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ABSTRACT

Design and optimization of open pit limits are of paramount importance because they
provide information for evaluating economic potential of a mineral deposit and for
developing short- and long-range mine plans. Many algorithms and their modifications
have been used to design and optimize open pit limits. These algorithms have provided
mine planning engineers with pertinent information in designing, optimizing and extracting
ore reserves by open pit technology. However, they do not address the random field
properties associated with the ore grades and reserves and commodity prices, and thus,
fail to yield the truly optimized pit limits in any time horizon. Also, in mine design and
valuation, commodity price forecasts are required to assess the economic viability of the
project. The forecast must cover relevant period to capture the trend and volatility in
prices within 2 mining business cycle. But mineral commodity prices are volatile in the
spot and futures markets. They depict unpredictable shifts in the balance between supply
and demand. Fluctuations of commodity prices in the spot markets can cause project
failure if not handled with care.

1. In this study, a new algorithm, CS/MFNN, which overcomes these limitations is
proposed and used to optimize open pit limits. The random field properties of the ore
grade and reserves have been modelled using the modified conditional simulation
based on the best linear unbiased estimation and turning bands method. Artificial
neural networks are used to classify the blocks into classes based on their conditioned
values. The error back propagation algorithm, in the neural networks, is used to
optimize the pit limits by minimizing the desired and actual outputs error in a
multilayer perceptron under the wall slope constraints. The optimized pit value
obtained by this algorithm has been compared to that from the Lerchs-Grossman’s
algorithm using actual mine data. The results are the same, but in random
multivariable states, the CS/MFNN algorithm is the most suitable for pit optimization.
Comparing the Lerchs-Grossmann’s and CS/MFNN algorithms, it can be said that

both yield the same optimum pit value in the absence of grid blocks with zero

xix



economic block values. However, in the presence of grid blocks with zero economic
block values they may portray different pit outlines. Whereas the Lerchs-Grossmann’s
algorithm considers any gridded block irrespective of its economic block value in the
design process, CS/MFNN algorithm does not consider gridded blocks with zero or
negative economic block values unless they happen to lie above any of the gridded
blocks in the positive regions delineated by the MFNN. The stochastic gold price is
modelled via two main models, namely; multiple regressional model (MRM) and
multilayer feedforward neural networks (MFNN) model. The MRM model is used to
find the multiple regression equation. The MFNN model is used to predict the
average-annual monthly high gold price and average-annual monthly low gold price,
which are also independent variables in the multiple regression equation. World
annual gold production, annual gold consumption, average-annual monthly high gold
price, average-annual monthly low gold price, socio-politico-economic condition,
interest rate and inflation rate are identified as the most important factors and/or
parameters which determine world average annual gold prices. A data set on these
parameters of an identified socio-politico-economic cycle is used to validate the
model. Analysis of the results shows that the mineral price model predicts average-
annual gold price with negligible error. The actual prices and the predicted ones are
almost the same. A realistic forecasting of gold prices can be made with data from an
identified socio-politico-economic cycle. The main novelty of this methodology is the
solution of the randomness property associated with mineral prices using multiple
regression and artificial neural network to reduce the mineral price forecasting error.

This is an important contribution to mineral venture evaluation, mine planning and

design.



CHAPTER 1.0

INTRODUCTION

1.1 Background

Modern society needs a supply of minerals for its growth and sustenance. Most of
these minerals are obtained by means of surface and underground mining technology.
Currently, surface mining accounts for a significant proportion of produced minerals.
Surface mining operations generally have many advantages in terms of production
equipment sizes, preproduction development period, ore recovery and labour requirements
compared with underground. It is classified into open pit, strip, alluvial and in-situ mining
methods [Hartman, 1987; Nilson, 1982]. Open pit mining layouts consist of concentric
shells with near-ellipsoidal cross-sections. These shells decrease in size with increasing
depth from the surface as illustrated in Figure 1.1 and Figure 1.2 (plan and longitudinal
sections of a typical open pit layout). An open pit layout is bounded by wall slopes
whose angles depend on the rock mechanics and geological characteristics of the ore body
and host rocks. The challenge to mine planning engineers is to plan, design and optimize

the pit layouts to minimize waste removal, ensure safety and maximize the net value of the

minerals in the pit.



Figure 1.1 Plan View of a Typical Open Pit Layout.

Figure 1.2 Longitudinal Section of a Typical Open Pit Layout.




Determination of op'ﬁmized pit layouts is one of the most important tasks in the
overall open pit mine design process, which has to be solved right at the very beginning of
mine planning. These layouts must continuously be readjusted throughout the life of the
mine due to changing database of geology, ore grades, etc., [Wilke, 1990]. The optimized
pit limits define the size and shape of mineable reserves and the associated waste materials
to be excavated based on the technical, economic and safety constraints. They also
provide information for evaluating the economic potential of a mineral deposit, and for
project acquisition, financing, taxation, regulation and the formulation of long-,
intermediate-, and short-range mine plans. Open pit limits are also used to determine the
boundaries outside which surface structures, such as, processing plants and mine offices
should be located in order to avoid interruption in the long-term mine plans. Lerchs and
Groomsmann (1965) published one of the most important mathematical algorithms for
optimizing open pit limits based on dynamic programming and graph theory. Many
algorithms have been developed to solve the problems associated with the Lerchs-
Grossmann’s algorithm.  However, these problems which include random fields
characteristics, comprehension difficulty, programming, variable slopes and roadways
incorporation, and long CPU times [Achireko and Frimpong, 1996; Dowd and Onur,

1993] still persist and require continuous research for better solutions.
1.2 Problem Definition

Lerchs and Groomsmann (1965) developed mathematical algorithms for optimizing
open pit layouts based on dynamic programming and graph theories, respectively, for the
2-D and 3-D geological sections under constant walls slopes constraints. The Lerchs-
Grossmann’s algorithm is limited because it does not address the random field properties
of the mine design problem. In addition, a number of other problems have been
encountered by users in the application of these algorithms to solve mine design and

optimization problems. These problems include the incorporation of variable slopes and



roadways constraints, loﬁg CPU times, difficulties in understanding the method, and
algorithm programming concepts [Dowd and Onur, 1993]. Many algorithms, including
the moving cone, linear and dynamic programming, graph theory, stimulation,
parameterization and heuristic, and their modifications have been developed to solve the
problems associated with the Lerchs-Grossmann’s algorithm [Braticevic, 1984; Dowd and
Onur, 1993; Gauthier and Gray, 1971; Kim, 1978; Koenigsberg, 1982; Lemieux, 1979,
Robinson and Prenn, 1973; Shenggui and Starfield, 1985]. These methods have provided
mine planning engineers with pertinent information in pit planning, design and
optimization. However, none of them has been successful in defining unique optimum pit
layouts to solve the mine design problems. Even though there is some success with the
application of maximal flow techniques [Dowd and Onur, 1993; Giannini et al.,, 1991],
finding the maximal flow through a network has similar disadvantages to the Lerchs-
Grossmann algorithm.

Unique optimum pit layouts must be carried with a recognition of the random field
properties of the mine design problem. Optimized pit layouts of a typical open pit mine are
the solutions of a problem in random multivariable states. The stochastic processes
governing these states significantly affect the optimized pit limits in any given time. The
most important state variables include ore reserves and grade, capital and operating costs
and commodity prices. Any algorithm that neglects these stochastic processes governing
the state variables will yield sub-optimal pit layouts. The randomness associated with the
distribution of the ore grades and reserves, have not been taken into consideration in all
the algorithms. The omission of these random field properties in the above algorithms
poses a limitation on the pit layouts definition, the economic potential of the mineral
deposit, and the long-, intermediate-, and short-range mine plans. This might lead to poor
investment, inaccurate mine design, development and production decisions.

In mining practice, the pit slopes are determined by the rock mechanics and geological
characteristics of the ore body and host rocks. These conditions may result in variable pit

slopes all over the entire mine which make the results from algorithms under constant



slope constraints unrepres'éntative of actual field conditions. The Lerchs-Grossmann’s 3D
algorithm also presents a tight choice between a true optimizing algorithm characterized
by large computing requirements and a non-optimizing algorithm with lower computing
demands and thus, fails to yield a truly optimized pit [Kennedy, 1990]. The solution of the
pit design and optimization problem using these algorithms involves the inversion of
matrices with large dimensions and long iterative processes which result in long computing
times. Changes in the database and information also require complete rerun of these
algorithms which can be long and tedious for the mine production engineers who require
just-in-time results for executing production plans based on these results. Commodity
price volatility in the markets must also be factored in the mine design and optimization on
a continuous basis. Efficient pit design and optimization algorithms must be capable of
handling these price volatilities with just-in-time results for executing mine production
plans.

Even though it is not necessary for engineers designing a pit to have a detailed
knowledge of the mathematics involved in the Lerchs-Grossmann algorithm that is
embodied in a verified software, yet its complexity is often advanced as a reason for not
using the algorithm [Dowd and Onur, 1993]. The comprehension of the underlying theory
for the implementation of the algorithm will help engineers and researchers to factor in and
quantify the effects of various combinations of identifiable variables which are regularly
encountered by mine engineers, mineral venture planners, evaluators and investors in the

evaluation and assessment of economic potential of a mineral deposit.
1.3 Objectives of the Study

The main objectives of this study are to: (i) develop the mathematical and computer
models of the conditional simulation/multilayer feedforward neural network (CS/MFNN)
algorithm for pit design and optimization; (ii) develop mineral price model, MRM-MFNN,

for economic block values calculation in the CS/MFNN algorithm,; (iii) verify and validate



the CS/MFNN algorithm:using actual gold mine data; and (iv) compare the results from
the CS/MFNN to that from the Lerchs-Grossmann’s algorithm.

In this research, the author develops and applies the CS/MFNN algorithm to solve the
problems of random fields, long computing time and variable slopes in open pit design and
optimization. In order to ensure that the random property associated with ore grade
distribution are accounted for at a minimum cost during the pit optimization, CS model is
developed to assign grades and economic block values to all the gridded blocks with few
known samples in the field. In this algorithm, the random field properties of the ore grade
and reserves are modelled using the conditional simulation (CS) based on the best linear
unbiased estimation (BLUE) and the turning bands method (TBM) technique.

In this study, only gridded-blocks’ grades are conditionally simulated but not the pit.
The author wishes to make it crystal clear that the pit can also be conditionally simulated
and a probability distribution constructed using a series of optimum pit values obtained
from the pits. In this case, every conditional simulation realization of the gridded-blocks’
grades should be used in optimizing the pit, rather than the average values of the number
of realizations as done in this study. This would give the probability and confidence
intervals of optimum pit values for the evaluation of the economic potential of the ore
deposit in question.

After assignment of grades and economic block values to all the gridded blocks,
multilayer feedforward neural networks (MFNN) are used to classify the conditioned
blocks into classes based on their economic values. A search algorithm, PITSEARCH,
developed by the author is then used to search for the optimized pit layouts and the
resulting net pit value under the variable slope walls constraints. MRM-MFNN model is
used to forecast the volatile mineral price which is used by CS/MFNN model to calculate
the economic block values. In the CS/MFNN algorithm, MFNN model is used to search

for the optimum pit in few steps.



1.4 Scope and Limits of the Study

This study deals with the design and optimization of open pit using the CS/MFNN
algorithm. It is concerned with the definition of the layouts that maximizes the net value,
at any given time, of an open pit section under technical, operational, economic and safety
constraints. First, a review of the significant literature is included. The review is to
provide an analysis of the evolution of optimal open-pit limit design methodologies and
their attendant problems, and to identify areas that require further research work. which
led to this research.

During this research, the theory, mathematical and computer models of the
CS/MFNN, with illustrative examples, are developed and verified using data in 2-D and 3-
D geological sections. The computer models are validated using data from a gold mine.
The Lerchs-Grossmann’s algorithm is also used to solve the Star Gold open pit design and
optimization problem. A comparative analysis has been carried out on the results from the
CS/MFNN and the Lerchs-Grossmann algorithms.

In the MRM-MFNN price model, inflation and interest rates, socio-politico-economic
factors are assumed to influence mineral price but they are embodied in the other factors
(such as world annual gold production, annual gold consumption, average-annual monthly
low gold prices and average-annual monthly high gold prices), that determine mineral
prices used for the price forecast as there are no world parameters for defining them. Also
the gold loan transaction in which gold holders lend their gold for a fee is assumed to be
known with certainty. These loan transactions are used primarily by gold producers who
earn instant cash flow by selling the borrowed gold and repaying the loan at some point in
the future out of their gold mine production. The markets usually reacts negatively to
news of large loan agreements because more gold is added to the market. Even though
these restrictions and assumptions make the underlying information structure easy to

handle, they place some limitations on the study.



1.5 Significance of the Study

The CS/MFNN algorithm can be used to evaluate mineral projects involving open pit
operations to provide clear estimation of randomly distributed grades and reserves and
volatile mineral prices. The possibility of recouping money invested in any mining venture
within the shortest possible time is of prime concern to both engineers and investors.
Mineral price fluctuation is one of the hurdles to overcome in order to arrive at fair
estimation of the return of the investment. Hence, MRM-MFNN price model for
predicting mineral prices and CS/MFNN algorithm for optimizing open pits will assist
engineers to provide accurate mine planning and design alternatives to boost investors
and other stakeholders confidence.

The CS model is appropriate for block modelling in a random field with few data. The
random field properties of the ore reserves and grade are modelled using conditional
simulation. The CS/MFNN algorithm has significant economic potential as it can bring
savings in drilling cost, geological and technological difficulties in obtaining many data to
define a potential ore deposit. Existing evaluation models use other stochastic and/or
probabilistic concepts to model the mineral price. Such methods demand the individual
factors probability distribution, which is almost always an approximation of the actual
distribution. CS/MFNN helps in selective mining of profitable blocks since it eliminates all
the negative regions which are not economically viable for mining. The blocks with zero
economic values are left behind. This will enable engineers to plan well to leave those
blocks with zero E.B.Vs and maintain proper production scheduling and planning. This
will increase the profit margin of the company. The CS/MFNN algorithm overcomes the
problem of overlapping zones and search patterns for optimum pit value in the floating
cone algorithm. It obviates the task of both forward and backward passes in the Lerchs-
Grossmann’s algorithm, delineates the positive regions and incorporates the technical

constraints to design the optimum pit. It is applicable to any slope wall constraint in both



2-D and 3-D design. No smoothing is needed. In comparison, smoothing is essential for
the floating cone and Lerchs-Grossmann methods in design of slopes in multiples of
blocks.

The problem of fluctuating mineral prices in mineral appraisal is solved by the MRM-
MFNN model, which uses the most important attribute of multilayer feedforward
network, the ability to learn a mapping of any complexity, together with multiple
regression model to predict the volatile mineral price. This methodology takes all the
factors which influence mineral price simultaneously into consideration in forecasting the
price in any time horizon. Also, the MFNN model will require much less time. The
minimum CPU time is cost saving and/or profit to the mineral industry. MFNN open pit

optimization model is rigorous and much easier to understand than the existing algorithms.
1.6 Research Methodology

The development and analysis of CS/MFNN algorithm for open pit optimization are
based on numerous methodological procedures. The analytical survey of the literature on
open pit optimization, outlining the evolution and limitations of open pit optimization
algorithms, constitutes an essential part of the research and gives the main background for
the study.

In the development and analysis of the CS/MFNN algorithm, a model-building
approach with specific assumptions is used in the evaluation and assessment of the
economic potential of the mineral deposit under consideration. Knowledge in artificial
neural networks, random-field mathematics, statistics, mining engineering and mineral
economics is used in the CS/MFNN algorithm and MRM-MFNN price model to express
the several variables. FORTRAN 77 on the HP main frame is the computer programming
language used to translate the mathematical models into computer programs for

experimentation and convenient, detailed analysis for the desired objectives. Also neural
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networks software is used to develop the MFNN model for the pit optimization and
mineral price forecast.

The CS/MFNN algorithm is tested and validated using the Star Gold Project data.
The same data is also analyzed using the Lerch-Grossmann algorithm as a bench mark to
make the proposed algorithm comprehensible and acceptable to potential users in the
mineral industry. A thorough analysis of the results from the two algorithms are done to
see how these algorithms compare with each other. MRM-MFNN mineral price model is

tested with historical data from 1980 to 1994.

1.7 Structure of the Study

Chapter 1 elucidates the background, the concepts and problems associated with the
existing open pit optimization techniques. Also included in Chapter 1 are the objectives,
significance and the research methodology of the study of the CS/MFNN algorithm.
Chapter 2 contains the analytical survey of the literature on open pit optimization
algorithms and their limitations. Also, Chapter 2 provides the theory and fundamentals of
neural networks, and its application to open pit optimization and mineral price forecasting.
Chapter 3 deals with the mathematical modelling of Lerchs-Grossmann and CS/MFNN
algorithms. The 2-D and 3-D models of these two algorithms are developed. The theory
and modelling of modified conditional simulation, MFNN and MRM-MFNN are also
provided in Chapter 3. Chapter 4 deals with the solution procedures and the experiments
designed to implement and validate them. The solution algorithms in Chapter 3 and the
flow charts of the computer programs used to solve the problems, are presented and
described. Large scale validation and experimentation with Star Gold Project data is
presented in Chapter 5. The experimental design and procedure, the description of the
deposit, nature of ore, extraction technology and processing are included in this chapter.

The discussion and analysis of the validation results are in Chapter 6. Chapter 7 has all the
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conclusions and the recommendations for further research works arising from this research
study. All the references are given at the end of the report as sources of various citations
in this study. Programs developed in this study that may be helpful in the use of this

document for academic and industrial purposes and data are given in appendices.
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CHAPTER 2.0
ANALYTICAL SURVEY OF THE LITERATURE

The determination of the optimum pit limit of a mine is considered to be a
fundamental problem in open pit mine planning and design because it provides essential
information for evaluating the economic potential of a mineral deposit, and formulating
long, medium, and short range mine plans. The ultimate pit limits define the size and
shape of an open pit at the end of its life based on the technical, economic and ground
stability constraints. They also determine the extent of mineable reserves and waste
materials to be moved in the mining process. Pit limits on the surface mark the boundaries
for locating surface structures, such as processing plants and mine offices. The pit limits
would normally delineate the limiting boundary beyond which the open pit mining of a
given deposit will be uneconomic. As such the pit limits are commonly referred to as the
Economic Pit Limits (EPL), Ultimate Pit Limits (UPL) or Ultimate Pit Design (UPD). In
general the manual, computerized and combinations of manual and computerized
approaches are used for the design of open pit limits.

A number of mathematical techniques have been proposed to solve this problem,
most of them posing considerable computational difficulties. Other problems include the
inability to incorporate these factors: (i) the random field properties associated with ore
reserves and grades and the mineral prices, (ii) the amount of ore and waste to be mined
each year, (iii) the specific blocks to be mined each year, (iv) the mine life which defines
the expected time horizon of the operation and (v) the ultimate pit limits which delineate
the total reserve to be mined and the final pit shape at the end of the operation. The more
elaborate methods use manual, stimulation, linear programming, dynamic programming,
graph theory, heuristic and parameterization approaches to the open pit limit design.
These methods are limited in their respective approaches to defining the optimum pit limit.

Among them, the four rigorous optimizing techniques, that have mathematical proofs, are
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graph theory [Lerchs and Grossmann, 1965], dynamic programming [Lerchs and
Grossmann, 1965], linear programming [Meyer, 1969] and network flow [Johnson, 1968].
Heuristic algorithms [Lemieux, 1968; Marino and Slama, 1972; Phillips, 1972; Korobov,
1974] lack rigorous mathematical proof. In the following sections, various algorithms for

open pit design and optimization and their limitations have been described.

2.1 The Manual Approach te Open Pit Design

Manual approach to open pit design is basically a trial and error method in which the
analyst uses subjective and objective analyses to define the pit limits. This approach
requires (i) vertical sections showing clearly the ore boundaries, the grade distribution
within the ore, the overburden and the waste rock portions; (ii) plans for each proposed
mine level showing corresponding ore and waste details as in (i); (iii) allowable maximum
slope angles for the various rock types; (iv) minimum width at the proposed pit bottom;
and (v) relevant stripping ratio curves showing the variation of the stripping ratio with the
ore grades and possible selling prices.

The overall, incremental, periodic and break-even stripping ratios are taken into
consideration in the design of the pit. These ratios depict the relative proportion of waste
material to ore to be mined and provide the necessary profit information. Stripping
curves, the behaviour of stripping ratio with grade variation, are normally constructed to
cover possible grade ranges at the pit limits as a pre-requisite for a manual pit design
exercise [Pana and Davey, 1973].

With the aid of the stripping ratio curves and the cross-sections showing the ore
boundaries and grades, the pit limits will be located on each section as follows: (i) Note
the grades around the two ends of the ore on a given level and work out a weighted
average grade to include the ore up to the top of the grid blocks; (ii) Construct the
stripping ratio curve and note the allowable break-even stripping ratio; (iii) Construct trial

slope lines such that the ratio of the intercept along waste to that along ore correspond to
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the break-even stripping ratio; (iv) The procedures in (iii) are repeated for other sections
of the deposit; (v) When the pit limit has been located on each vertical section, the
intersections are then transferred to the level plans. The total ore reserve and waste
volumes and tonnages are determined using the planimetry method.

Even though this trial-and-error method helps in the development of the basic skills
required for the geometrical manipulations involved in such areas as haul road design and
phase plan development, which is needed with fully computerized pit design approaches, it
has some limitations. The manual approach is very time consuming. The assumption that
the total recovery during mineral processing is a constant in the derivation of the stripping
curves would not necessarily hold true for different ore grades. In fact the effective
recovery will invariably depend on the grade of the mill feed. This method can only be

used for small and/or geologically simple mineral deposit.

2.2 The Moving Cone Algorithm

The moving cone algorithm is one of the algorithms for optimizing open pit limits
[Pana, 1965; Williams, 1970; Lemieux, 1968]. The 2-D moving cone algorithm uses the
following optimization criteria, deduced from the definition of the open pit design
problem, namely: (i) maximization of total pit economic value, (ii) maximization of value
per tonne of saleable product, (iif) maximization of the mine's life, provided the value per
tonne does not fall below a certain figure, and (iv) maximization of the metal content
within the pit [Wright, 1990]. The maximization of the total economic value is by far the
most common criterion of optimization in open pit mine design. Within an allowable
slope angle this algorithm ensures that before mining any block, all the blocks above must
be removed. The minimum removal cone on a block is the cone bounded by the maximum
allowable slope angles in all directions, from the block up to the ground surface. The cone
on any block is dependent upon the different slope angles for the different materials

overlaying the block in the different directions up to the ground surface.
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The basic element for the optimization process is the minimum removal cone. The
algorithm can be stated as follows: (i) Start from the surface and search for ore blocks
with positive economic block value; (ii) Construct the minimum removal cones on such
ore blocks; (iii) If the sum of the economic block values (EBV) of all blocks contained in
a given cone, including the ore block in question, is positive, consider the cone removed;
(iv) Continue the search until all the ore blocks in the block model have been examined,
(v) The ultimate pit is formed by the shape left after the removal of all positive valued
cones. The technique is an optimization technique, and as such rather costly to obtain the
ultimate pit limit. Furthermore, the technique can miss the optimum pit limit under certain
unusual conditions, because it cannot recognize a joint contribution by two ore blocks that
are laterally some distance apart. Lemieux (1968) stated that his heuristic algorithm
overcame this shortcoming of the moving cone technique. = However, the geometrical
requirements of slope stability in combination with certain ore blocks, can lead to
situations where the technique will fail to yield the pit with the maximum value [Wright,
1990]. It does not solve the problem of overlapping blocks. This problem arises from the
fact that if the blocks are considered separately with their individual cones, the sign of the
cones may be negative. However, if such blocks are considered together with their cones
combined, a positive-valued pit can be obtained.

