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Abstract

Load forecasting is an important function in economic power generation, allocation
between plants (Unit Commitment Scheduling), maintenance scheduling, and for system
security applications such as peak shaving by power interchange with interconnected
utilities. In this thesis the problem of fuzzy short term load forecasting is formulated and
solved. The thesis starts with a discussion of conventional algorithms used in short-term
load forecasting. These algorithms are based on least error squares and least absolute
value. The theory behind each algorithm is explained. Three different models are
developed and tested in the first part of the thesis. The first model (A) is a regression
model that takes into account the weather parameters in summer and winter seasons. The
second model (B) is a harmonics based model, which does not account for weather
parameters, but considers the parameters as a function of time. Model (B) can be used
where variations in weather parameters are not available. Finally, model (C) is created as
a hybrid combination of models A and B. The parameters of the three models are
estimated using the two static estimation algorithms and are used later to predict the load
for twenty-four hours ahead. The results obtained are discussed and conclusions are
drawn for these models. In the second part of the thesis new fuzzy models are developed
for crisp load power with fuzzy load parameters and for fuzzy load power with fuzzy load
parameters. Three fuzzy models (A),(B) and (C) are developed. The fuzzy load model
(A) 1s a fuzzy linear regression model for summer and winter seasons. Model (B) is a
harmonic fuzzy model, which does not account for weather parameters. Finally fuzzy
load model (C) is a hybrid combination of fuzzy load models (A) and (B). Estimating the
fuzzy parameters for the three models turns out to be one of linear optimization. The
fuzzy parameters are obtained for the three models. These parameters are used to predict
the load as a fuzzy function for twenty-four hours ahead. Prediction results are obtained
and presented using data from Nova Scotia Power and Environment Canada.

XX1



Chapter 1

Introduction

1.1 Background

Economic development, throughout the world, depends directly on the state of the
availability of electric energy, especially since most industries depend almost entirely
on its use. The availability of a source of continuous, cheap and reliable energy is of
foremost economic importance.

Electrical load forecasting is an important tocl used to ensure that the energy
supplied by utilities meets the load plus the energy lost in the system. To this end, a
staff of trained personnel is needed to carry out this specialized function.

Load forecasting is always defined as basically the science or art of predicting the
future load on a given system, for a specified period of time ahead. These predictions
may be just for a fraction of an hour ahead for operation purposes, or as much as
twenty years into the future for planning purposes

The load forecasting can be categorized into three subject areas namely [1].

(a) Long-range forecasting, which is used to predict loads as distant as fifty years
ahead, so that expansion planning can be facilitated.

(b) Medium range forecasting which is used to predict weekly, monthly and yearly
peak loads up to ten years ahead, so that efficient operational planning can be carried
out and,

(c) Short range forecasting. which is used to predict loads up to a week ahead, so that
daily running and dispatching costs can be minimized.

In the above three categories. an accurate load model is developed to
mathematically represent the relationship between the load and influential variables
such as time, weather, economic factors etc...

The precise relationship between the load and these variables is usually determined
by their role in the load model. Once the mathematical model is constructed, the

model parameters are determined by estimation techniques



Exrapolating the mathematical relationship to the required lead-time ahead and
giving the corresponding values of influential variables to be available or
predictable,then forecasts can be made. Since factors such as weather and economic
indices are increasingly difficult to be accurately predicted for longer lead times
ahead, the greater the lead-time, the less accurate the prediction is likely to be.

The final accuracy of any forecast thus depends on the load model employed, the
accuracy of predicted variables and the parameters assigned by the relevant estimation
technique. Since different methods of estimation will result in different values of
estimated parameters, it follows that the resulting forecasts will differ in prediction
accuracy.

Over the past fifty years, the parameter estimation algorithms used in load
forecasting have been limited to those based on the least error squares minimization
criterion, even though estimation theory indicates that algorithms based on the least
absolute value criteria are a viable alternative [44].

In this thesis, the fuzzy systems theory is implemented to estimate the load model
parameters, which are assumed to be fuzzy parameters having certain middie and
spread. Different membership functions, for load parameters, are used namely,
tnangular membership and trapezoidal membership functions. The problem of load
forecasting in this thesis is restricted to short-term load forecasting, and is formulated
as a fuzzy linear estimation problem. The objective is to minimize the spread of the
available data points, taking into consideration the type of the membership of the
fuzzy parameters, subject to satisfying constraints on each measurement point, to

insure that the original membership is included in the estimated membership.

1.2 Outline of the Thesis
In this thesis, fuzzy system theory is implemented to estimate the fuzzy load
model parameters, considered to be fuzzy parameters with certain middle and certain

spread.
Chapter Two gives a literature review, the state of the art, of the various

algorithms used during the past decades for short term load forecasting. A brief
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discussion for each algorithm is presented in this chapter. Advantages and
disadvantages of each algorithm are discussed. Reviewing the most recent
publications in the area of short term load forecasting indicates that most of the
available algorithms treat the parameters of the proposed load model as crisp
parameters, which is not the case in reality.

Chapter Three proposes different load models used in load modeling for 24
hours. Three models are proposed in this chapter, namely model A, B and model C.
Model A is a multiple linear regression model of the temperature deviation, base load
and either wind-chill factor for winter load or temperature humidity factor for the
summer load. The parameters of load A are assumed to be crisp parameters in this
chapter. The term crisp parameters means clearly defined parameter values without
ambiguity.

Load model B is a harmonic decomposition model that expresses the load at any
instant, t as a harmonic series. In this model, however, the weekly cycle is accounted
for, by use of a daily load model, whose parameters are estimated seven times weekly.
Again, the parameters of this model are assumed to be crisp.

Load model C is a hybrid load model that expresses the load as the sum of a time-
varying base load and a weather dependent component. This model is developed with
the aim of eliminating the disadvantages of the other two models by combining their
modeling approaches.

After finding the parameter values, thev are used to determine the electric load
from which these parameter values are extracted and this value is called the estimated
load. Then, the parameter values are used to predict the electric load for a randomly
chosen day in the future and it is called the predicted load for that chosen day.

Chapter Four presents the theory invoived in different approaches that use
parameter estimation algorithms. In the first part of the chapter, the crisp parameter
estimation algorithms are presented, these include the least error squares (LES)
algorithm, the least absolute value (LAV) algorithm. The second part of the chapter
presents an introduction to fuzzy set theory and systems followed by a discussion of
fuzzy linear regression algorithms. Different cases for the fuzzy parameters are
discussed in this part. The first case is for the fuzzy linear regression of the linear

models having fuzzy parameters with non-fuzzy outputs, while the second case is for



the linear regression of fuzzy parameters with fuzzy output, and finally the third
case is for fuzzy parameters formulated with fuzzy output of LR-type.

Chapter Five presents the fuzzy modeling of electric loads for short term load
forecasting. The models proposed in chapter three for crisp parameters are used in this
chapter. Fuzzy model A, employs a muitiple fuzzy linear regression model. The
membership function for the model parameters is developed, where triangular
membership functions are assumed for each parameter of the load model. Two
constraints are imposed on each load measurement to insure that the original
membership is included in the estimated membership.

Fuzzy model B, which is a harmonic model, has been proposed as well in this
chapter. This model involves fuzzy parameters having certain median and a certain
spread. Finally, a hybrid fuzzy model C, which is the combination of the multiple
linear regression model A and the harmonic model B, is presented in this Chapter.

The models proposed, in chapter five, are used to estimate the load on an actual
power system in operation, Nova Scotia Power Inc. The data for five years of the
electric load together with the weather data are used in the forecasting process.

Chapter Six gives the results obtained for the different proposed static models.
The accuracy of forecasting is discussed in this chapter. A comparison study is
performed between the least error squares algorithm and least absolute value.

Chapter Seven discusses the fuzzy short-term load forecasting results. In this
chapter the fuzzy parameters of the three maodels A, B, and C are estimated based on
fuzzy system theory and are used to predict ahead the load power.

Chapter Eight gives a discussion of the results obtained and recommendations

for the future research. A list of references and appendices are given at the end of the

thesis.



Chapter 2
Short-Term Load Forecasting (STLF):
The State of The Art

2.1. Introduction

Short-term load forecasting is an integral part of power system operation which is
essential for securing an inexpensive supply of reliable electric energy. It is used to
predict load demands up to a week ahead so that the day to day operation of a power
system can be efficiently planned and so that the operating costs are minimized.

Short-term load forecasting can be performed in one of two modes, namely on and
off-line forecasting. This categorization, as the names suggest, stem from the areas of
application of the load predictors.

Off-line load forecasting is primarily implemented in the scheduling of the large
generating units whose start up" times may vary from a few hours ahead to a few
days ahead. The scheduling process is termed unit commitment and ensures that there
is sufficient operating generation capacity to meet the variable load demand with
specified reliability [1). When load forecasting is poor, incorrect scheduling may
occur, resulting in higher daily operational cost caused by use of higher cost quick
start units in the event of under-scheduling, or altermatively result in the uneconomic
operation of large generating units in the event of over-scheduling [44].

On-line operation of a power system, the economic load dispatching to various
generating units makes the generating mix dependant on calculations to minimize the
cost function which is based on the characteristics of the generating units. These
calculations are based on values of load demand predicted a few hours in advance,
and as such the optimum generating mix is dependant upon the accuracy of the on-
line forecasts.

It has been recognized for long that accurate short-term load predictors as well as
a load model are basic necessities for the optimum economic operation of power

systems.



A prerequisite to the development of an accurate load-forecasting model is the
understanding of the characteristics of the load to be modeled. This knowledge of load
behavior is gained from experience with the load and through statistical analysis of
past load data. Utilities with similar climatic and economic environments usually
experience similar load behavior and load models developed for one utility can

usually be modified to suit another.

2.2 Literature Review

A review of the literature on short term load forecasting indicates that many factors
should be included in the load prediction model. Reference [1] reviews the short-term
load demand modeling and forecasting for off-line and on-line implementation.
Included also in [1] is a review of most techniques used at that time, the merits and
drawbacks of each approach are presented. Reference [2] presents an algorithm based
on curve fitting of past ioad growth for forecasting distribution system loads. The
proposed algorithm in this reference uses clustering of historical load at the small area
level as the forecast algorithm. References [3, 4] compare fourteen methods of
forecasting future distribution system loads in terms of forecasting accuracy, data
needs and resources. The tests of different forecast methods were carried out in as
uniform a manner as possible. This reference claims that the selection of a forecast
method is based on a great deal more criteria than those discussed in the reference.
Data availability is usually an important factor, choice of a distribution load
forecasting method may also be constrained by many other factors, including
available computer resources and the level of expertise of the users.

Reference [5] reviews some of the existing studies on one-to-twenty four hour load
forecasting algorithms, and presents an expert system based algorithm as an
alternative. This algorithm is developed on the logical and syntactical relationships
between weather and load, and prevailing daily load shapes. It has been found in this
reference that the proposed algorithm is robust and accurate and has yielded results
that are equally good, if not better, when compared to the regression based forecasting

techniques.



Reference [6] presents an adaptive nonlinear predictor with orthogonal escalator
structure for short-term load forecasting. The proposed method in this reference uses a
nonlinear time-varying functional relationship between load and temperature.
Parameters in both linear and nonlinear parts of the predictor are updated
systematically using a scalar orthogonalization procedure. Matrix operations are
avoided, in this reference, which results in a more robust and better numerical
property algorithm. This reference claims that there is no need for seasonal off-line
model calibration or modification since the proposed adaptive algorithm has good
model tracking ability.

Analysis and evaluation of five short-time load-forecasting techniques are
performed in Reference [7]). The five techniques are; (1) Multiple linear regression,
(2) Stochastic time series, (3) General exponential smoothing, (4) State space and
Kalman filter and (5) Knowledge based approach.

The use of a statistical decision function is implemented in Reference [8]. A
hierarchical classification algorithm is applied to hourly temperature readings to
divide the historical database into seasonal subsets. These subsets are identified
statistically to fit a response function for each season. For a given day, an appropriate
model is selected by performing discriminate analysis. It has been found in this
reference that the proposed algorithm is less sensitive to extreme values than other
algorithms. Also, the parameters should be updated periodically using the most recent
seasonal subsets.

Reference [9] presents a robust model for forecasting power system hourly load.
The method exploits the convenience of the auto-correlation function, and the partial
auto-correlation function of the resulting differences previous load data identifying a
sub-optimal model. The algorithm used in identifying the parameters of the proposed
load is the iteratively reweighted least squares. Three-way decision variables in
identifying an optimal model and the subsequent parameter estimates are used in this
reference. These variabies are; (1) the weighting function; (2) the tuning constant and;

(3) the sum of the squared residuals.



Reference [10] presents formulation and analysis of short term load forecasting
rule based algorithm. Load parameters are classified into weather and non-weather
related values. The rules are the product of identifiable statistical relationship and
expert knowledge. The forecasting algrithm puts smaller weight on the temperature
effect and depends on the natural diversity of the load with a reduced or enlarged
base.

A knowledge-based expert system is proposed in Reference [11] for short-term
load forecasting of a power system. The expert system is developed using a 5-year
database. Eleven load shapes, each with different means of load calculations, are
established in this reference. The effect of weather variables, such as temperature and
humidity on load forecasting is examined. The effect of thermal build-up is also
studied. The proposed expert system is used to forecast the hourly loads of a power
system over a whole year using the past five-year data base. This reference claims that
the developed expert system can serve as a valuable assistant to system operators in
performing their daily load forecasting duties.

Reference [12] describes a linear regression-based model for the calculation of the
short-term system load forecasts. The model, in this reference, has the merits of: (1)
innovative model building, including accurate holiday modeling by using binary
variables; (2) temperature modeling by using heating and cooling degree functions;
(3) robust parameter estimation and parameter estimation by using weighted least
squares linear regression techniques; (4) the use of reverse errors-in-variables
techniques to mitigate the effects of potential errors in the explanatory variables on
load forecasts; and (5) distinction between time-independent daily peak load forecasts
and the maximum of the hourly load forecasts in order to prevent peak forecasts from
being negatively biased. Taken together, the above merits result in accurate, robust
and adaptive response to changing conditions algorithm.

Reference [13] develops a composite load model for 1-24 hours ahead prediction
of hourly electric loads. The load model, in this reference, is composed of three
components: the nominal load, the type load and the residual load. The Kalman filter

algorithm is used to estimate the parameters of the nominal load together with the



exponentially weighted recursive least square method. The type load component is
extracted for weekend load prediction and updated by an exponential smoothing
method. The auto regressive model predicts the residual load and the parameters of
the models are estimated using the recursive least square method.

In the last two decades ANN found wide applications in power system analysis and
control. One of the successful applications is short-term load forecasting. References
[14] and [15] present an approach using artificial neural network (ANN) for short-
term load forecasting. In Reference [14] a neural network based on self-organizing
feature maps to identify those days with similar hourly load patterms. The load
patterns of several days in the past are averaged to obtain the load pattern of the day
under study. The averaging days are of the same type of the day under study. In
Reference [15] a feedforward multilayer neural network is designed to predict daily
peak and valley loads. Once the peak load and valley load and the hourly load patterns
are available, the desired hourly loads can be readily computed. The authors of these
two references point out that the self-organizing feature map is capable of identifying
a new type of load pattern before the operators can recognize the new day type.

An adaptive load-forecasting algorithm for one-hour-ahead time period has been
developed in Reference [16]. The major enhancement is the ability to forecast total
hourly system load as far ahead as five days. An important benefit of the adaptive
algorithm is the ability to predict load shapes in addition to daily peak loads. System
operators are able to utilize the predicted load shapes of several-hour-old one- day-
ahead or five-day-ahead forecasts, even when the individual hourly errors are rather
large.

Reference [17] presents an ANN method to forecast the short-term load for a large
power system. The load is assumed to have two distinct patterns: weekday and
weekend patterns. A nonlinear load model is proposed together with several structures
of ANN. This reference claims that the neural network, when grouped into different
load patterns gives good load forecast. It is found that the back propagation algorithm

1s robust in estimating the weights in nonlinear equation.
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A multilayer neural network with an adaptive learning algorithm is proposed in
Reference [18] for short-term load forecasting. Effects of leaming rate, momentum
and other factors on the efficiency and accuracy of the back propagation-momentum
learning method are studied in this reference. The proposed adaptive leaming
algorithm converges much faster than the leamning rate and the initial value of the
momentum will not affect the conventional back propagation momentum learning
method and the convergence property of the adaptive learning algorithm.

Reference [19] presents an improved neural network approach to produce short-
term electric load forecasts. In this approach a minimum distance measurement is
used to identify the appropriate historical patterns of load and temperature readings to
estimate the network weights. By using this strategy the problem of holidays and
drastic changes in weather patterns, are overcome. This algorithm also includes a
combination of linear and nonlinear terms which map past load and temperature
inputs into the load forecast output. This reference demonstrates that even a simple
three-layer network produces results which are quite favorable compared to those
typically seen in the literature, with smaller absolute errors.

Reference [20] reviews short term load forecasting techniques to find a standard
for comparison. Size of error can be used as a measure for comparison standard.

Reference [21] presents a non-fully connected ANN model for short-term
forecasting. The model used in this reference consists of one main ANN and three
supporting ANNs. The main ANN is used to provide the models' basic forecast
reference. Three supporting ANNs are added to increase the leaming capacity of the
proposed model. These supporting ANNs enable the model to better extract the
relationships among different input categories, and achieve improved accuracy. In
addition, three feedforward connections are established in the main ANN. These
feedforward connections provide the most recent load and temperature references and
greatly improve learning efficiency. It is found that the model, compared with a fully

connected ANN, requires less training time and has better performance.
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Reference [22] presents an expert system using fuzzy set theory for short-term load
forecasting . The uncertainties in weather variables and statistical model are taken into
account by using fuzzy set theory. Also incorporated into the system are the operator s
heuristic rules. Two approaches based on the minimum-maximum algorithm and the
equal-area criterion algorithm are proposed to determine the most desirable change in
peak load from separate sources of fuzzy information.

The ANN model, in Reference [23] is claimed to be a useful tool for short-term
load forecasting. Radically different from statistical methods, these models have
shown promising results in load forecasting. Reference [23] concludes that, on the
basis of the results obtained, there is no firm criterion to select a suitable network
structure for a set of hourly load and temperature data. Models are not unique, and
systems with different load characteristics require different structures. However, once
a model is identified for a given system, the model need not be modified frequently.
Neural network models are sensitive to bad data, so that intelligent data filtering
techniques need to be designed in order to maintain acceptable accuracy in the ANN
models based load forecasts.

Reference [24] presents a generalized short-term load-forecasting algorithm. This
algorithm combines features from a knowledge base and statistical techniques. The
technique is based on a generalized model for the weather-load relationship, which
makes it site-independent. However, adding the site-dependent characteristics easily
customizes it. Such characteristics are formulated in the form of selection and
adjustment rules. Once added, these rules are expected to improve the performance of
the algorithm for a specific site. The technique in this reference has been proven to be
fairly robust, inherently updateable, and allows operator intervention if necessary. It
does not require more than three years of past data.

Based on the attractive features of both distributed artificial intelligence and
existing load forecasting techniques a distributed problem solving system for short-
term load forecasting is presented in Reference [25). Such a distributed paradigm is a
multi-agent system, each processing agent of which can compute autonomously and

cooperate with other agents to reason an accurate and satisfactory solution for load



forecasting. The designed load forecasting system solves problems using three basic
modules: a backboard module, knowledge sources, and a control mechanism. In this
reference, the existing techniques are embedded in the domain knowledge source.

Reference [26] presents an algorithm using an unsupervised/supervised leamning
concept and the historical relationship between the load and temperature for a given
season, day type and hour of the day to forecast hourly electric load with a lead time
of 24 hours. An additional approach using functional link net, temperature variables,
average load and the last one - hour load of previous day is introduced and compared
with the ANN model with one hidden layer load forecast. Examination of load shapes
indicated that the five working days, Saturdays, Sundays and holidays should be
separately treated.

References [27] and [28] present the applications of ANN to short-term load
forecasting. Reference [27] investigates the effectiveness of ANN in short-term load
forecasting. It has been shown that the application of a combined solution using
artificial neural networks and expert systems yields a good short-term load forecast
which neither system alone can provide.

Reference [28] applies another type of neural network, called the radial basis
function (RBF) network to the SLF. The results obtained using both radial basis
function network and back propagation network indicate that the RBFN model
performs better than the BPN model. It is claimed that the RBFN model can also
compute reliability measures. which is an added advantage of the RBFN model. These
measures provide confidence intervals for the forecasts and an extrapolation index to
determine when the model is extrapolating beyond its original training data.

Reference [29] presents an adaptive neural network based short-term load
forecasting system. The system accounts for seasonal and daily characteristics, as well
as abnormal conditions such as cold fronts, heat waves, holidays and other conditions.
The algorithm in this reference is capable of forecasting load with a lead-time of one
hour to seven days. The adaptive mechanism is used to train the neural networks

when on-line.
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Reference [30] presents an adaptive auto-regressive moving average (ARMA)
model for SLF of a power system. In this reference, the Box-Jenkins transfer function
is considered as one of the better accurate methods, but it has limited accuracy
without adapting the forecasting errors available to update the forecast. The adaptive
approach first derives the error learning coefficients by virtue of minimum mean
square error (MMSE) theory and then updates the forecasts based on the one-step-
ahead forecast errors and the coefficients. The proposed algorithm in this reference
can deal with any unusual system condition. It is shown that the proposed adaptive
ARMA is more accurate than the conventional Box-Jenkins approach.

Reference [31] presents a survey for applying fuzzy systems in power systems. It
discusses five forecasting methods. These methods are already presented in reference
[24].

Reference [32] presents a highly adaptable and robust short-term load-forecasting
algorithm. Adaptive general exponential smoothing augmented with power spectrum
analysis is used to account for the changing base load component. The algorithm
includes an adaptive auto-regressive modeling technique enhanced with partial auto-
correlation analysis to model the random component of the load. The load consists of
a base load, weather-sensitive load and random load components. The Akaike
information criterion (AIC) is employed to generate model parsimony. The weighted
recursive least square estimation algorithm with variable forgetting factors is applied
to estimate model parameters. A nonlinear weather-sensitive model is used to present
the influence of weather changes on energy consumption. This reference claims that
the approach has the capacity to better track load changing patterns and the human
intervention of this technique is a minimum, which enhances the suitability of the
approach for online applications

Reference [33] presents a hybrid model for short-term load forecast that integrates
artificial neural networks with fuzzy expert systems. The load is obtained in two
steps. In the first step, the ANN's are trained with load patterns corresponding to the
desired forecasted hour, and the trained ANN’s obtains the provisional forecasted

load. In the second step, the fuzzy expert systems modify the provisional forecasted
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load considering the possibility of load variation due to changes in temperature and
the nature of the day if it is a holiday.

References [34, 35] present a fuzzy system for SLF. The fuzzy system has the net
structure and training procedures of a neural network and is called neural fuzzy
network (FNN). An FNN initially creates a rule base from historical load data. The
parameters of the rule base are then turned through a training process, so that the
output of the FNN matches the available historical load data adequately. Once trained,
the FNN can be used to forecast future load.

Reference [36] proposes an optimal fuzzy inference method for short-term load
forecasting. This reference constructs an optimal structure of the simplified fuzzy
inference that minimizes model errors and the number of membership functions to
grasp the nonlinear behavior of power system short-term loads. Simulated annealing
and the steepest descent method identify the model parameters in this reference.

Reference [37] proposes an evolutionary programming (EP) approach to identify
the parameters of an auto-regressive moving average with exogenous variable
(ARMAX) model for one day to one-week ahead hourly load demand forecasts. The
surface of the forecasting error function possesses multiple local minimum points.
Solutions of the traditional gradient search based identification technique therefore
may stall at the local optimal points, which results in an inadequate model. By
simulating natural evolutionary process, the EP algorithm offers the capability of
converging towards the global extreme of a complex error surface. The results
obtained using this approach indicate that this algorithm provides a method to
simultaneously estimate the appropriate order and parameter values of the ARMAX
model for diverse types of load data.

Reference [38] presents the application of ANN to determine the short-term load
forecasting while paying attention to accurate modeling of holidays. A single neural
network with 24 output is used for the short term forecasting for all day types.

Reference [39] compares three techniques; fuzzy logic (FL), neural networks
(NN) and auto-regressive (AR) for very short term load forecasting. The authors find

a simple satisfying dynamic forecaster to predict the very short term load trends on
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line. FL and NN are good candidates for short termn load forecasting. A neural
network technique for electric load forecasting based on weather compensation is
presented in References [40) and [41]. The method is a nonlinear generalization of
Box and Jenkins approach for non-stationary time-series prediction. A nonlinear auto-
regressive integrated (NARI) model is identified to be the most appropriate model to
include the weather compensation in short-term electric load forecasting. A weather
compensation neural network based on an NARI model is implemented for one-day
ahead electric load forecasting. This weather compensation neural network can
accurately predict the change of electric load consumption for the coming day. Based
on the results obtained, the authors claim that this methodology is capable of
providing more accurate load forecast.

Previous experience with basic ANN architectures have shown that, even though
these architectures provide results comparable with these obtained by human
operators for most normal days, they show some deficiencies in the accuracy when
applied to “anomalous” load conditions occurring during holidays and long weekends
[42]. Reference [42] proposes a specific procedure based upon a combined
unsupervised/supervised approach. In the unsupervised stage a preventive
classification of historical load data by mean of a Kohonen self organizing map is
provided, while in the supervised stage, the proper forecasting activity is obtained by
using a multi-layer perception with a back-propagation learning algorithm.

Reference [43] proposes a method for short-term load forecasting which would
help demand side management. The proposed method is based on Kalman fiitering
algorithm with the incorporation of a “fading memory™. The load is forecasted in two
stages. In the first stage the mean is first predicted, while in the second stage, a
correction is incorporated in real time using error feedback from the previous hours.
The authors claim that the proposed algorithm is suitable for developing countries
where the total load is not large, especially at substation levels, and the data available
are grossly inadequate. In this reference, the fading-memory Kalman filter assigns
variable weight to past data. This causes reduction of the dependence on data for back

into the past, and also improves the accuracy of prediction to a certain extent. Also, it
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was suggested that the space for storage and the time taken for computation are both
significantly low and make this method highly suitable for use in small computers.

Reference [44] compares two linear static parameter estimation techniques as they
apply to the twenty-four hour off-line forecasting problem. Three 24-hours load
models are used. The least error squares and the least absolute value based linear
programming algorithm are the two parameter estimation approaches used to estimate
the parameters of the three models. The three load models are (1) a multiple linear
regression model, (2) a harmonic decomposition model and (3) a hybrid multiple
linear regression/harmonic decomposition model. It is concluded that if the data
source is free of errors, both techniques produce the same degree of accuracy for the
three models. However, if the data source is contaminated with gross errors, then the
use of the least absolute value criterion, will result in greater prediction accuracy.

A method of forecasting the hourly load demand on power system and uses
threshold auto-regressive models with a stratification rule is presented in [45]). By
using the threshold model algorithm, fewer parameters are required to capture the
random component in load dynamics. Based on the results obtained, the authors
conclude that : (a) the optimum stratification rule attempts to remove any judgmental
input and to render the threshold process entirely mechanistic, (b) the simplicity of the
proposed threshold auto-regressive model varies under different perspectives, such as
the piecewise linear algorithms and the threshold procedures of the stratification to
effectively handle non-stationary. Therefore, the simplicity consists of finding
architectures, which are auto-regressive to model the non-linearity of the series, and
economical in terms of parameters, (c) the high level of achievement is due primarily
to a more accurate AR modeling in a threshold model, and the threshold AR model's
ability to respond rapidly to sudden changes.

Reference [46] develops a forecasting model for one-day ahead. This model
identifies a “normal” or weather-insensitive load component and a weather-sensitive
load component-linear regression analysis of past load and weather is used to identify
the normal load model. The weather-sensitive component of the load is estimated

using the parameters of the regression analysis. In this reference, an automated load
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forecasting system is presented that includes adaptability to changing operational
conditions, computational economy and robustness. Also, presented in this reference
is the monthly error statistics of forecast load for only one day ahead for recorded
weather conditions.

Reference [47] presents a functional-link network based short-term electric load
forecasting system for real time implementation. The load and weather parameters are
modeled as nonlinear ARMA process and parameters of this model are obtained using
the functional approximation capabilities of an auto-enhanced functional link
network. The adaptive mechanism with a nonlinear learning rule is used to train the
link network on-line. The results obtained in this reference indicate that the functional
link net-based load forecasting system produces robust and more accurate load
forecasts in comparison to simple adaptive neural network or statistical based
approach.

