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Abstract

In this thesis, a number of robust methods have been developed for estimating the
parameters in a time series setting. To estimate the power spectrum of an ARMA
process, an M estimation method has been introduced which maximizes the robust
likelihood function of the discrete Fourier transforms of the process. This robust
method is useful in estimating the parameters of the continuous spectrum ARMA
process by downweighting the influence of possible discrete spectrum harmonic com-
ponents on the data. The proposed M estimation method has been applied to some
actual time series data sets of sea level records, where a strong presence of tidal (har-
monic) components is observed along with the continuous spectrum surge process.
Here robust estimation of the power spectrum of the surge process has been consid-
ered assuming that the surge follows an ARM A process.

A GM estimation technique has been introduced for the robust estimates of the
parameters in a nonlinear regression setting with autoregressive errors. The asymp-
totic properties of the GM estimators have been studied in some detail. For choosing
the appropriate order of an autoregressive process, a robust criterion has also been
suggested, which uses the robust version of the Akaike Information Criterion. The
proposed GM estimation and model selection criterion have been applied to a ozone
data set which appears to have nonlinear relationship with some meteorological vari-
ables. As the data are collected sequentially over time, there appears to be a signifi-
cant serial correlation in the errors. A nonlinear regression model with autoregressive
errors has been fitted to this data set for the joint estimates of the regression param-
eters and the autoregressive parameters.

A new class of influence functions in the frequency domain has been introduced
in this thesis. Like Hampel’s influence function, this frequency influence function
appears to have some close relationship with the asymptotic variance of a time series
functional.



Chapter 1

Introduction

1.1 Robust Estimation in Time Series Analysis

So far, most of the robustness theories have concentrated on the development of ro-
bust statistical procedures for the case where the observations are independent. The
theory on robustness in the time series setting has received less concentration, which
is probably due to the increased technical problems imposed by a serial dependence in
the data. Martin (1981) gives an overview of robust methods for time series. Some of
the important developments of robust statistical procedures in the time series setting
may be found in Kleiner, Martin and Thompson (1979), Martin (1983), Martin and
Yohai (1986). Kleiner, Martin and Thompson (1979) and Martin (1983) discuss the
robust estimation of the spectral density of a time series process. Martin and Yohai
(1986) introduce a definition for influence functionals of parameter estimates in time
series models. These influence functions are similar to Hampel’s influence functions
for the i.i.d. setting.

In this thesis, we develop some robust methods for analyzing real time series data,
where the ordinary classical methods fail to give us satisfactory results in the presence
of influential observations. In chapter 2, we develop a robust M estimation method for
estimating the power spectrum of an ARM A process. This robust technique has been
constructed in order to downweight the effect of harmonic components mixed with
the ARM A process. Instead of following a pure ARM A process, many oceanographic



data follow a mixed process which can be modeled as an ARM A process mixed with
some harmonic components. In section 2.1, we introduce an oceanographic data set
which consists of sea level records at Halifax, Nova Scotia. The principal feature of
the data set is the semi-diurnal tide, with period of approximately 12 hours 25 min-
utes, which is known in the oceanographic literature as the M2 (Moon - 2 cycles per
day) tidal constituent. In addition, the spring-neap cycle is apparent, with relatively
small amplitude tides near the beginning and end of the record, as compared to the
middle of the record. We will presume that the observed sea level record consists of
the sum of two parts, the tide and the surge, the latter being the residual obtained
after removing the tide from the record. The tide consists of a number of harmonic
components. In this thesis, our interest is in the structure of the surge. We assume
that the surge follows an ARM A process and our goal is to estimate the power spec-
trum of the ARM A process. A natural approach would be to remove the harmonic
components from the data using a suitable method and then study the residual for
estimating the power spectrum of the ARM A process. It will be discussed in chapter
2 that the residual series often contains remnants of harmonic components which are
typically not distributed in a stationary fashion. As a consequence, the classical LS

or ML methods often fail to provide efficient estimates of the power spectrum of the
ARM A process.

An alternative approach, and the one taken here, is to downweight the harmonic
components mixed with the ARM A process when estimating the power spectrum of
the ARMA process. In particular, we will assume that the ARM A process has a
continuous spectrum, and will allow for the possibility of contaminating harmonic
constituents in the process. In the frequency domain, this presumes that the spec-
trum of the observed data consists of the sum of a continuous (surge) spectrum, and
that this may be contaminated by a discrete spectrum (tidal) process. Our goal will
be to downweight the influence of the discrete spectrum process on our estimate of
the continuous spectral component.

An estimate of the power spectrum of an ARMA process can be obtained by
maximizing the approximate likelihood function of the discrete Fourier transforms



which are approximately independent complex normals with mean 0 and variance as
a function of the power spectrum. Whittle (1953) introduced this Gaussian fitting
procedure for the estimation of a finite dimensional parameter of a stationary pro-
cess. The resulting approximate ML estimates of the ARMA components can be
used for estimating the corresponding power spectrum of the ARM A process. The
Whittle type estimates of the ARM A components may be severely affected by any
contaminating harmonic components mixed with the original ARM A process, and so
we will use a robustified likelihood method which downweights possible spikes in the
periodograms due to the presence of harmonic components in the data. In section
2.2, we discuss the robust development of the approximate likelihood function of the
discrete Fourier transforms. We show that the robust likelihood function can be re-
lated to the Huber’s least favorable distribution. The resulting M estimate ensures
the Fisher consistency of an estimator.

In section 2.3, we discuss the asymptotic properties of the proposed A estimates.
We investigate the infinitesimal behavior of the M estimates based on Hampel’s influ-
ence function. [t is shown that the M estimates obtained by maximizing the proposed
robust likelihood function have bounded influence function. Note that the estimation
procedure divides naturally into two parts, in the first of which we discuss the robust
estimation of the power spectrum of an ARM A(p, q) process assuming the orders p
and q are known a priori. In the second part, a robust model selection criterion has
been proposed for choosing the appropriate orders of the process. In section 2.4, we
discuss the robust development of the Akaike Information Criterion as a technique of
selecting the orders of an ARM A process. In section 2.5, the proposed robust esti-
mation and model selection criterion have been applied to some actual data sets on
sea level records at Halifax, Sydney and Yarmouth harbors of Nova Scotia, Canada.
Section 2.6 discusses the results presented in chapter 2.

In chapter 3, we discuss aspects of robust model selection in the time domain for
choosing the correct order of an autoregressive process. Unlike the harmonic con-
tamination process as assumed in chapter 2 in the analysis of sea level data, here



we deal with a different type of contamination process, where we assume that a cer-
tain proportion of the data may come from an arbitrary distribution rather than the
original underlying distribution. Depending on the behavior of contamination, the
resulting outliers may be termed as “innovation” or “additive” outliers in the time
domain. Our goal is to find a robust method for choosing the correct order of an au-
toregressive process in the presence of outliers in the data. The Akaike Information
Criterion (AIC) is widely used as a classical method for choosing the appropriate
order of an autoregressive process. But it is well-known that the classical AIC is very
sensitive to outliers in a time series process. Ronchetti (1997) suggests using a robust
version of the classical AIC in order to avoid the affect of possible outliers in the
process. In section 3.1, we introduce the robustness aspects of the model choice in
an autoregressive process. In section 3.2, we point out some drawbacks of the robust
Information Criterion as suggested by Ronchetti (1997), and, as a remedy, we suggest
a modified version of this robust criterion. Section 3.3 discusses GM estimation of
the autoregressive parameters briefly. In section 3.4, we carry out a simulation study
to investigate the performance of the proposed robust Information Criterion. Section
3.5 gives the conclusions of the chapter.

In chapter 4, we develop a robust method for estimating the parameters in a non-
linear regression setting with autoregressive errors. Nonlinear regression models play
an important role in many fields. The classical LS or ML estimates of nonlinear re-
gression are often very sensitive to outliers in the data. Robust estimates of nonlinear
regression have been studied by a number of authors. Most of the robust techniques
are developed in the case of an i.i.d. setting of the residuals. But situations in which
data are collected sequentially over time may result in substantial serial correlations
in the errors. It usually occurs with economic data where the response y measures
the state of a market at a particular time. Another typical example where serially
correlated errors usually arise is in the modeling of growth curves to data on a single
animal over a certain period. In many cases, we observe a nonlinear relationship
between the response variable y and the vector of covariates x. We develop a general-
ized M (GM) estimation method for the joint estimation of the regression parameters
and the autoregressive parameters of a nonlinear regression model with autoregressive



errors. In section 4.2, we introduce the proposed GM estimation method. For an
AR(q) process of the errors, we minimize an objective function which is based on the
robustified version of the conditional negative log-likelihood function of yg41,... s ¥n
for the given values y;,... ,yq-

We then study the infinitesimal behavior of the robust estimates based on the
time series analogue of Hampel's influence function in section 4.3. It is shown that
the resulting GM estimates have bounded influence functions under some regular-
ity conditions. The influence functions are derived from the time series extension of
Hampel’s influence function as described in Martin and Yohai (1986). In section 4.4,
we study the asymptotic properties of the robust estimates of nonlinear regression
in some detail. We show that under some suitable assumptions, the proposed GM
estimates of the regression parameters and the autoregressive parameters are asymp-
totically normally distributed with a certain mean vector and a covariance matrix.
To choose the appropriate order of the autoregressive errors in a nonlinear regression
setting, we extend the robust Akaike Information Criterion introduced in chapter 3
to the case of a nonlinear regression with autoregressive errors. This extended robust
criterion is presented in section 4.5.

As an application of the proposed robust method, in section 4.6 we analyze a
ground level ozone data set which appears to have nonlinear relationship with some
meteorological variables as covariates. As the data are collected over equally spaced
time, there appears to be a significant serial correlation in the errors. Moreover, the
error process is found to be heteroscedastic with respect to the covariates. We develop
a robust technique to model the variance of the heteroscedastic errors as a function
of the covariates. Section 4.7 gives the conclusions of the chapter.

In chapter 5, we discuss a new class of influence functions introduced by Hastings
(personal communication), which is referred to as the frequency influence function of
a functional g(F*), where F* is considered as the cumulative (non-normalized) power
spectrum of a time series process {z.}. The frequency influence function investigates
the behavior of the functional g(F™) in terms of the point-mass perturbation of the



cumulative spectrum F*. In section 5.2, we define the frequency influence function.
Like Hampel's influence function, it is shown with some examples that the asymptotic
variance of an estimator can be obtained as a function of its corresponding frequency
influence function.

In chapter 6, we summarize our results and discuss some directions for further
research.

1.2 Some Important Ideas in Robust Statistics

Robust statistics is concerned with the fact that many assumptions commonly made
in statistics are not exactly true - they are mathematically convenient rationalizations
of an often fuzzy knowledge or belief (Huber, 1981). The most common statistical
procedures (in particular, those optimized for an underlying Gaussian distribution)
are quite sensitive to slight deviations from the assumptions. Robustness, in a sense,
signifies insensitivity to small deviations from the underlying assumptions. During
the past few decades, the amount of statistical research devoted to robustness has

increased considerably. Most of the research effort has focused on robust estimation
in a parametric model.

The important pioneering work of Huber (1964) on the robust estimation of a
location parameter is considered to be the basis for a theory of robust estimation.
Huber introduced a class of M estimators which became a very useful tool in robust
estimation. He also derived the consistency and asymptotic normality of the M esti-
mators. These estimators are slight generalizations of maximum likelihood estimators.
For a set of independent random variables z; (i = 1,... ,n) from a one-parameter
family of distributions, any estimate T obtained by solving >_ p(z;;T) = min or
Y- ¥(z;; T) = 0, where p is an arbitrary function, ¥(z;6) = (8/38)p(z;8), is termed
as an M estimate or maximum likelihood type estimate of the parameter 8. The

choice p(z;8) = —log f(z;0), where f is the density of z, gives the classical ML
estimate.



Huber then introduced the idea of gross error model. Instead of coming from a
strict parametric model F(z;8), he assumes that a known proportion € of the data
may come from an arbitrary unknown distribution G(z;6), which result in gross
errors. The underlying gross error model is thus considered as the e-contaminated
distribution: F, = (1 — €)F + ¢G. Huber considers optimizing the worst that can
happen over the neighborhood of the model, as measured by asymptotic variance of
the estimator. The asymptotic variance of an M estimator defined by some function
¥ at a distribution F,, which lies in some neighborhood F, of the assumed model
distribution F, is given by V(v, F.) = [y*dF./ ([ ¢ dF¢)2. For a location parameter,
Huber’s idea was to minimize the maximal asymptotic variance over F,, that is, to
find the M estimator % satisfying

sup V (¥, F.) = min sup V (¢, F). (1.1)
FEeF. ¥ FeF.

This is achieved by finding the least favorable distribution Fp, that is, the distribution
minimizing the Fisher information J(F,) over all F, € .. Then vy = —F/F; gives
the maximum likelihood estimator for this least favorable distribution. Note that for
the case F' = ®, where ® is the standard normal distribution, the least favorable distri-
bution Fp has the density fo(z) = (1—¢€)(27)~/2exp(—p(z)), where p(z) = [; ¢o(t)dt
and ¥g(z) is the Huber’s ¥ function defined by ¥o(z) = max(—k, min(k, z)). The val-
ues k and € are connected through the equation 2¢(k)/k —2®(—k) = €/(1 —¢), where
¢(z) represents the normal density.

Another important development in robust statistics is the introduction of the
influence function (I F') in order to investigate the infinitesimal behavior of real-valued
functionals such as T'(F). This influence function introduced by Hampel (1968, 1974)
is considered as the most useful heuristic tool of robust statistics. It is a technique for
studying the local stability of an estimator in terms of the point-mass contamination of
the data or the underlying distribution. To define influence function, let us consider
a random sample (zi,...,Z,) from a distribution F. Assume that an estimator
T.(zy,....I,) can be obtained from a functional T = T(F) defined on a family of
distributions by evaluating T at the empirical distribution function F, : T, = T(F,).
Let F. = (1 — ¢)F + €A be a contamination distribution, where A; has all its mass



at . Then Hampel’s influence function is the directional derivative of the functional
Tate=0:

[F(z:T, F) = lim L) - T(F)

lim : (1.2)

provided that the limit exists. This influence function is considered as an asymptotic
as well as an infinitesimal tool. Note that if F = F,,_; and € = 1/n, the influence
function, before taking the limit, becomes the finite sample sensitivity curve of Tukey
(1970); so that one can argue that an influence function measures approximately n
times the change of T caused by an additional observation in z when T is applied to
a large sample of size n — 1. In other words, it describes the effect of an infinitesi-
mal contamination at the point z on the estimate, standardized by the mass of the
contamination. Its maximum absolute value

v* =sup|[F(z,T, F)| (1.3)

is termed as gross error sensitivity. It is useful in the construction of optimal estimates
under the constraint of a bounded gross error sensitivity. Under some regularity
conditions, \/n(T(F,) — T(F)) is asymptotically normal with mean 0 and variance
V(T.F) = [IF(z,T,F)*dF(z). Thus the influence function allows an immediate
and simple heuristic assessment of the asymptotic properties of an estimator as it
leads to an explicit formula for the asymptotic variance.

1.3 Robust Estimation in Linear Models

In the last two decades, there has been considerable research on robust estimation in
linear models. In fact, the linear regression model is one of the most widely used tools
in statistical analysis. The classical least squares (or maximum likelihood) method
is the commonly used technique for the estimation of a linear model. But in spite
of its mathematical beauty and computational simplicity, this estimator is found to
be very sensitive to outliers. Most robust developments on the estimation of linear
models are based on the generalizations of least squares or maximum likelihood meth-
ods. Some of the robust techniques are discussed in Huber (1981) and Hampel et al



(1986). Huber (1973, 1977) extended his results on robust estimation of a location
parameter to the case of linear regression. The resulting M estimator of the regression
parameter can bound the influence of the residual, but not the influence of position
in the design space. To bound the joint influence of residual and position in the
design space, generalized M (GM) estimators are proposed by a number of authors
(see Mallows, 1975; Hampel, 1978; Krasker, 1980; Krasker and Welsch, 1982). These
bounded influence estimators have breakdown points of at most 1/(p+ 1), where p is
the number of predictor variables, (see Maronna, Bustos and Yohai, 1979), suggesting
that they can be overwhelmed by a cluster of outliers. Several high breakdown point
(HBP) estimators have been proposed by a number of authors that achieve break-
down points almost 1/2 for each p. The high breakdown point estimators include
the least median squares (LM S) of Rousseeuw (1984), the S estimator of Rousseeuw
and Yohai (1984). These also include the MM estimator of Yohai (1987) and the
T estimator of Yohai and Zamar (1988), which combine good asymptotic efficiency
under normal linear model with high breakdown point. The MM and 7 estimators
do not have bounded influence function.

To construct regression estimators that have bounded influence function and high
breakdown points, Simpson, Ruppert and Carroll (1992) suggest using a one-step GM
estimator. To find the one-step GM estimator, we can start with a high breakdown
point estimator and perform one iteration of a Newton-Raphson algorithm towards
solution of the GM estimating equation.

Recently, Ferry, Kelmansky, Yohai and Zamar (1999) introduce a new class of ro-
bust estimates in a linear regression setting. These estimates, termed as generalized
7 (G,) estimates, are defined by minimizing the 7 scale of the weighted residuals,
where the weights penalize the high-leverage observations. These estimates are the
generalization of the 7 estimates introduced by Yohai and Zamar (1988). The G-
estimates are obtained such that they have bounded influence functions. Like Yohai’s
MM and T estimates, redescending ¥ functions are used to obtain the generalized
T estimates. The authors argued that the G, estimates inherit the properties of
high breakdown point and high efficiency. However, from their simulation study, it
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is observed that in some cases the efficiency of the G, estimates is less than that of
the LM S estimates although G, and LM S estimates have the same high breakdown
point. It is well-known that LM S estimates have high breakdown point, but they are
highly inefficient. In fact, there is always a trade-off between high efficiency and high
breakdown point. The redescending ¥ function used in the G, estimation results in a
high breakdown point robust estimator. However, the use of redescending ¥ functions
in robust estimation is not free of controversy. The redescending ¥ function may not
give a unique solution to an estimating equation. So it is important to choose the
initial estimates wisely in order to obtain the desired robust estimates (Hampel et al,
1986). Huber (1981) commented that redescending v functions are certainly benefi-
cial if there are extreme outliers, but the improvement is relatively minor with respect
to the asymptotic variance and is counterbalanced by an increase of the minimax risk.

In a recent paper, Rousseeuw and Hubert (1999) introduce a notion of depth in
the regression setting. The regression depth of a fit 8 to a given data set Z, of size
n, denoted by rdepth(, Z,.), is defined as the smallest number of observations of Z,
that would need to be removed to make 8 a nonfit. Rousseeuw and Hubert define the
“deepest regression” estimator T(Z,) = arg maxy rdepth(@, Z,). T has breakdown
point 1/3, whereas LMS and LTS estimators always have breakdown point almost
1/2. But unlike the deepest regression estimator T.*, the LMS and LTS estimators
are not consistent for a model with skewness and heteroscedasticity. Rousseeuw and
Hubert suggest using LM'S and LTS estimators in cases where robustness and out-
lier detection are the most important. On the other hand, if there are not so many
outliers and the emphasis is on the possibility of skewness and heteroscedasticity, the
deepest regression estimator T, may be the natural choice.

We can extend the robust estimation from linear to nonlinear regression. However,
the asymptotic properties of robust estimators in a nonlinear regression setting needs
to be carefully investigated. The GM estimator of a nonlinear regression parameter
may not have a bounded influence function in both the response variable and the
vector of covariates. In chapter 4, we discuss the asymptotic properties of the GM
estimators in a nonlinear regression setting with autoregressive errors.



Chapter 2

Robust Spectrum Estimation in an
ARMA (p, q) Model With
Application to Sea Level Data

2.1 Introduction

Many physical oceanographic measurements show the influence of harmonic tidal
components which, due to their relatively large size, can obscure other signals in the
data. In this work, our focus is on estimating the characteristics of harbor seiches,
which are resonant responses of harbors to external forcing.

The data which are analyzed consist of sea level records at Sydney, Halifax and
Yarmouth, Nova Scotia, each consisting of 2048 observations collected at a rate of
four per hour, beginning midnight January 1, 1997. The Halifax record is illustrated
in Figure 2.1, in which the ordinate represents mm above chart datum. The principal
feature of the data is the semi-diurnal tide, with period of approximately 12 hours 25
minutes, which is known in the oceanographic literature as the M2 (Moon - 2 cycles
per day) tidal constituent. In addition, the spring-neap cycle is apparent, with rela-
tively small amplitude tides near the beginning and end of the record, as compared
to the middle of the record. The structure of the data is more clearly discernible
in the periodogram, which shows a large spike at frequency near .12 (the M2 tidal

11
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Figure 2.1: Sea level records at Halifax harbor and the periodograms

constituent), and another spike near frequency .25 (the M4 tidal constituent). The
latter is a harmonic of M2. In addition, there appears to be a relatively wide band
structure near frequency .75, corresponding to a period of just over two hours, and
there is some weak evidence of a wide band structure near frequency 2.8.

