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ABSTRACT

This thesis examines the biological and physical processes influencing the
structure and dynamics of mussel (Mytilus trossulus, M. edulis) assemblages in
tidepools and on the surrounding emergent rock on a wave-exposed rocky shore near
Halifax, Nova Scotia, Canada. Over 17 mo, more than 96% of mussels colonizing the
natural substratum were too large to be settling larvae, indicating the importance of
post-settlement dispersal of mussels. Patterns of colonization after 5-16 mo reflected
patterns measured at sampling intervals of 2-7 d, suggesting that spatial variation in
initial colonization is important in determining the abundance and distribution of
mussels on this shore. I examined the relative roles of supply of colonists and
substratum type in determining colonization pattems of mussels by comparing
colonization rates on artificial collectors and natural substrata. Patterns of abundance
and size distribution of mussel colonists differed markedly between artificial collectors
and natural substrata. Colonization rate on natural substrata was related to a suite of
biological (macroalgal and bamacle cover) and physical factors (water flux, tidal
height, flushing time). I examined the effects of predation by the whelk Nucella
lapillus on established mussel assemblages by manipulating the densities of whelk
recruits and post-recruits. Reduction of the density of whelk post-recruits influenced
the percentage cover and size distribution of mussels and had a greater effect on
emergent rock than in tidepools, reflecting differences in density of whelk post-recruits
between habitats. I could not detect an effect of whelk recruits on mussel cover or size
distribution. I experimentally investigated the influence of rates of recruitment,
immigration, predatory and non-predatory mortality, and growth of individuals by
transplanting artificially constructed mussel patches to tidepools and emergent rock. In
addition, I monitored the movement of tagged mussels and estimated the probabilities
of wave dislodgment of mussels from measurements of water velocity and attachment
strength of mussels. The structure and dynamics of mussel patches both in tidepools
and on emergent rock were influenced by all of these processes. However, these
experiments indicated that physical processes (wave dislodgment) were more
important than biological processes (predation) in determining the structure and
dynamics of mussel assemblages on this shore. The results of this thesis indicate that
patterns of distribution and abundance of mussels on this shore develop slowly due to
the slow growth rate of individuals. I conclude that dispersal and redistribution of
juvenile and adult mussels by wave disturbance are very important in colonization by
mussels and in the dynamics of established mussel assemblages.
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CHAPTER 1: General Introduction

Patchiness is a fundamental characteristic of most populations and communities.
Many systems can be a viewed as a dynamic mosaic in which individuals are exchanged
among patches (Pickett & White 1985). These patches may be small groups of
individuals, disturbance-generated gaps in an assemblage, islands, or whole populations
(Paine 1994). The dynamics of any system of patches will depend on a number of
factors, including the area, shape, and spatial distribution of patches and the rates of patch
formation, growth, and extinction (Paine 1994). Investigating patch dynamics has
proven to be valuable in our understanding of population and community dynamics. For
example, consideration of the effects of the number, size, and isolation of habitat patches
on the dynamics of systems of local populations (metapopulations), and on the number of
species found in individual patches or islands, has led to the theories of metapopulation
dynamics and island biogeography (Hanski & Gilpin 1991). Assemblages of marine
mussels present a good model system to investigate patch dynamics because they are
relatively simple. Mussel assemblages are two-dimensional and effectively monocultures,
although other species occur within the interstices of mussel beds (Seed & Suchanek
1992). Investigating the dynamics of mussel assemblages is also valuable in the context
of understanding community organization on rocky shores. Mussels are often the
dominant space occupiers on these shores (Menge & Farrell 1989), and their interactions
with other species are known to affect overall community structure and dynamics (e.g.,
Paine 1966, 1974, Menge 1976, Lubchenco & Menge 1978, Robles 1987).

Because mussels can disperse in the water column both during the planktonic
larval phase and after settlement (Seed & Suchanek 1992), the formation of a mussel
aggregation begins with colonization by settling larvae and/or larger, postlarval
individuals. The waterborne dispersal of young postlarval mussels (up to 2 mm shell
length) is aided by long, mucous threads which increase hydrodynamic drag (Sigurdsson

1
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et al. 1976, De Blok & Tan-Maas 1977, Lane et al. 1985). Because mussels are often

associated with macroalgae and other rough or filamentous substrata (Seed & Suchanek
1992), the patterns and rates of colonization by mussels are likely to depend on the type
of substratum as well as on the supply of larval settlers and larger colonists. Once a
mussel aggregation is established, its structure and dynamics will depend on the balance
between processes which remove individuals and those which add individuals and
increase their size (Petraitis 1995). On wave-exposed shores, for example, dislodgment
by waves results in losses of mussels in intertidal and subtidal habitats (e.g. Paine &
Levin 1981, Witman 1987). Another important cause of loss is predation by
macroinvertebrates such as sea stars, crabs, lobsters, and whelks, which determines the
spatial distribution and abundance of mussels on many shores (e.g. Paine 1966, 1974,
Menge 1976, Robles 1987). Growth of individuals within an aggregation, which is
highly variable and dependent on environmental conditions (Seed & Richardson 1990),
can be important in offsetting losses of mussels from wave disturbance or predation
(Reusch & Chapman 1997). Spatial and temporal variability in recruitment of new
individuals also may offset predation and other losses, and influence the abundance and
size structure of mussel assemblages (Robles 1997). Because mussels are not
permanently attached to the substratum, redeposition of mussels by waves and active
dispersal by crawling also may change aggregation size.

In this thesis, I examine mussel assemblages (Mytilus trossulus and M. edulis) in
tidepools and on the surrounding emergent rock in the mid intertidal zone on a rocky
shore on the Atlantic coast of Nova Scotia, Canada. The abundance and spatial
distribution of mussels differ between these two habitats: mussels in tidepools generally
occur in centimeter-scale patches (Hunt & Scheibling 1995), whereas those on emergent
rock tend to form more extensive beds with centimeter-scale gaps (Minchinton et al.
1997). Differences in the pattern of distribution and abundance of mussels between

tidepools and emergent rock may result from environmental differences between the two
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habitats. Because environmental fluctuations are less severe in tidepools than on
emergent rock, tidepools are potentially important refuges from stressful conditions,
particularly during low tide (Metaxas & Scheibling 1993). Between-habitat differences in
environmental stress are predicted to influence the relative importance of biotic and abiotic
factors in structuring communities and the intensity and outcome of biological interactions
(Connell 1975, Menge and Sutherland 1976, 1987). However, there are few
experimental studies of processes influencing species assemblages in tidepools for
comparison to the wealth of studies on emergent rock (reviewed by Metaxas & Scheibling
1993). My thesis addresses the following specific questions:

1) What are the biological and physical processes influencing patterns of colonization by
mussels in tidepools and on emergent rock?

