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Abstract

Thermohaline intrusions are formed by lateral interleaving motions across ocean
fronts. Interleaving is thought to be driven by buoyancy forces arising from fluxes of
heat and salt by double diffusion (i.e., salt fingering or diffusive convection). Most
double-diffusive interleaving models apply only to fronts that are barotropic. How-
ever, many ocean fronts are baroclinic, with vertical shear and horizontal density
gradients. This thesis investigates the dynamics of double-diffusive interleaving in
baroclinic ocean fronts.

A new theoretical model of double-diftfusive interleaving is developed. It is found
that intrusions that slope in the along-front direction will be deformed by background
horizontal and vertical shear. As a result, the along-front intrusion slope will be re-
duced in baroclinic fronts. It is found that horizontal density gradients change the
stratification felt by intrusions. Importantly, if the intrusions slope between hori-
zontal and isopycnal surfaces across the front, intrusive motions will be driven by
baroclinicity as well as double diffusion.

The theory is applied to two test cases. The first is a Mediterranean salt lens,
or Meddy. In the lower part of the Meddy, which is stratified appropriately for salt
fingering, the observed interleaving slopes are found to be consistent with the salt-
finger form of double-diffusive interleaving. In the upper part of the Meddy, which
is stratified appropriately for diffusive convection, the intrusion slopes are consistent
with the diffusive-convection form of double-diffusive interleaving. In both cases, it
is found that the along-front slope is significantly reduced as a result of background
shear.

The second test case is a front in the Arctic Ocean. Here, the background strati-
fication is not appropriate for either type of double diffusion, so it is not clear which
form of interleaving should occur. The intrusion slopes are found to be consistent with
the salt-finger form of double-diffusive interleaving. The intrusions slope between hor-
izontal and isopycnal surfaces, suggesting that they are driven by baroclinicity as well
as double diffusion.

xvi



Acknowledgements

It is a pleasure to acknowledge the contributions of many people in helping bring this
thesis to completion.

First, and foremost, I would like to thank my supervisor Dan Kelley. From my
first day at Dalhousie University, he both encouraged and challenged me in doing my
work. He was never short of interesting ideas and unique insights. He tackled his job
(i.e., my supervision) in a conscientious and thoughtful manner. He acted both as a
research and personal colleague — a great mentor and a true friend.

I would like to thank my committee members: Barry Ruddick, Paul Hill, Dan
Wright, Neil Oakey, Dave Hebert and Dave Walsh. They provided a wealth of exper-
tise and contributed to many interesting and lively discussions. I thank Ed Carmack
for encouraging my Arctic interests and for sending me off to the great white north. I
thank Eric Kunze for the constructive criticism and supportive comments he offered
on the articles and thesis he was asked to review.

I would like to thank my fellow students who helped along the way: Josko and
Phil as fellow classmates, Dan for being a great office-mate and a lot of fun, Steve
for encouraging me to paddle as hard as I worked, Mark and Anna for sharing in the
final stages of the write-up, and many more who made Dalhousie a great place to
spend these years. I thank Jackie for her technical expertise and for livening up the
fifth floor.

Finally, I would like to acknowledge the support of my family along the way. I
thank my parents who always believed in me and encouraged me to follow the path
that interested me most. I thank my brother Andrew for encouraging me to think
about more than just science and sports. I thank my wife Abbi for her love and

support, especially in the final stages when I needed it most.

XVvii



Chapter 1

Introduction

1.1 Inversions, intrusions and interleaving

Since the invention of continuously recording temperature-salinity profilers in the
1960’s, it has been clear that the ocean has temperature and salinity structure on
many scales. An important example is “inversions”, i.e., reversals of the vertical
gradients, of temperature and salinity. The inversions indicate layers of alternating
warm salty and cold fresh water. The layers typically have vertical wavelengths of
10 to 100 m and extend horizontally for distances of 1 to 100 km, or more. They
are thought to be caused by lateral motion of water in the presence of horizontal
temperature and salinity gradients at ocean fronts. As a result, the layers are often
called thermohaline “intrusions”, reflecting the idea that they are formed by one
thermohaline water-mass intruding into another. The process of creating multiple
intrusive layers is called “interleaving”.

Thermohaline interleaving is important because it may contribute significantly to
the mixing of temperature, salinity and other tracers in ocean frontal zones. Ocean
mixing is important because of its effects on the larger-scale dynamics. For example,
Bryan (1987) and Cummins et al. (1990) have shown that the strength of thermoha-
line circulation in global circulation models is highly dependent on the parameteriza-
tion of vertical mixing. At a number of fronts, interleaving has been shown to be a
dominant form of mixing (Joyce et al., 1978; Schmitt and Georgi, 1982). Horizontal
diffusivities ranging from 1 m?s~! to 300 m?s~! have been associated with the in-
terleaving process (Hebert et al., 1990; Provost et al., 1995). Vertical diffusivities of

order 107° m?s~! have been estimated to result from interleaving (Garrett, 1982).



Location Reference
Southern Ocean

Antarctic Polar Front (57 °S 55 °W) Gordon et al. (1977)

Antarctic Polar Front (59 °S 64 °W) Joyce et al. (1978), Toole (1981a)
Antarctic Polar Front (57 °S 165 °E) Georg: (1978), Toole (1981a)
Weddell Sea (68 °S 54 °W) Robertson et al. (1995)

South Atlantic Ocean
Brazil-Malvinas Confluence (38 °S 52 °W)  Bianchi et al. (1993), Provost et al. (1995)
South Pacific Ocean

Tasman Sea (36 °S 153 °E) McDougall and Giles (1987)
Indian Ocean
Eastern Indian Ocean (13 °S 120 °E) Stommel and Fedorov (1967)

Fquatorial Pacific Ocean

Eastern Equatorial Pacific (0 °N 110 °W)  Toole (1981b)

Western Equatorial Pacific (0 °N 165 °E)  Richards and Pollard (1991)
North Pacific Ocean

Western Pacific (6 °N 129 °E) Stommel and Fedorov (1967)

California Current (28 °N 120 °W) Gregg (1975)

Ocean Station P (50 °N 145 °W) Gregg and McKenzie (1979), Gregg (1980)
Sub-Arctic Front (152 °E) Kuzmina et al. (1994)

North Atlantic Ocean

Mediterranean Inflow (38 °N 10 °W) Howe and Tait (1970, 1972)

Mediterranean Salt Lens (28 °N 23 °W) Ruddick and Hebert (1988),
Armi et al. (1989)
Mediterranean Salt Lens (32 °N 30 °W) Zhurbas et al. (1992)

Gulf Stream Front (44 °N 57 °W) Horne (1978)

Gulf Stream Front (38 °N 69 °W) Williams III (1981)

Warm Core Ring (41 °N 64 °W) Schmitt et al. (1986)

Warm Core Ring (40 °N 62 °W) Ruddick and Bennett (1985)

North Atlantic Front (47 °N 43 °W) Schmitt and Georg: (1982),
Georgt and Schmitt (1983)

Norwegian Sea (64 °N 7 °W) Hallock (1985)

Arctic Ocean

Nansen Basin (83 °N 20 °E) Perkin and Lewis (1984)

Nansen Basin (85 °N 30 °E) Anderson et al. (1989)

Nansen & Amundsen basins (85 °N 80 °E) Quadfasel et al. (1993)
Nansen & Amundsen basins (88 °N 90 °E) Anderson et al. (1994), Rudels et al. (1994)

Mendeleyev Ridge (76 °N 180 °W) Carmack et al. (1995b),
McLaughlin et al. (1996)
Makarov Basin (85 °N 180 °W) Carmack et al. (1995a, 1997)

Table 1.1: Ocean observations of thermohaline intrusions, indicating location and
literature citation.
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Figure 1.1: A sample of ocean observations of thermohaline intrusions. Black circles
denote survey locations.

The first detailed survey of thermohaline intrusions was performed by Stommel
and Fedorov (1967). They observed iatrusions in the eastern Indian Ocean (off Timor)
and the western Pacific Ocean (off Mindanao). They found that individual intrusions
could be tracked laterally over distances of order 10 km, a remarkable distance for
features only 10’s of meters thick. Since the initial survey, temperature and salinity
fine-structure associated with thermohaline intrusions has been observed at many lo-
cations around the world. Fig. 1.1 illustrates the locations of a number of reported
observations of thermohaline intrusions (summarized in Table 1.1). This distribution
represents a sampling of the literature and is not a complete compilation of all in-
trusion observations. Nevertheless, it illustrates that thermohaline intrusions have
been observed throughout the world’s oceans. They are expected wherever there are
strong horizontal gradients of temperature and salinity.

The easiest interleaving characteristics to observe are those that can be obtained



from a single CTD profile of temperature and salinity. Typically, the vertical wave-
length of intrusive fluctuations lies between 10 and 100 m. The amplitude of fluctua-
tions varies widely and can be as large as a few degrees in temperature or one psu in
salinity. Because intrusive temperature and salinity perturbations are correlated, they
lead to a zig-zag pattern in temperature-salinity plots so that thermohaline intrusions
are often easily identified in temperature-salinity space.

Adjacent profiles reveal the horizontal structure of interleaving. Early studies
revealed layers that were coherent over 1 to 10 km. As more recent studies have ex-
amined other geographical regions, even more remarkable scales have been measured.
Observations near the equator (Richards, 1991) and in the Arctic Ocean (Perkin and
Lewis, 1984; Carmack et al., 1995b) have shown interleaving layers that extend sev-
eral hundred kilometers. It has recently been discovered that layers may be coherent
over the entire Arctic basin, spanning some 2000 km (Carmack et al., 1995a, 1997).

Tracking intrusions from profile to profile, it is possible to estimate the slopes of
intrusive layers relative to horizontal (i.e., geopotential) and isopycnal (i.e., density)
surfaces. Observations of intrusion slopes have been made in the Antarctic Polar
Front (Joyce et al., 1978; Toole, 1981a), Eastern Pacific Ocean (Gregg and McKenzie,
1979; Gregg, 1980), Tasman Sea (McDougall and Giles, 1987) and eastern Atlantic
Ocean (Ruddick, 1992). These surveys have shown that intrusions often slope relative
to isopycnal surfaces. However, relatively little consideration has been given to the
slope of intrusions relative to horizontal surfaces.

The velocities associated with thermohaline interleaving are small [estimated to
be of order 107 ms™! (Ruddick and Hebert, 1988)] and have not been observed
directly. However, measurements have beea used to investigate the micro-scale mixing
processes occurring in interleaving zones. Wulliams IIT (1981) used a shadow-graph
profiler to show that salt fingering was occuring on the underside of warm salty
interleaving layers at the Gulf Stream Front. Schmitt and Georg: (1982) used the
same instrument to identify active double-diffusive mixing between intrusive layers

in the North Atlantic Current. Also, micro-structure profilers have been used to



estimate vertical mixing rates in intrusive zones (Larson and Gregg, 1983; Oakey,

1988).

1.2 Models of interleaving

Theoretical and laboratory studies suggest two possible mechanisms for the develop-

ment of interleaving.

e In thermohaline fronts (i.e., fronts with horizontal temperature and salinity
gradients), differential vertical mixing of temperature and salinity by double
diffusion (i.e., salt fingering or diffusive convection) can lead to double-diffusive
interleaving (Stern, 1967; Ruddick and Turner, 1979).

e In baroclinic fronts (i.e., fronts with horizontal density gradients), differential
vertical mixing of density and momentum by turbulence can lead to McIntyre

instability (MclIntyre, 1970; Calman, 1977).

Ocean fronts are both thermohaline and baroclinic so they may have either form of

interleaving.

MclIntyre instability

McIntyre (1970) investigated the growth of symmetric instabilities in a baroclinic
circular vortex. Uniform horizontal and vertical shear and uniform horizontal and
vertical gradients of density were considered. McIntyre showed that differential mixing
of momentum and density could lead to destabilization of the vortex. The criterion
for instability was shown to be

Ri < ——(Ag‘/;tl)z
where A is the turbulent viscosity for mixing of momentum, K, is the turbulent
diffusivity for mixing of density and R: is the frontal Richardson number defined
by Ri = N?(1 + ©,/f)/92 [where N is the buoyancy frequency, @, and ©. are the

(1.1)
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Figure 1.2: Schematic illustrating McIntyre instability. (a) If the turbulent viscosity
is much less than the diffusivity (i.e., A/K; < 1), unstable modes slope between
surfaces of constant angular momentum and the vertical plane. (b) If the turbulent
viscosity is much greater than the diffusivity (i.e., A/K; > 1), unstable modes slope
between the horizontal plane and isopycnal surfaces.

horizontal and vertical shear in the azimuthal flow, respectively, and f is the Coriolis
frequency].

Two forms of instability were illustrated:

o If the turbulent viscosity is much less than the turbulent diffusivity (i.e., A/ K, <
1), velocity perturbations are maintained while density perturbations are quickly
mixed away. In this case, McIntyre instability has kinetic energy stored in the

background velocity field as its energy source. Unstable modes slope in the
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range between surfaces of constant angular momentum ( fz + v) and the verti-

cal plane [Fig. 1.2(a)].

e If the turbulent viscosity is much greater than the turbulent diffusivity (i.e.,
A/K,; > 1), velocity perturbations are quickly mixed away while density pertur-
bations are maintained. In this case, McIntyre instability has potential energy
stored in the background density field as its energy source. Unstable modes
slope in the range between the horizontal plane and isopycnal surfaces (i.e.,

surfaces of constant potential density p) [Fig. 1.2(b)].

Double-diffusive interleaving

In comparison to McIntyre instability, double-diffusive interleaving has received much
more attention in the literature. The first instability theory of double-diffusive in-
terleaving was developed by Stern (1967), who identified the potential for double
diffusion to drive lateral interleaving motions. His theory predicted the initial growth
of intrusions in an infinitely-wide, uniform, barotropic, thermohaline front. Salt fin-
gering was assumed to be the dominant vertical mixing mechanism and a diffusivity
formulation was introduced to parameterize the salt-finger fluxes. Stern found that
perturbations would grow provided the double-diffusive density flux reinforced the
intrusive motions. In the model developed by Stern (1967), perturbations at small
vertical wavelengths were favoured because double-diffusive fluxes were increased at
this scale. However, in the absence of friction, the growth rate increased without
bound, in this limit. This unphysical behaviour was resolved by Toole and Georg:
(1981) who added viscosity to the model. With this addition, the maximum growth
rate was achieved at an intermediate wavelength.

Since then, a number of theories have followed, investigating various properties of
double-diffusive interleaving. Niino (1986) developed a model for fronts of variable
width. In the limit of infinite frontal width, his predictions agreed with those of
Toole and Georgt (1981) and in the limit of zero frontal width, the model agreed
with the predictions of Ruddick and Turner (1979). This latter study, motivated by



laboratory experiments of thermohaline intrusions, predicted the vertical wavelength
of intrusions at sharp fronts.

The predicted growth rates of interleaving are small enough that the earth’s rota-
tion is significant to the dynamics. Various studies have shown that double-diffusive
interleaving layers should slope in the along-front direction in response to Coriolis
forces (Posmentier and Hibbard, 1982; McDougall, 1985a; Kerr and Holyer, 1986;
Yoshida et al., 1989). McDougall showed that the optimum along-front slope yields
a balance in which along-front pressure gradients identically cancel Coriolis forces on
the cross-front flow. In this case, the intrusive motions are directly across the front,
maximizing energy extraction from the thermohaline gradients.

Most theoretical studies have used parameterizations of double-diffusive fluxes in
which salt fingering is assumed to be the only mixing mechanism. Stern (1967) used
a constant vertical diffusivity to prescribe the salt flux and then related the heat flux
via a constant flux ratio. Other flux parameterizations have been considered. Using
a parameterization for molecular fluxes, Holyer (1983) showed that intrusions can
develop in the absence of salt fingering. With molecular fluxes, intrusions develop
with a much smaller vertical length scale. Envisioning interleaving as a series of layers
separated by thin interfaces, McDougall (1985a) assumed the double-diffusive fluxes
to be proportional to the salinity difference between adjacent layers, rather than the
gradient. As a result, his solutions exhibited a dependence on the first power, rather
than the square, of the vertical wave number. More recently, Walsh and Ruddick
(1995) have considered the effect of non-constant flux coefficients. They found that
the flux convergence is enhanced if the double-diffusive diffusivity is a decreasing
function of the density ratio R,.

Walsh and Ruddick (1995) also mapped their results to the case in which diffusive
convection, rather than salt fingering, is the dominant form of double diffusion during

the initial interleaving growth. The key difference between the two cases is as follows:
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Figure 1.3: Schematic illustrating double-diffusive interleaving. (a) If salt fingering
is the dominant form of double diffusion, unstable modes slope upward toward the
cold fresh side of the front. (b) If diffusive convection is the dominant form of double
diffusion, unstable modes slope downward toward the cold fresh side of the front.

e If the double-diffusive density flux is dominated by salt fingering, double diffu-
sion generates a density flux out of warm salty intrusions, making them anoma-

lously light. Unstable modes slope upward toward the cold fresh side of the
front [Fig. 1.3(a)]-

e If the double-diffusive density flux is dominated by diffusive convection, dou-
ble diffusion generates a density flux into warm salty intrusions, making them

anomalously dense. Unstable modes slope downward toward the cold fresh side

of the front [Fig. 1.3(b)].
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The cross-front intrusion slope is a key parameter that can be used to distinguish the
two forms of double-diffusive interleaving (Ruddick, 1992).

In a theoretical study of interleaving in baroclinic fronts, Kuzmina and Rodionov
(1992) considered the effect of shear-dependent turbulent mixing on the dynamics
of double-diffusive interleaving. Assuming that the strength of turbulent mixing in-
creases with increasing vertical shear, they predicted that interleaving growth should
decrease in baroclinic fronts. Their theoretical prediction agreed with observational
results of Zhurbas et al. (1988). Walsh and Ruddick (1998b) have also considered
the combined effects of turbulence and double diffusion on thermohaline intrusions.
They found that a significant effect of turbulence is to alter the temperature-salinity
flux ratio. Recently, Hebert (1999) has investigated thermohaline intrusions driven
by differential mixing of temperature and salinity by incomplete turbulence, rather
than double diffusion.

When double-diffusive interleaving grows to finite amplitude, both forms of double
diffusion become important. McDougall (1985b) described a steady state in which
advective fluxes of temperature and salinity along intrusive layers are balanced by
salt-finger and diffusive-convection fluxes between intrusions. Both forms of double
diffusion are required in order to reach a steady state. Kerr (1992) investigated
the stability of steady-state interleaving. Walsh and Ruddick (1998b) used a one-
dimensional time-dependent numerical model to study the details of the evolution to
steady state. They showed that turbulent mixing was required (in addition to salt
fingering and diffusive convection) to achieve a local balance throughout the water
column.

To estimate the effects of interleaving, it is necessary to use models of the in-
terleaving process from which transports can be estimated. Joyce (1977) developed
a method for estimating the horizontal transport associated with interleaving from
vertical profiles of temperature and salinity. The model assumes that convergence
and divergence of the vertical heat and salt fluxes is balanced by lateral intrusive

fluxes. Horizontal diffusivities derived this way are typically in the range 1 to 300
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m?s~!. At a number of fronts, interleaving has been shown to be a dominant form
of lateral mixing (Joyce et al., 1978; Schmitt and Georgi, 1982; Hebert et al., 1990;
Provost et al., 1995).

Because intrusive layers are generally sloped, vertical (or diapycnal) transports
are also generated by interleaving. Using a simple model of the meso-scale eddy
field and the interleaving process, Garrett (1982) suggested that the large-scale av-
erage diapycnal diffusivity associated with interleaving is of order 107> m?s~!. This
value suggests that vertical mixing by interleaving may be significant, not only in the

vicinity of ocean fronts, but also on a basin-wide scale.

1.3 Effects of baroclinicity on double-diffusive in-
terleaving

Double-diffusive interleaving is expected to occur in thermohaline fronts in the ocean,
whether barotropic or baroclinic. A significant limitation of most theoretical models
of double-diffusive interleaving is that they apply only to barotropic thermohaline
fronts, that is, fronts with no horizontal density gradients and no vertical shear (Stern,
1967; Toole and Georgi, 1981; McDougall, 1985a; Walsh and Ruddick, 1995, 1998a).
They apply only when the horizontal temperature and salinity gradients are exactly
density-compensating. However, many (perhaps most) ocean fronts are baroclinic.
They have horizontal density gradients and vertical shear.

Just one model of double-diffusive interleaving has considered the effects of baro-
clinicity on double-diffusive interleaving (Kuzmina and Rodionov, 1992). The focus
of that study was the effect of shear-dependent turbulent mixing on double-diffusive
interleaving. Kuzmina and Rodionov predicted that double-diffusive interleaving
growth should be diminished in baroclinic fronts as a result of increased turbulence.

Apart from that study, the topic of double-diffusive interleaving in baroclinic
thermohaline fronts has not been tackled adequately. This thesis attempts to fill this

gap. Two main effects are given special consideration here.
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e Given vertical shear in the background velocity field, intrusions might be de-
formed by the background flow. In particular, a vertically-sheared along-front
flow might be expected to tilt intrusions if they slope in the along-front di-
rection, as predicted by models of double-diffusive interleaving for barotropic

fronts.

e Given a horizontal density gradient across the frontal zone, the stratification
felt by intrusions will be altered. Intrusive motions are buoyancy driven, so one

might expect the change in background stratification to affect intrusion growth.

1.4 Thesis outline

The thesis comprises a number of distinct sub-projects, as follows:

o In chapter 2, a new instability model of double-diffusive interleaving is developed
for baroclinic thermohaline fronts. Following existing theories, salt fingering is

assumed to be the dominant form of double diffusion.

e In chapter 3, the instability model developed in chapter 2, is mapped to the

case in which diffusive convection is the dominant form of double diffusion.

e In chapter 4, the models developed in chapters 2 and 3 are applied to the
Mediterranean salt lens (i.e., Meddy) Sharon, in an effort to determine the

effects of baroclinicity on the interleaving observed there.

e In chapter 5, the models are applied to an Arctic Ocean front, in an effort to

determine the driving mechanism of intrusions observed there.

e In chapter 6, the analysis is extended to the finite-amplitude phase of interleav-

ing for the two test cases.



Chapter 2

Instability Stage of
Double-Diffusive Interleaving in
Baroclinic Thermohaline Fronts:

Salt-Finger Fluxes Dominant

2.1 Introduction

A significant limitation of most theoretical models of double-diffusive interleaving is
that they do not apply to baroclinic thermohaline fronts. An exception is the study
by Kuzmina and Rodionov (1992), who predicted that double-diffusive interleaving
will be suppressed in baroclinic fronts as a result of shear-dependent turbulent mixing.
But what about other aspects of baroclinicity, e.g., the more direct effects of vertical
shear (which may tilt intrusions) and horizontal density gradients (which may change
the stratification felt by intrusions)?

In this chapter, the dynamics of double-diffusive interleaving in baroclinic fronts
are investigated. Particular attention is paid to the eflects of vertical shear and
horizontal density gradients. Following the majority of double-diffusive interleaving
instability models, salt fingering is assumed to be the dominant form of double diffu-
sion acting in the frontal zone. The alternative case, in which diffusive convection is
the dominant form of double diffusion, is considered in chapter 3. Note that some of
the material in the present chapter appeared in May and Kelley (1997).

The intrusion model developed here is an extension of the model of Toole and

13
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Georg: (1981), with the addition of 1) background horizontal shear, 2) background
vertical shear and, 3) a background horizontal density gradient. Inclusion of horizon-
tal shear implies that the model is valid not only for baroclinic fronts, but also for
horizontally-sheared barotropic fronts.

The model differs from that of Kuzmina and Rodionov (1992), in three main ways.

o Whereas Kuzmina and Rodionov included shear-dependent turbulent mixing
in their model, it is not included here. In an effort to focus on the baroclinic
effects of vertical shear and horizontal density gradients, the effects of turbulent

mixing are not considered.

e Whereas Kuzmina and Rodionov neglected vertical advection of the background

salinity field, it is included here.

o Whereas Kuzmina and Rodionov allowed intrusions to slope only in the cross-
front direction, intrusions are allowed to slope in hoth the cross-front and along-
front directions here. Inclusion of an along-front slope allows advection of in-
trusive perturbations by the background shear flow, a key part of the present

analysis.