Smith and Miyaoka (1999) studied the Halifax and Sydney records and concluded
that the wide band spectral structures are compatible with tidally forced harbor se-
iches. A simplified physical model for a seiche can be found, for example, in Proudman
(1953). We will presume that the observed sea level record consists of the sum of two
parts, the tide and the surge, the latter being the residual obtained after removing
the tide from the record. The tide consists of a number of harmonic components.
The Canadian Hydrographic Service models the tide using the program of Foreman
(1977). and typically includes on the order of 50-100 harmonic constituents, with
the phase and amplitude of the constituents being determined by the motions of the
earth, moon, and sun, among other factors. In addition, the model is non-stationary,
and requires occasional “nodal correction”.

In this work, our interest is in the structure of the surge, in which we will be
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looking for characteristics of seiche motions. A natural approach would be to remove
the tidal component from the data using Foreman’s tidal model, and then study the
residual. We have used this approach in the past and found that the residual series
often contains remnants of tidal components which are typically not distributed in
a stationary fashion. This would be expected if the tidal motions contain relatively
short term non-stationaries, as Foreman’s model assumes short to moderate term
stationarity and includes the nodal corrections only at longer time scales.

Schuster (1898) suggested using the periodograms for estimating the continuous
spectrum surge process. The surge spectrum at a certain frequency w may be esti-
mated by smoothing the periodograms near frequency w, avoiding the periodograms
for substantial peaks in the neighborhoods of the w. An alternative approach, and
the one taken here, is to downweight tidal components when estimating the surge. In
particular, we will assume that the surge process has a continuous spectrum, and will
allow for the possibility of contaminating harmonic constituents in the tidal process.
In the frequency domain, this presumes that the spectrum of the observed data con-
sists of the sum of a continuous surge spectrum, and that this may be contaminated
by a discrete spectrum tidal process. Our goal will be to downweight the influence of
the discrete spectrum process on our estimate of the continuous spectral component.

To start we assume that the surge process {z(t)} follows a differential equation
2P (t) + aqz® V() +. .. + apz(t) = £(2) (2.1)

where 2P (t) = (£)"z(t), a1,...,q, are constants, and £(t) represents a forcing
term. As we only have data at regularly spaced time points, we consider a discretized
version of (2.1) in which derivatives are replaced by divided difference approxima-
tions of the appropriate order. Where the differences are taken “backwards in time”
(for example, $z(t) = (z(t) — z(t — 6)]/0), the resulting approximation to z(t) is lin-
ear in past and present observations, and is therefore equivalent to an autoregressive
process. We accommodate the possibility that the forcing &(¢) is not white noise by al-

lowing the discrete time approximation of £(¢) to itself follow an autoregressive model.
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Thus we consider the surge data z,(t = 0,... ,n — 1) to follow an ARM A(p, q)
model

L+ 91 Z-1+ . GpTrp = U + QU + .+ (QUe—g (2.2)
where u,(t = 0,...,n — 1) is a purely random process and ¢;, (j1 = 1,....p),
(i (Ja=1,...,q) are constants.

Our model for the sea level process Y is
Y=X+2 (2.3)

where Z, = 3K | A, cos(\st + ¢,) is the tidal component Z of the record at time ¢,
consisting of one or more harmonic constituents. For a stationary tide we would as-
sume that the phase angles ¢, (s =1, ..., K) are independently uniformly distributed

over (—m,m). We will assume that the surge and tide processes are independent of
one another.

The linearity of (2.3) leads us to an analogous relation for power spectra as

fry(Ww) = fxx(w) + fzz(w) (2.4)

where

12
a? \1 + ) r=1 G~

—., (2.5)
o |1 + 5P g e

fxx(w) =

o? is the variance of the white noise process {u,}, and fzz(w) has infinite spikes at fre-
quencies A, £27J (s = 1,..., K) for all integers J, and is zero at all other frequencies.

As will be discussed in section 2.2, the periodogram I(w;) of the data {y;, t =
0.....n — 1} at the Fourier frequencies w; = 2rj/n (j = 1,...,[(n — 1)/2]) are ap-
proximately independent fyy (w;) X?2) /2 random variables, which are multiples of x%2)
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random variables, and when normalized by the surge spectrum, are approximately
i.i.d., except at Fourier frequencies in the vicinity of the harmonic tidal components
where the periodograms will be of a higher order of magnitude.

From the frequency domain standpoint, this is the classic scenario calling for ro-
bust estimation. We have a number of data points (the periodograms at Fourier
frequencies) among which there are a certain number of contaminated values (the
periodograms at frequencies in the vicinity of the harmonic tidal components), and
we would like to downweight the contaminating values when estimating the smooth
(surge) spectral component.

An estimate of the power spectrum of an ARMA process can be obtained by
maximizing the approximate likelihood function of the discrete Fourier transforms
which are approximately independent complex normals with mean 0 and variance as
a function of the power spectrum. Whittle (1953) introduced this Gaussian fitting
procedure for the estimation of a finite dimensional parameter of a stationary process.
The resulting approximate M L estimates of the ARM A components can be used for
estimating the corresponding power spectrum of the ARMA process. The Whittle
type estimates may be severely affected by any contaminating harmonic components
as we will show, and so we will use a robustified method which downweights possible
spikes in the periodograms due to the harmonic components mixed with the original
ARM A process. The resulting estimates can be considered as M estimates, and when
applied to data from an uncontaminated ARM A process, are very close to Whittle’s
approximate MLE.

To demonstrate this, we consider an ARMA(1,1) process contaminated with a
harmonic process as follows:

Yo + .8yi-1 = Uy + .due—; + .5cos(.5t + ¢1) + .5 cos(1.5t + p2) (2.6)

where u, are assumed to be independent N(0,1) and ¢; (! = 1,2) are independent
uniform(—m, 7), independent of u,. We draw a random sample of size n = 200 using
model (2.6). In Figure 2.2, we plot the periodograms of the random sample at all
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Periodograms for a contaminated ARMA(1,1) process
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Figure 2.2: Periodograms of an ARMA(1,1) process contaminated with harmonic
components

frequencies w; (j =0,...,(n — 1)/2). From the plot, we observe two unusual spikes
at frequencies .5 and 1.5 which are due to the harmonic components in model (2.6).
The spikes in the right end are due to the ARM A components in the model. This
data set can be modeled as in equation (2.3) assuming that the amplitudes in the
harmonic components remain constant over time. But in real life data, the amplitudes
may change over time which makes the estimation of the harmonic components very
difficult. In the next section, we develop a robust procedure which estimates the power
spectrum of an ARM A process by downweighting such spikes in the periodograms.

Robust spectrum estimation has received attention from a number of authors.
Kleiner, Martin and Thompson (1979) proposed two robust-resistant methodologies
for the estimation of a spectral density (see also Martin, 1983). These methods are
based on robust prewhitening and on weighting the resulting residuals. Prewhiten-
ing is a technique for reducing the dynamic range of the spectrum by filtering the
data so as to transform the original time series into a white noise series of nearly
flat spectrum. Their first method computes the prewhitened values iteratively. The
second method fits a robust autoregressive model by iterated weighted least squares.
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Martin (1983) discussed the robust version of the smoothed periodogram estimation
for estimating the spectral density of a time series process. These robust methods
provide protection against “innovation” or “additive” outliers in the time domain (cf.
Martin, 1980) in the estimation of the power spectrum of a time series process. For
innovation outliers, the process u, in the ARM A model (2.2) comes from a mixture
distribution: (1—¢€)F +¢€G, where G is any other distribution, instead of coming from
an uncontaminated distribution F. For innovation outliers, we may have big jumps
in a time series process y; and the process will propagate through the jumps. For
additive outliers, with probability (1 —€) an ARM A process y, itself is observed, and
with probability e, y, is an ARM A process plus an error with distribution G. So for
additive outliers, we may have big jumps in a time series process y;, but the process
will not propagate through the jumps. However, in our case, we have a different kind
of contamination process, which is an ARMA process mixed with some harmonic
process. As we can see from the sea level record at Halifax, there appear to be no
outliers in this process in the context of innovation or additive outliers. However,
the harmonic components mixed with the ARM A process result in spikes in the pe-
riodograms, which we can consider outliers in the frequency domain. And our goal
is to estimate the power spectrum by downweighting such outliers in the frequency
domain. Here it should be noted that the outliers in the time domain do not cor-
respond to the outliers in the frequency domain. Our robust procedure deals only
with the outliers in the frequency domain, which are the outcomes of the harmonic
components mixed with the ARM A process. If innovation or additive outliers in the
time domain are present in an ARM A process, rather than having spikes in some
particular points in the periodograms, all of the points in the periodograms may be
affected by such outliers. In such cases, we suggest using our proposed M estima-
tion method after cleaning the data such that no innovation or additive outliers are
present in the process. Martin (1983) discusses robust filters and smoother which can
be used to obtain a cleaned data set.

In the next section, we discuss the robust estimation of the spectral density in some
detail. In this work, the problem of robust estimation is divided into two parts. In the
first part, we discuss the robust estimation of the power spectrum of an ARM A(p, q)
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process provided that the orders p and ¢ of the process are known a priori. In the

second part, we propose a robust model selection procedure for choosing the appro-
priate orders of the process.

Choosing a suitable model is an important issue in time series analysis. The Akaike
Information Criterion (AIC) is widely used for the model selection in an ARM A(p, q)
process (see Priestley, 1981). As this criterion is sensitive to influential observations,
a robust version of this classical AIC has been considered by a number of authors

(see Martin, 1980; Ronchetti, 1997). We use those concepts of robust model selection
with some modifications.

In section 2.2, we discuss the proposed robust estimation of the power spectrum
based on the approximate likelihood function of the discrete Fourier transforms. Sec-
tion 2.3 discusses the influence function as well as the asymptotic variance of the
estimators. Section 2.4 discusses the robust model selection criterion for choosing a
suitable model. In section 2.5, the proposed robust estimation and model selection
criterion have been applied to some actual data sets on sea level fluctuations at Hal-
ifax, Sydney and Yarmouth harbors of Nova Scotia, Canada. Section 2.6 gives the
conclusions of the chapter.

2.2 Robust Estimation of the Power Spectrum

We know that for a stationary process y; (t = 0,...,n — 1), the discrete Fourier
transforms

n—1
dy(w;) = zyce-wjt (2.7)
t=0
(j=1,...,[(n —1)/2]) are approximately independent complex normals with mean

0 and variance 27n f,,(w;), where w; = 2mj/n (see Whittle, 1953; Brillinger, 1981;
Brillinger, 1985). Here f,,(w;) is the power spectrum of the stationary process y.
which takes the form (2.5) for an ARM A(p, q) process as defined in equation (2.2).
Treating the discrete Fourier transforms of the ARM A(p,q) process y: as exactly
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independent complex normals with mean 0 and variance 27n f,(w;), the negative of
the log-likelihood can be expressed, up to a constant, in the form

—log L(O Zlog For(w;16) + = Z fIEij) (2.8)
where
w 2
I(wy) = 222 29)

is the periodogram of the process y; at frequency w; and 0T = (¢1,..., ®p:C1ye - 1 O)
is the vector of parameters to be estimated. The approximate maximum likelihood
(ML) estimate of @ can be obtained by minimizing equation (2.8). This Gaussian
fitting procedure was introduced in Whittle (1953) for the estimation of a finite dimen-
sional parameter of a stationary process. Differentiating this negative log-likelihood
with respect to @ gives the estimating equation

1 g

Z[I(""J) fiy(w;|0) ]mao

J

(w3]0) = (2.10)

which can be solved iteratively for the ML estimate of 8. This ML estimator will
be statistically efficient if the time series process y, follows the ARM A(p, g) model
without any contamination of the process. But as we mentioned earlier in section 2.1,
instead of following a pure ARM A process, many oceanographic data are expected
to follow a contaminated process (i.e., an ARM A process mixed with some harmonic
components), which results in some unusual spikes in the plot of periodograms. We
need to develop a robust procedure for estimating @ by downweighting such spikes due
to the harmonic components. Two times the negative log-likelihood of the discrete

Fourier transforms of the ARM A(p, q) process y, can be expressed, up to a constant,
as

d'R w;)}? dlI w
—2log L(9 zlog Fon(w;|0) +Z{ (27’m} f;(iJlé)’)} (2.11)
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where dX(w;) and d!(w;) are the real and imaginary parts of the Fourier transform
d,(w;), respectively. Note that d?(w,-) and d;',(wj) are approximately independently
normally distributed with mean 0 and variance 7n f,,(w;|6). Equation (2.11) can be
rewritten as

1 1
~2log L(8) = Y _log fuy(w;l0) + ) §r$,. +)° Ergj (2.12)
J J J
= df(w;) o dw) . .
where ry; = m and ro; = Wy o) are approximately i.i.d. normals

with mean 0 and variance 1. Note that the ML estimates obtained by minimizing
the objective function —2log L(8) have unbounded influence functions (see section
2.3). To have an estimator with bounded influence function, following Huber’s “Pro-
posal 2" (see Huber, 1981) we consider a robust version of the likelihood function of
equation (2.12) in the form

Hi(8) = ¢ _log fy,(w;16) + Z pr(ry;) + Z p1(72;) (2.13)

where c is a tuning constant and the function p, is defined by

pi(z) = {

This p; function can be related to the Huber’s least favorable distribution for scale.
Huber (1981, p.120) replaces the standard normal distribution ¢(z) by the least fa-
vorable distribution fs(z) of the form

(]

z if |z| <k

(2.14)
k? — k2 log (I_:T) otherwise.

WOIr= NI

2

k-
(1 - €) (ko) (ﬁ) ® for |z| < ko
fo(z) = § (1 —¢) ¢(z) for ko < |z| < Ky (2.15)
k¢
(1—e) o(kr) (&) for || > ky
For the choice k; = — ko = k, —log fo(z) reduces to the p; function defined above

except for a constant term. The constant k in the function p; can be chosen as
k = 1.345 as suggested by Huber (see Huber, 1981). Note that the choice k£ = oo
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gives the classical ML estimate of 8. To find the robust estimate of @, one can
minimize the objective function H(8) in equation (2.13) directly by using numerical
methods. Equivalently, one can also solve iteratively the M estimating equations
(which are the derivatives of H,(8) with respect to  equating to zero)

zj: {—;-wz(n,—) + %'@[)2(7‘2]-) - c} f—w{m% fuy(w;l@) =0 (2.16)
for the parameter @ starting from a set of initial values. To derive the above equation,
we use the fact that z x p} (z) = ¥?(z), where p] is the derivative of p; and the function
¥ is the Huber’s ¢ function defined by (zr) = max(—k, min(z, k)). The tuning
constant ¢ is chosen such that the estimator of @ gives Fisher consistency. To define
Fisher consistency, let us treat ry; and rj; as random samples from a distribution F'.
Consider the functional T'(F) = 6 defined on the space of distributions for r, and r.
The functional T(F) can be defined from equation (2.16) as the solution of

/ {(%'Jﬂ(rl; T(F))+ %w2(r2;T(F)) - c(F)) y

1 d
Tl T(E)) 567 “10)

X

}dF(rl, ry) = 0. (2.17)
8=T(F)

The estimator T of @ is said to be Fisher consistent if equation (2.17) is satisfied. It
follows that the choice ¢ = Epy? ensures the Fisher consistency of the estimator of 6.
In the next section, we show that the M estimator obtained by minimizing the objec-
tive function H;(8) in equation (2.13) or, equivalently, by solving the M estimating
equation (2.16) has bounded influence function. We can relate equation (2.16) with
the estimating equation suggested by Huber’s “Proposal 2” for a scale parameter. If
z is distributed as a normal with the scale parameter o, then Huber’s “Proposal 2”
estimates o by solving the equation

> [ (2)-q - =

where ¢ = Ey? (£). Note that if we choose fy,(w;|@) = @ = o, then equation (2.16)
reduces to equation (2.18) except for the fact that the ¢ function in equation (2.16)
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is split into independent real and imaginary parts.

We can estimate 8 by directly optimizing the objective function H,(0) in equa-
tion (2.13) or by solving the M estimating equation (2.16) using Newton-Raphson
method. The 1st step of the Newton-Raphson method solves the equation

6 =60,+ A/[(;l qo (219)

iteratively starting from an initial estimate 8, of 6, where

1 1 1 ad
0 = Z,: {51/!2(7‘13') + -2-?112(7”21') - C} Fol@iiBo) 56w (wil6) o
My, = Z {%lb(ru)w'(ru)ru + %¢(sz)¢’(%)sz} X
(35 f1(310)) (5 fn(w510))"
{fus(wl00)}? 96,

However, we prefer direct optimization of the objective function H;(8) to the Newton-
Raphson method of solving the M estimating equation as in some cases the Newton-
Raphson method failed to give us convergence in iteration. The S-PLUS function
“nlminb” was used to minimize H,() in order to find the robust M estimate of 8. In
the next section, we discuss the influence function as well as the asymptotic variance
of the M estimators.

2.3 Influence Function of the M Estimator

Hampel (1974) introduced the influence function (/F) in order to investigate the
infinitesimal behavior of real-valued functionals such as T'(F). Influence function can
be considered as a technique of studying the local stability of an estimator in terms
of the effect of point-mass perturbation of the data or the underlying distribution
(Simpson et al, 1992). Recall the functional T(F') of equation (2.17) defined on the
space of distributions for r; and ry. Let F,. be a point-mass contamination of the
target model F' : (1 —€)F + €A, ,, for 0 < e < 1. Here A,,,, is a delta function
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which has point-mass 1 at (r;, ;) and 0 elsewhere. Then following Hampel et al
(1986), we can define the influence function of T as

T(F) - T(F)

(2.20)
€

IF(ry,ro;T,F) = lin(l)

which is the directional derivative of T at € = 0. Using this definition, the influence
function of the M estimator can be found by inserting F, = (1 — €)F + €A,, ., for
F into equation (2.17) and taking the derivative with respect to € at ¢ = 0. The
influence function is obtained as

IF(ri,r; T, F) = [-Ep(¥)]™' ¥y (2.21)

where the functions ¥, and ¥, are defined by

Ly 4 L — 19
‘I’l = {Qw (Tl) + Qw (r-) C(F)} fyy(wlT(F)) aefw(wle) 8T (F)
and
: ]
‘Ill - 55‘1’1 6=T(F)
9 1 1 2 fry(w|0)
= =< | z¢%(r1) + s¥*(r2) — c(F) M——}
96 {(2 A ) fo(@10) |, e
= {300 rn + Juv ) x
(3/0(19)) (5fw(16)"
{fru(w]6)}? 6=T(F)
We denote
IF(ry,r;T,F) = M ¥, (2.22)

where M; = —Ep(¥,). Note that as the function ¥, is bounded as a function of
(r1,79), the influence function of the M estimator of 8 is also bounded. However,
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if we choose k = oo for the Huber’s ¢ function, which corresponds to the ML es-
timation, the estimate will give unbounded influence function as the function ¥, is
unbounded for this choice of k. Following Hampel et al (1986), it can be shown un-
der mild regularity conditions that if @ is an M estimator of 8, then \/ﬁ(é - 0)is
asymptotically multivariate normal with mean vector 0 and a covariance matrix V.
For a rigorous mathematical treatment, one can see Boos and Serfling (1980), Huber
(1967, 1981), Clarke (1983, 1986), Heritier and Ronchetti (1994) as basic references.
The asymptotic variance V' of the M estimator can be obtained from the influence
function as

V(T,F)= E(IF IFT) = M{l Q1 Mfl (say) (2.23)
where

Qi = Ep(¥, ¥7])

2 £14(w19)) (& frn(10)”
{fn(wl0)}?

