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Abstract

A major goal of transplantation research is to develop a specific immune
unresponsiveness to alloantigen. Oral administration of antigen prior to systemic
challenge has been demonstrated to suppress systemic immune responses, and this
antigen specific suppression is termed oral tolerance. This thesis assesses whether oral
tolerance can be used to prolong kidney allograft survival and investigates the
mechanisms by which this survival is prolonged.

It was found that oral administration of allogeneic splenocytes prior to kidney
allograft transplantation dramatically prolonged allograft survival in rats in an
allospecific manner. Preservation of structural elements could be observed in kidneys
transplanted into fed animals long after control transplants were destroyed. In mixed
lymphocytes reaction experiments, splenocytes from fed and kidney transplanted animals
exhibited increased, rather than decreased cell proliferation comparing to unfed control,
confirming that prolongation of the kidney allografts was not due to a masking of
allorecognition but to immunomodulation of the immune response.

To assess the immune response in the kidney allograft, graft infiltrating cells
(GIC) were isolated day-5 post transplant and extensively studied. It was found that
decreased numbers of GIC were present in the allografts taken from fed animals
compared to unfed controls. The decreased number of GIC is mirrored by a decreased
number of T cells, especially CD4+ T cells, in the GIC population. The number of CD8+
GIC T cells was similar in both fed animals and controls. To investigate whether CD8+
T cells were allo-active CTL, expression of killer mediators and CTL activity of CD8+
GIC were examined. These CD8+ GIC from fed animals transcribed substantial levels of
perforin, granzyme and FasL mRNA and exhibited higher allo-CTL activity than CD8+
GIC from control unfed recipients, suggesting the presence of mature allo-CTL in the
graft in fed animals. CD8+ GIC from fed animals also exhibited high levels of IL-4
mRNA, suggesting a Tc2 type regulatory cells. These data are consistent with a
hypothesis that CD8+ GIC are regulatory cells that mediate oral transplantation tolerance.
To confirm this, adoptive transfer experiments were performed. Prolongation of graft
survival could be transferred from rats orally exposed to alloantigen, to naive animals by
transfer of CD8+ GIC. These data confirm that intragraft CD8+ T cells are indeed
regulatory cells that mediate oral transplantation tolerance. In addition to GIC, it was
also demonstrated that regulatory cells are present in spleen and MLN by adoptive
transfer of cells from spleen and MLN.

These studies suggest that oral exposure to alloantigen induce the generation of
intragraft CD8+ regulatory cells which prolong allograft survival by shifting immune
responses toward to type 2 responses and/or by deleting alloreactive T lymphocytes
through Fas/FasL interaction.
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1.0 INTRODUCTION

Organ transplantation is the most effective therapy for organ failure and has been
widely applied in clinical medicine. However, transplants are recognized as foreign by the
recipient immune system and are rejected a short time after transplantation. To prevent graft
rejection, a variety of immunosuppressive drugs, such as cyclosporin, rapamycin and FK-
506, have been developed and are in wide use in clinical transplantation. Use of such drugs
significantly increases 1-year graft survival rates. However, these immunosuppressive
drugs non-specifically inhibit cell-mediated immunity, resulting in very significant side
effects, such as increased opportunistic infections and malignancy (Barry 1992, Shapiro et al
1990, Kusne et al 1991). In addition, the drugs exhibit significant organ cytotoxicity, most
commonly nephrotoxicity (Platz et al 1994, Barry 1992). Further, the available drugs do not
prevent late rejection events such that 10 year graft survival rates have not improved. Novel
adjuvant therapies are, therefore, required to induce immune specific unresponsiveness to
tissue antigens so that the transplanted organ is protected from rejection but the recipient is
not overly immune compromized.

This specific unresponsiveness is commonly seen as the “Holy Grail” of
transplantation immunology. In this thesis a strategy is explored to obtain this transplant
specific tolerance. The strategy is tested in the first chapter and a mechanism is investigated
in the second chapter.

Immune responses are designed to recognize and eliminate foreign but not self-
antigens. However, the immune system exhibits tight regulation of the response to soluble
protein antigens that gain access through the intestinal tract. The manner in which these

food antigens are processed in the gastrointestinal tract appears distinct from the process



elsewhere in the body. Such antigens generally do not elicit systemic protective immune
responses. It appears that a local humoral response precedes a systemic “unresponsiveness’.
This unresponsiveness is antigen specific and has been termed oral tolerance. Oral tolerance
is an important mechanism of immune regulation that prevents inappropriate immune
responses targeted toward non-harmful extrinsic antigens that are ingested through the
intestinal system (reviewed Mowat 1987). Because of the specific nature of oral tolerance,
researchers have investigated the effects of oral tolerance on ablating immune responses to
autoantigens that induce autoimmune disease. For example, experimental autoimmune
encephalomyelitis (EAE) is an animal model of the human autoimmune disease multiple
sclerosis (MS). MS is a disease in which the myelin sheath of nerves is attacked by immune
effector cells. EAE can be induced by injection of myelin basic protein (MBP), which
activates a cell-mediated immune response against the myelin sheath. Oral administration
of MBP prior to injection of MBP prevents this induction of EAE (Weiner et al 1994). The
protection provided against autoimmunity by oral administration of the autoantigen (Miller
et al 1991, Yoshino 1998) or autoantigen peptides (Gregerson et al 1993, Miller et al 1993)
prior to systemic immunization has been reported in other experimental models, such as
experimental autoimmune uveitis (Singh et al 1992, Wildner et al 1996), collagen-induced
arthritis (Yoshino 1998, Thorbecke et al 1998) and pristane-induced arthritis (Thompson et
al 1993). Because of the positive results obtained with oral tolerance in ameliorating
autoimmune disease in pre-clinical animal models, clinical trials to assess the feasibility of
oral tolerance in the reduction of human autoimmune disease have been initiated (Fukaura et
al 1996, Weiner 1997, Nussenblatt et al 1997).

Since oral administration of antigen can induce specific inmune suppression and the



clinical goal of transplantation tolerance research is to induce such specific inmune
unresponsiveness (towards allogeneic antigens), it is plausible to postulate that oral
tolerance could be used as an adjuvant therapy to induce transplantation tolerance.
Although the effect of oral tolerance has been extensively studied in the suppression of
autoimmune disease, the effect of oral tolerance on primary organ allograft rejection has not
been established. Further, the mechanisms responsible for oral tolerance are unclear. Some
workers (Sayegh et al 1992a, b) have reported that feeding allopeptides or allogeneic cells
resuited in a decreased recognition of alloantigen as measured by decreased mixed
lymphocyte reaction (MLR) in vitro. In addition, decreased delayed type hypersensitivity
(DTH) responses to alloantigen in vivo have been demonstrated (Sayegh et al 1992a, b).
Weiner and colleagues reported that oral administration of allogeneic splenocytes prevented
sensitisation by skin grafts and transformed accelerated (second set) rejection of cardiac
allografts to an acute (primary) response, typical of un-sensitized recipients (Hancock et al
1993, Sayegh et al 1992b). These findings suggest that oral tolerance may modulate
allograft rejection, but do not determine whether oral tolerance could be used to prevent
primary organ graft rejection. Nor do they provide convincing evidence as to the
mechanisms by which oral tolerance may affect the perception of, and response to,
alloantigens.

In this thesis, the effect of oral tolerance on kidney transplant survival is
investigated. The kidney was chosen as a model organ for a number of reasons. First,
kidney transplantation is the best long-term option to remedy kidney failure and, as such,
this model is directly relevant to clinical medicine. Second, kidney transplants can be

performed in such a manner as to be normally perfused with blood and be able to



function in a normal physiological manner (as opposed to animal models of skin or heart
transplantation). Third, the transplanted kidneys can be removed from the animals and
graft-infiltrating cells can be collected from it. It is the local response in the allograft
which is the focus of this research and thus the availability of graft infiltrating cells is
essential. In this thesis research, the influence of oral tolerance on kidney graft survival

is examined as well as the mechanisms by which this survival is influenced.



2.0 BACKGROUND

2.1 Mechanisms of Allograft Rejection

Grafts transplanted into genetically different individuals are recognized as
foreign, immune responses against the grafts are induced and organ failure results.
Depending on the genetic difference between the donor and recipient, grafts can be
classified as syngeneic, allogeneic or xenogeneic. Organs transplanted between
genetically identical or disparate individuals of the same species are termed syngrafis or
allografts, respectively. Syngeneic grafts are normally only used in pre-clinical animal
models but grafts between human identical twins, which have extremely high long term
success rates, are also classed as syngeneic grafts. Organs transplanted between different
species are termed xenografts (Auchincloss et al 1999).

Although humoral responses have been reported to be associated with allograft
rejection (Hancock et al 1998, Leprince et al 1999), cell mediated immune responses,
including DTH and CTL responses, are currently thought to be the predominant
mechanisms involved in acute allograft rejection (Hall 1991). This rejection is initiated
by T cell recognition of alloantigen, expansion of the alloreactive T cell population and
infiltration into the grafts of effector T cells and macrophages.

The recognition of alloantigen occurs by two distinct pathways: an indirect and a
direct pathway. Generally, recognition of foreign antigen by a CD4+ T cell requires that
peptides derived from the antigen be displayed in the cleft of a self class-II major
histocompatibility complex (MHC) molecule expressed on an antigen presenting cells
(APC). This recognition has long been described as self-MHC restricted. In this

classical form of T cell activation, T cells are able to recognize foreign peptides, derived



from the processing of infective particles or allogeneic molecules, expressed within the
groove of self-MHC class II (Gould and Auchincloss 1999). This manner of
allorecognition and activation is termed indirect recognition. However, in
transplantation, CD4+ and CD8+ T cells can both recognize alloantigen directly (foreign
MHC expressed by donor cells) without the requirement of processing and presentation
by self-APC (Auchincloss and Sultan 1996). This manner of allorecognition and
activation is termed direct allorecognition.

Both direct and indirect recognition have been suggested to play major roles in
allograft rejection. For example, depleting donor APC from kidney allografis protects the
allografts from rejection, whereas injection of donor APC back into the grafts restores
acute rejection (Lechler and Batchelor 1982). These data would suggest that acute
allograft rejection is dependent on donor APC, which may be recognized by recipient T
cells in a direct pathway. In contrast, in another experimental model, APC depleted
donor cardiac allografts were rejected in 2-3 weeks (Yin and Fathman 1995), suggesting
that donor APC are not necessarily required for allograft rejection, and indirect
recognition of alloantigen in the absence of donor APC is sufficient to initiate acute
rejection. However, when compared to control groups, where allografts were rejected in
about 7-9 days, the APC depleted grafts exhibited a delayed rejection. These data
suggest that the rejection induced by indirect recognition may be weaker and/or later than
that induced by direct recognition of alloantigen. Therefore, both direct and indirect
recognition are likely involved in graft rejection but at different times and perhaps with
different efficiencies. Direct recognition may be more effective than indirect recognition

in initiating early immune responses against alloantigens. Indirect recognition may play



a greater role in later graft rejection events, after most donor APC are eliminated.

Several experiments (Benichou et al 1996, Vella et al 1997, 1999) support this
hypothesis. The delayed rejection of allografts in animals where direct recognition has
been substantially reduced may be due to the time required for antigen uptake, processing
and presentation by self-APC. Moreover, the frequency of T cells directly recognizing
allogeneic MHC has been suggested to be 100-fold higher than that of T cells recognizing
specific antigen peptides in the context of self-MHC (Liu et al 1993).

In the direct pathway, after revascularization of the allograft, donor APC, mainly
dendritic cells, migrate from the graft to the spleen (Austyn and Larsen 1990), where host T
cells are activated by recognition of class I and class I MHC molecules expressed on the
donor APC. Following T cell activation, a variety of effector mechanisms participates in
allograft rejection (Hall 1991). Although both CD4+ and CD8+ T cells are activated during
allograft rejection (Austyn and Larsen 1990, Hall 1991), the relative importance of the two
subsets of T cells in the effector amm of allograft rejection remains controversial. Many
experiments have shown that prolonged allograft survival occurs in CD4-depleted (Newell
et al 1997, Morton et al 1993, Bushell et al 1995) or CD4-knockout animals (Krieger et al
1996, Hall 1991). For example, CD4+ T cells were found to be the predominant T cells
infiltrating grafts early after cardiac allograft transplantation (Bishop et al 1992). Depletion
of CD4+ T cells from recipient mice prior to transplantation resulted in prolongation of
allograft survival. In addition, skin and heart allografts have been demonstrated to be
permanently accepted in CD4 knockout mice, even though CD8+ T cells were present,
suggesting that CD4+, but not CD8+, T cells are required for allograft rejection (Krieger et

al 1996). Furthermore, reconstitution of CD4-KO mice with naive CD4+ T cells prior to



engraftment restored allograft rejection, confirming that CD4+ T cells are essential for
allograft rejection.

Since CD4+ T cells are critical for CD8+ T effector cell generation, the influence
of CD4+ T cells on graft rejection may be to provide help for generating CD8+ CTL.
CTL generation requires cytokines produced by CD4+ T cells. It has been shown, for
example, that depletion of CD4+ T cells from allograft recipients eliminated CD8+ T cell
infiltration of the graft (Bishop et al 1992). In addition, injection of rIL-2 into recipients
depleted of CD4+ T cells restored CD8+ T cell infiltration (Bishop et al 1993). However,
this treatment did not restore graft rejection (Bishop et al 1993). These data, and the
evidence that depletion of CD8+ T cells (or use of CD8 KO animals) did not protect
allografts from acute rejection (Bishop et al 1993, Gracie et al 1990, Bradley et al 1992,
Mannon et al 1995) suggest that mechanisms other than CD8+ CTL are involved in acute
rejection of solid organs. An alternate hypothesis is that CD8+ T cells and CD4+ T cells
co-operate in graft rejection and that the dependence of CD8+ CTL generation and
function on CD4+ T cell activity leads to a dependence on CD4+ T cell presence for graft
rejection to occur. Clearly, graft rejection can occur in the absence of CD8+ T cells but
this does not rule out a role for CD8+ CTL under normal condition nor does it rule out a
role for CTL even in the absence of CD8+ T cells. Alloreactive CD4+ CTL (Williams
and Engelhardt 1997, Yi et al 1999) and CD4-CD8- CTL (Dalloul et al 1996, Schilham et
al 1993) have been shown to be generated in the absence of CD8+ T cells and these CTL
may mediate allograft rejection.

Support for a role of CD8+ T cell involvement in graft rejection in fully immuno-

competent animals comes from the adoptive transfer experiments of Prowse and co-



workers (1983) where CD8+ T cells derived from animals previously sensitized with
alloantigen, induced allograft rejection when transferred into naive animals. In addition,
CDS8+ T cells have been implicated in the rejection of skin allografts in the absence of
CD4+ T cells (Rosenberg et al 1986). Further, in contrast to other work, He and
colleagues (1999) have recently demonstrated that depletion of CD8+ T cells by mAb

prolonged intestinal allograft survival in rats.

2.2 Immunomodulation

2.2.1 Type 1 and type 2 responses

a) Concept of Th1/Th2 paradigm

Using a panel of antigen specific murine CD4+ T cell clones, Mosmann and co-
workers (1986) observed that CD4+ T cells could be subdivided into two distinctive cell
types according to their patterns of cytokine production. The clones secreting IL-2 and
IFN-y were termed Th1 cells, while the clones secreting IL-4 were termed Th2 cells.
This distinctive pattern of cytokine production suggested to Mosmann and colleagues that
two functionally different subsets of T cells may exist in vivo and that these may exhibit
different effector functions. Subsequent work (Romagnani 1997, Constant and Bottomly
1997) showed that Thl cells also produce TNF, and that Th2 cells also produce IL-5, IL-
10, and IL-13.

Different functional roles for Thl and Th2 cells were first illustrated by
examining the help provided for B cell activity. In the presence of a supernatant obtained
from Th2 cell cultures, LPS-stimulated murine B cells showed enhanced Ig-E and IgG1

production. However, in the presence of a supernatant obtained from Thl cell cuitures,
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Ig-E and IgG1 production was undetectable, but instead, a significant amount of IgG2a
was found (Mosmann et al 1986). These data suggest that both Th1 and Th2 have effects
on the humoral response, but induce different isotypes. By reconstitution of nude mice or
lethally irradiated mice with antigen-specific Thl or Th2 clones, Rizzo and co-workers
(1995) confirmed the effect of Th1 and Th2 cells on isotype differentiation in vivo.

Different functional roles for Thl and Th2 cells were also demonstrated in cell-
mediated responses. By injection of relevant antigen into footpads, Cher and Mosmann
(1987) found that Thl clones, but not Th2 clones, induced DTH. Further evidence to
support the concept of Th1 mediating DTH responses came from extensive studies in a
Leishmania major infection model in mice. It had long been known that L. major was
efficiently cleared in resistant strains, such as C57BL/6 or CBA, but that this protozoan
parasite induced a fatal infection in susceptible strains, such as BALB/c. The inability to
efficiently clear the infection in susceptible strains was shown to be due to a decreased
cell-mediated immune response, as measured by DTH responses (Howard et al 1980).
To confirm the relationship of Th1 cells with DTH-like responses, Heinzel et al (1989)
examined IL-4 and IFN-y mRNA levels in the lymph nodes and spleens from BALB/c
and CS7BL/6 mice during the L. major infection. The presence of IL-4, and absence of
[FN-y, were observed in susceptible, but not in resistant, strains. Furthermore, treatment
of susceptible BALB/c mice with anti-IL-4 antibody or injection with [FN-y resulted in
resistance to infection (Sadick et al 1990). Transfer of Leishmania reactive Thl clones,
but not Th2 clones, was able to induce resistance in infected T cell deficient mice (Scott
et al 1987). In addition to suppressing DTH-like responses, IL-4 has also been

demonstrated to suppress antiviral CTL responses, resulting in delayed viral clearance
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(Sharma et al 1996). These data clearly demonstrate that Th1 cells mediate significant
cell mediated responses whereas Th2 cells suppress cell mediated responses.

Subsequent experimentation demonstrated that Th1 cells and Th2 cells exhibit
cross-regulation. Th2 cytokines, for example, ablate the activation of macrophages
mediated by the Th1 cytokine I[FN-y (Morel and Oriss 1998). In addition, Th2 cytokines
are able to inhibit Thl activities by down regulating Thl cell differentiation (Mosmann

and Moore 1991).

b) Th1/Th2 paradigm in allograft rejection and transplantation tolerance

Since Th1 cells are associated with enhancing cell-mediated immune responses,
and Th2 cells are associated with decreasing cell-mediated responses by down regulating
Th1 cells, it has been speculated that the balance between these cells may play an
important role in the development of immunity and immune tolerance. In transplantation,
acute allograft rejection is thought to be predominantly mediated by cell mediated
responses, including DTH and CTL activities (Hall 1991). Therefore acute rejection is
thought to be primarily a Th1 (or Type 1) immune response.

A large amount of evidence supports the position that Th1 cytokines are
associated with graft rejection (Gorczynski et al 1995, Dallman 1993) and that Th2
cytokines are associated with graft prolongation (Gorczynski et al 1994, 1995,
Ledingham et al 1996, Liwski et al 2000). A shift from Thl towards Th2 has been
demonstrated in a number of experimental models in which transplantation tolerance was
induced (Gorczynski et al 1995, Siegling et al 1994). For example, treatment with anti-

LFA-1 and anti-ICAM-1 mAb prolongs cardiac allograft survival (Xu et al 1997). This
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prolongation corresponds with a significant increase in IL-4 and [L-10 secreting cells, but
a decrease in IFN-y and IL-2 secreting cells, in the grafts. This data is correlative but
when anti-IL-4 or anti-IL-10 mAb were injected into these animals prolonged graft
survival was abrogated (Xu et al 1997). This confirms a role for Th2 cytokines in this
transplantation tolerance. Similar observations of a shift in the Th1/Th2 balance in the
induction and maintenance of transplantation tolerance were obtained from studies using
anti-CD4 mAb (Mottram et al 1995, Siegling et al 1994), anti-CD2 and anti-CD3 mAb
(Punch et al 1998), CTLA-4 Ig (Sayegh et al 1995), and portal vein inoculation of
allogeneic cells (Gorczyski et al 1994, 1998a,b). In all of these studies tolerance
induction was associated with a shift toward Th2 (or Type 2) cytokines.

Maeda and co-workers (1994a, b) demonstrated that injection of a foreign class [1
MHC-specific Th2 cell line that secreted IL-4 and IL-10 into naive mice markedly
delayed rejection of skin allograft bearing the specific foreign class [ MHC. This
delayed allograft rejection was associated with inhibition of induction of allo-specific
CTL activity, suggesting an important role of Th2 cells in preventing allograft rejection
through suppressing cell mediated immune responses.

There is, however, evidence that transplantation tolerance is not always associated
with immunomodulation towards type 2 responses. For example, a high frequency of IL-10
secreting CD4+ cells was found in rejecting, but not in nonrejecting, human kidney
allografts at biopsy (Merville et al 1995). In mice, administration of IL-10 exacerbated,
rather than prevented, cardiac allograft rejection (Qian et al 1996). However, IL-10 can be
secreted by both Thl and Th2 cells, as well as by macrophages. Thus an increase in [L-10

associated with graft rejection does not support or refute a Th1/Th2 bias. In contrast, the
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fact that induction of Th2 responses by IL-12 antagonists exacerbated cardiac allograft
rejection (Piccott et al 1996) suggests that type-2 responses could be involved in graft
rejection rather than tolerance. Less direct evidence, showing that high levels of IL-5 were
found associated with allograft rejection, supports this postulation (Martinez et al 1993a,b).
These data provide evidence that, in some cases at least, Th2 cytokines may not induce or
maintain transplantation tolerance. Allograft rejection is a complex process, which involves
T cells and other immune elements. Therefore, pathways downstream to T cell maturation
could be affected by cytokine activities. For example, IL-10 is known to inhibit [FN-y
secretion by T cells and macrophages, and to inhibit MHC class II expression on antigen
presenting cells, resulting in down regulation of cell-mediated responses (Moore et al 1993,
Groux et al 1996). However, IL-10 is also a growth factor for B cells, resulting in increased
antibody production. Although cell mediated immune responses are the predominant
mechanism of acute allograft rejection, humoral immune responses probably play some role
in graft rejection. Therefore, high levels of [L-10 may increase antibody production against
alloantigens, resulting in allograft rejection, rather than acceptance. In fact, anti-HLA
antibodies were found in patients who had rejecting allografts expressing significant levels
of IL-10 (Merville et al 1995). IL-5, another type-2 cytokine, has been found to recruit and
activate eosinophils (Sanderson et al 1988), which may contribute to graft rejection by
release of their toxic granule constituents (Martinez et al 1993 a, b, Kita et al 1992).
Therefore, elevation of IL-5 in grafts may result in eosinophil mediated rejection (Martinez
et al 1993b, Le Moine et al 1999). Taken together, these data suggest that association of the
Th1/Th2 balance, rather than observation of the presence of type 2 cytokines alone, may be

important in developing an understanding of the role of type 1 and type 2 immunity in the
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generation of transplantation tolerance.

