Spatiotemporal Dynamics of Ventricular Fibrillation
in a Three-Dimensional Anisotropic Heart Model

by

John Robert Fitz-Clarke

Submitted in partial fulfilment of
the requirements for the degree of

Doctor of Philosophy
at
Dalhousie University

Halifax, Nova Scotia

July 2003

© Copyright by John Robert Fitz-Clarke, 2003



National Library Bibliothéque nationale

of Canada du Canada

Acquisitions and Acquisisitons et
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Canada

Your file Votre référence
ISBN: 0-612-83713-0
Our file  Notre référence
ISBN: 0-612-83713-0

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protege cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.



DALHOUSIE UNIVERSITY

DEPARTMENT OF PHYSIOLOGY AND BIOPHYSICS

The undersigned hereby certify that they have read and recommend to the Faculty of
Graduate Studies for acceptance a thesis entitled “Spatiotemporal Dynamics of
Ventricular Fibrillation in a Three-Dimensional Anisotropic Heart Model” by John

Robert Fitz-Clarke in partial fulfillment for the degree of Doctor of Philosophy.

Dated: July 31, 2003

External Examiner:
Research Supervisor:

Examining Committee:

Departmental Representative:

il



DALHOUSIE UNIVERSITY

DATE: September 14, 2003
AUTHOR: John Robert Fitz-Clarke
TITLE: Spatiotemporal Dynamics of Ventricular Fibrillation

in a Three-Dimensional Anisotropic Heart Model

DEPARTMENT OR SCHOOL: Physiology and Biophysics
DEGREE: PhD. CONVOCATION: October YEAR: 2003
Permission is herewith granted to Dalhousie University to circulate and to

have copied for non-commercial purposes, at its discretion, the above title upon
the request of individuals or institutions.

Signature/of Author

The author reserves other publication rights, and neither the thesis nor
extensive extracts from it may be printed or otherwise reproduced without the
author's written permission.

The author attests that permission has been obtained for the use of any
copyrighted material appearing in the thesis (other than the brief excerpts
requiring only proper acknowledgement in scholary writing), and that all such use
is clearly acknowledged.

iii



Contents

List of Figures vii
List of Tables xii
Abstract xiii
Abbreviations and Symbols Xiv
Acknowledgements xviii
Chapter 1. Introduction . .. ........ .. .. .. .. ... . . . iiiiiinnnnennnnn, 1
LlIntroduction ............. ittt 1
12TheNormal Heart ............ ...t iiinnennnnnnn, 5
1.3 Basic Arrhythmias ........... ... . . i 7
1.4 Cardiac Stability . . ....... ..o i e e 13
1.5 Research Objectives ............ciiiiniiiiiin it 16
Chapter 2. Cellular Models ............. .. ... .. .. i iiiiiinnnnnn. 19
2.1 ActionPotential . ....... ... ... 19
2.2 Mathematical Models .......... ..o 21
221 Cellular Automata . ..........ccoviineniinennenennenn. 21
222Hybrid Automata . . . ...t e e 27
2.2.3 Relaxation Oscillators . ............coiiiiiiian.. 32
224 TonicModels .......c.. e 42
23CellularBlack BoX ... ..o e 46
2.4 Computational Limitations . ... .....covetiiinin i 47
Chapter 3. Coupled Map Lattice ................ .. ... ... iiiiiiien... 49
3.l Introduction . .. ..o 49
32Algorithm .. ... e e 50
33 Ectopic Activation . . . ......ot ittt e 58
34 Reentrant CirCUitS . . . ..o vttt ittt ittt e 61
35 Wave Stability . ... e e e 71
36 Wave Block . . ... e s 80
3.7 Wavelet Capacity . .. oo vttt e e 85
Chapter 4. Thermodynamics and Complexity .......................... 91
4.1 Introduction . . . ..ot e 91
42EnergyPotential .. ....... .. . . i 93
A3 BN OPY . v vt 97
4.4 Lyapunov Exponents . ......... .ot 108
4.5 Nonlinear Dynamics . ... 113



Chapter 5. Patterns of Fibrillation .................................... 123

5.1 Spatial Complexity ...........ccooiiiiiiii i 123
52C0rrelation . . . ... 127
53Centroid . ... ... 132
S4Pattern Entropy . .. .. oo i 132

5.5 Characteristic Length . .. ....... .. ... .. .. ... ... .. .. .. ... ... 135

5.6 Wavenumber Spectra............ ..ot 137

5. 7Routesto Fibrillation ........... ... ... . . . it 138

5.8 Strength of Fibrillation ................. ... .. .. ... 148
Chapter 6. Phase Tramsitions ......................................... 151
6.1 Equilibrium . ... ... 151

6.2 Non-Equilibrium . .. ........ .. 157

6.3 Markov PopulationModel .. .......... ... ... i 163
6.4LandauTheory ... ... ... .. i e 170
Chapter 7. Fibrillation Electrocardiogram .............................. 175
7.1 Background . .. ... ... 175

T 2ECIOPIC . o v ottt et e e 176

T3 REENITY ..o e 180
TAFibrillation .. . . ... e 182

7.5 Obstacle Anchoring ..............ciiiiiiii i 197
Chapter 8. Ventricular Cell: ANewModel ............................. 207
8.1 Model Objectives . . ...t ettt 207

8.2 Simplified Cell Model .......... ... ... . i, 209
82.1Sodium Current . . .....covii e e e 215
822CalciumCurrent . ........ ... .. e 220

823 RectifierCurrent . . . ... i e 223

8.2.4 Delayed RectifierCurrent . .. ..o, 225

8.2.5 Transient Outward Current . . . ..........ccovvrvnvnnnn... 227

8.3 Human Action Potentials ............. ... .. oo, 230

84 Model Performance . ...........i it i e 235

841 Restitution. . ...t e 237

842 Threshold . ...... ... ... i 239

8.4.3 Supernormality . ..........i i 241

8.5 AUtOMaAtiCItY . . ottt e 241

8.6 Afterdepolarizations . .. .......... it e 245
8.7Model Limitations . . . ..ottt e e 248
Chapter 9. Wave Propagation ............... ... .. .00 iiiiiiiinnnnen... 249
9.1 Tissue Electrical Properties. . ... iiiininnnnen.. 249
92CableModel . ... .. e 254

921 VeloCity . ..ot e 256

922 8afetyFactor . ...t e 257



9.3 Sheet Model . ..ot e e e 260

94 BlockModel ....... .. .. 261
Chapter 10. Ventricular Activation ...........................cccvun... 263
10.1 Idealized Geometry . ... ..o vie it et e 263
10.1.1Sizeand Shape .. ......ccviiiii i 263

10.1.2Fibre Angles . . ...t i 266

10.1.3 Transmural Heterogeneity . .. ..............coovion. .. 268

10.2 Activation SEqUeNCES . . . ..ot v ittt it et e 270

10.3 Electrocardiogram . . . .. ..o vttt i e e e 277

10.4 Recoveryand TWaves ..........ciiiiiiininininnenennnn. 280
10.5Model Limitations . . .. ..ovuit et it et e 281
Chapter 11. Tissue Modelsof Reentry ................................. 283
11.1 Historical Background ........... ... .. .. ... ... . i it 283

11.2 Mechanisms of Reentry .......... ... . iiiiiiinininenenenn. 285

11.3 Stimulus-Induced Block . . . ....covi i 287

114 Taill Block . ..ot i e e e e i e e e 290
11.5Spiral Waves ...t i ittt e et 296

11.6 Cycle Length . .. ... o i i 303

11.7 Stability and Restitution ............. ... it iiiiiiinen... 304
Chapter 12. Ventricular Arrhythmias ................................. 309
12.1Ventricular Ectopy . . ... ... oot 309

12.2 Ventricular Tachycardia............. ... ..., 321

12.3 Ventricular Fibrillation ......... ... .. .. .0, 325
Chapter 13. Defibrillation ............ ... .. ... .. . i, 351
131 Drug Effects . ..o vt e 351

13.2 Pharmacological Defibrillation .. ............ ... .. ... ... ... 358

13.3 Electrical Defibrillation . . .......... ... . i, 360

13.3.1 Uniform Shocks . .. ..o v i 367

13.3.2 Nonuniform Shocks . .. .......cvvii it 374

134 Model LImitations . .........viuitiniinentaneieenenennnn. 381
Chapter 14. Conclusions . ................0tiiitiiieniineeennnnennnns 384
141 Summary ... ..covnti e e s 384
T42Future Work . . ..o e e 389
BibhHography . ... ...t e 394

vi



List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7

2.1
2.2
23
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14

3.1
3.2
33
34
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20

Activation sequence of electrical conduction inthe heart .............. 5
Electrocardiogram of normal sinus thythm .................. ..... 6
Basic mechanisms of cardiac dysrhythmias ....................... 8
Some important cardiac dysrhythmias: NSR, VT, VF,and A.......... 9
Ventricular fibrillation subtypes .............................. 11
Hypothetical state space of cardiac electrical stability .............. 14
A general schema for conceptualizing cardiac electrophysiology . ... 15
Morphological phases of the action potential ..................... 20
Self-organization in a finite automatonmodel ..................... 23
Wave front curvature depends on the number of active neighbours .... 24
Hybrid automaton model .......... ... ... .0t iiiiinrnannnn 28
Stimulus-induced reentry in the hybridmodel ..................... 32
Topology of threshold and excitation ............................ 33
Phase plane for the FitzHugh-Nagumomodel ..................... 36
Action potentials of variations of the FitzZHugh-Nagumo model .. ..... 37
Original VanCapelle-Durrermodel ............. ... ..., 39
Modified three-variable VanCapelle-Durrer model ......... ......... 39
Standard Beeler-Reuter ventricular cellmodel ......... ........... 43
Pacing BR model with shortening and bifurcation due to restitution ..... 44
Cellular black box concept ..........coiiriiiiiiiinininenenennns 46
Limitations due to available computational power ................... 48
The basic coupled map latticemodel .............. ... .. .. .. ... .. 52
Calculation of the body surface ECG in the cylinder model ............ 54
The dipole weighting function for ECG calculation ................ .. 57
Single ectopic foCUS .. ...t e 59
Two competing ectopic foci . ...t 60
Reentrant circuitinthecylinder ........... ... .. ... ... ... L. 62
Spiral Wave pairs ... ... e e e 63
The field of dipole source contributions tothe ECG ................. 66
Four spiral waves of uniform APD ............ .. .. .. .o it 67
Four spiral waves of uniform APD ............ ... . .. i it 68
Ventricular fibrillation evolves from a random initial condition ... ..... 69
Ventricular fibrillation by flattening restitution ..................... 70
Wave front oscillations lead to spiral wave break .................... 71
Returnmap of pacedcell ........ ... .. . i it 73
Spiral waves break-up when restitution curve slope is increased . ....... 74
Spiral waves break-up when restitution curve slope is increased ........ 75
Small differences in diastolic interval lead to instability .............. 75
Space-time plots of spiral wave break ........... ... ... ..ol 76
Spiral wave break for fixed steep restitution .............. ... ...... 78
Stability boundary for spiral wave break ............. .. ... i 79

vii



3.21
3.22
3.23
3.24
3.25
3.26
3.27

4.1
4.2.
4.3
44
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19

5.1
52
53
54
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17

Critical size of one-dimensional cablering ............ ...... ... ...
Mechanism of wave front block onacablering ....... .............
Critical ring size as a function of APD in the ringmodel ..... ........
Wave break followed by roll-up requires adequate space ... .........
Regular grid of reentrant circuits establishing maximal capacity ........
Smallest possible repeating units in a grid of reentrant circuits ........
Comparison of minimum reentrant circuits in one and two dimensions

Spectrum of fibrillation spatial patterns ............... .. ... ...,
Energy potential for a two-current action potential model .............
Energy consumption in the Beeler-Reuter action potential model .......
Equilibrium and maximum entropy of simulated molecules ina box ....
Entropyofadbitstring .............cciuiuiniiniiiiinnnnn,
Entropy during randomization and self-organization of a binary string .
Relationship between entropy and event histograms .................
Conditional entropy accounts for the temporal sequence of event pairs ..
Event histograms of p(DI), p(APD), p(CL) for varying restitution ......
Effect of restitution on fibrillation APD, CL, DI, and excitable gap .....
Definition of the Lyapunovexponent ................. ... .. ...
Validation of ergodicity assumption for spatial and temporal events .. ..
Restitution curve determines probabilities of APDand CL ...........
Lyapunov exponents of fibrillation with various restitution curve slopes .
Return maps of a single cell paced ataconstant BCL ................
Poincaré plots of paced action potentials with bifurcations and chaos ...
Composite diagram of maximum APD at different paced cycle lengths ..
The role of BCL in determining action potential block ...............
Single cells paced at constant BCL illustrating Lyapunov exponents . ...

Various representations of the fibrillation wave patterns .............
Spatial correlation length of fibrillation .............. ... .. ... .....
Spatial correlation spectra for simple wave patterns . ................
Spatial correlation spectra for spatial patterns of fibrillation ...........
Determination of the centroid of core points .......................
Pattern entropy based on static spatial distribution of core points .......
Pattern of core point spatial distributions ............ ... .. ... ...
Characteristic length of fibrillation and energy dissipation ............
Wavenumber spectra for various wave patterns .......... ... o ..
Wavenumber spectra for fibrillation ................ ... . .
Spiral wave evolution and break up, APD,= 16, APD,=48 ..........
Spiral wave evolution from random, APD,= 16, APDp=48 ..........
Spiral wave evolution and stability, APD,= 36, APD,=48 ...........
Spiral wave evolution and coalescence, APD,= 36, APD,=48 ........
Flattening restitution self-organizes into coarse fibrillation ............
Effect of restitution on fibrillation core number N¢ and DI entropy ......
Histograms of reentrant circuit strength and integrated safety factor

viii



5.18

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19
7.20
7.21
7.22
7.23

8.1
8.2
8.3
8.4

Influence of threshold Vy, and restitution on core number N, ..........

Phase diagram of a generic pure substance like water ...... .........
Functional representation of No(APDg, Vi) . oo ooe v ii e
First and second order phase transitions ...........................
Cusp catastrophe model of first and second order phase transitions .. ...
Equilibrium phase surface for N(APDo, Vin) o o oo e oi i
Phase diagram for system showing freezing and melting of fibrillation ..
Subtypes of solitary spiral VT and multiple spiral VF ................
Probability functions determining wave break and coalescence ........
Monte Carlo simulation of core point number N(t) .. ................
Potential function ®(APD,, N¢) derived from the population model .. ..
Phase diagram of the CML model redrawn as a potential surface .......
Probability of number of core points p(N,) during fibrillation ..........
Free energy surface governing changes in core point number ..........
Comparison of mean N, from CML model with theoretical curves ......

Single lead ECG of ectopic focus ...........c.ciiiiiiiinnenan...
Effect of changing cycle length on the ECG of an ectopic focus ........
Multiple lead frequency spectra of a repetitive ectopic focus ..........
Single lead ECG of a solitary spiralwave .........................
Multiple lead frequency spectra of a solitary spiral wave .............
Multiple spiral fibrillation produces different ECG patterns ...........
Multiple lead frequency spectra of multiple spiral wave fibrillation .....
Characteristics of ectopic, spiral, and fibrillation for APD =36 ........
Multiple lead ECG's of solitary spiral VT .......... ... ... ... ....
Multiple lead ECG's of multiple spiral VF .........................
Frequency spectra of ECG's averaged over 36 equatorial leads .........
Relationship between peak frequency of ECG and mean cycle length . ..
Entropy of cycle lengths and entropy of the ECG spectrum ...........
ECG amplitudes of VF at various restitution curve slopes ............
ECG amplitudes of VT and VF at various restitution curve slopes ......
Spatiotemporal patterns of the body surface electrocardiograms of VF ..
Effect of an inexcitable obstacleon Dland CL .....................
Effect of an inexcitable obstacle on stability of the cycle length ........
Multiple lead ECG's of VT around an inexcitable obstacle ............
Spiral wave patterns of VT around an inexcitable obstacle ............
APD splits into multiple values for smallest obstacles ...............
Role of obstacle size on the ECG amplitudes of spiral VT ............
Role of obstacle size in cycle length of a rotating spiral wave ..........

Standard Luo-Rudy I ventricular action potential model ..............
Comparison of the standard LR1 model with simplified LRS model ....
Function h(t) in simplified model approximates h(t)*j(t)..............

Gating parameter h(t) . . ... i e



8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20

9.1
9.2
93
9.4
9.5
9.6

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9
11.10

Steady-state V-l relationshipforIng .........oovveiin ... 219
Kinetics of gating parameters d(tyand f(t) ........................ 221
Time-independent potassium currents Ixi, Ixp, I, and total Ixkt .. ...... 224
Time-dependent potassium currents Ig and Iy . ..., 227
The human ventricular action potential model SHV.................. 234
Effect of extracellular potassium concentration on SHV action potentials. . 236
Action potential duration restitution curves for SHV model. ............ 236
Changes in time constant and Vs for f(t) control the restitution curve. . .. 238
Firing threshold of a single cell inthe SHV model. .................. 239
Supernormality is enhanced by fast sodium channel recovery.......... 240
Threshold voltages before and after stimulus delivery................ 240
Automaticity inthe SHVmodel. ........... ... ... . oo, 242
Phase resetting for pacemaker cells with automaticity. . .............. 243
Phase resetting curve for a cell with automaticity. . .................. 243
Space-time plot of a cell with automaticity. ........................ 244
Examples of early afterdepolarizations in the SHV model. . ............ 247
Equivalent electric circuit for membrane and RC approximation. . . . ... .. 251
Comparison of cable propagation of LR1 and LRS models. ............ 255
Cable propagation of SHV endocardial and epicardial models. ......... 256
Axial coupling, sodium conductance, and cable velocity in SHV model. . . 257
Role of axial coupling and gy, on safety factor of conduction. .......... 259
Radial conduction of the SHV model in two-dimensional sheets. . ...... 261
The basic ellipsoidal biventricularmodel. . ................ ... ... .. 264
Fibre geometry of the biventricularmodel. . . ....................... 265
Assignment of M cell distribution across the ventricular wall. . .. ....... 270
Activation of the endocardium during simulated sinus rthythm. ......... 271
Normal sinus rhythm in the ventricularmodel. . ..................... 272
Repolarization sequence with three different M cell configurations. . . . . . 274
Theoretical ECG of cable propagation seen at various radial sites. . . .. .. 275
Single beat electrocardiograms for eight equatorial leads. .. ........... 276
Single beat 8-lead ECG's for each configuration of simus thythm .. ... .. 279
Origin of the ECG and T wave in a transmural cable model. . .......... 280
Free ends of a wave front roll up into a spiral wave. . ................. 286
Reentry is established in a two-dimensional sheet. .. ................. 287
Stimulus block in the vulnerable window on in a cable model. . ......... 288
Mechanism of stimulus-induced unidirectional block. . ................ 289
Critical ring size of action potentials propagatingonaring. ............ 291
An S, stimulus induces a reentrant circuit around a cable ring. . .. ....... 293
The wave front catches up to the tail and moves into a wedge template. . . .294
Space-time plots of an action potential front catchinguptoatail........ 294
Wave front and tail velocities depend on spatial APD distribution. . ... .. 295
Reentry-induction in two dimensions in hybrid model. . . .............. 297

X



11.11
11.12
11.13
11.14
11.15
11.16
11.17
11.18
11.19
11.20

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10
12.11
12.12
12.13
12.14
12.15
12.16

13.1
13.2
133
13.4
13.5
13.6
13.7
13.8
13.9
13.10
13.11
13.12
13.13
13.14
13.15

Reentry-induction in two dimensions in SHV model. . ................ 299
Stable spiral wave in a 100x100 sheet of SHV cells. .................. 300
Unstable spiral wave in a 100x100 sheet of SHV cells. ................ 300
Restitution curves of SHV cells varying recovery time constant. . . ... ... 301
Restitution curves of SHV cells varying gcaand gg. . . ...ttt 301
Nine classes of curvature for wave front-tail interaction. .............. 302
Types of spiral waves around a phase singularity. . .................. 303
Role of restitution slope on stability of solitary spiral wave in2D. . ...... 306
Stability to perturbation of spiral wave depends on restitution slope. . . . .. 307
Detailed mechanism of spiral wave block leading to fibrillation. . ........ 308
Epicardial and transmural maps of an epicardial ectopic focus. . ........ 312
Epicardial and transmural maps of an endocardial ectopic focus. . ....... 315
Epicardial maps of an apical ectopic focus. .. ....................... 318
Epicardial maps of a repetitive anterior ectopic focus. . ............... 320
Anterior and apical views of an anterior spiral wave. . ................. 322
Anterior and apical views of an apical spiral wave. . .................. 324
Induction of VF by an S;-Sy protocol. ... ..o on i 328
Comparison of six subtypesof VF. .. ... ... .. i i 332
Body surface electrocardiograms of six VF subtypes. ................. 333
Correspondence of epicardial and body surface space-time plots . . ... ... 341
Frequency spectra of VF forsix subtypes. . .......... ... ... ... .... 342
Event histograms of DI, APD, and CL for six VF subtypes. ............ 344
Action potential trains for six VF subtypes. . ............. .. ... .. ... 346
Fluctuations of excitable gap and wave front volumein VF. . ........... 347
Mean CL is correlated with ECG dominant frequency. ................ 348
Phase diagram of VF subtypes . .......... .. ... .o i il 350
Drug effects on VF Case 6 ECG frequencies . ....................... 353
Action potential trains during VF under drugeffects . .. .............. 356
Condensation of VF subtype MCU to MCS by flattening restitution. . . . . 357
VF case 3 defibrillated by lowering potassium current. . . ............. 359
Effect of defibrillation shocks on action potentialsonacable........... 364
Monophasic and biphasic shock profiles ................. ... ... ... 368
Defibrillation of VF case 1, solitary spiral wave - monophasic. ......... 370
Defibrillation of VF case 1, solitary spiral wave - biphasic............. 371
Defibrillation of VF case 3, multiple spiral waves. . .................. 372
Defibrillation of VF case 3, multiple spiral waves. .. ................. 373
Defibrillation of VF case 6, complex spiral waves. ................... 374
Nonuniform apical shock defibrillationto VFcase 6. ................. 376
Post-shock activation of heart for VF case 6, excitable gap. . ........... 378
Nonuniform apical shock defibrillationto VFcase 1. ................. 379
Demonstration of the upper limit of vulnerability hypothesis. . ......... 381

xi



List of Tables

1.1
2.1
2.2
2.3
24
2.5
2.6
3.1
32
33
5.1
6.1
8.1
8.2
83
8.4
8.5
9.1
92
10.1
12.1
12.2
12.3
12.4
12.5
13.1
13.2
133

Components of the arrhythmogenic substrate. .. .................... 3
Finite automaton model algorithm. . . ......... ... ... ... .. ..... 26
Hybrid automaton model algorithm. . . ................... ... ... ... 30
FitzHugh-Nagumomodel. . .. ...... ... .. ... .. i, 35
VanCapelle-Durrermodel. . ........ ... . . i 40
Three-variablemodel. .. ...... ... ... ... .. . 41
Comparison of squid and cardiac fibre properties. . .................. 45
Comparison of dynamical systems. .. .......... .. ..o iieinenen .. 50
Coupled map lattice model algorithm. . .................. ... ... .... 53
Scaling of model time withrealtime. . ............................ 55
Summary of monitored complexity metrics. .. ...................... 140
Thermodynamic state variables in cardiac tissue. . . .................. 155
LRS Simplified Luo-Rudymodel. .. .......... ... ... ... . ... .... 210
SHV Simplified Human Ventricularmodel. . . ...................... 214
Human action potential restitution. . . ............ ... ... .. .. .. ... 233
SHV model action potential restitution. . .................. .. ... .... 235
Effect of [K+]o on resting potential and threshold. . . .................. 237
Conduction ConStants. . . . .....cutitnene ettt 252
Mean conduction velocities. . .. ... i 253
Dimensions of human ventricles. . . ......... .. ... i 264
Experimental VF frequency characteristics. . .. ...................... 331
Cell parameters for model testcases. . ..o, 331
Spatial statisticsof VFtestcases. ............ciiiiiiiiiiiit, 347
Statistical measures of VF testcases. . .........cooviiiiiiiiiin... 348
Stability measures from VF testcases. . ........ ... ... 349
Effects of drugs on statistical measuresof VF .............. ... ..... 357
Effects of drugs on spatial statistics of VF subtypes.................. 358
Effects of drugs on stability measuresof VF ...................... 358

xii



Abstract

Ventricular tachycardia and fibrillation are potentially lethal heart rhythms that can cause
sudden cardiac death. The spatial and temporal electrical dynamics and stability of these
complex rhythms are not well understood. We employed computer simulation to study
the mechanisms of VT and VF in reaction-diffusion media, and to examine correlates in
the electrocardiograms. A simple coupled map lattice model of cardiac tissue was
developed to explore spatiotemporal complexity, by quantifying entropy and Lyapunov
exponents during phase transitions to deterministic chaos. This model allowed basic
features of electrocardiograms to be derived from their dipole source maps. A new
mathematical model based on the Luo-Rudy formulation was then developed to simulate
dynamics of sodium, calcium, and potassium ionic currents (Ina, Ica, Ik, Ik1, Ito) 1n human
ventricular action potentials. This theoretical model was simplified to contain only the
minimal number of currents necessary to capture the essential behaviour of endocardial,
epicardial, and M cells, while retaining sufficient simplicity to permit large-scale
computation in a whole heart. Propagation and stability of electrical waves was explored
in one-, two-, and three-dimensional monodomain cellular arrays, and in an anisotropic
biventricular heart. Reentrant circuits were induced in normal tissue, and evolved into
two-dimensional spiral waves and three-dimensional scroll waves. Stability was altered
by varying the action potential restitution curves to achieve solitary fixed or meandering
spiral waves, which fractionated into more complex fibrillation. Several subtypes of VF
and their simulated electrocardiograms were characterized. The nature of successful and
unsuccessful defibrillation shocks were then examined. This work represents application
of a multiple-component ionic model of human ventricular cells to VT and VF in a whole
heart model, a theoretical study of body surface electrocardiograms during reentrant VT
and VF, and an attempt to develop a thermodynamic theory of fibrillation based on

statistical mechanics.
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AF atrial fibrillation

AP action potential

APD action potential duration

BCL basic cycle length
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CL cycle length

CML coupled map lattice

DFT defibrillation threshold
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Chapter 1

INTRODUCTION

1.1 Introduction

Heart disease remains the leading cause of mortality in the developed world, accounting
for perhaps 400,000 deaths annually in North America [148, 239], of which about half
occur suddenly due to acute coronary events [361]. Although disease substrate develops
slowly over many years, sudden cardiac death (SCD) can be triggered by a brief electrical
disturbance if it destabilizes normal regular ventricular rhythm. Instabilities can grow if
they occur within susceptible substrate, and ultimately cause loss of coherent contraction.
The most common lethal rhythm seen at the time of attempted resuscitation is ventricular
fibrillation (VF) [380, 393, 480], which frequently evolves from preceding ventricular
tachycardia (VT) [28, 374]. Nonfatal atrial fibrillation causes substantial morbidity, and

contributes to heart failure and stroke risk [268].

The vast majority of SCD cases occur without any warning, and are therefore virtually
unpredictable [186]. Rates of successful resuscitation from out-of-hospital cardiac arrest
are poor [147, 211], and efforts must be started within a few minutes to maintain any
hope of survival [303]. Drugs are presently the main therapy for primary prevention of
life threatening dysrhythmias, but so far their impact on mortality has been disappointing
[65, 479]. Drugs used during cardiac resuscitation remain controversial due to inadequate

understanding of the mechanisms of action, and insufficient clinical validation [138,
1



500]. Implantable defibrillators have been shown to be effective within a subset of high-
risk patients fortunate enough to survive cardiac arrest [293, 357]. Innovative therapies
are needed to prevent and control electrical instabilities in the heart to avoid transitions to
VT and VF, and to facilitate defibrillation during resuscitation [457]. New developments
to improve survival will require greater physiological insight into the fundamental

mechanisms of cardiac electrical instabilities.

Cardiac dysrhythmias arise from events at the cellular level, or even molecular level
[280], yet manifest as disrupted spatial propagation of electrical waves within the atria or
ventricles on a macroscopic scale [10]. Although basic qualitative mechanisms of
dysrhythmias have been known for years from electrophysiological mapping studies
[230], the details of complex spatiotemporal wave activity within the three-dimensional
anisotropic heart are not well understood. This is due in part to experimental limitations
and controversies surrounding the interpretation of results [551], confounded by the
highly dynamic behaviour and short lifetimes of assumed reentrant circuits [306]. There
is still inadequate understanding of how electrical stability is influenced by changes to the
passive tissue substrate [562], and by the multitude of active ionic currents [98], which

may themselves be subject to disease and pharmacological alteration [60].

Many experiments in cardiac electrophysiology have focused on isolated cells, membrane
patches, and ion channels, while others have involved larger scale mapping of tissues
and whole hearts [576]. It is essential that an integrated approach be employed to
studying arrhythmogenesis, combining insight into both local cellular dynamics and
large-scale spatial propagation. Conclusions based on single cells might not be valid in
multicellular tissues where propagation can introduce new and unexpected phenomena.
The pitfalls encountered while extrapolating single cell studies to whole hearts without
such an integrated approach was emphasized by Starmer: "I found that with each anti-
arrhythmic process we had identified in isolated cells, there was an obligatory
multicellular pro-arrhythmic process due to the associated effects of the propagating
excitation wave" [472]. Clinical trials, such as CAST [57] and SWORD [517], have

shown certain drugs previously assumed to be anti-arrhythmic to actually be pro-



arthythmic, in conflict with expectations based on conventional concepts [458]. It has
been suggested that virtually every anti-arrhythmic drug is potentially pro-arrhythmic
[65, 106]. Drugs have a multitude of effects and interactions that can alter the

arrhythmogenic substrate, some specific targets of which are summarized in Table 1.1.

Body surface electrocardiograms measured on the torso are useful in the diagnosis of
most rhythm abnormalities, and indeed have become essential in clinical practice. The
precise quantitative relationship between the measured body surface patterns and the
detailed electrical dynamics within the myocardium are not well understood, due in large
part to experimental difficulties in simultaneously measuring signals on the body surface
and within the heart. Potentially useful information in electrocardiograms, both spatially
over the torso [173], and temporally within complex time-varying signals [301], is
disregarded in clinical practice, either because it cannot be reliably extracted, or because
the physiological correlation with substrate activity is not known [510]. Novel methods
of analysing VT and VF signals might allow extraction of important information that

allows subtyping of these rhythms, which could impact therapeutic approaches.

Table 1.1: Components of the Arrhythmogenic Substrate

. Sinus rate

. Conduction pathways

. Conduction velocity

. Intracellular coupling

. Firing threshold

. Action potential duration

. Action potential restitution

. Enhanced automaticity

. Triggered afterdepolarizations
10. Nonuniformity of repolarization
11. Autonomic effects

12. Electromechanical effects
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This dissertation presents a study of the mechanisms of tachycardia and fibrillation, and
their subtypes, by employing mathematical and computer models of excitable media. The
main objective is to try to understand the nature of these electrical rhythms as
spatiotemporal dynamical phenomena, and to explore the projections of their complex

signals on the body surface.

We begin with a review of normal cardiac conduction and the basic mechanisms
responsible for electrical instabilities and dysrhythmias. Limitations of experimental
mapping techniques still prevent detailed understanding of conduction abnormalities.
Existing mathematical models of cardiac cellular electrical activity, both physiological
and phenomenological, are discussed. We then examine a simple coupled map lattice
model that provides insight into the genesis of electrocardiograms, and allows exploration
of wave stability, nonlinear dynamics, phase transitions, and methods for quantifying
spatiotemporal complexity. This simple model exhibits surprisingly rich dynamics that
should theoretically be a subset of dynamics in more detailed and complex heart models.
All previously published cellular models with ionic currents are based on results of
animal experiments. There are presently no mathematical models specifically developed
to simulate human cardiac cells. A new model of ventricular action potentials will
therefore be developed in the second part of this thesis, and will be calibrated to match
existing human data in the literature. This human cellular model will be incorporated into
one-, two-, and three-dimensional arrays of cells representing myocardial tissue, and the
conduction properties will be examined. The model will then be implemented in three-
dimensional ventricles. The spatial and temporal conduction properties will be studied as
the model parameters are manipulated, and the resultant body surface electrocardiograms
will be calculated. It will be shown that the dynamics of propagating electrical waves are
complex and sensitive to small changes in ionic currents, hallmarks of nonlinear and
chaotic systems. Dysrhythmias simulated in the model will be initiated and controlled by
changing cellular parameters, and electrocardiographic patterns of ventricular tachycardia

and fibrillation will be analysed.
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Figure 1.1. Electrical impulses in the normal heart originate in the sinoatrial node and
pass through the atria and intrinsic conduction system to the ventricles (reproduced with
permission [242]).

1.2 The Normal Heart

Normal electrical activity in the heart follows a stable repetitive sequence illustrated in
Figure 1.1 throughout the entirety of life. Every second or so, an impulse is initiated
within the spontaneously beating sinoatrial (SA) node and propagates as a wave across
the thin right and left atria, causing these two upper chambers to contract. The impulse
then passes from the bottom of the atrial septum through the atrioventricular (AV) node
and then rapidly through the extensively branching His-Purkinje network to the left and
right ventricles, causing these two thick muscular chambers to contract. The impulse dies
out with the last contracting cell in this chain of events. Although this activity takes place
within a three-dimensional heart, normal wave propagation is topologically equivalent to
that which would occur on a one-dimensional cable. All cells involved recover their
electrochemical states rapidly, and this unidirectional cycle repeats itself with the next
SA nodal impulse. Each cell in the entire sequence normally fires once per cycle,
ensuring a 1:1 correspondence between all cells during each beat. This normal sequence

is called sinus rhythm, since all activity follows the SA node, whose intrinsic rate



determines the overall heart rate. Under normal conditions, sinus rhythm usually ranges

between 60 and 100 beats per minute at rest.

R

Figure 1.2. The normal body surface electrocardiogram for a single beat showing the P
wave, QRS complex, T wave, and U wave.

An idealised body surface electrocardiogram (ECG) during normal sinus rhythm is
shown in Figure 1.2. The P wave represents atrial activation beginning with SA node
activation and ending when both atria are completely depolarised. The large-amplitude
QRS complex is caused by depolarisation of the large ventricular mass. It is narrow, due
to the sharp brief upstroke of the cellular action potentials, and the near-synchronous
distribution of impulses throughout the rapidly conducting His-Purkinje fibre network.
Ventricular repolarization produces the T wave, which lasts longer due to slow recovery
of action potentials and due to local and regional spatial heterogeneity of action potential
duration throughout the myocardium. The latter factor can produce a U wave, which is
not always seen. Atrial repolarization in the electrocardiogram is of very low voltage, and
is largely buried within the QRS complex. The notation of these waves was proposed by
Einthoven who originally called them A, B, C, and D, but was concerned that additional

earlier deflections might have to be added later, so renamed them starting at P [80].

Electrical activity in the heart can be mapped experimentally using several methods.
Human endocardium is commonly mapped in clinical practice by transvenous catheters,

but this technique is time consuming and usually confined to a few simultaneous



endocardial sites [188, 474]. The rhythm must be stable and repetitive to permit any type
of extensive mapping as the catheter tip is moved to different locations. Epicardial
mapping is possible during surgical thoracotomy by temporarily placing an electrode
array over the heart surface, but is limited to studying only the two-dimensional external
epicardium [73, 219]. Recently developed basket catheter devices allow two-dimensional
endocardial mapping [294, 446], while intravascular catheters can map parts of the
epicardium around the coronary sinus. Insertion of needle plunge-electrodes across the
myocardial wall is presently the only method for obtaining three-dimensional maps [143,
561]. This method is obviously highly invasive and potentially damaging to the
myocardium, and is therefore usually restricted to animal hearts. More recently, the
development of voltage sensitive fluorescent dyes has allowed impressive high-resolution
optical scanning of electrical activity over the epicardium [550], and across the wall of
wedge preparations. Dye toxicity limits this technique to animal hearts. Surgical
thoracotomy or Langendorff perfusion is required, and the results are again two-
dimensional [133]. The ideal mapping technique that can produce three-dimensional

electrical images noninvasively is much needed, but does not yet exist.

The only practical noninvasive method to measure cardiac electrical activity in humans is
the body surface electrocardiogram, first employed by Einthoven in 1902 [41, 150]. Low
voltage electrical signals are relatively easy to obtain, and represent the electrical field of
the heart measured at a distance [193], either at several standard sites on the chest, or as
time-dependent spatial maps over the entire torso [97]. Electrocardiograms aid in
diagnosis of most dysrhythmias, but are measured at a distance from the heart and
represent two-dimensional projections. Sparse spatial sampling, inevitable signal noise,
and baseline drift limit reconstruction of the underlying three-dimensional myocardial

dynamics [429].

1.3 Basic Arrhythmias

The conduction system of the heart seems simple in principle, but nonlinearities in the

governing physical processes make action potential propagation sensitive to small local



variations, and open the possibility for rich stable and unstable dynamic phenomena
[126]. Under pathological conditions, the electrical propagation sequence can be altered.
Conduction in one region may be slowed or blocked, or a subset of cells may repetitively
fire at a rapid rate. Either type of disturbance can cause wave fronts to alter their paths
through the heart and disrupt stability. A small change at the cellular level can profoundly
affect the global activation pattern. Stated most simply, a cardiac dysrhythmia results

when the sequential 1:1 correspondence between the firing of each cell is broken.

S
AR A
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Afterdepolarization
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Reentry

Figure 1.3. The three basic mechanisms of cardiac dysrhythmias resulting in repetitive
firing are: (a) enhanced automaticity of an ectopic focus, (b) afterdepolarizations from a
preceding action potential, and (c) reentry of propagation spatially around a closed path.
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Figure 1.4. Normal sinus rhythm and some important cardiac dysrhythmias: ventricular
tachycardia, ventricular fibrillation, and atrial fibrillation (reproduced with permission
[242)).

It is generally agreed that there are three basic mechanisms by which dysrhythmias arise:
(a) ectopic depolarization of an aberrant focus causing electrical waves to radiate from a
fixed site [256], (b) repetitive depolarizations triggered within an incomplete action

potential or shortly after a preceding action potential [548], or (c) spatial reentry of a
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propagating wave front around a closed path causing reexcitation of cells along that
circuit [120, 548]. These fundamental mechanisms are illustrated in Figure 1.3.
Dysrhythmias are recognized in clinical practice by their characteristic rthythms and
morphologies on the body surface electrocardiograms in a few standard leads. Some

important examples are illustrated in Figure 1.4 and summarized below.

(1) Ventricular tachycardia (VT) results from rapid abnormal firing of ventricular cells.

Any or all of the basic mechanisms just described may be involved, including rapid
ectopic or focal activation [548], multiple afterdepolarizations [105], or a solitary large
stable reentrant circuit [50, 139]. Although the transition from sinus rhythm to VT
involves some form of electrical instability [403], VT is considered to be
hemodynamically stable if cardiac output is maintained despite the rapid rate, and is not
necessarily lethal. Conversely, if adequate ventricular filling between beats cannot be
sustained because the diastolic interval is too short, cardiac output and blood pressure
will fall [7]. Loss of consciousness, or even death, may follow if this type of VT is not

corrected rapidly with drugs or electrical cardioversion [153].

(ii) Ventricular_fibrillation (VF) is generally believed to consist of multiple complex

wandering wavelets of turbulent electrical activity winding throughout the myocardium
and preventing coordinated contraction [208, 252, 390, 480]. Despite the presence of
ongoing electrical activity, cardiac output drops to zero and death follows within minutes
unless the disorganized waves can be abolished by electrical countershock to allow the
underlying sinus rhythm to return. VF is frequently the terminal event in death from
cardiac disease, and from noncardiac diseases if there is sufficient metabolic derangement
of the myocardium to destabilize conduction [361]. Although many experimental
mapping studies have attempted to elucidate the spatial and temporal structure of VF,
controversy still continues regarding whether VF represents random electrical activity or
has underlying organization [29, 113]. Figure 1.5 shows a single-lead ECG obtained by
the author from a patient during an attempted resuscitation from out-of-hospital cardiac
arrest. This intriguing record was taken over a ten minute period, and shows several

distinct patterns of VF. The physiological basis of these subtypes is not known, but may
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have been influenced by progressive ischemia, administered drugs, and unsuccessful

defibrillation shocks.

Figure 1.5. Single-lead electrocardiogram recorded from a patient in cardiac arrest during
attempted resuscitation. Appearance of several different waveforms of ventricular
fibrillation (VF) suggests the existence of VF subtypes exhibiting various amplitudes,
frequencies, and morphologies which evolve over time. The physiological basis of these
different patterns is not known.
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(i) Atrial fibrillation (AF) is analogous to VF with multiple wavelets of electrical

activity wandering through the atria [516]. The regular SA nodal beats are completely
blocked or suppressed by overdrive from irregular atrial waves, whose pattern and
arrival times at the AV node determine rhythm. Since the ventricular thythm is driven by
the AV nodal rhythm, it is also irregular [456]. Unlike VF, AF is usually not lethal,
because ventricular contractions can still continue, although with reduced efficiency.
Complications of AF, however, can lead to significant morbidity [268]. Firstly, the
ventricular rate can become too rapid to allow adequate diastolic filling and cardiac
output can drop. Secondly, the loss of coordinated atrial contraction or "atrial kick"
diminishes ventricular filling or preload, and results in about a 17% drop in cardiac
output [356, 439]. This loss is especially significant if the patient already has
compromised ventricular function, in which case AF can precipitate heart failure.
Thirdly, poor atrial contraction can cause blood to stagnate and coagulate around the
atrial walls and lead to thromboembolic stroke [432]. Drug therapies, like d-sotalol and
amiodarone, used to prevent AF are frequently disappointing, and may introduce
potentially serious side effects, including paradoxical ventricular dysrhythmias [517].
Electrical cardioversion is usually successful in restoring sinus rhythm, but AF frequently
returns. Longer duration AF seems to be more difficult to reverse. It has been suggested
that "AF begets AF", in reference to electrical remodelling of the atrial substrate that
promotes its persistence [536]. This is likely a consequence of tachycardia-induced
downregulation of membrane ionic channel expression [367]. When treatment fails, many
patients are simply left to live with AF while on rate-controlling drugs and
anticoagulation to minimize thrombus formation. Other therapies include AV node
ablation with placement of a permanent ventricular pacemaker, and the surgical or
catheter "maze" procedure which constrains wavelet path length to a size below that
needed to maintain reentrant circuits [104]. A more recent option is catheter ablation of
ectopic foci within the atria that appear to be responsible for initiating AF [254, 277].
Activity from these ectopic sites must be witnessed and recorded during clinical

monitoring if the focus is to be accurately localised for ablation.
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1.4 Cardiac Stability

Since cardiac cells behave individually as highly nonlinear electrical units, coupled with
irregular geometrical and functional connectivity, it is intriguing to speculate on the
stability of whole-heart conduction from the point of view of a nonlinear system. Figure
1.6 shows an hypothetical high-dimensional state space of heart electrical activity, and a
corresponding bi-stable potential well. The number of states, and therefore dimension of
this hyperspace, is equal to the number of cells multiplied by the number of dynamic
variables defining each cell. Periodic sinus beats raise the state from the stable quiescent
point in the normal well onto a trajectory, defined by the system dynamics, leading back
to the resting point. Some small beat-to-beat variations might occur about this stable
trajectory, similar to a ball moving from side to side as it rolls down a spiral channel. A
benign premature beat or disturbance causes a small perturbation 8 that recovers back to
the stable attractor. Various pathological conditions, however, may push the state far
enough away that the dynamics carry the trajectory across a separatrix ridge into an
alternate basin of attraction. The state might settle into a periodic limit cycle of VT or a
chaotic tangle of fibrillation. Unless interrupted by resuscitation, the VF attractor
eventually decays into a deep well of asystole with progressive ischemia and death.
Defibrillation shocks supply energy to raise the state back into the normal basin.
Unsuccessful low-energy shocks fail to push the state across a barrier, or separatrix, and
fibrillation returns. The two stable point attractors in this diagram, one in each basin,

must actually be joined by a filament, since they both represent a state of complete rest.

We can define the "substrate of arrhythmogenesis" to be synonymous with the topology
of this hypothetical multi-dimensional manifold that governs system response to
electrical disturbances. Drugs alter the substrate by distorting the basins, and perhaps
raising or lowering the separatrix barrier. This diagram is only conceptual, as no low-
dimensional quantitative theory of such a complex state space currently exists [29, 269].
We must use simplified models to sample and explore this space by examining lower
dimensional tangents or approximations to the manifold. There is a need to develop

mathematical and computational tools for this purpose. Fortunately for our individual



14

longevity as humans, the basin of stability in the state space of a healthy heart is wide
enough to recover from minor irregularities that occur in benign transient dysrhythmias.
To a certain degree, this robustness is forced by local refractory behaviour that prevents
reflection or reexcitation of impulses, and ensures 1:1 entrainment between the SA node

and all other firing heart cells.

/" Defibrillation

U
=TT

~

Normal 5 / VF

Separatrix

Figure 1.6. Basins of attraction in an hypothetical state space determine the stability of
sinus rhythm and the transition to fibrillation. Sinus rhythm behaves like a stable limit-
cycle oscillator, with irreversible fibrillation residing in a different region of the state
space.

A general conceptualization of the various stages in the transition to cardiac dysrhythmias
is summarized in Figure 1.7. It is beyond the scope of this dissertation to investigate all of
these complex interactions, although the models developed here are capable of simulating
a broad range of these phenomena. The main focus in this dissertation is on the stability
and modification of induced reentrant dysrhythmias in normal cardiac tissue, in the
absence of the abnormal physiological factors outlined herein. Since healthy hearts
generally do not enter VT or VF spontaneously on their own, these rhythms will be
induced artificially by various protocols such that their evolution and characteristics can

be studied.
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Figure 1.7. A general schema for conceptualizing the causation, induction, and
modification of ectopic and reentrant cardiac dysrhythmias. The majority of studies in
cardiac electrophysiology have focused on specific aspects of the multitude of
interdependent relationships between the components of this diagram at various levels.
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1.5 Objectives

Mathematical modelling and computer simulation are useful adjuncts for studying
electrical activity in the heart [197, 388, 390, 510]. Models can consolidate existing
knowledge, quantify relationships, generate novel perspectives, and help fill conceptual
gaps that are inaccessible by experiment. The entire heart can be represented
quantitatively as a three-dimensional electrical circuit, comprised of a large number of
individual cellular elements accounting for ionic currents and intercellular coupling. A
mathematical model of sufficient detail can be used to conduct "numerical experiments"
by computer simulation under conditions that can be controlled and manipulated in ways
that would be very difficult, or impossible, in real experiments. Some recent computer
simulations of three-dimensional conduction and wave propagation in the heart,
employing relatively primitive cellular models, have been used to simulate dysrhythmias
[17, 33, 233, 388]. Validation of these types of models remains an ongoing problem, due
to very limited experimental mapping studies on the whole-heart scale [359]. Inevitable
gaps remain between the bottom-up engineering approach, based on theoretical

principles, and top-down empirical experimentation.

