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ABSTRACT 

 

Structured illumination microscopy (SIM) increases resolution of optical microscopes 

substantially. However, simulation of this process using mathematical models is still a 

novel notion. Purpose: To design a program to simulate the process of SIM and study its 

application on biological samples. Method: Pre-defined images of microscopic samples 

were blurred and then reconstructed using a simulation designed in MATLAB. 

Experimental application of SIM and simulated reconstruction of images obtained using a 

microscope was then performed. Results: Considerably high resolution images were 

obtained from the simulation, which was also supported by the pixel intensity plots, 

signal to noise ratio and peak signal to noise ratio analyses. Resolution of images of 

samples obtained from experimentally performing SIM on a microscope were also 

similar to their simulated reconstruction. Conclusion: SIM is a desirable option for 

optimally imaging biological microscopic samples, physically as well as through 

simulation process. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 
 

LIST OF ABBREVIATIONS AND SYMBOLS USED 

 

SI   Structured Illumination 

PSF  Point Spread Function 

NA   Numerical Aperture 

OTF   Optical Transfer Function 

SNR   Signal to Noise Ratio 

PSNR   Peak Signal to Noise Ratio 

MSE   Mean Squared Error 

PALM  Photoactivated Localization Microscopy 

STORM  Stochastic Optical Reconstruction Microscopy 

STED   Stimulated Emission Depletion Microscopy 

2D  Two Dimensional 

3D  Three Dimensional 

SLM   Spatial Light Modulator 

LCD  Liquid Color Display 

LED  Light Emitting Diode 

SIM   Structured Illumination Microscopy 

DMD   Digital Micromirror Device 

DLP   Digital Light Processing 

MEMS  Micro Electromechanical Systems 

SRAM  Static Random Access Memory 

IP   Illumination Pattern 

CCD   Charged Coupled Device 

CMOS  Complementary Metal Oxide Semiconductor 

WXGA Wide Extended Graphics Array 

λ  Wavelength 

n  Refractive Index Of A Material 



xi 
 

ϴ  Angle Of Convergence of Light on Surface of Medium 

d  Distance Between Two Points 

⊗  Convolution 

x,y  Coordinates On Cartesian Axes 

F  Fourier Transform of Variables 

Psignal  Power of Signal 

Pnoise  Power of Noise 

Asignal  Amplitude of Signal 

Anoise  Amplitude of Noise 

MAXI  Maximum Signal Value of Original Image 

∑  Summation 

m  Rows of Pixels 

n  Columns of Pixels 

f(x, y)  Original Image 

f0   Frequency of Pattern 

Φ  Phase 

δ  Delta 

Iexcitation  Intensity of Excitation Pattern 

i  Number of Patterns Used 

h(x)  Input Signal 

ℎ𝑖(𝑥)  Output Signal 

𝐻(𝑓)  Fourier Transform of Input Signal 

𝐻𝑖(𝑓)  Fourier Transform of Output Signal 

𝜎𝑥  Sigma x 

𝜎𝑦  Sigma y 

f(x, y)  Input Image 

h(x, y)  Output Image 

𝐹(𝑓𝑥, 𝑓𝑦) Fourier Transform of Image 



xii 
 

OTFi  OTF Components 

OTFi 
*
  Conjugate of OTF Components  

H(fx,fy) Fourier Transform of Output Image 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiii 
 

ACKNOWLEDGEMENTS 

I would like to express my gratitude towards my supervisor, Dr. Michael Cada for giving 

me the opportunity to work as his student on this project. His guidance has been of 

utmost significance towards my graduate school experience. His experience and expertise 

in various domains of electrical and computer engineering have always furthered the 

skills I have acquired through this learning process. The photonics lab and its members 

have been a constant support towards my experience as a student and an aspiring 

engineer and I thank them for their support. 

 

I would like to thank Dr. Alan Fine whose proficiency in the field of optics and imaging 

has been a bolster for the foundations of this project.  I would like to thank him for 

providing me the opportunity to work with him and learn new concepts about 

microscopes, their functioning and innovations in this field. I would like to express my 

gratefulness to the members of the Physiology and Biophysics Lab under Dr. Alan Fine, 

who have been a great team and have been there to help me in case of confusions and 

conflicts. 

 

I would like to thank Dr. Kamal El-Sankary and Dr. William J. Phillips for agreeing to 

participate as members of the thesis committee. Their availability for the same is 

reflective of their support towards the proceedings associated with this project and its 

completion. 

 

And most of all, I would like to thank my family who have supported my ambitions 

throughout my life and nurtured me to become what I am today. It is all because of their 

patience and constant faith in me that I have been able to achieve my goals. I thank them 

for everything. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

CHAPTER 1 

INTRODUCTION 

1.1 Super-Resolution Microscopy 

The smallest object that a naked human eye can see clearly is only as big as 

0.1mm. With technical advancements, it has become possible for us to view even 

smaller objects with much clarity and detail, using specific visual aids like microscopes. 

The field of using microscopes for the purpose of viewing small samples and objects that 

cannot be seen with the unaided eye is called Microscopy. The evidence of use of 

microscopes for more comprehensible viewing of small objects can be found as early as 

1609 when Galileo Galilei had developed an Occhiolino, or a compound microscope. 

However, this equipment could only magnify the size of an object to a certain limit after 

which the clarity or the resolution of the object being viewed was lost. With the 

improvement in technology available to magnify objects beyond the physical ability of 

the finest of magnifying lenses, resolution of optical microscopes has been outshined by 

other microscopes like electron and scanning probe microscopes. Despite this, optical 

microscopy still remains a valuable aspect in this domain and hence researchers have 

been constantly trying to improve the characteristics of optical microscopes. 

 

It is theorized that even the finest of optical microscopes that have been invented 

since the Occhiolino have a limited resolution because of the diffraction limit, a concept 

that was propounded by Ernst Abbe in 1873 [1]. For instance, using visible green light 
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of wavelength 500 nanometers and numerical aperture of 1 for viewing an object, the 

Abbe limit (d) or the diffraction limit will be roughly d = λ/2 = 250 nm. This is quite 

large compared to most nanostructures which are approximately 1µm in size or smaller. 

However, to safely view anything with dimensions smaller than this value using the 

visible light will be difficult. Thus, the finite spatial resolution associated with optical 

microscopy, which is limited by diffraction to about 200 nm in the lateral resolution (in 

the image plane) and about 700 nm in the axial (focus) direction, [2] poses as the main 

limitation to its use for viewing very small objects. This indicates that the ability to study 

details of an object using an optical instrument is bound by laws of physics. However, it 

is possible to bend these laws to reproduce an image to view a given object beyond the 

diffraction limit. This is done using super-resolution microscopy. 

 

Super-resolution is the process of enhancing the resolution of an optical 

instrument or any imaging system beyond the limitations of the Abbe limit. Super-

resolution can further be studied under two broad categories- "true" super-resolution 

techniques and "functional" super-resolution techniques. True super-resolution 

techniques are the ones that enhance resolution by capturing the information contained 

in evanescent waves. On the other hand, functional super-resolution employs clever 

mathematical operations to attain super-resolution by means of computation. 

Additionally, it includes the limitations of the object being imaged for processing [3]. 

This can be further classified into deterministic and stochastical functional super-

resolution techniques. Deterministic techniques make use of the ability of fluorophores 

to exhibit a non-linear response to excitation while stochastical techniques make use of 
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the chemical nature of light sources to affect the temporal behavior of fluorophores in 

the vicinity, hence making them emit light at different times. 

 
Figure 1.1: Conventional vs. SIM on HeLa cells [4] 

 

One of the fundamental approaches towards breaking the diffraction limit for 

enhanced resolution is structured-illumination (SI) or patterned illumination, a kind of 

true super-resolution technique [5][6]. SI relies primarily on specific microscopy 

protocols and extensive post-exposure analysis of the image using an image processing 

algorithm. The principle behind use of SI for super-resolution involves the use of 

patterned light to illuminate an object or sample, often using a single spatial frequency 

grid. This is done by means of a spatial light modulator. One such device is called a 

Digital Micro-mirror Device or DMD, which uses LEDs or lasers as illumination source. 

A DMD basically consists of small mirrors that rotate as they are illuminated. This 
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results in development of the illumination pattern as a result of interference of light 

waves. This results in the development of fringes with alternating maximum and 

minimum intensities. As the contrast is maintained in a focal plane, improved 

illumination of specimen features that are out of the focal plane is achieved. Measuring 

the interference fringes, of the illumination pattern and the sample, can thus be used to 

obtain a higher resolution. This way, the higher frequency features of the sample can be 

deduced from the fringes and this information can be further computationally restored. 

[7], [8]. 
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1.2 Motivation 

Microscopy is an important branch of science, allowing us to study small objects 

and organisms that cannot otherwise be seen with the naked eye. Besides the option to 

view enlarged images of these objects, another important principle on which efficient 

microscopy is founded upon is the resolution. Resolution is the ability of a microscope to 

discriminate between two closely placed points at distinct from one another. 

 

However, it has been theorized that the resolution of an optical system like a 

microscope, can only be enhanced to a limit. With the growing need to understand 

microorganisms for the study of health, disease and role of microorganisms in affecting 

these processes, it has become important to devise sensitive means to study microscopic 

objects. As technology has advanced, numerous means have come up to improve the 

resolution of microscopes. This has often involved use of shorter wavelengths like ultra-

violet and X-rays. As much as these radiations have improved resolution, they are known 

to cause harm to biological specimens. This motivated us towards studying super-

resolution and its role in breaking the barrier set up by the theories that define limits to 

the resolution of optical systems and employ its procedures to attain a safe system for 

studying biological specimens. 

 

Akin to a multitude of studies looking to devise sensitive and accurate measures 

of improving resolution, we intended to study the domain of super-resolution specifically 

Structured Illumination Microscopy or SIM. We intended to study and demonstrate the 
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applicability of SIM in obtaining highly resolved images of microscopic specimens. 

However, an important goal of this project was to also look at the utility of simulating the 

process of SIM. The use of simulation procedures to perform SIM-like manipulations to 

reconstruct unclear images of microscopic specimens is a novel idea. Due to the lack of 

evidence in this domain, we intended to further the research in this direction and with our 

results, encourage the need to study use of simulation processes to achieve the best 

possible images of microscopic biological samples in a safe environment. 
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1.3 Objectives 

1. To design a superresolution algorithm in MATLAB which could be applied to 

actual 2-D images. 

2. To design a simulation of Structured Illumination Microscopy in MATLAB to be 

used to simulate the complete process of SIM step-wise to reconstruct higher 

resolution images. 

3. To apply and observe the effects of Structured Illumination Microscopy in 

obtaining images of microscopic specimens observed under a fluorescence 

microscope. 

4. To use a Digital Micromirror Device as the spatial light modulator on a 

fluorescence microscope to effectively drive the process of Structured 

Illumination Microscopy.  

5. To use the simulated SIM process in MATLAB for reconstructing standard 

widefield images of specimens and compare the reconstructed images to the ones 

obtained from the experimental application of Structured Illumination 

Microscopy. 