Although it is generally believed that type 1 cytokines mediate acute allograft
rejection, recent data indicate that rejection can be induced in the absence of [FN-y (Saleem
et al 1996, Nagano et al 1997, Steiger et al 1998) or IL-2 (Dai et al 1998), suggesting that
the cytokines generally accepted as the most important type 1 cytokines are not essential for
allograft rejection. Type | cytokines have even been suggested to be involved in the
induction of transplantation tolerance. There is evidence that transplantation tolerance
cannot be established in the absence of IL-2 or [FN-y (Li et al 1998, Raisanen-Sokolowski et
al 1997, Konieczny et al 1998). For example, treatment of recipients with a tolerogeneic
protocol utilizing CTLA-4Ig and anti-CD40 mAb prolongs skin and cardiac allograft
survival in wild type mice but not in [FN-y KO mice (Konieczny et al 1998). In addition,
injection of anti IFN-y mAb into wild type allograft recipients during such tolerance
induction abrogated transplantation tolerance, indicating that [FN-y is required for tolerance
induction using this protocol (Konieczny et al 1998). The nature of the involvement of IFN-
¥ in this tolerance induction is unclear, but it has been suggested that [FN-y may act to limit

alloreactive T cell expansion, resulting in allograft acceptance (Konieczny et al 1998).

¢) The role of IL-4 in transplantation tolerance

[L-4 is believed to be the central factor in the development of type 2 immunity and
to play a critical role in transplantation tolerance (Mosmann and Sad 1996). For example,
enhanced IL-4 mRNA, or protein, has often been found in the spleen or grafts of tolerized
animals treated with anti-CD4 mAb (Takeuchi et al 1992, Mottram et al 1995), portal vein

inoculation of alloantigen (Gorczynski 1992, 1995), or parasite infection (Ledingham et al
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1996, Liwski et al 2000). In addition, anti-[L-4 mAb applied during tolerance induction
abrogates transplantation tolerance induced by anti-CD2 and anti-CD4 mAb treatment
(Punch et al 1998). Furthermore, long-term cardiac allograft survival induced by treatment
with anti-CD4 mAb (Sirak et al 1998) or anti-CD2 plus anti-CD3 treatment (Punch et ai
1998) cannot be established in [L-4 knockout mice.

IL-4 is also suggested to play a role in generation of regulatory cells. For example,
anti-CD4 mAb treatment prolongs cardiac (Kupiec-Weglinski et al 1993, Lehmann et al
1997) and renal (Siegling et al 1994, Lehmann et al 1997) allograft survival in rats. This
prolongation is mediated by regulatory T cells which are able to adoptively transfer
transplantation tolerance to naive engrafted recipients (Onodera et al 1996, 1997, Bushell et
al 1999). Neutralizing antibody against [L-4 used at the time of tolerance induction in the
primary recipient abrogated the ability to transfer tolerance indicating that [L-4 is critical for
generating regulatory cells at least in this form of transplantation tolerance (Bushell et al
1999). However, anti-IL-4 mAb given to the secondary recipient, at the time of the cell
transfer, did not abrogate the tolerance (Chen et al 1996). This suggests that [L-4 is not
required once the regulatory cells have been generated. Therefore, these data suggest that
[L-4 may play an important role in tolerance induction by driving the differentiation and
expansion of Th2 like cells. However, once the tolerance has been established, IL-4 is no
longer required.

In contrast to the work discussed above, there is also evidence that [L-4 is not
always necessary for the generation of transplantation tolerance. For example, acceptance
of cardiac allografts can be generated in [L-4 deficient mice by treatment with CTLA4Ig

(Lakkis et al 1997). IL-4 expression by cardiac allografts (from IL-4 transgenic donors)
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does not protect the grafts against rejection (Mueller et al 1997, Ritter et al 1999). However,
the role of IL-4 is still unclear since there is evidence that expression of IL-4 by cardiac
allografts prolongs graft survival (Takeuchi et al 1997). These studies reflect a differential
requirement for IL-4 in tolerance induction in different experimental regimes that may be
influenced by a variety of factors including the treatment regimes and genetic background of
the animals used. In addition, in some situations other cytokines, such as IL-13, may
substitute for the absence of IL-4.

[L-4 has been suggested to suppress DTH responses (Sirak et al 1998), inhibit CTL
activity (Meada et al 1994) and down-regulate Th1 cytokine production (Punch et al 1998,
Davies et al 1996, Takeuchi et al 1997). All of these would have a negative effect on
transplant rejection. However, [L-4 has also been demonstrated to promote CD8+ CTL
generation in response to alloantigen (Spits et al 1988, Bertagnolli 1991, Widmer and
Grabstein 1987, Villacres and Bergmann 1999). Thus the role of IL-4 in the establishment

of transplantation tolerance is likely to be complex and multifactoral and depend on the

manner of tolerance induction.

d) Tcl and Tc2

Recently, it was found that CD8+ T cells, often referred to as T cytotoxic (Tc)
cells, selectively secrete distinct cytokines. This has been observed in both humans
(Halverson et al 1997) and rodents (Li et al 1997). For example, progression toward
frank AIDS in HIV infected individuals is often associated with a shift toward Th2 type
cytokine secretion in the remaining T cells. These Th2 type cytokines, including [L-4,

IL-5 and IL-6, are derived from CD8+ T cells (Paganelli et al 1995). In addition, IL-5
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secreting CD8+ T cells are found to be associated with the airway eosinophilia that is
believed to be the central event in pathogenesis of asthma (Colye et al 19953, b, 1996,
Schwarze et al 1999). In in vitro experiments, naive CD8+ T cells can be induced to
differentiate into Th1 or Th2-like phenotypes in the presence of IL-2 (or [FN-y) or IL-4,
respectively (Colye et al 1995b). These cytokine secreting CD8+ Tc cells have been
classified as Tcl and Tc2 depending on the pattern of cytokine secretion. Tcl cells
secrete [L-2 and [FN-y; whereas Tc2 cells produce IL-4, IL-5 and IL-10 (Halverson et al
1997, Li et al 1997).

It is somewhat controversial whether the cytokine secreting CD8+ T cells maintain
their cytotoxic activity and are able to effectively kill their targets. Some workers have
demonstrated that they remain cytotoxic (Li et al 1997, Noble et al 1998), but others (Erard
et al 1993) have found that they lose their cytotoxicity. The progression of AIDS has been
linked to the loss of such CD8+ T cell cytotoxic activities (Switzerland 1994). Most
evidence, however, suggests that Tc1 cells appear to be much more efficient CTL than Tc2
cells (Matesic et al 1998, Cerwenka et al 1999, Dobrzanski et al 1999). However, there is
some evidence that, in some models, both Tc1 and Tc2 retain equal CTL activity (Fowler et
al 1998).

Tc2 cells help B cells to proliferate and produce antibody (Cronin et al 1995,
Paganelli et al 1995). Tc2 cells have also been suggested to down regulate cytolytic
responses by increasing type 2 responses and concomitantly decreasing CTL activity
(Erard et al 1993, Kanagawa et al 1993, Actor et al 1993). This has been shown to result
in delayed virus clearance and more rapid disease progression. Recently, Fowler and

colleagues (1998) demonstrated that Tc2, but not Tcl, cells prevent bone marrow
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allograft rejection, even though both Tc1 and Tc2 exhibited similar CTL activity to
alloantigen in vitro. These data suggest that Tc2 cells have a modulatory effect on
immune responses and may play an important, previously unrecognized role in

transplantation tolerance.

2.2.2 Fas/FasL interaction

a) Concept of Fas/FasL interaction

As part of the normal immune response immune regulation must occur. After
initial activation and amplification, regulatory mechanisms must be in place to dampen
down the response after antigenic challenge has been eliminated. Defects in this down
regulation result in disorders of the immune system such as lymphoproliferative and/or
autoimmune diseases. It is generally believed that the engagement of FasL on killer cells
with cell bound Fas on the target cells plays a critical role in eliminating lymphocytes and
maintaining normal homeostasis in the immune system.

Fas was originally described as a transmembrane protein that, when engaged by
its ligand, can induce apoptotic cell death of transformed cells (Trauth et al 1989). Fas is
constitutively expressed on resting T cells and is upregulated following cell activation
(Krammer 1999). FasL is a transmembrane protein that can induce cell apoptosis in other
cells by binding to membrane bound Fas on the target cells (Nagata and Suda 1995).
Under normal conditions, resting T cells do not express FasL constitutively. However, it
is rapidly upregulated following T cell activation (reviewed by Lynch et al. 1995).

A number of elegant experiments have demonstrated that Fas/FasL interactions
are critical to the normal regulation of the T cell response. For example, although

activation of primary T cells in vitro (by engagement of TCR/CD3) results in cell
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proliferation and cytokine production, similar treatment of previously activated T cells
leads to apoptotic cell death, termed activation induced cell death (AICD) (Kabelitz, et al.
1993). In contrast, previously activated T cells from Fas deficient mice (/pr) or FasL
deficient mice (g/d) do not undergo apoptosis after restimulation, confirming that
Fas/FasL interaction is important in AICD (Bossu et al 1993, Russell et al 1995). Further
experimentation showed that AICD could be blocked by antagonists of Fas, such as
soluble Fas and a Fas-Fc fusion protein (Alderson et al 1995, Dhein et al 1995).

Since both /pr and g/d mice exhibit lymphoproliferation and autoimmune disease
(Cohen and Eisenberg 1991, Suda and Nagata 1997), and express defects in AICD, a link
has been proposed between this phenomenon which includes a role of Fas/FasL
interaction in the maintenance of normal immune homeostasis. However, the nature of
this role is still controversial. In in vitro experimentation, Piazza and coworkers (1997)
demonstrated that activated human CD4+ and CD8+ T cells expressed similar levels of
Fas and FasL and exhibited similar sensitivity to anti-Fas mAb mediated apoptosis.
However, after restimulation, CD4+ T cells killed CD8+ T cells and Fas-sensitive human
Jurkat cells, but not CD4+ cells. These data indicated that activated CD4+ T cells were
able to induce AICD of CD8+, but not CD4+ T cells. The fact that this killing was
inhibited by cyclosporine treatment, which inhibits FasL expression on CD4 cells,
suggested to Piazza and coworkers that this cell death was mediated through the Fas/FasL
interaction. Since cyclosporine is not a specific inhibitor of Fas/FasL interaction, these
experiments cannot rule out the effect of other apoptotic factors, such as TNF, on AICD

induction (Zheng et al 1995). In addition, since cyclosporine inhibits T cell activation, it
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may directly inhibit AICD by inhibiting T cell activation without involvement of
Fas/FasL interaction.

There is also evidence that activated CD8+ T cells are able to induce AICD of
CD4+ T cells. Indeed, it would be surprising if they could not since FasL was originally
identified on a CD8+ T cell CTL hybridoma that kills target cells in a Ca++-independent,
Fas-dependent fashion (Rouvier et al. 1993). Further, CD8+ CTL are well known to kill
target cells by Fas/FasL pathways (Henkart 1999). This regulation of the CD4+ T cell
population has been amply demonstrated in CD8+ T cell deficient (B2m-/-) and MRL/lpr
mice. Noble and coworkers (1998) demonstrated that the superantigen SEA

(staphylococcal enterotoxin A), specific to VB3 bearing CD4+ T cells, causes the loss of

these cells in wild type mice but not in B2m-/- or Ipr mice. This demonstrates that the
elimination of activated CD4+ T cells requires the presence of CD8+ T cells and Fas.
Further evidence of this interaction comes from studies with VB3 transgenic mice, which,
for obvious reasons, are hyper-responsive to superantigen SEA. In these mice, cell
proliferation of CD4+ T cells was significantly suppressed by activated CD8+ T cells
after restimulation. This suppression was blocked by Fas Ig fusion protein, suggesting
Fas dependent suppression (Noble et al 1998). Interestingly, the injection of SEA into
these transgenic mice induced a greater increase of cell surface expression of FasL on
CD8+ T cells than on CD4+ T cells, and an enhanced cytolytic activity of CD8+ T cells.
The preferential expression of FasL on activated CD8+ T cells is consistent with CD8+ T
cells limiting immune responses by induction of CD4+ T cell apoptosis through Fas/FasL

interaction.
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One could argue that since both CD4+ T cells and CD8+ T cells express equal
levels of Fas, they should be equally sensitive to Fas/FasL mediated elimination.
However, it has been demonstrated that anti-Fas mAb suppresses CD4+ T cell
proliferation, but enhances CD8+ T cell proliferation (Noble et al 1998). These data
suggest that the responses to Fas activation by CD4+ and CD8+ T cells are different.
CD4+ T cells may be much more susceptible to Fas induced AICD. Inherent resistance
of CD8+ T cells to Fas-mediated cell death may provide a regulatory mechanism that
prevents the suicide of individual CD8+ T cells and allows the development of effective
Fas/FasL interaction that suppresses CD4+ T cell expansion by CD8+ T cell regulation.
The elimination of CD8+ T cells in late stage immune responses may be TNF mediated,
rather than Fas mediated, since CD8+ T cells are very susceptible to AICD through TNF-
dependent pathways (Noble et al. 1998)

There are interesting differences between the results of Piazza (1997) and Noble
(1998) described above. It is worth remembering that Piazza and colleagues activated
their T cells with anti-CD3 mAb or PMA plus ionomycin in vitro. This stimulates T cells
without TCR recognition of antigen. Noble and colleagues, in contrast, activated their T
cells with superantigen in vivo. This engages the TCR directly through engagement of
VB3. The requirement of TCR engagement for activation of the FasL lytic system has
been previously demonstrated (Lowin et al. 1995). Interestingly, both experiments
(Piazza et al 1997, Noble et al 1998) demonstrated specificity in the induced killing,
indicating that a mechanism of cell recognition must be involved in Fas/FasL induced

apoptosis.
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Antigen presenting cells, such as dendritic cells (DC) (Suss and Shortman 1996)
and macrophages (Zhang et al. 1999, 2000), have also been suggested to be involved in
the elimination of activated T cells by Fas/FasL interactions. It was found that two
subpopulations of DC cells, one bearing CD8 and the other lacking CDS8, are present in
murine lymphoid organs (Suss and Shortman 1996). CD8- DC can efficiently stimulate
alloreactive CD4+ T cells to proliferate, whereas CD8+ DC are less able to induce such
CD4+ T cell proliferation. This appears to be due to the induction of apoptosis of CD4+
T cells in the presence of CD8+ DC (Suss and Shortman 1996). The apoptosis of CD4+
T cells, induced by CD8+ DC, is dependent on Fas/FasL interaction since the effect was
not observed when CD4+ T cells were isolated from /pr mice (Fas-), or when DC were
isolated from g/d mice (FasL-). In support of this observation, high levels of FasL were
found on CD8+DC, but not on CD8- DC (Suss and Shortman 1996). These data suggest
that CD8+DC have the ability to eliminate activated CD4+ T cells, and may efficiently
terminate ongoing immune responses.

Since CD4+ helper T cells play a critical role in immune responses by providing
help to other cells, such as CD8+ T cells and B cells, by cytokine secretion and cell-cell
interaction, the elimination of activated CD4+ T cells is an efficient pathway to terminate
the immune response after resolution of antigen challenge.

Although there is a large amount of evidence to suggest that signal transduction
through Fas induces cell apoptosis, it has also been reported that some cells are resistant
to Fas mediated apoptosis (Zhang et al 1996, Jenkins et al 1999). The mechanisms
involved in resistance to Fas induced apoptosis on lymphocytes are unclear. Down

regulation of expression of Fas is as likely a protective event as is upregulation of
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proteins such as Bcl-2 or death-effector-domain-containing proteins, which block the
transmission of death signals (Tschopp et al 1998, Algeciras-Schimnich et al 1999). Bcl-
2 is well known to be able to prevent cells from apoptosis and prolong cell survival time
(Perlman et al 2000). However, its role in rescuing T cells from Fas mediated apoptosis
is still controversial (Parijs et al 1998, Chiu et al 1995, Schroter et al 1995).

Taken together, these data suggest that the expression of Fas and FasL are
important in maintaining normal homeostasis of the immune system. It follows that
modification of this interaction could lead to a major shift in the regulatory pathways that
define these responses. It has been speculated that just such a modification is the core

element in the maintenance of immunoprivileged sites.

b) Effects of Fas/FasL interaction on immune privilege

It is well known that certain areas of the body are more permissive to allografts
than others. These sites display the unusual characteristic that only limited immune
reactions are initiated in response to alloantigen challenge. Sites, such as the ovary,
testis, placenta and eye, appear to be exempt from immune responses and are thus
referred to as immunoprivileged sites. The most extensively studied of these sites are the
eye and the testis (reviewed by Griffith and Ferguson 1997).

The best demonstration of immune privilege in the eye is the remarkable success
of corneal allografts in the absence of tissue matching and immunosuppressive therapy
(Griffith and Ferguson 1997). The mechanisms of immune privilege in the eye are very
complex, including the lack of lymphatic drainage and the presence of the blood-ocular

barrier (Streilein et al 1995), local production of immunosuppressive cytokines, such as



24

TGF-B and IL-10 (D’Orazio and Niederkorn 1998), and limited MHC expression
(Niederkom 1999). In addition to these factors, however, FasL expression on the cells of
eye tissue has been shown to be an important mechanism in protecting corneal allografts
from rejection. Stuart and coworkers (1997) demonstrated that human corneas both
express functional FasL and are capable of killing Fas bearing lymphoid cells. Rejection
of corneal allografts from g/d (FasL-) donor mice was much more vigorous than was
rejection of corneal allografts from wild-type (FasL+) donors. Grafts from wild-type
donors contained apoptotic mononuclear cells indicating the induction of apoptosis of
infiltrating cells by the grafts, whereas rejecting FasL- grafts contained numerous
inflammatory cells without sign of apoptosis (Stuart et al 1997, Yamagami et al 1997).
These data suggest that FasL expression on the corneal graft cells plays a critical role in
protection of such grafts from rejection by inducing apoptosis of infiltrating cells through
the interaction with surface Fas on recipient infiltrating leukocytes, presumably
alloreactive T cells.

The effect of FasL expression on graft protection was also observed on testis
transplantation using g/d or wild-type mice as organ donors (Bellgrau et al 1995).
Similar to comeal allografts, the indefinite survival of testis allografts from wild type
mice was due to apoptosis of infiltrating cells induced by the interaction of FasL on testis
cells with Fas expressed on alloreactive T cells (Bellgrau et al 1995). These data suggest
that FasL expression on donor tissue prevents allograft rejection by eliminating
alloreactive T cells through Fas/FasL interaction, therefore down regulating the immune

response to the allograft.
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¢) The effects of Fas/FasL interaction on allograft rejection

CTL mediated graft damage has been shown to be associated with granzyme and
perforin release from CTL (Henkart 1999). Recently, the interaction of FasL on
alloreactive cells with Fas on donor cells has also been reported to contribute to allograft
rejection (Josien et al. 1998, Matsuno et al. 1998, Wang et al. 1997, Sharma et al. 1996).
However, the role of Fas/FasL interactions in graft rejection remains controversial.

It has been reported that Fas protein (and mRNA for Fas) is expressed in cardiac
and kidney allografts regardless of whether they undergo acute rejection or not.
However, the expression of FasL was greatly upregulated during rejection (at 5-9 days
posttransplantation), but was less so in non-rejected grafts (Josien et al. 1998, Matsuno et
al. 1998, Wang et al. 1997, Sharma et al. 1996). The increased FasL expression was seen
on graft infiltrating cells (GIC), and was closely correlated with the level of apoptosis
detected by the TUNEL technique (Josien et al 1998), and the histologic score of acute
rejection (Sharma et al. 1996). From this, it was suggested that FasL mediated apoptosis
in the graft is involved in acute allograft rejection (Josien et al. 1998, Matsuno et al.
1998, Wang et al. 1997, Sharma et al. 1996).

Other studies have demonstrated that although Fas/FasL interaction may play a
role in graft rejection, this role is not essential for rejection. Selvaggi and coworkers
(1996) demonstrated that skin allografts transplanted into gld (FasL-) recipients were
rejected in a similar manner to grafts transplanted into wild-type mice. Further, the
survival of grafts from /pr (Fas-) donors was not prolonged in wild-type or g/d mice,
indicating that the Fas/FasL pathway is not required for skin graft rejection. Similar

observations were obtained with cardiac allografts (Larsen et al 1995). However, these
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data must be interpreted with caution because experiments performed on genetically
modified animals may provide misleading results. For example, the genetic depletion of
FasL expression in g/d mice may induce a compensatory mechanism to substitute for the
lack of the FasL induced immune response. This would result in an unchanged immune

outcome but not necessary reflect the normal role of FasL in wild-type mice.

2.3 Oral Tolerance

The immune system is designed to recognize and eliminate “foreign™ antigen
challenge. The gastrointestinal (GI) tract is a major site of antigenic challenge to the
body, where the immune system is continually exposed to a variety of foreign antigens,
including antigens from dietary elements, commensal bacteria and a variety of pathogens.
The GI tract employs a complex mechanism to counter the threat of pathogens while at
the same time limiting the response to “non hazardous” dietary elements (Mowat 1987).
Breakdown of this complex regulation results in food hypersensitivities such as coeliac
disease (review Mowat 1987). To maintain this regulation, soluble food antigens
absorbed from GI tract must be processed in such a manner as to generate suppressed
immune responses to subsequent exposure. This suppressed (or depressed) immune
response following soluble antigen exposure via the GI tract is termed oral tolerance. A
well-described example is that of feeding the soluble protein ovalbumin (OVA). This
results in almost complete suppression of anti-OV A responses, including cell
proliferation, antibody production and DTH responses, upon subsequent exposure to this

antigen (see, for example, Garside et al 1995).
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2.3.1 Mechanisms of oral tolerance

Although oral tolerance has been observed for many years and has been studied
extensively, the exact mechanisms for the induction and maintenance of this complex
phenomenon are still controversial, and incompletely elucidated. A number of different
mechanisms have been implicated. These can be divided into two principal groups: active
suppression (or active modulation) and direct inactivation of responding lymphocytes
(anergy/deletion) (Garside and Mowat 1997). The first mechanism refers to active
suppression of responding lymphocytes by antigen-reactive regulatory cells. The secondary
mechanism refers to the deletion, or rendering functionally inactive (anergy) of the
responding lymphocytes as a direct consequence of antigen perception. Uncovering the
complex mechanisms of oral tolerance is complicated by a myriad of factors such as the
dosage and timing of antigen administration (Friedman and Weiner 1994). For example,
feeding high doses of antigen has been suggested to provide a strong TCR signal to T cells
and induce anergy or apoptosis of antigen specific cells (Whitacre et al 1991, Chen et al
1995, Gregerson et al 1993). In contrast, feeding multiple low doses of antigen has been
suggested to generate active suppression by inducing regulatory T cells, including both CD8
and CD4+ T cells (Ke and Kapp 1996, Miller et al 1992, Lider et al 1989, Chen et al 1994,
1995).

The basis of active suppression depends on inhibitory cytokines produced by
regulatory T cells following antigen specific activation (Faria and Weiner 1999). These are
suggested to be critical in mediating immune suppression induced by multiple low dose
feeding (Faria and Weiner 1999, Strober et al 1998). A variety of these regulatory cells

have been suggested, including TGF-f secreting CD8+ T cells (Miller et al 1991, 1992,
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Blank et al 1998); IL-4 and IL-10 producing Th2 cells (Chen et al 1994); and IL-4 and TGF-
B secreting Th3 cells (Chen et al 1994).