This dissertation describes the development of two new theoretical models of reentrant
dysrhythmias. The first is a simple two-dimensional coupled map lattice that retains only
the most primitive features of action potential dynamics and cardiac conduction. Its
simplicity allows a wide scope of investigation, and is used in particular to examine
spatiotemporal complexity during fibrillation. The second model is a large-scale three-
dimensional computer simulation of electrical activity within the ventricles. This model
accounts for the dominant ionic currents responsible for ventricular action potentials in
the anisotropic monodomain human heart. The objective is to study important cardiac
dysrhythmias, including ectopic activation, reentrant circuits, and afterdepolarizations,
particularly as they pertain to myocardial electrical wave dynamics of focal activation,
and the stability of reentrant VT and VF. Electrocardiograms and body surface potential
maps are simulated by forward-solution in a homogeneous infinite medium, and their

relationship to underlying wave propagation is examined. The models developed here are
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tools that will be used to investigate strategies for quantifying the spatiotemporal
dynamics of propagating wave patterns, and the resultant body surface manifestations.
The heart model might also assist in localizing arrhythmogenic foci to facilitate treatment
by catheter ablation, and will be a useful adjunct in developing future innovative

electrical, surgical, and pharmacological therapies of cardiac dysrhythmias [417].

All models to be discussed are based on normal myocardial tissue, whose behaviour must
be understood to a reasonable degree before the role of specific disease processes can be
investigated. Using the models developed here, it will be possible to resolve, with high
resolution, the direct contribution of individual wave dynamics within the heart to the
observed body surface electrocardiograms during simple and complex cardiac

dysrhythmias.

The specific objectives of this work are as follows:

e Develop a three-dimensional computer simulation of electrical activity in the heart
using reasonably realistic ionic models of human ventricular cell action potentials

e Simulate normal ventricular activation, and focal and reentrant cardiac dysrhythmias
as wave propagation in anisotropic tissue

e Quantify the spatial and temporal patterns of wave propagation in the myocardium

e Study the influence of modifications to individual ionic currents on wave stability

e (Calculate the resultant body surface potential maps and electrocardiograms

e Examine the contributions of intracardiac events to features in the electrocardiogram,

by quantifying the spatial features of the body surface potential maps.

Some specific questions to be addressed are:

e How does restitution of action potential duration influence the spatiotemporal
dynamics and complexity of fibrillation wave patterns?
e What information about myocardial electrical wave dynamics can be extracted from

the body surface electrocardiogram?
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Can the body surface ECG distinguish between ventricular tachycardia originating
from focal and reentrant sources?

Is it possible to follow the transition from VT to VF as a bifurcation in spatiotemporal
dynamics, or as a phase transition?

Is there a continuum between the dynamics of VT and VF, and does this manifest in

the electrocardiogram?



Chapter 2

CELLULAR MODELS

2.1 The Action Potential

The foundation of computational cardiac electrophysiology is the mathematical model
used to represent the cellular elements. A variety of models covering a spectrum of
complexity have been developed over the years, and will be reviewed in this chapter in
order to gain perspective on existing modeling methods and their limitations. Each model
describes the passive voltage-current relationship of subthreshold membrane, and the

active voltage change during the action potential (AP).

Cardiomyocytes are long and slender cells connected in an organized matrix of
electrically coupled parallel strands which form a functional syncytium [236, 471].
Active membrane-spanning ionic pumps separate charged ionic species into intracellular
and extracellular compartments. Opposing ionic fluxes establish balance between charge
and concentration gradients in a dynamic equilibrium to establish a transmembrane
potential. This keeps the intracellular space about —90 mV relative to the extracellular
space [60]. The exact value of the resting transmembrane potential depends on the ionic
gradients, and varies between specific cell types and animal species [279]. Current
injection into a cell from an external stimulus or an advancing depolarizing wave front
raises this potential toward a threshold such that inward cationic currents, dominated by
sodium and calcium, begin to exceed the smaller background outward currents carried by
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potassium. As the balance is tipped to favour a net inward current, depolarization
accelerates and the cell "fires" by rapidly depolarizing toward a positive potential. The
fast inward current is dominated by a sodium spike lasting several milliseconds [435].
The resulting depolarization wave is largely responsible for sustaining propagation and
also allows the calcium current to activate. The inward calcium current promotes further
calcium release from internal stores, necessary to facilitate actin-myosin contractile
interactions [9]. The inward currents inactivate at the positive potential, and the slower
outward currents, carried by potassium, restore the cell back to its resting potential. The
time course of these currents determines the action potential shape and duration which is

traditionally divided into morphological phases illustrated in Figure 2.1.

Figure 2.1. Morphological phases of the normal cardiac action potential.

Subsequent stimuli following an action potential elicit submaximal responses, unless time
is allowed for complete recovery. The absolute refractory period (ARP) is the time during
an action potential when no excitability can be elicited, and corresponds roughly to the
phase 2 plateau. The relative refractory period (RRP), spanning into phase 3, is the
recovery time beyond which the cell becomes excitable and can respond with an
upstroke, though it may not necessarily propagate. The functional refractory period (FRP)
is the earliest recovery time beyond which an elicited AP can propagate. Excitability
refers to the ease with which an action potential can be produced, and is related to the

threshold. Response refers to the amplitude of the resulting AP upstroke and is stimulus-
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dependent. Restitution refers to the curve of action potential duration (APD) recovery
over time. Standard restitution is the curve of APD as a function of diastolic interval (DI)
elapsed from the tail of the preceding AP. Dynamic restitution is the curve of steady-state
APD as a function of the pacing interval or basic cycle length (BCL). Conduction

velocity also has a restitution curve as a function of DI or BCL.

2.2 Mathematical Models

Electrical activity of cardiac cells is essentially a physical process, and can therefore be
described mathematically. Although ion channel kinetics appear to be stochastic at the
molecular level [248], for modelling purpose, membrane behaviour may be considered
deterministic. Stated most simply, each cell has a resting state and, if brought to a
threshold, undergoes a transition to a firing state which it maintains for some duration,
followed by recovery back to a resting state. If the cell is stimulated again during the
refractory period (before complete recovery), the subsequent response is submaximal.
Three categories of cellular model have historically been used to represent these
processes with varying degrees of realism: cellular automata, relaxation oscillators, and

ionic models.

2.2.1 Cellular Automata

The simplest mathematical models of excitable elements can be constructed with cellular
automata (CA). First proposed by Ulam to von Neumann as a method for modeling
algorithms of self-replication [490], cellular automata are the most primitive dynamic
models. They are capable of implementing any Turing-computable algorithm, including
simulation of a vast spectrum of spatiotemporal phenomena. Each element on a lattice
holds one of a number of finite states which are permitted to change only at discrete time
steps according to either deterministic or probabilistic state-transition rules based on the
neighbour states. Rules acting locally give rise to global emergent properties on the
lattice. Future state values of each cell i depend on the present values of the cell and those

of a neighbourhood of cells j such that X (i) = F(X(i), X¢(j)). Although by definition
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any numerical model is a type of cellular automaton by virtue of discretization in time
and space, classically CA are intentionally constrained to a low number of states,
sometimes as few as two. The theory of CA has been developed to a high degree, perhaps
most notably by Wolfram [557, 559] who defined four subclasses of generic behaviour
analogous to the fundamental types of attractors in nonlinear dynamics. Examples of CA
models applied to biology include pattern formation, occular dominance stripes, animal
coat markings, and ecosystem distribution [154]. Examples in physics include fluid
dynamics, crystal aggregation, percolation in porous media, and phase transitions of
condensed matter [507]. Many of these models have been used to examine emergent
behaviour with self-organization, and to explore methods for quantifying complexity by

analyzing changes in patterns, information content, and entropy [385, 556].

Applied to excitable tissue, CA models provide a simple formulation that attempts to
retain only the most primitive features of cellular activation and recovery, yet allow much
more rapid computation than partial differential equations. A block of tissue can be
represented by a lattice within which each resting cell holds a value qf zero, and upon
firing, switches to a state of one for a predefined action potential dufation. Such state
transitions occur according to deterministic rules involving states of nearest-neighbour
cells. Rules may be in the form of a look-up table, or as a series of conditional logic rules.
Following a refractory period, which can assume a decreasing intermediate value or

intermediate states, the cell returns to its resting state.

Wiener and Rosenbleuth described the first theoretical network model of cardiac
conduction in 1946, using cellular automata with three states and constant propagation
velocity [535] following Huygens principle. Flutter could not be induced in the model
without the presence of anatomical obstacles. Moe revived this approach in 1964 to
simulate heart tissue in a now classic model of atrial fibrillation employing a two-
dimensional hexagonal cellular array with a resting state, firing state, and four refractory
states [352]. Self-sustaining irregular vortices of reentry were reported, none of which
were stable. Activity was described as being "turbulent rather than rhythmic and regular”.

A major finding was that multiple wandering wavelets resembling atrial fibrillation
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Figure 2.2. Spiral wave reentrant circuits develop from wave segments with free ends.
Simple and complex patterns of fibrillation self-organize from random intial conditions
and depend on the number of initial wavelets and their distribution. These simulations are
based on a simple cellular automaton model to be discussed.

could be simulated, and their existence did not require anatomical obstacles or fixed
spontaneous impulse generators. Two-dimensional models of self-organizing cellular

automata, following a variety of specific local neighbour rules, are known to evolve into
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fibrillation-like patterns [129, 276, 335, 518]. Several groups have used finite automaton
models to simulate ventricular fibrillation by using random variables to define action
potential durations [169, 192, 270, 351, 461]. These models demonstrate theoretically
that increased dispersion of action potential duration can induce local reentrant circuits.
This hypothesis has long been widely assumed, and has been confirmed by experiment
mapping [52, 296, 298, 299]. Primitive CA models have been used to explore the stability

of spiral wave reentry, and the role of action potential duration restitution [24, 249, 269].

CL,, > CL,, = CLg, < CL

Figure 2.3. Wavefront curvature in a cellular automaton model depends on the minimum
number of active neighbours N needed to excite each cell to fire (top). The spatial
pattern of wave activity evolving with a reentrant spiral wave competing with an ectopic
focus depends on the relative frequencies or cycle lengths (CL) of these two sources.

Figure 2.2 shows perhaps the simplest two-dimensional cellular automaton model that
one can define based on rules chosen to mimic excitable myocardial tissue. The algorithm

is shown in Table 2.1, and has similarities to that proposed by Greenberg and Hastings as
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a model of genetic drift [212]. Each cell maintains a resting state Xj; of zero unless
stimulated to fire by at least N4 of its immediate neighbours being in an excited state Xj;
> ( or above a threshold value Xj; > Xu. If the cell fires, its state Xj; changes from zero to
a peak state value of APD (action potential duration) which counts down toward zero
with each time step. Once the cell reaches zero, it must wait a predefined recovery time R
(refractory period) until it is ready to fire again. The examples in Figures 2.2 and 2.3
show a 100 x 100 grid of elements with APD = 8 and R = 4. A stable spiral wave is
induced artificially by introducing a partial wavefront with a free end, and backed by a
row of refractory cells. Varying the minimum number of neighbours N between 1 and 3

causes a change in maximum wave front curvature, shown in the top row of Figure 2.3.

A second more interesting example, in the lower row of Figure 2.3, shows a reentrant
spiral wave in the vicinity of a regularly beating ectopic focus. The spatial pattern and
temporal behaviour of these two coexisting wave sources depends on their relative
frequencies. In the left frame, the ectopic focus is beating slightly faster than the cycle
length of the spiral wave, and tends to dominate the field. The centre frame shows both
cycle lengths to be approximately equal. The right frame has a slower ectopic focus
which is largely overdriven by the spiral wave. The wave source with the fastest
frequency tends to suppress other sources, a common feature of coupled oscillators [111,
224, 541]. Tt is noteworthy that these two fundamentally different wave sources fail to
annihilate each other in this model, and the frequencies are largely determined by the sum
of action potential duration, refractory period, and diastolic interval: f = 1/(APD+R+DI).
If the frequencies of each source are only slightly different, such that each can produce
sustainable waves, the ECG should at least transiently show quasiperiodicity, with the
amplitude modulated by a beat frequency equal to this difference. The only interaction
between cells in an automaton model is the binary decision to fire or not, based on the
number of active local neighbours. There is no shortening of action potential, gradient of
firing threshold, or dispersion relationship defining a change in conduction velocity with
frequency. These latter properties are important in initiating instabilities and maintaining

dysrhythmias [529].
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As will be demonstrated later, fibrillation can evolve from a simple plane wave that splits
into a complex field of multiple wavelets by a cascade of bifurcations, this being one of
the fundamental routes to chaos. Behaviour progresses from simple to complex. An

alternative route to a fibrillatory state is to start with the system overly-complex in a

Table 2.1: Finite Automaton Model Algorithm

Set initial condition Xj Yj;

For each time t =t + dt:

For each cell (i,)):

(1) Calculate cell voltages
Vij = (Xjj/ APDy) Vi Voltage Vjj < Xj

(2) Count active neighbours N =X (V;;>0.3 V) Maximum 8

(3) Update cell clocks
If Xj> 0 then X;j=X;;—1 Decrement firing clock if in AP
IfXjj=0then Y;j=Y;+1 Increment refractory period if resting

If X;; > 0 and N <2 then Xj; = Xj; — 1 Shorten APD of isolated
firing cell

(4) Switch to firing state

If Xjj=0and Y;; >R and Nj > 2 then New firing APD
Xij = APD *
Yij =0
If X;; = 0 and Yj; = CL then Optional ectopic beat
(cycle length CL)
Xij=APD *
Yij = ()

* where APD = APD, + (APDy, — APDy)(1—exp[- (Y; — R)/t])



27

random state, with cells in different phases of firing and recovery far from equilibrium,
and allow it to freely evolve or condense without external influence. Figure 2.2 shows
this type of self-organization in the automaton model. The initial state is too complex to
sustain itself in the medium, and the field attempts to settle to a less complex pattern that
is sustainable, given spatial and temporal constraints inherent in the substrate.
Interactions between neighbouring cells cause small phase shifts, that are on average
locally convergent, causing a gradual dissipation of information. If there was no loss of
information, it would be possible to run the system backwards by reversing time, and the
initial condition would eventually be recovered [483]. Instead, dissipative systems can
arrive at a given state by multiple routes, and reversal of time would result in ambiguity

over the preceding state [222, 407].

The state is pushed over time toward an attractor, which in a continuous system can be a
fixed point, a limit cycle, a quasiperiodic N-torus, or a chaotic tangle. The pattern may be
a static or dynamic steady state constrained within a lower dimensional region of the state
space, and is one of intermediate complexity between that of rest and randomness. The
constraint of each cell to a finite number of possible states S within a finite m x n lattice
means that there exists d = S x m x n possible states in the system, and that the behaviour
follows a time-dependent trajectory through a d-dimensional state space. The methods of
nonlinear dynamics and statistical mechanics can be introduced to quantify system
behaviour, as will be demonstrated in a later chapter. We will also return to this simple
model to examine spiral wave stability, and as a dipole source generator to assist in the

interpretation of body surface electrocardiograms.

2.2.2 Hybrid Automata

Classical cellular automata switch abruptly between a small number of finite states.
Discretization can introduce unwanted behavioural artifacts if one is actually attempting
to represent a continuous excitable medium with overly-coarse resolution. Leon and
Horacek introduced a hybrid continuous-discrete model of cardiac tissue in two- and

three-dimensional media [308] to handle anisotropic conduction, and to overcome the
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limitations of unrealistically abrupt state transitions to permit the smooth action potential

morphology needed for calculating realistic body surface electrocardiograms.

Passive
Electrotonic

Action
Potential

Linear
Upstroke

Figure 2.4. Hybrid automaton model showing subthreshold and suprathreshold states
(top), and the state transition diagram (middle). Propagation of a single stimulus on a
cable of cells results in a pair of action potentials radiating outward (lower left). The
hybrid model allows isotropic or anisotropic action potential conduction, as shown by a
single stimulus radiating outward in a two-dimensional field (lower right).
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The Leon-Horacek hybrid automaton model is illustrated in Figure 2.4, which shows the
state definitions and the state transition map. This model behaves as a continuous
diffusion partial differential equation in state 2 when cells are below a threshold potential.
When a threshold voltage is reached, the cell switches to state 3 with a constant upstroke
velocity. When peak voltage is reached, the element behaves as a finite automaton for a
predetermined duration, with a predefined action potential shape function taking over in
state 4. As the cell recovers back below the threshold potential, the diffusion equation
takes over again. Several minor variations of this model are possible, depending on the
specific definitions of individual states. As few as two states will suffice if one
incorporates the upstroke into the action potential profile. The resting state 1 in Figure 2.4
is not absolutely necessary, but reduces computational time early in the simulation by
staying zero until a neighbour cell receives electrotonic current, at which time the state
switches to 2. The examples show conduction along a one dimensional cable, and radial

propagation in a two-dimensional sheet with isotropic and anisotropic conductivity.

The basic algorithm, modified from the original [369], is outlined in Table 2.2. The clock
variable (nclock) can have two different meanings depending on the cell state, either
counting down from a maximum value if the action potential is firing in state 3, or
counting up from zero if the cell is refractory in state 2. There are only three state
variables in the basic model: V(i,j,k), nstat(i,j,k), and nclock(i,j,k), allowing whole-heart
simulation to be carried out efficiently. As with all models employing synchronous
updating, dV/dt(i,j,k) must also be stored for time stepping. In Table 2.2 a few optional
features are added to the basic model to expand its capabilites. Restitution of action
potential duration APD = f(DI) can be added as an exponential function, but requires that
APD(,j,k) be stored so the profile function can be calculated for each time step. The
threshold voltage Vy, and the peak voltage Vax can be time-dependent, in which case the
variable nclock effectively mimics recovery of the sodium channel. A simple linear
ohmic ionic current can be added to improve subthreshold electrotonic interactions.
External stimulation can force prolongation of the action potential by resetting the cell
clock back an amount depending on stimulus strength. These new features improve

realism and permit the model to simulate AP prolongation, decremental conduction, and
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unidirectional block with an external stimulus or shock. The only additional stored
variable in this case is Vyax(i,j.k). These modifications permit stimulus-induced reentry,

as shown in Figure 2.5. This phenomenon will be discussed in a later section on reentry.

Table 2.2: Algorithm of Hybrid Automaton Model

For each time t =t + dt:
For each cell (i,j,k):

(1) Choose new state:

If (nstat=1and V*>0) nstat=2 (V* is any of 4 neighbours)
If(nstat=2and V> Vy,) nstat =3
nclock=APD/dt
If (nstat=3 and V> Vi ) nstat = 4
V=V ax
If ( nstat =4 and nclock =0) nstat =2
nclock =0
V = Viest

(2) Calculate electrotonic current;:
Evaluate Vy ,Vyy and V, for Laplacian
Set stimulus current Iy, (optional)

dV/dt = ax Vxx + ay Vyy + aZ VZZ + Iion + IStlm

(3) Update cells
If (nstat=1) nclock = nclock + 1
If (nstat=2) V=V +dV/dt* dt (electrotonic)
nclock =nclock + 1
If (nstat=3) V=V+B*dt (linear upstroke)
nclock = nclock — 1
If (nstat=4) V = f(nclock, Vmax) (action potential shape)

nclock = nclock — 1
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Options: (1) APD =a+ (b — a)[1 — exp(—nclock/t;)] state 3 — 4 transition

(2) Vi, = c + d exp[— (nclock — ARP)/t;]  state 2 — 3 transition

(3) Vmax =h [ 1 — exp(-—nclock/13)] state 2 — 3 transition
(4) Tion = — g V(ohmic) state 2 (subthreshold)
(5) nclock = nclock — p Ltim state 4 if stimulus on

The hybrid model has been implemented in blocks of tissue, an ellipsoidal left ventricle
[309], and a human-heart geometry [370]. Computation proceeds rapidly and captures the
essential behaviour of advancing wave fronts. Advantages of the hybrid model over the
finite automaton model are the important ability to handle anisotropic conduction, and the

option of reducing upstroke slope at short diastolic intervals to permit velocity restitution.

This type of model performs well in simulating intracardiac wave propagation during the
depolarizing activation phase corresponding to the QRS complex of the body surface
electrocardiogram. However, absence of electrotonic interactions in the model during
most of the action potential, particularly phase 3 recovery, limits this type of model
considerably if one is interested in repolarization dynamics during the T wave and
simulating multiple beats encountered in VT and VF. Since it will not handle electrotonic
interactions during the absolute and relative refractory periods, the present form has
limited ability to simulate wave instabilities involved in dysrhythmias. This model also
shares a problem with true automaton models, in that there is no mechanism to smooth
spatial discontinuities introduced by stimuli or shocks. Dissipation of discontinuities by
current diffusion can only take place during the brief intervals where the cells are
subthreshold, and not while they are firing. In reality, neighbouring cells with disparate
action potential durations exchange electrotonic current throughout their respective action
potentials, such that the longer cell is shortened and the shorter cell is prolonged by small
amounts to bring about a degree of smoothing. Since each automaton element in the
domain changes according to individual clocks independently of its neighbours, elements

retain memory of the past since the last state transition, and there is no mechanism for



32

transients and discontinuities to dissipate. Despite these limitations, the hybrid automaton

model remained state-of-the-art for large-scale simulation for several years.

Figure 2.5. Stimulus-induced reentry in the hybrid model. A line stimulus S; delivered to
the left edge of an 80 x 80 element field, followed by a spatially decaying shock S; to the
centre of the field, results in retrograde block and formation of a spiral wave pair.
Anisotropy is evident in these examples, with the fibre direction being horizontal (top)
and vertical (middle). Action potentials are shown at bottom, sampled at one point over
time and, above threshold, are simply defined as inverted exponential functions.

2.2.3 Relaxation Oscillators

Models based on differential equations have continuous variables that undergo smooth
transitions, unlike those of finite state automata. Differential equation models of cardiac
tissue have the essential topological features shown in Figure 2.6. The curve governing

response during excitation has three distinct domains of alternating slope that may be
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represented by a cubic or higher-order polynomial, or piecewise linear segments. There is
a stable resting point, or attractor, at the resting membrane potential Vy intersected by a
positive slope. Voltage pertubations away from this point cause a current favouring return
to this point. Beyond a threshold potential Vi, the sign of dI/dV changes and the current
increases the voltage, pushing it away from this repellor. The rate of voltage change
dV/dt determining action potential upstroke velocity depends on the magnitude of the
current along this segment. The crossover point at V, determines the peak voltage V,, and
is a stable point. Recovery follows a trajectory in the V-I plane back to Vi according to
an outward current. Subsequent action potentials occuring with incomplete recovery may
follow different trajectories. All models to be discussed in the following sections retain

this basic topology, despite varying levels of complexity.
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Figure 2.6. Topology of cellular excitation has three zeroes representing stable resting
and peak voltages, and an unstable threshold. This curve can be a cubic or higher-order
polynomial, a function based on ionic currents, or a piecewise linear function (inset).

Lord Rayleigh published an extensive treatise on the theory of sound in 1896 [416]. A
particular interest in musical instruments inspired him to analyze self-excited vibration in
reeds and bow strings which could be modeled by introducing nonlinear damping F(x) to
the vibration equation. The choice of damping F(x) in this equation determines whether

oscillations decay, remain stable, or are self-excitated.
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X+ FQX)+a*X =0 .1

Van der Pol conducted experiments on spontaneous oscillations using an early radio
transmitter built around a nonlinear triode tube [497]. By varying circuit parameters he
was able to induce self-excitation and modify the shape and symmetry of the output
waveform. He called this device a "relaxation oscillator", because each half-cycle was
dependent on the charging of a capacitor [232]. The governing second-order differential
equation approximates the stable linear version at small amplitudes, but becomes a limit-

cycle oscillator with negative damping at larger amplitudes [489].

X+ aX-DX+0’X =0 2.2)

Van der Pol and van der Mark in 1928 constructed an electrical circuit with three neon-
tube oscillators of different frequencies coupled in series, and proposed this as a model of
the beating heart with sinus node, atria, and ventricles [498]. This coupled oscillator
model exhibits intervals of phase-locking and Wenckebach rhythms. Bonhoeffer later
constructed a chemical iron wire model of axon propagation which could be represented
by the same governing equations [482]. FitzHugh separated the single-variable van der
Pol equation into a pair of first order differential equations in voltage V(t) and a second
state variable W(t) controlling recovery [170], and showed that the phase plane of these
two variables could be divided into a resting attractor with active or firing regions, an
absolute refractory region, and a relative refractory region. FitzZHugh also pointed out the
topological similarity of this two-variable Bonhoeffer-van der Pol (BVP) model with the
four-variable Hodgkin-Huxley nerve model [171] by introducing a transformation of
variables. Nagumo constructed an electrical analogue of these equations employing a
tunnel diode to give the cubic term [482]. The BVP model is now referred to as the
FitzHugh-Nagumo (FHN) model, and is summarized in Table 2.3.
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Table 2.3: FitzHugh-Nagumo Model

dv = f(V)-w
dt

dW = £ (V) [g(V) - W]
dt

g(V)=go (V- Vos)

(i) Cubic Version:  f(V)=a(V-Vr)(V-Vg) (1-V)

(ii) Linear Version: f(V)=r (V-Vg) segment 1
=g (V-Vy) segment?2
=p(V-Vp segment3

This FHN model has been the subject of numerous studies employing a variety of
variations [102, 396, 491], the simplest being shown above. The nonlinear function f(V)
is analogous to the excitatory current, and can be a cubic polynomial with three roots
representing resting, threshold, and maximum potentials, or a piecewise linear function.
The restoring current is analogous to W, and activates with a delay controlled by a time

constant T = € which may, in fact, be a voltage-dependent function [396].

For the purpose of illustration, the following parameter values are assigned: the resting
potential Vg = 0, the threshold V= 0.2, maximum potential V,= 1. The slope r = —15
represents the input resistance of the resting membrane, g; = 2 is the conductance of the
excitatory current analogous to gy, of sodium, p = —10 is the membrane resistance at the
action potential plateau. The excitation function f(V) is piecewise linear with three
segments corresponding to the inset of Figure 2.6. The rate constant € =.05 is the
reciprocal of the time constant for the inactivation variable W that exponentially follows

g(V), the effective outward current. The conductance g, = 4 is analogous to gx of
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potassium. The optional offset voltage Vs is a control parameter that is zero for normal
ventricular and atrial cells having stable membrane with action potentials that must be
stimulated to fire. If Vg is given a small positive value such as 0.15, the intersection
point of f(V) and g(V) changes from a stable attractor to a repellor, and the cell becomes

an autonomously firing oscillator like a pacemaker. The phase planes for these two cases

Stable

Unstable

Figure 2.7. Phase plane for the FitzHugh-Nagumo relaxation oscillator model. The
location of the intersection of the two nullclines, shown as thick lines, determines
whether the resting point is stable, requiring a stimulus to induce firing (top), or unstable,
producing limit-cycle oscillation (bottom) like a spontaneous pacemaker cell. These two
modes of behaviour are apparent in the action potential trains in Figure 2.8.
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are shown in Figure 2.7. Linear stability analysis can solve for the value of Vg at which
there is an abrupt change to spontaneous oscillation [45]. This occurs when there is a
positive change in sign of the real parts of the eigenvalues of the Jacobian of the two-
variable system of equations linearized at the point of interest. As Vog is increased, the
stable attractor becomes a limit cycle by a Hopf bifurcation. Figure 2.8 illustrates model
behaviour of several versions. The action potentials in the basic FHN model tend to be
somewhat square in shape, owing to unrealistic reactivation of the steep inward current

f(V) during repolarization.
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Figure 2.8. Action potentials of some variations of the FitzHugh-Nagumo model. The top
two frames employ a cubic f(V), whereas the bottom two use piecewise linear functions
resulting in a more square profile. The second frame shows a spontaneously oscillating
pacemaker version, while all other models require an initiating stimulus. The bottom
frame shows the Kogan modification to introduce APD restitution at rapid pacing rates.
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Two-variable relaxation oscillator models exhibit relative refractoriness in the form of a
higher stimulus theshold at incomplete recovery, but show no response refractoriness. In
other words, a subsequent action potential, when elicited, is nearly identical in form to
the preceding one. There is very little action potential shortening (restitution) for short
recovery intervals. The original formulations of these models lack realistic action
potential morphologies and restitution dynamics. They are nevertheless still useful as
each requires only two variables: a transmembrane potential V, and a single time-
dependent gating parameter W that controls recovery. The phase-plane trajectories (V,W)
are readily plotted and analyzed providing insight into oscillatory behaviour, recovery,

and overall stability [46].

Nonlinear phenomena are likely important in arrhythmogenesis [126, 542]. In particular,
break-up of fibrillation waves may be a consequence of action potential alternans,
quasiperiodicity, and chaos [189]. Since ambiguity of future state in a dynamic flow
would arise if trajectories intersected in a state space, the Poincaré-Bendixson theorem of
nonlinear dynamics states that any continuous system exhibiting bifurcations and chaos
must have at least three state variables [449]. This gives rise to a three-dimensional or
higher state space, where trajectories need never cross regardless of complexity. The two-
state variable FHN model in its basic form cannot represent such behaviour without at
least a third variable, consequently there is almost no restitution in the basic model.
Kogan introduced modifications to the time constant ¢ of the slow variable of the FHN
model according to the value of V and the sign of dw/dt, effectively making (V) a third
state variable, allowing for a limited degree of action potential duration restitution [285]
shown at the bottom of Figure 2.9. The action potential profiles in the Kogan
modification are still almost square because the inward current reactivates as the AP
recovers, and since the inward current function f(V) is steep, there is an abrupt drop as
the potential passes back over the zenith of the f(V) curve partway down. This
phenomenon is physiologically unrealistic as the sodium current does not reactivate
during action potential repolarization. It does not appear to be a simple matter to
eliminate this problem and achieve a smooth action potential without introducing another

state variable.
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Figure 2.9. Original van Capelle-Durrer model with a single gating variable y(t). Action

potentials are elicited by the first two current stimuli. There is no significant shortening
of APD following the third premature stimulus at t = 8.
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Figure 2.10. A modified version of the van Capelle-Durrer model described in the text.
This version retains the original gating variable y(t) controlling the sodium current, and
has a new state variable x(t) controlling the calcium current which gives restitution of
action potential duration. The action potential morphology is more realistic, and alternans
is seen to occur at the rapid pacing rate shown here.
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An alternative two-variable model which is similar to the FHN model was developed by
van Capelle and Durrer in 1980 [496]. This model, summarized in Table 2.4, uses a cubic
activation function f(V) and a two-segment piecewise linear inactivation function to
achieve action potentials with improved morphology. The most desirable feature of this
perhaps under-utilized model can be seen by rewriting the original equations in terms of
an inward current I;, and an outward current Iy, and the cubic activation polynomial f(V)
in terms of resting potential Vg, threshold Vy, and peak voltage V,. Unlike in the FHN
model, the VCD model's inward current is inactivated by the multiplier (1 — y), and is
therefore turned off rapidly after the upstroke. It recovers only after the action potential

has almost reached resting potential, thus performing more like the true sodium current.

Table 2.4: Van Capelle-Durrer Model

CdV = Iin + Lout *+ Lstim fiV)=.0035(V-VR)(V=-Vu)(V-V,)
dt
Vr=-74.5 Vyp=-643 V,=-11.2
dy = [yo—vyl/t
dt Vo =0.5(V+80) maxrange[O0,1]
In =f(V)* (1 -y) g(V) = 0.5 (V + 80) if V< =70
=0.015 (V + 80) if V>-70
Towt= g(V) t=0.5

Figure 2.9 illustrates the behaviour of the original VCD model which, like the FHN
model, lacks significant APD restitution. This is not surprising, since there are only two
state variables. Action potential morphology is, however, substantially improved over
that of the FHN model. Building on this basic VCD model, we can produce a remarkably
good extension by introducing a simple modification to give it physiological currents Ina,
Ica, and Ig, and do so only by adding a third state variable x(t), complementing the

existing state variables V(t) and y(t). The equations of this model, proposed here for
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illustration only, are listed in Table 2.5, and the behaviour is shown in Figure 2.10. By
comparison with the full ionic models to be discussed in the next section, sodium
inactivation (1-y) here is analogous to h(t), calcium inactivation (1-x) here is analogous
to f(t), and Ix(V) is the voltage-dependent rectifier current. The time constants of y(t) and
x(t) can be defined individually, allowing independent control of velocity and APD
restitution. The cost of these improvements is the requirement for three state variables

(V,y,x) rather than two (V,W).

Table 2.5: A Three-Variable Model

CdV = Ina+Ica+ Ik + Ltim f(V)=a(V-Vr)(V-Vu)(V-V;)
dt
a=.007 Vg=-74 Vy,=-65 V,=0
dy = [yo—y]/1y

dt Vo =0.05(V+80) range[0,1]
dx = [Xe-X] /1% X =0.05(V+70) range[O0,1]
dt
Ine =f(V)* (1 -y) ty= 0.15 or 0.5 if dy/dt<0
Ica =-12*(1-%x)y =80 or 4.0 if V>-40
Ik =gV) g(V)=0.6 (V+80) vV <-70
=6+.017(V +70) VvV >-70
=72+05V V>0

The apparent simplicity of these two-variable models belie their impressive capacity to
exhibit rich dynamics open to mathematical analysis in one-, two-, and three-dimensional
media. Relatively low computational requirements allow implementation in large-scale
blocks of tissue, such that these types of models are the basis of most currently published

whole-heart simulations employing reaction-diffusion kinetics [387, 510].
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2.2.4 Ionic Models

Realistic physiological models incorporating individual ionic currents were not
developed until Hodgkin and Huxley published their seminal model of the giant squid
axon action potential in 1952 [229], based on the voltage clamp technique developed by
Marmont [336]. The HH ionic model incorporates time-dependent and voltage-dependent
sodium and potassium channel kinetics as differential equations. In 1962, Noble extended
this concept to cardiac Purkinje fibres by formulating an inward rectifying potassium
current, and later adding a slower calcium current to prolong the action potential [375].
Since the calcium current introduced at that time was admittedly unrealistic, further
refinements were later introduced by McAllister, Noble, and Tsien [340], and by
DiFrancesco and Noble [131]. The MNT model remains a commonly used description of
conduction system Purkinje fibre. In 1977, following voltage clamp studies focussing on
the calcium current, Beeler and Reuter introduced a model of the ventricular cell
employing four currents [32], which remained the standard for modeling cardiac cells

throughout the 1980's. This model is shown in Figure 2.11.

Complete recovery of membrane excitability following an action potential can take
several seconds. A premature stimulus applied to a cell prior to complete recovery results
in lower excitability and shorter action potential duration. Figure 2.12 shows the standard
Beeler-Reuter model paced at a several basic cycle lengths. High frequency stimuli result
in shorter action potential durations, owing largely to incomplete calcium channel
recovery and incomplete potassium channel reactivation. The resulting steady state curve
of APD versus basic cycle length (BCL) in Figure 2.11 is called the dynamic restitution
curve. An alternative way to look at cell recovery is to plot the APD against the diastolic
interval (DI) measured from the AP tail until delivery of a premature stimulus following a
regular cycle train. This is called the standard restitution curve, and is only weakly
dependent on the preceding cycle length. As a close approximation, APD depends on the
recovery interval from the preceding action potential regardless of that cell's past history.
Except for very short diastolic intervals, these curves can be reasonably approximated as

the sum of two exponential terms [314]. Restitution in the BR model is a consequence of
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slow recovery dynamics of calcium and potassium currents. Recovery of action potential

amplitude is dependent on sodium channel recovery.
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Figure 2.11. The standard Beeler-Reuter ventricular cell model and its ionic currents.

The BR model has several shortcomings. The very small membrane length constant and
complex cellular structure of cardiac tissue prevented adequate voltage clamping at the
time, and the large rapid sodium current could not be measured reliably. The sodium
current kinetics from the Hodgkin-Huxley (HH) giant squid axon were therefore used.
The chosen maximum sodium conductance in the BR model is several times smaller than
that measured more recently in human ventricular myocytes [435]. The calcium current
responsible for the action potential plateau lacks detail and was referred to simply as the
"slow inward" current I;. This current was modelled with simple HH kinetics, and does
not account for calcium exchange between intracellular compartments [331]. Potassium
currents, which were modified from those of the MNT model, are also overly simplified

and higher than those seen in human cells, resulting in a relatively short APD. Some
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important differences between tissue properties of giant squid axon and cardiac tissue are
summarized in Table 2.6. Larger radius, lower resistivity, and higher sodium conductance

all contribute to the higher conduction velocity seen in the giant squid axon.
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Figure 2.12. Pacing the Beeler-Reuter model at increasing rates results in various ratios
of phase locking, from 2:1 alternans, through quasiperiodicity, to chaos (top). The
dynamic restitution curve shows how action potential duration (APD) varies with pacing
basic cycle length (BCL). The standard restitution shows how APD depends on the
diastolic recovery interval (DI) since the previous action potential. Time units are in
milliseconds.
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Ebihara and Johnson [144], and Drouhard and Roberge [142] addressed deficiencies in
the sodium current formulation by presenting modified versions of sodium current
dynamics relevant to cardiac tissue. Luo and Rudy added several components to the
outward potassium currents in their 1991 phase 1 model (LR1), while retaining the
Beeler-Reuter calcium dynamics [329]. The Luo-Rudy phase 2 model (LR2) in 1994
added detailed multi-compartment intracellular calcium dynamics [330]. This model is
currently the most detailed mathematical description of the ventricular action potential,
and has been further modified to simulate action potentials in heart failure and ischemia.
A useful feature of the LR1 and LR2 membrane models is an attempt to account for
changes in extracellular potassium concentration. This is of particular importance during
ischemia [149]. Varying [K'],, even within the normal physiological range of 3.0 to 5.0
mM, causes significant changes in action potential properties. Supernormal excitability is

also evident in this model, and is potassium-dependent [329].

Table 2.6. Comparison of Squid Axon and Cardiac Fibre

Squid Cardiac
Radius 0.238 cm 0.0008 cm
Resistivity 35 Qcm 200 Qcm
Sodium gy, 120 mmho/cm? 13 mmho/cm®
Velocity 18 m/s 0.66 m/s

All the models discussed above are largely based on data taken from experiments on
guinea pigs and other species whose cellular action potential duration and restitution
properties do not necessarily correspond with human data. There is presently no cellular

model specifically developed to represent human cardiomyocytes.
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2.3 Cellular Black Box

Does the simulation of spatially propagating action potentials demand highly detailed
cellular models? The answer to this question obviously depends on what is expected of
the model. One can consider each element to be like a "cellular black box", since for the
purpose of modeling electrical wave propagation, a cell or element may be considered to
behave as an electrical device within a black box. The outside world sees only a voltage-
current relationship, and need not be aware of the internal dynamics of the cellular model.
Each element approximation sees only a current input from electrotonic influence of
neighbouring cells or external stimuli, and adjusts itself internally to produce a voltage
output seen by other cells as in Figure 2.13. As far as propagation within the global array
is concerned, it does not matter what the detailed ionic mechanics are inside the cell, so
long as the current-voltage relationship is determined. Simple models should suffice if
one is concerned only with simulating the global transmembrane potential distribution
V(x,y,z:t), as is the case for action potential propagation or ECG calculation. One must,
of course, be aware of any limitations and the domains of validity, and be willing to

accept simplifying assumptions.

Is im(t) —>
t F(Xalal"l,t) —> V(t)
L(t) —»

Figure 2.13. Each cellular element may be considered effectively a "black box" with an
output voltage V(t) computed for a given current input. Internal dynamics F operate on a
vector of state variables X(t), input electrotonic current I, from neighbouring cells in the
tissue domain, external stimulus or shock current Ig;n, and a fixed parameter set p.
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2.4 Computational Limitations

A high-fidelity model for computer simulation would ideally contain cellular elements
that correspond to the length scale over which properties can be assumed uniform, which
would be smaller than individual cells themselves. All known ionic currents and
intracellular and extracellular spaces would be included. Time steps would need to be
chosen to capture the shortest events while maintaining numerical stability. To meet such
resolution, a model would ned to have many millions of elements, and would require
computational times that would vastly exceed any practical waiting period, even using
the most powerful computing hardware presently available. The study of basic
phenomena and interpretation of results also becomes difficult if one employs overly-
complex models with too many variables. Virtually all computer models simulating any
complex phenomenon face compromises, which necessitate simplifying assumptions. For
a given computing power, applied to modeling cardiac electrophysiology, one must
choose between defining detailed cellular models and defining complex geometry, as

illustrated in Figure 2.14 with specific cellular models.

Most models described in this disseratation were run on a Pentium-based personal
computer, including all cellular automata and coupled map lattices, and ionic models in
single cells and one-dimensional cables. Ionic models in two- and three-dimensional
geometries were run on an RS/6000 system (IBM Corp.) in the Department of Physiology
and Biophysics. All programs and simulation software were written by the author, and

graphics were produced by pixel-generating programs customized for this purpose.
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Figure 2.14. Limitations in available computing power determine the compromise
between detailed cellular models and detailed tissue geometry. The curves are illustrative
only, and not meant to be quantitatively accurate. The lower two contours are easily
handled by personal computers, while the higher contours require a large mainframe
computer or parallel processing supercomputer.



Chapter 3

COUPLED MAP LATTICE

3.1 Introduction

This chapter begins to explore the spatiotemporal structure underlying fibrillation using a
simple two-dimensional coupled map lattice model (CML) that incorporates only the
most basic features of excitable cardiac tissue. This simplified approach has several
advantages over the use of more sophisticated ionic models. Complexity is reduced by
defining only two state variables at each cell, one for firing and one for recovery. The
rules governing individual cell behaviour are simple and can be adjusted independently of
any specific cellular model. The salient roles of conduction velocity and action potential
duration in the emergent spatiotemporal patterns can be explored. Restitution of action
potential duration can be assigned any desired function APD = f(DI) without the added
difficulty of tailoring complex ionic models to fit such a relationship. Statistical measures
of complexity can be calculated relatively easily within a discrete medium. CML models,
as proposed by Kaneko, have continuous state variables [263, 264], while closely-related
cellular automata (CA) of cardiac tissue reported in the literature have discrete states
[25]. Both types of models compute rapidly on a personal computer allowing large
parameter spaces to be explored. Solitary and multiple spiral waves and ectopic foci will
be simulated in a simple cylindrical heart geometry to explore the origins of complexity
and the nature of phase transitions to fibrillation. We will use the model to analyse the

origin of the electrocardiograms in fibrillation in a later chapter
49
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Some basic questions to be addressed include:

How does spiral wave stability depend on action potential restitution?

What is the maximum density of spiral waves that can persist in a heart?
How do statistical measures of complexity depend on system parameters?
How do ECG patterns vary with size, location, and number of spiral waves?

Can the body surface ECG distinguish spiral wave from ectopic activation?

3.2 Algorithm

The components of discrete CML and CA models are the same as other dynamical
systems: a state vector X(i), where i = 1...N; a state transition function o(X) defining
changes in X(i); and a fixed parameter set or external control pn. Whereas differential
equation (DE) models evolve according to the vector of derivatives dX/dt = f(X, p)
integrated over small differentials, finite state models employ a discrete transition
mapping X(i+1) = o(X(i), 1) from the present state to the next state, essentially mapping
a discrete lattice domain onto itself at finite time intervals. Elements are called cellular
automata (CA) if state variables are confined to discrete integers, whereas a coupled map
lattice (CML) has continuous states as shown in Table 3.1. The differences in behaviour
between CA and CML models may be subtie in many cases, since CA are essentially a
subset of CML. CA models employ integer rather than floating point arithmetic, and
require less computer memory. CML models, however, can exhibit chaotic dynamics

within continuous states, unconstrained by the discrete states of a CA model [264].

Table 3.1 Comparison of Dynamical Systems

Model Time Space State
DE C C C
CML D D C
CA D D D

C = continuous D = Discrete
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The algorithm for the CML model is shown in Table 2.2. Although extension of the
model to three dimensions is relatively straightforward, investigations here will focus on
a two-dimensional isotropic medium. The single state variable X(i, j) representing cell
activation is set to zero if cell (i, j) is at rest. The cell fires if a threshold condition is
reached, at which time X(i, j) is instantly set to its maximum APD value, which then
counts down by one unit with each time step until arriving back at zero, thus defining the
action potential. The cell voltage V(i, j) is proportional to this clock value, and is scaled
to have a maximum value Vy,. The resulting triangular AP profile is shown in Figure 3.1.
The firing threshold is reached if at least N of its eight immediate lateral and diagonal
neighbours are above a threshold voltage Vy. This switching criterion is essentially a
discrete version of diffusive coupling. When the state X(i, j) returns to zero, an absolute
refractory period R begins, and is counted up by one each time step by the variable Y(i,
j)- X(, j) and Y(i, j) need not be separately stored variables, as both can occupy the same
memory by assigning one to have a negative flag bit and taking the absolute value for

computation, since X =0 when Y >0, and Y = 0 when X > 0.

An absolute refractory period R must expire before the cell becomes excitable again. This
short interval prevents the repolarizing action potential tail from spuriously exciting
neighbours by "backfiring" when spatial voltage gradients are large. Subsequent APD is
determined by a restitution function APD = f(DI), where DI = Y(i, j) — R is the diastolic
interval elapsed since the cell became excitable. This function is implemented by setting
X(@, j) = fY(, j) — R] at the time of firing, thus giving the APD shown in Figure 3.1. We
have the option of defining all cells to have constant and spatially uniform APD,
regardless of refractoriness, or more realistically, to recover with an assigned exponential

time constant.

APD = f{DI) = APD, + (APD, — APDy) (1 —¢ "2V ) (.1)
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Xm = f(Y-R) = 36
V = Vm X/Xm

[
67 Y=Y+

DI

X=APD={(Y-R)

B
APDm
Restitution
APDo

Curve
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R DI
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Figure 3.1. The basic Coupled Map Lattice model. An action potential is shown at the top
along with the definition of states. The maximum value of X(i, j) is the APD. The
diastolic interval DI does not begin until the refractory period R has elapsed. Recovery
time Y counts up from the time X reaches zero at the end of APD. The restitution curve
determines the next APD according to DI =Y — R. APD, and APDy, are the intercept and
maximum values of APD. Voltage is proportional to X(t) giving a triangular profile V(t).

Conduction velocity of a plane wave is uniform at one cell per time step, approximating
Huygens principle of isotropic wave propagation independent of wave front curvature.
Only the hybrid automaton model or continuous differential equation models can
overcome these limitations, if one must account for velocity dispersion and anisotropy.
Action potential shapes are triangular to maintain simplicity, although it is easy to assign

some other template function V(nclock). The APD restitution curve is specified
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independently of any ionic model, in our case taking on an exponential function. The

model computes rapidly on a personal computer.

