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Abstract

Electrocardiograms (ECGs) recorded from the body surface reflect electrical activity
of the heart. When a coronary artery is occluded, as occurs in balloon-inflation
coronary angioplasty, blood flow is suspended, cellular oxygen supplies are depleted,
and ischemia develops, altering cardiac electrical activity. The aim of this study is
to locate ischemic regions of the heart by computing an image of the potentials on
the heart surface from the body-surface ECGs. Rigorous mathematical methods are
developed, which introduce regional constraints to overcome the ill-posed nature of
this problem.

Applying analytical techniques to increase the accuracy of the discretized torso-
heart system improved a first estimate of the epicardial-potential distribution, as
tested by simulated potential distributions. The composite regional constraint—with
spatial smoothing of low-amplitude potentials, removal of spurious extrema, and tem-
poral smoothing—was developed and applied, further refining the solution. Calculat-
ing the regularization parameter with the newly introduced Slope Estimation Method
resulted in near-optimal solution for simulated potential data. This inverse solution
was successful in localizing the ischemic zone to a region perfused by the occluded
artery, and showed very good spatial agreement with localization by radionuclide
myocardial-perfusion imaging. During balloon inflation, epicardial electrograms from
the ischemic zone had ST-segment and QRS-complex changes indicative of ischemia.
Overall, the results suggest that the technique of calculating epicardial potentials
from multiple ECGs recorded on the body surface holds great promise as a noninva-
sive imaging modality.
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Chapter 1
Introduction

Electrocardiograms (ECGs) recorded on the body surface reflect electrical activity
within the heart. Standard clinical ECGs are routinely used to diagnose abnormal-
ities in electrophysiological cardiac events, and they are sufficient in many circum-
stances. Occasions do arise, however, when relevant information is located outside
the sampling area. Body-surface mapping of electrical potentials collects data from
all regions of the torso and contains valuable diagnostic information. To extract this
information requires an understanding of the relationship between this extensive set
of data and the underlying cardiac electric activity. The ability to translate this non-
invasively accessible data from the body surface to the surface of the heart would
allow better diagnosis of underlying cardiac events. Although exact transformations
of this kind are unknown, rigorous mathematical methods have been developed to
calculate estimates of the electrical activity on the heart (epicardial) surface.

Estimation techniques for noninvasively imaging epicardial potentials are solutions
to the inverse problem of electrocardiography. Difficulties arise in the computation
of these images because the problem is ill-posed; that is, small perturbations of the
potentials recorded on the body can cause large deviations in the computed epicardial
potentials. Mathematical methods which impose physiological constraints on the
solution are used to overcome this difficulty. The quality of the estimated epicardial
image depends upon the choice of these constraints.



The aim of this study was to compute, from noninvasively sampled body-surface
data, estimates of epicardial potentials that would be sufficiently accurate for use
in clinical applications. A major part of this study is concerned with an in-depth
analysis of mathematical techniques for refining the estimated epicardial-potential
images. As a result of this analysis, specific constraints were selected for assessing
the ability of these techniques to compute noninvasive images of epicardial potentials
which would successfully reflect underlying cardiac activity in patients with acute
regional ischemia induced by balloon-inflation coronary angioplasty.

The mathematical formulation of the forward problem, a prerequisite to solving
the inverse problem, is presented in Chapter 2. Chapter 3 introduces the inverse prob-
lem with Tikhonov regularization methods. Regional constraints for the estimated
epicardial images are extensively discussed in Chapter 4. Chapter 5 explores the ca-
pability of several mathematical methods to consistently determine an appropriate
regularization parameter. Based on this analysis, a specific method was selected for
use in a clinical application. Chapter 6 presents the results of applying this method
in a controlled model of acute regional ischemia. The conclusions of the completed
study are summarized in Chapter 7. In addition, Appendix A describes the tesselated
torso and epicardial surfaces required for formulation of the problem, Appendix B de-
scribes the propagation model used to create activation-wavefront maps for testing
the forward and inverse solutions, and Appendix C describes the test distributions

for single- and multiple-dipole sources.



Chapter 2

Forward Problem

2.1 Introduction

Basic methods for solving the forward problem of electrocardiography have been
known since the 1960s. Initially, the forward solution was used to calculate potentials
on the torso surface from dipolar sources located within the heart region [6, 8, 48].
Later, when inverse methods were sought for calculating potentials on the epicar-
dial surface [7, 9, 132], a transfer matrix between epicardial and torso surfaces was
required. This chapter describes the latter form of the forward problem, defined as
the calculation of torso-surface potentials from the given potentials on the epicardial
surface. The boundary-element method (BEM) for realistically shaped triangulated
surfaces (Appendix A) of the heart and torso was used.

The forward problem is first formulated for triangles, and refinements to transfer-
coefficient matrix calculations are described. Next, the test data sets of epicardial
and torso-surface potential distributions for various single-dipole or multiple-dipole
sources are described, and forward solutions are calculated, forward errors are quan-

tified, and results are presented and discussed.



2.2 Problem Formulation

The forward problem of electrocardiography can be formulated as a calculation of the
potentials #5 = (¢k,...,¢E) at m(m > n) area elements on the body surface Sg
from the observed potentials 5 = (¢}, ..., %) at n area elements on the epicardial
surface Sg.

For applications in electrocardiography, the quasistatic approximation of Maxwell’s
equations adequately describes [126] the system depicted in Fig. 2.1.

This leads to the boundary-value problem for Laplace’s equation

V-0V¢(p)=0, peB; Voé(p)-ng=0, peSp (2.1)

where B is a homogeneous and isotropic volume conductor (the human torso) con-
taining the region of biocelectric sources H, o is the scalar conductivity of B, ¢(p) is
the electric potential at a field point p = (z, y, 2), and Sy and Sp are smooth surfaces
with unit normals ng and ng that are oriented outward with respect to region H [7].

The problem stated as Eq. 2.1 can be solved for an arbitrarily shaped volume
conductor by means of either a finite-element [140, 142, 162] or boundary-element
5, 6, 8, 43, 48, 94] methods. The boundary-element method, which was employed in
this study, requires the application of Green’s integral identity

[ [oaz—zag|av = [ [sv: - 29| -nds 22)

to transform Eq. 2.1 into an equivalent boundary-integral equation for the potential
¢ at field point p on Si U Sp (7, 126]

1 1 1
2w9(p) = |65V -npdS ~ [ nV . mgdS— [ -Vén-ngds, (23

where Sg and S5 denote integration over the surfaces Sg and Sy, with the singularity
removed (thus yielding the result —2m instead of —4w [5, 29, 149]); dS = dS(q) is
the differential of the integration surface; and the term Vr~!-ndS = (1/r%)r - ndS
is the incremental solid angle df), with » = g — p being the directed distance from
the field point p to the source point g and r = |r}.



V¢p-ng=0

Figure 2.1: The volume conductor problem of interest in this study. The human
thorax B is bounded by a closed surface, Sp, and surrounded by nonconductive
air; all cardiac bioelectric sources are embedded in the region H enclosed by an
epicardial surface Sgy. The aim of the inverse problem of electrocardiography—as
it is defined in this study—is to calculate epicardial potentials, m. from measured
body-surface potentials, $5. g, the normal component of gradient of ®5 on Sg;
ng/np, outward-oriented unit normals to Sg/Sp; A¢ =0, Laplace equation applies
to region B bounded by Sy and Sp; Vég -ng =0, no current leaves region B.



If Sy and Sp are each subdivided into plane triangles A% and A%, with areas pi;
and p%;, respectively, so that
n . m -
Se=JAY and Sp=JA,
i=1 i=l

and

. 1 . 1
¢'H= T / ¢Ha'S, i=1,...,n and (b‘ =—,"’/ ¢Bd37 i=17"'7m
g Jay, Hp /AR

I7;
denote the mean potentials at these triangles, then Eq. 2.3 gives, for a centroid p; of
any triangle Ay or A},

: 1 ) s i i 1 -1 . _
~0x o /s; ‘pHdQHH+27r /Ss ¢pdQyp o /5; 7 'Vog-ngdS = 0 (24)

i _1_ i i i _L —1 . _
—dB o -/SH (bHdQBH+2ﬂ_ /S; ¢dlpp o /55 ri Vog -ngdS = 0, (2.5)

where r; = |q — p;| and dS%, denotes the solid angle subtended by a differential of
the integration surface S, at the ith centroid p; on the surface S,. The integrals in
Egs. 2.4 and 2.5 can be discretized in terms of the coefficients that depend only on
the geometry of Sg and Sy.

The discretization method must separate the potential or gradient values from the
geometric coefficients. This is accomplished by adopting the following definitions:

) 1 ) LI
-, — — d, . = o s 2.6
Pu o /SE Prdyy j;lpHH#H (2.6)
1 . moo.
o= [ $8dQUyp =) Pipdh: (2.7)
2 /;'5 ng "
——1—/ T;I'V(ﬁg -ngdS = zn:ggg[‘%, (2.8)
2r Js; ot
1 . B
—— | ¢pdQ%y =Y pipdh, (2.9)
37 Jo, #2803 Piut

A X m
—b5+5- /SE ¢pdQpp =J_§Pgs¢%1 (2.10)



1
5 / T'Vég -nydS = ZQBHF (2.11)

i=1
where T, = V¢, -ng, j=1,....,n
The argument of each of these summations can be separated into the product of
a potential on either surface or the gradient of a potential at a specific point j on
the epicardial surface and a second factor (the coefficients p, and g,’?;r) based entirely
on the geometry of Sg and Sg. In general, the g,".’é coefficient links the value of
the potential gradient (I‘j ) at point j on surface Sy to the observation point i on
surface S,, whereas p¥, is the geometric coefficient which weights the contribution
of the mean potentla.l at triangle j of surface S, to the potential at 7 on surface S;.
Thus, for example, pﬁB is the coefficient for the observation point i on the epicardial
surface and for point j on the body surface.
Applying these definitions gives the summations for each ¢ =1,...,m on Sg and

eachi=1,...,non Sy

zptfa% + ZPHHWH + Z 98T =0 (2.12)
J—l J—-l

Zpgafﬁja + Zpgﬂ‘ﬂar + Z g8gTh =0. (2.13)

=t =1 i=t

The sums in Eqs. 2.6 to 2.11 have distinct properties that reflect the geometric char-
acteristics of the volume conductor; some of these properties, stated below, can serve

as a check of the accuracy with which quadrature formulas discretize surface integrals.

1 . no )
[ A, =S, =1, pi, =L, 2.14
. /SE HH )Z;pHH Pun ( )
=1
L =3 by = (2.15)
o SB HB‘ = H.
1 1 > i
—_— l = 2-
ar [ 7745 =Yg, (2.16)
=1
1 PN~
211_ S dQBE = jglpsg = 0,, (2.17)



n
% /s; dQpp = J_%:,pga =1, php=-1L (2.18)
1=1
—— / ri'dS = Xn:g?g- (2.19)
2w Jsy =

The coefficients p¥, have been calculated in this study by means of analytical formulas
from spherical trigonometry [6]

—1 l(r3 x 7)) X (1 X 1)
—(r3 xry) - (7 X 1))

Q=(a+B8+v—7)(c-n)/lc-n|, (2.21)

@ =tan (2.20)

where 7y, 72, 73, and ¢ are vectors from the observation point to the three vertices
and the centroid of the observed triangle; § and < are determined by using formulas
analogous to Eq. 2.20, with cyclic permutations of the indices.

The coefficients g%, have been approximated by means of Radon’s seven-point
formula [32, 131, 151], as a weighted sum of the distance from the observation point—
centroid of the observation triangle—to the seven Radon points on the observed tri-
angle. The observed triangle is subsequently divided into four congruent triangles by
connecting the mid-points of the sides, and, after a weighted sum is calculated for
each subtriangle, the result is compared to that of the previous step. The procedure
is repeated until the estimate stabilizes. To check the accuracy of Radon’s formula,
Hordgek and Clements [71] used it to calculate p and found that calculations in
double precision yielded row sums that agreed with Egs. 2.14, 2.15, 2.17, and 2.18 to
five decimal places for the respective P matrices. When the observation triangle is
the observed triangle, then a singularity arises when one tries to calculate 1/r for the
centroid. MacLeod [97] has developed a semianalytical method for integrating the
function d¥ = dS/r in this special case, derived from the formula used by Barr et al.
[7], who approximated each triangle by a sector S and placed an observation point p
on a line perpendicular to S, through the center of the circle, at a distance d.

/ rldS =362, (2.22)



where O is an angle subtended by S, and S~ denotes integration over the sector’s
surface with the singularity removed. This expression can be used to derive an es-
timate for the %, terms in Eq. 2.22 for i = j. One can approach the problem of
determining an equivalent radius of the triangle by first noting that the area of a

circular sector Ar is
_ Orr

Ar 2

rTGT = \/ 2ATO'[', (2.24)

and, by substitution into (2.22), one gets the surface integral over triangle A%,

iH}I = " ri“dS = \/2.41'0'1". (2.25)
H

Thus, only the area of the triangle and the angle subtended by the two sides which

(2.23)

from which one can write

join at the observation point i are required to estimate g .

One can improve the accuracy of this estimate by dividing the original triangle
into subtriangles about the observation point i; the resulting subtriangles better ap-
proximate the circular sector, which is still the basis of this solution. In computing
g% i, one can successively bisect the base angle # and recalculate the integrals for the
resulting subtriangles. The sum of these values is the estimate of the total integral
and is compared with that of the previous iteration until the difference drops below a
predefined value. This approach was implemented as follows: a vector 5 was anchored
at the observation point (vertex 1) and was swept through the triangle from vertex
2 to vertex 3 in N equiangular increments. The sides of the triangle were defined as
vectors @, 3, and ¢, opposite vertices 3, 1, and 2, respectively. As g sweeps through
the triangle, it makes an angle §; with side a. Side b can be viewed as the base of
the triangle and the height relative to this base as h. With a defined as the angle
between A and side e, g makes an angle a — v; with &, and one can write for the

magnitude of g, X

= T (2.26)

Pi
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Each increment made by j through the triangle defines another subtriangle made up

of the vectors g; and g;—, The area of this subtriangle is

A= &/’2-21_51‘”5, (2.27)
where § is the angle subtended at each increment (that is, where 6; = §;_; + 4 and

d =8/N).

One can apply Eqs. 2.26 and 2.27 to each subtriangle and calculate the sum for
the whole triangle. This yields for any triangle A%, in which one of the vertices is the
observation point

i —18ind

i T ~ z J264; = V28 Zl Lif—t 772 = = Vbsind Zl AP, (2.28)

J=1 = =
where N is the number of subtriangles into which A}, has been divided.
Returning to the system defined by Eqs. 2.12 and 2.13, this system can be de-

scribed in matrix notation as
Prpinxm)®8 + Paa(nxn)®H + Gaamxn)La =0 (2.29)
Pgpimxm)®B + PH(mxn)®xa + GBHmxn)L & =0, (2.30)
for matrices P, and G,g, where ®5 = (¢},...,9%), Bx = (¢},..-,0%) and Ty =
(Tk,...,T'%), or more simply, in the form
Zggxz =b. (2.31)

The approach to solving the system defined by Eqs. 2.29 and 2.30 which has been
employed by Barr et al. [7] has been, first, to reduce the size of the discretized system
by solving Eq. 2.29 for Ty = —Ggy(Pup®s + Pyg®x) and, then, to substitute the
result into Eq. 2.30 to obtain the (m x n) system

Zgp®u = (Psp — GeaGryPus) (GeaGryPun — Per)®a = 8p.  (2.32)

In an attempt to reduce the size of the system to be solved even further, Barr et
al. {7] used node-to-node discretization, and their original technique has been further
refined by other investigators [72, 103, 105, 125].
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2.3 Towards Increased Quadrature Accuracy

Horédéek and Clements [71] found that the triangle-to-triangle method produced lower
forward and inverse errors than the node-to-node system for the single central dipole
and three eccentric dipole sources they examined. Expanding the tesselation to triple
the number of triangles decreased forward errors, but not inverse errors. Based on
these results, they concluded that better accuracy in the quadrature achieved by the
triangle-to-triangle formulas was responsible for the increased accuracy of the inverse
solution. This result raised the question of whether additional refinements to the
quadrature will further improve forward and, especially, inverse accuracy, and the
accompanying question of if, or how, this can be achieved.

First consideration was given to the method for calculating G matrices. Although
all P matrix calculations are using an analytical formula, semianalytical methods have
been used to calculate G matrices. In an attempt to increase quadrature accuracy in
calculating the G matrices, an analytical solution to the integral of dS/r introduced
by Ferguson et al. [44] (whose work expanded on that of Kuwahara and Takeda [89]
and de Munck [33]) was adopted.

The problem can be stated as follows: For a given observation point  and a plane
triangle with vertices (z,, z3, 3), determine the shortest vector ¢ which intersects
the point and the plane of the triangle. Define vectors from the intersection point A
to the three vertices of the triangle as ¢;, ¢;, c3 and vectors from the observation point

to the vertices of the triangle as y,,¥,,y¥;- Then the following equations provide a

solution:
Bp=c-(cp X Cpy1) (2.33)
2 = 1 In ([yp-}—ll Iyp-ﬂ - ypl + Ypsr - (yp+1 - yp)) (2.34)
Iy”"'l - y"[ lyl’l IyP'H - ypl +Yp- (yp-i-l - yp)
[ -/Auk e ngn (5 / / Anpprt [—yIdS'l (2.35)
Quie =3 Vugper (2.36)

=1
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1 4 3 -
/ /Am w7 lel e +p2=2181gn (Bo) lep X | 75 (2.37)

It should be noted that no singularity arises in this formulation for the triangle-to-

triangle system. Gy and G gy matrices were constructed using this formula.

A second consideration was whether the use of the centroid of the observation
triangle to represent the mean value of the given integral over the observation triangle
was a sufficiently accurate procedure. Tesselated triangles were formed to give a
sufficiently accurate representation of the torso and epicardial surfaces. However, the
triangles are not small enough to make values for solid angles and dS/r nearly constant
for any point of the observation triangle. To test whether it was possible to improve on
the centroid method, a double integral calculation method was implemented, where
values were calculated for the seven Radon-point locations within the observation
triangle and a weighted mean was determined. (It should be noted that the centroid
is one of the Radon points.) The matrices Pgy, Pep, Puy, Pus, Guny and Gy were
all calculated using this double integral method.

Next, using a further expansion of this method, each observation and observed
triangle was divided into 16 equiarea triangles, with the seven-Radon-point method
then being used to calculate all coefficients. _

All Ps and Gs for original semi-analytically computed Gs (G0) and new analyt-
ically computed Gs (G1) with the centroid method (Centroid) and the double inte-
gral seven-Radon-point method (Radon), as well as G1 with the 16-triangle (Om16)
method were constructed. Using these matrices, five forward transfer matrices were
calculated — Z},; (GO, Centroid); Z35 (G1, Centroid); Z35 (GO, Radon); Z4, (G1,
Radon); and Z35 (G1, Oml6).

Epicardial and torso potentials were calculated for a central dipole source and
for three simultaneouly energized eccentric dipole sources with one located in the
left-ventricular midlateral wall, one in the right-ventricular midlateral wall, and one
near the left-ventricular apex. These three locations were determined by picking a
triangle in the appropriate area of the epicardial surface, moving the dipole source
inwards 10 mm along the inward-oriented normal to the triangle, and making the
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dipole direction the same as the outward normal of this triangle. Solid angles used in
the calculation of the epicardial and torso potentials for the given dipole source were
calculated using the Centroid method. To match the Radon method for the forward
problem, solid angles were also determined with the Radon method, and alternate
potentials were calculated. All subsequent test-data calculations used this method.

As a second step, two additional sources were created in the same manner, one
directed inwards from the midanterior wall along the septum, and one from the mid-
posterior wall along the septum. These five eccentric sources were simultaneously
energized.

The third step was to examine the results for individual dipole sources distributed
throughout the heart. To obtain an extensive distribution over the entire epicardial
surface, dipoles were located as described above, but for all 400 triangles of the
tesselated epicardial surface. To represent different depths, dipoles were placed at
10-mm, 7.5-mm, 5.0-mm, and 2.5-mm depths from the epicardial surface into the
ventricular wall along the normal for the given triangle, for a total of 1,600 separate
dipole sources. For this data set, the node-to-node method was also applied to check
whether the triangle-to-triangle method’s superiority was retained for this distribution
of sources.

The fourth step was to use simulated time sequences of the sources. This fourth
set of data was generated by the anisotropic model of human ventricular myocardium
(Appendix B). Dipole sources were calculated from the model’s output (in terms of
intracellular potential for every cell of the model) at sequential time steps of 2 ms.
Sequences for a septal activation site and for a basal site (left postero-paraseptal site
in Hren et al. [73]) were created for 36 time instants, at 2-ms time steps, from 2 ms
to 72 ms.
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2.4 Results

Table 2.1 displays the relative error (RE) and correlation coefficient (CC) values! for
the one- and three-dipole source distributions used by Horiéek and Clements [71].
Results for the Z},(G0, Centroid) and Z3;(G1, Centroid) systems matched those
they reported. Because the GO and G1 systems yielded virtually identical results—in
combinantion with Centroid, Radon, and Om16 methods—results will henceforth be
reported only for G1 systems. RE measures (Table 2.1) for the Z3,(G1, Radon)
system show a 37% decrease for the central dipole source and a 46% decrease for
the source consisting of three eccentric dipoles, compared to errors for the Z24(G1,
Centroid) system, with a corresponding small increase in CC. The finer Z%,(G1,
Om16) system has a slightly higher RE than that of the Radon system for the central
dipole, and a slightly lower RE for the three eccentric dipoles. The CCs for the central
dipole are equal and there is a slight increase in CC for the Z3;(G1, Om16) system
for the three-dipole source.

Table 2.2 shows similar results when the Radon method was used to calculate
potentials on the epicardial and torso surfaces. A third source with five eccentric
dipoles has been added. There is the same relationship among the different systems
here as in Table 2.1, with a 43% reduction in RE for the central dipole, 45% for the
three eccentric dipoles, and 32% for the five eccentric dipoles. A comparison between

'Two distributions of N potentials from the same surface—e.g. a priori known potentials $°?
and calculated inverse-recovered potentials $°—can be quantitatively compared by two numerical
indices: RE and CC. The RE is the root-mean-square (rms) difference of the two distributions
normalized by the rms value of the known distribution [136]:

N
2&:1 le’

The smaller the value of RE, the more similar are the two distributions. CC is calculated as the

dot-product of two vectors, $°7 and $°, normalized by the product of their magnitudes, that is
&< . or

~|etle

RE = \l il (Qf - Q‘:P)z

cc
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Table 2.1:
Error measures (RE, CC) of the forward solution using three differently
discretized torso-heart systems, for single- and multiple-dipole sources

System Source RE CcC

Z%,(G1, Centroid) 1Dip  .009195 .999968
3Dip .034316  .999432

Z}44(Gl1, Radon) 1Dip .005811 .999987
3Dip  .018395 .999869

Z%4(G1,0ml16) 1Dip .005819 .999987
3Dip .017983 .999874

G1, triangle-to-triangle system using analytical method of calculating G matrices of
transfer matrix Zg; Centroid, system using centroid of observation triangle as a sole
point from which integrals over observed triangles are determined; Radon, system using
Radon’s seven-point formula to determine double integrals over both observed and
observation triangle; Om16, system using subdivision of both observed and observation
triangle into 16 subtriangles to determine double integrals; RE, relative error; CC,
correlation coefficient; 1Dip, a single central dipole; 3Dip, three eccentric dipoles; bold
font, the best results.
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Table 2.2:
Error measures (RE, CC) of the forward solution using three differently
discretized torso-heart systems and with potentials determined by Radon’s
seven-point formula, for single- and multiple-dipole sources

System Source RE CC

Z%4(G1, Centroid) 1Dip  .008527  .999968
3Dip  .033580  .999470
5Dip  .030697  .999535

Z44(G1, Radon) 1Dip .004871  .999989
3Dip  .018467  .999883
5Dip  .020888  .999803

Z34(G1,0ml16) 1Dip .004864 .999989
3Dip .018066 .999888
5Dip .020494 .999810

G1/Centroid/Radon/Om16, methods of discretizing torso-heart system (see the legend
of Table 2.1); RE, relative error; CC, correlation coefficient; 1Dip, a single central
dipole; 3Dip, three eccentric dipoles; 5§Dip, five eccentric dipoles; bold font, the best
results.

Tables 2.1 and 2.2 shows the error measures in the latter the same or better for all
cases, except the three-dipole source with the Radon discretization (where differences
are minute).

Table 2.3 shows forward errors for the set of 1,600 eccentric dipolar sources. Re-
sults are presented for the complete set and for subsets of 400 dipoles at each depth
with respect to the epicardial surface. These results include maximum and minimum
RE values, as well as mean and median values with their standard deviations. We
again see that Radon and Om16 methods yielded consistently better results than the
Centroid method. The decline in mean and median RE from Centroid to Radon sys-
tems was 26% and 31%, respectively, for a 10-mm depth, 27% and 31% for 7.5-mm,
29% and 41% for 5.0-mm, and 24% and 30% for 2.5-mm depths. The decrease in RE
over all sources was 24% for the mean and 30% for the median. There was always
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a decrease in standard deviation as well. Om16 method errors were close to those
for the Radon method. An inspection of the data also shows that mean and median
errors increased as the dipole source approached the epicardial surface.

For comparison, node-to-node forward errors were calculated for the 1,600 eccen-
tric dipole sources (Table 2.4). Differences between the node-to-node and triangle-
to-triangle methods were evaluated for each source with 1,564 values of RE lower
for the Z%4(G1, Centroid) system and only 36 lower for the node-to-node system.
When node-to-node system’s REs were compared to those for the Z};(G1, Radon)
system, there were just 16 sources where the node-to-node system had smaller RE.
An examination of maximum, minimum, mean, and median RE also showed better
accuracy for the triangle-to-triangle methods.

In order to determine if results found here were due to the use of only one or
a few single-dipole sources, forward errors were calculated for two simulated time
sequences of oblique double layer sources (Appendix B). The RE results are in Table
2.5. Although calculated for a group size of 36, results are similar to those for the
1,600 single dipoles. Differences are greater and REs lower for the septal activation
sequence compared to the basal sequence.

Results for 1,600 dipole sources and time sequences of oblique double-layer sources
so far have compared systems based on group statistics. For the 1,600 dipole sources,
Table 2.6 presents results of pairwise comparison of systems and displays the number
of sources with RE smaller for system A, smaller for system B, and equal. Similar
CC results are also given. There are large differences in favour of the Radon method
when compared to the Centroid method. Note that the difference in the number of
sources with less error for the Radon method decreases as the source is moved nearer
to the epicardial surface; however, the Radon method always has the larger number
of sources with less error.

For the time-sequence data (Table 2.7), the septal activation sequence gives results
similar to those for 1,600 eccentric dipoles, whereas results for the basal activation

sequence show smaller difference between the systems.



Table 2.3:
Relative errors of the forward solution obtained using three differently
discretized torso-heart systems, for 1,600 eccentric dipole sources
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System Source MaxRE MinRE  Mean+SD Median+SD
Z%,4(G1, Centroid) 10.0-mm  .2238 0049  .0319+.0250  .0242+.0148
7.5-mm 2241 0049  .0410+.0348  .0289+.0212

5.0-mm 4192 0062  .0499+.0484  .0370+.0247

2.5-mm .3498 0057  .0565+.0445  .0444+.0312

All above  .4192 0049  .0448+.0403  .0326+£.0243

Z4x(G1, Radon)  10.0-mm  .2497 0019 .0236+.0237 .0166+.0122
7.5-mm  .1823 .0022 .0300+.0287 .0200+.0158

5.0-mm 3361 .0023 .0352+.0411 .0218+.0182
2.5-mm  .2891 .0035 .0429+.0403 .0308+.0276

All above .3361 .0019 .0329+.0350 .0210+.0179

Z3(G1, Omi6) 10.0-mm .2081 .0019  .0237+.0228  .0168%+.0124
7.5-mm .1842 0023  .0302+.0290 .0198+£.0157

5.0-mm  .3348 .0022 .0358+.0428 .0217+.0186

2.5-mm 6282  .0028  .0474+.0506  .0317+.0290

All above  .6282 0019  .0338+.0387  .0212+.0182

G1/Centroid/Radon/Om16, methods of discretizing the torso-heart system (see the
legend of Table 2.1); MaxRE/MinRE, maximal/minimal relative error within the set
of dipoles (400 at each depth, 1,600 overall); Mean, mean relative error for the given set
of dipoles; Median, median of relative errors for the given set of dipoles; SD, standard
deviation; bold font, the best results.
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Table 2.4:
Relative errors of the forward solution obtained using a torso-heart system
discretized by node-to-node method, for 1,600 eccentric dipole sources

Source MaxRE MinRE Mean+SD Median+SD

10.0-mm  1.743 0203 .1214+.1240 .0915+.0641
7.5-mm 3.193 .0154  .1889+.2179  .1516+.1087
5.0-mm 2.184 0251  .3398+.2382  .2915+.2105
2.5-mm 2.408 0724  8506+.4351  .8183+.4119

All above  3.193 0154  .3752+.3984  .2193+.2192

MaxRE/MinRE, maximal/minimal relative error within the set of dipoles (400 at each
depth, 1,600 overall); Mean, mean relative error for the given set of dipoles; Median,

median of relative errors for the given set of dipoles; SD, standard deviation; bold
font, the best resuits.

Table 2.5:
Relative errors of the forward solution obtained using three differently
discretized torso-heart systems, for two time sequences of double-layer sources

System Source MaxRE MinRE  Mean+SD Median+SD

Z%y(G1, Centroid) Septal 1188  .0092  .0313+.0235  .0220+.0182
Basal .3321 0175  .0776+.0765 .0520:+.0328

Z4y(G1, Radon) Septal .0973  .0062  .02I8+.0156  .0148+.0114
Basal .2496 0161 .0669+.0544 .0497:.0267

Z%y(Gl, Oml6) Septal .0970 .0062 .0218+.0156 .0147+.0112
Basal .2673  .0146  .0671+.0564 .0493+.0278

G1/Centroid/Radon/Om16, methods of discretizing torso-heart system (see the legend
of Table 2.1); Septal/Basal, a sequence of oblique dipolar layers generated by prop-
agated activation initiated at the septal/basal site (Appendix B); MaxRE/MinRE,
maximal/minimal relative error within the set of dipoles comprising the wavefront;
Mean, mean relative error for the given set of dipoles; Median, median of relative
errors for the given set of dipoles; SD, standard deviation; bold font, the best results.



Table 2.6:
Comparison of forward-solution errors (RE, CC) yielded by differently
discretized torso-heart systems, for 1,600 eccentric dipole sources

System RE CC

A B Source #A #B = #A #B =

(G1, Centroid) (G1, Radon) 100-mm 56 344 0 37 361 2
75>mm 70 330 0 53 347 0

50omm 82 318 0 70 330 0

25mm 141 259 0 138 262 0

All above 349 1,251 0 298 1,300 2

(Gl, Radon) (G1,Omi6) 10.0-mm 116 284 0 97 228 75
75-mm 124 276 0 106 228 56

50-mm 151 249 0 135 222 43

25-mm 232 168 0 224 166 10
Allabove 623 977 0 562 854 184

G1/Centroid/Radon/Om16, discretization methods (see the legend of Table 2.1); A/B,
torso-heart system discretized by the specified methods; #A/#B, count of cases (out
of a possible 400 or 1,600) when the RE/CC of the forward-calculated torso potentials
for system A/B is smaller/greater than that for the other system it is being compared
to; =, count of cases when the RE/CC of two compared systems are equal. RE, relative

error; CC, correlation coefficient; bold font, the best results.
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Comparison between two differently discretized torso-heart systems in terms
of forward errors (RE, CC), for two time sequences of 36 double-layer sources

System RE CC
A B Source #A #B = #A #B =
(G1, Centroid) (Gl,Radon) Septai 0 36 0 0 36 ¢©
Basal 14 22 0 14 22 0
(G1, Radon) (G1,Oml6) Septal 16 20 0 7 7 12
Basal 16 20 0 16 20 O

G1/Centroid/Radon/Om16, discretization methods (see the legend of Table 2.1); Sep-
tal/Basal, a sequence of oblique dipolar layers generated by propagated activation ini-
tiated at the septal/basal site (Appendix B); A/B, torso-heart system discretized by
the specified methods; #A /#B, count of time instants (out of a possible 36) when the
RE/CC of the forward-calculated torso potentials for system A/B is smaller/greater
than that for the other system it is being compared to; =, count of instants when
the RE/CC of two compared systems are equal. RE, relative error; CC, correlation

coefficient; bold font, the best results.
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Results so far showed a difference in forward error based on the depth of the
source within the heart. From an examination of the maximum and minimym RE
for each depth (Table 2.3), it is evident that RE also varies with location around the
heart. For example, for either of the Radon systems and dipolar sources at 10.0-mm
depth, the maximum RE is 24.97%, whereas the minimum RE is 0.19%. In Fig. 2.2,
epicardial triangles are drawn with the forward RE value identified by the nearest
integer. From the distribution of errors, it is evident that certain regions have larger
RE than others. Note that this plot does not include the 40 triangles on the A-V
“lid” that closes the ventricles.

An examination of time-sequence results shows that the maximum and minimum
RE are larger for the basal activation sequence than for the septal sequence. This
can be rationalized by the fact that the former sequence of oblique dipolar layers has,
over the 72-ms time interval, more dipole sources near the epicardial surface than the
septal sequence.

2.5 Discussion

The main purpose of the work reported in this chapter was to solve the forward
problem for torso potentials from epicardial potentials as accurately as possible, given
a tesselated model with heart and torso of realistic shape. Remarkable accuracy was
achieved by use of a triangle-to-triangle approach to the discretization problem, which
was demonstrated to outperform the corresponding node-to-node formulation.

The refinement of the forward transfer coefficient matrix Zgy, involving the re-
placement of the semianalytical method for the G matrix calculation with an analyti-
cal procedure did not result in any appreciable numerical improvement in the forward
solution. On the other hand, the analytical formula was faster to calculate, because
triangles do not have to be subdivided until the result stabilizes, and there was no
need to handle situations where the observation and observed triangles are the same

as a special case (because the centroid and seven Radon points do not coincide with
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G1/7-Rp
% forward RE

3

Figure 2.2: Mean relative errors of the forward solution for epicardial potentials, for
test distributions generated by dipoles near the epicardial surface. Percent relative
error (% RE, nearest integer) of the forward solution was evaluated, in turn, for 360
distributions generated by eccentric single dipoles placed near each triangle of the
tesselated epicardial surface at a 10-mm depth into the ventricular wall. Results were
obtained in the torso-heart system discretized by means of the G1/Radon method
(see the legend of Table 2.1).
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triangle vertices, which are the only points where a singularity would occur in the
analytical formulation).

Based on results obtained, using a weighted mean for Radon’s seven points as
the mean integral value for an observation triangle does show improvement over the
method using values for the triangle centroid to represent the mean. A longer time is
required to calculate the transfer-coefficient matrices, as seven times as many values
must be calculated; however, for the 700x400 system used here and the IBM RS/6000
computer, this does not represent an appreciable amount of time for a procedure
that needs to be performed only once. Subdividing the observation and observed
triangles into 16 equiarea triangles, and then, using the seven-Radon-point method
for calculating mean integral values for each triangle improved forward calculations
only slightly over the Radon method, and P and G matrices took a much longer time
to calculate.

Next, the relationship between source location and the relative error in the forward
solution was examined. A comparison of forward solution errors illustrates that the
amount of forward error depends on epicardial and torso surface geometry in the area
near the source, and the distance of the source from the epicardial surface. This was
demonstrated by variations in maximum, minimum, mean and median RE values for
the 1,600 dipole sources as well as the two simulated time sequences of potentials
produced by the activation initiated at a septal and a basal site, respectively.

These results demonstrate that procedures introduced here to improve the quadra-
ture for the forward problem give more accurate results. The next thing to be deter-
mined is whether or not these improvements will translate into an improved solution

of the inverse problem.



Chapter 3

Inverse Problem

3.1 Introduction

The formulation of the forward problem Az = b enables calculation of torso poten-
tials b for a given model A = Z%g,i = 1,...,5 and set of epicardial potentials z.
However, the desired goal for clinical applications is to determine the distribution of
electrical potentials on the epicardial surface, given a known torso potential distri-
bution. This problem is referred to as the inverse problem of electrocardiography for
epicardial potentials. To solve this problem is mathematically difficult, because of
the ill-conditioned nature of the transfer-coefficient matrix. Methods have been de-
veloped which handle this inherent difficulty by imposing conditions on the solution
via some form of regularization [111]. The Tikhonov regularization method has been
widely accepted for solving the inverse problem of electrocardiography [57, 155, 156],
and it will be adopted in this study as well.

This chapter will deal with Tikhonov regularization using both zero- and second-
order regularizing operators. All calculations reported in this chapter assumed a priori
knowledge of the epicardial potentials in determining the regularization parameter.
Methods for estimating this parameter without a prior: information will be dealt
with in Chapter 5. The generalized singular-value decomposition (GSVD) [1, 61] was
used for the calculation of the singular values and vectors necessary for the inversion
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process. Inverse solution errors for the test data sets introduced in Chapter 2 were
calculated by comparison of the inverse-recovered potentials with those obtained by
solving the forward problem; the latter potentials will be referred to throughout this
study as “epicardial potentials known a priori.” Subsequent sections will describe
our attempts to improve the inverse solution. Finally, the effects of distortion of the

torso potentials (by Gaussian noise) on the inverse solution will be addressed.

3.2 Tikhonov Regularization and GSVD

When Tikhonov regularization [111] is used, the original inverse problem is replaced

()= (o)} e

where ||.|| denotes the usual Euclidean norm, ¢ is the regularization parameter, and B

by the perturbed least-squares problem

. _ BRII2 21
min {|l4z - b] +t||Bmu}-,ggg,,{

isapx NN, p < N, regularizing operator. This is essentially a constrained least-squares
problem in which ||[Bz|[?> = 7 has been incorporated into the objective function
(12, 24]. Therefore, for any A € EM*N and each ¢ > 0, the solution z(t) of the
perturbed least-squares problem formulated as Eq. 3.1 satisfies the generalized normal
equations

(ATA +tBTB)x(t) = ATb. (3.2)

Zero-, first-, and second-order Tikhonov regularizing operators, B, are the identity
operator Iy, the discretized gradient operator B = V, and the Laplacian differential
operator B = A, respectively.

Let A € EM*N beany M x N (M > N) real matrix, let B € EP*Y beapxN (p <
N) real matrix of rank L < N, and let K + L be the numerical effective rank of

A
( B ) . In order to permit the generation of explicit representations for the solutions,

the solution residuals and the bounding seminorms, we make the assumption that
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K + L= N. The GSVD of A and B is then given by

A=UDRQT, B=VZRQT (3.3)

with
Ik OkxtL
o) S
D= Oax Cons z- ( LxK LxL ) ,
Ow-ryxx Op—L)xL
Owm-k-tyxk CMm-K-L)xL
R= ( Rllgxx R12gxi )
Owxx Rl )’

where Cprxr = diag(o(k+1),-- - ¥k+r)) » Sexe = diag(Bik+1),---Bx+1)) and U €

EM*M '/ ¢ EP*P and Q € EN*N have orthonormal columns. Op.k is the L x K
additive identity and R € EVN*V is a nonsing'ular upper tridiagonal matrix [3]. In

addition, the generalized singular values u; = ,3_ i=K+1,...,K + L satisfy

OSaK-H.v"'raK'i-LSlx IZ.HK-H.r'-'v,BK-i-L}O
(@)?+(8)}?=1, i=K+1,..K+L.

