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Abstract

The lattice gas model of an adsorbate, which assigns adsorbed particles to a regular
array of sites of a substrate, permits a succinct description of the equilibrium prop-
erties of the adsorbate. To rigorously describe its evolution, specifically adsorption
from and desorption to its gas phase and surface diffusion, in the presence of lateral
interactions, a kinetic lattice gas model is set up. From the master equation a hier-
archy of equations of motion is derived for the coverage and the higher-order particle
correlators. A manageable set of evolution equations is derived by examining different
methods of truncation of this hierarchy and factorizations of the correlators. These
equations are developed with a set of computer codes.

From these we calculate the equilibrium correlators of a gas adsorbed on a square-
latticed substrate. These, as well as thermodynamic quantities of interest (isosteric
heat of adsorption, chemical potential), are compared with quasi-exact results ob-
tained using the transfer matrix method and with existing analytic approximation
methods. We explore thermal desorption under quasi-equilibrium and nonequilib-
rium conditions induced by limited surface diffusion. We show that a five-correlator
basis on a square lattice gives very good results. The extension of the basis to fif-
teen functions improves the quality even further. The latter is now the best available
analytic approximation for a description of the evolution of a lattice gas with inter-
actions. The approach can be generalized to multi-component adsorbates and other

surface processes.
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Chapter 1

Introduction

Surface reactions play an important role in current technology [1]. Almost all of the
chemicals produced today use catalytic processes where the reactions occur on the
surface of a catalyst. Integrated circuits are made by depositing films on the surface of
a semiconductor. Surface reactions also play a key role in the production of fuels, the
disposal of noxious chemicals, the corrosion and passivation of metals, the processing
of ceramics, the production of photographic film and friction and lubrication. Surface
interactions are crucial in regulating the behavior of biological membranes. As modern
technology progresses and physical devices become smaller and smaller, entering into
the realm of nanotechnology, the need for understanding the nature of the interactions
of solid surfaces with other solids, fluids and gases becomes more and more important.

The new environmental pollution standards will soon require the use of catalytic
converters on each transportation vehicle, and this makes the study and modeling of
the adsorption, desorption and diffusion processes of atoms or molecules on metallic
surfaces even more timely. In particular, theory must develop and expand frame-
works in which not only simple processes, such as one species adsorbing on just one
preferred surface site, can be modeled but also complex systems such as competing

adsorption and subsequent reaction of several species on different sites. What kind

1



of theory is appropriate depends on the systems to be studied and also on the level
of understanding that one wants to achieve. Before we survey such theories we will
discuss in general terms the basic physics involved in surface processes.

We start, following [2], by considering the statics of a gas phase in contact with
the surface of a solid. The gas particles will be subjected to surface forces arising
from the solid whose potential is of the general form depicted in Fig.1.1. Such a
potential can be viewed as arising from a sum of long-ranged attractive and short-
ranged repulsive forces. At separation distances, typically, more than 5A the atomic
structure of the surface is smeared out and the interaction potential V;, between the
particle and the surface becomes a function only of the distance, z , from the surface.
If the gas particle is charged it is attracted to the surface by its image charge. Even
if the incoming particle is neutral, it experiences a long-ranged attractive dispersion
or van der Waals force. The latter is the result of virtual electron-hole pairs excited
in the metal by spontaneous fluctuations in the charge cloud of the gas particle. Such
fluctuating dipoles and higher multipoles, as derived in [3], induce their images in
the solid leading to an overall attractive force, whose potential energy is given in the

dipole approximation by the van der Waals interaction:

V(z) =-C/2* (1.1)

When the particle approaches within a few angstroms of the solid, details of
the atomic structure become important and quantum mechanics must be invoked to
account for the short range interactions. For closed shell atoms and molecules such as
rare gases, methane etc., the van der Waals interaction is still a major contribution,
even at short distances. In such situations, i.e. when the electronic configuration of
the adsorbing particle remains more or less intact except for fluctuating dipoles, one

speaks of physical adsorption or physisorption.
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Figure 1.1: Representative surface potential as a function of the distance above the
surface, z, (solid line) and its parabolic approximation (dashed)

For reactive atoms and molecules, such as O, CO, etc., see for instance [4], a sub-
stantial rearrangement of electronic orbitals of the adparticle occurs as it approaches
the surface, i.e. chemical bonds are established. In this situation one speaks of
chemisorption. The strength of the chemisorption surface bond is proportional to the
wave function overlap of valence electrons on the adparticle and metal electrons near
the Fermi level. Because these wave functions decay exponentially, the attraction
resulting from bond formation is also exponential as a function of distance from the
surface.

As the adparticle approaches even closer to the surface Coulomb repulsion and
Pauli exclusion produce strong repulsion. The precise form of the surface poten-
tial can only be obtained from quantum mechanical calculations. These days most
such calculations are based on density functional theory, as generally implemented in

quantum chemistry. Not surprisingly one finds that adparticles can bind to different



Figure 1.2: Surface potential along the surface (solid line) and its parabolic fit
(dashed)

symmetry sites on a surface such as in an ontop position above a metal atom, in
bridge positions between two atoms, or in three- or fourfold hollow sites.

All particles trapped in the surface potential make up the adsorbate. The potential
minimum to the vacuum level is defined as the binding energy (—Vj, with V; positive).
This binding energy for physisorption is typically less than 0.5eV and around a few
eV for chemisorption.

For a perfect substrate (i.e. one without defects) this potential minimum will
change periodically along any direction on the substrate, going between peaks and
valleys, as shown on Fig.1.2. This surface corrugation is described by the dependence
of the surface potential, V;( —ﬁ, z), on a two-dimensional vector R along the surface, in
addition to the distance z above the surface. Thus the adsorbed particle is, in general,
not free to move laterally on the surface. To do so it has to jump over potential
barriers that separate the potential minima. If the temperature is sufficiently low
the adparticle can only vibrate around its equilibrium position, at the bottom of the
potential well at a particular site of the lattice structure. Increasing the temperature
makes the hops from one potential minimum to another more probable, accounting for
the surface diffusion. In the extreme case, when the potential barrier parallel to the
surface is much less than kgT, the corrugation is negligible and the surface becomes
flat for the adparticle. Then the adsorbate can be treated as a two-dimensional gas.

So far we have only looked at a single gas particle close to the surface of a solid.

When more particles arrive from the gas phase one must also account for their mutual



interactions. These lateral interactions can also be extracted from quantum mechan-
ical calculations. Once this is done we have complete knowledge of the many-body
Hamiltonian of the adsorbate and thus are in a position to calculate its equilib-
rium properties such as phase diagrams, adsorption isotherms etc. by minimizing its
Helmbholtz free energy in the canonical ensemble or the Landau potential in the grand
canonical ensemble.

In practice for the calculation of these equilibrium properties, via equilibrium
statistical mechanics, the form of the Hamiltonian is usually simplified to that of a
"lattice gas". Here the corrugated surface potential is represented by its potential
minima alone i.e. each adparticle may reside only at the vertices of a lattice with
a characteristic binding energy, —V,. As well, the adparticle interactions, whether
direct or via the substrate, are transformed to a set of effective interactions between
particles residing at these vertices, or adsorption sites.

Because the ultimate aim is to understand surface processes we have to go be-
yond equilibrium statistical mechanics and identify the microscopic energy transfer
processes that lead to adsorption, desorption, diffusion and surface reactions. The
relevant time scales of these govern the time evolution of a gas-solid system. When
a gas particle approaches the surface of a solid it either bounces back elastically or,
if it gets rid of enough energy within the attractive region of the surface potential, it
is trapped. However, even if it descends all the way to the bottom of the surface po-
tential well, it will eventually evaporate again; thus absolute trapping does not exist,
there always exists a possibility for the particle to evaporate. For times ¢y (usually
10~135) required for a particle to traverse the potential well, it will remain close to
the top of the well within an energy of kgT'. In this time there is a fair chance that
the particle escapes again. On the other hand, the particle might loose energy when
colliding with the surface in an inelastic scattering process in which it excites either

phonons or electron-hole pairs in the solid. As a consequence the particle will begin



its descent to the bottom of the potential well. In a quantum picture this descent
corresponds to a cascade of transitions between the bound states of the surface poten-
tial, each downward transition accompanied by emission of phonons or electron-hole
pairs into the solid and each upward transition with the absorption of phonons or
electron-hole pairs. This adsorption process, characterized by a time scale ¢, is more
likely at low temperatures. Accommodation of a gas particle in the surface potential
for times longer than an order of magnitude of the oscillation time is viewed as surface
adsorption.

The adparticle will oscillate around the minimum of the surface potential. By
excitation or phonon absorption from the surface it might acquire energy to climb up
the surface potential. It will eventually succeed in doing so after a desorption time
tq. If t, is much shorter than ¢4, then the adsorption and desorption are statistically
independent, and the processes of sticking, energy accommodation (i.e. thermaliza-
tion) and desorption can be separated in different terms. This is most likely the case
if the thermal energy kg7 is much less than the depth of the surface potential well.

Another process of importance in an adsorbate is surface diffusion. It is the result
of the adparticles hopping from one surface potential minimum, i.e. adsorption site,
to another one close by. If the time scale of diffusion, ¢4y, is short compared to the
time scale of adsorption (desorption) the adsorbate will arrange itself in a state of
quasi-equilibrium during adsorption (desorption). By this we mean that the geometric
structure and the energetics of the adsorbate is the same as if the adsorbate were in
equilibrium at the instantaneous coverage with all particle correlators assuming their
equilibrium values.

The theory of adsorption-desorption kinetics under conditions of quasi-equilibrium
has been advanced more than fifteen years ago within the framework of non-equilibrium
thermodynamics, [5], [6], [7], [8],[9] and is now capable of describing complex gas-solid

systems with different kinds of molecules adsorbing on several adsorption sites and



undergoing surface reactions.

Most mesoscopic theories of adsorption and desorption are based on the lattice
gas model. It is constructed for a periodic single crystal surface without defects.
The states are characterized by site occupation numbers and their energetics enter a
Hamiltonian via surface binding energies and lateral interactions. The statistical me-
chanics of the lattice gas model allows the calculation of phase diagrams, adsorption
isotherms and other equilibrium properties. Methods employed fall into camps of an-
alytical approximations (Bragg-Williams [10], quasichemical approximation [11],[12],
[13] and Kikuchi-Hill [14] cluster approximations), and quasi-exact Monte Carlo sim-
ulations and Transfer matrix methods. A couple of these methods are discussed in
Chapter 2.

To study the kinetics of adsorption-desorption and diffusion within the context of
the lattice gas model one introduces a function that gives the probability of finding
the adsorbate in a given microstate at time ¢. This probability evolves according to a
Markovian master equation with transition probabilities describing adsorption, des-
orption and diffusion and satisfying detailed balance. The time independent solution
of this master equation yields yet another approach to the equilibrium properties of
the adsorbate.

This master equation can be solved by kinetic Monte Carlo simulation,[15],[16],[17],
[18], with well defined transition probabilities to produce the kinetics. The main dis-
advantage of the Monte Carlo approach is that the statistical fluctuations inherent in
the method impair a systematic and fast assessment of the quantities of interest, as a
function of different input parameters. Likewise, extensive run-times may be required
to evolve to the equilibrium state. Although very useful, Monte Carlo methods are
not a substitute for a formal statistical theory in which one first derives a small set
of kinetic equations from which observable quantities and relationships are derived.

This will be the approach followed in this work. However, it is generally believed



that for studies of systems with many binding sites or long range interactions Monte
Carlo simulations are more economic.

In a one-dimensional adsorbate system exact results have been worked out, [19],
[20], that have served as a guide for simple approximations in two-dimensional sys-
tems, [21], [22]. The main aim of this thesis is to advance the kinetic lattice gas model
for a two-dimensional system further, by developing a rigorous and unique approxi-
mation scheme in which convergence is guaranteed in the sense that each higher level
approximation will yield a better result for the overall equilibrium properties and the
kinetics of a particular gas-solid system.

The thesis is structured as follows: in the next chapter we formulate, after a brief
summary of the basic thermodynamics and kinetics, the lattice gas model by first
specifying its Hamiltonian. We then survey known results from statistical mechanics
of a non-interacting adsorbate and show how lateral interactions can be qualitatively
described within the quasichemical approximation. After that we describe the trans-
fer matrix method, which has been developed into an efficient tool to obtain the
equilibrium properties "exactly".

In Chapter 3 we turn to the kinetic lattice gas model, which is based on the
master equation for a Markovian process. From this equation we derive a hierarchy
of equations of motion for the coverage and many particle correlators, mathematically
equivalent (and thus unsolvable) to the original master equation. The main challenge
and result of this thesis is to find a systematic closure approximation that truncates
this hierarchy at a manageable level. We will show that retaining the equations for
correlators involving from 1 to 4 neighboring sites on a square lattice gives very good
results which is assessed by retaining on the next level all correlators up to 15. To
actually derive these equations with hundreds of terms on their right hand sides we
have developed a series of algebra codes, examples of which are given in Appendices.

In Chapter 4 we calculate the equilibrium properties of a gas adsorbed on a surface



with a square lattice of adsorption sites using our approach and compare the outcome
with the cluster variation methods and transfer matrix results. Chapter 5 is then
devoted to results on the adsorption-desorption kinetics with emphasis on the role of
limited surface diffusion. In Chapter 6 we give a brief summary and an outlook on

what can now be done for more complicated adsorbate systems using our approach.



Chapter 2

Lattice Gas Model

We begin this section with a short review of the basic thermodynamics and some
kinetics to set the stage for the proper formulation of models that will be the basis on
which the statistical mechanics for the equilibrium and non-equilibrium properties of

adsorbates will be developed.

2.1 Thermodynamics and kinetic preliminaries

2.1.1 Thermodynamics

In ordinary three-dimensional thermodynamics, in the energy representation, the in-
ternal energy U is expressed as a function of the entropy S, the volume V and the
number of particles V; of each of species present. The fundamental thermodynamic

relation is written as
dU =TdS — PdV + ) _udN; (2.1)

or, after integrating when holding all intensive variables T', P, i1; constant

U=TS—-PV+) mhi (2.2)

10
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We consider now an adsorbate-substrate system which contains N, particles of
the substrate and N,4 adparticles in equilibrium with the gas phase. The fundamental

thermodynamic relation Eqn.(2.1) must then be extended to read,

dU = TdS — PV + psus@Nws + padNag (2.3)

On the other hand for the pure substrate substance it has the form

dUp = T'dSy — PdVy + podNgw (2.4)

Subtracting Eqn.(2.4) from Eqn.(2.3), and defining excess quantities

USZU—UO7VS=V—‘/0>SS=S—SO)()0=MO_)LLS’LL6 (25)

we get for the differential energy for the adsorbate,

dU, = TdS, — PdV; — odNsuws + 11adNog (2.6)

In the special case when the substrate molecules are inert, U; becomes just the
energy of N,; adsorbed particles in the potential field of the inert adsorbent and
the energy of the adsorbent subtracts out, except for the interaction energy between
the adsorbent and the the adsorbate. As for S; and Vj, they are additive extensive
quantities describing the adsorbate. Ny, is proportional to the surface area, so that
 is proportional to the spreading pressure.

One usually takes N,,; to be the total number of lattice sites, Ny, in the surface

and Eqn.(2.6) becomes

dU, = TdSs — PdV, — wdNs + padNag (2.7)
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Equation (2.7) has exactly the same form as that for the three dimensional ther-
modynamics except for the extra term —pdNs, [24]. If the gas phase is in equilibrium

with the adsorbed gas particles then the chemical potentials must be equal
,ua(G,T) = :U’!J(P’ T) (28)

where p, is the chemical potential of the gas phase as a function of temperature
and pressure. Likewise u, is the chemical potential of the adsorbate as a function
of the coverage § = N,4/N, and of temperature. From their equality we get the
adsorption isotherms

6 =0(T, P) (2.9)
and the isosteric heat of adsorption per particle

OlnP
oT

Qiso = kpT? lo (2.10)

The latter is a measure of the energy released upon adsorption under isosteric con-
ditions. Furthermore one can show [24] that the spreading pressure of the adsorbate

is given by

P
¢ =RT / (T, P')d(In P') (2.11)
0
The entropy per particle of the adsorbate is then given by

Oln P
oT

Sg = Ss/Nad = —kgT |(p + S¢ (212)

where s¢ is the entropy per particle in the gas phase and P = P(T,¢) can be
obtained by inverting Eqn.(2.11).

Thus we say that all the equilibrium properties of the adsorbate can be obtained
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once we have calculated the chemical potential, using methods of statistical mechan-
ics. We will see in the next section that the desorption kinetics is also determined
by the chemical potential for adsorbates in which quasi-equilibrium is maintained by

fast surface diffusion.

2.1.2 Adsorption and desorption kinetics

To set the stage for the study of adsorption-desorption kinetics in later chapters we
consider here the most frequent situation of an adsorbate where surface diffusion is
so fast (on the time scale of desorption) that the adsorbate is maintained in quasi-
equilibrium throughout the desorption process. That is to say, at the coverage 6 (t),
at some particular time ¢ during adsorption or desorption, at temperature 7' (¢), the
adsorbate can be completely characterized by its chemical potential, u, (6 (t),T (t))
as a function of coverage and temperature.

To derive an explicit expression of the adsorption and desorption rates we consider
the simplest adsorbates, i.e. no dissociation on the surface, one molecular component
and submonolayer adsorbates. The more general case has been considered elsewhere
(for further references see [25]). We look at a situation where the gas phase pressure
P, is different from its value, P, which maintains an adsorbate at coverage 6. There
is then an excess flux to re-establish equilibrium between gas phase and adsorbate so

that we can write

s )\th
h

d6/dt = S (8, T) (P — P) (2.13)

where

A = h/~/2mrmksT (2.14)

is the thermal wavelength of a particle with mass m, and a, is the adsorption
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surface area per particle [25].
Next we express the equilibrium pressure in terms of the gas phase chemical po-

tential, u,(P,T),

kT

y
Abh

Zinsexp(pg/ksT) (2.15)

Here Z;,: is the intramolecular partition function accounting for rotations and
vibrations. However, in equilibrium, the chemical potential in the gas phase is equal to
that in the adsorbate, u,(68,T), so that we can write the desorption rate in Eqn.(2.13)
as

ag kBT

Rd = S’(@, T))\—th—h"— int exp(ua/kBT) (216)

This is the principal result for the rate of desorption from an adsorbate that re-
mains in quasi-equilibrium throughout desorption ("quasi" in the sense that there is
an equilibrium on the surface, but there is no equilibrium between the particles in the
three-dimensional gas and those on the surface). Noteworthy is the clear separation
into a dynamic factor, the sticking coefficient S (6,T'), and a thermodynamic factor
involving single particle partition functions and the chemical potential of the adsor-
bate. The coefficient, S(8,T), is defined as the ratio of the rate of adsorption of gas
to the rate of collision with the surface i.e. simply the probability that an incoming
particle sticks. It is a measure for the efficiency of energy transfer in adsorption. Since
energy supply from the substrate is required for desorption, the sticking coefficient,
albeit usually at a higher temperature, must appear in the desorption rate by the
detailed balance argument. The sticking coefficient cannot be obtained from thermo-
dynamic arguments but must be calculated from a microscopic or mesoscopic theory
or be postulated in a phenomenological approach, based on experimental evidence for

a particular system or some simple arguments.
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Figure 2.1: Coverage isobars for Ny on Ni(110) at pressures (bottom to top at T =
140K) P =5.0x107%, 1.0x1075, 4.0x1075, 8.5x10~° Pa.

