m and 55 m×85 m, the x  and y  directions and isotropic correlation lengths 

were estimated by fitting an exponentially decaying correlation model to the sample 

correlation functions. For the 205 m×125 m sub-site, estimated x  and y  directions and 

isotropic correlation lengths were 16.0 m, 10.2 m, and 12.3 m, respectively, and for a 55 

m×85 m sub-site, estimated x  and y  directions and isotropic correlation lengths were 

14.6 m, 8.9 m, and 11.1 m, respectively. An average isotropic correlation length was 11.7 

m or approximately 12 m. The spatial variability derived for the hydraulic conductivity of 

the existing cement-based S/S system was used to assess the  sampling requirements over 

a 55 m×85 m sub-site of the entire S/S site. The computed probabilities of Type I and 

Type II errors for various sample sizes considering the “worst case” conditions of 

hydraulic conductivity mean, coefficient of variation and correlation length, presented in 

Chapter 4, can be used to assess conservative sampling requirements for the QC program 

of the 55 m×85 m sub-site of the existing S/S site.  

5.2  FUTURE WORK 

             Research related to the reliability of cement-based S/S systems is not available in 

literature. Although the work presented in this thesis addressed the issue associated  with  

sampling requirements for the QC program of cement-based S/S considering the 

reliabilitity associated with the decision regarding the acceptance or rejection of the 

system, there are still some issues that should be included into future research, such as, 

 This study assumes equal correlation length in both planar directions. Depending 

on the type of contaminated material, cement-based S/S may have anisotropic 
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correlation length. Consideration of this anisotropy in the correlation length in 

future research may be more rational. 

 The sampling issue should be addressed by performing three-dimensional 

analyses. 

 The “worst case” correlation length  renders the results size independent – this 

issue needs more study in future research. There  must actually be a trade-off 

between cell size and potential replacement cost, i.e. if the construction cell is 

taken to be too large, then it is very expensive to replace if the test dictates that it 

should be replaced. 

 In addition to advection, uncertainty in diffusion and sorption could be considered 

to investigate the sampling issue associated with the flow though cement-based 

S/S systems. 
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6 APPENDIX A 

INFLUENCE OF MESH RESOLUTION ON ERROR 

PROBABILITIES 
 

 

Table A.1: Sensitivity Analysis, k 1.0, k 1.0, 
kln 0.5, and n 9 

 

 

 Mesh 

Resolution 

 

1p  2p  
 

Time (sec) 

 

32×32 0.02388 0.09472 15 

64×64 0.02244 0.09736 34 

72×72 0.02316 0.09648 41 

80×80 0.02248 0.09628 48 

104×104 0.02476 0.09696 85 

128×128 0.02304 0.09468 120 

256×256 0.02388 0.09644 430 
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APPENDIX B 

INFLUENCE OF CORRELATION LENGTH ON TYPE I 

AND TYPE II ERROR PROBABILITIES 
 

 

 

Figure B.1: Influence of correlation length on the probability of a Type I error for 

mean of 0.9 and coefficient of variation of 1.0 

 

Figure B.2: Influence of correlation length on the probability of a Type II error for 

mean of 0.9 and coefficient of variation of 1.0 
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Figure B.3: Influence of correlation length on the probability of a Type I error for 

mean of 1.1 and coefficient of variation of 1.0 

 

 

Figure B.4: Influence of correlation length on the probability of a Type II error for 

mean of 1.1 and coefficient of variation of 1.0 
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Figure B.5: Influence of correlation length on the probability of a Type I error for 

mean of 10.0 and coefficient of variation of 1.0 

 

 

 

 

 

Figure B.6: Influence of correlation length on the probability of a Type II error for 

mean of 10.0 and coefficient of variation of 1.0 
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Figure B.7: Influence of correlation length on the probability of a Type I error for 

mean of 1.0 and coefficient of variation of 0.1 

 

 

 

Figure B.8: Influence of correlation length on the probability of a Type II error for 

mean of 1.0 and coefficient of variation of 0.1 
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Figure B.9: Influence of correlation length on the probability of a Type I error for 

mean of 1.0 and coefficient of variation of 2.0 

 

 

 

 

Figure B.10: Influence of correlation length on the probability of a Type II error 

for mean of 1.0 and coefficient of variation of 2.0 
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Figure B.11: Influence of correlation length on the probability of a Type I error 

for mean of 1.0 and coefficient of variation of 5.0 

 

 

 

 

Figure B.12: Influence of correlation length on the probability of a Type II error 

for mean of 1.0 and coefficient of variation of 5.0 
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APPENDIX C 

STATISTICS OF GEOMETRIC AVERAGE 
 

Assuming effk  to be the geometric average of m element hydraulic conductivities and a 

Markovian correlation structure (Vanmarcke, 1984) with a separable correlation function 

(which is a product of directional correlation functions) and correspondingly a separable 

variance reduction function, i.e., see Equations 2.10 and 2.11, the mean and standard 

deviation of the actual effective hydraulic conductivity of the S/S construction cell , effk , 

can be calculated as, 

 
 









 2
lnlnln ,

2

1
exp kkkeffk YX   (C.1) 

    1,exp ln
2
ln

2  YXkkeffkeffk   (C.2) 

where 
2
lnln

2

1
ln kkk   ,  22

ln 1ln kk   , 
k

k
k




   is the coefficient of variation of 

point-scale hydraulic conductivity.  

The mean and standard deviation of log- effk  can be computed as, 

   2
lnln

2

1
ln

effkeffkeffk    (C.3) 

  2
ln 1ln

effkeffk    (C.4) 

where 

effk

effk

effk



   is the coefficient of variation of the actual effective hydraulic 

conductivity. 
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Assuming Gk  to be the geometric average of n  sample hydraulic conductivities, the 

mean and standard deviation of the logarithm of sample geometric average, log- Gk , can 

be calculated as, 

 
kGk lnln    (C.5) 

 and  

 

    
















  





n

i

n

ij
j

jikkkkGk yxn
n 1 1

ln
2
lnln

2
ln2ln ,

1
xx  (C.6) 

where  iyixi xx ,x  are the spatial coordinate of the centre of the i th sample and 

assuming a Markovian correlation structure with a separable correlation function (which 

is a product of directional correlation functions) and isotropic correlation lengths, 

     kjyiykjxixjik xxxx lnlnln 2exp2exp   xx  

 

The correlation coefficient between effkln  and Gkln ,   is given by, 

 

 

   
















   










n

k

xm

ki
i

ym

kj
j

ijkkkkk

yxeffkGk

effkGk

effG

yxn
mnm

kkCov

1 1 1
ln

2
lnln

2
ln

lnln

lnln

,
1

ln,ln

xx





    (C.7) 

where xm  and ym  are the number of elements in the x  and y  directions, respectively, 

such that .mmm yx   
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APPENDIX D 

DERIVATIONS OF ERROR PROBABILITIES USING 

OWEN (1959)’S METHOD 
 

Let  vuf
Gkeffk ,lnln  be the bivariate normal probability density function of random 

variables effkln  and Gkln ,  vf
Gkln  be the marginal probability density function of 

Gkln  and  ;, whB , where 

Gk

Gkcritk
h

ln

lnln




 , 

effk

effkcritk
w

ln

lnln




 , be Owen(1959)’s 

solution for the bivariate normal probability. 

Then, the probability of a Type I error,  criteffcritG kkkkp lnlnlnlnP1  , is,  

  dudvvuf
critk

critk
Gkeffk 



ln

ln
lnln ,  

=     dvduvufvf
critk critk

GkeffkGk









 

ln ln

lnlnln ,  

=  dudvvuf
k critk critk
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 













 
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 
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
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
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










 
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=        wh awTahTwh ,,
2

1

2

1
                                                                                              

That is, the probability of a Type I, 1p  can be derived to: 

 
       wh awTahTwhp ,,

2

1

2

1
1   (D.1) 

In a similar manner, the probability of a Type II error, 

 criteffcritG kkkkp lnlnlnlnP2   can be derived to: 

        wh awTahThwp ,,
2

1

2

1
2   (D.2) 

The above expressions for the probabilities of Type I and Type II errors are valid if 

0hw or if  hhw ,0  or 0w . If 0hw  or if hhw ,0 or 0w , the probabilities of 

Type I and Type II errors can be derived to Eq’s (D.3) and (D.4), respectively. 

 
       

2

1
,,

2

1

2

1
1  wh awTahTwhp  (D.3) 

        
2

1
,,

2

1

2

1
2  wh awTahThwp  (D.4) 
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7 APPENDIX E 

THE MATLAB CODE THAT GENERATES 

INTERPOLATED HYDRAULIC CONDUCTIVITY 

VALUES ON A 2-D, 5 m GRID  
 

A spreadsheet containing three columns of information: yx,  and z , where  yx,  is the 

position of each observation in m and z  is the corresponding normalized hydraulic 

conductivity value, is used to obtain the interpolated values on a 5 m grid in 2-D space. 