2
= EF{%’/JQ(TI)+%"/’2("'2)—C(F)} (

0=T(F)

The variance function V(T, F) can be approximated by replacing the distribution
function F' with its empirical distribution function F, as V=M ot Q1 M{ ! where

X 1 1 1 :
My = — > {5111(1‘1,')11"(7‘11)7‘1;’ +5u(r)v (sz)sz} X
i

- (B5n(119)) (& fn(10)"
{FalwslO)F

9=0
2
Q1 = %z {';"w2(7'1j) + %!92(7'2;’) - C} X
(5 f1s(«19)) (Zf0n(w;10))"
{fry(w;]0)}? oo

In the next section, we discuss the robustness aspects of model selection based on the
classical Akaike Information Criterion (AIC).
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2.4 Robust Model Selection

In sections 2.2 and 2.3, we discussed the robust estimation of the power spectrum
in terms of the parameter estimates of an ARM A(p,q) process provided that the
orders p and q of the process are given a priori. In practice, we need to find p
and q in order to obtain a suitable model for the process y,. Choosing a suitable
model is an important issue in time series analysis. As a classical method, one can
consider the Akaiki Information Criterion (AIC) (see Akaiki, 1973) for choosing a
correct model. The classical AIC amounts to choosing the model that minimizes
—2log L(8) + 2m, where m is the dimension of the vector of parameters 8. For more
details, see Priestley (1981). This procedure can be generalized by replacing 2m by
xm for a given value of x (Bhansali and Downham, 1977). As the classical AIC is not
robust, we consider using a robust version of this Information Criterion. Ronchetti
(1997) discusses different aspects of model selection based on the robust version of
the log-likelihood function. Here we adopt a similar idea to define the robust AIC
based on the robust version of the approximate likelihood function of the discrete
Fourier transforms. Using the robustified negative log-likelihood function as defined
in equation (2.13), we define a robust AIC in the form

RAIC|(m) = ¢ _log fuy(wil0) + Y _ p(ri;0) + D p1(rs;10) +2am  (2.24)
J J J

where m is the dimension of 8. The a,, can be chosen as a, = m
Ronchetti, 1997). Notice that if we choose k = oo, then the RAIC) in equation (2.24)
reduces to the classical AIC. In our complex variable case, the a,, may be estimated
by

4 = ij [¥2(r1;) + ¥*(ra5)]
" > [W(ry) + ¢ ()]

: (2.25)

We minimize this RAIC,(m) with respect to m for selecting the best models in some
real data sets described in the next section.



2.5 Application: Analysis of Sea Level Data

We apply the proposed model selection and M estimation method discussed in the
previous sections to three sets of data on sea level records which were collected at
the harbors Halifax, Sydney and Yarmouth in Nova Scotia, Canada. Each data set
consists of 2048 observations collected at a rate of 4 per hour beginning midnight
January 1, 1997. The sea levels were measured as heights in mm above chart datum.
The sea level record at Halifax harbor has been plotted in Figure 2.1. The sea levels
at Sydney and Yarmouth harbors have been plotted in Figure 2.3. In section 2.1, we
discuss the behavior of the sea level record at Halifax. Similar harmonic patterns are
observed in the sea levels at Sydney and Yarmouth. But, as we pointed out earlier,
these harmonic components are very hard to model properly due to the variation in
the amplitudes and phases over time. Here we consider fitting an ARM A(p, g) model
to each data set using the proposed M estimation method which is not affected by
the harmonic components mixed with the ARM A process. For ease of computation,
we consider the standardized process y, defined by y, = (z, — 7)/1000, where . is
the original process of the sea level data and Z is the mean of the process z;. To find
a suitable model for each of the three data sets, we consider fitting the ARM A(p, q)
model for each p =0,1,...,10and ¢ =0,1,...,10. For each combination of p and g,
we estimate the corresponding parameters of the ARM A(p, ¢) process by minimizing
the objective function H;(0) in equation (2.13). The S-PLUS function “nlminb” has
been used to minimize this objective function. We then compute the robust model
selection criterion RAIC,(m) defined in equation (2.24). In total, for each data set
121 models have been fitted and their corresponding RAIC)s have also been found in
the search of the correct model. The model with the minimum RAIC) is considered
to be the best model. The function RAIC) is found to be minimum at ARMA(5,7)
for the Halifax data, ARMA(8,3) for the Sydney data and ARMA(6,5) for the
Yarmouth data. The RAICs of some selected models have been shown in Table 2.1
for all the three data sets.
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Table 2.1: Values of RAIC, for some selected models for
all the three data sets

Model Halifax Sydney | Yarmouth
ARMA(1,1) -10285.18 | -11105.91 | -9150.37
ARMA(2,1) | -10311.95 | -11111.27 | -9142.99
ARMA(2,2) -10310.62 | -11234.48 | -9209.16
ARM A(5, 5) -10383.75 | -11463.24 | -9296.58
ARMA(5,7) |-10406.41 | -11487.89 | -9294.82
ARMA(6,5) | -10382.26 | -11457.49 | -9300.97
ARMA(7,4) -10393.31 | -11465.95 | -9299.74
ARMA(S8,3) -10364.08 | -11495.32 | -9295.24
ARMA(8,8) | -10400.92 | -11492.56 | -9296.19

ARMA(10,10) | -10391.48 | -11492.38 | -9296.56

In Figure 2.4, we plot the periodograms with corresponding robust spectrum esti-
mates assuming different ARM A models for each data set. In the top panel of Figure
2.4, the log of the periodograms as well as the log of the corresponding spectrum
estimates have been plotted for the Halifax sea levels considering the four models
ARMA(1,1), ARMA(5,5), ARMA(5,7) and ARMA(8, 8) which are shown respec-
tively from top to bottom in this panel. Each spectrum has been displaced by 3 units
to provide a clear view of the spectrur lines. For ARM A(1,1) model, the estimated
spectrum line does not seem to be fitting well as it fails to model the bumps in the
periodograms of the process. When we increase the orders of the ARMA process
(see the spectrum line of ARM A(5,5), for example), we observe the expected bumps
in the estimated spectrum line corresponding to the bumps in the periodograms,
which indicates a better fit. Recall that the RAIC, shows the best model for the
Halifax data at ARMA(5,7) and for this model, it is clear that the bumps in the
periodograms have been “nicely” modeled by the estimated spectrum line. If we in-
crease the orders of the ARM A process further, the shape of the spectrum line does
not seem to be changing significantly as we see from the estimated spectrum line
of ARMA(8,8). We follow the same procedure to plot the periodograms and the
corresponding spectrum estimates for the Sydney and Yarmouth sea level data sets.
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In the middle panel of Figure 2.4, the periodograms and the corresponding estimated
spectrum lines have been plotted for the Sydney sea levels considering the four models
ARMA(1,1), ARMA(5,5), ARMA(8,3) and ARM A(8, 8) which are shown respec-
tively from top to bottom in the plot. Here also we observe that for the best fitted
model ARM A(8,3), the spectrum estimates are quite satisfactory as the bumps in
the periodograms are nicely modeled by the estimated spectrum line at ARMA(S, 3).
On the other hand, with ARM A(1,1), the spectrum line does not seem to be fitting
well as it cannot model the bumps in the periodograms, which is observed from the
top line of the panel. At ARM A(8, 3) fitting, we observe a bump in the spectrum line
at frequency near .1, which seems to be reasonable as we also observe a bump in the
periodograms at this frequency. In the bottom panel of Figure 2.4, the periodograms
and the corresponding estimated spectrum lines have been plotted for the Yarmouth
sea levels considering the four models ARMA(1,1), ARMA(5,5), ARMA(6,5) and
ARM A(8, 8) which are shown respectively from top to bottom. Here we observe that
at the best fitted model ARMA(6,5), the estimated spectrum line gives a bump at
a frequency near 2.7, which is not present in ARMA(1,1) and ARMA(5,5) fitting.
The shapes of the estimated spectrum lines of ARMA(6,5) and ARM A(8, 8) models
appear to be very similar.
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Figure 2.4: Plots of the log-periodograms and log of the corresponding spectrum estimates for the
sea level records at Halifax, Sydney and Yarmouth. The four spectrum lines (from top to bottom) in
each panel are estimated considering respectively the models - 1st line: ARM A(1,1) for each data
set: 2nd line: ARM A(5,5) for each data set; 3rd line: ARM A(5,7) for Halifax data, ARM A(8,3)
for Sydney data, ARM A(6,5) for Yarmouth data; 4th line: ARM A(8, 8) for each data set. (Each
line is displaced by 3 units.)
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To have some idea about the potential influential discrete Fourier transforms, we

consider finding the weights of the Fourier transforms at different frequencies. We
define

_ 1y(ry) + 19(ry;)

2 T15 2 Ta4
J 7

vj (2.26)
as the weight corresponding to the frequency at point j =1,...,[(n — 1)/2]. Notice
that if we put ¥(r) = r, then v; = 1, and the M estimators become the classical
ML estimators. In Figure 2.5, we plot the weights of the M estimates at different
models for each of the three data sets. In the top three panels of Figure 2.5, the log-
periodograms and the log of the spectrum estimates have been shown as described
earlier. Their corresponding weight functions have been plotted in the three panels
of the second row in Figure 2.5. From these plots it is observed that the points cor-
responding to the huge spikes (possibly due to the harmonic or tidal components)
in the periodograms are severely downweighted as they should be. Another interest-
ing pattern in the weight functions can be observed from the ARMA(1,1) fitting.
As the spectrum estimates of the ARMA(1,1) fit cannot model the bumps in the
periodogram plots, the points corresponding to these bumps are also severely down-
weighted. But when we plot the weight functions of the best fitted models for each
of the three data sets, we observe a “significant” change in their values. From the
bottom three panels of Figure 2.5, it is clear that as the spectrum estimates model
the bumps in the periodograms, their corresponding weight functions are not severely
downweighted any more. On the other hand, the weights corresponding to the huge
spikes in the periodograms are close to zero as we have seen in the ARMA(1, 1) case.
In the weight functions of the three data sets, we observe a common behavior at a
certain frequency. At frequency near .126, the weight function is close to zero for
each of the three data sets. The frequency .126 corresponds to a period of about 12.5
hours and represents the fundamental lunar component of the tide.

Now, we consider the fact that if there are no influential points in the discrete
Fourier transforms, the M estimation method and the classical ML method should
give similar results. To check this, we first show the M estimates and the ML es-
timates (with standard errors in parenthesis) of the parameters of an ARMA(1,1)
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ARM A(1,1) model and a best fitted model for each of the three data sets of sea level

records.



33

model in Table 2.2 for all the three data sets. From the table, it is seen that the
ML estimates are “significantly different” from the M estimates for each of the three
data sets. We also observe a significant difference between the standard errors of the
parameter estimates in the M estimation and the ML estimation. We then consider
fitting the model after deleting the influential observations in the discrete Fourier
transforms. We take a point as influential if its corresponding weight is less than .80.
After deleting the influential Fourier transforms, we estimate the parameters of the
ARMA(1, 1) model using both M estimation and M L estimation methods. The esti-
mates (with standard errors in parenthesis) are shown in Table 2.3. From the table, it
is observed that the M estimates and the M L estimates are very close (as is expected)
after deleting the influential Fourier transforms. Also note that the ML estimates
have smaller standard errors as compared to the M estimates when the influential
tidal frequencies are omitted. From this viewpoint, one may think of simply removing
the periodograms with substantial peaks from the fitting procedure and then use the
standard maximum likelihood estimation. However, the use of weight functions in
the M estimation procedure gives us a precise idea about the tidal frequencies and
we can incorporate the tidal information in our robust procedure without any effect
on the estimates of the surge spectrum.
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Table 2.2: Parameter estimates (with standard errors in
parenthesis) of the ARM A(1,1) model for all the three

data sets
Method  Parameter Halifax Sydney Yarmouth

M o1 -.9794 (.00403) -.9735 (.00741) -.9700 (.00498)
estimation G -.2609 (.02447)  .1155 (.02869) -.1231 (.02051)
o .0363 (.00058) .0244 (.00043)  .0533 (.00082)

ML o1 -1.0155 (.04962) -1.0209 (.03794) -.9877 (.19651)
estimation G 3.0391 (1.21016) .4410 (.06361) .6626 (.08936)
c .0221(.01188) .0457 (.00338) -.1196 (.02551)

Table 2.3: Parameter estimates (with standard errors in
parenthesis) of the ARM A(1,1) model for all the three
data sets after deleting the possible influential Fourier

transforms
Method  Parameter Halifax Sydney Yarmouth

M o -.9854 (.00350) -.9794 (.00579) -.9768 (.00222)
estimation e -.3036 (.02314) .0538 (.02365) -.1795 (.01840)
o .0340 (.00052) .0218 (.00032) .0501 (.00071)

ML o1 -.9844 (.00252) -.9815 (.00266) -.9733 (.00239)
estimation 4 -.2909 (.01555) .0601 (.01630) -.1830 (.01539)
o .0330 (.00035) .0216 (.00024) .0489 (.00051)

We plot the log of the periodograms and the log of the corresponding spectrum
estimates minus 10 considering the best fitted models ARMA(5,7) for the Halifax
data, ARM A(8.3) for the Sydney data and ARM A(6, 5) for the Yarmouth data. For
comparison, we estimate the power spectrums using both the M estimation and the
ML estimation methods. The plots are shown in Figure 2.6. From the plots we
observe a significant difference in the power spectrums estimated by the M and ML
methods. For the M L method, we see that the spectrum estimates give a large peak
at frequencies near zero which is due to the huge spikes in the periodograms. On
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Figure 2.6: Plots of the log of the estimated power spectrum minus 10 based on M

estimation and M L estimation methods

the other hand, those peaks in the spectrum estimates disappear when we estimate
them using the M method. The fact is that the M method estimates the spectrum
by downweighting the huge spikes in the periodograms.
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2.6 Discussion

In this work, we mainly focus on the robust model selection and robust spectrum
estimation in an ARM A process contaminated with harmonic components. Given
orders p and q of the ARM A(p, q) process, we can estimate the corresponding pa-
rameters of the process by minimizing the objective function H,(8) in equation (2.13)
or, equivalently, by solving the M estimating equation (2.16) iteratively. The pro-
posed M estimators are Fisher consistent and have bounded influence functions. The
M estimators can be related to the classical maximum likelihood type estimators.
The choice of the bound k = oo for the Huber’s 9 function gives the corresponding
classical estimators of an ARM A process. But as pointed out earlier, these classical
estimators have unbounded influence functions. The influence function of an esti-
mator may be used to find its asymptotic variance. This asymptotic variance can
be approximated by replacing the true distribution F' with its empirical distribution
function F,. For choosing a suitable model, we minimize the robust model selection
criterion RAIC, defined in equation (2.24) with respect to the orders p and q of the
ARM A(p, q) process. For each p and g, we estimate the corresponding ARM A com-
ponents and hence the RAIC, of the process. The model with minimum RAIC; is
considered to be the best model.

The proposed M estimation and robust model selection criterion have been applied
to three data sets on sea level records, where we observe harmonic contamination in
the process along with the original ARM A process. The classical method is severely
affected by this harmonic contamination when we try to estimate the power spec-
trum assuming an ARM A(p, q) process. It is found that the proposed M estimation
is useful in estimating the ARM A components as well as the power spectrum of the

process robustly by avoiding the presence of harmonic (or tidal) components in the
process.

Halifax and Sydney include broad band spectral features at frequency near .7.
There also appear to be broad band features at frequency near 2.8, which corresponds
to the 5th harmonic of the feature at frequency .7, folded back into the interval [0, 7]
(e.g. 2m — 5 x .7). These features were identified by Smith and Miyaoka (1999) as



37

being indicative of harbor seiches, which should, in theory, have spectral features at

odd harmonics of a fundamental frequency determined by harbor and forcing charac-
teristics.

It is interesting to note that the maximum likelihood fit at Halifax nearly fails
to identify the feature near frequency .7. The influence of the tide on the spectral
estimate is very apparent in the Yarmouth record. This is perhaps due to the high
concentration of energy in the M2 cycle at Yarmouth, which is located near the mouth
of the Bay of Funday, which has the world’s highest tides because its natural resonant
period is close to 12.5 hours (the M2 period). The Yarmouth record also includes
a broad band feature near frequency 1.3 which may represent a seiche, and there is
an unusual looking feature (in the M estimate only) near frequency 2.7. The latter
feature requires further investigation to determine whether it is a real feature, or an
artifact of the M estimation method.



Chapter 3

Robustness Aspects of Model
Selection in Autoregressive

Processes

3.1 Introduction

In chapter 2, we introduced the robust model selection criterion RAIC) in the fre-
quency domain for choosing the appropriate orders of an ARM A process. The RAIC,
was based on the approximate likelihood function of the discrete Fourier transforms
of a time series process, where we assumed that the process consists of the sum of two
parts. the tide and the surge. We developed a robust method to estimate the param-
eters of the surge spectrum, where the surge was assumed to follow an ARM A(p, q)
process. This robust method was found to be useful in estimating the parameters
of the ARM A(p, q) process by downweighting the influence of tidal (or harmonic)
components on the data. The resulting robust estimates of the ARM A components
were used to calculate the RAIC, for choosing the correct order of an ARM A process.
Note that this technique of robust estimation and model selection is useful in the case
where a time series ARM A process is mixed with some tidal or harmonic components.
In the frequency domain, we can identify and downweight the tidal components using
the proposed M estimation method. However, there may be certain situations where
a time series process does not contain any harmonic or tidal components. Instead,

38



39

the process may be contaminated by some random outliers. The outliers commonly
encountered in time series process are termed as “innovation” or “additive” outliers
which will be discussed later. In this chapter, we introduce modifications of the usual
robust model selection criterion in the time domain for choosing the appropriate order
of an autoregressive process in the presence of outliers.

Robust model selection in an autoregressive process has received attention from a
number of authors (see Martin, 1980; Hampel et al, 1986; Behrens, 1990; Ronchetti,
1997). Ronchetti (1997) discusses some robust procedures for choosing order g of an
AR(q) process. For an autoregressive process of order ¢ of the form

Ye = Z<z’>jy¢_,- + U = e+ U (3.1)
=1

where g, = 39_) djy:-j, w are iid. N(0, 02), (¢t = ¢+ 1,....n), Ronchetti (1997)
suggests minimizing the robust AIC

RAIC™(q) = Z wy) p ( “‘)+aq (3.2)

t=q+1

with respect to order g, for yi—¥ = (Ye—1,--- , Ytmg)'s e = PR by = &Tyf:f and
é = ((f)l, - ,qu)T. For simplicity, o is assumed to be known. A robust estimate, ¢
is chosen as the generalized M (GM) estimate of the autoregressive parameter ¢. A
possible choice of the p function is of the form

ix? for [z| < k
p(x) = = . . (3.3)
klz| — 3k* otherwise

which corresponds to the Huber’s least favorable distribution for location. The com-
monly used value of the constant k is 1.345. The term a4 (as proposed by Behrens,
1991) can be defined as a; = tr(M~'Q) with M = E [w (y:=9) ¥ (we/ o) (yiz?) (veo}) T] ,
Q=E [w2 (ye=?) v2(ue/0) (ye=7) (et ] 1 is the derivative of the function p. Here
w(r) is a weight function which downweights any outlying point z. For a good point
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r, w(z) is expected to be close to 1. a, can be estimated by its sample counterpart
as &, = tr(M~'Q), where M = Yt [w (y:=0) ¥'((we — )/ o) (we=d) (we27) ] and

Q = S [1* (W0) 0200w - /) (610) (D7)

Note that for the choice w(z) = 1 and p(z) = }z?, the robust model selection
criterion RAIC*(q) reduces to the classical Akaike Information Criterion, AIC*(q),

defined by
(y‘ “‘) +q. (3.4)
c
+1

t=q

AIC*(q) =

N —

In the following section, we point out some limitations of the robust criterion RAIC*
and suggest a modified version of this criterion.
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3.2 A Modified Robust Model Selection Criterion

The RAIC*(q) in equation (3.2) seems to have the following drawbacks. The first
term in the expression for RAIC*(q) is the sum of (n — ¢) observations which clearly
depends on the order q. So the number of observations to be summed up changes
when we change the order q of the process. In practice, we need to keep the number
of residuals fixed for comparing one model with another. As a remedy, we can vary t
in equation (3.2) from ¢* + 1 to n, where ¢* is the maximum possible value of g under
consideration for the order of the autoregressive process.

