INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations.
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UM! a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

HIGH ORDER ADAPTIVE COLLOCATION SOFTWARE
FOR 1-D PARABOLIC PDES

By
Rong Wang

SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
AT
DALHOUSIE UNIVERSITY
HALIFAX, NOVA SCOTIA
AUGUST, 2002

© Copyright by Rong Wang, 2002

i+l

gl'ational Library t?“i:élnll;::g‘ue nationale
uisitions and Acquisitions et
ibliographic Services services bibliographiques
SoeETII TR,
Canada Canada
Your fle Vowe riddrence
Our Sle Nowre réideance
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

droit d’auteur qui protége cette thése.
Ni Ia thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-75710-2

Canadi

DALHOUSIE UNIVERSITY

FACULTY OF GRADUATE STUDIES

The undersigned hereby certify that they have read and recommend to the Faculty of
Graduate Studies for acceptance a thesis entitled: "High Order Adaptive Collocation

Software for 1-D Parabolic PDES” by Rong Wang, in partial fulfillment for the

degree of Doctor of Philosphy.

Dated: A“&\Ld’ Y , v

External Examiner:

/ Dr. Joseph E. Flahe
Research Co-Supervisor: _ Il]

Research Co-Supervisor:

i Dr. Paul Muir

Examining Committee:

Dr. Ray Spiten

Dr. John Clements

DALHOUSIE UNIVERSITY

Date: August, 2002

Author: Rong Wang

Title: HIGH ORDER ADAPTIVE COLLOCATION
SOFTWARE FOR 1-D PARABOLIC PDES

Department: Mathematics and Statistics

Degree: Ph.D. Convocation: October Year: 2002

Permission is herewith granted to Dalhousie University to circulate and
to have copied for non-commercial purposes, at its discretion, the above title
upon the request of individuals or institutions.

¥Signature ot Author

THE AUTHOR RESERVES OTHER PUBLICATION RIGHTS, AND
NEITHER THE THESIS NOR EXTENSIVE EXTRACTS FROM IT MAY

BE PRINTED OR OTHERWISE REPRODUCED WITHOUT THE AUTHOR’S
WRITTEN PERMISSION.

THE AUTHOR ATTESTS THAT PERMISSION HAS BEEN OBTAINED
FOR THE USE OF ANY COPYRIGHTED MATERIAL APPEARING IN THIS
THESIS (OTHER THAN BRIEF EXCERPTS REQUIRING ONLY PROPER
ACKNOWLEDGEMENT IN SCHOLARLY WRITING) AND THAT ALL SUCH USE
IS CLEARLY ACKNOWLEDGED.

I dedicate this thesis
to
Fred and Miranda.

iv

Contents

List of Tables viii
List of Figures ix
Acknowledgments xi
Abstract xii

1 Introduction 1
1.1 TheProblemClass« 1
1.2 Introduction to the Standard Method-of-Lines 3
1.3 Overview of the Thesis 7

..........................

2 Previous Work in Mesh Adaptation

2.1 The Equidistribution Principle 9
2.2 rrefinement ot b b b e e e e e e e e e e 11
2.3 h-and hp-refinement oo 14
2.4 Balancing the Spatial and Time Errors 18
2.5 Other Adaptive Packages 20

3 Overview of the BACOL Algorithm 22
3.1 Spatial Discretization 23
311 BesplineBasis oo 23

3.1.2 Collocation at Gaussian Points 25

3.1.3 Treatment of the Boundary Conditions 28
3.2 TimelIntegration 29
321 Indexof DAEs e 30
3.2.2 A Short Description of BDF Methods for DAEs 31
3.2.3 Structure of the Iteration Matrix 33
3.2.4 Consistent Initial Conditions for the DAE System 38
3.2.5 Replacement of the Linear Algebra Solver 39
3.2.6 Restarting DASSL after a Remeshing 41
3.2.7 Treatment of Poorly Conditioned Jacobian matrices 43
3.2.8 Other Modifications to DASSL 46
3.3 Spatial Adaptivity oo 50
3.3.1 Spatial Error Estimation 50
3.3.2 The Remeshing Strategy 53
333 CycleAvoidance 59
3.3.4 The Remeshing Algorithm 60
Description of the BACOL Software 62
4.1 A Description of all Subroutines 62
4.2 User Supplied Subroutines 66
43 SampleProgramt e e 67
4.4 Structureof BACOL i i ittt oo 87
Numerical Experiments 95
5.1 Statement of Test Problems 96
511 Problem 1l e 96
51.2 Problem?2 e e e e e 98
513 Problem3 & i e e e e e e e 99
514 Problem4« @ @ e e e e e 101
5.1.5 Problem 5 e e e e e e e e 102
516 Problem6 e e e e 104

5.1.7 Problem 7 o i i i e e e e e e e e e e e e e e e e e e 108

5.2 Numerical Validation of BACOL 109
5.2.1 TOL and Global Error Proportionality 109

5.2.2 Relationship between KCOL and CPU time 110

5.2.3 Number of Steps VS. Number of Remeshings 112

5.3 Numerical Comparisons of MOL Packages 114
53.1 Problem 1l 118

532 Problem 2 e e e e 121

533 Problem4 124

534 Problem6 e 125

53.5 Problem 7 e e e 127

5.4 Inconsistent Initial and Boundary Conditions. 128
5.5 BACOL for Problems with Blow-Up Solutions 131
5.6 Numerical Investigation of Convergence Rates 133

6 Conclusions and Future Work 137
Bibliography 139

List of Tables

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

L2-norm error for Problem 1 withe=10"3.
L2-norm error for Problem 1 withe=10"4.
CPU time for Problem 1 withe=10"%.
CPU time for Problem 1 withe=10".
NS/NR for Problem 1 withe=10"3.
NS/NR for Problem 1 withe=10"%.
The maximum value of the solution as ¢t approaches the blow-up time

Confirmation of superconvergence.

111
113
113
133
136

List of Figures

3.1
3.2
3.3
3.4
3.5

4.1
4.2

4.3

4.5

5.1
5.2
5.3
5.4
5.5
5.6
9.7

Structure of g—y@ 35
Structure of % 36
Structure of the iteration matrix in BACOL 38
Structure of the iteration matrix forp=4. 40
Structure of the iteration matrixforp=4. 41
Structure of BACOL software 88
Percentage of the CPU time in main subroutines: single equation and

before modifications to DDANRM. 90
Percentage of the CPU time in main subroutines: single equation and

after modificationsto DDANRM. 91
Percentage of the CPU time in main subroutines: 4 equations and

before modifications to DDANRM. 93
Percentage of the CPU time in main subroutines: 4 equations and

after modifications to DDANRM. 94
Problem 1 fore=10"%.. o it it e 98
Problem 2 fore=10"%.. e 99
Problem 3fore=10"5.. @ i i i e 100
Problem 4 fore=10"5.. i i i e 101
Thestep function.o 102
Problem 5 foru(z,t). - ¢ . o oo 103
Problem 5 for v(z,t). - - -« - v v o i e e e 104

5.8

5.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22

Problem 6 for uj(z,t).« o o o e e e 106
Problem 6 for up(z,t). ¢« o oo e 106
Problem 6 for ug(z,t). - - - - - o o o o e e e 107
Problem 6 for uq(z,t). . - - - - . . o oo e 107
Problem 7 foru(z,t). . . - . - . . o o e 109
The CPU time and the error for Problem 1 with e =10"3. 119
The CPU time and the error for Problem 1 with e =10"%. 120
The CPU time and the error for Problem 2 with e =103, 122
The CPU time and the error for Problem 2 with e =10"4. 123
The CPU time and the error for Problem 4. 124
The CPU time and the error for Problem 6. 126
The CPU time and the error for Problem 7. 127
The approximate solutions using BACOL and EPDCOL. 129
The CPU time and the error for Problem 5. 131
U(z,t)/U(0.5,t) at t =0, 0.08, 0.0824, 0.082437. 132

Acknowledgments

I would like to thank to my supervisors, Dr. Pat Keast and Dr. Paul Muir, for giving
me a lot of valuable comments. [am also thankful to Dr. Raymond Spiteri, Dr. John

Clements and Dr. Joe Flaherty for some helpful comments and suggestions.

Abstract

In this thesis a high order adaptive method-of-lines package, BACOL, is developed
for solving one dimensional parabolic partial differential equations. Collocation with
a B-spline basis is used for the spatial discretization. An approximate solution is
calculated in a degree p piecewise polynomial subspace, and the spatial error estimate

is obtained by using a second solution computed in a degree p+1 piecewise polynomial
subspace.

BACOL controls both the spatial error and the temporal error. After each time step
the spatial error is estimated, and if it is larger than the spatial error tolerance, an
equidistribution principle is employed to redistribute the mesh. At the same time,
the number of mesh points employed can be changed if necessary. The time inte-
gration is done by a differential-algebraic-equation (DAE) solver, DASSL, which uses
backward differentiation formulas. Modifications to DASSL included replacing the
original linear system solver by the almost block diagonal system solver, COLROW;
scaling the Newton iteration matrix to avoid the large condition number generated by
the index-1 DAEs; and changing the dimension of tolerance from the number of DAEs
to the number of PDEs. Computational results indicate that BACOL is reliable and

extremely efficient in dealing with problems having solutions with rapid variation.

Chapter 1
Introduction

Partial differential equations (PDEs) arise in a wide variety of physical problems. (See
[43] for examples.) Roughly speaking, they can be separated into three categories:
parabolic (e.g., the heat equation u; = u..), hyperbolic (e.g., the wave equation
u; = ug), elliptic (e.g., Laplace’s equation uzz + uy, = 0). There are also many
examples of PDEs with high order spatial or time derivatives (e.g., the Korteweg-de
Vries equation u, +6utiy +Uzze = 0), and of equations which fall into none of the three
general classifications (e.g. u. = a(z,t)uqs, where a(z,t) may be negative in some
regions, and positive in others). Since the PDE models are usually nonlinear and
typically do not have exact solutions, numerical algorithms are generally employed to

obtain approximate solutions.

1.1 The Problem Class

In this thesis we will discuss systems of one dimensional (1-D) time-dependent parabolic
PDE:s of the form

uy(z, t) = f(t, z,u(z, t), u(x, t), uz=(z, t)), T, <z <z, ¢ttt (1.1)

where the initial condition is given by

u(z,to) =uo(z), Ta ST T, (1.2)

and the separated boundary conditions (BCs) are given by

br(t, u(za,t), uz(zqa,t)) =0, t = to, (1.3)
bat, u(Ts, t), us(zs:t)) =0, t > to, (14)
where
u = (uy, U2, ..., UNPDE), u,=(%‘g~,%‘f,...,g’i%%‘?-ﬁ) ,
up = (22,92, 2me0m) | g = (58, B, BHE),
f= (fl,) £ TR fNPDE): Ug = (’Uo 1. 40,2y - uo,NPDE),
by = (be,1, b2, ---,0LNPDE), br = (br,1,bR2, ---,bR,NPDE),

where NPDE is the number of PDEs. We require that the u,, term does not vanish
in the right-hand side of the PDEs.

Sometimes BCs arise in the nonseparated form
B(t, u(zq,t), uz(Za, t), u(zs, t), uz(zs,t)) =0, t = to, (1.5)

where B = (Bq, Ba, ..., Bonppe). We now briefly describe a general way to con-
vert a PDE system with nonseparated BCs to one with separated BCs based on the

discussion in [9]. Choose some z. € (4,) and let

T—z
w(s,t)=w(“,t) = u(z,t), z,<z<z,
Ie—Zq

Ty, —Z
v(s,t)=v(: ,t) = u(z,t), z.<zT < T
Ip — ZTc

Then we obtain the following PDE system which is equivalent to (1.1) (1.2), (1.5),

wy(s, t) = f(t,8(xc — Za) + Ta, w(s, t), = ws(s t),()2'w33(s, t)),

w(s,t) = f(t s(ze—) + Zp,v(s,t),— v_,(s t), (@ — 2 ———Ug(S, 1)),

for 0 < s <1, t > tg. The initial conditions become

w(s,to) = wuo(s(zc—Ta) + Ta), 0<s<1,

v(s,to) = uo(s(ze—) + Ts), 0<s<1,

and the boundary conditions, which are now separated become

B(t,w(0,t),

w,(0,t),v(0,t), —

Te— Tq Ty

1
e— aw’(l’t) Tz -z,
We note that the size of the PDE system is doubled after the transformation. Thus
the PDE system with a nonseparated boundaries needs more computational effort
than the same PDE system with separated BCs. For further details of the technique
we refer the reader to [9], which gives a discussion of this technique in the boundary
value ODE case.

1
_mcvs(():t)) =07 t Z th

w(l,t) =v(1,t), vs(1,t), t>to.

The spatial domain for our problem class is [z,, z»]. However, the linear tranformation
Ty: p = £=5- maps z € [z,, 73] to p € [0, 1]. Similarly, the linear transformation Tp:
q =t —ty maps t € [tg,00] to ¢ € [0,00]. Therefore, without loss of generality, we
will assume z, =0, z, = 1, and ¢, =0.

1.2 Introduction to the Standard Method-of-Lines

The numerical method of lines (MOL) is an approach for the treatment of time-
dependent PDEs. The standard MOL involves two steps. The first step is the spatial
discretization, in which the spatial derivatives are approximated by using, for example,
finite difference methods [56], finite element methods [31], or collocation methods. We
will consider a simple example shortly. This transforms the PDE system into a large
set of initial value ordinary differential equations (ODEs), which are stiff in many
cases. For a detailed discussion of stiffness, we refer the reader to [35]. The second
step is the time integration, in which the system of ODEs is integrated in time by
some standard ODE solver (e.g., GEARB [37]). Backward differentiation formula
(BDF) methods and implicit Runge-Kutta methods are generally employed because
of the stiffness of ODE systems.

In the early days of ODE software development, the solvers could only handle pure
ODE systems. This represented a difficulty within the MOL context because the
boundary conditions are usually algebraic equations rather than differential equations
in time. There are two possibilities for dealing with the boundary conditions. The
first approach is to differentiate the boundary conditions with respect to time and
couple them with the large ODE system which arises from the discretization of the
PDEs; then the coupled ODE system is treated in the usual way by an ODE solver.
(See, e.g., PDECOL [53].) The second approach is to ask the user to incorporate the
boundary conditions into the subroutine that defines the right-hand side of the PDEs
(1.1) (See, e.g., DSS/2 [66]). About twenty years ago, there began to appear solvers
which were able to handle ODEs coupled with algebraic constraints, i.e., differential-
algebraic equations (DAEs). An example of such a solver is DASSL [61]. With
the availability of such solvers, the boundary conditions can be treated directly and
coupled with the ODEs.

The MOL is widely used in general-purpose PDE software largely because of the
availability of high-quality ODE and DAE solvers. Most of the modern ODE solvers
employ adaptive time integration, i.e., variable time step sizes and possibly variation
of the order of integration formula. The fundamental assumption, which distinguishes
the standard MOL approach from more sophisticated approaches developed later, is
that the spatial domain is partitioned by a mesh which remains fixed throughout the
entire integration. Adaptive error control is limited to the time dimension through
the numerical solution of the ODE/DAE system. Therefore this is useful only when

time integration error dominates spatial discretization error.

We will now briefly describe the spatial discretization process in the standard MOL.

Let us consider the example PDE,
Uy = Ugpy, 0<z<l1 t=>0.

Assume that a uniform mesh {z;}¥, partitions the z domain; i.e., z; = th, where

h = 1/N. Suppose that U;(t) approximates solution for u(z;t) for i = 0,...,N.
We can then employ a central finite difference formula for the spatial discretization,
approximating u..(z;,t) by U‘“(‘)-xﬁg(‘”“‘“‘(‘) . Thus we have transformed the PDE

into a system of ODEs of the form

d_ - U(t) — 2Us(t) + Uina(t)
E{Ui(t)- +1 2 b)

with i = 1,...,N — 1. Assuming that the boundary conditions, which are usually
algebraic constraints, are differentiated with respect to time to give ODEs which are
then coupled with the ODE system arising from the discretization of PDEs, we can
then apply a standard ODE solver for the time integration of this system. For a
detailed introduction to the standard MOL, please refer to, e.g., [67].

In the 1970s, several general-purpose solvers, based on the MOL, for 1-D parabolic
systems were developed.

e DSS/2 written by Schiesser [66] is a modification of an earlier code LEANS [65].
Centered and noncentered differences of even orders 2 through 10 are used for

the spatial discretization. The time integration is done by GEARB ([37]).

e FORSIM was developed by Carver [29]. The spatial derivatives can be approx-
imated by centered or noncentered difference schemes of various orders. The

code allows for time integration of the ODE system using Runge-Kutta methods
or BDF methods.

e MOL1D by Hyman [44] is available as PDELIB at ARNO (See GAMS [20],
http://gams.nist.gov). The spatial discretization is accomplished by second-,
fourth-, or sixth-order centered differences or unsymmetric second- or third-
order differences. GEARB is employed for the time integration.

e PDEPACK was produced by Madsen and Sincovec [51]. Central finite differ-
ences are used for the spatial discretization. The time integrator is a modifica-
tion of GEARB.

e PDECOL was also developed by Madsen and Sincovec [52, 53]. In contrast to
the previous approach, a collocation method, using B-splines as the piecewise
polynomial basis, is applied instead of finite difference methods. The degree of
piecewise polynomial can be chosen to be from 3 to 19. The system of ODEs
is now implicit, and GEARIB ([36]), a modification of GEARB, is employed to
solve the resulting ODE system.

For more details about the early MOL approach, please refer to the survey paper by
Machura and Sweet [50]. Further work involving the standard MOL approach has

been conducted over the last twenty years. Some important work is

e Several software packages based on an early version of SPRINT (due to Berzins
[12]) were developed for the NAG library. These are DO03PCF, DO3PDF, DO3PEF,
DO03PHF, D03PJF, and DO3PKF. For the spatial discretization DO3PCF uses
a central finite difference method, while DO3PDF uses a Chebyshev collocation
method, and the others apply the Keller box scheme, which is a second or-
der finite difference method. The resulting ODE system is solved using a BDF
method. DO3PHF, D03PJF, and DO3PKEF can solve a parabolic system coupled
with ODEs.

e EPDCOL by Keast and Muir [46] is a modification of PDECOL. It takes ad-
vantage of the structure of the matrix arising in the Newton iteration. The
authors observe that the Newton iteration matrix has an almost block diagonal
(ABD) form [30] and therefore replace the original banded linear system solver
by COLROW, an ABD solver. This saves storage and improves the efficiency
of PDECOL.

e PDECHESB [11] by Berzins and Dew implements a spatial discretization using a
global element method, which is similar to a C°® collocation method. Piecewise
Chebyshev polynomials with C° continuity are employed as the spatial basis.
PDECHEB can handle a wide range of elliptic-parabolic PDEs. The resulting

differential algebraic equation (DAE) system is solved by a modification of the
DAE solver DASSL.

The standard MOL approach is efficient for problems with spatially smooth solutions.
But since it fixes the mesh points for the entire computation, it becomes inefficient
for problems with solutions of rapid spatial variation, such as narrow moving fronts.
In such situations, we want to move the mesh points so that they will concentrate
in and follow the regions where the solution changes rapidly. This is the so-called
adaptive MOL approach, in the sense of both temporal (automatically adjusted time

step sizes) and spatial (automatically adjusted spatial nodes) adaptivity.

1.3 Overview of the Thesis

In this thesis, a general-purpose adaptive MOL software, BACOL, for 1-D parabolic
systems is developed. Collocation with a B-spline basis is used for the spatial dis-
cretization. An approximate solution is calculated in a degree p piecewise polynomial
subspace, and the spatial error estimate is obtained by using a second solution com-
puted in a degree p + 1 piecewise polynomial subspace. The remeshing strategy is
developed based on the equidistribution principle. A modification of DASSL is used
for the time integration. In chapter 2, we will review the previous work by other au-
thors in the area of adaptive MOL. Chapter 3 describes all the algorithms employed
in BACOL, including the spatial error estimate, the mesh redistribution algorithm, a
technique to avoid large condition numbers associated with the DAEs, etc. In chap-
ter 4 detailed descriptions of subroutines which make up BACOL are given. The
descriptions of the necessary user-supplied subroutines are also given there. Chap-
ter 5 gives the numerical experiments which demonstrate the capabilities of BACOL
and comparisonis with some well-known codes. Chapter 6 gives our conclusions and

suggestions for possible future projects.

Chapter 2

Previous Work in Mesh
Adaptation

In the MOL approach one naturally obtains temporal error control through the adap-
tive stepsize selection algorithm included in the ODE/DAE software one applies to
the ODE/DAE system after a spatial discretization of PDE system is performed. In
the past twenty years, adaptive methods for the spatial discretization of PDE system
have drawn considerable attention. The use of adaptive mesh techniques provides a

far more efficient way to treat problems with rapidly varying solutions.

The three most common mesh adaptation strategies are:

e mesh motion (r-refinement),
e spatial mesh refinement or coarsening (h-refinement),

e order variation (p-refinement).

(Another adaptive approach involves employing different “upwinded” spatial dis-
cretization schemes for each mesh subinterval based on the estimate of the smoothness
of the solution; those are “essentially non-oscillating” (ENO) and “weighted essen-
tially non-oscillating” (WENO) schemes; See e.g., [68]. However, these are commonly
used for resolving sharp fronts on a fixed mesh for hyperbolic PDE systems.)

8

Combining two or three different strategies, we can generate more sophisticated tech-
niques, e.g., hp-refinement. In case of time-dependent PDEs (e.g., parabolic or hyper-
bolic PDEs), p-refinement, to our knowledge, is never applied alone. We will consider

r-, h-, and hp-refinement.

Most methods adapt the nodes to equidistribute some error measure; this is called
the equidistribution principle (EP). Therefore, we will first give a simple introduction
to the EP in this chapter. We will then review past work in r-, h-, and hp-refinement.
This will be followed by a discussion of the balancing of spatial and temporal errors.
Finally we will give a survey of current existing adaptive software based on MOL for

1-D parabolic partial differential equations.

2.1 The Equidistribution Principle

The equidistribution principle was first introduced by White [72] for two-point bound-
ary value ODEs. Here we will describe the basic idea of the EP using a sample problem
in parabolic PDE form. For convenience, we will consider a parabolic system with

Dirichlet boundary conditions,
uy(z, t) = f(t, z, u(z, t), uz(z, t), uz(z, t)), 0<z<l1 t2>0, (2.1)

u(z, 0) = uo(z), 0<z<], (2.2)
u(0,t) =0, u(l,t)=0, t>0, (2.3)

Assume that we have a uniform mesh {z;}¥,, with z; = ih, where h = 1/N. Let U(?)
be the appoximate solution for u(z;,t) for i = 0,..., N. If central finite difference
formulas are employed for the spatial discretization, we have
Uiri(t) — Uia(t)
2h ’
Uira(t) —2Ui(t) + Ui (2)
h?]

ur(zit) =~

u:z::z:(xiy t) =~

10

Substituting (2.4) and (2.5) into (2.1), we obtain
200) = £ (1w Uiy, Tt 0mil) B0 2300+ 0B - o

2h ' h?
with7 =1,..., N—1. Applying the Dirichlet boundary conditions, Us(t) = Un(t) =0,
we can then solve the system of ODEs (2.6) for U;,i=1,...,N — 1.

The equidistribution principle attempts to position the mesh points such that some
measure of the spatial error is equally distributed over the subintervals. Roughly
speaking, there are two strategies commonly used to apply the EP. The first one is
to apply the EP in an integral form; this is employed in most h- or hp-refinement
approaches. A popular choice is the arclength function for representing an idea of
error distribution. In this case, the EP will require that the new mesh points, {z]}£,,
satisfy, for a fixed ¢,

/ i V' 1+ (U(z,t))? dz = constant,

i=-1

where ¢ = 1,..., K and K does not necessarily equal N, i.e., the number of mesh

points can be changed for the next mesh redistribution. Here we call V1+ Uz, t))?

the monitor function, and call the above mesh redistribution process a remeshing.

The second strategy is to apply the EP in a differential form; this is used in the

r-refinement approaches. In r-refinement schemes, each mesh point is considered to

be a function of time while the number of mesh points is fixed. Again assuming the
arclength monitor function, let

zi(t)

Eqt) = V1+ Uz, 1))? da,

zi-1{t)

wherei=1,...,N and

E(t) = % /0 TG de.

