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Abstract

The purpose of this work is to study Hopf algebra extensions and their relation to
cohomology. We introduce various cohomology theories for Hopf algebras, explore
their relations to each other and how they classify different kinds of extensions. An
exact sequence connecting these cohomology theories is obtained, vastly generalizing
those of Kac, Tahara and Masuoka. The morphisms in the low degree part of this

sequence are given explicitly, which enables us to use them for concrete computations.
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Chapter 0
Introduction

In this thesis we discuss various cohomology theories for Hopf algebras and their
relation to extension theory.

It is natural to think of building new algebraic objects from simpler structures, or
to get information about the structure of complicated objects by decomposing them
into simpler parts. Algebraic extension theories serve exactly that purpose, and the
classification problem of such extensions is usually related to cohomology theories.

In the case of Hopf algebras, extension theories are proving to be invaluable tools
for the construction of new examples of Hopf algebras, as well as in the efforts to
classify finite dimensional Hopf algebras.

Hopf algebras, which occur for example as group algebras, as universal envelopes
of Lie algebras, as algebras of representative functions on Lie groups, as coordinate
algebras of algebraic groups and as Quantum groups, have many ‘group like’ proper-
ties. In particular, cocommutative Hopf algebras are group objects in the category
of cocommutative coalgebras, and are very much related to ordinary groups and Lie
algebras. In fact, over an algebraically closed field of characteristic zero, such a Hopf
algebra is a semi-direct product of a group algebra by a universal envelope of a Lie
algebra, hence just a group algebra if finite dimensional (see [MM, Ca, Ko] for the
connected case, [Gr, Sw2| for the general case).

In view of these facts it appears natural to try to relate the cohomology of Hopf



[S]

algebras to that of groups and Lie algebras. The first work in this direction was
done by M.E. Sweedler [Swl] and by G.I. Kac [Kac] in the late 1960’s. Sweedler
introduced a cohomology theory of algebras that are modules over a Hopf algebra
(now called Sweedler cohomology). He compared it to group cohomology, to Lie
algebra cohomology and to Amitsur cohomology. In that paper he also shows how the
second cohomology group classifies cleft comodule algebra extensions. Kac considered
Hopf algebra extensions of a group algebra by the dual of a group algebra obtained
from a matched pair of groups (N,T), & — kv — H — kT — k, and found an
exact sequence connecting the cohomology of the groups involved and the group of
Hopf algebra extensions Opext(k", kT)

1 — HYN>T, k%) — H(T,k*) @ H(N, k*) — Aut(kV#kT)
— H*(N > T,k*) — HX(T,k*) @ H3(N, k*) — Opext(k", kT)
— H3(N>Tk*) — ...

which is now known as the Kac sequence. In the work of Kac all Hopf algebras are
over the field of complex numbers and also carry the structure of a C*-algebra. Such
structures are now called Kac algebras. The generalization to arbitrary fields appears
in recent work by A. Masuoka [Mal], where it is also used to show that certain
groups of Hopf algebra extensions are trivial. Masuoka also obtained a version of the
Kac sequence for matched pairs of Lie bialgebras [Ma3] and in [Mad] he describes a
Kac type sequence that connects extensions of quasi Hopf algebras and extensions of
ordinary Hopf algebras. In this thesis we obtain a significant generalization of the Kac
sequence, namely that for a general abelian matched pair of Hopf algebras (N, T, i, p),

consisting of two cocommutative Hopf algebras acting compatibly on each other
1 — HY(N>T,A) — HY(T, A) @ H'(V, A) — H(T, N, A)
— H}(N =T, A) — H¥(T,A) @ H*(N, A) — H3(T, N, A)
— H(N=T,A) — ...

Even more, in low degrees, we get an explicit description of the differentials in the

sequence. Schauenburg [Sch| obtains a Kac sequence for arbitrary matched pairs of



finite dimensional Hopf algebras, but most terms of the sequence are not groups. We
also obtain a five term exact sequence for a smash product of Hopf algebras N x T,

generalizing that of K. Tahara for a semi-direct product of groups

1 — Hbe(T, Hom(N, A)) — H2(H, A) — HX(N, A)”

2
—_— H"’

2 eas(T, Hom(N, A)) — H3(H, A).

These sequences give information about extensions of cocommutative Hopf algebras
by commutative ones. They can also be used in certain cases to compute the (low
degree) Sweedler cohomology groups of Hopf algebras.

The thesis is composed of six chapters, and an appendix. In the appendix some
results from homological algebra used in the main body are presented, including some
results from the cohomology of groups and Lie algebras.

In Chapter 1, some preliminaries are introduced. In particular we talk about
Sweedler cohomology, Hopf algebra extensions and the cohomology of an abelian
Singer pair of Hopf algebras [Si], [Ho|.

In the second chapter matched pairs of Hopf algebras are discussed. They are
compared to Singer pairs. We introduce a cohomology theory for such a matched
pair of Hopf algebras with coefficients in a commutative algebra, and talk about how
it compares to the cohomology of a Singer pair.

The generalized Kac sequence for an abelian matched pair of Hopf algebras, con-
necting Sweedler cohomology and the cohomology of the matched pair, is presented
in Chapter 3. The homomorphisms in the sequence are given explicitly, so as to make
it possible to use them in explicit calculations of groups of Hopf algebra extensions
and low degree Sweedler cohomology groups.

In Chapter four, we are constructing a five term exact sequence for a smash
products of cocommutative Hopf algebras, generalizing that of Tahara for a semi-
direct product of groups. It is in fact a special case of the Kac sequence, but again
explicit presentation of the homomorphisms in the sequence make it suitable for

computations. In this spirit we use the sequence to compute Sweedler cohomology of



smash products of group algebras and universal envelopes of Lie algebras in terms of
the group and Lie algebra cohomologies.

Chapter five examines how the tools introduced in the previous chapters, combined
with some new observations, help to describe explicitly some extensions of the dual
of a group algebra k¥ by a group algebra kH. Here the groups N and H are finite
and H acts on N to give a semi-direct product N x H.

We conclude by indicating the possible avenues for some future work in this area.



Chapter 1

Preliminaries

1.1 Notation and conventions

e All vector spaces are over a fixed ground field k.
e The identity map is denoted by id.

e Given an algebra A, we denote its multiplication by m: A A — A, m(a®b) = ab
and unit by n:k — A, n(z) = zla. Frequently we identify z = n(z).

e The comultiplication and counit for a coalgebra C are denoted by A:C —
C ® C and €:C — k, respectively. We use Sweedler’s sigma notation for the
comultiplication: Ac = Y"¢; ® ¢, (Id® A)Ac =3 c; ® co ® c3 and so forth;
or sometimes just Ac = ¢, ® c;. If the coalgebra in question is cocommutative,
then the numbering of the subscripts is not necessary, and so we sometimes

omit them and write A(a) =3 ,)a® q, or even just A =a®a.

Similarly if M is a right C-comodule, p: M — M ® C, we use the notation
p(m) = mo @ my, (p® id)p(m) = (id ® Ac)p(m) = mg ® m; ® my and so on.
In case M also has a structure of coalgebra, we will write p(m) = mys ® mc, to

avoid ambiguity.
e The antipode for a given Hopf algebra H, is denoted by S: H — H.

5



If A is an algebra (bialgebra, Hopf algebra), then A° denotes its finite dual
coalgebra (bialgebra, Hopf algebra).

If V is a vector space (algebra, coalgebra,...), then ®*V, V®* or sometimes
just V™ denotes the n-fold tensor product V®...Q V.

If U and W are vector spaces, then the vector space of linear maps from U to
V is denoted by Hom(U, V).

If C is a coalgebra and A an algebra, then we denote the convolution product
in Hom(C, A) by *: Hom(C, A) ® Hom(C, A) — Hom(C, A).

The categories of vector spaces, algebras and coalgebras are denoted by V, A
and C, respectively. If H is a Hopf algebra, then the categories of left H-
vmodules, left H-module algebras and left H-module coalgebras are denoted by
#V, nA and gC, respectively.

When dealing with quotients, we denote the induced equivalence relation by
f ~ g. In particular, if f and g are cocycles, then f ~ g means that they are

cohomologous.

1.2 Sweedler cohomology

The Sweedler cohomology [Swl] is a cohomology theory for module algebras over a

given cocommutative Hopf algebra. If H is a cocommutative Hopf algebra then the

category gV of H-modules is monoidal closed. The tensor product of two H-modules

V and W is the tensor product of the underlying vector spaces V' ® W together with

the diagonal action

pvew = (v @ uw)ou(ARIdRid): HQVRIW - VW,

ie: h(v®w) = }_ hjv® how. The H-module of internal homomorphisms Hom(V, W)
is the vector space of linear maps V(V, W) together with the ‘diagonal’ action

Btom(v,w); H ® Hom(V, W) — Hom(V, W)



given by (hf)(v) = 3 A f(S(ha)v).

An H-module algebra A is an algebra in the category of H-modules gV, that is
an H-module which is also an ordinary algebra such that the multiplication and unit
are H-module maps, so that h(ab) = Y (h1(a))(ha2(b)) and A(1l) = &(h)1, i.e: so that
the diagrams

HRARA —E4®4 4 A Hek— ok
id®m m id®n n
HRA o A H®A—p— A

commute.

An H-module coalgebra C is a coalgebra in the category of H-modules gV, that
is an H-module with an ordinary coalgebra structure such that comultiplication and
counit are H-module maps, so that A(h(c)) = 3 hi(c1) ® ha(cp) (that is p is a

coalgebra map) and ec(h(c)) = ey (h)ec(c), i.e: so that the diagrams

H®C He c Heoc —ES . ¢
d® A A d®e €
H®C®C—z=—C®C H®k—p—k

cominute.

If A is a commutative H-module algebra and C is a cocommutative H-module
coalgebra then the vector space of H-module maps ;yHom(A, C) carries the associative
and commutative convolution algebra structure with multiplication and unit defined
by

Fro=ma(f®9)Ac:CHCRC A A A

and unit naec: C = k -5 A. Then the convolution invertible elements of gHom(C, A)



form an abelian group U(yHom(C, A)) = yReg(C, A). This gives a functor
HReg(—, A):H C? — Ab.

The free H-module coalgebra functor F:C — yC, defined by F(C) = H®C with
H-action on the first factor and tensor product coalgebra structure, is left adjoint to

the forgetful functor U: yC — C. The natural isomorphism
bc,p:u C(H® C,D) — C(C,UD)

is given by 6(f)(c) = f(1®c) and §7'(g)(h ® c) = hg(c), i.e: 8(f) = f(na ® id)
and 6~'(g) = up(id ® g). The unit ne:C — UFC and the counit €p: FUD — D
of the adjunction are given by n(c) =1®c and e(h ® d) = hd, i.e: n =7y ® id and
€ = up, respectively. The resulting cotriple G = (FU,¢,d = FnU) on yC is then used
to define the Sweedler cohomology. Every object D of yC has a simplicial resolution
with X,, = G™**! D, faces

0i: Xns1 = G™"2D — G™'D = X,

given by 0,41 =id®id®...@1dQupand 8, =id® ... d®myRid® ... ®id

for 0 < 7 < n, and degeneracies
Sic Xn = Gn+1D b Gn+2D = Anst

by si =id®...0d®My ®id®...®id for 0 < 7 < n. Applying the functor
aReg(—, A):g C®? — Ab to this simplicial resolution gives a cosimplicial complex

(HReg(an A): 3;7 S_;)
and the associated cochain complex of abelian groups

HReg(XO, A) ﬁi HReg(Xl,A) ﬂ - d:: HReg(}(m A) in., .

—1)n+t

with differential d,, = 8o * 9  *... 6,(l +f - The homology of this complex is the

sequence of right derived functors

R*yReg(—, A): C? — Ab



of yReg(—, A):y C? — Ab. The Sweedler cohomology is obtained by evaluating this
sequence of right derived functors at the trivial H-module coalgebra &

H*(H,A) = R yReg(—, A)(k) = H*(yReg(G**'k, A), d*).
Observe that the natural isomorphism
u: gReg(H ® C, A) — Reg(C, A)
defined by u(f)(c) = f(1®c) induces a natural isomorphism of cosimplicial complexes
u*: (yReg(X., A), 8, ) — (Reg(®"H ® D, A), &, ¢7)

with coface operators 6°(f) = pueHne)(id ® f), §(f) = f(d®...®@m...Qid)
for0 <i<n+1l,d(f) = fid®...®id ® up) and codegeneracies o'(g) =
g(id* ® n ® id™*?~%) for 0 < i < n. In terms of the associated cochain complexes this

means that the diagrams

wReg(X,, A) —%—+ ;Reg(Xpny1, A)

Un Un1

Reg(®"H ® D, A) 5 Reg(®"*'H ® D, A)
commute, where
(f) = w1 N)*(fTH Mm@ 1)) *...+ f (@ eme 1)+ (fV" (@ 1@ up)).-
The inclusion of the normalized complex
(Reg, (®" H® D, A),67)

into (Reg(®*H ® D, A), §*) with Reg, (®"H ® D, A) = N?_, ker o* induces an isomor-
phism in homology [Mc], in particular an isomorphism

H*(H,A) = H*(Reg, (®"H, A),5")
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suitable to compute Sweedler cohomology in terms of the normalized standard com-
plex (Reg, (®*H, A),d*).

The dual version of the theory described above can be used to get a cohomology
theory of comodule coalgebras C over a commutative Hopf algebra K. The category
of right K-comodules V¥ is symmetric monoidal. The tensor product of two K-
comodules is the tensor product of the underlying vector spaces V ® W together with

the diagonal coaction
dvew =(1®@1@m)o(dy @dw):VIW — VWQRK.

A K-comodule coalgebra C is a coalgebra and a K-comodule algebra A is an

algebra in VX. The cofree K-comodule algebra functor
G: A — AK,

defined by G(A) = A ® K with K-coaction on the second factor and tensor product
coalgebra structure, is right adjoint to the forgetful functor U: AX — A. The natural
isomorphism

6,4 A(UB, A) — AX(B, GA)
is given by 8(f) = (1 ® f)dp and 67'(g9) = (1 ® ex)g. The unit n:1 — GU and
the counit e: UG — 1 are given by 17 = dp and €4 = ex ® id4, respectively. The

resulting triple is T = (GU,n,n = GeU) on AX. Every object B of AX has a

cosimplicial resolution with Y™ = T™**1 B, faces
o Y™ =T B — T"?2RB = yn+!

given by ® =5 ®id®...Qidand & =id® ... dRAx ®Id®...®id for
1 <7< n+1, and degeneracies

si: Yn+1 — Tn+2B N Tn-i-lB =YY"

by si =1d® ... 1d®ex ®id®...Q®id for 0 < 7 < n. Applying the functor
Reg/(C, —): AX — Ab to this cosimplicial resolution gives a cosimplicial complex

(Reg®(C,Y™), 8%, s7)
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and the associated cochain complex of abelian groups
RegX(C,Y%) £ Regh(C, YY) & ... %" Reg®(C, Y™ 1) & ..

with differential d® = 9,0 * ... * 3,(;:1)"“. The homology of this complex is the

sequence of right derived functors
R*Regf(C, —): AX — Ab

of Reg®(C,—): AKX — Ab. The cohomology of C is obtained by evaluating this

sequence of right derived functors at the trivial K-comodule algebra &
H*(C,H) = R"Reg®(C, =) (k) = H"(Reg®(C, T**k), d").
Observe that the natural isomorphism
v:Reg(C, A) — Reg/(C, A® K)

defined by v(g) = (9 ® 1)d¢ with inverse v~!(f) = (1 ® ex)f induces a natural

isomorphism of cosimplicial complexes
v": (Reg(C, A ®" K), 8, 57) — (Reg®(C,Y™), &, 07)

with coface operators 6°(f) = (f®1)(dc), '(f) = (Id®...QIdRA®IAR. ..®id) f for
0<i<n+1,d"*(f) = (64 ®1)f and codegeneracies o'(g) = (id* ® ex ® id™+*~)g
for 0 < ¢ < n+ 1. In terms of the associated cochain complexes this means that the
diagrams

Reg(C, A® K™) 2" Reg(C, A® K™+1)

Un Un+1

RegX(C,Y™)

K n+-1
e Reg™ (C, Y1)

commute, where

F(f)=0a®@id")f*x([dOARIA")f T x...x({d* @m)fV" « (fFCU @id)Ac.
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The inclusion of the normalized complex
(Reg, (C,A®" K),d")

into Reg(C, A®* K), §*) with Reg, (C, A®" K) = N ker o* induces an isomorphism

in homology [Mc], in particular an isomorphism
H*(C,K) = H*(Reg, (C,®"K), %)

suitable to compute the cohomology of C in terms of the normalized standard complex
(Reg,.(C,®*K),8%).

1.2.1 Standard complex

Here we review in more detail the standard (normalized) complex for computing
the Sweedler cohomology of a cocommutative Hopf algebra H with coefficients in a
commutative A-module algebra A, where the action of H on A is denoted by ¥. The

complex in question is given as follows.

.. — Reg, (H®", A) > Reg, (H®",A) — ...

