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Abstract

This dissertation investigates interferometric optical Fourier processors for the
purpose of computation. Two optical Fourier processors with coherent detection
are proposed and demonstrated. Both processors contain a conventional optical
Fourier processor and employ a common-path type of interferometer to indirectly
measure the complex-valued optical distribution produced in the back focal-plane
of the Fourier transform lens. The first employs a point-diffraction interfferometer
while the second uses a novel interferometric technique. Both interferometric
optical Fourier processors are demonstrated in a moving-object trajectory-

estimation application.

A novel interferometric technique, referred to as joint-transform interference
(JTH), is proposed to recover the complex-valued Fourier transform of an image
at selected points on the spatial frequency plane. The Fourier spectrum of a
source image is interfered with the Fourier spectrum of a reference image in a
common-path interferometer. Both the real and imaginary parts of the complex-
valued spectrum are determined, and in addition, the source and reference
images are easily matched in order to guarantee good fringe visibility. The power
of the source image must be known in advance to supply the optimum reference
image. Six interferograms, which were measured sequentially in this work but
may also be measured in parallel, are post-processed to extract the real and
imaginary parts of the Fourier spectrum of the image at a selected number of
points on the spatial frequency plane. When the number of desired points is
comparable to the number of pixels in the image, a digital two-dimensional (2-D)
fast Fourier transform (FFT) is appropriate, however, when a relatively small
number of frequency-domain points is desired, the proposed hybrid optical-digital
technique can offer substantial computational savings. The number of operations
required by the hybrid optical-digital Fourier processor is proportional to the
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number of desired points rather than the square of the image size. If only a small
number of points are required, the optical Fourier processor can be much more
computationally efficient than a pruned 2-D FFT, especially when the input
images are very large. The points may be regularly distributed over the spatial-
frequency plane or concentrated in one or several irregularly shaped regions of

interest.

The interferometric optical Fourier processor was employed to demonstrate
the mixed-domain method of trajectory estimation proposed by Bruton and
Knudsen. The mixed-domain technique is intended for the trajectory estimation of
small, barely discemable, moving objects of unknown position and velocity. The
interferometric optical Fourier processor is employed to determine the frequency-
domain representation of moving objects embedded in an image sequence. The
speed and direction of the objects are estimated from the sequence of Fourier
spectra in the time domain using the modified forward-backward linear prediction
(FBLP) method of spectral estimation. The trajectory estimation system, based
on the novel joint-transform interferometric optical Fourier processor, estimated
the trajectory of multiple objects moving over both stationary and white noise
backgrounds. The system tracked and estimated the trajectories of 3x3 and
single-pixel objects when the target-to-noise ratios were greater than -3 dB and 3
dB, respectively. The trajectories estimated using the optical Fourier processor
compared favorably with those calculated using a digital FFT. The hybrid optical-
digital calculation of the complex-valued Fourier transform at the selected
frequency domain points required the measurement of six interferograms and
approximately 200 floating-point operations. Calculation of the Fourier transform
at the same points via the FFT required more than three orders of magnitude
more floating-point operations. The number of moving objects in the image
sequence was known a priori by the system and was not detected.

xxii



CHAPTER

Introduction

This dissertation deals with analog optical computing and the optical Fourier
transform. Two interferometric optical Fourier transform processors, one based
on a traditional interfferometer and the other based on a novel technique, are
proposed and experimentally verified. The optical processors are demonstrated
in a trajectory estimation system designed to estimate the speed and direction of

multiple moving objects.

The objective of this first chapter is to provide a brief introduction to optical
computing, summarize the main contributions of this dissertation, and describe
the framework for their presentation. The first section describes the motivation
behind optical computation and presents several examples of its application. The
emphasis is on analog rather than digital optical processing. The next section
summarizes the main contributions made to the field of analog image processing,
specifically, interferometric optical Fourier processors. The objectives, scope and
framework of the dissertation are presented in the last section.
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1.1 OPTICAL COMPUTING

The ultimate goal of optical computing is not to replace traditional electronic
computers, but rather to exploit the parallel-processing capabilities of optics to
construct better computing machines. Electronic and optical computers have
different architectures, modes of operation, and capabilities. They each have
their own specific set of tasks which they perform most effectively. On a digital
electronic computer, the numerical result of an arbitrary mathematical operation
can be computed to any desired degree of accuracy. High accuracy requires
repetitive processing, digitization, numerous machine cycles, and results in
accurate but relatively slow computation. Optical computing is fast but less
accurate. The two-dimensional (2-D) power spectrum (absolute value squared of
the Fourier transform) of an arbitrarily large M xN image is calculated in less
than | ns on an analog optical computer (neglecting the electronic-to-optical and
optical-to-electronic conversions), the time it takes an optical field to propagate
across the processor. The result is calculated very quickly, literally at the speed
of light, however it is much less accurate than that calculated electronically using
a digital signal processor. The object of optical computing is not to replace
electronics but rather to augment its abilities by employing it to do tasks that
electronics perform poorly and inefficiently.

The real-time processing of synthetic aperture radar (SAR) data is generally
regarded to be the first successful application of optical computing. The inventors
of SAR realized early on that currently available analog and digital systems could
not provide the computational horsepower required by the new technology. The
optical SAR processor [Lei68, Brow69, Jen77] was the system of choice until the
early 1980s when rapid advances in digital electronics made the transition to a
fully digital system more attractive. The new Canadian surveillance sateliite
Radarsat-2, scheduled to be launched in the year 2001, will transmit raw SAR
data in real-time at 105 Mbps to ground stations for electronic post-processing
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[MacD99]. The data is processed electronically by a digital computer at 1/10™ real
time to produce images with a resolution comparable to those of US military
satellites. Optical SAR processors, however, provide real-time imagery and
consume far less power than electronic digital SAR processors.

During the 1980s and 1990s, digital SAR processors were supplanting the
more traditional optical processors; more recently, there has been a renewed
interest in optical technologies [Han94]. New breakthroughs in optical modulation
and detection technologies now make it possible to consider satellite designs
which employ the benefits of compact, power-efficient, fast optical computers for

on-board, real-time SAR processing.

The fields of optical computing and optical information processing are still
immature. The penetration of these technologies into mainstream consumer
products for communication and computation applications has been largely
transparent to the end user. The tremendous advantages of optical processors
have so far been largely untapped. In stark contrast, electronic computing and
information processing, based on very large scale integration (VLSI), particularly
the complementary metal oxide silicon (CMOS) process, is a very mature
technology which has almost reached its technical limits.

The field of optical computing is very broad and not very well defined. The
most exhaustive review and taxonomy can be found in Feitelson’s book, Gptical
Computing: A_survey for computer scientists [Fei88]. There are several good
review articles [Abr83, Bel86] and special issues [Jor94, Ira98] which are more
technical in nature. The field is most easily characterized by dividing it into
analog and digital optical computing. The two varieties have one feature in
common - they both take advantage of the fundamental properties which
differentiate photons from electrons.
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1.1.1 Analog Optical Computing

Most analog optical computing is based on the so called Fourier transforming
ability of a lens. It is often referred to as optical signal processing when the input
to the optical processor is a 1-D temporal signal, and optical image processing
when the input is a 2-D spatial signal or image. The method of phase-contrast,
invented in 1934 by Fritz Zemike, and later applied to the phase-contrast
microscope [Hec87, pp. 570], was one of the first and is probably the best-known
example of spatial filtering in an analog optical processor. The marriage of
classical physical optics with communication theory in the 1950’s (giving birth to
what is generally called modemn optics) [Van74], and the invention of the laser in
1960, provided respectively, a necessary optical signal processing paradigm, and
the required coherent light source for optical Fourier processing. The great
success of optical computing in the fields of radar signal processing [Van92],
specifically the invention of the SAR optical processor [Brow69, Jen77], and
optical pattern recognition [Cas81, Cas94b], helped to encourage further
research. Analog optical computers most often implement the Fourier transform,
or some other linear (or nonlinear) transformation, to process their input signalis.

1.1.1.1 Optical Transform Processors

The optical Fourier transform is the fundamental operation upon which the vast
majority of all analog optical signal processors are based. A lens is easily
employed to image an illuminated object onto a viewing screen, as in a 35 mm
slide projector. By reducing the distance between the lens and the screen, the
same lens maps the Fourier transform of the object onto the screen. The physical
principle is quite simple: the far-field diffraction pattem of a coherently illuminated
aperture (or slide) is equal to the Fourier transform of the aperture. A lens is
employed to bring the far-field pattemn into the near-field in order to make the
optical processor space-efficient. A host of other integral transforms have also
been implemented optically, including the Fresnel [Goo77], wavelet [Fry90],
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chirp-Z [Van92, page 133], inverse Radon [Gmi80], and Meliin [Fei88, page 66]

transforms.

Any space-invariant linear operation can be implemented optically. In a
generic analog optical computer, two Fourier transform lenses, one each for the
forward and inverse transforms, are employed to perform frequency domain
spatial filtering. A space-invariant linear operation can be recast as a convolution
which is easily implemented optically using a frequency domain filter. The phase-
contrast microscope is simply a phase-filter located in the Fourier plane of the
instrument’s image path; the optical wavelet transform is generally implemented
as a bank of wavelet filters. Quite complicated nonlinear transformations can aiso
be implemented optically by cascading simple nonlinear point-wise
transformations with more complex linear transformations [Hau77, Goo77].
Space-variant linear transformations can be implemented optically using an array
of small micro-lenses (lensiet array) rather than a single lens [Fei88, page 103].

1.1.1.2 Optical Correlators

Optical correlation was one of the first applications of analog optical computing
and remains an area of active research today. The very successful optical SAR
processor is in fact a multichannel cross-correlator [Lei68]. The operation of most
optical correlators is based on the convoiution theorem: the product of two
functions (or images) in the frequency domain is equivalent to their spatial-
domain convolution. The theorem can easily be recast in terms of a cross-
correlation: the frequency-domain product of a function and the complex-
conjugate of a second function is equivalent to their spatial-domain cross-
correlation. The latter describes the operational principle of the classical 4-f

optical correlator illustrated in Figure 1-1.
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Input Fourier or Output
Plane Filter Plane Plane
fxy) FTLY G (k k) FTL2 fx) ® gley)

Figure 1-1 Conventional 4-f optical correlator.

Consider the problem of locating all occurrences of the capital letter E in a
page of printed text. As shown in Figure 1-1, a transparency of the source image
f(x.v), a photographic positive of a page of text, is placed in the front focal-
plane of a Fourier transform lens FTL1. The transparency is illuminated from the
left with coherent light and the wavefronts passing through the transparency are
modulated by the transparency. The optical distribution f(x, y) in the plane of the
transparency is Fourier transformed into the back focal-plane of FTL1. A
transparency of a reference-image fiiter G'(k,.k‘, ) a photographic positive of the
matched filter of the letter E, is placed in the Fourier (also called the filter) plane,
located in the back focal-plane of FTL1 (which is also the front focal-plane of
FTL2). The reference-image filter is a matched filter because it is equal to the

complex conjugate of the reference spectrum. The optical distribution Fk_.k )
incident upon the second transparency is modulated by the filter to produce an
optical distribution given by F(k .k )G (k..k ). This product is inverse Fourier
transformed by FTL2 into its back focal-plane to provide the cross-correlation
between source image f(r.v) and reference image g(x.y). The optical
distribution mapped into the output plane is a filtered version of the input image

where the transfer function is the matched filter G'(k,.k‘.). The output image is a
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series of bright dots (3-functions if you prefer) corresponding to each occurrence

of the letter E in the page of text.

Two particular correlators, the VanderLugt correlator [Van64] and the joint
transform correlator (JTC) [Wea66], deserve special attention. It is often very
difficult to realize a general compliex-valued spatial filter, particularly one which is
dynamic, to use in the filter plane of real-time systems. The VanderLugt
correlator employs a complex-valued spatial filter which is recorded using a
holographic process (either photographic or computer generated) by encoding
the amplitude and phase of the complex-valued filter on a spatial carrier. The
output plane contains both the cross-correlation and the convolution of the two

functions.

In a JTC (joint transform correlator), the source and target images are placed
side-by-side on the same input transparency. An optically-addressed SLM
(spatial light modulator) is employed in the filter plane to detect the intensity of
their joint transform, and in addition, modulate a second coherent light beam
which is inverse Fourier transformed to provide the cross-correlation. It is the
square-law nature of the optically-addressed SLM which effectively calculates the
product of the two Fourier spectra in the filter plane. The major advantage of the
JTC is that a complex-valued filter does not have to be constructed —~ the source
and reference images written to the same input transparency are Fourier
transformed in parallel. The disadvantage, however, is that the space bandwidth
product of the JTC is reduced because both the source and reference images
are written to the same SLM. It is also difficult to implement an optically efficient
correlator by employing a phase-only filter because the JTC lacks flexibility in its
modes of optical modulation and filter coding.

The classical optical correlator performs matched filtering. The matched filter
has been shown to be the best filter for detecting signals in stationary white noise
[Tur60]. Targets and background ciutter in typical images are not described well
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by this model because the background (noise) is generally correlated and non-
stationary. Classical correlators have trouble with interclass discrimination, for
example, detecting the critically important difference between an E and an F, and
intraclass recognition, ignoring the meaningless differences between a sans serif
E and an serif E. The current trend is non-linear optical correlators in which the
filter function is either binarized [Jav88], amplitude modulated [Fen91), or chirped
[Tan93]. More recently, the joint transform has been detected and optically read
out using a multiple quantum well (MQW) photorefractive SLM to introduce the

non-linearity [Boo96].

Optical correlators developed in Canada have been available commercially for
several years. A low cost optical correlator for industrial machine vision tasks
such as pattern recognition, identification, quality control, feature extraction is
available from the National Optics Institute (Sainte-Foy, Quebec). An automatic
finger print identification and verification system is also available from Mytec
Technologies (Don Mills, Ontario). Their system is based on optical Fourier
processing and the measurement of either the power spectrum of a fingerprint
[US5761330] or its Fourier hologram [US5740276].

1.1.1.3 Automatic Target Recognition

An active area of research in the field of analog optical computing is automatic
target recognition (ATR) systems [Bha86]. The problem is to recognize and
identify man-made artificial targets in a scene, for example, the classes of aircraft
stationed on an airfield or the number and models of cars on a highway, which
may appear in different sizes, orientations, and perspectives. Military and
industrial applications finance and motivate a large part of the research into ATR
systems. Real-time operation is essential and the systems must be small,

lightweight, and rugged.

Generally, an ATR system consists of several pattern recognition and target
classification stages. They often employ optical correlators for real-time pattemn
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recognition. The classical optical correlator reviewed in the previous section is
invariant to target displacement (shift-invariant) because its operation is based on
a linear matched filter, however, its performance is not invariant to target rotation,
scale, and intensity distortions. Generally, a target appearing in an image scene
is scaled according to its distance from the detector, and in addition, distorted

due to any in-plane or out-of-plane rotation.

One approach to rotationally-invariant optical pattern recognition is the circular
harmonic filter proposed by Hsu and Arsenault [Hsu82, Arsn84, Pre93]. In polar
coordinates, the reference object is described by a sum of circular harmonics and
a matched filter is constructed from one of the circular harmonic components to
yield a rotationally-invariant fiiter. Another approach to both rotation and scale-
invariance is the synthetic discriminant function (SDF) filter. In the SDF method,
a training set of distorted reference images, which are assumed to be
representative of all possible distortions, are used to construct a composite filter.
The minimum variance synthetic discriminant filter (MVSDF) [Kum86] and
minimum average correlation energy (MACE) filter [Mahal87] are two examples
of these composite-filter approaches.

More recently, neural networks and the wavelet transform have been
investigated for optical [Cas94a] and digital [Des98] pattem recognition.
Bergeron et al. have proposed a optodigital neural network classifier, based on
an optical correlator, to classify detected input objects into a digital format
[Ber97]. Ahmed et al. have proposed a wavelet-feature-based composite
reference formulation for distortion estimation and have described its

implementation in a multireference synthetic JTC [Ahm98].

1.1.2 Digital Optical Computing

The current trend in digital optical computing is the use of free-space optical
interconnects to alleviate the bottlenecks experienced in conventional electronic
architectures. The advantages of photonic information carriers for free-space
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optical interconnects are well known. Photons can pass through each other
without any mutual interference, propagate easily through free space, and allow
for massively parallel free-space optical interconnects. A matrix of several
thousand optical channels can operate in parallel, each with a bandwidth much
greater than that of any electronic circuit. Photons are charge neutral and are
consequently immune to extraneous electromagnetic interference. Photons travel
at the speed of light (30 cm-ns”' in free space) while electrons are typically 1/3 as
fast. More importantly, the velocity of light is independent of the number of
interconnects branching from a node. The information velocity of an electronic
transmission line is inversely proportional to its capacitance per unit length, and
as such, the information velocity depends on the electronic load that must be

driven.

Optoelectronic architectures which employ free-space optical interconnects for
high-performance digital optical computing [Gui98] have been demonstrated by
OptiComp Corporation (Lake Tahoe, Nevada). These optoeiectronic processors
employ an array of vertical-cavity surface-emitting lasers (VCSELSs), a 2-D control
mask or holographic diffractive optical element, and a detector array to perform
Boolean logic functions. High fan-in and fan-out is achieved through optical
interconnection while the digital logic function is achieved by summing the fields
from several incident beams on a thresholding detector. The digital optical
computer (DOC) Il performs Boolean vector-matrix multiplication with a peak
throughput of about 10'? bit operations per second [Gui91]. The high-
performance optoelectronic computing (HPOC) module performs Boolean matrix-
tensor multiplication at similar throughputs and may be cascaded to produce
processors capable of executing complete instruction sets [Gui93].

The early success of analog optical processing laid the foundation for the field
of digital optical computing. Digital optical computing, however, has received
more attention in the last decade, judging by the number of papers published in
the two fieids. A good review of the current state of the art in digital optical
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computing can be found in a special issue of /EEE Computer [Ira98]. Optical
analog correlators can be purchased as peripherals for electronic computers
attesting to the fact that analog optical processing continues to be a thriving field.

1.2 MAIN CONTRIBUTIONS

This dissertation deals with analog optical computing and the complex-valued
optical Fourier transform. The Fourier transform (FT) is critically important to
many signal processing systems. The FT is an extremely powerful tool, however,
it is very computational intensive — the fastest algorithms based on the FFT (fast
Fourier transform) [O&S75] often consume too many CPU clock cycles and
prevent real-time processing in operational systems. It has been known for some
time that optical Fourier processors calculate an FT at the speed of light.
Unfortunately, only half of the FT is recoverable using conventional optical
detectors: the FT has both magnitude and phase components — but only the
former is easily detectable using a conventional optical detector. An
interferometer may be employed to detect both magnitude and phase, however,
traditional devices are bulky and very sensitive to mechanical shock, vibration,
and temperature fiuctuations. It has been very difficult to realize a stable optical
processor which provides both the magnitude and phase components required
by most FT applications.

Single-chip video processors consisting of muitiple parallel-processing digital
signal processors can compute the complex-valued FFT of low resolution images
at video frame rates. The TMS320C80 digital signal processor manufactured by
Texas Instruments can process a complex-valued 256-point FFT in approximately
5000 instruction cycles. A TMS320C80 running at 50 MHz can therefore calculate
the FFT of a real-valued 256x 256 pixel image in about 256-5000-20 ns = 25.6 ms

which is equivalent to almost 40 image frames per second.

The interferometric optical Fourier processor proposed in this dissertation,
based on a novel technique called joint transform interference (JTI), is designed
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to produce the complex-valued Fourier spectra of an arbitrarily large image at
only a selected number of points on the spatial frequency plane. When the
number of points desired is comparable to the number of pixels in the image, a
digital 2-D FFT is appropriate, however, when a relatively small number of
frequency-domain points are desired, the optical technique presented here can

offer substantial computational savings.

The number of operations required for the direct inner-product computation of

a single frequency-domain point of an NxN pixel image is O(N?). The number

of operations required for the full 2-D FFT computation is O(N ‘log, N ) and the

computational complexity of a pruned 2-D FFT algorithm [Mar71] falls between
these two limits depending on the number and distribution of the desired points.

The number of operations required by the optical Fourier processor proposed
in this dissertation is proportional to the number of desired points rather than the
square of the image size. If only a small number of points are required, the
optical Fourier processor can be much more efficient than a pruned 2-D FFT,
especially when the input images are very large. The points may be regularly
distributed over the spatial-frequency plane or concentrated in one or several
irregularly shaped regions of interest. Such distributions ¢. points can often occur
in applications such as discrete image analysis and interpolation [Smit90] and
moving object detection and trajectory estimation [Knu92a, Knu92b].

A novel interferometric technique called joint-transform interference (JTI) is
developed in this dissertation to recover both the magnitude and phase in an
optical Fourier processor. The interferometer is insensitive to vibration and
temperature fluctuations due to its simple common-path design. The technique
was successfully demonstrated in an optical Fourier processor and subsequently
applied to the problem of moving-cbject trajectory estimation. A hybrid optical-
digital signal processing system, based on the new optical Fourier processor,
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successfully estimated the velocity and direction of muitiple targets moving in a

two-dimensional field.

The main contributions are presented in the following list. They are not
itemized in order of importance but rather in the order as they appear in the

dissenrtation.

1. A hybrid optical-digital trajectory estimation system based on the mixed-
domain method of trajectory estimation is constructed and demonstrated using a
point-diffraction based optical Fourier processor. The mixed-domain technique
was developed by Knudsen and Bruton [Knu92a, Knu92b] and demonstrated by
them in software. Their technique is implemented by the author in hardware
using an optical Fourier processor and point-diffraction interferometer (PDI). The
optical processing is perfformed at 1/3 video frame rates. The system is limited to
the trajectory estimation of a single-pixel object of maximum contrast moving
over a zero intensity background. The system correctly estimates the path and
speed of the moving object, however, the direction with which the object moved

along the path is indeterminate.

2. A novel interferometric technique called joint-transform interference (JTI)
is developed to recover the complex-amplitude spectrum in an optical Fourier
processor. The FT of a source image is interfered with the FT of a reference
image in a common-path interfferometer. Unlike the PDI, both the reai and
imaginary parts of the complex-valued spectrum are determined, and in addition,
the source and reference images are easily matched in order to guarantee good
fringe visibility. The interferometric optical Fourier processors determines the
complex-valued FT at only a select number of desired points on the spatial
frequency plane and does not calculate the entire spectrum of an image
efficiently. When the number of desired points is small compared to the size of
the original image, the optical Fourier processor can be much more efficient than
a pruned 2-D FFT, especially when the input images are very large.
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3. A spectrum which is not affected by contrast-ratio noise is identified in the
far-field diffraction pattern of the Texas Instruments digital micromirror device
(DMD). Zero interleaving and spatial-domain modulation techniques, well known
in the field of multirate digital signal processing, are employed to compress and
shift the zero-order spectrum of the diffraction pattem. The spectrum of an image
is compressed by a factor of two in the horizontal and vertical directions by
inserting zeros between valid pixels in the original image. One of the replicated
and compressed spectra is located in a region of the diffraction pattem which is
not affected by contrast-ratio noise and which is centerad on the DMD Nyquist
frequency. The linear phase distribution introduced by the titied mirrors at each
DMD pixel shifts the position of the diffraction envelope (region of maximum
intensity) to the Nyquist frequency. The spectrum centered on the DMD Nyquist
frequency has a high diffraction efficiency and is much less noisy than the

spectrum at DC.

4. The JTI method of coherent detection is experimentally verified and
applied to the problem of moving-object trajectory estimation. A hybrid optical-
digital trajectory estimation system, based on the mixed-domain method of
trajectory estimation, is constructed and demonstrated using a JTl-based
interferometric optical Fourier processor. The optical processing is performed at
1/6 video frame rates. Unlike the PDI-based optical processor described earlier,
the JTI based processor is able to estimate the trajectory (speed and direction
over 360°) of muitiple moving objects moving over both stationary and white
noise backgrounds. The system is able to estimate the trajectories of 3x3 and
single-pixel objects when the SNRs are greater than -3 dB and 3 dB, respectively.

5. Knudsen and Bruton’s trajectory estimation algorithm is extended by
substituting the systematic search for 3-tuples with a Hough transform technique.
An ideal moving object is described in 3-D frequency space by a plane through
the origin. Its trajectory is estimated by finding a set of frequency-domain triples
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(k. .k, .w) which lie on the plane. Knudsen and Bruton's algorithm searched a

large set of frequency-domain triples for 3-tuples (sets of three frequency triples)
which described the same object. In the approach described in this dissertation,
the large set of frequency-domain triples is Hough transformed [Hou62, Bal82]

into a velocity parameter space, (k..k..w)— (v,.v,), in order to reduce the size of

the search space.

1.3 DISSERTATION FRAMEWORK

The objectives, approach, and a brief outline of the entire dissertation, are
presented in the following three sections.

1.3.1 Objectives and Scope

This dissertation deals with analog optical computing. There are two primary
objectives: 1) to develop an indirect interfferometric means of detecting and
measuring the complex-valued optical field mapped into the back focal-plane of a
Fourier transform lens; and 2) to construct an optical Fourier transformer, based
on the method of coherent detection, and employ it to demonstrate a trajectory
estimation application using Knudsen and Bruton’s mixed-domain algorithm.

The first objective requires an indirect method of detection. Optical detectors
such a photographic film, photodiodes, and CCD cameras, are sensitive to the
power of an incident optical signal, rather than its complex amplitude. The only
way to measure the complex amplitude (i.e. magnitude and phase) of an optical
distribution is to measure it indirectly by interfering the source distribution with a
known reference. An interference pattem is detected and processed to recover
the complex-valued information. An interferometer in which the source and
reference beams follow a common path is very desirable because such a device
is insensitive to mechanical shock, vibration, and temperature fluctuations. This
necessitated a common-path architecture where the source and reference
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beams originate from the same SLM (spatial light modulator) located in the front
focal-plane of the Fourier transform lens.

The trajectory estimation application was employed to demonstrate the optical
Fourier processor because it was a computationally intensive problem which had
a simple frequency-domain solution. Estimating the trajectory of small, barely
discemible, moving objects of unknown position and velocity is a particularly
computationally intensive problem. It is a good candidate for an optical signal
processor, because it requires the integration of several high-resolution image
frames. The optical Fourier processor is very well suited to calculating the spatial
2-D Fourier transforms required by the Knudsen and Bruton mixed-domain
algorithm. The trajectory estimation aigorithm was employed only to demonstrate
the optical processor. The purpose was not to investigate improvements to the
trajectory estimation algorithm, propose new algorithms, or to compare the
results obtained with the optical processor with those of other authors.

1.3.2 Approach and Method ology

The contributions presented in this dissertation were motivated by several initial
experiments the author performed with a common-path type of interferometer
known as the PDI (point-diffraction interferometer) [Lin33]. In these experiments,
the PDI was employed to produce interferograms from which the real part of a
complex-valued source distribution was extracted. The visibilty of the
interferograms depended on how well the power of the source distribution was
matched with that of the PDI-generated reference distribution. The proposed
approach was to extend the functionality of the PDI such that it would be possible
to: 1) extract both the real and imaginary parts of the complex-valued source
distribution; and 2) maximize the visibility of the interferograms by dynamically
updating the total optical power of the reference distribution.

A new interferometric technique was developed and later employed in an
optical Fourier processor to detect the real and imaginary parts of a complex-
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valued distribution in the back focal-plane of a lens. The interferometric optical
Fourier processor was developed using linear system theory and Fourier optics.
It functions as a conventional optical Fourier transformer with the addition of
coherent detection provided by the novel common-path interferometer. The
interferometric optical Fourier processor was first simulated in software and then
experimentally verified in hardware. Finally, the optical processor was
demonstrated in a moving-object trajectory estimation system.

The optical hardware and experimental methods employed in this dissertation
are simple and straight forward. All experiments involve a traditional optical
Fourier processor and an interferometric (homodyne) detector. An SLM (spatial
light modulator) is employed in the front focal-plane of a FTL (Fourier transform
lens) to modulate the amplitude of incident plane waves. A CCD camera is used
in the back focal-plane of the FTL to detect the intensity distribution. A Helium-
Neon (He-Ne) laser is employed to illuminate the SLM. Source and reference
images are combined and written to the SLM and their interferogram is measured
by the CCD. The interferograms are electronically post-processed to provide real
and imaginary spectra using algorithms developed in this dissertation. The
algorithms used in the trajectory estimation system are based on those
developed by Knudsen and Bruton [Knu92a, Knu92b, Knu92c].

Two different SLMs, one based on mature liquid-crystal technology, and the
other based on microelectromechanicai systems (MEMS) technology, were
employed during the experimental work. A twisted-nematic liquid crystal display
(TN-LCD) from Seiko-Epson was employed in the initial experiments while a
digital micromirror device (DMD) from Texas Instruments was employed in the
latter experiments. The TN-LCD is a low contrast (20:1 [Mor86]) and low speed
(30 frames per second) SLM. Conversely, the DMD is a high-contrast (250:1
[T196]) and high speed (60x24 = 1440 frames per second, 1 bit per pixel) SLM.
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1.3.3 Organization and Overview

A concise review of the optical image processing theories and concepts
employed in this dissertation is presented in Chapter 2. The chapter reviews the
propagation of light through free-space using Fourier optics, the Fourier
transforming property of a lens, and several interferometers which have been
employed to measure the complex amplitude of an optical field. The optical
Fourier transform and the point-diffraction method are married in the last section
to construct an optical Fourier transformer with coherent detection.

The construction and experimental verification of a point-diffraction based
optical Fourier processor for trajectory estimation is presented in Chapter 3. The
frequency and mixed-domain trajectory estimation methods, an interpretation
unique to the optical implementation, and the accuracy of the optical approach,
are reviewed in the first sections of the chapter. The velocity components of 13
different objects, each moving on its own trajectory, are successfully estimated in
two sets of experiments. The point-diffraction based optical Fourier processor,
the post-processing aigorithms, and the experimental results are also presented.

A new method of coherent detection, called joint transform interference (JTI),
which extends and improves upon the point-diffraction method, is presented in
Chapter 4. The main ideas appropriate for implementation on either a gray scale
or binary SLM are presented in the first section followed by a detailed description
for implementation on a binary SLM. Five classes of JTI are identified and the
algorithms required to determine the real and imaginary parts of an arbitrary
source image FT are presented. The effect of reference image symmetry is
discussed and an example of the JTI technique is illustrated. The functional form
of the interferogram modulation terms, as well as the conditions required for
optimal source spectra SNR, are derived and presented in the final section.

A multiple-object trajectory estimation system, based on the JTI method of
coherent detection, is presented in Chapter 5. The pixel structure, switching time,
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and far-field diffraction pattem of the digital micromirror device (DMD) employed
as the SLM are presented in the first section. The weighted three-component JTI
method, which was developed in the previous chapter, is experimentally verified.
The remainder of the chapter is devoted to the application of the JTI method of
coherent detection to the problem of trajectory estimation. A single-pixel
reference image is used to estimate the trajectories of single and multiple moving
point-objects. A multipixel Bessel-function reference image is used to estimate
the trajectory of multiple 3x3 pixel objects moving over a zero-intensity
background, different synthetic backgrounds, and in the presence of Gaussian
white noise. The trajectories of multiple single-pixel objects in white noise are

estimated in the final section.

A brief summary of the contributions made in this dissertation and several

suggestions for further research are made in Chapter 6.



CHAPTER

Optical Signal and Image Processing

The purpose of this chapter is to provide a concise review of the optical image
processing theories and concepts employed in this dissertation. It is not intended
as a comprehensive review of the field, but rather, as a lucid account of the
concepts specific to this dissertation. The propagation of light through free-space,
and the linear systems approach to propagation known as Fourier optics, are
reviewed in the first half of the chapter. These ideas lead to the optical Fourier
transform, and the so called Fourier transforming property of a lens. The second
half of the review describes several techniques of coherent optical detection
which have been employed to measure the complex amplitude of an optical field.
The optical Fourier transform and the point-diffraction method of coherent
detection are married in the last section to construct an interferometric optical
Fourier transformer. The review of optical signal processing presented in this
chapter is by no means complete. More complete discussions can be found in
the references cited in the appropriate sections.

20
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2.1 INTRODUCTION

Optical spectrum analysis was one of the first recognized applications of optical
signal processing. Acousto-optical spectrum analyzers have been employed in
(synthetic aperture) radar applications and are still employed in radio astronomy.
Acousto-optical spectrometers for real-time spectral analysis in millimeter radio
astronomy are simple and inexpensive devices. They typically provide 2 GHz of
instantaneous bandwidth at a resolution of 125 kHz [H&H89, page 1037]. Real-
time digital spectrometers based on the Fast Fourier transform (FFT) are more
expensive and generally more complicated. Digital spectrometers with an
instantaneous bandwidth of 320 MHz and 3 bits of resolution appear to be
practical (their bandwidth is generally limited by the sampling rate of the analog-
to-digital converter) [Pay89].

Optical spectrum analyzers can be divided into two classes based on the
variable of integration. The space-integrating class performs a Fourier transform
with respect to one or more spatial variables, while the time-integrating class
performs a Fourier transform with respect to a single temporal variable.
Generally, the integration in the former is provided by a lens which collects a
spatial distribution of light. In the latter, the integration is usually provided by a
photodetector which collects a temporal distribution of light. Hybrid space and
time integrating architectures are also possible. A spectrum analyzer provides
the magnitude of a signal of interest as a function of frequency, however, a
Fourier analyzer (or heterodyne spectrum analyzer) is required to provide both
the amplitude and phase information.

In 1947, Dennis Gabor recorded on a photographic plate the interference
patten, or interfferogram, produced by an object beam and a quasi-
monochromatic reference beam. This hologram (after the Greek word holos,
meaning the whole, referring to a recording of both amplitude and phase) was
probably the first application of coherent optical detection. In 1967, King et al.
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reported one of the first heterodyning time-integrating spectrum analyzers for the
measurement of both amplitude and phase [Kin67]. In their system, a reference
beam was interfered with a modulated object beam to produce a temporal fringe
structure. Two years later, Carleton et al. proposed one of the first collinear or
common-path heterodyning architectures in which the reference beam was
derived from the object beam to make the processor less sensitive to mechanical
shock [Car69]. In a time-integrating interferometric spectrum analyzer proposed
by VanderLugt, two acousto-optic modulators and a spatially modulated
reference beam were employed to reduced the frequency of the temporal fringe
pattern [Van81]. Turpin reported one of the first instances of coherent detection
in a space-integrating spectrum analyzer [Turp81]. in his spectrum analyzer, a
spatial fringe pattern was detected in the focal plane of a Fourier transform lens
using a high resolution photodetector array.