Since K+ L = N, ATA+tBT B is symmetric positive definite. Denoting the columns
of Y = (RQT)™" by y; and substituting Eq. 3.3 into Eq. 3.2 gives the unique solution

z(t) = Y(DTD + tMT M)~ DTUTb, (3.4)
or, equivalently,
K K+L
z(t) = ) (u: - b)y; u; - b)y;, 3.5
0 =Ylu-Bwe+ 3. (- bl (35)

where u; are the columns of U. Thus, the Tikhonov regularized solution z(£) can
be expressed simply as a vector-valued function of ¢, where o; and §; (for i = K +

-+K + L) and y; and u; - b (for ¢ = 1, ..., M) all have known fixed values. The
GSVD was computed using the LAPACK routine DGGSVD [3].
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Zero- (BO0) and second-order (B2) regularizing operators were used with each of
the Zgg,i = 1,...,5 systems defined in Chapter 2. The Laplacian operator was
calculated using the method described by Oostendorp et al. [116].

The best possible inverse solution is defined to be that for which the RE €(t) =
llz(t) — =*||/||z*|] is 2 minimum, with =* being the exact solution. If z* is known
a priori, the best-possible Tikhonov solution x(t*) to Az = b for any given b and
regularizing operator B can be determined by using Eq. 3.5 to compute the t = ¢*

which minimizes e(t).

3.3 Results

Ten separate inverse procedures were tested using the five forward triangle-to-triangle
systems, A = Z% 4,1 =1,...,5, with both zero- and second-order regularizing opera-
tors. Inverse procedures using a node-to-node method as in [71] were also tested for
both regularizing operators. As an initial test of these procedures, forward solutions
(Az) for the 1,600 eccentric single-dipole sources were used as given torso potentials,
b. The relative error (RE) of the inverse solution, with the regularization parameter
t set to zero, ranged from a minimum of .2584 x 1072 to a maximum of .7627 x 10~*
over all triangle-to-triangle systems tested. Errors for the node-to-node system were
in the same range.

Then, the best-possible Tikhonov inverse solutions—with ¢* as the regularization
parameter—were calculated from directly computed torso potentials for the central
dipole, and the three or five eccentric dipoles; RE and CC are shown in Table 3.1.
There was no difference in error values between the GO and G1 systems, and thus
results for GO systems are not shown. Both RE and CC measures clearly indicate
that the Radon method generates inverse-recovered epicardial potentials with greater
accuracy than the Centroid method. As a result of using a torso-heart system dis-
cretized with the Radon seven-point formula for both the observed and observation

triangle, the RE of inverse-recovered epicardial potentials was reduced (compared to



Table 3.1:
Error measures (RE, CC) characterizing epicardial potentials recovered by
means of the inverse solution with best-possible Tikhonov regularization of
zero and second order, for three differently discretized torso-heart systems
and potential distributions generated by single- and multiple-dipole sources

B0 B2

System Source RE CC RE CC
Z%4(Gl, Centroid) 1Dip .3623 .9321 .1133 .9936
3Dip 4661 .8848 .4200 .9083

sDip .5687 .8225 4956 .8695

Z44(G1, Radon)  1Dip .3161 .9487 .0582 .9983
3Dip .3483 .9378 2257 .9749

5Dip .4624 8882 .3422 .9415

Z%4(Gl,Omi6) 1Dip .3120 .9501 .0582 .9983
3Dip .3396 .9410 .2148 .9774

5Dip .4545 .8924 .3374 .9433

BO0/B2, zero-/second-order Tikhonov regularization; RE, relative error; CC, correlation
coefficient; 1Dip, a single central dipole; 3Dip, three eccentric dipoles; 5Dip, five eccen-
tric dipoles; G1, system using analytical method of calculating G matrices; Centroid,
system using the centroid of each observation triangle as a sole point from which the
integrals defining the elements of P and G matrices are determined by using analytical
or Radon’s seven-point formula, respectively; Radon, system using Radon’s seven-point
formula over both the observed and the observation triangle to approximate double in-
tegrals that define the elements of P and G matrices; Om16, system using subdivision
of both the observed and the observation triangle into 16 congruent subtriangles to
approximate double integrals that define the elements of P and G matrices (for all of

the above, see Chapter 2); bold font, the best results.
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that obtained with the torso-heart system generated by the Centroid method) by 13%,
25% and 19% for the single-,three- and five-dipole sources for zero-order Tikhonov
regularization, and by 49%, 46% and 31% for second-order regularization. Relative
errors obtained with Om16-discretized torso-heart system were still slightly smaller
than those for Radon system. Comparing these results with those for forward-solution
errors in Chapter 2, we see the same trends. Although RE values of the inverse so-
lution were at a higher level, the percent reduction for forward-solution error from
Centroid to Radon method was in the same range as that for inverse error. A com-
parison of regularizing operator effects shows that the second-order operator gives
smaller errors than zero-order operator, with a decrease of 69%, 10% and 13% for the
single-, three- and five-dipole sources with the Centroid method, and 82%, 35% and
26% with the Radon method.

Inverse-recovered epicardial potential maps were plotted in Fig. 3.1 for a qualita-
tive assessment of the changes due to different torso-heart systems.

Next, errors for the set of 1,600 sources were examined. These results are shown in
Table 3.2 for the zero-order regularizing operator and in Table 3.3 for the second-order
operator. Again, there was no distinguishable difference between errors for G0 and G1
systems, and thus results for GO systems are not shown. For both zero- and second-
order regularizing operators, Radon systems have smaller maximum, minimum, mean
and median RE than Centroid systems for all 1,600 sources and for each subset of
400 sources at each of the four depths into the ventricular wall. For the zero-order
operator, there was an overall reduction of 24% in mean RE and 28% in median RE.
The corresponding values for the second-order operator were 30% and 34%. Although
RE values are higher for the inverse compared to the forward solution, the percentage
decrease is in the same range for the two subsets of dipoles that are deeper in the
ventricular wall. The two subsets at the shallowest depths showed larger decreases in
RE for the forward solution.

Table 3.4 displays the results for comparisons of the two best torso-heart systems
for zero- and second-order regularizing operators. Om16 had 1,400 of the 1,600 sources
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Figure 3.1: Epicardial potential maps for qualitative assessment of the effect of im-
proved quadrature formulas (part 1). Columns show inverse-recovered epicardial
potential maps for test potential distributions generated by a single central dipole
(1-DIP) [left column], three eccentric dipoles (3-DIP) [center], and five eccentric
dipoles (5-DIP) [right]. Rows, top to bottom, correspond to inverse solution with
different torso-heart systems (G1/Cent, G1/Om16) and different regularizing op-
erators (B0/B2) as follows: G1/Centroid for B0, G1/Om16 for B0, G1/Centroid
for B2, and G1/0m16 for B2. B0/B2, zero-/second-order Tikhonov regularization;
G1/Centroid/Om16, discretization methods (see the legend of Table 3.1).



Tikhonov regularization of zero order with three torso-heart systems, for

Table 3.2:
Relative errors (RE) of inverse-recovered epicardial potentials for best-possible

1,600 eccentric dipole sources at various depths in the ventricular wall

32

System Source MaxRE MinRE  Mean®tSD  Median+SD
Z%4(Gl, Centroid) 10.0-mm  .8258  .2509  .4884+.1143  .4851:+.1292
7.5-mm  .8543 2867  .5698+.1205  .5786+.1314

50-mm 9236  .3712  .6872+.1146  .7061+.1117

2.5-mm 9742 5144  .8184:.0940  .8445+.0778

All above 9742 2509  .6410+.1669  .6446+.1937

Z44(G1, Radon) 10.0-mm  .7624  .1469 .3544:+.1121  .3401+.1140
7.5-mm 7781  .1627  4124+.1319  .4104:.1400

50-mm  .8665  .1763  .5140+.1573  .5244:+.1655

25-mm 9421 .2233  .6603+.1684  .6914+.1652

Allabove 9421  .1469  .4853+.1849  .4617+.2119

Z35(G1, Oml6)  10.0-mm .7542  .1470 .3409+.1082 .3301:+.1113
75-mm 7713 .1592 .3946+.1281 .3937+.1305

50-mm .8584 .1634 .4890+.1575 .5017+.1676

25mm  .9380 2301 .6326+.1761 .6723+.1721

All above .9380  .1470 .4643+.1822 .4348+.1971

G1/Centroid/Radon/Om16, discretization methods (see the legend of Table 3.1);
MaxRE/MinRE, maximal/minimal relative error within the set of dipoles (400 at each
depth, 1,600 overall); Mean, mean relative error for the given set of dipoles; Median,
median of relative errors for the given set of dipoles; SD, standard deviation; bold

font, the best results.



Table 3.3:
Relative errors (RE) of inverse-recovered epicardial potentials for best-possible
Tikhonov regularization of second order with three torso-heart systems, for

1,600 eccentric dipole sources at various depths in the ventricular wall

33

System Source MaxRE MinRE  Mean+SD Median+SD
Z%;(Gl, Centroid) 10.0-mm  .8047 2537  4432+.0714  .4441+.0635
7.5-mm .8393 .3265 .5589+.0726  .5667+.0653

5.0-mm .9355 .4695 .7004+.0692  .7127+.0526

2.5-mm .9865 6421 .8420+.0554  .8538+.0375

All above  .9865 2537  .6361+.1643  .6270-£.2004

Z}4(G1, Radon) 10.0-mm  .7175 .1189 .2485+.0692  .2477+.0635
7.5-mm 6341 .1920 .3520+.0767  .3608+.0830

5.0-mm 7175 .2266 .5003+.0906  .5166%.0921

2.5-mm .9029 .3328 .6851+.1029  .7131+.0778

All above  .9029 .1189 .4465+.1854  .4170+.2173

Z%4(Gl, Omi6) 10.0-mm .7109 .1183 .2393+.0692 .2358+.0664
7.5-mm  .6188 .1394 .3367+.0780 .3398+.0881

5.0-mm  .7076 .2199 .4783+.0954 .4877+.1087

2.5-mm  .9015 .2992 .6634+.1098 .6902+.0959

All above .9015 .1183 .4294+.1830 .3979+.2092

G1/Centroid/Radon,Om16, discretization methods (see the legend of Table 3.1);
MaxRE/MinRE, maximal/minimal relative error within the set of dipoles (400 at each
depth, 1,600 overall); Mean, mean relative error for the given set of dipoles; Median,
median of relative errors for the given set of dipoles; SD, standard deviation; bold

font, the best results.
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Table 3.4:

Comparison between two differently discretized torso-heart systems in terms
of relative errors (RE) of epicardial potentials recovered by means of
best-possible Tikhonov regularization of zero and second order, for 1,600
eccentric dipole sources at various depths in the ventricular wall

System BO B2
A B Source #A #B = #A #B =
(G1, Radon) (Gl,Oml6) 100-mm 80 316 4 78 318 4
7.5-mm 60 337 3 67 331 2
5.0-mm 33 367 0 41 357 2
2.5-mm 18 380 2 36 363 1
All above 191 1,400 9 222 1,369 9

B0/B2, zero-/second-order Tikhonov regularization; G1/Radon/Om16, discretization
methods (see the legend of Table 3.1); A/B, torso-heart system discretized by specified
methods; #A/#B, count of cases (out of a possible 400 or 1,600) when RE of inverse-
recovered epicardial potentials for system A/B is smaller than that for the other system
it is being compared to; =, count of cases when REs of two compared systems are equal;
bold font, the best results.
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with lower error than Radon method for zero-order regularizing operator and 1,369
for second-order operator (Table 3.4). This is a higher percentage than for forward-
solution error.

A comparison of regularizing operator effects (Tables 3.2 and 3.3) gives mean RE
for the second-order operator 1% smaller than with the zero-order operator for the
Centroid method and 8% smaller for the Radon method. For a depth of 10 mm, there
is a decrease of 9% for Centroid and 30% for Radon method, and at 7.5-mm depth
these decreses are 2% and 15%. Contrary to results so far, at 5-mm depth there is a
2% increase in RE for Centroid, while still a 3% decrease for Radon method. Finally,
at 2.5-mm depth, there is an increase in RE of 3% for Centroid and 4% for Radon
method.

Comparisons between best-possible Tikhonov regularization (¢ = t*) of zero and
second order are given—for the three G1 systems—in Table 3.5, for 400 eccentric
dipoles at four depths into the ventricular wall. Overall, the inverse-recovered poten-
tials for a greater number of sources have smaller RE with second-order than with
zero-order regularizing operator. At a 10-mm depth, there is the largest difference in
the number of more accurately recovered potentials with the second-order operator
- with Radon and Om16 methods showing a greater distinction than the Centroid
method. As the source is moved closer to the epicardial surface, the variation between
the Laplacian and Identity operator lessens and at 2.5-mm depth there is only a small
difference.

Inverse solutions using ¢ = t* were also computed, for comparison, for the torso-
heart system discretized by the node-to-node method; results are in Table 3.6. As was
seen in the solution to the forward problem, mean RE for all 1,600 sources and for each
subset of 400 sources is larger for the node-to-node system than for any of the triangle-
to-triangle systems. Comparing with triangle-to-triangle systems on an individual
source basis, there were 698 inverse-recovered epicardial potential distributions, out
of 1,600, with the node-to-node system showing smaller RE in comparison with the
Z2;(G1, Centroid) system regularized by the Identity operator, 573 in comparison
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Table 3.5:

Comparison between best-possible Tikhonov regularization of zero and second
order, in terms of relative errors (RE) of inverse-recovered epicardial
potentials, for three differently discretized and regularized torso-heart systems
and 1,600 eccentric dipole sources at various depths in the ventricular wall

System
A B Source #A #B =
(G1, Centroid, B0) (G1, Centroid, B2) 10.0-mm 130 270 0
7.5-mm 179 221 0
5.0-mm 199 201 0
25mm 216 184 O
Allabove 724 876 0
(G1, Radon, B0) (G1, Radon, B2) 10.0-mm 37 362 1
7.5-mm 113 287 0
50mm 176 223 1
25-mm 216 184 0
All above 542 1,056 2
(G1, Oml6, B0) (G1,0ml16,B2) 10.00omm 38 362 0
7.5-mm 114 284 2
50-omm 188 212 0
25mm 226 174 O
All above 566 1,032 2

B0/B2, zero-/secord-order Tikhonov regularization; G1/Centroid/Radon/QOm16, dis-
cretization methods (see the legend of Table 3.1); A/B, torso-heart system discretized
by specified methods; #A/#B, count of cases (out of a possible 400 or 1,600) when
RE of inverse-recovered epicardial potentials for system A/B is smaller than that for
the other system it is being compared to; =, count of cases when REs of two compared
systems are equal; bold font, the best results.



37

Table 3.6:

Relative errors (RE) of inverse-recovered epicardial potentials for
best-possible Tikhonov regularization of zero and second order with the
torso-heart system discretized by the node-to-node method, for 1,600
eccentric single-dipole sources at various depths in the ventricular wall

Operator Source MaxRE MinRE  Mean+SD Median+SD
BO 10.0-mm .8645 2871 .5249+..1006 .5209+.1115
7.5-mm 9998  .3302 .5986+.1046 .0915+.1068
5.0-mm 9317  .4092 .6939+.0887 .6965+.0800
2.5-mm 9951 .5746 .8530+.0728 .8629+.0656
All above .9998 2871 .8676+.1536 .6645+-.1744
B2 10.0-mm .8069 .2661 .4897+.0754 .4891+.0672
7.5-mm 1.002 3304 .5971+.0863 .5969+-.0593
5.0-mm 1.086 4217 .7219+.0970 .7102+.0739
2.5-mm 1.370 .0908  .9085+.1389  .8884+.1236
All above 1.370 .2661  .6793+.1863 .6517+.1850

BO0/B2, zero-/second-order regularizing operator; MaxRE/MinRE, maximal/minimal
relative error within the set of dipoles (400 at each depth, 1,600 overall); Mean, mean
relative error for the given set of dipoles; Median, median of relative errors for the
given set of dipoles; SD, standard deviation; bold font, the best results.
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with the Z%4(G1, Centroid) system regularized by the Laplacian operator, 78 in
comparison with the Z};(G1, Radon) system regularized by the Identity operator,
and only 38 in comparison with the Z§,(G1, Radon) system regularized by the
Laplacian operator. For the Z%,(GI, Centroid) systems, the sources for which the
node-to-node system performed better were distributed over the four source depths.
In the cases of the Z%5(G1, Radon) systems, the potential distributions generated by
sources nearer the epicardial surface had the greatest number of instances where the
node-to-node system had smaller RE, with 51 distributions out of 78 for the Identity
operator and 37 out of 38 for the Laplacian operator being generated by dipoles
at 2.5-mm depth into the ventricular wall. These results are in the same range as
those for forward-solution error of the torso-heart system discretized by the Radon
method, but for the system discretized by the Centroid method, there are many more
distributions for which the node-to-node system produces a smaller RE of inverse-
recovered potentials than the corresponding triangle-to-triangle system. Comparing
node-to-node systems for zero- and second-order operators, we see the same type of
results as for triangle-to-triangle systems.

As in the case of forward-solution errors, an examination of the maximum and
minimum RE for any depth of dipole sources shows a large variation (Tables 3.2
and 3.3). For example, sources at a 10-mm depth with Radon system and second-
order regularizing operator, RE of inverse-recovered epicardial potentials ranges from
11.83% to 71.09%. To understand this dispersion, one should examine the spatial
distribution of it, such as that shown in Fig. 3.2. It is evident that, as for the forward
solution, RE varies with the location of the source around the heart as well as its
depth within the heart.

The best-possible inverse solution was also computed for the septal and basal time
sequences of data (Appendix B). Results are shown in Tables 3.7 and 3.8. There was
no difference between GO and G1 methods, and thus only results for GI methods
are shown. Once again, there was a decrease in maximum, minimum, mean and
median RE for the Radon discretization method over the Centroid method. The
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Figure 3.2: Mean relative errors of inverse-recovered epicardial potentials for test dis-
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tributions generated by dipoles near the epicardial surface. Percent relative error (%

RE, nearest integer) of the inverse solution with second-order Tikhonov regulariza-

tion was evaluated, in turn, for 360 distributions generated by single eccentric dipoles

placed near each triangle of the tesselated epicardial surface at 10-mm depth into

the ventricular wall. Results were obtained in the torso-heart system discretized by

means of the G1/Radon method (see the legend of Table 3.1).



Table 3.7:
Relative errors (RE) of inverse-recovered epicardial potentials for
best-possible Tikhonov regularization of zero-order with three torso-heart
systems, for two time sequences of double-layer sources

System Source MaxRE MinRE  Mean+SD Median+SD

Z%,(G1, Centroid) Septal .7156  .3256  .4999+.1126  .5132:+.1437
Basal .9103  .5128  .6461+.1132  .6277+.0793

Z44(G1, Radon) Septal .6269 .2931 .4397+.0919 .4470+.1083
Basal .8736 .4800 .6007+.1000 .5950-+.0864

Z3(Gl, Omi6) Septal .6276 2950  .4409+.0914  .4499+.1108
Basal  .8748 4818  .6023+.1001  .59724.0878

G1/Centroid/Radon/Om16, discretization methods (see the legend of Table 3.1); Sep-
tal/Basal, a sequence of oblique dipolar layers generated by propagated activation
initiated at the septal/basal site (Appendix B); MaxRE/MinRE, maximal/minimal
relative error within the set of dipoles comprising the wavefront; Mean, mean relative
error for the given set of dipoles; Median, median of relative errors for the given set of
dipoles; SD, standard deviation; bold font, the best resuits.
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Table 3.8:
Relative errors (RE) of inverse-recovered epicardial potentials for
best-possible Tikhonov regularization of second-order with three torso-heart
systems, for two time sequences of double-layer sources

System Source MaxRE MinRE  Mean+SD Median+SD

Z%,(G1, Centroid) Septal .5449  .1580  .3479+.1134  .3675+.1351
Basal .9054  .4030  .5657+.1547  .5104+.0730

Z4:(G1, Radon) Septal  .4237  .1062 .2735+.1059 .2676+.1460
Basal .8502 .3822 .5016:+.1363 .4476+.0692

Z%4(G1, Omi6)  Septal .4216 .1060 .2736+.1054  .2688+.1469
Basal .8496  .3824  .50254.1363  .4479+.0696

G1/Centroid/Radon/Om16, discretization methods (see the legend of Table 3.1); Sep-
tal/Basal, a sequence of oblique dipolar layers generated by propagated activation
initiated at the septal/basal site (Appendix B); MaxRE/MinRE, maximal/minimal
relative error within the set of dipoles comprising the wavefront; Mean, mean relative
error for the given set of dipoles; Median, median of relative errors for the given set of
dipoles; SD, standard deviation; bold font, the best results.



Table 3.9:

Comparison among three differently discretized torso-heart systems in terms
of relative errors (RE) of inverse-recovered epicardial potentials calculated by
means of best-possible Tikhonov regularization of zero and second order, for
two time sequences of 36 double-layer sources

System BG B2
A B Source #A #B = #A #B =

(GO, Centroid) (GI1, Centroid) Septal 21 0 15 4 0 32
Basal 3 3 30 6 0 30

(G1, Centroid) (Gl1,Radon) Septal 0 36 0 36 0
Basal 0 36 O 0 36 O

o

(G1, Radon) (G1,Oml6) Septal 29 7
Basal 36 0

(=]

18 17 1
29 6

S
—

B0/B2, zero-/secord-order Tikhonov regularization; GO/G1/Centroid/Radon/Om16,
discretization methods (see the legend of Table 3.1); A/B, torso-heart system dis-
cretized by specified methods; #A/#B, count of time instants (out of a possible 36)
when RE of inverse-recovered epicardial potentials for system A /B is smaller than that
for the other system it is being compared to; =, count of time instants when REs of
two compared systems are equal; bold font, the best results.

decrease in RE due to discretization accuracy for the septal sequence was 12% for the
mean and 13% for the median when the zero-order regularizing operator was used;
the corresponding values were 21% and 27% for the second-order operator. For the
basal sequence, these percentages were 7%, 5%, 11% and 12%, respectively. A paired
system comparison (Table 3.9) also shows, as was seen for the 1,600 sources, that
the Radon method of discretizing the torso-heart system produces better inverse-
solution results for all sources. This differs from the forward error results for the
basal sequence, where a large number of distributions had a lower RE for torso-heart
system discretized by the Centroid method. The inverse errors in Table 3.9 for the
septal sequence were, for all 36 instantaneous distributions and for both regularizing
operators, better for the torso-heart system constructed by the Radon method. A



Table 3.10:

Comparison between best-possible Tikhonov regularization of zero and second
order in terms of relative errors (RE) of inverse-recovered epicardial
potentials, for three differently discretized torso-heart systems and two time
sequences of 36 double-layer sources

System
A B Source #A #B

(G1, Centroid, B0) (GI1, Centroid, B2) Septal 0 36
Basal 3 33

(G1, Radon, B0) (G1, Radon, B2) Septal 0 36
Basal 3 33

(G1, Om16, B0) (G1, Om16, B2) Septal 0 36
Basal 33

w

B0/B2, zero-/secord-order Tikhonov regularization; G1/Centroid/Radon/Om16, dis-
cretization methods (see the legend of Table 3.1); Septal/Basal, a sequence of oblique
dipolar layers generated by propagated activation initiated at the septal/basal site (Ap-
pendix B); A/B, torso-heart system discretized by specified methods; #A/#B, count
of time instants (out of a possible 36) when RE of inverse-recovered epicardial poten-
tials for system A/B is smaller than that for the other system it is being compared to;
bold font, the best results.

comparison of the zero-order and second-order operators (Tables 3.7 and 3.8) showed
the latter always better, with decreases of 30% for the Centroid and 37% for the
Radon method for the septal sequence, and 12% and 16% for the basal sequence. An
examination of minimum and maximum RE in Tables 3.7 and 3.8 shows that time-
sequence results also agree with forward solution in that, with the basal sequence,
(where sources are close to the epicardial surface) there are larger errors than in the
septal sequence (where sources are at a greater distance from the epicardial surface).
A comparison of zero- and second-order regularizing operators in Table 3.10 indicates
that the latter gives lower REs of inverse-recovered epicardial potentials for 69 of the
72 time-sequence maps.



A qualitative assessment of the different quadrature methods was undertaken by
an examination of inverse-recovered epicardial potential maps for selected sources with
different torso-heart systems (Fig. 3.3). It is evident that these inverse-recovered dis-
tributions are affected by both discretization schemes and regularizing operators. To
what extent the inverse solution benefits from these techniques is difficult to judge
(nevertheless, it seems that distributions for the Z3;(G1, Om16) systems regularized
by the Laplacian operator have the best definition and confluence of positive and neg-
ative areas). Thus the choice of methodology—be it discretization or regularization—
can best be made on the basis of quantitative measures, such as RE and CC.

In order to determine the effect of extraneous distortions in the torso-surface po-
tentials on inverse solution, various levels of Gaussian noise were added to the torso
potential distributions generated by the one-, three- and five-dipole sources. RE for
the source consisting of three simultaneously energized eccentric dipoles with Gaus-
sian rms noise of 1%, 5%, 10% and 20% of the torso distribution’s mean is shown in
Table 3.11. Results were similar for other sources. The addition of noise to the torso
potentials caused an increase in RE of inverse-recovered epicardial potentials. The
higher the level of noise, the greater the increase in error. No differences between GO
and G1 methods were observed, and thus results for GO are not presented. Radon and
Om16 methods give less error than the Centroid method with only very slight differ-
ences between Radon and Om16 results. Second-order Tikhonov regularization has
smaller RE than zero-order regularization for this particular distribution. Therefore,
the trends found for non-perturbed torso potentials still hold for those with noise.

3.4 Discussion

The main purpose of the work reported in this chapter was to solve the inverse problem
of electrocardiography for epicardial potentials, by means of best-possible Tikhonov
regularization. This was done for various data sets of known potentials, on both torso
and epicardial surface, in order to test the inverse solution for torso-heart systems
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Figure 3.3: Epicardial potential maps for qualitative assessment of the effect of im-
proved quadrature formulas (part 2). Columns show inverse-recovered epicardial po-
tential maps for test potential distributions generated by a single eccentric dipole
near A265 at a 10-mm depth (T-265) [left column], an oblique dipolar layer repre-
senting an activation wavefront at 42 ms after the onset of activation at the sep-
tal site (S-42ms) [middle], and an oblique dipolar layer representing an activation
wavefront at 12 ms after the onset of activation at the basal site (B-12ms) [right].
Rows, from top to bottom, correspond to inverse solution with different systems
(G1/Centroid, G1/Om16) and different regularizing operators (B0/B2) as follows:
G1/Centroid for B0, G1/Om16 for B0, G1/Centroid for B2, and G1/Om16 for B2.
G1/Centroid/Om16, system discretization methods (see the legend of Table 3.1).
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Table 3.11:
Relative errors (RE) of inverse-recovered epicardial potentials for best-possible
Tikhonov regularization of zero and second order with Gaussian noise added,
for three different torso-heart systems and three eccentric dipole sources

System Gaussian Noise (%) B0 B2

2% 4(Gl, Centroid) 1 4661 4202
5 4667 4211

10 4681 4229

20 AT27 4285

Z%,,(G1, Radon) 1 3609  .2515
5 .3856 .3041

10 .4036 .3369

20 .4287 .3680

Z31(G1, Om16) 1 .3605 .2506
5 3864 .3039

10 4046 .3367

20 4296 .3680

B0/B2, zero-/second-order Tikhonov regularization; G1/Centroid/Radon/Om16, dis-
cretization methods (see the legend of Table 3.1); RE, relative error; bold font, the
best results.
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discretized by different methods. Tikhonov regularization methods have been widely
used in solving the inverse problem of electrocardiography, and they were applied
here as well. GSVD techniques were employed to enable the use of either the Identity
(zero-order) operator or the Laplacian (second-order) differential operator in the regu-
larization process. Inverse solution error results for five torso-heart systems and both
regularizing operators were compared in terms of RE with respect to the known epi-
cardial distributions. Trends established for the forward problem—regarding the best
discretization methods—were also apparent in the solution of the inverse problem.

Regardless of the method and operator which was used to determine the inverse
solution, the RE was much larger than that for the forward problem. However, the
range of percentage changes in RE between different methods for the inverse was
comparable to those for the forward solution. The magnitude of the relative error
varied with location around the epicardial surface and the depth of the source within
the heart. This comparison illustrates that the amount of error depends on both the
epicardial surface geometry in the area near the source and the geometric relationship
with the torso surface, as well as the distance of the source from the epicardial surface.
Error was not directly related to the number of source dipoles generating the epicardial
potential distribution.

It is of interest to note that when torso potentials calculated by applying the for-
ward solution (multiplication by the transfer-coefficient matrix Zgg) to the epicardial
potentials were used as input to the inverse procedure, there was no error whatsoever
in the inverse solution. This result held true regardless of which node-to-node or
triangle-to-triangle system was employed, as long as forward and inverse torso-heart
systems matched. Therefore, differences in inverse error with different systems must
depend on how each system handles the discrepancy between given torso potentials
and those generated by solving the forward problem.

Based on data presented here, triangle-to-triangle methods outperform node-to-
node methods—in terms of lower RE of the inverse-recovered epicardial potentials—

in a large majority of cases. There are two possible reasons for this result to occur.
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First, it could be that when there is no exact match of forward values and known torso
potentials, the more locations at which the potential is known, the less error there is
in the inverse solution. A second reason is the use of better quadrature methods for
evaluating double integrals of p and g coefficients for the triangle-to-triangle than for
node-to-node systems, leading to more accurate solutions. In light of these reasons,
the question arises as to why, in some cases, the node-to-node method produces
smaller error. Most likely the explanation is in the epicardial distribution which
the inverse solution is attempting to retrieve. Although the underlying potential
distribution is the same, in the node-to-node system the potentials we are trying
to match are fewer and more widespread. For the larger triangle-to-triangle system
there are not only more potentials to match, but, with locations closer together, it
may require achieving potential distributions with a higher spatial gradient. This
is supported by the results with node-to-node systems compared with triangle-to-
triangle systems constructed with Radon double-integral method, where the majority
of smaller errors for the node-to-node system occurred for sources at the shallowest
depth, and therefore were associated with the highest spatial gradients.

QOur first attempt to increase the accuracy of the quadrature involved the re-
placement of the semi-analytical method for G matrix calculation with an analytical
one. This substitution did not change results, as corresponding inverse solutions with
GO and G1 were virtually identical. Therefore, the only reasons for selecting G1 as
opposed to GO would be the desire to use the mathematically elegant solution.

The second method that was incorporated to increase quadrature accuracy used
a weighted mean of p- and g-coefficient values for 7 Radon points in the observation
triangle instead of just the centroid. An extension of this method, involving the
subdivision of all triangles into 16 subtriangles during calculations (Om16 method)
was also evaluated. There is a preponderance of evidence provided by the results
to establish that Radon and Om16 methods outperform the Centroid method in the
ability to yield the more accurate solution to the inverse problem. This result was
upheld when Gaussian noise was added to the torso potentials. When Radon and
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Om16 methods were compared, much more ambiguous results emerged. In many
cases Om16 performed better, but in others, Radon methods resulted in smaller error
for the inverse solution, although the amount of difference in error was never large.
Therefore, it appears that these two methods have equal merit. The additional time
required to calculate Om16 matrices is not an issue, because these matrices need to
be determined only once for each torso-heart system.

Results presented in this chapter provide evidence that for most potential dis-
tributions, the Laplacian differential operator outperforms the Identity operator as
a regularizor in the Tikhonov inverse solution. This is more evident for torso-heart
systems discretized by the Radon and Om16 methods than for those discretized by
the Centroid method. However, for distributions with high spatial gradients on the
epicardial surface, zero-order Tikhonov regularization has smaller errors more often.
In studies which compared these operators plus the Gradient operator using eccentric
and concentric spheres as a model of the torso-heart geometry [28, 105], there was no
significant difference in inverse solution errors, although the Gradient operator faired
slightly better [27, 28]. When noise was added to the input data, there was no con-
sistent advantage to any particular method of regularization. Therefore, the Identity
operator has been most commonly used [120], because of its simplicity, although the
Laplacian has been used nearly as often [71, 75, 78].

The Identity operator regulates the amplitude of the solution. The largest am-
plitudes often control the results, and one ends up with low-level potentials that are
very noisy in spatial terms (i.e., distributions contain many “spurious” extrema). The
Laplacian operator regulates the curvature of the solution. In areas of high spatial
gradients, the degree to which the Laplacian holds is less than for smoother areas.
Therefore, the Laplacian does a better job at smoothing low-level potentials than
the Identity operator, but at the expense of too much smoothing of potentials where
a high spatial gradient exists. This leads to two suggestions on how to further im-
prove the inverse solution’s accuracy. One is to decrease triangle size; using this type
of approach for the finite element method, Johnson and MacLeod [78] used, with
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some success, a technique they called regional adaptation to decrease the size of the
volume elements in areas with known higher gradients. But even with such an ap-
proach, there will always be potentials which are smoothed too much and the size of
the system will grow very rapidly. The second suggestion follows from the idea that,
intuitively, it seems appropriate that some form of regional adaptation or variation
in constraints should be applied. For a given source distribution, there can be very
diverse amplitudes, spatial gradients, and spatial curvatures at different locations on
the epicardial surface. With global procedures, the regularization may be dominated
by a particular region with extreme values, so that other areas are not regularized
appropriately. In an attempt to improve the solution to the inverse problem, regional
constraints will be investigated in Chapter 4.

With the results of Chapters 2 and 3, it is not necessary to retain all torso-heart
systems for further investigations. The Z3,(G1, Om16) system has been selected for
further testing. Both the Identity and Laplacian operators will be retained, as no

conclusive result regarding the merit of one over the other has been reached.



Chapter 4

Regional Constraints

4.1 Introduction

This chapter deals with the application of regional constraints to the solution of the
inverse problem of electrocardiography for epicardial potentials. Constraints may be
considered “regional” on the basis of spatial, temporal or frequency criteria. Tikhonov
regularization involves minimization of the norm of either the epicardial potentials
or the spatial gradient or curvature. If there is a large spatial variation in these
values, the norm is dominated by areas with the largest magnitudes. This generally
causes underregularization in areas with low magnitudes and oversmoothing in areas
where magnitudes are the highest. This observation has led to the development of
methods which attempt to incorporate the regional nature of the epicardial potential
distributions into the inverse solution procedure.

One of the first attempts to do so was a method now referred to as Twomey regu-
larization [105, 158], which minimizes the difference between the inversely calculated
epicardial potentials and some & priori estimate of these potentials:

: __BRlI2 _ Al2
Zoin {[|Az — b]* + tlje — 2/}, (4.1)

where & is an estimate of the epicardial potentials and other parameters are as defined
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in Chapter 3. This requires a solution to the equation
z = (ATA+t)"Y(AT Az + t&). (4.2)

The regional nature of the solution is addressed by the estimate of the epicardial
potentials, &. If the “true” solution is used as the estimate and the regularization
parameter is very large, then the regularizing term dominates and the inverse solution
is equivalent to the “true” solution with no error. If the optimal Tikhonov solution—
either for zero-, first-, or second-order regularization—is used as the estimate, there
is no improvement in the solution. An undersmoothed estimate gives the same result.
However, Messinger-Rapport and Rudy [105] found that if they used an oversmoothed
solution as the estimate, there was a small decrease in RE. They suggested the use of a
“feature map” as an estimate of the epicardial potentials. The feature map had regions
of peak magnitudes only. Although the location of the peaks was exact, the magnitude
of the potentials was intentionally set smaller than that of the a priori solution. The
idea was to show that identifying the region in which epicardial potentials were at
a peak would be sufficient to reduce the error in the Twomey inverse solution. And
indeed, for the exact peak location, there was some improvement in the solution.
The use of temporal regions for constraining the solution was introduced when
measured epicardial potentials from a time instant 2 ms prior to the required time
were used as the Twomey estimate [105]. The underlying assumption was that there
is temporal continuity in epicardial potentials, so that within this time interval there
should not be any large changes in potential distributions. This assumption is also
exploited when the inverse solution is computed for isochrones instead of epicardial
potentials [30, 31, 55, 74, 135]; the latter approach has not been pursued in the present
study. The temporal constraint approach was extended by Oster and Rudy [117], who
explored the use of various temporal regions in determining the Twomey estimate.
They found that the best estimate was an average of either the values at the preceding
and following time steps, or these two values plus the value at the time instant for
which the inverse calculation was being computed. The largest decreases in error were
achieved with the shortest time step tested, 0.5 ms. This method requires potentials,
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or estimates of potentials, at the time instants used to calculate the Twomey estimate.
For & priori known potentials, this method showed both quantitative and qualitative
improvement over Tikhonov regularization. When the inverse-recovered epicardial
potentials 2 ms following the required distribution were used as the estimate, there
was no improvement in quantitative results. However, qualitative changes could be
seen; in particular, the site of right-ventricular breakthrough, present on the measured
map but not on the Tikhonov inverse map, was evident as a minimum when Twomey
regularization was applied. The selection of the temporal region was important in
this case, as the selection of an estimate using distributions only at an earlier time
instant would not have been able to make this change. For all Twomey methods,
as the estimate of the desired epicardial potentials diverges from the actual values,
so does the inverse solution. A weakness of this method is that it biases the inverse
solution towards the Twomey estimate, including the magnitudes and locations of
peak values.

Combined temporal and spatial constraints were explored by Brooks et al. [18, 19]
and Maratos [100], who incorporated several consecutive time steps into the input
data for the inverse problem to regularize simultaneously in time and space. They
used a global regularization over space while considering only a small temporal region.
Another approach to time-constraining the inverse solution assumes that the change
in potential at a given location from one time instant to another may be represented
by a linear prediction equation with subsequent use of Kalman filtering techniques to
determine the epicardial potentials [39, 80]. This method requires the calculation of
several parameters which are originally estimated from epicardial potentials known
a priori. Ultimately, only body-surface potentials are used to determine parameters
in the final step [39]. Published results pertaining to this approach are still scanty,
but they show a promising improvement on Tikhonov regularization, even when only
body-surface data are used. Temporal regularization methods generally attempt to

constrain the inverse solution at a given time step, based on estimates or predictions
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from a neighbouring temporal region that includes instants preceding and/or follow-
ing the time of the distribution under investigation. Therefore, the solution is very
dependent upon these estimates.

