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Abstract

The rapid emergence of Electronic Commerce has caused a so-called “digital di-
vide” to form between those with access to the Internet and those without. While
governments have tried to lessen this divide through the introduction of public ac-
cess points and infrastructure subsidies, little is being done to address the barriers to
entry for functionally illiterate and cognitively impaired populations. Our research
attempts to address this issue by individualizing end-user interactions with computer-
ized systems on a domain-specific basis. We take the view that each end-user’s system
should act as a peer in the computing environment, allowing end-users to own and
control their information. Shifting from the current client-server computing environ-
ment to the peer-to-peer paradigm of computing should facilitate the customization of
interactions that these populations require while maintaining their privacy. Existing
applications programming environments are geared towards the client-server model
of computing. Research into peer-to-peer application development has indicated that
the process-oriented programming environment facilitates some aspects of peer-to-
peer application development, but introduces challenges with respect to distributed
data management. Existing blocking distributed transaction coordination mecha-
nisms rely on global state to facilitate centralized control of distributed resources,
but there is no concept of global state in the process-oriented model. This thesis in-
troduces a new model of token-based peer-to-peer interaction coordination (the TPIC
model). This new model maintains consistency in a peer-to-peer environment without

relying on global state.



Chapter 1
Introduction

This thesis introduces a new model of transaction coordination in a peer-to-peer envi-
ronment, called the token-based peer-to-peer interaction coordination (TPIC) model.
In this new model, it is assumed that peers establish contracts before participating in
a peer-to-peer interaction. A mobile, disposable token is used to coordinate peer-to-
peer interactions, and actions to be performed at each of the peers are serialized to
form a token plan. Each time a token visits a peer, a microtransaction in the token’s
plan is executed. The execution of a microtransaction involves movement of data from
containers on the token into the peer’s database, performance of a database trans-
action which moves the peer’s database state from one consistent state to another
consistent state, and finally, movement of data from the peer’s database to containers
on the token. The peer-to-peer interaction holds locks in the peer’s database only
while the token is present, yielding a non-blocking model. Although the microtrans-
actions are executed serially among peers for a single interaction, high concurrency
among independent interactions should be facilitated due to the non-blocking nature

of the coordination model.



1.1 Motivation

This thesis forms part of a larger body of work, the Knowledge Acquiring Layered
Infrastructure (KALI) project at Dalhousie University, which aims to increase ac-
cessibility for functionally illiterate and cognitively impaired populations [9]. Our
research to date has indicated that accessibility for these populations requires exten-
sive individualization of interactions, which in turn requires additional mechanisms
for ensuring privacy. In this section, we introduce the motivation and context for the
KALI project and provide a brief description of the paradigm shift we anticipate will

be necessary to increase accessibility for these populations.

1.1.1 Privacy

Increasing accessibility of systems through personalization of end-user interactions
requires extensive personal information about the end-user to be stored in the system
with appropriate protection and access control mechanisms. Individuals will not allow
this information to be collected and stored unless they can retain ownership and
control over it. To allow end-users to own and control their information, we propose
a paradigm shift from the client-server architecture of computing to the peer-to-peer
architecture. Under the peer-to-peer paradigm, end-user personalization information
such as medical records and financial information can be stored on systems under the
end-user’s control. This movement of personal information to end-users systems will
allow processing of personalization information to occur locally under the end-user’s
control. Existing approaches to personalization require that each service maintain
a copy of end-user information for each user of the service. This distribution of an
end-user’s personalization information across many sites reduces end-user control of
end-user information.

A peer-to-peer application is a distributed application in which each peer can act
as a client and/or as a server at the application level, allowing flexible assignment of

processing responsibilities. In contrast, a client-server distributed application forces
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Figure 1.1: Shifting Paradigms.

the bulk of the processing onto the server. Processing involves access to data, and
in the client-server architecture the data is therefore centralized at the server. In the
peer-to-peer paradigm, data can be distributed across peers, and responsibility for
processing of data can be assigned to the peer with access to the data. Interactions
among peers typically involve some sharing of information, since the information to
be processed is distributed among the peers.

The peer-to-peer paradigm involves peer-to-peer interactions at all levels, includ-
ing the system, communication, and application levels [3]. We perceive that changing
to a peer-to-peer paradigm will involve changes in many facets of computing, as de-
picted in Figure 1.1.

Moving to the peer-to-peer paradigm may be facilitated by a different application
development environment than is currently employed, as peers in the system must
operate independently at the application layer. Process-oriented application devel-
opment environments (as described by Strom [40]) such as HERMES [41] appear

well-suited to the development of peer-to-peer applications [3]. In a process-oriented



development environment, there is no concept of global state or time, leading nat-
urally to process independence. This lack of global state, however, leads to data
management challenges with respect to existing blocking distributed transaction pro-
cessing models which require global state to ensure consistency among participants.
This thesis provides a new model of peer-to-peer interaction coordination that does
not rely on global state and that can be used to share data in a peer-to-peer envi-
ronment without compromising privacy. Section 2.8 provides a detailed discussion of

the process-oriented development environment.

1.1.2 From client-server to peer-to-peer

Over the past four decades, hardware systems have repeatedly been replaced by newer,
faster, and less expensive components. This pattern of advancement in hardware
systems, which was fueled in part by the proliferation of home computers and, more
recently, hand-held wireless devices, has allowed hardware designers to start with a
clean slate at each iterative pass, thus reducing the complexity of the design process.
Systems and application software, on the other hand, have followed an evolutionary
path of advancement where each new release maintains backwards compatibility with
the earlier systems. Many software systems (e.g., IBM DB2, Oracle) that have evolved
over a long period of time still have some original components from as far back as
thirty and forty years ago. In addition, the functionality offered by software systems
has increased steadily. Taken together, these factors have contributed to the ever-
increasing complexity of software systems.

Development of software systems has traditionally been accomplished by software
professionals for software professionals. Although the development group has evolved
from a single “guru” into teams of programmers, the domain knowledge of these teams
1s still technology-focused. Lack of knowledge in application-specific domains has led
to a computing environment that non-technical end-users find unwieldy to operate.

The dramatic increases in the number of computer users and the availability of

high-speed network connectivity coupled with significantly reduced costs is causing a



societal shift towards a knowledge-based economy [15]. In fact, the number of end-
users has risen so dramatically that a revolutionary approach to software development
is becoming more feasible. There are sufficient numbers of new users to justify a
market for domain-specific, specialized devices that do not follow an evolutionary
pattern of development.

In order to increase accessibility, a shift from computing-centric to human-centric
development of systems is required. In a human-centric environment, end-user in-
teractions with the system are customized based on extensive personalization infor-
mation. Domain experts, who are not computer scientists or computer engineers,
participate in the definition of personal traits that can be used to customize interac-

tions to carry out domain-specific tasks.

1.2 Overview of the TPIC model

Traditional blocking distributed database transaction coordination implementations
require global state to ensure that distributed transactions move the database from
one consistent state to another consistent state [7]. We anticipate the need for a peer-
to-peer interaction coordination model that does not use global state. We propose
a layered model for the coordination of peer-to-peer interactions, called the TPIC
model. The layers of the TPIC model include the application layer, the contract
layer, the application support layer, the interaction processing layer, the token pro-
cessing layer, and the local DBMS processing layer. This section provides a high-level
description of the TPIC model and of each of the layers in the model.

The TPIC model provides a mechanism for the controlled sharing of data across
peers. Within the TPIC model, peer-to-peer applications generate domain-specific
contracts between pairs of peers using the services of the contract layer. Each contract
includes domain-specific terms describing the business rules and timing constraints
that apply. Additionally, a contract contains meta-data detailing the remote schema

information about data items to be accessed at each peer. Each peer extends their



database schema when they enter into a contract. This extension provides a storage
area within the database used as a staging area for data that is transferred between
peers. While the establishment of contracts is an important area of research, it is
not the focus of this thesis, and the existing contract.net [38] approach to distributed
negotiation, described in Section 2.10, will be adopted for this thesis.

The peer-to-peer application support layer uses established contracts to initiate
an interaction that will accomplish a domain-specific task. The information in the
contracts is used to generate an interaction plan. This interaction plan details the
business tasks to be performed, and the order in which to perform them, in order
to complete an interaction in accordance with the terms in the contracts governing
the interaction. A token plan is generated by choosing one or more paths through
the interaction plan. This token plan is passed as a parameter to the interaction
processing layer of the TPIC model. The interaction processing layer builds a token
based on the parameters it receives from the application support layer. A token
includes a catalog, a token plan, a set of containers, and a log. The token catalog is
used to facilitate access to data on each of the peers involved in the interaction, as
well as access to data on the token itself. Information in the contracts held by the
initiating peer is used to build the token catalog. The token plan indicates where the
token should travel based on the status returned from each peer’s DBMS (commit or
abort), and what action should be taken at each peer. The peer that initiates the
interaction builds the token plan based on the terms and constraints in its contracts.
The schema information from each contract is used to construct the token’s containers.
Containers are used to store and move data among peers.

The steps in the token plan, termed microtransactions, correspond to subtransac-
tions in traditional distributed transaction processing. The containers on the token
can be seen as volatile storage areas, or buffers. In contrast to traditional models
of distributed transaction coordination, each microtransaction in the token plan is
executed in isolation and processed sequentially instead of in parallel at the differ-

ent sites. Each microtransaction moves a single peer’s database from one consistent



state to another consistent state. When a microtransaction starts, it first moves data
from a container on the token into a temporary table in the peer’s database. Upon
completion, a microtransaction moves data from the temporary table in the peer’s
database onto a container on the token. The data in the temporary table is consid-
ered “stale” after the token departs. This “stale” information can, however, be used
during recovery processing if the token is lost. Thus, when a token leaves a peer, the
peer’s database is left in a consistent state.

Recovery in the TPIC model must use compensating microtransactions, since each
microtransaction execution performs a complete transaction on a peer’s DBMS. When
a microtransaction does fail for some reason, the token can be sent back to the origi-
nating peer for recovery processing. The application support layer on the originating
peer can produce a new token plan that includes compensating microtransactions or
alternative microtransactions to the one that failed, and processing can continue. If
the token is lost, the initiating peer must request information from every peer that
has executed microtransactions under the current interaction to try to rebuild the
token’s containers on the basis of the “stale” information found in the temporary ta-
bles at each participant. If insufficient information is available, the interaction layer
will invoke arbitration and pass along the information it has gathered to the contract
layer to have the problem resolved outside the scope of the model.

In this chapter, the motivation for the TPIC model was presented, together with
an overview of the model. Chapter 2 provides background in areas related to this the-
sis, including transaction processing, advanced transaction coordination mechanisms,
distributed transaction processing models, middleware, workflow systems, contracts,
and peer-to-peer computing. In Chapter 3, the TPIC model is informally illustrated
using several examples. A detailed description of the TPIC model is presented in
Chapter 4, followed by proofs showing the correctness of this new model of transac-
tion coordination in Chapter 5. Chapter 6 describes a preliminary implementation
that validates the TPIC model. Chapter 7 presents the conclusions of the thesis and

describes future research directions.



Chapter 2

Background and Related Work

Areas related to this research include distributed transaction coordination, concur-
rency control techniques, peer-to-peer computing, the process-oriented programming
environment, transaction processing, business transactions, and automated contract
negotiation. To a lesser extent, the areas of middleware and workflow systems are
important to consider to ensure that the results of the research are relevant in today’s
computing environment. Background information on state of the art in each of these

fields is described below in the context of this research.

2.1 Historical perspective on DBMS Processing

In 1970, Codd proposed the relational database model [11]. This simple model pro-
vided a theoretical framework for relational databases that was absent in the earlier
models (e.g., hierarchical model, network model). The relational model provided a
set-theoretic mathematical model for dealing with data stored in databases as tuples.
Operations supported by the model included insertion, deletion, and update (which
can be modelled as a deletion plus an insertion) of tuples. The Structured Query Lan-
guage (SQL) was developed using set theoretic concepts [8], where the fundamental
operations of the language are set operations (join, project, union, etc.).

Database management systems (DBMSs) were then constructed with two main



components - a front end or preprocessor for parsing SQL statements and generating
the necessary read, write, and update commands to make the requested changes
in database state, and a back end or data management component responsible for
maintaining database state [14]. The front end accepts SQL statements in a FIFO
order, and the execution of each SQL statement is expected to move the database
state from one consistent state to another consistent state.

The DBMS was a relatively straightforward system to implement, since no con-
currency control was required. A log of the actions performed by the SQL statement
was generated, and in the event of a failure the log was used to UNDO the effects
of the failed SQL statement. Thus, SQL statements executed in FIFO order with
logging used to reverse the effects of failed executions exhibited four important prop-
erties with respect to the database: atomicity, consistency, isolation, and durability
(ACID). Atomicity is the all or nothing property - either all of the updates occur
or none of them occur. To ensure atomicity, logging is used to reverse the updates
that occur before a failure. Consistency is the guarantee that the updates will move
the database from one consistent state to another consistent state. Isolation requires
that no intermediate results are visible - this is guaranteed by executing one SQL
statement at a time. Durability is the property that once a statement has finished
executing, the effects of the statement will be durable even in the event of a system
crash. This property is guaranteed by flushing all changed database values to the
disk before writing the log record that ends a statement’s execution.

The sequential execution of individual SQL statements was found to be an inef-
ficient use of system resources. To increase utilization, it was desirable to execute
many requests in parallel. However, the arbitrary interleaving of reads and writes
associated with distinct update operations can violate the isolation property and lead
to a corrupt database state. While each individual SQL statement would move the
database from one consistent state to another consistent state, the interleaving of
actions from different SQL statements would provide no such guarantee. This has

led to the development of transactions and serializability theory. Note that in this
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context a single SQL statement can be though of as a complete transaction.

2.2 Transaction processing

A transaction is a sequence of one or more read and/or write actions (together with
either a commit or an abort action) performed against a database which, taken to-
gether, bring the database forward from one consistent state to another consistent
state. A set of transactions executed in serial order clearly maintains database con-
sistency. However, the arbitrary interleaving of reads and writes from different trans-
actions can lead to corruption of database state [5]. If, however, the reads and writes
resulting from a given interleaving are equivalent to the reads and writes generated
by some serial execution of the set of transactions, then database consistency will be

preserved. This is the premise for research on serializability of transactions.

2.2.1 ACID transaction properties

While serializable schedules are guaranteed to maintain database consistency, the
theory of serializability is not used in practice for validating transaction schedules.
Instead, formal theoretical proofs have been validated which show that transaction
histories which maintain certain properties (which are easier to accommodate than
serializability verification) represent serializable schedules. These properties are atom-
icity, consistency, isolation, and durability. Taken together, these properties are re-
ferred to as the ACID transaction properties. If all transactions adhere to the ACID
properties, the serializability of concurrently running transactions is guaranteed [5].