Y

where §771(f) = (Z(id® f)) * (f (Mm@ id®...®id) * (f(dOMR®id R ... ®id) *
ok (fFH(Id ® ... ® id ® m)) * (fF! @ £). Here Reg, (H®, A) denotes the abelian
group of convolution invertible normal linear maps f: H®7 — A (by normal we mean
that f(hy ® ...hq) = €(hy)...e(hy)1a whenever some h; € k). The cocycles and

coboundaries for the degrees 1 and 2 cohomology groups are described as follows:

Z'(H,A) = {f €Reg.(H,A)|f(gh) =¥(q1 ® f(h))f(g2)}

BY(H,A) = {f €Reg.(H,A)FaclU(A), st. f(h) =y(h®a)a"'},

Z*(H,A) = {f €Reg . (H® H,A)|¥(q:® f(h1® k1)) f(g2 ® haks)
= f(g1h1 ® k) (g2 ® h2) },

B2(H,A) = {f €Reg, (H® H,A)[3t € Reg(H, A), st.

FR®g) =) U(hi ® f(91))f *(haga) f(ha)}.
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1.2.2 Comparison with group and Lie algebra cohomologies

Suppose G is a group and H = kG is a group algebra and A is a commutative kG-
module algebra. The elements of G act as automorphisms of A, so they preserve
U(A) (the abelian group of units). Hence we can consider the group cohomology
H*(G,U(A)).

Theorem 1.2.1 (Swl, Theorem 3.1) The cohomology groups HY(kG, A) and
HY(G,U(A)) are canonically isomorphic for all positive q. The isomorphism is induced
by a canonical isomorphism between the standard complez to compute H1(kG, A) and

the standard Hochschild complex (see appendiz) to compute HY(G,U(A)).

Now let g be a Lie algebra and let H = Ug be its universal envelope. Denote the

underlying vector space of A by A*.

Theorem 1.2.2 (Swl, Theorem 4.3) The cohomology groups HY(Ug,A) and

H%(g, A*) are canonically isomorphic for ¢ > 2.

The isomorphism is given by the so called exponential map. In characteristic 0
this is the map ezp: Hom(Ug®", A) — Reg(Ug®", A), ezp(f) = e+ Y2, fi/i!. The
inverse is given by log(f) = > 7°(—1)""L(f —)¥/il.

1.2.3 Interpretation of the second cohomology group

As expected the second cohomology classifies some sort of extensions. In this case
the extensions in question are cleft comodule algebra exact sequences. Let H be a
Hopf algebra and let C be an H-comodule algebra (denote the comodule structure
by p:C — C ® H). We say that the sequence A — C — H is exact (here A is
an algebra) if A = C° = {c € C|p(c) = ¢ ® 14} and it is cleft if there exists
a convolution invertible H-comodule map x: H — C. If A is commutative and H
cocommutative then x defines an H-module structure on A (via conjugation in C)
and a Sweedler 2-cocycle a: H @ H — A (a(h ® k) = x(h1)x(k1)x '(h2ks)). This
way we get an isomorphism between equivalence classes of extensions and the second

cohomology group H?(H, A).
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1.3 Singer pairs, cohomology and extensions

Let (B, A) be a pair of Hopf algebras together with an action ;:B® A — A and a
coaction p: B — B® A. Then AQ® B can be equipped with the cross product algebra
structure, as well as the cross product coalgebra structure. To ensure compatibility
of these structures, further conditions on (B, A, u, p) are necessary. We give them in

terms of the action of B on A, twisted by the coaction of A on B,

po = (L@ mu(id® p))(14235)(p® id)ApRid®id): BRARA — AR A,
ie. bla®a') =big(a) ® b1 - ba(a’), and the coaction, twisted by the action,

p2 = (id®id @ m4(id ® £2))(14235)((p ® id)Ap ® p): B® B — BQ B® A,
p2(b® V) = bi1p ® by ® bra - bao(Vy).
Definition 1.3.1 The quadruple (B, A, u, p) is called a Singer pair if

1. A is a B-module algebra, i.e.:

(a)
BRAQA-2®4 . 4n A

id®myu my

BA A

7
commutes, where paga = (L @ n)o23(Ap ®id,y ®idy); e

b-aad = Z(b1 -a)(bs - a’),



(b)

B®k Hi =T1B k

id®na NA

B® A

m
commutes, i.e.

b-14=¢€p(b)la.
2. B is an A-comodule coalgebra:

(a)
B P B®A

B®BwB®B®A

commautes, where ppgp = (idg @ idg ® ma)o23(p ® p); i.e.
D Ap(bs)®ba=)_ bip®byg ®brabaa,

(b)
B p B®A

€B e ®id,y

r
k E® A

commutes, t.e.

D en(bs)ba = ep(b)1a-

15
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3.
pmp = (mp  id)p,
i.e.:
p(bb') = " bigbl ® bra(be - V).
4.
Aap = pr(id ® Ay)
i.e.:

Aa(b-a) =) bip- a1 ®bra(bs - az).
The Singer pair (B, A, u,p) is called abelian if A is commutative and B is

cocommutative.

The twisted action of B on A™ and the twisted coaction of A on B™ can now be

defined inductively:

K1 =L
and
BRA® A Mo+l A"® A
1A3®idAn®idA Iid,p.®m,\
BRBRA"® A A"QAR A
lp®id3®idAn®idA Iun®idA®u
BRA®RBRA"® A 4555) BRA"QA®RB®A

Dually the coaction of A on B™ is twisted by the action and is defined inductively
as follows

pL=p
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and
A3®id3m1 id3®id3m®mAI
B® B® B™ BRB"QAQA
p®ids ® pm | idp @ idpn @ ids ® |
BRA®B®B™QA 435) BRB"® AQ B® A

1.3.1 Hopf algebra extensions

A sequence of Hopf algebra maps A = C = B is called an extension provided that
it is exact, ie. A = C®8 = {c € C|(id ® 7)A(c) = c® 1}, and that it is cleft,
i.e. there exists a B-comodule map x € Reg(B,C). From now on assume that A is
commutative and B cocommutative. Such an extension gives rise to a unique abelian
Singer pair (B, A, u, p).

The set of equivalence classes of extensions giving rise to the same abelian Singer
pair can be equipped with an intrinsic ‘Baer-type’ abelian group structure given
by the bitensor product construction (see [Ho]). The abelian group of equivalence
classes of extensions giving rise to (B, A4, 1, p) is denoted by Opext(B, A, u, p) (or
just by Opext(B, A) if the choice of 1 and p is obvious). Similarly as in the group

case extensions can be classified by the second cohomology group.

1.3.2 Cohomology of a Singer pair of Hopf algebras

Let (B, A, i, p) be an abelian Singer pair. It is convenient to introduce the abelian
category gV, whose objects are triples (V,w, \), such that V is a left B-module, via
w:B@V — V, w(b®v) = b(v), aright A-comodule via \:V — V® A, A\(v) = u®u;
and that the following compatibility condition holds:

A(b(v)) = b1g(vo) ® bya - ba(v1).

The morphisms are B-linear and A-collinear maps. Observe that (B, mg, p),
(A, p,A4) and (k,ep ®id, id ®n4) are objects of gV*. Moreover gV* is a symmetric
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monoidal category, so that commutative algebras and cocommutative coalgebras are
defined in (gV*4, ®, k).

The free functor F: V4 — gV4, defined by F(X, o) = (B®X, aggx) with twisted
coaction apgx = (Id®id ® m4(id ® 1£))(14235)((p®id)Ap ® @), is left adjoint to the
forgetful functor U: gV — VA,

Similarly the cofree functor L: gV — gV4, defined by L(Y, ) = (Y ® A, Byga),
with twisted action fyga = (8 ® ma(id ® 1))(14235)((p ® id)Ap ® id ® id), is right
adjoint to the forgetful functor U: gV* — gV.

These adjunctions give rise to a comonad G = (FU,¢,d) and a monad T =
(LU,m, ) on gV*. Moreover gVA(FU(M), LU(N)) ~ V(M, N).

The cohomology is now defined by means of simplicial G-resolutions G.M and

the cosimplicial T-resolutions T*N. We get a bi-complex
(X™") = (gReg"(Gm+1(k), T"*'(k)), 8", 6) = (sReg™(B™, A™*"), &, 6)mmz0-

Use the isomorphism gVA(FU(M), LU(N)) ~ V(M, N) to get the double complex
(Y™") = (Reg(B™, A"), &', 8) and then define Y3™" to be the double complex obtained
from Y by replacing the 0*" column and the 0* row by zeroes.

The Singer pair cohomology is defined to be the cohomology of Tot(Y;). For
computing the cohomology we use the normalized complex, that is, we replace Y;"" =
Reg(B™, A™), (m,n > 1) by Reg, (B™, A™), the intersections of the degeneracies. The
group Reg, (B™, A™) consists of all convolution invertible maps f: B™ — A", which
have the property that f(id®...97®...®id) =7 and (iId®...®7e®. ..®id) f = ne.

We write this out in more detail. Given an abelian Singer pair (B, A, u, p) we can
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construct a bicomplex

0 0 0 0
0 Reg, (B, A) -~ Reg,(B?* A) —~ Reg, (B*, A)
A1 02,1
gL g2
0 Reg, (B, A2)3—> Reg, (B2, A?)
1,2
L2
0 Reg_ (B, A3)

The coboundary maps
dfhm: Reg, (B", A™) — Reg_ (B!, A™)
defined by

dym = pm(idp ® )
df,'ma = a(idp®idg®...9mpg®...Qidg) = a(idgi-1 ® mg ® idgn-:)

ditia = aQ®e
are used to construct the horizontal differentials
Onm:Reg (B, A™) — Reg, (B™*!, A™),
given by the ‘alternating’ convolution product
Onma =dy paxdy, ot xd2, ax....
Dually the coboundaries

dim: Reg, (B", A™) — Reg, (B", A™*')
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defined by

d:?,mﬁ = (:8 ® idA)pn
d:,m:@ = ([da®ida®...QA,4,® ...®id4)B = (idgi-t ® A4 ® idgn-i)
dmt n®s

determine the vertical differentials
d"™:Reg (B", A™) — Reg, (B", A""”),

where
B =dp Brdy, B xdl Bx...

n,m

The cohomology of the abelian Singer pair (B, A, i, p) is by definition the coho-
mology of the total complex.

0 — Reg,(B,A) — Reg,(B% A)® Reg, (B, A?) —

— ... — EPReg (B, A) — ...

i=1

In low dimension the cocycles and coboundaries are described as follows [Ho]:

Z°(B,A,p,p) = 0,

ZYB,A,p,p) = {f €Reg,(B,A)
fmp=(f®¢)*xpu(id® f),

Af =(f®id)p* (0 f)},

BYB,A,u,p) = 0,

Z*(B,A,p,p) = {(o,B) €Reg, (B A) ® Reg, (B, 4?)|
(a®¢)*a(m@id) = p(id ® a) * a(id ® m)
(d®A)B*(n®P) =(A®id)B*(BRid)p
Aa*fm=(B®e)*pu(id® B) * (a®@id)p2 * (N @ )},
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B*(B,A,p,p) = {(a,B) € Reg,(B* A) @ Reg, (B, A%)|
dy € Reg, (B, A) :
a=(Y®¢e)*7 'mp * u(idg ® 7),
B=(r"®ida)p®@Asv*x(n@v N}

Then

H'(B,A,u,p) = Z'(B,A)/BY(B, A) ~ Aut(A#B),
H*(B,A,u,p) = Z*B,A)/B*B, A) ~ Opext(B, A).



Chapter 2

Abelian matched pairs of Hopf

algebras

Here we consider pairs of Hopf algebras (T, V) together with a left action u: TQ N —
N, u(t ® n) =t(n), and a right action : T @ N — T, v(t ® n) = t*. Then we have
the twisted switch

0=(pv)Aregn:TON - NQT

or in shorthand (¢t ®@ n) = t,(n,) ® t3?, which in case of trivial actions reduces to the

ordinary switch o:TQN — NQ®T,o(t®n) =n®t.

Definition 2.0.2 (Kas, IX.2.2) Such a configuration (T,N,u,v) is called «
matched pair if

1. N is a left T-module coalgebra, i.e. u is a coalgebra map,
2. T is an right N-module coalgebra, i.e. v is a coalgebra map,

3. N is a left T-module algebra with respect to the twisted left action u, =
([du)(e®id):TOINON — N (1t ®n®m) = t1(n) ® t33(m)), in

the sense that the following diagrams

22
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id®ny

TON@oN—9®MN 1o TRk T®N

J7%3 K er@id H

NN N k

my N N

commute, i.e.: t(mn) =t (n;)t32(m), t(ly) = e(t)1y-

4. T is a right N-module algebra with respect to the twisted right action v, =
(v®id)(ld®d):TT®N — TQT, in a sense that the diagrams

TeTeN —2®d ron ko N894 roN
Vs v id®e v
TRT - T k———T

commute, i.e. (ts)* = t52") gt (17)" = g(n)lr.
5. v(ty @ ny) @ p(ta @ ng) = v(ta @ n2) @ u(ty ®ny)

The last condition is needed to guarantee compatibility of multiplication and
comultiplication in the bismash product NV o< T'. Note that it is automatically satisfied
when both N and T are cocommutative, in which case (T, N, u, v) is called an abelian
matched pair. We will be considering abelian matched pairs exclusively.

Remark. The matched pairs of finite groups and of Lie groups are considered in
[Tk] and [Mj] respectively.

The bicross product (N o<t T, m, A, 7, ¢, S) is the tensor product coalgebra NQ T,

with unit nyer:k — N @ T, multiplication

m=me®m)(idR®F®d):NQTINRT - NRT,



in short (n ® t)(m @ s) = nt;(m,) ® t3'*s, and antipode
S=6(S®8S):NQT - NQT,

ie S(n®t) = S(t:)(S(n2)) @ S(t, )50,

For a proof that N 0 T is a Hopf algebra we refer to [Kas].

To avoid ambiguity we write n a1t for n ® t. We also identify N and T with the
Hopf subalgebras No<xkand kT of N T,i.e. n=ne<al and t =1t In this
sense we have n >t = nt and tn =t;(n;) - £3°.

Remark. If the action v:T® N — T is trivial, then the bismash product N 0 T
becomes a smash (or semi-direct) product and is denoted by N x T.

An action ug:TQN — N, is compatible with the trivial action, i.e. (T, N, u,id®¢)
is a matched pair, if and only if N is a T-module bialgebra and u(t, ® n) @ ty =
L(t2®n) ®t,. Note that the last condition is trivially satisfied if T is cocommutative.

The twisted actions can be extended by induction to higher tensor powers. We
define pp: T ® N® — N®P and v,:T®7 @ N — T®7 as follows

ppr1(t®@n@m) = p(ty @) ® pp(v(ts ® 1) ®m),
Veri(E @ 5@ 1) =) _1g(t ® (52 @ m2) ® (51 @ 1)),

and g = pu, v, =v.

Observe Fpyy1 = pp(id @ F), when F = id® ...® m® ... ® id and similarly
GVgr1 = Vg11(ld®G), when G=id®...9m®...®id.

From now on, as indicated in 1.1, we will usually omit subscripts when using the

Sweedler notation for cocommutative coalgebras.

Lemma 2.0.3 (Ma3,Proposition 2.3) Let (T, N, u,v) be an abelian matched pair.

1. A left T-module, left N-module V is a left N <1 T-module if and only if t(n(v)) =
t(n)(t"(v))-

2. A right T module, right N-module W is a right N 0a T-module if and only if
(’U‘)" — (‘U‘("‘))t".
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3. Let V be a left T-module and W be a right N-module. Then

(a) N®YV is a left N >a T module with N-action on the first factor and T
action given by t(n ® v) =t1(n;) ® t5*(v).

(b) W T is a right N > T-module with T-action on the right factor and
N-action given by (w @ t)* = w'(") @ t7*. Moreover W @ T is a left
N < T-module by twisting the action via the antipode of N 0 T.

(c) Regard (WQRT)®(N®V) as a left N 0 T-module via the diagonal action,
i.e.

(nt)(w @ s @ m @ v) = wl¥NEM) @ (55(2))5™ @ nt(m) @ t™(v).

and let (N < T)® (W ®V) be a left N > T module with action on the
first factor. Then the map p:(N=<T)@W RV — (WRT)Q (NQV)
defined by

Y((nxt) @ wRv) = wSWEM) @ §(£)5 @ n @ t(v)

is an isomorphism of N 0 T-modules. In particular (W @ T) ® (N® V)
is a free left N 04 T-module in which any basis of the vector space (W ®
k)®(kQ®V) is a N <t T-free basis.

Remark. Note that the inverse of ¥ is given by
Y H((wet)® (n®v)) = (nx S(t") ® (w'™ ®¢t*(v)).

Consider T* a right T-module via v; and N7 a T-module via p;. Then we can
equip T"** ® N7+! with an N o< T-module structure in accordance with part 3(c) of
the Lemma above, i.e. (nt)(r @ k) = rSOEM) g §(£)S™ @ n - t(m) @ t™(k).