Table 3.1: Weight functions for AR(1) and AR(2) models
for the setup in equation (3.6)

AR(1) Model AR(2) Model
Index yr Y1 W(Ye1) | Ye1 Y2 W(Ye—1, Ye-2)

1 Y3 Y2 1 Y2 W 1
2y oy 0 (R 0
3 ¥ W 1 TR 0
4  y¢ ys 0 Ys  Ua 0
5 ¥ U 1 Y6 Y5 0
6 ys Y7 0 (A 0
T Y Ys 1 (T 0
8 Yo Yo 1 Yo Us 1

Another important issue concerns with the weight functions. Note that the first
term in the expression for RAIC*(q) in equation (3.2) is given by

S wizhe (2=2). (35)

The weight function w(y;—Y) in the above equation depends on the order q of the

process. As a typical example, we may consider the following setup of the process
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{y:}. Suppose, the first 10 values of {y.} are obtained as

(yl,yz,y§,y4,y§,ys,y;,ys,y9,ylo), (3-6)

where y;, y: and y; are considered to be extreme outliers. Now, if one wants to
compare an AR(2) model with an AR(1) model, the regression setup and the corre-
sponding weight functions for the first 10 points may be defined as in Table 3.1. In
the table, the weights w(y,—,) for the AR(1) process corresponding to the indices 2,
4 and 6 can be considered as zero as we assume that the values y3, y5 and y; are
extreme outliers. For the same reason, the weights w(y;—1, y:—2) for the AR(2) process
corresponding to the indices 2, ... ,7 can be considered as zero. In such cases, even if
the p((y: — 1) /o) in equation (3. 5) are the same for both AR(1) and AR(2) processes,
the weight function w(y,—,) for the AR(1) process differs significantly from the weight
function w(y,_1, ¥:—2) for the AR(2) process. As a consequence, the decision based on
the RAIC*(q) in equation (3.2) may be quite misleading. In order to overcome these
problems, we suggest normalizing the RAIC*(q) by dividing it with the sum of their
corresponding weight functions. So as modified form of the robust model selection
criterion, we propose minimizing the objective function

RAIC(q ( Z (%:29) ) [zn: w(y. 7)p (m—;'&>+c¢, aq] (3.7)

t=q*+1 t=q*+1

with respect toq, ¢ =1,...,q% ¢ is the maximum possible value of g, ¢4 is a tuning
constant to be chosen as ¢, = £ (n — ¢*)/ Xi— e,y w (:2f) for a constant «, and
ag = tr(M~1Q). M and Q can be estimated as

M= Xn: w(y2]) v (y‘o"L ‘) () @i)”

2—q +1

= Y w e (B5E) 6l "

t=q*+1

Note that for the choice w(z) = 1 and p(z) = %zz, the RAIC(q) in equation (3.7)
reduces to the corresponding classical Akaike Information Criterion. The value of
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the constant « is chosen as 2 in our simulation study as this value was found to be
reasonable in determining the correct order of a contamination process. To calculate
the RAIC(q), we need to estimate the corresponding autoregressive parameters using
a suitable robust method. Martin (1980) discusses GM estimation of the autoregres-
sive parameters in an AR(q) process. Here we use this GM estimation method with
some modifications of the weight functions. Once we have the parameter estimates,
we can apply the proposed RAIC(q) criterion for choosing the appropriate order of
an autoregressive process.

A simulation has been carried out to study the performance of the robust criterion
RAIC based on samples of size n = 200. Before we study the simulation results, we
discuss the robust estimation of the autoregressive parameters in the next section.
In section 3.4, we present the simulation results comparing the performance of the
proposed robust model selection criterion with the classical AIC criterion in the
presence of innovation and additive outliers. Section 3.5 gives the conclusions of the
chapter.

3.3 GM Estimation of the Autoregressive Param-

eters

Let us recall the autoregressive model of order g defined in equation (3.1). Following
Martin (1980), the autoregressive parameter ¢ can be estimated by minimizing an
objective function of the form

— L 2 TR

H#) = 3w (——“ ) (3.8)
t=q+1

or., equivalently, by solving the GM estimating equation

n _ 4T, t—q
Y wt) v (M;gh) Y1) =0 (3.9)

t=q+1
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iteratively. Here ¢ is the derivative of the function p. Note that for the choice ¥(z) =
r and w(z) = 1 for each z, equation (3.9) gives the conditional LS estimate of the
autoregressive parameter ¢. Starting from a set of initial estimates ¢, and g of ¢ and
o, respectively, the above GM estimating equation can be solved iteratively as ¢ =
Go+ M g0, where Mo = (1/00) Sy w (878) w/{(3e — SF9i=0)/00) (0iZ9) wis))"
and qo = Yy, w (¥127) ¥((ve — D5 ¥:—1)/00) (:—1)- For the initial estimate ¢y, the
initial 0o can be obtained as oy = med |y, — @3 y,_{|/.6745. For each updated estimate
of ¢, the estimate of o should be updated accordingly. The weights w(x) are chosen

as
w(x) = w(x, S;) = min {1, (ﬁ) } (3.10)

where S; is the minimum volume ellipsoid (MV E) estimator (developed by Rousseeuw

whe

and van Zomeren, 1990) of the scale of x. « is a positive integer to be chosen as greater
than or equal to 1. b is chosen as the (1 — aq) quantile of the chi-squared distribu-
tion with degrees of freedom equal to the dimension of x. In the simulation study,
v = 2 and a9 = .05 have been used. Note that the influence function of the GM
estimates is bounded. In Chapter 4, we discuss the infinitesimal behavior of the GM
estimates based on the influence function for a general model which includes nonlinear
regression with autoregressive errors.

3.4 Simulation Study

To study the performance of the robust Akaike Information Criterion RAIC, a num-
ber of simulations have been carried out. Each simulation is based on 500 random
samples each with sample size n = 200. Samples have been drawn from the processes
AR(1) (with parameter ¢, = .6) and AR(2) (with parameters ¢, = .6 and ¢, = .3)
assuming that (1 — €) proportion of the innovation process u, in equation (3.1) comes
from N(0,1) population and € proportion of u, from N(0,72?), with 72 = 9, 25, 100.
This type of contamination is due to innovation outliers. We are interested in find-
ing the proportion of times that the RAIC is capable of choosing the true model.
For each data set, RAIC(1), RAIC(2) and RAIC(3) have been computed and the
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observed correct model is that which minimizes RAIC(q); ¢ = 1,2,3. If the true
model is AR(1), we find the proportion of times the observed correct model chooses
the true model AR(1). Similarly, for the true AR(2) model, we find the proportion
of times the observed correct model chooses the true model AR(2). We also study
the performance of the classical model selection criterion

n - 2
AIC(q)=% 3 (”L;—‘ﬂ) +q (3.11)

t=qe+1

in the presence of outliers. The classical Akaike’s Criterion amounts to choosing the
model that minimizes AIC(q).

Table 3.2 presents the simulation results based on 500 random samples each of
size n = 200 drawn from the AR(1) process with parameter ¢, = .6 in the presence of
innovation outliers. For a set of values of € (proportion of contamination) and 72 (vari-
ance of the contamination distribution), we find the success rates (the percentages of
choosing the true model) based on both the robust model selection criterion RAIC
and the classical Akaike’s Criterion AIC. It is evident that for uncontaminated data,
the performances of both the RAIC and AIC in choosing the true model are quite
satisfactory. When the proportion of contamination increases, we observe poor per-
formance in the classical AIC. On the other hand, the robust criterion RAIC is more
stable as compared to the classical AIC in selecting the correct model. However, we
observe a decreasing tendency in the success rates of RAIC when the proportion of
contamination € increases. The success rate also decreases when the variance of the
contamination distribution 72 increases.



Table 3.2: Performances of RAIC and AIC in presence
of innovation outliers. The values are the success rates

(in percentages) of choosing the true model.

Proportion of

True Model: AR(1)

Contamination =9 2=25 72 =100
€ RAIC AIC RAIC AIC RAIC AIC
0.00 910 806 908 77.2 90.2 76.2
0.03 886 704 868 642 740 51.6
0.05 858 698 796 558 734 40.2
0.10 836 624 704 426 614 21.6
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We repeat the above simulation for samples drawn from the AR(2) process with

innovation outliers. The parameters of the process were chosen as ¢; = .6 and ¢, = .3.

The simulation results are presented in Table 3.3. We observe similar behavior to Ta-

ble 3.2 for the RAIC in choosing the true model. However, the performance of the
classical AIC seems to be better for the AR(2) process than for the AR(1) process.
This is probably due to the fact that the classical AIC has a tendency to choose a
model always in higher orders. On the other hand, RAIC chooses the correct model
more frequently for all cases.

Table 3.3: Performances of RAIC and AIC in presence
of innovation outliers. The values are the success rates

(in percentages) of choosing the true model.

Proportion of

True Model: AR(2)

Contamination =9 2 =25 72 =100
€ RAIC AIC RAIC AIC RAIC AIC
0.00 918 848 896 8.0 8.8 846
0.03 880 786 8.6 732 826 664
0.05 87.2 788 828 682 770 528
0.10 846 726 768 554 67.2 382
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We also study the performance of RAIC in the presence of additive outliers. For
additive outliers, a time series process y; is not itself an AR(q) process. Instead, we
have y, = z, + z,, where z, is an AR(q) process satisfying =, = ¢Ty'Z? + u, with
u, ~ N(0,0?) and z, is an independent process. The process 2; has distribution G*
given by G* = (1 — €)dg + €G, where & is the distribution that assigns probability 1
to zero and G is an arbitrary distribution. Thus with probability (1 — €), the AR(q)
process I, itself is observed , and with probability e, y, is the AR(q) process z; plus an
error with distribution G. Here we consider G as N(0, 72), with 72 = 9,25, 100. u, is
considered to be distributed as N(0, 1), as before. Table 3.4 provides the simulation
results for samples drawn from the AR(1) process with additive outliers. We repeat
this simulation for the AR(2) process with the same additive outliers. The results
have been presented in Table 3.5. From Tables 3.4 and 3.5, it is clear that the RAIC
outperforms AIC, often quite dramatically. If we compare the simulation results for
the innovation outliers with those for the additive outliers, we observe that the clas-
sical AIC is more affected by the additive outliers than by the innovation outliers,
while RAIC is relatively stable in both cases.

Table 3.4: Performances of RAIC and AIC in presence
of additive outliers. The values are the success rates (in
percentages) of choosing the true model.

Proportion of True Model: AR(1)
Contamination 2=9 2 =25 72 =100
€ RAIC AIC RAIC AIC RAIC AIC
0.00 924 77.8 916 804 922 778
0.03 80.0 552 742 404 732 250
0.05 718 49.0 656 30.2 628 182

0.10 650 300 500 192 506 128
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Table 3.5: Performances of RAIC and AIC in presence

of additive outliers. The values are the success rates (in

percentages) of choosing the true model.

Proportion of

True Model: AR(2)

Contamination =9 =25 72 =100
€ RAIC AIC RAIC AIC RAIC AIC
0.00 912 856 914 84.2 89.2 84.2
0.03 894 630 850 326 82.0 7.2
0.05 826 456 842 200 754 3.6
0.10 77.2 16.4 744 6.2 66.6 6.2
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3.5 Discussion

From the simulation study, we observe that the overall performance of the robust
Akaike Information Criterion RAIC is better than that of the classical AIC in
choosing the appropriate order of an autoregressive process. In the case of a con-
taminated time series process, the RAIC gives better results when the proportion of
contamination € and the variance of the contamination process 72 are relatively small.
Furthermore, the performance of the RAIC for a process with innovation outliers is
found to be better relative to the performance of the RAIC for a process with ad-
ditive outliers. This is perhaps reasonable, because the affect of additive outliers is
relatively large as compared to the affect of innovation outliers on the GM estimates
of time series parameters. A careful study of the breakdown properties of the GM
estimates in a time series setting is needed in order to improve the performance of the
RAIC further. Our simulation study indicates that the proportion of contamination
€ should be reasonably small for a better performance of the RAIC.

In this chapter, we focused on the model selection criterion for autoregressive pro-
cesses. It seems important to develop a robust criterion for general ARM A processes.
Note that the parameters of an ARM A process are very hard to estimate robustly
(see Ronchetti, 1997). When moving-average terms are present in a time series pro-
cess, the GM estimates result in unbounded influence function. As a consequence,
the GM estimates and the model selection criterion based on these estimates are not
tobust. So in order to develop a robust criterion for ARM A processes, it is impor-
tant to find a robust technique for estimating the corresponding ARM A components.
Much work remains to be done in this area.



Chapter 4

Robust Estimation of Nonlinear
Regression With Autoregressive

Errors

4.1 Introduction

Nonlinear regression models play an important role in many fields. The classical es-
timates of nonlinear regression are often very sensitive to outliers in the data. As a
remedy, robust versions of these classical estimates have been studied by a number
of authors. Some of the robust techniques of nonlinear regression are discussed in
Fraiman (1983), Stromberg and Ruppert (1992), Stromberg (1993). Fraiman (1983)
proposed an optimal M estimate with bounded gross error sensitivity in the case of a
nonlinear regression setting with independent errors. Stromberg and Ruppert (1992)
discuss the high breakdown point robust estimation in nonlinear regression. They
extended the idea of the finite-sample breakdown analysis from linear to nonlinear
regression. In a linear regression setting, the finite-sample breakdown point of an
estimator is defined as the smallest proportion of data that must be changed to cause
an infinite perturbation of an estimator. In nonlinear regression, Stromberg and Rup-
pert (1992) introduce the concepts of upper and lower breakdown functions to give a
new definition of the finite-sample breakdown point. Instead of defining breakdown
in terms of the estimated parameter, the breakdown point in nonlinear regression is

30
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defined in terms of the estimated regression function. Stromberg and Ruppert (1992)
pointed out that the least median squares (LM S), proposed by Rousseeuw (1984),
and the least trimmed squares (LTS) estimators in a nonlinear regression setting
have high breakdown point at most 1/2. The LMS and the LTS estimators are
defined by the minimization of the median or the trimmed mean of the squares of
the residuals, respectively. Although the LM S and the LTS estimators have high
breakdown points, they are not efficient (see Rousseeuw and Leroy, 1987). To find
an efficient as well as a high breakdown point estimator in a nonlinear regression
problem, Stromberg (1993) developed an algorithm which uses Yohai’s M M estimate
(see Yohai, 1987) starting from a high breakdown point estimate such as the LM'S
estimate. Yohai (1987) developed the M M estimate using a redescending ¥ function
such as the bisquare v function. However, the MM estimate has unbounded influ-
ence function as its influence function depends on the vector of covariates x, which
is unbounded. Yohai and Zamar (1988) introduced a new class of robust estimates
called T estimates. The 7 estimates are defined by minimizing a scale estimate 7
applied to the residuals. Here also redescending ¢ functions are used to find the 7
estimates. Like MM estimates, the 7 estimates have unbounded influence functions
in the x’s. Recently, Ferri, Kelmansky, Yohai and Zamar (1999) proposed a class of
generalized T estimates which have bounded influence function in the x’s. These es-
timates are defined by minimizing the 7 scale of the weighted residuals, with weights
that penalize high-leverage observations. Like MM and T estimates, redescending v
functions are used to obtain the generalized  estimates. Redescending ¥ functions
vanish outside some central region which are able to reject extreme outliers entirely.
However, the use of these ¥ functions may not be efficient in certain situations. Hu-
ber (1981) commented that the redescending v functions are certainly beneficial if
there are extreme outliers, but the improvement is relatively minor with respect to
the asymptotic variance and is counterbalanced by an increase of the minimax risk.
It may be shown that with a small proportion of moderate outliers, the generalized 7
estimates based on the redescending v functions are not efficient as compared to the
generalized M (GM) estimates based on the Huber’s monotone ¢ function. In this
thesis, Huber’s ¥ function has been used in the GM estimation of nonlinear regression
with autoregressive errors. A method has been developed for the joint estimation of
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the regression parameters and the autoregressive parameters of a nonlinear regression
model with autoregressive errors.

" Situations in which data are collected sequentially over time may result in sub-
stantial serial correlations in the errors. It often occurs with economic data where
the response y measures the state of a market at a particular time. Another typi-
cal example where serially correlated errors often arise is in the modeling of growth
curves to data on a single animal over a certain period. In many cases, we observe
a nonlinear relationship between the response variable y and the vector of covariates
x. We develop a generalized M (GM) estimation method for the joint estimation of
the regression parameters and the autoregressive parameters of a nonlinear regres-
sion model with autoregressive errors. In section 4.2, we introduce the proposed GM
estimation method. The resulting estimates are similar to Mallows-type GM esti-
mates. For an AR(q) process of the errors, we minimize an objective function which
is based on the robustified version of the conditional negative log-likelihood function
of Yq+1, ... ,Yn for the given values y1,... , Y

We then study the infinitesimal behavior of the robust estimates based on the
time series analogue of Hampel’s influence function in section 4.3. It is shown that
the resulting GM estimates have bounded influence functions under some regular-
ity conditions. The influence functions are derived from the time series extension of
Hampel’s influence function as described in Martin and Yohai (1986). In section 4.4,
we study the asymptotic properties of the robust estimates of nonlinear regression
in some detail. We show that under some suitable assumptions, the proposed GM
estimates of the regression parameters and the autoregressive parameters are asymp-
totically normally distributed with a certain mean vector and a covariance matrix.
To choose an appropriate order for the autoregressive error process in a nonlinear
regression setting, we extend the robust Akaike Information Criterion introduced in
chapter 3 to the case of a nonlinear regression with autoregressive errors. This ex-
tended robust criterion is presented in section 4.5.

As an application of the proposed robust method, in section 4.6 we analyze a
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ground level ozone data set which appears to have nonlinear relationship with some
meteorological variables as covariates. As the data are collected over equally spaced
time, there appears to be a significant serial correlation in the errors. Moreover, the
error process is found to be heteroscedastic with respect to the covariates. We develop
a robust technique to model the variance of the heteroscedastic errors as a function
of the covariates. Section 4.7 gives the conclusions of the chapter.

4.2 GM Estimation of Nonlinear Regression With

Autoregressive Errors
Let us consider a nonlinear regression model of the form
Y = h(x:, 8) + & (4.1)

where y, € R, x, € RP, @ € RP! and h is a deterministic model function that is
assumed to be continuous in 3 for each x,. It is also assumed that the error process
€, follows an autoregressive process of order g defined by

€ = ¢1€g_1 + ...+ ¢q€¢_q + u, (42)

where u, are assumed to be independent N(0, 0?) and ¢y, . . . , ¢, are the autoregressive
parameters. Here var(u,) = o? is considered to accommodate the heteroscedasticity
among the residuals. Using equation (4.2), (4.1) can be reexpressed as

Yo = he + 01(Ye—1 — he1) + .o+ Og(Ye—g — he—gq) + e (4.3)

where we use h, in place of h(x,; 3) for notational convenience. We can rewrite model
(4.3) in the form

Yp=p+u (t=q+1,...,n) (4.4)
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where
pe=he+ (Ut - BEEDT ¢ (4.5)

and y;~7 = (ye_y, - - - Ye—q) T, he=d = (hy_y,. .. heg)T 0= (d1,... ,04)T. Model (4.3)
can be fitted by the method of least squares. Alternatively, under normality as-
sumptions, we can maximize the conditional likelihood function of yg41, ... , ¥y given
Y1.. .. Yq. The resulting estimates are referred to as conditional ML or conditional
LS estimates. For now, we assume that o, is known. Then the conditional negative
log-likelihood function of yg+1,. .. ,yn for the given y;, ... ,y, can be expressed, up to
a constant, in the form

—logL(8:s) = % ) ; (y‘ m“‘) (4.6)

t=q+1

where 87 = (HT, ¢T) is the vector of parameters to be estimated. Here s may be
considered as a random variable containing all the elements y; and x; fort = 1,... ,n.
The maximum likelihood (ML) estimate of @ can be obtained by minimizing this
negative log-likelihood function with respect to 8. This ML estimate of @ is not
robust in the sense that arbitrarily small departures of the underlying distribution
from normality may result in arbitrarily large asymptotic variances and biases of the
estimator (Maronna, Bustos and Yohai, 1979). For a robust estimate of @, Huber
(1981) suggested minimizing a robust version of the negative log-likelihood function
in the form

. 1 - -
Hs.00= 1 3 p(4H) (@7)
t=q+

for an arbitrary continuous even function p. The commonly used forms of p function
include p(z) = 1z2, which corresponds to the normal density and

322 if |z| <k
pz) =4 2 =l < (45)

klz| — 1k* otherwise



95

which corresponds to the Huber’s least favorable distribution for location (see Huber,
1981). The most common choice of the constant k is 1.345. For the choice k = 1.345,
the corresponding location estimator has 95% efficiency at the normal model. Let
¥ be the derivative of p. Then minimization of the objective function Hj(s,#) in
equation (4.7) is equivalent to the solution of the M estimating equation

zn: " (y‘—"‘ii> % _ g, (4.9)
R o, a6

The estimates obtained by minimizing the objective function H;(s, ) or, equivalently,
by solving the estimating equation (4.9) iteratively are termed as M estimates. Note
that the M estimators bound the influence of the residuals but not the influence of
the position in the design space. It can be shown that the influence function of an
M estimator is proportional to ¥((y, — pe)/0:)(01:/36), which may be unbounded
with respect to the covariates. As a consequence, the M estimates may become
nonrobust with respect to outliers in the x-direction. To bound the joint influence of
the residuals and the position in the design space, we consider using GM estimates.
The GM estimates are obtained by minimizing an objective function of the form

H(s,0) = % Y (%‘) o (%ﬁ v,) (4.10)
t=q+1

with respect to 8, where w, = w (x;, x;_7,y;_7) and v, = v (x¢, x;_], y;_]) are termed
as weight functions. A number of choices of w; and v, are available (see Hampel et
al, 1986, p.347). The commonly used weights are the classical (w; = v, = 1) and the
Mallows (v, = 1) weights. Note that the choice w, = v, = 1 gives the M estimate
of 8. Here we consider the commonly used Mallows-type GM estimation which uses
the weight function w, and v, = 1. Thus for the Mallows-type GM estimates, the
objective function H2*(s, 8) in equation (4.10) reduces to

Ha(s,8) = % Y wp (5";—“‘) . (4.11)
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We minimize this objective function for the GM estimate of 8 based on the Huber’s p
function defined in equation (4.8). The weight function w, = w(z.) downweights the
leverage points in the design space z, = (X,,X;_1,y;_;). We use the weight function

N

w(x) = w(x,m;, S;) = min l:l' {(x - mI)TSb“l(x - m,) }

] (4.12)
as suggested by Simpson, Ruppert and Carroll (1992). Here m, and S are consid-
ered as the minimum volume ellipsoid (MV E) estimators of location and scale of
x. respectively. The MV E estimators are defined as the location and scale of the
smallest ellipsoid containing at least [(n + p + 1)/2] points, where p is the dimension
of x. (see Rousseeuw and van Zomeren, 1990). These MV E estimators of location
and scale are highly robust with a breakdown point of almost 1/2. The constant b is
chosen as the (1 —ap) quantile of the chi-squared distribution with degrees of freedom
equal to the dimension of x. The common choice of ag is .05. < is chosen as a posi-
tive integer greater than or equal to 1. Note that larger value of ~ results in smaller
value of the weight function corresponding to a leverage point. In the application sec-
tion of this chapter we analyze a data set, where we use v = 2 for the weight functions.