2.2 Equations of motion

In this section, I introduce the equations of motion for fluid flow assumed to govern
intrusion growth. A Cartesian coordinate system is used, with the x-axis directed in
the cross-front direction, the y-axis in the along-front direction and the z-axis in the
vertical direction. The relevant physical quantities are the velocity components u, v
and w (directed in the cross-front, along-front and vertical directions, respectively),

pressure p, potential density p, salinity S, and potential temperature §. The equations



of motion are given by
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The equations comprise three momentum equations for evolution of the velocity com-
ponents, the continuity equation, an equation of state, and equations for the evolution

of salinity and potential temperature.
Following Stern (1967) and Toole and Georg:i (1981), a number of assumptions

have been made in deriving these equations:

e The Boussinesq approximation has been assumed to apply. Variations in density
have been ignored, except where they contribute directly to pressure gradients

(i-e., in the vertical momentum equation).

e The fluid has been assumed to be hydrostatic. It can be shown that this is
a valid approximation if the square of the intrusion slope is much less than
one. Typically, the slope of ocean intrusions is in the range 10™* to 1072 so
this is a reasonable approximation. Note that it is not difficult to include non-

hydrostatic terms, but the equations become somewhat more complicated as a

result.

e The fluid has been assumed to be incompressible. As a result, the fluid flow is

non-divergent.
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e A linear equation of state is used for potential density, in terms of salinity
and potential temperature. The haline contraction coefficient # and thermal

expansion coeflicient « are defined by

_1dp
p= p0S
10

o= —;6—‘;. (2.2)

They are evaluated at S,, ,, p,, chosen appropriately for the front of interest.

e A vertical eddy viscosity is used to parameterize the vertical momentum fluxes,

as follows:

F,=—A—. (2.3)

The vertical eddy viscosity A is typically thought to be in the range from 10~°
to 1072 m?s~! (e.g., Schmitt et al., 1986; Padman, 1994).

e A vertical eddy diffusivity is used to parameterize the vertical salinity flux due
to salt fingering and a constant flux ratio is used to specify the associated

temperature flux, as follows:

. a8
Fs=—K %
Fo = 'Yngs- (24)

The vertical eddy diffusivity K7 is typically thought to be in the range from 10~¢
to 107" m?~! (e.g., Schmitt, 1988; Ruddick and Hebert, 1988). The flux ratio
vs must lie between 0 and 1 for salt fingering to satisfy energetic constraints. It
is typically thought to be between 0.4 and 0.8 (McDougall and Ruddick, 1992).

Following Stern (1967), each quantity is separated into base-state and perturba-

tion components, as follows:

u=a+u. (2.5)



Base-state quantities (over-barred) represent the large-scale background frontal fields.
Perturbation quantities (primed) represent the smaller-scale thermohaline intrusions.

Substituting for u, v, w, p, p, S, and @ in the equations of motion (2.1) yields
two sets of equations of motion: one for the base state and one for the perturbations.

Equations of motion for the base-state are given by
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The equations of motion for the base state are identical to the full equations of motion,

with the addition of over-bars.
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Substituting into (2.1), equations of motion for the perturbations are given by
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The equations of motion for the perturbations include both perturbation and base-
state quantities. Note that the advective terms for u, v, S and £ comprise terms for 1)
advection of perturbation fields by the perturbation flow, 2) advection of perturbation
fields by the base-state flow, and 3) advection of base-state fields by the perturbation

flow. Thus, the perturbation equations are non-linear in perturbation amplitude.

2.3 Base state

The equations above are still very general. In this section, I specify the form of the
background front, which constrains the problem considerably. Following Stern (1967)
and Toole and Georg: (1981), I consider an infinite front with uniform horizontal and
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vertical gradients of temperature and salinity throughout. However, with the aim of
investigating baroclinic effects, I also allow for a horizontal density gradient and a
horizontally and vertically sheared along-front flow.

The base-state quantities are specified by

u(z,z) =0

(z,2) = Vo + UpT + 0.2

w(z,z) =0

P(T,2) = po + Pz + P2z

S(z,z) =S, + S,z + 5.z

6(z,2) =6, + 0.z +6.=. (2.8)

The base-state fields are assumed to be linear in the cross-front and vertical directions
(i-e., Dz, D2y Pay P=y Szy S=, Oz, 8. are assumed to be constant). No along-front variation
is permitted. Key extensions to older analyses (e.g., Toole and Georgi, 1931) are the
inclusion of a horizontally and vertically sheared flow in the along-front direction (i.e.,
vz # 0, U. # 0) and a horizontal density gradient (i.e., g # 0).

Given this base state, the equations of motion reduce to

_ _ 1 dp
0 = f(vo + ez + 0.2) — p—05§
1 95
0=-192
Po Oy
g _ _ 1 9p
0=—=(po + pzz + p:2) — — 5=
Po( Po Oz
Po + Pzt + p=z = po[l + B(Ssz + S-2) — a(f.z + 0.2)]. (2.9)
Solving for the base state pressure p yields
— 1 2 — 1 = m2
B(,2) = Po — gpoz — 59P=2" — gPrTz + PofUoT + 5p0f 02" (2.10)

Note that the pressure distribution is nonlinear (in space) even though the other base-

state fields are linear. Eliminating dp/9z and 9p/dz, the first and third equations



can be combined to give the thermal-wind relationship

fﬁz = _iﬁrf (2.11)

(2]

The horizontal density gradient and vertical shear are linked. A key point is that

these quantities are not assumed to be zero. The equation of state yields

Or = po(ﬁgz - ag—r)
0. = Po(ﬂgz - ag_:). (2'12)

The vertical stratification is assumed to be gravitationally stable (i.e., 5. < 0).

A number of dimensional and non-dimensional numbers are used to characterize
the base state. The buoyancy frequency NV characterizes the strength of the vertical
stratification, and is defined by

N2=_9;. (2.13)

Po
In the ocean, N is typically in the range from 10~3 to 10~2 s™!.
The vertical density ratio R, relates the temperature and salinity components of
the vertical stratification, and is defined by
af.
BS.’

with the following properties being important:

R,= (2.14)

e The density ratio is less than zero (i.e., R, < 0) for a water column that is stable
in both the temperature and salinity components (i.e., temperature increasing

upward and salinity decreasing upward).

o The density ratio is between zero and one (i.e., 0 < R, < 1) for a stratified
water column that is unstable in the temperature component and stable in the
salinity component (i.e., temperature and salinity both decreasing upward). In
this case, the stratification is appropriate for the diffusive-convection form of

double diffusion.



e The density ratio is greater than one (i.e., R, > 1) for a stratified water column
that is stable in the temperature component and unstable in the salinity com-
ponent (i.e., temperature and salinity both increasing upward). In this case,

the stratification is appropriate for the salt-finger form of double diffusion.

Strictly speaking, the model presented here should apply only when the base state
is stratified appropriately for salt fingering (i.e., R, > 1). However, it has been
suggested that intrusions driven by salt fingering can develop in fronts that are not
stratified appropriately for salt fingering (Holyer, 1983; McDowugall, 1985a). So, it
may be reasonable to apply this model to fronts that do not satisfy this constraint. I
will not limit consideration to any particular vertical stratification at this point.

To describe the relative contributions of temperature and salinity to the cross-front
horizontal gradients, I introduce a parameter I'll call the horizontal density ratio R,
defined by

ab,
= 33,

Barotropic fronts have density-compensating horizontal gradients of temperature and

Rn (2.15)

salinity, so R, = 1. In contrast, baroclinic fronts do not have density-compensating
gradients of temperature and salinity, so Rn # 1. Because baroclinic fronts have non-
density-compensating horizontal gradients of temperature and salinity, the horizontal
density ratio is a useful non-dimensional measure of frontal baroclinicity. In the
analysis that follows, I will pay particular attention to the dependence of double-
diffusive interleaving on the horizontal density ratio Rp.
The background horizontal density gradient and, hence, the background isopycnal
slope is linked to the horizontal density ratio, as follows:
Pe__(Ra—1) g(os +55,) 2.16)
p= (Rn+1) N2
A horizontal density ratio greater than one (i.e., Ry, > 1) is consistent with isopycnals

sloping upward toward the cold fresh side of the front. A horizontal density ratio less

than one (i.e., R, < 1) is consistent with isopycnals sloping downward toward the



N
N

cold fresh side of the front. Typically, oceanic isopycnal slopes are of order 10~° to
1073,

Another important quantity for characterizing baroclinic fronts is the frontal
Richardson number, defined by

Ri = g(l + 5./ f). (2.17)
vz

The frontal Richardson number is infinite for barotropic fronts (i.e., with . = 0)

and decreases as a function of baroclinicity. The frontal Richardson number varies

considerably in the ocean from order 10° to values upwards of 10%.

The horizontal density ratio R, and Richardson number R: are related, as follows:

. [(Ra+1) fN 2 5
= [(Rh—l) g(ae;wi)] (1+5:/)- (218)

Even though the two parameters are linked, they are not equivalent, especially with
respect to the effects of baroclinicity on double-diffusive interleaving. In their study
of the effects of shear-dependent turbulent mixing, Kuzmina and Rodionov (1992)
considered dependence of intrusion growth on the Richardson number R:. In contrast,
the present work will focus on the dependence of intrusion growth on the background
horizontal density ratio R,. These effects can enter at a wide range of Richardson
numbers.

For the purposes of model illustration, it is useful to introduce an example base
state. Throughout this chapter, I use base-state properties appropriate to the lower
part of Mediterranean salt lens (i.e., Meddy) Sharon (Table 2.1). The Meddy is
discussed in detail in chapter 4 and the reader is referred to that chapter for details
of the measurements. To investigate effects of baroclinicity, I will allow some of
the base-state properties to vary away from their observed values. Items denoted
with a * in Table 2.1 are adjusted as functions of baroclinicity. To do this, I hold
the background horizontal spice gradient p,(a8, + 3S;) constant, while varying the
relative contributions from temperature and salinity (i.e., the horizontal density ratio

Ry). Note that the observed value of Ry is 1.1. For the model illustrations, I usually



Property Value

g 9.8 ms™?2
f 7.7 %1075 571
Uy 0
Vs —-32x10"*s7t *
Po 1150 x 10* Pa (i.e., 1150 dbar)
So 35.9 psu
Se —3.0 x107° psum™! *
S. 1.1 x 10~2 psum™!
é, 9.6 °C
6, —13x107*°Cm™! *
6. 8.5x 1073 °Cm™!
Po 1032.8 kgm™3
Pz 28x107® kgm™ *
5.  —7.8x10~* kgm
a 1.9 x 1074 °C™!
Ié} 7.5 x 107 psu~!
Vs 0.6
K; 3.5 x 107% m?s~!
A 1.5 x 107 m?s~!
N 2.7x 1073 s71
R, 1.9
Ry 1.1 *
—p=/p- 3.5x1073*
Rz 60 *

Table 2.1: Example base-state properties for the lower part of Meddy Sharon. Items
denoted with a * are allowed to vary as functions of baroclinicity. In order to focus on
baroclinic effects of a horizontal density gradient and vertical shear, the background
horizontal shear 7. is set to zero.



allow Rj to vary between 0.5 and 1.5. Keep in mind that the properties of the
example base state are used only for producing example plots. They are not used in

the derivation of analytic results.

2.4 Perturbations

For the specified base sta.te, the equations of motion for the perturbations (2.7) are

given by
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ot “or Y dy Oz °enE )
1 9p %'
+fv,——oa +Aazz
av' ~0v + ,3v’+ v (Vo + Bz + T ~)8v'
ot~ \" 8z "oy "V 5z Yo T Uzt T V=2) 5y
., . , 19p %’
— (v +w's:) — fu _p_oay + A =
pl l apl
0= —g— _ —
gpo Po UZ
o  gv  ou
0= Oz + Oy + z

P = po(BS" — af)

8_5,—-— u'aSI-{- 'aS,-{-‘w'aS, —(U + U+ U 7)85,
ot a9z ¥ Jdy 0=z °enE =y
_ _ 8251
— (WS, +w'S:) + Ky 52
99 _ _ u'?ﬁl-—i-v'—a——e—, w'ao,) — (Vo + Tz + T ")09,
gt Ox dy Oz e E = oy

B - 9*s’
a Taz7

These equations match those of Toole and Georgi (1981), except for a number of new

— (W'l + w'8.) + ¢ (2.19)
terms:

e Advection of the perturbation fields by the background shear flow [e.g., —(v, +
VT + U.2)0u’/Oy].



Figure 2.1: Schematic illustrating spatially-harmonic solutions. The presumed har-
monic waveform is characterized by the cross-front wave number k, along-front wave
number [ and vertical wave number m. Arrows indicate cross-front intrusive flow.
Solid lines are surfaces of constant phase.

e Advection of the background velocity field by the perturbation flow [i.e., —(u'v,+

w'v.)]-

e Horizontal advection of the background density field by the perturbation flow,

which appears in the temperature and salinity equations (i.e., —u’d, and —u’S;).

2.4.1 Spatial dependence

Having specified the equations of motion, the challenge is to find solutions to the
equations. For double-diffusive interleaving, the standard approach is to consider
solutions that are harmonic in space. The solutions are characterized by cross-front,
along-front and vertical wave numbers, all of which are assumed constant in time
(Fig. 2.1). However, in the presence of a background shear flow, perturbations of
that form are not generally solutions to the equations of motion. Advection by the

background flow may cause the intrusions to be distorted in time, so that the wave

numbers are not constant.



To address this problem, I introduce spatially-harmonic solutions with time-dependent

wave numbers, as follows:
u'(z,y, z,t) = G(t) exp i[k(t)z + I(t)y + m(t)z — [(t)v.t]. (2.20)

The coeficient [i.e., 4(t)] is time-dependent to take into account intrusion growth.
The cross-front, along-front and vertical wave numbers [i.e., k(¢), [(t), m(t)] are time-
dependent to take into account tilting of the intrusion layers in time by the background
shear flow. The term —I(t)v,t allows for propagation of the waveform in the uniform
background flow v,.

Given this functional form, the equations of motion become
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— il(Vo + Tzz + 0.2)0 — 2(F, + w0.) — 7ngfm25'. (2.21)

Most terms in (2.21) are spatially independent and describe the growth of the intrusive
perturbations. However, note that there are also terms proportional to z, y, and =z.

The terms on the left describe the tilting of intrusive perturbations in time while the



terms on the right describe advection of the perturbations by the background shear
flow.

As (2.21) must be satisfied for all z, y and =z, the terms proportional to z, y and
z must cancel. This requires that

@
dt
di _
dt

dm

=t - .. 2.92
at o= (2:22)

Given a non-zero along-front wave number [, the background horizontal shear 7, leads

= —Iv,

to a time-dependent cross-front wave number k£ and the background vertical shear 5.
leads to a time-dependent vertical wave number m (Fig. 2.2). The along-front wave
number is constant. Note that a similar time-dependence was obtained by Kunze
(1990), who investigated the growth of salt fingers in the presence of a background
vertical shear.

In general, intrusive features are nearly horizontal and, thus, the cross-front wave
number k& and the along-front wave number ! are much smaller than vertical wave

number m. It is useful to introduce cross-front and along-front intrusion slopes

k
§=——
m
l
r=——. (2.23)
m

The quantities s and r are positive for upward slopes along the z and y axes, respec-
tively. Note that Toole and Georgi (1981) defined s and r to be the negative of the
values as defined here. In terms of intrusion slopes, the tilting of intrusions in time

by background shear is given by

ds = —T7 TSV

d~ F :

d

7=

d
e rmp (2.24)
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Figure 2.2: Schematic illustrating distortion of intrusive perturbations by the back-
ground shear flow. Small arrows indicate intrusive flow and large arrows indicate
background shear flow. (a) Section in the cross-front/along-front plane illustrates
distortion by horizontal shear 7,. (b) Section in the along-front/vertical plane illus-
trates distortion by vertical shear ©.. Horizontal shear o, leads to a time-dependent
horizontal wave number k, while vertical shear 3. leads to a time-dependent vertical
wave number m. In both cases, the along-front wave number [ is constant in time.



Given a non-zero along-front slope r, the cross-front slope s, along-front slope r and
vertical wave number m may vary in time.
The equations of motion can be further simplified. The continuity equation spec-

ifies the vertical velocity w, as follows:

k. 1
W= ——0 — —b = sit +rb. (2.25)
m m

This implies that the perturbation flow is along the intrusive layers. The hydrostatic
equation yields
p=iTp=iLp,(85 —ab). (2:26)
Note that the ¢ indicates that the pressure perturbation is 90° out of phase with
the other perturbation fields. A further simplification is obtained by noting that the
non-linear advective terms are proportional to %% + ¢/¥ + tmw, which is identically
zero, according to the continuity equation. Thus, for spatially-harmonic modes, the
non-linear terms drop out.
Given dk/dt = —lv,, dl/dt = 0, dm/dt = —1v., setting s = —k/m and r = —I/m,

and substituting for @, p, and p, and the equations of motion (2.21) reduce to

1t A 5 .

% = fo — gs(BS — af) — Am?a

ccll_: = —(f + 0y + s0.)&t — rv.0 — gr(BS — af) — Am?*

dS - _ _ u

% o —(Se+ 55,02 — 8. — Kym?$

df 5 TN e B 22 .
= = —(0; + s8.)i — r6.0 — 'Yfg[lfm25. (2.27)

These equations are independent of the spatial coordinates z, y and z. However, time
dependence remains. The perturbation amplitudes @, 4, 5, § are time dependent.
Also, the cross-front intrusion slope s, along-front intrusion slope r and vertical wave
number m are time-dependent. Given an initial perturbation wave vector [i.e., s(0),
r(0), m(0)] and perturbation amplitude [i.e., %(0), #(0), $(0), 6(0)], the intrusion
growth is specified for all time.
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Intrusion amplitude

Time

Figure 2.3: Schematic illustrating exponentially and non-exponentially growing so-
lutions. If the rate of tilting by background shear is much smaller than the rate of
intrusion growth, growth to finite amplitude can occur before the intrusions are tilted
significantly. The growth is approximately exponential (solid curve). If the rate of
tilting by background shear is comparable to or greater than the rate of intrusion
growth, the intrusions will be tilted out of their unstable range before significant
growth can occur. The growth is halted before the intrusions reach finite amplitude
(dashed curve).

2.4.2 Temporal dependence

Typically, studies of double-diffusive interleaving consider perturbation solutions that
grow exponentially in time. However, in fronts with horizontal and/or vertical shear,
special care is required because the cross-front intrusion slope s, along-front intrusion
slope r and vertical wave number m may vary in time.

Strictly speaking, exponential solutions are only valid if the coefficients in the
equations of motion are constant in time, which requires ds/dt = dr/dt = dm/dt = 0.
If the cross-front slope s, along-front slope r or vertical wave number m are not
constant in time, exponential growth will not occur. The intrusions will be tilted out

of their unstable range and, ultimately, intrusion growth will stop.

o If the rate of tilting by background shear is much smaller than the rate of

intrusion growth, growth to finite amplitude can occur before the intrusions are
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tilted significantly. They will grow approximately exponentially (Fig. 2.3, solid
line).

e If the rate of tilting by background shear is comparable to or greater than the
rate of intrusion growth, the intrusions will be tilted out of their unstable range
before significant growth can occur. Growth to finite amplitude will not occur
(Fig. 2.3, dashed line).

Here, I limit consideration to modes in which the rate of #ilting by background shear
is much less than the rate of intrusion growth, i.e., modes that grow approximately
exponentially. It is these modes that should ultimately grow to finite amplitude.

If the rate of tilting by background shear is much less than the rate of intru-
sion growth, the cross-front slope s, along-front slope r amd vertical wave number m
can be assumed to be roughly constant during the initial growth of the intrusions.

Exponential solutions can be considered, as follows:
u(t) = a(0) exp[At]. (2.28)

The quantity A is the growth rate, which may be real or comnplex. The real component
describes intrusion growth and the imaginary component describes propagation of the
waveform.

Given exponential growth, the equations of motion (2-27) can be written as

Mt = 6 — gs(BS — af) — Am?a

Ao = —(f + 0z + 50.)0 — 150 — gr(BS — ab) — Am?p

AS = —(8; + 55.)t — r5.0 — Kym?S — Kgm?$§

A = —(8 + 56.)i — rf.5 — 7,§Kfm2§. (2.29)

For a given base state, cross-front intrusion slope s, along—front intrusion slope » and
vertical wave number m, the equations above prescribe th.e growth rate \.

Eliminating the perturbation amplitudes, a single equation can be obtained for
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the growth rate A, as follows:

A+ [(24 + Kp)m? + ro]X°
+[(A+2K;)Am* + r5.(A + Kf)m? + f(f + 0 + s0.)
+ga(slz + 20 + r%6.) — gB(sS: + s°S. + r25.)]A\?
+[A2Kim® + ro. AKym* + f(f + 0. + s0.)Kym?
+gra(0.f + s6,5. — s0.5,) — grB(S.f + sS,0- — $5.7;)
+go(shz + s%6. +120.)(A + K;)m® — gB(sSz + s°5. + r25.)(A + v, K )m?| A
+[gra(6-zf + 56,5 — sﬂ-:ﬁx)l’(fmz — grB(S.f + 5,5 — sS}ﬁ,)*nyfmz
+ga(sz + s%0. + r20.)AKym* — gB(sS; + 5. +r25.)ysAKym*] =0.  (2.30)

The growth-rate polynomial is fourth order and, thus, has four roots. Each root cor-
responds to an eigen-mode of the system. Typically, two eigen-modes are oscillatory
decaying modes representing inertial oscillations. For parameter ranges relevant to
double-diffusive interleaving, the third eigen-mode is normally a non-oscillatory de-
caying mode and the fourth eigen-mode is normally a non-oscillatory growing mode.
This last mode is the double-diffusive interleaving mode of interest.

As outlined above, use of exponentially growing solutions and, hence, applica-
tion of the growth-rate polynomial requires that the rate of tilting by background
shear be much less than the rate of intrusion growth. The rate at which the wave
vector is rotated in the cross-front/along-front plane is given by 1/Vk2 + [2dk/dt =
0. /52 + r2. The rate at which the wave vector is rotated in the along-front/vertical
plane is given roughly by 1/m dm/dt = ro.. Thus, the constraints on the background

shear are given by

V| K A

r

Iro-| < A (2.31)

The first constraint requires that the rate of distortion in the cross-front/along-front

plane by background horizontal shear [i.e., as illustrated in Fig. 2.2(2)] be much
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less than the rate of intrusion growth. The second constraint requires that the rate
of distortion in the along-front/vertical plane by background vertical shear [i.e., as
illustrated in Fig. 2.2(b)] be much less than the rate of intrusion growth.

Note that the shear constraints (2.31) depend on the intrusion growth rate A. For
a given mode (i.e., s, r, m), there is no way to know a priori whether it will satisfy the
shear constraints. Thus, the shear requirements must be confirmed after calculating
the growth rate. Care must be taken to ensure that only modes that satisfy the

requirements are considered.

2.5 Effect of background horizontal and vertical
shear

The shear constraints presented above (2.31) require that the rate of deformation
by background shear be much less than the rate of intrusion growth. Note that the
deformation terms [i.e., terms on the left hand side of (2.31)] are zero when the along-
front slope 7 = 0 and increase roughly in proportion to |r|. As a result, for a given
value of background shear (i.e., ¥, and o.), the shear constraints may limit the range
of along-front slopes that can be considered. The degree to which the along-front
slope is limited depends on the magnitude of the background shear. In Fig. 2.4, I
illustrate schematically the range of allowed along-front slopes for two different values
of background shear. If the background shear is weak, the deformation rate increases
slowly with |r| and the allowed range of along-front slopes is relatively large. However,
if the background shear is strong, the deformation rate increases quickly with |r| and
the allowed range of along-front slopes is relatively small.

In the analysis that follows, I consider two limiting cases.

e Low-shear limit: If the horizontal and vertical shear are very weak, the shear
constraints will hold over a wide range of along-front slopes. In this case, a
non-zero along-front slope is allowed and, in fact, is preferred because it yields

fastest growth [i.e., Fig. 2.4(a)].
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Figure 2.4: Schematic illustrating the range of allowed along-front intrusion slopes
for weak background shear (a) and strong background shear (b). In each panel, the
growth rate (solid) and the shear deformation rate (dashed) are plotted as functions of
along-front slope. The dotted lines indicate the range of along-front slopes for which
the shear constraints are satisfied (i.e., deformation rate much less than growth rate).
If the background shear is weak (a), the deformation rate increases slowly with |r| and
the range of allowed along-front slopes is large. If the background shear is strong (b),
the deformation rate increases quickly with |r| and the range of allowed along-front
slope is small.
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e High-shear limit: If the horizontal and/or vertical shear are very strong, the
shear constraints will require that the along-front slope r be very small. In this
case, the along-front slope is set to zero [i.e., Fig. 2.4(b)].

Because the shear constraints depend on characteristics of the solution as well as the
background shear, the definitions of low-shear and high-shear are somewhat vague at
this point. In section 2.7, I provide more concrete guidance on when the low-shear

and high-shear limits apply.

2.5.1 Low-shear limit

In the low-shear limit, a non-zero along-front slope is allowed. McDougall (1985a)
showed that intrusions slope in the along-front direction as a response to the earth’s
rotation. With the optimum along-front slope, intrusions are geostrophically balanced
in the along-front direction and the intrusive flow is directly across the front. This
maximizes energy extraction from the background thermohaline fields and, hence,
maximizes intrusion growth.

Following McDougall (1985a), I assume that in the low-shear limit the optimum
along-front slope is set so that intrusive motions are directly across the front. Setting

© = 0, the equations of motion (2.29) reduce to

M = —gs(8S5 — af) — Am*a
0 = —(f + B + s8:)s — gr(BS — of)
AS = —(8; + s5.)0 — Kym?S
M= —(6, +s8.)0 — 7,§K,m2.§. (2-32)

The first, third and fourth equations prescribe the evolution of the intrusive pertur-
bations @, 5, and 6. The second equation specifies the along-front slope r required to
maintain 9 = 0.

Eliminating the perturbation amplitudes from the first, third and fourth equations
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yields

A+ (A+ Kp)ym2X?
+HAKm* + gsa(8, + s0.) — gsB(5: + s5.)]A
+gsa(f, + s8.) Kym? — gsB(S, + s5.)ysKym?] = 0. (2.33)

The growth-rate polynomial is third order and, thus, there are roots corresponding to
three eigen-modes of the system. Note that the growth-rate polynomial is independent
of the Coriolis frequency and background shear.