Using the scattered dataset, the “TriscatteredInterp” first creates a function, which fits a 

convex hull. A grid is then created with x  positions ranging from -660 to 580 and y

positions ranging from 115 to 440, with 5 m spacing in both x  and y  directions. The 

function is then evaluated at each query location (i.e., at each grid point). The MATLAB 

code that generated the interpolated 5 m spaced hydraulic conductivity values is as given 

below: 

n=2086; 

x=xlsread('correlation_length.xls','c4:c2089'); 

y=xlsread('correlation_length.xls','d4:d2089'); 

z=xlsread('correlation_length.xls','e4:e2089'); 

F = TriScatteredInterp(x,y,z); 

min_x = -660; 

delta_x = 5; 

max_x = 580; 

grid_x = min_x:delta_x:max_x; 

min_y = 115; 

delta_y = 5; 

max_y = 440; 

grid_y = min_y:delta_y:max_y; 

[qx,qy] = meshgrid(grid_x,grid_y) 

qz = F(qx,qy) 
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APPENDIX F 

HYDRAULIC CONDUCTIVITY DATA WITH LOCATIONS 

x -  

cord 

y - 

 cord 
k  

x -  

cord 

y -  

cord 
k  

x -  

cord 

y -  

cord 
k  

-15.651 435.336 0.19 -132.36 408.071 0.27 -368.29 396.195 0.59 

-29.969 434.96 0.14 -95.475 414.631 0.16 -376.68 394.981 0.24 

-42.554 433.609 0.15 -4.2236 416.864 0.16 -384.71 393.894 1 

-53.231 432.585 0.18 -14.586 415.677 0.099 -391.97 392.847 0.89 

-63.424 430.766 0.17 -25.52 414.636 0.12 -97.994 407.593 0.38 

-75.474 429.277 0.4 -35.8 412.9 0.14 -107.48 406.586 0.035 

-86.411 429.143 0.13 -46.004 411.554 0.19 -116.8 404.676 0.32 

-95.07 428.841 0.43 -55.993 410.548 0.15 -126.94 401.714 0.24 

-103.65 427.754 0.61 -65.409 410.013 0.23 -137.98 398.798 0.14 

-113.03 425.479 0.61 -75.877 409.07 0.09 -60.79 402.817 0.22 

-126.45 423.024 0.48 -86.926 408.247 0.16 -74.659 401.406 0.24 

-4.2236 432.22 0.35 -388.03 300.875 0.42 -85.555 400.549 0.59 

-13.872 429.977 0.018 -202.48 403.48 0.041 -471.99 272.008 0.088 

-23.747 429.62 0.086 -198.55 397.396 0.34 -477.96 280.134 0.2 

-33.371 428.459 0.05 -195.3 392.28 0.54 -488.47 286.961 0.3 

-43.041 427.058 0.23 -191.43 386.169 0.053 -217.86 394.403 6.1 

-52.606 425.754 0.11 -187.19 379.636 0.56 -211.61 388.012 0.76 

-62.838 424.512 0.76 -174.9 401.179 0.025 -206.22 379.142 0.34 

-72.727 423.174 0.2 -183.09 373.257 0.98 -202.11 370.581 1 

-82.731 422.39 0.42 -178.87 366.594 0.041 -197.09 361.596 0.55 

-91.788 421.672 0.96 -174.49 360.76 0.15 -192.03 352.906 0.66 

-99.766 420.942 0.44 -170.18 354.018 0.21 -186.32 344.156 0.75 

-107.51 419.65 0.32 -165.74 346.799 0.51 -180.87 335.392 0.31 

-115.09 418.112 0.66 -219.71 401.254 0.66 -176.13 327.211 0.88 

-123.99 416.892 0.26 -227.23 401.694 3.1 -154.41 408.626 0.05 

-133.81 415.721 0.2 -235.08 400.974 0.6 -164.03 405.928 0.12 

-144.22 412.683 0.53 -243.27 400.331 0.71 -175.08 405.589 0.067 

-5.5493 424.415 0.041 -251.31 399.752 6.1 -185.43 400.47 0.066 

-17.345 423.204 0.29 -258.68 400.191 0.75 -193.08 406.759 0.012 

-28.35 421.838 0.063 -266.25 400.89 0.077 -197.52 404.774 0.029 

-39.144 420.371 0.014 -274.3 401.535 0.65 -226.4 395.156 1 

-107.96 412.888 0.1 -317.35 404.515 0.96 -233.79 394.255 0.82 

-49.504 419.238 0.29 -326.24 403.865 1 -241.42 393.662 0.91 

-60.681 417.937 0.53 -333.59 403.457 0.21 -248.67 393.2 0.98 
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x -  

cord 

y - 

 cord 
k  

x -  

cord 

y -  

cord 
k  

x -  

cord 

y -  

cord 
k  

-72.401 416.668 0.24 -341.76 401.709 0.68 -255.65 393.254 1 

-120.12 410.39 0.27 -351.04 399.497 1.3 -263.08 394.343 0.57 

-83.871 415.46 0.33 -359.76 397.782 3.6 -159.26 350.312 0.16 

-163.73 357.919 0.72 -146.82 372.826 0.068 -246.92 374.012 0.82 

-168.26 365.011 0.18 -148.47 381.068 0.042 -422.91 270.154 0.72 

-172.88 372.008 0.033 -137.12 382.638 0.04 -410.73 266.512 0.35 

-177.41 379.224 0.14 -128.1 383.186 0.016 -398.97 264.307 0.12 

-181.75 386.051 0.39 -121.12 377.965 0.033 -387.88 263.164 0.18 

-163.67 398.811 0.59 -134.87 367.735 0.69 -270.61 395.294 0.92 

-154.01 401.039 0.07 -139.42 375.246 0.29 -277.64 396.063 5.7 

-143.98 404.964 0.06 -129.51 373.281 0.14 -284.94 395.525 1 

-106.91 398.891 0.56 -408.49 307.1 0.82 -292.45 394.696 4.3 

-96.214 399.911 0.73 -167.63 336.69 0.087 -300.23 394.849 0.82 

-160.02 341.503 0.45 -183.32 405.662 0.15 -398.86 392.452 0.29 

-152.75 352.84 0.89 -180.64 357.426 0.68 -406.01 392.462 0.018 

-157.7 361.899 0.05 -186.29 366.277 0.15 -472.73 326.06 0.041 

-162.85 370.396 0.94 -192.34 375.077 0.37 -412.52 392.524 0.17 

-167.68 377.944 0.084 -198.44 385.805 0.016 -419.28 392.392 0.18 

-172.3 386.019 0.048 -204.54 395.162 0.07 -426.31 391.956 0.26 

-178.57 392.775 0.07 -208.95 403.491 0.25 -497.17 375.196 0.23 

-449.23 262.899 0.8 -214.52 401.735 0.27 -433.56 391 0.19 

-81.049 393.664 0.037 -208.72 392.483 0.35 -440.53 389.721 0.29 

-94.962 392.27 0.24 -202.22 382.616 0.08 -447.29 388.488 0.48 

-106.66 391.59 0.039 -196.15 372.116 0.038 -454.48 387.163 0.94 

-117.45 397.058 1 -189.89 361.332 0.53 -480.59 321.965 0.55 

-147.45 359.035 0.16 -183.13 351.12 0.22 -462.22 385.773 0.053 

-152.45 367.825 0.34 -171.6 332.043 0.081 -469.46 384.183 0.12 

-156.88 375.447 0.05 -249.96 281.869 0.22 -476.05 382.569 0.051 

-158.9 381.546 0.048 -242.55 286.501 0.36 -482.19 381.491 0.35 

-186.84 392.436 0.057 -235.54 291.866 0.12 -488.97 378.505 0.062 

-191.04 398.302 0.037 -228.74 298.924 0.35 -468.7 322.282 0.051 

-426.89 296.517 0.049 -221.64 305.986 0.097 -455.24 325.957 0.12 

-159.99 386.848 0.51 -217.96 312.245 0.46 -508.04 294.122 0.42 

-146.6 388.766 0.079 -222.05 319.87 0.28 -497.89 304.933 0.59 

-136.18 391.201 6.1 -225.94 327.838 0.34 -488.2 314.704 0.24 

-117.92 388.812 0.03 -230.26 335.942 0.47 -513.56 363.852 0.32 

-112.86 382.377 0.08 -235.01 344.678 0.99 -524.17 360.939 0.022 
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-100.36 385.185 0.12 -240.26 352.761 0.97 -310.48 402.022 0.27 