2) What is the relative importance of initial patterns of colonization compared to post-
colonization processes in determining patterns of distribution and abundance of musels?
3) What are the important causes of changes in cover of established mussel assemblages
in tidepools and on emergent rock?

4) What is the relative importance of these processes in determining the structure and
dynamics of mussel assemblages?

I begin by reviewing the literature on the role of early post-settlement mortality in
the recruitment of benthic marine invertebrates (Chapter 2). In this review, I discuss the
influence of patterns of settlement and early post-settlement mortality on patterns of
abundance and distribution of recruits, a major focus of my thesis. In Chapter 3, I
examine patterns and rates of colonization by mussel settlers and larger, postlarval
mussels in tidepools and emergent rock and on ice-scoured and non-scoured areas of the
shore. I examine the relative importance of initial colonization compared to post-
colonization dispersal and mortality in determining the distribution and abundance of
mussels by comparing patterns and rates of mussel colonization at sampling intervals of

days to months over a 17 mo period. In Chapter 4, I examine the relative roles of supply
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of colonists and substratum type in determining patterns of colonization of mussels by
comparing patterns of colonization on artificial and natural substrata. In Chapter 5, I
examine the effects of predation by whelks on the cover and size distribution of
established mussel aggregations in tidepools and on emergent rock. In Chapter 6, I
examine the relative influence of growth, recruitment, immigration, predation, wave
dislodgment, and movement on the structure and dynamics of mussel assemblages by
transplanting artificially constructed mussel patches to both habitats. In the final chapter
(Chapter 7), I discuss the contributions of these studies to our understanding of the

dynamics of mussel assemblages in the rocky intertidal zone.



CHAPTER 2: Role of early post-settlement mortality in

recruitment of benthic marine invertebrates

INTRODUCTION

Over the last 15 years, our understanding of recruitment variability of benthic
marine invertebrates, and its role in population and community dynamics has increased
considerably. Variation in recruitment rate has been shown to affect competitive
interactions (Sutherland & Ortega 1986), predation (Fairweather 1988, Menge et al.
1994, Robles et al. 1995) and other community level processes on rocky shores (for
review see Booth & Brosnan 1995), and there is increasing evidence that adult population
size is limited by recruitment for species on hard substrata in both intertidal (e.g. Connell
1985, Sutherland 1987, 1990, Menge & Farrell 1989, Raimondi 1990, Menge 1991a)
and subtidal habitats (e.g. Hughes 1990, Karlson & Levitan 1990). Consequently, recent
models of population dynamics (Roughgarden et al. 1985, Roughgarden & Iwasa 1986,
Alexander & Roughgarden 1996) and community organization on rocky bottoms (Menge
& Sutherland 1987) incorporate recruitment variability as a limiting factor. Recruitment
limitation has received less attention from researchers studying soft bottom communities
(but see Peterson & Summerson 1992, Peterson et al. 1996, Butler & Herrnkind 1997).
A recent review by Olafsson et al. (1994) concluded that larval supply is generally not
limiting, and therefore is probably not a major determinant of patterns of species
distribution and abundance in sedimentary habitats. However, interactions between
adults and settlers/recruits have been shown to affect recruitment rate (Peterson 1982,
Peterson & Black 1993, Olafsson et al. 1994, Thrush et al. 1996) and may limit the
density of infauna (Thorson 1966, Woodin 1976, Peterson 1979).

Many factors can influence the intensity and variability of recruitment of benthic
marine invertebrates. The abundance of larvae in the water column is influenced by adult

reproductive cycles, larval mortality (Roughgarden et al. 1988), and settlement rate itself
5
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(Gaines et al. 1985). Physical factors which affect dispersal of larvae include wind

(Morgan et al. 1996, Bertness et al. 1996), linear oceanographic features (for review see
Kingsford 1990), upwelling (Roughgarden et al. 1991, Farrell et al. 1991, Wing et al.
1995), cold water plumes (Ebert & Russell 1988), water residence time in estuaries
(Gaines & Bertness 1992), and vertical distribution of larvae in the water column
(Grosberg 1982, Le Feévre & Bourget 1991, Miron et al. 1995). Settlement onto the
substratum occurs once the larvae reach a suitable habitat. Settlement is a process that
may include reversible or irreversible contact with the substratum, exploratory behaviour,
orientation, and metamorphosis (which may occur before, during, or after contact with
the substratum) (Pawlik 1992). At this time, the pattern of larval supply may be modified
by larval response to various abiotic and biotic cues on the substratum including surface
texture or chemistry, conspecifics, and the presence or absence of other macrobenthic
species or microbial films (reviewed by Pawlik 1992). Hydrodynamic conditions may
determine the scale at which active selection of a substratum occurs (Butman 1987).

In this review, I will focus on the period between settlement and recruitment.
Monitoring newly settled individuals is difficult due to their small size and because
sampling must be frequent enough to avoid confounding patterns of settlement with
patterns modified by early post-settlement mortality. For convenience, most researchers
measure recruitment days to months after settlement (e.g. Shanks & Wright 1987, Ebert
& Russell 1988, Gaines & Bertness 1992, Ebert et al. 1994, Wing et al. 19995).
Knowledge of early post-settlement events is critical in determining if and when
recruitment patterns reflect settlement patterns. In situations where early post-settlement
events substantially alter the abundance of recruits, they may regulate population size and
adult distribution, and reduce the importance of interactions between adults. Gosselin and
Qian (1997) recently reviewed 30 studies of rates of mortality of juvenile benthic
invertebrates. They discussed causes of early post-settlement mortality, methods of

quantifying mortality rates, and the influence of juvenile mortality on age at maturity. In



7

my review, I strive for a more comprehensive examination of the major functional groups
of benthic marine invertebrates, including sessile species on hard substrates, mobile
epifauna, and infauna in sedimentary habitats. I begin by discussing problems with the
definition of recruitment and the early post-settlement period. I then review the rates and
patterns of early post-settlement mortality reported in the literature and discuss factors
which affect the survival of newly settled and early juvenile individuals. Finally, I
address the influence of mortality of recent settlers on patterns of abundance and

distribution of recruits.

THE EARLY POST-SETTLEMENT PERIOD

Recruitment is an operational term rather than a biological event, and
consequently, has been defined in many different ways. Definitions of recruitment of
benthic marine invertebrates include (Booth & Brosnan 1995): 1) presence of juveniles
after a specified time interval, 2) attainment of a specified size, 3) survival through a
period of high early mortality, 4) survival to a size when the settlers become vulnerable to
predators, and 5) retention on a particular sieve mesh size (in soft bottom studies, Butman
1987). Differences in the time interval to recruitment are inevitable due to differences in
the life histories and lifespans of organisms. For example, it might not be reasonable to
consider a barnacle which reaches maturity in 6 weeks and a slow growing coral which
may live more than 20 years to be recruits after the same time interval. Also, the time
interval before a settler can be censused by an observer (recruitment sensu Keough &
Downes 1982) will differ among species because of variability in initial size and growth
rate (Rumrill 1989) and also because of differences in our ability to sample different
habitats.