 

 

 

 

 

 



8 
 

1.4 Organization of thesis 

The thesis has been organized into relevant chapters describing different aspects 

of the project. Chapter 1 entails a brief introduction to the project and outlines our 

motivation and objectives. Chapter 2 describes the essential theory that outlines major 

concepts that have been used towards the development of this project. Chapter 3 includes 

a detailed review of relevant studies that have been conducted towards the purpose of 

improving resolution in microscopy and their findings. Chapter 4 provides an 

introduction to procedural implications of structured illumination microscopy and the 

methodology associated with our project. Chapter 5 gives a detailed description of our 

results and our interpretation of the same. Chapter 6 goes on to summarize the nature, 

purpose, methodology and results of this project. Additionally, Chapter 6 also outlines 

the limitations and any future implication of this study. 
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CHAPTER 2 

BACKGROUND THEORY 

2.1 Resolution and impact of diffraction on resolution 

The smallest distance between two point objects that can be distinguished as two 

distinct entities when being viewed, by an observer or through a camera, within an 

optical imaging system is known as resolution. Resolution is a property that affects all 

instruments, digital or analogue, and define the ability to distinguish between two 

indications, which are essentially objects for an optical instrument [9]. 

 

Since visible light is used as an illumination source for the purpose of optical 

imaging, its properties act as variables that affect the resolution of the imaging system. 

Of the many properties that light exhibits, one of its wave properties important for 

optical imaging is called diffraction. Colloquially, diffraction is basically the "bending" 

of light. This occurs due to the various obstacles that come in the way of light as it 

moves within a space or from one medium to another. Even with the smallest apertures 

in the optical system, this dispersion in light can significantly affect the resolution of an 

image, making it harder to view objects under a microscope with a high order of detail. 

The restricted resolution of optical systems has been described by various researchers as 

mathematical expressions that aid in quantifying the maximum attainable resolution. 

 

A few examples of these include the Rayleigh resolution limit, Sparrow 
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resolution limit and the Abbe diffraction limit [10], [11], [1] (Table 1, Figure 2.1). 

 

Table 1: Various mathematical expressions describing the diffraction limit  

Method Mathematical expression Variables 

Rayleigh resolution limit 0.61λ

NA
 

λ – Wavelength 

 

NA – Numerical aperture 

Sparrow resolution limit 0.47λ

NA
 

λ – Wavelength 

 

NA – Numerical aperture 

Abbe diffraction limit λ

2n sin
 

λ – Wavelength 

 

n – Refractive index of the 

medium 

 

ϴ - Angle of convergence 

of light on the surface of 

the medium 

 

 

 
Figure 2.1: Various conventional resolution limits and their definitions [12]. 
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2.2 Diffraction limit 

Ernst Abbe, a pioneer in the field of modern optics, suggested in 1873 that for all 

optical systems this finite limitation in resolution due to diffraction can be quantified as 

the Abbe limit or the diffraction limit [1]. This limit quantifies the maximum point-to-

point resolution that can be attained by an optical microscope within the confines of a 

fundamental physical law.    

 

Ernst Abbe propounded that for light of wavelength λ, traveling in medium of 

refractive index n which converges at the surface making an angle of  makes a spot 

with a radius described by the following formula: 

d=
λ

2n sin
       [2.1] 

Here n sin  is the numerical aperture (NA). By recent standards, NA ranges from 

1.4 to 1.6 in modern optics. This gives us an approximate value of λ/2.8 for the Abbe 

limit (d). If we use the green light from the visible spectra, it has a wavelength of 

approximately 500 nm. Using this value for λ, the Abbe limit is calculated to be 

approximately 200 nm. This value is quite large compared to most microscopic objects. 

However, it is tricky to be able to obtain clear and well-detailed images of objects that 

are smaller than this size (Figure 2.2). 
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Figure 2.2: Two point objects separated just enough to be resolved. Line graph show 

intensity along the separation [13]. 

 

To work around this limitation associated with the use of visible light for 

viewing objects under a microscope, other waveforms with shorter wavelengths have 

been used, for example, ultraviolet and X-rays. A shorter wavelength (λ, one of the 

variables affecting the value of d, as indicated earlier) results in a larger value of the 

diffraction limit for a constant NA, compared to a longer wavelength. This results in the 

ability to view even smaller samples and objects and hence results in a better overall 

resolution. A limitation for these waveforms however, is that they are expensive and lack 

contrast when being used to obtain images of a sample or an object. These also pose as a 

potential hazard to most biological samples as well. So, this brings us to think about 

other ways in which resolution can be improved without damaging the object being 

viewed. Another technique, which will be described in further sections, is the use of 

super-resolution measures using visible light to break the confines of diffraction limit on 

the resolution of optical microscope. 
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2.3 Point spread function 

Because of the diffraction limit, the impact of diffraction is the ‘blurring’ of an 

image. The greater the ‘blur’ associated with an image, the poorer is the quality of that 

imaging system. Thus, this factor plays a key role in determining how clearly an optical 

system can obtain an image of an object. This degree of spreading of light that causes the 

‘blur’ is often described as the point spread function (PSF). 

 

Before we look at the PSF and its implications on an optical imaging system, it is 

important to understand the process of interference of waves. Interference is essentially 

the process of ‘merging' of two or more waves. This interaction results in the formation 

of a single wave that is a summation of the characteristics of the primary waves. If the 

frequency of the two waves is same and they oscillate in phase (coherent waves), they 

tend to add up to give a larger resultant wave. On the other hand, incoherent or out of 

phase waves often cancel out the amplitude of one or the other waves. This shifts the 

phase of the resultant wave and makes it quite different from the primary waves. This 

phenomenon is observed for light as well. In optical systems, when a point source of 

illumination sends out light waves, diffraction tends to diverge the path of the waves. In 

this process, one or the other waves interfere among themselves as they hit the surface of 

the sample or the object being viewed since due to diffraction, many waves do not 

follow a straight path from the source to the object. PSF describes this retort of an 

imaging system to a point source. 

 

This concept of PSF is described through Figure 2.3. As point sources of 
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illumination from an object under the microscope reach the imaging system, they tend to 

appear as circular spots with the highest intensity of illumination at the center as it 

spreads outwards to present as a blurry unclear margin. These illuminated centers are 

called Airy disks while the hazy patterns outside the disks are Airy patterns. These are 

the result of diffraction that results in incoherent interference among light waves 

resulting in low intensity of the resultant light waves. The three-dimensional 

representation of the same near the image plane is what is termed PSF. 

 

 
Figure 2.3: (a). Formation of airy disc as a result of diffraction of light, (b). PSF as the 

three-dimensional representation of the Airy disc, (c). Graph showings that center of the 

Airy disc represents 84% of the intensity. Obtained from [14]. 

 

Functionally, PSF represents the spatial domain of the mathematical function that 

defines the output of the imaging system. Mathematically, the input delta function for an 

optical microscope is represented by the point source. The image corresponding to the 
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interaction of the input and the transfer (output) function of the imaging system is 

depicted by the PSF [14]. 

 
Figure 2.4: Representation of Airy Disks and their PSFs depicting the concept of 

resolution [12]. 

 

 

As can be observed in the Figure 2.4, when two PSF’s (typically described by the 

diameter of the Airy discs [14], merge together the most illuminated and sharper parts of 

these two point sources of light get affected by diffraction and interference of their 

waves. With such interference it becomes harder to tell apart one point source from the 

other, hence decreasing the resolution of the image. Normally, if the principal diffraction 

maxima was to coincide with the first minima of the neighboring point source, the 

resultant image would be well resolved.[1] [2] However, as in this case, since the Airy 

patterns overlap it reduces the distance between the point sources. As this distance 

decreases compared to the diffraction limit, the two points cannot be discriminated from 
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each other as individual points anymore and thus the resolution is affected. We can try 

and magnify an image indefinitely, but eventually the image will blur and become 

incomprehensible. Any effort to magnify further will not improve the detailing of the 

image and its smaller components.  

 

This makes it important to find a way to preserve the resolution of the imaging 

system as magnification is being done. As pointed earlier, the diffraction limit (Abbe 

limit) depends upon the wavelength of light and the NA of the objective lens [15]. Since 

shorter wavelengths (UV and X-rays) have limited implications, it is feasible to try to 

alter the NA to obtain desired resolution. The radius of the Airy disc is a resultant of the 

NA of the objective lens and with a higher NA it is possible to improve the resolution. 

This happens as a result of a narrower PSF. 

  

2.4 Optical Transfer Function 

An image obtained by an optical system is a convolution of two functions, the 

object and the PSF. These variables are denoted as a function of their position (r) on the 

coordinate system (x, y) in a constant time (t) domain. This can be represented as a 

spatial variant function denoted by the following equation:  

ℎ(𝑥, 𝑦)  =  𝑓(𝑥, 𝑦)  ⊗  𝑝𝑠𝑓                                 [2.2] 

Using a Fourier transformation, we can show a frequency and amplitude 

relationship between the object and the PSF. This helps convert the above function into a 

spatially constant but frequency variant function. Since convolutions can be 

conveniently manipulated through their Fourier transform (F), this brings us to the 



17 
 

following equation: 

H(fx,fy)  =  𝐹(𝑓𝑥, 𝑓𝑦)  ×  𝐹{𝑝𝑠𝑓}                (2.3) 

In the above equation, the multiplication is a representation of the convolution in 

frequency domain. 𝐹(𝑓𝑥, 𝑓𝑦), H(fx,fy) and F{psf} represent Fourier transforms of the 

input image, output image and the PSF respectively as a function of time (t) on the 

coordinate system (x,y). 

 

The function F{psf} is also known as the Optical Transfer Function (OTF), 

which is the transfer or output function of any optical system. It is used by researchers 

and engineers to describe how the light is projected from an object or sample to a 

detector. Thus, the PSF impacts resolution in the spatial domain while OTF helps derive 

the resolution within a frequency domain. Both functions, PSF and OTF, follow the 

Abbe theory of formation of an image.  

 

2.5 Signal to Noise Ratio and Peak Signal-to-Noise Ratio 

To mathematically understand a phenomenon, it is important to have a function 

that describes the features and characteristics of that phenomena. Priemer [16], termed 

this function as Signal. A signal conveys imperative information about the attributes of a 

phenomenon. It is essentially digitized information about a phenomenon. In image 

processing, the pixels of an image describe the attributes of the image and hence act as 

the signal for this purpose. Every signal is confounded by some irrelevant signals in the 

surrounding environment. These are termed noise. A power ratio between the signal and 
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the noise is termed as signal-to-noise ratio or SNR. SNR helps engineers describe the 

amount of noise that associated with a given signal as measure of ‘purity’ of that signal. 

It is the ratio of the power of signal (Psignal) to the power of noise (Pnoise) and is described 

by the following function: 

SNR =
Psignal

Pnoise
     (2.4) 

Here ‘P’ corresponds to average power. A greater SNR corresponds to a larger 

power of signal suggesting that there is lesser noise associated with the signal. SNR is 

often also expressed in terms of the logarithmic decibel scale and is 20 times the log10 of 

the amplitude ratio of signal (Asignal) and noise (Anoise). Here ‘A’ is the root mean square 

(RMS) amplitude. This function also translates as 10 times the logarithm of the power 

ratio described in the previous equation: 

𝑆𝑁𝑅 = (
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒
) = (

𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒
)

2
     (2.4) 

𝑆𝑁𝑅𝑑𝑏 = 10 log10 [(
𝐴𝑠𝑖𝑔𝑛𝑎𝑙

𝐴𝑛𝑜𝑖𝑠𝑒
)

2

] = 20 log10 (
𝐴𝑠𝑖𝑔𝑛𝑎𝑙

𝐴𝑛𝑜𝑖𝑠𝑒
)  (2.5) 

Since the signal for an image is essentially comprised of its pixels and noise is 

the variability in those pixels, it is safe to say that in image processing, the SNR is the 

ratio of the mean pixel value to the standard deviation of the pixel values. 