Reference [48] describes a load forecasting system called ANNSTLF (Artificial
Neural Network Short-term Load Forecasting). This system is suggested to be used
now by many utilities across North America. The effects of temperature and relative
humidity on the load are considered. ANNSTLF contains also forecasts that can
generate the hourly temperature and relative humidity forecasts needed by the system.
ANNSTLF is based on a multiple ANN strategy that captures various trends in the
data. The building block of the forecasters is a multilayer neural network trained with
the error back-propagation learning rule. To adjust the ANN weights during on-line
forecasting, an adaptive scheme is employed. The forecasting models are site
independent and only the number of hidden layer nodes of ANN’s need to be adjusted
for a new database.

Reference [49] presents a “Quasi Optimal” neural network to solve the short-term
load forecasting problem. Rules for building a *“quasi optimal” neural network to
solve the STLF are derived. It is demonstrated that the “quasi optimal” neural network
is superior to an automated Box-Jenkins seasonal ARIMA model in solving the STLF
problem. Most significantly, the authors demonstrate how orthogonal fractional

factorial designs can be used to understand how technical issues that arise in creating
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a neural network affect singularly, and in pairs, the performance of the network is
solving the STLF problem.

An algorithm using cascaded learning algorithm together with the historical load
and weather data is presented in [S0] to forecast half-hourly load for the next 24-
hours. This cascaded neural network algorithm (CANN'’s) includes peak, minimum,
and daily energy prediction as additional input data for the final forecast stage. These
additional input data are predicted using the first ANN’s model.

The use of a weighted least square procedure when training a neural network to
solve the short-term load forecasting problem is presented in [S1]. It is shown that a
neural network that implements the weighted least squares procedure outperforms a
neural network that implements the least squares procedure during the on-peak period
for the two performance criteria specified; mean absolute error and cost, and during
the entire period for the cost criterion. This reference has shown the potential benefit
of using a cost-based weighted least squares training approach.

Reference [S2] postulates that the load can be modeled as the output of some
dynamic system influenced by a number of weather, time and other environmental
variables. Recurrent neural networks, being members of a class of connectionist
models exhibiting inherent dynamic behavior, can thus be used to construct empirical
models for this dynamic system. This reference claims that due to the nonlinear
dynamic nature of these models, the behavior of the load prediction system can be
captured in a compact and robust representation.

Reference [S3] presents a self organizing model of fuzzy auto regressive moving
average with exogenous (FARMAX) variables for one day ahead hourly load
forecasting of power systems. A comparison between the existing and ARAMAX
model values shows reduction in error for forecasting results.

An efficient modeling technique based on fuzzy curve notation is presented in
References [54] to generate fuzzy models for short-term load forecasting. The steps in
this approach are: (a) prediction of the load curve extremals (peak and valley loads)

using separate fuzzy models, (b) formulation of the representative day load curve to
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the forecasted peak values to obtain the predicted day load curves, and (c)
transformation of the representative day load curve to fit the forecasted peak and
valley loads in order to obtain the final next days' load curve forecast.

References [S5] presents an approach to short-time load forecasting by the
application of non-parametric regression. The method is derived from a load model in
the form of a probability density function of load and load affecting factors. A load
forecast is a conditional expectation of load given the time, weather conditions and
other explanatory variables. This forecast can be calculated directly from historical
data as a load average of past observed loads with the size of the local neighborhood
and the specific weights on the load defined by a multivariate product kemel. The
procedure requires a few parameters that can be easily calculated from historical data
by applying the cross-validation technique.

Reference [56] describes a method for input variable selection for artificial neural
network (ANN) based short-term load forecasting (STLF). The method is based on
the phase-space embedding of a load time-series. The accuracy of the method is
enhanced by the addition of temperature and cycle variables. This reference compare
it favorably to the ones reported in the literature, indicating that a more parsimonious
set of input variables can be used in STLF without sacrificing the accuracy of the
forecast. This allows more compact ANNs, smaller training sets and easier training.

Reference [57] studies a short-term electric load forecasting technique using a
multi-layered feedforward ANN and a fuzzy set-based classification algorithm. The
hourly data is subdivided into various classes of weather conditions using the fuzzy
set representation of weather variables and then the ANNs are trained and used to
perform the load forecasting up to 120 hours ahead accurately.

Reference [58] presents an architecture which is substantially changed from the
earlier neural network techniques. It includes only two ANN forecasters, one predicts
the base load and the other forecasts the change in load. The final forecast is
computed by adaptive combinations of these two forecasts. The effects of humidity
and wind speed are considered through a linear transformation of temperature. This

algorithm significantly improves the accuracy of the holiday forecasts.
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Reference [59] presents a method that is suitable for power system operational
planning studies. Bayesian estimation is used to predict muitiple step ahead peak
forecasts using peak and average temperature forecasts as explanatory variables.
Furthermore, the authors claim that better results can be obtained, with more attention
paid to model identification.

Reference [60] describes the application of ANN in forecasting short term load
using a multilayer perceptron. ANN combines both time series and regression
approaches to predict load demand. A functional relatioship between weather variable
and electrical load is not needed because ANN can generate the functional
relationship in learning and training the data.

A fuzzy modeling method is developed in Reference [61] for short-term load
forecasting. In this method, identification of the premise part and consequent part is
separately accomplished via the orthogonal least square (OLS) technique. The OLS is
first employed to partition the input space and determine the number of fuzzy rules
and the premise parameters. In the sequel, a second orthogonal estimator determines
the input terms that should be included in the consequent part of each fuzzy rule and
calculate its parameters. Different models are developed for each day type in every
season.

Reference [62] presents a self-supervised adaptive neural network to perform
STLF for a large power system covering a wide service area with several heavy load
centers. The self-supervised network is used to extract corrolation features from
temperature and load data. The authors’ design provides a good adaptability using a
rapid, on-line training mode that is crucial in applications, where the source statistics
are non-stationary or where the forecaster is used with different power systems.

The behaviour of electric power systems and networks varies considerably due to
their characteristics. There does not appear to be one forecasting method that fits all
power systems. In fact, the electric load on each system may be forecasted using

different techniques to suit different situations.



Chapter 3

Short Term Load Forecasting

3.1 Introduction

In short-term load forecasting, the future load on a power system is predicted by
extrapolating a pre-determined relationship between the load and its influential
variables, namely time and/or weather. Determining this relationship is a two-stage
process that requires (a) identifying the relationship between the load and the related
variables, and (b) quantifying this relationship through the use of a suitable parameter
estimation technique.

A prerequisite to the development of an accurate load-forecasting model is an in
depth understanding of the characteristics of the load to be modeled. This knowledge
of the load behavior is gained from experience with the load and through statistical
analysis of past load data. Utilities with similar climatic and economic environments
usually experience similar load behavior and load models developed for one utility
can usually be modified to suit another [44].

The review of the literature on short-term load modeling of chapter 2, indicates
that the load supplied by a power system is dynamic in nature and directly reflects the
activities and conditions in the surrounding environment. This load can be separated
into a standard or base load, a weather dependent load and a residual load. In the
following sections the characteristics of each of these components are reviewed in
turn [7, 44].

3.2 Base Load [44]

This load results from the business and economic conditions of the service area,
and is the largest component of total system load. It accounts for approximately 90%
of total load and can be spectrally decomposed into four distinct components, namely:
(a) A long-term component that reflects the economic growth of the area and is

usually directly proportional to the growth of the national economy.



(b) A seasonal component that results from changes in electricity demand from one
season to another. In North America this load pattern is characterized by
midwinter and midsummer peaks inier-spaced by troughs occurring during the
central spring and autumn seasons.

(c) A weekly load cycle that results from the consumption pattern of one day of the
week being characteristically different from the others. Weekly business cycles
and repetitive local activities are the main reasons for this aspect of load behavior
that is characterized by relatively constant mid-week demands and smaller
weekend loads.

(d) A daily load cycle that results from the basic daily similarity of consumer
activities. Low early moming demand peaking at mid-afternoon high usually

characterizes this load cycle.

3.3 Weather Dependant Load [44]

The weather contributes significantly to the dynamics of the load, and much effort
was spent to find a viable relationship between the weather and the load, so that an
accurate load model could be developed. The survey of the literature in the second
chapter, indicates that each utility has its own load model that depends on the weather
of that load the utility is serving, and a load model for a utility does not necessarily
suit (fit) the load of another utility.

The effects of weather on load are usually modeled by expressing the load as a
linear regression of explanatory meteorological factors such as temperature, wind
speed, humidity etc. While it is recognized that an extremely wide variety of
explanatory weather variables are required to totally represent the effects of weather,
studies have shown that a few basic meteorological factors usually account for most
of the weather dependent load.

The specific weather variables that are normally used to model weather dependent
load are dry bulb temperature, wind-speed, humidity and daylight illumination. The
latter is usually the least significant of these weather variables and since its metering
is difficult and costly, it is usually omitted from most models. The general effects of

these weather variables on load are summarized next [7, 44].
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3.3.1 Temperature

In most load environments, dry bulb temperature is the most significant weather
variable and usually accounts for the largest percentage of weather dependent load.
Deviations of temperature from the norm can result in major changes in the load
pattern. These changes however, do not occur immediately, but are rather delayed due
to thermal storage in buildings.

The effects of temperature on load pattern are not uniform and are different from
one utility to another and from one season to the next. A decrease in temperature
below room temperature during the winter season means an increase in the heating
load, but an increase in the temperature above room temperature during summer
means increasing of air conditioning load (increasing the cooling load).

Temperature effects are usually modeled by considering the load to be a function
of the effective temperature or temperature deviation, rather than the actual
temperature. This stems from the realization that the general effects of base
temperature are already included in the seasonal load cycle and only deviations from
the norm will result in load changes.

In other words, each utility company designs the base load according to the normal

temperature of the environment of that load, and any temperature deviation will lead

to changes in the load.

3.3.2 Wind Speed

A factor that can contribute significantly to the weather dependent load is wind.
Wind effects are especially prevalent during winter and are a direct consequence of
the cooling power of the wind. The cooling effect of the wind depends on the wind
speed and the dry bulb temperature. The heat loss from a building is proportional to
the product of the square root of the wind speed and the temperature deviation from
the comfort level of approximately 18°C. This effect is relatively small in post winter

seasons and for simplicity, are usually only included in winter models [44].
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Some researchers prefer to use the wind-chill factor as a means of representation of
the wind in their models, since a wind-chill factor is often strongly correlated with
winter load [7]. Others contend that the wind-chill factor is only a measure of the
discomfort level of the wind and temperature and as such, is not a true index for
gauging the resulting load response [7, 44]. High wind-chills however, have the

psychological effect of causing people to turn up their thermostats.

3.3.3 Humidity

A weather variable that greatly influences air conditioning and other related
cooling loads in summer, is the level of humidity in the atmosphere. The effects of
high humidity are generally only noticeable when the temperature is quite high,
usually above room temperature. The humidity effects can be considered in the load
model by representing it as a function of relative humidity, the temperature humidity
index or the dew point temperature. The most common variable used in the literature
is the humidity index.

The temperature humidity index is a measure of the discomfort level or equivalent
heat stress in summer and depends on both the temperature and relative humidity, and
normally shows greatest correlation with summer load and only influences the load

above a predetermined cutoff temperature.

3.3.4. [llumination

Daytime illumination has a small effect on the load model, compared to the other
two previously discussed factors. Surveying the literature shows that in most cases
this factor is often omitted from most load models.

Low daytime illumination can cause an increase in daytime lighting load and
advance the effects of nightfall. thereby altering the evening load pattern. This factor
is influenced by such weather conditions as cloud cover, dust, fog, haze etc... is the

measure for the level of luminous radiation received at ground level.



3.4. Residual Load [44]

This load component occurs in load modeling and usually accounts for a small
percentage of total load and results from irregularities in the behavior of the
consuming public. Abnormal consumer demands, though quite frequent in
occurrence, are very difficult to model and predict and are not accounted for, in most
load models.

The common factors of unpredictable load behavior range from public response to

major television events, strikes, storms, disasters, time changes etc.

3.5 Short-Term Load Forecasting Models [7, 9, 12, 16, 50]

Reviewing short-term load forecasting methods indicates that the most important

modeling techniques used, can be classified in one of the following categories :

(1) Multiple linear regression.

(2) General exponential smoothing,

(3) Stochastic time series,

(4) Expert systems approach, and

(5) State space model.

These models are classified on the basis of the name of the underlying
mathematical technique used to estimate the parameters of the model. The preceding
classifications are not unique and the one used with one utility is not necessarily
suitable for another. However, one can combine these models or can use one model to
initiate another model to predict certain parameters from past history. With unknown
information about the load, these techniques can be combined to improve the
accuracy of the forecast. Also. each model possesses distinct advantages and
disadvantages compared to each other. In the following subsections, the first three
methods are reviewed, while the last two methods are beyond the scope of this

research.
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3.5.1 Multiple Linear Regression [44]

This is the earliest technique of load forecasting methods. Here, load is expressed
as a function of explanatory weather and non-weather variables that influence the
load. The influential variables are identified on the basis of correlation analysis with
load, and their significance is determined through statistical tests such as the False and
True tests.

Mathematically the load model using this approach can be written as:

y)=ao+ D aixi(t)+r() (3.1

i=l
where y(t) is the load value at time t, x,(t),...,Xq(t) are explanatory variables, r(t) is
the residual load at time t and a; are the regression parameters relating the load y(t) to
the explanatory varniables. Previous analysis that uses this model treats a; as a crisp
number
If the number of observations equals exactly the number of parameters to be

estimated, then r(t) is forced to zero. Eq. (3.1) becomes
y(®) =a;+Y a; x; (1) (3.2)
i=l

where the asterisk indicates the optimal estimated values of the parameters.

The multiple linear regression technique has found greatest application as an off-
line forecasting method and is generally unsuitable for on-line forecasting, as it
requires many external variables that are difficult to introduce into an on-line
algorithm [44].

These models are relatively simple to apply but require extensive initial analysis to
identify the regressors and their place in the model. Also because the relationship
between the load and weather variable is time specific, this model requires

continuous re-estimation of its parameters to perform accurately.



3.5.2 General Exponential Smoothing [7, 44]
In this technique the load is modeled using a time dependent fitting function that
satisfies the relationship:
f(t)=L f(t-1) (3.3)
where f(t) is the fitting function at time t, and L is a constant matrix called the
transition matrix [44]. Mathematically the model is expressed as:
y®=pMmf()+r (3.4)
where y (t) =load at time t, B (t) = coefficient vector at time t and r (t) = residual load
or noise at time t.
The parameter vector is estimated from a data window of previous observations
using least errors square minimization technique(LES). The estimated parameter
vectors are obtained by minimizing the cost function

N-1 ,
I=3 WhyMN)-fE)BY 3.5)

=0
where w is called the weighting factor, and (1-w) is called the smoothing

constant. The parameter vector that minimizes the cost function J can be written as :

BA(N) = F' (N) h (N) (3.6)
where
N-1
FON)= > W) () (3.7)
j=0
and
N-1
hN)= D W f(-))y(N-j) (3.8)
j=0

The forecast at a lead time /, is then given by :

y*(N+) = £ ()) BA(N) (3.9)
and the parameters of the forecasts can be updated using

B'(N+1) = LTB"(N) + F'f(0)[y(N+1)-y"(N)] (3.10)
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and
y (N+1+)=f" () B'(N+1) (3.11)
This method can be used for both on and off-line forecasting though its recursive
nature and generally poor long-range accuracy makes it much more suitable for on-
line forecasting. The low accuracy encountered for longer lead times stems from the
fact that this technique cannot use related weather information and so this technique
cannot account for weather related load changes. Simplicity, re-cursiveness and
economical usage , however, make this technique a very attractive forecasting tool in

practice.

3.5.3 Stochastic Time Series [7, 44]

In this method the load is modeled as the output of a linear filter driven by white
noise. Depending on the characteristics of the linear filter, different load models can
be formulated.

The autoregressive and moving average processes are the two simplest forms of
stochastic time series and though neither of these processes is usually individually
capable of accurately modeling the load, they form the basis for development of more
complex processes.

In the autoregressive (AR) process the current value of load is expressed linearly
in terms of previous values and a random noise. The order of this process depends
upon the oldest previous value for which the load is regressed. The moving average
process on the other hand expresses the load linearly in terms of current and previous
values of a white noise series and again the order of the series depends upon the oldest
previous value.

The auto-regressive and the moving average processes are usually combined to
give the popular ARMA or auto-regressive moving average process, which has found
widespread use in the power industry. In the ARMA process, the load at any instant is
expressed as a linear combination of its past values and a white noise series. The order
of this process is specified by the order of the AR and MA series included in its
composition [1].

Time series used for AR, MA or ARMA models are referred to as stationary

processes when their means and covariances are stationary with respect to time. So if
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the process being modeled is non-stationary, then it is firstly transformed to a
stationary series before being modeled by AR, MA or ARMA process [1].

Making a non-stationary process into a stationary one is accomplished by the
method of differencing and the order of a differencing process refers to the number of
times the process has been differenced before achieving stationarity. Differenced
processes modeled as AR, MA or ARMA are now called integrated processes and are
relabeled ARI, IMA and ARIMA.

The auto-regressive integrated moving average or ARIMA process, like the
ARMA process is a very popular load modeling technique that produces very accurate
load forecasts. For longer lead times, however, a seasonal or periodic component must
be included into these processes. This results in what is known as a seasonal process
and the abbreviations SARMA and SARIMA are now used [44].

The lack of weather input into time series models usually limits their forecasting
ability. By expressing these processes in transfer functions form makes it possible to
add some weather information. This is usually limited to the single-most influential
vanable, that is temperature, which generally accounts for most of weather induced
load [1].

The populanity of the stochastic time series approach in on-line forecasting stems
mainly from the level of accuracy available and their ease of on-line implementation.
The identification process of the time series models is a major disadvantage since the
process requires extensive analysis of raw load data through the use of range-mean,

correlation and auto-correlation analysis.

3.5.4 Qualities of Forecasting Models

The review of short-term load forecasting methods indicates that depending on the
forecasting technique employed, many different load models can be developed to
predict the same load. For these models to be considered good or efficient, however
their formulation must feature certain basic qualities and their performance must be
within tolerable limits.

The literature indicates that some of preferred qualities in a load-forecasting
algorithm include adaptiveness, recursiveness, economy, robustness and accuracy

[44].
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Adaptivness

The parameters of a short-term load-forecasting model are usually estimated from
a fixed window of data and are only accurate for a specified period of time ahead. As
the forecast period elapses and new measurements become available, the algorithm
should be able to automatically update its data window and recompute its estimates.

Recursiveness

As new data such as weather and load measurements become available the

algorithm should be able to correct its forecasts and prediction for the next step.
Computational Economy.

The pursuit of accuracy can lead to very complicated models that require the use of
excessive computing facilities. A forecasting algorithm however, should attempt to be
computationally efficient with regards to execution time and care utilization.

Robustness.

An algorithm should be robust to miss-specification and erroneous data. i.e.
reasonable forecasts should be produced even if the model is predicting for conditions
for which it was not designed, or even if its database is contaminated with bad or
anomalous data.

Accuracy

The performance of a short-term load-forecasting algorithm depends largely upon
the forecasting lead-time as well as upon such factors as load behavior and model
type.

For a model with a 24-hours prediction period errors in the range of 2-3 % are
considered normal, whereas for models with lead-time of one hour the same error is
considered large. Models with longer lead-time than 24-hours show reduced accuracy

and for a lead-time of one week. accuracies within 10% are to be expected.

3.6 Load Forecasting Models [44]

In short-term load forecasting. the future load on a power system is produced by
extrapolating a pre-determined relationship between the load and its influential
variables, namely time and/or weather information. Determination of this relationship

1s a two stage process that requires

(a) identifying the relationship between the load and related variables,
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and (b) quantifying this relationship through the use of a suitable parameters
estimation technique.

In order to study the effects of parameter estimation techniques on short-term
load forecasting accuracy , it is necessary to identify and develop suitable load models
that will allow for the application of these estimation techniques.

In the next sections, load models are developed for crisp parameters. These
models will be used in both summer and winter forecasting modes and as such. where
applicable, winter and summer load formulations are included. In chapter five, fuzzy
models are developed for winter and summer loads and the techniques used to
estimate these fuzzy parameters are discussed in chapter four. In this part of the
chapter, crisp models are presented and discussed. These three models are developed
in [44] for off-line load models. The parameters are assumed to be crisp.
Modifications will be carried out, if necessary, on these models for the fuzzy type
models, as will be seen in subsequent chapters.

The models will be referred to as A, B and C, respectively. Model A is developed
on the basis of multiple linear regression, whereas model B is developed on harmonic
basis, furthermore, model C is a hybrid one that embodies both properties of models

A and B. These models are developed to forecast for twenty-four hours ahead .

3.6.1 Model A

This is a multiple linear regression model that expresses the load at any discrete
time instant t as a function of a base load and a weather dependent component. The
base load is assumed to be constant for each discrete time interval. The variable part
of the load is weather dependant .

This model will be used for both winter and summer load forecast simulations, and
since the relationship between load and weather differs significantly over these two
seasons, a different load formulation will be required in each case. This will result in
two load models, namely a winter model and a summer model.

These models are based on the assumption that a common daily base load cycle is
experienced by week days and that a constant but different base load cycle is
experienced by weekend days, namely Saturday and Sunday. As such, two models are

required to predict loads over a complete week, i.e. one for predicting weekday loads
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and one for predicting weekend loads. Correlation analysis of load and temperature
deviations from the norm indicates that the load to be modeled depends on both
immediate and previous values of temperature deviations. This correlation however, is
strongest for immediate values of temperature deviations and dies out in
approximately 72 hours.

The wind-chill and wind cooling factors also display similar relationship in winter,
as does the temperature and humidity in summer. The wind-cooling factor however,
was selected in favor of wind-chill factor, as it generally results in smaller prediction
errors during forecast trial [44].

Based on early analyses, initial winter and summer models were formulated and

tested in off line simulation mode. The following two load models formulations were

selected [44].

3.6.1.1 Winter Model
Mathematically, the load at any discrete instant t, where t varies from one to
twenty-four, can be expressed as:
Y (t)=a0 () +ai () T (M) + a2 (1) T (1) + a3 () T (1)
+ay()T(t-1) +as(t)T(t-2) + ag(t)T(1-3)

+ az(t) W(t) + ag(t) W(t-1) + ag(t)W(t-2) (3.12)
Where
Y (t) = load at time t, t=1,2...24
T (t) = temperature deviation at time t

W (1) = wind cooling factor at time t

3y (t) = base load at time t, and

a(t), ax(v),...... ,as(t) are the regression parameters to be estimated at time t.
The temperature deviation at the instant t, is calculated as the difference between the
dry bulb temperature at time t, and the average dry bulb temperature of the previous
twenty weekdays (four weeks) temperature measurements, corresponding to the same
discrete instant, i.e.

TO=Ta(®)-Ta(t) (3.13)

Where
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T4 (t) is the dry bulb temperature at time t, in °c

Ta (t) is the average dry bulb temperature at time t,
Ta (1) = [Tq(t-24)+ T4 (t-48) +...+ T4 (t-480)] /20 (3.14)

It should be noted, that equations (3.13) and (3.14) refer to a database consisting only
of weekday temperature recordings.
The wind-cooling factor is calculated from
W () =[18- Ta ] [V (] (3.15)
Where V (t)= wind speed in km/h at time t

3.6.1.2 The Summer Model
The winter equivalent of the load model given by equation (3-12) can be modified
to become
Y (1) = ag(t)+ a; (1) T (1) +az (1) TX(t) + as()T (1)
+ay()T(t-1) + as ()T (t-2) + ag()T(t-3)
+ a(t) H(t) + ag(t) H(t-1) + ag(t)H(t-2) (3.16)
where
Y (t) = load at time t
T (t) = temperature deviation at time t.
ay (t) = base load at time t.
aj(t),ax(t),....,aq(t) are the regression parameters to be estimated at time t.
The temperature deviation is calculated as for the winter model.
The humidity factor H(t), that replaces the wind cooling factor in the winter model,
is given by
H(t) = 0.55 Ta(t) + 0.2 Ty(t) + 5.05 (3.17)
where
Tp(t) = dew point temperature at time t, in °C.
The humidity factor H (t) is set to zero if the dry bulb temperature is less than

twenty-five degrees Celsius, since at temperatures less than room temperature, the

humidity effects are negligible.
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Equations (3.12) and (3.16) give the multiple linear regression models for the load
in winter and summer day. As such, it is required to estimate twenty-four parameters
(24 sets of the parameters) to predict the next day hourly load profile.

Equations (3.12) and (3.16) can be written in compact form as:

Y ()= f1(t)x(t) (3.18)

Where f (1) is a fitting function given by
o1

T(v)
T2(1)
T3 (1)
T(t-1
f(t)= T((t—Z)) (3.19)
T(t-3)

W(t)
W(t-1)
| W(t-2)]

in winter, and

- -

1
T(t)
T2(1)
T3(1)
T(t-1)
f(t)= T(t-2) (3.20)
T(t-3)
H(1)
H(t-1)
_H(t —2)~

in summer. Moreover x(t) is the parameters vector to be estimated and is given by
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rao([)-
Gl (v)

X =| (3.21)

37(0
as(t)
[29(1) ]

In this chapter, the parameter vector of equation (3.21) is assumed to be crisp (vector
with constant values at time t). In chapter five, this vector will be assumed to be fuzzy
(A vector with certain middle and certain spread).

The corresponding parameters X(t) at any given discrete interval are estimated using
the previous four weeks of weekday data corresponding to the discrete instant. The

overdetermined system of equations corresponding to the estimates at the instant t,

will read
y(t—24) f(t - 24)
y(t —48) = f(t —48) X(t) (3.22)
y(t —960) f(t — 960)

Equation (3.22), which involves crisp parameters estimation, can be solved using an
appropriate estimation technique. After estimating the parameter vector X(t), it can

be substituted into equation (3.12) or (3.16) to obtain the load prediction for time t.

3.6.2 Model B

The load type of this model is expressed as a function of a constant base load and a
Fourier harmonic series. It was discovered from studying early load data that there is
a presence of a weekly load cycle that is characterized by distinct daily periodicities.

In this model however, the weekly cycle is accounted for, by the use of a daily

load model, whose parameters are estimated seven times weekly. Since this load does
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not take weather into consideration , a single load model will suffice for both winter
and summer simulations.

Therefore the load at any time t is

N
y (t) = a,+ Z [ai sin (iot)+b; cos (1ot)] (3.23)
i=1
N
y() =ast D ¢ sin(iot+¢ ) (3.24)
=1
—_—
where c. = /a:?w-b.2
1 V5 1
tan ¢;=b;/a;

Equation (3.23) is the most suitable form to model the load, since it is a linear

equation in the parameters to be estimated. In equation (3.23) :

y (t)=the load at time t

N = number of harmonics to be chosen

o=2t.’24

a, = constant base load for each day of the week, and

a, b. 1=I. .....N are the parameters corresponding to the
harmonics in the load composition.

To predict the hourly load profile for any day of the week, an overdetermined

system of equations is set up using data from the previous four weeks corresponding

to the day in question.

Equation (3.23) can be written as
y(=f'(HX (3.25)

where
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[
sinw t
cosw t
f(t) = (3.26)
sinNow t
| cosNw t |
and
- ag A
3
bl
X = (3.27)
an
bI\
The overdetermined system of equations can now be written as:
[ y(t-168) ] fT(t-168)
t-192 To-
¥( ) _ f(t-192) [X] (3.28)
y( - 336) £T(t-336)
LY -672)] | fT-672)]

Having obtained the parameter vector x, then equation (3.23) can be used to forecast

for the next twenty-four hours.
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3.6.3 Model C

This model consists of the sum of a time-varying base load and a weather
dependent load. This model is developed to eliminate the disadvantages of the
previous two models A and B.

Model A has the advantage of being weather responsive, but suffers the
disadvantages of requiring (a) twenty-four separate parameter estimates in order to
predict the next day load, and (b) the use of weekday and weekend both with winter
and summer formulations.

Model B requires using of a single model formulation and hence it estimats a
single parameters vector in order to predict the next day load, however, it suffers the
disadvantage of being weather insensitive.

