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Abstract

In many physical processes linear models can arise from the discretization of a con-
tinuous process in order to describe behavior over an entire field. An important
consequence is the models may have more parameters than observations. To alleviate
this problem, one can impose a smoothness constraint on the parameters that reflects
some prior knowledge of the physical process in order to obtain sensible estimates.

A linear model is developed that has random explanatory and response variables.
and a smoothness penalty is imposed based on the signal-to-noise ratio of the model.
Results are presented assuming the value of the ratio is fixed. and when a procedure
for estimating its value is used. The estimates perform well using a prediction based
criterion in both situations. Robust estimation procedures for the model are also
developed.

The methods are applied to modelling temperature and salinity data in the Cal-

ifornia Current, with the goal of using shallow water observations to predict deep

ocean readings.



Chapter 1

Introduction

1.1 Introduction

The use of multiple linear regression is widespread in the study of many problems in
the physical sciences, such as chemistry, oceanography and climatology. A problem
that can arise in the modelling of many physical or dynamic processes is having
explanatory variables that are not fixed, but represent measurements of the same
quantity at various locations in either space or time. These could be temperatures at
different ocean depths, air pressures collected over time or plasma absorption levels
at various frequencies collected from an infrared (IR) spectrum. Since the variables
are measured with some error, often over a fixed grid, it is natural to think of them
as realizations of a continuous random process. Usual linear regression modelling
deals with fixed explanatory variables. We are describing what are often referred
to as errors-in-variables, or measurement error models. Fuller (1987) gives thorough
coverage of the topic, while more recent developments are reviewed by Van Huffel
and Vandewalle (1991) and Van Huffel (1997), while Carroll, Ruppert. and Stefanski
(1995) describe extensions to nonlinear models.

The more important complication arises out of the fact that the values can corre-

spond to grid points. In this case it is quite possible to have more parameters than
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observations, or an underdetermined model. Our focus will be to study linear models
y=XB+e€ (L.1.1)

under these conditions.

Since the model is underdetermined most classical estimation methods will not be
appropriate. Instead, we will make the initial assumption that there is some inherent
smoothness in the behavior of 3 due to the fact that the measurements in X represent
the same quantity over different times and locations. This can be seen in the following
examples. We will discuss two of these problems in more detail later in this chapter.

A question that can be of interest in ocean studies is estimating the sources of
water temperature changes. We can suppose there are two main sources for heating
or cooling of a water column: heat entering vertically from the atmosphere, or an
advection of warm or cool water coming from deeper locations. Given an X matrix
that contains the vertical heating, and temperatures in the y vector, we could estimate
the horizontal advection. A derivation of this model will be given in section 1.2. The
B vector represents the horizontal advection in this problem. It would be reasonable
to assume some inherent smoothness in this parameter from a physical point of view.

A more complicated oceanographic problem, as discussed by Dowd and Thompson
(1996), is interpretation of data obtained from a ship-borne current profiler because
of the presence of tides in the record. Their method utilizes a system of differential
equations, referred to as shallow water equations, which are discretized to give a linear
model. They use the current data to estimate tidal flows across the open boundary
of the model. The tidal flows comprise 8. and an assumption of smoothness in the
tidal flows is appropriate.

In general, the imposition of constraints in oceanographic and weather predic-
tion models is important because the models are extremely large, but there are only
a limited number of observations available. Therefore it is appropriate to penalize
departures from spatial or temporal smoothness. These methods can be used effec-
tively in data assimilation (Thacker and Long 1988), a procedure which blends new

observations with the results of a previous forecast to predict a future state.



Problems of this type also arise in chemometrics. Boswell-Purdy (1995) stud-
ied infrared absorption data of glucose-spiked plasma, the dependent variable being
glucose concentration and the explanatory variables being absorption levels. The ab-
sorption levels are measured at various wavenumbers. It is reasonable to think of the
absorption levels being sampled from a continuous spectrum, and there should be
some smoothness in the B vector which relates the absorption levels to the glucose
concentration.

Finally, consider a linear model in which we wish to predict deep water charac-
teristics, such as density or temperature, using shallow water observations. In this
case our X matrix would contain the upper water observations, and we would expect
a natural smoothness in the parameter that related these observations to the density
or temperature in the deep ocean.

The underdetermined regression model can be considered as an example of an
ill-posed inverse problem (O’Sullivan 1986, Hansen 1992). These are problems in
which, to quote O’Sullivan, “classical solutions may be unacceptably sensitive to
slight perturbations in the data.” Inverse problems and methods arise frequently
in geophysics and related areas (Vogel, Ofoegbu, Gorenflo, and Ursin 1990, Bennett
1992) and are reviewed by Tarantola (1987).

In the mathematics literature, the term regularization is often used to describe
the imposition of a smoothness assumption on the model parameters (Tikhonov and
Arsenin 1977). Regardless of the term used, the basic principle in these problems is to
find a solution that is consistent with the observations and a prior: beliefs about the
behavior of the parameters. These beliefs often arise from the physical phenomenon
in question.

There are several ways to introduce a smoothness constraint on the estimator
arising from (1.1.1); these will be discussed in chapter 2. Our approach will be to

consider (1.1.1) as representing a model in which
observation = signal + noise (1.1.2)

where both the signal and noise are random quantities. We will then impose our



smoothing based on the signal-to-noise ratio of the model. We note that what we are
calling smoothing will not be based on smoothing in spatial dimensions. Instead the
smoothing, or shrinkage, of the estimators will rely on the covariance structure of the
explanatory variables. This point will be discussed in greater detail in sections 2.2
and 3.3.2.

A priori knowledge of the signal-to-noise ratio, or at least a possible range for its
value, may be available in some dynamic models. Although this will be case-specific,
a general argument in favour of this is as follows. We can think of the noise term
as being comprised of model error and measurement, or instrumental error. We can
often have a good idea of the instrumental error variability, such as the accuracy in
temperature recordings. We can use this knowledge to help set a bound on the noise
variability, which can lead to a bound being placed on the signal-to-noise ratio. A
similar assumption is often made in measurement error models (Casella and Berger
1990, pg. 587). This will be discussed in more detail in chapter 3.

The form (1.1.2) is similar to that used in objective analysis, or optimal interpo-
lation. As described by Bretherton, Davis, and Fandry (1976), objective analysis is
a method which can be used to interpolate between observations taken on an array.
This allows for the construction of an estimate for an entire field from scattered ob-
servations. [t is used in both meteorology and oceanography. We present a simplified
version of objective analysis at this point to illustrate the method, and to briefly
indicate how it compares with the method we will propose.

Symbolically we can write (1.1.2) as
vi=0i+¢
where each observation y; = y;(x;) depends on its location x;. We assume that
E(6;) = E(«) = 0
Bleie;) = { K

0 otherwise

E[0(x)0(x + Ax)] = o2r(Ax)



E[ei(x;)] = 0 (error, signal uncorrelated)

where r(Ax) is the correlation function. So the signal covariance only depends on
the distance between the locations.
We want to estimate (x) at an arbitrary location x, using the available observa-

tions yi,...yn. We assume that § is formed as a linear combination of the y; values:
6(x) = a1y1 + ... + anyn + error .
We then estimate a by minimizing
E[(y(x) - &'y)?] .

Given 02, 02 and r(Ax) we find

- —1 -

[ I +¢ r(x; —x2) ... r(Xp.—Xn._1) [ r(x — x;)

& — r(xz — xi) l+4q cer T(X2 —Xpn_2) r(x — x2)
i M(Xn-1 —X1) r(Xp-1 —X2) ... l1+g¢q ] i r(x — X,) |

! = 0%/0? can be thought of as the signal-to-noise ratio.

so § = &'y, where ¢~

Our model will also utilize knowledge of the signal-to-noise ratio, but there are
differences in the approaches. Our model will be more general because it will allow
the explanatory and response variables to measure different quantities. Objective
analysis, as described above, assumes the signal and noise measure the same quantity.
The presence of explanatory variables in our model will also mean we will be able
to combine information in the X matrix in our model with assumptions about the

covariance structure.

1.2 Motivating Examples

We now discuss two distinct problems that were alluded to in section 1.1, one of which

will be analyzed in chapter 5.



1.2.1 Discretization of a Dynamic Model

Consider the example of water temperature change described in section 1.1. The fol-

lowing modified diffusion equation can be used to describe water temperature changes
over time and depth: "
ar °T
— =k—— +T(z¢), 1.2
o = kg + TG, (1.2.1)

where k represents a diffusion coefficient for heat entering vertically, and ['(z, t) repre-
sents horizontal advection, which we can think of as warm or cold water entering the
water from deeper locations. Our goal is to solve for ['(z, ) at all locations and times,
given k and scattered temperature measurements. To achieve this, we demonstrate a
procedure to discretize (1.2.1) to yield a linear model of the form (1.1.1).

We assume a constant time step At and constant spatial distance Az, and dis-

cretize (1.2.1) by writing

Tit.H — Tit k ¢ YA t t+1
At = (AZ)Z (Ti+l - ‘ZT‘z +T’i—l) + ri N
where i = 1,....n represents spatial location and ¢t = 1,..., N represents temporal

location. We can rewrite this model as

T = aTf, + (1 = 2a)T! + Tt | + AtlH!

where a = kAt/(Az)?. We will use the initial and boundary conditions T = Ti,=0
and T? = 0 for notational purposes.

Taking all values at time ¢ together in a vector gives us

T = AT + At (1.2.2)
where
1 —2a a 0o o ... o’
« l1-2a a 0O ... (14

(14 (14 oo 0 a 1 -2a



If we stack all our values of T* together, we find

I 0 0 ... 0 T I'!
-A I o ... 0 T2 rz
) = At
0 0 -A I ¥ KA ry
or
D, T =D,I' (1.2.3)

where D, = AtL
Let y represent the scattered observed temperatures. These will be related to the

true temperatures by
y=GT +e€.

[n the simplest situation the matrix G could be a matrix of 1’s and 0’s. indicating
at which grid points we have observations. We can rewrite y as a function of '
using (1.2.3):

y=GD;'D,T +¢.

We now see we have transformed our model (1.2.1) to the regression model (1.1.1),
where X = HD{'D;. We have used an explicit differencing scheme, which may
be numerically unstable for large values of At. It could be replaced by an implicit
scheme which would allow large time steps. The only thing in this derivation that
would change is the matrix Dy; each identity matrix would be replaced by another
matrix, say B, which would be similar in structure to A.

The X matrix contains the diffusion coefficient k£, which we have treated to be
constant. However, we could treat that as a term that is measured, with error, at
our grid points. We would still obtain a linear model from the discretization, but
the A matrix would then change over time, and its elements would include of =
(At/(Az)?)kf. This example shows how dynamic models can be treated as linear
models in many cases, allowing us to use statistical procedures that do not ignore

important dynamics that are known about the problem.



1.2.2 Prediction of Deep Water Measurements

Our main example involves modelling deep water temperature and salinity using a
multiple linear regression model, where shallow water temperatures or salinity read-
ings are the explanatory variables. The two data sets consist of measurements col-
lected from deep CTD (conductivity-temperature-depth) stations off Point Sur, Cal-
ifornia during the summer months. The data are described in detail by Haney, Hale,
and Collins (1995). Because some of the stations are close together it is not clear
that the samples collected are independent. To deal with this Haney et al. (1995)
removed neighbouring CTD stations that had a correlation greater than 0.5 with a
station previously selected for analysis. This left a data set of 64 stations, where the
average distance between stations was 25 km. Haney et al. (1995) felt this left a
data set in which locations could be treated as independent, and we will use the same
assumption in our analyses. At each station we have a collection of 200 salinity and
temperature measurements, taken from the sea surface to a depth of 2000 meters, at
10 meter intervals.

This is an important practical problem in oceanography for many reasons. Clearly,
far more observations are available in the upper ocean. Also, new ocean equipment can
carry out measurements that are nearly synoptic in time, but only if the measurements
are restricted to a shallow water range (Haney et al. 1995). Therefore it is important
to discover the extent to which an upper ocean survey can describe features in the
deep ocean.

The linear model we will study uses the readings in the upper 800 m as our ex-
planatory variables. This means we have 80 parameters and only 64 observations,
so the model is underdetermined. The example also has the other characteristics in
which we are interested. It is reasonable to assume our explanatory variables are ran-
dom, naturally thought of as realizations of a random process, with the observations
measured with error. Finally, it may be reasonable to have some a prior: knowledge
of the signal-to-noise ratio. At the very least, we would expect it to be small. This is

because it will be the variability of the noise that will play a major role, particularly



if we attempt to use very deep observations as our response.

1.3 Outline

This thesis will be broken down in the following manner. In chapter 2 we review
the manner in which we can introduce a smoothness constraint in linear regression
models, and some of the present methods used for choosing the smoothing parameter.
We will see some of them are not applicable in underdetermined models. In chapter
3 we derive our model and estimators, first under the assumption of a known value
of the signal-to-noise ratio, followed by a method for estimating its value. This
chapter will include simulation results on the performance of the method, based on
its predictive ability, even though it is not derived from a prediction-based criterion.
In chapter 4 we discuss some robust extensions, which give protection against outliers
in the residuals and influential observations in the explanatory variables. Chapter 5
contains analyses of the California Current data sets described in section 1.2. Finally,

chapter 6 will summarize our results and discuss some possible further research.



Chapter 2

Background

2.1 Introduction

In this chapter we will give an overview of the use of smoothing techniques in statis-
tics, focusing on the linear model. This will include detail on the need, and desire, for
smoothing in many situations, and approaches by which we can impose smoothness
constraints in problems. We will discuss some of the well known methods for choosing
the smoothing parameter, and how they are often not applicable to the underdeter-
mined regression model. This will lead us into the proposed methods of the next

chapter.

2.2 Notion of Smoothing

As mentioned in the introduction to this chapter, we begin with some motivation on
why we may want to use smoothed estimators. A smoothed estimator is one which
attempts to achieve a balance between a good fit of the model and observations and
the regularity we wish to impose on our solution. In most applications a smoothed
estimator has greater bias than, say, the maximum likelihood estimator (MLE), but
has lower variability. In multiple linear regression much of the original motivation for

the use of smoothed estimators was the presence of multicollinearity in the data. If

10
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we consider the linear model
y=XB+e (2.2.1)

where € ~ N(0, o%I), multicollinearity implies that our least squares estimator
Bi = (X'X)"'Xy (2:2.2)
although unbiased, would be highly variable because X’X is ill-conditioned. This led

to the development of ridge regression (Hoerl and Kennard 1970), which uses
B, = (XX +AC'C)" X'y . (2.2.3)

In many cases C = I is chosen. We can think of \ as the smoothing parameter. We
will outline some different approaches for deriving this estimator in the next section.
This estimator is clearly biased for A > 0, but has smaller variability than the least
squares estimator (Weisberg 1985, pg. 255). Hoerl and Kennard (1970) show that,
for nonstochastic A and C = I, we can find a A > 0 for which

E[(B) — B)(B\ — B)] < E[(B,, - B)(B., — B)] -

An assumption of smoothness of 3 is often reasonable, as indicated in chapter 1.

Before we continue we will make a comment on terminology to be used in this
thesis. In the statistics literature estimator (2.2.3) is called a smoothed estimator
regardless of the choice of C. In much of the work in ocean or climate studies. for
example, (2.2.3) would not be referred to a smoothed estimator if C = L. In that case
it may only be described as a shrinkage estimator, because all that has been penalized
is the squared length of B. “Smoothness”, in the physical sciences, often refers to
spatial smoothing, i.e. penalizing specific local or global properties of 8, which can
only be achieved with C # I. However, throughout this thesis, whenever we refer
to a smoothed estimator, it will mean an estimator of the form (2.2.3) with C = I
permitted.

We should note that the use of smoothed estimators occurs in many other types of

problems, as discussed by Titterington (1985). This includes nonparametric density
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estimation, smoothing splines and multinomial smoothing. In all cases the following
theme is present: find an estimator which achieves a reasonable tradeoff between a

good fit to the data and smoothness of 3.

2.3 Methods of Smoothing

There are several ways to derive the ridge, or smoothed, estimator (2.2.3). We will
outline several methods, which arise from the frequentist and Bayesian perspectives.

All of these results assume ) is fixed, as is the X matrix.

2.3.1 Penalized Least Squares

Perhaps the simplest way to derive the estimator (2.2.3) is to minimize the sum of
squares function subject to a constraint on B by introducing a Lagrange multiplier

term:

HBD(Y —XB)'(y —XB) + Ag'C'CB

By differentiating with respect to 3 and setting the result equal to 0 we obtain (2.2.3).
This method can also be seen as penalized likelihood. if we assume that € is normally

distributed. This will be the approach used to find our estimators in chapter 3.

2.3.2 Augmented Data

Another method is the use of augmented data (Askin and Montgomery 1980). I[n this
method we assume that ¢ = —v/AC’3, where ¢ ~ N(0,I) is independent of €. We

then augment our X, y and € matrices as follows:

Yaug = xaugﬁ + €aug
y X €
HR AN

(Yng - Xangﬂ)'(yaug - xaug,B)

Then minimizing



13

with respect to 3 gives us the solution (2.2.3). Thacker (1988) refers to this augmenta-
tion procedure as introducing “bogus” data into the problem, which are hypothetical

observations of slope, curvature or other indications of a variable’s smoothness.

2.3.3 Bayesian Approach

We can also derive (2.2.3) from a Bayesian perspective. Suppose that the prior

distribution of 83 is
2
B~N (o, "T(C'C)-‘)
where C’C is nonsingular, and a noninformative prior is placed on A. If C’C is of

rank k£ < p we can use

AN A g
m(B) x (T) exp (-;ﬂ C Cﬁ)

which is an improper prior. There are cases when it may be appropriate to choose
C’C as singular, such as when penalizing approximate derivatives. In either case a
posterior distribution can be computed.

We find the posterior distribution is proportional to

m(Bly) «x =(B)f(yIB)
o« o~ (MP)AP2 exp[(1/202)Q(B)] (2.3.1)

where Q(B) = (y — XB)'(y — XB) + \3'C’'CB. The posterior mean of (2.3.1) is
(2.2.3).

Barry (1995) considers a joint prior density
m(B,0% ) x m(0?, A)w(B|o?, )

and derives Jeffreys’ prior for o2 and A from the likelihood function. See Lindley and

Smith (1972) for more discussion of the Bayesian linear model.
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2.3.4 Other Approaches

There are other ways to use biased estimators in linear regression, although they are
not often referred to as smoothed estimators. We will discuss two of them at this

point: principal component regression and partial least squares.

Principal Component Regression

[n principal component regression (PCR) we wish to eliminate the dimensions of X
which are causing a multicollinearity problem (Weisberg 1985, pg. 257) by examiring

the principal components of X.
Let the singular value decomposition (SVD) of X be

X = UDV’ (2.3.2)

where U is a n x n orthogonal matrix, V is a p x p orthogonal matrix, and D has
the singular values of X along its main diagonal and zeros elsewhere (Golub and
Van Loan 1989, pg. 71).

We use (2.3.2) to rewrite (2.2.1) as -

y = XVV'8+e
= Pa+e€

where @ = V'3 and P = XV. Then, provided X'X is invertible, & = (P'P)~'P'y =
V'B,,. We then eliminate the dimensions for which the singular values of X are small.
The number of principal components to retain may be determined by cross validation,
which will be described in detail in the next section. PCR assumes the X matrix is
centered and scaled.

In the underdetermined model, assuming rank(X) = n, there would be p — n
singular values equal to 0. Simulation results (Frank and Friedman 1993) suggest

PCR performs worse than ridge regression.
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Partial Least Squares

Partial least squares (PLS) is a commonly used technique in chemometrics. It is

described in detail by Helland (1988) and Frank and Friedman (1993). PLS forms

a relationship between y and X by constructing new explanatory variables, each of

them being a linear combination of the rows of X, x},....x’. It differs from PCR,

however, in that the values of both x!/ and y influence the new variables formed.
Following the notation of Helland (1988), suppose we can write

X = 3 tipl+E.

=1

Zti(b‘ + f,

=1

y

where the t; vectors may be considered latent variables. The goal is to find the p} and
¢i values using both of these equations to get a good fit. The values for t;, p; and ¢;
are determined by induction, where each t; is determined as a linear combination of
the x’-residuals from the previous step in the inductive process. There are different.
but equivalent, algorithms, to do this. The number of terms a to be used must also
be found: cross-validation is often used to determine its value.

All three methods shrink the least squares estimator (2.2.2), in the sense that the
length of the resulting estimator is shorter. However, ridge regression and PCR will
shrink (2.2.2) in all eigendirections, while this may not be the case for PLS (Frank
and Friedman 1993).

Stone and Brooks (1990) developed the method of continuum regression, in which
they consider a range of possible estimators, each associated with a parameter v and
a vector c,. They show that ridge regression, PCR and PLS are all special cases of
the method. However, Bjorkstrom and Sundberg (1996) illustrate that the predictor
x’B may not change continuously as v is varied. In these cases, the correspondence
between the continuum regression estimators and the ridge regression predictors is

not one-to-one.

Frank and Friedman (1993) and Breiman and Friedman (1997) discuss extensive
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simulation results to compare these methods, and find that ridge regression tends to

outperform the other two.

2.4 Choice of Smoothing Parameter

Up to now we have assumed that the smoothing parameter was fixed. In most in-
stances it will have to be estimated from the data. We will now discuss some of the
methods that have been proposed in the literature, and how there are problems with
many of them in underdetermined models. They may not be applicable or they require
very strict model assumptions. Many of these methods are discussed in Titterington
(1985) and Hall and Titterington (1987).

Many methods try and choose the smoothing parameter that will yield a good

estimator of the minimizer of a mean square error criterion, such as

E[(8 —B,)(B — B))] or E[(XB — XB,) (X8 - X3,)]

2.4.1 Review of Methods

Lawless (1978) summarizes many of the early methods proposed for choosing ridge
parameters. The methods are motivated by using the SVD of X in (2.3.2). In our
discussion of principal component regression, recall that we defined o = V’'B. Hoerl
and Kennard (1970) show that choosing A < o?/a2,, ., where a2, = max(a?,.... a?),

will ensure

E[(B - B8,)(B - B <El(B-BL)(B - B,
under the assumption that C = I. This is used as the basis for choosing (Lawless
1978)

~2
A=_F2

P A2
=1 O
where 62 is an unbiased estimator of o2.

This choice presents a problem for us, because we do not have the least squares
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solution to use. Other methods presented by Lawless (1978) also have the disadvan-
tage of depending on the ordinary least squares solution. Hoerl and Kennard (1970)
replace 3_7_, 4? with max(&2,..., a?), but the same problem mentioned above exists.
By their argument it also seems that this choice of A may not impose enough smooth-
ing in the model. The reason is that, although A = 02/a2,,_ will give us smaller MSE
than the least squares estimator, this choice of A is not necessarily close to the one
that minimizes the MSE; it may be a great deal smaller.
Since

El(y - XB)'(y — XB)] = no?
Hall and Titterington (1987) suggest we could try to find A such that

(y — XB,) (y — XB,) = no?

The drawback to this approach is it requires a good estimator of o2.

Wahba (1983) suggests -
(y — XB,) (y — XB,)
n —tr(H,)
could be a good estimator of o2, where Hy, = X(X'X + AC'C)~'X'. This leads us to

consider A that solves

(v — XB,)(y — XB,) = *[n — tr(H,)]

Wahba (1983) refers to (n —tr(H,)) as the “equivalent degrees of freedom for error”.
This requires a consistent estimator of o2, which is not available in our context.