The along-front slope required to maintain ¢ = 0 is given by

- (f( e 3’;) s (2.34)

The along-front slope is non-zero in response to Coriolis forces and background shear.
With this along-front slope, the shear constraints [i.e., |r/V/s?2 + 7127, < A and
[ro:] <« A, given by (2.31)] must be checked after solving the growth-rate polyno-
mial.

2.5.2 High-shear limit

If the horizontal and/or vertical shear are very strong, the shear constraints require
that the along-front slope r be very small [Fig. 2.4(b)]. In the high-shear limit, I con-
sider the case in which the along-front slope is completely suppressed by background
shear. The along-front slope is set to zero.

With r = 0, the equations of motion (2.29) become

M = fo — gs(B85 — af) — Am?a

Ab = —(f + 0y + sU.)& — Am?D

AS = —(8, + s8.)& — Kym?2§

2 = —(6, + s0.)i — ~,,§Kfm2§. (2.35)

In this case, the four equations prescribe the evolution of @, ¢, S and §.



Eliminating the perturbation amplitudes yields
M+ (24 + Ky)m22®
+{(A +2K7)Am®* + f(f + 0z + s0:) + gsa(b + $6.) — gsB(S. + s5.)]\?
+[A’Kfm® + f(f + 0 + s7.) Kym?
tgsaf, + s8.)(A+ Kf)m? — gsB(3s + s5-)(A + v, K)m?|A
+[gsa(8z + s8.)AK pm* — gsB(S: + 5. )7, AKm?] = 0. (2.36)

In this case, the growth-rate polynomial is fourth order. Whereas Coriolis and back-
ground shear terms did not appear in the low-shear growth-rate polynomial (2.33),
they do appear in the high-shear polynomial (2.36).

Note that the second equation prescribes the along-front flow, as follows:

(f + 0 +s0:) . -
— (/\ +A.m2) u. (2.3()

The along-front intrusive flow is non-zero in response to Coriolis forces and back-

v =

ground shear. Given r = 0, the shear constraints (2.31) are satisfied for all values of

background shear.

2.5.3 Low-shear vs. high-shear

The difference between the low-shear and high-shear limitsis in the specification of the
along-front intrusion slope and this is reflected in the two growth-rate polynomials.
In the low-shear limit, the along-front slope is set to the value that yields maximum
possible growth. In the high-shear limit, the along-front slope is set to zero.

To illustrate the difference between the low-shear and high-shear solutions, the
growth rate A is plotted as a function of cross-front slope s and vertical wave number
m for both limits (Fig. 2.5). In both cases, the example base-state properties are used,
with the horizontal density ratio set to one (i.e., R, = 1). Thus, the only difference

between the two cases is in the specification of the along-front slope.

(a) Low-shear limit: Growth occurs in a confined range of cross-front intrusion

slopes. The growth rate reaches a maximum value at a cross-front slope of
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Figure 2.5: Growth rate A as a function of cross-front intrusion slope s and vertical
wave number m for the low-shear and high-shear limits. The example base-state
parameters were used with R, = 1 in both cases. The maximum unstable slope
(dotted), and the location of the fastest-growing mode (star) are shown. Contour
interval (for solid contours) is 0.04 d~1.
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about 2.5 x 10~ and a wave number of about 0.3 m~! (corresponding to a
wavelength of 20 m). At the maximum, the growth rate is about 0.25 d™',
which corresponds to an e-folding period of 4 d.

(b) High-shear limit: Growth occurs in a confined range of cross-front intrusion
slopes. The growth rate reaches a maximum value at a cross-front slope of
about 4 x 10~ and a wave number of about 0.75 m~! (corresponding to an
wavelength of 8 m). At the maximum, the growth rate is about 0.1 d~!, which

corresponds to an e-folding period of about 10 d.

The difference between the two panels reveals the effect of an along-front slope being
allowed (in the low-shear case) and not allowed (in the high-shear case). In the
low-shear case, the optimum cross-front slope and vertical wave number are smaller
than in the high-shear case. The growth rate is significantly larger (i.e., by roughly
a factor of 2.5). Thus, when a non-zero along-front slope is permitted (i.e., at low
values of shear as shown here), the low-shear solution is clearly the preferred over the
high-shear solution.

The low-shear and high-shear limits represent endpoints of the problem of interest.
The low-shear limit reflects the case in which the along-front slope is completely
unrestricted by background shear. The high-shear limit reflects the case in which
the along-front slope is completely restricted by background shear. For fronts with
intermediate shear, one would expect the along-front slope to lie somewhere between
the low-shear and high-shear values. The properties of the solutions (i.e., cross-
front slope, vertical wave number, and growth rate) would also be expected to be
intermediate. In section 2.7, I will illustrate some properties of the intermediate-

shear case.
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2.6 Effect of a background horizontal density gra-
dient

In Fig. 2.5, the growth rate is positive within a specific range of cross-front intrusion
slopes for both the low-shear and high-shear limits. Here, I determine the range
of unstable cross-front slopes, focussing on how the cross-front slope is altered by a

horizontal density gradient in the background front.

2.6.1 Driving mechanisms

In order to understand the mechanism(s) for growth of double-diffusive interleaving, I
present the low-shear and high-shear growth-rate polynomials in a somewhat modified
form. In the low-shear limit, the equations of motion can be combined to give the

following equation, which describes the evolution of the perturbation kinetic energy:

Kym? @2

(/\ -+ I{fmz) T
~2

+ gs[B(S: + s5:) — (6, + 30_:)]“T
— Am?32. (2.38)

At = —gs(1 — v5)B(Sz + sS5-)

Note that, eliminating @2, this equation is equivalent to the growth-rate polynomial
(2.33).
In the high-shear limit, the corresponding equation is given by

A on is
[1 i (f(; iz;;);) ] A = —gs(1 — v7)B(Sz + s5)

Kym? 42

(/\ -+ Kfmz) T
~2

+ gs[B(Sy + s5:) — a(f: + 39:)]“T

(f + - + s9.)° R
- [1 Gt amy | 4™

,&2

Gramy (%39

+ (7-7:1: + 36:)(f + U+ 3‘5:)

which is equivalent to the growth-rate polynomial (2.36).

It is worth taking a moment to consider the various terms in the equations above.
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e In both cases, the first term on the right is a buoyancy term that arises from
the density perturbation generated by salt-finger fluxes. This term represents
the contribution of salt fingering to the intrusion growth rate.

e In both cases, the second term on the right is a buoyancy term arising from the
density perturbation generated by advection of the background density field.
This term represents the effect of the stratification on the growth rate.

e In both cases, the third term on the right arises from friction.

In the high-shear limit, the fourth term on the right arises from Coriolis forces

and background shear. This term does not appear in the low-shear limit.

Intrusive motions are driven by buoyancy forces and, generally, the first two terms
contribute to the intrusion growth rate.
Salt fingering will contribute to interleaving growth if the first term is positive,

ie., if
—gs(1 — v)B(S= + s85:) > 0. (2.40)

Since 1 — w5 > 0, this is satisfied if the intrusions slope upward into fresher water
(i.e.,if s > 0 and S; + s5. < 0) or if the intrusions slope downward into saltier water
(i.e., if s < 0 and S; + sS5. > 0). Thus, salt fingering will drive intrusive motions if
the intrusions slope upward toward the cold fresh side of the front.

The background stratification will contribute to interleaving growth if the second

term is positive, i.e., if
9s[B(8z + 55:) — a(Bz + $8:)] = gs(pz + sp=)/po > 0. (2.41)

This is satisfied if the intrusions slope upward into more dense water (i.e., if s > 0
and p, + sp. > 0) or if the intrusions slope downward into less dense water (i.e., if
s < 0 and p,+ sp. < 0). For a stable vertical stratification (i.e., p. < 0), this requires

that the intrusions slope in the range between horizontal and isopycnal surfaces, as



follows: !

s € (0, —FE—”) . (2.42)

Thus, the background stratification will drive intrusive motions if the intrusions slope
between horizontal and isopycnal surfaces. This range of intrusion slopes defines the
“wedge” of baroclinic instability (Pedlosky, 1979), so I will refer to this as baroclinic
driving of intrusive motions. Note that this driving mechanism is absent in barotropic

fronts, since they have p, = 0.

2.6.2 Instability criterion

The bounds on the unstable region are obtained in the limit that the growth rate
goes to zero (i.e., A = 0). It is straightforward to show that the criterion for growth

(i.e., A > 0) requires
—gs(1 — v£)B(Sz + 55.) + gs[B(S: + s5.) — a(b, + s6.)] > 0, (2.43)

in both the low-shear and high-shear limits. The first term arises from salt fingering
and the second term arises from the background stratification. In baroclinic fronts,
it is possible for both processes to lead to interleaving growth.

Combining the terms above, the criterion for instability can be written as
s[(@br — v¢BS5z) + s(ab. — v;85.)] < 0. (2.44)

The instability criterion is satisfied whenever the intrusion slope lies in the range

. (af — 7f:3§x) =
< (0 -G igsT) (249)

The minimum unstable slope is zero and, thus, is along horizontal surfaces. The

maximum unstable slope depends on the background thermohaline gradients and the

salt-finger flux ratio. It is straightforward to show that the maximum slope is that

IThe notation s € (a, b) implies that s lie in the rangea < s < bifa < b, or in the range b < s < a
ifb<a.
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along which the non-dimensional ratio of temperature and salinity gradients equals
the salt-finger flux ratio ~y.

It is useful to express the instability criterion in the form

(Br —vf) (R,—1) g(ab: + BS5;)
< (-G T ). (240)

Because the maximum slope is proportional to —g(af, + 85.)/N?, this relationship

implies that unstable modes should slope upward toward the cold fresh side of the
front. The fraction (R, —1)/(R, — ) describes the effect of the vertical stratification
and is positive for most cases relevant to this model, since R, > 1 and 75 < 1. The
fraction (Rr,—7y)/(Rr+1) describes the effect of baroclinicity on the range of unstable
slopes. This term is positive for barotropic fronts (i.e., Ry = 1). For values of R > 1,
this term increases and hence the range of unstable slopes increases. For values of
R, < 1, this term decreases and hence the range of unstable slopes decreases. Note
that, for values of Ry < <, the sign of this term reverses, so that intrusions slope
downward, rather than upward toward the cold fresh side of the front.

As mentioned above, the maximum slope is that along which the non-dimensional
ratio of temperature and salinity gradients equals the salt-finger flux ratio v5. To put
this into context, it is useful to introduce a quantity I will call the along-intrusion
density ratio, defined by

« (8. +s6.)
T B8 +sS)

The along-intrusion density ratio is the non-dimensional ratio of temperature and

R (2.47)

salinity gradients along intrusions. The instability criterion prescribes the range of
unstable along-intrusion density ratios. Along the minimum unstable intrusion slope
(i.e., s = 0), the along-intrusion density ratio equals the horizontal density ratio
(i.e., R = Ry). Along the maximum unstable intrusion slope [i.e., s = —(af, —
v£85:)/(ab. — v¢BS.)], the along-intrusion density ratio equals the salt-finger flux
ratio (i.e., Ry = -y¢). Thus, in most cases, the instability criterion requires that the

along-intrusion density ratio lie in the range

R € (75, Ra) - (2.48)



This is an extremely simple expression of the instability criterion. Note, however,
that in the case that R, > R,, (i.e., for very large horizontal density ratio), the range

of unstable along-intrusion density ratios is somewhat different and is given by
R € (7f7 -—-OO) U (007 th) - (249)

In this case, the isohaline slope lies within the unstable zone, so the horizontal density
ratio goes through +oo in the unstable range.

Fig. 2.6 illustrates five different cases that show how the range of unstable intrusion
slopes varies with horizontal density ratio. Important points to take from this figure

are:

e The range of unstable cross-front intrusion slopes is an increasing function of
Ry. Thus, the unstable range is increased when the background isopycnals slope
upward toward the cold fresh side of the front (i.e., Ry > 1). The unstable range
is decreased when the background isopycnals slope downward toward the cold
fresh side of the front (i.e., Rx < 1). This is a key effect of the background
horizontal density gradient.

e For most values of Rj, unstable modes slope upward, relative to horizontal
surfaces, toward the cold fresh side of the front. Note, however, that for values
of R, < <y, intrusions slope in the opposite direction: downward toward the

cold fresh side of the front.

e Depending on the horizontal density ratio, intrusions may slope upward relative
to isopycnal surfaces, they may slope directly along isopycnal surfaces, or they
may slope downward relative to isopycnal surfaces. This is a key point because,
based on models developed for barotropic fronts, it has often been assumed that
intrusions should slope upward relative to isopycnal surfaces if driven by salt

fingering.

o In each panel, the driving mechanism is labelled. Depending on the cross-

front intrusion slope, intrusive motions may be driven by salt fingering (SF), by
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Figure 2.6: Schematic illustrating the range of unstable cross-front intrusion slopes
(shaded) for various values of horizontal density ratio R,. Background isopycnals are
shown with a dashed line, background isohalines are shown with a dotted line [panel
(e) only]. The label SF denotes a range in which intrusive motions are driven by
salt fingering, the label BC denotes a range in which intrusive motions are driven by
baroclinicity, and the label SF + BC denotes a range in which intrusive motions are
driven by both salt fingering and baroclinicity.
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baroclinicity (BC), or by both processes simultaneously (SF+BC). This is a key
point because driving of double-diffusive interleaving motions by baroclinicity

has not been considered before.

2.7 Properties of the fastest-growing modes

For a given base state, the growth-rate polynomial (2.30) yields a prediction of growth
rate A as a function of cross-front slope s, along-front slope r and vertical wave
number m. Maximizing A with respect to s, r, and m yields the properties of the
fastest-growing modes. In this section, I investigate effects of baroclinicity on the
fastest-growing modes.

In baroclinic fronts, maximization of the growth-rate polynomial (2.30) is compli-
cated by the fact that the polynomial applies only when the shear constraints (2.31)
are satisfied. Care must be taken to maximize the growth rate within the applicable
range of parameter space, in particular, the applicable range of along-front slopes. In

this section, I take the following approach:

e First, I consider the low-shear limit. Approximate solutions for the fastest-
growing modes are obtained by analytically maximizing the low-shear polyno-
mial (2.33). To test the analytic solutions and to illustrate baroclinic effects,
the solutions are compared with solutions obtained by numerically maximizing

the low-shear growth-rate polynomial.

e Second, I consider the high-shear limit. Approximate solutions for the fastest-
growing modes are obtained by analytically maximizing the high-shear polyno-
mial (2.36). To test the analytic solutions and to illustrate baroclinic effects,
these solutions are compared with solutions obtained by numerically maximiz-

ing the high-shear growth-rate polynomial.

e Finally, I consider the general case. The full growth-rate polynomial (2.30) is

maximized, subject to satisfaction of the shear constraints (2.31). Numerical
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solutions for the fastest-growing modes are presented and compared to the low-

shear and high-shear limits. Analytic results are not obtained.

2.7.1 Low-shear limit

Analytical maximization of the growth-rate polynomial is challenging and a number
of approximations must be made in order to find analytic solutions for the fastest-
growing modes. Following McDougall (19852), I consider cases in which the accel-
eration terms can be neglected from the equations of motion. This approximation
is valid when A « Am?. In this case, the low-shear growth-rate polynomial (2.33)

reduces to

Am2A? + [AK ym* + gsa(0; + $6.) — gsB(S: + s5.)])
+lgsa(8, + s8.)Kym? — gsB(Sz + s5.)vsKym?] = 0. (2.50)

To find the fastest-growing modes, I maximize A with respect to cross-front slope s
and vertical wave number m. In the analysis below, I show that the low-shear limit is
relevant at values of horizontal density ratio close to one (i.e., Ry = 1). Thus, I solve
for s, m and A, keeping terms of order R, — 1 (i.e., terms linear in baroclinicity).

The cross-front slope, vertical wave number and growth rate obtained are given

by

=_[(1—vf) V&, =)/ (B, — 1) ]g(aézmg)

(B +1) (1+ (R, —19)/(R, — 1)) 2N
m? = -(1 — 7!) \/(Rp _7f)/(Rp —1) _ (Rn — 1)- g|a67, +ﬂ§xl
|(Ba+1) 1+ (B, —)/(R, — 1)) (Ba+1)| 2/AK;N
v [a=w 1 o (Bx=1)] glod. + 85.] o51)
|(Ba+1) 1+ (R, —91)/(R,—1))  (Bn+1)| 2\/AJE,N = 7

Note that these solutions reduce to those obtained by McDougall (1985a) in the limit
Rn = 1. Thus, they should be viewed as a linear adjustment of the barotropic so-

lutions for baroclinic fronts. The cross-front slope decreases slightly with increasing
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horizontal density ratio. The vertical wave number decreases with increasing hor-
1zontal density ratio. The growth rate increases with increasing horizontal density
ratio.

Given the expressions above, it is straightforward to show that the approximation
A < Am? is valid when the ratio of the viscosity A to the diffusivity A (i.e., the
Prandt]l number) is large compared to unity. While this is not necessarily satisfied
in the ocean (the Prandtl number is typically thought to be O[1]), this approach is
a profitable one nevertheless. In particular, this approach allows investigation of the
effects of baroclinicity on the low-shear solutions.

In the low-shear limit, the along-front slope is given by
_ (f + 0z + 50:) ~ (ao—x + :ng) f

N — . 2.52
(A 4+ Am?) y lab: + BSz| \JA/K; N ( )
With this value, the shear constraints (2.31) are given (approximately) by

— glaé},_. + ﬁgrl

Uz K

[o=| 16/A/Kf N

N glab, + BS.] _

V| K /55— 2.53

These expressions must be satisfied in order to apply the low-shear limit. Unlike the
shear constraints outlined in section 2.4, these requirements depend only on base-
state parameters and, thus, are relatively easy to calculate. For a given front, if these
requirements are satisfied, application of the low-shear limit is reasonable. If they are

strongly violated, the high-shear limit should be considered.

Substituting for 9. = —gpz/ fpo, it is easily shown that (2.53) requires
1
|[Rr — 1| < 3 (2.54)

Thus, the low-shear limit applies only to fronts with horizontal density ratio close to
one (i.e., R~ 1).

In Fig. 2.7, the properties of the fastest-growing mode for the low-shear limit
are plotted as functions of horizontal density ratio for the example base state. Ap-

proximate analytic solutions, given by (2.51), are compared with properties obtained
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Figure 2.7: Properties of the fastest-growing mode for the low-shear limit as func-
tions of horizontal density ratio. Thin lines are analytic solutions and thick lines are
numerical solutions. Only modes that have a growth rate at least a factor 5 greater
than the rate of deformation by background shear are plotted. (a) cross-front intru-
sion slope s, (b) vertical wave number m, (c) growth rate A, (d) along-front slope
r.
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by maximizing the low-shear growth-rate polynomial (2.33) numerically. There is
some mismatch between the analytic solutions (thin lines) and the numerical solu-
tions (thick lines). The mismatch at a horizontal density ratio of Ry = 1 can be
attributed to the fact that the Prandtl number A/K} is not particularly large for
the example base state (i.e., A/Ky =~ 4). However, a key point is that the analytic
solutions reproduce much of the baroclinic dependence on the horizontal density ratio
Ry. In particular, the decrease in vertical wave number, increase in growth rate, and
increase in along-front slope are all reproduced by the analytic solutions.

In Fig. 2.7, only modes that satisfy the shear constraints (2.31) have been plotted.
A cut-off has been used, which requires the growth rate to be at least a factor 5 greater
than the rate of deformation by background shear. This limits the range of allowed
horizontal density ratios significantly. While the allowed range is sensitive to the
choice of the cut-off (i.e., the value 5), the conclusion is not. The low-shear limit is
confined to a narrow range about R, = 1, in which the front is almost barotropic.

Within the allowed range, the variation of intrusion properties with horizontal
density ratio indicates the effect of the horizontal density gradient on the interleaving
dynamics. A key point is that the rate of intrusion growth increases with increasing
horizontal density ratio. This implies that interleaving is enhanced when the back-
ground isopycnals slope upward toward the cold fresh side of the front (i.e., Ry > 1).
It is diminished when the background isopycnals slope downward toward the cold
fresh side of the front (i.e., Ry < 1).

2.7.2 High-shear limit

As in the low-shear limit, I consider cases in which the acceleration terms can be
neglected, which is a valid approximation when A <« Am?2. I also neglect the evo-
lution term in the salinity equation, which is valid when A « Rym?. With these
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approximadtions, the high-shear growth-rate polynomial reduces to
[A’m* + f(f +72)] A
+ [gscz(ﬁ_I + s6.)Kym? — gsB(S. + 35:)'7fom2] = 0. (2.35)

In order to find the fastest-growing modes, I maximize A with respect to cross-front
slope s and vertical wave number m, as in the low-shear case.
The cross-front slope, vertical wave number and growth rate obtained are given

by

__(Ba—y) (Ro—1) g(ob: +BS:)

(Rn+1) (R, —y) 2N2
m? = U s 7
_ (Ra=) (By=1) (b + 65,0 (2.56)
(Rn +1)% (Rp —v5) 8|fI\/1 +5./f N2

The optimum cross-front slope increases with horizontal density ratio R,. The vertical
wave number is the inverse of the Ekman length scale (i.e., \/A/f) and is independent
of baroclinicity. The growth rate scales with the square of the horizontal density ratio

and, thus, is highly sensitive to baroclinicity. As outlined in section 2.5, the shear
constraints do not restrict application of the high-shear limit. Thus, these solutions
are valid for all values of horizontal density ratio. Given the expressions above, it is
straightforward to show that the approximations A « Am? and A < Kym? are valid
when the square of the cross-front intrusion slope is much less than the ratio f2/N2.

In Fig. 2.8, the properties of the fastest-growing mode for the high-shear limit are
plotted as functions of horizontal density ratio for the example base state. Approx-
imate analytic solutions, given by (2.56), are compared with properties obtained by
maximizing the high-shear growth-rate polynomial (2.36) numerically. The analytic
solutions (thin lines) agree very well with the numerical results (thick lines).

As in the low-shear case, the variation of intrusion properties with horizontal den-
sity ratio indicates the effect of the horizontal density gradient on the interleaving
dynamics. Again, the rate of intrusion growth increases with increasing horizon-

tal density ratio. This implies that interleaving is enhanced when the background
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Figure 2.8: Properties of the fastest-growing mode for the high-shear limit as func-
tions of horizontal density ratio. Thin lines are analytic solutions and thick lines are
numerical solutions. (a) cross-front intrusion slope s, (b) vertical wave number m,
(c) growth rate A, (d) along-front slope r.



isopycnals slope upward toward the cold fresh side of the front (i.e., R > 1). It is
diminished when the background isopycnals slope downward toward the cold fresh
side of the front (i.e., Rp < 1).

2.7.3 General case

In determining analytic solutions for the fastest-growing modes, above, I considered
the low-shear and high-shear limits separately. If the growth-rate is maximized nu-
merically, however, there is no need to limit consideration to the two limiting cases.
It is possible to maximize the full growth-rate polynomial (2.30) for arbitrary values
of background shear. This requires maximizing the growth rate A with respect to
cross-front intrusion slope s, along-front intrusion slope r and vertical wave number
m, subject to the shear constraints (2.31).

In Fig. 2.9, properties of the fastest-growing mode are plotted as functions of
horizontal density ratio for the example base state. The thick lines indicate the
fastest-growing modes for the low-shear and high-shear limits (as in Fig. 2.7 and
Fig. 2.8). The thin lines indicate the fastest-growing mode for the full growth-rate
polynomial, maximized subject to the shear constraints. At low values of shear, the
low-shear limit and general case are identical. Thus, the low-shear limit is valid
and yields optimum growth in this range. At high values of shear, the along-front
slope is suppressed significantly, but it is not identically zero. This results in a small
mismatch between the high-shear limit and the general case. The transition between
the low-shear values (in which the along-front slope is “optimum”) and high-shear
values (in which the along-front slope is suppressed) occurs quite rapidly. This means
that there is only a small range in which the solutions are intermediate between the

low-shear and high-shear limits.
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Figure 2.9: Properties of the fastest-growing mode for the general case as functions of
horizontal density ratio. Thin lines indicate the general case and thick lines indicate
the low-shear and high-shear limits (as in Fig. 2.7 and Fig. 2.8). (a) cross-front
intrusion slope s, (b) vertical wave number m, (c) growth rate A, (d) along-front
slope r.



99

2.8 Summary

In this chapter, I developed a new theoretical model to investigate the influence
of baroclinicity on the dynamics of double-diffusive interleaving. Two effects were

considered in detail:
o The effect of horizontal and vertical shear in the background front.
e The effect of a horizontal density gradient in the background front.

Note that the vertical shear and horizontal density gradient are linked (via the thermal
wind equation). However, because the physical effects of shear and horizontal density
gradients are different, these two effects were considered separately. Throughout, salt
fingering was assumed to be the dominant form of double diffusion. The alternate

case, in. which diffusive convection dominates, is considered in chapter 3.

Model development

It was found that horizontal and vertical shear in the background flow will lead to a
time-dependent tilting of the intrusive layers if they slope in the along-front direction.
Spatially-harmonic solutions with time-dependent wave numbers were introduced
to take into account this tilting. Exponentially-growing solutions were considered.
Strictly speaking, exponential growth occurs only if the wave numbers are constant
in time. However, exponentially growing solutions can be considered provided the
rate of tilting is small compared to the growth rate. A fourth-order polynomial (2.30)
was obtained from which the exponential growth rate can be calculated. For a given
mode, the shear constraints (2.31) must be checked after calculating the growth rate.