We see that E;(t) is used to give an idea of the error for the subinterval [z:_1(t), z:(t)]

and E(t) gives an idea of the average error. In order to move z;_;(t) and z:(t) closer

11

to each other when FE;(t) is larger than E(t) and farther apart when E;(t) is smaller
than F(t), we require

9 2i(t) — Sz (6) = —NE®) — E®),

where i =1,..., N, and) is a proportionality factor. The term E(t) is eliminated by

considering the corresponding equations for [z;(t), zi+1(t)] and subtracting the first
from the second. We then obtain

d d d

o () = 2m(t) + Zi-1(8) = —A(Ein(t) — Ey(t)), (2.7)
where i = 1,..., N — 1. Coupling the mesh equations (2.7) with the ODEs obtained
from the spatial discretization of the original PDEs and the boundary conditions, we

can then employ a standard ODE or DAE solver for the time integration. We will
discuss the choice of A in Section 2.2.

2.2 r-refinement

In the r-refinement approach, as mentioned in the previous subsection, the mesh
points are considered to be time-dependent functions. After the spatial discretization
step, the MOL gives a system of ODEs for the solution, which are coupled with a
system of ODEs controlling the mesh selection. The node positions and the corre-
sponding solutions are then calculated simultaneously. We note that the standard
r-refinement approach employs a fixed number of mesh points and therefore spatial

error control is not possible. Also, the problem becomes nonlinear even if original

problem is linear.

One of the first papers on r-refinement was written by Miller and Miller [54, 55]. They
employ finite elements on the mesh, 0 = zo(t) < z1(t) < --- < zn-1(t) < zn(t) =1
In subsequent work, Adjerid and Flaherty [2, 3] obtained a “moving finite element”
method by applying the EP to a spatial error estimate. An approximate solution

12

U(z,t) is calculated in a piecewise linear polynomial subspace, i.e.

N
Uz, t) =Y Ui(t)i(z,1), (2.8)

=0
where

Zfz(t—)_%i%a zi1(t) S € < z:(t),

P (z,t) = ﬁ%, zi(t) < T < Tia(t), (2.9)

o0, otherwise,
and U;(t) = u(z:(t), t). The spatial error is estimated in terms of a piecewise quadratic
function E(z,t) obtained as follows. A finite element method is applied to the PDEs
on a piecewise linear subspace to obtain U(z, t); then an improved solution Ulz,t) is
obtained by applying the finite element method on a piecewise quadratic subspace.
We write U(z,t) = U(z,t) + E(z,t), and thus obtain E(z,t) from U(z,t) — U(z,t).
Let || - ||; denote the H!-norm in the interval a,b], i.e.,

]
If @)l = \// (f2(z) + f2(x)) dz.

The mesh points are determined from the ODE system
£(8) = 2aa(t) = MBI — [EO), i=1,2,-- N,

where) is a proportionality factor, || E:(t)||; is the H*-norm error for the ¢-th subin-
terval and || E(t)|l: = §lIE(z,t)]1 is the average error in the H Lpnorm. In 2] Ais a
user-supplied parameter which is shown to be problem-dependent; i.e., it is sensitive
to the approximate solution; however, in [3], Adjerid and Flaherty gave a formula to
choose the value of)\ at each time step, which is shown to be very effective in the
numerical experiments. We see that if || E¢||; is larger than || E||;, then the points z;(t)
and z;_,(t) move together. Similarly, when [[E;||; is smaller than | E|l1, the points
z;(t) and z;_;(tf) move apart.

In more recent work, Huang, Ren, and Russell [39, 40] have derived some moving

mesh methods based on the EP. In contrast to the above approaches, finite difference

13

methods are used. First they employ a coordinate transformation (¢, z) — (¢, &) with
£ = % / M(&)d, (2.10)
0

where M = /1 + 42, is the arclength function, and 6 = j;)l M(Z)dz. If we think of x
as a function of £ and ¢, i.e., z(, t), then at the time ¢, an equidistributed mesh in =

is obtained for & =i/N,i=0,..., N, ie., {z(i/N,t)}Y, is an equidistributed mesh.

If (2.10) is differentiated with respect to £ twice, a differential form of the EP is
obtained,

;%{M(z(s, 0, t);%m(s, 6} =0.

Huang et al. require the mesh to satisfy the EP at the later time t +7 (0 <7 < 1),
instead of at t. That is, the mesh satisfies

{A/[(:z:(f,t-f-'r) t-i-r) x(&,t-&-‘r)} =0. (2.11)

By using Taylor series expansions of 53:1:(5 ,t+7) and M(z(€,t+7),t+7) at z(&,t)

FAEt4T) = geolt) + 56 0 + O,

M(z(&,t+71),t+71) = M(z(E,t),t) +T:i:aa—mlb[(:z:(§, t),t) -{-1'-33—!&-1\/[(:1:(5, t),t) +0(T?).

Substituting in (2.11) and keeping only the linear terms, they obtained a moving
mesh PDE (MMPDE) of the form

9 BM 0 ,0Mozx, 19

By means of central finite differences, the discretization of (2.12) is given on the

uniform computational mesh § = £, 7=0,..., N.

Several MMPDEs are derived in [39, 40]. The discrete mesh equations are coupled
with the ODEs which come from the discretization of the physical PDEs. DASSL is
employed to solve the ODE system. In [41], Huang and Russell presented a moving

14

collocation method based on those MMPDEs. They used a cubic Hermite collocation
method to discretize the physical PDEs and a central difference method to discretize
the MMPDEs. Surprisingly, their computational results indicate third-order conver-
gence, which is slower than the traditional (fourth-order) cubic collocation on a fixed
mesh but faster than the first-order convergence of the moving finite difference meth-

ods in [39, 40]. However, no theoretical analysis to confirm these results appears to

have been done.

In summary, the locations of the mesh points and the solutions at these points are
obtained simultaneously. Interpolation of the data from the old mesh to the new mesh
is not necessary, here, in contrast with some other approaches. Unfortunately, the
mesh points can cross or move out of the domain. That is, the physical restrictions,
z;(t) < z;41(t) and 0 < z;(¢) < 1, sometimes do not hold throughout the computation,
and some technique to maintain these is necessary. For example, Huang and Russell
[42] proved that, by using a spatial smoothing technique, the physical restrictions
can be preserved. However, such a technique can increase the complexity of the
mesh equations. The most serious restriction in the r-refinement approach is that
the number of mesh points is fixed, which makes it impossible to fully control the
spatial error. This limitation also makes the r-refinement approach inefficient in the

case when a shock evolves into a smooth solution.

2.3 h- and hp-refinement

In the h- and hp-refinement approach, the mesh is refined or coarsened after one
or several time steps or at fixed times, and the mesh selection is not coupled with
the solution computation. Interpolation after the remeshing process is necessary to
generate the initial values for the next step. The hp-refinement approach also allows

for a change in the order of accuracy of the spatial discretization, globally or locally.

Sanz-Serna and Christie [64] applied central finite differences to approximate the

15

spatial derivatives. After each time step t,, the arclength 6(t,) is approximated by a
piecewise linear function, i.e. one connects the adjacent mesh points with a straight

line. This gives

N
B(ta) = 3 \/(aF — z)? + (UP — UL,

i=l

They required the new mesh points, {z}},, to satisfy

/ i V'1+ (U:)? dz = constant = —;—[0(t),

i—L

where i = 1,..., N. After remeshing, the values of the new solutions {U; N, at the
new mesh points are obtained from {U;}Y, by means of cubic interpolation. We note
that since this strategy requires remeshing at each time step, it is not suitable for use
with multi-step methods because of the lack of necessary data from previous steps.
The authors employed the implicit Euler method for the time integration.

Berzins et al. extended the above idea, which led to the solver called SPRINT [12, 13]
and its modified versions in the NAG library, DO3PPF and DO3PRF. In this code, the
user can specify the monitor function, M(t), which is recommended to be the second
spatial derivative of the solution approximation since the spatial discretization is
done by a second order finite difference method. After a fixed time interval or a fixed
number of time steps, specified by the user, a new mesh, {z}}},, is calculated by

requiring

=
/ M(t) dz = constant.

i-1
A remeshing is performed only if there exists ¢, such that the distance between the
new position, z?, and the old one, z;, is more than some fraction of the old mesh

spacing on either side of z;, i.e.,
x> T; + (Ti1 — Ti),

or

z! < z; — o(Ti — Ti-1),

16

where ¢ > 0 is a user-supplied fraction factor.

These codes use a modification of DASSL as the time integrator. A Theta method [14,
63] (switching between Newton and functional iteration) is implemented in addition
to the BDF methods included in DASSL. For an ODE of the form ¢’ = f(t,y), let y,
be the approximate solution at the time t,, and let y;, be the first derivative of the
approximate solution at the time t,. At the time t,,;, the Theta method calculates
the approximate solution, yp+1, Using yn+1 = Yn + 0y, + (1 — 0) f(t, Yn41), where 6
is chosen by the code at each step. The Theta method has, generally speaking, only
first-order accuracy but may be more efficient for large systems of ODEs or DAEs
and relatively large tolerances in MOL approaches [15]. A scaling technique, with
theoretical justification provided by Petzold and Lotstedt [62], is implemented in the
Newton iteration for both the BDF methods and the Theta method. Section 3.2.7
gives a detailed decription of this technique.

After remeshing, cubic spline interpolation is used to provide solution values at the
current step; interpolation is also used to obtain solution information from previous
steps. This makes it possible to use a multi-step scheme. The time integrator then
attempts to continue using the stepsize and order determined in the last step prior

to remeshing. The Jacobian matrix is recalculated after each remeshing.

Adjerid, Flaherty and Wang [4, 5] use a piecewise polynomial of degree p for the
approximate solution U(z,t), where C° continuity is required at the mesh points. A
Galerkin method is applied to

Ui(z,t) = f(t, z, Ul t), Uz(2, 1), Use(2, 1))

An a posteriori error estimate, E(z,t), is obtained as the solution of either a local
parabolic or local elliptic finite element problem using piecewise polynomials of degree
p + 1. First, they calculate E;(z,t) by solving

(U.i)t + (Ei)t = f(t: z, U;' + Ei: (lji):x + (Ei):z:: (U'i)a::t + (Ei):m:)a

17

where U; is the approximate solution. FE;(z,t) is an error estimate on [Zic,zi, 1=
1,...,N, which satisfies Ei(z;_,t) = Ei(z:,t) = 0. Dropping the term, (E;):, they
obtain another estimate by solving the elliptic equation

(Ui)e = f(t,z, Ui + By, (U)z + (Ei)zy (Ui)zz + (Ei)zz),

for E;(z,t). The H'-norm error estimate, E(z,t), is then obtained from

N
1B,)lIF = _ 1Bz,)13,

i=1

where

I Ei(z,)|l = \[) (E}(z,t) + (E2)i(z)) dz.

Ti-)
Adjerid et al. [5] proved that, for linear Dirichlet problems and using either the
parabolic or elliptic error estimate, E(z,t) converged to the exact error in the H L
norm when h — 0, where h = max;<i<n(z: — Zi—1). Moore [57] proved that this was

also true for the nonlinear case.

Based on the above a posteriori error estimate, Adjerid et al. [4] developed PDE-
FRONT and Moore (58] extended this work and developed HPDASSL and HPSIRK.
All three codes employed hp-refinement. The h-refinement part of the work of these
authors can be summarized as follows. After a fixed number of time steps (one step
if a Runge-Kutta method is used and more than one if DASSL is applied), the error
estimate is computed and an adaptive strategy is invoked when the error is too small
or larger than the tolerance. Adjacent elements are combined if they have sufficiently

small error. Individual elements are uniformly subdivided if the error is too large.

If the solutions are smooth, high-order approximations can be more efficient than low-
order approximations. Therefore, if the order of the piecewise polynomial solution
on each subinterval is allowed to vary, the solution can be calculated more efficiently.
Guo and Babuska {32, 33, 34] successfully employed this idea, called p-refinement,
to elliptic problems. Adjerid et al. [4] combine p-refinement with h-refinement.

18

Their hp-refinement strategy includes: increasing the polynomial degree in smooth
high-error regions, decreasing the polynomial degree in non-smooth low-error regions,
coarsening the mesh in smooth low-error regions, and refining the mesh in non-smooth
high-error regions. After a remeshing, interpolation is applied to obtain solution
values not only for the current step but also for previous steps. For multistep methods
this makes it possible to continue integration with a new mesh using the previous
stepsize and order. We note that the interpolation is done in a fairly straightforward
way since finite elements are used instead of finite differences. Further simplifications

in the algorithm are obtained if a Runge-Kutta scheme is used.

The interpolation of data from the old mesh to the new mesh is unavoidable for h- or
hp-refinement. Finite element methods provide a more natural interpolation process
than finite difference methods. However, if the interpolation error is not small enough,
the residual in the current step and the previous steps can change significantly. If
the ODE or DAE solver continues the integration, it may be unable to succeed with
the same stepsize and order. In some cases, there can even be a complete failure of
the time integration. An example of this kind of difficulty arises in Berzins et al.
[10], where a second-order finite difference method which is employed for the spatial
discretization, is coupled with a cubic spline interpolant or a linear interpolant. They
show that if the number of mesh points is not sufficiently large then after a remeshing
the interpolation error can pollute the residual and the ODE or DAE solver will not
be able to continue the integration with the same stepsize and order. The advantages
of h- or hp-refinement are obvious since they allow the number of mesh points to be

changed, making it possible to control the spatial error.

2.4 Balancing the Spatial and Time Errors

In 1991, Lawson et al. [48] presented an error control strategy for the time integra-

tion of the solution of a system of parabolic equations using the MOL. The authors

19

restricted their analysis to a numerical scheme with a fixed spatial mesh and a second-
order finite difference method for the spatial discretization. However, their strategy
has the potential to be combined with spatially adaptive methods.

The strategy is to balance the spatial and time integration errors so that they are
of the same order of magnitude. It is clearly most efficient to integrate the resulting
ODE or DAE system with just sufficient accuracy so that the temporal error is not
significantly more or less than the spatial error. In most existing ODE or DAE
software, the standard approach is to control the temporal error with a user-supplied,
fixed tolerance. Therefore, in most MOL codes the time tolerance stays unchanged
throughout the time integration, which is undesirable since it may provide too much
accuracy, compared with the spatial error, in some cases, and not enough in other
cases. Since the spatial error varies with time, Lawson et al. adjust the tolerance
in the time integration according to the size of the spatial error estimate in each

step. This approach suggests how one can develop a fully automatic general-purpose

algorithm for fixed-mesh solvers.

Lawson et al. suggest an interesting research direction, in which their idea of balanc-
ing the spatial and time errors for a fixed spatial mesh is generalized to incorporate
adaptive spatial meshes. For a fixed number of mesh points, r-refinement schemes
attempt to move the mesh points to follow the sharp variation of the solution, thus
making the best use of the current number of mesh points. If this approach is com-
bined with the above strategy, the user would not need to supply a tolerance; in other
words, the MOL code would automatically make the best use of the given number
of mesh points while balancing spatial error and the time error. However, to our

knowledge, there has been little work done in the past decade on this approach.

20

2.5 Other Adaptive Packages

In the last decade, several adaptive MOL solvers for 1-D parabolic systems have been

developed.

e MOVCOL was developed by Huang and Russell [41]. It is an r-refinement
collocation solver, in which the arclength is employed as the monitor function.
The mesh equation comes from the differential form of the equidistribution
principle (See Section 2.2 for details). For the spatial discretization, a cubic
Hermite collocation approach is used for the physical PDE, and a standard finite
difference discretization is used for the mesh equations. DASSL is employed to

solve the resulting DAE system.

e TOMS731 is an r-refinement package written by Blom and Zegeling [19]. A
finite element method of second order accuracy is implemented for the spatial
discretization. The time integration is done by DASSL. The monitor function is
chosen to be M = m , where a (a > 0) is a user-supplied parameter,
and || - ||2 is the L*-norm. The parameter « is added to the monitor function to
ensure that M is strictly positive. For example, the choice a = 1 will result in

the arclength monitor.

e DO3PPF from the NAG library is 2 modification of SPRINT by Berzins et al. It
employs an h-refinement approach using a fixed number of mesh points (which
implies that the code does not control the spatial error). Second-order finite
differences are used for the spatial discretization. The user is asked to supply
the monitor function and the number of time steps after which a remeshing is

performed. A more detailed discussion is given in Chapter 3.

e HPDASSL is a package by Moore [58], based on the hp-refinement approach.
The spatial discretization is accomplished using a Galerkin method with a piece-
wise polynomial basis of degree p > 1. The spatial error is estimated using a

piecewise polynomial of degree p + 1. The time integrator is DASSL. After five

21

time steps, a spatial error estimate is computed and a new mesh (the number
of mesh points is allowed to vary) is obtained. However the code does not re-
compute these five steps if the spatial error violates the spatial tolerance. The
tolerance for time integration is set to be 0.1 times the tolerance for spatial
discretization. A modification of HPDASSL, HPNEW (59|, was recently devel-
oped. HPNEW modifies the algorithm which estimates the spatial error, and
the tolerance for time integration is set to be 0.02 times the tolerance for spatial
discretization. Thus little attention is directed toward balancing the spatial and

time error in this code.

HPSIRK is also an hp-refinement code written by Moore [58]. There are
three main differences between HPSIRK and HPDASSL. First, a singly im-
plicit Runge-Kutta (SIRK) method is used for the time integration instead of
the BDF method. Second, the spatial error estimate is calculated after every
step. The last difference is the most important one: remeshing is allowed at
each time step and steps for which the spatial error violates the spatial tolerance
are recomputed. Therefore, both the spatial and time errors are controlled. In
[58], numerical results show that HPSIRK is more stable but generally much
slower than HPDASSL. This is because they apply the Runge-Kutta method
instead of the BDF method on the time integration.

Chapter 3

Overview of the BACOL Algorithm

This chapter will describe the new software package, BACOL, for the numerical solu-
tion of one dimensional parabolic PDEs, using the h-refinement approach. Collocation
with a B-spline basis is applied for the spatial discretization. The flexibility of the
B-spline basis software of De Boor [21], upon which BACOL is based, allows us to
provide collocation based on piecewise polynomials of arbitrary degree with the re-
striction that the degree is in the range (3, 11]. The approximate solution is calculated
in a piecewise polynomial subspace of degree p, and the spatial error estimate is ob-
tained from a comparison with a second solution computed in a degree p+1 piecewise
polynomial subspace. Section 3.1 introduces the spatial discretization, including an
introduction to the B-spline basis, collocation at Gaussian points, and the treatment
of the boundary conditions as algebraic constraints. Section 3.2 describes the time in-
tegration component of BACOL, which is a modification of DASSL. This section also
describes how to obtain consistent initial conditions for DASSL, the structure of the
DAE system arising from the MOL, the addition of a specialized linear system solver
to DASSL, and modifications to reduce the condition number of the Newton iteration
matrix arising in the treatment of the nonlinear systems. We describe our adaptive
strategy in Section 3.3, including an a posteriori spatial error estimate, global mesh

refinement, and a strategy for predicting the number of spatial subintervals.

22

23

3.1 Spatial Discretization

In this section, we first describe the piecewise polynomial subspace, a B-spline basis,
which is used in BACOL. We then consider the application of the collocation method
at internal Gaussian points using the B-spline basis. The discretization of the PDE

system together with the treatment of the boundary conditions in their original form
leads to a DAE system.

3.1.1 B-spline Basis

We will consider a mesh consisting of an increasing sequence of N +1 points (N > 1)
in [0, 1] such that

O=zo<z1<---<zy=1 (3.1)

Associated with the mesh are piecewise polynomials of degree p, i.e., there is a poly-
nomial P;(z) of degree p for each subinterval, [z;—y,z:}, i = 1,..., N. (Although there
could be polynomials of different degrees on different subintervals, we will only dis-
cuss the above piecewise polynomial subspace in this thesis.) Piecewise polynomial
spaces are popular in MOL codes, especially for finite element or collocation methods.
In most MOL codes there are continuity conditions at each internal mesh point, z;,
i=1,...,N—1. For example, EPDCOL [53] asks for C'-continuity at internal mesh
points while PDECHEB [11] requires only C%-continuity. C'-continuity is used in
BACOL. Consequently the dimension of this piecewise polynomial subspace, Sp, is
given by

dim(S,) = NC = N(p+1)—2(N—1)
Np—1)+2.

There are several types of basis functions that can be used to represent piecewise
polynomials, such as B-splines [53], Chebyshev polynomials [11], monomial splines
[47], and Hermite polynomials [41]. For boundary value ODE problems, the monomial
spline basis has some advantages over B-splines and other splines (See, e.g., [8]). We

24

first tried the monomial spline basis for the piecewise polynomial subspace (before we
ultimately turned to a B-spline basis). However, some of the advantages of monomial
splines do not hold any more (some of them even become a disadvantage) due to
the difference between PDEs and ODEs. First, in the ODE case, after the spatial
discretization an algebraic equation system is generated. In the Newton iteration
process, a condensation technique can be applied to the Jacobian matrix [8]. This
reduces the size of the Jacobian matrix to the same size as the Jacobian matrix using
a B-spline basis. However, in the PDE case, after the spatial discretization an index-
1 DAE system is generated (the definition of index and the further discussion for
index-1 DAE systems will be described in Section 3.2.1). This makes it impossible to
carry out a condensation technique. Therefore, using a monomial spline basis leads
to a larger DAE system than using a B-spline basis; i.e., more computational effort
is needed. Second, in the ODE case, the biggest advantage for monomial splines is
that the Jacobian matrices have a much smaller condition number (the definition of
condition number will be described in Section 3.2.7) than the condition number of
the Jacobian matrices using other splines [8] . However, this does not hold for the
PDE cases. In fact, the condition number of the Jacobian matrices using a monomial
spline basis is even larger than the condition number of the Jacobian matrices using
a B-spline basis. The reason is, after the spatial discretization, using a monomial
spline basis will lead to an index-1 DAE system while using a B-spline basis and
differentiating the boundary conditions (as EPDCOL [53] does) will lead to a pure
ODE system; i.e., an index-0 DAE. Thus, by using a monomial spline basis, the
Jacobian matrices have a condition number of order O(1/h), where h is the stepsize
of the time integration; however, by using a B-spline basis, the condition number is
only of order O(1) (the relationship between the index of DAE and the condition
number of Jacobian can be found in Section 3.2.7). During our early work, we found
that, when a small tolerance is used (e.g., 10~%), MSCPDE [47, 60}, an MOL package
which uses a monomial spline basis and uses a modification version of DASSL as the

time integrator, occasionally was not able to start the time integration at the first

25

step. This is because DASSL tends to try an initial stepsize which is close to the
size of the tolerance. So at the first step, the convergence test or the error test may
repeatedly fail because of the large condition number. Based on the above reasons, we
decided against monomial splines. Our early approach was to use a B-spline basis and
differentiate the boundary conditions (BCs). However we found that differentiating
the BCs led to other difficulties (See Section 5.4 for details). Therefore we apply
the BCs directly, which of course leads to an index-1 DAE system again. A scaling
technique (which is described in Section 3.2.7) is applied to reduce the condition
number.

Because of the above reasons, in the BACOL code, we employ the B-spline package
for the spatial discretization. The well-known B-spline package {21, 22] allows for
a stable representation of piecewise polynomials of arbitrary degree and arbitrary

continuity. For more details regarding B-splines, we refer the reader to [22].

We recall that the dimension of S, is NC and we will denote {B;(z)}S as the
corresponding B-spline basis. This basis has the following well-known property, (See

e.g. [21))

for any = such that zx—; < T < o, 1 < k£ < N, at most p + 1 B-spline

basis functions, namely, {Bi(z) }f&;?{;’é,_l) +1» have nonzero values.

The special structure of the Newton iteration matrix associated with the time in-
tegration (which will be discussed in Section 3.2.3) is derived on the basis of this
property.