An approach that has been used in ill-posed problems for choosing a smoothing
parameter is the L-curve method (Hansen 1992). It examines the plot of B;C’ Cﬁ \
versus (y — X3 ,\)’(y—-XB ») as a function of A, often on the log-log scale. The criterion
proposed is to choose the value of A that corresponds to the point of maximum
curvature, or the corner point, on the L-curve. The justification for this choice is
a smaller value of A will give a larger length of 3, with only a marginally smaller
residual, while a larger A will produce a larger residual and only a marginally shorter
B r- Clements, Carroll, and Horicek (1996) have used the method in studying an

inverse problem in electrocardiography.
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2.4.2 Bayesian Approach

We return to our Bayesian derivation of (2.2.3), which was the mean of the posterior
distribution (2.3.1). Using a fully Bayes approach, A is a hyperparameter with a

noninformative prior. First, we rewrite the exponent Q(3) in (2.3.1) as
Q(B) =Q(B)) + (B - B)M™ (B - 3,)
where
Q7(B)) =(y — XB,\)(y — XB,) + (XB,)(y — XB,)
and M = (X'X + AC’C). Then we can write (2.3.1) as
A A o R (- Y
IX'X + AC'C|i72 P | 242
x oPXX + ACCI  exp [ (8~ B,M(8 - B,)]
x w(o?, A)7(Blo?, A)

7(B,0% 1) «

We then find the marginal posterior of A by integrating =(o%, \) over o2. This
eventually yields the marginal posterior, post{\):

A\P/2
|xrx + ACICII/')

post(\) o [@(B))]'™*

We could choose the mode of this distribution as our choice of \.

[f we do not take this approach, empirical Bayes methods must be used. Nebebe
and Stroud (1986) define the distinction between full Bayes and empirical Bayes as
depending on one’s willingness to assign a prior distribution to the hyperparameter

A and integrate with respect to A, or to use a point estimate for A as if it was known.

2.4.3 Crossvalidatory Choice

One of the most common methods of choosing A is by some type of crossvalidatory
choice; see Stone (1974) for one of the original overviews of the topic. It usually

involves omitting one data point at a time, calculating estimators using the remaining
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n— 1 data points, and seeing how well we predict the value of the omitted observation.
This is repeated for each observation. Mathematically, if we write our estimate of 8

using n — 1 observations as
B = (XpX + AC'C) ' Xy

where X(;), ¥(;) are the X and y matrices with the ith row removed, we could choose
X as the value which minimizes
1 & -
CV(A) = - ;(yi - xiB)? (2.4.1)
We can rewrite (2.4.1) in terms of the full X and y matrices, modifying the results of
Weisberg (1985, pg. 293). Using (2.4.1) is often referred to as leave-1-out, or ordinary
cross validation (CV).

The idea of ordinary CV can be extended to leaving out groups of data at once,
sometimes called multifold CV. This method has often been used in model selection
procedures, e.g. Shao (1993).

The bootstrap can also be used for choosing A, again using a prediction based cri-
terion. Delaney and Chaterjee (1986) outline an algorithm for its use, which involves
measuring the loss in predicting points not selected in the bootstrap sample.

Although ordinary CV has an appealing form, and is based on a prediction cri-
terion. which is often the focus of regression modelling, it can break down in certain
situations. Golub, Heath, and Wahba (1979) show that if X is non-zero only along
its main diagonal, then (2.4.1) does not have a unique minimizer in A. For this reason
they proposed to modify ordinary CV, giving it the appropriate name of generalized
cross validation, or GCV. Since this method is used in many contexts, such as ridge
regression, nonparametric regression and spline models, we will discuss many of the

properties of GCV estimators in the next section.
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2.5 Generalized Cross Validation

As previously mentioned, GCV can be viewed as a generalized. or weighted version,
of ordinary CV. It chooses A to minimize

n[(I - H)y][(I- H)y] (2.5.1)

GCV(A) = [tr(@ = H)J2

where H = X(X'X + AC'C)~'X'. Golub et al. (1979) refer to GCV as a rotation-
invariant form of ordinary CV. If we think of X as a mapping from an arbitrary space
&y to &, Wahba (1978) describes the GCV estimate as coming from rotating the &,
coordinate system to a new design matrix X, such that X is circulant (each column
of X is equal to the previous column rotated downwards by one element), and doing
ordinary CV in the new system.

Craven and Wahba (1979) introduce GCV for choosing the smoothing parameter
in spline models. GCV has been used in many applications in atmospheric models
(O’Sullivan and Wahba 1985) and in larger scale models, such as numerical weather
prediction (Wahba, Johnson, Gao, and Gong 1995).

Let Agcy denote the value of A which minimizes (2.5.1). Golub et al. (1979)
propose that Agcy is a good estimator of A which minimizes the following expected

predictive mean square error (EPMSE):

EIPMSE(\)] = —~E[(X8 - XB,)(XB - X3,)

1 . o?
= ;(Xﬂ)'(l - H)’X8 + 7tf(H2) (2.5.

| 8]
w
(V]
A

We will let :\EngE denote the A value which minimizes (2.5.2).
The value Aoy is random, since it depends on y. However, much of the original
work on GCV does not deal with ic;cv but :\E;ch, which minimizes the expected

value of (2.5.1):

(2.5.3)

E[GCV(\)] = n [(Xﬂ J(I-H) Xﬁ:(rlo; [;I)—F?tr(H) + tr(H )1]
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Therefore S‘EGCV is a nonrandom quantity. The following results, proven by Golub
et al. (1979), establish how we expect Aecev to behave relative to Xepmse, and the
assumptions required:

Result 2.1: Define

_{2te(H) | [tr(H)J? 1
”‘[ n +ntr(H2)](l—tr(H)/n)2

Then ;\EPMSE and iga(;v satisfy

_ E[PMSE(gev)] _ 1 +h(Agpmse)
E[PMSE(Agpmse)] ~ 1 — h(Aecev)

However, this result holds if and only if 1 — h(:\gccv) > 0, and it can be shown that

r

this will not be true if n < p. Wahba (1990, pg. 57) makes this point in a different
context.

Golub et al. (1979) prove the following result in the underdetermined case, given
certain assumptions on the X matrix. Specifically, we assume that the sum of the
squared elements in X remains bounded as the number of columns of X increases.
We also make an assumption on the behavior of the eigenvalues of XX', as described
in the following result.

Result 2.2. Suppose

n—aoco

o Iﬂ [o o]

2 T 2
E.z--<k < oo for all 2 hm—g Ez;-:k < oo
i=1 g= ’ ni:lj:l N >

and the eigenvalues of XX', \,, v=1,...,n satisfy A\, ~ nv™™, where m > 1. This
o<
means that k3 = Z v™™. Then

v=1

t_r(nﬂ —0, _r[:tri(HI‘I)"]’: —0 if nAY™ 5 00 .
Result 2.1 may now be applied to showl, | 1 asn - 00 O
Craven and Wahba (1979) give similar results for smoothing splines. Wahba (1977)
gives a slight simplification of the results in Golub et al. (1979). If n > p, then as

n — oo, A
E[PMSE(Aggev )] ~140 (E)
E[PMSE(AgpmsE))] n




[
[\

lfrn,p— oo, Y82 <00, A, =O0(nv—™), where m>1,v=1,...,n, then

E[PMSE(Azcev )]
E[PMSE(Agpask)]

As we said above, these results do not make any claims about the behavior of :\ch-

=1+0(1)

Kay (1992) extends some of these results on the optimality of Aeccv. We include
them at this point to illustrate the strict conditions we need to place on the structure
of the model, especially the X matrix.

Kay (1992) uses the generalized singular value decomposition (GSVD) (Van Loan
1976) to express (2.2.1) in terms of the singular values of X and C. The GSVD of X

and C is as follows:

X=UD,P,C=VD,P (2.5.4)
where
(ML,0) ifn>p
Di=¢{ (M,0) ifn<p ,D2=(C.,0)ifg<p
M, ifn=p
and M, = diag(m,,...,m,), C; = diag(c, .-, Cq), where t = min(n, p). The matrices
D; and D; satisfy D{D; + D3D; = I (Golub and Van Loan 1989, pg. 471). The
U and V matrices are orthogonal, while P is non-singular. The matrices M; and
Ci may not be square; the m; and ¢; values may run along the main diagonal of a
non-square matrix. Kay (1992) uses the GSVD to obtain the following result:
Result 2.3. Assume p = O(n), ¢ = O(n), n is large and that the following are

true:

l. Assume m} ~ ni™*/d;, ¢ ~ dzi* as n — oo, with constants d; > 0, d; > 0,

v=pu+K>1and p,c 2 0.
2. Assume A — 0 as n — oo, while nA/? — co.

3. Assume
o0

b= did2 Y B < oo

=1
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Then

2p, v/(2v+1)
iz } (1+0(1))

:\EGCV = [m

where o(1) = 0 asn — oc and
©0 dz
— -1/v -
k2 = (di/d2) /o (1 + zv)?

[f we use :\gngg as defined previously, then as a corollary we obtain

AEGCV
— ~ 1
AEPMSE

where

(1+0(1)) , ks = (dl/dz)—‘/v/:" : r’dz

02k3 v/(2v+1)
) T

AEPMsE = ( vy
The corollary is an extension of Result 2.2, with the assumption on the behavior of
the m; values being similar to the assumption on the eigenvalues made in the previous
result. The assumption made in point 3 of the result. involving the elements of the
unknown parameter vector 3, is an additional strict assumption that is needed to
achieve the desired optimality.
Li (1986) also gives convergence results based on the singular values of X, but
assumes C =1 in (2.2.3). Li (1986) proves that

PMSE(Agev ) Pl o
inf)>o PMSE())

This requires that

inf E[(X8 —XB,) (X8 —XB,)] > o0 as n — oo

and
—Z Ai /— Z/\? —0asn— o0
n t=m+1 n t=m+1
where A\; > X; > ... > A, are the eigenvalues of X'X, and m is chosen such that

m/n — 0. Li (1986) states this means the coefficient of variation of the \;’s tends to

infinity as n — co. Hence we have a convergence in probability result for Agcy .



This final result does show we have an asymptotic optimality result for Agcv,
but it requires some strong assumptions on the X matrix. It does hold, though, if
n < p. This result is also derived under the assumption that the smoothing matrix
C'C =L It is not clear if the result is easily extended to the non-identity matrix case.
The selection of the smoothing matrix will be the subject of the next section. An-
drews (1991) states that, if the errors are correlated, GCV will not be asymptotically
optimal, in general.

Thompson, Kay, and Titterington (1989) give some cautionary remarks on the use
of GCV. They point out that there is no guarantee that (2.5.1) will have a unique,
easily identified minimum, and the derivative of (2.5.1) as A — 0 may not be negative
if n < p. Delaney and Chaterjee (1986) show several examples in which GCV performs

poorly. This was especially noticeable when the condition number of X,
K(X) = 7ma.1:/'7min

where Ymar and ypi, are the largest and smallest singular values of X respectively,
was large. This is the type of situation we have in the underdetermined model, since

our minimum singular value is 0.

2.6 Choice of Smoothing Matrix

The majority of the ridge regression literature focuses on using (2.2.3) with C'C =1,
so the penalty is based on the squared length of 8. However, there may be situations
where the appropriate penalty is based on an assumption of spatial smoothness,
typically of the form B8'C'Cf. In spline smoothing (Wahba and Wendelberger 1980,
Wahba 1983 plus many of the references therein) the matrix C is often used to penalize

finite second differences of the parameter, which means using a (p — 2) x p matrix C



of the form -
(1 —2 1 o0
0O 1 -2 1
C =
| 0 0 ... 1 =21

We can interpret C’C as penalizing mean square curvature of the solution, which
is an intuitive penalty. However, little work has gone into finding more appropriate
choices based on the data. Wahba and Wendelberger (1980) use GCV to estimate
both the degree of derivative penalty and the smoothing parameter. A more natu-
ral specification of C arises if we use a Bayesian formulation, for in that case C'C
corresponds to the a priori covariance matrix of 8.

In the next chapter we will outline a procedure for finding a smoothed estimator

which will utilize the random structure of X to specify the form of C'C.

2.7 Conclusions

We have given an overview of the structure of smoothed estimators in the linear
regression model, and discussed some of their properties. We have described several
data-driven methods for choosing a smoothing parameter, and how they are either
not applicable in the underdetermined model, or require very strong assumptions.

[n the next chapter we will describe our method for imposing a smoothness con-
straint on the linear model with randomness in X and €. The method will utilize
the fact that there is randomness in X to impose a reasonable smoothness penalty,
and construct estimators that will have desirable properties, particularly in relation

to predictive ability.



Chapter 3

Model and Estimation

3.1 Introduction

In chapter 2 we outlined several methods used to choose the smoothing parameter
in multiple linear regression models, and some of their drawbacks in the underdeter-
mined case. In this chapter we will introduce a method which takes advantage of the
random explanatory variable structure, which is very appropriate in models discussed
in chapter 1, and introduce a smoothing method based on the signal-to-noise ratio of
the model. We will outline parameter estimation with this ratio fixed, and discuss a
method to estimate this ratio. The method will be used in the analysis of one of our

motivating examples in chapter 5.

3.2 The Model and Parameter Estimation
We assume the data follow the linear model

y=XB8+e€ (3.2.1)
where X is an n x p design matrix, y is an n x 1 vector of observations, and

e ~ N(0, o2I)
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Since we are interested in models in which the explanatory variables are random, as

would be the case in the realization of a continuous process, we will write X as
Xy
X=] :

A

with
X:- NN(O’72X) 7i= 17---’n

and assume the X} values are independent of each other and €. This implies that

y ~ N(0,(B'Ex8 + o))

The columns of X are correlated, with the strength of the correlation depending on

the elements of X x. Note that we can write (3.2.1) as
y = XZX’E{"B+e
= Za+e
where z! ~ N(0, 1), i.e. Z contains i.i.d. random variables.
We are assuming that n < p, so that the model is underdetermined. This means
we must use an alternative to the classical least squares estimator for 8. We will

propose a method of deriving our estimators based on the signal-to-noise ratio.

From our assumptions on (3.2.1) we have
Var(x;3) = Var(signal) = 8'Sx 3
Var(e;) = Var(noise) = o? .

We denote the signal-to-noise ratio as

Var(signal)  B'Ex8
Var(noise) o2 =q- (3.2.2)

We assume ¢ is known, which may be given prior knowledge in some dynamic models,

as mentioned previously. We will then use (3.2.2) to constrain our estimator of .
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We will introduce a method for estimating ¢ later in the chapter. We will also assume
that 02 and T x are known at this point. These assumptions will be relaxed in later
sections.

We now present two ways to estimate 3. A first approach is to minimize the sum

of squares subject to (3.2.2), which is a quadratic constraint on 8:

ngn [%(y -XB8)(y-XB)+ A (ﬂ'fzxﬁ - q)] = nlgn SS, . (3.2.3)

[n the optimization A acts as a Lagrange multiplier. To find 3 we differentiate
(3.2.3) with respect to 3,
055, —=2X'(y - XB) + 20X x B

aB o? o?
set this equal to O and solve for B, yielding

By = (X'X 4+ AZx)"'X'y (3.2.4)

The value for A must be chosen to satisfy the constraint (3.2.2).
We can also derive 3 » from a penalized likelihood approach. We begin with the
joint density of y and x},...,x), which can be written as the product of a marginal

and a conditional density:

!

[y X X)) = gy [ XK XL

Now, (y[x],...,x}) ~ N(X3,0%I) and x! ~ N(0',Ex) so we can write

fly.x},...,x) o« (6®) 3T |2
1 , 1 &
X exp [—27(}’ -XB)(y —XB) - 3 > xiEXxi]

=1
We use the joint density to construct the log-likelihood
n , T 1 , 1 &, )
l= —5 logo® — 3 log |Zx| — ﬁ(y -XB8)(y-XB) - §in2xx; . (3.2.5)
= =1
We maximize (3.2.5) with respect to @ and o2 subject to the constraint (3.2.2) by the
use of a Lagrange multiplier. We should note that, from (3.2.5), the constraint forces



the estimate of B to depend on the distribution of X. [n the notation of chapter
2, ¥x = C'C, so this approach also makes the choice of the smoothing matrix
straightforward, and very appropriate, given a fixed signal-to-noise ratio.

To find ,[3 we differentiate

lpz—gloga'z—glogmxl
| , 1 &, A(B'ZxB )
—ﬁw—xm(y—xm—g;x,-zm—g( X —q) (326)

with respect to 3, set the result equal to 0, and solve for B. This gives us (3.2.4).
The next step is to replace 8 with 3, in (3.2.2),

ﬂ.\EXﬂ.\ =q (3.2-7)

o2
and find A which satisfies (3.2.7). We denote this value A,.

So our procedure (assuming o2 is known) is the following:

I. Solve (3.2.7) to find A,.
2. Use 5\, to find B.i’ where

B; = (XX +AZx) X'y (3.2.8)

[n Appendix A we establish the conditions under which J, is unique. By writing

the SVD of XX~1/2 = UDV’, we show that

nrws\ 2
Y (—') > qo?
=1 \di
is required to ensure a solution exists, where w = U’y and d; is the ith diagonal
element of D.

It is natural to compare this model with errors-in-variables models, discussed

by Fuller (1987). We will briefly describe these models in the simple and multiple

regression cases, and see they share some features with our model.
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[n simple linear regression, we can set up the errors-in-variables model as
Yi=B0+bizi + €, €~ N(0,0%)
Xi=zi+6, &~N(0,07)
where ¢; and §; are independent, and we observe (X;,Y;),i=1,....n.
If z; is treated as fixed, the likelihood function L(fo,51,X, 02, 02) does not have
a finite maximum (Casella and Berger 1990, pg. 587). A similar problem occurs if

x; is treated as random; the system of equations we need to solve to find the MLE’s
is indeterminate (Casella and Berger 1990, pg. 591). To alleviate these problems,
it is assumed that o} = vo?, where v > 0 is fixed and known. We are making a
similar assumption, but our main reason is to place a smoothness constraint on our
estimator.

Now we will focus on the multiple regression case. using a formulation that is
similar to the simple linear regression case. We will then compare the resulting
estimators to those found by our method.

We assume (Fuller 1987, pg. 124) that the model has the form

Y. =x!8+e;
Xi=x;i+u
where we observe the vectors Z; = (Y;,X!), 2 = 1,...,n. We also assume that
€ 2 Tee Veu .
€ = ~ N(0,0°Y), Y. = , Y. is known.
u; Ve Tuu

Fuller (1987, pg. 124) shows that
B. = (XX - 3Y ) (XY - ) (3.2.9)

where ¥ is the smallest root of [Z'Z — Y| = 0.
The estimator (3.2.9) has a similar form to (3.2.8), but there is a key difference.
The required ¥ will be 0 if » < p. Then we will be left with finding the inverse of

X'X. Since this is a singular matrix, the method breaks down in an underdetermined

system.
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3.2.1 Estimation of o2

In our derivation of the estimators in the previous section we assumed that o2 was
known. This assumption is probably not realistic, unless we had replicated observa-
tions, or information from a previous experiment. Therefore we need a method to
estimate 2.

We propose two estimators of o?. One will be derived from the log-likelihood
(3.2.5), while the second will not depend on the model used.

Our first estimator of o2, denoted by Gik(r)» Will be based on the log-likelihood.
We differentiate (3.2.6) with respect to o2:

e = —no? +(y ~ XB)(y — XB) + AE'Exp

We must now solve the system of equations 8l,/3¢% = 0 and 9l,/9B8 = 0. This gives
us (3.2.4) and

&?:'k(,\) = % [(y - XB,\)’(Y - XB.\) + /\Bf\zxﬁ,\] (3.2.10)

Let us consider the bias of this estimate. We cannot find E(o"fikm) easily because it
depends on two random quantities, X and y. If we condition on X, and let H =
X(X'X +AXx) X', we find

Eyx(6fn) = — [(XBY(I - HXB + o®tr(I - H)?|

!

n
A

+= [(XB)YX(X'X + AEx) ' Sx(X'X + AZx ) X'X 4]

+$ [ X (XX + A8 x) ' By (XX + ASx) 1 X]]

This shows the bias of 6’,2,-,:( a) Is very complicated, and is difficult to calculate beyond
this expression. Some numerical results on the bias are included in the simulation
results given in the next section.

2 can be considered a method of moments estimator,

Our second estimator of o
since it will equate sample and population moments. It relies on the fact that E(y:)

is the same for each y;. From our model assumptions

E(y:) =0, Var(y;) = B'SxB + o*
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Since the y; values have a common mean we can estimate Var(y;) by the sample

variance s2. From our signal-to-noise ratio we know
B'ExB = qo°
BExB+o*=0%(g+1)
So we can say 6%(q + 1) = s2, hence

32

62 = v (3.2.11
(q+1)(n—1)§ q+1 )

This estimate is independent of the model chosen, and is unaffected by the fact

that n < p. We can easily find the expecta.tion of o

E@) = q+_1 B(s}) = —

= q+_1(ﬂ TxB +o?)

2
0’(‘1‘*'1):0_2
q+1

Var(y;)

b

so o7 is unbiased. This should come as no surprise since, from the regression literature
(Neter, Wasserman, and Kutner 1985, pg. 127), if we have repeated x observations
we can construct 62 based on the pure error sum of squares and obtain an unbiased
estimator, regardless of the model. The key is that the y values corresponding to the
repeated x values have the same mean.

Now that we are estimating o2, our procedure for estimating 8 is modified:

1. Find A to solve either ., X
BrExBy _
K
or
ﬂAEXﬂ* =q. (3.2.12)
Ulnk(A)

Call the X choice ia or 5\,,-,:.

2. Use :\a or :\l,-k to find B;\ in (3.2.8).
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3. If using Mk, use A and B ; to find &12:’1:( i) where

~2 _
lik(x) =

1 A ’ A 3 a A - «
~ [y = XBy)'(y — XB;) + AurBi B B3] (3.2.13)
In Appendix A we derive the conditions under which A, and Ay exist. The key

result is that i,.-k always exists, and is unique, given q.

3.3 Evaluation of Estimators

We now wish to examine some of the properties of the estimates of 62 and \ values
introduced in the previous section. We will also compare the estimators with those
obtained using the GCV, E(GCV) and E(PMSE) criteria, which were defined in
chapter 2. We will do this using simulation studies under a variety of situations.

[n the simulations we must ensure the data satisfies (3.2.2). To ensure this we do
the following. We choose B and ¥, so that we can evaluate 8'Sx3. Once Ty is
chosen, we generate the rows of X from a N(0’, £ x) distribution. We then choose o2,
and generate € from a N(0,0%I) distribution. Now that we have 3'Sx 3 and o2 we
know ¢ from (3.2.2). Once we have X, B and € we generate our y vector according
to (3.2.1).

The results use different values of ¢, and different true B vectors. The elements
of B were generated from either a U(0, 1) distribution or a N(0, 4) distribution. In
all cases we used n = 50 and p = 80. We used the same X matrix for each simulated
data set, even though it would be more appropriate to use a different matrix each
time since X is random. However, the results do not change a great deal if a different
X matrix is used each time. Hence the randomness in the simulation comes from the
error term e.

The results we present in the chapter will use a model where the rows of X are

generated from the AR(2) process

Tij =04z + 02z, 524175, J=1,...,p (3.3.1)
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with 7;; ~ N(0,1). We are focusing on generating the rows of X from AR processes
since this is often an appropriate assumption to make about the types of data sets in
which we are interested. It will also make it easier for us to discuss estimation of  x
later in the chapter. Results for other choices of X, n and p are given in Appendix
B.

We will first examine the estimates of o2, then discuss the A values chosen, and

compare these values to those given by other methods.