Table 3.2 Coupled Map Lattice Model Algorithm

Set initial condition Xj; Yj;

For each time t = t + At:

For each cell (i,j):

(1) Calculate cell voltages
Vii = (Xjj/ APDy) Vi Voltage Vi < Xj

(2) Count active neighbours Na =% (V;;> 0.3 Vi) Maximum 8

(3) Update cell clocks
If Xjj>Othen X =Xjj—1 Decrement firing clock if in AP
IfX;;=0then Y;j=Y;;+1 Increment refractory period if resting

If Xjj> 0 and Ny <2 then X;; =Xjj—1 Shorten APD of isolated
firing cell

(4) Switch to firing state

IfX;;=0and Y; 2R and Na > 3 then New firing APD
Xij = APD *
Yij =0
If Xj; = 0 and Y;; > CL then Optional ectopic beat
(cycle length CL)
Xij = APD *
Yij =

* where APD = APD,+ (APDy, — APD,)(1—exp[-(Y;; — R)/])
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Figure 3.2. The NxM tissue domain is wrapped into a cylinder of radius R representing
the heart. The body surface is idealized as a ring of radius D on which the ECG signals
are calculated. The grid of states X(i, j) is mapped by the transition function o(X, ) at
each time step to determine the new states. The ECGs are calculated by summing dipole
fields. Here the calculation is shown in two dimensions. The voltage difference between
adjacent points a and b defines a single dipole p(a, b) at surface point (i, j) on the cylinder
within the shaded action potential shown. The component of the dipole vector tangent to
the cylinder surface is resolved along the observation axis and divided by the distance Ry,
which is determined by the cosine rule. This defines a spatial kernel function W(R, o)
which varies as the inverse of Ry squared. ¢ is the location angle or longitude of the
observation point relative to the tissue domain and is proportional to i.
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For convenience, the model is implemented in arbitrary time and space units to permit
unit incrementing and decrementing, but can be scaled into realistic units. If we assume
that each time step equals 5 ms of real time, then a maximum APD = 60 units
corresponds to 300 ms. APD scales as shown in Table 3.3. Plane wave propagation
around a cylinder circumference of N = 150 space units takes 150 time units or 750 ms. If
we assume a conduction velocity of 30 cm/s, a value between longitudinal and transverse
velocites [420, 443] the cylinder circumference works out to 22.5 cm with a diameter of
7.2 cm, approximately the size of a real heart. Each spatial element is therefore 225 / 150
= 1.5 mm. The "heart" is then 150x50 units, corresponding to 22.5 cm of length and 7.5
cm of height. Higher spatial resolution can be easily obtained, but the above values are

satisfactory for our purposes.

Table 3.3 Scaling of Model Time With Real Time

Model Real
12 units 60 ms
16 80
20 100
24 120
28 140
32 160
36 180
42 210
48 240
60 300

Electrocardiograms Ve are calculated by summing the electrical potentials produced by
each surface dipole as seen at a distant observation point within an infinite homogeneous

volume conductor [193, 308]

vV (3.2)
1'3

N
Veeg = j kle
H

~
|
—_

where VV - r is the gradient of action potential field in the myocardium resolved along

the vector r which extends from the surface point to the observation point. The integral is
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evaluated over the heart volume H, which is a summation over the cylinder surface (i, j)
in the CML model. The voltage gradient VV can be obtained numerically by taking each
2x2 cell-cluster and summing the vectors of the two voltage differences in the diagonal
directions. Figure 3.2 shows an equivalent representation as a source dipole p(a, b) for a
cell pair centred at coordinates (a, b) in two-dimensions. In this special case, the voltage
gradient can be calculated between each pair of cell neighbours, and resolved as a surface
tangent vector along the observation axis by a dot product, and dividing the result by the
third power of distance Ry between the source dipole and the observation point. Ve is

the sum of all such contributions of individual dipoles to the field potential.

In preliminary simulations, the ECG observation points were placed in the same plane as
the rectangular medium, but outside the tissue domain. The computed ECG's were found
to be very sensitive to the sharp action potential wave fronts reaching the edge and
abruptly terminating as they exited the domain. A similar phenomenon occurs in the heart
at the instant when the ventricles become fully activated, and accounts for the abrupt drop
of the RS segment of the QRS complex. Real ECG signals may also exhibit abrupt
changes when wave fronts terminate at the basal boundary at the A-V ring. To avoid
inappropriate dominance of these kinds of boundary effects in the two-dimensional
model, the heart was idealized by wrapping the rectangular domain into a cylinder as
shown in Figure 3.2, and placing the ECG observation points outside as body surface
leads distant from the heart. This cylindrical heart is topologically like a thin shell single

ventricle with a hole at the apex, and should be suitable for basic studies.

Since the ECG is a linear summation of individual dipole fields calculated according to
Figure 3.2, we can resolve the direct contribution of each individual dipole source to a
specific body surface lead by mapping the dipole distribution. In this manner, the detailed
origin of each ECG point can be dissected to the cellular level if desired. For the 150x50
unit standard domain representing the heart, there are 7500 such dipoles with vector
components oriented along the observation axis. Vecg(@, t) at each time step t as seen at
longitude ordinate ¢ on the equatorial ring is the sum of all positive and negative dipole

contributions over the tissue domain.
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Equation (3.2) can be rewritten in terms of the dipole strength p(a, b). Since the model is
two-dimensional, each dipole contribution to the ECG can be multiplied by a weighting
coefficient W(R, ¢) that is inversely proportional to the cube of its distance from the
observation site Ry, and proportional to the dot product of the circumferential tangent unit
vector and the vector from the observation point along Ry. The full set of dipole
weighting coefficients defines a kernel function shown in Figure 3.3, which when
convolved with the dipole distribution gives the resultant ECG voltage.

V=D 2 WR, 0)p(,]) (3.3)

=1 j=1

¢

D=15R D=2R D=3R

Figure 3.3. The dipole weighting function W(R, ¢) may be visualized as a template on
the cylinder surface fixed relative to the observation point. Maximum contributions to the
ECG occur from dipoles within the two "gull wing" zones where the cylinder surface is
tangent to the observation line vector. Contributions are maximally positive if the dipole
points directly toward the observer as occurs under the peaks, the locations of which
depend on the distance to the observation point. Templates are shown for observation
points at increasing distances. No ECG contribution comes from the points nearest and
opposite observation points at ¢ = 0 and 180 degrees, respectively, because the cylinder
surface is perpendicular to the axis Ry at these points where the tangent angle B = 0.
Dipole field contributions decrease with R
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Since the ECG of reentrant circuits is an integrated sum of dipoles undergoing periodic
activation due to propagating circus movement, the frequency components of the ECG
signal should theoretically be dominated by the periodicity of these reentrant circuits. The
longest reentrant pathways should produce the slowest ECG waves, while smaller circuits
should produce higher frequency contributions. These components can be extracted by
calculating the distribution of cycle lengths (CL) over some time interval by defining an
array to record time elapsed between action potential activations at each site, and
constructing a histogram of these times. Likewise, since CL = APD + DI, we can also
construct and monitor additional histograms for APD and DI. These should relate to the

frequency content of the ECG signals determined by Fourier analysis.

3.3 Ectopic Activation

A regularly beating ectopic focus can be modelled by setting a small cluster of cells to
fire at a regular cycle length as in Figure 3.4. The initiating site must be at least a 3x3
cluster to satisfy the neighbour rule with N = 3. Radial propagation produces expanding
concentric rings, as expected. The body surface electrocardiogram map is shown at a
distance D = 2R around an equatorial ring of 36 points at 10 degree intervals. The first
ectopic beat produces a large negative ECG deflection directly over the ectopic site,
where @ = 90°, owing to the departing wave front upstroke defining dipole vectors that
point away from this site. A large positive deflection appears at the ECG observation
point diametrically opposite the ectopic site at ¢ = 270° where the dipole vectors
converge. As more waves enter the domain with subsequent beats, the steep upstroke
contributions become partially negated by the more shallow sloped repolarization
segments of the radiating waves that produce smaller but more numerous opposing dipole
vectors pointing toward the ectopic site. Multiple waves produce smaller ECG amplitudes
than those seen with the initial solitary wave. A steady state is reached when the wave

train fills the field.

The envelope of maximum ECG amplitudes measured circumferentially around the body

surface ring for an ectopic focus shows two large maxima and two large minima spaced
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at roughly 180-degree intervals, and several smaller peaks. The largest amplitude appears
opposite the ectopic focus due to large radius wave fronts moving toward the far side
producing a more coherent net dipole vector coinciding with the two peak zones under
the W(R, o) surface than the smaller radius near-field waves whose dipole vectors are
more attenuated in different radial directions. Single lead ECG signals are approximately
sinusoidal in time with the dominant frequency equal to that of the ectopic source. The

space-time plot of V(o, t) in Figure 3.4 shows this regular pattern.

¢
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Figure 3.4. A single ectopic focus radiates a train of propagating action potentials which
reach a steady state of concentric rings. ECG leads are shown over the focus (¢=90°),
laterally (¢=180°), and opposite (¢=270°). The space-time plot of the ECG along an
equatorial ring V(¢, t) at right shows the large initial deflections followed by smaller-
amplitude oscillations in the steady state. The lower right silhouettes show the transient
and steady state envelopes of maximum ECG amplitudes V() around the ring.
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Figure 3.5 Two competing ectopic foci of different frequencies. The more rapid source at
left with CL; = APD + DI = 42 gradually comes to dominate the field and blocks the
slower focus with CL, = 48. The vertical plot at the far right shows the action potentials
radiating out from their respective sources over time V(o, t) at a horizontal slice j = 25.
The chevron wave pattern of the slower source tapers until it is completely blocked, at
which time the ECG space-time plot shown in the middle moves from a complex pattern
to approach that of the single ectopic focus illustrated previously. An ECG pattern
resembling polymorphic VT, or torsades de pointes, appears during the transient phase of
the first 30 beats, until a steady state of a single ectopic focus is reached.

Multiple ectopic foci of fixed and varying frequencies have been simulated. The dipole
template W(R, o) allows prediction of the locations where the points of maximal ECG
amplitude will lie, according to how well the dipole distribution p(i, j) multiples with

WIR(, j), ¢ (i, j)] so as to maximize the convolution integral of these two functions.
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A simulation of two ectopic foci is shown in Figure 3.5. Two firing foci of dissimilar
frequencies result in the fastest beating site dominating the field as was shown earlier in
Figure 2.3. The slower focus has a slightly wider excitable gap that permits the waves
from the faster focus to gradually penetrate its territory until it is largely overridden. Two
competing ectopic pacemakers were originally proposed in 1966 as the mechanism
underlying polymorphic tachycardia or torsades de pointes (TdP) [128]. A simple shell
propagation model of TdP reported by Malik and Camm [332] demonstrated that the
ECG amplitude showed beat frequency modulation resembling TdP only if the relative
frequencies of the two foci were forced to vary as functions of time. The results in Figure
3.5, however, show that TdP patterns can arise from two foci of different frequencies that
are fixed, but only during the transient phase. The ECG space-time plot of the competing
pacemakers exhibits considerable complexity until a steady state is reached, beyond
which the system dynamics merge with that of the single ectopic focus previously
discussed. Other mechanisms of TdP, however, are plausible. Polymorphic VT may also

arise from drifting spiral waves [207, 209].

3.4 Reentrant Circuits

The simplest reentrant circuit in a homogeneous field is a solitary spiral wave radiating
outward from a phase singularity. Spiral waves in reaction-diffusion models [542] and
simple cellular automata [270, 352] have been extensively investigated over the past
several decades. Single or multiple spiral waves are considered to be the fundamental
structures underlying VF and reentrant VT. There are numerous ways of achieving spiral
waves in excitable media according to specifically chosen initial conditions or S-S
stimulation-shock protocols [547]. The easiest and most commonly employed initial
condition is a linear row of cells having a free end near the centre of the domain, while
backed by a refractory region to force unidirectional propagation away from the
refractory region. Subsequent rotation around the pre-existing free-end singularity

evolves into a spiral wave, as illustrated in Figure 3.6.
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Figure 3.6. Reentrant circuit in the cylinder generated from a partial wave front with a
free end backed by refractory cells. This initial condition rolls into a stable spiral wave if
all cells have the same APD. ECG leads are shown over the core point and at 90 degrees.
The space-time plot of the equatorial ring ECG map V(o, t) is shown at right. Silhouettes
of maximum ECG amplitude are again shown at right for the sampled regions a and b.
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The ECG patterns of a spiral wave, as single lead signals and as a space-time plot, show
some similarities to those of the ectopic source described previously, if the cycle lengths
are equal. Both have steady state amplitude maxima at points directly opposite their
respective sources on the heart. This is due to the greater dipole contributions from the
converging large radius waves on the opposite side relative to those of the smaller radius
departing waves over the initiating source. There are some important differences,

however, in the precise shape of the wave forms, and in the locations of the ECG extrema
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Figure 3.7 Spiral wave pairs. Both spirals have the same rotational sense (top) and
opposite sense (bottom). Individual ECG leads are not shown for the top case, but are
approximately sinusoidal in the steady state. Space-time plots of ECG maps show
differences in extrema locations. The two leads show minimum and maximum amplitude
ECG for the counter-rotating case, the former being almost isoelectric.
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around the body surface. The spiral wave pattern exhibits a transient stage that lasts
several cycles and eventually settles into an alternating zig-zag checkerboard pattern of
extrema on the space-time plot, owing to radial asymmetry. These ECG extrema are
spatially skewed relative to the more regular ectopic case. Asymmetry of the spiral wave
pattern results in a tendency to dipole-field cancellation and consequent lower amplitude
of the ECG relative to that of the ectopic source whose symmetric waves and dipole
contributions to the ECG are directly additive on each lateral side of the heart. Two
isoelectric amplitude minima are evident in the ectopic source, while multiple minima
appear with the spiral wave. The latter also exhibits a more complex body surface space-
time pattern. If we can extrapolate the results of this very simple model to a whole heart
with any validity, it might be difficult to separate focal and reentrant types of
monomorphic VT based on the ECG waveforms alone, although some distinguishing

features are evident.

The next example shows a spiral wave pair where all APD = 36 are again assumed
constant and uniform spatially with no restitution shortening at rapid cycle lengths. The
top frame of Figure 3.7 shows the spiral pair with the same clockwise rotational sense
with the two centres located equidistantly at 90 and 270 degrees on the cylinder, started
simultaneously with no relative phase difference. The relative phase difference between
the spirals can be adjusted by starting the second spiral with a delay varying between zero
and the full cycle length depending on the phase difference desired. In other cases (not
shown) the second wave was given a delay to introduce a phase lag between spirals. The
computed ECGs are almost identical to each other, despite the phase differences between
the spiral cores. The ECG is dominated by activity in the far field away from the core,
where the spiral waves collide and produce a zone of irregular spatial pattern or
interference, rather than within the spiral domain. This can be confirmed by defining
masks to isolate two subregions: an "inner domain" that contains the pure spiral structure
undisturbed by the far field, and an "outer domain" where the spiral structure becomes
distorted or absent. The greatest change in the ECG is seen with the initial cropping, and
each successive ECG in the cropped domain is very similar despite rotational phase shifts

between each of spiral pair.
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In virtually all simulations of ectopic and multiple spiral waves of constant frequency,
there were irregular regions of ECG amplitude resembling the nodes and antinodes of
standing waves. Isoelectric or low amplitude nodes tend to occur over or close to the core
points, and antinodes of maximum amplitude occur roughly 90 degrees to the nodes.
Spiral pairs rotating with the same sense on opposite sides of the domain produced larger
ECG amplitudes than solitary spirals. Counter-rotating spiral waves of opposite sense
produced yet larger peak amplitudes. Moving the cores of the counter-rotating pair closer
together reduces the amplitude extremes in some cases, giving four or six nodes and
antinodes of yet lower amplitudes. All ECG lead signals were approximately sinusoidal
once a steady state had been reached. The frequency spectra of this ECG should be
narrow-banded for the case of spatially uniform constant APD since all cycle lengths CL
= APD + DI are nearly equal for the fully-developed wave fields. The peak frequency
should correspond to the reciprocal of the cycle length, while the width of the peak is due
to higher frequency components that would appear in the Fourier transform of the

triangular action potentials. We will investigate this issues further in a later chapter.

Of clinical interest is the presence of small amplitude or isoelectric nodal points on the
body surface maps in many d?thqse simulations, most notably with spiral wave patterns
that are reasonably fixed and stable. These nodes essentially represent a far-field
interference pattern analogous to those seen in other types of wave phenomena involving
radiation from two or more periodic sources. If actually present in real ECGs of VF, these
nodal points would give theoretical foundation to reported observations in patients of
"VF masquerading as asystole" in a subset of leads [158, 343], occurring in perhaps 2 to

3 percent of VF cases [109] leading to an incorrect diagnosis of asystole.

It is perhaps worth mentioning, as an aside, that unlike the logarithmic spiral defined by
1(¢)=r, exp(K¢p), which is identical when examined at all scales, the spiral waves of
action potential propagation are not self-similar. A spiral wave cannot be self-similar,
appearing the same at all scales and therefore lacking a characteristic length, if the wave
thickness is everywhere equal owing to action potentials having constant duration

independent of radius. A spiral can be self-similar only if the APD and R increase
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indefinitely with radius. This would require that the APD restitution curve pass through

the origin and extend linearly to infinity, or satisfy some other invariant function.

The ECG amplitude is also influenced by the total number of waves within the field,
particularly waves occupying relatively large areas , such as large solitary waves, that can
mount a coherent dipole contribution in a given direction. Fine fibrillation generally
produces the lowest amplitudes due to the large number of wave fronts oriented toward
and away from the observation axis tending to cancel each other within the peak regions
of W(R, o). Figure 3.8 shows action potential fields and their corresponding distributions

of dipole sources W(R, o) p(i, j).

VG, j)

PG, J)

Figure 3.8. Spatial patterns of action potentials V(i, j) are shown in the top row for
ectopic, spiral wave, and fibrillation. The corresponding field of dipole sources p(i, j)
multiplied by W(R, ¢) that contribute to V., at observation point ¢=180° is shown in the
second row. Positive dipole contributions to Wp are grey, while negative contributions to
Wp are black. V¢; = £ Wp is the sum of the positive and negative contributions and is
shown on a magnified scale. Note that the positive and negative components are almost
equal, and only a small difference determines the ECG. Largest contributions are from
within the lateral gull wing zones where the cylinder surface is tangent to the observation
line.
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Adding more spirals to the domain, as shown in Figure 3.9, increases the ECG
amplitudes if the reentrant circuits have the same period. The peak amplitude is even
higher if the four spirals are symmetrically counter-rotating such that their dipole
contributions are additive. Adding more spiral waves at higher densities eventually
causes the ECG amplitudes to decrease as the dipole contributions tend to cancel on

smaller spatial scales.
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Figure 3.9. Four spiral waves of uniform APD = 36 result in ECG signals with the same
frequency as the previous cases, but with a more complex equatorial body surface map.
Contributions from the spiral pairs work together to produce larger amplitude signals.
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Figure 3.10. Symmetric counter-rotating spiral waves of constant APD = 36 produce a
larger peak amplitude ECG than the previous case. Symmetry causes the wave fronts to
be directly additive in their effects on the ECG, such that the greatest amplitude is over
the observation point at 180°.

An example of fibrillation is introduced in Figure 3.11 evolving from a field of randomly
firing "seeds" surrounded by random refractory zones. The system self-organizes by local
interactions into multiple spiral waves centred at core points where there is juxtaposition
of firing, intermediate, and resting states with sufficient space between such points to
allow spiral wave evolution. This particular case has action potential restitution with

APD,, = 36 and APD, = 12. The pattern contains multiple reentrant circuits of many
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frequencies producing a complex spatiotemporal body surface map. Long runs
demonstrate no tendency to reach any regular pattern, except in a statistical sense.
Another case of fibrillation is shown in Figure 3.12 where the complex field of irregular
spirals waves is forced to become more regular by flattening restitution by raising APD,
from 12 to 36 while holding APD,, = 36. The ECG pattern of this particular subtype of
fibrillation is regular and periodic. Fibrillation patterns will be explored in more detail in

the next chapter.
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Figure 3.11. Fibrillation evolves from an initial condition where cells are assigned
random states, like excited seeds, and settles into a complex pattern characterized by
multiple reentrant circuits. The body surface map at right exhibits organized spatial and
temporal periodicity appearing to contain many frequencies.
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Figure 3.12. Fibrillation obtained from the previous case by raising the intercept of the
restitution curve gradually until it is flat, such that all APD = 36. The core points are now
fixed in location, and all cycle lengths are equal at CL = APD + R + DI. Since the ECG is
the weighted sum of all dipoles which have equal CL, the ECG is perfectly periodic. The
space-time plot at right shows this periodic pattern. The distribution of the ECG
maximum amplitudes V(¢) should depend on the specific spatial pattern of core points.
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APD=12 APD =36 APD = 60

Figure 3.13. A solitary spiral wave, in this case generated by a line of firing cells with a
free end, is stable when all APD are equal regardless of their duration. APD = 12, 36, and
60 from left to right.

3.5 Wave Stability

It has long been recognized that APD is shortened when a cardiac cell is given a
premature stimulus [194, 313]. Nolesco and Dahlen proposed a graphic method to
represent iterations of APD with each beat [374], that was applied to stimulated Purkinje
fibres and ventricular tissue [45, 151]. Guevara et al. explored the patterns of bifurcations
and phase-locking in clusters of paced heart cells [214, 215], pointing out the application
of iterated Poincaré plots to these sequences. Driven ventricles show similar phase-
locking patterns [444]. These concepts from nonlinear dynamics have since been applied
to discrete [78, 79] and continuous [70, 259, 314] mathematical models of heart cells.
Two-dimensional computer simulations of excitable cells having these properties have
been used to explore the transition of spiral wave reentrant circuits into fibrillatory
patterns. Karma demonstrated that an APD restitution curve slope greater than one is an

important factor in promoting spiral wave instability and break-up [274]. Considerable
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attention has since been directed at studying restitution properties of tissues and drugs
and in theoretical models [24, 176, 286, 419, 523, 529].

Given suitable CML model parameters, a spiral wave can persist indefinitely, rotating in
a steady state about a single phase singularity at its core, as already demonstrated in
previous cases. Figure 3.13 illustrates the stability of a solitary spiral when all APD are
constant. The CL are also constant, and the action potential train is regular. The diastolic
interval is predictable at DI = CL — (APD + R). This case is shown in Figure 3.14, where
the dynamics are determined by the intersection of this negative unity slope line with the
restitution curve, which is essentially a flat line. If the restitution curve is given a positive
slope, by lowering the intercept APD,, the operating point changes accordingly.
Perturbations of DI or APD away from this point dissipate after some small oscillations,
as the dynamics return to this stable point. As APD, is lowered further, the operating
point suddenly becomes unstable to perturbation, and two stable points appear, as in the
fourth frame of Figure 3.14. The action potential train then alternates between two APD
values, having undergone a period-doubling bifurcation. The diagram illustrates how the
APD and DI at any given time seek to find an equilibrium that depends on the fixed
parameters CL, APD,,, and APD,. A change in CL moves the equilibrium points
resulting in a transient readjustment period. If the dynamics operate on a steep restitution
curve slope, each successive action potential moves away from this point. If DI is forced
to zero, the next action potential will block and a new pattern of 2:1 response is

established. Every second action potential then fires with a new cycle length of 2 x BCL.

Changing the restitution curve in the two-dimensional model by lowering the intercept
APD, causes break-up into fibrillation, as shown in Figure 3.15. A mandatory criterion
for spiral wave development and break-up is an advancing wave front somewhere and
somehow developing a free end that must both persist long enough and have sufficient
spatial separation from neighbouring waves to be able to roll up. Theoretically, spiral
waves can multiply by a process of wave-breaking, whereby a continuous wave front gets
pinched and blocks over a specific segment giving rise to two free ends that subsequently

roll up into two daughter waves. These may then break into four waves, and so on, until
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Figure 3.14. A regular action potential train in a single paced cell results when APD is
constant, and is determined by the intersection of the restitution curve with the negative
unity slope line of the cycle length CL. At shallow restitution slope m < 1 in the top row,
the intersection point is stable, and iterations of APD with successive stimuli move
toward this attractor. Here APD,, = 48 in all cases. In the bottom row, APD, = 16 and all
intersections points fall on m > 1 so they are repellors. Alternans of APD develops for
BCL > 50. Arrows show the asymptotically stable points. At BCL = 48, the APD values
move away from the intersection until DI = 0, forcing a jump to the negative slope line of
twice BCL. The ratios m:n shown at the top of each frame indicate the period of response
(m) and the periodicity of the APD (n).

a limiting smallest scale is reached, analogous to viscosity limiting the smallest scale of
fluid turbulence. This cascade of wave-breaking might be one route to fibrillation. This
process has been observed in several types of ionic models [100, 274, 389, 529], and

appears to be sensitive to the APD restitution slope. Wave break also occurs in the simple
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CML model, notably in the absence of any reference to ionic currents. The stark
simplicity of this model provides a unique perspective on the fundamental mechanism of

wave break, since only a few simple variables are involved.

APD, = 48 APD, =30 APD, =16

Figure 3.15. The spiral wave breaks-up when the restitution curve slope is increased by
lowering APD, while the plateau APD,, = 48 is kept fixed. Oscillating instability of the
excitable gap can be seen in the middle column, but remains bounded, while the
instabilities grows until multiple regions of block occur in the right column.

Figure 3.16 shows a solitary spiral wave of constant APDy, = 48 which has reached a
steady state. The restitution intercept APD, was then slowly decreased while the time
constant T = 10 was kept fixed. As the slope increased, the wave front uniformity became
increasingly sensitive to small perturbations of wave front curvature that gave rise to
oscillations of amplitude along the wave front. Small differences in curvature between
the advancing wave front and the preceding wave tail provide sufficient perturbations to
initiate such instabilities. Fluctuations of diastolic interval 8DI, manifesting within the
excitable gap, result in fluctuations SAPD according to the slope of the restitution curve
m = SAPD / 8DI as shown in Figure 3.17. Perturbations are damped if m < 1, while
differences in DI become magnified with each cycle if m > 1, eventually leading to

instability and wave front block.
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Figure 3.16. A spiral wave with all uniform APD,, = 48 is started from a steady state in
the CML model. The restitution curve intercept APD, is gradually lowered from 48 to 16,
increasing the slope at short diastolic intervals. The wave front develops amplitude
oscillations which become unstable due to growth of small perturbations in the diastolic
interval when m > 1. This finally leads to wave break and fibrillation.
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Figure 3.17. Small differences in diastolic interval DI between neighbouring regions lead
to larger or smaller differences in action potential duration APD, depending on the slope
of the restitution curve m at that specific point. After a few iterations through a region
with m > 1, the differences can be large enough to dramatically alter the global dynamics.
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Although this type of instability has been simulated in ionic models [189, 274, 389], and
has become recognised in recent years, the CML model demonstrates a mechanism that is
not immediately apparent in more complex models. The first wave break in the spiral
occurs at the left region of Figure 3.16. By examining the space-time plot of a slice
through the wave front shown in Figure 3.18, the reason for the instability leading to
wave front block is apparent. There develops a critical point where the APD at one cell
becomes progressively shorter while the neighbouring cell APD becomes longer. If the
time delay, or dispersion of refractoriness, between the two neighbouring upstrokes
grows to a sufficient magnitude, by the time the longer AP expires and becomes excitable
again, the voltage of its shorter AP neighbour has dropped below threshold Vy,. The long
APD cannot be re-excited, and propagation fails. This mechanism of wave front block,
whereby a propagating action potential decays to a voltage below its neighbour's firing

threshold, is actually quite general. Block is most likely if this critical condition coincides

Critical
Disparity

* denotes block

Figure 3.18. Space-time plots through centre of a spiral wave as the restitution curve
becomes steeper. Growth of small perturbations and amplitude ripples are evident at left
until wave front block occurs at arrow. The magnified plot at right shows wave break
occurring in a separate simulation as one excited cell falls subthreshold at the arrow
before its resting neighbour can be raised to its threshold. The action potentials of two
neighbouring cells shown at right demonstrate growing disparity until block occurs.
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with the oscillating wave front amplitude of the shorter APD cell being at its nadir. When
expressed in these terms, it is not necessary to invoke arguments about ionic currents,

except as they directly pertain to APD, DI, and Vy,.

Figure 3.19 shows another spiral wave with APD,, = 48, APD, = 16, R =4, and 1 = 10
within a 50x50 domain. Maximum slope of the restitution curve is & = (48-16)/10 = 3.2
which is considerably greater than one. Irregularities slowly develop, first when the wave
front encounters its tail and moves very close, leaving a small gap trapped at the core.
This immediately establishes a disparity in diastolic intervals between neighbouring
regions along the wave. As the wave rotates around 180 degrees, the diastolic disparity
transformed through the restitution curve creates a disparity in APD. The difference is
magnified if the restitution slope is greater than one. Each successive rotation creates a
new wave ripple seen spatially along the excitable gap. Once the spiral wave becomes
fully developed, these irregularities can be seen to extend along the entire wave front. If
we imagine standing at the core and taking a walk outward along the wave front, we
would see oscillations in the diastolic region or excitable gap, and consequent oscillations
of the wave amplitude. Close to the core, the wavelength is small due to the small radius,
but gets progressively larger, roughly in proportion to the radius. As the average
curvature becomes less at greater radii, the amplitude of the oscillations becomes less
dramatic. Consequently the histogram of diastolic intervals measured over periodic finite

sampling intervals generally decays with DI, reflecting a predominance of short DI.

The spiral persists for a long time, over 40 revolutions, before it finally breaks up. Action
potentials monitored at one cell, shown along the bottom, demonstrate obvious chaotic
dynamics despite a long period of relative stability. Although spatial oscillations can be
seen in the excitable gap throughout the simulation, these evidently remain subcritical for
a considerable period of time and the spiral is stable despite being very irregular. The
dynamics reside on a chaotic but well-confined attractor. This situation demonstrates that
the mere presence of local chaotic dynamics does not guarantee global instability nor

wave break. The eighth frame clearly shows amplitude oscillation along the wave front.
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Figure 3.19. Spiral wave instability for fixed steep restitution is shown for a single wave
started from a line segment. Although the maximum restitution slope m = 3.0 is much
greater than one, over 40 revolutions were sustained with a long period of apparent global
stability before local irregularities accumulated sufficiently to cause break-up. The action
potential train shown along the bottom for a typical cell shows obvious chaotic dynamics.

The eleventh frame shows the wave finally being pinched off and breaking to reform into
two core points. A cascade of successive wave breaking occurs shortly thereafter as a

complex fibrillation becomes established in the remaining frames.

The parameter values defining the transition to instability were determined by multiple
runs of a single spiral started from a line in a 50x50 bounded domain coupled map lattice
with continuous states. During the initial roll up of spiral formation, the average APD
tends to migrate from an initially high value down toward a distribution closer to APD,,

depending on the specific values of APD, and APDy,. Initial conditions were therefore set

A
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close to the mean with APD = 0.7 APD, + 0.3 APDy,. It was found that stability of the
single spiral wave was highly sensitive to the chosen initial conditions. Waves started
from line segments sometimes blocked while meeting the tail on the first rotation,
particularly when the APD was long and the reentrant circuit required a large
circumference relative to the domain size. Other waves that survived early went on to
break after a long time, while others drifted outside the boundaries. The initial conditions
of refractoriness assigned to the regions at resting potential also had an influence on wave
survival on roll-up. It is not surprising that sensitivity to initial conditions is an important
issue, given the existence of chaotic dynamics locally despite globally stable behaviour.
Simulations were run many times to seek a criterion of stability against wave break.

Although it was difficult to discern a line of sharp phase transition, most cases of wave
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Figure 3.20. Effect of the action potential restitution curve on spiral wave stability and
wave break. The boundary was determined by fixing the plateau APDy, and lowering the
intercept APD, in separate simulations until wave break occurred. Spiral waves were
considered stable if they did not break within 2000 time steps, although they were
irregular if APD,<APD,,. Spiral waves became chaotic closer to the stability boundary,
yet persisted without necessarily breaking. Results were relatively independent of
restitution time constant t and refractory period R. APDp, below 20 was found to be
universally stable regardless of APD,.
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break occurred when APD, was approximately a linear function of APDy, as shown in
Figure 3.20. The stability boundary was approximately equivalent for =5 and 10, and R
=2 to 4. The linear approximation for the boundary line is APD, = 0.7 (APD,, - 7).

3.6 Wave Block

Since wave break due to segmental wave front block is germane to the transition to
fibrillation, it is necessary to understand wave block mechanisms in reentrant circuits.
The simplest reentrant circuit is a one dimensional cable ring supporting unidirectional
propagation. The CML model is easily reformulated into a closed ring by setting the
domain height to M = 1, and N to the desired ring length. The firing rule is then modified
so a cell fires if only N = 1 of its neighbours is above threshold V. The algorithm is
otherwise identical with that previously described. Propagation is uniform and regular if
the ring is large, but undergoes transient block and APD bifurcation at smaller sizes, with

complete block at the smallest or critical size Neyit.

Theoretical  Simulation

APD Ncrit Ncrit
60 20 21
48 17 18
36 13 14
24 10 11
20 9 10
16 8 9

N> Ncrit N< Ncrit

Figure 3.21. A one-dimensional cable ring with a single propagating action potential is
gradually shortened until a critical length N is reached, beyond which the wave front
blocks against its own tail. This is the smallest possible size of a reentrant circuit. The
table at right compares N determined empirically by simulation, as shown in these
examples, with that calculated theoretically by the equations described in the text,
assuming Vy/Vy, = 0.3.
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Figure 3.21 shows a single wave of constant APD = 48 propagating around the cable ring
given an initial length of N = 40. As the ring is gradually shortened, the critical length
Nerit is reached, at which point the wave front impinges on its tail sufficiently to block.
This is followed by loss of propagation and annihilation of all activity after remaining
action potentials expire. This critical length is important because it determines the path
length of the smallest possible reentrant circuits that can persist, and therefore the
minimum allowable spacing between core points and the maximum density of fibrillation
waves. There must exist a mathematical relationship Nt = f(APD, R, Vy,) for the special
case of constant APD. For restitution where APD, # APD,, simulations show the APD
distribution to migrate down toward a mean value that is close to APD,, owing to
relatively short diastolic intervals. The table in Figure 3.21 shows the critical ring length
that just barely allows propagation for various values of constant APD determined

empirically by ring shortening with R =4 and V/Vin = 0.3.
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Figure 3.22. Block occurs when the action potential wave front impinges on its own tail
leaving a solitary element in the circuit at resting potential Vg. This element must remain
refractory until a time R elapses. Meanwhile the peak potential V,, falls from its initial
maximum value of Vy,. Propagation can continue only if V, always stays above Vi, while
V; falls below Vy, and the resting refractory cell recovers. Otherwise the front will drop
below the threshold before its preceding cell at V, becomes excitable again.

Figure 3.22 shows an action potential profile along the ring cable when N is close to Neit.
There is a stage of rapid propagation at velocity 0 around the ring followed by a stage of
temporary block, as the wave front meets its tail and cannot progress until the blocking

tail point recovers past its refractory period R to permit re-excitation. Complete block,
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causing wave annihilation, occurs if the wave front has to wait excessively long, such that
its voltage drops below Vy, before its preceding neighbour tail point recovers past R. This
marginal situation establishes an important theoretical criterion for wave block. Stated
mathematically, the time for the front to fall from V,, to V¢ must not exceed the time for
the tail to fall from V to zero and clock the additional time R to become available for re-
excitation. If V is the rate of voltage drop of the action potential, and the resting voltage
is zero, then block occurs if

X

Vo -V V=0 g V= Vo — (3.5)
X

\Y \Y

Here Vi is the voltage at the tail point at the moment when the front point fires to V. It is
determined by assuming that the voltage of the front drops from Vy, to Vs during the time
period N/B over which the action potential propagates around the ring of length N and
velocity 6.

(Vsj=1——l\ii (3.6)

Simultaneous solution of these equations gives a reasonably close approximation to the
function Ngi = f(APD, R, Vi), where Xy, is the maximum value of X which is the
average APD, and X = 1 is the rate of decrementing of state variable X.

AD Yo, R) 3.7

Neit = 0(
X Vnm

This expression shows that the critical ring size increases with APD, R, 6, and Vy, and
decreases with the peak voltage Vi, This equation performs well for constant APD as
shown in Figure 3.23, where calculated N is compared with simulation results for the
shrinking ring at different Vy,. Difficulties arise with this theory when restitution is added
and APD is no longer constant. In particular, when APD, # APD,, the conduction
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velocity 0 can vary around the ring and throughout the cycle, especially when the circuit
is small and the APD bifurcates into alternans or quasiperiodicity. The maximum
possible value of 0 is unity according to Huygens principle, but is usually much slower
and nonuniform at smaller ring sizes. Simulations with restitution show empirically that 6
actually decreases somewhat with both N and APD making the relationship determining
Nerie much more complex. Despite the average APD being smaller, Ny actually increases
by a small amount at steeper restitution due to the emergence of alternans where two
different APD that sustain on a ring segment occupy a larger space than two equal APD
would of the same period. This alternans due to APD restitution is probably responsible
in part for core point meander and nonuniform path length seen in two dimensional fields

of fibrillation.
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Figure 3.23. Critical ring size Ny is the smallest possible one-dimensional path length on
which action potentials can persist without blocking on their tails. N depends on APD,
0, Vi and R. The points are from actual simulations on the shrinking ring, and the lines
are from the theory in equation 3.7. Agreement is excellent. APD is in model units.

By extrapolation to two dimensions, one might conjecture that N determines the
minimum circumference of a reentrant circuit whose radius is half the minimum possible
spacing between adjacent spiral waves. Of course the simplified analysis above based on
a one-dimensional ring may not necessarily extrapolate cleanly to a two-dimensional
medium where there is spatial electrotonic attenuation, and where all APD are not

necessarily equal due to restitution.
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Wide Gap el Narrow Gap

Figure 3.24. Wave break followed by roll-up into a new pair of spiral waves can only
occur if there is adequate space in the diastolic gap to give the potential daughter waves
opportunity to complete a revolution before being blocked. In the top illustration the
original free end of the wave front completes a revolution and blocks the two new free
ends from rolling up. The broken segment at bottom left has sufficient room to roll up
and establish new spiral waves, unlike the case at lower right where the broken segment
is too tight and will likely reunite and prevent daughter waves formation.

The mere occurrence of wave break does not guarantee that new reentrant circuits will
develop and survive. Figure 3.24 shows an idealized spiral wave rolling up and breaking
to form two new free ends under conditions previously described. These ends can evolve
into a new pair of daughter waves only if there is sufficient space within the excitable gap
for each new end to complete a half revolution in order to claim its territory before being
blocked by the original mother wave as it completes another rotation within the same
time period. This important requirement illustrates why the restitution slope criterion of
m > 1 is necessary but insufficient to ensure break-up into fibrillation. There must not
only be wave front block at some segment, but the diastolic intervals must become wide
enough spatially, perhaps with oscillation, to fit the radius of a reentrant circuit of at least
the critical ring size. It is reasonable therefore to conjecture that for any chosen APDp,

and 7, the restitution intercept APD, that results in wave break and roll-up should be low
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enough to produce a region with m > 1, and also admit a diastolic gap of width greater
than the critical diameter of reentry Deix = Nei/w. The likelihood of wave break into
fibrillation is therefore related to the conditional probability of both events occurring.
This relationship between APD,, and APD, at the fibrillation transition is embodied in

empirically derived line in Figure 3.20.

3.7 Wavelet Capacity

Wave breaking is a route to smaller spatial structure. There must be a lower bound to the
spatial scale of waves, otherwise activity would progress to fine grained totally random
disorder. Presumably this is prevented by intracellular coupling and refractoriness that
determine a limiting smallest spatial scale. We can attempt to establish higher densities of
reentrant circuits in the domain to simulate progressively higher complexity fibrillation,
either by defining initial conditions with more phase singularities or through dynamic
evolution with wave breaking. What is the maximum number of reentrant circuits that
can be sustained in a given area of medium, and how are they configured? This number is
the wave capacity or maximum wave density, and represents the lower bound of spatial

scale in a field of reentrant circuits.

Symmetry dictates intuitively that the maximum wave density occurs when core points
lie on a regular periodic grid. If the action potential restitution curve is steep enough to
force waves to alternate between being narrow and wide, then more narrow waves might
intermittently fit between the wide waves allowing a greater total number of waves to
exist in some spatially quasiperiodic pattern rather than in the regular periodic case. This
problem is similar to that of determining the optimal packing of unequal sized molecules
within a crystal lattice, however, it is more complex because waves are not static points
but are dynamic structures in both space and time. Depending on the nature of the
restitution curve, core points might move away from being fixed and instead trace
circular or hypercycloidal trajectories such as those observed in ionic models [31, 40,
146, 412]. These have not appeared with clarity in CML model runs so far, although this

issue has not been specifically investigated. This complex dynamical behaviour involving
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core point meander further complicates the search for the spatiotemporal pattern of

maximal wave capacity.

The duration with which a firing cell can potentially propagate its activity to a neighbour
depends on the difference between the peak voltage Vy, and the threshold voltage Vy, as
previously described. This difference defines a "voltage reserve" of the upstroke which
determines the slowest possible conduction velocity. Although the maximum velocity
cannot exceed one cell per time step by Huygens principle, much slower velocities are
certainly possible. For example, consider very slow conduction with APD = 48, V,,, = 30,
and Vi = 0.3Vp,. Once the cell fires, it can count down as many as (1 — 0.3) APD = 33
time steps without propagating and still be capable of exciting its neighbour, should that
neighbour be temporarily refractory and then become excitable within that 33 time step
window. Propagation in this case could theoretically be as slow as one cell per 33 time
steps. More realistically, when action potentials are tightly packed and propagating
around small scale circuits the APD would be shorter than APD,, due to restitution, and
the slowest velocity would be higher than 1/33. The slowest possible velocity with the
smallest possible APD and cycle length CL are the determinants of the smallest possible
reentrant circuit path length L = CL Vpax = (APDyin + R) / Vinax. The actual limiting
values depend on complex local interactions during propagation on the substrate and are
not readily predictable without simulation. The case of the one-dimensional ring permits
a theoretical solution as shown above, but the two-dimensional analogue is not as readily
obtainable. The critical size of reentrant circuit in two dimensions must be determined

empirically.

To investigate the capacity question empirically in two dimensions, we first establish an
initial condition of periodic wave segments in an isotropic medium such that it evolves
into a regular grid of counter-rotating reentrant waves. The APD can then be gradually
lengthened while keeping it uniform throughout the entire field at each instant of time
until the maximum stable wave density is achieved. The example shown in Figure 3.25
illustrates several stable wave patterns with APD = 24 on a uniform grid with a spatial

periods of 25, 15, 10, and 5 units. The latter gives a maximum of N = 120 core points.



87

120

Figure 3.25. Regular grids of reentrant circuits are established with various periodicities.
In each case APD = 24 such that N = 10. Circuits remain stable even at very fine
spacing, as shown in the bottom frame. The equatorial body surface maps in the middle
column show fine spatial periodic patterns, and the envelopes of maximum amplitudes
V(o) are shown at right.

There is a relationship between the maximum spiral wave density, or minimum reentrant
circuit size, for a given spatial periodicity of core points and the maximum APD that is
sustainable in this circuit. Simulations were repeated on regular grids of spiral waves for
different wavelengths of spatial periodicity to determine this relationship. The results are
summarized in Figure 3.26, where { is the wavelength between core points, and the
periodicity is twice this value due to the necessity of counter-rotating pairs. APD is the
maximum action potential duration supported is this circuit without blocking. Ny is the
critical ring size for this APD derived from the one dimensional theory discussed earlier,
and is shown for reference. A simple theoretical equation for the critical circuit size in
two dimensions follows directly if we assume that the smallest reentrant path is a circle

taken through elements just inside the periodic boundaries, since this "inside track" must
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be part of the minimum wave front size Ny = 3 to ensure propagation. This criterion
gives the equation for the minimum core point spacing £' of reentrant circuits in two

dimensions where N is the critical ring size equivalent to the path length.

(3.9)

APD Va R)
Vi

(5—2)7r5 Nerit o 9(——X—__+

The table in Figure 3.26 shows good agreement between the actual periodicity £ of the
grid defined in each simulation, and the calculated critical ; based on the above equation

using the maximum APD found to be sustainable in the simulation, thus validating this

extension of the equation to two dimensions.

In terms of minimum size, the smallest reentrant circuits that could be achieved in
simulations were on a grid with a pattern of repeats corresponds to a spatial period of 6x6
units giving . = 6 and 250 core points. This could only be achieved by lowering
parameters to APDpin = 8 and R = 2, which may be of theoretical interest, but are too
small to be physiological for cardiac tissue. APD could however be increased up to about
65 when the spacing between core points was 10 units. By sketching an hypothetical
array of arrival times in each cell on a grid, one might expect the smallest circuits to exist
on 3x3 patches with a spatial periodicity of 4 units, but this does not turn out to be the
case when actually tested in the model. These circuits are too small and fail to propagate
because at a certain time within a cycle there is insufficient number of excited neighbours
to maintain propagation into a very narrow isthmus of recovered tissue. The minimum
number of neighbours rule N > 3 is violated at some point. The cell in the centre of the
tiny 3x3 patch would also have to be a fixed phase singularity to permit a very small
reentrant circuit to continuously revolve around it. This cannot be guaranteed with
certainty unless the centre cell is persistently inexcitable in order to keep its location
fixed. Fig 3.26 illustrates why the grid of smallest reentrant circuits in two dimensions
must have a periodicity of 6 units to satisfy the Na > 3 rule. Figure 3.27 compares the
critical ring size and critical spiral wave core separation based on the one-dimensional

ring theory and the two-dimensional extension described above. The close agreement
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between theory and experiment suggests that the simple ring theory for Nt gives a

reasonable estimate of the critical circuit size for two dimensions.

£ APD Ncrit £. = Ncrit/mt +2
3 (3x3) 8 4.4 3.4
4 12 5.6 3.8
5 27 10.1 52
6 39 13.7 6.4
7 44 15.2 6.8
8 47 16.1 7.2
9 52 17.6 7.6
10 65 21.5 8.9
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Figure 3.26. The smallest possible repeating unit in a regular grid of reentrant circuits is a
square comprised of four counter-rotating circuits in a 2x2 configuration. If the size of
each square reentrant circuit is £ then the smallest path length taken during propagation
approximates a square of size  — 2, since the minimum width of the wave front must be
Na = 3 to ensure propagation by the minimum number-of-neighbours rule of state
transition. If we assume that this path length approximates a circle of diameter £ — 2, then
the one-dimensional ring theory gives an estimate for the critical size of the reentrant
circuit in two dimensions. The table shows the actual unit size £ in the simulation and the
theoretical size £, from the equation.
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Figure 3.27. Comparison of minimum reentrant circuit sizes for one-dimensional ring
(circumference) and two-dimensional spiral waves (diameter) determined empirically by
simulation and by theoretical equations described in the text, which are validated by the
good agreement. It should be noted that R=4 for the ring and R=2 for the spiral waves.
The ratio between the two lines approaches 7 at larger APD, where R is less significant.

Obviously the scenario of densely packed reentrant circuits on a regular periodic grid is
contrived and not likely to be achieved in real tissue. This case represents a theoretical
lower bound on the characteristic size of small-scale fibrillatory patterns and on the
smallest possible frequency components of the ECG. The specific values of spatial and
temporal features in the model depend on the smallest chosen element or cell size, but the
conclusions may be generalized. Obviously the greatest wavelet capacity in fibrillation
theoretically should occur when reentrant circuits are smallest and most densely packed.
Compatibility and symmetry dictate that, for an isotropic medium, the repeating pattern
must be on a square grid with alternating clockwise and counter-clockwise circuits. A

rectilinear grid would presumably be optimal in anisotropic media.