To ensure that the concurrent execution of transactions is equivalent to some seri-
alized ordering of the individual transactions, the transaction processing coordinator
ensures that the ACID transactional properties are enforced. The three basic ap-
proaches to enforcing the ACID transactional properties are locking, timestamping,

and optimistic methods [4].
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2.2.2 2-Phase Locking (2PL)

In the locking approach, a read or write lock is obtained on a data item before 1t is
read or written. Multiple transactions can simultaneously hold read locks on the same
data item, but write locks are held exclusively. In order to obtain a conflicting lock on
a data item, a transaction must block until the conflicting lock on the item is released.
In order to guarantee isolation, strict 2 phase locking (2PL) is used, where locks are
obtained throughout the lifetime of a transaction but no locks are released until the
transaction is aborted or committed {19]. One of the problems with locking is the
potential for deadlock to occur, where two or more transactions have each locked a

data item while waiting for the release of data locked by the other transaction.

2.2.3 Timestamping

In timestamping approaches, every data item is assigned a timestamp. The times-
tamp on an item is compared to that of the requesting transaction before the data
item is accessed. If the transaction timestamp is older than the timestamp on the data
itemn, the requesting transaction is aborted and restarted. Otherwise, the transaction
is allowed to access the data item, and the data item’s timestamp is updated. Thus
no locking occurs, and there is no possibility of deadlock. Timestamping produces se-
rializable execution histories, but the overhead associated with aborting transactions

can be prohibitive [6].

2.2.4 Optimistic methods

For optimistic methods, it is assumed that conflicts are very rare. Transactions have
three phases: read, validate, and write. During the read phase, writes are local to
the transaction. The transaction is assigned a timestamp, and the validation phase
ensures that no conflict has occurred. In the event of a conflict, the transaction is
restarted. Otherwise, the write phase is used to commit the transaction. Performance

of optimistic methods breaks down when conflicts are common [26].



12

Of these three basic approaches, strict 2PL is by far the most widely implemented
concurrency control mechanism in production or prototype database processing sys-
tems. In 2PL, only (read, read) locks are compatible - that is, (read, write), (write,
read), and (write, write) locks all cause conflicts. These conflicting locks sometimes
cause transactions to block even though the transactions could execute concurrently

without violating the semantic integrity of the database system.

2.3 Advanced transaction models

Advanced transaction models have been proposed which either replace or enhance
2PL in order to take advantage of the additional concurrency gains made possible
when semantic constraints are used to allow transactions to continue in cases where

they would block under 2PL. Some advanced transaction models are discussed below.

2.3.1 Nested transactions

Nested transactions, introduced by J. Moss in the early ’80s [31], allow for the recur-
sive definition of a tree of subtransactions. Child transactions can only start after
their parent starts, and a parent transaction cannot complete until all of its children
have completed. If a parent transaction aborts, all of its children must be aborted,
but if a child transaction aborts the parent has a choice in the way it will proceed.
The parent transaction can choose to abort, or it can invoke an alternative or contin-
‘gency subtransaction in lieu of the failed subtransaction. Nested transactions permit
increased modularity and a higher degree of intra-transaction concurrency as com-
pared to non-nested transactions, while still maintaining the isolation properties of

the global transaction.

2.3.2 Open nested transactions

In open nested transactions, also developed by Moss [30], the isolation requirement is

relaxed by allowing the committed results of subtransactions to be viewed by other
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nested transactions before the global transaction has committed. Only subtrans-
actions that commute with the committed subtransaction are allowed to view its
results. While only read activities commute in traditional systems, update oper-
ations can sometimes be defined as commutative. One example is the increment
operation on a counter variable. Open nested transactions achieve a higher degree of

inter-transactional concurrency.

2.3.3 Sagas

Sagas, introduced in 1987 by Hector Garcia-Molina [20], uses the concept of com-
pensating transactions to allow a series of transactions to be executed as a group. A
Saga consists of a series of ACID transactions T7,...,T, and a series of compensat-
ing transactions Cfi, ..., C,, where each C; effectively compensates for the execution of
the corresponding T;. During the execution of the Saga, if all transactions commit
the Saga is committed. If a transaction T aborts, then compensating transactions
Ck—1,...,C} are performed, causing a forward correction of the database. Sagas are

useful for dealing with long-lived transactions.

2.3.4 Transaction chopping

By chopping transactions into smaller pieces and executing the pieces as transactions,
the amount of time that locks are held can be reduced. The ACID properties of the
transaction may be compromised by this action - in particular, the isolation property
may be violated since committed pieces of transactions may be viewed by other
transactions even though the transaction as a whole has not yet completed, and,
indeed, may still abort. One approach to this problem is the concept of transaction
chopping [35]. In this approach, a chopping graph is generated based on the syntactic
constraints implicit in the transaction’s structure. Any additional known semantic
knowledge, such as commutativity of actions on a data item (i.e., a counter variable),
may be used to reduce the number of constraints on the transaction. If parts of a

transaction fail, they can be retried until they commit. The correctness criteria in
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the chopping graph ensure that any interleaved execution of the chopped transaction
with other concurrently running transactions (which might also have been chopped)
will result in a serializable execution history. In the event of a system failure, the
transaction log must maintain additional knowledge for the recovery mechanism, since
parts of a chopped transaction may have committed while the global transaction has

not yet completed.

2.4 Distributed Transaction Concurrency Control

A distributed database is a collection of logically integrated data distributed across
systems that are connected by a computer network. A distributed database manage-
ment system consists of software that makes the distributed aspects of the underlying
data as transparent as possible. Transactions in a distributed database environment
are differentiated on the basis of the location of the data they access. Local trans-
actions occur on a single node and access the data in only one database, while any
transaction that accesses data from more than one database is termed a global trans-
action.

The problem of ensuring that transactions executing concurrently in a distributed
database produce serializable histories is similar to that of the single database case,
with some additional complexity. In a distributed database, a global transaction is
divided into subtransactions, and each subtransaction is submitted for processing
at a single database. If two or more global transactions execute concurrently, the
individual subtransactions that occur at the same database will be serialized by the
local database transaction coordinator. However, different databases may generate
a different serialization order for subtransactions, with the result that the overall
global transactions are not serializable. Thus, in a distributed database system, both
local and global serializability must be enforced. This involves both a distributed

concurrency control technique and a distributed atomic commit protocol.
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The approaches for maintaining serializability in a distributed database environ-
ment are based on extensions to the single database approaches of locking, times-

tamping, and optimistic methods.

2.4.1 Distributed 2PL

In distributed 2PL, all of the locks for the global transaction must be acquired before
any of the local subtransactions can commit [4]. A coordinator uses the two-phase
commit protocol (described in subsection 2.5.1) to ensure that all locks have been ac-
quired (prepare phase) before any of the subtransactions commits. While the commit
protocol introduces messaging overhead proportional to the number of participants
in the distributed transaction, the number of participants in most distributed trans-
actions is low since the way in which data is partitioned in a distributed database

environment tends to place data on sites where it is typically accessed [4].

2.4.2 Distributed timestamping

In a distributed environment, there is no single clock which can be used to assign
unique timestamps. Furthermore, events can occur simultaneously at two or more
sites. Rather than attempt to synchronize clocks across sites, the concept of global
time is introduced. This global time is defined as the concatenation of the local
clock on the participant and a participant identifier. This local clock is not the local
system clock, but rather a local counter that is advanced by the transaction processing
protocol. Global time is maintained by advancing the local clock each time an event
occurs on the local site (start of a transaction or receipt of a message). When a
message 1s sent between two participants, the message timestamp is the timestamp
of the sender. Upon receipt of a message, a participant will advance their local clock
if the received message timestamp is greater than the local timestamp. This causes
participants to synchronize with each other when they communicate. While clocks
may drift apart when two participants do not communicate, they don’t need to be

synchronized since they are not collaborating or communications would be occurring.
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Given that global time is available to each of the participants, timestamping can be

enforced as in the centralized case [4].

2.4.3 Distributed optimistic approaches

As in the centralized case, it is assumed that conflicts are very rare. The validate
phase is performed in two stages, a local validation stage and a global validation
stage. If any local validations fail, the entire transaction is aborted. If all of the local
validations succeed, a global validation phase ensures that all outstanding transactions

with a smaller ID terminate before proceeding [4].

2.5 Distributed Transaction Coordination

2.5.1 Two-phase commit (2PC)

The two phase commit protocol is by far the most widely implemented approach to
distributed transaction coordination in commercial and prototype distributed database
systems (e.g., DB2, Oracle, Sybase). In the two-phase commit protocol, subtrans-
actions of a distributed transaction either all commit or all abort. A centralized
coordinator requests that all participants prepare to commit. In the “prepare” phase,
each participant is asked to execute their part of the distributed transaction and
“prepare” to commit. The participants then attempt to acquire all of the locks they
will need to eventually commit. If any participant responds with an “abort”, the
distributed transaction is aborted and the coordinator issues an “abort” message
to each participant. If, however, all participants respond with “prepared”, the co-
ordinator enters the “commit” stage. In this stage the coordinator logs that the
transaction has been committed and issues a “commit” directive to each participant.
Each participant then commits their part of the distributed transaction, and issues an
acknowledgment to the coordinator that they have successfully committed. Once all

of the participants have acknowledged a commit to the coordinator, the coordinator
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logs the commit messages to stable storage and issues an “end transaction” directive

and the transaction has been completed.

2.5.2 Three-phase commit (3PC)

The blocking nature of the 2PC algorithm can cause a transaction to block at all sites
if a single site fails or a network partition occurs during certain phases of the 2PC
protocol. The 3PC protocol addresses issues of node failure and network partitioning
by moving to a three-phase protocol [37]. In the first phase, the coordinator requests
that all participants vote for a commit or an abort outcome. All of the participants
issue votes of commit or abort to the coordinator, ending the first phase. If all
of the participants vote to commit, the coordinator issues the instruction to pre-
commit. The pre-commit instruction informs all participants that they should prepare
to commit. All of the participants then acknowledge that they received the prepare to
commit instruction, ending the second phase of the protocol. Next, the coordinator
issues the global commit directive, and each participant commits their part of the
transaction and acknowledges their success to the coordinator. This ends the third
and final phase of the protocol.

In the first phase, if any participant decides to abort they will vote abort and
commence local abort processing. Upon receipt of one or more abort votes, the coor-
dinator will instruct all participants to pre-abort. The pre-abort instruction informs
participants that they should prepare to abort local processing of the transaction. All
of the participants issue acknowledgments to the coordinator that they have received
the pre-abort instruction, ending the second phase of the protocol. Finally, the co-
ordinator issues a global-abort instruction to each of the participants. Each of the
participants then initiates local abort processing and acknowledges to the coordinator
that they have aborted the transaction. When all of the acknowledgments have been

received, the transaction has been fully aborted.
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2.6 Multidatabases

In a multidatabase, the databases are heterogeneous and each local DBMS is a pre-
existing DBMS which cannot be changed in support of distributed processing. The
need for multidatabase systems stems from the independent deployment of heteroge-
neous systems within an enterprise which must later be integrated, mergers and ac-
quisitions involving companies that have deployed databases from different vendors,
and interoperability issues for trading partners pursuing value chain integration.

In some multidatabase implementations, a layer of processing is added on top of
each local DBMS, and data values are logically separated into local variables that
only local transactions can access and global variables that global transactions can
access [2]. Unlike the distributed database situation, each local DBMS executes trans-
actions autonomously, and the global transaction manager cannot interfere or coor-
dinate how local transactions (or subtransactions) are handled by the local DBMSs.
Transactions that access both local and global data can conflict with each other tran-
sitively even if they access different data items at different sites. This forces the
global transaction coordinator to assume that all global transactions conflict, since
the global scheduler has no control on how the local DBMSs will schedule requests.

Unlike distributed transaction processing, sites may commit local subtransactions
without confirmation that the global transaction is successful. If a global transaction
fails after one or more of its local subtransactions has been committed, compensating

local subtransactions must be used to restore globally consistent state.

2.7 Peer-to-peer

In the centralized model of computing, large platform-dependent applications were
written by expert programmers and access to the system was limited to business
applications. These systems were replaced by client-server systems over networked

environments, with complex servers accessed by relatively simple client applications.
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As computing power has migrated from centralized systems out closer to the individ-
uals accessing systems, the type of end-users and the modes of access have changed
considerably. The shift from centralized to client-server computing increased the num-
ber and type of end-users able to access computerized systems. It is anticipated that
the shift from client-server to peer-to-peer computing will similarly increase accessi-
bility of systems by allowing the end-user system to act as a peer in the environment
and to customize interactions for the end-user in a personalized fashion.

As computing devices continue to proliferate and as networking technologies con-
tinue to deliver faster connections at reduced cost, a paradigm shift from the client-
server model to the more general peer-to-peer model is likely to occur. Several com-
mercial ventures have recently emerged that use peer-to-peer networking to transfer
data among distributed peers using centralized lookup services and centralized con-
trol (e.g., KaZaa [25], GnuTella [21]). These systems have scalability problems due
to the centralized lookup and control services.

Recent research on the Chord project at MIT [39] has produced a potentially
viable distributed lookup service as an alternative to the centralized control regime.
The Chord approach allows for completely decentralized service lookup based on
cooperation among the participating peers. Conceptually, the peers are arranged in
a circle with each peer assigned to a node number based on a hash of the peer’s ID.
Each peer maintains a list of pointers to its neighbors at distances of 1, 2, 4, ..., 2"
around the circle. Thus, given an index value to look up, a chord is traversed to
quickly approach the node that stores the value associated with the index.

Another recent development in the decentralized peer-to-peer environment is the
Simple Object Access Protocol (SOAP), an XML-based lightweight protocol for ex-
change of information in a decentralized, distributed environment. The SOAP pro-
tocol consists of an envelope that describes the message contents and how to process
it, encoding rules for application-defined data types, and a convention for remote

procedure call and response representation [43].
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With the advent of client-server computing, sophisticated desktop computers re-
placed the dumb terminals of the centralized model. This shift from dumb terminals to
desktop computers caused a dramatic increase in systems administration complexity.
In the centralized model, the systems administration was confined to the centralized
servers. In the client-server model, client machines require the performance of ad-
ministrative tasks such as upgrades and patches to the operating system and client
software, backups, network connectivity administration, and troubleshooting. Also,
the inherent asymmetry of clients vs. servers increases overall systems administra-
tion complexity, since servers have different requirements than clients. The growth
in systems administration complexity associated with client machines was severely
underestimated, and resulted in a significant loss of productivity for end-users [24].

Moving to a peer-to-peer model of computing will shift more functionality and
responsibility to the end-user’s system. In order to prevent a further escalation of
systems administration complexity, a different approach to software development and
deployment may be required. The existing distributed computing infrastructure is
based primarily on the client-server oriented middleware, with distributed applica-
tions typically written in object-oriented programming languages.

It is anticipated that the process-oriented programming environment will be bet-
ter suited to the development of peer-to-peer applications than the object-oriented
programming environment, as it allows data and functionality encapsulated with in
a process to migrate freely among peer systems. While moving to a peer-to-peer
paradigm will increase the amount of systems administration required on the end-
user’s system, the process-oriented programming environment coupled with the sym-

metry of peer systems should allow for more automation of administrative processes.

2.8 Process-oriented programming environment

In process-oriented computing, software is constructed from processes with typed in-

terfaces. Each process encapsulates data and functionality, and processes can only
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be accessed through their interfaces. Thus, the input ports of a process entirely de-
termine its interface. Processes communicate through message channels that connect
the output port of one process to a type-compatible input port of another process.
Processes exchange messages via their typed input and output ports. A process does
not know about the implementation details of other processes.