Models A and B are combined to form model C to obtain a computationally
efficient and weather sensitive model. This new model will eliminate the use of
separate weekday and weekend models, as is the case with model A. Also by limiting
the weather input to temperature only, a single load model could be used for both
winter and summer load forecast simulations. The main disadvantage of model C is its
assumption of constant relationship between load and weather for all times of the day.
However, if there is a set of parameters for every hour, the model becomes
computationally inefficient.

Mathematically load model C can be expressed at any discrete time instant as

N
y(®=a+ D [asin(iot) +b; cos (iot)] + coT(t)

1=1

+¢1T(t-1) + ¢, T(t-2) + ¢c3T(t-3) (3.29)

where T(t) is the temperature deviation at time t, and is given by

T()=Ta(t)- Tc(t) (3.30)
where T.(t) is the average dry bulb temperature for the discrete instant t, calculated
from the previous twenty-eight daily temperature measurement corresponding to the
discrete instant, i.e.

Te(t) = [Tg(t-24) +...... +T4(t-672)]/28 3.31)
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Equation (3.29) can be written in vector form as
y (® = f' ()X (3.32)
where
f1(t) =[1 sinot coswt ...sinNot cosNot T(t) T(t-1)......T(t-3)]  (3.33)
and
X"=[aoa; by ......... ay by Co ¢ .....C3 ] (3.34)
and the parameters vector X can be estimated as for model B, i.e. from the system

of equations given by:

(yt-168)]  [fT(t~168)]
ye-192) || fTe-192) X] (3.35)
y(t - 336) Tt - 336) |

L ye-672) | | fTa-672)

The next day forecast can then be done, by substituting for X and the predicted values

of temperature deviation into equation (3.29).

3.7 Conclusions

In this chapter models used for short-term load forecasting are presented. Three
models are proposed, namely model A, B and C. Model A is a multiple linear
regression model. From model A two models are derived, the first can be used for
winter load forecasting while the second can be used for summer load forecasting.
Model B is a Fourier series model. It is not weather sensitive. Finally model C is a
combination of the multi-regression model A and the Fourier series model B. In this
model C the effects of temperature deviations are taken into account.

In the three models, the parameters to be estimated are assumed to be constants
during the time interval considered and have crisp values. In chapter five, the fuzzy
load models used for short term load forecasting are presented. The parameters in
these models are assumed to be fuzzy numbers having certain middle and spread

values.



Chapter 4
Static State Estimation

4.1 Introduction

The purpose of this chapter is to study the static state estimation problem. The first
part of this chapter discusses the static estimation problem, when the observations
available are crisp measurements. Two techniques are discussed for the estimation
process. The first technique is based on the least error squares (LES) criterion, while the
second technique is based on the least absolute value (LAV) criterion. In the second part
of this chapter, the fuzzy estimation problem is discussed. Two problems are discussed in
this section. The first problem, the output data are non-fuzzy data, while the parameters
of the explanatory function are fuzzy parameters. In the second problem, the output data
are fuzzy and the parameters of the explanatory function are fuzzy.

State estimation is the process of assigning a value to unknown system state variables
and filtering out erroneous measurements before they enter into the calculation process.
A familiar criterion in state estimation is the least error squared (LES) which is the
minimization of the sum of squares of the difference between the estimated and true
(measured) value of the function. Another technique of state estimation is based on
minimizing the absolute value of the difference between the measured and calculated
quantities, and it is called the least absolute value (LAV). These techniques require
excessive computer memory space and long computer time The main advantage of the
LAV algorithm is its ability to reject the bad data points in the estimation process, i.e. it is
insensitive to the outliers. A non-iterative method was developed in [64 - 65] to solve the
least absolute value problem. This method uses the least error squares solution as a
starting point. The steps of this method are explained within this chapter.

The main objectives of this chapter are to introduce the static estimation problem and

the different techniques used to solve it.
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4.2. Static Estimation Problem, Crisp Linear Estimation [63, 64]

The static estimation problem can be simply stated as: given the system measurement

linear equation
z=HO+y (4.1)
Where z is amx1 vector of system measurements (known).

@ is a nx] vector of parameters to be estimated (unknown).
H is a mxn matrix describes the mathematical relationship between

the measurements and the system parameter vector (known)
and v is amx1 vector of measurement errors (unknown) to be minimized.

It is required to estimate the parameter vector 8, which minimizes the error vector v

in some sense.

The best parameter estimate § must be chosen to minimize a given cost function. A

general form of the cost function is

JP(Q)={ilzi_HigiP}P (4.2)

or

74 (6) ={f_lv,- (0)1”}" (4.3)

Where

Jo(6) isthe cost function to minimized.

D is some number > 1, which defines the nature of the cost function.
z, is the i th measurement.

H, is the row of H corresponding to the i th measurement.

v, is the residual of the i th measurement; that is, v, =z, - H,6.

For p = 2, the cost function is the sum of the squares of the residuals while for p=1 the

cost function is the sum of the absolute values of the residuals .



If the number of measurements (m) equals the number of unknown parameter (n),
then an estimation of @ can be obtained as in (4.4)
g=[H]": (4.4)
For this type of estimation, the estimated parameters vector exactly fits the
measurements set, i.e.
:-HO=v=0 (4.3)
4.3 Linear Least Error Squares (LES) Estimation [75]
If the number of measurements (m) exceeds the number of system parameters (n), i.e.
m<n, then the measurement errors can be filtered out in the estimation process and good
estimates can be obtained. In the LES, the objective is to minimize the sum of the squares

of the residuals.
As mentioned, for p = 2, Equation (4.2) can be rewritten in vector form as

I

J2(@)= 3= HO) (=~ HO)}: (4.6)
or
Ji©) = 7z~ HOY (z ~ HO) @.7)

It should be noted that minimizing the sum of the squares is equivalent to minimizing
the square root of the sum of the squares.
Setting the first derivative of Equation (4.7). dJ/,(8)/d8 . to equal zero, yields
-H z-H z+2H"HO=0 (4.8)
which gives
6=[H™H]'H; (4.9)
or

6=[H]"z (4.10)
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Where HY = [HTH]‘ HT is the left pseudo-inverse of H, and € is the optimal or
best LES estimate of 6. It should be noted that the second-order partial derivative is

0°J'(@) _
56°

This matrix is positive definite as long as H is of full-column rank, the rank of H

H™H (4.11)

equals n. Therefore the value of é given by Equation (4.10) is unique and minimizes
J,(8).

An LES estimator finds the mean value of a set of measurements [68]. The mean
value is generally accepted to be the best estimate when the set of measurements has a
Gaussian error distribution. However, for other error distributions the LES will not
produce the best estimate [66]. The LES estimate is also adversely affected by the

presence of bad data; most LES estimators use some form of bad data suppression.

4.4. Weighted Linear Least Error Squares Estimation (WLES) [75]

In the LES explained in section 4.3 above. if all measurements are treated equally,
then the less accurate measurements will affect the calculation process as much as the
more accurate measurements.

As a result, the final set of data obtained from the least error squares estimation
process will still contain large error due to the influence of bad measurements. By
introducing a weighting matrix to distinguish the more accurate measurements from the
less accurate ones, the calculation process can then force the results to coincide with
more accurate measurements. A sensible way of choosing the weights is to make them
inversely proportional to the variance of the measurements. This approach means that
larger weighting is placed on measurements with smaller variance (more accurate) and
smaller weighting on measurements with larger variance (less accurate).

The cost function to be minimized, in this case, is given as:

r@=-3 =2 (4.12)

3
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or
J, () = f: w.(z, - H.0)* (4.13)
=1

where o is the standard deviation of the i th measuring device.

{

o2 Isthe variance of the i th measurement.

i

w, is the weight assigned to the i th measurement.

In vector form, equation (4.13) can be written as
J,(0)=(z-HE) W(z-Hb) (4.14)
Similarly, it can be shown that the weighted least error squares estimation is

given by

6=|H"wH]" HW: (4.15)

4.5 Constrained Least Error Squares Estimation [68]

-

The constrained linear least error squares problem is to find the state vector 6 that

minimizes cost function
J,©) = G- H6) (- He) (4.16)

subject to satisfying the linear constraints given by
Cco=d (4.17)
where  C  jsan /x»n matrix which represents the relation between 6 and d .

d is an £ x1 vector, which represents the constraints measurements.

An augmented cost function can be formed by adjoining equation (4.17) the equality

constraints to equation (4.16) via LaGrange’s multiplier 4 to obtain:
J1(@) = (z~HO) (z~ HE)+ AT (CO~d) (4.18)

The cost function of equation (4.18) is a minimum when
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an(Q)/ag=O=%[—2H75+2H’HQ]+CTA

which gives:
6=[HH|'[H"z-CT A] (4.19)
The LaGrange’s’ multiplier 4 is to be determined such that the equality

constraints of equation (4.17) are satisfied. Pre-multiplying equation (4.19) by C, then

A=lcrHTHT' [ ClH T HY BT 2~ d] (4.20)
Thus the state € can be obtained by substituting equation (4.20) into (14.17) to obtain
§=[H"H]"[H"z~CT[CIHTH]" CT)"[CIH H]" H =~ d]| @21)

It can be noticed that if C = 0, there are no constraints, then 8 turns out to be the optimal

estimate for the unconstrained least error squares estimates given by equation (4.9).

4.6 Recursive Least Error Squares Estimation [75]

The previous estimators are “batch processing™ algorithms, in that all measurements
are processed together to provide the estimate of a constant vector. If a new
measurement is obtained, then the first way is to append the new data to z and repeat the
entire process. The second way is to use the prior estimate as the starting point for a
sequential estimation algorithm that assigns proper relative weighting to the old and new
data.

Given :z, measurements vector corresponding to m; measurements, H,

measurements matrix and W, weighing matrix then the resulting estimate él are:

y =H, 8, +v, 4.22)

6, =[HIwH]"HIW,:, (4.23)
The new measurement z, with dimension my, is

z, =H.9, +v, (4.29)
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W, is ma*xm; containing the expected squared errors in the new measurement. The cost
function for all (m;+m;) measurements
z= [ 2 ] (4.25)
can be partitioned as
1 a~ T - PV] O g -H é-s
Jz,,z,)==\z,-H,0,) |z, -H.0, =t we 4.26
—Ll —-) 2(_x l—-) (—- -_-{0 WZ]{Q:—HJOI:I ( )
where éz is the state estimate obtained by using all data.
Taking the derivative of J(z,,.z,) and setting it equal to zero provides the
least-squares estimates é2 :
0,=6,+K,(z,~ H.8) (4.27)
where K; is the recursive weighted-least-squares estimator gain matrix.
K, =£1H2T(H2£1H;+Wz_l)—l (4.28)
(4.29)

and
Pl'=H[WH,
Equation (4.27) looks like a digital filter, and measurements taken over a period of time

could update the estimate as they occur. Redefining k as a time index and letting the
observation vector at time k have r components, the recursive mean-value estimator is
(4.30)

ék =ék-l +K,(z, - H, ék—l)
(4.31)

with
Kk = Bk-IHZ(HkPk—IHkT + ’Vk-l )-l
4.32)

and

P, =(1)k—-ll +HkTWkHlx)_l
Note that Ky is a (nxr) gain matrix, which Py is a (nxn) matrix that represents the

estimation error at the K;, sampling instant.
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4.7 Nonlinear Least Error Squares Estimation [68]

In the previous sections, the linear least error squares estimation problem is discussed
and there is a direct linear relationship between the measuring value and the estimation
parameters so that the solution is obtained directly without any iteration. If the
relationship between the measurements and the estimate parameters is nonlinear, the cost
function needs to be linearized by using first order Taylor series expansion . In this
section, the solution for the nonlinear parameter estimation probiem is to be found using

the linear least error squares algorithm explained earlier in the previous sections.
The nonlinear least error squares problem is to estimate the parameter vector € which
minimizes
= (z;, - [ (@
1@=3 L@ (4.33)
i=t
The gradient of J, (@) is given by:

[8J,(9) ]
a6,
8J,(8)
o6,

VJ,(8) =grad( J, )= (4.34)

oJ,(0)
| 66, ]

This can be written as:
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KA &
i o ERAZ
vi@=242L L L . 16
- 06, 4é, o; ] P
a.f_m afm 1 | = m _fm( )_1
| 06, 86, 1 ol |
(4.35)
Equation (4.35) can be written in compact form as
VJ,(0) =2H WAz (4.36)
where the mxn matrix H is defined as
EA:A A
06, a6, ' ' 00,
o, 9, 9
H = 06, a6, 00, @.37)
S Y  m
| 06, 46, ' ' ' a6, |

= Jacobian of [(6)

[

Q

W =m x m weighting matrix =

[P}

2

1

2
(o

and Az =mx]1 difference matrix between the measured values and the estimated values.

To make V.J(8) equal zero, the Newton-Raphson method is implemented.

Thus :

AQ = FYBJ;ﬁJ [-v/,6)] (4.38)
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The Jacobian matrix of VJ, (0) is calculated by treating [H] as a constant matrix. Thus,

CAZA ) ——
26
Then
A =[H™wH|"'[H wa:] (4.39)

The procedures of the algorithm for solving the nonlinear state estimation

problem can be stated as follows:

Step 1. Assume initial guesses for 6.
Step 2. Compute the measurement vector Az using these initial guesses.
Step 3. Calculate the matrix H as well at these guesses.

Step4.  Solve for A@ using equation (4.39).

Step 5. If A@ satisfies a certain specified terminating criterion, terminate the iteration,
otherwise go to step 6.

Step 6. Update the parameter vector 8 as

@, =6_,+ A8 and go to step 2.

4.8 Properties of Least Error Squares Estimation [63 - 68, 75]

The least error squares are the best estimates (maximum likelihood) when the
measurement errors obey Gaussian or normal distribution and the weighting matrix
equals to the inverse of the covariance matrix. Also, for the estimates where the
measurements errors does not obev a Gaussian distribution and the number of
measurements greatly exceeds the number of unknown parameters, the method of least
error squares yields very good estimates.

There are many estimation cases where the errors distribution is not a Gaussian
distribution and the number of measurements does not greatly exceed the number of
unknown parameters. In these cases, the least error squares estimation results are

adversely affected by bad data. These cases have been recognized and addressed by



several researchers, who have proposed different ways of refining the least error squares

method in order to make estimation less affected by presence of bad data.

4.9 Least Absolute Value State Estimation (LAV) [63 - 65]

In contrast to the LES the least absolute value estimation is based on minimizing the
sum of the absolute value of the residuals. There is a basic difference between the two
techniques. Using least absolute value the best approximation is determined by
interpolating a minimum subset of the available measurements. While using the least
error squares, the best approximation is derived from the mean of the available
measurements when the error statistics are Gaussian.

The purpose of this section is explain least absolute value approximation theory. Then
the techniques to obtain LAV state estimation are discussed . After that, an algorithm
based on LAYV is introduced to obtain the best state estimation.

The cost function in the case of LAV is given by, for p = 1 in equation (4.2)
jl(Q)=lei_HiQ| (4.40)
i=1

As mentioned earlier, the minimum of J, (é) corresponds to the best LAV estimate Q of

the system parameters.

Important characteristics of the LAV solution are given by the following theorems:
Theorem 1.

If the column rank of the mxn matrix His k, k n (for maximum rank k = n), then
there exists a vector Q corresponding to a best approximation that interpolates at least k
points of the measurement set.

This theorem states that, if there are m measurements z, 1=12,....m and n
unknowns, then the optimal hyper plane z based on LAV will pass through at least n
points of the measurements set. This is in contrast to the least square approximation,

which does not necessarily pass through any of the measurement points of the set z .



Theorem 2.
If N, is the number of measurement points above the optimal hyper plane under LAV

plane and N; is the number of points below the hyper plane, provided that n+1 points do
not lie on a hyper plane in n-dimension, then
iN =N,

These two theorems state the interpolation property of the LAV solution. Since the

<n

LAYV solution interpolates data points, it will reject bad data points, provided that none of
the bad data points are among the points interpolated. Thus, the problem reduces to

selecting n (n = the number of the parameter variables to be estimated) data points to
minimize the LAV cost function and to find é . The popular method of finding Q has

been through linear programming. The formulation of the linear programming problem

can be carried out as explained in the next subsection.

4.9.1 Least Absolute Value (LAV) Based on Linear Programming
[66 -72, 75]
In this section, a technique is presented to solve the LAV estimation problem. The

formulation of this technique is :

Minimize the cost function of

J (@) =>v, (4.41)
i=]
Subject to
v, 20 (4.42)
and
| n f
v, 4z, =Y H,0,20, i=l..m (4.43)

Equation (4.43), can be written as

v, Zzi—ZH,jH,., i=1,....m (4.44)
j=l
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and
v.2Y HO -z, i=l....m (4.45)

Thus, the linear programming problem is to minimize (4.41) subject to satisfying the
constraints given by equation (4.44) and (4.45). It can be noted from equations (4.44) and
(4.45), that if any of the constraints is negative, the other will be positive, and v; must be
positive in order to obey the linear programming requirements.
The main steps of this algorithm are :
e Select n points from the set of measurements.
e Evaluate the cost function; and
e Select new points, which decrease the cost function. When the cost function
becomes a minimum, the LAV solution has been reached. It has been shown that
the size of the matrix to be stored and manipulated is [2 (m + n) x n]
The main disadvantages of linear programming technique are:
e Itis an iterative technique, which requires considerable computing
time.
e [t needs a large size of memory to store and manipulate a matrix of
size 2 (m + n) xn;
e The frequent inaccessibility of the linear programming algorithm
within a statistical package.
e The solution obtained may not be unique.
Some of the more recent algorithms have been attempted to overcome these difficulties

and researches continue in this area.

4.9.2 An LAYV Algorithm |63 - 65]

Given the measurement equation described in equation (4.1), the following are the
main steps in this LAV algorithm for unconstrained problem.

Step 1. Calculate the LES solution, as defined earlier, using the equation

6=[H"H]'H:



W
(VY]

Step 2. Calculate the LES residuals generated from this solution as
v,=z,-H ié

]

Step 3. Calculate the standard deviation of the calculated residuals as

o’ = Z (v, - = variance
-n+1

o =4/ variance —,:

13| —

ORI

Step 4. Reject the outliners having residuals greater than the standard

m-—n+1

deviation o, provided the system is observable.

Step 5. Recalculate the new LES estimates, using the rest of the
measurements and calculate the new corresponding residuals for
these measurements.

Step 6. Select the n measurements that correspond to the smallest least

error squares residual and form the corresponding 3 and H .

Step 7. Solve for the least absolute value estimate §° using
o =[Al"

4.10. Constrained LAV Estimation [68]

The constrained state estimation problem can be handled by the LAV technique. If

181

there are m measurements and ( constraints, n > ¢, the technique will interpolate at
least n points of the given measurements. The constraints represent good measurements
so that the residuals of the least error square solution for these constraints will be zero.
The least absolute value technique must interpolate the ¢ constraints before interpolation
of n—¢ of the other measurements. The total number of the interpolated points will
equal (n - £ + £ =n). Thus the method will select directly the ¢ constraints and the n — ¢
measurements corresponding to the smallest LS residuals.

The number of constraints should be less than the number of unknowns otherwise the

least absolute value will interpolate the n points from the constraints only.



The solution technique may use the method proposed in the pervious section for LS
parameters estimation with constraints and then proceed in the same manner as the LAV

technique to obtain the least absolute value optimal solution.

4.11 Fuzzy linear Estimation [77, 79, 80, 83]

In this section, a formulation of the fuzzy linear estimatior: problem is presented. The
problem is formulated as a linear programming problem. The objective is to minimize the
spread of the data points, taking into consideration the type of the membership function
of the fuzzy parameters to satisfy the constraints on each measurement point and to insure
that the original membership is included in the estimated membership. Different models
are developed for a fuzzy triangular membership and the fuzzy numbers of LR-type. The
fuzzy parameters linear estimation model or fuzzy regression model can be described by

the following equation

Y =1(x,A) = Aix; + Az X2+ ... +... Ap X (4.46)
At any observation j; j = 1,2..., m, equation (4.46) can be written as
Y =1(x, A) = AiXij + Az Xaj + ... oot Ag Xaj (4.47)

In fuzzy regression, the differences between the observed and the estimated values
are assumed to be due to the inherent ambiguity in the system. Therefore, the above fuzzy
regression model is built in terms of possibilities. It evaluates all observed values as
possibilities the system must contain. The model in equation (4.46) is named as a
possibilstic regression model. In this model Y; is the observation at measurement j. This
output observation may be a non-fuzzy or a fuzzy observation, A, i=1,2,..., n are the
fuzzy coefficients of the model in the form of (p;, c;), where p; is the middle and c; is the
spread, or it may take the form of LR-type as (p;, ol ek ) and x;; is the input to the model

where i =1,..,nandj = 1,2,.., m . In this section, three cases for the output Y; are studied:



4.11.1 Non-fuzzy output ( Y; = m;)

In this model the output Y; is a non-fuzzy observation, but the model coefficients A,
i=1,2,..., n are fuzzy parameters either in the form of A; = (p;, ¢; ), or A; = (p;, al, & )
i=1,..., n for the LR-type and the input x;; is a non-fuzzy input. The membership functions

for each type of A; are given in Figures (4.1) and (4.2)

uAT

Pj-C; P, pjtc; A

Figure 4.1 Membership Function of the Fuzzy Parameters A,

The equation that describes this membership can be written mathematically, for the

triangular fuzzy number, as

< =] 1P =il P,=¢; <a;< pj+c (4.48)
0 otherwise

While the membership function of A, of the LR-Type is assumed to be trapezoidal

function as shown in Figure 4.2
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4 Ma(x)

b, b bs b:s x
Figure 4.2 Trapezoidal Membership Function of A,

Note that if b, = b;, we obtain the triangular membership. In general the membership

function for the LR-type can be described as

L(p,—x/c]) forx <p,

W = e (4.49)
i |R(x=p;/e;) for x2p,

p; is called the middle of A, or the mean. ¢,' is the left spread and ¢," is the right spread.
Equation (4.46) can now be written as
Y;=(pnc1 )X +(p2.c2) X+ ... ( Pna Cn ) Xny »J=l,...,m (4.50)
for the first type of the fuzzy coefficients, and
Y;=(pi, i e ) xy; + (pa. et e2F) X2 ...
+ ( Pa» Cn"s o' ) Xny Cj=l,..,m (4.51)

for the second type of the fuzzy coefficients.



In the non-fuzzy output data regression described by equations (4.50) and (4.51), the
parameters are to be found A; = (p;, ¢;)or A;=(p;, cib, c® ) that minimize the spread of
the fuzzy output for all data sets. In mathematical form, this can be described as :

Minimize :
i = Z Z ICixij | (4.52)

such that the fuzzy regression model contains all observed data in the estimated

fuzzy numbers resulted from the model. This can be expressed mathematically as:

n n

yi 2 Z pixij -(1-2) Z Ci Xjj (4.53)
i=1 1=1
n n

yj s Z pixj +(1-2) D cixy (4.54)
1=1 i=1

Note that the first term in the right hand side of equations (4.53) and (4.54) represents
the estimated middle of the fuzzy coefficients, while the second term represents the
estimated spread of these coefficients and A is the level of fuzziness and is specified by

the user.

For the fuzzy coefficients of the LR-type, the cost function to be minimized is

Ji= i i | (2m; - 2p; x;j + ¢i" x- ¢ 8xy) ) | (4.55)
j=1i=1

Subject to satisfying the following two constraints on each data point

n n

y =2 Z pixij — (1-21) Z cit x; ,J=l,.., m (4.56)
i=1 i=1
n o

i< pixy +(1-%) Y cfxy ,j=l,..,m (4.57)

1=1

...
1]
-—



58

The problem formulated in equations (4.52) to (4.54) and that formulated in equations
(4.55) to (4.56) are linear optimization problems, which can be solved by linear
programming using the simplex method. However, if the sum of the absolute value
deviations in equations (4.52) and (4.57) is to be minimized, subject to satisfying the
inequality constraints given by equations (4.53), (4.54) and equations (4.56) and (4.57).
then the problem is least absolute value linear optimization and can be solved by using

the software package available in the IMSL/STAT library.

4.11.2 Fuzzy Output

If the output is a fuzzy number, it may be represented by a fuzzy number in the form
of Y; = (mj, a;) in case of triangular membership function or Y; = (m;, o;", o), j=1....,
m, in case of trapezoidal membership function. For triangular membership function,
equation (4.47) can be written as
Y=(mj, oj) =(pi1, €1 ) Xij + (P2, €2 ) X3j *+...+ (P, Cn ) Xnj

,J3=1,2,...,m (4.58)

which can be written as

(mjaj ) = (p1 X1j + P2 X2j +...% Pn Xnjs €1 Xij + €2 X2j +... + Cn Xnj)

,J=1.2,...,m (4.59)
n n
(my,0;)=( Z Pi Xijs Z Ci Xy ) (4.60)
i=1 1=1
Equation (4.60) is valid when

n

m; = Z Pi Xj ,J=1, 2,...m (4.61)
i=1

n

a = Z Ci Xjj ,j= 1. 2....,m (462)

]
—

1

Given the fuzzy output Y;=( mj, «, ), it is required to find the fuzzy parameters (p;, ¢ ),

1=1, 2,.., n that minimize the cost function



Jl(pi9ci)_ i i X ta; —ZC X, ’

J=1
subject to satisfying the following constraints on each measurement point

n n
-(1-1) a; 2 Z Pi X - Z Cj Xij ,J=1,....m
i=1 1=1
n
i+ (1-A ) a; < Z pi X + Z Cj Xjj ,J=1,...,m

i=1 1=1

If the fuzzy output is of the LR-type, then equation (4.58) can be written as

n n n
(m;, at, BjR)=(Z Pi Xij, Z ¢t xi z ¢ xij )

i=1 i=1 i=1

Equation (4.66) can be separated into the following equations

n
m; = > piX; ,j=l,....m
i=1
L n
;) Z it x;j J=l,...m
~
R - R
B~ = Z Ci Xjj J=1,...m

The objective function to be minimized is given [81] as:

! 4mj—4‘n‘: P, xij—af+icfxij—5?—i ¢ X, }i
i 1=1 1=1

1=l

||
N
i} Ma

Subject to sausfying the following constraints

n n
-(1-2) CjL 2 Z pi Xij - Z CiL Xjj ,J=1,...m
1= i=1
and
n n

(4.63)

(4.64)

(4.65)

(4.66)

(4.67)

(4.68)

(4.69)

(4.70)

“4.71)

(4.72)
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Again the problem formulated in equations (4.63) to (4.65) and that formulated in
equation (4.70) to (4.72) for LR-type, all are linear optimization problems subjected to a
set of linear constraints. These problems can be solved using the standard linear
programming using the simplex method. However, if the objective functions are
minimization of the sum of the absolute value of the deviation, then the least absolute
value optimization technique based on linear programming is used to solve the problems

formulated above.

4.12 Conclusions

This chapter discusses static estimation problem formulation. In the first part crisp
static estimation is discussed. Two techniques are used. The first is based on the least
error squares (LES) algorithm, while the second technique is based on the least absolute
value (LAV) algorithm.

In the second part, fuzzy static estimation is discussed. The objective of the estimation
problem is to minimize the spread of the measurement data (observations) constrained to
satisfying two constraints on each measurement and to consider the measurement

membership in the proposed model.



Chapter 5
Fuzzy Short-Term Load Modeling

S.1. Introduction

Most of the work on off-line short- term load models available today assumes that
the parameters of the model are constant crisp values. This assumption is to some
extent true, as long as there are no big changes in weather parameters from day to day.
The load power is characterized by both uncertainty and ambiguity.

In this chapter, the load models used in chapter 3 are reformulated to account for
fuzziness of the load characteristics. In the first section the input is assumed to be
crisp, while the load model parameters are expressed as fuzzy numbers having certain
middle and spreads. Three models are used in this section, namely fuzzy load models
A, B and C. The fuzzy load mode! A is a multiple linear regression model. This model
takes into account the weather parameters. The fuzzy load model B is a harmonic
model, and does not account for the weather parameters. The fuzzy load model C is a
hybrid model, that combines models A and B and takes into account the weather
parameters.

In the second section the input data are assumed to be fuzzy numbers having
certain middles and spreads. The parameters of the load model are fuzzy. The fuzzy
numbers used for the fuzzy variables in this chapter are assumed to have a

symmetrical triangular membership function.