Addressing spatial regularization on a more regional basis, lakovidis and Gulrajani
[76] introduced the idea of a hybrid inverse solution. They first made the observation
that in a solution where smoothing is greater than that for the optimal solution, the
low-level potentials were smoothed more appropriately and there was a more real-
istic zero-line. On the other hand, when the solution was slightly underregularized,
the locations and magnitudes of extrema were recovered with more accuracy. Their
innovation was to calculate both over- and undersmoothed Tikhonov solutions, and
then create a hybrid solution. For a chosen e-band around zero, the oversmoothed
potentials were used. Outside of this band, the underregularized solution was used,
unless there was a discrepancy between the sign of the potential in the two initial
estimates. For these locations, a value of € was assigned, with the sign of the over-
smoothed solution. This method requires the selection of a regularization parameter
for both the under- and overregularized solutions, plus the selection of a bandwidth
€. There is a true regionalization to this method with varying amounts of regular-
ization for low-level and large potentials. However, if the smoothed solution has a
significant area of sign difference from the true solution, then it will not be possible to
get good results. This can happen when there is a steep gradient of potential around
the zero-line.

Inequality constraints are an extension of the potential estimate methods. Instead
of estimating the exact potential at a given site, upper and lower bounds are imposed
on the possible potential:

L<z <wu. (4.3)

Each location has its own bounds, so there is a definite regional structure to this
constraint. Various methods have been proposed for determining the best bounds.
Messinger-Rapport and Rudy [105] explored three different criteria. Their first method
set a constant variation in potential and disregarded the magnitude of the potential



at the site. The range was determined from the & priori known potentials. They
found that the largest errors occurred for the smallest potentials, where the variation
was significantly larger than the actual potential. The second method still kept the
variation constant for any given instant map, but let it vary with time. Here the
maximum increase and decrease from the previous instant map to the one required
were used as the range limits. The third method assumed that the position of the ex-
trema and accompanying features were approximately known. Epicardial potentials
were constrained only in these extremal regions, and were required to be at least 75%
of the magnitude known. & priori. The effect of this constraint was that the extrema
were allowed to increase without associated increase in low-level potentials. Although
all of these methods showed some improvement in quantitative measures of the in-
verse solution’s accuracy and in the qualitative appearance of the inverse-recovered
epicardial potential maps, they still required a good a priori estimate of the epicardial
potentials.

Hordcek and Clements [71] introduced a method of calculating the inequality
bounds which is spatially regional in nature. They allowed the potential and the nor-
mal component of the potential gradient at the epicardial surface to vary as a factor
of these estimated values at a given site. Therefore, potentials of small magnitude
were allowed to vary over a smaller interval than the peak values. By setting the
original estimate as a slightly oversmoothed Tikhonov solution, they have incorpo-
rated the idea of retaining the oversmoothed zero-line, while allowing the extrema
to increase in magnitude as for the under-regularized solution. This method requires
the selection of the bound factor and the appropriate regularization parameter t; it
will be investigated further in this chapter (section 4.2).

Expanding on the idea of hybrid solutions or inequality constraints based on dif-
ferent regularization parameters, several investigators have suggested the possibil-
ity of determining more than one regularization parameter value for a given inverse
procedure. The terms adaptive, local, and regional regularization have been used
to describe this methodology. Khoury and Rudy [83] addressed the mathematically
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equivalent inverse problem of determining endocardial potentials from those measured
on an intracavitary probe. They calculated the appropriate t-parameter for each sin-
gular value. This can be done by substituting the epicardial potentials known a priori
for z in Eq. 3.5 and replacing ¢ with £;, so that each singular value and vector pair
is associated with a separate regularization parameter. This can be formulated as
follows:

K K+L o
z=) (u;-by; + ——(u; - by;. 44
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Using the endocardial potentials known a priori, the authors demonstrated the
advantages of applying multiple regularization parameters, rather than a single global
one.

When this method was tested on the data sets of epicardial and body-surface
potentials generated as described in Chapters 2 and 3, it was noted that some of
the Z; values were negative. In general, all {; values associated with singular values
which had a magnitude less than ¢*, plus a few which were larger, were negative. In
some cases this had the effect of scaling the resulting value, but for many other cases
the problem was that u; - b had the wrong sign and a negative ¢ was necessary to
correct it. Therefore, this problem would never be corrected by a positive ¢ value and
it is definitely adviseable to minimize the contribution of this singular vector to the
inverse-recovered potentials.

Johnson and MacLeod (78] also suggested using more than one regularization pa-
rameter. In their case, they varied the parameter for different submatrices of the
finite element system with which they were working. Their initial work was done on
a two-dimensional model, but the results were promising. Oster and Rudy [118] used
idealized heart-torso models—consisting of both concentric and eccentric spheres—to
test the idea of regional regularization. They defined regional regularization as the
subdivision of a potential map into functional regions based on spatial characteris-
tics or frequencies. Their initial work used Legendre decomposition and graphically
showed differences in different “regions” when there was error in the potentials on
the outer sphere. To make the method applicable to arbitrary surfaces, they used the
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singular value decomposition (SVD) to represent potential maps by their component
parts. Several terms of the decomposition were grouped together for parameter selec-
tion. Their results demonstrated that, in the presence of noise, there are advantages
to regional regularization over standard Tikhonov global regularization. By means of
SVD, it was possible to correct for noise, but not for geometrical error, whereas the
Legendre decomposition could correct for both. The authors felt that the arbitrary
nature of the grouping of component maps for parameter selection with SVD may be
responsible for the discrepancy, and suggested this as an area for further investiga-
tion. Another problem to be explored is the selection of a method for determining
the multiple regularization parameters.

Calculating a separate regularization parameter for each region of the potential
map is desirable. However, intuitively, it would be more advantageous to be able to
separately regularize spatial regions instead of functional regions. Oster and Rudy
[118] made the point that in the eccentric spheres model, necessary spatial features
for reproducing the potentials for a source in the anterior heart are found in vectors
corresponding to large singular values. Posterior sources required many more singular
vectors to properly construct the potential map. In this way, they tried to relate
spatial regionalization to regularization-parameter selection. Ideally, it is desirable
to weight the regularizing operator based on a priori knowledge of the corresponding
potential, gradient of potential or the second derivative at a given location. Then, even
when a global regularization parameter is selected, it will actually represent different
amounts of smoothing in different regions of the potential map. This method, along
with its application with the Laplacian operator are presented later in section 4.3.
The changes in singular vectors due to this regional weighting were noted along with
increases in the time required for processing.

A second method of regional smoothing is introduced in section 4.4. Instead of
weighting the Laplacian operator during the inversion procedure, a weighted Lapla-
cian smoothing is applied to the first estimate. The weights are dependent on the
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magnitude and curvature of the potential with respect to the maximum of these val-
ues on the map. The standard Tikhonov inverse is used as the initial estimate of the
epicardial potential distribution to which weighted spatial smoothing is applied. The
optimal ¢-parameter is selected based on this weighted solution. In a variation of the
method, the optimal ¢ value is selected prior to the weighting procedure. No a priori
estimate is required for this computation.

The temporal continuity of the epicardial electrogram will be exploited in es-
tablishing a method of regularizing the inverse potentials over time in section 4.5.
An attempt was made to avoid biasing the inverse-recovered potentials by using a
temporal estimate in the inverse procedure. For this regional constraint, instead of
using estimates of epicardial potential distributions which are close to the desired dis-
tributions in a temporal sense, once a time sequence of inverse-recovered epicardial
potential distributions has been calculated, the potentials comprising the electrogram
at each location are smoothed temporally. In this way, low-frequency oscillations due
to noise in the body-surface electrocardiograms, as well as noise introduced by the cal-
culation of epicardial potentials at each time instant in isolation from other instants
will be addressed.

When the distribution of potentials on the epicardial surface for inverse-recovered
values was compared to the distribution known a priori, it was frequently observed
that it included “spurious” or “extraneous” extrema [10, 76, 118, 140, 144, 145].
These were often of the wrong sign as well as magnitude. In order to view the entire
distribution of positive and negative potentials, the zero-line must be plotted. On
these plots, regions where potentials with the incorrect sign have been recovered
disrupt the overall spatial distribution of epicardial potentials, even if they are of low
value compared to the global extrema. In certain cases, it is possible to eliminate
at least some of these spurious extrema by selecting a relatively large regularization
parameter, but only at the expense of oversmoothing potentials and displacing correct
extrema. These conditions made it desirable to develop a procedure with the express
purpose of identifying, and eliminating, areas where the sign of the potential was
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incorrect.

The composite regional constraint method, presented in section 4.6, attempts to
provide this function, using some terminology borrowed from image understanding
systems. This seems appropriate, since the solution of the inverse problem of elec-
trocardiography for epicardial potentials can be regarded as “electrocardiographic
imaging” [93, 119, 120, 123]. Image understanding systems are designed to recog-
nize events and draw conclusions based on information gleaned from the image itself,
and any appropriate additional information which is available to it [11, 36]. Inverse-
recovered epicardial potentials, the corresponding measured torso potentials, and the
relationship between these as defined by the torso-heart model are analyzed in or-
der to generate an hypothesis as to whether an artifact has been found. Additional
knowledge about spatial and temporal (if dealing with time-sequence data) poten-
tial relationships is then utilized to determine if this hypothesis can be confirmed or
not. Potentials designated as artifacts are replaced by values interpolated from “non-
artifact” values in neighbouring regions. Spatial and (in appropriate circumstances)
temporal constraints were applied in further processing of the data.

All regional-constraint methods will be investigated with the data sets of a priors
potential distributions on the epicardial and torso surface that were established in
Chapters 2 and 3. The relative merits of different methods and conditions under
which they might be applicable will be discussed.

4.2 Inequality Constraint Optimization

Bounds on the value for each element of the potential distribution on the epicar-
dial surface recovered by the inversion procedure comprise an inequality constraint.
Hordéek and Clements [71] introduced a method of calculating inequality bounds
which is spatially regional in nature. Both the potential and the normal component
of the potential gradient at the heart surface were allowed to vary as a factor of
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estimates of the required values at each location. This constraint permits small mag-
nitude potentials to vary over a smaller interval than the peak values. By setting the
original estimate as a slightly oversmoothed Tikhonov solution, they have incorpo-
rated the idea presented by Iakovidis and Gulrajani [76] of retaining the zero-line of
oversmoothed solution while allowing the extrema to increase in magnitude as for an

under-regularized solution. The inequality problem is given by Egs. 4.5 and 4.6.
. Ao _ B2 2 _ i .
%{"Am bl|* +t||Bz||*}s.t.l; < z; < uz,i=1,...,N, (4.5)
where u; and [; are upper and lower bounds given by
li = z3(to) — alzi(to)|, ui = zi(to) + elzilts), i = 1,...,N (4.6)

and a is the empirically chosen bound constraint factor; A, , and b are defined as
in Eq. 4.2.

A= ( Pynnxn)y GHH(nxn) )  e= ( s ) b= ( —Pypnxm)®s ) ’
Pgiimxn) GBH(mxn) Ty —PgB(mxm)®s
where P and G matrices and ¢ and T are defined in Chapter 2.

This method requires the selection of the bound constraint factor and the appro-
priate t-parameter and the calculation of the 'y values.

Based on the results presented for the source consisting of three dipoles and a
system using Tikhonov regularization with a second-order regularizing operator, the
authors suggest that using 2.5 times the optimal ¢ value with a constraint factor of
0.4 will improve on the optimal Tikhonov solution. In fact, an oversmoothed solution
with the {-parameter up to 15 times the optimal value still gave some improvement
in RE measures of inverse-solution accuracy.

The larger system, which includes the gradient of the epicardial potential normal
to the heart surface, is not included in the work presented here. To enable the use of
inequality constraint optimization, estimates of the 'y values were calculated from
the inverse-recovered epicardial potentials. Bound constraints were applied to all
values and the NAG library routine EQ4NCF [1] was used to solve the system. The
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potential distributions generated by a single central dipole as well as three and five

eccentric dipoles were used to test various t-parameters and bound constraint factors.

-

4.2.1 Results

Results for single- and multiple-dipole sources using three different t-parameter factors
(0.5, 1.0, 2.5) and three constraint factors (0.2, 0.4, 0.6) with zero- and second-order
regularizing operators are presented in Table 4.1.

The factors giving the smallest RE vary with source and regularizing operator.
For the single central dipole, there was a maximum decrease in RE of .0059 with
t-factor 2.5 and constraint factor 0.4 for the zero-order regularizing operator. For
the second-order regularizing operator, there was an increase in RE for all factors,
the minimum being .0041 for ¢-factor 0.5 and constraint factor 0.2. The maximum
decrease in RE for the three-dipole source with the zero-order regularizing operator
was .0201 with factors 2.5 and 0.6, and for the second-order regularizing operator a
difference of .0408 resulted when the t-factor was 1.0 and the constraint factor 0.6.
The magnitude of the decrease with the second-order regularizing operator compared
well with the decrease of .0456 reported by Hordéek and Clements [71] for the same
source with their second-order Tikhonov regularizing system. Their finding that the
RE improved for factors 2.5 and 0.4 was not duplicated in the present study, as
there was an increase in RE for these parameters. For the five-dipole source and
the zero-order regularizing operator, the maximum decrease in RE was .0084 with ¢
and constraint factors 1.0 and 0.6, respectively. When the second-order regularizing
operator was used, the decrease was .0232 with corresponding factors 2.5 and 0.6.
No clues emerged as to which combination of factors would give the best results.
Not only were the improvements in accuracy of the inverse solution achieved with
this method relatively minor, but the cost for achieving them was high in terms of
CPU time required. In an attempt to decrease the computational requirements, the
inequality constraint was incorporated without including I'y in the process. As a

result, the computation time was decreased considerably, but there were no decreases
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Error measures (RE, CC) of inverse-recovered epicardial potentials for zero-
and second-order Tikhonov regularization with linear constraints, for single-

and multiple-dipole sources

constraint BO B2
Source t-factor factor RE CC RE CcC

single central dipole 0.5 2 3468 .9433 .0623 .9981
0.5 4 3688 9359 .0784 .9969

0.5 .6 3545 .9400 .0972 .9953

1.0 2 3147 9536 .0627 .9980

1.0 4 3129 9537 0787  .9969

1.0 .6 3221 9503 .0975 .9952

2.5 2 3343 9477 .0650 .9979

2.5 4 .3061 .9558 .0783 .9969

2.5 .6 3189 9515 .0974 .9952

three eccentric dipoles 0.5 2 S761 9343 2177 9760
0.5 4 3589 9365 .2334 .9727

0.5 .6 4181 9121 1757 .9844

1.0 2 3330 .9462 .1880 .9822

1.0 4 3260 .9479 .1751 .9845

1.0 .6 3226 9486 .1740 .9848

2.5 2 3579 9369 .2337 .9723

2.5 4 3344 9457 2354 9719

2.5 .6 3195 .9496 .1813 .9834

five eccentric dipoles 0.5 2 5119 8872 .3584 .9394
0.5 4 5182 .8836 .3228 9475

0.5 .6 .5096 8732 .3259 .9460

1.0 2 4627 8987 .3240 9472

1.0 4 4509 9026 .3167 .9494

1.0 .6 4461 .9034 3217 .9476

2.5 2 4882 8831 .3412 .9406

25 4 5008 .8814 3594 9354

2.5 .6 4518 9019 .3142 .9502

B0/B2, zero-/second-order Tikhonov regularization; RE, relative error; CC, correlation
coefficient; bold font, the best results.
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in RE. For these reasons, further trials with this method were not undertaken.

4.2.2 Discussion

This section explored the use of inequality constraint optimization as a regional con-
straint on the inverse problem of electrocardiography. Inequality constraint optimiza-
tion decreased RE and increased CC for a set of ¢ and constraint factors for all cases,
except in the case of the single central dipole with the Laplacian operator. However,
since for this single-dipole source there is already a very minimal inverse-solution
error, the slight increase in RE is not significant. This is an extremely smooth dis-
tribution so that the problems of oversmoothing peak amplitudes and undersmooth-
ing low-level potentials is not an issue. Therefore, any process—such as inequality
constraint optimization—with the goal of correcting the balance between over- and
under-regularization is unlikely to achieve results better than Tikhonov regularization
with the optimal {-parameter.

On the other hand, for the multiple eccentric-dipole sources it was possible to
improve the solution over that achieved with the optimal ¢ parameter. However, based
on results, it appears that the choice of both the appropriate ¢ factor and constraint
factor varies with source and regularizing operator. The maximum decrease in RE
for the three-dipole source with the second-order regularizing operator compared well
with the decrease found by Horitek and Clements [71], but with different ¢ and
constraint factors. The actual RE values could not be compared, because the results
computed in the present study used the improved quadrature systems and did not
use the large system which includes the gradient of epicardial potentials. Either of
these differences, or their combination, could be responsible for the discrepancy.

Further research into inequality constraint optimization could seek some other
regional method of identifying factors that would be superior to the ad hoc factor
selection used here. At present this approach was not further pursued, because of the

minimal improvements in inverse-solution accuracy for some sources.
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4.3 Weighted Regularizing Operator

The selection of separate t-parameters for different functional regions, as proposed by
Oster and Rudy [118], gives variable dampening for different singular values. How-
ever, what is really desirable is to vary the degree of regularization in a spatially
regional manner. With one global parameter, a compromise has to be made between
oversmoothing potentials, gradients and curvatures of high magnitude and under-
smoothing these values in regions where they are low. This section will examine a way
to improve the Laplacian regularizing operator by weighting it, so that high-curvature
areas are not required to meet the same level of smoothness as lower-curvature areas.
Although spatial smoothness is a proper constraint for any distribution if the tesse-
lation is fine enough, in practice it is not necessarily true for areas on the epicardial
surface where there are large potential values. This was seen in results from Chapter 3.
The single central dipole is located in the heart’s center of gravity and it produces
a very smooth epicardial potential distribution. The RE for the inverse-recovered
potentials using Tikhonov regularization with the second-order regularizing operator
was the lowest of all test data at .0582. For the eccentric single-dipole sources, how-
ever, there was a region of high-magnitude potential, gradient and curvature with
the remaining areas of epicardial surface having low values. As the source moved
nearer to the epicardial surface, the potentials increased and the area of high values
decreased. This was generally accompanied by an increase in RE of inverse-recovered
epicardial potentials. Therefore, the second-order (Laplacian) regularizing matrix will
be weighted so that the same degree of smoothness does not apply to all locations.
As a validation of the method, weighting factors were first determined using
a priort knowledge of the epicardial potential distribution. The coefficients of the
Laplacian regularizing operator were calculated using the method of Oostendorp et
al. [116]. With this method, the distances d;,, between the centroid of a triangle and
the centroids of its neighbouring triangles are used to weight the contribution of each
neighbour’s potential to the Laplacian. Regional weighting of the matrix involved
multiplying the distance separating the triangles by the square root of the magnitude
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of the difference in potential.

din;\/|9: — Bn;ls
where n; is the j** neighouring triangle which shares a side with triangle i. The
larger the difference in potential there was for a neighbour, the smaller the degree of
smoothing was required.

The Generalized Singular Value Decomposition (GSVD) was then calculated for
this new system for the single central dipole and three or five eccentric dipoles which
have been used previously. It was also calculated for the five individual dipoles which
comprise the composite five-dipole source; these dipoles were located 10 mm internal
to triangles 222, 4, 158, 255 and 187 of the epicardial surface. For the time sequences
of data, the potential distribution at 36 ms was selected for testing, for activation
sequences initiated at septal and basal site, respectively. Epicardial potentials were
determined and RE and CC of the inverse-recovered potentials were compared to the
results obtained without regional weighting. To assess the utility of this method, the
epicardial potentials recovered using the Laplacian regularizing operator were used
as an a posteriori estimate to calculate the weighted Laplacian. The GSVD was

calculated using these estimates and inverse potentials and errors were determined.

4.3.1 Results

Error measures (RE and CC) for inverse-recovered epicardial potentials calculated
via second-order Tikhonov regularization (£ = t*) either with no regional constraint
or with one of the two weighted-regularization options are shown in Table 4.2. In
all cases, the RE for the first weighted-regularization option (WR1)—which is using
a priori known epicardial potentials to determine weighting factors—was lower than
that for the second-order regularizing operator with no regional constraint. The mini-
mum difference in RE was for the single central dipole, which produces the smoothest
distribution of the test set. This was a differences of .0081 (14%). The maximum
difference, .2670, occurred for the source distribution consisting of the dipolar layer of
activation wavefront at 36 ms after stimulus at the basal site, whereas the maximum
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percentage difference of 75% occurred for an eccentrically located single dipole near
A158 (at 10-mm depth into the left-ventricular free wall). The RE of inverse solutions
for remaining test sources decreased due to application of WR1 method within the
range of 42% and 59%. For WR1 method, the minimum CC for the variety of dipolar
and multipolar sources was .9800, and the largest increase of CC over results obtained
with second-order regularizing operator with no regional constraint was .0977; inter-
estingly, this largest improvement occurred for the most complex source represented

by the dipolar layer of basal wavefront.

Table 4.2:
Error measures (RE, CC) of inverse-recovered epicardial potentials for
second-order Tikhonov regularization with no regional constraint (NRC) and
that with weighted regularization (WR1, WR2), for single- or multiple-dipole

sources
NRC WRI1 WR2
Source RE CcC RE cC RE CC
single central dipole .0582 .9983 .0501 .9987 .0617 .9981
three eccentric dipoles 2148 9774 .1067 .9946 .1529 .9886
five eccentric dipoles 3374 9433 .1421 .9905 3191 .9481

single eccentric dipole near A222 .1340 .9923 .0766 .9976 .1119 .9943
single eccentric dipole near A4 1384 9912 .0805 .9970 .0920 .9961
single eccentric dipole near A158 .2883 .9580 .0710 .9978 .1824 .9834
single eccentric dipole near A255 .3758 .9337 .1533 .9894 .2813 .9648
single eccentric dipole near A187 .3876 .9262 .2149 .9810 .3652 .9335

Septal wavefront 2733 9619 .1304 .9915 .2417 .9704
Basal wavefront 4716 .8823 .2046 .9800 .3963 .9195

WRI, first weighted-regularization option; WR2, second weighted-regularization op-
tion; RE, relative error; CC, correlation coefficient; Septal/Basal wavefront, an oblique
dipolar layer generated by propagated activation initiated at the septal/basal site (Ap-
pendix B); bold font, the best results.
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When the second weighted-regularization option (WR2) was used to calculate epi-
cardial potentials—using the second-order regularizing operator—there was a damp-
ening of the effects of weighting. For the single central dipole there was an increase in
RE of .0035 (6%) over results obtained with second-order regularizing operator with
no regional constraint, and the maximum percent decrease in RE, occurring for the
eccentric dipole near A158, was now only 37% (compared to 75% with WR1). For
WR2 the maximum difference in RE from the case of no regional constraint occurs
also for A158 at .1059. The rest of the differences ranged from 5% to 33%. The

maximum CC increase was still for the basal wavefront source, but it was only .0372.

Epicardial potential maps are shown in Fig. 4.1 for single- and multiple-dipole
sources, and for three regularizing operators: second-order (Laplacian) operator, and
weighted-regularization options WR1 and WR2.

Every time the regularizing operator is altered, the GSVD must be recalculated for
the inversion procedure. Since the method of weighting the regularization based on
epicardial potentials that are either known a priori or estimated a posteriori requires
the regularizing operator to be altered for each set of torso potentials, the GSVD
must be determined for every set. The amount of time required for this calculation
depends on the dimensions of the arrays involved. For the 700 x 400 model employed
in this study, this requires approximately 12 minutes of CPU time on our RS/6000

computer.

4.3.2 Discussion

This section considered the use of weighted regularizing operators in determining
inverse-recovered epicardial potentials. When results—in terms of RE and CC of
the inverse solution—achieved by WR1 (in which & priori known potentials are used
to set weighting) were compared to regularization with no regional constraint, the
advantages of WR1 were obvious. The results for the time-sequence data, generated
for basal and septal wavefronts at 36 ms, showed improved RE and CC. Therefore, the



Figure 4.1: Effect of weighted spatial regularization on epicardial potentials generated
by single- and multiple-dipole sources. The sources were (top to bottom) a single
central dipole (1-DIP), three eccentric dipoles (3-DIP), five eccentric dipoles (5-DIP),
a single eccentric dipole near A158 (T-158), and septal (S-36ms) and basal (B-36ms)
oblique dipole layers at 36 ms into the activation sequence initiated at the single
septal/basal site. Second-order Tikhonov regularization (B2) was performed with
no regional constraint (NRC) [left column}, weighted regularization with epicardial
potentials known a priori (WR1) [center], or weighted regularization using epicardial
potentials obtained by the NRC method as the & posteriori estimate (WR2) [right].
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method should be as applicable to a realistic distribution with thousands of dipole
sources as to the test cases with one or a few dipolar sources. This validates the
premise of the method; however, to be of value, it must yield good results with
a posteriori estimates. There was still change for the better with improvement in
RE when the NRC inverse-recovered epicardial potentials were used to determine
weighting, although the effect was dampened. This was to be expected, since these
potentials were smoothed compared to the required ones, and they would not weight
the system to the same extent. The degree of improvement when using a first estimate
for weighting the regularizing operator varied with the source. In some cases, such
as for an eccentric dipole near A158 at 10-mm depth, there was still a significant
change. For other sources, for example an eccentric dipole near A187, there was now
only a minor improvement seen in RE of the inverse solution.

From an examination of the singular vectors (column vectors of Q7) it was noticed
that weighting the regularizer imposed the major features of the epicardial potential
distribution on the underlying singular vectors (results not shown). Therefore, it is
apparent that the better the estimate used in the weighting process, the better the
results. This is comparable to Messinger-Rapport and Rudy’s finding that the better
the estimate, the better the results of Twomey regularization [105]. For Twomey
regularization, the estimate greatly influenced the resulting potentials; so that if the
estimate was wrong, so was the distribution of inverse-recovered epicardial potentials.
Since the singular vectors of Q7 incorporate information about the estimate used for
weighting, it is clear that this method will also influence the solution incorrectly if
the estimate is incorrect. However, unlike the Twomey method for which Messinger-
Rapport and Rudy [105] found that using the regular Tikhonov zero-order inverse
potentials as the comparison estimate resulted in no improvement in RE, unless the
estimate was oversmoothed, in the present study there was still decreased RE and
increased CC. This difference is inherent in the two methods. Twomey regularization
minimizes the discrepancy between the inverse potentials and an estimate of their
values, while the weighted regularization method alters the amount of regularization
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at a given location based on the estimated potentials in relation to potentials in the
neighbouring region.

Only second-order Tikhonov regularization was tested in this method; it is very
likely that similar results would be obtained by analogously weighting the Identity
(zero-order) or Gradient (first-order) regularizing operators.

The combination of the diminished improvement with a posteriori estimates and
time involved in recalculating the GSVD for each set of input data (12 minutes on
our RS/6000 computer) is a significant factor detracting from the usefulness of this
method of regionally constraining the inverse problem.

Although there are some drawbacks to this implementation of regional constraints
on the inverse problem, the results are a good indication that regional constraints and
weighting the regularizing operator in particular, can be used to improve significantly

the inverse-recovered epicardial potentials.

4.4 'Weighted Spatial Smoothing

The issue of oversmoothing in some regions of the inverse-recovered epicardial poten-
tials and undersmoothing in others will again be addressed in this section. Iakovidis
and Gulrajani [76] dealt with the problem by using a hybrid solution where for small
values they would use the results of an oversmoothed inverse, while using a slightly
undersmoothed inverse for determining the larger potentials. The quality of their
results depended upon the ability to properly define the correct sign to areas where
there was a steep spatial gradient of potential on the epicardial distribution. The
Weighted Regularizing Operator method (section 4.3) utilized the difference in po-
tential between a given location and its neighbouring region to regionally constrain the
inverse problem. However, although the resulting solutions improved on the Tikhonov
inverse-recovered potentials, there was a significant increase in the time required for
processing. A method to be introduced in this section is based on the same idea of
regional weighting, but the significant requirements on computation time are avoided.
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Weighted Spatial Smoothing (WSS) is a method of regionally constraining the
inverse-recovered epicardial potentials which attempts to alleviate the problem of
regional differences in the amount of smoothing required, taking into account the
results for the inequality constraint optimization and weighted regularizing operator
methods presented in previous sections of this chapter. Consideration was given
to whether or not it was possible, using a Tikhonov inverse potential distribution
as a first estimate, to apply regional constraints on the amount of regularization
without recourse to re-inversion or multiple-inversion procedures. The goal was to
reduce inverse-solution errors, compared to Tikhonov regularization with no regional
constraint, without significantly increasing the time of processing.

To accomplish this, a method of weighted Laplacian smoothing was developed.
Similar to the weighted regularization methods described in the previous section,
the amount of smoothing is dependent on the difference in potential between one
location and that of its neighbourhood. The magnitude of potential at any location
was compared to the maximum amplitude for the potential distribution. The closer
these were, the less smoothing was done. The maximum curvature (Laplacian) of the
surface potential was computed as the maximum difference between the potential at
any location and a weighted mean of the potentials of all other points in its neigh-
bourhood. For the triangle-to-triangle systems, a neighbouring triangle was defined
to be any triangle which shared two nodes with the given triangle. Because of the
continuity of the tesselated epicardial surface, there were always three neighbours.
For the node-to-node systems, neighbouring nodes were defined as any node which
was the vertex of a triangle for which the given node was also a vertex. The num-
ber of neighbouring nodes varied. The difference between this maximum and the
corresponding value at any given location also determined the amount of smoothing.
Smoothness and amplitude were given equal value when calculating the weighting
factors for each location. The weighted spatial smoothing solution, &, was calculated
via the formulation given in Eq. 4.7.

Z; = (Wm + wWe)T; + (I —wm— wc)i'iz (4'7)



where ]
Z;
Wm =.5 -
™ “max{|z;|:j=1,...,n}
W. = [ lzi —i"l
¢ “max{|z; -%|:j=1,...,n}

with n the number of elements in z and wy,, and w, the weighting coefficients for mag-
nitude and curvature, respectively, and & the weighted mean neighbourhood potential
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where A,y, Ap2, Apg are the three neighbouring triangles which share a side with

A; and B is the Laplacian operator. For a given t-parameter, the inverse solution

was computed and then altered using the regional constraint stated in Eq. 4.7. The
revised set of epicardial potentials which had the lowest RE in comparison with the
a priori known potentials was determined. RE and CC for resulting solutions were
computed and compared with results when regional constraints were not applied.
The relative difference between the ¢-parameter selected by this weighted spatial
smoothing procedure and that for the optimal Tikhonov solution was calculated to
determine if there was a constant difference.

Although this procedure functions well for the optimal ¢ method, when it is nec-
essary to calculate the appropriate ¢ value without the benefit of a priori knowledge
of the epicardial potentials, determination of the optimal ¢-parameter would not be
possible. Therefore, a variation of this method was developed, whereby the optimal
solution is selected prior to applying the weighted spatial smoothing constraint. This
method will function with any appropriate means of ¢-parameter selection. Results
of this variation were compared to the original smoothing method. Both zero-order

and second-order Tikhonov regularization were examined.

4.4.1 Results

The first variation of weighted spatial smoothing (WSS1) was tested initially on the
data for sources consisting of a single central dipole and three and five eccentric
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dipoles. Results in terms of RE and CC of the inverse-recovered epicardial potentials
are displayed in Table 4.3. Error measures with no regional constraint (NRC) are
given for comparison. With zero-order regularizing operator, there was a decrease in
RE of .0891, .0866 and .0840 for the three distributions, respectively. CC increased in
all cases. When the second-order regularizing operator was used, there were smaller
changes. This was not unexpected with the Laplacian operator. Table 4.3 also con-
tains a count of the number of triangles where the sign of the inverse-recovered epi-
cardial potential did not match that of the e priori known potential value. Although
numbers are small in all columns (considering that there are 400 epicardial triangles),
WSSI1 improved the count for all but two cases. In one of these, there was no change
and for the other there was an increment of one.

The t-parameter selected by the WSS1 method was compared to the optimal ¢*
value for the corresponding Tikhonov solution with no regional constraint. The ¢t
selected for a system regularized by WSS1 operator was related to t* by a factor of
0.52 for both zero-order and second-order regularizing operators and for the single
central dipole, 0.31 and 0.41 for the source consisting of three eccentric dipoles and
.30 and .35 for the source consisting of five eccentric dipoles. There was no discernible
pattern to this factor, except that it showed a tendency to be higher for smoother
distributions. The Tikhonov optimal ¢*-parameter was chosen for use with the a
posteriori WSS2 method, because no other selection method appeared to work for
the entire range of distributions tested.

Inverse-solution errors in terms of RE, CC and sign mismatch counts for the
second variation of weighted spatial smoothing (WSS2) are shown in the last three
columns of Table 4.3. For these cases, there were only minor differences between
results for WSS1 and WSS2, corresponding to only a 1% to 2% difference in the
ability to improve the inverse solution. Based on this result, it seemed appropriate
to use £* to obtain the initial estimate of the epicardial distribution for the WSS2
method.

To further assess the effects of weighted spatial smoothing method WSS1, it was



and multiple-dipole sources

Table 4.3:
Error measures (RE, CC, MM) of inverse-recovered epicardial potentials for
zero- and second-order Tikhonov regularization with no regional constraint
(NRC) and that with weighted spatial smoothing (WSS1, WSS2), for single-
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Operator NRC WSS1 WSS2

Order Source RE CC MM RE CC MM RE CcCC MM

BO 1Dip 3120 .9501 12 .2229 .9753 9 2246 .9750 8
3Dip 3396  .9410 16 .2530 .9678 13 .2577 .9667 13

5Dip 4545 .8924 30 .3705 .9292 29 .3765 .9271 29

B2 1IDip .0582 .9983 1 .0586 .9983 2 0592 .9983 4
3Dip 2148 9774 14 .1936 .9812 10 .1976 .9804 11

5Dip 3374 9433 24 3119 .9501 24 .3169 .9486 25

B0/B2, zero-/second-order Tikhonov regularization; WSSI, first option of weighted
spatial smoothing; WSS2, second option of weighted spatial smoothing; RE, relative
error; CC, correlation coefficient; MM, total # of sign mismatches; 1Dip, single central
dipole; 3Dip, three eccentric dipoles; 5Dip, five eccentric dipoles; bold font, the best

results.
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applied to the test data for a set of 1,600 dipoles in the proximity of the epicardial
surface. For only 31 of the 1,600 dipoles was there any increase in RE when using
the zero-order regularizing operator and in no case was there an increase using the
second-order regularizing operator. Two thirds of dipoles showing increased RE were
situated at a 2.5-mm distance from the epicardial surface — the closest proximity to
the surface tested. Results were compared with the solution with no regional con-
straints and the differences are presented in Table 4.4. The maximum RE reflects the
largest improvement in the inverse solution, and for different depths of the sources
within the ventricular wall ranged around 0.2 for both the zero- and second-order op-
erator. When the minimum RE is negative, it indicates the maximum increase in RE
due to applying weighted spatial smoothing (WSS1). For the zero-order regularizing
operator, these values range from —.0163 to —.1020; for the second-order operator
the minimum RE ranges from a decrease of .0021 to .0061. The mean difference in
RE was .0777 for the zero-order regularizing operator and .0668 for the second-order
operator. These values are within the same range as previous results with the single
central dipole and three/five eccentric dipoles.

Total sign mismatch counts (MM) and the mean value of sign mismatches per
map (Mn) complementing results in Table 4.4 are shown in Table 4.5. Counts when
the WSS1 method was used are lower than those for the best Tikhonov regularization
with no regional constraint (NRC) in all cases. Overall, there was a 25% decline in the
number of locations with an incorrect sign with weighted spatial smoothing WSS1,
compared to NRC solution.

The same data set was then used with the second variation of the regional con-
straint, WSS2. A comparison was made of the ratio of the optimal t-parameters
selected for each of the 1,600 dipoles for zero- and second-order regularizing oper-
ators using WSS1 to the optimal ¢ value for the corresponding Tikhonov solution.
Ratios ranged from .2616 x 10~5 to .6288 x 10*3. The mean value was 1.645 with a
standard deviation of 18.098, while the median was .3522 with a standard deviation of
.1406. The ratio was greater than 1.0 for 237 of the 3,200 cases included. Due to the
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Differences in relative errors (RE) of inverse-recovered epicardial potentials
between solution using zero- and second-order Tikhonov regularization with

no regional constraint (NRC) and that with weighted spatial smoothing
(WSS1), for 1,600 eccentric single-dipole sources at various depths in the

ventricular wall
Order Source Max Min Mean+SD Median+-SD
B0 10.0-mm .1913 -.0163 .0813+.0265 .0782+.0246
7.5-mm  .2148 -—.0189 .0854+.0351 .0792+.0299
5.0-mm 2243 -—.0277 .0833+.0404 .0795+.0334
2.5-mm .2024 -.1020 .0606+.0418 .0592+.0356
All above .2243 -.1020 .0777+.0377 0753+.0311
B2 10.0-mm .1107 .0021 .0425+.0178 .0399+.0136
7.5-mm .2128 .0026 .0640+.0282 .0601+.0252
5.0-mm .2161 .0041 .0809=+.0394 .0749+.0379
25-mm .3586 .0061 .0797+.0507 .0674+.0434
All above .3586 .0021 .0668+.0393 .0585+.0320

B0/B2, zero-/second-order Tikhonov regularization; WSS1, first option of weighted
spatial smoothing; Max/Min, maximal/minimal difference in relative error within the
set of dipoles (400 at each depth, 1,600 overall); Mean, mean difference in relative
error for the given set of dipoles; Median, median of differences in relative errors for
the given set of dipoles; SD, standard deviation; bold font, the best results.



eccentric single-dipole sources at various depths in the ventricular wall

Table 4.5:
Sign mismatch errors (MM, Mn) of inverse-recovered epicardial potentials for
zero- and second-order Tikhonov regularization with no regional constraint
(NRC) and that with weighted spatial smoothing (WSS1, WSS2), for 1,600

NRC WSS1 WSS2

Order Source MM Mn MM Mn MM Mn
BO 10.0-mm 16,051 40 11,033 28 8,669 22
7.5-mm 23,406 58 16,787 42 12,815 32
5.0-mm 35,133 88 26,534 66 20,943 52
2.5-mm 50,366 126 41,630 104 34,017 85

All above 124956 78 95,984 60 76,494 48

B2 10.0-omm 13,094 33 8,810 22 7,571 19
7.5-mm 21,920 55 15,083 38 12,495 31
5.0-mm 35,137 88 25,611 64 21,309 53
2.5-mm 49,589 124 39,642 99 33,402 83

All above 119,740 75 89,146 58 74,777 47

B0/B2, zero-/second-order Tikhonov regularization; WSS1, first option of weighted
spatial smoothing; WSS2, second option of weighted spatial smoothing; MM, total
number of sign mismatches within the set of dipoles (400 at each depth, 1,600 overall);
Mn, mean value of sign mismatches for the given set of dipoles; bold font, the best

results.
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Table 4.6:

Differences in relative errors (RE) of inverse-recovered epicardial potentials
between solution using zero- and second-order Tikhonov regularization with
no regional constraint (NRC) and that with weighted spatial smoothing
(WSS2), for 1,600 eccentric single-dipole sources at various depths in the

ventricular wall
Order  Source Max Min Mean+SD Median+SD
B0 10.0-mm .1770 -—-.0186 .07444-.0256 0711+.0166
7.5~-mm 2144 -.0191 .0758+.0339 .0698+.0189
5.0-mm 2166 ~—.03656 .0725%.0391 .0670%.0210
2.5-mm .1817 -.1089 .0498+.0386 .0474+.0306
All above .2165 —.1089 .0681+.0363 .0648+.0301
B2 10.0-mm .0958 -.0019 .0378+.0170 .0352+%.0136
7.5-mm .1351 .0010 .0562+.0252 .0531+.0160
5.0-mm .2158 -—-.0033 .0710+.0380 .0632+.0369
2.5-mm 2372 .0030 .0679+.0455 .0547+.0372
All above .2372 -—-.0033 .0582+.0357 .04961-.0278

B0/B2, zero-/second-order Tikhonov regularization; WSS2, second option of weighted
spatial smoothing; Max/Min, maximal/minimal difference in relative error within the
set of dipoles (400 at each depth, 1,600 overall); Mean, mean difference in relative error
for the given set of dipoles; Median, median of differences in relative error for the given
set of dipoles; SD, standard deviation; bold font, the best results.

large variation in these results, and judging from the comparison of WSS1 and WSS2
results with the different sources (central dipole vs. eccentric multiple dipoles), it was
deemed appropriate to use the Tikhonov solution optimal t-parameter with the WSS2
method for the test data generated by 1,600 dipoles. Corresponding differences in
relative errors between the Tikhonov solution with no regional constraints and with
weighted spatial smoothing WSS2 are shown in Table 4.6.