There is no concept of global state or global time in a process-oriented system, as
all data and functionality are local to their owning process [40]. Without shared state,
processes are independent of each other. This reduces the complexity associated with
process migration and distributed application development [29]. The independence
of processes reflects the peer relationship among processes, where each process can
take on the role of client or server as need be.

In contrast, the object-oriented programming environment allows for shared state
through constructs such as templates, class variables, inheritance, and public and
private methods and data. Applications are developed using shared global state, and
distribution is effected through use of middleware facilities that allow for location
transparency for the programmer at the expense of run-time migration transparency
for the end-user (see section 2.11).

The lack of global state and process independence inherent in the process-oriented
programiming environment as described by Strom [40] make it an attractive model for
the development of distributed applications. In the CORDS project [3], difficulties
were encountered for the development of data-intensive distributed applications using
the process-oriented programming environment, as described below. In the absence
of global state and global time, no known transaction coordination mechanism could
be applied directly to the management of data distributed among processes. This
forced each process requiring access to a database to encapsulate the entire database,
and to move the entire database if other processes needed access to it.

The main goal of this thesis is to address the issue of transaction coordination
in the absence of shared global state. We see this aspect of the process-oriented

programming environment as a significant hurdle that must be cleared to facilitate the
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development of peer-to-peer applications that can be used to personalize interactions
in a way that preserves privacy for end-users. For a detailed description of the process-

oriented programming environment, see for example [40, 41, 44].

2.9 Business transaction protocol

Business-to-business E-Commerce is increasing as businesses begin to automate their
interactions with suppliers and trading partners. Existing transaction processing
mechanisms are not well-suited to the requirements of automating business transac-
tions among autonomous parties.

OASIS (The Organization for the Advancement of Structured Information Stan-
dards, [33]), a not-for-profit global consortium whose focus is to develop standards for
E-business, has recently produced the Business Transaction Protocol (BTP) specifi-
cation. BTP includes a set of specific messages that get exchanged between computer
systems supporting an application, together with rules defining the meaning and use
of these messages. The BTP specification is designed to facilitate business trans-
actions among parties with pre-existing contractual agreements, where a business
transaction is defined as:

“... a consistent change in the state of a business relationship between two or more
parties. A business relationship is any distributed state held by the parties which is
subject to contractual constraints agreed by those parties.” [32].

The BTP approach assumes pre-existing contracts among the parties involved in a
business transaction. Furthermore, each party using BTP has an Application Element
and a corresponding BTP element. The messages exchanged in the BTP protocol are
sent and received in parallel to the existing application message exchanges. The BTP
serves to coordinate the effects of application actions among the parties. This is done
using a two-phase exchange of BTP messages.

In BTP, one of the systems involved in a business transaction is assigned the role

of coordinator. A software agent at the coordinator plays the role of Superior, and
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a software agent at each of the other parties plays the role of Inferior. The BTP
is centered on the relationship between a coordinator and one of the other parties
involved in a business transaction. The basic approach is for the application at the
coordinator to issue an application message to a service application at one or more
parties involved in the overall business transaction. For each of the parties playing
an Inferior role, the coordinator (acting in the Superior role) issues a BTP message.
This message informs the Inferior node of the application message that was initiated.
The Inferior nodes reply to the coordinator with a BTP message indicating their
preparedness to accomplish provisional effects of the requested application service.
Moving to a prepared state implies that the provisional effect has been accomplished
and the Inferior node is ready to either commit the changes (resulting in the final
effect) or reverse the changes (counter effect) based on the decision of the coordinator.
Once the coordinator has received sufficient information concerning the preparedness
of the Inferior participants, a consistent set of final effects is chosen and the coordina-
tor issues BTP messages to all Inferior nodes indicating if they should confirm (final
effect) or cancel (counter effect).

In addition to a single coordinator with Inferior participants, BTP also supports
the use of each Inferior participant as a Superior to other Inferior participants, yielding
a business transaction tree. Each node in the tree between the root and the leaves
acts in a dual role, as an Inferior to its parent node and as a Superior (coordinator)
to its child nodes.

BTP provides for two types of interaction - atoms and cohesions. An atom follows
the all-or-nothing approach, where all participants must be confirmed for the business
transaction to proceed (i.e., every Inferior participant has a veto power of the business
transaction). A cohesion allows for the coordinator to decide on a set of participants
to confirm (the confirm set). This confirm set can evolve during the life of the business
transaction, and can even include new Inferior participants that are added due to the
failure of some other Inferior participant to prepare.

Recovery in BTP uses presumed abort. Persistent information is required at both
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Superior and Inferior participants at certain junctures in the protocol in order to

ensure recovery in the presence of node failures.

2.10 The contract net protocol

The contract net protocol, originally proposed by Smith in 1980 [38], is a protocol for
establishing contracts among distributed autonomous sites. This protocol does not
assume a centralized coordinator, and allows each participant in the protocol to act
in both a client role and a server role interchangeably. The steps involved in securing

a contract between two parties include:

1. Task Announcement: This is best described as a request-for-proposals (or
RFP). The site requiring a service broadcasts an abstract representation of the
task’s requirements to the network. Information in the broadcast includes a
description of the task, the expected capabilities of the contractors, information

that bids should contain, and a deadline for delivery of bids.

2. Evaluation: Sites that receive the Task Announcement and are not already

occupied evaluate the announcement and decide whether or not to place a bid.

3. Bidding: Sites that decide to bid on the RFP submit their bids to the site that
announced the task, including details of their ability to successfully perform the

task.

4. Awarding: The site requiring service evaluates the bids it has received and
awards the task to the most suitable node(s), and issues a cancel message to

the sites that were rejected.

A site that bids on an RFP is free to act as a manager and issue its own RFP’s from
other nodes, which allows for subcontracting of services. Sites that both bid on RFPs

and issue RFPs are effectively acting as both a client and a server interchangeably.
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Figure 2.1: Structure maintained by a site for each task it has been assigned under
the contract net protocol.
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A site maintains a structure similar to that shown in Figure 2.1 for each of the tasks
assigned to it.

In this thesis, the contract net protocol is used to perform rudimentary contract
negotiation among peers. Contracts are established between peers before they enter
into TPIC model interactions. While contract negotiation is an important require-
ment of the TPIC model, the methods involved in the negotiation of contracts are
independent of the model and are not a focus of this thesis. The original contract
net protocol provides sufficient services to support the basic contract negotiation

requirements of the TPIC model.

2.11 Middleware

Middleware implementations such as CORBA [23], DCOM [12], and EJB [27] were
developed in large part to solve problems of heterogeneity in distributed systems. Mid-
dleware can resolve issues of heterogeneity and facilitate coordination and communi-
cation of distributed components in the construction of distributed applications. The
role of middleware in distributed application development is to present an abstract
layer to the application programmer that hides the details of the underlying system
infrastructure. Components in distributed systems need to communicate with other
components, potentially on different hosts. This communication must occur over a
network. Rather than program distributed systems by interfacing directly with the
transport layer, middleware can be used to handle the session and presentation layers
of the ISO network protocol stack.

Broad classes of middleware can be identified based on the primitives provided
for the interaction between distributed components. The categories are transactional,
message-oriented, procedural, and object or component based, and their primitives
are, respectively, distributed transactions, message passing, remote procedure calls,
and remote object requests [18]. Transactional middleware was developed to solve

heterogeneity problems in distributed database applications. This type of middleware
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lacks support for marshaling and has no well-defined interface for service offerings.
Furthermore, the overhead associated with guaranteeing ACID properties is imposed
even for applications that do not require transactional semantics. Message oriented
middleware is good for distributed event notification architectures, but supports only
at-least-once semantics. Furthermore, this type of middleware does not provide any
support for marshaling or for synchronous communications. Procedural middleware
addresses marshaling well, but lacks flexibility. All communications are one-to-one
synchronous, only at-most-once semantics are supported, and the lack of location
transparency restricts scalability. Object or component based middleware evolved
from procedural middleware, and combines many of the best features of each of the
other types of middleware. Object and component based middleware have proved
their suitability for client-server oriented applications, but exhibit shortcomings with
respect to new types of applications such as real-time, multimedia, and mobile ap-
plications [17]. Middleware presents a black-box style interface to the applications
layer, and does not allow for quality of service provisioning or adaptability. Proposed
solutions include frameworks which extend existing middleware functionality [36, 42]
and adaptive or reflexive middleware implementations [13, 16].

The Web Services protocol stack replaces traditional middleware implementations
with SOAP and XML over HTTP, yielding an extremely flexible model that lacks
transactional support. The lack of support for eBusiness transactions in the Web

Services model has resulted in a renewed interest in relaxed transactional semantics

research [28, 34].

2.12 Workflow

A workflow is a computerized system that automates or facilitates a business process
or part of a business process. Workflow management (WFM) systems have evolved
from a number of different product areas including image-processing systems, doc-

ument management systems, groupware applications, and project support software.
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Workflow management systems have evolved to support the coordination of business
processes. In this context, business processes are fairly coarse-grained activities, such
as the invocation of an application or an action performed by an individual. In con-
trast to transaction processing systems, workflow systems do not typically guarantee
ACID transaction properties [10].

The approach taken in the Workflow on Intelligent Distributed database Envi-
ronment (WIDE) project [22] is to extend database functionality to support process-
centric application environments such as workflow management systems. Database
functionality is extended through additional advanced transaction support and high-
level active rule support. Furthermore, a data support level (called the basic access
layer) is introduced to shield implementations from the specific underlying database
system 1n use.

The aim of the WIDE project was to develop an implementation of a next-
generation workflow system with advanced transactional support. Since most busi-
nesses rely heavily on existing relational databases that do not provide advanced
transactional support, a basic access layer was introduced to shield the workflow sys-
tem from the underlying database management system. The basic access layer uses
CORBA (see 2.11) to provide distributed access to the DBMS and to encapsulate
relational data in an object-oriented way. This layer includes mapping support be-
tween the underlying relational model of the DBMS and the object-oriented model
of the workflow environment.

Relational database transaction semantics are in general too restrictive to support
the flexibility required by workflow systems. Workflows are process-oriented, and
parts of a workflow may involve the execution of applications or the performance of
manual operations by humans. Performance of traditional database systems relies
on transactions with short duration to ensure minimal lock contention. Advanced
transaction models have been proposed in the litcrature, but support for these models
has not heen added to mainstream databases. In the WIDE project, an advanced

transaction support module is used to facilitate the needs of the workflow system.
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Workflow models are extremely flexible, and it has been shown that workflow
models form a superset of advanced transaction processing models [1]. In contrast
to the WIDE project, the work by Alonso ([1]) shows how existing workflow systems
(Flowmark in particular) can be used to create workflows that behave according to
any desired advanced transaction processing model, thus eliminating the need for
advanced transaction support at the database level. This approach, however, leads to
additional complexity for the workflow designer, as generating workflows that support
advanced transaction model semantics places the onus on the workflow designer to
understand and implement advanced transaction semantics for each workflow they

design.



Chapter 3

Informal description of TPIC

model

In this chapter, the TPIC model is presented informally and illustrated through sev-
eral examples. Chapter 4 provides a more detailed description of each layer in the
TPIC model. In Chapter 5, proofs of correctness for TPIC interaction executions

are presented. Chapter 6 describes algorithms for an early prototype implementation

used to validate the TPIC model.

3.1 Introduction

Existing blocking distributed database transaction coordination implementations re-
quire global state to ensure that distributed transactions move the distributed database
from one consistent state to another consistent state [7]. We anticipate the need for
a peer-to-peer interaction coordination mechanism in support of personal ownership
of end-user information that does not use global state and that allows peers to inde-
pendently complete their part of a peer-to-peer interaction. To accomplish this we
introduce a new model for the coordination of peer-to-peer interactions, termed the
token-based peer-to-peer interaction coordination (TPIC) model, that does not rely

on global state.

30
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The TPIC model is made up of function layers. Layers in the model include the
peer-to-peer application layer, the contract layer, the application support layer, the
interaction layer, the token layer, and the local processing layer. Figure 3.1 shows the
functional roles assigned to each layer and the data structures manipulated by each
layer.

In the TPIC model, the actions to be performed in a peer-to-peer interaction are
serialized on a token that is sent to each peer in turn. The TPIC model assumes
that each peer involved in an interaction maintains a DBMS. The set of actions to be
performed during a single visit to a peer is termed a microtransaction. If the execution
of a microtransaction is successful, it will move a peer’s database forward from one
consistent state to another consistent state. If the execution of a microtransaction
fails, it will have no effect on the peer’s database. Microtransactions initiated by an
interaction under the model will be viewed by each peer’s DBMS in the same way
as locally generated transactions. No software modifications to the peer’s DBMS are
necessary in support of the model.

A token has containers which are used to move data from one peer to another.
The data in these containers is moved into the local database when the token arrives
at a peer and moved back into the containers before the token leaves the peer. Thus,
the data from the token containers is available during local processing, but is no
longer available once the token has moved on. The results of the local processing are
recorded in a log on the token. A token plan details the order in which peers will be
visited by the token, and the actions to be taken at each peer. For each peer, the
actions performed by a single microtransaction form a complete local transaction.
The status code (“commit” or “abort”) returned from a peer’s DBMS is used to
determine the next peer the token should visit based on the token plan. Each peer is

assumed to have a uniquely identifying HostID (e.g., IP address).

Definition 3.1 A microtransaction is an ordered tuple (n,m,p), where n is the
HostID of the peer which can execute the microtransaction, m is a reference to an

SQL program at peer n, and p is a list of tables in token containers that should be
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Figure 3.1: This figure shows the functions assigned to each layer of the token-based
peer-to-peer interaction coordination model, and the data structures manipulated by
each layer.
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moved into n’s database before executing the SQL program referenced by m, and
moved back into token containers after the execution completes.

The peer that initiates a token-based interaction, termed the originating peer ,
is responsible for generating tokens and for invoking recovery if the token processing
fails. Thus, the information needed to construct a token must be available to the orig-
inating peer before a peer-to-peer interaction can begin. Within the TPIC model, we
assume that contracts have been established between pairs of peers. As a minimum,
the originating peer must have an established contract with each of the peers involved
in the interaction. Each contract includes references to SQL programs that reside on
the peer where the program will be executed, as well as references to corresponding
compensating SQL programs that reverse the effects of an SQL program’s execution.

Contract terms in the TPIC model are a formal representation of the business
rules governing interactions. These terms indicate the interdependencies between mi-
crotransactions to be executed during an interaction. For example, a business rule
might state that delivery should not occur if payment is not received. Receipt of
payment and activation of delivery are accomplished by the execution of two distinct
microtransactions. Thus, the formal representation of this business rule in the con-
tract would be the contract term (delivery, payment). Any interaction which adheres
to this contract term would have to ensure that the delivery microtransaction is not
performed if the payment microtransaction has not been successfully performed by
the end of the interaction. From the customers viewpoint, it is important that the
interaction ensure that delivery occurs if payment is received, resulting in the contract
term (payment, delivery). The combination of these two contract terms effectively
establishes an atomicity constraint between the two microtransactions payment and
delivery.

When a contract is established, temporary tables are added to each peer’s DBMS.
These temporary tables are used to move data on and off of the token containers.
The contract terms and additional information supplied by the peer-to-peer domain-

specific application initiating the interaction and by the end-user profile maintained
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by this application are used to establish an interaction plan.