-126.89 393.342 0.024 -245 360.082 0.78 -305 401.263 0.17 

-141.21 363.652 0.037 -248.17 367.244 1 -300.07 400.314 0.99 

-294.51 400.666 0.28 -206.76 350.601 0.31 -207.83 339.308 0.032 

-289.69 401.401 0.51 -201.46 342.544 0.24 -212.56 347.357 0.89 

-281.74 401.581 0.86 -196.58 334.458 0.69 -217.29 356.6 1 

-226.47 388.429 0.99 -191.32 325.764 0.57 -222.23 367.215 0.94 

-244.17 385.873 7.9 -186.51 316.147 0.11 -230.93 367.746 1 

-252.27 385.481 0.68 -307.28 396.143 0.19 -448.54 278.697 0.8 

-259.55 386.467 0.071 -493.35 318.857 0.038 -261.39 374.825 0.061 

-181.35 321.437 0.57 -314.95 396.485 0.3 -244.04 269.691 0.83 

-185.53 329.746 0.35 -324.38 395.956 0.1 -203.3 314.838 0.75 

-190.58 338.171 0.92 -459.55 328.366 0.05 -206.74 322.311 0.092 

-195.78 346.627 0.31 -334.54 394.885 0.16 -210.58 329.506 0.32 

-202.4 356 0.31 -502.54 333.892 0.19 -214.68 336.718 0.96 

-240.25 367.255 0.14 -497.82 336.458 0.23 -218.92 344.829 0.31 

-207.92 366.392 0.99 -344.65 393.45 0.74 -223.34 353.337 0.78 

-211.31 375.187 0.28 -492.06 341.335 0.83 -227.5 361.563 0.91 

-214.74 382.299 6.3 -191.74 307.693 0.08 -455.58 266.659 0.78 

-219.98 386.615 0.38 -199.59 299.051 0.18 -434.94 251.485 0.19 

-149.87 395.228 0.021 -207.8 290.15 0.32 -423.87 246.461 0.14 

-162.16 391.902 0.26 -216.58 280.384 0.037 -412.01 242.423 0.14 

-171.49 394.458 0.11 -235.59 265.621 0.14 -399.77 240.975 0.037 

-264.87 385.291 0.68 -245.57 262.914 0.14 -388.06 240.988 0.012 

-316.55 400.492 0.75 -270.34 389.032 0.75 -378.93 245.201 0.39 

-323.73 399.901 0.71 -278.37 390.579 0.64 -369.59 242.788 0.29 

-330.79 398.978 0.36 -286.62 390.109 0.3 -357.77 244.526 0.16 

-336.81 398.575 0.34 -499.26 365.438 0.13 -254.29 263.386 0.19 

-342.98 397.631 0.12 -295.36 389.563 0.17 -245.4 275.721 0.66 

-349.43 396.099 0.29 -302.47 390.242 0.13 -237.84 280.273 0.38 

-356.28 394.718 0.6 -227.73 375.483 0.77 -230.81 286.429 0.56 

-363.06 393.376 0.57 -237.22 373.528 0.92 -224.27 293.48 0.57 

-369.82 392.083 0.76 -232.74 274.84 0.74 -217.45 300.387 0.83 

-505.86 374.11 0.17 -224.44 282.219 0.71 -209.97 307.657 0.87 

-257.46 379.836 0.93 -216.78 290.734 7.2 -212.13 315.341 0.3 

-248.33 379.489 0.88 -208.51 299.216 0.87 -215.86 323.041 0.52 

-238.42 379.812 0.74 -200.61 307.777 7.6 -219.66 330.36 0.27 
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-229.51 381.471 0.73 -194.32 315.369 0.92 -223.51 337.755 0.18 

-220.13 378.483 0.23 -198.85 324.043 0.76 -231.57 353.142 0.053 

-216.81 369.406 5.9 -203.24 331.911 0.56 -236.31 360.436 0.075 

-436.98 268.439 0.6 -236.14 333.248 0.54 -248.96 328.723 0.49 

-426.31 264.009 0.43 -240.27 340.679 0.14 -252.71 335.807 0.4 

-431.4 258.005 0.15 -244.96 347.795 0.049 -257.42 343.208 0.052 

-420.41 253.526 0.083 -249.93 355.32 0.9 -262.3 351.393 0.84 

-408.54 250.338 0.15 -253.97 364.082 0.28 -266.21 359.642 0.26 

-397.23 249.148 0.15 -254.13 373.221 0.9 -268.23 367.856 1 

-386.66 249.197 0.14 -417.34 282.489 0.14 -267.2 376.846 0.79 

-369.23 249.204 0.25 -407.74 278.759 0.18 -429.03 279.247 0.72 

-413.71 259.729 0.25 -398.79 276.259 0.81 -404.69 285.679 0.15 

-400.35 257.516 0.42 -389.64 274.751 0.23 -396.07 282.846 0.31 

-387.96 256.883 0.21 -383.01 268.529 0.19 -380.86 274.81 0.11 

-379.54 259.342 0.11 -347.1 253.176 0.13 -373.46 267.44 0.15 

-442.98 274.995 0.82 -338.33 254.761 0.22 -371.65 260.652 0.85 

-433.64 274.026 0.27 -263 272.861 0.96 -362.29 262.372 0.31 

-419.36 275.875 0.45 -257.66 279.527 0.083 -353.32 263.965 0.067 

-410.23 272.917 0.22 -253.6 288.024 0.05 -344.7 265.698 0.086 

-401.79 270.661 0.1 -246.83 292.042 0.1 -335.81 267.04 0.08 

-393.26 269.245 0.26 -245.17 302.011 0.11 -268.7 271.936 0.63 

-322.67 258.473 0.081 -239.43 307.412 0.14 -260.31 286.413 0.053 

-371.64 254.489 0.11 -233.78 312.612 0.11 -257.91 292.894 0.14 

-357.18 251.33 0.12 -237 318.931 0.048 -256.18 301.793 0.2 

-347.91 246.418 0.19 -240.27 326.096 0.15 -254.47 311.579 0.092 

-339.2 248.216 0.42 -243.72 333.167 0.34 -249.87 317.02 0.24 

-330.02 250.19 0.14 -247.81 340.206 0.11 -253.85 324.172 0.035 

-321.87 251.188 0.062 -252.41 347.353 0.55 -257.39 330.48 0.064 

-313.19 251.612 0.32 -256.24 353.324 0.059 -260.95 336.682 0.58 

-303.63 252.437 0.07 -259.24 360.186 0.53 -264.55 342.826 0.61 

-294.97 253.406 0.37 -261.23 367.596 0.63 -268.01 349.79 0.2 

-285.74 254.657 0.11 -363.03 256.038 0.65 -271.77 357.981 0.03 

-271.47 260.742 0.16 -355.04 257.524 0.12 -274.19 367.289 0.085 

-260.8 262.464 0.45 -346.88 258.951 0.1 -273.8 376.226 0.4 

-254.71 272.903 0.14 -338.3 260.564 0.12 -272.36 382.938 0.96 

-240.18 297.137 0.44 -330.88 256.501 0.085 -462.71 267.248 0.077 

-233.42 303.352 0.12 -251.25 297.007 0.24 -435.14 285.365 0.26 
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-226.74 310.452 0.26 -249.81 306.918 0.12 -426.82 285.645 0.35 

-228.81 318.075 0.13 -243.12 312.783 0.071 -414.48 289.297 0.85 

-232.36 326.049 0.083 -245.16 320.6 0.25 -387.52 281.358 0.36 

-372.66 275.24 0.096 -313.24 263.725 0.069 -278.88 384.505 5.6 

-366.59 268.612 0.092 -303.21 264.756 0.96 -312.33 268.933 0.1 

-358.99 269.434 0.24 -292.44 266.214 0.11 -302.04 270.135 0.88 

-349.54 271.058 0.049 -282.03 267.886 0.22 -292.13 271.387 0.076 

-338.7 272.939 0.086 -274.15 276.723 0.17 -273.8 293.403 0.046 

-496.13 287.146 0.12 -265.75 287.956 0.38 -275.37 300.875 0.074 

-329.64 263.165 0.035 -268.31 296.287 0.24 -274.16 309.597 0.5 

-321.88 265.429 0.012 -267.74 304.372 0.22 -277.46 313.736 0.095 

-313.49 257.957 0.31 -262.89 314.734 0.51 -381.82 293.396 0.44 

-303.17 259.082 0.22 -267.49 322.624 0.19 -367.97 288.864 0.17 

-292.95 260.331 0.2 -271.65 329.558 0.57 -360.69 288.894 0.13 

-283.37 261.64 0.12 -275.12 335.958 0.22 -352.4 288.8 0.98 

-275.13 266.927 0.11 -278.07 342.621 0.15 -342.53 289.608 0.15 

-266.25 280.118 0.041 -276.11 353.645 0.77 -397.78 304.352 0.44 

-262.35 298.436 0.43 -409.73 301.431 0.39 -286.79 347.844 0.68 

-260.21 306.803 0.032 -399.49 298.656 0.53 -469.13 278.489 0.062 

-257.35 318.166 0.19 -390.67 295.514 0.11 -460.54 274.462 0.15 

-261.43 324.649 0.047 -376.24 288.26 0.7 -454.48 286.432 0.11 

-265.42 331.092 0.44 -361.08 282.764 0.49 -439.83 287.978 0.78 

-269.14 337.841 0.7 -281.75 273.202 0.24 -314.74 273.675 0.36 

-272.53 345.412 0.21 -273.35 285.64 0.76 -306.41 275.195 0.18 

-278.97 362.31 0.44 -268.14 312.163 0.04 -297.92 276.362 0.25 

-280.18 370.192 0.84 -272.7 319.687 0.66 -289.65 277.511 0.15 

-280.29 377.376 3.6 -276.89 326.637 0.82 -281.44 278.812 0.17 

-421.47 294.121 0.23 -280.5 333.596 0.12 -280.87 284.935 0.37 

-411.36 295.366 0.21 -283.86 340.694 0.041 -280 291.641 0.31 

-401.24 292.446 0.16 -280.86 348.927 0.14 -280.98 298.827 0.2 

-392.69 289.398 0.15 -282.87 355.362 0.18 -280.63 307.159 0.44 

-384.8 287.971 0.23 -284.8 362.089 0.52 -279.27 320.12 0.054 

-379.04 281.691 0.19 -285.75 369.841 0.58 -283 327.784 0.07 

-370.48 282.204 0.27 -285.91 377.494 0.53 -287.17 335.64 0.2 

-363.54 276.011 0.15 -284.63 384.743 0.05 -290.74 343.583 0.58 

-354.72 276.352 0.33 -288.72 355.037 0.082 -293.33 351.248 5.2 

-346.86 277.384 0.27 -290.03 361.543 0.26 -456.65 280.369 0.54 
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-338.33 278.421 0.92 -350.53 283.388 0.042 -432.25 298.366 0.39 