Effect of background horizontal and vertical shear

Depending on the magnitude of the background shear, it was found that the shear

constraints (2.31) can limit significantly the range of along-front intrusion slopes over
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which the growth-rate polynomial can be applied. Two limiting cases were considered
analytically.

e In the limit of low shear, the rate of tilting of intrusions by background shear is
small compared to the growth rate, over a wide range of along-front intrusion
slopes. In this case, a non-zero along-front slope is allowed and, in fact, is

preferred because it yields fastest growth.

e In the limit of high shear, the rate of tilting of intrusions by the background
shear is large compared to the growth rate if the intrusions slope significantly

in the along-front direction. In this case, the along-front slope is set to zero.

Growth-rate polynomials were obtained for the low-shear limit (2.33) and the high-
shear limit (2.36).

Effect of a background horizontal density gradient

Consideration of the growth-rate equations for the low-shear and high-shear limits
revealed two different mechanisms for intrusion growth. If the intrusions slope upward
toward the cold fresh side of the front, salt fingering was found to drive intrusive
motions. If the intrusions slope between horizontal and isopycnal surfaces, i.e., in the
“wedge” of baroclinic instability, baroclinicity was found to drive intrusive motions.
Thus, in baroclinic fronts, intrusive motions may be driven by salt fingering, by
baroclinicity, or by both mechanisms simultaneously.

The instability criterion for the growth of double-diffusive interleaving was found
to require that the intrusion slope lie in the range between horizontal surfaces and
surfaces along which the non-dimensional ratio of temperature and salinity gradients
equals the salt-finger flux ratio. This generally requires that intrusions slope upward,
relative to horizontal surfaces, toward the cold fresh side of the front. An important
point is that intrusions may slope upward or downward, relative to isopycnal surfaces.

The range of unstable slopes was found to depend on baroclinicity. If the back-

ground isopycnals slope upward toward the cold fresh side of the front (i.e., R, > 1),
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the range of unstable slopes is increased, relative to the barotropic case. In contrast,
if the background isopycnals slope downward toward the cold fresh side of the front

(i-e., Rn < 1), the range of unstable slopes is decreased.

Properties of the fastest-growing modes

The properties of the fastest-growing mode were considered. In the low-shear limit,
the cross-front intrusion slope is roughly constant, the vertical wave number decreases
and the growth rate increases with increasing horizontal density ratio R,. An impor-
tant point is that the low-shear limit is constrained to fronts in which the horizontal
density ratio is approximately one (i.e., fronts that are almost barotropic). In the
high-shear limit, the cross-front intrusion slope increases, the vertical wave number
is roughly constant and the growth rate increases with increasing horizontal density
ratio R,. In both limits, the increased growth indicates that interleaving is enhanced
if the isopycnals slope upward toward the cold fresh side of the front (i.e., Ry > 1) and
diminished if the isopycnals slope downward toward the cold fresh side of the front
(i.e., Rpn < 1). This is a key effect of the horizontal density gradient in baroclinic

fronts.



Chapter 3

Instability Stage of
Double-Diffusive Interleaving in
Baroclinic Thermohaline Fronts:
Diffusive-Convection Fluxes

Dominant

3.1 Introduction

In chapter 2, I investigated the dynamics of double-diffusive interleaving in baroclinic
thermohaline fronts. Following the majority of instability models, a flux parameteri-
zation was used appropriate to the case in which salt fingering is the dominant form
of double diffusion. In this chapter, I investigate the case in which the other form of
double diffusion, diffusive convection, is dominant.

While considerable attention has been paid to double-diffusive interleaving with
salt-finger fluxes, the case with diffusive-convection fluxes has received relatively little
attention. Walsh and Ruddick (1995) showed that it is straightforward to map the
salt-finger case to the case with diffusive convection acting. The most significant
difference is that, in the diffusive-convection case, intrusions slope downward rather
than upward toward the cold fresh side of the front. However, the theory developed
by Walsh and Ruddick (1995) applies only to barotropic fronts. The theory of double-

diffusive interleaving in baroclinic fronts with diffusive convection acting has not yet

58
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been developed.
In this chapter, I develop a new theoretical model of double-diffusive interleaving

for baroclinic fronts, assuming diffusive convection to be the dominant form of double
diffusion. The model is an extension of that developed in chapter 2, with fluxes for
diffusive convection instead of salt fingering. The analysis follows closely that of
chapter 2 and the two chapters are outlined similarly. This should ease comparison

between the two cases.

3.2 Equations of motion

In this section, I introduce the equations of motion for fluid flow assumed to govern
intrusion growth. The equations are the same as those presented in chapter 2, ex-
cept for the parameterization of the double-diffusive temperature and salinity fluxes.
Whereas a flux parameterization appropriate for salt fingering was used in chapter 2,
a flux parameterization appropriate for diffusive convection is used here.

As in the salt-finger case, a Cartesian coordinate system is used, with the x-axis
in the cross-front direction, the y-axis in the along-front direction and the z-axis in
the vertical direction. The relevant physical quantities are the velocity components

u, v and w, pressure p, potential density p, salinity S, and potential temperature 4.
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The equations of motion are given by
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The equations comprise three momentum equations for evolution of the velocity com-
ponents, the continuity equation, an equation of state, and equations for the evolution
of salinity and potential temperature.

The difference between the equations of motion (3.1) and those used in the salt-
finger case (2.1) is in the temperature-salinity flux terms. A parameterization for
diffusive convection is used here. Following Walsh and Ruddick (1995), a vertical
eddy diffusivity is used to parameterize the vertical temperature flux and a constant

flux ratio is used to specify the associated salinity flux, as follows:

6
(84
Fs =5 (3.2)

The vertical eddy diffusivity Ay is thought to be in the range 107° to 10™* m?s~!
(Kelley, 1984; Padman, 1994). The flux ratio v4 must lie between 0 and 1 for diffusive
convection to satisfy energetic constraints. It is generally thought to be between 0.1
and 0.2 (Kelley, 1990).

As in the salt-finger case, each quantity is separated into base-state and perturba-

tion components. Base-state quantities represent the large-scale background frontal
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fields. Perturbation quantities (primed) represent the smaller-scale thermohaline in-

trusions.

3.3 Base state

As in the salt-finger case, I consider an infinite front with uniform horizontal and
vertical gradients of temperature and salinity throughout. With the aim of investi-
gating baroclinic effects, I allow for a horizontal density gradient and a horizontally
and vertically sheared along-front flow. The equations of motion for the base state
are identical in the salt-finger and diffusive-convection cases. The reader is referred
back to chapter 2 for the base-state equations of motion and definitions of base-state
parameters. It should be noted that the vertical density ratio R, is defined the same
here as in the salt-finger case (i.e., I do not define the density ratio inversely for the
two double-diffusive cases, as is sometimes done).

Whereas the lower part of the Mediterranean salt lens (i.e., Meddy) Sharon was
used to illustrate the salt-finger case, in this chapter, I use base-state properties
appropriate to the upper part of the Meddy (Table 3.1). The Meddy is discussed
in detail in chapter 4 and the reader is referred to that chapter for details of the
measurements. As in the salt-finger case, I will allow some of the base-state properties
to vary away from their observed values in order to investigate effects of baroclinicity.
Items denoted with a * in Table 3.1 are adjusted as functions of baroclinicity (i.e.,
horizontal density ratio Rj). Note that the observed value of Ry in the upper part
of the Meddy is 0.9. Keep in mind that the properties of the example base state
are used only for producing example plots. They are not used in the derivation of

analytic results.



Value

9.8 ms™?

7T.7x107% 571

0

1.3 x107* s *

850 x10* Pa (i.e., 850 dbar)
36.0 psu

—1.6 x 1075 psum™! *
—1.9x 1073 psum™!
11.4 °C
—55x107%°Cm™! *
—2.5x 1073 °Cm™!
1031.3 kgm™3

—1.0x 10 % kgm™* *
—9.9 x 10~* kgm™*
2.0 x 107* °C™!

7.5 x 10~ psu~!

0.15

3.5 x107° m?s™!

H

2]
H
e}
TR PP SO RnNT & e
x]

A 1.5 x 107 m?s™!
N 3.1 x1073 5!
R, 034
R 0.9 *

—p=/p- —1.0x1073%*
R: 600 *

Table 3.1: Example base-state properties for the upper part of Meddy Sharon. Items
denoted with a * are allowed to vary as functions of baroclinicity. In order to focus on
baroclinic effects of a horizontal density gradient and vertical shear, the background
korizontal shear 7, is set to zero.
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3.4 Perturbations

In the diffusive-convection case, equations of motion for the perturbations are given

by
o u,au' ,0u’ . ,0u’ (0o + Buz + )au’
ot 5z TV TV o T U+ V)5,
, 19p o*u’
+ f’U — p—oax A—~2
o' [ 0 ,0v’ " ,o0v’ (v + 5oz + )av'
at 9z By 9= o F =T+ V2) 5
r— ’~ 7 1 ap 027},
—(uvz-{-wv:)—fu —p—o%-*-A?
pl 1 apl
0=— - =
gpo po Oz
0 o’ 4 o' duw
dr Oy z
P’ = po(BS' — ab’)
9% (w9, 83’) — (Vo + 02T + Dez 95"
at oz dy Oz e E De2 dy
— ('S, +w'S.) + 2K, i
W o Ydﬂ \d 55 522
a6’ 06 to ,060 +w ,00' (et + )89’
57 = u’ 5 o o Vo + 0T + D=z 3y
029'

— ('8, +w'd.) + Ky (3.3)

9z2

With the exception of the double-diffusive flux terms in the temperature and salinity
conservation equations, these equations match those of the salt-finger case (2.19).

As in the salt-finger case, baroclinic effects appear in the following terms:

e Advection of the perturbation fields by the background shear flow [e.g., —(v, +
Tpx + T-2)0u’[y].

e Advection of the background velocity field by the perturbation flow [i.e., —(u'.+

5.)]-
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e Horizontal advection of the background density field by the perturbation flow,

which appears in the temperature and salinity equations [i.e., —u'8, and —u’S,].

3.4.1 Spatial dependence

As in the salt-finger case, special care must be taken when determining solutions
to the equations of motion due to the fact that the background shear will distort
intrusive layers if they slope in the along-front direction. To take this into account,
I consider solutions that are harmonic in space, with time-dependent wave numbers,

as follows:
W (,y, 7,t) = a(t) exp i[k(t)z + L(t)y + m(8)= — [(t)vot]. (3.4)

The coefficient [i.e., 4(2)] is time-dependent to take into account intrusion growth.
The cross-front, along-front and vertical wave numbers [i.e., k(t), [(t), m(t)] are time-
dependent to take into account tilting of the intrusion layers in time by the background
shear flow. The term —I(%)v,t allows for propagation of the waveform in the uniform
background flow v,.
As in the salt-finger case, the tilting of the intrusive layers in time is related to
the background shear by
dk _
dt
ar _
dt
%2- = —lv.. (3.5)

—lv,

0

The cross-front wave number & is deformed by background horizontal shear and the
vertical wave number m is deformed by background vertical shear.
Given harmonic spatial dependence with dk/dt = —lv,, dl/dt = 0 and dm/dt =

—17;, setting s = —k/m and r = —[/m, and substituting for w0, p, and j, the equations
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of motion (3.3) reduce to

di . .

% = fo — gs(BS — o) — Am*a

j_: = —(f + Bz + s0.) — ro.5 — gr(8S — af) — Am*%

ds ~ - = a .

—_ = Vb — 1855 — yg—=Kqm?6

7 (Sz+sS:)t —rS.o 7dﬁ am

dé = A = . Y

= = — (0 +582)2 — 765 — Kym®6. (3.6)

These equations correspond to (2.27) in the salt-finger case. They are independent
of the spatial coordinates z, y and z, but time dependence remains. Given an initial
perturbation wave vector [i.e., s(0), r(0), m(0)] and perturbation amplitude [i.e., %(0),

(0), $(0), 6(0)], the intrusion growth is specified for all time.

3.4.2 Temporal dependence

As in the salt-finger case, I consider solutions that grow exponentially, or approx-
imately exponentially, in time. It is these modes that are expected to reach finite

amplitude. Solutions of the form
u(t) = 4(0) exp[At] (3.7)

are considered, where the quantity A is the growth rate.

Given this functional form, the equations of motion (3.6) can be written as

i = fo — gs(BS — af) — Am?a

A6 = —(f + Tz + $0:)& — 7520 — gr(BS — ab) — Am?d

AS = —(5; +s5.)a —rS.6 — 7«1%1\71'"125

M = —(6, + s8.)a — r8.5 — Kym?26. (3.8)

These equations prescribe the rate of intrusion growth.
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Eliminating the perturbation amplitudes, a single equation is obtained for the
growth rate A, as follows:

M+ [(24 + Kyg)m? + r5.]2°
+H(A+2K)Am®* +r5.(A + Kg)m? + f(f + 0, + 57.)
+go(sb, + 528, +1r%6.) — gB(sS: + s%5. +r25.)|A\?
+[A’Kym® + ro. AKym* + f(f + 0 + s0:) Kgm®
+gra(0. f + $0,5. — $6.5,) — grB(Sef + s5,0. — s5.7,)
+90(s6z + 5°8: +170.)(A + vaKa)m® — gB(sSz + s25. + r25.) (A + Ka)m?|A
+[gro(0. f + 50.5. — $0.7,)yaKqm? — grB(S.f + s5.0- — 58.5,)Kym?
+ga(shy + $20. + r?8.)yaAKm* — gB(sS, + s25. +r25.)AK,m'] = 0. (3.9)

This is the growth-rate polynomial for the growth of double-diffusive interleaving
in baroclinic thermohaline fronts with diffusive convection fluxes dominant. This
corresponds to the growth-rate polynomial (2.30) in the salt-finger case.

As in the salt-finger case, application of the growth-rate polynomial requires that
the rate of tilting by background shear be much less than the rate of intrusion growth.
The constraints on the background shear are given by

T

[ro.] < A. (3.10)

U K A

For a given mode (s, r, m), these constraints must be checked after solving for the

growth rate A.

3.5 Effect of background horizontal and vertical
shear

As in the salt-finger case, the shear constraints limit the range of along-front slopes

over which the growth-rate polynomial applies. I consider two limits.



e Low-shear limit: If the horizontal and vertical shear are very weak, the shear
constraints will hold over a wide range of along-front slopes. A non-zero along-

front slope is allowed and is preferred because it yields fastest growth.

e High-shear limit: If the horizontal and/or vertical shear are very strong, the
shear constraints will require that the along-front slope r be very small. The

along-front slope is set to zero.

3.5.1 Low-shear limit

As in the salt-finger case, I set the along-front slope to that which yields intrusive
flow directly across the front and, hence, optimizes intrusion growth. With ¢ = 0,

the equations of motion (3.8) reduce to

M = —gs(B5 — o) — Am?a

0= —(f + 0y + s0.)a — gr(85 — ab)
AS = —(5; + s5.)a — 74%I{dm29
M = —(0, + s8.)i — Kym?4. (3.11)

The first, third and fourth equations prescribe the evolution of the intrusive pertur-
bations @, $ , and §. The second equation specifies the along-front slope r required to
maintain o = 0.

Eliminating the perturbaticn amplitudes from the first, third and fourth equations
yields

X+ [(A+ Kg)m?A?
+[AKym* + gsa(8, + $8.) — gsB(S. + sS)A
+{gsa(8z + $8.)yaKam? — gsB(Sz + S.)Kym? = 0. (3.12)

As in the salt-finger case, the low-shear growth-rate polynomial is independent of the

Coriolis parameter and background shear.
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The along-front slope required to maintain ¢ = 0 is given by

= e @29

With this along-front slope, the shear constraints (3.10) must be checked after solving

the growth-rate polynomial.

3.5.2 High-shear limit

In the high-shear limit, the along-front slope is set to zero. With r = 0, the equations

of motion (3.8) become

A = fo — gs(8S — af) — Am>a

Mo = —(f + Tz + sT:)a — Am?*D

AS = —(5z +s5.)a — 74%R’dm25

M = —(6, + s6.)a — K;m?d. (3.14)

Eliminating the perturbation amplitudes yields
M [(2A4 + Kg)m?A3
+[(A + 2K3)Am* + f(f + Tz + $5:) + gsa(0, + s8.) — gsB(S: + s5.)]\?
+[A’Kqm® + f(f + U: + sv:) Kam?
+gsa(B; + $0.)(A + vaKq)m® — gsB(S: + s5.)(A + Kz)m?|\
+[gsa (8 + 58 )yaAKgm* — gsB(S, + sS.)AKy;m*] = 0. (3.15)

As in the salt-finger case, the Coriolis parameter and background shear do appear in
the high-shear polynomial.

The second equation prescribes the along-front flow

R

The along-front intrusive flow is non-zero in response to Coriolis forces and back-

V=

ground shear. Given r = 0, the shear constraints (3.10) are satisfied for all values of

background shear.
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3.5.3 Low-shear vs. high-shear

The difference between the low-shear and high-shear limits is in the specification of the
along-front intrusion slope and this is reflected in the two growth-rate polynomials.
To illustrate the difference between the low-shear and high-shear solutions, the growth
rate A is plotted as a function of cross-front slope s and vertical wave number m for
both limits (Fig. 3.1). In both panels, the example base-state properties are used,
with the horizontal density ratio set to one (i.e., R, = 1).

(a) Low-shear limit: Growth occurs in a confined range of cross-front intrusion
slopes. The growth rate reaches a maximum value at a cross-front slope of
about —2.5 x 10~ and a wave number of about 0.3 m™! (corresponding to a
wavelength of 20 m). At the maximum, the growth rate is about 0.25 d~ %,
which corresponds to an e-folding period of 4 d.

(b) High-shear limit: Growth occurs in a confined range of cross-front intrusion
slopes. The growth rate reaches a maximum value at a cross-front slope of
about —3.5 x 10™2 and a wave number of about 0.75 m~! (corresponding to an
wavelength of 8 m). At the maximum, the growth rate is about 0.1 d~!, which

corresponds to an e-folding period of about 10 d.

The results are very similar to those obtained in the salt-finger case (Fig. 2.5). The
significant difference is that growing intrusion modes have negative cross-front intru-
sion slope (i.e., they slope downward toward the cold fresh side of the front) in the
diffusive-convection case, whereas they have positive cross-front intrusion slope (i.e.,

they slope upward toward the cold fresh side of the front) in the salt-finger case.

3.6 Effect of a background horizontal density gra-

dient

In Fig. 3.1, the growth rate is positive within a range of cross-front intrusion slopes.

Here, I determine the range of unstable cross-front slopes, contrasting it with that
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Figure 3.1: Growth rate A as a function of cross-front intrusion slope s and vertical
wave number m for the low-shear and high-shear limits. The example base-state
parameters were used with R, = 1 in both panels. The maximum unstable slope
(dotted), and the location of the fastest-growing mode (star) are shown. Contour
interval (for solid contours) is 0.04 d~.



found in the salt-finger case. I also investigate how the instability varies with baro-
clinicity.

3.6.1 Driving mechanisms

In order to understand the mechanism(s) for growth of double-diffusive interleaving, I
present the low-shear and high-shear growth-rate polynomials in a somewhat modified
form. In the low-shear limit, the equations of motion can be combined to give the
following equation, which describes the evolution of the perturbation kinetic energy:
Rqm?  a?
(A+ Kgm?) A

2

@At = gs(1 — ya)a(8z + 56:)
u

+ gs[B(5; + s5.) — (6, + 39_:)]7
— Am?a®. (3.17)

This equation is equivalent to the growth-rate polynomial (3.12).
In the high-shear limit, the corresponding equation is

I{dm2 {Lz

(f+51' +362)2 A ~ n o
UL = — 6 +56.)——F——
[1 + O\t Am?)? aAt = gs(1l — vyq)a(bz + s _)(/\ T+ Km®)

_ _ _ 52
+ g5[B(5: + s52) — ol bz + s62)] -

(f +0-+ 31—’:)2 242
[l-{— O\ T Am?)? Am u

,&2

Oramy G

+ (61: + 3'5:)(f + 6:: + 31—7:)

which is equivalent to the growth-rate polynomial (3.15).

I consider the various terms in the equations above.

e In both limits, the first term on the right is a buoyancy term that arises from
the density perturbation generated by diffusive-convection fluxes. This term

represents the contribution of diffusive convection to the intrusion growth rate.
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e In both limits, the second term on the right is a buoyancy term arising from the
density perturbation generated by advection of the background density field.
This term represents the effect of the stratification on the growth rate.

e In both limits, the third term on the right arises from friction.

e In the high-shear limit, the fourth term on the right arises from Coriolis forces

and background shear. This term does not appear in the low-shear limit.

The difference between the diffusive-convection and salt-finger cases is in the first

term on the right of each equation. Whereas a term for salt fingering appeared in

(2.38) and (2.39), a term for diffusive convection appears in (3.17) and (3.18).
Diffusive convection will contribute to interleaving growth if the first term is pos-

itive, i.e., if
gs(1 —va)a(f, + s6.) > 0. (3-19)

Since 1 — «4 > 0, this is satisfied if the intrusions slope upward into warmer water
(i.e.,if s > 0 and 8, + s6. > 0) or if the intrusions slope downward into colder water
(i.e.,ifs < 0 and 8, +s6. < 0). Thus, diffusive convection will drive intrusive motions
if the intrusions slope downward toward the cold fresh side of the front.

The background stratification will contribute to interleaving growth if the second

term is positive, i.e., if
9sB(8z + s5:) — a(o_r + 30—:)] = gs(pz + sp=)/po > 0. (3.20)

As in the salt-finger case, this is satisfied if the intrusions slope upward into more
dense water (i.e., if s > 0 and p, + sp- > 0) or if the intrusions slope downward into
less dense water (i.e., if s < 0 and g, + sp. < 0). For a stable vertical stratification
(i-e., p= < 0), this requires that the intrusions slope in the range between horizontal

and isopycnal surfaces, as follows:

s€ (o,—€£ : (3.21)



The background stratification will drive intrusive motions if the intrusions slope be-

tween horizontal and isopycnal surfaces, in the “wedge” of baroclinic instability (Ped-
losky, 1979).

3.6.2 Instability criterion

The bounds on the unstable region are obtained in the limit that the growth rate
goes to zero (i.e., A = 0). It is straightforward to show that the criterion for growth
(i-e., A > 0) requires

gs(1 — ya)a(8z + s6.) + gs[B(Sz + s5-) — a(8, + s6.)] > 0, (3-22)

in both the low-shear and high-shear limits. The first term arises from diffusive
convection and that the second term arises from the background stratification. In
baroclinic fronts, it is possible for both processes to lead to interleaving growth.

Combining the terms above, the criterion for instability can be written in the form
s[(yacfz — BS:) + s(vacd. — B5.)] < 0. (3.23)

The instability criterion is satisfied whenever the intrusion slope lies in the range

'7d0{0_1~ - ,85':> 9
ez FEE .24
° & (0’ v408. — BS. (3.24)

The minimum unstable slope is zero and, thus, is along horizontal surfaces. The
maximum slope is that along which the non-dimensional ratio of temperature and
salinity gradients equals the inverse of the diffusive flux ratio 4.

It is useful to express the instability criterion in the form

(L —7aRw) (1—R,) g(ab. +pSz)
’ (Rh + 1) (1 -—")/dRp) N2 ) . (3.25)

se ({0

Because the maximum slope is proportional to g(af, + 85.)/N?, this relationship
implies that unstable modes should slope downward toward the cold fresh side of the
front. The fraction (1—R,)/(1—+4R,) describes the effect of the vertical stratification
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and is positive for most cases relevant to this model, since 0 < R, < 1 and 74 < 1.
The fraction (1 — v Rr)/(Rr + 1) describes the effect of baroclinicity on the range of
unstable slopes. This term is positive for barotropic fronts (i.e., Rx = 1). For values
of R, < 1, this term increases and hence the range of unstable slopes increases. For
values of R, > 1, this term decreases and hence the range of unstable slopes decreases.
Note that, for values of R, > 77", the sign of this term reverses, so that intrusions
slope upward, rather than downward toward the cold fresh side of the front.
As in the salt-finger case, I introduce a quantity called the along-intrusion density
ratio, defined by
a (6. + s6.
=S (3.26)
Along the minimum unstable intrusion slope (i.e., s = 0), the along-intrusion density
ratio equals the horizontal density ratio (i.e., R; = Ry). Along the maximum unstable
intrusion slope [i.e., s = —(v4af; — $5:)/(vacB: — B5.)], the along-intrusion density
ratio equals the inverse of the diffusive-convection flux ratio (i.e., R; = v;'). Thus,
in most cases, the instability criterion requires that the along-intrusion density ratio

lie in the range
Ri € (Ru,77"). (3.27)

Note, however, that in the case that R, < R,, (i.e., for very small horizontal density

ratio), the range of unstable along-intrusion density ratios is somewhat different and

1s given by:
R € (Rh, —o0) U (00,77") - (3.28)

In this case, the isohaline slopes lie within the unstable zone, so the horizontal density
ratio goes through +oo in the unstable range.