Corollary 2.0.4 The map ¥: (N > T)QT @ N7 — T Q@ NI+L, defined by ¢¥((nt)®
(r®s®m@k)) =rlSOEM) @ (sS(t))5™ @ n@ t(k), is an isomorphism of N 0 T-

modules.
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According to Lemma 2.0.3 we have a square of ‘free’ functors between monoidal

categories
v Fr TV
F N F' N
NV 8 NoaTV

each with a corresponding tensor preserving right adjoint forgetful functor.

The two resulting comonads on yprV
Gr = (Gr,0r,€r)
with G = FrUr, r(t®z) =t®1Q®z, er(t ®z) = tx, and
Gy = (G, 0n, en)

with Gy = FyUy, 0n(n®z) =n® 1 ® z, ex(n ® z) = nz, satisfy a distributive law
[Barr]
ag: G.TG.N — G.NG.T
given by 6(t®@n® —) =6(t®@n) ® — =t1(n) ® t5*> ® —. It is easy to see that the
equations for a distributive law
dN(YT 0= 0.’G.T . dq'& . JTG“N s (SNG-T 0= dv& - &G]v . G}*&v,
and
ENG.T 0= G~T€N . GTNET -0 = GTdN
are satisfied.
Then [Barr, Th. 2.2] the composite
G =Gy o;Gr

with G = (GNGr, § = GNGGT - dn0r and € = ener) is again a comonad. Moreover,
G= G’Nbd‘»
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2.1 Dual matched pairs

Let (T, N, 1, v) be an abelian matched pair. Our aim is to defire a dual matched pair
(N: T: US:#S)’
Define pus = Su(S® S)o: N®T — N and vs = Sv(S®S)o: N®T — T. We

abbreviate

pt®n) = i(n),
v(t®n) = t",
vs(n@t) = nft],
ps(n®t) = n’,

forn € N, t € T. Note that in our cocommutative setting S o S = id and hence

pss =p and vsg = v.

Proposition 2.1.1 Let (T, N, u,v) be an abelian matched pair and let pus and vs be

as above. Then
e (N,T, vs,us) is a matched pair,
o us(p*v) =eQ®id, i.e. t(m)[t™] = e(m)t,
o vs(pxv)=id ¢, ie. (t(m))" =e(t)m.
We will need the following Lemma in the proof of this Proposition.

Lemma 2.1.2

S(t(n)) = t"(S(n2)),
S({t*) = S(ty)"™.
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Proof.

t"(S(n2)) = S(ti(n1))ta(na2)t3*(S(na))
= S(ti(n1))ta(n2S(ns))
= S(t(n)),

S(t)"™ = S(t) I (S(E)
= (S(E)t) S ()
= S¢t*).|

Proof (of the Proposition 2.1.1). By the Lemma above we have
ps(n®t) = n'=8(S(n)°")

= S(t)*™M(SS(n))
= S(t)*™(n)

and

n[t] = S(S(¢)5™)
= SS(t) S(e)(S(n))
= SES()

vs(n®t)

It is clear that us and vs are coalgebra maps. We have to show that they preserve

the algebra structures in the twisted sense. This is done as follows.

[
n[ts] = (ts)S(tS)(S(n))
= ¢5(S(ts)(S(n))) gS(ts)(S(n))
= {sS(s)ISENS™)) (S(s)(S(E)(S(n)))
t5(6)(S(n)) ¢S(s)(S(n))

= nltin‘fs],



(nm)* = S()°"™ (nm)
= S "™ (n)(S(t)5"™)" (m)
= S(mft))>™ (n)(S(t)5™™") (m)

= nmlmt,

We conclude the proof by the following computations.

[
t(m)[t"‘] = (tm)S(t"‘)(S(t(m))
— (tm)(S(t)‘("‘))(t"‘(S(m)))
= (™)((S@®)"™t™)(S(m))))
(tm)(s(t)t)"‘(s(m»
= (t™)™ =¢(m)t,
[ J

m

tm)” = S (¢(m))
= (S(t) ™) (¢(m))
= §(t)" ™S (g(m))
= §(t)"mSt(t(m))
= S(t)(t(m)) =e(t)m.

Remark. The inverse of the twisted switch is
&t =(Vs®ﬂs)AN®T:N®T —TQN
given by 57 }(n ® t) = ny[t;] ® n?, and induces the inverse distributive law

L. GNGT — GGy
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We conclude the section by some equalities, which are about the interplay of
actions (p,v) and their duals (vs, ps) when products are involved. These equalities

are very helpful when doing explicit computations.

Lemma 2.1.3

(tn[s])™'™ = trstmigm (2.1)
(tn[s])(n*m) = t(n) - (t"s)(m) (2.2)
(nt(m))t"™s = ntmblpys (2.3)
(nt(m)lems] = nft] - (ném)]s] (2.4

Proof. It is sufficient to prove (2.1) and (2.2), since (2.3) and (2.4) can be obtained
by applying (2.1) and (2.2) to (vs, us) and (uss,vss) = (u,v). We do the proof by
computations:

(tn[s])n."m = tn[s[(n“'m)n[s]n"m
= lel)-(nle]™)0m) (]t ym

= tn(s)-m s™
and

(tn[s])(n'm) = (tn[s])(n) - (tn[s])™ (m)
= t(n[s](n")) - ("1 - n[s]"")(m)
= t(n)-({"-s)(m). B

2.2 Matched pair cohomology

Let H = N 0a T be a bismash product of an abelian matched pair of Hopf algebras
and let the algebra A be a left NV and a right T-module such that it is a left H-module
via nt(a) = n(a®), ie. (n(a))5® = (t(n))(a¢tM).

Note that Hom(T?, A) becomes a left N-module via n(f)(t) = n(f(v,(t,n))) and
Hom(N?, A) becomes a right T-module via f*(n) = (f(ue(t, n)))* = S(&)(f(e(t, m)))-
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We have a double simplicial complex GFG} (k) = (TP ® N9),4, p,q > 1 of free H-
modules, with horizontal face operators id ® dy,: T? ® N9t — TP ® N9, vertical face
operators dr,®id: TP*'® N* — TP® N4, horizontal degeneracies id®@sy.: TPQNT —
T? ® N9*! and vertical degeneracies sy,:T? ® N7 — TP @ N9+!. More precisely

b

id'@m@id"™! ,0<i<qg-1
dyi =
id7'®e ,1=q

svi = Id'®@n®id"™, 0<i<q—1,

P idP7'e@meid’ ,0<j<p-1
T = ¥
? e ® id? vy J=p

sy = idP7@n®id, 0<j<p-1.

Note that these preserve the H-module structure on 77 @ N?. Apply the func-
tor yReg(-, A): #C® — Ab to get a cosimplicial double complex of abelian groups,
B = (BP9), 4>1, where BP¥ = yReg(T? @ N9, A), coface operators are gReg(dy., A),
wReg(dr., A) and codegeneracies are gReg(sy., A), yReg(sT., A).

We have an isomorphism

HReg(T? @ N7, A) """  Reg(H @ TP~ @ N1, A)
2, Reg(TP '@ N7! A).

The first isomorphism comes from Corollary 2.0.4 and the second is obvious. It
induces an isomorphism of double complexes (BP?), ;> — (CP), 450, Where CP7 =
CP4(N,T, A) is the abelian group of convolution invertible linear maps f: N® @
T®1 — A.

The vertical differentials dy:CP? — CP*' and the horizontal differentials
dr:CP? — CP*1 gre transported from B and turn out to be the twisted Sweedler
differentials on the N and T parts respectively. In the following paragraph we review

these in more detail. We have the coface operators

Nif(t®n)=ftO®ON ®...8 NN 1 B - .. ® Ngy1),



fori=1,...,q,
dvof(t®@m) =n; (f(y(t @) ®N2 ® ... @ Mpyy)),

ONg+1(t®n) = f(t®n,;®...® ng)e(ng+1),

where t ET®? and n=n, Q... ® ngy; € NI+,

or;f(t®@n) = f(tps1 @ -.. @ tj+1t; ® ... @ t1 @ n),

forj=1,...,p,
orof(t®@n) = (f(tp+1 ® ... ® ta @ (¢ @ M)))*,

6Tp+lf(t ®n) = g(tp+1)f(tp ®...0t ®n),

where t = ¢, @ ...t;41 € T®*! and n € N9 And then the differentials in the

associated double cochain complex are the alternating convolution products

Onf =0nof *ON1f ™ % x g fE

and
Orf =0drof *orif " % .. % drpy f

Consider the associated normalized double complex, whose (p, q)th term, denoted
by C}? = Reg,(T? ® N9, A), is the intersection of the degeneracy operators, that
is, it is the abelian group of convolution invertible maps f:T? ® N7 — A, with the
property that f(t,®...®t, @1, ®...ny) =&(t,) - . .€(n,), whenever one of ¢t; € k or
one of n; € k.

Furthermore, replace the edges of (C}'%), 4>0 by zeroes to obtain D, i.e. DP9 = CP
if p,g > 1 and DP? =0 if either p =0 or ¢ = 0.

We denote the cohomology of the total complex H**!(TotD) by H*(N, T, A) and
call it the cohomology of the matched pair (T, N, i, v) with coefficients in the algebra
A.
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The cocycles shall be denoted by Z*(T, N, A) and coboundaries by Bi(T, N, A).
Note that these are i-tuples of maps (f;)i<j<i, fi: T+ =7 @ N® — A that satisfy
certain conditions.

We introduce the subgroups Z;;(T, N,A) < Z{(T, N, A), that are spanned by i-
tuples in which the f;’s are trivial for j # p and subgroups B}, = Z{NB* C B;. These
give rise to subgroups of cohomology groups H}, = Z; /B, ~ (Zi+ B)/B* C H* which

have a nice interpretation when i = 2 and p = 1,2, see Section 2.4.1.

2.2.1 Interpretation of degree 2 cohomology

The 2-cocycles are pairs of maps (a, 8), : TRTQN — A, B:TRN®N — A that

satisfy certain conditions. These conditions are

® « is a Sweedler 2-cocycle as a map a: T®T — Hom(N, A), hence gives rise to a
cleft T-comodule algebra extension E, = Hom(N, A) — Hom(N, A)#.T — T

e (3 is a Sweedler 2-cocycle as a map from N ® N to Hom(7T, A) and hence gives
rise to the extension Eg = Hom(T, A) — Hom(T, A)#sN — N

e « and B are compatible in the sense that dya * dr8 = €.

Note also that there is a map ¥: Hom(N, A)#,T ® Hom(T, A)#3sN — A, given by
U(f#t @ g#n) = f(n)g(t).

Our aim is to represent cocycle pairs as pairs of compatible cleft comodule algebra
extensions. Given extensions (X):Hom(N,A) — X — T and (Y):Hom(T, A) —
Y — N, we would like to express this compatibility in terms of a map ¥: X@Y — A.

One way to do this is as follows:

Suppose we have a pair of extensions as above and let x7:7 — X and
xn:N — Y be the cleftness maps. Then zoxz'(zi) € Hom(N,A) € X and
YoXy (1) € Hom(T, A) C Y. Getamap ¥: X®Y — A by ¥(z,y) = (zox7'(z1)) (v2)-
(YoX¥ (41))(z2)- Then define a pair of maps

Uy = ‘If(id® my(xN® XN)):X® N®N — A,
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Le ‘I’(:L‘,TL,M) = ‘I’(:L‘, XN(n)XN(m)) and
Ur =¥(mx(xr ®x7)®id):TRTQRY — A.

Since T' acts on N ® N, via the twisted action, we can define ¥4 (s ® n ® m) =
¥n(s ® p2(t ® n @ m)) and similarly n(¥r)(t, s,m) = Ur(n(t® s @ n) ® m).

Definition 2.2.1 We say the exstensions (X) and (Y) are compatibly cleft, if the

following is satisfied:
¥(z2' @yy') = Un(zo @y Q) U (25 RY2 @ Ys)ys(¥r) (22 ® ) ® o) Ur (T3 @25, @ h).

We say that two pairs of compatibly cleft extensions ((X),(Y)) and ((X"), (Y"))
are equivalent, if (X) is equivalent to (X’) via fz: X — X', (Y) is equivalent to (Y”)
via f Y =Y and d=¥(£,® f,): XY ' x oy’ ¥ A

Proposition 2.2.2 The group H*(T, N, A) classifies pairs of compatibly cleft exten-
sions ((X), (Y)).

Proof. The result follows from the way the definition of compatible cleftness was
chosen. If (a,B) is a 2-cocycle, then the pair of extensions E, and Ej (see the
beginning of this section) are compatibly cleft (the compatible cleftness condition is
just the condition dya * d78 = ¢ in disguise).

On the other hand, if we are given extensions (X, xr), (Y, x~), then define a
cocycle pair by a(t®t') = xr(t1)xr(t])x7 ' (t2t3), B(n®n’) = xn(n1)xn(n}) X7 (n2nh)
and note that ((X), (Y)) ~ ((Ea), (Eg)).

Similarly as above we also see that there is a bijective correspondence between

trivial pairs of extensions and coboundaries. B

2.3 Singer pairs vs. matched pairs

Definition 2.3.1 We say that an action u: A® M — M is locally finite, if every
orbit A(m) = {a(m)|a € A} is finite dimensional.
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Lemma 2.3.2 (Mo, Lemma 1.6.4) Let A be an algebra and C a coalgebra.

1. If M is a right C-comodule via p: M — M ® C, p(m) = mo® m,, then M is a
left C*-module via p:C*@ M — M, pu(f @ m) = f(m;)my.

2. Let M be a left A-module via p: AQ M — M. Then M is a right A° comodule
if the action p is locally finite. The coaction p:M — M ® A° is given by
p(m) = 3 fi ® m;, where {m;} is a basis for A(m) and f; € A° C A* are

coordinate functions of a(m), i.e. a(m)=73_ fi(a)m;.

Let (T, N, u,v) be an abelian matched pair and suppose u is locally finite. Then
the Lemma above gives a coaction p: N — N ® T°, p(n) = ny ® nre, such that
t(n) = > nn -nre(t).

There is a left action v': N®T* — T* given by pre-composition, i.e. v/(n®f)(t) =
F(@™). If p is locally finite, it is easy to see that v/ restricts to 7° C T*.

Lemma 2.3.3 (Ma3, Lemma 4.1, Corollary 4.2) The quadruple (N,T°V,p)
forms an abelian Singer pair and the category yVT° is a full subcategory of yearV,
consisting of the objects which are locally finite T-modules.

There is a natural correspondence from the set of the structures (i, v) of a matched
pair on (T, N) such that p is locally finite, to the set of structures (a, p) of a Singer
pair on (N,T°). The correspondence is injective if T is proper (i.e. T° separates

points).

Remark. The correspondence is clearly bijective if T is finite dimensional.

On the other hand, if we start with an abelian Singer pair (B, A,w, p), we can
obtain a matched pair (A°, B).

Observe that there is a right action v: A* ® B — A* given by pre-composition,
i.e. f®(a) = f(b(a)) and note that since A is a B-module algebra this action restricts
to A° (f*(aa’) = f(b(aa’)) = f(b1(a)) f(b2(a)) = f(a) f*2)(a)).

There is also an action A* ® B — B, induced by p, i.e. f(b) = f(ba)bs (see
Lemma 2.3.2). Observe also that the action is locally finite, since A*(b) is spanned
by {bg}
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Proposition 2.3.4 The pair of Hopf algebras (A°, B) together with a pair of actions

(4,v) as described above is a matched pair.

Proof. The condition that A is a B-module algebra shows that A° is a B-module
coalgebra, i.e. v is a coalgebra map: A(f*)(a ® a') = f(b(aa’)) = f(bi(a)ba(a’)) =
(f* ® ff*)(a ® &'). Similarly the condition that A is a B-module coalgebra in the
twisted sense, shows that A° is a B-module algebra via the twisted action.

The condition that p makes B an A-comodule coalgebra shows that B is an A°
module coalgebra: A(b') = §(f(ba)bs) = f(ba)bs1 ® bps = f(brabaa) ® big ® bag =
(Af)(bia) ® bas) = bl' @ b2, Similarly we see that B is A°-module algebra in a
twisted sense. @

2.4 Comparison of Singer and matched pair coho-

mologies

Let (T, N,p,v) be an abelian matched pair of Hopf algebras, with u locally finite.
Let (N,T°,V/, p) be the Singer pair associated to it (see the section above).

Via the embedding T°7 = (T9)° C (T9)* we can embed Hom(N?,(T°)) C
Hom(N?, (T7)*) ~ Hom(T? ® N*, k). This induces an embedding Reg, (N?, (T°)) €
Reg, (N*®T7, k). A routine calculation shows that this preserves the differentials, i.e.
that this gives an imbedding of double complexes. This embedding is an isomorphism
in case T is finite dimensional.

There is no apparent reason for the embedding of complexes to induce an isomor-
phism of cohomology groups in general. It is our conjecture that this is not always
the case.

In some cases we can compare the multiplication part of H2(NV, T°) (see the fol-

lowing section) and H3(N, T, k). We use the following lemma for this purpose.