The number of dipoles for which RE increased when using WSS2 with the zero-
order regularizing operator rose in comparison with results for WSSL1 by 6, to 37, and
there were now three occasions where there was increased RE with the second-order

regularizing operator, but the latter increases were very small. Overall, WSS2 was
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Table 4.7:

Differences in node-to-node relative errors (RE) of inverse-recovered
epicardial potentials between solution using zero- and second-order Tikhonov
regularization with no regional constraint (NRC) and that with weighted
spatial smoothing (WSS1), for 1,600 eccentric single-dipole sources at various

depths in the ventricular wall

Order Source Max Min Mean+SD Median+SD
BO 10.0-mm .1959 —.0286 .0822+.0340 .0819-.0319
7.5-mm  .2196 -.0439 .0785+.0388 .0774+.0391
5.0-mm .2582 —.0587 .0720+.0450 .0695+.0432
2.5-mm  .2197 -.0533 .0492+.0437 .0456+.0412
All above .2582 —.0587 .0705+.0425 0709+.0411
B2 10.0-mm .1620 -.0128 .0674+.0311 .0638+.0322
7.5-mm .2029 -.0036 .0790-+.0400 .0743+.0428
5.0-mm .2485 .0010  .0797+.0447 .0726+.0451
2.5-mm .2080 .0006 .0481-.0363 .0409+.0340
All above .2485 —-.0128 .0685+.0404 .06301.0396

B0/B2, zero-/second-order Tikhonov regularization; WSS1, first option of weighted
spatial smoothing; Max/Min, maximal/minimal difference in relative error within the
set of dipoles (400 at each depth, 1,600 overall); Mean, mean difference in relative error
for the given set of dipoles; Median, median of differences in relative error for the given
set of dipoles; SD, standard deviation; bold font, the best results.

2-3% less effective in decreasing RE than WSS1.

Sign mismatch numbers are given in Table 4.5. Although by RE measures WSS2
was slightly less effective in improving the inverse-recovered potentials, sign mismatch
counts for WSS2 showed that there was better agreement in signs of potentials. WSS2
sign mismatch counts represented a decrease of 14-24% over WSS1 values.

As a next step, the node-to-node system was tested to see if the WSS1 and WSS2
methods would give equivalent results to those for the triangle-to-triangle system.
Table 4.7 presents the differences between errors when using WSS1 and when no
regional constraint was applied. RE increased for 90 of the 1,600 dipoles with the zero-
order regularizing operator and 4 of the 1,600 dipoles for the second-order operator;
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Table 4.8:

Differences in node-to-node relative errors (RE) of inverse-recovered
epicardial potentials using zero- and second-order Tikhonov regularization
with no regional constraint (NRC) and that with weighted spatial smoothing
(WSS2), for 1,600 eccentric single-dipole sources at various depths in the
ventricular wall

Order Source  Max  Min Mean+SD  Median+SD

B0 10.0-mm .1612 —.0300 .0650+.0297 .06283.0256
7.5-mm .1551 —.0470 .0564+.0307 .0550%.0257
5.0-mm .1587 -—.0590 .0497+.0335 .0492:+.0307
2.5-mm  .1555 —.0556 .0326+.0315 .0322+.0300

All above .1612 —.0590 .0509+.0336 .0508+.0303

B2 10.0-mm .1426 -.0133 .0530+.0271 .0530+.0271
7.5-mm  .1667 -—.0037 .0596+.0318 .0564+.0328
5.0-mm  .2010 .0009  .0573+.0328  .0507+.0322
2.5-mm .1547 .0006  .0327+.0241 .0286+.0223

All above .2010 -.0133 .0564+.0310 .0457+.0291

B0/B2, zero-/second-order Tikhonov regularization; WSS2, second option of weighted
spatial smoothing; Max/Min, maximal/minimal difference in relative error within the
set of dipoles (400 at each depth, 1,600 overall); Mean, mean difference in relative error
for the given set of dipoles; Median, median of differences in relative error for the given
set of dipoles; SD, standard deviation; bold font, the best results.

mean differences were .0705 for zero-order and .0685 for second-order operator. These
were equivalent to approximately an 11% decrease in RE for each. Maximum decrease
in RE was in the range of 30—40%. Improvement over optimal Tikhonov regularization
solutions was found, but the effects were dampened somewhat in comparison to the
triangle-to-triangle system.

Data for weighted spatial smoothing method WSS2 are in Table 4.8. With WSS2,
113 of the individual dipoles had an increased RE for the zero-order regularizing
operator and 6 for the second-order operator; the mean difference was .0508 for the
former and .0457 for the latter. These represent a decrease in RE of approximately
7%. Maximum decreases ranged from 25% to 35%. The decreases in RE values
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Table 4.9:

Differences in relative errors (RE) of inverse-recovered epicardial potentials
between solution using zero- and second-order Tikhonov regularization with
no regional constraint (NRC) and that with weighted spatial smoothing
(WSS1), for two time sequences of double-layer sources

Order Source Max Min Mean+SD Median+SD

BO  Septal .0948 .0456  .0697+.0116  .0707+.0059
Basal .0781  .0284  .0482+.0119  .0468+.0109

B2  Septal .0111 -.0012 .0035+.0038 .0021+.0033
Basal .0753 -.0035 .0147+.0236 .0035+.0049

B0/B2, zero-/second-order Tikhonov regularization; WSS1, first option of weighted spatial smooth-
ing; Septal/Basal, a sequence of oblique dipolar layers generated by propagated activation initiated
at the septal/basal site (Appendix B); Max/Min, maximal /minimal difference in relative error within
the set of dipoles comprising the wavefront; Mean, mean difference in relative error for the given set
of dipoles; Median, median of differences in relative error for the given set of dipoles; SD, standard
deviation; bold font, the best results.

are slightly lower than for weighted spatial smoothing method WSS1, as they were
for the triangle-to-triangle system. They are also lower than those found for the
triangle-to-triangle system.

To see what happened when a more realistic distribution was used as the source,
the two time-sequence data sets were also tested. Results for WSS1 method, with
differences from those where no regional constraint was applied are shown in Table 4.9.
For both the septal and basal sequences, there was never an increase in RE with the
zero-order regularizing operator. For the second-order regularizing operator there was
an increase for 6 distributions for the activation sequence initiated at the septal site
and 5 distributions for the activation sequence initiated at the basal site. The average
change in RE for septal activation sequence was .0697 for the zero-order regularizing
operator and .0035 for the second-order operator, with 2 maximum change of .0948.

For the activation sequence initiated at the basal site these changes were .0482 and
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Table 4.10:
Relative errors (RE) of inverse-recovered epicardial potentials for zero- and
second-order Tikhonov regularization with weighted spatial smoothing
(WSS2), for two time sequences of double-layer sources

Order Source MaxRE MinRE Mean+SD Median+-SD

BO  Septal .5678 2255  .3749+.0948  .3785%.1128
Basal .8182 4259  .5589+.1039  .5570+.0951

B2  Septal .4139 .1073 .2722+.1044 .2649+.1508
Basal  .8207 3792 .4908+.1197 .4485+.0747

B0/B2, zero-/second-order Tikhonov regularization; Septal/Basal, a sequence of
oblique dipolar layers generated by propagated activation initiated at the sep-
tal/basal site (Appendix B); WSS2, second option of weighted spatial smoothing;
MaxRE/MinRE, maximal/minimal relative error within the set of dipoles compris-
ing the wavefront; Mean, mean relative error for the given set of dipoles; Median,
median of relative errors for the given set of dipoles; SD, standard deviation; bold
font, the best results.

.0147, with a maximum of .0781. The corresponding percent changes for the activation
sequence initiated at the septal site were 17% and 1%, with a maximum of 24%, and
for the activation sequence initiated at the basal site percent changes were 8% and
2%, with a maximum 13% difference.

The results for weighted spatial smoothing method WSS2 are shown in Table 4.10,
with differences in Table 4.11. For both the septal and basal sequences, there was
again no increase in RE with the zero-order regularizing operator. For the second-
order regularizing operator there was an increase for 17 distributions for the septal
site and 11 distributions for the basal site, but the maximum increase was small at
.0043. The average change in RE for septal activation was .0660 for the zero-order
regularizing operator and .0014 for the second-order operator with a maximum change
of .0868. For the basal site these changes were .0435 and .0116, with a maximal change
of .0703. The corresponding percent changes for the septal site were 16% and less than

1%, with a maximum of 24%, and for basal site were 8% and 2%, with a maximum
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13% difference. There is no significant change in these values from those for WSS1.
Changes are smaller than for the other data sets tested.

Table 4.11:

Differences in relative errors (RE) of inverse-recovered epicardial potentials
between solution using zero- and second-order Tikhonov regularization with
no regional constraint (NRC) and that with weighted spatial smoothing
(WSS2), for two time sequences of double-layer sources

Order Source Max Min Mean+SD Median+SD
BO Septal .0868 0437 .0660+.0104 .0688+.0445
Basal .0703 0171 .0435+.0127  .0427+.0110
B2 Septal .0077 -.0018 .0014+.0030 .0002i.0022
Basal .0635 —.0043 .0116+.0206 .0016+.0050

B0/B2, zero-/second-order Tikhonov regularization; Septal/Basal, a sequence of
oblique dipolar layers generated by propagated activation initiated at the septal/basal
site (Appendix B); WSS2, second option of weighted spatial smoothing; Max/Min,
maximal/minimal difference in relative error within the set of dipoles comprising the
wavefront; Mean, mean difference in relative error for the given set of dipoles; Me-
dian, median of differences in relative error for the given set of dipoles; SD, standard
deviation; bold font, the best results.

Sign mismatch counts for NRC and both WSS1 and WSS2 are in Table 4.12. The
use of WSS1 results in a decrease in counts for both septal and basal activation-
sequence data sets. These changes range from 14% to 28%. Further decreases of 7%
to 15% are seen when WSS2 is used instead.

Epicardial potential maps were plotted in Fig. 4.2 for a qualitative assessment of
the changes due to weighted spatial smoothing options WSS1 and WSS2 as compared

to inverse-recovered maps obtained with no regional constraint.

Finally, WSS1 and WSS2 were tested in the presence of Gaussian noise. The
source consisting of three eccentric dipoles was used for these tests. Noise levels of
1%, 5%, 10% and 20% were added to the torso potentials. These perturbed potential



(NRC) and that with weighted spatial smoothing (WSS1, WSS2), for two
time sequences of double-layer sources

Table 4.12:
Sign mismatch errors (MM, Mn) of inverse-recovered epicardial potentials for
zero- and second-order Tikhonov regularization with no regional constraint

NRC WSS1 WSS2
Order Source MM Mn MM Mn MM Mn
BO  Septal 1549 43 1120 31 1003 28
Basal 1727 48 1479 41 1260 35
B2 Septal 1074 30 905 25 846 23
Basal 1697 47 1416 39 1309 36

B0/B2, zero-/second-order Tikhonov regularization; NRC, optimal Tikhonov solution
with no regional constraint; WSSI, first option of weighted spatial smoothing; WSS2,
second option of weighted spatial smoothing; Septal/Basal, a sequence of oblique dipo-
lar layers generated by propagated activation initiated at the septal/basal site (Ap-
pendix B); MM, total number of sign mismatches within the set of dipoles comprising
the wavefront; Mn, mean value of sign mismatches for the given set of dipoles; bold

font, the best results.

83
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Figure 4.2: Epicardial potential maps obtained with and without weighted spatial
smoothing. Columns, from left to right, show inverse-recovered epicardial potential
maps for test distributions generated by a single dipole near A265 (T-265); an oblique
dipole layer at 42 ms after stimulation at the septal site (S-42ms), and an oblique
dipole layer at 12 ms after stimulation at the basal site (B-12ms). Rows, from top
to bottom, show maps regularized by means of zero- or second-order Tikhonov regu-
larization (B0/B2) as follows: BO/NRC, B0/WSS1, B0/WSS2, B2/NRC, B2/WSS1,
and B2/WSS2. NRC, no regional constraint; WSS1/WSS2, first/second variant of
weighted spatial smoothing.



85

values were used as input data for zero- and second-order Tikhonov regularizing sys-
tems, first without applying any regional constraint methods and then with weighted
spatial smoothing options WSS1 and WSS2. Results—including those for noiseless
torso potentials, which have been included for comparison—are summarized in Ta-
ble 4.13. For all noise levels, the difference between WSS1 and WSS2 results was
small, with differences in RE less than .01 (2%). When RE for WSS1 method was
compared to those obtained when no regional constraint was applied, differences were
consistent over the different noise levels. For the zero-order regularizing operator the
average difference was .0813 and for the second-order operator it was .0267. Percent-
age improvements in RE as a result of applying weighted spatial smoothing decreased
somewhat, but this is to be expected as the amount of error increased with increasing
noise levels. Therefore, although Gaussian noise affects actual error values, it does
not appear to diminish the beneficial effects of the regional constraints imposed by
weighted spatial smoothing methods WSS1 and WSS2.

4.4.2 Discussion

This section explored the use of regionally weighted spatial smoothing as a constraint
on the epicardial potentials. The epicardial potentials were first calculated using
Tikhonov regularization with no regional constraints. These potentials were then
subjected to a weighted Laplacian smoothing procedure. Weights were determined by
the difference in amplitude between the potential at a given location and the potential
in a neighbouring region, as well as regional differences in curvature of the potential
distribution, compared to the maximum of these values over the epicardial potential
distribution. Regions of high amplitude and curvature received a moderate amount
of smoothing compared to areas where these values were relatively low. Weighting
due to amplitude and curvature were given equal value.

Two variants of weighted spatial smoothing were investigated. The first, WSSL,
determined the optimal t-parameter to use by computing the regionally constrained



Effect of Gaussian noise, added to torso-surface potentials generated by a
source consisting of three eccentric dipoles, on relative errors (RE) of

Table 4.13:

86

inverse-recovered epicardial potentials for zero- and second-order Tikhonov

regularization with no regional constraint (NRC) and that with weighted
spatial smoothing (WSS1, WSS2)

B0 B2

Regional Constraint Rms Noise (%) RE RE
NRC 0 3396 2148
WSS1 0 .2530 .1936
WSS2 0 2577  .1976
NRC 1 3605  .2506
WSS1 1 2746 .2239
WSS2 1 2810 .2290
NRC 5 3864 .3039
WSS1 5 .3040 .2739
WSS2 5 3114 2796
NRC 10 4046  .3367
WSS1 10 3246 .3097
WSSs2 10 3327 .3153
NRC 20 4296 .3680
WSS1 20 3527 .3449
WSS2 20 3602  .3475

B0/B2, zero-/second-order Tikhonov regularization; WSSI, first option of weighted
spatial smoothing; WSS2, second option of weighted spatial smoothing; bold font,

the best results.
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potentials and then finding the best match, as measured by RE, with the epicar-
dial potentials known a priori. For the different potential distributions tested, there
was a large variation in the relative difference of the size of the selected ¢-parameter
compared to the one chosen when there was no regional constraint. RE measures
decreased as a result of applying the regional constraint imposed by WSS1 method
for all but a few cases. The instances where an increase in RE occurred could be
due to an area with high amplitude and curvature of potential, which deteriorated
somewhat when smoothing was applied. For the large majority of cases where RE
decreased, there was still variation in the degree of improvement. This could be
due to the underlying epicardial potential distribution which the inverse procedure
is attempting to reconstruct. The amount of decrease for some test distributions
also varied depending on the Tikhonov regularizing operator which was employed.
Tikhonov second-order regularization already makes use of Laplacian smoothing as
a physiological constraint. For an epicardial map where there are no pronounced
extremes of amplitude or curvature of potential, such as that for the single central
dipole, inverse-recovered epicardial potentials obtained with second-order regularizing
operator already incorporate the smoothing which is applied again as WSS1. There-
fore, differences due to WSS1 method may be expected to be small. However, for
the potential distributions generated by the same central dipole source, inverted with
the zero-order regularizing operator, and then smoothed by applying WSS1, there
was still a significant improvement in terms of a decreased RE. In the case of zero-
order regularization, only the norm of the amplitudes had been constrained and thus
low-level potentials still required additional smoothing. When dealing with epicardial
distributions which do not exhibit the degree of smoothness characteristic for the cen-
tral dipole source, the RE measure improves when using both second- and zero-order
regularizing operators. For the set of 1,600 eccentric dipoles, the mean and median of
improved RE were just slightly lower for second-order than for zero-order regulariz-
ing operator. The results produced with realistic time-sequence sources showed little
change for the second-order regularizing operator, but still some decrease in RE for
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applications where the zero-order regularizing operator was used. For many of these
realistic torso-surface potential distributions, the optimal ¢-parameter is larger than
for the dipole sources, so that results obtained with the second-order regularizing
operator will have already incorporated a larger degree of smoothing.

When the distribution of potentials on the epicardial surface for values known
a priori and the distribution obtained by the inverse solution were compared, WSS1
decreased the number of locations where there was a sign mismatch, for both reg-
ularizing operators and at all distances, regardless of corresponding changes in RE
measures. These results support the notion [76] that potentials in the area of the
zero-line require more smoothing than those in the areas surrounding extrema.

Results presented in Chapter 3 indicate that for most potential distributions in
the test distributions used in this study, the node-to-node system is less successful in
recovering the epicardial distribution than the system constructed by means of the
triangle-to-triangle method. WSS1 method was tested on the node-to-node system
to find out if it is robust enough to decrease RE under these conditions. Average
decreases in RE as a result of applying WSS1 were somewhat smaller than for the
triangle-to-triangle system, but they were more or less in the same range. Larger
optimal ¢ values necessary for node-to-node systems, and the associated inherent
increase in the smoothness of the solution, could be responsible for this difference.

Results from this section support the use of the regional constraint based on
weighted spatial smoothing. However, in clinical applications where the epicardial
potentials are not available for comparison, the optimal ¢ parameter must be selected
differently. Methods for selecting these values for Tikhonov regularization will be
discussed in Chapter 5. None of the methods to be presented allow for altering the
inverse epicardial potentials after Tikhonov inversion and prior to ¢ selection. There-
fore, a variation of weighted spatial smoothing which determines an optimal parameter
before applying the regional constraint was introduced. The ratio of the parameter
used for WSSt to that for the corresponding Tikhonov regularization method was

examined. Large variations in this ratio were found; moreover, although ¢ parameters
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used for WSS1 were usually smaller than the Tikhonov optimal value, sometimes
they were larger. The former was an expected result, since extra smoothing where
required would allow a smaller £ to give better peak values. The latter was not ex-
pected, but it could be explained by the fact that as the amount of regularization
increases, the difference between potentials will decrease. This not only involves the
dampening of some values, but also the relative increase in potential at others. In
some cases, RE measures were smaller when a lower ¢ parameter was used without
WSS1. Although peaks had too large a magnitude, the underregularized inverse so-
lution kept a better balance between values. When WSS1 was applied, the peaks
could be decreased—because of the method’s regionally weighted nature—without
unwanted relative increases elsewhere in the distribution. No pattern which could
be used to facilitate the selection of a t value for WSS2 was found; therefore, the
Tikhonov optimal ¢ value was used. Mean RE measures for WSS2 were only slightly
higher (from 1% to 3%) than those for WSS1, although in individual cases there were
larger differences.

The distributions of inverse-recovered epicardial potentials obtained with WSS52
were examined and compared (in terms of two error measures, MM and RE) with
results obtained with WSS1. Mismatch counts for WSS2 decreased even further,
in comparison with NRC, than those obtained with WSS1, but RE measures were
worse. This may be explained by the fact that in all but a few cases the ¢ parameter
used for WSS2 was larger than for WSS1, allowing for more smoothing around the
zero-line and resulting in less sign discrepancy. Based on these results, on average,
the Tikhonov optimal ¢-parameter is appropriate for WSS2.

The effect of noise on the resulting decreases in RE with the application of this
regional constraints WSS1 and WSS2 was also investigated. RE increased with in-
creasing Gaussian noise level, but the difference between RE for Tikhonov regular-
ization with and without weighted spatial smoothing constraints remained the same.
Percent changes were smaller because of the increase in error values.

For WSS1 method, there was an increase in time required for processing—in
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comparison with WSS2 method—as the regional constraint calculations had to be
done for each ¢ value in the selection procedure. This calculation has to be performed
only once for WSS2.

4.5 Temporal Continuity

The regional constraint methods dealt with in this chapter thus far have all treated
each spatial distribution of torso-surface potentials in temporal isolation. However,
clinical torso-surface distributions are recorded as multiple electrocardiographic sig-
nals continuously sampled—typically at the rate of 1,000 samples per second—for
at least 10 seconds. In this section, methods of constraining the inverse-recovered
epicardial potentials by making use of data available in the chosen temporal region
will be explored.

Brooks et al. [18, 19] and Maratos [100] included the time component in their
analysis by incorporating several time steps into the inverse problem formulation,
and thus regularizing in time and space domains simultaneously. The size of the
system to be evaluated and the time required to analyze it increased greatly with the
number of timesteps considered, and thus only a small number of samples was in-
cluded in the analysis. In investigations by Joly et al. [80], later extended by El-Jakl
et al. [39], it was assumed that the change in potential at a given location on the
epicardial surface from one time instant to the next may be represented by a linear
prediction equation. Kalman filtering techniques were applied to determine the re-
sulting epicardial potentials. As a first step, a priori known potentials were used to
compute the appropriate matrices for the finite element system. In a later version,
measured torso-surface potentials alone were used to calculate the matrices. Without
the a priori knowledge of epicardial potentials, improvements on Tikhonov regular-
ization results without time constraint were not as great, but they were noticeable —
at least on a qualitative basis.

A temporal estimate of the required epicardial potentials was used in the Twomey
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method for regularizing the inverse problem of electrocardiography by Messinger-
Rapport and Rudy [105]. This work was later expanded by Oster and Rudy [117] in
a study designed to investigate what combination of neighbouring time instants gave
the best estimate. When using epicardial potential values known a priort in estimate
calculation, they determined that the average of the preceding and following time
steps and a combination of these samples plus the values at the desired time step
resulted in the most improvement in error measures. The shortest time step that was
investigated, 0.5 ms, gave the best results. One example was documented where no
a priort knowledge of the potentials was assumed. Using the inverse-recovered epi-
cardial potential distribution at the first time instant where right-ventricular break-
through was manifested in torso-surface potentials as the estimate for the previous
time step, they were able to recover a minimum at the appropriate location — which
Tikhonov regularization without time constraints was unable to do. Although there
was a qualitative improvement in inverse-recovered epicardial potentials, quantitative
results did not change. The qualitative improvement achieved with Twomey regular-
ization was very dependent on the estimate. If just the preceding time step had been
used as the estimate, one would not expect the minimum to be corrected.

When inverse-recovered epicardial potentials are calculated for a time sequence of
torso-surface potential distributions, one can plot an electrogram of potential values
versus time at each epicardial location. The temporal continuity (TC) method pre-
sented in this section makes an assumption of some degree of smoothness within these
electrograms at each site on the epicardial surface. “Noise” found in the electrograms
may be the result of the selection of separate t-parameters for each time instant, noise
in the input data (torso-surface potentials) and the application of constraints on the
inverse-recovered epicardial potentials. TC attempts to counteract these problems by
imposing a degree of smoothness over each temporal complex of the time sequence of
inverse-recovered epicardial potentials.

Numerical Recipes routine SMOOFT [128] was used in the calculation of the TC
results. This routine smooths an array Y of length NV, with a window whose full width
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is of the order PT'S neighbouring points. The value of PT'S must be supplied and
sets the amount of smoothing to be incorporated. A value of zero gives no smoothing
at all. As PT'S increases, so does the amount of smoothing. Values larger than about
half the number of data points will make the data virtually featureless. The routine
assumes that the abscissa are equally spaced. As a first step, any linear trend is
removed. This is followed by the application of a Fast-Fourier Transform to filter the
data by means of the low-pass filter. The linear trend is reinserted at the end.

The TC constraint is applied only after any other desired spatial regional con-
straints have been imposed on the inverse-recovered epicardial potentials. Keeping in
mind that for clinical applications there would be no a priori knowledge of the epicar-
dial potentials, the second variation of the weighted spatial smoothing (WSS2) was
selected for use with temporal constraints in the test cases presented here. Results
were calculated with temporal smoothing over temporal regions of several different
lengths. Comparisons were made with inverse-recovered epicardial potentials ob-
tained using only WSS2 without temporal constraints. Since the temporal constraints
approach requires potentials at multiple time steps, the potential distributions used
for testing these constraints were limited to the two time sequences of oblique double

layers—septal and basal—each with 36 timesteps at 2-ms intervals.

4.5.1 Results

Inverse-recovered epicardial potentials were calculated for both zero- and second-
order Tikhonov regularization for the 36 time instants of the septal and/or basal
activation-sequence data sets. These values were then subjected to the weighted spa-
tial smoothing (WSS2), described in section 4.4. The temporal continuity constraint
was then used to compute revised values for each sequence, for PT'S = 5 (TC5), 4
(TC4), 3 (TC3), and 2 (TC2). This required saving potential values for each time
step so that the values at each location over all time instants could be input to the
smoothing routine. For the 36 times steps considered here, this did not result in

any significant increase in the time necessary for processing. Relative errrors were
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Table 4.14:

Relative errors (RE) of inverse-recovered epicardial potentials for zero- and
second-order Tikhonov regularization with weighted spatial smoothing
(WSS2) and temporal-continuity (TC) constraints, for two time sequences of
double-layer sources

Order Source Stats WSS2 TC5 TC4 TC3 TC2

BO  Septal Mean 3749 7057 .6163 .5378 .4597
Median .3785 3800 .3874 .3825 .3815
B2 Mean .2722 .6318 .5355 .4494 .3670
Median .2649 .2897 .2832 .2708 .2693

BO Basal Mean .5589 .5621 .5605 .5595 .5590
Median .5570 .5581 .5579 .5576 .5572
B2 Mean .4908 .4932 .4917 .4907 .4904
Median .4485 .4394 .4435 .4472 .4447

B0/B2, zero-/second-order Tikhonov regularization; WSS2, second option of weighted
spatial smoothing; TC2,...,TC5, temporal continuity constraints; Septal/Basal, a se-
quence of oblique dipolar layers generated by propagated activation initiated at the
septal/basal site (Appendix B); Mean, mean relative error for the given set of dipoles;

Median, median of relative errors for the given set of dipoles; bold font, the best
results.

calculated for these temporally constrained potentials at each time instant. Mean
and median values for WSS2 and the four TC variations are given in Table 4.14.
With the exception of the basal activation-sequence test set with the second-
order regularizing operator, the WSS2 method had the lowest mean and median RE,
with RE increasing as PT'S increased. For basal activation-sequence source with the
second-order operator, the mean RE for TC3 and TC2 are lower than WSS2 (with
TC2 the smallest) and all TC variations had a median RE smaller than for WSS2
(with TC5 the smallest). The magnitude of the differences for all median values and
for mean values with basal activation sequence were very small. There were larger
increases in RE for mean values for the septal activation sequence. An examination

of errors for individual samples showed that this discrepancy was due to very large
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changes in the first few samples of the sequence where all potentials were of low
magnitude. The number of samples affected depended upon the PT'S number. This
effect was not visible for the basal activation sequence, where the initial samples have
potential values of much larger magnitude.

To further quantify any changes due to TC methods, a count was made of the
number of time instants where RE decreased and CC increased compared to WSS2
results with no temporal constraint. These statistics are shown in Table 4.15. For
the septal activation-sequence data and with the zero-order regularizing operator,
the largest number of time instants where RE improved was 42% of the total and for
CC 47%, both for TC2. For the second-order regularizing operator, TC2 also had
the best results with 36% for RE and 42% for CC. The basal activation-sequence
data with the zero-order regularizing operator also had 42% of time instants with
improved RE, but in this case for TC3 and TC4 methods. The maximal improvement
in CC, 53%, occurred for TC2 method. For the second-order regularizing operator,
the best improvement for RE was 50% with TC3 and TC2 methods. The maximum
improvement in CC was 56%, for TC2 and TC3 methods. Overall, TC2 method
exhibited the largest number of instances where RE and CC improved over WSS2
method used alone.

Although averaged over the time sequence, the errors that have been considered
so far are for a spatial distribution. In addition, for a temporal sequence of data, it is
also possible to consider errors in the electrogram for a given location. These values
were compared to the corresponding @ priori known values, and mean and median
errors were computed for all of the locations of the eccentric dipole sources. RE results
are given in Table 4.16. Both data sets show little change in RE mean and median
measures with any TC variant. In contrast to spatial error comparisons, the median
of RE for septal activation-sequence data and the second-order regularizing operator
with either TC5 or TC4 are the only occasions when errors surpass those for WSS2
alone. The results for the basal activation-sequence data consistently indicate that
TC5 method has the lowest mean and median RE. The septal activation-sequence
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Table 4.15:

Improvements in inverse-recovered epicardial potentials, in terms of relative
error decrease (RE|) and correlation coefficient increase (CCt), achieved by
adding temporal continuity constraints (TC) to zero- and second-order
Tikhonov regularization with weighted spatial smoothing (WSS2), for two
time sequences of 36 double-layer sources

TC5 TC4 TC3 TC2
Order Source RE] CCt RE| CCt RE{ CCt RE] CCt

BO  Septal 10 9 12 13 10 13 15 17
B2 8 9 10 9 12 13 13 15

BO Basal 13 15 15 16 15 18 14 19
B2 17 19 17 17 18 20 18 20

B0/B2, zero-/second-order Tikhonov regularization; TC2,...,TC5, temporal continuity
constraints; Septal/Basal, a sequence of oblique dipolar layers generated by propagated
activation initiated at the septal/basal site (Appendix B); bold font, the best results.

data showed more variation with TC4 for the mean for both zero- and second-order
regularizing operators, and with TC2 for the median for the zero-order regularizing
operator, and TC3 for the second-order regularizing operator.

Temporal error changes were further quantified by counting the number of loca-
tions where RE and CC error measures improved with TC constraints. These numbers
are displayed in Table 4.17. In this case all counts are greater than 50% of the 400
locations. This is in contrast to the spatial measure, where only a few results topped
50%. There appears to be a trend with lowest numbers for TC5 and highest numbers
for TC2. With TC2 constraint and the septal activation-sequence data for the zero-
order regularizing operator, 58% of the locations have lower RE and 57% have higher
CC. Corresponding numbers for the second-order regularizing operator are 63% and
61%. Even better results were found for the basal activation-sequence data. With
zero-order regularizing operator, 64% of the electrograms had improved RE and 76%
had improved CC. Measured by both RE and CC, improvement occurred at 91% of



Table 4.16:
Relative errors of inverse-recovered epicardial electrograms for zero- and
second-order Tikhonov regularization with weighted spatial smoothing
(WSS2) or temporal continuity constraints, for two time sequences of
double-layer sources

Order Source Stats WSS2 TC5 TC4 TC3 TC2

BO  Septal Mean 4719 4696 4692 4697 .4706
Median .3970 .3989 .3986 .3943 .3928
B2 Mean .3903 .3889 .3874 .3875 .3886
Median .2897 .2874 .2839 .2834 .2858

BO Basal Mean .3359 .3324 3332 3340 .3348
Median .2628 .2589 2505 .2596 .2592
B2 Mean .2878 .2709 .2740 .2774 .2815
Median .1880 .1733 .1764 .1794 .1841

B0/B2, zero-/second-order Tikhonov regularization; WSS2, second option of weighted
spatial smoothing; TC2,...,TCS5, temporal continuity constraints. Septal/Basal, a se-
quence of oblique dipolar layers generated by propagated activation initiated at the
septal/basal site (Appendix B); Mean, mean relative error for the given set of dipoles;

Median, median of relative errors for the given set of dipoles; bold font, the best
results.
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Table 4.17:

Count” of improvements in inverse-recovered epicardial electrograms, in terms
of relative error decrease (RE}) and correlation coefficient increase (CCt),
achieved by adding temporal continuity (TC) constraints to zero- and
second-order Tikhonov regularization with weighted spatial smoothing
(WSS2), for two time sequences of 36 double-layer sources

TC5 TC4 TC3 TC2
Order Source RE| CCt+ RE| CCt RE]l CCt+ RE}l CCt

BO  Septal 209 208 218 213 221 223 231 227
B2 209 206 227 220 244 238 251 243

BO Basal 240 284 239 286 245 300 257 305
B2 341 342 353 344 359 353 363 364

*Count, number of improved electrograms on the epicardial surface (out of 400).

B0/B2, zero-/second-order Tikhonov regularization; TC2,...,TC5, temporal continuity
constraints; Septal/Basal, a sequence of oblique dipolar layers generated by propagated
activation initiated at the septal/basal site (Appendix B); bold font, the best results.

epicardial “recording” sites, for the second-order regularizing operator.

In another approach to quantifying changes due to TC constraints, the sign of
the potential at each epicardial location was compared, over all 36 time instants of
either septal or basal activation sequence, to the sign of the potential values known
a priori. The total count of all space-time points (out of a possible 14,400) where
signs did not agree is given in Table 4.18. From these results it is clear that there is
good sign agreement, with only 6% to 10% of potential values disagreeing for each
sequence of potential distributions and each operator. TC constraints do not improve
on the number of sign agreements. In fact, there is a small increase in mismatches
from TC2 to TC5 with WSS2 alone always having the smallest mismatch count.

The smoothness of the inverse-recovered electrograms was evaluated by counting
the number of times the slope changed from positive to negative or vice versa; the cor-

responding count for a priori known epicardial electrograms was subtracted. Results
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Table 4.18:

Sign-error count® of inverse-recovered epicardial potentials for zero- and
second-order Tikhonov regularization with weighted spatial smoothing
(WSS2) or temporal continuity (TC) constraints, for two time sequences
of 36 double-layer sources

Order Source WSS2 TC5 TC4 TC3 TC2

BO Septal 1003 1273 1187 1141 1118
B2 846 1129 1060 996 972

BO Basal 1260 1412 1385 1362 1334
B2 1309 1491 1452 1431 1336

*Sign-error count, number of sign disagreements between inverse-recovered and known
potentials (out of a possible 14,400).

B0/B2, zero-/second-order Tikhonov regularization; WSS2, second option of weighted
spatial smoothing; TC2,...,TC5, temporal continuity constraints; Septal/Basal, a se-
quence of oblique dipolar layers generated by propagated activation at the septal /basal
site (Appendix B); bold font, the best results.

are shown in Table 4.19, where positive values indicate that the a priori known elec-
trograms are smoother than their inverse-recovered counterparts, and negative values
indicate the opposite. From these results it is evident that utilizing TC constraints
TCS5 and TC4 will tend to smooth inverse-recovered electrograms, but for TC3 and
TC2, whether smoothing occurs or not depends on the magnitude of the signal. The
amount of smoothing increases as PT'S increases. For the septal activation-sequence
data, the inverse-recovered electrograms obtained with WSS2 agree in amount of
smoothness most closely with electrograms known a priori. The amount of change
caused by TC2 is small. For TC3, TC4, and TCS5, there is more substantial smooth-
ing. For basal activation-sequence data, all results obtained with TC constraints are
closer in degree of smoothness to the a priori known distributions than those ob-
tained with WSS2 constraints alone. With the zero-order regularizing operator, the

best result is with TC3 and for the second-order operator, with TC4.
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Table 4.19:

Direction-change count of inverse-recovered epicardial potentials for zero- and
second-order Tikhonov regularization with weighted spatial smoothing
(WSS2) or temporal continuity (TC) constraints, for two time sequences
of 36 double-layer sources

Order Source WSS2 TC5 TC4 TC3 TC2

BO  Septal 23 -511 —449 -305 -4
B2 -27 509 -443 -306 -72

BO Basal 447 301 -208 -57 131
B2 589 -160 -30 119 328

Direction-change count, number of slope changes in inverse-recovered electrograms
minus number of slope changes for known electrograms (+/—, more/fewer changes);
BO/B2, zero-/second order Tikhonov regularization; WSS2, second option of weighted
spatial smoothing; TC2....,TC5, temporal continuity constraints; Septal/Basal, a se-
quence of oblique dipolar layers generated by propagated activation initiated at the
septal/basal site (Appendix B); bold font, the best results.

Next, qualitative changes due to TC constraints were investigated. Several loca-
tions where TC constraints improved error measures over WSS2 alone were selected,
and inverse-recovered electrograms obtained with WSS2 and with all of the TC con-

straints were plotted for comparison in Fig. 4.3.

4.5.2 Discussion

The use of electrogram continuity over regions of time as a constraint on the solution of
the inverse problem of electrocardiography for epicardial potentials was investigated in
this section. The spatial regional constraint, WSS2, was applied prior to application of
any temporal constraint, in order to establish the best possible results at each isolated
time step. WSS2 was selected because of its previously documented improvement of
error measures (section 4.3), low computation time, and its independence of a priori
knowledge of the epicardial potentials. As a first step, the inverse solution with both
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Figure 4.3: Changes in morphology of inverse-recovered epicardial electrograms due to
the application of spatial or temporal constraints. Columns, left to right, show electro-
grams calculated with different constraints: no regional constraint (NRC), weighted
spatial smoothing (WSS2), and temporal constraints (TC5, TC4, TC3, TC2). Rows
correspond with different regularization methods used in inverse calculations (B0/B2),
different sources (S/B), and different “recording” sites (triangles 42, 100, 257, 224), as
indicated near each tracing; in addition, relative error (RE) for each inverse-recovered
electrogram is given. Solid line, inverse-recovered epicardial electrogram; dotted line,
e priori known electrogram; abscissa, time axis (0—72 ms, corresponds to “paper
speed” of 87.5 mm/s); ordinate, amplitude (0-2.5 mV); B0/B2, zero-/second-order
Tikhonov regularization; S/B, test distributions generated by oblique dipole Iayers
representing wavefronts of activation sequence initiated at the single septal/basal site;
triangle numbers correspond to epicardial topography as indicated in Fig.A.3.
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zero- and second-order Tikhonov regularization was computed, followed by applying
the WSS2 constraint. Then variations of the TC constraint method were used to
constrain the epicardial potentials over temporal regions of length 5, 4, 3, and 2 time
steps. The maximum interval length was chosen to be significantly less than half
the number of time steps considered, and to correspond to the maximum number of
points considered by Oster and Rudy [117]. The largest interval they considered was
from two steps preceding to two steps following the timestep for which the Twomey
estimate was to be determined, a total of five.