Booth and Brosnan (1995) have suggested that survival through high (usually
Type III, sensu Deevey 1947) mortality in the first few days to weeks after settlement

may be a biologically meaningful definition of recruitment. This suggestion is
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reasonable, considering that early mortality often follows this pattern (see Table 2.1 and

the following section). However, survival curves of early juveniles of some species
exhibit other patterns, and this type of information is not available for many species. A
combination of criteria may be necessary to define the early post-settiement stage for a
particular species. For mobile epibenthic species, differences in behaviour and habitat
between early juveniles and older juveniles and adults may help define the time at which
recruitment occurs. Because recruitment is not a distinct biological event like settlement,
definitions will continue to differ from species to species. However, efforts should be
made to harmonize definitions of recruitment (or to redefine the term, see Conclusions
and directions for future research) and to use biologically meaningful criteria when
defining the early post-settlement period.

Comparisons of studies are complicated by differences in sampling interval.
Variation in sampling interval has been shown to affect estimates of recruitment and (or)
early post-settlement mortality of oysters (Michener & Kenny 1991) and barnacles
(Minchinton & Scheibling 1993b, Gosselin & Qian 1996). Minchinton and Scheibling
(1993b) found that estimates of recruitment and early post-settiement mortality of the
barnacle Semibalanus balanoides decreased significantly when the sampling interval was
changed from 1.3 days to 2.1 days, and continued to decrease exponentially with
increasing sampling interval. Sampling interval also altered comparisons of early post-
settlement mortality rate between intertidal zones. These results suggest that comparisons

of studies with different sampling regimes should be made cautiously.

RATES AND PATTERNS OF EARLY MORTALITY
In the field, monitoring mortality immediately after settlement is difficult, if not
impossible, for many species. However, without knowledge of events shortly after
settlement, post-settlement mortality can be underestimated and settlement patterns can be

confounded by patterns produced by or modified by mortality. Mortality rate in the field
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during the first few hours or days after settlement is known for only 2 groups of benthic

marine invertebrates: barnacles and ascidians. Survival rates of barnacle cyprids during
the first 24-48 h range from 22-87% (Balanus glandula, Gosselin & Qian 1996;
Semibalanus balanoides, Connell 1961, Bergeron & Bourget 1986, Kendall et al. 1985;
Chthamalus fragilis, Young 1991) and mortality risk does not necessarily decline after
metamorphosis (S. balanoides, Wethey 1986). In studies of colonial ascidians, 50 to >70
% of settlers survive the first 24 h (Diplosoma similis, Stoner 1990; Podoclavella
moluccensis, Davis 1987). Mobile species probably also experience elevated mortality
immediately after settlement, but survival rates have not been measured. Indirect evidence
of high early mortality is provided by Eggleston and Armstrong's (1995) study of
Dungeness crabs (Cancer magister): settlement patterns and density of first benthic instar
crabs were decoupled in less than 48 h. The first day after settlement may be a critical
period for many benthic invertebrates. Gosselin and Qian (1996) found that mortality of
the barnacle Balanus glandula was 1.5 to 6 times higher during the first day after
settlement than during the second day. Indeed, for 2 of the 3 cohorts monitored,
mortality during the first day after settlement was almost as high as total mortality during
the subsequent 44 days.

Mortality in the days to weeks after settlement is generally high (Table 2.1;
Gosselin & Qian 1997). In 2 studies of tropical colonial ascidians (Trididemnum
solidum, van Duyl et al. 1981; Diplosoma similis, Stoner 1990), all visible settlers
disappeared during the 1-4 mo. monitoring period. However, neither study was able to
follow the fate of individuals which settled in crevices or other protected microhabitats.
Small individuals of some species have high survival rates. For example, 63% of settlers
of the colonial ascidian Podoclavella moluccensis survived one month (Davis 1988a), and
65 to 80% of settlers of the barnacle Chthamalus anisopoma survived to reach maturity at

six weeks of age (Raimondi 1990).
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Survival curves of new settlers (Table 2.1) are often Type III: survival rate

decreases rapidly and then levels off (Deevey 1947). Gosselin and Qian (1997) pooled
data from 30 studies of juvenile benthic invertebrates to produce a general survivorship
curve and found an interspecific trend of exponentially decreasing survivorship during the
first days to weeks after settlement. Decreases in mortality rate of early juveniles with
time also have been noted in studies which do not present survival curves (Keough 1986,
Keough & Chemoff 1987, Giinther 1992). A Type HI pattern of mortality can even
occur in the benign conditions of the laboratory (e.g. Roegner 1991). However, newly
settled invertebrates also exhibit other patterns of survivorship. Hurlbut (1991a) found
that mortality rate of a number of sessile species on subtidal panels was higher in the
second week after settlement than in the first week, and suggested that the increase in
mortality was due to density dependent predation. Early mortality may also follow a type
I survivorship curve in which mortality is independent of age (Table 2.1). In some
cases, however, the reported survival curve may represent only a portion of the overall
curve. High mortality may have occurred in the first hours to days after settlernent before
survival was monitored, or mortality rate may level off over a longer time interval than the
period of study. However, Gaines and Roughgarden (1985) found that weekly
survivorship of the barnacle Balanus glandula was independent of age for the entire first
year of life, and that survival rate of settlers monitored from the first low tide after

settlement did not differ from that of older barnacles.

VARIABILITY IN EARLY POST-SETTLEMENT MORTALITY

Studies examining variability in early post-settlement mortality have found
variation at several spatial and temporal scales. Spatial variability in mortality of barnacle
settlers has been detected at scales of metres to kilometres (Meadows 1969, De Wolf
1973, Caffey 1982, 1985, Wethey 1986, Bingham 1992). However, in some of these

studies, estimates of post-settlement mortality were based on counts of 1-2 month old



14
juveniles (Meadows 1969, Caffey 1982, 1985), and consequently excluded mortality

occurring shortly after settlement. Spatial variability in early post-settlement mortality at
scales of kilometres also has been reported for the sea hare Aplysia juliana (Sarver 1979).
In contrast, Keesing et al. (1996) found that early post-settlement mortality of the sea star
Acanthaster planci did not vary significantly among habitats (front reef slope, reef flat,
back reef lagoon) or sites within habitats.