Fig. 3.2 illustrates five different cases that show how the range of unstable intrusion
slopes varies with horizontal density ratio. Important points to take from this figure

are:
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Figure 3.2: Schematic illustrating the range of unstable cross-front intrusion slopes
(shaded) for various values of horizontal density ratio Ry. Background isopycnals
are shown with a dashed line, background isotherms are shown with a dotted line
[panel (e) only]. The label DC denotes a range in which intrusive motions are driven
by diffusive convection, the label BC denotes a range in which intrusive motions are
driven by baroclinicity, and the label DC + BC denotes a range in which intrusive
motions are driven by both diffusive convection and baroclinicity.



e The range of unstable cross-front intrusion slopes is a decreasing function of Rj,.
Thus, the unstable range is increased when the background isopycnals slope
downward toward the cold fresh side of the front (i.e., Ry < 1). The unstable
range is decreased when the background isopycnals slope upward toward the
cold fresh side of the front (i.e., Ry > 1). This is a key effect of the background
horizontal density gradient.

e For most values of Ry, unstable modes slope downward, relative to horizontal
surfaces, toward the cold fresh side of the front. Note, however, that for values
of R, > 1/~a4, intrusions slope in the opposite direction: upward toward the

cold fresh side of the front.

e Depending on the horizontal density ratio, intrusions may slope downward rel-
ative to isopycnal surfaces, they may slope directly along isopycnal surfaces,
or they may slope upward relative to isopycnal surfaces. This is a key point
because, based on models developed for barotropic fronts, it has often been
assumed that intrusions should slope downward relative to isopycnal surfaces if

driven by diffusive convection.

e In each panel, the driving mechanism is labelled. Depending on the cross-front
intrusion slope, intrusive motions may be driven by diffusive convection (DC),

by baroclinicity (BC), or by both processes simultaneously (DC+BC).

3.7 Properties of the fastest-growing modes

For a given base state, the growth-rate polynomial (3.9) yields a prediction of growth
rate A as a function of cross-front slope s, along-front slope r and vertical wave number
m. Maximizing A with respect to s, r, and m yields the properties of the fastest-
growing mode. In this section, I investigate how baroclinicity affects the fastest-

growing mode.
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As in the salt-finger case, in baroclinic fronts, maximization of the growth-rate
polynomial (3.9) is complicated by the #act that the polynomial applies only when the
shear constraints (3.10) are satisfied. Csare must be taken to maximize the growth rate
within the applicable range of paramerter space, in particular, within the applicable
range of along-front intrusion slopes. Im this section, I take the following approach:

e First, I consider the low-shear 15mit. Approximate solutions for the fastest-
growing modes are obtained by analytically maximizing the low-shear polyno-
mial (3.12). To test the analyticc solutions and to illustrate baroclinic effects,
the solutions are compared with solutions obtained by numerically maximizing

the low-shear growth-rate polynommial.

e Second, I consider the high-shear- limit. Approximate solutions for the fastest-
growing modes are obtained by amalytically maximizing the high-shear polyno-
mial (3.15). To test the analytic: solutions and to illustrate baroclinic effects,
these solutions are compared with solutions obtained by numerically maximiz-

ing the high-shear growth-rate poelynomial.

e Finally, I consider the general cawse. The full growth-rate polynomial (3.9) is
maximized, subject to satisfactiomn of the shear constraints (3.10). Numerical
solutions for the fastest-growing modes are presented and compared to the low-

shear and high-shear limits. Anal ytic results are not obtained.

3.7.1 Low-shear limit

As in the salt-finger case, a number o« approximations must be made in order to
find analytic solutions for the fastest-growing modes. I consider cases in which the
acceleration terms can be neglected froem the equations of motion (i.e., A K Am?).

With A « Am?, the low-shear growth-r-ate polynomial (3.12) reduces to

Am?)? + [AKym* + gsa(0,. + s8.) — gsB(S, + s5.)]A
+[gsa(8z + $8:)vaKam® — gsB(S. + s5.)Kym?] = 0. (3-29)



To find the fastest-growing modes, I maximize A with respect to cross-front slope s
and vertical wave number m. In the analysis below, I show that the low-shear limit
is relevant at values of horizontal density ratio close to one. Thus, I solve for s, m
and A, keeping terms of order R, — 1 (i.e., terms linear in baroclinicity).

The cross-front slope, vertical wave number and growth rate obtained are given

by
oo Q=B VE—WR)A &) ] glaf.+85,)
| (Bat+1) 0+/(I-wR)/01-F,))| 2N°
o [A=wB VO wWR)A=R)  (Ra—1)] glod. + 85|
L Be+1) 0++/(O-wR,)/A-R,)) (Ba+l)| 2V/AK N
5\ = —(1 — va)Rn 1 _ (R — 1)- glab, + BS,| (3.30)
| (Ba+1) (14++(1-7%R,)/(1—R,)) (Ba+1)| 2/A/KuN "

The cross-front slope increases slightly (in magnitude) with increasing horizontal den-
sity ratio. The vertical wave number increases with increasing horizontal density ratio.
The growth rate decreases with increasing horizontal density ratio.

As in the salt-finger case, the approximation A <« Am? is valid when the ratio of
the viscosity A to the diffusivity Ky (i.e., the Prandtl number) is large compared to
unity.

In the low-shear limit, the along-front slope is given by

_ (f+0:+s0.) _ (af-+BS:) f
T O+ Am2) lab. + BS.] JAJE4N’ (3-31)

With this value, the shear constraints (3.10) are given (approximately) by
glabs + 5|
16./A/K4 N
gl of, + 3 grl
16| f|

These expressions must be satisfied in order to apply the low-shear limit.

7] <

=] < (3.32)

Substituting for 9. = —gpz/fpo, it is easily shown that (3.32) requires

1
By —1] < 3 (3.33)



As in the salt-finger case, the low-shear limit applies only to fronts with horizontal
density ratio close to one (i.e., R, = 1).

In Fig. 3.3, the properties of the fastest-growing mode for the low-shear limit are
plotted as functions of horizontal density ratio for the example base state. Thin lines
indicate approximate analytic solutions, given by (3.30). Thick lines indicate proper-
ties obtained by maximizing the low-shear growth-rate polynomial (3.12) numerically.

e As in the salt-finger case, there is some mismatch between the approximate
analytic solutions and the numerical solutions. However, the analytic solutions
reproduce much of the baroclinic dependence on the horizontal density ratio Rj.
The increase in vertical wave number, decrease in growth rate, and decrease in

along-front slope (in magnitude) are all reproduced by the analytic solutions.

o In the figure, only modes that satisfy the shear constraints (3.10) have been
plotted. A cut-off has been used that requires the growth rate to be at least a
factor 5 greater than the rate of deformation by background shear. This limits
the range of allowed horizontal density ratios significantly to a narrow range

about Rp, = 1 in which the front is almost barotropic.

e Within the allowed range, the variation of intrusion properties with horizontal
density ratio indicates the effect of the horizontal density gradient. A key
point is that the rate of intrusion growth decreases with increasing horizontal
density ratio. This implies that interleaving is enhanced when the background
isopycnals slope downward toward the cold fresh side of the front (i.e., Ry, < 1).
It is diminished when the background isopycnals slope upward toward the cold
fresh side of the front (i.e., Ry > 1).

3.7.2 High-shear limit

As in the low-shear limit, I consider cases in which the acceleration terms can be
neglected, which is a valid approximation when A <« Am?2. I also neglect the evo-
lution term in the salinity equation, which is valid when A <« Kym2. With these
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Figure 3.3: Properties of the fastest-growing mode for the low-shear limit as func-
tions of horizontal density ratio. Thin lines are analytic solutions and thick lines are
numerical solutions. Only modes that have a growth rate at least a factor 5 greater
than the rate of deformation by background shear are plotted. (a) cross-front intru-
sion slope s, (b) vertical wave number m, (c) growth rate A, (d) along-front slope

T.
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approximations, the high-shear growth-rate polynomial reduces to

[APm® + f(f +5=)]A
+[gsa (8 + $8.)va Kgm? — gsB(S. + s5.)Kym?] = 0. (3.-34)

In order to find the fastest-growing modes, I maximize A with respect to cross-front
slope s and vertical wave number m, as in the low-shear case.

The cross-front slope, vertical wave number and growth rate obtained are given

by

. _ (=R (1-R,) g(ob.+p5.)
(Rn+1) (1 —7aR,)  2N?

m? = %\/1 + 0/ f
_ (1 —vRn)®> (1—-R,) 92(a9—z + :351')2
(Bn+1)* (1—aR,) 8f|\/1+v/f N?

The optimum cross-front slope decreases (in magnitude) with increasing horizontal

(3.35)

density ratio Rh. The vertical wave number is the inverse of the Ekman length scale
(i-e., \/A/f) and is independent of baroclinicity. The growth rate scales with the
square of the horizontal density ratio and, thus, is highly sensitive to baroclinicity.
The shear constraints do not restrict application of the high-shear limit. Thus, these
solutions are valid for all values of horizontal density ratio. As in the salt-finger case,
given the expressions above, it is straightforward to show that the approximations
A € Am? and A € Kym? are valid when the square of the cross-front intrusion slope
is much less than the ratio f2/N?2.

In Fig. 3.4, the properties of the fastest-growing mode for the high-shear limit
are plotted as functions of horizontal density ratio for the example base state. Thin
lines indicate approximate analytic solutions, given by (3.35). Thick lines indicate
properties obtained by maximizing the high-shear growth-rate polynomial (3.15) nu-

merically.

e The analytic solutions agree very well with the numerical results.
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e The variation of intrusion properties with horizontal density ratio indicates the
effect of the horizontal density gradient on the interleaving dynamics. As in the
low-shear limit, the rate of intrusion growth decreases with increasing horizontal
density ratio. This implies that interleaving is enhanced when the background
isopycnals slope downward toward the cold fresh side of the front (i.e., Ry < 1).
It is diminished when the background isopycnals slope upward toward the cold
fresh side of the front (i.e., Rx > 1).

3.7.3 General case

In Fig. 3.5, the properties of the fastest-growing mode are plotted as functions hori-
zontal density ratio for the general case. The thin lines indicate the fastest-growing
mode for the full growth-rate polynomial (3.9), maximized numerically subject to the
shear constraints (3.10). The thick lines indicate the fastest-growing modes for the
low-shear and high-shear limits (as in Fig. 3.3 and Fig. 3.4).

o At low values of shear, the low-shear limit and general case are identical. Thus,

the low-shear limit is valid and yields optimum growth in this range.

e At high values of shear, the along-front slope is suppressed significantly, but it
is not identically zero. This results in a small mismatch between the high-shear

limit and the general case.

e The transition between the low-shear values and high-shear values occurs quite
rapidly. This means that there is only a small range in which the solutions are

intermediate between the low-shear and high-shear limits.

3.8 Summary

In this chapter, I developed a new theoretical model for the growth of double-diffusive
interleaving in baroclinic thermohaline fronts. Whereas the model developed in chap-

ter 2 assumed salt fingering to be the dominant form of double diffusion, the model
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Figure 3.5: Properties of the fastest-growing mode for the general case as functions of
horizontal density ratio. Thin lines indicate the general case and thick lines indicate
the low-shear and high-shear limits (as in Fig. 3.3 and Fig. 3.4).
intrusion slope s, (b) vertical wave number m, (c) growth rate A, (d) along-front

slope r.
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developed here considered the alternate case in which double-diffusive fluxes are dom-
nated by diffusive convection. Following on the analysis of chapter 2, the model was
used to investigate the effects of baroclinicity on the dynamics of double-diffusive

interleaving. Two effects were considered in detail:
e The effect of horizontal and vertical shear in the background front.

o The effect of a horizontal density gradient in the background front.

Model development

As in the salt-finger case, horizontal and vertical shear in the background flow will
lead to a time-dependent tilting of the intrusive layers if they slope in the along-
front direction. Spatially-harmonic solutions with time-dependent wave numbers were
introduced to take into account this tilting. Exponentially-growing solutions were
considered. A fourth-order polynomial (3.9) was obtained from which the exponential
growth rate can be calculated. For a given mode, the shear constraints (3.10) must

be checked after calculating the growth rate.

Effect of background horizontal and vertical shear

As in the salt-finger case, depending on the magnitude of the background shear,
the shear constraints (3.10) can limit significantly the range of along-front intrusion
slopes over which the growth-rate polynomial can be applied. Two limiting cases
were considered analytically.

e In the limit of low shear, the rate of tilting of intrusions by the background shear
is small compared to the growth rate, over a wide range of along-front intrusion

slopes. In this case, a non-zero along-front slope is allowed in the analysis.

e In the limit of high shear, the rate of tilting of intrusions by the background

shear is large compared to the growth rate if the intrusions slope significantly
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in the along-front direction. In this case, the along-front slope is set to zero in

the analysis.

Growth-rate polynomials were obtained for the low-shear limit (3.12) and the high-
shear limit (3.15).

Effect of a background horizontal density gradient

Consideration of the growth-rate equations for the low-shear and high-shear limits
revealed two different mechanisms for intrusion growth. If the intrusions slope down-
ward toward the cold fresh side of the front, diffusive convection was found to drive
intrusive motions. If the intrusions slope between horizontal and isopycnal surfaces,
l.e., in the “wedge” of baroclinicity, baroclinicity drives intrusive motions. Thus, in
baroclinic fronts, intrusive motions may be driven by diffusive convection, by baro-
clinicity, or by both mechanisms simultaneously.

The instability criterion for the growth of double-diffusive interleaving was found
to require that the intrusion slope lie in the range between horizontal surfaces and
surfaces along which the non-dimensional ratio of temperature and salinity gradients
equals the inverse of the diffusive-convection flux ratio. This generally requires that
intrusions slope downward, relative to horizontal surfaces, toward the cold fresh side
of the front. An important point is that intrusions may slope upward or downward,
relative to isopycnal surfaces.

The range of unstable slopes was found to depend on baroclinicity. If the back-
ground isopycnals slope downward toward the cold fresh side of the front (i.e., B, < 1),
the range of unstable slopes is increased, relative to the barotropic case. In contrast,
if the background isopycnals slope upward toward the cold fresh side of the front (i.e.,

Ry > 1), the range of unstable slopes is decreased.



Properties of the fastest-growing modes

The properties of the fastest-growing mode were considered. In the low-shear limit,
the cross-front intrusion slope is roughly constant, the vertical wave number increases
and the growth rate decreases with increasing horizontal density ratio R. As in the
salt-finger case, the low-shear limit is constrained to fronts in which the horizontal
density ratio is approximately one (i.e., fronts which are almost barotropic). In the
high-shear limit, the cross-front intrusion slope decreases (in magnitude), the verti-
cal wave number is roughly constant and the growth rate decreases with increasing
horizontal density ratio Ry. In both limits, the decreased growth indicates that in-
terleaving is enhanced if the isopycnals slope downward toward the cold fresh side of
the front (i.e., Ry, < 1) and diminished if the isopycnals slope upward toward the cold
fresh side of the front (i.e., R, > 1). This is a key effect of the horizontal density

gradient in baroclinic fronts.



Chapter 4

Instability Stage of
Double-Diffusive Interleaving in

Meddy Sharon

4.1 Introduction

In chapters 2 and 3, I developed two new theoretical models of double-diffusive in-
terleaving for baroclinic thermohaline fronts. In this chapter, I apply the models to
the Mediterranean salt lens (i.e., Meddy) Sharon, with the goal of determining the
effects of baroclinicity on thermohaline intrusions observed there.

Meddy Sharon is a warm and salty lens of Mediterranean water that was observed
in the eastern North Atlantic over a two-year period from 1984 to 1986 (Armsi et al.,
1989). During the period of observation, its heat, salt and velocity characteristics
were gradually eroded away by lateral thermohaline intrusions (Ruddick and Hebert,
1988; Hebert et al., 1990). The Meddy has been well-studied and evidence has been
presented to show that the intrusions were double-diffusively driven (Ruddick, 1992;
Ruddick and Walsh, 1995).

The Meddy is an eddy of anomalous water, spinning anticyclonically relative to
its surroundings. The boundary of the Meddy is a region of strong horizontal and
vertical shear. Associated with the velocity distribution is a doming of isopycnals
above the Meddy and a depression of isopycnals below the Meddy. The boundary of
the Meddy forms a baroclinic thermohaline front. As a result, it is a good test case

for the models developed in the previous chapters.
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Because the Meddy is anomalously warm and salty relative to its surroundings, the
vertical stratification above and below is appropriate for double diffusion. In the lower
part of the Meddy, temperature and salinity decrease downward, so the stratification
is appropriate for salt fingering. In the upper part of the Meddy, temperature and
salinity decrease upward, so the stratification is appropriate for diffusive convection.

Ruddick (1992) showed that the cross-front slopes of intrusions are different in
the two parts of the Meddy. In the lower part of the Meddy, the intrusions slope
upward, relative to isopycnals, away from the center of the Meddy. In the upper part
of the Meddy, the intrusions slope in the opposite direction: downward, relative to
isopycnals, away from the center of the Meddy. Based on the observed slopes, Ruddick
concluded that the intrusions were caused by double-diffusive interleaving, with salt-
finger fluxes dominant in the lower part of the Meddy and diffusive-convection fluxes
dominant in the upper part of the Meddy.

However, recall from the previous chapters that the slope of intrusions relative
to isopycnals is not a good indicator of the double-diffusive driving mechanism. In
baroclinic fronts, intrusions may slope upward or downward relative to isopycnals,
with either type of double diffusion acting. This calls into question the conclusions
of Ruddick (1992).

In this chapter, I revisit Meddy Sharon, taking into account baroclinic effects.
Because the Meddy is stratified differently in the lower and upper sections, I consider

each part separately.

4.2 Lower part of the Meddy: Salt-finger stratifi-
cation

I apply the model developed in chapter 2, which assumes salt fingering is the dom-
inant form of double diffusion, to the lower part of the Meddy. There are three
main reasons for doing this. First, Ruddick (1992) showed that the intrusion slopes
are inconsistent with development by Mclntyre instability. Thus, there is no need
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to consider Mclntyre instability as a possible driving mechanism. Second, because
the background stratification is appropriate for salt fingering, one might expect the
double-diffusive fluxes to be dominated by salt fingering. Third, based on the slope
of intrusions relative to isopycnals, Ruddick suggested that the intrusions developed
as double-diffusive interleaving with salt-finger fluxes dominant. It makes sense to

take this as a starting point.

4.2.1 Base state

In order to apply the double-diffusive interleaving model, it is necessary to estimate
base-state parameters for the front at the edge of the Meddy. For this analysis, the
seven “tow-yo” profiles considered by Ruddick (1992) were reanalyzed to estimate
base-state parameters for the lower part of the Meddy (Table 4.1). Potential temper-
ature, salinity and potential density gradients were estimated by least-squares linear
regression in the depth range from 1000 to 1300 m.

The vertical stratification is stable, with a buoyancy frequency N of 2.7 x 1073 s71.
Potential temperature and salinity both increase upward. The vertical density ratio
R, is 1.9, which indicates that the base-state vertical stratification is appropriate for
salt fingering. Temperature and salinity both decrease horizontally away from the
center of the Meddy. The horizontal density ratio Ry is 1.12, which indicates that the
horizontal temperature gradient is slightly larger (in non-dimensional terms) than the
salinity gradient. As a result, potential density increases horizontally away from the
center of the Meddy. The base-state isopycnals slope upward, relative to horizontal
surfaces, with an estimated slope of 3.5 x 103.

Vertical shear was estimated from the horizontal density gradient using the ther-
mal wind relationship (i.e., fo. = —gp./po)- The estimate of horizontal shear v, was
obtained from Hebert (1988). The estimated background Richardson number R: is
70.

The development of double-diffusive interleaving depends on the flux parameteri-

zation used. To estimate an appropriate vertical eddy viscosity, I used microstructure
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Property Value

g 9.8 ms—2
f 7.7%x 1075 s
5, (0.8+0.3) x 1075 s
5. (—3.440.9) x 10~ s~
Po 1150 x 10* Pa (i.e., 1150 dbar)
So 35.9 psu
Se (—=3.04+0.6) x 10~® pstum™!
S. (1.1 £0.2) x 1073 psurm™!
6, 9.6 °C
f.r (—1.3+0.2) x 107* °C m™!
6. (8.5+0.7) x 1073 °C !
po 1032.8 kgm=3
5:  (2.8+0.7) x 10~ kgm ~*
p- (—=7.84+0.4) x107* kg-m™*
o 1.9 x 107* °C™*
B 7.5 x 107 psu~!
v 0.6+02
K;  (3.5+2.5) x 105 m2s~1
A (1.54+£1.0) x 1074 m?s!
N (27£0.1) x 10°3 571
R, 19402
Ry 1.12 +0.04

—p2/P-  (3.5+1.0) x 1073
R: 70 £ 30

Table 4.1: Base-state properties for the lower part of Mleddy Sharon. Uncertainties
indicate 95% confidence limits (see appendix A for det-ails on calculation of uncer-

tainties).
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Warm Salty
Cold Fresh

Figure 4.1: Schematic illustrating the predicted range of unstable cross-front intrusion
slopes (shaded) for the lower part of Meddy Sharon. Unstable modes slope upward,
relative to horizontal surfaces, toward the cold fresh side of the front. Intrusions may
slope upward or downward relative to the background isopycnals (dashed line).

measurements of the rate of viscous dissipation of turbulent kinetic energy e (Oakey,
1988) together with measurements of vertical shear ¥. (Armz: et al., 1989), where
A = €/72. The value obtained, 1.5 x 10™* m?s~!, is consistent with other estimates of
viscosity in double-diffusive systems (Schmitt et al., 1986; Padman, 1994). The salt-
finger diffusivity Ky was calculated, following Ruddick and Hebert (1988) who used
the estimated intrusion velocity together with an advective-diffusive model for the
salinity fluxes to estimate the vertical diffusivity (Joyce, 1977). Here, the uncertainty
in the observed vertical wavelength (H = 30 &£ 20) was included in the calculation.
The estimate of the salt-finger flux ratio vy is based on laboratory experiments, sum-

marized by McDougall and Ruddick (1992).

4.2.2 Theoretical predictions

Given estimates of the thermohaline gradients and salt-finger flux ratio, it is straight-
forward to calculate the predicted range of unstable cross-front intrusion slopes, as
prescribed by (2.45). The minimum unstable slope is along horizontal surfaces (i.e.,
s = 0) and the maximum unstable slope is that along which the non-dimensional
ratio of temperature and salinity gradients equals the salt-finger flux ratio [i.e.,
s = —(ab; — v;B5:)/(cf: — v¢B3S5.)]. Using values from Table 4.1, the range of
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unstable cross-front intrusion slopes is given by
0<s< (106 £3.2) x 1073, (4.1)

This indicates that unstable intrusion modes slope upward, relative to horizontal
surfaces, toward the cold fresh side of the front (Fig. 4.1).

The range of unstable along-intrusion density ratios is related to the range of
unstable cross-front intrusion slopes and is prescribed by (2.48). The minimum along-
intrusion density ratio is the salt-finger flux ratio v, and the maximum along-intrusion
density ratio is the horizontal density ratio Ry. Using values from Table 4.1, the range

of unstable along-intrusion density ratios is given by
06+0.2< R <1.12 £0.04. (4.2)

The along-intrusion density ratio may be greater than or less than one.

An important point is that the background isopycnal slope (estimated to be 3.5 x
1073, Table 4.1) lies within the range of unstable slopes. This implies that intrusions
may slope upward or downward relative to isopycnal surfaces, toward the cold fresh
side of the front (Fig. 4.1). This is particularly relevant in light of the analysis by
Ruddick (1992). Based on models developed for barotropic fronts, he assumed that
intrusions should slope upward relative to isopycnals toward the cold fresh side of
the front if driven by salt fingering. However, using a model developed for baroclinic
fronts, it is clear that that is not the case. Intrusions may slope upward or downward
relative to isopycnals.

Another important point is that the driving mechanism depends on the location
within the unstable range. Given a cross-front intrusion slope in the range from 0
to 3.5 x 1072 (i.e., between the horizontal and isopycnal slopes), intrusive motions
will be driven both by salt fingering and by baroclinicity (Fig. 4.1). Given a cross-
front intrusion slope in the range between 3.5 x 10~2 and 10.6 x 10~3 (i.e., between
the isopycnal and maximum slopes), intrusions will be driven by salt fingering and

opposed by the background stratification (Fig. 4.1).
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Having determined the range of unstable modes, what are the properties of the
fastest-growing modes? It is not clear a prioriif the shear is “low”, “high” or, perhaps,
somewhere in between. I consider the low-shear limit, the high-shear limit and the
general case, estimating the fastest-growing modes in each case.

In the low-shear limit, the fastest-growing mode is obtained by maximizing the
low-shear polynomial (2.33), with respect to cross-front slope s and vertical wave

number m. Performing the maximization numerically yields

s=(3.0+14)x1073
r=(1845)x107°
m=024+015m™"
=05+02d" (4.3)

The optimum cross-front intrusion slope is roughly one-third the maximum unstable
value. The optimum along-intrusion density ratio, estimated to be R; = 1.02 £ 0.05,
is approximately one. The optimum along-front intrusion slope is roughly 6 times as
large as the cross-front slope. The optimum vertical wave number corresponds to a
wavelength of 25 m and the optimum growth rate corresponds to an e-folding period
of 2 d.