-329.85 271.376 0.82 -340.96 284.413 0.15 -420.49 304.274 0.41 

-322.56 271.737 0.13 -333.87 282.212 0.087 -405.98 312.019 0.24 

-396.67 309.701 0.34 -289.02 316.616 0.41 -302.6 330.291 0.13 

-387.77 306.879 0.51 -292.62 322.843 0.8 -306.24 336.848 0.18 

-372.25 294.169 0.074 -296.16 329.339 0.38 -303.81 349.261 0.18 

-327.5 278.416 0.89 -302.77 342.585 0.66 -304.39 356.366 0.1 

-320.16 279.285 0.51 -299.5 357.594 0.11 -477.94 293.123 0.068 

-312.61 280.57 0.59 -295.3 371.115 0.36 -460.03 300.563 0.099 

-304.39 281.81 0.092 -380.4 374.482 0.061 -443.25 311.298 0.096 

-296.45 282.984 0.27 -580.3 364.519 0.2 -438.19 309.858 0.19 

-288.58 284.071 0.2 -497.32 348.501 0.49 -427.19 312.909 0.12 

-363.9 294.529 0.088 -503.4 343.006 0.33 -333.47 302.542 0.16 

-356.32 294.019 0.091 -467.96 284.667 0.048 -328.35 296.408 0.094 

-348.67 294.444 0.81 -443.31 291.341 0.078 -321.81 297.528 0.086 

-341.45 295.357 0.18 -437.16 301.558 0.055 -315.37 298.436 0.88 

-329.43 285.244 0.12 -483.46 283.63 0.11 -308.66 299.175 0.22 

-323.07 285.635 0.057 -452.04 292.67 0.14 -302.25 299.866 0.17 

-315.94 286.679 0.14 -449.05 298.619 0.078 -297.23 301.853 0.066 

-308.67 287.547 0.1 -418.3 309.62 0.65 -295.2 317.309 0.11 

-301.38 288.333 0.11 -379.6 298.74 0.54 -476.75 300.66 0.14 

-293.93 289.409 0.12 -371.04 299.309 0.074 -471.45 297.876 0.075 

-286.71 290.548 0.079 -362.62 299.798 0.45 -423.51 317.677 0.24 

-286.74 296.091 0.07 -354.78 299.855 0.4 -415.81 317.612 0.47 

-286.7 302.561 0.12 -347.24 300.289 0.79 -380.28 305.31 0.2 

-285.61 310.443 0.042 -339.71 301.298 0.22 -374 304.935 0.17 

-283.32 317.247 0.18 -334.87 295.689 0.19 -367.16 305.105 0.93 

-287.18 324.246 0.37 -332.83 290.786 0.24 -360.27 305.314 0.62 

-290.5 330.402 0.13 -464.68 290.623 0.17 -353.42 305.443 0.68 

-293.62 336.364 0.079 -462.41 295.918 0.095 -346.32 305.773 0.24 

-296.37 342.271 0.17 -445.38 303.581 0.093 -339.61 306.832 0.11 

-298 349.233 0.73 -430.01 307.965 0.078 -332.97 308.764 0.65 

-294.81 359.392 0.3 -383.72 312.128 0.21 -328.17 303.006 0.17 

-290.8 368.458 0.046 -324.14 291.376 0.48 -322.28 303.473 0.21 

-590.46 356.017 0.04 -316.64 292.405 0.76 -315.75 304.266 0.2 

-290.76 376.129 0.18 -309.24 293.392 0.56 -309.08 305.043 0.3 

-289.98 383.774 0.14 -301.74 293.994 0.24 -302.53 305.775 0.18 
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-585.69 360.426 0.39 -294.18 294.696 0.39 -489.44 294.631 0.3 

-292.45 301.212 0.42 -299.96 336.125 0.19 -457.24 304.958 0.57 

-290.81 309.664 0.096 -299.12 323.879 0.2 -377.1 311.631 1 

-321.91 333.678 0.12 -436.08 382.573 0.084 -434.12 335.696 0.73 

-328.19 323.272 0.72 -443.11 381.062 0.075 -441 328.446 0.062 

-322.11 324.517 0.22 -449.87 379.835 0.057 -420.74 339.77 0.69 

-451.39 320.079 0.074 -456.85 378.58 0.064 -411.41 339.017 0.089 

-447.23 323.525 0.1 -463.83 377.361 0.042 -403.55 338.968 0.44 

-419.07 326.854 0.12 -471.03 375.571 0.026 -393.86 348.248 0.073 

-410.65 324.582 0.17 -478.36 373.73 0.11 -386.93 347.269 0.73 

-428.92 326.521 0.53 -486.15 371.208 0.27 -380.55 345.59 0.16 

-478.8 312.307 0.21 -375.09 386.747 0.79 -373.7 344.124 0.2 

-464.02 319.239 0.069 -473.45 315.713 4.5 -366.44 342.563 0.41 

-463.31 381.361 0.097 -424.24 335.333 0.22 -358.7 340.843 0.87 

-471.72 379.482 0.071 -414.78 335.049 0.16 -350.28 339.852 0.36 

-480.63 377.466 0.47 -406.5 333.449 0.46 -341.08 339.308 0.47 

-434.97 328.903 0.49 -396.53 338.422 0.1 -332.23 340.35 0.38 

-426.3 330.576 0.37 -389.33 337.108 0.048 -325.91 349.789 0.76 

-416.66 330.893 2.7 -382.7 335.439 0.78 -319.13 357.601 0.28 

-408.57 328.748 0.16 -375.85 334.343 0.22 -353.43 385.519 0.37 

-398.11 333.242 0.25 -368.53 333.659 0.059 -366.31 383.97 3.9 

-390.92 331.975 0.11 -361.4 332.447 0.054 -373.73 382.993 0.79 

-383.98 330.192 5.8 -354.18 331.439 1.4 -381.52 381.916 0.16 

-376.7 329.099 0.091 -346.97 330.965 0.33 -389.23 380.855 0.18 

-369.46 328.462 0.1 -339.57 330.505 0.19 -397.05 379.971 0.19 

-362.74 327.591 0.22 -331.49 331.084 0.15 -404.73 379.616 0.47 

-355.52 326.843 0.082 -322.59 342.997 0.14 -412.04 379.278 5.5 

-347.66 326.465 0.41 -303.6 386.052 0.43 -418.69 379.346 0.29 

-340.12 326.082 0.11 -395.41 343.457 0.62 -402.02 344.737 0.037 

-331.02 327.039 0.083 -388.8 342.467 1 -410 343.488 0.39 

-325.69 332.011 0.14 -382.33 340.786 0.19 -417.73 344.61 0.52 

-489.46 373.507 4.3 -375.49 339.369 0.23 -428.34 341.514 0.99 

-499.03 370.203 0.83 -367.96 338.37 0.91 -438.87 338.456 5 

-508.14 369.521 0.025 -360.11 336.681 0.11 -332.32 344.909 0.063 

-516.83 367.87 0.07 -352.21 335.704 0.55 -326.85 354.381 2.8 

-525.44 366.55 0.065 -344.47 335.306 0.62 -311.14 361.212 0.31 

-407.59 383.373 0.1 -336.71 334.927 0.12 -425.05 379.549 0.048 
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-415.08 383.329 0.46 -329.38 337.238 0.063 -431.62 379.274 0.023 