A number of studies which have monitored barnacle cohorts have detected
differences in mortality rate between cohorts settling within 1 or 2 days of one another
(Connell 1961, De Wolf 1973, Wethey 1986, Kendall & Bedford 1987, Raimondi 1990,
Sutherland 1990). Wethey (1986) suggested that temporal dispersion of settlement (i.e.
an extended settlement season) is advantageous when there is no temporal trend in
mortality, as was the case in his study of Semibalanus balanoides. In contrast, Raimondi
(1990) and Connell (1961) found that earlier cohorts of barnacles (Chthamalus anisopoma
and Semibalanus balanoides respectively) had higher survivorship. They suggested that
early settlers fill up the most suitable settlement sites (pits or other concavities), leaving
later settlers vulnerable to high temperatures and desiccation or gales. On a rocky shore in
England, Bowman (1986) found that limpets (Patella vulgata) which settled earlier in the
fall had a lower mortality rate than those which settled later. She hypothesized that
limpets suffer high mortality if they are not large enough to emigrate from their settiement
microhabitat before winter. Variation in mortality among cohorts (determined from size
frequency analysis) also has been detected for 2 species of prawns in Australia, Penaeus
merguiensis (Haywood & Staples 1993) and P. esculentus (O'Brien 1994a). For both
species, cohorts which entered estuaries in summer (the wet season) suffered higher
mortality than prawns settling in other seasons.

Intensity and variability of early post-settlement mortality can differ among species
which are monitored simultaneously. Bingham (1992) transplanted recruits of mangrove

epifaunal species to different channels in a mangrove island and found that mortality of
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orgamization (c.g. Menge & Sutherland 1987).

CAUSES OF EARLY POST-SETTLEMENT MORTALITY
Delay of Metamorphosis

For many invertebrate species. delay of metamorphosis eventually results in a
decrease in larval condition, substratum selectivity, or ability to metamorphose (for
review see Pechenik 1990). Extended larval life also has the potential to affect juvenile
survival and condition in some species (Table 2.2). In the laboratory, delayed
metamorphosis reduced survival of juveniles of the polychaete Capitella sp. 1. (Pechenik
& Cerulli 1991) and appeared to reduce stress tolerance of the sand dollars Dendraster
excentricus and Echinarachinus parma (Highsmith & Emlet 1986). Prolonged larval life
decreased survival of juveniles of the nudibranch Phestilla sibogae that were raised as
lecithotrophic larvae but not of those raised as facultatively planktotrophic larvae (Miller
1993). Unlike planktotrophic larvae, lecithotrophic larvae experience depletion of stored
nutrients during delay of metamorphosis, resulting in decreased size at metamorphosis
(Miller 1993). An extended competency period had little effect on survival of juveniles of
the barnacle Balanus amphitrite (Pechenik et al. 1993) and no effect on survivorship of
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the gastropod Crepidula fornicata (Pechenik & Eyster 1989). To date, there is only

indirect evidence of delay of metamorphosis in the field (for review see Pechenik 1990).
The consequences of prolonged larval life for early post-settlement mortality will depend
on how frequently delayed metamorphosis occurs and on how it affects juvenile survival

in nature.

Biological disturbance

Accidental ingestion or "bulldozing" by grazers such as limpets, littorinids and sea
urchins has been well documented as a cause of early post-settlement mortality and
reduced recruitment of barnacles, limpets, ascidians, and corals (Table 2.2).
Vulnerability to disturbance by grazers may decrease with size (age) (Miller & Carefoot
1989, Safriel et al. 1994) and substratum heterogeneity (Sammarco 1980, Miller &
Carefoot 1989, but see Denley & Underwood 1979). Grazers can also influence the
abundance of sessile invertebrates indirectly through their effects on algal abundance. For
example, Petraitis (1990) attributed the negative effect of Littorina littorea on mussel
recruitment to the gastropod's reduction of the algae on which mussels settle. Low
densities of grazers may positively affect the abundance (Petraitis 1983), survival (Creese
1982), or condition (Sammarco 1980) of recruits, presumably due to reduction of the
abundance of algae and other competitors which either prevent settlement or overgrow
recently settled individuals.

On hard substrata, biological disturbance by organisms other than grazers has
received less attention. Davis (1988b) found that crabs kill recruits of the colonial
ascidian Podoclavella moluccensis by trampling them with their sharp dactyls. In the
intertidal zone, fucoid algae have both positive and negative effects on bamnacle
recruitment (Dayton 1971, Hawkins 1983 and references therein). Fucoids have been
hypothesized to decrease settlement of barnacles by a whiplash effect or by altering water

flow, and to increase (by whiplash) or decrease (by reduced desiccation) early post-
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settlement mortality (for discussion see Grant 1977, Hawkins 1983). In the only study to

directly measure canopy effects on barnacle mortality, Grant (1977) found that an artificial
algal canopy (strips of inner tube rubber) decreased post-settlement survival of
Semibalanus balanoides. Heavy cover of Fucus is also associated with decreased limpet
(Patella vulgata) recruitment (Lewis and Bowman 1975) .

Adult infauna in soft-bottom communities can cause mortality of newly settled
macrofauna by bioturbation of the sediments (but see McCann & Levin 1989). Peterson
(1977) found that removal of the ghost shrimp Callianassa californiensis, a deposit
feeder, increased recruitment of the clam Sanguinolaria nuttallii. He suggested that burial
and direct consumption of juvenile clams by C. californiensis were the most likely
mechanisms for the negative effect of the shrimp on clam recruitment. Brenchley (1981)
demonstrated that densities of spionid polychaetes (Rhynchospio arenicola) and tanaid
crustaceans (Leptochelia dubia), particularly small individuals, were decreased by
addition of macroinfaunal (the lug worm Abarenicola pacifica and the mud shrimps
Ugopebia pugettensis and Callianassa californiensis) or macroepifaunal (the sand dollar
Dendraster excentricus) burrowers. Addition of sediment also reduced densities,
suggesting that physical events were important in the interaction between bioturbators and
recruits (Brenchley 1981). In the laboratory, Ahn et al. (1993) found that the clam
Gemma gemma reduced survival of recent settlers of another clam (Mercenaria
mercenaria) in muddy sand but not in sand, and suggested that increased mortality in
muddy sand was due to burial and exposure to pore water metabolites from sediment
reworking by G. gemma. Interference with feeding can also cause early post-settlement
mortality. Cummings et al. (1996) found that the tube building spionid polychaete
Boccardia syrtis decreased survival of early juvenile clams (Macoma liliana) in the
laboratory. The polychaetes did not ingest the clams but caused them to retract their
siphons, and thus interrupted feeding. Meiofaunal burrowers also can cause mortality of

newly settled macrofauna. In the field, Watzin (1986) showed that meiofauna other than
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turbellarians (primarily nematodes and copepods) decreased the survivorship of recently

settled bivalves, most likely by sediment destabilization. However, Zobrist and Coull
(1994) found that meiofaunal bioturbators (copepods, nematodes, foraminifera) did not
affect the survival of newly settled bivalves (Mercenaria mercenaria) and polychaetes
(Streblospio benedicti) in the laboratory. They suggested that meiofauna (with the
possible exception of predaceous turbellarians) do not play a large role in early post-

settlement mortality of macrofaunal species.