Lemma 2.4.1 Let (T, N, pu,v) be an abelian matched pair with the action p locally
finite. If f:T ® N® — k is a convolution invertible map, such that d7f = ¢, then
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for each n € N*, the map f, = f(.,n):T — k lies in the finite dual T° C T*.
We need the following description of finite duals.

Proposition 2.4.2 (DNR, Proposition 1.5.6) Let A = (A,m,7) be an algebra

and f € A*. Then the following assertions are equivalent.
1. fe A
2. m*(f)e A°® A°
3. m*'(f)e A*® A"
4. A(f) is finite dimensional.
5. fA is finite dimensional.

6. A(f)4 is finite dimensional.

Remark. Here we are considering the left action —: A ® A* — A*, a(f)(b) = f(ba)
and the right action —:A*® A — A*, f*(b) = f(ab).
Proof (of the Lemma 2.4.1). By the proposition above it suffices to show that
T'(fa) is finite dimensional. Using the fact that d7f = € we get s(fu)(t) = fa(ts) =
2= o (51) fui(s2@ma) (B)-

Let A(n) = 3°.n’; ® n”;. The action p;:T ® N¥ — N* is locally finite, since
p:T®N — N is, and hence we can choose a finite basis {m,} for Span{u;(s®n";)|s €
T}. Now note that {fm,} is a finite set which spans T'(f,). B

Corollary 2.4.3 If (T, N, p,v) is an abelian matched pair, with p locally finite and
(N,T°,w, p) is the corresponding Singer pair, then H'(T, N, k) = HY(N, T°).
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2.4.1 The multiplication and comultiplication parts of the

second cohomology group of a Singer pair

Here we discuss in more detail the Hopf algebra extensions that have an “unper-
turbed” multiplication and those that have an “unperturbed” comultiplication, more
precisely we look at two subgroups H2 (B, A) and H2(B, A) of H2(B, A), one gener-
ated by the cocycles with a trivial multiplication part and the other generated by the

cocycles with a trivial comultiplication part. Let

Z%(B,A) = {8 € Reg(B, A® A)|(ne, 8) € Z*(B, A)}.
We shall identify Z2(B, A) with a subgroup of Z?(B, A) via the injection 8 — (ne, 8).
Similarly let

Z2(B,A) = {a € Reg(B ® B, A)|(a, me) € Z*(B, A)}.

If
B2(B, A) = B(B, A) N Z}(B, A) and B2 (B, A) = B2(B, A) N Z2,(B, A).

then we define
HZ(B, A) = Z%(B, A)/B(B, A)

and
H;. (B, A) = Z% (B, A)/B%4(B, A).

The identification of H2(B, A) with a subgroup of H2(B, A) is given by
H2(B, A) = (ZX(B, A) + B¥(B, A))/B*(B, A)) < H*(B, A),

and similarly for H2, < H2.

Note that in case T is finite dimensional H2(N,T*) =~ H2(T,N,k) and
H2(N,T*) ~H¥T, N, k).
Proposition 2.4.4 Let (T, N, p,v) be an abelian matched pair, with p locally finite
and let (N,T°,w, p) be the corresponding Singer pair. Then

HL (N, T°) = H}(T, N, k).
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Proof. Observe that we have an inclusion Z2(N,7T°) = {: N® N — T°|0a =
g, 0a=¢e} C{a:TON®N — k|bra =¢,0ya =€} = Z3(T, N, k). The inclusion is
in fact an equality by Lemma 2.4.1. Similarly the inclusion B2 (N,T°) C B¥T, N,k)
is an equality as well. @



Chapter 3

Generalized Kac sequence

We start by sketching a conceptual way to obtain a version of the Kac sequence for an
arbitrary abelian matched pair of Hopf algebras. Since the homomorphisms involved
cannot be explicitly described in this manner, we then proceed in the next section to

give an explicit version of the low degree part of this sequence.
Theorem 3.0.5 Let H = N > T, where (T, N) is an abelian matched pair, and let
A be a commutative left H-module algebra. Then we have a long ezact sequence
0 — HYH,A) — HY(T, A) @ H'(V, A) — H(T, N, A)

— H?(H,A) — H¥(T, A) ® H¥(V, A) — H*(T, N, A)

— H3(H,A) — HYT,A) @ H3(V, A) — ...
Proof. If H = N = T, then Y = (G5G%,(k)) = (T* ® N¥) is an H-free simplicial
double complex and B = (BP?) = yReg(Y, A) = (#Reg(TP® N7, A)) is a cosimplicial
double complex of abelian groups (see Section 2.2). Obtain a double complex By from

B by replacing the 0*" column and the 0" row by zeroes. Let E denote the edge sub

complex of B. Then the short exact sequence of total cochain complexes
0 — Tot(By) — Tot(B) — Tot(E) — 0
gives rise to a long exact sequence of cohomologies

0 — H'(TotB) — H'(TotE) — H?*(TotB,) — H2(TotB) — H?(TotE)

40
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— H’%(TotBy) — H3(TotB) — H3(TotE) — ...

where H*(TotBy) = 0 = H!(TotB,) and H°(TotB) = H°(TotE) have already
been taken into account. Recall from Section 2.2 that by definition H*(T, N, A) =
H**+!(TotBy) is the cohomology of the matched pair (V, T") with coefficients in A, and
note that H*(TotE) = H*(T, A) @ H*(N, A).

By the cosimplicial version of the Eilenberg-Zilber theorem (A.1.2) we have
H*(Tot(CB)) = H*(CDiag(B)). Moreover DiagG3Gy (k) ~ (GrGn)*(k) ~ G (k)
by Barr’s theorem [Barr], so that yReg(G}(k), A) ~ yReg(Diag(G5+Gi(k)), A) =~
Diag(yReg(GTGN(k), A), A) = DiagB. Thus

H*(H, A) = H*(CyReg(G}(k), A)) ~ H*(CDiagB) ~ H*(Tot(CB)). B

In the next section we do the low terms of that sequence explicitly.

3.1 Generalized Kac explicitly

The aim of this section is to define explicitly homomorphisms that make the following
sequence

0 — H'(H,A) =3 HYT, A) @ H'(V, A) "5 HY(T, N, A) 4 H2(H, A)

res2

2 HX(T, A) @ HA(N, A) 257 H2(T, N, A) % H(H, A).

exact. This is the low degree part of the generalized Kac sequence. Here H = N> T
is the bismash product arising from a matched pair uy:TQ N — N, v:TQ N — T.
Recall that we abbreviate u(t,n) = t(n), v(t,n) = t*. For the sake of simplicity we
shall assume that A is a trivial H-module.

We define res; = resi:H'(H,A) — HY{T,A) ® HY(NV,A) to be the map
(rest,resy)A, more precisely if f: H®® — A is a cocycle, then it gets sent to a pair of
cocycles (f|re:, flye:). We will abbreviate fr = flre:, fx = fnes-

By 6n * 677V we mean the map
—pitt i
Hi(T, A) @ H'(IV, 4) "5 14(T, N, A) @ Hi(T, N, A)
2 HY(T, N, A) @ H'(T, N, A) = H (T, N, A).



If 7 = 1, this sends a pair of cocycles a € Z}(T, A), b € ZY(N, A) to a map
ova *x0rb:T ® N — A and if i = 2 a pair of cocycles a € Z*(T, A), b € Z*(N, A)
becomes a cocycle pair (dya, €)*(g,d7b™") = (dna, 67b7"): (TRTRN)B(TRINQN) —
A, where 65 and dr are as given in Section 2.2.

The map ¢: H'(T, N, A) — H?(H, A) assigns to a cocycle v:T @ N — A, a map
#(7): H® H — A, that is characterized by ¢(7v)(nt,n't') = ~(t,n').

Finally the homomorphism : H?(T,N, A) — H3(H, A) maps a cocycle pair
(e, 8) € Z*T,N,A) to a cocycle f = fop = 9(a,8): HQ H® H — A given
by

f(nt, n't', n"t") = e(n)e(t”)a(t™ , ', n")B(t, 7', ' (n")).
The following shows that f is indeed a 3-cocycle.
Start by computing;:

df(nt,n't', n"t" n"t") = f('t', n"t", n"t") fH(nt(n) -V, 0, 0"
-f(nt, n't'(n") - ™ 0" f (g, ', 0" (R - £ )
-f(nt,n't’, n"t")

= e(n)e(t)alt™ ", n")B(, 0", ' (n"))
(I B n T (n))
(O G "B, - ("), () (n™))
@ (g, " - (R)) B (e, () - () (™))
-a(t™,t',n")B(t, 7, t'(n")).

In the following we collect the « terms and then insert
a~l (tn' t’(n'") , tln" , t/r(nm) ) a (tn't' (n”)’ tln" : t"(n’"))
between the third and fourth term.

@ (tm" , t”, nm) a1 (tn'-t’ (n’" )tm' . tll’ nm) a (tn’-t’(n”), tm’ t", nm)

_a—l (tn" t', nll R t"(n'”))a(t"', t’, nll)
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= a™ t", n"a L@tV g P n" otV g
T EE D ()t ¢ ¢ ()
a7HEY 0" -t (")) a(tY, ¢, ")
= (Bra)(E ™, ¢ ¢, ")) (Gwa) (e, ¢, n, £'(n"))
= (Sya)(t™,t,n" t"(n™)).
Similarly we collect the 8 terms and then insert
BUE™, ("), (™€) (m") B (¢, £ (", (£ £") (™))
between the second and third term.
B, ", ¢ (") Bt !, /("))
Bt -t (n"), @) (n"))B7H(E 1 (17) - (") (n™))
B¢, ', ' (n"))
= B(t, ", ¢ (m)BHEE ", (")
B E ("), (¢ ) R")EHE £ (), (¢ ) (")
Bt - £, (Y ) (£ () - (£ ()
-B(¢, ', t'(n"))
= (OrB)(t™, ¢, n", " (")) (EnB)(t, ', ¢/ (n"), (™ ") (n™)
= (67B)(t™ ', n", ¢t"(n")).

Hence we have

(5f) (nt, n't', 'n,”t”, n"'t”') — E(n)e(tﬂl) (JNQ * aTﬁ) (tn" t', n//, t"(n"'))
= g(nt)e(n't)e(n"t")e(n”t").

|
Now we show the exactness at H>(T, N, A).
Suppose a cocycle pair (a,8) € Z%(T, N, A) is such that f = fap =vY(a,08) is a
coboundary. We would like to show that there exist (a, b) € Z*(T, A) @ Z2(N, A) such
that (6na, 67671) ~ (o, B).
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Assume the 2-cochain g: H @ H — A is such that f = dg.

Without loss of generality, we can assume that g|yer is trivial, i.e
g(n,t) = e(n)e(t) for n € N, t € T. If g does not satisfy that condition, then
define a 1-cochain h: H — A, by h(nt) = g(n,t) and replace g by ¢’ = g * h (note
that dg’ = dg  ddh = dg and that ¢’ has the desired property).

Note that

(dg)(n,z,2") = e(n)e(z)e(’), (3.1)
(0g9)(z, 2/, t) = e(z)e(z)e(t), (3.2)

forne N,teT and z,2’ € H.

In the computations we use the following equalities.

Lemma 3.1.1 Assume that g|ver is trivial, and that the conditions (3.1) and (3.2)
are satisfied. We have the following equalities:

g(nt,s) = e(n)g(t,s), (3.3)
g(t,ns) = g(t,n)g(t",s), (3.4)
g(n,mt) = e(t)g(n,m), (3:5)
g(nt,m) = g(t,m)g(n,t(m)), (3.6)

fornmeN, t,seT.

Proof. Apply the condition (3.1) to (dg)(n,t,s) to obtain (3.3) and then use this
result, combined with the condition (3.2) applied to (dg)(¢t, n, s), to obtain (3.4) (all
along we assume g|ygr is trivial).

Similarly (3.5) is obtained by applying (3.2) to (dg)(n,m,t), and (3.6) by using
(3.5) and applying (3.1) to (dg)(n,t,m). B

We proceed by defining v = glrgn:T O N — A, a = glrer:T QT — A, b =
glven: N ® N — A. The equations (3.1) and (3.2) show that a and b are cocycles.
Now note:

a(tx S, n) = (Jg)(t: S, n)



45

= g(s,n)g " (ts,n)g(t, s(n) - s")g" (¢, s) use (3.4)
= g(s,n)g™"(ts,n)g(t, s(n))g(t*™, s™)g ™ (t, 5)
= (‘ST'Y) (t7 S, TL) " (5Na') (tr S, TL),

and
B(t,n,m) = (dg)(t,n,m)
= g(n,m)g'(t(n) - t", m)g(t,nm)g~"(t,n) use (3.6)
= g(n,m)g~'(t(n), t"(m))g~ (t", m)g(t,nm)g~"(t, n)
= (rb7Y)(t,n,m) - (Syv~ 1) (t, n, m).
Hence (dya,drb™) ~ (a,B), since (a,B8)(0na,drb~")"' = (6rv,0nv") €
B3(T, N, A).

Now we show that the composite ¥(dy * 677') is trivial, i.e. that if (a, b) €
Z3(T, A) @ Z*(N, A), then f = fsyas6-1:H® H — A is a coboundary. Define
g:H® H — A by g(nt,n't') = a(t",t)b(n, t(n')) and observe that f = gl

From now on assume that f: H @ H — A is a Sweedler 2-cocycle. Define a 1-
cochain g5: H — Aby the rule g¢(nt) = f(n,t). Furthermorelet h = f*dg;: HQH —
A. Let fr = flrer:TQ®T — A, fn = flNen: N®N — A, and define f: TN — A
by fe(t,n) = f(¢,n) f~(t(n), t").

The Lemma below is the most important tool used to establish the exactness of

the generalized Kac sequence.

Lemma 3.1.2 Let f: H® H — A be a cocycle and let the gy, fr, fn, fe; h = f *dgs

be as above. Then
1. h(nt,n't") = fT(t"', t) fn(n, t'(n')) fo(t,n')
2. hr = fr, hx = fn, hiver =€, hlrgy =he = f., gn =€

3. the maps fr and fn are cocycles and Oy fr = 6rfL, drfn = ft
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4. Ifa:T®T — A, bN®N — A are cocycles and v:-T® N — A is a con-
volution invertible map, such that Sya = é77v and évb = Sy~y, then the map
f=fapy:HQ H — A, defined by

f(nt,n't') = a(t™,t')b(n, t(r))y~ (¢, )

is a cocycle and fr =a, fy =b, fo = flren =77" and flner = €.

Proof (of 1). We enlist the help of the cocycle condition f(z,y)f(zy,z) =
f(y, 2) f(z,yz). We use it in the following forms:

flzy,2) = f'(=z,9)f(v,2)f(z,yz) (3.7)
flz,yz) = f(z,9)f(z,y2)f "y, 2) (3-8)
Apply the first equation to z = n, y = ¢, z = n't’ to get the first of the equalities
below.
f(nt,n't) = f~H(n,t) - f(t,n't) - f(n,tn't)).
Now
f,n't) = ft. ) f(en', ¢) f7 (0, 1),
fln,tn't') = f(n, t(n)t"t)
= f(n,t(n)) f(n-t(n'), t*¢) F (t (), 70,
fan',t) = f(t') -t ¢n)
= fHW) ) FEV ) FE(R), VY,
and hence
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f(E, ) f(tn ) fH R, 8
f(n, t(n)) f(n - ¢(n), £7) f7H (), £E)
fHn,t)
-f(t,n)
STHEER), ) F(E ) FE(R), £ )
f7Hn' t)
fn, t(R)) f(n - ¢(0), £78) F (E(n), £7'H)
= f(t*.¢)
-f(n, t(n))
) fHE), )
fHn ) TN ) f(n- E(n), £V'E))
= fr(t",t)
-fn(n, t(n))
-fe(t,n)
-(6g7) " (nt,n't'). A
Proof (of 2). Clear. B

Proof (of 3). Since f satisfies the cocycle condition, so do fr and fy. Compute:

orfe(t,t\n) = Orhe(t,t',n) = h(t',n)he(t, t'(n))h" (¢, n)
= h(t',n)h(t,t' (n)) =Lt n)
= h(t',n)h(t,t'(n))
-h(t, )Rt t'n)RTL(H, n)
= h(t,t'(n))h(t,t)
-RTHE E () RTHE - (n), ™) R(E (n), £™)
h((&t') (n), ¢ P)ATLE ™, ¢ R (() (n), £ e
= h(t,t A7 ™, )
= dwhi'(t,tn) =Snf Nt E, ),
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Onhe(t,n,n’) = ho(t,n)h(t", 0" )R (t, nn')
h(t,n)h(t*, ')A (¢, nn')

h(t,n)h(t",n)

-h~H(t, n)R" (tn, n')h(n, n')
h(t*,n')

-h(t(n), )R (EH, )R (E(n), t"0)
-h(n,n’)

h7H(t(n), " ()R (t(n) - (), " )R(EN (), £
-h(n,n’)

h(n,n" )R~ (t(n), t"(n"))

érhy'(t,n,n') = orfyt(t,n,n'). A

Proof (of 4). The equalities fr = a, fyv = b, f. = flrexy = v and f|yer = € are

apparent from the formula for f. We only have to check, that f is indeed a cocycle.