Eqns. (2.13,2.15,2.16) show that to determine the equilibrium properties of an
adsorbate and also the adsorption-desorption (and dissociation) kinetics under quasi-
equilibrium conditions we need to calculate the chemical potential as a function of

coverage and temperature. To do this we need a model of the adsorbate which will

be introduced shortly.
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2.1.3 Experimental preliminaries

The experimental study of adsorption-desorption processes falls into two broad classes:
(1) experiments in which the adsorbate is in equilibrium with the gas phase above it
and (ii) experiments in which the rates of adsorption and desorption are not equal
and the surface coverage changes with time. This may happen quickly, on the time
scale of surface diffusion, in which case the adsorbate is not in equilibrium during the
experiment either. The latter case is less commonly explored.

In equilibrium usually the external pressure of the gas and the temperature of the
surface are kept constant. An obvious and important experiment is to observe how
the coverage changes with respect to these external parameters. If the equilibrium
coverage is plotted as a function of substrate temperature for constant pressure, one
speaks of isobars. If the temperature is constant, the respective curves are referred
to as isotherms.

A typical example of isobaric plots is shown on Fig.2.1. The isobars are labelled
by the equilibrium gas pressure of Ny above the Ni(110) surface [26], [27].

Differentiating these isotherms with respect to the temperature one acquires Q;,,-
For this system it is given on Fig.2.2. The drop at 1/2 ML in this case implies a
change in the binding of the adsorbate.

A common and direct way to explore the kinetics of the adsorbate is to use the
technique of Temperature-Programed Desorption (TPD). Gas is first adsorbed onto
a cold surface, then the surface is heated in a controlled way (usually in a linear
fashion) and a mass spectrometer is used to measure the rate at which products
desorb. By varying the initial exposure, a set of desorption traces (TPD spectra) is
generated, from which one can also estimate the binding to the surface and the effects
of adsorbate interactions [40]. A typical example of such spectra is given on Fig.2.3. It
shows the rate of desorption of Ny from the same Ni surface. As the initial coverage

is increased the desorption peaks increase in area. For coverages above 1/2 ML a
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Figure 2.2: Isosteric heat of adsorption ();s, as a function of surface coverage for Nj
on Ni(110)

second low-temperature appears at 120K correlated, of course, with the behavior of
the isobars.

Another example of TPD is the desorption of Ni from a tungsten surface [28] is
shown on Fig.2.4. In this case even for coverages above 1/2 ML only one peak is
observed and all peaks are displaced to higher temperature with increasing coverage,
unlike the previous example.

The characteristic features of these data are those which a theoretical model should

explain.
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Figure 2.3: Temperature programmed desorption with a heating rate of 1.5K s !of
N, on Ni(110). Initial coverages up to § = 0.65 ML. Some peaks displaced for clarity.

2.2 Hamiltonian

Most microscopic theories of adsorption and desorption are based on the lattice gas
model. It is constructed for a periodic single crystal surface without defects. In
general, the unit cell of such a surface has many adsorption sites, in particular for
higher index planes, but even for low index planes adsorption can take place on several
different types of sites. To outline the derivation of the lattice gas model we simplify
the task and only take into account the most strongly bound adsorption site which,

on a square lattice, we take to be the ontop site. We also assume that adsorption is



19

25+ -
Ni/W{110)
. ——15.56
20 - T=43 K/s _
PARAMETER: ATOMIC DENSITY 1294

{IN 10™ ATOMS /cm?)

o
T

S
T

wn
1

MASS SPECTROMETER CURRENT {ARBITRARY UNITS)

1200 1300 1400 1500
TEMPERATURE T (K)

Figure 2.4: Temperature programed desorption spectra of Ni on W(110). Heating
rate 4.3 Ks™!, parameter is the initial Ni density in 10'* atoms/cm?.

restricted to the submonolayer regime and consider only gas-solid systems in which
the surface structure and the adsorption sites do not change as a function of coverage.
We label the unit cells by an index ¢, running from 1 to the total number of sites, Ns.
Each cell can be either occupied or empty. This is accounted for by a microscopic
occupation number, n;, which takes the value 1 if the cell is occupied and 0 if it is
not. A microstate of the system is then given by a vector n = (n;...n;...ny,); thus
there are 2™+ microstates, i.e. all possible sequences of zeroes and ones.

The dynamics of the system are introduced by a model Hamiltonian which, for

the simplest system of a one component adsorbate with one adsorption site per unit
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cell, is

H=ESZni+V12nmj+V22nmj/—|—... (2.17)
@ (i5) (i5")

Here E; is a single particle free energy and V', and V, are the two-particle inter-
actions between nearest neighbors (ij) and next nearest neighbors (ij'), respectively.
As long as the number of particles in the adsorbate does not change, the first term
in (2.17) can be dropped from further consideration. However if we want to study
adsorption-desorption kinetics the number of adparticles changes as a function of
time and all variables introduced in the phenomenological hamiltonian must be con-
sidered carefully. This is particularly true for the single particle energy F, which is
the primary energy responsible for the localization of the adsorbate. It is the result
of the interactions of a gas phase particle with the substrate, and causes, at least
at low coverages, the adsorbate to be in registry with the surface lattice. At higher
coverages, the interactions between adsorbed particles might become strong enough
to create its own periodicity of intrinsic localization, not necessarily commensurate
with the substrate. We will be concerned only with external localization. Neglecting
band structure effects, the energy spectrum of E; consists of localized bound states.
We label these energies of the surface potential by ¢;. The partition function for a

particle trapped in the surface potential is given by
Z = Z exp((e; + Vo) /ksT) (2.18)
where Vj is the depth of this potential. Thus the partition function per site is

Z = q3qine exp(Vo/ksT) (2.19)
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where ¢;,,; is the internal partition function for vibrations and (frustrated) rota-
tions of the adsorbed particle. If we approximate the surface potential at each site

by independent harmonic oscillators of frequency v, v, and v, we get,

43 = 4=qyq- (2.20)

Then the vibrational partition function of an adsorbed particle in the z direction

(respectively for the z and y direction) is,

q. = exp (hv,/2kgT) / [exp (hv,/kpT) — 1] (2.21)

On the other hand, if the adsorbate is mobile, we can approximate it by a gas in

two dimensions, and get

s = ¢:(Ay/as) (2.22)

From Eqn. (2.19) we get the Helmholtz free energy,

F= —Vo — ]{,‘BT In (q3qint) (223)

We note that we get the same free energy per particle from the lattice gas hamil-

tonian (without accounting for the lateral interactions) (2.17), if we identify

E,=F (2.24)

Because the lattice gas model does not describe the dynamics of motion of an
adsorbed particle in cell i, the respective degrees of freedom can only enter the model
as thermal averages via ¢3 and ¢;,;. This concludes the proper specification of the
lattice hamiltonian.

To proceed to the equilibrium statistical mechanics of the lattice gas model we can
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work in the canonical ensemble at fixed temperature and number of adsorbed particles
(and of course at fixed area or number of lattice sites) and get the Helmholtz free

energy from

F(T,N,N,) = —kgT In[Z(T, N, N,)] (2.25)

with the partition function

Z(T,N,N,)= > exp[~BH(ny,ny,...)] (2.26)

ni,ng,...=0

from which we get the chemical potential by differentiation

oF
Ha = Zo5ITN, (2.27)

On the other hand we can also start from the grand canonical ensemble at fixed

chemical potential with the Landau potential

L(T, Ns, o) = —kgT In(E) (2.28)
where
E(T, Ney pta) = »_ exp [—(H(n) = taN(n))/kpT) (2.29)
N,
N(n) = Z mn; (2.30)

In this case the coverage, the average site occupancy, is obtained by differentiation

with respect to ua,
(N) _ kgT 0ln=E

b=N. =N o

(2.31)
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The internal energy and other ensemble averages also follow directly by differen-

tiation of the partition function with respect to the independent variables.

2.2.1 Non-interacting adsorbate

We start with a non-interacting molecular adsorbate for which the chemical potential

is given by

pa(0,T) = =Vo + kpT[In(6/(1 — 6)) — In(gsgins)] (2.32)

This follows by retaining only the first term in Eqn.(2.17) and calculating sub-
sequent expressions to arrive at Eqn.(2.27). Inserted in Eqn.(2.15) this gives the

Langmuir isotherm

— kBT kBT Zint 0
P=—"27,.exp(u./ksT) = exp(—Vo/kgT)—— 2.33
33, Zint p(ta/kBT) X g p(—Vo/ksT)T— (2.33)
from which we get the isosteric heat of adsorption
OlnP 5 0
. — 2 — - —_— 2_. . .
sto(ey T) kBT T |0 % + 2k;BT kf'BT 8T ln(qSant/th) (234)

a coverage independent quantity. Substituting Eqn.2.32 in Eqn.2.16 we obtain the

desorption rate

7 Qg kBT Zint

Ra=56.T) 1-6)2, h Gsgimt

exp(—Vo/ksT) (2.35)

The case when the sticking probability is simply determined by site-exclusion,
S(0,T) = So(T)(1—0) is called "Langmuir kinetics". In this case the desorption rate
Ry is that of a first order "reaction" at low coverage. This simple picture breaks down

when either the sticking coefficient depends differently on the coverage, as it does
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for instance for precursor-mediated adsorption or when lateral interactions become
important.
In all calculations we have assumed Langmuir kinetics, but we will revisit the case

of non-Langmuir kinetics in a separate section.

2.2.2 Lateral interactions in the quasichemical approxima-
tion

To gain some qualitative insight into the effect of lateral interactions it is useful to
employ simple analytical approximations in the calculation of the chemical potential
of which the quasichemical approximation is the best suited. We split the chemical
potential into a non-interacting part, Eqn.(2.32) , and a term due to lateral interac-

(n) (lat),

tions, g = ta ~ + pa  and get for the latter, for ¢ nearest neighbor interactions,

1 a—1+201-6
(lat) — -
(0, T) = cVip + 2cchTln [a—}— 120 & ] (2.36)
where
o? =1-46(1—0)[1 — exp(=Vi/ksT)] (2.37)
The interaction adds to the isosteric heat which now reads
1
Qiso(0,T) = Qiso(0,T) + Ech [(1—a—26)/q] (2.38)

For a large repulsive interaction, Vi/kgT > 1, for example, Qs exhibits two
distinct and essentially constant values for § < 1/2 because, for § < 1/2, adsorbed
particles are essentially isolated from each other by the mutual repulsion on nearest
neighbor sites, whereas, for 8 > 1/2, those particles that have ¢ neighbors have their

binding energy reduced by cVi,. The consequence of this energetics on desorption
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is that in temperature programmed desorption, one observes one desorption peak
for initial coverages 6 < 1/2, essentially that of a noninteracting adsorbate, and, for
initial coverages 6 > 1/2, an additional peak at lower temperature for desorption out
of a local environment of ¢ neighbors.

To go beyond the quasichemical approximation cluster variational methods have
been developed. Other methods of determining the equilibrium properties and kinet-
ics of adsorbates exist, within the lattice gas model, [23].

In the Kikuchi [29] cluster variation methods [30], [31] the actual lattice is replaced
with sets of representative assemblies or arrays. The properties of these simpler arrays
are considered to mirror the lattice properties, and by increasing the complexity of

these arrays, the properties of the lattice are approximated to a desired degree.

2.3 Transfer Matrix method

The equilibrium properties of a lattice gas model can be obtained "exactly" employing
the transfer matrix method. Because we will use it later extensively for comparative
studies we outline its main features, following a recent review article [25].

To introduce the transfer matrix method we repeat some well-known facts for a 1-
D lattice gas of IV, sites with nearest neighbor interactions, V;, and cyclical boundary
conditions [32]. Substituting the 1-dimensional hamiltonian of type (2.17) into the
grand partition function =, Eqn.(2.29), we get

N,
2= [T niw) (2.39)
n =1
=Y T(n1,n2)T(ng,ns)... T(nn,, 1) (2.40)
3
T'(ni,nit1) = exp [E(nz +nit1) — Unmiﬂ] (2.41)
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with € = (uq — Es)/ksT and v = V1 /kgT. If the factors T'(n;, ni41) are regarded
as the elements of a 2x2 matrix in the (occupation number) basis {|0),|1)} for each

site we have, (z = exp(e); y = exp(—v))

T = = (2.42)

The summation over states in Eqn.(2.39) is equivalent to matrix multiplication,

e.g.

> T(n1,n2)T(ng,ns) = T*(ny, ns) (2.43)

ng=0,1
where T?(ny,n3) is an element of the matrix T?. Summing over all intermediate

states gives, with the cyclic condition ny,+1 = n1,

{1]

= TV (ny,n1) = Tr[T™]

n1=0,1

= AVe 4 2D | (2.44)

where A; 2 are the eigenvalues of the transfer matrix T. With A3 < A; the second
term becomes insignificant for large N, so that all thermodynamic information about
the system is contained in the largest eigenvalue of the transfer matrix.

One gets the coverage as (8 = 1/kgT)

(N) _ i Oln=
N N 3(5%)

6 ln()\l)
0(6/1'11) |T,Ns (245)

Q(T, /J'a) =

|7,
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To avoid explicit differentiation one uses the fact that an eigenvalue can be ex-
pressed as A\, = vETvE where vEF are the corresponding normalized left and right
eigenvectors. Differentiation of the eigenvalue with respect to any parameter is then

equivalent to the differentiation of the transfer matrix, and one finds

z ;0T
0(T, pa) = Xl‘VL—ajT,NsVR (2.46)
= D v (2.47)
k=1,2

where vi = (vi)T = v; = (v11,v12) in the basis in which the first and second

components are the empty (p; = 0) and occupied (ps = 1) sites, respectively. Thus the
problem of finding the coverage as a function of temperature and chemical potential is
reduced to the determination of the (largest) eigenvalue and corresponding eigenvector
of a matrix of Boltzmann factors. Other information can be readily extracted in the
same way, for instance, the (average) nearest neighbor correlation function is given

by

(ranisa) = 5o D0 D rims ex [~(() = oDV u)) /R T]

1 O0lnE y 0T R
—_ = = Lyt v 2.48
N, 3BV TN, %Y |7, (2.48)

The transfer matrix method extends rather straightforwardly to more than one
dimension, systems with multiple interactions, more than one adsorption site per unit
cell and more than one species by enlarging the basis in which the transfer matrix is
defined.

For the extension to two dimensions we consider a square lattice with nearest
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neighbor interactions on a strip with N, sites in one direction and M sites in the
second so that, with cyclic boundary conditions in the second dimension as well, we

get a toroidal lattice with of 2Ns+M

microstates. The occupation numbers n; at site i
in the 1-D case now become a set n; = (n;1, ng, ..., ninr) of occupation numbers of M

sites along the second dimension and the transfer matrix elements are generalized to

T(ni,ni41) = exp B‘(E(ni) +e(nip)) — v(ni, nigq) (2.49)
M M
en;) =¢ Z Ngj — U Z 45T, j+1 (2.50)
Jj=t j=1
M
v(n;,nip) = v Z MMt 1,5 (2.51)
j=1

Thus &(n;) is the energy of the row of M sites and v(n;, n;y1) is the interaction
energy of two adjacent rows. The partition function is then given in terms of the 2¥
eigenvalues of this matrix as

oM

(T, N, M, pta) = Y A" (2.52)

j=1

For large N, this sum is again dominated by the first eigenvalue, A;, which will
now depend on M. For practical calculations M is restricted by computer memory.
However, the symmetry of the hamiltonian allows a block diagonalization of the
transfer matrix, and it can be shown that A\; occurs in its totally symmetric subblock,
T,[33]. This significantly reduces the size of the matrix to be handled. This reduced
matrix T, is constructed by:[34, 33]

(i) Identifying equivalence classes, labeled «, of n; states which can be transformed
into each other by rotations and/or reflections among the M sites in one row (ring).

(1) Constructing the matrix elements
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(To)as = > T(ni € a,niy1) (2.53)

niy1€8

Here n; is any one member of the equivalence class a and the sum is over all the
members of 3, i.e. across columns of Boltzmann factors in T.

As an example, for M = 4, we list the six equivalence classes of the four sites in

terms of their occupation numbers

o | (0000) | (0001) | (0011) | (0101) | (0111) | (1111)
(0010) | (0110) | (1010) | (1110)

(0100) | (1100) (1101)
(1000) | (1001) (1011)
Pa| O 1 2 2 3 4
do | 1 4 4 2 4 1
me | 1 2 6 10 14 30

We have also given the number of particles, p,, and the degeneracy, d,, associated
with each equivalence class and the base-10 equivalent, m,, of the binary number
associated with state a. Because m, uniquely determines the occupancies in a a
mere (cyclic) bitshifting generates all equivalent states. This results in a reduced

transfer matrix T, of the form
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1 4272 4zy 2z 423/2? 2%yt

27 2(3+y) APy +y)  PPA+y)  APGB+y) P

2y 223 %2(14+9) 222 (1+y)? 22%° 225241 +y) 257

2 22321 +y)  42%)? 22(1 +9?) 225/23(1 4+ ) 238

AP AP (1+3y) 2% (1+y) APP(l+y) AP0 +3y) A

2yt AP 43y" 22345 427120 ZAy12
(2.54)

Terms in this matrix have the form z{Pa*Ps)/2yces where c,g is the total number
of nearest neighbor pairs within and between states o and 8. The determination of
the latter is a straightforward procedure in binary operations. For example, to get
the number of nearest neighbor bonds in state o one performs a cyclic bitshift by one
lattice site, followed by a binary AND of the two states, and counts the number of
bits. Because the coverage and the correlation functions are obtained as derivatives
of T, with respect to z or y this simply brings down the powers of z and y, i.e. the
terms in the derivative matrix become simple multiples of those in T itself. In terms

of its eigenvectors the coverage can be written as

1
0= Xa: PavL v, (2.55)

If T is symmetric then vZ, = d,vf, and only one eigenvector calculation is re-
quired. Multi-site and longer-ranged correlators are obtained by appropriate bond
counting, without the explicit introduction of the corresponding interactions into the

Hamiltonian.

The TM method is convenient and computationally efficient way to calculate equi-

librium quantities. To mimic the effect of a 2-d lattice one should let the strip width,
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M, increase to infinity. In practice, this is unnecessary and calculated quantities con-
verge quickly for small strips e.g. M = 8 will do for a 5 digit precision. In making
comparisons with the results of Chapter 3 we choose a strip width of 4 to correspond

to the typical size of our correlators.



Chapter 3

Kinetic Lattice Gas Model

So far we have only considered equilibrium adsorption and desorption under quasi-
equilibrium. If surface diffusion is not fast on the time scale of adsorption-desorption
the nonequilibrium effects will show up in the desorption and diffusion must be ac-
counted for in the kinetic equations. This will be done in the framework of the Kinetic

Lattice Gas model.