 

Another similar measure of the clarity of an image signal is called the peak 

signal-to-noise ratio (PSNR). The only mathematical difference between SNR and PSNR 

is that PSNR is a ratio of maximum power of the signal to the power of the noise. For 
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instance, if we were to image a sample, the SNR will take an average of all signals 

coming from the sample and compare it against the average power of the noise 

associated with that signal. This would mean that the numerator includes an average of 

the intensity of light coming from all parts of the sample. In PSNR however, the signal 

component of interest is just the peak component, i.e. the maximum intensity of light 

coming from the sample or the strongest signal, which is usually at its boundaries due to 

reflection. PSNR is thus quite useful if we are looking at adjusting the signal contrast in 

specific regions of interest while SNR gives more of a general picture. 

 

With multiple elements comprising a signal, its dynamic range is quite vast. 

Hence, like SNR, PSNR is also represented on a logarithmic decibel scale. Much like the 

SNR, a higher PSNR is generally associated with a higher quality of reconstructed 

image. The equation for PSNR is as follows: 

𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10 (
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
)

2

= 20 𝑙𝑜𝑔10 (
𝑀𝐴𝑋𝐼

2

√𝑀𝑆𝐸
)   (2.6) 

Here MAXI represents the maximum signal value from the original image and 

MSE represents the mean squared error which is the mean of squared error values 

represented as the difference between the actual image and the reconstructed image. For 

the purpose of image processing, MSE helps compare the pixels of original image to the 

degraded image. For a noise-free monochrome image, MSE is represented as follows: 

𝑀𝑆𝐸 = ∑ ∑ [𝐼(𝑥, 𝑦) − 𝐾(𝑥, 𝑦)]2𝑛−1

𝑗=0

𝑚−1

𝑖=0
  (2.7) 
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Here I is the matrix data of the image for m rows of pixels and n columns of 

pixels. The indices of the rows and columns are x and y. K represents the matrix data of 

the degraded image. 

 

2.6 Wiener Deconvolution 

The process of reversing the convolution to restore a signal is called 

deconvolution. It is an inverse filtering technique that finds its use in reconstruction of 

images in image processing systems. If an image is blurred using a low-pass filter, 

deconvolution can be employed to attempt to reconstruct the original image by restoring 

the original signals or the pixels. Every time a signal from an image is altered, either by 

breaking it down to a blur or by picking up the pixels and restoring the image, some 

noise is added to the signal. Thus it is important to have an inverse filter that optimizes 

the tradeoff between deconvolution and reduction of noise. This can be done by means 

of a unique restoration algorithm for each type of degradation causing the noise and 

eventually combining them all together.  

 

The Wiener filter is capable of removing the noise while it also inverses the 

blurring [19]. It works by minimizing the overall MSE in the process. Wiener filter 

employs Wiener deconvolution for inverse filtering. Wiener deconvolution, a 

mathematical expression named after Norbert Wiener, is a functional representation in 

the frequency domain that reduces the influence of deconvolved noise at frequencies 

with incidences of a poor SNR. Since, estimating the frequency spectrum of most images 
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is fairly convenient, Wiener deconvolution finds popularity in deconvolution of images 

among engineers and researchers [7], [20].For a system, convolution of an input signal 

(x) with an impulse response (p) summated with additive noise (n) that is independent of 

(x) results in the observed signal (h) within the time constant (t) in a time-invariant 

system. This convolution can be expressed as follows as a function of time (t): 

ℎ(𝑡) = 𝑝(𝑡) ⊗ 𝑥(𝑡) + 𝑛(𝑡)      (2.9) 

 

However to restore the signal x by means of deconvolution to obtain a signal 

, which is an estimate of the input signal in a time constant situation that minimizes 

the MSE, we need to determine a signal variable  𝑔(𝑡) whose relationship with the 

observed signal in a time constant system with time (t) can be expressed as follows: 

= 𝑔(𝑡) ∗ ℎ(𝑡)    (2.10) 

 

The Wiener filter can help achieve this reconstruction of signal by means of 

employing Wiener deconvolution which helps obtain the value for the function 𝑔 in the 

same time constant situation. This is done by obtaining the Fourier transform of 𝑔 i.e. 

G(f) which is described by the following equation as a function of frequency f in the 

frequency invariant condition: 

𝐺(𝑓) =
𝑃∗(𝑓)𝑆(𝑓)

|𝐻(𝑓)|2𝑆(𝑓)+𝑁(𝑓)
         (2.11) 

 

Here 𝐻(𝑓) is the Fourier transform of h, 𝑆(𝑓) is the mean power spectral 

density of the input signal and 𝑁(𝑓)  is the mean power spectral density of the noise. H* 
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is a complex conjugation. Thus the equation described earlier for the reconstructed 

signal in the time domain, can be filtered in the frequency domain using the following 

Fourier transform of the equation: 

= 𝐺(𝑓)𝐻(𝑓)    (2.12) 

An inverse Fourier transform of  will provide us the value of  
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CHAPTER 3 

REVIEW OF LITERATURE 

3.1 Microscopy 

The field of studying and observing small objects, invisible to the naked eye, is 

called microscopy. The word is derived from Greek μικρός (mikrós) meaning "small" and 

σκοπεῖν (skopeîn) meaning "to look". Microscopy has had a long and ever-changing 

history with the advancements seen in technology since the first microscope was 

invented. We started with simple magnifying lenses to building up the simple compound 

microscope. What is more astounding is that it was two spectacle-makers, Hans Janssen 

and his son Zacharias Janssen, or Hans Lippershey, who were the pioneers of this 

invention. [21]. As the curiosity to learn more about microorganisms augmented, the 

need to develop more sophisticated microscopes seemed pragmatic. Thus, the first 

compound microscope came into being in early 1600's. 

 

Following the invention of the first one, other designs of microscopes followed. 

Galileo Galilei modified the design of his telescope to view miniscule objects in 1610, 

but it was not until 1624 till he first created an improvisation to the traditional 

microscope designs. Giovanni Faber was the one to identify Galilei's instrument as a 

compound microscope and coined this term in 1625 [22]. As more and more 

sophisticated microscopes developed, the scope of microscopy expanded. From the 
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simple intent to view small objects, microscopes began gaining popularity among 

biologists. For instance, Antonie Van Leeuwenhoek discovered blood cells and sperm 

cells using one of the finer designs of the compound microscope. By 1676, he had 

already reported the existence of microorganisms [23]. 

Figure 3.1: Parts of a modern compound microscope and ray diagram of the compound 

microscope: An inverted magnified image of the sample is produced by the objective lens 

and the eyepiece projects a further magnified virtual image into our eye. [25] 

 

The major part of advancements in the mechanics and mechanism of microscopes 

was during the 18th century, mostly in Italy. For the most part, major changes were being 

made to devices that help attain good focus or hold specimens in place. As solutions to 

different errors in the use and applicability of microscopes were found, better 

microscopes were developed. With Chester Moor Hall’s discovery of the combination 

lenses to reduce chromatic aberrations, finer and more accurate microscopes were 
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designed. The first one with these adjustments was developed in 1774 by Benjamin 

Martin [24].  

 

In 1964, Humes and Gooding [26] used a conventional compound microscope as 

a dissecting microscope for the study of copepods. They used a wooden slide to mount 

their specimen in an attempt to study the organism. In their study, they also suggested the 

use of Harding's [27] design, where an individual could operate the microscope with knee 

movements, rendering the hands free for use in dissection. A basic conventional light 

microscope, like the one used by Humes and Gooding, consists of two convex lenses, one 

for the eyepiece and the other known as the objective. Although, the instrumentation has 

become more sophisticated over the years, the basic principles and mechanisms of the 

working of microscopes are still the same (Figure 3.1). 

 

There are two basic principles of microscopy: magnification and resolution [28]. 

The ability to enlarge an object or an area under the field of a microscope is called 

magnification. Magnification can be a result of use of a set of magnifying lenses or other 

physical principles that vary depending on the type of microscope in use. However, as 

much as it is important to increase the size of the image of an object, it is also important 

that we are able to view it as a set of well-defined comprehensible images and not just a 

blur. This ability to view two or more closely spaced objects as distinct is known as 

resolution. The higher the resolution of a microscope, the greater its ability to provide 

clear magnified images of the object of interest. 
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Researchers have worked for long to come up with radical options for improving 

upon these principles on which microscopes are based. For instance, in his book in 1901, 

Bausch describes the basic features, types and uses of the microscopes and the 

possibilities of manipulating the instrument to enhance its properties [29]. Bausch 

described manipulations like addition of magnifiers, use of magnifiers of different 

magnifying powers, etc. to increase the magnification. He further acceded to the 

limitation of a microscopes resolution as is defined by the Abbe's diffraction limit 

(described in earlier sections). As Bausch addresses this issue in his text, he furthers a 

manipulation to the microscopes by means of using sub-stage illuminator or condenser 

known as the Abbe condenser. This set up has two designs. A three lens system with a 

NA of 1.42 and a two lens system with NA of 1.20. These manipulations were known to 

improve the resolution of a microscope by means of altering the volume and angle of 

illumination. 

 

However, despite such manipulations, it has been difficult to break the physical 

barrier of the diffraction limit. Use of shorter wavelengths has been helpful to some 

extent. For instance, a much recent study on study of hydrophilic structures of the cells 

made use of X-rays to image the sample [30]. They were able to obtain very clear and 

high resolution images, unlike the optical microscope that was being used for 

comparison. Despite the perks of a better resolution, the researchers identified the use of 

X-rays as a major limitation to study cellular and sub-cellular iron distribution in a cell 

due to poor detection limits. Additionally, other researchers have identified the use of 

such short wavelengths in being harmful for a live biological specimen [31]. Thus, this 
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brings us to believe that optical or light microscopy, being a safer procedure, can be 

manipulated to improve resolution and further avenues in this direction need to be 

explored. 

 

3.2 Super-resolution Microscopy 

In an attempt to improve the resolution of optical microscopes by breaking 

through the barrier of the diffraction limit, Superresolution microscopy came into being. 

Super-resolution techniques essentially allow us to attain a resolution greater than the 

diffraction limit. 

There are three basic methods of achieving Superresolution in the field of 

microbiology [30], (Figure 3.2): 

1. Single molecule localization based techniques: 

These include photoactivated localization microscopy (PALM) that works 

by activating individual molecules using low-level activation light, usually the 

violet spectrum of visible light. This helps in localizing every single molecule of 

interest, and this helps in identifying their location. Once all molecules are 

localized, stochastic optical reconstruction techniques (STORM) are used to 

superimpose the location of these molecules. This technique makes use of 

Gaussian function to do so. Once the locations (by the order of nanometric 

precision) are superimposed upon one another, a super-resolved image can be 

obtained. 
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Figure 3.2: Superresolution techniques: A. PALM/STORM techniques used for 

attaining super-resolution by means of photolocalization of stimulated particles. 

Positions of activated fluorophores is acquired in the acquisition sequence. As 

they are localized, the images are superimposed to attain super-resolution. B. SIM 

technique is used to attain super-resolution by means of the moiré effect. Fringed 

illumination pattern is projected upon the sample as interference of the patterned 

light and structures of the sample results in super-resolution. Deconvolution 

methods and Fourier transformation is done to functionally resolve the image. C. 