An examination of mean and median of RE for each data set and each regularizing
operator, with WSS2, TC5, TC4, TC3 and TC2 constraints, indicated that in the
majority of cases there was a change in RE measures of less than 0.01. For the septal
activation-sequence data, there was an increase in mean RE which was not reflected
in the median RE values. Relatively large changes of potential in the first three
time steps, where magnitudes were very low, caused this discrepancy. Therefore, it
appears that TC constraints do not significantly alter error measures. This result
was not unexpected, as Oster and Rudy [117] found that using inverse-recovered epi-
cardial potentials when calculating their temporal constraint, resulted in qualitative
improvements in terms of recovering spatial features (extrema), but not in quantita-
tive improvements in terms of decreased RE. Although the changes were small, it was
of interest to note that for TC2, from 36% to 56% of electrograms had the RE values
improved over those obtained with no temporal constraint. Thus, this latter measure
reflects the fact that although the spatial distribution of inverse-recovered epicardial
potentials was more in line with a priori known values, the improvement occurred
predominantly in areas of low-level potentials—compared to the overall signal energy
of the distribution—and thus it was not reflected in RE measures.

The temporal nature of TC constraints required adjustment of error measures to
capture the inverse solution’s ability to recover epicardial electrograms rather than in-
stantaneous epicardial maps. Mean and median values of RE for the 400 electrograms
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over 36 time steps were computed. RE measures changed little with different con-
straints; however, a definite pattern appeared showing—with only two exceptions—
that TC error measures are smaller than those with no temporal smoothing. For the
electrogram errors, over 50% had improved RE measures over WSS2 for all test sets,
regularizing operators and TC constraints variations. TC2 showed the best results
for all data and operators, featuring a high of 91% improvement—measured in terms
of both RE and CC—for basal test data with the second-order regularizing operator.
This result suggests that it may be important to consider temporal errors, as well as
spatial errors, when determining the efficacy of regional constraints. The possibility
exists that these small error changes could reflect qualitative improvements in the
electrograms and spatial maps.

Oster et al. [118, 120] determined the CC for electrograms of inverse-recovered
potentials of data measured on a torso tank, compared with those measured close to
a canine heart suspended within the tank. They found that a number of the electro-
grams had a “jagged” appearance, which was not seen with the measured potentials,
and they attributed these discontinuities to the fact that each time step was com-
puted in isolation, with no temporal smoothing. Fig. 4.3 displays some electrograms
for the septal and basal activation-sequence data sets. Note the smoothness of the
electrograms with weighted spatial smoothing.

The degree of smoothness of the electrograms was quantified by counting the num-
ber of times the slope changed sign. The effectiveness of TC methods in smoothing
the electrograms was evident, with counts decreasing with an increase in the number
of points over which smoothing occurred. For the septal activation-sequence data, TC
constraints oversmoothed the distribution, while for basal activation-sequence data,
all TC constraints brought down the number of changes with respect to the a priori
known distribution (Table 4.19). This result is probably due to the difference in the
type of distribution. It is important to note that no attempt was made to determine
whether changes occurred at the same time as those of the a priori known values.

When Oster and Rudy [117] used a temporal constraint to retrieve a minimum
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seen in measured data, but not in inverse-recovered data, the spatial feature was
restored with wrong sign. In the present study, when the sign of inverse-recovered
potentials was compared to that of the a priori known potentials, agreement was
found in all but 6% to 10% of cdses. Applying temporal constraints increased the
number of mismatches. Therefore, TC constraints do not appear to be helpful in
correcting discrepancies between positive and negative values.

Results with methods based on TC constraints do not convincingly indicate that
temporal regions can constrain the inverse epicardial potentials (when there is nc
a priori knowledge of the solution) in such a way that solutions are improved. How-
ever, there is evidence to suggest that TC constraints may do so in some circum-
stances. Torso-surface potential distributions with a time step shorter than the 2-ms
sampling interval chosen in this study, could potentially increase the usefulness of this
constraint as well. Although not explicitly tested in this study, it may be assumed
that results would be similar for node-to-node systems, because the TC constraints
are applied at each epicardial location independently.

4.6 Composite Regional Constraint

A comparison of maps of an epicardial potential distribution, either from measured or
simulated data, with maps recovered via the inverse solution [10, 76, 97, 117, 140, 144,
145], frequently reveals the presence of “spurious” extrema where magnitudes, and
sometimes sign, do not match the potential values known a priori. Extrema with the
incorrect sign exist as both isolated regions and as pseudopod-like structures which
protrude out of areas where that sign is the correct one. Discrepancies in boundaries
between positive and negative regions also occur.

Several methods have been suggested for improving the recovery of the zero-line.
The hybrid inverse solution proposed by Iakovidis and Gulrajani [76], described in
section 4.1, uses the assumption that an oversmoothed solution better recovers the
location of the zero-line. Problems arise with this method when there is a high spatial
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gradient of potentials around the zero-line. The inequality constraint of Horaéek and
Clements [71], presented in section 4.2, also makes effective use of this assumption,
provided bounds are appropriately chosen. Weighted spatial smoothing constraints,
as described in section 4.4, were shown to decrease error measures and the number
of locations where there was a mismatch of sign between a priori known and inverse-
recovered potentials. The position of the zero-line as opposed to the removal of
isolated or pseudopod-like regions of incorrect sign was the main emphasis of the
investigations presented in this section.

The presence of regions with the wrong sign is an artifact of the inverse solution.
An examination of the singular vectors shows a tendency for extrema to be surrounded
by extrema of the opposite sign. The number of extrema increases as the singular
value associated with the vectors decreases. Non-regularized inverse-recovered poten-
tial maps, calculated from measured torso potentials , feature a mass of positive and
negative extrema. As the amount of regularization is increased, the number of these
extremes decreases, larger areas are smoothed out, and spatial gradients and curva-
tures decrease. The optimal solution must achieve a balance such that it recovers
maximal amplitudes and gradients, and their locations, as closely as possible, while
at the same time removing extraneous extrema. Although the remaining spurious
extrema are often of low amplitude compared to the correctly recovered extrema, and
may be disguised by producing maps where only contours above a given potential
value are plotted, to view the complete distribution of positive and negative values
over the epicardial surface, the zero-line must be plotted. Extra zero-lines necessary
because of extraneous extrema greatly disrupt the final pattern.

The composite regional constraint (CRC) method, presented in this section, was
designed to identify and eliminate regions on the epicardial surface where the sign of
inverse-recovered potentials does not match that of a priori known values, using some
terminology borrowed from image understanding systems. This seemed appropriate -
since the solution of the inverse problem of electrocardiography for epicardial poten-
tials can be regarded as “noninvasive electrocardiographic imaging” [119, 123, 93].
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Image understanding systems are designed to recognize events and to draw conclu-
sions based not only on information gleaned from the image itself, but also on any
appropriate additional information which is available to it [11, 36]. In our case, the
event to be recognized is the presence of an artifact in the “electrocardiographic im-
age”. Additional information is drawn from the corresponding torso potentials, the
torso-heart model and, when available, electrograms for the region under investiga-
tion.
The following algorithm defines the sign constraint portion of the CRC method.

algorithm
(i) define

m: # of torso surface area elements,
n: # of heart surface area elements,

l: # of timesteps,

[b1,...,bm]: input torso potentials,

[z1,...,2n]: estimate of epicardial potentials,
[R1,...,hn]: hypothesis for each epicardial potential,
[£1,-.,&n]: updated potentials,

[A1,...,hn]: updated hypotheses,

Ppp: as defined in chapter 2,

nb(bg): set of torso potentials at area elements which share at least

one vertex with area element k,

nnb(zg): set of epicardial potentials at area elements which share

at least one vertex with area element k with A 0K.
(ii) set initial hypotheses

For t=1 to [ do

For i=1 to n do
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If sign(z;) # sign(nb(bg): where k£ index with maxlgsm{PgH})
Then set h; artifact, Else set h; OK

** End of Loops *#*
(iii) update hypotheses with temporal information if ! > 4

For i=1 to n do

Search over timesteps for sequence of artifact values {:z:f"‘,...,z:"’}
Search for following sequence of 0K values {zﬁ“*"",...,zﬁ"**’i}

If 723 and Si@{xgkl’“-’z‘gkz} - sign{x:h2+l’””z§k2+j}
Then reset {h*!,...,hH%2} oK

** End of Loops **
(iv) update hypotheses with spatial information

For t=1 to [ do
Set [ﬂl,...,ﬁn]=[h1,...,hn]
For j =1,2,... satisfied do ** Loop Until No More Updates **
Initialize artifact count to 0
Fori=1ton
If h; = artifact Then if sign(z;) = sign(nnb(z;))
Then set fh 0K Else increment artifact count
** End ¢ Loop *=*
Reset [fq,...,hn]=[f11,..-,ﬁn]
If artifact count same as last pass, Then satisfied

=+ End 7 and ¢ Loops **
(v) replace artifact potentials

For t=1 to [ do
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Set [£1,...,%,] =[£1,...,Zp], [ﬂl,...,ﬁn]=[h1,...,hn]

For j=1,2,..., satisfied do ** Loop Until All Artifacts Replaced
Set artifact count to O

For :=1 to n do

If h; = artifact

Then If hx = OK for > 3 neighbours k of z;

Then interpolate Z; from OK neighbours, set ft, 0K

Else increment artifact count

** End 1 Loop »**

Reset [z1,...,%al = [B1,...,&a], [A1,---,hn] = [B1s---, ]
If artifact count = 0, Then satisfied

*x End j and ¢t Loops *=*

The first step requires the generation of an hypothesis for each epicardial element as
to whether the inverse-recovered potential is appropriate or an artifact. The potential
at any point on the torso surface is a summation of the contributions from all cardiac
sources. However, the assumption is made that for each epicardial location there
exists a region on the torso surface, whose potential will have the largest effect. The
degree of this effect will depend on the magnitude of the potential gradients in the
epicardial region, the extent of cardiac sources around this region, and the distance
to the torso surface [144, 145]. Although the potentials in the torso region will be of a
different magnitude, some should have the same sign as that of the epicardial potential
in question. This assumption was supported by the work performed by Monro’s group
[20, 108}, who found that the QRS complex of ventricular electrograms recorded in
human subjects correlated well with torso-surface electrocardiograms recorded simul-
taneously at certain electrode-positions. Unipolar electrograms were recorded from
2-3 epicardial sites in 21 patients approximately one week after aortocoronary bypass
surgery, while torso-surface electrocardiograms were recorded at 37 sites. The authors
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found a number of torso leads where the CC with the electrogram was greater than
0.8.

For the CRC method proposed here, the heart-torso model was used to determine
the maximum positive solid angle over the torso surface elements subtended at the
epicardial triangle for which an hypothesis was to be generated. By considering the
solid angle as a measure of the geometrically similar position, distance and orientation
of the epicardial surface element with respect to the torso surface element—both
affecting the desired epicardial potentials—are taken into account; the Pgy matrix,
defined in Chapter 2, was used. If the sign of the potential for the torso triangle with
the largest solid angle subtended at the given epicardial triangle, or the sign of the
potential of any of its one-node neighbours (triangles which share at least one vertex
with the given triangle), matched the sign of the epicardial potential in question,
there was no artifact. If there was no match, it was hypothesized that this was an
artifact.

The next step of the CRC method considers information about neighbouring re-
gions, both spatial and temporal (if available), of any potential deemed an artifact.
Based on the interpretation of this information, the hypothesis may be changed.
Some extrema, such as breakthrough sites, arise as a small area of low magnitude.
Their effect on torso potentials may not be sufficient to recover the appropriate sign.
Therefore, these epicardial potentials may be incorrectly designated as artifacts. Their
magnitude and extent increase over time, so that temporal information can be used
to update the hypothesis that an artifact is present. If the sign which is considered
an artifact for a given time and spatial location is found at a minimum of three time
steps immediately following a run of artifact potentials, then the hypothesis for each
potential in this run is updated to non-artifact. Low-amplitude gradients of epicardial
potential around the zero-line may also result in incorrect artifact assignment. In this
case, information about spatial neighbours is considered. The sign of each epicardial
potential which has been designated an artifact is compared to that of all one-node
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neighbours which are non-artifacts. If two or more agree, then the hypothesis is up-
dated to non-artifact after all sites have been investigated. This update procedure is
repeated as long as more updates are made.

With artifacts now identified, they must be reassigned a potential value. If at least
three one-node neighbours are non-artifacts, then the original potential is replaced by
one interpolated from the values at all non-artifact neighbours, and the hypothesis is
updated. Potentials are updated at the time they are computed. This procedure is
repeated until all artifacts have been replaced.

Following these procedures, the second variation of the weighted spatial smoothing
constraint was applied. The rationale for this included the fact that WSS2 was shown
to decrease RE and the number of sign mismatches, and therefore seemed appropriate,
and secondly, that the potentials which replaced the artifactual values may require
spatial smoothing.

For time-sequence data, temporal continuity constraints were also tested. The
data set used to test the CRC method was the same as for the WSS methods in

section 4.4.

4.6.1 Results

The first variation of the composite regional constraint method (CRCM), which did
not use temporal data for updating artifact assignment, was tested on the sources
consisting of a single central dipole, and three and five eccentric dipoles. RE, CC
and sign MM measures did not change compared to those for WSS2. Results with
CRCM for the 1,600 eccentric single-dipole sources are presented in Table 4.20. Only
minor differences in RE measures are seen compared to errors with WSS2, although
CRCM results tend to be slightly worse. The last column of Table 4.20 contains sign
mismatch counts with CRCM compared to WSS2. For all subsets of dipole sources
and with both zero- and second-order regularizing operators, the number of locations

where the signs do not match decreases.
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Relative errors (RE) of inverse-recovered epicardial potentials for zero- and
second-order Tikhonov regularization with composite regional constraint
(CRCM), and comparison (in terms of MM) with weighted spatial smoothing
(WSS2), for eccentric single-dipole sources at various depths in the ventricular

wall
Operator RE WSS2-CRCM
Order Source Max Min Mean+SD Median+SD MM
BO 10.0-mm .7243 .1079 .2674--.1069 .2497+.1037 575
7.5-mm .7219 .0979 .3216=+.1321 .3098=+.1531 1,287
5.0-mm .8236 .1286 .4209-=.1667 .4306-+.2099 3,360
2.5-mm 9187 .2731 .5850%+.1799 .6151+.2241 6,994
All above .9187 .0979 .3987+.1919 .3601+.2026 12,216
B2 10.0-mm .7119 .0745 .2014+.0739 .1931+.0753 335
7.5-mm  .6088 .0859 .2833+.0877 .2851+.1061 1,292
5.0-mm .6744 .1663 .4121+.1153 .4271+.1322 3,384
2.5-mm  .8827 .2815 .5984+.1377 .6347+.1304 6,064
All above .8827 .0745 .3738+.1839 .3366+.1954 11,075

B0/B2, zero-/second-order Tikhonov regularization; WSS2, second option of weighted
spatial smoothing; CRCM, variant of composite regional constraint method; RE, rela-
tive error; MM (WSS2 - CRCM), reduction in sign mismatch count for CRCM com-
pared to WSS2 (number of mismatches with a priori potentials, out of a possible
160,000, for 400 dipoles and 400 epicardial triangles); Max/Min, maximal/minimal
relative error within the set of dipoles (400 at each depth, 1,600 overall); Mean, mean
relative error for the given set of dipoles; Median, median of relative errors for the
given set of dipoles; SD, standard deviation; bold font, the best results.



sequences of double-layer sources

Table 4.21:
Relative errors of inverse-recovered epicardial potentials for zero- and
second-order Tikhonov regularization with weighted spatial smoothing
(WSS2) or composite regional constraint (CRC) methods, for two time

111

Order Source Stats WSS2 CRCM CRCF CRC5 CRC4 CRC3 CRC2
BO Septal Mean .3749 .4006 3759 7078 6184 .5387 .4609
Median .3785 .4015 3782 3877 .3867 .3815 .3808

B2 Mean .2722 .3031 2736 .6328 .5365 .4506 .3682
Median .2649 3086 .2643 .2804 2831 .2700 .2686

B0 Basal Mean .5589 .5590 .5591 .5618 .5604 .5594 .5590
Median .5570 .5569 5567 .5580 .5577 .5574 .5571

B2 Mean .4908 .4916 4911 4931 4917 4909 .4908
Median .4485 .4500 4510 .4391 4432 4472 4450

BO, zero-order Tikhonov regularization; B2, second-order Tikhonov regularization;
WSS2, second option of weighted spatial smoothing; CRCM, CRCF, CRC2,...,CRC5,
variants of composite regional constraint method (PT'S = 2, 3, 4, 5); Septal/Basal, a
sequence of oblique dipolar layers generated by propagated activation initiated at the
septal/basal site (Appendix B); Mean, mean relative error for the given set of dipoles;
Median, median of relative errors for the given set of dipoles; bold font, the best

results.
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The 36 time steps for both septal and basal activation-sequence data were pro-
cessed with CRCM, as well as the variation where temporal data were included in
hypothesis testing (CRCF), and CRC5, CRC4, CRC3, CRC2 where the TC constraint
was applied as a final step with PTS set at 5, 4, 3, and 2, respectively, as described
in section 4.5. CRC methods did not add any appreciable processing time. Mean and
median RE values for WSS2 and all six CRC variations are given in Table 4.21. CRCF
relative errors differ little from those with WSS2. For the basal activation-sequence
data set, CRCM and CRCF results are virtually identical, whereas CRCM has higher
RE of inverse-recovered potentials for the septal activation-sequence data. Results for
CRC5, CRC4, CRC3, and CRC2 tend to follow the same trend as seen in section 4.5
for TC constraint methods. The number of times (out of a possible 36) when RE
and CC results for CRC methods improved on those for WSS2 were counted and
are shown in Table 4.22. The use of the CRCM method produced a greater number
of improved error measures than did the CRCF variation. The maximal number of
instants with less error occurs with the CRC3 option for septal activation-sequence
data, and with both CRC3 and CRC4 for basal activation-sequence data. When equal
error results are added, then the CRC2 variation performs best. Even though trends
were visible, it should be noted that the improvement in RE was very small in most
cases.

Mean and median RE for the 400 electrograms are displayed in Table 4.23. WSS2
results are given for comparison. The CRCM method increases RE for the sep-
tal activation-sequence data, but not for the basal activation-sequence data, where
CRCM and CRCEF results are nearly identical. An examination of the effects of impos-
ing TC constraints on the CRCF method shows that all levels of smoothing decrease
mean and median RE. The smallest error for basal activation-sequence data is found
with CRCS, but is variable for the septal activation-sequence data. The number
of locations where RE and CC measures improved with CRC method compared to
WSS2 alone, are in Table 4.24. For these electrogram error counts, the CRCF method
is always better than CRCM. The largest number of counts, 60% or better (out of



Table 4.22:
Count* of improvements in inverse-recovered epicardial potentials, in terms of
relative error decrease (RE}) and correlation coefficient increase (CCt),
achieved by using zero- and second-order Tikhonov regularization with
composite regional constraints (CRC) instead of just weighted spatial
smoothing (WSS2), for two time sequences of 36 double-layer sources
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BO
B2

B0

Septal

Basal

CRCM CRCF CRC4 CRC3 CRC2
Order Source RE] CCt RE] CCt RE] CCT RE] CCf RE} CCt
12 13 9 9 12 14 13 16 18! 18!
9 10 10 11 14 16 19 18 222 22
24 25 15 17 18 21 16 22 30 30°
2 23 19 21 20 23 21 21 34%* 344

B2

*Count, number of time steps (out of a possible 36) for which improvements occured.
B0/B2, zero-/second-order Tikhonov regularization; WSS2, second option of weighted
spatial smoothing; CRCM, CRCF, CRC2,...,CRC4, variants of composite regional con-
straint method (PTS = 2, 3, 4); Septal/Basal, a sequence of oblique dipolar layers
generated by propagated activation initiated at the septal/basal site (Appendix B);

bold font, the best results.

117 with equal RE, 221 with equal RE, 330 with equal RE, 431 with equal RE.



Table 4.23:
Relative errors of inverse-recovered epicardial electrograms for zero~- and
second-order Tikhonov regularization with weighted spatial smoothing
(WSS2) or various composite regional constraint (CRC) methods, for two
time sequences of 36 double-layer sources
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Order Source Stats WSS2 CRCM CRCF CRC5 CRC4 CRC3 CRC2
BO Septal Mean 4719 .5053 4743 4676 4680 4694 4714
Median .3970 4110 .3970 .3922 .3924 .3911 .3918
B2 Mean .3903 4173 .3957 .3906 .3898 .3906 .3925
Median .2897 .3020 .2925 .2889 .2874 .2859 .2893
BO Basal Mean 3359 3361 .3359 .3322 .3330 .3339 .3348
Median 2628 2624 .2620 .2589 .2595 .2596 .2592
B2 Mean .2878 .2879 .2871 .2706 .2737 .2772 .2814
Median .1880 .1879 .1869 .1693 .1712 .1771 .1819

B0/B2, zero-/second-order Tikhonov regularization; WSS2, second option of weighted
spatial smoothing; CRCM, CRCF, CRC2,...,CRCS5, variants of composite regional con-
straint method (PTS = 2, 3, 4, 5); Septal/Basal, a sequence of oblique dipolar layers
generated by propagated activation initiated at the septal/basal site (Appendix B);
Mean, mean relative error for the given set of dipoles; Median, median of relative

errors for the given set of dipoles; bold font, the best results.

a possible 400), are achieved for the septal activation-sequence data when CRC3 is

used. CRC3 also gives the largest improvement for basal activation-sequence data
with 68% and 78% for RE and CC, respectively, with zero-order regularizing opera-
tor and 91% each with second-order operator. When equal errors are included, CRC2

has the largest numbers—at 91% for basal activation sequence data—with zero-order

regularizing operator.

Next, the sign of the potential at each epicardial location was compared, over
all 36 time instants, to the sign of the a priori known values. The total count of

all space-time points (out of a possible 14,400) where signs of inverse-recovered and
known potentials did not agree is given in Table 4.25 for WSS2 and each of the
CRC variants. For the septal activation-sequence data set, the sign mismatch count



Table 4.24:
Count” of improvements in inverse-recovered epicardial electrograms, in terms
of relative error decrease (RE}) and correlation coefficient increase (CCt),
achieved by using zero- and second-order Tikhonov regularization with
composite regional constraints (CRCs) instead of just weighted spatial
smoothing (WSS2), for two time sequences of 36 double-layer sources
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CRCM CRCF CRC4 CRC3 CRC2
Order Source RE] CCt RE{ CCt RE|/ CCt RE| CCt RE] CCt
B0  Septal 203 198 230 217 244 235 252 239 177 181
B2 196 202 215 208 253 245 261 252 179 185
B0 Basal 212 202 250 291 257 310 273 312 362! 362!
B2 216 219 344 342 359 354 363 364 3472 347°

*Count, number of electrograms (out of a possible 400) for which improvements oc-

cured; bold font, the highest values.

B0/B2, zero-/second-order Tikhonov regularization; CRCM, CRCF, CRC?2,...,CRC4,
variants of the composite regional constraint method (PTS = 2, 3, 4); RE, relative
error; CC, correlation coefficient; Septal/Basal, a sequence of oblique dipolar layers
generated by propagated activation initiated at the septal/basal site (Appendix B);

bold font, the best results.

1347 with equal RE, 2339 with equal RE.
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Table 4.25:
Sign-error count of inverse-recovered epicardial potentials for zero- and
second-order Tikhonov regularization with weighted spatial smoothing
(WSS2) or composite regional constraint (CRC) methods, for two time
sequences of 36 double-layer sources

Order Source WSS2 CRCM CRCF CRC5 CRC4 CRC3 CRC2

B0  Septal 1003 1098 957 1223 1140 1096 1075
B2 846 990 823 1104 1036 970 946

BO Basal 1260 1105 1111 1213 1192 1189 1158
B2 1309 1146 1164 1264 1247 1252 1186

Sign-error count, number of sign disagreements between inverse-recovered and known
epicardial potentials (out of a possible 14,400, for 400 “recording” sites and 36 instants;
bold font, the lowest values); B0/B2, zero-/second-order Tikhonov regularization;
WSS2, second option of weighted spatial smoothing; CRCM, CRCF, CRC2,...,CRC5,
variants of the composite regional constraint method (PT'S = 2, 3, 4, 5); Septal/Basal,
a sequence of oblique dipolar layers generated by propagated activation initiated at the
septal/basal site (Appendix B); bold font, the best results.

increased for CRCM and was at its lowest for CRCF (bold font in Table 4.25), where
there was a 38% decrease over NRC values and 13% over WSS2 results when the
zero-order regularizing operator was used. These statistics were 23% and 3% for
the second-order regularizing operator. The application of TC constraints resulted
in larger mismatch counts, increasing with the value of PT'S. Sign-error counts
were different for basal activation-sequence data. In this case, all CRC methods had
lower sign mismatch counts than WSS2. CRCM had the lowest numbers (bold font
in Table 4.25), with CRCF a close second. There was a 36% decrease from NRC
to CRCF values and 12% decline over WSS2 results for the zero-order regularizing
operator. The corresponding values with the second-order operator were 31% and
11%. Although remaining below WSS2 values, counts with TC constraints increased
in the same manner as for the septal activation-sequence data.

The smoothness of the electrograms was evaluated by counting the number of
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Table 4.26:

Direction-change count of inverse-recovered epicardial potentials for zero- and
second-order Tikhonov regularization with weighted spatial smoothing
(WSS2) or composite regional constraint (CRC) methods, for two time

sequences of 36 double-layer sources

Order Source WSS2 CRCM CRCF CRC5 CRC4 CRC3 CRC2

BO  Septal 23 371 211 —-499 —416 —241 91
B2 -27 217 71 -490 422 275 -15

BO Basal 447 807 804 —-348 242 -7 293
B2 589 954 926 —-212 -—46 199 526

Direction-change count, number of slope changes in inverse-recovered electrogram mi-
nus number slope changes for known electrograms (+/—, more/fewer changes; bold
font, values nearest to zero); B0/B2, zero-/second-order Tikhonov regularization;
WSS2, second option of weighted spatial smoothing; CRCM, CRCF, CRC2,...,CRCS5,
variants of the composite regional constraint method (PT'S = 2, 3, 4, 5); Septal/Basal,
a sequence of oblique dipolar layers generated by propagated activation initiated at the
septal /basal site (Appendix B); bold font, the best results.

times the slope changed from positive to negative and vice versa. The correspond-
ing count for epicardial electrograms known a priori was subtracted. Results are
presented in Table 4.26, where positive numbers indicate that the inverse-recovered
potentials are less smooth than their a priori known counterparts. Smoothness de-
creased, compared to WSS2, when using CRCM and CRCF. When TC constraints
were added, an additional level of smoothness was imposed. For the septal activation-
sequence data with the zero-order regularizing operator, WSS2 remained the closest
to known potentials, but CRC2 was nearest to zero for the second-order regularizing
operator. CRC3 gave the best results for basal activation-sequence data with the
zero-order regularizing operator and CRC4 with the second-order operator.
Qualitative changes due to composite regional constraints can be assessed in
Fig. 4.4, which shows epicardial maps for the septal activation data set, constrained
with either weighted spatial smoothing (WSS2) or composite regional constraints



118

(CRQ).
Electrograms are compared in Fig. 4.5.

4.6.2 Discussion

The effects of composite regional constraint methods on the solution of the inverse
problem of electrocardiography for epicardial potentials were investigated in this sec-
tion. As noted previously (section 4.3), when weighted spatial smoothing constraints
were applied to the Tikhonov inverse solution, an improvement occurred in RE mea-
sures, as well as in the distribution of positive and negative potentials over the epi-
cardial surface. However, a closer examination of epicardial potential maps showed
that there still existed areas, with either isolated or pseudopod-like structures, where
the sign of the potential was not correct. The goal of the CRC methods introduced in
this section was to detect these areas and replace potentials with values interpolated
from a neighbouring region of valid potentials.

The detection step of the CRC method required matching the sign of the potential
at an epicardial location with that of a potential in the closest torso neighbourhood.
Closeness was defined in terms of the solid angle relationship as established by the
tesselated torso-heart model. The aim of the CRC method is to use information about
the torso-heart geometry and torso potentials to constrain the inverse solution; the
method succeeded in making use of the sign of the torso potentials to locate artifacts,
and significant improvement in the fidelity of inverse-recovered epicardial potentials
were achieved. However, there were situations—mostly for low-level potentials and
for certain kind of focal cardiac sources [144, 145]—where values were incorrectly
designated as artifacts. Therefore, subsequent procedures were developed to correct
the problem. The CRCM method used knowledge of the sign of the potentials at
non-artifact epicardial locations, which were neighbours of the site in question, to
adjust the artifact/non-artifact designation. When a time sequence of torso-surface
potentials was available, the CRCF method included the potentials at subsequent

time steps in its evaluation.
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Figure 4.4: Epicardial potential maps for septal activation sequence with and without
the application of composite regional constraints. Columns, left to right, show inverse-
recovered epicardial potentials regularized as follows: B0/B2 with WSS2, B0/B2 with
CRCM, B0/B2 with CRCF, and B0/B2 with CRC3. Rows, from top to bottom, show
inverse-recovered epicardial potential maps for test distributions generated by oblique
dipole layers at 12 ms (S-12ms), 40 ms (S-40ms), and 42 ms (S-42ms) into activation
sequence initiated at single septal site. BO/B2, zero-/second-order Tikhonov regular-
ization; WSS2, second variant of weighted spatial smoothing; CRCM, CRCF, CRC3,
variants of composite regional constraint method.
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Figure 4.5: Changes in morphological features of inverse-recovered epicardial electro-
grams due to the application of weighted spatial smoothing and composite regional
constraints. Columuns, left to right, depict electrograms calculated with different con-
straints: no regional constraint (NRC), weighted spatial smoothing (WSS2), and four
types of composite regional constraints (CRCM, CRCF, CRC2, CRC3). Rows cor-
respond with different regularization methods used in inverse calculations (B0/B2)
and different “recording” sites (triangles 286, 238, 301, 220) as indicated near each
tracing; in addition, the relative error (RE) for each inverse-recovered electrogram
is given. Test distributions were generated by oblique dipole layers representing 36
consecutive wavefronts of activation sequence initiated at single septal (S) site. Solid
line, inverse-recovered epicardial electrogram; dotted line, a priori known epicardial
electrogram; abscissa, time axis (0~72 ms, corresponding to “paper speed” of 87.5
mm/s); ordinate, amplitude of electrogram (0-2.5 mV); B0/B2, zero-/second-order
Tikhonov regularization; triangle numbers correspond to epicardial topography de-
picted in Fig.A.3.
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The number of locations where the sign of the inverse-recovered epicardial poten-
tial did not match that of the potential known a priori was reduced when the CRCM
method was tested using potential distributions generated by the set of 1,600 eccen-
tric dipoles. An examination of the results for these distributions showed that the
number of sign mismatches, and the number by which they decreased with CRCM,
increased as the dipole source was moved closer to the epicardial surface. The ex-
tent of low-level potentials and the presence of high spatial gradients varied in the
same way. These results appear to indicate that the likelihood of the existence of
extraneous extrema increases under these same conditions.

An example of the errors that can arise when temporal data are not included in the
process of determining artifacts was seen in Fig. 4.4. Early in the time sequence, an
anterior basal positive area appears. CRCM considers this an artifact and removes
it. With CRCF, it is properly identified and the area remains in the distribution.
Appearing at a later time step are left posterior extraneous extrema, which were
correctly removed from the map by both CRCM and CRCF. The incorrect removal
of the presumed artifact was reflected in higher RE statistics for CRCM than CRCF.

When applied to the time sequence data sets, CRCF did not significantly alter
mean and median values of RE for spatial electrogram, while more than 50%, and as
many as 91%, of the 400 electrograms showed improvement in RE and CC measures
with CRC methods compared to WSS2, with the exception of CRCM and CRC2 for
septal activation-sequence data. Based upon these results, along with the assessment
of qualitative changes shown in Fig. 4.4, CRCF method appears to achieve its purpose.
Results for cases when TC constraints have been applied with CRCF are variable. An
examination of results suggests that—when all measures are taken into account—the
CRC3 variant of the composite regional constraint method would seem to be the most

acceptable choice.
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4.7 Conclusions

The aim of the work described within this chapter was the introduction and exam-
ination of methods for the regional constraint of the inverse problem of electrocar-
diography for epicardial potentials. A brief overall assessment of these methods is
as follows: Ineguality constraint optimization had results which were too variable,
and difficulty arose in the rationalization of the selection of parameters that would
consistently yield inprovement in the epicardial image. The weighted regularizing op-
erator method (WR) produced excellent results with a priori known values, and still
more than credible improvements when estimated values were used for weighting.
However, the computing time required by this method diminishes its usefulness in
clinical applications. Weighted spatial smoothing introduced the concept of applying
a second-pass, or post-inverse, constraint, and was shown to both improve on relative
error measures and incorrect sign counts, as well as having minimal computing time
requirements. This method is easily applied and has potential for clinical applications.
Temporal continuity (TC) was incorporated as a second-pass constraint in conjunc-
tion with weighted spatial smoothing. Although imposing temporal continuity on
electrograms should intuitively be successful, it produced only minimal changes. The
smoothness of the test data was a confounding factor and, while it is possible that
the small changes found could extrapolate to large changes with noisier electrograms,
that has not been proven. The composite regional constraint (CRC) has great poten-
tial for use as a tool in clinical applications. This is a post-inverse procedure with
variants for single distributions (e.g., QRS or ST-integral potential maps) and time
sequences of data (e.g., continuous data throughout the depolarization/repolarization
cycle). Epicardial potential images recovered from measured data often contain is-
lands where the sign of the potentials is incorrect. The CRC utilizes body surface
potential input, along with spatial and temporal relationships to evaluate whether
first-pass regularization was successful in determining positive and negative regions
in the epicardial image. After adjustments are made, the weighted spatial smoothing
constraint and, when applicable, the temporal continuity constraint, are incorporated.
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Overall, results presented in this chapter suggest that regional constraints can refine
the inverse-recovered epicardial potentials, with weighted spatial smoothing a good
choice for any application, and the composite regional constraint the best choice for

use with measured data in clinical applications.



Chapter 5

Regularization Parameters

5.1 Introduction

In all results computed thus far, the regularization parameter {—required to solve
the inverse problem of electrocardiography for epicardial potentials with Tikhonov
regularization—has been selected on the basis of a priori knowledge of these poten-
tials. When the ¢-parameter must be determined without direct knowledge of the
epicardial distribution, as is the case in clinical applications, an alternate method
must be applied. Considerable attention has been given to this problem [136]. The
purpose of this chapter is to describe and compare several different methods of de-
termining the criteria by which a value may be assigned to the ¢-parameter.

The Minimum RMS Method assigns a t-parameter based on an estimate of
noise levels in torso potentials [106], and is equivalent to the original method described
by Foster [45] and Strand and Westwater [150], and applied by Barr and Spach {10],
with

_ lel?
“= 16al? &1

where e is the noise vector at each torso surface location and ¢y are the exact
epicardial potentials. This method is limited by the ability to calculate this ratio,
which requires a priort knowledge of the solution.

124
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The Discrepancy Principle was introduced by Morozov [111]. This method
makes the assumption that the residual norm is non-zero for the optimal ¢-parameter.
The value of ¢ is chosen such that

llAz(z) — bI* = [lell®, (5-2)

where ||¢|| is an estimate of the error due to noise present in the torso-surface potential
measurements. A variant of the discrepancy method was proposed by Gfrerer [50],
and further refined by Engl and Grever [41]. As for the minimum rms method, the
performance of all variants of this method also depend upon the ability to accurately
estimate the error measure. Oversmoothing of the solution has been reported with
the discrepancy principle [22].

Generalized Cross-validation [22, 79] is a parameter-selection method which
does not require an error estimate. This technique has been used with the application
of Tikhonov regularization in the field of statistics. The procedure determines the
t-parameter which minimizes

[ Az(t) — b]|
(trace(AAT +¢I)-1)
Correlated errors, which are likely to occur in the clinical electrocardiographic mea-

(5.3)

surements, affect the performance of this method since it assumes that any error is
due to the presence of white noise only.

The Derivative or Quasi-optimality Criterion [27, 156] has been suggested
as another means of estimating the {-parameter without a priori information about
the error levels of input data. This method selects the ¢ > 0 which minimizes the

term I

It appears that this approximation is valid only when the ¢-parameter required is
relatively small in comparison with [[A|| or |jz|| [106].
The Composite Residual and Smoothing Operator (CRESO) Method

was developed by Colli Franzone and co-workers [27]. It was presented as an empir-

tditz(t) . (5.4)

ical approach which does not require any a priori information about the measured
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or computed potential distributions (including the amount or type of noise in in-
put data). The smallest Z-parameter for which there exists a local maximum of the
equation

SR - SiAz() I, 20 (5.5)

is chosen as most suitable. This value represents the point where the derivatives of the
constraint and residual terms are changing at exactly the same rate [24]. Alternately,
it can be defined as the first point where the curve

t| Rz ()| - | A=(t) — b|| (5.6)
changes concavity [106]. Equation 5.5 may also be written as
d
1R (t)|* + 2iﬁlll-‘h“:(t)llz- (5.7)

To solve for ¢, || Rx(t)]||? is expressed in terms of the GSVD of the Tikhonov regular-
ization system (Chapter 3) as

_ K+L Py 2
Izl = 3 (gust) 69

and £||Rz(¢)|f? as

d 2 & ”? 2
— tlc-=-2 ——(u;b)°. 5.9
RO =2 3 s (59)

Which leaves the problem of determining ¢ from

"z“:‘ p3 (2 — 3t)

jore (B +Ep o ) (6:40)

Many of the methods described so far have been compared [27, 106], using data
from forward simulations (as in the present study) or data measured in an electrolytic
tank representing the human torso. Although no method clearly outperformed the
others—in terms of consistently giving the results closest to the optimal {-parameter—
when the whole QRS complex was considered, the CRESO method was the most
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consistent. However, it has been shown [22, 24] that this method may fail for some
non-trivial b vectors, such that Eq. 5.5 has no maximum within a realistic range of ¢
values.