The next two chapters explore in greater detail the role of APD restitution on the
evolution of spatiotemporal patterns of fibrillation in this model, and develop methods for

quantifying complexity.



Chapter 4

THERMODYNAMICS AND COMPLEXITY

4.1 Introduction

For years the question has been posed as to whether fibrillation constitutes random or
organized spatiotemporal activity [29, 127, 210, 269, 352, 549]. There must certainly be
some degree of organization involved in VF, if for no more reason than the existence of
electrotonic interactions that impart increments of phase synchronization between local
neighbours. Given that a liquid can be obtained either by condensing a random gas, or by
melting an organized solid, we can postulate that there exists two similar opposing routes
to fibrillation that undergo a type of phase transition. At one extreme, we have seen how
a simple wave breaks into multiple waves of greater complexity analogous to melting,
presumably to some limit approaching randomness, but constrained by substrate
properties. At the other extreme, initially random activity resembling that of a gas can
self-organize into coherent fibrillatory waves through condensation. The thermodynamic
analogy is that of intermolecular forces favouring organization and order through
attraction competing with thermally-driven collisions favouring disorganization and
disorder [238]. Figure 4.1 shows several patterns of fibrillation obtained by allowing an

initially random field to self-organize.
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APDy, =48 APDy, =36 APDy, =24

Figure 4.1. Composite showing the spectrum of fibrillation spatial patterns in the model
for various values of the plateau APD,, and restitution intercept APD,, with t = 10.
Differences are evident in the characteristic size and uniformity of the waves, and the
variability of the excitable gaps.
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It seems natural to appeal to thermodynamics to seek insight into fibrillation. Phase
transitions have been widely studied in spatially extended nonlinear systems [264, 302,
560]. The transition from regular sinus rhythm to complex VF is like a phase change
from order to disorder, and is presumably associated with a change in some measure of
total entropy. Clinically, we know that a small disturbance beyond some threshold can
precipitate a transition to VF, suggesting that this direction is somehow energetically
favourable [257], while the reverse process of defibrillation is relatively improbable
spontaneously [431], generally requiring considerable energy to reverse artificially.
These observations suggest that it might be possible to derive a thermodynamic theory of
fibrillation within an idealized tissue model by quantifying the competing influences that
govern the system dynamics. Before addressing thermodynamics in the strictest sense,
however, we must bear in mind that energetically the heart is not a closed system. Energy
is continuously replenished by metabolism which recharges cells after they fire, and can
also be supplied iatrogenically by external stimuli or shocks. There is a large component
of mechanical work done by contraction that would also need to be accounted in the first
law of thermodynamics. Only at the time of death, when there is no intrinsic or extrinsic
energy supply, does the heart approach a closed system. One must otherwise seek to

apply methods of nonequilibrium thermodynamics to an open system [407].

4.2 Energy Potential

A system with no external influence tends to move toward a state of lower free energy as
originally proposed by Gibbs [407]. At any given location, however, the decrease need
not be monotonic, particularly if the system is spatially extended such that energy can be
redistributed or partitioned. For our purposes, we propose a tentative definition of system
energy by assuming that it is dissipated according to heterogeneity of spatial voltage. The
system evolution tries to minimize the voltage gradients between cells by doing resistive
work that is ultimately dissipated as heat. This is the behaviour of passive electrical
circuits. The total of all gradients is proportional to the sum of the absolute values of all
current increments between neighbouring cells. Mathematically, this is the volume

integral of the conductance g times the voltage gradient squared according to Ohm's law.
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W= [g[Vv-V] av (4.1)

14

The one half term normalizes for the double counting of each neighbour pair as indices i
and j reverse their roles during the integration or summation, and V represents the tissue
volume. Energy reaches zero only when the voltage field is homogeneous, as with
complete quiescence or with synchronous firing of all cells. For practical purposes, we
assume that resistance between elements is uniform and isotropic, and that all elements
are of equal size. The energy equation then reduces to a volume summation of finite

differences involving immediate neighbours j.
N M 2
W=1%g> > [Vi-Vj (4.2)
i

A specific example employing a simple ionic model illustrates this concept. The two-
variable model in Table 2.4 has a single inward sodium current and a single outward
potassium current. Integrating the transmembrane current flowing down the instantaneous
voltage gradient gives the potential energy function shown in Figure 4.2. This function is
a bistable energy well with two resting points. A relatively small amount of energy must
be supplied to overcome the threshold barrier, and allow the cell to fire by falling into the
lower well representing the action potential peak. This second well of lower energy is
also a stable attractor, unless there is a restoring current. The elevation drop is the energy
lost, and has individual sodium and potassium contributions that dissipate small amounts
of their respective stored Nernst potentials En, and Ex. If lost energy is not replenished,
repetitive action potentials will run the system energy down like a marble rolling down a
spiral track eventually depletes potential energy. This simple ionic model demonstrates
that energy is dissipated independently in both the depolarization and repolarization
phases, hence the use of the absolute-value operator in equation (4.2). This concept can
be extended to any ionic model, provided that each and every ionic current is integrated

over voltage as demonstrated for the Beeler-Reuter model in Figure 4.3.
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Figure 4.2. An energy potential for an excitable cell can be derived as shown in this
simple example of a two-current model with Iy, and I for the circuit shown at upper right.
The total current is integrated over voltage to give the potential-energy function, plotted as
a bistable potential well containing a ball representing the state. When a threshold voltage
is reached, the ball moves to a lower energy state. Repolarization moves it back, but this
requires energy. Subsequent action potentials cause a cascade of falling energy.
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Figure 4.3. The rate of energy consumption during action potentials in the Beeler-Reuter
model. Note that electrical work is done during both the depolarization and repolarization
phases. The total energy loss is the area under the top curve. Each individual ionic current
requires stored energy which is dissipated according to the voltage gradient and
instantaneous conductance in Ohm's law. The concept is general for any number of
currents; however, more currents obviously require more energy.

A physiological problem arises with this definition. As electrical energy of a cell is
dissipated through surrounding resistance elements, it is continuously replenished by
metabolism in an open system, such that a dynamic equilibrium of near constant total
energy for each cell is maintained throughout life. By analogy, the marble in Figure 4.2 is
lifted back up during or following each beat. Only when metabolism fails during ischemia
does the total energy eventually run down to zero as intracellular potential energy stores
become depleted. A more physiological definition of system energy would include the
incoming flux from metabolism charging up the potential energy store. Such a model
would need to calculate both the energy dissipated in electrotonic and ionic currents Wy
and the total system energy E over time during simulations of normal and ischemic
conduction, and account for any additional energy imposed by external stimulation or

defibrillation denoted as Wtim.
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N M
W= g, D Vi — Vi 4.3)

J

E =E,+ I k(wmet + Witim — Wf) dt (44)
t

The integrand is the total rate of energy change relative to the initial value of E,. The rate
constant k depends on the capacity or effective "volume" of the energy compartment. As E
gets very low with progressive ischemia, and approaches the energy Wedt being dissipated
with each beat, the energy needed for propagation cannot be sustained and action potential
propagation fails. The detailed events at the time of failure depend on how the remaining
energy store is partitioned between maintaining upstroke and maintaining repolarization.
Physiologically, this relates to how the diminishing potential energy, as transmembrane
ionic gradients and ATP, choose between maintaining the sodium, potassium, and calcium
equilibrium potentials that drive depolarizing and repolarizing currents. This complex
bioenergetic issue of electrophysiological behaviour in low energy states will not be
addressed here. We also cannot account for mechanical energy required for contraction,

and therefore must assume that no mechanical work is done.

Accordingly, owing to quantitative uncertainty in the total energy balance, the first law of
thermodynamics is not likely to be useful beyond the calculation of the rate of energy
dissipation W(t) by action potentials and propagation. Available energy stores are vastly
larger than what is required for individual beats, and thus fibrillation can persist for many

minutes, allowing hundreds of beats following total loss of coronary perfusion.

4.3 Entropy

A fundamental feature of many types of cellular automata and dissipative systems is the
ability to self-organization [283, 490]. Asymptotic behaviour is generally independent of
initial conditions, and depends only on the substrate lattice properties and the local rules.
We have already seen how a state resembling fibrillation can be established in the medium

by defining random initial conditions and allowing the field to spontaneously self-organize
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according to its local rules. Clusters of activated cells mutually interact and condense into
waves which persist due to the evolution of small-scale reentrant circuits or spiral waves.
These waves are stable, so long as there always exists a point such that each of the three
states (firing, refractory, and recovered) are in contact with each other, allowing activation
to move from the firing cell into recovered tissue. This critical point is a phase singularity,
since isochrones of all phases of the periodic cycle converge and rotate about this point
like a pinwheel [543]. An additional minimum-number-of-neighbours criteria must also be
satisfied to account for a threshold being reached. This latter constraint corresponds to the
safety factor for conduction in continuous media, which pertains to the volume of source

relative to sink needed to sustain propagation [125].

One approach to resolving the issue of fibrillation being random versus organized is to
calculate the system entropy which quantifies the continuum between these extremes.
Boltzmann originally proposed the statistical mechanical theory of entropy, to provide a
molecular or microscopic explanation for the macroscopic description of thermal entropy
proposed by Clausius [407]. Inspired by Darwin, he sought an "evolution equation" for
matter. The concept of entropy is often illustrated by considering a box with a barrier
across the centre dividing it into two equal compartments. Gas molecules occupy one side
while the other side is empty. The respective concentrations on each side, expressed in
arbitrary units, are one and zero. This initial state has order due to distinct partitioning. If
the barrier is suddenly removed, the gas molecules can cross back and forth at random.
Equilibrium is eventually established when the probability of a molecule moving out of
one compartment is equal to that of a molecule moving in. A simulation of 100 particles
with random crossing is shown in Figure 4.4. The equilibrium mean concentration is 0.5
with 50 particles on each side as expected. Owing to the system being dynamic or
constantly in motion according to temperature, equilibrium can be defined in a statistical
sense only, and must be measured over a finite time interval. Static equilibrium cannot
exist, except at an infinitesimal moment. The number of combinations of placing N

particles on each side gives rise to the statistical definition of entropy.
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Figure 4.4 Chamber A initially has 100 particles and chamber B has none. After the
partition is removed, the molecules are free to move back and forth at random between
chambers. Eventually the mean number on each side is 50, and the concentration is 0.5.
This is the configuration of equilibrium and maximum entropy.

Boltzmann recognized that in particle systems like gases, by number alone, there are far
more possible disordered states than ordered states. Figure 4.5 shows the 16 possible states
in a 4 bit binary string. The uniform states 0000 and 1111 are most ordered yet least likely,
the probabilities of either being P = 2/16 or 0.125. The most probable states at any given
time are those having two zeros and two ones, since these represent the maximum number
of combinations, that being 6. The probability of one occurring is maximum at 6/16 or
0.375. Larger strings, in the limit, approach a binomial distribution of bit proportions
according to Pascal's triangle. For any length of string having a binary alphabet, each bit
having P = 0.5 gives the highest entropy because it has the greatest number of possible
contributing states. A dynamical system moving randomly between states, without any
preference in transitions, is therefore statistically far more likely to move toward disorder
than toward order. Over a period of many state changes, this mostly unidirectional path to
disorder is virtually assured by the law of large numbers. Once equilibrium is reached, the
states tend to stay within a disordered subset of states, and the path followed becomes
effectively irreversible because a route taken backward along the same path becomes
extremely unlikely. This is the essence of the statistical mechanical interpretation of the
second law of thermodynamics - that a system has a high probability of moving into

disorganized states by virtue of their large number relative to that of organized states.
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0000 PO POdQ) N S =Z P log(P)

0001

0010 1.00  0.00 1 1.00 log(1.00) + 0.00 log(0.00) =0.00
0011 0.75 0.25 4 0.75 1log(0.75) + 0.75 log(0.75) =0.81
0100 0.50 050 6 0.50 10g(0.50) + 0.50 log(0.50) =1.00
0101 025 0.75 4 0.25 log(0.25) + 0.25 1log(0.25) =0.81
0110 0.00 1.00 1 0.00 log(0.00) + 0.00 log(0.00) =0.00
0111

1000

1001

1010

1011

1100

1101

1110 4 Bits

1111

03

10 Bits

P(i)

0.2
0.1

0.0 -

1 = #ones

Figure 4.5. For a 4-bit string there are 16 combinations as shown. The most probable
configurations are those with 2 zeros P(0) = 0.50 and 2 ones P(1) = 0.5 which account for
6 strings out of 16. These are the most likely strings to be recurrently visited, and are the
states of maximum entropy where Spyax = 1.00 for 4 bits. The digits 1, 4, 6, 4, 1 are given
by Pascal's triangle, and can be generalized to any size of string, such as the 10 bit
example shown, ultimately producing a binomial distribution in the limit of large numbers
or long strings, provided that state changes are random. Non-random transitions, by
contrast, give rise to order.
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Now consider the same problem with a string of zeros and ones shown in Figure 4.6,
where ones are black and zeros are grey. The ones are initially partitioned like gas
molecules on the left half of the string. At each time step, two opposite bits chosen at
random sites are changed to their complements, simulating a molecule moving from one
site to another. After many iterations, eventually the number of bits in each state on each
half of the string becomes equal, at a mean concentration of 0.5. This string could perhaps
represent the state diagram of a piece of excitable tissue, where resting and firing action
potentials hold states of zero and one respectively, and the two-dimensional field of cells
is mapped onto a one-dimensional string. System entropy could then be calculated over
finite time intervals based on sampled probabilities. Self-organization is implemented
according to two rules. In the first case, if the two neighbouring bits are equal, the centre
bit is set to the opposite value. In the second case, the centre bit is set to the same value. It
is important to note that entropy increases when state transitions are random, for reasons
previously discussed, but can decrease with self-organization, since element states change
according to specific rules that are not random, favouring convergence to more organized

states.

Within this context, it is easy to see that the initial condition is ordered and the final state
is disordered, or that simplicity tends to move toward complexity. This might seem like a
trivial statement, but it is not. It is actually much more difficult than first apparent to
formally quantify the complexity of these patterns, or indeed that of any irregular spatio-
temporal pattern. At issue are the precise definitions of simplicity and complexity, because
there is no unique or absolute definition of these concepts. Can one even have a simple
definition of complexity? Casti argues that complexity is an inherently subjective concept,
depending on context [61], and that formally, it should be proportional to the number of
inequivalent descriptions of the system an observer can make. Inequivalence means that
observations cannot be transformed into one another by changing coordinates. Complexity
increases with the number of possible descriptions, for example between bifurcations. This
interesting philosophical issue is discussed elsewhere [61, 231]. Suffice it to say, for now,
that many practical definitions of complexity can be devised, of which entropy is only

one.
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Figure 4.6 A string of 100 bits, initially partitioned like gas molecules on the left, is
released at time "a". Random bit exchanges simulating molecule movement cause the
pattern to evolve toward disorder. Entropy S, calculated from the distribution of same-bit
cluster sizes, is shown at the bottom, and increases when spontaneous randomization is
permitted. Two rules of self-organization are turned on at time "b" corresponding to anti-
smoothing (left) and smoothing (right). In each case, self-organization decreases entropy.

The Boltzmann entropy equation is well known in statistical mechanics [238], and as
pointed out by Shannon, is the amount of new information that one must provide at each
instant in time to define the state of the system [400]. If there are a maximum number of

possible states N, each with a probability of P; for i = 1...N, then the entropy S is given by

N
S=-> Pilog:P; (4.5)

i



103

This measure defines the degree of predictability of future states in an evolving system. If
the state is fixed, periodic, or otherwise perfectly predictable, then the probability of the
next specific state being known is exactly one, and the entropy is zero. At the other
extreme, if the system is perfectly random, then all states i are equally probable with P; =
1/N, and the entropy takes on its maximum value of Sy, =— N (1/N) log; (1/N). The base
of the logarithm is not important, but if the traditional base 2 is chosen, entropy takes on

units of bits per time step, and may be directly interpreted as information.

The probability of occupying any specific state in a large system is extremely low. For
example, consider only 50 cells that can take on two states: firing and resting. There are
2% or about 10" possible states in this small system alone. If we allow the existence of
every state, the CML heart model with 7500 cells, each with perhaps 48 or more states if
they were discrete integers, which they are not, has over 48”°% possible states! A real
heart, with continuous states and far more cells, has vastly more possible states.
Intercellular coupling and refractoriness reduce this to a much lower number of accessible
or meaningful states, but the number of sites in the state space is still astronomical. It is
obviously not practical to assemble a histogram of state visits during system evolution in
order to calculate a true Boltzmann entropy based on possible microstates, even if we
define wide bins corresponding to a very coarsely grained state space. The practical
alternative is to define entropy based on collective properties, such as the probabilities of

cells taking on specific values of APD, DI, or CL.

This entropy equation can be applied in various ways, quantifying order in a temporal
sequence, a spatial pattern, or both as spatiotemporal activity [526]. We can define a
temporal or point entropy of a specific cell by constructing a histogram of action potential
upstroke times over a given sampling epoch spanning many action potentials, and
determine the probabilities of the intervals between beats. For example, a periodic cell of
cycle length CL = 40 time units has P4 = 1 and all other P; = 0 giving S = 0, or perfect
predictability. A beat-to-beat 2:1 alternans pattern might give P3o = 0.5 and Pso = 0.5,
resulting in S = — 0.510gy(0.5) — 0.5l0gz(0.5) = 1.0. Perfectly random activity partitions
probabilities equally between N possible states, giving a maximum S = — N(1/N)logy(1/N).
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Examples of entropies for various histograms are shown in Figure 4.7. The top row shows
sampling during a period of self-organization, while the bottom row was taken during
spiral wave break-up at steep restitution. The maximum entropy for 100 bins, each having
P(CL) = .01, during random activity for this case would be S = — 100 (.01) log, (.01) =
6.64, illustrating that these simulations have considerable organization, and are actually

far from being random.

Entropy is a linear extensive quantity, which means that we can sum the entropies for each
cell according to its state probabilities, and do so over all cells in the tissue domain to get a
total spatiotemporal entropy. The longer the sampling interval, the more accurate will be
the estimate of individual state probabilities. Entropy cannot be calculated as an
instantaneous function of time, unless a moving average of a small sequence is followed.
As the above definition of entropy is related to the width of the histogram of cycle lengths,
one could alternatively define the degree of organization by the mean and standard
deviation of the cycle length histogram. Entropy is more general, however, and directly

related to information content, independently of any specific statistical distribution.

4.08 4.07 2.89 2.40 1.67
F 1___

1 272 1 273 3.89 4.95 5.31

Figure 4.7. Entropy shown here is a function of the degree of order within the series of
firing times for each and every element, and is related to the histogram of such events. The
examples shown here are the probability distribution histograms P(CL) of cycle lengths
taken from various simulations. The entropy of each is shown. Perfect predictability of a
cycle length sequence would give P(CL) = 1.0 and S = 0, implying the existence of some
regular pattern with a spike CL distribution. Random activity has the widest distribution of
cycle lengths, and is associated with maximum entropy of 6.64. S is therefore related to
the number and height of the histogram bins and uniformity of partitioning between them.
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Since entropy is derived from the probability distributions, it says nothing about the
specific sequence of events and how they might be related to each other in time. Action
potentials might alternate regularly in a predictable 4:1 pattern, for example, or might have
the same action potentials, but in a random order, as illustrated in Figure 4.8 for a constant
cycle length. Both are identical statistically, in terms of the histograms p(DI) and p(APD),
but the sequences are clearly different. Histograms for each are shown. An alternative
form of the entropy equation, accounting for temporal order, can be defined using

conditional probability. This can be referred to as conditional entropy Sp.

Sm=— ﬁ P(B|A) log, P(B|A) (4.6)

i

The term P(B|A) is the conditional probability of an event B occurring given that A has
already occurred. If A and B are independent random events, and therefore uncorrelated,
then P(B|A) = 1/N, identical to the probability of B occurring at random P(B) = 1/N giving
S = - N(1/N)logy(1/N), as before. At the other extreme, if any A is followed by a specific
predictable B, due to a unique functional relationship between A and B, then P(B|A) = 1
and P(B) = 0. This gives Sy = 0. Calculation of these probabilities requires construction of

an event matrix relating A and B to count of occurrences of (A,B) pairs, as in Figure 4.8.

Event A can be CL;, APD;, or DI;, and event B can be the next CL;+1, APD;s1, or Dlisy.
This two-dimensional histogram is identical to the first return map of x(i+1) vs x(i) used in
Poincaré plots to analyse bifurcations [304, 449]. The main difference between standard
entropy Sc or Sp, based on p(CL) or p(DI), and conditional entropy Sm, based on P(B|A),
is that the latter is based on a two-dimensional histogram whose projection along the B
axis gives the one-dimensional histogram p(CL). Sy contains more information than Sc,
and therefore also has a higher maximum. P(BJ|A) is the height of cell (A,B) divided by the
sum of row A, while P(B) is the probability of events in column B. A perfectly regular
sequence has a spike histogram with Sy; = 0. Alternans gives two symmetric entries with
Sm = — 2(0.5)logx(0.5) = 1. A random sequence gives Sy = — N(1/N)logx(1/N). Figure 4.9

shows the mapping of successive cycle lengths CL; and CLi+;. No relationship is apparent.
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Figure 4.8. Comparison of standard entropy with conditional entropy. The top action
potential sequence varies randomly between four values of DI and APD for a constant
cycle length. Entropy of DI and APD is 2.0, based on the probability of 0.25 for 4 bins.
The second sequence has identical DI and APD, but has a 4:1 periodic pattern. Sp cannot
distinguish the regular from random temporal pattern because it is based on histograms
alone which are identical for each case. Conditional entropy Sy is based on the conditional
probability of APD;;, given the previous APD; in the two-dimensional histogram at right.
Sm captures the relationship within the DI and APD pair sequences better than Sp. Sy =
4.0 for 16 bins in the random case, and is 2.0 for the 4 bins in the regular case.

Figure 4.10 summarize many simulations with APDy, = 48 and APD, varied from 12 to
48. Reducing APD, lowers the average APD, and therefore lowers the total surface area
occupied by action potentials. This increases the excitable gap, and therefore the width of
the DI distribution. This in turn widens the CL histogram and increases DI entropy. DI and
CL entropies remain almost identical to each other, except at very steep restitution where
Sp may exceed S. by a small amount because the DI distribution is unbounded, while the
APD distribution is compressed by the APD,, plateau. The long upper tail of the DI
histogram maps onto the flat plateau of the restitution curve, giving a small hump at the

maximum value APDp, on the APD histogram.
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Figure 4.9. Event histograms showing p(DI), p(APD), and p(CL) for different restitution
slopes APD, = 16, 24, 30, 36, 48. The Poincaré plots comparing CL; and CL;;; at left
show the degree of variability. No specific relationship between cycle length pairs
emerges in these simulations. Most DI histograms have a peak at the shortest diastolic
interval, corresponding to the refractory period R+1. The Poincaré plots, or return maps,
can be used to calculate conditional entropy for CL, but even the simplest fibrillation with
uniform APD, = 48 has wide variability of CL, precluding any low dimensional attractor.
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Figure 4.10. Effect of restitution on fibrillation APD, CL, DI, and excitable gap fraction
Fgg. Mean values (black) and standard deviation (grey). Steep restitution lowers mean
APD and CL, increases mean DI and Fgg, and increases variability of all quantities.

4.4 Lyapunov Exponents

Consider any point X; in the N-dimensional state space at some arbitrary time t, and a
second point X + ¢ separated by a very small distance € in any direction. If the evolution
of these two points is followed over time under the dynamics F(X), after some time
interval t — t,, the separation between these points will either diverge, remain the same, or
converge. If the new distance grows exponentially over time, then A is the Lyapunov
exponent quantifying the growth rate [20].

-A(t-to)

F{X()) — F{X(t—to)} =¢e 4.7)
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Nearby points tend to converge if A <0, diverge if A > 0, and have no tendency to separate
or converge if A = 0 as shown in Figure 4.11. In an N-dimensional state space there are N
such values of A, some of which may converge while others may diverge. The sum 2 A;
for i = 1..N represents the rate of volume change of an N-dimensional sphere of points
around the initial condition. The Lyapunov exponent is therefore a measure of sensitivity
to initial conditions or small perturbations along the trajectory of dynamic flow. Negative
A implies a stable system, insensitive to perturbations moving toward a fixed attractor such
as a point or limit cycle, while A = 0 implies neutrally stable behaviour, and a positive A
implies chaos. The complete Lyapunov spectrum A; of an N-dimensional system may
contain values of both signs, implying simultaneous expansion and contraction of the
initial condition sphere as it distorts along different axes of the state space. The sum of all
A represents the volume change of this set by Louiville's theorem [407], and is zero for

conservative systems, and nonzero for dissipative systems like reaction-diffusion media.

Since the state space for X; is usually bounded by limits on the variables, according to
their physical meanings, this volume may oscillate in a limit cycle, or stretch and fold if
the system is chaotic. Since transients following a perturbation may intermittently change
signs and fluctuate, the strict definition of A is based on the limit as t — oo, although in

practice one must perform the calculations over some finite time interval [553].

Calculation of the complete Lyapunov spectrum for a given dynamical system can be
computationally intensive if performed according to the first principles of its definition,
especially if N is large [553]. For the special case of a discrete one-dimensional return
map X(i+1) = F(X(i)), however, the calculation of A is relatively straightforward and
depends on the slope dF/dX of the function F(X) [269]. To calculate A; for i = 1..N, we can
follow the changes in the components of X; over time along each state space axis.
Alternatively, if we know p(X), the probability distribution of X; taking each and every
value within the state space, evaluated over some finite but sufficiently long time interval
to ensure convergence of the summation, we can calculate A; by integrating the conditional

probability of A; for a specific value of X; over the probability p(X) that X occurs [304].
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Figure 4.11. A cluster of state points within a small sphere distorts during system
evolution. The Lyapunov exponent quantifies the rate of expansion or contraction of each
state variable along its particular axis in the N-dimensional state space. The sum of the
complete Lyapunov spectrum for all N state variables gives the rate of volume change of a
small sphere of points surrounding the point of interest as the dynamics evolve. If all
exponents are negative, the system is stable to perturbation. Positive exponents imply
sensitivity to initial conditions and potential for chaos (Adapted from [20]).

A= [ p(X) log. (dF/ dX) dX (4.8)

X

Applied to models of cardiac tissue, this function allows quantification of the sensitivity to
initial conditions and presence of chaos during system evolution. We can define the
discrete variable of the one-dimensional return map to be the diastolic interval DI between

action potentials operating on itself through the restitution curve in repetitive activations:

A=Y p(DL) log. [(dAPD/dDI)]. (4.9)
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This equation is commonly applied to return maps such as the tent map and the logistic
equation discussed in textbooks on nonlinear dynamics [20, 449]. The summation is over
all occurrences of each DI within its histogram for many cycles. Since the restitution curve
APD = f(DI) also influences the cycle length CL = APD + DI, the time sequence of DI
values at each cell can be monitored to assemble the probability distribution p(DI). A long
sampling time is required to build a reliable set of p(DI). To be pragmatic, we can instead
take a shortcut by constructing p(DI) as an ensemble from all cells over some shorter
interval. This simplifying assumption is a practical necessity; it is most accurate for a
system which is ergodic, that is, having a tendency to eventually visit all possible states,
these being combinations of DI, APD, and CL, such that the spatial and temporal
distributions are equal [320]. This is a reasonable assumption, since all cells in the domain
are identical and have equal likelihood of taking on any given state. The ergodicity
assumption is validated empirically for APD and DI in Figure 4.12. Sampling over five
cycle lengths generally produces reasonable convergence of the A; spectrum. If A is

divided by the mean CL, then the units are reciprocal time, otherwise it is dimensionless.

The presence of at least one A; > 0 implies an element of chaotic dynamics, or growing
distortion along at least one state space axis. Obviously the sign of A depends on the slope
of the restitution curve m = dAPD/dDI according to equation (4.9). Positive exponents A;
occur only if the slope m > 1. Figures 3.12 and 4.13 show how the restitution curve slope
m determines whether variations in DI contract or grow according to how they map into
variations in APD. The presence of at least one A; > 0 is a necessary, though not sufficient,

condition for spiral wave break-up.

Short DI values map onto the high positive slope segment at steep restitution. Small
differences in DI map onto larger differences in APD when the slope m > 1. Figure 4.14
shows the effect of restitution on chaotic dynamics, as quantified by the Lyapunov
exponents calculated by equation 4.9. The sum of the positive and negative contributions
is related to the volume change of a small element in the state space. The sum of the

positive Lyapunov exponents gives the Kolmogorov entropy, which is another measure of
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Sc=3.21

Figure 4.12. Validation of the ergodicity assumption. Event histograms were obtained by
monitoring cycle lengths at one arbitrary cell over 3000 time steps (top), and also from all
firing cells over the entire NxM field over a short time (bottom). Distributions and
entropies for both cases are sufficiently close to validate the use of sampling over space to
estimate single cell behaviour over a long time. This estimation technique is valid, because
all cells have equal probability of taking on any given state, and the dynamics exhibit
statistical stationarity for a given fixed parameter set.
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Figure 4.13. The histogram p(DI) determines the distribution p(APD) by mapping through
the restitution curve. The cycle length distribution p(CL) is related to DI + APD + R=CL
as shown at right. The distribution of DI is therefore the only independent variable
amongst DI, APD, and CL. The tendency for spiral wave break-up into fibrillation is
related to the proportion of p(DI) that falls under the region of the restitution curve where
m > 1 (dashed line), as shown by the lightly shaded region of p(DI) and heavy curve
segment. This relates to the Lyapunov exponent calculated by equation (4.9).



113

the degree of chaos [206]. Reducing the average APD, with consequent widening of the
excitable gap (EG), gives rise to an increasing ratio of wave front to occupied action
potential area, or "surface to volume ratio" of action potentials. By dimensional analysis,
this defines a characteristic length of wave structure that becomes smaller at steeper

restitution slopes.
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Figure 4.14. Lyapunov exponents are shown for various restitution slopes APD, with
APDy, = 48. Positive and negative contributions and the net sum are shown at left, while
the proportion of positive contributions which is related to the Kolmogorov entropy is
shown at right.

4.5 Nonlinear Dynamics

Dynamics is the study of time-dependent system stability and transitions between modes
of behaviour. While the theoretical foundations were established by Poincaré over a
century ago [398], pertaining to celestial mechanics [234], interest in nonlinear dynamics
grew substantially in the latter half of the twentieth century with the ability to conduct
digital computer simulation of nonlinear differential equations having chaotic solutions
[199, 326], and discovery of the qualitative dynamics of period-doubling sequences of
bifurcations in iterated equations as a route to deterministic chaos [162, 338]. For all but
the simplest of spatially distributed systems, there is interaction between small scale local
stability and instability, which can profoundly influence large scale global behaviour [449,

489]. Interaction between events on many scales is especially important in nonlinear
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systems [19]. Biological systems have been a fruitful arena for discovering examples of
these principles [198, 464]. A few salient concepts will be reviewed here as they apply to
studying heart stability.

A system is completely defined by its state vector X(t), and its dynamics dX/dt = F(X, p),
where p is the fixed parameter set or controlling constants. Behaviour evolves according
to imposed initial conditions or external forcing. Fixed points exist where F(X) = 0. These
points are attractors (stable) if nearby trajectories converge to them, repellors (unstable) if
nearby points are pushed away, or saddle points (neutral) if trajectories approach from one
direction and are pushed away in another direction. Stability is usually assessed by
linearizing about the point of interest X,, and examining the signs of the eigenvalues of the
Jacobian determinant of F(X — X)) [489]. Attractors that are periodic orbits are called limit
cycles. As the parameter set p is varied, the attractor topology can change abruptly,

introducing new fixed points or new paths on the attractor.

Since an N-dimensional state space is difficult to visualize and analyze, one can sample
points at time intervals, as if flashing a strobe, and construct a lower dimensional set of
points called a Poincaré section. If these points fall along a one-dimensional surface or
line, and the sampling is regular, then the return map is simply X(i+1) = F!(X(@), ). The
superscript "1" denotes that this is the first return. Iterating the process generates higher
order return maps X = F(F(X)) = FA(X). The sequence of all such X(i) can settle to a fixed
point, alternate in some pattern, or appear random, depending on F and p. A periodic
repeating sequence, such that F'(i) = F(i), is 2:1 if n=2, or more generally a ratio of m:n
defines quasiperiodicity of m patterns within n cycles. The period becomes longer as m —
o and n — oo, and the sequence begins to appear random, although it is not. In the infinite
limit, the dynamics become chaotic [338], which by definition is complex dynamics that
are deterministic and aperiodic [20]. Bifurcation analysis is the study of the changes in
dynamics as parameters in p are changed. Of particular importance are changes in fixed

points F(X, n) = 0 and their stability.
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The restitution curve of action potential duration during regular periodic stimulation is a
return map APDjy; = f(APD;) defining iterations of APD, which can be constant, periodic,
quasiperiodic, or chaotic depending on the slope m [529]. Figure 4.15 shows the APD of a
solitary isolated CML element paced at various cycle lengths. As CL is shortened, APD
shortens gradually at first, then abruptly bifurcates into a 2:1 pattern. Successive
bifurcations occur at the shortest CL's, revealing a few windows of chaotic action potential
sequences where the entropy is high. This generic pattern of bifurcations in a return map
paced at various rates was analysed in the logistic equation [162], and has been observed
in paced cardiomyocytes [78, 215], paced ventricles [444], and cardiac action potential
models [70, 214].

Relatively flat restitution, with plateau APD,, = 48 and intercept APD, = 42, yields a
simple bifurcation pattern, with all Lyapunov exponents negative and no chaotic windows.
Steep restitution gives rise to several chaotic windows at the shortest cycle lengths. These
coincide with positive Lyapunov exponents and increased entropy. The plots at right show
the relationship between APD;;; and the previous APD;. Bifurcations cause dots to widen
away from the diagonal. Results do not change significantly with simulations carried out
in both one- and two-dimensional media. Figure 4.17 shows a composite of many
simulations of a single paced cell. Shades of grey represent the largest APD when there
are several APD's in the pattern. Each pixel row is a frame of APD = f(BCL), like those in
Figure 4.16. The large fingers represent regions where APD < 20, and the left border of
each finger is the bifurcation point where there is an abrupt transition to 2:1 periodicity.
Faster pacing rates produce chaotic dynamics. Of particular importance is the sensitivity to
small changes in BCL or APD, in this region, showing that even very small differences in

substrate between neighbouring subregions can give rise to local block initiating reentry.

What are the stable states of the heart and how do we define them? Quiescence is the
simplest state, essentially a ground state where all X(i) = 0, fixed at the origin of the state
space. This is the only known stable fixed point. Sinus rhythm is driven by a limit cycle
oscillator at the sinus node. If we disregard systems driven by the sinus node or other

supraventricular foci, then the only other sources that can initiate ventricular activity are
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Figure 4.15. Single cell paced at a constant BCL = 60 (top). All action potentials fire with
1:1 response, since the intersection of the restitution curve and the negative unity slope
line intersect where m < 1, and this point is stable to perturbation. At faster pacing, with
BCL = 52 (middle), the intersection slope is m > 1, and a stable 2:2 response pattern
develops with alternans between two APD. When BCL = 50 (bottom), the DI fall on a
steeper slope where the intersection point is now unstable, and each successive APD is
pushed away. Eventually, the shortest DI hits zero and the next action potential blocks,
resulting in a 2:1 pattern developing where every second AP blocks, and the response
period is BCL x 2.
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Figure 4.16. Single cell paced at regular cycle lengths CL;. The restitution curve intercept
APD, is different for each of the four cases shown. Relatively flat restitution (top)
produces windows of 2:1 APD alternans, while the steepest restitution (bottom) gives
windows of chaotic dynamics. Lyapunov exponents and entropy are shown for each CL.
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APD,

BCL

Figure 4.17. Composite diagram of maximum APD at different paced basic cycle lengths
(BCL) and restitution, defined by APD, for fixed APD,, = 48. Each pixel represents a
separate simulation. Each pixel row is a bifurcation plot like those in Figure 4.15.
Maximum APD is shown as light grey for the largest values APD > 40, darker grey for
lower APD < 40. Black pixels represent the chaotic windows. Note that at the shortest
BCL, very small changes in APD, can give very different dynamics, owing to the
complexity of this region containing embedded zones of quasiperiodicity and chaos.

ectopic pacemakers, driven by automaticity, afterdepolarizations, or reentrant circuits. If
activity is regular and periodic, the state follows a limit cycle through a very high
dimensional state space. A limit cycle can be stable or unstable, depending on whether or
not it recovers its original trajectory after being subject to small perturbations. A single
reentrant circuit or multiple circuits are both limit cycles. If the frequencies of multiple
circuits are all equal, and all action potentials are regular of equal APD, then the cycle in
the state space is a simple closed loop. If frequencies vary, the path might follow alternate

loops.

It is noteworthy that since each axis of the state space represents an independent variable,
it is the trajectory of the state vector representing the entire system at any given time that
contains information about the spatial structure. For a cell paced at a constant BCL, the
steady state DI and APD can be calculated as the intersection point of the restitution curve
APD = f(DI) with the negative unity slope line representing pacing. Given BCL, the two
equations are solved for DI and APD.
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APD = APD, + (APDn— APDy) (1— ¢ OV ) (4.10)

BCL =APD + DI +R 4.11)

It is useful to express this relationship in terms of the critical BCL for which the restitution
slope is exactly one. This is shown in Figure 4.18. For any given APD,, the upper curve is
the BCL at which m = 1. Any BCL longer than this will give a stable train of constant
uniform APD. Below this line, the APD can be nonuniform and be quasiperiodic. The
bottom line is the lower bound on BCL, since we must have BCL > APD + R, otherwise
there would be no diastolic interval. Most importantly, the stability of APD at constant
BCL pacing depends on the local slope m of the restitution curve in this region. If m <1
then the point is stable, and all APD will settle to a fixed value. If m > 1, a small

perturbation of APD or DI will cause oscillatory divergence of APD until block occurs.
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Figure 4.18. The role of BCL in determining action block. For a given restitution intercept
APD,, slow pacing above the curve gives uniform APD with 1:1 response. Below the
curve, the restitution slope m < 1, and quasiperiodicity (QP) in APD with an n:m pattern
of response becomes possible. The minimum BCL is the bottom line where BCL = APD +
R, and DI = 0. The stimulus blocks below this line.
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Figure 4.19 shows examples involving two solitary cells with APDy, = 48 and APD, = 24
that are paced. The critical BCL is 51 for these specific parameters. In the first case shown
at the top of the page, the two cells are paced at a subcritical rate of BCL = 54. The second
cell is given a small perturbation by assigning it an initial APD smaller than that of the
first cell by two units. In this stable regime, all APD converge to about 38. The bars at the
top are the difference & = | APD; — APD, | due to the perturbation, which dissipates and
directly demonstrates the negative Lyapunov exponent. The second case at the bottom of
the page shows the identical conditions, but the pacing interval is now supracritical at
BCL = 48. Note that the top cell has a fairly constant APD, since it is started close the
equilibrium APD, but the perturbed cell below develops an oscillation. Finally APD
exceeds BCL — R and the stimulus blocks. The difference & in APD grows exponentially,
demonstrating the positive Lyapunov exponent at this shorter BCL. These cases of single
cell dynamics illustrate the fundamental mechanism of APD instability that leads to wave

block during propagation.

A final important issue in these dynamics pertains to irreversibility and loss of information
during system evolution. Once a cell fires in a CA or CML model, its future becomes
determined and completely predictable: it will count down to zero for exactly APD time
steps, at which point it will predictably switch to Y = 0. Once at rest, the refractory time Y
is also predictable: it will count up by one each time step until it encounters a logical
condition causing it to fire. Departures from predictability occur only when a logic rule is
invoked that is not simply incrementing by one, but instead involves some sort of decision
or divergent branching. Since this occurs in the CML model only at the state transition
from rest to firing, new information enters the system only at the time of cell firing.
Novelty enters only at the wave front, and the increase in information should be related to
the amount of the wave front that passes through the region of the restitution curve where

the slope m > 1.
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Figure 4.19. Single cells paced at constant BCL = 54 (top) and BCL = 48 (bottom). For
both APD,, = 48 and APD, = 24. Slow pacing at top gives 1:1 response. Faster pacing at
bottom case blocks. The dots represent the APD of two separate paced cells having a very
small time delay of 2 units between them. The slope m < 1 keeps the restitution
intersection point stable, and the difference dissipates. The separation & decays, directly
demonstrating the negative Lyapunov exponent. The separation J, in the lower case,
grows due to the positive Lyapunov exponent. Block would lead to wave break according
to Figure 3.13.
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Clearly the temporal behaviour of fibrillation in terms of DI, APD, and CL distributions
can be quite complex. All measures of complexity increase at steeper restitution. The next
chapter will focus on spatial patterns of fibrillation waves and core points, and examine

quantitative measures of spatial complexity.



Chapter S

PATTERNS OF FIBRILLATION

5.1 Spatial Complexity

The need to measure and quantify spatial distribution and geometrical patterns arises in
many branches of science [107]. Point processes are those that relate to patterns of regular
or irregular points, such as condensation nuclei, pores in amorphous media, or the
distribution of galaxies in space. Fibre processes are those that relate to lines or curves,
such as dislocations in crystals, cracks in rocks, or domain boundaries. The fields of
spatial statistics, stochastic geometry, and fractal geometry have been developed to
quantify the characteristics of irregular and random sets [475]. Simple metrics for
quantifying point processes include the intensity or density, equal to the number of points
per unit volume, and the pair correlation which quantifies similarity over various
distances. A completely random set of points in space has a density with a Poisson
distribution [527]. These, as well as more recently developed metrics like the Minkowski
functional, have been applied to quantifying Turing patterns in reaction-diffusion media

[345].

Since any point on the body surface ECG is essentially determined by the spatial pattern
of intracardiac electrical activity, we need quantitative measures of the spatial distribution

of cardiac sources. Specific measures should relate to the spatial distribution, including
123
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central tendency and uniformity or clustering of reentrant circuit core points. This chapter
will focus on methods to quantify the spatial distribution of waves and core points during
fibrillation, and will examine the effect on these patterns of changing APD restitution
properties. Specifically, we will develop quantitative measures of spatial complexity that
represent the distribution of reentrant circuits by the locations of their core points within a
two-dimensional tissue domain. This will allow the spatial order and disorder of the core
pattern to be followed during wave evolution. Ultimately, we are interested in developing
metrics that can correlate spatiotemporal dynamical patterns of wave activity in the

myocardium to the corresponding ECG patterns measurable on the body surface.

Core point distribution should be static or periodic when close to an equilibrium state, and
dynamic or chaotic when far from equilibrium, where the system wanders through its state
space transiently visiting local attractors, while its trajectories are mixed or reinjected by
proximity to saddle points. Figure 4.1 demonstrated several examples of spatial patterns
during fibrillation, and the role that APDy, and APD, play in their determination. Clearly,
a single number with one degree of freedom cannot uniquely represent a complex spatial
pattern having many degrees of freedom. Any useful spatial metric must be defined such
that it classifies a large number of higher information patterns having some common

feature. This is the essence of descriptive statistics.

How does one begin to quantify spatial patterns? Considering the simplest example of a
binary string, one measure of complexity would be the number of discontinuities Np
between neighbouring bits. A bi-partitioned domain "..111000.." has the minimum Np =1,
while the opposite extreme case with an alternating pattern "..010101.." has the maximum
number of discontinuities Np = N/2, and the smallest characteristic length of one unit.
Both of these patterns have obvious order or sequence predictability. In a random string,
like the one-dimensional binary Boltzmann gas previously discussed, Np grows from its
initial value to a mean value lying between the extremes of the two cases defined above.
Np is a rough measure of the degree of order, but is not particularly useful because it says
nothing about the actual pattern, and is not maximum for random disorder which must

contain the greatest information.
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Alternative order metrics could be chosen, relating to the distribution histogram of cluster
sizes of bit neighbourhoods having a common value. For example, the alternating pattern
"..010101.." has a spike histogram at 1 unit because that is the size of each bit cluster,
while "..00110011.." has a spike at 2 units, "..100100.." has spikes at 1 and 2, and so on.
The bi-partitioned field described earlier has a single histogram spike at a cluster size of
N/2. A completely random field contains many cluster sizes L, and therefore would have a
broad histogram approximating a power law N = a L™, resulting in a fractal distribution
where there is no characteristic length scale. In a random field, small clusters are common
while large clusters are rare, analogous to Zipf's law of word size distribution in text [334].
The information entropy calculated from these probability distributions would reflect the
degree of pattern predictability in the respective bit strings. Entropy would be zero for all
the regular patterns having solitary spike histograms, and would be maximum for the

random pattern.

In principle, these concepts of measurement can be extrapolated and applied to the CML
model of excitable tissue by developing more sophisticated numerical algorithms for
pattern quantification based on discontinuities and domain sizes. The binary string might
represent the state diagram of a piece of excitable tissue, where resting and firing action
potentials hold states of zero and one respectively, and the two-dimensional field of cells
is mapped onto a one-dimensional string. More generally, one could have multiple states
within each action potential, rather than binary states, although, as described earlier, the
number of combinations within the domain strings would be extremely large. In two
dimensions, there is greater difficulty defining both the distribution of discontinuities,
since they are irregular curves, and the distribution of cluster sizes which can be highly
irregular patches. The temporal patterns of cardiac activity are also highly dynamic, being

periodic, quasiperiodic, or chaotic.
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Figure 5.1. Fibrillation wave patterns Vj in the top row are transformed into lower
dimensional representations for spatial analysis. The second row is a binary map where
black bits are the action potentials Vj; > 0. The third row shows only the wave front Vj; =
Vmax. The bottom row shows the reentrant circuit core points with the waves removed.
Numbers above each frame are APD,, and APD,,
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Figure 5.1 shows frames of fibrillation converted into simplified forms that can be used to
quantify pattern complexity. In the first case shown, the action potentials are converted
into binary states: 0 if Xj; = 0, and 1 if Xj; > 0. The direction of propagation or rotational
sense is lost in this transformation. A second possibility is to retain only the line of the
wave front by giving it a value of one, while all other bits are zero. The resultant field
appears greatly simplified, but actually little information about the wave pattern is lost.
The total volume of the wave front is proportional to the energy dissipation, as described
in the previous chapter. Another option is to discard the waves altogether, and retain only
the core positions, which represent a vortex field. The simplest such case would be a
solitary wave having one core point. This particular pattern is invariant to translation and
rotation, although one could further define the rotational sense by —1 or +1, and arrive at a
representation similar to that of the frozen Ising model of ferromagnetism [341]. Patterns
arising from multiple core points also need to be defined. We will return to this issue later

in defining pattern entropy based on the spectrum of core separation distances.

5.2 Correlation

The correlation length and time are the intervals in space and time over which a subsystem
can be considered essentially independent of other subsystems. The correlation time gives
an estimate of the time interval over which the initial condition still influences evolution.
If many length scales are involved, one could quantify the spatial pattern based on an
assumed power law occupancy of boxes versus box size over several length scales, the
exponent being the Hausdorff dimension [160, 334]. This metric performs best if there is
some degree of self-similarity over several orders of magnitude, as with fractal sets or
even random spacing, but is less useful for the relatively sparse densities of cores that are
typically encountered in fibrillation simulations. Likewise, the correlation dimension is
another commonly used parameter, but suffers the same lack of utility if there is not a

wide range of length scales within the spatial pattern [334].