3.3.1 Comparison of ¢? Estimates

Table 3.1 summarizes the 62 values found by each of the two methods described in
the previous section. The estimates were calculated in 1000 simulated data sets. The
results in the first column used B which was generated from a N(0, 4) distribution,

while the other three columns used 3 which was generated from a U(0. 1) distribution.

q

1737 7.21 | 1.31 | 0.094

o’ 35 | 16 | 88.36 | 1225
2.5 | mean| 1445|1072 | 57.15 | 930.6

median | 14.35 | 10.63 | 56.40 919.2
var | 1.846 | 1.284 | 87.41 | 3.51 x 10%

o mean | 22.91 | 19.81 | 101.7 1253

median | 22.88 | 19.71 | 100.3 1237
var | 2.419 | 3.077 | 263.43 | 6.48 x 10*

Table 3.1: Summary of estimates of 62 when rows of X are generated from an AR(2)
process. Models use n = 50, p = 80

We see that, for the four models presented, 62 has smaller bias than Glik(a)» aS We
would expect. For each value of q used the &fik( %) values were biased downwards. This
bias was, on average, approximately &fik(;\) = 0.602. The bias is expected because in
a linear model with n > p the maximum likelihood estimator of the error variance,

SSE/n, is biased downwards. We also observed that the &fik(:\) values had smaller
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variability across the simulations. Figures 3.1 and 3.2 show the distribution of 62 and
&fik‘i) in the ¢ = 7.21 and ¢ = 1.31 models. These plots show the distributions are

skewed to the right, but the &fik(:\) values have smaller variability.

%

A

18

10

#

sigma2_lik sigma2_a

Figure 3.1: Boxplots of 67, and 62 estimates when ¢ = 7.21, 0 = 16

3.3.2 Comparison of A\ Values

We now wish to compare the \ values found using the three approaches, with the
) p— A\eccv and Aepmse values found for the same simulated data sets. Note that
these other three methods assume that X is nonstochastic, while :\EGCV and :\EPM SE
depend on the true B3, so can only be found in simulation studies.

Table 3.2 summarizes the A values found using these methods. Since we used the
same X matrix for all 1000 data sets, we only have one value of :\EPMSE and igccv.

We first identify some general trends. We see, except for Acev and izocv, the
X values decrease as q increases. For those chosen by the signal-to-noise criterion,
this can be justified in two ways. First, it makes intuitive sense that if less of the

variability is due to the noise term, there is less need to smooth. Second, we can use
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Figure 3.2: Boxplots of 67, and 52 estimates when ¢ = 1.31, o2 = 88.36

implicit differentiation to show that dA/dq < 0, indicating ) is a decreasing function
of q.

An important point must be made about the ;\,_» and ia values. Recall i, is found
assuming o2 is known, while ), is found using the unbiased estimator of 2. We see
in table 3.2 that their median values are 0 at the ¢ = 17.37 and ¢ = 7.21 models.
This is because the constraint equation is not satisfied in most data sets, so the \
value is being set to 0. We also see that iuk continues to give larger values than i,
or Aq.

We see that ;\EpMSE;, :\EGCV and :\GCV are larger than the il,-k values for small
values of q. We stated in section 3.2 that A is the unique solution to (3.2.12) but
we have no guarantee that the GCV function will have a unique minimum. The other
important result, which we will discuss in more detail, is the A,z values are much less
variable than the XGCV values.

We begin with ¢ = 17.37 in table 3.2. We see that the mean of the i[,-k and
:\ch values are larger than XEngE. We see the variance of the 5\,,-;, values is less

than the variance of the Agcy values by a factor of 10°. The same difference appears



17.37 721 1.31 0.094
AEPMSE 4.657 10.914 51.689 643.324
Aecev 7.385 4.854 45.256 581.990
Xix | mean 2.637 5.957 23.949 144.820
median 2.641 5.973 24.003 144.428
var | 1.44 x 1073 |  0.0191 1.759 139.906
A | mean [3.77 x 10~* | 4.06 x 10~3 6.95 112.7
median 0 0 6.973 112.4
var | 7.81 x 1075 | 1.90 x 10~3 4.373 47.67
A | mean|2.81 x 103 0.301 6.95 112.7
median 0 0 9.619 113.2
var | 2.81 x 10-3 0.398 15.98 148.8

Accv | mean 7.078 5.379 62.612 | 8.247 x 10°
median 5.063 1.696 33.971 470.350

var 62.00 56.761 2.50 x 10% | 3.74 x 10%°
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Table 3.2: Comparison of A values when rows of X generated from an AR(2) process.
Models use n = 50, p = 80

when ¢ = 7.21. When we use a model with ¢ = 1.31 we find the mean of the :\GCV
values exceeds igpM se- For this value of ¢ the Xl,-k values are less variable by a factor
of about 10%. For the 1000 simulated sets is this case. the ic;cv values are within
[0, 1.58 x 10%], while the Aiir values never exceed 27.62. Finally, when ¢ = 0.094 the
mean of the Agcy values is very large, as is the variance. Approximately 30% of the
Agev values exceed 10*. These values would clearly be oversmoothing. Once again the
;\lik values have a variability that is several orders of magnitude smaller. If we ignore
those values of /igcv which exceed 10%, the mean of the remaining values is 575.46,
and the median is 107.24. In this model we also get cases of clear undersmoothing
with GCV, as it chooses Agcy = 0 about 11% of the time.

Figures 3.3 and 3.4 display, on the log scale, the distribution of the A values in
the ¢ = 7.21 and ¢ = 1.31 models. These plots illustrate the problems with \, and
A at the large values of ¢, and the high variability of Agcy at low values of q-
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Figure 3.3: Plots of log(}) values in the q¢ = 7.21 model
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Figure 3.4: Plots of log(}) values in the g = 1.31 model
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Therefore, we can conclude that the signal-to-noise method yields values of L,-k
which are much less variable than the :\ch values, with few extreme values found.

We have demonstrated that the signal-to-noise method yields smoothing parame-
ters with a smaller variance than GCV, especially in the case where we must estimate
o?. We now wish to compare the methods based on their predictive ability. Recall
from our previous discussion that the Aoy estimates are supposed to be chosen using
a prediction criterion. The signal-to-noise estimators do not make this claim.

We will examine the predictive quality of the estimators by conducting the fol-

lowing simulation study:

l. Generate y, = X3 + €, where X and € are described at the beginning of this

section.
2. Select A by each of the following methods:

(a) The solution of B;Zx[ﬂ/oz =q.
(b) The solution of 3,5 x3,/52 = q.
(c) The solution of Bf\zx,&\/a"fik =q.
(d) Minimize GCV over A.

(e) Minimize E(GCV) over A.

(f) Minimize E(PMSE) over A.

3. Construct Bo‘;\ = (XX + AZx )" X'y, using each of the A values computed in

step 2.
4. Generate a validation set y; = X8 + €; of size n.
5. Evaluate the prediction sum of squares
PSSy = (y1 — XB,5) (1 — XB,5)/n

for each Bo';\ value from step 2.



6. Repeat steps 1-5 1000 times.

For each method of estimating A the simulation gives us 1000 values of SS,

Table 3.3 summarizes the results over the range of q values used in table 3.2.

q
17.37 7.21 1.31 0.094

PSSepumse mean | 47.004 | 28.469 | 132.329 1346.211
median | 46.043 | 28.116 | 130.697 1328.581

var | 88.445 | 34.239 | 744.025 | 7.44 x 104
PSSecev mean | 47.497 | 29.057 | 132.471 1346.277
median | 46.650 | 28.629 | 131.170 1328.556

var | 89.627 | 35.165 | 748.533 | 7.45 x 10*
PSS mean | 47.383 | 28.813 | 136.843 1420.428
median | 46.443 | 28.421 | 134.594 1395.035

var | 90.023 | 34.761 | 802.267 | 8.54 x 10%
PSS, mean | 49.854 | 31.899 | 153.021 1456.152
median | 49.013 | 31.368 | 150.981 1435.391

var | 99.712 | 40.805 | 150.981 | 9.02 x 10*
PSS, mean | 49.855 | 31.472 | 147.615 1452.649
median | 49.013 | 31.027 | 145.864 1429.880

var | 92.728 | 39.269 { 145.864 | 8.99 x 104
PSScev mean | 50.381 | 30.400 | 146.893 1552.309
median | 49.428 | 29.981 | 144.713 1446.378

var | 113.011 | 40.865 | 1186.598 | 2.37 x 10°
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Table 3.3: Prediction SS values when rows of X generated from an AR(2) process.
Models use n = 50, p = 80

We would first like to make some comparisons among the three signal-to-noise

estimators, in terms of their predictive ability. We see that j\lik, although using the

estimate with the greatest bias in its o2 estimate, leads to better prediction than

using either i, or ;\.,. In addition, we pointed out previously there were many cases,

when g was large, that the conditions required to find ;\: or ia were not satisfied. For

these reasons, we will no longer consider these two estimators, but will compare the

predictive ability of }Iik with xccv, XBGCV and XEPMSE-



We will begin discussing the model with ¢ = 17.37. We see that the PSS;x values
are smaller than the PSSgcy values, on average. The PSS values also have smaller
variability, and an approximate 95% confidence interval for the difference in the PSS
values indicates a significant difference. When comparing the 1000 generated sets. we
found PSS was smaller 75% of the time.

Next we consider the case with ¢ = 7.21. The PSS values are again smaller, by
at least two standard errors, than the PSSgcy values. We also see the variability of
the PSSy is similar to that of PSSggev and PSSgpase. We found that PSSk
was less than PSSgcy in 77.2% of the cases.

Results moved even more in favour of the signal-to-noise method as ¢ decreased
to 1.31. If we recall, GCV begins to give some very large smoothing parameter
estimates at this point, but also can do no smoothing. There is a greater relative
difference between PSSy and PSSgcv, with the difference easily exceeding two
standard errors. When comparing the 1000 generated sets, we found PSS was
smaller 61% of the time.

The model using ¢ = 0.094 yields the greatest difference between the two methods,
as shown in table 3.3. There is a very large difference in the average PSS values,
and we see that the PSSgcy values are much more variable in this situation. We
also notice that both data-based methods give larger PSS values than PSSggcy and
PSSepmse. On an individual basis, we found that PSS was less than PSSccy in
48.5% of the cases. Therefore, as g has decreased. the signal-to-noise method appears
to improve on average, but not in terms of the number of individual cases where
it outperforms GCV. This appears to be a reflection of the fact that there are often
cases where PSSy is much smaller than PSSgcv, while the reverse scenario is rarely
true.

To illustrate this point, figures 3.5 and 3.6 contain boxplots of the values
SSD = PSSratio - PSSMSE

where ratio denotes we are using either A,, A, or A\jx, while MSE denotes we are using

either XGCV, :\EGCV, or :\EPMSE. If SSp < 0 then the signal-to-noise ratio method
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has better predictive ability. Figure 3.5 uses the model with ¢ = 17.37 while figure 3.6
uses ¢ = 0.094.

We see from figure 3.5 that the median of the SSp values is positive when we use
PSSepmse and PSSggev. but is negative when we use PSSgev. This corresponds
to what we see in table 3.3. But we are primarily interested in comparing the two
data-based estimators. Figure 3.6 also highlights the skewness in the distribution
of differences, showing us the signal-to-noise method can often do much better, and
rarely does much worse, than GCV.

We now have two reasons to recommend choosing a smoothing parameter based
on the signal-to-noise ratio. First, the A;x values have very low variability. Second,
they perform well based on predictive ability, even though the method is not designed
specifically to be optimal in this sense.

Although we have primarily discussed predictive ability up to this point, there may
be situations where we are concerned with the 3 vector. It may have certain local or
global characteristics in mapping X to y that we wish our estimates to capture. We
investigate two examples of this.

The first will use a true B that we will refer to as “spike”: it has 3; = 2 for one
element in B and 3; = 0 for the remaining p — 1 elements. The second case will take
B as “flat”: 3; = 0.5 for all z. The values of q and o used are given in table 3.4. The
models used n = 50 and p = 80, while the AR(2) process (3.3.1) was used to generate
the rows of the X matrix. Table 3.4 summarizes the results over 1000 simulated data
sets. For simplicity we only include the results using GCV and the signal-to-noise
ratio. Since we are now interested in the behaviour of the ,3 values, we also include

in the table the values of
SS(B,) = (Bx — BY(B, - B)/p

averaged across the 1000 cases.
We see in all four cases that the mean value of $5(B,;) is less than that of
SS(BGCV). The improvement ranges from about 5% to 18%. However, this is not

the case for the median values when 3 is the “spike” vector. When we use the “flat”
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B = “flat” B = “spike”
=1.49 = 7.56 g=1.39 q=5.56
c? =81 o2 =16 o2=4 c?=1
Mic | mean 21.476 5.677 22.707 7.397
median | 21.537 5.692 22.778 7.403
var 1.345 0.0180 1.578 0.049
Agcv | mean | 54.200 6.069 2.23 x 10° 11.269
median |  32.057 2.288 38.872 8.986
var | 4.99 x 10* 71.865 2.50 x 10's 146.69
S5(Bu.) | mean 0.798 0.582 0.052 0.038
median 0.785 0.576 0.050 0.037
var | 1.61 x 1072 | 4.69 x 103 || 3.93 x 10~° | 1.38 x 10~3
S55(Bgcv) | mean 0.971 0.645 0.060 0.040
median 0.641 0.639 0.045 0.037
var 0.555 0.032 1.00 x 1073 | 6.17 x 10~5
PSSiz | mean 126.60 28.739 6.171 1.755
median | 124.56 28.239 6.133 1.725
var | 727.74 36.240 1.681 0.132
PSSccy | mean | 136.29 30.306 6.587 1.842
median | 135.45 29.816 6.440 1.818
var 1014.0 41.047 2.556 0.160

Table 3.4: Results for structured 8 vector

B we find $S(B,.) < SS(Bccv) in 40.2% of cases when q = 1.49 and in 62.6% of
the cases when g = 7.56. When the true B vector is the “spike” vector, we find
558) < SS(,BGCV) in 36.2% of cases when ¢ = 1.39 and in 45.8% of cases when
q = 5.36. We do find the PSS values favour the signal-to-noise ratio in all situations
on average and in the majority of individual cases. We also note that GCV still
tends to do a considerable amount of undersmoothing in many cases. For example,
we found Agoy = 0 in 30% of the data sets in the “fat” B case with ¢ = 1.49.
Figure 3.7 contains plots of the true 3 vector, along with 83, averaged across the
1000 simulations. We see that, for the “fat” case, the 3; values are highly variable,

so By is doing a poor job of estimating the true 8. In the “spike” model we see the



47

mean Bh’k vector captures the behavior of the true B well. We find a peak at the
appropriate element of Bﬁk and the rest of the elements stay close to zero.

These results indicate the method is not performing well with one situation of a
highly structured B vector. This gives us the opportunity to revisit the notion of
smoothing. as a spatial operation. and what the method based on the signal-to-noise
ratio is actually doing.

The signal-to-noise ratio method clearly yields a shrinkage estimator. However.
there is no guarantee that the estimator is imposing any spatial smoothing. In par-
ticular. we do not have any guarantee that smoothness in the rows of X. as described
by Xx. will lead to a similar smoothness pattern in 8. This is exemplified in our
last two examples. Therefore. since there may be situations where we have a priori
knowledge of the spatial structure. we outline a possible way to incorporate this with
the signal-to-noise constraint.

We could introduce this spatial smoothing constraint by appending another term

to the sum of squares (3.2.3) to penalize spatial smoothness:

1 ,2,' /\')
=y —XB)(y -XB)+ \ (5__“3. - q) + 5B'C'Cp
g g g

The choice of C could impose a derivative penalty. as discussed in section 2.6. with
C’C being a positive semi-definite matrix in this case.

The estimator for 3 would now be

B=(XX+MEyx +1CC) ' Xy
The value for A, would have to be supplied. The larger it is chosen. the greater the
amount of spatial smoothness we are imposing on the estimator. We also note it
is possible to choose 3'C'CB = 0 if C'C is positive semi-definite. In the final two
examples we discussed in this section. we would expect an estimator that incorporated
a spatial smoothing term to outperform the method based on the signal-to-noise ratio

exclusively.
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3.4 Estimation of ¥y

Up to this point we have assumed that ¥ x was known. We will now deal with
estimating this covariance matrix. Since its estimation will not depend on the choice
of A, we hope it should not have a major effect on our values for A and 3.

There are two approaches for estimating x. The first would be to use the
nonparametric estimate X'X /n (if E(x{) = 0'), or 3", (x; —X)(x; — X)’/(n — 1). The
second way would be to assume the form of ¥ x was known, and we had to estimate
a few parameters in the matrix.

The first method will not work in the n < p case. To see this. assume that
E(x;) = 0’. Then X'X/n is an unbiased estimator of £x. However, if we use this

estimator in (3.2.4) we get

-1 -1
(XIX+ /\2)—1 — (XIX+ %er) — ((n + /\)X:X)

n
which is a singular matrix. So we have to use our second proposed method.

We assume T x has the following form:

r(0) r(l) ... r(p—=1)
Sy = r(.l) r('l) . r(p — 2) (3.4.1)
rp—1) rp-2) ... r0) |

where (assuming E(x}) = 0')
r(k) = E(zijzijse). k=0,....,p—1

and r(—k) = r(k). This assumption of the form of ¥ means that we are assuming the
covariance between observations within x! depends only on the difference in location,
or lag, of the points. This assumption makes sense in many dynamic models, where
the relationship between points will be weaker as the distance between them increases.

For each row x| we can estimate r(k) as

. 1 & .
ri(k) = - Z TitTit—ky 1= 1,...,77.
t=k+1
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(Harvey 1993, pg. 11). We use the factor 1/p rather than 1/(p — k) to ensure

[ #0) A1) ... fp—1) ]
So=| O #0) B r(p:—‘z)
| flp=1) 7(p-2) ... #0) |

is non-negative definite (Brockwell and Davis 1991, pg. 29).
Since the rows of X are independent, each with covariance matrix ¥ x. we can
estimate r(k) from the sample mean of the #;(k) values:
1] &P
Feky=—3_ Y zazit - (3.4.2)
NP izt t=k+1
We will come back to this estimator later in this section. First, we will simplify things
by assuming the rows of X are generated from an AR process of known order, and we
have to estimate the parameters that govern the process. This means we will have to
estimate k + | parameters if we assume an AR(k) process.

We begin by assuming that each row of X follows an AR(2) process,
Lij = O1Zij-1+ O2Tij2+ 1M, J=1,...,p
where n;; ~ N(0,02). Then

r(k) =ewr(k— 1)+ ar(k-2), k=1,2,...

_(1=¢2 o
(0= (l +¢2) (1 - ¢2)% — o}]

(Harvey 1993, pg. 22-23). We must estimate ¢;, ¢ and o2. We use the maximum

likelihood estimates of these parameters from the n independent realizations of the
time series to construct ¥x and repeat the simulations described in section 3.3.
Table 3.5 summarizes some of the results. The true AR(2) model is (3.3.1).

We see these results do not differ greatly from those in table 3.2. The &%, have
increased slightly, but most values of A and PSS have changed very little. The only

exception is Agcv in the q = 1.31 model, whose mean value increased dramatically.



q

17.37 721 1.31 0.094

62, | mean 15.023 11.282 | 58.551 932.845
median 14.917 11.181 | 57.628 920.600
var 1.992 1.413 92.141 3.53 x 10*

AEPMSE 4.329 9.222 48.702 658.467
Aecev 7.694 4.323 45.762 636.338
Mix | mean 2.631 5.938 23.853 144.317
median 2.635 5.954 23.893 144.112

var | 1.43 x 1073 | 0.0178 1.667 136.885
Acev | mean 7.505 5.123 | 1.57 x 107 | 8.71 x 10°
median 5.568 1.245 33.581 497.893
var | 65.685 56.657 | 2.47 x 10'7 | 3.86 x 102°

PSSir | mean| 47.434 28.931 | 137.565 1422.79

median 46.524 28.519 135.399 1397.078
var 90.236 35.042 809.556 8.56 x 10*
PSSgcev mean 47.934 29.279 133.751 1348.116
median 46.947 28.838 132.318 1329.301
var 90.949 35.615 759.249 7.46 x 10*
PSSEPMSE mean 47.141 28.701 133.725 1348.132
median 46.164 28.318 132.062 1329.249
var 88.979 34.719 757.319 7.45 x 104
PSScev mean 50.884 30.593 149.005 1556.532
median 46.619 30.229 146.706 1446.378
var 119.962 40.987 | 1203.677 2.42 x 10°

Table 3.5: Results when rows of X generated from AR(2) process, Xx correctly
estimated as having AR(2) form. Model uses n = 50, p = 80



This shows the methods maintain their performance if we assume we know the correct
covariance structure of x’.

A more relevant problem involves the estimation of ¥ x when we do not know the
true underlying process generating the rows of X. We examined this problem in two
situations. First we looked at overestimating the order of the AR process that was
generating the x! values. The true AR process is (3.3.1), but we incorrectly assumed
that the x| values were generated from an AR(p — 1) process. We choose such a
large order to be less restrictive in the form we assume for the elements of (3.4.1).
Table 3.6 summarizes the results of 1000 simulated data sets in this situation. The

results should be compared to those in table 3.2.

q

17.37 721 1.31 0.094
XEPMSE 5.209 27.986 | 91.704 561.956
Aecev 2.829 15.430 | 60.398 377.871
X\ix |  mean 2.659 6.017 | 24.164 147.798
median 2.664 6.046 | 24.248 147.374
var | 1.20 x 10~3 | 0.0409 | 2.636 162.190

Acev | mean 3.677 12.83 | 54.434 | 4.51 x 10°
median 0.157 11.597 | 52.125 326.700

var | 29.685 127.596 | 1624.932 | 2.72 x 10%°

Table 3.6: Summary of ) values when rows of X are generated from an AR(2) process,

and incorrectly estimated as coming from an AR(p — 1) process. Models use n = 50,
p=380

We see that igpMsg and Aggcv increased by a large amount in two situations.
However, we see the ;\lik remained quite close to the values obtained when the true
S x was known. The Agoy did not follow a regular pattern as q changed. We also
see the smoothing parameters often became more variable when ¥ x was estimated.

Next we generated the rows of X from the AR(2) process (3.3.1), but incorrectly
assumed that the x] values were generated from an AR(1) process. So we were

underfitting, i.e. we estimated 2 parameters instead of 3. Table 3.7 summarizes the



results of this simulation, and these values should be compared to those in table 3.2.

q

17.37 7.21 1.31 0.094

NEPMSE 5.375 13.197 | 60.574 | 600.258
Aecev 6.078 6.740 | 48.00 478.326
Aix | mean 2.635 5.938 | 23.703 143.568
median 2.639 5.956 | 23.788 143.183

var | 1.73 x 103 | 0.0260 | 2.129 156.028
Acev mean 5.620 6.641 | 47.323 | 7.90 x 10°
median 2.990 3.758 | 39.736 | 405.734
var | 44.132 63.736 | 1943.38 | 4.39 x 10%°

Table 3.7: Summary of A values, when rows of X are generated from an AR(2)
Process, and incorrectly estimated as coming from an AR(1) process. Models use
n =50, p =80

We see that the A values change by very little, while Agcv, Aggev and AEPMSE
tend to increase. The size of the change depends on q. We do see that the methods
still perform reasonably well with incorrect estimates of £ .

We will now try to give some informal justification as to why our results remain

similar if we replace ¥ x with Sy in (3.2.4). It will focus on writing
£x =2x+R
where it is hoped R will be of a small order. This will mean that
(X'’X +AZx)™! and (X'X+AZx +AR)™!

should be similar, yielding little change in 3.