Physical Disturbance and Hydrodynamics

Physical disturbance has received relatively little attention as a cause of mortality
for newly settled invertebrates. Connell (1961) found that mortality of both cyprids and
newly metamorphosed barnacles (Semibalanus balanoides) increased during gales, when
mortality was greater at convexities on the substratum than in more protected
microhabitats such as crevices or depressions. Eckman (1987) determined that current
speed affected post-settlement survival of one species of bivalve (Argopecten irradians)
but not another (Anomia simplex) in eelgrass meadows. Survival of Argopecten was
lower in regions with faster currents, possibly because recruits were dislodged (Eckman
1987). Survival of abalone (Haliotis iris) settlers transplanted to the field was greater in
deep than shallow habitats, possibly due to reduced dislodgment by wave action

(McShane & Naylor 1995).

Physiological Stress
Newly settled invertebrates are generally more susceptible than older juveniles and
adults to physiological stress (Hatton 1938, Foster 1971, Branch 1975, Olson 1983,
Dungan 1985, Baker & Mann 1992, Gosselin & Chia 1995a, but see Mills & Fish 1980).
This has been attributed to a greater surface area to volume ratio (Vermeij 1972), an
inferior ability to reduce energy consumption under conditions of stress (Baker & Mann

1992), and incompletely developed protective adaptations (e.g. pigment and calcareous
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spicules in the ascidian Didemnun molle, Olson 1983). For mobile species, the age

dependence of tolerance to physiological stress may depend on the habitats of juveniles
and adults. Branch (1975) showed, in the laboratory, that tolerance to desiccation
remained fairly constant in non-migratory species of patellid limpets but increased rapidly
with size in species which settled low on the shore and migrated upwards as juveniles.
Survival of early juvenile invertebrates may also be reduced by stressful physiological
conditions which interfere with larval development. Developmental abnormalities
associated with extreme physical conditions have been documented (e.g. Watts et al.
1983), but their effects on juvenile survival have not yet been investigated.

In the intertidal zone, newly settled invertebrates are highly vulnerable to mortality
from desiccation (Table 2.2). Hatchling whelks (Nucella emarginata) are unable to
survive 4-6 hours emersion in the field or the laboratory unless they are in a protective
microhabitat (Gosselin & Chia 1995 a,b). Survival of settlers often decreases with
increasing height on the shore. Small barnacles which settle or are transplanted above the
limit of the adult distribution generally die (Semibalanus balanoides, Hatton 1938, Foster
1971; Balanus cariosus, Strathmann & Branscomb 1979; Tetraclitella purpurascens,
Denley & Underwood 1979; Chthamalus anisopoma, Raimondi 1988a, 1991). Hatton
(1938) demonstrated that a small amount of dripping water could keep barnacle cyprids
alive above the adult zone. Within the vertical range of distribution of adult barnacles,
early post-settlement mortality may increase with tidal height (Semibalanus balanoides,
Minchinton & Scheibling 1991, Bertness et al. 1992; Pollicipes polymerus, Hoffman
1989; Chthamalus anisopoma, Raimondi 1988b, 1990) or remain constant (Chthamalus
montagui, Kendall & Bedford 1987). Early post-settlement mortality also has been
shown to increase with tidal height for mussels (Mytilus viridis, Tan 1975) and oysters
(Crassostrea virginica, Roegner & Mann 1995). Lewis and Bowman (1975) and

Bowman & Lewis (1977) suggested that desiccation was responsible for the restriction of
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limpet (Patella vulgata) spat on the upper shore to crevices and pits. However, this

distribution could also be due to preferential settlement or migration.

Weather and other conditions that influence desiccation rates can account for
temporal variability in survival rates of young juveniles. Increased mortality of attached
cyprids (Connell 1961) and early post-metamorphic juveniles (Foster 1971) of the
bamnacle Semibalanus balanoides has been observed during periods of warm weather and
prolonged aerial exposure due to neap tides (Foster 1971) or diminished wave action
(Connell 1961). Roegner and Mann (1995) showed that recently settled oysters
(Crassostrea virginica) survived transplantation to 25 cm above mean low water in
September, but not in June or July when aerial temperatures were > 30 °C. Substratum
type also can affect the risk of mortality from desiccation. Schubart et al. (1995)
demonstrated that settlement inside empty barnacle tests increased the survival of recently
settled bamnacles (Balanus glandula) in the high intertidal zone. Minchinton and
Scheibling (1993a) found that early post-settlement mortality of the baracle Semibalanus
balanoides increased with tidal height in the absence but not in the presence of ephemeral
algae. Raimondi (1988b) showed that survival of juvenile bamacles (Chthamalus
anisopoma) was reduced at higher tide levels on basaltic rocks compared to granitic rocks,
most likely because higher temperatures were attained by basalt. However, rock type did
not affect the survival of early juveniles of the bamacle Tesseropora rosea in Australia
(Caffey 1982).

Exposure to bright light is a cause of early post-settlement mortality for some
species of ascidians (Didemnum candidum, Hurlbut 1993; Didemnum molle, Olson
1983), but not others (Diplosoma listeranium and Diplosoma sp., Hurlbut 1993).
Siltation also causes mortality of recently settled ascidians, resulting in greater survival of
new settlers on the undersides of panels (Young & Chia 1984, Hurlbut 1993).

In the laboratory, combinations of extreme temperature and salinity have been

shown to cause mortality of recent settlers of several species of invertebrates (Table 2.2).
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However, most species tested survived virtually all conditions they are likely to

experience in the field (Mills & Fish 1980, O'Brien 1994b, Brown et al. 1992, Chen &
Chen 1993). Field estimates of mortality of early juveniles were significantly related to
temperature for one species of Australian prawn (Penaeus merguiensis, Haywood &
Staples 1993), but not another (Penaeus esculentus, O'Brien 1994a). Laboratory
experiments indicated that environmental temperatures were suboptimal for survival of P.
merguiensis (Staples & Heales 1991), but less detrimental to survival of P. esculentus
(O'Brien 1994b). Also, the field study (O'Brien 1994a) was carried out near the southern
limit of the range of P. esculentus in Australia, where water temperatures were lower.
For estuarine species, periods of anoxia or hypoxia may also be a source of early post-
settlement mortality. Baker and Mann (1992) demonstrated that low levels of oxygen
decreased survival of recently settled oysters (Crassostrea virginica) in the laboratory.
The absence of adult barnacles from tidepools in New England has been attributed to early
post-settlement mortality from decreased dissolved oxygen levels (Singletary & Shadlou
1983) or accumulation of toxins (e.g. substances secreted by the alga Ulva lactuca, Magre
1974) during tidal isolation. Blooms of toxic dinoflagellates also may result in mortality
of early juveniles of benthic invertebrates. Summerson and Peterson (1990) found that
recruitment of the bay scallop Argopecten irradians concentricus was extremely low (2%
of previous years) during a red tide (Ptychodiscus brevis) outbreak in North Carolina,
USA. The increased abundance of empty shells of juvenile scallops after the red tide
suggests that the recruitment failure resulted at least partly from elevated early post-
settlement mortality.