Given these values, the rate of deformation (i.e., tilting) of the intrusive layers by

the background horizontal and vertical shear would be

r

= | -1
|r5.] =0.54£0.3d7" (4.4)

In the case of vertical shear, the deformation rate is roughly equal the growth rate.
In the case of horizontal shear, the deformation rate is roughly 50% greater than the
growth rate. Recall that application of the low-shear growth-rate polynomial requires
that the rate of deformation be much less than the growth rate. This criterion is not
satisfied, so the low-shear limit does not apply.
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In the high-shear limit, the fastest-growing mode is obtained by maximizing the
high-shear polynomial (2.36), with respect to cross-front slope s and vertical wave

number m. Performing the maximization numerically yields

s=(51415)x107°

r=20
m=0.75+0.30m™!
A=0.15+0.10d" (4.5)

The optimum cross-front intrusion slope is roughly one half the maximum unstable
slope. The optimum along-intrusion density ratio, estimated to be R; = 0.92 4 0.06,
is less than one. The along-front intrusion slope is zero in the high-shear limit, by
definition. The optimum vertical wave number corresponds to a wavelength of S m
and the optimum growth rate corresponds to an e-folding period of 7 d. In the high-
shear limit, the shear constraints (2.31) are satisfied automatically, so there is no need
to check the rate of deformation by background shear.

The general-case fastest-growing mode is obtained by maximizing the full growth-
rate polynomial (2.30) with respect to cross-front slope s, along-front slope r and
vertical wave number m, subject to the shear constraints (2.31). For the Meddy

base-state, this yields

s=(5.3+1.5)x1073

r=(0.240.2) x 1073
m=0.74 £ 0.30 m™!

A=0.154+0.104d7". (4.6)

Comparing the general-case solutions with those of the low-shear and high-shear limits
yields important information regarding the effect of background shear on the fastest-
growing modes. The general-case along-front slope is roughly 100 times smaller than
the low-shear value. This indicates that the along-front slope is almost completely

suppressed by background shear. Except for the non-zero along-front intrusion slope,
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the general-case solutions are virtually identical to those of the high-shear limit. This
indicates that the Meddy is a “high-shear” front.

4.2.3 Comparison with observations

How do the predictions for the range of unstable cross-front intrusion slopes and the
properties of the fastest-growing mode compare with the observed values?

In his analysis, Ruddick (1992) tracked intrusions across the front at the edge
of Meddy Sharon. He measured intrusion slopes in density-salinity space and I use
his estimates in my analysis. Taking values from his Table 1, the density-salinity
slope of intrusions (i.e., dp/dS along intrusive layers) in the lower part of the Meddy
is 0.07 + 0.06 kgm™2psu~!. As noted by Ruddick, this slope is consistent with
intrusions sloping upward, relative to isopycnals, toward the cold fresh side of the
front.

The cross-front intrusion slope is related to the density-salinity slope by

_ Pzt S dp/dS
p=+ S-dp/dS
where I have used the estimated background gradients from Table 4.1. This implies

= (5.7 +2.5) x 1073,

that the observed intrusions slope upward, relative to horizontal surfaces, toward the

cold fresh side of the front.
The along-intrusion density ratio can also be calculated from the density-salinity
slope. The along-intrusion density ratio is related to the density-salinity slope by

1 dp -
Ri=1= =75 =091£008 (4.7)

The observed along-intrusion density ratio is somewhat less than one, which is con-
sistent with intrusions sloping upward, relative to isopycnals, toward the cold fresh
side of the front.

The vertical wavelength of intrusions is another relevant observable quantity. Pub-

lished spectra of temperature and salinity variance show peaks in two different wave

number locations (Ruddick and Hebert, 1988; Ruddick, 1992). The first peak is in the



range from 20 to 50 m, while the second peak is in the range 10 to 20 m. I include

both peaks in my estimate of the observed intrusion wavelength, as follows:
H =30 £20 m. (4-8)

In Fig. 4.2, the observed cross-front intrusion slope, along-intrusion density ratio
and vertical wavelength are compared with the theoretical predictions for the general-

case fastest-growing mode.

e The observed values of cross-front intrusion slope and along-intrusion density
ratio fall within the predicted unstable ranges (shaded). This is a significant
result as it indicates that the observations are consistent with formation by
double-diffusive interleaving with salt-finger fluxes dominant. This confirms
the conclusion of Ruddick (1992), for the lower part of the Meddy.

e The predicted values of cross-front intrusion slope and along-intrusion density
ratio agree very well with the observed values. The predicted vertical wavelength
agrees with the lower range of observed vertical wavelengths (i.e., 10 to 20 m)
but does not agree with the upper range of observed vertical wavelengths (i.e.,

20 to 50 m).

Note that the observed intrusion slope exceeds the slope of background isopyc-
nals, which is indicated by the dashed line in Fig. 4.2 (a). This implies that the
observed slope lies in the range labelled SF in Fig 4.1. Given this slope, the ob-
servations are consistent with intrusive motions being driven by salt fingering and
opposed by the background stratification during the initial growth. In an effort to
determine the relative importance of salt fingering in driving and the stratification in
opposing the intrusive motions, I estimate the relative magnitude of the salt-finger

and stratification terms. Referring to (2.40), the salt-finger term is proportional to
—gs(1 — v5)B(Sz +s5.) =26 +£1.9d7% (4.9)
Referring to (2.41), the corresponding stratification term is proportional to

95(Pz/po + $p=/po) = —0.7 £1.0d472. (4.10)
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Figure 4.2: Comparison of predicted and observed cross-front intrusion slope (a),
along-intrusion density ratio (b) and vertical wavelength (c) for the lower part of
the Meddy. Bullets indicate the predicted values for the general-case fastest-growing
mode and the observed values. In panels (a) and (b), the shaded regions indicate
the predicted unstable ranges and the dashed lines indicate the background isopycnal
slopes. In panel (c), the two observed values correspond to the two peaks in the
vertical wave-number spectrum.
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The salt-finger term is positive, which is consistent with intrusions being driven by
salt fingering. The stratification term is negative, which is consistent with intrusions
being opposed by the stratification. In magnitude, the opposing stratification term
is roughly one quarter the driving salt-finger term.

4.3 Upper part of the Meddy: Diffusive-convection
stratification

I apply the model developed in chapter 3, which assumes diffusive convection is the
dominant form of double diffusion, to the upper part of the Meddy. As for the lower
part, there are three main reasons for doing this. First, Ruddick (1992) showed that
the intrusion slopes are inconsistent with development by Mclntyre instability, so
there is no need to consider Mclntyre instability as a possible driving mechanism.
Second, because the background stratification is appropriate for diffusive convection,
one might expect the double-diffusive fluxes to be dominated by diffusive convection.
Third, based on the slope of intrusions relative to isopycnals, Ruddick suggested
that the intrusions developed as double-diffusive interleaving with diffusive-convection

fluxes dominant. Thus, it makes sense to take this as a starting point.

4.3.1 Base state

As in the lower part, the seven “tow-yo” profiles considered by Ruddick (1992) were
reanalyzed to estimate base-state parameters for the upper part of the Meddy (Ta-
ble 4.2). Potential temperature, salinity and potential density gradients were esti-
mated by least-squares linear regression in the depth range from 750 to 950 m.

The vertical stratification is stable, with a buoyancy frequency NV of 3.1 x 1073 s~ 1.
Potential temperature and salinity both decrease upward. The vertical density ratio
R, is 0.34, which indicates that the vertical stratification is appropriate for diffusive

convection. Temperature and salinity both decrease horizontally away from the center
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Property Value

g 9.8 ms™?
f 7.7 x 1075 571
Ty (0.8 £0.3) x 1075 s7!
o (1.3+£1.2) x 104 571
Po 850 x 10* Pa (i.e., 850 dbar)
So 36.0 psu
S: (—1.6 £0.2) x 105 psum™!
S. (—1.94+0.4) x 10~2 psum™!
6, 114 °C
0, (—5.54+0.8) x 1075 °Cm™!
6. (—2.54+£0.8) x 1073 °Cm™!
Po 1031.3 kgm™3
Pz (-1.0+£0.9) x107% kgm™*
p= (=9.9£1.0) x10~* kgm™
a 2.0 x 10~* °C™!
B 7.5 x 107* psu~!
Yd 0.15 £0.05
Ky (3.5 £2.5) x 10~° m2s~!
A (1.5+1.0) x 10~* m?s~!
N (3.1 £0.2) x 1073 s!
R, 0.34 +0.14
Ry, 0.92 £+ 0.07

—pz/p- (—1.04£0.9) x1073
Ri 600 =+ 400

Table 4.2: Base-state properties for the upper part of Meddy Sharon. Uncertainties
indicate 95% confidence limits (see appendix A for details on calculation of uncer-

tainties).
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of the Meddy. The base-state horizontal density ratio Ry is 0.92, which indicates that
the horizontal temperature gradient is slightly smaller (in non-dimensional terms)
than the salinity gradient. As a result, potential density decreases horizontally away
from the center of the Meddy. The base-state isopycnals slope downward, relative to
horizontal surfaces, with an estimated slope of —1.0 x 1073.

Vertical shear was estimated from the horizontal density gradient using the ther-
mal wind relationship (i.e., fo. = —gpz/po)- The estimate of horizontal shear was
obtained from Hebert (1988). The estimated background Richardson number R: is
600, an order of magnitude larger than in the lower part.

The same vertical eddy viscosity was used as in the lower part, based on mi-
crostructure measurements of dissipation rate € (Oakey, 1988) and the observed ver-
tical shear o, (Arm< et al., 1989). As in the salt-finger case, the diffusive-convection
diffusivity Ky was calculated using the estimated intrusion velocity and an advective-
diffusive model following Ruddick and Hebert (1988). Here, perturbation amplitudes
and gradients for temperature were used in the calculation. The value obtained is
comparable to other diffusivity estimates for diffusive convection (Kelley, 1984). The
estimate of the diffusive-convection flux ratio 44 is based on laboratory experiments,

summarized by Kelley (1990).

4.3.2 Theoretical predictions

Given estimates of the thermohaline gradients and diffusive-convection flux ratio, it
is straightforward to calculate the predicted range of unstable cross-front intrusion
slopes from (3.24). The minimum unstable slope is along horizontal surfaces (i.e.,
s = 0). The maximum unstable slope (in magnitude) is that along which the non-
dimensional ratio of temperature and salinity gradients equals the inverse of the
diffusive-convection flux ratio [i.e., s = —(yaaf: — B5;)/(7ach- — B5.)]. Using values

from Table 4.2, the range of unstable cross-front intrusion slopes is given by

0>s>(—75+1.5)x 1073, (4.11)



Warm Salty
Cold Fresh

Figure 4.3: Schematic illustrating the predicted range of unstable cross-front intrusion
slopes (shaded) for the upper part of Meddy Sharon. Unstable modes slope downward,
relative to horizontal surfaces, toward the cold fresh side of the front. Intrusions may
slope upward or downward relative to isopycnals (dashed line).

This indicates that unstable intrusion modes slope downward, relative to horizontal
surfaces, toward the cold fresh side of the front (Fig. 4.3).

The range of unstable along-intrusion density ratios is prescribed by (3.27). The
minimum along-intrusion density ratio is the horizontal density ratio R, and the
maximum along-intrusion density ratio is the inverse of the diffusive-convection flux

ratio y4. Using values from Table 4.2, the range of unstable along-intrusion density

ratios is given by
0.92+0.07 < Ry < 6.5 +3.5. (4.12)

The along-intrusion density ratio may be greater than or less than one.

As in the lower part, the background isopycnal slope (estimated to be —1.0 x 1073
here, Table 4.2) lies within the range of unstable slopes. This implies that intrusions
may slope upward or downward relative to isopycnal surfaces, toward the cold fresh
side of the front (Fig. 4.3).

As in the lower part, the driving mechanism depends on the location within the
unstable range. Given a cross-front intrusion slope in the range from 0 to —1.0 x 1073
(i.e., between the horizontal and isopycnal slopes), intrusive motions will be driven
both by diffusive convection and by baroclinicity (Fig. 4.3). Given a cross-front

intrusion slope in the range between —1.0 x 10~2 and —7.5 x 10~ (i.e., between the
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isopycnal and maximum slopes), intrusions will be driven by diffusive convection and
opposed by the background stratification (Fig. 4.3).

Having determined the range of unstable modes, what are the properiies of the
fastest-growing modes? As in the lower part, I consider the low-shear limit, high-shear
limit and general case.

In the low-shear limit, the fastest-growing mode is obtained by maximizing the

low-shear polynomial (3.12), which yields

s =(—-2.34+06)x107°
r=(-124+3) x 10732
m = 0.30 +£0.10 m™!
=03401d" (4.13)

The optimum cross-front intrusion slope is roughly one-third the maximum unstable
value. The optimum along-intrusion density ratio, estimated to be R; = 1.14 4 0.09,
is greater than one. The optimum along-front intrusion slope is roughly 5 times as
large as the cross-front slope. The optimum vertical wave number corresponds to a
wavelength of 21 m and the optimum growth rate corresponds to an e-folding period
of 3 d.

Given these values, the rate of deformation (i.e., tilting) of the intrusive layers by

the background horizontal and vertical shear would be

T

— | _n~ -1
\/3_2T_72.vx =0.7+0.3d
|ro.| =0.140.1d7". (4.14)

In the case of vertical shear, the deformation rate is roughly one third the growth
rate. However, in the case of horizontal shear, the deformation rate is roughly twice
the growth rate. Application of the low-shear growth-rate polynomial requires that
the rate of deformation be much less than the growth rate. As in the lower part, this

criterion is not satisfied, so the low-shear limit does not apply.
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In the high-shear limit, the fastest-growing mode is obtained by maximizing the
high-shear polynomial (3.15), which yields

s =(—3.6+£0.8) x 1073

r=0_0
m=0.75+0.30 m™!
A=0.10£0.05d". (4.15)

The optimum cross-front intrusion slope is roughly one half the maximum unstable
slope. The optimum along-intrusion density ratio, estimated to be R; = 1.37 + 0.13,
is greater than one. The along-front intrusion slope is zero in the high-shear limit,
by definition. The optimum vertical wave number corresponds to a wavelength of 8
m and the optimum growth rate corresponds to an e-folding period of 10 d. In the
high-shear limit, the shear constraints (3.10) are satisfied automatically, so there is
no need to check the rate of deformation by background shear.

The general-case fastest-growing mode is obtained by maximizing the full growth-
rate polynomial (3.9), subject to the shear constraints (3.10). For the Meddy base-
state, this yields

s=(—-3.6+0.8) x10~3

r=(—0.740.6) x 10™*
m =0.754£0.30 m™!

A=0.10+£0.05d7". (4.16)

The along-front slope in the general case is a factor 150 smaller than in the low-shear
limit. As in the lower part, this indicates that the along-front slope is suppressed sig-
nificantly by background shear. Comparing the general-case solutions with those of
the low-shear and high-shear limits, it is clear that the general-case is virtually equiv-
alent to the high-shear case. Thus, the upper part of the Meddy can be considered a
high-shear front.



4.3.3 Comparison with observations

As in the lower part, I use intrusion slopes measured by Ruddick (1992) in my analysis.
Taking values from his Table 1, the density-salinity slope of intrusions (i.e., dp/dS
along intrusive layers) in the upper part of the Meddy is —~0.1240.07 kgm~3psu~!. As
noted by Ruddick, this slope is consistent with intrusions sloping downward, relative
to isopycnals, toward the cold fresh side of the front.
The cross-front intrusion slope is related to the density-salinity slope by
_ Pt S:dp/dS
p=+ S-dp/dS

where I have used the estimated background gradients from Table 4.2. This implies

(—2.44+1.3) x 1073, (4.17)

that the observed intrusions slope downward, relative to horizontal surfaces, toward

the cold fresh side of the front.
The along-intrusion density ratio is related to the density-salinity slope by
1 dp
pof dS

The observed along-intrusion density ratio is greater than one, which is consistent

R=1 = 1.16 +0.09. (4.18)

with intrusions sloping downward, relative to isopycnals, toward the cold fresh side

of the front.

As in section 4.2, I use spectra of temperature and salinity variance, published
by Ruddick and Hebert (1988) and Ruddick (1992), to estimate the observed vertical
wavelength of intrusive perturbations. I include the observed peaks in the ranges 10

to 20 m and 20 to 50 m, as follows:
H =30 +£20 m. (4.19)

In Fig. 4.4, the observed cross-front intrusion slope, along-intrusion density ratio
and vertical wavelength are compared with the theoretical predictions for the general-

case fastest-growing mode.

o The observed values of cross-front intrusion slope and along-intrusion density

ratio fall within the predicted unstable ranges (shaded). Thus, the observations
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Figure 4.4: Comparison of predicted and observed cross-front intrusion slope (a),
along-intrusion density ratio (b) and vertical wavelength (c) for the upper part of
the Meddy. Bullets indicate the predicted values for the general-case fastest-growing
mode and the observed values. In panels (a) and (b), the shaded regions indicate the
predicted unstable ranges and the dashed lines indicate the background isopycnals.
In panel (c), the two observed values correspond to the two peaks in the vertical

wave-number spectrum.
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are consistent with formation by double-diffusive interleaving with diffusive-
convection fluxes dominant. This confirms the conclusion of Ruddick (1992),
for the upper part of the Meddy.

® The predicted values of cross-front intrusion slope and along-intrusion density
ratio agree with the observed values, within uncertainty. As in the lower part,
the predicted vertical wavelength agrees with the lower range of observed verti-
cal wavelengths (i.e., 10 to 20 m) but does not agree with the upper range (i.e.,
20 to 50 m).

Note that the observed intrusion slope exceeds (in magnitude) the slope of back-
ground isopycnals [dashed line in Fig. 4.4(a)]. The observed slope lies in the range
labelled DC in Fig 4.3. Given this slope, the observations are consistent with intrusive
motions being driven by diffusive convection and opposed by the background strati-
fication during the initial growth. I estimate the relative magnitude of the diffusive-
convection and stratification terms. Referring to (3.19), the diffusive-convection term

is proportional to
gs(L —va)a(f, +s0.) =1.5+0.7d72. (4.20)
Referring to (3.20), the corresponding stratification term is proportional to
95(Pz/po + 5P=/po) = —0.2 £0.4 d7%. (4.21)

The diffusive-convection term is positive, which is consistent with intrusions being
driven by diffusive convection. The stratification term is negative, which is consistent
with intrusions being opposed by the stratification. In magnitude, the opposing

stratification term is roughly one eighth the driving diffusive-convection term.

4.4 Summary

In this chapter, I applied the theoretical models of double-diffusive interleaving de-
veloped in chapters 2 and 3 to the Mediterranean salt lens (i.e., Meddy) Sharon.
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The background vertical stratification in the lower part of the Meddy is appropri-
ate for salt fingering and the background vertical stratification in the upper part of
the Meddy is appropriate for diffusive convection. The lower and upper parts of the
Meddy were considered separately. The model developed in chapter 2 (which assumes
salt fingering to be the dominant form of double diffusion) was applied to the lower
part of the Meddy and the model developed in chapter 3 (which assumes diffusive
convection to be the dominant form of double diffusion) was applied to the upper
part of the Meddy.

In the lower part of the Meddy, the predicted range of unstable cross-front intru-
sion slopes was upward, relative to horizontal surfaces, toward the cold fresh side of
the front (i.e., away from the center of the Meddy). The background isopycnal slope
was found to lie within the unstable range, so that intrusions may slope upward or
downward relative to isopycnals across the front. Properties of the fastest-growing
mode were calculated. It was found that the along-front intrusion slope would be
suppressed significantly by background shear. The optimum solutions (i.e., for the
general case) were very close to those of the high-shear limit.

The observed cross-front intrusion slope was calculated to be (5.7 & 2.5) x 1073,
based on density-salinity correlations presented by Ruddick (1992). The estimated
along-intrusion density ratio was 0.91 & 0.08. The observed vertical wavelength was
estimated to be 30 + 20 m, based on published spectra of temperature and salinity
variance. The observed cross-front intrusion slope and along-intrusion density ratios
lay in the predicted ranges of unstable values. This indicated that the observations
are consistent with formation of the intrusions by double-diffusive interleaving with
double-diffusive fluxes dominated by salt fingering. There was very good agreement
between the predicted cross-front intrusion slope and along-intrusion density ratio
for the fastest growing mode and the observed values. The predicted and observed
vertical wavelength agreed within uncertainty.

In the upper part of the Meddy, the predicted range of unstable cross-front intru-

sion slopes was downward, relative to horizontal surfaces, toward the cold fresh side
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of the front (i.e., away from the center of the Meddy). The background isopycnal
slope was found to lie within the unstable range, so that intrusions may slope upward
or downward relative to isopycnals across the front. Properties of the fastest-growing
mode were calculated. It was found that the along-front intrusion slope would be
suppressed significantly by background shear. The optimum solutions (i.e., for the
general case) were very close to those of the high-shear limit.

The observed cross-front intrusion slope was calculated to be (—2.441.3) x 1073,
based on density-salinity correlations presented by Ruddick (1992). The estimated
along-intrusion density ratio was 1.16 £ 0.09. The observed vertical wavelength was
estimated to be 30 &= 20 m, based on published spectra of temperature and salinity
variance. The observed cross-front intrusion slope and along-intrusion density ratio
lay in the predicted unstable ranges. Thus, the observations were consistent with
formation of the intrusions by double-diffusive interleaving with double-diffusive fluxes
dominated by diffusive convection. The predicted cross-front intrusion slope and
along-intrusion density ratio for the fastest growing mode agreed with the observed
values. As in the lower part, the predicted and observed vertical wavelength agreed
within uncertainty.

Based on the observed intrusion slopes in density-salinity space, Ruddick (1992)
suggested that intrusions were driven by salt fingering in the lower part of the Meddy
and by diffusive convection in the upper part of the Meddy. His conclusions were based
on theory of interleaving in barotropic fronts. In contrast, the results of this analysis
take baroclinic effects into account. Nevertheless, the basic conclusion of Ruddick
(1992) remains unchanged. The observations are consistent with intrusions being
driven by salt fingering in the lower part of the Meddy and by diffusive convection in
the upper part of the Meddy.

In both the lower and upper parts of the Meddy, the observed slopes were consis-
tent with intrusions being driven by double diffusion and opposed by the background
stratification. In the lower part, the opposing stratification term was estimated to be

roughly one quarter (in magnitude) the driving salt-finger term. In the upper part,
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the stratification term was estimated to be roughly one eighth (in magnitude) the
driving diffusive-convection term.

In both parts of the Meddy, the ranges of uncertainty for the predicted and ob-
served vertical wavelength overlapped. However, the agreement is not particularly
good. The model underpredicts the vertical wavelength of the intrusions. It may
be that the observed vertical wavelength is determined, in part, by finite-amplitude
effects. One possibility is that the intrusions initially develop with a small verti-
cal wavelength (the peak in the spectrum at 10 to 20 m provides some evidence of
smaller-scale structure) and that layers merge as the intrusions develop (yielding a
peak in the spectrum at 20 to 50 m). This sort of behaviour is known to occur in
vertical double diffusion (Kelley, 1987), so it would not be surprising if it also occured

in double-diffusive interleaving.



Chapter 5

Instability Stage of
Double-Diffusive Interleaving in

the Arctic Ocean

5.1 Introduction

In the Arctic Ocean, water of Atlantic origin is evident as a relatively warm salty
water-mass at depths of roughly 200 to 600 m. Atlantic water enters the Arctic
Ocean through Fram Strait and the Barents Sea, and flows eastward along the shelf
edge. The flow then branches out across the Arctic Ocean, topographically steered by
the Nansen-Gakkel, Lomonosov and Alpha-Mendeleyev ridges (Rudels et al., 1994)
(Fig. 5.1). As the Atlantic water flows along the shelf edge and mid-ocean ridges, it
mixes vertically with water above and below, and laterally with water to the sides.
The lateral mixing has a particularly dramatic signature — intense thermohaline in-
terleaving (Perkin and Lewis, 1984; Rudels et al., 1994; Carmack et al., 1997; Rudels
et al., 1999). The interleaving shows up as a spatially coherent structure of alternat-
ing warm, salty and cold, fresh intrusions. They presumably play an important role
in spreading heat, salt and other tracers from the shelf edge and mid-ocean ridges
into the interior of the Arctic basins.

The first evidence of thermohaline intrusions in the Arctic Ocean was obtained
during the Eurasian Basin Experiment (EUBEX) (Perkin and Lewis, 1984). The
intrusions were observed north of Svalbard, where warm salty Atlantic water flows into

the Arctic. They appeared as large fluctuations in the vertical profiles of temperature

111
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Figure 5.1: Map of the circulation of Atlantic water in the Arctic Ocean (after Rudels
et.al, 1994). Atlantic water enters the Arctic Ocean via Fram Strait and the Barents
Sea, and subsequently follows topography along the shelf edge and mid-ocean ridges.
Depth contours indicate the 1000, 2000, 3000 and 4000 m isobaths.

and salinity (Fig. 5.2). The intrusive features were observed in many of the profiles
and could be tracked over distances of order 100 km.

Subsequent observational programs have revealed that intrusions are distributed
widely throughout the Arctic Ocean. In 1987, during the first ice-breaker transect
across the Nansen Basin, intense mixing was observed between the Fram-Strait and
Barents-Sea branches of the Atlantic inflow (Anderson et al., 1989). In 1990, intru-
sions were observed over the Nansen-Gakkel Ridge, which closely resembled those
observed earlier north of Svalbard (Quadfasel et al., 1993). During the 1991 North

Pole Expedition, intrusions were seen throughout the Nansen and Amundsen basins
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Figure 5.2: Profiles of potential temperature § and salinity S at EUBEX station 208.
Thermohaline intrusions are indicated by fluctuations in temperature and salinity at
depths of 200 to 600 m. The intrusions are particularly apparent in the temperature-
salinity plot (inset). Dashed lines are contours of potential density (referenced to a
pressure of 400 dbar).