In the 3-D positive moving cone technique, the search commences at the north-west
corner(top left) of the grid block model and proceeds from west to east (left to right)
along each level. All blocks with positive value on the first level are examined, before
proceeding to the second level and then to the third level until the utmost pit depth.
Finally the 3-D block representation of the optimum pit is a combination of the optimum
2-D cross-sections and longitudinal sections. Smoothing is employed to fit the sections

into 3-D pits after the optimum pit limits on 2-D sections have already been designed.
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2.3 Smoothing Algorithms

Two of the algorithms which are normally employed in smoothing to fit the sections
in 3-D moving cone pits are the dynamic programming algorithm by Johnson and Sharp
(1971) and the dynamic path approach by Wright (1987). The dynamic programming
algorithm is a systematic approach for aligning optimum pit limits on 2-D sections into 3-
D pits. The approach is in effect a repeated application of the 2-D algorithm, first of all to
the cross-sections and finally at right angles to the original sections. The first stage of the
calculation is to compute the optimum level outlines for each section, and thus, estimate
the sum of the economic values of blocks within the optimum pit outline on a section,
given that one must mine down to the level of location of the block under consideration.
This is done using the 2-D algorithm and treating each level in turn as the deepest level of
the section. Finally the 3-D block representation of the optimum mine is presented as a
combination of the 2-D cross-sections and longitudinal sections. The algorithm has the
advantage of taking care of some of the smoothing problems - provided the outlines on the
consecutive sections are not very much offset from each other. For simple elongated
mineral deposits, the algorithm does yield optimum pits. However, the dynamic
programming does not guarantee optimum 3-D pit design and does not compietely solve
the smoothing problem.

The dynamic path approach (Wright, 1987) guarantees optimum cross-section designs
while the moving cone in 3-D automatically takes care of the boundary smoothing aspects
in the pit design. The approach involves the application of the 2-D recursion formula in a
forward pass from section to section while changing the direction of the analysis along the
sections from one section to the next. At the end of the forward pass, the boundary
blocks in the consecutive sections then form a path along which minimum removal cones
are constructed in the backward pass and the union of the minimum removal cones along
the dynamic path thus define the ultimate pit. With the dynamic path approach, the

smoothing problem is completely solved, due to the use of minimum removal cones.
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However, it cannot guarantee optimal solutions if particular attention is not paid to blocks

which are brought into the pit during the backward pass [Wright, 1990].

2.4 Lerchs-Grossmann's Optimum Open Pit Mine Design

Lerchs and Grossmann (1965) have used the graph theory and dynamic programming
to formulate an open pit model to define the optimum pit limit. The objective of Lerchs-
Grossmann's open-pit model is to design the final pit limit of an open pit mine which
maximizes the difference between the total mine value of ore extracted and the total
extraction cost. The model is based on the following assumptions: (i) the type of minerals,
its mine value and extraction cost are given for each point; (ii) the restrictions on the
geometry are specified (surface boundaries and maximum allowable wall slopes); (iit) the
objective is to maximize total profit.

Dynamic programming algorithm is used for the two-dimensional pit (or a single
vertical section of a mine), and a graph theory algorithm for the general three-dimensional
pit. Density functions of mine value of ore per unit volume, extraction cost per unit
volume, and profit per unit volume are defined at each point of a three-dimensional space.
In developing the 2-D pit model, the whole pit is divided into parallel and vertical sections
and each section is considered as a 2-D pit. The technique used to determine the contour
of a section consists of moving three straight lines which represent the bottom of the pit
and two walls at the slope angles, and evaluating the ore and the extraction cost of
materials limited by the three lines. The configuration of lines yielding the best results is
then selected. Here, the angle is taken to be constant over the entire pit.

In the 3-D model a graph algorithm is applied. Here the entire pit is divided into a set
of volumes defined by a 3-D grid and the objective function is to maximize the profit
associated with each volume. The Lerchs-Grossmann algorithm converts the three-
dimensional grid of blocks in the orebody model into a directed graph. Each block in the

grid is represented by a vertex which is assigned a mass equal to the net revenue value of
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the corresponding block. The vertices are connected by arcs (arrows) in such a way that
the connections leading from a particular vertex to the surface define the set of vertices
(blocks) which must be removed if that vertex (block) is to be mined. The mathematical
modelling of 2-D and 3-D Lerchs-Grossmann algorithms have been provided in Appendix
A

Lerchs-Grossmann's open-pit optimization algorithm assumes a constant slope angle
over the entire pit. In mining practice the pit slopes are determined by the rock mechanics
characteristics and the hydrogeological conditions of the mine. These conditions may
result in variable pit slopes all over the entire mine. In the two-dimensional model, the
whole pit is divided into parallel vertical sections and each section is considered as a two
dimensional pit. When the optimum contour of all the vertical sections are assembled, it
invariably turns out that they do not fit together. The resulting contour may be far from
optimum, thus the solution yields a series of optima. This undermines the reliability and
credibility of the model. The problem with the three-dimensional model is that it presents
a tight choice between a true optimizing algorithm characterized by large computing
requirements and a non-optimizing algorithm with lower demands on computing facilities

[Carlson, et al., 1966].

2.5 The Dynamic Programming Algorithm by Koenigsberg

Koenigsberg (1982) and Wilke and Wright (1984) have succeeded in applying
dynamic programming directly to solve the 3-D pit design problem. In contrast to the 2-D
case in which a given block can have nearest neighbours from only one column in the
backward direction, in the 3-D case a block can have neighbours from four columns.
These columns were designed by Koenigsberg as follows: Si in column (j-1,k) represents
side of i, BSi in column (j-1, k-1) represents back of side of i, SBSi in column (j,k-I)
represents side of back of side of #, SSBSi in column (j,k-1) represents side of side of back

of side of i. The required slope angle, 1:1 in this case, must be satisfied with respect to
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each of the neighbouring columns. Figure 2.1 shows the 12 nearest neighbours to block
bjjx in the backward direction. With the neighbours in the backward direction identified,

the pit value, Pjjg, on the block (i,j,k) is the sum of block column value for a given block

bijx and the maximum pit value on a block among the neighbouring blocks.

Blocki, j,k>

Figure 2.1 The 12 Nearest Neighbours to Block by in the Backward Direction.

Pjjk is the optimum value of the pit with the block bijk as the last block to be analyzed.
This is the optimum value on the block bijk- Mijk is the block column for a given block
bijk. This is computed in the same manner as for Mj; in the 2-D case. Pgj j 7k is the pit
value of one of the nearest neighbour blocks in the column (j-1, k). PSBs(Si),j-1,k-1 13
the pit value on the block which was the optimum neighbour block in the column (j-1,k-1),
determined during the computation of Pg;j_1 k. PBSij-1,k-1 is the pit value on a block

in a column (j-1,k-1) to be selected as the optimum neighbour block, in the event the

block bSBS(Si), j-1, k-1 turns out to be incompatible to both bjjk and block bpgi j k. The
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other terms in the recursion formula are interpreted in a similar manner. The negative
terms are corrections. These ensures that the neighbours eventually selected as the
optimum neighbours are indeed compatible to each other, and to the block in question,
with respect to the slope angle restrictions.

The problem with this algorithm is that it degenerates due to the use of a 2-D
increment, Mjj, for the progressive widening of the ultimate pit. This may lead to
situations in which blocks selected from the four neighbouring columns end up being
incompatible to each other in terms of slope requirements. Further, Shenggui and
Starfield (1985) have shown that Koenigsberg algorithm is actually over constrained, and,

in some cases, will actually miss the optimum ultimate pit.
2.6 3-D Dynamic Programming Algorithm by Wilke and Wright

The problem of degeneration encountered with the 3-D algorithm by Koenigsberg
was overcome by Wilke and Wright (1984) with the use of 3-D increments in the form of

minimum removal cones over each block. This necessitates a new formulation of the

recursion formula for the block pit value, Pjji. However, the basic procedure of the 2-D
dynamic programming case is preserved and remains valid; namely, the pit value, Pjjg, on
the block, bﬁk’ can be calculated from the value of the removal cone over and including

the block bjjg, added to the best value neighbouring pit compatible with the block bjj. It

must, however, be ensured that no block value is counted more than once. Thus, all the

block values, Miik, which are contained in both the removal cone, Cijk’ and in the value
of the respective neighbouring pits Pi_y j+1, ko Pi, jti, k and Piyg jt ], k must be

deducted from the neighbouring pit values.
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2.7 Genetic Algorithms for Open Pit Design and Scheduling

Denby and Schofield (1994) presented a technique based on a self-learning genetic
algorithm which provides, simultaneously, a combined pit limit and extraction schedule
that aims to maximize the net present value (NPV) of the ore in the pit. In this algorithm,
the value of a pit is calculated based on the value of each block when it is mined. The
optimization procedures are as follows: (i) generation of random pit population (number
of pits) with a higher average value; (ii) assessment of pit fitness value whose calculation
is independent of the main optimization process for each of the schedules in the
population; (iii) reproduction of pit population during which each schedule either survives
to the next generation or is removed altogether. These procedures produce a population
with higher average value; (iv) crossover of pits during which selected schedules are
randomly combined in pairs on a probabilistic basis. Applying crossover operator to a
new population produces a new population of pits combining areas (features) of existing
pits to create both higher and lower value pits; (v) mutation and normalization of pits.
Mutation is performed on probabilistic basis, approximately 0.1% of the cells in the
schedule being modified in a random manner to help maintain genetic diversity and
prevents the system from converging to a false optimum. Normalizing functions are then
applied to new population. This changes the pits generated into feasible scheduled pits by
the application of a number of constraint functions. After iterating through a number of
generations an optimum pit and schedule is produced simultaneously. The system slows
down gradually as the size of the problem increases, but if this can be minimized for much
larger problems, a practical system should be feasible. Scaling-up the system to cope with

realistic problems requires further investigation.



22

2.8 Parameterization of Optimal Design of an Open Pit

Francois-Bongarcon and Guibal (1983) have described the basic principles for
parameterizing reserves and their application to open-pit design. The strength of the
methodology proposed is based upon the acceptance of the idea that a complete family of
optima might exist within a set of technically optimum pit. The process consists of
determining a spectrum of technically optimum pits, each containing the maximum
tonnage of recovered metal (Q) for a given tons of ore mined (¥) and tons of ore in the
pit (T). There are usually many different feasible pits that correspond to the same size
(V,T) in a deposit. Among these pits, there is at least one that contains the maximum
content of metal. This pit is the technically optimal pit associated with the pair (V,T).
The objective is to find the complete spectrum of optimal pits corresponding to every
possible value of (V,T). Under their hypothesis, the true absolute economic optimum pit
will necessarily be among this family of pre-selected pits. The variables V,T, and Q are
attached to one point of the abstract 3-D space of points whose coordinates are the values
of Q,V,T. So, in this space, all the feasible pits constitute a cluster of points. The best
one is the one with the highest Q coordinate. The family of technically optimal pits is the
family of pits located at the upper limit of the cluster (surface §). The problems associated
with this method are (i) the difficulty in adapting it accurately to polymetallic deposits; (ii)
the initial selection of the best pit being based only on the metal content without the full
knowledge of the economic factors; (iii) the assumption that the same profit formula is
valid everywhere in the deposit; and (iv) the optimal pit selected without taking time into

account. Thus, the results may mislead production planning as well as cash flow analysis.
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2.9 Ultimate Pit Limit Design Using Transportation Algorithm

Huttagosol and Cameron (1992) have formulated the ultimate pit limit determination
as a large scale transportation problem. The formulation is based on the use of a 3-D
block model to represent an orebody and surrounding materials. The solution of the
problem is obtained by solving the dual system of the formulated problem by using the
adapted simplex algorithm of linear programming. The first constraint of the model
represents the mining sequence as defined by pit slope requirements. The problem is
formulated such that each ore block (positive) must be equated to an origin node while
each waste block (negative) is equivalent to a destination node of the transportation
network. A route from an origin to each of its destinations must represent pit slope
constraints that is, the waste block must be removed before its underlying ore blocks can
be mined. The objective function here is to maximize the value of each block. The
problems associated with this algorithm are: (i) the inappropriate way of assigning the unit

cost to a route; and (ii) economic factors not duly considered.

2.10 Excess Scaling Algorithm

By mapping the ultimate pit limit problem to equivalent maximum flow problem, Yegulalp
and Arias (1992) utilized the "Excess Scaling Algorithm" in solving the maximum flow
problem to arrive at the ultimate pit limit. It has a shorter processing time compared to

that of Lerch-Grossmann. However, their model does not make room for variable pit

slopes which are vital in open pit design.
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2.11 An Algorithm to Estimate the Optimal Evolution Pit Mine

Tolwinski and Underwood (1992) have developed an algorithm for the determination
of a production schedule for an open pit mine. The algorithm is based on ideas from
dynamic programming, artificial intelligence and heuristics search rules. The evolution of
the mine is modeled over time as a sequential optimization problem of finding a path with
a largest value in a graph. The model allows for net present value maximization and takes
into account such constraints as maximum allowable pit slope angle, working space for
equipment, and a uniform supply of ore for a processing plant. The working width is
defined using the drop cut concept. Here a block is removed as a drop cut if all of its
surrounding blocks are at the same level. When a drop cut is made, there is sufficient
working space. The angle of inclination of any cone is chosen to correspond to the slope
angle for the sides of the pit.

Even though this algorithm tries to include some parameters vital to open pit design,
it is still unable to define them in a manner applicable to real mining situation. Definition of
working width using drop cut is incompatible with mining practice. It does not incorporate
bench height which is a function of the geology and the existing mining equipment and so
is rarely changed during the life of the pit unless there is a significant change in economic
parameters which consequently alters recoverability criteria. Further work is required to
improve this algorithm. This includes techniques like aggregation-disaggregation schemes
to speed up learning as well as more sophisticated data structures to make better use of
computer memory. Also, other features of scheduling problem may have to be

incorporated into the model to accommodate potential users.
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2.12 A Graph Theory Algorithm by Kim and Zhao

Zhao and Kim (1992) used an algorithm derived from graph theory for optimum
ultimate pit limit design. The algorithm maximizes the total undiscounted net profit for a
3-D block mine model. This algorithm formulates the 3-D block model into a directed
graph consisting of many trees. The vertices in the graph are equated to the blocks in the
mine model and the imposed arcs in the graph represent pits slope constraints. The
algorithm determines a feasible contour of a pit with maximum mass, thus achieving the
optimal limit. This algorithm weakly incorporates the pit slope constraints. It uses the
value of the block (either + or -) to determine the pit slope. Thus, the boundaries resulting
from the selected blocks define the pit outline. It ignores the rock mechanics
characteristics and the hydrogeological conditions of the mine which defines the pit slope

angles and are vital for good sequencing and optimization.

2.13 An Intelligent Dynamic Search Algorithm

Wang and Sevim (1992) have used intelligent dynamic search solution methodology
to simultaneously optimize all principal elements of production scheduling problem in
open pit mine without a priori assumption on any of the following four elements. These
include: (i) the amount of ore and waste to be mined each year; (ii) the specific blocks to
be mined each year, (iii) the mine life which defines the expected time horizon of the
operation and (iv) the ultimate pit limits which delineate the total reserve to be mined and
the final pit shape at the end of the operation. It takes into account both the interaction
among the elements and the impact of the decisions concemning these elements in any
period upon the decisions in future periods. The solution of the optimum production
planning consists of two major steps: (i) obtaining the technically optimum pit using
reserve parameterization or heuristic approach, and (ii) devising a scheme to economically

evaluate the technically optimum pits to select the best pit sequence, and consequently
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best production plan. This algorithm does not guarantee that the pits are the truly
maximum-metal pits. First, only the union of cones with the lowest average grades is
considered. Due to overlapping among the cones, the average grade of the union of these
cones may not be the minimum among all possible unions of the same size. Secondly, a
technically optimum pit is the one that has the maximum metal quantity for a given total
volume and a given ore tonnage. But in this algorithm, the maximum metal quantity is
sought for a given total volume without considering the ore tonnage. Moreover, this
algorithm suffers from the gap property: only a limited number of technically optimum pits
can be obtained corresponding to some discrete values of total material and ore tonnages,
and the sizes of the available pits can not be controlled. As a result, reserve
parameterization is, in most cases, unlikely to produce all the pit of the right sizes needed
for production planning purposes. Hence there is a definite need to devise an efficient
algorithm to eliminate the gap problem. The heuristic algorithm does not guarantee that

the pit limits are truly optimized.
2.14 Neural Network Overview

In this study, neural network is used to forecast mineral price and design and optimize
pit layouts. Hence, the fundamentals, theory and architectures of neural networks are
described in this section. The history of its development and current methodologies used
in research are also presented.

The human audio/visual capabilities are superior to any kind of super-computer in
mankind’s history. The brain is composed of a large number, (10™), of nonlinear
processing unit called neurons. Figure 2.2 depicts a biological neuron reported in the

literature [Haykin,1994; Hertz et al, 1991; Zurada, 1992].
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Synapse Axon

Dendrites ‘

Soma

Figure 2.2 A Biological Neuron.

The dendrites are nerve cells that are connected to the neuron body, called the soma.
Axons are the long fiber cables extending from the soma. Synapses are located at the end
of axons, and are connected to other neurons. An axon is composed of several thousand
synapses. Information transmission from one neuron to another takes place at a synapse
which is considered to be a complicated chemical process. The goal is to increase or
decrease the potential of a neuron that is receiving information. If the potential exceeds a
threshold limit set in the receiving neuron, the neuron is triggered to send an information
along the axon to the other neurons. The way these neurons are connected to each other
makes us capable of recognizing speech or images very easily. Biological neurons are
robust and fault tolerant. This means that if one or more neurons die or do not function
properly, the overall performance of the brain does not change. They are highly parallel,
very small, compact and low powered and they can deal with noisy, inconsistent data with
no difficulty. These features motivated the new research field called artificial neural
networks. McCulloch and Pitts (1943), in their initial attempt at modeling a neuron,

proposed a binary threshold unit as a neuron. Their model is depicted in Figure 2.3 and
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equations 2.1 and 2.2. The McCulloch-Pitts neuron has proven to be capable of doing
universal approximation for appropriately chosen weights as long as a number of them are

connected in parallel and working simultaneously.

X W4 Activation
1 / Function ©
v, N
X5 2
W
Xz 3
W
X4 4
Figure 2.3 McCulloch-Pitts Neuron Model
1, i >0
om={" 77 @.1)
0, otherwise
M
y= Q(Z w;X;) (2.2)

where y is an output unit, x; is the presented input pattern, x, is -1, w, is considered as
the threshold value, and M is the number of inputs. Haykin (1994) has described various
activation functions. These activation functions as well as their mathematical

representations are shown in Figure 2.4. The first one is piece wise function, and the latter
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one is sigmoidal function. Both logistic sigmoid function and hyperbolic tangent function
tanh(x) are considered as sigmoidal functions.

" There are various types of neural network architectures. The famous neural network
architectures are multilayer feedforward neural network (MFNN) or  multi-layer
perceptron, Hopfield network and Kohonen network. Each of them is described in the

next sections.
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Figure 2.4 Mathematical Representation of Activation Functions.
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2.14.1 Multilayer Feedforward Neural Network

Multilayer feedforward neural network consists of simple McCullogh-Pitts type
neurons in a massively parallel structure (Figure 2.5). It is composed of an input layer,
also called sensory unit layer, hidden layer, which could be as many as necessary, and an
output layer. The input signal is usually propagated forward layer by layer. These types
of artificial neural networks are referred to as multilayer feedforward (perceptrons).
These networks were widely used to solve some classification and approximation
problems employing a very popular training algorithm named error back propagation
(EBP). The EBP is a learning scheme where the error is backpropagated and used to
update the weights. The EBP algorithm is presented and explained in chapter 3.

X
X2
;( > ?1P
. > Onp
X

input Hidden Output
layer layer layer

Figure 2.5 Multilayer Feedforward Neural Network

In a multilayer feedforward neural network (Figure 2.5) the nodes are grouped in

input, hidden, and output layers, by the network. The output layer declares the
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computation results. The hidden or intermediate layers follow the input layer. All the

nodes within the input layer, (x,, X,, X;5 ceeeee » Xy ) are connected to all the nodes of the

first hidden layer, (H;, Hj, Hs, ......, Hy), which are subsequently connected to all the
nodes of the second hidden layer, and so on, and eventually to the nodes of the output
layer, (O3, Oz, O3, .cccee. » On). Weight, W;p, depicted in Figure 2.6, is associated with

each one of the connections. xj is the value of the input node. Wiy is the weight

associated with the connection between node i of the input layer and node h of hidden

layer. W, is the weight associated with the connection between node h of the hidden
layer and node o of the output layer. in is the activation value (network output) at

output node o for pattern p on node I. The -1’s in Figure 2.5 are biases to the input and

hidden layers.

The input nodes perceives the data to be processed by the network and then transmit
it to the hidden nodes. Within the hidden layers, the values received from the input layer
nodes are multiplied by the connection weights and then each hidden node sums all the
weighted values it receives. On the other hand any other type of linear transformation can
be used instead of the usual arithmetic summation. Finally a non linear transformation,
such as a sigmoid function, is applied to the summation result and the resulting value (the
activation level of the node) is then transferred to each of the nodes of the second hidden
layer or of the output layer. The output layer plays the same role as the hidden layer
however, the linear and non-linear transfer functions within the output layer can be
different from those of the hidden layer. The activation level of the output nodes are the

network outputs or results.



32

2.14.2 Hopfield Network

The Hopfield network consists of two layers, an input layer and a Hopfield layer
(Figure 2.6). Each node in the input layer is directly connected to only Hopfield layer.
The nodes in the latter layer are neuron models previously described with either hard
limiting or sigmoidal activation functions [Hopfield, 1982]. The outputs of these nodes are
weighted and fed back to the inputs of all of the other nodes.

During training, the network output is often required to be the same as the input.
Connection strengths are weakened by reducing the corresponding weight values if the
output of a neuron is different from the input, and strengthened when the converse is true.
The trained network is used by applying an input pattern to the network. The network
outputs are then continually fed back through the weights until a convergence criterion is
met, typically when there are no changes at the network output nodes on successive
iterations. This is the final network output for the input pattern. Binary input and output

values, often represented as + 1 and - 1, are usually used with the Hopfield network.

Outputs (valid after convergence)
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Figure 2.6 Hopfield Network. z” is the Unit Delay Operator.
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2.14.3 Kohonen Network

The main distinguishing feature of this network, from the MFNN and Hopfield
networks, is that no output data is required for training [Gomm, Page and Williams,
1993]. A Kohonen network is constructed of a fully interconnected array of neurons (i.e.
the output of each neuron is an input to all neurons, including itself) and each neuron
receives the input pattern (Figure 2.7) [Kohonen, 1988]. There are two sets of weights: an
adaptable set to compute the weighted sum of the external inputs and a fixed set between

neurons that controls neuron interactions in the network.

Input
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Figure 2.7 Kohonen Network.

Training involves applying an input pattern to the network, consisting of a set of
continuous-valued data, and the output of each neuron is computed. The neurons are then
allowed to interact with each other and the neuron that responds most to the input stimuii
(i.e. the one that has the largest output) is found. Only this neuron and neighbourhood

neurons, within a certain distance, are allowed to adjust their weights to become more
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responsive to the particular input. This form of training has the effect of organizing the
“map” of the output nodes such that different areas of the map will respond to different
input patterns. Hence, the Kohonen network has self-organizing properties and is capable

of recognition.

2.15 Mineral Commodities

In mine design and valuation, mineral commodity price forecasts are important for
future cash flow projection and evaluation of the optimum pit layout. The forecast must
cover an extended period, the project life. This can be a decade or more years. However,
prices of many mineral commodities are volatile, depicting unpredictable shifts in the
balance between supply and demand. The significant balance is the one prevailing in the
world market but not any national market. There are four main procedures by which
mineral prices are established. They include producer price, independent price, negotiated
price and commodity-exchange price methods [Strauss, 1992].