For the GM estimate of 8, we can minimize the objective function H,(s, ) directly
or, equivalently, we can solve the GM estimating equations obtained by taking the
derivative of H,(s,®) with respect to 8 and equating to zero. Differentiating the
objective function H,(s,@) with respect to 0T = (BT, ") (which is a vector of the
regression parameter 3 and the autoregressive parameter ¢) gives the GM estimating

equations
zn: Ly (y‘ _ “‘) w2 =0 (for B) (4.13)
t=q+1 Ot Ot aﬁ

and
3 Ly (y‘ - “‘) w0 (for ) (4.14)
el o o9
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where —a%' = aﬁ ¢Ia'5;3‘ - . <pqah;1 and —1‘— = (yi=? — h{Z?). These equations
can be solved iteratively for the GM estimate of GT (,BT ¢T The above two GM
estimating equations can be expressed in the form

3 ¥y X1:6) = 0 (415)

t=q+1

where y; = (Yo ¥e-1,---,41)s Xi = (Xe,Xe-1,---,%1), Uy, X150) = (1/o) x
w(ze)w((ye — pe(ze; 0))/0:)(Oe/00) and z, = (x,,xi—%,y,-7). Note that so far we
have assumed that o, (the standard error of u;) is known. In practice, we need to
estimate o, by using a suitable technique which is usually based on the pattern of
the estimated residuals. For the choice 0, = o, we can use the median absolute de-
viation (multiplied by a tuning constant) med:|y, — f,|/.6745 (t =q¢+1,... ,n) as a
robust estimate of o. However, for a general case, estimation of o, becomes harder as
modeling of o, depends on the characteristics of the data. In the application section
of this chapter, we develop a model for estimating o, which mainly depends on the
pattern of the residuals with respect to the covariates. To solve the GM estimating
equations (4.13) and (4.14), we use the Newton-Raphson method of iteration. Using

the first order Taylor’s series approximation, the left hand side of equation (4.13) can
be approximated as

Lo (ye—pe Ope
ZZ“’( 7 )“"aﬁ

t=q+1
1 )
- — <yz #to) al‘g
te=qtl 0w 0w 9=8,
1 = Ye — #to) 3#: aliz
— -— x —
_ Z (yt ) w 32#t
t=q+1 76’ \" 70 9806" 6=00

where 87 = (BT, %) and oy are some initial values of 87 = (87,¢7) and o,

respectively. Replacing the last term in the above expression by its expectation
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(which is zero), we can write

B =B+ Mp' qio (4.16)
where
Mg = i 1 o (yz - mo) w Qe O T
- _ J e o
t=q+1 i 0w B 9B -8,
and
_ ~ 1 Ye — Heo Opse
o = E O‘zow( g )wt o8
t=q+1 0=0,

Applying similar technique, the GM estimating equation (4.14) gives

¢ = o + My g0 (4.17)
where
1\/[ i 1 wl (yt - #IO) w 3[.& al"'tT
20 = — _— T AL
Lt T g0 00 8¢ =0,
and
=1 (y—po O
20 = Z Uzow< g0 )wt d¢
t=q+1 0=0¢

The equations (4.16) and (4.17) can be solved iteratively for the GM estimates of
the regression parameter B and the autoregressive parameter ¢, respectively. The
usual choice of the initial estimates of B and ¢ are the classical least squares (LS)
estimates. However, as the LS estimates are not robust, some authors suggest using
robust estimates such as the least median squares (LMS) estimates as the initial
values of B and ¢. The estimation of o, is discussed in the application section of this
chapter where we model o, as a function of the covariates. We update estimate of o,
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for each updated estimate of 87 = (87, ¢7).

In the next section, we discuss the infinitesimal behavior of the GM estimates in
terms of their corresponding influence functions.

4.3 Influence Function of the GM Estimators

The influence function introduced by Hampel (1974) is considered as a technique of
studying the local stability of an estimator under a point-mass contamination of the
data or the underlying distribution. Hampel (1974) defines the influence function
of an estimator based on a set of independent observations yi, ... ,y, with common
distribution function F. It is assumed that the estimator T, = T,(y1,... ,Yn) may
be obtained from a functional T = T(F) defined on a space of distributions of y
by evaluating T at the empirical distribution function F, : T, = T(F,). Let F, =
(1 — €)F + €A, be a point-mass contamination of the true distribution F', where
A, is a delta function which has point-mass 1 at y and O elsewhere. Then the
influence function is the directional derivative of the functional T at F' in the direction
determined by A, :

T(F) - T(F)

[F(y;T,F) = lim -

(4.18)
Note that this approach is certainly useful in the case of an i.i.d. setting as estimators
with i.i.d. data are invariant under permutations of the data, and may be obtained
from functionals T'( F') of the marginal distribution F by evaluating T at the empirical
distribution function F,. When the estimators are based on a sequence of time
series data, the time configuration of the contaminating points will be important
in defining the influence function of a time series parameter estimate. Martin and
Yohai (1986) discuss Hampel's influence function in a time series parameter estimation
setting. Assume that the observations y; are realizations of a stationary and ergodic
process on R™°>*, with probability space (R™°**°, B, P), B being the family of Borel
sets in R™*°, with P in the set Psg of all stationary and ergodic measures on
(R™>=*>_B). Here R~ represents the space of all doubly infinite sequences such as
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(... ,¥-1,Y0,Y1,Y2,...). The influence function of a time series parameter estimate
can be defined for general functionals T'(P). Suppose, the univariate contamination
distribution F; is replaced by the process contamination measure P, = (1 —-¢€)P+e€Ay,
where in general y = (... ,y-1,%0,%1,...) € R™%, A, has unit mass at y, and P
is a measure in Psg. Assume that the time-series parameter estimate is defined for
not only stationary and ergodic measure P, but also for the contamination measure
P.=(1-€)P+eAy, 0 < e <1 Then Martin and Yohai (1986) define the time-series
analogue of Hampel's influence function in the form
T(F)-T(P)

IF(y;T, P) = lim == ——— (4.19)

provided the limit exists.

We shall use this definition to find the influence functions of the GM estimates of
nonlinear regression with autoregressive errors.

Let the observations {y;,x;} be co-ordinates of a vector-valued stationary and
ergodic process {y, X} with the measure P in Psg, wherey = (... ,y_1,%0,Y1,---)
and X = (...,X_1,Xq,Xp,...). Note that instead of the general functional T(P),
all ensuing results are for a special class of functionals T' associated with time-series
parameter estimates T,, which can be computed as a solution to the GM estimating
equation

Y Wiyl XET) =0 (4.20)
i=1

where y! = (¥i,¥i—1,... , 1) and X! = (x;,X;_1,... ,%;). The functionals ¥; and T},
are both vector-valued. The subscript ¢ on ¥; accounts for “end-effects” which vanish
after a finite number of observations for autoregressive models. The asymptotic value
T =T(P) of T, can be determined by using a fixed psi function which satisfies

‘I’i(yilv Xxl;t) = \Il(yhxiy;t) (421)

for each t and i > [ with y; = (¥:,%i-1,...) € R® and X; = (x;,Xi-1,...) € R*.
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For an AR(q) process, we can choose [ = ¢ + 1. Under suitable regularity conditions
including ergodicity, we may have

n—oc N

LS el XLe) = T LS W X g — : :
i 22 W X5 = lim 03 e Xit) = B X0, (422)

i=1

So we assume that the asymptotic value T = T(P) of the time-series estimate T, is
defined by

/ ¥(y1, Xy; T)dP(y1, X1) = 0. (4.23)

Here T is defined on P, consisting of all P in Psg for which the integral (4.23) exists
and is finite. We assume that the equation (4.23) has a unique root 8, = T'(P).

In the specific case of H,(s, 8) defined by (4.11), for a unique root 8y, the corre-
sponding objective function E[Hp,(s,8)] must be convex. In fact, E[H.(s, 8)] based
on Huber’s p function is convex and ensures a unique root 8y. Note that for the
GM estimating equations (4.13) and (4.14), the ¥; function in equation (4.20) can
be defined as (assuming var(u;)=1, for simplicity)

i(y}, XL 0) = wley(y: — (e 0) 2 424

i

where z; = (xi,x,:'{,yf:‘l’) for i > ¢+ 1, and w(z;) = w(z;,m.,S;) is defined as
in (4.12). Correspondingly, the limit ¥ function can be defined as

0
(y1, X130) = w(e)b(n - m(2:0)) 55 (4.25)
where w(z;) may be considered as a functional w(z,, m(P), S(P)) with respect to the

probability measure P. Thus under suitable regularity conditions, equation (4.19)
gives the influence function of the functional T'(P) in the form

[F(yy, Xy;T, P) = lim L =P + €Ay, x,) — T(P)

e—0 €

(4.26)
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where Ay, x, has point-mass 1 at {y;, X;} and 0 elsewhere. Therefore, using equa-
tion (4.23), the influence function of the functional T'(P) is obtained as

d

-1
IF(yl,Xl;T, P) = [— E{—‘Il(yl,xl,a) }} \Il(yl,Xl;T). (427)
06 0T

Note that this influence function is bounded in both y; and X; when w(z;,) x
E)%ul(zl;e) is bounded. For some nonlinear regression functions, the weight func-
tion w defined by (4.12) may result in unbounded influence functions of the GM
estimates in terms of unbounded values of the product w(z;) x 3%#1(21; 8). We ad-
dress this issue in the application section of this chapter and suggest a modified form
of the weight function w in the case of an unbounded influence function.

In the next section, we discuss the asymptotic normality of the GM estimates in
the case of a nonlinear regression setting with dependent errors.

4.4 Asymptotic Normality of the GM Estimators

To develop the asymptotic normality of the GM estimates, we use the approach of
mean value theorem following Domowitz and White (1982). Recall that the GM
estimate of @ can be obtained by minimizing an objective function of the form

n

Hols,6) == 3 v(30,2,0) (4.29)

t=q+1

where v(y:, 2:, 0) = w(z:)p(ye — 1¢(2¢,0)), with a weight function w and a suitable p
function. Here s can be considered as a random variable containing all the elements
z, and y,. We assume that var(y,) = o = 1, for simplicity. Under stationarity
conditions, we have

H.8) = E[H,(s,0)]
= % Z E{v(y:, z:,0)]

t=q+1
— E[v(y1,21,0)] asn — oo.
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Let us consider the functional

H(6) = lim H.(0) = E[v(y1,21,0)]. (4.29)

n—oc

We use the following general assumptions to establish the asymptotic results for the
G M estimates.

(al) The function p(x) is continuous and even in .
(a2) The function ¥(zx), derivative of p(z), is continuous, odd and bounded in r.
(a3) The weight function w(zx) is continuous in z.

(a4) The function H(0) has an identifiably unique minimizer @y, where @ is an
element of ©, a compact subset of an Euclidean space.

(ab) E { 5%\Il(y1, X1;6)‘0=00} is non-singular, where ¥(y,, X,; 0) is defined in (4.25).

(a6) The sequence v(y.,2;,0) is continuous on ©, and is a measurable function of
(yty Zt)-

(a7) The sequence v(y;, 2:,0) is continuously differentiable of order 2 in 6.

Assumptions (al)-(a3) are “very mild” assumptions in our situation. Huber’s p
and ¥ functions are both well-behaved continuous functions. Also the weight func-
tion w(z), which is considered as a function of the Mahalanobis distance as defined
in equation (4.12), is continuous in z. In assumption (ad), for the minimizer 6, to
be identifiably unique, the function H(@) must be locally uniformly strictly convex.
Note that H(8) based on Huber’s p function is convex and gives a minimizer which
is identifiably unique (see Huber, 1981 for details). Assumption (a5) is required for
the existence of the variance as well as the influence function of a GM estimator.

Assumption (a7) requires that the sequence v(y,2;,0) is continuously differen-
tiable of order 2 on ©. Note that Huber’s p function defined in equation (4.8) does



not have a continuous second derivative, which clearly violates this assumption. As a
remedy, we can consider a modified form of the Huber’s p function, which provides a
continuous second derivative. We define the modified Huber's p function in the form

[~k - Bk for z < -3k
a(@+2) —kr—Br for -3k<z< -k
pmn(2) = \ 30 for -3k <z < ik (4.30)
‘#(z"%)s‘*'kx—%k? for 3k <z < 3k
\k-": — Bk? for z > 3k.

The corresponding modified Huber’s % function can be expressed as

-k for z < -3k
ﬁ(x'*'%'ﬁ)g—k for -3k <z < -4k
vma(z) =2 for ~k <z < 3k (4.31)
—L (- +k for lk<z <3k
k for z > -g-k,
\

In Figure 4.1, the modified Huber’s p and ¢ functions are shown with their corre-
sponding original Huber’s p and v functions. Here k& = 1.345 has been used for the
p and ¥ functions. As both p functions are close to each other, we expect similar
results from the two p functions.

Note that to derive the asymptotic results for the GM estimates, we use a uniform
law of large numbers and a central limit theorem valid for time dependent data. The
key concept employed is uniform integrability to ensure the uniform convergence of
a sequence. Hoadley (1971) uses the assumption of uniform integrability to estab-
lish the asymptotic properties of an estimator in the case where the observations are
independent. White and Domowitz (1981) extend the results of Hoadley to estab-
lish asymptotic results for time dependent data. White and Domowitz impose some
mixing conditions, which restrict the memory of a process in a fashion analogous to
the role of ergodicity for a stationary stochastic process. The concepts of mixing and
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uniform integrability of a sequence are discussed below with some definitions.

Let us define two measures of dependence between g-algebras. Let B; and B, be
two o-algebras and define

®(B1,B;) = sup |P(B2 | B1) — P(B»)]
{B\€B1,B2€B2,P(B1)>0}
a(By, By) = sup |P(B1B2) — P(By)P(By)|

{B1€B),B2€82}

where P is a probability measure on a probability space (2, B, P). Intuitively, the co-
efficients ¢ and a measure the dependence of the events in B; on those in B, in terms
of how much the probability of the joint occurrence of an event in each o-algebra
differs from the product of the probabilities of each event occurring. The events in
B, and B, are independent if and only if ¢ and « are zero. The function o provides
an absolute measure of dependence, while ¢ measures dependence relative to P(B;).

Definition 4.4.1 Mixing: For a sequence of random vectors {Y;} defined on
the probability space (92, B, P), let BS be the Borel g-algebra of events generated by
{Ya.Yas1,...,Ys}. Define the mixing coefficients

6(m) = sup B(B" o0, B5.ry) 40d () = sup &(B g, BT)-

A sequence for which ¢(m) — 0 as m — oo is termed as uniform or ¢-mixing and a
sequence for which a(m) — 0 as m — oo is termed as strong or o-mixing.

The coefficients ¢(m) and a(m) measure the dependence between events separated by
at least m time periods. Thus if #(m) = 0 or a(m) = 0 for some m, events m periods
apart are independent. By allowing ¢(m) or a(m) to approach zero as m — oo, we
allow considerations of situations where events are asymptotically independent. Note
that as o(m) > a(m), ¢-mixing implies a-mixing. For a real number r, 1 < r < oo,
(i) if o(m) = O(m™") for T > 7/(2r — 1), we say that ¢(m) is of size r/(2r — 1) and
(ii) if a(m) = O(m~") for T > v/(r — 1), r > 1, we say that a(m) is of size r/(r — 1).
This definition gives precise idea about the memory of a random sequence that can be
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related to moment conditions expressed in terms of r. If r — 00, a sequence exhibits
more and more dependence, and if r — 1, a sequence exhibits less dependence. If any
sequence {Y;} is independent N(0,c2), then {Y;} has ¢(m) of size 1. If the sequence
{Y.} is a Gaussian AR(1) process, then {Y:;} has a(m) of size r/(r — 1) for any r > 1.
In fact, a(m) decreases exponentially with m for the AR(1) process. Under general
conditions, ARM A processes have exponentially decaying memories. The result for
the AR(1) process also extends to an ARM A process (White, 1984).

We state the following assumption on the mixing conditions.

(a8) The sequence v(y:, 2, 0) is either ¢-mizing, with ¢(m) of sizer/(2r—1), r > 1,
or a-mizing, with a(m) of sizer/(r — 1), r > 1.

Definition 4.4.2 Uniform Integrability: A family {X, :t € I} of integrable
random variables is said to be uniformly integrable if

limsup{/ |X,|dP:teI}=0 as K — oo.
| Xel>K

A sufficient condition for {X, : t € I} to be uniformly integrable is that E|X,|'** <
A < oo for some positive constants A and § (see Hoadley, 1971). Moreover, if
E|X.|™*" < A < oo for some r > 1 and 0 < § < r, then the integrable function
{X, : t € I} is said to be uniformly (r+0)-integrable (see Domowitz and White, 1982).
The concept of uniform integrability is important to the approach adopted here to
prove the uniform convergence of H,(s,8) and H'(s,8) to H(6) and H"(8), respec-
tively. The following assumptions of uniform integrability of a sequence v(y, z:, 8)

will be used to establish the asymptotic results of consistency and normality of a GM
estimator.

(a9) For the measurable sequence v(y,, 2z, 0), which is continuous on O,
Elv(y,,2,,0)"* < A< oo forall® €O, r>1,0< 4§ <r; that is, the sequence
v(y.. z¢, 8) is uniformly (r + 8)-integrable.
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(al0) For @ = (6y,...,6,)T, {Ov(y.,2:,0)/86:}, i = 1,...,p, are uniformly 2r-
integrable for all @ € ©, and for somer > 1.

(all) For @ = (6y,...,6,)T, {8°v(y:,2.,0)/06:80,}, i,j = 1,...,p, are uniformly
(r + d)-integrable for somer >1,0<d <r allf € O.

Assumption (a9) can be established for some specific choices of r and §. Note
that the assumption of uniform (r + §)-integrability of the measurable sequence
{v(y:, 2:,0)} requires that

sup E|v(y,2,,0) 7 < A< o
8co

for somer > 1,0 < § < r. Since v(y,2:,0) = w(z,)p(ye — 1e(2:,0)) < p(ye —
1:(2¢,0)) < (y, — pe(ze,8))?, it is sufficient to show that

sup Ely, — pe(ze, 0)*79 < 00
Py

for some r > 1,0 < § < r. As © is assumed to be a compact subset of an Euclidean
space, the above expectation may be considered as finite for some choices of r and 4.
As a simple illustration, let us consider r + 4 = 1. Then

sup Ely: — p(ze, O)I2
8

= sup / (v = Ewe)) + (E(w) — ez, 0))dP
8€©

= var(ye) +sup / (E(wr) — pue(@s, 8))%dP.
8cO

Here var(y,) is finite. As © is compact, the second term in the above equation is
also finite. Similarly, it may be shown that for some choices of r > 1,0 < 4§ < 1,
supgee Ely: — te(2e, 8)|%7+9 is finite. The value of  depends on the allowable depen-
dence in a stationary sequence.