-422.02 383.562 0.91 -323.43 346.369 0.32 -438.08 378.027 0.61 

-428.83 383.496 0.66 -445.3 331.351 0.24 -444.24 376.768 0.11 

-451.01 375.214 0.097 -444.96 344 0.58 -373.06 375.12 0.24 

-457.39 373.691 0.031 -436.04 346.897 1 -365.93 375.669 0.54 

-463.59 372.336 0.045 -626.9 338.344 0.11 -518.68 351.237 0.095 

-469.87 371.668 0.87 -502.92 308.691 0.56 -511.15 355.812 0.73 

-477.21 369.652 0.76 -502.03 324.883 0.16 -520.04 343.734 0.62 

-484.74 367.822 0.59 -489 327.624 0.63 -519.39 335.555 0.25 

-448.84 334.339 0.017 -480.82 332.404 0.15 -519.03 327.009 0.46 

-442.51 340.88 0.068 -464.59 334.276 0.51 -517.58 317.77 0.29 

-433.02 343.938 0.059 -484.3 335.638 0.43 -542.12 332.865 0.14 

-424.8 346.383 3.3 -468.31 336.825 0.74 -543.6 340.955 0.1 

-636.57 337.519 0.12 -459.7 342.227 0.49 -545.02 348.931 0.12 

-411.22 349.774 0.95 -410.83 375.172 0.051 -546.24 356.216 0.18 

-401.01 348.873 6.5 -417.34 374.872 0.096 -547.15 331.852 0.4 

-372.48 348.838 0.36 -423.74 375.029 0.13 -548.56 340.384 0.25 

-365.63 347.015 0.046 -430.04 375.157 0.15 -550.34 348.242 0.8 

-358.33 345.266 0.1 -644.49 342.787 0.54 -501.9 355.809 0.1 

-349.91 343.578 0.73 -436.76 374.015 0.084 -509.27 351.275 0.34 

-340.61 342.854 0.51 -465.84 367.863 0.11 -515.23 345.951 0.35 

-332.73 351.886 0.47 -472.95 366.703 0.031 -322.1 384.25 0.73 

-328.34 358.075 0.082 -485.8 361.765 0.74 -331.09 383.163 0.11 

-320.37 361.668 0.7 -491.21 361.08 0.71 -339.83 382.234 0.33 

-311.85 364.853 4.3 -503.6 359.57 3.1 -348.31 380.326 0.75 

-497.42 322.518 0.43 -515.24 358.165 0.46 -513.82 337.836 0.39 

-476.4 330.162 0.2 -621.56 337.008 0.19 -513.34 330.232 0.37 

-462.29 331.299 0.72 -524.83 354.502 0.18 -512.86 322.495 0.43 

-452.25 337.188 0.31 -525.93 345.127 0.46 -509.37 315.074 0.16 

-491.3 369.165 0.089 -525.55 335.709 0.28 -540.63 325.48 0.057 

-496.23 359.876 0.43 -524.81 325.619 0.26 -539.71 317.59 0.13 

-505.61 364.144 0.51 -523.16 316.135 0.1 -539.25 309.347 0.16 

-298.04 364.538 0.23 -488.97 352.314 1 -547.16 308.641 0.044 

-366.11 379.708 0.34 -435.93 370.248 0.056 -544.5 315.5 0.32 

-373.36 379.015 0.084 -428.77 370.769 0.078 -545.63 324.158 0.3 

-380.86 378.11 0.064 -421.94 370.76 0.063 -550.96 355.988 0.21 

-388.28 377.166 0.058 -414.34 370.976 0.049 -555.94 356.051 0.22 
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-395.81 376.316 0.097 -406.51 371.541 0.41 -555.62 347.71 0.62 

-403.51 375.735 0.069 -398.44 372.281 3.8 -553.35 339.451 0.81 

-454.9 340.137 0.14 -389.05 373.475 1.4 -552.23 330.647 0.12 

-550.42 322.563 0.12 -561.03 346.994 0.67 -358.25 372.304 0.17 

-549.54 314.595 0.14 -562.01 338.159 1.5 -365.76 367.939 0.18 

-615.39 335.723 0.23 -561.46 329.172 0.21 -373.34 367.626 0.95 

-500.09 351.911 0.68 -555.52 321.138 0.26 -381.45 367.017 0.54 

-508.04 347.177 0.97 -554.84 313.422 0.063 -389.65 366.105 0.79 

-508.58 340.72 0.79 -462.89 345.661 0.45 -434.62 354.561 0.82 

-507.68 332.259 0.92 -452.32 347.587 0.42 -426.14 353.036 0.87 

-507.19 324.109 1 -441.08 352.954 0.15 -420.76 350.056 3.8 

-557.92 338.779 0.18 -566.1 352.881 0.16 -575.02 333.335 0.93 

-556.83 329.42 1.3 -566.46 345.178 0.26 -564.88 306.358 0.25 

-495.26 331.661 1 -566.67 337.044 0.25 -574.26 349.653 0.23 

-486.8 339.741 0.95 -560.51 320.681 0.18 -574.79 341.383 1 

-356.72 379.065 0.2 -560.1 312.211 0.058 -445.92 370.368 6.5 

-339.7 378.942 0.28 -466.24 348.593 0.47 -451.49 370.462 1.4 

-330.85 379.738 0.71 -455.33 350.744 0.29 -458.58 368.605 2.6 

-365.65 371.755 0.13 -358.14 375.881 0.18 -482.12 347.947 1.7 

-373.03 371.297 0.39 -348.84 377.02 0.095 -411.45 347.195 2.1 

-380.52 370.762 0.13 -339.6 375.534 0.24 -391.43 351.676 0.88 

-388.53 370.072 0.52 -330.82 376.238 0.34 -381.35 349.888 4.2 

-396.51 368.973 0.33 -321.9 380.656 0.71 -397.4 365.131 0.66 

-404.62 367.951 0.3 -570.24 350.573 0.15 -405.3 364.178 0.18 

-412.27 366.944 0.29 -553.65 300.01 0.22 -413.39 362.952 0.6 

-418.72 366.42 0.098 -570.9 338.281 0.59 -421.7 362.281 0.33 

-424.55 366.329 0.18 -568.23 330.425 6.8 -431.49 362.62 0.26 

-430.42 366.235 0.21 -565.45 324.385 0.47 -441.02 364.478 0.16 

-437.73 366.361 0.14 -564.93 315.558 0.1 -559.24 301.331 0.13 

-442.16 371.37 0.18 -557.49 306.464 0.22 -561.31 297.691 0.036 

-447.64 346.633 1 -547.34 304.314 0.089 -328.87 361.583 0.36 

-438.74 349.876 1 -544.47 301.633 0.074 -319.93 365.499 0.98 

-429.72 349.785 0.36 -507.07 312.068 0.65 -309.88 368.878 0.79 

-474.62 342.944 0.85 -478.11 345.689 1 -299.23 370.735 0 

-471.55 340.014 0.83 -482.82 356.186 0.18 -302.59 370.088 0.39 

-518.97 309.47 0.23 -484.44 350.176 0.76 -480.15 365.157 0.06 

-495.6 344.435 0.42 -469.52 351.397 11 -313.05 384.127 0.78 
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-491.77 355.728 0.79 -458.47 353.844 0.95 -471.86 354.24 1.8 

-560.73 360.506 0.13 -448.54 353.247 3.1 -461.26 356.812 0.39 

-560.82 354.835 0.17 -348.82 374.171 0.68 -568.49 297.646 0.059 

-569.09 306.303 0.27 -314.64 373.364 0.093 -390.98 354.382 0.9 

-569.13 315.267 0.036 -305.72 375.534 0.045 -380.76 352.427 0.36 

-569.75 323.868 0.63 -357.85 365.694 0.15 -368.44 351.808 0.99 

-579.21 333.862 0.085 -349.35 367.945 0.62 -359.23 349.368 0.95 

-578.95 344.583 0.67 -339.98 369.109 0.39 -349.97 346.848 0.69 

-431.71 357.405 0.37 -323.44 373.733 0.18 -340.98 346.251 0.87 

-440.06 360.934 6.4 -472.1 360.269 0.5 -335.93 350.645 0.43 

-447.89 365.088 1 -454.11 362.512 0.8 -338.38 359.754 0.88 

-457.41 365.222 6.1 -444.07 359.409 0.48 -586.47 336.862 0.67 

-467.89 363.644 0.81 -405.47 360.704 0.22 -586.76 327.307 0.25 

-477.64 362.038 0.39 -397.51 361.453 0.34 -587.34 318.466 0.64 

-474.45 356.465 0.31 -389.71 362.485 0.9 -587.97 310.108 0.24 

-463.57 359.427 0.79 -381.88 360.137 5.5 -588.77 302.674 0.075 

-453.7 358.752 0.48 -373.79 360.641 0.72 -589.69 295.711 0.05 

-445.39 356.054 0.31 -365.81 361.013 0.42 -597.11 294.597 0.17 

-330.1 364.423 0.17 -357.61 362.568 0.25 -606.08 292.981 0.38 

-321.01 368.251 0.27 -348.38 365.153 0.98 -614.88 291.674 0.13 

-310.61 371.467 0.82 -339.03 366.394 0.69 -417.22 357.464 0.66 

-294.85 379.105 0.12 -582.76 340.993 0.29 -397.56 357.877 5 

-305.29 379.146 0.28 -582.8 331.736 4.9 -390.22 358.83 0.96 

-313.27 380.431 0.6 -578.87 324.966 0.21 -415.28 355.258 0.054 

-321.89 377.135 0.69 -578.51 317.351 0.16 -406.78 354.684 0.2 

-331.85 371.797 0.83 -578.38 309.582 0.28 -399.61 354.8 0.25 

-339.71 372.219 0.66 -578.57 301.956 0.05 -341.48 359.951 0.44 

-349.09 371.061 0.52 -578.72 294.632 0.19 -339.61 351.767 0.78 

-357.92 369.021 0.32 -335.33 360.184 6.2 -345.42 349.815 0.25 

-365.88 364.412 0.37 -582.9 323.549 0.87 -589.96 333.21 0.47 

-373.77 364.058 0.12 -582.89 315.417 0.27 -590.91 323.42 0.85 

-381.67 363.56 0.32 -583.13 308.071 0.1 -592.13 314.723 0.1 

-574.54 325.531 0.47 -583.76 300.967 0.1 -593.19 305.776 0.23 

-573.91 317.914 0.23 -584.41 294.204 0.064 -596.86 299.093 0.51 

-573.46 310.639 0.24 -427.32 359.667 5.2 -606.88 297.317 0.8 

-573.58 303.481 0.067 -415.06 359.895 3.1 -616.87 295.641 0.33 

-573.47 295.82 0.11 -405.71 357.404 6.3 -387.76 356.477 0.57 
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-313.87 376.74 0.15 -423.65 355.281 0.85 -378.04 354.195 0.98 