Despite the vulnerability of recently settled invertebrates to physiological stress,
environmental conditions may not commonly cause mortality of early juveniles in the
field. Most studies examining survivorship under conditions of physiological stress have
transplanted settlers or modified the conditions to which they were exposed. Many

individuals may avoid these sources of mortality by settling in (Connell 1961, Denley &
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Underwood 1979, Olson 1983, Young & Chia 1984, Hurlbut 1993, Schubart et al.

1995) or migrating to (Gosselin & Chia 1995b) locations where environmental conditions

are not lethal.

Predation
Mobile Epifauna

Predation on early juveniles has been documented most often for mobile epifaunal
species (Table 2.3). Fish and crabs are the most commonly reported predators of early
juveniles of many species including lobsters, crabs, shrimp, queen conch, scallops, and
sea urchins (Table 2.3). These were the only types of predators, out of the 45 species of
intertidal invertebrates tested in the laboratory by Gosselin and Chia (1995a), that preyed
on recently hatched intertidal whelks (Nucella emarginata). Other predators of early
juveniles include shrimp (preying on blue crabs), sea stars (on scallops and urchins),
whelks (on scallops), octopus (on spiny lobster), lobster (on urchins), and urchins (on
sea cucumbers) (Table 2.3). Some species of recently settled echinoderms are preyed
upon primarily by small predators. In the laboratory, small individuals (< 1.5 mm) of the
sand dollar Dendraster excentricus were heavily preyed upon by tanaid crustaceans but
not eaten by gammarid amphipods or holothurians (Highsmith 1982). Survival of 1
month old sea stars (Acanthaster planci and Nardoa novaecaladoniae) in rubble on the
Great Barrier Reef was decreased by epifauna consisting primarily of polychaetes,
amphipods and gastropods (Keesing & Halford 1992, Keesing et al. 1996), but predators
had little effect on survival of another species of Nardoa on the Okinawan Reef, Japan
(Keesing et al. 1996). Rumrill (1989) was unable to find any significant predators of
juveniles of Asterina miniata when he exposed them to crabs, other sea stars, and fish in
the laboratory. Most of the studies of predation on early juveniles of mobile species have
involved individuals several weeks to months after settlement (Table 2.3) and the
vulnerability of recently settled individuals to predators may differ from that of slightly
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older juveniles. However, several studies have found high predation rates on settling or

recently settled decapods in the laboratory (Lavalli & Barshaw 1986, Johns & Mann
1987, Barshaw & Lavalli 1988, Olmi & Lipcius 1991, Dittel et al. 1996) and in the field
(Eggleston & Armstrong 1995).

Tethering is the most common technique used to evaluate predation rates on early
juveniles of mobile epifaunal species (Table 2.3). Recent papers have pointed out
potential artifacts of tethering (Zimmer-Faust et al. 1994, Peterson & Black 1994,
Barbeau & Scheibling 1994 ¢, Aronson & Heck 1995, Micheli 1996). For example,
tethering may increase predation rates by limiting the escape response of prey, particularly
for highly mobile species (Zimmer-Faust et al. 1994, Peterson & Black 1994, Aronson &
Heck 1995), or by decreasing the ability of prey to burrow in certain substrates (Barshaw
& Able 1990). Also, tethering may differentially affect predation by different predators,
potentially complicating comparisons of predation rate among predator species (Barbeau
& Scheibling 1994 c) and habitats (if predator species composition or behaviour differs
among habitats) (Peterson & Black 1994, Micheli 1996). Despite these artifacts, tethering
with thoughtful controls remains an effective way to assess predation on small, mobile
invertebrates.

Predator inclusion or exclusion cages also have been widely used to measure
predation rates of juveniles of mobile (and sessile) species (Table 2.3). There are various
artifacts of caging (reviewed by Dayton and Oliver 1980, Hall et al. 1990) which are
particularly relevant to studies of juvenile survival and recruitment. By altering the micro-
environment (e.g. reducing water flow, shading, creating structure), cages may increase
settlement rate and/or early post-settlement survival, which may confound an assessment
of predator effects. Also, mesh size will determine the size of predators that are
manipulated, including those which may not be part of the original experimental design.
Thus, effects of excluding a particular predator may be confounded by other smaller and
perhaps unknown predators (including juveniles of species that are being manipulated as
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adults) which can pass through the mesh and may even be attracted to cages. As with

tethering, the use of adequate procedural controls to evaluate artifactual effects is crucial to
the design of any caging experiment. However, only two (Denley & Underwood 1979;
Reise 1979) of the 13 studies I reviewed that employed exclusion cages or fences also
used inclusion or partial cages/fences to assess cage artifacts (although in Reise's study
treatments were not replicated). Two other studies (Keough 1984, Eggleston and
Armstrong 1995) measured settlement or short-term recruitment rates in caged and
uncaged plots to determine if the presence of a cage altered settlement rates. Studies
employing predator inclusion cages were less problematic, as most (6 out of 7) compared
mortality or recruitment rates between cages with and without predators, which would
share the same artifacts.

The risk of predation for early juveniles may vary with recruit size. In tethering
experiments, the mortality rate of small juvenile lobsters (Panulirus argus, Smith &
Herrnkind 1992; Homarus americanus, Wahle & Steneck 1992) was greater than that of
larger individuals, but the effect of body size on predation rate on juvenile blue crabs
varied among studies (Wilson et al. 1987, 1990, Pile et al. 1996). The effect of juvenile
sea scallop size on predation rate depended on predator type, site, and season (Barbeau &
Scheibling 1994a, Barbeau et al. 1994). For some species, predation risk may be greater
for intermediate sized individuals than for early juveniles or adults. Gut contents of
mobile benthic predators from the Gulf of Maine examined by Ojeda and Dearborn (1991)
contained mostly juveniles or small species of invertebrates, but most predators did not
seem to exploit the smallest size range of prey available. The bimodal size distribution
commonly observed in sea urchin populations may be the result of increased predation on
intermediate sized urchins in transition between the spatial refuge of the cryptic early
juvenile stage and the size refuge of adults (for review see Scheibling 1996). Similarly,
Wiedermeyer (1994) found that the importance of predation as a source of mortality for
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juvenile sea cucumbers (Actinopyga echinites ) increased over time, and suggested that
this increase in mortality resulted from a decrease in cryptic behaviour.