3.1 Master equation

In the following derivations of the equations of motion all the relevant processes like
adsorption, desorption and diffusion are assumed Markovian, i.e. they do not depend
on the past history of the system so that there is no hysteresis. Then a function P(n;t)
can be introduced, which gives the probability that a given microscopic configuration
n is realized at time ¢. The time evolution of the system is controlled by a master

equation [2],

dP(n;t)

dt = Z [W(n; n')P(n') — W(n’; n)P(n)] (31)

n’

32
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where W(n’; n) is the transition probability that a microstate n changes into n’
per unit time. The master equation simply states that the rate of change of the
probability of a certain microstate is the sum of the probabilities of all the other
microstates to transform to this state minus the probability to transform out of this
microstate, to these others.

If the system is isolated, it evolves towards equilibrium in the long time limit.
Then the right hand side of Eqn.(3.1) is zero. In addition, detailed balance demands
that each term in the sum is zero implying that every microscopic reaction is balanced

in equilibrium by its reverse

W (n';n)Py(n) = W(n;n') Py(n’) (3.2)
where
Py(n) = éexp(—(H (n) — palN(n))/k5T)) (3.3)

is the equilibrium probability for the state n to be realized. = is the grand partition
function of the system and pg, is the chemical potential of the adsorbed gas. In
principle the transition probability W (n'; n) must be calculated from the Hamiltonian,
that includes in addition to the terms in Eqn.(2.17), coupling terms to the gas phase
and the solid that mediate mass and energy exchange. Here we will use an approach
initiated by Glauber [37] in which one sets up a kinetic lattice gas model and chooses
an appropriate form for W(n'; n), subject to detailed balance.

If the residence time in a given state is much longer than the time needed for a
transition to another state, as discussed in the Introduction, the transition probabil-
ity can be written as a sum of independent transition probabilities for adsorption,

desorption and diffusion on different adsorption sites, one at a time
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W (n';n) = Waas(n'; n) + Wies(n'; 1) + Wiips(n'; ) (3.4)

Various choices for the adsorption term have been proposed, [22]. In the case of
Langmuir kinetics adsorption at site n; is impossible when the site is occupied but
otherwise it is independent of the local environment of that site. The adsorption term

then has the form

Waas(n';m) = Wo > (1= ni)d(ni, 1 —ns) [ [ 6(ni, m) (3.5)
i 14

The sum runs over all cells i. The Kronecker deltas specify that the adsorption
event can occur only on the desired site 7 that will lead to microstate n'.
The desorption term with only nearest neighbor interactions (enumerated by the

labels o and ' ) is

Wdes(nl; Il) = WoCo Z ni(l + Z Nita + Oy Z Z TitaTito!

+ Cs Z Z Z NitoNita Nitor + - )0(n5, 1 — n;) H 6(ny, i) (3.6)

I#i

i.e. desorption from a site can occur only if that site is already occupied by a
particle, with the condition that all remaining particles don’t move from their sites.
Substituting Eqn.(3.5) and Eqn.(3.6) into the detailed balance equations (3.2)

gives the values of the coeflicients, namely

Co = exp(FE;/ksT) (3.7)

and for the higher order interaction coeflicients, with r = 1,2..c, the nearest-

neighbor coordination of the site,
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C. = (exp(V1/kpgT) — 1)" (3.8)

The diffusion term in Eqn.(3.4) is written as,

Waig( n';n) JOZm 1+Clzn,+ﬁ+
Bra

8(niy1 = 1i)d(Niyan 1 = niva) [ 6(niym) (3.9)
I#i,it+a

A particle can jump only to a neighboring site if it is unoccupied. The summations
are over all adsorption sites and all neighboring sites for the site from which the
particle jumps.

For most adsorption systems the masses of the adsorbed atoms and molecules
are so heavy that in the entire temperature range of interest, the motion can be
treated classically, [38]. As with all thermally activated processes, an Arrhenius form
separating the rate into a prefactor and an exponential of the form is usually employed

to analyze the temperature dependence,

J() = Vdiff exp(—Q/kBT) (3.10)

Average occupation numbers of a site can be defined as

m(t) = Y niP(n;t) (3.11)

with the sum running over all microstates n with each n; = 0 and 1. The coverage

is then given by
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0(t) = 7\[1— S (3.12)
3.2 Equations of motion

The time evolution of the average occupation numbers is obtained from Eqn.(3.1)

= Z ni[W(n;n')P(n’,t) — W(n';n)P(n,t)] (3.13)

Exchanging n and n’ in the first term of the sum, we get

dh;ft) - nir;(n; —n;)W(n',n)P(n,t) (3.14)

In terms of the coverage the equation reads

%‘? - Ni DD (i — n)W(x;n)P(n, 1) (3.15)

For a homogeneous substrate multi-site correlations functions are not site specific

and can be defined as averages,

< . > =< n; >=10 (316)
<o o> =< NiNipq > (317)

<' :> =< NiNitaNita! > (3.18)
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(od=<(l-mn)>=1-16 (3.19)

where, for instance the nearest neighbor correlator, <- ->, is

<. )= le- Z Z nin¢+aP(n, t) (320)

This 2-site correlator in the quasichemical approximation (section 2.2.2) is given

by the function,

I (1 - 2%}2—) (3.21)

Not all of the above correlators are independent, e.g.,

[

(3.22)

(e )
¢ —(e (3.23)

1-<
S=(d

These correlators are also subject to their own equations of motion each one
coupling to yet larger correlators. If we restrict the lateral interactions to nearest
neighbors only, the equation for the n-site correlator involves correlators involving up
to n + 4 additional sites on a square lattice.

On a square lattice the first two correlation functions have the following equations

for desorption:

X >|des = ~WoCol{ » Y +4C1e ) + 40 D +2C2¢

dt
+4C36 e+ Cue s 9 (3.24)
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o)

dt

ldes = —WoCo [<° '> + 2C1<' -> + 2C1<' . -> + 4C'1<. :>
+ 205G e +4C{ D +6CaG 0 9
+2C356 39 +2C6 39 (3.25)

In the case of Langmuir kinetics the adsorbing particle does not see its prospective

neighbors and the adsorption evolves simply as

K+
dt la’ds = W0< °> = Wo(l - 0) (326)

’ d.t'>|ads = 2Wolso) = 2W5({ s D = o o)) (3.27)

Equations for the three-site correlators are given in Appendix A. Comparing
Eqn.(3.26) (see [40]) with the phenomenological adsorption rate in Eqn.(2.13) shows
that the sticking coefficient varies as (1 — 8) and that Wy has the value

_ SoasP/\th

Wo .

(3.28)

Thus W is just the flux of gas particles, per unit adsorption cell, hitting the
surface. as is again the area of one adsorption site and Sy is the sticking coefficient
of the adsorbing species at vanishing coverage. Thus the sticking coefficient as a
function of temperature and coverage is S(6) = So(T)(1 — @), i.e. sticking is limited
by site exclusion only. More complicated adsorption kinetics lead to a nonlinear
#-dependence.

The diffusion on the surface does not change the total coverage and thus does not

contribute to the first equation of the time evolution hierarchy. The nearest neighbor
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correlator evolves according to,

d<d't'>|d¢f = —Jo[4o ) + 2@+ D + C1(4o ) + 2@+ D + 44 2
+ 8% 20)) + Co(46 3 + 8¢ + 6¢30)) + 6CsG 2]
+ Jo[2€e D + 4. ) + C1 (260D + 43D + 4G ae D
+4Cop +4K8)) + Ca(2° "D + 420D +4(. 28
+4G D+ Ko3) + Ca(2€ e + 4G 1) (3.29)

The equations of motion for higher correlation functions are given in appendix A.
This hierarchy of equations extends all the way to the N,-particle correlator at
which level it is exactly equivalent to the original master equation (apart from the
assumption of homogeneity). It is our next task to find a factorization or closure
scheme that will truncate this hierarchy at a manageable level. This is done in the

next section.

3.3 Closure approximation

Because in the equation of motion for an n-particle correlator there appear, on the
right side, terms involving higher order correlators on a square lattice with up to 4
additional sites or particles, we must find a scheme to factorize these higher order
correlators in terms of those for which we want to keep the equations of motion. We
call this set of correlators the basis set of correlators. How large this set has to be
depends on the accuracy with which we intend to describe the system. Our strategy
is to start at the lowest level and proceed with larger basis sets until some form of

convergence has been reached. We will also, in the section on numerical results, show
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comparisons of results obtained in equilibrium at these different levels of complexity
with the "exact" results obtainable with the transfer matrix method.

To introduce the approach to closure we start with the simplest possible scenario,
namely by only including the coverage itself in the basis set in which case we are
dealing with just one equation of motion, (3.24). For all correlators on the right hand

side the correlators are then just powers of 8 and we get

dé
%ldes = —W0000[1 +4C10 + 60202 -+ 40303 + 0494] (330)
In this approximation diffusion is completely neglected because all correlators are

those appropriate for a random adsorbate.

3.3.1 1-particle overlap: 2-correlator basis set

To include diffusion we keep, at the next level of sophistication, # and <. -> in our

basis set. The only factorization scheme possible in this case is 1-particle overlap, e.g.

God= oy & (3.31)

Gow M (3.32)

This scheme is unique and factorizing Eqn.(3.24) and Eqn.(3.25) leads to two
coupled equations of motion. The first example is an exact result in 1-D [20]. It
corresponds to the Kirkwood approximation to the 3-particle distribution function in
the theory of multi-particle distributions. As such, it is independent of the system

dimension.
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d<d; >|des = WG+ D+ ACi{e >+ 6Co D+ S
+4C oY [ o N + Culo oY /o D] (3.33)
d<dt 1 = ~WoColCe sy +2Cis 0y +6Ci sy [+ D

F60Ka Y o D+ 60y o)
+20ep o ) +20ie ) o D] (3:34)

There is another fundamental aspect that affects our choice of the basis set and
that is the simple observation that in equilibrium detailed balance must hold. This

implies that adsorption must balance desorption

MOWOID:

dt loa + g ldes =
Wo(1 =) - WOCO(< e S+ 401 s D +6CK e sy [ o D)
+4ca<-->3/< > O ) (3:35)
d<. > ds .> dls o>

=Tar T g et g e

2Wo({ s > = (o o)) — WoCo[{eop + 2C1s o)

60K /o D+ 60 Y oy 60 Y
+2C5Ce 0y {2 Y + 20 s [+ Y] (3.36)

Between these two equations we can eliminate the constant Cy (and of course W)
and thus get a solution for the 2-site correlator as a function of the coverage and also

of temperature through the coefficients C,., involving the lateral interactions. It can
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be shown that the equilibrium solution of the adsorption-desorption term is equiv-
alent to the quasichemical approximation, which provides a qualitatively acceptable
description for such properties as adsorption isotherms and phase diagrams as long
as only nearest neighbor interactions are important. This is clear from the fact that
in Eqn.(3.31) the triangular correlator and the linear trio correlator are equated to
each other.

On the other hand detailed balance demands that the diffusional term, by itself,
also vanishes giving a second equation for the determination of the 2-site correlator,

namely

0 D,

dt
— Jo[6s0Xa s>/ o >+ C1(6{s o) oo/ o D+ 12{0 ) > /o D7)
+ Co(12¢s 0o oD/ o D+ 6o s sD o ) + 60 o) s D /o Y]
+ Jol6s0y" /{0 D+ Cr(2s X 20D /({0 X o D)
+ 4o sd’ o0y’ /({0 X o D) +4s D Ced ({0 X oY)
+8(e o>’ /({0 X o D)) + Ca(6{s > ’La0d /(o X ¢ D)
8o Y /Ko X 2 Y) + Key ey /o X+ )
+ C3(2{so>'Ce0d /(o X o D) + 4a D' e0d /(o X o D)) (3.37)

lais =

This is obviously an overdetermination of the correlator. The choice of the basis
set must be such that these two solutions are "close" to each other over the complete
coverage range. We stress that this problem of two solutions cannot be overcome by
setting the right hand sides of the two equations of motion equal to zero, because this
would be in contradiction to the principle of detailed balance, and as a result would

make the equilibrium solution dependant on the ratio of the kinetic coefficients.
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3.3.2 2-particle overlap: 5-correlator basis set

At the next level of sophistication we take

(EPICOIHISIXED) (3.38)

as our basis set and must now do the factorization with two-particle overlap. One
may be tempted to include other 3- and 4-particle correlators such as <u .> and
<. . .> in the basis set. We tried this but it turns out that keeping only the compact
clusters in the basis set leads (i) to a unique factorization scheme and (ii) to better
converging results. This will be shown in the numerical examples. The argument
about compact clusters is also behind the inclusion of the triple cluster containing a
hole, instead of <.'> . Essentially one has to account for cluster interior holes as
well.

In the present factorization scheme the correlators containing several sites on a

row are expressed as a sum,

&eD=¢iD+E2D (3.39)

<0°°°>———<o::o + 0230 + o::o + o:;o (340)

The correlators are then factorized in 2-site overlap,

(ilo= S :>2 (3.41)
(o= CiXE X2 (3.42)

Next the holes on the periphery of the cluster are reduced by subtraction,
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-4 (3.43)
)

(3.44)

Whereas the equations of motion and the factorization can be derived by hand
for 1-site overlap this is no longer economical for larger basis sets. We have therefore
written two Fortran programmes. One programme, given in Appendix C, lists all
correlators with their coefficients on the right hand side of the equation of motion of
a given correlator. A second programme then factorizes every correlator on the right
hand side in terms of a prescribed basis set. The equations of motion including all

factorized correlators in the 5-site basis set are given in Appendix B.

3.3.3 4-particle overlap: 15-correlator basis set

We will see in the numerical examples that the 5-correlator basis set with two-particle
overlap provides excellent results for equilibrium properties obtained from the diffu-
sional solution, but not quite the same level from the adsorption-desorption terms.

We have therefore extended the basis set to include 15 correlators

Go) G o680, (0D, e Cid, (0D, (2D) (3.45)

and derived, with the Fortran programme analogous to the one for diffusion given
in Appendix C, the equations of motion for adsorption-desorption kinetics. These
equations contain more than 750 terms which we cannot list in this dissertation but

are available as supplementary material.



Chapter 4
Equilibrium Properties

In this chapter we will present results of the equilibrium properties of an adsorbate,
for the various truncation schemes, and compare these to the transfer matrix (TM)
method and the quasichemical approximation (QCA). As mentioned above in equilib-
rium the TM gives essentially exact solutions for all correlators, for sufficiently large
strip width.

The properties of a system in equilibrium are described by the values of all cor-
relators, as a function of coverage and temperature. In practice this amounts to
finding the zeroes of the right hand side of the adsorption-desorption or the diffusion
terms of the equations in Appendix A. For a given level of truncation there will be
as many equations to solve as there are correlators in the basis set. Because of the
factorizations involved, these equations become highly nonlinear, e.g. of order 4 even
for the trivial 1-site overlap. As a result, there can be more than one solution for
each set of correlators. It becomes tricky to keep track of the physical solution in
which all correlators are positive and bounded by unity. This becomes even more
evident at high coverages, where all higher order correlators approach unity. Many

of the factorized correlators contain differences of correlators, each close to unity, in

45
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their denominators and even small deviations in the guesses of the numerical non-
linear equation solver lead to divergence of solutions. Even when using numerical
continuation and polynomial guesses for a subsequent solution, these guesses must
sometimes be extremely close to the exact solution for the system to become solv-
able. To overcome these numerical difficulties we have adopted the strategy of solving
the equations, not as a function of coverage for a fixed interaction, but as function
of increasing interaction for a fixed coverage, starting from the noninteracting case
with subsequent extrapolation to the desired high interaction. This approach leads
to longer running times for the programs, but does not diverge and gives the physical
solutions. The average running time for the higher order factorizations on a RISC

6000 is about an hour.

4.1 Adparticle repulsion

4.1.1 Equilibrium correlators

The strength of nearest neighbor repulsions V; can be represented by the unitless
parameter K= V;/2kgT. For instance K = 0.5 represents a system of moderate
repulsion, where the interaction (in Kelvins) is equal to the temperature, while K > 3
can be considered a very strong repulsion for many adsorbate systems.

We begin our discussion of equilibrium results with the noninteracting case, K = 0.
All factorizations schemes, in their noninteracting limit, have the same behavior of
their correlators, represented in Fig.4.1. In this case the positions of the particles on
the surface are uncorrelated, all adparticles are distributed randomly and the correla-
tors are just polynomial functions of the power of the coverage, e.g. <,; =6%(1 - 9).
The 3-site correlator is always smaller than the 2-site correlator because the proba-

bility of encountering three adjacent adparticles is always smaller than that of finding
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Figure 4.1: Equilibrium correlation functions as a function of coverage for no nearest-
neighbor interactions. Correlators (top to bottom at § = 0.9) <. ->, <, :>, <: :>, <. ;>.

two. Only in the noninteracting case is the linear 3-site correlator, <- . .> , exactly the
same as the triangular 3-site correlator <. :>. In the limit of full coverage all particle

correlators approach unity and all correlators containing holes, zero.

The case, when the repulsive interaction is large in comparison to the temperature
is shown on Fig.4.2, for K = 1.5. The solid lines represents the "exact" solution
obtained using the Transfer Matrix method for a strip width of four sites. At coverages
lower than half a monolayer (ML), where vacancies predominate on the lattice, the
adparticles can avoid being nearest neighbors. There is only a very small probability,

of order exp(—BV;) = exp(—2K), of finding two of them together; thus <- > is of this
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Figure 4.2: Equilibrium correlation functions as a function of coverage for K =1.5.
Solid lines TM method, long dashed lines 5-basis set for adsorption-desorption equi-
librium, dotted lines 5-basis set for diffusive equilibrium. Correlators (top to bottom

at 6 =0.9) {oe,{, ), <; o, < -

order, too. The only significant correlator in this case is <. ,’,> and it rises roughly
quadratically with the coverage. At exactly at 1/2 ML coverage the strong repulsion
leads to a checkered, i.e. ¢(2x2), structure of the lattice gas on the surface. Because
the probability for a single site to be occupied is one half and the rest of the surface
structure is fixed <. ;> equals one half. Each additional particle added on the surface
above 1/2 ML will see four nearest neighbors. This leads to a rise of the 2-site
correlator, as a straight line <- -> of slope 26, to reach unity at full coverage. The

hole correlator, concurrently declines linearly, with slope —6, as each added particle
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Figure 4.3: Equilibrium correlation functions as a function of coverage for K = 0.75.
Solid lines TM method, long dashed lines 5-basis set for adsorption-desorption, dotted
line 5-basis set for diffusive, short dashed lines 15-basis set adsorption-desorption.

Correlators (top to bottom at § = 0.9) <- ->, <. :>, <: :>, <. ;>.

removes exactly one configuration <, ;>.

The dotted lines represent the solution obtained from the diffusion equation zeroes
in the 2-site overlap or, in other words, the 5-basis set factorization. In this regime
this solution is almost as accurate as the TM results. The long-dashed lines give the
solution for the adsorption-desorption zeroes. The latter solution is close but not as
good as the diffusive solution.