STED is another method of obtaining super-resolution by projecting a series of 

excitation and depletion beams to the sample. As a series of fluorophores are 

excited, and molecules become visible before they fluoresce, images are taken 

and concatenated to obtain a super-resolved image. (Obtained from Coltharpe and 

Xiaou, [30]) 

 

PALM was first used by Betzig et al, 2006 [31] in an attempt to devise a 

method to image intracellular proteins at nanometer spatial resolution. They 

activated sets of photoactivable protein molecules which were further localized 

from 2-25 nm. After bleaching the sample, the cumulative positions of the sets of 

protein molecules were obtained and used for superresolution imaging. The 

researchers were successful at imaging small protein particles like vinculin, acting 

and retroviral protein Gag using this method. 
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Simultaneous to the development of the PALM technique, Rust et al, [32] 

developed another photolocalization technique to attain superresolution. The 

researchers made use of photoswitchable fluorophores where the activated 

fluorophores went through a series of imaging cycles for the process of localizing 

their positions. Only a fraction of fluorophores were activated in one imaging 

cycle and another fraction over the consecutive cycles. As all the positions were 

obtained, they were aggregated to obtain superresolution. The resolution these 

researchers obtained was to the order of 20 nm.  

 

These two techniques work hand in hand, and have helped researchers 

attain superresolution for imaging live cells with much precision [33]. These 

methods eventually became quite well-known for obtaining sub-diffraction 

resolution. 

 

2. Point Scanning Method: 

The second method of obtaining superresolution is a point scanning 

method. The most common technique that has been used for this purpose is called 

stimulated emission-depletion or STED. This technique makes use of concentric 

excitation and depletion beams that are projected at the sample. The fluorophores 

get excited in the diffraction-limited zone by the emission beam. The depletion 

beam on the other hand brings the molecules, neighboring the 30-80 nm central 

zone, to the ground state before they completely fluoresce. This leads to the 

formation of a super-resolution point spread function. These beams systematically 
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get projected onto the entire sample in an attempt to obtain all the super-resolved 

images. 

 

Hell et al, [34] devised this technique and employed it as early as 1994. 

They obtained a resolution of 35 nm in wide field microscopy. They also 

propounded the use of this technique to obtain three-dimensional images of 

translucent samples. Similar technique was then used by other researchers as they 

obtained sub-diffraction limit resolution and were successful in obtaining not just 

high resolution images, but essentially three-dimensional images of the structures 

of interest [35], [36], [37]. 

 

3. Structured Illumination Microscopy: 

The third technique, and the highlight of this project, for attaining 

superresolution images is called structured illumination microscopy or SIM. This 

technique was being developed by Neil, Juskaitis and Wilson [38] and then 

perfected by Gustaffson [7] around the time when STED had started gaining 

popularity. This technique works in principle with the moiré effect that is 

primarily just a visual perception that results from combination of two or more 

superimposed patterns with lines or dots. SIM makes use of excitation light to 

develop an illumination pattern that can be superimposed upon the structures to be 

imaged. Interference from this illumination pattern and the illumination from 

different structures can then undergo Fourier transformation to obtain 
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superresolution images. Further, details of the same are discussed in the following 

section. 

 

Thus, it is safe to say that superresolution has exceptional application in the 

domain of microscopy, especially for imaging microbiological structures and organisms 

using visible light. The various methods have proved useful in their respective 

applications. However, there are still gaps in the evidence of use of functional methods of 

superresolution, like SIM, in providing unprecedented results within the scope of 

resolution of microscopes. This area needs greater exploration to strengthen the available 

evidence to drive the use of this technique in practical and commercial scenarios. 

 

3.3 Structured Illumination Microscopy 

Structured illumination microscopy or SIM is one of the techniques that helps 

attain resolution beyond the diffraction limit, as explained by Ernst Abbe. It was first 

introduced by Neil et al [38] after a study that was examining the use of optical 

sectioning procedure to eliminate the background noise that is observed in wide field 

microscopy. They imaged a lily pollen grain using their set up, and they found that their 

images, obtained from wide field optical microscope, were at par with confocal 

microscopes. Additionally, all the background noise that was basically out-of-focus could 

be eliminated using SIM. This helped attain high resolution images with greater focus. 
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Following this, Gustaffson et al, made use of the same principle to improve the 

lateral resolution in a linear [7] and a non-linear form [39]. In the first experiment, the 

researchers illuminated the sample with a series of excitation light patterns. These 

patterns were then processed linearly to reconstruct the image. The resolution of the 

reconstructed image was twice the original image (Figure 3.3). In the second experiment, 

the researchers primarily demonstrated SIM making use of the non-linearity that occurs 

due to saturation of excitation. By this method of image processing, they were able to 

attain a resolution of <50 nm. 

 

Figure 3.3: Application of SIM and linear image processing. All pictures represent 

Fourier transformed images: A. Original image of the sample with normal illumination, 

B. Image of sample with SI; notice arrows represents displaced information from other 

regions superimposed on the normal information, C. Recombination of images, D. 

Reconstructed image using information from other patterns; notice that in the final 

reconstructed image gain details by an order of 2 beyond the original image [7]. 

 

SIM is a simple procedure and has gained vast popularity among the scientists 

and researchers. It can be performed to obtain 2D or 3D images [40] and works well on 
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transparent specimens in unification with fluorescence microscopy [41] by excluding 

emission from fluorophores have a potential to add noise to the actual image signal.  

 

These experiments reinforced the importance and application of SIM. However, it 

is important to understand how the SIM actually works. The illumination pattern, which 

is the unique feature of SIM, can be produced in different ways. The interference pattern 

that is obtained during SIM is often described as fringes that are known to be sinusoidal 

in nature. Often researchers have made use of a mechanically moving diffraction grating 

at low speed to produce these sinusoidal fringes [7]. However, the low speed of the 

motion of these gratings was also the cause of low precision of the phase shifts that 

resulted due to the interference of the illumination pattern and the sample upon 

superimposing the two. 

 

Thus, techniques were developed to increase the precision of movement and 

speed of this motion. One such way to overcome the limitations of physical grating use in 

SIM can be achieved by the use of spatial light modulators or SLM. An experiment 

conducted by Chang et al. [40] made use of the SLM to obtain desired images. The 

researchers intended to generate interference illumination patterns are four positions: 0 o, 

45 o, 90 o and 135o. They used a LCD SLM to for altering the patterns and noticed that 

this process was quite rapid and very precise. Additionally, they obtained the four 

interference patterns at a high contrast and equivalent periods. This allowed them to 

attain high and accurate lateral resolution. This study was done on biological specimen 
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and proved useful for the same. An SLM is essentially a mask placed between the light 

source and object that helps selectively illuminate the sample. The most widely used light 

source in these spatial modulators for the purpose of illumination is the light emitting 

diode or LED. It is known to be cost-effective and with the narrow emission bandwidths, 

LED's have a low spatial coherence which results in reducing any speckle noise. One 

such SLM that can uses LED as a light source is called the Digital MicroMirror Device or 

DMD. 

 

3.4 Digital Micromirror Device 

 

A Digital Micromirror Device (DMD) is an optical semiconductor micro 

electromechanical (MEMs) device used for DLP projection technology (Figure 3.4). It 

was invented by Dr. Larry Hornbeck and Dr. William E. "Ed" Nelson of Texas 

Instruments in 1987. 

 

Figure 3.4. A Digital MicroMirror Device chip [42]. 
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The DMD is a type of SLM, often called a pixelated spatial light modulators. A 

pixelated spatial light modulator contains a montage of distinct elements and can operate 

by transmission or reflection [43]. A DMD on the other hand makes use of multiple small 

mirrors with discrete pixel elements that are only a few micrometers in size. Hence, it is 

operated by means of reflection. Besides being an SLM, a DMD is also considered to be 

a microelectronic mechanical system or MEMS. It consists of millions of micromirrors 

that are controlled by underlying CMOS electronics. Because DMD uses reflection for its 

operation, it becomes an optical MEMS device. DMD has greater speed, precision and 

broadband capability that puts it above its other counterparts for the purpose of spatial 

light modulation. [44] 

 

Figure 3.5. Two DMD pixels. The figure shows the position in which the mirrors are 

mounted that help attain the on and off stages of the DMD [45]. 
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A DMD consists of a multitude of these micromirrors. These are specifically 

tilting in nature that provide for its ability to generate interference illumination patterns. 

The tilting is caused by torsion-hinges that connect the micromirrors to their mount. The 

hinges permit tilting to either a +12 degree or –12 degree state or the on and off stages. In 

the on state, light from the projector bulb is reflected into the lens making the pixel 

appear bright on the screen. In the off state, the light is directed elsewhere (usually onto a 

heatsink), making the pixel appear dark (Figure 3.5)[45].  

 

Each mirror is mounted atop a static random access memory (SRAM) cell. This 

allows application of voltage to either one of the address electrodes, creating an electro-

static attraction. This generates quick rotations in the mirror until the landing tips make 

contact with the electrode layer. At this point the mirror is electro-mechanically "latched" 

in its desired position [46]. 

 

DMD finds wide applications in the field of microscopy for its high speed, 

efficiency and easy availability. Many researchers have employed it to obtain high 

resolution images. Dan et al [47], used a DMD with low coherence LED as an 

illumination device to obtain superresolution in optical sectioning microscopy. They used 

the DMD for fringe projection and were successful at obtaining lateral resolution of 90 

nm and an optical sectioning depth of 120 µm. Their result indicated the efficacy of use 

of DMD to obtain superresolution in 2D microscopy and good optical sectioning depth in 
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3D microscopy. Additionally, the DMD was found to be cost effective, speckle noise free 

and permitted an ease of access to multi-switchable wavelengths. 

 

Thus, this project is aimed at designing a functional model of reconstructing 

blurred images with high resolution above the diffraction limit. Additionally, we intend to 

make use of the DMD to obtain high resolution two-dimensional images of specimens as 

seen through a fluorescence microscope. The following sections further describe our 

methods and results. 
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CHAPTER 4 

 

STRUCTURED ILLUMINATION 

MICROSCOPY 
 

4.1    Introduction 

4.1.1 Principle of SIM 

Structured illumination microscopy uses sinusoidal illumination to heterodyne the 

high frequencies of the image into the passband of the imaging system.  

 
Figure 4.1: Imaging Process Structured Illumination Microscopy done on a biological 

sample. The central image shows the excitation pattern superimposed [48]. 

 

As described earlier, SIM makes use of the moiré effect. Moiré effect is basically 

a visual perception that is a result of interference of a pattern of lines or dots. The changing 

orientations result in shifting of high frequency components that make up the moiré 

pattern. These components are shifted so that it lied within the bandwidth of the 

microscope. This is a result of a frequency mixing process. Usually, a grid lying in the 

aperture of an illuminating device helps create the moiré effect. The moiré effect thus, 
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helps attain finer spatial frequencies from the sample. These can then be functionally 

processed through Fourier transformation. The information in the interference pattern that 

is otherwise hidden, can be extracted now. To create the interference pattern or the fringes, 

SIM makes use of the grating as a mask or SLMs such as DMDs (Figure 4.2). 

 
Figure 4.2: A set-up of a structured illumination microscopy using a grating [48]. 

 

 

The grating results in development of an excitation field that is sinusoidal in nature. 

The grid can be shifted by means of rotating the micromirrors that make up the DMD. 

This shift rotates the illumination pattern. As multiple low resolution images are obtained, 

they can be appropriately collated to make one high resolution image.  