Although both B cells and T cells can be tolerized following oral administration
of antigens, it is generally believed that the role of the T cell in oral tolerance is
paramount (Garside and Mowat 1997) and this would be especially so in oral

transplantation tolerance.

a) Active suppression

Many studies demonstrate that oral administration of antigen generates regulatory
T cells (Santos et al 1994, Lider et al 1989). These regulatory T cells from tolerized
animals are able to actively suppress antigen specific antibody production and antigen
primed T cell proliferation in a co-culture system (Miller et al 1991, 1992), and also, and
very importantly, transfer tolerance to naive recipients by cell transfer (Santos et al
1994). Both CD8+ (Blank et al 1998, Ke and Kapp 1996, Lider et al 1989) and CD4+
(Chen et al 1994, Barone et al 1995) T cells have been implicated in this regulatory

response.

b) CD8+ T cells

Early studies implicated CD8+ regulatory cells in the tolerance that results from oral
administration of antigen. Oral administration of myelin basic protein (MBP) prior to
systemic immunization with MBP protects rats from the development of experimental
autoimmune encephalomyelitis (EAE) (Lider et al 1989, Miller et al 1993, Whitacre et al

1991). The protection can be adoptively transferred from tolerized rats to naive recipients
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with mesenteric lymph node (MLN) or spleen cells from tolerized animals but this transfer
is ineffective if the cell population is depleted of CD8+ T cells (but not if it is depleted of
CD4+ T cells) (Lider et al 1989, Miller et al 1991, 1992). In vitro, CD8+ T cells from
tolerized animals were able to suppress anti-MBP antibody production and lymphocyte
proliferation of MBP specific T cells (Lider et al 1989), suggesting that CD8+ T cells
exhibit active suppression. In addition, suppression of the DTH response to MBP following
oral administration of this antigen, could be transferred by adoptive transfer of CD8+ T cells
from tolerized animals (Miller et al 1992). Similar observations that CD8+ regulatory T
cells prevent the induction of autoimmune diseases, (including collagen induced arthritis,
Thorbecke et al 1998; and B2-glycoprotein induced experimental antiphospholipid
syndrome, Blank et al 1998), following oral administration of autoantigens were also
reported. In an antiphospholipid syndrome model, CD8+ T cells from tolerized animals not
only suppressed primed lymphocyte proliferation, but also suppressed antigen primed CTL
activity when co-cultured with antigen primed lymphocytes (Blank et al 1998). Taken
together, these data suggest that oral administration of autoantigens generates CD8+
regulatory T cells which are able to suppress both humoral and cell mediated responses in
vitro and inhibit the development of autoimmune diseases in vivo.

Miller and colleagues (1991), working in the EAE model (with MBP) and using a
transwell system, demonstrated that the in vitro suppression seen with isolated CD8+
regulatory T cells derived from the spleens of tolerized animals was mediated by a soluble
factor rather than cell-cell contact. The evidence provided by Miller and colleagues (1992)

implicated TGF-P since splenocytes isolated from MBP fed animals produced large

amounts of TGF-$ in vitro in the presence of MBP, and anti-TGF-$ mAb applied in culture
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abrogated the suppression of antigen-primed lymphocyte proliferation and antibody
production. In addition, TGF-f injection into animals during the induction of tolerance
enhanced the tolerance (Thorbecke et al 1999). In contrast, anti-TGF-f3 mAb injection
abrogated the oral tolerance induced protection from EAE (Miller et al 1992). A similar
result was found in the antiphospholipid syndrome model (Blank et al 1998). The oral
tolerance in the experiments described above was induced by low dose feeding and
mediated by CD8+ regulatory T cells. Such data suggest that active suppression induced by
low dose feeding is TGF-P mediated. Recently, however, induction of oral tolerance by low
dose feeding was demonstrated in TGF-p1 null mice (Barone et al 1998), suggesting that
mechanisms other than TGF-$ may be involved in low dose induced active suppression.

Since CD8+ T cells have been generally described as cytotoxic lymphocytes, the
cytotoxic potential of CD8+ regulatory T cells generated by oral tolerance is of considerable
interest. In the experimental model of feeding B2-glycoprotein to prevent induction of
antiphospholipid syndrome described above (Blank et al 1998), the CD8+ regulatory T cells
demonstrated were antigen specific and MHC class I restricted, but they did not exhibit CTL
activity against f2GPI bearing target in a conventional CTL assay. This indicates that oral
administration of B2-glycoprotein did not activate CTL precursors (Blank et al 1998).

In an OVA model of oral tolerance, it has been observed that MHC class I restricted
CTL activity was significantly suppressed in orally tolerized mice (Garside et al 1995). Itis
suggested that CD8+ suppressor cells generated by feeding low dose OVA are
distinguishable from conventional CTL by their expression of a detectable (by mAb)
carbohydrate epitope (Ke and Kapp_1996). Such CD8+ suppressor cells do not exhibit CTL

activity, but suppress OVA primed CTL (Ke and Kapp 1996). Of significant interest,
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several experiments suggest that the CD8+ regulatory T cells mediating oral tolerance are y5
T cells. Both transfer and depletion experiments support this hypothesis (Ke et al 1997,
Wildner et al 1996).

As described above, CD8+ regulatory cells generated by oral administration of
antigens are able to suppress immune responses in an antigen specific manner, and this
suppression is mainly cytokine mediated. In contrast to this antigen specific effect, CD8+ T
cells have also been reported to induce bystander suppression. In this case, CD8+ T cells
activated by an initial tolerizing antigen suppress immune responses to another antigen in an
antigen nonspecific manner. This bystander suppression appears to be triggered by specific
antigen but the effect is mediated by cytokines (TGF-f; Miller et al 1991, 1993, Weiner et al
1994) which act in a nonspecific manner. The evidence for this bystander suppression
comes primarily from EAE models. In these experiments, CD8+ T cells isolated from
MBP-fed animals not only specifically suppressed MBP-specific T cell proliferation, but
also nonspecifically suppressed OV A-specific T cell proliferation if both MBP and OVA
were present in the culture (Miller et al 1991). This in vitro bystander suppression was
abrogated with anti-TGF-B mAb (Miller et al 1992). The same group also demonstrated
bystander suppression in vivo by suppressing DTH responses and inhibiting EAE
development, and this suppression could be transferred with CD8+ T cells from tolerized
animals to naive animals (Miller et al 1991, 1993).

Although many studies indicate that CD8+ T cells mediate oral tolerance, others
demonstrate that oral tolerance can be generated in the absence of CD8+ T cells either by
mADb depletion (Garside et al 1995, Barone et al 1995) or by genetic manipulation (Tada et

al 1996, Garside and Mowat 1997), suggesting that CD8+ T cells are not required for oral
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tolerance induction. Therefore, other mechanisms rather than CD8+ T cells may be

involved in oral tolerance.

c) CD4+ T cells

Generation of regulatory CD4+ T cells by oral administration of antigens has also
been reported in a number of experimental models of oral tolerance (see Desvignes et al
2000). One of the most studied is the EAE model. Suppression of EAE induction can be
generated in CD8 depleted mice following oral administration of MBP (Chen et al 1994).
Splenocytes isolated from these CD8-depleted, orally tolerized animals were able to
suppress MBP primed lymphocyte proliferation in vitro and transfer protection from EAE to
naive animals in vivo, suggesting the presence of active suppression. In addition, MBP-
specific CD4+ T cells were isolated from the MLN of MBP fed mice. These cells secrete
high levels of TGFp, [L-4 and IL-10, but low levels of [FN-y in comparison to control
animals fed hen egg lysozyme (Chen et al 1994). These CD4+ T cells that secreted TGF-p
and IL-4 (or [L-10) were termed Th3 cells. These Th3 cells have also been reported to
suppress EAE induction after transfer to naive animals (Chen et al 1994), although there is
some controversy over which cells were able to exhibit this transfer of tolerance.

In this EAE model, injection of [L-4 at the time of feeding increased TGF-f
secreting T cells and enhanced tolerance induction, whereas injection of anti-TGF- mAb
abrogated tolerance (Inobe et al 1998). In other experiments, injection of anti-IL-4 mAb at
the time of antigen feeding abrogated the oral tolerance (Yoshino 1998). These data suggest
that CD4+ T cells mediate active suppression through cytokine secretion, most notable type

2 cytokines (Weiner 1998, Strober et al 1998). However, it has also been reported that oral
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administration of antigens suppresses antigen specific Th2 cells (putatively the source of the
type 2 cytokines) but not Th1 cells (Wu et al 1998). In addition, oral tolerance can be
induced in the absence of Th2 cells (Shi et al 1999) and in IL-4 deficient animals (Kweon et
al 1998). Moreover, in some cases, anti-[L.-4 mAb (ref) and anti-IL-10 mAb (Aroeira et al
1995) treatment during tolerance induction do not block oral tolerance. Further evidence of
the complexity of this response comes from experimentation which showed that although
decreased type 1 cytokines (including IFN-y) were observed in many orally tolerized
animals, [FN-y appears to be critical for oral tolerance induction since oral tolerance cannot
be expressed in [FN-y deficient animals (Kweon et al 1998). Indeed, it has recently been
suggested, based on work with [L-4 and IL-10 deficient mice, that both type 2 and type 1

pathways must be intact for effective induction of oral tolerance (Rizzo et al 1999).

2.3.2 Mechanisms of oral tolerance induction

The initial events which lead to the generation of oral tolerance are unclear. It has
been proposed that some intrinsic property of the intestinal immune system must contribute
to oral tolerance induction. The generation of oral tolerance has been suggested to be
determined by some unique manner of antigen presentation in the GI tract, potentially
resulting from activation of T cells in the presence of modified costimulatory signals, or in
the absence of costimulation (Garside and Mowat 1997). Oral tolerance is a complex
phenomena and it is probable that multiple sites are involved in it’s development. Many
factors, including the nature and dose of antigen, the age and genetic background of the
animals as well as other factors influence the development of oral tolerance (Garside and

Mowat 1997). Furthermore, there is evidence that the portal circulation of antigen to the
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liver is critical to oral tolerance induction, indicating an additional level of regulatory control

(Garside and Mowat 1997).

a) Basic structure of the intestinal immune system

The intestinal tract is covered by a single, continuous layer of intestinal epithelial
cells (IEC), which separates the tissue from the lumen. Together with the [EC, organized
secondary lymphoid tissues under the epithelium facilitate antigen uptake, processing and
presentation, which leads to the induction of an intestinal immune response. The most
prominent organized component of the intestinal immune system is the gut associated
lymphoid tissue (GALT), which contains the Peyer’s patches (PP) and other solid
follicles. PP contain specialized M cells and closely associated lymphoreticular cells,
with lymphoid follicles. Between the IEC, there are scattered lymphocytes, termed
intraepithelial lymphocytes (IEL). Furthermore, the intestinal lymphatic drainage
connects to lymph nodes located in the mesentery, termed mesenteric lymph nodes

(MLN) (McGhee and Kiyono et al 1999).

b) Effects of IEC and IEL on oral tolerance induction

Antigens present in the intestine have three routes to access the GALT, 1) by a
transcellular route though [EC; 2) through M cells to enter PP; 3) by a paracellular route
by entry between epithelial cells. Under normal conditions, antigens are unlikely to
penetrate through the paracellular route, due to tight junctions joining the apices of the

IEC (Mayer 1999).
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It is well known that conventional antigen presentation by “professional” antigen
presenting cells (macrophages and dendritic cells) requires two signals. One signal is
transmitted through the TCR/CD3 complex on T cells (by recognition of peptide-MHC
complex on APC). The second signal is a non-specific co-stimulatory signal delivered by
the interaction of CD28 on T cells with B7 molecules on the APC. In the absence of
costimulation, T cells stimulated by the TCR/CD3 complex will be only partially
activated, resulting in refractiveness to further stimulation through the TCR/CD3, a
phenomenon known as anergy (Weiss 1999).

[EC are epithelial cells and are not considered professional or conventional APC.
However, [EC are believed to be able to present antigens to T cells and induce T cell
activation (Mayer and Shlien 1987). However, I[EC-induced T cell proliferation is much
less robust than proliferation induced by splenic APC (Bland and Warren 1986a). This
lower efficiency of stimulation by [EC is thought to be due to lower expression of MHC-
I on [EC (Vidal et al 1993, Hershberg et al 1997, 1998). In addition, [EC do not appear
to express the costimulatory molecule B7 (Sanderson et al 1993, Hershberg et al 1997,
Framson et al 1999). The lack of costimulatory molecules on [EC may indicate that these
cells could be involved in the mediation of clonal anergy and thus be involved in oral
tolerance. In addition to this, [EC have been reported to secrete IL-10 and TGF-
(Strober et al 1998). This suggests that [EC may also play a role in the generation of Th2
(IL-4, IL-10), Th3 (IL-4 and TGF-B) or Tr (IL-10, TGF-) regulatory T cells.

Recently, it has been found that feeding of the hapten dinitrochlorobenzene
prevented later contact sensitivity to this hapten (Galliaerde et al 1995). The hapten was

rapidly captured by both IEC and dendritic cells in the PP and lamina propria (LP) of the
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gut. When cultured with hapten-specific T cells, PP APC isolated from fed animals
promoted T cell proliferation. IEC from the same animals did not. In fact, these [EC
from hapten fed animals inhibited hapten specific T cell proliferation induced by hapten-
pulsed splenic APC. This inhibitory effect was mediated by IL-10 and TGF-P secreted
by IEC and resulted in T cell anergy, since the T cell proliferation could be reversed by
addition of IL-2 (Kaiserlian 1999), which is characteristic of anergic T cells. These data
confirm that [EC are able to induce T cell anergy.

Of significant interest, [EC can also take up, process and present exogenous
soluble antigen (OVA) to CD8+ T cells and induce CD8+ T cell activation (Bland and
Warren 1986b). These activated CD8+ T cells display a suppressor function and lack
cytolytic activity. Both IEC and splenic APC stimulate OVA-primed spleen T cells,
however, only [EC stimulated T cells suppress APC induced T cell proliferation, and this
suppression is antigen specific (Bland and Warren 1986b). Interestingly, using mAb-
blocking experiments, it was found that activation of these CD8+ suppressor cells
required signaling through CD8 and TCR, but not MHC molecules (Li et al 1995,
Campbell et al 1999). These data suggest that [EC induced CD8+ T cell activation may
use an altenative mechanism for T cell activation. In fact, two ligands, CD1, a class I-
MHC like molecule, (Bleicher et al 1990, Panja et al 1993) and gp180 (Li et al 1995,
Mayer 1998) were found to be expressed on IEC and these two molecules are involved in
the stimulation pathway of CD8+ T cells (Panja et al 1993, Li et al 1995).

It is very possible, if not probable, that the target for [EC presentation is the IEL.
These IEL are mostly T cells and the IEL compartment includes both CD4+ and CD8+ T

cells. Moreover, a large number of y3 T cells are also present in IEL (about 50% of IEL
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T cells are Y8 T cells in mice). A large portion of the y3 T cell population is CD8+
(McGhee and Kiyono 1998). Perhaps the most intriguing property of v T cells is their
ability to recognize antigen in an MHC unrestricted manner and to recognize CD1
molecules (Groh et al 1998, Boismenu and Havran 1998, Chien et al 1996). Therefore, it
is conceivable that this alternative presentation by [EC may lead to the generation of
CD8+ 3 T regulatory cells.

From the above it is evident that the engagement of antigen by [EC and the
presentation to IEL could influence the development of oral tolerance in a number of
ways. First, the lack of costimulation by [EC may contribute to the generation of T cell
anergy. Second, low levels of class [ MHC expression on IEC may inhibit CD4+ T cell
activation. Third, [EC secretion of IL-10 and TGF-P (Strober et al 1998) may induce the
generation of Th2 (IL-4, [L-10), Th3 (IL-4 and TGF-B) or Tr (IL-10, TGF-p) regulatory
T cells. Fourth, [EC may be able to interact with CD8+ T cells to generate CD8+Ts in an
MHC unrestricted manner, potentially by the involvement of CD1 and gp180 on IEC.
CD8+ 3 [EL may be the major source of this Ts generated by IEC stimulation. The fate
of these [EL which have encountered antigen presented by IEC is unclear. They may
migrate to local lymphoid tissue or to draining lymph nodes such as the MLN and from

there to the spleen and systemic circulation.

¢) Effects of PP, MLN and spleen on oral tolerance induction
PP are one of the major lymphoid structures of GALT and have been suggested
by some to play a critical role in the induction of oral tolerance (Mattingly 1984,

Richman et al 1981, Gonnella et al 1998). M cells overlie the dome of PP and are able to
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take up and transport lumenal antigens (Neutra 1998, 1999) into the underlying lymphoid
tissues. It has been suggested that M cells do not process and present antigen to
lymphocytes (Wolf et al 1984) but transport antigens to underlying APC for antigen
presentation to lymphocytes in PP (McGhee and Kiyono 1998). B cells, macrophages
and dendritic cells in the PP are suggested to play a role in antigen processing and
presentation (Ruedl and Hubele 1997, Kelsall and Strober 1996, 1997, Van Wilsen et al
1994).

It has been demonstrated that after feeding antigen, antigen specific “suppressor”
T cells can be isolated from PP. Later such cells can be found in the MLN and spleen
(Mattingly and Waksman 1978, Mattingly 1984, Richman et al 1981). These regulatory
T cells suppress antibody (IgG) production (Richman et al 1981) and inhibit antigen-
primed lymphocyte proliferation (Mattingly and Waksman 1978) in an antigen specific
manner. In addition, these cells are capable of transferring suppression, including
suppression of antibody production, cell proliferation and DTH responses (Mattingly and
Waksman 1978, Richman 1981). Recently, regulatory CD4+ T cells that secrete IL-4,
IL-10 and TGF-B were obtained from PP in OVA TCR-transgenic mice after a single low
dose feeding, but not after high dose feeding of OVA (Gonnella et al 1998). In another
oral tolerance model, feeding of interphotoreceptor retinoid-binding protein prevented the
induction of experimental autoimmune uveitis (EAU) (Rizzo et al 1994). This protection
was correlated with the production of TGF-f, [L-4 and IL-10 by cells from the PP, and
these cytokines were found to be mainly secreted by CD4+ T cells of the PP (Rizzo et al
1994, 1999). Interestingly, injection of human recombinant IL-2 enhances protection

from EAU and increases the number of IL-4, [L-10 and TGF-f secreting cells in the PP
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(Rizzo et al 1999). It has been suggested that this enhancement by IL-2 treatment is due,
at least in part, to the expansion of a population of regulatory cells in the PP which results
in increased production of anti-inflammatory cytokines. In the EAE oral tolerance
model, TGF-f secreting regulatory cells appear in the PP. These cells suppress
lymphocyte proliferation in vitro and prevent the induction of EAE when transferred into
naive animals (Santos et al 1994).

Taken together, these data suggest that, after low dose feeding, the suppressor
cells are generated in PP and that these suppressor cells are predominately Th2 type cells
(Rizzo et al 1994, 1998) and/or TGF-p secreting cells (Santos et al 1994, Gonnella et al
1998). Although [FN-y secreting cells were also found in PP in some situations, their
induction appears to be related to high dose feeding of antigens (Hoyne et al 1993, Marth
et al 1996).

The data described above suggest that suppressive regulatory cells can be
generated in PP following the feeding of antigens and these cells are predominantly Th2
cells and/or TGF-P secreting cells. However, it was recently demonstrated that oral
tolerance could be generated in mice that are deficient in PP, but not in mice that are
deficient in both PP and MLN, suggesting that the PP is not necessary for the induction
of oral tolerance (Spahn et al 2001, Yamamoto et al 2000). In fact, evidence from several
studies has suggested that the MLN is critical for induction of oral tolerance.

Suppressive T cells could be isolated from MLN after oral administration of antigens and
these cells are able to transfer tolerance to naive animals (Mattingly 1984, Richman et al
1981, Franco et al 1998). It was found that type 2 regulatory cells were present in the

MLN after low dose, but not high dose, feeding of OVA-DNP and that these cells
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respond to OV A stimulation as measured by cell proliferation (Franco et al 1998). In
addition, antigen-specific T cells that produce I[FN-y were found in the MLN after high
dose feeding of OVA (Hoyne and Thomas 1995). Furthermore, suppressor cells
generated in PP are suggested to migrate to MLN. This comes from evidence that the
suppressor cells appeared early in PP but later in MLN, and at the later time point,
suppressor cells disappeared from the PP (Mattingly 1984, Richman et al 1981, Mattingly
and Waksman 1978). However, these data cannot rule out the possibility that the
suppressor cells from MLN are generated from sites other than PP.

The spleen has also been suggested to be a site of oral tolerance induction. Much
evidence has shown that splenocytes from orally tolerized animals are able to suppress
immune responses, including cell mediated and humoral responses, in vitro. These
splenocytes are able to transfer tolerance to naive animals (Singh et al 1992). Although
there is evidence to suggest that the regulatory cells present in spleen have migrated there
from the PP or the MLN (Mattingly and Waksmen 1978, Mattingly 1984, Richman et al
1978), there is also evidence to suggest that the regulatory cells present in spleen, MLN
or PP are not the same population (Richman et al 1981, Franco et al 1998). Cells isolated
from the spleen exhibit different functions than cells from the MLN after the same
feeding regime of OVA-NDP (Richman et al 1981, Franco et al 1998). For example,
regulatory cells from the PP and MLN of OV A fed animals induce decreased cell
proliferation but enhanced IgA production when these cells are transferred into naive
animals. Regulatory cells from the spleen of fed animals, however, suppress cell
proliferation but do not enhance IgA production upon transfer (Richman et al 1981).

These data suggest that the regulatory cells in the PP, MLN and spleen may not be the
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same population (Richman et al 1981). Further to this, Franco and colleagues have
shown that cells from the MLN of OVA-DNP fed animals suppress DTH responses in
vivo (and cell proliferation in vitro) after transfer into naive animals, whereas cells from
the spleen of fed animals do not transfer tolerance, confirming that two functionally
different cell populations were present in the MLN and spleen (Franco et al 1998). This
led Franco and colleagues to suggest that more than one mechanism may be involved in
oral tolerance induction and that oral tolerance generated in different sites may reflect
different mechanism. They suggested that regulatory cells develop in the MLN that
mediate active suppression, whereas anergy or clonal deletion might occur in the spleen.

A role for the spleen in oral tolerance induction has been amply demonstrated by
using splenectomized mice and the EAU model (Ma et al 1997, Suh et al 1993). Oral
administration of autoantigen prevents the induction of EAU only in euspienic mice, not
in asplenic mice. These data confirm the spleen as an important site for oral tolerance
induction.

Taken together, the data described above suggest that multiple sites are involved
in induction of oral tolerance. However, it is still unclear how oral tolerance is generated
at these sites. Several factors may contribute to oral tolerance induction, but APC,
especially DC, in the GALT have been suggested to play a critical role in tolerance
induction (Garside and Mowat 1997, Van Wilsen et al 1994, Ruedl and Hubele 1997).
Oral tolerance can be enhanced after expanding the DC population in mice by treatment
with Fit3L (Willamson et al 1999, Viney et al 1998), suggesting that DC play a role in
oral tolerance induction. DC isolated from GALT, including from PP, acquire and

present antigens to T cells and induce T cell activation (Liu et al 1991, Van Wilsen et al
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1994, Rued] and Hubele 1997, Kelsall and Strober 1996). Both mature and immature DC
have been described at different sites in the PP. Immature DC excel at antigen uptake
and processing whereas mature DC are potent T cell stimulators (Ruedl and Hubele
1997). Indeed, when compared to splenic DC, DC isolated from PP express 5-10 fold
higher levels of MHC class II associated antigens (Kelasll and Strober 1996). These data
suggest that the DC found in the PP are potent APC and should be easily able to induce T
cell activation. Interestingly, it was found that splenic DC induced mainly Thl cells
whereas PP DC stimulated predominantly Th2 cells (Everson et al 1996). These data
indicate that PP DC may have the ability to shift T cell differentiation toward a Th2
response, a phenomenon associated with the induction of oral tolerance. Recently, it was
demonstrated that the continuous feeding of microdoses of OV A induces tolerance (and
enhanced type 2 response) by down-regulation of B7 molecules on APC and down-

regulation of antigen specific TCR (Wu et al 1998).

d) Effects of the liver on oral tolerance induction

There is considerable evidence that the liver plays a significant role in the induction
of oral tolerance. Oral tolerance to dinitrophenol (DNP), for example, is completely
abrogated by portal venous shunt (to re-route the portal circulation to exclude passage
through the liver) prior to feeding (Cantor and Dumont 1967). It was also found that
injection of antigen directly into the portal vein generates a marked reduction in antigen
specific immune responsiveness as demonstrated by decreased antibody production, reduced
DTH responses (Fujiwara et al 1986, Sato et al 1988) and prolonged allograft survival

(Gorczynski 1992). The characteristics of the immune suppression induced by injection of
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antigen into the portal vein (portal tolerance) or by delivery via the oral route (oral
tolerance) are similar (Gorczynski et al 1998). Since intestinal blood drains first into the
liver via the portal vein, antigens absorbed from the intestine are transported into the liver by
the portal route. This has led to the suggestion that portal tolerance is a version of oral
tolerance and that resident liver macrophages (Kupffer cells) and liver DC are critical in
both portal and oral tolerance induction.