5.1.1 Background

The following system is considered:

Input Data System Output

> >

Parameters

e Ifthe input data are crisp (non-fuzzy) and the system parameters A; (i, 1..., n)
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are crisp (non-fuzzy), then the output is also crisp (non-fuzzy) with an error
deviation between the actual and the estimated or predicted values. (The
static cases in chapter 4)

e [f the input data are crisp (non-fuzzy) and the system parameters are fuzzy
and follow a membership function (e.g. Triangular Membership Function)
then the output is fuzzy and follow the same membership as in the system
parameters [77] [80].

e If the input data are fuzzy and the system parameters are fuzzy, then the
output is fuzzy. The output will have some resemblence of shape of the
membership function used.

e The membership functions used in this thesis are triangular membership
functions with fuzzy numbers having a certain middle and equal left and right
spreads [77].

e The objective of the fuzzy parameters estimation is to minimize the spreads
of the fuzzy parameters. If spreads of zero are attained, then the output is
crisp with an error deviation from the actual value. If the spreads are
minimized, then the output will follow the shape of triangular membership
function [77] and the output value will be in a range between upper and

lower values.

5.2 Crisp Data
(Y](t) = mj(t),j =l"'9 m; t=l, 2,0-9..., 24)
The input data of the load model are assumed to be crisp values, while the load

parameters are fuzzy.

5.2.1 Multiple Fuzzy Linear Regression model

The load, in this model. can be expressed mathematically as:

n
Yi=Ac+ > Axy (). j=l..m (5.1)
1=1
where Yj(t) is the value of the load power at time t.

A, 1s the fuzzy base load having a triangular membership with
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a middle p, and spread c,, as shown in Figure 5.1a.
A; are the fuzzy coefficients having a triangular membership

with a middle p; and spread c; as shown in Figure 5.1b.

qu
A

Po~ Co Po Po +¢o A,
Figure (5.1a) Membership Function of A,

HAai 4

Pi-Ci Pi Pt ¢ A;
Figure (5.1b) Membership Function of A,



Equation (5.1) can be rewritten as:

n
Y (1) = (Py; (1), ¢y (1)) = m;(t) = (PosCo) + Z @i, ¢i) x5 (1) (5.2)

i=1

As shown in chapter four, for the output data described by equation (5.2). the
coefficients A, (po, Co) and A; (pi, ¢; ) are to be found such that the spread of the fuzzy
output is minimized for all data sets. In mathematical form, this can be described as:
Minimize:

m n ’
J =3 it X Cixij(t) } ’ (5.3)

t j=1i=1 |
where te[0, tr ], tr is the number of days for which data are taken at the hour in
question. The fuzzy regression model in equation (5.3) contains all observed data in
the estimated fuzzy numbers resulting from the model. This can be expressed
mathematically as:

n

11
YiO2po+ 3 pixg®M]- (k) [co+ X cxg®]  5j=l..,m (5-4)
i=1 1=1
and
n n
yi(t) < [po + Z piX (1) J+(1-2) [co + Z C Xii(t) ] ;J=l,...,m (5.5)

i=1 1=1

Note that the first term of the right hand side of equations (5.4) and (5.5) represents
the estimated middle of the fuzzy coefficients, while the second term represents the
estimated spread of these coefficients. 7 is the level of fuzziness and is specified by
the user. As A increases, the fuzziness of the output increases. In the above equations
m is the number of observations and n is the number of fuzzy parameters used in the
model.

In the following subsections two multiple fuzzy linear regression models are
developed. The first model can be used to predict the load during the winter season,
while the second model can be used to predict the load during the summer season.

The only difference between the two models is that the winter model considers the



65

wind-cooling factor as an explanatory variable, while the summer model considers

the humidity factor as an explanatory variable.

5.2.1.1 Fuzzy Meodel A (Winter Model )
The fuzzy winter model, equation (3.12), can be written in fuzzy form as:
Yi(t) = Ao+ A1 Ti®) + A2 T + AsT(t) + AsTi(t-1) + AsTi(t-2)
+ AeTi(t-3) + A7 Wj(t) + Ag Wj(t-1) + A Wi(t-2) ;)=l,...m  (5.6)

Where Y|(t) is the load power j; j=I1,..,m attimet; t=1,2,..., 24 and is assumed to be
given as non-fuzzy data. Tj(t) is the jth temperature deviation from nominal at time t
and is given by equation (3.13). Wj(t) is the wind cooling factor at time t and is given
by equation (3.15), and Ao, Ai,..., A9 are load model fuzzy coefficients having
middles po, pi,..., ps and spreads c,, Ci,..., Cy .
Equation (5.6) can be written as:
Yj(t) = (Po, €o) + (P1, ¢1)Tj(t) + (P2, €2) T(1) + (p3, c3) T5(t)
+ (s, ca)Tj(t-1) + (ps, €5 )Tj(t-2) + (pe, C6)Tj(1-3) + (p7, c7)Wj(1)
+(ps, ce)Wj(t-1) + (po, Co)Wi(t-2) ;J=L...,m (5.7)
In fuzzy linear regression, the spread of the fuzzy coefficients are to be

minimized. This results in an objective function which can be expressed
mathematically as:
m N 3
J= I Z{ Co t+ Z [ C[Tj (V) + CzT'j (l) +c3T j (t) +Cy Tj ([-1)+ CsTj (t-.?.) + C(,Tj (t-3)
t j=1
+ c7Wj (1) + cgW;j (t-1) + coWi(t-2) ] (5.8)

where te [0, t¢ ], t¢ is the number of days for which data are taken at the hour in
question. Subject to satisfying the two inequality constraints on each load power
given as:
yi(t) 2 po +pi Tj(t) + p2 T(t) + ps T°(1) + pa Ty(t-1) + ps Tj(t-2)

+pg Tj(t-3) +p7 Wi(t) + pg Wj(t-1) + pg Wj(t-2) — (1-A)(co + ¢ T; (1)

+ey T () +¢c3 T (1) +cs Tj (t-1) +cs Tj (1-2) + c¢ T (1-3)

+c¢7 Wj (1) +cg Wi(t-1) + coWj(t-2) ) ,J=1,2,...,m (5.9)
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Yit) < o+ p1 Ti(t) + p2 T5(t) + p3 (1) + ps Tj(t-1) + ps Tj(t-2)
+pe Tj(t-3) +p7 Wi(t) + ps Wi(t-1) + po W(t-2) + (1-2)(c,o + ¢1 T; (1)
+ea T +c3 T @) +cs Tj(t-1) +es T; (1-2) + ¢ T; (1-3)
+c7 Wi (1) +csWij(t-1) + oWi(t-2) ) ,j=1,2,...,m (5.10)

The optimization problem formulated in equations (5.8 - 5.10) is linear and can be
solved using linear programming based on simplex method available in the
IMSL/STAT library.

Having identified the middle and spread of each coefficient, then the fuzzy load

model for the winter season can be obtained using equation (5.6) or equation (5.7).

5.2.1.2 Fuzzy Model A (Summer Model)
The summer fuzzy model for the short-term load forecasting can be written as:
Y(1) = Ao + Ai T() + A2 TX(1) + As T°(1) + As T(t-1) +.As T(t-2)
+_A¢ T(t-3) + A- H(t) + As H(t-1) + Ao H(t-2) (5.11)
where
X(t) is the summer load power at time t.
T(1) is the temperature deviation at time t given by equation (3.13)
Ao. Al,..., A are the fuzzy load coefficients having certain middle
Pos P1»---» Po and certain spread c,, ci,..., Co at time t.
H(t) is the temperature humidity factor given by equation (3.17)
The summer load model stated in equation (5.11) takes into account the temperature
deviation and the temperature humidity factor for each hour and at three and two
hours before.
Equation (5.11) can be rewritten as :
Y (1) = (Po, €o) + (P1» 1) T(t) + (P2, €2) T(1) + (p3, €3) T(t)
+ (ps, €4) Tj(t-1) + (ps, cs) Tj(t-2) + (ps, c6) Tj(t-3)
+ (p7, ¢7 )Hj(t) +(ps, cg JHj(t-1) +(p9, co YHj(t-2) (5.12)
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In fuzzy linear regression, the parameters A; = (p;, ¢i) , i=1,..,...,9 are to be found
that minimize the spread of the fuzzy output for all data set. This can be expressed

mathematically as:

Minimize

m
J =| 2{ Co * Z [ e Ty(t) + c2 T(t) + 3 T(t) + cs Tj(t-1) + ¢c5 Tj(1-2) +
j=1

+ C¢ Tj(t-3) +cy Hj(t) + Cg Hj(t-l) + Co Hj(t-Z)] (5.13)

where te [0, tr ], tr is the number of days for which data are taken at hour in question.

Subject to satisfying the following inequality constraints at j ; j=I,... m

Yi(t) 2 po+ piTi(t) + p2 T%(1) + ps T(t) + ps Tj(t-1) + ps Tj(1-2)
+ pe Tj(1-3) +p7 H\(t) + pg Hj(t-1) + po Hj(t-2) ~(1-1)[c, + ¢, T; (t)
+e T (M) +c3 T (V) +cs T, (t-1) + cs T; (1-2) + ¢ T (t-3)
+¢7 Hj (1) +cgH(1-1) + coH,(1-2) ] ,i=12,..,m (5.14)

Yi(t) £ po+ p1 Tj(t) + p> T (1) = ps T (1) + ps T,(t-1) + ps Ti(t-2)
+Pe Tj(t-3) +p7 H(1) = ps H(1-1) + po H(t-2) +(1-A)[c, + ¢1 Tj(t)
+e T +c: T (M) +ca Ty (-1) + cs T, (t-2) + ¢ T; (t-3)
+ ¢ Hy (1) + csHy(t-1) = coH(1-2) ] j=1,2,...m (5.15)

The problem formulated in equations (5.13) to (5.15) is linear and can be solved by
the linear programming optimization package available in the IMSL/STAT library.
Having obtained the fuzzy parameters A, = (p.. ¢;) , i=1,..., 9, then the load can be

predicted for the next twenty four hours using equation (5.11).
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5.2.2 Fuzzy Load Model B
This is a harmonic decomposition model and does not account for weather
conditions. It does not account for temperature deviation, wind cooling factor nor
humidity factor. Thus this model can be used for both winter and summer simulations.
The fuzzy load at any time t therefore, can be written as:

n
X(®)=Ac+ D (Aisiniot+B; cos iot) (5.16)

1=1
where
XY () is the load power at time t and it is assumed to have crisp values.
Ao, Ai and B; are fuzzy parameters having certain middles and spreads,
and are given as: A,= (po. Co). A= (P, i), and B; = (a;, b;)

The model described in equation (5.16) can be written as:

Y (t) = (po, co) + i [(p.. ) sin 1ot + (a0, b)) cos iwt] (5.17)
1=1

Note that the middles and the spreads are constants and are estimated seven times

weekly.

The objective is to find the fuzzy parameters that minimize the spread of the load
power . Mathematically, this can be written as :

Minimize:
n
J=|Z{ Co*i D> e xy(t) = b, yy(1)] (5.18)
t )=1 1=1

where
xij(t) = (sin iot ), J=lo...m;i=l,....n
yii(t) = (cos iot ), J=l....m;i=l,...,n
m, n are the number of observations and harmonics chosen in the

model, respectively.

te [0, t¢ ], tr is the number of days for which data are taken at the hour in

question.
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Subject to satisfying the inequality constraints given by:

n n
yi(t) = [po + Z (pi sin iot +a;cos iot)]; — (1-A)[c, + Z (c; sin iot+bicos iot); (5.19)

i=1 i=1

n n
yi®) <[po + Z (pi sin iot +acos iot)]; +(1-A)[c, + Z (cisin iot+bicos iwt); (5.20)
i=1 1=1

The optimization problem formulated in equations (5.18) to (5.20) is a linear
optimization problem and can be solved using the simplex method of linear
programming .

Having obtained the fuzzy load parameters, the load for the next twenty-four hours

can be predicted using equation (5.16)

5.2.3 Fuzzy load Medel C.

This is a fuzzy hybrid model that takes into account weather dependent
components. The base load in the model is a time-varying function and takes the form
of Fourier's coefficients. This model can be considered as a combination of fuzzy
load model A and fuzzy load model B. Here the weather input is limited only to
temperature deviation , and the model is used for both winter and summer load
forecast simulations.

The fuzzy load model in this case, can be written mathematically as:

Yi(t)= {Ac + i [Aisiniot + B, cos iot ]}, + {C,Ti(t) + C, Tj(t-1) + CoTj(t-2)
i=1
+Cs Ty(t-3)} (5.21)

where

Ao, Ai and B; are the weather independent fuzzy parameters having

certain middles and certain spreads.

Co, 1. Coand C; are the temperature dependent fuzzy parameters.
The terms in the first brace in equation (5.21) can be considered as the base load

which depends only on time, while the terms in the second brace are the temperature

dependent load terms.
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Equation (5.21) can be written as:

n
Y(O) = (Por o) + 3 [ (Pir ci)xi(®) +(bi, Bi) yi())]; +[(¥or So)Ti(2)

1=1

+ (v sOT(-1) + (y2, s)Tj(t-2) + (3, s3)Tj(t-3)]  (5.22)

where in equation (5.22), the first letter in the parameters brackets indicates the
middle of that parameter and the second letter indicates the spread of this parameter.
In fuzzy regression, the fuzzy model parameters are to be found to minimize the

spread of the output. In mathematical form, this can be expressed as:

m n
J=IZ{ Co + Z Z [ai xi(1) + Biyii(t)]
t

j=1i=1

+ i [soTi(t) + s Tj(t-1) + s:T,(1-2) + s3Tj(t-3)] (5.23)
1=1
where te[0, tr ], tr is the number of days for which data are taken at the hour in
question.
Subject to satisfying the following two constraints on the output so that the fuzzy
regression model could contain all the observed data j, j=1,..., m in the estimated

fuzzy numbers resulting from the model. This can be expressed mathematically as:

n
YJ(t) 2 [po + Z (Pixij(t) + bl}'u([)) + A/o’rj(t) + Y]Tj(t-l) + 'Y2Tj(['2) + Y3Tj(l'3)]

1=1

n
-(1-A)[ co + Z (axy(t) + Biy,y(1) + s Ti(t) + s1Tj(t-1) + s Ti(t-2) + s3T)(t-3)]

i=1
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Vi) <[Po+ D (Pixi(t) + biyii(h) + YoTy(t) + i Ty(t-1) + ¥2Tj(t-2) + 13 Tj(t-3)]

i=1

n
+ (1-4) [cot Z (aixii()+B;yij())+so Ti(t)+s: Tj(t-1)+s,Tj(t-2) +s:Tj(t-3)]
i=1
,J=l,...,m (5.25)
The problem formulated in equation (5.23) to (5.25) is a linear optimization problem
and can be solved using linear programming based on the simplex method explained

in chapter 4. Having identified the fuzzy model parameters, the load for the next

twenty-four hours can be predicted using equation (5.22)

5.3 Fuzzy Data: Fuzzy Power Load

In section 5.2 the load power data is assumed to be non-fuzzy, while the
parameters of the load power are fuzzy. Different linear optimization problems were
derived with different load models. In this section, the load data are assumed to be
fuzzy power values having certain middle and certain spread Y;j(t) = [my(t),o;(t)],
where mj(t) is the middle of the load power at the time t in question during the
observation j, and a(t) is the spread of the load power at time t and observation j.
Using this formulation of fuzzy number means that a triangular membership function

1s assumed, as shown in Figure (5.1a) and (5.1b).

5.3.1 Multiple Fuzzy Linear Regression, Model A

The fuzzy model for the load power can be expressed mathematically as :

n
(1) = [my(t), aj(t)] = Ag+ Z Ai x;i(1) ,Jj=l,.,m (5.26)

1=1

which can be rewritten as:

n
[mi(1), ()] = (Por ) + D (@i, ©i) xii(®) ,j=l,..,m (5.27a)

1=1

or, it can be separated as:

1 n
[mi(t), aj()] = [{po+ D Pixy(D}, {cot . cixi(t)}] J=1..,m  (527b)

i=1 i=1



Equation (5.27b) is only valid when" :

n
m() =po+ Y pixi(t) 2j=l,eyee, m (5.28)

1=1
n
o) =co+ D cixii(t) ,j=ley..,m (5.29)
1=1
The problem tumns out to be: Given the fuzzy load power at time t
Yi(t) = [m;(t),;(t)], it is required to find the fuzzy parameters A, and A; that
minimize the cost function given by:
m n n
=S imo-pe- 3 pxi®+a—co - 3 cixy(®)) (5.30)
vt j=1 i=1 i=1
where te [0, t¢ ], tr is the number of days for which data are taken at the hour in
question.

Subject to satisfying the following constraints on each measurement point:

Given two fuzzy numbers M, =(m, ,«,,8,),, and M,=(m,,x,,8,),, interms

of LR functions [78] that follow triangular membership function.

where
m; and m; are the centers of the membership function
a; and a; are left side spreads
B1 and B are right side spreads
Then
M, (m, 0,8 ) + My (e ) e = (m, 0 8,) e
where

m; =m; + ma
a; = + A
Bs =B + B
The center of the sum is equal to the sum of the centers and each of the spreads

of the sum are the sum of the respective spreads.
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mi() = (1-A) ai() 2 (Po+ Y~ Xi(t) ) (co+ Y. CiXii(t)) ,j=l....m  (5.31)
i=1 =1
n n

m;(t) +(1-A) o) < Po+ D X)) +(Co+ D Ci Xi(t)) ,j=L...m  (5.32)

i=1 1=1
The problem formulated in equations (5.30) to (5.32) is a linear optimization
problem. This problem can be solved using linear programming. In the next
subsections two multiple linear regression models are discussed, one for the winter

and one for the summer .

5.3.1.1 Fuzzy Winter Model

Two factors affect this model. The first is the temperature deviation. The more
temperature deviation the more load power is needed. While the second factor is the
wind-cooling factor, as the wind cooling factor increases, the load power increases.
The load power data in this model is assumed to be a fuzzy power unlike the load
model in equation (5.6), where the load power is assumed to be crisp (non-fuzzy).
Equation (5.7) can be written as
Y;(t) = (my(t), oy(1))

= (Pos Co) + (P1, €)T,(1) * (P2, €2) T3(1) + (p3. c3) T(1)
+ (P4, ) Ty(t-1)+ (ps. €5)Tj(1-2) + (Po, €6)Tj(1-3)
+(p7, €)W(1) + (ps. cg)W (t-1) + (pg, co)W;(1-2) (5.33)
Equation (5.33) can be rewritten as:
mi(t) = po + piTi(t) + p2 T (1) = paT (1) + paT)(t-1) + psT;(t-2) + peTj(t-3)
+p7Wi(t) + psW(t-1) = paW,(1-2) ,J=1,...,m (5.34)

oy(t) = co + i Tj(t) + 2 T3(1) = o3 T (1) + caTy(1-1) + csTj(1-2) + cTy(t-3)
+c7Wj(t) + cgW(t-1) + coW(1-2) ,J=1,...,m (5.35)
Given the fuzzy load power (my(t). a,(t)) at any time t, it is required to determine
the middle and the spread of each parameter that minimize the following cost

function :
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m - 3
J=l Z{ D [mi(t) = {po + piTi(t) + p2 T3(t) + psT (1) + paTy(t-1) +psTi(t-2)
t j=1

+ps Tj(t-3) +p7Wj(t) + psWi(t-1) + poW(1-2)}

+a(t) —{ Co + 1 Tj(1) + c2 T(1) + &3 Tj()+ caTi(t-1) + c5Tj(1-2) + coT,(1-3)
'*‘C';Wj(t) + Cg“’j(l-l) + Cng(I-Z)}] (5.36)

where te [0, tr ], tr is the number of days for which data are taken at the hour in
question.
Subject to satisfying the following two constraints at each measurement point.
my(t) — (1-A) aj(t) 2 [ (RHS of equation 5.34) — ( RHS of equation 5.35)],
j=1,....m (5.37)

m;(t) + (1-A) a;(t) <[ (RHS of equation 5.34) + ( RHS of equation 5.35)],
J=1,....m (5.38)
RHS in the above two equations stands for the right hand side of.
The problem formulated in equations (5.36) to (5.38) is one of linear optimization.
This problem can be solved using standard linear programming .
Having identified the fuzzy parameters of the fuzzy winter model, the load in a
winter day can be predicted. The middle of the load can be predicted at any hour t

using equation (5.34), while the spread can be predicted using equation (5.35).

5.3.1.2 Fuzzy Summer Model

The load in this model is a function of the temperature deviation and the humidity
factor. The load power as well as the load model parameters are assumed to be fuzzy
numbers. Mathematically. this can be expressed as:
Yi(t) = (mj(1), a;(1))

=Ac + AI Ti() + A T(1) + As TS0 + A Ty(t-1)
+AsTj(t-2) + A T)(1-3) = A7 Hy(t) + Ag Hy(1-1) + Ay H(1-2)
,j=1,...m (5.39)

where
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Y;(1) is the fuzzy load power i; i= 1,...,m, at time t. This power
has a middle mj(t) and a spread a; (t)
Ao, Ai,.. ., Ay are the fuzzy load parameters at time t with
certain middle p.,..,p9 and certain spread c,, Ci,..., Co.
Tj(t) is the temperature deviation at time t , j=1,..., m.
H;(t) is the humidity factor given by equation (3.17)
Equation (5.39) can be written as:
(1) = (m;(1), (1))
= (Por Co) + (P1, 1) T(V) + (P2, €2) T*(1) + (p3, €3) T°()

* (ps, €1) T(t-1) + (ps, ¢s) T(t-2) + (pe, o) T(t-3)

+ (7, ¢7 )H(1) + (ps, ¢s JH(t-1) + (po, o JH(1-2) (5.40)
provided that the memberships for the fuzzy numbers are triangular memberships.
Equation (5.40) can be rewritten as two equations:
my(t) = po + p1Tj(1) +p2T3(t) + p3T; (1) + paTi(t-1)+psTi(t-2)

+ps Tj(t-3)+p7Hj(t)+psHj(t-1) + poHj(t-2) ,J=1,...m (5.41)

(1) = co + € Tj(t) +e2 T (1) + c3T3(1) + caTy(t-1)+csT(1-2)
+¢6 Tj(t-3)+c7Hj(t)+csH;(t-1) + coHj(1-2) ,J=1,....m (5.42)
In the fuzzy optimization linear problem, the model fuzzy parameters are to be
found to minimize the spread of the fuzzy load power.
Mathematically, this can be expressed as:
Minimize:
j m i
J=: ;{J;[(mj (t)-RHSof equation 5.41 )+ (a ;()—RHSof equation 5.42 )]}IE (5.43)
where te [0, t¢ ], tr is the number of days for which data are taken at the hour in
question.
Subject to satisfying the following constraints:
m;(t) — (1-A) a;(t) = [ (RHS of equation 5.41) — ( RHS of equation 5.42)],
,J=1,...,m (5.44)
m;(t) + (1-A) aj(t) <[ (RHS of equation 5.41) + ( RHS of equation 5.42)],
,J=1,....m (5.45)
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The optimization problem formulated in equations (5.43) to (5.45) is one of linear
optimization and can be solved using linear programming .
Having obtained the fuzzy load parameters, then equation (5.39) can be used to

predict the fuzzy load power at any hour t in question.

5.3.2 Fuzzy Load Model B
This model does not account for weather conditions in the load and it can be

expressed as:

n
Yi()= (m;(t), aj(t)) =Ao + Z [ (Ai sin iot +B; cos iot) J; ,J=1,....m  (5.46)

1=1

The only difference between equation (5.17) and (5.46) is the load power Y/(t) at
time t. In (5.17) the load power is assumed to be a crisp value, while in (5.46) it ia

assumed to be a fuzzy value having a middle m;(t) and a spread a;(t). Equation (5.46)

can be written as :

(mj(t), oj(t)) = (Po> Co) + i [(pi, ci) sin iot + (b, B ) cos iot)]; J=1,...m (5.47)

i=1
which can be split into

I

m;(t) = p, + Z [(pi sin iot + b, cos iot], ,j=1,....m (5.48)

1=1

n
ai(t) = co+ > [c siniot+ B cosiot], ,j=1,....m (5.49)

=1

The load fuzzy parameters are to be found that minimize the spread of the fuzzy

load power. This can be expressed mathematically as:

J =I Z{ i [(m;(t) — RHS of equation 5.48) + (a,(t)-RHS of equatio5.49)]] (5.50)
t j=1

where te€ [0, tr ], tr is the number of days for which data are taken at the hour in

question.
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Subject to satisfying the following two constraints as:
m;(t) — (1-A) a;(t) = [RHS of equation 5.48 - RHS of equation 5.49];

JJ=,...,m (5.51)
m;(t) + (1-1) aj(t) < [RHS of equation 5.48 + RHS of equation 5.49];

,J=1,....m (5.52)

The problem formulated in equations (5.50) to (5.52) is one of linear optimization
that can be solved using linear programming .

Having identified the middle and the spread of fuzzy parameters, then the
harmonic load model described in equation (5.47) can be used to predict the load at
any hour t. Note that the load power obtained in this case is independent of the
weather conditions, and depends only on the hour in question. The next model, model
C, combines the fuzzy load model A and the fuzzy load model B. This model takes

weather conditions into account.

5.3.3 Fuzzy Load Model C

The fuzzy load model A derived earlier has the advantage of being weather
responsive, the fuzzy coefficients of this model depend on the weather conditions.
These conditions include temperature deviation and cooling factor.

Model B is weather insensitive. The fuzzy coefficients of this model depend only
on the time in question.

In this section, the two models A and B are combined into one fuzzy model. The
resulting model is weather sensitive. This fuzzy model is suitable for all weekdays
and can be used for both winter and summer load forecast simulations. Its main
disadvantage is the assumption that the relation between load and weather is constant
throughout the day.

The fuzzy model for the load in this case can be expressed mathematically as:

n
X;(= (my(1), a;(t)) ={Ao + D_ (A sin iot +B; cos iot)}; + {CoT;()+C, Tj(t-1)

i=1

+ CoTj(t-2) + CTj(1-3)}, ,j=1,....m (5.53)
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where m;(t), a;(t) is the middle and spread of load power j, j=1,....m at time t.

Ao, Ai, and B; are the weather independent fuzzy parameters with

certain middles and spreads.

Co, €1, G5, and C3 are the temperature dependent fuzzy parameters

with certain middles and spreads.
The LHS of equation (5.53) is the fuzzy load power. The terms in the first bracket in
the RHS of equation (5.53) can be considered as the fuzzy base load, and it depends
only on time, while the second bracket is the temperature dependent fuzzy load terms.

Equation (5.53) can be written as

n
My(1), (1) = { Po. o) + > [(Pi )X (1) + (i , BIYVO]}; + {(Yor € o)D) +

i=1

(1, €1)T; (t-1) +(y2, €2)T; (-2)+ (3, €3)Tj (t-3)};

,j=1,...m (5.54)

For simplicity let :
xi(t) = sin iot ,1=1,...,n (5.55a)
yi(t) = cos 1ot ,1=1,...,n (5.55b)

In equation (5.54), the first letter in all small brackets of the equations indicates the
middle of the parameter, while the second letter indicates the spread of that parameter.
A triangular membership is used for each parameter .

In the fuzzy model developed in equation (5.54), the fuzzy model parameters are to
be found to minimize the spread of the output. Mathematically, the fuzzy linear
optimization problem can be expressed as:

Minimize:

J=| Zt:{ D [mi®) = {po+ 3 [pi xi(1) + by yi(0]; + ¥oT; () +11 T (t-1) +72T; (t-2)
i=1 i=1

T (E3) oy (D-[co + D {Bixi () + Biyi (D} + ¢ Tj (1) + ¢ Tj(t-1)

1=1

+ 6T, (1:2) + 5Ty (t3)}] | (5.56)
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where te [0, t¢ ], tr is the number of days for which data are taken at the hour in
question.
Subject to satisfying the following two constraints for each measurement point given

as:

n
my(t) — (1-1) o) 2{po + D {[pi X (1) + bi vi(O)]}; + YoT; (1) +11T; (t-1) +y2T; (1-2)

1=1

+y3Tj(t-3)}-{co + Z {6 xi (1) + Biyi ()} + ¢ Tj (1) + ¢, T; (t-1)

1=1

+ Csz (t-2) + C3Tj (t-3)} ,)J=1,...,m (5.57)

mj(t) + (1-2) oj(t) <{ po + z [P xi (1) + bi yi(D)] + Yo T(t) +1T; (t-1) +y2T; (t-2)

1=1

n
+v3T; (t-3) i +{co + Z {el xi () + Biyi (t)}j +c'y Tj (t) +¢;T; (t-1)

i=1

+C2T (1-2) + ¢:T, (t-3)} ,J=1,...,m (5.58)

The problem formulated in equations (5.56) to (5.58) is one of linear optimization
and can be solved by linear programming .
Having obtained the middle and spread of each fuzzy parameters, then the load

power at any hour in question can be calculated using equation (5.54)

5.4 Conclusions

In this chapter a new formulation for fuzzy short-term load forecasting models is
presented, where in the first pant of the chapter, the load power is considered given as
a crisp (non-fuzzy) data while the load model parameters are fuzzy having certain
middles and spreads. The problem tumns out to be one of linear optimization .