(Anderson et al., 1994; Rudels et al., 1994). During the Larsen-1993 expedition, in-
trusions were observed in a strong thermohaline front between relatively warm water
in the Makarov Basin and relatively cold water in the Canada Basin (Carmack et al.,
1995b). In 1994, during the Arctic Ocean Section cruise, temperature and salinity in-
versions were observed over the Chuckchi Plateau and throughout the Makarov Basin
(Carmack et al., 1997). Remarkably, the intrusions were aligned in temperature-
salinity space over the entire transect, a distance of order 1000 km.

Despite wide-spread observation, little is known about the formation mechanism

of intrusions in the Arctic. In their analysis of the EUBEX data set, Perkin and Lewis
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(1984) showed that the temperature and salinity gradients were appropriate for double
diffusion: salt fingering below warm salty intrusions and diffusive convection above.
They suggested the intrusions were driven by double diffusion. However, they did
not establish which type of double diffusion was driving the interleaving motions.
Furthermore, they did not investigate the role of baroclinicity in the interleaving
dynamics. McIntyre instability was not considered as a possible driving mechanism.
Effects of baroclinicity on double-diffusive interleaving were not considered.

With the goal of determining the driving mechanism of the Arctic thermohaline
intrusions, I present a new analysis of the EUBEX hydrographic profiles. The ob-
served intrusion slopes and vertical wavelength are compared with those predicted

from instability theory, following roughly the approach of Ruddick (1992).

5.2 The EUBEX hydrographic observations

The data used in this analysis comprise 28 CTD profiles collected during the Eurasian
Basin Experiment (EUBEX). The profiles are located north of Svalbard in the Arctic
Ocean and were occupied in March and April, 1981 (Fig. 5.3). The profiles extend
to a maximum depth of 1000 m, which was the limit of the winch installed in the
Twin Otter aircraft used for the survey. A Guildline Mark IV CTD was used, with
an estimated temperature-salinity accuracy of £0.002°C and 30.01 psu (Lewis and
Perkin, 1983; Perkin and Lewsis, 1984).

There were two main reasons for choosing this data set. First, the intrusive signal
is particularly clean, so the intrusions can be tracked easily from profile to profile.
Second, the data have excellent spatial coverage. Whereas many surveys of the Arctic
Ocean have been transects, the EUBEX stations are on a grid. Given this three-
dimensional coverage, the data allow separation of the cross-front and along-front
intrusion behaviour.

I focus on the northern stations (filled circles in Fig. 5.3), which have pronounced

thermohaline intrusions between 200 and 600 m depth. There are large temperature
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Figure 5.3: Station locations of the EUBEX CTD profiles. Filled circles indicate
profiles with strong interleaving and open circles indicate other stations occupied
during the survey. Arrows illustrate flow of Atlantic water into the Arctic Ocean
(after Perkin and Lewis, 1984). Depth contours of 1000, 2000, 3000 and 4000 m are
drawn.

and salinity fluctuations (order 0.5 °C and 0.05 psu) with typical vertical scales of 50
to 100 m (Fig. 5.2). The interleaving is particularly apparent in temperature-salinity
space. Typically, there is a four-peak structure: four warm, salty intrusions separated
by three relatively cold, fresh intrusions. The interleaving is evident throughout the
northern part of the survey region (Fig. 5.4). Despite the wide area covered by these
stations (150 x 400 km), the intrusive peaks are aligned in temperature-salinity space
throughout.

In Fig. 5.5, I illustrate cross-sections of potential temperature, salinity and poten-
tial density across the front north of Svalbard. Warm, salty Atlantic water, flowing
into the Arctic (i.e., out of the page), is clearly visible on the left side of the figure.

Temperature and salinity decrease across the front to the north. Density increases
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Figure 5.4: Potential temperature vs. salinity for the nine northern stations. Dashed
lines are contours of potential density (referenced to a pressure of 400 dbar). Note
the alignment of the intrusive peaks.

and, thus, the isopycnals slope upward toward the cold fresh side of the front. De-
spite significant smoothing, the thermohaline intrusions are clearly evident in the

cross-sections of temperature and salinity.

5.3 Base state

Two forms of instability are considered as possible mechanisms for the formation
of thermohaline intrusions: McIntyre instability and double-diffusive interleaving. In
both cases, the development of the interleaving instability depends on the background
front in which the instability develops. Here, I estimate appropriate base-state pa-

rameters for the front north of Svalbard (Table 5.1).
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Figure 5.5: Cross-sections of potential temperature, salinity and potential density (ref-
erenced to a pressure of 400 dbar) across the front north of Svalbard. The cross-front
coordinate increases to the north-west (i.e., away from Svalbard). The 9 northern

profiles were used to generate a single cross-front transect, effectively smoothing in
the along-front direction.
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Property Value

g 9.8 ms™2
f 1.5 x 1074 571
5. (=0.940.2) x 105 571
Po 400 x10* Pa (i.e., 400 dbar)
S, 34.9 psu
Sz (—0.6 £0.3) x 107 psum™!
Sy (—0.1+0.2) x 10~7 psum™!
S. (—3.0£0.8) x 107* psum™!
6, 1.1 °C
6, (—2.3+0.4) x 10~% °Cm™!
8, (=0.1£0.3) x 107% oCm™!
6. (1.6 £0.2) x 1073 oCm™!
Po 1029.8 kgm™3
Pz (14+0.3) x 10" kgm™*
Py (0.0£0.2) x 10~ kgm™*
5. (—3.7 £ 0.6) x 10~* kg m™*
o 7.7 x 1073 °C™!
B8 7.8 x 107* psu~!
vy 0.6+£02
K;  (35+2.5) x 105 m?s~!
Yo 0.15 = 0.05
Ky (3.54+2.5) x 107 m2s~!
A (1.5 +1.0) x 10~* m?2s~!
N (1.94£02) x 1073 57!
R,  —0.54+0.17
Ry 40+18

—pz/p- (3.8+£1.0) x10™*
Ri  (442)x10¢

Table 5.1: Estimated base-state properties for the front north of Svalbard in the depth
range 250 to 550 m. Uncertainties indicate 95% confidence limits (see appendix A for
details on calculation of uncertainties).
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Potential temperature, salinity and potential density gradients were estimated by
least-squares linear regression in the depth range from 250 to 550 m. The buoyancy
frequency N is 1.9 x 10~3s™!, similar to that for Meddy Sharon. The vertical density
ratio R, is -0.54. In the depth range of interest, the water column is stratified both
by temperature and salinity and, thus, the vertical density ratio is negative. The
contribution of temperature to the vertical stratification is roughly half that of salinity.

Given the observed gradients, the front north of Svalbard has a horizontal density
ratio Ry of 4.0. This value indicates that the front is dominated by the horizontal
temperature gradient, which, in density terms, is roughly 4 times as large as the
salinity gradient. This horizontal density ratio is very large (as compared with values
of 1.1 and 0.9 in the lower and upper parts of Meddy Sharon, respectively). This
horizontal density ratio is consistent with background isopycnals sloping upward to-
ward the cold fresh side of the front. The mean isopycnal slope was estimated to be
3.8 x 107,

The vertical shear was estimated by the thermal wind relationship (i.e., fo. =
—gpz/po)- Given the observed gradients, the front north of Svalbard has a background
Richardson number Ri of roughly 4 x 10*. The Richardson number is very large (as
compared with a values of 60 and 600 in the lower and upper parts of the Meddy
Sharon, respectively).

Double-diffusive flux ratios s and -4 were estimated based on laboratory exper-
iments, summarized by McDougall and Ruddick (1992) and Kelley (1990). Double-
diffusive diffusivities Ky and Ky and viscosity A are used as in chapter 4. These values
are consistent with estimates of diffusivities and viscosity in the Arctic by Perkin and

Lewis (1984) and Padman (1994).

5.4 Theoretical predictions

Two forms of instability are considered as possible mechanisms for the formation of

the observed intrusions: MclIntyre instability and double-diffusive interleaving.
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MclIntyre Instability

Mclntyre instability occurs in baroclinic fronts and relies on the differential mixing

of density and momentum by turbulence (McIntyre, 1970; Calman, 1977). The de-

velopment of McIntyre instability requires

(A/K; +1)2
4A/K,

where A is the turbulent vertical eddy viscosity, K; is the turbulent vertical eddy

diffusivity, and Rz is the frontal Richardson number.

Given the observed Richardson number, satisfaction of the criterion for McIntyre

R: < (5.1)

instability would require an extremely low Prandtl number (i.e., A/K; < 6 x 107%)
or an extremely high Prandtl number (i.e., A/K, > 2 x 10°). I am unaware of any
turbulent processes that would yield values this extreme as the Prandtl number is
typically thought to be O[1]. Thus, it seems highly unlikely that McIntyre instability
is the formation mechanism for the observed intrusions. I do not consider McIntyre

instability any further here.

Double-diffusive interleaving

Double-diffusive interleaving occurs in thermohaline fronts and relies on differential
mixing of temperature and salinity by double diffusion (i.e., salt fingering or diffusive
convection). In the depth range of interest, the background vertical stratification is
neither appropriate for salt fingering nor diffusive convection. In these cases, a finite-
amplitude perturbation is required to develop inversions upon which double diffusion
can occur. Given such a perturbation, it is not clear which form of double diffusion
(i.e., salt fingering or diffusive convection) would dominate. Thus, I consider both
possibilities here.

If salt fingering is the dominant form of double diffusion, the range of unstable
cross-front intrusion slopes is prescribed by (2.45). The minimum unstable slope
is along horizontal surfaces (i.e., s = 0) and the maximum unstable slope is that

along which the non-dimensional ratio of temperature and salinity gradients equals



121

the salt-finger flux ratio [i.e., s = —(af, —vf35:)/(af. — vB5.)]. Using values from

Table 5.1, the range of unstable cross-front intrusion slopes is given by
0<s<(5.8+£21)x107 (5.2)

This indicates that intrusions should slope upward, relative to horizontal surfaces,
toward the cold fresh side of the front.

The range of unstable along-intrusion density ratios is prescribed by (2.48). The
minimum along-intrusion density ratio is salt-finger flux ratio v, and the maximum
along-intrusion density ratio is the horizontal density ratio R,. Using values from

Table 5.1, the range of unstable along-intrusion density ratios is given by
06+02< R <40£18. (5.3)

The along-intrusion density ratio may be greater than or less than one. This indicates
that intrusions may slope upward or downward, relative to isopycnals, toward the cold
fresh side of the front.

In Fig. 5.6(a), the range of unstable cross-front intrusion slopes is shown for the

salt-finger form of double-diffusive interleaving. Key points are:

e Unstable modes slope upward, relative to horizontal surfaces, toward the cold

fresh side of the front.

e The background isopycnal slope lies within the unstable range and, thus, in-
trusions may slope upward or downward relative to isopycnals. The driving
mechanism depends on the intrusion slope, relative to isopycnals. If the in-
trusions slope between horizontal and isopycnal surfaces, intrusive motions will
be driven both by salt fingering and by baroclinicity (SF+BC). If the intru-
sion slope exceeds the isopycnal slope, intrusive motions will be driven by salt

fingering and opposed by the background stratification (SF).

The properties of the fastest-growing mode are obtained by maximizing the growth-
rate polynomial (2.30) with respect to cross-front slope s, along-front slope r and
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Figure 5.6: Schematic illustrating the predicted range of unstable cross-front intrusion
slopes for the front north of Svalbard (shaded). If salt fingering is the dominant form
of double diffusion, intrusions should slope upward, relative to horizontal surfaces,
toward the cold fresh side of the front (a). If diffusive convection is the dominant form
of double diffusion, intrusions should slope downward, relative to horizontal surfaces,
toward the cold fresh side of the front (b). Note that the background isopycnal slope
lies within the unstable range for salt fingering.

vertical wave number m, subject to the shear constraints (2.31). For the EUBEX

base state, the values obtained are given by
s=(2.94+0.9) x10™*
r=(0.24£0.1) x 10~
m=09+04m™!

A= (7%£3)x107°4d7% (5.4)

The optimum cross-front intrusion slope is roughly one half the maximum unstable



slope. The optimum along-intrusion density ratio was estimated to be RB; = 1.3+0.5.
The optimum along-front slope is roughly a factor 15 smaller than the cross-front
slope. The optimum vertical wave number corresponds to a wavelength of 7 m. The
optimum growth rate corresponds to an e-folding period of roughly 40 years, which
is a much longer timescale for intrusion growth than that calculated for the Meddy
in chapter 4.

If diffusive convection is the dominant form of double diffusion, the range of
unstable cross-front intrusion slopes is prescribed by (3.24). The minimum un-
stable slope is along horizontal surfaces (i.e., s = 0). The maximum unstable
slope (in magnitude) is that along which the non-dimensional ratio of temperature
and salinity gradients equals the inverse of the diffusive-convection flux ratio [i.e.,
s = —(vacb; — BSz)/(140f: — BS.)]. Using values from Table 5.1, the range of

unstable cross-front intrusion slopes is given by
0>s>(—0741.0) x 107 (3.3)

This indicates that intrusions should slope downward, relative to horizontal surfaces,
toward the cold fresh side of the front.

The range of unstable along-intrusion density ratios is prescribed by (3.27). The
minimum along-intrusion density ratio is the horizontal density ratio R, and the
maximum along-intrusion density ratio is the inverse of the diffusive-convection flux
ratio 4. Using values from Table 5.1, the range of unstable along-intrusion density

ratios is given by
40+18 < R <6.7+25. (5.6)

The along-intrusion density ratio is greater than one throughout the range. This
indicates that intrusions should slope downward, relative to isopycnals, toward the
cold fresh side of the front.

In Fig. 5.6(b), the range of unstable cross-front intrusion slopes is shown for the

diffusive-convection form of double-diffusive interleaving. Key points are:



e Unstable modes slope downward, relative to horizontal surfaces, toward the cold

fresh side of the front.

e Throughout the unstable range, the intrusion slope is consistent with intrusions

being driven by diffusive convection and opposed by the stratification (DC).

In the diffusive-convection case, the properties of the fastest-growing mode are
obtained by maximizing the growth-rate polynomial (3.9), subject to the shear con-

straints (3.10). For the EUBEX base state, the values obtained are given by

s=(—044+08)x10™*

r = (—0.002 +0.013) x 10~*
m=10+07m™*!

A=(1£6) x107% 4. (5.7)

The optimum cross-front intrusion slope is roughly one half the maximum unstable
slope. The optimum along-intrusion density ratio, estimated to be B; = 5.0 & 3.6 is
greater than one. The optimum vertical wave number corresponds to a wavelength
of 6 m. The optimum growth rate corresponds to an e-folding period of 2700 years,
which is an extremely long timescale for intrusion growth.

Recall, from chapter 2, that the range of unstable slopes in the salt-finger case
is increased, relative to the barotropic case, when R, > 1. Recall, from chapter 3,
that the range of unstable slopes in the diffusive-convection case is decreased, relative
to the barotropic case, when R, > 1. Given the observed horizontal density ratio
Ry = 4, this explains why the range of unstable slopes and predicted growth rate are
significantly larger in the salt-finger case (a) than in the diffusive-convection case (b).

5.5 Comparison with observations

Having estimated the expected cross-front intrusion slopes and along-intrusion density

ratios for the two types of double-diffusive interleaving, what are the observed values?
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Figure 5.7: Smoothed potential temperature-salinity plots for the 9 northern pro-
files. Intrusions were located as extrema in the along-isopycnal coordinate “spice”
(filled circles label warm salty intrusions and open circles label cold fresh intrusions).
Straight lines are from least-squares linear regression. Dashed lines are contours of
potential density (referenced to a pressure of 400 dbar).

In order to estimate the cross-front intrusion slope and along-intrusion density ratio,
I tracked intrusions across the front north of Svalbard.

First, a moving-average filter was applied to the vertical profiles of temperature
and salinity, using a Hanning window of 20 m width (half-power at 30 m wavelength).
This eliminated small-scale fluctuations without significantly distorting the intrusive
signal. Intrusions were then identified in temperature-salinity space by selecting man-
ually extrema in the along-isopycnal coordinate “spice” (Veronis, 1972; Jackett and
McDougall, 1985). Warm salty intrusions are spice maxima, while cold fresh intru-
sions are spice minima (Fig. 5.7).

Given estimates of potential temperature and salinity for the intrusive peaks, it
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Figure 5.8: Depth vs. cross-front distance for the observed intrusions. Background
curves are contours of potential temperature (as in Fig. 5.5). Filled circles label warm
salty intrusions and open circles label cold fresh intrusions (as in Fig. 5.7). Straight
lines are from least-squares linear regression.

was straightforward to determine the along-intrusion density ratio. Least-squares
linear regression of temperature vs. salinity along the intrusions yielded a mean
temperature-salinity slope of 16 +1°Cpsu~! (Fig. 5.7). Nondimensionalizing by a/8,

the along-intrusion density ratio was estimated to be
R =16+0.1. (5.8)

From this value, it is clear that the observed intrusions slope downward, relative to
isopycnal surfaces, into colder fresher water (i.e., toward the cold fresh side of the

front).

To determine the intrusion slope relative to horizontal surfaces, I mapped the



along-intrusion regression into geometric space. For each peak located above, the
profiles of temperature and salinity were used to determine the intrusion depth. In-
trusion slopes were then estimated by least-squares linear regression of intrusion depth
vs. cross-front and along-front distance. The mean cross-front intrusion slope was es-

timated to be
s =(2.74+0.6) x 107, (5.9)

From this value, it is clear that the observed intrusions slope upward, relative to
horizontal surfaces, toward the cold fresh side of the front (Fig. 5.8).

The mean along-front intrusion slope was estimated to be
r=(0.540.5) x 1074, (5.10)

The estimated along-front intrusion slope is significantly smaller than the cross-front
intrusion slope.
The vertical wavelength of intrusive perturbations was estimated from the ob-

served intrusion depths. The value obtained was
H =90 £70 m. (5.11)

The separation of intrusive peaks is highly variable and, thus, the estimated wave-
length has a large uncertainty.

In an effort to infer the formation mechanism of the thermohaline intrusions,
I compare the observed cross-front intrusion slope and along-intrusion density ra-
tio with those predicted for the salt-finger and diffusive-convection forms of double-
diffusive interleaving (Fig. 5.9). Key points are:

e The observed intrusion slope and along-intrusion density ratio lie within the
ranges predicted for the salt-finger form of double-diffusive interleaving (S.F.).
They lie outside the ranges predicted for the diffusive-convection form of double-
diffusive interleaving (D.C.). Thus, the observations are consistent with for-
mation by the salt-finger form of double-diffusive interleaving. They are in-
consistent with formation by the diffusive-convection form of double-diffusive

interleaving.
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Figure 5.9: Comparison of predicted and observed cross-front intrusion slope (a),
along-intrusion density ratio (b), along-front intrusion slope (c) and vertical wave-
length (d). Predictions are illustrated for the salt-finger form of double-diffusive
interleaving (S.F.) and the diffusive-convection form of double-diffusive interleav-
ing (D.C.). Shaded areas indicate range of unstable cross-front intrusion slopes and
along-intrusion density ratios. Bullets indicate predicted fastest-growing modes and
observed values. Error bars indicate 95% confidence intervals. The solid and dashed
lines indicate horizontal and isopycnal surfaces, respectively.
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e The predicted cross-front intrusion slope, along-intrusion density ratio, along-
front intrusion slope and vertical wave number are illustrated for the fastest-
growing modes in the salt-finger and diffusive-convection cases. The predicted
values of cross-front intrusion slope, along-intrusion density ratio and along-
front intrusion slope agree very well with the observed values in the salt-finger
case, but do not agree in the diffusive-convection case. The predicted values of
vertical wavelength are the same in the salt-finger and diffusive-convection case

and do not agree with the observed value.

The agreement between the observations and predictions is much better for the salt-
finger case than for the diffusive-convection case. Thus, these results suggest that the
observed intrusions developed as a form of double-diffusive interleaving, with fluxes
dominated by salt fingering during the initial growth.

Note that the observed intrusion slope lies between the slopes of horizontal and
isopycnal surfaces (solid and dashed lines, respectively in Fig. 5.9). This is an im-
portant point because it implies that the observed intrusions slope in the “wedge”
of baroclinic instability. The observed slope lies in the range labelled SF+BC in
Fig 5.6(a). Given this slope, the observations are consistent with intrusive motions
being driven both by salt fingering and by baroclinicity during the initial intrusion
growth. In an effort to determine the relative importance of salt fingering and baro-
clinicity in driving the intrusive motions, I estimate the relative magnitude of the
salt-finger and baroclinic driving terms. Referring to (2.40), the salt-finger driving

term is proportional to
~gs(1 —v7)B(Sz +s5.) = (9 £6) x 10~ d 2 (5.12)
Referring to (2.41), the corresponding baroclinic driving term is proportional to
95(Pz + $p=)/po = (8 £ 6) x 107*d 2. (5.13)

The salt-finger and baroclinic driving terms are similar in magnitude. This is con-
sistent with roughly equal contributions from salt fingering and baroclinicity to the

intrusion growth.
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5.6 Summary

In this chapter, I analysed hydrographic profiles obtained north of Svalbard, with
the goal of determining the driving mechanism of thermohaline intrusions observed
there. I measured a number of parameters relating to the intrusion dynamics. The
observed along-intrusion density ratio is 1.6 + 0.1, indicating that the observed intru-
sions slope downward, relative to isopycnal surfaces, toward the cold fresh side of the
front (Fig. 5.7). The observed cross-front intrusion slope is (2.74+0.6) x 10™, indicat-
ing that the intrusions slope upward, relative to horizontal surfaces, toward the cold
fresh side of the front (Fig. 5.8). An important point is that the intrusions slope in
opposite directions relative to horizontal and isopycnal surfaces. Thus, the intrusions
slope in the range between horizontal and isopycnal surfaces, i.e., in the “wedge” of
baroclinic instability. The observed along-front intrusion slope is (0.5 # 0.5) x 1074,
which is significantly smaller than the observed cross-front slope. The observed in-
trusion vertical wavelength is 90 £ 70 m.

In an effort to determine the formation mechanism of the thermohaline intrusions,
I compared the observed cross-front intrusion slope and along-intrusion density ratio
with those predicted by theoretical instability models. The intrusion slope and density
ratio were found to be consistent with the intrusions developing as a form of double-
diffusive interleaving with fluxes dominated by salt fingering during the initial growth
(Fig. 5.9). Given intrusions sloping between horizontal and isopycnal surfaces, the
observations are consistent with intrusions being driven both by baroclinicity and
salt fingering. Rough calculations suggest that both processes (baroclinicity and salt
fingering) contributed significantly to the initial growth of the intrusions.

The observed cross-front intrusion slope, along-front intrusion slope, along-intrusion
density ratio and vertical wave number were compared with the predicted fastest-
growing modes. The observed cross-front slope, along-front slope, and along-intrusion
density ratio agreed well with the theoretical predictions. However, the observed ver-
tical wave number did not agree with the observations. As in the Meddy case, the

model underestimates the vertical scale of the intrusions. One might speculate that
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this could be the result of layer merging, as was suggested for the Meddy case.

The growth rate calculated for the fastest-growing mode corresponds to an e-
folding time-scale of roughly 40 years. This value is quite large and is comparable to
the time-scale for the circulation of water around the entire Arctic Ocean. Recall that
the growth rate is roughly proportional to the square of the horizontal temperature-
salinity gradients (in the high-shear limit, which applies to the Arctic-Ocean front).
The small estimated growth rate is a direct result of the small estimated horizontal
gradients. It seems likely that the observed intrusions developed in the presence of
stronger gradients than those estimated for these calculations. There are a number

of ways to explain this.

e It is possible that the gradients were underestimated in this analysis. McDougall
(1985a) argued that intrusions will initially develop in the part of a frontal zone
with the strongest lateral gradients. Perhaps the sampling strategy (i.e., profiles
separated by 10’s of kilometers) and the analysis (i.e., linear regression over the
entire domain) yielded gradients that are much smaller than the maximum
gradients within the region. Perhaps a different sampling and analysis scheme
would yield larger gradients and, hence, larger growth rates.

e Given temporal variability, the front may have been much sharper at an earlier
time. It is possible that the intrusions developed long before the survey. The
intrusions could have run the front down, weakening the horizontal gradients to

the observed state.

e It is possible that intrusions developed at a location outside the region surveyed.
For example, the intrusions may have developed closer to the inflowing Atlantic

water to the south and then spread into the interior of the Arctic.

These possibilities indicate the need for future work on this topic.