An excellent review of heterodyne spectrum analysis based on acousto-optic
modulators can be found in Optical Signal Processing [Van92]. A review of
different interferometric Fourier transform processors (space and time
integrating) designed for processing complex-valued SAR (synthetic aperture
radar) data can be found in [Ale90]. Space-integrating 2-D interferometric Fourier
processors have not generally been pursued or addressed in the literature due to
the lack of fast, high-resolution, high contrast 2-D SLMs. Time-integrating 1-D
interferometric Fourier processors are generally based on the more mature

technology offered by acousto-optic SLMs.

The motivation behind interferometric optical Fourier processors has been
either increased dynamic range [Van81] (the interference term is proportional to
signal amplitude rather than its intensity) or complex-valued optical Fourier
processing [Ale90, Lan96b]. The latter is the motivation here - this dissertation
deals with the space-integrating type of interferometric Fourier processor for the

purpose of computation.
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This chapter is presented as follows. The propagation of light in free-space
and the well known Fourier transforming property of a lens are reviewed in
Section 2.2. A novel model which describes the Fourier spectrum of a pixelated
SLM is presented in Section 2.3. Coherent detection and the operation of several
traditional interferometers, including the Mach-Zehnder, Twyman-Green, and
point-diffraction interferometers, are reviewed in Section 2.4. The optical Fourier
transformer and point-diffraction interferometer are married in the last section to

construct an interferometric optical Fourier processor.

2.2 FOURIER OPTICS

Fourier optics is a branch of physical optics which provides a description of the
propagation of light through an optical system using harmonic analysis and linear
system theory. It is particularly well suited to individuals in Electrical Engineering
(and other disciplines) who have a good understanding of linear system theory
and the basic principles of the Fourier transform. The standard text on the
subject is Introduction to Fourier Optics, by JW. Goodman [Goo68]. A good
primer can be found in Chapter 4 of Fundamentals of Photonics, by B.E.A. Saleh
and M.C. Teich [S&T91].

Fourier analysis permits one to represent an arbitrary 2-D wavefunction as the
sum of several harmonic functions of different spatial frequency and complex

amplitude. The function f(x.v), for example, can be written as a superposition of
harmonic functions exp[~i2z(v x+v, v)], where (v_.v ) are the spatial frequency

components of the harmonic function (cycles per unit length), and the complex

amplitude of each function is determined from the Fourier transform of f(x.v).

The plane wave is the simplest form of a three-dimensional wave. It can be
used to analyze a travelling wave of arbitrary complexity, as shown in Figure 2-1.
The optical disturbance of a plane wave, at a given instant in time, can be
described by a sequence of equally-spaced plane surfaces of constant phase
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Figure 2-1 An arbitrary wave shown as a superposition of plane waves.

called wavefronts. The wavefronts propagate through space in a direction paraliel
to the wavefront normal given by its wavevector k = (k_,,k“,,k:). A plane wave has

a spatial angular frequency equal to its wave number & =,/k§ +k>+k? =2 and

its complex amplitude is written exp[——i(k,.r-\‘-k‘, )'+k:z)]. In an arbitrary plane,
- =0 for example, the complex amplitude of the plane wave is identical to the
2-D harmonic function exp{~i2z{v_x+v_v)] if the first two components of the
wave vector, k =2nv. and &k =2nv_, are interpreted as spatial angular
frequencies (radians per unit length). An arbitrary function f(x.v) can therefore

be analyzed as a superposition of plane waves,
flex) = a)* [[Flk .k, Jexpl-ilk x+k, y)ldk, dk, (2-1)
where the complex amplitudes of the plane waves are determined by,
Flk.k) = [[r(cy)explifk x+k,v)|dedy (2-2)

This pair of equations should be recognized as the spatial 2-D Fourier
transform pair defined in Equation 1-2 (see Section 1.4.2). The plane wave is the
spatial building block used to synthesize 2-D wavefronts of arbitrary complexity in
the same way that the sinusoid is used to synthesize 1-D temporal signals.
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2.2.1 Propagation of Light in Free Space

Consider a plane wave with complex amplitude exp[—i(k,x-f—k‘_ _v+k::)] and
wavevector k =(k, .k .k.). The wavevector makes angles 6, =sin"(%) and
6, =sin™' (‘T) with the y-z and x-z planes, respectively. The complex amplitude in
the - =0 pilane is a harmonic function exp[-ith(V,.lw-Vv \)] with spatial frequency

components (vv) The angles of the wavevector are therefore related to the

spatial frequencies of the harmonic function by,

e

()

v

sin'(Av,)

sin™(4v,) 2-9)

If the plane wave propagates almost parallel to the z axis, k. <<k and k <<k,

and the wavevector is said to be paraxial. Consequently, the angles of inclination
are small (sin8, =@, and sinf, =6 ) and they can be approximated by,
6. = Av

0' = }.v‘ (2-4)

\ \

in the paraxial approximation. A plane wave, propagating aimost parailel to the :
axis, is described by a wavevector whose angles of inclination are directly
proportional to the spatial frequency components of the corresponding harmonic

function in the x-v plane.

A plane wave of wavelength A is shown in Figure 2-2 incident upon a thin optical
element whose amplitude transmittance is a harmmonic function of spatial

frequency v _ (period A, =v'). The plane wave is modulated by the harmonic

function, and consequently, it is redirected through an angle 8, =sin™'(4v,). The

incident and transmitted waves are required to have the same wavelength; the
transmitted wavefronts must match the periodic pattem of the transmittance



OPTICAL SIGNAL AND IMAGE PROCESSING 26

N
T

Figure 2-2 Plane waves incident on a thin optical element whose
amplitude transmittance is a harmonic function with spatial period

A, =v].

.= sin"Av,

(&)

function and this constraint causes the redirection. If the transmittance of the
optical element consists of a sum of several hamonic functions of different
spatial frequencies, the transmitted optical wave is also the sum of an equal
number of plane waves directed into different directions. Each spatial frequency
component is mapped into a corresponding direction and the amplitude of each
wave is proportional to the amplitude of the corresponding harmonic component

of the transmittance function.

The process of spatial spectral-analysis, as illustrated in Figure 2-2, is very
similar to the temporal spectral-analysis, or angular dispersion, provided by a
prism or diffraction grating. The component plane waves diffracted by an arbitrary
element are spatially separated as they propagate through space. Free-space
propagation appears to serve as a natural spatial spectrum-analyzer or spatial
prism, sensitive to the spatial content of an optical wave.
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2.2.2 Optical Fourier Transform

The propagation of light through free-space is conveniently described by Fourier
analysis. Consider a paraxial wave of wavelength 4, whose complex amplitude
at -=0 is a function f(x.y) composed of harmonic components of different
spatial frequency. Each harmonic component corresponds to a different paraxial
plane wave: the plane wave corresponding to spatial frequency component
(v..v.) propagates at an angle (iv_,Aiv_) and has a complex amplitude

proportional to its harmonic component. The plane waves separate naturally as
they propagate to produce a far-field complex-amplitude distribution proportional

to the Fourier transform of f(x.v).

The preceding discussion suggests that the Fourier transform of an arbitrary
function f(x.v) could be calculated by illuminating a transparency designed to
have f(x.v) as its amplitude transmittance function, and then simply measuring
its far-field diffraction pattern. A more practical and space-efficient approach is to
map the far-field diffraction pattemn into the back focal-plane of a lens. The lens
maps the angular spectrum produced by the transparency into a spatial spectrum
in its back focal-plane. An optical Fourier transformer based on this principle is
illustrated in Figure 2-3. A transparency of amplitude transmittance f(x.v) is
placed a distance J in front of a Fourier transform lens (FTL). The optical field

observed in the back focal-plane g(x.v) is proportional the Fourier transform of

fl(x.y). Plane waves inclined at an angle (8,.8‘_) to the z axis are mapped into
the back focal-plane (or Fourier plane) of the lens at position (6. f.8, f ) where f
is the focal length of the lens.

An expression for the complex amplitude of the field in the Fourier plane is
readily calculated using Fourier optics. The procedure is presented in most
standard texts on optical signal processing including Goo68, pp. 77-90, S&T91,
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Figure 2-3 Principle of the optical Fourier transform. The
amplitude distribution f(x.v) in the back focal-plane of the lens

(FTL) is Fourier transformed into the front focal-plane g(x. y).

pp. 124-126, Ban91, pp. 122-133, Van92, pp. 97-100, and Yu92, pp. 20-23. The
expression is given here without proof,

L) o iexpl=ik(d+f)) ir(x*+y)d - f) [ x oy )
glxy) = ir .,xp': e F 27tl1f.21r,1f (2-5)

where F(k, .k ) is the spatial 2-D Fourier transform of f(x.y) defined in Equation

A-2 (see Appendix A). If the transparency is placed in the front focal-plane of the
lens, then d = f, and the quadratic phase term which pre-multiplies F(k,,.k,_)

disappears and the field is given by,

y _  iexp(=i2kf) X y _
glx,y) = I F[zzrlf,ulf) (2-6)

The optical field in the back focal-plane of the lens is typically measured with a
square-law detector such as a CCD camera. Square-law detectors are sensitive
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to incident optical flux or optical intensity rather than the complex amplitude of
the field. The detector measures a quantity proportional to the square of the
absolute value of the complex amplitude,

. f .
N _ -2 X L -2 . R
gy = (4f) ;F(z”_zf'z"—xf]g (Af)2iF(k, k) (2-7)

where k. =4, k_= ‘—,— , and k =3 . In general, the complex amplitude of the field

r T
observed in the back focal plane g{x.v) is a function of distance d (see Equation

2-5), however, the field intensity measured by a square-law detector is
independent of d even when 4 # f. The phase of the optical distribution in the

back focal-plane of the FTL is very sensitive to the difference d - f . Coherent

detection by processing a sequence of interferograms is relatively insensitive to
the difference because the power spectra |g(x. y)z detected by a square-law

detector are not sensitive to the 4 — f difference.

The function whose Fourier transform is required is written to some kind of
spatial light modulator (SLM) in the front focal-plane of the Fourier transform
lens. An SLM is any device that is able to modulate the complex amplitude
(typically either the amplitude or the phase), of an optical field propagating
through it, at addressable points or pixels on its cross-section. For example, a
transparency on an overhead projector or a 35mm slide are common examples of
static SLMs. Practical optical Fourier processors employ dynamic SLMs which
may be addressed either electrically or optically. The experimental work in this
dissertation employs two different electrically addressable SLMs: 1) a twisted-
nematic liquid crystal display (TN-LCD); and 2) a digital micromirror device
(DMD).
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2.3 FOURIER TRANSFORM OF A PIXELATED SLM AS A DSFT

An optical Fourier transformer maps a continuous amplitude distribution from the
front focal-plane of its lens into a continuous amplitude distribution in its back
focal-plane. The continuous-space optical Fourier transform is appropriate to
model the spectrum of an SLM which modulates the amplitude distribution in a
continuous fashion. Electrically addressable SLMs are usually pixelated devices.
The discrete amplitude distribution produced by a pixelated SLM is Fourier
transformed into a continuous and periodic amplitude distribution. The pixelated
structure is often modeled by multiplying the spatial domain function f (x.¥)
written to the SLM by a 2-D bed-of-nails sampling function or a rectangular
grating function based on the SLM pixel structure [Rey89, Gia92, Gia93b, Dav90,
Kno95). This spatial domain sampling leads to spectrum replication by virtue of
the frequency domain convolution theorem. The spectrum of the function written
to the SLM, Flk, .k ), is replicated into each order (p.q) of the Fraunhofer

diffraction pattemn. The total diffraction pattem is the sum of all replicated spectra

S Flk, +27 p.k, +214q). The total spectrum observed in any diffraction order is

e

equal to F(k .k ) plus the contributions aliased from the tails of spectra diffracted

into all other orders. The aliased contributions are often ignored because
describing the total spectrum as an infinite sum of individual spectra is

mathematically cumbersome.

2.3.1 Spectrum of an SLM

An optical Fourier transformer which employs a pixelated input SLM produces
the continuous FT of a discrete function. It is convenient to represent the
pixelated (discrete) image written to an M x N pixel SLM as an infinite complex
sequence f ={f(m.n)}, where m=1.2....M, n=12.. N, and all other

elements are set to zero. The complex amplitude at SLM pixel (m.n) is
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represented by f(m.n) which is also typically quantized in amplitude. When the
SLM is illuminated with coherent plane waves, it produces a discrete amplitude
distribution in continuous space. The amplitude distribution can be expressed as
the sum of modulated and shifted rectangular functions. An SLM pixel (m.n) can

N

be represented in continuous x-y space as f(m.n)rect(== ), where a =2~ and

b= -j— are the horizontal and vertical spatial duty cycles of the SLM (ratio of pixel-

dimension to pixel-pitch). The SLM pixels are assumed to consist of a
rectangular active area surrounded by an opaque dead zone. The complex
amplitude across the active area is uniform and the opaque dead zone blocks all
incident light. The physical pixel pitch (center-to-center spacing) is A, xA and

the active area of each pixel has dimensions A’ xA’. The SLM fill-factor

.

(sometimes called the aperture ratio) is then given by ab=33-x100%. The

amplitude distribution produced by the SLM can be written as a sum of
modulated and shifted pixel functions, or as the convolution of the pixel function

with a sum of modulated and shifted d-functions,

> flm.n) rect(%’!'-.'T"")
" 2-8
= rectz.2)* 2> flm.n)d(x—m.y-n) (2-5)

f(x.¥)

The pixel aperture function rect(ﬁ.%) represents the aperture of a single pixel

with unit pixel pitch. The spectrum of the image sequence on the SLM is
determined by calculating the continuous spatial FT of Equation 2-8. Using the
convolution theorem, the FT can be expressed as the product of the FT of the

two terms in the convolution, specifically, absinc(a-éj.bf;‘) and,
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F{EE stnn)oto=m. s}

m n

= oj']z Z f(m.n)d(x—m,y- ")CXp[i(k'x +k, ‘)] dedy 2-9)

—ary—my M n

Z Zf(m,n)exp[i(k,m + k‘.n)]

= ';Dsrr{f(m-")}

where k_and k,  represent the normalized angular frequencies in radians per

v

pixel. The (non-normalized) spatial frequencies are k, = 3= 2= and k| =3~ =3},
where f is the focal length of the Fourier transform lens, and A is the

wavelength of light. The expression on the second last line of Equation 2-9
represents the discrete space Fourier transform (DSFT) of the 2-D sequence
f(m.n). The FT of the SLM-displayed sequence f(m,n) is equal to its DSFT

multiplied by the FT of the SLM pixel aperture function,
Flk..k,) = absincla’ebl) F o {f(m.n)} (2-10)

The spectrum is described by the product of a modulation envelope and a
periodic interference function. The modulation envelope is equal to the (coherent)
transfer function of the SLM and the periodic interference function is equal to the
DSFT of the 2-D sequence.

The modulation envelope describes the spatial frequency response of the
SLM. it is proportional to ab which suggests that an SLM with a large fill-factor is
required for an optically efficient Fourier transformer. The modulation envelope
Sinc(a%.h ‘—X) is called the (coherent) optical transfer function (OTF) of the SLM
[Inf93, Goo68] (the coherent and incoherent OTFs are identical in this special
case because the autocorrelation of the coherent OTF is equal to itself). The
DSFT of a sequence is 2n-periodic in (k..k_ ). Its properties follow directly from

the continuous Fourier transform and are well documented [O&S75, pp. 30-34].
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The DSFT has been borrowed from the field of discrete-time signal processing,
where it is known as the discrete-time Fourier transform (DTFT). The DSFT

represents a transformation from discrete space (m.n) to continuous spatial

frequency (k_ .k, ).

The absolute value of the OTF of an SLM with spatial duty cycle a=b=0.8
and the periodic nature of the DSFT are illustrated in Figure 2-4. The zero-order
spectrum is the shaded region at the origin of frequency space bounded by
-r<k, k <r. The (p.g)" order spectrum is centered on (k .k )=(27p.27q).

The OTF acts as a passive frequency domain filter; it passes the zero-order
spectrum (the pass band is not flat however) and attenuates higher-order
spectra. The first zeros of the OTF occur at k, =+ and k =+3%. They are

closest to the origin when a =b =1 (100% fill-factor) and retreat from the origin as
the fill-factor decreases. When the fill-factor equals 100%, the product of the
transfer function and the DSFT equals the continuous FT of the sequence

IOTF(k,.k. )

zero-order

y. ‘i\ 4, spectrum
%} %

.,

Figure 2-4 Spectrum of a pixelated SLM. The OTF is determined
by the pixel aperture and the periodicity is determined by the pixel
pitch (a =b=0.8).
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(elements of the sequence are represented by §-functions in the continuous FT).
In the limit as the fill-factor approaches 0% (a=b=0), the pixel aperture
approaches a &-function, and the OTF approaches unity for all frequencies (the
efficiency also approaches zero because very littie light is transmitted or reflected
by the SLM).

2.3.2 DSFT of a 1-D Aperture

As an example, consider the spectrum of an N -pixel rectangular aperture
displayed in the center of an SLM. The aperture is represented by a discrete
rectangular sequence centered at the origin. The centered rect-sequence is
defined as

1 nig ¥
2 2-11
0 otherwise ( )

rect,(n) = {

where its width N must be odd. The DSFT of the rect sequence is presented in
most references on discrete-time signal processing [O&S75] and is easily
calculated using the DSFT definition from Appendix A (see Equation A-4),

- sin(fzi)

F peerirect, (n)} = NNsin(%) = N diric, (k) (2-12)

The ratio of sinusoids in Equation 2-12 is called the Dirichiet function of order
N, diric.(k), to be analogous with sinc(<-), which is obtained in the continuous
space FT analogue [Eva93] (the diric, function is sometimes referred to as the

Dirichlet kemel, or the periodic or aliased sinc function). The Dirichlet function,

diric, (k), has unit value at the origin and is 2n periodic for N odd.

Assume a centered rect-sequence of length N =9 is written to a 1-D pixelated
SLM with spatial duty cycle a =0.8. The spectrum observed in the back focal-
plane of a Fourier transform lens under coherent illumination is proportional to
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| diric,(k) ! 1.0 | OTF(k) |

/

normalized spatial frequency, k

Figure 2-5 Discrete space Fourier transform (DSFT) of a rect-
sequence. The SLM spatial duty cycle (pixel width-to-pitch ratio) is
a =0.8 and the sequence is length N =9.

the product of Ndiric,(k) and the SLM transfer function asinc(a<). The
normalized magnitude of the Dirichlet function, |diric, (k)|, and the absolute value
of the OTF, sinc(aL), are plotted in Figure 2-5. The Dirichiet function is 2n

periodic and has N-2=7 secondary maxima, and N —1=8 minima, between

each principle maxima.

2.4 COHERENT DETECTION

Optical detectors such as photographic film, photodiodes, photo-multiplier tubes,
CCD cameras, and even the human eye, are sensitive to the power of an
incident optical signal rather than its complex amplitude (these optical detectors
are actually responsive to the incident photon flux rather than the incident power,
however the distinction is not important here). Optical detectors produce an
output signal which is proportional to the absolute value squared of the incident
complex field, and for this reason, they are referred to as square-law detectors.

A square-law detector in the back focal-plane of an FTL measures the power
spectrum of the optical field distribution in its front focal-plane. The phase of the
complex valued Fourier transform is lost in the detection operation because the
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square-law detector is sensitive to incident optical power. The complex amplitude
of an optical field must be measured indirectly, by mixing it with a coherent
reference of stable phase, and detecting the superposition with a square-law
detector. In the field of optical communications, the reference wave is generated
by a local oscillator and the method of coherent detection is referred to as optical
heterodyning, optical mixing, or light beating. It is the optical equivalent to the
superheterodyne receiver used in RF (radio frequency) communication systems.

In other (non-communication) applications where a local oscillator is not
required, the complex amplitude of an optical field is measured by mixing it with a
coherent reference in an interferometer. The interference is typically achieved by
dividing a single coherent beam of light into two separate beams (by either
division of wavefront or division of amplitude), modulating or processing one
beam independently of the other, and then recombining the two beams in the
plane of a square-law detector. The square-law detector is critically important
because the optical fields must be multiplied rather than simply added.

The process of recording a hologram is a familiar exampie of coherent
detection using an interferometer. Wavefronts from an object of interest (object
beam) are interfered with a reference beam of known amplitude and phase in the
plane of a photographic plate. The interference pattem recorded on the film
contains both the amplitude and phase information of the object beam. The
object beam can be reconstructed by illuminating the photographic plate with a
beam identical to the reference called the readout beam.

The architecture and operational principles of three traditional interferometers,
which have been used for the coherent detection of an optical signal, are
reviewed in the following sections. The fundamental principle common to all three
interferometers is the optical mixing or interference of two arbitrary waves.
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2.4.1 Interference of Two W aves

The superposition of two optical fields present simultaneously in the same region
of space is simply the sum of the individual fields. The intensity of their
superposition is not necessarily equal to the sum of their intensities and the
difference is due to the interference between the two waves.

Consider the interference of two monochromatic waves U,(r.z) and U,(r.r)
where r =(x. v.z) is position and t is time. If the fields exist simultaneously in time
and space, their superposition is simply, U(r.r)=U (r.r)+U,(r.r). The intensity of

the superposition is proportional to the square of the absolute value of its

complex wavefunction,

v’ o= vl o+ WU, + UUS + UU,

. g (2-13)
=, + WU, + 2RbwU;)

where R is the real-part operator and the spatial and temporal dependencies

have been dropped for clarity. Suppose the waves have intensities /, and /,,

and phases ¢, and ¢,, then their complex amplitudes can be written
U, =1, explig,) and U, =[I, explip,). Substitution of these expressions into
Equation 2-13 yields,

I =1, + I, + 2JII,cos(p) (2-14)

where ¢ =g, —¢, is the phase difference between the two waves. The relation
described by Equation 2-14 is called the interference equation. Obviously the
intensity of the superposition of the two waves is not equal to the sum of their
individual intensities. The third term of the interference equation, called the
interference term, accounts for the interference between the two waves, and may
be positive or negative, corresponding to either constructive or destructive

interference. When the intensity of both waves are equal, I, =1/, =1,, the total
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intensity is given by 4/, cosz(—‘,}). The total intensity is 4/, when the two waves are
exactly in phase, ie ¢ =0 (constructive interference), and zero when they are
exactly out of phase, ie ¢=+r (destructive interference). When the phase
difference is a random variable, uniformly distributed between -7 and «

(incoherent or partially coherent light), or exactly ¢ =+%, the total intensity is the

sum of the individual intensities because the interference tem is zero.

The interference equation (Equation 2-14) predicts a sinusoidal intensity
variation with phase for the interference of two plane waves. The interference
pattem for two waves of unequal intensity is illustrated in Figure 2-6. The
contrast, or modulation depth, of the interference pattem is described by its fringe
visibility which is defined as,

v = Inae=luin (2-15)
I _+1

mavx men

where / _ and I, are the maximum and minimum values of intensity for all

mav nn

phase shifts ,~7 <@ <x. Since cos(p) varies between 1 and -1, the visibility of

min

phase shift, ¢

Figure 2-6 Intensity distribution versus phase for the interference of two
plane waves of unequal intensity.
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the interference pattem described by Equation 2-14 is given by,

VvV = e Ll (2-16)
I, +1,

When the intensities of the two interfering beams are equal, I, =1/, =1,, the

visibility is maximum (V =1, I =41l,,and [/, =0), and the interference pattem

nuix nun

has maximum contrast.

2.4.2 Mach-Zehnder Interferometer

The Mach-Zehnder interferometer [Hec87, p.358], illustrated in Figure 2-7, is an
example of a mirrored amplitude-splitting type of interferometer. It consists of two
beam splitters and two totally reflecting mirrors. An incident wave U, from an
extended source is split by the first beam splitter (BS1) into two waves, U, and
U ., of approximately equal intensity. The two waves traverse the interfferometer
along different physical paths: wave U, in the lower path is phase (and possibly

amplitude) modulated by some kind of spatial light modulator (SLM) which
modifies its optical path length (and reduces its amplitude); wave U, in the upper

Mirror )
M1 ¢

N SLM Detector

Figure 2-7 Mach-Zehnder interferometer.
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path is not modulated and acts as a reference . The two waves are recombined
at the second beam splitter (BS2) to produce wave U =U, +U, . The interference

pattern of the superposition is recorded by a square-law detector.

The Mach-Zehnder interferometer's two-path design has both advantages and
disadvantages. The spatial separation of the two paths makes the instrument
applicable to a myriad of experiments. For example, a common application is to
observe the density variations in gas-flow pattemns within a wind tunnel. The
primary disadvantage of the two-path design is its extreme sensitivity to
mechanical shock, vibration, and temperature fluctuations. The Mach-Zehnder
interferometer's extreme sensitivity to mechanical shock makes it very suitable
for optical instruments designed to measure vibrations and very small (on the
order of optical wavelengths) displacements. The interferometer is also relatively
difficult to align.

2.4.3 Twyman-Green Interferometer

The Twyman-Green interferometer is a slight modification of the well known
Michelson interferometer. Both instruments have a similar configuration, however
their methods of illumination are different: plane wave illumination (typically from
a laser) is employed in the Twyman-Green interferometer; the Michelson
interferometer is illuminated by an extended source (a diffusing ground-glass

plate illuminated by a discharge lamp).

The Twyman-Green interferometer [Hec87, pp. 385-386], also a mirrored
amplitude-splitting device, is illustrated in Figure 2-8. An incident plane wave U,
is split by the beam splitter (BS) into two waves, U, and U,, of approximately
equal intensity. Reflected wave U, propagates left to mirror M1 were it is

reflected back along its original path and transmitted by the beam splitter.
Transmitted wave U, propagates up to mirror M2 where it is reflected back along

its path and subsequently reflected by the beam splitter. The superposition of the
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Mirror M2

Mirror M1

SLM Detector

U,

Figure 2-8 Twyman-Green interferometer.

two waves produce an interference pattemn in the plane of the detector. The
phase (and possibly the amplitude) of wave U, is modified by a spatial light
modulator in the first arm (the wave is actually modulated twice); wave U, in the
second arm is not modulated and acts as a reference. The Twyman-Green
interferometer is used extensively in modern optical testing to measure the
quality of lenses, prisms, and other optical components. Like all two-path
interfferometers, it is sensitive to mechanical shock, vibration, and temperature

fluctuations, however, it is relatively easy to align.

2.4.4 Point-Diffraction Inter ferometer

The point-diffraction interferometer (PDI) is a simple yet extremely powerful
wavefront splitting common-path interferometer. It was originally invented [Lin33]
by Linnik in 1933 and subsequently reinvented [Sma72, Sma74] and patented by
Smartt and Strong in 1972 (the original paper by Linnik was published in Russian
however an English translation is included in a paper by Speer [Spe79)).
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The PDI is much less sensitive to mechanical shock, vibration and
temperature fluctuations than the traditional Mach-Zehnder, Twyman-Green and
Michelson interferometers due to its simple common-path design. In a common
path interferometer, the object and reference waves follow similar paths through
the same optical elements. The waves of the more traditional interferometers
follow widely separated paths, and consequently, each beam is affected
differently by shocks and fluctuations in temperature. The fringe pattem of a
traditional interfferometer is often very unstable and its measurement is difficuit.
The common path design also reduces the number and required quality of the
optical elements thereby reducing the cost, size, and weight of the device, and
simplifying its alignment.

The operational principie of the point-diffraction interferometer is illustrated in
Figure 2-9. The wave of interest, U,, typically a distorted plane wave generated
by some extemnal process, is focused onto a PDI mask in the back focal-plane of
converging lens L1. The PDI mask consists of an absorbing film fixed to a
transparent substrate. A small pinhole or small opaque disc is placed at the
center of the mask to provide a discontinuity. Wavefronts incident on the mask
are transmitted through the absorbing film with reduced amplitude and, in
addition, diffracted by the discontinuity at the center of the mask. The transmitted

I f o |
| —I Transmitted and
reference waves

wave k
148 ':':
/ ..... 3 ; ......

L1 PDI
Mask

Incident

Detector

Figure 2-9 Point-diffraction interfferometer (PDI).
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and diffracted wavefronts produce an interference pattern in the back focal-plane
of the second lens L2. In essence, the reference wave U, is generated from the

object wave U, by the PDI mask. The spherical waves diffracted by the

discontinuity are transformed into plane waves by lens L2; the incident waves are
imaged onto the detector through both lens. The superposition of both produces
an interference pattem in the plane of the detector. The attenuation of the
absorbing film on the PDI mask must be chosen carefully in order to maximize
the visibility of the interference pattem. When the amplitude of the transmitted
and diffracted waves are equal the fringe visibility is maximum.

The diameter of the pinhole in the PDI mask determines both the total optical
power contained in the diffraction pattem and its spatial distribution. The central
maximum of the diffraction pattem produced by the pinhole is an Airy disk with a
diameter which is inversely proportional that of the pinhole. The total power and
the maximum (on-axis) intensity of the diffraction pattern are proportional to,
respectively, the area of the pinhole and the area of the pinhole squared. There
is obviously a tradeoff between spatial extent and total optical power: a small
pinhole is required for a broad Airy disk with an approximately uniform intensity
distribution, however, a large pinhole is required for an optical efficiency
interferometer with good fringe visibility. As shown in Figure 2-9, the pinhole is
placed in the back focal-plane of a converging lens in order to maximize the light
intensity incident on the pinhole and allow a smaller pinhole to be employed.

The PDI was originally designed for fluid flow diagnostics, however it has been
used more extensively in the measurement of wavefront distortion for testing
lenses and other optical elements. The methods of phase-shifting interferometry
(PSI) are the most accurate and effective techniques to measure the distortion of
an object wave. It has been difficult to combine the advantages of the PDI and
the advanced technique of PSI because it is difficult to shift the phase of one
beam with respect to the other in a common path design. Several liquid crystal
based interferometers have been demonstrated which combine the advantages
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of both. Mercer [Mer94, Mer96] used a liquid crystal layer to introduce an
arbitrary phase shift and a microsphere embedded within the liquid crystal layer
provided a locally generated reference. The phase of the object beam is shifted
by changing the voitage applied across the nematic liquid crystal which alters the
refractive index of the material. In a similar design, Kadono [Kad94] used a
circular region etched in the liquid crystal electrode to prevent rotation of the

liquid crystal molecules.

The PDI has also been applied to SLM phase-compensation and coherent
detection in optical signal processing applications. The PDI was employed by
Tam to compensate for the phase distortion introduced by a liquid crystal
television (LCTV) [Tam90]. The interference pattern measured by the PDI was
written back onto the LCTV in a closed-loop to compensate for the phase
distortion. Zhang et al. have used the PDI to detect the complex amplitude of the
optical wavelet transform of 1-D and 2-D input functions [Zha93a, Zha93b,
Zhag4]. In their experiments, a photographic mask containing a PDI reference
pattern and a (complex) wavelet filter were placed in the filter plane of a modified
VanderLugt correlator. The interference pattern at the output plane of the
correlator contained a term proportional to the bipolar-valued wavelet transform.

2.5 PDI-BASED INTERFEROMETRIC OPTICAL FOURIER PROCESSOR

It is very desirable to detect the complex amplitude of the field in the back focal-
plane of an optical Fourier transformer. The point diffraction interferometer (PDI)
is easily incorporated into an optical Fourier transformer to enable its complex
amplitude to be detected. The Fourier transformer with coherent detection is
designed to measure the complex amplitude of the FT produced by a spatial light
modulator (SLM). It represents a marriage of the optical Fourier processor
introduced in Section 2.2.2 and the PDI discussed in Section 2.4.4.

The architecture of the combined optical Fourier processor and PDI is
illustrated in Figure 2-10. It is very similar to the basic PDI configuration except:
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Figure 2-10 Optical Fourier transformer with coherent detection.

1) the PDI mask of the interferometer is replaced by an SLM; and 2) the PDI
mask (SLM) is illuminated by plane waves rather than converging spherical
waves. A single pixel at the center of the SLM provides the discontinuity instead
of the pinhole aperture in an absorbing film. Plane wavefronts incident on the
SLM are modulated according to the function written to it and, in addition,
diffracted by the single-pixel discontinuity at the center of the SLM. In essence,
the SLM produces both source and reference waves: the modulated waves are
Fourier transformed into the back focal-plane of the Fourier transform lens (FTL)
to produce U,; the (almost) spherical waves diffracted by the single-pixel
discontinuity are Fourier transformed into the back focal-plane of the FTL to
produce (almost) plane waves U,. The superposition U =U, +U, produces an

interference pattern in the plane of a square-law detector.

The real part of the Fourier transform of the function written to the SLM can be
extracted from the interference pattem. Let s(x,v) be the 2-D distribution written

to the SLM and let rect(;,{—.;{—) be the single-pixel reference function at its origin
where (A’.A’ ) represents the dimensions of the pixel. The reference pixel at the

origin of the SLM is reserved for reference generation, and consequently, the
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value at the origin of the function s(x,y) must be zero. The amplitude distribution
in the plane of the SLM is given by the sum of the source and reference

functions,

fle.¥) = s(ey) + rect(_%‘,—) (2-17)

in the limit as the pixel approaches a pinhole aperture, the pixel dimensions
approach zero, and the rect-function approaches a d-function. The reference pixel
can never become an ideal point reference; its amplitude is limited by the
incident light intensity and the passive SLM. The intensity transmitted by the
reference pixel should ideally be matched to the total intensity transmitted by the
source image. If the reference pixel and source image intensities can not be
matched, the fringe visibility of the interference pattem is poor and there is limited
dynamic range available to a detector.

Assuming the reference pixel can be represented as a &-function, the power
spectrum observed by a square-law detector in the back-focal plane of the FTL is
given by,

12

Flk, k)" =1 + Sk.k) + 2%(sk,.k) (2-18)

and contains an interference term which is proportional to the real part of the

Fourier transform S(k .k, ). The interference term can be extracted by subtracting

the power spectrum of s(x.v), and that of the reference, from the joint power

spectrum of both,
RSk, .k ) = %(T(k,.k‘_);: - Sk - 1) (2-19)

The optical Fourier processor with single-pixel PDI and the algorithm
described by Equation 2-19 will be used in Chapter 3 to calculate the real part of
the Fourier transform of a function written to an SLM.
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2.6 CHAPTER SUMMARY

This chapter reviewed the optical signal and image processing concepts that
will be employed in this dissertation. The propagation of light through free-space,
and the linear systems approach to propagation known as Fourier optics, were
reviewed. These ideas led to the optical Fourier transform, and the so called
Fourier transforming property of a lens. It was shown that the spectrum (or far-
field diffraction pattem) of an image displayed on a pixelated SLM (spatial light
modulator) is equal to the DSFT (discrete space Fourier transform) of the image
multiplied by the OTF (optical transfer function) of the SLM.