This is done by the following monstrosity.

(@ f)(nt,n't',n"t") =
= f(nt,n't") f~(nt, n't' (")) f(nt (@), 0" U, 0
= a(t",t"b(n, t(n'))y"L(t, n)

.a! (tn’-L'(-n.") , tln"tll)

b7 (n, t(n) - (£7¢) ("))

(¢, - ' (n"))

a(t™EE e ey

b(n - ¢(n), (t*)(n"))

ALY, n")

a7 (™, e E () )y (E, )
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We compute the product of the a terms:

a(t™, t)a Tt ™) g ) a (g O e (|
= a(t”,¢)a"M (", ¢ e
(™) g (g )|y
a(t™ t I e )
= (wa™)(t", £,n") - (Fra) (™, ¢, )
= (Sna”hH)(t", ¢, n")

= dpy Y, Y, n").

Similarly we compute the product of the b terms:

b(n, t(n'))b™" (n, t(n') - (£¥¢')(n"))b(n. - t(r'), (" ') (n"))b~" (', /("))
= b(n, t(n))b~ (n, t(n) - (£¥'t')(n"))b(n - t(n), (E¥'')(n"))
b7 (E(n"), (V) (n")b(E(n'), (7' E') (n"))
b7H(n', t'(n"))
= (6nb)(n, t(n'), (£¥t)(n")) - (57b)(t, ', t'(n"))
= (rd)(t,n’,t'(n"))
= dny(t,n,t'(n")).

We conclude the proof by observing that the inverse of the products of the a and b
terms equals the product of the ¥ terms.

(JTA/ ) (tnrv tlr TL”) : (‘SN 7‘1) (tr TL,, t,(n”)) =
= y(t, n”)'Y(tn,a t'(n")) 7_1 (tnrt,: n")
"7-1 (ta nl)’y-l (tn: t,(n,'))7(ts n -t (n”))
= (', W 2"y E R ) (E R - ().

Now we proceed by showing the exactness of the remaining part of the sequence

defined at the beginning of this section.
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e Exactness at H*(T, A) ® H3(N, A):
The composite (8y * 67 Hresy, f — (fr, fn) = (Onfr,orfyt), is trivial, since
(On fr, 0T FRY) = (01 fer SN 1Y)~ € B3(T, N, A), by Lemma 3.1.2, part 3.

If a pair of cocycles (a,b) € Z*(T, A) ® Z*(N, A) is such that (dya,d7b™!) €
B%(T, N, A), then thereisavy: T®N — A, such that Sya = dr7y and é1b = Sn7.
Use Lemma 3.1.2, part 4, to define a cocycle f: H @ H — A by the rule

f(nt,n't) = a(t™, ¢)b(n, t(n'))y (¢, )
and note that res,(f) = (a,b). B

e Exactness at H?(H, A):

First we have to check that the map ¢: H!(T, N, A) — H?2(H, A), defined at
the beginning of the section is well defined. This is verified by applying Lemma
3.1.2, part 4, to a pair of trivial cocycles a:T T — A, : NQ® N — A and a
cocycle v:T ® N — A from HY(T, N, A) (i.e. yy =€ and éry =¢).

Clearly (¢(7)7,9(7)~n) = (erer,ENen) and hence the composite ress¢ is trivial.

Now suppose a cocycle f: H® H — A is such that a = f:T® T — A and
b= fny:N® N — A are coboundaries. Let @:T — A and b: N — A be such
that @ = §7@ and b = §yb and define v = (67 * dnb)": T ® N — A, that

is y(t,n) = a(t)a" (t")b(n)b_ (t(n)).

Define g: T — A by g(nt) = a(t)b(n). Note

Sg(nt,n't’) = g(nt)g(n't)g™ (nt(n')t"t')
= at)a(t)a '(t"t)
-b(n’ )g(n)E-L(n -t(n"))
= a@)a '™ )a alt)a ("' t)
BB (¢(n"))B(E(R)B(n)E (n - ¢(n)
= (6na)(t,7) - (6r@)(t™, 1)
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(0rb)(t, ) - (D) (, t(n"))
= a(t",t)b(n, t(n"))y(t, n).

Remember that by Lemma 3.1.2, part 1, there is A ~ f (cohomologous), such
that hr = fr =a, hy = fy =band

h(nt,n't') = a(t™ ,t')b(n, t(n'))he(t, n').

Let A’ = h * dg~' and note that h/(nt,n't') = (h % dg~)(nt,n't) = (v~! *
he)(t,n'), hence h/(nt,n't’) = h.(t,n'), with dyh. = ¢ and é7h. = ¢, that is
h, € H'(T, N, A) and k' = ¢(h.). We are done, since f is cohomologous to A’
a

Exactness at H'(T, N, A):

First we show that the composite ¢(dn * d7) is trivial. Let a € HY(T, A),
be HY(N, A) and v =d6ya*6rb: T ® N — A. Define a 1-cochain g: H — A by
g(nt) = a(t)b(n) and note that ¢(vy) = dg € B2(H, A).

Now assume that v € H!(T, N, A) and suppose that ¢(y): H @ H — A is
a coboundary; that is ¢(y) = dg, for some g: H — A. Note that g(tt') =
9()g(t), g(nn') = g(n)g(n’) and g(nt') = g(n)g(t'), since the maps (8g)|rer,
(09)|nen and (8g)|ner are trivial. Hence g|r € H(T, A), g|x € H'(N, A) and
Y =0ng|r * org|n. B

Exactness at H!(T, A) @ HY(N, A):
Let f: H — A be a cocycle, i.e. an algebra map. Then
(t)e(n) = g(tn)g~'(tn) = g(tn)g™'(t(n)t")
= g(t)g(n)g~'(t(n))g~ (")
= (dnglr *67gly) " (t,n). B
On the other hand, if dya * 676 = € € HY(N, T, A), for some a € H(T, A),
b € HY(T, A), then define f: H — A by the rule g(tn) = a(t)b(n) and note that

g is an algebra map that restricts to a and b. B
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e Exactness at H'(H, A): Since f(nt) = fr(t)fy(n), the homomorphism ress,
given by f — (fr, fv), is injective. B

Remark. Suppose that the action : T® N — N is locally finite and let (N, T°,w, p)
be the Singer pair corresponding to the matched pair (T, N, pu,v).

By Corollary 2.4.3 we have H'(T, N, k) = H'(N,T°). Recall also H'(N,T°) ~
Aut(T°#N), [Ho|.

From the explicit description of the generalized Kac sequence, we see that we
have (8 * 877 )luz(r.a) = On:H2(T, A) — H3(N, T, A) and (On * 6~ )|u2v,a) =
dr~':H?*(N,A) — H3(N,T,A). By Proposition 2.4.4 we also have H3(T,N,k) =
H2 (N, T°). Recall that HZ (N, T°) C H*(N, T°) ~ Opext(N, T°).

If the action v is locally finite as well, then there is also a (right) Singer pair
(T, N°,/, p'). By ‘right’ we mean that we have a right action w’: N°® T — N° and
a right coaction p': T ® N°®T. In this case we get that H3(T, N, k) ~ H2'(T, N°) C
Opext'(T, N°). The dash refers to the fact that we have a right Singer pair.

Also note H3(N,T°) N HZ (N, T°) ~ H3(N,T,k) N H}(N,T, k) ~ H2/(T,N°) N
H? (T, N°). Hence

_ HA(T, N, k) @ H3(T, N, k)

1 2 2 X
Im(JN *6T ) c H]_(T7 N: k) +H2(T’ N’ A') - H%(T, N, k’) ﬂH%(T, va)

HZ (N, T°) ® H/(T, N°)
(HZ.o(N, T°) = HZ.(T, N°))’

where H2, . = H2NH? and H2' = H2'NH?. In other words, Im(8y*d7~L) is contained

in a subgroup of H*(T, N, k), that is isomorphic to the pushout

H2 (T, N°) ~ H2 (N, T°) — H2 (N, T°)

H2/(T, N°) X



Chapter 4

Sweedler cohomology of smash

products

The aim in this chapter is to obtain a sequence for the low degree cohomology of a
smash product of (cocommutative) Hopf algebras that generalizes that of Tahara for

a semi-direct product of groups (in A.3.2).

4.1 Measuring cohomology

Let H = N xT, more precisely let (T, N, s, v) be an abelian matched pair, with v triv-
ial. Furthermore let T act on Hom(V, A) via pre-composition: ¥: Hom(N, A)Q T —
Hom(N, A), f®t — f*, where fi(n) = f(t(n)). Let Regpeas(T®7, Hom(V, A)) denote
the subgroup of Reg(T®?, Hom(N, A)) consisting of the maps f:T®7 — Hom(N, A)
that make T®? measure NV to A, i.e. f(t)(nn') =3 f(t1)(n) f(t2)(n) and f(t)(1y) =
g(t)14 for t € T®7 and n,n’ € N. The differential

Reg(T®"!, Hom(N, A)) > Reg(T®?, Hom(N, 4)),
described in Section 1.2 restricts to

Reg eas (T, Hom( NV, A)) o Reg eas(T®?, Hom(NV, A)),

53
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thus giving rise to a sub complex of the complex given in Section 1.2. We
name the cohomology it produces the “measuring cohomology” and denote it by
H? ...(T,Hom(N, A)). We denote the groups of measuring cocycles and coboundaries
by 7% ...(T,Hom(N, A)) and BY_ (T, Hom(N, A)), respectively. In the case ¢ = 1

they are as follows:

Zheas(T, Hom(N, A)) = {f € Reg(T,Hom(N, A))]
f(tt)(n) = Z f#)(@1(n1)) f(t2)(n2) and
f)(nn') = Z f(t1)(n) f(t2)(n")},
Bl..o(T, Hom(N, A)) = B(T,Hom(N, A)) NZ._ (T, Hom(N, A)).

4.1.1 Measuring cohomology of group algebras

In case T' = kG is a group algebra, then we can identify
Reguneas(KG)®, Hom(N, A)) =~ Map(G**, Alg(N, A)),

where Alg(V, A) denotes the group of algebra maps from NV to A (with convolution
product) and Map(H, B) denotes the abelian group of unital maps from H to B
(with pointwise multiplication). Note that this isomorphism induces an isomorphism

of complexes, i.e. preserves the differentials; hence we have:

Theorem 4.1.1 There is an isomorphism
H:,,, (kG, Hom(N, A)) ~ H(G, Alg(N, A)).

If N = Ug is the universal envelope of a Lie algebra then we have a natural
isomorphism Alg(Ug, A) ~ Lie(g, Lie(A)) [CE], where Lie(g,h) denotes the group
of Lie algebra maps g — h (with pointwise addition) and Lie(A) denotes the un-
derlying Lie algebra of the algebra A, that is the Lie algebra where the Lie bracket
is given by [z,y] = zy — yz. In our case Lie(A) is an abelian Lie algebra (since
the algebra A is commutative) and hence Lie(g, Lie(A)) ~ Lie(g/(g, g|, Lie(A)) ~
Vect((g/[g.g])t, A"). Here g/[g, g] is the abelianization of the Lie algebra g, _* is
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the underlying vector space functor and Vect(V, W) is the abelian group of linear

maps from V to W (with pointwise addition). Hence we have:

Theorem 4.1.2 Let G be a finite group, and g a Lie algebra. Then
Hineas(kG, Hom(Ug, A)) =~ H(G, Vect((g/[g, g])*, AY)).
If|G|~! € k then H: ,,(kG,Hom(Ug, A)) = 0.

Proof. The first equality was already explained in the paragraph preceding the
theorem. Note that if |G|~! € k, then Vect((g/[g,g])*, A™) is uniquely |G| divisible
and hence H: . (kG,Hom(Ug, A)) =0. B

4.2 Universal measuring coalgebras and Hopf al-

gebras

4.2.1 Universal measuring coalgebra

Here we introduce a functor
M(,, A): AP — C,

that is adjoint to
Hom(_, A):C — A®”.

For more details on this topic, we refer to [Sw2, Chapter VII| and [GP].
Let A, B, be algebras, C a coalgebra.

Proposition 4.2.1 (Sw2, Proposition 7.0.1) A map ¢¥:C ® B — A corresponds
to an algebra map p: B — Hom(C, A), p(b)(c) = ¢¥(c ® b) if and only if

1. Y(c@bt) = Y(c1 @ b)Y(ca ® V),

2. Y(c®1p) =¢€(c)ly
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If the equivalent conditions from the Proposition above are satisfied, we say that
(¥,C) measures B to A.

Given algebras B and A there is a measuring (6, M(B, A)) with the following
universal property.

Theorem 4.2.2 (Sw2, 7.0.4) The universal measuring 9:M(B,A) @ B — A has
the following universal property:

for any measuring f:C ® B — A there ezists a unique coalgebra map f:C —
M(B, A), s.t. f=0(Ff®id).

The construction is as follows. Let £ — Hom(B, A) be a cofree coalgebra over
Hom(B, A). Then define M(B, A), to be the largest subcoalgebra of E, s.t. the
canonical map 6: M(B,A)® B — E® B — Hom(B, A) ® B — A measures.

4.2.2 Measuring Hopf algebra

If N is a Hopf algebra and A a commutative algebra, then it is possible to endow
M(N, A) with a Hopf algebra structure.

This is done as follows:

e the multiplication m: M(N, A) ® M(N, A) — M(N, A) is the unique coalgebra
map s.t. 6(m ® id) = w, where w = ma(6 ® 0)023(id ® id ® Ay): M(N, 4A) ®
M(N,A)®@ N — A

e the unit 7:k — M(N, A) is the unique coalgebra map s.t. (7 ® id) = n.enT,

where 7:k® N — N is the natural isomorphism (z ® n +— zn)

e the antipode S is the unique coalgebra map M(N, A)®~? — M(N, A), s.t.
(S ®id) =0(id ® Sn)

Proposition 4.2.3 Let N be a Hopf algebra and A a commutative algebra. Then
(M(N,A),m,A,n,e,S), where m,n and S are the maps defined above, is a Hopf

algebra.
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Proof. We have to show the following:

e w is a measuring:

w(f®@g®nm) = 0(f ®nm,)0(g ®nams) = 0(f1On1)0(f2@m1)6(g91 ®n2)8(g2®
mp) = w((fi ® g1 @n)w(fo ® g2 ® M).

e m is associative:

Define a measuring ws: M(NV, A) @ M(N, A) ® M(N,A) @ N — A by the rule
w3(fRIVh®n) = 6(fRn,)0(g®n2)8(h®n3) and note that H(m(id®@m)®id) =
w3 = 0(m(m ® id) ® id) and hence by the uniqueness m(id ® m) = m(m ® id).

® 7T is a measuring: clear

e 7 is the unit for multiplication, i.e. m(n ® id) = 7ies: and m(id ® n) = Tright'
by the universal property it is sufficient to see §(m(n ® id) ® id) = (e ® id)
and 6(m(id ® ) ®id) = 6(7righ. ® id). We show the second of the equalities (the
argument for the first is symmetric): LHS(f® z®n) = 6(m(f @ n(z)) ®n) =

w(f ®n(z) ® n) = 6(f @ n1)0(n(z) ® n2) = O(f @ n1)ze(n2)ls = (zf @ n) =
RHS(f®z®mn).

e 9(id ® S): M(N,A)*~? @ N — A is a measuring: clear

e S is an antipode, i.e. S*id =id * S = ge:
it is sufficient to show (S *id ® id) = 8(ne ® id) = 0(id * S ® id). This is
proven by the following computation: (S *id®id)(f ®n) =0(S(f1)fo®n) =
w(S(f1) ® f2 ® n) = 0(S(f1) ® n1)0(f2 ® n2) = 6(f1L ® S(n1))0(f2 @ na2) =
0(f ® S(n1)n2) = 0(f ® e(n)1n) = e(f)e(n)1a = 6(ne(f) ® n); symmetrically
for f(ne®id) =6(id*S®id). &

Proposition 4.2.4 If N is cocommutative, then M(N, A) is commutative.

Proof. {(m®id)(f®g®n) =0(f®n1)8(g®na) =0(f®n:)0(g®n) =0(gf ®n) =
f(om) @id)(f@gQn). B
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4.3 Measuring cohomology vs Singer cohomology

In this section we interpret H2 . as H2, the multiplication part of H2.
Proposition 4.3.1 If N is a T-module bialgebra via p:N QT — N (n®t — nt),
then so is M(N, A) via fi: T @ M(N,A) — M(N,A) (t ® f + t(f)), which is the
unique map, such that §(E ® id) = 6(id ® 1)(2,3,1).

Proof. By the universal property & is a coalgebra map. The following computation
proves that M(N, A) is also a T-module algebra, i.e. Z(id @ m) = m(Z ® )o23(A ®
id®id): 8(¢(fg)@n) = 0(fg@n’) = 8(f@ni')0(g@n3’) = 0(ti1(f)®n1)0(t2(g) ®na) =
6t (f)t2(g) ®n). B
Remarkl. Note that (T,M(N, A), ., p), where T is as above and p is the trivial
coaction p =id ®@n:T — T @ M(N, A) is a Singer pair.
Remark2. If instead of a right action u: N @ T — N, we are given a left action
p:T®N — N, we can “switch” sides by applying the antipode, i.e. 4/(S®id)o: N®
T — N is a right action.