Kupffer cells are potent phagocytic cells and are potential APC. They express
high levels of MHC-II and B7 molecules (Lohse et al 1996). They have been shown to
stimulate T lymphocytes and produce a variety of important cytokines (Gregory and
Wing 1998).

It was found that blocking Kupffer cell function by intravenous injection of
gadolinium chloride blocked portal tolerance, including alloantigen specific portal
tolerance, (Callery et al 1989, Yu et al 1997). Prolonged cardiac allograft survival
induced by portal tolerance, for example, was abolished by injection of gadolinium
chloride (Squiers et al 1990). These data confirm that Kupffer cells may play an
important role in portal tolerance induction and potentially in oral tolerance.

Gadolinium chloride was demonstrated to inhibit antigen-presentation by Kupffer
cells by blocking phagocytosis without influencing the surface expression of MHC class
IT (Roland et al 1993). This suggests two possible interpretations of the tolerance
induction by Kupffer cells, one passive, and one active. First, blocking antigen uptake by
Kupffer cells in the liver may prevent tolerance simply by allowing antigen to enter the
systemic circulation and peripheral lymph tissue, resulting in priming of the immune

response. Second, blocking antigen uptake may prevent tolerance by blocking the



processing and presentation of antigen by Kupffer cells which is required for tolerance
induction (Roland et al 1993).

Given that both portal and oral tolerance lead to long term immune modulation,
even if antigen is re-introduced by a different route, it is reasonable to assume that the
latter interpretation is more likely. In addition, as outlined in this thesis, oral
transplantation tolerance can be transferred to naive animals, confirming that the former
hypothesis is unlikely. Recently, Gorczynski and colleagues demonstrated that DC from
the liver play a critical role in portal tolerance. They associated this role with the
expression of surface OX-2 on the APC in the liver. They found that portal
transplantation tolerance was associated with increased Th2 cytokine secretion
(Gorczynski et al 1998a,b). Both Th2 induction and resulting graft prolongation were

abrogated by injecting the recipient with anti-OX-2 mAb (Gorczynski et al 1998b).

2.3.3 Effects of oral tolerance on inhibiting allograft rejection

Early studies showed that neonatal exposure of mice to breast milk from allogeneic
foster mothers slightly prolonged skin allograft survival in the fed recipients (Beer and
Billingham 1975). In addition, breast-fed humans who received living-related maternal
kidney transplants showed fewer rejection episodes and better one-year allograft survival
(Campbell et al 1984). This prolonged graft survival may be related to the abundant
mononuclear cells contained in breast milk.

Later, Weiner and colleagues (Sayegh et al 1992a, b) studied the effects of oral
administration of allogeneic splenocytes on the systemic immune response to alloantigens.

They demonstrated that feeding allogeneic splenocytes suppressed alloimmune responses in
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vitro (lymphocyte proliferation) and in vivo (DTH responses). The suppression was antigen
specific in vivo but non-specific in vitro, which might suggest the involvement of a soluble
suppressor factor (Sayegh et al 1992b). In addition, feeding allogeneic cells was shown to
prevent accelerated rejection of cardiac allografts that had been induced by presensitization,
essentially transforming accelerated rejection to acute rejection in an antigen specific
manner (Sayegh et al 1992b, Hancock et al 1993). This group, however, was not successful
in prolonging primary allograft survival as demonstrated in this thesis (Weiner, personal
communication). Weiner and colleagues suggested that the observed effects were mediated
by up-regulation of Th2 cells and down-regulation of the Thl response. This was because
the cardiac allografts harvested from fed animals exhibited reduced IL-2 and [FN-y
expression but showed markedly increased [L-4 expression (Hancock et al 1993).

Recently, the effect of oral tolerance on prolongation of first set allograft survival
was demonstrated in an immunoprivileged corneal transplantation model (He et al 1996,
Ding et al 1997). Comeal allografts have the highest success rate in transplantation, but
approximately 10% of human comeal allografts are still rejected due to immunologic
responses (He et al 1996). By feeding allogeneic cells (cultured murine corneal cells and/or
freshly isolated keratinocytes) to mice, corneal allograft survival was prolonged (He et al
1996, Ding et al 1997). The prolongation was correlated with decreased DTH and CTL
activity, suggesting that the prolongation is due to decreased alloimmune responses
following oral administration of alloantigens. In addition, the prolongation of allografts
could be transferred to naive animals by transferring lymphocytes from the MLN or spleens
of fed animals, suggesting that the suppression was mediated by regulatory cells (He 1996).

Our laboratory was the first to demonstrate that oral tolerance can prolong primary
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allograft survival (Carr et al 1996, 1998). Since that discovery, there has been an increase in
experimentation exploring the effects of oral tolerance on transplantation, including cell
(Senesi et al 1998, Ilan et al 2000) and solid organ (Ishido et al 1999, Zavazava et al 2000,
Niimi et al 2000) transplantation. In solid organ transplantation, oral administration of
allogeneic splenocytes (Ishido et al 1999, Niimi et al 2000) or synthetic MHC peptides
(Zavazava et al 2000) prolonged cardiac allograft survival. Taken together the available
data suggest that oral transplantation tolerance is associated with decreased alloresponsive
proliferation in vitro and decreased DTH responses in vivo (Ishido et al 1999, Zavazava et al
2000, Saygh et al 1992, He et al 1996). In addition, in these experiments, a bias toward type
2 cytokines is shown by cells isolated from spleens or MLN from orally tolerized animals.
However, the mechanisms of induction of oral tolerance at the level of the GI tract and the
expression of oral tolerance at the level of the transplanted organ are unknown. In this
thesis, experimentation is described which deals with the expression of the oral tolerance at

the level of the transplanted organ.

2.4 Objectives

This study was designed i) to confirm the hypothesis that oral administration of
alloantigen would prolong primary kidney allograft survival in rats, and ii) to elucidate the
mechanisms by which this prolongation is mediated. The mechanisms involved in the
induction of oral tolerance of any kind (not only transplantation tolerance) at the level of the
GI tract are complex, controversial and mostly unclear. For that reason this study was
designed to address the mechanisms behind oral transplantation tolerance at the level of the

graft, looking for the expression of the pathways initiated upstream. In this thesis
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experimentation, kidney transplants are used since graft-infiltrating cells can be readily
obtained, quantified and characterized. The central concept driving this experimentation is
the position that until the manner of expression of oral transplantation tolerance can be
defined there can be no productive investigation of the induction of that expression. This
thesis experimentation deals with the expression of oral transplantation tolerance in the

kidney.



3.0 PROLONGATION OF SURVIVAL OF PRIMARY RENAL
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Abstract

We have found that feeding Brown Norway rat (BN) spleen cells to Lewis rats
prior to transplanting BN kidneys, prolonged allograft survival (mean of 8.8 days in
unfed rats; 21 days in the BN cell-fed rats; longest survival 11 days without allo-feeding,
vs 37 days with feeding.) We have also found that feeding BN cells both pre- and post-
transplant further extends survival (mean of 38 days; longest survival 105 days). We also
examined the cells infiltrating the grafts during the early stages of the allograft response
(day 5). Using flow cytometry, we found a significant decrease in the number of
leukocytes infiltrating the transplanted kidneys of fed animals. This decrease was mainly
due to a drop in the number of infiltrating T cells. We also found that cytokine mRNA
production by the graft-infiltrating lymphocytes (GIL), assessed by RT-PCR, showed a
significant increase in [L-4 and TGF-B mRNA in the GIL of fed animals compared to the

controls.
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Introduction

In the last decade, the development of new immunosuppressive drugs producing
blanket immunosuppression has resulted in a significant prolongation in the length of
survival of kidney transplants. However, the profound immunosuppression produced by
these drugs results in major undesirable side effects, such as an increase in susceptibility
to infections and tumours, and in some cases nephrotoxicity. In addition, they have
proven of limited effectiveness in the prevention of late graft (chronic) rejection. If
methods of allograft-specific immunosuppression could be developed, such profound
blanket immunosuppressive treatments, with their inherent increased risk of infection and
tumours could be avoided, and chronic rejection might be ameliorated.

Oral tolerance is a state of antigen-specific decreased responsiveness in cell
mediated and/or humoral immunity, induced by feeding antigen (reviewed in 1 and 2).
Since oral tolerance is antigen specific, this approach to immunosuppression, if effective
in suppressing graft rejection, would avoid the problems associated with non-specific
immunosuppression. We have begun to examine the induction of "oral tolerance" for
kidney transplantation, to assess the potential value of this approach for modulating
kidney allograft rejection. Our approach has been by feeding donor spleen cells, to
trigger oral tolerance by gastric exposure to the donor alloantigens.

We have also tested tolerance induced by portal vein injection of the alloantigens,
to compare the effectiveness of feeding with that route, since there have been several
reports of prolongation of allograft survival induced by that approach (3-6).

Oral tolerance has been demonstrated in a variety of experimental animals
including mice, rats, rabbits, and guinea pigs (reviewed in 1 and 2). There is also

substantial suggestive evidence (7-9) and direct evidence (10-11) of its occurrence in



man. We report here that oral tolerance induction significantly retards the primary

rejection of kidney allografts in rats.
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Materials and Methods
Animals
Male Brown Norway (BN, RT1") and Lewis (LEW, RT1") rats purchased from
Harlan Sprague Dawley (Indianapolis, IN) were used as donors and recipients,
respectively. Animals were maintained in the Dalhousie University Faculty of Medicine
animal care facility and provided with water and rodent chow ad libitum. All animals
were cared for in compliance with the guidelines established by the Canadian Council on

Animal care.

Preparation of cells for feeding and pv injection

Brown Norway (BN) spleen cells were isolated from BN rats (Harlan) by
standard protocols. Briefly, animals were anaesthetized with halothane and sacrificed by
cervical dislocation. Animals were completely submersed in 70% ethanol for 30 seconds
before being placed on sterile toweling in a laminar flow hood. The spleen was removed
after a sagital incision, and placed in sterile RPMI-1640 and cut into several pieces. To
produce single cell suspensions, the pieces were crushed with the ribbed sterile back ends
of plastic syringe plungers and clumps were broken up by aspirating and ejecting 5 times
with sterile Pasteur pipettes. After washing, the cells were purged of red blood cells by
lysis for 5 minutes with ACK erythrocyte lysing buffer (0.15M NH.Cl, 1.0 mM KHCO;,
0.1 mM Na,EDTA, pH 7.4) at room temperature (12). The cells were washed again,
resuspended in sterile phosphate buffered saline (PBS: 0.15 M NaCl, 0.05 M Na,PO, pH
7.4) and counted using trypan blue. Viability was always greater than 95%. The
concentration was adjusted to 3.3 x 108 live cells per ml of PBS for feeding. For pv
injection, after ACK lysing and washing as above, the cells were resuspended in PBS,

and rapidly passed through a loosely packed column of sterile glass wool to remove any
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residual cell clumps and debris. After counting as above, the concentration was adjusted

with sterile saline, to 2 x 10° live cells per ml.

Gastric intubation

Unanaesthetized rats were immobilized and fed using a plastic gag between the
upper and lower front teeth. A 3 1/2 Fr premature human infant feeding tube (Sherwood
Industries, St. Louis, MO) was passed into the stomach through a small hole in the centre
of the gag. Three hundred microlitres of spleen cell suspension in PBS (1 x 102 cells)

was given to each rat at each feeding.

Portal venous administration of cells

Brown Norway spleen cells were prepared as above. Lewis rats were
anaesthetized with sodium pentobarbital and a mid-abdominal incision made. The portal
vein was exposed and 0.5 ml of sterile saline containing 1 x 10® cells was injected using a
27 gauge needle, through an area of mesenteric fatty tissue to contain bleeding.
Successful transfer of the cells was assured by observing a transient blanching of the
liver. Post-injection pressure was applied with a sterile Q-tip. No significant bleeding

occurred. Closure was carried out using standard procedures.

Kidney transplantation

Kidney transplantation was performed as described previously (13). Briefly, BN
rats were anaesthetized with pentobarbital and a midline abdominal incision was made.
The left kidney was exposed, freed of connections, perfused with heparinized cold saline
and removed with a cuff of the aorta and the renal vein, as well as a long piece of ureter.

This donor kidney was kept in ice cold saline while the recipient was prepared. Left



56

nephrectomy was performed on the recipient. The donor kidney was then attached in an
orthotopic position via end to side anastomosis of the cuff of renal artery with the
abdominal aorta and the renal vein to the recipient vena cava. The ureter was attached by
end-to-end anastomosis. After 3 days the animals were anaesthetized and a right
nephrectomy performed to remove the remaining native kidney. This three day delay in
the removal of the other native kidney allowed the functional recovery of the transplanted
kidney. Simulitaneous contra-lateral nephrectomy at the time of transplant would render

the animal uremic for at least 24 hours while the transplanted kidney recovers full

function.

Experimental protocols

Protocol 1 (prior feeding): Lewis rats were fed 1x10® Brown Norway (BN)
splenocytes every day for 5 days. Ten days later, the rats were given a BN left kidney
transplant as described above.

Protocol 2 (prior and post-feeding): Lewis rats were fed 1x10® Brown Norway
(BN) splenocytes every day for 5 days. Nine days later they were fed 1x10° BN
splenocytes and the following day they received the BN transplant. Thereafter, once
every week they were fed 1x10® BN splenocytes until death or sacrifice.

Protocol 3 (portal vein injection): Lewis rats were given a single pv inoculation
of 1x10® BN splenocytes and ten days later, the rats were transplanted with a BN kidney.

Protocol 4 (portal vein injection and post transplant feeding): Lewis rats were
given a single pv inoculation of 1x10® BN splenocytes and ten days later, the rats were
transplanted with a BN kidney. Thereafter, they were fed 1x10® BN splenocytes once

every week until death or sacrifice.
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Protocol 5 (prior feeding for assessment of graft infiltrating leukocytes (GIL)).
Lewis rats were fed 1x10® Brown Norway (BN) splenocytes every day for 5 days. Nine
days later they were fed 1x10% BN splenocytes and the following day they received the
BN transplant. Five days later the rats were sacrificed and the kidneys removed for
assessment of the GIL.

In one experiment a group of 5 Lewis rats received syngeneic (Lewis) spieen

cells, and another group of Lewis rats, received PVG spleen cells as in protocol 1 above.

Histology

Transplanted kidneys were flushed with cold saline and cut into 2-3mm thick
slices which were fixed in 10% neutral buffered formalin. Tissue was embedded in wax
and sections were taken at Sum. The sections were stained with hematoxylin and eosin

using standard procedures.

Cytokine RT-PCR of GIL

GIL were isolated from the kidneys as previously described (13). Briefly, kidneys
were removed from experimental animals 5 days post transplant. Kidneys were first
flushed in situ, with ice cold heparinized saline until completely blanched. This ensured
that circulating blood did not contaminate the cell suspension. The volume and weight of
the kidneys was determined. The tissue was minced and then digested with collagenase,
followed by a two step percoll centrifugation to remove tubular epithelial cells (13).
Total cellular RNA was obtained using Trizol (BRL, Canadian Life Technologies,
Burlington, Ont.). Reverse transcription was performed using Moloney murine leukemia
virus reverse transcriptase (BRL) and random hexamer primers (Pharmacia Biotech Inc.

Baie D’Urfe, Que.). PCR amplification (40 cycles) of the first strand cDNA product of
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the reverse transcription was performed as previously described (14) using commercially
synthesized primers (BioCan Scientific, Mississauga, Ont.) and Taq polymerase (BRL).
The primers were constructed to span introns to exclude PCR amplification products

from genomic DNA, and yield approximately similar sized amplicons (between 311-380

bp).

Statistical analysis
Survival curves were plotted using the Kaplan-Maier product limit estimate (15),
and differences analyzed by the log-rank test for comparing survival curves (15).

Differences in cellular infiltrates were analyzed using the Mann Whitney rank sum test

(16).
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Results

Survival of control rats and rats fed donor spleen cells either only PRE-Tx or both
PRE- and POST-Tx

The survival curves for rats fed only pre-Tx (protocol 1) and both pre- and post-
Tx (protocol 2) are shown in Figure 1 compared to the survival of animals which were
untreated. As can be seen there is a marked prolongation of survival in the fed animals
with several of them surviving beyond 50 days without any supplemental
immunosuppressive therapy. The mean survival in the control group was 8.8+1.9 days,
with the longest survival 11 days. In the group receiving pre-feeding only, all animals
lived at least 15 days, with a mean survival of 21+8. The longest survival was 37 days.
In the group receiving pre- and post- feeding the survival was very variable, but all
animals lived at least 15 days with the longest survival 105 days. The mean for the group
was 38.6+31.1 days.

Rats fed syngeneic or PVG spleen cells prior to transplant, rejected the BN
spleens at the same rate as rats which were not fed allogeneic spleen cells (data not

shown).

Survival of control rats, and rats pv injected with donor spleen cells pre-Tx
(protocol 3) and of rats pv injected with donor spleen cells pre-Tx and fed donor
spleen cells post-Tx (protocol 4)

The survival curves for rats pv injected pre-Tx only (protocol 3), and for rats pv
injected pre-Tx and fed post-Tx (protocol 4) are shown in Figure 2 compared to the
survival of animals which were untreated. There is a marked prolongation of survival in
the pv injected animals with or without post-Tx feeding, although the latter showed

slightly longer survival.
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Histology of the kidneys

In the unfed animals, 5 days after transplantation, there is a marked mononuclear
cell infiltration, although tubular and glomerular structures are still preserved (Figure
3A). However by day 10, there is obvious tubular destruction, as well as glomerular
sclerosis (Figure 3B). There also appears to be a substantial mononuclear cell infiltrate
on day 5 in the fed animals (Figure 4A), so that the histological picture on day 5 appears
similar to that in the unfed animals. However, in the fed animals, there was still a marked
preservation of tubular and glomerular structure on day 23 (Figure 4B), and even in an
animal sacrificed on day 105 (Figure 4C), tubular and glomerular structure, although now

abnormal, was conserved.

Assessment of the graft infiltrating cells

As can be seen in Figure 5A, there was a significant decrease in the number of
recoverable graft infiltrating cells per kidney from the fed compared to the unfed rats (p <
0.05). The data regarding T cell infiltration of the graft (Fig. SA) mirrors the drop in total
leukocytes. Analysis of T cells as a percentage of GIL (Fig. 5B) confirms the association
between feeding and the generalized reduction of leukocyte infiltration in the graft since
T cells represent a nearly similar percentage of the GIL in both groups. Since our
previous experimentation (13) has shown that GIL are almost exclusively T cells and
macrophages, this data is consistent with a similar reduction in macrophage numbers in
the graft.

Since kidneys showed a variable amount of edema during rejection, the
expression of GIL per unit volume, or per gram wet weight, is an unreliable measure of
recording infiltrating cells. The GIL per kidney gives values relevant to the influx of
cells into the kidney.
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RT-PCR

To begin to determine the cytokine secretion profile of the GIL, RT-PCR was
performed using primers specific for [L-2, [L-4, IL-6, [FN-y and TGF-$1. Inthe
untreated allograft control animals IL-2, [L-6 and [FN-y mRNAs were detectable but
there was little or no IL-4 or TGF-B1 mRNA in the GIL. However, in all the Lewis rats
fed with BN spleen cells prior to transplantation, in addition to the IL-2 and IFN-

mRNA, there was also substantial levels of [L-4 and TGF-p (Figure 6).
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Figure 1.The survival for rats fed both pre (protocol 1) and pre- and post-Tx (protocol 2)
is shown compared to the survival of animals which were untreated. As can be seen there
is a marked prolongation of survival in the fed animals with 25% of the pre- and post-Tx
fed animals surviving beyond 50 days, without any other immunosuppressive therapy.
There is a significant increase in kidney graft survival in animals pre-fed only (p < 0.005)
and in animals both pre- and post-Tx fed (p < 0.001) compared to unfed animals. There
is a trend towards longer survival in the pre- and post-Tx fed animals compared to the
pre-fed only animals (p = 0.077). At 15 days 44% of the pre-fed only animals were still

alive, compared to 75% of the animals pre- and post-fed.
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Figure 2. The survival curves for rats pv injected pre-Tx (protocol 3) and for rats pv
injected pre-Tx and fed post-Tx (protocol 4) are shown compared to the survival of
animals which were untreated. As can be seen, there was a marked prolongation of
survival in the pv injected animals with or without post-Tx feeding (p < 0.001 for both
groups) compared to untreated rats. There is no significant difference between the
survival of PV-only injected animals and the animals which were pv injected and post-Tx

fed.
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Figure 3. A) Hematoxylin and eosin (H&E) stained section of transplanted kidney, 5
days after transplantation into an unfed control. B) H&E section 10 days after transplant

into an unfed control.
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Figure 4. A) H&E section of transplanted kidney, S days after transplanting into a
recipient fed donor spleen cells. B) H&E section of transplanted kidney, 23 days after
transplantation into a fed animal. C) H&E section of transplanted kidney, 105 days after

transplantation into a fed animal.
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Figure 4
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Figure 5. A) Examination of the total number of graft infiltrating cells and of T cells
recoverable from the transplanted kidneys of orally treated and control transplant
recipients. B) T cells as a % of total GIL. * indicates a significant difference (p < 0.05)

between the control and the pre-fed animals for the parameter being measured.
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Figure 6. RT-PCR of graft infiltrating leukocytes from kidney allografts in control (A)
unfed and (B) orally treated recipients at day 5 post transplant. Lanes containing no
DNA (-) and B-actin cDNA (+) were used as negative and positive controls for the PCR
reaction respectively. RT-PCR of B-actin mRNA was used to control for relative mRNA

abundance in the initial cell RNA preparations.
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Discussion

In 1978, Kagnoff (17) found priming of precursor cytotoxic T cells by antigen
feeding, and failed to find suppression of allograft cytotoxicity by attempts to induce oral
tolerance (18). However a 1984 study by Hashimoto (19), although not of oral induction
of tolerance to histocompatibility antigens per se, was clearly suggestive that such might
be a possibility. In that study, syngeneic tumours were transplanted into animals fed high
doses of killed tumour cells. Such animals showed significant suppression of the normal
rejection response expected to occur against the tumour specific transplantation antigens
(19). In preliminary studies, we found suppression of alloreactivity in mice after feeding
allogeneic spleen cells (20). Thus we decided to pursue the possibility that by feeding
donor spleen cells to recipient rats, we might be able to prolong kidney graft survival.
The results reported here do indeed support the concept that oral administration of
allogeneic splenocytes can markedly prolong kidney allograft survival without additional
immunosuppressive therapy. Conversely, feeding syngeneic (Lewis) or MHC unrelated
(PVG) spleen cells, had no effect on the rate of BN kidney allograft rejection (data not
shown).