The second half of the chapter reviewed several methods of coherent optical
detection. It was leamed that an indirect method of detection must be employed
because optical detectors are insensitive to the phase an optical field. The
architecture and operational principles of the Mach-Zehnder, Twyman-Green
(Michelson), and point-diffraction interferometers were briefly reviewed. It was
discovered that the point-diffraction interferometer, due to its simple common-
path design, is much less sensitive to mechanical shock, vibration and
temperature fluctuations, than the other two interferometers. The optical Fourier
transform and the point-diffraction method of coherent detection were married in
the last section to construct an optical Fourier processor with coherent detection.



CHAPTER

Single-Object Trajectory Estimation

This chapter describes the construction and experimental verification of a moving
object trajectory estimation system. The mixed-domain algorithm for trajectory
estimation, developed by Knudsen and Bruton, is implemented in hardware to
estimate the trajectory (speed and direction) of point-objects moving in a
sequence of images. The 2-D spatial FT (Fourier transform) required by the
algorithm is calculated using an optical Fourier processor and coherently
detected using a point diffraction interfferometer. The sequence of optically
processed spectra is post-processed electronically to estimate the trajectory of
the moving objects. The velocity components of 13 identical point-objects, each
moving on their own trajectory, are successfully estimated in two sets of

experiments.

48
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3.1 INTRODUCTION

We take for granted the ability to discem objects, estimate their motion, and
navigate in three-dimensional spaces using our biological vision system.
Duplicating these capabilities in a machine vision system, even to a limited
degree, has proved to be a very difficuit task [Agg88). The computational power
required for even a basic vision system seems to transcend the capabilities of
traditional electronic processors. This has motivated the present hybrid optical-
digital approach which exploits and combines the parallel-processing capabilities
of optical processing and the accuracy of electronic digital processing.

The specific problem addressed in this dissertation is the detection and
trajectory estimation of small, barely discemible, moving objects of unknown
position and velocity. An optical implementation is of particular computational
interest as typically more than ten high resolution image frames must be
integrated to detect and track targets imbedded in a noisy background.
Applications include astronomy (detecting and tracking meteors, satellites, or
other small airbome objects moving against a night-sky background), remote
sensing (detecting and tracking targets in satellite, radar, sonar, and forward
looking infrared images), meteorology (tracking cloud and storm systems), and
biomedical applications such as the study of cell motion.

Porat and Friedlander have identified two general approaches to trajectory
estimation: detect-before-track and track-before-detect [Por90). In the first
approach, frame-by-frame differencing followed by thresholding is typically used
to detect and segment the moving objects. The 3-D image sequence is then
projected onto a single 2-D image called a track or streak map. Object
trajectories can be identified from the streak map [Cow83] using a Hough
transform [Bal82, Hou62].

The track-before-detect approach represents an exhaustive search for all
candidate trajectories per pixel per frame. The decision as to whether a target
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exists on a particular trajectory is deferred until the candidate trajectory has been
observed for a predetermined number of frames. The approach can be
computationally prohibitive, depending on the number of candidate trajectories,
the image resolution, and the observation interval.

The matched filtering operation of an exhaustive search can be impiemented
in the spatiotemporal domain, the frequency domain, or the mixed domain. In
terms of geometry, the spatiotemporal-domain approach represents a search for
all possible line segments in space-time, while the frequency domain approach
represents a search for all possible planes through the origin of spatiotemporal

frequency space.

Spatiotemporal-domain approaches often use statistical tests to reduce the
number of candidate trajectories. Bruton and Bartley used 3-D recursive filters,
based on the concept of network resonance, to enhance and track moving
objects [Bru85, Bru86). Mohanty detects objects by searching for a trajectory
which maximizes a likelihood ratio computed from an estimation of the
background noise statistics [Moh81]. Bamiv proposed a dynamic programming
solution as a substitute for the prohibitive exhaustive search [Bar85]. Blostein
and Huang used sequential-hypothesis testing to reduce the size of the search
space [Blo91].

Frequency-domain approaches can take advantage of the computational
efficiency of the FFT (fast Fourier transform). Reed et al. derived an expression
for the optimum frequency-domain 3-D matched filter in terms of the optical and
detector transfer functions and the spectral densities of the background and
detector noise [Ree83]. Mahmoud et al. proposed a projection-based algorithm
which uses either the FFT [Mah88] or the fast Hartley transform (FHT) [Mah91] to
determine the trajectory of a large moving object. Porat and Friediander
proposed a bank of 3-D frequency-domain filters for all possible candidate
trajectories [Por90]. Choi et al. demonstrated a time-recursive (Kalman) filter in
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paraliel with the bank of 3-D frequency-domain filters to solve the problem of
spectral aliasing due to very fast moving objects [Cho97].

The mixed-domain approach to trajectory estimation has several advantages
over a purely spatiotemporal or frequency-domain approach. The theory of
mixed-domain signal processing [Knu91, Knu92c] has recently been formalized
by Knudsen and Bruton. They have successfully applied their mixed-domain
signal-processing algorithms to the trajectory estimation of linear [Knu92a,
Knu93a] and nonlinear targets [Knu92b]. Linear targets move at constant velocity
and describe a line in space-time parameterized by a velocity and initial position,;
nonlinear targets move at constant acceleration and describe a parabola in
space-time parameterized by an acceleration, initial velocity, and initial position.
In the mixed-domain approach, trajectories are estimated by Fourier transforming
the two spatial dimensions of the image sequence, followed by time-domain
spectral estimation using a high-resolution algorithm. The trajectories estimated
in the 3-D frequency-domain approach often suffer from poor accuracy and
resolution due to the sampled nature of the image sequence; a large number of
image frames is usually required for accurate estimates. The mixed-domain
estimates are more accurate than the frequency estimates because the high-
resolution spectral-estimation technique used in the mixed-domain approach is
not as dependent on the duration of the image time-series.

The hybrid optical-digital trajectory estimation system discussed in this chapter
extends that of Knudsen's system by calculating the 2-D spatial component of
the computationally intensive FT using an optical Fourier processor rather than a
conventional electronic processor. The objective of this present chapter is to
demonstrate a hybrid optical-digital moving-object trajectory estimation system
which implements the Knudsen and Bruton mixed-domain algorithm. The
purpose of this experimental system is to illustrate the fundamental principles
involved and provide proof-of-concept only — it is not a deployable trajectory
estimation system. Practical systems which accommodate muitiple moving
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objects, background imagery, and the effects of noise will be considered later in
Chapter 5. The trajectory estimation system, interferometric optical Fourier
processor, and the preliminary results, have been published by the author
[Lan98]; complete results will appear in a full paper which was in press at the

time of writing [Lan99a].

The trajectory estimation systems presented in this thesis deal with the
trajectory estimation of constant-velocity targets moving on a linear trajectory. A
real-world moving object does not describe a constant-velocity linear trajectory
with infinite extent in space-time. The trajectory of a real-world moving object
may, however, be approximated by a sequence of short piecewise-linear
trajectories. In this dissertation it is assumed that the object is moving with
constant velocity during an observation interval of 25 frames during which time its
velocity is estimated. A new piecewise-linear trajectory is estimated every 25
frames (more than once every second at video frame rates) and it is assumed
that the velocity of the target does not change significantly during the observation
interval. Any target acceleration or velocity fluctuations during the observation
interval will introduce chirp and phase jitter into the sinusoidal data vectors of the
mixed-domain algorithm. The chirp and phase jitter will hinder the performance of
the spectral estimation method which expects pure sinusoids and will degrade
the overall performance of the trajectory estimation system.

The frequency and mixed-domain approaches to trajectory estimation are
reviewed in Section 3.2. The spatiotemporal, mixed, and frequency-domain
representations of an ideal moving object are derived. An interpretation of the
mixed-domain representation, unique to an optical implementation of the mixed-
domain algorithm, and the accuracy of the algorithm are presented. The hybrid
optical-digital trajectory estimation systems and its post-processing algorithm are
presented in Section 3.3. The resuits of two experiments are presented in
Section 3.4 and their accuracy and limitations are discussed in Section 3.5.
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3.2 TRAJECTORY ESTIMATION

The frequency-domain method of trajectory estimation is well established. The
principles were originally developed for a model of human visual-motion sensing
based on human psychophysics [Wat85, Ade85] and have been applied more
recently to machine-vision trajectory estimation. The frequency-domain approach
to trajectory estimation requires a transformation from 3-D spatiotemporal space
to 3-D frequency space. In the mixed-domain approach, developed by Knudsen
and Bruton [Knu92a, Knu92b, Knu93a], the 3-D transformation is reduced to a
cascade of two simpler transformations of reduced dimensionality. The spatial
dimensions of the 3-D spatiotemporal data set are processed first using a 2-D
spatial FT and the temporal dimension is processed using a high-resolution time-
domain spectral-estimation technique.

3.2.1 Frequency-Domain Trajectory Estimation

Consider a single point-object with velocity vector v=[vx v)_]T, where T is the
transpose operator, and initial position (x,.v,), moving along a line in the x-y
plane. The position (x,.v,) of the object at a particular point in time, or during a
particular frame n, is described by a set of two parametric equations,
{x,, SV N+ XY, =SV A+ Y, } where the n subscript indicates the integer frame

dependence on position. Each equation in the set represents a plane in 3-D
space-time and their intersection describes the trajectory of the object. The
trajectory is described by a 3-D function,

s(x, von) = 8(.r-v,n-x0)6(y-v_‘.n-yo) (3-1)

which represents the intersection of the two planes. The object’s spatiotemporal
representation is illustrated in Figure 3-1.
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Figure 3-1 Spatiotemporal-domain representation of a moving
point-object with velocity vector v = [vx v‘,]T and angle ¢.

The mixed-domain representation of the moving object is determined by
Fourier transforming the 3-D spatiotemporal representation with respect to only
its two spatial dimensions. Application of the continuous-space Fourier transform

to Equation 3-1 yields,

S(k' .k, ,n) = ]Ts(x, v,n) exp[i(k_,,t +k, _v) ]dxd_v
= explilk,x, +k,v,)] (3-2)
= exp[i(wrn+¢r ]
where w, =k v _+k v _is a temporal frequency and ¢, =k x, +k.y, is a phase off-
set.

The mixed-domain representation of Equation 3-2 can be interpreted as either
1) a time-sequence of sinusoidal images; or 2) a spatial-array of 1-D sinusoidal
time-sequences. At a particular moment in time, n is constant, and the mixed-
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domain representation is described by a complex-valued sinusoidal image (the
real part of a complex-valued image sequence is illustrated in Figure 3-4 and will
be discussed in the next section). This interpretation is suggested by the second
line of Equation 3-2. The spatial frequency components of the sinusoidal image
in the k.-k, plane are determined by the object’s displacement from the origin in
the x-y plane. Alternatively, at a particular point on the k.-k. plane, the temporal
variation in the mixed-domain representation can be described by a complex-
valued 1-D sinusoidal sequence in n. This interpretation is suggested by the third

line of Equation 3-2. The temporal frequency w, of the complex-valued time-
sequence is determined by the speed of the moving object and its phase off-set

¢, is determined by the object’s initial position.

The frequency-domain representation of the moving object is determined by
Fourier transforming the mixed-domain representation with respect to its
temporal dimension. Application of the discrete-space Fourier transform (DSFT)
to Equation 3-2 yields,

S(kr'k\*'w) = ;DTFT {S(kx'k\"n)}
iS(k,.k‘..n)exp(- iwn) (3-3)
=0

2r explig,)8(w-w,)

The frequency-domain representation is a complex-valued function of three

variables; its absolute-value squared at some point (k,,k,,a)) describes the

energy associated with that particular frequency triple. The energy of the moving
object in the frequency domain is confined to a plane in 3-D frequency space
defined by, kv +k v —-w=0. The plane passes through the origin and the
components of its slope along the two spatial frequency axes are equal to the

velocity components of the moving object. A plane is said to exist in frequency
space if the energy distribution is such that points on the plane have high energy
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(an ideal moving object has infinite energy as described by a &-function) and all
other points have low energy (zero energy in the ideal case). A moving object is
therefore represented as a line in space-time and a plane in frequency space.

3.2.2 Optical Implementation

A traditional optical Fourier processor calculates the power spectrum of an
input image. An interferometric optical Fourier processor calculates the real (or
imaginary) part of an image’s complex-valued spectrum, however, a phase-
shifting interferometer is required to measure both the real and imaginary parts at
the same time. The architecture of an interferometric optical Fourier processor is
much simpler if its reference does not have to be phase-shifted. In this section
the frequency-domain representation of a moving object is calculated assuming
that only the real part of the complex-valued spatial transform is calculated by the

optical processor.

Application of the discrete-space Fourier transform (DSFT) to the real part of
the mixed-domain representation of Equation 3-2 yields,

Sk, k. .w) =.F prer RSk, .k, .n))}
cos(@, ) F rer {cos(@,n)}—sin(8,) F prer {sin(w,n)} (3-9)
rexp(-ig )d(w+w,) + mexplig,)d(w-w,)

i

The energy of the Fourier transform is now distributed evenly between a pair of

planes in 3-D frequency space, k v_+k v t@=0. The two planes are illustrated

in Figure 3-2. Both planes pass through the origin and one is the refliection of the
other in the k.-k, plane; the slope of one plane is equal to the negative slope of
the other. One plane represents an object moving along a trajectory with velocity

vector v=|v, vr]T and the other represents an object moving along the same

path but in the opposite direction, v’ = [—- v, --v\,]T =-v.
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Figure 3-2 Frequency-domain representation of a moving point-
object when the temporal Fourier transform is applied to the real
part of the mixed-domain representation only.

An object will therefore have two temporal frequencies +w associated with
each point on the k.-k. plane. The two frequency-domain planes completely
define the moving object's path however its direction along the path is
indeterminate. It is not possible to determine the object’s direction because the
complex part of the spatial transform was lost.

3.2.3 Interpretation of the Mixed Domain

Consider two moving point-objects with the same velocity but different initial
positions, as shown in Figure 3-3. One object moves along a path from point A,
through points B, C, and D, to a final point E. The second object moves along a
primed path at the same velocity. Both objects move with a velocity of V2 units
per frame, along a path at —45° to the x axis. The non-primed object crosses the
origin of the x-y plane at point C, and the primed object crosses the x and y axes
at points D' and B' respectively.

it is illustrative to consider the real part of the mixed-domain representation as
a sequence of cosinusoidal images in time. These images are observable on the



SINGLE-OBJECT TRAJECTORY ESTIMATION 58

Figure 3-3 Moving object trajectories.

frequency space CRT (cathode ray tube) of an optical processor equipped with a
point-diffraction interferometer (PDI). The gray level of pixel (k,,k_,.) during frame
n corresponds to ‘R(S(k,.k‘,n)) where white represents a large positive value,
black represents a large negative value, and 50 % gray represents zero. The

lines of constant phase make an angle 6 = —atan(j—:) with the positive k. axis and

the period of oscillation perpendicular to these lines is 2=, where r, =\/x: +y? is

the moving object's displacement from the origin. The real part of the mixed-
domain representation of the primed and non-primed moving objects from Figure
3-3 are illustrated in Figure 3-4. The top sequence represents the object moving
along the non-primed trajectory and the bottom sequence represents the object
moving along the primed trajectory.

The non-primed object, illustrated in the top image sequence of Figure 3-4,
passes through the origin of the x-y plane. Because the derivative <¢ is zero, the

slope of the lines of constant phase does not change with time and @ =45° for all
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6=18" 8=0°
A. r.=vI10 Bl r=2

Figure 3-4 Real part of the mixed-domain representation of a moving object.
The top and bottom images sequences represent the trajectories of the two
objects shown in Figure 3-3.

images in the top sequence. The frequency of the 2-D cosinusoids across the
image sequence do, however, change with time. The angular frequency along a
line perpendicular to the lines of constant phase is equal to the object's
displacement r, from the origin. At position A, the object's displacement from the

origin is large, and consequently, the frequency of the cosinusoid is large. As the
object approaches the origin, the cosinusoid's frequency decreases, and
eventually equals zero at position C, when the object is at the origin. The
frequency increases again as the object moves away from the origin. A moving

object at (x,.y,), and it's reflection in the origin (- x,.~v,), have the same real

mixed-domain representation.

The primed object, illustrated in the bottom image sequence of Figure 3-4,
does not passes through the origin of the x-y plane. Now, both the cosinusoid's
angular frequency and the angle of its lines of constant phase are functions of
frame number. Two effects can be observed as the object moves from its initial
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position A' to its final position E'. As with the non-primed object, the 2-D
cosinusoid appears to expand as the object approaches the origin and then
appears to compress as the object retreats (this time the cosinusoid's frequency
doesn't reach zero because the object doesn't cross the origin). In addition to this
expansion and compression, the lines of constant phase will appear to rotate
about the origin of the spatial frequency plane. The rate at which the lines rotate
about the origin is inversely proportional to the square of the object's
displacement from the origin. As the object moves from its initial position A’ to its
final position E', the lines of constant phase appear to rotate in a clockwise
direction about the origin.

A moving point-object is represented in the real mixed-domain by a sequence
of 2-D cosinusoidal functions in spatial frequency space. The cosinusoidal
function can be interpreted as the interference pattem generated by a point-
object and a second point or pinhole at the origin. The frequency of the
cosinusoid along the direction perpendicular to the lines of constant phase is
equal to the object's displacement from the origin and the change in frequency
with time is equal to the object's velocity. Similar relationships between frequency
and position, and their first derivatives, hold for the frequency components along
the k. and k. directions. If the object passes through the origin of the x-y plane,
the lines of constant phase remain at a constant angle with the positive k. axis for
all n. If the object doesn't pass through the origin, the lines of constant phase
appear to rotate about the origin. The speed of rotation is inversely proportional
to the square of the object's displacement from the origin.

3.2.4 Accuracy and Aliasing

Under the mixed-domain approach to trajectory estimation, the images, from an
image sequence describing the motion of a point-object, are Fourier transformed
to produce a sequence of FT spectra. A set of frequency-domain points, selected

as uniformly spaced pixels on a circle of radius k™ on the k.-k, plane, are
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processed in the time-domain using a high resolution spectral estimation
technique called modified forward-backward linear prediction (FBLP). The radius
of this frequency-domain observation circle determines the accuracy of the
velocity estimates and the maximum velocity that can be estimated without
causing the temporal sequence to be aliased in time.

The energy of a point-object is uniformly distributed across the 2-D spatial
frequency plane. If the noise in the image sequence is assumed to be white, the
signal-to-noise ratio (SNR) for temporal signals observed at all pixels in the
frequency domain will be identical. The variance of all temporal frequency
estimates over the spatial frequency plane will also be identical. The most

accurate estimate of velocity is therefore determined when k7“ is large and the
temporal frequency estimate is also large. Knudsen has also shown that the
velocity and direction resolving capability of the algorithm are better when k7 is
large [Knu92c].

A pixel located at some critically large distance from the origin will observe a
signal with temporal frequency greater than the Nyquist rate (half of the frame

rate). This critical distance represents an upper bound on k7™* such that the

signal is not aliased in time. The temporal signal observed at a point (k,,k‘_) on

the spatial frequency plane, due to an object moving with velocity [vx v‘.]T. will

not be aliased in time if the absolute value of the normalized temporal frequency

w, =k v +k v is less than r. The maximum possible velocity of the target sets

an upper limit on k7", which maximizes the accuracy and resolving capability of

the trajectory estimate, and guarantees that the temporal signal is not aliased in
time. The velocity of the target is not known a priori, however, it is assumed that
the maximum possible velocity is known. The maximum absolute value of the
normalized temporal frequency must be less than or equal to # in order to avoid
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aliasing. This sets a limit on the sum of the products of the spatial frequency
components and the velocity components,

| = |kyv +ky,| < 7 (3-5)

The spatial frequency-domain Cartesian coordinates can be recast in polar
coordinates, k =k, cosg§, and k =k, sin6,, where k, represents the radial
distance from the origin of frequency space to the spatial frequency (k,.k,) and
6, represents the azimuthal angle measured from the k,  axis. Similarly, the
velocity components of the moving object can be recast in polar coordinates,
v_=vcos¢ and v_=vsing, where v is the object’s speed and ¢ is its direction.

Rewriting Equation 3-5 in polar coordinates yields,

Iw,l = k,v|cos(¢-0k)| < (3-6)

The absolute value of ®, is maximum on the .-k, plane for spatial frequencies
on a line inclined at 6, =¢ . Spatial frequencies on this line will have associated
with them a temporal frequency equali to k,v while spatial frequencies not on the
line will be associated with frequencies less than k,v. The product of radial
spatial frequency and object velocity must therefore be bound by, k v<r, in

order to ensure than the absolute value of the temporal frequency is never
aliased. In general, for the most accurate estimate of speed, k, should be

selected to be as large as possible. The maximum possible value of an object,

therefore determines the optimum radius of the spatial domain observation

.
L marc *

circle,

k rcirclt = L (3-7)
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The spatial frequency-domain radius k™ is selected using Equation 3-7
based on the a priori maximum possible velocity for a particular class of moving
targets. The relationship between spatial frequency-domain radius and maximum
target velocity is illustrated in Figure 3-5. The accuracy and resolving capability of

the trajectory estimate is proportional to k7", however, the maximum detectable

velocity is inversely proportional to k<.

The situation is somewhat more complicated for large objects. The frequency-
domain representation of a large object is expressible as the product of its 2-D
spatial FT and the frequency-domain representation of a point object [Cho97,
Knu92a]. The energy of a large object is therefore concentrated around the origin
of the 2-D spatial-frequency plane rather than being uniformly distributed over the
entire plane. Specifically, the energy of a disc-shaped object of radius y is

concentrated in a region of radius 7', centered around the origin. The

frequency-plane observation points must lie within the region of concentrated
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k<™ and maximum target speed v

mac *



SINGLE-OBJECT TRAJECTORY ESTIMATION 64

energy in order to observe a temporal signal of high SNR, and consequently, the

object's spatial extent also sets an upper limit on the choice of radius k7. It is
desirable to chose k/™“ such that k/™* <%. The majority of a typical object's
energy is concentrated within a circle of radius £rad [Knu92a]. In general, it is

desirable to choose radius k““ to be as large as possible without causing

temporal aliasing and without leaving the region of concentrated energy.

3.3 EXPERIMENTAL

The hybrid optical-digital signal processing system for trajectory estimation is
shown in Figure 3-6. An image sequence describing the linear motion of a single
point-object is generated by a personal computer (PC). The images are written in
sequence to a binary SLM in the front focal-plane of a Fourier transform lens
(FTL) and the power spectrum of the image sequence is detected by a CCD
camera in the back focal-plane. The real part of the mixed-domain signal in the
back focal-plane is extracted by interfering it with a plane-wave reference
generated using the point-diffraction method (see Section 2.5). A set of T points
from the real spectrum is processed in the time domain using a high-resolution

spectral-estimation technique.

The SLM is an electrically-addressable 320x200 pixel twisted-nematic liquid
crystal display (TN-LCD) with an 80x90 um pixel pitch and 30 Hz frame rate. The
device was removed from a model LC500 Epson Crystal Image video projector
[Mor86]. The TN-LCD has been characterized by several research groups (Kir91,
Kir92, Gor94, Sou94a, Dou96, Kno96, Lan96a, Sta98] for various SLM optical
computing applications. Its has been employed in both the input and filter planes
of several optical correlators [Ama90, Cla92, Gor94, Sta98] and by the author in
an optical Fourier transform processor [Lan96a, Lan97a).

The He-Ne laser beam shown in Figure 3-6 is passed through a spatial filter
and beam expander assembly, composed of objective lens L1 (20X objective,
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Figure 3-6 Block diagram of the optical Fourier processor with point-diffraction
interferometer (single-pixel reference).

£1=8.3 mm), pinhole aperture PH (¢=25 um diameter), and collimating lens L2
(achromatic doublet, ;=175 mm), to produce an expanded and filtered beam
approximately 2w;=10 mm in diameter. The SLM is sandwiched between a /2
phase plate and a linear polarizer (analyzer) which are rotated such that the SLM
operates as an amplitude modulator. The modulated light distribution in the plane
of the SLM is Fourier transformed by lens FTL (~125 mm) and its resulting
intensity spectrum is measured by a CCD camera located in the back focal plane

of the lens.

The SLM was used as a phase modulator in order to simplify the architecture
of the optical processor and reduce the number of components. It is well known
that the optical efficiency of an LCD is maximum when it is operated in a phase
rather than an amplitude modulating mode. A pure phase correlation filter can
have an optical efficiency of 100% in an optical correlation system [Hom82].
Operating the SLM as a phase rather than an amplitude modulator in the front
focal-plane of the optical Fourier processor offers both advantages and
disadvantages. It can be shown that the intensity of the interferogram produced
by two pixels, modulated to have maximum phase contrast with respect to the
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background, is 4 times larger than if the pixels were amplitude modulated with
infinite contrast. The efficiency of the Fourier processor is increased by a factor
of 4 and its sensitivity to noise is reduced. While the intensity of the interferogram
is increased by a factor of 4, the DC component of the spectrum is increased by
several orders of magnitude. The enormous increase in the intensity of the DC
component would necessitate some kind of DC block in the back-focal plane of
the lens and additional relay optics to image the intensity spectrum onto the
plane of a detector. A four-fold increase in interferogram intensity could not be
justified by the additional hardware required for a DC block and relay optics, and
consequently, the LCD was operated in an amplitude rather than phase
modulating mode.

The trajectories of several single-pixel objects were estimated experimentally
using a two-stage process. The image sequence describing the motion of a
moving object was optically processed first at 1/3 video frame rate by writing a
series of three images derived from each image frame to the SLM and recording
their power spectra. For each frame in the sequence, the power spectrum of the
image frame, that of the reference, and the interferogram produced by combining
the two, were measured by the CCD camera (a 1/2 video frame rate could have
been achieved by measuring the power spectrum of the reference image only
once at the start of the optical processing). The sequence of spectra were then
post-processed off-line using MATLAB to estimate the trajectory of the object.
The power spectra and interferograms were measured sequentially during the
experiments, however, a parallel implementation would be more attractive on an

actual real-time system.

A target animation and data acquisition flow chart is shown in Figure 3-7. All

trajectories were 64 frames in length, however, the initial position (x,,y,) and
velocity v = [\ v, ]T changed with each experiment. The complex FT of the image

sequence was extracted from the power spectra by interfering the signal with a
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Figure 3-7 Target animation
and data acquisition flow chart.
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plane-wave reference. The power spectrum of each frame was recorded by the
CCD camera, with and without the plane-wave reference, so that the real part of
the FT could be extracted from the power spectra. The reference was generated
using the point-diffraction technique by employing Equation 2-19 (see Section
2.5) where the center pixel on the SLM was reserved for reference generation.
When the reference pixel was on, it generated an approximation to a plane-wave

reference in the frequency domain.

A post-processing and trajectory estimation flow chart is shown in Figure 3-8.
The trajectory of the targets were estimated every 5™ frame starting with the 25"
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frame and the estimation interval was D =25 frames. Only selected points from
the power spectra were used in the estimation. A set of 7 =12 uniformly spaced

points Q={k,.k,.....k, Ik, =(k..k,)} were chosen on a circle of radius k"

around the origin. The real part of the FT at each point k, for all N frames is

calculated by subtracting both the power spectrum of the signal, and that of the
reference, from the power spectrum of the signal and the reference.

A series of T length-N data vectors u,, one for each point k,, were constructed
from the sequence of real spectra. The temporal frequency of the sinusoid
contained in each data vector was estimated using the modified forward-
backward linear prediction (FBLP) algorithm [Tuf82]. A summary of the algorithm
is presented in Appendix B. It was employed in this dissertation to be consistent
with the spectral estimation technique employed by the authors of the original
trajectory estimation algorithm and therefore facilitate comparisons between it
and the present optical implementation. Investigation of other parametric spectral
estimation methods, in particular the MUSIC technique [Schm86] proposed by
Schmidt, was outside the scope of this dissertation.

The frequencies of length D vectors extracted from the iength-N vectors were
estimated every 5™ frame. The signs of the temporal frequency estimates are
undetermined because only the real part of the optical signals were processed.
One of two possible directions for the object is arbitrarily chosen (this
corresponds to choosing one of the planes described by Equation 3-4). The signs

are assigned to the T frequency estimates such that each point (k,,,) lies on
the same plane through the origin. The T data points are used in a least squares

fit for the plane k v +k v, —w=0 parameterized by the velocity v= [vr v‘.]T. The

speed and direction are then estimated as ¢= /v +v} and ¢= atan(:—:).
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3.4 RESULTS AND DISCUSSION

The velocity components of 13 trajectories were estimated in two sets of
experiments. During the first set of experiments, targets with different speeds
were moved along a straight line at -27° to the x axis. During the second set of
experiments, targets with a speed of either 1 or J2 ppf (pixels per frame) were
moved along paths at 0, +45. £90. £135, and 180° to the x axis. The targets were
single pixels of maximum contrast on a uniform black background. The duration
of each trajectory was 64 frames. The velocity components were estimated every
5™ frame starting with the 25" frame and the observation interval was 25 frames
in order to be consistent with estimation frequency and interval employed by

Knudsen and Bruton.

3.4.1 Speed Estimation

The trajectories used in the speed experiment are shown in Figure 3-9. Objects
were moved along a line at -27° to the x axis for a duration of 64 frames. The
slowest object moved at 0.56 ppf along the shortest trajectory A-A’ (36 pixels) and

x by
D

Figure 3-9 Speed experiment actual trajectories.
The duration of each trajectory is 64 frames and the
lengths ranged from 36 pixels (trajectory A-A’') to 282
pixels (trajectory D-D').
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Figure 3-10 Speed estimation for targets moving with velocity 0.56, 1.12,
2.24. and 4.47 ppf.

the fastest object moved at 4.47 ppf along the longest trajectory D-D' (282 pixels).
The objects' speeds were estimates every 5" frame. These estimates, starting
with the 25" frame, are shown in Figure 3-10. The actual target speed, the
average speed estimated over the duration of motion (average of 9 estimates),
and the percent errors are summarized in Table 3-1 for each trajectory. The

radius £"“ of the frequency-domain observation circle was set to 0.75x, 0.57r,
0.26m, and 0.09r rad for the 0.56. 1.12. 2.24. and 4.47 ppf targets, respectively, in
order to maximize the accuracy of the estimation. The speed of the fastest target

could not be accurately estimated with the smallest radius k" =0.097 rad .

The average target speed was correctly estimated to within 4 % of its actual
value except for the fastest moving object which could not be accurately
estimated. The standard deviation of the average speed estimate for the fastest
moving object (4.47 ppf) in Table 3-1 is more than an order of magnitude larger
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Table 3-1  Actual and Estimated Speeds

Radius Actual and Estimated Speeds
Trajectory ) R
k™" [rad) v [ppf] v [ppf] % Error
A-A’ 0.75n 0.56 0.58 £0.03 3.67
B-B’ 0.57rn 1.12 1.12+£0.01 0.50
c-C 0.28n 2.24 2.20+£0.08 1.42
D-D’ 0.09n 447 3.69+1.32 17.50

than that for the slower moving objects. Figure 3-10 shows that the speed
estimates at the end-points (frames 25, 60, and 64) of trajectory D-D' are much
less accurate than the mid-point estimates (frames 30 through 55). This effect is
also observable to a lesser extent in trajectory C-C'. The first and last speed
estimates (frames 25 and 64) are significantly lower than the other estimates
(frames 30 through 55).

The trajectory of the fastest moving object (trajectory D-D', 4.47 ppf) could not
be accurately estimated due to the poor contrast ratio of the SLM. Equation 3-7
suggests a radius k™ < 0.197rad for targets moving at 447 ppf. The DC
component of the light distribution incident on the SLM, due to its relatively poor
contrast, is concentrated in a region about the origin of the spatial frequency
plane. The DC component is much larger than the signal of interest and tends to
dominate the intensity measurements even 0.09x rad (2 detector pixels) from the
origin. Incorrectly collimated light exiting from the beam expander may have
caused the DC component to be larger than necessary. The large DC spike at
the origin reduces the SNR of the temporal frequency estimates and causes a
large deviation in speed estimates at all frames.

Two factors can be identified which cause the accuracy of the speed estimates
to be reduced during the end-points of trajectories C-C' and D-D'. The SLM is
iluminated with a beam of Gaussian intensity profile. Targets near the middle of
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their trajectory generate a stronger signal in the spatial-frequency plane than
targets at the end-points of their trajectory. The SNR of the temporal-frequency
estimates will be largest for a target on its closest approach to the origin and
results in the most accurate estimate of its speed.

The accuracy of the speed estimates at the end-points of the trajectory aiso
depends on the MTF (modulation transfer function) of the CCD camera. Figure
3-4 showed that the frequency of the 2-D cosinusoidal signals observed in the
spatial frequency plane is proportional to the object's displacement from the
origin of the SLM. It becomes increasingly difficuit for a CCD camera with finite
pixel size to resolve the cosinusoidal intensity variation as the object moves
farther from the origin of the SLM. The SNR of the temporal frequency estimates
and the speed estimates therefore decrease as the object moves farther from the

origin.
3.4.2 Direction Estimation

Objects were moved along paths at 0. +45, +90, £135, and 180° to the x axis at

either 1 or V2 ppf . Trajectories parallel to a coordinate axes were 64 pixels long

(1 ppf) and diagonal trajectories were 90 pixels long (~/2 ppf ). Direction estimates
at every 5" frame starting with the 25" frame are shown in Figure 3-11. The
actual target direction, the average direction estimated over the duration of
motion (average of 9 estimates), and the absolute error are summarized in
Table 3-2 for each trajectory. The radius of the frequency domain observation

circle was k"' =0.57 rad .

As illustrated by Table 3-2, the average target direction (up to a reversal of
180°) was correctly estimated to within 3° for each direction experiment. The
trajectory estimation system is capable of estimating the trajectory of an object
(or path described by an object) but not the direction in which the object moves
along the path. The present implementation is unable to determine the direction
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Figure 3-11 Direction estimation for targets moving on paths 0, +45, +90,
+135. and 180° to the x axis.

because only the real part of the mixed-domain signal is extracted from the
spatial frequency plane. The accuracy of the direction estimations appears to be
constant for all frames. The length of the direction trajectories (either 64 or 90
pixels) falls between the length of speed trajectories B-B' and C-C' (71 and 141
pixels respectively) which also show little or no variation.