3.2 Bank transfer example

As an example, consider the transfer of a sum of money from an account at bank
A to an account at bank B. Using the TPIC model, a contract must have been
established between A and B before an interaction can occur. Assume the business
rules governing the transfer dictate an atomicity constraint among the three tasks in
the interaction - withdraw from A, deposit to B, return a receipt to A. These three
business tasks correspond to microtransactions W, D, and R, respectively. Thus, the
contract terms would be {(W, D), (W, R),(D,W),(D, R),(R,W),(R, D)}.

Once a contract is in place, interactions can make use of the contract until it ex-
pires. An interaction will typically make use of multiple contracts, but for this simple
example we will use only one. The application support layer uses the information
in the contract and domain-specific constraints from the application to construct an
interaction plan (see Figure 3.2). An interaction plan has the property that all paths
from the source node to a sink node adhere to the terms of the contracts governing
the interaction. A token plan is then selected from among the possible paths through
the interaction plan (see Figure 3.3). This token plan is passed as a parameter to the
interaction support layer, where a token is generated. Once started, an interaction
will not terminate until a token plan has successfully completed. In this example, the
token plan indicates that the token should execute a microtransaction at A (withdraw
funds), then travel to B and execute a microtransaction (deposit funds, issue receipt),
then return to A and execute a final microtransaction (store receipt) and terminate.
If a code is returned from a peer’s DBMS that is not handled by the token plan, the
token will be returned to the originating peer for recovery processing.

When the token arrives at the token processing layer at A, all of the containers
on the token contain empty tables. This causes the temporary tables at A associated

with the contract to be initialized as empty. The SQL program referenced by the
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At site A, perform
a withdrawal (W).

If the withdrawal succeeds,
proceed to site B and perform
a deposit (D).

If the withdrawal
fails, no compensation
is necessary and the
interaction can end.
(W,D,R all not
committed)

commit

If the deposit at site B
is successful, deliver
a receipt to site A

commit

If the deposit fails or the
deposit has bee compensated,
the withdrawal at site A

must be compensated (W).

Arbitration 1s required, since

withdrawal was unsuccessful.

the deposit has failed or has
been compensated, and the
attempt to compensate the

(Either W committed, or
W, D, D committed)

If the receipt is successfully
delivered, the interaction
can end (W,D,R committed)

Arbitration is required, since the
receipt delivery microtransaction
failed and the attempt to compensate
the deposit was unsuccessful.

(W,D committed, but not R)

Either the withdrawal has been

executed and compensated, or both the
withdrawal and deposit have been executed
and compensated, so it is safe to end.
(Either W, W committed, or W,D, D, W
committed)

Figure 3.2: An interaction plan for the bank transfer example.



At site A, perform
a withdrawal (W).

NULL

If the withdrawal succeeds,
proceed to site B and perform
a deposit (D).

If a code is returned from

the DBMS that is not handled
by the token strategy, return
to site A's interaction layer for
recovery processing

commit

If the deposit at site B
is successful, deliver
areceipt to site A

commit

If the receipt is successfully
delivered, the interaction
can end.

Figure 3.3: A simple token plan for the bank transfer example.
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microtransaction is executed, moving funds from an account at A into a temporary
table. The temporary tables are then moved back into the token containers. The
content of the temporary tables at A is then considered “stale” - this content cannot
be used for processing but may be needed for recovery purposes in the event of a lost
token (see Section 4.3.5). The withdrawal from bank A to a container on the token
effectively moves a sum of money out of a bank account at A, but the money has
not yet been re-assigned to another account. In this context, the container on the
token can be thought of as volatile storage that is used to move data among peers.
If the withdrawal is successful, the token moves to bank B, where a deposit is made
from the container on the token into the bank and a receipt is moved from B onto
the token container (using the temporary tables in B’s database). Finally, the token
moves back to A, where the receipt is moved from the container on the token into
A’s database. Figure 3.4 illustrates the flow for this example.

In the TPIC model, the coordination role is placed on a mobile disposable to-
ken and the microtransactions in the peer-to-peer interaction are serialized. This
allows each peer to complete a portion of the interaction independently. The ac-
tions performed at each peer consist of a sequence of SQL statements submitted as a
transaction to the peer’s DBMS. If the token plan fails to complete, the effects of the
microtransactions that have completed may have to be compensated. Revisiting the
bank transfer example above, if the deposit at bank B fails, the token will be sent back
to the originating peer (A) and details of the token’s actions as recorded in the token
log will be handed to the application support layer. Based on the microtransactions
that have been performed, a new token plan is produced that will either reverse the
actions performed by the token through compensation or complete the interaction
through re-tries or alternative actions.

Compensating microtransactions can also be embedded in the original token plan
if failures are anticipated in advance. For example, the token plan can be extended
with a compensating microtransaction to reverse the withdrawal from A if the micro-

transaction at B fails (see Figure 3.5). The original withdrawal can be successfully
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Application Support Layer

Peer A Peer B
Use looku | Register with lookup
service to ﬁng ] service as offering X
peer offering X
Generate request for R ¢
contract with B for X eques
\)_ Evaluate request from
Offer A, generate an offer
Evaluate offer from /
B, accept offer, —  Contract

send contract \
Establish contract locally

Ack (Alg. 3.1), send Ack
Establish contract /

locally (Alg.3.1) ~ |

Interaction Layer
Peer A

Token Processing Layer

Begin Peer A Peer B
Interaction
Token

End [¥
Interaction

Contract Expires ___| | Contract Expires
(Alg3.2) (Alg3.2)

Figure 3.4: An illustration of the token-based peer-to-peer interaction coordination
model. The shaded regions in the figure depict the period of time during which
resources are held at a local site. The horizontal arrows in the figure represent transfer
of control between local layers.
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compensated since the amount of the original withdrawal is still in a container on the

token if the microtransaction at B has failed.

3.3 Medical records example

To further illustrate the properties of TPIC interactions, consider an example in
which a patient obtains a prescription from the doctor, fills it at their pharmacy, and
has payment billed to their insurance company. In this scenario, pair-wise contracts
exist between the patient and each of the other participants (doctor, pharmacy, and
insurance agency), as well as contracts between the doctor and the pharmacy and
between the pharmacy and the insurance company (see Figure 3.6).

Assume that the patient is ill and requires a prescription. At the application
support layer on the patient’s site, an interaction plan is established that adheres
to all of the contract terms in the contracts held between the patient and the other
participants. Since no access to global naming is assumed, a contract must exist
between two participants for the token to travel from one to the other. At the time
when the patient establishes a contract with the doctor, the contract negotiation can
ensure that the doctor has a contract with the patient’s pharmacy. This allows the
token to move directly from the doctor to the pharmacy. Similarly, negotiation of a
contract between the patient and the pharmacy can ensure that the pharmacy has a
contract with the patient’s insurance company. A typical interaction plan involving
one doctor, one pharmacy, and one insurance company constructed in the same way
as the example in Section 3.2 is shown in Figure 3.7.

In this simple example, the token plan could include all of the paths in the inter-
action plan. A more complex interaction plan could be constructed which includes a
second pharmacy, where the token is shipped to this second pharmacy if processing
fails at the first pharmacy. The initial token plan would be unchanged, but a pro-
cessing failure at the pharmacy site could cause the application support layer at the

patient site to issue a new token plan to the interaction layer that continues processing
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At site A, perform
a withdrawal (W).

commit

NULL
If the withdrawal succeeds,

proceed to site B and perform
a deposit (D).

commit

If the deposit at site B
is successful, deliver
a receipt to site A

If the deposit fails the
withdrawal at site A must
be compensated (W).

commit

NULL

If the receipt is successfully
delivered, the interaction
can end.

If a code is returned from

the DBMS that is not handled
by the token strategy, return
to site A's interaction layer for
recovery processing

Figure 3.5: A token plan for the bank transfcr example that includes a compensating

microtransaction.
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/N
Insurance
Company
WV

Figure 3.6: Contracts established between participants in the medical example.

using the other pharmacy.

In this example, the patient’s medical history and prescription drug history reside
under the patient’s control. The medical history and prescription drug history are
encrypted and placed in different containers on the token. When the token arrives at
the doctor, the container with the patient’s medical history is decrypted using a key in
the patient-doctor contract. The doctor can then update the patient’s medical history
and encrypt it again before placing it back in a container on the token. The updated
medical history is eventually returned to the patient’s peer, where it will again be
stored under the patient’s control. The same applies to the patient’s prescription
history, which can only be decrypted by the pharmacy and the patient. This example
shows how the TPIC model can be used to preserve end-user privacy while still

allowing end-user participation in distributed transactions.



At patient's site, move patient
medical history and patient
prescription history onto the token.

No compensation
is necessary and the
interaction can end. abort

Return the patient
information to the
patient site

commit

Arbitration is required, since
the patient medical history
and patient prescription
history is lost

commit |Proceed to physcian site,

move medical history and prescription information
in, update medical history, update prescription info,
move medical history and prescription info out

commit | Proceed to pharmacy, move prescription
history and prescription info in, update
availability and pricing, move prescription
history and prescription info out

commit

Proceed to insurance company,
move prescription information in,
update prescription information,
move prescription information out

commit

Proceed to pharmacy,

move prescription information in,
fill prescription, update prescription
information, move prescription
information out

commit

Proceed to patient, move
prescription history in,

move prescription information
in, move medical history in

commit

Figure 3.7: Interaction plan for the medical example.
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Chapter 4

Detailed description of TPIC

model

In this chapter, the TPIC model is described in detail by examining the roles of each
layer of the model.

4.1 Contract layer

The TPIC model assumes that contracts are established before peer-to-peer inter-
actions are initiated. Contract negotiation can be accomplished using an approach
similar to the Contract-Net protocol [38] described in Section 2.10. Figure 4.1 shows
the flow of messages during contract negotiation, establishment, and termination.
Domain experts establish the business tasks to be performed during a contract.
Each business task maps to a microtransaction to be executed at a peer. Business rules
specify the ordering and atomicity constraints across business tasks. For example,
the policy “no delivery without payment”, where delivery and payment are business
tasks, can be expressed as the business rule (delivery = payment). Each business
policy can be expressed as a set of business rules involving business tasks. There is a
direct mapping from business tasks to microtransactions, and a direct mapping from

business rules to contract terms.
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Use lookup service to find
peer offering X

Generate request for contract
with peer B for X

Evaluate offer from B,
counter with new request

Evaluate offer from B,
accept offer, send contract

Establish contract
locally

Peer A

Contract Expires ——l

termination

Request

Peer B
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Register with lookup service
as offering X

Evaluate request from A,
generate an offer

Evaluate request from A,
generate a counter-offer

Establish contract locally,
send Ack

I-— Contract Expires

Figure 4.1: Timeline showing the events in contract negotiation, establishment, and
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Definition 4.1 A contract between two peers P; and P;, denoted Cj;, is an ordered
tuple (f, X,Y, Z,a,b,c) where f is a contract ID, X is a set of table descriptions, Y’
is a set of terms, Z is a set of references to SQL programs, a is an encryption key, b

is a list of cancelled tokenIDs and ¢ is a list of lost tokenIDs.

Definition 4.2 A ContractID is a unique identifier consisting of a concatenation of

the HostIDs of the two hosts involved in the contract and a random digit string.

Definition 4.3 The table descriptions in the contract identify the temporary tables
to be created in the local database at each of the peers involved in the contract, and
also define tables in token containers.

The symmetry of the tables in the token containers and the temporary tables
at each of the peers simplifies the process of moving data from a database into a
token container and from a token container into a database. When a contract is
established, these temporary tables are created in the databases of each of the peers.
This creates catalog entries in each peer’s DBMS catalog. When a contract expires,

these temporary tables are deleted and the catalog entries are removed.

Definition 4.4 A contract term is an ordered pair (by, b2) where by and b, are micro-
transactions that correspond to business tasks. Evaluation of a contract term results
in a value of either true or false using the function f(b1,b2) = (e1 = e3), where e; is
true iff b, has been executed and has not been compensated, and e, is true iff b, has

been executed and has not been compensated.

Definition 4.5 An SQL reference is a catalog reference to a parameterized SQL
program in the catalog of the peer where execution will occur. The parameters are
generated by the application support layer to suit the requirements of each interaction

operating under a contract.

Definition 4.6 A cancelled token list is a list of tokenIDs that have been cancelled

by the originating peer. This list is initially empty when a contract is established.
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Definition 4.7 A lost token list is a list of tokenIDs that have been lost. The list is
initially empty when a contract is established.

The encryption key in a contract is used to encrypt and decrypt containers so that
the contents of containers are only accessible to the two peers participating in the
contract.

The terms of the contract are static - to change them, a new contract must be
negotiated and established. These terms provide a formal representation of the busi-
ness rules governing the contract, which are used by the application support layer to
produce an interaction plan. The SQL references are supplied by the peer offering
service, and have parameters specified by the application support layer during token
construction. While the contract terms are static and hold for all interactions, the
SQL program to execute can be invoked with different parameter values for each
interaction.

If an interaction cannot fulfill the terms of all of the contracts governing the inter-
action, arbitration will be requested. The contract layer is responsible for forwarding
the details of the failed interaction and the relevant contracts to an arbitration process,
which may be manual or automatic. Dealing with arbitration is outside the scope of
this thesis. While arbitration is important for the correct execution of business trans-
actions, it is less important with respect to each peer’s database. The database at
each peer will be in a consistent state before, during, and after the arbitration process

occurs, since each microtransaction execution forms a complete database transaction.

4.2 Application support layer

The application support layer uses contracts that have been established by the con-
tract layer along with domain-specific information and personalization information to
produce an interaction plan and to construct token plans.

An interaction plan includes valid execution plans for an interaction, where a valid

execution plan is one that satisfies all of the terms in each of the contracts involved
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in the interaction. An interaction plan can be represented as a directed acyclic graph
(DAG). The nodes in the graph correspond to microtransactions to be executed at
specific peers, and the paths through the graph dictate the order in which peers
will be visited. The choice among alternative successor nodes is based upon the code
returned from the peer’s DBMS during local processing (either “commit” or “abort”).

The application support layer uses the services offered by the interaction layer to
initiate peer-to-peer interactions. The TPIC model executes peer-to-peer interactions
in a serialized fashion, where a token is moved from peer to peer and a microtrans-
action is executed at each peer. The information in the contracts includes references
to SQL programs (and potentially their corresponding compensating SQL programs)
to be executed at each peer. Additionally, constraints are supplied by the end-user
through the application layer. This information is used by the application support
layer to construct a plan detailing the order in which peers will be visited and the
actions to be performed upon each visit, and to manage recovery processing if neces-

sary.

Definition 4.8 A link, denoted r;;, connects microtransaction s; to microtransaction
sj, and is labeled with a return code v. Thus, the existence of the link r;; with
condition label v implies that s; is the next microtransaction to execute if v is the
return code from the execution of the SQL program referenced by s;. The return

code v will be either “commit” or “abort”.

Definition 4.9 A plan, denoted G, is a directed acyclic graph with microtransactions

for nodes and links for edges.