Recently He and colleagues reported that oral tolerance, induced by feeding donor
keratinocytes, epithelial cells, or endothelial cells, significantly prolonged corneal
allograft survival in mice (21), but the results presented in this paper are the first
demonstrating a marked prolongation of solid organ primary allograft survival induced
by oral tolerance.

Others have demonstrated solid organ allograft prolongation in mice with portal
venous inoculation of allogeneic cells (22,23). We have confirmed that finding using the
portal vein rather than the oral route to deliver allogeneic splenocytes. There has long

been a suggestion that oral tolerance and portal tolerance are linked. Early studies
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indicated that bypassing the portal system by porta-caval shunting of the intestinal venous
drainage reduced or abrogated orally induced tolerance (24,25). We found that oral
tolerance appeared to be more effective than portal tolerance, but given the recent
findings by Gorczynski et al. (26,27) it appears likely that both routes of tolerance
induction are associated with the transcription of Th2 cytokines.

A number of mechanisms have been suggested to be involved in the development
of oral tolerance. These include the generation of T suppressor cells (Ts) (28-30),
development of helper T cell anergy (31,32), immune complex formation (33),
production of suppressive serum factors (34,35), antigen alteration by intestinal
processing (36-38), and production of anti-idiotype antibody (39,40).

In light of the description of Thl and Th2 subsets of T cells (41) and the
subsequent demonstration of their cross regulation (42), as well as substantial evidence
that cell mediated immunity (involving type-1 pro-inflammatory cytokines such as IL-2,
[FN-y and TNF-a), is involved in kidney allograft rejection (reviewed in 43, 44), it is
possible to speculate that the oral tolerance observed here, results from a shift in the bias
in GIL from Thl type cells in the acutely rejecting allograft in the unfed animals, to Th2
type cells in the allografts of orally tolerized animals. The increase in [L-4 mRNA in the
graft infiltrating lymphocytes (typical of Th2 type cells) reported here, is supportive of
this hypothesis. The presence of [FN-y and IL-2 in GIL preparations is not inconsistent
with this hypothesis since the paradigm postulated by Lowry (45) and others suggests
that the “shift” is certainly associated with transcription of IL-4, but other cytokines are
also transcribed. This is consistent with the evidence that shows Th2 cell generation in
vitro in the presence of [FN-y and IL-4, but Thl generation in the presence of [FN-y
alone (46). Thus the presence or absence of IL-4 is more important in the Th2 shift, than

is a reduction of IFN-y levels. Our findings are consistent with the work of others (47)
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who have demonstrated an increase in the immunohistochemical staining for [L-4 protein
in the allograft tissue, in a heterotopic cardiac graft model in which accelerated second
set rejection was somewhat retarded when recipients were fed purified or synthesized
donor MHC alloantigens.

In the case of orally induced suppression of autoimmune encephalomyelitis, Chen
et al. (48) found evidence that another T cell subset secreting high quantities of TGF-f
(which they referred to as a Th3 type cell), might play a critical suppressive role. Our
finding of increased TGF-f mRNA (typical of the putative Th3 type cells) in the GIL
suggests that the observed suppression may be multifactorial. Of considerable interest,
Sayegh and colleagues (49) have reported that rats fed allogeneic cells, showed an
alloantigen specific reduction in delayed type hypersensitivity reaction in vivo, and in
mixed lymphocyte reactions in vitro. Using an accelerated allograft rejection model, they
also showed suppression of accelerated rejection of heterotopic cardiac grafts by feeding
cells from Brown Norway (BN) rats to Lewis Rats (50). Examination of the grafts in
treated animals showed decreased infiltration with macrophages, T cells in general, and
IL-2 receptor positive T cells. There was also decreased mononuclear cells staining for
IL-1, IL-2, IL-6, IL-8, and TNF-a.. In contrast [L-4 was markedly increased (47). We
likewise found a generalized drop in cellular influx into our primary Kidney allografts.
Our previous work (13) has shown that kidney GIL are predominantly macrophages and
T cells and our data here point to a reduction in both of these cell types in the GIL of the
fed animals, consistent with a T cell mediated TGF-p effect.

Weiner's group suggested that oral alloantigen appears to inhibit the function of
CD4" Th1 like cells (IL-2 and IFN-y producing) but does not inhibit the function of Th2
cells, which may be secreting protective cytokines (such as IL-10 and/or IL-4) (39).

They have not however demonstrated increased production of TGF- in their cardiac
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transplant model, which may be related to their failure thus far to show suppression of a
first set rejection. In addition, they found decreased amounts of IL-2 and IFN-y, whereas
we did not find a significant decrease in transcript levels of these two cytokines in the
graft infiltrating lymphocytes in our model (by RT-PCR).

Friedman and Weiner have recently reported that, high dose feeding induced only
anergy, but low dose feeding induced active suppression (51). Their work also suggested
that TGF-p is the non-specific suppressor effector factor secreted by Ts. Although these
authors originally suggested that a high dose single feed results in both Ts induction and
Th anergy, their recent results suggest that T cell anergy, without induction of Ts is
induced by high dose feeding (51).

Our data is consistent both with a shift in bias from Thl to Th2 type GIL and also
the induction of TGF-P secreting Ts, supporting the possibility of a multifactorial process
in the development of orally induced transpiantation tolerance. Two recent reviews have
also pointed out the probability that both transplantation rejection and the induction of
transplantation tolerance are indeed multifactorial (52,53). Further experimentation will
be needed to elucidate the mechanism(s) of oral tolerance responsible for the marked

prolongation in graft survival we have found.
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Abstract

We have previously reported that oral administration of allogeneic rat spleen cells
prior to kidney allotransplantation significantly prolongs graft survival. This prolongation
was alloantigen specific, and was associated with a decrease in graft infiltrating cells (GIC),
and an increase in transcription of IL-4 mRNA in the GIC. In this study, increased splenic
mixed lymphocyte responses from animals orally exposed to alloantigen prior to kidney
transplantation suggested that the kidney allograft prolongation was not due to a masking of
allorecognition but to an immunomodulation of the immune response. We have assessed
GIC T cell subsets at day 5 post transplant and found decreased numbers of CD4+ T cells in
fed animals compared to controls, but there was no change in CD8+ T cell numbers. The
CD8+ GIC from fed animals transcribed substantial levels of perforin, granzyme and FasL
mRNA indicating the presence of active cytotoxic T lymphocytes (CTL). Direct CTL
assays showed that the GIC from fed recipients exhibited higher allo-CTL activity than GIC
from control unfed recipients. In addition, the CD8+ GIC exhibited high levels of IL-4
mRNA, suggesting a Tc2 type regulatory cells. Prolonged graft survival in the face of
active CTL and Tc2 cells suggests the presence of a CD8+ regulatory cell population in the
allograft. To confirm this, cell transfer experiments were performed. Prolongation of graft
survival was transferred from rats orally exposed to alloantigen, to naive animals by transfer
of CD8+ GIC. This is the first report that oral exposure to alloantigen prolongs kidney

allograft survival by the generation of intragraft CD8+ regulatory cells.
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Introduction

Oral administration of antigen to ameliorate autoimmune disease has been
demonstrated in a number of experimental animal models [1,2,3]. Recently, trials have been
initiated to assess the feasibility of such treatments in the reduction of human disease [4].
However, prolongation of allograft survival by oral administration of alloantigen has been
less well established. Weiner and colleagues reported that oral administration of allogeneic
splenocytes ameliorated allo-sensitisation by skin grafting but only observed effects on
second set (not primary) rejection of solid organ allografts with their feeding protocol {5,6].
We subsequently demonstrated, using a different protocol, that feeding allosplenocytes
significantly prolonged kidney allograft survival in rats [7,8]. This prolongation was
alloantigen specific [8]. Recently, this oral tolerance to primary allografts has been
confirmed, by Ishido and colleges, in a rat cardiac model [9].

Oral tolerance has been suggested to be mediated by clonal deletion/anergy {1,4] or
active suppression [4,10,11]. In active suppression, regulatory cells are thought to play a
critical role by modulating the immune response through secretion of Th2 cytokines and/or
TGF-B [4,12,13]. Such regulatory cells have been shown to be capable of transferring
tolerance to naive recipients. In an experimental allergic encephalomyelitis (EAE) model,
the cells that transferred this tolerance following oral administration of antigen were CD8" T
cells [14]. An important role of CD8" regulatory T cells in the generation and maintenance
of oral tolerance has also been suggested by experimentation in other models [15,16].
Recently, however, CD4" T regulatory cells have also been suggested to play an important

role in the development of oral tolerance [17].
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Although oral tolerance has been extensively studied in autoimmune disease models,
itis only recently that oral tolerance has been demonstrated to prolong first set transplant
survival [7,8,9]. As such, the mechanisms responsible for this graft prolongation by oral
administration of alloantigen are still unclear. It has been reported that oral administration
of alloantigen induces an antigen specific reduction in delayed type hypersensitivity
responses [5,9,18], a decreased mixed lymphocyte response (MLR) [5,9] and a reduction in
allospecific cytotoxic T lymphocyte (CTL) activity [18]. Feeding alloantigen has also been
suggested by some to induce a Th subset "shift" from the type 1 (Thl) responses to type 2
(Th2) responses [5,6,9] and that this is associated with prolonged allograft survival [6,9,12].
In this study, we demonstrate the presence of active CD8" regulatory cells infiltrating
grafts in orally tolerized animals. Adoptive transfer of these CD8" cells to naive rats
transfers the graft tolerance seen in the original fed animals. The presence of high levels
of mRNA for IL-4 in this CD8" population suggests that Tc2 graft infiltrating cells result
from oral transplantation tolerance and mediate the graft prolongation.

This is the first report to demonstrate that oral exposure to alloantigen generates
intragraft regulatory cells which are capable of transferring prolongation of allograft
survival to naive animals. The intragraft regulatory cells are CD8" T cells, which may
regulate rejection responses by Tc2 type activities or by Fas/FasL interaction with

alloreactive T cells.
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Materials and Methods
Animal model
Male Brown Norway (BN, RT1") and Lewis rats (LEW, RT1") purchased from
Harlan Sprague Dawley (Indianapolis, IN) were used as donors and recipients, respectively.
This strain combination is fully disparate at both major and minor histocompatibility
complex loci. Animals were maintained in the Dathousie University Faculty of Medicine
animal care facility and provided with water and rodent chow ad libitum. All animal

experimentation was undertaken in compliance with the guidelines of the Canadian Council

on Animal Care.

Single cell suspensions

Lymphocytes were isolated from the spleen or mesenteric lymph nodes (MLN) and
single cell suspensions prepared following standard protocols (as we have described
previously, [8]). Cells were prepared, washed and used for in vitro experiments in RPMI
1640 medium (Gibco BRL, Life Technologies, Burlington, ON, Canada) supplemented with
20 mM HEPES (USB, Cleveland, OH), 100 U/ml Penicillin, 100ug/ml streptomycin and
10% fetal bovine serum (Gibco BRL). Spleen celis were purged of red blood cells (RBC)
by lysis for 5 min with ACK erythrocyte lysing buffer (0.15 M NH.4Cl, 1 mM KHCO;, 0.1

mM Na,EDTA, pH 7.4). After lysis of RBC, spleen cells were washed in RPMI.

Oral tolerance induction
Lewis rats were fed, without anaesthetic, by intragastric intubation using a 3 1/2 Fr

premature human infant feeding tube (Sherwood Industries, St. Louis, MO). All rats were
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fed 1x10® BN splenocytes suspended in 300 pl phosphate buffered saline (PBS; 0.15 M
NaCl, 0.05 M Na,PO4, pH 7.4) on days -14, -13, -12, -11, -10, and -1, with the day of

kidney transplantation being day 0.

Kidney transplantation

Kidney transplantation was performed as described previously [8]. Briefly, BN rats
were anaesthetized with sodium pentobarbital. After ligation of the abdominal aorta and
vena cava proximal and distal to the renal artery and vein, the left kidney was perfused in
situ with cold (4°C) heparinized 0.9% saline and removed with a cuff of the aorta and the
renal vein, as well as a long piece of the ureter. The donor kidney was kept in cold saline
during the preparation of the Lewis recipient. Following left nephrectomy of the recipient,
the donor kidney was transplanted in an orthotopic position by end to side anastomosis of
the cuff of renal artery to the abdominal aorta, and the renal vein was connected to the
inferior vena cava. The ureter was attached by end to end anastomosis. Three days after the
transplant the right native kidney was removed, leaving rat survival dependent on the

transplanted kidney.

Mixed lymphocyte response (MLR) reaction

Lewis rat spleen, and MLN, responder cells were recovered from kidney transplant
recipients at day 5 post-transplant. BN spleen cells were used as stimulators. Responder
cells (1x10° cells/well) were cultured in NUNC 96-well round-bottomed plates with or
without equal numbers of mitomycin-C (25ug/ml) treated stimulator cells in RPMI media.

The plates were incubated at 37°C for 72 h, then pulsed with 3H-thymidine (1pCi/well) for
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18 h and harvested with an automated cell harvester (Skatron). Proliferation was assayed by

*H-thymidine incorporation.

Isolation of graft infiltrating cells (GIC)

GIC were isolated as we have described previously [8]. Briefly, at 5 days post-
transplantation, rats were sacrificed and kidney allografts were flushed in situ with
heparinized (100 U/ml) 0.9% saline and removed from the rat. The kidney was minced and
then digested in 25 ml collagenase solution (50 pug/ml collagenase (Gibco BRL), 20% FBS
in RPMI). To clear the debris including dead tubular epithelial cells, the cell suspensions
were rapidly passed down a loosely packed glass wool column (300 mg sterile glass wool in
a 10 ml syringe), then mixed with isotonic Percoll (Pharmacia, Piscatawa, NJ) to a
concentration of 30% Percoll and centrifuged at 460xg for 20 min at 10°C. The pellet was
resuspended in RPMI, then loaded on top of a cushion of 70% Percoll (in RPMI) and

centrifuged as above. The cells overlying the cushion were removed for GIC examination.

Flow cytometry
The leukocytes isolated from the kidney graft were incubated with the following

primary antibodies: R73 (anti-af T cell receptor; PharMingen; San Diego, CA), OX-8 (anti-
CDS8; Serotec; Oxford, England), W3/25 (anti-CD4; Serotec) at a concentration of 10 pg/ml
in PBS solution containing 0.5% w/v bovine serum albumin (Boehringer Mannheim,
Indianapolis, IN). The secondary antibody was a polyclonal FITC-labelled anti-mouse IgG
(Organon Teknika, Durham, NC). Following incubation with the FITC-labelled antibody at

a 1:500 dilution, the cells were fixed with 1 % paraformaldhyde in PBS and examined on a
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BD-FACScan.

Purification of CD8+ or CD4+ T cells from GIC

Graft infiltrating T cells were enriched by incubating GIC in warm nylon wool
(Polysciences, Warrington, PA) columns (1 g nylon wool in a 10 ml syringe) with RPMI at
37 °C for 1 h to remove the majority of the B cells, macrophages and other accessory cells.
The enriched population was usually 85% to 90 % T cells as analysed by flow cytometry.
Enriched T cells were incubated with W3/25 or OX-8 (anti-CD4 or anti-CD8 antibody,
supplied by Biotex, Edmonton, Al, Canada) for 30 min, before passage through immuno-
enrichment columns (Biotex), which enrich for CD8+ or CD4+ cells by negative selection.
Purity of CD8+ or CD4+ cells obtained by this method was normally greater than 97%

(assessed by flow cytometry).

Direct cytotoxic T lymphocyte assay

Five days after transplantation, allograft kidneys were removed. Single cell
suspensions of CD8+ cells from the kidney GIC were prepared as effector cells. S1Cr (100
uCi for 1 h at 37°C) labelled BN spleen Con A (2 pg/ml for 72 h) blasts were used as target
cells. The effector cells and target cells were plated in V-bottomed 96-well microtiter plates
(1x10* target cells/well) at effector: target ratios ranging from 100:1 to 12.5:1 in RPMI
media. After incubation at 37°C for 12 h, the plates were centrifuged and lysis was

measured by *'Cr release.
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RT-PCR

Relative (rather than quantitative) RT-PCR was performed as we have described
previously [8]. Briefly, total RNA was obtained from the CD8+ GIC (1-2 x10° cells), using
Trizol (Gibco BRL) as suggested by the manufacturer. RNA was reverse transcribed using
Moloney murine leukemia virus reverse transcriptase (Gibco BRL) and random hexamer
primers (Gibco BRL) according to the manufacturer’s instructions. PCR amplification of
the product of the reverse transcription was achieved with a mixture containing 1 x PCR
buffer, 0.2 mM dNTP, 0.4 um each of sense and antisense primers and 2.5 U of Taq
polymerase (BRL) for 40 cycles. Ten pl aliquots of PCR products were analysed in
ethidium bromide stained agarose gels. Primers were developed from the published
sequences for the respective rat cytokines as we have previously described [8].
Experimental amplicons were compared to the housekeeping B-actin amplicon and relative

amplification within samples was assessed.

Cell transfer

To generate GIC for cell transfer, Lewis rats were fed with 1x10® BN splenocytes on
days -14, -13, -12, -11, -10, and -1 and given kidney transplants on day 0 as described
above. For control GIC, unfed Lewis rats were used as recipients. At day S post
transplantation, whole GIC, CD8+, or CD4+ cell populations were isolated from kidneys of
fed and unfed animals. GIC were transferred intravenously into naive rats that had received
a kidney transplant one day before the GIC injection. The GIC population isolated from one

kidney was transferred into a single paired naive Lewis rat. Three days after kidney



transplantation, the recipient native right kidney was removed, leaving rat survival

dependent only on the transplanted BN kidney.
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Results

Effects of oral exposure to alloantigen on allorecognition

Five days after kidney transplantation, the spleen and MLN were removed from
the rats orally exposed or not exposed to alloantigen. Cell proliferation was assessed by
MLR using mitomycin C treated donor spleen cells as stimulators. In this experiment
sensitization to alloantigen occurs in vivo in response to a kidney transplant. The MLR
was used to assess whether prior oral exposure to alloantigen would decrease this
sensitization induced by the graft. Fig.1 shows the results of the MLR using spleen cells
(Fig. 1A) or MLN cells (Fig. 1B) derived from fed (orally exposed to alloantigen prior to
kidney transplantation) or unfed rats. As shown in Fig. 1, prior oral exposure to
alloantigen led to increased allosensitization, as seen by an increased response to
allochallenge. Data is shown for a representative experiment and also shown is the mean
percentage increase for 5 experiments. Previous alloexposure by the oral route does not
lead to reduced allorecognition and activation, which would be indicated by a
proliferative response lower than that seen in the control MLR where sensitization is
generated by the kidney transplant. In fact in all experiments there was a significant
increase over control MLR with effector cells from the animals previously exposed to
alloantigen by the oral route (271.3 + 77.4 % for spleen, 302.7 + 56.2 % for MLN, taking
the control mean as 100%). In contrast, effector cells from animals orally exposed to
syngeneic spleen cells, or to third party (PVG) spleen cells did not show an increased
MLR after kidney transplantation in comparison to control animals without prior

alloexposure before kidney transplantation (syngeneic = 137.2 + 41.4 % of control; third

party exposure = 113.3 £ 28.6 % of control). These results show that the feeding of
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allogeneic cells to induce antigen specific immune regulation does not prolong allograft
survival by decreasing allorecognition. On the contrary, the treatment regimen appears to

increase alloreactivity.

Phenotype of graft infiltrating cells

The data above show that increased survival of kidney allografts by prior
alloexposure through the oral route was not due to decreased recognition of the
allochallenge. Therefore we hypothesized that the increased survival would be due to a
modulation in the generation, or effector activity, of CD8+ CTL in the graft. To examine T
cell responses in the graft, we isolated GIC at day 5 post transplant. Using flow cytometry,
we found that the GIC contained predominately T cells (approximately 65%,; labelled with
anti-TCR mAb, data not shown) and some macrophages (about 35%, labelled with anti-
Mac-1 mAb, data not shown). We have previously observed that at day 5 post transplant,
the total number of graft infiltrating T cells was decreased by 30% in comparison to controls
[8]. The data in Fig. 2 shows that this decreased number of T cells is due to a decrease in
the number of CD4+ cells. In this figure, data from a representative experiment (Fig. 2A)
and the mean of 5 separate experiments (Fig. 2B) are shown. In fed animals CD4+ GIC are
present at only 60% of control levels whereas there is no significant difference in the CD8+
GIC levels from fed and control animals. Thus, there appears to be no defect in the ability
of CD8+ T cells to transit to the kidney allograft. This suggests either that this CD8+ T cell

population does not contain CTL or that the CTL activity is somehow modulated.
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CTL activity of GIC

To examine whether the CD8+ T cell population in the GIC of the animals orally
exposed to alloantigen contained alloresponsive CTL, we assessed the expression of
cytotoxic mediators in the CD8+ T cell population of the GIC and we also conducted a
direct CTL assay. The mediators we assessed (by RT-PCR) were those well known to be
associated with CTL activity, granzyme B and perforin. In addition, we assessed the
presence of mRNA for FasL which mediates apoptosis in target cells by ligation of Fas. The
results, shown in Fig. 3, clearly demonstrate the presence of abundant mRNA for the CTL
mediators granzyme B and perforin in the CD8+ GIC T cell population from both control
and fed animals. There is no obvious diminution in the expression of the message for these
important cytotoxic mediators suggesting that CTL are present in the CD8+ T cell
compartment of the GIC. Furthermore, FasL expression appears to be increased, rather than
decreased, in the CD8+ T cell compartment of the GIC from the transplanted kidneys of
animals previously exposed to alloantigen. These data indicate that CTL are present in the
CD8+ T cell compartment of these GIC.

To directly assess CTL presence in the CD8+ T cell GIC population we performed a
direct CTL assay [19] using BN allogeneic cells as targets. In this assay, CD8+ T cells from
GIC were immediately incubated with allogeneic target cells, without an in vitro expansion
of CTL precursors, to assess for the presence of mature fully active CTL in the fresh GIC
population. The results, shown in Fig. 4, clearly demonstrate that the CD8+ T cell
population in the GIC of both fed and unfed animals contains mature alloresponsive CTL.

Indeed the CTL activity in the animals which had been orally exposed to alloantigen prior to
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kidney transplant is consistently higher than the CTL activity in the animals without prior
exposure to alloantigen by the oral route (p<0.04).

These data confirm that the prolongation of allograft survival mediated by
allogeneic exposure by the oral route is not due to a deficiency in the generation of
competent alloresponsive CTL or their presence to the graft. This indicates that this

population must be exposed to intragraft modulatory effects.

Cytokine transcription of CD8+ GIC

It has been suggested that oral tolerance can generate CD8+ regulatory cells
[14,20] and/or switch immune responses toward type 2 responses [7,12,17]. Since, in our
experiments, the number of CD8+ GIC T cells remains the same in fed and unfed
animals, but grafts survived much longer in the fed animals, we postulated that the
phenotype of the CD8+ GIC T cells may have shifted to a type 2 CD8+ T cell phenotype
(Tc2). Therefore, we investigated cytokine mRNA from these cells. As shown in Fig. 5,
[FN-y and TGF-B mRNA level were similar in CD8+ GIC T cells from both fed and
unfed animals. However, IL-4 mRNA was only detectable in the CD8+ GIC T cells from
fed animals, but not in the CD8+ GIC T cells from unfed controls. This data suggests
that, in fed animals, at least some of the CD8+ graft infiltrating cells are Tc2 cells and

potentially regulatory cells.