Producer prices are fixed by mineral producers, who periodically announces the terms
and conditions, as well as the prices, at which sales will be made. In fixing the price, the
seller takes into consideration his cost of production, potential markets, the position of his
competition and the possibilities of increasing his market share. Independent prices are
established periodically by an independent agency, often a trade periodical, that makes
regular surveys among both buyers and sellers to avouch the basis at which actual
transactions have taken place. Negotiated prices are prices negotiated directly between
seller and buyer, with contractual agreement and provision for price adjustment under
specific condition, extending over period of several years. Commodity-exchange prices are
prices established on or largely influenced by transactions on commodity exchanges e.g.
London Metal Exchange and New York Commodity Exchange [Strauss, 1992].

Two approaches for price forecasting are the trend analysis and econometric models.

Trend analysis involves the replacement of the actual price-time history with a
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mathematical representation which can be used for projection into the future. A
commodity model is a quantitative representation of a commodity market or industry
[Labys, 1977]. Factors which determine mineral prices are very complicated and some of
which are interdependent. The spot and future mineral prices are the result of these
numerous factors. It is very difficult to bring these factors into traditional mathematical
model for calculations. Usually only several main factors, instead of the whole set, are
considered as variables to define a function to forecast commodity prices. Therefore, the
experimental data are at variance from the predicted result for these kinds of formulas
because of ignoring so many factors. Neural networks, a most attractive branch of
artificial intelligence, has the potential to handle this problem, considering those governing
factors as a whole, without limiting their quantity if a sufficient set of examples are
available. Grudnitski and Osburn (1993) used neural networks to forecast monthly gold
futures price changes based on past price changes, historical open interest patterns held to
represent the beliefs of a majority of the traders in the gold futures market and a barometer
of general economic conditions. They adaptively trained 41 networks from different 15-
month training sets, applying a similarity-based selection process. Their networks forecast

the correct direction of the next month’s gold futures price change 61% of the time.

2,16 Summary

Various open pit optimization algorithms have been reviewed. Among them, the
Lerchs-Grossmann and moving cone algorithms are widely used for open pit design and
optimization. These two algorithms are saddled with some problems. Lerchs-Grossmann's
open-pit optimization algorithm is inefficient in incorporating variable slopes in the pit
design. In mining practice the pit slopes are determined by the rock mechanics of the
mine. These conditions may result in variable pit slopes all over the entire mine. The
Lerchs-Grossmann’s 3-D algorithm fails to yield a truly optimized pit. The geometrical

requirements of slope stability in combination with certain occurrences of ore blocks, can
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lead to situations where the floating cone will fail to design the maximum valued pit. The
floating cone can fail to design true maximum valued pits, depending on the direction of
search employed to locate positive valued blocks. Even in cases where the search for ore
blocks commences at the top and proceeds to the lower rows, the floating cone cannot
guarantee finding the optimum pit. The floating cone can fail to recognize a positive
valued pit due to inability to solve the problem of overlapping waste when cones on
individual blocks are combined. Due to this, with certain positive block configuration the
maximum pit value may be missed.

From the above approaches to open pit limits design, the randomness associated with
the distribution of the ore blocks, mining of the various blocks and price of minerals with
respect to time have not been taken into consideration. The omission of this randomness
property in the above algorithms poses limitations on the pit limit definition, the economic
potential of the mineral deposit, and the long-, intermediate-, and short-range mine plans.
This might lead to poor investment decision and inaccurate mine design and optimization.
An algorithm which takes into account the random field properties of the mineral deposit,
its overall economic potential in a strategic plan will aid in the proper design, optimization
and subsequent extraction of the deposit.

Hence, in this research the theory of random field is proposed to incorporate the
randomness property and the principal elements of production schedule and design
parameters to give the best optimum pit limit. CS/MFNN algorithm is proposed for open
pit optimization. The CS model is used for the random grades and ore reserves
calculation, while the MFNN model is used for the pit optimization.

In this study MRM-MFNN is proposed to rigorously predict the mineral prices at
various times by using the factors which influence mineral price determination. The
stochastic gold price is modelled via two main models; multilayered feedforward neural
networks (MFNN) model and multiple regression model (MRM ) within an identified

socio-politico-economic cycle.
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The description of the CS/MFNN and MRM-MFNN models and their subsequent

application and validation are given in details in the following chapters.
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CHAPTER 3.0
MATHEMATICAL MODELLING

In open pit optimization, the depth and width of the pit from which the ore is
extracted at a profit is defined using an open pit optimization algorithm. The first step
involves building a block model and assigning grades to each block in the model using
data base of grade samples from drill-holes. An interpolation technique is used to assign
grades to all the block. After grade assignment to each block, mineral price is used to
estimate the revenue of all the blocks based on mineral recovery. Cost of mining and
profit (economic block value) for each block is also calculated. It is after knowing all the
economic block values of the blocks that an open pit optimization algorithm is applied to
define the optimum pit limit. The maximum allowable slope based on rock mechanics
studies of the ore deposit is factored into the optimization algorithm.

In this study, conditional simulation (CS) model is the grade interpolation technique
used to assign grades and subsequently economic block value to each block. A mineral
price model is used to calculate the mineral price and multilayer feedforward neural
network (MFNN) model is the open pit optimization algorithm used to define the ultimate
pit limit. In this chapter, the mathematical modelling of 2-D and 3-D CS model, MFNN
model and mineral price model are developed. The use of error back propagation
algorithm in training MFNN is presented. The optimization of 2-D and 3-D open pit mine
design using MFNN model are also developed.

3. 1 Block Model for Pit Design

The block model is the basis for almost all computer supported pit designs. For a
block model, a rectangular block large enough to cover the area of interest is placed
around the mineral deposit [Wright, 1990]. The large block, as shown in Figure 3.1, is

then subdivided into smaller three-dimensional blocks (Figure 3.2). The smaller blocks
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may be of various different sizes and shapes. The geometrical position of a block is
uniquely fixed with reference to any suitable coordinate system. Each block is assigned
geological, rock mechanical, processing and economic data pertaining to each type of

material contained in the block.

Figure 3.1 Large rectangular box to encompass area of interest

Figure 3.2 Large box is subdivided into smaller three-dimensional blocks

There are several types of block models (Kim, 1978): The regular 3-D fixed block model

is the most widely used one in practice. The vertical height of each block is usually the
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bench height and the horizontal shape will normally be a rectangle or a square. The main
characteristics of a 3-D fixed block model is that each block has the same measurements.
By means of interpolation techniques such as geostatistics using kriging, inverse distance

weighting methods and polygonal method, data are assigned to each block from a given

data base.
3.2 The Economic Value of a Block

In open pit design, the criterion for maximizing the total pit value is equivalent to
finding that collection of blocks within a pit limit which will give the maximum possible
value; subject to mine stability and mining constraints. Hence the economic value of a
block is of utmost importance. Each block in a block model can be characterized by:

1. Income I : value of the recoverable and salable part of the block;

2. Direct Costs DC : costs of mining that can be traced directly back to the block; e.g.
drilling, blasting, loading and transportation costs.

3. Indirect Costs IC : overall costs which cannot be allocated to individual blocks.

Such costs are time-dependent; e.g. depreciation for machinery, etc.

From these economic block value (EBV) can be defined as:
EBV=I-DC-IC 3.1
Ore blocks and blocks containing both ore and waste (= mixed blocks) will have EBV less
than zero, equal to zero or greater than zero, depending on the amount and quality of the
ore contained in such blocks. Waste blocks will always have a negative EBV since income
from waste is zero. The optimization criterion for the pit limit design problem can thus be
stated as:
Maximize Z = 3.(EBV) ; 3.2)
subject to slope stability and mining constraints.
After the determination of the EBV, the algorithm for combining the blocks which
will yield the maximum profit is applied to the gridded blocks. In this study, the
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conditional simulation is the interpolation technique used to assign grade to each block in
the block model. The MRM-MFNN is then used to forecast the mineral price to calculate
the EBV of each block.

3.3 Mathematical Modelling of Conditional Simulation
3.3.1 Block Modelling Using Conditional Simulation

In the conditional simulation model, the stochastic property associated with ore
reserves and grade is defined using the limited known field data and used to estimate the
unknown expected field data using best linear unbiased estimation (BLUE) and turning
bands method (TBM) techniques. In the model, the grade assigned to each gridded-block
is the average of all the 1000 realizations obtained during the simulation. The objective of
the conditioning is to require the simulation model to assume observed data values at
spatial locations where the random function of the grade distribution, X, has been

observed. The flow diagram for the conditional simulation is depicted in Figure 3.3.

Input Data (Observed Data)

BLUE TBM BLUE

P‘sc =% *+ (X - xc)1

Sum and Average All Realizations

(Estimated Grodes of Grid Blocks)

Figure 3.3 Flow Diagram of Conditional Simulation.
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The assumptions in this model are:

i) the grades in the blocks are spatially and randomly distributed,

ii) the gridded blocks are defined by the coordinates of their centers.

iii) the deposit/field under study is isotropic and homogeneous.

iv) the geometry of the deposit is rectangular in shape for 2-D model and rectangular

prism or cuboid for 3-D model.

The conditioned field for estimating a gridded-block grade, X .(x), is obtained

through a linear combination of three fields as stated in equation (3.3).

Xoo(X) = X () + (X5 (%) - X (x)) (3.3)

where X, (x)is the estimated field based on observed data using BLUE; X (x)is
unconditionally simulated field via TBM; and X (x)is the estimated field using BLUE
based on the TBM values at the observed data locations. X (x)gives the TBM
simulated values at both the observed and unknown data locations. The X (x) values at

the observed data locations are equal to their values generated by the field X (x).

3.3.1.1 Modelling X,(x;) and X.(x;) Fields using BLUE
If X,(x,), a=12,........ ,n are the known values of X at x;,x,,......... »X, then

the value of X at another point x4 can be estimated as

X" () = My + 3 Moy (X ()~ ) (3.4)
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where mg, m, are the known means at xgand x, respectively; 7,, are the unknown
weights for the given location x; [Fenton, 1995]. In this model, my is the mean of the

known drill-hole samples between which the point x, lies.

Equation (3.4) is unbiased since

E[X"(x4)] = my, (as E[X(x,)]-m, =0 ) (3.5)

If C(x;,x;)=E[(X;(x;)-m)(X;(x;)—m;)] is defined as the covariance between
the field processes at x; and x;, then the mean square error of predicting the actual data

X(x,) with the X'(x,) is given by

EIEX" (x,) ~ X (1= Cpop) - 23 1pCle g5 ) +

Z": Z NapMysC(Xa5X, ) (3.6)

a=1y=1

where C(x4,x,) is the covariance matrix of the unknown data at x, and known data
atx,; C(x,,x,)is the covariance matrix of known data x, and the weight x,; 7, and

7,5 are weights.
Minimizing the mean square error in equation (3.6) leads to a system of n equations

in n unknowns in equation (3.7)
D 1,5C(X,5%,)=C(x4,%,) » @=12,....n 3.7
r=1

where n,, is the weight matrix to be determined.

Defining n, =ng for convenience, equation (3.7) can be written in a matrix form as:
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[Ka] [np] = Mp (3.8)

where [Ka], [np] and M are respectively as follows (using
Ci.i =C(‘£a ’Er )= COV[ X(’!a ) ’X(Ey ) ])

-Cn C, : : : Cln- -ﬂlp_ -Clﬂ_
CZI sz ) ) - CZn M2p Czﬁ
&= 0 |me=| | |sMe=
_Cnl an : ) : le N _qﬂﬁ_ _Cﬂﬂ _

The solution is thus

Mel = [Ka]” [My] 3.9

The elements in [Kq] are the covariances between the known sample points calculated
and/or read from the semi-variogram. The elements in [Mg] are the covariances between
the unknown sample and known sample points also calculated and/or read from the semi-
variogram.

Equation (3.9) can be solved for n; via Gaussian elimination. n, is a set of

coefficients. [Ka] depends only on the set of known points. Once it is inverted, it can be

used repeatedly to find the best estimates at different unknown points X, . Solving

equation (3.8) gives n,; in equation (3.4) and the best linear unbiased estimate is
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X" (xp)=my + 3 05 (X(x,)—m,) (3.10)

This same procedure can be used to generate X (x,) using the data generated by turning

bands method described below.

3.3.1.2 Modelling X (x ;) Field using TBM

The turning-bands method of Matheron (1973) is described in considerable detail by
Journel and Huijbregts (1978) for three dimensions and by Mantoglou and Wilson (1981,
1982) and Bras and Rodriguez-Iturbe (1985) for both two and three dimensions, so only

the essentials are presented here.
In this study, TBM is chosen because it is fast and easy to construct using a

unidimensional covariance function for any dimension and has been successfully applied in
mining geostatistics. Moreover, a lot of researches have been done on its implementation
procedure making it easier and reliable to simulate a field of any dimension. This fast
method builds a higher-dimensional simulation by averaging the contributions of several
independent one-dimensional simulations oriented in several directions in space. The only
limitation is that using too few lines results in streaked appearance of the realization and
getting rid of the streaks substantially slows the algorithm.

In the simulation using turning bands method, it is assumed that the field is second
order stationary and isotropic, at each point the values of the field are normally distributed
and have zero mean and the covariance C(r) of the field is known. Also should it happen
that the field is not normally distributed and have non-zero mean, a Gaussian
transformation is made and the mean is subtracted. In the 2-D or 3-D fields, simulation is
performed along several lines, using a unidimensional covariance function that
corresponds to the given two- or three-dimensional one. Then at each point of the two-

or three-dimensional field a weighted sum of the corresponding values of the line process



46

is assigned. Let P be the two- or three-dimensional field to be simulated by generating
values at discrete points in it. An arbitrary origin 0 in the dimensionality of the space R,
where n = 2 or n =3, and lines are generated such that the corresponding direction vectors
u are uniformly distributed on the unit circle or sphere in two- or three-dimensions,
respectively.

In the two-dimensional case, the angle 8;formed between a line i and a fixed x axis is
uniformly distributed between 0 and 2x. Along each line i, a second-order stationary
unidimensional discrete process is generated having zero mean and covariance function
Ci(n), where m is the coordinate on line i. Onto line i, orthogonally project those points
of the field where the values are to be generated, and assign to them the corresponding
values of the one dimensional discrete process. If N is a point of the region having
location vector xy, then the assigned value from the line # will be z{nn;) where nn; = xn-u;
is the projection of the vector xy onto line i, w; the unit vector on line #, and xn-u;
represents the inner product of the vectors xy and w;. Taking L lines such as i, an
independent unidimensional realization is generated for each line using Ci(n) as the
covariance function. Then at every point N of the region, there are L assigned values
z{(Mn:) = z(xn-u;), where i = 1, ..., L, from the unidimensional realizations. Finally, the

value z,(xy) is assigned to the point N where

z,(xy) = J_Zz ((xn - 1)) (3.11)

is the realization of the two- or three-dimensional random field. The subscript s represents
simulated or synthetic. If lines or planes are drawn perpendicular to the line at the ends of
each discretized segment, a set of bands is defined as depicted in Figure 3.4. As the lines
turn, the bands defined above also turn. Thus the method was given the name ‘turning

bands method’ (TBM) by Matheron [Matheron,1973; Mantoglou and Wilson, 1982].
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Figure 3.4 Schematic representation of the field P and the turning bands lines I.

The generation of a second-order stationary unidimensional discrete process having

zero mean and covariance function C;(n) is presented in the following section.
3.3.1.3 Unidimensional Covariance Function C,(n)

The form of the unidimensional covariance function C,;(n) must be such that the field
defined by equation (3.11) has the imposed two- or three-dimensional covariance function
C(r) where r =|h| defined below. For two points of the field having location vectors x,
and x, respectively, the simulated values corresponding to these points are given by

equation (3.11) and the covariance function of the simulated field is

C,(x,,x,) = E[Z, (x, )Z,(x,)]

- %ZZE[ZI(XI “0)Z(x;-u,)

=1 j=1

(3.12)

As the unidimensional realizations along two different lines are independent, the expected

value E[Z,(x,-u,)Z,(x, u,)] is zero unless i =j. Thus equation (3. 12) reduces to
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L
C,(x,,%,) = %ZE[Z.(xl u)Z,(x; )]
=1 (3.13)

=lzL: C,(h-u))
LS
where h = x; - xa. The expected value E[Z,(x,-u,)Z (X, -u;)] represents the
covariance of the one-dimensional process on line i between points x,-u,and x,-u,,
which is written as C,(h-u,)=E[Z,(x,-u,)Z,(x,-u;)], assuming that the

unidimensional process is second-order stationary. Because the vector u; is uniformly
distributed over the unit circle or sphere, the right-hand side of equation (3.13) is only a
function of |h| for large L. This means that the obtained process is wide sense stationary

and isotropic, so that we can write
1 L
C,(xnxz)=C.(h)=C.(r)=EZCI(h-U.) (3.14)
i=1

wherer = |h|. For L—> o, by using the law of large numbers this becomes

C.(r= m{%icxh - u.)} = EIC, (h.u)]
= (3.15)

= [ €, (h.u)f(u)du
where ¢ represents the unit circle or sphere, f(u) is the probability density function of u
which becomes —i—l—or ——1—— two- or three-dimensions cases respectively, and du is the

V2 4

differential length or area at the end of vector u. Equation (3.15) then gives, for the two-
dimensional case
1

C.() = -

[ C.(h.u)du (3.16)

unit circle

while for the three-dimensional field
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C,(r)= -# [C.(h.u)du (3.17)

unit sphere
3.3.1.4 Covariance in Two-Dimensional Fields

Define orthogonal axes (x, y) in the plane of the field, with origin as point x; and x;

along the y axis in the direction of the vector h = x; - x; as shown in Figure 3.5.

Figure 3.5 Definition sketch for the two-dimensional case, showing unit circle.

In polar coordinate we can write h-u = r sin@ and du = d6. Equation (3.16) then
becomes

C.(r) = lﬂjcl(e)da=72r_j = C,(m)

) z_qz)uz

where n= r sin® and that C; is an even function. Substituting C, (r)= Ci(r), in order to

dn (3.18)

preserve the known covariance, we get




50

i Ci(m 7

————dn=—C(r) (3.19)

{ (rz _ nz )1/2 2

Equation (3.19) relates the two-dimensional covariance function C(r) to the
corresponding unidimensional C)(n) along the turning band lines. The line process is

generated by using a spectral method of Rice [1954] and Shinozuka and Jan [1972].

3.3.1.5 Covariance in Three-Dimensional Fields

Because of the second-order stationarity and isotropy of the process, without loss of
generality we can define orthogonal (x, y, z) axes with origin at the point x; and with the z

axis in the direction of the vector h = x; - x,, as depicted in Figure 3.6.

h & (0,0,1)

du

’ (0,1,0)

unit sphere
X (1,0,0) P

Figure 3.6 Definition sketch for the three-dimensional case, showing unit sphere.

The unit sphere where the vector u ends is also shown. In spherical coordinates h-u = r

cosd, where r = |h|, and du = sin¢d$pdO. The integral equation (3.17) is then written as

C,(r)=$jr ICl(rcos¢)sin¢ dg dé
o0 (3.20)

=}!c,(n)dn
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taking advantage of the symmetry of C, and introducing the line coordinate n=r cos ¢
oriented in the direction of u. Differentiating and changing notation leads to the

relationship between one- and three-dimensional covariances:
d
Ci(n) = a—n[n C(m] (3.21)

where C,() = C(n) in order to preserve the known three-dimensional covariance during
simulation. For an exponential three-dimensional covariance C(r) = c’exp (-br), the
corresponding one-dimensional covariance is Ci(n) = o’(1-bn)exp(-bn), commonly
called the hole function. For a double exponential three-dimensional covariance C(r) =
cexp (-b*r), the corresponding one-dimensional covariance is C1(n) = o”(1-2b™n’)exp (-
b™n?). For a spherical three-dimensional covariance C(r) = o [1-3br/2 + (br)*/2] for 0 <
br <1, and C(r) = 0 for br >1, the corresponding one-dimensional covariance is Ci(n) =
o’[1-3bn+ 2(bn)*] for 0 < bn<1, and Cy(n) = 0 for bn >1. o’ = variance; b = inverse of

the range a; A = sin(avb); B = cos(a/b); B = parameter; arctan = arctangent.
3.3.2 Simulation of the Fields Using the Spectral Line Generation Method

After obtaining the covariance function, the corresponding spectral density function
of the unidimensional process must be found in order to generate the process along the
turning bands lines.

3.3.2.1 Spectral Representation of the Unidimensional Process

Let S)(@) be the spectral density function of the unidimensional process having

covariance function Cy(n). Then in one dimension the Fourier representation is

C, = Te"‘”’S,(w)dw = 2? cos(wn)S, (w)dw (3.22)
~0 0
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where the frequency (wave number) @ is a scalar, Sy(®) is real, symmetric and positive.
For the two-dimensional geometry of Figure 3.5, n= r cos ¢, since nis oriented in the
same direction as u. Substituting this Fourier representation of Cy(n) into the TBM

equation (3.18) setting C,(r) = C(r) and changing the order of integration leads to
4 © x/2

C(r) = ——ISl(w){ I cos(awr sin B)de}da) (3.23)
7 0 0

From Gradshteyn-Ryzhik (1980), the integral inside the brackets { } becomes (n/2)Jo(r).

Thus equation (3.23) can be written as

C(r) = ij S, (o), (wr)dw (3.24)
0

Applying a Hankel transform to this equation gives

S, (w) =—;—IC(r)Jo(a)r)r dr (3.25)

The Fourier transform pair for the two-dimensional continuous process, which tends to
zero fast as |h| — oo, covariance function C(h) can be written as equations (3.26) and

(3.27) [Shoenberg,1938; Matern, 1960; Mantoglou and Wilson, 1982].

C(r)= asz(aJ)J,,(a)r) do (3.26)

f(o) = %f C(r)J, (@r)r dr (3.27)

r =|h|, Jo( ) is a Bessel function of first kind of order zero, and () is the radial spectral
density function of the two dimensional isotropic process defined by

_ 2maS(w)
=

f(w) = % [S() do =;lz—S(w) [do (3.28)

€, is a circle of radius © and do is the differential length on circle ¢q.

Comparing equations (3.25) and (3.27), we obtain
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2

S, (w) = %—f(w) (3.29)

This means that the spectral density function of the unidimensional process along the
turning bands lines is simply given by one half of the radial spectral density function of the
two-dimensional process multiplied by the variance. The comparison which led to
equation (3.29) can be used to derive the spectral density functions of the unidimensional
processes for various two- and three-dimensional covariance functions using derived radial
spectral density functions such as tabulated by Mantoglou and Wilson, (1982). The
unidimensional spectral density function is related to the unidimensional covariance
function for a transformed pair of Fourier. The analytic expression of S(w) for the more

widely used models in the unidimensional geostatistical practice is shown in Table 3.1

[Pardo-Iguzquiza et al., 1992].