Definition 4.10 An interaction plan, denoted Gy, is a plan with a single source node
and one or more sink nodes, wherein the hostID of every sink node matches that of
the source node. Furthermore, the execution of any complete path from source to
sink adheres to the contract terms of all of the contracts governing the interaction,
or results in an escalation to arbitration. An interaction plan has a finite number of

nodes.
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Definition 4.11 A token plan, denoted H, is a DAG formed by taking a subgraph
(s of an interaction plan G with the property that all of the sink nodes of Gg are
also sink nodes of Gy, and augmenting this subgraph by adding a special sink node
s¢ for handling exceptions and by adding links from every interior node to s, with
a NULL condition label. The NULL condition is produced when a return value 1s

encountered that does not match the label of any outgoing link from the current node.

Definition 4.12 Two peers are in a contractually conformant state with respect to
an interaction if all of the terms of the contract between the two peers governing the
interaction are satisfied by the set of microtransactions executed by the interaction.

The terms governing a peer-to-peer interaction can be expressed as constraints on
the execution of microtransactions in the interaction plan. A set of microtransactions
can be bound together, such that all or none of the microtransactions must be com-
pleted. A microtransaction can belong to any number of binding sets. If there are
no binding sets, then all of the microtransactions in the token plan are optional, and
no compensation mechanism is required. Placing all of the microtransactions in a
peer-to-peer interaction in a single binding set yields processing similar to Sagas [20],
where any failure would automatically trigger compensating microtransactions for

each of the microtransactions that have executed successfully.

Definition 4.13 An InteractionID is a three-part ID formed through the concate-
nation of the HostID of the originating peer, the ApplicationID of the peer-to-peer

application that initiates the interaction, and a random digit-string.

Definition 4.14 A Binding, denoted B, is a set of microtransactions. An inter-

action plan must ensure that upon termination, either all of the microtransactions
in B have committed, none of the microtransactions in B have committed, or the

microtransactions in B that have committed have been compensated.

Definition 4.15 A Partial Binding, denoted ®, is an ordered pair (J,K), where J

and K are sets of microtransactions. An interaction plan must ensure that upon
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termination, if any one of the microtransactions in K has not committed, then all of
the microtransactions in J must not have committed or those microtransactions in .J
that have committed have been compensated.

The compensating microtransactions made available by the contracts can be used
to reverse the effects of microtransactions that have completed. One approach to
augmenting the interaction plan is to automatically compensate all of the microtrans-
actions that have succeeded if one microtransaction fails. Thus, for any sequence of
microtransactions (m, ms, ...m;) that have successfully executed, the “abort” path for
node m;;; would lead to a sequence of compensating microtransactions (m;, 71, ...,
gz, m1). This recovery mechanism is similar in form to that used in Sagas (see Sec-
tion 2.3.3).

By making use of the bindings and partial bindings, it is possible to construct
a large number of recovery paths to deal with any given failure. For example, if a
microtransaction fails and no previously executed microtransactions are in bindings
or partial bindings with that microtransaction, then the interaction may be able
to proceed without compensating any microtransactions. It is possible to construct
an interaction plan that will compensate as few microtransactions as possible and
continue with the parts of the interaction that can proceed in the presence of a
microtransaction failure. The middle ground between compensating everything and
compensating as few microtransactions as possible is an area that can benefit from
domain-specific optimization tools and heuristics.

Including all possible recovery paths in a token plan would lead to very large
token plans. Rather than introduce the recovery paths on the token plan, the inter-
action plan can be extended to generate an appropriate recovery plan in the event
of a failure. If a return value is produced that is not addressed in the token plan,
execution of the token will cease and the token will be returned to the originating
peer for recovery processing. At that point, the interaction plan can be extended
to accommodate the specific failure that has been encountered and a recovery token

plan can be constructed.
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A token plan can be as simple as a single path from source to sink (plus the
exception sink and related links). The exception sink is used to redirect the token
back to the originating peer for recovery. The order in which the microtransactions
are performed is dependent on domain-specific constraints and end-user preferences
supplied by the application layer and the contract terms.

If token processing succeeds or fails for a given microtransaction, the token’s plan
will dictate where the token should travel next. If a failure occurs that is not handled
by the token’s plan, the default action is to return the token to the originating peer
for recovery processing.

In the TPIC model, the local databases at which microtransactions have already
executed are left in a consistent state. If a microtransaction fails, the token could
be sent back to the originating peer with an error indication, at which point the
application support layer can decide what corrective action to take. The fact that
no peer’s database consistency has been compromised and no locks are held by the
interrupted interaction at the peer databases allows for a great deal of flexibility in
choosing a recovery mechanism based on the circumstances of failure.

If a token plan completes successfully, the peer-to-peer interaction will terminate
in a state that is consistent with the terms of the contracts governing the interac-
tion. A contract might dictate that both the payment and shipment microtransaction
must be completed, or neither one should be completed. This would be encoded by
the two terms (delivery = payment), (payment = delivery). Any path through the
interaction plan would then have to include either both microtransactions or nei-
ther microtransaction, and any recovery path in the peer-to-peer interaction that is
between the two microtransactions would have to include a reversal of the earlier mi-
crotransaction. Once both of these microtransactions have completed, failure of the
overall transaction may not require that they be reversed. If no other terms in the
contracts place constraints on these two microtransactions, then failure of other parts
of the peer-to-peer interaction may not require that these two microtransactions be

compensated.
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4.3 Interaction layer

The interaction layer processes requests from the application support layer and man-
ages peer-to-peer interaction execution. The interaction layer generates tokens using
the parameters passed in from the application support layer. A token includes a
token plan dictating the path the token should follow under specific circumstances,
a set of containers used to move data between peers, a token catalog, and a token
log. The interaction layer delivers the token to the token processing layer where each
microtransaction is executed in sequence at each of the peers detailed in the token
plan.

The interaction layer maintains an interaction log, which includes an “initiate
interaction” record for each interaction and a “terminate interaction” record for each
interaction that has completed. Additionally, the interaction log has a copy of the
token plan for each token that is issued, as well as a copy of the token log for each
token that is returned. The purpose of the interaction log is to ensure that the
interaction state can be preserved even if the initiating peer experiences a failure.

A token is used to execute microtransactions at peers in a specific order. The
microtransactions to be executed together with the order in which the peers will be
visited form the token plan. Containers on the token are used as volatile storage areas
for moving data among peers. A log is kept on the token detailing where the token

has traveled and the return code produced at each visited peer.

Definition 4.16 A Token is a tuple (z,G, K, L,U, ¢, s, e), where z is a TokenID, G
is a token plan, K is a set of containers, L is a token log, U is a token catalog, c is a

token counter, s is a status, and e is an error code.

Definition 4.17 A TokenID is a unique two-part ID consisting of the concatenation
of the InteractionID of the interaction at the originating peer under which the token

1s executing and a random digit string.

Definition 4.18 A token counter, denoted c, is used as a relative timer that indicates

the amount of time remaining on the originating peer’s interaction timer. This can be



used to facilitate prioritization of token processing. The counter is only an estimate

of the time remaining on the originating peer’s interaction timer.
Definition 4.19 A token status, denoted s, is drawn from the set { Ready, Failed}.

Definition 4.20 A token error code, denoted e, is a code which is set when a token
status is set to failed, and is used to pass information about the type of failure to the
application support layer for help in recovery processing. Examples of error codes

include cancelled, no contract, and contract ezpired.

Definition 4.21 A Container associated with a contract with ContractID f, denoted
Ky, is an ordered pair (@, R) where @) is a set of relational tables and R is a list of

references to SQL programs.

Definition 4.22 A Token Catalog is a set of tuples (a,b, ¢, d) where a is a contract
ID, b is a table schema, ¢ is an access control list, and d is a row-count (set to 0
for empty table, -1 for uninitialized table). The contractID together with the table

schema information uniquely identifies a table within a container on the token.

Definition 4.23 A Token Log is a set of ordered tuples (s,r,¢) where s is a HostID,
r is the return code from the microtransaction executed at peer s, and ¢ is the value
of the token counter at the time the log entry is written.

The purpose of the token log is to indicate which microtransactions in the token’s
plan have been attempted and the return code that was produced by this attempt.
Given this information, the application support layer can determine the path through
the interaction plan that was taken in order to produce a new plan in the event that

recovery is invoked.

4.3.1 Failure-free processing

To simplify the description of token processing within the TPIC model, we begin

with the case where token processing completes successfully within acceptable time
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bounds and is free from failures. We then extend the interaction layer’s functionality
to accommodate recovery from failed microtransactions, cancellations, timeouts, and
lost tokens.

Assuming that contracts have already been established an interaction plan has
been generated, the application support layer initiates a peer-to-peer interaction. The
interaction layer generates a token and submits the token to the token processing layer
of the local peer.

Under failure-free processing, a single token is used to complete an entire peer-to-
peer interaction. The token processing layer at each peer is responsible for executing
a microtransaction at the local peer and forwarding the token to its next destination
based on the token plan. The last microtransaction in a token plan will always be
executed at the originating peer. Upon successful completion of this microtransac-
tion, the token processing layer will pass the completed token up to the interaction
processing layer.

When the interaction layer receives the completed token, the token’s log is stored
in the interaction log and the interaction terminates. A finite state diagram detailing
the actions of the interaction layer under failure—free processing is shown in Figure 4.2.
The figure shows the overall interaction layer processing finite state diagram with the
components required for failure-free processing drawn using solid lines. Parts of the
figure with dashed lines will be highlighted as they are described in later sections.
Initiate Interaction is called by the application support layer when an interaction be-
gins. The timer parameters and the steps assigning values to timers are not necessary
for failure-free processing, but their role will become clear as the interaction process-
ing mechanisms for dealing with failures are introduced in later sections. Terminate
Interaction is called when a token is submitted to the interaction processing layer

with a status of “Completed”.



Initiate
Interaction

Receive completed token

Start
~
~ ~
~
(M AN ~ ~ RecelveI
|l \ ~ > completed
\ ~ <« O~ token |
I \ Cancel ~ ~  Timeout |
1 ~ ~
~ ~ |
Receive | ISend \ Reset ~
failed * ' recovery 4 — timer N ~ _L
token | [token Status _ \
( Recall sent\< — Status sent
| ~  Issue \recelved  Receive ~ /
|1 7‘ < Cancel Status |
Il Receive / ~ I
I token / < Timeout Timeout |
~
Il / ~
/ ~ |
~
by < |
| Receive sufficient ~
¥ - » ¥
responses or timeout
[ Recovery){ ———————————— —{ Lost token
N _ ~ /
~
| Cannot Receive
ILRecover response
// — >
\/ Arbitration Y
X 7

Figure 4.2: Finite state diagram for failure—free

interaction processing.



35

4.3.2 Handling microtransaction failures

In the description of local token processing above, it is assumed that all microtrans-
actions complete successfully. However, there are conditions under which microtrans-
actions could fail. If a microtransaction fails for any reason, the token processing
layer will set the status of the token to “Failed” and the token will be returned to the
interaction processing layer of the initiating peer.

To handle recovery processing, new states are added to the finite state diagram
of the interaction layer resulting in Figure 4.3. The arrival of a failed token causes
a state change to the new “Recovery” state. This causes the interaction processing
layer to request a new token plan from the application support layer. The application
support layer will use the information in the token log to determine at what point in
the overall interaction plan the token has failed, and will generate a new token plan
that follows from that point to one or more sink nodes in the interaction plan.

If no recovery is possible, the application support layer will direct the interac-
tion layer to move to “Arbitration”. Recovery processing and arbitration may be
required for reasons other than microtransaction failure, as detailed in the following

subsections. Recovery is therefore discussed separately in a Section 4.4.

4.3.3 Handling Cancellations

While a token is moving among the peers involved in an interaction and executing
microtransactions, the originating application layer may choose to cancel the inter-
action. The receipt of a Cancel signal from the application layer is passed through
the application support layer to the interaction layer, and causes the interaction layer
to generate and broadcast a cancel message to all peers in the outstanding token
plan. The cancel message is processed by the token processing layer, and causes the
TokenID of the outstanding token to be added to the contract’s cancelled tokens list.
Local token processing checks this list every time a token is received. If a token whose
TokenID is on the cancelled list is received, the token is immediately sent back to

the originating peer with a status of “failed” and an error code of “cancelled”. After
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a “cancel” message has been sent, the interaction layer expects to receive the token
with a status of “Failed” and an error code of “Cancelled”. After broadcasting a
“Cancel” directive, the interaction layer waits for the failed token to be returned and
sends it for recovery processing. This is broken out into a separate state in the figure
to ensure that recovery is enacted even if the token returns as completed. At the to-
ken processing layer, the pre-processing step includes a check to see if the token that
has arrived for processing is on the “Cancelled Tokens” list of the contract. Cancel
Interaction is invoked at the interaction processing layer of the originating peer by
the application support layer. The impact upon the interaction processing finite state

diagram is shown in Figure 4.4.

4.3.4 Handling timeouts

The application support layer can specify a timeout parameter when initiating an
interaction. The interaction layer uses this parameter to set a timer when a token
is sent to the token processing layer. If the timer expires before the token returns,
a status request is sent out to determine the microtransaction that the token has
reached. Since the token’s plan is a DAG and the choice of paths is decided on-the-
fly, the originating peer does not know in advance where to send the status request.
Therefore, the status request message is sent to the first peer in the outstanding
token plan. If the interaction timer expires, Status Request will be executed at
the interaction processing layer. The status request includes the TokenID of the
outstanding token, and this TokenID is used to query the peer’s DBMS log and
determine where the token was sent.

When the status request message is received by the token processing layer of a peer,
the TokenID in the request is checked against tokens in the local queues and against
the TokenlID of any currently executing token. If the token is found locally, a status
response is sent back to the originating peer and delivered to the interaction layer.
When a status response is received at the interaction processing layer, the interaction

layer is moved to the state of Status Received. The impact on the interaction layer
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finite state diagram is shown in Figure 4.5, which is either to cancel the token or reset

the timer and continue processing.

4.3.5 Handling lost tokens

In order to handle lost tokens, the interaction layer of the originating peer must notice
that an outstanding token has gone missing. This is accomplished through the use
of timers at each of the states in the interaction layer where a token is outstanding.
When a token is issued by the interaction layer, an interaction timer is set. When
the timer expires, a status request message will be generated to determine the state
of processing the token has reached, and the timer is reset to the status request
timeout value. If the timer expires, it is assumed that both the token and the status
request message have been lost, and lost token processing is initiated. If a status
response is received before this timer expires, the application support layer is queried
to determine whether processing should be cancelled or extra time should be given
based on the stage that the token has reached. If processing is cancelled, a cancel
message is broadcast to all peers listed in the outstanding token plan and the timer
is set to the cancel timeout value. If the timer expires before the token arrives, it is
assumed that the token is lost and lost token processing is initiated.

Information concerning the state of the token before it was lost is needed for
recovery processing. A lost token query is broadcast to each peer listed in the token
plan. When a lost token query is received at the token processing layer, the TokenlID is
added to the list of lost tokens in the contract. The peer’s DBMS log and the contents
of the stale temporary tables that were moved onto the token during processing are
sent back to the interaction layer of the initiating peer. Based on the responses to
the lost token query messages, the interaction layer may be able to determine at
which peer the token was lost and may also be able to reconstruct the token as it
existed before delivery to that peer. The reconstructed token can then be used for
recovery purposes. If the lost token resurfaces, it will be discarded based on the

presence of the TokenID on the list of lost tokens in the contracts of every peer in the
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token plan. If insufficient information is returned in response to the lost token query,
arbitration may be necessary. Figure 4.6 shows the complete finite state diagram for
the interaction processing layer with provisions for timeouts, cancellations, and lost

tokens.