Transfer of CD8+ intragraft regulatory cells
The data above suggest that the CD8+ GIC may be involved in intragraft

modulation as a regulatory cell in animals which have been exposed to alloantigen by the
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oral route. To investigate the existence of regulatory T cells in the kidney, we transferred
allograft GIC from fed or unfed animals into animals which had received a kidney
allograft one day before. GIC for transfer were taken at day S post transplant, because
our previous experimentation has shown significant damage to kidney grafts at this time
point, in control animals, but preservation of kidney architecture in animals orally
exposed to alloantigen (thus indicating the presence of active regulatory events at this
time point).

The results, shown in Fig. 6, confirm the presence of a regulatory cell in the kidney
allograft after oral exposure to alloantigen. Survival of the kidney grafts in the animals
receiving GIC from allogeneic kidney grafts of animals orally exposed to alloantigen was
significantly increased when compared to survival of grafts in animals receiving GIC from
control grafts. The mean survival in the control group was 9 days with the longest survival
being 12 days. The mean survival of the kidneys in animals receiving GIC transferred from
orally treated animals was 22 days with the longest survival being 46 days (p<0.03). This
data suggests that regulatory cells are present in the GIC of the allograft kidney of orally
treated animals.

To confirm that the regulatory GIC are CD8+ T cells, we transferred purified CD8+
or CD4+ GIC populations from allogeneic kidney grafts of animals orally exposed to
alloantigen. As shown in Fig. 7, transfer of CD8+ allograft graft infiltrating cells from
orally pre-treated rats into naive rats significantly prolonged kidney allograft survival in
those rats (mean survival = 89 d; longest survival = 215 d; p<0.01). CD4+ graft infiltrating
cells, in contrast, did not confer increased survival (mean survival 10 d, longest survival 13

d; p>0.05). These data indicate that a population of CD8+, but not CD4+, intragraft
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regulatory T cells are present in the kidney allografts of animals orally exposed to
alloantigen. Note that purified CD8+ regulatory cells showed much more modulatory

activity than whole GIC (compare Fig. 6 and 7).
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Figure 1. Cell proliferation of lymphocytes harvested from Lewis rat spleen (A) and
MLN (B) in response to mitomycin-C treated allogeneic BN splenocytes. Spleen and
MLN were harvested 5 days post transplantation. The proliferation of splenocytes and
MLN cells from fed animals significantly increased compared to unfed controls. In A (a)
and B (a) the data are presented as mean (+/- SD) of triplicate wells from a representative
experiment. A(b) and B(b) show the mean (+/- SE) of all 5 experiments, depicted as a
percentage of proliferation in comparison to cells isolated from the unfed control.

(p<0.02, One-way ANOVA).
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Figure 2. Phenotype of graft infiltrating cells from day 5 post-transplanted kidneys. GIC
were isolated and labeled with w3/25 (anti-CD4) or OX-8 (anti-CD8) mAb and analyzed
by flow cytometry. A: A representative experiment of 5 separate experiments shows the
total number of infiltrating T cells obtained from kidney transplanted into fed and control
animals. B: Mean (+/- SE), from § separate experiments, of the percentage of cells of the
particular phenotype in comparison to GIC isolated from unfed controls (CD4 vs control,

p<0.01; CDS8 vs control, P>0.05, One-way ANOVA).
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Figure 3. Expression of perforin, granzyme and FasL mRNA (by RT-PCR) in CD8+
graft infiltrating T cells. T cells were harvested from the transplanted kidneys at day 5
post transplant from control (left) or fed (right) animals. B-actin amplification was used

as a control.
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Figure 4. Direct CTL activity of CD8+ GIC isolated from day 5 post-transplanted kidney
allografts from fed and control animals. S!Cr labeled allogeneic spleen Con A blasts were

used as targets. These data are representative of 3 separate experiments. (P<0.04, Mann-

Whitney)
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Figure 5. Expression of [L-4, [FN-y and TGF-§ mRNA (by RT-PCR) in CD8+ graft
infiltrating T cells. T cells were harvested from kidney at day 5 post transplant from

control (left) and fed (right) animals. B-actin amplification was used as a control.
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Figure 6. Kidney allograft survival is enhanced by transferring total GIC derived from
allograft kidneys in rats which had been orally exposed (4, n=10) to alloantigen, but not
by transferring total GIC from unfed control rats (l, n=5). Total GIC isolated from a
single kidney allograft were transferred into a single recipient naive rat which had

received a transplant one day earlier. (p<0.03, Mann-Whitney).



% Survival

0 10 20 30 40 50
Days Post Transplant

Figure 6

114



115
Figure 7. Kidney allograft survival is enhanced by transferring CD8+ GIC (¢, n=8), but
not CD4+ GIC (0, n=5) or control GIC (I, n=5). Total GIC isolated from one kidney

allograft were transferred into a recipient naive rat which had received a transplant one

day earlier. (CDS8 vs control, P<0.001; CD4 vs control, p>0.05, Kruskal-Wallis).
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Discussion

Oral tolerance has been extensively studied in a variety of experimental models
[4,10,11]. Depending on the dose and timing of the antigenic challenge, oral tolerance has
been reported to result in clonal anergy or active suppression [4,10,11]. Recently, positive
results ameliorating experimental immune encephalomyelitis (EAE) by inducing oral
tolerance to myelin basic protein (MBP) have led to clinical trials of oral tolerance as a
potential therapy for multiple sclerosis [4,13]. There is considerable evidence [15,16] that
CDS8" regulatory T cells play an important role in the generation and maintenance of oral
tolerance. In the EAE model, oral tolerance-induced protection from disease could be
adoptively transferred to naive hosts with CD8" T cells [14]. This is not to say that oral
tolerance is absolutely dependent on the ability to generate CD8" regulatory cells. Weiner
and colleagues [20), for example, have provided evidence that both CD4" and CD8" T cells
play a role in the induction of oral tolerance in EAE and have also postulated the existence
of a Th3, TGF-P secreting, T cell as a mediator in this complex interaction [17]. Others
[11,21,22] have demonstrated oral tolerance can be induced in CD8-knockout mice and in
mice depleted of CD8" T cells by anti-CD8 antibody treatment. Thus it appears that the
generation of CD8" regulatory cells may be sufficient for, but not essential to, the
development of oral tolerance.

In the experimentation described here, we have examined whether the generation
of such regulatory cells plays a role in the significant prolongation of primary kidney
allograft survival that we have observed following oral exposure to alloantigen [7,8]. We
first assessed allorecognition by MLR in fed versus control animals. The MLR showed

an increase in reactivity in the cells from the animals which had been previously exposed
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to alloantigen by the oral route before transplantation. From this we conclude that there
is no defect in allorecognition produced by induction of immune modulation by pre-
exposure to alloantigen by the oral route. These data confirm that prolongation of kidney
allograft survival is not due to masking of allorecognition, but to an immunomodulatory
effect on the immune response, presumably the development of an immunomodulatory
cell.

Past research in oral tolerance has primarily concentrated on events in the
draining node (MLN) or spleen. The response to allogeneic transplants, however, is
defined at the level of the organ transplant. We were the first to show that oral tolerance
could prolong primary solid organ transplants [7,8] and we chose to use the kidney as our
model so that cells infiltrating the graft would be readily available. On the premise that
rejection is defined at the level of the organ we postulated that critical
immunomodulatory events would also be defined at the level of the transplanted organ,
and examining the graft infiltrating lymphocytes would be of prime importance for
developing an understanding of oral transplantation tolerance. We isolated GIC at day 5
post transplant. This is the latest time point at which we can obtain GIC from control
animals. We have reported previously that the total number of allograft infiltrating T
cells in orally treated animals was decreased at this time by approximately 30% in
comparison to normal untreated control allografts [8]. In the current study, we have
found that this decreased number of T cells is due to a decrease in the number of CD4"
cells. In contrast we found that the CD8" cells, a subset of which are presumably
allospecific CTL, remain intact. CD8" T cells are the major source of CTL and have

been suggested to destroy graft tissue predominantly through direct cytotoxic effects
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against foreign class | MHC expressing cells [23]. Many treatments that prolong
allograft survival, including anti-CD4 mAb [24], portal venous inoculation with
alloantigen [25] and nematode infection [26] are associated with decreased numbers of
CD8" T cells or decreased CTL activity. The undiminished numbers of intragraft CD8" T
cells in our study suggests that the animals that have been orally pre-exposed to
alloantigen do not have a defect in the generation or transit of active CTL to the allograft.
However, it was possible that the CD8" T cells in the graft did not contain active CTL
and that the modulation lay in a defect in CD8" CTL differentiation.

To address this we examined whether that the known characteristics of CTL, that
is the expression of perforin and granzyme as well as FasL [27], were present in a highly
purified CD8" T cell population from the GIC derived from allografts in orally treated
animals. We found no substantial difference in the level of mRNA for the cytotoxic
mediators perforin and granzyme in the GIC from orally treated animals versus controls.
Further, FasL expression appeared to be increased, rather than decreased, in these highly
enriched CD8" GIC T cell populations. This supports the hypothesis that similar
numbers of potentially active mature CTL are present in the grafts of orally treated
animals, even in the face of prolonged graft survival. This hypothesis was confirmed by
our experimentation showing increased, rather than decreased, cytotoxicity to allogeneic
targets in a direct CTL assay, thus amply demonstrating the presence of mature CTL in
the GIC population. This increase in cytotoxicity could be due to the increased levels of
FasL on these cells.

Although many studies have demonstrated that CD8" T cells are not absolutely

essential for allograft rejection, including heart, kidney and skin allografts [28,29], CTL
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have been suggested to play an important role in normal MHC-mismatched allograft
rejection [30]. The potential mechanism of CTL involvement in acute renal allograft
rejection has been suggested to be mediated by cytotoxic granule-based killing but not
FasL induced killing. This is because granule proteins are expressed on biopsies of
kidney undergoing acute rejection whereas FasL is expressed mostly in the absence of
acute rejection episodes [31,32]. In addition, there is a paucity of FasL induced apoptosis
seen in renal allograft rejection, which may be due to low levels of Fas expression on
graft cells [31] or resistance of kidney tubule cells to FasL mediated events [33]. In our
experiments, the presence of these mature, alloreactive, CTL in the orally treated animals
exhibiting prolonged graft survival was perplexing. Interestingly, similar observations of
increased CTL activity exhibited by GIC from kidney allografts have also been reported
in studies of blood transfusion transplantation tolerance, although further characterization
of the cells was not performed [34]. One potential explanation could be that the mature,
alloreactive CTL fall under the control of regulatory elements in situ, and that they are
somehow freed from those regulatory elements in the artificial conditions of the in vitro
assay. Another possibility is that the increased CTL activity observed in our in vitro
experiments is mediated by increased FasL expression, which may be less significant in
vivo, as describe above. However, increased FasL expression by CD8" intragraft
regulatory cells may in fact represent another level of regulation. Some immune
privileged sites, such as the testes and the anterior chamber of eye, are thought to express
their privileged phenotype because of the high levels of FasL expression in these sites
[35-38]. Indeed, Swenson and co-workers [39] have provided evidence that kidney

allografts transfected with FasL cDNA were protected from rejection, presumably
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through interference with alloreactive T cells by a Fas/FasL interaction. In addition, high
levels of FasL expression in renal biopsies from kidneys that are not undergoing acute
rejection support the idea that some degree of FasL dependent immune privilege occurs
in renal graft protection [32]. Therefore, it is possible that the observed CD8" T cells
may be involved in graft protection, rather than destruction, due to their level of FasL
expression which may interact with alloreactive Fas bearing T cells.

This study focused on CD8" GIC T cells isolated from allografts at day 5 post
transplant, a time point where robust graft destruction occurs in control animals and the
latest time point that we could obtain GIC from control transplants. We currently have
no information on whether these CD8" T cells persist throughout the entire period of graft
prolongation.

It has been suggested that type | immunity, mediated mainly by CD4" Thl cells,
is the major effector mechanism of allograft rejection, whereas type 2 immunity favors
allograft survival [40,41]. A shift from type 1 T cell to type 2 T cell responsiveness has
been reported to prolong allograft survival in several experimental models [6,12,26] and
this shift has been associated with an increased presence of I[L-4 [6,9,42]. Since [L-4 is
the only type 2 cytokine which can be reliably correlated with type 2 T cell activity, the
presence of increased levels of IL-4 mRNA in the CD8" GIC from allografts of fed
animals indicates an increased intragraft type 2 response. IL-4 mRNA has often been
found in whole graft extracts or whole GIC population of control rejecting grafts and in
biopsies of human grafts, but has not been previously demonstrated in a graft infiltrating
CDS8" T cell population. This finding, in the context of the tolerizing protocol, suggests

that the regulatory cell is a CD8" Tc2 cell [43,44].
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The presence of regulatory cells can be demonstrated by in vivo cell transfer
[45,46). Others have shown that oral tolerance can induce regulatory cells in the spleen
and draining lymph nodes, using autoimmune disease models [14,17]. We also found
that regulatory cells are present in the spleen (the reactive node for kidney transplants)
and MLN (the draining node of the gastrointestinal tract) following oral exposure to
alloantigens. We were able to transfer graft protection using cells from these sites from
fed animals but not from unfed control animals (Mean survival of rats that received
splenocytes or MLN cells from fed animals was 38 and 24 d respectively, whereas the
mean of survival of rats that received splenocytes or MLN cells from unfed control rats
was 9 d). The presence of regulatory cells in the reactive node may indicate an effect of
oral tolerance and the inductive phase of the responses. Importantly, however, we
demonstrated that regulatory cells were also present in the kidney allograft of fed
animals. Transfer of kidney graft infiltrating cells from orally tolerized animals into
naive animals prolonged graft survival in these animals. This confirms that oral
transplantation tolerance mediates a change at the effector site (i.e. within the transplant).
We chose to harvest cells from the kidney allografts of orally pre-exposed animals at day
5 post transplant because (i) our preliminary histologic evidence has shown that immune
modulation is ongoing at this point [8]; (ii) this is the point at which we know there are
mature CTL in the GIC population of the graft; (iii) this is the latest time point that we
could reliably obtain GIC from control transplants. We compared the effect of transfer of
these cells harvested from orally treated animals with cells obtained from control, non

pre-treated, animals on allograft survival in naive recipients. Our results confirmed that
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oral exposure to alloantigen generates intragraft regulatory cells which are present in the
kidney allograft.

Once we had demonstrated that regulatory T cells exist in the kidney allograft of
animals orally exposed to alloantigen it was important to differentiate between CD4" and
CD8" effects. Since others have previously shown the existence of a CD8" regulatory
cell in the spleens and lymph nodes of orally tolerized animals in other models [14], we
suspected that regulation would occur in this compartment. The data obtained from our
subsequent transfer experiments confirmed that CD8", but not CD4", T cells in the GIC
transfer tolerance. Thus, animals which have been orally exposed to alloantigen develop
CDS8" regulatory cells which are present in the kidney at day 5 post transplant. This cell
population will transfer graft prolongation to a naive animal receiving a kidney
transplant. Interestingly, the transferred CD8" GIC were much better at transferring graft
prolongation than transferred whole GIC, even though the same number of CD8" T cells
were transferred in each instance (compare Fig. 6 and Fig. 7). This suggests that the
whole GIC population contains both effector and regulatory cells.

These data do not rule out the possibility that of CD4" T cells may contribute to
oral transplantation tolerance in ways other than active regulation. However, these data
confirm that generation of CD8+ regulatory cells in response to oral pre-exposure to
alloantigen is sufficient to induce graft prolongation. These intragraft regulatory cells are
capable of transferring prolongation of graft survival to naive animals and may mediate

their effects by IL-4 secretion and/or Fas/FasL interaction with alloreactive T cells.
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5.0 DISCUSSION
5.1 Effect of Oral Administration of Alloantigen on Prolongation of

Kidney Survival

Based on the evidence available at the onset this research program it appeared
likely that oral administration of alloantigen should ablate, to some extent, primary solid
organ allograft rejection. Others had demonstrated that oral administration of allogeneic
splenocytes prevented allo-sensitization by skin allografts and reduced second set
rejection responses to cardiac allografts to a level which is more characteristic of acute
(primary) responses (Sayegh et al 1992, Hancock et al 1993). In these latter experiments,
the effect of oral tolerance on a cardiac allograft rejection was demonstrated on second
set, but not primary, responses. The only data available for amelioration of primary
responses came from experimentation with transplantation of “immunoprivileged” tissue.
He and colleagues showed that feeding donor fresh or cultured keratinocytes or cormneal
cells prolonged comeal allograft survival in mice (He et al 1996).

In the research presented here, the primary immune response to a solid organ
allograft with significant clinical importance (the kidney) is assessed. BN and Lewis rats
were selected as donors and recipients respectively since they are fully MHC disparate.
The data presented here demonstrates that feeding recipients 1x10° live donor
splenocytes five consecutive times starting 2 wk prior to kidney transplantation leads to
kidney allograft survival that was significantly prolonged in comparison to PBS fed or
non fed controls. This prolongation is antigen specific since the feeding of third party

PVG splenocytes did not prolong BN kidney allograft survival. These data confim that
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oral administration of alloantigen is able to markedly prolong primary kidney allograft
survival in an antigen specific manner.

Recently, using the same rat strain combination, Ishido and co-workers (1999)
confirmed our central hypothesis and provided supportive data by demonstrating that oral
administration of donor splenocytes prolongs primary cardiac allograft survival.
Although their data support the hypothesis that feeding allosplenocytes can prolong the
survival of primary solid organ allografts, the survival of their cardiac allografts was only
prolonged by a few days. There are two potential reasons for this reduced efficiency of
oral tolerance in comparison to our results. The first is that their feeding regime was less
effective than the one used in our experimentation. The second is that they used CsA to
help induce tolerance and may, indeed, have done the opposite. Since the mechanisms
underlying oral tolerance are poorly understood, and data presented in this thesis suggest
it may involve the generation of active regulatory cells, then CsA may decrease rather
than increase this tolerogenic effect.

With respect to the feeding regime, tolerance induced by oral administration of
antigens (Hoyne et al 1995) is known to fade over time. This is also true for tolerance
induced by donor blood transfusion (Fabre and Morris 1972). Multiple pre-exposure to
alloantigen is more effective than a single pre-exposure in generating transplantation
tolerance (Fabre and Morris 1972, Hoyne et al 1995). This suggests that continuous
exposure to antigen may enhance tolerance. Therefore, our final feeding regime was
designed to boost the tolerance by repeated exposure to alloantigen by the oral route.
This was accomplished not only by multiple pre-feeding but also by “post-feeding” the

rats after transplantation until the termination of the experiment. Such post feeding
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markedly enhanced the prolongation of kidney allografts compared to the prolongation
induced by pre-feeding alone. These data demonstrate, for the first time, that continuous
exposure to alloantigen through the gut can enhance the effect of oral transplantation
tolerance.

Both antigen dose and time of administration influence the induction of oral
tolerance (Strobel and Mowat 1998). In our experiments, we did not investigate the
influence of antigen dose and time of administration on prolongation of allograft survival.
This study focused on the feasibility of establishing oral transplantation tolerance to
kidney allografts and, once established, the mechanism of expression of that tolerance.

An important role of the liver in oral tolerance has been suggested by evidence
that bypassing the portal system by portacaval shunting reduced or abrogated orally
induced tolerance (Cantor and Dumont 1967, Callery et al 1989). One way in which this
role has been investigated in the transplantation arena is by portal venous inoculation of
donor cells or antigens to establish “portal tolerance”. For example, portal vein
inoculation of alloantigens significantly suppresses both humoral and cell mediated
responses to alloantigen (Fujiwara et al 1986, Sato et al 1988, Gorczynski 1992, 1995).
Portal tolerance has been reported to prolong survival of allografts, including skin, heart
and kidney (Kamei 1990, Gorczynski 1992, 1998).

However, there is controversy about the importance of the liver in the induction of
oral tolerance. Enzymic digestion of proteins in the GI tract has been suggested to be
critical for the induction of oral tolerance (Michael 1989, Hanson et al 1993, Jain et al
1996, Barone et al 2000). As an example, oral administration of bovine serum albumin

(BSA) suppresses anti-BSA antibody production in mice. However, when BSA is
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delivered directly into the ileum (bypassing the stomach, duodenum and jejunum),
tolerance induction does not occur (Michael 1989, Stransky et al 1998). In marked
contrast, delivery of enzymatically digested BSA into the ileum did induce tolerance.
Others have shown that oral tolerance (indicated by suppressed humoral responses and
spleen cell proliferation) can be induced by feeding OVA, but not by feeding
encapsulated OVA. Encapsulation protects OVA from digestion in the upper GI tract
(Jain et al 1996, Barone et al 2000, Vogel et al 1998). These data suggest that digestion
in the GI tract is critical for the induction of oral tolerance and further suggest that oral
tolerance and portal tolerance may differ in significant ways. On the other hand,
undigested antigen delivered rectally (Witkin et al 1984, Richards et al 1984) or jejunally
(Ishido et al 1999) induces tolerance. The role of these various organs in the induction of
oral tolerance clearly remains to be completely elucidated.

Unlike the observation that induction of oral tolerance requires enzymatic
digestion of antigen in GI tract in the OVA model described above, we demonstrate that
direct delivery of alloantigen through portal vein (to avoid digestion of alloantigens in the
GI tract) can induce transplantation tolerance. In congruence with our results, Ishido and
co-workers (1999) demonstrated that both jejunal and oral administration of
allosplenocytes induces transplantation tolerance. Such differences in observed induction
of oral tolerance between feeding OVA or alloantigens may reflect intrinsic differences in
the antigens responsible for tolerance induction. It is also possible that the mechanism of
tolerance induced by oral or portal administration of allogeneic cells may be completely
different. Allogeneic cells administrated by the oral route may be destroyed and

degraded, and alloantigens are likely presented as peptides by recipient antigen
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presenting cells to the gut-associated lymphoid tissue. This implicates indirect
recognition of alloantigen in the generation of tolerance. The evidence that oral tolerance
to alloantigen can be equally generated by feeding live or dead allogeneic cells or
allogeneic peptides (Sayegh et al 1992 a, b) supports the position that intact allogeneic
cells are not required for tolerance induction through the oral route. In contrast,
allogeneic cells administrated through the portal route may present alloantigens to the
recipient immune system directly and generate tolerance by direct recognition of

alloantigen without the requirement of recipient antigen presenting cells.

5.2 Active Suppression Mediates Oral Transplantation Tolerance

Oral tolerance has been suggested to result from the generation of regulatory T
cells that mediate active suppression. Active suppression can be demonstrated by
decreased cell proliferation of splenocytes upon re-challenge in vitro (Miller et al 1991,
1992) as well as by the ability to transfer this effect to naive animals by cell transfer
(Santos et al 1994, Franco et al 1998). Such regulatory cells have been found in Peyer’s
patches, MLN and the spleen (Mattingly 1984, Gonnella et al 1998). Active suppression
has been associated with type 2 immune responses, presumably mediated by regulatory
cells that secrete [L-4, IL-10 and TGF-f (Rizzo et al 1994, Gonnella et al 1998).

In the experimentation presented here, tolerance could be transferred to naive
animals with cells from MLN, spleen or GIC. This suggests that regulatory cells are
present in these sites. Since regulatory cells have been previously reported to be
generated in PP, and then to migrate to the MLN and the spleen (Richman et al 1978,

Mattingly 1984), it is possible that the regulatory cells seen in the spleen and MLN in this
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experimentation follow the same pattern and are essentially the same phenotype of cells
but in transit to the allograft. This is of some importance since the GIC in the kidney are
likely alloreactive cells derived from allosensitization in the spleen, but given the transit
noted above, GIC may also contain regulatory cells originating in the gut associated
lympbh tissue, including the MLN. It is thus possible that the regulatory cells in the GIC
in these experiments come from the spleen and/or the MLN.