3.1.2 Collocation at Gaussian Points

For convenience, we will consider (1.1)-(1.4) with ¢, =0, £, = 0, and z; = 1; then

the general form becomes

u(z, t) = f(t, z,u(z, t), uz(z, t), uzz(z, 1)), 0<z<1l, t2>0, (3.2)

26

u(z,0) = uo(z), 0<z<1, (3.3)
bL(t’ ’lL(O, t): uz(()’ t)) =0, t>0, (34)
br(t,u(l,t),u=-(1,t)) =0, t>0. (3.5)

We will assume that a mesh of the form (3.1), along with the B-spline basis, { B:(z)}X,
is given. The approximate solution U(z, t) is then expressed as a linear combination of
B-spline basis functions in space, with time-dependent coefficients to be determined.
The s-th component of the solution, us(z,t), of (3.2)-(3.5) is then approximated by

a piecewise polynomial, Us(z, t), of degree p in z, which is of the form

NC
Us(z,t) = Y Bi(z)yss(t)- (3.6)

=1
We then collocate at p — 1 collocation points in each subinterval, i.e. we require the

approximate solution to satisfy the PDEs at a certain set of the collocation points,
described next.

Gauss-Legendre points in each subinterval are used as the collocation points in several
codes, e.g. PDECOL [53], COLSYS [6], and MSCPDE [47]. De Boor and Swartz [23]
have proved that, when collocating at Gaussian points for boundary value problems,
the error at mesh points is particularly small compared to the error at other locations.
This high-order convergence at the mesh points is called superconvergence. Although,
to our knowledge, there are no similiar results for the PDE case, we will choose Gauss-
Legendre points to be the collocation points. (In Section 5.6, we will experimentally

demonstrate the presence of superconvergence for the PDE case.)

Now we describe, in detail, the collocation method which provides our spatial dis-
cretization. First, define the mesh step size sequence {h:}¥, by h; = z; —z;—1. Then

let {p:}?=; be the Canonical Gaussian points on [0, 1] such that

O<pp<p1<--<pp1 <Ll

27

The collocation points are then defined by

& = 0, (3.7)
& = zi-+hip;, where =1+ —1)*(p—1)+3],

for i=1,...,N, j=1,...,p—1, (3.8)

Eve = 1, (3.9)

where NC = N(p—1)+2 is the number of collocation points. We note the collocation

point sequence, {&}S, includes the internal (Gaussian) points and the two boundary
points.

We require the approximate solution, Us(z,t), to satisfy the original PDEs at the

internal collocation points; we thus obtain

%Us(&: t) = fs(tr El: U(§l7 t)a U:L'(Eh t): UI:L‘(&!: t))1 (3'10)

where [=2,...,NC—1and s =1,..., NPDE. This results in N(p — 1) collocation

equations for each component.

We note that at each internal collocation point, there are at most p + 1 nonzero
B-spline basis functions which have nonzero values. We therefore obtain

i(p—1)+2

U(et)= D, Bul&@yms(t), (3.11)

m=(i—-1)(p—1)+1
where § = ;1 + h;p; is the j-th Gaussian point of the i-th subinterval and s =
1,...,NPDE. Substituting (3.11) into (3.10), we obtain

i(p—-1)+2

Z Bm(gl)yvrn,s(t) = fS(t? &7 U(Elx t)r U:!:(Eh t): Um(&r t))v (3'12)

m=(i—1)(p—1)+1

where l=1,...,NC, s=1,...,NPDE. We note that the function, f(t,&, U(&,?),

U.(&, 1)), U=(&, 1)), depends only on {yms(t)}, m=({F—1)(p—1)+1,..., i(p—1)+2
and s=1,..., NPDE.

28

3.1.3 Treatment of the Boundary Conditions

In Chapter 1, we described several ways to treat the boundary conditions (BCs). In

this thesis, we treat the boundary conditions in their original form,

br(t,U(0,t),U-(0,t)) = O, (3.13)
bR(ta U(la t): Uz(lv t)) = 0. (3'14)

We note that due to special properties of the B-spline basis (See [21])

Us(0,t) = Bi(0)y1s(t), (3.15)
(Us)=(0,¢) 1(0)y1,s(t) + B3(0)y2,s(2), (3.16)
Us(1,t) = Bnc(lync.s(t), (3.17)
(Us)z(L,t) = Byc(Lyncs(t) + Byve-1(L)ync-1s(t), (3.18)

where s = 1,..., NPDE. Therefore, only B;, B{, and Bj; appear in the equations
associated with the left boundary, and only Byc, Bjye, and Byc_, appear in the
ones associated with the right boundary.

We see that, after the spatial discretization, (i.e. after the application of the collo-
cation conditions,) the resultant ODEs coupled with the boundary conditions give a

differential-algebraic equation system

br(t, U(0,t), Uz(0, t)) = 0, (3.19)
i(p—1)+2
Z B (gt)y:n,s(t) = fs(t: &, U(E[: t)a UI(§I7 t) 1 Uz:t(&, t))'l (3'20)

m=(i—1)(p—1)+1
where & is one of the p — 1 collocation points in the

i-th subinterval, i =1,...,N, s=1,...,NPDE,
br(t,U(1,t),U-(1,t)) = O. (3.21)

In total there are N(p — 1) + 2 equations for each component. Thus we generate the

same number of equations as the number of unknowns.

29

Since we will later compare the effect of different ways of treating the BCs as con-
sidered in BACOL and EPDCOL [46], we will now also explain how EPDCOL treats
the BCs. EPDCOL discretizes the PDEs using the same collocation scheme described
above. However, instead of keeping the BCs, (3.13), as they are, EPDCOL expects

them to be differentiated with respect to time, giving, at z =0,

"2F (8(bL)s),, a(b >s dyl:(t)

=1

NPDE

O(be)s dys,;(t) _ 9(br)s
2 (303 Socke (o)) a8 . 200 (322
where s =1,..., NPDE. Similiarly at z = 1 we have
NPDE
9(br)s 0(R) dync,(t)
NPDE
9(br)s dync—1,;(t) _ O9(br)s

+ Z 6(Uz)] NC—1(1)> dt - at 3 (3‘23)

j=1
where s = 1,..., NPDE. We note that EPDCOL thus obtains an ODE system after
its spatial discretization by including the differentiated BCs (3.22), (3.23), rather than
the original BCs in algebraic form.

3.2 Time Integration

A sophisticated ODE or DAE integrator is essential to the success of a MOL code.
Since a major computational effort is associated with the linear systems which arise
in the calculations performed by the ODE or DAE solver, it is important to employ
a suitable linear algebra package which takes advantage of any special structure pos-
sessed by the linear system. In this section, we first discuss some properties of DAEs.
Then some special structure of the Newton iteration matrices, which arises due to

the properties of the B-splines, is identified. We next discuss a linear system solver,

30

COLROW [30], which takes advantage of this special structure. Finally we discuss a

modification to DASSL, which involves adding a new linear system option to include
COLROW.

3.2.1 Index of DAEs

A property known as the indez plays an important role in the classification and the
numerical solution of DAE’s. Before we give the definition of the index, we consider

a special case of DAEs in Hessenberg form
y’ = Fl(t1 Y, Z), (3'24)
0 = F2(ts Y, 2)1 (3‘25)

where y and z are vectors. If we differentiate the algebraic constraint equation (3.25)

with respect to ¢, we obtain

y = F(tvy,2), (3.26)
oF, , 0F, , _ OF
By + 52 = % (3.27)

If %Ff is nonsingular, the system (3.26), (3.27) may be rewritten as a standard ODE
system for ¥’ and 2/, and we say that (3.24), (3.25) has index one. If this is not the

case, there exist two nonsingular matrices, L and U, such that
oF, I, 0
L—U = , 3.28
0z (0 0) (3.28)

where I, is an m-by-m unit matrix for some m. Therefore, using the coordinate

transformation 2 = U~z and (3.28), we are able to write (3.27) as

In 0\, 0FR, ,LOF
(o O)z— 5wy~ L (3.29)

We thus are able to write (3.26), (3.29), in the form of (3.24), (3.25), but with different

unknown solution components. We then differentiate the algebraic equations again

31

with respect to t. If we obtain an ODE system, we say that the original problem has
index two. However, if again this is not the case, we repeat the above process. The
number of differentiation steps required in this procedure is the differential index. We

have the following definition for the general case, as given in [24]

Definition 1 The minimum number of times that all or part of F(t,y,y’) = 0 must
be differentiated with respect to t in order to determine y'(t) as a continuous function
of y(t) and t is the index of the DAE.

From the above definition of the index, we note that the DAE system (3.19)-(3.21) ob-
tained from our spatial discretization has index one since differentiating the boundary

conditions leads to a system of ODEs of the form

M(t,y)y =Gt y),

where M (t,y) is non-singular (See [53]).

3.2.2 A Short Description of BDF Methods for DAEs

The backward differential formulas (BDF) are the most popular linear multistep meth-
ods for DAEs. DASSL [61], the most widely used DAE code, is based on BDF meth-
ods. In BACOL, the time integration is performed using a modification of DASSL.
Here we give a brief description of BDF methods (for further information, See, e.g.

[24]).
BDF methods can be used to solve DAEs of the general form

F(t,y,y) =0. (3.30)

Let y, denote the approximate solution at t, and let y.,, denote the approximate
solution at t,,,. The simplest BDF method, which is of the first order, is the implicit
Euler method. It replaces ¥/(t) in (3.30) at t,41 by a backward difference

F (tm[-l,yn-i-h yl‘%-:y_n) = 01
+1

32

where hpy1 = thy1 — tn. The resulting nonlinear algebraic equation system for yn41
is usually solved by a Newton iteration. If a constant stepsize, h, is used, a k-step

BDF replaces 3/(t) by the derivative of the polynomial at ¢, that interpolates the

computed solution at tny1, tn,...,th—k+1. Thus we obtain
k
i=0 Xiln—i+1
F (tn+11yn+la 21 g }: noit > =01

where a;, 1 =0, 1,..., k are the coefficients of the BDF method.

There are three standard implementations of BDF methods that allow for time adap-
tivity, i.e., variable stepsizes. They are called the fixed coefficient (e.g., LSODI 38]),
variable coefficient (e.g., EPISODE [27]), and fixed leading coefficient formulas (e.g.,
DASSL). The fixed coefficient methods are efficient for smooth problems, but “in-
efficient or possibly unstable for problems which require frequent adjustment of the
stepsize” [24]. The variable coefficient methods are the most stable, but they require
more Jacobian evaluations, and are therefore less efficient. The fixed leading coeffi-
cient approach is a compromise between these two approaches. It is less stable, but
at the same time requires fewer Jacobian evaluations than the variable coefficient
formulation. Using a fixed leading coefficient implementation, a k-step BDF method
has the form

F (tn+1: Yn+l iZ/n+1 'f‘ﬂ) =0, (3.31)

hat1

where a and 3 are known. The unknown solution value, y,.+1, is obtained by using a
Newton iteration of the form

1 - (a4
vt = U = G F (e Uitk 5 —is +)
L3

where y,(:;‘_)l is the m-th Newton approximation to y,+; and G is an iteration matrix

of the form,
a OF OF

= . .32
¢ hni1 Oy * oy (3:32)

We now summarize some useful results about BDF methods for index-1 DAEs:

33

e A k-step BDF method is unconditionally unstable for £ > 7, and most ODE
or DAE codes, e.g., DASSL and LSODI, only implement BDF methods up to
order k = 5.

e The numerical solution of an index-1 DAE system by a k-step BDF with fized
stepsize h for k < 7 has a convergence rate of O(h*) if all initial values are

correct to O(I*) accuracy and if the Newton iteration error is O(h**1).

e For variable stepsize BDF methods, if the ratio of stepsize at the adjacent
steps is kept bounded, all initial values are correct to O(h*), and the Newton
iteration error is O(h**!), then the error in the numerical solution for a k-step
BDF (k < 7) applied to a index-1 constant coefficient DAE system (i.e., the

DAE has the form Ay’ + By = f(t), where A and B are constant matrices) is
O(hF).

3.2.3 Structure of the Iteration Matrix

We now return to the index-1 DAE system identified in Section 3.1.3. It has the form

bL(t7 U(Oa t)s Ux(oa t)) =0, (3'33)

i(p—1)+2

Z Bm(fl)y:n,s(t) - fS(ta 6[7 U(&a t), UI(€I1 t)7 U:c:x:(gla t)) = 0, (3.34)

m=(i—1)(p—1)+1
where & is one of the p — 1 collocation points in the é-th
subinterval, and s =1,...,NPDE,

bR(ta U(la t)r Uz(la t)) =0. (3‘35)

34

We know that

i(p—1)+2
Us(fl: t) = Z Bm(El)ym.S(t)a
m=(i—1)(p—1)+1
i(p—1)+2
(Us)=(&,t) = Z B;n(fl)ymm(t)’
m=(i—1)(p—1)+1
i(p—1)+2
(Us)zz(&tst) = Z B::L(El)ym.s (t),

m=(i—1)(p—1)+1
where & = x;_; + h;p; is the j-th Gaussian point in the i-th subinterval, and s =
1,...,NPDE. We also recall (3.15)-(3.18) which gives the dependence of Ui(0,),
(Uk)=(0,8), Uk(L,t), (Uk)=(L,t) on y1k(t), v2,£(t), ynck(t), ync-1x(t)-

From (3.32), we note that the Newton iteration matrix depends on —357' and %5, and

we see that 3—;} has the form shown in Figure 3.1

35

4
INPDE W
NPDE [00] - (PHINPDE
(p-1)NPDE s,
—_—
(-UNPDE| S,
SN
29 npoE
INPDE
\ /

Figure 3.1: Structure of 2—5.

Since the boundary conditions are treated as algebraic constraints that have no de-
pendency on ¥/, the top block and bottom blocks are each NPDE by 2NPDE null
matrices. Each S;,i=1,...,N,isa (p —1)NPDE by (p + 1)NPDE matrix of the

form

Bi(&+1)Ivppe Bii(§41)InpDE - Br+;»(§z+1)INPDEW
Bi(&2)InppE Bi1(&w2)Ivppe -+ Bup(&a2)InpDE

| Bi(§4p-1)InPDE Biri(&+p-1)INPDE -+ Buap(§+p-1)INPDE |

where | =1+ (i — 1)(p — 1). We note that the matrix structure shown in Figure 3.1
is an almost block diagonal (ABD) form [30].

The matrix, %—5-, also has the ABD form shown in Figure 3.2

2NPDE
NeDE [W.V] (PHNPDE

(p-1NPDE [s,

| SUS—| .
(-ONPDE| s,

Sx

2NPDE

Figure 3.2: Structure of %

NPDE

36

Here Wy, Vi, Wg and Vg are NPDE by NPDE matrices whose components are of

the form
Wiy =SB0 + 5282 B100)
(Vides = HiBs0),
(Wg)s; = agb£’3N0(1)+gE$)); Bjyo(1),
O(br)s 1

(VR)SJ = m NC—1(1)-

The i-th subblock, SF,7=1,...

the form,

Dy1 D2

Y

Dy Dy -

| Dp—11 Dp12 -+

Dy ps1
Dsp1

Dp-l,p-*-l i

(3.36)
(3.37)
(3.38)

(3.39)

,N,isan (p—1)NPDE by (p+1)NPDE matrix of

37

where each of D,,;, m =1,...,p—1,j=1,...,p+1, is an NPDE by NPDE
matrix, whose components have the form of

afa _Ofs p ofs

(D)ot = SEBa6) + 5 Bu&) + g —BiE), (340)

where g = (i - Dp-1)+j5,r=@E-1)p-1)+1+m,s=1,..., NPDE and
l=1,...,NPDE.

The Newton iteration matrix, G, is then obtained using (3.32). We note that the
Newton iteration matrix also has an ABD form. A linear system solver COLROW
[30], which will be introduced shortly, is more efficient in treating the ABD systems
than the banded solver which is available in DASSL. Our modification to introduce
a new linear algebra solver option within DASSL will be described later. If the user
is required to supply 55-, a%L and 6_?1%’ then the Jacobian matrix can be computed
directly; otherwise DASSL provides a finite difference Jacobian option (which is cur-
rently not able to take advantage of the ABD form).

For the spatial error control algorithm (described later), we solve the PDEs using
first a degree p piecewise polynomial for the spatial discretization, and then a degree
p + 1 piecewise polynomial. These two approximations are compared to estimate the
spatial error. The two systems of DAEs (resulting from the spatial discretizations)
are not solved independently for reasons explained later, but are instead combined

into one large system. This results in a combined Newton iteration matrix having

the decoupled form

38

INPDE - E h
neoe [1 " E
(p-1INPDE ;
| SN i E
(p-DNPDE ;
. . . '
___________________ L [NPDE
INPDEL__| .
(p*INPDE
K/
 PNPDE
: pNPDE
S L] . L]
' | NeoE
L ' INPDE /

Figure 3.3: Structure of the iteration matrix in BACOL

As a result, we have had to make further changes to DASSL (described later).

3.2.4 Consistent Initial Conditions for the DAE System

The algebraic constraints in a system of DAEs require consistent initial conditions.
In fact, small inconsistencies in the initial values may cause DASSL to fail on the first
step or to become very inefficient; i.e., a very small stepsize is used for the first few

steps after several failed attempted steps.

39

As discussed in [49], in order to be consistent, the initial conditions of an index-1 DAE
must satisfy not only the algebraic constraints, but also the differentiated algebraic
constraints. Therefore, we require that our initial conditions satisfy the boundary
conditions and, at the internal collocation points &, [= 2,...,NC — 1, we require
that the piecewise polynomial agrees with the initial conditions of the PDE system;
ie.,

bL(t,U(0,0), Ux(0,0)) = 0,
U(&[,O) = uO(&l)s ! =21'>'1NC— la
bR(ta U(la 0)1 Uz(la 0)) 0.

We note that a Newton iteration is needed in order to solve the system of algebraic
equations unless Dirichlet boundary conditions are applied on both boundaries. If
any of the BCs are not Dirichlet, the initial guess for the Newton iteration is obtained
by solving the linear system, U(§,0) = w(&), [= 1,..., NC, i.e., we require that
the piecewise polynomial agrees with the initial conditions of the PDEs on both

boundaries.

Once we obtain y(0), the value '(0) is obtained by solving

%bL(t,U(O,O),Ux(O,O)) =0, (3.41)
U:(&,0) = f(t.& U(&,0),U=(&,0),Uzc(£,0)), (342)

|=2,... NC—1, (3.43)

%bg(t,U(l,O),Uz(l,O)) = 0. (3.44)

We see that the differentiated boundary conditions are included in the above equa-

tions, which ensures consistent initial conditions for DASSL.

3.2.5 Replacement of the Linear Algebra Solver

Based on properties of the B-splines and on the fact that we simultaneously consider

the spatial discretizations based on collocation with piecewise polynomials of degree p

40

and p+ 1, we were able to show, in Section 3.2.3, that the Jacobian matrix consists of
two decoupled almost block diagonal matrices. Consequently we can treat the linear
system in a separated way, i.e., by solving the two ABD linear systems independently.
Therefore, in this section we describe an efficient way to solve an ABD system which
takes full advantage of the structure. Let us look at a simple example with p = 4,

whose corresponding matrix has the form

7 N

(,

Figure 3.4: Structure of the iteration matrix for p = 4.

Each of the small blocks is of size NPDE by NPDE. There are two linear system
solvers inside DASSL, a full matrix solver and a banded matrix solver. An obvious
choice is to treat the above matrix as a banded one. That is, we might consider the

form

41

\

Figure 3.5: Structure of the iteration matrix for p = 4.

The shaded area is the extra storage required by the banded solver. We see the total
storage for a banded solver is 2 * NPDE? xp* (N * (p — 1) + 2), while the nonzero
part is only NPDE? x (N * (p*> — 1) + 2). When N is large, the total storage is
almost twice that of the nonzero part. To take advantage of the ABD structure,
Diaz et al. [30] developed the package COLROW, which factors the ABD matrix
using an alternating row and column elimination approach which introduces no fill-
in. Considering only cubic terms, the total number of multiplications using a banded
solver is 2 * N * NPDE® % (p + 1)3, while the total number of multiplications for
COLROW is £« N * NPDE® % (p+1)* (See [46] for details). The cost for COLROW
is therefore roughly é of that of the banded solver.

We have therefore inserted a new linear system solver option within DASSL to allow
the use of COLROW. This has required modification of three subroutines, DDASSL,
DDAJAC, and DDASLV. As mentioned before, we solve the decoupled systems sep-
arately and COLROW is therefore called twice for each full Newton iteration.

3.2.6 Restarting DASSL after a Remeshing

At certain times during the computation performed by a code that does spatial adap-
tivity through h-refinement, a new spatial mesh will be computed and it will then

42

be necessary to continue the time integration starting from this point in time. The
simplest approach is called a cold start. In this approach, the code interpolates the
solution from the old mesh to the new mesh at the current step, and then restarts the
integration as though solving a new problem. This, however, is not efficient because
the effort to perform a cold start of an ODE or DAE solver is considerable since it
asks the solver to perform a tiny stepsize at the beginning of the integration. The
second approach is called a continuation of integration. As suggested in [10], the code
interpolates the solution from the latest step, as well as from as many previous steps
as necessary. This means interpolating all the history vectors which are required by
the ODE or DAE solver. The same stepsize and order as in the last time step are
then tried afterwards. Computational results in [10] support the conclusion that the

use of continuation of integration can significantly improve efficiency.

As mentioned before, there are two approximate solutions in BACOL, one based on
a piecewise polynomial of degree p and another of degree p + 1 respectively. Thus
we require the interpolated history vector for both approximations. In BACOL, we
obtain both of these interpolates using only the degree p + 1 approximation. The

reason for doing this is discussed later.

To continue the integration using DASSL, we need to employ interpolation at the
current step and at most the last 5 time steps; this is because DASSL implements
BDF methods up to a maximum order of 5. From an inspection of DASSL, we see
that the divided differences (to be described shortly) for the new mesh are required

in order to carry out a continuation of integration.

Let y, denote the B-spline coefficients at t,. The (Newton) divided differences are
defined by the recursive formulas

[yn] = Yn

[yn7 Ynels - - yn-—k] — [yns Yn—-11-+-, yn—k-f-l] - [yn-—l: Yn—2y---, yn—k] X
th — tn—k

43

When a k-th order BDF scheme is employed, DASSL needs the following divided
differences

[ynly [yna yn—l]a [yny Yn—1, yn—2]: ooy [yTu Yn—1y--+, yn—k] .

We see that we can obtain the divided differences for the new mesh if we have the
values, Yn—i, © = 0,...,k, over the new mesh. For convenience, we denote by y
the B-spline coefficients over the old mesh and by y* the B-spline coefficients over
the new mesh. Let U*(z,t) denote the approximate solution, NC* be the number
of new collocation points (NC* is not necessarily the same as NC) and &, [=
1,..., NC*, be the collocation points over the new mesh. Similiarly let U(z, t) denote
the approximate solutions over the old mesh. We then determine U*(z,t) by requiring
it to interpolate U values at the new collocation points, i.e. the following equations
are satisfied

U* (fl’a tﬂ—f) = U(El.’ tn—i), [= L..., NC‘1 (3'45)

where 7 =0,...,k.

3.2.7 Treatment of Poorly Conditioned Jacobian matrices

In this section we first study how the conditioning of the Newton iteration matrix af-
fects our approximate solution. We then describe a technique to improve the accuracy

of the solution of the linear system by a transformation of the Jacobian matrix.

The system of linear equations to be solved in each Newton iteration is of the form
Az =b.

Let ||z|| be an arbitrary vector norm and [|A]| be the corresponding induced matrix
norm. If the solution changes by Az, corresponding to a change Ab in the right-hand
side, we know that the relative change in z is related to the relative change in b by

(a proof can be found in any standard numerical analysis text; e.g., [69])

Az —1y 186]
Tz < [lAflIIAT T

44

We define the condition number of A, cond(A) = ||A||||A~Y||, which is a measure of
the sensitivy of the relative error in the solution z to the changes in b. We note that
if cond(A) is large, a small change in b can cause a large change in the solution. We

say that A is ill conditioned or poorly conditioned if its condition number is large.

The presence of an ill-conditioned iteration matrix represents a difficulty for numerical

schemes for DAE systems. The following theorem is given in {24], page 144,

Theorem 1 The condition number of the iteration matriz for a DAE system with
indez v is O(h™).

Let us look at the following sample DAE system, which is studied by Petzold and
Lotstedt [62]

Fl(tay:y,: Z) = Oa
F2(t1 Y, Z) = 0.