4.4 Recovery Processing

Recovery can occur at both the local processing level of a peer during the execution
of a microtransaction, and at the interaction processing level. Recovery at the local
processing level is handled entirely by the DBMS recovery processing facilities on the
local peer. If token processing fails, recovery may be necessary at the interaction
processing level because some of the microtransactions have committed and some
have not. When the originating peer receives a failed token, the application support
layer is sent the log of the token. The application support layer then determines
how recovery should be effected. The application support layer uses the token’s log
to determine the microtransactions that were executed, and uses this information to
determine at what point in the overall interaction plan the processing has reached.
By default, the application support layer can generate a plan that will counter the
effects of the original token’s accomplishments in the reverse order that they were
performed using compensating microtransactions. The application support layer is
not, however, restricted to this choice of action. It may be determined that only some
of the completed microtransactions need to be compensated, or that additional mi-
crotransactions can be performed that result in fulfillment of contractual obligations.
Whatever the case, the application support layer will submit a new token plan to the
interaction layer, and a new token will be generated and issued to continue process-
ing. Any non-empty containers on the old token are transferred to the new token. If
the application support layer cannot generate a new token plan, the interaction layer
will move the interaction processing to arbitration and terminate the interaction.

In addition to handling processing failures due to failed microtransactions and
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lost tokens, the TPIC model must also handle failure of a peer participating in an
interaction. There are four cases to consider: failure of a peer when the token is not
present; failure of a node when the token is present; failure of the originating peer
when the interaction has not yet completed; and failure of the originating peer after

the interaction has completed.

4.4.1 Node failure - token not present

If a peer that is participating in an interaction fails when the token is not present,
the peer’s database will effectively recover from the failure. No special processing is
required from the TPIC model, since any microtransaction that executed successfully
at the failed peer would have completed before the failure occurred (since the token
has already moved on), and any microtransaction that aborted at the failed peer prior
to the peer failure would have been logged on the token as failed. The peer’'s DBMS

recovery mechanisms are sufficient to handle this type of node failure.

4.4.2 Node failure - token present

In the case where a peer fails while a token is present at the peer, the token may be
lost. Upon recovery, the stage of processing the token reached will be apparent in the
peer’s DBMS log. Since the token is lost, the lost token query will eventually be issued
by the originating peer. The logs of the peer’s DBMS will show the state of processing
that was achieved and the temporary tables will have either the container values as
they were when the microtransaction started (if the peer failed during execution of
the microtransaction SQL program, or if the peer failed after aborting the execution
of the SQL program) or the values as they were when the microtransaction completed
successfully (if the peer failed after successfully completing the microtransaction but
before delivering the token to the next peer in the plan). In either case, the contents
of the peers DBMS log and the contents of the temporary tables are preserved by the

peer’s DBMS. Recovery can be effected based on the lost token processing.
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4.4.3 Originating node failure - interaction ongoing

If the originating peer experiences a failure while an interaction is active, there will be
a “initiate interaction” record in the interaction log with no corresponding “terminate
interaction” record. The entries in the interaction log can be used to determine the
state of the interaction plan that was reached by the last token that returned to
the interaction processing layer. If the token was not present when the originating
peer failed, it is possible that the token will arrive at the originating peer intact and
complete, having continued processing the token plan while the originating peer was
down. The information in the interaction log can be used to restore the interaction
state at the originating peer.

If the token was present at the originating peer’s token processing layer when
the originating peer failed, the originating peer will eventually determine that the
token was lost and initiate lost token processing as per Subsection 4.4.2. If the
microtransaction completed successfully before the failure occurred, there will be an

entry in the peer’s DBMS log showing the completion of the microtransaction.

4.4.4 Originating node failure - interaction completed

If the originating peer experiences a failure after an interaction has completed, there
will be a “initiate interaction” record and an “terminate interaction” record in the
interaction log. Since the interaction had completed before the failure occurred, no
special processing is required in support of the TPIC model. All of the microtransac-
tions associated with the interaction were permanently committed to stable storage
before the token was delivered to the interaction processing layer as completed, thus
ensuring that the effects of the completed interaction will persist even in the presence

of node failure.
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4.5 Token processing layer

The token processing layer is responsible for executing microtransactions, processing
cancel messages, processing status requests, and processing lost token requests. A
finite state diagram showing the state transitions during token processing is shown in
Figure 4.7.

Upon receiving a token, either from the interaction layer of the local peer or from
the token processing layer of a remote peer, the token processing layer begins by
moving processing to the pre-processing state. In this state, the lists of lost and
cancelled tokens are checked against the token’s ID, and the contract is checked to
ensure it has not expired. If the TokenID is on the lost tokens list, the token is
discarded and processing terminates. If the TokenlID is on the cancelled token list or
the contract has expired, the token’s status is set to “Failed”, the token is sent back to
the originating peer and processing terminates. Otherwise, the token processing state
1s changes to “Moving data in’. In this state, containers on the token are decrypted
using the encryption key in the contract and data is moved into temporary tables in
the peer’s database.

Once the data has been moved in, the SQL program associated with the current
microtransaction of the token plan is submitted to the peer’s DBMS and the token
processing state is changed to “SQL Submitted”. Upon completion of the SQL pro-
gram, the processing state is moved to “Moving data out”, and data is moved from
the temporary database tables into containers on the token. A post-processing step
encrypts the containers, adds an entry in the token’s log, and determines if there
are further microtransactions to be executed in the token’s plan. If this was the last
microtransaction, the token is handed up to the interaction layer on the local peer -
otherwise, the token is forwarded to the token processing layer of the peer identified
in the next microtransaction of the token plan.

The finite state diagram for handling cancel request messages at the token pro-

cessing layer 1s shown in Figure 4.8. The cancel request message is broadcast by the
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originating peer’s interaction processing layer to all of the peers involved in an inter-
action. Each peer adds the TokenlID of the cancelled token to the cancelled token list
in its contract associated with the cancelled token’s interaction.

Figure 4.9 displays the finite state diagram for handling status request messages at
the token processing layer. A status request message is generated by the originating
peer when the interaction timer expires before token processing completes. Upon
receiving a status request message, a peer either forwards the status request along
the path followed by the token, or delivers a status response message to the originating
peer.

Figure 4.10 displays a finite state diagram detailing the actions performed at the
token processing layer when a lost token message is received. A lost token message
is broadcast to all of the peers involved in an interaction when the originating peer
determines that the token has been lost. When a peer receives a lost token message,
the TokenID of the lost token is added to the contract’s list of lost tokens. The
peer’s database is queried to get a copy of the temporary tables associated with the
lost token, as well as a copy of the local log entries based on the TokenID or a local
mapping of the TokenID. All of this information is sent to the originating peer in the

form of a lost token response message.
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Chapter 5

Token-based peer-to-peer

interaction coordination

This chapter provides proofs of correctness for the execution of interactions under the
TPIC model. This chapter begins with a description of the assumptions and design
properties of the TPIC model. Next, it is shown that valid interaction plans can
be generated that adhere to contract terms and domain-specific ordering constraints.
Finally, it is shown that TPIC model interactions move each participating peer’s
DBMS from one consistent state to another consistent state, and also that TPIC
interactions that are not escalated to arbitration move each participating peer from
one contractually conformant state to another contractually conformant state with

respect to the contract terms governing the interaction.

5.1 Assumptions

Assumptions 5.1 - 5.5 are fundamental assumptions about the environment in which
the TPIC model will operate.
Assumption 5.1 Each peer involved in a peer-to-peer interaction maintains a

DBMS.

68
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Assumption 5.2 A peer’s DBMS is a pre-existing database and its software
cannot be modified to provide support for the TPIC model.

Assumption 5.3 Processing initiated by a remote peer under the model is viewed
by the local peer’s DBMS in the same was as processing initiated locally.

Assumptions 5.1-5.3 are similar to the assumptions underlying a multidatabase
environment [2]. In contrast to an MDBS, there is no requirement in the TPIC model
that the DBMSs support transaction processing. If there is support for transaction
processing, remote requests will be submitted as complete local transactions. If the
DBMS does not provide transaction processing support, remote requests will be sub-
mitted directly to the DBMS front end for scheduling.

Assumption 5.4 The mechanism in place for delivering tokens between peers is
guaranteed to successfully deliver the entire token reliably or to not deliver the token
at all.

Assumption 5.4 implies that tokens will not be lost in transit. This property could
be eliminated by modelling communication failures as a failure of the receiving peer.
Since discussion of communication failures would not add to an understanding of the
TPIC model, this property of the underlying environment is assumed.

Assumption 5.5 Call-back functions from the interaction processing layer to the
application support layer will complete in finite time.

Assumption 5.5 ensures that interaction processing will not be held up indefinitely
when a decision is needed from the application support layer concerning how to

proceed with the interaction.

5.2 Design properties

Design properties 5.1 - 5.8 describe characteristics of the TPIC model. These prop-
erties are important to bear in mind as they reflect model design decisions that have

been taken.
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Design property 5.1 The microtransactions in a peer-to-peer interaction are
executed in a serialized fashion.

Design property 5.2 Each microtransaction in a peer-to-peer interaction forms
a complete local transaction - that is, execution of a microtransaction either moves
a local database forward from one consistent state to another consistent state or has
no effect on the local database state.

Taken together, properties 5.1 and 5.2 imply that there can be at most one point
of failure at a time in an interaction. Furthermore, a point of failure does not cause a
local database inconsistency - all local databases are left in a consistent state. Thus,
the recovery mechanism can be flexible and can operate under relaxed time constraints
since local processing at each of the peers will not be blocked pending recovery.

Design property 5.3 Contracts are established between pairs of peers prior to
their participation in TPIC model interactions.

This property rules out multi-party contracts. While not fundamental to the TPIC
model, this property simplifies the discussion of the model and does not appear to
limit its applicability. Multi-party contracts could be considered in the future as an
extension to the TPIC model.

Design property 5.4 Temporary tables created in support of contracts are the
same at both peers involved in the contract.

While it is not a requirement of the TPIC model, this property simplifies the
transfer of data between tokens and peers. The data definitions for the temporary
tables are established during contract negotiations. Allowing different temporary
table definitions at each of the peers in a contract would require the introduction of a
data mapping function during the transfer of data to and from a token’s containers.

Design property 5.5 Processing of an SQL program by a peer’s DBMS is guar-
anteed to complete in finite time, and will return a status code of either “commit” or
“abort”.

Existing relational DBMSs such as Oracle, Sybase, and DB2 adhere to design
property 5.5.
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Design property 5.6 Database constraints cannot be applied to the temporary
tables used to move data on and off of token containers.

Design property 5.6 is required since the information in the temporary tables is
stale once a microtransaction finishes executing.

Design Property 5.7 The TPIC model does not rely on global state.

Design Property 5.8 The TPIC model assumes only a single copy of data. A
given data item is available to at most one peer at a time under this model.

Design properties 5.7 and 5.8 are introduced to support end-user privacy and
end-user ownership of personal information, and force a model in which all local
processing relies on locally available information. This leads to peer independence,
allowing processing to continue at one peer regardless of the state of any other peer’s

processing.

5.3 Application Support Layer

A simple proofs shows that an interaction plan can be constructed for a given set of

contract terms and ordering constraints.

Lemma 5.1 Given a set of contract terms and a set of constraints that forms a
partial order, there is an interaction plan whose exzecution paths adhere to the terms
and constraints.

Proof: The proof is by construction.

Arrange the microtransactions in a partial order, such that all of the ordering
constraints are met. Create a total order of microtransactions by arbitrarily ordering
microtransactions that are not comparable. Create an interaction plan with a node
for each microtransaction, where the nodes are joined by links labelled with “commit”
for the return code using the total order. For each node, and a link labelled with
“abort” to escalation to arbitration.l

While this shows that an interaction plan can always be constructed, it results

1 arbitration any time a microtransaction aborts. This situation can be improved



by using compensating microtransactions to reverse the effects of those microtransac-
tions that have successfully committed in the event that one of the microtransactions
aborts. Thus, for any sequence of microtransactions (my,ms,...m;) that have success-
fully executed, the “abort” path for node m;;; would lead to a sequence of compensat-
ing microtransactions (M;, M;_1, ..., Mg, My ). Each new node added to the interaction
plan would have an “abort” path that leads to arbitration, meaning that arbitration
is needed when a compensating microtransaction fails. This recovery mechanism is
similar in form to that used in Sagas (see Section 2.3.3).

While introducing compensation microtransactions should lead to less need for
arbitration, an intelligent planning tool could take advantage of the constraints in
order to further refine the interaction plan and support a finer granularity of atom-
icity among microtransactions. To this end, the following construction approach for
generating sets of bindings and partial bindings can provide information to such a
tool to allow for the construction of flexible interaction plans which still adheres to
contract constraints.

For each ordering constraint (m;, m;), add an explicit term (m;, m;) to the set of
contract terms Y. Given this augmented set of contract terms Y, if the set includes
both (m;,m;) and (m;,m;) for some ¢, 7, then m; and m; are in a binding B =
{m;,m;}. If (m;,m;) is included in the set of terms but (m;,m;) is not included in
the set, then m; and m; are in a partial binding ® = {{m;},{m,}}.

Next, the number of bindings and partial bindings is reduced by generating bind-
ings and partial bindings with more than two microtransactions. If two binding
sets share a common microtransaction, then the union of the two binding sets is
a binding set that can replace the two binding sets. Thus, given B, B; where
m; € (B1{)Bz2), Bs = By|JB; is a binding set that replaces By and B,. Simi-
larly, if two partial bindings ®;, ®, share a common set, the two partial bindings can
be combined. If &, = (M;, M;) and ®, = (M;, My), then &3 = (M,, M;|JM;) is a
partial binding set that replaces ®; and ®,. If & = (M;, M;) and @, = (My, M;),
then ®3 = (M, |J My, M;) is a partial binding set that replaces ®; and &,.



Once the number of binding sets and partial binding sets has been reduced, the
resulting sets are used to build the interaction plan. The recovery path from an
aborted microtransaction need only include compensating microtransactions based on
their membership in a binding or partial binding with the aborted microtransactions.
The bindings and partial bindings add value is in the construction of interaction plans
that can handle failures in a flexible manner, leading to a reduction in the number of

circumstances that cause escalation of the interaction to arbitration.

5.4 Interaction and Token Processing Layers

Conceptually, a Database Management System (DBMS) consists of two major com-
ponents, a front end pre-processor which accepts and parses SQL programs, and a
back end data manager responsible for maintaining the stored database state [14]. In
the TPIC model, each peer maintains an independent DBMS. An SQL program sub-
mitted to the front end is guaranteed to terminate and will move the database from
one consistent state to another consistent state, either by storing all of the changes
associated with the execution of the SQL program or by using the log to undo and
changes that occur before a failure. When execution of an SQL program terminates,
the front end will return a status code of either “commit” or “abort”.