Table 3.1 Analytic expression of S(w) for more widely used models

Model C(h) S(w)
Exponential exp(-bh) o? b
z (b*+w?)
Gaussian Aexp(-b’K) ot ( ® ) 2
exp| -| —
zb 2
Triangular &’(1-bh) h <a c*b @
0 h>a w? 1- COS(_b‘)
Spherical 3 :
o | T ] | =)
2 3 27w @
0 h>a
Hole I o’ (1-bh)exp(-bh) oh ®
—| 1= cos(2arctan(—))
(> + %) b
Hole I o’exp(-bh)cos(fh) 2 b b
—+ +
27 | b +(w+ B) b+ (w-pP)°
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o’ = variance; b = inverse of the range a; A = sin(a/b); B = cos(a/b); = parameter;

arctan = arctangent.
3.3.2.2 Generation of the Line Process

After obtaining the spectral density function of the unidimensional process, the
process along the turning bands lines can easily be generated using the classical method
proposed by Rice (1954) and modified by Shinozuka and Jan (1972). If the
unidimensional covariance function is Ci(n) and the corresponding spectral density
function is S;(®), then the unidimensional process on line i can be generated by

M

z,(n) = 2,‘2_; [S,(@,)Aw]" cos(w, 7+ ¢, ) (3.30)

@, are independent random angles uniformly distributed between 0 and 27z, ok = (k-
1/2)Aw, and o ‘= @y + 8o for k =1, ..., M. It has been assumed that the spectral density
function Sj(®) is insignificant outside the region [-Q, +Q)], the band frequency of the
process. The discretization frequency Ao is defined as Ao = Q/M, M is the number of
harmonics used. The frequency 8w is a small random frequency added in order to avoid
periodicities and is uniformly distributed between -Aw'/2 and +Aw'/2, where A’ is a
small frequency, Aw’<< A®. It has been proven by Shinozuka and Jan (1972) that the
process given by equation (3.30) has zero mean and covariance function Ci(n), as M—xo,
Q—w, and A®o—>0. This process is strictly ergodic, even for a finite number of lines, and
Gaussian. In the turning bands method, equation (3.30) is used to generate values at
discrete points. These points are chosen to be the middle points of the segments defined
by the bands along each line. The same value is assigned to the entire segment or band.

Equations (3.15), (3.16) and (3.17) are obtained in the limit és the number of lines
goes to infinity. The lines are assumed to be randomly oriented, as taken from a uniform
distribution on the unit circle or sphere. These TBM equations are also be obtained by

spacing the lines evenly on the unit circle or sphere, with prescribed directions. If the
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same line orientations are maintained during a sequence of simulations, both methods are
ergodic, but the simulated covariance converges much faster to the theoretical function for
the even spacing approach and hence this is the preferred approach. For two-dimensional
fields, it has been observed that 4-16 lines should sufficient [Mantoglou and Wilson,
1982]. In three dimension, experience has shown that a group of 15 lines, joining the
midpoints of the opposite edges of a regular icosahedron, is adequate for typical

applications [Journal and Huijbregts, 1978].
3.4 MRM-MFNN Mineral Price Model

In this study, the stochastic gold price is modelled via two main models; namely
multiple regression model (MRM) and multilayer feedforward neural networks (MFNN)

as depicted in Figure 3.7.

MFNN MODEL

A J
MRM MODEL

A
OUTPUT DATA
5:.52,65,5A.35.

Figure 3.7 Flow Diagram for Mineral Price Model
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Due to the ever changing socio-politico-economic factors in the world, mineral price
trend and transaction data have undergone some drastic metamorphosis which leave
analysts to ponder over what and how to use the data in designing mineral forecast
models. Before the collapse of the former Union of Soviet Socialist Republics (U.S.S.R),
all mineral transactions were done in the COMECON or CMEA (Council for Mutual
Economic Assistance) market. Data was unavailable from the eastern bloc, but the
situation changed after the collapse of the communist and socialist eastern bloc.
Historical mineral price data must be truncated in order to develop a better price forecast
model for sound, meaningful and coherent analysis to reflect economic realities in this
modern world. As a result of these problems, data for validating realistic commodity
models is presently scanty. In this study, the multiple regression technique is used to
develop a mineral price model for predicting future gold prices. The data within a
determined socio-politico-economic trend is used as input into the multiple regression
model to estimate the coefficients of the respective parameters. These coefficients are
used to construct a multiple regression equation for predicting the mineral commodity
prices.

In this study, it is assumed that the world inflation and interest rates are reflected in
the price and that only data reported for periods with consistent economic and mineral
price trend are used to forecast the future prices. Also, the limited data available is
assumed to be sufficient in defining the random distribution of the commodity price.

Gold, like any commodity, obeys the law of demand and supply. Gold price is
determined by the interaction of supply (production) and demand (consumption). The
production of operat{ng and prospective new mines can be estimated from their
production schedules. A careful and detailed study of consumption trends in end-use
markets can permit enlightened estimates to be made about likely levels of demand.
Average annual monthly high and low gold prices depict the range of fluctuation of the
average annual gold price in a year. Hence, the variability of the average annual monthly

high and low gold prices with average annual gold price is of statistical significance.
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Having made the aforementioned assumptions and in accordance with multiple regression
theory, gold price is assumed to be linear combination of four variables, which include
world (i) annual gold production; (ii) annual gold consumption; (iii) average annual
monthly low gold prices; and (iv) average annual monthly high gold prices. It is assumed
that these variables exhibit random variability, cross-correlation and autocorrelation

characteristics and that they are distributed normally [Pindyck and Rubinfeld, 1991].

3.4.1 Multilayer Feedforward Neural Network Model for Average Annual
Monthly High and Low Gold Prices Modelling

The principle of the MFNN model is the same as previously discussed. In this model,
the world annual gold production and consumption are the two inputs. The world average
annual monthly high and low gold prices are the two outputs. The network details are
depicted in Figure 3.8. The generated data is then used to train the MFNN model for

prediction of the two outputs.

Annual Gold
Production

Annua! Gold
Consumption

Average Annual Monthly
High Gold Price

Average Annual Monthly
3 Low Gold Price

1 »
Input Hidden Output
layer layer layer

Figure 3.8 MFNN Model for Average Annual Monthly High and Low Gold Prices
Modelling.
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3.4.2 Multiple Regression Model

According to Pindyck and Rubinfeld (1991), in the multiple regression model, the
dependent variable, P, is linearly related to a series of independent variables, X;, X, ...,
X and an error term &. With N samples from the dependent and independent variables, the

multiple regression model can be written as

Pi=6;+ o Xor + BoXor +. . . + BiXu + &
P=0; + foXo: + fsXs2 +. . . + BiXiz + &2

oooooooooooooooooooooooooooooooo

PN'—'ﬁl +ﬂ}X2N +ﬂ3X3N +... +ﬂkaN + &en (3.31)

Thus, there are k+1 variables - one dependent variable and k independent variables

(including the constant term). The corresponding matrix formulation of the model is

P=XpB+¢ (3.32)
P, 1 X . . X B, £,

P= P, s X= 1 X, . Xz s f= B, = £,
P, 1 Xon . . Xn By En

where P = N x 1 column vector of dependent variable observations
X = N x k matrix of independent variable observations
P = k x 1 column vector of unknown parameters

g = N x 1 column vector of errors
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In matrix X, each component Xj; has two subscripts, the first signifying the appropriate
column (variable) and the second signifying the appropriate row (observation). According
to Pindyck and Rubinfeld (1991), the assumptions of the classical linear regression model
are that the: (i) model specification is given by equation (3.31); (ii) elements of X are fixed
and have finite variance; (iii) variable, X has rank k, which is less than the number of
observations N, (iv) variable, X, is normally distributed with E(g) = 0 and E(e¢’) = o1,
where I is an N x N identity matrix. £”is the 1x N vector transpose of & The assumption
that X has rank k guarantees that perfect collinearity will not be present. With perfect
collinearity, one of the columns of X would be a linear combination of the remaining
columns and the rank of X would be less than k. The error assumptions are the strongest
possible, since they guarantee the statistical, as well as, the arithmetic properties of the
ordinary least-squares estimation process. In addition to normality, it is assumed that each
error term has mean zero, all variances are constant, and all covariances are zero. The
variance-covariance o’I appears as follows:

If G, P, C, H, L are defined as the world annual gold price, annual gold production,
annual gold consumption, average-annual monthly high gold price and average-annual

monthly low gold price respectively, then the multiple regression model can be stated as
G=p1+LP+5C+pBH+PsL +& (3.33)

where £ is an error term; B;, S, B3, P« and Bs are the regression coefficients. f; is a
constant term. The dependent gold price variable, G, is linearly related to a series of the

independent variables, P, C, H, L and an error term &.



60

3.5 Multilayer Feedforward Neural Network (MFNN)

3.5.1 The Error Back Propagation (EBP) Algorithm

Figure 3.9 illustrates the MFNN and its components. The network learning is based
on repeated representations of the training samples. In a MFNN, the nodes are grouped
into input, hidden and output layers by the network. The output layer yields the
computation results. The hidden or intermediate layers follow the input layer.

X, = Xq3X;3Xz50.005X,_; is the presented input pattern. w; is the weight from node i to

node j. a,; is the actual outputs for pattern p on nodej.

Input Layer Hidden Layer Output Layer

Figure 3.9 Multilayer Feedforward Neural Network Components

The EBP, a training algorithm for the multilayer perceptron, is a learning scheme
where the error is backpropagated and used to update the weights. The algorithm is a
gradient descent method that minimizes the error between the desired and actual outputs
calculated by the multilayer perceptron [Rumelhart et al., 1986; Beale et al., 1990]. In
MFNN, EBP allows experiential acquisition of input/output mapping knowledge within
the multilayer networks. If a submitted pattern and its classification is determined to be
erroneous, the synaptic weights, as well as, the thresholds are adjusted so that the current

least mean-square error is reduced. These back propagations and error adjustments
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continue until all mapping examples from the training set are learned within an acceptable

overall error. Figure 3.10 depicts the implementation of EBP algorithm.

Desired
Outputs
.____>
-
Neural Network
Actual
Outputs |
Inputs
._._———>
Weights Feed Back
— et

Figure 3.10 Implementation of EBP Algorithm.

If E, is the error function for a pattern p and proportional to the square of the

difference between the actual and desired outputs for all the patterns to be learnt, then

1 &
E,= 24 @, "opj)z (3.34)
J

The activation of each unit j, for pattern p is

net,; =3 w0, (3.35)
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The output from each unit j is the threshold function f; acting on the weighted sum. In this

multilayer perceptron, f; is the sigmoid function defined as

f(nety=1/(1+e*); (0 <f(net) <1) (3.36)

k is a positive constant that controls the spread of the function. The actual output , o,

can also be defined as

o = et 67
E et,;

Ey _ Ep Iy (from the chain rule) (3.38)

bw,; e, oo

From equation (3.35), the second term on the RHS of equation (3.38) is given by

onet Y]
P
= S o
do; oy P
A0 4,
= aml,-,- 0 =0, (3.39)
170]

ﬁwjk =0 (except when k =i when it equals to 1). Thus, the error can be defined as a
i

function of the change in the net inputs to a unit as

(3.40)

Substituting equations (3.39) and (3.40) in equation (3.38), we have
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From equation (3.41), decreasing E, implies that the weights changes are proportional to

dyjo,;, i.e.,

Ay =18 50, (3.42)

Using equation (3.40) and the chain rule, d,; can be written as

. =20 __Zr Du (3.43)

From equation (3.34), the second term on the RHS of equation (3.43), is given by

2, :
2= fi(net,;) (3.44)

ohet ;

Differentiating E, in equation (3.40) with respect to o, the first term on the RHS in

equation (3.45) is

= (t;~0,) (3.45)

Substituting equation (3.44) and (3.45) in equation (3.43), we have

8 i = fi(net ;)¢ —0y) (3.46)



64

Equation (3.46) is the error term for the output units which is back-propagated by the
EBP algorithm. Assuming unit j is not an output unit, the error term for the hidden units

can be formulated by considering equation (3.47).

a
=Za'dp ’& Zwi,,opi =—Z(9p,,wu‘ (3.47)
~ -
Substituting equation (3.47) in equation (3.43) we have

8y = i net ;) 0 0 (3.48)
k

Equation (3.48) represents the change in the error function with respect to the weights in
the network. The function is proportional to the error, g, in subsequent units, so the
error has to be calculated in the output units first in equation (3.47) and then passed back
through the networks to the earlier units to allow them to alter their connection weights.
Equations (3.46) and (3.48) define the training of multilayer networks. The constant k in
equation (3.36) also acts as an automatic gain control, since for small input signals the
slope is quite steep and so the function is changing quite rapidly, producing a large gain.
For large inputs, the slope and thus the gain is much less. This means that the network
can accept large inputs and still remain sensitive to small changes.

A major reason for the use of the sigmoid function is that it has a simple derivative,

and this makes the implementation of the back-propagation system much easier. The

output of a unit, 0,; is given by
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o0, = f(net)=1/(1+e*) (3.49)

The derivative with respect to that unit, f (net), is a simple function of the outputs and

is given by
0, = f(net)y=ke™ " [(1+e™* ")?

=k f(net)(1— f(net)) (3.50)

=k 0,(1-0,)
3.5.2 Multilayer Perceptron Learning Algorithm

Beale et al. (1990) presented a detailed multilayer perceptron learning algorithm as in the
following steps:
(i) initialize weights and thresholds by setting them to small random values; (ii) present

input X, = Xg,X,,X;5....,X,_,, and desired target output T, =¥y,¥,,2;,....,¢,_, Where

n is the number of input nodes and m is the number of output nodes. Set w, to be -8, the
bias, and x, to be always 1. For pattern association, X, and T, represent the patterns to be
associated. For classification, T, is set to zero except for one element set to 1 that

corresponds to the class that X, is in; (iii) calculate actual output. Each layer calculates

n—1
Yi=f [Z wfx;] (3.51)
i=0
and passes that as input to the next layer. The final layer outputs values o;.; (iv) adapt
weights. Start from the output layer, and work backwards.

w;(n+1)=w;(n)+nd (3.52)

7%
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w;i(n) represents the weights from node i to node j at step n, 7 is a gain term or
momentum coefficient, and &,; is an error term for pattern p on node j. The momentum
method is for improving the training time of the backpropagation algorithm, while
enhancing the stability of the process [Rumelhart, Hinton and Williams, 1986]. This
involves adding a momentum coefficient to the weight adjustment that is proportional to
the amount of the previous weight change. Once an adjustment is made it is remembered
and serves to modify all subsequent weight adjustment. The momentum coefficient is
commonly set to around 0.9 [Wasserman, 1989].

For output units

0y =ko(1—0,)(t, —0y) (3.53)
For hidden units

S, =ko,;(1-0, ); O W ji (3.54)
where the sum is over the k nodes in the layer above node j.

3.5.3 2-D Open Pit Optimization Model Using MFNN

In this study, MFNN is chosen for the optimization process because it can learn and
implement arbitrary complex input/output mappings or decision surfaces separating
pattern classes. Moreover, it has the ability to classify linearly nonseparable patterns. The
ability of the multilayer perceptrons in classifying linearly nonseparable patterns is used to
delineate the conditioned blocks into the various regions. MFNN have many identical
nodes, with computational features that enable them to transform perceived signals into
new transmittable signals. EBP algorithm is chosen to train the MFNN because it is an

efficient and exact method for calculating all derivatives of a single target quantity with
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respect to a large set of input quantities. Also, it performs supervised learning task that
allows inputs and outputs to map correctly, and this is directly applicable to the separation
of the gridded-blocks based on their EBVs and center coordinates. In the supervised
learning, EBP adapts the MFNN so that its actual outputs come close to some target
outputs. The final weight obtained after EBP learning process is what is used to draw
separation lines (decision lines).

With the 2-D model, MFNN is used to classify and partition the conditionally
simulated blocks into classes based on their economic block values (EBVs). Each block is
identified by the coordinates of its center of gravity and its EBV. In the 2-D model, the
decision surfaces separating the 2-D block model of the gridded blocks are straight lines.
The inputs are the 2-D coordinates of the centers of gravity and EBVs of the gridded
blocks. The target values of the gridded blocks are numerically -1, 0 and 1, corresponding
to negative, zero and positive EBV respectively. The blocks are ranked based on their
economic values as illustrated in equation (3.55) and these ranking values become the

target values, t,, for the error back propagation algorithm.

( 1 V positive EBV
RIEBV;]=t,=4 0 V zero EBV (3.55)

-1 V negative EBV

\

The flow diagram for MFNN model for Pit Optimization is depicted in Figure 3.11.
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INPUT DATA
(CENTRE OF GRAVITY CDORDINATES)

1]

BACKPROPAGATION ALGORITHM
EBV SEPARATION -SSN,WINNET

Y

CALCULATE SUM OF REGIONAL
EBV,

f

SELECT BLOCKS IN POSITIVE REGIONS
AND ANY BLOCK ABOVE THEM

f

IMPOSE SLOPE WALLS AND FIND
PIT LIMIT AND PIT VALUE

Figure 3.11 MFNN Flow Diagram of Pit Optimization

Using error back propagation algorithm, all the blocks are partitioned and the associated
final weights are calculated. These final weights are used to generate decision lines
(equations of straight lines) which are used to partition the blocks into regions. The sum
of the block E.B.Vs in each region is calculated and is positive, negative or zero. The
blocks in the positive regions form the basis for detailed search using search algorithm.
The slope wall constraints are then imposed. All the blocks in the positive regions are
subjected to the slope constraint as discussed in the next section. This process leads to the
selection of group of positive blocks which can be economically and technically mined at a
profit. Then any block lying on top of any of the selected positive blocks is selected as
mineable. The optimum pit value is computed by summing all the blocks confined by the
optimized pit layout. The details of the programs for accomplishing all these steps are

discussed in the next chapter.
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3.5.4 Imposition of Slope Constraints

In the 2-D model, the slope walls, in the form of straight lines, are imposed on the

blocks in the positive regions. The 2-D pit model features are depicted in Figure 3.12.
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Figure 3.12 DiggLram of 2-D Pit Section.

Stating the equation of a straight line as

y=ax+c (3.56)
where (x , y) is the coordinate of the gridded block center; ¢ is the intercept of the slope
wall with the referenced y-axis; © and o are the slope angles of the west and east slope
walls respectively; slope wall a = tan(0) or tan(o). Using algebraic principles in searching
for optimum pit blocks, the slope wall equation, S(x,y), can be stated as

S(x,y)=y-ax-c (3.57)
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The inclusion of a block in the optimum pit is governed by the conditions:

for the west and east slope walls:

S, (x,y)=0 and S (x,y)=0, the block is within the pit. (3.58)

Otherwise, the block is outside the pit.

The slope walls are adjusted in the following way in search for the optimum pit:
(i) moving the east slope wall towards the west slope while the west slope wall is
stationary or holding west slope wall stationary and moving east slope wall outward. The

movement is shown in Figure 3.13. The dotted lines are the new positions of slope wall

during movement.

YA

64
56
48
40
32

East Slope Wall

West Slope Wall
S(x. v), 20

S(x. ¥),20

W
\'--
\\
\\
-

e4 T 7] 7
16—
\[/ [/ ] |

S s

>
0 30 60 90 120 ¥

Figure 3.13 Holding West Slope Wall Stationary and Moving East Slope Wall.

(i) moving the west wall towards the east slope while the east slope wall is stationary or
holding east slope wall stationary and moving west slope wall outward. The movement is

shown in Figure 3.14.
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Figure 3.14 Holding East Slope Wall Stationary and Moving West Slope Wall.

(iii) moving both slope walls towards or away from each other is shown in Figure 3.15.
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Figure 3.15 Moving both Slope Walls Towards or Away from each other.

The movements are done level by level and along east-west direction in determined
sequence e.g. per fraction of block or some distance. This is achieved by varying the

intercept ¢ of the equation of the slope wall. At each new position of the slope walls, the
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total sum of E.B.Vs of blocks confined by the slope walls are calculated and compared
with the previous sum. The larger sum is used to compare with the next one. At the end
of the slope wall movements, the slope walls define the optimum pit limit and the final sum

of all the E.B.Vs of blocks confined by the optimized pit layout is the optimum pit value.
3.5.5 3-D Open Pit Optimization Model Using MFNN

With the 3-D model, MFNN is used to classify and partition the conditionally
simulated blocks into classes based on their economic block values (EBVs). Each block is
identified by the coordinates of its center of gravity and its EBV. In the 3-D model, the
decision surfaces separating the 3-D block model of the gridded blocks are planes. The
inputs are the 3-D coordinates of the centers of gravity and EBVs of the gridded blocks.
The ranking and target values of the gridded blocks are the same as in the 2-D model.
The flow diagram for MFNN 3-D model for Pit Optimization is the same as depicted in
Figure 3.11. The 3-D pit model features are depicted in Figure 3.16.
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Figure 3.16 Diagram of 3-D Pit Section.
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In the 3-D model, the slope wall equation is in the form of an equation of a plane

X424+ 2-1 where p20, q#0, s#0, (3.59)

P q9 s

where p, q and s are plane intercept coordinates with the x, y and z axes respectively; (x,
y, z) is the coordinate of the gridded block center; 6 and a are the slope angles of the west
and east slope walls respectively. As in the 2-D case, the 3-D slope wall equation S(x, y,

z), can be stated as

Sxy,n=-+L+Z 1 (3.60)
P 9 s

In the 3-D case, the slope wall does not intercept the z-axis (0z). Thus the term z
s

in equation (3.60) is equal to zero and disappears. Hence, the slope wall equation takes
the form of the previous 2-D model. The procedure for searching for the optimized pit
layout and optimum pit value is the same as that of the 2-D model. The inclusion of a
block in the optimum pit is governed by the conditions:

for the west slope and east slope wall:

S, (x,5,2)=20 and S.(x,y,2)=0, the block is within the pit. (3.61)

Otherwise, the block is outside the pit.

3.5.6 Generalized Flow Chart for the 2-D and 3D Algorithm

The algorithm can be stated as follows:

1. Start from any of the positive regions and search for the ore blocks which are inclusive
in the optimized pit. The ore blocks have positive economic block values.

2. Substitute the blocks center coordinates in the slope wall equations.
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Sum all the positive blocks whose center coordinates satisfy the slope wall equations.

4. Continue the search until all the ore blocks in the positive regions of the block model
have been examined.

5. The E.B.V of any block lying on any of the positive blocks in the optimized pit is
added to the sum in (3).

6. The ultimate pit is formed by the blocks in the positive region whose center
coordinates satisfy the slope wall equations and the blocks lying on any of the positive
regional blocks in the optimized pit.

Figure 3.17 depicts the generalized flow chart for the 2-D and 3D Algorithm.
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Figure 3.17 Generalized Flow Chart for the 2-D and 3D Algorithm.
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3.5.7 Mustrative Example of MFNN Pit Optimization

Optimized pit limits are required for the 2-D section of a gold deposit in Figure 3.18.

The EBVs and coordinates of all the blocks at their centers of gravity are provided in

Table 3.2. The main problem is to optimize the pit limits using MFNN algorithm.

W -denotes waste

k

w w W | 2 3 4 w L
w L] ] 5 6 7 8 w W
w w w 9 o 1] 12 w L
w W w [\ ] 5 1] w W

Figure 3.18 2-D Section of Pit

Table 3.2 EBV, Target values and center coordinates of gridded-blocks

Block#{ x=X; y=X> |EBV (Blk) (US$ x10%) |Target (t)
1 7.5 28 -11.40 -1
2 22.5 28 252.40 1
3 37.5 28 251.00 1
4 52.5 28 -11.40 -1
5 7.5 20 255.20 1
6 22.5 20 238.60 1
7 37.5 20 416.70 1
8 52.5 20 257.90 1
9 7.5 12 253.80 1
10 22.5 12 242.70 1
11 37.5 12 249.60 1
12 52.5 12 273.10 1
13 7.5 4 872.50 1
14 22.5 4 253.80 1
15 37.5 4 240.00 1
16 52.5 4 -11.40 -1
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Solution Procedures

Pit Optimization Using Neural Networks: Figure 3.19 illustrates the neural networks for

block classification in the pit limits optimization. The block center coordinates and defined
targets in Table 3.2 are used as inputs and outputs data respectively in the MFNN shown
in Figure 3.19. X, and X, are the x and y coordinates respectively and are inputs of the
network. O, are the target values which are 1, 0 or -1 for positive, zero and negative
economic block values respectively. The input error or tolerance for complete training is
0.01; a;, az, m, ny, n3, ng and ns are neurons and b, and b, are biases equivalent to -1 each.
Using WinNN software package [Danon, 1996] and applying EBP training algorithm to
the networks in Figure 3.19, the blocks are partitioned and the associated final weights are

calculated. The final weights can be any real number.