Consider attempting to solve the above system to obtain y,4+1 and zn41, the solution
approximation, at t,,, using a k-step BDF method with the fixed leading coefficient

implementation (as DASSL does). We then obtain the system of nonlinear equations

a

Fl(tn+l:yn+11h 1yn+1+.3,zn+1) = 0, (3.46)
ys

F‘l(tn-i-h Yn+1,s zn-{'-l) = 01 (3’47)

where a and 3 are constants and hny; = tp4+1 — t,- The corresponding Jacobian

matrix is of the form

—a 9F R 3R

= | Pn+1 8y gy oz
J v 2). (3.48)

oy a9z

If the index of the DAE system is not equal to 0 (i.e., it is not a pure ODE system),
the Jacobian matrix is poorly conditioned when the stepsize is small because the
scaled Jacobian matrix h—':;L‘J is close to a singular matrix of the form

a3 0
&' . (3.49)
0 0

45

Furthermore, the initial stepsize in DASSL is chosen to be O(TOL), where TOL
is the user-defined tolerance. This implies that the Jacobian matrix will have a
large condition number if the user supplies a sharp tolerance. A poorly conditioned
Jacobian will sometimes lead to failure of the error test or the convergence test for the
Newton iteration. After such an unsuccessful step, DASSL will respond by reducing
the stepsize, which leads to a Jacobian matrix with an even larger condition number.

This can lead to a cycle in which DASSL is unable to take a successful first step.

Petzold and Létstedt gave a general technique for scaling the equations and variables
in (3.46) that overcomes this difficulty. Since we are only interested in the index-1
case, we will only present their technique for index-1 problems. If the index of the
DAE system is one, we have that 9F»/9z is not singular. Therefore, if we scale
the rows corresponding to the algebraic constraints by 1/hn, the Jacobian matrix is
nonsingular as h — 0. The effect of this scaling should therefore improve the accuracy

of the solution.

We thus apply the above scaling technique in our Newton iteration process, solving
the index-1 DAE system (3.19)-(3.21). As shown in Figure 3.3, our Newton iteration
matrix consists of two decoupled ABD matrices. COLROW is applied twice to solve
the two linear equation systems separately. The four subblocks, which are associated
with the boundary conditions, represent the equations corresponding to the algebraic
constraints. We scale these four NPDE by 2N P DE subblocks and the corresponding
rows of the right-hand side by 1/h,. However, for efficiency considerations, DASSL
does not necessarily compute a new Jacobian matrix at each step. It is possible for
DASSL to use the same Jacobian matrix (already decomposed in LU form) even when
the stepsize has changed slightly. As mentioned above, we scale the subblocks before
the linear system solver performs an LU decomposition of the Jacobian. Then we
save this stepsize and use it to perform scaling over the corresponding components of
the right-hand side. Three subroutines inside DASSL, DAINI, DASTP and DASLV,

are modified to implement the proper scaling process.

46

3.2.8 Other Modifications to DASSL

In addition to the modifications mentioned above, (i.e., introducing COLROW as a
linear system solver and scaling the Newton iteration to overcome large condition
numbers,) we have made some further modifications to DASSL, which are associated

with our adaptive strategy and the MOL approach.

First, within DASSL there is an option for specifying an absolute tolerance, ATOL,
and a relative tolerance, RTOL. Users can choose them both as scalars or both
as vectors. However, if they are set to be vectors, each of them must have the
dimension NC x NPDE, i.e., the number of equations of the DAE system. This
flexibility is unnecessary for a MOL code, which requires the same tolerance on all
DAEs corresponding to the same PDE component. Therefore, we have changed the
dimension of ATOL and RTOL to be NPDE in the case where they are to be
vectors. The B-spline coefficients corresponding to the same PDE component will

thus be determined to the same tolerance. This modification is limited to the routines,
DASSL and DAWTS.

The normal mode of operation of DASSL is that it integrates from the start to the
end without providing any intermediate output. In many situations it is useful to
have information at the end of every timestep. DASSL provides an option to operate
in this mode. Since the approximate spatial error is calculated after each step in
BACOL, we set INFO(3) = 1, prior to the call to DASSL. This requires DASSL to
return after each successful step. If we decide that there is no remeshing needed, we
will simply recall DASSL to continue. However, if we decide to perform a remeshing
and continue integration afterward, we first discard the current step and go back
the the last accepted step. We do not allow DASSL to increase the stepsize for the
next attempt; i.e., in the first step after a remeshing, the stepsize that is used is not
allowed to be greater than the stepsize used in the last accepted time step (this is
similar with the standard strategy for ODE cases after a time step failure; See, e.g.,

[24]). If the predicted stepsize is greater than the previous one, we set it equal to the

47

previous stepsize. The philosophy is that we want to be conservative in the first step
after a remeshing. Based on the same reasoning, the order of the BDF method which
is employed in the first step after a remeshing is not allowed to be greater than the

order used in the previous successful step.

During our numerical experiments, we used the UNIX command, gprof, to obtain
the execution time for each subroutine. (See Section 4.2 for results.) We found that
DANRM, a subroutine in DASSL which computes the norm of a vector, represented
about 20% of the total running time. In its double precision version, DDANRM, has

only twenty lines of code, as follows:

DOUBLE PRECISION FUNCTION DDANRM (NEQ, V, WT, RPAR, IPAR)
INTEGER NEQ, IPAR(*)
DOUBLE PRECISION V(NEQ), WT(NEQ), RPAR(*)
INTEGER I
DOUBLE PRECISION SUM, VMAX
Cxx*FIRST EXECUTABLE STATEMENT DDANRM
DDANRM = 0.0DO
VMAX = 0.0DO
DO 10 I = 1,NEQ
IF(ABS(V(I)/WT(I)) .GT. VMAX) VMAX = ABS(V(I)/WT(I))
10 CONTINUE
IF(VMAX .LE. 0.0D0) GO TO 30
SUM = 0.0D0
DO 20 I = 1,NEQ
20 SUM = SUM + ((V(I)/WT(I))/VMAX)=**2
DDANRM = VMAX*SQRT (SUM/NEQ)
30 CONTINUE
RETURN
C-—mmm- END OF FUNCTION DDANRM------

48

END

If we count the square operator as a multiplication, there are approximately 5* NEQ
multiplications (a division takes roughly the same time as a multiplication), where
NEQ is the length of the vector. It is interesting to see that V' (I)/WT(I) is calculated
three times. However, if the compiler provides a sufficient level of optimization,

V(I)/WT(I) can be calculated only twice by storing the intermediate value in the
statement

IF(ABS(V(I)/WT(I)) .GT. VMAX) VMAX = ABS(V(I)/WT(I)).

We therefore assume that there are approximately 4 * NEQ multiplications over-
all. If we can create another vector of length NEQ, which serves as a storage for
V(I)/WT(I), we do not need to calculate these values again. Therefore, only 3* NEQ
multiplications are needed; i.e., about 25% is saved in DDANRM and about 5% is
saved in the total running time. We therefore used a part of RPAR, which is a pa-

rameter array, to save V(I)/WT(I). The modification is straightforward, as follows

DOUBLE PRECISION FUNCTION DDANRM (NEQ, V, WT, RPAR, IPAR)
INTEGER NEQ, IPAR(*)

DOUBLE PRECISION V(NEQ), WT(NEQ), RPAR(*)

c
INTEGER I
DOUBLE PRECISION SUM, VMAX
c
double precision temp
integer itemp
integer iwkdnm
parameter (iwkdnm = 49)
c rpar(ipar(iwkdnm)) is the work storage

c for the modified version of the

(o4

c

c

subroutine DDANRM.

49

Cx**FIRST EXECUTABLE STATEMENT DDANRM

DDANRM = 0.0DO

VMAX = 0.0DO

itemp = ipar(iwkdmm) - 1
DO 10 I = 1,NEQ

itemp = itemp + 1
rpar(itemp) = abs(v(i)/wt(i))

if (rpar(itemp) .gt. vmax) vmax = rpar(itemp)

10 CONTINUE
IF(VMAX .LE. 0.0DO) GO TO 30
SUM = 0.0DO
c
itemp = ipar(iwkdnm) - 1
c
DO 20 I = 1,NEQ
c
itemp = itemp + 1
temp = rpar(itemp)/vmax
sum = sum + temp * temp
20 continue
c
DDANRM = VMAX*SQRT(SUM/NEQ)
30 CONTINUE

RETURN

50

Commme END OF FUNCTION DDANRM--=---
END

The effect of the above modification is shown in Chapter 4. As we know, DASSL was
not originally developed for MOL codes. Thus it is possible some parts of DASSL
may not be optimal if the number of ODEs or DAE: is large, as is the case when the
number of subintervals is large. This is an open question, which is beyond the scope

of this thesis, but deserves attention in the future.

3.3 Spatial Adaptivity

In this section we first introduce an a posteriori spatial error estimate, and an h-
refinement algorithm based on this estimate is then derived. The approximate spatial
error is computed at each step, with a remeshing being done when the error estimate
is larger than the tolerance or the mesh is not asymptotically equidistributed (to be
described later). After the new mesh is obtained, BACOL will repeat the current
time step. Instead of using a local refinement as considered by Adjerid et al. [4],
BACOL employs a global mesh refinement strategy. During the remeshing process,
BACOL will also estimate the number of intervals needed for the new mesh. If the
code decides that the current number of intervals is too large or too small, a remeshing
is then carried out with the newly estimated number of intervals. Trouble with this
process can arise when the number of intervals is very small. Section 3.3.3 will discuss

an implementation which deals with this issue.

3.3.1 Spatial Error Estimation

Many successful a posteriori spatial error estimates for solutions of parabolic or elliptic
problems are obtained by using a piecewise polynomial approximation having a higher

degree than that used for the representation of the solution, e.g., [5, 16, 17]. Some

51

error estimation techniques have been proven to converge to the exact error [5, 57|,

in restricted cases, e.g., in the H!-norm when a fixed mesh is used.

In this thesis, the approximate solution, U(z,t), is calculated in a piecewise poly-
nomial subspace of degree p, and a second piecewise solution, U(z,t), is computed
in the similar subspace of degree p + 1. Let variables without bars denote variables
corresponding to the piecewise solution of degree p, and variables with bars denote
variables corresponding to the piecewise solution of degree p + 1. For example, &
represents the [-th collocation point for the piecewise polynomial solution of degree
p, while & represents the I-th collocation point for the piecewise polynomial solution
of degree p + 1. Thus from (3.19)-(3.21) we obtain

bL(t? U(O’ t)’ UI(07 t)) = 0? (3-50)
i(p—1)+2
Y Bul@Wn,(t) = £t&UEE), UG, 1), Unal&s), (3.51)

m=(i—1)(p-1)+1
where & is one of the p — 1 collocation points in the

i-th subinterval, i=1,...,N, s=1,...,NPDEFE,

br(t,U(1,t),U.(1,t)) = O, (3.52)

be(t, U(0,t),0.(0,t)) = 0, (3.53)

i-p+2

Y Ba(@)ns(t) = fit,& 0), U, 8), Usa(Gs 1)), (3.54)
m=(i—1)p+1

where & is one of the p collocation points in the
i-th subinterval, ¢ =1,...,N, s=1,...,NPDE,
bR(t’ 6(11 t)w [71:(11 t)) = 0. (3'55)

A natural way to treat (3.50)-(3.55) is as two separate DAE systems. However, this
would require running two copies of DASSL, and it would mean that different time

steps could be employed for the computation of the two solutions. Thus interpolation

52

of one of the solutions would be unavoidable, during the calculation of the spatial
error estimate at a given time. This would considerably increase the complexity of
the algorithm. More seriously, this would make it difficult to continue the integration
after a remeshing, because the values of the two solutions at the previous steps would
have to be interpolated from two different sources. After a remeshing, the error
estimate (to be discussed shortly) based on the two solutions on the new mesh might
be large enough to cause a failure of the spatial error test. For these reasons, we will
treat (3.50)-(3.55) as a single DAE system. Then no interpolation in time is needed
and, after a remeshing, both solutions at the previous steps on the new mesh can be

interpolated using the piecewise solution of degree p + 1. Equation (3.45) becomes

U‘(sl"t"‘i) = g(<it"—i)v l=1,...,NC‘,
ﬁ‘(gl.xtn—i) = ﬁ(gi“)tn—i)y l=1,...,1V—C.,

where i =0, ...,k and k is the order of the BDF method.

An a posteriori spatial error estimate is obtained by comparing the two solutions
appearing in (3.50)-(3.55). Let ATOL, and RTOL, denote the absolute and relative
tolerance for the s-th component of the PDE system. Using a norm defined as follows,
the normalized error estimate for the s-th PDE component over the whole problem

interval [0, 1], is given by

1Bl = \// (ATOL +RTOL |U[)2 dz, (3.56)

while the normalized error estimate, E;, for the i-th subinterval, is calculated from

NPDE = 2
U, -0,
2 “‘J 21 /I (ATOL,-{-RTOLSIUSI) 4 (3.57)

wherez=1,...,N.

53

Spatial Error Test I

The approximate error is computed at each successful time step. As well we compute

the parameters

N ol 1
- N B ||Y/ e+
71 = max ”EIHL/(P'H») and 7, = Zz_l “ 1“)

ax, N (3.58)

We note that r, represents a measure of the maximum subinterval error estimate
while r, represents the average. The ratio 1 /72 gives an indicator of the error distri-
bution over the mesh subintervals. Specifically, if it is large, the maximum subinterval
error estimate is significantly larger than the average one and the mesh is not well-
distributed. At each step, BACOL checks to see if

<o (3.59)

T2

We call a mesh which satisfies (3.59) an asymptotically equidistributed mesh (which
is slightly different from the definition in Page 364, [7]).

If it is the initial time step, or if (3.59) is not satisfied, or if

1Bl =, _mas, BN 21, (5.60)

an adaptive strategy (to be described shortly) is invoked. We note that if RTOL, =0,
|Es|| > 1implies that the L?>-norm error estimate is larger than the absolute tolerance,
ATOL,, in the s-th component of PDEs. We call (3.59), (3.60), spatial error test L.

3.3.2 The Remeshing Strategy

Computational evidence [70] indicates that, by using a collocation method based on
B-splines (EPDCOL [70]) with a fixed uniform mesh, the L?-norm error is O(hP*),
where h = maxi<icy hi. Let Us(z,t) and U,(z,t) be the two approximate solutions

for the s-th PDE component, as discussed in the previous subsection. Numerical

94

results in [70] show that the L2-norm error estimate for [z;_,Zi],

Ti-1

|Us(z, t) — Us(z, t)||2 = \/ - (Uy(z, t) — Us(z, t))2 dz

converges to the exact error in the L2-norm as h — 0,

|Us(z,t) — us(z, t)]|l2 = \/ (Us(z, t) — us(z, t))? dz,

where s =1,..., NPDFE and u, represents the exact solution for the s-th component
of PDEs.

Numerical experiments in Section 5.6 indicate the order of convergence in L?-norm is
equal to p+ 1, i.e,
[Ell2 = O(h**!) < ChP*,

where h; = z; — z;—1, h = max,<;<n h; and | - ||2 is the L?-norm. We note that
1
Bl < E
I1B1 < oIl
C
< hp-'l-l’
- minlSSSNPDE ATOLS

We develop our remeshing strategy based on the approximate error formulas (3.56)
(3.57) and the assumption that

IE:l oc AE*, (3.61)
IEll o« h**, (3.62)

where h; = z; — z;—|, h = max;<i<n hi-

For boundary value problems for ODEs, we have the following result (e.g., (7]). When
N — o0, using a quasiuniform mesh (i.e., all meshes satisfying h < Khpmi, where

Rmin = minj<;<n hi, for some fixed constant K), a numerical method of order p+1
yields a O(N—®+1) error, i.e.,

_ — —(p+1)
lsggguglus(x,t) Us(z,t)| = O(N)s

35

where u4(z,t) is the exact solution of the s-th PDE component. We will now assume

that the following property,
Bl oc N=®+D), (3.63)

holds for PDEs.

As indicated earlier, at the initial time step or any step at which either (3.59) or

(3.60) is satisfied, our remeshing strategy is invoked.

The remeshing strategy is a critical component of our algorithm. Ascher et al. de-

scribe the following paragraph on page 380 of [7].

One of the most important things to bear in mind when one is produc-
ing a nontrivial implementation of mesh selection is this: Before adding
sophisticated precautions, it is important that one first have a good un-

derstanding of the key elements of the basic strategy.

We will now discuss a number of details associated with our remeshing algorithm.

Spatial Error Test II

We first note a fact that if the number of intervals is not large enough, frequent
remeshing can happen, i.e., there will be only a few time steps between remeshings.
This may cause serious difficulty in that DASSL may be unable to continue the time
integration. For instance, if there are only 2 successful steps between 2 remeshings and
DASSL is using a 5-th order BDF method, then in order to continue the integration
in an efficient manner, BACOL will need to perform interpolation of the solution
values from up to 6 previous time steps; i.e., Yo—;, ¢ = 0,...,5. Consequently, the
residual may not be sufficiently accurate because y,—;, ¢ = 2,...,5, will have been
interpolated twice; i.e., they have been interpolated in both remeshings. Then DASSL

may be unable to continue integration with the same order and the same stepsize.

56

More seriously, DASSL may fail completely; i.e., it may not be able to restart even

at order 1 and with a very small stepsize.

A second difficulty arises when the number of intervals is greater than necessary, since
BACOL will then take a considerable number of time steps before the next remeshing.
This is undesirable because it is inefficient to solve an unnecessarily large ODE or DAE
system. It is difficult to tell how long we should continue the time integration with the
current mesh before performing the next remeshing. Fortunately, we have noted that
between two consecutive remeshings, the normalized error estimate, in most cases,
increases gradually. Therefore, if we can arrange that the normalized error estimate
for the first step after a remeshing is in a suitable range, [c1,¢2), 0 < ¢ < ¢z <1, the
next remeshing will be performed after a reasonable number of time steps. We will
thus consider the corresponding number of mesh points to be approzimately optimal.
In BACOL, we let ¢; = 0.1 and ¢; = 0.4. We use a mesh, {z;}Y, where N* is
the predicted number of mesh points (the strategy to predict the number of intervals
will be discussed shortly). After a successful step by DASSL, if the normalized error

estimate, || E||, satisfies spatial error test II, defined as follows,

:—1 < 2 and (3.64)
2
01 < ||[E|| < 04, (3.65)

then we accept the current step. Otherwise, we reject the step.

Predicting N*

We assume that BACOL (using DASSL) has taken a time step and that the normal-
ized spatial error estimate has been computed. We also assume that the spatial error
test I has indicated that a remeshing is required. Our action depends on how many

times we have attempted a remeshing for the current time.

e If it is the first remeshing at the current step, we use the same number of

intervals; i.e., redistribute the mesh without changing the number of intervals.

57

The philosophy is that most of time when the spatial error test I fails it is not
because more intervals are needed, but is because the current mesh is not well
distributed.

e If it is not the first or fifth attempted remeshing, BACOL will predict the
number of intervals suitable for the current time, using a strategy to be discussed
shortly.

e Ifitis the fifth attempted remeshing, then BACOL will perform a cold start with
the same number of intervals as the last accepted step. This idea comes from
the belief that if BACOL has failed to pass the spatial error test II after four
attempted remeshings, then the error estimates from the previous time, where

a BDF method with order greater than 1 was used, are likely not reliable.

Suppose that we perform a remeshing with a predicted N* value but our approximate
solution still fails the spatial error test II. Our experience shows that most of the time
the mesh is well distributed so that (3.64) is satisfied but the normalized error estimate
fails to satisfy (3.65). From (3.63), we have

IEY oc N=E+D.

We next require that the normalized error estimate after remeshing, [|E*||, will be

equal to 0.2. Then we have

|E| o N-®*, (3.66)
02 = ||E*|| o« (N7)~trD, (3.67)
Dividing (3.66) by (3.67), we obtain
L2l N\
02 “\~) - (3.68)

In our remeshing strategy, we set

[0 _ (N.)p-f-l ’ (3.69)

2 N

58

This gives us N*, the predicted number of intervals for the current time as follows.

1/(p+1)
N*=N ('%%”) . (3.70)

We note that if | E|| > 0.4, N* will be greater than N; on the other hand, if | E|| < 0.1,
N* will be less than N.

Global Mesh Refinement

Once the new number of intervals N* is determined based on the equidistribution

principle, BACOL tries to generate a new mesh, {z?}Y, which satisfies

NPDE s S ” L
; L:-x <ATOL3+RTOL3‘U3|> dz = constant, (3.71)

where the constant in (3.71) is

iy P 2A A
N* .

This process is straightforward since we assume that || £;|| is uniform [z;_;, z:].

Algorithm Summary

(The first step is a special case: we apply the spatial error test II, and if it fails,
we predict N* using (3.70) and apply a cold start.) We now present the algorithm
summary of BACOL as follows.

1) Assume that we have taken a step from t; to t;y;. If this is the first or fifth
attempted remeshing for t;, set N* = N; otherwise predict N* from (3.70).

2) Determine a new mesh, with N* determined from 1), using the global mesh redis-
tribution algorithm based on (3.71).

3) Interpolate solution values at current and possibly previous time steps from the

previous mesh to the new mesh.

59

4) If this is one of the first four attempted remeshings, perform a continuation using

DASSL from ¢;; otherwise, perform a cold start using DASSL from ¢;.
5) Compute the normalized spatial error estimate and apply spatial error test I

6) If spatial error test II is satisfied, accept this step and continue with DASSL;
otherwise, reject this step and go back to 1).

3.3.3 Cycle Avoidance

In this subsection we consider a potential danger of our remeshing strategy, and a

modification of our implementation to avoid this difficulty.

If the number of intervals necessary is very small and the order of the collocation
method is high, our remeshing strategy may have trouble finding a suitable number
of intervals. For instance, assume N =4, p =9, and || E|| = 0.5. The new number of
intervals is then computed by (3.71). We then obtain N* ~ 4.38. If such a situation
arises (the code indicates that more points are necessary but 0 < N* — N < 1),

BACOL will let N* = N + 1. However, if we try N* = 5, a simple calculation, using

the formula lE[l AP
iwr= (%) 372

shows that ||E*|| =~ 0.067. Therefore, BACOL will remesh again because ||E*|| <0.1.
The required number of intervals will be predicted again; this calculation will give
4.38 again. If the code indicates that fewer intervals are needed but 0 < N -N* <1,
BACOL will set N* = N — 1. Thus N* will be 4 again. We call this undesirable
behavior a cycle. Fortunately, we have observed that this only happens when N is very
small and p is large, and when the solution is easy to compute. In this situation, the
execution time is typically small, and we can afford to use a slightly larger number
of subintervals than predicted. Assuming that we have N* = N + 1, we need to

determine what range of N values leads to a situation where

lE|>04 and [|E*|| <0.1.

60

To answer this question, we once again use (3.72) and obtain

NEL _ (N+1\"
o< qz= () (373

We recall that BACOL requires the degree of polynomial, p, to be in the range
3 < p < 11, i.e., the maximum value of p is 11. Substituting p = 11 into (3.73), we
see that a cycle could happen if

N < 8.17. (3.74)

Therefore in BACOL we set a parameter N = 15 and impose the condition that if
N < N, the spatial error test II will be modified to be

L < 2 and (3.75)
T2
IEl < 0.4, (3.76)

i.e. if N is less than or equal to 15, we do not care too much about whether N is

possibly larger than necessary since the associated computation will not be expensive.

3.3.4 The Remeshing Algorithm

We now present the overall remeshing strategy as follows:

10 if (the computation has reached the output time) go to 30
20 take next time step
if (ry/re > 2) then
reject the current step and perform a remeshing
go to 20
else
if (it is the initial step) or (it is the first step after remeshing) then
if (0.1 < ||E|| <0.4) then
accept the current step and continue the integration
go to 10

30

else

reject the current step and perform a remeshing
go to 20

endif

else

if (|| E]| < 1) then
accept the current step and continue the integration
go to 10
else
reject the current step and perform a remeshing
go to 20
endif

endif

endif
stop

61

Chapter 4

Description of the BACOL

Software

This chapter first describes the subroutines included in the BACOL software package.
Then in Section 4.2 the user supplied subroutines are discussed. A sample program
is given in Section 4.3. Finally in Section 4.4 the structure of the BACOL software is

described and a profile of computer time usage for the main subroutines is presented.