In the second part of the chapter, the load power is considered to be a fuzzy power
data having certain middles and spreads. Three different fuzzy models A, B, and C
are developed and new fuzzy equations are obtained. The resulting optimization

problem is linear and can be solved using linear programming .



Chapter 6
Load Forecasting Computational Results

Static State Estimation

6. 1 Introduction

In the previous chapters different models are developed for short-term load
forecasting during the summer and winter seasons. In chapter three the models are
derived on the basis that the load powers are crisp in nature, while in chapter five the
models are developed on the basis of fuzzy load powers. For sake of comparison, the
data available from Nova Scotia Power Inc. are used to forecast the load power in the
crisp case as well as in the fuzzy case. In the first part of this chapter, the results
obtained for the crisp load power data for the different load models developed in
chapter three are shown. In the second part, the results obtained for the fuzzy load
powers for the different fuzzy load models developed in chapter five are shown. A

comparison is done at the end of the chapter for the two cases.

6. 2 Description of the Data

Nova Scotia Power Inc. supplied the data used in this study for the years 1994 and
1995 hourly load power, while the Atlantic Climate Center of Environment Canada
supplied the hourly weather conditions for the same two years that were extracted
from Environment Canada’s Archives. These data include hourly dry bulb
temperatures, the wind speed and the percentage humidity recorded at Shearwater
Airport at Halifax. A standard record format has been adopted for climatological data.
Each record consists of station identification. date (year, month and day) and element
number followed by the data repeated 24 times. The element number identifies each
data type and implies the units and decimal position. The element numbers are
described in Table (6.1) as they appeared in the data from Enviroment Canada. If
there are missing data for a certain hour, denoted by -999, the average value of the

hour before and hour after are used to replace this missing point.
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Table 6.1 The Elemens and Their Units

Element Units Description
78 0.1degC Dry Bulb Temperature
76 km/h Wind Speed
80 percent Humidity

6. 3 Off-Line Simulation (Static Load Forecasting Estimation)

In this section, the three off-line load models for crisp load power data that were
developed in chapter three have been used to predict the next day hourly load profile
for selected periods for winter and summer of 1994.

For each load model, the least errors square (LES) and least absolute value (LAV)
algorithms are used to estimate the load model parameters. The results for each load
model parameters are given in table format, while the final forecasts for LES and
LAYV together with the actual load are given in the form of curves. Furthermore the
estimated parameters for each model are used to predict the load 24 hours ahead for
the same time period.

The following abbreviations are used in this section

z = Actual recorded load.

Load forecast made from least errors square.

Zs

ziav = Load forecasted using the least absolute value algorithm.
The percentage errors corresponding to the forecasted loads are given by:
e =[(z-2zs)/2]x100
and

gav=[(z—-2zLav)/2]x 100

6.4 Model A
Model A has been described in chapter three for crisp load powers. It is a multiple
linear regression model whose parameters are constants during the hour considered. A

parameter estimate from the available data is obtained for every hour.



An excessive volume of computations is associated with a single twenty-four hours
load prediction. The days are chosen for the prediction process in a random way . The
model is applied to different days in the same period of time (same time) for the same
season. The parameters estimated for each of these days are not reported because the
obtained predictions for more days are essentially the same.

Two approaches are applied. The first approach estimates a given parameter for
every hour in question in the day. The days are chosen randomly. The second
approach assumes the model parameters to be constants during the whole day studied.
The estimated parameters in the two approaches are used to predict the load for one

day ahead of a working day and a weekend day in summer and winter.

6.4.1 Model Parameters Estimation for Every Hour in a

Summer Weekday (24 sets) :

Tables (6.2) and (6.3) give the estimated parameters for a summer
weekday using the LES and LAYV algorithms. While Table 6.4 gives the estimated
load and percentage errors in the estimates using the least errors squares (LES) and
least absolute value (LAV) algorithms. Figure (6.1) gives a comparison between
actual and estimated loads, while Figure (6.2) gives the errors in the estimated powers
compared to actual load. From these tables and figures the following remarks are
noted :

e LES estimates the actual load value with a maximum error of 9.1%
(underestimated) at hour 24, and a minimum error of 0.1%
(overestimated) at hour 1. Most error values are below 4% (19 hours).

e LAV estimates the actual load value with a maximum error of 10.6%
(underestimated) at hour 23 and a minimum error of 0% at hours 3, 10,
18, 22.

e Since many error values are less then 4% for both algorithms, the
estimated power values during the day (even with wide variations in
the weather data) are still acceptable. If the redundancy in the estimated
parameters is increased, the errors in the LAV estimates will be

decreased.
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Table (6.4) Estimated load and percentage error for summer weekday,
24 parameters sets, Model A

Daily hour Actual LES LAV % LES % LAV
load(MW) Estimate Estimate error error

1.0 674.0 674.9 674.7 -0.1 -0.1
2.0 609.9 618.8 610.4 -1.5 -0.1
3.0 559.6 569.0 559.7 -1.7 0.0
4.0 837.7 550.7 538.0 2.4 -0.1
5.0 536.8 516.9 501.3 3.7 6.6
6.0 535.6 548.6 536.5 2.4 -0.2
7.0 545.6 555.7 546.4 -1.9 -0.1
8.0 574 .4 600.7 598.3 4.6 4.2
9.0 668.9 689.7 695.8 -3.1 4.0
10.0 787.3 778.5 786.9 1.1 0.0
11.0 875.1 844 .6 849.2 3.5 3.0
12.0 909.4 894.5 893.9 1.6 1.7
13.0 925.0 928.2 924.9 -0.3 0.0
14.0 903.0 ! 894 .5 903.7 0.9 -0.1
15.0 876.0 : 855.4 | 846.8 2.3 3.3
16.0 848.7 869.2 870.8 2.4 -2.6
17.0 848.3 | 820.7 829.0 3.3 2.3
18.0 884 .8 : 896.7 884.6 -1.3 0.0
19.0 880.9 ; 896.0 906.3 -1.7 2.9
20.0 837.9 ! 894 .9 887.3 -6.8 -5.9
21.0 805.1 873.7 870.2 -8.5 -8.1
22.0 824 .4 8334 824.4 -1.1 0.0
23.0 876.2 797 .2 783.4 9.0 10.6
24.0 815.6 741.6 7394 9.1 9.3
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Figure (6.1) Estimated load for a summer
weekday using 24 parameters sets, Model A
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Percentage error
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Figure (6.2) Estimated load error for a summer weekday using
24 parameters sets, Model A

The estimated parameters during the 24 hours are used to predict the load 24-hour
ahead. Table 6.5 gives the predicted load power 24- hours ahead using the estimated
load parameters given in Tables 6.2 and 6.3. Figure 6.3 gives the predicted load for 24
hours ahead. Figure 6.4 shows the error in the predicted load. Examining Table 6.5,
Figure 6.3 and Figure 6.4 reveals the following :
e LES predicts the load 24 hours ahead with a maximum error of 10.7%
(overpredited) at hour 9 and a minimum error of 0% at hour 4. Most error

values are below 4% (15 hours).
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e LAV predicts the load 24 hours ahead with a maximum error of 39.5%

(overpredicted) at hour 7 and a minimum error of 0.1% (overpredicted) at

hour 21. There are several hours where the errors are over 4%. LAV needs

more data to decrease errors’ values.

e Since the levels of error in LES prediction are less than LAV prediction

for the load, LES predicted value represents the load better than LAV

prediction. The errors’ levels in LAV prediction can be reduced if the

redundancy in the estimated parameters is increased.

Table (6.5) Predicted load and percentage error for summer weekday,
24 parameters sets, Model A

Daily hour Actual LES LAV % LES % LAV
load(MW) Prediction Prediction error error

1.0 681 686.8 583.9 -0.9 143
2.0 622.7 610 613.9 2 14
3.0 586.5 573.8 630.7 2.2 -7.5
4.0 569.7 569.5 564 0 1
5.0 572.3 566.2 556.8 1.1 2.7
6.0 569.7 573.6 570.2 -0.7 -0.1
7.0 594 .2 573.2 828.8 3.5 -39.5
8.0 661.5 677.6 665.6 2.4 -0.6
9.0 783.8 867.8 814 .1 -10.7 -3.9
10.0 900.1 921.5 855.3 2.4 5
11.0 979.6 945.1 938.4 3.5 4.2
12.0 1020 953.6 961.5 6.5 5.7
13.0 1047 966.5 944 7.7 9.8
14.0 1032 924.3 854 .4 104 17.2
15.0 1016 1018 1020 -0.1 -0.3
16.0 1003 951.2 921.7 5.1 8.1
17.0 1011 923.2 869.7 8.7 14
18.0 1044 979 1007 6.2 3.5
19.0 1022 931.6 967.4 8.9 54
20.0 956.6 937.2 887 2 7.2
21.0 922.9 907 .4 923.9 1.7 -0.1
22.0 957.2 1010 992.1 -5.5 -3.6
23.0 958.8 967 .4 916.4 -0.9 4.4
24.0 874.5 872.7 860.1 0.2 1.6
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6. 4. 2 Estimation of Constant Model Parameters for a Summer

Weekday (1 set) :

In

the second approach the load parameters are assumed to be

constants during the day in question where there is only one group of parameters

instead of 24 groups. Table (6.7) gives the estimated load and percentage error for a

summer weekday. Figures (6.5) and (6.6) show the estimated load and the error in the

estimated load . Examining these tables and figures reveals the following:

LES estimates the load with a maximum error of 10.2%
(overestimated) at hour 22 and a minimum error of 0.1%
(overestimated) at hour 16. Most error values are below 4% (17
hours).

LAV estimates the load with a maximum error of 17%
(overestimated) at hour 7 and a minimum error of 0% at hours 8 and
14. Error values under 4% are at 14 hours.

Both LES and LAV estimations for the load are showing range of
errors as the 24 parameter sets. The estimations deviate from the

actual load with acceptable range of errors.

The performance of two approaches for a summer weekday as explained, are also

examined for a summer weekend.



Table (6.7) Estimated load and percentage error for summer weekday.
one parameters set, Model A

Daily hour Actual LES LAV % LES % LAV
load(MW) Estimate Estimate error error
1 674 691.9 679.6 -2.7 -0.8
2 609 624 624 -2.3 -5.9
3 559.7 572 582 -2.3 -3.98
4 537.7 554 .4 540 -3.1 -0.4
5 536.8 567.5 561.7 -5.7 -4.6
6 535.6 536.4 533.9 -0.2 0.3
7 545.6 586.2 638.3 -7.4 -17
8 574 .4 566.5 574.6 1.4 0
9 668.9 685.6 694.1 -2.5 -3.8
10 787.3 830.7 680.1 -5.5 13.6
11 875.1 787.5 828 10 54
12 909.4 878.7 859.2 3.4 5.5
13 925 915.2 902.2 1.1 2.5
14 903 933.3 903 -3.4 0
15 876 900.9 903.5 -2.8 -3.1
16 848.7 849.5 858.3 -0.1 -1.1
17 848.3 801.6 868.2 5.5 -2.3
18 884.8 851.9 871.2 3.7 -1.5
19 880.9 877.5 874.3 04 0.8
20 837.9 869.9 826.3 -3.8 1.4
21 805.1 8419 | 827.2 -4.6 -2.7
22 824 .4 908.9 ! 723.4 -10.2 12.3
23 876.2 887.3 871.6 -1.3 0.5
24 815.6 820.1 ¢ 756.6 -0.6 7.2
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6. 4. 3 Model Parameters Estimation for Every Hour in a

Summer Weekend Day (24 parameters sets) :

Tables (6.8) and (6.9) give the estimated parameters using LES and LAV
techniques for a summer weekend day. Table (6.10) together with Figures (6.7) and
(6.8) give the estimated load and and the percentage errors in this estimate using the
sets of parameters from Tables (6.8) and (6.9). Examining these tables and figures
reveals the following:

e LES estimates the load for a weekend day with a maximum error of
4.4% (overestimated) at hour 22 and a minimum error of 0.1%
(overestimated) at hour 2. So, the estimated load values are good due
to small error values.

e LAV estimated load value has a maximum error of 10.2%
(underestimated) at hour 24 and a minimum error of 0% at houre 2
and 12. Since most of the rest of errors’ values are under 4% (either
overestimated or underestimated), the estimated load value is good.

The parameters sets are used to predict a load one week ahead. Table (6.11) and
Figures (6.9) and (6.10) give the predicted load for a weekend ahead and the
percentage error in this prediction. Examining these tables and figures reveals the
following::

® The maximum error in LES predicted load is 7.34% (overpredicted)
at hour 20, while the minimum error is 0.1% (underpredicted) at hour
18. Most of the rest of the errors are less than 4% (overpredicted or
underpredicted) in value.

® LAV predicts the load with a maximum error of 19.34%
(overpredicted) at hour 24 and a minimum error of 0.31%
(overpredicted) at hour 15. Most of the rest of the errors are less than

4% (overpredicted or underpredicted) in value.

® Due to the small values of errors, both LES and LAV give an

acceptable load predictions.
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Table (6.10) Estimated load and percentage error for summer weekend
day, 24 parameters sets, Model A

Daily hour Actual LES LAV % LES % LAV
load(MW) Estimate Estimate error error

1.0 758.1 759.3 796.2 -0.2 -5
2.0 683.3 684.3 683.2 -0.1 0
3.0 640.8 629.3 660.6 1.8 -3.1
4.0 614.2 612.9 622.4 0.2 -1.3
5.0 597.3 607.6 598.2 -1.7 -0.2
6.0 586.8 597.3 618.7 -1.8 54
7.0 590.3 568.3 568.5 3.7 3.7
8.0 601.3 613.9 592.5 2.1 1.5
9.0 667.3 659.8 | 655.3 1.1 1.8
10.0 764.1 | 759.1 | 765.8 0.7 -0.2
11.0 848.8 | 843 | 825.8 0.7 2.7
12.0 885.7 | 884 | 885.8 0.2 0
13.0 907.7 | 901.3 ; 903.7 0.7 04
14.0 897.2 | 904 .6 986.6 -0.8 -10
15.0 869.5 ! 857 .4 903.1 1.4 -3.9
16.0 842.4 | 834.6 810.3 0.9 3.8
17.0 835.5 i 829.8 | 834.2 0.7 0.2
18.0 853.8 ! 850.5 8518 04 0.2
19.0 857.7 . 851.8 - 787.6 0.7 8.2
20.0 823.9 811.3 809.4 1.5 1.8
21.0 801.8 . 812.7 821.6 | -1.4 2.5
22.0 8234 : 859.6 . 863.4 4.4 4.9
23.0 835.3 ¢ 828.1 816.6 0.9 2.2
24.0 783.1 767.4 703.2 0.2 10.2
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Figure (6.7) Estimated load for a summer weekend

day using 24 parameters sets, Model A
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Table (6.11) Predicted load and percentage error for summer weekend
day, 24 parameters sets, Model A

Daily hour Actual LES LAV % LES % LAV
load(MW) Prediction Prediction error error

1.0 716.8 736.1 761.7 2.7 -6.27
2.0 637.7 655.6 643 -2.81 -0.84
3.0 598.5 603 618.7 -0.75 -3.38
4.0 573.7 588.9 581.3 -2.66 -1.32
5.0 558 565.6 555 -1.36 0.54
6.0 550.7 571.1 5514 -3.7 -0.12
7.0 560.7 587.5 569 -4.78 -1.49
8.0 585.7 587.5 576.4 -0.37 1.58
9.0 659.2 645.5 649.5 2.08 1.48
10.0 762.4 750 748.2 1.63 1.86
11.0 843.9 833.5 8294 1.23 1.72
12.0 875 861.6 861.8 1.53 1.51
13.0 881.2 867.2 867.2 1.59 1.58
14.0 863.2 864.8 847 -0.19 1.87
15.0 8314 847.1 834.1 -1.89 -0.32
16.0 805.3 808.6 813.2 -0.42 -0.98
17.0 795.6 799.3 804.2 -4.46 -1.08
18.0 814 813.2 816.7 0.1 -0.33
19.0 808 826.2 903.6 -2.26 -11.83
20.0 766.4 822.6 833.5 -7.34 -8.76
21.0 748.2 7915 759.2 -5.78 -1.47
22.0 823.3 800.2 793.2 2.81 3.66
23.0 801.8 807.6 840.1 -0.72 -4.78
24.0 744.5 753.9 888.5 -1.62 -19.34
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6. 4. 4 Estimation of Constant Model Parameters for a Summer

Weekend Day (1 set) :
Table (6.12) gives the estimated parameters for a summer weekend day,

while Table (6.13) and Figures (6.11 - 6.12) give the estimated load and percentage

errors in this estimate using one set of parameters given in Table (6.12) for LES and

LAYV techniques. Examining these tables and figures reveals the following:

Maximum error in LES load estimation is 15% (underestimated) at
hour 8, while the minimum error is 0.1% (overestimated) at hour 12.
Most of the rest of the errors (12 hours) are less than 4%
(overestimated or underestimated) in value.

Maximum error in LAV ioad estimation is 15% (underestimated) at
hour 8, while the minimum error is 0.1% (overestimated) at hour 12.
Most of the rest of the errors (12 hours) are less than 4%
(overestimated or underestimated) in value.

Better estimated values can be obtained by using more data to reduce

the errors.

The one set of parameters are used to predict the load one week ahead. Table (6.14)

and Figures (6.13-6.14) give the obtained results. Examining these tables and figures

reveals the following:

Maximum error in LES load prediction is 9.4% (underpredicted) at
hour 1, while the minimum error is 0.1% (overpredicted) at hour 12.
Most of the rest of the errors (15 hours) are less than 4%
(overpredicted or underpredicted).

Maximum error in LAV load prediction is 9.5% (overpredicted) at
hour 9, while the minimum error is 0.1% (overpredicted) at hour 3.
For both tehniques LES and LAV, the predicted load can be

represented better by using more data to reduce the errors.



Table (6.12) Estimated parameters for a weekend day

using LES and LAV algorithm

Parameter LES estimate LAYV estimate
A, -3892.0 -3991.2
A 568.47 592.35
A -123.38 -131.14
Az 6.10 6.53

Ay -8.30 -8.12
As -4.97 -0.96
Ag -0.89 -0.71
A, 159.08 140.93
Ag -84.80 -36.55
Ag 52.49 24.88
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Table (6.13) Estimated load and percentage error for summer weekend
day, one parameters set, Model A

Daily hour Actual LES LAV % LES % LAV
load(MW) Estimate Estimate error error

1.0 758.1 687.1 687.1 9.4 94
2.0 683.3 672.4 677.8 1.6 0.8
3.0 640.8 678.1 673.8 -5.8 -5.2
4.0 614.2 664.1 655.6 -8.1 -6.7
5.0 597.3 634.3 623.9 -6.2 4.5
6.0 586.8 553.4 531 5.7 -9.5
7.0 590.3 590.9 585.9 -0.1 0.7
8.0 601.3 691.6 691.6 -15 15
9.0 667.3 714.5 730.7 -7.1 9.5
10.0 764 .1 753.2 759 14 0.7
11.0 848.8 842.3 854.3 0.8 -0.7
12.0 885.7 886.4 886.5 -0.1 -0.1
13.0 907.7 882.8 901 2.7 0.7
14.0 897.2 868.5 893.3 3.2 04
15.0 869.5 863.5 868.6 0.7 0.1
16.0 842.4 916.6 914.5 -8.8 -8.6
17.0 835.5 845.1 841 -1.1 0.7
18.0 853.8 900.2 900 5.4 54
19.0 857.7 821.5 806.6 4.2 6
20.0 823.9 787.5 793.6 44 3.7
21.0 801.8 809.1 807.3 -0.9 -0.7
22.0 8234 794.6 791.3 3.5 3.9
23.0 835.3 759.7 760.3 2.1 9
24.0 783.1 733.9 | 722.3 6.3 7.8




Loads (MW)

950

900

850 -

800

N
n
o

~
o
o

650

600

550

500

—— Actual Ioad
3 --®--LES. estlmate
! —-a-- LAV estimate

i

0 4 8 12 16 20

Daily hours

24
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Table (6.14) Predicted load and percentage error for summer weekend
day, one parameters set, Model A

Daily hour Actual LES LAV % LES % LAV
load(MW) Prediction Prediction error error

1.0 758.1 687.1 687.1 94 9.4
2.0 683.3 672.4 677.8 1.6 0.8
3.0 640.8 678.1 673.8 -5.8 -5.2
4.0 640.8 678.1 673.8 -5.8 5.2
5.0 640.8 678.1 673.8 -5.8 -5.2
6.0 640.8 678.1 673.8 -5.8 -5.2
7.0 640.8 678.1 673.8 -5.8 -5.2
8.0 640.8 678.1 673.8 -5.8 -5.2
9.0 667.3 714.5 730.7 -7.1 -9.5
10.0 764.1 753.2 759 14 0.7
11.0 848.8 842.3 854.3 0.8 -0.7
12.0 885.7 886.4 886.5 -0.1 -0.1
13.0 907.7 | 882.8 901 2.7 0.7
14.0 897.2 | 868.5 893.3 3.2 04
15.0 869.5 | 863.5 868.6 0.7 0.1
16.0 869.5 863.5 868.6 0.7 0.1
17.0 869.5 ! 863.5 | 868.6 0.7 0.1
18.0 869.5 | 863.5 868.6 0.7 0.1
19.0 869.5 : 863.5 868.6 0.7 0.1
20.0 869.5 ¢ 863.5 868.6 0.7 0.1
21.0 8018 : 809.1 807.3 -0.9 -0.7
22.0 8234 : 794.6 791.3 3.5 3.9
23.0 835.3 i 759.7 760.3 9.1 9
24.0 783.1 . 733.9 722.3 6.3 7.8
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6. 4. 5. General Remarks For Summer Model A

The two approaches LES and LAV give acceptable predicted load
values. There are errors involved between actual and estimated load, actual and
predicted load. To reduce errors more quality data has to be used. The scope here is to
show how LES and LAV algorithms are applied as predicting tools. Estimated
parameters values obtained using 24 sets or 1 set of parameters are producing
estimated and predicted values deviating with errors from actual value. The results
obtained using 24 sets or 1 set contain error values. Thus, by using one set of
parameters will be more economical with less effort and computing time. These
algorithms are to be compared to the fuzzy algorithm in the section on results and

technique.

6. 4.6 Winter Predictions

Appendix 3 and 4 give the results obtained for winter weekday and
winter weekend using model A. The same arguments for summer results can be
said for winter results. The estimated and predicted load values deviate from the
actual load values. Tables (6.6a) and (6.6b) give a brief summary for estimated and
predicted errors. The errors are to be reduced by using more quality data, so that
the predicted values can resemble and predict the data as accurate as possible. The
usage of either 24 sets or 1 set of parameters give high error values in the predicted

load. Thus, using one set of parameters will be more economical and time saving



Table (6.6a) Estimated and predicted errors for a winter weekday

Algorithm LES LAV
% %
Type of day Weekday Weekday
Parameters set 24 24

Estimated load maximum error 5.04 -8.64 -6.1
Estimated load minimum error -0.1 -0.02 0
Predicted load maximum error -6.48 -11.63 10.41 -17.99
Predicted load minimum error 0.07 0.41 -0.41 0.03

Table (6.6b) Estimated and predicted errors for a winter weekend day

Algorithm LES LAV
% %
Type of day Weekend Weekend
Parameters set 24 24

Estimated load maximum error -5.62 -15.22 -8.86 -11.6
Estimated load minimum error -0.15 -0.09 0.01 0.04
Predicted load maximum error 25.81 -27.12 26.26 23.13
Predicted load minimum error -0.41 -0.09 -1.5
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6. 5 Model B

It is a weather insensitive model, that depends only on the hour (time)
considered. The model proposed in chapter 3 is used to predict the load power for 24-
hours ahead for one working day and one weekend day in summer and winter . The
model is applied to the data from Nova Scotia power and Environment Canada
Weather. Harmonics included are from the lowest number to thirteen. Nine harmonics

are used in the static estimation process since it was found to produce the lowest

€ITor.

6.5.1 Summer Weekday
Table (6.15) gives the estimated load parameters for a summer
weekday, while Table (6.16) and Figures (6.15-6.16) give the estimated load for a
summer weekday and the percentage error in this estimate using the LES and LAV
algorithms. Examining these tables and figures reveals the following :
e LES estimates the load with a maximum error of 26.2% (overestimated) at
hour 2 and a minimum error of 2.5% (underestimated) at hour 18.
e LAYV estimates the load with a maximum error of 87,4% (overestimated) at
hour 3 and a minimum error of 0% at hour 24.
e Estimated load error values of LAV from hour 4 to hour 22 are very small
compared to the estimated load error values of LES (for example at hour 4,
LAYV error is 0.05% while LES error is 20.5%, and at hour 20, LAV error is
0.06% while LES error is 14.8%). LAV algorithm gives a better load
estimate than LES estimate for the hours 4 to 22. The large error values for
some hours in LAV estimation are caused by bad data. More data can help

screen these bad points and reduce error values.



Table (6.15) Load parameters for a summer weekday, Model B

Parameter LES estimate LAYV estimate
Ao 777.09 681.07
A, 1.72 -168.82
B, 12.74 186.35
A> -13.75 147.90
B, 14.82 -35.02
Aj -46.07 -84.19
B3 27.08 -93.95
Ag -2.18 -169.25
B, 17.64 328.01
As 83.61 266.86
Bs 91.62 22.80
Ag -7.84 -335.86
Bs 10.54 -62.62
Ay 14.35 243.44
B, 15.06 199.83
Ag 11.67 32.27
Bs 75.36 -147.38
Ao 5.67 88.30
Bo 19.20 437.50

The parameters estimated for model B are used to predict the load 24-hours ahead for

the same weekday, during the same season. Table 6.17 and Figures (6.17-6.18) show

the predicted load and the error in this prediction. Examining the table and figures

reveals the following:

e LES predicts the load with errors larger than 14% in 11 instances. The

range of errors is from 27.54% (overpredicted) at hour 2 as the

highest to 0.11% (underpredicted) at hour 12 as the lowest.
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Table (6.16) Estimated load and percentage error for summer weekday,

Model B
Hour Actual LES LAV % LES % LAV
load(MW) Estimate Estimate Error Error
1 768.1 913.95 1424.26 -19 -85.4
2 678.3 855.77 795.24 -26.2 -17.2
3 636.1 774.79 1192.31 -21.8 -87.4
4 609.9 735 609.59 -20.5 0.05
5 598 702.72 599.75 -17.5 -0.29
6 595.6 712.31 594.91 -19.6 0.12
7 608.4 652.75 610.12 -7.3 -0.28
8 661 710.12 661.39 -7.4 -0.06
9 788.6 886.08 787.26 -12.4 0.17
10 908.4 1015.51 907.89 -11.8 0.06
11 982.9 1045.47 984 .1 -6.4 -0.12
12 1015 1013.59 1014.47 0.14 0.05
13 1028.9 1022.18 1028.36 0.65 0.05
14 1011.1 918.6 1011.58 9.2 -0.05
15 988.6 873.21 989.87 11.7 -0.13
16 984 .4 905.99 981.62 8 0.28
17 997.2 956.31 997.88 4.1 -0.07
18 1002.4 977.58 1003.96 2.5 -0.16
19 977.2 839.29 978.01 141 -0.08
20 929.4 791.66 | 929.93 14.8 -0.06
21 894.8 772.42 | 894.63 13.7 0.02
22 907.7 750.66 ! 865.09 17.3 4.69
23 946.7 795.58 i 393.67 16 58.42
24 882.9 781.31 . 882.92 11.5 0
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LAYV predicts the load with errors less than 0.6% in 19 instances. The
errors range is from the highest 20.98% (overpredicted) to the lowest
0.08% (overpredicted).