Let us assume we estimate the elements of 3 using (3.4.2). Then it is clear that

cor— (1K),
E[r(k)]—(l p) (k) .
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[t is also true that

B(FP(E) = — [nlp = BPr(6) + (b = B)((0) + (k)]
p—k—-1
+ n_lpz. [2 Z (p — k — w)[r(w — k)r(w + k) + r*(w)]

If we consider a single time series with p observations, Anderson (1971, pg. 463)
shows that the bias of 7;(k) is of order 1/p and Priestley (1981, pg. 324) states that
the variance of #;(k) is of order 1/p. In our case #(k) is the mean of n independent
estimates, so it should also gave a bias and variance of the same order. We can use

Chebyshev’s inequality (Casella and Berger 1990, pg. 184) to write
P(IF(k) = r(k)| 2 €) = P(|f1(k) —r(k) +--- + Fa(k) — r(k)| > ne)

LSS SSE(R(R) — r(k)) (k) — (k)]

<
= 733
neet 121 =1

The : = j terms in the sum will give us n terms that are O,(1/p), and the i # j

terms will yield n(n — 1) bias terms that are Op(1/p). So we may now say

PUAK) = (k) 2 ) S =5 (O(1/p) + n(n — 1)O(1/p)]
< Z0(/p) .

So it appears that, for fixed k, 7(k) = r(k) + O,(p~"/?). Since we will be able to
write X x as the sum of the true value & x plus a term of small order, we can use &y
in place of £ x in our procedure and still obtain reasonable estimates.

Let us discuss for a moment the implications of n and p increasing. If n increases
with p fixed, then our model is no longer underdetermined. This is not the case in
which we are interested. If we let p increase, we can interpret this as collecting our
explanatory variables along a finer grid (every 10 km rather that every 20 km, for
example). This retains the underdetermined nature of the problem, plus gives us
a better physical interpretation. It may be relatively easy to increase the sampling

of our X values, but we may be restricted in the number of response variables we
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have available. However, if we let p — oo we change the covariance structure in the
problem. In applications we may not be able to let p increase for a given covariance
structure.

Since we will have to estimate ¥ x in the analysis of the California Current data.

we will return to this topic at that point.

3.5 Examination of Range of ¢ Values

We have shown that using the signal-to-noise penalty performs well in selecting a
smoothing parameter when the ratio ¢ is known. We now wish to relax this assump-
tion, first by studying the effect of specifying a value of q, say ¢, which is different
than the true q.

We begin by examining the sensitivity of the results to the choice of g, if we are
given a range of values to examine. Our simulations will use the same model that
was described in the discussion of tables 3.1 through 3.3. However, we generate our

X and y values using the true values of ¢ and o2, and find ) to solve

ar .
ﬂ’)?"{ﬂ'\ - (3.5.1)
Olik(r)

where ¢~ comes from a range of possible values of ¢q. In the examples we will present
we allow ¢~ to range from 0.001 to 1000. Below ¢~ = 0.001 the model is dominated by
noise, so the model will have little predictive ability. Values above ¢= = 1000 would
indicate the model gives near perfect predictability. Therefore we see no need to
examine values of ¢~ outside of this range. However, our tables of summary statistics
will only contain a subset of the values of ¢~ used. We will let 5\,‘,-,: be the solution to
(3.5.1). We then construct the estimate B;\.

Next, we generate a new set Yn.,, using the same X matrix, and see how well we

predict yre., by calculating the prediction sum of squares
PSS = (Ynew — XB5) (Ynew — XB5)/n .

For a particular ¢*, we repeat this process for 100 simulated data sets.
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Tables 3.8 through 3.11 summarize some of the results for a variety of true values
of g. The term std. error refers to the standard error of the mean of the PSS,

values. For comparison we have included the results when using :\GCV-

mean(Agcv ) mean(PSSgev)
7.128 49.953

g~ | mean( Miik) mean(PSS;;,) | std. error(mean(PSSyi))
1 32.97 67.60 1.126
2 18.50 54.09 0.988
5 8.28 47.16 0.890
12 3.73 46.22 0.868
20 2.31 46.58 0.871
25 1.87 46.81 0.874
30 1.57 46.99 0.877
40 1.19 47.28 0.882

Table 3.8: Prediction SS values over a range of ¢ values. True ¢ = 17.37

We will first discuss the changes in :\{;k as ¢~ increases. We see that il,-k decreases
as q" increases. which is no surprise. We have seen this result before when we treated
q as known. We also see that the changes in )i are smaller when we move between
larger values of ¢°.

A more interesting comparison involves the PSS values. In table 3.8 we see
PSS changes noticeably for ¢* between 1 and 5, but then changes very little for
larger ¢~ values. We also note that PSS achieves its minimum around ¢* = 12,
which is close to the true value of ¢ = 17.37. We can see that we could use a wide
choice of ¢~ values (from 5 to 40) and still achieve a smaller PSS than by using GCV.
When we take the standard errors into account, we see that PSSgcv is not within
two standard errors of PSSy at ¢* = 12.

In table 3.9 we are using a smaller true value of ¢, but we see a similar pattern.
The PSSy achieves a minimum around ¢* = 5 (with the true ¢ = 7.21), and the
PSSk values drop sharply before the minimum, and increase gradually after it. We
outperform GCV for ¢~ choices between 2 and 25. At q" = 5 we see that PSSgcv is



not within two standard errors of PSS;.

mean(Accv ) mean(PSSgev)
4.57 29.78

¢~ | mean(Asx) mean(PSSi) | std. error(mean(PSSy;.))
1 33.03 32.33 0.646
2 18.51 28.85 0.591
5 8.30 27.98 0.565
12 3.74 28.80 0.561
20 2.32 29.40 0.565
25 1.87 29.65 0.567
30 1.58 29.84 0.568
40 1.20 30.10 0.570

Table 3.9: Prediction SS values over a range of q values. True ¢ = 7.21

[n table 3.10, where the true ¢ = 1.31 is much smaller, the pattern is altered
slightly. We see the PSSy values change by a greater amount at the large values of
q". The PSS is minimized at ¢ = 0.5, which is less than half of the true q. This is
poorer performance than what we observed in tables 3.8 and 3.9. A choice of ¢* from
0.5 to 2 results in better predictive ability than GCV. In this case, we also see that
PSScgcv is not within two standard errors of PSSy at ¢~ = 0.5, g~ =1and ¢~ =2.

Table 3.11 continues the pattern of table 3.10. With the true ¢ = 0.094 we find
our PSSy is minimized at ¢ = .007, and the PSSy values continue to change
sharply for large values of q*. We also have a smaller range of ¢q* values where the
signal-to-noise method outperforms GCV, based on predictive ability. Because of the
poorer performance of GCV in this situation, we can see there are several choices of
q~ where PSSgcv is not within two standard errors of P.SSj;.

We can draw a few conclusions at this point. For the larger values of ¢, we see it
would be more important to have a good lower bound for ¢ than a good upper bound.
This is because the PSSy, values do not change a great deal for large choices of ¢~.
Plots of the elements of 33,/dq and d¥:/0q give the same information; the plots are

quite flat for ¢ > 30. The PSS values were minimized around the true value of q,
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mean(Accv) mean(PSSgev)
38.13 145.29

q" | mean(\k) | mean(PSSy) | std. error(mean(PSSy))
0.1 166.38 145.43 2.88
0.5 51.95 130.66 2.69

l 29.99 132.90 2.70
2 16.92 138.88 2.78
5 7.72 149.02 2.92
10 4.18 156.25 3.01
20 2.23 162.67 3.08
50 0.94 167.19 3.15

Table 3.10: Prediction SS values over a range of ¢ values. True ¢ = 1.31

and there was a wide range of ¢~ values where this method had lower predictive error
than GCV.

The results were different when the true ¢ was quite small. The PSSy values
were minimized at a smaller value than the true ¢, which would lead to doing more
smoothing. We also do not have the same pattern of the PSS, values changing little
for large values of ¢*. However. we do seem to have reasonable ranges of ¢ where
PSSir < PSSgev.

These results show that PSSy is minimized, on average, near (but usually below)
the true value of q. We now wish to see how we do in the individual data sets used.
We want to see for what value of g~ do we minimize PSSy for each simulated data
set. This will tell us how many of the individual data sets suggest choosing ¢ in the
correct range of values.

In table 3.8 we see the mean of the PSS values is minimized at ¢~ = 12. We
chose ¢° = 2 in one data set, ¢ = 12 in 21 cases and ¢~ = 15 in 8 cases. We chose
the maximum ¢~ allowed, ¢* = 1000, once.

Table 3.9 shows that choosing ¢ = 5 minimized the mean of the PSS;;. values.
The smallest value of ¢, ¢* = 1, was chosen twice, ¢ = 4 was chosen 52 times and

q~ = 8 was chosen 15 times. The largest ¢~ allowed, ¢~ = 1000, was chosen once.



mean(Agcv ) mean(PS Sgev)
5.639 x 10° 1557
q mea.n(;\l.-k) mean(PSS) | std. error(mean(PSSyx))
.003 1122.68 1324.06 26.80
.007 706.10 1321.24 26.85
.03 303.53 1337.30 27.27
.1 141.16 1404.59 28.40
1 26.47 1759.00 34.40
5 7.18 2064.93 39.72
1 3.98 2169.26 41.38
20 2.16 2249.43 42.57

Table 3.11: Prediction SS values over a range of ¢ Values. True ¢ = 0.094

Table 3.10 tells us that the mean of the PSSy, values is minimized at ¢* = 0.5.
In the individual sets we chose ¢= = 0.1 in 10 sets and ¢* = 0.5 in 57 sets. We never
chose ¢* > 20.

With ¢ = 0.094 table 3.11 shows the mean of the PSS values is minimized
at ¢~ = 0.007. In the individual sets ¢ = 0.001 (the smallest value allowed in the
simulations) was chosen 31 times, ¢ = 0.007 was chosen 5 times, and we never chose
q > 1.

These results indicate that for some values of ¢ our method performs well not only
on average, but on a case-by-case basis as well. With a small value of ¢ we are not
seeing any tendency to do a great deal of undersmoothing. The same cannot be said
for GCV. There are some situations where the true ¢ is small and GCV will still do
no smoothing. The results also show we may be able to get a reasonable estimate of

q from the data using a predictive loss criterion.

3.6 Use of Data-Splitting to Estimate q

The results in the previous section suggest that the signal-to-noise method for choos-

ing A can still perform well within a range of the true value of ¢q. Since this performance
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was based on how well we predicted a new data set, it suggests that we may be able

to use a data-splitting technique to estimate q.

We will first outline the general data-splitting procedure before discussing the

methods by which we will assess the procedure.

1.

o

ot

Split the data set of n observations randomly into a construction set (X..y.) of
n. observations and a validation set (X,,y,) of n, observations. A reasonable

method to use is a 50-50 split, so n. = n, =n/2.

Find X to solve ., A
ﬂczxﬂc — q-
‘5'12ik(,\.c)

for a fixed choice of ¢*, where

-~

B.= (XX, + AZx)"'X'y.

and &fik(,\‘c) is found using (3.2.10), but replacing (X, y) with (X,,y.). Call this

value \.

Compute
B.i = (XX + AZx)'Xly.

using A from step 2.

. Compute

SSui = (yv—XuB.;) (ys — XuB.3) /7 (3.6.1)

as the measure of loss in predicting y, for the ith random split of the data.

Repeat steps 1-4 for k random splits of the data, and average (3.6.1) over the
k splits, finding
1 k
SS, = P > SS,; (3.6.2)

=1

Reasonable choices for k£ would be & = 50 or k& = 100.
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6. Repeat steps 1-5 over a range of ¢~ values, and choose §* as the value which

gives us the minimum value of (3.6.2).
7. Take ¢~ from step 6 and find Ak using (3.2.12) , with ¢~ replacing q.
8. Calculate Bi in (3.2.8) using Aix from step 7.

9. Use ;\lik and BS to find &2

2.5 o (3:2.13).

To investigate the preceding method for estimating ¢ we have performed the fol-
lowing simulations. We use model (3.2.1) with p = 80 and n = 50. The data is
simulated as described in section 3.3, using the same choices for ¢ and generating the
rows of X from the AR(2) process defined in (3.3.1). Once the data is generated we
use the above procedure to find our required estimates. In the procedure we used
n. = n, = 25, k = 50, and ¢~ values ranging from 0.001 to 1000. We also calculated
Agev for the data set.

We then generated a new data set of n = 50 observations. and evaluated the

prediction sums of squares
1 aQ_\/ . . .
PSSs = ;(Ynew - xﬁj) (Ynew _xﬂi) (3.6.3’)

and
1 . .
PSSG = ;(Ynew - XﬂGCV) (Yn:w - Xﬂccv) . (3.6.4)

where 3 3 and Booy were found using the original 50 observations.

This procedure was repeated 100 times. We now wish to discuss some of the
results, many of which are summarized in table 3.12. In the table we define PSS, =
PSS, — PSSq.

We first examine the ¢ = 17.37 case. We see that the mean of the § values is large.
Of our 100 data sets, we chose ¢ = 1000, the maximum allowed in our simulations,
24 times. But we see the median of the § values is below the true gq. This led to
:\l,-k values which were larger than the :\ch values, on average. We also found that

:\ch = 0 in 32 data sets.



q
17.37 7.21 1.31 0.094
g| rmean | 261.145 | 140.485 | 0.7488 0.0697
median 10 5 0.5 0.008
Mic | mean| 7.724 | 11.633 | 82.513 988.730
median | 4.419 8.340 53.054 644.830
var | 91.928 | 113.122 | 3.98 x 103 | 6.07 x 10°
Acev | mean| 7.128 4.574 38.137 | 5.64 x 10°
median | 4.932 | 0.980 28.346 311.988
var | 61.083 | 50.006 | 2.17 x 103 | 3.29 x 10%°
PSSy mean | 0.423 —-0.513 —6.857 —188.302
min | —11.547 | —7.427 | —58.615 | —2201.499
max | 21.200 | 12.065 | 26.217 45.278

Table 3.12: Estimates of ¢ when rows of X generated from an AR(2) process. Models
use n = 30, p =80

Let us now look at the PSS, values. Recall that table 3.3 gives the relative
magnitudes of the PSS values. We see the two methods perform similarly, with
GCV coming out with the advantage, on average. Out of the 100 simulated data sets,
we found PSS, was negative 58 times. So the signal-to-noise method comes out with
the advantage in a majority of the individual cases.

We are also interested in the association between the differences \iix — Aoy and
the corresponding values of PSS;. We would like to find out if the larger values of
PSSy tend to be associated with very high values of Agcy, for example. Figure 3.8
is a plot of PSSy, versus :\,,-k — :\GCV when ¢ = 17.37.

[n figure 3.8 points above the horizontal line indicate cases where GCV gave us a
smaller prediction error. We see that Xl;k can do too much smoothing in this situation,
and consequently has poorer predictive ability.

With the true ¢ = 7.21 the mean § value overestimates ¢ again, while the median
value underestimates it. In this case there were 13 situations where we found § = 1000.
We continue to see the average of the ic.'cv values is smaller than the average of the

Aiir values.
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Figure 3.8: Comparison of A estimates and resulting PSS values when estimating q.
True ¢ = 17.37 and the rows of X are generated from an AR(2) process
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When we compare the PSS, values we find that the advantage now goes to the
signal-to-noise method. The mean of the PSSy values is negative, but the two meth-
ods still perform similarly. For the individual data sets, PSSy is negative in 62
of 100 cases. So with the decrease in ¢ the results move slightly in favour of the
signal-to-noise method, with GCV tending to undersmooth more often. However, the
prediction results are comparable.

Things move more in favour of the signal-to-noise method when ¢ = 1.31. The
mean and median of the § values are similar, and both are biased downwards. We
note that, even for this small value of ¢, we find :\ch =0 in 24 sets.

The PSS values start to differ by a greater amount in this situation, as seen in
table 3.12. If we look at the individual cases, we find PSS, is negative in 58 of
100 cases. Also, there are 32 cases where PSS; < —10, while only 9 cases where
PSSs > 10. So there are more situations where GCV does much worse, and few
where it does much better. We will come back to this point in more detail.

Finally let’s examine our results when ¢ = 0.094. The downward bias in the mean
of our ¢ values is becoming larger as ¢ decreases. The method chose § = 0.001, the
smallest allowed, in 42 cases. But we do see GCV gave highly variable estimates for
this model, as we had seen before.

When we examine the PSS, values we see many cases where the signal-to-noise
method does substantially better than GCV, and never much worse. The mean of
the PSSy strongly favours the signal-to-noise method. Out of the 100 simulated
sets, PSSy is negative 74 times. To illustrate the situations where the signal-to-noise
method does much better, there were 33 cases where PSS, < —50.

Figure 3.9 plots PSS, versus :\,,-k — Agcv for the q = 0.094 case. For clarity the
plot omits the cases where A;x — chv < —2000. In this plot we see a larger number
of points in the lower quadrant of the figure. This indicates there are many cases
where Aix — Ageov is very large, but PSSy is very much in favour of the signal-to-
noise method. We seem to be observing that GCV can do too little smoothing when

the true value of ¢ is small, and the consequence is very poor predictive ability when
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compared to the signal-to-noise method.

These results show we can gain noticeable improvements over GCV when the true
value of q is small, with few situations where GCV does a great deal better. The
methods give similar results, based on the \ values and predictive ability, when ¢
is large. Therefore we seem to have established that in the most general case (no a
priort knowledge of q) we will not do any worse than GCV. Any knowledge of the
signal-to-noise ratio we do have from the particular problem will only improve the
results from the signal-to-noise method.

The numerical results indicate the procedure has a downward bias in estimating

q. To investigate this we looked at the value of ¢~ which minimizes
E(PSSux) = %E (Ynew - X,B,\), (Ynew = XB.\)
where the expectation is over X and €. [f we first condition on € it can be shown that
E(PSSi) = o*(g+1) + %Ex[(XB)'HZXﬂ —2(XB8)YHXB + o*tr(H?)] (3.6.5)

where H is defined on page 20, and q is the true signal-to-noise ratio.

Because this expectation is complicated we evaluate (3.6.5) by Monte Carlo sam-
pling from the distribution of X. We want to see if the value of ¢~ which minimizes
(3.6.5) is close to the true g. To assess this we have carried out the following simula-
tion.

First we generate a matrix X;, where the rows of X; are generated from a N(O,

3 x) distribution. Then, for a fixed g*, we find X to solve
-t 2 -
Eux (.3,\ fﬂ'\) .
c
Call this value .iq. Next we evaluate
(X:B8)HIXB — 2(X:8YH:X:B + o*tr(H?)

for this choice of X; and iq. We then repeat this procedure, for fixed ¢~, over w

randomly generated X; matrices, and approximate (3.6.5) by

E(PSSuk) = 0*(q+1) + % Zw:[(xfﬂ)'H?Xfﬂ — 2(X:B)H:X:B + o*tr(H?)] (3.6.6)

=1
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Figure 3.9: Comparison of A estimates and resulting PSS values when estimating ¢:

True ¢ = 0.094 and the rows of X are generated from an AR(2) process
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This is repeated over a grid of ¢~ values to see what choice of ¢~ minimizes (3.6.6).

The model used is similar to those presented earlier: we used n = 50, p = 80
and the rows of each X; were generated using the AR(2) process (3.3.1). We used
w = 500 X; matrices in evaluating (3.6.6). The values of ¢ we used ranged from 0.094
to 1.997.

We found (3.6.6) was minimized by ¢~ = 0.005 when ¢ = 0.094. When ¢ = 0.597
we found ¢° = 0.11 minimized (3.6.6). We found (3.6.6) was minimized by ¢~ = 0.5
when ¢ = 1.306. Finally, When ¢ = 1.997 we found ¢~ = 0.6. It seems that (3.6.5) is
minimized by a value of ¢* that is smaller than the true q. The amount of this bias
increased as the true q is decreased. It also appears that the ¢ values that we have

calculated are close to this minimizing q~.

3.7 Conclusions

The use of the signal-to-noise ratio appears to hold promise in the underdetermined
regression model for choosing a smoothing parameter. It imposes a degree of structure
in the model, and allows for a method of choosing A that is not difficult to imple-
ment. It also permits us to explicitly use the covariance structure of our explanatory
variables in the estimation procedure. We have shown that knowledge of the true
ratio leads to estimates that have very small variability. and have good predictive
ability in many situations. Although the results are specific to the models used in
the simulations studies, they should apply more generally because we have looked at
cases over a range of signal-to-noise ratio values, which appears to be the important
factor in determining how the method performs.

With the signal-to-noise ratio unknown, we have developed an estimation proce-
dure based on data-splitting that yields reasonable estimates and is less likely to give
very poor results, especially if the true signal-to-noise ratio is small. Any a prior:

knowledge of the ratio that can be supplied will only improve the estimates.



Chapter 4

Extension to Robust Estimation

4.1 Introduction

In the previous chapter we introduced the linear model with random explanatory
variables, developed a method of estimation when the model is underdetermined,
and discussed a procedure for estimating the signal-to-noise ratio of the model. We
will now deal with some robust alternatives to the estimation procedure. We will
begin with an overview of robust estimation in multiparameter models, followed by a
discussion of robust estimation in linear models. Then we will introduce some robust
alternatives that have been proposed in ridge regression. This will lead us into our
proposed procedures for robustly estimating the model parameters with the signal-to-
noise ratio fixed, followed by combining this with a robust procedure for estimating

the ratio.

4.2 Robust Estimation: Multiparameter Models

We begin with an overview of some important concepts and results in robust estima-
tion before dealing with linear models. Most of these results are found in Hampel,
Ronchetti, Rousseeuw, and Stahel (1986) and the references therein. We begin by

focusing on multiparameter models.

68
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4.2.1 Influence Function

Suppose we have a parameter space ® € R?, and T is an estimate that can be viewed
as a functional defined on a suitable subset of the set of probability measures on a
sample space .Y, taking values in @. Then the p dimensional influence function of T'
at a distribution F is

o L1 = A)F + kA, — T[F]

10 h (4.2.1)

IF=IF(J:;T,F)=1,§

where A is the probability measure which puts mass 1 at the point z (Hampel et al.
1986, pg. 226). It measures the sensitivity of T to the single point z. To see this,
consider the one dimensional location problem and the sample mean z. It is well-
known that I is susceptible to outliers in the data. In fact, the influence function of
T is z. so its [F in unbounded (Hampel et al. 1986, pg. 89). This tells us that a single
outlier can have a dramatic effect on z.

Under certain regularity conditions we have
/ IFdF(z) =0 (Fisher consistency)
and T is asymptotically normal with covariance matrix
V(T,F) = / IF(IFYdF(z)

The gross error sensitivity of an estimator 7 measures its sensitivity to outliers.
[t is defined as a function of the IF, in the unstandardized and standardized cases, as

follows:
Ya(T, F') = sup(||IF||) (unstandardized)

7:(T, F) = sup(IFV-'IF')~'/?  (standardized)

where ||x|| = (x'x)'/2.



70

4.2.2 M-Estimators

There are different classes of robust estimators that can be used. One of the most
common robust estimators, and the one that generalizes most easily to the multipa-

rameter case, is the M-estimator. which is defined as the solution to
> ¥(z:,0)=0 (4.2.2)
=1

For the MLE, ¥(zr,0) = dln /30 = s(x,8) is the score function (Hampel et al. 1986,
pg- 230). The idea is to replace s with a function that is less sensitive to outliers.

Hampel et al. (1986, pg. 231) show that, for the M-estimator,

-1 _l1 9 _ N
IF=M"'¥, M= [—39/‘1:(:,,0)(15’(1)]

This leads us to say that, under certain conditions, the M-estimator is Fisher consis-

tent and is asymptotically normal with covariance matrix
V(8,F)=MQM)™!
with
Q = [ ¥(z,6)[¥(z.0)'dF(2)

(Hampel et al. 1986. pg. 231).