Figure 3.19 Neural Networks for Block Classification.
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The final weights between the input and the hidden layer, shown in Table 3.3, are used to
write the decision line equations (3.63), (3.64), (3.65), (3.66) and (3.67).

Table 3.3 Weights of input layer to hidden layer

Weight of node\node X X, b,
N, 0.01429 0.00000 0.64286
N -0.17142 -0.32142 -1.28571
N3 -0.01200 - 0.02250 -1.71000
Na 0.00760 0.0000 0.00943
N -0.01069 - 0.02005 0.88235

Given that the final weights at N, are wj;, Wiz, and wy3 as shown in Figure 3.19, the

decision line equation is written as

DL: g(X1, X2) = wiXi +wiz X2 - Wis (3.62)
DL1: g(X1, X2) = 0.01429X, - 0.64286 (3.63)
DL2: g(X1, Xz) = -0.17142X, - 0.32142X; + 1.28571 (3.64)
DL3: g(X1, X3) = -0.01200X - 0.02250 X + 1.71000 (3.65)
DL4: g(X;, Xz) = 0.99057X, -0.00943 (3.66)
DLS: g(X, Xz) = -0.01069X, - 0.02005X; - 0.88235 (3.67)

The blocks in Figure 3.18 are divided into regions by the decision lines as illustrated in
Figure 3.20. The sum of the block EBVs (US$ x 10%) in regions ABCDEA, DEFD,
AEPA, FGILOPEF, GHIG, HJKLIH, KLMK and LMNOL have EBV of -45, -11.4, -15,
4,057.3, -11.4, -15, -10 and -26.4 respectively.
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Figure 3.20 Blocks Delineation by MFNN

Imposing Slope Constraints: The final slope walls imposed on the mineable blocks are as

illustrated in Figure 3.21. Blocks whose centers are enclosed in or lie on the slope walls

are included in the final pit outline as illustrated in Figure 3.21.
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Figure 3.21 Imposing Slope Constraints
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Optimized Pit Value using MFNN Algorithm: The optimized pit value is the sum of all

the blocks contained in the pit limits defined in Figure 3.22. Thus, the optimized pit value
is equal to US$ 3, 989,400.
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Figure 3.22 Optimized Pit Outline using MFNN

3.6 Summary

The CS model for assigning grades to block model, mineral price model MRM-

MFNN for calculating economic block values of block model and MFNN model for

optimizing open pit have been developed. The solution algorithms and computer programs

for implementing all the above models have been described in chapter 4. The modelling

validation, test results and illustrations of these models, and discussions are provided in

chapter S and chapter 6.
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CHAPTER 4.0
COMPUTER MODELLING AND EXPERIMENTAL INVESTIGATIONS

The computer modelling, the solution procedures and experiments designed to
implement all the mathematical models developed in chapter 3 are discussed. Solution
algorithms for the 2-D and 3-D problems are described. In addition, the flow charts for
the computer programs used to implement the models, the experimental setup, the

procedure and the experimentation process are described.
4.1 Solution to Mathematical Models
The flow diagram for the solution to the mathematical models is illustrated in Figure

4.1. The solution starts with the CS model. The semi-variogram for all the known block

grade samples are fitted to determine the variogram model and its parameters.

INPUT DATA
(Grades ond center coordinates
of grid blocks, grid dimensions)

MCS Modael
(Assign grades to grid blocks)

" Mineraol Price Model
(Assign E.B.V o grid blocks)

'

[ MFNN Model
| (Design and Optimize Pit)

|
1

OUTPUT
(Optimum Pit Volue and Limit)

Figure 4.1 Flow Diagram of the Experimental Procedure
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With the variogram model parameters and the block center coordinates, grade estimates
are assigned to all the other unknown blocks. The mineral price model predicts the
average annual mineral prices for the project life. Using block grades and the average
annual mineral prices, economic block values of all the blocks are calculated. The MFNN

model is used to optimize the pit to yield the optimum pit value and layout.
4.1.1 Solution Procedure for CS Model

4.1.1.1 Solution Procedure for BLUE
In equation (3.10), the elements in matrix [K,] are the covariances between the
known sample points calculated and/or read from the semi-variogram. Rewriting equation

(3.10) as equation (4.1), the solution is thus

[ne] = [Kal " [Myl] (4.1)

The elements in Mp are the covariances between the unknown sample and known sample
points also calculated and/or read from the semi-variogram. Equation (3.10) can be

solved via Gaussian elimination for n,, a set of coefficients. [K,] depends only on the set

of known points, so it is inverted once and then used repeatedly to find the best estimates

at different unknown points x ;.

4.1.1.2 Solution Procedure for TBM

In the simulation of the 2-D or 3-D fields, simulation is performed along several lines,
using a unidimensional covariance function that corresponds to the given two- or three-
dimensional one. Then at each point of the two- or three-dimensional field a weighted
sum of the corresponding values of the line process is assigned. The fields are of zero

mean and unit variance.
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4.1.2 Solution Algorithm for MFNN Model

The algorithm for the MFNN model is the multilayer perceptron learning algorithm
described in chapter 3. The network is trained so that application of a set of inputs
produces the desired (or at least consistent) set of outputs. Each such input (or output)
set is referred to as a vector. Training is accomplished by sequentially applying input
vectors, while adjusting network weights according to a predetermined procedure. During
training, the network weights gradually converge to values such that each input vector

produces the desired output vector.
4.2 Development of Computer Models
The procedure for the development of computer models is shown in the flow diagram

of Figure 4.2. The first stage of the process commences with the development of the

technical concepts, based on the problem and objectives of the thesis as outlined in

chapter 1.
START
Development of 1he[ Verification of Model]
Technical Concepts 'y Segments
Formulation of the IR
{Mcfhemoiicol ModelJ ]Vermcohon of Modelﬂ

Formulation of the é
Computer Models
|
Y
Performance of an
Experiment

Dato
Input

Figure 4.2 Flow Diagram for the Development of Computer Models
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The next stage is the development of the mathematical models which were described
in chapter 3. The mathematical equations of the models are then translated into computer
models using FORTRAN 77 language. The models are then verified and cross-checked,
segment by segment, to ensure that they are producing the required results, and are finally
validated using real mine data. The input data is supplied, and an experiment is

conducted. The analysis was carried out on the HP main frame at Dal Tech, Dalhousie

University.

4.2.1 Computer Flow Charts and Description of Functions and Routines

The CS and PITSEARCH models are programmed using Fortran 77 language.
WinNN 97 version neural networks software package is employed to implement the
MFNN model. Time Series Processor (T.S.P) software is used in modelling the MRM
model. Figure 4.3 depicts a general layout and interaction of the program files and
software used in solving the model equations. All the program files are discussed in

Appendix B.

BLUE.F
(interpolotes ond ossigns grodes to
a grid block ) MINPRICE
? (Generates the mineral price for{— ]
TURN23D.F E.B.V_estimotes)
(Generates the turning bands values
at all grid poinis in the field ) MFNN

(Provides the MFNN package for
MINPRICE and PITSEARCH.F)

!

PITSEARCH.F
(Designs and Optimizes the Pil
Loyouts)

oett——’

Figure 4.3 General Layout of the Program Files.
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4.2.1.1 TURN23D.F

TURN23D.F is a program for calculating two- and three-dimensions TBM values for
the CS model to assign grades to gridded-blocks which have no grade values. This file
contains functions and routines for simulating or generating a stationary, Gaussian random
field in two- or three- dimensions of zero mean and a unit variance with a known spatial
correlation function, spectral density or covariance function as described in chapter 3. It
generates the line processes using the standard spectral integration method [Thompson et
al, 1989]. The routines and functions as illustrated in Figure 4.4, are same in both cases,
with a few modifications to run the algorithm strictly in either two- or three- dimensions.
The semi-variograms, which give the covariance functions, were drawn and analyzed using

VARIOC [ Kuchta, 1993] and VARIOWIN [Pannatier, 1996].

INPUT >

i
DRIVER

- GENER

RAND - \

: STAT
LIPROC - '

PRINTOUT

Figure 4.4 Routines and Functions in the TURN23D.
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The function of each subroutine is described in the following.
INPUT: This subroutine reads all options and turning band inputs. The required data are
read in subroutine INPUT in two groups from two files respectively. The first group
contains physical information regarding the size of the grid, and the second contains
parametric data related to the simulation itself.
TURN1.DAT: It is the file that contains physical information regarding the size of the grid
for the 3-D simulation.
TURNZ2.DAT: It is the file that contains parametric data related to the simulation itself for
the 3-D simulation.
TURN2D1.DAT: This file is analogous to and contains the same information as
TURN1.DAT for the 2-D simulation.
TURN2D2.DAT: This file is analogous to and contains the same information as
TURN2.DAT for the 2-D simulation
DRIVER: This subroutine sets up the blank common storage and file assignments for the
simulation.
GENER: This subroutine generates random field with turning bands method.
LIPROC: This subroutine generates a correlated line process using the methods of Rice
(1954); Shinozuka and Jan (1972).
RAND: This function generates pseudo random numbers, uniform (0,1).
STAT: This subroutine calculates sample statistics of the random field.
PRINTOUT: This subroutine prints out the results to unformatted data file(s) which is
also used in BLUE.F.

4.2.1.2 BLUE.F

This file, as illustrated in Figure 4.5, contains functions and routines for solving a
linear system of equations using Gaussian elimination. The functions and routines are

described in the following.
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KALPHA F: This subroutine generates the elements in matrix [Ks]. The elements are the
covariances between the known sample points and are calculated given the variogram
model (covariance function) of the sample data.

CA.DT: The input file of KALPHAF and contains known sample points coordinates and
grades.

CA.UT: The output file of KALPHA F and contains the calculated covariances
MBETA.F: This subroutine generates the elements in matrix [Mg]. The elements are the
covariances between the unknown sample and known sample points and are also
calculated given the variogram model (covariance function) of the sample data.

CB.DT: The input file of MBETAF and contains center coordinates of blocks with
unknown grades.

CB.UT: The output file of MBETA F and contains the calculated covariances

CA.DT |—={ KALPHA.F - KG.DT

CA.UT L s BL.F |—a{KG.UT

CB.DT}—={ MBETA -

CB.UT

Figure 4.5 Routines and Functions in the BLUE.
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4.2.1.3 MINPRICE
In this study, the multiple regression technique is used to develop a mineral price model
for predicting future gold prices. The data within a determined socio-politico-economic
trend is used as input into the multiple regression model to estimate the coefficients of the
respective parameters.

This file contains functions and routines for simulating the mineral price model. The
routines and functions are illustrated in Figure 4.6. The stochastic gold price is modelled
using a two-stage procedure. Stage one involves using TSP to estimate the coefficients
the multiple regression equation for predicting the mineral commodity prices. The data on
the mineral price determinants within the socio-politico-economic cycle is what is used to
construct the multiple regression equation.. In the second stage, the socio-politico-
economic cycle data is fed into multilayer feedforward neural networks (MFNN) to
determine the average-annual monthly high and low gold prices for each year during the
life of the mine. The world annual gold production, world annual gold consumption,
average-annual monthly high price and average-annual monthly low gold price data for

each year during the life of the mine is substituted to forecast the mineral prices.

WINNET
(For Predicting :
Annual—average Monthly Low Gold Price
Annual—average Monthly High Gold Price)

!

T.S.P

(For estimoting the regression coefficients
used in writing the multiple regression
equation)

Predicted Price

Figure 4.6 Routines and Functions in the MINPRICE Model.
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T.S.P.: This is the Time Series Processing software with a regression package for multiple
regression calculations. A program was written to suit this study.

WINNET: This is WinNN version 0.97, Windows Neural Networks, a neural network
package that will train a fully connected feedforward networks with the back propagation
algorithm. It has a user friendly interface written in Visual Basic and uses a FORTRAN

DLL for fast network calculations. This is used for the multilayer feedforward neural

networks calculation.
4.2.1.5 PITSEARCH.F

This is the program for searching and calculating the optimum pit value. It is used in
both CS/MFNN and Learchs-Grossmann models. It implements the pit optimization
algorithms. The interactions of the programs, input and output files for CS/MFNN model
are illustrated in Figure 4.7. This program imposes the slope wall constraints. This is done
by MINEBLOCKS.F and LG23D.F for the CS/MFNN and Learchs-Grossmann models

respectively. The interactions of the programs and routines for the Learchs-Grossmann

model are illustrated in Figure 4.8.

- OP4.DT

- OPS.DT

|
MINEBLOCKS.F > oP&.UT

Figure 4.7 Routines and Functions in the PITSEARCH.F for CS/MFNN Model.

The functions and routines in the PITSEARCH.F are described in the following.
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MINEBLOCKS.F: This is the routine for the MFNN 2- and 3-D pit optimization
algorithm.
LG23D.F: This is the routine for the Learchs-Grossmann 2- and 3-D pit optimization

algorithm.

OP4.DT -
OP5.DT -
LG23D.F
oP6.UT - |

Figure 4.8 Routines and Functions in the PITSEARCH.F Learchs-Grossmann Model.

OP4.DT: This is the input file containing the economic block values of all the grid blocks.
OP5.DT: This is the input file containing the number and sizes of all the grid blocks.
OP6.UT: This is the output file of the results on the optimum pit.

4.2.2 Verification

The programs were verified, segment by segment, using a debugging tool on the HP
main frame to ensure that the respective results were accurate. The analytically tractable
problems were calculated employing EXCEL 5.0 to ensure that the computer results

matched the EXCEL 5.0 results.
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4.2.3 Summary

The solution procedure and necessary computing software for this study have been
provided. The computer flow charts and the experimentation process are also provided.
The programs BLUE.F, PITSERACH.F, MRM TSP and their accompanying routines
were written by the author. TURN23D.F was supplied by Dr. A. F. Thompson of
Geosciences and Environmental Technologies Division, Livermore California. LG23D.F

was adopted from Dr. P.A. Dowd (1994) and revised to suit this study.
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CHAPTER 5.0
EXPERIMENTATION AND VALIDATION OF THE MODELS

In this chapter, all the models presented in chapter 3 and computer programs in
chapter 4 are validated using data from an actual gold mine. The CS/MFNN and Lerchs-
Grossmann algorithms are applied to a 2-D and 3-D sections of Star Gold Project’ to
optimize the pit limits to evaluate its economic potential, and compare the results.
Furthermore, the mineral price model is validated using gold price data from the spot
markets. Ore grade and gold price are the two most important random variables studied in
this experimentation as EBV of gridded-block is dependent on them. Experiment on drill-
hole spacing is carried out to see the optimum drill-hole spacing range that will give the

best estimate of the gridded-blocks grades, optimum value and limit.
5.1 Background Information on the Star Gold Project

The total tonnage of mineable ore reserves is estimated at around 15 million tonnes at
an average grade of about 2 grammes of gold per tonne of ore. The Star gold deposit is
within a ridge which is in a basement gneiss along N-S fault. The outcropping mineralized
body is essentially contained within two sub-parallel, almost vertical shears varying from
about 50 to 100 meter apart. The orebody extends for more than 2 km with a north-ward
trend, mainly at or near the crests of the ridge. The gold is made up of 20-25 % free gold
and the rest is associated with pyrites. Other associated minerals include chalcopyrite,
bornite, calcite, epidote, magnesite, and the main gangue mineral is quartz. Past mining
activities have been confined to auriferous pods aligned along stressed-relief fractures
running at a few degrees east of north. These pods are discontinuous horizontally and

vertically, pitching steeply to the north, and are highly siliceous. Average overburden

! The name and location of project cannot be revealed for confidential purposes.
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thickness is about 0.5 m and the oxidized zone (with ore amenable to heap leaching)
persists to a depth of about 30 m. The bank density of the ore is in the order of 2.76
tonnes/m’, and the loose density is 1.700 tonnes/m®. The rock quality designation (RQD)
is about 40 %. Metallurgical tests on the ore have proved that heap leaching can be a
suitable method for processing the ore. During processing, recoveries of between 60-76%
have been reported and further tests are being carried out to identify various strategies to
be used to achieve higher recoveries. Three analytical methods: atomic absorption, ketone
(DIBK) and fire assay, were used for the analysis to reduce estimation errors and increase

the confidence of analysts in the assayed values.
5.2 Data and Information for Validation and Experimentation

Optimized pit limits are required for the 2-D and 3-D sections of Star gold deposit,
depicted in Figure 5.1 and Figure 5.2 respectively. The block dimensions are 15m x 8m x
8m and the weighted tonnage factor of material is 2.76 tonne/m’. The mill recovery
efficiency is 95 %. The average cost for mining ore and waste, pit wall slope and
administrative overheads are respectively $4.45 /tonne, 45° and 6% on gross revenues.
The coordinates of all the blocks at their centers of gravity and grades are depicted in
Table B1 and Table B2. Furthermore, it is assumed that production of gold is going to
increase by 3% of 1994 production, consumption will increase by 2% of 1994
consumption. The identified socio-politico-economic cycle data for use in the mineral

price forecast model spans from 1980 to 1994 (Table 5.1).



Table 5.1 World Mineral i’roduction, Consum

tion and Price Data

YEAR| PRODUCTION | CONSUMPTION [MONTHLYMONTHLY| PRICE
HIGH LOW
[tonnes] [tonnes] [US $)/oz | [US $)/oz |[US $]/oz
1980 960.80 946.00 850.00 481.50 614.38
1981 977.30 1214.00 599.25 391.25 459.22
1982 1025.30 1253.00 481.00 296.75 375.52
1983 1113.70 1218.00 509.25 374.50 423.52
1984 1160.00 1463.00 399.25 307.50 360.63
1985 1230.30 1469.00 340.90 284.25 317.35
1986 1292.50 1686.00 438.10 326.30 367.58
1987 1734.40 1689.00 499.75 390.00 446.66
1988 1908.90 1942.00 483.90 39530 436.45
1989 2067.60 2342.00 415.80 355.75 381.27
1990 2138.10 2478.00 423.75 345.85 383.72
1991 2167.30 2592.00 403.00 344.25 362.34
1992 2249.90 2890.00 359.60 330.25 343.86
1993 2308.90 2765.00 405.60 326.10 360.06
1994 2296.40 2769.00 396.25 369.65 384.15

93
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Figure 5.2 Blocks Grades for 3-D Section (g / Ton).
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The information is to be used to carry out the following experiments: (i) to predict the
mineral price for the economic block values calculation in the experimentation using the
mineral price forecast model; (ii) to investigate the effect of variability of sample space on
CS/MFNN and Lerchs-Grossmann algorithms; and (iii) to test for speed of calculation by
the two algorithms.

The main tasks are to (i) forecast gold price using the mineral price model in chapter
3; (ii) estimate the grades, tonnages and economic block values of some selected blocks
using CS method; (iii) optimize the pit limits using MFNN and Lerchs-Grossmann’s

algorithms to evaluate its economic potential; (iv) compare and analyze the results in (iii).
5.3 Mineral Price Experiment

The main objective in this experiment is to test for the effect of number of generated
data on the mineral price forecast. 1995 data on the determinant factors is used to
validate the model. The forecasting error and correlation between the actual price data
and predicted prices are also investigated. Stage one of the experiment involves using the
few data on the mineral price determinants in Table 5.1 within the socio-politico-economic
cycle as input in MRM model to construct the multiple regression equation. In the second
stage, the data on the determinant factors within the identified socio-politico-economic
cycle is fed into multilayer feedforward neural networks (MFNN) to determine the

average-annual monthly high and low gold price for each year during the life of the mine.

5.3.1 Description of Input Data

The input data for this experiment is the fifteen set of data of the identified socio-
politico-economic cycle spanning 1980 to 1994 in Table 5.1. The data is on world (i)

annual production of gold; (ii) annual consumption; (iii) average-annual gold price; (iv)
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average-monthly high gold price; and (v) average-monthly low gold price. The data are

contained in the input file INP.DAT for the TSP program.

5.4 Sample Space Experiment
5.4.1 Variation of Sample Space

The information on Star Gold Project is used to carry out the following experiments
to analyze and validate the CS/MFNN model. The experiments are (i) to test for the effect
of variability of sample space on CS/MFNN and Lerchs-Grossmann algorithms; and (ii) to
test for speed of calculation by the two algorithms. In the experimentation of the effect of
sample space variability on CS/MFNN and Lerchs-Grossmann algorithms, six sets of
experiments are conducted. The number of known blocks and/or distance between drill-
hole spacing in the deposit are varied. The drill-hole spacing are 45m, 60m, 75m , 90m,
105m and 135m. The gold price calculated from the previous section is used in calculating
the economic block values of all the pits for the six data sets.

Flow diagram of the experiment is shown in Figure 5.3. The first stage of the process
is to use twelve data sets from the Star Gold Project data, six data set each for 2-D and 3-
D respectively, in Table B8 to Table B19 at appendix B as input data in both algorithms to
optimize the 2-D and 3-D sections. The multi-layer feedforward neural networks model
(MFNN) in Figure 5.4 is used to classify the conditioned gridded-blocks into classes based

on their block coordinates and target values in Figure 5.5.
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t  Input Data ——-—l
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I
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!

Comparison of
Pit Limit and Pit Value

Figure 5.3 Flow Diagram of Experiment

The optimum pit values and pit outlines returned by each of the two algorithms are
analyzed to see how they compare with each other. In Figure 5.4, a; and a; are input layer
neurons, Ny, N2, N3, Ns, Ns, Ng, N7 and N are hidden layer neurons and O is the output
layer neuron. b, and b, are biases equivalent to -1 each. X; and X, are the x and y
coordinates respectively and are inputs of the network. O,; are the target values which are

1, 0 or -1 for positive, zero and negative economic block values respectively.
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Figure 5.5 Target Values of Blocks.




5.4.2 Description of Input Data

The data in Figure 5.1 and Figure 5.2 consist of a set of gold analyses from the Star
Project open pit mine. These analyses are estimates of the overall compositions of mining

blocks, each obtained from a composite of the blast-hole samples collected within a block.

They are used as known samples to find the values of other gridded blocks.

The input data for this experiment are (i) the center coordinates and grades of all the
blocks with known sample grades contained in file CA.DT, for fitting variogram model to
the data using CSMINE/VARIOC and VARWIN softwares; (ii) The parameters for the
CS model are contained in files TURN2D1.DAT and TURN2D2.DAT for 2-D, and
TURN1.DAT and TURN2.DAT for 3-D TBM model. The parameters of the input files
for the 2-D and 3-D TBM models are listed in Table 5.2 and Table 5.3 respectively.

Table 5.2 Input Files for the 2-D CS

TURN2D1.DAT

Simulation Date 060997
Number of Grid Points in the x, y and z Directions | 23, 13, 1
Grid Spacing in the x, y and z Directions 15,8,0
Covariance Function Spherical
TURN2D2.DAT
Number of Lines to be used 16
Maximum Normalized Frequency 50
Normalized Frequency Increment 0.2
Number of Simulations to Perform 1000
Seed for the Uniform Random Number Generator 210467

File TURN1.DAT and TURN2DI1.DAT contain physical information regarding the
size of the grid for 2-D and 3-D simulation respectively. The information are (i) simulation

date; (ii) the numter of grid points in the x, y and z directions; (iii) the grid spacing in the

x, y and z directions; and (iv) covariance function.