LAYV error values are less than LES error values in every hour except
hour 23 where LES error is 16.46% (underpredicted) and LAV error
is 18.16% (overpredicted). This indicates that LAV gives in this case
better representation than LES.

6.5.2 Summer Weekend Day

The same model is used to forecast a weekend day load, Table (6.18)

and Figures (6.19 - 6.20) give the estimated load and the percentage error in this

estimate. Examining the table and figures reveals the following:

LES estimates the load with a maximum error of 17.78%
(overestimated) at hour 2 and aminimum error of 0% at hour12.

LAYV estimates the load with a maximum error of 13.88%
(overestimated) at hour 2 and a minimum error of 0.05%
(overestimated) at hour 17.

LAV estimated load errors areless with a wide magin than the LES
estimated load errors in all the cases except for hour 1.

Since LAV estimated errors are less than 0.22% in 19 instances, LAV

gives better estimates than LES.

Table (6.19) and Figures (6.21 - 6.22) give the predicted load for a weekend day one

week ahead. Examining the table and figures reveals the following:

LES predicted load error has a maximum of 20.07% (overpredicted)

at hour 2 and a minimum of 0.47% (undrpredicted) at hour 12.

LAYV predicts the load with a maximum error of 2.3% (underpredicted)
at hour 2 and a minimum error of 0% at hours O, 3.

Since all LAV predicted load errors are less than LES predicted load

errors, LAV gives load predictions better than LES load prediction.
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Table (6.17) Predicted load and percentage error for summer weekday,

Model B
Hour Actual LES LAV % LES % LAV
load(MW) Prediction Prediction Error Error
1 674 8154 815.41 -20.98 -20.98
2 609.9 777.8 685.1 -27.54 -12.32
3 5569.7 688 554.72 -22.92 0.89
4 537.7 657.6 538.2 -22.3 -0.09
5 536.8 637.6 535.4 -18.77 0.27
6 535.6 647.95 533.32 -20.98 0.42
7 545.6 587.13 543.41 -7.61 0.4
8 574 .4 619.43 579.1 -7.84 -0.81
9 668.9 762.6 667.5 -14.01 0.22
10 787.3 889.3 789.5 -12.95 -0.28
11 875.1 933.54 872.4 -6.68 0.31
12 909.4 908.44 910.1 0.1 -0.08
13 925 919.11 926.71 0.64 -0.18
14 903 813.7 902.6 9.89 0.05
15 876 766.6 876.7 12.49 -0.08
16 848.7 776.1 851.6 8.55 -0.35
17 848.3 808.8 852.8 4.65 -0.53
18 884.8 860.4 884.2 2.76 0.07
19 880.9 746.7 860.2 15.23 2.31
20 837.9 707.95 836.2 15.51 0.21
21 805.1 692.1 807.3 14.04 -0.27
22 824 4 673.8 921.3 18.27 -11.75
23 876.2 731.99 1035.31 16.46 -18.16
24 815.6 719.32 815.1 11.8 0.07
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Table (6.18) Estimated load and percentage error for summer weekend

day, Model B
Hour Actual LES LAV % LES % LAV
load(MW) Estimate Estimate Error Error
1 758.1 856.5 856.5 -12.98 -13
2 683.3 804.8 778.17 -17.78 -13.88
3 640.8 736.7 696 -14.97 8.5
4 614.2 705.6 613.83 -14.88 0.06
5 597.3 668.2 598.55 -11.92 -0.21
6 586.8 658.88 586.38 -12.28 0.07
7 590.3 619.78 591.35 -4.99 -0.18
8 601.3 635.87 601.51 -5.75 -0.04
9 667.3 737.25 666.33 -10.48 0.15
10 764.1 837.83 763.88 -9.65 0.03
1 848.8 889.14 849.58 4.75 -0.09
12 884.7 885.69 885.42 0 0.03
13 907.7 902.45 907.21 0.58 0.05
14 897.2 832.8 897.6 7.18 -0.04
15 869.5 790.19 870.32 9.12 -0.09
16 842.4 789.04 840.56 6.33 0.22
17 835.5 804.79 835.9 3.68 -0.05
18 853.8 837.54 855 1.9 -0.14
19 857.7 768.37 858.17 10.42 -0.05
20 823.9 730.4 824.31 11.35 -0.05
21 801.8 716.3 801.68 10.66 0.01
22 823.4 709.57 760.58 13.82 7.63
23 835.3 732 771.6 12.37 7.6
24 783.1 720.21 783.2 8.03 -0.01
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Table (6.19) Predicted load and percentage error for summer weekend day,

Model B
Hour Actual | LES LAV % LES % LAV
load(MW) Prediction Prediction Error Error
1 950.4 1089.5 950.4 14.64 0
2 874.5 1050.04 894.7 -20.07 2.3
3 838.7 979.43 839 -16.78 0
4 814 929.21 813.16 -14.15 0.1
5 806.3 858.62 809.71 -6.49 -0.42
6 800.4 872.44 800.31 -9 0.01
7 811.1 862.16 811.44 -6.3 -0.04
8 833.2 895.18 833.49 -7.44 -0.03
9 918.6 1017.23 916.64 -10.74 0.21
10 1038.1 1121.45 1041.85 -8.03 -0.36
11 1116.9 1157.88 1120.92 -3.67 -0.36
12 1148.4 1143 11494 0.47 -0.09
13 1158 1140.82 1155.9 1.48 0.18
14 1135.1 1041.03 1133.6 8.29 0.13
15 1098.2 991.95 | 1095.1 9.68 0.28
16 1074.5 1004.23 | 1072.3 6.54 0.21
17 1072.9 1038.91 1075.8 3.17 -0.27
18 1110.2 | 1110.88 ! 1116.8 -0.06 -0.6
19 1135117 1021.23° 11321 10.03 0.27
20 1141.2° 996.94 1148.4 12.64 -0.6
21 1159.6 1023.25 1164.8 11.76 -0.45
22 1112.8 960.62 1127.3 13.68 -1.31
23 1060.7 961.22 . 1063.46 9.38 -0.26
24 981.7 ! 925 980.7 5.78 0.1
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6. 5.3 General Remarks For Summer Model B

The two approaches give acceptable load predictions. Model B is not
weather responsive. More quality data have to be used to reduce the error values. The
LES and LAV tools present predicted load values for both weekday and weekend
days. These algorithms are to be compared to the fuzzy algorithm in results and

technique later on in this thesis.

6.5.4 Winter Predictions

Appendix 3 and 4 give the results for a weekday and a weekend day during
the winter season. Model B is a non-sensitive weather model. This feature is reflected
upon the results. They show deviations in estimated and predicted load values from
the actual load. The error levels range from high to low values. The same argument

applies for either weekday or weekend day.

6. 6 Model C

Model C is a combination of a harmonic, weather insensitive model, and a
multiple linear regression model which accounts for weather parameters. In other
words it’s a hybrid of models A and B. The parameters of model C are estimated
for a weekday and a weekend day during the summer season and winter season.
Table (6.21) and Figures (6.23 - 6.24) give the estimated load and the percentage
errors in the estimate during this summer weekday. Furthermore, Table (6.22) and
Figures (6.25 - 6.26) give predicted load for a summer weekday 24 hours ahead.
Examining these tables and figures reveals the following:

e From Table (6.20), parameter A, has the largest value, since it
represents the basic load while the rest of the parameters represent the
variations in the load from other factors. A, is 1020.16 at LES
estimation and 1023.68 at LAV estimation.

e The results given in Table (6.21), estimated load, indicate that the
parameters estimates for model C are accurate, since the errors in the

estimated load power values are very small, for both LES and LAV
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techniques. LES estimated load error goes from the highest of 0.36%
(underestimated) at hour 4, to the lowest of 0% at hour 18, while
LAV estimated load error goes from the highest of 1.86%
(overestimated) at hour 22, to the lowest of 0.01% (overestimated) at
hour 16.

e From Figure (6.24), it is noted that the maximum error obtained at
hour 22 by the LAV aigorithm is 1.86% (overestimated) and LES
algorithm is 0.28% (overestimated) which is small and acceptable.

e Both Table (6.22), predicted load for 24-hours ahead and Figure
(6.27), giving a comparison between the predicted and actual load,
show that the load is being overpredicted. LES predicted load error
has the highest value of 22.45% (overpredicted) at hour 4 and the
lowest value of 0.51% (underpredicted) at hour 3. LAV predicted
load error has the highest value of 24.17% (overpredicted) at hour 4

and the lowest value of 0.7% (underpredicted) at hour 24.

6. 6.1 General Remarks For Summer Model C
Model C considers all days of the week and does not distinguish
between weekday and weekend days. The two approaches using model C give good
load predictions. Over prediction takes place more than under prediction. So the loads
are over predicted. More data have to be used to reduce error values. LES and LAV
algorithms are applied as predicting tools, and later in this thesis these algorithms are

to be compared to the fuzzy algorithm in results and technique.



Table (6.20) Load parameters for a summer or winter day,

Model C
Parameter | LES estimate LAV estimate
A, 1020.16 1023.68
A 3.78 2.97
B, -2.85 -1.53
A, -18.56 -12.83
B- 24.52 27.64
A; -24.86 -24.56
B3 -10.3 -18.43
Ayl 3.38 6.5
B. 2.25 3.73
As 17.12 31.64
B: 17.10 16.77
Ag | -5.34 -14.59
B. . 11.36 6.51
A -0.44 3.43
B- i 5.5 12.72
Ag 27.35 27.26
By ! 78.71 76.95
Ay -3.57 -12.48
By -7.25 -16.88
C. -27.56 -35.72
C, -4.28 9.34
C- 4.04 5.8
C; -7.52 -14.47

131
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Table (6.21) Estimated load and percentage error for summer day,

Model C
Hour Actual LES LAV % LES % LAV
load(MW) Estimate Estimate Error Error
1 749.8 747.5 749.92 0.31 -0.02
2 666.2 667.3 665.42 -0.17 0.12
3 621.9 622.4 621.4 -0.08 0.08
4 598.5 596.4 598.85 0.36 -0.06
5 587.4 588.8 587.33 -0.23 0.01
6 586.4 586.8 586.62 -0.06 -0.04
7 603.2 604 .4 603.65 -0.21 -0.07
8 656.8 656.4 656.31 0.06 0.08
9 787.2 785.8 787 .56 0.18 -0.05
10 897 .4 898.6 897.56 -0.13 -0.02
11 969.8 970.5 969.58 -0.07 0.02
12 1008 1006.2 1006.61 0.18 0.14
13 1019.7 1020.5 1020.4 -0.08 -0.07
14 1002.5 | 1003.7 | 1002.4 -0.12 0.05
15 990.1 988.95 989.99 0.12 0.01
16 971.7 970.98 | 971.78 0.07 -0.01
17 965.5 967.1 966.02 -0.17 -0.05
18 987.4 987.4 | 987.99 0 -0.06
19 968 969.94 | 968.24 -0.2 -0.03
20 923.7 ! 922.42 . 924.16 0.14 -0.05
21 888.8 ! 888.47 : 889.09 0.04 -0.03
22 900.1 902.66 916.85 | -0.28 -1.86
23 940.5 | 938.93 ' 940.7 0.17 -0.02
24 875.7 | 874.93 876.01 0.09 -0.04
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Table (6.22) Predicted load and percentage error for summer day,

Model C
Hour Actual LES LAV % LES % LAV
load(MW) Prediction Prediction Error Error
1 744.7 723.46 725.41 2.85 2.59
2 670.8 774.04 777.23 -156.39 -15.87
3 634.3 631.08 631.69 0.51 0.41
4 613.4 751.12 761.63 -22.45 -24.17
5 607.3 632.5 635.28 4.15 -4.61
6 608.9 666.03 671.54 -9.38 -10.29
7 628.1 521.71 519.44 16.94 17.3
8 697.2 830.98 839.66 -19.19 -20.43
9 817.9 858.27 865.72 -4.94 -5.85
10 934.9 994 .62 1000.39 -6.39 -7.01
11 997 .4 1107.61 1115.68 -11.05 -11.86
12 10304 1155.39 1165.91 -12.13 -13.15
13 1069 1213.89 1226.49 -13.55 -14.73
14 1054.7 1121.25 1129.7 -6.31 -7.11
15 1043.3 1250.67 1268.26 -19.88 -21.56
16 1028.5 1112.96 1126.19 -8.21 -9.5
17 1033.2 1119.93 1131.55 -8.39 -9.52
18 1058.1 906.4 908.96 14.34 14.09
19 1036.2 1158.78 1169.03 -11.83 -12.82
20 970.1 1027.05 1037.87 -5.87 -6.99
21 930.2 1013.43 1023.91 -8.95 -10.07
22 962.9 941.63 961.87 2.21 0.11
23 996.4 1014.58 1023.29 -1.82 2.7
24 9254 912.85 918.96 1.36 0.7
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6. 6.2 Winter Predictions

Appendix 3 and 4 give the prediction results for a winter day.
Examining these results, the same remarks can be reached as those for the summer
day. Table (P3.13) shows the estimated load results to be very good. LES estimated
load has a maximum error of 0.43% (overestimated) at hour 3, and a minimum of 0%
at hour 13. While LAV estimated load has a maximum error of 2.29% (overestimated)
at hour 3, and a minimum error of 0% at hours 11,16,19 and 21. The level of errors
are small and acceptable. Table (P3.14) exhibits the predicted load results. LES
predicted load has a maximum error of 13.01% (underpredicted) at hour 1. and a
minimum of 1.12% (overpredicted) at hour 15. LAV predicted load has a maximum
of 12.97% (underpredicted) at hour 2, and a minimum of 0.3% (ovrepredicted) at hour

15. In general, since model C accounts for weather and time, it exhibits better results.

6. 7 Concluding Remarks

In this chapter, the LES and LAV parameter estimation algorithms are used for
static estimation for the parameters of different load models. Three models are used
namely A, B and C. These models are used to predict load power for the next 24-
hours in a weekday and a weekend ahead for a weekend day. It has been found that
model A gives acceptable load predictions.

Model A possesses the advantage of being weather sensitive, but suffers the
following: (1) It needs 24 separate parameters sets in order to predict the load 24
hours ahead as accurate as possible. and this needs more computing time, it is also
found that one set of parameters gives acceptable results, (2) The use of separate
models for weekday and weekend day both with summer and winter formulations.
Model B does not account for weather effects, but is a function of the hour (Time)
considered and produces acceptable results and takes less computing time. It can only
be used for a case where the weather variations are small during the day.

Model C is the most suitable model. since it takes into account both time and
weather during summer and winter seasons. It eliminates the use of separate models

for both weekday and weekend day.



Chapter 7
Load Forecasting Computational Results

Fuzzy Linear Regression

7.1 Introduction

In chapter 6 the short-term load forecasting problem is discussed, and the LES and
LAV parameter estimation algorithms are used to estimate the load model parameters.
The error in the estimates is calculated for both techniques. The three models, proposed
earlier in chapter 3, are used in that chapter, to present the load in different days for
different seasons. In this chapter, the fuzzy load models developed in Chapter 5 are
tested. The fuzzy parameters of these models are estimated using the past history data for
summer weekday and weekend days as well as for winter weekday and weekend days.
Then these models are used to predict the fuzzy load power for 24 hours ahead, in both
summer and winter seasons. The results are given in the form of Tables and Figures for

the estimated and predicted loads.

7.2 Fuzzy Load Model A

The developed fuzzy model A for summer in Chapter 5 is tested in this section. First,
the load power data are assumed to be crisp values, and the load parameters are fuzzy.
Then, the load power data and the load parameters are both assumed to be fuzzy. It is

found that nine fuzzy parameters are enough to model this type of load.

7.2.1 Load Parameters For A Summer Weekday
Table (7.1) gives the estimated fuzzy parameters for three cases. In the first
case, the load power has crisp values. The other two cases, the load power is fuzzy data
and it is assumed that load power has deviated by 5% and 20% from the original case to

simulate the fuzziness in these values. Examining this table reveals the following:
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Table (7. 1) Fuzzy parameter for a summer weekday, Model A

Parameters Crisp load 5 % load Deviation 20 % load Deviation

Middle Spread Middle Spread Middle Spread

Ao 0.0 335.69 0.0 288.4 0.0 391.91
A 0.0 0.0 8.5 0.0 0.0 0.0
A 0.0 0.0 0.0 0.0 0.0 0.0
A3 0.0 0.0 0.0 0.0 0.00807 0.0
A 0.0 0.0 3.75 0.0 3.229 0.0
As 0.0 0.0 0.579 0.0 0.612 0.0
Ao 0.0 0.0 0.0 0.0 0.0 0.0
A7 22.94 0.0 1.919 0.0 22.92 0.0
As 0.0 0.0 0.0 0.0 0.0 0.0
Ao 1.03 0.0 21.82 0.0 0.0 0.0

¢ The only fuzzy parameter is A,, which conforms with the assumption that the load
power has a cnisp value, and the spreads of the parameters are to be minimized.

¢ It can be noted that three parameters are adequate to represent the load for the crisp
case, six parameters for the 5% load deviation case and five parameters for 20% load
deviation case, since the output of the linear optimization problem produces only
these parameters.

¢ The middle of some parameters (A ) are not zeros at 5% load deviation and are zeros
for 20 % load deviation and vice versa (A;_has a middle value at 20% load deviation

but the middle is zero at 5% load deviation).
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¢ Among the values of the parameters, the A, parameter is the largest one. This

parameter represents the base load. The extra power component that comes from
other parameters represents the variation in the load power due to the variation in

weather conditions.

7.2.2 Load Estimation For A Summer Weekday

Using the estimated fuzzy parameters mentioned in Table (7.1), Figures (7.1

— 7.3) give the actual and the estimated load during the same period of time for the three

load power conditions. Examining these figures reveals the following:

L

The estimated fuzzy load contains the given load values within the allowable range
specified by spreads in the parameters.

The estimation results are good since the given load has never gone outside the range
given by the spreads of the fuzzy parameters.

The problem involving crisp values for load power at any hour, mentioned in chapter
6, is now solved, by transforming the load at the hour into a soft load, and a range of
lower load to upper load is allowed.

As the load deviation percentage increases, the spread between the upper load and the

lower load increases.

7.2.3 Load Prediction For A Summer Weekday

The estimated fuzzy parameters are used to predict the load 24-hours ahead

for a summer working day. Figures (7.4-7.6) give the results obtained for the three fuzzy

ranges for this day. Examining these Figures reveals the following:

L 4

*

The estimated parameters produce good predictions for the load at every hour in
question.

The given load is within the range produced by the estimated parameter spreads.
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¢ The actual load deviates a very small amount from these ranges. These deviations can
be neglected for such type of forecasting.
¢ At a given hour, the upper and lower values can be considered as constraints on the
load at this hour.
Table (7. 2) Fuzzy parameters for a summer weekend day, Model A
Parameters Crisp load 5 % load Deviation 20 % load Deviation
Middle Spread Middle Spread Middle Spread
Ao 0.0 247.328 0.0 283.0 0.0 391.9
Al 0.0 0.0 0.0 0.0 0.0 0.0
A 0.0 0.0 0.0 0.0 0.0 0.0
As 0.0069 0.0 0.0072 0.0 0.0081 0.0
A 2.779 0.0 2.891 0.0 3.23 0.0
As 0.307 0.0 0.383 0.0 0.612 0.0
Ao 0.0 0.0 0.0 0.0 0.0 0.0
A, 22.576 0.0 22.662 0.0 22.92 0.0
As 0.0 0.0 0.0 0.0 0.0 0.0
Ao 0.0 0.0 0.0 0.0 0.0 0.0
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7.2.4 Load Estimation For A Summer Weekend Day

The proposed fuzzy model is used as well to predict the load on a summer

weekend day. The fuzzy parameters are estimated first. Table (7.2) gives the estimated

fuzzy parameters, while Figures (7.7-7.9) depict the results for the load deviation ranges.

Examining the table and figures reveals the following:

*

Among the parameters, A, is the only parameter showing fuzziness for the crisp and
the other two cases, since it has spread values. The objective is to minimize the
spread of each fuzzy parameter.

Five fuzzy parameters are adequate to model this type of load for this specific day
and season.

The actual load is in the range given by the estimated spread and does not cross the
border of the estimated load.

The actual load lies between the upper and lower fuzzy ranges of the loads.

7.2.5 Load Prediction For A Summer Weekend Day

The estimated fuzzy parameters are used to predict the load ahead in a

weekend day. The results obtained are given in Figures (7.10 — 7.12). Examining these

figures reveals the following:

4

g

A good load prediction is obtained for a specified weekend day.

A range is allowed for the load power to vary at every specified hour, and this range
increases as the load deviation increases.

The actual load never crosses the limits determined by the spreads of the load
parameters.These limits are an upper load and a lower load.

At a given hour, the upper and lower load powers can be considered as constraints on
the actual load at this hour.

The actual powers. 24 hours ahead. in all curves do not violate the upper and lower
constraints power load.

In conclusion, the proposed fuzzy load model A, is adequate to present the load for

the summer weekday and weekend days.
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7.2.6 Load Estimation And Prediction For Winter Weekday And
Winter Weekend Day

The results for a winter weekday and a winter weekend are given in

appendices 1 and 2. The same concluding remarks can be reached for the data listed.

7.3 Fuzzy Load Model B

This model is a harmonic model and it is not sesitive to the weather parameters,
(temperature, wind speed. humidity..., etc). Nine parameters are chosen for the sine term
and nine for the cosine term beside to the base load parameter. The load deviation for this
load model takes a value of 0% (crisp load power). 5%. 10% and 20 % to simulate the

fuzziness of the load power.

7.3.1 Load Parameters For Model B
Table (7.3) gives the variation of the fuzzy parameters at percentage load
deviations. Examining this table reveals the following:.
¢ Among the load parameters. only parameters A,. the base load parameter. and As are
fuzzy.
¢ Parameter As has a zero value at the middle and a different spread value in all cases
considered. For (e.g. 20% load deviation case):
The upper parameter value = nuddle - spread
= 0 =~20.196=20.196
The lower parameter value = middic - spread
= 0 =~20.196 =20.196
The membership for Ax is a linc on the x-axis centered at the origin with a zero
middle value and a spread of (20.196).

The spread increases with the increase of the degree of fuzziness:



Table (7.3) Fuzzy parameters for a summer day load, Model B
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Parameter Crisp load 5% load deviation 10% load deviation 20% load deviation

Middle | Spread | Middle Spread Middle Spread Middle Spread

A, 874.32 258.7 875.99 | 299.306 | 879.498 | 340.848 | 886.038 | 424.722
A 1.594 0.0 1.402 0.0 0.0 0.0 0.0 0.0
A 28.95 0.0 28.544 0.0 26.8084 0.0 23.770 0.0
A; 0.0 0.0 0.355 0.0 1.7189 0.0 3.4214 0.0
A, 45.81 0.0 45.502 0.0 44.6506 0.0 42.304 0.0

As 0.0 14.43 0.0 18.5504 { 0.00.0 19.411 0.00.0 20.196
Ag 23.40 0.0 23.336 0.0 24.1051 0.0 24.9042 0.0
A; 13.5 0.0 12.826 0.0 10.7958 0.0 7.3645 0.0
Ag 14.3 0.0 14.083 0.0 12.2520 0.0 11.0160 0.0
Ag 108.9 0.0 104.869 0.0 103.782 0.0 100.678 0.0
B, 66.22 0.0 65.528 0.0 65.1667 0.0 63.921 0.0
B, 24.80 0.0 23.676 0.0 22.1530 0.0 18.937 0.0
B; 9.43 0.0 8.582 0.0 9.42273 0.0 9.601 0.0
B 29.16 0.0 28.407 0.0 27.5010 0.0 25.045 0.0
Bs 3.93 0.0 2.192 0.0 1.81461 0.0 2.0200 0.0
B, 1.02 0.0 0.0 0.0 0.0 0.0 0.0 0.0
B 54.67 0.0 51.593 0.0 50.220 0.0 47.1926 0.0
Bs 11.62 0.0 11.832 0.0 11.5480 0.0 12.288 0.0
Bs 2.70 0.0 1.7536 0.0 3.2094 0.0 5.8511 0.0
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For 0% load deviation, the spread is 14.43,
5% load deviation, the spread is 18.5504,
10% load deviation, the spread is 19.411, and
20% load deviation, the spread is 20.196
This indicates the fuzziness effect in load's nature, where increasing the degree
of fuzziness, the spread increases, then the range between upper and lower limits
increases.
¢ For A, (e.g. 20% load deviation):
The upper parameter value = 886.038 + 424.722 = 1310.76
The lower parameter value = 886.038 — 424.722 = 461.316
Predicted base load will fall in the range between (1310.76 and 461.316). Both
spreads from A, and As contribute to the total spread between upper and lower load
values.
The total spread = 424.722 + 20.196 [sin (5wt)]
The effect of the large middle and spread values of A, shows the fuzziness in the
large range where predicted load should lie in it.
¢ Parameter A, has a large middle and spread, because A, represents the base load
while the other parameters (either fuzzy or not), are contributing to the excess power
variations due to other load factors.
¢ Both the middle and spread of the base load parameter increase due to the increase in
load deviation.

¢ All load parameters follow the same pattern of variation at each load deviation.

7.3.2 Load Estimation And Prediction
The estimated and predicted loads for a summer day, either weekday or
weekend day, are given in Figures (7.13) to (7.20) for the ranges of load deviation.

Examining these figures reveals the following:



¢ The load model B estimates and predictes the load power at any week day in any
season given that the actual load does not violate the upper and lower load values.

¢ As the load deviation increases, the range between the upper and the lower loads
increases due to increases in the spread of the fuzzy parameters.

In conclusion, model B is as good as Model A. Despite the fact that model B does not

account for the weather variation, the predicted load does not violate the upper or lower

load limits.
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7.4 Fuzzy Load Meodel C

The developed fuzzy model C in Chapter 5 is tested for summer weekday or weekend
days. This model is a hyprid combination of models A and B. A summer weekday load
data are used to estimate the fuzzy parameters of the model. These parameters are then
used to predict the load power one day ahead. The load deviation that creates fuzziness is

changed from 0%, 5 % to 20 %, with a degree of fuzziness of 50 %.

7.4.1 Load Parameters For Model C
Table (7.4) gives the estimated 24 fuzzy parameters, 23 parameters and the
base load parameter, at different load deviations. Examining this table reveals the
following:
¢ Most of the load prameters are crisp. since the spreads are zeros. There are three
fuzzy parameters, and thev are the same parameters in the three cases of the load
deviation (A,, As, Bs).
¢ As the load deviation increases. the spreads of these parameters increase to include
the parameter memberships in the solution.
¢ Large middle and spread values for A, in the three cases, since A, is representing the
base load.
7.4.2 Load Estimations and Predictions For A Summer Day
The estimated parameters are used to predict the load power 24 hours ahead,
for either a weekday or weekend day. Figures (7.21-7.28) give the estimated and
predicted loads at the given load deviations. Examining these figures reveals the
following:
¢ At load deviation equals 5% the actual load is greater than the upper limit for two
hours only by about 1.7 % and 4.1 %o, which is still an acceptable amount. However,
if the load deviation is increased to 10 % the actual load does not violate the upper
load.
¢ The estimated load using the fuzzy parameters for all load deviation does not violate

neither the upper nor the lower load.
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Table (7.4) Fuzzy parameters for a summer day load, Model C

Parameters | Crisp load 5% load deviation | 10% load deviation | 20% load deviation |
Middle Spread | Middle | Spread Middle | Spread Middle | Spread

Ao 515.54 46.58 | 520.62 | 84.5043 | 520.385 | 124.141 | 529.00 205.698 ‘

Al 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00

A: 0.0 0.00 0.408 0.00 2.5126 0.00 3.0646 0.00

Az 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Al 12.14 1460 | 17.631 | 19.00 15.132 12.925 15.346 12.618

As 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ag 37.0 0.00 36.372 | 0.00 36.816 0.00 37.101 0.00

Az 4.59 0.00 8.1702 | 0.00 8.097 0.00 5.5347 0.00

As 0.0 0.00 0.00 0.00 0.0182 0.00 3.8353 0.00

Ao 3391 0.00 34.568 | 0.00 33.06 0.00 31.653 0.00

B, 31.99 0.00 24.101 | 0.00 24.0741 | 0.00 19.783 0.00

B; 0.47 000 | 0.614 000 0447 | 0.00 0.451 0.00

B; 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00

B: 13.85 0.00 10476 | 0.00 | 9.667 0.00 7.02 0.00

Bs 0.0 0.00 0.00 0.00 I 0.00 0.00 0.00 0.00

Bs 31.41 0.00 27.631 ; 0.00 25.8138 | 0.00 21.295 0.00

B: 52.04 0.00 51.294 : 0.00 48.9959 | 0.00 45.185 0.00

Bs 16.86 12.87 16531 17918 17.1895 | 21.881 18.279 21.5500

Bs 20.42 0.00 16.403 ; 0.00 il 20.160 | 0.00 23.135 0.00

Co 16.12 0.00 14.576 | 0.00 16.620 | 0.00 15.600 0.00

C 0.0 0.00 0.00 0.00 0.000 0.00 0.00 0.00

C, 1.13 0.00 1578 10.00 0.2810 | 0.00 1.955 0.00

Cs 13.39 0.00 12.710 ; 0.00 13.565 0.00 12.066 0.00
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¢ The actual load violates the upper limit load in:

e Cnsp load case, Figure (7.25).