3.4.3 Estimation Accuracy

The estimation accuracy is largely determined by the observation radius k. In
general, the larger the observation radius, the more accurate the estimate; the
choice of k", however, is limited. The lower bound of k™" is determined by

the contrast ratio of the SLM and the upper bound is determined by the maximum
speed of the target. The speed and direction of a target moving along trajectory
C-C' (-27° to the x axis with a velocity of 2.24 ppf) were estimated using various

observation radii 0<k““ <z rad. The relationship between frequency-domain
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Table 3-2 Actual and Estimated Directions

Speed Actual and Estimated Directions
Trajectory - ~
v [ppf] ¢ [deg] é [deg] 04| [deg)

I-r 1 0 1.22+£0.31 1.22
J-J 2 45 45.58 +0.26 0.58
K-K' 1 90 -88.63 £ 041 1.37
L-L 2 135 4391 +0.14 1.09
M-M’ 1 +180 2.20+£093 2.20
N-N’ 2 -135 4561 £0.14 0.61
0o-0O 1 -90 -88.91 £0.30 1.09
P-P’ 2 -45 -43.90£0.16 1.10

radius £““ and observed estimation accuracy is illustrated in Figure 3-12. The

absolute speed and direction errors appear to be minimized when k" =0.28 rad
which corresponded to 6 detector pixels.

The maximum radius suggested by Equation 3-7 for a target moving at 2.24
ppf is 045 rad. The figure shows that the absolute speed and direction error
increase gracefully when k" >0.38rad. As the radius increases beyond 0.38

rad, the temporal frequencies estimated at specific points on the spatial-domain
observation circle begin to alias; all points on the circle do not alias at once. As

k' increases further, the number of aliased points on the circle increases, and
consequently, more of the triples (k,.k,.w) used to fit the plane through the origin

of 3-D frequency space become outliers. The trajectory estimation accuracy
therefore degrades gracefully as k™" increases and more triples become

outliers. An adaptive algorithm could be implemented to flag the outliers (those
that are aliased) or choose altemate frequency-domain points such that the
temporal frequency is not aliased. The absolute errors also increase gracefully
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Figure 3-12 Relationship between absolute estimation error and
frequency-domain radius k<.

for k" <0.19rad because of the large DC spike centered on k™ =0 due to

the poor contrast ratio of the SLM.

3.4.4 Multiple-Object Trajec tory Estimation

The problem of multiple moving-object trajectory estimation is addressed in
Chapter 5. The extension to multiple objects does not change the requirements
of the spatial-domain (optical) processor, however, the time-domain (electronic)
processor must detect and estimate the frequencies of an arbitrary number of
sinusoidal components. The number of moving objects can be detected by
estimating the median number of sinusoids present in the temporal data vectors.
The original Knudsen and Bruton trajectory estimation algorithm employed the
minimum descriptor length (MDL) criterion [Wax85] to detect the number of
sinusoids, however, other techniques have also been proposed, most notably,
the information-theoretic criterion (AIC) [Aka74] of Akaike. The number of moving
objects was known a priori by the trajectory estimation systems demonstrated in
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this dissertation (the number of sinusoids were not detected using either the MDL
or AIC criteria). Except for the case of very high signal-to-noise ratios, detecting
the number of sinusoids in a noisy time series is not a trivial problem and an
investigation into the most effective approach was outside the scope of this
dissertation. After the number of sinusoidali components has been determined,
their frequencies are estimated using the modified FBLP technique [Tuf82] or a
similar parametric spectral estimation method.

3.5 CHAPTER SUMMARY

The frequency and mixed-domain methods of trajectory estimation were
reviewed in the first part of this chapter. Under the frequency-domain approach, a
3-D spatiotemporal data set is Fourier transformed into the 3-D frequency
domain. A single point-object moving in space time is represented as a plane
through the origin in 3-D frequency space. Multiple objects moving along different
trajectories each have their own plane in frequency space. The velocity of a
moving object can be determined by estimating the slope of its frequency-domain
plane. Under the mixed-domain approach, the 3-D Fourier transform is reduced
to a 2-D spatial Fourier transform (calculated by an analog optical processor in
this work) followed by a time-domain spectral estimation technique (digital

electronic processor).

A hybrid optical-digital trajectory estimation system was presented. The
system was designed for the trajectory estimation of small, high-contrast, moving
objects of unknown position and velocity. The system used an optical Fourier
processor and point-diffraction interferometer to caiculate the frequency domain
representation of moving objects from which their trajectory was estimated using
conventional electronic processing techniques. The capabilities of the processor
were verified in two different sets of experiments. The velocity components of
several targets were estimated by moving them at different velocities along the
same path, and then at (almost) the same velocity along different paths.



SINGLE-OBJECT TRAJECTORY ESTIMATION 78

The frequency-domain observation circle radius determines the maximum
detectable speed and the overall accuracy of the estimate. When the observation
radius was chosen to maximize the accuracy, the target velocity was estimated
to within 4 % of its actual value, except for the fastest target moving at 4.47 ppf.
Target direction was estimated to within 3° of its actual value. It was observed
that the resolution and MTF of the CCD array in the Fourier plane determine the
maximum displacement of a target in the x-y plane.

The objective of this chapter was to demonstrate a hybrid optical-digital
moving-object trajectory estimation system which implemented the Knudsen and
Bruton mixed-domain algorithm. The system was limited to single point-objects
moving over a maximum-contrast background in a noise-free environment. The
system provided a useful interpretation of the mixed-domain approach as a
dynamic interferogram produced by a moving target pixel and a stationary
reference pixel. This interpretation is not intuitively clear when the algorithm is
implemented in software alone, or when more than one target is present,
however, it is very natural to an optical implementation with a single moving
object. The practical disadvantages of this system are obvious and they are
addressed in the following chapters.



CHAPTER

Joint Transform Interference

A moving-object trajectory estimation system was constructed and demonstrated
in the previous chapter. The system employed an optical Fourier processor and
point-diffraction interferometer to calculate the Fourier spectra of a sequence of
image frames. The point-diffraction method of coherent detection recovered only
the real-part of the complex-valued Fourier transform spectra and restricted each
image frame in the sequence to a single pixel.

The subject of this chapter is a new method of coherent detection called joint
transform interference (JT1). The novel technique extends and improves upon the
point-diffraction method and provides two significant advantages: 1) the power of
the source and reference images can be easily matched in order to maximize the
SNR of the Fourier transform spectra; and 2) both the real and imaginary parts of
the complex-valued amplitude spectrum are recoverable. An improved trajectory
estimation system which employs the JTI method of coherent detection is
demonstrated in Chapter 5. The new system correctly estimates the full trajectory
(speed and direction over 360°) of multiple objects of arbitrary size and shape
moving over cluttered and noisy backgrounds.

79
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4.1 INTRODUCTION

The JTI (joint transform interference) technique is a multi-point extension of the
point-diffraction metﬁod of coherent detection. It is based on the interference
between the Fourier spectra of two images — the Fourier transform (FT) of a
reference image is interfered with the FT of a source image in the plane of a
square-law detector. This is in contrast to the point-diffraction method where the
FT of a single pixel is interfered with the FT of a source image; in JTI the
reference is an image rather than a single pixel. The amplitude of the reference
image can be increased in order to match its power with that of the source. In
addition, the spatial extent of the reference image can be increased such that the
source and reference powers are matched. When the source and reference
image powers are matched, the fringe visibility of the interferogram is optimized,
the most effective use is made of the detector’s limited dynamic range, and the
SNR is maximum. A joumnal paper describing the novel JTI method of coherent
detection is in preparation and will be submitted for publication shortly [Lan99d].

4.1.1 Phase-Shifting Interferometry

The real (or imaginary) part of an optical wavefront can be determined by
interfering it with a known reference, however, a phase-shifting technique is
required to detemmine both at the same time. Phase-shifting interferometry (PSI)
is often employed to characterize the quality of an optical element (a lens or
mirror for example) by measuring the phase distortion added by the element to
an undistorted source wavefront [Mal91]. A time-varying phase shift is generally
introduced between the source and reference wavefronts in an interferometer to
produce a time-varying interferogram. The interferogram time-sequence is then
post-processed on a point-by-point basis to determine the phase and magnitude
of the distorted wavefront. The time-varying phase shift is usually introduced by
mechanically translating one of the mirrors in a two-path interferometer using a
piezoelectric transducer. The technique of PSI has also been demonstrated in a
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common-path point-diffraction interferometer [Kad94, Mer94, Mer96] using a
liquid crystal modulator to introduce the phase shift (see Section 2.3.4).

The JTI method introduced in this chapter employs a phase-stepping
technique to determine the real and imaginary parts of a source wavefront. The
phase shift is introduced by transiating the source and reference images in the
front focal-plane of a FT lens. The mutual source-reference displacement in the
spatial domain corresponds to a phase shift in the frequency domain. In
conventional PSI, arbitrary source wavefronts are interfered with phase-shifted
reference wavefronts and the phase shift is introduced directly. Under the JTI
method, the FT of an arbitrary source image is interfered with the phase-shifted
FT of a known reference image and the source-reference phase shift is
introduced by mutually displacing the source and reference images. A quadrature
reference is required to extract the complex amplitude of the source image FT.
The real part is extracted by interfering the source image FT with the in-phase
component and the imaginary part is extracted from the interferogram generated

with the quadrature component.

4.1.2 Spatial Modulation

The interferograms generated by the JTI technique are very similar to Gabor
holograms, specifically Fourier-transform Gabor holograms. The holograms first
recorded by Gabor were in-line holograms as opposed to the more practical side-
band holograms recorded later by Leith and Upatneiks [Ban91]. Gabor recorded
holograms of semitransparent objects so that the quiescent light transmitted by
the object could be employed as a common-path reference beam. Light incident
on the object was diffracted by it to produce the object beam, and at the same
time, transmitted through it to provide the reference beam. The real and virtual
images reconstructed from a Gabor hologram have the same optical axis and
consequently the images overlap in space.



JOINT TRANSFORM INTERFERENCE 82

This practical disadvantage was corrected by the Leith-Upatneiks hologram
which is recorded and reconstructed with appropriate beams inclined with
respect to the object beam. The inclination between the two beams causes an
intensity grating or spatial carrier to be recorded on the photographic film. The
spatial carrier is modulated by the amplitude and phase information encoded in
the object beam. When the Leith-Upatneiks hologram is reconstructed, the
spatial-carrier grating diffracts the real and virtual images along different axes,
and the two images are spatially separable.

The interferograms produced by the JTI technique are very similar to Gabor
holograms, however, the source and reference beams incident on the detector
are typically inclined at a very small angle (the angle subtended by one or two
pixels). This source-reference inclination, introduced by design to provide a linear
phase shift in the frequency domain, results in the sinusoidal modulation of the
interferogram. The spatial period of the modulation is much less than that of the
sinusoidal grating (spatial carrier) observed in a Leith-Upatneiks hologram (the
period of modulation introduced by a single-pixel source-reference displacement
is equal to the width of the zero-order spectrum). The effect of the modulation
can be removed by demodulating the JT1 interferograms.

The fundamental principles of JTI, appropriate to either a gray scale or binary
SLM, are presented in Section 4.2 of this chapter. Section 4.3 describes how the
JTI technique is implemented on a binary SLM. Five classes of JTI are identified
and the algorithms required to determine the real and imaginary parts of a source
image FT are presented. The effect of reference image symmetry is discussed in
Section 4.4 and a simple example of the JTI method is presented graphically in
Section 4.5. The functional form of the interferogram modulation terms and their
zeros are presented and discussed in Section 4.6. The conditions required and
expressions for optimal source spectra SNR are derived and presented in the

final section.
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4.2 PRINCIPLE OF JT1

The basic principle of JTI (joint transform interference) is simple: the interference
pattern produced by a source image and reference image, mutually displaced on
the same SLM, is detected by a square law detector in the back focal plane of a
lens. The Fourier transform (FT) of the source and reference images produces
an interferogram which contains terms proportional to the real and imaginary
parts of the source image FT. The real and imaginary parts can be isolated by
adding and subtracting interferograms generated with different source-reference

mutual displacements.

Consider the joint FT of the source image s(x,y) and the reference image

r(x.v) illustrated in Figure 4-1. The source is written to the SLM at position

A source, s(x.v)

y \
\ reference, r(x.y)

P.-P:

P;

P.

X

Figure 4-1 Construction of a joint image from a source and
reference image.
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p. =(x..v,), the reference is written at position p, =(x,,v,), and the mutual
displacement between the two is given by p. —p,. A composite source-reference

image and its joint FT can be expressed as an FT pair,
sb-p,) + rlp-p,) o  explik-p,)Sk) + explik-p,)RK)  (4-1)

where p=(x.y) and k =(k_,.k\.) represent the spatial, and spatial angular

frequency dependence, respectively. The joint power spectrum detected by a
square-law detector in the back focal-plane of the lens is given by,

1,(k)+ 1, (k)+2R(exp(ig) S(k)R" (k))
1.(k)+1,(k)+2[cos ¢ R(Sk)R" (k))-sin ¢ S(Sk)R" (k))]

LK) w2

where 1 (k)=|S(k)|" and I, (k)=|R(k)|" represent the power (or intensity)
spectra of the source and reference, respectively, ¢ =k-(p, —-p,) is the phase
difference introduced by the displacement, and the interference term has been
expanded using the relationship R(z,z,)=R(z, R(z,)-3(z,)3(z,). The ¢ subscript
on /,(k) denotes the mutual displacement dependence between source and
reference images. The joint power spectrum is the sum of three terms: 1) the
power spectra of the source image; 2) the power spectrum of the reference

image; and 3) an interference term which contains the real and imaginary parts of
the source and reference images. The real and imaginary parts of the complex
spectrum SR’ are cosine and sinusoid modulated, respectively. The spatial
frequency of the modulation is proportional to the displacement of the source and

reference images.
It is possible to recover the real and imaginary parts of SR° from two
interference spectra /,(k) and /_(k) designed to have opposite phases. The

real part is extracted by adding the two interference spectra, subtracting the
individual power spectra, and dividing by the cosine modulation term,
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k) + I,0k) — 21(k) - 2/(k)

4cos¢ (4-3)

R(SE®)R"(k)) =

Similarly, the imaginary part is extracted by subtracting the two interference
spectra and dividing by the sine modulation term,

L&) - 1,(k)

3(Sk)R (k) = rree

(4-4)

if the reference image is designed such that R'(k)=1, then the real and
imaginary parts of the source image are described by the right-hand sides of
Equations 4-3 and 4-4 exactly. When R’(k) is a function of spatial frequency, it
must be moved to the right-hand side of the two equations in order to isolate the
real and imaginary parts of the source spectrum. If the frequency-domain
reference is pure real (even reference image) or pure imaginary (odd reference
image), the reference tem R’(k) can be moved directly from the left-hand sides
of Equations 4-3 and 4-4 to the respective denominator of the right-hand side. If
the frequency domain reference is complex the equations are more involved (see
Section 4.4).

4.3 JOINT TRANSFORM INTERFERENCE ON A BINARY SLM

The JTI principle discussed in the preceding section is directly applicable to a
grayscale SLM. The method must be extended however if a binary SLM is
employed. The joint image is composed of a source image and a mutuaily
displaced reference image. The source and reference images can be directly
added and written to a grayscale SLM if their sum does not exceed the dynamic
range of the SLM (an SLM with (b+1) bits of quantization is required if both the
source and reference images are quantized with b bits of dynamic range). The

sum of a binary source and a binary reference will exceed the dynamic range of
a binary SLM. In order to realize the JTI method on a binary SLM, the source and
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reference images must be interleaved rather than summed. The disadvantage to
this simple solution is the reduction in the effective space-bandwidth product of
the SLM.

On a binary SLM with square pixel structure, the source and reference images
may be interleaved either horizontally, vertically, or diagonally. Consider, for
example, a horizontal row-interleaved (or interlaced) configuration analogous to
the even and odd fields of an NTSC (national television systems committee)
video frame. When the source and reference images are displayed as the even
and odd fields, respectively, the source resides in the even lines of the joint
image and the reference resides in the odd lines. This composite frame could be
referred to as an even-interlaced joint image. Similarly, when the source and
reference images are displayed as the odd and even fields, respectively, the
resulting composite frame could be referred to as an odd-interlaced joint image.
The real part of the FT of the source image can be extracted from the sum of the
joint power spectra of the even and odd-interlaced images. Similarly, the
imaginary part of the FT of the source image can be extracted from the difference
of the two joint power spectra.

Expressions for the JT!| spectra, produced by various source and reference
image configurations, are derived and presented in the remainder of this section.
In general, a 2M x2N joint image written to a binary SLM is composed of four
M x N component images, each of which is either a source, reference, or zero
image. A single source image, a single reference image, and two zero images
may be interleaved vertically, horizontally, or diagonally. Multiple source and
reference images may also be interfered by constructing the appropriate joint
image such that it contains exactly four components. The JT| spectra for each
major class of joint image and the algorithms to extract the real and imaginary
parts of the source are presented in this section. Expressions for the JTI spectra
of all possible joint images and their algorithms are summarized in Appendix C.
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In order to accommodate all possible single-pixel mutual displacements
between source and reference images, the 2M x2N pixels of a binary SLM are
grouped into an M x N array of 2x2 pixels cells. The set of corresponding pixels
from each cell are assigned its own M xN component image which can be either
a source, reference, or zero image (for example, the top-right pixel of each cell
would display one of the four component images). The pixel-mapping from
component images t(m.n), u(m.n), v(im,n), w(m.n), to joint image f(m.n) for

M = N =2 is illustrated in Figure 4-2.

The joint image is constructed mathematically by upsampling each component
image and then summing unit-shifted versions of the upsampled images. The
component images are upsampled by inserting rows and columns of zeros
between each row and column of valid pixel data. If t(m.n) is an M xN image
sequence, it's twice upsampled representation is a 2M x2N image sequence

described by,

{ t(2.2) n.m even (4-5)

0 otherwise
where m=0.1.2.....,2M -1, and n=0,1,2,....2N-1. The 2M x2N composite

image sequence f(m.n) illustrated in Figure 4-2(b) is then described by,

f, (m.n) = t(m.n)+ia(m-1.n)+v(m-1Ln-1)+w(m.n-1) (4-6)

where the subscript on the joint image represents the spatial position of the four
component images (the subscript notation is in a raster-image coordinate system
where the x and m axes increase from left-to-right and the y and n axes increase
from top-to-bottom). If the discrete space Fourier transforms (DSFTs) of the
original images are given by T(k), U(k), V(k), and W(k), where k=(k_k_)

represents the spatial angular frequency dependence, the DSFTs of the
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(b) joint image. fim.n)

Figure 4-2 Component images shown in part (a) are
assembled to construct the joint image shown in (b).

upsampled images are given by T(2k), U(2k), V(2k), and W(2k), respectively
[Str96, p. 93]. The upsampling operation stretches the component images in the
spatial domain by a factor of two; the spatial-domain expansion corresponds to a
frequency-domain contraction by a factor of two. The DSFT of the joint image is

then given by,
F (k) = T(2k) + explik, )U(2K)

(4-7)
+ exp[i(k,+k_‘.)]V(2k) + exp(ik).)W(Zk)
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and its power (or intensity) spectrum is given by,

2

I, &) =

LU

F, (k)

w v

(4-8)

The general intensity spectrum described by Equation 4-8 consists of 16
complex-valued terms which sum to a real-valued intensity. Expressions for
various JTI spectra can be derived by setting each of the four general component
spectra in Equation 4-7 to either source spectrum S(2k), reference spectrum
R(2k), or zero, and then reducing Equation 4-8 to an interference equation form.
For example, the expression for the JTI spectrum produced by a non-shifted
source, T(2k)=S(2k), and a right-shifted reference, U(2k)=R(2k), where the

other two images are set to zero, W(2k)=V(2k)=0, would be expressed by,

I. (k) = |S(2k) + explik )R(2k)]®
00 (4-9)

= I. + I, + 2[cos(k_,)°ﬁ(S ) + sin(k,)3(s )]

< r

where /. and I, represent the power spectra of the source and reference
images, respectively. The frequency space dependence 2k =(2k, .2k, ) has been

omitted from both the power spectra and the real and imaginary parts of the

complex function SR* to improve the clarity of the interference equations.

The JTI spectrum in Equation 4-9 represents the interference pattemn
produced by a joint image composed of a non-shifted source image and a right-
shifted reference image. The expression for the interference pattemn is identical to
the standard interference equation. It has three components:

1) the power spectrum of the source image,
2) the power spectrum of the reference image; and

3) and interference term given by two times the sum of a cosine modulated
R(SR*) and sine modulated 3(SR").
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The modulating functions which pre-multiply the real and imaginary parts of
the complex function SR" are due to the mutual source-reference displacement in

the spatial domain.

All JTi spectra presented in this section will have a simple three component
form characteristic of the interference equation. in the example presented in
Equation 4-9, the sinusoidal modulation terms are simple trigonometric functions,
however, for more complicated JT| spectra, the sinusoidal modulation functions
become more complicated, but the general form of the interference equation is
still evident. The real and imaginary parts of SR" are always modulated by terms

composed of cosine and sine functions, respectively.

Several classes of JTI spectra can be identified depending on the mutual
source-reference displacement (horizontal, vertical, or diagonal) and the number
of interfering source and reference image components. Five classes of JTI
spectra and the algorithms used to extract the real and imaginary parts of SR’
are derived and presented in the following sections. Expressions for the JTI
spectra of all possible joint images and their algorithms are summarized in

Appendix C.

4.3.1 Horizontal and Vertical JTI

A single source image is interfered with a single reference image. The source
and reference images are interfered with respect to a line which can be either
horizontal or vertical. If the source is displaced to the left or right of the reference,
the interference is called vertical JTI, however, if the source is displaced above or
below the reference, it is called horizontal JTI. The two different orientations are
named after their interference pattem (the interference pattem of a left-shifted
point source and a right-shifted point reference is a series of vertical bars). The
expressions for the eight different interference patterns are presented below,
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I., = I,, = 1, + I, + 2kos(k,)R(SR*)+sin(k,)S(sR")|

I, = I,, = I, + I, + 2fcos(k,)R(SR")-sin(k,)3(sR")]

°° " (4-10)
Io = I,, = I, + I, + 2cos(k,)R(SR")+sin(k,)S(sr")]

r 0 0 r

Io = I,, = I, + I, + 2fcoslk,)R(SR")-sin(k,)S(sR")]

s 0 0 s

The sign of the sinusoidal modulation function in the interference term
depends on the relative position of the source and reference images. This
change in sign between JTI spectra is used to extract the real and imaginary
parts of the complex function SR*. The sine-modulated imaginary part can be

determined using one of the following algorithms,

asin(k,)S(SR") = 1., - 1, .,

0 4-11
4sin(kr)3(SR') = [I,, - I, ( )
r 0 (1]

and the cosine-modulated real part can be determined using one of,

dcos(k )R(SR') = 1., + 1., - 21, - 21,
[1 1] 00 (4-12)
dcoslk )R(SR*) = 1., + 1., - 2I. - 21,

The source image power spectrum [/ can be determined from the
interference pattern of a composite image where one of the four component

images is equal to the source image and all others are equal to zero,

I, , (4-13)

00

I, = I,, = I,, =1

s
s 0 0 = 0

(=]

s

o

and similarly for the power spectrum of the reference image.
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4.3.2 Diagonal JT1

A single source image is diagonally interfered with a single reference image. The
source and reference images may be interfered with respect to a line which is
diagonal with either positive or negative slope. If the source and reference are
displaced along a diagonal line with positive (negative) slope, the interference is
called negative (positive) diagonal JTI (the interference pattern of a point source
and point reference, mutually displaced on a positive diagonal line, is a series of
negative diagonal bars, and vice versa). The expressions for the four possible
interference pattems are presented below,

(4-14)
|

s 5 r

r 0

where the cosine and sine modulation functions are given by c, =cos(k,r —k‘_),
c, =coslk, +k_), and s, =sin(k, —k.), s, =sin(k, +k,), respectively. As before, the
change in sign of the sine modulating function can be utilized to extract the real

and imaginary parts of SR°. The sine-modulated imaginary part can be
determined using one of the following algorithms,

4s,3(SR") = 1., - 1I,,
0 r 0 s 4-15
P A @19
s 0 r 0

and the cosine-modulated real part can be calculated using one of,
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4, R(SR°) = 1., + I, - 21, - 21,
) 0 r 0 s (4-16)
ac, R(SR") = 1,, + 1,, - 2, - 21,
s 0 ro
4.3.3 Three-Component JT1

Two diagonally-displaced source images are interfered with a single reference
image or two diagonally-displaced reference images are interfered with a single
source image. If the source-pair and single reference (or single source and
reference-pair) are displaced along a diagonal line with positive (negative) slope,
the interference is called negative (positive) three-component JTI. Expressions
for the JTI spectra of four representative cases are presented below. Appendix C
contains a summary of all possible three-component JTI spectra and algorithms
to extract the real and imaginary parts.

I, . = 20+c), + I, + 2c,R(SR") + s, 3(sR*)|
1 = 21+, + I, + 2, R(sR’) - s, 3(sR*)]
1: = 1. + 20+c), + 2, R(SR*) + s, 3(s”R*)] 4-17)
1: o= 1+ 2t+e), + e, R(SRT) - s, S(sR)]

The cosine and sine modulation functions are given by c, =cos(k_)+coslk,),
and by s, =sin(k_)-sinlk,), s, =sin(k,)+sin{k_), respectively. The modulated real

and imaginary parts of SR° can be determined by adding and subtracting pairs of
JTI spectra. The sine modulated imaginary part can be extracted using one of the
following algorithms,
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454 S(SR. ) = 10 s - Ir s
s r s 0 4-18
45, 3(SR°) = 1,, - 1, #-19)

and the cosine modulated real part can be extracted using one of the following

algorithms,
4C-l 9{(SR.) = 10 s + Ir s - 210 s - 21r
. s r s 0 s 0 (4-19)
4c,R(SR') = 1, , + I, - 21, - 2,
s r 0o r 0o r

where I, . and I, , represent the modulated power spectra of the double-source
s 0 0 r

and double-reference images, 2(1+c, )/, and 2(l1+c,)!,, respectively.

4.3.4 Symmetric Four-Component JTI

Symmetric JTI| is a special case of four component JTI. Two diagonaliy-displaced
source images are interfered with two diagonally-displaced reference images.
There is only one possible orientation (positive and negative configurations do
not exist). The interference functions contain only the real part of the complex
function due to the special symmetry of the joint image. Expressions for the JTI
spectra of both possible configurations are presented below,

1., = 20+c,), + 2(+¢c), + 4c, R(SR")

s r

o 4-20
0+c). + 21+c,)l, + 4c, R(SR") (4-20)

L)
\

r s

s r

The cosine modulated real part of the complex function SR’ can be calculated

using one of the following algorithms,
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4C4 9‘(‘SR. ) = 1.\' r - I,\' 0 - IO r
r s 0 s r 0 4_21
4c4 m(SR.) = lr s = IO s - Ir 0 ( )
s r s 0

and the imaginary part can not be determined.

4.3.5 Four-Component JTI

Three source images are interfered with a single reference image or three
reference images are interfered with a single source image. If the source-triple
and single reference (or single source and reference-triple) are displaced along a
diagonal line with positive (negative) slope, the interference is called negative
(positive) four component JTI. Expressions for four representative cases are
presented below and a summary of all possible four-component JTI spectra and
the corresponding algorithms are summarized in Appendix C.

1., = B+2c), + I, + 2lc, RISR') + s, 3(s”R")]
1 = B+2e). + I + 2, R(SR) - s, 3(sR’)]
1 = 1+ B+, + 2, R(SR) + s, (R (4-22)
1 = 1.+ @+ ), + 2, R(SR) - s, 3(sR)]

where the cosine modulation functions are defined,

cos(k_)+cos(k, )+coslk, ~k.)

Cs

f 4-23
¢, = cos(k )+cos(k, )+cos(k, + k., ) ( )
and the sine modulation functions are defined,
s = sinlk, )-sinlk )+sinlk_~k_
5 (\') ( \) (.\’ _\) (4-24)

s = sin(k )+sin(k,)+sinlk, +k )

T
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The modulated real and imaginary parts of SR° can be determined by adding
and subtracting appropriate pairs of JTI spectra. The sine modulated imaginary
part can be extracted using one of the following algorithms,

4s,3(R") = 1., - 1

s rs

sr 5s 4'25
as, 3(sR°) = 1,, - 1, @-29)

and the cosine modulated real part can be extracted using one of the following
algorithms,

4c, R(SR*) = 1. + 1, - 2, - 2I,

sr ss sy 4-26
4c,R(SR’) = 1., + 1., - 21, - 2I,, (25)

rr rs s
sr rr Or

where I, and I, represent the modulated power spectra of the triple-source
or

5y

and triple-reference images, (3+2c¢;)I, and (3+2c,)I, , respectively.

Expressions for five different classes of JTI| spectra have been presented in
this section. The algorithms presented with the spectra may be used to extract
the modulated real and imaginary parts of the complex product SR* from the JTI
spectra. If the FT of the source image is required explicitly, the extracted terms
must be demodulated and then nomalized with respect to the reference. This
corresponds to isolating the real and imaginary parts of the source-image FT
from the sinusoidal modulation and known reference images. The convenience of
employing a uniform reference of constant value at all spatial frequencies is
obvious. It is also advantageous to design reference images with either odd or

even symmetry.
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4.4 SYMMETRIC AND NON-SYMMETRIC REFERENCE IMAGES

When a reference image is engineered to possess even symmetry, its frequency-
domain representation R" is real vaiued. In this case, the real and imaginary
parts of the complex spectrum SR'can be simplified to R R(S) and R 3(S),
respectively. Similarly, when a reference image possesses odd symmetry, its
frequency-domain representation R’ is pure imaginary, and the real and
imaginary parts of SR’ can be simplified to —iR 3(S) and iR R(S) (the real part of
SR’ contains the imaginary part of S and vice versa). in general, when the
reference image has both even and odd components, it is neither odd or even
symmetric, its frequency domain representation is complex-valued, and the
expressions for the real and imaginary parts of S are more complicated.

More generally, R(SR') and S(SR°’) can be expanded into the real and

imaginary parts of the source and reference spectra,

R(SR') = RE)R(R') - 3(5)3(R")

3(SR") = R(S)S(RT) + SE)R(R) (427

Solving Equation 4-27 for the real and imaginary parts of the source spectra
R(S) and 3(S), in terms of the spatial domain reference R, and the real and

imaginary parts of SR’, yields,

R(R)R(SR') - S(R)S(SR")

R(s) = =
I | -
3(s) = 3(R)%(SR')I R+’2 R(R) 3(sR") (4-28)

When the reference R is pure real, the expressions for the real and imaginary
parts of S are given by R(SR')R™ and S(SR*)R™', respectively. Similarly, when
R is pure imaginary, the real and imaginary parts of S are given by —i S(SR')R"
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and i%(SR')R"', respectively. A symmetric reference image greatly simplifies
the calculations required to isolate the real and imaginary parts of the source

image FT.

4.5 JTI EXAMPLE

It is illustrative to step through the calculation of the real and imaginary parts of a
source image FT using the JTI technique. Consider a source image which
consists of a single pixel at (m.n)=(1,0) and a 3x! pixel reference centered on
the origin. The source and reference images were chosen to have single-pixel
dimensions in the y direction so their spectra have no &, dependence. The trivial
images were chosen to facilitate their representation and interpretation on 2-D
axes and is by no means a limitation of the JTI technique.

This example employs horizontal JT! to determine the complex spectrum of
the source image. Expressions for the appropriate interference pattems were
presented in Equation 4-10 and the algorithm required to extract the real and
imaginary parts were described by Equations 4-11 and 4-12, respectively. The
calculation is shown graphically in Figure 4-3. The frequency-domain images are
plotted on 2-D axes with k., =0. The power spectra of the source, /_(2k_), and

the reference, /_(2k_), are shown in Figure 4-3(a). The power spectra of the left-
displaced joint image I_,(2k_), and the right-displaced joint image, I, (2k_), are
a0 00
illustrated in Figure 4-3(b). The four images illustrated in Figures 4-3(a) and (b)
constitute the ensemble of images (power spectra) required by the JTI method to

determine the source image complex spectrum. It is convenient to define the sum
and difference of the two joint images,
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Figure 4-3 JTl example: (a) individual source and
reference intensity spectra; (b) joint intensity spectra; (c)
spectra sum and difference; (d) modulation and
normalization functions; (e) real and imaginary parts of
source amplitude spectra.
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a@k,) = 1,,(k,) + 1, (k) - 2[1(2k,)+1,(2k,)]

Blk,) = 1.(2k) - I,,(2,) (4-29)

1

as described by the algorithms presented in Equations 4-11 and 4-12. The two

joint spectra, I, and I _, and the two individual spectra, /., and /_, are
(V]

0 00
measured using a CCD camera. The two joint spectra, and the individual source
spectrum, must be measured for each new source image, however the spectrum
of the reference must only be measured the first time it is used. The sum and
difference functions described by Equation 4-29 are illustrated in Figure 4-3(c).

The sum and difference images must be demodulated and normalized with
respect to the reference spectrum. The reference image has even symmetry, its
FT is real valued, and consequently, the demodulation and normalization is
performed by dividing the sum image af(2k,) by a cosine correction image

4R(2k )cos(k_), and dividing the difference image A(2k,) by a sine correction

image 4R(2k_)sin(k, ). These correction images are illustrated in Figure 4-3(d).

The sine correction image has zeros at 2k =0, + % (three zeros total) and the
cosine correction image has zeros at 2k, =+ .+ (four zeros total). The zeros
at 2k _=0.xr are due to the cosine and sine modulation terms in the correction
functions while the zeros at 2k, =+ 2= are due to the zeros of the reference. The

zeros of the correction functions will introduce errors into the detemmination of the
source image complex spectrum when the power spectra are quantized with a

finite number of levels.

The complex-valued spectrum of the source is illustrated in Figure 4-3(e). The
FT of a single pixel at (m,n)=(1,0) is given by S(k)=exp(ik,)=cos(k, )+isin(k ) in
a non-compressed coordinate system. In k, compressed frequency space, its FT
is given by S(2k)=cos(2k,)+isin(2k_). The complex spectrum of the source
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image calculated using the JTI method is identical to its FT. A single-pixel source
image was used to illustrate the JTI technique in this example, however, the
technique is not limited to single-pixel images. When the source image contains
finite extended objects, the reference image must be power matched to that of
the source, in order to guarantee good fringe visibility, and reduce the

quantization error introduced by the detector.

The JTI technique illustrated in this example requires the measurement of two
intensity spectra and two interferograms to detemmine the real and imaginary
parts of a single source image. The intensity spectra and interferograms could be
measured sequentially by a CCD camera, however, the preferred method would
involve parallel measurement. The CCD camera detects an averaged optical
intensity at each pixel, due to the finite extended aperture of each pixel, rather
than an ideal sampled point intensity. A subpixel interpolation algorithm may be
employed to reduce the affect of this averaging over the spatial frequency plane.