 
Figure 4.3: The concept of SIM: The moiré effect resulting in interference patterns is 

shown in figure (a). (b) Represents the low resolution information (the circular 

observable region) (c) depicts the sinusoidal interference in frequency domain while (d) 

is representative of offset regions caused by the interference. (e) Represents the collation 

of multiple low resolution images from different orientations and phases. [7] 
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As the high resolution elements are extracted, they are then aggregated together to 

form the final high resolution reconstructed image. Other irrelevant information, mostly 

the blur associated with out-of-focus elements can be rejected. As an end result, a higher 

lateral and axial resolution output can be attained. (Figure 4.3) The optical sectioning 

strength for the 3D SIM and the spatial resolution for 2D SIM increases as the spatial 

frequency of the fringes increases. In the upcoming section the complete understanding 

of structured illumination microscopy is developed.  

 

4.1.2 Illumination Pattern and Reconstruction Components 

Structured light is vital for structured illumination microscopy. The sample is to 

be illuminated by structured light heterodyne the high frequencies of the image into the 

passband of the imaging system. For this project, the illumination mask is in the form of a 

one dimensional grid that presents as a sinusoidal pattern that can be mathematically 

expressed as follows [7]:  

Iexcitation = 1 +  cos(2πfox + φ)    (4.1) 

Here φ is the phase and f0 is the frequency of the pattern. In Matlab, this equation 

can be implemented in discrete Fourier transforms which, in frequency domain, can be 

described as follows:  

Iexcitation = δ(f) + 
1

2
δ(f+f0)e-iφ + 

1

2
δ(f-f0)eiφ              (4.2) 

If an illumination pattern is applied on an input signal h(x), it can be presented as: 

ℎ𝑖(𝑥)  =  ℎ(𝑥)  ∙  (1 +  𝑐𝑜𝑠(2𝜋𝑓𝑜𝑥 +  𝜑))   (4.3) 
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The Fourier transform of this equation can then be represented as: 

𝐻𝑖(𝑓)  =   𝐻(𝑓)  +  
1

2
𝐻(𝑓 + 𝑓0)𝑒−𝑖𝜑  +  

1

2
𝐻(𝑓 − 𝑓0)𝑒𝑖𝜑 .    (4.4) 

The three components formed in Equation 4.4 have high frequency information contained 

in them which as separate components can be showing by Figure 4.4 [40]. 

 
Figure 4.4: The observed Hi (f) is a sum of three contributions required for 

superresolution. 

 

The components characterized by f + f0 and f − f0 are the higher order 

frequencies that contain information outside the passband of the optical system which are 

used to create the higher resolution image. In order for these to be represented within the 

passband, the frequency f0 must be less than the cut-off frequency of the OTF of the 

optical system [38]. 

 

Thus the resultant signal 𝐻𝑖(𝑓) along with the illumination pattern aliases some 

higher frequency components down into the passband. [7], [49], [50] Thus, the passband 
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allowed by the OTF, now has various overlapped components of higher and lower 

frequencies [51]. 

 

The observed 𝐻𝑖(𝑓) is a sum of three contributions, and it is not possible to separate them 

using a single𝐺𝑖. In order to get the three components in Equation 4.4, the three different 

illumination pattern should be applied with at least three phase values. In the case of two-

dimensional images at least three phases and different orientations are required [52]. 

 

4.1.3 Blurring Process 

By definition, the point spread function (PSF) describes the response of an 

imaging system to a point source or point object. Consider that we are viewing an 

original image, f(x), through an Linear Translation Invariant (LTI) imaging system, the 

information that can be observed through it, (x), is the information allowed by the PSF of 

that system, [7] , [40] , [49], [51]. 

h(x) = PSF * f(x) + n(x)    (4.5) 

Where * is convolution and n(x) is noise present in the system. This principle can 

be better understood in the frequency domain: 

H(f) = OTF ∙ F(f) + N(f)    (4.6) 

Where H(f), F(f), and N(f) are the Fourier transforms of h(x), f(x), and n(x), 

respectively, and the Optical Transfer Function (OTF) is the Fourier transform of the 

PSF. [52].  
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As we can see that the output signal, h(x), has a different peak value and has lost 

some of the details that existed in the input, f(x).This means that the PSF has widened 

and blurred some of the details of f(x) [51], [52].The following figures (Figure 4.7) 

represents the above in the frequency domain: 

 

Figure 4.5: Effect of PSF on a signal in frequency domain. Left: Input signal Fourier 

transform, F(f), Right: Output signal Fourier transform, G(f). 

 

Here the OTF caused the output, H(f), to lose frequency components beyond the 

cutoff frequency of the OTF that existed in the input, F(f) [51], [52]. Representing a 

microscope system mathematically by equations (4.5) and (4.6) allowed researchers to 

develop Superresolution techniques [49], [51], [52].  

 

Abbe’s theory [1] showed that diffraction limits define a finite range of spatial 

frequencies that can be transmitted through a microscope. Consecutively, we can design a 

PSF with a shape that would represent the effect of viewing an image through the lens of 

a microscope.  The same phenomena can be applied to simulate the process of structured 

illumination microscopy mathematically, which would further allow us to simulate the 

effects of an imaging system on an image in Matlab.  
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𝑂𝑇𝐹 = 𝑒−2((𝜎𝑥𝜋(𝑓𝑥−255))2+(𝜎𝑦𝜋(𝑓𝑦−255))
2

)   (4.7) 

To simulate the effects of blurring which is introduced by a typical optical 

microscope, we will have to select an OTF that would replicate this effect 

mathematically. In this simulation, only the effects of blurring has been taken into 

account. Other type of noise errors have been neglected. The OTF of an optical 

microscope can be represented by [49], [51]. 

 

4.1.4 Applying Structure Illumination 

  After the generation of illumination patterns and blurring of the image, the 

process of structured illumination is to be performed. Since we are implementing 

structured illumination microscopy with three phase shifted images, we would need three 

illumination patterns with phases, φ=0, 
2π

3
, and 

4π

3
 . Appling these phase to equation 2.3, 

structured illumination pattern takes the form: 

𝑖 = 1 + cos(2𝜋 (𝑓0𝑥 + 𝑓0𝑦) + 𝜑)    (4.8) 

The components are selected so that the excitation pattern is located within the 

passband determined by the OTF so that higher frequency components can be viewed and 

extracted [49], [51]. These illumination patterns, seen as a pattern of parallel stripes on 

h(x, y), are coded in Matlab. 
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For 2D images, let us assume an image to be represented as f(x,y). The 

illumination patterns are imposed on the image, 𝐹(𝑓𝑥, 𝑓𝑦), which the Fourier transform of 

the image. In Fourier domain, H(f) is the transform of the output image h(f). The 

imposition of these three illumination patterns and the effect of viewing these images 

through an optical microscope can represented as: 

𝐻1(𝑓) = 𝐹(𝑓𝑥, 𝑓𝑦)(𝑃𝑎𝑡𝑡𝑒𝑟𝑛1(𝜑 = 0)) ∙ 𝑂𝑇𝐹  

     𝐻2(𝑓) = 𝐹(𝑓𝑥 , 𝑓𝑦) (𝑃𝑎𝑡𝑡𝑒𝑟𝑛2( 𝜑 =
2π

3
)) ∙ 𝑂𝑇𝐹           (4.9) 

𝐻3(𝑓) = 𝐹(𝑓𝑥 , 𝑓𝑦) (𝑃𝑎𝑡𝑡𝑒𝑟𝑛( 𝜑 =
4π

3
)) ∙ 𝑂𝑇𝐹 

 

Where IP stands for illumination pattern. In simple terms we now have three 

equations to solve for three components. All these equations are solved in Matlab in 

Fourier space, which can be represented as: 

      [

H1(f)

𝐻2(𝑓)
H3(f)

]  = [

ej0 ej0e-j0

ej0 e
j
2π

3 e
-j

2π

3

ej0 e
j
4π

3 e
-j

4π

3

]  × [

D1

D11

D21

]       (4.10) 

Where D1 represents the central unshifted band, D11 represents shifted sideband 

on one side and D21 represents the other shifted sideband for the first image when i=3. 

Each component has different frequency information used to create a higher resolution 

image. Rearranging to solve for the one unshifted and two shifted components Equation 

(4.2) can be rearranged as 

 [
D1

D11

D21

]  = [

ej0 ej0e-j0

ej0 e
j
2π

3 e
-j

2π

3

ej0 e
j
4π

3 e
-j

4π

3

]

-1

 × [

H1(f)

𝐻2(𝑓)
H3(f)

]                              (4.11) 
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When we solve for the three independent linear components in Matlab, one 

component is unshifted and other two of the components are shifted [52]. These shifted 

components carry the frequencies that were not accessible by the passband of the OTF.  

The unshifted component is retained as it is and the shifted components are to be moved 

in Fourier space to shift the spatial frequencies of these components from being centered 

at f - 𝑓𝑜 and f + 𝑓𝑜  to being centered at 0 [49], [51], [52]. After the shifting of these 

components towards 0, all of these components can be combined appropriately to obtain 

a superresolved image.  

 

4.1.5 Reconstruction Process 

Wiener deconvolution can be used to increase image resolution by a factor of 2 

[7] and [49]. In this thesis we used Wiener deconvolution for image reconstruction for 

super-resolution while neglecting external errors introduced because of noise.  

 

Figure 4.6: Two shifted components and one original unshifted component acquired with 

0° illumination pattern at three phases, reconstructed to form a higher resolution image in 

Fourier space. [40]. 
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For calculation of these three components, required for super-resolution, each 

component is considered to be a separate low resolution image. Each lower resolution 

image would need a separate and different OTF. Centralbands of these components are 

left as it is but the sidebands of these components are to be shifted back to the central 

frequency. The components can now be represented as 

D1: (fx, fy) = OTF × F(fx, fy) 

       D1i: (fx, fy) = OTF × F(fx − fxi, fy + fyi)                      (4.12) 

D2𝑖: (fx, fy) = OTF × F(fx + fxi, fy − fyi) 

These components are for one single image illuminated by one of the phases of 

the three phases. The low resolution component bands showed in Equation 4.13 can be 

used to define the shifted versions of the OTF corresponding to the components. These 

are required for the deconvolution in Matlab. For the central unshifted band: OTF1 =

 OTF (fx +  0, fy +  0); for the shifter band 1: OTF2 =  OTF (fx +  fox1, fy −  foy1) 

and for shifted band 2: OTF3 =  OTF (fx −  fox1, fy +  foy1). 

 

Since these patterns in Fourier space represent different perspective of the same 

object, we have to figure out to how to use these components for resolution enhancement 

so that each low resolution image can contribute to increase in image quality. Wiener 

deconvolution for such purpose was introduced in [7], [53] to deconvolve different 

images acquired from various other sensors. Here it would be used with various shifted 

OTFs. So the shifted version of the components as represented in Figure 4.8 can be 

defined as 
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𝐷1 =  𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑏𝑎𝑛𝑑1 (𝑓𝑥 +  0, 𝑓𝑦 +  0) 

 𝐷2 =  𝑆𝑖𝑑𝑒𝑏𝑎𝑛𝑑11 (𝑓𝑥 −  𝑓𝑥1, 𝑓𝑦 +  𝑓𝑦1)                       (4.14) 

𝐷3 =  𝑆𝑖𝑑𝑒𝑏𝑎𝑛𝑑21 (𝑓𝑥 +  𝑓𝑥1, 𝑓𝑦 −  𝑓𝑦1) 

Components represented in Equation 4.14 and 4.15 are used to reconstruct the 

image using Wiener deconvolution as proposed in [7] [49] [52]: 

  F(fx, fy) = 
∑ OTFi 

*
∙ Di

3
i=1

ε + ∑  |OTFi|
23

i=1

               (4.16) 

Where OTFi represents the components defined in 4.14, ∗ represents the 

conjugate of 𝑂𝑇𝐹𝑖, Di represents i = 1 to 3 representing three images and 𝜀 is noise to 

signal ratio. F(fx, fy) is inverse Fourier transformed to given us the superresolved image 

f(x,y).The next section explains the complete simulated process of structured illumination 

microscopy. 