From now on assume 7" and N are both cocommutative. In this case we can talk
about the differentials §: Reg(T®, M(N, A)) — Reg(T®P*!, M(N, A)) for computing
Sweedler cohomology HP(T', M(N, A)).

Lemma 4.3.2 Ifa:T® — M(N, A) is the coalgebra map corresponding to the mea-
suring a:T® @ N — A then, §& = éra i.e. the coalgebra map corresponding to the
measuring dra: TP L @ N — A is Ja: T®+! — M(N, A).

Proof. We have to show §(d& ® id) = éra. Since §(a@* B ® id) = a * 3 and also

a~! =a(idrer ® S) = Sa& =a ! (it is a coalgebra map, since T is cocommutative),
it is sufficient to see that

fA(d®...m®...0d)Rdy) = a(d®...m®...Qid®idy)
fpidea)®id) = J(id®a)
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These equalities are observed by the commutativity of the following diagram.

TPl @ N id TML@NL’Q_.A
dr,
dr.a®id T»
a®id
M(N, 4) ® N ——— M(N, A) & N

Observe that TAETOP@N = TIM(N,A)ET®P and hence

(): {a:T®? @ N — A|a measures} — Coalg(T®P, M(N, A))

gives an isomorphism of complexes
(Reguneqs (T®, Hom(N, A)), ér) — (Coalg(T®?, M(N, A)), 8).
Theorem 4.3.3 H2(T,M(N, 4)) ~ H2 __(T,Hom(N, A)).

Proof. Note that in case of the trivial coaction, the condition, that a:T ® T —
M(N, A) is compatible with the trivial map ne: T — M(N, A)®@M(N, A), is equivalent
to a being a coalgebra map. B

Remarkl. Hence the degree two measuring cohomology characterizes those Hopf
algebra extensions M(N, A) — H — T, for which there exists an M(N, A)-module
coalgebra map &: H — M(N, A).

Remark2. Direct comparison of equations shows also that

H}eas(T, Hom(N, A)) ~ HI(T, N, A).
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4.4 Five term exact sequence for a smash product

The purpose of this section is to prove the following theorem by explicitly describing
the maps involved.

Theorem 4.4.1 Let H = N xT be a smash product of cocommutative Hopf algebras
(more precisely, we are given an action p:T®N — N, that makes N into a T-module
bialgebra) and let the commutative algebra A be a trivial H-module. Then we have

the following exact sequence:

0 — H} . (T,Hom(N,A)) = HX(H, A) X5 H3(WV, A)T

4 H2, (T, Hom(N, A)) L F3(H, A).

We prove the above theorem by transporting some arguments from [Ta] into our
more general setting.
Remark. Even though Hopf algebras N and T are cocommutative, we usually do
not omit subscripts, when using Sweedler notation in this section.

First we have to define the Hopf algebra analog of the stable part of cohomology.

Definition 4.4.2 Let N, T, p, A be as above. We say that a cohomology class
[f] € H(N, A), where f € Z}(N, A), is T-stable if there ezists a convolution invertible
linear map g:T @ N*=' — A, such that f = (f~')* = Syg(t ® _). The subgroup of
H'(N, A) consisting of all T-stable elements is called the T-stable part of cohomology
and is denoted by H'(N, A)T.

Note that if T = kG then H'(N, A)T = H}(V, A)C.
The following lemma is the main tool in establishing this result. It is a general-

ization of the essential part of Proposition 1 from [Taj:

Lemma 4.4.3 Let the Hopf algebra H be a smash product of cocommutative Hopf
algebras N and T. Furthermore assume that H acts trivially on a commautative algebra
A. Then every cocycle f: H@® H — A is cohomologous to a cocycle f'"H® H — A,
which is trivial on NQT, i.e. f/(n®t)=c(n)e(t)ls.
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Remark. The result of the lemma above also follows from Lemma 3.1.2. Here we
present a different proof, which is an adaptation of Tahara’s proof. Note also, that
the proof works also in the case H is a general bismash product (that is neither of
the actions is needed to be trivial). There are also other results stated in this chapter
that are consequences of the results in the previous chapter.

Proof (of Lemma 4.4.3). Let the extension

AL KeH
be an H-comodule algebra extension with as';ociated 2-cocycle f (see Section 1.2.3).
We shall denote the H-comodule structure on K by p: K — K® H. We will show that
X can be “repaired” into a x’: H — K that satisfies the equality x/(nt) = x'(r)x/(t),
forn € N, t € T. Then it is easy to see that the cocycle f: H ® H — A associated
to X’ satisfies the desired condition.

Let {u:}iesr be a basis for N and let {v;};es be a basis for T. Then {u; }v;} ¢ jjerxs
is a basis for H. Define a linear map x’: H — K by the rule x'(u: ¥ v;) = mg(x(u;) ®
x(v;)). The following calculation shows that x’ is an H-comodule map, i.e. px’ =
O ®@id)Ay:

O ®id)A(u: x ;) = D x'((u)1 x (v;)1) ® (ws)2 % (v5)2
= Zx(((uf)x)x((vj)l) ® (ui)2(vs)2
= Y mren((x((@:)1) ® (u)2) ® (x((v:)1) ® (v5)2))
= mgen(px(ui) ® px(v;)) = pmr (x(u:) ® x(v;))
= px'(ui % v5).
Now observe x'(u;) = x(u:) and x'(v;) = x(v;) and hence x/(nt) = x¥'(n x t) =
X'(n)xX'(t) forne NandteT. B

A cocycle f’ that satisfies the condition of Lemma 4.4.3 will be called a normalized
cocycle.

Corollary 4.4.4 Let f:H® H — A be a normalized cocycle , where H is a smash
product of N and T acting trivially on the commutative algebra A. Then f satisfies
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the following equations:

frt@ k) = > f(ti®hL) f(n® tah)) (4.1)
f(nt®t) = en)ftat) (4.2)
fhn't) = Y f(hi@ni)f(hany @) (4.3)
fnen't) = fn®n)e(t) (4.4)
ften't) = Y f(ti @) f(te ®@n}) f(n ® ta(n)) (4.5)

fornn' e N, t,t €T and h,h' € H.

Proof. The equations (4.1) and (4.3) are just special cases of the cocycle condition.
Equations (4.2) are (4.4) are special cases of (4.1) and (4.3) respectively and (4.5)
follows from (4.1)-(4.4). B

Corollary 4.4.5 A map f: H® H — A is a normalized 2-cocycle if and only if the

following are satisfied:
1. flver =¢
2. flnven is a 2-cocycle on N
3. flrer is a 2-cocycle on T
4. f'@n') =3 f(t, @n)f(t R th(n))), wheren' € N andt, t’' €T

5. 2 f(ni®n)) f (b(n2) @ta(ng)) = 3 F(B1 @) f 1 (ta ®non)) f(t: @), where
nn €N andteT.

Moreover, the data f|nen, flrer, flren satisfying the conditions above determine a

unique normalized cocycle.

Proof. First assume that f is a normalized 2-cocycle on H. Then clearly f is also a
2-cocycle on both N and T'. The equations in conditions 4.3 and 4.5 are obtained from
the cocycle condition together with the equations (4.2) and (4.3) from the previous

corollary.
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Now suppose that we have the data from conditions 4.1-4.5. Then the Equation
(4.5) of the Corollary 4.4.4 gives a formula for a map f: H® H — A (it is well defined,
since it is linear in each of the variables). An elementary (but lengthy) computation

shows that the cocycle condition is satisfied. B

Let H*(H, A) be the kernel of the restriction homomorphism Hi(H, A) = HY(T, A).

Since the inclusion T — H splits we can conclude that

Proposition 4.4.6
Hi(H, A) ~ HY(T, A) @ H'(H, A).

We shall denote the group of normalized cocycles H ® H — A that are trivial
when restricted to T by Z*(H, A), i.e. Z*(H,A) = {f € ZX(H, A)|f(n®t) =
g(n)e(t) and f(t ®@t') = e(t)e(t'), n € N, t,t' € T}. Furthermore, let B*(H, A) =
B%(H, A) N Z?(H, A). Using the canonical map H — T together with Corollaries
4.4.4 and 4.4.5 we can show that there is an injective map B*(T, A) — B?(H, A) and

hence
Proposition 4.4.7 H?(H, A) = Z"?(H, A)/B?(H, A) ~ H2(H, A).

We proceed by defining the homomorphisms involved in the generalized Tahara

sequence, and also prove exactness at the same time.

The injective homomorphism H} (T, Hom(N, A)) — H2(H, A):

First define a homomorphism ¢: 2}, (A, Hom(N, A)) — Z7?(H, A) by the rule
t(f)(nt@n't’) = f(t)(n)e(n)e(t’) (it is well defined, since the map NxT xNxT — A,
given by (n,t,n/,t) — f(¢)(n’) is bilinear). This homomorphism induces an injective
homomorphism H}..(T, Hom(N, A)) — H2(H, A). B

The exactness at H2(H, A):
We claim, that the image of the homomorphism just described equals the kernel
of the restriction homomorphism H2(H, A) <5 H2(N, A)T.
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Clearly resc = 0. Suppose the cocycle f € Z?(H, A) is such that flyen €
B2(N, A), that is there exists g:N — A such that f(n ® n') = dg(n ® n’). Ex-
tend g to a linear map g: H — A by the rule g(n x t) = g(n)e(t). Now define
f' € Z3cas(T, Hom(N, A)) by the rule f(t)(n') = 3 f(t: ®n})g~}(n})g(ta(n})) A rou-
tine calculation shows that f xdg~! = .(f’) (we use Equation (5) of Corollary 4.4.5
to expand f(nt ® n't’) and take into account that f|yey = dg and that f|rer =€)
and hence [f] = ([f']). B

The homomorphism H2(N, A)T -4 H2_ (T, Hom(N, A)) and the exactness at
H2,...(T,Hom(N, A)):

Take [f] € H?*(N, A)T, for f € Z*(N,A). Then thereis a T Q@ N — A
st. fx(fT) = dng(t® ), e T f(n @ n))fH(ti(ne) ® ta(nh)) = T gt @
n1)g " (t2 ® noni)g(ts ® ny). Now define d by (df)(t @ ¢ @ n) = T g(t] ®

n1)g~ (tity ® na)g(te @ th(ns)). Clearly df € Z2_ (T,Hom(N,A)). We claim
that the class [df] is independent of the choice of g, which in turn also implies
that d(B*(N, A)) € B*(T, Hom(N, A)) and hence d gives rise to a homomorphism
H*(N,A)T — HZ,.(T,Hom(N,A)). So suppose there is a ¢"T @ N — A
such that 3 f(n ® n})f7!(t1(n2) ® ta(n3)) = 3 g'(t1 ® n1)g'~ (t2 ® mon))g'(ts ®
ny). We need to show that there exists w € Reg,..,(T, Hom(N, A)) such that
2 9(t @ m1)g™ 1ty @ na2)g(t2 ® th(na))g' ™! (th ® nu)g'(tath ® ns)g'~ (ts ® t(ne)) =
5 w(th) (ma)w=" (t1t4) (ma)w(t2) (t(na))- Define w by w(t®n) = ¥ g(ts ®n1)g'™~ (28
ng2) and observe that it does the trick.

It is clear that d. = 0. Suppose df € B*(T, Hom(, A)). Then there exists a w €
Regcas(T, Hom(NV, A)) s.t. (df)(t@t'®n) = 3" w(ti®n)w™ L (t1th@n2) w(ta®ts(n3)).
Define 2:T® N — A by 2(t®n) = Y h(t; ®n1)u"(t2 ® na) and note that this gives
rise to a normalized cocycle z € Z?(H, A) given by z(nt®n't') = 2(t®n) (see Lemma
145). 1

The homomorphism H2_, (T,Hom(N, A)) — H3(H, A) and the exactness at
>eas(T: Hom(N, A))
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Let f € Z2..(T,Hom(N, A)). Define a map jf: HR H® H — A by jf(nt®
't @n"t") = f(t @t @ n”). A straightforward calculation shows that jf is a 3-
cocycle on H. Suppose that f is a measuring 2-coboundary. Then there exists
v € Regpeos (T, Hom(N, A)) s.t. f(t@Y'Qn") = 3 v(t,@n])vH{t1th®nl)v(ta@ts(nh)).
Now let v': H ® H — A be defined by v/(nt ® n't’) = v(t ® n’) and show jf = 6%/'.
This proves that the homomorphism 7 is well defined.

Suppose [(h] € H*(N,A)T and let w:T® N — A be s.t. h* (h71)t = §(u(t)).
Define v: H @ H — A by u(tn @ t'n') = Y u(t; @ n{)h(n ® t(n})) and observe that
jdh = 8% € B*(H, A). This shows that jd = 0.

Now suppose the measuring 2-cocycle f is such that jf is a 3-coboundary. Then
there exists v € Reg(H ® H, A) s.t. jf =¢%v. Definea w:T® N — Aby u(t®n) =
2 u(tt ® n)vH(ta(ne) ® t3) and N Q® N — A by h(n ® ') = v(n ® n') and
note that 8'(h) = ne (hence h € Z%(N, A)) and that h * (h™!)! = dyu(t ® ), so that
[h] € H3(N, A)T. Observe also that f(t®t') = 3= u(t))u~ (tith)u's(t,), i.e [f] = d[h].W

Corollary 4.4.8 If H =NQ®T, i.e. if the action of T on N is trivial, then we have

a canonical tsomorphism
H?(H, A) ~ H¥(T, A) ® H.,.,(T, Hom(N, A)) ® H3(N, A).
Proposition 4.4.9 [f the action of T on N is trivial, then
H. .s(T, Hom(N, A)) ~ P(T, N, A),

where P(T, N, A) denotes the abelian group of maps f:T @ N — A that measure in
both variables, i.e correspond to algebra maps T — Hom (N, A) and N — Hom(T, A).

Remark. The isomorphism H*(N ® T, A) = H*(T, A) ® H%(N, A) & P(T, N, A)
has a description similar to that in the case of group cohomology (for the group
cohomology case see for instance [Kar]): [f] — ([flrer], [fIxen], f), where f(t®@n) =
Lt ®n)fH(ne ®ta)-
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4.5 Sweedler cohomology of a smash product of a

group algebra and a universal envelope of a Lie

algebra

Here we illustrate how the generalized Tahara sequence sheds some light on the
Sweedler cohomology, when the cocommutative Hopf algebra in question is a smash

product of a group algebra T = kG and the universal envelope of a Lie algebra
N =Ug.

Theorem 4.5.1 Let G be a finite group acting on a Lie algebra g, furthermore let
A be a commutative algebra which is also a trivial Ug x kG module and assume the
ground field k contains |G|™!. Then

H?(Ug x kG) ~ H?(g, A*)® @ H*(G, A).

Proof. If|G|™! € k then H: _,(kG,Hom(Ug, A)) is trivial and hence the restriction
homomorphism res: H*(V x T) — H2(NV, A)T is an isomorphism. So we get the
isomorphism H*(N x T, A) ~ HX(T, A) @ H*(N, A)T. Now H*(T, A) = H*(G,U(A)),
H?(N, A) ~ H*(g, A*) (see [Sw]) and H3(V, A)T ~ H?(g, A*)C. B

Example 4.5.2 Assume the ground field k has characteristic 0, let g = sl,(k) be
a Lie algebra consisting of trace zero n x n matrices (with Lie bracket given by a
commutator) and let G ~ C, < Gl,(k) be a group generated by the standard n-cycle
permutation matriz acting on g by conjugation. Then H*(Ug x kG, k) ~ k*/(k*)"

Proof. Apply Theorem 4.5.1 and note that H2(g, A*) is trivial by the Whitehead’s
second lemma and that H?(C,, k*) = k*/(k*)". (example A.3.6). B



Chapter 5

On extensions arising from a smash

product of Hopf algebras

We start with a smash product H = N x T of cocommutative Hopf algebras N and
T, i.e. with an action v: N ® T — N, that makes N into a T-module bialgebra.
Combining the generalized Kac sequence and generalized Tahara sequence we see

that there is an exact sequence
HY(N = T, A) 53 HY(N, A) 5 H3(N, T, 4),

where the homomorphism @ is given by [a] — [d7a™!]. We call & the connecting

homomorphism.

5.1 Cohomology of Singer pairs arising from semi-
direct products of finite groups

Here we restrict ourselves to the case of a smash product of group algebras kN and kT
and the algebra of coefficients is the ground field &. More precisely we are given finite
groups N and T and a right action @: N xT — N. Note that k(N xT) = kN xkT.
The Singer pair (kT, &V, u, p) is given as follows:

67
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e The action u: kT®KY — k¥ is given by pre-composition, i.e u(t® f)(n) = f(nt).
e The coaction p: kT — kT ® k¥ is trivial.