By a similar argument, it may be shown that (al0) and (all) are also reason-
able assumptions in our situation. It will be shown that under assumptions (a7),
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(a8) and (all), H"(@) is continuous and |H"(s, 6) — E’”(G)| — 0 a.s. uniformly for
all @ € O, where H"(8) = lim,_.oc H(8) = lim,_..o E[H!(s,8)] and H!(s,0) =
(1/n) thH[u" Ve, Z¢, 0)], V' (Y, 21, 0) is the second derivative of v(y., z,, @) with re-
spect to 6.

Now, we state the following lemmas which lead to the consistency and asymptotic
normality results of the GM estimators.

Lemma 4.4.1 Let {Y;} be a scalar sequence with ¢(m) of size r/(2r —1) or a(m)
ofsizer/(r~1),r > 1, and let E(Y;) = p,. Iffor0<é <, Y 5o, (ElY: — #z|r+6/tr+6)l/r
< 00, then |% S (Yo — /,L,)| — 0 a.s. asn — o0o. (See McLeish, 1975 for proof).

Using this lemma, we obtain the following corollary.

Corollary 4.4.2 Let {Y;} be a sequence with ¢(m) of size r/(2r — 1) or a(m)
of size r/(r — 1), r > 1, such that E|Y;|™** < A < oo for 0 < § < r, and all ¢. Then
|15 (Yo — pe)| = 0as. as n — oo.

Proof: Let Y and Z be two random variables with E|Y|” < oo and E|Z|" < oo
for some r > 0. Then the “c, inequality” gives E|Y +Z|" < ¢, (E|Y|” + E|Z|"), where
¢ =1if r<1and ¢, =271 if r > 1 (White, 1984). Using this inequality, we have

El}/t _ ﬂt|r+6 < 2r+6—1 (E|K|r+6 + El#t|r+6) .

By assumption, E|Y;|"*® < A and using Jensen's inequality, we have |u,| < E|Y| <
(EIKI”’")I/(M&). This implies that for all ¢, |u,|"*® < A. Hence for all t, E|Y; —
ﬂt|r+6 < 2r+6—1(A + A) = 2r+6A. So

o

0o
z (E‘Y; —_ #2|r+6/tr+6) 1/r < 2r+5AZ t—(l+6/r) < o0

t=1 t=1

since Y ;o) t~+9/7) < oo for any (6/r) > 0. Thus the conditions of Lemma 4.4.1 are
satisfied and the result follows. W
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Note that for sequences with longer memories, r is greater, and the moment re-
strictions increase accordingly. So there is a trade-off between the amount of allowable
dependence and the sufficient moment restrictions. Corollary 4.4.2 can be extended
to the lemma below which ensures the almost sure uniform convergence of H,(s, )
to H(8), which will be required to establish the asymptotic results.

Lemma 4.4.3 Let the sequence {g:(0)} be measurable for each @ in ©, and
continuous on ©, a compact subset of an Euclidean space, uniformly in ¢, a.s. with
respect to a probability measure P. If ¢(m) is of size r/(2r — 1), r > 1, or a(m) is of
size r/(r —1), r > 1, and for all @ € ©, if E|q(8)|"** < A< oofor0<§ <r, and
all ¢, then

(a) E[q(8)] is continuous on © uniformly in ¢, and
(b) |% P ACIES E(qt(a))]l — 0 a.s. as n — oo, uniformly in 6.

Proof: (a) Since ¢(8) is continuous on ©, uniformly in ¢, a.s., for each o € O,
lim q,(8) = ¢.(60) as @ — 6, uniformly in ¢, a.s. Moreover, for each @ € © and all ¢,
q:(8) is uniformly integrable under the given assumptions. Therefore, using Theorem
A.3 (ii) of Hoadley (1971), we have lim E|q.(8) — ¢:(6q)| = 0 as @ — 8 uniformly in
t. Hence we have lim E[q,(0)] = E[q.(60)] as @ — 6 uniformly in ¢. This completes
the proof.

(b) Since under the mixing conditions, ¢(0) is assumed to be (r + §)-integrable
uniformly in £, and all @ € ©, the result follows from Corollary 4.4.2. &

This lemma will be applied to the sequence {v(y:,2:,0)} in Theorem 4.4.4 and to the
sequence {V"(y:, 2, 0)} in Theorem 4.4.7 to establish the uniform convergence of the
sequences H, (s, @) and H} (s, 0), respectively.

Now, we state the following theorem to obtain a consistency result of the GM
estimates.
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Theorem 4.4.4 (Consistency) Under assumptions (ad), (a6), (a8) and (a9),
for the GM estimator 8,, obtained by minimizing the objective function H,(s, @),
9,, — @ a.s. as n — 00.

Proof: Under assumptions (a6), (a8) and (a9), we can apply Lemma 4.4.3 to the
sequence {v(y,2:,0)} to show that H(8) = E[v(y1,21,80)] is continuous on © and
IH,,(S,B) - f—I(G)| — 0 a.s. uniformly for all @ € ©. Under assumption (a4), H(8)
has a unique minimizer @y and the result then follows from Theorem 2.2 of Domowitz
and White (1982). B

The asymptotic normality of an estimator can be obtained by taking a mean value
expansion of the first-order conditions for a minimum of H,(s,8). The mean value
expansion gives

H'(s,8,) = H'(s,00) + H"(s,8,)(8, — 8;) (4.32)

where 8, is lying on the segment connecting 6, and 6, and H] and H; are the
corresponding first and second derivatives of H, with respect to 8. The function H)
gives the Hessian of H,. From (4.32), we have

V(0r - 80) = [—H.(s,8,)] "' (VnH,(s,80)) (4.33)

since H/ (s, én) = 0 for the minimizer 8,. Now, the asymptotic normality of 8, fol-
lows if the Hessian is properly behaved, that is, if it converges appropriately and if
VvnH! (s, 8) in (4.33) has the central limit property.

Using Theorem 2.6 of Domowitz and White (1982), we state the following lemma
to establish the central limit property of /nH,(s,8).

Lemma 4.4.5 Let S, = Y, Y; and T,(n) = n-z yotn "1 Y: for a sequence
{Y;} of random variables satisfying (a) E(Y;) = 0; (b) there exists a finite and non-
zero @ such that E((T,(n))?) — Q as n — oo, uniformly in a; and (c) E|Y;* <
A < oo for all ¢t and some r > 1. If either ¢(m) or a(m) is of size r/(r — 1), then
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n‘%Q“%Sn ~ N(0,1). (For proof, see White and Domowitz, 1981).

Recall that the derivative of the objective function H,(s,8) with respect to 8 gives

VnH'(s,0) = Z w(z:) (e ﬂ,(zt,o))% (4.34)
t—q+1

where ¢ is the derivative of the function p. Under assumptions (a8) and (al0), the
sequence Y; = w(z,)¥(y: — pe(2e, 0))(0p:/90) satisfies the conditions of Lemma 4.4.5.
For S, =%, ,Y: and To(n) = n=: %" Y, we have

t=a+1

E(Y:) = Elw(ze)¥(y: — pe(ze,9))(Op:/00))]

= —(0/00)E[w(z.)p(y: — pe(2:,9))]

= —(8/98)E[w(z,)p(y1 — 11(z1,0))], under stationarity
0 at 6 =86,

Also at 8 = 8, we have

E [(Ta(n))(Tu(n))T]

e (59 (£9)]

a+n atn a+-n
"[Z EMY)+ 3 ). E(mff]
t=a+1 t=a+1 ¢/ #t=a+1
a+n

= o7t ) EWY)

t=a+1
[the cross-product term is zero since E (Y;Y,L)) = E (Y,ET (Y41 | 2es1))

and E (Yi41 | Ze4+1) is zero, and so on |
— var(Y}) asn— o0
= B[ - mim on L 2
00 06
= Q (say).
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Thus under the given assumptions, the central limit theorem applies to (1/y/n)S, =
vnH!(s,8). that is, \/nH.(s,8) ~ N(0,Q).

Now, we state the following lemma which will ensure that the Hessian converges
properly.

Lemma 4.4.6 Suppose, G,(s,0) is a measurable function on a measurable
space €2, and for each s € 2, a continuous function on ©, a compact subset of
an Euclidean space. If the function G(8) = E[Ga(s,8)] is continuous on © with
|Gnl(s.6) — G(O)I — 0 a.s. uniformly for all @ € ©, and if 8,(s) — 8y — 0 a.s., then
'Gn(s,én(s)) - G(Bo)’ — 0 a.s. (The proof is identical to that of Theorem 2.3 of
Domowitz and White, 1982).

The central limit property follows from the next theorem. In this theorem we

address the convergence of the Hessian as well as the asymptotic normality of the
G M estimates.

Theorem 4.4.7 (Asymptotic Normality) Under assumptions (al)-(all), the
central limit property of the GM estimator 8, gives

V(6. — 80) ~ N(0,V) (4.35)

where V = [—H" (o)) 1Q [~H"(80)) ~! provides the asymptotic variance of the GM
estimator 9,,.

Proof: Recall equation (4.33) of the mean value expansion. Under assumptions
(ad), (a6), (a8) and (a9), @, — B a.s. as n — oo (see Theorem 4.4.4). Under assump-
tions (a7), (a8) and (all), we can apply Lemma 4.4.3 to the sequence {v"'(y.,2:,0)}
to show that (@) is continuous on © and |H!(s,8) — H"(8)| — 0 a.s. uniformly
for all @ € ©. Now, since 9, - 0, a.s. and 8, is a suitable mean value, and since
|H/(s,8) — H"(8)| — 0 a.s. uniformly for all @ € O, using Lemma 4.4.6, we can show
that |H(s,8,) — H"(8o)| — 0 a.s. Also under assumptions (a8) and (al0), we can
apply Lemma 4.4.5 to show that the central limit theorem applies to /nH.(s,8),
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that is, /nH/.(s,80) ~ N(0,Q). Then the theorem follows from equation (4.33). W

It can be shown that the function —H"(8) = lim,_. E[—H/(s,0)] = M, where
M=E [w(zl)zlz'(yl - pl(zl,O))%f;—‘%f;—‘T]. It is important to note that the variance
function V can also be obtained from the influence function as

V=E [IF(YL,Xl;T, P) [F()'I’XHT, P)T] (436)

where the influence function IF(y,,X;;T, P) is defined in equation (4.27) for the
functional T(P) = 6. Note that since 87 = (B87,¢7), the function M can be
expressed as

M = 1‘/f11 A/[u_)
1‘/I21 1‘/[22

where
Oy Oy T
My = E [w(zl)d/(m —ul(zl,e))’(%g%l ]
Oy Oy T
A’[22 = F l:w(zl)'l/)l(yl —“l(zl’o))a—‘;l'g‘;—l ]

O QE]

My = My =E [w(zl)df’(yl —m(zl,O))gﬁ 90

with each term evaluated at @ = @g. Similarly, the function Q can be expressed as

_|Qu Qu
o= |:Q21 Q:)J
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where

Qu = E[wz(zl)wz(yl—lil(zlv ))3u13m ]

dB dps
Qn = B[uaitn - e ) 2
Qn = @ = E v - mm o) I 2|,

with each term evaluated at 8 = 6,.

The asymptotic variance V = M~! Q M~! can be estimated by its sample coun-
terpart as

V = M'QM!

A e oa=lpr. . R .-l
My M Qu Qu2| [Mu My
My, Moy Qu Q| | M2 My

where
My, = z w(z — pe(z 0))8“t Op”
- - t t\Gt, aa an
t-q+l aB 6'3
A O al-‘t
Qu = - w?(2e) 2 (ye — pe(2e, 0)) oz
t_qzﬂ a8 B

and so on, with each term evaluated at the GM estimate o = (BT &T) of the
parameter 87 = (BT, ¢7). We use 0 in place of the GM estimate 8, for notational
convenience. Note that throughout this section, we assume that var(u,) = o7 = 1, for
simplicity. In practice, o, is estimated by a suitable method which we discuss in the

application section of this chapter. For estimated 4;, the variance function V should
be estimated accordingly.
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4.5 Choosing Order of the Autoregressive Error

Process in Nonlinear Regression

We use the robust version of the Akaiki Information Criterion (RAIC) for choosing
the appropriate order of an autoregressive error process. In Chapter 3, we discussed
the RAIC in order to choose the correct order of an autoregressive process. In this
section, we extend this RAIC to the nonlinear regression with autoregressive errors.
For the nonlinear regression model (4.1), the order g of the AR(g) process {¢;} can
be determined by minimizing the robust version of the Information Criterion

RAIC(q) = (1 zn: w(z,> [ > w(z)p <——“‘(-z‘—9—)) +c,,a.,} (4.37)

t=qg°+1 t=q*+1

where z, = (x;,X;_1,¥;_1), the tuning constant ¢, = 2(n — q)/ D g 41 W(2Ze), Gyg
tr(M~1 Q) with

T = - 1 ’ yt—“t(ztaé) aﬂt%T
M = Z &—?-w(z,)w( . 59 50

t=q"+1 0=0
) = ~ 1 2 2 yt'#z(z:,é) 3ﬂt3utT
Q = X Fulw ( 5 2090 | |

t=a"+1 9=0

and ¢* is the maximum possible value of ¢ under consideration for the order of the
autoregressive error process. We choose that value of ¢ which minimizes RAIC(q)
for the best autoregressive model.

4.6 Application: Analysis of Ground Level Ozone
Data

Ozone (Os) is a trace gas in the atmosphere. The highest concentration of ozone is in

the stratosphere, where it shields the earth’s surface from harmful ultraviolet radia-
tion. At the surface, however, ozone itself is harmful, with serious impacts on public
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health and environment. Excessive tropospheric ozone concentrations, that arise as a
consequence of changes in precursor emissions, are of main concern in air pollution.
Ozone concentrations have been high enough in certain areas to be of concern for
several decades. The United States Environmental Protection Agency (USEPA) has
been trying to improve the environmental risks by developing an appropriate strat-
egy to control emission sources, which is found to be an effective way of reducing the
ozone level concentrations. The current US air pollution standard stipulates that the
daily maximum ozone concentration can exceed 120 parts per billion (ppb) only three
times in a three year period (Niu, 1996).

As ozone is a secondary pollutant, it is difficult to control the level of ozone con-
centrations. Ozone is an outcome from photochemical reactions involving precursor
pollutants. The precursors include a variety of volatile organic compounds, com-
prised mainly of nonmethane hydrocarbons, nitric oxide (NO) and nitrogen diox-
ide (NVO;). Transportation and industrial processes contribute to the emission of
both nonmethane hydrocarbons and nitrogen oxides. On the other hand, diverse
sources such as automobiles, chemical manufacturers and other facilities using chemi-
cal solvents contribute to the emission of volatile organic compounds. Along with the
sources of precursor emissions, variations in meteorological conditions also contribute
to the fluctuations of ozone level concentrations. For instance, high temperatures cou-
pled with lower wind speeds usually result in high ozone levels. A major issue in the
analysis of ozone data is how to separate trends due to the precursor emissions from
the effects of meteorological variability. Many statistical contributions are focused on
determining the relationship between ozone concentrations and meteorology. In many
cases, nonlinear regression procedures have been developed to relate the ozone con-
centrations with meteorology. Niu (1996) analyzed the daily maxima of ground level
ozone concentrations in the Chicago area of the United States . He introduced a class
of nonlinear additive models for environmental time series, in which both mean levels
and variances of the series are nonlinear functions of relevant meteorological variables.

In this section, we analyze a ozone data set observed from a meteorological site
in the Bexar County, Texas, USA. The data were collected by the Texas Natural
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Resource Conservation Commission (TNRCC) and local monitoring networks. We
take the daily maximum of hourly surface ozone concentrations (OZONE) in parts
per billion (ppb) over the ten year period 1986-1995. The corresponding five meteoro-
logical variables selected are daily maximum surface temperature (TEMP) in degrees
Fahrenheit, morning average wind speed resultant (MWS) in miles per hour, after-
noon average wind speed resultant (AWS), morning average wind direction resultant
(MWD) in degrees clockwise from true north and afternoon average wind direction
resultant (AWD).

Figure 4.2 presents the plots of daily maximum ozone concentrations against time
as well as three meteorological variables. From the time series plot of the ozone data,
we observe some seasonal pattern in the ozone concentrations. Ozone level appears
to be positively associated with temperature, and the relationship is nonlinear. Both
morning and afternoon wind speeds have negative impacts on ozone concentrations.
In fact, high temperatures along with lower wind speeds usually result in high ozone
level concentrations.

4.6.1 Model Selection

To relate the ozone concentrations with meteorology, we consider a nonlinear regres-
sion model with autoregressive errors in the form

Yo = f(xe; 8) + g9(t;9) + & (4.38)

where f(x,;3) is a nonlinear function of the meteorological variables, g(t;<) repre-
sents the trend and seasonal effects and ¢, is an autoregressive process of order q of
the form

€ = ¢1€¢_1 +...+ ¢q€t_q + Uy. (4.39)

As the daily maximum of ozone series {y} is usually nonstationary, we assume the u,’s
are independent N(0, g2), where g, can be modeled as a function of the meteorological
variables. Niu (1996) used this type of model except for the fact that instead of using
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Figure 4.2: Plots of ozone concentrations against time as well as some meteorological variables
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a nonlinear parametric model f(x;;/3), he used a nonlinear additive model for the
meteorolegical variables. By investigating the trends of ozone levels, we consider

that the meteorological variables are exponentially related to the mean ozone level
concentrations:

f(xe; B) = exp(Bo + B1z1e + BaZor + Baza + BaTae + OsTse) (4.40)

where z,, represents the daily maximum surface temperature (TEMP), z;, the morn-
ing average wind speed resultant (MWS), z3, the afternoon average wind speed resul-
tant (MWS), z4, the morning average wind direction resultant (MWD) and zs, the
afternoon average wind direction resultant (AWD) at time t. The function g(t;<)
includes the seasonal and trend terms which is assumed to be of the form

g(t;y) = ~1(t/365) + vosin(2mt/365) + yscos(2mt/365)
+y4sin(4mt/365) + yscos(4mt/365) (4.41)

where v, is a trend parameter which is of great interest in the analysis of ozone con-
centrations. The parameters v; (i = 2,...,5) represent the yearly and half-yearly
seasonal terms. Defining h, = f(x,;3) + g(t;7), the model (4.38) can be rewrit-
ten as y, = pe +u (¢t = q+1,...,n), where g, = he + (=7 — hi—)T ¢ with
®" = (41,...,d,), and u,’s are independent N(0, 0?).

Remark: Note that for the GM estimate of 87 = (8T, ~4T, ¢T) of models (4.38)
and (4.39), the corresponding influence function is unbounded as the function w(z,) x
%ul(zl, ) is unbounded (see equation (4.27)). This is due to the fact that when z;
tends to oo, the weight function w(z,) tends to zero at a slower rate as compared
to the function -a%ul(zl,a), which tends to co. For a bounded influence function of
the GM estimates, one may choose an exponentially decaying weight function once
w(zy) is small. We may consider w(z;) as small when it is less than .05.