4.6 MODULATION-FUNCTION ZEROS

The JTI spectra presented in Section 4.4 represent the interferograms produced
by mutually displaced source and reference images. The interference term of a
JT! spectrum is modulated by trigonometric functions which depend on the

direction and magnitude of the displacement. The SR(SR') term is modulated by a

cosinusoidal function and the S(SR') term is modulated by a sinusoidal function.
The period of the modulating function is much larger than the period of the term it
modulates (for horizontal or vertical JTI, the period of modulation 4r is twice that
of a single order of spatial frequency space 2n). The modulation reduces the
amplitude of the interference terms. The interference terms, and consequently
the desired quantities R(SR’) and 3(SR"), are reduced to zero when the
appropriate modulation function equals zero, modified from their correct value
when the absolute value of the modulation lies between zero and one, and
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unmodified when the modulation function is equal to one. The real and imaginary
parts of SR° are indeterminate in the region of frequency space where the
appropriate modulation function equals zero. In general, the accuracy of the

desired spectra at a point k =(k_,.k_,.) in frequency space will be proportional to
the absolute value of the modulation function at that point.

The zeros of the various modulation functions, for the five different classes of
JTI, are illustrated in Figures 4-4 through 4-7. In each figure, the real part of the
frequency domain, and the corresponding cosinusoidal modulation functions, are
shown on the left; the imaginary part of the frequency domain and the sinusoidal
modulation functions are shown on the right. The zero-order spectrum is
indicated in each plot as the shaded region centered at the origin.

The modulation-function zeros for horizontal and vertical JT1 are illustrated in
Figure 4-4. The solid lines represent the zeros for horizontal JTI (cos(k).)=0 for

Vertical JT1 Horizontal JT Vertical JTi
cos(k.)=0 cos(k)=0 sin(k,) =0
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(a) real part (b) imaginary part

Figure 4-4 Modulation function zeros for horizontal and vertical JTI: (a) real
part of spectrum; and (b) imaginary part of spectrum.
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the real part and sin(k‘.)zo for the imaginary part) and the dashed lines

represent the zeros for vertical JTI (cos(k,)=0 for the real part and sin(k,)=0 for
the imaginary part). The cosine modulation functions are maximum at the origin
and fall to zero at the boundaries of the zero order spectrum (2k =+x and
2k, =+r for horizontal and vertical JTI respectively). The sine modulation
functions are maximum at the boundaries of the zero order spectrum and fall to
zero along the frequency space axes (2k, =0 and 2k, =0 for horizontal and

vertical JT! respectively). The cosine functions have unit magnitude where the
sine functions are zero and vice versa.

The zeros for diagonal JTI are illustrated in Figure 4-5. Diagonal JTI may be
either positive or negative and is named after the slope of the interference fringes
produced by a single-point source and a single-point reference. The dashed lines
represent the zeros for negative diagonal JTI (cos(k_ +k_)=0 for the real part and

Negative Diagonsi JT1 Positive Diagonsi JTI Negative Diagonal JT1 Positive Disgonai JT1
c.=costk,+k)1=0 c,=costk-k)=0 s.=simk+k) =0 s, =sink,-k)=0

71

2k,
(a) real part (b) imaginary part

Figure 4-5 Modulation function zeros for diagonal JTI: (a) real part of
spectrum; and (b) imaginary part of spectrum.
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sin(k, +k,)=0 for the imaginary part) and the solid lines represent the zeros for
positive diagonal JTI (cos(k, —k,)=0 for the real part and sin(k, —k,)=0 for the

imaginary part). The cosine functions are zero along diagonal lines which cut
through the zero-order spectrum (2k, +2k =+xr for negative diagonal JT! and

2k -2k, =zr for positive diagonal JTI). The sine functions are zero along
diagonal lines which pass through the origin and four comers of the zero order
spectrum (2k_+ 2k, =0,+2x for negative diagonal JTI and 2k, -2k, =0,+2x for
positive diagonal JT1). As before, the cosine functions have unit magnitude where

the sine functions are zero and vice versa.

The zeros for three-component JTI are illustrated in Figure 4-6. A single
cosine modulation function describes the modulation for both the positive and
negative cases. The dashed lines in the Figure 4-6(b) represent the sine
modulation zeros for negative 3-component JT| and the solid lines represent the

3-Component JTI Neg. 3-Component JT1 Pos. 3-Component JT1
c, =cos(k,) + costk) =0 5, =sin(k,) + sin(k,) =0 s, = sintk)) - sin(k,) = 0
-2n : :' . ~2r 4 Rl \ | _ / Y 'I’_
| | | | | [ \.-
1 : ? |
-7 < : \ - i
; !
| |
2k | o1 - 2k | oA
| ™
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| |
h&& \ T .
: : : i | %
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; : ; : ’ ’
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Az . . 2x 4
' : ! R
-x - (') T ﬁlx -2n
2k, 2k,
(a) real part (b) imaginary part

Figure 4-6 Modulation function zeros for three-component JTI: (a) real part of
spectrum; and (b) imaginary part of spectrum.
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zeros for the positive case. The cosine functions are zero along diagonal lines
which pass through the comers of the zero-order spectrum (2k, +2k =+*2r). For

negative three-component JT|, the sine function is zero along a diagonal line
through the origin, 2k, +2k, =0, and on two perpendicular lines, 2k, -2k =+2r,

through opposite comers of the zero order spectrum. For the positive case, the
zeros occur on three similar lines rotated about the origin by 90°. The real and
imaginary modulation functions can be zero along the same lines in frequency

space.

The zeros for four-component JT] are illustrated in Figure 4-7. The zeros of the
special symmetric case are identical to the zeros illustrated in Figure 4-6(a) for
three-component JTI. The dashed lines in Figure 4-7 represent the sine
modulation zeros for negative four-component JT1 and the solid lines represent
the zeros for the positive case. The cosine functions for the negative and positive
cases are zero along curves which resemble the loci of points described by two

Neg. 4-Component JT1 Pos. 4-Component JTI Neg. 4-Component JTI Pos. 4-Component JT
. = coutk recosth yecostk k) =0 c. = costh Yecostk yecosth -k )= 0 5. = stk ok yosmnik ok) = 0 5. = sin(k, )osinth )esin(k k)= 0
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Figure 4-7 Modulation function zeros for 4-component JTI: (a) real part of
spectrum; and (b) imaginary part of spectrum.
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ellipses inclined at +45° (the curves resemble ellipses but are not true conic
sections). The sine functions for the negative and positive cases are zero along
negative and positive lines through the origin. In both the cases, the sine function
is also equal to zero on the dotted horizontal and vertical lines.

4.7 SIGNAL-TO-NOISE RATIO

The signal-to-noise ratio (SNR) of the FT spectra extracted using the JTI
technique is derived in this section. In general, the SNR is a function of spatial
frequency. The SNR at a particular frequency is determined by the magnitude of
the source and reference spectra, the magnitude of the trigonometric modulation
function, and the noise introduced during the modulation, optical FT, and
detection processes. The detector noise is assumed to be independent of
position on the spatial frequency plane. Its magnitude is determined from the
dynamic range of the interferograms and the number of bits employed by the
frame grabber to quantize them.

The objective of this section is to identify how the dynamic range of the
detector array contributes to the SNR of the computed spectra. The development
of a rigorous noise model and a complete SNR analysis is beyond the scope of
this dissertation. Many simplifying assumptions have been made and various
noise sources have been omitted in order to simplify the analysis and make the
mathematical description tractable. Quantization noise introduced during the
detection process is the only source of noise considered in this analysis. It is
assumed that the quantization noise is spatially and temporally uncorrelated with
itself and the detected signal. Speckle noise introduced by the SLM, which
largely determines the overall SNR of a coherent imaging system and must be
modeled as a multiplicative noise source, is not considered in this analysis. The
assumptions described above, motivated primarily by mathematical tractability
and the overall objective of the analysis, lead to a very simplified description of
source spectra SNR.
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In order to derive expressions for the SNR, assumptions must be made about
the maximum intensity of the source and reference spectra. Specifically, the
functional form of the reference spectrum and its maximum intensity must be
known with respect to that of the source spectrum. A region of the zero-order
spectrum, called the region of interest (ROI), is identified such that the dynamic
range of its intensity distribution falls within that of the square-law detector. The
reference spectrum is assumed to have uniform intensity (or amplitude) and
phase in this ROI. The reference intensity which resuits in the most efficient use
of the detector's dynamic range is determined and used to derive expressions for
the optimum SNR.

4.7.1 Dynamic Range and Region of Interest

In this section, expressions for the SNR at an arbitrary spatial frequency are
derived for the real and imaginary parts of the source image spectrum. As one
might expect, the SNR increases with the number of bits used to quantize the
interferograms and decreases with the interferogram’s dynamic range. The
dynamic range of a typical interferogram is much larger than that of most
conventional detector arrays. Consider, for example, a 256x256 pixel binary
image in which half of the pixels are active. Assume the dynamic range of the
interferogram is given by the ratio of intensity produced by a single pixel to that
due to the entire interferogram, observed at zero spatial frequency. The optical
dynamic range is then 20log(0.5-256-256)=90dB and its electrical dynamic

range is twice that, or 180dB. The electrical dynamic range of a typical
commercial-grade CCD camera is about 50 dB. Obviously the CCD camera
doesn’t have enough dynamic range to accurately measure the entire zero-order

intensity spectrum.

It is often the case that only a specific region on the spatial frequency plane is
of particular interest. The trajectory estimation algorithm presented in the
previous chapter required spatial frequency information at points on a circle



JOINT TRANSFORM INTERFERENCE 108

centered on the origin. In these cases, an ROI (region of interest), for example an
annular region centered on the origin, can be identified on the spatial frequency
plane such that the dynamic range of the spectrum in the ROl does not exceed
that of the detector array. The detector is calibrated to just saturate at the
maximum intensity in the ROI. Pixels on the detector array outside the ROI, in
particular the large DC spike at the origin, will saturate the detector. The anti-
blooming circuitry in the detector must accommodate the saturation and prevent
charge from spilling into adjacent pixels in the ROLl. Interferograms containing
saturated pixels are not processed. In the unlikely event that a pixel inside the
ROI becomes saturated, the particular interferogram is flagged, the CCD
integration time is reduced, and the set of interferograms are measured again.
The dynamic range of the intensity spectrum is effectively reduced by only
measuring the intensity in a specific ROl which does not include the DC spike.

Selection of the ROI is application specific. The set of spatial frequencies at
which the complex-valued FT is required determines how the ROI on the spatial
frequency plane is defined. The reference image is then defined such that its FT
will produce a desired intensity distribution in the ROI. In the general case, where
the complex-valued FT is required at all spatial frequencies, the total spectrum
must be assembled from a set of subspectra. The total spectrum is divided into a
small set of subspectra and a suitable set of reference images are constructed.
Each reference image is interfered with the source image using the JTI technique
and the resulting subspectra are assembled to provide the total spectrum.

4.7.2 Source and Reference Spectra

The intensity distribution measured over the ROI is an interferogram produced by
the source and reference images. The maximum intensity in the ROI depends on
the maximum intensity of the individual spectra and their phase relationship. The
maximum intensity determines the noise contribution that will be uniformly added
to each pixel in the ROI. The interference term contains the real and imaginary
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parts of the source image spectrum, however its amplitude is modulated by the
magnitude of the reference spectrum. The reference spectrum must be chosen to
maximize the magnitude of the interference term such that it fills the available
dynamic range of the detector array. it is assumed that the reference spectrum
has uniform phase and constant intensity equal to the maximum intensity of the
source spectrum in the ROIL. It is difficult to design a reference image whose
spectrum satisfies these criteria over the entire zero-order spectrum; however, it
is possible to design a reference image which satisfies these criteria in the ROI.

Assume that the reference spectrum has uniform amplitude and phase over
some ROI on the spatial frequency plane. The ROl may include the entire zero-
order spectrum, or a specific portion of it. The FT of the displaced source and
reference images were presented in Equation 4-1 as the RHS of a FT pair. They
are reproduced below with equivalent expressions written in magnitude and
phase form,

Sk)exp(ip. k) = |JI.(k)exp(ig;(k))

(4-30)
Rexplip, k) = ‘/fexp(i(p:(k))

where /_(k) and /. represent the intensity (or power) spectra of the displaced
source and reference, and ¢.(k) and ¢ (k) represent their phase spectra. The

total phase spectra is made up of two components: 1) the phase of the non-
displaced source and reference spectra, ¢.(k) and ¢,; and 2) the linear phase

shifts, p.-k and p, -k, due to the source-reference displacement. These two
contributions sum to give ¢.(k) and ¢, (k), respectively. The reference spectrum
is assumed uniform with constant phase in the ROl and so R, /,, and ¢, shown

no k dependence.



JOINT TRANSFORM INTERFERENCE 110

4.7.3 Saturation Intensity

The maximum intensity in the region of interest depends on the source and
reference intensity spectra and their phase relationship. The source intensity

spectrum will have some maximum value, I™ in the ROI, at a spatial frequency

k. .. The complex amplitude at the point of maximum intensity k =k, can then

max

be represented in magnitude and phase form as,
S = VI expli @] (K )] (4-31)

The intensity spectrum of the source-reference joint image is detected by a
CCD camera or some other square-law detector. In order to make the most
efficient use of the detector's dynamic range, the maximum signal intensity must
just saturate the output of the camera.

The maximum intensity of the source spectrum I™ occurs at k =k, . The

source-reference joint image will have its maximum intensity at the same spatial
frequency if the source and reference complex amplitudes are in phase (the
reference spectrum has uniform magnitude and phase). if the two spectra are not

in phase, the maximum intensity may occur at some k #k, . In general, the
intensity at k =k, is given by,

T

(@) = |Swe+R[ = I™ + I, + 2JI™I cos(g’) (4-32)

and depends on the phase difference between the source and reference spectra
at the point of maximum intensity, ¢’ =¢’(k, . )-9¢.(k,..). When the source and
reference spectra are exactly in phase, they add constructively and the intensity

detected at k =k, is given by I__=1(0). If the source and reference spectra

max

are out of phase, the maximum intensity may occur at some k =k’ , however its

because S(k’.)<S,,. and the magnitude of the

max

vaiue will be less than [/

max
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reference is constant. Therefore, the maximum intensity of the source-reference
joint spectra will always be less than or equal to /_, . In order to avoid possible
saturation when the source and reference spectra are in phase, the camera must

be set to just saturate when the incident intensity is equal to /

max *

4.7.4 Optimum Reference intensity

The intensity detected at k =k as described by Equation 4-32, can be

considered as a sinusoidal information signal 2,11, cos(¢’) superimposed on
an optical bias 1™ +1,, as illustrated in Figure 4-8. In order to make the most

efficient use of the CCD camera’s available dynamic range, the intensity of the
reference should be chosen to maximize the depth of modulation,

v = AT (4-33)

I™ +1,

—
max

f

bias

= [rmu.\' +1 -
K r

phase, ¢’

Figure 4-8 Interference effect illustrated as a optical bias modulated
by a cosinusoidal information signal.
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of the signal. The depth of modulation is identical to the interference fringe
visibility between two arbitrary coherent waves (Equation 2-14, Chapter 2). it was
shown that the fringe visibility of the interferogram produced by two coherent
waves is maximum when their intensities are equal (section 2.3.1). The depth of
modulation is therefore maximum when the intensity of the reference is equal to

the maximum intensity of the source, I/ =1, . When the source and reference
intensities are equal, 'V =1, and the detected intensity fills the entire range of
available intensities between 0 and /., =4I"" =4/ . In order to make the most
efficient use of the camera’s dynamic range, and avoid possible saturation when
the source and reference are in phase, the intensity of the reference spectrum
should be set to the maximum intensity of the source spectrum, I, =7, and the
camera should be set to just saturate at four times the reference intensity,

[ =4I =41,

Y

Figure 4-9 illustrates the nomalized joint intensity detected at an arbitrary
spatial frequency k, when the saturation and reference intensities are optimized

as described above. The source intensity is set equal to /7, LI, £I™, and
L 1™, in Figures 4-9(a) through 4-9(d), respectively, and the phase varies from 0

to 5n in each figure. The detected joint intensity is normalized with respect to the
maximum source intensity. Figure 4-9(a) shows how the entire dynamic range of
the camera is utilized as the source and reference spectra drift in and out of
phase when I =71"". As the intensity of the source contribution is reduced
(Figures 4-9(b) through 4-9(d)), the bias intensity is reduced proportionately and
the amplitude of the information signal decreases as its square root. The bias

approaches /. as the source contribution approaches zero.

The reference spectrum is assumed to have a uniform spatial distribution in
the ROI such that it has constant amplitude and phase. Any spatial or temporal
variation in the power of the beam incident on the SLM will affect the power
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Figure 4-9 Normalized intensity variation as a function of phase for different
source intensities: (a) maximum intensity; (b) ., of maximum intensity; (c) !, of
maximum intensity; and (d) ', of maximum intensity.

distribution in the intensity spectra and the interferograms. These variations will
lead to additional noise in the computed source spectra.

4.7.5 Noise in Detection

The SNR of the square-law detector is determined by the thermal and shot noise
added during detection and the number of bits used to quantize the analog video
signal. Assume that quantization noise is much larger than both thermal and shot
noise such that the camera is quantization-noise limited. This assumption is valid
when eight bits are used to quantize the analog video signal. The detector is
quantization-noise limited, however, the eniire optical Fourier transform system is

most likely speckle-noise limited.
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Assume that the noise introduced by the quantization process can be modeled
as an additive noise source (this assumption is not always valid, in particular,
when the signal is very weak compared to the quantizer's dynamic range). The
quantized intensity measured at a particular pixel during frame n can be

represented by,
in) = In) + e(n) (4-34)

where I(n) is the sequence of exact intensities and e(n) is the quantization error

sequence. If a quantizer with 5 bits of resolution is employed (2° possible levels
of gray) and the analog intensity is quantized by rounding to the nearest gray
level, the quantization error is bounded by,
Al Al

- < e(n) < > (4-35)
where Al =27 is the quantization “bin™ width. The quantization error is not known
for all n and so a statistical model is usually employed [O&S75, page 413]. It is
assumed that the error sequence { e(n) } is a sample sequence from a stationary
random white-noise process whose probability distribution is uniform over the
range described by Equation 4-35. Furthermore, it is assumed that the analog
intensity sequence is nommalized in order to avoid clipping.distortion such that its
maximum value is less than 1-2"". Under these conditions, the quantization

error has zero mean and variance, o° = 527".

The analog intensity sequence generally exceeds the dynamic range of the
quantizer and must be reduced in amplitude to avoid clipping. Assume that the
intensity sequence is nomalized by dividing through by 7, the maximum
intensity in the ROL. In this way the entire dynamic range of the quantizer is
utilized and there is no chance of any clipping distortion. If the variance in the

normalized intensity sequence is o, the variance in the original non-normalized
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sequence I(n) is I? o’. The mean-squared error in the intensity sequence is

then given by,
Ele’n)] = 12.0% = I3, ~— (4-36)

where E[ ] denotes a temporal expectation or ensemble average.

The objective of the noise analysis presented in this section is to determine
the temporal SNR of the intensity time sequence observed at a single arbitrary
point k, =(k_,.k.,) on the spatial frequency plane. The variation of the SNR with

spatial frequency is not investigated. The temporal error sequence associated
with some arbitrary point k, is assumed to be uncorrelated with that associated
with another point k,. This assumption is valid when the frequency-domain
points are non-adjacent and mutually separated as in the case of the mixed-
domain trajectory estimation algorithm (the points are separated and uniformly
distributed around a circle on the spatial frequency plane). If the frequency
domain points constituted a fully sampled region or sub-image within the ROI, a
more general analysis would have to consider the correlation between the
temporal error sequences realized at each of the points.

4.7.6 Imaginary Part SNR

Several algorithms were presented in Section 4.3 to extract the imaginary part of
the source spectrum from two source-reference joint spectra designed to have
opposite displacement. A more general algorithm is illustrated in Figure 4-10 as a
block diagram. A source-reference joint spectrum with positive displacement
phase, S+exp(ig)R, is detected at some arbitrary spatial frequency by a single
photodetector (PD) on the square-law detector array. Quantization noise from the
error sequence {¢,(n) } is added to the detected intensity to yield /, +e, and the

result is stored temporarily. A source-reference joint spectrum with negative
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Figure 4-10 Block diagram illustrating the extraction of the imaginary part of the
source spectrum from two source-reference joint spectra with opposite
displacement phase.
displacement phase, S +exp(—ig)R, is detected at the same spatial frequency by
the same photodetector at a later time. Quantization noise from the error
sequence {e,(n)} is added to the detected intensity to yield I_, +e, and the
result is subtracted from the previously stored intensity. The difference between
the two intensities represents one point of the modulated imaginary part of the
source spectrum.

The expressions for the source-reference joint spectra with positive and
negative displacement phase depend on the class of JT| employed. In general,
they can be expressed in the foliow form,

I, = I, + I, + I [c(ko)R(S) + s(k,)3(S)]

I, =1, + I, + 2JZ [c(k,)R(ES) - s(ky)3(S) ] “-37)

where c(k,) and s(k,) represent the cosine and sine modulation terms at an
arbitrary spatial frequency k, =(k, ..k, ,), and the modulation terms which pre-

multiply the individual source and reference spectra have been ignored. The
modulation terms are functions of spatial frequency and their functional forms
depend on the class of JTI. The reference spectrum is assumed to be real valued
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in addition to having uniform intensity in the ROl (the reference spectrum is real
valued when the reference image is even). The difference between the two
source-reference joint spectra at the output of the block diagram illustrated in
Figure 4-10 is then given by,

(1,+¢) - (1,+e,) = 4JI, s(ky)3(S) + e e, (4-38)

The electrical SNR is calculated in the conventional manner as the mean
electrical signal power over the mean electrical noise power. The squared signal
and noise are averaged temporally over a large number of image frames. The
SNR can be written directly from Equation 4-38,

El (4 JT_ s(k,)3(s)f . 2
SNR|m5 - |:( J—l- (k ) (S))] = 165 (kozlrE-:[? (S)] (4_39) )
E[(el '32)2] 2 L 57

The optimal SNR is achieved when the depth of modulation (fringe visibility) is
equal to unity. It was shown in section 4.7.4 that when I, =4I =4/, the

depth of modulation is maximum and there is no chance of saturation in the ROI
when the source and reference spectra are in phase. If the optical processor is
calibrated to satisfy these conditions, the optimal SNR can be written as,

SNR,,; = 6s2(k0)22"—E|[?32—(-S—)] (4-40)

2
s |

The expression for SNR has three distinct components. Moving from left-to-
right through Equation 4-40, it is clear that SNR is proportional to the square of
the sinusoidal modulation function, dynamic range of the frame grabber, and the
ratio of the mean-squared signal to the maximum source image power in the
ROI. The sinusoidal modulation and mean-squared signal are functions of spatial
frequency; the noise added by the frame grabber, due to its limited dynamic
range, is independent of spatial frequency.
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4.7.7 Real Part SNR

A general algorithm is illustrated in Figure 4-11 to extract the real part of the
source spectrum from individual source and reference spectra and two source-
reference joint spectra designed to have opposite displacement phase. The joint
spectra are detected and quantization noise is added in exactly the same manner
that was employed during the calculation of the imaginary part. The quantized
joint-intensities are stored for further processing. The individual source spectrum
S is detected at the same spatial frequency by the same photodetector.

Quantization noise from the error sequence {e,(n)} is added to the detected
intensity to yield /_+e, and the result is also stored. Similarly, the individual

reference spectrum R is detected at the same spatial frequency, quantization
noise from {e,(n)} is added to yield /7, +e,, and the result is stored. Finally,

twice the sum of the individual intensities is subtracted from the sum of the joint

e,(n)

S+ e“R I + +
wvwwws | PD - o-Register
e (n)
S+e"R I .t
wvwwwAs | PD = -¢-Register
e, (n)
S I .
wvwww | PD . S-Register
e(n)
R I .k
vwwws | PD R-Register ”
e,

Figure 4-11 Block diagram illustrating the extraction of the real part of the
source spectrum from two source-reference joint spectra with opposite
displacement phase and their individual spectra.
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intensities to yield one point of the modulated imaginary part of the source

spectrum.

General expressions for the source-reference joint spectra were presented in
Equation 4-37, however, the modulation functions which pre-multiply /. and 7,
were ignored for clarity. It is assumed that the individual spectra, determined in
the lower two stages of the block diagram of Figure 4-11, are modulated in the
same fashion that /_ and I/, were in Equation 4-37 (this applies when the joint

image is composed of more than two component images). The intensity at the
output of the block diagram of Figure 4-11 is then given by,

(’o+e1) + (l_,+e2) - 2[(’s+es)+(lr+e4)]

e AT olky)R() + [ +e,-2es+e)] T

As before, the electrical SNR is caiculated as the mean electrical signal power
over the mean electrical noise power. The SNR can be written directly from
Equation 4-41,

E[(4,/’1Tc(ko)9‘(5)f] _16c(k,) 1, E[®R ()]

E[(e, +ez—2e3-2e4)2] 107, &

SNR . (4-42)

The optimal SNR is achieved when the depth of modulation (fringe visibility) is
equal to unity. Setting I =4/™" =41, , the optimal SNR can be written as,

SNR,., = gcz("o)zzhEl—[sm;(;_)] (4-43)

The SNR of the real part is also proportional to the dynamic range of the frame
grabber and to the ratio of the mean-squared signal to the maximum source
image power in the ROl. The SNR of the real part is proportional to the square of
the cosinusoidal modulation rather than to the square of the sinusoidal
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modulation. This SNR is five time less than that of the imaginary part because of
the additional quantization error introduced by the two individual spectra.

4.7.8 Maximizing the SNR

The dynamic range of the detector is fixed and is generally much less than that of
the source spectra over the entire zero-order spatial frequency plane. The SNR
is maximized by choosing a ROI such that the ratio of the mean squared signal to
the maximum source image power, in the ROI, is large. This generally requires
that the ROl exclude the zero frequency spike at the origin of the spatial
frequency plane.

The SNR is reduced when the square of the modulation function is reduced
from its maximum value. In fact, the SNR equals zero when the modulation
function equals zero. The functional form of the modulation terms depends on the
class of JTI employed. The modulation function zeros for the five classes of JTI
are illustrated in Figures 4-4 through 4-7. If the spatial frequencies of interest are
known in advance, the class of JTl can be picked to avoid zeros near the
frequencies of interest. Altemnatively, a weighted sum of two spectra, determined
from two appropriate classes of JTI, can be calculated.
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4.8 CHAPTER SUMMARY

A novel method of coherent detection suitable for an interferometric optical
Fourier processor was presented in this chapter. The new technique, called JTI
(joint transform interference), is a multi-point extension of the point-diffraction
method employed in Chapter 3. it provides two significant advantages over the
previous technique: 1) the power of the source and reference images can be
easily matched in order to maximize the SNR of the FT spectra; and 2) both the
real and imaginary parts of the complex-valued FT spectra are recovered.

The principle of JTI is simple. The interferogram produced by a source image
and reference image, mutually displaced on the same SLM, is measured by a
square-law detector in the back focal-plane of a Fourier transform lens. The real
and imaginary pars of the FT spectra are extracted by adding and subtracting
interferograms produced by two composite source-reference images with
different mutual displacements. The real and imaginary parts of the source image
FT are modulated, respectively, by cosinusoidal and sinusoidal functions.

Several classes of JTI, suitable for implementation on a binary SLM, were
identified and presented. Composite or joint images were constructed from
individual source, reference, and zero images. The composite images were
placed into one of five classes, depending on the direction of the mutual
displacement (either horizontal, vertical, or diagonal) and the number of source
and reference images used to construct the composite (either two, three, or four
components). The interferograms were described by expressions similar to the
classical two-wave interference equation. Algorithms for extracting the real and
imaginary parts of a source image FT from two interferograms with opposite
displacement phase were presented for each JTI class.

The functional form of the interfferogram modulation terms and their zeros
were presented and discussed. An interferogram produced by a horizontally
(vertically) displaced source-reference image is modulated by sinusoidal image
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with vertical (horizontal) lines of constant phase. Similarly, an interferogram
produced by a diagonally displaced source-reference image is modulated by
sinusoidal image with diagonal lines of constant phase.

The SNR (signal-to-noise ratio) of the real and imaginary FT spectra extracted
using the JTI technique was derived in the last section. It was shown that the
intensity of the reference spectrum should be equal to the maximum intensity of
the source spectrum, and that the CCD detector should be set to just saturate at
four times the reference intensity, in order to make the most efficient use of the
camera’'s dynamic range, and avoid possible saturation when the source and
reference are in phase. The SNR was shown to be proportional to 1) the dynamic
range of the frame grabber; and 2) the ratio of the mean-squared signal to the
maximum source image power in the ROl (region of interest).



CHAPTER

Multiple-Object Trajectory Estimation

A moving-object trajectory estimation system which estimated the speed and
direction of single objects was demonstrated in Chapter 3. The system employed
an optical Fourier processor and a PDI (point-diffraction interferometer) to
determine the real part of the moving object’s frequency domain representation.
The point-diffraction method of coherent detection restricted the number of pixels
in each image frame and lead to an ambiguity in the estimation of target
direction. The JTI (joint transform interference) coherent detection technique
developed in Chapter 4 solves these two problems. An improved multiple-object
trajectory estimation system based on the JTI method of coherent detection is
presented in this chapter. The new system employs a digital micromirror device
(DMD) as its SLM (spatial light modulator).

123
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5.1 INTRODUCTION

A hybrid optical-digital trajectory estimation system based on the JTI method of
coherent detection is presented in this chapter. The original system, described
previously in Chapter 3 and based on the point-diffraction method, was unable to
accommodate multipixel image frames and could not determine the direction with
which objects moved along the estimated trajectory. These problems are solved
by the system presented in this chapter.

The problem of trajectory estimation, the advantages of spatiotemporal, mixed,
and frequency-domain solutions, and the motivation behind a mixed-domain
optical implementation, were discussed previously in Section 3.1. The specific
type of moving-object trajectory estimation problem addressed in this dissertation
is the detection and trajectory estimation of small, barely discemible, moving
objects of unknown position and velocity. An optical implementation is of
particular computational interest as typically more than ten high resolution image
frames must be integrated to detect and track targets in a noisy environment. As
discussed previously, the mixed-domain technique has several advantages over

a purely spatiotemporal or frequency-domain approach.

An ideal moving point-object describes a line in space-time and a plane in 3-D
frequency space. Multiple objects describe multiple lines in space-time and
multiple planes in 3-D frequency space. An object’s plane is parameterized by its
velocity components. The velocity of multiple objects is determined by estimating
the slope of an equivalent number of frequency-space planes. An optical Fourier
processor and the JTI method of coherent detection are employed in the
trajectory estimation system to optically determine the complex-valued 2-D
spatial FT (Fourier transform) of each frame in an image sequence. The
sequence of complex-valued spectra are processed in the time domain using a
high-resolution spectral estimation technique. In this mixed-domain approach, the
space-time to 3-D frequency space transformation is decomposed into two
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smaller and computationally-simpler operations: the two spatial dimensions of the
3-D data set are optically transformed directly into the frequency domain; the
temporal dimension is processed using a time-domain linear-prediction method.
The temporal frequencies estimated at a pre-selected set of spatial frequencies,
constitute a set of frequency-triples which describe multiple planes in 3-D
frequency space. The slope of each plane is easily determined from the set of
frequency-triples to estimate the velocity components of each moving object.

A Texas Instruments digital micromirror device (DMD) is employed as the
spatial light modulator (SLM) in the optical Fourier processor. The DMD is a
640x 480 pixel array of individually addressable micromirrors, each of which can
reflect light in one of two possible directions. The on-state blazing effect of the
mirrors introduces a linear phase distribution over the plane of the pixel array
which mutually displaces the (coherent) optical transfer function (OTF) and the
set of interference maxima. This effect, combined with the source-spectrum
replication introduced by the JTI| zero-interleaving, resuits in a replicated
spectrum which is not contaminated by contrast-ratio noise and coincides almost
exactly with the maximum absolute value of the OTF.

The DMD pixel structure, switching time, and its far-field diffraction pattern are
reviewed in Section 5.2. Several different classes of joint transform interference
(JTI) were derived previously in Chapter 4. The weighted three-component JTlI
method is experimentally verified in Section 5.3. The remainder of the chapter is
devoted to the application of the JTI method of coherent detection to the problem
of trajectory estimation. The JTI method is employed in Section 5.4 with a single-
pixel reference image to estimate the trajectories of single and muitiple moving
point-objects. In Section 5.5, a multipixel Bessel-function reference image is used
to estimate the trajectory of multiple 3x3 pixel objects moving over a zero-
intensity background, different synthetic backgrounds, and in the presence of
Gaussian white noise. The trajectories of multiple single-pixel objects in white

noise are estimated in the final section.
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5.2 THE DIGITAL MICROMIRROR DEVICE (DMD)

The DMD (digital micromirror device) is a reflective SLM manufactured by Texas
Instruments (TIl) for digital projection and hardcopy applications [Hor95]. The
device is a superstructure array of movable aluminum micromirrors monolithically
integrated over a SRAM (static random access memory) circuit. Each micromirror
in the superstructure is located over its own SRAM unit cell corresponding to one
bit of memory. The mirrors are electrostatically bistabie: a mirror in its on-state
reflects incident light in some desired direction, towards a viewing screen for
example, while a mirror in its off-state redirects incident light elsewhere. The
mirror's state is toggled by changing the potential difference between it and one
of two electrodes below the mirror. Each mirror can be individually addressed;
the state of a particular mirror is switched by toggling the appropriate bit in
SRAM. The micromirror superstructure array is constructed entirely of aluminum
using standard semiconductor deposition and etching techniques. The SRAM is
fabricated on a silicon substrate using standard CMOS (complementary metal

oxide silicon) technology.

The DMD was designed primarily for projection display applications, however
it has also been used for optical signal processing. The initial DMDs fabricated by
Tl were called deformable mirror (rather than digital micromirror) devices. These
inital DMDs have been demonstrated by various researchers as amplitude
modulators [Flo90], phase mostly modulators [Gre88, FloS0, Boy91], and full
complex modulators [Flo91]. They have also been employed as SLMs in joint
transform correlators [Flo89, Hud89, Kno89], VanderLugt correlators [Fio88,
Hud89], and optical neural networks [Col89]. Keamey recently investigated
employing a newer (digital micromirror) DMD as an optical mask in precision
imaging and spectroscopy applications [Kea98]. MacAulay has proposed
substituting the mechanical diaphragms found in conventional microscopes with
several (digital micromirror) DMDs to provide dynamic control over illumination
angle and intensity for applications in quantitative microscopy [MacA98].
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5.2.1 Pixel Structure and Switching Time

The DMD is a 640x480 pixelated SLM. A micromirror at each pixel location
selectively reflects incident light either into the pupil of a lens or towards an
optical stop. The DMD pixel structure is illustrated in Figure 5-1. The square
mirrors at each pixel have dimension A’=16um and center-to-center spacing

Y.. = —10° (off-state)

2D
—-
16 ym

square

&

v.=10° (on-state)
(a)

(b)

Figure 5-1 DMD pixel structure: (a) switching principle
of a single mirror; and (b) SEM photomicrograph of a
3x3 mirror array (SEM reproduced with pemmission from

Texas Instruments [T198]).