The spatial correlation might be a more useful metric, being the spatial analogy of the

time-delay autocorrelation [449]. It measures the degree of similarity of points separated
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by given distances, and is evaluated by taking the product of some activation function
Z(X) at two points corresponding to X(i) and X(itr), separated by a distance r, and

summing all such products over the spatial domain:

N

I(r)= % Z Z(i) Z(i+r). G.1

The activation function Z(i) can be defined in various ways. The simplest choice is the
normalized voltage Z(i) = V(i)/Vm — 1, since the mean of Z(i) must be zero. N is the total
number of pairs summed for a given separation r. By definition, I'(r) = 1 for r = 0, since
each point has perfect correlation with itself, while I'(r) generally decreases with distance
and approaches zero for widely separated points. Random activity has I'(r) dropping
rapidly from one to zero at r = 1. A periodic plane wave has periodic I'(r) of wavelength r.
Correlation is often used in statistical physics to quantify phase transitions and critical
phenomena [300] in spatially-extended media, and has been applied in fibrillation

mapping studies [30, 438].

I'(r)

O = N W b O O~
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Figure 5.2. Spatial correlation spectra I'(r) are shown for various static spatial patterns of
voltage Vjj averaged over 100 time units (left). The correlation length A is the space
constant for the best fit exponential curve (right), and increases with APD, as expected.
This reflects an increased wave size. APD,, = 48 for these cases.
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Figure 5.2 shows the correlation spectra I'(r) for various APD,. The correlation length can
be defined as the point of zero crossing L,, or as the space constant of exponential decay A
[30]. The correlation spectrum for a spatially regular spiral wave has a second peak
corresponding to the wavelength when correlation is measured orthogonal to the wave.
This peak does not appear in any of these fibrillation simulations because there are
multiple waves oriented in many directions, whose contributions to the summation tend to
cancel. While correlation can be calculated from a static pattern at any point in time, a
mean value must be taken over some time interval to eliminate oscillations of action
potential duration during spiral wave behaviour over short intervals. Calculated correlation
lengths A in Figure 5.2 range from 2.4 to 6.0, and increase with longer APD as expected.
On the prior assumption that each spatial unit equals 1.5 mm, these A values correspond to
3.6 t0 9 mm respectively, similar to those measured experimentally [30]. This suggests
that the CML model elements are of sufficient resolution to capture the characteristic
details of fibrillation. The relative constancy of A over the lower range of APD,, can be
explained by the fact that point pairs sampled along a highly fractionated wave front span
a large distance r from zero upward, and prevent a specific wavelength between fronts
from being discerned. For example, if two sampling points happen lie transversely along
the same wave, the correlation will always be close to one regardless of the wavelength.
The correlation length does not appear to be highly specific to APD, in our model, and has
very limited utility for larger scale pattern quantification due to considerable variability
over time, relative insensitivity to small changes with APD,, and disappointing ability to

distinctly classify dynamics.
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Figure 5.3 Spatial correlation spectra I'(r) of a set of plane waves is periodic perpendicular
to the wave fronts, and unity parallel to the wave front, if measured along a one-
dimensional line (top). The two-dimensional correlation is based on distance from the
reference point, shown in the third frame for one particular radius r. Correlation of
complex or near-random patterns decays rapidly with distance, while spiral waves decay
with oscillation due to wave periodicity. The histograms of field magnitude Vj; are shown
at right, and tend to be flat for constant APD where all V are equally represented.
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Figure 5.4. Spatial correlation I'(r) for various patterns of fibrillation with APD,, = 48 and
restitution controlled by APD,, as indicated by the number to the right of the frame.
Steeper restitution yields finer spatial structure as expected, and results in a shorter
correlation length A. Histograms p(V) of field magnitude Vj; are shown at right for each
spatial pattern, and show a rough tendency to skew to higher V at longer APD,.
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5.3 Centroid

The simplest metrics of spatial distribution of points are the location of the centroid and
the radius of gyration. The cores can be considered to be like point masses attached to the
heart surface, and the centroid or centre of mass can be calculated as shown in Figure 5.5,
and projected back onto the cylinder surface. The magnitude of the central tendency of
core points is related to the radius R,. If the points are equally distributed around the
domain, the centroid will be on the cylinder axis where R, = 0, and there will be no central
tendency. If the points are clustered into a small region, the centroid projects into the
centre of the cluster, and the radius R, approaches the cylinder radius R. R is the radius of
gyration of the point mass distribution. The metric n = R¢/R defines the degree of core
point clustering, while (x, yy) is the centroid projection on the cylinder surface. By

following n(t) and N,(t) over time, we can monitor variability of the core point pattern.

Figure 5.5. The spatial distribution of core points can be represented by its centroid. Cores
are like point masses on the cylinder surface. The centre of mass is calculated in three-
dimensional space as shown by the open circle at right, and projected back onto the
surface to give its location on the heart shown by the white circle at left. The distance
from the cylinder axis to the centroid is the radius of gyration Rc , which defines the
degree of point clustering by the dimensionless ratio n =Rc/R.

5.4 Pattern Entropy

Spatial complexity can be defined by a spatial or pattern entropy Sg according the
probability p(d) of core pairs having separation d at a particular moment in time [319]. A

regular pattern on a periodic grid should approach Sg = 0, while a random pattern should
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have high pattern entropy. This measure says nothing about the details of the spatial
structure. Figure 5.6 shows two examples of pattern entropy according to this particular
definition based on the probability distribution of the spacing between nearest neighbour

pairs.

S¢=2.98

SG=0

Figure 5.6. Pattern entropy Sg is based on the static spatial distribution of core points, as
defined by the histogram of separations between nearest neighbours shown at right. The
top histogram in each frame shows separations summed over a time interval, while the
bottom histograms are a single point in time for the picture shown. The first case has a
nearly random pattern of cores, which approximates a Poisson distribution p(d) between
nearest neighbours. The second case shows reentrant circuits on a regular grid with a spike
histogram. The smaller spikes next to the peak are due to core points drifting in small
circles with each revolution. The regular grid has entropy Sg = 0.

Figure 5.7 shows several examples of fibrillation quantified by the core point distribution.
The top frame in each set shows the fibrillation pattern Vj; and the middle frame shows the
core point distribution. The centroid of the cores is indicated by a small circle. A Voronoi
tesselation, shown at the bottom, is generated by starting at each core point and moving
radially outward, like a crystal growth front away from a nucleus, until domain boundaries
are established [327]. These tessellated subdomains are the regions within which each core
point has its own spiral wave at that particular time. The spectra of nearest neighbour

separation p(d) for each core point is used to calculate the pattern entropy Sg shown.
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Figure 5.7. Fibrillation with constant APD (top), and with restitution (bottom). The core
points for the reentrant circuits are highlighted in the action potential field Vij, and shown
isolated in the second row. The centroid of the core point spatial distribution is shown as a
small circle. The third row shows the Voronoi tesselation of the core point field, indicating
the territory "owned" by each core point, within which each associated spiral wave
operates. The histograms are of nearest neighbour separation, and are used to calculate the
pattern entropy Sg indicated above each. Higher density of core points N forces shorter
separation distance, and narrows the histogram lowering pattern entropy.
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5.5 Characteristic Length

Dimensional analysis provides a natural measure of the characteristic length of wave
activity, this being the area of firing cells divided by the wave front length. Expressed
mathematically, y = £ [H(Xi — V)] / £ X; where H(z) is the Heaviside operator that is
zero for negative argument z and one for positive z. For a plane wave, y equals the spatial
wavelength, while for a radiating circular wave y equals half the radius. There is a close
inverse correspondence between y and the rate of energy dissipation Wy in Figure 5.8, as
both are dependent on the wave front volume. Energy is dissipated by firing cells most
rapidly at small length scales, like dissipation in fluid turbulence. The rate of energy
dissipation is calculated by Ohm's law in equation (4.2): W=X |Vi— Vj K (2Vm> NM),

where the summation is over the four immediate neighbours j.

15 30
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Figure 5.8. The characteristic length scale of fibrillation y is shown (left) with mean and
standard deviation for various restitution slopes APD, with constant APDy, = 48. Higher
APD, results in a longer mean APD producing a larger spatial wave size. The rate of
energy dissipation Wy of the action potentials (right) is related to the total area occupied by
action potentials, and is roughly inversely related to the characteristic wave size. Energy is
dissipated most rapidly in smaller waves which have a larger relative wave front surface to
volume ratio.
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k*=0.126 L=150.0
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Figure 5.9. The wavenumber spectrum S(k) is calculated by Fourier transforming the
single time frame of the wave field V. Examples are shown for plane waves (top), spiral
waves (middle), and ectopic foci (bottom) for each constant APD shown. The spectra are
mean values calculated over one-dimensional longitudinal samples Vj, averaged over all
slices j. The spectral peak at k* corresponds to the dominant characteristic reciprocal wave
size L = 2n/k*, with some additional contributions from higher harmonics, most evident in
the plane waves.
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Figure 5.10. Wavenumber spectra S(k) for a solitary frame of fibrillation with APD = 24
(top), and APD, = 24, APDy, = 48 (bottom). Due to the high variability of S(k) over time,
mean values of the spectra averaged over many time steps fail to clearly discern a
dominant characteristic length of fibrillation.

5.6 Wavenumber Spectra

The wavenumber spectrum S(k) is the spatial analogue of the frequency spectrum, and is
obtained by Fourier transforming the spatial pattern V. For any wavenumber k, the
effective wavelength is L = 2n/k. Examples are shown in Figures 5.9 and 5.10, where the
spectra are calculated along the long axis of the domain Vj, i = 1..N, and averaged over all
j. The first frame shows three waves with APD = 48 traversing the cylinder. A peak is
seen at k = 0.126, corresponding to the wavelength L = 50. Higher harmonics are evident.
The three spirals show peaks at respective wavenumbers that decrease with APD, and
determine the characteristic wavelength. It is especially noteworthy that the two radiating
ectopic patterns have spectra S(k) that are virtually indistinguishable from those of the

spiral waves with the same APD.

The fibrillation patterns shown in Figure 5.10 have highly variable spectra which change
rapidly over time. The organized fibrillation pattern with APD = 24 has what appears to be
a rough peak, but the more complex pattern with APDy, = 48 and APD, = 12 is much more
irregular with many peaks. A purely random pattern should have a wavenumber spectrum
that approaches an inverse power law S(k) o 1/k, analogous to the 1/f distribution of

Brownian noise [448].
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5.7 Routes to Fibrillation

Fibrillation can be established in the model by two opposite routes previously discussed: a
single wave breaking into many waves, or a randomly disordered initial condition self-
organizing or condensing. For the purpose of illustration, the standard fixed parameter set
will be retained for the 150x50 cylinder domain: APD,= 48, R = 4, and 1 = 10. Restitution
is manipulated by lowering the intercept APD,, which is considered a control variable.
The case of APD,, = 48 and APD, = 16 started from a spiral is shown in Figure 5.11. The
spiral breaks progressively into fine fibrillation, since APD, is less than the critical value
of 32 determined an earlier chapter. In this simulation, there is a period of slow core point
growth, some of which reattach and annihilate before rolling up, followed by a relative
burst of core point growth once a few rotating centres become sustainable. Following
break-up, there is a transient interval of convergence or re-organization. A few rare cases
approaching spontaneous defibrillation were seen (not shown), particularly at the steepest
restitution. As waves break, the surface-volume ratio increases as a finer structure evolves,
while the cluster metric R, approaches zero, indicating near-uniform spatial distribution of
cores with no dominant clusters. Chaos becomes visually evident in the action potential
train. The Lyapunov spectrum becomes clearly dominated by positive exponents shown in
black, although a minority are negative shown in grey. The sum is most frequently
positive for this case indicating potential expansion of nearby trajectories in the state space
provided that small neighbouring disparities exist. The sum of the positive Lyapunov
exponents shown in black gives a close approximation to the Kolmogorov entropy K

which is the rate of increase of information [205]. Chaotic systems have K > 0.

Most simulations have a transient period that is very irregular prior to some dynamic
steady state being reached, which may be quiescence, periodicity, quasiperiodicity, or
seemingly random chaos. True randomness cannot exist in this model because all
dynamics are purely deterministic. There are no stochastic or probabilistic variables in the
model. Table 5.1 summarizes the metrics used to quantify spatiotemporal dynamics. These

metrics can in principle be applied to three-dimensional heart simulations, but algorithm
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development would obviously require greater effort, particularly because reentrant circuits

in three dimensions are probably filaments that can twist and meander [165].

Figure 5.12 shows another case with the same parameters APDy,, = 48 and APD, = 16,
however, started with a random initial condition. R, stays close to zero as expected,
indicating widely spread core points. Following some fluctuations during self-
organization, all system variables settle to the same average values seen with the previous
example, confirming that these two opposing routes to fibrillation lead to the same
asymptotic behaviour. The dynamics become independent of the initial conditions, as all
information from the past is eventually lost due to dominating positive Lyapunov

exponents.

Entropy Sp of diastolic intervals is related to the width of the DI histogram. The DI
distribution p(DI) must be considered an empirical outcome, since there is no theoretical
means of predicting it without actual simulation. If most DI < 1, the APD are largely
determined by the steep-sloped segment of the restitution curve, whereas if much of p(DI)
> 1, the APD histogram becomes truncated for higher DI that map onto the flat part of the
restitution curve, as shown earlier in Figure 4.13. In the former case, Sp = Sc, while for the
latter case Sp > Sc. The histograms and entropies of APD and CL are directly related to
the DI histogram mapped through the restitution curve, and are therefore not necessarily
independent variables. The main point to be emphasized is that, once the restitution curve
is fixed, the spatiotemporal DI distribution is the main determinant of the dynamics. Its
histogram p(DI), or measures of it like Sp, embody important information about system
behaviour that might be potentially useful. Unfortunately, there is no way to reliably
extract p(DI) experimentally without great technical difficulty. It is particularly
noteworthy that the DI histograms in simulations with steep restitution show wide
"dispersion of refractoriness". This property is usually attributed to cellular or substrate
heterogeneity [52, 217, 298], and is typically modelled with random variables [269]. In
our case, however, all dynamics are purely deterministic. It is not necessary to invoke
noise or stochastic variables to get this type of dispersion demonstrated in Figure 4.9 for

different restitution slopes.
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Table 5.1. Summary of Monitored Complexity Metrics

N. = Number of core points or phase singularities of reentrant circuits.

1 = Core point centroid radius R/R indicates cluster vs uniform-random spatial
distribution. Varies from 0 (random) to 1 (clustered).

S¢ = Instantaneous spatial entropy of core pattern of nearest 2 neighbour
separation. 0 if N; <2 and grows with N, especially if spacing very
nonuniform. Reaches high value at low N, only if regular spacing.

Sp = Entropy of diastolic interval DI histogram p(DI).

Sc = Entropy of cycle length CL histogram. Indirectly embodies DI pattern
(spatial core) and restitution.

Sm = Conditional entropy based on probability of a second cycle length being
related to the first.

W; = Energy dissipation. Sum of all voltage gradients squared. Indirectly related
to the number of cells in firing state at any given time.

v = Ratio of total number of firing cells in the domain divided by wave front size.
This gives a characteristic length of wave like a volume-surface area ratio.

p(X) = Number of cells in each state range histogram. Shows total number of
cells in action potentials and by subtraction also shows total surface area
of excitable gap EG. Integration over sampling time interval gives
Lyapunov number which is related to Lyapunov exponent.

p(DI) = Diastolic interval histogram

p(APD) = APD histogram, directly related to p(DI) through restitution curve.

p(CL) = CL histogram, determines Sc.

A = Lyapunov spectrum and sum.

['(r) = Correlation spectrum

A = Correlation length
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Figure 5.11. Simulation of spiral wave evolution and break down under APD,,=48,
APD,=16. Restitution curve is shown at the bottom right. Time period of 2000 units
corresponds to 10 seconds of real time. Fine fibrillation develops, since the restitution
curve is very steep. A plateau of approximately 60 reentrant-circuit core points is reached.
The sum of positive Lyapunov exponents is shown in black over the grey negative sum.
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Figure 5.12. Same parameter set as previous example with APD,,=48, APD,=16; however,
initial condition is random and the system self-organizes into fibrillation. It is noteworthy
that a statistical steady state is reached with the same measured values as the previous
example, despite this case being started from an overly-complex initial condition. This
case is like freezing, whereas the previous case was like melting. Both cases dissipate their
transients and information through irreversible dynamics.
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Figure 5.13. APD,,=48 and APD,=36, yeilding a relatively shallow restitution curve
started from a single spiral. The spiral remains stable and does not break, despite some
irregularities that introduce noise into R¢ and Sg. The dark spot on the restitution curve
shows only a very small region with slope m >1, insufficient to give rise to any chaotic
dynamics. The Lyapunov exponent A remains negative throughout.
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Figure 5.14. APD,,=48 and APD,=36, started from a random initial condition. The pattern
self-organizes into nine reentrant circuits with relatively large waves. The statistical
parameters are essentially the same as those in the previous figure, except for Rc and Sg
which depend on the number of core points.
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Figure 5.15. Flat restitution self-organizes into fibrillation poorly, due to the large critical
ring size and a tendency to annihilate. A stable field is established here instead, by starting
with APD,,,= 48 and APD, = 16, and then gradually flattening restitution until APD, = 48.
The usual distribution of fine complex waves condenses into a lesser number of more

regular waves whose cores become locked into a stationary pattern.
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Figure 5.13 shows a spiral developing with APD, = 36. The restitution curve is relatively
flat, and very little activity falls onto the region of the curve where m > 1, as shown by the
very small thick segment. The Lyapunov exponents are all negative. The action potential
train becomes nearly regular after a transient period, and wave break does not occur.
Figure 5.14 shows a simulation with the same parameter set, but started from a random

initial condition. Asymptotic behaviour is the same, with N, = 9 rather than one.

As the intercept point APD, is lowered to steeper restitution, the core points start to show
some local spatial oscillation, as reflected in the R, and Sg traces, which are the two
purely spatial metrics of the static core pattern monitored at each time step. Wave break
finally occurs around APD, = 24. The spatial pattern breaks up into multiple waves, and
N, rises to approach a plateau of about 35 core points, suggesting a maximal wavelet
capacity. The Lyapunov exponents under these conditions are still mostly positive. The
cluster centroid metric R, moves toward zero as fully developed fibrillation fills the
domain with near-uniformly spaced widespread core points. Slow fluctuations of R
indicate that core points continue to drift, and a steady state is not reached. The action

potential train is clearly chaotic.

The Lyapunov exponents and their sum become maximally positive, and the Kolmogorov
entropy is maximum, when APD, < 24 as shown in the previous chapter. This finding is
due to the DI histogram widening such that more cells find their DI becoming longer due
to the widening excitable gap, and therefore find themselves under the more shallow
plateau of the restitution curve where m < 1. The net result is that steepening restitution,
concurrent with a widening diastolic interval distribution, gives rise to the Lyapunov
exponent A reaching its maximum positive value at high, but not maximal, restitution
curve steepness. Once again, this demonstrates that maximum positive A is not equivalent
to maximum chaotic dynamics of the system, at least in this discrete medium. It is only
necessary that the sum of the Lyapunocv spectrum X A > 0 when waves do finally break

and chaos ensues.
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Lowering the intercept further to APD, = 20 produces fully-developed chaos. Virtually all
measures of activity are highly irregular. Entropy is high, fluctuating around mean values
of Sp = 3.02 and S, = 3.50. While we still have A > 0, its value has dropped to 0.25. The
more significant role of negative exponents in the Lyapunov spectrum contribute to
intermittent coalescence and break-up of waves, as seen in alternating slope regions of the
Nc(t) plot. Although probably unrealistically low, when pushed below APD, = 12,
incidences of spontaneous defibrillation are seen due to the very wide excitable gaps.
Although spontaneous defibrillation is exceedingly rare in real hearts, perhaps even non-
existent under physiological conditions, we are left to wonder if it could potentially occur
at extremely steep restitution, as demonstrated here if such conditions actually existed in

real hearts.

When restitution is relatively flat with APD, > 40, maximum slope & < (48—40)/10 = 0.8.
A spiral wave is difficult to establish because the wave front wants to follow the preceding
wave tail down and off the domain without breaking. To establish a field of fibrillation
with flat restitution, one must allow a random field with steeper slope m to self-organize,
and then gradually flatten the restitution curve until APD, = 48. Figure 5.15 shows APDy,
= 48 and APD, = 16 allowed to run for 800 time units or 4 seconds. The restitution curve
is then gradually flattened by increasing APD, to 48. Several predictable changes take
place, including a drop in entropies Sp and Sc, core point coalescence resulting in
decreased N, and an increase in the length scale y of the waves. Entropy Sp becomes
relatively small and stable around 2.2, regardless of the number of core points. As the
restitution slope m passes through one, the Lyapunov exponents changed sign from
positive to negative, and the action potential train becomes more regular. The bottom
frame, showing states p(X), indicates narrowing of the excitable gap at the top in light
grey, and less volume of wave front shown as the thin black area at the bottom.
Surprisingly, despite all APD being equal and the core points being fixed as indicated by
the near-constant spatial entropy Sg, the diastolic intervals remain irregular and the system
does not settle into any steady state. This is probably a numerical artifact due to the unit

decrementing of states being too coarse to allow complete dissipation of irregularities.
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Although wave patterns are stable with very narrow DI, APD, and CL histograms, even
some very long runs with constant APD failed to demonstrate complete dissipation to
periodicity. This suggests that it might be difficult for a pattern of several reentrant circuits
to settle into a purely monomorphic VT, even with flat restitution, unless the diastolic

intervals, and therefore cycle lengths, can become fairly uniform.
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Figure 5.16. Effect of restitution on fibrillation mean core point or reentrant circuit
number N; (left), and two measures of entropy: spatiotemporal DI entropy Sp and CL
entropy Sc. Steeper restitution with lower APD, produces more reentrant circuits with
finer spatial scale and generally higher entropy.

5.8 Strength of Fibrillation

The transition from a spiral wave to fibrillation through wave break involves a "fibrillation
threshold" (VFT) being crossed. At the onset of fibrillation, there is a brief interval where
a wave front segment blocks, as was illustrated earlier in Figure 3.24, and two free ends
are established. The resulting two new core points can either grow in strength to become
independent spiral waves, or mutually annihilate by recombination. For a new spiral wave
to survive, the wave front must maintain its ability to excite the cells ahead without
exhausting itself and blocking. In the core region, the front is pressed against its own tail,
which temporarily impedes propagation. Failure occurs if the peak voltage of the action
potential at the wave front drops below threshold as it waits for the tail to recover enough

to fire again. In the CML model, the strength of the wave front is therefore the "voltage
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reserve” by which the peak voltage V, exceeds the threshold V. We can define a
quantitative index of spiral wave strength by calculating this difference within the core
point 2x2 cell cluster, and normalizing it against the largest possible difference Vy, - Vp. A
global measure of fibrillation strength is the integrated safety factor (ISF), which we

define as the sum of all safety factors for each reentrant circuit.

Nc

ISF =Y (Vpi = Vi)/ (Vm = Vi) (52)

i

This metric is made nondimensional by the denominator, such that the individual core
safety factor is zero if Vy; drops to Vi, and is maximum of one if Vy; equals Vi, ISF is
zero if there are no reentrant circuits, and increases with core number N.. ISF becomes
positive above the VFT, with the onset of spiral wave VT or VF, the magnitude indicating
how far the dynamics are away from spontaneous defibrillation. It should be mentioned
that ISF applies only to reentrant circuits, and is not the same as the more commonly

described safety factor (SF) for normal wave front conduction, which will be defined later.

Figure 5.17 shows a histogram of individual safety factors for each core point, placed in
descending order, for a few examples of fibrillation. The ISF is the sum of all such spikes
over the range of N,. Of note is the virtually ubiquitous presence of at least a few strong
core points in each case, represented by the largest spikes. This indicates that these

examples of fibrillation are relatively robust, and far from spontaneous defibrillation.

As a final note, lowering the threshold for cell firing Vy, allows more reentrant circuits to
develop during fibrillation. The standard threshold value chosen for most simulations is
Vi/Vim = 0.3. Complex near-random activity is seen below 0.2. A plateau of larger scale
structure is seen around 0.4. Figure 5.18 shows the effect of changing Vy and the
restitution slope on the average number of core points. Note that N, is highly variable
when Vy, is high, and is nearly constant when Vy, is low. This figure will be the foundation

for the next chapter, which attempts to define fibrillation as a phase transition.
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Figure 5.17. Histograms of safety factors for reentrant circuits of fibrillation shown for
various APD, with APDy, = 48. Each spike represents a separate reentrant circuit, the
height of which is the safety factor for that specific core point. There is considerable
heterogeneity of core point strength throughout the field of fibrillation, as indicated by the
highly variable safety factors. Weak core points are at the tail of the distributions, and are
most likely to self-terminate. At least a few circuits for each case have maximum strength,
indicating that these examples of fibrillation are quite robust. The integrated safety factor
(ISF) is shown for each case, calculated as the total volume of the histogram.
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Figure 5.18. Influence of changes in the cell firing threshold Vy, on the equilibrium
number of reentrant circuits N,. Lowering the threshold allows more circuits to develop.
The left figure shows contours of Vy, and the right figure shows contours of APD,.



Chapter 6

PHASE TRANSITIONS

6.1 Equilibrium

Although microscopic states in thermal or physicochemical systems are not generally
predictable, mean values can be described by thermodynamic variables which obey
equations of state at equilibrium. Systems with many particles must be characterized by
various mean values and probabilities [238]. From a functional perspective, fluctuations of
individual element microstates allow continuous exploration of the global state space of
non-equilibrium systems, and relaxation into the most favoured states, if any exist, that are
accessible to the dynamics. Phase transitions between states of matter are associated with
clearly defined changes in molecular order. In thermal systems, macroscopic order
changes as the balance between attractive and repulsive intermolecular forces undergoes a
distinct shift. Some well-studied examples of phase changes involving spatial patterns
include the spontaneous formation of periodic Bénard convection cells in heated fluids [4],
magnetization of ferromagnetic materials below a critical temperature, as idealized in the
Ising model [341], and melting and vapourization of solids. We can hypothesize that the
onset of cardiac fibrillation is a phase transition governed by cell dynamics competing
between local convergence and divergence. Interactions between excitable cells occur

through electrotonic currents, which promote state convergence by diffusion and
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dissipation of irregularities, while state divergence is a consequence of nonlinearities in

active ionic currents resulting in restitution-driven instability.

Phase transitions within distributed systems of cooperative elements are distinguished by
an abrupt change in some measurable order parameter, while an independent control is
changed. The input control is usually temperature in thermal systems, but it can be other
state variables. There is no unique definition of the order parameter for physical systems
in general, but for a specific application it should be chosen to quantify some essential
feature of the structure related to new properties. Most commonly it is a simple scalar, but
it can be a multi-component quantity or vector. Classic examples in statistical mechanics,
pertaining to phases of matter, include density differences in liquid-gas systems, polarity
of magnetic subregions, orientation of liquid crystals, and spatial correlation of patterns

[238].

As a specific hypothesis, let us propose that reentrant wave activity will undergo one or
more phase transitions in the cardiac tissue CML model as the action potential restitution
curve slope is changed. An independent control parameter, analogous to temperature, is
the action potential slope factor &, defined as the slope of the restitution curve at DI = 0.
The influence of a second control parameter, related to the firing threshold voltage v, will

also be explored.

£ =(APD,, - APD,)/t 6.1)

V=V/Vm (6.2)

The first parameter € is zero for flat restitution or constant APD; £ = 1 for the intercept
slope being one; and & > 1 if the restitution slope is steeper than one. If APDy, and t are
both constants, as previously assumed, then APD, can substitute for this parameter. The

second parameter v accounts for the likelihood of the threshold condition being met. One
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might expect, intuitively, that instability and wave-break would be most likely if & is high

and v is low.

Order parameters that embody spatial wave patterns as dependent variables should be
capable of identifying phase transitions. What are the unique characteristics of fibrillation
that relate to spatial or temporal order? Simulations of wave-break suggest that, at the very
least, there must be an increase in the number of spiral waves, as measured by the number
of core points N, this being the simplest order parameter. Since Nc(t) can undergo
considerable variability during fibrillation, as waves intermittently break and coalesce, a
mean value must be taken. Since the focus in this dissertation is on the normal heart, we
will not deal with the separate issue of fibrillation initiation by factors such as ischemia or
triggered activity [72, 257, 403], outlined in Figure 1.7, that promote regional block, but
will instead assume that a solitary spiral wave has already formed by some unspecified
mechanism of symmetry-breaking. To be specific, we will consider a single stable spiral
wave with N = 1 to be like a solid phase, and the transition by wave-break to N > 1 to be
like melting into a liquid phase. Melting occurs when N, increases and cores become
mobile, while freezing occurs when N, decreases to a fixed value and a stable spatial
pattern becomes locked-in. Freezing can occur through slow annealing or rapid quenching,
depending on how quickly control parameters are changed relative to the relaxation time

constant of the system response [508].

Entropy might seem like an obvious measure of order. The most appropriate definition of
system entropy is probably that based on the distribution of diastolic intervals p(DI), since
this relates to the other entropies, Sa and Sc, which are constructed from their respective
distributions p(APD) and p(CL) through the restitution curve. The only truly independent
entropy measure is that derived from p(DI). Fluctuations in DI experienced by each
element individually, and in the system as a whole, suggest a functional analogy with the
distribution of molecular velocites in a gas where the width or dispersion of p(DI) is like
molecular kinetic energy that serves to permit state space exploration. Simulations of the

model show that the DI distribution is very narrow if APD, = APDy, and becomes wider
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according to the APD difference, although Figure 4.21 showed that there is not an abrupt
change. Highly ordered and tightly wound spiral waves, and dense fibrillation wave
patterns, are associated with a narrow p(DI), while complex highly disordered patterns
with wide and variable excitable gaps result in a wide p(DI) distribution. Both the entropy
of p(DI), and the standard deviation op of p(DI) about its mean, are measures of system

order, although neither identifies a sharp phase transition.

A third measure of system order is the spatial correlation discussed earlier. This measure
is commonly used in statistical mechanics to quantify phase transitions, as ordered
subregions emerge from a disordered background during crystalization or freezing [300].
The correlation length for random spatial or temporal patterns is very short, while that for

order patterns is much longer, as illustrated in Figure 5.2.

What spatiotemporal quantities determine if two types of fibrillation are equivalent? This
is an important question because different subtypes of fibrillation might have diagnostic or
prognostic significance, and might respond differently to therapies. Strictly speaking, runs
of fibrillation cannot be equivalent unless they are identical, but for practical purposes
subtypes can be defined according to their conformity to some degree of dynamical
similarity. Subtypes must be functions of at least APD, and APDy,, which through their
dynamics determine p(DI), N,, and spatial patterns. Static measures taken at one time
instant are not necessarily representative of the overall dynamics because oscillations in
fibrillation patterns span some larger period related to cycle lengths. Useful metrics must
be averaged over several cycles. To be clinically useful without invasive instrumentation,
these metrics would need to be correlated with quantities measurable in the body surface

ECG.

Thermodynamics seeks to find relationships between average values of a relatively small
number of state variables at equilibrium. It is not a simple task to derive an exact
thermodynamic theory of fibrillation because the system is usually far from equilibrium,

and there are no known governing conservation laws in a dissipative system that would
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allow the derivation of a suitable analytical Hamiltonian governing microstates [238]. The
model that we seek here will, by necessity, be phenomenological, with equilibrium

defined in a statistical sense only.

Figure 6.1 shows the state diagram for a generic pure substance like water. The three
thermodynamic state variables are pressure P, volume V, and temperature T. If volume is
expressed as density, all variables are intensive quantities independent of mass, and the
equation of state is F(P, p, T) = 0. An analogy to cardiac tissue is proposed in Table 6.1.
Restitution slope is the main independent control variable, affecting stability and acting
upon all cells, and therefore behaves like temperature. The number of core points N
divided by the domain size gives the reentrant circuit density p = N/ (NxM), analogous to
mass per unit volume. An increase in firing threshold Vy, can reverse spiral wave break-
up, just as changes in pressure can reverse the effects of changes in temperature. This
suggests that the firing threshold v = V/Vy, is analogous to pressure. An equation of state
for the cardiac tissue model would therefore have the form F(v, p, &) = 0. The search for
this function involved running many long simulations, under various initial conditions and
parameter changes, to delineate regions of behaviour that define the mean relationship
between v, p, and &. The equation of state obtained is shown by the curves in Figure 5.21,

which define a three-dimensional surface analogous to that in Figure 6.1.

Table 6.1: Thermodynamic State Variables in Cardiac Tissue

Matter Cardiac
Temperature T .............. Restitution &
Density o J Core density p

Pressure P ..o Threshold v
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Figure 6.1. Phase diagram for a generic pure substance like water, showing the surface of
equilibrium between pressure, volume, and temperature.
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Figure 6.2. A function representing the equation of state N;(APD,, V) is fit to the mean
N, obtained from the CML model summarized in Figure 4.23, and fit to a Hill equation
with a chosen exponent a = 2.
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An approximation to this empirically-derived equilibrium equation of state can be fit to
the surface N, = f((APD,, Vu), defined by the curves in Figure 5.23. A modified Hill

equation provides a reasonable fit:

Ne = Neo + cX?/ (1 + (bX)) (6.3)

where

X = APD" — APD,

APD’ = 34

Neo = 32

a=2

b=0.1exp (- (Vi — 0.2)/.07)
¢ =0.7 exp (- (Vin — 0.2)/.045).

The equation is valid only for X > 0 where APD, < 32. The exponent a = 2 was chosen a
priori as the best fit integer, and parameter fitting was done visually rather than formally.
A good fit was obtained. There is no known underlying physical or theoretical reason why
a Hill equation should be used. The choice is simply based on the sigmoidal appearance of
the curves derived by simulation. This function is plotted in Figure 6.2, and closely
matches Figure 5.17 obtained as a composite from many model simulations. While the
general form of this equation for N, was chosen prior to the parameter fit, its dependence
on a power of X gives it properties compatible with a critical point in a second order phase

transition. This issue will be explored in a later section.

6.2 Non-Equilibrium

A thermal system undergoes a first order phase transition when it develops a double
potential well allowing coexistence of two states within a finite temperature range, as

shown in Figure 6.3. At the critical temperature T, the free energy is equal between both
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phases. There are two wells above T, one of which is less favoured and gives rise to a
metastable point, while only one of the pure phases can exist below T.. The free energy
potential surfaces of each phase overlap, producing a discontinuity in the slope at the
transition temperature T.. In thermal systems, this slope is the entropy and the difference
between the surface ordinates is the latent heat [569]. An abrupt jump can occur from one
phase to the other if T is moved away from T.. An example is the ice-water transition.
Supercooled water can remain in a liquid phase well below the freezing point under ideal
conditions, and abruptly turn to ice if a nucleus is introduced. There is a zone of
suppressed transformation characterized by overlapping metastable branches, and giving

rise to hysteresis if the temperature is cycled.

By contrast, a second order phase transition always has one well, allowing only one phase
to exist at any given temperature. The smooth potential surfaces meet and terminate at the
transition line. They are continuous in slope instead of intersecting, and there are no
metastable branches. This transition is typically characterized by the sudden emergence of
increased complexity and self-similarity, with power-law correlation of properties in the
transition zone [300]. First and second order transitions can be visualized as sections

through a cusp catastophe, as shown in Figure 6.4 [570].

Figure 6.5 shows the phase transition from a solitary spiral into fibrillation as the order
parameter £ = (APDy, — APD,)/t is varied by lowering APD,. If a uniform spiral is
allowed to reach a perfect steady state, and then is subject to a very slowly decreasing
APD,, it can persist for a long time without breaking. Any perturbation will grow into an
instability if a small irregularity is introduced, like an ice crystal introduced into
supercooled water. The growth rate is especially rapid at steep &. This observation hints at
the existence of a first-order phase transition with metastability, or hysteresis in a second-
order transition. To test these possibilities, APD, was lowered at various rates and
spatiotemporal order was monitored by the changes in width of p(DI), which grows with
increasing disorder. By clamping APDy, = 60 and imposing a very slow rate of change of

&, one can lower APD, to 15 before wave break occurs. A more rapid change of & brings
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on wave-break sooner. By plotting N, = f(APD,) for a given APD,, the region of
disordered fibrillation can be separated from that of the ordered solitary spiral. Routes of
wave-break and coalescence or solidification can be followed as trajectories through the
diagram. A composite over several different examples with constant APDy, is shown in

Figure 6.6.
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Figure 6.3. A first order phase transition is characterized by region with two stable states
giving rise to metastable branches (left), while a second order transition is continuous with
only one stable state (right). T = temperature, X = order or density, ® = free energy.
Above the critical temperature T, in a first order phase transition, a second potential well
emerges abruptly allowing co-existence of two phases at a given temperature. In a second
order phase transition, a single potential well emerges at T., and only one phase can exist.
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Figure 6.4. First and second order phase transitions can be conceptualized as sections
through the surface of a cusp catastophe, illustrated here for a substance like water. A first
order transition occurs at pressures above the critical point (CP) along line "a" where there
is a metastable region with two overlapping equilibrium points, while a second order
transition along line "b" is smooth below CP. Surfaces are stable (S) or unstable (U) as
shown. A bifurcation into two stable solutions occurs at the critical point.

«—— APD,

Figure 6.5 The equilibrium phase surface No(APD,, Vi) for the CML fibrillation model is
smooth, and corresponds most closely to a second order phase transition. There are no
known metastable regions. This surface fits the Hill equation (6.3).
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Figure 6.6. Phase diagram for the system. The transition parameter £ = (APDp — APD,)/t
along the abscissa is analogous to temperature, and core point number along the ordinate
is like density. As restitution is made steeper, by lowering APD, below a critical value
corresponding to ., the system "melts" and spiral waves break up and multiply in a free or
fluid phase. As APD, is raised again, the system "freezes" back into a solid pattern with
fixed core points. A rapid freeze is like quenching, while a quasi-equilibrium slow change
is like annealing.
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Figure 6.7. Subtypes of solitary spiral VT and multiple spiral VF map onto the phase
diagram according to the combination of restitution APD, and the number of cores N..
The curve represents the equilibrium mean N for a given APD,. Configurations located
below the line will break-up if APD, < 32, and those above the line will self-organize to a
lower N..
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6.3 Markov Population Model

We have seen that wave break occurs below about APD, = 32 for the standard value of
APDy, = 48, and is more rapid at lower APD, where restitution is steeper. Wave break is
also more likely when N, is high, as waves are more crowded together and irregularities
are more likely to be magnified by nonlinearities leading to local block. Coalescence is
seen to occur above a critical N; and increases with shorter APD,,. Higher N causes more
crowding of waves whose cores are more likely to come into proximity and cancel as the
narrow isthmus between them blocks. These opposing processes suggest that a
competition exists between birth by wave break and death by coalescence. A simple

stochastic population model is proposed to account for this balance that determines N(t):

dN./dt = core birth rate — core death rate (6.4

= f(APDo, No) — g(APD,, N,). (6.5)

In statistical mechanics this is called a master equation, and determines changes in
probabilities of events. The proposed functions f and g are shown in Figure 6.8. To
implement this equation in a Monte Carlo simulation, the functions f and g are considered
to be probabilities. Two uniformly distributed random variables Xi and Yi, between 0 and
1, are generated at each time step. If Xi < f then N, = N; + 1, accounting for core point
birth, and if Yi < g then N, = N, — 1 accounting for core point annihilation. Time stepping
from an initial condition specifying APD, and N, gives the time series Nc(t), which is
close to that seen in the deterministic CML simulations. The intersection of the curves
where f(APD,, N.) = g(APD,, N.) determines the equilibrium value of N for a given
APD,. The stochastic nature of changes in N, produces a dynamic rather than static
equilibrium, particularly when APD, is low and f and g are both nonzero. An example of
the Markov model simulation of N(t) is shown in Figure 6.9, which resembles that from

the CML model.
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Figure 6.8. Probability functions determining wave break and wave coalescence in the
population model according to the number of cores N, at each time step. The function
f(N,, APD,) determines the rate of wave coalescence, which is greatest at high densities
and drives N, down, while g(N,, APD,) determines the rate of wave break, which occurs
below APD, = 32 and drives N, up. The intersection point, where f = g, gives the mean N,
or equilibrium N, where, for a given APD,, these processes are on average balanced. The
integral of the difference (f — g) gives the potential function ®@ governing changes in Nc.

Since f and g are the positive and negative processes driving changes in N, we can define
a potential function or free energy surface by integrating the difference f — g. This function
defines a surface ®(APD,, N;), whose topology determines the regions of stability. The

surface is shown in Figure 6.10, and is derived by the following equation:

® (APD,, No) = | (f-g)dN;. (6.7)
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Figure 6.9. Implementation of the Monte Carlo model as described in the text produces a
time series representing the number of core points N(t).
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Figure 6.10. A potential function is derived from the population model. For each APD,
there is a curve whose slope is the net driving influence for changes in N.. The composite
of all such curves defines a surface ®(APD,, N;) whose ordinate is in arbitrary units of the
functions f and g, but related to the free energy. A marble placed on the surface will seek
the lowest point, which for VT is N = 1, and for VF is in the basin where N; > 1. APD,
determines the stability and equilibrium N¢.

If at any time N is too high to survive, coalescence will dominate and the operating point
will roll down the hill until it reaches a flat section where it will stop as N, reaches a stable
value. If N, is too low, and a mechanism of wave break can occur, then N, will grow. This
can only occur if APD, < 32, the critical value where the surface @ transforms into a
concave basin. The basin nadir determines the equilibrium value of N, for a given APD.,.

The number of core points changes according to the slope of the potential function.
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dNc = K 8@ (6.8)
dt ONc

In actual fact, the basins where APD, < 32 must be chaotic attractors, and might best be
imagined as fuzzy or jiggling moving surfaces, comprised of multiple unstable trajectories
passing near saddle points, forcing the operating point to move chaotically about the mean
values shown. This surface is a three-dimensional representation of the phase diagram in

Figure 6.6, and is shown in Figure 6.11.

12 5 32 48
APD,

Figure 6.11. Phase diagram of the CML model redrawn as a potential surface. Wave break
occurs below the critical APD,, indicated by the dashed line, which also demarcates the
boundary of the concave basin of fibrillation. Note that the dark region above the critical
APD, at low N_ is a actually a flat surface where there is no driving force for wave break,
and the state is stable.
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A first-order phase transition requires the existence of two basins at any given APD,,
corresponding to two coexisting phases. The barrier between them would vanish as the
control parameter APD, is changed, as in Figure 6.3. This particular topology, found from
the population model, suggests that the VT-VF transition is most similar to a second order

phase transition, since at any given time there is only one basin with one stable attractor.

Note that if reentrant VT happens to be a solitary reentrant circuit with N¢ = 1, it is stable
only if initiated under conditions where APD, > 32, because in this regime there is no
driving force for wave break, and VT can persist. In other words, there is no incentive to
move the marble above N = 1, since it is on a flat part of the surface. The zone of stable
VT is therefore a line along N; = 1 intersecting with the region APD, > 32. Simulations
show that it is possible, however, for N, to be as high as 30 while still in the stable zone
where APD, > 32 without experiencing wave break. Topologically, the line of N, = 1
crosses a saddle point where VT goes from being stable to unstable as APD, is lowered.
The flat region, with N, > 1 and APD, > 32, represents a field of multiple stable spiral
waves that neither breaks nor coalesces, such that a fixed number of spirals N, persists
unchanged. One could debate whether dynamics in this zone should be called VT or VF,
since the ECG pattern would be regular and monomorphic. While theoretically possible in
the model, this state would have a low likelihood of occurrence in a real heart because
multiple stable spiral waves would not likely initiate de novo within this zone, and if
APD, > 32, there could not be growth of N, by wave break. In other words, we could
speculate that this region of the phase space might not normally be accessible by typical
dynamics in a real heart. VF occurs in the model when APD, < 32, and the dynamics are
forced to migrate into the concave basin where wave-break becomes active, and ultimately
competes with coalescence as N, grows. Since the surface is smooth and continuous in the
model, there is no abrupt transition or separatrix between VT and VF. Accordingly, these
thythms, which are normally considered distinct entities in clinical practice, actually
constitute a continuum. Within this theoretical conceptualization, it is not clear if and why
VT and VF should be considered separate or distinct phenomena, except as pertains to

different N..
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Figure 6.12. The number of core points N(t) during fibrillation in the CML model, at
various restitution slopes APD,, is shown at left. Random initial conditions were allowed
to self-organize to a statistical steady state before the N time series was collected. The
numbers at right are the mean and standard deviations of the p(N.) distributions. The
fluctuations in N(t) are due to competition between wave break and coalescence. Note
that the distribution is more narrow at lower APD,,

We can carry the statistical mechanical interpretation further by attempting to account for
fluctuations of N, within the basins, which are shown in Figure 6.10, as derived from the
CML simulations of fibrillation. Fluctuations can be estimated in thermal systems by
defining a partition function that decays exponentially, and represents the probability of

finding molecules at various energies. In our case Z decays with the order parameter .

Z =B exp(—Bo¢) (6.9)
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Figure 6.13. The potential surface ®(N., APD,) governing changes in core number N
conceptually contains a marble seeking the lowest available point. Wave break and
coalescence determine the equilibrium or mean N, according to restitution slope controlled
by APD,. Variability of N¢(t) depends on an effective "temperature", which is modelled
below by probability distributions that are functions of APD,. Lower APD, is like a higher
temperature that causes more vigouous activity and greater variability in N.

This function can be multiplied by the potential function @ to give the probability
distribution of states p(N.). The constant f§ in thermal systems is the product of the
Boltzmann constant and temperature kT, which influence the magnitude of fluctuations in
the order parameter ¢, causing it to increase with temperature. The order parameter in our
case is N, and the coefficient B normalizes the probability distribution so the total area is
equal to one. In our case, we do not know what the effective "temperature" of fibrillation
means, but the unknown parameter p determines the width of the N, probability
distribution. It would not be unreasonable to assume that the "temperature" is either APD,,
or at least some function of APD,, since this vital parameter determines much of the

system behaviour. Figure 6.13 shows the probabilities calculated according to the product
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p(N¢) = Z® with the "temperature” function chosen empirically as = 0.5 + 0.2*%(32 —
APD,) to give more wave breaking at lower APD,, consistent with the wider distribution
of N¢ seen in the simulations shown in Figure 6.12. This equation for p(N,) is valid only in

the wave break region where APD, < 32.

6.4 Landau Theory

If we are willing to temporarily assume that the phase transition from VT to VF is second
order, then we can pursue a more formal derivation of the potential function through
further application of statistical mechanics. Landau in 1937 proposed a phenomenological
theory of thermodynamic stability pertaining to second order phase transitions, noting that
symmetry was broken at a critical value of the order parameter ¢ [250], that for our
purposes is analogous to N.. The potential surface equation can be assumed to be a
polynomial expansion in powers of ¢ that is independent of the details of the system or of
the phase transition [493]. This assumes that there is a saddle point in the potential surface
at the phase transition. The details of a specific system are embodied in the coefficients.
Application of Landau theory to the CML fibrillation model provides quantitative insight
into the behaviour of the VT-VF transition under these assumptions. Briefly, the potential
®(APD,, N¢) can be expressed as a polynomial in the order parameter N. where the

coefficients a and b are functions of APD, that remain to be determined.