4.2.3 Optimal Estimators

[f the score function s(z,8) is unbounded in z, the estimate will have an unbounded
influence function and be sensitive to outliers. Therefore we would like to choose ¥

so that it is less sensitive to outliers than s(z,0). A common choice is Huber’s ¥
function,

¥(x) = xmin (1, m)

This choice transforms each point outside a p dimensional sphere to the nearest point

on it, and leaves values inside unchanged.



We now turn to the question of the properties we desire of the M-estimator that
solves (4.2.2). One common choice is to find an estimator that is optimal in some
sense, but the influence of an observation z is bounded. The optimality criterion is
usually minimizing the trace of the asymptotic variance V, subject to a bound on
the influence function, or gross error sensitivity (Hampel et al. 1986, pg. 238).

This leads to the idea of optimal B-robust estimators (Hampel et al. 1986,
pg- 238). These estimators are constructed to be as similar as possible to the MLE at
nonoutlying points, but downweight possible outliers. These estimators are found by
an iterative procedure, which find optimal estimators subject to Fisher consistency
and bounded IF. Algorithms are given by Hampel et al. (1986, pg. 247-252) and
Victoria-Feser and Ronchetti (1994).

There may be cases where minimizing the asymptotic variance may be difficult
to achieve. Field and Smith (1994) give an alternate approach, where the robust
estimators are derived by downweighting the ML score function, but on the probability
scale. It leads to estimators that are Fisher consistent and asymptotically normal,

and should be fairly close to optimal.

4.3 Robust Estimation: Linear Models

We now use some of the above results to study linear models. which is our main focus.

As in previous chapters, we assume the linear model
y=XB+e¢€

where € ~ N(0, 0?I) and each row of X is distributed as N(0, Zx).

4.3.1 M-Estimators

Following Hampel et al. (1986, pg. 315), we define an M-estimator 3,, implicitly by

the vector equation

n -
don (xf, L'l 4 :‘ﬁM ) x; =0 (4.3.1)

=1
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with various conditions placed on the function 5. This also assumes that n > p. This
is similar to (4.2.2) except n depends on [‘3M only through the residual é;.

The function 7 is usually chosen of the form
n(x,r) = w(x)¥(rv(x)) (4.3.2)

where r = y — x’,[:JM. Hampel et al. (1986, pg. 315) derive many of their results
assuming a model with random x; for convenience, which is exactly the model which
we are considering.

By making the assumption that o = | we can use the multiparameter results
to derive the influence function for the M-estimator in the multiple linear regression
model.

[t can be shown that the M-estimators are consistent and asymptotically normal
with covariance matrix

on(x,r)

or

V=M'1QM™!, where M = E < xx’) , Q = E(n*(x,r)xx') .

(Hampel et al. 1986, pg. 317). We can then define the gross error sensitivities as

7" =sup [pl(||IM~"'x|]) (unstandardized)
Xy

77 = sup [p|(x'Q'x)"/? (standardized)
Xy

The form of 7 is motivated by the criterion used to choose the estimators. Focus is
again on minimizing the asymptotic variance, subject to a bound on the gross-error
sensitivity. This is often referred to as bounded influence regression (Krasker and
Welsch 1982), with various forms for the estimators given by Hampel et al. (1986,
pgs. 319-321).

In linear regression we would like to bound the influence of outliers in both the X
and the residual spaces. Hampel et al. (1986, pg. 313) refers to this as bounding the
influence of the residual and the influence of position in factor space. Some proposed

methods only bound the influence in the residuals, some bound the effects separately,



i.e. large downweighting of an influential x regardless of the size of the residual. while
others downweight leverage values only if the corresponding residual is large.

Most of these results depend on the asymptotic variance of the estimators. which
is a difficult issue for us, since we have n < p, and we do not want n increasing inde-
pendently of p. Huber (1973) studied asymptotic results for n — oo and increasing p
at various rates, but did not deal specifically with a situation in which we would be
interested, such as lim, o, p/n = m # 0, where m is a constant.

Computationally the solution of (4.3.1) is found using iterative reweighted least
squares. This means a starting value is needed for the estimators. One choice would be
the least squares estimator (which is not applicable in underdetermined models). but
a better choice is one with a high breakdown point (Ronchetti. Field, and Blanchard
1997).

Equation (4.3.1) assumes that o2 is known. In practice it will also have to be
estimated. Two of the usual methods used are to solve (4.3.1) simultaneously with a

supplementary equation for o. or to use the median absolute deviation estimator
Gmad = b median(|y; — x!8,,|) (4.3.3)

where b = 1.345 is often chosen to achieve approximately 95% efficiency at the correct
model Marazzi (1993, pg. 54-55). We will discuss the estimation of o2 later in the
chapter.

The choice of the value of ¢ in Huber’s ¥ function affects efficiency. Typically ¢
is chosen such that 95% efficiency is obtained at the correct model. The efficiency is
usually defined as the ratio of the asymptotic variances of the estimators. This poses
a problem in the underdetermined case, as mentioned above. Instead, we will use

simulation results at the true model to help determine the value of ¢ to use.

4.4 Robust Ridge Regression

There have been a few proposals to combine the properties of robust estimators with

ridge estimators, principally motivated by multicollinearity problems combined with
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long-tailed error distributions.
Askin and Montgomery (1980) approach the problem as follows. They propose
using the solution to:

n P
min ) _ p (yi -2 1-’151’)
13 1=1

=1
subject to B8'8/2 < d?, where p is a robust function which we want to minimize.

If ¥(¢) = p'(t) we need to find B to solve
-X'¥(y—-XB8)+13=0

or, by defining P
U(y: —xiB)

W = dia Wiy...Wq), w; =
8 ) vi —xB

we can say

~X'W(y-XB8)+A3=0.

Askin and Montgomery (1980) reformulate the problem as an augmented least

squares problem, as discussed in chapter 2. We form

o[ 3] 1]

so the equation we need to solve is

W o

—Xfm (Yaug — XaugB) =0
’ ( o I ) ! !

This means the weights on the augmented observations are set to 1. This leads to a

weighted ridge regression estimator
B = (X'WX + AI)"'X'Wy (4.4.1)

The ¥ functions they suggest are based only on outliers in the residuals, not on
influential x observations.

They estimate A using
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where 62 is a nonrobust estimator and «; is defined in section 2.3.4. Lawrence and

Marsh (1984) use a similar estimator in their analysis of U.S. coal mining data.
Pfaffenberger and Dielman (1990) suggest another robust alternative. They pro-

pose
B = (XX +AI)'Xy (4.4.2)
where R R
(y —XB8.)(y — XB;.)
n—p

where 3 L 1s the least absolute value estimator. So they are not downweighting out-

- al
A= Psi/ﬁz,ﬂz,a Si =

liers, but a robust estimator is being used to find the smoothing parameter. This
method also does not take influential x values into account. The simulation results of
Pfaffenberger and Dielman (1990) suggest that (4.4.2) performs significantly better
than (4.4.1).

Silvapulle (1991) takes perhaps the most formal approach to the problem. By using
the transformation given in the derivation of the principal components estimator in
section 2.3.4, Silvapulle (1991) first constructs an M-estimator for & = PB. which
we write as apr. This relies on having n > p. We then modify the M-estimator by

multiplying by a ridge, or smoothing matrix:
apar= V(XX + M) X'XVay, . (4.4.3)

Silvapulle (1991) uses the asymptotic properties of M-estimators to develop two

methods for choosing A. The resulting choices are

S A WO
S el i Aiddy;
where
_ S3E[¥3(e/s,)]

. d -
(& — a) = N(0,a*A7") , E[0/(e/5.)]

and s, = plim(s), where s is an estimator of 0. The value a? can be estimated using

a? = g2 [Zi \Ilz(r,-/s) / i \Il’(r,-/s)]

- n—p n
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with r; being the ith observed residual. Silvapulle (1991) uses a nonrobust estimator
as s% there does not seem to be any reason why it could not be replaced by a robust
estimator, such as (4.3.3). Simulation results show substantial reduction in MSE
when this estimator is compared to the ordinary ridge regression estimator when the
errors have long tails, with only a small increase in MSE when the errors are normally

distributed.

4.5 Robust Ridge Regression: Downweighting of
Residuals

The previous methods just described focus on the use of M-estimators being modified
for ridge regression. We will take the same approach in developing our estimators.
However. these methods find A using methods that are not applicable in underdeter-
mined models, as pointed out in chapter 2. Therefore we will need to use a different
method for choosing A. It will still depend on the value of our signal-to-noise ra-
tio. As in the above methods, we will begin by focusing on outliers that arise from

contaminated errors, with a fixed value of q.

4.5.1 Bounding Influence of Residuals

We are using the model (3.2.1) and its assumptions. as given in section 3.2. Our
procedure will be similar to that of Askin and Montgomery (1980), in that we will

find an estimator to solve

i ¥, (%) x; =0 (4.5.1)

=1

subject to our signal-to-noise constraint (3.2.2), where

ri et C
v, (;) = r; min (l, _—Iri/&l)

and ¢ Is a robust estimator of o.

With ¢ fixed, the procedure will be as follows:
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I. Find Ak, Bi;x and 67, using the procedure described in section 3.2. This means

we are starting with non-robust estimators.

(V]
H

For given iuk in step I, find ,BM‘,\ which solves
=1 o
subject to (3.2.2). This estimator is found using iterative reweighted least

squares, and at each iteration is of the form

-

By = (XWX + 1y Zx) ' X'Wy

and

W = diag(w,...,w,), w; =min (1, ;) (4.5.2)

Iri/&]

3. Using B M., update ) to a more robust estimator by finding A to solve

~l

Bu ExBua

0‘-2

(4.5.3)
Call the solution \,,.

4. Use A, and the W matrix from the final step of the iteration scheme in step 2
to find
B.. = (XWX + 1. Zx) 'X'Wy,

2

and to update 6°. Note that we have not yet specified the estimator we are

using for 62. This will be discussed in the simulation results.

The choice of c in (4.5.2) will be determined by simulation at the correct model,
at which we will try to achieve as high efficiency as possible, based on one of two
measures described in the next section. Note that as ¢ — oo we find w; — 1, so we
would expect to approach the non-robust estimator.

An important question we need to address is whether the above method bounds
the influence of the residuals. We will rely on some empirical evidence, to be presented
in the next section, to support the claim that the influence function of the procedure

is bounded.
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4.5.2 Empirical Studies

The models we will study are similar to those introduced in section 3.3 and subsequent
sections. We will use n = 50 observations and p = 80 parameters, and generate 3
from either a U(0, 1) or a N(0, 4) distribution. The rows of the X matrix will be
generated from the AR(2) process (3.3.1) and, in the first models, we will correctly
assume that € ~ N(0,0%I). After discussing results on the behavior of the influence
function, and the efficiency of the procedure at the correct model, we will study our
robust procedure by generating errors from a contaminated normal distribution.

We will look at two measures to determine efficiency. We have focused on predic-
tive ability in previous results, so we will begin by considering a measure of the MSE

of the fitted values:

k
MSE(y) = Z -XB)'(y: — XB)

?r-l

where k is the number of simulated data sets. However, this is a nonrobust measure,
and will penalize methods that fit the majority of the data well. but do not fit the

outlying points. A more robust measure is
1 k n
MSE, (y) = 7;; (4.5.4)

where p(é; ;) = min(é} d20' i)
Ge; = 1.483 med (|é;; — med ,,(é; )]

is the median absolute deviation of the prediction errors and ¢é; ; is the jth element of
(¥: — XB). This robust criterion is suggested Ronchetti et al. (1997) in the context
of robust model selection. The choice of d = 1.345 is often made, and is the value we
will use in our procedure.

Using (4.5.4) we then define efficiency as

MSE, (¥ k)

) = VEE, 7.

(4.5.5)
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In the case of studying a robust procedure, it may make more sense to change our
focus to now look at distance from the true B vector. We begin with finding the

approximate MSE of our 3 vector:

k
MSE(B) = Z (B: = BY(B: - B) (4.5.6)
and defining efficiency as .
3 \ _ MSE(B) -
eff(8,,) = MSE(B..) (4.5.7)

We will also examine the predictive ability of the estimators in the following
fashion. For each data set generated, we will calculate 3, and B..c, then generate a
validation set y;, = X8 + €; where €, will follow the same distribution as €. Then
we will evaluate the robust prediction sum of squares using the function defined in
(4.5.4):

PSSy = — Z p(é:) (4.5.8)

l"’l

where é; is the ith element of y; — XBlikv and
PSS, = %Zp(é,—) (4.5.9)
—

where é; is the ith element of y; — Xﬁm.

We begin by presenting some results that compare the robust and nonrobust
estimation procedure, when we use 62, as our robust estimator of o2. Table 4.1
gives results over 500 simulated data sets for four values of q.

There are two noticeable features present in table 4.1. First, we see that &2, is
biased downwards by a greater amount than 6%,. More importantly, the \,, values
are much more variable than the A values. This difference is of several orders of
magnitude at large values of ¢. Other simulation results suggest that using 62 _,, and
letting w; = 1 for all 7 in our estimation procedure, can still give results that are quite
different from the nonrobust procedure. For these reasons, we will use a different

robust estimate of o2, which we will introduce below.
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q
7.21 17.37 27.14 57.44
o 16 25 16 7.56
62.4| mean]|7.126 9.85 6.523 3.373
median | 7.163 9.791 6.538 3.384
var | 0.559 1.106 0.423 0.0542
Ghe | mean | 10.79 14.42 9.317 4.457
median | 10.67 14.33 9.268 4.439
var | 1.236 1.841 0.492 0.0656
Am | mean [ 20.00 12.92 10.09 6.571
median | 20.16 12.84 10.01 6.648
var | 8.826 4.469 2.734 0.8627
Mik | mean | 5.966 2.639 1.735 0.8446
median | 5.988 2.646 1.739 0.8451
var | 0.016 | 1.39 x 1073 | 3.01 x 10~% | 1.32 x 10~5
b 1.345 1.345 1.345 1.345
10 5 3 3

Table 4.1: Results comparing nonrobust and robust procedures: Correct model situ-
ation, using 62 _, as variance estimator

4.5.3 Improved Estimation of o2

The nonrobust estimator 6%, given in equation (3.2.13) is the sum of two terms. Since
one of the terms is 2 sum of squares, it is reasonable to derive a robust estimator by
replacing this term with a more robust loss function. We use the p-function introduced
in (4.5.4) to construct

1
n

=23 ple) + 2858, (4:5.10)
ot
where €, = y, — x{uﬁm.

Results using this new estimator are given in table 4.3, and we discuss them briefly
here. We see that the &2 values are less biased than those given by &2 _, in table 4.1
with comparable variance. We also see that the smoothing parameters are much less

variable when we use 632,.
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We will use this new estimator in our procedure outlined in the previous section.
We will begin with some empirical results on the behavior of the influence functions

of our robust and nonrobust estimates.

4.5.4 Empirical Measure of Influence Functions

We began this chapter with a discussion of the influence function of an estimator
and the role it plays in identifying if the estimator will be strongly affected by one
outlying value in the data set. Since we have proposed a robust method, we would
like to establish, at least empirically, that it has a bounded influence function. We
will do this by the following simulation study.

We generate data from the regression model as before, and calculate our estimates
by the robust and nonrobust methods we have developed. Then we multiply one
value in y by a value s > 0, and recalculate our estimates. This is repeated for a
range of increasing values of s. If the estimators increase greatly, we have empirical
evidence that their influence functions are not bounded, since they are susceptible to
changes in one data point. Table 4.2 contains results for the ¢ = 7.21 model using
50 simulated data sets, where s ranges from | to 100. Results for other models are
given in Appendix C.

We see that 62, and B, change dramatically as we increase a single y; value,
giving strong evidence that the influence functions are unbounded. However, we see
that 62 and B3,, continue to be stable over the range of s values. suggesting their
influence functions are bounded. The weights that are assigned to the outlying y
values decrease quickly to 0 as s increased, providing evidence that the robust method
is giving us sensible estimates for the bulk of the data. We also see that the A values
are not greatly affected.

This empirical study does not prove that the influence functions of our robust
estimators are bounded. To establish it theoretically we would have to derive the
influence function of ﬁm using (4.2.1), under the assumption that o? was known

and A was fixed. It may also be possible to begin with the results on the influence
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S
1 20.8 | 406 | 604 100
52 | mean | 11.883 | 14.020 | 14.162 | 14.211 | 14.279
median | 11.923 | 13.352 | 13.944 | 14.103 | 14.096
6%, | mean | 14.000 | 118.47 | 420.89 | 921.26 | 2515.8
median | 13.132 | 50.961 | 163.92 | 351.08 | 947.97
An | mean| 6.033 | 6.085 | 6.087 | 6.089 6.091
median | 6.088 | 6.116 | 6.117 | 6.120 6.119
Mix | mean | 5.689 | 5.421 | 5.329 | 5.295 5.272
median | 5.686 | 5.485 | 5.381 | 5.349 5.354
(B,.—B)(B,,—B)| mean|67.604 | 84.222 | 85.285 | 85.641 | 86.103
median | 66.203 | 83.672 | 84.240 | 84.531 | 85.034
(Bix — BY(Bix — B) | mean | 84.091 | 981.24 | 3633.9 | 8041.8 | 2.21 x 10°
median | 80.339 | 389.89 | 1370.9 | 3015.0 | 8291.9
c 2 2 2 2 2

Table 4.2: Empirical measure of change in influence function when one y; value mod-
ified. Model using ¢ = 7.21 and robust method which downweights residuals

function of the M-estimator given earlier in the chapter, although the presence of the

smoothing parameter in Bm may mean these results are no longer applicable.

4.5.5 Simulation Results

Now that we have empirically established that our robust estimation procedure has
a bounded influence function, we move on to comparing the estimators obtained by
the two methods. We begin by simulating 500 data sets at the correct model, and
calculating eff(§,.) and eff(3,,). For each data set generated we use the estimators
to predict a new data set, using the robust measure defined in (4.5.4). These results
are presented in table 4.3.

Several general trends can be seen in table 4.3. As we had hoped, the values of },,

are much less variable using 62, defined in (4.5.10). The A values are very similar for

both the robust and nonrobust methods. The estimates of o2 are also very similar.
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q
7.21 17.37 27.14 57.44
72 | mean | 9.930 11.803 8.640 3.707
median | 9.862 11.677 8.622 3.691
var | 1.222 1.328 0.426 0.0494
62, | mean | 10.789 14.417 9.317 4.457
median | 10.672 14.326 9.268 4.439
var | 1.236 1.562 0.492 0.066
An | mean]| 6.252 2.725 1.773 0.854
median | 6.281 2.729 1.77 0.856

var | 0.020 | 1.99 x 1073 | 4.23 x 10~* | 2.10 x 10~5
Mix | mean| 5.966 2.639 1.735 0.845
median | 5.989 2.646 1.739 0.845

var | 0.016 | 1.64 x 1073 | 3.01 x 10~* { 1.32 x 10~5
(B.. —B)(B,. —B) | mean | 44.494 213.83 205.46 193.63
median | 43.326 |  211.98 203.64 192.95
var | 27.876 152.25 90.430 31.445
Bix — BBy — B) | mean | 46.124 | 219.92 209.59 198.18
median | 44.912 |  217.09 208.06 197.64
var | 30.444 177.27 102.58 39.890
eff(3,,) 1.037 1.028 1.020 1.023
eff(§m) 0.970 .906 0.946 0.859
PSS, | mean | 20.189 | 35.574 22175 11.579
PSSy | mean |19.656 | 32913 21.249 10.163

c 1 0.5 0.5 0.3

Table 4.3: Results comparing robust and nonrobust procedures: Correct model situ-
ation, using robust method which downweights residuals
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We see, at the correct model, that our robust estimators are achieving around
100% efficiency, using criterion (4.5.7), while the efficiency ranges from 86% to 97%
using criterion (4.5.5). If we compare the PSS values found using (4.5.8) and (4.5.9)
we see the nonrobust method does better in all four models, with the best performance
in the ¢ = 57.44 model.

We will now look at the case where model (3.2.1) is not correct, specifically in
terms of the error structure. The errors will be generated from a “wild” distribution,
where 90% of the ¢; are generated from a N(0, ¢?) distribution, and the remaining
10% from a N(0, 250%) distribution. Before discussing the results. let us examine how
these new errors affect the true signal-to-noise ratio. Recall that

_ Var(signal) _ Var(x!8)
" Var(noise) = Var(e;)

but we no longer have Var(e;) = o2. If we define

=i ~ N(0, o?) W.p. p
€ =
ti ~ N(0,ko®) w.p. (1 —p)

Then E(¢;) = 0 and

Var(e;) = E(€f)
= E[E(e|=:, t)]
= E[pz} +(1 - p)t]]
= po? + (1 = p)ko® = o*[p+ k(1 — p)]
So the “true” ratio is
B'Exp
o¥[p + k(1 — p)]

If p=1 then the denominator reduces to o2, as before.

In our specific example, p = 0.9 and k = 25, so [p + k(1 — p)] = 3.4. This means
that the true ratio is smaller than what we are assuming, and is the reason we are

studying some cases with larger values of 8’ x8/02. All other features of the models
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q

7.21 17.37 27.14 57.44
52 mean | 12.633 13.029 9.461 3.851
median | 12.530 13.066 9.397 3.871
var | 5.973 2.589 0.974 0.118
62, | mean | 15.195 18.352 11.121 4.923
median | 14.781 17.780 10.803 4.881
var | 17.162 10.762 2.717 0.276
Am | mean | 6.107 2.697 1.758 0.852
median | 6.115 2.701 1.760 0.853

var | 0.033 | 3.02 x 1073 | 6.95 x 10~% | 3.20 x 10~%
Aik | mean | 5.701 2.591 1.717 0.341
median | 5.749 2.597 1.720 0.842

var | 0.052 | 3.78 x 10~3 | 7.50 x 10~* | 3.52 x 10~%
(Bm —B)Y(B,. —B)| mean|69.938 | 246.27 237.69 208.85
median | 67.936 | 243.17 233.14 206.65
var | 265.94 1133.6 869.91 301.07
(Biur —B)Y(Bix —B) | mean | 86.661 | 293.68 261.58 225.49
median | 80.014 |  285.09 254.95 222.26
var | 916.37 | 3991.1 2049.8 616.79
eff(8,,) 1.239 1.193 1.101 1.080
eff(ym) 1.009 0.907 0.948 0.854
PSS, | mean | 28.734 | 49.548 31.457 16.502
PSSir| mean|28.931 | 46.997 30.499 14.707

c 1 0.5 0.5 0.3

Table 4.4: Results comparing robust and nonrobust procedures: Wild error distribu-

tion, using robust method which downweights residuals
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are the same as used to generate the results in table 4.3. Table 4.4 summarizes results
over 500 simulated data sets.

We begin with some of the general features of the estimators. We see that the 62
values tend to be smaller than the &%, values, while the \,, values tend to be larger
than their nonrobust counterparts. The smoothing parameters are still very similar.

We now focus on the gains in using the robust estimator, beginning with (4.5.7).
We see we have large gains in efficiency, on average, in each of our models. The
improvements are larger when the true value of ¢ is smaller. The results using effi-
ciency measure (4.5.5) differ slightly from these results. We are obtaining anywhere
from 85% to 101% efficiency, with the loss in efficiency greater as q increases. If we
compare how well we do in predicting a new data set, we see the PSSy values are
smaller for three of the four choices of q.

In addition to considering the overall gain in efficiency, we can investigate differ-

ences in individual data sets. We can do this by comparing

- -

SS(Bn) = (Bn—B){B.-B8)
SS(Bux) = (Bix — B (Bux — B)

and by comparing the PSS, and PSSy values for each simulated set. Table 4.5 gives
the percentage of cases that fall within each of the four possibilities, based on our
two comparison criteria.