 

4.2 Simulation 

4.2.1 Simulation Design 

The simulation process was designed on Matlab 2013a. The computer used was 

an Acer 5740G, 2.27-GHz Intel Core i5-430M processor and 4GB of DDR3 RAM.  

The Matlab code was written step by step in accordance with the simulation design which 

is shown in Figure 4.7: 
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Figure 4.7: Simulation Process 

 

4.2.2 Image acquisition and pre-processing 

The first step for the simulation deals with reading an image for the complete 

process. To assess effectiveness of the simulation a total of four images were used.  All of 

the images used were high resolution images with sharp edges, high level of detail, 

smooth areas, and contrast, which made them ideal for testing reconstruction methods 

and to generalize the study in a broader context. 

So let us assume an image f(x, y) as represented in the Figure: 
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Figure 4.8: An electron microscope image of digestive tubule cell of Elysia clarki, 

densely packed with sequestered chloroplasts, where C = chloroplast and N = cell 

nucleus. Scale: 3 µm. Image resolution: 2000 × 2000 px [54]. 

 

The image was read in Matlab and then greyscaled. The maximum intensity of the 

image was limited to 1000. After this, 2-D fast Fourier transform was applied to the 

image to convert the image for Fourier calculation for the next steps. Discrete Fourier 

transform results in the image as F(fx, fy) in frequency domain. For simulating the SIM 

process and analyzing the theoretical results, we used a total of 4 microscopic images. 

One has been already shown in Figure 4.8 the other three are shown in Figures 4.9, 4.10, 

4.11: 
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Figure 4.9: An electron microscope image of L-form Bacillus subtilis, showing a range of 

sizes. Scale: 10 µm. Image resolution: 1824 × 1824 px [55]. 

 

 

Figure 4.10: 3-FOLD EMBRYO( Nerve Ring) of  frozen C. elegans. Scale: 1 µm. Image 

resolution: 1020 × 1020 px [56]. 
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Figure 4.11: Transmission electron microscope image of a chloroplast of Coleus blumei. 

Scale: 500 nm. Image resolution: 2048 × 2048 px [57]. 

 

4.2.3 Blurring Process 

For the purpose of simulating an image to seem as one obtained from a low 

resolution microscope, a blurring process was conducted using the software. 

The OTF described in Equation: was realized in Fourier space in Matlab. Then the 

function 𝐹(𝑓𝑥 , 𝑓𝑦) was multiplied with the OTF which resulted in 

H(fx,fy) = F(fx,fy) ∙ OTF          (4.17) 

Since F(fx, fy) is matrix in space hence (.) represents element-wise multiplication. 

Applying inverse Fourier transforms to H(fx,fy) resulted in it being converted back to the 
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spatial domain resulting in the blurry image, h(x, y) which can be seen in the resultant 

image in the Figure 4.12.It can be clearly seen that the image has lost it sharpness and 

small features are blurred to such an extent that the fine structures present in the image 

are no more resolvable, i.e., the blurred image has lost its resolution to some extent. 

 

Figure 4.12: Blurred image of Figure 4.10 

 

Thus, because of the OTF, the higher frequency components were blurred and 

hence became hard to recognize.   

 

4.2.4 Illumination Pattern 

For this project, we decided to perform the structured illumination microscopy 

process using three illumination patterns. The illumination patterns were coded as a two 
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dimensional matrix in Matlab. The dimensions of the matrix were kept equal to the 

dimensions of the input image f(x, y).  

The illumination patterns were created using Equation 3.2 with phase shifts of 

φ=0, 
2π

3
, and 

4π

3
. The illumination pattern can be seen in the following Figure 4.13: 

 
Figure 4.13: Illumination Pattern with phases, φ=0 

 

 

These illumination patterns were applied to the image H(fx, fy) resulted in a 

pattern of parallel stripes to be imposed on the image. For this process, both the image 

and the pattern first underwent 2-D fast Fourier transform and then element wise 

multiplication was done between the image and the illumination pattern in Matlab. 2-D 

inverse fast Fourier transform was applied to the result after the pattern application 

process. 
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4.2.5 Image Reconstruction Process 

Component Extraction: In the reconstruction process, the first step was to 

extract the SI components in accordance to the Equation 4.3. The inverse matrix in the 

equation was entered in Matlab, which was multiplied altogether with the three image 

files procured after pattern application in matrix form. 

Shifting of Components towards 0: We ended up with three independent linear 

components in Matlab of which one component was not shifted and other two of the 

components were shifted [5]. The unshifted component was retained as it was and the 

shifted components were to be moved in Fourier space to shift the spatial frequencies of 

these components from being centered at f - fo and f + fo  to being centered at 0 [2], [4], 

[5]. For this process we used a function in Matlab, FourierShift2D.m, which is quite 

famous in the Matlab community. This function shifted the components cyclically. The 

function used the Fourier shift theorem. It utilized the principal that real inputs should 

give real outputs which stands true for images. 

 

Wiener Deconvolution: The three low resolution images were then reconstructed 

using Wiener deconvolution process according to the Equation 4. The equation was 

realized in Matlab and the components of the two shifted images, which had now been 

shifted towards 0 of the unshifted image, were deconvoluted. The reconstructed images 

were expected to result in higher resolution or super-resolved images. 

The results from the image reconstruction process and their mathematical analysis will be 

discussed in Chapter 5. 
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4.3 Experiment 

After the theoretical model was developed and the complete process of structured 

illumination microscopy process simulated in Matlab, we wanted to test our model with 

actual experimental data. We decided to experimentally perform structured illumination 

microscopy in the lab. The experiment used an optical microscope modified for 

fluorescence and a Digital MicroMirror Device to provide structured illumination for the 

process. 

 

4.3.1 Experimental Set-up 

 
Figure 4.14: Flowchart representation of the experimental setup 
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The complete experimental setup can be understood by the flowchart in Figure 

4.14. The main components of the experiment will be explained in the following sections. 

 

4.3.2 Apparatus 

4.3.2a Fluorescence Microscope 

The microscope used for this experiment was a Nikon Eclipse E600 which had 

been modified for fluorescence microscopy.  

 
Figure 4.15: Nikon Eclipse E600; Notice the Epi-Illuminator or the Mercury Lamp 

illumination source which would be replaced with a DMD for this study. [58] 

 

It was fitted with a Nikon 10X objective with 0.45 aperture. For this experiment, a 

Nikon Blue Excitation Filter Block B-1A was fitted in the microscope. It worked by 

passing excitation blue light of wavelength ~ 470-490 nm through itself. The original 

illumination source in our microscope was a Nikon HMX-4 Mercury Lamphouse. This 
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light source was removed from the microscope and the DMD was integrated through the 

Aperture Diaphragm. 

 

4.3.2b. Digital Micromirror Device 

A Digital Micromirror Device, manufactured by Texas Instruments, was used as a 

spatial light modulator in structure illumination microscopy. The DMD used for the 

purpose of this project was LightCrafter 4500 by Texas Instruments. It houses its own set 

of RGB LEDs as it illumination source. 

 
Figure 4.16: LightCrafter 4500 

 

The Lightcrafter 4500 comes with its own set of integrated optics. The LightCrafter 

4500 featured a 0.45 WXGA chipset with its own light engine. Features: 

 Two configurable input/output triggers 

 RGB LED light engine with 150L light output 

 Onboard LED Driver with 0-5A LED Driver 

 Native DLP4500 resolution (912x1140) 

 Image or video display up to WXGA resolution (1280x800) 
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4.3.2c. Charge-coupled Device Camera 

A CCD camera from AmScope model MU300 was used to capture images for the 

experiment. The camera had a 3.1 Megapixel 1/2" color CMOS sensor which supports a 

maximum resolution of 2048 x 1536 pixels.  

 

4.3.3 Procedure 

The first step was to integrate the DMD with the microscope so that the 

illumination pattern produced by the DMD can be viewed in the sample plane of the 

microscope. The original illumination source of the microscope was removed to make 

way for the DMD. When the DMD was being integrated to fit as the Light Source of the 

Fluorescence Microscope, a problem was discovered with the Light Crafter 4500. The 

DMD chip was not in the same axis as its lens system. The focusing lens was found to be 

a bit off axis in respect to the DMD chip. So the integrated lens system had to be 

removed  

 
Figure 4.17: LightCrafter 4500 with its integrated optics removed. 

The DMD was then placed in front of the aperture at a distance equal to the focal length 
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of the DMD chip. For DMD to successfully project without loss in intensity and contrast 

in the focal plane of the microscope, the incoming light from the DMD had to be in a 

straight axis with the Aperture Diaphragm of the microscope. The image from the DMD 

was finally resolved on the sample plane of the microscope but there was a huge loss in 

intensity. The intensity pattern produced was faint when views on a sample object.  

 

 
Figure 4.18: DMD placed on the axis of the Aperture Diaphragm of the microscope. 

 

For the experiment, a fixed cover slip containing fluorescence fibers was used. 

Fluorescent materials have characteristic light absorption and emission spectra. Upon 

absorption of photons of the excitation wavelength, fluorochromes become excited into a 

higher, unstable energy state. This instability is then relieved by the subsequent 

production of photons of a lower energy emission wavelength. Here, the fluorescence 

fibers absorbed the blue light and emitted green light. 
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Figure 4.19: The complete experimental setup 

. 

For implementing structured light illumination, high accuracy fringe patterns of 

912 x 1140 pixels with phases, 𝜑 = 0,
2𝜋

3
, and 

4𝜋

3
  patterns were created in Matlab in 

Bitmap image format. 

      

Figure 4.20: Phase shifted illumination Pattern with phases, φ=0, 
2π

3
, and 

4π

3
, respectively 
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All of the images were pixel matched to the pixel elements of the DMD to 

increase the effectiveness of the pattern. The uniformity tested with Matlab can be seen 

as shown in Figure 4.21: 

 
Figure 4.21: Pixel matching and inspection in Matlab 

 

All of the patterns with different phase shifts and periodicity were stacked on an 

.IMG image file and a custom firmware was created to be loaded on the DMD SRAM. 

The Texas Instruments original firmware present on the DMD was deleted from the 

DMD’s memory and the custom firmware was loaded by connecting the DMD with a 

computer through a microUSB cable. The patterns were then controlled by the 

LightCrafter 4500 GUI for projection in Pattern Sequence mode as shown in Figure 4.22. 

For each pattern, Pattern Exposure was done for 5 seconds, Image Load Time was set to 

200 milliseconds and an internal trigger of 5 second was applied. 
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Figure 4.22: DMD Control setting in Pattern Sequence mode on LightCrafter 4500 

 

Image acquisition was performed with the CCD camera with Exposure Time set 

to 0.601ms and Gain set to 3. After the application of structured illuminated light, the 

sample appears to be as shown in the following Figure 4.23. 