O=@, + {-hN; +1/2aN>+1/4bN.' + ...} (6.10)

The equilibrium values of N, are found at the minima of ® where 0®/ON; = 0 and
&®/ONc? > 0. At this point there is no driving force to change N.. Specifically, if h = 0
and a, b > 0 then the only solution to equation (6.10) is N, = 0, the quiescent state
corresponding to asystole, or the topologically symmetric state of a wave front in normal
sinus rhythm. A nontrivial solution is obtained if instead a(APD,) < 0 and b(APD,) > 0.

The minimum free energy of the surface then occurs at:
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N = — a(APD,) / b(APD,). 6.11)

If we now assume that a(APD,) is a power series in the displacement of APD, from its
critical value, previously assumed to be APD, = 32, then y = (APD, — APD,)/ APD,. If b

is constant near APD, then

a(APDy) =ay + Bx* + ... o >0 (6.12)

It follows from equation (6.10) that in the vicinity of APD, the equilibrium N varies as
the square root of APD, — APD,, with the critical exponent being 0.5, since N, o  * at
the phase transition. This relationship is shown in Figure 6.14, superimposed on the actual
measured mean N(APD,). The fit is not perfect because the actual potential surface from
the CML model is not a true polynomial, but has a flat region above APD, indicated by
the "solid" zone in Figure 6.11. Since this is a perturbation expansion, it is most valid
close to the point where y, = 0 or APD = APD,. The potential surface derived heuristically
by the Markov model can be approximated to such a function, where the coefficients a and
b relate somehow mechanistically to the probability distributions of core point spacing and
interactions. Analytic functions could, in principle, be derived in more detail for various
thermodynamic constants, stability criteria, and power-law scaling at the critical point of
the phase transition. Extension of the theory would allow the full weight of formal
statistical mechanics theory to be brought to the problem on a level beyond that already
described. Useful parallels might then be drawn with other similar physical systems. The

details of this analysis is beyond the scope of the present work.

Finally, the potential surface ®(APD,, N.) should be considered to have a barrier between
N. = 0 and N, = 1, which runs along the entire APD, axis. Normal sinus rhythm, with
relatively long cycle lengths, produces stable propagating wave fronts with insufficient
curvature or substrate heterogeneity to induce block or wave break. Propagation stability
without reentrant circuits is therefore ensured, such that in the normal heart N; = 0. A

relatively high barrier must be crossed by the marble before a reentrant circuit can
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spontaneously develop and proceed to establish a reentrant VT having N, = 1.
Presumably, ischemia or other pathological processes in the heart somehow lower the
height of the barrier, such that a relatively small disturbance can precipitate VT or VF,
particularly if the restitution curve is steep. The model structure presented so far does not
allow for a transition from N, = 0 to 1 to account for these important initiating events.
Such modifications would ultimately allow better conceptualization and topological

interpretation of the usually ill-defined "fibrillation threshold".
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Figure 6.14. A comparison of mean N (APD,) from the CML model (circles) obtained
from a solitary spiral wave with APD,, = 48. Below about APD, = 32 the wave breaks into
many waves. The approximated Landau equation predicts a square root relationship for N,
below APD, = 32 (black line). The Hill equation discussed earlier (grey line) shown for
Vi/Vm = 0.3 also gives a reasonably good fit, but is valid only for APD, < 32.

It should be possible to develop a more comprehensive statistical mechanical theory of
fibrillation than that presented so far. Ideally, we should seek closure by relating the
macroscopic free energy surface, thus far derived phenomenologically, to the underlying
microscopic cellular dynamics. This is usually done in statistical mechanics by
formulating a Hamiltonian of the individual particle interactions, which are energy-
preserving in a conservative system, and relating them to the polynomial coefficients of
the potential surface using Landau theory [238, 568]. It is not immediately clear how this
theoretical process might relate to dynamics in the cardiac CML model, but the issue is

worthy of further development. Some progress to a better theory might be realized by
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considering that wave break is not a simple function of APD,, but is dependent in some
complex manner on the spatial pattern of waves or core points which determines the
statistical distribution of the diastolic intervals. This in turn influences the magnification

of instabilities through the restitution curve, as previously described.

Stabilization of waves through coalescence, on the other hand, is dependent on the
proximity of neighbouring core points whose statistical distribution could be more
rigorously defined. We have also assumed that spiral break-up occurs at a critical value of
APD, corresponding to a critical restitution slope similar to a melting temperature.
Simulations show empirically that this is not a sharp transition, but there is really a
somewhat fuzzy boundary of APD, that separates stable and unstable waves. Within this
zone surrounding the critical APD,, wave fronts block over small segments, but
sometimes reconnect without progressing to the genesis of daughter waves, suggesting an
occasional type of intermittency. This unstable-to-stable transient is responsible, at least in
part, for the approximated critical APD, = 32 being slightly lower than the expected value
of 34 where the restitution curve region with slope (APDy, — APD, — R)/ t > 1 first

appears.

The transition to fibrillation is an instability that must have similarities to instabilities in
other spatially-distributed physical systems [108], particularly those that involve coupled
oscillators that self-organize into complex patterns [204, 271]. The phase transition is one
example. A comparison with hydrodynamic stability might be insightful. Transient wave
block that recovers without wave break, occurring around the critical APD,, has
similarities to intermittency, seen in the transition from laminar flow to turbulence around
the critical Reynold's number. As velocity increases in laminar pipe flow, bursts of
turbulence first develop when Re > 2300, but are ultimately suppressed due to dominating
viscous stability. Beyond Re > 2800, inertial instability dominates, and fully developed
turbulence can persist [454]. This transition to turbulence is promoted by three factors:
velocity fluctuations in the incoming flow, boundary surface roughness, and the adverse

pressure gradient. Stability of this flow is analysed by solving the Orr-Sommerfeld
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equation derived from the Navier-Stokes equations [454], the solution of which resembles
a phase diagram with a stable region. It is tempting to hypothesize that fluid fluctuations
are like irregularities in the cardiac wave front, and surface roughness is like substrate
APD heterogeneity. Pressure gradient does not have a clear analogy. The turbulent
transition occurs through intermittency, similar to that emerging in a one-dimensional
return map, which progresses to chaos as the control parameter is increased [263].
Spatiotemporal intermittency is one recognized route to chaos [265] that might be relevant
in the transition to fibrillation. The Ginzburg-Landau equation is another theoretical
example, having both diffusion and instability terms, whose solutions exhibit phase
transitions and spatiotemporal chaos [281]. Defect-mediated turbulence [99] appears in
models of coupled oscillators, representing chemical reactions or convection, through
spontaneous self-organization into patterns resembling fibrillation [124, 563]. Spinodal
decomposition is another mode of phase transition that also produces fibrillation-like

patterns during growth of co-existing phases along interface boundaries [202].

In conclusion, the simple population model and its potential surface, as developed so far,
suggest that VT and VF are just opposite ends of a continuum of possible states, in terms
of number of reentrant circuits. If this is true, we should be able to follow the transition of
spatiotemporal cell dynamics, and the resultant ECG signals, across the continuum from
one extreme to the other as APD, is lowered or raised. We might then be able to account
for the entire spectrum of ECG subtypes, from simple large-amplitude monomorphic VT
through to more complex low-amplitude polymorphic VF. This will be the subject of the

next chapter.



Chapter 7

FIBRILLATION ELECTROCARDIOGRAM

7.1 Background

The body surface electrocardiogram is the only practical means, in most clinical settings,
for obtaining information about the electrical state of the myocardium. It is noninvasive
and adequate to diagnose most basic heart thythms. A single lead is usually all that is
required to monitor a patient's rhythm and distinguish sinus thythm from VT and VF in
order to initiate cardiac resuscitation, when indicated. Efforts to extract more information
from ECG signals of VT and VF, beyond their simple recognition, have so far not been
fruitful. Attempts have been made to characterize the VF signal by various statistical
parameters, including mean frequency, amplitude, and scaling exponents [48, 83, 318],
however, no measures of VF characteristics have yet been incorporated into clinical
practice. The complexity of these signals suggests that they are rich in information. The
challenge is to determine precisely what these signals, both temporally and spatially,

might be able to reveal about the electrical behaviour of the myocardium.

Kac, in 1966, asked: "Can we hear the shape of a drum?" [262], referring to the general
problem of finding the inverse solution of the source distribution, given a set of remotely
measured signals. The analogous question relevant here is: "Can we hear the shape of

fibrillation?" by measuring a set of remote ECG signals. If subtypes of VT and VF can be
175
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better discerned and characterized, opportunities might arise for improved therapies.
Precisely what information about electrical activity in the heart can we extract from the
time series of a single lead of VT or VF? What further information might several leads
add? Is it worthwhile to examine the entire spatiotemporal signal set from multiple lead
body surface mapping during VT or VF, if such data was available clinically? Could such
information influence clinical diagnosis or treatment of subtypes of tachyarrhythmias?
These questions have not yet been answered, but need to be pursued since the ECG is the
only accessible measurement of VF in practice, and embodies all the three-dimensional
system dynamics transformed onto a two-dimensional surface. This chapter explores the
relationship between intracardiac events and the features of the ECG signals generated by
subtypes of simulated VT and VF, as various system parameters are varied within the

cylinder heart CML model.

7.2 Ectopic

The simplest ECG that can be generated by the CML model is that due to a periodic
source, either a repetitively firing ectopic focus or a solitary fixed spiral wave. For an
ectopic focus of fixed frequency radiating concentric waves, the only relevant variables
are the APD and the firing frequency, equal to the reciprocal of the cycle length. Since
CL = APD + R + DI, the maximum frequency occurs when DI = 0. The role of both CL
and APD on the ECG and body surface map is shown for various constant APD in Figure
7.1. The ectopic beat produces an ECG peak that radiates outward on the body surface
from the source point. The largest amplitude occurs opposite the focus, while the
amplitude is smallest a short distance on either side of the focus. When CL is kept
constant at 52, there are some differences in the ECG time signals for APD = 16, 24, and
48, although these are subtle. Most notably, the equatorial peaks opposite the focus are
sharper and more narrow for the shorter APD. The frequency spectra, obtained by Fourier
transforming the time series for these cases, exhibit a solitary spike at * = 1/CL (not
shown), and are virtually indistinguishable, except for a slightly smaller peak and lower
energy for the shorter APD. This suggests that, while the CL can be easily estimated from

a narrow banded ECG frequency spectrum, it is unfortunately not possible to extract any
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estimate of APD from this information alone, even in this simple case. The ECG
frequency spectra around the cylinder, originating from an ectopic focus, are shown in
Figure 7.2, and are narrow as expected. The CL histogram (not shown) is a solitary spike
at CL = 42. The peak frequency is 1/42 = 0.024 which, assuming each time unit is 5 ms,

corresponds a period of 210 ms and a frequency of 4.76 Hz.

The effect of changing the ectopic cycle length with constant APD = 24 is shown in
Figure 7.2. The ECG amplitudes are smaller for the higher frequency sources, since more
waves with cancelling dipole contributions fit in the domain. It is also noteworthy that the
lowest amplitude spatial regions around the ectopic foci are wider at the higher
frequencies. All cases are shown after a steady state has been reached, after which the

initial waves have expanded to fill the domain.

APD =12 APD =24 APD =48

Figure 7.1. Ectopic focus radiating waves at CL = 52 (top). The role of APD = 12, 24, 48
is minimal in the single ECG lead measured directly over the focus, shown below the
wave field. The envelope of maximum ECG amplitudes around the equatorial ring is
somewhat larger for the longer APD. The body surface time-space maps are also
remarkably similar, exhibiting small amplitude differences only.
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Figure 7.2. Ectopic focus with constant APD = 24 radiating waves at various CL = 28,
38, 48. The role of CL on the ECG is quite significant, much more so that of than APD.
The amplitude of the single lead, measured directly over the focus, is smallest for the
shortest cycle lengths where there is greatest cancellation of wave contributions to the
ECG. The envelope of maximum ECG amplitudes around the equatorial ring is largest
for the longer CL. The body surface time-space maps are quite different for each CL, in
terms of relative amplitudes and spatial phases.

The ECG pattern of an ectopic source with APD = 36 and CL = 42 is shown in Figure
7.2. The time signals give rise to narrow-banded frequency spectra in all leads, with a
peak frequency at £* = 1/CL. The amplitude envelope of the equatorial leads is smallest at
the most rapid frequency due to interference and partial cancellation of the dipole
contributions of multiple concentric waves. In all cases, the maximum amplitude occurs

opposite the ectopic source.

When a regularly beating ectopic focus occurs in the presence of restitution, where APD,
< APDp, the ectopic cell can fire as soon as its refractory period R has expired, even at
steep restitution. Consequently, DI is always close to zero, and since APD is nearly

constant at APD,, there is little opportunity for aperiodicity, quasiperiodicity, or chaos to
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Figure 7.3. Ectopic focus with constant APD = 36, CL = 42. Equatorial ECG leads are
shown at 30° intervals along with the complete body surface map space-time plot (top),
the frequency spectrum for each lead (bottom), and the average spectrum (right).
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develop from an ectopic focus when DI is constant. All APD and cycle lengths are also
constant, giving a perfectly periodic ECG. The main variable affecting this ECG is the
cycle length, which is close to 1/(APD, + R), and since APD migrates down toward
APD,, this controls the dominant frequency of the ECG. Once APD settles to a constant
value, the restitution curve plays no role and there is no significant difference from the
previous cases described. In summary, these are the ECGs of monomorphic VT driven by

an ectopic focus.

7.3 Reentry

Can the ECG of a reentrant circuit be distinguished from that of an ectopic focus? We
will examine a solitary spiral wave with constant APD. When the APD in the model is
constant and below about 30, the core remains stationary. All DI are approximately equal
giving a monomorphic ECG. At higher APD, however, the diastolic interval or excitable
gap becomes spatially nonuniform, and fails to settle to a single value. This causes the
core to move within a small region. The failure of small DI transients to dissipate entirely
might be a numerical artifact from the discrete nature of the model. The ECGs for these

cases of reentry are polymorphic, due in part to drifting of the core within a small area.

In order to re-establish a monomorphic pattern due to a fixed spiral wave, the core was
anchored by a small inexcitable obstacle. This keeps the DI constant, and forces all cells
to have constant CL. If the obstacle is chosen to be small enough, it anchors the spiral
wave, but the artificial core does not affect the ECG. This allows a uniform excitable gap
to be re-established, and also prevents wave break and core point movement, even for
cases of very steep restitution. An undesirable side effect of using an obstacle anchor is
that, for a constant propagation velocity, the cycle length is determined by the obstacle
circumference rather than the natural dynamics of the core. Figure 7.4 shows the ECGs of

a single spiral wave for various constant APD with the core being anchored.

To specifically compare ectopic monomorphic VT with that of reentrant sprial wave VT,

it is necessary to keep the source frequency and APD equal for both cases. A comparison
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APD=12 APD =24 APD =48

Figure 7.4. Spiral wave radiating waves at CL = 52 (top). The role of APD = 12, 24, 48 is
again minimal, as can be seen in the single ECG lead measured directly over the focus
shown below the wave field. The envelope of maximum ECG amplitudes around the
equatorial ring is somewhat smaller than that for the ectopic focus. It is largest at
intermediate APD. The body surface time-space maps are also very similar.

is shown in Figure 7.5. Here a small 3x3 obstacle anchors the spiral wave to prevent drift,
and gives CL = 42 for the chosen APD = 36, the same two parameters used in the
previous simulation of the ectopic focus. The ECG similarities between these two
mechanisms of monomorphic VT are perhaps more striking than any differences. The
similarities are in the ECG amplitudes, which are both maximal opposite their respective
sources, and the presence of four peaks around the heart equator. There are some small
differences. The ectopic focus produces a slightly higher ECG amplitude, which has a
slightly more prominent "dome and dagger" morphology in the smaller leads, while the
spiral wave tends to produce a more sinusoidal shaped ECG in most leads. The locations
of the amplitude peaks are slightly shifted around the heart equator relative to those of the
ectopic focus. The averaged frequency spectra are almost identical for the two cases,

except the ectopic focus has a higher mean amplitude peak and contains more energy.
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These simulations and others run at different frequencies show that there are no strikingly
obvious characteristics that would allow easy visual distinction between focal and fixed
reentrant monomorphic VT based on the ECG signals alone, despite this model being
stripped to its greatest simplicity. This issue has important clinical implications, however,
because these two entirely different mechanisms of VT cannot generally be distinguished
from each other, yet their optimal management is different. The time series must be
subject to more detailed analysis in order to extract more information that would allow

these two fundamental types of VT to be separated by ECG monitoring alone.

7.4 Fibrillation

Fibrillation can be established in the model either with constant APD or with restitution
APD, < APDp,. We will first consider cases with constant APD. Figure 7.6 shows three
examples of fibrillation with APD = 24 shown after self-organization from different
random initial conditions. In each case, the DI and CL histograms are virtually identical
(not shown), but the body surface ECG space-time plots are obviously quite different,
indicating differences in the spatial distribution of core points. The repeating spatial
pattern indicates that the core points are fixed in location. Since the number of possible
core point spatial combinations and patterns are astronomical, even for the core point
numbers N; encountered in the model, on the order of N. factorial, we must deal with

ECG characteristics statistically.

The first issue is whether there is a difference in ECG characteristics between a solitary
spiral and a field of multiple spirals when APD is constant and the CL distribution is
identical, such that the only difference is the number of core points N¢. In other words,
can the ECG signals distinguish solitary spiral "VT" from multiple spiral "VF" when all
other conditions are equal? Compare the simulation with APD = 36 having N, = 1 started
as a single spiral in Figure 7.5, with a that of multiple spiral field allowed to self-organize
from a random field, settling to N, = 10 in Figure 7.7. Both runs produce virtually
identical histograms, with mean DI = 6.8 and CL = 42.8. The APD distribution p(APD) is
a spike at 36. The DI entropy is similar at about 1.7 for both cases, independent of N...
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Figure 7.5. Solitary spiral wave with constant APD = 36, CL = 42. Equatorial ECG leads
are shown at 30° intervals along with the complete body surface map space-time plot
(top), the frequency spectrum for each lead, and the average spectrum (bottom). The
similarities with the ectopic case in Figure 7.3 are noteworthy.



184

Figure 7.6. Multiple spiral wave fibrillation with APD = 24 self-organized from different
random initial conditions. The frequencies of the ECG signals are the same, but the
spatial patterns are different, as can be seen in the envelopes of maximum ECG
amplitudes around the equatorial ring and the body surface time-space maps.

Figure 7.8 summarizes the ECG characteristics for the ectopic source, solitary spiral, and
multiple spiral fibrillation for these cases with APD = 36. The solitary spiral ECG leads
have an average Vs = 9.69 [range 2.07 - 26.52], while that of the multiple spirals has a
similar mean, but much lower range Vs = 11.7 [range 7.79 - 17.52]. Multiple spirals
evidently attenuate the dipole contributions to any given lead, producing a generally
lower range of ECG amplitude. The frequency spectra of these two cases are also very
similar. This is not a surprising finding given that the CL histograms are essentially the
same. Since the time signals are similar, except for amplitude, the only distinguishing
feature between these two cases, where N; = 1 and N, = 10, is the spatial pattern of the
ECG over the body surface. Although no major characterizing features are obvious,
solitary spirals tend to produce their peak amplitudes on the body surface opposite the
core point, and their lowest amplitudes in a zone over the core. Multiple spirals, like
fibrillation, produce a less consistent spatial pattern with less amplitude variation between

leads.
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Figure 7.7. Multiple spiral wave fibrillation with constant APD = 36. Equatorial ECG
leads are shown at 30° intervals along with the complete body surface map space-time
plot (top), the frequency spectrum for each lead, and the average spectrum (bottom).
Amplitudes are lower than the solitary spiral case due to dipole attenuation from more
waves around N; = 10. Spectral energy at low frequencies is due to core point drift.
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If we now introduce APD restitution, such that APD, < APDy,, there will be dispersion of
DI, APD, and CL, as seen previously in the histograms of Figure 4.9. This begs the
question of whether restitution-induced APD dispersion, due to a nonuniform DI, widens
the CL histogram, and therefore adds more frequency components to ECG spectrum. In
other words, we would expect the ECG spectrum to be wider at lower APD,. To
investigate this question, while controlling for spiral wave drift and break-up at steep
restitution, a small obstacle was placed at the core to ensure the clean solitary spiral did

not break up at short APD, Runs were then repeated at various APD, with APD,, = 48.

Solitary spiral "VT" ECGs are shown in Figure 7.9, sampled at 10 degree intervals
around the body surface equator, for a spectrum of APD, from 48 down to 32 where the
wave remains stable without breaking. Fibrillation ECGs with APD, from 48 down to 12
are shown in Figure 7.10. The ECG signals are narrow-banded at flat restitution with
APD, = 48, while there is vigorous wave break at lower APD, where the ECG signals are
highly irregular. The space-times plots indicate relatively stable fixed patterns at higher

APD, > 32, and highly dynamic patterns at lower APD, <32.

Frequency power spectra S(f) averaged over 36 leads for APD, = 12 to 48 are compared
with the cycle length histograms p(CL) in Figure 7.11. Both are widest at low APD,, and
become narrow as restitution is flattened toward maximum APD, = 48. Peak frequency f*
is clearly discernible down to APD, = 28, but disappears at steeper restitution, where it
becomes difficult to characterize any preferred frequency. Differences in peak frequency
are generally fairly minimal. Peak frequency f* = 0.025 corresponds to CL = 40. The
central tendency of CL histograms are easier to quantify. Ideally, we would like to be
able to measure the frequency spectrum of the body surface ECG signals and infer the CL
distribution in order to quantify intracardiac activity. Given the wide dispersion of S(f),

this does not seem possible based on averaged frequency spectra.

ECG amplitudes were compared for VF at various restitution slopes. Random initial
conditions were allowed to self-organize as usual, and once a statistical steady state

appeared to be established, ECGs were obtained in 36 equatorial leads. The root mean
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square (rms) amplitudes were calculated for the time series of each individual lead and
for all lead data sets combined, and are shown in Figure 7.12. As APD, was raised, the
rms amplitude for all leads decreased then increased, with a minimum appearing around
32 to 40. The rms amplitude of the largest lead increased considerably beyond APD, =
36. The range of rms amplitudes was fairly narrow at lower APD, and became large at
higher APD,. This finding reflects the tendency of highly dynamic VF to spread its
energy around all leads at low APD, because there is no preferred spatial pattern. At
higher APD,, the spatial pattern tends to be much less variable, as core points tend to lock
into fixed locations causing specific leads to become favoured according to the positions

of underlying relatively stationary and coherent spirals.

Ectopic Spiral Fibrillation
N¢ 1 1 10
Sc 0 1.08 1.73
Sp 0 1.72 1.79
Ke 42.0 42.8 42.8
KD 6.0 6.8 6.7
Vims 9.69 9.69 11.70
Vims min 2.06 2.07 7.79
Vims max 25.07 26.52 17.52
Vims A 23.02 24.45 9.54

Figure 7.8. Characteristics of ectopic, spiral, and fibrillation for the same APD = 36.
Mean DI pp and mean CL pc are similar for the solitary spiral and multiple spirals. There
are essentially no significant differences in ECG amplitudes or distribution between the
ectopic focus and the spiral wave. Viysmin and Vimsmax are the minimum and maximum
values of the ECG sampled over all leads. Fibrillation has a similar mean Vns averaged
over all leads, but much less heterogeneity of individual lead Vs due to greater dipole
attenuation from multiple waves moving in many directions.
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Figure 7.9 (a). ECG of solitary spiral "VT" with N, = 1. APDp, = 48, APD, = 48, 42.
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Figure 7.9 (b). ECG of solitary spiral "VT" with N. = 1. APD,, = 48, APD, = 36, 32.
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Figure 7.10 (a). ECG of multiple spiral "VF" with N, > 1. APD, =48, APD, =48, 42.
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Figure 7.10 (b). ECG of multiple spiral "VF" with N; > 1. APDy, =48, APD, = 32, 24.
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Figure 7.10 (c). ECG of multiple spiral "VF" with No > 1. APDy, =48, APD, = 20, 16.
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Figure 7.11. Frequency spectra of the ECG from muitiple spiral VF averaged over all 36
leads for each APD, on the body surface (left). The corresponding CL histogram for each
APD, from the heart (right). Longer APD, produces more organized wave activity with a
more regular wave pattern approaching periodicity. This is associated with a more narrow
CL histogram and a narrow-banded frequency spectrum. At steeper restitution, the
distributions are both wider. Higher mean CL corresponds to lower peak frequency. The
peak frequency f* (left) and mean cycle length CL* (right) are shown.

Exactly how does the CL histogram generated within the heart relate to the frequency
spectrum of the ECG measured on the body surface? We have already seen that the peak
frequency for a regular solitary source is simply f* = 1/CL. This is intuitively obvious for

a single frequency corresponding to a spike CL histogram. If more frequency components
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are present, does the spectral width relate to the CL width? Conversely, a spike in the
ECG frequency spectrum, along with a stationary body surface map, must imply that
constant APD is being generated from a fixed focus, but exactly how does the CL

histogram relate to the frequency spectrum of the ECG?
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Figure 7.12. Relationship between peak frequency f* of the ECG signal of VF for various
APD, (labels) are compared with the mean cycle length CL* (black). The expected peak
frequency is f = 1/CL* (grey). The agreement is not good in the low frequency range due
to considerable spectral energy dispersion shown in Figure 7.11. Peak frequency f* in the
ECG is, therefore, not necessarily a good predictor of the mean CL*, according to this
model.
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Figure 7.13. Width of both the frequency spectrum S(f) and cycle length histogram p(CL)
are expressed as entropies, as functions of APD, (left). The entropy of S(f) is shows little
change with APD,, while S; is the entropy of CL, and decreases with APD,. Modified
entropy Sg*, presented for illustration, was calculated by truncating the lowest 10 percent
of the spectral energy to enhance the contributions of the spectral peaks. Entropy of S(f)
does show a relationship with Sc (right), but the range of spectral entropy S{S(f)} = St is
very narrow, ranging between 4.0 and 4.4.
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Figure 7.14. The ECG amplitude expressed as the mean of Vs of the 36 leads shown as
a function of APD, (left). The maximum and minimum Vs of individual leads is shown
by the grey lines. The difference is called the Vs range, and is shown enlarged (right).
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Figure 7.15. The mean of V. averaged over 36 leads (left), and the Vs range (right) of
all individual leads are shown for VF and VT (left). The range is much higher for VT
than for VF.

Specifically, does the CL histogram entropy correlate with the ECG frequency entropy?
Figure 7.12 shows the entropies of the CL histogram p(CL) and the frequency spectrum
S(f). Unfortunately, the spectral entropy is not sufficiently specific to APD, to permit a
good relationship. Perhaps there are better mathematical methods of signal processing to
compare CL histogram complexity with ECG complexity. The methods of nonlinear
dynamics, such as embedding dimension, various fractal dimensions, or measures of
power law scaling [449], might be useful for relating these measures, but will not be

addressed here.
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Figure 7.14 shows how ECG amplitudes Vs change with APD,. There is not a unique
relationship between Vs and APD, that would allow prediction of APD, based on
measured V. The range, or difference between minimum and maximum Vi, of
individual leads, however, does change substantially with APD,. This suggests that the
Vims range might be the best body surface predictor of intracardiac APD,. Figure 7.15
shows the Vs range for both single spiral VT and multiple spiral VF, as functions of
APD,. VT clearly has a larger amplitude and a clear functional relationship. The ECG of
fibrillation has a low amplitude range at short APD, where wavelets are very small,
because the dipoles from positive and negative slope segments of the spatial action
potential profile are closest together. The respective dipole contributions to the ECG
voltage tend to cancel because of the vanishing difference in distances Ry in the
denominator of the ECG equation (3.2). The largest ECG amplitude should occur when
the spatial wave structure has a much larger scale such that, at the points of ECG
extrema, there exists a dominance of either positive or negative dipole contributions, but
not both simultaneously, within the lateral peak W(R, @) zones. Figure 7.14 shows the
effect of spiral waves of various APD, on the ECG amplitudes. The maximum ECG

tends to decrease as the wave structure is made smaller,

Some important questions remain unanswered. Based on body surface ECG
measurements, how can we determine the location of the source foci? This will require
application of matrix-based inverse solution techniques. Is it possible to extract the CL
histogram from the ECG? This has not yet proved to be possible using the CML model,
due to poor specificity of p(CL) for given S(f). Furthermore, might we somehow get DI
or APD from derived CL data, if such information were available? If we could somehow
better determine the CL histogram from the frequency spectrum, could we then extract
information about APD restitution? Can we get the APD and DI histograms? There might
not be a unique relationship to determine APD characteristic if we are only given CL, and
therefore determination of APD might not be possible. Perhaps the spatial BSPM can
help resolve the ambiguities somehow through calculation of the inverse solution. More

work will be needed to help resolve these issues.
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Figure 7.16. Spatiotemporal patterns of the body surface electrocardiograms of VF for
fixed APDy, = 48, and various APD, as labelled. Note that APD, = 20 gives the largest
characteristic size of the ECG pattern. The spatial pattern appears "locked-in" for the
cases where APD, > 32, shown in the last three frames at right.

7.4 Obstacle Anchoring

An obstacle within excitable tissue has the potential to capture a reentrant circuit and
become a centre of rotation around which an advancing wave front can revolve and
stabilize [245, 495]. Such an obstacle might be a pre-existing infarct or region of
ischemia, or a hole like a blood vessel. This possibility was recognized in 1920 when
Lewis mapped wave activation moving around the great vessels of the dog atrium [313].
Since then it has been assumed that most cases of monomorphic VT are due to reentry
around some such anchoring structure [50, 139, 404], although in practice it is difficult to

prove this conjecture without invasive mapping.
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The CML model can be used to investigate the role of an inexcitable obstacle on wave
behaviour. For a constant isotropic propagation velocity, the obstacle circumference
determines the rotation period and cycle length, regardless of APD. A smaller obstacle
allows a higher frequency of rotation with shorter CL to develop, as shown in Figure
7.17. The APD and DI that emerge are determined by the compatibility condition that
they must sum to this value of CL. The values of APD and DI can be found where the
restitution curve intersects the unity negative slope line that meets both axes at CL + R,
as was shown in Figures 3.14 and 4.15. If this intersection point falls on the segment of
the restitution curve with slope < 1, the reentrant circuit behaviour is periodic and stable.
If the slope is >1, the rotation period might be constant, but is unstable to perturbation
and can potentially break into quasiperiodicity. We would then expect to see a transition

from monomorphic to polymorphic VT, which would occur through a bifurcation.
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Figure 7.17. A square inexcitable obstacle at the core anchors a spiral wave with APD, =
20. The obstacle size L, determines the perimeter, which in turn controls the rotation
period CL and diastolic interval DI. These influence APD through the restitution curve.
APD remains essentially constant, without bifurcation, down to a 4x4 obstacle, below
which APD irregularity develops.

When a solitary spiral was established around obstacles of various sizes from 3x3 to
16x16 at various restitution slopes characterized by APD,, the rotation period CL is a
linear function of the obstacle size L,, and therefore circumference, indicating a constant

propagation velocity around the hole. If APD and CL are constant during wave rotation
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around the obstacle, the ECG should approximate a sine wave with a period equal to CL
= APD + DI + R. The exception would be at short CL with steep restitution, where small
obstacles give low APD,. We can predict where the bifurcation in APD would occur at
short DI by referring back to Figure 4.17 showing the critical CL, below which APD
breaks away from 1:1 morphology into alternans. This line is redrawn in Figure 7.18,
along with the lines of cycle length dependence on obstacle size CL = f(L,). ECGs that
depart from sine waves should appear where CL falls below the solid curve for a given

obstacle size L,, indicating the onset of APD alternans.

80

10 20 30 40
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Figure 7.18. The solid curve shows the boundary based on restitution curve slope m = 1,
below which APD bifurcates into alternans. If the rotation period CL of a spiral wave
travelling around a square obstacle of size L, is above this line, all APD are equal and the
ECG should approximate a sine wave. If CL falls below this solid line, which occurs only
for the smallest obstacles at steepest restitution, the resultant ECG should show some
irregularity in morphology due to APD nonuniformity. According to this diagram, this
occurs for L, = 4 below APD, =22, and for L, = 3 below APD, = 35.



Wi

Figure 7.19 (a). Solitary spiral rotating about a 3x3 and 6x6 obstacle. APD, = 20.
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L,=3x3

Figure 7.20. Solitary spiral of "VT" rotating about square obstacles of sizes shown. Large
obstacles have long diastolic intervals which keep APD nearly constant on the restitution
curve, and produce uniform spirals. The smallest 3x3 obstacle has a short cycle length
giving a diastolic interval that falls under the steep slope of the restitution curve. This
causes the APD to undergo alternans, giving an irregular wave width. For all cases shown
APDp, = 48 and APD, = 20.
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Figure 7.21. Spiral wave rotating around a square obstacle 3x3 (top) and 6x6 (bottom).
Space-time plots at left are taken horizontally through the mid-field where j = 25. The 2:1
pattern of APD is evident for the small 3x3 obstacle, while APD is constant for the 6x6
obstacle. Action potentials are shown in the middle for three sites near the obstacle. The
histograms at right show the APD to be constant for the larger obstacle, while APD splits
into multiple values for the smaller obstacle due to steep restitution slope.

Figure 7.19 shows the ECG signals from the 36 equatorial leads of a solitary spiral wave

rotating about square obstacles ranging in size from 3x3 to 12x12. Most ECG signals of
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"VT" resemble sine waves, with some asymmetry evident in a few leads. There is an
obvious trend toward lower frequencies when obstacles are larger, owing to longer cycle
lengths. Frames of the corresponding action potential fields Vj; for each are shown in
Figure 7.20. The spiral waves are regular, except at low L, = 3 where the short diastolic
interval operating through steep restitution with APD, = 20 allows APD irregularity to
manifest on the steep slope. It is noteworthy that all of these ECG signals of VT are
monomorphic with fixed amplitude. The steady-state histograms are very narrow for DI,
APD, and CL. There is no occurrence of polymorphic VT originating from this type of

rotation about an obstacle in this idealized model.

Figure 7.21 shows space-time plots of the voltage Vj(t) across the mid-field at j = 25. The
larger 6x6 obstacle has nearly uniform APD, DI, and CL, as seen in the histograms and
action potential plots. The smaller 3x3 obstacle has irregular action potentials due to the
short diastolic intervals. The action potential plot shows 2:1 alternans in the DI and APD
plots, although the cycle lengths are uniform. It seems that the dynamics encounter a
bifurcation point as the obstacle is made smaller, and the histograms of DI and APD split
into multiple values. The question of greatest interest is whether or not the ECG
measured on the body surface can discern this bifurcation originating from qualitatively

different wave dynamics in the heart.
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Figure 7.22. Role of obstacle size L, on the ECG amplitudes of spiral wave "VT" for
APD, = 20. Mean Vs (left) for all 36 leads and the total range (right) are shown.
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The characteristics of the 36 lead ECG signals are summarized in Figure 7.22 for the
spiral wave around obstacles ranging in size from 3x3 to 16x16. There is a clear trend to
larger mean amplitude and larger overall range between leads as obstacle size increases.
The exception is the smallest 3x3 which has a larger amplitude than expected. This is due
to the large alternans width of APD at short CL preventing the trend to shorter APD with
smaller obstacles. In other words, the bifurcation illustrated in Figure 7.21 abruptly
expands the cycle length to 88 from 44, as would be expected according to the linear

relationship in Figure 7.17. This departure in CL can be seen in Figure 7.23.

140
120 |
100 |
80 -
60 |
40 |
20

CL

11"

0 5 10 15
Obstacle Size Lo

Figure 7.23. The role of obstacle size L, in determining the cycle length CL of a rotating
spiral wave with APD, = 20. Only the smallest 3x3 obstacle exhibits sufficient width of
APD alternans to block the monotonic decrease in CL, and there is a jump to a 2:1 APD
pattern at twice the cycle length. This manifests in the dominant frequencies of the ECG
series in Figure 7.19.

Remarkably, the clear transition of spatiotemporal dynamics in the tissue domain
between the 3x3 and 6x6 obstacles, which actually occurs between 3x3 and 4x4, does not
clearly manifest in the ECG. Subtle variation can be seen in the ECG time series, but
most importantly there is no polymorphic VT generated by the irregular APD for small
obstacles. The reason can be explained in part by recalling that the intersection point of
the negative unity slope line of CL in Figure 4.15 will only fall on the steep slope of the
restitution curve if CL is small relative to 1, and APD, is much lower than APDy, to give

a slope > 1 segment. Irregular wave fronts, occurring near the core region or obstacle,
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make only a small contribution to the overall ECG signal, which is dominated by the
more coherent larger radius waves in the far field. Polymorphic VT is further prevented
in this model by the wave front velocity being constant and independent of APD. This
tends to keep the wave fronts parallel in the spiral, whereas, if velocity restitution were
present, as would be likely in real tissue, the wave fronts would develop a degree of
spatial oscillations that would introduce oscillations in the excitable gaps contributing

additional frequency components to the ECG.

Prior to the foregoing analysis, we felt that aperiodic or quasiperiodic dynamics around
the core might generate polymorphic VT if there was both steep restitution and a small
obstacle to achieve a short CL. Very low APD,, however, increases the likelihood that
wave irregularities away from the core region can become unstable and break into VF.
Polymorphic VT or torasade de pointes does not occur due to a reentrant circuit rotating
around a fixed inexcitable obstacle in this model, except perhaps only during an initial
transient period. Since the model does not exhibit velocity restitution, which likely plays
a role in the transition to chaotic dynamics [529], these simulations would need to be
repeated in a more detailed two or three dimensional ionic model to better resolve the

conditions conducive to polymorphic VT by a reentrant mechanism.

Monomorphic VT (MVT), polymorphic VT (PVT), and VF can generally be classified
subjectively based on inspection of ECG morphology alone. As has been shown, there is
a tendency for ECG amplitude to be lower at higher N.. The distinction between PVT and
VF, however, becomes somewhat arbitrary here since some observers might choose to
define VF simply as the existence of multiple waves with N; > 1, regardless of their
global stability, while others might claim that dynamic instability should be present
before labelling a rhythm VF. The issue is whether VT and VF should be defined and
classified based on substrate-level wave dynamics or on ECG morphology. We favour a
mechanistic definition based on the number of waves: if N; = 1, the rhythm is VT, while
if N¢ > 1 the thythm is VF, regardless of its stability. The mechanisms of reentrant circuit
stability and persistence are essentially the same between the two rhythm classifications,

only the number of waves is different.
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This CML model is obviously a gross simplification of real cardiac tissue, and some
phenomena cannot be captured. Velocity restitution that might be important to spiral
wave instability is not considered [408], although spiral wave break-up occurs in the
CML model in its absence. Vortex shedding with detachment of reentrant circuits has
been reported in tissue as waves pass around obstacles having edges of very small radius

of curvature [55], particularly under conditions of low excitability ionic models.

This chapter concludes the investigation of VT and VF dynamics in the CML model. The
remainder of this dissertation involves the development of a more detailed and realistic
ionic model of cell dynamics and implementation in a three dimensional heart. This more
sophisticated model will be used to explore some of the phenomena described thus far in
the CML model.



Chapter 8

VENTRICULAR CELL: A NEW MODEL

8.1 Model Objectives

This chapter describes the development and calibration of a new ionic model of the
human ventricular action potential that will be used in large-scale simulations involving
spatial propagation. Before developing a new cellular model, existing ventricular cellular
models must be examined. Some of the simpler models were seen in previous chapters.
Here the focus will be on more complex ionic models that will be judiciously simplified
to permit more rapid computation and reduced storage essential to large-scale simulation
in a whole heart. The objective is to develop a parsimonious model that captures the
essential features of cell behaviour with only minimal sacrifice when compared with the
more complex cellular models. Specifically, the model must retain the following essential

properties:

(1) Realistic action potential morphology V(t)
(2) Employ dominant transmembrane currents (Ing, Ica, Ik, Ik1. Ito)
(3) Allow reasonably physiological interpretation of state variables
(4) Capture desired features of cellular behaviour including:

- upstroke amplitude

- action potential duration

207
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- supernormal excitability

- effective refractory period

- action potential duration restitution

- conduction velocity

- regional heterogeneity
(5) Retain minimum number of stored dynamic variables for each cell

- 5 state variables (transmembrane potential and 4 gating parameters)
(6) Allow modifiable cellular properties to account for:

- regional heterogeneity (endocardium, M cell, epicardium)

- distinct tissue types (atrium, ventricle)

- changes in ionic concentrations

The cellular model must also be implemented in a coupled lattice of reasonable spatial

resolution to simulate propagation within tissue, and in addition must:

(1) Propagate in one-, two-, and three-dimensional tissue
(2) Propagate in three-dimensional anisotropic heart geometry with 1-mm resolution,
(3) Exhibit basic arrhythmogenic mechanisms to include:
- automaticity
- reentry
- afterdepolarizations,
(4) Simulate specific arrhythmias:
- ventricular ectopy
- monomorphic VT
- polymorphic VT
- ventricular fibrillation
(5) Exhibit myocardial dynamics and body surface electrocardiograms comparable with

experimental results reported in the literature and on file.

A salient point in these objectives is that, unless one is investigating the role of multiple

individual ionic channels, one need not employ highly sophisticated models that
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exhaustively account for the multitude of known currents. Cellular models can be
simplified to a few variables, yet still capture the essential features of action potential
morphology and propagation with less computational demand. Such a parsimonious

approach is central to this thesis.

8.2 Simplified Cell Model

Existing mathematical models of ventricular action potentials were developed around the
results of animal experiments. Ionic currents in these models are based on measurements
in myocytes of several species including guinea pig, rat, dog, and rabbit that may not
necessarily be valid in human myocytes. Several recent experimental studies have begun
to examine human ventricular and atrial tissue obtained from biopsies, surgical
cannulation sites, or explanted hearts that are in various stages of disease. Other studies
have involved dissociated cells in vitro that may not represent the behaviour of coupled
cells in whole tissue preparations. Such differences in methodologies and inconsistencies
between studies pose difficulties to the development of an accurate standardized model of

human action potentials.

The general approach that will be taken here begins by first examining the original 1991
Luo-Rudy phase 1 model (LR1). This model has six gating parameters or state variables
(m, h, j, d, f, x) that must be stored and integrated at each time step in addition to the cell
potential V. It will be shown that this model can be simplified to a reduced model, which
will be called LRS ("Luo-Rudy Simplifed"), with four gating parameters (h, d, f, x) by
first reformulating the sodium current. This condensation will result in only a small
change in behaviour as compared with the original model. Since the equations for the
gating parameters and time constants in the original formulation are expressed as lengthy
functions of a(V) and B(V), they will be simplified to retain the same behaviour, yet
allow adjustments to be made more intuitively for specific objectives. Where possible,
gating variables will be expressed as Boltzmann functions, and time constants will be
expressed as piecewise linear or Gaussian functions. The choice of parameters for these

simplified functions is based on a visual best-fit between the original functions and the
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new approximations. The considerable additional complexities of calcium handling in the
more recent Luo-Rudy phase 2 model [330] will not be incorporated in the models to be
developed in this dissertation, as the computational requirements are much higher, and
several more variables would need to be processed and stored. The LRS model presented

here is intended to mimic the full LR1 model [329]. It is summarized in Table 8.1.

Table 8.1 Simplified Luo-Rudy Model (LRS)

Lion = INa + Ica + IxkT + Ik

INa = gNa m’h (V -Ena)

m® = 1/(1+ exp(- (V+32)/4))

db/dt = (he, - h)/1n

he = 1/(1+exp((V+70)/3.3))

= 0.16 + 25exp(- ((V+66)/15)%)
=21, ifdh/dt>0 (recovery)

Ica=gcad £(V - Eca)

dd/dt = (dw - d)/4

df/dt = (£, - f)/r¢

dw = 1/(1+exp((V+25)/ -9))

£ = 1/(1+exp((V+24)/7))

14 = 8+ 25exp(~ (V+23)/35)%)
=16 if V>10

¢ = 100+0.8(V+25)
= 100+7.0(V+25) if V>-25

Ikr=Ixi +Ixp + Ip

Ik1 = gki1 Kiw (V - Ex1)

IKP =018 Kp (V - EKI)

Ig =.039 (V+60)

Kie = 1.3 exp(- (V-Ex1+9)/18) -.02
=0 if V>-35

Kp = 1/(1+exp- (V-7.5)/6))
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IKngXjX(V—EK)

X;=.11 + .89 exp(- (V+100)/40)
=1 if X;>1

dX/dt = (X - X)/tx

X = 1/(1+exp((V+25)/ -13))

Tx = 630exp(- (V+25)/55)%) V> -25
=210 + 420exp(- ((V+25)/35)%) V<-25

gna = 13 dt=0.1 ms
£Ca =.09

g = 282 sqrt([K]./5.4)

gx1 = 6047 sqrt([K]o/5.4)

Ena = RT/F In([Na]o/[Na]) = 54

ECa =74

Ex = RT/F In(([K]o+.01833 [Na]o)/([K]i+.01833 [Na];)
Ex: = RT/F In([K]o/[K];)

RT/F = 8.314*310/96.487 = 25.67

Istiml =20 dts=2ms

Istim2 =20
[Na], = 140
[Na]; =18
[K]o=4.0
[K]i= 145
C=1.0
Vmax = 35

This four-parameter LRS model reproduces behaviour of the original six-parameter LR1
model quite closely, but does so with less complexity. Its purpose is to demonstrate the
possibility of achieving comparable behaviour between an existing complex model and a
simplified version. Simulated action potentials of the full LR1 model are shown in Figure
8.1, along with the contributing ionic currents. Comparison is made in Figure 8.2 with the
LRS model at various pacing intervals. Dynamics are very similar, with only subtle

departures owing to accumulation of very small differences within the highly nonlinear
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regions of the model. The simplified LRS model appears to capture the behaviour of the
full LR1 model reasonably well.
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Figure 8.1. Standard Luo-Rudy 1 models of ventricular action potential paced at 500 ms
intervals. Transmembrane potential is shown at the top and contributing ionic currents are
shown below.

The LRS model will next be used as a departure point in developing an adjusted four
parameter model of human ventricular action potentials, which will be called the SHV
model ("Simplified Human Ventricular"). This new SHV model will be used for all
subsequent simulations of ventricular dysrhythmias. A similar approach for developing a
simplified atrial cell model will follow in a later chapter. The following sections examine

the formulation and performance of the SHV model in Table 8.2.
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Figure 8.2. Comparison of the standard LR1 model with the simplified LRS model.
Action potentials are shown for a single cell paced at 150 ms (above) and 300 ms
(below). Differences between models are negligible, even at rapid pacing where chaotic

dynamics are evident.