SQL programs can only be issued to the front end by the peer maintaining the
DBMS. A single microtransaction’s execution involves the invocation of a function
on the local peer passing an SQL program for execution on the local database. The
local peer is responsible for scheduling and execution of this request with the peer’s
DBMS. The peer’s DBMS will complete the requested SQL program in finite time,
resulting in either “abort” or “commit”. If the SQL program is running for too long,

it will be cancelled by the peer’s DBMS based on a timeout.

Lemma 5.2 Processing of a single microtransaction terminates.
Proof: The processing of a single microtransaction is shown as a finite state dia-

gram in Figure 4.7. The finite state diagram is a sequence of states with no explicit
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loops. A state transition occurs when the processing related to a state terminates.
Each state that involves assignment of a value or testing of a value requires constant
time to execute. Each state that queues the token for delivery takes time propor-
tional to the size of the token, and delivery is delegated to the reliable infrastructure
(see Property 5.7). The states which involve checking set membership require time
proportional to the size of the sets (the local sets that may be checked include the
set of contracts, the set of cancelled tokens, and the set of lost tokens). Moving data
between the container and the peer’s DBMS will require time proportional to the
amount of data being transferred. The execution of an SQL program is guaranteed
to complete in finite time by Property 5.5. In all cases, the processing at each state
will complete within finite time, therefore the microtransaction will complete in finite

time. B

Lemma 5.3 Ezecution of a single microtransaction at a peer will move the peer’s
database from one consistent state to another consistent state

Proof: Processing of a microtransaction at a peer is governed by the finite state
diagram in Figure 4.7. Processing the only three states affects the peer’s DBMS: the
movement of data from the token into temporary database tables; the execution of
the SQL program; and the movement of data from the temporary database tables
into the token. Execution of the SQL program will result in a success or a failure, in
which case either all of the changes associated with the execution are effected, or none
of the changes are effected, respectively. Since the microtransaction’s activities on
the peer’s DBMS are scheduled as a local SQL program, the peer’s DBMS processing
guarantees the preservation of local consistency (by Property 5.5). By Property 5.6,
the data in the temporary tables cannot affect the consistency of the peer’s database

since these tables are not involved in any DBMS constraints. Il

Lemma 5.4 Processing of a token plan terminates
Proof: A token plan is as an acyclic, directed graph with microtransactions as

nodes and links as edges (see Definition 4.11). Processing of a token plan involves
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executing microtransactions and transitioning links based on the return codes of mi-
crotransaction executions. Processing of a token plan completes when the microtrans-
action referenced by a sink node of the token plan completes, or when a null transition
link is followed back to the originating peer. Each microtransaction is guaranteed to
terminate (by Lemma 5.2). The transition from one node to another involves travers-
ing a link in the token plan, and moving the token from one peer to another in the
environment. The movement of the token is guaranteed to complete successfully or
to be held in a local queue awaiting transmission by Assumption 5.4. There are three
conditions of interest: token movements are successful; the token is held indefinitely
in a queue pending delivery; or the token is lost due to a node failure.

In the case that token movements among peers are successful, processing of the
token plan will terminate.

In the case of a token being held in a queue indefinitely pending delivery to the next
peer in the token plan, the interaction timer at the originating peer will eventually
expire. Upon expiration, the interaction processing layer will cause a token status
message to be propagated to the node with the token, and the originating peer will be
informed of the token’s status. Based on the status, the originating peer may extend
the time for the token’s execution by resetting the interaction timer, but this timer can
only be reset a fixed number of times during a given interaction (the actual number of
times the timer can be reset is a parameter passed to the interaction processing layer
when the interaction is initiated). If the maximum number of timeouts occurs, the
originating peer will issue a cancel message. Receipt of a cancel message at the token
processing layer will cause the token to be cancelled and sent back to the originating
peer, causing processing of the token plan to terminate.

In the case that the token is lost, expired timers at the originating peer will
eventually detect the loss of the token. The originating peer then forces termination
by broadcasting a lost token message to all peers involved in the interaction. Once a
token’s ID has been added to the list of lost tokenIDs at a peer, the token’s plan will

never be processed at that peer. If the token re-surfaces, it will be discarded without
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further processing.

Thus, the processing of the token’s plan terminates in all cases. B

Lemma 5.5 Processing of an interaction plan terminates.

Proof: Processing of an interaction plan terminates when a “terminate interac-
tion” record is placed in the interaction log. This can happen for one of two reasons:
processing of the interaction plan has reached a sink node; or the interaction has been
escalated to arbitration. Processing of an interaction plan is accomplished by the pro-
cessing of one or more token plans derived from the interaction plan. Each time the
interaction layer delivers a token to the token processing layer, the processing of the
token plan by the token processing layer is guaranteed to terminate (by Lemma 5.4).
If the token successfully completes processing its plan, the interaction terminates. If
the token’s processing is cancelled or fails, the interaction processing layer will exe-
cute a call-back routine to the application support layer requesting instruction. Each
time the interaction layer requests information from the application support layer,
the application support layer is guaranteed to respond to the interaction processing
layer within finite time by Assumption 5.5. The originating peer may issue a new
token that will retry, compensate, or pursue an alternative to the failed processing.
By Definition 4.10, there will be a finite number of alternatives to attempt. When
there are no further alternatives to attempt, the detailed logs of all tokens involved
in the interaction are used to determine what should happen based on the contracts
involved in the interaction through arbitration. Omnce the required information has
been sent to arbitration, the interaction terminates. Thus, in all cases, processing of

an interaction plan terminates. W

Lemma 5.6 The TPIC model preserves the durability property with respect to com-
pleted interactions.

Proof: Durability is the property that the effects of completed interactions will
persist even in the presence of failures. By Lemma 5.3, each microtransaction that
completes at a peer is made durable by the peer’s DBMS. In the event of a failure

of the originating peer during processing, the interaction log is used to determine
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if an interaction has successfully completed or was still in progress when the failure
occurred. Any interactions with a “terminate interaction” record in the interaction log
were completed before the failure occurred. The effects of the completed interaction
were already made durable by the microtransactions executing at the peers involved
in the interaction. The presence of the “terminate interaction” record implies that no
further processing is required with respect to this interaction. Since the effects of the
interaction are made durable by the DBMSs of the peers involved in the interaction,
the durability of the effects of an interaction that has completed are guaranteed.

If an interaction has a “initiate interaction” record in the log, but there is no
matching “terminate interaction” record, the interaction was still in progress when
the failure occurred. The interaction can continue on the basis of the information
in the interaction log coupled with the result of a status query. The effects of an
interaction that has not completed before failure may have to be compensated, or the
interaction may have to be sent to arbitration. The decision to continue processing
or escalate to arbitration is based on the contents of the interaction log and the result

of a status query to determine the status of the token. B

Theorem 5.1 Interactions are recoverable in the presence of node failures.

Proof: From Lemma 5.3, the microtransactions that have successfully completed
within an interaction are durable in the presence of node failures. As discussed
in Section 4.4, each peer’s DBMS recovery mechanisms will ensure that completed
microtransactions are durable, and any microtransactions that were incomplete when
a failure occurred have their effects reversed during local recovery processing. From
the interaction processing perspective, the local recovery mechanisms at each peer
involved in the interaction handle the recovery of the peer DBMSs. If the originating
peer experiences a failure, recovery processing is required for interactions that have
been initiated but have not yet terminated. The interaction log is used to determine
if an interaction has terminated. If there is a “terminate interaction” record in the
log, all of the effects of the interaction are guaranteed to have been made durable by

Lemma 5.6. If there is an “initiate interaction” record in the log with no corresponding
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“terminate interaction” record, the log is used to determine the state of processing the
interaction achieved before the failure occurred. Any tokens issued by the interaction
that completed before the failure occurred will have their logs in the interaction log.
If a token was in progress when the failure occurred, the interaction log will have
a copy of the token’s plan. Using the logs of completed tokens and the plan of the
outstanding token, the application support layer can reconstruct the interaction plan
governing the interaction and determine the set of microtransactions that have been
successfully completed by the interaction, thus allowing the interaction processing to

proceed from the point of failure. B

Lemma 5.7 Two peers are in a contractually conformant state with respect to an
interaction before the interaction begins.

Proof: Before an interaction begins, no microtransactions have been executed
by the interaction, thus the set of microtransactions that have been performed by
the interaction with respect to the two peers is the empty set. This implies that all
of the terms of the contract between the two peers are satisfied with respect to the
interaction, and the two peers are in a contractually conformant state with respect

to the interaction (by Definition 4.12). B

Lemma 5.8 Two peers are in a contractually conformant state with respect to an
interaction after an interaction completes, assuming that the interaction was not es-
calated to arbitration.

Proof: For an interaction to complete without having escalated to arbitration,
the final token issued by the interaction has to complete successfully. The overall
set of microtransactions executed by an interaction consists of the concatenation of
one or more token plan histories. The initial token plan generated by an interaction
must begin with the interaction’s source node. Successful completion of a token plan
will result in a token plan history whose last node is a sink node of the interaction
plan. Thus, the concatenation of the token plan histories from a completed interac-

tion that was not escalated to arbitration will form a path from the source node of
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the interaction plan to one of the sink nodes of the interaction plan. The set of mi-
crotransactions executed by the interaction must therefore adhere to all of the terms
of all of the contracts governing the interaction, by Definition 4.10, including the two

peers in question. W

Theorem 5.2 Ezecution of a TPIC interaction that is not escalated to arbitration
moves the peers involved in the interaction from one contractually conformant state to
another contractually conformant state with respect to the interaction, and the micro-
transactions ezecuted by the interaction move each peer’s DBMS from one consistent
state to another consistent state.

Proof: To prove this theorem, it will be shown that each individual microtrans-
action executed by an interaction at a peer moves the peer’s database from one
consistent state to another consistent state, thus preserving database consistency at
each of the peers, and it will also be shown that the pairwise changes to any two peers
effected by an interaction conform to the contract between those two peers, yielding
a model of interaction that is consistent with the terms of the contracts governing
the interaction.

For each microtransaction executed by an interaction, the microtransaction moves
the state of a peer DBMS from one consistent state to another consistent state by
Lemma 5.3.

By Lemma 5.7, all of the peers involved in the interaction are in a contractually
conformant state with respect to the interaction before the interaction begins.

By Lemma 5.5, processing of an interaction plan terminates. If this termination
is not due to an escalation to arbitration, then the final token plan issued to the
interaction layer completed successfully.

By Lemma 5.8, all of the peers involved in the interaction are in a contractually
conformant state with respect to the interaction after the interaction terminates if

the interaction was not escalated to arbitration.



Chapter 6

TPIC Model Implementation and
Validation

This chapter describes algorithms which can be used to develop an implementation of
the TPIC model. The algorithms involved in failure-free token processing (Algorithms
3.3, 3.4, and 3.10) have been validated through a preliminary implementation written
in Perl running on a UNIX environment with access to an Oracle DBMS. In this
preliminary implementation, layers of the TPIC model were developed as Perl scripts.
Multiple sites were simulated on the same server. Each virtual site maintained its own
connection to the Oracle DBMS, with access to its own set of tables. Message passing
between layers and across virtual peer instances was accomplished by writing /reading
files in common directories on the local disk.

A more complete implementation of the TPIC model could be used to test the
model’s correct performance under a variety of situations. Examining interaction
logs and token logs in the presence of simulated node failures would serve to test the
model’s ability to preserve DBMS consistency and global contractual conformance
in the presence of failures. In particular, the interaction layer and processing layer
algorithms needed to properly move the interaction state and process the token plan
could be tested by implementing a rudimentary prototype system with stubs inserted

for contract establishment and interaction plan generation modules. This would allow
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testing to ensure that given a valid token plan that adheres to established contracts,
the TPIC model can successfully execute interactions and successfully recover from

failures.

6.1 Implementation

The preliminary implementation has been completed for failure-free processing con-
ditions (Algorithms 6.3, 6.4, and 6.10), and interaction processing for the medical
example discussed in Section 3.3 has been successfully demonstrated. Interaction
plan generation and token plan selection at the application support layer were hard-
coded as opposed to dynamically generated using tools from Al

In the TPIC model, if token processing does not complete successfully the recovery
processing algorithm (Algorithm 6.9) submits the log of the token to the application
support layer for a decision about what to do. The application support layer uses the
log to determine the progress made through the interaction plan, and either produces
a new token plan that can be used to successfully complete interaction processing or
opts for arbitration. If arbitration is requested, the interaction processing layer moves
to arbitration and terminates processing. Otherwise, the new plan submitted to the
interaction processing layer by the application support layer is used to construct a
new token, and processing of this new token operates exactly as in normal operation.
Arbitration of failed interactions is outside of the scope of the system. Implementation
of cancellation, status, and lost token processing will allow testing of recovery from
node failures.

Algorithms 6.1, Establish_Contract, and 6.2, Terminate_Contract, show the steps
involved in establishing and terminating contracts, respectively. The simulated peer-
to-peer application layer establishes the required contracts and proceeds to request

the application support layer to initiate an interaction.
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Algorithm 6.1 Establish_Contract(RemoteHostID, Terms, TableDescriptions, En-
cryptionKey, SQLReferences)

Generate a unique ContractID using local HostID and remote HostID
Create temporary tables in each peer’s DBMS from TableDescriptions
Store Terms, TableDescriptions, EncryptionKey, SQLReferences

Algorithm 6.2 Terminate_Contract(ContractID)
Delete temporary tables in each peer’s DBMS from TableDescriptions

6.2 Interaction Layer

The algorithms described in this section describe the implementation of the inter-
action layer. Each algorithm changes the state of the intera,cti(‘)n layer as shown in
Figure 6.1.

Algorithm 6.3, Initiate Interaction, is used to initialize interaction parameters,
construct and delivery a token to the token processing layer, and set the interaction
to the “Token Sent” state. Under normal processing circumstances, the token will
return to the interaction processing layer with a token status of “Completed” and
Algorithm 6.4, Terminate_Interaction, is used to log the token plan, return the results
of the interaction to the application support layer, add a “terminate interaction”
record to the interaction log, and move the state of the interaction to the “End”
state.

Under failure free processing, only Algorithms 6.3 and 6.4 are required to im-
plement the interaction layer. Algorithms 6.5 through 6.9 are required to handle
cancellations, timeouts, status requests, lost tokens, and recovery processing at the
interaction layer.