Table 5.3 Input File for the 3-D CS

TURNI1.DAT
Simulation Date 060997
Number of Grid Points in the x, y and z Directions | 23, 13, 3
Grid Spacing in the x, y and z Directions 15,8, 8
Covariance Function Spherical
TURN2.DAT
Number of Lines to be used 15
Maximum Normalized Frequency 100
Normalized Frequency Increment 0.2
Number of Simulations to Perform 1000
Seed for the Uniform Random Number Generator 210467

100

Files TURN2.DAT and TURN2D2.DAT contain parametric data related to the

simulation itself for the 2-D and 3-D simulation respectively. The data are (i) the number

of lines to be used; (ii) the maximum normalized frequency used in the standard spectral

integration method; (iii) the normalized frequency increment; (iv) the number of

simulations to perform; and (v) an arbitrary, odd integer, less than 2% to be the seed for

the uniform random number generator in the function RAND. The center coordinates and

grades of the set of gridded blocks selected as known samples are listed in Tables B8 to

Table B19.

5.5 Summary

The details of the experimentation and validation have been described. The input data

for all the programs and softwares have been prepared. The results and discussion of the

experimentation and validation are discussed in chapter 6.
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CHAPTER 6.0

RESULTS AND DISCUSSION

6.1 Mineral Price Experiment

Using the MFNN model illustrated in Figure 3.8, with the 15 data of world annual
gold production and annual gold consumption in Table 5.1 as input, the monthly high and
monthly low were predicted to be US$360 per ounce and US$325 per ounce respectively.
The error and momentum term for complete training were 0.01 and 0.36 respectively. The

MRM model yielded the regression coefficients tabulated in Table 6.1.

Table 6.1 MRM Results

Variable Name | Variable | Coefficient| Estimated

Coefficient
Constant B, B 54.809
Production P B2 0. 042
Consumption C B3 -0. 036
Monthly High H Bs 0.369
Monthly Low L Bs 0.490
R’ 99.1 %

Equation (6.1) is the resulting equation using the regression coefficients in Table 6.1.
According to equation (6.1) the gold price is forecasted to be US$344.56 per ounce . This

is the gold price used in the calculation of E.B. Vs for all the open pits.
Gold Price =54.809 +0.042 P - 0. 036 C + 0.369 H + 0.490 L (6.1)
The negative estimated coefficient of world gold consumption depicts that it has

negative effect on price and that if the price of gold falls, more quantity of gold will be

bought. This confirms the basic economic principle of demand that the lower the gold
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price, the higher the consumption and vice versa. The positive estimated coefficient of
world gold production means it has positive effect on price and that when the price of gold
is high, the producers would want to produce more. This reaffirms the basic economic
principle of supply that the higher the gold price, the higher the production and vice versa.
R? is 99.1 %. This means that the MRM is able to explain 99.1 % of the data used. This
underscores the degree of accuracy of the model and should encourage potential gold
price forecasters to use.

When all the original 15 data of the independent variables are substituted in the
multiple regression equation, it was found out that the error was negligible. The results
are as shown in Table 6.2. The variation of the actual prices and the predicted ones by the
model is shown in Figure 6.1. The actual prices and the predicted ones are almost super-

imposed on each other.

Table 6.2 Actual and Predicted Gold Prices

Year |Actual Price (US $)/oz |Predicted Price (US $)/o0z
1980 614.38 610.62
1981 459.22 465.07
1982 375.52 375.76
1983 423.52 42921
1984 360.63 349.02
1985 317.35 318.81
1986 367.58 370.14
1987 446.66 442 38
1988 436.45 437.40
1989 381.27 385.28
1990 383.72 381.46
1991 362.34 370.19
1992 343.86 340.16
1993 360.06 361.99
1994 384.15 379.22
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Also the mean, variance and standard deviation of the actual and the predicted prices are

almost the same. Statistics of actual and predicted prices are shown in Table 6.3.

Table 6.3 Statistics of Actual and Predicted Prices

Statistics Actual Prices (US $)/o0z |Predicted Prices (US$)/oz
Mean 401.11 401.11
Variance 71.00 70.81

Standard Deviation 5040.69 5014.41

The mineral price model was used to forecast 1995 average-annual gold price to test

its prediction accuracy and capability. The 1995 actual data on world annual gold

production, consumption, average-monthly high price, average-monthly low price and

average price are 2272.10 tonnes, 3008.00 tonnes, US$391.03 per ounce, US $376.64 per

ounce and US $384.17 per ounce respectively. The networks training parameters of the

MFNN model used in the prediction of average-annual monthly high and low gold prices

are 0.01, 0.865 and 0.532 for the error, momentum and learning rate respectively. The

model predictions of the 1995 average-annual gold price, average-annual monthly high
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gold price and average-annual monthly low gold price are US$376.21 per ounce,
US$395.12 per ounce and US$384.62 per ounce respectively. When the MRM model is
used to forecast the fifteen actual prices used in constructing the model, The prediction

error in forecasting the 1995 average-annual gold price is 2.07 %.
6.2 Sample Space Experiment

6.2.1 Statistics and Variography

Statistics and semi-variograms for each of the experimental data set in Tables B8 to
Table B19 was calculated with the aid of CSMINE/VARIOC and VARWIN softwares.
Semi-variograms at 0°, 60°, 90°, 120° and 150° were calculated with each having a
horizontal window of 25°. This made it possible to determine conclusively if there were
anisotropy or not. Also, this insured that the samples in one direction were not used in
calculating the variances in another direction. None of the data sets showed clear signs of
anisotropy. Spherical model was fitted to all the data set. Both the experimental and
theoretical/model semi-variograms for all the data sets are illustrated in Figures 6.2 to

6.13.
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The CS yielded the block grades listed in Tables D2 to Tables D13. Employing the
average error E, variance of the errors o> and estimator unbiasedness, the prediction

accuracy of CS can be measured. E and o are given by equations (6.2) and (6.3)

respectively (Knudsen, 1990).

E=233 (X, - X)) 62)

> X, - X))~ BP
ol == — (6.3)

where X,;,X; and n are actual block grades, estimated block grades and number of

estimated block grades respectively. E and o.? values of all the estimations are calculated

and tabulated in Tables B20 and B21. The variation of the drill-hole spacing with E and
o.’ in both 2-D and 3-D are depicted in Figure 6.14 and Figure 6.15 respectively. From
Figure 6.14 and Figure 6.15, it is evident that the 45m, 60m, 75m and 90m drill-hole
spacing have lower error and variance than 105m and 135 m drill-hole spacing. This is
due to the reduction in the number of observed data with increase in drill-hole spacing.
Subsequently, the experimental variograms constructed with 105m and 135m drill-hole
spacing data do not give a true picture of the deposit. The field dimensions of the deposit
used in the experimentation is 345 m x 24 m. Using drill-hole spacing from 45m to 90m
gives pit limits equal to the actual one and optimum pit value a slightly less than the actual
one. The ratio of the minimum drill-hole spacing (45m) to the respective length (345m) is
0.13. The ratio of the maximum drill-hole spacing (90m) to the respective length (345m) is
0.26. Based upon these results, it can be said that drill-hole spacing of between 0.13 and
0.26 of the field is enough to predict block grades, optimum pit limit and value with less

erTor.
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2-D Model Results
Using the predicted price, $346.15, the corresponding E.B.V of all the blocks were
calculated and listed in Table D2 to Table D13. The actual data of the block model was

used as input in the MFNN in Figure 6.14. Depicted in Table 6.4 are the final weights
obtained by using the WinNN software package and applying error back-propagation
training algorithm to the networks. The final weights are used in writing the equations of
the decision lines for the separation of the gridded blocks in the pits. The error and
momentum term for complete training were 0.01 and 0.685 respectively. The equations of
the decision lines obtained from the MFNN in Figure 6.16 are as written in equations (6.4)

to (6.11).

Figure 6.16 Neural Networks for Block Classification.




Table 6.4 Weights of input layer to hidden layer

114

Weight of node\node Xy X2 by

N; -0.0020 -0.0025 -0.1863

N, 0.0243 0.0168 2.6598

N; 0.2907 -0.2312 2.8331

Ny 0.0076 0.0028 0.8556

Ns -0.0111 - 0.0072 -1.6263

Ng 0.0071 - 0.0052 0.9784

N, -0.0104 -0.0011 -2.4102

Ng 0.0582 -0.2610 2.7822
DL1: g(X1, X;) =-0.0020 X, - 0.0025X; + 0.1863 (6.4)
DL2: g(X1, Xz) = 0.0243 X, + 0.0168X; - 2.6598 (6.5)
DL3: g(X1, X3) = 0.2907 X - 0.2312X; - 2.8331 (6.6)
DL4: g(X;, X;) = 0.0076 X, + 0.0028X; - 0.8556 (6.7)
DLS5: g(X1, X3) =-0.0111 X, - 0.0072X; + 1.6263 (6.8)
DL6: g(X1, X2) = 0.0071 X; - 0.0052X; - 0.9784 (6.9)
DL7: g(Xi, Xz) =-0.0104 X, - 0.0011X; + 2.4102 (6.10)
DLS: g(X1, X2) = 0.0582 X - 0.2610X; - 2.7822 (6.11)

These decision lines as shown in Figure 6.17 divide all the gridded blocks in the block

model into regions according to their target values being negative, positive or zero. Each

region has gridded blocks with only negative, positive or zero economic block values.
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Figure 6.17 Decision Lines on the Blocks Target Values.

When the actual data of the block model was used as input in the 2-D CS/MFNN and

2-D Lerchs-Grossmann (LG) algorithms, each returned the same optimum limits and pit
value of $9,053,840 shown in Table 6.5. Figure 6.18 and Figure 6.19 depict the imposed
slope walls and optimum pit limits obtained from the 2-D CS/MFNN respectively. The pit

limit as obtained from the 2-D Lerchs-Grossmann algorithm is illustrated in

Table 6.5 Optimum Pit Values for 2-D Experiment

Spacing Actual LG & CS/MFNN | Difference | % Error
(US$x10%) (US$x10%) (US $x10%)
45m 9053.84 9050.30 3.54 0.04
60m 9053.84 9047.90 5.94 0.07
75m 9053.84 9011.58 42.26 0.47
90m 9053.84 8963.63 90.21 0.99
105m 9053.84 7001.47 2052.37 22.67
135m 9053.84 4320.46 4733.38 52.28

Figure 6.20.
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Figure 6.19 2-D Optimized Pit Outline Using CS/MFNN Algorithm.
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<« Indicate the Outline of the Pit

Figure 6.20 2-D Optimized Pit Outline Using Lerchs-Grossmann’s Algorithm.

Experimenting with each of the six data sets of different drill-hole spacing as inputs
in the algorithms, the drill-hole spacing of 45m, 60m, 75m and 90m yielded the same
optimum limits but pit values of $9050.30, $9047.90, $9011.58, $8963.63, $7001.47,
$4320.46 respectively from both 2-D CS/MFNN and 2-D Lerchs-Grossmann algorithms.
The optimum pit values are tabulated in Table 6.5. The data sets of the drill-hole spacing
of 105m and 135m yielded the same optimum limits but pit values of $7001.47 and
$4320.46 respectively from both 2-D CS/MFNN and 2-D Lerchs-Grossmann algorithms.
Thus, the pit values of drill-hole spacing from 45m to 90m give optimum pit limits equal
to the actual pit limits and pit values of negligible errors compared to the actual optimum
pit value. However, beyond 90m the optimum pit values are abysmally lower than the
actual optimum pit value. The imposed slope walls shown in Figure 6.18 and the optimum
pit layouts shown in Figure 6.19 give the optimum pit value and pit limits of the 2-D
CS/MFNN algorithm for drill-hole spacing of 45m, 60m, 75m and 90m. The
corresponding optimum pit limits for the 2-D Lerchs-Grossmann' algorithm are illustrated

in Figures 6.21 to 6.24.
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Figure 6.21 2-D Optimized Pit Outline Using Lerchs-Grossmann’s
Algorithm for Drill-hole Spacing of 45m
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Figure 6.22 2-D Optimized Pit Outline Using Lerchs-Grossmann’s
Algorithm for Drill-hole Spacing of 60m
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Figure 6.23 2-D Optimized Pit Outline Using Lerchs-Grossmann’s
Algorithm for Drill-hole Spacing of 75m
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Figure 6.24 2-D Optimized Pit Outline Using Lerchs-Grossmann’s
Algorithm for Drill-hole Spacing of 90m
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The imposed slope walls which give the optimum pit value and pit limits of the 2-D
CS/MFNN algorithm for drill-hole spacing of 105 m and 135 m are depicted in Figure
6.25. Figures 6.26 and 6.27 depict the corresponding optimum pit limit for the 2-D
Lerchs-Grossmann algorithm. The variation of optimum pit value with drill-hole spacing

of sample data for the 2-D block model is illustrated in Figure 6.28.
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Figure 6.25 Imposed Slope Walls for Drill-hole Spacing of 105m and 135m.
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Figure 6.27 2-D Optimized Pit Outline Using Lerchs-Grossmann’s

Algorithm for Drill-hole Spacing of 135m
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3-D Model Results
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In the 3-D model, using the actual data as inputs in the algorithms, the 3-D

CS/MFNN and 3-D Lerchs-Grossmann algorithms each returned the same optimum limits

and pit value of $27,161,520. The experimental results are as shown in Table 6.6.

Table 6.6 Optimum Pit Values for 3-D Experiment

Spacing | Actual [LG & CS/MFNN | Difference {% Error
(US$x10*)|  (US$x10%) (US$x10%)
45m | 27161.52 27129.96 31.56 0.12
60m | 27161.52 27091.29 70.23 0.26
75m | 27161.52 26983.95 177.57 0.65
90m | 27161.52 26886.2 275.32 1.01
105m | 27161.52 20515.94 6645.58 24.47
135m | 27161.52 12165.38 14996.14 | 55.21
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Experimenting with each of the six data sets of different drill-hole spacing as inputs in the
algorithms, the drill-hole spaéing of 45m, 60m, 75m and 90m yielded the same optimum
limits but pit values of $27129.96, $27091.29, $26983.95 and $26886.20 respectively
from both 3-D CS/MFNN and 3-D Lerchs-Grossmann algorithms. In the case of drill-hole
spacing of 105m and 135m , the optimum pit values were $20515.94 and $12165.38
respectively. Figure 6.29 illustrates the optimum pit limits for both 3-D CS/MFNN and 3-
D Lerchs-Grossmann algorithms for the 45m, 60m, 75m and 90m drill-hole spacing. The
optimum pit limits for drill-hole spacing of 105m and 135m for both 3-D CS/MFNN and
3-D Lerchs-Grossmann algorithms is shown in Figure 6.30 The variation of optimum pit

value with drill-hole spacing of sample data for the 3-D block model is illustrated in

Figure 6.31.
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Figure 6.29 The optimum pit limits for both 3-D CS/MFNN and 3-D Lerchs-Grossmann
algorithms for the 45m, 60m, 75m and 90m drill-hole spacing
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To examine the behaviour of the pit limits when zero economic block values are
present in the block model, zero target values (zero economic block values) are inserted in
the pit at some few locations as shown in Figure 6.32. The MFNN model is used to

delineate the blocks. Decision line equations of block model with zero target values are as

written in equations (6.12) to (6.28).

DL1: g(X1, X2) = 0.1457 X; + 0.1266X - 1.0633 (6.12)
DL2: g(X1, Xz) = -0.1414 X, - 0.0909X; + 0.8909 (6.13)
DL3: g(Xi, Xz) = -0.1412 X, - 0.1429X; + 1.3840 (6.14)
DL4: g(X1, X2) = 0.1548X; + 0.0417X, - 1.0060 (6.15)
DLS: g(X1, Xz) = -0.0869 X, - 0.0385X, + 0.9554 (6.16)
DL6: g(X1, X2) = 0.0952 X; + 0.0286X; - 1.0762 (6.17
DL7: g(X1, X2) = 0.1675 X; - 0.0263X; - 0.9713 (6.18)
DLS: g(X1, Xz) = 0.6387 X, - 0.3125X; - 1.9161 (6.19)
DL9: g(X1, Xz) = -0.0664 X, - 0.0204X, + 0.9967 (6.20)
DL10: g(X1, X2) =-0.1375 X, - 0.0370X, + 2.1250 (6.21)
DL11: g(X1, X2) = 0.0975 X; - 0.0103X, - 1.1946 (6.22)
DL12: g(X1, Xz) =-0.0643 X - 0.0031X, + 0.9837 (6.23)
DL13: g(X1, X2) = -0.1299 X, + 0.0909X, + 0.9870 (6.24)
DL14: g(X1, X2) = 0.2564 X, - 0.3333X; - 0.8974 (6.25)
DL15: g(X1, X2) = 0.0592 X, - 0.2632X, - 0.9051 (6.26)
DL16: g(X1, X2) = 0.2257 X, - 0.6667X; - 1.8573 (6.27)
DL17: g(X1, X2) =-0.0402 X, - 0.7692X, + 2.3846 (6.28)

The optimum pit limits obtained using the Lerchs-Grossmann algorithm (Figure 6.33) are
the same as in the previous cases. However, the optimum pit limits obtained using the
CS/MFNN algorithm are different from the previous cases. As depicted in Figure 6.34
and Figure 6.35, the CS/MFNN algorithm leaves the zero blocks behind.
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Figure 6.32 Decision Lines of Block Model with Zero Target Values.
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Figure 6.33 Optimized Pit Outline Using Lerchs-Grossmann algorithm
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Figure 6.34 Optimized Pit Outline Using CS/MFNN Algorithm for Zero E.B.Vs.
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6.5 Summary

The results from the MRM-MFNN model shows that data of a particular socio-
politico-economic cycle can be used for price modelling. Understanding of the socio-
politico-economic situation is of prime importance. The world annual gold production,
annual gold consumption, average annual monthly low gold prices and average annual
monthly high gold prices are critical determinants of mineral prices. With high
uncertainties in metal prices in today’s markets, investors in mineral projects will be better
informed by the results of evaluation tools that treat the stochasticity of metal prices
rigorously. The MRM-MFNN price model is set up to rigorously deal with metal price
uncertainties and presents one of the most viable metal price forecasting methods in
economic evaluation of mineral deposits.

From the results obtained from the CS model, it is able to predict the grades with
less error if the drill-hole spacing is between 0.13 and 0.26 of the deposit dimensions.
Based upon these results, it can be said that drill hole spacing of between 0.13 and 0.26 of
the deposit dimensions is enough to predict block grades, optimum pit limit and value with
less error. In the evaluation of the economic potential of a mineral deposit, the CS would
be efficient in assigning grades to locations of unknown grades with less error. This would
reduce the high cost of drilling so many drill-holes.

Comparing the Lerchs-Grossmann’s and CS/MFNN algorithms, it can be said that
both yield the same optimum pit value in the absence of grid blocks with zero economic
block values. However, in the presence of grid blocks with zero economic block values.
they may portray different pit outlines. Whereas the Lerchs-Grossmann’s algorithm
considers any gridded block irrespective of its economic block value in the design process,
CS/MFNN algorithm does not consider gridded blocks with zero or negative economic
block values unless they happen to lie above any of the gridded blocks in the positive
regions delineated by the MFNN. CS/MFNN helps in selective mining of profitable blocks
since it eliminates all the negative regions which are not economically viable for mining.

The blocks with zero economic values are left behind. This will enable engineers to plan
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well to leave those blocks with zero EBVs and maintain proper production scheduling and

planning. This will increase the profit margin of the company.
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CHAPTER 7.0

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH
WORK

7.1 Summary

A new algorithm for open pit optimization using artificial neural networks on
conditionally simulated blocks, CS/MFNN, has been developed and used to optimize
open pit limits for 2-D and 3-D block models of an orebody. MRM-MFNN price
model to forecast stochastic mineral prices to calculate the economic block values in
open pit optimization has been developed.

This study achieved the objectives set out in Chapter 1 to develop, verify and
validate (i) CS/MFNN algorithm for pit design and optimization; and (ii) mineral price

model, MRM-MFNN, for economic block values calculation.

7.2 Results Achieved

The experimentation carried out using MRM-MFNN model to forecast mineral
prices revealed that the mineral price model can predict average-annual gold price with
negligible error. This is evidenced by 2.07 % error in the 1995 average-annual gold
price prediction by the MRM-MFNN model. Also the mineral price model shows that
a realistic forecasting of gold prices can be made with data, from an identified socio-
politico-economic cycle, based on world annual gold production, annual gold
consumption, average-annual monthly high gold price and average-annual monthly low
gold price.

From the results obtained from the CS/MFNN model, it is able to estimate

gridded-block grade with less error if the drill-hole spacing is between 0.13 and 0.26
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of the deposit dimensions. With this same drill-hole spacing, the CS model is capable

of estimating optimum pit value and limit with less error. CS/MFNN and Lerchs-

Grossmann algorithms yield the same optimum pit value in the absence of grid blocks

with zero economic block values.

7.3 Conclusions

From the analyses of the 2-D and 3-D CS/MFNN models, and the MRM-MFNN

price model the following conclusions are drawn:

1.

The 2-D and 3-D CS/MFNN and Lerchs-Grossmann algorithms return the same
optimized pit value and limits.

CS/MFNN helps in selective mining of profitable blocks since it eliminates all the
negative regions which are not economically viable for mining. The blocks with
zero economic values are left behind. This will enable engineers to plan well to
leave those blocks with zero E.B.Vs and maintain proper production scheduling
and planning. This will increase the profit margin of the company.

The CS/MFNN algorithrri can bring savings in drilling cost, due to geological and
technological difficulties in obtaining many data to define a potential ore deposit.
The problem of overlapping zones and search patterns for optimum pit value in the
floating cone algorithm is overcome by the CS/MFNN algorithm. The task of both
forward and backward passes in the Lerchs-Grossmann’s algorithm is obviated in
CS/MFNN algorithm. CS/MFNN delineates the positive regions and incorporates
the technical constraints to design the optimum pit.

CS/MFNN algorithm is applicable to any slope wall constraint in both 2-D and 3-D
design. No smoothing is needed. Floating cone and Lerchs-Grossmann design
slopes in multiples of blocks which need smoothing.

This algorithm combines a comprehensive orebody modelling and open pit

optimization in random multivariable states.
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7. The randomness associated with the distribution of the ore grades and reserves and
metal prices are not taken into consideration by the existing algorithms. This
randomness property can be incorporated in these algorithms by using the CS to
calculate the block grades and/or tonnage and MRM-MFNN price model to
calculate the economic block values. The omission of randomness property in any
algorithm poses limitations on the pit limit definition, the economic potential of
the mineral deposit, and the long-, intermediate-, and short-range mine plans.
This might lead to poor investment decision and inaccurate mine design and
optimization.

8. Comparing the Lerchs-Grossmann’s and CS/MFNN algorithms, it can be said that
both yield the same optimum pit value in the absence of grid blocks with zero
economic block values. However, in the presence of grid blocks with zero
economic block values they may portray different pit outlines. Whereas the
Lerchs-Grossmann’s algorithm considers any gridded block irrespective of its
economic block value in the design process, CS/MFNN algorithm does not
consider gridded blocks with zero or negative economic block values unless they
happen to lie above any of the gridded blocks in the positive regions delineated by
the MFNN.

9. Analysis of the results shows that the mineral price model predicts average-annual
gold price with negligible error. A realistic forecasting of gold prices can be made
with data from an identified socio-politico-economic cycle. World annual gold
production, annual gold consumption, average-annual monthly high gold price and
average-annual monthly low gold price are the most important factors which
determine world average-annual gold prices. The main novelty of this
methodology is the solution of the randomness property associated with mineral
prices using multiple regression and artificial neural network to reduce the mineral
price forecasting error. This is an important contribution to mineral venture

evaluation, mine planning and design.



133

10. With high uncertainties in metal prices in today’s markets, investors in mineral
projects will be misled by the results of evaluation tools that do not treat the
stochasticity of metal prices rigorously. The MRM-MFNN price model is set up
to rigorously deal with metal price uncertainties in mineral project evaluation, and
presents one of the most viable metal price forecasting methods in economic

evaluation of mineral deposits.

Contributions of this study to evaluation and assessment of economic viability of
open pit mining ventures and definition of open pit limits using open pit mining method
can be summarized as follows:

1. CS/MFNN algorithm is used for the first time to evaluate and assess the

economic potential of a mineral deposit using open pit mining method.