It has been reported that regulatory cells generated by oral tolerance mediate
active suppression mainly by their cytokine secretion. IL-4 and TGF-p are suggested to
be the most important cytokines that mediate this active suppression. For example,
feeding MBP generates MPB-specific regulatory cells that secrete high levels of IL-4 and
TGF-B in the fed animals (Miller 1992, Inobe et al 1998). These regulatory cells can
transfer oral tolerance to naive animals. Injection of anti-[L-4 mAb (Yoshino 1998) or
anti-TGF-B mAb (Inobe et al 1998) at the time of antigen feeding abrogated the induction
of oral tolerance. It is unclear whether IL-4 and TGF-p are required for, or result from,
oral tolerance. However, enhanced IL-4 and TGF-PB expression is often associated with
established oral tolerance.

Likewise, in the present study, the regulatory cells in the GIC isolated from orally
tolerized animals express significantly increased levels of IL-4 and TGF-B. These data
are consistent with an important role for [L-4 and/or TGF- in the establishment and
maintenance of oral transplantation tolerance.

In transplantation tolerance, various immunosuppressive regimens applied for the
induction of transplantation tolerance have been demonstrated to generate a type 2

immune response, indicated by increased type 2 (especially [L-4) but decreased type 1
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cytokine secretion (Hall 2000). These transplantation tolerance models often exhibit a
decreased allo-specific cell proliferation of splenocytes in vitro following alloantigen
challenge (Gorczynski 1992, Chen et al 1996, Lehmann et al 1997). However, increased
cell proliferation has also been reported in several transplantation tolerance models
(Yoshimura et al 1990, Tomura et al 1997, Liwski et al 1999). This may be due to
enhanced type 2 cytokine expression. Recent evidence suggests that type 2 cytokine
expression can enhance T cell proliferation and induce resistance to AICD (Zhang et al
1997, Varadhachary et al 1997, Liwski et al 1999). In addition, [L-4 has been suggested
to be a primary T cell growth factor (Weiner et al 1997). As an example, infection of
mice with the nematode parasite Nippostrongylus brasiliensis (Nb) prolongs cardiac
allograft survival. This prolongation is associated with increased antigen-specific cell
proliferation and enhanced type 2 immune responses (Liwski et al 2000). The increased
cell proliferation of splenocytes in Nb infected mice was shown to be due to [L-4 since
anti-IL-4 treatment in these experiments blocked the T cell proliferation, and rIL-4
enhanced the proliferation (Liwski et al 1999, 2000). In addition to IL-4, [L-6 has also
been shown to enhance cell proliferation when added to cultures of splenocytes from
alloantigen exposed animals, and injection of IL-6 prolongs skin allograft survival. This
later prolongation was associated with increased, rather than decreased, splenocyte
proliferation (Tomura et al 1997).

In the experimental data presented here, spleen and MLN cells from orally
tolerized animals exhibited increased cell proliferation when compared to the cells from
non-fed or third party fed control animals. Although the cytokine secretion pattern from

spleen and MLN was not examined, it was clear that GIC from orally tolerized animals
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expressed enhanced [L-4 mRNA in comparison to unfed controls. Since the regulatory
cells present in the spleen, the MLN and the GIC are likely the same phenotype (as
described above), it is possible that regulatory cells in the spleen and MLN from tolerized
animals also express enhanced [L-4. Therefore, the increased cell proliferation of
lymphocytes from spleen and MLN in orally tolerized animals may be due to the
increased IL-4 expression on these regulatory cells.

Oral tolerance has also been suggested to be mediated by clonal anergy/deletion.
However, in this experimentation, both the increased MLR and the ability to transfer
tolerance with T cells strongly suggest a regulatory mechanism, rather than
anergy/deletion as the primary contribution to the oral transplantation tolerance described
here.

Since oral tolerance is a complex phenomenon and several sites can be involved
in tolerance induction, one cannot rule out the possibility that the regulatory cells found
in the MLN, the spleen and the GIC are not phenotypically similar. There is evidence to
support this position since, in some cases, they exhibit different effects when transferred
to naive animals (Richman et al 1981, Franco et al 1998). It has been suggested that
active suppression occurs in PP and MLN whereas anergy/depletion occurs in spleen
(Franco et al 1998). This position is clearly in opposition to what we have found in the
oral transplantation tolerance model. In the data presented here, both spleen and MLN
cells transferred tolerance although it is unknown if the transfer is by the same
mechanism. To confirm the relationship between these cells, the phenotype of the
regulatory cells in MLN and in the spleen must be characterized. Of significant interest

would be a comparison of the cytokine secretion pattern and/or mRNA expression from
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lymphocytes from the spleen and the MLN of orally tolerized animals. Further, since the
MLR for both spleen and MLN is increased, it would be of interest to examine the effect
of anti-IL-4 mAb treatment of the MLR culture on cell proliferation. However, such
experiments were beyond the scope of the present research project, since the focus of this
research was the expression of tolerance at the level of the transplanted organ (in the
GIC).

It is worth mentioning that there is a dissociation between the MLR experiments
and the cell transfer experiments in terms of the presence of regulatory cells from spleen,
MLN and GIC. Note that if regulatory cells are present in the spleen (as indicated by the
ability to transfer tolerance with these cells) it might be expected that MLR in this
population would be decreased in vitro as demonstrated in other oral tolerance models
(Sayegh et al 1992). A possible explanation is that in the cell transfer experiments,
spleen or MLN cells were transferred from animals that were orally tolerized without
receiving kidney transplants. The spleen and the MLN from these animals clearly
contain regulatory cells. However, after kidney transplantation, the regulatory cells in the
spleen and MLN of tolerized animals may migrate to the allograft and play a role in
preventing graft rejection by modulation of the immune response in the local site.
Therefore, it is possible that at day 5 post transplantation, GIC from tolerized animals
contain regulatory cells that have migrated from the spleen and the MLN. However, the
spleen and the MLN may not retain regulatory cells. If this is the case, MLR performed
at day $ transplantation from oraily tolerized and kidney transplanted animals may reflect
proliferation in the absence of regulatory cells. Therefore, the increased cell proliferation

of lymphocytes from spleen and MLN in these animals may be due simply to a normal



139
primed response due to pre-exposure to alloantigen. Interestingly, several observations
of increased cell proliferation of splenocytes in transplantation tolerance models were

obtained post transplantation (Tomura et al 1997, Yoshimura et al 1990, Liwski et al

1999).

5.3 Graft Infiltrating Cells

Graft rejection is predominantly induced by cell mediated immune responses.
After revascularization of the allograft, allosensitization probably occurs in the spleen to
generate alloreactive cells. These alloreactive cells infiltrate the graft and play a effective
role in destroying the grafts. It has been demonstrated that dramatic cellular infiltration is
associated with acute rejection (Hall 1991), and the effector responses which destroy
allogeneic transplants occur locally (Hall 1991). Therefore, to evaluate the mechanism of
prolongation of kidney allograft survival induced by oral exposure to alloantigens, graft-
infiltrating cells must be analyzed. Although most research in oral tolerance has
primarily concentrated on events in the draining nodes or spleen, we postulated that
critical immunomodulatory events would also be defined at the level of the transplanted
organ, and that examining the graft infiltrating lymphocytes would be of prime
importance for developing an understanding of oral transplantation tolerance. Using
collagenase to digest the kidney graft, we were able to isolate GIC at day 5 post
transplant from orally tolerized and non-tolerized control animals. This is the latest time
point at which we can obtain GIC from control transplants because of the extent of
transplant fibrosis present at later time points. It has been reported that the enzyme

treatment does not affect the surface glycoprotein pattern of the treated cells and does not
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affect the surface receptor structure of the infiltrating leukocytes necessary for their
classification and functional analysis (von Willebrand and Hayry 1978). The transfer
experiments confirmed that the digestion process did not significantly alter the function
of the GIC regulatory cells, since we were able to transfer tolerance with GIC obtained by
the enzyme digestion.

In the experimentation described in this thesis, T cells were the most prominent
cell population in the immune cell infiltrate of the kidney allografts. These results are
consistent with the findings obtained in other kidney transplantation models in rats (von
Willebrand and Hayre 1978). However, the data in this thesis demonstrates that there is a
significant decrease in the number of T cells infiltrating kidney allografts in the orally
tolerized animals as compared to control groups. There are a number of potential reasons
for this decrease in graft infiltrating T cells in the orally tolerized animals. There could
be a decrease in the number of alloreactive lymphocytes generated in response to the
transplant challenge in the animals which had previous oral exposure to alloantigens.
Such deletion of antigen specific lymphocytes has been suggested to be one mechanism
of oral tolerance (Strober et al 1998, Faria and Weiner 1999). However, this seems an
unlikely explanation for the data presented here because we found increased, rather than
decreased, spleen and MLN cell proliferation in response to alloantigen challenge in the
fed animals. Another possibility is that lymphocytes are generated normally but their
infiltration into the grafts is blocked. This could occur if adhesion molecules on the
lymphocytes or on graft cells were modulated since adhesion molecules are suggested to
be critical to recruit lymphocytes into the graft (Grau et al 2000, Robertson et al 2000).

There is no evidence to support or refute this conjecture at this time. A third possibility is
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that alloreactive lymphocyte infiltration is not reduced but that lymphocytes are
eliminated in the allograft. Although we do not have direct evidence to prove this,
histological examination of the allografts at day 5 post transplants suggests that more
GIC are present than are obtained as viable cells after enzymatic digestion. It is therefore
possible that a significant amount of cell death may be occurring in the graft. To confirm
such elimination of lymphocytes in the local grafts, double staining by TUNEL and anti-
CD3 would need to be performed to examine whether there is an increase in apoptosis of
lymphocytes in the grafts from orally tolerized animals.

By histological analysis, there is a substantial mononuclear cell infiltrate on day 5
post transplant in the kidney grafts of both fed and unfed animals, but there is decreased
cell infiltration at later time points in the tolerized animals (day 23 and 105). This
decreased cellular infiltration correlated with marked preservation of tubular and
glomerular structure. Our results are consistent with observations obtained from
experiments with blood transfusion induced transplantation tolerance by Armstrong and
colleagues (1987). In their experiments, preoperative injection of donor strain blood
significantly prolonged kidney allograft survival in rats. Histological examination of the
grafts at various time points after kidney transplantation showed dynamic changes in
cellular infiltration in tolerized animals in comparison to control animals. Grafts from
tolerized animals exhibited a greater cellular infiltration at day 3 post transplant.
However, similar levels of infiltration were seen at day 5 post transplant and fewer
infiltrating cells were seen at later time points (Armstrong et al 1987). An early increase

in cellular infiltration has been suggested to be required for the induction of
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transplantation tolerance (Armstrong et al 1987). It is possible that this early infiltration

represents the activity of a suppressive phenotype of infiltrating cell.

5.4 CD8+ GIC

Both CD4+ and CD8+ T cells are critical for graft rejection. CD4+ T cells
provide help for generating effector cells, including activated macrophages (in DTH-like
responses) and CTL. CD8 + T cells are thought to be the major source of CTL in
transplantation. To investigate the expression of oral transplantation tolerance induced in
our experiments, we characterized the phenotype of graft infiltrating cells from day 5
transplants. We found a significantly decreased number of CD4+ T cells in the kidneys
of orally tolerized animals in comparison to controls. The numbers of CD8+ T cells in
both groups were similar. This was surprising since CD8+ T cells have been suggested
to play a major role in graft rejection through direct cytotoxic effects against foreign class
I MHC expressing donor kidney tubule cells (23). Many treatments that prolong allograft
survival, including cyclosporine (Bradley et al 1985, Mason and Morris 1984), anti-CD4
mAb (Motoyama et al 2000), portal venous inoculation with alloantigen (Gorczynski et al
1992, 1995) and nematode infection (Ledingham et al 1996, Liwski et al 1999) are
associated with decreased numbers of CD8+ T cells or decreased CTL activity. These
data suggest that other methods of establishing transplantation tolerance may depend on
the inhibition of CD8+ T cell infiltration and/or suppression of CTL activity.

However, in tolerance models using donor blood transfusion, kidney allografts
showed high levels of cellular infiltration early after transplantation with the majority of

the cells being CD8+T cells, not CD4+ T cells (Armstrong et al 1987, Wood et al 1987,
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1988). This observation is similar to our finding. In our experiments, undiminished
numbers of intragraft CD8+ T cells in the kidneys of tolerized animals suggest that such
animals do not have a defect in the generation or transit of alloreactive CD8+ T cells to
the allograft. However, it is possible that these CD8+ T cells did not contain active CTL
and that the modulation observed lay in a defect in CD8+ T cell differentiation to active
CTL.

To address this we examined the expression of perforin, granzyme and FasL,
characteristic of mature CTL activity (Henkart 1999), in a highly purified CD8+ GIC
population. We found no substantial difference in the level of mRNA for the cytotoxic
mediators perforin and granzyme in the GIC from orally treated animals versus controls.
Further, FasL expression appeared to be increased, rather than decreased, in these highly
enriched CD8+ GIC T cell populations from animals orally exposed to alloantigen before
transplantation. These findings support the hypothesis that similar numbers of potentially
active mature CTL are present in the grafts of orally treated animals, even in the face of
prolonged graft survival. This hypothesis was confirmed by our experimentation
showing marked cytotoxicity to allogeneic targets in a direct CTL assay, thus amply
demonstrating the presence of mature CTL in the GIC population.

Clearly, once removed from the recipient, the CD8+ GIC are relieved of any
suppressive effects with regard to their cytotoxicity. Indeed, when purified from the
kidneys, CD8+ GIC from orally tolerized animals are more active killers than GIC from
normal rejecting allografts. The fact that there is no drop in these competent CD8+ CTL
numbers in the kidneys of orally tolerized animals, but yet there is clear protection from

immune mediated destruction in these organs is difficult to explain. One possibility is
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that the reduced numbers of CD4+ T cells in these grafts may limit CD4+ T cell help for
CTL activity but this is doubtful given the ability of these enriched CD8+ CTL to kill, in
vitro, in the absence of CD4+ help. It is more probable that this population of graft
infiltrating CD8+ T cells is heterogeneous and contains both active allo CTL and
regulatory T cells. Freed from the environment of the graft, the CTL are effective allo
killers. In the graft environment the allo killing activity is somehow blocked or
regulated. Another possibility is that CTL activity against the Con A stimulated
splenocyte blasts examined in vitro does not accurately predict killing of allogeneic
grafts. It has been suggested that there is a dissociation between tissue destruction
induced by CTL in vivo and cytotoxicity measured in vitro (Steinmuller et al 1990,
Hadley et al 1996). For example, graft-infiltrating cells isolated from skin allografts
exhibit high cytotoxic activity against allo-Con A blasts, but do not kill skin epithelium
cells effectively (Yamamoto et al 1998). Furthermore, graft infiltrating cells isolated
from rejecting human kidney allografts exhibit high levels of cytotoxicity to donor-
derived Con A blast cells, but exhibit weak cytotoxicity to kidney parenchymal cells (von
Willebrand and Hayry 1978). Thus there is a possibility that the CTL activity we have
seen in vitro does not accurately reflect the ability of these cells to kill in vivo. This
could explain the discrepancy between the in vitro killing seen in our experiments and the
lack of tissue destruction in the kidney allografts in orally tolerized animals.

There are other potential explanations of why high in vitro CTL activity does not
correlate with graft destruction. Perhaps CD8+ CTL are not critical for allograft
rejection. There is evidence to support this possibility. For example, depletion of CD8+

T cells does not protect allografts from acute rejection in several transplantation models,
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including skin, heart and kidney (Gracie et al 1990, Bishop, et al 1993, Mannon et al
1995, Douillard et al 1999). In addition, CD4 deficient mice did not reject skin and heart
allografts even though CD8+ T cells are present (Krieger et al 1996). However, there is
evidence that CD8+ T cells do play a role in allograft rejection. First, adoptive transfer of
allo-sensitized CD8+ T cells into nude animals induces allograft rejection (Prowse et al
1983). Second, CD8+ T cells have been implicated in the rejection of skin allografts in
the absence of CD4+ T cells (Rosenberg et al 1986). Third, although depletion of CD8+
T cells by mAb does not prevent graft rejection in certain models, it does prolong
allograft survival (Douillard et al 1999, He et al 1999). In fact, the data available on the
role of CD8+ T cells in graft rejection is mixed and often contradictory. This may be
because CD8+ T cells from some animal strains are unable to be activated without CD4
help, whereas CD8+ T cells from other stains can be activated and proliferate
independent of CD4+ T cell help. These latter CD8+ T cells are capable of generating
CTL by their own cytokine production (Hall 1991). Therefore, CD8+CTL generated in a
CD4 independent manner may be responsible for skin allograft rejection in the absence of
CD4+ T cells (Andrus et al 1984, Rosenberg et al 1986).

It is also possible that the CD8+ CTL generated by oral administration of allo-
antigen in our experimental model may have low avidity to alloantigen, resulting in limited
damage to the allograft. It has been demonstrated previously that the avidity of CTL to allo-
antigen is important for allograft rejection (Van Emmerik et al 1997). In their cardiac
allograft model, high avidity CD8+ or CD4+ CTL were implicated in transplant rejection,

whereas low-avidity CTL were not (Van Emmerik et al 1996, 1997).
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In humans, CD8+ T cells can be isolated from human renal allografts (von
Willebrand and Hayry 1978, Tilney et al 1979). Such infiltrating cells exhibit greater
cytotoxicity to donor leukocytes than circulating cells, suggesting an enrichment of active
CTL in the grafts. However, since all patients who receive transplants are treated with
immunosuppressive drugs, the presence of CTL in the grafts does not eliminate a
potential role for them in transplantation tolerance. In fact, increased cytotoxic activity
has been reported in GIC from blood transfusion transplantation tolerance experiments
(Armstrong et al 1987, Dallman et al 1987, 1988, Quigley et al 1987, 1988). These data
are consistent with our finding that GIC from kidneys of tolerized animals exhibit high in
vitro CTL activity.

To investigate the relationship between CTL activity in vitro and transplantation
tolerance in vivo, Wood and co-workers (1989) transferred GIC from kidney transplants
from blood transfusion treated and untreated control rats into blood transfusion tolerized
animals which had received kidney transplants. They found that GIC from the kidneys of
control rats broke the transplantation tolerance in the recipients. In contrast, GIC from
kidney transplants of tolerized animals did not break tolerance (Wood et al 1989).

Several possibilities were suggested based on these observations. First, the target antigen
expressed on in vitro targets might not be expressed on the cells in the nonrejected kidney
grafts. Second, the activity of cytotoxic cells might be blocked, in vivo, in tolerized
animals. The blocking could be mediated by the presence of donor specific antibodies or
by suppressor cells, although it is unclear if suppressor cells can block fully activated
cells. Third, it is possible that the cytotoxicity observed in vitro is irrelevant to graft

rejection. Therefore, these authors suggested that cytotoxic cells examined in vitro alone
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are not sufficient to predict kidney allograft rejection. However, in their experiments,
they did not comment on whether these cytotoxic GIC are able to induce suppression. In
addition, they did not further investigate which cell population in the GIC is responsible
for maintaining the transplantation tolerance.

A role for CD8+ T cells in tolerance has been suggested from work in many
experimental models. For example, oral administration of MBP prior to systemic
immunization with MBP protected rats from developing EAE. The protection could be
adoptively transferred from tolerized rats to naive recipients with MLN or spleen CD8+ T
cells, but not with CD4+ T cells (Lider et al 1989, Miller et al 1991, 1992). Likewise
oral tolerance induced by feeding mice OV A could be adoptively transferred to naive
animals by CD8+ T cells, but not CD4+ T cells (Ke et al 1996, 1997). Ina
transplantation model, transfusion tolerance was abrogated by depleting CD8+ T cells
with anti-CD8 mAb prior to blood transfusion, suggesting that CD8+ T cells are required
for the induction of transfusion tolerance (Douillard et al 1996, 1999). When the anti-
CD8 mAb was given after blood transfusion but before the engraftment, transfusion
tolerance was not abrogated. Clearly once transfusion tolerance has been established, the
alloactivated CD8+ T cells are resistant to depletion by mAb (Douillard et al 1999).
Alloactivated CD8+ T cells resistant to anti-CD8 mAb depletion have been confirmed by
FACS analysis (Douillard et al 1999).

We have demonstrated that CD8+ GIC from orally tolerized animals are able to
transfer transplantation tolerance to naive animals, suggesting that these CD8+ GIC are
regulatory cells. These regulatory cells exhibited increased CTL activity to

allolymphocytes and increased FasL expression. Since we used a direct CTL assay to
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assess cytotoxicity of CD8+ GIC in our experiments, we avoided potentially misleading
results which could be expressed in a conventional CTL assay. Conventional assessment
of CTL activity is carried out after in vitro expansion of CTL precursors. However, the
characteristics of allo-reactive cells in vivo may be functionally changed by expansion in
vitro. Precursors ex vivo may differentiate into different cells in vitro than they would in
the in vivo milieu. For example, CD8+ T cells derived from kidney allografts
spontaneously surviving for more than 3 weeks express low levels of TCR. However,
after 4 days stimulation in culture with alloantigen, TCR expression increases
dramatically and allospecific CTL activity is generated (Mannon et al 1998). These data
suggest that an in vitro expanded population may not reflect the situation in vivo,
especially with respect to cytotoxic activity. Therefore, in our experiments, CTL activity
was evaluated directly from freshly isolated GIC. The in vitro cytotoxic data here,
however, does have a potential drawback. For assessment of cytotoxicity the target cells
used are mitogen stimulated lymphocyte blasts, a standard technique for such assays in
that it allows the more accurate JAM assay to be used as a measure of cytotoxicity. It is
possible, however, that although these CD8+ CTL are effective killers against
lymphocytes in vitro they do not kill kidney tubular epithelial cells in vivo. It is also
possible that these cells kill lymphocytes in vivo. If this is the case, CD8+ CTL may kill
alloreactive Fas bearing T cells, potentially CD4+ T cells, in the grafts, resulting in

protection of the graft.

5.5 Effects of Fas/FasL Interaction on Transplantation Tolerance

We hypothesized above that regulatory CD8+ T cells may kill alloreactive CD4+
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lymphocytes in the kidney grafts by Fas/FasL interaction. This hypothesis is based on our
observation that CD8+ regulatory GIC from orally tolerized animals express higher levels of
FasL mRNA and exhibit increased CTL activity compared to cells from unfed controls.
These CD8+ T cells, however, did not induce graft rejection but protected grafts when
transferred to naive animals. Therefore, high levels of FasL expression and CTL activity
may contribute to the oral transplantation tolerance.

This hypothesis is supported by a large body of evidence for a critical role of
Fas/FasL interaction in maintaining immune homeostasis, immune privilege and
transplantation tolerance. For example, expression of Fas and FasL on lymphocytes is
necessary for maintaining normal immune homeostasis since mice deficient in Fas (/pr) or
FasL (gl/d) exhibit lymphoproliferation and autoimmune disease (Suda and Nagata 1997).
This is due to the lack of apoptosis of lymphocytes. Further, it has been reported that
superantigen activated CD8+ T cells can kill antigen activated CD4+ T cells in a Fas/FasL
dependent manner (Noble et al 1998).