In this case the double complex for computing the cohomology of a Singer pair
kT, k¥ is canonically isomorphic to the following complex:

For groups T and N, Map(H*™ x N*"* k*) shall denote the abelian group of all
maps f: H*™ x N** — k°®, that satisfy the condition f(hy,...,hm;z1,...2,) = 1
whenever one of the elements hy,...,hn; 1, ...z, is a unit element. The differentials
O Map(H™™ x N*", k*) — Map(H™*+! x N*" k*) and §y: Map(H*™ x N** k*) —
Map(H*™ x N™*! k*), are defined by

JH(f)(.'l:[, sy xm+1;U) = (:L'[(f))(lfg, .- '1xm+l;u)

m
—1)¢ - +1
(Hf(xls**wxizi-l-l:""xm-{-l;u)( I)‘) f(mlz"’:vm;u)( b

i=l1

JN(f)(x;ul: '-'1un+1) = f(X,UQ, '”7un+l)
n
~1)J _ 1
(Hf(x;uhn-:ujujﬂa---,un+1)( 1)’) FO Uy, . uy) R
Jj=l1

where

z(A)(y ) = flyiz7' (W) = fy;z7(w), -, 27 (un).

5.1.1 The connecting homomorphism

In this special case the connecting homomorphism ®:H?(N,k*) — H2(kT,kN) is
given by ®(c)(t;u,v) = c(u,v)c"!(uf, v*). The results from above give us:

Theorem 5.1.1 The sequence
H(N x T, k%) 5 H3(WV, k°) 2 H2(kT, k™)
is ezact.

Corollary 5.1.2 ker® < H3(N, k)T
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Proof. This follows from the above theorem. It is also possible to see this directly:
Let [c] € ker ®, i.e. B, € B2(kT,kY). ThenVz € T

(cz(e) ™) (u, v) = Be(z)(u,v) = ¥(z)(w) " v(2) (wo)y ™ () (), wv € N

which means that cz(c)™ € B2(N,k*). Hence Vz € T, [ = [z(c)], i.e. [d €
H2(N,k)T. B

Remark. In the following example from [Ta] the inequality in the above Corollary
is a strict one. Let N = Cy = (u), T = C3 = (z), k = F, (hence k* ~ C3) and let
the action of T on N be given by u* = u*. Then H*(N,k*)T = H3(N, k*) = C; and
ker & =0.

The following proposition about group cohomology will help to establish the equal-
ity ker ® = H*(V, £°)T in case ged(| V|, |T]) = 1.

Proposition 5.1.3 If ged(|T|, |N|) = 1, then each cohomology class in
H2(N, k*)T has a T-invariant representative in Z2(N,k*). Moreover for each [a] €
H2(N, k*)T there ezists a B € Z*(N, k*) s.t. a ~ [Leerz(B).

Proof: Let h,n € IN be such that h|T| +n|N| = 1. Define 8 = a”. Note 8Tl ~ a,

since

,BITI — ah[Tl — al-n[N[ — aa-nINl ~ .

Since [8] € H2(N, k*)T we have

o = TL 6~ [T =6).

z€T z€T

Corollary 5.1.4 If ged(|T|,[N]) =1 then ker® = H*(N, k*)T.

Proof: We've already seen that ker ® < H?(N,k*)T. Let [c] € H?(N, k*)T. By the
Proposition above there exists ¢ € Z%(NV, k°*), s.t. z(¢) =¢ and ¢ ~ . Now 8. ~ B,
but G (z) = 1;v. B
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5.1.2 The coconnecting homomorphism

For B € Zi(kT,k") we define a map c¢g:N x N — k by the rule cs(u,v) =
[l.er B(z)(u,v). Since each ((z) satisfies the group cocycle condition, so will their
product. Hence cg € Z?(N,k*). If B € B2(kT,kY) then in particular for each
z € T there is y(z): N — k st. B(z) = §(v(z)) and hence ¢z = ([ Leer (),
i.e. cg € B*N,k*). Note that the map § — cz induces a homomorphism
W: H2(KT, kN) — H*(NV, k*). We shall call it the coconnecting homomorphism.

Theorem 5.1.5 Let ®: H*(N, k*) — H2(kT, k") be as defined in the previous section
and let U be as above. Then ®¥ = 71, ie. &(L([4])) = [8TY].

Proof: We calculate:

Bey(z) = coz(ca)™ = [ Bw) (Hx(my)))

yeT yeT
= [Tstes) [T =to0)™
ze€T
= Hﬁ(xy)x(ﬂ(y))
yeT
= [[6@) =6@)™.
yeT

|
Corollary 5.1.6 [f ged(|N}|,|T]) =1 then OV is an isomorphism. So in this case ®

is an epimorphism and ¥ is a monomorphism and
H2(N, k*) = H2(N, k*)T @ H2(KT, kV).

Proof: Let n|N| + h{T| = 1. Observe that =" is the inverse of 7. W

5.1.3 The map H2(kT,kV) = HY(T,H3(N, k*))

Now we shall provide a description of H'(T', H*(N, £*)). Let B < A be abelian groups,
we write the group operation multiplicatively. Recall ([Kar]) that

Z\(T, A/B) = Dex(T, A/B) = LT = Alf({z;/)sz(i)’ ;}(f(y))“ € B}
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and

BY(T, A/B) = IDex(T, A/B) = /:T — AlFa € Ast.f(z)z(a)"'a € B}

{f:T — B}
> {f:T — Alf(ay) (&)= f(y))~! € B}
AT — zy) f(z) 'z (f(y
HY(T, A/B) = {f:T — A|3a € As.t.f(z)z(a)"la € B}"
Let
ZYT,A/B) = {f:T — A|f(zy)f(z) " 'z(f(y))~" € B}
and

B'YT,A/B) = {f:T — A|3a € As.t.f(z)z(a)"'a € B}

and observe that H'(T, A/B) = Z'\(T, A/B)/B'(T, A/B). Now let A/B =
H?(N, k*), more precisely A = Z2(N, k*), B = B2(\V, k*). With this in mind we have

Z' (T, H3(N, k*)) = Z2'Y(T, Z*(N, k*)/B3(N,k*)) =
{f € Map(T x N? k*)|6nf =1 and 3g € Map(H? x N, k*) s.t. 8 f = dng}

and
B'Y(T,H*(N, k*)) = B"/(T, Z*(NV, k*) /B3(N, k*)) =

{f € Map(T x N? k*)|3g € Map(T x N, k*) and 3h € Map(N x N, k*) s.t.
f(0uh)™" = dyg and Syh = 1}

Now note that there is a homomorphism
Z*(kT,kN) — Z''(T, H*(N, k*))

given by
(a,B) — B,

which in turn induces a homomorphism

m: H2(KT, k) — H(T, H2(N, k*)).



Theorem 5.1.7 The sequence
H%(N, k*) & H2 (KT, kV) T H2(kT, k) S HY(T,H3(N, k*)).
is ezact.

Proof. It is apparent that 7® = 0 and obviously also w(H2) = 0. Hence
®(H2(N, k%)) + H2 (KT, kV) C ker 7.

Suppose (a,8) € Z*(kT, k") and B8 € B*(T,H*(NV,k*)). Then 3y € Map(T x
N,k*) and 3c € Z*(N, k*) s.t. B (c)™' = dn(7), but that means (o, 8) = (ne, S (c))*
(a,dn(7)) ~ (ne, 0 (c)) * (@du(y),ne). B

Corollary 5.1.8 If the orders of N and T are relatively prime, then H*(kT,kV) =
H2(kT, kN) ~ H2(N, k*)/H2(N, k*)T.

Proof. Note that if ged(|N|, |T|) = 1, then H2 (kT, k) = H*(T,H'(N, k*)) = 0 and
HY(T, H2(N, k*)) = 0. @

5.2 Examples

5.2.1 Dihedral groups

Let N x T be a dihedral group of order 2n, i.e. let N =C, = (u), T = C, = (z), and
let T act on N by z(u) = u~!. Remember that the isomorphism k*/k** = H2(C,, k*)
is defined by ak* — [c,], where a € k* and ¢, € Z%(C,, k*) is given by c,(u’,vw/) =
ol 4,5€{0,1,...,n—1}.

For a € k* define t, € Z}(N,k*) by

(W) b=l
(u') = .
a ;otherwise

Now note the
caz(Ca) = 8(ta) € BX(NV, K°).
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Hence if n is odd then H?(N, k*)T is trivial, since by Proposition 5.1.3 every coho-
mology class in H2(V, k*)7 has a representative of the form cz(c).

In case n is even, H?(N, k*)T will not be trivial. This is seen by observing that
ca(Ca) H(ts) = ca(ca) tca(ca) = €2 = Cp2.

Hence ¢, ~ z(c,) if and only if a® € k**. This happens when either a € k*% or

a € —k*%. Hence in case n is even
H3(NV, k)T = k* /"2 U ~k°%.

Combining the connecting homomorphism k*/k** ~ H2(N, k*) 2, H2(kT, k") and
the homomorphism HZ2(kT, k) < H2(kT, k") ~ Opext(kT, k) we now get a homo-
morphism

@' k*/k*™ — Opext(kV,kT) :

Define 8, = ®(c,) and abbreviate a; ; = B,(z) (v, v?), i.e.

Ba(z) (', ) = (caz(ca) ™) (', )

1 jt=0orj=0o0ri+j=n
-1

Qi j

a ;0<i;and0<jandi+j<n .

a in<t+7g
So
Bulz) = aip: ® 1),
]
where p; € k" denotes the characteristic function of u* € N, i.e. pi(vw?) = dij-

Now define C, to be a free & module, with basis {1,%}. We define multiplication
on C, by the rule

:&2 =1land i:pi =p—ii7

and comultiplication by the rule

Af: = Z a,-,jpi:i' X pjff.

2%
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This gives a Hopf algebra extension
(C): kN — C, — kT,

where the projection C, — kT is induced by & — z. Now define & ([a]) = [(C,)]. If
n is odd, then @’ is an isomorphism by Theorem 5.1.7
Remark. In case k has “few” n-th roots, Opext is "very big”. In particular if

k = Q, we get infinitely many of non isomorphic extensions.

5.2.2 The cyclic group of order 2 acting on G x G

Let G be a finite group, N = G x G and T = C, = (z), and let T act on N
by z(u,v) = (v,u), u,u € G. It follows from Theorem A.3.1 (Appendix) that
H?(N,k*) ~ H*(G,k*) x H*(G,k*) x P(G,G, k*). The comultiplication Hopf alge-
bra cocycle 8.,y € H2(kT, k") associated to (c,, f) is defined as follows:

‘BCvC',f(x; (u, 'U)’ (u,1 'U')) = c(u, v)c’(u', v')f(u, 'v,)c(ulv v')“lc'('u., 'U)—lf(vv ul)

= ﬁc/d.l.f(z; (uv U), (ulr ’U’)).

It depends on the quotient ¢/¢’ only and thus induces a homomorphism H?(G, k°*) x
P(G,G,k*) = H2(kT, kN). Direct computation shows, that P(G, G, k°) is invariant
under the action of T and that the action is given by z(f)(u,v) = f~(v,u). Using
this we can deduce that ker &' is contained in P(G, G, k*)T.

5.2.3 Example revisited

In case G is a cyclic group the example above becomes an example already mentioned
in [Kac] (if £ = C) and also in [Mal] (if &* = k*" ). So let G = C,,, more precisely
N = C, x C, = (u,v). Recall that H*(C,,k*) ~ k*/k*" and P(C,,C,,k*) = Q.,
where €, denotes the subgroup of n-th roots of unity in k®. Direct computation

shows

af — { {1} ;n odd

" {1,—-1} ;neven
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So in case n is an odd integer
H2(kT, kN) ~ k*/k*" x Q...

Now let us examine the homomorphism ®:k*/k*" x Q, — H2(kT, k") more

closely:
Bup(z)(uiv?  uFvt) = QUEFRIRI=LG+/n) pil—jk

If n is odd, ' is a monomorphism.

Now assume n is even. The following paragraph will show that ker® = 1 x
{-1,1}:
Define v € Reg(kT, kV), by the rule

(z;u'v?) = (—1)¥ and y(1y;u'v?) = 1.

We can routinely verify that y(z)y(zy)'z(v(y)) = L~ and hence dyy € B2(kT, k).

A simple computation also shows that
Sny(z; uhv? , ubot) = (1) = (—1)-4 B
Hence in case n is even
Bat ~ Batdy = Ba,—c-
The extensions associated with these cocycles are the following:
(Car): kY — Cop — kT
where C,, is a free k& module with basis {1, %}, with multiplication given by
=1
and comultiplication given by

. iy bbkg oo e .
AZ = E a1k, & @ prd,
i,5,k\0
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where p; ; € k" denotes a characteristic function of u'v’ € N.

Remark. The following paragraph will describe the explicit isomorphism between
extensions as above and the extensions described in [Mal]. Assume that n is odd.
For t € Q, define v, € Reg(kT, k") by the rule:

Ye(z; u'v?) =t ~,(1;u") = 1.
Let (o, Be) = ((Onv) L, 0u7y) € B2(KT, kN). A routine calculation shows
o (z, ) (u'v?) = t*7 and B,(z)(u'v?, uFt) = £k,
Let
(D,):kN — D, — kT

be an extension as in [Mal], i.e. D, is a free kN module with basis {1,%}, where

multiplication is given by
f:z = z tijpi,j,
5]
and comultiplication is given by
Az = )" t*pi ;& @ pist-
i'j'kil

We have shown above that (C),) ~ (D,-z2).

5.2.4 A noncommutative example

Let now G = Gi m,r as in A.3.7. The cohomology groups H?(Gy. m -, k®) are already
explicitly described in [Ta]. So the only ingredient missing is P(Gimr, Gr.mr k*).
First we need to calculate the abelianization of the group Gy

(Gempr)as = (u, v[u’c =y™ =1,vuv!

=u",uv = vu)
= (uvpuf =v™ =1, u=1u",uv =uv)
= (u,v[utE D = g™ = 1wy = wv)

(ufusd®r=l) = 1) x (vjp™ = 1)

= Cgcd(k,r——l) X Cm—
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If [ = ged(k, 7 — 1) and s = ged(k,m,r — 1) then
P(Gk,m.n Gk,m,r: k.) = Ql X Qs X Qs X Qms

where the paring f;, ¢ 15,6, corresponding to (£, t2, 3, £4) € € X Q, X Q, X Q,,, is given
by

Jertortans (W07, uPv?) = tPEFEIPERT.

While it is possible to describe this example in this generality we shall restrict our-
selves to the simpler case when ged(k, 7—1) = 1. In this case we have an isomorphism
P(Gk;m,rs Gkym,ry k®) = Qm, where the pairing f; € P(Gk,m,r, Gkmirs k*), corresponding
to t € O, is given by f.(u*v’,uPv?) = t/7. A Hopf algebra cocycle 8, ., € H3(kT, kV)
corresponding to a pair (fap, fi) € Z*(Grmr k®) X P(Gkmrs Gimry k*) is given by

Bapa(z; (Wv?, wPv?), (uf'v?', wP'u?))
= fap(u, 0 V) fop(wPod, uP v ) "I
for the definition of f,; consult Example A.3.8) and if m is odd then
( ' p
®": 3 (Grmr, k°) X Qe — H2(KT, EV),

induced by (a,b,t) = B. ., is a monomorphism (if m is even ker ¢’ = {—1,1} < Q).

If k is odd as well then &' is an isomorphism (and also H? ~ Opext).

5.3 Cocyclic forms

Let the finite group G be a direct product of subgroups N and T and let A be a
trivial ZG module. A classical result on Hochschild cohomology of finite groups tells
us that there is an isomorphism ¢: H*(G, A) = H2(N, A) & HX(T, A) ® P(N, T, A)
(appendix).

This generalizes to G being a direct product of any finite number of its subgroups.
Let G =[] N:.
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We will take a close look at the isomorphisms

b

H*(G, A) = [[H2 (., A) x [ P(V:, NV;, A).

L i<j

We shall denote the elements of
[1 3™ A) x [ P(v:, v;, A)
i i<j
by boldface letters. The subscript will denote the projection to the appropri-

ate component. Hence if u = (¢;)i; % (fij)i<i<j<n, Where ¢; € H2(NV;, A) and

fij € P(N;, Nj, A) then u;; = ¢; and u;; = f;;. We can view u as a matrix

a fiz .- fin
C ... fan

u= .
Cn

Note that ¢/(u) becomes a “quadratic form”, i.e. for column “vectors” g,h € G

we have ¥(u)(g, h) = gTuh, more precisely:

a fiz --- fin hy
G ... f2,n ho

w(u)(g7h) =(glag?.7>~'1gn)’ . . . . ;
Cn hn

in future we shall identify u and ¥(u).