For the intermediate interaction case presented in Fig.4.3 (K = 0.75) we compare

the TM results with two adsorption-desorption equilibrium solutions: 2-site overlap
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Correlators

Figure 4.4: Equilibrium correlation functions as a function of K for § = 0.5. Solid
lines TM, long-dashed lines 5-basis set for adsorption-desorption, dotted line 5-basis
set for diffusion, short dashed lines 15-basis set adsorption-desorption. Correlators

(top to bottom at K = 0.2) {e o>, <, ;>, <, :>, <: :>.

containing 5 basis functions, both for adsorption-desorption and diffusion, and the
extended basis set containing 15 basis functions for adsorption-desorption. All fac-
torizations approximate well the main features of the TM curves at low and high
coverages, with the larger basis set giving slightly better agreement for the higher
order correlators. At intermediate coverages all factorizations show discrepancy for
the 2-site correlator, and the hole correlator. The 15-basis set overestimates the num-
ber of holes, while the 5-basis set underestimates them. The diffusion correlators are

closest to the TM solution.
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At a fixed surface coverage the values of the correlators will reflect the strength
of the interactions, as seen in Fig.4.4. For coverage of 1/2 ML the initial correlators
at zero interaction are just powers of 6 and (1 — 6). As the repulsive interaction
increases all particle correlators decrease to zero as the ¢(2x2) structure is formed on
the surface.

Although it seems that the 5-basis set deviates significantly from the TM solution,
it is much closer to it than the quasichemical approximation. On this graph the 2-site
correlator for QCA is almost a straight line from 0.25 for K = 0 to about 0.06 for
K =2, and the hole correlator is a straight line from 0.125 to 0.38.

The 15-basis set for adsorption-desorption is significantly closer to the TM results
than the 5-basis set. The diffusion equations give the best approximation in this case
deviating at most by 7%.

For surface coverages higher than one half, for instance § = 0.75, Fig.4.5 the 5-basis
set for adsorption-desorption and diffusion and the 15-basis set give results similar to
each other and to those of the TM. In fact the curves from diffusive factorization, on
this graph, are nearly indistinguishable from the TM result. For coverages below 1/2
ML, all basis sets give results close to the TM as well.

Generally speaking we expect that around half a monolayer there will be the
largest deviation of the different factorization schemes from the TM result for large

K because here the particle correlators can change by orders of magnitude.

4.1.2 Chemical potential

To calculate the chemical potential efficiently we fix the coverage and calculate the
corresponding value of C, in the adsorption-desorption equations. This is related to
the chemical potential of the 2-D adsorbate system, u, which can be referenced to the
3-D gas phase by (s — Es)/ksT = Bu = — In(Cy).

We begin with the chemical potential as a function of coverage for a range of
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Figure 4.5: Equilibrium correlation functions as a function of K for coverage 8 = 0.75.
Solid lines TM, long-dashed lines 5-basis set for adsorption-desorption, dotted lines
5-basis set for diffusion, short dashed lines 15-basis set for adsorption-desorption.

Correlators (top to bottom at K = 0.2) <. ->, <. :>, <: :>, <. ;>.

nearest neighbor interactions. We show in Fig.4.6 the results from the adsorption-
desorption terms for the 1-site overlap (equivalent to the quasichemical approxima-
tion) and for 2-site overlap with 5 basis correlators for adsorption-desorption in com-
parison to the results obtained by the Transfer Matrix method. It is obvious that
the 2-site overlap is a significant improvement over the 1-site overlap, particularly for
coverages below 1/2 ML, even for the strongest repulsions. There is a slight asymme-
try of our factorization solutions about 1/2 ML, due to the fact that our factorization

scheme is not symmetric with respect to particles and holes.
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Coverage

Figure 4.6: Temperature scaled chemical potential, relative to its value at 1/2 ML,
as a function of coverage for several repulsive interactions (top to bottom at § = 0.3)
K = 0.5, 1, 1.5, 2, 5. Solid lines TM, long-dashed lines 5-basis set for adsorption-
desorption, short-dashed lines 1-site overlap (QCA).

Since the chemical potential measures the change of free energy of the system
for the last particle added, it exhibits a sharp rise for the largest value of K, around
6 = 1/2, by an amount amount close to 4V}, because any particle added to the surface
above half a monolayer will see four neighbors. At coverages below 1/2 ML there are
very few particles next to each other on average, and the adsorbate behaves similarly
to a non-interacting gas on a lattice. Each additional adsorption adds a particle in
the same environment to produce smooth curve.

Going to the next level of sophistication with a 15-correlator basis set, as seen on
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Figure 4.7: Temperature scaled chemical potential, relative to its value at 1/2 ML,
as a function of coverage for several repulsive interactions (top to bottom at § = 0.3)
K = 0.5, 1, 1.5, 2, 5. Solid lines TM, short dashed lines 15-basis set for adsorption-
desorption.

Fig.4.7, the agreement with the transfer matrix results is excellent.

The diffusion zeroes of our equations for the correlators do not produce the chem-
ical potential directly, because particle number is conserved in diffusion. Rather
to obtain an effective chemical potential we have substituted the equilibrium values
for the basis correlators, obtained by solving the equations for diffusion, into the
adsorption-desorption equation for the single correlator Eqn.(3.35). This determines

an effective C,.
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Bu =1n(1/C,) =In([{ » >+ 4C1{e o> +4Ce ) + 2CoG e > + 4C36 4
+ O3/ =< D) (1)

In this specific equation, when using the diffusion correlators, we found the best
agreement with the TM results is achieved not with the usual representation of the

five site correlator as <. :>3 /<- ->2, but when factorized as

D=1y (42)

where the linear trio can expanded and then factorized in the usual way, outlined
in section 3.3.2.

The resulting chemical potential, Fig.4.8 is closer to the TM calculation than the
chemical potential for adsorption-desorption with the same number of basis functions,

and almost as good as the 15-basis set solution on Fig.4.7.

4.2 Adparticle attraction

4.2.1 Equilibrium correlators

Next we turn to attractive interactions between particles. For weak attraction all
basis sets give results extremely close to those obtained via TM. Increasing the in-
teraction strength causes the 5-basis set adsorption-desorption equations to fail to
solve above K = —0.25. Fig.4.9 represents the correlators for the four cases of
adsorption-desorption for the 5- and 15-basis set, diffusion for the 5-basis set and TM
for attraction parameter K = —0.5. All correlators agree within a few percent of each

other. The peak of the hole correlators shifts to higher coverages compared to the
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Figure 4.8: Temperature scaled chemical potential, relative to its value at 1/2 ML,
via diffusive equilibrium correlators, as a function of coverage for several repulsive
interactions (top to bottom at § = 0.3) K = 0.5, 1, 1.5, 2, 5. Solid lines TM, short
dashed lines 5-basis set for diffusion.

repulsive case, as a result of the attraction.

The diffusion equations fail to solve above K = —0.5 but we still could obtain
solutions, e.g. for K = —0.75 , using the 15-basis set, see Fig.4.10. The higher
correlators start to differ from the exact TM solutions, but the important 2-site

correlator is still fairly close.
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Figure 4.9: Equilibrium correlation functions as a function of coverage with K = —0.5.

Solid lines TM, long-dashed lines 5-basis set for adsorption-desorption, dotted lines
5-basis set for diffusion, short dashed lines 15-basis set for adsorption-desorption. Top

to bottom at § = 0.9 <- >, <: HXE ;>.

4.2.2 Chemical potential

In the attractive case decreasing the temperature (increasing the interaction) low-
ers and ’flattens’ the chemical potential at intermediate coverages around 1/2 ML,
relative to a non-interacting gas. At the critical temperature the chemical potential
develops a point of inflexion at this coverage and, for lower temperatures, produces
a van der Waals loop in coverage, signalling the phase separation into dilute and

condensed lattice gas components. The loop is a consequence of choosing to work
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Figure 4.10: Equilibrium correlation functions as a function of coverage with K =
—0.75. Solid lines TM, short dashed lines 15-basis set for adsorption-desorption. Top

to bottom at 6 = 0.9 (s e, {2, {38, { -

with coverage and temperature as the independent variables. If we chose u and T
instead, i.e. to work in the grand-canonical ensemble, the chemical potential would
assume the value ¢V, /2 in the two-phase region of coverage.

For small interactions, K = —0.25, Fig.4.11 all basis sets and the TM give the same
chemical potential. For larger attraction, K = —0.5, u from the diffusion zero shows
deviations from the TM curve with increasing coverage. At 1/2 ML it does not have
the expected value of 2V;. This is due to the lack of symmetry in our factorization

with respect to particles and holes. Yet the 15-basis set gives very good results. It
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Figure 4.11: Temperature scaled chemical potential, relative to its value at 1/2 ML,
as a function of coverage for several attractive interactions (top to bottom at § = 0.3)
K = -0.25,-0.5,-0.75. Solid lines TM, long-dashed lines 5-basis set for adsorption-
desorption, dotted lines 5-basis set for diffusion, short-dashed lines 15-basis set for
adsorption-desorption.

starts to deviate from the TM solution only at the high interaction of K = —0.75.
To proceed to even stronger attraction we should allow for the determination of the
phase boundary. However, this is an unnecessary complication for our testing of our

factorization procedures and will not be pursued.
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4.2.3 Isosteric heat of adsorption

As outlined in Chapter 2 we can obtain the isosteric heat of adsorption by taking a
temperature derivative of the chemical potential, in effect. For an atomic adsorbate

5 9(Bua(6,T))

Qiso = 'z'kBT - 6/6 |9 (43)

To isolate the effects of the interacting adsorbate from the single site contribution
to Qiso, due to the binding to the surface, which exists for all coverages, we define a

reduced quantity,
AQiso = Qiso(ea T) - Qiso(oa T) (4'4)

For repulsive interactions, on Fig.4.12 we plot the coverage dependence of the
reduced isosteric heat, derived from the adsorption-desorption chemical potential cal-
culated in one site overlap, for several interaction strengths. This factorization is

equivalent to the quasi-chemical approximation and is given in analytically by

AQuo/4Vs = 3 [(1 - a = 26) o] (4.5)

There are two distinct plateaus in the graph for large repulsion (small kgT/V}).
The one below 1/2 ML is due to the fact that the particles on the surface do not
see any neighbors and the energy released upon adsorption of a particle is a constant
value of the surface binding energy, Q:so(0,7). On the other hand adsorption of a
particle onto a surface covered with more than 1/2 ML will always be into a site where
the particle will be surrounded by four neighbors. Thus the adsorption energy will be
reduced by 4V;. Decreasing the interactions, equivalently increasing the temperature,
smears the sharp step between these two energy levels. Eventually one recovers the

mean-field (Bragg-Williams) result of a linear decrease of Qiso With coverage. At 1/2
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Figure 4.12: Coverage and interaction dependence of the normalized isosteric heat
of adsorption for repulsive interactions for quasichemical approximation. The curves
correspond to (top to bottom at § = 0.3) kgT/V; =0.15, 0.25, 0.35, 0.45, 0.55, 0.65,
0.75, 0.85, 0.95.

ML according to Eqn.(4.5), the scaled isosteric heat is —1/2. This value will hold
true no matter what kind of factorization is used provided particle-hole symmetry
exists.

When the factorization is improved, Fig.4.13 to the 2-site overlap, adsorption-
desorption 5-basis set, the drop of AQ;s at 1/2 ML is even sharper at low T, and
a new feature arises, namely an increase in the isosteric heat just below 1/2 ML
and an overshoot in the drop above 1/2 ML. Coincidentally, it also turns out that

this feature is somewhat exaggerated in the 2-site overlap approximation. We will
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Figure 4.13: Coverage and interaction dependence of the normalized isosteric heat
of adsorption for repulsive interactions for 5-basis set for adsorption-desorption. The
curves correspond to (top to bottom at § = 0.3) kgT'/V1 =0.15, 0.25, 0.35, 0.45, 0.55,
0.65, 0.75, 0.85, 0.95.

postpone a discussion of its physical meaning to the end of this section.

Within the 2-site overlap we can construct a hybrid calculation for which we use
the equation for Cy from the adsorption-desorption terms of the equation of motion
for the coverage but insert the correlators calculated from the diffusion equilibrium.
This is justified by the fact that it is diffusion that maintains the system in quasi-
equilibrium during adsorption-desorption in an experiment. It coincidentally also
reduces the overshoots to bring the isosteric heat (in this approximation) closer to

the TM results. Thus we use the hybrid diffusive chemical potential of Eqn.(4.1) to
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Figure 4.14: Coverage and interaction dependence of the normalized isosteric heat of
adsorption for repulsive interactions for 5-basis set for diffusion. The curves corre-
spond to (top to bottom at § = 0.3) kgT'/V; =0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75,
0.85, 0.95.

calculate the effective isosteric heat represented on Fig.4.14.

The best result for the isosteric heat is achieved for the 15-basis set in adsorption-
desorption equilibrium, Fig.4.15. The curves calculated within this procedure are
very close those calculated with the 4-site infinite strip TM calculation. There are
features here intimately related to the ordering of the adsorbate as a consequence of
the minimization of its free energy. Below 1/2 ML and at lowest temperature the heat
of adsorption is constant and the adparticles stay apart, to form a ¢(2x2) structure.

As the temperature is raised the nearest-neighbor correlator increases and there is an
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Figure 4.15: Coverage and interaction dependence of the normalized isosteric heat
of adsorption for repulsive interactions. Solid lines TM, short dashed line 15-basis
set for adsorption-desorption. The curves correspond to (top to bottom at § = 0.3)
ksT/V4 =0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95.

initial decrease in Q5. As 1/2 ML is approached this correlator decreases and a rise
in Qs occurs, despite the fact that only nearest-neighbor repulsions are present in
the Hamiltonian. This ordering of the adsorbate into the checker-board pattern that
occurs for T' < T, = 0.57V}, involves a trade-off between the energy of repulsion and
the entropy associated with increasing disorder as § — 0.5. On the high temperature
side the entropy contribution to the free energy is higher and tends to balance the
additional repulsive energy of nearest neighbor pairs, and the characteristic rise and

dip disappears. These features are repeated above 1/2 ML and on both sets of curves.
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4.3 Sticking coefficient

Everything done so far is based on the Langmuir kinetics implicit in the prescribed
transition probabilities for adsorption Eqn.(3.5). The result is that the sticking co-
efficient is given trivially by S(6) = So(1 — ). For many systems this simple form,
based on site exclusion only, does not apply. In particular, if precursor states me-
diate adsorption one expects a sticking coefficient that is initially coverage indepen-
dent. These states are weakly bound and lowly-populated intermediates to the final
chemisorbed state in which the particle moves freely over both the bare substrate and
the chemisorbed particles.

One might also argue that the adsorbing particle experiences the local environment
in a way analogous to the desorbing particle. In such cases lateral interactions will
affect the adsorption probability, e.g. repulsive nearest-neighbor interactions will
inhibit adsorption. For such a situation, the so-called interaction kinetics [39] the

transition probabilities can be chosen to read,

Wads (nl; Il) :WO Z(l - nz 1 + Al Z Nito + A2 Z Z NitaNito!
+ Az Z Z Z Nitalita Mitarr + - 5(77,“ 1- H 5(nz, nl 4 6)

o II l#l

Detailed balance then implies that (for a square lattice),

Al = tanh(Vl/2kBT) (47)
Ay = tanh(Vy /kpT) — 2tanh(V1/2kpT) (4.8)
Az = tanh(3V,/2kgT) — 3tanh(V/kgT) + 3tanh(Vy/2kpT) (4.9)
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Figure 4.16: Normalized sticking coefficient S(8)/Sy, in the interaction kinetics for
attractive interactions (dashed lines) and repulsive interactions (solid lines). Values
of K (top to bottom at § = 0.3): 0.3, 0.2, -0.1, 0, 0.3, 0.5, 1.0, 1.5.

Ay = tanh(2V; /kpT)—4 tanh(3V1 /2kgT) +6 tanh(Vy /kpT) —4 tanh(Vi /ksT) (4.10)

From Eqn.(4.6) an effective coverage-dependent sticking coefficient is derived,

S(0,T) = So({ 0 » — 4A41{e0) — 445{( 3) — 2AsG0®) — 443639 — AGe®) (4.11)
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The correlation functions here are those in equilibrium if adsorption occurs at
temperatures where the adsorbate is mobile. On the other hand, at low coverages
this process is a random one so that the correlation functions factorize, for instance
ooy =CoX >

Numerical examples of sticking coeflicients for a mobile adsorbate are given in
Fig.4.16. For strong repulsive nearest-neighbor interactions the sticking coefficient as
a function of coverage falls initially as S(6) = So(1 — 56) as the adsorbing site and all
four neighboring sites must be empty. Above 1/2 ML the sticking is essentially zero.
For attractive interactions the sticking coeflicient is always larger than 1 —6. However
in the limit of very strong attraction the sticking coeflicient approaches the limit 1—6
due to the fact that all particle correlators approach the value of 6. Essentially, the
adparticles clump together and the empty sites have the same probability as for a
non-interacting adsorbate. As mentioned before, the 5-site basis set factorization fails
for stronger attractive interactions.

Due to the fact that transition probabilities must satisfy detailed balance in equi-
librium, the rather complicated coverage dependence of the sticking coefficient will

reflect itself in the desorption kinetics.

4.4 Failed factorization schemes

We have, of course, tried different factorization schemes. A promising, physically
accurate and unique way to extend the basis set would seem to include every addi-
tional correlator that appears in the time evolution equations. Thus an extension to
the two-site basis set (< . >, <- ->) is to include both trio correlators <. :>, and <-- ->
In this basis all correlators containing holes can be expressed in terms of particle

correlators only, e.g.
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Also all higher order correlators can be expressed uniquely as an average of all

(4.12)

possible ways of factorization with correlators containing one less site, applying this

rule until the basis set is reached. For instance the correlator (e E ¢ in the basis set

of (< . >, (o ->, <. :>, <-- .> ) is factorized as

@i (85 +€5)- <"'>(< Ts)-
G

We encountered great difficulty when solving numerically the system of four equa-

tions with such a basis set and this combinatorial factorization. From the TM cal-
culations we know that the equilibrium values of the correlators <. :> ,<u ®> are not
identical but differ only less than one percent. However the time evolution equa-
tions for each of these correlators are quite different; they differ both in the number
of terms, and their higher-order correlators. Each factorization of every higher or-
der correlator inherently adds errors to the representation of this correlator and this
causes the equilibrium values for <. :> and <-- -> to strongly deviate from each other
for some coverages.

An added difficulty in this factorization scheme is that the proper counting of
all possible factorizations of each correlator is very time consuming when derived by
hand and difficult to encode in a routine.

Simply increasing the basis set to include the higher order correlators, for instance

the 9-site basis set of (C+ 3, (+4), (i) €21 ¢ 0o, (D1 &2, D GD)

and using just one type of factorization for the higher-order correlators, does not fare
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any better. Although the system of nine equations is solvable for some coverages, for
others it diverges giving nonphysical solutions.
These difficulties were overcome by expressing the extended correlators in terms

of more "compact" ones, for instance,

CeD=6¢d+400 (4.14)

In this way the above 9-site basis set is reduced to the 4-site basis set, (< . >,
(o, <, :>, {3%>). The basis set required to factorize the higher order correlators is
smaller and the procedure for this reduction is unique.