4.1 A Description of all Subroutines

This section describes the four main components of the BACOL software package,
including the driver subroutine, the core integrator, miscellaneous subroutines for
setting up and solving the nonlinear equations, and the subroutines for remeshing.
As indicated earlier, a number of the important computational tasks performed in
BACOL are implemented using existing packages; we will consider these packages

later in this section. We first introduce the subroutines which are new.

BACOL. This routine is the driver for the entire package. It first checks the user’s

input for legality and performs initialization tasks such as setting parameters

62

63

and allocating and defining the locations and lengths of the storage array re-
quired by the package. It also calls COLPNT, INIY, INIYP, and MESHSQ
to complete the initialization. After that, BACOL makes repeated calls to the
core integrator DASSL in order to take time steps. After each step, the spatial
error estimate is computed by calling ERREST. If the spatial estimate is satis-
factory then this step is accepted and SUCSTP is called to update the current
information in case there is a remeshing in the future. On the other hand, if the
spatial error estimate is unsatisfactory, this step is rejected and BACOL calls
REMESH, REINIT, and DIVDIF to carry out a remeshing; this may involve
modification of the location and lengths of the storage array. After a remesh-
ing, BACOL will call DASSL again, beginning at the last successful step. This
process is repeated until a time step is accepted or an error condition occurs.
When the output time T}, is reached, BACOL returns the B-spline coefficients
which are used by the VALUES routine to calculate the values of U(z, Tou.) for

any z, Z, < < 2.

VALUES. This is the subroutine that the user must call in order to obtain the
values of the approximate solution and derivatives at T,, and at any given
spatial points. When the BACOL software performs a remeshing, VALUES is
also called within BACOL to obtain the values at the new collocation points
at the current step and previous steps which are required for a continuation of

the integration. This subroutine calls the B-spline subroutines BSPLVD and
INTERV.

COLPNT. This subroutine calculates the Gauss-Legendre collocation point sequence,

{&}XS.

INITY, INIYP, MESHSQ. The main purposes of these subroutines are to deter-
mine consistent initial conditions for DASSL, to generate the values of the
piecewise polynomial and its first and second spatial derivatives at the collo-

cation points, and to prepare for calculating a future spatial error estimate.

64

MESHSQ calculates the spatial mesh size sequence and generates the points
and weights for the Gaussian quadrature rule used in the spatial error estimate.
INIY calculates the N subblocks for gﬁ—, shown in Figure 3.1 and determines
the values of the B-spline coefficients at ¢ = 0, y(0). INIYP computes the
first derivatives, 3'(0). Combining y(0) with 3/(0) will give consistent initial
conditions for DASSL.

ERREST. This subroutine computes the spatial error estimate for each subinterval,

and for each component of the PDEs. It also decides whether or not a remeshing

is necessary.

ERRVAL. This subroutine computes the approximate solutions at the Gaussian
points when a Gaussian quadrature rule is applied to obtain the values of the
integral in the formulas for the spatial error estimates, (3.56) and (3.57). It is
called by ERREST.

SUCSTP. After each accepted time step, this subroutine stores the information

which is necessary if a remeshing is required at a later step.

REMESH, REINIT, DIVDIF. These subroutines implement the remeshing pro-
cess, a very important component of the BACOL package. REMESH gener-
ates a new mesh by equidistributing the error measure, using (3.71). REINIT
prepares for the continuation of the time integration after a remeshing; tasks
include: calculating the spatial mesh step size sequence and the collocation
point sequence, computing the values of the piecewise polynomial functions
and their first and second derivatives at the collocation points, and computing
the B-spline coefficients at the previous steps. DIVDIF generates the divided
differences which are required by DASSL.

JAC, CALJAC. These two subroutines compute the Jacobian matrices. We recall

that two ABD matrices are combined in a decoupled form to represent the

65

Jacobian matrix. Therefore, JAC calls CALJAC twice and each time CALJAC

computes one of the ABD matrices.

RES, CALRES. These two subroutines compute the residual of a Newton system
as required by DASSL. As above, RES calls CALRES twice and each time
CALRES computes the residual corresponding to one of the ABD matrices.

EVAL. The purpose of this routine is to evaluate the piecewise polynomial functions
and their first and second derivatives at a given collocation point. The difference
between VALUES and EVAL is that VALUES is able to compute the piecewise
polynomial solution at any point or points and for any derivatives which are
less than or equal to p. Furthermore, VALUES can also estimate these values

at previous time steps while EVAL can only calculate the values for the current

step.

We now briefly describe the subroutines which are included in BACOL but were

developed by others.

DASSL The DASSL package, developed by Petzold [61], is the core time integrator
for the BACOL package. As discussed in Chapter 3, some modifications have
been made to DASSL.

BSPLVD, BSPLVN, INTERYV. These subroutines, part of the B-spline package
developed by De Boor [21, 22], are used to generate the values of the B-spline

basis functions and their derivatives at any desired points.

CRDCMP, CRSLVE. These subroutines comprise the COLROW package written
by Diaz et al. [30]. CRDCMP is used to factor the ABD matrix and CRSLVE

is used to solve the corresponding linear system.

GAULEG. This subroutine was developed by Keast [45]. It calculates the points
and weights for a Gauss-Legendre or Gauss-Lobatto quadrature rule over the
interval [—1,1] or [0, 1]. It is called by COLPNT and MESHSQ.

66

4.2 User Supplied Subroutines

The user is required to provide seven subroutines which define the form of the PDE
problem. For given input values of 2 and t and corresponding input values of U, Uy,

and U,., the subroutines do the following tasks:

F. This subroutine computes the values, f,(t,z, U(z, t), Uz(z,t), Uz(z,t)), s = 1,...,
NPDE, representing the right-hand side of (3.10). It is needed in the calcula-

tion of the Newton residuals, and for setting up the collocation equations.

DERIVF. This subroutine is used to provide the information required in (3.40) to
form the analytic Jacobian matrix for the DAE system. It computes 9f/dU,
df /08U, and Of [OU,.

BNDXA. This subroutine computes the boundary condition at the left boundary

point ., namely, br (¢, U(Za, t), Uz(za, t)), which is needed in the calculation of
the Newton residuals.

BNDXB. This subroutine computes the boundary condition at the right boundary

point 3, namely, br(t, U(zs, t), Uz(zs, t)), which is needed in the calculation of
the Newton residuals.

DIFBXA. This subroutine is used to define the differentiated boundary condition
at the left boundary point z,. It computes 8b;/0U and 0br/OU, which are
needed in (3.36)-(3.39) for the analytic Jacobian matrix, and 9b./dt which is
needed in (3.41)-(3.44) to calculate consistent initial conditions, y'(0)-

DIFBXB. This subroutine is used to define the differentiated boundary condition
at the right boundary point z;. It computes 9bgr/0U and Gbr/dU, which are
needed in (3.36)-(3.39) for the analytic Jacobian matrix, and dbg/dt which is
needed in (3.41)-(3.44) to calculate consistent initial conditions, y'(0)-

UINIT. This subroutine computes the initial values U(z, to) for any given z.

67

The user-supplied subroutines are usually easily constructed and an example showing

these routines is presented in the following section.

4.3 Sample Program

To illustrate the use of BACOL, we present a driver program and the user-supplied

subroutines to solve Burgers’ equation

U = —UlUg + €Uzg, O<z<l, t>0,

u(z,0) = 0.5-0.5tanh (:11—6(:1. —0.25)) , 0<z<L1,
u(0,t) = 0.5—0.5tanh (Zlg(—t - 0.25)) . t>0,
u(1,t) = 0.5-0.5tanh (i(OJS - t))) t>0,

where € = 10~3. The input parameters are chosen as follows: both the absolute
tolerance, ATOL, and the relative tolerance, RTOL, are chosen to be scalars, and we
set ATOL = RTOL = 10~%; the degree of the piecewise polynomial is chosen as 3;
i.e., there are 2 collocation points in each subinterval; the initial mesh is chosen as the
uniform mesh where the number of subintervals is 10; the output time Toy. is equal to
1. The approximate solution values at T, are calculated at z values corresponding

to 101 uniformly distributed points in [0, 1] and are compared with the exact solution.

We first present the main program.

C
C CONSTANTS:

INTEGER KCOL
c KCOL IS THE NUMBER OF COLLOCATION POINTS
C TO BE USED IN EACH SUBINTERVAL, WHICH IS
C EQUAL TO THE DEGREE OF THE PIECEWISE
C POLYNOMIALS MINUS ONE.

+ + + +

PARAMETER
INTEGER

PARAMETER
INTEGER

PARAMETER

INTEGER

PARAMETER

INTEGER

PARAMETER

INTEGER

PARAMETER

INTEGER

PARAMETER
INTEGER

68

1 < KCOL < 11.

(KCoL = 2)

NPDE

NUMBER OF PDES

(NPDE = 1)

NINTMX

MAXIMAL NUMBER OF INTERVALS ALLOWED

(NINTMX = 2000)

MAXVEC

THE DIMENSION OF THE VECTOR OF

BSPLINE COEFFICIENTS

(MAXVEC = NPDE*(NINTMX*KCOL+2))

LRP

SEE THE COMMENT FOR RPAR

(LRP =134+NINTMX#* (35+35*KCOL+31*NPDE
+38*NPDE*KCOL+8*KCOL*KCOL) +14*KCOL
+79*NPDE+NPDE*NPDE* (21
+4*NINTMX*KCOL*KCOL+12+«NINTMX+KCOL
+6xNINTMX))

LIP

SEE THE COMMENT FOR IPAR

(LIP = 115+NPDE*((2*KCOL+1)*NINTMX+4))
LENWRK

THE DIMENSION OF WORK ARRAY WHEN WE
CALL VALUES

(LENWRK =(KCOL+2)+KCOL*(NINTMX+1)+4)
NUOUT

THE DIMENSION OF UQUT

PARAMETER
DOUBLE PRECISION

PARAMETER
DOUBLE PRECISION

PARAMETER

69

(NUOUT = NPDE*101)

Q

a Q0 Q O

aQ Q Q O

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

INTEGER

XA

THE LEFT BOUNDARY POINT
(XA = 0.0D0)

XB

THE RIGHT BOUNDARY POINT
(XB = 1.0D0)

TO

TO < TOUT IS THE INITIAL TIME.

TOUT
TOUT IS THE DESIRED FINAL OUTPUT TIME.

ATOL (NPDE)

ATOL IS THE ABSOLUTE ERROR TOLERANCE
REQUEST AND IS A SCALAR QUANTITY IF
MFLAG(2) = 0.

RTOL (NPDE)
RTOL IS THE RELATIVE ERROR TOLERANCE

REQUEST AND IS A SCALAR QUANTITY IF
MFLAG(2) = 0.

NINT
NINT IS THE NUMBER OF SUBINTERVALS
DEFINED BY THE SPATIAL MESH X.

aQa o Q a aQ O aQ

Q

Q OO Q QO Q

aQa QO Q Q

QO QO a

DOUBLE PRECISION

INTEGER

WORK STORAGE:
DOUBLE PRECISION

INTEGER

70

X(NINTMX+1)

X IS THE SPATIAL MESH WHICH DIVIDES THE
INTERVAL [X_A,X_B] AS: X_A = X(1) <
X(2) < X(3) < ... < X(NINT+1) = X_B.

MFLAG(S)
THIS VECTOR OF USER INPUT DETERMINES
THE INTERACTION OF BACOL WITH DASSL.

RPAR(LRP)
RPAR IS A FLOATING POINT WORK ARRAY
OF SIZE LRP.

IPAR(LIP)
IPAR IS AN INTEGER WORK ARRAY
OF SIZE LIP.

DOUBLE PRECISION

INTEGER

Y(MAXVEC)

ON SUCCESSFUL RETURN FROM BACOL, Y IS
THE VECTOR OF BSPLINE

COEFFICIENTS AT THE CURRENT TIME TO.

IDID

IDID IS THE BACOL EXIT STATUS FLAG
WHICH IS BASED ON THE EXIT STATUS FROM
DASSL ON ERROR CHECKING PERFORMED BY
BACOL ON INITTALIZATION.

71

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

EXACTU(NPDE)

EXACT SOLUTION AT A CERTAIN POINT USED
ONLY IN EXPERIMENTS WHERE IT IS KNOWN.
UOUT (NUQUT)

THE APPROXIMATION SOLUTIONS AT A SET
OF POINTS.

VALWRK (LENWRK)

VALWRK IS A WORK ARRAY IN VALUES.
X0UT(101)

XOUT IS A SET OF SPATIAL POINTS FOR
OQUTPUT.

COEFF

COEFF IS THE COEFFICIENT OF UXX IN THE
BURGERS’ EQUATION.

O QO Q a Q

COMMON /BURGER/ COEFF
INTEGER I
SUBROUTINES CALLED:
BACOL
VALUES
TRUU

SET THE REMAINING INPUT PARAMETERS.

TO = 0.0DO

TOUT = 1.0D0O
ATOL(1) = 1.D-4
RTOL(1) = ATOL(1)

10

20

72

NINT = 10
COEFF = 1.D-3

DEFINE THE MESH BASED ON A UNIFORM STEP SIZE.

X(1) = XA

DO 10 I
X(I)

CONTINUE

X(NINT+1) = XB

2, NINT
XA + ((I-1) * (XB - XA)) / NINT

INITIALIZE THE MFLAG VECTOR.
DO20I =1, 4
MFLAG(I) = 0
CONTINUE
MFLAG(S) =1

WRITE(6,’(/A, I3, A, I4, 2(A, E8.2))’) ’KCOL =’, KCOL, ’ NINT =’,
& NINT, ’ ATOL(1) =’, ATOL(1), ’ RTOL(1) =’, RTOL(1)
WRITE(6, ’(/A, E8.2)’) ’EPS =’, COEFF

CALL BACOL(TO, TOUT, ATOL, RTOL, NPDE, KCOL, NINTMX, NINT, X,
& MFLAG, RPAR, LRP, IPAR, LIP, Y, IDID)

CHECK FOR AN ERROR FROM BACOL.
WRITE(6,’(A, I5)’) 'IDID =’, IDID
IF (IDID .LT. 2) GOTO 100

XouT(1)
DO 30 I

XA
2, 100

"

73

XOUT(I) = XA + DBLE(I - 1) * (XB - XA)/100.DO
30 CONTINUE
X0UT(101) = XB

CALL VALUES(KCOL, XOUT, NINT, X, NPDE, 101, O, 1, UOUT, Y, VALWRK)

DO 40 I =1, 101
CALL TRUU(TOUT, XOUT(I), EXACTU, NPDE)
WRITE(6, ’(/3E18.6)°) XOUT(I), UOUT(I), EXACTU(1)
40 CONTINUE

GOTO 9999

100 CONTINUE
WRITE(6,’ (A)’) °CANNOT PROCEED DUE TO ERROR FROM BACOL.’

9999 STOP
END

We next present the user-supplied subroutines. The user interface for BACOL is
similar to the one of EPDCOL and MSCPDE [60]. As a result, the subroutines
describing the problem are the same as those in MSCPDE, and they are taken from
[60].

C
SUBROUTINE F(T, X, U, UX, UXX, FVAL, NPDE)
C
C PURPQOSE:
C THIS SUBROUTINE DEFINES THE RIGHT HAND SIDE VECTOR OF THE
C NPDE DIMENSIONAL PARABOLIC PARTIAL DIFFERENTIAL EQUATION

C UT = F(T, X, U, UX, UXX).

74

aQa O aQ Q

O Q o a

Q Q O QO 0

SUBROUTINE PARAMETERS:
INPUT:
INTEGER

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

QUTPUT:
DOUBLE PRECISION

NPDE
THE NUMBER OF PDES IN THE SYSTEM.

T
THE CURRENT TIME COORDINATE.

X
THE CURRENT SPATIAL COORDINATE.

U(NPDE)
U(1:NPDE) IS THE APPROXIMATION OF THE
SOLUTION AT THE POINT (T,X).

UX(NPDE)

UX(1:NPDE) IS THE APPROXIMATION OF THE
SPATIAL DERIVATIVE OF THE SOLUTION AT
THE POINT (T,X).

UXX(NPDE)

UXX(1:NPDE) IS THE APPROXIMATION OF THE
SECOND SPATIAL DERIVATIVE OF THE
SOLUTION AT THE POINT (T,X).

FVAL(NPDE)

75

FVAL(1:NPDE) IS THE RIGHT HAND SIDE
VECTOR F(T, X, U, UX, UXX) OF THE PDE.

DOUBLE PRECISION COEFF
COMMON /BURGER/ COEFF

C
C
C ASSIGN FVAL(1:NPDE) ACCORDING TO THE RIGHT HAND SIDE OF THE PDE
C IN TERMS OF U(1:NPDE), UX(1:NPDE), UXX(1:NPDE).
C
FVAL(1) = COEFF*UXX(1) - U(1)=*UX(1)
c
RETURN
END
C
SUBROUTINE DERIVF(T, X, U, UX, UXX, DFDU, DFDUX, DFDUXX, NPDE)
c
C PURPOSE:
C THIS SUBROUTINE IS USED TO DEFINE THE INFORMATION ABOUT THE
c PDE REQUIRED TO FORM THE ANALYTIC JACOBIAN MATRIX FOR THE DAE
c OR ODE SYSTEM. ASSUMING THE PDE IS OF THE FORM
C UuT = F(T, X, U, UX, UXXD
C THIS ROUTINE RETURNS THE JACOBIANS D(F)/D(U), D(F)/D(UX), AND
C D(F)/D(UXX).
c

C SUBROUTINE PARAMETERS:
C INPUT:
INTEGER NPDE

Q o QO Q Q

aQ aa o Q Q

QO O o O

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

QUTPUT:
DOUBLE PRECISION

76

THE NUMBER OF PDES IN THE SYSTEM.

T
THE CURRENT TIME COORDINATE.

X
THE CURRENT SPATIAL COORDINATE.

U(NPDE)
U(1:NPDE) IS THE APPROXIMATION OF THE
SOLUTION AT THE POINT (T,X).

UX(NPDE)

UX(1:NPDE) IS THE APPROXIMATION OF THE
FIRST SPATIAL DERIVATIVE OF THE
SOLUTION AT THE POINT (T,X).

UXX(NPDE)

UXX(1:NPDE) IS THE APPROXIMATION OF THE
SECOND SPATIAL DERIVATIVE OF THE
SOLUTION AT THE POINT (T,X).

DFDU (NPDE,NPDE)

DFDU(I,J) IS THE PARTIAL DERIVATIVE
OF THE I-TH COMPONENT OF THE VECTOR F
WITH RESPECT TO THE J-TH COMPONENT

OF THE UNKNOWN FUNCTION U.

Q QO O o a a

Q Q aa Q Q

7

DOUBLE PRECISION DFDUX (NPDE, NPDE)
DFDUX(I,J) IS THE PARTIAL DERIVATIVE
OF THE I-TH COMPONENT OF THE VECTOR F
WITH RESPECT TO THE J-TH COMPONENT
OF THE FIRST SPATIAL DERIVATIVE OF THE
UNKNOWN FUNCTION U.

DOUBLE PRECISION DFDUXX(NPDE, NPDE)

DFDUXX(I,J) IS THE PARTIAL DERIVATIVE
OF THE I-TH COMPONENT OF THE VECTOR F
WITH RESPECT TO THE J-TH COMPONENT
OF THE SECOND SPATIAL DERIVATIVE OF THE
UNKNOWN FUNCTION U.

DOUBLE PRECISION COEFF

COMMON /BURGER/ COEFF

Qa0 o a Q

ASSIGN DFDU(1:NPDE,1:NPDE), DFDUX(1:NPDE,1:NPDE), AND
DFDUXX(1:NPDE, 1:NPDE) ACCORDING TO THE RIGHT HAND SIDE OF THE PDE
IN TERMS OF U(1:NPDE), UX(1:NPDE), UXX(1:NPDE).

DFDU(1,1) = -UX(1)
DFDUX(1,1) = -U(1)
DFDUXX(1,1) = COEFF

RETURN
END

SUBROUTINE BNDXA(T, U, UX, BVAL, NPDE)

78

PURPOSE:

THE SUBROUTINE IS USED TO DEFINE THE BOUNDARY CONDITIONS AT THE
LEFT SPATIAL END POINT X = XA.

B(T, U, UX) =0

aQ O a0 o o o a a

O a o

SUBROUTINE PARAMETERS:
INPUT:
INTEGER

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

QUTPUT:
DOUBLE PRECISION

NPDE
THE NUMBER OF PDES IN THE SYSTEM.

T
THE CURRENT TIME COORDINATE.

U(NPDE)
U(1:NPDE) IS THE APPROXIMATION OF THE
SOLUTION AT THE POINT (T,XA).

UX(NPDE)

UX(1:NPDE) IS THE APPROXIMATION OF THE
FIRST SPATIAL DERIVATIVE OF THE SOLUTION
AT THE POINT (T,XA).

BVAL (NPDE)
BVAL(1:NPDE) IS THE BOUNDARY CONTIDITION
AT THE LEFT BOUNDARY POINT.

79

DOUBLE PRECISION COEFF
COMMON /BURGER/ COEFF

QO O 0 0 o a

BVAL(1)=U(1)-0.5D0+0.5D0*TANH((-0.5D0*T-0.25D0)/ (4.0D0*COEFF))
RETURN
END
SUBROUTINE BNDXB(T, U, UX, BVAL, NPDE)
PURPOSE :
THE SUBROUTINE IS USED TO DEFINE THE BOUNDARY CONDITIONS AT THE
RIGHT SPATIAL END POINT X = XB.
B(T, U, UX) =0
SUBROUTINE PARAMETERS:
INPUT:

INTEGER NPDE
THE NUMBER OF PDES IN THE SYSTEM.

DOUBLE PRECISION T
THE CURRENT TIME COORDINATE.

DOUBLE PRECISION U(NPDE)

U(1:NPDE) IS THE APPROXIMATION OF THE
SOLUTION AT THE POINT (T,XB).

DOUBLE PRECISION UX(NPDE)

80

C UX(1:NPDE) IS THE APPROXIMATION OF THE
C FIRST SPATIAL DERIVATIVE OF THE SOLUTION
c AT THE POINT (T,XB).
c
C OUTPUT:
DOUBLE PRECISION BVAL (NPDE)
BVAL(1:NPDE) IS THE BOUNDARY CONTIDITION
AT THE RIGHT BOUNDARY POINT.

C

DOUBLE PRECISION COEFF

COMMON /BURGER/ COEFF
C

BVAL(1)=U(1)-0.5D0+0.5DO*TANH((1.D0-0.5D0*T-0.25D0) / (4.0DO*COEFF))
c

RETURN

END
C

SUBROUTINE DIFBXA(T, U, UX, DBDU, DBDUX, DBDT, NPDE)
C
C PURPOSE:
c THE SUBROUTINE IS USED TO DEFINE THE DIFFERENTIATED BOUNDARY
C CONDITIONS AT THE LEFT SPATIAL END POINT X = XA. FOR THE
C BOUNDARY CONDITION EQUATION
C B(T, U, UX) =0
c THE PARTIAL DERIVATIVES DB/DU, DB/DUX, AND DB/DT ARE SUPPLIED
C BY THIS ROUTINE.
c
C
C SUBROUTINE PARAMETERS:

C

Q

Q O a a Q QO QO o Q Q

Q O 0 Q a

INPUT:
INTEGER

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

QUTPUT:
DOUBLE PRECISION

DOUBLE PRECISION

81

NPDE
THE NUMBER OF PDES IN THE SYSTEM.

T
THE CURRENT TIME COORDINATE.

U(NPDE)
U(1:NPDE) IS THE APPROXIMATION OF THE
SOLUTION AT THE POINT (T,X).

UX(NPDE)

UX(1:NPDE) IS THE APPROXIMATION OF THE
FIRST SPATIAL DERIVATIVE OF THE SOLUTION
AT THE POINT (T,X).

DBDU(NPDE,NPDE)

DBDU(I,J) IS THE PARTIAL DERIVATIVE
OF THE I-TH COMPONENT OF THE VECTOR B
WITH RESPECT TO THE J-TH COMPONENT

OF THE UNKNOWN FUNCTION U.