We see that SS(B,,) < SS(By) in virtually all situations, so this favours the
robust procedure. This is not the case for the PSS measures. Here we see the
nonrobust method is preferred in a majority of cases at each ¢ > 7.21, with the
percentage of cases favouring the nonrobust method increasing with ¢q. We are not
sure why there is this difference in performance in the two measures, but it is repeated

in some of the later results.
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PSSix < PSS, | PSSy > PSS,

g=121 | SS(B,) > SS(Bux) 1 0

SS(Bm) < SS(B) 43 56
q=17.37| SS(B..) > SS(B.) 2 0

SS(B,) < $S(Bx) 65 3
q=27.14[ SS(B,) > 55(B) 2 0

SS(B,) < SS(Bux) 64 34
q=57.44 | S5(B,) > SS(Bx) 2

SS(B,) < SS(Bix) 7 21

Table 4.5: Percentage of cases in which robust and nonrobust methods preferred,
based on two different criteria. Wild error distribution, using robust method which
downweights residuals

4.6 Robust Ridge Regression: Proposal Two

We return to the M-estimator, defined as the solution to (4.3.1), with n defined in
(4.3.2). The terms w(x) and v(x) allow us to bound the influence of values in the X
space. These are often referred to as influential observations.

The usual approach to bounding influence in the X-space is similar to that of
bounding the influence of residuals; downweight x values that are far from the origin
in some sense. This typically means using weights that are decreasing functions of

the distances ||Ax|| and A is a transformation matrix that satisfies
1 = ’ I
=~ > u(]|Ax||)AxxiA =1
i=1

where u is a given function. The matrix A usually is determined by an iterative
procedure (Marazzi 1993, pg. 56).

These approaches have a drawback in underdetermined models. This is because
it is more difficult to discuss the concept of distance, since we have n vectors in a P
dimensional space, where p > n. Many of the methods for determining A involve ma-
trices that use (X'X)~!, which is singular in the underdetermined model. Therefore

we will attempt to use a method similar to one given by Krasker and Welsch (1982).
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If n > p we define the hat matrix as H = X(X'X)~'X' and its diagonal elements
h; as the leverage values. From regression theory we know that 0 < &; < 1 (Neter
et al. 1985, pg. 402), and large leverage values are associated with points that would
be suspected to be influential. Based on the leverage values, Krasker and Welsch

(1982) suggest finding estimators which minimize
>_ a0 (x:)pl(y: — xiB)/(ov(x:)]
=1
where v(x;) = v; = (1 — h;)'/2. If we choose p such that Huber’s ¥ function is its

derivative, we seek an estimator which solves
Z riwx; =0
i

where r; is the ith residual and w; = min{1, ¢/|r;/(cov;)|}.
We will use a procedure based on this method to find our robust smoothed esti-

mator, with the following modification. We will use
H, =X(X'X +AZx)'X'

and define our leverage values to be the diagonal elements of H,.

The use of these weights will provide a bound on the influence of x. but its effect
will be cancelled out if |r;/(ov;)| is small. This is similar to the Hampel-Krasker
estimator, which downweights leverage values only if the corresponding residual is
large (Hampel et al. 1986, pg. 322).

This leads to a new robust estimation procedure for our model. It is identical to

the method outlined in section 4.5.1, except we replace the weights in (4.5.2) with

w; = min (1, m) (461)

We begin with an empirical examination of the influence functions using this new
procedure. Since we are now downweighting in the X and residual spaces, we need

to examine if the influence function of our procedure is bounded in both spaces.
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S
1 20.8 | 40.6 60.4 100
72 | mean | 9.237 | 9.917 | 10.042 | 10.1388 10.292
median | 9.129 | 9.918 | 10.075 | 10.131 10.267
62, | mean| 10.789 | 168.12 | 625.58 | 1383.0 3798.0
median | 10.673 | 92.237 | 333.15 | 728.54 2002.1
Am | mean| 6.240 | 6.228 | 6.229 6.231 6.235
median | 6.254 | 6.251 | 6.251 6.251 6.259
Mix | mean | 5.966 | 5.340 | 5.253 5.223 5.200
median | 5.988 | 5.353 | 5.292 5.281 5.263
(B,. —B)(B,, —8) | mean | 43.441 | 47.447 | 47520 | 47.650 47.892
median | 42.846 | 45.861 | 46.243 | 46.370 46.618
(Bix —BY(Bur — B) | mean | 46.124 | 1349.1 | 5209.0 | .11 x 10% | 3.21 x 10°
median | 44.912 | 779.33 | 2921.1 | 6470.7 | 1.79 x 10*
c 2 2 2 2 2

Table 4.6: Empirical measure of change in influence function when one value in y
modified, using second robust method, ¢ = 7.21

4.6.1 Empirical Assessment of Influence Function

[n this second robust estimation proposal we are concerned with a bounded influence
function with respect to outliers in the X and € spaces. Therefore we conduct two
simulation studies. The first is the one described in section 4.5.4. but using the robust
procedure described in this section. In the second simulation we multiply one row
of X by a value s > 0, calculate the estimators, and repeat this over a range of
increasing values of s. Tables 4.6 and 4.7 contain results for the ¢ = 7.21 model using
50 simulated data sets. Results for other models are given in Appendix C.

We see that the robust estimators appear to have bounded influence functions
in both cases. The nonrobust estimators do not appear to have bounded influence
functions when we increase a value in y, as we saw previously. However, the results
suggest the nonrobust method does have a bounded influence function when we have
outliers in the X space. This may be a consequence of adding the term A x to the

X'X matrix. Therefore, when we present results that only involve a contaminated X
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1 20.8 | 40.6 | 60.4 | 80.2 100
mean | 9.237 | 9.244 | 9.248 | 9.252 | 9.255 | 9.272
median | 9.129 | 9.174 | 9.171 | 9.172 | 9.172 | 9.173
67, | mean | 10.789 | 10.817 | 10.818 | 10.818 | 10.818 | 10.818
median | 10.673 | 10.663 | 10.664 | 10.665 | 10.665 | 10.665
Am | mean| 6.240 | 6.267 | 6.267 | 6.267 | 6.268 | 6.268
median | 6.254 | 6.284 | 6.286 | 6.287 | 6.287 | 6.287
Xiix | mean | 5.966 | 5.982 | 5.982 | 5.982 | 5.982 | 5.982
median | 5.988 | 6.005 | 6.005 | 6.004 | 6.004 | 6.004
(B —B)(B.. —B) | mean | 43.441 | 43.298 | 43.302 | 43.307 | 43.310 | 43.331
median | 42.846 | 42.552 | 42.542 | 42.539 | 42.537 | 42.536
(B —BY By, —B) | mean | 46.124 | 46.016 | 46.018 | 46.018 | 46.018 | 46.019

median | 44.912 | 44.836 | 44.820 | 44.814 | 44.811 | 44.809
c 2 2 2 2 2 2

Table 4.7: Empirical measure of change in influence function when one row in X
modified, using second robust method, ¢ = 7.21

matrix. we should expect the nonrobust method to continue to do well.

4.6.2 Simulation Results

We now wish to investigate the properties of this new robust procedure. We begin
with an examination of its performance in a model with no outliers in the errors or
influential values in X. The model being used is the one described in section 4.5.2.
Table 4.8 summarizes some of the simulation results in the correct model situation.
In all results presented in this section, the tables are a summary of findings over 200
simulated data sets.

Some general features appear in table 4.8. We continue to see 62 < &7, and

Am > Xix in three models. The variability of the Am values continues to be of the
same order as the \;x values. We are also achieving approximately 100% efficiency

with the robust estimation procedure at the correct model, based on (4.5.7).
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q

7.21 17.37 27.14 57.44
52 | mean | 9.237 12.640 8.296 4.071
median | 9.129 12.647 8.307 4.073
var | 1.021 1.415 0.431 0.056
62, | mean | 10.789 14.417 9.317 4.457
median | 10.673 14.326 9.268 4.439
var | 1.236 1.562 0.492 0.066
Am | mean | 6.240 2.723 1.774 0.854
median | 6.255 2.728 1.77 0.855

var | 0.019 | 1.97 x 10~3 | 3.89 x 10~* | 2.03 x 10~
X\ix |  mean | 5.966 2.639 1.735 0.845
median | 5.988 2.646 1.739 0.845

var | 0.016 | 1.64 x 1073 [ 3.01 x 10~* | 1.32 x 10-5
(B —B)Y(B,,—B)| mean |43.441 214.55 204.38 194.53
median | 42.846 | 211.62 202.94 193.75
var | 21.923 | 92.206 87.860 30.911
(Biur —B)' By —B) | mean [ 46.124| 219.92 209.59 198.18
median | 44.912 | 217.09 208.06 197.64
var | 30.444 177.27 102.58 39.890
eff(3,,) 1.062 1.025 1.023 1.019
eff(¥m) 0.967 0.926 0.924 0.911
PSS, mean | 20.585 34.821 22.727 10.974
PSSir | mean | 19.656 | 32.913 21.249 10.163

c 2 2 2 2

Table 4.8: Results comparing robust and nonrobust procedures: Correct model situ-
ation, using second robust method
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If we use the efficiency measure (4.5.5), we obtain anywhere from 91% to 97%
efficiency at the true model. A comparison of the PSS values in table 4.8 also
slightly favours the nonrobust procedure.

We now move to the cases of contaminated X and € values. The errors are
generated from the wild distribution introduced previously. We take the following
approach to introducing leverage values in the X matrix. We generate the elements
of all but two of our x| vectors using the AR(2) process (3.3.1). The remaining two

rows of X are generated from the AR(1) process
zi; = 0.9z ;1 +n, 7. ~ N(0,25) (4.6.2)

We can examine how this affects the true variance of the signal in our model.
Suppose x| ~ N(0',X.) with probability p; and x! ~ N(0’, X,) with probability
1l — p1. Then we find

Var(x{) = p1 B + (1 — p1) B,

Therefore with contaminated X and € we have a true signal-to-noise ratio of

B';mE. + (1 -p)%B
o¥p + k(1 - p)]

Table 4.9 summarizes the results of the scenario in which there are no influential

observations in the X matrix, but the errors are generated from the “wild” distribu-
tion.

The results in table 4.9 are very similar to those in table 4.4. We see that the
robust method yields estimators that are better than the nonrobust estimators in all
four models considered, based on eff(3,,). The improvements are greater at smaller
values of q. If we use eff(§,,) we find the methods do not differ by as much, on
average, and the advantage still lies with the nonrobust method for ¢ > 7.21. The
same conclusion holds if we compare the mean PSSj;x and PSS, values.

Table 4.10 gives the results on the percentage of times the robust or nonrobust
method has the superior performance, based on each criteria. The results are very

similar to those in table 4.5; we see the robust method is favoured in most cases when



7.21 17.37 27.14 57.44
72 | mean | 10.805 13.971 3.926 4.227
median | 10.635 13.952 8.860 4.284
var | 3.228 2.769 0.911 0.123
6%, | mean | 15.195 18.352 11.121 4.923
median | 14.781 17.779 10.803 4.881
var | 17.162 10.762 2.717 0.276
Am | mean| 6.119 2.692 1.761 0.851
median | 6.118 2.701 1.766 0.852

var | 0.029 | 3.19 x 1073 | 6.38 x 10~* | 3.69 x 10~5
Aix | mean | 5.701 2.591 1717 0.841
median | 5.749 2.597 1.720 0.842

var | 0.052 | 3.78 x 1073 | 7.50 x 10~* | 3.53 x 10~5
(B —B) (B —B)| mean|59.435| 250.538 233.53 211.80
median | 57.845 | 247.385 230.92 208.63
var | 128.19 1219.4 787.66 313.61
(Biux —B) (B —B) | mean | 86.661 293.68 261.58 225.49
median | 80.014 285.09 254.95 222.26
var | 916.37 3991.1 2049.8 616.79
eff(8,,) 1.458 1.172 1.120 1.065
eff(ym) 1.008 0.931 0.920 0.899
PSS, | mean | 28.265 48.798 32.111 15.611
PSSi | mean | 28.931 46.997 30.499 14.707

c 2 2 2 2

Table 4.9: Results comparing robust and nonrobust procedures: Wild error distribu-

tion, using second robust method
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comparing SS (Bm) and SS (,ém), while the nonrobust method is preferred based on
comparing PSS, and PSS, values at ¢ > 7.21.

PSS < PSS, | PSSy > PSS,
g =721 | SS(B,) > SS(Bux) 2 0
SS(B.,) < SS(Bux) 45 53
¢ =17.37 [ S5(B.) > SS(Bux) 2 0
SS(B,) < SS(Bi) 61 37
g =27.14 | SS(8,,) > SS(Buix) 3 0
SS(Bm) < SS(Bux) 66 3t
g =574 | SS(B,) > SS(Bi) 3 0
SS(Bm) < SS(Blik) 71 26

Table 4.10: Percentage of cases in which robust and nonrobust methods preferred,
based on two different criteria. Wild error distribution, using second robust method

We now deal with the situation where the errors are not contaminated. but we
introduce two influential observations in our X matrix, as described previously. These
results are summarized in table 4.11.

As we mentioned when discussing the influence functions of the procedures, we
suspected the nonrobust method would do well in this case, because the estimators
appeared to have a bounded influence function with respect to X. The results in
table 4.11 confirm this belief. The results are very similar to those given in the
correct model situation in table 4.8.

Table 4.12, which summarizes the percentage of cases in which each method is
preferred in the model with two leverage values, shows us some interesting results.
We continue to see $S(3,,) < SS (Bix) in almost all situations. However, except for
the ¢ = 7.21 model, we see that PSS, < PSSy in the majority of cases, indicating
the robust method does better on both criteria.

Finally, in table 4.13 we present results from the situation where we have errors
generated from our “wild” distribution and there are two leverage values in the X

matrix.
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C

q
7.21 17.37 27.14 57.44
52 | mean | 9.819 16.049 10.446 5.058
median | 9.777 16.017 10.390 5.044
var | 1.550 1.024 0.323 0.044
Gix | mean | 11.116 16.761 10.830 5.202
median | 11.074 |  16.704 10.765 5.162
var | 1.261 1.478 0.485 0.074
Am | mean| 6.315 2.740 1.780 0.855
median | 6.330 2.739 1.779 0.854

var [ 0.019 | 1.07 x 10~3 | 2.02 x 10~* | 9.92 x 10~®
Xix | mean | 6.123 2.661 1.740 0.843
median | 6.148 2.667 1.741 0.843

var | 0.021 | 3.69 x 10~3 | 8.45 x 10~* | 4.94 x 10~5
(B, —B)(B,. —B)| mean|40.330| 155.39 143.88 131.14
median | 39.695 | 152.85 142.03 130.56
var | 22.423 | 241.75 135.41 42.857
(Bix —BY By — B) | mean | 43.266 | 157.99 145.95 132.68
median | 42.443 |  154.57 143.95 132.73
var | 27.750 | 245.96 136.35 43.748
eff(3,,) 1.073 1.017 1.014 1.012
eff(§m) 0.932 0.984 0.985 0.992
PSS, | mean | 21.062 | 32.423 21.104 10.147
PSSi | mean|19.959 | 48.333 31.100 14.881

2 P) 2 2

Table 4.11: Results comparing robust and nonrobust procedures: Two large leverages

in X, using second robust method
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PSS[,‘/; < PSS,- PSS(,'], > PSS,—
¢ =721 | SS(B,) > SS(Bu) 2 0
SS(B,.) < SS(B.x) 74 24
q=17.37| $SS(B,.) > SS(Bux) 2 9.5
$5(8..) < SS(Bux) 10 78.5
q=27.14 | $5(8,.) > SS(B.:) 2 16
SS(B,.) < SS(Bu) 11 71
q=>5744 | SS(B,.) > SS(Bur) 3 25.5
S$S5(B,.) < SS(Bux) 11 60.5

Table 4.12: Percentage of cases in which robust and nonrobust methods preferred.,
based on two different criteria. Two large leverage values in X, using second robust
method

We see that the results are very similar to those found when there were only
contaminated errors in the model. The efficiency measure (4.5.7) strongly favours the
robust estimators. When we examine the efficiency measure (4.5.5) we find the robust
and nonrobust methods perform nearly identically on average. The mean values of
PSS, and PSSy are also very similar.

Table 4.14 summarizes the results found in the individual data sets when we use
the “wild” error distribution and two leverage values. The values of PSS;;; and PSS,
indicate that both the robust and nonrobust methods are preferred in 45% to 55% of
the individual cases, depending on g. Meanwhile S$(83,,) < S$S(By.) in most cases,
as we saw in all other situations.

We can draw several conclusions from these results. When we base the compar-
ison of the procedures on measure (4.5.7) the robust procedure does as well as the
nonrobust method when the model assumptions are correct, and outperforms it when
the errors originate from the “wild” error distribution. The improvements are more
dramatic as q decreases. The methods perform similarly if there are only influential
values in the X space, because the influence functions of both procedures appear to

be bounded in this case.



q

721 17.37 27.14 57.44
52 | mean | 11.339 17.774 11.323 5.307
median | 11.187 17.788 11.337 5.316
var | 3.243 3.615 1.023 0.132
62, | mean | 15.237 | 20.558 12.581 5.658
median | 14.212 19.994 12.320 5.571
var | 14.263 11.624 2.944 0.311
An | mean | 6.264 2.719 1.771 0.853
median | 6.273 2.720 1.770 0.853

var | 0.024 |2.10 x 1073 | 3.77 x 10~* | 1.71 x 10~3
Xix | mean | 5.878 2.622 1.726 0.841
median | 5.916 2.634 1.733 0.842

var | 0.046 | 5.46 x 103 | 1.24 x 10~3 | 7.71 x 10~3
(B —B)Y(B,, —B)| mean|54.956 | 197.51 178.37 152.94
median | 53.794 191.44 171.04 146.19
var | 102.21 1153.6 816.47 439.65
(Bie —B) (B — B) | mean | 79.462 | 232.82 199.58 161.77
median | 72.578 |  217.12 188.55 155.23
var | 729.04 |  5266.7 2949 8 976.24
eff(3,,) 1.446 1.179 1.119 1.058
eff(§m) 0.998 1.000 0.993 0.991
PSS, | mean | 29.425 | 48.211 31.283 14.962
PSS mean | 29.348 48.325 31.110 14.890

c 2 2 2 2

Table 4.13: Results Comparing robust and nonrobust procedures: Wild error distri-
bution, two large leverage values in X, using second robust method
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PSS[,‘/; < PSS,- PSS(,'k > PSS,-
g=1721 | SS(B,) > $S(Bu) ! 0
SS(Bm) < SS(Bux) 53 16
g =17.37 | $5(B.) > SS(Bu) 3 0
SS(Bm) < SS(Bux) 48 49
¢ =27.14 | SS(B,) > SS(Bix) 1.5 2
SS(Bm) < SST.BI.'I:) 47.5 49
q=5744 | $S(B,) > SS(Buxx) 0 7
55(Bm) < SS(Bu) 4 49

Table 4.14: Percentage of cases in which robust and nonrobust methods preferred,
based on two different criteria. Wild error distribution, two large leverage values in
X, using second robust method

The conclusions are somewhat different if we use a robust measure of prediction
for comparison, such as (4.5.5). The robust method does better using this criterion
when there are influential observations in the X space, but worse if there are outliers
in the residuals. If both types of contamination are present the methods perform

similarly.

4.7 Robust Estimation of q

The work in the previous sections assumed the value 'S x3/0? was known. We now
wish to modify our procedure in chapter 3 to allow for more robust estimation of q,
and combine it with the procedures presented in this chapter.

Equation (3.6.1) can be thought of as a measure of predictive error. We propose
to use a new measure which does not heavily penalize a choice of ¢ which fits most
of the data, but gives large prediction errors at a few outlying points. This is what a

robust procedure should do in the presence of outliers. With this in mind, we propose
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to use the robust p-function defined in (4.5.4) to measure predictive loss:

S pléw) (4.7.1)
w=l1l

where p(é,) = min(€é?, d%52),

G: = 1.483 med ier, |éx — med jey, (€;)]

is the median absolute deviation of the prediction errors for the validation set /,, and

€w is the wth element of (y, — X,,BC';\). From our previous work d = 1.345 while Bc';\

is the estimator of 3 using the construction set.

This leads to the following robust procedure. Much of the notation is the same as

that used in our nonrobust method for estimating ¢, described in section 3.6.

o

. Split the data into a construction set (X, y.) and validation set (X,,y,).

Use (X,,y.) to find X to solve
B.=xB. .
—2 =9
Tlik(rc)

for a fixed choice of ¢*. Call the result A.

Use A from step 2 and (X.,y.) to find the ridge M-estimator that solves (4.5.1)
subject to the constraint (3.2.2), and using 62 to estimate 0. Call this esti-

mator Bml'c. The weights can be calculated using either (4.5.2) or (4.6.1).

Use Bml.c to find A to solve

a~t

ﬂml.CEXﬂml.c _ =

~2 -
Um

Call this value A..

. Compute an updated robust estimator for B using the weights from step 3 and

. from step 4. Call it 3,”.
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6. Compute (4.7.1) as the measure of loss for the itk split of the data.

Repeat steps 1-6 for k£ random splits of the data, and average (4.7.1) over the

=~
.

k splits, yielding
1 k ne A _
L5 3 pléws) (4.7.2)
=1 w=1
3. Repeat steps 1-7 over a range of ¢* values, and choose the estimate as the value

which gives us the minimum of (4.7.2). Call this §,.

9. Using ¢, as fixed, calculate A, ﬁm and 62 using one of the robust methods

proposed in this chapter.

4.7.1 Simulation Results

We present simulation results on the robust estimation of ¢ in models where € is
generated using the “wild” error distribution, and there are two influential values in
X. We will use our robust estimation procedure with the weights defined in (4.6.1).
All other features of the model are the same as those described earlier in the chapter.
Table 4.15 summarizes the results over 50 simulated data sets.

In the ¢ = 7.21 case we see that median(§,) < q. The median of the g, values is a
more sensible estimate than the median of the §j;x values. We do see both estimates
are highly variable. When comparing the SS(ﬁm) and SS(B,ik) we see that 3,
does a great deal better on average. We also see that the mean PSS, and PSS
values favour the nonrobust method, but the median values are very similar. If we
compare the individual cases. we find SS(,ém) < SS(,@,,-,,) in 98% of cases, while
PSSm < PSSk in 57% of cases.

When g = 17.37 we see poor estimation of ¢ by both methods, and the robust
method chooses a smaller smoothing parameter than the nonrobust procedure. We
see the robust method is preferred, on average, when comparing SS(A3,,) and SS (Buix)
and when we compare PSS, and PSSi. The individual cases also favour the robust
method, with SS(8,,) < SS(By) in 70% of cases and PSS, < PSSu in 67% of

cases.



q
7.21 17.37 27.14
gr mean 64.473 410.47 660
median 2 50 500
var | 4.00 x 10* | 1.90 x 10° | 2.00 x 106
Gix | mean| 961.81 211.03 507.45
median |  1000.0 7.5 525.00
var | 3.21 x 10* | 1.65 x 10° | 2.55 x 10°
Am | mean| 57.909 2.552 0.893
median | 20.570 0.985 0.050
var | 8266.5 25.901 2.537
Mik | mean| 0.591 10.249 3.165
median 0.048 6.417 0.506
var | 9.086 183.93 32.273
B, ~B)(B,.—B)| mean| 142.148 191.98 180.89
median 37.471 186.71 174.83
var 326.44 954.40 1260.8
(Bir —B)Y(Bir —B)| mean| 127.79 208.44 195.31
median 111.90 206.11 181.71
var | 2884.0 1756.2 1521.7
PSS, | mean| 33.623 43.739 29.473
median | 29.721 42.526 28.480
PSSk mean 30.898 54.163 31.751
median | 29.513 50.943 30.440
c 2 2 2
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Table 4.15: Robust and nonrobust estimation of q: Wild error distribution, two large

leverage values in X
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[n the ¢ = 27.14 model we see that both methods overestimate ¢ by a large
amount, and we see the robust method imposes less smoothing than the nonrobust
method. In this case we continue to find the robust method favoured based on the
measure (4.5.7), while the PSS, and PSS values are very similar on average. When
we compare the individual cases, we find SS(3,,) < SS(B,,) in 66% of cases, while
PSS,. < PSSk in 53% of cases.