MULTIPLE-OBJECT TRAJECTORY ESTIMATION 128

A =17 um (there is | um of dead space between each pixel, the spatial duty cycle
is a=5b=0.94, and the fill factor is approximately 90 %). The switching principle is
illustrated in Figure 5-1(a). Mirrors toggle between their two electromechanically
bistable states by rotating about the diagonal axis shown in the figure. A mirror is
off when y_ =-10°, on when y_ =+10°, and parked when y_  =0°. An SEM

(scanning electron microscope) photomicrograph of a 3x3 mirror array is
illustrated in Figure 5-1(b). The center mirror has been removed to reveal the
torsion hinge and addressing electrodes; the surrounding mirrors are in their
parked state. The mechanical switching time (defined to be the time between a
reset pulse and the instant when the mirrors have landed and settled to a level
where they are electromechanically latched) is approximately 15 us [Hor95].

5.2.2 The DMD as a Blazed Diffraction Grating

The FT of a pixelated SLM was expressed in Section 2.3.1 as the product of its
OTF (optical transfer function) and its DSFT (discrete space Fourier transform). It
was shown that the maximum absolute value of the OTF and the zero spatial
frequency occurred at the same point in the far-field diffraction pattem (see
Figures 2-4 and 2-5). The maximum absolute value of the OTF and zero spatial
frequency do not coexist at the same position in the DMD produced diffraction
pattern: the position of the maximum absolute value of the OTF is shifted with
respect to that of the DC spike.

The absolute value of the OTF (which is equivalent to the diffraction envelope)
describes the distribution of maximum possible intensity in the DMD-produced
far-field diffraction pattem. The absolute value of the OTF has a peak which is
spatially shifted from the DC spike (zero-order interference maximum). This
effect is sometimes introduced by design in blazed diffraction gratings by shaping
the ridges of the grating in order to increase their efficiencies at higher
interference orders [Hec87, pp. 424-427). The same principle is employed in
phased-array radar and sonar signal processing [Bro85]. In these systems, a
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linear phase distribution is introduced across the piane of the antenna in order to
steer the beam in a desired direction. In terms of the DMD, the pixels are blazed
(or inclined) at an angle y and the light is made incident on the DMD at twice the

blaze angle to introduce the phase shift. The blazing is built-in due to the inherent
tilt of the mirrors. The linear phase distribution introduced by the mirror’s tilt, and
the corresponding frequency-domain shift, are quantified in the following

sections.

5.2.2.1 Linear Phase Distribution

A series of optical wavefronts is illustrated in Figure 5-2 illuminating a row of on-
state DMD pixels. The light is incident at an angle 6, and reflected at an angle,
6. =2y —6,, where y is the pixel blaze angle (projection of the mirror tilt on to

either the x or v axis) and the angles of the incident and reflected beams are
measured with respect to the DMD nomal. The pixel blaze introduces a phase
shift between adjacent pixels. It is clear from Figure 5-2 that the optical path

difference between two rays, reflected by adjacent pixels, is given by BC-CD.
An expression for BC can be determined from triangle ABC, specifically,

BC=Asin(6,), and similarly, an expression for CD can be determined from

triangle CDE, CD =-Asin(8, ), where the negative sign on the second expression
was used to be consistent with the chosen coordinate system. The phase
difference between rays reflected by adjacent pixels is simply 2z4™ multiplied by

the optical path difference,
272(BC-CD)

o = ~ = ZZA [sin(8,) +sin(2y-8,)] (5-1)

The preceding equation is a direct extension of the grating equation for
oblique incidence [Bor75, p. 405]. The derivation was presented here to illustrate
the underlying phase-shift effect more clearly. Equation 5-1 shows that the linear
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&N

Figure 5-2 A row of DMD on-state mirrors as a blazed diffraction
grating.

phase distribution introduced by the DMD is a function of the angle of incidence
and the pixel blaze angile.

For the case of minimum spherical distortion (the optical FT is valid only in the
paraxial approximation), the DMD normal and the optical axis of the FT lens must
be coincident, ie 6, =0. Therefore, the angle of incidence must be twice the

blaze angle, 6, =2y, and consequently the expression for the phase difference



MULTIPLE-OBJECT TRAJECTORY ESTIMATION 131

simplifies to vyield, ¢=2rAA"'sin(2y). The phase difference under these

conditions is easily calculated at the He-Ne laser wavelength using values for the
DMD center-to-center pixel spacing and the blaze angle,

17 um in(z-lo

= 6.564-2r rad 5-2
0.6328 pms 2 ) ra (5-2)

An on-state DMD mirror is tilted at angle y, =+10° around the diagonal axis
shown in Figure 5-1(a). The projection of this angle onto either the x or y-axis, as

required by Equation 5-2, was consequently expressed by y=17,, / 2=7°.

5.2.2.2 DMD Diffraction Pattemn

The Fourier transform of a pixelated SLM is the product of its (coherent) optical
transfer function (OTF) and the discrete space Fourier transform (DSFT) of the
dispiayed image sequence (see Section 2.3.1). The light which illuminates the
DMD has a built-in linear phase distribution due to the oblique angle of incidence
and the pixel blaze. If the image sequence written to the DMD is given by
f(m.n), the optical distribution immediately after the modulation is given by

expli(@m+on)] f(m.n). The linear phase distribution in the spatial domain causes

a shift in the frequency domain,
expli(mo+ng)l f(m.n) < Flk, -g.k, -9¢) (5-3)

where the magnitude of the shift is given by Equation 5-2. The position of the
OTF in the frequency domain is unchanged (its peak intensity is determined by
the specular reflection from the mirrors). The phase difference between DMD
pixels effectively slides the periodic spectrum F(k,,k_‘.) under the OTF by an

amount ¢ =6.564-2x rad , in both the k. and k, directions, as shown in Figure 5-3.

The interference maximum corresponding to the zero-order zero frequency of
f(m.n) and the maximum absolute value of the OTF do not coincide as they did
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IOTF(k k)

Ideal n—-periodic

\ sperirum (7.6)"-order
interference max.
AN
Ll
\\

(6.6)"-order
interference max.

(6.7)"-order
interference max.

(7.7)"-order
interference max.

4n

Figure 53 DMD farfield diffraction pattem illustrating the
absolute value of its OTF (diffraction envelope) and replicated
DSFT spectra (2n-periodic interference maxima).

in Figure 2-4. As shown in Figure 5-3, the absolute value of the OTF is maximum
at a point approximately half way between the four DC spikes (interference
maxima) belonging to the (6.6)", (6,7)". (7.6)", and (7,7)"-order spectra. The
optical energy is concentrated around the Nyquist frequency (+z.+x) rather than
a DC spike (interference maxima). This phenomenon has also been observed
and described by Keamey [Kea98).

5.2.2.3 Advantage for JTI

The finite contrast of all SLMs generally causes the region of the spatial
frequency plane surrounding a DC spike to be very noisy. Non-modulated light
reflected (or diffracted) by the DMD due to its dead zone between pixels and the
mirror support posts (see Figure 5-1) results in a finite contrast ratio. The non-
modulated light is Fourier transformed into the DC region as contrast-ratio noise.
The pixel blazing on the DMD shifts the DC spikes out of the region of
concentrated intensity and effectively reduces the noise energy. The
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implementation of the JTI algorithm on a binary SLM results in the compression
of spatial frequency space by a factor of two due to the upsampling and
stretching of the space domain (see Section 4.3). This frequency domain
compression produces additional n-periodic (replicated and compressed) spectra
mid-way between each inteiference maxima. These new spectra are not
contaminated by the contrast-ratio noise associated with the spectra centered on
each interference maxima. In addition, and most importantly, the new noise-free
spectrum corresponding to the fictitious (6.5.6.5)"-order interference maximum,
shown in Figure 5-3 as the ideal n-periodic spectrum, is approximately at the
same position as the maximum absolute value of the OTF. This spectrum is free
of contrast-ratio noise at DC and receives the maximum diffracted intensity.

5.3 EXPERIMENTAL VERIFICATION OF JT1

Several JT! (joint transform interference) algorithms were proposed in the
previous chapter. The purpose of this section is to experimentally verified one of
those aigorithms and show that it provides the correct real and imaginary parts of
a source image FT. Although calculating the entire FT spectrum of an image
using the JTI technique may be computationally inefficient, the experiment is
presented to illustrate, at least qualitatively, that the technique correctly provides
the complex-valued spectra of an image, something which is not as obvious if
only selected points on the spatial frequency plane are determined.

Five different classes of JTI were defined in Section 4.3. The classes
depended on the mutual source-reference displacement (horizontal, vertical, or
diagonal) and the number of source and reference image components. In this
section, the three-component JTI algorithm (see Section 4.3.3) is experimentally
verified using single-pixel source and reference images. Trivial images were
employed for two reasons: 1) the FT of a single-pixel reference is constant and
therefore the calculated spectra do not require normalization by the reference
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spectrum; and 2) the source and reference power spectra are matched (equal)
which guarantees good fringe visibility.

5.3.1 Demodulation and Spectral Weighting Functions

The algorithm for three-component JT1 is described by Equations 4-18 and 4-19.
The equations express the (modulated) imaginary and real parts of a source
image spectrum in terms of several joint and individual intensity spectra. The
spatial frequencies at which the modulated spectra equal zero, referred to as the
modulation function zeros, were illustrated in Figure 4-6. The real part of the
modulated zero-order spectrum equals zero at its four comers; the imaginary part
equals zero on a positive diagonal through the origin for positive three-
component JTI, and similarly, equals zero on the negative diagonal for negative
JTI. In order to calculate a source image spectrum with correct imaginary values
on both diagonals, the positive and negative modulated spectra are calculated
and their weighted sum is calculated on a point-by-point basis to yield an
imaginary spectrum with only one indeterminate point at the origin. The positive
and negative modulated spectra are combined in an equally weighted sum to
yield an average real spectrum with a indeterminate point in each comer. The
weighting functions are chosen to demodulate the positive and negative
modulated-spectra, and at the same time, weight their sum depending on the
position of the modulation zeros.

5.3.1.1 Real Part

An expression for the real part of the modulated source-spectrum using negative
three-component (double source and single reference) JTI was presented on the
first line of Equation 4-19. This expression is repeated below with its companion
for positive three-component JT],
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a, \k k) = 1,, + I, - 21, - 2,

0s
sr 50 s0
5-4
a, (k. k) =1, + 1, - 21, - 2I, (5-4)

rs Os

The functions a,., (k..k,) and a,,(k,.k,) represent the cosine-modulated real

neg

part of the source-image spectrum, one calculated using the negative algorithm,
and the other calculated using the positive algorithm (R" =1 for a single-pixel
reference image). The modulated spectra are demodulated and averaged in an
equally weighted sum on a point-by-point basis,

R(s(2k,.2k.)) = w a,lk, k) + w a,lk k) (5-5)
to yield the real part of the source image spectrum. In the special case of three-
component JTI, the positive and negative weighting functions are equal,

1 1

8¢,  8cos(k_)+coslk,)) (5-6)

and the weighting is actually an average of the two demodulated spectra. The
identical weighting functions were selected by inspection to demodulate each

spectrum by dividing out the cosine modulation,

(k,.k‘_) + wla,,,,‘(k,.k‘)

- 8—1—4c4‘R(S(2k,.2k‘)) + 8L4c49‘(5(2k,,2kv)) (5-7)

Cy Lo

= R(s(2k, .2k )

wa

neg

5.3.1.2 Imaginary Part

An expression for the imaginary part of the modulated source-spectrum was
presented on the first line of Equation 4-18. This expression is repeated below
with its companion for positive three-component JTI,
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) = 10.\’ - ,

rs

ﬂneg(kr’k\- :
B,k k) = 1, - I, (5-8)

s
0 rs

Both these expressions represent the sine-modulated imaginary part of the
source-image spectrum, the former calculated via the negative JT1 algorithm, and
the latter calculated using the positive algorithm. The modulated spectra are
demodulated and averaged in a weighted sum on a point-by-point basis,

S(S(Zkr ’2k v » = W; ﬂntg (kx‘kr ) + Wy ﬂpos (kx ’k)') (5-9)

to yield the imaginary part of the source image spectrum. The weighting

functions,
_ 54 _ Sin(k,)‘*‘Sin(k_\-)
I ) B TE YY) (5-10)
s, sm(kx)—sm(k_‘.)

M7 AsTesz) T 8lsini(k,)+sin’(k,))

are selected by inspection to demodulate and weight the spectra. Substitution of
the weighting functions from Equation 5-10 and the JT| spectra from Equation
4-18 into Equation 5-9 illustrates how the modulated spectra are weighted and
demodulated to yield the imaginary part of the spectrum,

“.\ﬂnrg (kr'k\ ) + “.4ﬂp:;x(kr'k\‘)

_ Sy 53
= m4s43(5(2k,.2k\,)) * 45,3(s(2k, .2k, ))

- S(S(Zk,.2k‘.))|: S ]

2 2
s; +5; s;+s;

(5-11)

3(s(2k, .2« )

The weighting functions in Equation 5-10 were selected by inspection and
other variations are possible. The weighting functions demodulate the modulated
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spectra, and at the same time, weight the spectra according to the magnitude of
its absolute value. In this way, zero weight (w, =0) is assigned to S, (k,,k\_)

along the negative diagonal, k =-k , where its demodulated value is

Re ¥

indeterminate (zero over zero), and a very small weight is assigned at points

near the diagonal. Similarly, zero weight (w, =0) is assigned to ﬂ,,,,,(lc,.k\_) on

the positive diagonal, k_ =k, where its demodulated value is indeterminate.

5.3.2 Computational Efficiency

When a large number of spatial frequency-domain points is required, the
technique of JTI followed by point-by-point interferogram processing is
computationally inefficient compared to a 2-D FFT. However, when a small
number of points are desired, the optical technique can offer substantial
computational savings. The number of operations required to realize the 2-D FFT
of an NxN image is O(N *log, N ) If only a small number of frequency-domain

points are required, they can be computed directly or by employing a recursively
pruned radix-(2x2) 2-D FFT algorithm [Knu93b]. The number of operations
required for the direct computation of a single point is O(N 2) while that of the
pruned 2-D FFT depends on the number and distribution of the points desired.

The computational complexity of the pruned algorithm is O(N 2) if a minimum

number of points is required and O(N ’log, N) for all the points (neglecting the
frequency distribution of the desired points and pruning overheads). The number
of operations required by the JT| and point-by-point interferogram processing
approach is O(T), where T is the number of spatial frequency-domain points
desired. The computational effort is proportional to the number of desired points
rather than the square of the image size. If only a small number of points are
required, the JT| technique can be much more efficient than a pruned 2-D FFT,
especially when the input images are very large.
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5.3.3 Experimental Setup and Procedure

A block diagram of the experimental setup is illustrated in Figure 5-4. A He-Ne
laser beam is passed through a spatial fiter and beam expander assembly,
composed of objective lens L1 (10X objective, fi=14.8 mm), pinhole aperture PH
(¢=50 um diameter), and collimating lens L2 (5X objective, =25 mm), to produce
an expanded and filtered beam approximately 2w,;=890 um in diameter. The
expanded beam is redirected by mirrors M1 and M2 and made incident on the
DMD at 2y, =20° to its nomnal (2y,, /<2 =14° projected onto the x and y axes)
such that it is reflected normally when the DMD mirrors are in their on-state. The
modulated light distribution in the plane of the DMD is Fourier transformed by
lens FTL (=125 mm) and its resulting intensity spectrum is measured by a CCD
camera located in the back focal plane of the lens. The same basic setup is
employed by all experiments presented in this chapter.

M2

DMD

Y

FTL CCD

PH

M1 L1 -
L2 He-Ne

PC -

Figure 5-4 Experimental setup employed to verify the JTI method of coherent
detection and for the trajectory estimation experiments.
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The three-component JTI technique was experimentally verified using several
single-pixel source images. The reference image was the same for each source
image and consisted of a single on-pixel at the origin. The sequence of seven
composite images required by the three-component algorithm were constructed
from each source image and the single-pixel reference image. Each composite
image in the sequence was optically Fourier transformed using the apparatus
ilustrated in Figure 5-4 and the corresponding sequence of intensity spectra
were stored for further processing. The CCD camera measured the intensity of
the ideal n-periodic (replicated and compressed) spectrum, located mid-way

Assemble joint images
from source and reference
images s(m.n) and r(m,n)

'

Measure joint intensity spectra,
l: rt le' Irx’ [01'

Os rs 0

and individual intensity spectra
lx or 10 st lr

0s s0

T

Calculate modulated spectra

a4, A B, and g,
from the intensity spectra

Y

Determine the real and imaginary
parts of the source spectrum,
ReS = w,a, +w, a,..

Im$ = w,B.+w,

——

Figure 5-5 Experimental method and post-
processing procedure employed to verify the
weighted three-component JTI algorithm.
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between the 6™ and 7"-order interference maxima of the Fraunhofer diffraction
pattern, as shown in Figure 5-3. The real and imaginary parts of the source
image spectrum were calculated using Equations 5-5 and 5-8 respectively. The
experimental method and post-processing procedure are shown in Figure 5-5.

5.3.4 Results and Discussion

The real and imaginary parts of a source image consisting of a single on-pixel at
(m.n)=(3.3) is illustrated in Figure 5-6. The source image and its DSFT pair are

described by,

s(m.n)={z) (’:’t;';w:ii = S(E,,I.c.‘.)=cos[3(ix+ic2.)]+isin[3(l?,+I?‘,)] (5-12)

where (¢..k.) represents the compressed frequency space (2k,.2k,). The real

and imaginary parts of the spectrum are shown in parts (a) and (b) of Figure 5-6,
respectively. The real and imaginary amplitudes along the k, axis are illustrated in
parts (c) and (d), and similarly, the real and imaginary amplitudes along the &,
axis are shown in parts (e) and (f). The real and imaginary parts exhibit the
quadrature phase relationship (quarter cycle or £ phase shift) described by

Equation 5-12 and there are exactly three sinusoidal cycles per 2n rad along each
direction. The effects of the four indeterminate points, due to the zeros of the
cosine modulation-functions, can be seen in the four comers of the real
spectrum. Similarly, the effect of the single indeterminate point, due to the sine
modulation, can be identified at the origin of the imaginary spectrum.

The complex spectrum of a second test image is illustrated in Figure 5-7. The
source image and its DSFT pair are described by,

s(m.n)={ bmen=l0 o s(EE)=coshofk, + £, JJ+isinfofk, +£, ) (5-13)
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2k,
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(b)
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Figure 5-6 Spectrum of single-pixel (m.n)=(3.3) source image: (a) real part;
(b) imaginary part; (c) real and (d) imaginary parts along k. axis; and (e) real and
(f) imaginary parts along k&, axis.

As before, the real and imaginary parts of the spectrum are shown in parts (a)
and (b) of the figure, and the amplitude of the real and imaginary parts along the
k. and k axes are illustrated in parts (c) and (d), and parts (e) and (f). There are
exactly ten sinusoidal cycles per 2r rad along each direction and the real and
imaginary parts exhibit the required quadrature phase relationship. As before, the
indeterminate points affect the accuracy of the spectra in the four comers of the
real spectrum and at the origin of the imaginary spectrum.
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(
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Figure 5-7 Spectrum of single-pixel (m.n)=(10.10) source image: (a) real part;
(b) imaginary part; (c) real; and (d) imaginary parts along k, axis; and (e) real and
(f) imaginary parts along &, axis.

5.4 TRAJECTORY ESTIMATION WITH A SINGLE-PIXEL REFERENCE

The mixed-domain method of multiple-object trajectory estimation was reviewed
in Section 3.2. A hybrid optical-digital signal processing system for single-object
trajectory estimation was described and its operation experimentally verified in
Sections 3.3 through 3.5. The system employed an optical Fourier processor
equipped with a point-diffraction interferometer to compute the speed and
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direction of moving objects. The system successfully estimated the trajectory of
several different point-objects, however, it was unable to determine the direction
with which the objects moved along their trajectory. In addition, the system could
not accommodate muitiple objects, large objects, a stationary background, or
random noise.

An optical Fourier processor and the JTI method of coherent detection are
employed in this section to demonstrate an improved optical-digital trajectory
estimation system. The new system overcomes the disadvantages associated
with the previous architecture based on the point-diffraction method. The system
described in the present section (Section 5.4) employs the JTI method and a
single-pixel reference image to estimate the trajectory of single and multiple
moving point-objects. The system in the following section (Section 5.5) employs
the same JTI technique and a multipixel reference image to estimate the
trajectory of multiple large (non-point) objects moving in the presence of
background imagery and random noise.

5.4.1 Single Point-Object Trajectory Estimation

Consider first the trajectory estimation of a single point-object, with maximum
contrast, moving on a black noiseless background. This trivial experiment was
performed in Chapter 3 using the point-diffraction based Fourier processor and is
duplicated here using the JTI technique.

A set of image sequences, which parallel those used in the point-diffraction
experiment, were constructed from a series of 320x240 pixel images. Each
sequence is 65 frames in duration and describes the motion of a single-pixel
object moving on a linear trajectory. Objects in the new sequence were assigned
an ID letter which corresponded to its initial position in the original point-
diffraction experiment (object A in the new experiment moves from initial position
A to final position A’, and was identified as trajectory A-A’ in the previous
experiment). A primed ID letter represents an object moving in the opposite
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Table 5-1  Actual Trajectories for Objects A, B, C, D, and | through P

D Velocity, speed, and Direction Initial Position  Final Position
ve [pPf] v [ppfl vIppfl @ldeg] —my n m; n:
A 0.50 -0.25 0.56 -26.6 -11 13 21 -3
B 1.00 -0.50 1.12 -26.6 -27 21 37 -11
C 2.00 -1.00 2.24 -26.6 -59 37 69 -27
D 4.00 -2.00 447 -26.6 -123 69 133 -59
I 1.00 0.00 1.00 0.0 -32 5 32 5
J 1.00 1.00 1.41 45.0 -37 -27 27 37
K 0.00 1.00 1.00 90.0 -5 -32 -5 32
L -1.00 1.00 1.41 135.0 27 -37 -37 27
M -1.00 0.00 1.00 180.0 32 -5 -32 -5
N -1.00 -1.00 141 -135.0 37 27 -27 -37
0] 0.00 -1.00 1.00 -90.0 5 32 5 -32
P 1.00 -1.00 1.41 -45.0 =27 37 37 =27

direction along the same path (the initial and final positions are swapped). The
actual velocity, speed, direction, and initial and final positions, of the 16 objects
employed in the experiment, are summarized in Table 5-1 (primed objects are

not included).

5.4.1.1 Experimental

A block diagram of the optical setup was illustrated previously in Figure 5-4. The
present experiment employs the same setup, however the focal length of lens L2
and the diameter of the pinhole have been changed to produce a larger beam
(fi=14.8 mm. /=125 mm, ¢=50 um. and 2w,;=4.34 mm). The diameter of the beam
incident on the DMD was increased such that its power on a four-pixel cell is
approximately equal to that which was incident upon a single-pixel during the
point-diffraction experiment.

A sequence of images describing the linear motion of an object are written to
the DMD. The complex-valued FT of each image frame is calculated using the
JTI algorithms described by Equations 4-11 and 4-12. Modulated spectra (the
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cosine-modulated real part and the sine-modulated imaginary part) are
calculated with both the horizontal and vertical JTI| algorithms. The two
modulated spectra are added in a weighted sum, on a point-by-point basis, in
order to avoid the indeterminate points associated with the zeros of the
modulation functions on the coordinate axes (see Section 5.3.1), and at the same
time, demodulate the spectrum. The complex FT of an image frame is therefore

determined by,
S(2k,2k.) = wa,, + wa,. + i(wB., + wpb..) (514)

where the modulated spectra calculated via both the vertical and horizontal JTI

algorithms are given by,

—21.\'_21r' ﬂrrn=15r_l M

00 00
—215-21r’ ﬁhnr-::I:O-I (5-15)

r0

a., =1 +1I,
00 4]

[-X -] Qo

almr:=1.r0+1r rQ
ro s s0

and the trigonometric weighting functions are,

.= cos(k,) R cos(k, )
4(cos - (l;l,rz (4;( f;)s - (k . )) 4(cos - (Isci,n) (-;-‘ ::3)5“ (k . )) (5-16)

W

W, =

4sin*(k )+sin*(k,))’ + 4{sin>(k_)+sin>(k,))

Inspection of Equation 5-15 reveals that a total of six intensity spectra are
required to caiculate the full complex-valued FT of a single image (the real part of
the FT in the four comers of the calculated spectrum and the imaginary part at
the origin are indeterminate). The six intensity spectra were measured
sequentially at 1/6 video frame rates during the experiments, however, a parallel
implementation would be more attractive on an actual real-time system.

An image sequence describing the motion of a moving object was written to
the DMD and the set of six intensity spectra were measured for each frame in the
sequence. The images written to the DMD were joint (or composite) images
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composed of one source image from the animated sequence and a reference
image. The reference image consisted of a single pixel at the origin. The
complex-valued FT of each image frame was calculated using Equation 5-14 at a

set of T =16 points (k_.k,), uniformly spaced around a circle of radius k"* on

the spatial frequency plane (the circle is referred to as a frequency-domain
observation circle). The radii of the circles used in each trajectory experiment
were chosen to match those used in the point-diffraction experiments. The
sequence of FTs was post-processed off-line using MATLAB to estimate the
trajectory of each object. A flow-chart of the JTI and trajectory estimation post-
processing procedure is illustrated in Figure 5-8.

The trajectory estimation procedure illustrated in Figure 5-8 is identical to that
of the point-diffraction experiment with one exception: the data vector employed
in the new procedure is complex-valued. In the point-diffraction experiment, the
modified forward-backward linear prediction (FBLP) algorithm was employed to
estimate the temporal frequency of the sinusoid contained in a real-valued data-
vector u,. One of two possible directions for the object was arbitrarily chosen and
the signs of the temporal frequency estimates at each spatial frequency were

picked such that the set of frequency-domain triples (k,.k‘..w) described a plane

in 3-D frequency space. The data vector in the present experiment is complex-
valued; the JTI technique provides the full complex-valued spectrum. The
temporal frequencies estimated by the FBLP algorithm are complete with their
correct sign and the direction ambiguity is therefore resolved. The overall
complexity of the algorithm is also reduced because the sign of each frequency
estimate does not have to be determined once the object’s direction has been
chosen (this is particularly important for multiple objects where each object has
its own plane in 3-D frequency space).
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5.4.1.2 Results

The velocity components of 16 point-object trajectories were estimated in two
sets of experiments. During the first set of experiments, targets with different
speeds were moved along a straight line at -27° to the x axis. During the second

set, targets with a velocity of either 1 or /2 ppf (pixels per frame) were moved

along paths at 0, 45, #90. +135, and 180° to the x axis. The velocity components
were estimated every 5" frame starting with the 25" frame and the observation

interval was 25 frames.

The trajectories of objects A, B, C, and D, and their primed counterparts
(primed objects move along the same path but in the opposite direction), were
estimated in the first set of experiments. The slowest objects (A and A’) moved at
0.56 ppf along the shortest trajectory (36 pixels) and the fastest objects (D and D’)
moved at 4.47 ppf along the longest trajectory (282 pixels). Speed estimates at
every 5" frame, starting with the 25" frame, are shown in Figure 5-9. The actual

(8))

4 : _
] : Object D
= : Object D’ : ; : '
& . . A : ' : :
2 3 : / Obijects C and C'
I S e s e S S
@ ] r : ' : : : : :
& ] : : ObjectsAand A" . Objects B and B'
P S P S Sl W S S
+———————————
0 — : ; —_—
20 30 40 50 60 70

Frame, n

Figure 5-9 Speed estimates for objects A, B, C, and D. Primed
objects move along the same path in the opposite direction.
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Table 5-2 Actual and Estimated Trajectories for Objects A, B, C, and D
Radius Speed Estimate Direction Estimate

ID circle R
kr I [radS] v [ppﬂ v [ppf] % Error ¢ [deg] ¢ [deg] Abs. Err.

A 075t 0.56 057+001 228 265+12 00
B 057n 1.12 1.13+£001 058 270+06 05
C  028n 224 224+000 007 266 567+01 0.1
D 0.19n 447 440%0.10 153 247+34 18
A" 0.75m 056 057+001 227 1535+12 00
B 057r .12 1.13+£001  0.59 153006 05
C'  028n 224 224+000 005 1534 s34+01 0.1
D' 0.19n 447 4394020 192 1516+34 1.8

speed and direction, the average speed and direction estimated over the duration
of motion (average of 9 estimates), and the estimation errors, are summarized in

Table 5-2 for each object. The frequency domain observation radius k"“

employed in each experiment is also shown in the table.

The trajectories of objects |, J, K, L, M, N, O, and P, were estimated in the
second set of experiments. Trajectories parallel to coordinate axes were 64 pixels
long and diagonal trajectories were 91 pixels long. Direction estimates at every 5"
frame starting with the 25" frame are shown in Figure 5-10. The actual speed and
direction, the average speed and direction estimated over the duration of motion
(average of 9 estimates), and the estimation errors are summarized in Table 5-3
for each trajectory. The radius of the frequency domain observation circle was

k™" =0.57x rad and is equivalent to that used in the point-diffraction experiment.

5.4.1.3 Discussion

The average object speed was correctly estimated to within +3 % of its actual
value during the first set of experiments. The maximum estimation error is slightly
lower than that observed during the same point-diffraction experiment where the
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Figure 5-10 Direction estimates for objects | through P.

average speed was estimated to within 4 % of its actual value. The new system
was able to track and consistently estimate the speed of the two fastest objects
(objects D and D’) whereas the previous system was unable to accurately
estimate the speed of the same object. The speed estimates were consistently
too low for object D at frames 55, 60, and 65 (end of its trajectory), and for object
D’ at frames 25 and 30 (beginning its trajectory). This effect is most likely caused
by insufficient illumination in the region around the end of trajectory D (beginning
of trajectory D') . The new system was also able to estimate the direction to
within £2° in which the objects moved along the line (the previous system could

not detect the direction with which the objects moved along the line).

The average object direction was correctly estimated to within +0.2° of its
actual value during the second set of experiments. The maximum estimation
error is lower than that observed during the same point-diffraction experiment
where the average direction was estimated to within +2.2° of its actual value.
Most importantly, the new system is able to estimate direction on 360° because

the full complex-valued FT is computed. The previous system could only
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Table 5-3  Actual and Estimated Trajectories for Objects | through P

Speed Estimate Direction Estimate
D v [ppf] v [ppf] % Error @ [deg] dldeg]  Abs. Err.
| 1.000 1.001 £0.001 0.07 0.0 00x0.1 0.0
J 1.414 1.415+£0.000 0.05 45.0 45.1+£03 0.1
K 1.000 1.000+£0.000 0.00 90.0 90.0+0.1 0.0
L 1.414 1.415 £0.001 0.03 135.0 135.1+£0.1 0.1
M 1.000 1.001 £0.001 0.12 180.0 180.0%+0.1 0.0
N 1.414 14150000 005 -135.0 -1348+03 0.2
O 1.000 1.000+0.000 0.05 -90.0 90.0+0.1 0.0
P 1.414 1.415 £0.001 0.06 45.0 449 +0.1 0.1

estimate direction up to a reversal of 180° because only the real part of the FT

was detected.

5.4.2 Multiple Point-Object Trajectory Estimation

The JTI-based trajectory estimation system is extended to multiple objects in the
this section. The experimental setup and the method of coherent detection
(weighted horizontal-vertical JT! with a single-pixel reference image) are identical
to those used in the previous section, however, the trajectory estimation
algorithm is extended to accommodate multiple moving objects.

5.4.2.1 Multiple-Object Trajectory Estimation

An ideal object moving in space-time describes a plane in 3-D frequency space
with slope (along the spatial frequency axes) equal to the object’s velocity. Two
ideal objects describe two planes; the slope of each plane equals the velocity of
its respective object (Figure 3-2 shows the 3-D frequency representation of two
objects moving at the same speed in opposite directions). In general, each ideal
moving object in space-time will describe its own plane in frequency space. The
frequency-domain representation of a moving object is a complex-valued function
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of three variables; the square of its absolute value, at some point (k,,.k,..a)),

describes the energy associated with that particular frequency triple. A plane is
said to exist in frequency space if the energy distribution is such that points on
the plane have high energy (infinite energy as described by 3-function for an
ideal moving object) and all other points have low energy (zero energy in the

ideal case).

The mixed-domain trajectory estimation algorithm determines the trajectory of
an object by estimating the temporal frequency of a mixed-domain signal
S(k. .k .n) using the modified FBLP algorithm. The signal at any point (k,.k, )

describes a complex-valued sinusoid with temporal frequency proportional to the
object's velocity. A single component sinusoid is detected for a single moving
object and multiple sinusoids for multiple objects. In general, the number of
component sinusoids detected in S(k‘,k_‘_.n) is equal to the number of moving

objects. Consider the case of P moving objects. The modified FBLP algorithm is
employed to estimate the temporal frequencies of P component sinusoids at
each of the T observation points on the spatial frequency plane. This provides a

set of T-P frequency-domain triples (k,.k‘.,a)), each of which lies on one of P

possible planes through the origin. The set of triples is searched and divided into
P subsets such that each triple in the subset belongs to the same plane. The
subset of triples belonging to each plane is used to characterize its slope and
yield the velocities of the P objects.

The trajectory estimation algorithm proposed by Knudsen employed a
systematic brute-force method to separate the set of T - P triples into subsets of
3-tuples belonging to different planes [Knu92a). The algorithm presented here
employs the Hough transform [Hou62, Bal82] to identify planes in 3-D frequency
space. The Hough transformation maps triples (k..k @) from 3-D frequency
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space into lines in v,-v, parameter space. An ideal moving object is described in

3-D frequency space by a plane through the origin,

vk, + vk - o = 0 (5-17)

and is parameterized by the object's velocity components. Each frequency-
domain triple on the plane describes a line,

@
= ——= = -1
v, v. + L (5-18)

in Hough parameter space. The slope of the line depends on the position of the
observation point on the spatial frequency plane and the v, intercept depends on
(and is proportional to) the temporal frequency estimated at that point. Each triple
in 3-D frequency space describes a different line in 2-D parameter space. Triples

that lie on a plane parameterized by an object with velocity v, = [v,,_, Ve ]T map to
a family of lines which intersect at the point (v‘_,,v,..,) in parameter space. The set

of triples corresponding to each frequency-space plane maps to its own family of
intersecting lines in parameter space. An object's velocity components are
determined by identifying the point of intersection in v.-v, parameter space

corresponding to its family of lines.