We have found that it is not the number of the correlators in the basis set but the
size of the overlap that is the leading factor for improving the results. For instance,
extending the 4-site basis set ( o >, <- >, 4o :>, {$2>) to the 5-site basis (o ), {o#),
<. :>, <: :> , <- E-> ) does not improve the quality of the results for the equilibrium
correlators. Rather, one has to extend the basis set with correlators of the likes
of <::. and <:::> and increase the overlap in the factorization to achieve notable
improvement.

Going to higher order of overlap necessitates the use of correlators that have
empty sites. Because the operations of multiplication and subtraction do not com-
mute when factorizing the higher order correlators the results are not symmetric with
respect particles and holes. This explains the particle-hole asymmetry in the chemical
potential.

When using the 6-site basis set (< . >, <- ->, <. :>, <-n> , <-o-> , <.;>) and
combinatorial factorization we obtain very large deviations between the two hole
correlators and, for some coverages, unphysical behavior. The converging results
obtained by a basis set (< . >, <- ->, <. :>, <...> , <. '>) were also unsatisfactory.

Whenever the system of equations solved the result was at par with the quality of
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the quasichemical approximation.

We did try the full combinatorial factorization for a basis set containing the 15
basis functions, (C+ 3, G+ o3 €1 Goe D, D1 43D DL D e
, <ooo> , <.3.> , <no-> , <';,> , <2 :> ) but for some coverages the solutions diverge

and are nonphysical.

4.5 Survey of other cluster methods

As far as the equilibrium properties of a lattice gas are concerned, our calculation
method is but one of many approximation techniques that have been advanced over
the years, based on the calculation of the partition function of the system. Here we
give a brief overview of these other methods [41].

The quasichemical approximation mentioned earlier is the simplest example of the
cluster variation method. In QCA, [42] the interaction between pairs of occupied sites
is counted; then these pairs are treated as independent of each other and an approxi-
mate partition function is calculated, by examining the arrangements of such pairs on
the lattice, without overcounting of particles i.e. by minimizing the Helmholmtz free
energy U —T'S. However, for such pairs on a square cluster of occupied sites, there is
overlap at all corners and one cannot represent the systems configuration accurately,
except in the limits of & — 0 or 1, where pairs of particles (holes) vanish. The direct
generalization of the basic unit to a square cluster of sites, [43] does not lead to a sig-
nificant improvement. In particular, for particle repulsion, Fig.4.12 is repeated with
some change in the slopes of the curves, only. For attractive interaction the estimate
of critical temperature, K, = V,/27T, is barely improved over QCA. Kikuchi, [29],
improved the method by using a kink site to represent the building up of the lattice,
one site at a time. Consistency conditions for the correct fractional distribution of

groups of sites, associated with this kink, then give a set of nonlinear equations from
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Figure 4.17: Coverage and interaction dependence of the normalized isosteric heat
of adsorption for repulsive interactions. Solid lines Honig formulae from [28], dashed
line 5-basis set for adsorption-desorption. The curves correspond to (top to bottom
at 0 = 0.3) kgT/V =0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95.

which the equilibrium distributions follow. The estimate of K., a common figure of
merit of an approximation method, is closer to the exact values obtained by series
expansions, for both square and hexagonal lattices, than generalized QCA. Also, the
level of approximation can be systematically improved. However, an examination of
the method shows that it boils down to the level of factorization with one- or two-site
overlap. So it cannot represent a system with repulsive interactions as well as our

15-basis set, for example.
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In a series of complicated papers, Hijmans and de Boer [30] generalized and sys-
tematized Kikuchi’s method for all lattices. They considered the problem of choice
of a basic cluster and overlaps between clusters. They concluded, as we do, that
the larger the basic cluster the better the level of approximation. Again, however,
only attractive interaction was considered. The only attempt to apply their analysis
to adsorbates with repulsive interactions is that of Honig [31]. For the square lattice
the largest cluster used was the square of our 5-basis, with a total of 9 variables con-
strained by equilibrium, consistency and normalization conditions. Generally, there
is a rapid increase of the number of constraints with the size of the largest cluster
and larger than our basis.

On Fig.4.17 we compare our 5-basis set result to a calculation with Honig’s equa-
tions for the square lattice. Honig’s result is symmetric with respect to the point
(0.5, —0.5) but, just like our result, it overshoots considerably for coverages slightly
less and more than a 1/2 ML.

Independently of the quality and complexity of the best of these alternate cluster
variation methods, they can only represent the equilibrium distributions of clusters.
Our solution technique for the correlators, via the kinetic lattice gas model, extends
away from equilibrium. A second feature of our technique is that we bypass most of

the combinatorial difficulties associated with these methods.



Chapter 5

Thermal Desorption and

Nonequilibrium Properties

A common method to experimentally explore the kinetics of an adsorbate is temperature-
programmed desorption (TPD). In this technique a gas is adsorbed onto the surface
of a cold substrate at temperature Ty. The latter is then heated with a linear tem-
perature ramp, T'(t) = Tp + at. As the surface warms up the adsorbate starts to
desorb until no adsorbate is left. Typically a mass spectrometer is used to monitor
the flux of desorbing particles, which in turn is proportional to the negative of the
rate of desorption. The result is a TPD spectrum that is a plot of the desorption rate
of the gas, as a function of the sample temperature (if we replace the time axis by
temperature).

We have calculated TPD spectra for the model systems discussed in previous
chapters, using the kinetic lattice gas model. The desorption rate factor which enters

the time evolution of all the correlators, occurs explicitly in Eqn.(3.6) as the factor

WoCo
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exp(—fV.) (5.1)

which follows by combining expressions in Eqns.(2.24, 3.7, 3.28). Thus the additional
parameters needed to determine the desorption rate are the mass of the desorbing
particle (m = 52amu), the area of a single adsorption site (a, = 71&2), the site binding
energy (Vo/ks = 15000K) and the surface vibrational frequencies (v, = 103571, v, =
v, = 10'2571). (For simplicity we will assume an atomic adsorbate and dispense with
internal degrees of freedom.) All these are typical numbers for desorption of metals
or carbon monoxide from metals and, for a typical heating rate of a = 2Ks™!, the
desorption spectra span a temperature range 300 — 500K.

We begin with an adsorbate in which diffusion is so fast that it maintains quasi-
equilibrium on the surface during desorption. This is the case when the rate of diffu-
sion is at least three orders of magnitude larger than the desorption rate. This implies
that at any point in time during desorption all correlators attain their equilibrium
values appropriate for the instantaneous coverage at that time.

In our first model adsorbate there is a nearest neighbor repulsion, Vi, large with
respect to the thermal energy of desorption. The resulting TPD spectra are shown
in Fig.5.1 (dotted lines). Here we have varied the coverage on the substrate at the
desorption temperature (7, = 200K). The desorption rate maxima are clearly pro-
portional to the initial coverages, at least for values below 1/2 ML, and the area under
a curve measures its initial coverage. As we have seen in the previous chapter the heat
of adsorption has two plateaus, below and above half a monolayer. This implies that
for initial coverages of less than 1/2 ML the desorbing particles do not have neigh-
bors and the energy required to desorb them is roughly the site binding energy. For
initial coverages above 1/2 ML adparticles experience repulsion from their neighbors,

which implies that the energy required for desorption is reduced by this repulsion, to
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Figure 5.1: Temperature-programmed desorption rate (in units of monolayers per
second) for a mobile adsorbate with repulsive interaction V3 /kp = 1000K. Solid lines
TM, dotted lines 5-basis set. The curves correspond to initial coverages 6 =0.1, 0.3,
0.5,0.7, 0.9

a maximum of 4V; on a square lattice. The consequence for TPD is that the spectra
have two distinct peaks, each corresponding to one of the plateaus in AQ;s,. This
is clearly seen in Fig.5.1 where the TPD traces span initial coverages from 0.1 to
0.9 ML. Obviously the splitting of the peaks is proportional to V; and, indeed, it is
the understanding of the origin of such features that motivates our modelling of the
thermal desorption.

The calculations for Fig.5.1 were done in the 5-basis set. Because this adsorbate

was kept by fast diffusion in quasi-equilibrium throughout desorption, we can compare
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Figure 5.2: TPD rates (solid lines) and the evolution of the corresponding surface
coverages (dotted lines) for a mobile adsorbate with repulsive interaction Vi /kg =
1000K calculated using the 5-basis set. Initial coverages § =0.4, 0.9

our results with those obtained using Eqn.(2.16) with the chemical potential calcu-
lated by the TM method with a 4-site strip width (solid lines). For initial coverages
below 1/2 ML the approximation to the kinetic lattice gas model gives TPD spectra
essentially identical to those obtained with the quasi-equilibrium TM method. This
is to be anticipated as a consequence of the closeness of the equivalent equilibrium
solutions. For initial coverages above 1/2 ML some discrepancies show up for the
5-basis set approximation (which are however overcome with 15-basis set).

In Fig.5.2 we show the time evolution of the coverage itself during desorption
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Figure 5.3: Desorption rates for immobile adsorbate with repulsive interaction
Vi/kp = 1000K and initial coverages § = 0.4,0.9 calculated using the 5-basis set
for random initial correlators (solid lines) and equilibrium initial correlators (dotted
lines).

superimposed on the rates for two initial coverages. Remember that temperature
changes linearly with time so that the temperature regime from 300 to 500K takes
100s for a heating rate of 2K s™!. Not surprising is the fact that in the valley of the
desorption rates the coverage remains more or less constant.

So far we have looked at TPD from an adsorbate with fast diffusion. In our next
example we look at the other extreme, namely negligible diffusion, with Jy = 0 in

the evolution equations. In such situations it is crucial to know the initial state of
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the adsorbate. We can envisage two extreme situations: (i) the adsorbate is left
at the initial temperature of deposition, Ty, for long enough that surface diffusion,
albeit slow, has brought the adsorbate into equilibrium. Thus the correlators that
must be specified as initial conditions to solve the time evolution in desorption are
those of equilibrium at Tp. (ii) After deposition of the adsorbate at Ty the heating
ramp is started before equilibration is achieved. In this case the initial values of the
correlators are those of a random adsorbate, i.e. for an n-particle correlator equal to
o".

The TPD spectra Fig.5.3 do not reflect any difference for initial coverages close
to a monolayer for these two situations because the initial correlators are all of order
one whether the system has equilibrated or is random. However, these different initial
conditions affect the TPD spectra significantly for initial coverages below 1/2 ML. In
particular, desorption for the first situation onsets at temperatures about 80K higher
than the second. The reason is that in an initially equilibrated adsorbate there are
few nearest neighbor sites occupied for coverages below 1/2 ML. Thus the desorption
is essentially that of a non-interacting adsorbate, i.e. one high energy (temperature)
peak. On the other hand, for a random adsorbate there is a sufficient number of
nearest neighbor sites occupied so that their desorption occurs at lower temperature
(due to the reduction of the desorption energy by the nearest neighbor repulsion).

The appearance of an intermediate desorption peak around 400K can be traced
to the number of neighbors surrounding the desorbing particle. This is obviously
quantified by the correlators, whose time evolution and rates are plotted in Fig.5.4
for this case. In the range of the low temperature shoulder around 350K in the trace
of the coverage we see that the 4- and 3-particle correlators are destroyed, in order,
and also the 2-particle correlator diminishes. However the latter has another peak in
its rate of change at an intermediate temperature around 400K. Thus, what is left

for desorption at higher temperatures are single particles without neighbors on the
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Figure 5.4: Correlators and their rates of change (of same line type) for immo-
bile adsorbate with repulsive interaction Vj/kp = 1000K for initial coverage of
0 = 0.3 calculated using the 5-basis set. Correlatots form top to bottom at

T = 250K, e ). Lo P Ko Ko D D)

surface, i.e. without the effect of lateral repulsion. The rate for the trio correlator
with one hole (short-dashed line) becomes negative at first with the increase of the
temperature, because the number of such correlators is actually increasing on the
surface. It is clear that, even for near-monolayer initial coverage, the two-peaked
spectra of Fig.5.1 and Fig.5.3 are distinct. Each peak has an area corresponding to
(about) 1/2 ML, but the relative desorption rates at low and high temperature are

switched. The origin of this switch will be elucidated below.
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Figure 5.5: Desorption rates for adsorbate with partial surface mobility and repulsive
interaction V;/kp = 1000K calculated using the 5-basis set and site-site hopping
frequency of (top to bottom at T = 420K) Jo = 107}, 1072, 5.0x10~3, 2.5x1073,0 s~ 1.
Initial coverage of 8 = 0.4.

We now examine the qualitative and quantitative changes occurring when diffusion
is switched on, from no diffusion to fast diffusion, starting in all cases from random
initial conditions at Ty = 280K and with the barrier for diffusion, @ in Eqn.(3.10),
set to zero for simplicity, (this corresponds to no surface corrugation). We first look
at the evolution from an initial coverage of 0.4 ML, represented on Fig.5.5. The
situation of establishing quasi-equilibrium before desorption starts is achieved with
a site-to-site hopping rate Jp larger than 1071s™1. On the other hand, a reduction

of Jy by a factor of 40 is still such that diffusion is fast enough to destroy all 4-
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Figure 5.6: Desorption rates for adsorbate with partial surface mobility and repulsive
interaction V1 /kp = 1000K calculated using the 5-basis set and surface hopping
frequency (top to bottom 7' = 450K) Jy = 0, 2.5x1073, 5.0x1073,10~2,10"1s~, initial
coverage of § = 0.9.

and 3-particle clusters which, for no hopping, are responsible for the low temperature
peak at 350K. The remaining modification of the high temperature peak is such that
its peak height and width are increased compared to zero diffusion. Increasing the
diffusion coefficient towards fast diffusion reduces the peak height, moves it to lower
temperature and broadens it.

The physical reason behind this behavior is as follows: for random initial distri-
butions of particles on the surface, there are particles with zero to four neighbors.

Those with three or four neighbors will desorb first giving rise to the peak at 350K
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Figure 5.7: Desorption rates for adsorbate with repulsive interaction V} /kg = 1500K
calculated using the 5-basis set and hopping barrier @/kg = 600K and frequency
(top to bottom at T = 450K) vayss = 103, 0, 10° for initial coverage of 6 = 0.4.
Random initial correlators.

when there is limited diffusion particles are able to move apart, on the time scale of
desorption, and thus desorb as if isolated on the surface. This produces the highest
peak. However, when the hopping rate increases even more, the probability for a
particle with no neighbors to hop to an environment where it has neighbors increases,
i.e. in thermal equilibrium at temperatures of the order of the repulsion nearest
neighbor sites are occupied. So the particles repel each other more and this shifts
the peak to lower temperature. For initial coverage well above 1/2 ML, presented

on Fig.5.6, diffusion has a limited effect on the low temperature peak. Due to the
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Figure 5.8: TPD rates for immobile adsorbate and repulsive interaction V;/kg =
1500K. For coverages (bottom to top at T' = 450K) 6 =0.1, 0.3, 0.5, 0.7, 0.9

high coverage, all correlators are of order one. Thus the low temperature peak is only
slightly effected. The high temperature peak is again shifting to a lower temperature
and getting broader. As mentioned above, the separation of the peaks in the mobile
case is a measure of the interaction energy. This is not strictly true for desorption
under limited diffusion conditions - one would infer a value of V; 256% larger than ac-
tually exists by measuring this peak separation. Usually experimental TPD spectra
are analyzed to deduce the effective binding energy, as a function of coverage, hence
the effective interaction [5]. Clearly one has to be aware of limited surface diffusion

before attempting such an analysis.
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If we use a more physical Arrhenius activation behavior with a barrier of Q/kg =
600K, say, and higher nearest-neighbor repulsion of V;/kp = 1500K, a surface hop-
ping frequency of vy4¢s = 10%s7! is required to achieve a mobile case, Fig.5.7. This
frequency roughly corresponds to values calculated by solving the quantum mechan-
ical equations that include the coupling between the surface vibration of the particle
and surface phonons for barrier heights of a few kpT' [44]. For the intermediate fre-
quency of vgss = 108571 the diffusion is fast enough to move the adparticles away
from each other but insufficient to establish quasi-equilibrium.

Generally, the higher the repulsive interaction the larger the shift of the two
low temperature peaks to lower temperatures. Fig.5.8 shows the desorption rates
for an immobile adsorbate with repulsive interaction V;/kp = 1500K and random
initial correlators. It is of interest that one does not see the desorption of three and
four neighbors of a site as separate desorption peaks here, as implied by the first
equation of the desorption hierarchy, Eqn.(3.24). The one- to five-site correlators
in that expression suggest five separate contributions (stages) to the total desorption
rate. Instead we see only the effect of two-site clusters in the intermediate temperature
region. Moreover, for equilibrium initial conditions even this contribution disappears
- see dotted lines in Fig.5.3. Even this latter result is surprising because, for the
same conditions and parameters, desorption for a 1-D system exhibits a three-peaked
spectrum corresponding to the existence of one-, two- and three-site clusters [20]. In
this case the solution is exact, in terms of the two- and three-particle correlators.
Thus, by extension, a 5-stage desorption spectrum of an immobile adsorbate could be
expected for a 2-D system, as suggested by the correlators in Eqn.(3.24). However,
our results show that the time evolution of the hierarchy of basis correlators is quite
different to the evolution of this one equation, viewed in isolation.

In the case of attractions there is only one peak region for all initial coverages,

but shifted to higher temperatures compared to the noninteracting case, because
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Figure 5.9: TPD rates for immobile (solid line) and mobile (dotted line) adsorbate
and attractive interaction of V;/kp = —200K for coverages 6§ =0.1, 0.3, 0.5, 0.7, 0.9,
calculated in 5-basis set.

the adparticles present a higher activation energy for desorption from the surface.
An example for V) /kg = —200K is presented on Fig.5.9. The desorption trace for a
mobile adsorbate is slightly shifted to higher temperatures, compared to the immobile
trace generated for equilibrium initial correlators. The physical explanation of this
small difference is that there is a greater likelihood of adparticles being surrounded
by neighbors, upon rearrangement, in the mobile case; for immobile particles, the
reduction of neighbors via desorption lowers, relatively, the binding energy of the

remaining particle. The peak temperature is a measure of the binding energy of the
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particles at the edges of the clusters. Desorption from the interior, requiring the
breaking of four bonds, is less likely. Because this clustering exists, initially, for the
immobile case also, the spectra are practically indistinguishable for the two cases.
For a system desorbing under quasi-equilibrium conditions we can use the phe-
nomenological rate equation, Eqn.(2.16), with the appropriate sticking function and
chemical potential, to quantify the desorption rate. Thus, instead of determining the
rate by solving the set of evolution equations for the correlators of our chosen basis
set, we can use the chemical potential determined from our adsorption-desorption
equilibrium solution for these correlators (specifically coverage) directly. If we do
this with a Langmurian sticking of (1 — #) and the 5-basis set we recover the dotted
lines of Fig.5.1. For the 15-basis set we found in section 4.1.2 that we get a chemical
potential that agrees very well with that of the TM calculation, Fig.4.7. Thus for
a system desorbing under quasi-equilibrium conditions we should almost recover the
rates given by the solid lines in Fig.5.1. We do, but do not show on a separate plot
here as the TM-generated and our 15-basis spectra are so close. Because we presently
lack the diffusion equations for this 15-basis set we cannot present results of limited
hopping. The direct solution of the 15-basis set evolution in the immobile and re-
pulsive case confirms the results calculated with the 5-basis set. Namely, for random
initial correlators there is only one smaller TPD peak between the two main peaks

and, for equilibrium initially, only a two-peaked spectrum.