Another method, called the Zero-Crossing (ZC) Method, was recently intro-
duced by Johnston and Gulrajani [79]. The value of ¢ which satisfies the following
equation is selected:

lAz(t) — b]|* = t]| R=(2)||>. (5.11)

The authors point out that this method is based on a much simpler concept than
CRESQ, and that this simplicity carries over to the computation of the regularization
parameter. For simulated dipole sources in a concentric spheres model, they found
two t values which satisfied their condition. The lowest value was selected, because it
was closest to the optimal ¢. When dipole sources were simulated in a realistic heart-
torso model, conditions were found where the zero-crossing point disappeared. The
absence of Gaussian noise in the torso potentials was suggested as the cause. Based
on further experiments using realistic geometry and realistic potential distributions,
the authors found that ZC produced inverse-recovered potentials as effectively as, if
not better than, the CRESO method. A common drawback of both CRESO and ZC
methods is the necessity of determining the smallest of potentially multiple values
which satisfy the given criteria, and the possibility that no solution exists over a
realistic range of ¢ values.
The L-curve defined by

C : (z(2),(2)) = (F(1Az(t) — bl}), g(| R=(®)I)),  t>0 (5.12)

is so named because of its shape. Functions f and g have been assigned [22, 24, 62, 67]
such that either the norm of the residual and the seminorm of the solution or their
corresponding squares or logarithms were used. The shape of the curve is fundamental
to the criterion proposed by Hansen and O’Leary [63] for determining the appropriate
t-parameter. The “corner” of the L curve, defined by the value at which there is
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maximum curvature, given by

_ [FOy'() - vz ()]
T (@@ + W) (5.13)

determines the selection of the regularization parameter.

x(t)

The residual norm can be computed by Eq. 5.14 and the seminorm of the solution
by Eq. 5.15.

K+L [ 4 12 M 12
lAz(t) - bl = (Z (wi-b)| + Y (uf-b)z) (5.14)

re LM+ | Aoy
Kl [ g, 12\ /2
Rx(t = u;-b 5.15
IR2 ()] (_% Pzt )_) (5.15)
The term dy, defined by
M 12
do = [|(UUT - Iy)b|| = ( > (w-b)z) (5.16)
i=K+L+1

is the norm of that component of b which is outside the range of the matrix A. When
no regularization is used, ¢t = 0 and ||Az(t) — bf|> = 63. The magnitude of & is
sometimes referred to as the incompatibility measure [62].

Given these formulae, it is possible to compute all of the derivatives required for
determining the ¢-parameter using the L-curve method. The intuitive thought behind
this method is that a smaller ¢ would produce a larger solution seminorm while only
marginally reducing the residual, and, on the other hand, a larger ¢ would increase the
residual but only marginally reduce the solution seminorm. From a computational
standpoint, the calculations required to determine a point of maximum curvature on
the L-curve can be highly unstable. This instability is, to a large extent, due to the
scaling factors introduced by the singular values y;,i = K +1, ..., K + L, particularly
in the second-derivative terms.

This method has been shown to be more robust than generalized cross-validation in
the presence of correlated errors [62]. Johnston and Gulrajani [79] visually compared
CRESO and ZC to the corner point of the E-curve where the Iogarithm function was
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used. Clements et al. [24] computed the ¢-parameter using the L-curve method and
found good results when compared to those for the CRESO criterion. Horicek and
Clements [71] and Hoekema [67] also obtained reasonable results.

Engl and Grever [41] examined the L-curve method as the residual error noise
level tends to zero. They found that when using the point of maximal curvature for
the t-parameter, there was no convergence. The authors suggested that the L-curve
graph could be used in conjunction with the discrepancy principle to yield better
results. Using the squared norm L-curve as an example, they presented an algorithm
for computing the regularization parameter. Their method requires an estimate, ||¢]|,
of the error due to noise in the torso-surface data as in Eq. 5.2. The L-curve is
first plotted, then a vertical line is drawn at ||Az — b]|> = ||¢/|>. Then the point
of intersection of the L-curve and the vertical line is determined. The slope of the
L-curve at the point of intersection is then determined by plotting the tangent at the

intersection point and computing the descent s, of the tangent. Since

4 az@)—br=2t 5° —H(u- by (5.17)
—llAz —_ = —_— (U - . .
dt =k (B +1)°
and
I Re@r=—2 > 2 (u- b (5.18)
—= =- (i - b)?, .
dt i=K+1 (w2 +1)°
2 4z(t) - bl? = | Ra(t)1? (5.19)
dt dt
and
1
S = —-t', (5.20)

where s, is the slope of the squared norm L-curve for a given value of t. Therefore,

the regularization parameter can be determined by setting

1
t=——. (5.21)

If the error value is valid, then the strategy of this algorithm is convergent.
Unlike the original L-curve criterion, the error level e is explicitly used to calculate
the slope of the L-curve for the appropriate regularization parameter, and thus the ¢
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value itself. However, the method still depends on the accuracy of the error estimate.
This raises the question of whether or not there is another way to estimate the slope
of the L-curve corresponding to the optimal {-parameter without this restriction. The
following section will explore this possibility.

5.2 Slope Estimation Method

The aim of this section is to determine a method for estimating the slope of the
L-curve which corresponds to an optimal regularization parameter. Then the slope
estimation method (SEM) could be used to determine the appropriate t-parameter.
Both the norm and the squared norm L-curve representations will be considered—as
in the previous section.

The slope of the norm L-curve at ¢ is computed by:

¥ A t
2 5 (5.22)
Utilizing the fact that
2 [ Az(t) - b2 = 20 4z (t) - b]| - S| Az(t) — b (5.23)
dt dt
and equivalently,
SR = 2/ R=(e)] - S| R, (5:24)

the first derivative of the residual norm and the semi-norm of the solution may be

computed by

d _ &l A=(z) - b]?
e d 4| Re(t)|?
S |Rz(e)]| = &A2AL 5.26
Utilizing 5.25 and 5.26 with substitution using 5.19, gives

t [iRz(ll °
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where s; is the slope of the norm L-curve for a given value of ¢. It follows that

1 [|A=(2) — b
s1 ||Re(@)]]

For the squared-norm L-curve, ¢ is given by Eq. 5.21. With these equations for £,

t=

(5.28)

the problem becomes one of estimating the appropriate values for s; and/or s,.

An examination of the GSVD solutions for the residual norm given by Eq. 5.14
and the solution semi-norm given by Eq. 5.15, reveals two differences. The residual
norm includes the dp term, or incompatibility measure, which is constant regardless
of the value chosen for ¢. Secondly, there is a ¢ in the numerator of the summation for
the residual, where the solution semi-norm has y;, the singular value corresponding
to the singular vector w;. If the value selected for the f-parameter is equal to that
of the singular value, p;, then the contribution to the residual norm is equal to that
for the solution semi-norm for this singular vector. For all i; < ¢, there is a greater
contribution to the residual norm and for all y; > ¢, the amount added to the solution
semi-norm is greater. Therefore, as ¢ is increased, the number of singular vectors
making a larger contribution to the residual norm than the solution semi-norm also
increases. If ¢ is specifically chosen to be equal to the value of the non-zero singular
value of smallest magnitude, pmis, then for the corresponding singular vector there
will be equal contributions to the two norms and all other singular vectors will make
a larger contribution to the semi-norm of the solution. On the other hand, if ¢ is
set at the value of the largest singular value, gmqz, the corresponding singular vector
contributes equally to each norm and the remainder contribute a larger amount to
the residual norm.

When ¢ is small (¢ < ppmin), the amount of residual error is dependent upon
input data error and is more or less independent of regularization [62]. For large ¢
( > Itmaz), the opposite is true, with the residual error dependent on regularization
and fairly independent of data error [62]. The relative change, r., in the residual
norm from error due to regularization only, may be approximated by

_ 1A (imes) — B2 — 2
" [Ae(ene) — B =5 (529
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The numerator of this ratio is, more or less, constant regardless of the level of data
error. For very low error values, the denominator will be small compared to the
numerator, making r. large. As the error increases, the denominator increases and r,
decreases. From an inspection of L-curve plots, it was noted that this ratio exhibits
the same relationship to error size as does the magnitude of the slope of the L-curve
at the optimal t-value. That is, as error increases, the optimal ¢ increases and the
corresponding magnitude of the slope of the L-curve decreases. It follows from Eqs.
5.21 and 5.28 that the slope of both the norm and squared norm L-curves must be
negative. It was hypothesized that the value —r. could be used to estimate the slope,
s2, of the squared norm L-curve at the optimal ¢ value and that, using Eq. 5.21,
the appropriate value for ¢t could be determined. The norm L-curve could also be
used, with the value —,/r; as the estimate of the slope, s, and using Eq. 5.28 to
compute the optimal {-parameter. Figure 5.1 shows an example of a norm L-curve for
a single dipole source using second-order Tikhonov regularization. Slope is plotted
against residual norm in the bottom trace. The residual norm corresponding to the ¢-
parameter selected by the Slope Estimation Method and the best possible parameter
are indicated.

The t-parameter selected by the norm (t,,) and squared-norm (¢,,) slope estima-
tion methods were compared to the optimal ¢-parameter giving the minimum RE
when compared to the epicardial potential distribution known e priori. All major
methods for {-parameter selection without a priori knowledge of the potentials distri-
butions were compared in the present study. A comparison was made for the values
selected by the CRESO (t.), ZC (t..), L-curve with lognorm values (%,), and L-curve
with norm values (¢;.). As in the previous chapters, the test data included the single
central dipole, the three/five eccentric dipoles, the 1,600 eccentric dipoles, and the two
time-sequences of 36 consecutive oblique dipolar layers. In addition, {-parameters for
Hilbert systems—known to be very ill-conditioned—were determined. Results with
the node-to-node system were also calculated. As a step towards determining how
these methods will work with the measured data (to be presented in Chapter 6), values
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Figure 5.1: Top trace is L-curve for a single dipole source with second-order regular-
ization plotted for t-values in the interval [fmin, bmaz]- The slope of the L-curve is
plotted against the residual norm in the lower trace. The shorter dashed line indicates
the residual norm for the {-parameter selected by the Slope Estimation Method, the
longer dashed line is for the best possible t-parameter. Traces are plotted with a

logarithmic scale.
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corresponding to the locations of the 117 torso-surface leads were determined for the
set of 1,600 eccentric dipoles. From these, the 700 potential values for torso triangles
were interpolated and ¢ values were computed for all methods. Finally, t-parameters
for the above methods were determined for a sequence of epicardial distributions for
measured data from a normal subject, starting prior to QRS onset and continuing
past QRS offset.

5.3 Results

Utilizing the methods described in previous sections, the seven t-parameters, t*, t,,,
tsys ters tzes tin, and t;. were calculated. NAG Library routine c05adf [1], which finds
the first zero of a function, was used to determine the closest value for t,.. The
NAG Library minimizing routine, e04abf, was utilized for all other methods, with the
exception of t,,, which did not require a search. To find the maximum curvature for ¢,
and f., the function was multiplied by —1 and the minimum was determined. Search
intervals were set with the lower bound set by machine precision and the upper bound
by the magnitude of the largest generalized singular value. Although these bounds
were sufficient for SEMs and the optimal value, there were circumstances for all other
methods where it was necessary to start with a smaller upper bound and then increase
it until a value less than the latest upper bound was selected.

Parameters were first determined for the Hilbert matrices. The forward solution
was performed and then Gaussian error of varying amounts was added prior to the
inverse procedure. Table 5.1 displays all ¢{-values with RE and CC for three error
levels and two sizes of Hilbert matrices. The optimimum f-value and RE increased
as the Gaussian noise level increased, while CC decreased for both matrices. The
SEMs achieved results as close to ¢*, or closer, as all other methods. For t,., there
were very good results for the two higher error levels, but a suitable parameter value
was not detected for the lowest error. The values for ¢, were in an acceptable range

for the lowest error, but did not increase at the higher levels, resulting in very large



Table 5.1:
Comparison of regularization parameters selected by different methods for
Hilbert matrices

Error Hilbert (18 x 15) Hilbert (50 x 30)

Factor ¢ Selection t RE CcC t RE cC
105 t* 8075e~12 2233 9748 .1911e~!2 1986 .9801
1075 ts, 4805e~11 2404 9707 .4456e~!! .2236 .9747
105 tsy 3980e~!! .2380 .9713 .4843e~'! 2241 9746
105 ter 2991e™10 2575 9663 .1891e™? 2637 .9646
10~% tee 1110e~15  10.60 .1933 .1110e~!5 3.631 .1928
105 tin 1488e~! 4899 .8727 .3693¢~! .5006 .8672
105 tic 2737e~8 2635 .9647 .1420e~%® 2691 .9631
103 t* .5858e~7 2640 9643 .2936e~7 2707 .9627
10-3 ts, 4806e~7 .2653 .9642 .4457e~7 .2717 .9624
10-3 ts, 4396e~7 2658 .9640 .4971e~7 2723 .9622
10-3 ter .7584e~10 2,117 4011 .8886e~'® 7723 .7858
1073 tze 487le~7 .2653 .9642 .6578¢~7 2745 .9616
103 tin .1490e~! 4898 .8727 .3692¢~! .5006 .8672
103 tie .1088¢e™* 3495 9369 .3356e~* .3585 .9336
10t t* 6662e~3 3584 .9336 .1935¢~5 3054 .9532
10-t ts, 4869¢3 .3588 .9334 .4482¢% .3731 .9280
10—t ts, 4612e~3 3580 9334 .5329¢~3 3754 .9271
10t ter .7682¢~10  206.5 .0021 .831le~'® 77.06 .0804
10! tac 4343e~3 3591 9333 .6421e~3 3784 .9259
10t tin 8348e—* 3620 .9325 .5149¢~3 3749 9273
10t tic 4428¢~% 1602 .0337 .3619¢~! .5008 .8672

t*, optimal ¢ parameter selected on the basis of a priori knowledge of both torso-surface
and epicardial potentials; ¢,, /t,,, t selected by variants of Slope Estimation method;
ter, t selected by CRESO method; t.., t selected by Zero-Crossing method; #,, ¢
selected by L-curve method with lognorm values; &, t selected by L-curve method
with norm values; RE, relative error; CC, correlation coefficient; bold font, the best

results.
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RE values. The L-curve methods tended to greatly overestimate the t-value with the
exception of the highest error level.

The t-parameters for all methods were then computed for the single central dipole,
and three or five eccentric dipoles. Results, using both zero- and second-order regular-
ization, are shown in Table 5.2. For zero-order regularization, the SEMs achieved the
best results with the exception of the central dipole source, where t.. was marginally
better than t,,. Otherwise, CRESO, ZC, and lognorm LC methods underestimated
the appropriate values and the norm LC method overestimated them. When second-
order regularization was used, the CRESO method failed to find an acceptable t-value
for the central dipole source. For the other two distributions, there was little differ-
ence among the SEMs, CRESO, ZC, and the lognorm LC. The norm LC method
consistently selected a value several orders of magnitude larger than optimum.

Next, all t-parameters and REs were computed for each of the 1,600 eccentric sin-
gle dipoles, using both zero- and second-order regularization. Results were compared
to the optimal values. Comparisons are displayed in Table 5.3 for zero-order regular-
ization and in Table 5.4 for second-order regularization. The discrepancy in ¢ values
was computed as the maximum of ¢* and the ¢ for the comparison method, divided
by the minimum of the two. Differences in RE were determined by subtracting the
RE for the best-possible ¢, t*, from the RE when using the comparison method. The
median ¢ discrepancy and RE difference, where results for 50% of the sources are less
than or equal these values, as well as results for 80% and the maximum differences
are given.

For both zero- and second-order regularization, the norm L-curve method had the
largest differences in ¢ and RE in comparison with optimal values. With zero-order
regularization, results for ¢, and £;, were the best. Median RE differences were less
than 2%, with a maximum of 5% at the 80% mark. It was noted that for CRESO the
difference in RE decreased as the source was moved nearer the epicardial surface. The
opposite occurred for the norm SEM, with error increasing. Results for ¢,, t,., and
i1, were also good, but the 80% values for ZC and lognorm LC were higher. CRESO,



Table 5.2:
Comparison of regularization parameters selected by different methods for
zero- and second-order Tikhonov regularization and potential distributions

generated by single- and multiple-dipole sources

B0 B2
Source t Selection t RE CC t RE CC
1Dip t* .1048e—% 3120 .9501 .1084e~* 0582 .9983
ts, 9651e~10 3392 9411 .1203e~5 .0702 .9975
ts, 2773e9  .3195 .9477 .3521eS 1022 .9948
ter J1995¢7% 3241 9462 .7372¢'3 63.19 .0060
toc 2995¢10 3870 .9244 .6104e~5 .0586 .9983
tin 368810 3756 .9285 .5374e~® .0588 .9983
tic 3248¢-5 3774 9261 .1280e~! .0951 .9956
3Dip t* 3634e~? 3396 9410 .3072e~® 2148 9774
ts, 1497e~9 3439 .9398 .2361e~7 2788 .9635
te 9463e~% .3428 .9397 .1167e~7 .3223 .9522
ter 2056e-10 3875 9252 .165le~7 .2993 .9583
tee 1817e~10 4141 9157 .5768e~7 .2405 .9723
tin 2053e~10 4066 9185 46027 .2485 .9706
tie Al13e~7 3784 9258 .2195¢" 5442 .8394
5Dip t* .3800e™? 4545 .8924 .3967e5 3374 .9433
ts, 2330e~? .4558 .8923 .2990e~7 3936 .9275
tsy 1620e"10 4625 .8874 .1791e~7 4194 .9190
ter 2882710 5139 .8690 .1057¢~7 4507 .9082
toc 215le"10 5169 .8678 .622le~7 .3645 .9364
tin 2188¢"10 5160 .8681 .3316e~7 .3889 .9289
tie 1130e=2 7881 .6209  .2345¢"  .6463 .7633

B0/B2, zero-/second-order Tikhonov regularization; ¢, regularization parameter (see
the legend of Table 5.1); RE, relative error; CC, correlation coefficient; 1Dip, a single
central dipole; 3Dip, three eccentric dipoles; 5Dip, five eccentric dipoles; bold font,

the best results.
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Difference between the optimal regularization parameter t* and that chosen by
different parameter-selection methods, with associated differences in relative
error (RE) of inverse-recovered potentials, for zero-order regularization and

1,600 eccentric single-dipole sources

t discrepancy RE difference

t Selection Source  50% 80% MAX 50% 80% MAX
ts, 10.0-mm .22¢e! .80e! .25¢® .0036 .0233 .4635
75-mm  .32! .70e! .65¢’ .0075 .0200 .3910
50-mm  .70e! .15¢2 .68¢* .0178 .0321 .3866
2.5-mm  21e2 .43¢2 .78¢* .0335 .0507 .4819

All above .52¢e! .24e2 .25¢8 .0140 .0365 .4819

tsy 10.0-mm  .59¢! .14e> 43¢” 0133 .0285 .3144
7.5-mm  .16e2 .34e2 .99¢% .0308 .0485 .2767
50-mm  .49¢2 .97¢2 .1le* .0496 .0734 .2259
25-mm .17e3  .35¢3  .38¢* .0673 .0940 .2813

All above .26e2 .15¢% .43e”7 .0364 .0697 .3144

ter 10.0-mm  57e! .15¢2 .33¢® .0169 .0522 .4967
75-mm  4le! .13¢2 .11e2 0121 .0442 .7371
50-mm .2le! .68¢! .11e5 .0060 .0286 .8006
25-mm .18 .4le! .23¢” .0029 .0215 1.747

All above .28¢! .11e? .33¢® .0077 .0408 1.747

tzc 10.00omm .15¢2 .56e2 .10e!* .0760 .1423 .8268
75mm  .80el .53¢2 .42e!* 0535 .1442 .9487
50-mm  .4le! .31e2 .14e!5 0273 .1313 .9156
2.5-mm  .20e! .12¢%? .33e!5 .0051 .0707 .7058

All above .63e! .41e2 .33e!5 0421 .1336 .9487

tin 10.0-mm .13¢2 .43e? .13e!® .0555 .1066 .9387
75-mm  .69¢! .54e2 .13e!S .0402 .1072 .8326
50-mm .37¢! 54e?  .13e!5 0197 .1069 .8796
25-mm  .23e! .22e3 .13e!® 0067 .1074 .7330

All above .58¢! 542 .13e!® .0337 .1075 .9387

te 10.0-mm .16e® .12e!0 .33e!3 5083 .5988 .7477
75-mm .73¢® .44e!® .38e!3 5060 6122 .7686
50-mm .37e!® .17e!! .43e!3 4576 5834 .7969
25-mm .14e!! 90e!l .54e'® 3191 5120 .7227

All above .19e!? .14e'! .54e!® 4637 .5909 .7969

t, regularization parameter (see the legend of Table 5.1); bold font, the best results.
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Table 5.4:

Difference between the optimal regularization parameter ¢* and that chosen by
different parameter-selection methods, with associated differences in relative
error (RE) of inverse-recovered potentials, for second-order regularization and
1,600 eccentric single-dipole sources

t discrepancy RE difference
t Selection  Source 50% 80% MAX 50% 80% MAX

ts 10.0-mm .34e! .43¢2 .34e!® 0119 .0810 .7648
7.5mm .28¢! 212 .15¢? .0059 .0552 5115

5.0-mm  .40e! .10e2 .11ef 0106 .0270 5721

2.5mm .73¢! .15¢2 2le¢’ .0155 .0296 1.106

All above .43e! .17e2 .34e!® 0115 .0435 1.106

tsy 10.0-mm .50e! .72¢%2 .18e!® 0218 .1184 .7018
7.5mm .27e! 25¢2 43¢5 0061 .0667 .5337

50-mm .45¢! .11e2 .86e® 0111 .0270 .5258

2.5mm .10e2 .22¢2 8le® .0201 .0332 .9392

All above .54e! .23¢% .18¢!° 0152 .0495 9392

ter 10.0-mm .71e! .38¢2 47¢? 0243 .0794 .4888
7.5mm .5le! .38¢2 .12¢° 0178 .0801 .4577

50-mm .29¢! .15¢® .12¢5 .0087 .0544 .5689

2.5mm .28¢! .10e® .23¢° .0065 .0476 2.490

All above .40e! .22¢2 47¢° .0129 .0704 2.490

tec 10.0-mm .28¢! .21e? .1le!® .0060 .0505 1.452
7.5mm .30e! .16e2 .18¢® .0068 .0495 .4851
5.0-omm .36e! .13¢2 .16e5 .0099 .0365 .7371
2.5-mm .46e! .10e? .18¢'7 .0104 .0283 2.423
All above .35¢! .13¢2 .18¢!7 .0087 .0410 2.423

tin 10.0-mm .36e! .90e2 .29¢2 .0090 .0568 .2932
7.5mm .40e! .37e3  .12¢8 0129 .0942 4775

50mm .54e! .29¢* 248 0196 .1333 .4315

2.5mm .19¢2 .48¢5 .13e!® 0560 .1406 .3554

All above .56e! .20e* .13e® 0171 .1095 .4775

te 10.0-mm .12¢7 .11e® .22¢12 3154 .3628 .5038
75-mm .68¢’ .70e® .38e'2 3447 .3447 5538
50-mm .62e% .33¢? .85¢!2 .3245 .3868 .5500
2.5mm .27¢® .13e!® .47e3 2391 3189 5357
All above .25¢8 .29¢? .4T7e® 3133 3765 .5538

t, regularization parameter (see the legend of Table 5.1); bold font, the best results.
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Table 5.5:

Difference between the optimal regularization parameter t* and that chosen by
different parameter-selection methods, with associated differences in relative
error (RE) of inverse-recovered potentials, for zero-order regularization and a

time sequence of double-layer sources

t discrepancy RE difference
t Selection Source 50% 80% MAX 50% 80% MAX

te, Septal .19¢! .44e! .9le! .0025 .0126 .0319
Basal .3le! .20e2 .57¢2 .0073 0258 .0759

ten Septal .34e! .84e! .1le*> .0072 .0169 .0284
Basal .64e! .12¢® .40e¢® .0070 .0310 .1190

ter Septal .25¢! .34e! .5le! .0061 .0115 .0336
Basal .3le! .75¢! .38¢*> .0069 .0251 .0998

tze Septal .66e! .15¢> .27e* .0306 .0689 .0882
Basal .68¢! .18¢?2 .64¢®* .0186 .0555 .1092

tin Septal .69¢! .16e> .90e® .0383 .0645 .1149
Basal .57e'! .18¢? .33¢® .0148 .0477 .1058

tic Septal .26e> .45¢5 .18¢® 2072 2670 .4410
Basal .37¢7 .15¢° .70¢° .1130 .3156 .4036

t, regularization parameter (see the legend of Table 5.1); bold font, the best results.

ZC, and LC methods had higher maximum RE differences than the SEMs. With
second-order regularization, ¢,. gave the best 50% and 80% values over all sources,
but also had the largest maximum ¢ discrepancy, for a source at the closest distance
to the epicardial surface. Differences for the CRESO and the SEMs did not greatly
differ from those for ZC.

In Table 5.5, the discrepancies from the optimal value, when using zero-order
regularization with the two time-sequence data sets, are displayed. Results with

second-order regularization are given in Table 5.6. Discrepancies for the SEMs and
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Table 5.6:

Difference between the optimal regularization parameter ¢t* and that chosen by
different parameter-selection methods, with associated differences in relative
error (RE) of inverse-recovered potentials, for second-order regularization and
a time sequence of double-layer sources

t discrepancy _RE difference
t Selection Source 50% 80% MAX 50% 80% MAX

ts, Septal .57e! .99e! .15¢2 .0147 .0394 .0608
Basal .44e! .19¢? .68¢* .0132 .0461 .1704

tey Septal .18¢2 .36¢ .68¢2 .0577 .1146 .1410
Basal .96e' .36e2 .88¢* .0374 0582 .1858

ter Septal .26e! .42¢! .10e? .0040 .0078 .0536
Basal .309¢! .13¢3 .23¢° .0090 .0285 .3225

tze Septal .12¢! .17e! .46e! .0002 .0009 .0095
Basal .44e' .13e2 .25¢* .0098 .0372 .1321

tin Septal .15€! 21e!  .1le* .0007 .0017 .1272
Basal .38¢! .24e® .30e* .0062 .0668 .1451

tle Septal .5le* .27¢% .38¢5 .1380 .1825 .2919
Basal .14¢5 .6le” .40¢® .1244 .1875 .3086

t, regularization parameter (see the legend of Table 5.1); bold font, the best results.
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Table 5.7:

Difference between the optimal regularization parameter t* and that chosen by
different parameter-selection methods, with associated differences in relative
error (RE) of inverse-recovered potentials, for node-to-node system with zero-
and second-order regularization and 1,600 eccentric single-dipole sources

Operator t discrepancy RE difference
Order ¢ Selection 50% 80% MAX 50% 80% MAX
BO ts, .T0e! 63> .54e® 0280 .0999 4.941

ts, 172 61e?  .15¢5  .0475 .0992 4.132
ter 28¢2  .19e* .70¢° 1810 .5390 14.23
tze 49¢' .65¢3 .55¢5 0208 2966 9.881
tin 43¢l  .14¢3  .35¢7 0179 .1514 6.344
B2 ts, .90e! .44et 17e° 0431 .3735 8.936
ts, 27¢2  10e® .17¢° 1205 5261 8.620
ter 15e2  5det 24e'0 0641 4392 14.87
toe 95¢!  .81e3 .17¢° .0270 .1849 9.746

tin .15¢2 .24e¢®  .10¢8 .0377 .1155 6.536

t, regularization parameter (see the legend of Table 5.1); bold font, the best results.

CRESO are small with zero-order regularization. Median RE values are less than
1%. Those for ZC and lognorm LC are slightly larger, while REs for ¢, are still high.
When second-order regularization was used, the results for ¢, ¢,, and t.. were very
good. Those for t,, and t;, were not far off. The median discrepancy for ¢, was still
higher.

Table 5.7 displays the ¢ discrepancy and RE difference values for the set of all 1,600
sources with zero- and second-order regularization when the node-to-node system was
employed. The results for #;. are not included. With zero-order regularization, the
lognorm LC method had the lowest median RE difference, although differences for
ZC and SEMs were also small. However, the SEMs had the smallest differences at the
80% level. CRESO had the largest differences. Second-order regularization results
had the ZC and the lognorm LC the best. The median values were small for £, and
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ter, but the 80% values were higher. In all cases, with both zero- and second-order
regularization, the maximum value was very large, with those for CRESO the largest.

When results were computed for the 1,600 dipoles with the triangle-to-triangle
system, with values for the 117 torso lead locations as input, errors due to interpola-
tion were evident. The optimal t-parameter and RE both increased. The ability of the
different methods to find an acceptable ¢ value was tested with results for zero-order
regularization in Table 5.8. Values for t;. were not included. The smallest median
difference levels with zero-order regularization were seen with #,. All methods had
acceptable results, but median values were highest for the SEMs and maximum val-
ues largest for CRESO. An examination of the t,, values indicated that there was a
definite tendency to overestimate the optimal value. An arbitrary scaling factor of .25
was chosen to decrease the value selected. Results for this altered method, ¢, _, are
also found in Table 5.8. Maximum differences increased, although still less than for
CRESO, while median and 80% values decreased and were closer to those for other
methods.

Equivalent results for second-order regularization are in Table 5.9. The CRESO
method had the smallest median and 80% errors. However, at each distance from
the epicardial surface, the maximum error indicates that an acceptable value for
was not found. For ¢, and t,,, there were also small median errors. The SEM had
large 80% values. Results for ¢,. and ¢,, had larger median errors. When second-order
regularization was used, it was noted that t,, showed a tendency to underestimate the
optimal value. An arbitrary scaling value of 2. was selected, based on observations.
Results for this altered method, t,_, are also found in Table 5.9. In this case, RE
differences decreased for maximum, median and 80% levels.

In Table 5.10, the {-parameter estimates for £, , £s,, tery tze, tin and ¢ are given for
a sequence of measured torso-surface potentials for a normal subject, with zero-order
regularization. Since the solution for epicardial potentials is unknown, comparisons
have to be made among the methods and with ranges of values from the 117-lead
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Table 5.8:

Difference between the optimal regularization parameter {* and that chosen by
different parameter-selection methods, with associated differences in relative
error (RE) of inverse-recovered potentials, for zero-order regularization, 1,600
eccentric single-dipole sources, and 117 torso-surface leads

t discrepancy RE difference
t Selection Source 50% 80% MAX 50% 80% MAX

10.0-mm .23¢! .66e! .31e3 .0113 .0548 .9748
7.5mm .29¢! .74e! .30e3 0122 .0448 .9503
5.0-mm .42e! .1le? .29¢* 0118 .0393 .7539
2.5-mm .70e! .18¢%2 .29¢3 .0091 .0225 .3850
All above .37e' .11e? .31e3 .0109 .0391 .9748

t, 10.0-mm .59¢! .14e? .82¢2 0342 .0796 .5058
7.5-mm .83e! .20e2 .11e3 0352 .0757 .4613
50-mm .12¢% .30 .13¢3 .0300 .0555 .3295
2.5mm .20e* .52¢> .29¢3 .0188 .0337 .2101
All above .99¢! .28¢2 .29¢3 0275 .0593 .5058

tsy 10.00omm .10e? .25 .14e® 0521 .1043 .5498
75-mm .13¢> .35¢> .18¢® .0484 .0891 .5183
5.0-mm .20e®> .53¢> .34¢® .0386 .0657 .3699
2.5-mm .32¢> .87¢* .63¢3 .0226 .0391 .2011
All above .68¢®> .47¢* .63¢5 .0368 .0746 .5498

ter 10.0-mm .26e! .66e! .40e* .0175 0716 1.120
7.5mm .25¢! .54e! .39¢3 0125 .0532 1.038

50mm .23e! .46e! .37e3 0063 .0325 .8290

2.5mm .22e! 47¢! .38¢3 .0024 .0143 .4575

All above .24e! .53¢! .40e® .0082 .0364 1.120

tzc 10.00omm .24e! 46! .11e3 0105 .0421 .5076
7.5mm .29¢! .57e! .11e3 0117 .0386 .4724
5.0-mm .37e! .78¢! .1l1e* .0109 0301 .3855
2.5mm .52e! .12¢2 47¢5 0077 .0185 .2491
All above .33e! .76e! .47¢5 0101 0301 .5076

tin 10.00omm .19¢' .35¢! .44¢2 .0068 .0315 .5268
7.5mm .21e! .38¢! .32¢2 .0065 .0259 .5006
50-mm .22e! .42e! 272 .0048 .0194 .3812
2.5mm .26e! .54e' .75¢2 .0036 .0104 .3806
All above .22el .42¢! .75¢2 .0051 .0219 .5268

ts

™

t, regularization parameter (see the legend of Table 5.1); bold font, the best results.
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Table 5.9:

Difference between the optimal regularization parameter t* and that chosen by
different parameter-selection methods, with associated differences in relative
error (RE) of inverse-recovered potentials, for second-order regularization,
1,600 eccentric single-dipole sources, and 117 torso-surface leads

t discrepancy RE difference
t Selection Source 50% 80% MAX 50% 80% MAX

t,,  100mm .38¢! .20¢2 .56e* 0193 .1822 2.547
7.5-mm .42e! .32¢2 .66e* .0157 .1523  2.502

50-mm .45e' .35¢> .65¢* .0124 .0926 2.320

2.5mm .58e! .44e® .88e* .0067 .0390 1.586

All above .45e! .36e? .88e* .0123 .1107 2.547

ts, 10.0-mm .57e' .59¢2 .11e5 0412 .3033 3.121
7.5-mm .47e! .64e® 13¢5 .0239 2636 3.155

50-mm .46e! .67¢? 13¢5 0146 .I531 2953

2.5-mm .54e! .76¢2 .18¢5 .0075 .0660 2.060

All above .5le! .65¢2 .18¢° .0174 .1919 3.155

ts, 10.0-mm .44e? 393 .50e5 3272 .9379  4.829
7.5-mm .30e® .34e3 .59¢5 2261 .7416 4.943
50-mm .2le* .36e3 .59¢° .1179 .5104 4.735
2.5-mm .14e* .36e3 .60e5 .0393 .2400 3.408
All above .26e® .36e® .60e5 .1486 .6565 4.943

ter 10.0-omm .28¢! .10e? .12¢'® .0091 .0446 214800
7.5-mm .34e' .15¢2 .26e!® .0092 .0427 181600
5.0-mm .45e! .38¢2 .99e¢!® .0094 .0427 143600
2.5-mm .G4de! .19¢3 .79¢!® .0058 .0354 108000
All above .39¢! .26e2 .99¢!® .0081 .0416 214800

tee 10.00omm .14e3 .78¢% .14e5 .1039 .1670 .2734
7.5-mm .32¢3 20e* .34e® .0923 .1430 .2362
5.0-mm .60e® .50e* .11 .0662 .0986 .1725
2.5-mm .18¢* .16¢° .36e® .0324 .0515 .0945
All above .44e® .42¢* .36¢5 .0673 .1223 .2734

tin 10.0-mm .78¢! .38¢2 .73¢* .0321 .0918 3.754
7.5mm .82e! .37¢2 .60e* .0258 .0757 2.060
5.0-mm .94e! .42¢%2 .8let .0192 .0479 1.556
2.5-mm .11e? .58¢2 .73¢* .0089 .0243 .7828
All above .9le! 442 .14¢5 0191 .0590 3.754

t, regularization parameter (see the legend of Table 5.1); bold font, the best results.
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Table 5.10:
Regularization parameter selected by different methods, for zero-order
Tikhonov regularization, CRC3 method, and 117 measured ECG leads

sample  t, ts, ter tze tin tic

279  228e~! .444e”! .614e™2 .000et® .109e~! .758e!
281  .225e~! .446e! .552e=2 .000e*® .106e~! .809e-!
283  .275e~! .506e! .710e~2 .000e*® .130e~! .808e!
285  .329e~! .526e~! .876e~2 .000e*® .132e~! .879e~!
287  .297e”! .4T2e”! .845e~2 .000et? .1lle~! .966e~!
2890  .307e”! 479! .813e~? .000e*® .108e~! .112e+°
291  .486e~! .612¢~! .000e™® .000e*® .155¢~! .104e*?
293  .516e~2? .196e~! .211e~2 .268e~! .491e2 .27de~!
295  .998e~3 .395¢"2 .234e~% .407e~2 .282e~2 .147e!
297  89le™3 .325¢~? .238e~2 4222 .285¢~2 .174e~!
299  .903e~3 .33le~? .180e~2 4392 .230e~% .266e~!
301  .847e=3 .31le~? .115¢~2 .440e~? .148e~2 .486e~!
303 .837e=3 .287e~? .127e~2 .600e~2 .156e~2 .615e~!
305 921e=3  292¢~2 .200e=2 .000et? .228¢=2 .501le-!
307 .948e~3 .296e2 .300e=2 .807e~? .336e~2 .324e~!
309 .936e=3 .287e~? .43le~? .742e=2 .468e~2 .24Te~!
311  .953e~3 .288e~2 .577e~2 .733¢~2 .60le~2 .220e~!
313 96le~3 .296e2 .644e? .642e=2 .644e? .185e~!
315 .902e~3 .283e~? .640e~? .55le=2 .613e~2 .162e~!
317  .835e~3 .266e2 .605¢=2 .493e~2 .566e=2 .156e-!
319  .859e™3 .272e~2 .437e~2? .515¢~2 .462e2 .157e~!
321  .832e™3 .256e72 .424e~2 .64le=2 453e~2 .223e~!
323  .944e™3 .274e7? .498e~2 .109e~! .514e~2 .302e~!
325 .118e72 .31Te~? .T12~2 .000e*? .592¢~2 .449e~!
327  .155e¢~2 .385e~2 .000e*® .000e*® .897e~2 .599e¢~!
329 231e~2 5282 .000e*® .000e*® .123e~! .673e~!
331 4622 .898e~2 .000et® .000et? .152e=! .836e-!
333 .896e~2 .162e! .000et® .000e*® .168¢=2 .111e*?
335 .970e=2 .187e~! .000e*® .000e*® .367e~2 .135¢*°
337  .124e7! .221e~! .000et® .000et® .000et® .000e*C
339 .147e~! .250e~! .188¢~2 .000et? .000e*® .000e*C
341  .145¢71 .251e”! .189¢~2? .000et® .000e*® .000e*?
343  .884e™2 .188e~! .241e~2 .000e*? .000et? .000e*C
345  510e~2 .12le~! .390e~2 .000et? .375¢~2 .112¢*0
347  468e~2 .109e~! .000e*® .000e*® .450e~2 .915et
349  476e~2 .1lle”! .000e™® .000et® 475¢~2 .927e~!

t. regularization parameter (see the legend of Table 5.1).
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values for the 1,600 sources. Samples were recorded every 2 ms. The onset of the
QRS complex was at sample 289 and the offset at sample 346. A value of zero indicates
that a ¢ parameter could not be found by the given method. It was noted that there
were samples for which ¢ could not be estimated by all methods but the SEMs. When
t-values which met criteria existed, the values for all methods were within one to two
orders of magnitude of each other. The values selected for ;. were higher in all cases.
Estimates for t;, were lower than those for f. during most of the QRS complex.
However, at time instants with low amplitudes, including early and late QRS, the
results were opposite. An examination of t,,, values over time showed that they were
at their largest around the onset of QRS complex. They decreased towards the peak
of QRS and then began to increase, so that they were again in a higher range for the
end of the QRS. There were no large fluctuations in the parameter values. The values
selected were approximately one order of magnitude larger than those found for the
117-lead input for the 1,600 dipole sources.