2. The MRM-MFNN price model can be used to forecast mineral prices in open
pit mining venture evaluation.

3. For the first time, open pit optimization algorithm, CS/MFNN, that combines a
comprehensive orebody modelling and open pit optimization in random
multivariable states is developed.

4. Conditional simulation model can be used to calculate block grades in open pit

mining.

5. Also the computing times precluding the time taken to create the revenue

block model, the MFNN times in both CS and price models, for the same
number of blocks the CS/MFNN algorithm is observed to be much quicker

than Lerchs-Grossmann’s algorithm.
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7.4 Recommendations

Even though the models developed in this study have produced good and
encouraging results, there are still some problems and limitations that need to be
ironed out to improve the current results. The pit can be simulated using conditional
simulation. The necessary information from mineral venture planners, evaluators and
investors are not adequate for modelling the various processes involved in the
evaluation and assessment of economic viability of open pit mining ventures. During
grade estimation, only a database of few drill holes are used. The variogram used in
the estimation is chosen from one of the existing theoretical models such as spherical,
exponential and linear. Since the experimental variogram defined by the data from the
field are not used, this may reduce the accuracy of the estimation.

Owing to the aforementioned problems, the most important recommendations for
further research work are the following:

1. In this study, only gridded-blocks’ grades are conditionally simulated but
not the pit. However, the pit can also be conditionally simulated. In
order to simulate the pit with conditional simulation, every simulation
realization of the gridded-blocks’ grades should be used in optimizing the
pit, rather than the average values of the number of realizations as done in
this study. Then a probability distribution should be constructed using the
optimum pit values obtained for each realization. This would give the
probability of optimum pit values for the evaluation of the economic
potential of the ore deposit in question.

2. It is imperative to formulate mineral price model which can quantify the
effects of various combinations of identifiable variables which are
regularly encountered by mineral venture planners, evaluators and

investors. This model can best be developed by thorough exchange of
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ideas in gréups including experienced mining engineers, evaluators,
investment decision makers, stock brokers, financial institutions and
commodity exchange markets. So good database should be developed to
assemble all the necessary information from appropriate sources.

Further work is required to develop CS/MFNN user-friendly model for
applications in the mining industry. For example, there is the need to
interface the CS/MFNN and MRM-MFNN models into a single entity so
that one input data file can serve both models.

Since metal prices are highly volatile and stochastic, random field theory
and stochastic processes should be used in modelling.

Methods which will allow the data of semi-variogram to define
themselves instead of imposing any of the existing models should be

developed for the construction of semi-variogram in the CS model.
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Mathematical Modelling of Lerchs-Grossmann’s (LG) Algorithms
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Mathematical Modelling of Lerchs-Grossmann’s (LG) Algorithms

Lerchs and Grossmann (1965) have used the graph theory and dynamic programming
to formulate an open pit model to define the optimum pit limit. The objective of Lerchs-
Grossmann's algorithm is to design the contour of a pit (final pit limit) so as to maximize
the difference between the total mine value of ore extracted and the total extraction cost
of ore and waste - i.e., the total profit.

The Lerchs-Grossmann’s algorithm is based on the following assumptions: (i) the
type of material, its mine value and its extraction cost are given for each point; (ii)
restrictions on the geometry of the pit are specified ( surface boundaries and maximum
allowable wall slopes); (iii) the objective is to maximize total profit- total mine value of
material extracted minus total extraction cost. Lerchs and Grossmann used dynamic
programming technique to design the 2-D pit (or a single vertical section of a mine), and a

graph algorithm for the general 3-D pit.
Two-Dimensional Pit Modelling

The modelling of 2-D dynamic programming algorithm of Lerchs and Grossmann is
clearly illustrated in Figure A.1. In the 2-D pit design, the units #; and u; of a rectangular

grid system are selected such that

4 - tana (A.1)

u;
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Figure A.1. The Steps for Lerchs-Grossmann’s 2D Algorithm for Pit Design.
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For each unit rectangle (i, j),uthe block economic value m; (EBV) is determined as defined
in equation (3.1). Figure A.1 (a) shows a vertical section of a block model with the block
economic values, m;;, written on each block. In addition, a row of ‘air blocks’ is
superimposed on the section as the zero row. This row serves as the starting row and the
collection row for the results. A new tableau (Figure A.1 (b)) is constructed with the

quantities

M;=>m, (A.2)
k=1

M;; represents the profit realized in extracting a single column with element (i, j) at its
base. In the final tableau (Figure A.1 (c)), a temporary value, P; is computed, column by

column, starting with column 1 on the top left corner.

P,'j = M,'j + n}‘ax (1’,’4*,,‘.1), withk=-1, 0, 1 (A.3)
P = nLax Py, withk=-1,0, 1 (A.49)

The maximum is indicated by an arrow going from (i, j) to (i + &, j - I).

P; is the maximum possible contribution of columns I to j to any feasible pit that
contains the element (i, j) on its contour. It follows that if the element (i, j) is part of the
optimum contour, then this contour, to the left of element (, j), can be traced by following
the arrows starting from element (i, j). Any feasible contour must contain at least one
element of the first row. If the maximum value of P in the first row is positive, then the
optimum contour is obtained by following the arrows from and to the left of this element.
If all elements of the first row are negative, then there exists no contour with positive

profit. In the illustrative example, the pit value is +14 in Figure Al (c).
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Three-Dimensional Pit Modelling

When the optimum contour of all the vertical sections are assembled, it invariably
turns out that they do not fit together. This is because the wall slopes in a vertical section
and at right angles with the sections that were optimized exceed the permissible angle a.
The walls and the bottom of the pit are then “smoothed out”. The resulting contour may
be far from optimum, thus the solution yields a series of optima. Hence, the dynamic
approach becomes impractical in three dimensions. Instead Lerchs and Grossmann
applied a graph algorithm. The algorithm converts the three-dimensional grid of blocks in
the orebody model into directed graph (Lerchs and Grossmann, 1965; Dowd and Onur,
1993).

The graph theory model for the 3-D pit design is derived as follows:

The entire pit is divided into a set of volume elements V;. This division can be arbitrary
but may also be obtained by taking for V; the unit volumes defined by a three-dimensional

grid. Associate to each volume element V; a mass
m;=v;-C; (A'S)

where v; and ¢; are the mine value and the extraction cost of element V;. Each element is
represented by a vertex x; of a graph. An arc (x;, x;) is drawn if Vj is adjacent to V;, that
is, V: and V; have at least one point in common, and if the mining volume V; is not
permissible unless volume ¥ is also mined. Thus, a three-dimensional graph G = (X, 4)
with a set of vertices X and a set of arcs A is obtained. Any feasible contour of the pit is
represented by a closure of G, that is, a set of vertices ¥ such that if a vertex x; belongs to
Y and if the arc (x; x;) exists in 4 then the vertex x; must also belong to Y. If a mass m; is
associated to each vertex x;, and if M, is the total mass of a set of vertices ¥, then the
problem of optimum pit design comes to finding in a graph G a closure Y with maximum

mass or, shortly, a maximum closure of G.
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Definition of Some Important Terms and Concepts

A directed graph G = (X, A) is defined by a set of elements X called vertices of G,
together with a set A of ordered pairs of elements a; = (x, y), called the arcs of G. The
graph G also defines a function I mapping X into X and such that (x,y) € <>y e I'x

A path is a sequence of arcs (aj, ai... a,) such that the terminal vertex of each arc
corresponds to the initial vertex of the succeeding arc. A circuit is a path in which the
initial vertex coincides with the terminal vertex. An edge, e; = [x, y] of G, is a set of two
elements such that (x, y) € A or (y, x) € A. A chain is a sequence [e;, €3, . . . €] in
which each edge has one vertex in common with the succeeding edge. A cycle is a chain
in which the initial and final vertices coincide. A subgraph G(Y) of G is a graph (Y, Ay)
defined by a set of vertices of Y < X and containing all the arcs that connect vertices of Y
in G. A partial graph G(B) of G is a graph (X, B) defined by a set of arcs B — A and
containing all the vertices of G. A directed graph G = (X, A) is a set of vertices Y ¢ X
such that xe Y— I’ xe Y. If Y is a closure of G, then G(Y) is a closed subgraph of G.
By definition, the null set, Y = ¢, is also a closure of G. A tree is a connected and
directed graph T = (X, C) containing no cycles. A rooted tree is a tree with one
distinguished vertex, the root. The arc obtained by suppressing an arc a; in a rooted tree T
has two components. The component T; = (Xi, A;) which does not contain the root of the
tree is called a branch of T. The root of the branch is the vertex of the branch that is

adjacent to the arc a;. A branch is a tree itself, and branches of a branch are called twigs.

Problem formulation: Given a directed graph G = (X, A) and for each vertex x;, find a

closure Y of G with maximum mass. In other words, find a set of elements vertices Y

X such that xe Y—> I'xe Y and My = ) m, is maximum. A closure with maximum
X, e¥

mass is also called a maximum closure.
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Algorithm: The graph G is first augmented with a dummy node x, and dummy arcs (Xo,
x;). The algorithm starts w1th the construction of a tree T° in G. T° is then transformed
into successive trees T', T3, . . . . . T" following given rules, until no further
transformation is possible. The maximum closure is then given by the vertices of a set of
well identified branches of the final tree.

Each edge ey (arc ay ) of a tree T defines a branch, noted as Ti= (Xi, Au)- The edge
e, (arc a, ) is said to support the branch Ty. The mass M of a branch T\ is the sum of all
vertices of T,. This mass is associated with the edge ex (arc a, ) and the edge ex (arc ax )
supports a mass M. In atree T with root x,, an edge ex (branch Ty ) is characterized by
the orientation of the arc ax with respect to Xo; ex is called a p-edge (plus-edge) if the arc
a, points toward the branch T, that is, if the terminal vertex of ay is part of the branch T.
T, is then called a p-branch. If arc a, points away from branch Ty, then ey is called an m-
edge (minus-edge) and Ty an m-branch. Similarly, all twigs of a branch are divided into
two classes: p-twigs and m-twigs. A p-edge (branch) is strong if it supports a mass that is
strictly positive; an m-edge (branch) is strong if it supports a mass that is null or negative.
Edges (branches) that are not strong are said to be weak. A vertex x; is said to be strong
if there exists at least one strong edge on the chain of T joining x; to the root x,. Vertices
that are not strong are said to be weak. Finally, a tree is normalized if the root x, is
common to all strong edges. Any tree T of a graph G can be normalized by replacing the
arc (xy, X)) of a strong p-edge with a dummy arc (x,, X)), the arc (x4, Xr) Of a strong m-edge
with a dummy arc (x,, Xq) and repeating the process until all strong edges have x, as one
of their extremities. The tree in Figure A.3 is obtained by normalizing the tree in Figure
A2. The graph G considered in the sequel will be an augmented graph obtained by adding
to the original graph a dummy vertex X, with negative mass and dummy arcs (Xos Xi),
joining x, to every vertex x;. The introduction of dummy arcs (x,, X;), does not affect the
problem because x, cannot be part of any maximum closure of G. The vertex X, will be

the root of all trees considered.
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Figure A.2 Figure A.3

Properties and Theorems of Normalized Tree :

Property 1: If a vertex belongs to the maximum closure Z of a normalized tree T, then all

the vertices Xy of the branch Ty also belong to Z.

Property 2: The maximum closure of a normalized tree T is the set Z of its strong vertices.
Property 3: If, in the tree T, eq4 is an m-edge on the chain [Xm, . ., X,] then the mass M} is
strictly positive and larger than any mass supported by a p-edge that precedes e; on the

chain [Xm, . -5 Xo].
Theorem I : If, in a directed graph G, a normalized tree T can be constructed such that
the set Y of strong vertices of T is a closure of G, then Y is a maximum closure of G.

Theorem II : A maximum closure of G is obtained in a finite number of steps.

Steps of the Algorithm: Construct a normalized tree T° in G and enter the iterative

process. Iteration t+1 transforms a normalized tree T' into a new normalized tree T,

Each tree T' = (X, A") is characterized by its set of arcs A" and its set of strong vertices Y'
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. The process terminates when Y is a closure of G. Iteration t+1 contains the following
steps: "

1.- If there exists an arc (X, X)) in G such that Y, €Y', and x; € X-Y', then go to step 2.
Otherwise go to step 4.

2.- Determine X, the root of the strong branch containing xi. Construct the tree T by
replacing the arc (o, Xm) of T' with the arc (xi, x)). Go to step 3.

3.- Normalize T®. This yields T**'. Go to step 1.

4.- Terminate. Y'is a maximum closure of G. (See Figure A.4).

Figure A.4

Construction of T°: T° can be obtained by constructing an arbitrary tree in G and then
normalizing this tree as outlined earlier. A much simpler procedure, however, is to
construct the graph (X, Ap) where Ap is the set of all dummy arcs (x,, xi). This graphis a

normalized tree.

Transformations taking place in steps 2 and 3 of the algorithm:-

(a) Construction of T*:
The tree T is obtained from T' by replacing the arc (x,, Xm) with the arc (xi, xi). The arc

Xo, Xm) supports in T' a branch Ty’ with a mass M, > 0. Let [Xm, « «» Xio My, . ., Xp, Xo} be
p
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the chain of T linking xm to X, as shown in Figure A.4. Except for this chain, the status of
an edge of T® and the mass éupported by the edge are unchanged by this transformation.
On the chain [xp, . . ., X,] of T° the transformation of masses are:

For an edge ¢; on the chain [Xm, « . ., X]

M;=M,'- M/ (A.6)
For an edge [Xxy - « «» Xi]

M =M,! (A.7)
For an edge ¢; on the chain [xy, . .., Xp, Xo]

M} =M, - M} (A.8)
In addition, all the edges e; on the chain [Xm, . . ., Xx] have changed their status: a p-edge in
T' becomes an m-edge in T° and vice versa. On the chains [Xm, . . «, Xk] and [Xi, . . «, Xp] in

T', all p-edges support zero or negative masses and all m-edges support strictly positive

masses as T' is normalized. Hence, the following distribution of masses in T® are obtained:

m-edge p-edge
edge €; on chain [Xms . .., X] M >M,/ M <M,' (A.9)
edge [Xk, X|] Mks = Mm’ (A.IO)
edge €j on [Xi, . « . Xpy Xo] M} >M,' M <M, (A.11)

(b) Normalization of T®. As T' was normalized, all strong edges must be on the chain

[Xms - - -» Xo]. The strong edges are removed one by one starting from the first strong edge

encountered on the chain [Xm, . . .» Xo]. This edge, say e, = [X,, X»], must be a p-edge
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according to property 3. e, is replaced with a strong dummy edge (X, Xa). Thus, a p-twig
is removed from the branch i‘,,’ and its mass from all the edges of the chain [Xp, . . ., Xo]
must be subtracted. Property 3 remains valid on the chain [xy, . . ., Xo]. The next strong p-
edge on the chain [Xy, . . ., Xo] is now searched for and the process is repeated until the last

strong p-edge has been removed from the chain. The transformations (a) and (b) can be

carried out simultaneously.
Iustrative Example of the Lerchs-Grossmann 3-D Algorithm

An optimum open pit is to be designed from the block model in Figure A.5 using Lerchs-

Grossmann’s graph 3-D algorithm.

General Form Assigned Weights
X1 Xp X3 X4 -4 -4 -4 -4
X5 X&, 10 10

Network Equivalent

Figure A.5 Application of the Lerchs-Grossmann’s 3-D Algorithm for Pit Design.

Step 1. Begin by adding a root node x, and connecting arcs between the root and each of

the other nodes. This is the formation of the initial tree T® and all the arcs are plus as

shown in Figure A.6.
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(root>

Figure A.6 Initial Tree with all Root Connection.

Step 2. The set (graph) of directed arcs is now split into two groups. Those connected to
the root by strong-plus arcs are included in group Y®. The others are in group X-Y’. in
this case nodes xs and xs are in group Y°. Their sum is 10 + 10 = 20.
Step 3. The possible connection between the two groups is examined, and following the
sequencing constraints there are 6 directed arcs which can be drawn:

For node xs : (xs, x1), (Xs, X2), (Xs, X3)

For node xs : (X6, X2), (X6, X3), (X6, X4)

One of these is selected, say (xs, x1), and the directed arc (xo, Xs) is removed and the

directed arc (xs, x;) drawn. This is done in Figure A.7.

,\@Xa

Figure A.7. Selection of Directed Arc (xs, X).

Step 4. The normalizing process is now followed. Each arc is labelled with respect to
‘plus’ or ‘minus’ and ‘strong’ or ‘weak’. The arc(connection) between x, and x; is still
strong-plus. Hence the members of the group are x,, xs and xs shown in Figure A.8. The

value of Y (ciosure) is -4 + 10 +10 = 16.
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Figure A.8 Labelling of the Resulting Arcs in Step 4.

Step 5. Now return to step 3 to seek additional connections between the Y and X-Y (X
without Y) groups. There are 5 feasible arcs: (xs, x2), (Xs, X3) (Xs, X2), (Xs, X3), (X6, X4)

The arc (xs, x2) will be added to the tree and arc (xo, x2) dropped. This is depicted in

Figure A.9. \
NI
(o

Figure A.9 Modification of Figure A.8 Based on Step 5.

Step 6. The new tree is now normalized as shown in Figure A.10. The nodes included in

Y are X, X2, Xs, and x¢. The closure Yis-4+ 10 +10-4=12.
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Figure A.10 Labelling of the Resulting Arcs in Step 6.

Step 7. Return to Step 5 and choose one of the 3 possible connections remaining: (Xs, X3)
(Xs, X3), (Xs, Xs). Choosing (xs, x3) and dropping arc (xo, X3), the resulting normalized tree
is as shown in Figure A.11. The arc (xo, Xs) remains strong-plus and hence the nodes

included within Y are x,, Xz, X3, Xsand x¢. The overall closureis-4-4-4+10+ 10=8.

Figure A.11. Modification of Figure A.9 Based on Step 7.

Step 8. Return to Step S and take the one possible connections remaining: arc (Xs, X4).
Arc (Xo, X4) is dropped and arc (xs, xs) added. The tree is now normalized as before with
the result depicted in Figure A.12. All of the nodes are now attached directly to the root

by chains having one strong edge.
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Figure A.12. Modification of Figure A.9 Based on Step 8.

Step 9. The maximum closure now is the cumulative sum of the nodes involved. In this

case it is +4 and the included nodes are x, X3, X3, X4, Xs and Xe.

Adapted from Hustrulid W. and M. Kuchta (1995)



APPENDIX B

Computer Programs

1. PROGRAM BLUE.F

2. PROGRAM KALPHA.F
3. PROGRAM MBETA.F
4. PROGRAM LG23D.F

5. PROGRAM PMFNN.F
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PROGRAM BLUE.F
C******************************************************************
C PROGRAM TO SOLVE A LINEAR SYSTEM OF USING GAUSSIAN
ELIMINATION.

C VARIABLES USED ARE:

C LIMIT : PARAMETER GIVING MAXIMUM DIMENSION OF MATRIX
C LIMAUG: PARAMETER (LIMIT +1) FOR MAXIMUM # COLUMNS IN AUG
C N :NUMBER OF EQUATIONS AND UNKNOWNS

C AUG : AUGMENTED MATRIX FOR THE LINEAR SYSTEM

C ETA : SOLUTION VECTOR/BLUE COEFFICIENTS

C PP,PK.KQ,ILJ K : INDICES

C MALPHA MBETA: THE AVERAGE GRADES AT POINTS ALPHA & BETA
RESPECTIVELY

C KG : KNOWN GRADE

C kg.dt,kg.ut, cb.ut and ca.ut ARE AS EXPLAINED IN CHAPTER 4

C GRADE,G : UNKNOWN GRADE BEING CALCULATED FOR

C MULT : MULTIPLIER USED TO ELIMINATE AN UNKNOWN

C PIVOT : USED TO FIND NONZERO DIAGONAL ENTRY

C*******************************************************************

INTEGER LIMIT, LIMAUG,PP,PK,KQ
PARAMETER (LIMIT = 100, LIMAUG =LIMIT +1,PK=30)
DOUBLE PRECISION AUG(LIMIT, LIMAUG),

ETA(LIMIT),MULT,KG(1000),

+ G,GRADE, MALPHA MBETA

INTEGER I,J,K,PIVOT

C READ COEFFICIENT MATRIX AND CONSTANT VECTOR

C

OPEN(UNIT=1,FILE=kg.dt,STATUS='OLD")

OPEN(UNIT=4,FILE=kg.ut',STATUS='OLD")

OPEN(UNIT=2,FILE='cb.ut,STATUS='OLD")

OPEN(UNIT=3,FILE='ca.ut ,STATUS='OLD")
N =30

READ(3,*)((AUG(LJ),J=1,N),I=1,N)
READ(1,*)(KG(PP),PP=1,N)

DO 400 KQ = 1,28
READ(2,*)(AUG(I,N+1),I=1,N)

C GAUSSIAN ELIMINATION



DO 70 I=1,N
C LOCATE NONZERO DIAGONAL ENTRY

IF (AUG(LI).EQ.0) THEN
PIVOT =0
J=I+1

30  IF (PIVOT.EQ.0) .AND. (J.LE.N)) THEN

IF (AUG(J,I).NE.0) PIVOT=]J
J=J+1
GO TO 30
END IF
IF (PIVOT.EQ.0) THEN
STOP 'MATRIX IS SINGULAR'
ELSE

C INTERCHANGE ROWS I AND PIVOT
DO 40 J =1, N+1
TEMP = AUG(L,J)
AUG(L,J) = AUG(PIVOT,J)
AUG(PIVOT,J) = TEMP

40  CONTINUE
END IF
END IF

C ELIMINATE ITH UNKNOWN FROM EQUATIONS I+1, ., N

DO 60 J=I+1,N
MULT = -AUG(J,I)/AUG(L])

DO 50 K=I,N+1

AUG(J,K)=AUG(J,K) + MULT*AUG(LK)

50 CONTINUE
60 CONTINUE
70 CONTINUE

C FIND THE SOLUTIONS
C
ETA(N)=AUG(N,N+1YAUG(N,N)
DO 90 J=N-1, 1, -1
ETA()=AUG(UJ,N+1)
DO 80K = J+1,N
ETA(J))=ETA(})-AUG(J,K)*ETA(K)
80  CONTINUE
ETA())=ETA(J)AUG(J,J)
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CONTINUE
WRITE(4,*)
WRITE(4,*),'SOLUTION VECTOR IS'
DO 110 I=1,N

WRITE(4,100)LETA(I)

C100 FORMAT(1X,'ETA(,I2,)="F10.5)

C CALCULATION UNKNOWN BLOCK GRADE

G=0
DO 500 PP=1,N
IF((PP.LE.3).OR.(PP.GE.13.AND.PP.LE.17).0R.
+ (PP.GE.18.AND.PP.LE.20).0R.(PP.GE.35.AND.PP.LE.37).0R.
+ (PP.GE.30.AND.PP LE.34)
+ OR.(PP.GE.47.AND.PP.LE.51).0R.
+ (PP.GE.64.AND.PP LE.68).OR.(PP.GE.81.AND.PP.LE 85).0OR.
+ (PP.GE.98. AND.PP.LE.102).OR.(PP.GE.115.AND.PP.LE.119).0R.
+ (PP.GE.129.AND PP LE.133).0R.(PP.GE.140.AND.PP LE. 144) OR.
+ (PP.GE.151.AND.PP.LE.155).0R.(PP.GE.160.AND.PP.LE.164).OR.
+ (PP.GE.168.AND.PP.LE.171).0R.(PP.GE.172.AND.PP LE.175))
+ MALPHA =0.39

IF((PP.GE.69.AND.PP.LE.71).OR.(PP.GE.86. AND.PP.LE 88))

+ MALPHA=3.195
IF((PP.GE.52.AND.PP.LE.54).OR.(PP.GE.103.AND.PP.LE.105))
+ MALPHA=3.025

IF((PP.GE.4.AND.PP.LE.6).OR.(PP.GE.21.AND.PP LE.23).0R.
+ (PP.GE.38.AND.PP LE.40)) MALPHA=3.195
IF(PP.GE.55.AND.PP.LE.57) MALPHA=5.66

IF((PP.GE.72.AND.PP.LE.74).OR.(PP.GE.89. AND.PP.LE 91))
+ MALPHA=5.83

IF((PP.GE.106. AND.PP.LE.108).OR.(PP.GE.120.AND.PP.LE.122))
+ MALPHA=3.19

IF((PP.GE.7.AND.PP.LE.9).OR.
+ (PP.GE.24.AND.PP.LE.26).OR.(PP.GE.41. AND.PP.LE.43))
+ MALPHA=3.395

IF((PP.GE.58.AND.PP.LE.60).0R.