Chapter 6

Conclusions and Outlook

In this work the formulation and solution of the kinetic lattice gas model for adsorp-
tion, desorption and diffusion of particles on surfaces has been thoroughly examined.
The model, which is based on the master equation for a Markovian process, results
in a hierarchy of equations of motion for the coverage and many-particle correlators;
the complete set is equivalent to the original master equation. However, there are
as many correlators and thus evolution equations as adsorption sites. The challenge
of this thesis has been to find a systematic procedure for truncating this hierarchy
of equations at a manageable level. We have examined the effects of this trunca-
tion at the level of compact 5- and 15-site correlators, for a square lattice substrate
and with repulsive and attractive nearest-neighbor interactions between the adpar-
ticles. This truncation is achieved by factorizing all correlators, that appear in the
evolution equations and are not in the basis set, in terms of the 5- or 15-site basis.
The truncations and the equations are developed with a series of codes. In fact,
the choice of the basis and the factorization schemes is not trivial. To test these, we
compared the equilibrium solutions of the resulting rate equations of the basis set,
obtained from the zeroes of all rates, with exact results for these basis correlators

obtained using the transfer matrix method, as a function of coverage, temperature
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and interaction strength. The 15-basis scheme, which involves up to 4-site overlaps
in factorization, performs very well, giving almost exact results. The 5-site basis,
with a maximum of 2-site overlap, performs well under diffusive equilibrium but not
as well under adsorption-desorption equilibrium. The latter discrepancy is a known
result for smaller basis sets. Nevertheless, this 5-basis set captures the effects of the
ordering phenomenon much better than the simpler 1-site overlap schemes that have
been used previously. Several factorization schemes, other than our best one, were
examined. In addition, we have compared our equilibrium solutions with the best of
the cluster-variation-method results. These also assume a basis, in effect, but require
a detailed combinatoric analysis to arrive at a set of equilibrium conditions. Our
method is clearly superior and systematic for generalizations of lattice coordination,
basis size and range of interactions.

The main point of implementing solutions to the kinetic lattice gas model is that
it gives the evolution of correlators away from equilibrium. The problem of choosing
a successful factorization scheme persists. However, the obvious choice is that which
is the best in the limit of adsorbate equilibrium. Having shown that the equilibrium
solutions are correctly described, we are confident in applying the same factorization
scheme to describe the nonequilibrium correlators. Thus we can describe diffusion of
an adsorbate towards equilibrium prepared from a gas adsorbed at lower tempera-
tures where diffusion may be impaired. We can also describe the time dependence of
the coverage on a surface as the particles adsorb or desorb. As examples of the time
evolution we have examined TPD spectra of an interacting adsorbate. For diffusion
(hopping) rates fast compared to the desorption time scale the correlators maintain
equilibrium and we recover the standard results of the quasi-equilibrium phenomeno-
logical model. In the case of limited diffusion or no diffusion we have obtained new
results and have elucidated the mechanisms which distinguish the contributions to the

observable desorption rate. We find no evidence for staged desorption for repulsive
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adsorbates prepared under initial equilibrium conditions. Only in one situation do we
observe an intermediate peak in the TPD spectrum, namely for non-equilibrium ini-
tial correlators. For attractive interactions the TPD spectra are essentially identical
to the quasi-equilibrium case.

One of the main reasons for modelling TPD spectra is to extract the adparti-
cle binding and interaction energies. Our results have consequences for interpreting
experimental spectra in non-equilibrium situations. These arise, for example, for sys-
tems where the heating rate is so fast as to effectively limit the diffusion rate on the
time scale of desorption. Laser-induced thermal desorption produces such an effect,
for example. The same technique also permits measurement of diffusion rates at con-
stant coverage. Our model allows investigation of the effects of interactions in this
case also.

The kinetic lattice gas model developed in this thesis describes surface phenomena
in a most physical way making the connection between microscopic distributions
and macroscopic observables without introducing too many ad hoc concepts and
parameters. The approach automatically ensures that such fundamental principles
as detailed balance are implemented properly. It is an analytic approach to the
kinetics (and thermodynamics) of adsorbates and is not restricted to simple systems.
For example, adding to the terms to the transition probabilities terms that describe
association and dissociation processes will allow the description of reactions on a
surface. One can also deal with rather complicated situations in a systematic approach
such as multi-site and multi-component systems with or without precursor-mediated
adsorption and surface reconstruction, including multilayers or subsurface species.
The extension to two interacting species on a 2-D lattice has already been completed
to the stage of deriving the equations but with combinatorial factorizations of the
correlators. The resulting solution difficulties became the primary motivation for

re-examining the factorization problem for the one-species system presented in this



90

thesis.

For adsorbates out of local equilibrium, an analytic approach is a useful theoretical
tool by which, in addition to numerical results, explicit formulae can be obtained to
elucidate the underlying physics. One can extract simplified pictures of and approxi-
mations to complicated processes. This approach is increasingly overlooked with the
availability of cheap computer power for numerical simulations. Sometimes computer
simulations of the adsorbate kinetics are based on oversimplified or incorrect assump-
tions which often arise because the physical theory has been not been formulating

rigorously, e.g. based on a master equation.



Appendix A

In this Appendix we list the time evolution equations of the correlators forming the
5-basis set (< . >,<- o>, <. :>, <. ;>, <: :>) First we specify the evolution for adsorp-
tion and desorption processes. Langmuir kinetics is assumed for adsorption. The

coefficients Wy and W(C, are given by Eqn.(3.28) and (5.1) respectively.

&K +> e
dt
— WoCh [< . > + 401<. .> + 402<. D+ 202<- . .> +4C36 e
+Cile sl (A1)
K2 =
— WoCo[2{e o) + 2C1{s > + 2C16 e + 4C1a D) + 2026 0
+ 40K )+ 6CaG e + 2056 8 S + 6C56 = ) + 2C1¢ 2 D) (A.2)

d—<d';'—> =Wo(2{e ) + <o 8))

~ WoCo[3e D+ 2012 D+ D+ +Ep+ D))
+ 0D+ 2D+ 46D+ 280+ 61D+ 2D+ 26+ %)
43I + 205D TGN HE D HEID +AY) (A-3)
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Ke2 ety o3
~ WoCo[2{e8) +2C1 (8D + G+ 2) +202({ 03D
43+ 62+ E )
+ WoGole ) +2C1(6 39+ ) + Ca(G3D + 445D
£ +20(EED+ ) + O] (a4)

%;2 =4Wo(3%)

— WoColdCe > +8CL((8) + ¢ ) +4Ca((s) + 481 +455)
+8C3 (L +€3%) +4Ci€ 3% (A.5)

Time evolution equations for diffusion. Jy is defined in Eqgn.(3.10),

K o Bl + 26>+ Gl + 260>+ 443
+863)) + Ca(44 2> + 84 2 + 64 39) + 6C3¢ $9))
+ o260 + 45 + C1(2€ 20D + 425D + 4Geed)
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Appendix B

This Appendix tabulates the results of factorizing the higher-order correlators that
appear in the evolution equations of the 5-basis set, given in Appendix A. The factor-
ization is performed with 2-site overlap. The numbers in the columns are the powers
of the respective correlator in the factorized expansion of the rate equations. The
first five tables pertain to desorption, the rest to diffusion. The tables are the output
of the Fortran codes given in Appendix C.

For example the first table represents the coefficient of WyCjp in the desorption
term in Eqn.(A.1). Thus the correlator <.:.> , which appears in Eqn.(A.1) with a
multiplier WoCo(—4Cs), is factorized as ¢ s 9 = ¢, :>2 D)

Factorization terms for< . )

coeff |3 [ QD [P [P [otD oD | o [P [{eD <2
1 lojlo|o|olo|lolo]lo]o]1
4| 0 oo oo |o|lo|l1][o0]o0
—~4c,| 0o | 1t o|o|lolo|lo]o]o
20, 0 fo| 2|0 |o0o|o|lo|-1]0]0
20, 0 o] oo |2 |0|o|o0o]|-1]0
405 0 o | 2]o0o|o|o|lo|l-1]0]0
~C| oo |3 |olo|o|o|-=2]0]0
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Factorization terms for<. .>

coef f <

2R [BD D[ [€oD [P [Cod) [<o P[22

0
0
0
0
0
0
0
0
0
0

—4C
—2C
-2C
—2C
—4C,
-8C,
—2C)
—6C5
—2C3
—2C4
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Factorization terms for<. :>

coef f <
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0
0

1
0
0
1
0

0
0

0
1
0
1
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-2C
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—4C,
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—C,
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—2C4

—C,
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Factorization terms for, $)
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Factorization with two site overlap of diffusion terms in the time evolution equa-

tions of Appendix A.

Factorization terms for <- .>

0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
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—4C,

-10C,
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4Cy
4Cy

continued



101

-1

-1

-1

-1

-1

-1

-1
-1

-1
-1

-1

0

0
-1
-1

-1
-2

-2/ 0

1

1
0

0
0
1

0

0
0

coeff D | DD DD DD [D DD D] [

2C,
2C
2C,
4C4
4C,
4Cy
4Cy
2C,
20,
4C,
4C,
4C,
4Cy
4C,
2Cs
2Cs
4Cs




102

Factorization terms for<, :>
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Appendix C

Two examples of computer codes are given in this Appendix. The first derives the
evolution equations for surface diffusion for any specified correlator. A similar code
is used for the desorption evolution. The output of such codes is then used in the
second example code, which factorizes these equations in the chosen basis, to produce

tables such as those given in Appendix B.

c234567
c program diffusion_derive
c
c This program derives the terms contained in the diffusion
c equations of the time evolution equations.
C
C Inputs - term to be expanded
c
c Outputs -~ all terms in the diffusion equation for that term
c
integer d

parameter (d=9)

parameter (g=3,h=7)

integer subj(d,d),obj(d,d)

integer o(4),p(4)

integer med0(d,d),med1(d,d),med2(d,d),med3(d,d)
integer i,j,a,b,m,q,r,s

character *6 dump
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write(*,*) ’Enter name of new data file:’
read *,dump

open (7,file=dump,status=’new’)

do 4 j=1,d
do 3 i=1,d
subj(i,j)=9
continue
continue

write(*,*) ’ Enter 3x3 matrix one row at a time’

do 5 j=4,6
read (*,*) (subj(i,j), i=4,6)
continue

0(1)=0
0(2)=1
0(3)=0
o(4)=-1
p(1)=1
p(2)=0
p(3)=-1
p(4)=0

call fact(subj,’d/dt’,d)
call refresh(subj,obj,d)

negative part of master equation

do 60 i=g,h
do 50 j=g,h
if (obj(i,j).eq.1) then
do 40 k=1,4

if ((obj(i+o(k),j+p(k)).eq.2).or.

(obj(i+o(k),j+p(k)).eq.9)) then
obj (i+o(k), j+p(k))=2
call fact(obj,’-1 ’,d)
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endif
call refresh(subj,obj,d)
40 continue
else if ((obj(i,j).eq.9).and.
((obj(it+o(1),j+p(1)).ne.9) .or.
((obj(ito(2),j+p(2)) .ne.9).or.
((obj(i+0(3),j+p(3)) .ne.9).or.
(obj(i+o(4),j+p(4)).ne.9))))) then
obj(i,j)=1
do 45 k=1,4
if (obj(ito(k),j+p(k)).eq.2) then
call fact(obj,’-1 ?’,d)
endif
45 continue
call refresh(subj,obj,d)
endif
50 continue
60 continue

+ + + +

do 90 i=g,h
do 80 j=g,h
if (obj(i,j).eq.1) then
do 72 k=1,4
if ((obj(ito(k),j+p(k)).eq.2).or.
+ (obj(ito(k), j+p(k)).eq.9)) then
obj (i+o(k), j+p(k))=2
call refresh(obj,med0,d)
do 70 m=1,4
if (m .ne. k) then
if (obj(i+o(m),j+p(m)).ne.2) then
obj(i+o(m),j+p(m))=1
call fact(obj,’-cl ’,d)
endif
endif
call refresh(medO,obj,d)
70 continue
endif
call refresh(subj,obj,d)
72 continue



75

77

80
90

111

else if ((obj(i,j).eq.9).and.
((obj(i+o(1),j+p(1)).ne.9).or.
((obj(i+0(2),j+p(2)) .ne.9).or.
((obj(i+o(3),j+p(3)) .ne.9).or.
(obj(i+o(4),j+p(4)).ne.9))))) then
obj(i,j)=1
call refresh(obj,med0,d)
do 77 k=1,4
if (obj(i+o(k),j+p(k)).eq.2) then
do 75 m=1,4
if (m .ne. k) then
if (obj(i+o(m),j+p(m)).ne.2) then
obj (i+o(m),j+p(m))=1
call fact(obj,’-cl ’,d)
call refresh(medO,obj,d)
endif
endif
continue
endif
continue
endif
call refresh(subj,obj,d)
continue
continue

+ 4+ + +

do 130 i=g,h
do 120 j=g,h
if (obj(i,j).eq.1) then
do 105 k=1,4
if ((obj(it+o(k),j+p(k)).eq.2).or.

+ (obj(i+to(k),j+p(k)).eq.9)) then

obj (i+o(k),j+p(k))=2

call refresh(obj,med0,d)

do 100 m=1,4

if (m .ne. k) then
if (obj(ito(m),j+p(m)).ne.2) then

obj(ito(m), j+p(m))=1
call refresh(obj,medl,d)
do 95 g=1,4



if ((q .ne. m).and.(q .ne. k)) then
if (obj(ito(q),j+p(q)).ne.2) then
obj(i+o(q),j+p(q))=1
call fact(obj,’-c2 ’,d)
endif
endif
call refresh(medl,obj,d)
95 continue
endif
endif
call refresh(med0,obj,d)
100 continue
endif
call refresh(subj,obj,d)
105 continue
else if ((obj(i,j).eq.9).and.
((obj(i+to(1),j+p(1)).ne.9).or.
((obj(i+to(2),j+p(2)) .ne.9).or.
((obj(i+0(3),j+p(3)) .ne.9).or.
(obj(i+o(4),j+p(4)).ne.9))))) then
obj(i,j)=1
call refresh(obj,med0,d)
do 117 k=1,4
if (obj(ito(k),j+p(k)).eq.2) then
do 115 m=1,4
if (m .ne. k) then
if (obj(i+o(m),j+p(m)).ne.2) then
obj(i+o(m), j+p(m))=1
call refresh(obj,medl,d)
do 110 g=1,4
if ((q .ne. m).and.(q .ne. k)) then
if (obj(i+to(q),j+p(q)).ne.2) then
obj(i+o(q),j+p(q))=1
call fact(obj,’-c2 ’,d)
endif
endif
call refresh(medl,obj,d)
110 continue
endif
endif

+ + + +
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117

120
130

140

call refresh(med0,obj,d)
continue
endif
call refresh(med0,obj,d)
continue
endif
call refresh(subj,obj,d)
continue
continue

do 180 i=g,h
do 170 j=g,h
if (obj(i,j).eq.1) then
do 150 k=1,4
if ((obj(i+to(k),j+p(k)).eq.2).0r.
(obj(ito(k), j+p(k)).eq.9)) then
obj (i+o (k) , j+p(k))=2
call refresh(obj,med0,d)
do 145 m=1,4
if (m .ne. k) then
if (obj(i+o(m),j+p(m)).ne.2) then
obj(i+o(m), j+p(m))=1
call refresh(obj,medl,d)
do 143 g=1,4
if ((q .ne. m).and.(q .ne. k)) then
if (obj(i+o(q),j+p(q)) .ne.2) then
obj(i+o(q),j+p(q)=1
call refresh(obj,med2,d)
do 140 r=1,4
if (((r.ne.m).and.(r.ne.q)).and.(r.ne.k)) then
if (obj(i+o(r),j+p(r)).ne.2) then
print *, ’k,m,q,r:’,k,m,q,r
obj (i+o(x),j+p(xr))=1
call fact(obj,’-c3 ’,d)
endif
endif
call refresh(med2,o0bj,d)
continue
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endif
endif
call refresh(medi,obj,d)
143 continue
endif
endif
call refresh(med0,obj,d)
145 continue
endif
call refresh(subj,obj,d)
150 continue
else if ((obj(i,j).eq.9).and.
((obj(ito(1),j+p(1)).ne.9).or.
((obj(i+o(2),j+p(2)) .ne.9).or.
((obj(i+o0(3),j+p(3)) .ne.9) .or.
(obj(i+o(4),j+p(4)).ne.9))))) then
obj(i,j)=1
call refresh(obj,med0,d)
do 167 k=1,4
if (obj(i+o(k),j+p(k)).eq.2) then
do 165 m=1,4
if (m .ne. k) then
if (obj(ito(m),j+p(m)).ne.2) then
obj(ito(m), j+p(m))=1
call refresh(obj,medl,d)
do 160 g=1,4
if ((q .ne. m).and.(q .ne. k)) then
if (obj(ito(q),j+p(q)).ne.2) then
obj(i+o(q), j+p(q))=1
call refresh(obj,med2,d)
do 155 r=1.,4
if (((r.ne.m).and.(r.ne.q)).and.(r.ne.k)) then
if (obj(i+o(r),j+p(r)).ne.2) then
obj(it+o(x),j+p(xr))=1
call fact(obj,’-c3 ’,d)
endif
endif
call refresh(med2,obj,d)
155 continue
endif

+ + + 4+



160

165

167

170
180

endif
call refresh(medl,obj,d)
continue
endif
endif
call refresh(med0,obj,d)
continue
endif
call refresh(med0,obj,d)
continue
endif
call refresh(subj,obj,d)
continue
continue