® 5% load deviation case, Figure (7.26).

e 10% load deviation case, Figure (7.27).

e This violation decreases as the load devation increases. For example, in
Figure (7.28), the actual load does not violate the upper load, since the load
deviation is increased to 20 %, which increases the fuzziniess of the load.

¢ Since the load varies between the upper and lower values, the estimated parameters
can sufficiently be used to predict the load for any day in the week in any season. The

load parameters must be updated from weekday, weekend day and from season to the

other.

7.4.3 Load Estimation and Prediction For A Winter Day

The results obtained for the winter weekday are reported in the appendices 1

and 2.The same conclusions can be made.

7.5 Conclusion

In this chapter, the fuzzy short term load forecasting problem is solved. The three
models developed in chapter 5 are implemented to predict the load. The three models are
used to estimate the load power at any day in any season, based on fuzzy optimization
rules. The predicted load lies between upper and lower limits. It has been shown that the

actual load never violates these limits.
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Chapter 8
Conclusions and Recommendations

For Future Research

8.1 Conclusions

Load forecasting is an important tool in power applications. In this thesis, fuzzy
short term load forecasting is formulated and solved. There are many good models used
for electric load forecasting. The models proposed in the thesis represent an addition to
the existing models in short term electric load forecasting and demonstrate the
applicability of fuzzy techniques.

The thesis starts with a discussion of conventional algorithms used in short-term
load forecasting. These algorithms are based on least error squares and least absolute
value. The theory behind each algorithm is explained.

Three different models are developed and tested in the first part of the thesis. The
first model (A) is a regression model that takes into account the weather parameters in
summer and winter seasons. The second model (B) is a harmonics based model, which
does not account for weather parameters, but considers the parameters as a function of
time. Model (B) can be used where variations in weather parameters are not appreciable.
Finally, model (C) is created as a hybrid combination of models A and B the parameters
of the three models are estimated using the two static estimation algorithm and are used
later to predict the load for twenty-four hours ahead. The results obtained are discussed
and conclusions are drawn for these models.

In the second part of the thesis new fuzzy models are developed for crisp load
power with fuzzy load parameters and for fuzzy load power with fuzzy load parameters.
Three fuzzy models (A),(B) and (C) are developed. The fuzzy load model (A) 1s a fuzzy
linear regression model for summer and winter seasons. Model (B) is a harmonic fuzzy

model, which does not account for weather parameters. Finally fuzzy load model (C) is a
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hybrid combination of fuzzy load models (A) and (B). Estimating the fuzzy parameters
for the three models turns out to be one of linear optimization. The fuzzy parameters are
obtained for the three models. These parameters are used to predict the load as a fuzzy
function for twenty-four hours ahead. Prediction results are obtained and presented using

data from Nova Scotia power and Environmental Canada.

8.1.1 Static and Fuzzy Results Comparison
It is acknowledged that LES (Least Error Square) and LAV (Least Absolute Value)

estimates and predictions deviate from the actual values with errors. Results from static
models contain range of errors caused by the type of data, type of models used and how
many factors are represented. It is been found that the range of errors is sometimes large.
With more data and more representing variables, the results will clearly be improved.
LES and LAV are represented here as predicting tools. It is preferred if the error is
overpredicted since the system operator will work with a safe tolerance in meeting the
consumer demand.

The fuzzy estimates offer a range of values that can be useful to system operators.

These estimates are more reliable than static estimates.

8.1.2 Main Contributions

The thesis contributes the following:

1. Three new short-term load-forecasting static models are developed and tested.

2. The hybrid model C is a new innovation by the author of this thesis.

3. A comparison between two static estimation algorithms is performed for three
short-term load-forecasting models for crisp power and crisp load parameters. The
two estimation algorithms are based on LES (Least Error Squares) and LAV
(Least Absolute Value). It has been shown that using static state estimation to
predict the load 24 hours ahead may produce large errors in the obtained

estimates.
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4. Three short-term load forecasting fuzzy models are developed and tested. The

testing is made for fuzzy load parameters. The input data are taken to be crisp
while the output load powers are tested for three states of fuzziness.

It has been shown that the three proposed fuzzy models are suitable and adequate
to short-term load forecasting. The output of the fuzzy models is a range of upper
and lower values for the predicted load power. This range can give the system

operators the ability to run the power system in a more reliable and secure way.

8.2 Suggestions for Future Research

1.

!\)

During the course of this study, especially the fuzzy load modeling calculation,
the degree of fuzziness % is assumed to be equal 50 %. However, this degree of
fuzziness depends on the experience of the working operator in the field of fuzzy
systems and fuzzy load forecasting. It is worth while to study the effects of this
degree of fuzziness on the load range for the hour in question to obtain the
optimal range for the system dispatch.

The forecasting of the load power in this thesis is performed off-line, it is
worthwhile to develop a dynamic fuzzy load forecaster to predict the load on —
line, or at least one hour ahead. This requires the availability of weather data and
load history in advance for the hour in question.

The weather information used in this thesis was obtained from Environmental
Canada. It was recorded for a small part of Nova Scotia Province (Shearwater
Airport Halifax). while the demand load was recorded for the whole province. It is
worthwhile for future research to study fuzzy load forecasting using the weather
information data for the whole province. Better resuits will be obtained for load
forecasting.

The membership functions of the fuzzy parameters were assumed to be triangular.
An investigation into the validity of this assumption is needed. In particular

trapezoidal and Gaussian functions may be compared.
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5. Itis appropriate to examine the practicality of solving the forecasts and modeling

problems for fully fuzzy set of variables.

6. A worthwhile effort would be to examine the combination of neural network in

pre-forecasts followed by fuzzy forecasting or other appropriate combination.
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Appendix 1

Winter Tables: Fuzzy Case



Model A:

Table (P1.1) Estimated load for a winter weekday,
(20 % load deviation), Model A

Daily hours | Actual load | Upper load | Middle load | Lower load
MW) MW) MW) (MW)
1 735.9 1315.764 786.363 256.962
2 650.6 1336.382 806.9808 277.5798
3 613.1 1328.587 799.1863 269.7853
4 599.6 1333.742 804.3407 274.9397
5 604.8 1338.393 808.9922 279.5912
6 617.1 1349.205 819.804 290.403
7 635.1 1360.268 830.8672 301.4662
8 731.5 1354.234 824.8327 295.4317
9 915.8 1358.382 828.9814 299.5804
10 1001.8 1376.737 847.3363 317.9353
11 1013 1379 849.5992 320.1982
12 1014.6 1380.76 851.3592 321.9582
13 1020.9 1397.229 867.8283 338.4273
14 995.1 1406.91 877.5085 348.1075
15 979.7 1436.202 906.8009 377.3999
16 965.5 1454.934 925.5329 396.1319
17 975.1 1452.545 923.1443 393.7433
18 1029.7 1443.242 913.8412 384.4402
19 1024.8 1453.048 923.6472 394.2462
20 968.3 1438.842 909.441 380.04
21 955.2 1452.671 923.2699 393.8689
22 960 1491.015 961.614 432.213
23 950.7 1511.884 982.4832 453.0822
24 858.3 1566.572 1037.171 507.7695
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Table (P1.2) Predicted load for a winter weekday,
(20% load deviation), Model A

Daily hours | Actual load | Upper load | Middle load | Lower load
MW) MWw) MW) MW)

1 748.8 1433.813 904.4123 375.0113
2 655.9 1434.945 905.5437 376.1427
3 621.5 1438.716 909.3153 379.9143
4 606.2 1434.693 905.2924 375.8914
5 604.1 1433.31 903.9094 374.5084
6 606.6 1430.419 901.0179 371.6169
7 625 1437.208 907.8066 378.4056
8 723.9 1432.305 902.9037 373.5027
9 913.8 1441.105 911.7039 382.3029
10 1004.4 1464.489 935.0875 405.6865
11 1026.9 1460.843 931.4417 402.0406
12 1025.6 1476.306 946.905 417.504
13 1021.9 1495.289 965.8884 436.4874
14 992.4 1485.232 955.8309 426.4299
15 972.1 1491.266 961.8654 432.4644
16 946.2 1501.701 972.3 442.899
17 949.4 1508.49 979.0888 449.6878
18 986.3 1510.753 981.3517 451.9507
19 966.8 1536.273 1006.872 477.4715
20 913.5 1557.394 1027.993 498.5922
21 877.1 1554.628 1025.227 495.8264
22 889.4 1547.085 1017.684 488.2833
23 935.5 1543.942 1014.541 485.1404
24 875.6 1523.953 994.5522 465.1512




Table (P1.3) Estimated load for a winter weekday,
(5% load deviation), Model A

Daily hours | Actual load | Upperload | Middle load | Lower load
Mw) Mw) MW) MW)
1 735.9 1171.989 767.3909 362.7927
2 650.6 1194.385 789.7866 385.1884
3 613.1 1185.848 781.2501 376.6518
4 599.6 1191.447 786.849 382.2508
5 604.8 1196.578 791.9793 387.3811
6 617.1 1208.244 803.6458 399.0475
7 635.1 1220.145 815.5464 410.9482
8 731.5 1213.567 808.9683 404.3701
9 915.8 1218.228 813.6301 409.0318
10 1001.8 1238.197 833.5988 429.0006
11 1013 1240.624 836.0258 431.4276
12 1014.6 1242.264 837.6659 433.0677
13 1020.9 1259.998 855.3998 450.8016
14 995.1 1270.451 865.8528 461.2545
15 979.7 1302.363 897.7643 493.166
16 965.5 1322.842 918.2436 513.6454
17 975.1 1320.457 915.8586 511.2603
18 1029.7 1310.515 905.9163 501.3181
19 1024.8 1320.925 916.3272 511.729
20 968.3 1305.3 900.7019 496.1037
21 955.2 1319.778 915.1799 510.5816
22 960 1361.398 956.7994 552.2012
23 950.7 1384.028 979.4294 574.8312
24 858.3 1443.742 1039.143 634.545
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Table (P1.4) Predicted load for a winter weekday,
(5% load deviation), Model A

Daily hours | Actual load | Upper load | Middle load | Lower load
MW) MW) MW) MW)

1 748.8 1299.978 895.3793 490.781
2 655.9 1301.191 896.5928 491.9945
3 621.5 1305.342 900.7439 496.1457
4 606.2 1300.957 896.3585 491.7602
5 604.1 1299.509 894.9107 490.3125
6 606.6 1296.337 891.7388 487.1405
7 625 1303.618 899.0198 494.4215
8 723.9 1298.253 893.6552 489.0569
9 913.8 1307.727 903.1289 498.5307
10 1004.4 1333.018 928.4202 523.822
11 1026.9 1329.144 924.5454 519.9471
12 1025.6 1345.94 941.3422 536.7439
13 1021.9 1366.654 962.0558 557.4575
14 992.4 1355.69 951.0922 546.494
15 972.1 1362.269 957.6703 553.0721
16 946.2 1373.424 | 968.8262 564.228
17 949.4 1380.705 | 976.1072 571.509
18 986.3 1383.132 | 978.5342 573.936
19 966.8 1410.893 | 1006.295 601.6963
20 913.5 1433.757 . 1029.159 624.5605
21 877.1 1430.862 &= 1026.263 621.665
22 889.4 1422.878 @ 1018.279 613.6812
23 935.5 1419.79 | 1015.192 610.5933
24 875.6 1398.139 ' 993.5407 588.9425
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Table (P1.5) Estimated load for a winter weekend day,
(20 % load deviation), Model A

Daily hours | Actual load | Upper load | Middle load | Lower load
(MW) (MW) MW) ™Mw)
1 776.8 1332.376 830.7912 329.2061
2 710 1335.332 833.7467 332.1616
3 667.1 1334.108 832.5232 330.9381
4 647.2 1334.858 833.2725 331.6873
5 639.3 1327.748 826.1624 324.5773
6 642.8 1330.898 829.3125 327.7274
7 657.2 1343.858 842.2724 340.6873
8 689.3 1352.656 851.0706 349.4855
9 767.5 1359.129 857.5435 355.9583
10 898 1355.821 854.2363 352.6512
11 995.1 1363.775 862.1894 360.6043
12 1016.2 1368.613 867.0279 365.4428
13 1008.1 1359.703 858.1177 356.5326
14 977.9 1354.002 852.4168 350.8317
15 940.1 1353.171 851.5858 350.0007
16 905.1 1338.23 836.6452 335.0601
17 892.8 1331.781 830.1959 328.6108
18 915.4 1323.021 821.4362 319.851
19 915.1 1316.243 814.6578 313.0727
20 887 1316.993 815.408 313.8228
21 900.2 1314.049 812.4639 310.8788
22 961.4 1308.722 807.1371 305.552
23 953.1 1299.203 797.6177 296.0326
24 903.7 1291.464 789.8784 288.2933
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Table (P1.6) Predicted load for a winter weekend day,
(20% load deviation), Model A

Daily hours | Actual load | Upper load | Middle load | Lower load
MW) MW) MW) MWw)
1 786 1346.21 844.6251 343.0399
2 711.3 1342.504 840.9189 339.3338
3 670.9 1331.717 830.1323 328.5472
4 653 1332.811 831.2263 329.6411
5 645.1 1332.12 830.5352 328.95
6 646 1324.543 822.9579 321.3728
7 659 1317.92 816.3345 314.7494
8 687.6 1315.135 813.5496 311.9645
9 767.7 1306.185 804.6002 303.0151
10 889.4 1308.836 807.251 305.6659
11 968.7 1304.631 803.0461 301.461
12 989.2 1311.826 810.2408 308.6557
13 983.5 1313.216 811.6306 310.0454
14 952.3 1321.447 819.8619 318.2768
15 911.5 1326.293 824.7076 323.1225
16 873.4 1336.028 834.4432 332.8581
17 859.6 1341.86 840.2751 338.69
18 888 1339.287 837.7015 336.1164
19 911.5 1329.935 828.35 326.7649
20 899.8 1319.202 817.6172 316.0321
21 889.4 1316.834 815.2491 313.664
22 922.6 1303.98 802.3948 300.8097
23 900.4 1329.948 828.3627 326.7776
24 835.8 1320.157 818.5723 316.9872
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Table (P1.7) Estimated load for a winter weekend day,
(5 % load deviation), Model A

Daily hours | Actual load | Upper load | Middle load | Lower load
MW) MW) MW) MW)

1 776.8 1197.809 818.4391 439.0692
2 710 1201.219 821.8492 442.4793
3 667.1 1200.542 821.1721 441.8021
4 647.2 1200.075 820.7051 441.3351
5 639.3 1192.373 813.0028 433.6329
6 642.8 1195.785 816.4152 437.0453
7 657.2 1209.825 830.4552 451.0853
8 689.3 1217.553 838.1832 458.8132
9 767.5 1223.011 843.6414 464.2714
10 898 1219.795 840.4249 461.0549
11 995.1 1228.388 849.0179 469.648
12 1016.2 1231.29 851.9202 472.5503
13 1008.1 1222.987 843.6172 464.2473
14 977.9 1219.795 840.4249 461.055
15 940.1 1218.644 839.2739 459.9039
16 905.1 1203.098 823.7279 444.358
17 892.8 1197.971 818.6008 439.2308
18 9154 1187.932 808.5621 429.1921
19 915.1 1182.77 803.4 424.0301
20 887 1184.363 804.9928 425.6229
21 900.2 1180.994 801.6241 422.2542
22 961.4 1175.262 795.8923 416.5223
23 953.1 1166.613 787.2429 407.8729
24 903.7 1157.237 777.8669 398.4969




Table (P1.8) Predicted load for a winter weekend day,
(5% load deviation), Model A

Daily hours | Actual load | Upper load | Middle load | Lower load
MWw) MW) MWw) MW)
1 786 1210.677 831.3076 451.9377
2 711.3 1205.9 826.5298 447.1599
3 670.9 1196.521 817.1506 437.7807
4 653 1198.223 818.8534 439.4835
5 645.1 1197.44 818.0698 438.6999
6 646 | 1189.704 810.3345 430.9646
7 659 1184.206 804.8357 425.4658
8 687.6 1180.378 801.0081 421.6381
9 767.7 1171.985 792.6147 413.2448
10 8894 | 1173.958 794.5875 415.2176
11 968.7 i 1169.659 790.2896 410.9196
12 989.2 1177.446 798.0762 418.7062
13 983.5 1179.021 799.6508 420.2808
14 952.3 1185.808 806.4385 427.0686
15 911.5 1189.627 810.2576 430.8876
16 873.4 1200.271 820.9011 441.5312
17 859.6 1207.217 827.8467 448.4767
18 888 1204.591 825.2209 445.851
19 911.5 1194.832 815.4623 436.0924
20 899.8 1184.677 805.3068 425.9369
E 21 889.4 1180.792 801.4216 422.0517
L 22 922.6 1171.357 791.9873 412.6174
l 23 900.4 1198.294 818.9243 439.5544
| 24 835.8 1184.288 804.9178 425.5479




Model B

Table (P1.9) Predicted load for a winter weekday,
(20% load deviation), Model B

Daily hours | Actual load | Upper load | Middle load | Lower load
MWw) MW) MW) MW)
1 776.8 1354.124 912.2347 470.3455
2 710 1274.516 831.8185 389.1215
3 667.1 1212.3 785.7601 359.2201
4 647.2 | 1161.758 753.1927 344.6273
5 639.3 | 1147.11 741.1701 335.2302
6 6428 - 1167.671 746.5836 325.4966
7 657.2 | 1207.364 767.4948 327.6252
8 689.3 | 1261.066 816.9554 372.8446
9 767.5 | 1354.7 924.7267 494.7534
10 898 i 1392.019 981.03 570.041
11 995.1 . 1348.908 943.9782 539.0481
12 1016.2 | 1395.226 977.572 559.9182
13 1008.1 . 1581.876 1144.632 707.3882
14 9779 ' 1368.704 923.9869 479.2703
15 940.1 | 1304.163 870.7567 437.3499
16 905.1 . 1289.748 875.9318 462.1153
17 892.8 1299.183 894.657 490.1308
18 915.4 1309.851 895.4289 481.0066
19 915.1 1292.027 857.8129 423.5983
20 887 1244.799 799.8808 354.9622
21 900.2 1218.812 782.3753 345.9391
22 961.4 1206.893 790.0472 373.2014
23 953.1 1243.734 839.006 434.2779
24 903.7 1183.662 772.0673 360.4725
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Model C

Table (P1.10) Estimated load for a winter day,
(0% load deviation), Model C

Daily hours | Actualload | Upper load | Middle load | Lower load
MW) MW) MW) MW)
1 1117.6 1117.352 1049.314 981.2758
2 1006.4 1002.796 959.6642 916.5328
3 943.6 947.7949 893.3424 838.8899
4 871.17 930.072 847.0901 764.1083
5 813 886.8589 806.3678 725.8766
6 869.7 935.3588 884.3027 833.2465
7 914.8 944.6049 899.8886 855.1723
8 978.7 1053.5 981.386 909.2726
9 11573 1169.818 1082.987 996.1563
10 1223.8 1199.176 1134.987 1070.799
11 1216.8 1190.083 1147.857 1105.631
12 1284.3 1223.936 1165.634 1107.332
13 1258.6 1203.112 1118.093 1033.073
14 1207.8 1053.874 976.5532 899.232
15 1155.4 975.6566 927.5439 879.4313
| 16 1110.6 913.4152 866.661 819.9069
17 1094.1 954.7243 878.988 803.2518
18 1113.3 1023.045 937.1199 851.1946
19 1186.4 1046.106 985.9926 925.8795
20 1139 1003.872 961.873 919.8738
21 1152.3 1055.361 993.2103 931.0594
22 1226.5 1098.469 1012.091 925.7128
23 1198.4 1031.638 957.7131 883.7883
24 1111.8 1026.037 980.4147 934.7927
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Table (P1.11) Predicted load for a winter day,
(0% load deviation), Model C

Daily hours | Actual load | Upper load | Middle load | Lower load
MW) MW) MW) (MW)
1 883.7 1117.352 1049.314 981.2758
2 806.5 1002.796 959.6642 916.5328
3 779 947.7949 893.3424 838.8899
4 772.4 930.072 847.0901 764.1083
5 780.2 886.8589 806.3678 725.8766
6 795.6 935.3588 884.3027 833.2465
7 843.3 944.6049 899.8886 855.1723
8 966.8 1053.5 981.386 909.2726
9 1145.8 1169.818 1082.987 996.1563
10 1225.8 1199.176 1134.987 1070.799
11 1220.9 1190.083 1147.857 1105.631
12 1188.1 1223.936 1165.634 1107.332
13 1174.1 1203.112 1118.093 1033.073
14 1130.2 1053.874 976.5532 899.232
15 1108.7 975.6566 927.5439 879.4313
16 1082.2 913.4152 866.661 819.9069
17 1105 954.7243 878.988 803.2518
18 1148.7 1023.045 937.1199 851.1946
19 1146.9 1046.106 985.9926 925.8795
20 1120.2 1003.872 961.873 919.8738
21 1128.4 1055.361 993.2103 931.0594
22 1164.8 1098.469 1012.091 925.7128
23 1126.5 1031.638 957.7131 883.7883
24 1026.5 | 1026.037 980.4147 934.7927




Table (P1.12) Estimated load for a winter day,
(5% load deviation), Model C

Daily hours | Actual load | Upper load | Middle load | Lower load
MW) MW) MW) (MW)
1 1117.6 1173.625 1049.911 926.197
2 1006.4 1055.183 961.504 867.825
3 943.6 1007.615 898.3017 788.9886
4 871.17 998.3513 855.9619 713.5724
5 813 952.1627 815.037 677.9114
6 869.7 993.3805 889.2535 785.1266
7 914.8 1000.306 901.8365 803.3668
8 978.7 1111.747 983.4883 855.2292
9 1157.3 1228.142 1083.423 938.7039
10 1223.8 1254.239 1133.437 1012.635
11 1216.8 1239.701 1144.984 1050.267
12 1284.3 1274.589 1163.387 1052.185
13 1258.6 1262.633 1118.719 974.8044
14 1207.8 1116.402 979.9797 843.5577
15 1155.4 1030.421 930.3224 830.2241
16 1110.6 969.5775 871.4403 773.3031
17 1094.1 1019.414 885.0286 750.6428
18 1113.3 1087.438 941.9798 796.5219
19 1186.4 1101.045 987.7631 874.4816
20 1139 1056.232 962.2513 868.2704
21 1152.3 1114.093 995.4145 876.7358
22 1226.5 1160.676 1016.154 871.6326
23 1198.4 1092.559 962.5981 832.6372
24 1111.8 1082.281 982.8972 883.5136
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Table (P1.13) Predicted load for a winter day,
(5% load deviation), Model C

Daily hours | Actual load | Upper load | Middle load | Lower load
MWw) MWw) MW) MW)

1 883.7 1173.625 1049.911 926.197
2 806.5 1055.183 961.504 867.825
3 779 1007.615 898.3017 788.9886
4 772.4 998.3513 855.9619 713.5724
5 780.2 952.1627 815.037 677.9114
6 795.6 993.3805 889.2535 785.1266
7 843.3 1000.306 901.8365 803.3668
8 966.8 1111.747 983.4883 855.2292
9 1145.8 1228.142 1083.423 938.7039
10 1225.8 1254.239 1133.437 1012.635
11 1220.9 1239.701 1144.984 1050.267
12 1188.1 1274.589 1163.387 1052.185
13 1174.1 1262.633 1118.719 974.8044
14 1130.2 1116.402 979.9797 843.5577
18 1108.7 1030.421 930.3224 830.2241
16 1082.2 969.5775 871.4403 773.3031
17 1105 1019.414 885.0286 750.6428
18 1148.7 1087.438 941.9798 796.5219
19 1146.9 1101.045 987.7631 874.4816
20 1120.2 1056.232 962.2513 868.2704
21 1128.4 1114.093 995.4145 876.7358
22 1164.8 1160.676 1016.154 871.6326
23 1126.5 1092.559 962.5981 832.6372
24 1026.5 1082.281 982.8972 883.5136




Table (P1.14) Estimated load for a winter day,
(10% load deviation), Model C

Daily hours | Actual load | Upper load | Middle load | Lower load
MW) (MW) MW) MW)

1 1117.6 1229.683 1051.127 872.5706
2 1006.4 1111.278 967.0101 822.7422
3 943.6 1071.517 904.9275 738.3383
4 871.17 1066.356 865.0006 663.6457
5 813 1012.47 822.2262 631.9821
6 869.7 1048.724 890.5163 732.3086
7 914.8 1059.512 903.2762 747.0405
8 978.7 1167.856 984.9442 802.0327
9 1157.3 1284.741 1085.945 887.1494
10 1223.8 1315.252 1136.116 956.9797
11 1216.8 1294.429 1144.169 993.9083
12 1284.3 1326.631 1164.099 1001.566
13 1258.6 1320.511 1119.519 918.528
14 1207.8 1180.547 | 984.0671 787.587
15 1155.4 1087.571 | 935.0442 782.517
16 1110.6 1025.568 ;| 876.0086 726.4489
17 1094.1 1083.584 ;| 889.7103 695.8363
18 1113.3 1148.609 @ 944.8365 741.0643
19 1186.4 1152.285 987.6144 822.9443
20 1139 1113.382 965.0074 816.6323
21 1152.3 1177.339 999.8724 822.4058
22 1226.5 1222.244 1022.885 823.5271
23 1198.4 1153.569 969.8036 786.0383
24 1111.8 1141.033 984.1565 827.2798
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Table (P1.15) Predicted load for a winter day,
(10% load deviation), Model C

Daily hours | Actual load | Upper load | Middle load | Lower load '
MW) MW) MW) MW)
1 883.7 1229.683 1051.127 872.5706
2 806.5 1111.278 967.0101 822.7422
3 779 1071.517 904.9275 738.3383
4 772.4 1066.356 865.0006 663.6457
5 780.2 1012.47 822.2262 631.9821
6 795.6 1048.724 890.5163 732.3086
7 843.3 1059.512 903.2762 747.0405
8 966.8 1167.856 984.9442 802.0327
9 1145.8 1284.741 1085.945 887.1494
10 1225.8 1315.252 1136.116 956.9797
11 1220.9 1294.429 1144.169 993.9083
12 1188.1 1326.631 1164.099 1001.566
13 1174.1 1320.511 1119.519 918.528
14 1130.2 1180.547 984.0671 787.587
15 1108.7 1087.571 935.0442 782.517
16 1082.2 1025.568 876.0086 726.4489
17 1105 1083.584 889.7103 695.8363
18 1148.7 1148.609 944.8365 741.0643
19 1146.9 1152.285 987.6144 822.9443
20 1120.2 1113.382 965.0074 816.6323
21 1128.4 1177.339 999.8724 822.4058
22 1164.8 1222.244 1022.885 823.5271 |
23 1126.5 1153.569 969.8036 786.0383 |
| 24 1026.5 1141.033 984.1565 827.2798 |




Table (P1.16) Estimated load for a winter day,
(20% load deviation), Model C

Daily hours | Actual load | Upper load | Middle load | Lower load
MW) MW) MW) MW)