One can not tell with absolute certainty if a particular line in parameter space
belongs to a given set of intersecting lines. Under ideal noiseless conditions, all
lines which belong to a particular object will intersect perfectly at the same point
on the v,-v, plane and lines that do not include this point must therefore belong to
a different object (a line which belongs to one object, however, can include the
point of intersection of a second object, and vice versa). This parameter-space
identification problem is analogous to determining whether a particular frequency
triple belongs to a given plane in 3-D frequency space. In the presence of noise,
the v.-v, plane is searched for the most probably points of intersection.
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The Hough transform algorithm is well documented [Bal82]. A line given by
Equation 5-18 is drawn in a discrete parameter-space voting-array for each
frequency-domain triple. The elements in the array at which all the lines
belonging to a particular plane intersect, will receive the most votes. The array is
searched for the elements with the most votes and the indices of these elements
correspond to the velocity components of the different objects. The Hough
transform is a more robust estimator of the velocity parameters than the least-
squares fit employed in the single-object algorithm because the outliers are

ignored.

5.4.2.2 Experimental

The trajectories of three point-objects moving simultaneously over a zero
intensity background were estimated in two sets of experiments. Two different 65
frame animated sequences, referred to as image sequences 1 and 2, and each
describing the linear motion of three single-pixel objects, were constructed from a
sequence of 320x240 pixel images. The velocity, speed and direction, and initial
and final positions, of the three objects moving in the two different image
sequences, are shown in Table 5-4. The object trajectories are also illustrated in

Table 5-4  Actual Trajectories for Image Sequences 1 and 2

o Velocity, speed, and Direction Initial Position  Final Position
|
ve [ppfl  ve[ppf] vippfl ¢(deg]  my n m; n;

Image Sequence 1

o 0.00 -1.00 1.00 -90.0 5 32 5 -32

L -1.00 1.00 1.41 135.0 27 -37 -37 27

C -2.00 1.00 2.24 1534 69 -27 -59 37
image Sequence 2

R 0.30 0.39 0.49 52.8 -10 -12 9 13

Q 1.08 091 1.41 40.0 -31 -29 38 29

S 205 219 300 469 60 70 71 -70
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Figure 5-11 Actual trajectories for: (a) image sequence 1 (objects O, L and C’);
and (b) image sequence 2 (objects R, Q, and S).

Figure 5-11. Image sequence 1 contained objects O, L, and C’, which move on
simple trajectories with unit pixel displacement per frame and well separated
directions. Image sequence 2 contained objects R, Q, and S, which moved on
slightly more complicated trajectories (objects R and Q move in almost the same

direction).

The post-processing trajectory estimation algorithm is extended to
accommodate three moving objects. The extension is illustrated in Figure 5-12
and replaces the segment of the original algorithm labeled “trajectory estimation
at frame 4,”, shown in Figure 5-8. The post-processing algorithm assumes that
there are exactly three moving objects in the image sequence and the modified
FBLP algorithm is instructed to estimate the temporal frequency of three
sinusoids in each data vector. The absolute value of temporal frequencies,
estimated at diametrically opposed spatial frequency points, were averaged in
order to: 1) reduce the number of frequency-domain triples; and 2) increase the
accuracy of the temporal frequency estimates. At some point on the frequency-
domain observation circle, the temporal frequency has a sign which is opposite to
that of the temporal frequency at a diametrically opposed point,
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wolk, k) = kv, +kyv, = —ol-k,.~k,) (5-19)

because temporal frequency is an odd function of spatial frequency. The
temporal frequencies around the first half of the observation circle were
combined with those around the second half in a simple average,

Extract T data vectors of iength D

E={(d-D+1,d-D+2,...d,}
u, = S(k.n), keQ, neE,

Y

Modified FBLP on T complex data vectors u,
Estimate the set of temporal frequency triples
{0, 0,,0)11=1,2,...T}

Y

Average diametrically opposed frequencies
@k k) =Y2 0(k,.k) - Y of-k.-k)
k={ k.. k.. ...k}, /[=1,2,3

Y

Hough transform (k .k..0) — (v..v)
the set of 3T/2 frequency domain triples
{ (k.k.®kkL) I k={k. K. .. kp} [=1.2.3}

Y

Search Hough parameter-space h(v.v,)
for the three largest peaks

od
{v v v ™ v = (e ™™ )

Y

Calculate COG on 3-by-3 neighborhood
v.= X v hv.wv) v.=2 v h(v,v)
and calculate speed and direction
h=(v + )", § =atan(v,,v,)

Figure 5-12 Modified trajectory estimation algorithm
extended to accommodate three moving objects.
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ak, k) = tolk k) - tol-k,.—k) (5-20)

as indicated by the algorithm of Figure 5-12. The Hough-transform parameter-
space array had dimensions 65x65 and its voting elements were linearly

distributed between v™ =v™ =-25ppf and v =v? =2.5ppf, resulting in a

velocity quantization width of Av=Av_=Av_ =0.077 ppf . The three objects were

identified in parameter space as the three maximum-valued elements each
belonging to a different peak. The velocity components of each object were then
calculated as the center-of-gravity (COG) on a 3x3 neighborhood centered on

each maximum.

5.4.2.3 Results

The velocity components of the 3 objects in each animated sequence were
estimated at every 5" frame starting with the 25" frame (the duration of the
observation interval was D =25 frames). The radius of the frequency-domain
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Figure 5-13 Speed and direction estimates for the three objects O, L, and
C’ of image sequence 1.
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observation circle was set to k'™ =%rad (the a priori maximum speed was

assumed to be v™ =3 ppf ). The speed and direction estimates for the first and

second sequences are shown respectively in Figures 5-13 and 5-14. The actual
speed and direction, the average speed and direction estimated over the duration
of motion (average of 9 estimates), and the estimation errors, for the three

objects in each sequence, are summarized in Table 5-5.
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Figure 5-14 Speed and direction estimates for the three objects R, Q,
and S of image sequence 2.

5.4.2.4 Discussion

Objects O, L, and C’ in the first sequence were successfully tracked and their
speed and direction were correctly estimated at each estimation frame. The
average speed of each object was correctly estimated to within +2 % of its actual
value (expressed as a percentage of v™*) and the average direction of each
object was correctly estimated to within +2°. Objects R, Q, and S in the second
sequence were successfully tracked and their trajectories were correctly
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estimated at each estimation frame except for object S frame 25. The average
speed and direction for each object were correctly estimated to within +2 % and
+2° of their actual values (speed and direction for object S at frame 25 were not
included in the average).

Table 5-5 Estimated Trajectories for Image Sequences 1 and 2

Speed Estimate Direction Estimate

v [ppf] v [ppf] % Error @ [deg] @ [deg] Abs. Err.

ID

image Sequence 1

o] 1.00 1.039+£0.003 13 -90.0 91.7+0.2 1.7

L 1.41 1.433+0.003 0.6 135.0 136.5+0.1 1.5

(o} 2.24 2277+0.007 14 153.4 154.3+0.1 0.9
Image Sequence 2

R 049 0468+0.005 08 52.8 52.0+0.1 0.7

Q 1.41 1.371£0.018 1.2 40.0 394+19 0.7

S 3.00 2981 +0.004" 0.5 -46.9 475+02" 0.5

' Estimate at frame 25 removed from average and standard deviation caiculation

5.5 TRAJECTORY ESTIMATION WITH A MULTIPIXEL REFERENCE

The trajectory estimation system presented in the previous section employed the
JTI method of coherent detection and a single-pixel reference image. The source
images were limited to either one or three pixels in order to maximize the fringe
visibility of the joint transform interferograms. The system presented in this
section employs a multipixel reference to estimate the trajectory of muiltiple large
(non-point) objects moving in the presence of background imagery and random

noise.

The multipixel system described here is identical to that presented in Section
5.4.2 except: 1) a multipixel rather than a single-pixel reference is employed; and
2) the beam incident on the DMD is enlarged. The optical setup was illustrated
previously in Figure 5-4. The beam expander in the new experimental setup
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consists of objective lens L1 (10X objective, fi=8.3 mm), collimating lens L2
(corrected triplet, =125 mm), and pinhole PH (¢=25 pm), and provides an incident
beam with diameter 2w,=7.74 mm. The multipixel system employs the weighted
horizontal-vertical JT! post-processing algorithm (Figure 5-8) and the muttiple-
object trajectory estimation algorithm (Figure 5-12). The a priori maximum speed

was set to v™* =3 ppf . This choice also determines the radius of the frequency-
domain observation circle, k™" = % rad . Trajectories were estimated at every s*

frame starting with the 25" frame and the duration of the observation interval was

D =25 frames.

The trajectory estimation system described was employed to determine the
trajectory of multiple moving objects in four sets of experiments: 1) 3x3 pixel
objects on a zero intensity background, 2) 3x3 objects on a simple artificial
background; 3) 3x3 objects in additive noise; and 4) single-pixel objects in
additive noise. Each experiment employed an image sequence which described
the simultaneous motion of three identical objects moving on their own
trajectories. The multipixel reference images are binarized (or if you prefer
thresholded) Bessel functions, constructed to provide uniform amplitude and
phase in the frequency domain, around an annular region of interest, which
coincides with the observation points.

5.5.1 Bessel Function Reference Image

The intensity of the source and the reference spectra must be matched in order
to produce an interferogram with good visibility and provide complex-valued
source spectra with good SNR (see Section 4.7). An ideal frequency-domain
reference has: 1) a constant intensity distribution equal to the maximum intensity
of the source spectrum; and 2) a uniform phase distribution. In theory, a &-
function reference image provides an ideal frequency-domain reference,
however, it is not realizable on a conventional SLM (a single pixel approximates
the spatial extent of a 8-function but its amplitude is finite and is limited by the
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contrast ratio and the passive transmission or reflection characteristics of the
pixel).

The trajectory estimation algorithm does not require the FT of each image
frame at every point on the spatial frequency plane — the algorithm requires the
FT at 7 uniformly spaced points on an observation circle of radius k7. An
annular region of interest is defined which includes the observation circle. A
reference image is constructed such that the frequency-domain reference has
uniform phase and intensity matched to that of the source in the region of
interest. The frequency-domain reference (and its corresponding spatial-domain
reference image) should have circular symmetry. The zero-order Hankel
transform (a 1-D Fourier transform with a zero-order Bessel-function kemel) of a

zero-order Bessel function is a &-function ring of radius k. The Hankel

transform-pair is given by,

ke Jolkser) e 2 8k, —ke) (5-21)

where r=vVm?+n® and k, =,/k_f +k? are radial coordinates in the spatial and

frequency domains. A reference image constructed from a zero-order Bessel
function satisfies the criteria for uniform phase and constant amplitude on the
frequency-domain observation circle. A reference with any radial design
frequency k" can be realized by constructing the appropriate spatial-domain

Bessel image. The finite amount of optical power reflected (or transmitted) by the
pixels of the reference image is mapped into the 8-function ring on the spatial
frequency plane. The intensity of the ring can be matched to that of the source
spectra by modifying the amplitude of the Bessel image on a gray-scale SLM or
by changing the threshold employed to binarize the reference on a binary SLM
such as the DMD.
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The algorithm used to generate the binarized Bessel images is illustrated in
Figure 5-15. All reference images were constructed with a design frequency
equal to that of the frequency-domain observation circle. The Bessel images
were binarized using a threshold value such that the resulting image was
composed of L on-pixels. The FT of a binarized and discretely-sampled reference
image is not an exact 3-function ring, however, the energy of the reference is still

concentrated in a region about k, =k“~“ on the spatial frequency plane. The

intensity of the 8-function ring can be modified by choosing a reference image
with an appropriate number L of on-pixels. A series of Bessel function reference-
images, constructed using the algorithm with L = 5, 17, 41, 117, 229, and 449

pixels, and k™ =%4rad, are illustrated in Figure 5-16. The reference images

shown in the figure are 51x51 pixels in size.

Pick reference parameters, /

design frequency k™ = /3.
number of on-pixels L

Construct gray-scale Bessel image
r,(mn) = J (k™" (m'+n’)")

Y

Pick threshold r, such that
coumt{ r (m.n)>r,|=L

y

Threshoid the grey-scaie image

1 rmn)>r,
0 otherwise

Figure 5-15 Algorithm to generate a binarized
Bessel-function reference image.

rimn)= {
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(a) (b)

(d) (e)

Figure 5-16 Bessel reference images: (a) L=5 pixels;
(b) L=17 pixels; (c) L=41 pixels; (d) L=117 pixels; (e) L=229
pixels; and (f) L=449 pixels.

5.5.2 Multiple 3x3 Pixel Objects

5.5.2.1 Experimental

The trajectories of three 3x3 pixel objects were estimated in the first of four
multipixel reference experiments. Two different 65 frame animated sequences,
referred to as image sequences 3 and 4, and each describing the linear motion of
three 3x3 pixel objects, were constructed from a sequence of 128x128 pixel
images. Image sequence 3 contained objects M, J, and T, which moved on
simple trajectories with unit pixel displacement per frame and well separated
directions. image sequence 4 contained objects U, V, and M, which moved on
slightly more complicated trajectories. The velocity, speed and direction, and
initial and final positions, of the three objects in each sequence, are shown in
Table 5-6. The trajectory experiment was run several times employing different
Bessel-function reference images. A total of 14 different reference images were
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Table 5-6  Actual Trajectories for Image Sequences 3 and 4

164

D Velocity, speed, and Direction Initial Position  Final Position
ve [ppf]l v.[ppfl vIppf]l ¢l[deg.] m n m; n;
Image Sequence 3
M -1.00 0.00 1.00 180.0 32 -5 -32 -5
J 1.00 1.00 1.41 45.0 -37 27 27 37
T 2.00 -1.00 2.24 -26.6 -64 37 64 27
image Sequence 4
U 0.30 0.39 0.49 52.8 -6 -8 13 17
\/ 1.08 0.91 1.41 40.0 -29 -29 40 29
w 1.86 -1.98 2.72 -46.9 -59 63 60 -64

tested and the number of on-pixels in each image was logarithmically distributed

between L =5 pixels and L =449 pixels.

5.5.2.2 Results and Discussion

The average fringe visibility (depth of modulation) was determined for each

Bessel-function reference image tested with image sequence 3. The average

Visibiity, v

0-0 T rrrr!ni T i1 ll"ll'] LENRSR ll"'l T ﬁrlllli 1 T T Yillli T LR AL

103 102 107 10° 10t

Intensity Ratio, /™" : I,

102 100

Figure 5-17 Average fringe visibility versus the ratio of maximum source
intensity to reference intensity for various Bessel reference images.
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fringe visibility was determined by calculating the fringe visibility (Equation 4-33)
at each point on the frequency-domain observation circle, for each frame in the
image sequence, and then computing their average. The average fringe visibility
versus the ratio of maximum source intensity /7 to reference intensity /, is
plotted in Figure 5-17. The theoretical visibility curve described by Equation 4-33
is also shown. The reference images with L=41, 49, and 57 on-pixels, with
respective average fringe visibilities V=098, 0.99, and 1.00, best match the
source image sequence. Reference images with twice (and half) as many on-
pixels provide a fringe visibility close to unity (V=0.87 for L=97 and V=0.85 for
L=21).

The trajectory estimation algorithm successfully tracked and correctly
estimated the velocity components of all three objects, in both image sequences,
to within +2Av =10.154 ppf (where Av is the Hough transform parameter-space
quantization width), for all reference images, except L=5 and L=449 (the velocity
components of object T were correctly estimated at only 8 of the 9 frames in the

two exceptional cases).

Table 5-7  Estimated Trajectories for Image Sequences 3 and 4
Speed Estimate Direction Estimate

ID "
v [ppf] v [ppf] % Error  ¢ldeg]  @[deg]  Abs. Em.

Image Sequence 3

M 1.00 1.034 £ 0.005 1.1 180.0 -178.7+0.3 1.3
J 1.41 1.404 + 0.004 03 45.0 45.2+0.2 02
T 2.24 2.186 £ 0.009 1.7 -26.6 -28.3+05 1.7
Image Sequence 4

U 0.49 0.468 £ 0.004 0.8 52.8 520t06 0.8
Vv 1.41 1.390 £ 0.037 0.6 40.0 40.2+0.8 0.2

W 272 2.697+0.027 0.7 46.9 -475%+1.2 0.6
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The average speed and direction estimated using the L=57 Bessel image are
shown in Table 5-7. The table summarizes the actual speed and direction, the
average speed and direction estimated over the duration of motion (average of 9
estimates), and the estimation errors, for each object. Objects M, J, and T in
image sequence 3, and objects U, V, and W in image sequence 4, were
successfully tracked and their speed and direction were correctly estimated at
each estimation frame. The average speed of each object was correctly
estimated to within +2 % of its actual value and the average direction of each

object was correctly estimated to within +2°.

Knudsen and Bruton presented similar experimental results for three objects
moving simultaneously on linear trajectories [Knu92a). In their experiment, the
three moving objects were square 3x 3 pixel targets of intensity 255 moving over
a background of zero intensity (objects of maximum contrast in a noiseless
environment). The three objects moved on trajectories similar to those employed

in this work (object 1: v, = V2 ppf, @, =40°; object 2: v, =1ppf, ¢, =53°, and
object 3: v, =3 ppf , ¢, =—47°). The trajectories were estimated every 5" frame

starting with the 25" frame. In the Knudsen and Bruton experiment, the
maximum absolute velocity error was 0.06 ppf (2% of the maximum velocity) and
the maximum absolute direction error was 1.8°. These results compare favorably
with those produced by the hybrid optical-digital system. However, in the
Knudsen and Bruton experiment, the third object left the image sequence after
the 61°' frame and their system was able to detect the loss of the third object and
correctly estimated the trajectory of the remaining two objects. Three moving
objects were known a priori in the hybrid optical-digital trajectory estimation

system presented in this dissertation.
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5.5.3 Mulitiple 3x3 Pixel Objects on a Stationary Background

5.5.3.1 Experimental

A synthetic background was added to animated sequences 3 and 4 and the
trajectories of the 3x3 pixel objects were estimated using the trajectory
estimation system. The two background images, which remained the same for
each frame in the sequence, are illustrated in Figure 5-18. The figure shows
frame n=17 for the two animated sequences. The objects can be identified in
each frame as the 3x3 pixel squares; the trajectories are illustrated by the
narrow lines indicating the object’s direction. The background of sequence 3 is
composed of five simple objects adding a total of 1212 on-pixels to each frame of
the sequence; the background of sequence 4 is composed of six larger objects
adding a total of 2008 on-pixels to each frame.

Figure 5-18 Synthetic backgrounds and object trajectories: (a) image
sequence 3 (objects M, J, and T) with background; and (b) image
sequence 4 (objects U, V, and M) with background. The 3x3 pixel
objects are shown at frame n=17.
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5.5.3.2 Results and Discussion

The L=257 and L=205 reference images provided the best resuits for animated
sequences 3 and 4, respectively. The actual speed and direction, the average
speed and direction estimated over the duration of motion, and the estimation
errors, for the three objects in each sequence, are summarized in Table 5-8. The
objects were successfully tracked and their speed and direction were correctly
estimated at each estimation frame. The average speed of each object was
correctly estimated to within +2 % of its actual value and the average direction of
each object was correctly estimated to within +2°. The addition of a stationary
background to the animated sequences did not appear to make any difference to
the accuracy of the trajectory estimation system. It is curious that the trajectories
of the sequence with the most background pixels (image sequence 4), were
more accurately estimated using the reference image with the least pixels. The
reason for this is that the objects in image sequence 4 were larger than those in
image sequence 3, and consequently, image sequence 4 had more power near
the origin of frequency space, and less power on the frequency-domain

Table 5-8 Estimated Trajectories for Image Sequences 3 and 4 with a
Background

Speed Estimate Direction Estimate

ID "
v [ppf] v [ppf] % Error  ¢ldeg] ¢ ([deg] Abs. Err.

Image Sequence 3

M 1.00 1.030 £ 0.004 1.0 1800 -178.2+04 1.8

J 1.41 1.401 £0.003 0.5 45.0 45.2+0.1 0.2

T 224 2.199 £0.016 1.2 -26.6 274+13 09
image Sequence 4

U 0.49 0.467 £0.004 0.8 52.8 52.0+04 0.7

Vv 1.41 1.394 £ 0.023 05 40.0 40.1 £ 09 0.0

\2'} 272 2.692+0.028 09 469 -47.1%1.0 0.2
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observation circle, than image sequence 3. Sequence 4 therefore required a
Bessel image with fewer pixels than sequence 3 in order to be intensity matched
on the frequency-domain observation circle.

5.5.4 Multiple 3x3 Pixel Objects with Additive Noise

5.5.4.1 Experimental

A synthetic white-noise image was added to each frame of image sequence
numbers 3 and 4. The trajectories of the three 3x3 -pixel objects were estimated
using the hybrid optical-digital trajectory estimation system and then using a
completely digital system. The digital system was identical to the hybrid optical-
digital system except that the FT of each image frame was calculated using a
2-D FFT algorithm with 64 bits of floating point accuracy. Each 128x128-point
FFT required approximately 1 million floating point operations using the 2-D FFT
algorithm in MATLAB version 5.2 and consumed approximately 70 msec of CPU
time on an Intel 166 MHz Pentium processor.

The white-noise sequence was constructed by thresholding 65 different
realizations of a 128x128 pixel i.i.d. (independent and identically distributed)
Gaussian random process with zero mean and unit variance. The threshold was
chosen to provide a predetermined number of noise pixels for each frame. The
target signal-to-noise ratio is defined as the target signal power divided by the
noise power,

Z s(m.n)

targets number of target pixels
SNR = - = . -
> s(m.n)’  number of noise pixels

noise

(5-22)

and is equal to the ratio of the number of target pixels to the number of noise
pixels in each frame because both target and noise pixels have the same
intensity (the DMD is used as a binary SLM). Figure 5-19 shows frame n=17 of
image sequence 3 with four levels of additive white noise. The frames illustrated
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in parts (a) through (d) have SNR = 11.3, 0.0, -6.0, and -10.5 dB, which correspond
to 2, 27, 107, and 303 noise pixels, respectively (there are 3-3? =27 target pixels
per frame). The objects can be identified in each image frame as the 3x3 pixel
squares; the trajectories are illustrated by the narrow lines indicating the object’s

direction.

(a) (b)

() (d)

Figure 5-19 Image sequence 3 with four levels of noise: (a) SNR = 11.3
dB (2 noise pixels); (b) SNR=0.0 dB (27 noise pixels); (c) SNR=-6.0 dB
(107 noise pixels); and (d) SNR=-10.5 dB (303 noise pixels). The objects
are shown at frame n=17.
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5.5.4.2 Results and Discussion

The trajectory of each object in image sequences 3 and 4 was estimated at 9
different frames over the duration of motion (every 5™ frame starting with the 25"
frame) at four different noise levels. Tables 5-9 and 5-10 summarize the number
of frames out of 9, for image sequences 3 and 4, where the velocity components
of the three objects were correctly estimated. An object was correctly estimated if
both its velocity components were estimated to within two times the quantization
error, +2Av=10.154 ppf , introduced by the Hough parameter-space voting

matrix.

At a noise level corresponding to a target SNR of 11.3 dB, the three objects in
both image sequences were correctly estimated by the hybrid optical-digital
trajectory estimation system at all 9 estimation frames (total of 27 objects
correctly estimated in each sequence). The number of correctly estimated
objects decreased monotonically with SNR. Further investigation at other noise
levels indicated that the trajectories were generally estimated correctly for an
SNR greater than -3 to 0 dB (depending on the trajectory) and that the number of
correctly estimated objects decreased linearly with SNR below this threshold.
When the noise power was 10 times the target power (SNR=-10.5 dB), 1 out of 27
(object M at frame 55) and O out of 27 possible objects were correctly identified,
during image sequences 3 and 4, respectively. The performance for the two

Table 5-9 Number of Frames Correctly Estimated in Image Sequence 3
for 3x3 pixel objects (Total of 9 Estimation Frames)

SNR # of noise Optical-Digital System All-Digital System
[dB] pixels M J T Tot. M J T Tot
11.3 2 9 9 9 27 9 9 9 27
0.0 27 9 8 7 24 9 8 9 26
-6.0 107 7 7 3 17 8 7 5 20

-10.5 303 | 0 0 I 0 l 0 |
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Table 5-10 Number of Frames Correctly Estimated in Image Sequence 4
for 3x3 pixel objects (Total of 9 Estimation Frames)

SNR # of noise Optical-Digital System All-Digital System
[dB] pixels U Vv w Tot. ) \" W  Tot
11.3 2 9 9 9 27 9 9 9 27
0.0 27 9 8 7 24 9 9 9 27
-6.0 107 5 2 3 10 4 3 3 10

-10.5 303 0 0 0 0 1 1 0 2

noisiest image sequences (-6 dB and -10dB) could be improved substantially by
preprocessing the sequences using a simple median filter to improve their SNR.

The performance of the all-digital trajectory estimation system was generally
better than that of the hybrid optical-digital system. Both systems performed
equally poorly at the lowest SNRs. The pixel aperture of the CCD camera was
simulated in the all-digital processor by calculating the FT at a particular spatial
frequency as an average of the four spectral values positioned at the comers of a
square region equivalent in size to a CCD pixel and centered on the desired
spatial frequency. When the FT at each spatial frequency was computed as a
single sampled point rather than an average of four points, the hybrid optical-
digital system usually outperformed the all-digital system. The frequency domain
averaging, realized by the finite CCD pixels in the hybrid optical-digital system,
and simulated by the four-point average in the all-digital system, appears to
smooth out some of the noise contributions transformed into the frequency
domain from the noisy image sequence. The frequency domain smoothing
increases the trajectory estimation performance of both systems.
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5.5.5 Multiple Single-Pixel Objects with Additive Noise

5.5.5.1 Experimental

The experiment described in Section 5.5.4 was repeated with single-pixel objects
instead of 3x3 pixel objects. The trajectories of sequence 3 objects M, J, and T,
and sequence 4 objects U, V, and W, were unchanged, however, the 3-by-3
objects in each frame were replaced by single pixels. This experiment is a more
realistic test of the mixed-domain trajectory estimation algorithm which was
originally proposed for the detection and trajectory estimation of small, barely
discemible, multiple moving objects of unknown position and velocity. Because
the target and noise pixels in this experiment have the same shape and intensity,
it is impossible to distinguish between the two in a single frame without knowing
the trajectories a priori. The image sequence must be integrated, or rather
observed, over several frames in order to estimate the trajectories.

5.5.5.2 Results and Discussion

The object trajectories in image sequences 3 and 4 were again estimated at 9
different frames over the duration of motion (every 5™ frame starting with the 25"
frame) at four different noise levels. Tables 5-11 and 5-12 summarize the number
of frames out of 9, for image sequences 3 and 4, where the velocity components
of the three objects were correctly estimated.

Table 5-11 Number of Frames Correctly Estimated in Image Sequence 3
for single-pixel objects (Total of 9 Estimation Frames)

SNR # of noise Optical-Digital System Ali-Digital System
(dB] pixels M J T Tot. M J T Tot.
1% 0 9 9 9 27 9 9 9 27
00 3 6 2 3 11 7 4 4 15
-3.0 6 3 2 | 6 2 0 0 2
-6.0 12 0 0 0 0 0 1 0 |
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When no noise was added (infinite SNR), the three objects in image sequence
3 were correctly estimated by the hybrid optical-digital trajectory estimation
system at all 9 estimation frames (total of 27 objects correctly estimated). Image
sequence 4 objects U and V were correctly estimated by the hybrid optical-digital
system 9 times out of 9, however, object W was correctly estimated at only 7 of
the 9 estimation frames (total of 25 objects correctly estimated). The number of
correctly estimated objects decreased monotonically with SNR. Further
investigation at other noise levels indicated that the trajectories were generally
estimated correctly for an SNR greater than 2 to 4 dB (depending on the
trajectory) and that the number of correctly estimated objects decreased linearly
with SNR below this threshold. When there were twice as many noise pixels as
target pixels (SNR=-3.0 dB), 6 and 3 out of the 27 possible objects were correctly
identified, during image sequences 3 and 4, respectively. No objects were
correctly identified in either sequence when the noise level was 4 times the target
signal level (SNR=-6.0 dB). |

Once again, the performance of the all-digital trajectory estimation system was
generally better than that of the hybrid optical-digital system. -Both systems
performed equally poorly at the lowest SNRs. As before, the FT at a particular
spatial frequency was calculated as an average of four spectral values centered
on the desired point. When the FT at each spatial frequency was computed as a

Table 5-12 Number of Frames Correctly Estimated in Image Sequence 4
for single-pixel objects (Total of 9 Estimation Frames)

SNR # of noise Optical-Digital System All-Digital System
[(dB] pixels ) Y w Tot. U \'} W Tot.
»n 0 9 9 7 25 9 9 9 27
0.0 3 7 5 2 14 4 5 6 15
-3.0 6 | 2 0 3 4 0 0 4
-6.0 12 0 0 0 0 | 0 0 1
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single sampled point rather than an average of four points, the hybrid optical-
digital system usually outperformed the all-digital system. It is speculated that if
the FT at a particular frequency was calculated as the average of a densely
sampled region, the all-digital system would always perform at least as well as
the hybrid optical-digital system.

Both trajectory estimation systems were able to consistently track and
correctly estimate the trajectories of single-pixel objects when the SNR was
greater than about 3 dB. The hybrid optical-digital system required the
measurement of 6 interferograms and consumed 16-13=208 floating-point
operations to detemmine the FT at the T =16 desired spatial frequencies of each
image frame. The all-digital system consumed approximately 1 million floating
point operations to calculate the FT of each image (additional computational
savings may be gained by using a pruned FFT algorithm). The FFT algorithm
consumes almost 4 orders of magnitudes more floating-point operations for a
128x128 pixel image than the optical Fourier processor. The computational
advantage of the optical Fourier processor is even more significant for larger
images. Time domain trajectory estimation systems [Blo91] have demonstrated
tracking and trajectory estimation of 10 moving point-objects when the SNR is
less than -20 dB. Time-domain trajectory estimation techniques appear to be
more robust to noise than the mixed-domain methods investigated in this

dissertation.
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5.6 CHAPTER SUMMARY

The JTI method of coherent detection was experimentally verified. The spectra of
two single-pixel source images were determined using the weighted three-
component JTI algorithm and a single-pixel reference image. The real and
imaginary parts of the source spectra were correctly calculated as 2-D sinusoidal
functions with period determined by the source pixel's displacement from the
origin. The real and imaginary parts exhibited the required quadrature phase
relationship. The source spectra were calculated as a weighed sum of positively
and negatively modulated spectra. The weighted sum avoided the indeterminate
points associated with the modulation function zeros (except at the four comers
of the real spectrum and the origin of the imaginary spectrum), and demodulated
the JTI spectra, at the same time.

The on-state tilt of the DMD mirrors introduced a blazing effect which
produced a linear phase shift across the plane of the device. The phase shift
caused a mutual displacement between the (coherent) optical transfer function
(OTF) and the set of replicated spectra (interference maxima). This effect,
combined with the source-spectrum replication introduced by the JTI zero-
interleaving, resulted in a spectrum, uncontaminated by contrast-ratio noise,
between the 6™ and 7" interference maxima. The zero spatial frequency of this
spectrum coincided almost exactly with the maximum absolute value of the OTF.

The full trajectory of single and muitipixel objects moving through a synthetic
stationary background and in the presence of white noise were successfully
estimated using the improved JT| based optical Fourier processor. The point-
diffraction experiment presented in Chapter 3 was repeated using the improved
system. The object trajectories were estimated with greater accuracy and more
importantly the direction ambiguity was successfully resolved. A Hough transform
technique was employed to characterize the parameters of the object’s velocity
planes in 3-D frequency space. The trajectories of three single-pixel objects were
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correctly estimated using this technique and a single-pixel JTI reference. Multi-
pixel JTI reference images were constructed by thresholding a 2-D Bessel
function. The binarized Bessel images were constructed to produce a d-function
ring which coincided with the frequency-domain observation circle and an
intensity on the circle equal to the maximum source spectra intensity. The
trajectories of three 3x3 pixel objects moving on two different synthetic
backgrounds were successfully estimated using various Bessel reference
images. The trajectories of three 3x3 pixel and three single-pixel objects were
correctly identified and successfully estimated in several experiments where the
target SNR ratio was decreased by adding white Gaussian noise to the image
sequences. The system was consistently able to track and correctly estimate the
trajectories of 3x3 and single-pixel objects when the SNRs were greater than
-3 dB and 3 dB, respectively.



CHAPTER

Conclusions and Suggestions for
Further Work

Two interferometric optical Fourier transform (FT) processors were constructed
and experimentally verified. One processor used a conventional point-diffraction
interferometer (PD!) to detect the real part of the complex-valued optical
distribution in the back focal-plane of a FT lens. The second processor employed
a novel phase-shifting method of coherent detection, called joint transform
interference (JT1), to measure both the real and imaginary parts of the optical FT.
The new JTI technique is insensitive to vibration and temperature fluctuations
due to its simple common-path design. The JTI source and reference images are
easily matched in order to guarantee good fringe visibility.

Both optical processors were demonstrated in a trajectory estimation system
designed to estimate the speed and direction of objects moving in an image
sequence. The PDI based system successfully estimated the speed and direction
(up to a reversal of 180°) of single point-objects of maximum contrast moving
over a black background. The JTI based system successfully estimated the
trajectory of multiple point-objects and large 3x3 pixel objects moving over a
synthetic background and in the presence of Gaussian white noise.

178
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The objectives, achievements, and contributions made in this dissertation are
summarized in Section 6.1. Suggestions for further work are discussed in Section
6.2. The suggestions for further work are divided into those which apply to the
JTI method of coherent detection and those which apply to its application to
moving-object trajectory estimation. Other applications for interferometric optical
Fourier processors are discussed in Section 6.3.

6.1 OBJECTIVES, ACHIEVEMENTS, AND CONTRIBUTIONS

There were two primary objectives in this dissertation. The first was to develop
an indirect interferometric means of detecting and measuring the complex-valued
optical field mapped into the back focal-plane of a Fourier transform lens. The
second was to construct an optical Fourier transformer, based on the method of
coherent detection, and employ it to demonstrate a moving-object trajectory
estimation system using the Knudsen and Bruton mixed-domain algorithm. The
summary of contributions presented in the following paragraphs demonstrate

how these objectives were achieved.