-331.12 367.708 0.87 -412.86 352.547 0.62 -377.53 356.623 0.7 

-323.66 370.584 0.06 -401.88 352.176 0.53 -368.45 355.022 0.73 

-360.86 353.232 0.95 -612.38 304.271 1.8 -598.88 354.045 0.38 

-353.68 351.096 0.32 -620.78 302.148 0.39 -631.64 339.374 0.92 

-349.02 353.771 0.1 -599.24 325.568 0.85 -635.47 370.203 0.3 

-344.07 355.023 0.88 -622.08 329.501 0.47 -640.72 345.097 0.89 

-345.59 361.119 0.25 -628.84 330.346 0.23 -612.3 339.295 0.92 

-625.03 325.093 0.99 -635.14 330.996 0.098 -617.78 340.506 0.88 

-631.67 325.98 0.06 -641.06 332.483 0.12 -622.46 341.5 0.6 

-638.49 326.639 0.17 -645.38 336.329 0.15 -627.1 342.711 0.59 

-645.39 329.49 0.09 -649.04 341.084 0.2 -632.21 343.659 0.19 

-651.02 334.612 0.23 -651.22 346.515 0.25 -636.24 345.123 0.49 

-655.4 340.543 0.062 -652.9 352.183 0.24 -637.67 349.043 0.083 

-604.16 301.948 0.21 -652.17 358.409 0.17 -642.72 350.08 0.21 

-612.34 300.207 0.51 -649.81 364.222 0.14 -642.34 355.365 0.21 

-621.81 298.492 0.096 -645.1 370.928 0.15 -640.66 359.973 0.75 

-371.9 358.018 0.089 -639.37 376.947 0.44 -638.32 364.588 0.61 

-363.3 357.49 0.49 -626.91 377.313 0.036 -627.66 371.862 0.5 

-618.17 326.186 4 -617.89 377.956 0.4 -619.14 372.466 0.55 

-513.8 297.773 0.33 -606.99 377.684 0.31 -611.58 372.234 0.52 

-518.19 302.241 0.4 -595.78 377.661 0.12 -604.08 371.65 0.36 

-348.96 359.662 0.45 -617.39 357.451 0.053 -595.54 371.628 0.073 

-355.57 360.545 0.86 -618.82 353.823 0.37 -584.16 377.45 0.055 

-354.98 358.241 0.11 -601.48 317.63 0.59 -586.45 371.13 0.12 

-354.98 355.147 0.067 -602.6 311.458 0.66 -577.08 372.989 0.39 

-593.98 330.947 0.057 -608.57 309.405 0.59 -593.39 365.657 0.39 

-657.96 347.315 0.079 -616.69 307.201 0.13 -598.6 360.622 0.65 

-658.88 354.681 0.12 -640.92 369.581 1.6 -602.22 356.5 0.93 

-602.67 342.508 0.73 -644.74 362.998 0.13 -602.28 349.939 0.78 

-598.28 347.08 0.9 -646.9 357.894 0.1 -605.93 346.287 0.59 

-594.42 351.628 0.31 -647.67 352.782 0.25 -608.96 342.647 0.28 

-657.55 360.736 0.2 -646.74 347.641 0.079 -614.25 344.183 0.91 

-655.33 366.311 0.16 -604.98 320.537 0.64 -619.41 345.506 0.75 

-650.59 371.859 0.13 -611.6 311.778 0.12 -624.54 346.537 0.74 

-595.31 323.906 0.8 -609.15 316.877 0.4 -629.22 347.373 0.34 

-596.43 317.759 0.21 -585.21 366.966 0.37 -632.58 348.584 0.96 
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-597.44 311.37 0.22 -640.38 339.28 0.35 -638.04 352.803 0.11 

-597.86 304.579 0.027 -590.89 362.455 0.036 -636.88 357.119 0.051 

-604.49 306.126 0.94 -595.28 358.268 0.74 -634.41 362.408 0.14 

-630.05 367.32 0.9 420.586 321.279 0.35 209.76 392.519 0.82 

-621.96 367.52 0.96 404.551 322.95 0.56 202.523 393.372 0.84 

-614.43 367.443 0.94 391.098 322.77 0.24 193.863 393.337 0.55 

-606.64 366.692 0.37 379.888 319.24 0.09 184.892 392.903 0.11 

-597.89 366.894 0.14 367.795 321.43 0.12 176.132 393.411 0.83 

-601.19 362.285 0.81 362.41 325.069 0.058 167.177 394.619 0.17 

-605.35 358.594 0.57 357.284 329.467 0.75 159.257 393.997 0.49 

-605.84 352.28 0.82 352.64 335.955 0.54 154.018 397.924 0.33 

-609.6 347.866 0.87 348.829 342.15 0.095 148.237 400.729 0.38 

-614.25 348.657 0.55 340.548 343.06 0.13 136.41 401.016 0.12 

-633.29 353.348 0.37 331.179 346.214 0.12 123.634 405.323 0.46 

-631.79 357.987 0.93 326.239 353.625 0.25 113.138 405.644 0.32 

-629.78 362.689 0.54 320.2 360.135 0.13 102.176 405.67 0.047 

-625.09 363.044 0.8 311.344 363.728 0.31 389.184 225.274 0.37 

-628.96 353.429 0.57 303.904 366.593 0.31 109.028 364.291 0.12 

-626.87 358.491 0.49 294.77 368.6 0.26 120.821 360.938 0.081 

-618.92 363.739 0.59 283.794 368.613 0.4 396.588 216.911 0.13 

-612.44 363.563 0.24 274.138 371.505 0.09 405.154 212.97 0.086 

-606.04 363.208 0.77 266.728 376.273 0.076 421.517 208.918 0.23 

-608.55 359.885 0.64 556.24 194.422 0.076 149.463 351.189 0.085 

-608.63 354.619 0.19 546.759 182.414 1 158.103 346.832 0.12 

-612.57 352.053 0.26 537.699 170.568 0.39 166.648 336.569 0.094 

-619.59 349.743 0.41 529.477 159.189 0.9 510.438 115.874 0.054 

-625.56 350.838 0.063 513.437 135.721 0.78 551.114 198.695 0.4 

-624.21 354.732 0.46 503.231 126.307 0.4 533.598 177.083 0.79 

-622.22 359.556 0.85 447.458 314.712 0.63 515.317 151.986 1 

-615.35 360.504 0.42 428.578 319.504 0.99 506.041 138.677 0.93 

-611.93 356.218 0.88 412.965 321.835 0.46 456.433 307.503 0.6 

269.35 295.319 0.58 397.49 323.202 0.085 446.338 309.954 0.58 

284.94 287.05 0.1 385.172 320.969 0.062 437.202 312.198 0.55 

550.05 268.61 0.76 373.691 318.701 0.12 427.895 313.943 0.36 

534.21 276.304 0.27 260.244 379.238 0.086 419.216 315.176 0.32 

398.4 225.065 0.048 249.049 383.636 0.11 411.352 316.041 0.81 

407.17 220.225 0.33 242.349 386.222 0.12 403.969 316.266 0.66 
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414.244 215.643 0.13 235.834 388.749 0.14 396.944 316.288 0.77 