We can conclude that the results of the robust estimation of ¢ are satisfactory
in the ¢ = 7.21 model, but give large overestimation of ¢q in our other two cases.
The problem may be in the use of (4.7.2) to estimate ¢. It uses the mean absolute
deviation of the prediction errors, and we saw earlier in the chapter that using 62,
to estimate o2 gave poor results. The same problem may be present here. We have
conducted some tests on the use of two alternatives to (4.7.2). These were using the
sum of the medians of the differences

Z(yuyi - x:.uBc)

and using a loss function similar to (4.5.10), but involving the construction and valida-
tion sets. However, neither of these two approaches yielded significant improvements

in the results.

4.8 Conclusions

We have introduced a method for extending our estimation procedure to be less
sensitive to the presence of outliers in the data. For a fixed value of ¢ the method
can give noticeable gains in efficiency, based on (4.5.7), particularly with moderate
sized values of q. The extension of the work to allow for robust estimation of ¢ seems
to work reasonably well at small values of ¢, and the gains in performance observed

with fixed ¢ continue to be present.



Chapter 5

Analysis of Ocean Data

5.1 Introduction

In this chapter we return to the California Current data introduced in chapter 1, and
use the methods developed in chapter 3 to derive multiple linear regression models
for predicting deep ocean measurements from shallow water readings. We will also
use the robust procedure developed in chapter 4 to analyse the data sets and compare

our results to the analysis done by Haney et al. (1995).

5.2 Description of Data

As described in chapter 1, each data set can be thought of as a set of 64 independent
vectors, representing temperature or salinity observations at 64 locations in the Cali-
fornia Current during the summer months. The readings are taken at approximately
10 metre (m) intervals, from the sea surface to 2000 m. It was argued in chapter 1
why we can treat the 64 locations as approximately independent. Figures 5.1 and 5.2
display scatterplots of temperature and salinity as functions of depth. We see temper-
ature decreases with depth, while salinity increases. To see the relationship between

the two variables, a temperature versus salinity plot is presented in figure 5.3. We
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Figure 5.1: Plot of temperature versus depth

see greater variability in shallow water than in deep water, i.c. in the high tempera-
ture, low salinity region. The shallow water is warmed or cooled more easily by the
atmosphere. so we would expect the temperatures to be more variable in this region.

There is the possibility that both of our processes are nonstationary. This sus-
picion arises in two ways: the variability of the observations may not be constant
in depth, and the correlation between values within a vector may not only depend
on the distance between them. This could be an important issue in our modelling
procedure because we need to estimate X x. To assess this. figure 5.4 contains plots of
the sample variances for each data set as a function of depth, while figures 5.5 and 5.6
present contour plots of the correlations as a function of depth. If the processes are
stationary we would expect to see approximately flat curves in figure 5.4 and to see
constant values along the diagonals of figures 5.5 and 5.6. The plots of the variability
at each depth certainly suggests processes are more variable near the surface than in
deep water. We return to this issue in the next section.

Our aim is to construct an underdetermined model which will use upper ocean

readings as the explanatory variables, and a deep ocean observation as the response.
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Figure 5.2: Plot of salinity versus depth

Therefore our explanatory and response variables are measurements of the same quan-
tity. We will use a model where the explanatory variables are the upper p = 80
measurements in the ocean, while there are n = 64 observations. We are using (3.2.1)

as our model, where

and x; contains the temperatures (or salinity readings) from the surface to 800 m at
the ith location. Both X and y have been centered to satisfy the assumption that
E(x}) = 0’ and E(y) = 0. Since we are assuming the rows of X are independent, and
figures 5.1 and 5.2 do not suggest a great deal of variability between the 64 vectors
in each data set, it is reasonable to assume a common covariance structure ¥y is

appropriate.



15

Temperature
10

106

33.0 335 340 345
Salinity

Figure 5.3: Plot of temperature versus salinity
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Figure 5.4: Plots of sample variance versus depth for each data set

5.3 Data Analysis

We will use our estimation procedure of chapter 3, assuming we have no a priori
knowledge of ¢, so it must be estimated. We will also have to estimate Y. as
mentioned previously. This will be the first issue we will discuss. followed by a
presentation of results under various choices for the response y. and some data-
splitting results to compare the performance of the signal-to-noise ratio with GCV on
these data sets. We will then include an examination of models which use temperature
and salinity readings in the X matrix, and finally repeat some of the analyses using

our robust procedure.

5.3.1 Estimation of Ty

We presented results in chapter 3 on estimating Sy, with ¢ fixed. We saw that A
was not greatly affected by using 3 x, even when the form of Y x was incorrectly
specified.

We are assuming that the observations are stationary with depth, and construct
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Figure 5.5: Contour plot of correlations: Temperature data
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$ix under the assumption that an AR form (3.4.1) holds. We consider two methods
for finding Xx. The first is to treat each X! as a time series, and use traditional
time domain estimation methods to estimate the order of the AR process, and its
parameters. This could be done by examining ACF and PACF plots, and more
formally using the AIC criterion, for example.

The ACF plots of the salinity and temperature series, for most x}, showed a
gradual decline as the lag increased. The PACF plots decayed quickly after lag one,
indicating that an AR(1) structure appears reasonable. Plots of selected ACF and
PACF plots are given in figure 5.7 and 5.8.

We also used the AIC criterion, introduced in chapter 3. to estimate the order of
the AR process for each x| series. For the temperature data an AR(1) model was
chosen for 58 of the 64 series, with the largest model chosen being AR(5). For the
salinity data an AR(1) model was chosen for 51 of the 64 series, with an AR(8) model
being the largest chosen. This is further evidence that an AR(1) structure for ¥y
appears reasonable. However, if we use this model we find the parameter estimate
¢ = 0.9561 for the temperature data and ¢ = 0.9615 for the salinity data. These
estimates are close to the region of nonstationary of an AR(1) process.

Our second approach is less restrictive. We simply use the sample autocovari-
ances (3.4.2) in ¥x, which is equivalent to assuming an AR(p — 1) form for the
covariance structure. This will not give good estimate of r(k) at high lags, but as we
saw in chapter 3, it did not make a great deal of difference to the :\uk values.

As a final point, we also performed some analyses with the data both centered
and scaled. so the observations at a particular depth were divided by the standard
deviation of the values at that depth after being centered. However, it did not make

a great deal of difference to the final results.

5.3.2 Estimation and Prediction

We begin with our analysis of the temperature data. Tables 5.1 and 5.2 present the

values of g, Aix and Agcy for various choices of y and the two choices for 3x. In
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Figure 5.7: ACF and PACF plots of four temperature series
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estimating ¢, we will use n. = n, = 32, do 50 random splits of the data, and search
over ¢ values from 0.0001 to 50.

Using y as the temperatures at 810 m we see § is very large, which is reasonable.
We would expect variability in the signal to dominate, since X includes observations
down to 800 m. However, this case is not very interesting, because the temperature

reading at 800 m would be the most sensible prediction of the temperature at 810 m.

y Value
810 m | 900 m | 1500 m
al 50 5 |5x10-°

Algk 0.943 5.97 3.1 x 103
/\GCV 0 4.63 34.41

Table 5.1: Values of ¢ and A for various choices of Y, assuming AR(!l) covariance
structure for rows of X: Temperature Data

We see that, as we used y as the readings deeper in the ocean, the § values tend
to decrease, so the A values increase. The two methods perform similarly in many
cases, but there are some models where the signal-to-noise ratio method does a great
deal more smoothing. There are also more differences between the results using the
two different forms for 3x than we might have expected. When we use y as our
observations at 1900 m, both methods do a great deal of smoothing. The signal-to-

noise method chooses the smallest value of § allowed, while GCV is totally eliminating

y Value
900 m | 1500 m 1900 m
gl 10 0.01 5x 10~4
Xix | 2.85 | 394.24 | 1640.70
Aev | 2.51 | 111.77 [ 4.75 x 101°

Table 5.2: Values of ¢ and ) for various choices of Y, using sample autocovariances
to estimate X x: Temperature Data
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the role of X in the model. This tells us that the model we are using cannot predict
values well that are a great distance from the X observations.

We now turn to the salinity data results. The estimation trends are somewhat
different here. In table 5.3 we see the signal-to-noise ratio tends to impose more
smoothing, with a large different in results when y contains the readings at 810
m. The large amount of smoothing being imposed by the choice § does not seem
appropriate here. An examination of 3;;, indicates the largest element in the vector
goes with the readings at 40 m, but the smallest elements are assigned to the readings
at 30 m and 50 m. The largest value in B,y goes with the readings at 630 m, while
many of the other large elements correspond to the readings near 800 m. Similar

results can be seen in table 5.4.

y Value
810 m | 1000 m | 1500 m
G| 0.005 | 0.005 | 0.005
Aix | 666.08 | 854.66 | 840.14
Agev | O 678.9 | 446.16

Table 5.3: Values of ¢ and A for various choices of y, assuming AR(1) covariance
structure for rows of X: Salinity Data

y Value
1000 m | 1500 m | 1900 m
g| 0.0007 0.02 0.0003
ik | 29 x 103 | 267.74 | 2.1 x 103
Aeey 535 544 | 2.97 x10°

Table 5.4: Values of § and X for various choices of Y, using sample autocovariances

to estimate X x: Salinity Data

Our primary focus in chapter 3 was the predictive ability of the estimates. To

have a better comparison of GCV and the signal-to-noise ratio methods, we have




1500 m 1900 m

drop 10 | drop 32 || drop 10 | drop 32

mean(RATpss) | 0.8374 | 0.9334 || 0.9966 | 1.0050
median(RATpss) | 0.9022 | 0.9944 || 0.9958 | 0.9999

Table 5.5: Ratios of Predictive Sums of Squares for California Current Temperature
Data

done the following.

We have taken our n = 64 observations and randomly chosen 10 or 32 to set aside.
We then take the remaining 54 or 32 values, and select our smoothing parameters
as above. Then we use these values to estimate B and predict the values left aside.
Finally, we examine the error in prediction using (3.6.3) and (3.6.4), with n replaced
by the number of observations set aside. This was repeated 10 times. Table 5.5

displays the results that compare (3.6.3) and (3.6.4) using the ratio
RATpss = PSSix/PSScev

for the temperature data. If RATpss < 1 then the signal-to-noise ratio method is
performing better at predicting the deleted observations. All of these results used the
sample autocovariances to estimate X .

At 1500 m. and leaving aside 10 values, we see the mean ratio is less than one, so
on average the signal-to-noise method does better at prediction. Even though we only
have 10 cases, there is an indication of skewness in this distribution because the mean
is less than the median. There were five cases where the method did much better
than GCV (at least 17% better), and no cases where it did worse. The cases with
superior prediction were usually linked with GCV grossly undersmoothing. When we
left 32 values aside, there was little difference between the methods, based on the
median. But there were two cases where GCV did much worse, because Agcy = 0.
This is reflected in the mean ratio being less than the median.

At 1900 m, and leaving out 10 values, we see little difference between the methods.

Both are indicating the model is a poor predictor of temperature in this case. The



116

same conclusions hold for leaving 32 values aside, except for one case where GCV
does about 10% better at predicting the left out values.

Table 5.6 contains similar results for the salinity data. At 1500 m, and leaving
aside 10 values, we see the signal-to-noise ratio does better at prediction. It never
does worse in any of the 10 cases, and in 2 of the cases does at least 10% than GCV.
The results are very similar when we leave 32 values aside, and y contains the readings
at 1500 m.

At 1900 m, the methods perform similarly, both on average and in the individual

cases.

1500 m 1900 m
drop 10 | drop 32 || drop 10 | drop 32
mean(RATpss) | 0.9540 | 0.9991 1.005 1.022
median(RATpss) | 0.9646 | 0.9996 1.012 1.014

Table 5.6: Ratios of Predictive Sums of Squares for California Current Salinity Data

Although tables 5.5 and 5.6 compare how well the signal-to-noise ratio method
and GCV do relative to each other in prediction, they do not indicate how well the
models do relative to using the sample mean of the left out values, Ynew- We calculate
the following approximate R? value as a measure of the overall predictive ability of a

model:
_ z:"’:I(ynew,i - gnm,i)z
Z:"-’_-l(ynew.i - gnew)2
where w = 10 or w = 32, depending on how many points we leave aside. Tables 5.7

Rrw =1

and 5.8 give the mean of the RZ_ values of the 10 splits used in constructing tables

5.5 and 5.6. We see the models are not performing well relative to Jp., in general.
We also investigated the use of a model which used both temperature and salinity

readings in the upper 800 m as the explanatory variables. The new model now has

p = 160 parameters and n = 64 observations. We set the model up as follows:

y = (XX,)B + €



1500 m 1900 m
Method | drop 10 | drop 32 drop 10 drop 32
mean(R2_) | signal-to-noise | 0.039 0.017 0.025 2.19 x 1073
GCV | 0.033 0.016 [ 1.14 x 10~® | 3.33 x 10~

Table 5.7: Mean of R2,  values associated with left out data points: Temperature
data

1500 m 1900 m
Method | drop 10 | drop 32 drop 10 drop 32
mean(R2,,) | signal-to-noise | 0.184 0.034 | 4.64 x 1073 | 9.24 x 10~°
GCV | 0.140 0.021 1.97 x 1078 | 4.79 x 10~1°

Table 5.8: Mean of R?,  values associated with left out data points: Salinity data

where X, and X, represent the temperature and salinity measurements respectively.

We still need to estimate ¥ x. which now has the form

me- |

where 3, represents the covariance between temperature and salinity. To be consis-

3,
23!

s
X,

tent with our previous work we estimate 3; and X, using the sample autocovariances
and ¥, and X,; using the sample crosscovariance function. The results of these
analyses are given in tables 5.9 and 5.10.

We see in table 5.9 that we chose a smaller value of § at 1000 m than was chosen
when we only used temperature readings in X, and the response was the temperature
at 900 m. When we use y as the temperature readings at 1500 m we find § is equal to
that given in table 5.2. At 1900 m the use of salinity and temperature as explanatory
variables has not had a strong affect on the estimate of . We also see that the
Acev values have either increased or stayed approximately the same as those given
in table 5.2.

When we use the salinity data as the response variable, we find the choice of § has



y Value
1000 m | 1500 m 1900 m
G| O.1 0.01 10—*
Xix | 108.13 | 491.58 3994.0
Agev | 64.541 | 333.12 | 1.08 x 10"
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Table 5.9: Values of § and A when using temperature and salinity as explanatory
variables, temperature as response

y Value
1000 m | 1500 m | 1900 m
G| 0.005 | 0.001 | 5x10°°
Xix | 858.85 | 1927.4 | 1564.66
Acev | 422.13 | 734.55 | 1.02 x 10°

Table 5.10: Values of § and A when using temperature and salinity as explanatory
variables. salinity as response

either increased, or stayed approximately the same, when compared to the values in
table 5.4. We also see that :\GCV decreased in this new model when the response is
the salinity at 1000 m, increased at 1500 m, and continued to be extremely large at

the 1900 m depth.

5.3.3 Robust Estimation

The exploratory plots given at the beginning of this chapter do not suggest that
outliers are a major concern in these data sets. In this case we would expect the
nonrobust method developed in chapter 4 to yield similar results to those already
presented in this chapter. We implement the robust procedure for estimating ¢ and
B given in section 4.7 , using the weights defined in (4.6.1) and ¢ = 2 in the weight
function. Table 5.11 presents the values of § and X for the robust analyses of the

temperature and salinity data sets. We have used the sample autocovariances to
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estimate X x.

y Value: Temperature || y Value: Salinity

1500 m 1900 m 1500 m | 1900 m
g| 0.1 0.005 0.05 10—
Xiix | 80.917 456.57 210.78 | 4709.1

Table 5.11: Values of §, and A,, for various choices of Y, using sample autocovariances
to estimate Y x

We begin with an examination of the temperature data results. We see in the
model that uses readings at 1500 m as the response that the value of §, is larger than
g given in table 5.2, so less smoothing is being done. We find that five of the w; values
given by (4.6.1) are not equal to one. The smallest w; is 0.802. In the 1900 m model
we again see that ¢, > ¢, while nine of 64 observations are assigned w; < 1, with the
smallest w; = 0.497.

The use of the salinity data as the explanatory variables still has the same pattern
in the estimation of §. The value of ¢, is either larger than, or similar to, the § value
given in table 5.4. The model which uses y as the salinity readings at 1500 m sets 13 of
the w; less than 1, with two of the values less than 0.5, and the smallest w; = 0.400.
The 1900 m model downweights only six of the 64 observations, with the smallest
w; = 0.540.

5.4 Comparison to Alternate Method

It is natural to compare the results we have obtained with those found by Haney
et al. (1995), who used a qualitatively different approach to the analysis. We will
match their notation as closely as possible in this section.

They denote the temperature or salinity profile at a location =z by ®(z). This is

a vector that contains all the readings at the location z. They express this profile as

O(z) = O(z) + O7(2)
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where ©(z) is the mean of the 64 vectors of either temperature or salinity readings.

They medel ©*(z) as
N
O(z) = Z AiBO;(2)
=1

where ©@;(z),7 = 1,.... .V are the empirical vertical modes (EOF’s) and the A; values
are found by performing a successive least squares fit of @=(z) to the first V empirical
vertical modes above a specified depth. Their examination of the data to see what
proportion of the variance is accounted for by each mode suggested a choice of N = 7
was appropriate.

They begin with the original data set and use the EOF’s found using the upper
ocean readings to predict the entire profile in the water. We will focus on the case
where they used the upper 1000 m readings to construct the vertical modes, since
this is similar to the upper 800 m readings we used to construct our regression model.
They found the correlation between observed and predicted values at 1500 m to be
around 0.5, while the correlation is around 0.30 between observed and predicted values
at 1900 m. These values are better than those found in tables 5.7 and 5.8.

They do another analysis that is probably more appropriate to compare to our
results. They obtain a new data set of 34 stations from a location approximately 100
km away from the sites of the original stations. These 34 vectors are also assumed
to be independent based on the arguments presented in chapter 1. They use the
upper ocean readings from the original data to construct the EOF’s, then see how
well they predict the readings in the 34 new stations. This is similar to what we have
done in constructing tables 5.7 and 5.8, where we left locations out of our estimation
procedure.

They found the correlation between observed and predicted values was very low
at depths below 1000 m. When the upper 1000 m of the original data is used, the
correlation between observed and predicted responses at 1500 m in the new data set
is around 0, and the correlation is negative when readings at 1900 m are considered.
These poor results are similar to the R%,, values we found using the signal-to-noise

ratio method.
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5.5 Conclusions

The signal-to-noise ratio method has performed comparably to GCV in the selection
of a smoothing parameter in many of the situations when all data are utilized in
model construction. In attempts to compare predictive ability of the models for each
data set, the signal-to-noise ratio method tended to yield better results, especially for
the temperature data. However, the predictive ability of the models was quite poor.
based on the RZ_, values. The inclusion of both salinity and temperature readings
as explanatory variables did not have a large effect on the values of the smoothing
parameters chosen. We did note, however, that Haney et al. (1995) also obtained
poor results in their attempt to predict a new data set. We did observe that the
robust method tended to yield larger estimates of ¢ that a nonrobust analysis, but
the downweighting of values did not appear to suggest that outliers were a major

concern in these data sets.



Chapter 6

Conclusions

6.1 Introduction

[n this concluding chapter we will summarize the results that have been presented
in this thesis, followed by an outline of some possible further directions in which this

work could be taken.

6.2 Summary of Findings

We motivated our study of underdetermined regression models by describing several
problems in which it was reasonable to consider the explanatory variable as samples
from a continuous process. This opened up the possibility that the models could be
underdetermined, so we needed to use smoothed estimators.

We then discussed several ways to derive a smoothed estimator in linear regression
models, and various methods that have been used to empirically select a smoothing
parameter. Having found many of these methods did not perform well in underde-
termined models, we proposed a method to find a smoothed estimator based on the
signal-to-noise ratio of the model. This allowed us to explicitly introduce the random
structure of the explanatory variables in the estimation procedure.

The method gave smoothing parameters with low variability when the value of the
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ratio was fixed, and we found good predictive ability over a wide range of values of the
ratio. We then developed a data-splitting procedure to estimate the signal-to-noise
ratio, and the method continued to perform well on a prediction-based criterion.

We extended the method to permit robust estimation of the parameters. We
used two methods, one which downweighted outliers in the residual space, and a sec-
ond which downweighted influential values in the residual and explanatory variable
spaces. Both methods had bounded influence functions and performed well in esti-
mation based on the efficiency measure (4.5.7). We also combined these procedures
with robust estimation of the signal-to-noise ratio and obtained satisfactory results,
particularly at small values of the ratio.

We then used the above methods to analyze temperature and salinity data taken
from the California Current. The methods performed similarly to each other and to
GCV, but the predictive ability of the models was often poor.

The general conclusions that can be drawn from the thesis are the following. The
use of a data-splitting procedure instead of generalized cross validation appears to
result in a more stable method when dealing with underdetermined models. We see
that the method is less likely to select grossly undersmoothed underestimates when
the true value of the ratio is small. It is in these situations that the imposition of
a reasonable amount of smoothing is needed. Finally, the assumption of a random
structure in our explanatory variables allows for sensible specification of the smooth-

ing matrix. instead of relying on a more subjective choice.

6.3 Further Directions

There appear to be two natural extensions to the methods developed in this thesis:
allowing for correlated errors in the model and an extension to nonlinear models. We
will also briefly discuss another approach that seems appropriate when the rows of

the X matrix can be considered samples from an underlying continuous process.



Our underlying model throughout was
y=XB+e

where we assumed € ~ N(0,0%I) and each row of X, x!, was independent of each
other and €. These will often be unreasonable assumptions, particularly in problems
in oceanography or climate studies. Since the data is often collected through time, or
at neighbouring locations, correlated observations will be the norm rather than the
exception.

The choice of a smoothing parameter in the presence of correlated errors is a
growing area of research. Diggle and Hutchinson (1988) state that making an incorrect
assumption of uncorrelated errors in cross-validated smoothing spline estimates will
lead to gross undersmoothing because most of the random fluctuations in the errors
will be ascribed to the estimate of the signal. Altman (1990) describes an extension
of GCV, in kernel smoothing, to allow for correlated errors. Kohn, Ansley, and Wong
(1992) estimate the unknown parameters in a nonparametric spline regression model,
where the errors are modelled using an ARMA process. The reader is referred to
Chiu (1989), Chu and Marron (1991), Hart (1991), van der Linde (1994) and the
cited references in these works for more detail on this topic.

We first consider how our methods may be extended to allow for correlated errors.
Suppose we now assume that € ~ N(0,X,). The way we define the signal-to-noise
ratio of the model remains unchanged, but using it as a penalty will not take the
correlation between the errors into account. Two possible modifications are to replace
the variance of the error term with either the total variance or the generalized variance

of e:

B'ExB or B'ExB

tr(X,) B
The second may be more appropriate, since it does not ignore the covariance between
€; and €;.