240

+ + + +

positive part of master equation

do 260 i=g,h
do 250 j=g,h
if (obj(i,j).eq.2) then
do 240 k=1,4
if ((obj(i+o(k),j+p(k)).eq.1).or.
(obj(ito(k),j+p(k)).eq.9)) then
obj(ito(k),j+pk))=1
call prime(obj,d,i,j,k,o0(k),p(k))
call fact(obj,’+1 ’,d)
endif
call refresh(subj,obj,d)
continue
else if ((obj(i,j).eq.9).and.
((obj(ito(1),j+p(1)).ne.9).or.
((obj(i+o(2),j+p(2)) .ne.9).or.
((obj(i+0(3),j+p(3)) .ne.9) .or.
(obj(i+o(4),j+p(4)).ne.9))))) then
obj(i,j)=2
do 245 k=1,4
if (obj(i+o(k),j+p(k)).eq.1) then
call prime(obj,d,i,j,k,o(k),p(k))
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call fact(obj,’+1 ’,d)
endif
245 continue
endif
call refresh(subj,obj,d)
250 continue
260 continue

do 290 i=g,h
do 280 j=g,h
if (obj(i,j).eq.2) then
do 272 k=1,4
if ((obj(i+o(k),j+p(k)).eq.1).or.
+ (obj (i+o(k),j+p(k)).eq.9)) then
obj(i+o(k),j+p(k))=1
call refresh(obj,med0,d)
do 270 m=1,4
if (m .ne. k) then
if (obj(i+o(m),j+p(m)).ne.2) then
obj(i+o(m),j+p(m))=1
call prime(obj,d,i,j,k,o(k),p(k))
call fact(obj,’+cl ’,d)

endif
endif
call refresh(med0,obj,d)
270 continue
endif
call refresh(subj,obj,d)
272 continue

else if ((obj(i,j).eq.9).and.
((obj(i+o(1),j+p(1)) .ne.9) . .or.
((obj(i+o(2),j+p(2)) .ne.9).or.
((obj(i+0(3),j+p(3)) .ne.9).or.
(obj(i+o(4),j+p(4)).ne.9))))) then

obj(i,j)=2

call refresh(obj,med0,d)

do 277 k=1,4

if (obj(i+o(k),j+p(k)).eq.1) then
do 275 m=1,4

+ + + +



275

277

280
290

295

if (m .ne. k) then
if (obj(i+o(m),j+p(m)).ne.2) then
obj(it+o(m), j+p(m))=1

call prime(obj,d,i,j,k,o(k),p(k))

call fact(obj,’+cl ’,d)
call refresh(med0,obj,d)
endif
endif
continue
endif
continue
endif
call refresh(subj,obj,d)
continue
continue

do 330 i=g,h
do 320 j=g,h
if (obj(i,j).eq.2) then
do 305 k=1,4
if ((obj(i+to(k),j+p(k)).eq.1).0r.
(obj(ito(k),j+p(k)).eq.9)) then
obj(i+o(k), j+p(k))=1
call refresh(obj,med0,d)
do 300 m=1,4
if (m .ne. k) then
if (obj(ito(m),j+p(m)).ne.2) then
obj (i+o(m), j+p(m))=1
call refresh(obj,medl,d)
do 295 g=1,4

117

if ((q .ne. m).and.(q .ne. k)) then
if (obj(ito(q),j+p(q)).ne.2) then
obj(ito(q),j+p(q))=1
call prime(obj,d,i,j,k,o(k),p(k))
call fact(obj,’+c2 ’,d)
endif
endif
call refresh(medi,obj,d)
continue
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endif
endif
call refresh(med0,obj,d)
300 continue
endif
call refresh(subj,obj,d)
305 continue
else if ((obj(i,j).eq.9) .and.
((obj(i+o(1),j+p(1)).ne.9).or.
((obj(i+o(2),j+p(2)) .ne.9).or.
((obj(i+0(3),j+p(3)) .ne.9).or.
(obj(i+o(4),j+p(4)).ne.9))))) then
call refresh(subj,obj,d)
obj(i,j)=2
call refresh(obj,med0,d)
do 317 k=1,4
if (obj(ito(k),j+p(k)).eq.1) then
do 315 m=1,4
if (m .ne. k) then
if (obj(i+o(m),j+p(m)).ne.2) then
obj (i+o(m), j+p(m))=1
call refresh(obj,medl,d)
do 310 g=1,4
if ((q .ne. m).and.(q .ne. k)) then
if (obj(it+o(q),j+p(q)).ne.2) then
obj(i+o(q), j+p(q))=1
call prime(obj,d,i,j,k,0(k),p(k))
call fact(obj,’+c2 ’,d)
endif
endif
call refresh(medi,obj,d)
310 continue
endif
endif
call refresh(med0,obj,d)
315 continue
endif
call refresh(med0,obj,d)
317 continue
endif

+ + + +
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call refresh(subj,obj,d)
320 continue
330 continue

do 380 i=g,h
do 370 j=g,h
if (obj(i,j).eq.2) then
do 350 k=1,4
if ((obj(i+to(k),j+p(k)).eq.1).o0r.
+ (obj(ito(k),j+p(k)).eq.9)) then
obj (i+to(k),j+p(k))=1
call refresh(obj,med0,d)
do 345 m=1,4
if (m .ne. k) then
if (obj(i+o(m),j+p(m)).ne.2) then
obj(i+to(m), j+p(m))=1
call refresh(obj,medl,d)
do 343 g=1,4
if ((q .ne. m).and.(q .ne. k)) then
if (obj(i+o(q),j+p(q)) .ne.2) then
obj(i+o(q),j+p(q))=1
call refresh(obj,med2,d)
do 340 r=1,4
if (((r.ne.m).and.(r.ne.q)).and.(r.ne.k)) then
if (obj(ito(x),j+p(r)).ne.2) then
obj(ito(x),j+p(r))=1
call prime(obj,d,i,j,k,o(k),p(k))
call fact(obj,’+c3 ’,d)
endif
endif
call refresh(med2,o0bj,d)
340 continue
endif
endif
call refresh(medl,obj,d)
343 continue
endif
endif
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call refresh(medO,obj,d)

345 continue

endif

call refresh(subj,obj,d)
350 continue

else if ((obj(i,j).eq.9).and.
((obj(i+o(1),j+p(1)).ne.9).or.
((obj(i+0(2),j+p(2)) .ne.9) .or.
((obj(i+0(3),j+p(3)).ne.9) .or.
(obj(i+o(4),j+p(4)).ne.9))))) then
obj (i,j)=2
call refresh(obj,med0,d)
do 367 k=1,4
if (obj(i+o(k),j+p(k)).eq.1) then
do 365 m=1,4
if (m .ne. k) then
if (obj(it+o(m),j+p(m)).ne.2) then
obj(i+o(m), j+p(m))=1
call refresh(obj,medl,d)
do 360 g=1,4
if ((q .ne. m).and.(q .ne. k)) then
if (obj(i+o(q),j+p(q)).ne.2) then
obj (ito(q),j+p(q))=1
call refresh(obj,med2,d)
do 355 r=1,4
if (((r.ne.m).and.(r.ne.q)).and.(r.ne.k)) then
if (obj(ito(r),j+p(r)).ne.2) then
obj(i+to(x),j+p(r))=1
call prime(obj,d,i,j,k,o(k),p(k))
call fact(obj,’+c3 ’,d)
endif
endif
call refresh(med2,o0bj,d)
355 continue
endif
endif
call refresh(medl,obj,d)
360 continue
endif
endif

+ + + +



call refresh(medO,obj,d)

365 continue
endif
call refresh(med0,obj,d)
367 continue
endif
call refresh(subj,obj,d)
370 continue
380 continue
write (7,550) ’fini’,99
550 format (1x,a4,1x,i3)
600 format (5x,9(i1,1ix))
stop
end
C
234567

subroutine prime(x,d,i,j,k,0,p)
integer d,i,j,k,0,p

integer x(d,d)

integer a,b

if (x(i,j).eq.1) then
x(i,j)=4

else if (x(i,j).eq.2) then
x(i,j)=3

endif

if (x(i+o,j+p).eq.1) then
x(ito, j+p)=4
else if (x(i+o,j+p).eq.2) then
x(i+o, j+p)=3

endif

do 1010 a=1,d
do 1000 b=1,d
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if (x(a,b).eq.2) then

x(a,b)=4
else if (x(a,b).eq.1) then
x(a,b)=3
endif
1000 continue
1010 continue
return
end
e —
234567
subroutine refresh(x,y,n)
integer n

integer x(n,n),y(n,n)
integer i,]j

do 3200 i=1,n
do 2200 j=1,n
y(i,j)=x(1,j)
2200 continue
3200 continue

return
end

<
c234567
subroutine fact(x,num,dim)
integer dim,1i,j
integer x(dim,dim)
character *4 num
integer size
parameter (size = 9)
integer a(size)

write (7,5500) num,1
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do 5000 j=1,dim
do 4500 i=1,dim

if (x(i,j).eq.9) then
a(i)=0

else if (x(i,j).eq.1) then
a(i)=1

else if (x(i,j).eq.2) then
a(i)=2

else if (x(i,j).eq.3) then
a(i)=1

else if (x(i,j).eq.4) then
a(i)=2

endif

4500 continue
write(7,6000) (a(k), k=1,dim)

5000 continue
5500 format (1x,a4,1x,i3)
6000 format (5x,9(il,1x))

return
end

12345678901234567890123456789012345678901234567890
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program factorize4d

This program factorizes the correlators in terms of certain
4-gite correlators with double site overlap.

Inputs - file containing correlators for factorization
OQutputs - factorization tables
revision: input from file fact4_me.in

integer i,j,k,d,dx,dy

parameter (d=9)

parameter (dx=16)

parameter (dy=1000)

integer field(d,d),table(dx,dy)
integer sq(d,d,4),tr(d,d,4),db(d,d,4)
integer a,b,c,number,count,dot,gap,num
character *8 source,new

character *6 word

integer 0(8),p(8),q(8),r(8)

common 0,p,q,Tr

integer gamma

common gamma

0(1)=0
0(2)=0
0(3)=0
0(4)=0
o(5)=1
o(6)=1
o(7)=-1
0(8)=-1

p(1)=1
p(2)=1
p(3)=-1



10

20

p(4)=-1
p(5)=0
p(6)=0
p(7)=0
p(8)=0

q(1)=1
q(2)=-1
q(3)=1
q(4)=-1
q(56)=1
q(6)=1
q(7)=-1
q(8)=-1

r(1)=1
r(2)=1
r(3)=-1
r(4)=-1
r(5)=1
r(6)=-1
r(7)=1
r(8)=-1

open (8,file=’fact4_me.in’,status=’0ld’)

open (9,file=’fact4_me.out’,status=’unknown’)
write (9,300) ’n’,’C~’,’QS’,’QH’,’QE’>,’QA’?,°TS?,
+ ’TH’,’T0’,’TA’ ,’TE’,
+ ’DS’,’DH’,’DE’,’8S8’,’SH’

do 10 i=1,dy
do 5 j=1,dx
table(j,1)=0
continue
continue

read (8,100) word,number
do 20 i=1,d

read (8,200) (field(i,j),j=1,d)
continue
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count = 1

read (8,100) word,number

do 1000 while (word .ne.

gamma=0

if (word .eq. ’-1 )
table(2,count)=-5

endif

if (word .eq. ’+1 )
table(2,count)=5

endif

if (word .eq. ’-cl ?)
table(2,count)=-1

endif

if (word .eq. ’+cl ?)
table(2,count)=1

endif

if (word .eq. ’-c2 )
table (2, count)=-2

endif

if (word .eq. ’+c2 )
table(2, count)=2

endif

if (word .eq. ’-c3 ?)
table(2,count)=-3

endif

if (word .eq. ’+c3 ?)
table (2, count)=3

endif

if (word .eq. ’-c4 )
table (2, count)=-4

endif

if (word .eq. ’+c4d ?)
table(2,count)=4

endif

then

then

then

then

then

then

then

then

then

then

’fini?)
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44
45

50

60
70

do 45 i=1,d
do 44 j=1,d
do 43 k=1,4
sq(i,j,k)=0
tr(i,j,k)=0
db(i,j,k)=0
continue
continue
continue

do 50 i=1,d
read (8,200) (field(i,j),j=1,d)
continue

dot=0
gap=0

do 70 i=1,d
do 60 j=1,d
if (field(di,j).eq.1) then
dot=dot+1
endif
if (field(i,j).eq.2) then
gap=gap+1
endif
continue
continue

table (1, count)=number
print *, ’PROCESSING’

call ssquar(field,table,sq,tr,db,d,dx,dy,count,num)
call hsquar(field,table,sq,tr,db,d,dx,dy,count,num)
call esquar(field,table,sq,tr,db,d,dx,dy,count,num)
call asquar(field,table,sq,tr,db,d,dx,dy,count,num)
do ki=1,4

do il1=1,9

write(*,101) (sq(i1,j1,k1),j1=1,9)

enddo

write(*,201)
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enddo
write(*,301) Zkkkk’

101 format (5x,9(i1,1x))

201 format (/)

301 format (a)
call stria(field,table,sq,tr,db,d,dx,dy,count,num)
call htria(field,table,sq,tr,db,d,dx,dy,count,num)
call otria(field,table,sq,tr,db,d,dx,dy,count,num)
call atria(field,table,sq,tr,db,d,dx,dy,count,num)
call etria(field,table,sq,tr,db,d,dx,dy,count,num)
call stria(field,table,sq,tr,db,d,dx,dy,count,num)
call htria(field,table,sq,tr,db,d,dx,dy,count,,num)
call otria(field,table,sq,tr,db,d,dx,dy,count,num)
call atria(field,table,sq,tr,db,d,dx,dy,count,num)
call etria(field,table,sq,tr,db,d,dx,dy,count,num)
do ki1=1,4
do i1=1,9
write(*,101) (tr(i1,j1,k1),j1=1,9)
enddo
write(*,201)
enddo
write(k,301) ?kkkx’
call sdoub(field,table,sq,tr,db,d,dx,dy,count,num)
call hdoub(field,table,sq,tr,db,d,dx,dy,count,num)
call edoub(field,table,sq,tr,db,d,dx,dy,count,num)
do ki=1,4
do i1=1,9
write(*,101) (db(il,j1,k1),j1=1,9)
enddo
write(*,201)
enddo
write(*,301) 2kkkx’
call ssing(field,table,sq,tr,db,d,dx,dy,count,num)
call hsing(field,table,sq,tr,db,d,dx,dy,count,num)
call nrmdbl(table,dx,dy,count,dot,gap)

c call nrmsgl(table,dx,dy,count,dot,gap)
count = count +1
read (8,100) word,number

1000 enddo
print *,’simplify’



call simpl(table,dx,dy)

c call cancl(table,dx,dy)
c print *,’cancel’
do 2000 i=1,count-1
if (table(1,i).ne.0) then
write(9,400) (table(j,i),j=1,dx)
endif
2000 continue
write(9,400) 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
100 format(1x,a4,1x,i4)
200 format (5x,9(i1, ix))
300 format (4x,al1,2x,15(a2,1x))
400 format (1x,i4,1x,15(i2,1x))
stop
end
C

subroutine ssquar(field,table,sq,tr,db,d,dx,dy,count,num)

integer
integer
integer
integer
integer

num=1

d,dx,dy,count
field(d,d),table(dx,dy)
sq(d,d,4),tr(d,d,4),db(d,d,4)
i,j

num, dumb

do 50 i=2,d-1

do 40

j=2,d-1

dumb=0
if (field(i,j).eq.1) then
if (field(i,j+1).eq.1) then

if (field(i+1,j+1).eq.1) then
if (field(i+1,j).eq.1) then
call criteri(sq,d,i,j,dumb,0)
if (dumb.eq.1) then
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50

call updati(sq,d,i,j,num)
table (3, count)=table(3,count)+1

num
endif
endif
endif

endif
endif
continue
continue

return
end

num + 1

subroutine hsquar(field,table,sq,tr,db,d,dx,dy,count,num)

integer
integer
integer
integer
integer

d,dx,dy, count

field(d,d),table(dx,dy)
sq(d,d,4),tr(d,d,4),db(d,d,4)

i,j
num, dumb

do 50 i=2,d4-1

do 40

dumb=

if (field(i,j).eq.2) then
if (field(i,j+1).eq.1) then
if (field(i+1,j+1).eq.1) then
if (field(i+1,j).eq.1) then
call criteri(sq,d,i,j,dumb,0)
if (dumb.eq.1) then
call updati(sq,d,i,j,num)
table (4, count)=table(4,count)+1

j=2,d-1

0

num
endif
endif
endif

num + 1

130



endif
endif

if (field(i,j).eq.1) then
if (field(i,j+1).eq.2) then
if (field(i+i,j+1).eq.1) then
if (field(i+1,j).eq.1) then
call criteri(sq,d,i,j,dumb,0)
if (dumb.eq.1) then
call updati(sq,d,i,j,num)
table(4,count)=table(4, count)+1
num = num + 1
endif
endif
endif
endif
endif

if (field(i,j).eq.1) then
if (field(i,j+1).eq.1) then
if (field(i+1,j+1).eq.2) then
if (field(i+1,j).eq.1) then
call criteri(sq,d,i,j,dumb,0)
if (dumb.eq.1) then
call updati(sq,d,i,j,num)
table(4,count)=table(4,count)+1
num = num + 1
endif
endif
endif
endif
endif

if (field(i,j).eq.1) then
if (field(di,j+1).eq.1) then
if (field(i+1,j+1).eq.1) then
if (field(i+1,j).eq.2) then
call criteri(sq,d,i,j,dumb,0)
if (dumb.eq.1) then
call updati(sq,d,i,j,num)
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50

table(4,count)=table(4,count)+1
num = num + 1

endif
endif
endif
endif
endif

continue
continue

return
end

subroutine asquar(field,table,sq,tr,db,d,dx,dy,count,num)

integer d,dx,dy,count

integer field(d,d),table(dx,dy)
integer sq(d,d,4),tr(d,d,4),db(d,d,4)

integer i,j
integer num,dumb

do 50 i=2,d-1
do 40 j=2,d-1

dumb=0

if (field(i,j).eq.2) then
if (field(i,j+1).eq.1) then
if (field(i+1,j+1).eq.2) then
if (field(i+1,j).eq.1) then
call criteri(sq,d,i,j,dumb,0)
if (dumb.eq.1) then
call updati(sq,d,i,j,num)
table(6,count)=table(6,count)+1
num = num + 1

endif
endif
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endif
endif
endif

if (field(i,j).eq.1) then
if (field(i,j+1).eq.2) then
if (field(i+1,j+1).eq.1) then
if (field(i+l,j).eq.2) then
call criteri(sq,d,i,j,dumb,0)
if (dumb.eq.1) then
call updati(sq,d,i,j,num)
table(6,count)=table(6,count)+1
num = num + 1
endif
endif
endif
endif
endif

continue
continue

return
end

subroutine esquar(field,table,sq,tr,db,d,dx,dy,count,,num)

integer d,dx,dy,count

integer field(d,d),table(dx,dy)
integer sq(d,d,4),tr(d,d,4),db(d,d,4)
integer i,j

integer num,dumb

do 50 i=2,d-1
do 40 j=2,d-1

dumb=0
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if (field(i,j).eq.2) then
if (field(i,j+1).eq.2) then
if (field(i+1,j+1).eq.1) then
if (field(i+1,j).eq.1) then
call criteri(sq,d,i,j,dumb,1)
if (dumb.eq.1) then
call updati(sq,d,i,j,num)
table(5,count)=table(5,count)+1
num = num + 1
endif
endif
endif
endif
endif

if (field(i,j).eq.1) then
if (field(i,j+1).eq.1) then
if (field(i+1,j+1).eq.2) then
if (field(i+1,j).eq.2) then
call criteri(sq,d,i,j,dumb,2)
if (dumb.eq.1) then
call updati(sq,d,i,j,num)
table(5,count)=table(5,count)+1
num = num + 1
endif
endif
endif
endif
endif

if (field(i,j).eq.1) then
if (field(i,j+1).eq.2) then
if (field(i+1,j+1).eq.2) then
if (field(i+1,j).eq.1) then
call criteri(sq,d,i,j,dumb,3)
if (dumb.eq.1) then
call updati(sq,d,i,j,num)
table(5,count)=table(5,count)+1
num = num + 1
endif
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endif
endif
endif
endif