The testis and eye are believed to be immunoprivileged sites where limited immune
reactions are initiated in response to antigen challenge. The limited immune reaction is due
to the constitutive expression of FasL on sertoli cells of the testes and parenchymal cells of
the eye. Lymphocytes infiltrating the eye in response to viral challenge are eliminated by
apoptosis, whereas viral challenge in FasL deficient mice (g/d) results in a severe ocular
inflammatory response (Griffith et al 1995). FasL+ sertoli cells from the testes transplanted
under the kidney capsule of allogeneic recipients are resistant to graft rejection, whereas
cells from the testes of FasL deficient mice (gld) undergo acute rejection (Bellgrau et al

1995). Similar observations of FasL expression on allografts have been reported in the
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comneal transplantation model (Stuart et al 1997, Yamagami et al 1997). In this model,
grafts from wild type donor mice contained apoptotic mononuclear cells, indicating the
induction of apoptosis of infiltrating cells by the grafts, whereas rejecting grafts from FasL-
donors contained numerous inflammatory cells without sign of apoptosis (Stuart et al 1997,
Yamagami et al 1997). These data suggest that FasL expression on the grafts protects the
grafts from rejection by inducing apoptosis of infiltrating cells through the interaction with
surface Fas molecules on infiltrating alloreactive T cells.

The effect of Fas/FasL interaction on graft protection can be further demonstrated by
the co-transplantation of allografts along with FasL+ cells. Islet allografts co-transplanted
with genetically engineered syngeneic myoblasts expressing FasL under the same kidney
capsule do not exhibit rejection. However, when islets and FasL+ myoblasts are
transplanted under the capsules of contralateral kidneys, the islet grafts are rejected (Lau
et al. 1996). These results suggest an important role of local Fas/FasL interaction in graft
protection. Presumably the provision of the FasL signal by the transfected syngeneic
myoblasts within the local environment of an islet allograft depletes infiltrating allo-
activated T cells that express Fas and therefore protects the islet allograft from destruction
by the alloreactive lymphocytes. However, others have suggested that the Fas/FasL effect
need not be local. FasL bearing allogeneic testes cells transplanted under one kidney
capsule protect islet grafts transplanted under the capsule of the contralateral kidney.
This protection is dose dependent (Takeda et al 1999). The reasons for this systemic
effect are unclear and explanations have been unconvincing. For example, it has been
suggested that because in this case the FasL+ testes cells were allogeneic, not syngeneic,

these cells attract alloreactive T cells to the site and eliminate these T cells by Fas/FasL
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interaction. This results in a generalized decrease in alloreactive T cells in the immune
system and protects the contralateral islet grafts from rejection. Given that these
transplants are into immune privileged sites (kidney capsule) this may be possible but it is
unlikely.

Solid organs genetically engineered to express high levels of FasL can also be
protected from rejection. Swenson and coworkers (1998) demonstrated that kidney
allografts transfected with FasL were resistant to acute rejection. The amount of cellular
infiltration was similar in both FasL transfected and control grafts, but the FasL
transfected grafts exhibited well preserved structure and prolonged graft survival. These
data suggest that FasL expression in the solid organ can regulate alloimmunity,
presumably by eliminating alloreactive lymphocytes in the local environments.

However, in a cardiac allograft model, FasL transfected grafts, either syngeneic or
allogeneic, are not protected from the rejection. Instead, FasL transfection accelerates
graft rejection (Takeuchi et al. 1999). This accelerated rejection is associated with
massive neutrophil infiltration. Similar observations of accelerated rejection have also
been reported in experiments involving transplantation of syngeneic tumor cells or
allogeneic pancreatic islet cells engineered to express FasL (Seino et al. 1997, Kang et al.
1997, 2000). In these experiments, the grafts are rejected by neutrophils. It is speculated
that FasL itself may function as a chemokine for neutrophils or that it, directly or
indirectly, activates neutrophils (Turvey et al 2000). It is unclear why FasL expression in
some experiments induces apoptosis of alloreactive T cells without activating
neutrophils, but in other experiments, the FasL expression attracts and activates

neutrophils, resulting in accelerated graft rejection. It may be dependent on numerous
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factors, such as the level of FasL expressed on the cells or grafts, method of gene
transfection used and immune status of the host (Li et al 1998, Turvey et al 2000). For
example, liver allografts transfected with 180 pg of FasL-expressing plasmid vector
(pFasL) are protected from immune rejection, whereas similar allografts transfected with
240 or 360 ug of pFasL exhibit hepatocyte apoptosis and graft rejection (Li et al 1998).
In addition, tumor cells transfected with FasL are rejected when transplanted
subcutaneously or intraperitoneally, but are protected when transplanted under the kidney
capsule (Seino et al 1997).

Recent evidence revealed that Fas/FasL interaction is not absolutely necessary for
the induction of transplantation tolerance because transplantation tolerance can be
induced in Fas deficient animals (Xian Chang Li et al 1999, Wagener et al 2000).

There is no direct evidence, as yet, to support a hypothesis that regulatory CD8+
T cells play a central role in transplantation tolerance by killing allo-reactive syngeneic
CD4+ lymphocytes by Fas/FasL interaction. However, Fas/FasL interaction is critical in
eliminating syngeneic clonal expansion of CD4+T cells by CD8+ T cells after viral or
superantigen infection (Noble et al 1998), and is important for maintaining normal
homeostasis (Sakata et al 1998). This suggests that T cells are indeed able to induce
apoptosis of syngeneic T cells. In in vitro experimentation, T cells activated by
alloantigen express upregulated Fas and FasL on the cell surface, and are susceptible to
apoptosis induced by anti-Fas mAb or FasL expressing tumor cells (O’Flaherty et al
1998). In the transplantation tolerance induced by donor specific blood transfusion, there
are more apoptotic cells present in accepted, compared to rejected, cardiac allografts,

especially in the periarterial areas (Bergese et al 1997), suggesting apoptosis of
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alloreactive lymphocytes, presumably by syngeneic lymphocytes. In the transfusion
tolerance model, FasL is expressed on GIC from non-rejecting cardiac allografts (Josien
et al 1998). Furthermore, the protection of skin allografts, induced by donor bone
marrow (DBM) transfusion, required FasL expression on the DBM (since DBM from gld
mice did not induce the protection; George et al. 1998). This suggests that the expression
of FasL on DBM plays a role in tolerance induction, presumably by inducing apoptosis of
alloreactive T cells resulting in prolongation of allograft survival.

It is possible that FasL expression on the CD8+ T cells is able to induce apoptosis
of syngeneic alloreactive CD4+ T cells in the oral transplantation tolerance described in
this thesis. The evidence of decreased numbers of CD4+ GIC, but not CD8+ GIC from
fed animals compared to control animals, suggests that CD4+, not CD8+ T cells, could be
the major target for FasL induced apoptosis. To confirm this hypothesis, CTL activity of
CD8+ GIC against alloreactive syngeneic CD4+ T cells must be examined. In addition,
to assess the role of Fas/FasL interaction in the generation and maintenance of
transplantation tolerance, soluble Fas protein could be used, especially in the cell transfer
experiments.

CD8+ dendritic cells (DC) are also reported to express FasL and to be able to induce
apoptosis of CD4+ T cells (Suss and Shortman 1996). In our experimentation, we use nylon
wool columns to enrich for T cells and CD8 immuno-columns to select for CD8+ GIC.
These columns involve negative selection and are designed to eliminate adherent cells,
including macrophages and DC, but it is possible that this isolation process does not
completely deplete CD8+ DC from total GIC. Therefore, we cannot rule out a role of CD8+

DC in our oral transplantation tolerance, especially in the transfer of tolerance to naive
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animals. To evaluate a role for DC in oral transplantation tolerance, transfer of T cell
depleted GIC from tolerized animals into naive animals could be performed immediately
following kidney transplantation. Whether this is practically possible remains to be seen.

If killing of Fas bearing CD4+ T cells by FasL bearing CD8+ T cells is occurring in
the grafts, it is not clear why these CD8+ cells do not also induce apoptosis of kidney
allograft cells and thus accelerate rejection. Fas molecules are expressed on human kidney
epithelium (Ortiz-Arduan et al 1996, Kato et al 1997), suggesting that kidney cells can be
targets of the Fas/FasL pathway resulting in graft damage. Indeed, upregulation of FasL
expression has been detected in biopsies of kidneys undergoing acute and chronic rejection
(Sharma et al 1996, Wang et al 1997, Josien et al 1998, Matsuno et al 1998). Increased
FasL expression can be found on graft infiltrating cells and is closely correlated with the
level of apoptosis, detected by TUNEL technique (Josien et al 1998), and the histologic
score of acute rejection (Sharma et al 1996). These correlative data suggest that FasL
mediated apoptosis plays a role in acute rejection. However, correlative data such as this
has significant limitations. These data do not identify the type of the apoptotic cells in
the graft (infiltrating leukocytes vs. graft cells). It is possible that increased FasL
expression may induce apoptosis of graft infiltrating leukocytes, rather than graft tissue
cells. In cardiac (Bergese et al 1997) and renal (Matsuno et al 1998) transplantation
models in rats, upregulated FasL expression appears at a time when allografts were
almost completely destroyed. Therefore, increased FasL expression on lymphocytes at
this time point might be better explained as a mechanism for eliminating alloreactive

lymphocytes generated by allograft transplantation.
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Cytotoxic discrimination may, in fact, be due to the level, rather than the
presence, of Fas, or perhaps to susceptibility to FasL induced killing. In animal models,
the level of Fas expressed on normal kidney cells is upregulated in the presence of
inflammatory cytokines, such as [FN-y and TNF-a (Kato et al 1997, Ortiz-Arduan et al
1996). Furthermore, although Fas is expressed on kidney tubular epithelial cells,
epithelial cells are relatively resistant to anti-Fas mAb induced apoptosis (Wever et al
1998).

The importance of Fas/FasL interaction in transplant rejection is still unclear.
Granzyme and perforin have been demonstrated to be the predominant pathway
mediating kidney allograft rejection (Wever et al 1998). Indeed, skin allografts
transplanted into g/d (FasL-) recipients are rejected in a manner similar to grafts
transplanted into wild type mice and the survival of grafts from /pr (Fas-) donors is not
prolonged (Selvaggi et al 1996). Similar observations were reported in a cardiac
transplantation model (Larsen et al 1995). It should be noted here that the knockout
experimentation must be interpreted with caution because experiments performed on
genetically modified animals may provide misleading results. These data do confirm,
however, that the roles of Fas/FasL interaction in graft rejection and tolerance induction
are still unclear. The data are also consistent with the hypothesis that the increased FasL
seen in the GIC in this experimentation could play a significant role in oral tolerance

induction and do not represent an epiphenomenon.
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5.6 Role of Type 2 Cytokines in Oral Transplantation Tolerance

By transfer experiments, we have concluded that prolongation of kidney allograft
survival is due to CD8+ regulatory cells that express high levels of FasL and IL-4 mRNA
after oral administration of alloantigens. It is unclear whether these regulatory CD8+ T
cells express both enhanced FasL and IL-4 mRNA, or whether the GIC contain two
different functional populations of CD8+ T cells that express FasL and IL-4 mRNA,
respectively. To address this, double staining should be used to measure the co-
expression of surface FasL and intracellular IL-4 on CD8+ GIC. Based on the results we
obtained here, we hypothesize that oral administration of alloantigens generates intragraft
regulatory cells that eliminate alloreactive cells through their Fas/FasL interaction, and/or
interfere with type 1 allo-responses that are important in graft rejection.

Type 2 cytokines have been suggested to play a critical role in oral tolerance. For
example, spleen cells from mice fed with MBP secrete large amounts of IL-4 and IL-10
as well as TGF-P (Rizzo et al 1994, Santos et al 1994, Miller et al 1992). These cells are
able to transfer oral tolerance to naive animals. Anti-[L-4 mAb treatment abrogates the
transfer of tolerance, suggesting that IL-4 is critical in tolerance transfer (Yoshino 1998,
Faria and Weiner 1999). In addition, IL-4 secreting cells were found in PP and MLN
soon (2-6 h) after feeding OVA (Gonnella et al 1998) and administration of [L-4
enhanced oral tolerance (Inobe et al 1998), further supporting a role for [L-4 in oral
tolerance. In our experiments, graft infiltrating cells isolated from the transplanted
kidneys of fed animals express high levels of IL-4 mRNA which is consistent with these
findings. Although other type 2 cytokines, such as IL-5 and IL-10, were also reported to

be associated with oral tolerance (Garside et al 1999), we did not evaluate their
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expression for several reasons. First, IL-10 is known to be secreted by Th2 cells in mice
but can be secreted by both Th1 and Th2 cells in humans and by macrophages in a
variety of species. The source of [L-10 in rats is not clear. Second, although IL-10 and
[L-5 are found to be associated with oral tolerance in some experiments, they do not
show consistent upregulation following oral administration of antigens. For example,
only IL-4, not IL-10 or [L-5, are increased in the spleen in orally tolerized animals in
some models (Zavazava et al 2000). Third, knowledge of the effects of IL-10 and IL-5
on transplantation tolerance is incomplete and the area remains controversial. [L-4 is the
most well-established type 2 cytokine that is consistently upregulated in many forms of
oral tolerance and transplantation tolerance. Therefore, evaluation of the levels of IL-4
on the GIC was seen as important for elucidating the mechanisms of oral transplantation
tolerance.

IL-4 plays a critical role in transplantation tolerance. Its role has been
demonstrated in many experimental models including transfusion tolerance (Takeuchi et
al 1992), treatment with anti-CD4 mAb (Mottram et al 1995, Takeuchi et al 1992), portal
vein inoculation of alloantigens (Gorczynski 1992, 1995) and nematode infection
(Ledingham et al 1996, Liwski et al 2000). In these models, IL-4 is thought to shunt the
developing allo-immune response toward type 2 and away from type 1 responses,
indicated by a decreased I[FN-y expression. For example, consistent expression of IL-4
and IL-10 but diminished IL-2 and IFN-y are found in long-term cardiac and renal
allografts in mice treated with anti-CD4 mAb (Takeuchi et al 1992, Siegling et al 1994).
This treatment generates CD4+ regulatory cells that are able to adoptively transfer the

tolerant state to naive engrafted recipients (Onodera et al 1997). In addition, evidence



158
that transplantation tolerance cannot be established in IL-4 knockout mice after anti-CD2
and anti-CD3 mAb treatment (Punch et al 1998) further confirms the important role of
IL-4 in transplantation tolerance.

In our experiments, CD8+ GIC from tolerized animals exhibited high levels of IL-
4 and these cells could transfer oral transplantation tolerance to naive animals. Our data
suggest that oral administration of alloantigen generates Tc2 type regulatory cells that
drive immune responses toward type 2 response. However, in our experimentation, the
levels of IFN-y are not significantly inhibited in the tolerized animals, although there is
an increased type 2 response in these animals. The lack of a decrease in expression of
IFN-y in the face of increased IL-4 may be interpreted in two ways. First, although oral
tolerance is often suggested to generate type 2 responses and IL-4 is a critical differential
factor in oral tolerance induction, [FN-y is also suggested to be a critical cytokine in the
induction of oral tolerance, since oral tolerance cannot be induced in [FN-y deficient
animals (Kweon et al 1998). Second, in transplantation tolerance, suppression of [FN-y
is often associated with graft acceptance but grafts in [FN-y deficient mice did not avoid
rejection. In fact, [FN-y is required for long-term graft survival after blocking the CD28
and CD40 co-stimulatory pathway (Konieczny et al 1998). These data suggest that the
presence of IFN-y is not necessary for allograft rejection but is required for tolerance
induction.

Increased IL-4 concomitant with high levels of [FN-y has been observed in other
models of transplantation tolerance (Hall 2000). In fact, there is evidence indicating that
oral administration of antigen does not reduce the levels of IFN-y, but shifts the ratio of

typel/type2 cytokines (Faria and Weiner 1999). For example, feeding allogeneic
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peptides is associated with increased IL-4 expression with no significant decrease of [FN-
v resulting in a shift in the ratio of [L-4 and IFN-y (Zavazava et al 2000).

The results of this cytokine shift are likely to be complex. For example, the effect
of IL-4 on the generation of CTL is controversial. Experiments have shown that
increased IL-4 expression is correlated with prolonged cardiac allograft survival induced
by anti-CD4 mAb treatment (Lehmann et al 1997) or Nb infection (Liwski et al 1999).
Spleen cells from these animals exhibited decreased CTL activity, suggesting that IL-4
may downregulate allospecific CTL activity (Liwski 1999). However, these data are only
correlative. In contrast, [L-4 has been suggested to be a potent helper factor for
generating CTL in vitro (Widmer and Grabstein 1987, Trenn et al 1988, Spits et al 1988,
Bertagnolli et al 1991). Widmer and Grabstein (1987) demonstrated that allospecific
CTL can be generated in culture by stimulation of allogeneic, irradiated splenocytes in
the presence of IL-4. The effect of [L-4 on the generation of CTL is much greater than
that of IL-2. In addition, IL-4 can enhance the generation of CD8+ CTL in the absence
of CD4+ T cells (Widmer and Grabstein 1987). In our experiments, CD8+ GIC isolated
from kidneys of tolerized animals expressed higher levels of [L-4 and enhanced CTL
activity when compared to CD8+ GIC from control animals. It could be argued that the
enhanced CTL activity is due to the increased IL-4 expression. Therefore, in our
transplantation tolerance studies, [L-4 may enhance, rather than suppress, CTL activity,
at least as measured in vitro.

DTH-like responses have also been suggested to play a critical role in graft
rejection (Mason et al 1984, Hall 1991). Moreover, oral administration of allogeneic

peptides or allosplenocytes suppress DTH-like responses (Sayegh et al 1992, Zavazava et
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al 2000, Miller et al 1993 ). Since DTH responses are known to be depressed by type 2
cytokines, it is possible that type 2 responses induced by our feeding regimen result in
prolongation of kidney allograft survival by suppression of DTH responses.

In contrast to the role of [L-4 in transplantation tolerance, IL-4 has also been
suggested to play an active role in graft rejection. Increased IL-4 and [FN-y can be found
in rejecting allografts including liver, lung and heart grafts in mice and rats (Papp et al
1992, Dallman et al 1991, 1995). In addition, IL-4 mRNA is also found in some rejected
or rejecting human renal (Krams et al 1992) and lung (Whitehead et al 1993) allografts.
In our experiments, detectable [L-4 mRNA can be found in whole GIC, but not CD8+
GIC, from rejecting grafts of control animals. In contrast, [L-4 mRNA was detectable in
the CD8+ GIC population in tolerized grafts. This points to the importance of
interpreting with care cytokine expression data from human biopsies or whole organ
extracts from rodents without knowledge of the cytokine source. In human biopsies, this
interpretation is confounded by the fact that the patients are receiving
immunosuppressive drugs that can induce limited immune tolerance. Thus, although

graft rejection is ongoing, limited expression of a type 2 response may still be occurring

in the grafts.

5.7 Effect of TGF-$ on Oral Tolerance and Transplantation Tolerance

TGF-P has been linked to the expression of oral tolerance in some models,
especially the EAE model. Feeding mice with low dose MBP significantly increases
TGF-P expression in PP, MLN and spleen and suppresses the induction of EAE (Miller et

al 1991, 1992, Santos et al 1994). Administration of anti-TGF-P during tolerance
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induction blocks the suppressive effect in fed animals, resulting in induction of EAE after
MBP challenge in vivo (Miller et al 1992). TGF- secreting cells can be isolated in PP
and MLN after oral administration of antigens and are able to transfer oral tolerance to
naive animals (Chen et al 1994). Therefore, TGF-f has been suggested to be a critical
differential factor for generating oral tolerance (Gonnella et al 1998, Faria and Weiner
1999). Increased TGF-B expression has also been shown in other oral tolerance models
(Caspi et al 1996). Consistent with these data, GIC from orally tolerized rats in our
experiments exhibited increased TGF-f, which may play a role in suppression of immune
responses as suggested by others (Faria and Weiner 1999).

There is evidence that TGF-p may also play a role in transplantation tolerance.
First, TGF-P expression is increased in cardiac allografts that do not undergo acute
rejection in CsA treated rats (Waltenberger et al 1993). Second, patients who received
CsA treatment before their living donor renal transplantation show increased levels of
TGF-B mRNA and protein in their peripheral blood mononuclear cells that corresponds
with their stable renal function (Shin et al 1998). Recently, CsA has been suggested to be
able to stimulate TGF-PB expression, but inhibit [L-2, IL-10 and TNF-a expression in
human T lymphocytes (Shin et al 1998). Third, treatment with recombinant TGF-{3
(Wallick et al 1990, Raju et al 1994) or TGF-p encoding vectors (Qin et al 1995,
Douillard et al 1999) results in reduced graft rejection and prolonged survival of
allografts in different transplantation models. For example, heart allografis injected with
TGF-B encoding adenovirus survive much longer than untreated grafts (Qin et al 1995),
suggesting that the overexpression of TGF-B is important for prolongation of cardiac

allograft survival. Fourth, increased rejection of cardiac transplants is observed in TGF-
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deficient mice and corresponds with increased Thl but decreased Th2 cytokine secretion
(Koglin et al 1998).

Recently, cardiac allografts from donor blood transfusion treated animals have
been shown to exhibit increased expression of TGF-p mRNA (Josien et al 1998). The
increased TGF-B in the grafts is due to graft infiltrating cells producing large amounts of
TGF-B. Neutralization of TGF-§ partially abrogated transfusion tolerance. However,
anti-TGF-f did not fully abrogate transfusion tolerance. Moreover, TGF-p was also
present in grafts in untreated animals. Thus mechanisms other than, or in addition to,
TGF-B must be involved in transfusion tolerance induction.

A role for TGF- in oral transplantation tolerance has not been reported. Oral
tolerance to cardiac allografts correlates with enhanced IL-4, but not TGF-B (Zavazava et
al 2000). In our experimentation, we demonstrate that total GIC isolated from allografts
of fed animals exhibit significantly enhanced levels of TGF- mRNA, but CD8+ GIC,
which transfer tolerance, did not exhibit significant increased levels of TGF- mRNA.
Thus the TGF-B in GIC of fed animals may be from CD4+ T cells and not related to graft
prolongation.

Taken together these data indicate that unlike EAE, TGF-p is not a critical player
in oral transplantation tolerance. However, it is possible that in our tolerance regime,
although the regulatory cells are predominantly CD8+ T cells, there may be a small
population of CD4+ T cells that secrete TGF- that also exhibit reguiatory function.
Since the number of CD4+ T cells that could be recovered from the grafts in orally
tolerized animals was lower than the CD8+ cells, it is possible that the number

transferred might not be sufficient to transfer tolerance. However, we demonstrated that
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transfer CD8+ GIC is significantly better for tolerance induction than transfer of whole
GIC, suggesting that CD4+ T cells do not contribute in a positive manner to tolerance
induction. This is in contrast to other models where CD4+ regulatory cells are thought to

play a major role in tolerance induction (Barone et al 1995).



6.0 CONCLUSIONS

The evidence presented in this thesis demonstrated that oral administration of
allosplenocytes can significant prolong allograft kidney survival in rats in an antigen
specific manner. This prolongation is due to generation of CD8+ regulatory T cells that
are not only present in spleen and MLN, but also present in allograft kidneys after oral
administration of alloantigen. The presence of the regulatory cells can be demonstrated
by cell transfer experiments. The regulatory T cells isolated from allograft kidney
express high levels of [L-4 mRNA that may prevent allograft rejection by shifting the
immune response toward to a type 2 response and away from a type | response. In
addition, [L-4 may directly suppress DTH like responses that have been suggested to play
a critical role in allograft rejection. The CD8+ regulatory graft infiltrating cells also
exhibit increased FasL mRNA expression that may contribute to the deletion of
alloreactive T lymphocytes in the local allografts by interaction with Fas molecules on T
lymphocytes. These data suggest that oral exposure to alloantigen induce the generation
of CD8+ regulatory cells which prolong allograft survival by shifting immune responses
toward to type 2 responses or by deleting alloreactive T lymphocytes through Fas/FasL

interaction.
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