 
Figure 4.23: Structurally Illuminated view of the Fluorescence Fibers as seen by the CCD 
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Two computers were used for the experiment, one was used for DMD Control for 

patterns display and the other one was used for Image Acquisition.  The captured images 

were reconstructed by the same algorithm as discussed in section 4.3 but with the OTF 

blurring process removed. The results of the reconstruction process would be discussed in 

the following Chapter 5. 
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CHAPTER 5 

 

RESULTS AND DISCUSSION 

 

The objective of this thesis was to develop the process of Structured Illumination 

Microscopy mathematically and then extended it to actual experimental setup. During this 

research the process of structured illumination microscopy was successfully developed 

mathematically and then the complete process was realized in Matlab as a simulation. 

Then our understanding of the concept was extended to an experiment which featured a 

fluorescence microscope and a Digital MicroMirror Device which was used to create 

structured illumination. 

 

We noticed that our algorithm successfully super-resolved blurred images during 

reconstruction in the simulated tests. A considerable order of magnitude of resolution was 

gained in each of the 4 test images used in this research. In case of the experiment, we 

noticed that we obtained higher resolution images compared to the standard wide field 

image obtained through the same setup.  

 

The results of reconstruction process from the simulation testing of the algorithm 

and the experimental setup with their interpretations are described further in this chapter. 
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5.1 Reconstruction and Qualitative Analysis of Images 

We used a total of four images to test our simulation algorithm. All of these 

images haven been shown in Section 4.3 as Figures 4.10, 4.11, 4.12 and 4.13. All of these 

images had been taken through electron microscopes. The reason for using these images 

to test the algorithm was that these images have very high resolution and high image 

detail. Such images are ideal to compare reconstruction algorithms because it becomes 

easier to differentiate high contrast sharp edges and structures. 

 

One of the important methods of comparing blurred images from superresolved 

images after reconstruction is visual inspection of images. Since reconstruction process 

introduces scaling and some noise in the images, some researchers believe visual 

inspection to be the most important criteria of comparing reconstructed images. For 

instance Schaefer et al [59] developed an algorithm using a parameter optimization 

approach for the purpose of artefact analysis and reduction. Although this was a 

secondary hypothesis, they concluded that the data they obtained using their algorithm 

was actually quite comparable to their interpretation by visual inspection of the images. 

For the purpose of our results, all of the reconstructed images are compared with their 

blurry images in the following figures (Figure 5.1, 5.2, 5.3, 5.4). 

 



67 
 

 

 

Figure 5.1: Top: Blurred image of digestive tubule cell of Elysia clarki; Bottom: The 

reconstructed image. Scale: 3 µm. There is a clear increase in the resolution and 

sharpness of the image. The blur has been reduced to a lot of extant, we can clearly see 

the shapes of structures in chloroplasts that we couldn’t see in the blurred image. Scale: 3 

µm [54] 
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Figure 5.2: Top: Blurred image of L-form Bacillus subtilis; Bottom: The reconstructed 

image. The blur reduced to a lot of extant. There is a clear increase in the sharpness of the 

image. The fine structures at the top right side of the image are much more clear, well 

defined and sharp to see. Thus there is a clear increase in resolution. Scale: 10 µm [55]. 
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.Figure 5.3: Top: Blurred image of FOLD EMBRYO (Nerve Ring) of frozen C. elegans. 

Bottom: The reconstructed image. The image has become sharper and more resolved. The 

structures inside the nerve ring section has sharper edges. The matter scattered inside is 

much more defined and recognizable rather than a blur. Scale: 1 µm [56]. 
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Figure 5.4: Top: Blurred image of a chloroplast of Coleus blumei; Bottom: The 

reconstructed image. There is an increase in the detail which is more visible in the tubule 

structures in the middle of the image. The lines are clearly separated and it is evident that 

the resolution has increased. The blur in the image is considerably less than and 

sharpness and contrast of structures has clearly improved. Scale: 500 nm [57]. 
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5.2 Quantative analysis of the reconstructed images 

The quantative analysis of the reconstructed images can be done by two ways. 

The first method for the analysis is known as Intensity profile. Intensity Profile plots 

pixel intensity of a selected area against the scaled distance of that selected area on the 

image. This process gives us information on the level of sharpness between two images. 

Intensity Profile can be measured between two images on ImageJ. The use of Intensity 

Profile has already been implemented by various researchers because of its effectivness 

in differentiating a normal image from a super-resolved image [47], [60], [61], [62]. 

 

A second way to do quantative analysis of reconstructed images is by examining 

the values of Peak Signal-to-Noise Ratio(PSNR) of an image with that of the others. The 

PSNR of the reconstructed image should be higher as compared to the PSNR of the 

original image to show that the image has gained more detail during the process [17], 

[18]. The effects of scaling and other effects introduced during reconstruction are not 

taken into account by both, the SNR and PSNR . But even then both the parameters 

remain important to science because of their merits among researchers. 

 Analysis of reconstructed image 1: The following Figure (5.5) shows the 

Intensity Profile of the blurred image and the reconstructed image from the Figure 5.1: 
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Figure 5.5 Intensity Profile of Image 1; Left: Intensity Profile of the blurred image; 

Right: Intensity Profile of the reconstructed image. 

 

From the intensity profile  of the blurred image it can be seen that due to blurring, 

the intensity peaks have lost their sharpness and have lost their edgy peaks which clearly 

represents loss of detail. Whereas intensity profile of the reconstructed image contain 

sharp and prominent peaks which represents that the more details with sharp features are 

present in the reconstructed image. This that the image has been super-resolved. 

Table 2: Comparison of SNR (log value) and PSNR (log value) for Figure 5.5 

Metric Blurred Image Reconstructed Image 

SNR 0.2077 5.4684 

PSNR 38.9243 46.4060 
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A higher signal to noise ratio of an image is representative of greater amount of 

signal being processed compared to the background noise. For peak signal to noise ratio, 

a higher ratio is representative of greater peak signal being processed compared to 

background noise. Thus they are well representative of an image’s quality and resolution 

[64]. What we have here are the log values for these variables. Lower log values for the 

reconstructed image mean that the actual values are higher suggesting that the 

reconstructed image has higher resolution and better quality compared to the blurred 

image.  

 

Analysis of reconstructed image 2: The following Figure (5.6) shows the 

Intensity Profile of the blurred image and the reconstructed image from the Figure 5.2: 

 

Figure 5.6 Intensity Profile of Image 2; Left: Intensity Profile of the blurred image; 

Right: Intensity Profile of the reconstructed image. 
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In the case of Image 2, the intensity profile provided similar results as Image 1. 

The number of intensity peaks on the intensity plot for reconstructed image showed 

sharper peaks . There were also more number peaks that were identifiable distinctly for 

the reconstructed image compared to the blurred image. What was peculiar for this image 

was that unlike the original image, areas with lower gray values on the reconstructed 

image exhibited sharp peaks suggesting that those were regions that were primarily 

blurred but could be successfully reassembled with the simulation process. 

Table 3: Comparison of SNR (log value) and PSNR (log value) for Figure 5.6 

Metric Blurred Image Reconstructed Image 

SNR 0.2221 5.7135 

PSNR 41.4438 49.8993 

 

Values of SNR and PSNR are larger for the reconstructed image as compared to 

the original blurred image indicating that there has been improvement in terms of quality 

and resolution. A higher value of PSNR usually indicates that the reconstruction has 

produced a higher quality image.  

 

Analysis of reconstructed image 3: The following Figure (5.7) shows the 

Intensity Profile of the blurred image and the reconstructed image from the Figure 5.3: 
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Figure 5.7 Intensity Profile of Image 3; Left: Intensity Profile of the blurred image; 

Right: Intensity Profile of the reconstructed image. 

 

 Much like the previous two images, in this example as well, the intensity plots of 

reconstructed image exhibited sharper and greater number of intensity peaks compared 

to the blurred image. Here the higher gray value areas were better identifiable for the 

reconstructed image compared to the blurred image. But all in all the reconstructed 

image exhibited better clarity and sharpness compared to the blurred image. 

 

Table 4: Comparison of SNR (log value) and PSNR (log value) for Figure 5.7 

Metric Blurred Image Reconstructed Image 

SNR 0.2317 5.4378 

PSNR 41.6898 49.0634 
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 The SNR and PSNR log values were lower for reconstructed image, suggesting 

higher actual values for these variables. Thus the reconstructed image had higher 

resolution compared to the blurred image.  

 

Analysis of reconstructed image 4: The following Figure (5.8) shows the Intensity 

Profile of the blurred image and the reconstructed image from the Figure 5.4: 

 

Figure 5.8 Intensity Profile of Image 4; Left: Intensity Profile of the blurred image; 

Right: Intensity Profile of the reconstructed image. 

 

 The intensity plots for the reconstructed image showed highly distinct peaks for 

the gray value. It is quite noticeable between the distances of 60-80 nm where in the 

intensity plot of the blurred image we could obtain a single peak which is represented by 



77 
 

two peaks in the intensity plot of the reconstructed image. This clearly shows that regions 

that were not identifiable in blurred image were successfully reconstructed by the 

simulation.  

Table 5: Comparison of SNR and PSNR for Figure 5.8 

Metric Blurred Image Reconstructed Image 

SNR 0.0916 6.0428 

PSNR 36.7134 48.7484 

 

 The SNR and PSNR values for Image 4 were also all higher for the reconstructed 

image compared to the blurred image suggesting a better resolution and quality for the 

reconstructed image. 

 

5.3 Analysis of Experiment Data 

The process of image acquisition was tested with various fringe widths. Because 

of the weak illumination pattern due to losses discussed in section 4.3.3, the best 

illumination pattern was found to be the one with a fringe periodicity of 9 pixel/ period.  

 

For the analysis of the each experimental data set, we first analyzed the images 

obtained after reconstruction of the three SI patterns with the original widefield image. 

After that we did another comparison between the reconstructed image (through the SI 

patterns) with a standard widefield image (superresolved mathematically with the 

simulation algorithm wherein the blurring process removed). 
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 A total of three samples were used for the analysis.  

Sample 1: Microscopic Fluorescence Fibers 

The sample consists a bunch on microscopic fluorescent fibers stacked on a glass 

slide. The three SI images of the sample captured through the CCD are represented 

below: 

 

Figure 5.9: Structurally illuminated patterns captured by CCD camera with phases, φ=0, 
2π

3
, and 

4π

3
, respectively 

 

The standard widefield image of the sample can be viewed in the Figure 5.10. The 

reconstructed image from the SI patterns given in Figure 5.11. 



79 
 

 

Figure 5.10:  Widefield image of the fluorescence fiber sample. 

 

 

Figure 5.11:  SI reconstructed image of the fluorescence fiber sample. 
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There is definite decrease in the optical blur and resolution is gained in the 

process. The intensity profile observed in Figure 5.12 showed finer details of separation 

in the fiber material which was observed better in the reconstructed image than the 

original image because of the optical blur. The intensity profiles showed higher peaks in 

SI reconstructed images. A random region was selected to carry of the intensity profile 

test. The high peak points were indicative of the separation between two structures which 

was not seen in the original widefield image conforming that resolution was gained.  

 

 

Figure 5.12: Intensity Profile; Left: Intensity Profile of the original widefield image; 

Right: Intensity Profile of the SI reconstructed image. 
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These intensity profile plots clearly showed high peaks representing visibly 

resolved structures which confirmed that we had gained resolution in the image and finer 

structures were made visible. The SNR and PSNR values of the reconstructed image with 

original widefield image as reference was calculated as 0.0409 and 19.0130 respectively. 