Results for the measured data, when second-order regularization was used, are
given in Table 5.11. It is evident from this table that ¢.. was never found. For ¢, a
few values could be determined; however, these tend to be large. The LC methods
found a ¢ value every time, but there were some large jumps in value between samples.
These values were also quite large. The SEMs selected a t-parameter for each sample.

Patterns were the same as for zero-order regularization.

5.4 Discussion

The purpose of the work presented in this chapter was to investigate methods for
determining the regularization parameter value without ¢ priori information about
the desired epicardial distribution. Determining criteria for this selection process is
crucial for the ultimate goal of applying the inverse problem of electrocardiography
to clinical data acquired by means of body-surface potential mapping.

CRESQ, ZC, norm and lognorm versions of LC, and the norm and squared norm
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Table 5.11:
Regularization parameter selected by different methods, for second-order
Tikhonov regularization, CRC3 method, and 117 measured ECG leads

sample i, ts, ter tzc tin e

279  .513ett  .153et0 .000e™® .000et? .324e*2 .324¢t2
281  .563et! .153¢*0 .000e*® .000e*® .31det? .31det?
283  .552et! .155¢10  .000et? .000et® .325¢t2 .325et2
285  .494et! .149eT0 .000et® .000et? .314et2 .314e*2
287  406et! .139¢*0 .000et® .000e*® .315e+2 .315¢+2
289  .439et! .138e*0 .000e*® .000et® .303et2 .303e*2
291  .539e*! .150e*® .000e*® .000e™® .297e*2 .297e*2
293  .669et! .173et® .000e*? .000e*? .454e*? .454¢+2
295  .113et! .767e"! .378e*® .000et® .506e*2 .506e*?
297  .802e*t0 .584e! .230e*3 .000e*? .466e*2 .466et2
299  .673et® .574e! .127e*®  .000e*® .376et? .376e*2
301  .433et0  40le! .724e*? .000e*? .309e*2 .309e*2
303  .288et0 .315e~! .753e*2  .000e*? .306e*? .306e*2
305 2790 .304e! .000e*® .000e*® .301e*? .301e*2
307  .330et? .336e~! .000et? .000et® .293e*2 .293e*2
309 .385et0 .362e~! .000et® .000e*® .677e~! .282e*2
311 .462et0 .388e~! .000et0 .000et? .102e*0 .455e*!
313  .637et0 .455e¢! .000et® .000et? .354et0 .236et2
315 .761et® .501e! .000e*® .000e*® .436e*0 .257e*2
317  .776et® .505¢~! .000et® .000et® .260et? .260e*2
319  .654et0 .481e~! .000et° .000et? .292et2 29212
321  .396et® .345¢~! .000e*® .000et? .457et0 .157e*2
323 .294et0 206e~! .000et? .000et? .154et? .154et?
325 .228et0 .257¢~! .000e*? .000et® .160e*? .160et2
327  .219et0  252¢~! .000et? .000et? .144et? .144et?
329  267et® .289e~! .000et® .000et® .314e*0 .128e*2
331  .384e0 .360e~! .000e*® .000e*® .384e*? .105e*2
333  .837et0 .557¢~! .000et? .000et? .124et? .124et2
335 .112ett  .661e~! .000et0 .000et® .192et2 .192e*2
337  .15%et! .820e~! .000et® .000et® .187et? .187et2
339  .233et!  993e~! .000et® .000et? .195et2 .195e*2
341  .240ett .102¢t? .000et® .000et? .195¢t2 .195¢t2
343  .169e™! .827e~! .000e*0 .000et® .203et? .203e*2
345 .933¢t0 .554e~1 .000et® .000et® .214et? 214et?
347  .726et®  470e~! .000et® .000et® .319et! .274e*2
349  .680et® .490e~! .000et® .000et® .300e*? .300e*2

t, regularization parameter (see the legend of Table 5.1).
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variations of the proposed SEM method were chosen for examination. The CRESO
method was chosen, because it has been shown to work better than other methods
presented in this chapter (which were not, therefore, examined further) and has been
used in several studies [27, 106, 120]. The ZC technique was included, because when
it was previously compared to LC and CRESO [79] it appeared to give reasonable
estimates of the regularization parameter. The LC method has also been previously
used for the inverse problem of electrocardiography [18, 24, 67, 71, 122, 123] and has
the advantage of being based ou less empirical criteria. Therefore, results were also
generated for this technique.

CRESQ, ZC, and LC methods are capable of generating reasonable results; how-
ever, problems have been identified with each. With clinical applications, it is neces-
sary to determine an estimate of the optimal regularization parameter for every case.
The new SEM method introduced in this chapter seems to provide a more robust and
stable method of t-parameter estimation that could meet this requirement.

Although the CRESO technique for determining the regularization parameter has
been utilized for the solution of the inverse problem of electrocardiography by sev-
eral investigators [27, 106, 120], it has also been demonstrated that a ¢ parameter
fitting the CRESO criteria may not exist [22, 24]. In the present study, the CRESO
method was not successful in finding an appropriate t-parameter value for the Hilbert
matrix problems. For the heart/torso model, the parameter was often near optimal.
However, there were occasions with this model where a large discrepancy occurred,
and sometimes no acceptable value was detected. Results tended to be better when
the Identity operator, rather than the Laplacian, was used as the regularizing oper-
ator. The last two points were effectively demonstrated by the results for the time
sequence of measured torso-surface potentials. In practice, the determination of the
appropriate value was dependent upon the careful selection of the search interval.

The ZC method has not been in general use. However, it was recently suggested
as a simpler substitute for the CRESO method [79]. Comparisons with CRESO and
a visual determination of L-curve values gave the proponents of this method reason
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to believe it would be effective at generating an acceptable value. Careful selection
must be made as they also found two points satisfying their criteria. The lowest value
was closest to the optimal value, but disappeared in cases with low torso data error.
This was reflected in the results for the Hilbert matrices, where ZC could not find
an appropriate value for the lowest errors, but was successful for higher levels. For
other test sets ZC was often successful, and less likely than CRESO to fail to find a
parameter value. However, when the measured sequence of torso-surface potentials
was evaluated, this method failed to find an appropriate value more often than any
other technique.

The L-curve method of determining the regularization parameter for the genera-
tion of inverse-recovered epicardial potentials has been employed by several investiga-
tors [22, 24, 67, 71, 122, 123]. Achieving a balance between the norm of the residual
and the seminorm of the solution is fundamental to this technique. This is desir-
able, since it makes the selection process less empirical. The point where maximum
curvature of the L-curve exists is intuitively a good definition of this balance [62].
However, it has been shown [41] that this method is not convergent. In this chap-
ter, two L-curve variations were examined, the lognorm (as has been used by others
[24, 62, 67, 120]), which is supposed to best define the corner location, and the norm
(which has been used less frequently [122, 123]).

Neither variant was capable of selecting an appropriate parameter value for the
error levels presented for the Hilbert matrices. When results were calculated for the
dipole sources, these methods usually overestimated the parameter. However, the
lognorm variant selected parameters within an acceptable range of the optimal value
for the time-sequence data. This method also worked well for the dipole sources with
the node-to-node system. When input potentials were calculated from 117 torso lead
locations, the lognorm L-curve was one of the best methods. With measured torso-
surface potentials as input, parameters selected were close to those determined by
CRESO. There were also times when no value was detected by either variant of the
method. The norm variation of the method generally selected larger values. Search
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interval boundaries were also important for this method.

In this chapter, the Slope Estimation Method of determining an optimal regular-
ization parameter has been introduced. Engl and Grever [41] suggested that there
may be other ways to utilize the L-curve plot to determine a near-optimal regulariza-
tion parameter. This idea led to the notion that it may be possible to estimate the
slope of the curve at the point corresponding to the desired parameter. It was hy-
pothesized that the negative of the relative change in residual norm from when ¢ was
equal to the minimum non-zero singular value, to that with the maximum singular
value, was a good estimate of this slope. The hope was that this would provide an
acceptable estimate of the regularization parameter under any conditions, as there
were circumstances under which all the other methods failed.

Results for variations using the slope of the squared-norm and norm L-curve were
computed. The SEM consistently achieved good results for the Hilbert matrices at
all error levels, the dipole sources, and the time sequence data. The norm version
tended to have better results than the squared-norm, although this was much simpler
to calculate, requiring no search. For all cases examined, there was only one point
found which satisfied the criteria. This was in contrast to the CRESO, ZC and LC
methods which were sensitive to search boundaries, since it was necessary to find the
“correct” match. The technique was also effective for the node-to-node system.

On the other hand, for the input data consisting of 117 torso leads, this method,
although still acceptable, did not give the best results, showing a tendency to over-
estimate the optimal value with the Identity operator, and underestimate it with the
Laplacian operator. When the parameter chosen by the norm variant was scaled by
a constant factor, the overall results were in the same range as other methods. The
reasons for this decline in the ability of the SEM to find a near-optimal value in
the presence of interpolation error in the torso input potentials, are not immediately
clear. However, it appears that as the residual norm for g, approaches the value
at [bmez, the estimate of the appropriate slope is less accurate. The scaling factors
which were chosen worked for this particular application, but there is no indication
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whether they would be appropriate for any other conditions.

For the potentials measured on the torso surface, the scaled norm SEM selected
values in the same range as CRESO, ZC and LC methods. There were no cases when
this technique failed to select a regularization parameter. The parameters selected
varied with time, decreasing as the magnitude of the input data increased (signal-to-
noise ratio increased) and increasing as the magnitude decreased. This relationship
intuitively appears appropriate. Therefore, the SEM is an effective technique for
determining the regularization parameter, and though it would not always be “the
best”, it consistently selects an acceptable value.



Chapter 6

Clinical Application:
Coronary Angioplasty as a
Controlled Model of Ischemia

6.1 Introduction

Percutaneous transluminal coronary angioplasty (PTCA) involves the insertion of a
balloon catheter into a patient’s coronary artery. The balloon is positioned within an
area of major stenosis, and then inflated. With a successful angioplasty treatment,
the occlusion is decreased, providing improved blood flow to the portion of the my-
ocardium forming the perfusion bed of the artery. For the period of time during which
the balloon is inflated, there is complete disruption of the antegrade flow of blood
past the obstruction. This induces a state of acute transient myocardial ischemia,
reversible with reperfusion of the occluded artery.

At the cellular level, ischemia is characterized by mechanisms which alter with
time. In this study, PTCA induces sudden onset of ischemia for a maximum duration
of 3 minutes. During these first few minutes following coronary occlusion, changes

follow a very rapid time course [77]. The development of techniques for directly

153
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recording the electrical activity of individual cells [92] facilitated research on myocar-
dial ischemia in animal models—both at the cardiac-tissue [157] and whole-heart [81]
levels. This led to extensive investigations of myocardial ischemia [77]. It was found
that the resting potential of cells in the ischemic region becomes rapidly less negative
as a result of an accumulation of potassium in the extracellular space [65, 66, 77]. Sub-
sequent to this, there are gradual changes in action-potential amplitude and duration
[77].

Local depolarization of ischemic cells causes an electrotonic “injury current” to
flow between ischemic and healthy tissue. During the diastolic phase, the injury
current flows from ischemic to normal cells. DC-coupled amplifiers record this as a
negative TQ segment [85], but AC-coupled amplifiers used for clinical ECG recording
will set this level as the baseline, deflecting other signals upwards. Once the cells
neighbouring the ischemic region have been depolarized, the injury current changes
direction and flows towards the ischemic zone. On the ECG, this is observed as local
shifts in the ST segment and T wave [82]. This electrocardiographic indicator of
ischemia has been well documented in many studies (e.g., [40, 49, 69, 107, 133, 152]).
Holland and Brooks have suggested that the magnitude, polarity, and distribution of
potentials resulting from this injury current is dependent upon the time elapsed since
the onset of the ischemia, as well as its location, spatial extent and severity [69].

ECG signals, ranging from a few leads to many leads used in body-surface po-
tential mapping, have been examined in patients with varying degrees of ischemia
[23, 54, 112, 153]. Abnormal ST segments, T waves, and QRS complexes have been
identified. In these studies, it was not possible to control factors such as the de-
gree and duration of the myocardial ischemia. PTCA provides an excellent model
for examining reproducible, acute ischemia, since it controls the location and du-
ration of artery occlusion, and the patient’s condition prior to the ischemic inci-
dent may be documented for comparison with that during and following the pro-
cedure. Much interest has been shown in this model. Conventional 12-lead ECGs
[2, 15, 42, 56, 60, 87, 88, 90, 109, 121, 138, 154, 159, 160, 161] and body-surface
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potential mapping data [86, 97, 98, 122, 123, 127, 141, 147] have been recorded be-
fore, during, and following PTCA. These studies have examined alterations in ST
segment, T wave, and QRS complex. To increase the efficacy of body-surface poten-
tial mapping in extracting information about ischemic changes, some investigators
[97, 98, 123] have computed inverse-recovered epicardial potential images.

Torso-surface potential maps of the QRS complex and ST segment, with features
characteristic of the occluded artery, have been computed from torso-surface poten-
tials collected during PTCA for the three major coronary arteries (i.e., left anterior
descending artery, LAD); left circumflex artery, LCx; and right coronary artery, RCA)
[47, 127, 141, 147]. The diversions from normal torso-surface potential distributions
reflect changes in the epicardial distributions. These patterns, in turn, are due to the
presence of ischemia induced by the cessation of blood flow after artery occlusion by
balloon inflation.

It is useful to briefly review what the perfusion beds of these arteries are. The
left anterior descending branch of the left coronary artery travels down the anterior
interventricular groove and often extends past the apex and onto the posterior groove.
Diagonal branches perfuse the anterior wall of the left ventricle. The anterior two-
thirds of the septum is perfused by septal perforating branches, which also arise from
the LAD. Other small branches supply blood to the anterior right ventricle. The
left circumflex branch of the left coronary artery travels along the atrioventricular
groove with the obtuse-marginal branch carrying blood to the Iateral left ventricle,
whereas other branches extend to the posterior of the heart. Acute-marginal branches
of the right coronary artery perfuse the free wall of the right ventricle. The posterior
descending branch courses down the posterior interventricular groove with offshoot
septal perforating branches which perfuse the posterior third of the septum [82].
Although this pattern predominates, examinations of human hearts have shown many
variations {102]. Important differences can be found on the posterior ventricular wall,
where the posterior descending artery may arise from the left-circumflex artery. As

well, the circumflex and right coronary arteries may perfuse variable territories of the
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posterior left ventricle. The presence of a collateral circulation, where an area of the
heart is fed by branches from two different sources, will also affect interpretation of
the ischemia produced by PTCA. Collaterals may link distinct arteries or different
branches of the same artery [26]. Collaterals appear to develop to a functional extent
only in the presence of severe coronary artery disease [26, 133].

Documenting areas where blood flow has decreased will help to identify the is-
chemic region. **™Tc sestamibi is a perfusion agent that is taken up by myocardial
cells in proportion to the rate of blood flow through the myocardium. It has a slow
washout, and demonstrates minimal redistribution [51]. This allows imaging, while
still documenting the state of myocardial perfusion at the time the agent was injected,
to be performed with a delay of up to six hours. As a result, ¥™Tc sestamibi is ide-
ally suited to localizing and assessing the extent and severity of myocardial ischemia
during PTCA [14, 16, 17, 46, 51, 52, 64, 124, 148].

The ultimate end-point for noninvasive imaging of epicardial potentials via the
inverse problem of electrocardiography is clinical application. Achieving this goal
requires assessment of the accuracy of the method in humans. To this end, applica-
tions have steered towards pathologies where other evidence provides information on
expected results. These include ventricular pre-excitation, myocardial infarction, and
the ischemia induced by PTCA.

Shahidi et al. [140] recorded body-surface potentials for a patient with Wolff-
Parkinson-White syndrome (WPW) prior to surgery. Epicardial electrograms were
recorded in the same patient during surgery, where a left lateral pre-excitation site was
identified. A finite element method was used to determine epicardial potentials from
the body-surface data. The authors found that the recovered epicardial distribution
could determine the left lateral site, but that the distributions measured later in
the QRS complex did not compare well with the recorded data. Penney et al. [122]
utilized a boundary element method and compared localization of several WPW pre-
excitation sites with those documented by catheter ablation, with good results.

Using an inverse procedure based on a resistor network model, Kilpatrick et al. [84]
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constructed epicardial ST segment potential distributions for 55 patients with acute
myocardial infarction. They predicted which artery contributed to the infarct and
compared their results with coronary arteriography analysis. Misclassified patients all
had coronary artery disease of the predicted artery, even though it was not involved
in the infarction.

MacLeod et al. [98] utilized a boundary-element solution to the inverse problem
to interpret body-surface potential maps recorded during PTCA. For seven patients,
a comparison was made between the predicted location of ischemia and a qualita-
tive assessment of each patients coronary anatomy, as determined by fluoroscopic
examination. There was agreeement in location for all patients. Penney et al. [123]
compared localization of PTCA induced ischemia by inverse-recovered epicardial im-
ages and radionuclide perfusion images. They found good agreement in localization
methods.

The aim of this chapter is to assess the capabilities of the best approaches to the
inverse solution—tested in previous chapters—in the investigation of PTCA-induced
ischemia. Regional constraints, including spurious-extrema removal, weighted spatial
smoothing, and temporal smoothing, will be utilized. The newly introduced Slope
Estimation Method will be used to determine the appropriate regularization param-
eter.

Inverse-recovered epicardial potential images will be examined for expected char-
acteristics of ischemic changes. QRS- and ST-integral difference maps will be as-
sessed for regions of elevation and locations of extrema. Electrograms chosen from
the central ischemic zone will be evaluated for changes throughout the depolariza-
tion/repolarization cycle. A comparison will be made between ischemic locations
identified by noninvasive epicardial potential images and radionuclide myocardial per-
fusion images. A representative patient will be selected—from the total population
of 94 patients—for each artery. Body-surface ECG and epicardial electrograms will
be compared throughout the inflation/deflation cycle.
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Table 6.1:
Dalhousie University database of body-surface potential mapping data:
PTCA Group

LAD RCA LCx

No. of patients 35 36 23
Male/female 21/14 30/6 17/6
Age (yrs) 57+10 56+10 61+10

Heart rate (bpm) 63+£11 64+12 58+8
QRS duration (ms) 96+11 96+13 98+11
QTc interval (ms) 436428 431422 434+24

LAD, left anterior descending coronary artery; RCA, right coronary artery; LCx, left
circumflex coronary artery

6.2 Methods

This study includes a group of 94 patients who underwent 120-lead electrocardio-
graphic body-surface mapping during coronary angioplasty. Electrocardiographic
data were collected throughout the inflation/deflation cycle during clinical PTCA
procedures. A subgroup of 18 patients completed a radionuclide perfusion imaging
section of the study. After balloon-inflation PTCA had successfully dilated the tar-
get vessel (a reduction in the stenosis to < 50% of the vessel’s diameter), another
60-s inflation was performed. At the start of the inflation, %™ Tc sestamibi was in-
travenously injected, and 120-lead ECG data were recorded. Single photon emission
computed tomography (SPECT) imaging was performed one hour after injection of
radionuclide to obtain a scintigraphic “inflation” image; 24 hours later, one hour after
a repeat injection of the radionuclide, a scintigraphic “rest” image was acquired. One
representative patient for each artery of occlusion will be examined in detail in this
study, to detect changes at different times throughout the inflation/deflation cycle.

Patients: Table 6.1 shows the clinical characteristics of the patients who underwent
clinically indicated PTCA and were included in this study. Patients had to meet
the following criteria: (1) scheduling of PTCA for severe stenosis (> 60% diameter
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reduction) of the LAD, LCx or RCA arteries, (2) no previous myocardial infarction
(MI) or clinical evidence of variant angina, (3) normal global left-ventricular wall
motion (ejection fraction > 45%), and either normal or only mildly hypokinetic re-
gional wall motion, and (4) normal resting 12-lead ECG. Patients included in the
perfusion imaging section of the study were required to have one-vessel disease with
diameter of stenosis >70% by visual examination. Patients originally enrolled in this
part of the study would have been excluded if the PTCA procedure was unsuccessful,
or any major complication (including acute closure, acute MI, emergency coronary
bypass surgery, or repeat PTCA) occurred. The protocol was approved by the in-
stitutional review board of the Queen Elizabeth II Health Sciences Centre, and all
patients provided written consent prior to participation.

Angioplasty Procedure: Regular PTCA methods were exercised with a No. 8F guide
catheter being positioned in the ascending aorta. Following this, an appropriately
sized “steerable” balloon dilation catheter (USCI, 2.5 to 3.5 mm diameter, 20—-25 mm
length) was positioned through the guide catheter across the coronary artery stenosis

such that when inflated, the balloon would completely obstruct the coronary artery
and eliminate antegrade blood flow. Several recordings of the pressure in the artery
under treatment were made before beginning the PTCA procedure, to assess both
initial hemodynamics and signal stability. An aspirin dose of 325 mg was adminis-
tered orally prior to PTCA, and 10,000 U of heparin intra-arterially at the beginning
of the procedure. Every reascnable effort was made to restrict administration of in-
tracoronary nitroglycerine until after the research portion of the procedure had been
completed. A waiting period of at least 1 minute (as we had previously found that
this was the minimal time required for the ECGs to return to a preinjection baseline)
after the most recent injection assured that there were no confounding influences from
the contrast medium.

The following procedure was followed for participants in the perfusion study. An
additional femoral-vein catheter was inserted for radiopharmaceutical administration.

Once the operator was satisfied that the target lesion had resolved with one or more
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balloon inflations, and that the patient could tolerate a 60-s inflation, an additional
60-s inflation was performed with a standard (non-perfusion-type) angioplasty balloon
catheter. At the beginning of this inflation, 20mCi of %™ Tc sestamibi (Cardiolite;
DuPont-Pharma, DuPont Pharmaceuticals, North Billerica, MA) was injected into
the femoral-vein catheter and quickly flushed with 10 ml of normal saline. After
the final coronary angiography was completed, the patient was taken to the nuclear
medicine laboratory for SPECT imaging, one hour after injection of radionuclide.
Routine post-angioplasty care was given to all patients. A minimum of 24 hours
later, the patient had repeat SPECT imaging performed at least one hour after a
repeat injection of 20 mCi of ¥™Tc sestamibi by intravenous injection.

Electrocardiographic imaging: Prior to initial PTCA studies, some technical changes

had to be made to our standard electrocardiographic acquisition system [99]. Data
collection during PTCA also required a special set of radiolucent electrodes (In Vivo
Metric Systems, Healdsburg, CA). Eighteen flexible strips with 117 electrodes were
firmly attached to the patient, using the layout in Fig. 6.1; disposable limb-lead
electrodes were attached separately. To enable the patient’s arms to move easily
during angioplasty, the limb leads were positioned on the torso as suggested by Mason
and Likar [101]. (The RA and LA electrodes were mounted slightly higher and more
laterally than specified by Mason and Likar, at the acromial end of the clavicle, to
make room for the electrodes used in patient monitoring; the LL electrode was affixed
along the anterior axillary line on the iliac crest [121].)

Simultaneous 120-lead ECGs were recorded during one or more inflations of the
balloon catheter. Inflation time varied from 30 seconds to 3 minutes. Data collection
was initiated a minimum of 15 s prior to inflation and continued until at least 15 s
after balloon deflation, in order to follow the transition between physiological states
throughout a complete inflation/deflation cycle. This study includes data for 202
inflations for 94 patients, including 18 inflations performed for comparison with per-
fusion images. The 120-lead ECG data were simultaneously recorded at 500 samples/s
with Wilson’s central terminal as a reference, using a system based on PDP-11/24
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Figure 6.1: Placement of electrodes on the chest for electrocardiographic body-surface
potential mapping. Circles mark electrode locations; the row of electrodes 4, ...,117
was aligned at the level of the fourth intercostal space at the sternum; squares indicate
locations of conventional precordial leads VI-V6.
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(Digital Equipment Corp., Maynard, MA) computer, with a 12-bit analog-to-digital
converter. The data were recorded on magnetic tape and processed off-line on an
IBM RS/6000 computer.

The ECG data were signal-averaged in each lead over a multi-second window
both pre-inflation (patient at rest) and peak-inflation (immediately prior to balloon
deflation). Window lengths varied from 5-25 s and were visually chosen as having
a stable QRST complex. All 120 signal-averaged ECG complexes for resting and
inflation states were inspected. Poor quality leads were rejected and manual correction
of the onsets and offsets of the P wave, the QRS complex, and the T wave was
performed. The 117 electrode locations correspond to node locations on the tesselated
torso model and are displayed as filled circles in Fig. A.1 of Appendix A. Three-
dimensional interpolation was used [116] to generate potentials at the complete set of
352 nodes from the acceptable lead values. Further interpolation was used to calculate
mean potential values for the 700 triangles of the torso-heart model’s torso surface,
as input for the inverse procedure. The same realistic model of the human torso, in
which the torso was assumed to be a homogeneous volume conductor, was used for
all patients.

An initial estimate of epicardial potential distributions was computed using the
triangle-to-triangle torso-heart system and inverse solution with zero-order Tikhonov
regularization. The scaled variant of the Slope Estimation Method was used to de-
termine the optimal regularization parameter. Subsequent to this, the composite re-
gional constraint was applied—CRCM (with no temporal component) for processing
integral difference maps, and CRC3 (with temporal component to extrema removal
section and temporal smoothing)—for time sequences of measured torso-surface po-
tentials.

Inverse-recovered epicardial potential distributions are displayed as isopotential
maps on a polar projection of the epicardial surface. Fig. A.2 of Appendix A depicts
the 360 triangles which tesselate the ventricular surface; generalized locations of the
LAD, RCA and LCx are shown superimposed on the display.
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Myocardial perfusion imaging: SPECT imaging was performed using a single-head

rotating gamma camera (General Electric 3200 Starcam) with a low-energy, high-
resolution collimator. A typical 180° imaging protocol was utilized, acquiring 32
images (64x64 matrix) over a 180° arc extending from 45° right anterior oblique to
45° left posterior oblique with acquisition time of 40 s per projection. Tomographic
slices were reconstructed by standard filtered back projection according to the GE
CEqual protocol and “raw” volume-weighted polar (“bull’s-eye”) maps corresponding
to rest and inflation were generated. Sestamibi polar difference maps were derived
by subtracting the rest map from the inflation map to define the reversible ischemic
defect produced by balloon occlusion. Isocontours joining points of the left ventricle
with equal difference peak counts were generated. These polar difference maps feature
a polar projection of the left ventricle, with the apex at the center, the anterior wall
on top, the inferior wall on the bottom, the septum to the left, and the lateral wall
to the right.

Angiographic analysis: Angiographic analysis was performed for all study partici-

pants. Coronary cineangiograms obtained during the pre-PTCA diagnostic catheter-
ization and the PTCA were assessed visually by an experienced interventional cardi-
ologist, who was blinded to the results of the electrocardiographic mapping and the
sestamibi imaging. Vessel-dilated, pre- and post-PTCA % diameter stenosis, lesion
location, and the presence of angiographically visible collaterals were assessed for all
patients. The dilated vessel and the lesion location (proximal, mid, or distal) were
determined according to the Coronary Artery Surgery Study coronary artery nomen-
clature [129]. Angiographically visible collaterals were assessed as being either present
or absent from the pre-PTCA diagnostic cineangiogram, and no attempt was made
to quantify recruitable collaterals during PTCA. When faint, partial, or complete an-
giographic filling of the distal PTCA vessel occurred from ipsilateral or contralateral
injection, collaterals were considered to be present; otherwise they were considered

absent.
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Analysis: The QRS-integral was calculated as a time-integral of instantaneous poten-
tial values from the onset to the offset of the QRS complex. The ST-segment integral
was similarly calculated over 3/8 of the interval from the J point to the T-wave off-
set. For each patient, the QRS-integral and ST-integral values for resting maps were
subtracted from the corresponding peak-inflation maps. Resulting potentials were in
units of microvolt-seconds (xVs). Mean maps were computed for occlusions of each
artery. A second set of mean maps was constructed after each individual integral map
was normalized. These “normalized” maps allowed all distributions to make an equal
contribution to the mean, regardless of the size of the potential changes. Epicardial
images were computed for each of these mean difference maps.

Individual ST-integral difference maps for each inflation were converted to epi-
cardial images. Correlation coefficients were calculated for both torso and epicardial
distributions to determine the similarity of each map to the mean maps for each of
the arteries. Inverse-recovered epicardial potential distributions for each instant in
the time sequence from 10 ms before QRS-complex onset to 10 ms after T-wave off-
set were computed for both resting and peak-inflation data. Electrograms for both
resting and peak-inflation maps were displayed for the site which corresponded to the
location of the global maximum on the ST-integral difference map.

For the purposes of analysis of radionuclide images, the primary ischemic zone was
defined as the region on the perfusion-image map demonstrating a positive change
with inflation. For comparison with electrocardiographic images, values correspond-
ing to the locations of the 360 ventricular-surface triangles were extracted. The loca-
tion of the ischemia was quantified by the center of mass of the positive area of the
perfusion difference map. The location of the ischemic zone by epicardial potential

imaging was quantified in the same manner, with the center of mass defined as

n n
zc — 21_7;1 w'ixf; . — E‘t:nl wfyt (6.1)
i=1 Wi i=1%i

where n = 360, the number of triangles on the ventricular surface, (z;,y;) is the
location of the triangle centroid on the polar projection of the surface, with (0,0) at

the apex, and w; are weights defined as the product of the positive value at A; and
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the area of A; in the 3D projection.

6.3 Results

PTCA database study: Mean difference maps—depicting difference between body-
surface potential distributions at peak inflation and at rest—were calculated for ST
and QRS integrals, for 76 inflations in the LAD, 77 inflations in the RCA, and 49
inflations in the LCx. A second set of mean difference maps was calculated from nor-
malized individual difference maps, to allow each distribution the same weight, disre-
garding the size of changes. The corresponding inverse-recovered epicardial potential

images were calculated from each of these mean distributions. All mean difference
maps for ST integral are shown in Fig. 6.2.

Characteristics of the mean torso-surface maps for each artery (Fig. 6.2, upper two
rows) are similar to those found by others [98, 141]. For LAD occlusion, there is an
anterior maximum in the precordial area, with negative values on the posterior torso.
For RCA occlusion, the distribution is characterized by an inferior maximum and
superior minimum. The maximum is located further to the right in the “normalized”
map. For LCx occlusion, there is a large negative region on the anterior torso and
positive potentials on the back, with the maximum on the left side. Distributions for
the mean difference maps of QRS integral were similar.

The epicardial potential images of the ST-integral mean difference maps (Fig. 6.2,
bottom two rows) showed multiple positive extrema for occlusions of each of the
arteries. The extrema were located in areas perfused by different branches of the
respective arteries. The mean maps for occlusions of the LCx show an area of positive
potentials on the left free wall, extending anteriorly from the basal third to the mid
third of the wall. At the obtuse margin, and more posterior locations, the positive
area extends from base to apex. The maximum is located within the middle third of
the obtuse margin. In addition, a local maximum is seen in the middle third of the left
posterior surface. This second maximum is not as apparent in the “normalized” map.
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Figure 6.2: Body-surface and epicardial maps of mean differences between ST-integral
distributions at “peak-inflation” and “rest” states. The upper two rows show torso-
surface distributions of means (top row) and “normalized” means (second row) for
three different arteries (LCx, RCA, LAD). The occluded artery is identified in the
upper left corner, the maximum and minimum values in the middle, and each map
is designated as either ST or STn (“normalized”). The bottom two rows show cor-
responding inverse-recovered maps on the “bull’s-eye” projection of the epicardial
surface; all information is printed to the right of each map. All ST-integral values are
in units of £Vs, and contours are plotted on a logarithmic scale.
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These maxima are located in regions perfused by the obtuse marginal and posterior
branches of the LCx artery.

Mean epicardial ST-integral images for occlusions of the RCA have a positive
region on the posterior surface, extending from base to apex. A maximum is located at
the base of the ventricle, near the posterior interventricular groove. A local maximum
can be seen on the “normalized” map in the apical third near the groove. There is
evidence of other local extrema along the base, between the posterior groove and the
acute marginal. These maxima are located in regions perfused by the acute marginal
branches and the posterior descending artery. The overlap of positive regions on the
posterior epicardial surface within LCx and RCA distributions can be explained by
the large diversity in coronary circulation in this region. Ninety percent of the time
[82] the posterior descending artery arises from the RCA, but it may extend from
the LCx as well. The portion of the left posterior ventricular surface perfused by the
RCA can also vary, with the RCA extending as far as the obtuse margin in some
cases [102].

Mean ST-integral difference maps on the epicardial surface for occlusions of the
LAD have positive potentials extending onto the right and left anterior surfaces. Near
the apex, this positive region extends somewhat posteriorly. The maximum is found
in the basal third, close to the anterior interventricular groove. A local maximum
appears in the middle third of the left anterior ventricular surface. Another local
extreme can be seen posterior to the apex, although it is not as apparent on the
“normalized” image. These maxima are located in areas perfused, respectively, by the
right-ventricular and septal perforating branches of the LAD, the diagonal branches,
and the distal branch which typically extends past the apex and into the posterior
interventricular groove.

The correlations between each individual inflation’s ST- and QRS-integral dif-
ference maps and templates consisting of mean difference maps for each groups of
patients (LAD, RCA and LCx) were computed for both body-surface and epicardial
maps. The number of cases where an integral map for a specific artery most highly
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Table 6.2:
Correlation of individual ST-integral and QRS-integral difference maps with
mean maps for each diagnostic group (LAD, RCA and LCx ischemia)

Epicardial Surface Torso Surface
Occluded Correlated JST JQRS JST JQRS
Artery Artery Mean Norm Mean Norm Mean Norm Mean Norm
LAD LAD 71 71 60 61 69 71 61 61
RCA 0 0 10 12 0 0 9 10
LCx 5 5 6 3 7 5 6 5
RCA LAD 5 4 19 14 6 5 18 19
RCA 61 62 45 50 62 63 44 46
LCx 11 11 13 13 9 9 15 12
LCx LAD 1 1 6 5 1 1 5 5
RCA 9 9 10 12 8 9 11 13
LCx 39 39 33 32 40 39 33 31

JST, ST-integral difference maps; fQRS, QRS-integral difference maps; Mean, mean
integral difference maps; Norm, “normalized” mean integral difference maps; LAD, left
anterior descending coronary artery; RCA, right coronary artery; LCx, left circumflex
coronary artery

correlated with each of the mean integral difference maps is given, for both torso and
epicardial distributions, in Table 6.2.

There were no significant differences in the number of correlations between torso
and epicardial surface maps. For the ST integral, the correlation of a map recorded
during the individual inflation of an artery with that artery’s mean map was the
highest in over 93% of cases for LAD, and 80% of cases for both RCA and LCx. Lower
values of correlations for the RCA and LCx are a result of variations in coronary
circulation, which cause overlapping of perfusion beds of the LCx and RCA. ST-
integral matches were higher than those for QRS integral.

Inverse-recovered epicardial potentials for individual ST-integral difference maps
were plotted for each inflation studied. (Maps for the 49 LCx inflations are in Fig. 6.3,
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for the 77 RCA inflations in Fig. 6.5, and for the 76 LAD inflations in Fig. 6.7.) The
site of the maximum positive ST-integral elevation was determined (marked as “+”
sign on each epicardial map), and the electrogram for this site was plotted for the
“rest” state, the “peak-inflation” state, and the difference between them (for LCx in
Fig. 6.4, for RCA in Fig. 6.6, and for LAD in Fig. 6.8). If maps and electrograms
in Figs. 6.3-6.8 are read in sequence from top to bottom and left to right, multiple
inflations for the same patient come in sequence; the order indicates the sequence
in which the inflations were performed. The length of each inflation and the timing
between inflations varied.

Epicardial potential images are relatively free of spurious islands of potentials of
unexpected sign. Contour lines are quite smooth, even for low integral values. The
electrogram traces exhibited little noise, even for segments near the zero-line.

The positive deflection in the ST-integral difference map is related to the area
of ischemia. For the LCx occlusions (Fig. 6.3), in general, the positive region is
positioned somewhere on the left free wall, as depicted in the mean integral difference
map (Fig. 6.2). For several cases, the positive region extended further onto the
posterior ventricular surface and the distribution correlated best with the RCA mean
map (Fig. 6.2). This occurred for patient 3228 (Fig. 6.3, column 3, rows 2 and 3),
where the CC for LCx is smaller than that for RCA. Angiographic analysis determined
that the LCx dominated the perfusion of the posterior aspect of ventricles in this case
[97].

The maps for RCA occlusions (Fig. 6.5) have a tendency, overall, to exhibit char-
acteristics of the mean map (Fig. 6.2), with positive zones on the inferior ventricular
surface. As with LCx occlusions, there is variety in amplitudes and locations of max-
ima. The major spatial differences are between apical and basal locations, both of
which were found in mean maps.

The maps for LAD occlusions (Fig. 6.7) also follow the characteristics of the corre-
sponding mean map (Fig. 6.2), with a positive anterior ventricular region. Sometimes

one or other of the specific areas is missing or diminished. For some cases, this may
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Figure 6.3: Epicardial potential images of ST-integral difference maps (“peak-
inflation” minus “rest”) for 49 occlusions of the LCx coronary artery. The number at
upper left identifies the patient, to the upper right is indicated the occluded artery
and % correlation with that artery’s normalized mean difference map. If the latter
was not the mean map with the largest CC, the artery that correlated best is printed
below, along with the % correlation. Minimum and maximum values are in xVs and
contours are plotted on a logarithmic scale.
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Figure 6.4: Epicardial surface electrograms for “rest” and “peak-inflation” states
at the site of maximum ST-integral elevation for 49 LCx occlusions. The scale is 0—
500 ms on the abscissa and +5 mV on the ordinate; rest, inverse-recovered electrogram
calculated from preinflation torso-surface recording used for baseline; peak, inverse-
recovered electrogram calculated from torso-surface recording at peak inflation (just
prior to balloon deflation); diff, difference between “rest” and “peak” electrograms.
Next to each frame is the patient identification number, the artery of inflation, and
the triangle number giving the spatial localization of the electrogram. For the location
of each triangle, see Appendix A, Fig. A.3; it matches the position of the “+” sign
on the corresponding epicardial image in Fig. 6.3.
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Figure 6.5: Epicardial potential images of ST-integral difference maps (“peak-
inflation” minus “rest”) for 77 occlusions of the RCA. Format as in Fig. 6.3.
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Figure 6.6: Epicardial surface electrograms for “rest” and “peak-inflation” states at
site of maximum ST-integral elevation for 77 RCA occlusions. Format as in Fig. 6.4.
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Figure 6.7: Epicardial potential images of ST-integral difference maps (“peak” minus
“rest”) for 76 occlusions of the LAD. Format as in Fig. 6.3.
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be due to the location of the lesion, in others the presence of collateral circulation
may be responsible for the results. Epicardial images for patient 3229 (Fig. 6.7, col-
umn 1, row 13, and column 2, row 1) are missing the positive region normally seen
on the anterior left ventricle with a proximal lesion. Angiographic analysis revealed
that the second diagonal branch of the LAD was completely occluded and that this
area was now perfused by collaterals of the LCx [97]. An opposite effect was seen
for the proximal occlusion of the LAD in patient 3616 (Fig. 6.7, column 6, rows 1
and 2), where the left anterior positive region exists, but those around the anterior
interventricular groove and right ventricle are diminished. Collateral circulation was
identified in this patient, and it may be responsible for perfusion of this area.