A hybrid optical-digital trajectory estimation system based on the mixed-
domain method of trajectory estimation was constructed and demonstrated using
a point-diffraction based optical Fourier processor. The mixed-domain technique
was developed and demonstrated in software by Knudsen and Bruton [Knu92a,
Knu92b]. A hardware implementation was proposed in this dissertation and
demonstrated using an optical Fourier processor and point-diffraction
interferometer (PDI). The optical processing was performed at 1/3 video frame
rates and the balance of the trajectory estimation algorithm was performed off-
line using MATLAB. The system was limited to the trajectory estimation of a
single-pixel object of maximum contrast moving over a zero intensity
background. The system correctly estimated the path and speed of the moving
object, however, the direction with which the object moved along the path was
indeterminate. The addition of a single target, background, or noise pixel to the
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image sequence reduced the visibility of the fringe pattems to a point where the
trajectory of the moving object could not be accurately estimated.

A novel interferometric technique called joint-transform interference (JTI) was
developed to recover the complex-amplitude spectrum in an optical Fourier
processor. The FT of a source image is interfered with the FT of a reference
image in a common-path interferometer. Unlike the PDI, both the real and
imaginary parts of the complex-valued spectrum are determined, and in addition,
the source and reference images are easily matched in order to guarantee good
fringe visibility. The interferometric optical Fourier processor determines the
complex-vaiued FT at only a select number of desired points on the spatial
frequency plane and does not calculate the entire spectrum of an image
efficiently. When the number of desired points is small compared to the size of
the original image, the optical Fourier processor can be much more efficient than
a pruned 2-D FFT, especially when the input images are very large.

A spectrum which is unaffected by contrast-ratio noise was identified in the far-
field diffraction pattern of the Texas Instruments DMD (digital micromirror device)
and used to demonstrate the JTl-based optical Fourier processor. The spectrum
was observed when an image was displayed on the DMD using only every
second pixel and is a direct result of the tilted mirrors. The spectrum of an image,
which is expanded by inserting zeros between valid pixels and then displayed on
the DMD, is compressed by a factor of two in the horizontal and vertical
directions. One of the replicated and compressed spectra is located in a region of
the diffraction pattern unaffected by contrast-ratio noise and centered on the
DMD Nyquist frequency. The linear phase distribution introduced by the titled
mirrors at each DMD pixel shifts the position of the diffraction envelope (region of
maximum intensity) to the Nyquist frequency. The spectrum centered at the DMD
Nyquist frequency has a high diffraction efficiency and is much less noisy than

the spectrum at DC.
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The novel JTI technique was experimentally verified and applied to the
problem of moving-object trajectory estimation. A hybrid optical-digital trajectory
estimation system, based on the mixed-domain method of trajectory estimation,
was constructed and demonstrated using a JTl-based interferometric optical
Fourier processor. The optical processing was performed at 1/6 video frame
rates and the balance of the trajectory estimation algorithm was performed off-
line using MATLAB. Unlike the PDI-based optical processor described earlier, the
JTI-based processor was able to estimate the trajectory (speed and direction
over 360°) of muiltiple objects moving over both stationary and white noise
backgrounds. The system was able to estimate the trajectories of 3x3 and
single-pixel objects when the target-to-noise ratios were greater than -3 dB and 3
dB, respectively. The trajectories estimated using the optical Fourier processor
compared favorably with those calculated using a digital FFT. The FT caiculation
at the desired frequency-domain points required the measurement of six
interferograms in addition to approximately 200 floating-point operations.
Calculation of the same points via the FFT required more that three orders of
magnitude more floating-point operations. it was known a priori that exactly three
moving objects were present in each image sequence. The current
implementation is limited because it does not detect the number of moving

objects.

The trajectory estimation algorithm proposed by Knudsen and Bruton was
modified by substituting the systematic search for 3-tuples with a Hough
transform technique. The Hough transform search technique described here is
mathematically tractable and easy to implement, however, the computational
advantage (or disadvantage) compared to that of the original Knudsen and
Bruton algorithm was not assessed because it was outside the scope of the
dissertation. An ideal moving object is described in 3-D frequency space by a
plane through the origin. Its trajectory is estimated by finding a set of frequency-
domain triples which lie on the plane. The original algorithm searched a large set
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of frequency-domain triples for 3-tuples (sets of three frequency triples) which
described the same object. In the approach described in this dissertation, the
large set of frequency-domain triples is Hough transformed into a velocity
parameter space, in order to reduce the size of the search space.

6.2 SUGGESTIONS FOR FURTHER WORK

The suggestions for further work are divided into those which apply to the JTI
method of coherent detection and those which apply to its application to moving-
object trajectory estimation.

6.2.1 Joint Transform Interference

6.2.1.1 Parallel Computation of JTI Interferograms

The interferograms required by the JTI algorithms to construct the complex-
valued FT of a single source-image are easily computed in parallel. The optical
processor presented in Chapter 5 computed six interferograms in a serial fashion
for each complex-valued source-image FT. This serial process can be efficiently
implemented in parallel as a 2x3 array of optical Fourier transformers, each of
which shares the same SLM and detector array.

The spectrum determined from a horizontally displayed source-reference
composite image is modulated by a vertical sinusoidal pattemn. Similarly, the
spectrum determined from a vertically displayed source-reference composite is
modulated horizontally. The horizontal and vertical spectra are combined in a
weighted sum to demodulate the spectra. The pixel-by-pixel weighting assigned
to each spectrum is proportional to the amplitude of the modulation at each pixel
such that parts of the spectra which are modulated to zero (or close to zero) are
not included in the sum (or given little weight). The architecture shown in Figure
6-1 illustrates how the six JTI interferograms can be calculated and weighted in

parallel.
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Figure 6-1 Parallel interferometric optical Fourier transform processor.

The block diagram illustrated in Figure 6-1 is a parallel implementation of the
weighted horizontal-vertical JTI algorithm described by Equations 5-12 through
5-14 and presented in Chapter 5. An appropriate reference image is generated
from the source image. Four source-reference composite images are constructed
by shifting the source up, down, left, and right, and adding the unit-shifted source
images to the reference. Each of the four composite images, and the individual
source and reference images, are written to the SLM of a different optical Fourier
processor. The six interferograms are combined, according to Equations 5-12
through 5-14, to yield the complex-valued source spectrum. The post-processing
is simple pixel-by-pixel addition and subtraction followed by pixel-by-pixel
weighting.

The parallel processor could be implemented as a 2x3 array of optical Fourier
processors. A single a high-resolution SLM could be employed to display all six
composite images in parallel. A 2x3 lenslet array of Fourier transform lenses, or
a suitable holographic optical element, would optically FT all six images, and a
high-resolution detector would measure the six interferograms.
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6.2.1.2 CMOS Image Sensor Array with Smart Pixels

The experiments presented in this dissertation employed a CCD (charge coupled
device) image sensor in the back focal-plane of the Fourier transform lens. A
smart-pikel CMOS (complementary metal-oxide-silicon) sensor offers three major
advantages over a CCD sensor: 1) higher dynamic range; 2) the ability to
integrate some or all of the post-processing electronics on the same silicon chip;
and 3) the ability to individually address pixels.

The electrical dynamic range of a typical commercial-grade CCD sensor is
about 50 dB compared to 120 dB for currently available CMOS devices. In the
simple example presented in Section 4.7.1, the electrical dynamic range of a
typical interfferogram, produced by a 256x256 pixel image, was estimated to be
180 dB. C-Cam Technologies (Heverlee, Belgium) produces a CMOS image
sensor with 120 dB of electrical dynamic range based on technology developed at
IMEC (Inter-university Micro Electronics Center) [Ric95]. Experimental sensors
with 140 dB of dynamic range have also been demonstrated [Sch97]. The huge
dynamic range is achieved by employing a non-linear resistor, generally a
MOSFET (metal-oxide-silicon field-effect transistor) in weak inversion, in series
with a pixel photodiode, to generate a logarithmic photocurrent response to
incident light intensity [Ric95, Fos97].

A CMOS image sensor also offers the opportunity to integrate much of the
down-stream electronics, specifically the analog-to-digital converter (ADC) and
the JT! post-processing electronics, on the image sensor chip (the CMOS
process is incompatible with the CCD process). Monolithic integration of the ADC
circuitry with the CMOS image sensor, yielding the so called camera-on-a-chip
[Fos97], represents the present state-of-the-art. Smart pixel arrays, in addition to
providing a logarithmic response at each pixel in the array, can also provide other
simple processing functions [Sch97]. The JT! post processing invoives addition,
subtraction, and a weighted sum, at each pixel, to caiculate the real and
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imaginary parts of an arbitrary FT spectrum. These simple operations could
implemented in analog VLSI and monolithicaily integrated on the same silicon

chip as the image sensor.

A CMOS image sensor enables parallel and random access to any pixel in its
array. This is advantageous to many image processing applications which are
based on processing neighboring pixel or a small number of isolated pixels. The
trajectory estimation algorithm, which required the complex-valued FT at a set of
pixels uniformly spaced on a frequency-space circle, could take advantage of the
individually addressable pixels of a CMOS image sensor.

Although CMOS image sensors can accommodate signals of very large
dynamic range, they can also produce large quantities of fixed-pattem noise
(FPN). A CMOS sensor might be able to cover over six orders of magnitude in
incident light level, however, its SNR can be quite small (typically 45 dB) due
primarily to temporal noise and small voltage swings [Fos97]. FPN in logarithmic
CMOS sensors has been corrected to acceptable levels for normal imaging
applications using both on and off-chip signal processing [Ric95]. Any noise
sources added by a CMOS imager, in addition to those already present, would
degrade the SNR and overall perfformance of the PDI and JTl-based
interferometric optical Fourier processors.

6.2.1.3 Reference Images

The functional form of the JTI reference image received very little attention in this
dissertation and requires further investigation. An ideal reference has uniform
magnitude and phase in the frequency domain. A &-function reference image
provides an ideal frequency-domain reference, however, it is not realizable on a
conventional SLM (a single pixel approximates the spatial extent of a é-function

however its amplitude is finite).

The references employed during much of the theoretical and experimental
work were designed to be ideal in some region of interest (ROI). The SNRs for
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the real and imaginary parts of the complex-valued JT| spectrum were derived in
Section 4.7 assuming the reference was ideal in a specific ROI. The weighted
three-component JT1 algorithm was experimentally verified in Section 5.3 using a
single-pixel approximation to a d-function reference. A Bessel-image reference
was employed in the JTl-based optical processor of Chapter 5 to provide a
constant frequency domain reference in an annular ROI.

It is conceivable that a small number of reference images, each of which is
ideal in its own ROI, could be employed to calculate an entire spectrum. Such a
procedure would be similar to the demodulation of horizontally and vertically
modulated spectra in a weighted sum as described by Equations 5-12 through
5-14. Can two reference images, each of which are ideal in a different ROI, be
employed independently of one another to compute the source FT in that region,
and then combined to produce the entire FT on the whole spectrum? How may
reference images would be required? There are many questions which must be
answered. Is there a generic source image that would work well for most source
images or must the reference be matched to source?

The FT spectrum of a random image has constant magnitude (and random
phase) and its suitability as a reference should be investigated. Smartt and Steel
suggested an extended aperture, such as a random pinhole array or line source,
rather than a single diffracting point, for their point-diffraction interferometer
[SMA74]. They pointed out the similarities between such a device and a scatter
plate interferometer [Bur53, Sco69, Hec87 pp. 378-381]. Their extended aperture
PDI employed two identical scattering plates, one as an extended source, and
the other, in a conjugate image plane, as the PDI mask. Application of this
technique to an interferometric Fourier transformer deserves further investigation.

6.2.1.4 Gray-Scale SLM

The JTI technique is equally applicable to both gray-scale and binary SLM
implementations. Its application to currently available binary SLMs necessitated
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an interleaved approach; five classes of JTI, specific to a binary implementation,
were presented in Section 4.3. On a gray-scale SLM, the source and reference
images can be mutually shifted, summed and then written directly to the SLM,
without row (and/or column) interleaving. A gray-scale implementation is
therefore more efficient because it utilizes the entire space-bandwidth product of
the SLM. One bit of gray-scale quantization must be forfeit, however, in order to
avoid saturating the source-reference sum.

6.2.1.5 Application to Synthetic Aperture Radar

Application of the JTI method of coherent detection to synthetic aperture radar
(SAR) optical processors should be investigated. The temporal radar signal from
a chirp-dechirp SAR can be processed as a 2-D Fourier transform when it is
spatially distributed as a 2-D polar formatted signal [Ale90, Ale95]. In general, a
SAR processor takes a complex-valued input and provides a complex-valued
output. In some optical SAR processors, the real and imaginary parts of the raw
input signal are processed independently [Han94]. In others, the real and
imaginary parts are processed together by modulating the amplitude and phase
of a spatial carrier with the complex-valued input [AleS0, Ale95]. Modem all-
electronic real-time SAR processors can consume as much as | kW when they
are run at the throughput rates demanded by current SAR applications. Real-time
optical SAR processors, which consume orders of magnitude less power, would
be very attractive for air-bome or space-bormne installations where large reserves

of power are not available.
6.2.2 Moving-Object Trajectory Estimation

6.2.2.1 Real-World Image Sequence

The JTI based trajectory estimation system was evaluated using a synthetic
image sequence. The moving objects were either single pixels or 3x3 pixel
blocks, the background was composed of various geometric shapes, and the
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noise was realized from a Gaussian white noise-process. The system was
designed to estimate the trajectory of small, barely discernible, moving objects of
unknown position and velocity; its performance should be characterized using an
actual real-world image sequence. Blostein and Huang tested their trajectory
estimation system on a variety of image sequences, including a road scene
containing an approaching runner, another with a moving car, and a night-sky
sequence (provided by the Lawrence Livermore Laboratory) containing moving
satellites, meteors, and other celestial bodies [Blo91]. Choi et al. embedded
synthetic point-objects and Gaussian white noise into a background sequence
provided by the Naval Research Laboratory [Cho95, Cho97].

6.2.2.2 Gray-Scale SLM

The point-spread function (PSF), mapped into the image plane of an optical
imaging system by a point-object, is a continuous intensity function and can not
be accurately reconstructed using a binary SLM. In this work, the object was
represented by a single binary pixel; the PSF is more correctly represented by an
array of gray-scale pixels. A single-pixel representation leads to jerky motion for
non-integer pixel displacements per fame and this sometimes causes trouble for
the time-domain component of the mixed-domain algorithm. The jerky motion
adds other temporal frequencies to the data vectors which can confuse the FBLP
algorithm into thinking there are additional frequency components. The additional
components make it difficult to perform target detection, which is implemented in
the Knudsen and Bruton algorithm by estimating the number of sinusoidal
components in the mixed-domain time sequences. An optical Fourier processor
equipped with a gray-scale SLM would more accurately reconstruct the PSF of a
moving object, increase the accuracy of the estimates for targets moving with
non-integer displacements per frame, and allow for the detection of an arbitrary

number of targets.
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6.2.2.3 Target Detection

A gray-scale-capable trajectory estimation system could detect the number of
moving objects in an image sequence in addition to estimating their trajectory.
The number of moving objects was known a priori by the system presented in
Chapters 5. The moving objects were tracked, however the number of objects
was not detected for the reasons discussed in the previous section. An optical
Fourier processor equipped with a gray-scale SLM could detect the number of
moving targets. Each moving object produces a sinusoid in the mixed-domain
time sequence with a different temporal frequency. Detecting the number of
sinusoids in a noisy time series is not a trivial problem. Several techniques have
been proposed, most notably, the minimum descriptor length (MDL) criterion
[Wax85], which is used in the original Knudsen and Bruton trajectory estimation
algorithm, and the information-theoretic criterion (AIC) [Aka74].

6.2.2.4 Non-linear Trajectories

A mixed-domain method for the trajectory estimation of objects moving on
non-linear trajectories has been proposed and demonstrated by Knudsen and
Bruton [Knu92b). The frequency-domain processing is identical to that of the
constant-velocity (linear) algorithm, however, a chirp parameterization method is
employed in the time domain rather a spectral estimation method. Ideal constant-
velocity (linear) objects produce pure sinusoids in the mixed domain while
constant-acceleration (non-linear) objects produced chirped sinusoids. The initial
frequency (proportional to the object’s initial velocity) and the frequency rate
(proportional to acceleration) are estimated using a chirp-parameter estimation
algorithm. The Knudsen and Bruton non-linear trajectory estimation method
employs the chirp estimation algorithm recently proposed by Djuric and Kay
[Dju90].



CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 190

6.3 OTHER APPLICATIONS

The Fourier transform is critically important to many signal and image processing
algorithms because it is often more computationally efficient to solve problems in
the frequency domain rather than the time or space domains. In order to realize
these savings, fast and efficient methods, such as the FFT (fast Fourier
transform) and the optical Fourier transform, are necessary to transform the input
data sets to and from the frequency domain. Whether or not an optical Fourier
processor is appropriate for a particular application depends on several factors
including computational throughput, accuracy, dynamic range, power
consumption, and space constraints. The intelligent approach to finding other
applications is to take inventory of what the optical Fourier processor does well
and match this with what is required by different applications. The optical Fourier
transformer is an analog processor; it should be applied to problems where an
analog solution is most appropriate.

Analog optical processors are ideally suited to those problems where a high
degree of accuracy is not required, and a digital electronic solution would be
computationally prohibitive, consume too much power, or occupy too much
space. The optical Fourier transform is particularly well suited to image and other
2-D signal processing problems because of its inherent 2-D operation. The
impressive computational ability of the optical Fourier transform has been
emphasized in the analog optical processing literature and was one of the major
motivations for the present research. Another motivation for analog optical
processors, one which has not been emphasized to the same degree in the
literature and deserves special recognition, is their reduced power consumption
(neglecting the power consumed by the light source and additional supporting

electronics).

Almost 10 years ago in 1990, Mead pointed out that a state-of-the-art digital
super-computer, constructed from the ultimate silicon technology that could be
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envisioned at that time, would require 10 MW of power to process information at
the rate at which it is processed by a single human brain (the brain processes
10'® operations per second and expends 107'° J of energy per operation for a total
power dissipation of 1 W; a state-of-the-art microprocessor expends 10° J per
operation) [Mea90]. The human brain is seven orders of magnitude more energy
efficient than a computationally-equivalent implementation in digital electronics
because it is fundamentally an analog processor.

The brain very efficiently exploits the analog processing capabilities of simple
biological processors connected in a network to perform extremely complex
tasks. Similarly, the optical Fourier processor pragmatically exploits the natural
law of diffraction to produce a very computationally intensive calculation. The
type of analog processing in these two computing machines is very different,
however, both machines take advantage of a natural computational primitive,
synapses in the case of the nervous system and diffraction in the case of the
optical Fourier processor, to perform the processing with great efficiency. The
moving-object trajectory estimation systems demonstrated in this dissertation
were in fact based on models of human visual-motion sensing and
psychophysics. These types of machine vision problems seem particularly
appropriate because the input is optical in nature and the optical Fourier
transform is inherently a 2-D process.

The author feels that the JTi-based interferometric optical Fourier transformer
developed in this dissertation may have commercial potential in machine vision
applications, paricularly visual-motion sensing and trajectory estimation for
autonomous robots. It may also have commercial value for space-borne synthetic
aperture radar (SAR), portable seismic processing, and acoustic imaging
applications, where high computational throughput and low power consumption
are required. The author and his supervisor are presently working in conjunction
with NU-TECH (Nova Universities Technology Inc.) to evaluate the commercial
potential of the novel interferometric optical Fourier processor.
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APPENDIX

Temporal and Spatial Fourier
Transforms

There is often some confusion as to the definition of the temporal and spatial
Fourier transforms employed by a particular author. Definitions consistent with
the engineering convention for a traveling wave have been employed in this
dissertation. The 1-D temporal and 2-D spatial Fourier transforms, for continuous
functions and discrete sequences, are defined in this appendix. The forward 2-D
spatial transform describes the mapping provided by a Fourier transform lens.
There is no inverse optical Fourier transform — repeated application of the
forward transform retumns a transformed image to its original spatial domain in a

rotated coordinate system, (x.v) = (-x.—v).

A.? TEMPORAL 1-D FOURIER TRANSFORM

The forward temporal 1-D Fourier Transform of f(t) is a minus-i transform and
the inverse transform of F(w) is a plus-i transform. The transform pair is defined

in the conventional manner,
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Fw) = FUO = [rexpl-ian)ar
- (A-1)

f0) = FF@} = (n) [Folexpliondo

where r is time and o is the temporal angular frequency.

A.2 SPATIAL 2-D FOURIER TRANSFORM

The forward spatial 2-D Fourier Transform of f(x,y) is defined with a plus-i
exponential term and the inverse transform is defined with a minus-i exponential

term,

Flkok) = FUew) = [ Jrleyexplile x+k,y)dxdy
. (A-2)
fley) = FHrlk )} = @) [ [Flk, .k, Jexpl-ilkx+k, )k, dk,

0000

where x and y are the spatial variables, and k. and &, are the spatial angular

frequencies. The signs of the exponential arguments in the spatial transform pair
are opposite to those of the temporal transform pair to be consistent with the
engineering convention for a travelling wave. Under the engineering convention,
a plane wave travelling in the positive : direction has a minus-i spatial exponential
and a plus-i temporal exponential [Ban91, S&T91]. The inverse transforms of
Equations A-1 and A-2 are defined so that the synthesis of an arbitrary signal will
have consistent signs with the engineering convention.

A.3 DISCRETE-TIME FOUR IER TRANSFORM

The discrete-time Fourier transform (DTFT) pair is defined as,

F@) = Fommlft)} = 3 fln)exp(-ion) (A-3)

n=-oo
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) = FomlF@} = @1)" [F@)explion)do

where f(n) is a complex-valued sequence and F(w) is a continuous 2r-periodic
function of spatial frequency. The symbol n is employed to represent both the

temporal dependence of a time-sequence f(n) and the y direction spatial
dependence of a space-function f(m,n). This was done to be consistent with

conventional notation and the difference is usually obvious from the context.

A.4 DISCRETE-SPACE FOURIER TRANSFORM

The discrete-space Fourier transform (DSFT) is analogous to the DTFT of
discrete-time signal processing, however, the signs of the exponential functions
have been switched to be consistent with the engineering convention for a
travelling wave. The DSFT pair is defined as,

Flk..k.,) = Foelflmn) = i if(m.n)exp[i(k,m+k‘,n)] (A-4)

nNr=—co fp=—co

flmn) = Fhr {Fk &)} = (@) J]]F(k_(,k,_)exp[—i(k,m+k‘n)]dk,dk_‘.

--r

where f(m.n) is a complex 2-D sequence and F(k.,.kr) is a continuous

2n-periodic function of spatial frequency. Its properties follow directly from the
continuous Fourier transform and are well documented [O&S75, pp.33-34].



APPENDIX

Modified FBLP Algorithm

It is well know that the discrete Fourier transform (DFT) provides the basis for an
efficient method for estimating the angular frequencies of multiple complex
sinusoids embedded in noise. A high-resolution time-domain method, such as
the modified forward-backward linear prediction (FBLP) algorithm [Tuf82], is
preferred when the angular frequencies are more closely spaced than the
reciprocal of the observation interval. The original FBLP algorithm [UIr76, Nut76]
for parametric spectral estimation was improved by Tufts and Kumaresan and is
referred to as the modified FBLP algorithm. The performance of the modified
algorithm for closely spaced sinusoids at low signal to noise ratios is closer to the
Cramér-Rao bound than other linear prediction methods [Tuf82].
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B.1 MODIFIED FBLP METHOD

The modified forward-backward linear prediction (FBLP) method is a time-
domain parametric spectral-estimation technique used to determine the angular
frequency of complex sinusoids embedded in a noisy time sequence. The time
sequence, which represents the superposition of P component sinusoids and a

white noise sequence, is modeled as,

uln) = ia,,exp(iw,,n) + e(n) (B-1)

n=i
where {a,, } is a set of unknown complex amplitudes, {wl, } is a set of unknown

angular frequencies, and e(n) is a white-noise sequence. The objective is to

estimate the unknown angular frequencies @,, p=1.2..... P.

B.2 MODIFIED FBLP ALGORITHM

The algorithm presented in this appendix is based on the implementation
described by Haykin [Hay86, page 349]. The input to the ailgorithm is an N xI
signal vector u and the output is a Pxl vector @ of angular frequency
estimates. The number of component sinusoids P is assumed to be known and

the prediction order K =& is set to the optimum order derived empirically by

Tufts and Kumaresan [Tuf82]. The algorithm is summarized in the following 5

steps.

1. Construct the 2(N - K)x K data matrix A defined by,

w(K) w(lK+1)--- u(N-1) u*(2) uw@ - u(N-K+1)
AT = u(l{-l) u(!() = u(N_-—Z) u°-(3) u':(4) ::-u'(N—:K+2) (B-2)

W) w@) o aN=K) M) (M2 (V)
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from the N x1 signal vector u. The superscript T denotes complex conjugate
transpose and K = represents the empirically derived optimum prediction

order.

2. Determine the singular value decomposition (SVD) of the 2(N - K)x K data

matrix,
A 0 -0
A= VEX = bnyov 040 Ol x T B9
00 -4,

where Y is a 2(N - K)xK unitary matrix, £ is a KxK diagonal matrix, and
X is a KxK unitary matrix. The columns y,,y,,....y, of matrix Y are
called the left singular vectors of A, the elements A, .4,,...., 4, on the main

diagonal of £ are called the singular values of A, and the columns
X,.X,.....X, of X are called the right singular vectors of A. The right

singular vectors and singular values correspond, respectively, to the

eigenvalues and eigenvectors of the K x K correlation matrix R=ATA.

3. Identify the P largest eigenvalues 4, 24, 2...2 4, in £ which correspond to
the P complex sinusoids components of the signal vector u. Use the
eigenvalues and eigenvectors to compute an estimate of the K x1 tap-weight

vector for the linear predictor,
- > X P T
w = Zi—x P Ab (8'4)

r=t %p

where b is the 2(N - K)x1 desired response vector defined by,
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b" = [u(K+1), w(K+2). ... u(N), (1), u"(2), ..., u"(N = K)] (B-5)

4. Compute the (K +1)x1 tap-weight vector for the prediction-error filter,

-W

a = ['] (B-6)

5. Retrieve the angular frequency estimates of the complex sinusoids from the
sample spectrum of the prediction-error filter. First determine the K roots

2y Z5--.., 2 Of the polynomial,
az" +a,2"" +---+ay 2’ +agz+ay, (B8-7)

from the denominator of the prediction-error filter system function. The P
roots z,.z,...., 2, Which are on (or closest to) the unit circle on the z-plane

correspond to the estimates of the angular frequencies,

o, = atan(lmz,,.Rez,,). p=L2,....P (B-8)

P



APPENDIX

JTI Equations and Algorithms

Selected JTI equations and the algorithms necessary to extract the real and
imaginary parts of the source spectrum were developed and presented in Section
4.3. The equations and algorithms of all possible source-reference image
configurations are summarized in this appendix. The sine and cosine spatial
modulation functions are summarized in Section C.1. The JTi spectra are divided
into five classes depending on the spatial configuration of the source and
reference images and the number of interfering images. Expressions for the JTI
spectra, and the corresponding extraction algorithms, for the five different
classes, are presented in Sections C.2 through C.6.

C.1 MODULATION FUNCTIONS

The real and imaginary parts of the source-image spectrum are modulated by
cosine and sine modulation functions, respectively. The modulation functions are
simple sin and cos functions for horizontal and vertical JTI, however they are

more complicated for the other JTI classes.
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C.1.1 Sine Modulation Functions

5, = sin%k, -k},)

s, = sinlk, +k‘,)

sy = sin(k,) - sinlk,

s, = sin(k,) + sinlk, (C-1)
s = sin(k,) - sinlk,) + singk,—k\_; = s +5,

s = sin(k,) + sinlk,) + sinlk,+k ) = s, +5,

C.1.2 Cosine Modulation Functions

G = cos%k, -k, )

c, = cosik, +k‘.)

c; = cosk,) — coslk,

cs = cos(k,) + coslk, (C-2)
cs = cosk,) + coslk,) + coslk, -k ) = ¢ +c,

ce = cos(k,) + coslk, ) + <:os$tfcjr +k‘.; = c,+c,

C.2 HORIZONTAL AND VERTICAL JT1

A single source image is interfered with a single reference image. The source
and reference images are interfered with respect to a line which can be either
horizontal or vertical. If the source is displaced to the left or right of the reference,
the interference is called vertical JT1, however, if the source is displaced above or
below the reference, it is called horizontal JTI.
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C.2.1 JTI Equations

1., = I,, = 1, + I, + 2[cos(k,)R(SR")+sin(k,)S(sR")|
o0 sr
1. =1, = I, + I, + 2cos(k, )R(SR")-sin(k,)S(sR")]
00 rs . (C-S)
Iy = I,, = I, + I, + 2[cos(k,)R(SR")+sin(k,)S(sR")]
r0 Qr
1, = 1, =1+ I, + 2[cos )R(SR")-sin(k, ) S(SR* )]
s0 Os
where the source and reference intensities are given by,
o= fg = 0y =0y =
! ’ C-4
I, = I, = Iy, = 1,, =1, ( )
rd Or 00 00
C.2.2 Aigorithms for Imaginary Part of the Spectrum
asin(k )S3(SR") = 1., - I,
00 00
C-5
asinlk )S(SR*) = 1., - I, , (©3)
r 0 s 0
C.2.3 Aligorithms for Real Part of the Spectrum
acostk YR(SR*) = 1., + 1, . — 20, - 2,
00 00 (C-6)
dcoslk )R(SR*) = 1., + 1., - 21, - 2,

C.3 DIAGONAL JT1

A single source image is diagonally interfered with a single reference image. The
source and reference images may be interfered with respect to a line which is
diagonal with either positive or negative slope. If the source and reference are
displaced along a diagonal line with positive (negative) slope, the interference is
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called negative (positive) diagonal JT1 (the interference pattem of a point source
and point reference, mutually displaced on a positive diagonal line, is a series of
negative diagonal bars, and vice versa).

C.3.1 JTI Equations

I, = 1. + I, + 2 R(R) + s, 3(sr")
Or
1, =1 + 1, + 2, R(SR") - s, 3(sR")]
Os . . (0-7)
I,, =1 + 1, + 2cR(SR) + s 3(sr’)
s0
I,, = 1. + 1, + 2cR(SR) - 5 3(sr’)
ro
C.3.2 Algorithms for the Imaginary Part of the Spectrum
4523(5 .) =1, = I,
0 r 0 s C-8
45! 3(S -) = IO r - IO s ( )
s O r O
C.3.3 Algorithms for the Real Part of the Spectrum
4c,R(sR*) = 1., + 1,, - 20, - 2,
0 r 0 s C-9
ac, R(SR*) = 1,, + I,. - 21, - 21, (C-9)
s 0 r 0
C.4 THREE-FUNCTION JTI

Two diagonally-displaced source images are interfered with a single reference
image or two diagonally-displaced reference images are interfered with a single
source image. If the source-pair and single reference (or single source and
reference-pair) are displaced along a diagonal line with positive (negative) slope,
the interference is called negative (positive) three-component JTI.



JT1 EQUATIONS AND ALGORITHMS 215

C.4.1 JTl Equations

1,, = 20+e), + I, + 2c,RSR) + 5, 3(sR*)]
10 = 20+c), + I, + 2, R(R) - s, 3(SR)]
10 = 2+e, ), + I, + 2, R(R) + s, 3(sr’)]
10 = 21+, ), + 1, + 2, R(R) - 5, 3(sr7)]
1o = 1.+ 2+e), + 2c,R(SR) + s, 3(R")] (C-10)
1;, = 1+ 2+, + 2, RR) - s, S(sR)]
1o = 1.+ 2+, + 2c,RISR) + s, 3(sR7)]
10 = 1.+ 2t+c), + 2c,RSR) - s, 3(sr)
where the double-source and double-reference intensities are given by,
I,, = 20+,
1(,0 = 20+,
1: = 201+c,), (€11
100 = 20 +c,),
5
C.4.2 Algorithms for the imaginary Part of the Spectrum
as,3(SR°) = 1,, - I,
4s, 3(SR*) = 1 - 1:
as, S(sr°) = 1o - 1;‘ (C-12)
4s, 3(SR*) = Ir: -1 :
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C.4.3 Algorithms for the Real Part of the Spectrum

4, R(SR') = 1,, + I, - 20,, - 2,

s r s 0 s 0
4c, R(SR°) = 1., + 1., - 21,, - 2I,

. 0 s r s 0 s (C'13)

ac, R(SR*) = 1., + 1,, - 21, - 2I,,
4C4 m(SR.) = lr [1] + Ir s - 213 - 2lr 0

s r r 0 r

C.5 SYMMETRIC JTI

Symmetric JT! is a special case of four component JTI. Two diagonally-displaced
source images are interfered with two diagonally-displaced reference images.
There is only one possible orientation (positive and negative configurations do
not exist). The interference functions contain only the real part of the complex
function due to the special symmetry of the joint image.

C.5.1 JTI Equations

I, = 20+c,). + 20+¢), + 4c, R(SR)

8 C-14
I, = 20+c ), + 2l+c,), + 4c, R(srR’) ( )

C.5.2 Algorithms for the Real Part of the Spectrum
ac,R(SR*) = 1., - 1., - I,

rs 0 s r 0 C'15
4c, R(sr") (C-19)
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C.6 FOUR-FUNCTION JT1

Three source images are interfered with a single reference image or three
reference images are interfered with a single source image. If the source-triple
and single reference (or single source and reference-triple) are displaced along a
diagonal line with positive (negative) slope, the interference is called negative
(positive) four component JTI.

C.6.1 JTI Equations

I = @B+2c), + I, + 2c, R(SR*) + s, 3(sR")]
1 = @B+2e), + I, + 2, R(SR) - s, 3(SR*)]
1 = (B+2c ). + I, + 2, RSR) + s, 3(SR')]
1 = B+2c ), + I, + 2, R(SR") - s, 3(SR*)]
1 = 1, + (B+2c), + 2, R(SR) + s, 3(sR")] (C-18)
1 = I + (+2c). + 2, R(SR) ~ s, 3(sR")|
1 = 1.+ (3+2c ), + 2lc,R(SR) + s, 3(SR")]
1 = 1. + (B+2c ), + 2, K(SR) - s, 3(sR)]
where the triple-source and triple-reference intensities are given by,
I,. = (3+2c)1,
1 = (3+2,)l,
o (C-17)

IO r = (3 + 205 ),r

1., = (3+2)I,
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C.6.2 Algorithms for the Real Part of the Spectrum

as,3(SR) = 1., - 1.,
4s, S(SR") = I - 1
4s, 3(SR’) = 1 - 1
4s, 3(SR") = 1 -1,

C.6.3 Algorithms for the Imaginary Part of the Spectrum

i
~
+

I, - 2,, - 2I

r

s r s s 5 s

)
4c,R(SR?) = 1,, + 1., - 21,, - 21,
(1}
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