Our method could allow for the x! values to be correlated. We could define
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%i; = Cov(x{,x’) and write

[(=h 3 ... B

) cer e Xon
2x= 21 2

_Enl .o ... znn_

Now we would have Var(signal) = 8'S,;8 for the ith observation. If we wanted to
incorporate ¥ x into the penalty imposed on 8 we could attempt to use the average

of the X;; matrices:

=1 j=1

n on
o(50)s
n2o? :
If the errors were also correlated, but independent of the x’ values, these two ap-
proaches could be combined.

The most complicated scenario is to allow the signal and noise to be correlated.
In this case we would have a more complicated log-likelihood than the one given in
chapter 3. We would not be able to find a closed form expression for B in this case.
Once this issue is combined with finding a reasonable definition of the signal-to-noise
ratio we are left with a very challenging problem.

All of these ideas also require knowledge of the £, and X;; matrices defined above.
In practice these matrices would have to be estimated, probably assuming a low order
AR structure, as we have done in this thesis to estimate X x.

The second issue is an extension of the method to nonlinear models. Once again,
nonlinear models are often necessary if we want a more realistic description of the
dynamic process. A simple case of this was introduced in water temperature change
model of chapter 1. We derived a linear model from the discretization of a differential
equation, under the assumption that the diffusion coefficient k£ was not a parameter. [f
we now consider k as a parameter the model is now nonlinear in one of its parameters.
We then have to consider alternatives such as Taylor approximations to the objective
functions we wish to minimize. This would have to be combined with the smoothness

penalty imposed on the parameters.



A final approach to these problems is to try and take more advantage of the
fact that the explanatory variables are realizations of a (smooth) continuous process.
Hastie and Mallows (1993) suggest thinking of each explanatory variable as z;; =
fi(t;), where f; is the function associated with the ith observation, sampled at points
t; € D, where D is the domain of f; for all :. They then describe the regression model

as an approximation to a linear functional:
ilJi) = i(t)a(t)dt
Ewlf) = [ fita()
P
= ) filt;)a(t;)
=t

P
= X =i

J=1
where a(t) is a coefficient function. A reasonable way to model the coefficients

smoothly is to express them in terms of a basis expansion of smooth functions by:

K
C!(t) = Z: bk(t)ﬁk
k=1

[f the underlying process is smooth we should be able to express a(t) using a small
number of basis functions. In effect, this is reducing the dimension of the model.
A related idea is used by O’Sullivan and Wahba (1985) in an inversion problem to
estimate the atmospheric temperature profile from upwelling radiance measurements.
Manchester and Haller (1997) have extended these ideas in a fisheries problem, where
the z;; values are realizations of two dimensional air pressure fields over the North

Atlantic Ocean. They express each y; value as

vi= [ Hilz)du,

where H;(r) is a thin plate spline interpolant of the ith row of X, and p. is approxi-

mated by some suitably chosen collection of basis functions.



Appendix A

Existence and Uniqueness of

Smoothing Parameters

A.1 Introduction

[n this appendix we will derive the conditions under which ;\t, ia and :\uk, introduced

in chapter 3, exist and are unique solutions to their respective constraint equations.

Each case will use the SVD to re-express XE}I/ 2

Xz3'/? = UDV', D = [D,|0]
where U is an n x n orthogonal matrix, V is a p x p orthogonal matrix and D, =

diag(dl,dg,.. . ,dn), with d1 Z ... Z dn Z 0.

A.1.1 Case where ¢? Known

Returning to the results of chapter 3, we replace 8 with 3, in (3.2.2) and solve for
A. We obtain
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q0'2 = ﬁf\zxﬁ,\

= [(X'X +AZx) ' XyY/Ex(X'X + AZy) ' X'y
YXER (B PXXsR? + a1
x[(E/ X' X2 + A5 Xy .

We now use the SVD of X33"? to write

go? = y'UDV'(VD'DV’ + AI)-2VD'U'y
y'UD(D'D + AI)2D'U'y

[ /() + &2)? 0 0
Z/\A+8B)? ... 0
- yU 0 2/ ( +‘£§) . . Uy .
| 0 0 &3/(A+d7)? |

Let w = U'y. Then we must find A to solve

[ &/(\ + &) 0 0
2 , 0 &3 /(X + d3)? 0
qgot = w . w
i 0 0 &Z/(A+d2)? |
n WP
- Z(T,ll)';j')?:a*) (A.L1)
=1 t

We denote the value of A which satisfies this equation as A,.

Next we wish to establish the conditions under which J, is unique. We’ll do this
based on the arguments of Golub and Van Loan (1989, pg. 562-564) and Bjorck (1990,
pg- 596-600). To show it is unique we need the following to hold:

C(0) > qo? }im C(\) < qa? .

[t is obvious that C(A) is monotone decreasing in A. When we find C(0) we are using
a generalized inverse of X'X to give us a solution.

First we note that the limit of C()), as A — oo, is 0, which is less than go2.
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From (A.1.1) we see that

co-5(3)

=1
We can say that C(0) > 0, but nothing else beyond this. Therefore, to ensure that

Ae (the solution of (A.1.1)) is unique (if it exists), we must assume that C(0) > go?.

A.1.2 Case Using 52

Now we will examine ),. We can use the arguments which showed (3.2.2) had a

unique solution only when
n

A\ 2
> (3) >e
=1 1

to argue that A, is the unique solution to B;E xB,/6% = q only when

n

.\ 2
(%) >
A.1.3 Case Using 63,

We now examine A, which solves

B.SxB, .
%—‘ =gq. (A.1.2)
lik(A)
From (A.1.1) we know that
o1 - T wid?
b =) — A.l3

Using the SVD of X23'/? we find



(y —XB,)(y -XB,) = y'(I-UD(D'D + AI)"'D'U"Y
x (I-UD(D'D + AI)"'D'U")U’y

AZ A2
— IU : o (4
y dla'g((A+d¥)2’ ’(z\+dﬁ)2)Uy
n 2
= A2 L S
.;(434-/\)2

We can use (A.1.3) and (A.1.4) to write 67,,,, as

52 A2 i w? + A i w?d?
k() = i=1 (d? + A n i=1 (d? + A)?

Using (A.1.3) and (A.1.5) we can write the left-hand side of (A.1.2) as

n

at A ,2({,2 d?-i-Az
ﬂxzxﬂxzngw / ) = ().

Giik(r) 2/
AY_wi/(dF + )

=1
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(A.L.4)

(A.1.5)

for convenience. We will show that A is the unique solution for ¥(A) = q. First,

{irr(x)lII(A)=oo>q, Alim U(A)=0<gq.

Finally.
V() —-n

St [Z wl /(& + A)]

1=1

n 2
[2* 2 (dﬁ A) 2 (d2‘+ NE

=1 =1 3

n n {U? n w?
+Z(dz+x)2 (Z(£+A>‘AZ(?+_A)2)]

=1 =1 1

Since A > 0 and d? > 0, the derivative will be negative if
n wg)
z:(dz-l-k) Z:(d?+/\)"’

i=1 T i=1

But

n 2 n n

Z:(d?;-,\)—’\z(d’+A Z(d?‘+:\

=1 =1 =1

>0,
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so ¥(A) is monotone decreasing for A > 0. Combining this with ¥(0) > ¢ and
limy_. ¥(A) < q tells us that ;\l,-k is the unique solution to (A.1.2). Therefore, for a
given value of ¢, we will always be able to find A;. This is interesting improvement

over the case where o2 is known. In that situation we had to make an assumption
about the behavior of X2~1/2 at A = 0.



Appendix B

Simulation Results with Known ¢

B.1 Introduction

This appendix contains the results of various simulations to supplement those given
in chapter 3. The results in tables B.1 and B.2 summarize results for models in which

the rows of X are generated from the AR(1) process
Tij = 01Zij—1 + M. j=1,...,p (B.1.1)

where 7n;; ~ N(0.02), and we use ¢; = 0.5 and 02 = 1. Table B.3 summarizes
results from models in which the rows of X are generated from the AR(2) process
(3.3.1). Each table summarizes results of 1000 simulated data sets. assuming that
3 x is known.

We have included the results using A and A, for illustrative purposes in table B.2,
but we have omitted them from subsequent tables. This was because they gave
estimators that performed worse based on predictive ability, and were less likely to
satisfy the constraint equation for large values of q. Further details on this were given
in chapter 3.

We follow these results with an examination of the effect that estimating X x has
on the smoothing parameters. The rows of X are generated from the AR(1) process

(B.1.1) with ¢; = 0.5 and 02 = 1. We assume that the rows are generated using
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(B.1.1), and we estimate ¢, and 0',2,. Table B.4 summarizes the results over 1000
simulated data sets. The A should be compared to those in table B.2 to see that the
estimation of ¥ x has had little effect on the resulting smoothing parameters. This is

especially true for Aj.

15.19 | 2.16 | 1.22 | 0.78
o?| 25 36 64 100
&fik(i) mean | 14.78 | 21.37 | 38.55 | 61.64
median | 14.75 | 21.1 | 37.93 | 60.7
var | 1.90 | 11.63 | 46.13 | 132.1
mean | 23.40 | 38.71 | 67.67 | 104.9
median | 23.41 | 38.48 | 67.18 | 103.6
var | 2.964 | 32.77 | 133.9 | 372.8

>
RN

Table B.1: Summary of estimates of o when rows of X are generated from an AR(1)
process. Models use n = 50, p = 80
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q

15.19 2.16 1.22 0.78

AEPMSE 5.66 37.57 | 64.54 97.44
AEcev 2.32 36.46 | 59.42 87.15
Mix | mean 3.033 16.22 | 25.32 35.24
median 3.037 16.26 | 25.36 35.27

var | 1.47 x 1073 | 0.58 2.13 5.167

XAe| mean| 0.00235 3.526 | 9.26 16.13
median 0 3.771 | 8.96 15.58

var | 2.83 x 10~ | 6.95 | 16.67 31.24

Ao | mean 0 2.635 | 7.89 14.67
median 0 2.611 7.96 14.81

var 0 2.72 4.63 5.57
Acev | mean 3.586 32.24 | 61.39 | 6.32 x 107
median |  0.6958 28.01 | 46.38 69.29

var 25.96 935.94 | 5931.79 | 1.15 x 108
PSSegpmsE mean 46.565 56.560 | 93.294 137.20
median 45.314 55.611 | 91.873 135.27
var 37.176 136.16 | 371.13 799.99
PSSecev mean 47.451 56.565 | 93.343 137.31
median 46.413 55.628 | 91.854 135.57
var 90.332 136.22 | 372.15 804.06
PSSy mean 47.080 58.771 | 98.166 145.60
median 15.948 57.618 | 96.162 143.25
var 89.049 145.43 | 408.58 902.49
PSS, mean 49.855 65.511 | 108.10 158.50
median 49.013 64.113 | 105.64 155.44
var 99.761 173.85 | 480.32 1044.5
PSS, mean 49.856 67.012 | 110.02 160.68
median 49.013 65.830 | 108.09 157.55
var 99.750 183.33 | 502.95 1082.3
PSScev mean 48.638 61.594 | 102.80 151.96
median 47.666 59.779 | 99.487 146.17
var 97.001 200.03 | 615.53 1434.2

Table B.2: Comparison of A\ and PSS values when rows of X generated from an
AR(1) process. Models use n = 50, p = 80



26.47 7.33
Giix | mean 8.995 7.678
median 8.984 7.664
var 0.337 0.788
AEPMSE 4.931 22.542
AEcev 1.17 x 1073 5.060
Aik | mean 1.487 5.181
median 1.487 5.184

var | 1.71 x 107¢ | 1.08 x 103
Acev | mean 0.369 9.703
median 0 1.856
var 3.981 201.85
PSSepmse mean 44.861 48.762
median 43.933 47.750
var 125.14 110.43
PSSEGCV mean 47.631 50.089
median 46.622 49.183
var 122.78 134.75
PSS mean 47.587 49.369
median 46.582 48.386
var 122.59 130.13
PSScev mean 47.933 49.972
median 47.277 49.183
var 133.22 132.60
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Table B.3: Results when rows of X generated from AR(2) process. Models use n = 40,

p=120,0%=25
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q
15.19 2.16 | 1.22 0.78
o2 25 36 64 100
G7xcy | mean 14.97 21.55 | 38.79 61.93
median 14.94 21.28 | 38.16 60.96
var 1.94 11.83 | 46.76 133.5
AEPMSE 5.587 36.921 | 63.709 |  96.484
Aecev 2.285 36.654 | 59.678 |  87.568
Mix | mean 3.030 16.19 | 25.28 35.18
median 3.034 16.24 | 25.31 35.22
var | 1.49 x 1073 | 0.581 | 2.12 5.14

Agcv | mean 3.530 32.519 | 62.670 | 6.68 x 107
median 0.717 28.170 | 46.963 |  69.221

var | 25.079 961.80 | 7113.3 | 1.19 x 10'®

Table B.4: Estimates of 02 and \ values when rows of X generated from AR(1)
process, correctly estimated as having AR(1) form. Models use n = 50, p = 80



Appendix C

Additional Robust Results

C.1 Introduction

[n chapter 4 we presented empirical results that demonstrated our robust procedure
appeared to have a bounded influence function in the ¢ = 7.21 model, using our
robust procedure with weights (4.5.2). Tables C.1 through C.3 illustrate the same
results for three other choices of q.

We then present results on the empirical influence function of our second robust
procedure, which uses the weights defined by (4.6.1). Tables C.4 to C.6 summarize
the results when we increase the value of one element in y by a factor s > 0. We see
the robust estimators have bounded influence functions for these values of ¢. while
the nonrobust estimators have unbounded influence functions.

Tables C.7 to C.9 summarize the results when we increase the value of one row in
X by a factor s > 0. We see that both procedures appear to have bounded influence

functions in these situations, as we saw in chapter 4 for the ¢ = 7.21 model.
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S
1 20.8 60.4 100
52 | mean | 13.700 | 15.222 | 15.953 16.486
median | 13.870 | 15.235 | 15.899 15.963
62, | mean | 18.272 | 350.25 | 2909.8 7996.7
median | 17.509 | 234.42 | 1862.1 5081.6
Am | rmmean| 2.699 | 2.702 2.699 2.700
median | 2.707 | 2.710 2.709 2.711
Mik | mean | 2.617 | 2.490 2.460 2.454
median | 2.623 | 2.483 2.459 2.455
(B.. —B)(B,,—B)| mean|244.96 | 264.12 | 271.27 276.60
median | 250.85 | 256.72 | 264.82 266.26
(Biux —B)'(Bix —B) | mean | 295.69 | 6856.2 | 5.84 x 10 | 1.61 x 10°
median | 278.45 | 4349.7 | 3.59 x 10* | 9.87 x 10*
c 2 2 2 2

Table C.1: Empirical measure of change in influence function when one value in y
modified, using first robust ridge regression proposal, ¢ = 17.37
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s

l 20.8 60.4 100
mean | 9.504 | 10.915 11.180 11.529
median | 9.550 | 10.655 10.853 10.399
s mean | 11.002 | 231.65 1938.4 5332.4

median | 10.580 | 150.96 | 1218.8 3344.6
An | mean| 1.766 | 1.766 1.766 1.766
median | 1.768 | 1.774 L7177 772
Xix | mean | 1.731 | 1.659 1.644 1.641
median | 1.734 1.656 1.646 1.640

(B,. —B)(B, —B)| mean| 23492 [ 267.74 | 272.28 279.90
median | 233.63 | 263.69 | 264.25 264.82
(Bur —B)(Byx —B) | mean | 261.45 [ 7100.4 | 6.10 x 10* | 1.68 x 10°

median | 252.96 | 4559.1 | 3.70 x 10* | 1.02 x 10°
c 9 9 9 9

<~ -~ -

Table C.2: Empirical measure of change in influence function when one value in y
modified, using first robust ridge regression proposal, ¢ = 27.14



S

1 20.8 60.4 100

52 | mean | 4.174 | 4.692 4.884 4.946

median | 4.206 | 4.632 4.730 4.774

52, | mean| 4.829 | 114.72 | 968.22 2666.7

median | 4.718 | 73.889 | 605.19 1665.7

Am | mean| 0.853 | 0.853 0.853 0.852

median | 0.854 | 0.854 0.853 0.853

Mix | mean | 0.846 | 0.824 0.819 0.818

median | 0.846 | 0.822 0.818 0.817

(B,.—BY(B, —B)| mean|207.44228.36 | 23397 235.60

median | 207.58 | 217.68 | 220.44 219.64
(Bix —BY (B — B) | mean | 222.60 | 7459.9 | 6.47 x 10* | 1.79 x 10°
median 4.09 x 10* | 1.13 x 10°

216.97

4856.7

C

2

)

2

2
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Table C.3: Empirical measure of change in influence function when one value in y
modified, using first robust ridge regression proposal, ¢ = 57.44



S
1 20.8 60.4 100
52 | mean | 12.542 [ 13.544 | 13.774 13.940
median | 12.504 | 13.793 | 13.848 13.904
6%, | mean|14.113]291.20 | 2416.8 6637.5
median | 14.334 | 134.80 1012.9 2740.3
Am | mean| 2,729 | 2.734 2.731 2.732
median | 2.736 | 2.739 2.735 2.734
Mik | mean | 2.650 | 2.487 2.451 2.444
median | 2.657 | 2.489 2.452 2.446
(B —B)Y(B,. —B)| mean|21827 | 231.27 | 232.23 233.73
median | 216.93 | 232.03 | 233.57 233.66
(Bir —B)Y(Bir —B) | mean | 222.35 [ 5785.8 | 5.0 x 10° | 1.39 x 10°
median | 221.88 | 2396.1 | 1.95 x 10 | 5.34 x 10°
c 2 2 2 2
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Table C.4: Empirical measure of change in influence function when one value in y
modified, using second robust ridge regression proposal, ¢ = 17.37



<

S
1 20.8 60.4 100

72 | mean | 8.206 | 8.900 9.084 9.114

median | 8.203 | 8.896 9.030 8.992

62, | mean| 9.136 | 202.32 | 1686.8 4635.4

median | 9.267 | 86.32 649.31 1757.4

Am | mean]| 1.778 | 1.779 1.778 1.777

median | 1.781 1.778 1.776 1.776

X\ix | mean| 1.740 | 1.653 1.634 1.630

median | 1.743 1.663 1.639 1.637

(B —B)(B,,—B)| mean|207.66|221.58 | 223.36 223.62

median | 207.65 | 219.50 | 219.85 219.98
(Bur —B)(Bux — B) | mean | 211.44 | 6286.3 | 5.47 x 10* | 1.51 x 10°
median | 210.00 | 2384.0 | 1.94 x 10* | 5.34 x 104

c 9 9 9 9
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Table C.5: Empirical measure of change in influence function when one value in y

modified, using second robust ridge regression proposal, ¢ = 27.14



S

c

4

1 20.8 60.4 100

52 mean | 4.018 | 4.386 1.421 1.439

median | 4.011 | 4.342 1.356 1.365

62, | mean| 4.386 | 106.04 | 388.86 2444.3

median | 4.427 | 45.528 343.60 928.44

An | mean| 0.855 | 0.855 0.855 0.855

median | 0.856 | 0.855 0.856 0.856

Mix | mean | 0.846 | 0.819 0.813 0.812

median | 0.847 | 0.822 0.815 0.814

(B —B)(B,, —B)| mean| 196.16 [ 211.80 | 2i3.11 213.99

median | 196.04 | 204.79 209.06 209.11
(Bix —BY(Bir — B) | mean | 199.29 | 6976.8 | 6.09 x 10* | 1.69 x 10°
median | 198.91 | 2883.5 | 2.36 x 10* | 6.49 x 10*

9 9 9D 2
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Table C.6: Empirical measure of change in influence function when one value in y
modified, using second robust ridge regression proposal, ¢ = 57.44
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s
l 20.8 40.6 60.4 80.2 100
572 mean | 12.542 | 12.622 | 12.657 | 12.672 | 12.681 | 12.686
median | 12.504 | 12.763 | 12.934 | 12.934 | 12.934 | 12.934
i mean | 14.113 | 14.202 | 14.204 | 14.205 | 14.205 | 14.205

median | 14.334 | 14.334 | 14.327 | 14.324 | 14.323 | 14.322
Am mean | 2.729 | 2.736 | 2.736 | 2.735 | 2.735 | 2.735
median | 2.736 | 2.743 | 2.743 | 2.743 | 2.743 | 2.743
Alik mean | 2.650 | 2.655 | 2.655 | 2.655 | 2.655 | 2.655

median | 2.657 | 2.671 | 2.671 | 2.670 | 2.670 | 2.670

(Bm —B) (B, —B)| mean | 21827 | 216.97 | 217.02 | 217.06 | 217.08 | 217.09
median | 216.93 | 213.84 | 213.80 | 213.78 | 213.77 | 213.77
(Buk — B)(Bi — B) | mean | 222.35 | 221.16 | 221.14 | 221.14 | 221.14 | 221.14
median | 221.88 | 217.40 | 217.58 | 217.64 | 217.67 | 217.69

c 2 2 2 2 2 2

Table C.7: Empirical Measure of Change in Influence Function when one row in X
modified, using second robust ridge regression proposal, ¢ = 17.37



1 20.8 | 40.6 | 60.4 | 80.2 100
52 | mean | 8.206 | 8.280 | 8.297 | 8.302 | 8.305 | 8.306
median | 8.203 | 8.524 | 3.526 | 8.526 | 8.526 | 8.526
6%, | mean| 9.136 | 9.186 | 9.187 | 9.138 | 9.188 | 9.183
median | 9.267 | 9.234 | 9.230 | 9.228 | 9.228 | 9.227
An| mean| 1.778 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780
median | 1.781 | 1.784 | 1.784 | 1.784 | 1.784 | 1.784
Mie | mean| 1.740 | 1.743 | 1.743 | 1.743 | 1.743 | 1.743
median | 1.743 | 1.750 | 1.750 | 1.750 | 1.750 | 1.750
(B,. ~B)(B.—B)| mean| 207.66 | 206.82 | 206.89 | 206.91 | 206.92 | 206.93
median | 207.65 | 204.20 | 204.17 | 204.16 | 204.15 | 204.15
(Bue —BY (B — B) | mean | 211.44 | 210.61 | 210.60 | 210.59 | 210.59 | 210.59
median | 210.00 | 208.75 | 208.90 | 208.95 | 208.97 | 208.99
c 2 2 2 2 2 2

Table C.8: Empirical Measure of Change in Influence Function when one row in X
modified, using second robust ridge regression proposal, ¢ = 27.14
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1 20.8 | 40.6 | 60.4 | 80.2 100
mean | 4.018 | 4.057 | 4.059 | 4.060 | 4.060 | 4.060
median | 4.011 | 4.146 | 4.146 | 4.145 | 4.145 | 4.145
o7, | mean| 4.386 | 4.404 | 4.405 | 4.405 | 4.405 | 4.405
median | 4.427 | 4.418 | 4.421 | 4.422 | 4.423 | 4.423
An | mean| 0.855 | 0.856 | 0.856 | 0.856 | 0.856 | 0.856
median | 0.856 | 0.856 | 0.856 | 0.856 | 0.8356 | 0.856
Mik | mean | 0.846 | 0.846 | 0.846 | 0.846 | 0.846 | 0.846
median | 0.847 | 0.848 | 0.848 | 0.848 | 0.848 | 0.848
(B —B)(B,. —B)| mean | 196.16 | 195.91 | 195.93 | 195.94 | 195.94 | 195.94
median | 196.04 | 194.8]1 | 194.75 | 194.73 | 194.72 | 194.72
(Bix —B)Y(Bux —B) | mean | 199.29 | 193.86 | 198.86 | 193.86 | 1938.86 | 198.86

median | 198.91 | 197.87 | 197.84 | 197.83 | 197.83 | 197.82
c 2 2 2 2 2 2

Table C.9: Empirical Measure of Change in Influence Function when one row in X
modified. using second robust ridge regression proposal, ¢ = 57.44
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