Electrograms recovered at the site of peak ST-integral map differences (Figs. 6.4,
6.6 and 6.8) extract information about changes during the entire QRST complex.
Resting and peak-inflation electrograms were aligned by the globally defined (from
Frank orthogonal leads) QRS onset. Thus, when interpreting differences, care must
be taken that misalignment is not a factor. Despite this caveat, there are several
cases where the imaging process has created complexes for “rest” and “peak-inflation”
states which are virtually identical. One example is the LCx inflation for patient 3146
(Fig. 6.4, column 4, row 1). The corresponding integral map (Fig. 6.3, column 4, row
1) confirms this lack of change between states. For other inflations, major elevations
are visible. Electrograms of the “peak-inflation” state of the RCA occlusion for patient
3568 (Fig. 6.6, column 6, row 3) exhibit an elevated ST segment, and increased R
and T waves. There is no change in the initial small Q wave, upstroke of the R wave,
or the timing of the J point. However, a shortening of the T-wave offset is visible.
These changes are similar to results for epicardial coronary electrograms and ECG
measurements, and can be explained by the flow of injury current due to ischemic
cells’ changes in resting potential and action potential.

Major changes were also seen in electrograms for the two inflations of the LAD
for patient 3616 (Fig. 6.8, column 6, rows 1 and 2). The first inflation lasted for 69 s
and the second for 108 s. ST-integral map’s maximum amplitude rose from 311 £V to
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401 uV (Fig. 6.7, column 6, rows 1 and 2). Both peak electrograms have elevated ST
segments and T waves, and an elevated (but diminished in relative amplitude) S wave.
The downslope of the T wave is shaped differently, with offset earlier than for “rest”
state traces. There are no changes to the large R wave. Changes were exacerbated
with increased length of recording. Differences during the T-wave interval varied more
between inflations due to changes in the shape of the resting T wave. Differences in
ST-segment elevation were predominantly near the J point. Differences with duration
of inflation were also seen for two inflations of the LCx, lasting one and two minutes,
respectively, for patient 3297 (Fig. 6.4, column 1, rows 1 and 2). Two equal-length
inflations of the LCx for patient 3320 (Fig. 6.4, column 2, row 9, and column 3, row 1)
show consistent “rest” to “peak inflation” changes, with differences over the different
inflations.

Variations in coronary circulation, lesion location within the artery, presence of
collaterals, duration of inflation, and time since previous inflation may have physiolog-
ical effects resulting in the differences described here. Noise in body-surface potential
data and errors as a result of the inverse procedure may also play a role.

Perfusion-imaging study: Eighteen of the patients in the preceding group were en-

rolled in the perfusion-imaging study. Angiographic analysis was performed to de-
termine affected artery, location of the lesion within the artery, and the presence of
collateral circulation. Results of the angiographic analysis are presented in Table 6.3.
There were 5 of the 18 cases where collaterals were identified. No lesions were located
distally. Lesion within the RCA were all classified as mid, whereas LCx and LAD
lesions were a combination of mid and proximal.

All inflations were for a one-minute duration. Perfusion images of myocardial is-
chemia during PTCA were obtained using the radiopharmaceutical perfusion agent
9mTc sestamibi, both near the time of the inflation and 24 hours later. QRS- and
ST-integral difference maps (“peak-inflation” minus “rest”) for this inflation, as well
as maps displaying differences in radionuclide perfusion (“near-peak-inflation” minus
“rest”) are plotted in Fig. 6.9. Perfusion images are in units of percent count dif-
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Table 6.3:
Angiographic characteristics of perfusion-imaging study group

Patient PTCA Lesion Collaterals

# ID Vessel Location

1 3534 LAD prox no
2 3428 LAD mid no
3 3677 LAD mid no
4 3426 LAD prox no
5 3497 LAD prox no
6 3680 LAD prox yes
7 3616 LAD prox yes
1 3507 LCx mid no
2 3518 LCx prox no
1 3568 RCA mid no
2 3524 RCA mid no
3 3535 RCA mid yes
4 3567 RCA mid no
5 3503 RCA mid no
6 3662 RCA mid no
7 3672 RCA mid no
8 3626 RCA mid yes
9 3429 RCA mid yes

LAD, left anterior descending coronary artery; LCx, left circumflex coronary artery;
RCA, right coronary artery; prox, proximal lesion.
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Figure 6.9: Comparison of epicardial “electrophysiological images” and radionuclide
perfusion images for patients undergoing PTCA of one of the major coronary arteries.
There were 7 cases of LAD occlusion (columns 1-3, rows 1-7), 2 cases of LCx occlusion
(columns 1-3, rows 8-9), and 9 cases of RCA occlusion (columns 4-6). Columns, left
to right, are inverse-recovered QRS- and ST-integral differences (xVs), and MIBI
perfusion images (counts).
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ference. Although used here in comparsion with ventricular surface potential maps,
the left side of the perfusion maps represents the interventricular septum and not
the right ventricle (see Methods). The sestamibi perfusion maps for LAD have large
areas of positive values on the anterior left ventricle and the septum. These often
extend past the apex. This area corresponds well with that for the electrophysiolog-
ical images. Inflations of the LCx resulted in images with positive areas on the left
free wall and extending onto the left posterior surface, approximating those found for
ST-integral differences. RCA maps have positive regions over variable extent of the
posterior surface, again resembling results for epicardial electrophysiological images.

The weighted center of mass was calculated for each map to facilitate the com-
parison of epicardial potential images and sestamibi perfusion images. Comparisons
of the location of ischemia identified by QRS- and ST-integral difference images and
myocardial perfusion difference images are shown in Fig. 6.10. All patients have good
agreement between these diverse location methods. Patients LAD 2 and LAD 3, LCx
1, and RCA 1, all with mid lesions of the vessel, had exceptional similarity of elec-
trophysiological and radionuclide estimates. The QRS-integral estimate for patient
RCA 6 was quite removed, but values of differences were very small, and therefore
prone to error.

With the exception of patients RCA 8 and RCA 9, where collaterals were present,
all positive areas in the ST- and QRS-integral difference maps—indicating the pres-
ence of ischemia—were located in regions perfused by the appropriate artery. For
LAD inflations, these areas were located on the anterior ventricular surface near the
septum, with the location for mid lesions nearer the apex. For both LCx and RCA
inflations, positive areas were located on the left free wall, with the mid lesion shifting
these areas further towards the apex. Positive areas for inflations of the RCA were
generally localized around the posterior interventricular septum; for patient RCA 2,
the location of positive area was on the left posterior ventricular surface.

Temporal change study: Three patients were selected for examination of temporal
changes during the inflation/deflation cycle — one for each occluded artery. Selection
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Figure 6.10: Localization of ischemic region by “electrophysiological” imaging and
radionuclide perfusion imaging. Locations of ischemic regions identified by inverse-
recovered epicardial QRS- and ST-integral difference maps, and those identified by
means of 9™ Tc sestamibi perfusion imaging are compared for occlusions of the LAD,
LCx and RCA coronary arteries. Polar displays are the same as for potential maps,
with the apex in the center. M, locus of the center of mass for the area above the
threshold count in the perfusion image; S, locus of the center of mass for the positive
area in the ST-integral difference map; Q, locus of the center of mass for the positive
area in the QRS-integral difference map; loci S and Q are connected by a solid line;
loci S and M are connected by a broken line. Identifiers within each display refer to
codes from Fig. 6.9.
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Figure 6.11: Torso-surface and epicardial ST-integral difference maps at peak inflation
(“peak-inflation” minus “rest”) for patients who underwent balloon inflation of the
LCx artery (left column), the RCA (center) and the LAD artery (right). Values are
in pVs, contours are plotted on a logarithmic scale.

was based on good quality ECG recordings throughout the cycle and evidence of is-
chemic changes as seen in ECGs. Signal-averaging windows were set at a 5-s length,
starting 15 s before balloon inflation and ending 15 s after inflation terminated. In-
flations were 90-s in length for RCA and LCx occlusions, and 120-s length for the
LAD occlusion. With this division, there were three resting maps; the first one was
chosen as the baseline for comparison of electrograms. Lesions were identified as mid
for LCx and RCA, and proximal for LAD. Angiographic analysis for all three patients
showed no evidence of collaterals.

Fig. 6.11 shows for each of the three patients ST-integral difference maps (“peak-
inflation” minus “rest”) on both torso and epicardial surfaces.

A comparison of the torso map in the left column of Fig. 6.11 with the mean
ST-integral difference map in the left column of Fig. 6.2 shows that the LCx torso
map of patient 3507 has a larger negative area on the superior back. The zero-line
passes between precordial leads V3 and V4 instead of between V4 and V5. There is
a maximum at the inferior edge, inferior to V4. However, a local maximum is visible

near V6 that more closely matches the location of the maximum on the mean map.
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The fact that there is a mid lesion in this case may explain discrepancies.

A comparison of RCA torso map of patient 3568 in the middle column of Fig. 6.11
with the mean ST-integral difference map in the left column of Fig. 6.2 shows that
locations of maxima match, but there are some changes in the zero line as it passes
through the precordial region, between V3 and V4 instead of V5 and V6. The maxi-
mum for the LAD map is nearer to V2 then to V3, as in the mean map, and is located
more superiorly.

For LCx epicardial map of patient 3507 (Fig. 6.11, left column) the positive region
does not extend to the base, in contrast to the mean map in Fig. 6.2. The maximum
of the positive region is located on the obtuse margin, but the zone extends more
anteriorly. In the RCA map of patient 3568 (Fig. 6.11, middle), the positive region is
located on the posterior ventricle with no extension onto the acute margin, as found
in the mean map in Fig. 6.2; both maxima are visible, with the near-apical one being
the larger. The LAD epicardial map of patient 3426 (Fig. 6.11, right) has the same
characteristics as the LAD mean map in Fig. 6.2.

A “bull’s-eye” view of electrograms at “rest” and “peak-inflation” states is present
for the occlusion of the LCx in Fig. 6.12, for RCA in Fig. 6.13, and for LAD in
Fig. 6.14. The asterisk (*) marks the location of the maximum ST-integral difference
(“peak-inflation” minus “rest” state). These figures allow one to see comprehensively
the changes in electrograms within the ischemic region, as well as changes (or lack
of changes) in nearby or distal areas. For all lesions, the amount of elevation in the
electrogram increases, moving from the border to more central region of ischemia.

For a more detailed look at changes in cardiac electric signals due to ischemia, the
triangle at the site of global maximum of ST-integral changes was selected and both
ECGs on the torso surface and epicardial electrograms were plotted, for representative
patients of the LCx, RCA, and LAD groups (Figs. 6.15-6.17). Tracings were plotted
for a sequence of 5-s windows, starting from the pre-inflation state and continuing
throughout inflation and deflation states. To facilitate comparison of evolving sig-
nals, a fixed tracing representing the pre-inflation baseline state was copied in every
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3507 LCX
peak/rest

Figure 6.12: Representative inverse-recovered electrograms on the epicardial surface
at “rest” and “peak-inflation” states during a 90-s occlusion of the LCx coronary
artery. Each electrogram is associated with one of the 360 triangles of the tesselated
epicardial surface; the asterisk (*) marks the location of the maximum difference in
the ST integral between “peak-inflation” and “rest” states; electrograms at “peak-
inflation” state are drawn as solid lines and those at “rest” are dotted.
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3568 RCA
peak/rest

Figure 6.13: Representative inverse-recovered electrograms on the epicardial surface
at “rest” and “peak-inflation” states during a 90-s occlusion of the RCA coronary
artery. Layout is the same as that in Fig. 6.12.



186

Figure 6.14: Representative inverse-recovered electrograms on the epicardial surface
at “rest” and “peak-inflation” states during a 120-s occlusion of the LAD coronary
artery. Layout is the same as that in Fig. 6.12.
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window, and a difference between evolving and baseline tracings was plotted as well.
The similarity of torso-surface ECGs and epicardial electrograms was noted. Similar
changes were evident in both. All changes decreased rapidly with deflation and were
near baseline levels by 10-15 s after deflation. An exception was changes noted in
the timing of the T-wave offset, which remained fairly constant. It was observed that
the peak of the ST-T shifted to the left with duration of inflation, not necessarily
accompanied by an increase in height.

Fig. 6.15 shows ECGs and electrograms characteristic of changes due to LCx
artery occlusion. (The site of local maximum by precordial lead V6—rather than
the actual site of maximum for this patient—was selected for the display, because
it was more closely related to the location of the global maximum on the epicardial
image.) The baseline trace had a small ST-segment depression. Changes for ECGs
and electrograms were similar. After 15-20 s of occlusion, ST-T elevation became
evident. The T wave achieved maximal height by 25-30 s, whereas the ST segment,
especially near the J point, continued to rise. There was no change in the upstroke
of the R wave; however, there were small variations in peak height that appeared
to increase after 55-60 s. These changes were easier to see on the electrogram. No
change in the offset of the T wave was visible.

Looking at Fig. 6.16, most changes for the RCA occlusion were also visible in both
ECG and electrogram traces. Changes in elevation were visible 25-30 s after inflation
began. There was a major increase in T-wave height and a sloped change in the ST
segment, increasing from J point to T wave. At 30-35 s, the J point was elevated
as well. In the ECG, the T wave reached maximum height at 55-60 s. After this
time, there were only small changes in T-wave height for the electrogram, with later
changes near the J point. There were no changes in R-wave height for the ECG, but
on the electrograms they increased from 55-60 s on. Both ECGs and electrograms
exhibited a shortened T-wave offset by 30-35 s that increased until 55-60 s.

In Fig. 6.17, ST-T elevation was visible by 25-30 s of inflation in both ECG and
electrogram traces for the LAD occlusion. The T wave reached its maximum height
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Figure 6.15: Torso-surface electrocardiograms and epicardial electrograms-at sites
with the largest ST-integral difference between “peak-inflation” and “rest” states
during a 90-s occlusion of LCx coronary artery. Tracings are arranged columnwise for
a sequence of 5-s windows (for each of which recordings were signal averaged) with
code indicating state (r, rest; i, inflation; d, deflation) and elapsed time in seconds
between the commencement of that state and the window’s onset; r0, initial tracing
at “rest” state; comp, tracing for a given window; diff, difference between “comp”
and “r0” tracings; abscissa, time (0~500 ms); ordinate, voltage (&1 mV for ECGs
and +5 mV for electrograms).
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Figure 6.16: Torso-surface electrocardiograms and epicardial electrograms at sites
with the largest ST-integral difference between “peak-inflation” and “rest” states
during a 90-s occlusion of RCA coronary artery. Tracings are arranged columnwise
for a sequence of 5-s windows with code indicating state and elapsed time in seconds
between the commencement of that state and the window’s onset; same layout as in
Fig. 6.15.
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Figure 6.17: Torso-surface electrocardiograms and epicardial electrograms at sites
with the largest ST-integral difference between “peak-inflation” and “rest” states
during a 120-s occlusion of LAD coronary artery. Tracings are arranged columnwise
for a sequence of 5-s windows with code indicating state and elapsed time in seconds

between the commencement of that state and the window’s onset; same layout as in
Fig. 6.15.
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for the ECG by 55-60 s. In the electrogram, it rose continuously until deflation at
120 s. S waves were elevated, but also diminished in relative size at 60-65 s and
continued changing until the end of the inflation at 115-120 s. Notching occurred in
the electrogram, but not in the ECG signal. The total change in the S wave appeared
to match that of the T wave, albeit with different timing. A shortened T-wave offset
was apparent in the electrogram by 60-65 s, but not at all in the ECG.

6.4 Discussion

Zero-order Tikhonov regularization was selected for use in clinical application of the
noninvasive imaging of epicardial potentials, even though the second-order Tikhonov
regularization tended to generate lower relative errors under simulated test conditions.
In the presence of interpolation error for 117-lead measured data, the difference in
error measures between zero- and second-order regularization was not as significant,
since the optimal {-parameters were larger and thus, there was an inherent increase
in smoothing. As was shown in Table 5.11, for the test case with measured data, it
was not possible to compare ¢ parameters selected by the Slope Estimation Method
with those determined by the Combined Residual and Smoothing Operator (CRESQO),
Zero-Crossing (ZC), and common L-curve methods when using second-order regular-
ization, as these methods failed fairly consistently. On this basis, zero-order Tikhonov
regularization was selected for clinical applications. Composite Regional Constraint
(CRC) methods were applied to decrease the possibility of there being extraneous ar-
eas of incorrect sign in the epicardial image, and to smooth distributions spatially and
temporally. The resulting inverse-recovered epicardial potential maps were relatively
free of islands of unexpected sign, and along with electrograms, showed sufficient
smoothness.

Alterations in ST segments and T waves are the most common and obvious changes
in electrocardiographic signals during coronary angioplasty [21, 25, 37, 86, 87, 88, 138,
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141, 146, 160]. Therefore, changes in these parameters were evaluated for the inverse-
recovered epicardial images.

Epicardial ST-integral difference maps of individual patients matched distribu-
tions of corresponding mean maps to a large extent. Correlation results (Table 6.2)
indicate that the epicardial images do not add or detract from classification ability, as
body-surface maps had the same success rate. When comparing, it must be kept in
mind that maps were included in the computation of mean maps solely on the basis of
their artery of occlusion (LAD, RCA or LCx), and that differences in lesion location
and collateral circulation, which are also determiners of the region of ischemia, were
not taken into account.

Several investigators [97, 127, 141, 147] have presented characteristic features of
body-surface potential maps during PTCA-induced ischemia. Comparisons facilitate
identification of the occluded artery. In this study, characteristic features represen-
tative of the artery of occlusion in inverse-recovered epicardial maps established the
spatial relationship of ischemic effects more directly. Additionally, epicardial images
resolved multiple extrema which appear to coincide with different branches of the
main coronary artery. This was most striking for the left anterior descending branch
of the left coronary artery. Simulations using a torso tank model [96, 119] demon-
strated that multiple extrema on the epicardial surface may be reduced to single
extrema on the torso surface. Oster et al. [119] found that they could resolve the
multiple sites with noninvasive electrocardiographic imaging. These results support
the potential ability of the epicardial images to localize more precisely ischemic zones.

Holland and Brooks [68] examined epicardial electrograms every 10 seconds during
coronary occlusion in a pig heart. They found increasing levels of ST-segment shift
with increased duration of the occlusion. Initially, changes were rapid, but slowed with
time. Dupuoy et al. [37] recorded intracoronary electrograms in patients undergoing
PTCA for a proximal LAD stenosis. They found increasing ST-segment elevation from
30-90 s of inflation, with a decreasing rate of change. Results of the present study
are indicative of a similar relationship between the degree of ST-segment elevation, as
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measured by epicardial ST-integral difference maps and “rest” and “peak-inflation”
electrograms, and the duration of artery occlusions.

Epicardial electrograms exhibited elevated ST segments and T-wave increases.
Changes generally developed first near the T wave and later near the J point. It was
observed that the peak of the altered T wave shifted left with the time of inflation,
even if there was no further visible change in peak height. A shortening of the
time to T-wave offset for “peak-inflation” versus “rest” state was observed for some
cases. This change was most visible at longer occlusion times, and appeared to be
related to the shift of the peak. Surawicz et al. [154] examined 12-lead ECGs for
29 patients undergoing PTCA of LAD, RCA and LCx. They found variable changes
in corrected QT intervals. Lengthening predominated for LAD and shortening for
RCA, but either of these or no change were observed for all occluded arteries. A
study during PTCA by Cohen et al. [25] found increased interval length for LAD
and no significant change for RCA. The decrease in interval length observed in the
present study can be explained by the alterations to the resting potential and the
action potential; slowed conduction in the ischemic tissue, delayed depolarization
and subsequent repolarization, have been suggested as a possible explanation for the
lengthening observed in the other studies [77].

PTCA-induced changes in the QRS complex have been the subject of recent in-
vestigation [2, 86, 90, 127, 139, 147, 160, 161], where a major interest has been to
differentiate between changes due to primary ischemia, and those where conduction
disturbances are implicated. In the present study, the initial deflection of the QRS
showed excellent agreement between baseline and inflation electrograms throughout
the inflation/deflation cycle. Changes in R- and S-wave amplitude were observed.
These were always in the direction of ST-segment change, that is, R waves increased
and S waves were diminished. The S-wave changes for the LAD patient (Fig. 6.8)
were most striking. Alterations in R-wave height were more variable. If observed at
all, changes occurred only in late QRS and with longer occlusions. Surawicz et al. re-
ported similar changes to R waves and S waves [154]. They had recorded only at the
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end of a 120 s inflation, so could not corroborate the inflation time results. Fiducial
points were not quantified for each electrogram in this study, limiting the interpreta-
tion of changes in QRS length. From visual observation, there was no evidence that
QRS duration was altered. Both shortened [127] and lengthened QRS [154, 160, 161]
have been reported. It has also been suggested that these changes are not a prereq-
uisite to conduction disturbance [2, 139, 147, 160, 161].

Previous studies performed during PTCA have identified that the radiopharma-
ceutical perfusion agent %™Tc sestamibi can localize and quantify regions of hypop-
erfusion produced by balloon occlusions as short as 15 s, without requiring immediate
imaging [14, 16, 17, 46, 64, 124, 148]. In this study, the comparison of changes in
myocardial perfusion and electrical activity with transient acute ischemia—as docu-
mented by radionuclide and epicardial potential imaging during coronary occlusion—
reveals that the two methods can localize the ischemia to expected regions. In ad-
dition, there was great similarity in the zones identified by each method. The latter
method has the advantage of being non-invasive, and posing no risk to the patient,
whereas radionuclide imaging is more expensive and involves exposure to radiation.
Advances in perfusion imaging, including 3-D visualization [143], will enable compar-
ison of methods for quantifying the extent and severity of ischemia, in addition to
the localization presented in this study. Improved methods of recovering epicardial
potential images and perfusion information will be invaluable in computer modelling
of myocardial ischemia.

The use of a single homogeneous torso model may be a limitation on the accuracy
of the inverse-recovered epicardial potentials in individual patients. Theoretical and
experimental studies have reported that the most significant effect of not including in-
homogeneities is inaccuracy in the amplitude of potentials, and not their distribution
[59, 104, 105, 137] or activation pattern [53]. Shahidi et al. [140] found that including
inhomogeneities did not improve the results when epicardial potentials recovered from
measured BSPM data and potentials recorded via sock-electrodes were compared. In
a study with an eccentric spheres model, Messinger-Rapport and Rudy [104] reported
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that shifting the heart an amount equivalent to movement during respiration or pos-
ture change, resulted in loss of spatial resolution, especially on the posterior region of
the epicardium. Arthur et al. [4] have recently suggested a faster and less expensive
alternative to magnetic resonance imaging for determining personalized torso and
heart geometries.

The electrocardiographic body-surface mapping data reflect ischemic changes in
electrical activity within the heart, but the spatial relationships are lost due to ec-
centricity of cardiac sources and irregular shape of the torso. Noninvasive imaging
of epicardial potentials provides an undistorted view of potential distributions and
electrograms during the controlled ischemia induced by the balloon-inflation PTCA
procedure. There is no evidence that any information visible in BSPM data is lost
during this inversion process. What has most obviously been gained is the spatial
relationship over the epicardial surface. Imaging captures multiple extrema which
conceivably represent central zones of ischemia from different branchings of the oc-
cluded arteries. By re-establishing spatial relationships, we increase the potential
to more accurately describe the ischemic region. This, in turn, enhances the possi-
bility of identifying the extent and severity of ischemia, to complement localization.
Results presented here show promise that this method of noninvasively imaging epi-
cardial potential distributions is sufficiently robust and accurate to warrant use in

clinical applications.



Chapter 7

Conclusions

The aims of this study—to refine the solution of the inverse problem for calculat-
ing noninvasive epicardial potential images, and to assess the capabilities of this
inverse solution with clinical data from patients with acute regional ischemia induced
by balloon-inflation angioplasty—have been achieved. The inverse problem of elec-
trocardiography relates body-surface potential distributions with underlying cardiac
activity. Three aspects of the inverse solution have been targeted in this study as ar-
eas where refinements of epicardial potential images can be obtained: (1) improving
the accuracy of the transfer-coefficient matrix relating epicardial and body-surface
potentials, (2) imposing regional constraints on the solution, and (3) determining an
optimal regularizing parameter.

Specifically,

e For the triangle-to-triangle method of computing the transfer-coefficient matrix,
double integrals involving observation and observed triangles, approximated
from the centroid of the observation triangle, were replaced by a weighted sum
of single integrals evaluated from seven Radon points within the observation
triangle. With this refined method, the forward solution achieved remarkable
accuracy, improving on the triangle-to-triangle method it replaced, and outper-

forming the equivalent node-to-node transformation.

196
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e Refinements in transfer-matrix coefficient calculations translated into improved
solutions to the inverse problem, as measured by relative error. The revised
triangle-to-triangle method outperformed the node-to-node method in a large

majority of test cases.

¢ The Slope Estimation Method of determining the optimal a posteriori regu-
larizing parameter was robust and consistent in its selection. It never failed
to find an acceptable value, and compared very well with the optimal a priors

parameter over an extensive range of errors.

e The composite regional constraint applied a posteriori physiological constraints
on the first estimate of the inverse solution. This technique includes three major
components, each contributing in differing amounts to the overall quantitative
and qualitative improvement in the inverse-recovered epicardial potential im-

ages.

— Spatially smoothing low-level potentials, while retaining high amplitude
and large gradient distributions, mitigated the effects of a global regu-
larizing parameter. This component was the major contributor to both
quantitative and qualitative improvement. Integral difference maps for

epicardial distributions were relatively smooth.

— Removal of spurious extrema contributed qualitatively to the refinement
of the inverse solution. Epicardial-potential images computed from mea-
sured data were relatively free of any isolated areas where the sign of the

potentials was unexpected.

— Temporal smoothing has the potential for improving the solution when
body-surface data are available for a sequence of time instants. Test ECG
recordings were already smooth, especially after previous application of
the weighted spatial smoothing constraint, and large differences were not
visible. Epicardial electrograms computed from measured data displayed
a high degree of smoothness.



198

Noninvasive imaging of epicardial potentials provides a unique look at integral
difference maps and electrograms during the controlled ischemia induced by artery
occlusion during balloon-inflation coronary angioplasty. An assessment was made
of the capability of the inverse solution, as applied here, to localize the ischemia
to a region within the perfusion zone of the artery which was occluded during the
angioplasty procedure. Epicardial electrograms were examined for features indicative

of underlying ischemia. The following results were noted:

e The inverse solution was capable of localizing the ischemic zone to a region
perfused by the occluded artery. There was very good agreement in localization
with radionuclide myocardial perfusion images. For this study, angiographic
data were not analyzed for the full set of 94 patients included in the PTCA
group of the BSPM database. Reconstruction of the coronary circulation from
angiographic data will help to identify reasons for deviations from expected

patterns.

e There was no evidence that any information visible in body-surface potential
maps was lost during the transformation to the epicardial surface. Features of
epicardial electrograms in the central ischemic zone compared well with electro-
cardiograms from regions on the body surface most associated with the occluded
artery. The most obvious improvement was the establishment of the spatial re-
lationship over the epicardial surface, allowing a more accurate description of
the ischemic region than could be achieved with body-surface data alone.

e Epicardial imaging captured multiple extrema which conceivably represent cen-
tral zones of ischemia from different branches of the occluded arteries. This
enhances the possibility of identifying the extent and severity of ischemia, to

complement localization.

Overall, the results presented here hold great promise that the technique of cal-
culating epicardial potentials from multiple electrocardiograms recorded on the body
surface will be sufficiently robust and accurate to warrant use in clinical applications.



Appendix A

Tesselated Torso and Epicardial

Surfaces

A solution to the forward and inverse problems of electrocardiography, as defined
in this study, requires a three-dimensional geometrical description of the realistically
shaped torso-heart system. We use a torso (body without extremities and head) as
the approximation of body-surface boundary; this truncation is justified in view of
the fact that heart-produced potentials diminish rapidly in the extremities.

Our solutions to the forward and inverse problems are based on the boundary
element method (BEM), requiring that the surfaces bounding regions of the volume
conductor are defined by a set of nodes which are linked to form triangular area
elements. If a homogeneous torso model is assumed for the solution in terms of
epicardial potentials, only the outer surface of the body, Sg, and the epicardial surface
of the heart, Sy, need be defined.

Torso surface

A realistic human torso model was developed in this laboratory from measurements
of a single subject. The original version—introduced by Hordéek [70] and used since
by others [58, 115, 130}—consists of five surfaces: the outer torso surface, two lungs
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and two intracavitary blood masses, which are defined by 952 nodes joined to form
1884 triangles. To optimize the forward/inverse solutions, we reduced the number
of nodes defining the outer surface. First, each of the 117 electrode locations of the
clinical body-surface potential mapping system [110] was matched with a node point,
and then additional nodes were placed mid-way between rows of the electrode grid,
resulting in a higher spatial density of nodes in the precordial area than on the right
anterior chest and back. Node points in the shoulder and neck regions were chosen
so as to maintain an adequate and consistent spatial resolution.

The grid size was determined by the 5-cm electrode spacing of the clinical body-
surface potential mapping protocol, which uses fixed electrode strips in the vertical
direction. The spacing around the circumference of the patient is not fixed, but is still
quite regular in that strips are placed to best cover the surface between anatomical
landmarks. That is, strips are placed, for example, on the spine, left and right mid-
axillary lines, while the area between is covered by regularly spaced strips.

The node points were then joined to form a closed surface of triangular surface ele-
ments without overlaps or gaps (tesselation). MacLeod [97] discusses several possible
triangularization strategies. We chose to perform a manual triangularization in order
to generate triangles of consistent area, but also to maintain reasonably accurate rep-
resentation of the surface with a minimal number of nodes. The upper and lower ends
of the torso at the neck and waist were capped by sets of horizontal triangles. The
resulting torso surface used in this study is represented by 352 nodes, which form 700
triangular area elements. An axonometric projection of this torso surface is shown in
Fig. A.1

Epicardial Surface

To complete the geometrical information needed for solving the forward/inverse prob-
lem as defined in this study, a description of the epicardial surface is also required.
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Figure A.1: Anterior and posterior views of the tesselated torso and epicardial sur-
faces. The torso surface, Sg, consists of 700 triangular area elements with 352 nodes,
the epicardial surface, Sg, of 400 triangular area elements and 202 nodes. Filled
circles identify the nodes which correspond to the locations of the 117 electrodes used
in this laboratory for recording electrocardiographic body-surface potentials.

Sections of a post mortem human heart have been previously digitized in this labora-
tory [95, 134]. The location and orientation of this heart within the torso model was
determined from radiographic views of the subject from whom the torso geometry
was constructed. The nodes of the epicardial surface were chosen to lie on the outer
boundary of 10 slices through the heart, made perpendicular to an axis running from
the left-ventricular apex through the root of the aorta; this corresponds to the sections
of Durrer et al. [38]. The epicardial surface is represented by 202 nodes which form
400 triangles. Fig. A.1 shows anterior and posterior views of the three-dimensional
epicardial surface enclosed by the torso’s outer boundary.

Two-dimensional projections

The three-dimensional torso surface and epicardial surface have been projected onto
a plane for viewing. Since the three-dimensional form of the torso surface was derived
from a two-dimensional grid, there was no need to derive another means of project-
ing the torso onto a flat surface. The spacing and regular nature of the grid were
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Figure A.2: Two-dimensional representation of the tesselated torso surface. The
torso surface consists of 700 triangular area elements with 352 nodes; anterior chest
surface is on the left and posterior chest surface on the right; left and right margins
correspond to right mid-axillary line; vertical line in the centre corresponds to the
left mid-axillary line; top, neck; bottom, waist.

maintained as much as possible. A two-dimensional equivalent of the torso’s outer
surface, used throughout this dissertation to display body-surface potential maps is
in Fig. A.2.

Clinical electrocardiographic recordings yield a maximum of 117 leads (faulty leads
reduce this number), from which a complete set of torso potentials at all node points
have to be generated. This is both a necessary prerequisite for inverse calculations and
a functional requirement for plotting reasonably smooth iso-contour maps. Whereas
values at 117 of the 352 node points can be determined directly from the measured
data, potentials at the remaining nodes have to be estimated; to perform the latter
task, we used a three-dimensional interpolation scheme proposed by QOostendorp et
al. [116].
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To facilitate display of epicardial potential distributions, it was necessary to de-
velop a suitable projection of the three-dimensional surface of the heart. MacLeod
[97] discussed various alternatives for such display. The method we have chosen is
a polar projection that has been used by several groups to display isochrone maps
in clinical epicardial mapping [13, 35, 34]. The heart is viewed from the apex along
the heart axis, with 10 sections—from apex to base—shown in this projection as con-
centric circles. Figure A.3 shows this two-dimensional polar display of the epicardial
surface as a tesselation of numbered triangles. At the centre of this polar display lies
the apex, surrounded by concentric rings which correspond to the outlines of the slices
through the heart—the outermost one corresponding to the atrio-ventricular (A-V)
ring. A two-dimensional equivalent of the triangularized epicardial surface, used to
display epicardial potential maps is in Fig. A.3.

The main advantage of this form of display is that it contains all of the ventricu-
lar surface in a single diagram. The orientation of this display was chosen in such a
way that the course of the left anterior descending (LAD) artery would be directed
approximately vertically from the top towards the centre; the posterior descending
artery runs from the bottom upwards. This perspective allows relatively easy orien-
tation when viewing the epicardial maps. To assist in the interpretation of epicardial
maps, Fig. A.4 shows the major coronary arteries projected onto the epicardial polar
display. Based on standard views from the textbook of anatomy [102], the coronary
anatomy was traced over plots of the three-dimensional triangularized epicardial sur-
face. The triangles in these plots provided a grid with which the location of each of
the arteries could then be transposed to a polar plot. The extent and location of the
coronary tree was adjusted to resemble that of a normal right-dominant human.
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Figure A.3: Polar projection of tesselated epicardial surface. This projection is used
to display all epicardial potential distributions and epicardial electrograms in this
study. The epicardial surface comprises 360 triangular area elements, projected here
so that left-ventricular apex is in the centre, anterior wall on top, posterior wall on
the bottom, right-ventricular surface on the left, and left-ventricular surface on the
right. Numbers (from 1 to 360) identify individual triangles; the total number of
epicardial triangles is 400 (since 40 triangles are needed to close the surface in basal
plane).
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Figure A.4: The “bull’s-eye” polar projection used for displaying noninvasive epicar-
dial potential images on the ventricular surface. This is an apical projection with
the apex in the center and the atrioventricular (AV) groove along the rim. Thick
lines define the locations of the left anterior descending (LAD) coronary artery, right
coronary artery (RCA) and left circumflex (LCx) coronary artery in this projection.



Appendix B

Propagation Model of Human

Ventricular Myocardium

A computer model of propagated excitation in the three-dimensional anisotropic hu-
man ventricular myocardium was developed previously in this laboratory [113, 114].
For the purposes of testing the methods of inverse solution presented in this disserta-
tion, we used this heart model to generate oblique double layer sources that represent
realistically the actual cardiac bioelectric sources. Two activation sequences were

used for testing: one for septal and the other for basal ectopic site of stimulation.

Calculation of extracardiac potentials

First, as in the model of Leon and Horicek{91], the infinite-medium potential ¢ in
the extracardiac region was determined from the discretized equation (B.1)

o Vv -7 o: Gad3 VU -7
o= 411'10 g v - 411'20’ -/H = e (B-1)
where @; is the local direction of the fiber axis, o is the extracellular conductivity
(0 = 2.0 mS/cm), oy is the transverse conductivity (o; = 0.5 mS/cm) and o is
the difference between the axial and transverse conductivities of the anisotropic in~

tracellular domain (02 = 1.5 mS/cm). The potential in (B.1) can be separated into
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two parts: the first term represents the contribution of the “isotropic component”
predicted by the uniform-double-layer theory; the second term represents the con-
tribution of the “axial component,” which accounts for the anisotropic properties of
cardiac tissue.

To calculate bounded-medium extracardiac fields, we had to take the volume-
conductor effects into account by applying the boundary-element method [70]. The
ventricular model was appropriately placed in a torso model; the electric potential
was calculated for all node and triangle sites on the epicardial and body surface. The
isotropic and axial components of the extracardiac fields were evaluated separately

and then combined for the given o,/0;.

Test distributions

Our computer model of the anisotropic human ventricular myocardium [113] was used
to generate two activation sequences: one for left-ventricular septal site of stimulation
and the other for basal ectopic site (left postero-paraseptal pre-excitation site in Hren
et al. [73]). For each activation sequence, body-surface and epicardial potential
distributions were calculated at 2-ms intervals for 36 successive instants of time,
representing 72 ms of propagated activation. The test data sets of epicardial and
torso-surface potential distributions were simulated by the heart model as a sequence
of oblique dipole layers as described above. Dipole sources were calculated from the
model’s output in terms of intracellular potential for every cell of the model. Fig. B.1
shows epicardial potentials for septal activation sequence, and Fig. B.2 shows those

for basal activation sequence.
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Figure B.1: Epicardial potential maps for septal activation sequence. Columns,
from left to right, show 36 consecutive epicardial potential maps generated by the
oblique dipole layers representing activation wavefronts, at 2-ms intervals (S-2ms,
..-,5-72ms), for the activation sequence initiated at single septal site.
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Figure B.2: Epicardial potential maps for basal activation sequence. Columns, from
left to right, show 36 consecutive epicardial potential maps generated by the oblique
dipole layers representing activation wavefronts, at 2-ms intervals (B-2ms,...,B-72ms),
for the activation sequence initiated at single basal site.



Appendix C

Test Distributions

The test data sets of epicardial and torso-surface potential distributions for various
single-dipole or multiple-dipole sources were calculated.

The first pair of test distributions (body-surface and epicardial) was generated by
a central dipole source.

The second pair of test distribution was produced by three simultaneouly energized
eccentric dipole sources with one located in the left-ventricular midlateral wall, one
in the right-ventricular midlateral wall, and one near the left-ventricular apex. These
three locations were determined by picking a triangle in the appropriate area of the
epicardial surface and moving the dipole source inwards 10 mm along the inward-
oriented normal to the triangle, and making the dipole direction the same as the
outward normal of this triangle.

The third pair of test distributions was calculated for five simultaneously energized
eccentric dipole sources; the first three dipoles were the same as in the three-dipole
source, and two more dipoles (created in the same manner) were added, one in the
mid-anterior wall along the septum, and one in the mid-posterior wall along the
septum.

Three more pairs of test distributions were calculated for three single eccentric
dipoles at 10-mm depth into ventricular wall. Fig. C.1 shows all six test distributions
on epicardial surface.
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Figure C.1: Epicardial potential maps for single- and multiple-dipole sources. These
maps were generated, by solving the forward problem, to serve as diverse test dis-
tributions of known potentials. First row shows epicardial potential maps generated
by single central dipole (1-DIP), three eccentric dipoles (3-DIP), and five eccentric
dipoles (5-DIP); second row shows maps generated by three single eccentric dipoles
at 10-mm depth into ventricular wall near A89 (T-89), A158 (T-158), and A265
(T-265).
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