+ (PP.GE.75.AND.PP.LE.77).0R.(PP.GE.92. AND PP LE.94))
+ MALPHA=3.225
IF((PP.GE.109.AND.PP.LE.111).0R.
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+ (PP.GE.123.AND.PP LE.125)) MALPHA=0.755
IF((PP.GE.134.AND.PP.LE.136).0R.(PP.EQ.156).0R.
+ (PP.GE.145.AND.PP LE.147)) MALPHA=0.72

IF((PP.GE.10.AND.PP.LE.12).OR.(PP.GE.27.AND.PP LE.29).OR.
+ (PP.GE.44. AND.PP LE 46).0R.(PP.GE.61.AND.PP.LE.63).0R.

+ (PP.GE.78.AND.PP.LE.80).OR.(PP.GE.95.AND.PP.LE.97).0R.

+ (PP.GE.112.AND.PP.LE.114).OR.(PP.GE.126.AND PP.LE.128))

+ MALPHA = 0.59
IF((PP.GE.137.AND.PP.LE.139).0R.(PP.GE.148. AND.PP.LE.150)
+.OR.(PP.GE.157.AND.PP.LE.159).OR.(PP.GE.165.AND.PP.LE.167))

+ MALPHA = 0.555

G = G +HETA(PP)*(KG(PP)-MALPHA))

500 CONTINUE
GRADE = G + MBETA
WRITE(4,*) KQ,GRADE

400 CONTINUE

CLOSE(1)
CLOSE(2)
CLOSE(3)
CLOSE(4)
END



162

PROGRAM KALPHA.F

C**********************************************************************

C

C THIS PROGRAM CALCULATES THE COVARIANCES OF THE SPHERICAL
C MODEL

C BETWEEN THE KNOWN SAMPLE POINTS FOR THE MATRIX K

C FOR THE BLUE EQUATION PROGRAM.

C Z(I) : THE GRADE AT THE POINT X(I),Y(I)

C ca.dt: THE INPUT FILE OF KNOWN POINTS COORDINATES & GRADES

C ca.ut: THE OUTPUT FILE OF THE CALCULATED COVARIANCES FOR

C K. INBLUE

Ok o sk ek sk ok ook ook oKk ook o ok ok ok ke ok ko o
C

C

C
DIMENSION X(1000),Y(1000),Z(1000),COV
DOUBLE PRECISION COV

C READ IN SAMPLES
OPEN(UNIT=1,FILE='"ca.dt',STATUS='OLD")
OPEN(UNIT=2,FILE='"ca.ut',STATUS='OLD")
C1=4.106
C0=0.084
A=79.8

NS=0
I=1

30  READ(1,*,END=40) X(I), Y(),Z(I)
NS=NS+1

C  WRITE(2,*) X(D),Y(D),Z(I)
=1+
GO TO 30

40  N=56
DO 1251=1,N

DO 125J=1,N

HX=X(I)-X(J)
HY=Y()-Y(J)
C HzZ=Z()-Z()

D=SQRT(HX*HX+HY*HY)
IF (D.EQ.0) COV=CO + C1
IF (D.GE.A) COV=0
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IF (D.GT.0.AND.D.LT.A) COV=C1*(1-1.5*D/A+0.5*(D**3)/(A**3))

WRITE(2,*) COV
125 CONTINUE

CLOSE(2)

END



PROGRAM MBETA.F
ke Kook kR KK ok ok Rk KK
C THIS PROGRAM CALCULATES THE COVARIANCES OF THE SPHERICAL
C MODEL BETWEEN THE POINT WHOSE GRADE IS BEING SOUGHT AND
C THE KNOWN SAMPLE POINTS OF THE MATRIX M; OF THE BLUE
C EQUATION.

C
C ca.dt: THE INPUT FILE OF KNOWN POINTS COORDINATES & GRADES

C cb.dt: THE INPUT FILE OF UNKNOWN GRADES POINTS COORDINATES
C cb.ut: THE OUTPUT FILE OF THE CALCULATED COVARIANCES FOR
C KALPHA IN BLUE

C*******************************************************************

DIMENSION X(1000),Y(1000),Z(1000),COV
DOUBLE PRECISION COV

C READ IN SAMPLES

C
OPEN(UNIT=1,FILE='cb.dt',STATUS='OLD")
OPEN(UNIT=2,FILE="cb.ut',STATUS='OLD")
OPEN(UNIT=3,FILE="ca.dt',STATUS='OLD")
C1 = SILL - Nuggent
CO = Nuggent
A =RANGE

NS=0
I=1
30 READ(1,* END=40) X(I),Y(l)
NS=NS+1
C WRITE(2,*)L,X(1),Y(I), Z(D)
[=I+1
GO TO 30
40  NP=0
I=1
130 READ(3,* END=41) X(J),Y(7),Z(I)
NP=NP+1
J=I+1
GO TO 130
41  N=56
P=175
DO 125J=1,P

DO 1251=1,N

HX=X(I)-X())
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HY=Y()-Y({)
C  HZ=Z(D)-Z()

D=SQRT(HX*HX+HY*HY)
IF (D.EQ.0) COV=CO +Cl
IF (D.GE.A) COV=0

IF (D.GT.0.AND.D.LT.A) COV=C1*(1-1.5*D/A+0.5*(D**3)/(A**3))

WRITE(2,*) COV
125 CONTINUE

CLOSE(2)

END
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PITSEARCH PROGRAM LG23D.F

sk 2k 3k ok s ok sk ok 3k 3k sk ok sk ok e 3k oK 3k ke ke ok ok e sk ok 2k % 3 e vk k ke Ak 3k ke sk sk 3k ok ke e ok ok ke ok e vk kK ke 3k A 3k ok ok ok 3k 3k ok 3k ke oK e ok Ak kK ok Ok ok kK
*

*Lerchs-Grossman method for determining open pit limits

*The deposit is divided into two- and three-dimensional array of rectangular blocks

*and EBV is assigned to each. These values are stored in a two- and three-dimensional
*matrix value VALC(], j, k) with dimensions:

*

*numx - number of rows

*numy - number of columns

*numz - number of levels
*

*The maximum values of these dimensions are set in a parameter statement to nx, ny

*and nz respectively.
*LOG(], j, k) is a matrix with the same dimensions as VAL and which is used to indicate

*whether block (i, j, k) is inside (=1) or outside (=0) the pit

*IPLAN(, j) has dimensions IK and JK respectively and defines contours of the optimum
*pit by storing the pit level at horizontal location (i, j)

*

*Qther working matrices have dimensions:
*IROOT(lkm, 2), ITREE(nem), IPATH(ipkm, 3), ND(nem, 2), D(nem), NORM(knm):
*a sufficient value for each of them is numx * numy * numz /20

* op4.dt----------—- input file containing Economic Block Values

* opS.dt------------ input file containing dimensions of the block model
* op6.ut---------~-- Output file

*

*

*Adapted from P.A. Dowd and revised to suit this study.
sk ok 3k ok ok sk ok sl o 3k A 2k ok ok 3k 2k A 3k e 3 3k 3 3 3K Ak 3k % %k 3K ok 3% ok 2k Ak 3k ok ok Ak sk Ak 3k vk 3k dk Ak Ak e 3k vk A vk 3k Ak ok ke Ak kK kK sk k ok ok K A Kk ¢ Ak Kk

Parameter (lkmax=2000,nemax=2000,ipkmax=2000,knmax=2000)
Parameter (nxmax=50, nymax=>50, nzmax=13)

dimension val(nxmax,nymax,nzmax),log(nxmax,nymax,nzmax),
+ d(nemax),iplan(nxmax,nymax), iroot(nemax,2),itree(nemax),
+  nd(nemax,2),ipath(ipkmax,3),norm(knmax)

data pi/3.14159263/
OPEN(UNIT=4,FILE='op4.dt,STATUS='OLD')
OPEN(UNIT=5,FILE="0p5.dt,STATUS='OLD")
OPEN(UNIT=6,FILE="op6.ut' ,STATUS='OLD")

900 format(40f9.1)

905  format(1x,40i2)

910 format(/20x, Total value of blocks included in pit =,
+ El15.5./)



920  Format('Enter the number of blocks in the x, y, and z
+  directions', 'respectively'/)

925 Format('Enter the x, y and z dimensions respectively of the',
+ 'blocks'/)

c Read in data

Write(6,920)
read(5,*)numx, numy,numz
write(6,925)
read(5,*) ixdim,iydim,izdim
do 5 k=1,numz
do 5 i=],numx
read(4,*)(val(i,j,k),j=1,numy)
5 continue
Initialise arrays and variables

Do 10 i=1, numx
do 10 j=1,numy
iplan(i,j)=0
10 continue
do 15 i=1,numx
do 15 k=1,numz
log(i,j,k)=0
if (val(i,j,k).eq.0.00) log(i,j,k)=1
15 continue
s=0.
k=0
ne=0
nem=0
ipkm=0
Ikm=0
knm=0

Begin with uppermost level of blocks and remove all positive valued
blocks. These blocks belong to optimal open pit: add thier values

to s, record their inclusion in the pit via log(i,j,l) and add them

to the contour array iplan(i,j)

o O a0

do 20 i=l, numx
do 20 j=1,numy
if (val(i,j,1).1e.0) go to 20
s=s+val(i,j,1)
log(i,j,)=1
iplan(i,j)=1
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20

25

30
32

35

[¢]

40

41

42
45

50

55
60

65

continue

increment the level counter (k) by 1 and add the blocks on the Kth

level

k=1
if (k.ge.numz) go to 400
k=k+1
if (Ik.ge.0) go to 35
ks=k
go to 380
Itr=1

Connect blocks on Kth level to the root and establish trees
itree contains tree number
d contains value of tree

nts=iroot(ltr,1)
nds=itree(nts)
if (d(nds).gt.0.) go to 55
if (Itr.1t.1k) then
Itr=ltr+1
go to 40
endif

ltc=l
if(ltc.gt.1k) then
ks=k

go to 380

endif
nts=iroot(ltc,1)
nds=itree(nts)
if (d(nds).le.0.) go to 50O
lar=ltc
lsw=4
go to 340

Itc=ltc+1
go to 45

lar=ltr
Isw=1
go to 340
call coord(node,numx,numy,kl.j,i)
if (kl.eq.1) go to 350
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70

75
80

90

95

100

ny=(Ig-1)*numx*numy-+(n-1)*numx-+m
do 80 I=1,lk '
lir=1
ntw=iroot(l,1)
ndw=itree(ntw)
if (d(ndw).gt.0.) go to 80
ntk=ntw-iroot(1,2)-1
do 75 It=ntw,ntk
na=itree(lt)
nal=nd(na,1)
na2=nd(na,2)
if (ny.eq.nal) go to 95
if (ny.eq.na2) go to 95
continue
continue
go to 350

ny=(lg-1)*numx*numy-+(n-1)*numx+m
cpm=val(m,n,lg)
log(m,n,lg)=2
ne=ne+1
nd(ne,1)=0
nd(ne,2)=ny
d(ne)=cpm
itree(ne)=ne
lk=lk+1
iroot(lk,1)=ne
iroot(lk,2)=1
if (Ikm.It.Lk) lkm=lk
if (nem.lt.ne) nem=ne
lirmlk
nd(nds, 1)=node
nd(nds,2)=ny
mbw=iroot(lir,1)
mew=iroot(lir,2)+mbw-1
mbs=iroot(lar,1)
mes=mbs-+iroot(lar,2)-1
iroot(lir,2)=iroot(lir,2)+iroot(lar,2)
iroot(lar,1)=0
iroot(lar,2)=0
if (mew+1-mbs) 100,140,120

ires=itree(mbs)
nl=mew+1
n2=mbs-1
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do 105 n=n1,n2
nf=n2-n+nl
itree(nf+1)=itree(nf)
105  continue
itree(mew+1)=ires
do 110 I=1,lk
if (iroot(1,1).eq.0) go to 110
if(.not.(iroot(l,1).gt.mew.and.iroot(l,1).le.mbs))
+goto 110
iroot(l,1)=iroot(l,1)+1
110  continue
if (mbs.eq.mes) go to 140
mbs=mbs+1
mew=mew+1
go to 100

120  do 135 m=mbs,mes
ires=itree(mbs)
nl=mbs+1
n2=mew
do 125 n=nl,n2
itree(n-1)=itree(n)
125 continue
itree(mew)=ires
mbw=mbw-1
do 130 I=1,lk
if (iroot(l,1).eq.0) go to 130
if (.not.(iroot(l,1).ge.mbs.and.iroot(l, 1).le.mew))
+goto 130
iroot(l,1)=iroot(l,1)-1
130 continue
135  continue

140  Icon=I
go to 310

145 continue
ipa=ip

150  n=ipath(ipa,1)
if (n.eq.nds) go to 155
d(n)=d(nds)-d(n)
ipa=ipath(ipa,3)
if (ipa.ne.o) go to 150
155  lar=lir
Isw=3
go to 340

170
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160  if (node.ne.ny) go to 350
ipa=ip
165 nn=ipath(ipa,l)
d(nn)=d(nn)+d(nds)
ipa=ipath(ipa,3)
if (ipa.ne.0) go to 165
170  kn=1
norm(kn)=lir
175  do 180 kt=1,kn
if (norm(kt).eq.0) go to 180
lar=norm(kt)
Isw=2
go to 340
180  continue
go to 30
185  continue
do 190 ip=1,ipk
if (ip.eq.1) go to 190
md=ipath(ip,1)
nod=iabs(ipath(ip,2))
if (ipath(ip,2).1t.0.and.d(md).le.0.) go to 195
if (ipath(ip,2).gt.0.and.d(md).gt.0.) go to 195
190 continue
norm(kt)=0
goto 175
195 nd(md,1)=0
nd(md,2)=nod
nod1=nod
ipl=ip
200 ig=ipath(ip,3)
mdl=ipath(iq,1)
d(md1)=d(md1)-d(md)
if (ipath(iq,3).eq.0) go to 205
ip=iq
go to 200

205  do 230 ig=ipl,ipk
mc=ipath(iq,1)
ndc=iabs(ipath(iq,2))
naf=ipath(iq,3)
if (ndc.eq.nod1) go to 215
ip=naf

210 if (ip.eq.ipl) go to 215
ip=ipath(ip,3)
if (ip.lt.ipl) go to 230
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220

225
230

235
240

245

250

255
260

265

go to 210
do 225 n=nit,nitk
if (itree(n).ne.mc) go to 225
if (n.eq.nitk) go to 225
mem=itree(n)
nl=n+l]
do 220 nz=n1l,nitk
itree(nz-1)=itree(nz)
continue
itree(nitk)=mem
go to 230
continue
continue
do 235 n=nit,nitk
if (itree(n).eq.md) go to 240
continue
iroot (lar,2)=n-nit
lk=lk+1
iroot(lk,1)=n
iroot(lk,2)=nitk-n+1
kn=kn+1
norm(kn)=lk
if (knm.It.kn) knm=kn
if (Ikm.1t.1k) Ikm=lk
goto 175

n=ipath(1,1)
s=s+d(n)
do 250 ip=1,ipk
n=ipath(ip,1)
nd(n,1)=0
nd(n,2)=0
d(n)=0.
node=iabs(ipath(ip,2))
call coord (node,numx,numy,kl.j,i)
log(i,j,kl)=1
if (iplan(i,j).1t.kl) iplan(i,j)=kl
continue
nel=ne
n=0
n=n+1
if (n.eq.ne) go to 280
if (nd(n,2).eq.0) go to 265
go to 255
nl=n -
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275

280

285

290

295

300

305

310
315
320

325

330

n2=ne-1

- do 270 na=nl, n2

nd(na,1)=nd(na+1,1)
nd(na,2)=nd(na+1,2)
d(na)=d(na+1)
continue
ne=ne-1
=nel
do 275 m=1,ml
if (itree(m).gt.n) itree(m)=itree(m)-1
continue
go to 260
if (nd(ne,2).eq.0) ne=ne-1
do 285 n=nit,nitk
itree(n)=0
continue
iroot(lar,1)=0
iroot(lar,2)=0
lcon=2
goto 310
continue
if (nitk.eq.nel) go to 300
nl=nitk+1
do 295 n=nl,nel
itree(nit+n-nl)=itree(n)
continue
do 305 I=1, Ik
if (iroot(l, 1).It.nit) go to 305
iroot(l,1)=iroot(l,1)-nc
continue
goto 42

=0

I=1+1

if (l.eq.1k) go to 335

if (iroot(l,1).eq.0) go to 325

goto 315

1=l

12=1k-1

do 330 la=I1,12
iroot(la,1)=iroot(la+1,1)
iroot(la,2)=iroot(la+1,2)

continue

if (lir.gt.11) lir=lir-1

lk=lk-1
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335

340

345

350

355

360

365

370
380

if (iroot(lk,1).eq.0) lk=lk-1
if (Ik.eq.0) go to 32
go to (145,290), Icon
nit=iroot(lar, 1)
nc=iroot(lar,2)
nitk=nit+nc-1
ipk=1
nnd=itree(nit)
ipath(1,1)=nnd
ipath(1,2)=nd(nnd,2)
ipath(1,3)=0
ip=1
node=iabs(ipath(ip,2))
nn=ipath(ip,1)
go to (65,350,160,350),Isw
do 360 n=nit,nitk
nnd=itree(n)
if (nnd.eq.nn) go to 360
if (node.ne.nd(nnd, 1)) go to 355
ipk=ipk+1
ipath(ipk,2)=nd(nnd,2)
ipath(ipk,1)=nnd
ipath(ipk,3)=ip
if (ipkm.It.ipk) ipkm=ipk
go to 360
if (node.ne.nd(nnd,2)) go to 360
ipk=ipk+1
ipath(ipk,2)=-nd(nnd,l)
ipath(ipk, 1)=nnd
ipath(ipk,3)=ip
if (ipkm.1t.ipk) ipkm=ipk
continue
if (ip-ipk) 365,370,370
ip=ip+1
go to 345
go to (41,185,450,245),Isw
im=0
jm=0
sm=0
do 385 i=2,numx-1
do 385 j=2, numy-1
if (log(i,},ks).gt.0) go to 385
if (val(i,j,ks).le.0) go to 385

if (val(i,j,ks).le.sm) go to 385

sm=val(i,j,ks)

174



385

C

400

405
410
415

420

450

im=i

jm=j

km=ks
continue
if (sm.eq.0.) go to 25
log(im,jm,km)=2
ne=ne+1
nd(ne,1)=0
nd(ne,2)=(km-1)*numx*numy+(jm-1)*numx-+im
d(ne)=sm
itree(ne)=ne
lk=lk+1
troot(lk,1)=ne
iroot(lk,2)=1
if (nem.lt.ne) nem=ne
if (Ikm.It.1k) lkm=lk
nds=ne
Itr=lk
go to 55

print results

write(6,910) s
kollu=0
kol=0
koll=0
do 415 k=I, numz
do 410 j=1,numy
do 405 i=1, numx
if (log(i,j,k).eq.1) iplan(i,j)=k
if (log(i,j,k).eq.1.and.val(i,j,k).1t.0) kol=kol+1
if (log(i,j,k).eq.1.and.val(i,j,k).gt.0) koll=koll+1
if (log(1,j,k).eq.1.and.val(i,j,k).ne.0) kollu=kollu+1
continue
continue
continue
write(6,*)'total number of blocks in pit’,kollu
write(6,*)'number of positive blocks in pit',koll
write(6,*)'number of negative blocks in pit' kol
do 420 =1, numx
write(6,905) (iplan(i,j),j=1,numy)
continue
stop
zz=1
write(6,900) zz,nem,lkm,node
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close(4)

close(5)

close(6)

stop

end

subroutine coord(n,numy,k.j,1)

subroutine to determine the array index co-ordinates of node (block)
n given that there are ik (x direction) x jk (y direction) nodes

on each horizontal level

Array index co-ordinates are returned as (i,,k)

kt=n/(numx*numy)
k=kt+1
if (n.eq.kt*numx*numy) k=k-1

jt=(n-numx*numy*(k-1))/numx

=+l

if ((n-numx*numy*(k-1)).eq.ik*jt) j=j-1
i=n-numx*numy*(k-1)-numx*(j-1)
return

end
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c PROGRAM PITSEARCH FOR THE MFNN MODEL : PMFFN.F
C***********************************************************************
%k %

C a, q =slope angle, b,r =intercepts, x,y=coordinates, z=E.B.V

c se, sw = east and west slope walls equatione respectively.

c se=y-ax-b

c SW=y-qx-T

c pve = Optimum Pit Value when East Slope Wall moves and

c West Slope Wall is Stationary

c

c pve = Optimum Pit Value when West Slope Wall moves and

c East Slope Wall is Stationary

c

¢ op.dt: THE INPUT FILE OF BLOCK COORDINATES & EBVs
¢ op.ut: THE OUTPUT FILE

c g() : grade

C***********************************************************************

*

Dimension se(300),sw(300),x(300),y(300),ebv(300)

c***********************************************************************
*

¢ Read in Gridded Blocks Coordinates & Economic Block Values
c***********************************************************************

*

open (unit = 3, file ='op.dt', status = 'old")
open (unit = 4, file = 'op.ut', status = 'old")

c**************************************************************
NS=0
I=1

30  READ(3,* END=40) x(i),y(i),ebv(i)
NS=NS+1

I=I+1
GO TO 30

40 do10i=1, 300
sum =0
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b=0.5

r=0.5

se(i) = y(1) - a*x(1) - b
sw(i) =y() + q*x(i) - r

¢ Shifting East Slope Wall while West is constant

C******************************************************************

if ((se(i).gt.0).and.(sw(i).gt.0)) then
sum = sum + ebv(i)

pve = sum

write(4, *) x(i),y(i),ebv(i), 'is included in pit’

else
write(4, *) x(i),y(i),ebv(i), 'is not included in pit'
write(4, *) 'Pit Value =',sum

b=b+0.5

if (b.ge.100) write (4, *) 'End Calculation for pve'

go to 140
end if

10 continue
50 continue

c Shifting West Slope Wall while East Slope Wall is constant

C******************************************************************

140 do110i=1, 300
sum=0

a=1
q=l1

b=0.5

r=0.5

se(i) = y(i) - a*x(i) - b
sw(i) = y(@) + q*x() - r

if ((se(i).gt.0).and. (sw(i).gt.0)) then
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sum = sum + ebv(i)

pvVW = sum

write(4, *) x(i),y(1),ebv(i), 'is included in pit'
else

write(4, *) x(i),y(i),ebv(i), 'is not included in pit’

write(4, *) 'Pit Value ="',sum

r=r+0.5

if (r.ge.100) write (4, *) 'End Calculation for pvw'

goto 170
end if

110 continue
150 continue

170 if (pve.ge.pvw) write (4, *) 'Optimum Pit Value =',pve
if (pvw.ge.pve) write (4, *) 'Optimum Pit Value =',pvw
close(3)
close(4)

end