Predation risk for early juveniles varies among habitats and microhabitats for
many invertebrate species including scallops, lobsters, crabs (but see Olmi & Lipcius
1991), shrimp, urchins, and gastropods (but see Scheibling & Hatcher 1997) (Table 2.3).
Predation intensity is lower in vegetation and other structurally complex substrata (Table
2.3). Attachment above the bottom on vegetation (Argopecten irradiens, Pohle et al.
1991, Ambrose & Irlandi 1992) or occurrence near (Dendraster excentricus, Highsmith
1982) or under (Strongylocentrotus franciscanus, Tegner & Dayton 1977) adults can also
offer protection from predation. Early juveniles of many species occur primarily in these
protective habitats (e.g. Tegner & Dayton 1977, Highsmith 1982, Breen et al. 1985,
Wahle & Steneck 1991, Garcia-Esquivel & Bricelj 1993, Gosselin & Chia 1995b). Older
juveniles may outgrow their spatial refuges or shift habitats as their vulnerability to
predation decreases (Tegner & Dayton 1977, Scheibling & Hamm 1991, Smith &
Hermkind 1992, Garcia-Esquivel & Bricelj 1993).

Predation risk for early juveniles also can be influenced by physical factors which
affect predator-prey interactions. In laboratory and field experiments with juvenile sea
scallops (Placopecten magellanicus), predation rate by crabs and sea stars increased with
temperature due to increased predator activity and decreased effectiveness of the scallops’
escape response (to sea stars) (Barbeau & Scheibling 1994b, Barbeau et al. 1994). In a
tethering experiment with juvenile blue crabs (Callinectes sapidus), Pile et al. (1996)
found that mortality was lower during and immediately after a storm than before the
storm. They attributed the reduction in mortality to decreased predator activity resulting
from altered physical conditions associated with the storm, such as a drop in water
temperature, increased turbidity and turbulent flow, and increased salinity. Similarly,
Scheibling and Hatcher (1997) observed that mortality of juvenile snails (Trochus histrio)
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tethered outside of a spatial refuge (live branching coral) was lowest during a gale which

temporarily reduced the abundance of predatory fish.

Infauna

Early juveniles of macrofauna in soft bottom communities are vulnerable to
predation by a variety of predators. Jensen and Jensen (1985) suggested that juvenile
crabs (Carcinus maenus) were responsible for the rapid decline in the number of juvenile
cockles (Cerastoderma edule) after the settlement peak in the Danish Wadden Sea. In the
laboratory, C. maenus can consume large numbers of cockles and selectively preys on
small individuals (Jensen & Jensen 1985, Sanchez-Salazar et al. 1987). Reise (1979)
found that densities of early juveniles of C. edule in cages in the Wadden Sea were
reduced in predator inclusion cages with a nereid polychaete or a nemertine, and increased
in predator exclusion cages. However, his failure to replicate treatments may have
confounded differences between treatments with differences between locations. In
Sweden, Modller (1986) found that exclusion of epibenthic predators using cages also
increased densities of spat of several species of bivalves, primarily Mya arenaria and C.
edule. In Chesapeake Bay USA, Holland et al. (1987) showed that exclusion of fish and
crabs increased the peak abundance of macrofaunal recruits in trays of azoic sediment.
Beal (1983) found that two species of snapping shrimp (Alpheus heterochaelis and A.
normanni) selectively prey on small juveniles of the clam Mercenaria mercenaria in the
laboratory, suggesting they may be important predators of juvenile macrofauna.
Meiofaunal predators (organisms <0.5 mm) also feed on recently settled macrofauna
(Thorson 1966, Bell & Coull 1980). Watzin (1983, 1986) showed that increased
densities of turbellarians reduced the survival of spionid and terebellid polychaetes,
oligochaetes, and amphipods.

Deposit feeders, particularly surface-feeding species, ingest early juvenile

macrofauna, as well as causing mortality by sediment reworking. Thorson (1966)
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calculated that deposit feeders could ingest large numbers of macrofaunal settlers, but
suggested that some settlers may survive passage through the digestive tract. However,
Mileikovsky (1974) reviewed reports of the presence of larvae and small juvenile
invertebrates in the digestive tracts of deposit feeders and concluded that passage alive
through the digestive system is probably rare and does not play an important role in
recruitment. In the laboratory, adult polychaetes and crustaceans decrease the survival of
recently settled individuals of several species of bivalves (Gemma gemma, Mulinia
lateralis, Macoma balthica) and polychaetes (Abarenicola pacifica, Nerinides spp.,
Nerinopsis sp., Armandia brevis) (Table 2.3). Elmgren et al. (1986) tested the
mechanism for the increased mortality of settlers of the bivalve Macoma balthica in the
presence of adult amphipods (Pontoporeia affinis) and found crushed shells of M.
balthica only in the aquaria in which P. affinis were present. Increased sediment depth,
which would decrease the probability of physical contact between amphipods and early
juvenile clams, increased the survival of M. balthica in the presence but not in the absence
of P. affinis. Weinberg (1984) showed that the deposit-feeding polychaete Polydora ligni
ingested recently settled clams (Gemma gemma) thereby reducing recruitment in the
laboratory, but he did not find these clams in the gut contents of polychaetes collected in
the field. However, Qian and Chia (1994) found that recently settled polychaetes
(Capitella sp. I), which were marked with red dye and transplanted to the field, had high
mortality in trays containing large numbers of deposit-feeding polychaetes and other

predators.

Sessile Species
Exclusion of macrofaunal predators often results in increased recruitment of
sessile subtidal invertebrates, which can ultimately affect community structure (Table
2.3). In California, Keough and Downes (1982, 1986) examined the effects of predators

on patterns of recruitment of sessile invertebrates on subtidal rock walls off Santa Catalina
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Island. Exclusion of predators (fish and urchins) with cages altered the abundance (the

bryozoan Tubilopora spp.), spatial distribution (Tubilopora spp., the ascidian
Trididemnum opacum), and size distribution (the bryozoan Scrupocellaria bertholerti) of
recruits of several species, but had little effect on other species (the bryozoan Celleporaria
brunnea, the polychaete Spirorbis eximus). In South Africa, Barkai and Branch (1988)
demonstrated that high densities of rock lobsters prevented recruitment on uncaged plates
in the subtidal zone of Malgas Island, while caged plates developed a community of
barnacles and mussels. Caging also increased recruitment, although less dramatically, on
plates at nearby Marcus Island where rock lobsters were nearly absent and whelks
(Burnupena spp.) were the most abundant predators. Caging studies also have shown
that predation on recent settlers has a major effect on the structure of fouling communities
in New England. The small gastropods Anachis lafresnayi and Mitrella lunata prey on
newly settled ascidians, resulting in a shift of community dominance from ascidians to
bryozoans (Osman et al. 1992, Osman & Whitlach 1995a).