1 1117.6 1341.807 1050.709 759.6112

2 1006.4 1226.967 974.957 722.9469

3 943.6 1196.721 915.1665 633.6118

4 871.17 1198.373 879.9313 561.4897

5 813 1136.893 835.7927 534.6922

6 869.7 1164.667 894.9226 625.1779

7 914.8 1173.425 901.817 630.2086

8 978.7 1278.405 983.1068 687.8086

9 11573 1398.555 1087.813 777.0703

10 1223.8 1434.492 1139.156 843.8197

11 1216.8 1402.996 1139.749 876.5016

12 1284.3 1425.355 1154.119 882.8824

13 1258.6 1430.091 1113.992 797.8934

14 1207.8 1302.322 987.6617 673.0016

15 1155.4 1204.581 942.3026 680.0242

16 1110.6 1147.248 889.0203 630.7924

17 1094.1 1214.996 903.5651 592.1339

18 1113.3 1269.902 949.7 629.4979

19 1186.4 1259.544 986.0875 712.6309

20 1139 1223.917 963.7767 703.6367

21 1152.3 1294.554 1000.43 706.3053

22 1226.5 1339.801 1027.696 715.5914
P23 1198.4 1269.075 973.8017 678.5282
gz 1111.8 1254.081 982.1103 710.1401
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Table (P1.17) Predicted load for a winter day,
(20% load deviation), Model C

Daily hours | Actual load | Upper load | Middle load | Lower load
MW) MWw) MWwW) MWw)
1 883.7 1344.002 1052.904 761.8068
2 806.5 1228.994 976.9838 724.9737
3 779 1204.884 923.3297 641.775
4 772.4 1202.089 883.647 565.2054
5 780.2 1137.512 836.412 535.3115
6 795.6 1164.442 894.6974 624.9526
7 843.3 1176.578 904.9697 633.3613
8 966.8 1276.66 981.3616 686.0634
9 1145.8 1388.196 1077.454 766.7114
10 1225.8 1423.288 1127.952 832.6163
11 1220.9 1400.012 1136.765 873.5177
12 1188.1 1429.521 1158.285 887.0485
13 1174.1 1434.482 1118.383 802.2847
14 1130.2 1308.965 994.305 679.6449
15 1108.7 1209.479 '@ 947.2005 684.9222
16 1082.2 1147.586 | 889.358 631.1302
17 1105 1213.589 | 902.1577 590.7264
18 1148.7 1271.591 | 951.389 631.1869
19 1146.9 1257.911 | 984.4548 710.9983
20 1120.2 1223.917 | 963.7767 703.6367
21 1128.4 1294.61 1000.486 706.3616
22 1164.8 1336.986 1024.881 712.7765
23 1126.5 1269.019 973.7454 678.4718
24 1026.5 1253.011 981.0406 709.0704




APPENDIX 2

WINTER FUZZY FIGURES
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Figure (P2.1) Estimated load for a winter weekday
(20% load deviation), Model A
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Figure (P2.2) Predicted load for a winter weekday
(20%load deviation), Model A
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Figure(P2.3) Estimated load for a winter weekend day
(20% load deviation), Model A
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Figure (P2.5)Estimated load for a winter weekday
(5% load deviation), Model A
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Figure (P2.6) Predicted load for a winter weekday

(5% load deviation), Model A
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Figure (P2.7) Estimated load for a winter weekend day
(5% load deviation), Model A
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Figure (P2.8) Predicted load for a winter weekend day
(5% load deviation), Model A



Loads (MW)

1800

1600

1400

1200

-h
(=
(=]
o

800

600

400

200

e-- Upper load
-- @ - -Lower load
-- o --Middle

—+— Actual load

e l

Daily Hours

Figure (P2.9) Predicted load for a winter weekday
(20 % load deviation ) using the parameters
of the summerday, Model B
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Figure (P2.10) Estimated load for a winter day
(0% load deviation), Model C
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Figure (P2.11) Predicted load for a winter day
(0% load deviation), Model C
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Figure (P2.12) Estimated load for a winter day
(5% load variation), Model C
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Figure (P2.13) Predicted load for a winter day
(5% load deviation), Model C
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Figure (P2.14) Estimated load for a winter day
(10% load deviation), Model C

24



Load (MW)

1400

1200

1000

o]
o
o

600

400

200

|
o e |
s * |
.
.- Upper load
! -- & --Lower load
! -~ - -Middle
, —+—— Actual load - =
i
!
0 4 8 12 16 20 2

Daily Hours

Figure (P2.15) Predicted load for a winter day
(10% load deviation), Model C
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Figure (P2.16) Estimated load for a winter day

(20% load deviation), Model C
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(20% load deviation), Model C



Appendix 3

Winter Tables: Static Estimation (Crisp Case)



Model A:

O]

Table (P3.1) Estimated load and percentage error for a winter weekday
using 24 parameters sets, Model A

Daily hours | Actual LES LAV % LES % LAV |
load(MW) Estimation | Estimation | error error
1 943.4 896.3 943.5 5 -0.02
2 850.5 834 863.1 1.94 -1.48
3 811.2 797.3 807.2 1.72 0.5
4 793.6 769.5 792.4 3.03 0.16
5 794.6 754.5 863.3 5.04 -8.64
6 810.3 816.2 816.6 -0.72 -0.78
7 855.2 874.1 845.9 -2.21 1.09
8 991 996.6 994.6 <0.57 -0.36
9 1198.5 1198.9 1193.4 -0.03 0.43
10 1302.3 1304.5 1305.8 -0.17 -0.27
11 1331.8 1331.7 1332.5 0.01 -0.05
12 1344.7 1345.2 1343.4 -0.04 0.1
13 1366.1 1365.5 1364.9 0.04 0.09
14 1346.2 1345.8 1345.1 0.03 0.08
: 15 1332.7 1333.7 1334.1 -0.07 -0.11
| 16 1320.6 1321.7 13213 -0.08 -0.05
17 13414 1342.8 1342.7 0.1 <0.1
18 1405.2 1407.6 1408.6 -0.17 -0.24
19 1403.3 1405.3 1423.5 -0.14 -1.44
20 1380.9 1384.3 1385.2 -0.25 -0.31
21 1406.5 1407 1410 -0.03 -0.25
22 1440.9 1443.9 1443.7 -0.21 -0.19
23 1390.9 1387.5 1368.7 0.25 0.3
24 1281.1 1282.5 1283.4 -0.11 -0.18
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Table (P3.2) Estimated load and percentage error for a winter weekday
using one parameters set, Model A

Daily hours | Actual LES LAV % LES % LAV
load(MW) Estimation | Estimation | error error
1 1331.8 1330.2 1331.8 0.1 0
2 1344.7 1381.1 1360.9 2.7 -1.2
3 1366.1 1340.3 1366 1.9 0
4 1346.2 1348.3 1346.2 -0.2 0
5 1332.7 1366.2 1360.1 -2.5 -2.1
6 1320.6 1288.9 1309.4 2.4 0.9
7 1341.4 1342.3 13414 0.1 0
8 991 10343 | 1041.6 4.4 -5.1
9 1198.5 1136 i 1134 5.2 54
10 1302.3 1261.7 | 12745 3.1 2.1
11 1331.8 1330.2 | 1331.8 0.1 0
12 1344.7 13811 | 1360.9 2.7 -1.2
13 1366.1 1340.3 1366 1.9 0
14 1346.2 1348.3 @ 1346.2 0.2 0
15 1332.7 1366.2 . 1360.1 2.5 -2.1
16 1320.6 1288.9 ' 1309.4 24 0.9
17 1341.4 1342.3 1341.4 0.1 0
18 1405.2 1416 1405.3 0.8 0
19 1403.3 1432.7 1425.3 -2.1 -1.6
20 1380.9 1391.8 1380.9 0.8 0
21 1406.5 1373.8 1397.1 2.3 0.7
22 | 1440.9 1413.8 1413.3 1.9 1.9
23 i 1390.9 1390.7 1390.8 0 0
24 i 1281.1 1317.4 1359.6 -2.8 -6.1
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Table (P3.3) Predicted load and percentage error for a winter weekday

using 24 parameters sets, Model A

Daily hours | Actual LES LAV % LES % LAV {

load(MW) | Prediction | Prediction error error !

1 779.2 795.6 835.7 2.1 7.25 |

2 698.6 724.8 737.7 -3.75 -5.6 5
3 665.8 674.9 703.4 -1.36 -5.65
4 658.5 669.7 700.5 -1.71 -6.38
5 660.1 697.6 707.4 -5.68 -7.17
6 674.7 7154 706.3 -6.03 -4.68
7 714.3 745 767.3 4.3 -7.43
8 827.4 808.7 741.3 2.26 10.41
9 1003.5 1033.4 1031.4 -2.98 -2.78
10 1065.1 1089.7 1098.9 -2.31 -3.17
11 1062.1 1063.7 1073.2 0.15 -1.05
12 1044.2 1043.4 1060.4 0.07 -1.55
13 1030.9 1033.3 1043.9 0.23 -1.26
14 996.2 1006 1005 -0.99 -0.89
15 971.3 977.6 975.3 -0.65 -0.41
16 946.9 954.8 951.3 -0.84 -0.46
17 946.9 959.3 958.8 -1.31 -1.26
18 975.9 1001.6 996.9 -2.63 -2.16
19 965.8 993 1016.8 -2.82 -5.28
20 917.2 976.6 977.4 -6.48 -6.57
21 902.1 941.5 879.2 4.37 2.53
22 971.3 996.6 976.3 -2.61 -0.51
23 981.8 987.5 995.1 -0.58 -1.35
24 898.1 907.1 908.5 -1 -1.16
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Table (P3.4) Predicted load and percentage error for a winter weekday
using one parameters set, Model A

Daily hours | Actual LES LAV % LES % LAV
load(MW) Prediction Prediction error error
1 883.7 913.6 886.2 -3.38 -0.29
2 806.5 900.3 887.7 -11.63 -9.15
3 779 933.3 949.9 -19.8 -17.99
4 772.4 824.8 850.5 6.79 -9.18
5 772.4 824.8 850.5 6.79 -9.18
6 772.4 824.8 850.5 -6.79 -9.18
7 772.4 824.8 850.5 6.79 -9.18
8 966.8 949.5 968.5 1.79 0.17
9 1145.8 1175 1144.8 -2.55 0.09
10 1225.8 1213.3 1223.7 1.02 0.17
11 1220.9 1209.2 1220.3 0.96 0.05
12 1188.1 11449 1169.4 3.64 1.6
13 1174.1 1085.3 1091.5 7.57 7.57
14 1130.2 1037.4 1053.3 8.21 7.3
15 1108.7 1047.5 1069.9 5.52 3.63
16 1082.2 1069.2 1080 1.2 0.2
17 1082.2 1069.2 1080 1.2 0.2
18 1082.2 1069.2 1080 1.2 0.2
19 1082.2 1069.2 1080 1.2 0.2
20 1120.2 1065.5 1056 4.88 6.08
21 1128.4 1138.3 1128.1 -0.88 0.03
22 1164.8 1160 1162.2 0.41 0.23
23 1126.5 1205.4 1220.7 -7 -7.72
24 1026.5 1225.7 1225.7 -19.4 -16.25
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Table (P3.5) Estimated load and percentage error for a winter weekend
day using 24 parameters sets, Model A

Daily hours | Actual LES LAV % LES % LAV
load(MW) Estimation | Estimation error error
1 776.8 791.8 793.5 -1.93 -2.15
2 710 721.5 709.1 -1.62 0.12
3 667.1 697.8 717.8 4.6 -7.6
4 647.2 672.5 609.1 3.9 5.89
5 639.3 675.2 681.7 -5.62 -6.63
6 642.8 652.2 642.7 -1.46 0.01
7 657.2 662.9 679.6 -0.87 3.4
8 689.3 694.7 716.9 -0.78 -4.01
9 767.5 774.1 767.8 -0.86 <0.03
10 898 925.2 898.4 -3.03 -0.05
11 995.1 1054.6 1056.6 -5.98 -6.18
12 1016.2 1042.2 1015.8 -2.56 0.04
13 1008.1 1025.9 1008.3 -1.77 <0.02
14 977.9 1014.8 984 -3.77 0.62
15 940.1 964 960.5 -2.54 -2.17
16 905.1 919.1 969.2 -1.55 -7.09
17 892.8 885.1 894.8 0.86 -0.22
18 9154 946.3 996.5 -3.37 -8.86
19 915.1 940.7 957.7 -2.8 4.6
20 887 902.1 918.8 -1.7 -3.58
21 900.2 891.2 8974 1 0.31
22 961.4 930.4 892.3 3.22 7.19
23 953.1 954.5 958.4 -0.15 -0.56
24 903.7 889.2 899.3 1.6 0.49
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Table (P3.6) Estimated load and percentage error for a winter weekend
day using one parameters set, Model A

Daily hours | Actual LES LAV % LES % LAV
load(MW) Estimation | Estimation | error error
1 776.8 797.7 780.9 -2.69 -0.53
2 710 764.6 785.3 -7.68 -10.6
3 667.1 755.1 745.1 -14 -11.6
4 647.2 745.7 705 -15.22 -8.94
) 639.3 648.6 634.2 -1.45 0.8
6 642.8 630.6 640.5 1.89 0.35
7 657.2 662.1 660.7 0.75 -0.53
8 689.3 731.2 717.6 6.07 4.1
9 767.5 811.5 799.9 -5.73 -4.22
10 898 865.4 894 3.63 0.45
11 995.1 879.6 928.2 11.61 6.7
12 1016.2 1053.7 962.5 -3.69 5.28
13 1008.1 1030.5 1006.1 2.22 0.2
14 977.9 935.6 973.7 4.33 0.43
15 940.1 871.3 900.8 7.32 4.18
16 905.1 935.6 955.6 -3.37 -5.58
17 892.8 814.3 892.4 8.8 0.04
18 9154 834.5 829.1 7.7 9.4
19 915.1 854.8 859.4 6.59 6.1
20 887 900.7 890.7 -1.54 -0.41
21 900.2 931.5 905.1 -3.48 -0.54
22 961.4 933.3 965.9 2.93 0.47
23 953.1 974.8 956.6 -2.28 0.37
24 903.7 904.5 898.7 -0.09 0.55
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Table (P3.7) Predicted load and percentage error for a winter weekend
day using 24 parameters sets, Model A

Daily hours | Actual LES LAV % LES % LAV
load(MW) Prediction Prediction error error
1 814.4 790.8 788.4 2.9 3.2
2 738.5 716.3 708.6 3.01 4.05
3 712 674.9 678.2 5.21 4.74
4 699.9 638 659.2 8.85 5.81
5 705.5 634.7 647.6 10.03 8.21
6 717.1 619.8 614.7 13.57 14.28
7 756.4 658.6 664.8 12.93 12.11
8 866.6 677 679.4 21.88 21.6
9 1035.1 767.9 763.3 25.81 26.26
10 1095.8 850.7 824.7 22.37 24.74
11 1085.7 980.7 965.3 9.67 11.09
12 1057.4 979.3 1004.3 7.38 5.02
13 1042.7 1033.3 1023 0.9 1.89
14 1003.3 1024.6 1038.9 -2.12 -3.55
15 976.7 983 992.6 -0.64 -1.63
16 951.6 977.1 974.3 -2.68 -2.38
17 959.5 978.5 973.9 -1.98 -1.5
18 1000.5 989.2 1051.6 1.13 -5.1
19 1006.2 1025.3 1062.6 -1.9 -5.6
20 9734 1027.6 1035.5 -5.57 -6.38
21 972.2 1013.3 1018 -4.23 4.71
22 1021 1060.8 1048.2 3.9 -2.67
23 997.3 10014 1013.8 -0.41 -1.65
24 909.5 938.3 939.7 -3.16 -3.32
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Table (P3.8) Predicted load and percentage error for a winter weekend
day using one parameters set, Model A

Daily hours | Actual LES LAV % LES % LAV
load(MW) Prediction Prediction error error
1 776.8 797.7 780.9 -2.69 <0.53
2 710 764.6 785.3 -7.68 -10.6
3 667.1 848 813.2 27.12 -21.9
4 647.2 848 813.2 27.12 -21.9
5 639.3 848 813.2 27.12 -21.9
6 642.8 630.6 640.5 1.89 0.35
7 657.2 662.1 660.7 -0.75 -0.53
8 689.3 731.2 717.6 -6.07 4.1
9 767.5 811.5 799.9 -5.73 -4.22
10 898 865.4 894 3.63 0.45
11 995.1 879.6 843.4 11.61 15.25
12 1016.2 1053.7 962.5 -3.69 5.28
13 1008.1 1030.5 1006.1 -2.22 0.2
14 977.9 935.6 973.7 4.33 0.43
15 940.1 871.3 900.8 7.32 4.18
16 905.1 871.3 900.8 7.32 4.18
17 892.8 871.3 900.8 7.32 4.18
18 9154 761.6 703.7 16.8 23.13
19 915.1 854.8 798.7 6.59 12.72
20 887 900.7 890.7 -1.54 0.41
21 900.2 931.5 905.1 -3.48 0.54
22 961.4 933.3 965.9 2.93 -0.47
23 953.1 974.8 956.6 -2.28 -0.37
24 903.7 904.5 898.7 -0.09 0.55




Model B :

Table (P3.9) Estimated load and percentage error for a winter week
day, Model B

Daily hours | Actual LES LAV % LES % LAY
load(MW) Estimation | Estimation | error error
1 943.4 1199.08 780 -27.1 17.3
2 850.5 1157.67 715 -36.1 15.9
3 811.2 1072.45 650 -32.2 19.9
4 793.6 1023.73 793.24 -29 0
5 794.6 969.21 797.75 <22 -0.4
6 810.3 1014.77 809.27 -25.2 0.1
7 855.2 929.75 857.75 -8.7 -0.3
8 991 1085.1 991.43 -9.5 0
9 1198.5 | 1375.46 1196.94 -14.8 0.1
10 1302.3 @ 1486.53 1301.21 -14.1 0.1
11 1331.8 1446.21 1333.82 -8.6 -0.2
12 1344.7 1344.73 1344.4 0 0
13 1366.1 1350.99 1365.11 1.1 0.1
14 1346.2 1182.07 1347.21 12.2 -0.1
15 1332.7 1132.32 1334.5 15 0.1
16 1320.6 1174.25 1315.78 ! 11.1 04
17 13414 1264.18 1342.01 5.8 0
18 1405.2 1366.85 1407.81 | 2.7 -0.2
19 1403.3 1162.88 1404.19 17.1 -0.1
20 1380.9 1144.36 1382.12 | 17.1 -0.1
21 1406.5 1174.45 1406.14 | 16.5 0
22 1440.9 1154.32 1339.92 ! 19.9 7
23 1390.9 1134.51 887 | 18.4 36.2
24 1281.1 1099.54 1281.07 14.2 0




Table (P3.10) Predicted load and percentage error for a winter week

day, Model B
Daily hours | Actual LES LAV % LES % LAV
load(MW) Prediction Prediction error error

1 1096.8 1217.08 1304.44 -10.97 -18.93
2 1014 .4 1172.24 1144.71 -15.56 -12.8
3 988.9 1086.51 984.98 -9.87 0.4
4 983.3 1038.37 983.15 -5.6 0.02
5 991.3 1012.94 992.67 -2.18 -0.14
6 1003.1 1063.71 1002.5 -6.04 0.06
7 1050.2 1107.28 1051.01 -5.43 -0.08
8 1187.1 1236.25 1187.86 -4.14 0.06
9 1384 1450.19 1382.71 4.78 0.09
10 1433 1491.2 1434.98 -4.06 0.14
11 1404.4 1428.25 1406.94 -1.7 -0.18
12 1354.1 1340.07 1354.2 1.04 -0.01
13 1319.2 1303.76 1319 1.17 0.02
14 1261.3 1186.46 1259.87 5.93 0.11
15 1221.7 1133.64 1219.76 7.21 0.16
16 1184.5 1139.18 1183.88 3.83 0.05
17 1187.9 1180.8 1190.33 0.6 0.2
18 1240.1 1249.37 1243.48 0.75 -0.27
19 1307.1 1204.12 1200.94 7.88 8.1
20 1361.9 1221.47 1200.94 10.31 11.8
21 1349.6 1249.4 1199.1 7.42 11.2
22 1313.9 1225.59 1313.89 6.72 0
23 1262.5 1202.34 1264.48 4.76 -0.16
24 1166.7 1128.54 1166.23 3.27 0.04




Table (P3.11) Estimated load and percentage error for a winter

weekend day, Model B
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Daily hours | Actual LES LAV % LES % LAV
load(MW) Estimation | Estimation | error error
1 916.8 899.66 780 1.9 14.9
2 846.7 846.56 836.88 0 15.5
3 8104 769.84 650 5 19.8
4 801.4 748.77 652.21 6.6 18.6
5 796.9 699.11 647.98 12.3 18.7
6 808.4 706.74 645.76 12.6 20.1
7 826 696.44 659.44 15.7 20.2
8 869.7 729.43 687.89 16.1 20.9
9 939.8 847.3 765.89 9.8 18.5
10 1031.8 959.46 892.76 7 13.5
11 1092.4 999.63 972.25 8.5 1
12 1093.8 986.42 990.06 9.8 9.5
13 1072.2 973.71 981.79 9.2 8.4
14 1030.2 876.4 950.87 14.9 1.7
15 981.6 827.58 908.69 15.7 7.4
16 937.4 823.16 871.66 12.2 7
17 912 830 862.19 9 5.5
18 928.4 881.36 893.76 5.1 3.7
19 938.2 816.56 908.56 13 3.2
20 915.2 790.67 901.3 13.6 1.5
21 930.8 795.04 894.04 14.6 3.9
22 1004.6 798.32 954.98 20.5 4.9
23 994.3 810.64 887 18.5 10.8
24 942.9 789.79 835 16.2 114
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Table (P3.12) Predicted load and percentage error for a winter weekend

day, Model B
Daily hours | Actual LES LAV % LES % LAV
load(MW) Prediction Prediction error error
1 950.4 1089.5 938.83 -14.64 1.21
2 874.5 1050.04 896.94 -20.07 -2.56
3 838.7 979.43 805.05 -16.78 4.01
4 814 929.21 813.16 -14.15 0.1
5 806.3 858.62 809.71 -6.49 -0.42
6 800.4 872.44 800.31 -9 0.01
7 811.1 862.16 811.44 -6.3 -0.04
8 833.2 895.18 833.49 -7.44 -0.03
9 918.6 1017.23 916.64 -10.74 0.21
10 1038.1 1121.45 1041.85 -8.03 -0.36
11 1116.9 1157.88 1120.92 -3.67 -0.36
12 1148.4 1143 1149.4 0.47 -0.09
13 1158 1140.82 1155.89 1.48 0.18
14 1135.1 1041.03 1133.63 8.29 0.13
15 1098.2 991.95 1095.1 9.68 0.28
16 1074.5 1004.23 1072.26 6.54 0.21
17 1072.9 1038.91 1075.77 3.17 0.27
18 1110.2 1110.88 1116.84 -0.06 0.6
19 1135.1 1021.23 1132.05 10.03 0.27
20 1141.2 996.94 1148.43 12.64 -0.63
21 1159.6 1023.25 1164.81 11.76 -0.45
22 1112.8 960.62 1127.33 13.68 -1.31
23 1060.7 961.22 1063.46 9.38 -0.26
24 981.7 925 980.73 5.78 0.1




Model C:

Table (P3.13) Estimated load and percentage error for a winter day,

Model C
Daily hours | Actual LES LAV % LES % LAV
load(MW) Estimation | Estimation | error error
1 943.4 942.15 943.82 0.13 -0.04
2 850.5 850.56 849.79 -0.01 0.08
3 811.2 814.68 829.75 0.43 -2.29
4 793.6 791.68 793.89 0.24 -0.04
S 794.6 792.57 794.7 0.26 <0.01
6 810.3 810.78 810.07 -0.06 0.03
7 855.2 856.41 855.73 0.14 -0.06
8 991 992.96 991.31 0.2 -0.03
9 1198.5 1197.02 1198.36 0.12 0.01
10 1302.3 1301.02 1301.63 0.1 0.05
11 1331.8 1333.28 1331.78 0.11 0
12 1344.7 1343.98 1344.41 0.05 0.02
13 1366.1 1366.08 1366.82 0 -0.05
14 1346.2 1347.41 1346.24 -0.09 0
15 1332.7 1332.93 1333 0.02 -0.02
16 1320.6 1318.58 1320.56 0.15 0
17 13414 1342.45 1341.48 -0.08 -0.01
18 1405.2 1406.36 1405.07 <0.08 0.01
19 1403.3 1404.3 1403.34 <0.07 0
20 1380.9 1380.14 1381.19 0.06 -0.02
21 1406.5 1402.9 1406.43 0.26 0
22 1440.9 1443.07 1440.71 0.15 0.01
23 1390.9 1392.63 1390.79 -0.12 0.01
24 1281.1 1280.05 1281.77 0.08 -0.05

[}
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Table (P3.14) Predicted load and percentage error for a winter day,

Model C
Daily hours | Actual LES LAV % LES % LAV
load(MW) Prediction Prediction error error
1 1117.6 972.23 974.73 13.01 12.78
2 1006.4 875.64 875.91 12.99 12.97
3 943.6 904.36 922.82 4.16 2.2
4 871.1 905.33 912.45 -3.93 4.75
S 813 861.62 867.75 -5.98 -6.73
6 869.7 848.86 851 24 2.15
7 914.8 847.76 847.99 7.33 7.3
8 978.7 922.48 919.01 5.74 6.1
9 1157.3 1053.34 1049.43 8.98 9.32
10 1223 1103.54 1095.86 9.77 104
11 1216.8 1124.58 1113.24 7.58 8.51
12 1284.3 1166.26 1157.16 9.19 9.9
13 1258.8 1162.27 | 1152.49 7.67 8.45
14 1207.8 1158.97 | 1147.51 4.04 4,99
15 1155.4 1168.28 | 1158.85 -1.12 0.3
16 1110.6 111491 ' 1106.27 -0.39 0.39
17 1094.1 1138.9 1127.06 -4.09 -3.01
18 1113.3 1239.31 1228.27 -11.32 -10.33
19 1186.4 1222.02 1211.05 -3 -2.08
20 1139 1205.36 1196.66 -5.83 -5.06
21 1152.3 1217.28 1210.77 -5.64 -5.07
22 1226.5 1253.05 1240.43 -2.16 -1.14
23 1198.4 1220.65 1209.09 -1.86 -0.89
24 1111.8 1066.59 1057.3 4.07 4.9




Appendix 4
Winter Static Figures
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Figure (P4.1) Estimated load for winter weekday
using 24 parameters sets, Model A
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Figure (P4.2) Estimated load error for a winter weekday
using 24 parameters sets, Model A
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Figure (P4.3) Estimated load for winter weekday
using one parameters set, Model A
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Figure (P4.4) Estimated load error for a winter weekday
using one parameters set, Model A
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Figure (P4.5) Predicted load for a winter weekday
using 24 parameters sets, Model A
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Figure (P4.6) Predicted load error for a winter weekday

using 24 parameters sets, Model A
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Figure (P4.7) Predicted load for winter weekday

using one parameters set, Model A
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Figure (P4.8) Predicted load error for a winter weekday
using one parameters set, Model A
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Figure (P4.9) Estimated load for a winter weekend day

using 24 parameters sets, Model A
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Figure (P4.10) Estimated load error for a winter weekend day
using 24 parameters sets, Model A
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Figure (P4.11) Estimated load for a winter weekéend day
using one parameters set, Model A
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Figure (P4.12) Estimated load error for a winter weekend day
using one parameters set, Model A
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using 24 parameterts sets, Model A
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Figure (P4.14) Predicted load error for a winter weekend day
using 24 parameters sets, Model A
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Figure (P4.15) Predicted load for a winter weekend day
using one parameters set, Model A
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Figure (P4.16) Predicted load error for a winter weekend day
using one parameters set, Model A
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Figure (P4.17) Estimated load for a winter
weekday, Model B
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Figure (P4.18) Estimated load error for a winter weekday, Model
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Figure (P4.19) Predicted load for a winter
weekday, Model B
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Figure (P4.20) Predicted load error for a winter weekday, Model B
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Figure (P4.21) Estimated load for a winter
weekend day, Model B
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Figure (P4.22) Estimated load error for a winter weekend day,

Model B
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Figure (P4.23) Predicted load for a winter
weekend day, Model B
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Figure (P4.25) Estimated load for a winter day, Model C
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Figure (P4.26) Estimated load error for a winter day, Model C
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Figure (P4.27) Predicted load for a winter day, Model C
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Figure (P4.28) Predicted load error for a winter day, Model