Now, the next step is to find a suitable model for estimating o0,. Initially, we
assume that o, = o, for each t. Then o can be estimated as & = med,|y, —
f1:|/.6745, where f, is obtained by evaluating p, at the GM estimate 8. For a fixed
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o, model (4.38) was fitted assuming that the error ¢, follows an AR(1) process. For
this fitted model, we plot the standardized residuals (y. — fi;)/6 against the mete-
orological variables TEMP, MWS, AWS and MWD. The scatterplots are shown in
Figure 4.3. From the scatterplots, we certainly observe a pattern in the residuals cor-
responding to the three important meteorological variables TEMP, MWS and AWS.
The other two meteorological variables MWD and AWD were found to be insignifi-
cant and no pattern in the residuals was observed corresponding to these variables.
The scatterplot of the residuals against temperature shows that the variability in the
residuals increases for increased temperature. On the other hand, this variability
decreases when wind speed increases. In fact, high temperature coupled with lower
wind speed cause increased variability in the residuals. We consider modeling o, as
a function of the three meteorological variables TEMP, MWS and AWS. To define
a suitable model for o,, we first classify the predictor variables into different cate-
gories. For each of the three predictor variables, six class intervals were defined in
such a way that each class interval contains approximately equal number of resid-
uals. For example, for the variable TEMP, the six class intervals were defined as
{(0,63], (63, 73], (73, 80], (80, 87, (87,92], (92,120]}. Then we define a new variable
TEMP* with the values (1,...,6), where TEMP"* is 1 if the original TEMP lies in
(0,63], 2 if TEMP lies in (63, 73], and so on. Using similar technique, we define the
new variables MWS* and AWS* with possible values (1,... ,6) corresponding to the
original variables MWS and AWS. Now, for the three categorical variables, we define
a 6 x 6 x 6 cross-table with the corresponding residuals in each of the 216 cells. Then
we find the MAD (median absolute deviation) of the residuals, denoted by MAD®, in
each cell. Any cell with frequency less than or equal to 1 is ignored. Then assuming
that o, is fixed for the residuals in each cell, we consider estimating o, as (m),
from the model

MAD* = ag + a1 2] + aaz; + asz; + ay(z])(z3) + as(z])(z3) + error (4.42)

where z; = TEMP*, z; = MWS"® and zj = AWS". Note that in model (4.42), we
include the interaction effects of TEMP* with MWS* and AWS"* as these two effects
were found to be very significant. Also note that the cell frequencies in each of the
216 cells are naturally different from each other. We downweight any point with
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cell frequency less than 20 since the MAD of a small number of observations is less
reliable. A weight function w* is defined in the form

1 if ith cell frequency > 20
wi=4¢ | , (4.43)
(nh cell ;'gguencx)- otherwise.
Using these weight functions, we estimate the parameters a = (aq,...,as)? of
model (4.42) as the solution to a GM estimating equation of the form
S (’"CE—“’)) wix =0 (4.44)

where 9 is the Huber’s 9 function defined earlier, x; the i-th element of the vec-
tor of covariates TEMP*, MWS* and AWS”; 6* is the MAD of the residuals r}(a)
from (4.42) and w; is defined by (4.43). Thus o,’s are estimated as the fitted val-
ues (MA/E‘), from model (4.42). Based on these estimated 4.’s, we fit our original
model (4.38) for the estimates of the regression parameters 8 and <4, and the au-
toregressive parameter ¢ for an AR(1) process using the GM estimation technique
discussed in section 4.2. Based on the current residuals (y, — fi;), we again esti-
mate o, using the same technique as considered earlier. We continue the two steps
until a convergence criterion is met. Note that the fitting of model (4.42) is found
to be very significant as approximately 45% of the variation in the MAD"’s can be
explained by this model. The GM estimate of @ = (aq,...,as)T is obtained as
& = (1.359, 3.508, 0.881,0.770, —0.402, —0.367)7 with corresponding standard error
s.e.(&) = (1.127,0.415,0.240,0.269, 0.076,0.101)T. In Figure 4.4, we plot the stan-
dardized residuals (y;, — fi;)/d: against the meteorological variables TEMP, MWS and
AWS. Here a significant change in the pattern of the residuals is observed - the resid-
uals have increased scatter throughout the plots as compared to Figure 4.3.

In the next step, we choose an appropriate order ¢ for the AR(g) process of the
sequence {¢;}. Using the above procedure, we fit model (4.38) considering that the
process {¢, } follows an AR(q) model for ¢ = 1,2 and 3. For the AR(1) model, the cor-
responding ¢ estimate is obtained as ¢ = 0.572, whereas for AR(2) and AR(3) models
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the ¢ estimates are obtained as ¢ = (0.535,0.060)7 and ¢ = (0.530,0.039,0.040),
respectively. Then using equation (4.37), we find the corresponding robust Akaiki
Information Criterion (RAIC) for each of the three autoregressive models in or-
der to choose the correct model. The RAIC’s are obtained as RAIC(1) = 0.6795,
RAIC(2) = 0.6877 and RAIC(3) = 0.6885. As RAIC is minimum at ¢ = 1, we
choose the AR(1) model for the process {e.}.

Thus assuming that the error {¢,} follows an AR(1) process , the GM estimates
of the regression parameters and the autoregressive parameter (with standard error
in parenthesis) are obtained as in Table 4.1.

Table 4.1: Estimates of regression parameter and autoregressive
parameter (with standard error in parenthesis) for an AR(1) pro-
cess of {e:}

Parameter GM LMS One-step GM LS
estimate estimate estimate estimate

Bo 2.96753 (.096809)  3.33369  2.92015 (.094216)  3.08943 (.089046)
3, (TEMP) 0.01166 (.001105) 0.00922 0.01268 (.001082)  0.01045 (.001015)
B2 (MWS)  -0.02825 (.003397) -0.04695 -0.03273 (.003688) -0.01632 (.003067)
B3 (AWS)  -0.01331 (.003120) -0.02098 -0.01522 (.003016) -0.01438 (.002902)
Bs (MWD)  -0.00021 (.000053) -0.00007 -0.00020 (.000048) -0.00011 (.000047)
Bs (AWD)  -0.00007 (.000061) -0.00030 -0.00011 (.000058) -0.00010 (.000055)
7 (trend) -0.06675 (.160930) 0.06790  0.06510 (.194627) -0.10659 (.154025)
v2 (sinl) 3.38718 (.722034) 2.69173  3.19388 (.857380)  2.40193 (.716698)
v3 (cosl)  -0.14489 (.817089) -2.07679 0.10743 (.928384) -0.90521 (.867037)
74 (sin2) -1.31247 (.627188) -0.52545 -0.85355 (.759221) -0.92436 (.621174)
vs (cos2)  -5.76445 (.622798) -5.09578 -5.74749 (.766196) -5.35951 (.622949)
o] 0.57157 (.016534)  0.63666  0.57594 (.015956) 0.53596 (.016518)

From the GM fit, we see that the parameter estimates corresponding to the mete-
orological variables TEMP, MWS and AWS are highly significant. Temperature has
a significant positive association with the ozone level concentrations. On the other
hand. both morning and afternoon wind speed have significant negative associations
with the ozone levels. In fact, high temperature and lower wind speed are associated
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with high ozone level concentrations. The variables MWD and AWD are negatively
associated with the ozone concentrations. However, the association appears to be
insignificant for AWD. The trend coefficient +, also shows a negative effect on ozone
levels, but the effect is found to be insignificant. The estimates of the seasonal pa-
rameters v, and vs are found to be highly significant. In fact, the variability of ozone
concentrations is highly seasonal, with high variation in the summer and low variation
in the other seasons. Also the autoregressive parameter ¢, has a highly significant
estimate with the value of .57, which justifies the use of autoregressive errors in mod-
eling the ozone concentrations.

To have some idea about the potential influential observations, we consider find-
ing the weights of the GM fit. Note that the GM estimating equations (4.13)
and (4.14) can be expressed as Y_,_ ., v;(1/0:)((y: — pe)/0:)(Op:/88) = 0, where
v; = w((ye—pe) /o) /((ye—pe) /o) is the weight function at point ¢ (t = g+1,... ,n).
Also note that for the choice ¥(z) = r and w, = 1, we have v; = 1, and the GM
estimates become the classical ML estimates. In Figure 4.5, we plot the weights v; of
the GM estimates. From the plot, it is observed that some of the points are heavily
downweighted with weights less than .4. However, a considerable number of points
have larger weights with values greater than .6. The proportion of points having
weights less than .6 is approximately .2. Note that the weight function w, defined
in (4.12) is based on the common assumption that the covariates follow a multivariate
normal distribution. In our case, some of the covariates of the meteorological vari-
ables appear to have nonnormal structure. For possible improvement of the results,
we analyzed the ozone data set based on weight functions for transformed covariates
(for example, square root and log transformations). However, the results were found
to be very similar to that obtained from the weight functions for the original covari-
ates. So we choose the weight functions for the original covariates in the analysis of
the ozone data.

We also study the one-step GM estimates of the regression parameters and the au-
toregressive parameters starting from a set of high breakdown point initial estimates
such as the least median squares (LM S) estimates of Rousseeuw (1984). Simpson,
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Ruppert, and Carroll (1992) proposed the one-step GM estimation in a linear regres-
sion setting. We can extend this one-step GM estimation from linear to nonlinear
regression. Suppose 87 = (87, ¢0T) and oy are the LM S estimates of 87 = (87, ¢7)
and o, respectively. Then the one-step GM estimates of 3 and ¢ can be obtained
from equations (4.16) and (4.17) as B, = By + My qio and ¢, = @y + My g0,
respectively. The initial LM S estimates are obtained by minimizing the median of
the squares of the residuals. Here we adopt an algorithm which uses subsamples of
size [n/2] from a sample of size n. For each subsample, we find the LS estimates
of the corresponding parameters. We use half of the data points in the subsamples
based on the fact that the breakdown point of the LMS estimates is almost 1/2
in most cases. When n is large, it is computationally expensive to use all possible
subsamples of size [n/2]. So in our case, we choose N = 2000 subsamples in order to
find the approximate LM S estimates. Suppose, 8,,...,8y are the corresponding LS
estimates of @ for the /V subsamples. For each of these @'s, we find the corresponding
median of the squared residuals for the original data. The LM S estimate is chosen as
the @ which minimizes the median of the squared residuals. Using similar technique,
we find the LM S estimate oy of 0, from model (4.42). The LM S estimate and the
corresponding one-step GM estimate of @ are displayed in Table 4.1. The one-step
G M estimates are found to be very close to the fully iterated GM estimates except
for the estimates of trend parameter v, and the seasonal parameter v3. However,
these parameters appear to be insignificant in both estimation procedures.

Finally, we compare the robust estimates with the corresponding classical LS esti-
mates. Note that for the choice ¢(z) = z, w(z) = 1 and M AD = standard deviation,
the GM estimates of 87 = (87, ¢T) and o, become the classical LS estimates. The
LS estimates of @ (with standard error in parenthesis) are shown in Table 4.1. The
parameter estimates corresponding to the meteorological variables TEMP and MWS
are found to be different in the LS method as compared to the GM and one-step GM
methods. Also the estimates of the seasonal components v, 73 and v, are found to
be slightly different in the LS method. As we observe some influential observations
in the data from the weight functions in Figure 4.5, the LS estimates are naturally
affected by those points and thus result in different values as compared to the GM
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and one-step GM estimates. Ideally, robust fit is better than the classical LS fit as
the robust procedure is based on downweighting the influential observations.

4.7 Discussion

In this chapter, we study the GM estimates of the regression parameters in a non-
linear regression setting with autoregressive errors. The asymptotic behavior of the
estimates has been discussed in some detail which can accommodate a dependence
structure among the residuals. To derive the asymptotic properties of the robust es-
timates, we use a uniform law of large numbers and a central limit theorem valid for
time dependent data. The key concept employed is uniform integrability to ensure the
uniform convergence of a sequence. We also impose some mixing conditions, which
restrict the memory of a process in a fashion analogous to the role of ergodicity for
a stationary stochastic process. We show that under some regularity conditions, the
GM estimators are consistent and follow the asymptotic normal distribution with
certain mean vectors and covariance matrices. We also study the infinitesimal be-
havior of the GM estimates based on the time series analogue of Hampel’s influence
function. We show that the variance function of a GM estimator can be expressed
in terms of the corresponding influence function.

In the application section of this chapter, we develop a technique to model the
scale parameter o, as a function of the covariates. This modeling of o, is found to be
effective in accommodating the heteroscedasticity of the errors. To estimate o, Niu
(1996) proposed a model where o is exponentially related to the covariates. Initially,
we attempted to estimate o, using the model proposed by Niu (1996). However, this
model was found to be ineffective in explaining the heteroscedasticity of the residu-
als. Later, we develop a new approach which was found to be more effective than the
approach suggested by Niu (1996).

We apply the proposed GM estimation technique to the analysis of ground-level
ozone concentration. Ozone, an important indicator of air pollution, is an outcome
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from the emission of nonmethane hydrocarbons and nitrogen oxides into the atmo-
sphere. Furthermore, ozone levels are also strongly affected by the variations in me-
teorological conditions. As expected, we found from the analysis of ozone data that
ozone concentrations are positively related to daily maximum surface temperature
but negatively related to wind speed. Also the variability of ozone levels is strongly

seasonal, with high variation in the summer and low variation in the other seasons.

Recently, Ferri, Kelmansky, Yohai and Zamar (1999) introduce a new class of
robust estimates in a linear regression setting. These estimates, termed as gen-
eralized 7 (G,) estimates, are defined by minimizing the 7 scale of the weighted
residuals, where the weights penalize the influential observations. We can extend
the G, estimates from linear to nonlinear regression. Suppose, the random sam-
ple (y:.%:) (t = 1,...,n) follow the nonlinear regression model y, = h(x;;0) + u,
where u,’s are i.i.d. random variables, x,'s are p-dimensional vectors of covariates
and h is a deterministic model which is continuous in @ for each x,. Then for
some weight function w, = w(x,), we can define the weighted residuals in the form
re(0) = uw(@)w, (t =1,...,n), where u,(0) = y, — h(x:;0). The weighted M scale of
the residuals, S,(8), is defined by

= Ai(r(6)/5.(6)) = d (4.45)
t=1

for some function p} and a constant d, where d < sup, p}(z), and the loss function

p} is even, bounded, nondecreasing on [0,00). The weighted 7 scale, 7,(0), is then
defined by

75(0) = S3(6)= 3 43(ri(6)/5:(0)) (446)
t=1

where S,(0) is defined by equation (4.45) and pj is even, bounded and nondecreasing
on [0.00) and satisfies 0 < lim,—q p3(u)/u”* for some « > 0. Finally, the G, estimate
is defined by minimizing the weighted 7 scale, ® = ming 7,(8). Note that for the
choice w; = ... = w, = 1, the G, estimate reduces to the r estimate introduced by
Yohai and Zamar (1988).



91

The G, estimates are based on the strict assumption that the errors u, are i.i.d.
N(0,02) for t = 1,... ,n. However, we are dealing with a situation where the errors
are heteroscedastic, that is, we assume that the u, are distributed as N(0,0?) (see
model (4.3)). In this case, we can modify the G, estimates for known o,. If o, are
known, then we can replace r,(@) by the standardized weighted residuals r;(8) =
(u2¢(0)/o.)w, and then minimize 7,(@) with respect to 6 based on the r}(8)’s. In
practice, we need to estimate o, by using a suitable method. Estimation of o, needs
to be investigated further. A similar technique as used in the analysis of the ozone
data may be adopted to find the G, estimates of o,. As a future study, it would be
interesting to see how the G, estimates behave as compared to the GM estimates in
a nonlinear regression setting.



Chapter 5

Time Series Influence Function in

the Frequency Domain

5.1 Introduction

In chapters 2 and 4, we discussed Hampel’s influence function in order to investigate
the infinitesimal behavior of a real-valued functional T'(F'), where F' represents the
underlying distribution function. Hampel’s influence function is considered as a tool
of studying the local stability of an estimator in terms of the effect of point-mass con-
tamination of the data or the underlying distribution. Hastings (personal communica-
tion) introduced a new class of influence functions which are referred to as frequency
influence functions of a functional g(F’), where F' is now considered as the cumulative
(non-normalized) power spectrum of a time series process {z,}. Frequency influence
function is developed to investigate the behavior of the functional g( F’) in terms of the
point-mass perturbation of the cumulative spectrum F. Throughout this chapter we
will assume that F' represents the (non-normalized) cumulative power spectrum and
its derivative f represents the corresponding power spectrum of a stationary process
{z.}. In section 5.2, we give a formal definition of the frequency influence function.
Like Hampel'’s influence function, it is illustrated with some examples that show that
the asymptotic variance of an estimator can be obtained as a function of its frequency
influence function. In section 5.3, we discuss some aspects of this new idea of time
series influence functions.
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5.2 Hastings’ Frequency Influence Function

5.2.1 Power Spectrum of a Stationary Process

Let {z,} be a zero-mean stationary stochastic process. Then the (non-normalized)
power spectrum of the process {z.} at frequency w, denoted by f(w), is defined as
1 0

=5 ) e~ "™ R(r)dr (5.1)

flw)

where R(7) is the autocovariance function defined by R(7) = E(z:z:--). In fact,
f(w)dw can be considered as the average (over all realizations) of the contribution to
the total power from components in {z.} with frequencies between w and w + dw.

The integrated (or cumulative) power spectrum, F(w), defined by

Flw)= /_ " FO)dr (5.2)

is the average contribution to the total power from all components with frequencies
less than or equal to w.

Note that if {z,} is observed at a discrete set of time points, say at t = 0, £1, £2,...,
then the power spectrum f(w) in (5.1) can be expressed as

1 = —ilw
flw)= ﬁlg R()e™™, —m<w<m (5.3)
where R(l) = E(z,:T:4¢) (with E(z,) = 0) is the autocovariance function of {z.}. This

function R(!) can be reexpressed as

R() = / ) e flw)dw, [=0,+1,%2,... (5.4)

-7
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5.2.2 Frequency Influence Function

In chapter 2, we pointed out that many oceanographic measurements show the influ-
ence of discrete spectrum harmonic or tidal components and due to their relatively
large size, these can obscure other signals (with continuous spectrum) in the data.
Frequency influence function is developed to investigate the infinitesimal behavior of
a continuous spectrum time series functional in terms of the point-mass contamina-
tion of the underlying spectral distribution. Suppose, an estimate of a time series
functional g = g(F) defined on a continuous spectral distribution F' can be obtained
by evaluating g at an estimate of F. Let F(w) + eF;(w) be a contamination spectral
distribution, where Fj(w) represents the discrete spectrum of a harmonic process,
which has point-mass 1/2 at frequencies +w, that is,

0, -T<w< -w
Folw)=43 -0<w<w (5.5)
l, w<w<7w

Then the frequency influence function is defined as the directional derivative of the
functional gat e =0:

Dr(g(F) | &) = lim &£ F) = 9(F) (56)
provided the limit exists. We can argue that this frequency influence function mea-
sures the effect of an infinitesimal contamination of the underlying spectral distribu-
tion F at frequencies =& on the estimate of the time series functional g(F’), standard-
ized by the mass of the contamination. Based on this frequency influence function,
we study some properties of a number of time series functionals which are illustrated
in the following examples.

Example 5.2.1 Consider a time series functional of the form

o) = | " a(\dF(A) (5.7)

-7
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where a(\) is a function of A. Then we have

g(F +€eF;) = / ) a(Nd(F + eF5)(\)

= gF)+e [ " a(NdF5()

-

= g(F) +€(1/2) (a(—o) + a(w))

since dF(\) is 1/2 at +& and 0 elsewhere. Thus from (5.6), the frequency influence
function of g(F) is obtained as

Dr(g(F) |3) = 5 {a(~3) +a(@)}. 5.9

It is clear that Dp(g(F) | @) = Dp(g(F) | —@). Now, if
Case I. a is real and symmetric, then

Dr(g(F) | @) = a(w)
Case II. a(—w) = a*(w), where a*(w) is the conjugate of a(w), then
Dr(g(F) | @) = Rla(@)]

where R([a(w)] represents the real part of a(w).

Note that an estimate of the functional g(F) in (5.7) may be obtained by evalu-
ating g at an estimate of F' as

gnla) = /Wa(/\)l,,(/\)d,\

-

- / ’ %{a(-—/\) +a(\)} In(\)dA

-1

= [ Dr(g(F) | NIV (5.9)

-7

where I,,()) is the periodogram of a time series process at frequency A. The variance
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of the estimate g,(a) can be obtained as

ar(n@) = [ [ DrglF) INDHE(F) [w)eow (L), Lw)) drdw  (5.10)

- J -7

where Dr(g(F) | A) is the conjugate of Dg(g(F) | A). Under some regularity condi-
tions, it can be shown for a Gaussian process that

(@) = = [ De(o(F) INDHO(P) | NP (511

(see Brillinger, 1981 p.168 for details). Now, if Dp(g(F) | A) is real, the approximate
variance of g,(a) can be obtained as

Viga) =~ £ [ De(F) | NFAND (5.12)

which indicates a close relationship between the frequency influence function and the
variance of a time series functional.

Note that if we choose a()\) = e**, then equation (5.7) gives the autocovariance
function

R(l) = / i erdF(\) (5.13)

-

The corresponding frequency influence function is obtained from equation (5.8) as
Dr(R(l) | @) = coslw (5.14)

So a point-mass perturbation of the cumulative spectrum F causes a sinusoidal per-
turbation of the covariance function g(F') = R(l).
The estimate of R(l) can be obtained from equation (5.9) as

n—|l|

- 1

R(l) = - E TeTol| (5.15)
t=1
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(see Brillinger, 1981). If {z,} follows a Gaussian process, the asymptotic variance of
R(l) can be obtained from equation (5.12) as

4 [™

V(R() =~ — [ DE(RQ) [ N)f*(N)dA

-

= 4% cos? IAf2(\)dA (5.16)

Example 5.2.2 Recall the (non-normalized) power spectrum f(w) = (1/27) x

S R()e ™, —m < w < . For a stationary process {r.} (t = 1,...,n), f(w)
can be estimated by

|~
(3]
p—
=l
SN

fow)= =" R(s)e™ (5.

where m is an integer less than (n — 1). It can be shown that for a suitable choice of
m (that is, make m — oo as n — 00, but sufficiently slowly (relative to n) so that
(m/n) — 0 as n — 00), fo(w) is a consistent estimate of the power spectrum f(w)
(see Priestley, 1981). The estimate fo(w) can be regarded as a special case of the
more general form of estimate

(n—-1)
=g 3 s (5.19)

s=—(n—1)

where to recover fo(w), ¥(s) can be defined as

1(s) = {1’ for |s] < m (5.19)

0, otherwise.