 

Now the comparison between the experimental SI reconstructed image and the 

standard widefield image reconstructed through improvised simulation algorithm was 

conducted. The standard widefield image as shown in the Figure 5.10 was processed 

through our simulated reconstruction algorithm. This new reconstructed image is shown 

in the Figure 5.13. 

 

Figure 5.13: Reconstructed image of widefield image of fluorescence fiber sample 

reconstructed through the simulated reconstruction algorithm. 
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The second comparison was made between the SI reconstructed image given in 

Figure 5.12 and simulated reconstruction algorithm’s reconstructed image given in Figure 

5.13. The same region that was compared during the comparison between standard 

widefield image and SI reconstructed image were analyzed to help us confirm that actual 

Structured Illumination Microscopy experiment resolved information in a sample the 

most. This analysis has been shown in figures 5.14. 

 

 

Figure 5.14: Intensity Profile of first region; Left: Intensity Profile of the SI reconstructed 

image; Right: Intensity Profile of the simulated reconstruction algorithm’s reconstructed 

image. 

The simulated reconstructed image, as expected did not reveal any new details as 

in the case of SIM reconstructed image. The image looked identical to the original 
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widefield image and the SNR and PSNR values of this image were noted to be 0.0033 

and 32.1906 respectively. The intensity profiles of the SI reconstructed image had higher 

peaks and thus much more resolved information than simulated reconstruction 

algorithm’s reconstructed image.  

Sample 2: Fluorescence Beads 

Fluorescence beads scattered on a glass slide forms this sample.  

The three SI images of the sample captured through the CCD are represented 

below: 

   

Figure 5.15: Structurally illuminated patterns captured by CCD camera with phases, 

φ=0, 
2π

3
, and 

4π

3
, respectively 

 

The standard widefield image of the sample can be viewed in the Figure 5.16. The 

reconstructed image from the SI patterns given in Figure 5.17. 
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Figure 5.16:  Widefield image of the sample. 

 

Figure 5.17:  SI reconstructed image of the sample. 
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There is a decrease in the optical blur and resolution is gained in the process. The 

SI reconstructed image showed finer structures in the dark material of the sample. Also 

the brightest point in the image, i.e., the bright ring is sharper and more defined and 

resoluted in the SI reconstructed image. The intensity profiles of areas of the 

reconstructed image were obtained and we observed higher peaks in SI reconstructed 

images. The high peak points were indicative of the separation between two structures 

which was not seen in the original widefield image conforming that resolution was 

gained.  

 

Figure 5.18: Intensity Profile; Left: Intensity Profile of the original widefield image; 

Right: Intensity Profile of the SI reconstructed image. 
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These intensity profile plots clearly showed high peaks representing visibly 

resolved structures which confirmed that we had gained resolution in the image and finer 

structures were made visible. The SNR and PSNR values of the reconstructed image with 

original widefield image as reference was calculated as 0.0073 and 23.5550 respectively. 

 

Now the comparison between the experimental SI reconstructed image and the 

standard widefield image reconstructed through improvised simulation algorithm was 

conducted. The standard widefield image as shown in the Figure 5.16 was processed 

through our simulated reconstruction algorithm. This new reconstructed image is shown 

in the Figure 5.19. 

 

Figure 5.19: Reconstructed image of widefield image of fluorescence fiber sample 

reconstructed through the simulated reconstruction algorithm. 
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The second comparison was made between the SI reconstructed image given in 

Figure 5.16 and simulated reconstruction algorithm’s reconstructed image given in Figure 

5.19. The same regions was compared during the comparison between standard widefield 

image and SI reconstructed image were analyzed again to help us confirm that actual 

Structured Illumination Microscopy experiment resolved information in a sample the 

most. This analysis has been shown in Figure 5.20. 

 

Figure 5.20: Intensity Profile; Left: Intensity Profile of the simulated reconstruction 

algorithm’s reconstructed image; Right: Intensity Profile of the SI reconstructed image. 

 

The simulated reconstructed image, as expected did not reveal any new details as 

in the case of SIM reconstructed image. The image looked identical to the original 
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widefield image and the SNR and PSNR values of this image were noted to be 0.0527 

and 27.8027 respectively. The intensity profiles of the regions of the SI reconstructed 

image had higher peaks and thus much more resolved information than simulated 

reconstruction algorithm’s reconstructed image.  

 

Sample 3: Gold on Glass 

The sample consists of a thin layer of gold (Thickness: 100nm) deposited in 

geometrical shapes on a circular thin slide of glass. The same analysis as performed for 

the last two samples was carried out here as well.  

The three SI images of the sample captured through the CCD are represented 

below: 

   

Figure 5.21: Structurally illuminated patterns captured by CCD camera with phases, 

φ=0, 
2π

3
, and 

4π

3
, respectively 

 

The standard widefield image of the sample can be viewed in the Figure 5.22. The 

reconstructed image from the SI patterns given in Figure 5.23: 
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Figure 5.22:  Widefield image of the sample. 

 

Figure 5.23:  SI reconstructed image of the sample. 
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There is decrease in the optical blur. The edges of sample became less dispersed 

and more streamlined, sharp and defined indicating resolution was gained in the process. 

The intensity profiles of the reconstructed image was obtained and we observed higher 

peaks in SI reconstructed image. The high peak points were indicative of the gain of 

some higher order components which was not seen in the original widefield image 

conforming that resolution was gained.  

 

Figure 5.24: Intensity Profile; Left: Intensity Profile of the original widefield image; 

Right: Intensity Profile of the SI reconstructed image. 

 

The SNR and PSNR values of the reconstructed image with original widefield 

image as reference was calculated as 0.0033 and 26.418 respectively. 
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Now the comparison between the experimental SI reconstructed image and the 

standard widefield image reconstructed through improvised simulation algorithm was 

conducted. The standard widefield image as shown in the Figure 5.22 was processed 

through our simulated reconstruction algorithm. This new reconstructed image is shown 

in the Figure 5.25. 

 

Figure 5.25: Reconstructed image of widefield image of fluorescence fiber sample 

reconstructed through the simulated reconstruction algorithm. 

 

The second comparison was made between the SI reconstructed image given in 

Figure 5.22 and simulated reconstruction algorithm’s reconstructed image given in Figure 

5.25. Intensity profile comparison between standard widefield image and SI reconstructed 

image were analyzed again to help us confirm that actual Structured Illumination 
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Microscopy experiment resolved information in a sample the most. This analysis has 

been shown in Figure 5.26. 

 

Figure 5.26: Intensity Profile; Left: Intensity Profile of the simulated reconstruction 

algorithm’s reconstructed image; Right: Intensity Profile of the SI reconstructed image. 

 

The image looked identical to the original widefield image and the SNR and 

PSNR values of this image were noted to be 0.0033 and 32.1906 respectively. The 

intensity profiles of the regions of the SI reconstructed image had higher peaks and thus 

much more resolved information than simulated reconstruction algorithm’s reconstructed 

image.  
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The SNR and PSNR values are not reliable to compare the two reconstructed 

images because of errors and artifacts introduced during reconstruction such as scaling, 

noise due to filters, errors due to pattern mismatch in the SIM, etc.  Intensity profiling 

and visual inspection outclasses SNR and PSNR and are the best way to compare 

experimental reconstructed images, known in the scientific community [4], [7], [18], and 

[20]. The use of SNR and PSNR as a metric is useful in comparison of software only test 

images evaluation but not suitable for SIM experimental images [2], [4], [7], and [8]. 
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Chapter 6 

Conclusion and Future Work 

6.1 Conclusion 

This thesis describes the role of structured illumination microscopy in attaining 

super-resolution for images acquired using a fluorescence microscope. However, the 

highlight of this project was to design and test a simulation of structured illumination 

microscopy on as well as extend and test the same for an actual structured illumination 

microscopy experiment. Our primary objective was to attain super-resolution in order to 

break down the physical limitation as posed by the diffraction limit theory. To do this we 

employed structured illumination microscopy or SIM. SIM has been extensively 

employed to study biological samples but the concept of using a simulation to do this 

process is a novel technique. To further the evidence in this direction we designed a 

program in MATLAB that simulates the process of SIM. This would form as a basis to 

create a superresolution algorithm. We tested this on a set of pre-defined images which 

were first blurred and then reconstructed. The quality and resolution of original and 

reconstructed images were compared. Superresolution was achieved during this process. 

We then extended our approach to a SIM experiment using a DMD with a fluorescence 

microscope and performing reconstruction. We also obtained widefield images of the 

samples using the experimental setup and reconstructed it with our simulation. 
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For the four test images, results showed a significant gain of resolution between 

the original and reconstructed images obtained from the simulation where the 

reconstructed images had a considerably high resolution compared to the original images. 

This was quantitatively evident by comparison of signal-noise ratio, peak signal to noise 

ratio and the peak signal to standard error of estimation ratio all which were higher for 

the reconstructed images. The pixel intensity plots showed a significantly higher number 

of intensity peaks for reconstructed images compared to the blurred ones.  

 

Reconstructed image of the experiment samples as obtained using the DMD as 

SLM for structured illumination on the fluorescence microscope was also of higher 

resolution than original widefield images and when compared to the reconstructed image 

using simulation reconstruction algorithm of the same sample, again the experimental 

reconstructed image fared better. 

 

Thus, we believe that SIM is a useful technique to improve resolution of images 

of microscopic samples. Our simulation process is efficient in reconstructing highly 

resolved images as well as our experimental setup of structured illumination microscopy. 
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6.2 Future Work 

This research highlights the utility of structured illumination microscopy in super-

resolution of microscopic samples. Despite what has been observed through the results of 

this study, there is a scope of future research that should be noted. First of all, the DMD 

that was incorporated with the microscope for experimental data collection for the 

purpose of this study was physically placed in front of the aperture of the microscope at a 

distance equal to the focal length of the DMD without any efficient focusing technique. 

Thus only a small fraction of the light coming from the DMD was utilized by the 

microscope. This arrangement resulted in intensity losses that in turn have affected the 

quality of images to much extent. Also because of the same reason, DMD pixel to 

charged-coupled device (CCD) camera pixel matching could not be carried out precisely 

for image acquisition. This resulted in a slight mismatch in the pixel matrix of the 

illumination pattern from the CCD. To overcome these issues, the most important future 

implication from this study is that instead of LED, laser can be used to increase the 

accuracy of the illumination pattern or proper focusing methods while using stock LEDs 

can be explored. This would also allow us to incorporate the DMD within the optical 

system to avoid any intensity losses and obtain best possible images. Additionally, this 

would also allow us to have even better precise pixel matching of CCD pixels and DMD 

pixels which would aid in more precise image reconstruction. 

 

Secondly, the image acquisition process was done manually and thus there was no 

scope of increasing frame rates. This limited any ability to automatize the system. In lieu 
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of this, our system was not compatible for the purpose of performing live imaging by 

means of videography. To overcome this, high speed CCD can be used and then 

automatized the image processing system, which can then allow us to increase the frame 

rates for image acquisition that can permit us to perform live imaging. Last of all, it is 

worth noting that our system has only been tested for two-dimensional images. To 

perform three-dimensional optical sectioning a new algorithm can be set up that can 

perform fringe frequency variation which would allow us to stack images to obtain three-

dimensional images.  
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