Chapter 6

Finite-Amplitude Stage of
Double-Diffusive Interleaving in

Meddy Sharon and the Arctic

Ocean

6.1 Introduction

In chapters 4 and 5, predictions of instability theory were compared to observed
intrusions, in an effort to determine what caused the initial growth of intrusions in
Meddy Sharon and the Arctic Ocean. However, in both cases, the observed intrusions
were large in amplitude and extended over relatively large distances. Thus, they were
presumably beyond the initial stage of intrusion growth at the time of observation.
In this chapter, I consider the evolution of interleaving beyond the initial growth
stage, l.e., to finite amplitude. I consider the lower and upper parts of the Meddy
and the Arctic Ocean front. I focus on the relative magnitudes of the salt-finger
and diffusive-convection flux terms, contrasting the behaviour at finite amplitude
with that during the instability phase. This analysis is somewhat preliminary. The
primary conclusion of the chapter is that more work is needed to fully understand

the dynamics at finite amplitude in baroclinic fronts.
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6.2 Advective, salt-finger and diffusive-convection
flux terms

The evolution of the temperature, salinity and density perturbations that drive intru-
sive motions depends on the advection of fluid along intrusions and double-diffusive
mixing between intrusions. In the instability analyses developed in chapters 2 and 3,
it was assumed that one form of double diffusion dominates during the initial growth
of interleaving. Thus, a flux parameterization for salt fingering was used in chapter 2
and a flux parameterization for diffusive convection was used in chapter 3.

While it may be a reasonable to assume that one form of double diffusion dom-
inates during the instability phase of interleaving, that may not be a reasonable as-
sumption at finite amplitude. With large inversions of temperature and salinity, both
forms of double diffusion are expected to be important. Ultimately, intrusive motions
are thought to reach a steady state in which there is a balance between advective
fluxes along intrusions and double-diffusive fluxes between intrusions (McDougall,
1985b; Walsh and Ruddick, 1998a). This steady state balance requires contributions
from both forms of double diffusion: salt fingering and diffusive convection.

Following roughly the approach of McDougall (1985b), I consider the evolution
of temperature and salinity at finite amplitude. Contributions from advection along
intrusions and salt-finger and diffusive-convection fluxes between intrusions are in-

cluded, as follows:

o6 96| 96| . 08
W_Eiﬁa’fb—?d
3_5=3_5|+@_|+3_5
at o, at|, " ot

(6.1)

The key point is that the evolution of the intrusive temperature and salinity pertur-
bations depends on advection of fluid along intrusions (subscript a), salt-finger fluxes
between intrusions (subscript f) and diffusive-convection fluxes between intrusions
(subscript d). As in chapters 2 and 3, I have in mind advective terms of the form

—u(8; + $0.) and —u(S; + sS.), salt-finger terms of the form —v;3K;m2S/a and
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—K;m?2S, and diffusive-convection terms of the form —Kym?20 and —yzaKym26/83.
The details of the flux parameterizations do not matter for the purposes of this dis-

cusslon.

What is important is that, for each process, the temperature and salinity terms

are related, as follows:

o 00/8ts _
B asjatl,

a 96/9tl;

B asjat);

ad0/dtla _ 1 (6.2)
B 3S[0tla  a =

Because the along-intrusion density ratio R; salt-finger flux ratio v; and diffusive-
convection flux ratio 74 determine the relative magnitude of the temperature and
salinity terms for each process, they are key parameters in the dynamics of the intru-
sions.

My goal in this analysis is to determine the relative magnitude of the temperature
and salinity terms in (6.1) for the lower and upper parts of the Meddy and the
Arctic Ocean front. Given 5 equations in 8 unknowns (i.e., 96/9¢, 98/dt|., 86/0t|;,
96/0t|a, S/0t, 0S/0t|a, OS/Ot|s, S/Bt|4), more information is needed. I consider
two limits in which some headway can be made. First, I consider the instability phase

of interleaving. Second, I consider the ultimate steady state.

6.3 Instability phase

During the instability phase of interleaving, it is assumed that one form of double
diffusion dominates over the other, which leads to a simplification of the equations

above.

e Ifsalt fingering is the dominant form of double diffusion, the diffusive-convection

terms can be neglected, i.e.,
a8

26| _ as
ot

=221 =o. (6.3)
. ot

d
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Figure 6.1: Schematic illustrating the temperature-salinity evolution in a warm salty
intrusion during the instability phase. (a) In the lower part of the Meddy, salt fin-
gering leads to a net negative density perturbation. (b) In the upper part of the
Meddy, diffusive convection leads to a net positive density perturbation. (c) In the
Arctic front, both advection and salt fingering contribute to a net negative density
perturbation.
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o If diffusive convection is the dominant form of double diffusion, the salt-finger

terms can be neglected, i.e.,

=0. (6.4)

00| asl
f

atf_ ot

I make a further simplification by assuming the double-diffusive fluxes are at their

maximum possible strength.

e With salt fingering as the dominant form of double diffusion, I assume the
advective term for salinity is identically matched by the salt finger term, so
that

as

— = 0. 6.5
gt ~ 0 (6-3)
This approximation is valid when A <« Kym?. (Recall that this approxima-
tion was also used to derive approximate solutions for the high-shear limit in

chapter 2.)

e With diffusive convection as the dominant form of double diffusion, I assume
the advective term for temperature is identically matched by the diffusive-
convection term, so that

a6
5~ 0. (6.6)
This approximation is valid when A <« Kym? (which was used to derive approx-

imate solutions for the high-shear limit in chapter 3).

Because I am interested in the relative magnitude of the various terms, I normalize

the terms to the advective spice flux, by setting

a6

as .
AR (60

Given these approximations, it is straightforward to calculate the relative magnitude

of the advective, salt-finger and diffusive-convection terms (i.e., there are effectively 8



equations in 8 unknowns). I focus on the density terms (i.e., 1/p, 9p/8t = BOS/dt —

ad0/38t), which are related to the driving of intrusive motions.

Fig. 6.1 illustrates schematically the temperature-salinity evolution in a warm

salty intrusion during the instability phase of interleaving. Panels correspond to the

lower part of the Meddy, the upper part of the Meddy and the Arctic Ocean front. In

each case, the direction of the advective, salt-finger and diffusive-convection vectors

are determined by the ratios Ry, vy and ~4, respectively. The net evolution depends

on the relative magnitudes of the advective, salt-finger and diffusive-convection terms.

(a)

(b)

In the lower part of the Meddy, salt fingering is thought to dominate during the
instability phase, so the diffusive-convection terms are neglected. With R; =
0.91, advection leads to a (slight) density increase in the warm salty intrusion.
With vy = 0.6, salt fingering generates a decrease in density. Provided the
salt-finger term is sufficiently large, the net density perturbation is negative (as
shown). Given intrusions sloping upward toward the cold fresh side of the front

(as observed), this density perturbation would be destabilizing.

In the upper part of the Meddy, diffusive convection is thought to dominate
during the instability phase, so the salt-finger terms are neglected. With R; =
1.39, advection leads to a density decrease in the warm salty intrusion. With
~va = 0.15, diffusive convection generates an increase in density. Provided the
diffusive-convection term is sufficiently large, the net density perturbation is
positive (as shown). Given intrusions sloping downward toward the cold fresh

side of the front (as observed), this density perturbation would be destabilizing.

In the Arctic front, salt fingering is thought to dominate during the instability
phase, so the diffusive-convection terms are neglected. With R; = 1.6, advection
leads to a density decrease in the warm salty intrusion. With v; = 0.6, salt
fingering also generates a decrease in density. Thus, both advection and salt
fingering contribute to a net negative density perturbation. Given intrusions

sloping upward toward the cold fresh side of the front (as observed), this density



(2) Lower part of the Meddy:

Advection . Salt- D1fﬁ151\fe Net
Fingering Convection
BAS/ot 0.52 & 0.02 -0.52 £ 0.02 0 0
adb/ot 0.48 £ 0.02 -0.31 £0.11 0 0.16 £+ 0.11
1/p, dp/8t 0.05 4+ 0.04 -0.21 + 0.11 0 -0.16 + 0.11
(b) Upper part of the Meddy:
Advection . Salt‘ lefusn_re Net
Fingering Convection
BAS/ot 0.42 4+ 0.02 0 -0.09 =0.03 0.33 £ 0.04
adb/ot 0.58 + 0.02 0 -0.58 + 0.02 0
1/p. 9p/0t -0.16 + 0.05 0 0.49 +0.04  0.33 + 0.04
(c) Arctic front:
Advection . Sa.lt. D1ffu51\:’e Net
Fingering Convection
BAS/ot 0.38 £ 0.02 -0.38 £ 0.02 0 0
adl /ot 0.62 &+ 0.02 -0.23 £ 0.08 0 0.38 + 0.08
1/po dp/0t -0.23 +0.03 -0.15 4 0.08 0 -0.38 + 0.08
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Table 6.1: Relative contributions of advection, salt fingering and diffusive convection
to the net temperature-salinity-density evolution in a warm salty intrusion during the
instability phase. Units are arbitrary (normalized to the advective spice flux).

perturbation would be destabilizing.

In both parts of the Meddy, the destabilizing density flux is generated solely by double
diffusion (salt fingering in the lower part and diffusive convection in the upper part).
Intrusive motions are driven by double diffusion and opposed by the stratification. In
the Arctic front, the destabilizing density flux is generated both by advection along
intrusions and by double diffusion (i.e., salt fingering). In this case, intrusive motions
are driven both by baroclinicity and by double diffusion. This is a key difference
between the Meddy and Arctic intrusions.

In Table 6.1, the terms are outlined for the lower part of the Meddy, upper part of
the Meddy and the Arctic Ocean front. In the lower part of the Meddy, salt fingering
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contributes to the net density evolution and, thus, drives intrusive motions. In the
upper part of the Meddy, diffusive convection contributes to the net density term and,
thus, drives intrusive motions. In the Arctic front, both advection and salt fingering
contribute to the net density evolution. This is consistent with intrusive motions
being driven both by baroclinicity and by salt fingering. The relative magnitude of
the advective and salt-finger terms is similar. This indicates that both baroclinicity
and salt fingering contribute significantly to the instability.

6.4 Steady-state phase

At finite amplitude, both forms of double diffusion are thought to be important, so it
is not appropriate to neglect the salt-finger or diffusive-convection terms. However, a
simplification can be obtained by considering the ultimate steady state. At this stage,
the advective fluxes along intrusions are identically balanced by double-diffusive fluxes

between intrusions and the net temperature-salinity evolution terms can be set to zero,

1.e.,
a6
5 = 0
as
5 = 0. (6.8)
As for the instability phase, I normalize to the advective spice flux, by setting
a6 as
a%la-i-ﬁ???a—-l. (6.9)

Note that this does not imply that these terms have the same magnitude during
the instability and steady-state phases. At steady state, it is expected that the
intrusion velocity (and hence the advective flux) will be much larger than during
the instability phase. With these assumptions, it is straightforward to calculate the
relative magnitude of the advective, salt-finger and diffusive-convection terms (i.e.,
there are effectively 8 equations in 8 unknowns). Again, I focus on the density terms,

which are related to the driving of intrusive motions.



(a) Lower part of Meddy Sharon
o« a?/az

M

—> 3 S/t
e \S
1/p, dp/ot
(c) Arctic front
o do/at

Advection e

=>» B 0S/at
Salt
Fingering ~
Ud 7 AN
i \\\
,// Convegtion ‘\:‘
1/p, dp/at

140

(b) Upper part of Meddy Sharon
ot d6/at

A

7
Advectior} Ve

—=> 3 9S/0t

s Convegtion RN\

A
1/p, 9p/at

Figure 6.2: Schematic illustrating the temperature-salinity evolution in a warm salty
intrusion at steady state. In each case, advective fluxes along intrusions are balanced
by salt-finger and diffusive-convection fluxes between intrusions.
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Fig. 6.2 illustrates schematically the temperature-salinity evolution for a warm
salty intrusion during the steady-state phase of interleaving. Panels correspond to

the three test cases.

(a) In the lower part of the Meddy, salt fingering leads to a density decrease (with
v = 0.6), while both advection and diffusive convection lead to a density
increase (with R; = 0.91 and 94 = 0.15). This implies that the density flux
generated by salt fingering must exceed that generated by diffusive convection.

(b) In the upper part of the Meddy, both advection and salt fingering lead to a
density decrease (with R; = 1.39 and 75 = 0.6), while diffusive convection
leads to a density increase (with v4 = 0.15). This implies that the density flux
generated by diffusive convection must exceed that generated by salt fingering.

(¢) In the Arctic front, both advection and salt fingering lead to a density decrease
(with R; = 1.6 and v, = 0.6), while diffusive convection leads to a density
increase (with v4 = 0.15). This implies that the density flux generated by
diffusive convection must exceed that generated by salt fingering.

An interesting feature is revealed in this plot. In both Meddy cases, the form of double
diffusion that dominated during the instability phase also dominates at steady state.
In the lower part of the Meddy, salt fingering dominates both stages; in the upper part
of the Meddy, diffusive convection dominates both stages. However, this is not the
case for the Arctic front. Whereas salt fingering was thought to dominate during the
instability phase, the density fluxes are dominated by diffusive convection at steady
state.

The various temperature and salinity terms are calculated for the three test cases
(Table 6.2). In the lower part of the Meddy, the salt-finger density term is slightly
larger, in magnitude, than the term for diffusive convection. In contrast, in the upper
part of the Meddy, the diffusive-convection density term is larger than that for salt
fingering. Also, in the Arctic front, the diffusive convection term is larger than the

salt-finger term. As mentioned above, in the Arctic case, the density flux is dominated



(a) Lower part of the Meddy:

Advection . Salt- D1ﬁ:usn.re Net
Fingering Convection
BOS/0t 0.52 + 0.02 -0.50 &£ 0.03 -0.03 & 0.02 0
adf /ot 0.48 £0.02 -0.30 £0.11 -0.18 +0.12 0
1/po Op/8t 0.05 +0.04 -0.20+£0.09 0.15+010 O
(b) Upper part of the Meddy:
Advection . Salt’ lefusn're Net
Fingering Convection
BAS[ot 0.42 £ 0.02 -0.36 £0.04 -0.05 % 0.02 0
adb /ot 0.58 £0.02 -0.22 £0.08 -0.36 + 0.09 0
1/po Op/8t -0.16 £ 0.05 -0.15+0.07 0.31+008 0
(c) Arctic front:
Advection ) Salt. Dlﬁ‘usnf'e Net
Fingering Convection
paAS/ot 0.38 £ 0.0z -0.32 £0.03 -0.06 + 0.03 0
adf /ot 0.62 £ 0.02 -0.19 £ 0.07 -0.42 + 0.08 0
1/po Op/0t -0.23 £ 0.03 -0.13 +=0.06 0.36 £ 0.07 0

Table 6.2: Relative contributions of advection, salt fingering and diffusive convection
to the net temperature-salinity-density evolution in a warm salty intrusion at steady
state. Units are arbitrary (normalized to the advective spice flux).

by diffusive convection at steady state, even though salt fingering was the dominant

form of double diffusion during the instability phase.

6.5 Summary

In this chapter, I extended the analyses of the previous chapters to the finite-amplitude

stage of interleaving growth. The temperature-salinity-density evolution was investi-

gated. Two phases of interleaving were considered: the initial instability phase and

the ultimate steady-state phase.

I focused on three test cases: the lower part of the Meddy, the upper part of the
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Meddy and the Arctic Ocean front (introduced in chapters 4 and 5). In the lower
part of the Meddy, the observations are consistent with double-diffusive density fluxes
dominated by salt fingering both during the instability phase and at steady state. In
the upper part of the Meddy, the observations are consistent with double-diffusive
density fluxes dominated by diffusive convection both during the instability phase
and at steady state. However, for the Arctic front, the situation is much different.
The observations are consistent with double-diffusive density fluxes being dominated
by salt fingering during the instability phase and by diffusive convection at steady

state.



Chapter 7

Discussion

7.1 Summary of thesis results

In this thesis, I investigated the dynamics of double-diffusive interleaving in baroclinic
thermohaline fronts. Particular attention was paid to the effects of background hori-
zontal and vertical shear and the effects of background horizontal density gradients.

In chapter 2, I developed a new instability model of double-diffusive interleaving
for baroclinic thermohaline fronts. As in the majority of existing models, salt fingering
was assumed to be the dominant form of double diffusion. It was found that back-
ground horizontal and vertical shear will distort intrusive layers if they slope in the
along-front direction. Because the rate of deformation is roughly proportional to the
absolute value of the along-front slope, it is predicted that intrusions will develop with
a reduced along-front intrusion slope in fronts with high shear. It was found that the
background horizontal density gradient changes the stratification felt by intrusions.
A significant discovery is that baroclinicity helps drive double-diffusive interleaving
motions if the intrusions slope between horizontal and isopycnal surfaces, i.e., in the
“wedge” of baroclinic instability. Interleaving is enhanced if the background isopy-
cnals slope upward toward the cold fresh side of the front. It is diminished if the
isopycnals slope downward toward the cold fresh side of the front.

In chapter 3, I extended the instability model of double-diffusive interleaving de-
veloped in chapter 2 to the case in which diffusive convection is the dominant form of
double diffusion. As in the salt-finger case, it is predicted that intrusions will develop
with a reduced along-front intrusion slope in baroclinic fronts. Also, it is predicted

that baroclinicity helps drive double-diffusive interleaving motions if the intrusions
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slope between horizontal and isopycnal surfaces, i.e., in the “wedge” of baroclinic in-
stability. In the diffusive-convection case, interleaving is enhanced if the background
isopycnals slope downward toward the cold fresh side of the front. It is diminished if
the background isopycnals slope upward toward the cold fresh side of the front.

In chapter 4, I applied the models of double-diffusive interleaving developed in
chapters 2 and 3 to the Mediterranean salt lens (i.e., Meddy) Sharon. In the lower
part of the Meddy, the background stratification is appropriate for salt fingering.
The observed intrusion slope was found to be consistent with development by the
salt-finger form of double-diffusive interleaving. In the upper part of the Meddy, the
background stratification is appropriate for diffusive convection. The observed intru-
sion slope was found to be consistent with development by the diffusive-convection
form of double-diffusive interleaving. Thus, taking baroclinicity into account, the
analysis supports the conclusions of Ruddick (1992).

In chapter 5, I investigated thermohaline intrusions observed north of Svalbard
in the Arctic Ocean, with the goal of determining the driving mechanism of the
intrusions. Tracking intrusions from profile to profile, the intrusions were found to
slope upward, relative to horizontal surfaces, toward the cold fresh side of the front.
This slope was found to be consistent with development by the salt-finger form of
double-diffusive interleaving. The observed intrusions slope between horizontal and
isopycnal surfaces, i.e., in the “wedge” of baroclinic instability. Thus, the observations
suggest that the intrusions were driven by baroclinicity, as well as salt fingering, during
the initial growth of the intrusions.

In chapters 4 and 5, the observed cross-front intrusion slopes, along-front intru-
sion slopes, along-intrusion density ratios and vertical wavelengths were compared
with model predictions for the fastest-growing modes. The observed and predicted
values agreed well for the intrusion slopes and along-intrusion density ratio. How-
ever, the agreement was not as good for the vertical wavelength. Also, the predicted
growth rate for the Arctic intrusions was very slow, raising questions about the actual

mechanism of formation.
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In chapter 6, the analysis was extended to the finite-amplitude stage of interleav-
ing. The lower part of the Meddy, upper part of the Meddy and the Arctic front were
considered. In the lower part of the Meddy, salt fingering was found to dominate
in both the instability and steady-state phases of interleaving. In the upper part of
the Meddy, diffusive convection was found to dominate in both the instability and
steady-state phases of interleaving. However, in the Arctic front the situation was
somewhat different. While salt fingering was found to dominate during the instability

phase, diffusive convection was found to dominate at steady state.

7.2 Implications

Prior to this thesis work, only one theory has considered the effects of baroclinicity
on double-diffusive interleaving. Kuzmina and Rodionov (1992) focused on increased
turbulent mixing in vertically-sheared fronts. They suggested that double-diffusive
interleaving should be diminished by baroclinicity as a result of enhanced turbulent
mixing. This work considered two additional effects: distortion of intrusive layers
by background horizontal and vertical shear and the change in stratification due to
a background horizontal density gradient. While the distortion of intrusive layers
by background shear generally reduces intrusion growth, the change in the back-
ground stratification in baroclinic fronts can actually enhance interleaving. If salt-
finger fluxes are dominant, baroclinicity will enhance double-diffusive interleaving if
the background isopycnals slope upward toward the cold fresh side of the front. If
diffusive-convection fluxes are dominant, baroclinicity will enhance double-diffusive
interleaving if the background isopycnals slope downward toward the cold fresh side
of the front.

In the past, studies of interleaving have often focused on the slopes of intrusions
relative to isopycnal surfaces. Based on theories developed for barotropic fronts, it

has sometimes been assumed that intrusions should slope upward relative to isopycnal



surfaces toward the cold fresh side of the front if driven by salt fingering, and down-
ward relative to isopycnal surfaces toward the cold fresh side of the front if driven by
diffusive convection. In this work, I have shown that intrusions may slope upward or
downward relative to isopycnals in either case. Thus, the slope of intrusions relative
to isopycnals is not a good indicator of the driving mechanism.

Placing the theoretical predictions in an oceanic context, the thesis work has pro-
vided evidence that baroclinicity is important to double-diffusive interleaving in the
ocean. In the lower and upper parts of Meddy Sharon, it was found that the along-
front intrusion slope would be reduced significantly as a result of background shear.
For the thermohaline intrusions in the Arctic Ocean, the effects of baroclinicity are
also important. Because the observed intrusions slope between horizontal and isopy-
cnal surfaces (i.e., in the “wedge” of baroclinic instability), the observations indicate
that the intrusions may be driven by baroclinicity as well as double diffusion. Esti-
mates of the baroclinic and double-diffusive driving terms suggested that baroclinicity

is as important as double diffusion in driving intrusions observed there.

7.3 Suggestions for future work

While this thesis has answered many questions regarding the development of double-
diffusive interleaving in baroclinic thermohaline fronts, it has left many questions
unanswered. Two potential weaknesses in the analysis stand out: the mismatch
between observed and predicted vertical wavelengths in the Meddy and Arctic test
cases, and the small predicted growth rate for the Arctic. More work needs to be
undertaken to address these potential shortcomings.

In this thesis, I focused primarily on the instability stage of double-diffusive inter-
leaving. However, in the final chapter, I touched on the finite-amplitude dynamics.
This revealed an intriguing result: that one form of double diffusion (i.e., salt finger-

ing) can dominate the instability stage of interleaving, while another form of double
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diffusion (i.e., diffusive convection) can dominate the finite-amplitude stage of inter-
leaving. More work is needed to investigate the finite-amplitude stage of interleaving
in baroclinic thermohaline fronts.

This thesis work focused on the dynamics of double-diffusive interleaving. The
importance of double-diffusive interleaving, however, is its effects on the larger-scale
features. More work is needed to determine how important the double-diffusive inter-
leaving is to the larger-scale ocean dynamics. Parameterizations of double-diffusive
interleaving should be developed, for inclusion in larger-scale models. Baroclinic ef-

fects must be considered in any of these further developments.



Appendix A

Calculation of Uncertainties in

Chapters 4, 5 and 6

When applying models of double-diffusive interleaving to Meddy Sharon and the
Arctic Ocean front (chapters 4, 5 and 6), significant effort is undertaken in order to
estimate uncertainties both in observed and predicted quantities. In this appendix, I
outline briefly methods for estimating uncertainties.

Throughout the thesis, I indicate an uncertain quantity with a + symbol. The
value to the left of the £ indicates the best estimate of the quantity and the value
to the right of the £ indicates the uncertainty in the quantity. The uncertainty is
taken to be an estimate of the 95% confidence limits on the quantity, i.e., the quoted
uncertainty is the half-width of the estimated 95% confidence interval.

The method used to estimate confidence limits depends on the quantity being
estimated. Observed background gradients (i.e., 4., 0., 5., S-, pr and p.) were es-
timated by least-squares linear regression. For horizontal gradients (where the data
are relatively sparse), the errors are assumed to be normal and independent. Stan-
dard techniques are employed to estimate uncertainties in the regression coefficients.
For vertical gradients (where the data are relatively abundant), the errors are not
assumed to be normal and independent. The sample auto-correlation is taken into
account when estimating uncertainties in the regression coefficients. In both cases,
linear regression algorithms are developed in matrix form, following Draper and Smith
(1966).

Other base-state quantities (i.e., 9., N, R,, Ry, —p./p-. and Ri) are calculated

from the estimated background gradients. In these calculations, uncertainties are
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allowed to propagate using a Monte-Carlo technique. A given quantity is calculated
many times (O[1000]) using a random set of input values. The inputs are distributed
in a Gaussian fashion with mean and standard deviation appropriate to the estimated
inputs. The estimated uncertainty in the calculated quantity is then obtained from
the set of calculated values.

Predicted intrusion properties (i.e., range of unstable intrusion slopes, range of
unstable along-intrusion density ratios, properties the fastest-growing modes) are
calculated based on the uncertain base-state quantities. In these calculations, the
Monte-Carlo technique is used to estimate uncertainties in the calculated values. Note
that this approach is particularly useful for estimating uncertainties in the properties
of the fastest-growing modes as the calculations are very complicated.

For the Meddy, the observed density-salinity slope and vertical wavelength of
the intrusions and their respective uncertainties are obtained from published results.
Uncertainties in subsequent calculations (i.e., cross-front intrusion slope) are then
obtained using the Monte-Carlo technique. For the Arctic, the observed cross-front
intrusion slope and along-intrusion density ratio are estimated by least-squares linear
regression. In calculating uncertainties in the regression coefficients, the errors are
assumed to be normal and independent. Standard linear regression techmniques are

used (Draper and Smith, 1966).
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