458.019 311.688 0.24 227.236 392.249 0.11 389.288 316.307 0.34 

438.312 317.005 0.39 218.044 391.805 0.11 381.022 313.534 0.088 

372.816 313.73 0.085 384.76 255.568 0.41 176.457 379.429 0.14 

365.248 315.674 0.11 315.067 285.919 0.71 563.707 202.684 0.6 

359.662 317.931 0.16 229.951 326.036 0.34 543.33 202.151 0.99 

355.044 321.848 0.14 224.187 329.452 0.32 536.334 192.717 0.82 

351.098 327.086 0.23 218.383 333.29 0.29 520.807 171.459 0.47 

347.087 332.179 0.12 381.184 306.544 0.15 512.353 159.315 0.039 

343.596 336.841 0.16 374.834 307.04 0.056 503.143 146.701 0.6 

336.76 337.91 0.23 368.5 307.792 0.26 491.546 131.203 0.25 

329.496 339.599 0.47 361.588 308.797 0.55 497.886 231.367 0.73 

324.566 345.159 0.64 355.441 312.049 0.37 552.629 207.911 0.4 

319.873 353.581 0.13 350.058 317.08 0.25 543.76 271.529 0.094 

312.703 357.418 0.31 345.278 322.27 0.067 462.468 303.146 0.68 

304.488 360.416 0.12 341.593 327.65 0.059 518.391 128.724 0.13 

296.482 362.996 0.3 336.301 331.378 0.75 526.187 138.9 0.1 

287.751 363.91 0.45 480.167 222.661 0.74 532.832 148.318 0.055 

276.622 364.946 0.86 329.11 332.856 0.38 538.638 156.719 0.51 

266.348 368.97 0.66 322.793 334.943 0.65 544.534 165.792 0.24 

257.577 373.117 0.38 319.558 341.17 0.16 551.669 175.366 0.2 

248.454 372.923 0.51 317.72 347.639 0.79 558.413 183.855 0.059 

240.657 377.207 0.85 311.553 351.777 0.081 564.317 192.298 0.07 

232.279 382.968 0.22 304.669 353.89 0.045 537.487 280.742 0.062 

222.364 386.363 0.25 298.731 355.814 0.31 454.625 302.535 0.86 

211.857 386.32 0.11 292.294 357.87 0.099 445.468 304.917 0.22 

201.723 386.746 0.15 286.33 358.229 0.48 437.201 307.024 0.38 

191.897 386.652 0.012 277.632 358.373 0.98 429.657 308.409 0.23 

180.378 386.38 0.31 269.183 360.757 1 421.724 309.881 0.059 

168.196 387.808 1 261.561 363.901 0.67 413.154 310.685 0.26 

499.299 120.856 0.41 254.254 366.692 0.74 404.569 310.226 1 

470.128 222.795 0.17 245.297 366.165 0.87 396.517 309.978 0.48 

471.499 136.453 0.98 238.002 370.898 0.41 388.568 310.456 0.089 

454.904 144.739 0.098 229.738 376.984 0.28 381.078 299.305 0.46 

438.38 154.385 0.24 220.066 379.697 0.056 373.381 299.747 0.46 

423.101 250.565 0.98 209.986 379.692 0.23 365.939 300.622 0.43 

415.151 253.753 0.3 200.614 379.819 0.41 358.596 302.338 0.82 
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407.234 257.66 0.38 191.619 379.478 0.42 351.509 305.501 0.11 

398.001 260.491 0.23 183.813 379.349 0.31 467.19 129.558 0.47 

389.112 264.196 0.31 169.795 380.348 0.12 345.697 310.48 0.26 

340.51 316.308 0.51 414.972 304.53 0.17 440.862 294.045 0.44 

335.774 322.71 0.3 408.498 304.399 0.27 296.21 341.34 1.6 

453.847 136.458 0.44 400.914 303.719 0.69 288.252 343.029 0.13 

327.794 325.672 0.28 393.646 303.675 0.81 280.23 344.626 0.06 

318.895 329.725 0.12 387.482 301.994 0.06 272.081 346.741 1 

537.741 206.566 0.51 380.963 292.681 0.29 264.267 348.962 0.47 

530.303 196.831 0.28 372.633 292.968 0.68 256.132 351.89 0.46 

522.654 187.209 1 364.176 293.731 0.32 248.738 355.281 0.77 

515.597 177.016 0.11 355.808 295.439 1 242.152 360.213 0.73 

509.326 167.325 0.17 347.702 299.074 0.44 235.249 365.511 0.055 

502.839 157.847 0.13 340.293 304.872 0.27 227.594 371.366 0.41 

495.288 146.921 0.61 334.673 311.345 0.61 560.299 255.729 0.059 

484.798 134.177 0.76 330.01 315.908 0.23 551.184 248.168 0.094 

530.522 271.514 0.44 326.571 317.139 0.11 533.805 250.516 0.11 

475.342 302.106 0.6 319.808 320.921 0.19 526.23 257.234 0.4 

468.397 307.986 0.042 312.704 325.702 1 518.148 263.35 0.21 

452.803 296.993 0.28 312.897 335.61 0.084 476.808 295.432 0.17 

443.563 299.492 0.44 311.355 344.911 0.068 472.438 291.042 0.23 

435.383 301.487 0.24 304.369 346.547 0.45 461.211 288.535 0.42 

290.969 349.887 0.17 297.8 348.357 0.36 569.095 247.967 0.2 

283.403 350.695 0.28 463.151 122.53 0.46 560.87 246.08 0.055 

275.388 352.202 0.17 451.093 129.058 0.28 547.718 236.595 0.45 

266.993 354.924 0.31 436.815 137.063 0.79 232.559 316.113 0.54 

259.177 357.647 0.15 307.636 278.104 0.74 306.197 331.46 0.65 

251.696 360.795 0.47 437.465 145.569 0.22 305.268 339.926 0.047 

163.024 382.46 0.27 257.675 304.927 0.051 285.694 335.966 0.54 

553.461 264.194 0.047 248.613 308.304 0.18 277.578 338.084 0.43 

542.078 262.819 0.39 240.099 311.913 0.094 269.048 340.116 0.48 

482.746 251.825 0.18 524.323 201.501 0.51 260.868 342.85 0.26 

527.286 265.069 0.62 516.851 192.05 0.2 253.153 345.854 0.55 

518.247 272.088 0.059 509.314 181.401 1 245.704 349.374 0.28 

525.175 278.981 0.42 502.745 171.256 0.54 238.622 354.457 0.11 

483.311 295.308 0.32 496.344 160.817 0.47 231.881 360.55 0.075 

468.581 299.174 0.52 432.187 212.579 0.3 225.354 365.664 0.31 
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462.009 294.468 0.51 557.007 259.802 0.26 217.869 363.913 0.23 

427.975 302.998 0.13 549.388 255.126 0.36 155.814 384.924 0.41 

421.327 303.836 0.23 450.545 291.444 0.25 218.157 372.968 0.18 

208.877 373.086 0.03 307.926 320.681 0.38 273.377 331.036 0.43 

200.915 373.26 0.19 541.731 246.436 0.5 281.881 329.396 0.73 

192.914 372.798 0.38 522.406 252.062 0.54 485.946 184.481 0.44 

185.33 372.393 0.32 513.947 258.548 0.31 473.43 168.981 0.45 

177.385 372.299 0.25 510.693 268.879 0.19 473.091 156.708 0.92 

169.16 372.955 0.19 472.517 284.894 0.42 201.642 330.704 0.18 

160.583 375.41 0.4 462.561 281.446 0.13 346.009 282.796 0.39 

509.766 193.986 0.17 453.455 276.281 0.18 352.936 280.104 0.93 

501.067 182.727 0.44 443.961 278.801 0.11 572.21 240.774 0.23 

481.41 311.921 0.057 434.314 281.446 0.27 551.805 242.756 0.43 

204.123 337.649 0.098 432.651 295.009 0.06 530.896 244.573 0.46 

195.99 337.735 0.18 425.887 295.889 0.22 518.376 246.858 0.42 

187.968 337.876 0.31 419.599 296.832 0.15 510.412 252.607 0.36 

177.624 338.591 0.71 413.488 297.912 0.4 442.179 271.801 0.72 

442.95 217.108 0.21 406.684 297.635 0.2 431.871 274.777 0.46 

156.586 340.999 0.78 399.487 296.852 0.44 428.311 287.054 0.75 

144.24 346.495 0.17 393.374 294.231 0.51 388.335 293.55 0.89 

453.345 220.465 0.28 299.264 333.222 0.48 142.36 402.323 0.17 

462.502 217.699 0.14 291.951 333.531 0.15 123.85 398.619 0.32 

431.062 205.046 0.18 149.939 388.321 0.18 112.926 398.706 0.27 

453.285 284.039 0.31 152.157 376.582 0.35 101.31 398.871 0.12 

444.774 286.173 0.094 157.533 368.544 0.64 144.404 390.752 0.31 

436.418 288.247 0.88 167.809 365.499 0.26 145.316 379.281 0.32 

487.501 149.162 0.12 211.002 329.763 0.49 147.454 369.748 0.43 

473.95 143.454 0.13 177.555 364.759 0.48 154.745 362.263 0.41 

456.136 153.408 0.46 185.395 365.225 0.8 460.841 170.479 0.93 

217.798 324.517 0.68 192.481 365.662 0.29 448.601 176.019 0.33 

439.36 163.049 0.9 199.693 366.096 0.46 473.682 184.608 1 

497.719 189.25 0.78 206.26 365.799 0.31 463.5 177.94 0.7 

481.463 153.064 0.74 211.46 364.506 0.062 472.84 278.278 0.38 

491.189 243.509 0.34 222.641 358.862 0.5 463.159 273.686 0.17 

358.403 287.512 0.79 228.273 354.109 0.45 377.504 286.535 0.75 

349.243 290.298 0.13 233.924 348.629 0.26 368.046 286.571 0.59 

341.266 294.954 0.41 241.707 344.314 0.44 361.575 280.736 0.03 
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334.628 299.927 0.55 249.749 339.866 0.26 359.093 273.993 0.84 