Table 8.2. Simplified Human Ventricular Model (SHV)

Iion = INa + ICa + IKT + IK + Ito

Ina = gna M°h (V - Exg)

m® = 1/(1+ exp(~ (V+32)/4))

dh/dt = (he - h)/Ty

he = 1/(1+exp((V+70)/3.3))

=1+ 25exp(~ (V+66)/15)%)
=31, ifdh/dt> 0 (recovery)

Ica = gca df (V -Eca)

dd/dt = (de - d)/4
df/dt = (f, - )/1¢
dw = 1/(1+exp((V+5)/ -T))
fo = 1/(1+exp((V+24)/7))
4= 8 + 15exp(~ (V+23)/35)%)
1e= 240 - 140exp(- ((V+0)/30)%)
=1¢, if df/dt>0 (recovery)
T¢.= 350 (range 100 - 1000)
d =d. if dd/dt> 0 (faster upstroke)

Ikr=Ixi +Ixkp + 1

Ix1 = .5 gk1 fx1 Kio (V - Ex1)
IKP =.012 le Kp (V——EKl - 60)
Ig =.009 fx; (V+60)

Kiw = 1/(1 + exp(- (V-Ex1)/18)
Kp = 1/(1+exp(- (V-10)/10))

Ik = gk fka Xi X (V - Ex)

X;=.11+ .89 exp(- (V+100)/40)
=1 if Xij>1

dX/dt = (Xo - X)/tx

Xo = 1/(1+exp((v+16)/ -9))

* O X K X ¥ *

* * X ¥ *

*

tx = 100 + 900 exp(- ((V+70)/35)%) V<-70*
= 1000 V> -70%

214
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ko = Lo fis Po (1-d) (V-Ex) *
Po = 1/(1+exp((V-10)/ -5)) *
dd/dt = (d» - d)/14

dw = 1/(1+exp((v+5)/ -7))
74 =8 + 15exp(- (V+23)/35)%)

* %

gna =13 mS/cm? dt=0.2 ms
gca =.08 mS/cm® dx=.1cm
gk = .28 sqrt([K],/5.4)

gx1 = .61 sqrt([K]o/5.4)

g = .067

Ena = RT/F In([Na]o/[Na];) = 54 mV

Eca=70 mV

Ex = RT/F In([K]o+.01833 [Na]o)([K]i+.01833 [Na];))
Ex1 = RT/F In([K]o/[K])

RT/F = 8.314*310/96.487 = 25.67

fk1 = 0.80 endo 0.80 Mcell 0.85 epi (modifies Ikr)
fko=0.2 0.05 0.2 (modifies Ix)
fiz =0.1 0.8 1.0 (modifies i)
Trr = 350 500 350 (Ica recovery)
Lstim1 = 20 dts =2 ms

Lstim2 = 20

[Na], = 140

[Na];=18

(K]o=4.0

[K]i = 145

C=1.0

Vinax = Ena *

* indicates a change from the LRS model

8.2.1 Sodium Current

The fast inward sodium current is responsible for action potential upstroke and
propagation. This channel has been a target for class I antiarrhythmic agents, including

procainamide and lidocaine, and has been linked to genetic defects causing dysrhythmias
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in the long QT syndrome. The sodium current modeled by the original Hodgkin-Huxley
formulation [229] is IN, = gNam3h(V - Eng). This may be visualized as an ohmic current
modified by the activation gate m and the inactivation gate h, each varying between 0 and
1. Ena is the sodium reversal potential from the Nernst equation. Technical difficulties,
owing to a small membrane length constant and rapid activation, prevented accurate
voltage clamp studies of I, on multicellular cardiac tissue for over two decades. Early
ionic models of cardiac tissue, including the McAllister-Noble-Tsien 1975 [340] and
Becler-Reuter 1977 [32] formulations, used the giant squid axon current basically
unmodified, except for much lower values of gn,. Colatsky and Tsien in 1979 [94] were
eventually able to achieve satisfactory voltage clamping of rabbit Purkinje fibre allowing
DiFrancesco and Noble in 1984 [131] to formulate improved equations for the sodium
current. The slower inactivation and recovery phase of In, were not captured well.
Ebihara et. al. in 1980 [144] were able to voltage clamp spherical clusters of cultured
chick heart cells, and demonstrate that a gy, of 23 mS/cm” was required to account for the
peak value of Iy, much higher than the g, of 4 mS/cm” used by Beeler and Reuter.
Ebihara and Johnson [144] reformulated the Hodgkin-Huxley equations for hs, and 7, to
more closely match these experimental results. Drouhard and Roberge [142] reformulated
Mo, hw, Tm, Th ONCE again as a compromise based on several more studies on rat
ventricular cells. More recent Markov models of the sodium channel attempt to account
for individual ion channel kinetics by simulating probabilities of transitions between
several open and closed states [86, 325]. These models closely reproduce HH kinetics,
but with some interesting and more realistic features that appear to better match patch
clamp results [248]. The models developed here, and to be described in this dissertation,

retain the HH approach, and are satisfactory for most practical purposes.

The time constant T, controls the rapid inactivation of In,. Since T, must control rapid
inactivation and also control the slow recovery of h, Beeler and Reuter felt the activation-
inactivation process could not be simulated with a single time constant. They were forced
to introduce a second recovery variable j with slower dynamics. The resulting modified
equation In, = gnam’hj (V- Eng) with three gating parameters has been used more recently

in detailed models by Luo and Rudy [329, 330], who use the EJ formulation of me, h,
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Joo» Tm» Tn, T;. Three state variables m,h,j, in additions to the transmembrane potential V,

must be carried during the numerical simulation of Iya.

Sakakibara et al. [435] have recently used a whole cell patch-clamp method to study Iy,
in human ventricular cells obtained at surgery. Their work remains one of the few studies
of the human ventricular sodium current, and was conducted at room temperature. The
threshold was found to be about -60 mV, and peak In, occurred around -30 mV. An
earlier study by Bustamante and McDonald [53] on the sodium current in human atrial
cells at room temperature found similar results, with peak Iy, to be around -30 mV, and
V.5 for h to be about -75 mV.

The variable h inactivates rapidly during the action potential upstroke, and largely
determines the duration and spatial width of the In, spike. To achieve rapid deactivation
of h, yet slow recovery seen experimentally, Beeler and Reuter introduced the slower
variable j, as previously described. To reduce computer storage requirements, we will
instead represent the product h*j by one stored variable, with acceptably small error, by
introducing rules based on the sign of dh/dt. Accordingly, a rapid time constant ty is
employed for deactivation when dh/dt < 0, since j is sufficiently close to 1, and slower
time constant is used for recovery, when dh/dt > 0. Therefore, h used here approximates
the product h*j in the original model. A comparison confirming this similarity is shown
in Figure 8.3. The Iy, employed thus requires calculation of a purely voltage-dependent
fully activated current gy, My (V - Ena) at each time step, which is then modulated by
the single stored variable h. Consequently, three stored variables m, h, and j used in the

original formulation have been reduced to one stored variable h:

Ina=gna h Mo (V - Eng) . (8.1)

We can avoid introducing j by using a longer 1, during recovery, as previously described,
and employ a prolongation factor, such that 1, = 31, during recovery. In other words, T, is
calculated from the basic equation in Table 8.2, but is further multiplied by 3 if dh/dt > 0,

which occurs during recovery. The prolongation factor of the recovery time constant was
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chosen to be 3, since this is the ratio of t4/7j in the BR and LR models, and also gives a
peak time constant of about 75 ms, which is close to the peak of the fast component of
recovery measured at -90 mV by Sakakibara [435]. The functions h(V) and (V) are
shown in Figure 8.4. Maximal depolarization Vs of the action potential upstroke is
determined by the sodium current, which cannot drive V beyond its own reversal
potential En,. Since overshoot can occur as an artifact during numerical time stepping, V

must be constrained to not exceed a maximal value, set to En, in the model.
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Figure 8.3. The function h(t) in the simplified LRS model approximates the product
h(t)*j(t) in the original LR1 model by using a time constant that depends on the sign of
dh/dt. The approximation appears to be valid, as the curves are indistinguishable. This
eliminates the need for the extra state variable j(t).
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Figure 8.4. The gating parameter h(t) controls the time-dependent inactivation and
recovery of In,. The steady-state function h.,(V) is shown at left. The time constant 1 is
shown at right. 1y, is rapid for inactivation (grey), when dh/dt < 0, and is slow for recovery
(black), when dh/dt > 0. Recovery is three times slower than inactivation.
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Figure 8.5. Steady-state V-I relationship for Iy, and its dependence on h. Maximum value
occurs when h=1. The actual trajectory followed during an action potential upstroke
depends on how h(t) changes, and is shown by the dashed line, which travels from h = 0
at resting potential to h = 1, as V increases to its maximum value.

Simplifications are introduced here to the I, model, such that storage only of V and h are
necessary. Owing to the time constant for changes in m being very short, on the order of
0.3 ms, replacement of the variable m*(V,t) with its steady state time-independent
function m.,’(V) introduces acceptably small error and allows larger time steps to be used

in the numerical integration. The function m..°(V) may further be approximated by a two-
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parameter Boltzmann function. Accordingly, we retain Vo5 = -32 mV and ky, = 4 for the
SHV model, giving a peak Iy, at about -35 mV, matching a curve fit to m,,>(V) used in
the Luo-Rudy models. This choice of constants ensures complete inactivation of In, at
normal resting potential. The resulting steady state V-I relationships for h = 0 to 1 are
shown in Figure 8.5. For h(V) we choose Vo5 = -70 mV and k, = 3.3, which is steep
enough to ensure that Iy, inactivates completely at rest. The time constant of inactivation
Ty 18 retained from the EJ formulation used in the LR1 model, and corresponds well with

the fast component measured by Sakakibara et al. [435], approaching about 25 ms.

8.2.2 Calcium Current

The basic form of the inward calcium current in the BR and LR1 formulations is similar
to that of Iy, but has a more positive threshold and much slower kinetics. The gating

variable d(t) activates relatively rapidly during depolarization, and f(t) inactivates slowly.

ICa = 8Ca d f(V - ECa) (82)

Studies of the human ventricular L-type calcium current are few in number, but fairly
consistent in their findings [37, 98, 317, 346]. Thresholds are around -40 to -33 mV,
peak steady-state Ic, occurs between 0 and +10 mV, and the reversal potential is around
+50 to +60 mV. T-type calcium channels have not been found in human ventricular or
atrial tissue. The gating variables d and f have been measured in human ventricular
myocytes. Vo5 of d was found to be -4.2 mV [346], -4.8 mV [317], and -0.14 mV {36].
Slope factors were, respectively, 7.0, 6.2, and 8.2. Vs of f was found to be -23.5 mV
[346], -28.5 mV [317], -24.6 mV [37] with slope factors of 7.8 and 5.5. Time constants
for d and f correspond approximately to the fast and slow components respectively of Ic,

recovery [346].

For the proposed SHV model, the activation Vg5 of d is raised from the LR1 value of -25
to -5 mV, which has the effect of raising the action potential plateau to more realistic

values around +10 mV for human ventricular cells, and is close to the above measured
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values. The slope factor for d is approximated as 7 based on the above values. Since Ic,
activates more rapidly in ventricular cells than in the BR or LR1 simulations, we propose
setting d = ds, to achieve rapid upstroke of I¢,, consistent with other models, and to permit
better definition of the transient outward current Iy, that immediately follows the upstroke
in epicardial cells. The steady-state calcium current gc, do (V-Eca) has a threshold
around -35 mV and a peak around 0 mV, consistent with the Ic, voltage clamp results

discussed earlier. The reversal potential Ec, will be set to +70 mV. The above functions

are illustrated in Figure 8.6.

As in previous models, Ic, inactivation in the SHV model is controlled by f. Vo5 for f,
will be set to 24 mV with a slope factor of 7 consistent with the voltage clamp data
discussed above. Recovery of f is a determinant of subsequent action potential duration.
This constant carries special importance as we may consider Vys for f, to be an
adjustable parameter that controls the intercept of the APD restitution curve. For
example, shifting Vg5 for f to a more negative value achieves greater inactivation of Ic,
and a shorter subsequent APD at small diastolic recovery intervals. This concept will be

discussed in more detail in a later section on restitution.
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Figure 8.6. Gating kinetics of the activation variable d(t) and inactivation variable f{(t)
that control the calcium current Ic,. Steady-state d.(V) and f.(V) are shown at left and
the time constants t4 and 1r are shown at right.

The recovery of f(t) during diastole is governed by the time constant t{V), which also

influences action potential duration. In several studies of isolated human ventricular
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myocytes, this parameter has consistently demonstrated both fast and slow components,
each with a U-shaped voltage dependence. In one study carried out above -20 mV, the
fast t¢ varied between 12 and 124 ms, and the slow s varied between 133 and 3124 ms
[346]. Within this voltage range, two other studies found the fast component for ¢ to be
relatively voltage-independent, around 10 to 20 ms, with a mean slow component
varying between 80 and 250 ms [37]. Recovery of I¢, appears to be biexponential, with
time constants of 65 and 638 ms at —-80 mV [317]. These results are similar between

normal cells and those from failing hearts.

Action potentials measured in isolated cells are typically longer than those measured in
intact beating hearts. The reason for this discrepancy is not clear, but might involve the
absence of electrotonic interactions in isolated cells, or the presence of artifacts due to
specimen preparation and artificial perfusate. Electrotonic current from neighbouring
cells influences modifies APD by adding either a depolarizing or repolarizing current that
prolongs or shortens APD, respectively, by adding to or subtracting from the total ionic
current. To keep the APD shorter and more consistent with in vivo measurements in
intact hearts, it is necessary to either shorten I¢, or increase outward currents. In one
version of this model we chose the former option, and for baseline action potentials we
nominally set t¢ to be 120 ms in the SHV model. This is in the range of the measured
slow component, and allows a reasonable fit of simulated action potentials to those
reported in the human RV endocardium shown in Table 8.3. Prolonging tr to match
voltage clamp data more precisely would result in the APD being unrealistically long in
whole-heart simulations. The choice of a constant t¢ = 120 ms during inactivation is a
minor departure from voltage clamp data, but serves as a free parameter, and is intended
to force the baseline APD to match measured values in intact hearts as reported in the
literature. In a second version, we assigned ¢ to be an inverse Gaussian function ranging
from 240 ms to a nadir of 100 ms at 0 mV, approximating voltage clamp data. During
recovery of f, we assign 1 = 350 ms to give a longer time constant to match measured
human restitution curves of in vivo catheter-based studies. We can consider trand V5 for

f to be control parameters that can be adjusted to manipulate APD restitution, as these



223

functions determine the dominant time constant and intercept, respectively, of the

restitution curve.

The complex nature of Ic, and its regulation have been investigated in animal
cardiomyocytes, and more advanced mathematical models have been proposed. Most
notable is the Luo-Rudy phase 2 model [330], which employs a third gating variable fc,
which inactivates Ic, according to the concentration of intracellular calcium released from
internal stores. This variable provides negative feedback control to close the calcium
channel. Despite the added complexity of this and other more detailed calcium models,
action potential restitution properties measured in cells or whole hearts are still not
necessarily captured accurately. Modifications to these more complex models, for the
purpose of addressing simple basic questions, also becomes more difficult. As will be
shown later, restitution properties can be incorporated and modified quite satisfactorily in
simpler models without such additional complexity of calcium dynamics. To maintain
parsimony and avoid further computational demand, fc, will be set to 1.0, effectively

ignoring the role of intracellular calcium effects on the action potential.

While the physiological role of calcium currents is to facilitate mechanical contraction,
the primary electrical role of the calcium current in the action potential is to maintain the
plateau and control APD. The simpler formulation of Ic, here allows enough flexibility to
handle action potential restitution satisfactorily. Propagating wave dynamics involving
reentrant circuits is largely dependent on interactions between the action potential

upstroke and recovery tail, neither of which are strongly dependent on the details of Ic,.

8.2.3 Rectifier Current

The dominant outward repolarization currents are carried by potassium, and are targets
for class III antiarrhythmic agents. Many potassium channels have been identified in
cardiac tissue [463]. Defects in genes coding for potassium channels appear responsible
for some dysrythmias associated with long QT syndrome [152]. Although other

potassium currents might await discovery, the total time-independent potassium current
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Ixr in the Luo-Rudy LR1 model is made up of three components which are each
functions of voltage and extracellular potassium concentration [K'],. Despite very brief
time constants in these component currents, measured in voltage clamp experiments,
there is practically no time dependence of Ixr. This summated potassium current can
therefore be computed at each time step, and no integration or storage of gating variables

is required.

Ikr=Ixi +Ixkp +1p (83)

The dominant current component is Ig;. The LR1 equation for Ix; was derived from the
guinea pig data of Sakmann and Trube [437]. Relatively few studies of Ix; have been
conducted on human cells, owing to difficulties in accessing healthy tissue. The human
studies of ventricular tissue that are available are fairly consistent qualitatively, showing
a negative-slope conductance region and tapering current at positive voltages [11, 38,
287, 288, 501]. It is difficult to compare these studies quantitatively, since several types
of inconsistent units are used. The curves tend to be similar qualitatively, but peak
amplitudes cannot be compared. Koumi et al. [288] examined Ix; from human, feline, and
guinea pig atrial and ventricular myocytes, and found the slope-conductance
characteristics were remarkably similar between these species, although amplitudes
varied. Their results for human ventricular myocytes are consistent with those measured

by Varro et al. [501].
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Figure 8.7. Time-independent potassium currents Ix;, Ixp, Is, and the total Ikr.
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The Ig; formulation from the LR1 model is modified here for the SHV model and further
simplified. The additional background current Iz is retained from the LR1 model,
although modified, since it is analogous to the linear residual current observed in two
studies of human ventricular total time-independent outward current [287, 288]. Ikp
activates and dominates at relatively positive voltages, and is essential to induce
repolarization at the peak of action potential, especially in endocardial cells that lack a
significant transient outward current I, to serve this role. Konarzewska et al. [287] called
this the sustained current Iy, since it appears as a steady state current following voltage
clamp Iy, transients, and is purely voltage dependent. The effect of Ixp or Iy is much
more prominent in atrial cells where it has also been called the sustained outward current
Iso. Ik1 becomes steeper with increased [K'], following a square root relationship, and the
reversal potential shifts in a more positive direction [22]. These potassium currents are

shown in Figure 8.7.

8.2.4 Delayed Rectifier Current

The outward delayed rectifier current Ig is carried by potassium, and is time-dependent
according to an activation variable which can be called X(t), and a nonlinear inactivating

function X;(V). Both are voltage dependent.

Ik =gk Xi X (V -Ex) 8.4)

The Ix formulation of the LR 1model is largely based on rabbit myocyte data of Shibasaki
[329], while Ik in the Beeler-Reuter model is adapted from the MNT Purkinje fibre model
[340]. At least two separate delayed rectifier currents, a rapid component I, and a slow
component I have been identified experimentally in animal hearts [441]. The presence

and magnitude of these two currents varies considerably between species [503].

Data on Ix in human tissue is relatively rare. Veldkamp et al. [504] performed voltage
clamp studies on human ventricular cells and found evidence for only the rapid Ik

component, which had a Boltzmann Vg5 of -29.9 mV and an activation time constant of
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101 msec at 30 mV. There was no apparent slow Ig,. Iost et al. [247] described the
kinetics of Ix, in undiseased human ventricular myocytes, and demonstrated fast
activation and slow inactivation. The activation V5 was -5.7 mV, which according to
Veldkamp [503] should be corrected to about -16 mV, and the time constant was 31 ms at
30 mV. The deactivation time constant was 600 ms at -40 mV. No current-voltage
relationship was given. Beuckelmann et al. [38] also found the delayed rectifier current to
be barely detectable in undiseased human donor hearts, however most dissociated cells
obtained were from the mid-myocardial layer where M cells are most abundant, and
might not be representative of endocardial or epicardial cells. Koumi et al. [288] found
repolarization of action potential in human ventricular myocytes to be independent of
frequency, suggesting little if any influence from any time-dependent rectifier current.

Konarzewska et al. [287] also found the delayed rectifier current to be small or absent.

While evidence for Ix appears inconsistent, these investigators have pointed out that Ix
blockers have been shown to prolong the APD in human papillary muscle and to prolong
the QT interval in patients. This circumstantial evidence suggests that there might be
significant functional Ix channels including Ik [44, 287]. The only reported finding of Ik
in human myocytes is that of Li et al. [315].

It remains unclear if there is much contribution from a delayed rectifier current in the
human heart. If Ixs does indeed exist in the human ventricle, it would in conjunction with
Ica be responsible for the restitution of action potential duration at long diastolic intervals
and long basic cycle lengths. Since we do not yet have consistent and reliable information
on these currents, only one effective current Ix with a long time constant is retained in the
SHV model, with an amplitude selected to match target action potential durations. The
activation Vs is set to -16 mV as suggested by Veldkamp [503]. Inactivation Xi(V) is
retained from the LRS model. The time constant curve for 14(V) resembles that of canine
myocytes, but shifted such that the peak is at a lower voltage of -70 mV, and the positive
arm reaches a lower asymptote of 100 ms. These adjustments result in rapid activation
when V is high, and slow recovery at low voltages consistent with the findings of

Veldkamp [504].
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Figure 8.8. Time-dependent potassium currents are the delayed-rectifier current Iy and
the transient outward current I,. Steady-state values are shown. The former is modified
by the gating variable X(t), and the latter is modified by p(t) as described in the text.

8.2.5 Transient Outward Current

Some action potentials have a characteristic "spike and dome" morphology, particularly
those of ventricular epicardium, mid-myocardial M cells, and some atrial cells. Other
action potentials, notably in endocardial cells and some atrial cells, have a smooth
monotonic decrease during phase 2 repolarization. A brief early transient outward current
Ii, carried by potassium causes partial phase 1 repolarization, and is responsible for the
"spike and dome" morphology of epicardial and M cells. This characteristic feature
attributed to I, has been observed in cells from several species, including human.
Although once attributed to chloride, Iy, appears to be carried by potassium, and can be
modeled with Hodgkin-Huxley kinetics. This current seems to be important in simulating
accurate action potential morphology and regional heterogeneity. However, neither the

basic LRS model, nor the original LR1 model that it mimics, contain I.

The functional role of I, in the heart is not clear, and has been the subject of speculation.
Since the time course of Iy, overlaps with activation of the sodium and calcium currents,

this transient outward current effectively slows the peak effect of these inward currents,
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and determines the degree of immediate phase 2 repolarization. This influences the
plateau potential, which impacts on the degree of calcium and potassium current
activation, and can therefore influence the APD, calcium influx, and contractility.
Experimental application of the I,-blocker 4-aminopyridine produced only a small
change in APD. Computer simulations of the action potential by Priebe and Beuckelmann
[406] failed to show much difference in APD, with and without I,,. There is evidence that
Ii, receives a-adrenergic modulation, and might be important in autonomically induced
arrhythmias. Pacing induces rate-dependent downregulation of I, suggesting a role in
cardiac memory [424]. The transmural gradient of I, has been implicated in differences
in refractoriness between epicardium and endocardium, differences in T wave
morphology, the Osborne J wave in hypothermia [565], and selective depression of the

epicardium in ischemia [328].

Although two components to this current have been identified in canine ventricle, a fast
Iio1 and a slow Iy, a single current I, will be used in the present SHV model to maintain
parsimony. Adequate behaviour can be captured with a single component, and accurate
modeling of two separate components would require additional stored variables with little

gain in overall dynamical behaviour. The following form will be assumed.

o = g p s (V-Ek) (8.5)

This current activates above -20 mV, and increases approximately linearly with V [11,
38, 287, 364, 454]. Since I, appears to be carried by potassium, the reversal potential will
be assumed equivalent to Ek, although it has been measured in failing hearts at the more
positive value of -65 mV [363]. Activation of human ventricular I;, has V(s values that
vary considerably between studies: 9.7 mV (epi) and 23.1 (endo) [531], 16.7 [363], -8.9
(epi) and -7.8 (endo) [287], 11.8 [11], 25.7 (epi) and 31.6 (endo) [364], 20.6 [532]. Some
of these differences might reflect varying degrees of diseased state of explanted hearts.
Corresponding inactivation Vs values are: -31.9 mV (epi) and -25.3 (endo) [531], -34.5
[363], -36.3 (epi) and -33.0 (endo) [287], -30.5 [11], -9.5 (epi) and -17.6 (endo) [364],
-21.4 [532].
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Since activation of I, is rapid, and we would prefer to avoid adding new state variables, it
will be assumed in the SHV model that p activates immedately upon upstroke, and is
equal to its steady-state value p.,, with the time constant effectively being zero. The half
activation Vo5 is given an intermediate value of +10 mV, within the range of the above
studies. If, for convenience, the inactivation variable s is assigned Vg5 of -5 mV, then we
can define s = (1 - d), where the activation variable d from I¢, is used as a surrogate
variable to avoid further computer storage. Since p., is not time-dependent, the resultant
gating product ps (1 - s) causes a transient current pulse that activates rapidly on
upstroke and inactivates in parallel with activation of Ic,. These choices place the foot of
I, activation around -20 mV, consistent with experiments. The measured inactivation
time constants of Iy, are 61ms [11], 37.6 ms [501], and 35.6 to 48.4 ms [532]. Recovery
of I;, measured in human ventricle is largely monoexponential with short time constants
of: 22 to 39 ms [531], 41 ms [363], 9.1 [364], 18 to 25 ms [532]. By comparison, the
model T4 which will control Iy, inactivation, is between 8 and 23 ms. Using 14 to control
recovery of s in the SHV model gives a time constant at rest of about 9 msec.
Consequently, the notches of epicardial and M cells are preserved even at short diastolic
intervals. The peak amplitude of I, is set to 10 pA/pF, consistent with reported values in
epicardial cells. Although the substitution of d for s is not a perfect replacement,

performance appears to be reasonable, and computational demand is not increased.

After the SHV model development was completed, a simplified human ventricular cell
model was published by Bernus et. al. [34]. Their modelling approach followed a similar
process to ours. The more detailed model of Preibe and Beukelman [406], based on
available voltage clamp data from human cells, was simplified to incorporate six state
variables, rather than the five used in the SHV model. The Bernus model simplifies the
sodium current product h*j by a variable v* that is similar to our h(t). Their calcium
current also activates rapidly by a variable similar to our d(V). As in the SHV model,
potassium currents are combined into time-dependent and time-independent components.
The extra state variable in the Bernus model is assigned to the transient inward current I,.
Although a formal comparison between the SHV model and the Bernus model has not yet

been conducted, the two models appear to be remarkably similar, despite being developed
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independently around the same time. It is not entirely surprising that other models of
human ventricular action potentials would be under development elsewhere because a
general philosophy of cellular model parsimony is necessary at this time to allow large-

scale computation of action potential propagation in a whole heart.

8.3 Human Action Potentials

Human action potential characteristics can be measured experimentally in vivo only to a
limited extent. The majority of such studies have involved the RV endocardium due to its
easy accessibility by transvenous catheter during clinical investigation. A few studies
have examined the LV endocardium by catheter, and even fewer have measured the
epicardium during cardiac surgery. Explanted Langendorff whole-heart preparations have
also been examined. Some of these studies used microelectrodes, while others employed
suction monophasic action potential recording (MAP). These differences in methodology,
pacing rates, diseased substrate, temperature, physiological and pharmacological milieau,
and the overall variability between studies, compound the difficulty in defining standard

human action potentials for the purposes of mathematical modeling.

Cellular properties also vary spatially throughout the myocardium, exhibiting differences
in local electrophysiological properties and responses to pharmacological agents. These
regional variations in action potential behaviour might influence electrical wave
propagation and stability, and may be important in arrhythmogenesis and control. The
most notable regional differences are those between epicardial and endocardial cells.
Mid-myocardial M cells, with long action potentials at slow pacing rates, have also been
found in rat, guinea pig, canine, and human ventricles. Several studies in animal
specimens have examined differences in ionic currents between these distinct cell types,

although relatively few studies have focussed on human tissue.

Table 8.3 shows a summary of several studies measuring human ventricular action
potentials. This table is not meant to be exhaustive, as there is a vast literature on human

electrophysiological studies that holds more information on action potential durations.
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The purpose of this table is to show the considerable variability in measured APD, and to
establish approximate target values to calibrate the mathematical model being developed.
Only two studies could be found that reported APD values from the human LV that also
specified endocardial or epicardial locations. The remainder of published APD studies
examined only the RV endocardium accessed by transvenous catheter. No published data
could be found on RV epicardial action potentials. For the purposes of the model being
developed, one must define epicardial and endocardial action potential characteristics.
The results in Table 8.4 are the achieved targets of APD and restitution in the SHV

model, following titration of the baseline parameters.

Regional and transmural differences in action potential duration depend on differences in
ionic currents. Most studies comparing epicardial and endocardial cells have involved
voltage-clamping of tissue from animal species. Litovsky and Antzelevitch [322]
proposed that the transient outward current Iy, found predominantly in epicardial cells,
was responsible for the differences seen in morphology of action potentials. This current
causes the partial repolarization notch during phase 2 prior to the plateau [13], and
appears to have a substantial effect on shortenting of APD, as seen both experimentally
and in mathematical modeling. This current is prominent in the epicardial cells, but
almost absent in endocardial cells of many species [13], including humans [362].

Simulations of the SHV model show that the presence of Iy, shortens APD.

Konarzewska et al. [287] found Ig; to be similar in human LV subepicardial and RV
subendocardial ventricular myocytes, although measurements were not made above —60
mV. Liu et al. [323] found Ix; to be about 10% lower in canine endocardial cells as
compared with epicardial cells. Furukawa et al. [185] found the amplitude of Ix to be
about 47% lower in feline endocardial cells, with similar voltage dependence exhibited
between epicardial and endocardial cells. The difference was considerably less in Ik;.
Antzelevitch et al. [13] found much less distinction in canine ventricular cells. No other
studies quantifying regional differences of I; or Ix in human cells could be found in the

literature. Curiously, a few studies have shown human epicardial cells, which are
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characterized by prominent I, to actually have longer APD's than endocardial cells
[394].

For modeling purposes, separate parameter sets will be defined for epicardial,
endocardial, and M cells. To account for regional action potential differences, the
currents Iy, Ix1, and Ix are modified in the model by dimensionless coefficients fk1, fk2,
and fk3 respectively, which vary from 0 to 1 to control regional differences in current
density. The action potential characteristics in Table 8.4 have been chosen assuming Iy, to
be very smallest in endocardium, I to be uniform transmurrally, and Ix; to be largest in

the epicardium.

The behaviour of mid-myocardial M cells with long action potentials can be simulated
satisfactorily by lowering Ix and Ix;. We found that accounting for the long time constant
of restitution also required extending the recovery t¢ from 350 to 500 ms, which allows
good fit to the restitution curve for cycle lengths up to 2 seconds. The spatial distribution
and coupling of these cells throughout the ventricles have not yet been adequately
defined by experiments reported in the literature. At this time, one can only make
assumptions regarding M-cell distribution for the present simulations, pending better
experimental elucidation of their properties. The role of M cells in arrhythmogenesis
appears to be important mainly, at slower heart rates. During tachyarrhythmias like VT
and VF, the action potential duration of M cells approaches those of endocardial and

epicardial cells and the differences become less significant.

The final version of the proposed SHV model, shown in Table 8.2, differs substantially
from the original LR1 model. The proposed modifications to LR1 are necessary to
incorporate the aforementioned changes to Ina, Ica, Ik1, Ik, and Iy, in an attempt to model
human ventricular cells with a reasonable degree of computational parsimony. Model
conductances, gating parameters, and time constants have been adjusted through
simulations, such that action potential behaviour approximates human data where
available in the literature. This SHV cellular model is sufficiently flexible that action

potential and restitution properties can be easily modified for specific applications.



Table 8.3 Restitution of Action Potentials Measured in Human Heart

Location
LV endo

LV endo

LV epi

RV endo

RV endo

RV endo

RV endo

RV endo

RV endo

RV endo

ME

MAP
APD
BCL

Method BCL

ME

MAP

MAP

MAP

MAP

MAP

MAP

MAP

MAP

MAP

1000

594
833

618
741

400
600

400
600
1000

300
400
600

400
600
1000

300
400
600

400
600
1000

300
400
600

APDyg
378

239-273 min
306-336 max

247-320
270-330

225
265

280-300
270-290
290-400

218
231
260

216
272
328

210
236
270

220-250
230-260
240-270

220
240
270

Reference

[195]

[180]

[180]

[307]

[355]

[447]
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Figure 8.9. The SHV model of human ventricular action potential showing epicardial,
and endocardial cell voltages and ionic currents for the epicardial cell.



235

Table 8.4 Restitution of Action Potentials Simulated by SHV Model

BCL Endo* Cell* Epi*
200 177 161
300 211 234 188
400 239 269 213
600 282 325 256
800 310 365 284
1000 326 393 301
2000 350 443 325
5000 354 452 329

* APDyy at 90% repolarization. APD are for steady pacing

8.4 Model Performance

Action potentials V(t) are calculated by numerically integrating the charging of the

membrane capacitance by the total ionic current and any external stimulus current

injection
Lion =INa + Ica + Ikt + Ik + Io (8.6)
Cn V= Lion + Ltim 8.7

ot

Currents are expressed per unit area in uA/cmz. Cn is the specific membrane capacitance
chosen to be 1.0 pF/ecm? in accordance with previous mathematical models. This value of
capacitance is based on measurements by Weidman in 1955, and is consistent with more
recent measurements [501]. Since C,, is set to exactly 1.0 pF/cmz, membrane currents can
also be expressed in pA/pF, which facilitates comparison with voltage clamp literature.
Lim is the externally applied depolarizing stimulus current. Sample action potentials for
endocardial and epicardial cells are shown in Figure 8.9, along with their contributing
ionic currents. The effect of external potassium concentration [K'], on SHV endocardial

action potentials is shown in Figure 8.10 and Table 8.5.
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Figure 8.10. Effect of extracellular potassium concentration [K'], on the endocardial
(left) and epicardial (right) cell action potentials. Raising [K'], from 2.0 to 7.0 mEq/L
increases outward currents Ix and Ixr, which shortens the APD and depolarizes the
resting potential.
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Figure 8.11. Restitution curves of action potential duration for the SHV model simulating
endocardial, epicardial, and M cells. Dynamic restitution (left) shows steady-state APD
for a constant paced basic cycle length BCL. Standard resitution (right) shows APD of a
single action potential following a diastolic recovery interval DI.
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Table 8.5. Effect of Extracellular [K'] on Resting Potential and Threshold

Ko APD Endo APD Epi Vr I

2.0 397.4 368.6 -108.4 21.2
3.0 370.8 3442 -99.9 18.1
4.0 354.4 329.2 -93.3 15.6
5.0 343.2 319.2 -88.0 13.6
6.0 338.2 315.0 -83.6 11.8
7.0 328.6 306.0 ~79.8 10.6

8.4.1 Restitution

Restitution refers to the recovery of action potential duration (APD) following preceding
action potentials (AP). There are two types of restitution curves: standard and dynamic.
The standard restitution expresses APD as a function of diastolic interval (DI) measured
from the preceding AP tail. In practice, a train of constant pacing S;-S; action potentials
is followed by a varying test S;-S, diastolic interval. Dynamic restitution expresses
steady state APD as a function of a constant pacing interval S;-S; called the basic cycle

length (BCL).

Standard: APD = f [DI]
Dynamic: APD =f[BCL]

The restitution curves for the nominal SHV model are shown in Figure 8.11, illustrating
the role of pacing interval and diastolic recovery on APD. The magnitude of the calcium-
channel closing gate f at the time of action potential upstroke is an important determinant
of subsequent APD. Small f at the time of upstroke initiation results in low subsequent Ic,
magnitude and short APD. Fully recovered f at the time of upstroke gives maximal APD.
The intercept of the restitution curves APD = f[DI] and APD = {[BCL] are dependent on
the minimum f value. Figure 8.12 shows how restitution curves can be manipulated by

changing two parameters: Vs for f determines the intercept at short APD, and the
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recovery time constant tr determines the effective time constant of restitution. The time

constant Ty also plays a small role at the longest recovery intervals, depending on the

magnitude of Ix contribution to the action potential.
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Figure 8.12. Changes in the time constant for £ control the effective time constant of the
APD restitution curve. Shifting Vs for the inactivation variable f(t) controls the intercept
of the APD restiution curve. Each curve is for different t; shown in 100 ms intervals, for
Vos = 24 (top) and Vy5 = 75 (bottom). These two variables are like control parameters
that can alter the APD restitution curve intercept and time constant as desired.
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8.4.2 Threshold

The action potential threshold can be defined as the minimum stimulus current Iy
necessary to cause the cell to fire. The threshold voltage Vy, is that reached at the end of
the stimulus interval corresponding to Iy. These definitions are sensitive to what one
defines as the precise moment of firing, a somewhat arbirary moment during a continuous
upstroke. We define the threshold to be the point where dV/dt becomes positive at one
time step dt beyond the end of the stimulus interval, regardless of the amplitude of the
subsequent action potential. This definition is appropriate for solitary cells for the
purpose of comparison under different conditions and stimulus protocols. An alternative
definition might be the minimum current impulse needed to initiate propagation. This
scenario will be addressed in the next chapter. Stimulus current thresholds for the SHV
model are shown in Figure 8.13 as functions of recovery interval from the previous action
potential, measured from the time V passes below -80mV. The effects of varying

extracellular potassium concentration [K '], is also shown.
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Figure 8.13. Firing threshold of a single cell in the SHV model for 2-ms stimuli. Stimulus

current I, depends on the diastolic recovery interval DI and the potassium concentration
[K™]o. Note the presence of greatest supernormality at low [K'],.
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Figure 8.14. Supernormality, seen as an early dip in the current threshold, is enhanced by
fast sodium channel recovery. If h(t) recovers faster than V(t) repolarizes, firing requires
less AV to reach threshold. Time scale is relative the action potential tail at V = -80 mV.
The numbers for each curve are the prolongation factor for the time constant of recovery
of h, the nominal value being 3. [K'], = 4.0.
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Figure 8.15. Membrane voltages prior to stimulus delivery Vg are shown at bottom
versus recovery interval from the point where V = -80 mV for different values of [K'],.
Voltages Vy, after the 2-ms barely-threshold stimulus are shown in the series just above.
The corresponding current thresholds Iy, are shown at top, which are equivalent to those
in Figure 8.13.
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8.4.3 Supernormality

It was first demonstrated in Purkinje fibre that near the end of action potential
repolarization the threshold for subsequent firing is briefly reduced below the value for
completely rested tissue [79]. Ventricular tissue appears to behave similarly [117]. While
demonstrated experimentally in cellular preparations, any practical importance of this
interesting phenomenon to arrhythmogenesis has not been demonstrated. As will be
shown later, weak defibrillation shocks give rise to new activation wavefronts and
unidirectional block within the supernormal window where the stimulation threshold is
lowest. This window may prove to be important to the mechanisms of fibrillation and
defibrillation shocks. The present SHV model exhibits supernormality as illustrated in
Figure 8.13. This occurs because the voltage threshold recovers faster than the action
potential voltage, allowing the difference between these curves to be lowered transiently.
Supernormality is therefore greatest at low potassium concentations, because action
potential recovery is slower, and is enhanced by faster recovery of sodium channels,
which lowers the voltage threshold curve as in Figure 8.14. The voltages before and after

the delivery of a threshold current stimulus are shown in Figure 8.15.

8.5 Automaticity

Cardiac cells usually remain close to resting potential, unless stimulated to threshold by
an external current. Automaticity refers to an excitable cell spontaneously depolarizing
away from the resting state according to its own intrinsic dynamics in the absence of any
external stimulus. Pacemaker cells in the SA node rely on this phenomenon for their
normal function, and may rely on a slow depolarizing current I¢ [132]. Many cardiac cells
experience slow automaticity at long diastolic intervals in the absence of any driving
current, as with ventricular escape beats in bradycardia or complete A-V block, but are
usually prevented from doing so by overdrive from normal sinus rhythm. Dysrhythmias
can arise when abnormal automaticity at a specific site causes an ectopic focus to
undergo spontaneous diastolic depolarization and fire rapidly, initiating a propagating

wave. The LR1, LRS, and SHV models are completely passive during recovery, being
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pulled monotonically to resting potential by the dominant outward currents, and do not
exhibit such behaviour. An additional pacemaker current I; could be added [132] to
simulate diastolic depolarization, but is not essential. Automaticity will occur in any of
these ionic models if an inward current, such as In, or Ic, recovers sufficiently to
depolarize and re-excite the cell before it reaches resting potential. This will occur with
the sodium current if the V5 for m’ is shifted to a slightly more negative potential. In the
SHV model we can achieve automaticity by choosing 37 mV with a slope factor of 6, and
shifting Ix; 5 mV in a positive direction. These adjustments simultaneously raise the
resting potential and lower the threshold potential. An example of this automaticity is
shown in Figure 8.16. The frequency of firing is sensistive to small shifts in Vo5 or gna.
These changes convert the stable attractor at resting potential into a repellor, giving rise
to a limit cycle oscillator. This phenomenon will be useful for simulating premature beats

or focal VT.
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Figure 8.16. Automaticity is achieved in the SHV model by shifting the Vg5 for m’(V).
This feature is useful for simulating ectopic foci. The degree of voltage shift controls the
magnitude of the diastolic depolarizing current and therefore frequency of oscillation.
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Figure 8.17. Phase resetting for pacemaker cells with automaticity. A stimulus delivered
prior to the action potential upstroke advances its phase, causing it to fire earlier (top). A
stimulus delivered later, after sodium current recovers enough to fire, retards the phase.
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Figure 8.18. Phase resetting curve for a cell with automaticity. Relative phase ¢ is
measured with respect to the undisturbed upstroke of a regular train of period T. A single
stimulus delivered at ¢ changes the phase of the subsequent train by A@. Note that early
stimuli retard the phase Ag > 0, while those beyond about ¢ = 0.55 give rise to a new
upstroke that effectively advances the phase with Ag < 0. Stronger stimulus intensities
cause earlier and larger phase shifts.
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Figure 8.19. Space-time plot of a cell with automaticity. Time evolves down the ordinate
axis. Relative phase of stimulus delivery ¢ is along the abscissa. Action potentials are
shown in black. If ¢ = 0, the cell fires regularly like a pacemaker. As ¢ is advanced, the
action potential is at first prolonged, and the phase is advanced. Eventually, a new action
potential is evoked where the dark band splits.

An external stimulus delivered to a pacemaker cardiac cell will reset its phase. Since the
action potential is prolonged if stimulated late in repolarization, the subsequent rhythm is
reset with a delayed phase shift. Conversely, a stimulus given prior to the action
potential, during the late diastolic period, advances the rhythm by causing premature
firing. This biphasic behaviour is demonstrated in Figure 8.18, which shows the phase
response for various stimulus strengths. The number of action potentials does not change
with weak stimuli, only the relative phase of each is altered. As the stimulus strength is
increased, however, the shifts become progressively greater, such that at a critical time
and strength there is an abrupt transition from a phase lag to a phase lead, as the stimulus
time moves into a region of sufficient recovery that a new action potential can be
initiated. The total number of action potentials, over a given time, is therefore increased
by one (type 1 phase resetting). These have been called type 0 and type 1, depending on
whether or not a cycle is effectively lost as the stimulus phase is smoothly varied through
a complete cycle. Winfree has explored the behaviour and general theory of biological
oscillators, phase resetting, and the role of phase singularities in the stimulus strength-

time space [541, 542]. The phase resetting curve (PRC) shown in Figure 8.18
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demonstrates that stimuli delivered during the action potential have only a small effect on
inducing a phase lag. Beyond a critical point, near the tail, the phase shift changes sign,
and the action potential train is advanced. Stronger stimuli cause greater advancement,
since they can reach threshold earlier. This critical point of sign reversal is related to the
time of onset of sodium channel recovery. Figure 8.19 shows action potential pacemaker
periodicity, as stripes of different shades plotted vertically downward over time. Across
the top are various relative phases at which the external stimulus is delivered. It can be
seen that the weak stimulus advances the phase of the next action potential by a small
amount, but the number of waves is preserved. As the stimulus strength is increased, the
phase shift 3 eventually moves through the entire cycle length T and resynchronises, with
resultant loss of a cycle. If these plots were stacked on top of each other, one would
obtain a three-dimensional "time crystal" described by Winfree [542]. In the centre would
reside a singularity, or point of phase ambiguity. Best explored an oscillating form of the
Hodgkin-Huxley equations, and found two "black holes" at a critical stimulus time and
strength such that the spontaneous rhythm could be annihilated [36]. The cell dynamics
are effectively pushed into a hole in the state space where it no longer knows its phase,

and therefore cannot fire.

8.6 Afterdepolarizations

Cardiac cells do not normally fire unless stimulated by currents from neighbouring
electrotonic interactions or external stimulation. Under abnormal conditions, however, a
cell can spontaneously depolarize via its own internal dynamics, giving rise to a source of
focal beats [12]. While automaticity occurs following recovery to resting potential, early
afterdepolarizations (EAD) occur during the action potential phase 3 or 4 before reaching
resting potential [258]. Delayed afterdepolarizations (DAD) occur at resting potential
following recovery. Unlike automaticity that is independent of previous action potentials,
afterdepolarizations occur only after a preceding action potential has somehow "primed"
the intrinsic cell dynamics for further spontaneous firing. The extra beats may be singular
or occur in salvos of repetitive firing. The mechanisms responsible for EAD's and DAD's

are not well understood, but probably involve internal calcium overload, forcing calcium
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exit to drive an inward depolarizing sodium current via a Na*-Ca"™ exchanger [514].
Accurate simulation of EAD's and DAD's based on these assumptions would involve
further model complexity incorporating internal calcium compartments, more gated

currents, and increased computational demand [571].

During repolarization, the net outward current exceeds the net inward current. An
afterdepolarization will occur whenever any phenomenon within the cell dynamics causes
reversal of current, such that the net inward current dominates once again before the cell
has recovered. While there may be several possible ionic mechanisms capable of EAD
induction, premature depolarization can be simulated within the present model by a
mathematical adjustment. Since the depolarizing current in the model is predominately
sodium, EADs can be induced in the model simply by shifting the h recovery curve Vo5
from -70 mV to a slightly more positive potential of -60 mV, thereby achieving
spontaneous depolarization during phase 3 recovery. Shortening the Boltzmann constant
for h from 3.5 to 2.5 sharpens the EAD upstroke. Shifting Vs for f from -75 to -55 mV
and shortening the time constant for f recovery to 25 ms results in faster calcium current
recovery and increases the duration of each EAD action potential. Introduction of these
changes causes spontaneous EAD activity in endocardial cells when [K], falls below
about 2.6 mM. At this concentration, the opposing outward potassium cutrents are too
weak to prevent EAD formation. Owing to the lowest repolarizing potassium currents
being in the endocardium and M cells, EADs tend to originate from these locations and
may propagate through the ventricular tissue. While these adjustments designed to induce
EADs are phenomenological and might not be physiologically correct, they do produce
realistically appearing EADs that can be easily modified for the purpose of simulating
EAD propagation and the electrocardiograms of resultant arrhythmias. Examples are
shown in Figure 8.20 for a single cell with spontaneous EADs. Lowering the external
potassium concentration decreases the repolarizing currents and allows the sodium
current to reactivate and depolarize the cell. This modification could be used to simulate

ectopic depolarization as a cause of torsades.
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Figure 8.20. Examples of early afterdepolarizations in the SHV model resulting from
shifting the recovery of Iy, to establish a balance toward a net inward current during
phase 3 recovery. EADs do not occur unless [K'], is lowered to 2.5, at which point a
repolarization bump is evident. At [K'], of 2.3, several repetitive beats occur, but
terminate when Ik builds up, while below 2.1 the beats continue indefinitely.
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8.7 Model Limitations

Obviously any model that simplifies a real system has limitations within subdomains of
behaviour. The art of modeling involves achieving specific pragmatic objectives, while
eliminating unnecessary complexity, and at the same time maintaining awareness of the
compromises and limitations. A main limitation of the SHV cellular model involves
simplifications to the ionic currents. In particular, calcium dynamics are overly simplified
and ignore intracellular calcium. Some ionic currents are missing, in particular the Inaca
exchanger, and the fast and slow potassium rectifiers Iy, Ixs. Regional heterogeneity of
properties may be inaccurate since there remains uncertainty of the correct spatial
distribution of Iy, Ik, Ix, within the myocardium. Finite discretization of the medium
inevitably introduces small numerical errors due to coarse time steps and spatial grid size.
These are not serious limitations if the model serves its intended purpose, which is to
model the essential behaviour of cardiac tissue parsimoniously. Adding additional ionic

currents and higher resolution is still feasible, but comes with higher computational cost.