More notation

A cocyclic form (described above) works as follows (also keep in mind that our abelian
group operation is written multiplicatively):

For maps f:G — K, XK xL — A, g:T — L, the map 8 = f-\- g shall
denote a “product” 3:G xT — A given by B(z,y) = A(f(z), g(y)). We shall identify
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f-A=f-A-idand A-g=id-A.g. Elements £ € K and y € L shall be identified
by maps 1 — K and 1 — L and thus zA = AM(z, ), Ay = A(-,y) and 2y = A\(z, y).
We shall say that a map A\: N x N — A has a matrix representation if there exists
a matrix A = (X;;)F2;, Aij:Gi x Gj — Asit.
Ax,y) =xTAy =[] Mij(ze, v5)-
L
We have seen above that every cocycle is cohomologous to one that has a matrix

representation. In fact there exists a canonical upper triangular matrix, we shall

denote it by

Qk = ‘t{’(’\)a

that has cocycle diagonal entries and whose strictly upper triangular entries are pair-
ings. The matrix is unique up to cohomology classes of its cocycle entries.
Moreover if we have a matrix form A of a cocycle A, it is easy to obtain its

triangularization Q, = (g; ;) in the following way:
Gii = Aig
%5 (Z0y;) = Nij(@e y)Nia(ys, z) ™ i < g
Remark. IfG is a finite abelian group, then we can write G = Cpy X ... X Cp,.
If k is algebraically closed (it suffices that (k*)'™(mt-mn) = k) then all cohomology
groups H2(Cy,,, k*) are trivial and for every cocycle \ € H?(G,k*) there exists a

unique strictly upper triangular matrix Q,, whose entries are pairings. Hence in this

case we are really dealing with a bilinear transformation.

Acting on cocyclic forms

Assume now that a group T acts on the group G and let f:G — G be a homomor-
phism. Then f has a matrix form F = (f;;):;, fij = ufn;: Nt — Nj, ie.

flx)=Fx= ([_I Foae(@) ke

Now F' acts on A via the action of f on A.
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Lemma 5.3.1
F(A) = FTAF.
Proof.
FQ)(x,y) = MFx, Fy) = (Fx)TA(Fy) = x"(FTAF)y.®
Proposition 5.3.2 If N\ =N, =...=N,=Hand f€S,,ie. Fisa permutation

matriz, then

(F(A)):,; = { Mgy @) < fG)

1 ; otherwise

Observe that S, acts on H?(H,k*)*" x P(H, H, k')"(g) via ¢ and 9, i.e. by
f(u) = ¢(f(¥(u))). We are able to describe this action more precisely:
Proposition 5.3.3 For f € S, the action

FrH2(H, k*)<™ x P(H, H,k*)*() — H2(H, k*)*" x P(H, H, k*)*G)
s given by
fer = s,

{ s,y 5 f(k) < f(0)

Wy 5 SR) > FQO)

where u is a cocyclic form (upper triangular matriz) corresponding to a cocycle in
HQ(G, k*) ~ Hz(H, k*)*" x P(H, H, k')x(;),

f(a)ry

Proof. The result above is a direct application of Lemma 5.3.1. B

Corollary 5.3.4 Subgroups H2(H, k*)*" and P(H, H, k*)*(3) of

H2(H,k*)*" x P(H, H, k‘)x(;) are invariant under the action of S,.

Corollary 5.3.5 If the action of T on the set N, = {1,2,...,n} is transi-

tive, then the T-invariant subgroup of H2(H,k*)*" is the diagonal subgroup, i.e.
(H2(H, k*)*™)T = {(c, ¢, ---,C)lc € H¥(G, A)}.

Corollary 5.3.6 If the action of T on the set N, is doubly transitive then
P(H, H,k*)* (2) has no T-invariant elements.
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5.3.1 Examples

Here we illustrate how the theory above could be used to produce a multitude of
examples of Hopf algebra extensions. Let R be a commutative ring. Write M, (R)
for the algebra of matrices with entries in R and let B = (R, +) be the additive group
of our ring. Then any group T < U(M,(R)) acts on N = B™ in the obvious way.
The machinery above then enables us to explicitly describe some extensions of the
form k¥ — X — kT.

In particular, if R = F, is a finite field of prime order, then B = (F,,+) =~
Cpy T C GL.(F,) and H2(N, k*) = H2(B, k*)" x P(B, B, k*)(3). If furthermore T
consists of permutation matrices and T acts doubly transitively, then we can explicitly
describe the following subgroup (k*/ (k‘)”)"‘l®9£g) < H2(kT, k), via the connecting

homomorphism .



Chapter 6

Epilogue

Here we list a few research topics that arose during the composition of this work.

1.

2.

5.

Generalize some results to non abelian matched pairs.

Describe a very general example of an abelian matched pair of Hopf algebras
(as general as possible, i.e. both actions non trivial, both Hopf algebra infinite
dimensional, neither of the actions locally finite, etc.) and apply the general
Kac sequence to compute the cohomology (hopefully also for algebras different

from the ground field, maybe even infinite dimensional).

. Find nice (workable) conditions for the properties of a matched pair (T, N, p, v),

that would force the local finiteness of 1.

- The interpretation of the second cohomology of a matched pair is rather artifi-

cial. It would be nice to find a more natural definition of compatible cleftness

or something that would replace that.

The matched pair conditions come from a distributive law. Can we find a
distributive law such that the compatibility of pairs of extensions would come
from it?

Find a cotriple, such that the cohomology of a matched pair comes directly

from it (i.e. without truncating a double complex).

82
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6. The universal measuring coalgebra M(B, A) is a rather mysterious object. If
A =k, then M(B, k) = B°, which can be described as a certain vector subspace
of B*. Can we do something similar for M(B, A). We conjecture, this is possible
in the case A = K is a finite field extension of k. How about a broader class of

algebras?

7. Suppose N is a commutative Hopf algebra. Then Section 4.2.2 describes a Hopf
algebra structure on M(N, N). There is also a bialgebra structure on M(N, N)
in which the multiplication comes from composition in Hom(N, N), [Sw2, GP].

Is it possible to compare the two structures?



Appendix A

Homological algebra

A.1 Simplicial homological algebra

"This is a collection of notions and results from simplicial homological algebra used in

the main text. The emphasis is on the cohomology of cosimplicial objects.

A.1.1 Simplicial and cosimplicial objects

Let A denote the simplicial category [Mc]. If A is a category then the functor category
AA% is the category of simplicial objects while A4 is the category of cosimplicial
objects in .A. Thus a simplicial object in A is given by a sequence of objects {X,}
together with, for each n > 0, face maps 9;: X,;1 — X, for 0 < i < n+1 and
degeneracies o; : X;;, — X,41 for 0 < j < n such that the equations
0;0; = 0;10; for i < j,
0:0; = gj410; for i < j,
0j—10;, ifi<y;
0ioj =4 1, fi=737+1
00,1, fi>j+1
are satisfied.

A cosimplicial object in A is a sequence of objects {X™} together with, for each

84
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n > 0, coface maps & : X™ — X"*+! for 0 < i < n+1 and degeneracies o7 : X"+ —
X™ such that
FO =8¢ fori < 7,
glo* = a'oI*! for i < 7,
dait, ifi<y;
g =1 1, ifi=j7+1;
O lod, ifi>j+1.

Two cosimplicial maps f,g : X — Y are homotopic if for each n > 0 there is a
family of maps {h’: X"*! — Y"|0 < i< n} in A such that

hOaO _ f; hrontt =g,

Ohi-, ifi<jg;
RO = ¢ hi-'g ifi=j+#0;
ORI, ifi>j+1,
i — { a‘:hj“., ifi <7j;
o thi, if i > .
Clearly, homotopy of cosimplicial maps is an equivalence relation.

For a cosimplicial object X in the abelian category A let N*(X) = N2 ker o* and
D™(X) = Y720 Im&. Then C(X) = N(X) @ D(X). Moreover, X/D(X) = N(X) is
a (normalized) cochain complex with differentials 8™ : X®/D™ — X"+!/D"+! and
m(X) = H*(N*(X)) is the sequence of cohomotopy objects of X.

Theorem A.1.1 (Cosimplicial Dold-Kan correspondence [We, 8.4.3]) If A

is an abelian category then
1. N: A% — Coch(A) is an equivalence and N(X) is a summand of C(X);
2. m(X) = H*(N(X)) = H*(C(X)).

3. If A has enough injectives, then =* = H*N:A® — Coch(A) and
H*C : A® — Coch(A) are the sequences of right derived functors
of ™ = HON: A2 — A and H°C: A®> — A, respectively.

The inverse equivalence K : Coch(.A) — A has a description, similar to that for
the simplicial case [We, 8.4.4].
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A.1.2 Cosimplicial bicomplexes

The category of cosimplicial bicomplexes in the abelian category A is the functor
category A4*4 = (44)4. In particular, in a cosimplicial bicomplex X = {X™} in

A

1. Horizontal and vertical cosimplicial identities are satisfied;

2. Horizontal and vertical cosimplicial operators commute.

The associated (unnormalized) cochain bicomplex C(X) with C(X)P? = XP9 has

horizontal differentials
p+1

dp =Y (~1)'0h: Xpq — XPHM

i=0
and vertical differentials
q+l1

d, = Z(-—l)”'{'jé},’;:Xp"' — XPatl

j=0
so that dnd, = d,ds. The normalized cochain bicomplex N (X ) is obtained from X by
taking the normalized cochain complex of each row and each column. It is a summand
of CX. The cosimplicial Dold-Kan theorem then says that H**(CX) = H**(NX) for
every cosimplicial bicomplex.

The diagonal diag: A — A x A induces the diagonalization functor Diag = 448 .
AAx& —, AA, where DiagP(X) = XP® with coface maps & = 9i9i: XPP — XP+lp+l
and codegeneracies 0/ = ojgd: XP+lP+l _, XPP for 0 <i < p+1and 0 < i <np,

respectively.

Theorem A.1.2 (The cosimplicial Eilenberg-Zilber Theorem) Let A be an

abelian category with enough injectives. There is a natural isomorphism
7*(DiagX) = H*(CDiag(X)) = H*(Tot(CX)).
Moreover, there is a convergent first quadrant cohomological spectral sequence

EPT=ni(XP*) , ERY=nPnl(X) = 17*(DiagX).
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Remark. The isomorphism in the theorem is induced by the cosimplicial version of

the Alexander-Whitney map.

A.2 Hochschild cohomology of algebras

All algebras and modules in this section are assumed to be over a fixed commutative
ring k.

Let R be a k algebra and M and R — R bimodule. We obtain a cosimplicial
k-module, with [n] — Hom(R®") by declaring

b (aof)(r(h "*:Tn) =7’0(f(7'[, --'1rn))7
* (aif)(Iqu»”zrn) =f('r01»>>1r'i7'i+ly—--,rn)’ O<i<n

o (anf)(r(): ey T’n) = f('f'o, .. >1rn—1)7'n

The Hochschild cohomology H*(R, M) of R with coefficients in M is defined
to be k-modules H*(R, M) = H*(Hom(R®*, M), 9).

A.3 Group cohomology

We compute group cohomology as H*(G, A) = H}oneenialZG, A). The standard
normalized (Hochschild) chain complex for computing group cohomology is given by
A — Map(G, A) — Map(G x G, A) — Map(G xG xG,A) — ...

where Map(G*™, A) denotes the abelian groups of all maps, that satisfy the condition
that f(g1,..-,9.) =1, whenever one of g; = 1.

A.3.1 Second cohomology of direct and semidirect products

of groups

If G; and G, are groups and A is an abelian group then P(Gy, G2, A) denotes the

abelian group of pairings G; x G2 — A (maps that are homomorphisms in both
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variables). It is easy to see that every pairing f: G, x G» — A is constant on each

equivalence class in G1/[Gy, G1] x G2/[G, G2]. So we can observe that
P(G1, G, A) = P(G1as, G2ab, A) ~ Hom(G a6 @7 Gaas, A).

In the above expression Hom means the abelian group of group homomorphisms and
Gab denotes the abelianization of G, i.e. G = G/[G, G]. In future we will abbreviate
G ® G2 = Grab @7 Gaab-

We use the following classical result which can be found for example in [Kar]:

Theorem A.3.1 Let A be an abelian group and G, and G, be finite groups. If the

direct product G1 X G acts trivialiy on A then there exists an isomorphism
¢Z H?'(Gl X GQ,A) = Hz(Gl,A) X HQ(GQ,A) X P(Gl,Gg, A).

The isomorphism ¢ is given by ¢(c) = (c1,c2, fe), where ¢ € Z2(Gy x Ga, A), ¢; =
resg,c, fori=1,2 and f, € P(Gy,Gs, A) is given by

fe(g1,92) = c(g1, 92)c(g2, 1) ™"
The inverse of this isomorphism i is given by
¥(er, c2, (9192, 9192) = c1(gr, 91)ex(g2, 92) f (g1, 92)
for gi, g € Gi; where ¢; € Z*(G, A) and f € P(G1,G,, A).
Remark: The isomorphism
H?(Gy x Ga, A) ~ H%(G}, A) x H%(G2, A) x P(Gy, Ga, A)
The following beautiful result is due to Tahara ([Ta]).

Theorem A.3.2 Let G be a group which acts trivially on an abelian group A and let
G be a semidirect product of a normal subgroup N and a subgroup T. Let H(G, A)

be the kernel of the restriction map

res: H'(G, A) — H(T, A).
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Let the cohomology groups
H'Y(T,H'(N, A)) and H?(H, HY(N, A))
be defined with respect to the action by conjugation of T on Hom(N, A). Then
1. H¥(G, A) ~ H*(G, A) x H2(H, A)
2. There is an ezact sequence

1 — HYH HY(N,A) — 3G, A) S H(W, AT —

%, H(H,H'(N, A)) — HB3(G, A).

Remark. The homomorphisms involved in the Tahara sequence are explicitly
described in [Ta].

Corollary A.3.3 Ifged(|T|,|N|) =1 then H?*(G, A) ~ H*(NV, A)T x H*(H, A).
We also need the following tool that was used to establish the above results:

Proposition A.3.4 ([Ta], Proposition 1.) Let G be the semidirect product of a
normal subgroup N and a subgroup T and let A be a commutative group and let G

act trivially on A.

1. Let f:G x G — A be a 2-cocycle on G. Then f can be normalized up to

coboundaries as follows:
f(N,T) =14,
and hence
| f(nt,n't') = f(t,t) f(t, n') f(n, t(n")),

where n,n’ € N and t,t' € T. We shall call such a 2-cocycle f a normal 2-
cocycle. Thus a normal 2-cocycle f on G is determined uniquely by flnxn,

flext, flrxn-



90

2. The data f|nxn, flrxr and flrxn determine a normal 2-cocycle on G if and
only if they satisfy the following conditions:
(a) f is a 2-cocycle on N,
(b) f is a 2-cocycle on T,
(c) f(#t',n) = f(t',n)f(t, ¢ (n)),
(d) f(n,n')f(t(n), t(r))~" = f(t,n) f(t,nn') 72 f(t,7),

wheren,n’ € N and t,t' € T.

A.3.2 Examples

Example A.3.5 If G, = C, = (z) then there is an isomorphism Q, —
P(G,G,k*), given by t — f,, where Q, is the group of n-th roots of unity in k*
and where fy(z*u,z7v) = tY fori,j € Z and u,v € [G,G). The inverse is given by

fr— flzx).

Example A.3.6 If G = C, = (z) then there is an isomorphism A/A™ — H?*(G, A),
given by a — c,, where a € A and ¢, € Z*(G, A) is the cocycle defined by c,(z*,27) =
at =, fori,j € {0,1,...n — 1}. The inverse of the isomorphism is given by c +—
c(z,z7Y), for c € Z3(G, A).

Remark. We can drop the condition i,j € {0,1,...n — 1} in the definition of c,
if we replace | £L| by L%’lj — & = L£].

Definition A.3.7 We adopt the notation of [Ta] for a semidirect product of two
cyclic groups, Gim == Ck < Cr,. That is

Grm = (u,v[uf =1,0™ =1, vuv~" = "),

where r™ = 1(mod k). In case the choice of r is not clear, we shall write Gy .
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In [Ta] the second cohomology of Gy, is described explicitly. We shall limit
ourselves to the particularly nice case when k and r — 1 are relatively prime (we also
assume that the semidirect product is not a direct product, i.e. r # 1). In this case

(A denotes an abelian group and Gy m - acts trivially on A) we have the following
description.
Example A.3.8

2 _ {(a,b) € Ax Ala™1 = 14}
H (Gk,m,r7 A) = {(Ck, cl“")lc S A}

A cocycle f, 4 that corresponds to (a,b) € A x A is given by

fap(ui,w?) = a0 <i i<k
fa,b(v,u) b’

more precisely:
fa,b(ui,vj’ ui'vjl) —_ aL(i'rj)/kJ bi'(ri _1)/(r—l)fa‘b ('U,i, 'U.ri')

where 0 < 4,9 <k, 0< 3,7/ <m.

A.4 Lie algebra cohomology

We compute the Lie algebra cohomology by H*(g, V) = H};,heernia(U€, V), where g

is a Lie algebra, Ug is its universal envelope and V is a g-module.

Proposition A.4.1 (Whitehead’s first and second lemma, [We]) Let g be a
semisimple Lie algebra over a field of characteristic 0. If M is any finite dimen-

sional g module, then the cohomology groups H(g, M) and H?(g, M) are trivial.
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