Note that we can also consider other estimates of f(w) by choosing ¥(s) in such a
way that it decreases gradually rather than having the discontinuous form (5.19). In
fact. there are many different forms of y(s) that can be used, which lead to consistent
estimates of f(w) if the function vy(s) decreases at the appropriate rate. (s) is usually
considered to be a real even function of s. The estimate f (w) can be rewritten as a
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weighted integral of the periodogram I,,(w), where I,(w) can be expressed as

(n-1)

Lw)== Y R(s)e™ (5.20)

s——(n-l)

which gives

R(s) = ) L (\)e**d\ (5.21)

-7

for |s| < (n — 1). Thus from (5.18), we now have

i (n—1)
fr= [ I(A){ Y o) ﬂ"“‘*’}

s——(n—l)

which may be reexpressed as

flw)= /_ ) Wa(w = A)a(A)dA (5.22)

where the weight function

(n-1)
Wa®) == > (s)e™ (5.23)

s——(n—l)

is the (discrete) Fourier transform of the sequence {+(s)}. For most of the commonly
used sequences {7(s)}, the function W,(6) typically is concentrated near § = 0. Note
that if ¥(s) is considered as a real even function of s, then W,(9) is a real valued even
function of 9. The estimate f(w) in (5.22) can be considered as a locally weighted
average of periodograms in the neighborhood of the frequency w. A number of choices
of v(s) are available (see Priestley, 1981, p.437). It can be shown that

E[f(w)] = /‘ " Wolw = A (V). (5.24)

Now, to find the frequency domain influence function of f (w), let us consider the
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functional gn o (F) = [T Wy(w — A)dF(X). Then we have

On(F + €F3) /7r Wa(w = Nd(F + €F5)(A)

= gnu(F)+e€ ) Wa(w — A)dF5(A)

-

= gnw(F) + €(1/2)(Wo(w — @) + Wy(w + w))
Thus the frequency influence function is obtained as
Dr(gnalF) | @) = 5 (Waloo = 3) + Walw + @)} (5.25)

When we estimate the power spectrum f(w) by f(w), we can think of the frequency
influence function Dr(gn.(F) | @) as a generalized spectral window. As the weight
function W, is a real valued even function, using equation (5.11) it is easy to show
that for a Gaussian process, the asymptotic variance of the spectrum estimate f (w)
can be expressed as a function of its frequency influence function as V/( f (w)) =
(47/n) [T D#(gnw(F) | A)f2(A)dA. This variance function can be simplified as

™

Vi) = I [ wiw-npoasl [ " W2w + A) fA(N)dA

Q

-1 -

2r [*
= [ Walw = NWalw+ A)f3(A)dA

- 3;1 / ” W2(w — A fA(\)dA + 2-n’5 / Wa(w = )Wa(w + 1) fF(A)dA

Since Wo(0) — 8(8) as n — oo, the term [* W, (w — A)Wp(w + M) f2(AN)dA — 0
as n — oo unless w = 0 or =+ w. Therefore, we may write V(f(w)) = (1+
bu0x)(2m/n) [T_W2(w—A)f2(N)dA, where 8,0 is 1 at w = 0 or + and 0 elsewhere.

Note that the frequency domain influence function is directly related to the in-
fluence function of a functional in the time domain. To show this, let us recall the
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general form of a time series functional g(F') defined in equation (5.7) as

o(F) = / " A F(A)dA

-7

- /_ :a(z\){;; /_ :e-"*R(r)dr} dx
- /_ Za(,\){il;r /_ :e-ff*E(x,z,+,)dr} dx

Suppose, the time series process {z,} is contaminated by a harmonic process as z; =
z; + Acos(wt + @), where ¢ is distributed as uniform(—=, ) and is independent of
{z.}. Then we have

E(ziz),,) = E(2:Trer + A%cos(@t + @) cos(@(t + 7) + ),

the cross-product terms being zero, since {z,} and ¢ are independent. Thus for the
contaminated process {z}}, the above functional g(F) becomes

) = [ ’;a(A){zi,r /_Ze'iT*E(a:ﬁx:+,)dr}d,\

= / a(,\){%?/ e“"‘E(z,xt+,)dT}d/\

+ /" A){ 1 /°° _;TAE(A2cos(wt+<p)COS(W(t+T)+‘P))d7'} dA

-1

= g(F)+— a(A{ *cosamtr}dx

= g(F) + - { COSTA cosw'rd'r} d\

- g(p)+_/ a(N) 1[6(/\+w ) +6(A — @)}
2

= o(F)+ % x 3 [a(~2) + ()

Now, assuming A2/2 = € and letting ¢ — 0, the time domain influence function of
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the functional g(F’) can be obtained as

e—0 €

= ;5 {a(-3) +a@)}

which coincides with the frequency influence function Dp(g(F)|w) defined in (5.8).
So the frequency influence function of a time series functional can be obtained by

contaminating the original time series process or the underlying spectral distribution.

In the following example, we investigate the behavior of a time series functional
for the case when the data follow an AR(1) process.

Example 5.2.3 Let {z.} be a stationary stochastic process which follows the
AR(1) model: z, = ¢z, + u,, where u, is a purely random process with mean
0 and variance o%. For this AR(1) model, the (non-normalized) power spectrum
can be defined as f(w) = (6%/27) x (1/(1 — 2¢, cosw + ¢?)). The autoregressive
parameter ¢; is the autocorrelation function: ¢, = R(1)/R(0), where R(0) = o2, the
variance of z, and R(1) = E(z:z,-,). From Example 5.2.1, we can find the frequency
influence function of R(0) as Dr(R(0) | @) = 1. Let us consider the functionals

g1(F) = 07 = R(0) and

R1) [l e ™dF(w)

%(F) = = 7y = “Far0)

(5.26)

Then we have

JT e ™d(F + eF;)(w)

JI d(F +eF;)(w)
R(1) + ecosw

R(0) + ¢
R(1)  R(1)4+ecosw R(1)
R(0) R(0)+e€¢  R(0)
€(cosw — go(F))

qi(F) +e

g2(F+€F‘;,) =

= g(F)+



102

Thus the frequency influence function of ¢, is obtained as Dp(¢ | w) = (cosw —
o)/oz.

Now, we shall find the frequency influence function of the power spectrum f(w)
of an AR(1) model defined above. The power spectrum f(w) can be rewritten as

_oz_ 1-¢
T 211 — 20 cosw + o3

f(w) =g(F) (say) (5.27)

For the functionals g;(F) = 02 = R(0) and g:(F) = ¢ = R(1)/R(0), we already

have

Dr(@i(F)18) = pai(F+eFa)| =1

e=0
cosw — ¢y

- ad
Dp(ge(F) @) = Egz(F‘*'fF&) s p

Using these results, the frequency influence function of go(F') = f(w) can be obtained
as

. 7]
Dp(g(F) | w) = BEQ(F +€eFy) .

Dr(gi1(F) | @) 1 - ¢}
o 1 - 2¢, cosw + ¢*
+ o; [—2¢1Dr(ga(F) | @) + (1 — ¢3)2(cosw — ¢1) Dr(g2(F) | @)}
21 | 1 —2¢,cosw + @2 (1 — 2¢ cosw + ¢2)?
_ 1 v 2
©27(1 — 26, cosw + ¢2)? (1= 1)1 - 261 cosw + 1)
~2¢1(cos@ — ¢1)(1 — 2y cosw + ¢3) + 2(1 — ¢F)(cos@ — ¢1)(cosw — ¢1)]
(1 — 201 cosw + ?)(1 — 2¢; cos@ + ¢?) + 2(1 — ¢?)(cosw — @, )(cosw — ¢1)
21(1 — 2¢; cosw + ¢%)?

We have the AR(1) spectral estimate if we replace o2 by R(0) and ¢, by R(1)/R(0).
The spectral window is messy by comparison with that in Example 5.2.2, which is a
function of w — @.
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Note that the asymptotic variance of an estimate of the functional g(F’) defined
by (5.27) cannot be easily calculated. For such complicated functions, we may rely on
the Taylor’s series approximation of a time series functional. Consider the functional
g(F) and a perturbed cumulative spectrum F, : F, = F + ¢G*, where G* is an
arbitrary cumulative power spectrum. Let us define

U(e) = g(Fe) = g(F +¢G7) (5.28)
Then using 1st order Taylor’s series expansion, we have
U(1) = U(0) + U’(0) + remainder (5.29)

Equivalently, we have

g F+G)=g(F)+ %Q(F}) + remainder (5.30)
=0
Now, the second term on the right-hand side can be simplified under the assumption
that the functional g is Gateaux differentiable. Note that a functional g is said to
be Gateaux differentiable at F' if there exists a linear functional L such that, for all
Geg,

ﬁmﬂF+dG—F»—ﬂﬂ

e—0 €

=L(G-F) (5.31)

(see Huber, 1981). For a suitable measurable function ¥, the Gateaux derivative L
is usually assumed to follow

L(G - F) = / vr d(G — F). (5.32)
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So we can write

lim g(Fern) — g(Fe)

h—0 h

i 9CF + (€ + R)G") — g(F)
h—0 h

_ g IF+RGY) — 9(F)

h—0 h

- / Dr(g(F.) | \)dG*(\)

0
&g(Fe) -

provided the Gateaux derivative exists. Thus equation (5.30) gives

g(F+G*)=g(F)+ ) Dp(g(F) | A)dG*(\) + remainder (5.33)

-7

Replacing G* by G — F (G is also an arbitrary cumulative power spectrum), equa-
tion (5.33) can be rewritten as

9(G) =g(F) + ) Dgr(g(F) | A)d(G — F)(A) + remainder (5.34)

-

If G is near F, the remainder term will be negligible (see Huber, 1981 for details).
Replacing G by F', an estimate of the cumulative spectrum F, equation (5.34) gives

g(F) =g(F)+ ) Dr(g(F) | A\)d(F — F)(\) + remainder (5.35)

-7

The common choice of F' is considered as dF'(\) = f(A\)dA = I,(A)d), where I,()\)
is the periodogram of a time series process. For this choice of F, we have from
equation (5.35)

9(F) = g(F) + /_ " De(g(F) | V(La(2) = F(\))dA + remainder (5.36)

Assuming that the remainder goes to zero for sufficiently large n, the asymptotic
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variance of g(F) can be obtained as

Via(EN) = var { [ Deta(F) | N1 (5.37)
Using equations (5.10) and (5.11), we can show that for a Gaussian process, the above
variance function can be approximated as

T

VieE) =T [ Delo(F) I NDHG(F) I NF NN (539

Note that this asymptotic variance is derived from the assumption that the remainder
tends to zero for large n, which is not easy to prove. We will try to investigate the
behavior of the remainder in future.
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5.3 Discussion

Frequency influence function may be considered as a tool of studying the infinitesi-
mal behavior of a time series functional in terms of the point-mass contamination of
the underlying spectral distribution. The main difference between Hampel's influence
function in a time series setting as discussed in Martin and Yohai (1986) and Hastings’
frequency domain influence function is due to the fact that unlike Hampel's influence
function, Hastings’ frequency domain influence function is based on a particular type
of perturbations of the data or the underlying spectral distribution. For example,
frequency influence function is defined in terms of the harmonic contamination of
the data or the point-mass contamination of the underlying spectral distribution. In
Example 5.2.2, it was shown that the frequency domain influence functions can be
derived as a particular case of the time domain influence functions. To be specific,
time domain influence function reduces to frequency domain influence function in the
case where the original process {z,} is contaminated by a harmonic process {y;} as
{z. + V2¢ y.}, where y, = cos(&t + ¢) and ¢ is uniform(—, 7), independent of {z.}.
Note that in time series analysis, it is reasonable to consider harmonic contamination
of the data as we encounter this type of contaminated data in many oceanographic
measurements.

Frequency influence function is found to be useful in finding the asymptotic vari-
ance of a time series functional. In Examples 5.2.1 and 5.2.2, it was shown explicitly
that the asymptotic variance of a time series functional can be obtained as a function
of its corresponding frequency influence function. In the case of a complicated time
series functional g(F') as illustrated in Example 5.2.3, we may find the corresponding
asymptotic variance using the assumption of Gateaux differentiability of the func-
tional g. The asymptotic variance was established using the first-order Taylor’s series
expansion of the functional g. However, we found it hard to prove the required as-
sumption that the remainder of the Taylor’s series expansion is negligible for large

samples. Further study is needed here to explore the asymptotic behavior of the
remainder.



Chapter 6

Summary

6.1 Summary

In this section, we summarize the results obtained in this thesis.

In chapter 2, we focus on robust spectrum estimation and model selection in a
time series process, which is presumed to follow an ARM A process mixed with some
discrete spectrum tidal harmonic components. We develop an M estimation method
for estimating the power spectrum of the ARM A process by downweighting the ef-
fect of possible harmonic components. The proposed M estimators are based on the
robust likelihood function of the discrete Fourier transforms of a time series process.
This robust likelihood function can be related to the Huber's least favorable distri-
bution.

As pointed out earlier, many oceanographic measurements show the influence of
harmonic tidal components, and due to their relatively large size, these can obscure
other signals in the data. Our focus was on harbor seiches, which are resonant re-
sponses of harbors to external forcing. We analyze three data sets, which consist of
sea level records at Sydney, Halifax and Yarmouth harbors of Nova Scotia, Canada.
We presume that the observed sea level record consists of two parts, the tide and
the surge, the latter being the residual obtained after removing the tide from the
record. The tide consists of a number of harmonic components. Our interest is in
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the structure of the surge, in which we look for characteristics of seiche motions. As
a natural approach, one may try to remove the tidal component from the data using
a certain tidal model and then study the residual. However, the resulting residual
series often contains remnants of tidal components which are typically not distributed
in a stationary fashion. We adopt an alternative approach which downweights the
tidal components when estimating the surge. It is assumed that the surge data fol-
low an ARM A(p,q) model and our goal is to estimate the power spectrum of the
ARM A process. We develop an M estimation method which is found to be useful in
estimating the power spectrum of the surge by downweighting the effect of the tidal
component mixed with the surge. The proposed M estimators have good asymp-
totic properties. We show that the M estimators are Fisher consistent and have
bounded influence functions. Under suitable regularity conditions, the M estimators
are asymptotically normal with a certain mean vector and a covariance matrix. The
variance of the M estimators can be expressed as a function of their corresponding
influence functions. We also develop a robust model selection criterion for choosing
the appropriate orders of an ARM A process. The proposed robust model selection
and M estimation technique may be applied to a wide class of oceanographic data,
where we observe a strong presence of harmonic tidal components in the data.

In chapter 3, we introduce a robust model selection criterion in the time domain
for choosing the appropriate order of an autoregressive process. We discuss aspects
of robust estimation as well as model selection in an autoregressive process with pos-
sible time series outliers. The Akaike Information Criterion (AIC) is widely used as
a classical model selection criterion. As this classical AIC is sensitive to outliers,
robust versions of this criterion have been considered by a number of authors. We
point out some drawbacks of the existing robust model selection criterion and pro-
pose a modified version of this criterion in order to choose the correct order of an
autoregressive process.

Note that in chapter 3, we focus on the model selection criterion for autoregres-
sive processes. It seems important to develop a robust criterion for general ARM A

processes. The parameters of an ARM A process are very hard to estimate robustly.
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When moving-average terms are present in a time series process, the GM estimates
result in unbounded influence function. As a consequence, the GM estimates and
the model selection criterion based on these estimates are not robust. So in order
to develop a robust criterion for ARM A processes, it is important to find a robust

technique for estimating the corresponding ARM A components. Much work remains
to be done in this area.

In chapter 4, we develop a robust method for estimating the parameters in a
nonlinear regression setting with autoregressive errors. Nonlinear regression plays an
important role in many fields. Robust estimation in nonlinear regression has been
considered by a number of authors. Most of the robust techniques are developed in
the case of an i.i.d. setting of the residuals. But situations in which data are collected
sequentially over time may result in substantial serial correlations in the errors. We
develop a generalized M (GM) estimation method for the joint estimation of the
regression parameters and the autoregressive parameters of a nonlinear regression
model with autoregressive errors. To choose an appropriate order for the autoregres-
sive error process, we extend the robust Akaike Information Criterion introduced in
chapter 3 to the case of a nonlinear regression with autoregressive errors.

We study the infinitesimal behavior of the GM estimates based on the time series
analogue of Hampel’s influence function. The GM estimates have bounded influence
function. We also study the consistency and asymptotic normality of the GM es-
timates in some detail. To derive the asymptotic results of the estimates, we use
a uniform law of large numbers and a central limit theorem valid for time depen-
dent data. The key concept employed is uniform integrability to ensure the uniform
convergence of a sequence. We impose some mixing conditions, which restrict the
memory of a process in a fashion analogous to the role of ergodicity for a stationary
stochastic process. We show that under some regularity conditions, the GM estima-
tors are consistent and follow the asymptotic normal distribution with certain mean
vectors and covariance matrices. We also show that the variance function of a GM

estimator can be expressed in terms of the corresponding influence function.
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As an application of the proposed robust method, we analyze some ground level
ozone data which appear to have nonlinear relationship with some meteorological
variables as covariates. As the data are collected sequentially over time, there ap-
pears to be a significant serial correlation in the errors. Moreover, the error process
is found to be heteroscedastic with respect to the covariates. We develop a robust
technique to model the variance of the heteroscedastic errors as a function of the co-
variates. The analysis shows that ozone levels are strongly affected by the variations
in meteorological conditions. It is found that ozone concentrations are positively re-
lated to daily maximum surface temperature but negatively related to wind speed.

In chapter 5, we discuss a new class of influence functions introduced by Hastings
(personal communication), which are referred to as frequency influence functions of
a functional g(F), where F is considered as the cumulative (non-normalized) power
spectrum of a time series process {z,}. Frequency influence function investigates the
behavior of the functional g(F) in terms of the point-mass perturbation of the cumu-
lative spectrum F. Like Hampel's influence function, it has been shown with some
examples that the asymptotic variance of an estimator may be obtained as a function
of its corresponding frequency influence function.
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6.2 Further Research

The robust likelihood function of the discrete Fourier transforms, introduced in chap-
ter 2 for estimating the power spectrum of a time series process, can be extended to
the case of a nonlinear regression with a stationary noise process. Consider a model
of the form

yu=h(t|0)+e, t=0,...,n-1 (6.1)

where 0 is a finite dimensional parameter, h(t | 8) a nonlinear function of @ at time
t and ¢, a stationary noise process. Then the discrete Fourier transform gives

dy(w;) = dn(w; | 0) + de(w;) (6.2)

where w; = 2mj/n, j = 1,...,[(n — 1)/2]. The de(w;)’s are approximately inde-
pendent complex normals with mean 0 and variance 277 fe(w;), where f.(w;) repre-
sents the power spectrum of the noise process {¢} at frequency w;. The functional
dn(w; | @) being known up to 8, the problem can now be considered as one of non-
linear regression. Treating the d,(w;) as exactly independent complex normals with
mean dy(w; | @) and variance 27n fe(w;), we can establish the robust likelihood func-
tion of the dy(w;) following Huber’s “Proposal 2" for a location parameter. This
robust likelihood function would be able to identify and downweight any harmonic
contamination of the stationary noise process.

In chapter 5, we introduce a new class of time series influence functions in the
frequency domain. It is illustrated with some examples that the asymptotic variance
of a time series functional can be expressed in terms of its corresponding frequency
influence function. Frequency influence functions can be extended to the regression
analysis as well. In a regression model as defined in equation (6.1), it may be possible
to investigate the infinitesimal behavior of a time series functional corresponding to
the regression parameter @ in terms of the harmonic contamination of the data or the
point-mass contamination of the underlying spectral distribution.
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In chapter 4, we study the local stability of the GM estimators of nonlinear re-
gression in terms of Hampel’s influence function in a time series setting. The global
stability of the GM estimators has not been investigated in this thesis. As a tool
of studying the global stability of an estimator, its breakdown properties are inves-
tigated by many authors in the case of an i.i.d. setting. In a time series parameter
estimation setting, the breakdown properties are yet to be explored. It is important
to investigate the global stability in search of a high breakdown point robust estima-
tor of a time series parameter. Much work needs to be done in this area.
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