DBDUX (NPDE, NPDE)

DBDUX(I,J) IS THE PARTIAL DERIVATIVE
OF THE I-TH COMPONENT OF THE VECTOR B
WITH RESPECT TO THE J-TH COMPONENT
OF THE SPATIAL DERIVATIVE OF THE
UNKNOWN FUNCTION U.

O O aa a

QO QO o Q Q

82

DOUBLE PRECISION DBDT(NPDE)
DBDT(I) IS THE PARTIAL DERIVATIVE
OF THE I-TH COMPONENT OF THE VECTOR B
WITH RESPECT TO TIME T.
DOUBLE PRECISION COEFF
COMMON /BURGER/ COEFF
ASSIGN DBDU(1:NPDE,1:NPDE), DBDU(1:NPDE,1:NPDE), AND DBDT(1:NPDE)
ACCORDING TO THE RIGHT BOUNDARY CONDITION EQUATION IN TERMS OF
U(1:NPDE), UX(1:NPDE), UXX(1:NPDE).
DBDU(1,1) = 1.0DO
DBDUX(1,1) = 0.0DO
DBDT(1) = -1.DO/COEFF/SINH(-(0.5D0*T+0.25D0)/(4.DO*COEFF)) *#*2
RETURN
END
SUBROUTINE DIFBXB(T, U, UX, DBDU, DBDUX, DBDT, NPDE)
PURPOSE:
THE SUBROUTINE IS USED TO DEFINE THE DIFFERENTIATED BOUNDARY
CONDITIONS AT THE RIGHT SPATIAL END POINT 1 = XB. FOR THE
BOUNDARY CONDITION EQUATION
B(T, U, UX) =0

83

THE PARTIAL DERIVATIVES DB/DU, DB/DUX, AND DB/DT ARE SUPPLIED

BY THIS ROUTINE.

QO O Q o a Q

Q

Q QO o Q o

QO aa o aQ

SUBROUTINE PARAMETERS:
INPUT:
INTEGER

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

QUTPUT:
DOUBLE PRECISION

DOUBLE PRECISION

NPDE
THE NUMBER OF PDES IN THE SYSTEM.

T
THE CURRENT TIME COORDINATE.

U(NPDE)
U(1:NPDE) IS THE APPROXIMATION OF THE
SOLUTION AT THE POINT (T,X).

UX(NPDE)

UX(1:NPDE) IS THE APPROXIMATION OF THE
FIRST SPATIAL DERIVATIVE OF THE SOLUTION
AT THE POINT (T,X).

DBDU(NPDE, NPDE)

DBDU(I,J) IS THE PARTIAL DERIVATIVE
OF THE I-TH COMPONENT OF THE VECTOR B
WITH RESPECT TO THE J-TH COMPONENT
OF THE UNKNOWN FUNCTION U.

DBDUX (NPDE, NPDE)

QO O a a Q a

(@}

84

DBDUX(I,J) IS THE PARTIAL DERIVATIVE
OF THE I-TH COMPONENT OF THE VECTOR B
WITH RESPECT TO THE J-TH COMPONENT

OF THE FIRST SPATIAL DERIVATIVE OF THE
UNKNOWN FUNCTION U.

DOUBLE PRECISION DBDT (NPDE)
DBDT(I) IS THE PARTIAL DERIVATIVE
OF THE I-TH COMPONENT OF THE VECTOR B
WITH RESPECT TO TIME T.
DOUBLE PRECISION COEFF
COMMON /BURGER/ COEFF

aQ O a o Q

ASSIGN DBDU(1:NPDE,1:NPDE), DBDU(1:NPDE,1:NPDE), AND DBDT(1:NPDE)
ACCORDING TO THE RIGHT BOUNDARY CONDITION EQUATION IN TERMS OF
U(1:NPDE), UX(1:NPDE), UXX(1:NPDE).

DBDU(1,1) = 1.0DO
DBDUX(1,1) = 0.0DO
DBDT(1) = -1.DO/COEFF/SINH(-(0.5D0*T-0.75D0)/(4.DO*COEFF)) **2

RETURN
END

SUBROUTINE UINIT(X, U, NPDE)

85

C PURPOSE:
c THIS SUBROUTINE IS USED TO RETURN THE NPDE-VECTOR OF INITIAL
c CONDITIONS OF THE UNKNOWN FUNCTION AT THE INITIAL TIME T = TO
c AT THE SPATIAL COORDINATE X.
C
c
C SUBROUTINE PARAMETERS:
C INPUT:
DOUBLE PRECISION X
C THE SPATIAL COORDINATE.
C
INTEGER NPDE
THE NUMBER OF PDES IN THE SYSTEM.
C OUTPUT:
DOUBLE PRECISION U(NPDE)
c U(1:NPDE) IS VECTOR OF INITIAL VALUES OF
C THE UNKNOWN FUNCTION AT T = TO AND THE
Cc GIVEN VALUE OF X.
C
DOUBLE PRECISION COEFF
COMMON /BURGER/ COEFF
C
C
c ASSIGN U(1:NPDE) THE INITIAL VALUES OF U(TO,X).
C
U(1) = 0.5D0-0.5DO*TANH((X-0.25D0)/(4.0D0*COEFF))
C

RETURN

END

86

The subroutine which represents the exact solution is given as follows.

c
SUBROUTINE TRUU(T, X, U, NPDE)
C
C PURPOSE:
c THIS FUNCTION PROVIDES THE EXACT SOLUTION OF THE PDE.
o
C SUBROUTINE PARAMETERS:
C INPUT:

INTEGER

NPDE
THE NUMBER OF PDES IN THE SYSTEM.

DOUBLE PRECISION T
C THE CURRENT TIME COORDINATE.
c
DOUBLE PRECISION X
c THE CURRENT SPATIAL COORDINATE.
c
C OUTPUT:
DOUBLE PRECISION U(NPDE)
C U(1:NPDE) IS THE EXACT SOLUTION AT THE
C POINT (T,X).
c
DOUBLE PRECISION COEFF
COMMON /BURGER/ COEFF
c

U(1) = 0.5D0-0.5DO*TANH((X~0.5D0*T-0.25D0)/ (4.0DO*COEFF))

87

RETURN
END

4.4 Structure of BACOL

The way in which all the subroutines in the BACOL software work together is illus-
trated in Figure 4.1. We let MAIN denote the driver program; it is inside the rectangle
constructed with dashed lines. Any subroutines inside a single rectangle constructed
with solid lines represent software developed by others. Any subroutines inside dou-
ble rectangles constructed with solid lines represent newly developed software. The

notation, A — B, means subroutine A calls subroutine B.

88

BSPLVD

| MAIN | >/ [VALUES ?S"L"s‘

REMESH
REINIT
DIVDIF

GAULEG

INIY CRDCMP
MESHSQ
ERRVAL
- AL
CALRES
DASSL.cc [RES] || [CALRES]

Figure 4.1: Structure of BACOL software

An interesting analysis involves examining the percentage of computer time associated
with each subroutine. Obviously, during a typical run, if we can decrease the running
time of the subroutines which represent a large percentage of the computer time, the
performance of the entire software package can be improved. On the other hand, we
can pay less attention to the subroutines which represent a small percentage of the
total computer time. This analysis can therefore highlight the components of the

software where future modifications would be worthwhile.

89

The first typical run we consider is based on Problem 1 in Chapter 5 with € = 1074
We consider a piecewise cubic polynomial for representation of the spatial dependence
of our approximate solution. The absolute and relative tolerances are both chosen
to be 10~%, and the initial mesh is chosen as a uniform mesh with the number of
subintervals equal to 10. All the numerical experiments discussed in this chapter
were done on a SUN SPARC station for which the CPU clock rate is 480.0 MHz and
the main memory clock rate is 96.0 MHz. SUNWspro/bin/f77 is the Fortran compiler.
The unix command, gprof, is used to obtain the C PU time results for each subroutine.
Our compiling command is “f77 -pg -u -O ”, where “-pg” asks the compiler to prepare
for profiling with gprof, “-u” asks the compiler to report. undeclared variables, “-O”
requires a basic level of optimization. In Section 3.2.8 we described modifications
we made to DDANRM. We now show a comparison between the results before and
after these modifications. Figure 4.2 shows the top 10 subroutines in terms of CPU
time percentage plus CRDCMP (the 12th place) and CALJAC (the 15th place) before
modifications. Figure 4.3 shows the subroutines having the top 10 CPU time packages
plus CRDCMP (the 11th place) and CALJAC (the 16th place) after modifications.
We note that all the subroutines in Figure 4.2 also appear in Figure 4.3.

We observe that before the modifications, the overall CPU time is 24.92 seconds and
DDANRM takes 5.01 seconds and 20.1% of the overall time; after the modifications,
the overall CPU time is 23.40 seconds and DDANRM takes 3.52 seconds and 15.0%
of the overall costs. As expected, the modifications discussed in Section 3.2.8 save
roughly 25% in DDANRM. Since DDANRM uses the largest percentage of CPU time,
this modification improves the speed of the entire package by 5%.

90

108

24
20

e

ODANAM CALRES EVAL ERRVAL BSPLVN CRSLVE ODASTP BSPLVD ERREST VALUES CRDCMP CALIAC

Figure 4.2: Percentage of the CPU time in main subroutines: single equation and
before modifications to DDANRM.

91

150

i

106
i

Hﬂﬁ%

DOANRM CRSLVE EVAL BSPLVN CALRES ERRVAL ODASTP BSPLVD VALUES ERREST CROCMP CALIAC

Figure 4.3: Percentage of the CPU time in main subroutines: single equation and
after modifications to DDANRM.

92

The second problem we consider is a system of 4 PDEs. By taking 4 copies of Problem
1, we generate a system of PDES whose solution has the same spatial properties as
the original problem. We use the same parameter and input data. In Figures 4.4 and
4.5, we show the subroutines having the top 10 CPU time packages plus VALUES
and BSPLVD. We note that the same subroutines appear in Figure 4.2 to Figure 4.5.
Figure 4.4 shows the results before the modifications to DDANRM while Figure 4.5

shows the results after the modifications.

We observe that before the modifications, the overall CPU time is 88.75 seconds and
DDANRM takes 20.89 seconds and 23.5% of the overall time; after the modifications,
the overall CPU time is 83.65 seconds and DDANRM takes 14.00 seconds and 16.7%
of the overall time. Once again, we see that the modifications save roughly 25% in
DDANRM. Another importance observation is that, compared to the single equation
case, BACOL spends much more time on the linear system solver, i.e., in CRSLVE
and CRDCMP. Comparing Figure 4.2 and Figure 4.4, we see that the CPU time
percentage for CRSLVE increases from 9.3 to 21.6 and the percentage for CRDCMP
increases from 1.0 to 5.5. The comparison between Figure 4.3 and Figure 4.5 gives
the same observation. This is understandable since the cost of a Newton iteration is
L« N« NPDE?« (p+1)3. Thus when NPDE = 4, this cost increases by a factor of
64, which makes CRSLVE and CRDCMP represent larger percentages of the overall
cost.

93

HiERE

DDANRM CRSLVE EVAL DDASTP ERRVAL CRDCMP CALRES BSPLVN ERREST CALIAC VALUES 8SPLVD

Figure 4.4: Percentage of the C PU time in main subroutines: 4 equations and before
modifications to DDANRM.

94

e

ﬁmﬁﬁﬁ

CRSLVE DDANRM DDASTP EVAL ERRVAL CRDCMP CALRES BSPLVN ERREST CALIAC VALUES BSPLVD

Figure 4.5: Percentage of the CPU time in main subroutines: 4 equations and after
modifications to DDANRM.

Chapter 5
Numerical Experiments

In this chapter we will consider seven different timer-dependent one-dimensional (i.e.,
one space dimension) parabolic PDE problems, two of which are systems. A brief
introduction to these test problems will be given in Section 5.1. We will then present
in Section 5.2 the results of using BACOL to solve one of the test problems and
illustrate some of the properties of the code and the effect of the use of different
degree of the piecewise polynomials. In Section 5.3 we compare BACOL with several
other software packages. We concentrate mostly on the efficiency, i.e., the amount of
computer time to achieve a fixed amount of accuracy. In Section 5.4 we investigate
the effect of differentiation of the boundary conditions by considering Problem 35,
whose boundary conditions are inconsistent with the initial conditions. In Section
5.5 we show that BACOL is able to handle a problem with blow-up. In Section 5.6
we will present a study of the convergence rates of the errors associated with the
BACOL computations, based on uniform meshes. The results confirm the expected

rate of convergence at non-mesh points and demonstrate superconvergence at the

mesh points.

In this chapter, all the numerical experiments are done on a SUN SPARC station, with
a CPU clock rate of 480.0 MHz and a main memory clock rate of 96.0 MHz. SUN-
Wspro/bin/f77 is our Fortran compiler for all the software packages except HPNEW,

95

96

for which SUNWspro/bin/f90 is used. Compilation is done using the -O switch.

The notation used and the statistics collected include:

NINT: the number of subintervals;

KCOL: the number of collocation points per subinterval, which is equal
to the degree of the piecewise polynomial minus one, i.e.,, p— 1.

ATOL: the scalar absolute tolerance;

RTOL: the scalar relative tolerance;

Tous: the output time;

X3dM: the grid dimension along the x-axis for plotting in a 3-D Figure;

T3dM: the grid dimension along the t-axis for plotting in a 3-D Figure;

TOL: if ATOL = RTOL, TOL will be used for convenience;

CPU: the execution time in seconds;

NS: the total number of successful time steps;

NR: the total number of times BACOL performs a remeshing.

5.1 Statement of Test Problems

The following problems have been used by many authors for the evaluation of software
for the numerical solution of one dimensional time dependent parabolic PDE systems.
Some problems include one or more parameters which can be varied to adjust the

difficulty of the problem. We now present our test problems.

5.1.1 Problem 1
This is Burgers’ equation:
Uy = —UlUg + €Uy, O<z<l, t>0, (5.1)

with initial condition

0.1e~4 + 0.5¢ B0 4 ¢=C0
e~40 + e—Bo 4 ¢—Co

u(z,0) = : 0<z<l,

97

and boundary conditions
0.le~4c 4-0.5e~ B 4 e~Cr

u(0,t) A T oBr 1 oCi t=>0,
o - taien
where
Ao = g(x —05), Bo= 9’3—5(3; —05), Co= géé(a: —0.375),
A= g(-o.s +4.95t), Bp= %23(—0.5 +0.758), Cp= ?(—0.375),

Ap = @(0.5 +495t), Bp= 93—5(0.5 +0.75t), Cp= 0?5(0.625),

where, for the viscosity parameter, €, we will consider two values, € = 10~3 and
e=10"1.

This problem is taken from [1, 18], and has the exact solution

0.1e"4 +0.5e B +e~€

wat) = — Ao F 0

]

where

A= 0’—?’»(:1: —0.5+4.95t), B= 0—’3—5(::; —0.5+0.75t), C= %(z —0.375).

In our numerical experiments, we scale the denominator and the numerator to avoid
overflow. That is, if D = min(A, B, C), then we will multiply both the denominator
and the nominator by eP. Therefore, the exact solution becomes

0.1eP~4 +0.5¢P—B 4 ¢P-C
u(z, t) =

To avoid underflow, we check D — A, D — B, and D — C. If any of them is less than
—35, we will let the corresponding exponential function be zero (since we use double

precision).

The exact solution is plotted in Figure 5.1 fore = 1074, 0<t<1,0<z <1,
X3dM =20, and T3dM = 20.

98

Figure 5.1: Problem 1 for e = 1074.

The exact solution begins with two wavefronts. They move from left to right and

merge to form one wavefront toward the end of computation. As mentioned in [55],
the thickness of the wavefronts is O(e).

5.1.2 Problem 2

Our second problem is also Burgers’ equation, [18], but with a different set of initial

and boundary conditions. We have
Up = —UUy + EUgs, O<z<l, t>0, (5.2)
with initial condition
u(z,0) = 0.5 — 0.5 tanh (4%(1: — 0.25)) . 0<z<1,
and boundary conditions

u(0,t) = 0.5—0.5tanh (Zlé(—t—o,zs)> . t>0,

u(l,f) = 0.5—05tanh (;11;(0.75 -t)) . t>o.

The exact solution is

u(z,t) =0.5 — 0.5 tanh (i(x —t— 0.25)) .

99

In our numerical experiments, we consider e = 1073 and e = 10™.

The exact solution is plotted in Figure 5.2 for e = 1074, 0 <t < 1,0 <z < 1,
X3dM = 20, and T3dM = 20.

Figure 5.2: Problem 2 for e = 1074.

We note that the solution in Problem 2 has only one wavefront whose thickness is
O(e).
5.1.3 Problem 3
The third problem is taken from [26]; it has the form
Up = Ugg + UP, O<z<l1l, t>0, (5.3)

with initial condition

u(z,0) = 20sin(wz), 0<z<,
and boundary conditions

u(0,t) =0, wu(l,t)=0, t>0.

We only consider the case when p = 2. After some finite time the exact solution

becomes unbounded; See [26] for further discussion. We note that for such cases,

100

it is essential that the numerical solution preserves this property; i.e., the numerical
solution should also blow up at a time that is close to that at which the exact solution

does.

The exact solution is not available; however, a high-precision numerical solution
obtained using BACOL is shown in Figure 5.3. With ATOL = RTOL = 1077,
KCOL = 5, and NINT = 5 as the initial inputs, we found that the blow-up
time was approximately 0.082437272703, when the maximum solution was around
5 x 10'2. We stopped BACOL at that time and plotted the solution for 0 < z <1
and 0 < t < 0.082437272703. Since the solution keeps increasing and the maximum
value is obtained at z = 0.5, we divided the solution by U(0.5,t), which makes the
maximum value 1 all times. In Figure 5.3, we set X3dM = 100 and T'3dM = 100,
and we plot U(z,t)/U(0.5,t).

Figure 5.3: Problem 3 for e = 107.

101

5.1.4 Problem 4

The fourth problem is the Cahn-Allen equation [58], which has the form
Uy = €Ugg — U + U, O<z<l, t>0, (5.4)
with initial condition
u(z,0) = 0.01 cos(107z), 0<z<1],
and boundary-conditions
u-(0,t) =0, u.(l,t) =0, t>0.

For this problem we choose € = 107°.

No exact solution is available; a high-precision numerical solution obtained using
BACOL is shown in Figure 5.4. We have ATOL = 1079, RTOL = 0 with the initial
input KCOL = 5 and NINT = 5. The solution is plotted for 0 < z < 1 and
0 <t < 8 and we set X3dM = 40 and T3dM = 40.

Figure 5.4: Problem 4 for e =1075.

There are two phases of solution behavior. First, the solution quickly generates sharp

interfaces and is close to a step function, as shown in Figure 5.5

102

— U b1 b3 L

0 L3} (13 [+] as [L] [} er [1] (4] L

Figure 5.5: The step function.

In the second phase, the solution becomes nearly constant.

5.1.5 Problem 5

The fifth problem is the Brusselator problem with diffusion [58]; it has the form

u = 1+ u?v—4.4u+ €z, 0<z<l, t>0,
v, = 3.4u—uv+ Vs, 0<z<l, t>0, (5.5)
with initial conditions
u(z,0) = 0.5, 0<z<1,

v(z,0) = 145z +0.25tanh(20z) —0.25tanh(20(z —1)), 0<z <1,
and boundary conditions
uz(0,t) = v:(0,t) =u(1,t) =v(1,¢) =0, t>0.

We consider e =2 x 1075,

This is an interesting problem since the initial conditions are inconsistent with the

boundary conditions, i.e., the initial condition given above for v(¢,0) implies that

103

v(0,0) = 5(2 — Hé(_mi) ~ 10, which is inconsistent with the boundary condition
v(0,0) = 0.

The problem does not have an exact solution; high-precision numerical approxima-
tions for u and v are shown in Figures 5.6 and 5.7, which are obtained using BACOL.
We have ATOL = RTOL = 10~% with the initial input KCOL =5 and NINT =5.
The solution is plotted for 0 < z < 1 and 0 < ¢t < 35.83, and we set X3dM = 100
and T3dM = 1000.

Figure 5.6: Problem 5 for u(z,t).

104

Figure 5.7: Problem 5 for v(z,t).

The solutions begin with two smooth initial conditions (constant initial values for
u(z,0) and almost linear for v(z,0)). A wavefront in each solution is immediately
generated at the right boundary, which then moves from right to left. After the
wavefront moves out of the left boundary, another wavefront appears at the right

boundary and the process is repeated.

5.1.6 Problem 6

The sixth problem is also taken from [58], where the author considers the reaction-

diffusion-convection system for modeling a catalytic surface reaction. It has the form

1
(ul)t = —(ul)z +n(D1’lL3 - A1U1(1 — Uz — 'U4)) + ﬁ;{(ul)zz, O<z<l, t>0,
(5.6)
1
(ug)e = —(ua)z + n(Daug — Agua(l — uz —ug)) + ﬁ(uz)m, 0O<z<l, t>0,
1

1
(u3)e = Alul(l-—ug—m)—Dlua—Ru3u4(l—u3—u4)2+P—62(u3)m, O<z<l, £>0,

1
('U.4)t = A2U2(1—U3—‘U4) —D2u4—Rusu4(1—u3—-u4)2+—§g;(u4)n, <zl t> 0,

105

with initial conditions
u(z,0) =2 -7, uz(z,0)=r, wus(z,0) =u4(z,0)=0, 0<z<l,
and boundary conditions

Piel(ul)x(o, £ =—(2—r—wu), P%(ue)m(o, £) = —(r—u), t>0,
(u3)(0,t) = (u4)(0, t) =0, t>0,

(u1)z(1,t) = (u2)z(1, t) = (ua)<(1,t) = (u4)=(1,t) =0, t >0,

where u; and u, are nondimensionalized concentrations, us and u4 are coverages of
adsorbed reactants on the catalytic wall, Pe; and Pe, are Peclet numbers, and D,
Dy, R, A, and A, are Damkohler numbers. This problem includes diffusion, reaction
and convection. We choose A; = A; =30, D, = 1.5, D, = 1.2, R = 1000, r = 0.96,
n =1 and Pe; = Pes; = 100.

The problem does not have an exact solution; high-precision numerical approxima-
tions for the solution components are shown in Figures 5.8-5.11, which are obtained
using BACOL. We have ATOL = RTOL = 1075 with the initial input KCOL = 2
and NINT = 10. The solution is plotted for 0 <z < 1 and 0 < ¢ < 18, and we set
X3dM =100 and T3dM = 100.

106

Figure 5.8: Problem 6 for u;(z,t).

Figure 5.9: Problem 6 for us(z,t).

I BB EE]

“

-3 -

Figure 5.10: Problem 6 for us(z,t).

Figure 5.11: Problem 6 for u4(z,t).

107

108

5.1.7 Problem 7

The seventh problem is taken from [28]. This equation contains an exponential non-

linear coefficient for the term u.z; it has the form
uy = (e™uz),, 0<z<l t>0, (5.7)
with initial condition
u(z,0) = bz, 0<z<1,

and boundary conditions
u(0,t) =0, wu(l,t) =", t>0.

We only consider the case when a = 5 and b = 2. The steady-state solution is given
by
1
u(z,t — 00) = Elog[l + (€% — 1)z].

The exact solution is not available; however, a high-precision numerical solution ob-
tained using BACOL is shown in Figure 5.12. We have ATOL = RTOL = 10~° with
the initial input KCOL =5 and NINT = 5. The solution is plotted for0 <z <1
and 0 < t <0.5 and we set X3dM =40 and T3dM = 40.

109

Figure 5.12: Problem 7 for u(z, t).

5.2 Numerical Validation of BACOL

In this section we consider only Problem 1, to which we have applied BACOL with
KCOL = 2,5,7,10 and TOL = 1072,104,1075,1078,10~'°. We will choose a uni-
form mesh with NINT = 10 as the initial mesh, T,,; = 1 and let ATOL = RTOL =
TOL.

5.2.1 TOL and Global Error Proportionality

First we would like to show, for BACOL, the relationship between TOL and the global
error. The results are shown in Table 5.1 and 5.2 for € = 1073 and 10™*, respectively.