328.952 306.1 0.23 258.026 336.293 0.091 354.118 264.624 0.45 

317.255 314.744 0.53 265.718 333.505 0.15 335.059 272.239 0.096 

337.931 281.908 0.29 216.336 355.157 0.15 427.332 262.521 0.42 

337.282 289.304 0.44 209.848 356.397 0.091 416.78 266.584 0.51 

329.266 293.651 0.23 203.846 358.381 0.33 417.741 273.595 0.4 

323.995 300.071 0.44 196.676 358.517 0.43 408.804 273.467 0.47 

319.727 306.139 0.31 188.8 358.267 0.61 401.618 273.453 0.16 

492.36 226.406 0.52 181.109 357.909 0.18 395.484 276.961 0.33 

131.461 400.309 0.35 173.119 357.633 0.42 369.86 265.555 1 

123.779 391.322 0.58 144.13 362.921 0.25 320.808 276.184 0.31 

112.99 391.573 0.079 138.991 371.305 0.092 316.06 297.152 0.47 

100.695 392.427 0.38 138.939 381.356 0.29 264.411 325.74 0.26 

537.338 257.193 0.5 139.042 392.898 0.33 257.919 328.115 0.15 

448.874 211.598 0.39 133.034 389.05 0.28 251.664 331.294 0.36 

440.274 208.965 0.58 122.256 383.968 0.22 245.182 334.256 0.28 

399.11 289.846 0.43 112.29 384.52 0.18 238.805 337.803 0.36 

406.502 290.513 0.64 101.246 385.301 0.061 232.723 341.532 0.14 

553.317 231.819 0.31 90.802 385.48 0.21 134.987 364.356 0.27 

414.02 290.578 0.32 482.531 276.678 0.36 130.703 382.18 0.29 

421.957 289.381 0.65 472.601 270.906 0.43 121.157 376.27 0.13 

424.631 277.617 0.4 463.075 265.809 1 110.867 377.127 0.23 

428.973 268.598 0.55 451.192 261.804 1 100.364 378.342 0.17 

439.893 265.331 0.4 437.255 259.192 0.38 87.3948 374.79 0.1 

452.785 268.681 0.28 522.482 148.807 0.065 131.774 373.602 0.069 

165.239 358.876 0.58 328.698 275.278 1 452.025 248.219 0.45 

577.595 238.318 0.41 325.653 287.629 0.57 440.763 245.495 0.85 

559.559 237.722 1 271.877 323.68 0.25 429.686 241.275 1 

528.264 240.018 0.3 566.914 234.06 0.28 457.656 210.954 0.76 

514.622 241.417 0.19 525.289 235.828 0.84 471.36 213.554 0.74 

505.131 264.685 0.44 515.09 234.678 0.41 484.367 217.524 0.59 

420.016 281.708 0.08 505.612 248.224 1 495.944 220.884 0.31 

412.655 282.921 0.36 502.516 259.696 0.3 506.473 223.737 1 

405.165 282.775 0.48 500.056 269.679 0.53 517.041 226.485 0.4 

397.132 283.84 0.36 491.313 271.486 0.25 530.27 229.241 0.7 

387.223 286.483 0.11 481.114 267.816 0.59 540.571 234.956 0.42 

364.593 268.314 0.85 471.03 263.184 0.36 536.3 237.063 0.71 
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358.748 259.268 0.42 460.408 258.623 0.93 575.622 233.735 0.27 

225.67 346.316 0.12 446.748 256.252 0.49 503.605 241.79 0.5 

220.577 350.322 0.4 433.75 253.544 0.22 496.702 255.931 0.31 

489.687 263.953 0.54 56.7523 394.939 0.42 406.596 250.523 0.33 

263.397 318.309 0.24 62.758 392.446 0.25 398.234 254.175 0.56 

255.777 320.524 0.38 69.0404 389.6 0.87 389.773 252.894 0.63 

249.432 323.635 0.25 75.662 386.656 0.08 312.559 309.016 0.47 

242.934 327.223 0.35 33.8495 398.615 0.19 259.64 296.39 0.34 

465.313 249.901 0.35 43.9349 400.032 0.12 250.75 299.203 0.1 

216.267 344.059 0.39 167.969 343.943 0.18 241.813 302.891 0.22 

210.887 349.054 0.093 177.915 344.272 0.38 232.537 307.475 0.16 

203.375 350.633 0.055 187.515 344.95 0.17 223.793 312.458 0.45 

195.76 351.424 0.091 196.526 344.691 0.19 487.035 230.728 0.75 

188.086 351.445 0.12 206.55 343.941 0.35 487.607 238.917 1.1 

179.163 350.924 0.27 212.719 337.213 0.18 480.528 245.786 0.85 

169.656 350.846 0.39 236.935 322.155 0.26 469.854 242.066 0.74 

82.7713 385.635 0.18 243.815 318.278 0.055 460.639 239.398 0.27 

98.1018 371.658 0.32 251.07 314.635 0.3 447.751 237.279 0.26 

108.739 370.302 0.068 259.25 311.552 0.26 437.075 232.273 0.72 

119.871 369.415 0.25 308.864 289.734 0.45 420.057 236.522 0.44 

373.697 261.461 0.29 313.505 274.943 0.093 411.974 239.675 0.81 

379.69 272.506 0.31 377.834 255.999 0.3 394.95 248.341 0.77 

386.366 281.216 0.13 382.849 266.265 0.3 381.953 246.923 0.82 

478.598 259.973 0.44 399.732 265.423 0.85 302.295 278.933 0.76 

467.17 256.523 0.34 151.996 356.792 0.12 238.248 296.422 0.5 

455.865 253.305 0.51 160.945 352.824 0.36 227.093 301.554 0.85 

443.19 251.048 0.56 494.079 248.824 0.5 215.395 317.499 0.42 

431.648 247.744 0.33 487.735 256.582 0.76 208.57 322.596 0.69 

424.881 256.746 0.36 508.353 231.575 0.87 199.638 323.694 0.68 

416.209 260.138 0.23 499.662 236.339 0.21 190.167 323.375 0.33 

408.517 264.286 0.55 191.765 330.319 0.84 177.454 329.202 0.84 

392.401 271.092 0.19 182.055 331.445 0.32 266.11 291.635 0.11 

387.451 275.22 0.072 472.345 247.671 0.46 217.186 306.945 0.32 

235.97 331.293 0.097 460.807 245.253 0.54 208.936 312.664 0.1 

228.707 335.341 0.43 450.647 242.874 0.31 403.519 244.112 0.65 

222.894 339.763 0.17 439.495 239.014 0.19 426.287 228.035 0.24 

140.945 355.795 0.45 428.604 234.163 0.46 456.29 234.585 0.38 
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130.978 357.162 0.25 225.078 319.785 0.32 469.42 236.09 0.69 

126.79 366.147 0.097 420.635 243.826 0.48 198.801 316.527 0.55 

50.532 396.989 0.44 413.71 246.724 0.51 252.343 291.921 0.29 

297.508 282.949 0.052 301.144 324.544 0.13 499.751 286.853 0.39 

306.08 293.719 0.087 303.81 315.911 0.11 506.683 297.623 0.06 

390.049 241.249 0.19 306.86 307.275 0.36 523.037 289.273 0.074 

408.977 233.901 0.39 271.856 300.984 0.21 93.1214 405.604 0.25 

417.512 230.55 0.26 281.159 322.363 0.25 91.3005 396.697 0.44 

480.462 238.213 0.86 297.862 299.463 0.9 86.6273 406.851 0.65 

477.748 228.518 0.1 285.889 293.862 0.082 84.5016 397.497 0.24 

475.002 232.65 0.16 288.678 321.428 0.23 80.8103 408.076 0.58 

465.136 231.049 0.19 270.944 309.814 0.11 77.6011 399.229 0.79 

454.024 228.338 0.19 276.221 317.023 0.056 74.5966 410.161 0.013 

445.421 230.715 0.24 297.981 313.931 0.056 72.0646 402.866 0.021 

435.474 225.874 0.12 300.166 306.915 0.073 36.3408 412.928 0.46 

424.654 222.048 0.39 293.427 303.813 0.19 47.3216 409.278 0.013 

399.863 238.852 0.44 286.466 300.215 0.069 39.282 418.111 0.026 

369.056 253.173 0.35 279.262 298.097 0.13 50.9275 413.774 0.017 

290.776 283.149 0.14 275.949 306.155 0.069 43.8061 423.209 0.021 

297.736 292.354 0.11 281.05 313.085 0.15 54.6995 419.906 0.017 

415.504 224.465 0.29 289.279 314.613 0.082 3.4706 431.433 0.37 

406.526 227.798 0.36 290.508 308.978 0.082 3.95358 422.315 0.77 

397.363 233.99 0.45 284.146 305.899 0.096 11.0518 430.824 0.44 

389.463 232.337 0.33 482.248 285.543 0.38 10.9455 421.801 0.66 

379.637 240.769 0.073 488.407 291.813 0.25 19.0434 429.194 0.76 

492.642 305.166 0.096 497.973 294.759 0.37 18.7018 419.891 0.6 

461.878 224.79 0.25 514.508 285.303 0.039 26.4528 416.771 0.51 

444.432 224.158 0.19 495.707 277.595 0.2 27.572 426.263 0.41 

433.726 219.572 0.22 488.615 280.444 0.11 33.8874 423.563 0.87 

422.462 215.656 0.33 492.086 288.543 0.26 

   292.405 327.644 0.19 512.329 277.421 0.19 

   305.492 300.773 0.11 504.087 275.037 0.44 

   276.066 291.689 0.15 506.001 281.327 0.23 

   268.087 314.078 0.76 496.982 282.941 0.39 

    

 