In the event that the application support layer issues a request to cancel an in-
teraction, Algorithm 6.5, Cancellnteraction, is invoked by the interaction processing
layer. This algorithm causes a cancel message to be broadcast to all of the sites
participating in the interaction, and effectively moves the interaction’s state to the

“Recall Sent” state.
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Figure 6.1: Interaction processing finite state diagram labelled with algorithms used to
change from one state to another. The boxed elements in the figure are the algorithms.
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Algorithm 6.3 Initiate Interaction(ApplInstID, Microtransactions, TokenPlan, SQL-
References, TableSchemas, IntT, StatusT, CancelT, LostT, MaxR)

// AppInstID - Application Instance ID is used for call-back routines
// Microtransactions - table of (StepID, HostID, SQL_Program)

// TokenPlan - Adjacency list (Status, CurrentID, NextID)

// TableSchemas - table of (ContractID, TableSchema, AccessControls)
// IntT - how long to wait for token during normal processing

// StatusT - how long to wait for status response

// CancelT - how long to wait for token after requesting cancel

// LostT - how long to wait for information about lost token

// MaxR - maximum number of times to reset the interaction timer

ApplicationID <+ ApplnstID
G + (Microtransactions, TokenPlan)
InteractionTimer + IntT
StatusTimer + StatusT
CancelTimer ¢ CancelT
LostTimer < LostT
MaxResets «+ MaxR
InteractionID « (HostID, ApplicationID, RandomDigitString)
Initialize containers and token catalog
for all (C, T, A) in TableSchemas do
I(C — I(C U T
U«UU(C, T, A0
end for
// Initialize the token - see Definition 4.16

TokenID ¢ (InteractionID, RandomDigitString) -

U ¢ (TokenID, G, K, null, U, InteractionTimer, ready, null)
Write an “Initiate Interaction” record in the interaction log
Log the token plan in the interaction log

Deliver(¥, loopback)

Set timer - InteractionTimer

Return InteractionlD

Algorithm 6.4 Terminate Interaction(¥)

Log ¥ in the interaction log
Write a “Terminate Interaction” record in the interaction log
Send “processing complete” message to application support layer
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Similarly, if an interaction remains in the “Started” state for too long, the in-
teraction timer will expire and Algorithm InteractionTimeout will be invoked. This
algorithm issues a status request message and moves the interaction state to “Status

sent”.

Algorithm 6.5 Cancellnteraction

// A cancel message is generated and broadcast to all of the
// peers listed in the outstanding token plan.

Issue cancel message to each peer in outstanding token plan
Set timer ¢ CancelTimer

Algorithm 6.6 InteractionTimeout

// A status request message is generated and forwarded to the
// first peer in the token plan of the currently outstanding token.

Issue status request to the first peer in the token plan of the outstanding token
Set timer + StatusTimer

Algorithm 6.7 ReceiveStatus

// A status message has been received

if insufficient progress made OR resets in interaction log == MaxResets then
Cancellnteraction (Algorithm 6.5)

else
Set timer + InteractionTimer

end if

Upon receipt of a status response message, the interaction layer delivers the status
information to the application support layer. At this point, end-user input or pro-
file information may be used to determine whether to continue processing or abort
processing based on the status information received from the interaction processing

layer. Algorithm ReceiveStatus requests direction from the application support layer
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Algorithm 6.8 Lost_Token

Broadcast a lost token message to all peers in the lost token plan

Set timer + LostTimer

Wait for lost token responses until (timer expired or all token responses received)
Move to recovery with lost token responses

and based on the response, either extends the time to allow processing to continue
and changes the state of the interaction back to “Started”, or invokes algorithm
Cancellnteraction.

If the CancelTimer or StatusTimer expires, the Lost_Token algorithm is invoked.
This algorithm broadcasts a lost token message to all participants in the interac-
tion and accumulates as much information as possible about the status of the token
before it was lost based on the lost token response messages received from partici-
pants. When sufficient information has been received to reconstruct the token or the
LostTimer expires, the the recovery algorithm is invoked.

The Recovery algorithm is invoked if the token is returned with a status other than
“Completed” or if the token is lost. Even for a lost token, part or all of the token
may be reconstructable from the responses received by the Lost_Token algorithm by
the time recovery is invoked. The recovery algorithm copies the token’s log to the
Interaction Log and forwards the log to the application support layer. The application
support layer will then use the interaction plan to generate an alternative token
plan and submit this new plan for execution at the interaction layer, or will opt for
arbitration. If a new plan is forthcoming, the Recovery algorithm will construct a
new token with this plan, deliver it to the first participant in the plan, and move the
interaction state to the “Token sent” state. Otherwise, the state of the interaction

will be moved to “Arbitration” and the interaction will terminate.
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Algorithm 6.9 Recovery(¥)

Copy token log to the Interaction Log

Callback application layer instance ApplicationID with token log
Receive new token plan from application layer

Generate new token, ¥/ «+ ¥

Replace token plan on ¥’ with new token plan

Generate new TokenID for ¥’

Log the new token plan in the interaction log

Deliver(W', first destination in new token plan)

Set timer < InteractionTimer

6.3 Token Processing Layer

When a token is received by the token processing layer (whether it is received from the
local interaction layer or from a peer token processing layer), the token is processed by
Algorithm 6.10, Process_Token. This algorithm begins by ensuring that the token’s
ID is not on the lost token list. If the token is on the lost token list, it can be
discarded. Otherwise, if the token has a status of “Failed”, it can be handed to the
local interaction layer for recovery. If the token is on the cancelled token list, the
token status is set to “Failed” and the token is delivered to the originating peer.

If the token is not on the lost or cancelled list and the token status is not “Failed”,
then normal processing begins. First, the contents of containers on the token are
decrypted using the decryption key in the appropriate contract. Next, containers
on the token are moved into temporary tables in the DBMS of the peer. The SQL
program associated with this microtransaction in the token plan is then submitted
for execution on the peer’s DBMS.

When DMBS processing completes, the temporary table contents are moved back
onto the token’s containers and encrypted. The return code for the DBMS is used
to determine the next step to execute in the token plan. If there is no entry in the
token plan for the return code, the token status is set to “Failed” and the token is
returned to the originating peer for recovery processing.

If the last step in the token plan has successfully executed, the token status is set
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to “Completed” and the token is delivered to the interaction layer.

If a decision is made to cancel an ongoing interaction, either due to time constraints
or based on processing at a higher layer on the originating peer, the interaction
layer issues a Cancel Request message to all sites participating in the interaction.
Thus, the token processing layer is responsible for receiving and acting upon Cancel
Request messages. The Process_Cancel Request algorithm checks that the token to
be cancelled is not pending in the site’s outgoing tokens queue. If the token is queued
for delivery, it is removed from the queue and sent back to the originating peer with
a status of “Failed”. Otherwise, the tokenlID in the cancel token request message is
added to the list of cancelled tokens.

Similarly, if token processing takes longer than expected, a status request message
may be issued by the originating peer and the token processing layer is responsible
for receiving and acting upon Status Request messages. The Process_Status_Request
algorithm handles status request and status response messages at the token processing
layer. The algorithm first checks the type of status message that has been received.
If it is a status response message, the response is handed to the interaction layer
for processing. Otherwise, the DMBS log of the peer is queried to determine the
path followed by the token. If the token is being processed locally, a status response
message is generated and sent to the originating peer. Otherwise, the status request
message is forwarded along the same path followed by the token.

Finally, a token can be lost due to node failure. The interaction layer of the orig-
inating peer will detect that the token is lost based on the expiration of timers. The
interaction layer will then issue token lost messages to each of the sites participating
in the interaction. The token processing layer is responsible for handling lost token
messages and responding to them with a lost token response message.

The Process_Lost_Request Algorithm handles token lost and token lost response
messages at the token processing layer. If a token lost response is received, it is
handed to the interaction layer for processing. If a token lost message is received,

the ID of the token is added to the lost token list and a lost token response message
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Algorithm 6.10 Process_Token(¥)

// Local data accessed include local contracts and the peer’s DBMS
Starttime ¢ current local time
if TokenID on Lost list then
Terminate processing
end if
if Token status is Failed then
Queue token for delivery to local interaction layer
Terminate processing
end if
if Contract expired then
Set token status to Failed, token error code to Contract expired
Queue token for delivery to originating peer
Terminate processing
end if
if TokenID on Cancelled list then
Set token status to Failed, token error code to Cancelled
Queue token for delivery to originating peer
Terminate processing
end if
Decrypt container using key from contract
Move containers on token into local database
Submit SQL program to DBMS front end for processing
Move containers from local database onto token
Encrypt container using key from contract
Reduce token counter by Starttime less current local time
Add token log entry
if Plan completed then
Hand token to local interaction layer
Terminate processing
end if
if No entry in token plan for code returned from SQL execution then
Set token status to Failed
Set token error code to code returned from SQL execution
Deliver token to originating peer
Terminate processing
end if
Deliver(¥, Next peer in token plan)
Terminate processing
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Algorithm 6.11 Process_Cancel Request

if Token queued for delivery to another peer then
Remove token from queue
Set token status to “Failed”, token error code to “Cancelled”
Queue token for delivery to originating peer
else
Add the tokenID in the cancel token request message to the list of cancelled
tokens in the appropriate contract

end if

Algorithm 6.12 Process_Status_Request

if MessageType == Response then
Hand status response message to interaction layer
else if MessagelD in Voided Message list then
Discard Message
else
Query local log to determine path the token followed
if Token processing locally then
Generate status response message
Deliver Status Response to originating peer
else

Forward status request message along path taken by token
end if
end if

Algorithm 6.13 Process_Lost_Request

if MessageType == Response then
Hand lost token response to the interaction layer

else
Add the tokenID in the lost token request message to the list of lost tokens in
the appropriate contract
Generate a LostTokenResponse with the contents of the temporary tables and a
copy of the local logs that include the lost tokenID

Deliver the LostTokenReponse to the initiating peer
end if
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is generated and sent to the originating peer. This response message includes any
information the site has concerning the last known state of the token, including the

“stale” values stored in temporary tables used to transfer data to and from containers

on the token.



Chapter 7
Conclusions and future work

In this thesis, we have proposed a new model for the coordination of interactions in a
peer-to-peer process-oriented programming environment. The model is motivated by
the need for an interaction coordination model that allows end-user systems to act as
peers in a peer-to-peer environment in order to support extensive individualization
of interactions on a variety of devices while preserving end-user privacy.

A new model of transaction coordination is needed to allow end-user control of
end-user information while still allowing participation in distributed transactions.
The token-based peer-to-peer interaction coordination (TPIC) model described in
this thesis fulfills this requirement. This new model is fundamentally different from
other distributed transaction coordination models in that it does not rely on global
state to effect the coordination of distributed activities.

The TPIC model makes use of a mobile, disposable token for coordination and
transfer of data among peers. Pairs of peers must enter into contracts before they
can participate in TPIC model interactions. Once contracts have been established,
an interaction plan can be generated. An interaction plan is a directed acyclic graph
of microtransactions to be executed in sequence at the peers participating in the
interaction.

The approach taken in the TPIC model is to serialize the actions to be performed

at different sites based on a plan that resides on a token, and to ship data among
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sites on this token. This allows processing at a single site to execute independent of

the state of any other sites, since all of the data the site needs to access are made

local to the site by the presence of the token.

The processing that occurs at a single site is termed a microtransaction (similar

to a subtransaction in a multidatabase environment), and the execution of a micro-

transaction moves the site’s DBMS from one consistent state to another consistent

state. Only one microtransaction on a token can be active in the system at any given

time, since the execution of microtransactions is serialized by the token plan.

Important assumptions underlying the model include:

1.

6.

The model does not rely on access to global state

. The model does not support data replication
. Each peer maintains a DBMS

. A peer DBMS is a pre-existing database and its software cannot be modified in

support of the model

. A peer DBMS views requests initiated by a remote peer under the TPIC model

no differently than requests that are generated locally

There is a reliable message-passing infrastructure in place

The three most important properties of the TPIC model are:

1.

2.

3.

The TPIC model is non-blocking
The TPIC model does not rely on global state

The TPIC model provides a mechanism for enhancing end-user privacy

The TPIC model is a non-blocking model, in that locks are only held by a mi-

crotransaction while it is executing at a given peer. Each microtransaction forms a

complete transaction on the peer where it executes, moving the peer’s DBMS for-

ward from one consistent state to another consistent state. Data replication is not
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supported by the TPIC model. Instead, data is moved onto and off of the token.
Since only a single copy of each data item is supported, data is shared among peers
by moving the data to the peer that needs it. The token assumes the role of the trans-
action coordinator, and containers within the token allow data to be moved among
peers. Since each peer’s DBMS is left in a consistent state when the token leaves a
peer, recovery from failures can be quite flexible as none of the participating peers
are blocking pending recovery.

The TPIC model does not rely on global state for the coordination of distributed
interactions, hence there are no interdatabase constraints enforced by the model.
Instead, contract terms that ensure consistency across peers are negotiated and en-
forced. Each interaction is governed by its own coordinator and the microtransactions
to be performed are serialized on a token. Each microtransaction forms a complete
transaction on a peer’s DBMS, thus ensuring that the peer’s DBMS will be left in
a consistent state regardless of whether the microtransaction execution commits or
aborts.

The TPIC model provides a mechanism for enhancing end-user privacy. Placing
end-user information under end-user control presents problems for existing distributed
transaction processing systems, since access to this data is required for processing to
occur. Using the token as a vehicle for moving data from peer to peer allows the
end-user to maintain their own information and to control how it will be shared with
other peers. Contract terms negotiated before interactions occur allow the end-user
to enforce their own privacy policies.

If an interaction completes successfully, it is guaranteed to move the state of
each peer involved in the interaction from one contractually conformant state to
another contractually conformant state, meaning that all of the contract terms of
each of the contracts governing the interaction will be fulfilled. In the event that the
interaction cannot successfully complete, the logs of the interaction will be sent to
an arbitration process for resolution. Plan generation and plan selection tools should

be used to reduce the likelihood of arbitration by providing flexible, alternative plans
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when potential failures are anticipated.

Further work 1s required to investigate performance and scalability of the TPIC
model. It is difficult to draw comparisons directly between existing distributed
database implementations and the TPIC model. In existing databases, clients is-
sue transactions to be processed on a limited number of servers. In contrast, the
TPIC model replaces clients and servers with peers, and data and processing are dis-
tributed among all of the peers. This results in a model with potentially hundreds of
millions of peers, each with a very limited amount of data.

Future work of an interdisciplinary nature is required for development of tools in
support of the contract negotiation and establishment and plan generation. Tools for
domain experts are needed that allow contract terms to be defined in a standardized
way and that allow plans to be specified.

While the process-oriented programming environment inspired the placement of
data and control on the token, the TPIC model does not depend on the process-
oriented programming environment. The TPIC model could be used with existing
database environments without significant modification to the model. Future work
is needed to investigate how the TPIC model can be integrated into existing mid-
dleware and workflow environments to create hybrid systems that link the existing
infrastructure to the peer-to-peer paradigm.

Future work will investigate implementation issues with respect to the use of the
token counter to prioritize token processing at peers. The token counter could also
be used to assign priorities during transaction processing in a peer’s DBMS, allowing
tokens with ample time remaining to be selected preferentially during deadlock res-
olution. Extensions to the model could also involve the use of the token counter at
the token processing layer to automatically cancel tokens whose counter has expired.

Each pcer in the TPIC model is treated as an autonomous entity that provides
access to DBMS facilities. Implementation issues may arise when peers involved in
a TPIC interaction use middleware facilities such as CORBA or DCOM to access
distributed resources and/or legacy database systems. While the TPIC model has
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been designed to accomodate peers with any DBMS (including distributed or legacy
systems), implementation issues may force extensions to the model in order to acco-
modate the types of failure these database systems can encounter.

The TPIC model as presented in this thesis relies on bilateral contracts between
pairs of peers. Extending the model to use multi-lateral contracts should be investi-
gated, as it would allow containers to be shared by more than two participants.

A fully functional prototype of the TPIC model will be implemented as part of
the KALI project.
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