KCOL
TOL 2 5 7 10
102 | 1.04-10~2 | 8.17-10"° | 3.46-10° | 1.68-10~*
107 | 1.04-10~7 | 1.16-107° | 2.18-10° | 4.82-107°
10-° | 8.35-10~ | 5.96-10~ | 1.44-10~" | 7.86-10~°
10-° | 5.30-10~9 | 8.91-1079 [9.10-10° | 1.79-10~°
1070 [6.18-10"1T | 1.02-10"° [2.45-10"1° [7.90 - 10~

Table 5.1: L2-norm error for Problem 1 with € = 1073,

KCOL
TOL 2 5 7 10
102 | 1.05-10F | 9.05-10~2 | 7.44-10~2 | 9.99-10~*
107 [551-107 | 2.34-107% | 2.14-10~% | 8.08-10°
10~° | 499-10"° | 9.16-10~ | 1.01-107% | 1.16-10"°
10~3 | 2.56-108 | 2.29-10~% | 5.59-107° | 1.27-10"®
10-9193-10"9 [1.58-10"°[9.80-10~ | 1.53 - 10—**

Table 5.2: L2-norm error for Problem 1 with € = 1074.

110

We see that the global error is close to (or less than) TOL, for all choice of KCOL
and TOL. This indicates that our spatial error control strategy, together with our

choice of temporal tolerance, works very well.

5.2.2 Relationship between KCOL and CPU time

Second we would like to examine the relationship between KCOL and CPU time.

KCOL
TOL 2 5 7 10
10~° | 0.175151 | 0.378189 | 0.675506 | 0.977439
10~% | 0.850675 | 1.22791 | 1.66904 | 3.20079
107° | 3.52663 | 3.36868 | 4.26306 | 6.26880
107 | 18.8934 | 10.34185 | 10.9151 | 15.3657
10~ | 106.305 | 36.1691 | 31.9214 | 33.5394

Table 5.3: CPU time for Problem 1 with e = 1073,

TOL

KCOL

2

5

7

10

10~

1.46985

3.93385

6.40349

10.5109

104

9.31914

16.7171

24.6511

40.7753

10-°

34.9236

45.6280

65.6265

102.898

10~%

176.042

118.002

154.531

199.561

10-11)

1033.06

385.704

369.964

426.427

111

Table 5.4: CPU time for Problem 1 with e = 10™4.

We observe that when T'OL is relatively large, BACOL with KCOL = 2 is the most
efficient. When TOL decreases, BACOL with larger KCOL values becomes more
suitable. For example, when TOL = 1078, BACOL with KCOL =5 takes the least
time; and when TOL = 10719, BACOL with KCOL =7 is the most efficient. This
can be explained in terms of the number of operations associated with the Newton
iterations. For a given TOL and a fixed KCOL, let NINTkcor denote the number
of subintervals which is necessary to achieve the error requirement. As mentioned
before, BACOL employs COLROW as the linear system solver. For each Newton
iteration, the number of multiplications required by COLROW to solve the first ABD
matrix is roughly * NINTxcor* NPDE®+(K COL +2)3. Recall that COLROW is
called twice to solve the two decoupled ABD matrices. Therefore, the total number of
multiplications for one Newton iteration is approximately %—*N INTxcor* NPDE?«
((KCOL + 2)® + (KCOL + 3)?%). Recall that KCOL = p — 1; (3.63) thus becomes,

112

for a quasiuniform mesh,
|E]| o (NINTkcopr) (KCOL+2, (5.8)

For different choices of KCOL, e.s. KCOL =2 and KCOL = 5, assuming we want to

achieve the same error requirement, (5.8) implies that we must have (approximately)
(NINT,)* = (NINTs). (5.9)

Therefore, (5.9) suggests that, if the tolerance is decreased, BACOL, in order to
control the spatial error, from (5.9) would have to use a much larger NINT; than
NINTs. This explains why BACOL with KCOL = 5 needs less CPU time than
BACOL with KCOL = 2 for smaller tolerances.

In general, for a fixed mesh, we expect that if the solution is smooth and high accuracy
is required, a high order method will be more efficient than a low order method. Table
5.3 and 5.4 show that, when BACOL is applied to problems with solutions exhibiting
narrow wavefronts and higher accuracy is required, use of a higher spatial order is
preferred. This suggests an interesting research direction in which we explore how
BACOL might be able to automatically estimate a suitable order for the piecewise

polynomials during the remeshing phase.

5.2.3 Number of Steps VS. Number of Remeshings

We will examine the relationship between the total number of successful time steps
(NS) and the total number of times BACOL performs a remeshing (NR).

113

KCOL

TOL 2 5 7 10

1072 | ZBx78 | Wx142 | B x~198 | B2~ 177.3

107 | 2B~ 106 | Bt~ 203 BS~281 | Bl ~383

10~% ﬁ%ﬂ ~19.9 | =" ~30.1 | ZE~37.2 %?:Bg ~ 60.7

10~ |30~ 385 | &5 ~47.6 s 505 SI80°~ 84,6
"]

10~ %ﬁ-‘f ~75.0 [DT <881 | B ~ 773 | B ~ 1031

116 137 97

Table 5.5: NS/NR for Problem 1 with e = 1072,

KCOL
TOL 2 5 7 10
102 | WX~ 106 | 20 ~235 | i~248 | T ~667
07 | B~ 113 | BT~ 240 | L s~ 030 | T~ 482
10 | LEF~ T84 B~ 980 | o7 ~53.7 g ~ 61.8
10° | AT~ 415 | Sl <469 | Do ~87.1 | Zol~9L2

30815 T 557
~ 87.2 a1z ~ 91.1 '1117 ~ 223.6

10—-10 J0218 z82.3 1(1)%‘8‘3

1036 1198

Table 5.6: NS/NR for Problem 1 with e = 10~4.

From Table 5.5 and 5.6, we observe that, when TOL is fixed, BACOL with larger
KCOL values takes, on average, more time steps between consecutive remeshings;
and when KCOL is fixed, the number of time steps between consecutive remeshings,
on average, increases when TOL decreases. Future investigation on such behaviors is

required.

In Section 3.2.6, we mention that in order to continue the integration after a remesh-
ing, the worst case arises when DASSL is using a BDF method with order 5. In this
case, we need to interpolate the current step and the previous 5 steps. That is, we
need to solve six linear systems. If we also reject the step, in the worst case, the cost
of one remeshing process is then equal to 7 times the cost of a successful step. Based
on this observation, we can estimate the total number of Newton iterations. From

Table 5.5 and 5.6, we note that BACOL with larger KCOL values performs more

114

Newton iterations than BACOL with smaller KCOL values.

5.3 Numerical Comparisons of MOL Packages

A major decision when one is assessing software is what performance criteria to use.
There are many important criteria, such as ease of use, absence of errors, robustness,
storage requirements, flexibility, efficiency, etc. Some of these design criteria may
conflict with each other. For instance, providing users with many options may affect
the ease of use although it may improve the flexibility; requiring users to provide a
subroutine for calculating an analytical Jacobian matrix, which is a common source of
programming errors especially when NPDE is large, improves the efficiency but also
affects the ease of use. Thus it is clear that the task of comparison of different codes
is nontrivial, and a comparison is obviously biased by the class of test problems and
comparison criteria. The conclusions can be easily changed if the problems or criteria
are changed. However, this is not to say that attempting a comparison is impossible.
One can often specify the types of problems for which a code is more suitable. The
primary concern of our remeshing strategy is to obtain an approximate solution using
as little computer time as possible for a given accuracy. Therefore, efficiency will be

the major criterion in our code comparison.

In this section, we will compare BACOL with several codes which are able to solve one-
dimensional time-dependent parabolic PDE systems. We will only choose KCOL =2
or KCOL = 5 for BACOL. We choose all the comparison routines to be double-
precision MOL codes since BACOL is double-precision. For all codes we choose the
absolute tolerance to be the same as the relative tolerance, and for each experiment,
let TOL denote the tolerance. The initial mesh is chosen to be a uniform mesh for all
the packages. For all codes except HPNEW and BACOL, the number of subintervals
will be chosen a priori to be almost optimal in a sense that will be discussed later in
this section. We note that HPNEW has the ability to add or remove mesh points, or
- vary the degrees of piecewise polynomials in different subintervals. We thus choose the

115

initial mesh for HPNEW to be uniform with 40 subintervals, and the initial piecewise
polynomial is of degree 6 on each subinterval at the initial mesh. The initial mesh
for BACOL is chosen to be uniform with 10 subintervals for KCOL = 2 and 5. We

will now give a brief description of the codes we will use in our comparisons.

e EPDCOL by Keast and Muir [46] is a modification of PDECOL [52, 53]. A
collocation method is applied using B-splines as the piecewise polynomial basis.
The collocation points in each subinterval are chosen to be Gauss-Legendre
points. The degree of piecewise polynomial can vary from 3 to 19. The boundary
conditions are differentiated and coupled with the ODE system from the spatial
discretizations. GEARIB ([36]) is employed to solve the resulting ODE system.
Only a relative tolerance can be imposed. EPDCOL uses a fixed-mesh and
thus has no spatial error control. In our numerical experiments we consider
KCOL = 2 and KCOL = 5, which are the same choices as for BACOL.
EPDCOL requires the user to supply the initial stepsize for the ODE solver,

which is chosen to be 10~? in our experiments.

e DO3PPF is in the NAG library. It is able to solve a system of 1-D PDEs
coupled with ordinary differential equations. The spatial discretization is done
using second-order finite difference methods. The resulting DAE system is
integrated using a BDF method or a Theta method which switches between
Newton’s method and functional iteration. For our calculations we use the
BDF methods for time integration and chose the banded linear system solver
option. DO3PPF is based on SPRINT [13]. It employs an h-refinement approach
using a fixed number of mesh points and therefore no spatial error control is
available. The user needs to supply a subroutine MONITF which is used as
a monitor function for the code to choose a mesh which equally distributes
the integral of the monitor function over the domain. In our experiments the
monitor function is chosen as the second derivative for a single equation, and
1+ (Z,—N:‘;DE |(¢5)z=|)/NPDE for a system of NPDE equations. The user also

needs to specify how often a remeshing is performed; i.e., after a fixed number

116

of steps, or after a specified fixed time interval, the code will decide whether
a remeshing should be performed. During our testing we require this code to

check the remeshing criterion after every 3 time steps.

TOMS731 is an r-refinement package written by Blom and Zegeling [19]. A
finite-element method of second order accuracy is used for the spatial discretiza-
tion. The time integration is done using DASSL. The monitor function we
choose is \/ 0.01 + (Z?Q;DE u2)/NPDE, which is recommended by the authors.

To our understanding, there is no subroutine inside TOMS731 which allows one

to compute solution values for non-mesh points. Therefore, after TOMST731
reaches Ty, our driver program will call a subroutine from the NAG library,
DO3PZF, which uses a cubic interpolant to generate solution values. As with all
r-refinement codes, the number of mesh points is fixed and spatial error control

is therefore not available.

MOVCOL is an experimental code developed by Huang and Russell [41]. It em-
ploys the r-refinement approach. A cubic Hermite collocation approach is used
for spatial discretization of the PDE, and a standard central finite difference
discretization is used for the mesh equations. DASSL is employed to solve the

resulting DAE system. No spatial error control is available.

HPNEW [59], also an experimental code written in Fortran 90, is a modification
of HPDASSL [58] developed by Moore. It applies hp-refinement using a local
refinement strategy. A remeshing is performed after every 5 time steps. In the
README file, the author claims that HPNEW can deal with problems with
mixed boundary conditions. However, from the documentation of the version
we obtained from the website (http://faculty.smu.edu/pmoore/papers.html), it
can only handle Dirichlet and Neumann boundary conditions, and can therefore,
not handle problems with mixed boundary conditions, e.g., Problem 6. The
inclusion of an h-refinement capability allows this code to control the spatial

error.

117

From the above descriptions, we see that, apart from BACOL, HPNEW is the only
package which is able to add or remove mesh points during the computation. There-
fore, to obtain “almost optimal” results using EPDCOL, DO3PPF, TOMS731, and
MOVCOL, we begin with TOL = 1072, and then find a suitable value of NINT as
follows. For any given tolerance, we gradually increase NINT and compute solutions
and error estimates until the L2-norm of the error is close to 2 or 3 times the tolerance
(in which case the packages generally work most efficiently), or until the L2-norm of
the error appears to no longer be dependent on NINT (which implies that the time
error is dominating). Then this value of NINT is considered to be “almost optimal”
for the given TOL. After that we decrease TOL by a factor of 1/10, and repeat the

process again.

During our experiments, we found that EPDCOL, DO3PPF and MOVCOL were more
consistent in terms of NINT and the L2-norm error, i.e., in general, the L2-norm error

decreases when NINT increases. However, there is some anomolous behaviour shown
by TOMS731:

e for a given TOL, most of time there is a value K, such that if NINT >
K, TOMS731 will fail to converge. That is, TOMST731 seems to have trouble
when NINT is large. Apart from that, even for a value of NINT such that
NINT < K, the L2-norm error does not always decrease when NINT increases.
For example, when we consider Problem 1 with e = 104, the package always
fails to converge when NINT > 100. And when we choose TOL = 10~* and
NINT = 50, we obtain the L?-norm error, at Tiye = 1, as 6.63 x 10~3; however,
if we choose NINT = 70 with the same tolerance, we obtain the error as
3.26 x 10~2. Similar behaviour is shown for other values of TOL and NINT.

There is also some anomolous behaviour with other codes:

e Sometimes when TOL is relatively large and NINT is not large enough, MOV-
COL will fail the error test or the convergence test in the Newton iteration pro-

cess during the integration. For example, considering Problem 1 with e = 1074,

118

if we choose TOL = 1072, NINT = 40, the error at T,,, = 1 is obtained
as 2.18 x 10~2 and the CPU time is 1.39 seconds. However, if we choose
NINT = 20 or 30 with the same tolerance, MOVCOL fails the error test in
DASSL repeatedly. Also, for NINT = 30, it takes 113 seconds before reaching
Tout-

e In general, for a given code, the CPU time will incease when TOL decreases.
However, sometimes EPDCOL does not act this way. For example, consider
Problem 2 with € = 10~ and apply EPDCOL with NINT = 4500. If we
choose TOL = 1074, at T, = 1 the L?-norm error is 1.27 x 10~* and the
CPU time is 5943.03 seconds; however, if we choose TOL = 1075, the error is
9.26 x 10~ and the CPU time is only 889.359 seconds. Fortunately, this kind

of behaviour is not common.

As mentioned before, efficiency is our main criterion in the comparisons. We thus plot
the L2-norm error and the total C PU time. We want to emphasise that, in the figures
shown shortly, we only plot results which correspond to reasonably good performances
and discard those corresponding to poor performances. (Thus, for example, results
corresponding to the anomolous behaviours discussed above for some of the codes
are not included.) Therefore, all the figures show “almost optimal” results by all the

packages. We now present the numerical results by all codes.

In this section we will consider only Problem 1, 2, 4, 6, and 7. Problem 3 will be
considered in Section 5.5 to illustrate the capability of BACOL for handling problems
with blow-up solutions. Problem 5 will be discussed in Section 5.4 in our investigation

of the effect of differentiation of the boundary conditions.

5.3.1 Problem 1

Figures 5.13 and 5.14 show the performance of all the codes for Problem 1 with

e =103 and € = 10~ respectively. The L?-norm error is computed at T, = 1. Here

119

C PU means the CPU time in seconds and error means the L?>-norm of the difference

between the approximate solution and the exact solution.

3.5 ¥ 14 1 1 ¥ 1]
3+ 4
DOJPPF
25r EPDCOL, kol =2 |
oL BACOL, keol =2]
EPDCOL, keol = 5
15F y
s MOVCOL BACOL, keol =5
S
% I T
2

L L 1
2 4 6 8 10 12
-logm(enor)

[}
el
(%]

Figure 5.13: The CPU time and the error for Problem 1 with e = 1072,

120

4 1]] i L8

ask .
BACOL, keol =2

ak EPDCOL keol=2 hoOLkeal=2

EPDCOL, keol =5

n
[34]
T

OL, kcol=5

l°g 1 o(CPU)
o
¥

S731

]
-

6
-logm(efror)

Figure 5.14: The CPU time and the error for Problem 1 with e = 104,

We make the following observations.

e BACOL is comparable at coarse tolerances, and it is the most efficient for

computing high accuracy solutions.

e When the spatial difficulty increases (i.e., € changes from 10~ to 107%), the
fixed-mesh package, EPDCOL, compared with the adaptive packages, becomes

relatively slower.

e DO3PPF is the slowest software package for a fixed accuracy, and even slower
than the fixed-mesh code, EPDCOL.

121

e When TOL is relatively coarse, TOMS731 is the most efficient (with the condi-
tion that an optimal number of mesh points is found a priori), but it is unable
to produce a high accuracy solution. With € = 1073, the best L2-norm error,
(10~5), is obtained approximate by TOMS731; while for with e = 107, this
code is unable to provide an approximate solution with the error smaller than
1074,

e MOVCOL is comparable for coarse or moderate tolerances. But when we require
an accuracy smaller than 1078, MOVCOL becomes less efficient. For example,
consider € = 10~3. When we choose NINT = 150 and TOL = 10~%, we obtain
an L2-norm error of 2.81 x 1078 with CPU = 18.21 seconds. However, when we
choose NINT = 350 and TOL = 10~7, we obtain an error of 5.11 x 10~7 with
CPU = 4710.64 seconds. This performance can be also observed in the other
problems except for Problem 7 which is a relatively easy problem in term of the
spatial difficulty. The reason may be that, for problems with a lot of spatial
difficulties, MOVCOL is not able to compute a high accuracy approximate
solution with reasonable efficiency. Therefore, we did not plot any result using

MOVCOL with an accuracy request of less than 10~° except for Problem 7.

e HPNEW is slow for coarse tolerances. It may be better for high tolerances,
e.g., with e = 1073, HPNEW is faster than MOVCOL when the error is close to
10-5. During our experiments, we found that for coarse tolerances HPNEW has
a tendency to use many more mesh points. For example, for Problem 1 with
e = 103, we choose TOL = 10~2 and HPNEW ends up with NINT = 250,
compared with NINT = 13 from BACOL with KCOL = 2. This may due to
the local hp-refinement strategy employed in HPNEW.

5.3.2 Problem 2

Figures 5.15 and 5.16 show the performance of all the codes for Problem 2 with

€ = 1073 and € = 10~ respectively. The L2-norm error is computed at Tou: = 1.

122

4 A9 1 1 1] 19
3+ i
COL, kcol =2
EPDCOL, keol =5
2F .
ACOL, keol =2
§ ACOL, keol =5
Q 1t]
=3
8
oF 4
-1k .
_2 1 I3 1 1 1 L
2 4 10 12
-Iog1 0(ermr)

Figure 5.15: The CPU time and the error for Problem 2 with e =1073.

123

COL, keol =5
4 DO3PPF]

OL. keol=2

(2]
¥

HPN BACOL, keol =5

log, ((CPU)
»n
L)

_1 [1 1 I L 1.

o

6 7
-log \ o(error)

Figure 5.16: The CPU time and the error for Problem 2 with € = 10~4.

We can make similar observations from Figures 5.15 and 5.16. We need to pay
particular attention to Figure 5.16. In Figures 5.13-5.15, we see that EPDCOL with
KCOL = 2 performs better using a coarse tolerance than EPDCOL with KCOL =35;
the latter is more efficient for the purpose of obtaining a high accuracy solution.
However, things are different in Figure 5.16. As we see, EPDCOL with KCOL =2is
more efficient for all the tolerances than with KCOL = 5. In fact, when the solution
of the PDEs is smooth and one is using a fized mesh package, it is more efficient to
apply a high order discretization to the spatial domain (some numerical results can
be found in [11, 52]). For Problem 2 with € = 10~*, the solution may be considered
nonsmooth. That may explain why EPDCOL with KCOL = 5 performs poorly for

124

small tolerances. However, we see that BACOL, which uses an adaptive approach,

still gives better results for the high order methods when a small tolerance is supplied.

5.3.3 Problem 4

Figure 5.17 shows the performance of all the codes for Problem 4. The L?-norm error

is computed at Ty, = 36.

3 4 1 11] 13]
25k
EPDCOL, keal =2
2 -
ACOL, keol =2
5r BACOL, keol =5
HPNEW
S 1
Q
Q
S
2 ost
DCOL, keol =5
0 -
-05t
-1+
_1 .5 1 [} L 1 L 1
2 4 6 8 10 12
-Iogm(ermf)

Figure 5.17: The CPU time and the error for Problem 4.

This is a relatively easy problem in terms of the spatial difficulty. We note that
EPDCOL works very well while BACOL is comparable with EPDCOL. MOVCOL
struggles with this problem, and TOMS731 is less efficient compared with EPDCOL

125

and BACOL. HPNEW, with a small tolerance, is the most efficient although it needs
more CPU time when a larger tolerance is required. As usual, DO3PPF is the slowest

code.

5.3.4 Problem 6

We note that some of the boundary conditions (BCs) for Problem 6 are mixed, i.e.,
they involve conditions on both solution and first derivative components. As men-
tioned before, HPNEW can only handle (pure) Dirichlet or Neumann BCs. Therefore,
Figure 5.18 shows the performance of all the codes except HPNEW for this problem.
The L2-norm error is computed at T,,, = 18. We first calculate the L?-norm error for

each PDE component. The maximum L2-norm error is then plotted in Figure 5.18.

126

45 T T T T T T T

KR o

oVCOL ’
EPDCOL, keol =5

L, keol =2

10g,(CPU)
n
)

BACOL, keol =5

o
(4]
Ll

~-0.5 L
0

wk

4
-(ogw(error)

Figure 5.18: The CPU time and the error for Problem 6.

This problem has a smooth solution for most of the temporal domain. However, there
is a wavefront moving from left to right between t = 9 and t = 10. This solution
behavior should favour BACOL since it has the ability to adjust the number of mesh
points while the other codes, except HPNEW, use a fixed number of mesh points
throughout the computation. As expected, Figure 5.18 shows that BACOL is again

the most efficient, and is comparable with TOMS731 even when a small tolerance is

used.

127

5.3.5 Problem 7

In our experiments of Problem 7, we found that when we attempted to solve this
problem using EPDCOL, it repeatedly failed the convergence test of the Newton
iteration before it reached the output time T, = 0.5; and when we attempted to
solve this problem using HPNEW, it gave an error message that, after a remeshing,
two adjacent mesh points of the new mesh were so close as to appear in the same
place. Therefore, we show in Figure 5.19 performance results for all codes except
EPDCOL and HPNEW. The L2-norm error is computed at T, = 0.5.

25 T T T T T T 7 T Y

BACOL, keol =2
2r MOVCOL i

15F

log, (CPU)
o
wn

Y

o
¥

b
(5]
T

-1F

-1.5F

L i

-2 L

» -

6
-leg \ Q(ermr)

Figure 5.19: The CPU time and the error for Problem 7.

This is a relatively easy problem in terms of the spatial difficulty. We note that

128

MOVCOL is able to compute an approximate solution of the L2-norm error within
10~8 in a reasonable CPU time, which it is unable to obtain for other problems. Once
again TOMST731 is more efficient when a coarse tolerance is used, and DO3PPF is the
slowest in all the codes. As usual, BACOL is comparable for a coarse tolerance and

is more efficient when a small tolerance is used.

5.4 Inconsistent Initial and Boundary Conditions

Problem 5 is an interesting problem because the initial condition is not consistent
with the boundary conditions. As mentioned before, the initial condition given for
v(t,0) implies that v;(0,0) = 5 (2 - m&—@o—)-) ~ 10, which is inconsistent with the
boundary condition v.(0,0) =0.

In [53], the authors stated that EPDCOL could not handle problems with inconsis-
tency between the initial condition and the boundary conditions. We now plot the
approximate solutions of v(z,t) at T, = 35.83 in Figure 5.20, using both BACOL
and EPDCOL. We consider TOL = 1079 for both codes. We choose KCOL = 2,
NINT = 10 for BACOL and KCOL =2, NINT = 1000 for EPDCOL.

129

% o1 02 03 04 05 06 07 08 03 f

Figure 5.20: The approximate solutions using BACOL and EPDCOL.