if (field(i,j).eq.2) then
if (field(i,j+1).eq.1) then
if (field(i+1,j+1).eq.1) then
if (field(i+1,j).eq.2) then
call criteri(sq,d,i,j,dumb,4)
if (dumb.eq.1) then
call updati(sq,d,i,j,num)
table(5,count)=table(5,count)+1
num = num + 1

endif
endif

endif

endif
endif

40 continue

50 continue
return

end

subroutine stria(field,table,sq,tr,db,d,dx,dy,count,num)

integer d,dx,dy,count

integer field(d,d),table(dx,dy)
integer sq(d,d,4),tr(d,d,4),db(d,d,4)
integer i,j,k

integer 0(8),p(8),q(8),r(8)

common 0,p,q,Tr

integer num,dumb

num=1



30
40
50

136

do 50 i=2,d-1
do 40 j=2,d-1
do 30 k=1,8

dumb=0

if (field(i,j).eq.1) then
if (field(i+o(k),j+p(k)).eq.1) then
if (field(i+q(k),j+r(k)).eq.1) then
call criter2(sq,tr,d,i,j,k,dumb,0)
if (dumb.eq.1) then
call updat2(tr,d,i,j,k,num)
table(7,count)=table(7,count)+1
num = num + 1
endif
endif
endif
endif
continue
continue
continue

return
end

subroutine htria(field,table,sq,tr,db,d,dx,dy,count,num)

integer d,dx,dy,count

integer field(d,d),table(dx,dy)
integer sq(d,d,4),tr(d,d,4),db(d,d,4)
integer i,j,k

integer 0(8),p(8),q(8),r(8)

common 0,p,q,Tr

integer num,dumb

do 50 i=2,d-1
do 40 j=2,d-1
do 30 k=1,8
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dumb=0

if (field(i,j).eq.1) then
if (field(i+o(k),j+p(k)).eq.2) then
if (field(i+q(k),j+r(k)).eq.1) then
call criter2(sq,tr,d,i,j,k,dumb,0)
if (dumb.eq.1) then
call updat2(tr,d,i,j,k,num)
table(8,count)=table(8,count)+1
num = num + 1

endif
endif
endif
endif
30 continue
40 continue
50 continue
return

end

subroutine etria(field,table,sq,tr,db,d,dx,dy,count,num)

integer d,dx,dy,count

integer field(d,d),table(dx,dy)
integer sq(d,d,4),tr(d,d,4),db(d,d,4)
integer i,j,k

integer 0(8),p(8),q(8),r(8)

common 0,p,q,r

integer num,dumb

do 50 i=2,d-1
do 40 j=2,d-1
do 30 k=1,8

dumb=0
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if (field(di,j).eq.1) then
if (field(i+o(k),j+p(k)).eq.2) then
if (field(i+q(k),j+r(k)).eq.2) then
call criter2(sq,tr,d,i,j,k,dumb,1)
if (dumb.eq.1) then
call updat2(tr,d,i,j,k,num)
table(11,count)=table(11,count)+1
num = num + 1

endif
endif
endif
endif
30 continue
40 continue
50 continue
return
end
c

subroutine otria(field,table,sq,tr,db,d,dx,dy,count,num)

integer d,dx,dy,count

integer field(d,d),table(dx,dy)
integer sq(d,d,4),tr(d,d,4),db(d,d,4)
integer i,j,k

integer 0(8),p(8),q(8),r(8)

common 0,p,q,Tr

integer num,dumb

do 50 i=2,d-1
do 40 j=2,d-1
do 30 k=1,8

dumb=0
if (field(i,j).eq.1) then

if (field(i+o(k),j+p(k)).eq.1) then
if (field(i+q(k),j+r(k)).eq.2) then
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call criter2(sq,tr,d,i,j,k,dumb,0)
if (dumb.eq.1) then
call updat2(tr,d,i,j,k,num)
table(9,count)=table(9,count)+1
num = num + 1

endif
endif
endif
endif
30 continue
40 continue
50 continue
return

end

subroutine atria(field,table,sq,tr,db,d,dx,dy,count,num)

integer d,dx,dy,count

integer field(d,d),table(dx,dy)
integer sq(d,d,4),tr(d,d,4),db(d,d,4)
integer i,j,k

integer o(8),p(8),q(8),r(8)

common 0,p,q,T¥

integer num,dumb

do 50 i=2,d4-1
do 40 j=2,d-1
do 30 k=1,8

dumb=0

if (field(i,j).eq.2) then
if (field(i+o(k),j+p(k)).eq.1) then
if (field(i+q(k),j+r(k)).eq.2) then
call criter2(sq,tr,d,i,j,k,dumb,0)
if (dumb.eq.1) then
call updat2(tr,d,i,j,k,num)



140

table(10,count)=table(10,count)+1
num = num + 1

endif
endif
endif
endif
30 continue
40 continue
50 continue
return

end

subroutine sdoub(field,table,sq,tr,db,d,dx,dy,count,num)

integer d,dx,dy,count

integer field(d,d),table(dx,dy)
integer sq(d,d,4),tr(d,d,4),db(d,d,4)
integer i,j,k

integer num,dumb

integer 0(8),p(8),q(8),r(8)

common 0,p,q,Tr

num=1

do 50 i=2,d-1
do 40 j=2,d-1
do 30 k=1,8

dumb=0

if (field(i,j).eq.1) then
if (field(i+o(k),j+p(k)).eq.1) then
call criter3(sq,tr,db,d,i,j,k,dumb)
if (dumb.eq.1) then
call updat3(db,d,i,j,k,num)
table(12,count)=table(12,count)+1
num = num + 1



30
40
50

endif
endif
endif
continue
continue

continue

return
end

30
40

subroutine hdoub(field,table,sq,tr,db,d,dx,dy,count,num)

integer d,dx,dy,count

integer field(d,d),table(dx,dy)
integer sq(d,d,4),tr(d,d,4),db(d,d,4)
integer i,j,k

integer 0(8),p(8),q(8),r(8)

common 0,p,q,T

integer num,dumb

do 50 i=2,d-1

do 40 j=2,d-1
do 30 k=1,8

dumb=0

if (field(i,j).eq.1) then
if (field(i+o(k),j+p(k)).eq.2) then
call criter3(sq,tr,db,d,i,j,k,dumb)
if (dumb.eq.1) then
call updat3(db,d,i,j,k,num)
table(13,count)=table(13,count)+1
num = num + 1
endif
endif
endif
continue
continue
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50 continue

return
end

C===========================

subroutine edoub(field,table,sq,tr,db,d,dx,dy,count,num)

integer d,dx,dy,count

integer field(d,d),table(dx,dy)
integer sq(d,d,4),tr(d,d,4),db(d,d,4)
integer i,j,k

integer num,dumb

integer 0(8),p(8),q(8),r(8)

common 0,p,q,r

do 50 i=2,d-1
do 40 j=2,d-1
do 30 k=1,8

dumb=0

if (field(i,j).eq.2) then
if (field(i+o(k),j+p(k)).eq.2) then
call criter3(sq,tr,db,d,i,j,k,dumb)
if (dumb.eq.1) then
call updat3(db,d,i,j,k,num)
table(14,count)=table(14,count)+1
num = num + 1

endif
endif
endif
30 continue
40 continue
50 continue
return

end
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subroutine ssing(field,table,sq,tr,db,d,dx,dy,count,num)

integer d,dx,dy,count

integer field(d,d),table(dx,dy)
integer sq(d,d,4),tr(d,d,4),db(d,d,4)
integer i,j,k

integer fail

do 50 i=2,d-1
do 40 j=2,d-1
fail=0
if (field(i,j).eq.1) then
do 30 k=1,4
if (sq(i,j,k).ne.0) then
fail=1
endif
if (tr(i,j,k).ne.0) then
fail=1
endif
if (db(i,j,k).ne.0) then
fail=1
endif
30 continue
if (fail.eq.0) then
table (15, count)=table(15,count)+1

endif
endif
40 continue
50 continue
return

end

c====

subroutine hsing(field,table,sq,tr,db,d,dx,dy,count,num)

integer d,dx,dy,count



30

40
50

integer field(d,d),table(dx,dy)
integer sq(d,d,4),tr(d,d,4),db(d,d,4)
integer i,j,k

integer fail

do 50 i=2,d-1
do 40 j=2,d-1
fail=0
if (field(i,j).eq.2) then
do 30 k=1,4
if (sq(i,j,k).ne.0) then
fail=1
endif
if (tr(i,j,k).ne.0) then
fail=1
endif
if (db(i,j,k).ne.0) then
fail=1
endif
continue
if (fail.eq.0) then
table(16,count)=table(16,count)+1
endif
endif
continue
continue

return
end

subroutine nrmsgl(tb,dx,dy,c,dot,gap)

integer dx,dy,c,dot,gap
integer i, j,k,hole,point
integer tb(dx,dy)

point = 4%(tb(3,c))+
3*(tb(4,c)+tb(7,c))+

144



145

+ 2% (tb(5,c)+tb(6,c)+tb(8,c)+tb(9,c)+tb(12,c) )+
+ 1x(tb(10,c)+tb(11,c)+tb(13,c)+tb(15,c))

hole = 2*(tb(5,c)+tb(6,c)+tb(10,c)+tb(11,c)+tb(14,c))+
+ 1% (tb(4,c)+tb(8,c)+tb(9,c)+tb(13,c)+tb(16,c))

tb(16,c)=tb(16,c)-(hole-gap)
tb(15,c)=tb(15,c)-(point-dot)

return
end

subroutine nrmdbl(tb,dx,dy,c,dot,gap)

integer dx,dy,c,dot,gap
integer i, j,k,part,solid,empty
integer tb(dx,dy),hole,point
integer 0(8),p(8),q(8),r(8)
common 0,p,q,Tr

integer gamma

common gamma

point = 4%(tb(3,c))+

+ 3x(tb(4,c)+tb(7,c))+
+ 2% (tb(5,c)+tb(6,c)+tb(8,c)+tb(9,c)+tb(12,c) )+
+ 1x(tb(10,c)+tb(11,c)+tb(13,c)+tb(15,c))

hole = 2*(tb(5,c)+tb(6,c)+tb(10,c)+tb(11,c)+tb(14,c))+
+ 1k (tb(4,c)+tb(8,c)+tb(9,c)+tb(13,c)+tb(16,c))

empty=gamma
part=hole-gap-2*empty
solid=(point-dot-part)/2

tb(12,c)=tb(12,c)-solid
tb(13,c)=tb(13,c)-part
tb(14,c)=tb(14,c)-empty

return
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end

subroutine criteri(x,d,i,j,yes,ext)

integer d,i,j,yes

integer x(d,d,4)

integer k,l,over,fail,ext
integer al,a2,a3,ad
integer 0(8),p(8),q(8),r(8)
common 0,p,q,Tr

integer gamma

common gamma

fail=1
do 10 k=1,4
al=0
a2=0
a3=0
a4=0
over=0
if (x(i,j,k).ne.0) then
over=over+l
al=1
endif
if (x(i,j+1,k).ne.0) then
over=over+1l
a2=1
endif
if (x(i+1,j+1,k).ne.0) then
over=over+l
a3=1
endif
if (x(i+1,j,k) .ne.0) then
over=over+l
ad=1
endif
if ((over.eq.0).or.(over.eq.2)) then
fail=0



10

endif
if (over.eq.2) then
if (ext.eq.1) then
if ((al.eq.1).and.(a2.eq.1)) then
gamma=gamma-+1
endif
endif
if (ext.eq.2) then
if ((a3.eq.1).and.(ad.eq.1)) then
gamma=gamma+1
endif
endif
if (ext.eq.3) then
if ((a2.eq.1).and.(a3.eq.1)) then
gamma=gamma+]1
endif
endif
if (ext.eq.4) then
if ((al.eq.1).and.(a4.eq.1)) then
gamma=gamma+1
endif
endif
endif
continue

if (fail.eq.0) then
yes=1

endif

if (fail.eq.1) then
yes=0

endif

return
end

subroutine criter2(x,y,d,i,j,k,yes,ext)

integer d,1,j,k,yes,ext
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integer
integer
integer
integer

x(d,d,4),y(d,d,4)
1l,m,over,fail,right,poss
al,a2,a3
0(8),p(8),q(8),r(8)

common 0,p,q,r

integer

gamma

common gamma

fail=0
poss=0

do 100 1=1,4

right=

al=0
a2=0
a3=0

over=0

0

if (x(i,j,1l).ne.0) then
over=over+1

al=t

endif

if (x(i+o(k),j+p(k),1l).ne.0) then
over=over+1

a2=1

endif

if (x(i+q(k),j+r(k),1).ne.0) then
over=over+1

a3=1

endif

print *, ’overlap,poss:’,over,poss
if (over.gt.0) then
if (over.eq.3) then
fail=1
endif
if (over.eq.2) then
if ((poss.eq.1).or.(poss.eq.0)) then

poss=2

else

fail=1

endif
right=1
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print *, x(i+o(k),j+p(k),1)
if (x(ito(k),j+p(k),1).eq.0) then
fail=1
right=0
endif
endif
if (over.eq.1) then
if ((poss.eq.0).or.(poss.eq.2)) then
poss=poss+1
else
fail=1
endif
endif
endif

print *,’0ut Fail:’,fail

if ((right.eq.1).and.(ext.eq.1)) then
if ((a2.eq.1).and.(a3.eq.1)) then
gamma=gamma-+1
endif
endif

continue

do 200 1=1,4

right=0

al=0

a2=0

a3=0

over=0

if (y(i,j,1).ne.0) then
over=over+l
al=1

endif

if (y(i+o(k),j+p(k),1).ne.0) then
over=over+l
a2=1

endif

if (y(i+q(k),j+r(k),1).ne.0) then
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over=over+l
a3=1
endif

print *, ’over,poss:’,over,poss

if (over.gt.0) then
if (over.eq.3) then
fail=1
endif
if (over.eq.2) then
if ((poss.eq.1).or.(poss.eq.0)) then
poss=2
else
fail=1
endif
right=1
if (y(i+o(k),j+p(k),1).eq.0) then
fail=1
right=0
endif
endif

if (over.eq.1) then
if ((poss.eq.0).or.(poss.eq.2)) then
poss=poss+1
else
fail=1
endif
endif
endif

print *, ’fail:’,fail

if ((right.eq.1).and.(ext.eq.1)) then
if ((a2.eq.1).and.(a3.eq.1)) then
gamma=gamma+1
endif
endif
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200 continue

if (poss.eq.1) then
fail=1
endif

c print *, ’fail:’,fail

if (fail.eq.0) then
yes=1

endif

if (fail.eq.1) then
yes=0

endif

c print *, ’Fail:’,fail

return
end

c=
subroutine criter3(x,y,z,d,i,j,k,yes)

integer d,i,j,yes

integer x(d,d4,4),y(d,d,4),z(d,d,4)
integer t(8),s(8),u(8)

integer k,1,m

integer 0(8),p(8),q(8),r(8)
common 0,p,q,Tr

do 10 1=1,4
t(1)=x(1,j,1)
t (1+4)=x(i+o(k),j+p(k),1)
10 continue

do 20 1=1,4
s(L)=y(i,j,1)
s(1+4)=y(i+o(k),j+p(k),1)
20 continue



30

50

70

90

do 30 1=1,4
u()=2(i,j,1)
u(1+4)=z(i+o(k), j+p(k),1)
continue

yes=1

do 50 1=1,8
if (t(1).ne.0) then
yes=0
endif
continue

do 70 1=1,8
if (s(1l).ne.0) then
yes=0
endif
continue

do 90 1=1,8
if (u(l) .ne.0) then
yes=0
endif
continue

return
end

c====

subroutine updati(x,d,i,j,num)

integer d,i,j,num
integer x(d4,d,4)
integer k,done

done = 0
do 10 k=1,4

if ((x(i,j,k).eq.0).and.(done.eq.0)) then
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20

30

40

x(i,j,k)=num
done = 1
endif
continue

done = 0
do 20 k=1,4
if ((x(i,j+1,k).eq.0).and.(done.eq.0)) then
x(i,j+1,k)=num
done = 1
endif
continue

done = 0
do 30 k=1,4
if ((x(i+1,j+1,k).eq.0).and.(done.eq.0)) then
x(i+1,j+1,k)=num
done = 1
endif
continue

done = 0
do 40 k=1,4
if ((x(i+1,j,k) .eq.0) .and. (done.eq.0)) then
x(i+1,j,k)=num
done =1
endif
continue

return
end

subroutine updat2(x,d,i,j,k,num)

integer d,i,j,num

integer x(d,d,4)

integer k,1,done

integer o(8),p(8),q(8),r(8)
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common 0,p,q,Tr

done = 0
do 10 1=1,4
if ((x(i,j,1).eq.0).and.(done.eq.0)) then
x(i,j,1)=num

done = 1
endif
10 continue
done = 0
do 20 1=1,4
if ((x(ito(k),j+p(k),1).eq.0).and. (done.eq.0)) then
x(i+o(k), j+p(k),1)=num
done = 1
endif
20 continue
done = 0
do 30 1=1,4
if ((x(i+q(k),j+r(k),1).eq.0).and.(done.eq.0)) then
x(i+q(k),j+r(k),1)=num
done = 1
endif
30 continue
return
end
C

subroutine updat3(x,d,i,j,k,num)

integer d,i,j,num

integer x(d,d,4)

integer k,1,done

integer o(8),p(8),q(8),r(8)
common 0,p,q,Tr

done = 0
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20

do 10 1=1,4
if ((x(i,j,1).eq.0).and.(done.eq.0)) then
x(i,j,1)=num
done = 1
endif
continue

done = 0
do 20 1=1,4
if ((x(i+o(k),j+p(k),1).eq.0).and. (done.eq.0)) then
x(ito(k),j+p(k),1)=num
done = 1
endif
continue

return
end

20

30

subroutine simpl(table,dx,dy)

integer dx,dy
integer table(dx,dy)

integer i, j,k,match

do 100 i=1,dy
do 50 j=i+1,dy
match = 1
do 20 k=2,dx
if (table(k,j).ne.table(k,i)) then
match=0
endif
continue
if (match.eq.1) then
table(1,i)=table(1,i)+table(1,j)
do 30 k=1,dx
table(k, j)=0
continue
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endif
continue
continue
return
end

20

30

50

subroutine cancl(table,dx,dy)

integer dx,dy
integer table(dx,dy)

integer i,j,k,match

do 100 i=1,dy
do 50 j=i+1,dy
match = 0
if ((table(2,j)+table(2,i)).eq.0) then
match = 1
do 20 k=3,dx
if (table(k,j).ne.table(k,i)) then
match=0
endif
continue
endif
if (match.eq.1) then
if (table(1,i).gt.table(1,j)) then
table(1,i)=table(l,i)-table(1,j)
else if (table(1,i).lt.table(l,j)) then
table(1l,i)=table(1,j)-table(1,i)
else if (table(1,i).eq.table(1,j)) then
table(1,i)=0
endif

do 30 k=1,dx
table(k, j)=0
continue
endif
continue
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100 continue
return
end

a Q

12345678901234567890123456789012345678901234567890
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