Chapter 9

WAVE PROPAGATION

9.1 Tissue Electrical Properties

Myocardial contraction can be induced by a single stimulus delivered almost anywhere
within the ventricles. Activity spreads away from the stimulus site throughout the
syncytium by rapid electrical wave propagation. Optimal hemodynamic efficiency
probably requires activation in a specific sequence, this presumably being the normal
sequence that starts at three endocardial sites and is completed within 120 msec [143].
This time interval is brief, due to the rapidly conducting His-Purkinje network, and

corresponds to the duration of the QRS complex of the electrocardiogram.

The availability of electrotonic current to excite cells and maintain propagation depends
on intercellular electrical coupling, which is directionally-dependent in the anisotropic
medium. Cell-to-cell coupling is facilitated by low-resistance gap junctions between
cells. The effective coupling resistance must, therefore, lie between these values.
Attempts to measure bulk resistivity of tissue have yielded inconsistent results [402, 427].
Nevertheless, coupling conductances can be chosen for the present simulation, based on
the assumed parameters in Table 9.1, that give reasonable conduction velocities. The
equivalent electrical circuit for the membrane is not a passive RC circuit, but rather
contains elements with variable transmembrane conductance shown in Figure 9.1. The

definitions of length constant A and time constant t are therefore valid only under
249
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subthreshold electrotonic conditions, as these values become voltage- and time-dependent
at potentials above threshold. They can be derived by linearizing the ionic model
equations to get their values at any given potential. The effective membrane resistance
R can be considered to be the ratio of dljo,/dVy, taken at resting potential. This value can
be determined analytically by differentiating the expression for the ionic current, with
gating parameters held fixed at resting values, to obtain what would be a rather
complicated expression. An easier, though less insightful, solution is obtained
numerically by simply perturbing the membrane with a small input current clamp Aljpn =
0.05 pA/em?, and measuring the responding small voltage change AV, which turns out
to be 0.21 mV for the basic SHV model. This approximated numerical derivative gives a
membrane resistance at rest of 4200 Qcm?. The time constant of the action potential foot

and the longitudinal length constant can be calculated by applying linear cable theory as
A= {Ra/(pLSy) }'? = {4200 Qcm?/ (250 Q cm * 2000 cm™) }'? = 0.92 mm
M ={Rm/(ptSy) }? = {4200 Qem?/ (750 Q cm * 2000 cm™ ) }'? = 0.53 mm
Tm = Rm Cm = 4200 Qem® * 1.0 puF ecm™ = 4.2 ms.

The conductance expressed as a diffusion coefficient is given by

aL = 1/(pLSy) = 1/ (250 Q cm * 2000 cm™) =.00200 kQ™" = 2.00 uS

il

a = 1/(pSy) = 1/ (750 Qcm * 2000 cm™ ) = .00067 kQ"' = 0.67 pS .

The length constants for passive membrane of 0.92 and 0.53 mm mean that electrotonic
voltage spread decays approximately e-fold at these distances, and propagation should be
possible on a grid of 1-mm elements. A small sacrifice in propagation fidelity might be
expected in the transverse direction, owing to its shorter A; and the relatively large
element size of 1 mm; however, the membrane is not passive. Active currents can

magnify the potential gradient and facilitate propagation, despite short space constants.
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Figure 9.1. Equivalent circuit representation of a membrane patch of the SHV model.

Hunter et al. [240] obtained approximate analytical solutions to propagation of the action
potential by reformulating the one dimensional cable equation with a travelling wave
solution of the form V = f(x—-0t). They assumed the total ionic current during the upstroke
to be various polynomials of degree n, with zeroes at Vg, Vi, and V. By defining n to
be the potential above resting, such that n = V — Vi the ionic current can be
approximated as I; = g n [1 — (n Mw)"] [1 — (M Mmax)"]- It can be shown for the simplest

cubic case, where n = 1, that velocity v and length constant A satisfy

V¢ o« ga, Cn! f(SF)

A oc g-1/2 ay -172 )

Conduction velocity v is therefore inversely proportional to the square root of the axial
conductance ay, under the assumption of polynomial Ii(V). The parameter g is analogous,
but not equal, to the sodium conductance. In the LRS and SHV models, during the
upstroke (before I, and Ik activate), [;(V) is approximately In, + Ixt, which does not fit a

low-order polynomial function. It is, therefore, not possible to derive an analytical
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expression for the dependence of velocity v on sodium conductance gy, without
considerable difficulty. Such a functional relationship would likely be complex, and is
more readily determined numerically. By approximating the potential during upstroke to
be a higher order function involving the HH variable m’, it has been shown that v should
be relatively insensitive to gna, except at very low values [240]. Velocity is also related to
the safety factor of propagation SF, which will be discussed in the next section. Wave
front curvature influences velocity in two and three dimensions, by adding additional

electrotonic load in the lateral directions [159].

Table 9.1. Conduction Constants Used in the Model

Assumed Parameters:

PL 250 Q cm Bulk resistivity (longitudinal)
Pt 750 Q cm Bulk resistivity (transverse)
Sy 2000 cm’! Cell surface-volume ratio

Cn 1.0 yF cm™?  Membrane capacitance

Calculated Parameters:

Ry 4200 Q cm?> Membrane resistance

AL 0.092 cm Length constant (longitudinal)
At 0.053 cm Length constant (transverse)
Tm 4.2 ms Time constant foot

ar, 00200 kQ"  Conductance (longitudinal)
a 00067 kQ"'  Conductance (transverse)

Axial conductance values must be chosen for use in the models. Table 9.2 gives a
summary of several studies measuring conduction velocity in ventricular tissue. Values
vary considerably depending on tissue types, but do fall within reasonable ranges. These
velocities will be used as a standard for comparison with simulations later, and provide a

rationale for selecting the ratio of anisotropy for model tissue. One must be aware,
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however, that velocities measured on the epicardium can be higher than true conduction
velocities, depending on the apparent angle of the wave front relative to the epicardial
surface. Arisi et al. [15] found transverse velocities as high as 33 cm/s and longitudinal
velocities up to 120 cm/s during normal activation of the dog heart, perhaps due to this
virtual-velocity effect. Wave front velocity will equal conduction velocity only if the
vector normal to the wave front is colinear with the vector of the measured velocity.
Otherwise, apparent velocity is equal to the true wave front velocity divided by the cosine

of the angle between these two vectors.

Table 9.2 Mean Conduction Velocities From the Literature

Tissue Species Orientation  Velocity Ratio Reference

Papillary m. Canine Longitudinal 47 -52 cm/s 3.1 [469]
Transverse 14 -20 cm/s

Epicardium Canine Longitudinal 58 2.3 [420]
Transverse 25

Trabeculum Calf (25°C) Longitudinal 48 3.0 [92]
Transverse 16

Ventricle Canine Longitudinal 7-71 [443]
Transverse 8- 20

Ventricle Canine Longitudinal 63 [141]

Endocardium Canine Longitudinal 98 3.9 [360]
Transverse 25

Intramural ~ Human Oblique 46 cm/s [143]

Ventricle Rabbit Longitudinal 65 cm/s [445]
Transverse 20
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9.2 Cable Model

The classic model for a one-dimensional cable was first proposed by Thompson in 1855,
as a means for predicting voltage decay due to leakage in a transatlantic telegraph cable,
and solved using a method developed by Fourier. Weber later solved the cable equation
in cylindrical coordinates using a Bessel function series in 1873. The cable equation was
given credence when Hodgkin and Rushton found it provided a good fit to subthreshold
electrotonus measured in crustacean nerve axons. The voltage clamp circuit, developed
by Cole and Marmont, provided experimental foundation for Hodgkin and Huxley to
mathematically model action potential propagation in the giant squid axon using the cable
equation. Aidley reviews and discusses many of these historical developments [5]. The
advent of the digital computer permitted numerical solutions to the electrotonic
equations, including ionic models, by Cooley and Dodge [96] using a trapezoidal
integration scheme, and by Joyner et al. using the Crank-Nicholson [261]. The
mathematical theory of one-dimensional cable conduction was reviewed by Spach and
Kootsey [468], and by Hunter et al. [240] who developed approximate analytical

solutions. Henriquez has more recently reviewed the theory of propagation [225].

The one-dimensional cable equation for action potential propagation is classified as a

reaction-diffusion equation. It is nonlinear, owing to terms in the ionic current model.

Cma_\/_: aLQZ__Y."' Iion + Istim (91)
ot ox*

Lion =Ina + Ica + Ixr + Ik LRS model

Lon =Ina + Ica + I + Ik + Lo SHV model

These equations must be solved numerically by a time stepping simulation, due to
nonlinearity of the components of I, The implicit Crank-Nicholson method of
numerical integration is inherently stable, and converges if element discretization is fine

enough. Figure 9.2 shows action potential propagation of the original six-parameter LR1
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model along a cable with various element sizes and time steps. The main effect of
simplifying the sodium current, by removing the time constant for m, is a faster
conduction velocity. When the sodium conductance gy, is lowered to compensate, the

agreement between the LR 1 and the simplified LRS models is excellent.

HSIH“ “H\ LR-6 m(t)
L

LR-6 m=m,
LR"6 gNa = 8
LRS

Figure 9.2. Comparison of action potential spatial profiles during propagation along a 10-
cm cable. The original six-parameter LR6 model with gn, = 13 is shown at top.
Modifying the upstroke gating parameter to be only voltage-dependent m(t) = m,
simplifies the model, but as shown in the second frame, results in a faster propagation
velocity. We can compensate for this side-effect by lowering the sodium conductance to
gna = 8, as shown in the third frame. The bottom frame shows the simplified four-
parameter LRS model, which performs in agreement with the six-parameter model at top.
The cable equation is integrated using the Crank-Nicholson method. Ax = 0.05 cm and At
=(0.002 ms.

In anticipation of larger-scale three-dimensional simulations to be run later, a simple
forward-stepping Euler method will be used for most numerical integration. This decision
allows avoidance of the additional complexities of higher order predictor-corrector
algorithms or implicit methods, and should be acceptable if time steps At are sufficiently

short.
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V(t+AY) = V(O + oV At (92)
ot

&V = Vig =2V + Vyy (9.3)

x> Ax

Figure 9.3 shows propagation of epicardial and endocardial SHV action potentials along
a 10-cm cable with Ax = 0.05 cm and At = 0.2 ms, using forward step Euler method. Ends
are sealed with no-flux boundary conditions 8V/8x = 0. A 2-ms point stimulus Igim = 20
}LA/cm2 is applied to one end. Conduction velocity, with the above parameters, is about

56 m/s, consistent with that measured experimentally along longitudinal fibres.

Endocardial

Epicardial

Figure 9.3. Action potential propagation along a 10-cm cable with the SHV membrane
model for endocardial cells (top), and epicardial cells (bottom) with gy, = 13, using a
forward-stepping Euler method. The spike-and-dome morphology is evident in the
epicardium. Conduction velocity is approximately equal for both tissue types.

9.2.1 Velocity

Figure 9.4 shows the effects of varying coupling a; and sodium conductance gn, on
conduction velocity v in the cable. One should theoretically see v « ar'? [240]. The
voltage change between relatively coarse 1-mm elements can be very large during the AP
upstroke, and occasionally violate this relationship. With the objective of achieving large

scale three-dimensional simulation, this potential failure of velocity to scale correctly
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with conductance will be accepted, since conductances will be not be varied once they
are chosen. The main consequence of this limitation is that the anisotropy ratio of
conductances will be close to that of the velocities, rather than the velocities squared. One
must exercise caution in interpreting results if conducting simulations involving changes

in intracellular coupling.
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Figure 9.4. Effect of axial coupling (top) and sodium conductance (bottom) on velocity of
propagation along a cable using the SHV model. The two lines in the top figure represent

endocardial (thin line) and epicardial (thick line) cells, which show little difference in
conduction velocities.

9.2.2 Safety Factor
Continuous propagation requires that each cell supply sufficient current to excite its

downstream neighbour, while sustaining its own action potential under this load. The

degree to which a cell can supply current exceeding the minimum necessary for
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conduction can be quantified by a parameter called the safety factor (SF) for conduction.
There have been several mathematical formulations of SF proposed [125, 240, 310],
although some have been criticized [452]. Here the approach of Shaw and Rudy is
followed [452]. The safety factor can be loosely defined as the ratio of source current that
the cell loses, both to its downstream neighbours and to the membrane capacitance as V
changes, divided by the amount of sink current received by upstream neighbours. To
avoid difficulties incorporating the strength-duration relationship of current stimuli as
these integrals are evaluated, Shaw and Rudy instead defined SF to be the ratio of the
respective charges, or integrated currents, over the time interval that the membrane
receives charge during the action potential upstroke. SF may be calculated by the

following equation, where the integrals are evaluated over the time that [ Q, dt > 0.

SF = Q¢ + Qou 9.4)
Qin
= [I.dt + [T, dt

J Iin dt
where I. = ChdV
dt

Lu = Vi—=Vin

p Sy (Ax)’

h = M-V

p Sy (Ax)’

Im - Iin - Iout

Qu = [Indt
Normally there is little difference between Qin and Qouw, except for the time lag of
propagation, and there are nearly identical areas under these curves. The SF is then

dominated by the influence of the substantially larger Q.. During robust conduction, the
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AP upstroke is brisk and capable of sourcing a large capacitive current, giving SF > 1.
Under conditions of weaker conduction, Q. becomes smaller and SF approaches 1. When
SF = 1, conduction cannot proceed, velocity reaches zero, and block occurs. Q, is largely
obtained from the ionic current Iio,, which is dominated by the sodium current Iy,. SF is
therefore dependent on both the axial coupling p, which determines Qi, and Qoy, and the
sodium conductance gna, which influences Q.. Reducing either of these variables
sufficiently will cause conduction block. In two- and three-dimensional propagation,
wave front curvature also influences the local current density [159], and plays an

additional more complex role in determining the safety factor.

X
5
4 M — t
s o Endocardial =
T .
° Epicardial — -
. :
0 T .
0.003 0.002 0.001 0.000
COUPLING ‘.
High p Low p

Figure 9.5. Safety factor of conduction along a one-dimensional cable as a function of
axial coupling for endocardial and epicardial cells (left). The frame at right shows a
space-time plot of an action potential propagating along a cable, from left to right. There
is a gradient of decreasing conductivity pre-existing on the cable. Propagation fails or
blocks when the wave front reaches the location where the safety factor SF = 1.

To illustrate the development of conduction block, and establish the SF for normal
conduction, a modified cable model is introduced using the SHV formulation. A stimulus
is applied at one end, where x = 0, and a gradient of diminishing axial coupling, p(x) = pi
+ (x/L)( p2 — p1), and hence gradient of safety factor, is defined down the cable. Here p;
= 3.0 umho and p, =.03 umho. Action potential conduction proceeds quickly at first, due
to low-resistance coupling, but eventually reaches a critical point where the safety factor

drops to 1.0 and block occurs. Figure 9.5 shows a space-time plot of this situation.
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Velocity is the slope of the activation front, which drops to zero at the point of block. The
conduction velocity and safety factor are shown as functions of the axial coupling p,
derived from this simulation with Ax = 0.1 cm. The SF drops to 1.0 around p = 0.1 pmho
for the endocardium, while for normal conduction, with p = 2.0 umho, SF is about 4.1.

The relationship between conductivity and block is likely sensitive to the nature of

discretization, and is subject to numerical error in simulations with overly coarse media.
9.3 Sheet Model

The cable equation can be extended to a two-dimensional sheet of cells. Fibre anisotropy

is incorporated by defining separate longitudinal and transverse conductivities a;, and a;.

CndV = aL &PV +a 8V + Ly + Liim 9.5)
ot ox> dy”
In the one-dimensional cable model, the length constant A is defined by the passive
electrotonic spread, such that voltage V decays as exp(—x/A) from a point stimulus. For
the analogous two-dimensional isotropic case, where a, = a;, the passive membrane
response to a point stimulus is, instead, proportional to the Bessel function (1/A)K(1/A).

Analytical solutions will not be discussed further here, since the membrane is not passive,

and numerical simulation is required for solution.

More generally, fibre angles can be varied throughout the domain by expressing the

electrotonic current in terms of the anisotropic conductance tensor D [95].

Cma_\/_ =V.DVV + Iion + Istim (96)
ot

where

V-DVV = ar (Vi + Vyy) + (aL—ar) (8¢ Ve + 8> Vyy + 2 548y Vigy)
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Sx = COS @

Sy = sin @

The angle ¢ is the deviation from the x axis within the x-y plane, and Vi, Vyy, and Vy,
represent the partial derivatives. In the isotropic case, where a;, = a;, the wave front
propagates outward as an expanding circle. With anisotropy, the wave front is an ellipse,
with semi-major axis parallel to the principal axis of the conductivity tensor. The aspect
ratio of the elliptical front depends on the ratio of the conductivities. Figures 9.6 shows
radial conduction from a stimulus at the centre of a square sheet of 41x41 elements, with
Ax = 0.1 cm for isotropic and anisotropic cases. Higher curvature slows velocity, due to

current sink in the lateral directions. Lower coupling or conductivity slows propagation.

Figure 9.6. SHV action potentials propagate radially outward from a single stimulus in
the centre of a two-dimensional sheet of 41x41 elements. The wave front is circular when
the sheet is isotropic (left), and elliptical when it is anisotropic (right), shown here for
three different fibre directions.

9.4 Block Model

The propagation equation in three dimensions, assuming symmetry in the transverse

directions is relatively straight forward:

CmdV = ap &V +ar&@V+ardV+ L + Lim 9.7)
ot x> oy oz

More generally, however, the fibre orientation is not along a cartesian axis, such that the

electrotonic current must be derived in terms of the anisotropic conductivity tensor [95]:
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CndV = V-DVV + Iion + Ltim (9.8)
ot

The electrotonic current term V-DVV is derived by first transforming the conductivity
tensor D* from cartesian coordinates (x, y, z), where the longitudinal conductivity ar is
along the z axis, to a new coordinate system D with its principal axis along the fibre. The

transformation matrix P is a function of angles ¢ and y, which vary with location [91].

D=P' D' P (9.9)
cc 0 O COSPCOSY CosS@cosy —sing
D'=1|0 o O P = —sin @ cos @ 0
0 0 o sin@cosy sin@siny cos @

After evaluating equation (9.9), followed by the gradient and divergence operations, one
obtains a lengthy expression involving spatial derivatives of V, ¢, and y [91]. These can
be denoted as: Vx, Vy, V2, Vi, Vyy, Vazs Viys Vizs Vyz, Oxs @y, @z, Vo Yys Yz If we further
assume that the spatial derivatives of ¢ and y are relatively small, compared with those of
V, then the resulting expression is greatly simplified, and does not involve first derivative

terms of V:

V'DVV = aT (Vxx + Vyy + sz) +
(aL - aT) (Sx Sx Vxx + Sy Sy Vyy + SZ SZ sz) +

2 (aL - aT) (Sx SY ny + Sx Sz VXZ + Sy SZ Vyz)
Sx = COS  COS
Sy = sin ¢ cos y

s; =siny.

Examples of anisotropic propagation will be presented in the next chapters.



Chapter 10

VENTRICULAR ACTIVATION

10.1 Idealized Geometry

A three-dimensional model of the right and left ventricles, to be used for whole-heart
simulations, is presented in this chapter. Ellipsoidal sections were synthesized and joined
to approximate the size and thickness of the human heart. Anisotropic fibre angles wete
assigned to each element on a three-dimensional rectilinear grid denoted by coordinates
(i, j, k). While more detailed human [184, 237, 347] and canine [8, 33, 368] heart
geometries derived from digitized anatomical sections have been used in other heart
models, the idealized ellipsoidal shape employed here keeps the geometry simple and
reproducible, and is sufficient for the purposes of this study.

10.1.1 Size and Shape

Human heart dimensions obviously vary among individuals, and are also dependent on
the instantaneous contractile state. Myocardial wall thickness can increase as much as
25% from diastole to systole. The heart dimensions chosen for the present computer
model are based on reported autopsy specimen mid-contraction averages for normal

human hearts [241], and are summarized in Table 10.1.

263
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The LV was generated from a thick hemi-ellipsoidal shell with concentric internal and
external surfaces. The RV was similarly generated, and truncated to fit onto the LV with
parallel semi-major axis separation, as in Figure 10.1. The base of the heart, at the AV
ring, was truncated by about 1 cm to avoid having to define complex valve geometry.
This biventricular geometry was then parsed into cubic elements. Element size was set to
1 mm to obtain an 81 x 77 x 81 element block comprised of 214,580 active cells. The
active cells represent 42.5% of the block. The remaining elements, within the rectangular
block, but outside the heart domain, are set to be null cells, and do not participate in

computation.

Table 10.1 Dimensions of Human Ventricles

RV  thickness 8§ mm
Length 76
diameter 76

LV thickness 16 mm

length 80
diameter 64
Axial separation 1.0 cm

Left
Ventricle

Right
Ventricle

Figure 10.1. The basic ellipsoidal biventricular model drawn to scale.
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shown at several transverse

slices. The top frames show the epicardial surface and a coronal section. Middle frames

show the apical and basal views. Bottom frames show transverse slices close to the apex.

Figure 10.2. Fibre orientation in the biventricular model,
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10.1.2 Fibre Angles

The ventricular myocardium is a continuous muscle mass with fibres wound such that
they spiral toward the apex and form a gradient of fibre angle across ventricular walls
[477]. The model representation is shown in Figure 10.2. Histological studies show the
fibre angle distribution to be approximately linear, but actually slightly sigmoidal, across
the wall, varying from about —60 to 60 degrees depending on location [213]. There is a
tendency to somewhat greater angles at the papillary muscle in some locations, up to 90
degrees at the papillary muscle root [175]. Angles increase during diastole in some, but

not all, regions [478].

To maintain simplicity within the biventricular model, fibre angles across the wall were
varied from B; = —60° at the endocardium to B, = 60° at the epicardium. Fibre angles were
first defined on these surfaces only, and then multiplied by a longitudinal parameter
function fi(z) which equals one at the base where fibre angles are maximum away from
the x-y plane, and progressively decreases toward zero, to lie flat in the x-y plane, as the

apex is reached.

B = fui Bi (endocardium) (10.1)
B = fbo Bo (epicardium)

where foi =sqrt [ 1 —2° /¢ ]
foo=sqrt [ 1 — 2% /¢’ ]

Fibres angles B throughout the thickness of the LV and RV were interpolated between the
surface values by Laplacian smoothing. This considers fibre angle to be analogous to the
electrical field between plates of a capacitor. Boundary conditions of B; applied to the RV
and LV endocardium, and B, applied to the entire epicardium, were assigned. Smooth
interpolation was achieved by modifying the main electrical propagation simulation,
which solves the reaction-diffusion equation for transmembrane potential V, to solve

instead the diffusion equation dp/dt = aV2[3 to a steady state giving V2[3 = (). The ionic



267

and stimulus currents were set to zero, and the simulation was run until a steady state was
reached. This solution to the Laplace equation ensures a smooth distribution of fibre

angle B(i,j,k) throughout the entire three-dimensional myocardium.

The circumferential angle ¢ was calculated as the tangential angle in polar coordinates of
the concentric fibre layer, rotated by an additional angle € representing the degree of
helical twist towards the longitudinal axis as the apex is approached. Twist becomes
progressively tighter at the apex. Semi-major ellipsoidal axes for the RV and LV were
centred at (Xc,y.). Maximal helical angle enqx at the apex was set to 60° to match the

visual appearance of fibres in histological studies [167, 213].

¢ = tan’'[(y - yo/(x — Xo)] + & (10.2)

where € = Emax It

fr=1-[1-2%21%

Smooth interpolation of ¢ throughout the myocardium was achieved by the same
technique described above, by assigning boundary conditions of ¢ to the endocardium
and epicardium. The Laplace equation V2@ = 0 was then solved by the simulation, as
previously described, to yield the full distribution of ¢ throughout the myocardium.
Figure 10.2 shows the final anisotropic biventricular model with fibre orientation. The
smoothed layered concentric shells can be seen. These elements are available for cell-
type assignment to account for transmural and regional ionic current heterogeneity. It is

noteworthy that there is a dominant convergence of fibres to the LV apex, and there is

also a secondary locus nearby on the RV, consistent with histology [175].
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10.1.3 Transmural Heterogeneity

Ionic currents, and therefore cellular properties, vary regionally within the heart, most
notably across the ventricular wall, but also from apex to base. One consequence of this
heterogeneity is that the endocardial APD is usually longer than that of the epicardium.
This transmural gradient of APD affects the repolarization sequence, and contributes to T
wave and U wave genesis [12]. Theoretically, T waves should be of opposite polarity to
the QRS complex (discordant), and have the same integrated area as the QRS complexes,
if all action potentials are identical. In reality, T waves are usually concordant with the
QRS complex because the vector representing spatial voltage gradient reverses during
recovery. The APD is also prolonged in the mid-myocardial layer, due to M cells that
have a long APD, particularly at low heart rates. The exact APD distribution throughout
the heart is not presently known, and has been technically difficult to determine. Limited
studies suggest that M cells exist within both the LV and RV, and may be more dense
closer to the endocardium [13]. Better determination of the M cell distribution is essential
to the development of more accurate whole heart models that simulate repolarization

dynamics.

Curiously, early mapping studies across the ventricular wall, using transmural plunge
electrodes, failed to identify any prolonged activation within the mid-myocardium of
intact hearts [1], despite this being the case with in vitro tissue preparations [13]. M cell
action potentials become especially distinct at long pacing intervals that exceed those
seen in sinus rhythm [13]. One mapping study, in whole hearts, showed that the latest
cells to activate tended to be the earliest to repolarize, regardless of pacing site. This
suggests that APD is not necessarily a fixed function of location, but might depend on the
spatial activation sequence. These results lead one to speculate that, in addition to
regional ionic current differences, electromechanical factors during contraction might be

involved in modulating action potential duration [181].

Rogers et al. found that APD on pig RV and LV were equal at several cycle lengths and
during VF [422]. The same finding was noted in dogs, although I, was smaller in the left
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ventricular epicardium [130]. Canine right ventricular mid-myocardial layers have higher
potassium currents I, and Igs than the left ventricle [513]. Differences in
electrophysiological properties and restitution between the right and left ventricles in

human hearts have not been reported.

To be specific, we have assumed that transmural gradients of Ixt, Ix, and I, exist across
the ventricular wall, and increase linearly from endocardial to epicardial surface. Despite
the possible existence of regional differences, epicardial and endocardial cells were
assigned uniform properties over their respective surfaces in both ventricles. This
gradient of properties allows T waves to be simulated, and might also be an important
modifier of wave stability during reentry. M cells, when added, were defined in the
middle layers of one or both the left and right ventricles. Since we do not know the
correct M cell distribution, we have explored three candidate configurations. To account
for this spatial heterogeneity of action potential behaviour, the ellipsoidal model was
assigned a dimensionless factor p, ranging from zero to one, that was used to define
contours of the cell type layers. Smoothing and interpolation throughout the ventricles
was achieved, once again, by solving the Laplace equation Vzu = 0 with these boundary
conditions by the method previously described. The factor p was then used to define the
cell layers by regionally modifying the ionic membrane model. Assignment of specific
cell types allows accounting for the ventricular gradient. The M cell layer was defined
within a specified range of p. The baseline configuration and the three test configurations

A, B, and C, are shown in Figure 10.3, with their resulting cell-type layers.
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10.2 Activation Sequences

The bundle branches and Purkinje fibre conduction system are absent in this heart model.
While it is not a difficult task to incorporate these features, using a branched cable
network model similar to that previously described for one-dimensional propagation, we
have left the intrinsic conduction system out, and focused only on conduction phenomena
confined to the ventricles. Activation can be initiated by individual point stimuli or by
regional shocks covering larger areas. The transmembrane potential V at each cell
changes according to the sum of ionic currents, stimulation or shock currents, and

electrotonic current from neighbouring cells.

Figure 10.3. Cell properties were assigned according to location within the ventricular
walls, and varied from endocardium to epicardium. Cell type contours for the three
configurations (A to C) tested, as derived from Laplace smoothing, are shown in the top
row. The M-cell layers for each are shown below. These contours determine the action
potential duration in the absence of electrotonic interactions.
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¢

Figure 10.4. Endocardial activation due to sinus rhythm was simulated by applying patch-
stimuli to the endocardium, approximating the insertion of the Purkinje fibres. Insertion
sites are idealized as elliptical patches defined on Mercator projections of the RV and LV
endocardial surfaces, and mapped back onto the heart. The figure at right shows a view of
the endocardium looking toward the apex showing the fascicle insertions.

Sinus rhythm was approximated by applying stimuli to the endocardial surfaces in a
sequence to mimic activation by the Purkinje fibres. The detailed maps of human heart
activation obtained by Durrer [143] remain a unique resource for model calibration that,
to our knowledge, have not been repeated or extended. These maps show earliest activity
appearing within two approximately elliptical patches on the LV endocardium, opposite
one another, corresponding to the two fascicles of the left bundle, and another on the RV
endocardium, just above the apex. This sequence was approximated in the biventricular
model by defining three elliptical patches of activation. The two endocardial ellipses in
the LV were given helical twist, by defining the tangential angle of the semi-major axis
of the ellipse to skew as a linear function of z, as shown in Figure 10.5. Activation
isochrones of this idealized sinus rhythm are shown in Figure 10.6. Repolarization
sequences are shown in Figures 10.6 to 10.8 for the various M cell configurations in

Figure 10.3.



272

Figure 10.5. Normal sinus rhythm was simulated by externally activating endocardial
regions corresponding to three bundle-branch insertion sites. Frames are shown at 10-ms
intervals. (a) Anterior epicardial view, showing break-through near the RV anterior
septum and LV free wall. (b) Coronal view, showing propagation outward from the
endocardial sites. (c) Apical view of activation. (d) Basal view at first horizontal layer.
(e) Transverse view through a slice at midlevel, showing activation. (f) Repolarization at
the same level. Note that repolarization fronts in this case closely follow the activation
fronts, suggesting the existence of near-constant APD throughout the myocardium,
despite heterogeneity of properties across the wall.
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10.6. Repolarization of M cell configuration A.

Figure
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10.3. Electrocardiogram

The body surface electrocardiogram (ECG) is the electrical field generated on the torso
by all sources and sinks within the three-dimensional volume conductor of the heart. An
exact derivation of the ECG field requires the solution of a boundary value problem -
essentially the Poisson equation subject to the geometrical boundary conditions
pertaining to the heart, lungs, and a no-flux current condition on the body surface. The

problem is usually formulated in terms of Green's function [193].

A simplified approach of Leon and Horacek will be used here [308], assuming that the
body is contained within an infinite homogeneous volume conductor. This allows the
body surface potential to be calculated as the sum of the fields due to each effective
dipole, without the need to satisfy boundary conditions or perform any matrix operations.
The ECG potential Ve is the sum of all dipole currents, each of which is proportional to
the voltage gradient over the cell membrane, and to the component of the anisotropic
conductance tensor evaluated at the cell location. The equation for ECG calculation for

isotropic media is:

where H is the volume of the heart and a is a coefficient related to the volume

conductivity. The analogous expression in anisotropic media is more complex [308]:

—)
Veeg = a j' VV3-?dv + (a-a) I (.VV_'g-l)_al'_r dv
n T H f

which reduces to [308]:

N N
= a2 F/f+ @-a) X Fo/r
i=1 i=l
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where

]
)
I

xX=—xe)F2+(y-yo)F3+(z—-2z)F4y

=
!

= (X =X¢) OVx + (¥ — ¥e) OVy+(z -2, 0V,
Fy = sy 8x OVx + sx sy OVy + 55, 0V,
F3 = sysx OVx+ 8y sy OVy +sy5,0V,

F4 = SZ Sx an+SZSyaVy+SZSZaVZ

r = [x-x)+ (¥ -y +(z- 2"
Sx = COS Y COS (p
Sy = COS ¥ sin @

Sz =siny

The summation is over all points (X, y, z) in the heart, and (X, Ve, Zc) is the observation
point or fixed electrode. Angles ¢ and y specify the fibre orientation, as previously
described; OVy, 0Vy, and 0V, represent the partial derivatives from the gradient operator;
and a and a; are the longitudinal and transverse conductivities. This solution should be a
reasonable approximation to the true ECG that would be obtained from the full Green's-
function method, however, the amplitude is underestimated due to the absence of
equivalent image sources that would be required to match the no-flux boundary
conditions omitted here. The effects of conductivity inhomogeneities within the chest are
also not considered, but these effects are likely minimal [415]. These limitations are
acceptable if we consider amplitudes derived from this equation to have arbitrary units,

and to be compared only by their relative values.
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Figure 10.9. Single beat 8-lead equatorial electrocardiograms for each configuration of
simulated sinus rhythm, showing the QRS complexes and T waves. Initiation was from
endocardial patches stimulated to simulate the sequence of normal sinus rhythm. Cases 1
and 2 have a ventricular gradient, but no M cells. Cases A to C have the different M cell
configurations as shown in Figure 10.3. T wave morphology is particularly sensitive to
these differences in regional cell properties.



280

10.4 Recovery and T Waves

While ventricular activation sequences corresponding to the QRS complex have been
mapped in human [143] and canine hearts [1, 466], much less information is available on
the recovery sequences responsible for the T wave. The main reason for this limitation is
the technical difficulty of recording, with confidence, the much smaller voltage gradients
that occur during repolarization. T wave genesis is generally believed to be due to the
repolarization wave being opposite (discordant) to that of the depolarization wave [2,
103, 376]. Repolarization in the model simulation is evident in Figures 10.6 to 10.8, and
essentially follows the sequence of depolarization over the epicardium, since perfect
uniformity of APD over this cell layer has been assumed in the model. Burgess et al. [51]
and Abildskov et al. [1] found the canine epicardial recovery sequence to be closely
correlated with the excitation sequence, confirming that the APD was fairly uniform over

the epicardium.

t \ \
ECG

N__,_.-/\.___._ r\‘___"/\-__.

N \
Epi
: Action
Endo Potential
: . i\_\.!%mi L
Endo Epi

Figure 10.10. Origin of the ECG and T wave in a cable model representing a section from
endocardium to epicardium. Activation causes the QRS complex. During the action
potential plateau, there is very little gradient between cells, and the ECG is relatively flat.
The T wave occurs during repolarization when the voltage gradient reverses. The M cell
layer, located close to the endocardium, also contributes to the gradient reversal.
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Since the main objective of this work has been to model tachy-arrhythmias, such as VT
and VF, we have not required a His-Purkinje conduction system that would be necessary
if we were modelling the precise sequence of conduction during normal sinus rhythm.
We can approximate sinus rhythm, as previously described, by applying a series of
external current stimuli, with times and locations on the endocardium chosen to mimic
the initial endocardial sites of activation that would result if the conduction system were
present. This addition allows both the QRS complexes and T waves to be modelled, once
the initial activation pattern is placed on the endocardium. The activation sequence
proceeds from endocardium to epicardium, and recovery is from epicardium to
endocardium, as seen in human catheter studies [179, 180]. Figure 10.10 shows how the
ECG depends on voltage gradients. In this case, an action potential propagates along a
17-element cable of 1-mm elements, simulating a section across the ventricular wall from
endocardium to epicardium. An M cell layer spans layers 3 to 8, and is given properties
(fk1, fio, fk3, Tn) shown in Table 8.2. The epicardial APD is shortest, so repolarization
reverses direction, as evident in the action potential profiles. This causes the T wave to be
positive giving results consistent with mapping of the LV wedge preparation by

Antzelevitch et al. [566].

T wave alternans (TWA) refers to the 2:1 periodic alternation of the electrocardiogram T
wave between two morphologies [455]. First recognized by Lewis shortly after the
introduction of the ECG by Einthoven [312], alternans was later found to be a risk factor
for sudden cardiac death [414]. Cohen et al. found TWA to develop following coronary
ligation in canine hearts, and its presence correlated with a lower threshold for VF
induction [3, 426]. Sensitive ECG recordings can measure TWA clinically, and have
confirmed the associated risk of VF [156]. Growing interest in applying nonlinear
dynamics to cardiac rhythm analysis followed after Guevara et al. demonstrated action
potential alternans, quasiperiodicity, and chaos in isolated myocytes stimulated in vifro at
increasing rates [214, 215]. These observations led Kaplan et al. [270] to hypothesize that
T wave alternans might be manifesting the first bifurcation in a period-doubling cascade
leading to higher-dimensional chaotic VF. They were not able to discern any further

bifurcations in ECG signals of VF, however, beyond the first 2:1 transition [269]. Further
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work is needed to define the distribution of M cells and APD across the ventricular walls

and throughout the heart in order to simulate more accurate repolarization.

10.5 Model Limitations

The main limitations of this ventricular geometry are:

(1) Spatial resolution has been limited to 1-mm elements, although it is easily modifiable

to smaller elements with higher computational cost.

(2) Absence of an intrinsic Purkinje fibre conduction system requires that all activation

be initiated by external stimuli.

(3) The idealized shape as ellipsoidal shell ventricles has been chosen to allow basic
wave behaviour to be studied without the additional complexities of the irregular shaped
heart. Simulations can be carried out in the future using this cellular model within a more

realistic anisotropic human heart geometry developed by Hren and Horacek [237].

(4) The precise distribution and heterogeneity of cell types throughout the myocardium,
especially that of M cells, is not known and must be assumed until better information

becomes available.



Chapter 11

TISSUE MODELS OF REENTRY

11.1 Historical Background

Irregularities in pulse rate were recognized long before their physiological origins were
understood, and were given terms such as "delirium cordis" and "pulsus irregularis
perpetuus” [172, 228]. Cardiac rhythm abnormalities were believed to be solely due to
spontaneous ectopic impulse initiation [123] until McWilliam proposed in 1887 that
"peristaltic contraction" could re-excite pathways over which a wave had already passed
[344]. McWilliam worked with many animal species, ranging in size from birds to cattle,
and observed that rhythm irregularities in small hearts would often spontaneously
terminate, while large hearts sustained fibrillatory movement indefinitely. Such was the

first suggestion of a critical mass being required to sustain fibrillation.

In 1906, Mayer demonstrated circular re-excitation in tissue ring preparations cut from
invertebrate medusa bells, and noted that a contractile wave could be induced to
propagate around the ring [339]. These studies were repeated in rings cut from turtle
hearts. Mayer also pointed out the relationship between refractory period, conduction
velocity, and path length. Mines repeated these studies in 1914 with ring preparations
from tortoise hearts, and proposed that block along one pathway and the presence of a
return pathway was a necessary condition for reentry to occur [350]. Mines suggested

that this type of circular excitation was responsible for fibrillation. Around the same time,
283
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Garrey was carrying out similar experiments in atrial tissue independently, and proposed
the same reentry hypothesis for cardiac arrhythmias [187]. He was the first to propose
that atrial fibrillation was caused by a "contractile maelstrom" of reentry, and that
differences in local tissue refractoriness might maintain these circuits in the absence of
"natural rings". Garrey further showed that fibrillation persisted in smaller cut tissue
segments, and therefore did not likely originate from ectopic foci. In 1920, Lewis
induced, by faradic stimulation of the canine right atrium, a "mother wave" circulating
around the vena caval orifices, and was able to apply recording electrodes to capture part
of this sequence [313]. He was able to show that conduction velocity was slower in
repetitively excited tissue. This was the earliest experimental model of atrial flutter,
although some controversy followed as to whether or not the results represented true
circus movement. Rosenbleuth and Garcia-Ramos in 1947 confirmed with six electrodes

that circus movement was indeed underlying atrial flutter in the dog heart [425].

The simplicity of these ring models contrasted with the difficulties faced proving these
hypotheses in intact hearts. Wiggers in 1930 carried out studies of ventricular fibrillation
induced by a carefully timed premature stimulus in canine hearts [540]. There appeared
to be a "vulnerable window" of time during which the second stimulus could induce VF.
Wiggers defined four stages of VF based on cinematography [537]. The first undulatory
stage lasts a few seconds and is followed by a second convulsive stage lasting 15 to 40
seconds. The third tremulous stage lasts 2 to 3 minutes followed by a final atonic stage

with contractile failure.

Based on a cellular automaton model, Wiener and Rosenblueth in 1946 claimed that
flutter or fibrillation could not be induced without anatomical obstacles [535]. These
authors mentioned the possibility of rotating spiral waves, but only around an opening.
Moe et al. formulated a cellular automaton computer model and demonstrated that
reentry might be possible without an anatomical obstacle [352]. Two decades would pass
until Allessie et al. in 1977 proved this concept by inducing circus movement in the
rabbit atrium, and using multiple surface electrodes confirmed that reentry could occur

around areas of functional block in the absence of anatomical obstacles [10]. The central
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core proved to be normal excitable tissue in the refractory state of its cycle. This type of
reentry has become known as the "leading circle" concept. These investigators also
emphasized that the wavelength or minimal size of the circuit is given by the product of

conduction velocity and the effective refractory period.

11.2 Mechanisms of Reentry

What are the minimum criteria necessary to establish reentry? First, there must exist a
closed path available to support continuous propagation. A one-dimensional closed ring
is therefore the simplest possible geometry that can sustain reentry. A stimulus applied at
any point on a uniform ring will propagate bidirectionally around the ring since wave
fronts will follow any available path into excitable tissue. Activity extinguishes only
when there is no further excitable tissue available, either because a domain boundary is
reached, or because the wave front encounters refractory tissue, has nowhere to go, and
blocks. If block extinguishes propagation at part, but not all, of a wave front then the
remaining segment can invade retrogradely into a new pathway that becomes available
when the blocked region recovers. Garrey and Mines both recognized these essential

requirements for reentry - an alternate pathway and unidirectional block.

Extending this concept more generally into two and three dimensions, it is worth
reiterating that reentry becomes possible whenever a wave front is blocked over a partial
segment. Any process that breaks a wave front leaving a free end will cause a reentrant
circuit to establish itself around that free end point as shown in Figure 11.1. The end
point can follow the boundary of a hole or inexcitable obstacle, as suggested in early
studies, but can also occur within continuous tissue. In the latter case, a spiral wave
develops about a point in two dimensions, or a scroll wave develops about a filament in

three dimensions. Winfree has discussed the topology of these concepts [542].
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Figure 11.1. A free end (FE) of a propagating wave front adjacent to excitable tissue will
naturally roll-up into a spiral wave. The creation of free ends is fundamental to the origin
of reentry, and is usually a consequence of block over a wave front segment. The free end
is a point in two dimensions and a filament in three dimensions.

An advancing wave front cannot transform into a reentrant circuit without there existing a
region of at least transient conduction block. This basic requirement can be illustrated by
examining propagation of a wave front over a piece of tissue in Figure 11.2. The plane
wave encounters a region of inexcitability and blocks while the remainder of the wave
advances. A free end is established on the wave front and runs along the boundary of the
blocked region, tracing what is typically called an "arc of conduction block". If the
blocked region then recovers excitability after the surviving wave segment has passed,
the free end can begin to advance into newly excitable tissue. The natural behaviour of

the tip is to roll up into a spiral wave if sufficient space is available.

The second row of frames in Figure 11.2 shows how this wave phenomenon can be
approximated on a tissue ring domain representing conduction around a functional or
anatomical obstacle. In this case the wave front would normally advance down the ring
taking both pathways arms in unison. For reentry to occur, the wave front must return up
one arm to complete a continuous closed path. Such a reversal requires block at some

point in the circuit to permit the antegrade arm to become a retrograde arm.
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Figure 11.2. Reentry can be established in a two-dimensional sheet of tissue (top), by
placing a region of transient inexcitability in the path of the advancing wave front. The
wave blocks over part of its length, immediately creating a free end (circle) that follows
the blocked region. If the block is only transient, the free end can propagate into excitable
tissue, once the block is released, and form a reentrant circuit, which develops into a
spiral wave. The arrows indicate how the left-arm ultimately converts from downward to
upward propagation. The second row (bottom) shows the same simulation, but with the
square domain masked to expose only a ring, approximating a reentrant circuit. Ring
models, reduced to one-dimensional cables, provide a simple means to study reentry and
block.

11.3 Stimulus-Induced Block

Fibrillation typically occurs in hearts with abnormal or diseased substrate exposed to
ischemia, metabolic derangement, or autonomic influences. To establish fibrillation in
normal or "healthy" tissue and heart models studied here, we must induce it artificially by
external stimulation, or by transient alteration of tissue substrate, such that at least one
region of unidirectional block is forced. A point or patch stimulus, delivered within the
refractory zone of an action potential wave, will achieve this result, provided that it

occurs at the right place and time, within the vulnerable window [543].

Stimulus-induced block has been studied theoretically in cable ring models by several

investigators to elucidate the nature of the "vulnerable window", within which a stimulus
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can induce reentry [413, 472, 473]. Figure 11.3 illustrates this phenomenon in a cable
ring of SHV endocardial cells. The cable is given an initial stimulus S; at location i,
which causes an action potential to propagate bidirectionally around the ring. A second
stimulus S; is delivered at time ts, to a point in the refractory zone i located on the
action potential tail. If ts, is too early, falling within the absolute refractory period, the
stimulus is ineffective and blocks bidirectionally. If ts; is too late, the stimulus gives rise
to new waves that propagate bidirectionally outward. If applied within a narrow window,
the stimulus will propagate in the retrograde direction only, and block in the antegrade
direction. This vulnerable window lies on the action potential tail, and can be defined in

terms of either the critical time interval or the corresponding critical space interval.
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Figure 11.3. A current stimulus S, is delivered to a point on the tail of the action potential
at time ts, on a cable of SHV endocardial cells. The result depends on how ts, relates to
the time of the vulnerable window ty: bidirectional block if ts; < ty (left), unidirectional
block if tg = ty (middle), or bidirectional propagation if ts; > ty (right).

The mechanism responsible for unidirectional block within the vulnerable window (VW)
is illustrated in Figure 11.4. Basically, success or failure of stimulus-induced propagation
depends on the ability of the sodium current to reach its threshold and source enough
ionic current to its neighbouring sinks to maintain a safety factor greater than one. The
vulnerable window must occur where there is a spatial gradient of h(x), within the region
where 0 <h(x) < 1. Initial depolarization at point i, causes h(iz) to inactivate back to zero,
which enhances the asymmetry of h(x