Clearly the approximate solutions are different at the left end point. In fact we
found that at z = 0, vz(0,Tow) = 10 when using EPDCOL while BACOL gives
v2(0, Towe) = 0. EPDCOL gives an incorrect solution because it differentiates the
BCs. Therefore, for Problem 5, EPDCOL solves the problem using

(vz)e(0,¢) =0 (5.10)
instead of

vz(0,t) =0. (5.11)
Moreover, EPDCOL assumes that the initial condition is consistent with the BCs.

Therefore, EPDCOL uses the initial condition vz(0,0) = 10. From (5.10), we see that
EPDCOL thus requires v.(0,¢) to be a constant throughout the computation, i.e.,

v(0,t) =10,

which leads to a incorrect approximate solution. This explains why EPDCOL is
unable to handle PDEs with the inconsistency between the initial conditions and the
BCs.

130

Furthermore, in our experiments, we found that when we attempted to solve this
problem using MOVCOL, it was unable to get started because DASSL, the underlying
time integrator within MOVCOL, was unable to calculate consistent derivatives for
the initial step. Therefore, we show in Figure 5.21 performance results for all codes
except EPDCOL and MOVCOL. The L?-norm error is computed at T, = 35.83. We
first calculate the L2-norm error for each PDE component. The maximum L2-norm

error is then plotted in Figure 5.21.

131

HPNEW
5 ACOL, keol =2
[OMS731
Q ot 4
e
g BACOL, kcol=5
1+ R
or i
_1 i i 1 L] L] 1 L
-1 0 1 5 6 7 8 9

-Iog1 o(en'or)

Figure 5.21: The CPU time and the error for Problem 5.

We observe that TOMS731 is unable to obtain an approximate solution which has
an L2-norm error smaller than 10~2. DO3PPF is very slow as usual and HPNEW is
about 5 times slower than BACOL.

5.5 BACOL for Problems with Blow-Up Solutions

Many physical problems have the property that as ¢ increases, the solution goes to
infinity; i.e., there exists a blow-up solution. It is a challenge for numerical methods
to correctly model the blow-up behaviour. When a singularity occurs, if a fixed

mesh is used to reproduce such behaviour, large number of mesh points must be

132

used throughout the computation in order to give a reasonable accuracy. Budd et al.
[26] employed moving mesh methods to solve such problems. In this section we will
illustrate that BACOL is able to handle problems with blow-up solutions.

The problem we consider here is Problem 3 with p = 2, introduced in Section 5.1.
Using BACOL with ATOL = RTOL = 107", KCOL =5, and NINT =5 as the
initial inputs, we found that the blow-up time was approximately 0.082437272703
(which agrees with [25]), when the maximum solution was around 5.21 x 10'2. Since
the solution has its maximum value at z = 0.5, we divide the solution by U(0.5,t),
which makes the maximum value 1 all times. In Figure 5.22, we plot U(z,t)/U(0.5,1)
at t = 0,0.08,0.0824,0.082437. Table 5.7 shows the values of U(0.5,%) at different

times which clearly demonstrate the blow-up behaviour of the solution.

1 T T T T T T o
I[\ —)
£

o - 00824

U 000,55
o
an
T

[
i
iz
=t
[1pY
B
'
o
[
B
)
-t
¥
'I
1 v
1 t
ot
i
'
r
'
1
1
i
1
4
1
'
l

Figure 5.22: U(z,t)/U(0.5,t) at t =0, 0.08, 0.0824, 0.082437.

133

t U(0.5,t)
0 2.00- 10
0.08 45310
0.0824 2.80- 10°
0.082437 3.76- 10°

0.08243727 3.76 - 10°
0.0824372727 3.17 - 10
0.082437272703 | 5.21 - 10**

Table 5.7: The maximum value of the solution as t approaches the blow-up time

5.6 Numerical Investigation of Convergence Rates

De Boor and Swartz [23] studied boundary value ODEs of the form

y™ = flt,y, v, ...,y D).

They used collocation with a B-spline basis and an approximate solution, Y, from
a piecewise polynomial subspace of degree p. They then proved that, if the exact
solution is sufficiently smooth so that it has 2(p + 1) — m continuous derivatives
and p + 1 — m Gauss-Lengendre points are chosen as the collocation points in each
subinterval, the following error results hold. Let h be the maximum subinterval

length; then, at mesh points,
Y —y| = O(p2@*=m)), (5.12)

while elsewhere,
Y —y| = O(h**). (5.13)

We note that, if p +1 > 2m, then a higher order of convergence is obtained at
the mesh points compared with the order at non-mesh points; this is referred to as
superconvergence at the mesh points. Although, to our knowledge, there is no similar
result for PDE cases, we now show some numerical results which show agreement

with these rates of convergence.

134

In the PDE system we consider, (1.1), the highest spatial derivative is second order.
This implies m = 2. Recall that the number of collocation points in each subinterval,

KCOL, is equal to p—1. By writing (5.12) and (5.13) in terms of KCOL, we obtain
the similar formulas:

U—-u| = O(h?%C9L) at mesh points; (5.14)
U —u| = O(h¥COL*?) elsewhere, (5.15)

where u is the exact solution for the PDEs in (1.1), and U is the approximate so-
lution. We now show some numerical results which indicate that there does exist

superconvergence at the mesh points, and the expected, lower rate of convergence at

other points.

We now consider a simple problem, the second example in [53]:
Uy = Uge + TSI T, O<z<l, t>0, (5.16)

u(z,0) =1, 0<z<1],
w(0,t) =u(l,t) =1, t>0.

The exact solution for this problem is easily seen to be

u(z,t) =1 +sinrz(l —e™™").

So as not to use BACOL, we will employ EPDCOL for this numerical experiment.
We recall that EPDCOL employs the same spatial discretization as BACOL. We will
now apply EPDCOL on the above problem with uniform mesh and KCOL Gauss-
Legendre collocation points in each subinterval. If we choose NINT = N and Tou: =
1, the error at the i-th internal mesh point, z; = i/N, i = 1,...,N — 1 is then
calculated by E; = |U(z;, Toue) —u(Zi, Toue)|- Since the above problem has the constant
Dirichlet boundary conditions at both boundaries, the error at the boundary points
will be around machine epsilon. Therefore, we will not calculate the error at the

135

boundary points. We will also consider NINT = 2N and NINT = 4N, and we
can calculate the corresponding errors at z; =i/N,¢=1,..., N — 1, which we will
refer to as E(i) and E(3), respectively. We note that the original z; corresponding to
NINT = N, are also mesh points for NINT = 2N or 4N. Now, if (5.14) holds, we
should have

lEi _ E(i)i _ h2 KCOL _ (%)2 KCoL

z T ~ —_ 22 KCOL, 5.17
BG) — B()| (§)2KC0L — ()2 KeoL (5.17)

where i = 1,..., N — 1. Obviously from (5.17) we have

lEi - E('I‘)I ~ 22 KCOL»

e B EO) (5.18)
1iSN—1 | E(3) — E(3)]

Ci=

For confirmation of superconvergence, we still need to show the rate of convergence
at non-mesh points. Instead of calculating the error in terms of the maximum norm,
we choose to calculate the L?-norm error between the exact solution u(z,t) and the

approximate solution U(z,t), using

NINT g,
/ Uz, t) —u(z,t)dz =) / (U(z,t) — u(z, t))?dz, (5.19)
=1 i

and

Ti4 KCOL+3
/ U)~) de s (e =) Y, we (U) —u@n), (520)

r=1

fori=0,..., NINT. The {w,}}S9L*3 are the Gauss-Legendre quadrature weights
on [0,1], and v, = z; + (Tiy1 — Ti)pr, Where {p-}XCGOL*3 are the Gauss-Legendre

quadrature points on [0, 1].
From (5.15), we expect to obtain
1
f Uz, t) — u(z, £))? dz = O(RKCOL+2). (5.21)
0

We compute the L2-norm errors, namely, || Ell2, | E|l2, | E|l2 for NINT = N,2N,4N.
If (5.21) holds, a similar calculation gives,

136

_ 1Ell2 = lll‘?llz ~ 9KCOL+2. (5.22)
[Ellz — [Ell2

Table 5.8 shows the values of C; and C; for (5.16) for different KCOL and N values.

We denote RTOL for the relative tolerance, and recall that EPDCOL only requires

the relative tolerance and that this tolerance is applied only to the time integration.

RTOL is chosen such that it is much smaller than the L?-norm error and the error

at the mesh points. Therefore, the error which comes from the time integration can

be ignored.

RTOL| G Cs
10~° | 16.43 | 16.29
1073 | 16.27 | 16.19
1077 |16.20 | 16.13
10~ |63.47] 32.13
10~ | 64.71 | 32.08
101! | 64.99 | 32.06
10~ | 279.4 | 63.66
10~ | 267.7 | 63.84
107 | 276.2 | 63.91

X
A#.&wwwmwmg
h

S FR R R RS N = T e

Table 5.8: Confirmation of superconvergence.

As expected, the values of C; and C, agree with (5.18), (5.22) very well.

Chapter 6

Conclusions and Future Work

In this thesis, BACOL, an adaptive MOL software package for solving one-dimensional
(1-D) parabolic PDEs is presented. Numerical experiments arei done using BACOL
and several other adaptive or non-adaptive software packages on a number of test
problems. The results presented in Chapter 5 illustrate that when a high accuracy
is required, BACOL is clearly the most efficient among all the packages; and for a
coarse tolerance, BACOL is still one of the fastest codes for most test problems. We
note that except for BACOL and HPNEW, all the other codes do not have the ability
to change the number of mesh points and thus control the spatial error. Therefore, in
general, for codes except BACOL and HPNEW, it is difficult to achieve the optimal
performances shown in Chapter 5. Comparing BACOL and HPNEW, BACOL is
clearly more efficient than HPNEW for most test problems. In addition to efficiency
issues, we have observed various difficulties using other codes (for example, EPDCOL
and MOVCOL are unable to solve problems with inconsistencies between the initial

condition and the BCs; while HPNEW is unable to solve problems with mixed BCs),
compared to BACOL.

There is much left for future research. A summary of future work follows.

o It should be possible to develop an algorithm to vary the degrees of the piecewise
polynomials employed in the spatial discretization. As shown in Chapter 5, for

137

138

a given problem and a given tolerance, it takes different amounts of CPU time
when we apply BACOL with different KCOL values. In general, the smaller the
required tolerance, the more efficient it is to use BACOL with a larger KCOL
value. It is easy to see that the number of multiplications in each time step
is linear with respect to the number of subintervals; i.e., Ckcor * NINTkcoL,
where Ckcor is a constant depending on KCOL, and NINTkcor is the number
of subintervals which is necessary to achieve a given TOL using KCOL. On the
other hand, we have the rzlationship, approximately, (NI NTxcor) (KCOL+2 =
constant, which is based on (5.8). Therefore, if we can estimate Ckcor, we may

be able to vary the degrees of the piecewise polynomials depending on the value
of NIN TKCO L-

It would be interesting to attempt to extend BACOL to more general 1-D cases,
e.g., a parabolic system coupled with elliptic equations or ordinary differential
equations. This may involve some changes in the interface; e.g., there will not be
enough initial conditions or boundary conditions. For instance, for a parabolic
system coupled with elliptic equations, some variables may only have boundary
conditions but do not have initial conditions. This will not change the structure
required by COLROW; however, the process to obtain the initial conditions for
DASSL will be different, and the scaling technique would be applied to the

algebraic constraints which are generated from the elliptic equations.

It will be interesting to see whether a similiar strategy will work for higher di-
mensional cases or not. Unfortunately collocation on complex regions is difficult
because much of the structure of the linear system is lost. It may be better to
use a Galerkin method that involves less continuity. In case of rectangle domain
and quasilinear PDEs, it may be possible to apply collocation using a tensor
product basis (see [71]).

Bibliography

(1] S. Adjerid, M. Aiffa, and J.E. Flaherty. High-order finite element methods for
singularly-perturbed elliptic and parabolic problems. SIAM J. Appl. Math.,
55:520-543, 1995.

[2] S. Adjerid and J.E. Flaherty. A moving finite element method with error esti-
mation and refinement for one-dimensional time dependent partial differential
equations. SIAM J. Numer. Anal., 23:778-796, 1986.

[3] S. Adjerid and J.E. Flaherty. A moving-mesh finite element method with lo-
cal refinement for parabolic partial differential equations. Comput. Meth. Appl.
Mech. Engrg., 55:3-26, 1986.

[4] S. Adjerid, J.E. Flaherty, P.K. Moore, and Y. Wang. High-order adaptive meth-
ods for parabolic systems. Physica D, 60:94-111, 1992.

[5] S. Adjerid, J.E. Flaherty, and Y. Wang. A posteriori error estimation with finite
element methods of lines for one-dimensional parabolic systems. Numer. Math.,
65:1-21, 1993.

[6] U. Ascher, J. Christiansen, and R.D. Russell. Collocation software for boundary
value ODEs. ACM Trans. Math. Softw., 7:209-222, 1981.

[7] U. Ascher, R-M.M Mattheij, and R.D. Russell. Numerical Solution of Boundary
Value Problems for Ordinary Differential Equations. SIAM, Philadephia, 1995.

[8] U. Ascher, S. Pruess, and R.D. Russell. On spline basis selection for solving
differential equations. SIAM J. Numer. Anal., 20:121-141, 1983.

[9] U. Ascher and R.D. Russell. Reformulation of boundary value problems into
"standard” form. SIAM Review, 23:238-254, 1981.

[10] M. Berzins, P.J. Capon, and P.K. Jimack. On spatial adaptivity and interpolation
when using the method of lines. Appl. Num. Math., 26:117-133, 1998.

139

140

[11] M. Berzins and P.M. Dew. Algorithm 690: Chebyshev polynomial software for
elliptic-parabolic systems of PDEs. ACM Trans. Math. Softw., 17:178-206, 1991.

[12] M. Berzins, P.M. Dew, and R.M. Furzeland. Software for time-dependent prob-
lems. In B. Engquist and T. Smedsaas, editors, PDE Software: Modules, Inter-
faces and Systems, pages 309-324; Amsterdam, 1984. IFIP/North-Holland.

(13] M. Berzins, P.M. Dew, and R.M. Furzeland. Developing software for time-
dependent problems using the method of lines and differential-algebraic inte-
grators. Appl. Num. Math., 5:375-397, 1989.

[14] M. Berzins and R.M. Furzeland. A type-insensitive method for the solution of stiff
and non-stiff differential equations. Technical report, Department of Computer
studies, Leeds Univeristy, England, 1986.

[15] M. Berzins and R.M. Furzeland. An adaptive theta method for the solution of
stiff and non-stiff differential equations. Appl. Num. Math., 9:1-19, 1992.

[16] M. Bieterman and I. Babuska. The finite element method for parabolic equations.
I. a posteriori error estimation. Numer. Math., 40:339-371, 1982.

[17] M. Bieterman and I. Babuska. The finite element method for parabolic equations.
II. a posteriori error estimation and adaptive approach. Numer. Math., 40:373-
406, 1982.

[18] J.G. Blom, J.M. Sanz-Serna, and J.G. Verwer. On simple moving grid method for
one-dimensional evolutionary partial differential equations. J. Comput. Phys.,
74:191-213, 1988.

[19] J.G.Blom and P.A. Zegeling. Algorithm 731: A moving-grid interface for systems
of one-dimensional time-dependent partial differential equations. ACM Trans.
Math. Softw., 20:194-214, 1994.

[20] R.F. Boisvert, S.E. Howe, and D.K. Kahaner. GAMS: A framework for the
management of scientific software. ACM Trans. Math. Softw., 11:313-3535, 1985.

[21] C.De Boor. Package for calculating with B-Splines. SIAM J. Numer. Anal.,
14:441-472, 1977.

[22] C.De Boor. A Pratical Guide to Splines. Springer-Verlag, New York, 1978.

[23] C.De Boor and B. Swartz. Collocation at Gaussian points. SIAM J. Numer.
Anal., 10:582-606, 1973.

141

[24] K.E. Brenan, S.L. Campbell, and L.R. Petzold. Numerical Solution of Initial-
Value Problems in Differential-Algebraic Equations. SIAM, Philadephia, 1996.

[25] C.J. Budd, J. Chen, W. Huang, and R.D. Russell. Moving mesh methods with
applications to blow-up problems for PDEs. In D.F. Griffiths and G.A. Wat-
son, editors, Numerical Analysis 1995: Proc. of 1995 Biennial Conference on
Numerical Analysis, pages 1-17, 1996.

[26] C.J. Budd, W. Huang, and R.D. Russell. Moving mesh methods for problems
with blow-up. SIAM J. Sci. Comput., 17:305-327, 1996.

[27] G.D. Byrne and A.C. Hindmarsh. A polyalgorithm for the numerical solution of
ordinary differential equations. ACM Trans. Math. Softw., 1:71-96, 1975.

[28] J. Carroll. A composite integration scheme for the numerical solution of systems
of parabolic pdes in one space dimension. Journal of Computational and Applied
Mathematics, 46:327-343, 1993.

[29] M.B. Carver. The choice of algorithms in automated method of lines solution
of partial differential equations. In L. Lapidus and W.E. Schiesser, editors, Nu-
merical Methods for Differential Systems, pages 243-265. Academic Press, Inc.,
1976.

[30] J.C. Diaz, G. Fairweather, and P. Keast. FORTRAN packages for solving cer-
tain almost block diagonal linear systems by modified alternate row and column
elimination. ACM Trans. Math. Softw., 9:358-375, 1983.

[31] G. Fairweather. Finite Element Galerkin Methods for Differential Equations.
Marcel Dekker, Inc., New York, 1973.

[32] W. Gui and I. Babuska. The h, p and h-p versions of the finite element method
in 1 dimension. Part L. the error analysis of the p-version. Numer. Math., 49:577—
612, 1986.

[33] W. Gui and L. Babuska. The h, p and h-p versions of the finite element method
in 1 dimension. Part II. the error analysis of the h- and h-p versions. Numer.
Math., 49:613-657, 1986.

[34] W. Gui and I. Babuska. The h, p and h-p versions of the finite element method
in 1 dimension. Part III. the adaptive h-p version. Numer. Math., 49:659-683,
1986.

[35] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II: Stiff and
Differential-Algebraic Problems. Springer-Verlag, Berlin, 1991.

142

[36] A.C. Hindmarsh. Preliminary documentation of GEARIB: Solution of implicit

systems of ordinary differential equations with banded Jacobian. Technical Re-
port UCID-30130, Lawrence Livermore National Laboratory, 1976.

[37] A.C. Hindmarsh. GEARB: Solution of ordinary differential equations having
banded jacobian. Technical Report UCID-30059, Lawrence Livermore National
Laboratory, 1977.

[38] A.C. Hindmarsh. ODEPACK: A systematized collection of ODE solvers.
In R. Stepleman et al., editor, Scientific Computations, pages 55-64.
IMACS/North-Holland Publishing Company, 1983.

[39] W. Huang, Y. Ren, and R.D. Russell. Moving mesh methods based on moving
mesh partial differential equations. J. Comput. Phys., 113:279-290, 1994.

[40] W. Huang, Y. Ren, and R.D. Russell. Moving mesh partial differential equations
(MMPDEs) based on the equidistribution principle. SIAM J. Numer. Anal.,
31:709-730, 1994.

[41] W. Huang and R.D. Russell. A moving collocation method for solving time
dependent partial differential equations. Appl. Numer. Math., 20:101-116, 1996.

[42] W. Huang and R.D. Russell. Analysis of moving mesh partial differential equa-
tions with spatial smoothing. SIAM J. Numer. Anal., 34:1106-1126, 1997.

[43] M. Humi and W.B. Miller. Boundary Value Problems and Partial Differential
Equations. PWS-KENT, Boston, 1992.

[44] M. Hyman. The method of lines solution of partial differential equations. Tech-
nical report, Courant Inst. Mathematics Sciences, 1976.

[45] P. Keast, 1992. Private communication.

[46] P. Keast and P.H. Muir. Algorithm 688. EPDCOL: A more efficient PDECOL
code. ACM Trans. Math. Softw., 17:153-166, 1991.

[47] P. Keast, P.H. Muir, and T.B. Nokonechny. A method of lines package, based on
monomial spline collocation, for systems of one dimensional parabolic differential
equations. In Numerical Analysis (A.R. Mitchell 75th birthday volume), pages
207-224. World Scientific Publishing, 1996.

[48] J. Lawson, M. Berzins, and P.M. Dew. Balancing space and time errors in the

method of lines for parabolic equations. STAM J. Sci. Stat. Comput., 12:573-594,
1991.

143

[49] B. Leimkuhler, L. Petzold, and C.W. Gear. Approximation methods for the con-
sistent initialization of differential-algebraic equations. SIAM J. Numer. Anal.,
28:205-226, 1991.

[50] M. Machura and R.A. Sweet. A survey of software for partial differential equa-
tions. ACM Trans. Math. Softw., 6:461-488, 1980.

[51] N.K. Madsen and R.F. Sincovec. PDEPACK: Partial Differential Equations
Package Users Guide. Scientific Computing Consulting Services, 1975.

[52] N.K. Madsen and R.F. Sincovec. General software for partial differential equa-
tions. In L. Lapidus and W.E. Schiesser, editors, Numerical Methods for Differ-
ential Systems, pages 229-242. Academic Press, New York, 1976.

(53] N.K. Madsen and R.F. Sincovec. Algorithm 540. PDECOL, general collocation

software for partial differential equations. ACM Trans. Math. Softw., 5:326-351,
1979.

[54] K. Miller. Moving finite elements. I[I. SIAM J. Numer. Anal., 18:1033-1057,
1981.

[55] K. Miller and R. N. Miller. Moving finite elements. I. SIAM J. Numer. Anal.,
18:1019-1032, 1981.

[56] A.R. Mitchell. The Finite Difference Method in Partial Differential Equations.
Wiley, New York, 1980.

[57] P.K. Moore. A posteriori error estimation with finite element semi- and fully
discrete methods for nonlinear parabolic equations in one space dimension. STAM
J. Numer. Anal., 31:149-169, 1994.

[58] P.K. Moore. Comparison of adaptive methods for one dimensional parabolic
systems. Appl. Numer. Math., 16:471-488, 1995.

[59] P.K. Moore. Interpolation error-based a posteriori error estimation for two-
point boundary value problems and parabolic equations in one space dimension.
unpublished software, http://faculty.smu.edu/pmoore/papers.html, 2001.

[60] T.B. Nokonechny. The method of lines using monomial spline collocation for

parabolic partial differential equations. Master’s thesis, Dalhousie University,
1995.

[61] L.R. Petzold. A description of DASSL: A differential/algebraic system solver.
Technical report, Sandia Labs, Livermore, CA, 1982.

144

[62] L.R. Petzold and P. Lotstedt. Numerical solution of nonlinear differential equa-
tions with algebraic constraints II: Practical implications. SIAM J. Sci. Stat.
Comput., 7:720-733, 1986.

[63] A. Prothero and A. Robinson. On the accuracy and stability of one step methods

for solving stiff systems of ordinary differential equations. Math. Comp., 28:145—
162, 1974.

[64] J.M. Sanz-Serna and I. Christie. A simple adaptive technique for nonlinear wave
problems. J. Comput. Phys., 67:348-360, 1986.

[65] W.E. Schiesser. A digital simulation system for mixed ordinary/partial differen-
tial equation modes. In Proc. Symp. Digital Simulation of Continuous Processors,
Gyor, Hungary, 1971.

[66] W.E. Schiesser. DSS/2-An Introduction to the Numerical Method of Lines Inte-
gration of Partial Differential Equations. Lehigh University, Pennsylvania, 1976.

[67] W.E. Schiesser. The Numerical Method of Lines. Academic Press, Inc., 1991.

[68] C. Shu. Essentially non-oscillatory and weighted essentially non-oscillatory
schemes for hyperbolic conservation laws. Technical report, NASA Langley Re-
search Center, 1997.

[69] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer-Verlag,
Berlin, 1991.

[70] R. Wang. High order adaptive method of lines for 1-D parabolic equations.
Master’s thesis, Dalhousie University, 1999.

[71] Y. Wang. A Parallel Collocation Method for Two Dimensional Linear Parabolic
Seperable Partial Differential Equations. PhD thesis, Dalhousie University, 1994.

[72] A.B. White. On selection of equidistributing meshes for two-point boundary-
value problems. SIAM J. Numer. Anal., 16:472-502, 1979.