Predation by whelks is well known to be an important source of post-recruitment
mortality for sessile invertebrates in the intertidal zone (e.g. Connell 1961, Dayton 1971,
Menge 1976). However, studies of the effect of whelks on recently settled invertebrates
have yielded conflicting results. Exclusion of the whelk Morula marginalba in Australia
had no effect on survival of the barnacle Tesseropora rosea in the first few months after
settlement (Denley & Underwood 1979). In contrast, Menge (1991a) found that
recruitment of the barnacle Balanus inexpectatus in Panama was lower in the presence of
predatory gastropods (including whelks), and that recruitment of the bivalves Chama
echinata and Ostrea palmula was lower in the presence of various predators (gastropods,
crabs, fish). However, gastropod removal treatments and controls were pseudoreplicated
in his study, confounding differences between locations with differences between
treatments. Carroll (1996) found that exclusion of whelks and sea stars increased

recruitment of barnacles (Semibalanus balanoides, S. cariosus, B. glandula) in Alaska,
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USA, in a year with low settler densities, but had no effect in 2 years with higher
settlement. In Maine, USA, the whelk Nucella lapillus had little (Petraitis 1991) or no
(Petraitis 1990) effect on recruitment of the mussel Mytilus edulis. In southern Chile,
Moreno (1995) found that recently settled mussels (Choromytilus chorus) only survived
on filamentous algae or artificial collectors which were inaccessible to the whelk Nucella
crassilabrum. However, much of the whelk predation probably occurred several weeks
to months after the mussels settled. Also in southen Chile, exclusion of all consumers
(including whelks and other carnivorous gastropods, crabs, and sea stars) increased
recruitment of the reef-building polychaete Phragmatopoma virgini (Zamorano et al.
1995).

Researchers investigating predation on older individuals have commented that
adult whelks were not observed feeding on newly settled barnacles (Semibalanus
balanoides, Connell 1961; Tesseropora rosea, Fairweather 1988), although Connell
(1970) noted that Balanus glandula was attacked by predators (primarily 3 species of
Nucella) soon after settlement. Whelk recruits are probably more important predators of
recently settled bamnacles and mussels than adult whelks. In the laboratory, Gosselin and
Chia (1996) found that 15 to 18 day old Nucella emarginata strongly preferred Mytilus
californianus and M. trossulus over 4 other species presented (the bamnacles Balanus
glandula, Chthamalus dalli and Pollicipes polymerus and the bivalve Lasaea sp.). The
whelks preferentially consumed the smallest (1 and 2 mm shell length) size classes of
mussels offered. In Chapter S of this thesis, I found that recruits (<5 mm SL) of Nucella
lapillus prey on a range of sizes of mussels (Mytilus trossulus and M. edulis) in the field
and the laboratory, including individuals <1 mm shell length. Reduction of the density of
recently recruited whelks had no effect on either cover or size distribution of Mytilus.
However, manual removal of whelk recruits was not very effective because the high
densities of recruits necessitated a small spatial scale of manipulation that was difficuit to

maintain.
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A number of factors can modify the intensity of predation on recent settlers of
sessile species. In the laboratory, predation on juvenile oysters (Crassostrea virginica) by
blue crabs (Callinectes sapidus) decreases with increasing oyster size (Bisker & Castagna
1987, Eggleston 1990). For colonial species, the consequences of predation may also be
greater for early juveniles than for adults. Davis (1988b) demonstrated that removal of all
zooids (to simulate predation) of the ascidian Podoclavella moluccensis killed all juvenile
(2-3 months old) colonies in < 24 days but did not cause mortality of adults which
quickly regenerated. Certain substrata can offer protection from predation, as described
above for mussels (Moreno 1995). Settlement beside adults decreased mortality of
recently settled octocorals Alcyonium siderium, most likely because adults prevented
urchin grazing (Sebens 1983). Protection from predation is probably also the reason for
the increased survival of early juvenile vermetid gastropods which settle on bryozoans

(Osman 1987).

Competition for Space and Food

For recently settled invertebrates, particularly sessile ones, overgrowth is an
important cause of mortality. Overgrowth by algae is associated with decreased survival
of recently settled corals (Pocillopora damicornis, Harriott 1983), ascidians (Young &
Chia 1984), bamacles (Tetraclitella purpurascens, Tesseropora rosea, Denley &
Underwood 1979), and limpets (Patelloida latistrigata, Creese 1982). Survival of early
juveniles is increased by factors which decrease algal abundance, such as shade for
ascidians (Young & Chia 1984) and the presence of adult limpets for the limpet Patelloida
latistrigata (Creese 1982).

Overgrowth by other invertebrates is a common cause of mortality for encrusting
species (e.g. Buss 1979, 1981, Grosberg 1981), and new settlers may be particularly
vulnerable. Overgrowth by ascidians has been suggested as a cause of mortality for early

juveniles of the octocoral Alcyonium siderium (Sebens 1983) and the bryozoan Bugula
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pacifica (Young & Chia 1981), and for several members of the fouling community in

Long Island Sound, USA (Osman & Whitlach 1995b). Overgrowth also was the likely
cause of decreased survival of settlers of the coral Capnella gaboensis on biofilmed
substrata compared to bare substrata in the laboratory (Farrant 1987). In New South
Wales, Australia, Denley and Underwood (1979) showed that survival of newly settled
bamnacles (Tetraclitella purpurascens) in the low intertidal zone was increased by removal
of settling polychaetes (Galeolaria caespitosa). Also in Australia, mortality of the subtidal
colonial ascidian Podoclavella moluccensis in the first month after settlement varied
among sponge and bare wood substrata due to differences in the risks of overgrowth and
dislodgment of substrata: ascidians preferentially settled on substrata on which their
survival was increased (Davis 1987). Crowding and overgrowth in dense aggregations
of settlers can result in density-dependent early post-settlement mortality (Weiss 1948),
although crowding is more likely to cause post-recruitment mortality as the recruits grow
and begin to contact one another. Flexibility of body form can lessen the effects of
crowding. Young and Braithwaite (1980) reported that gregarious settlers of the ascidian
Chelyosoma productum produce an epidermal ampulla to access the overlying water
column for space to grow.

Limitation of food intake also can cause early post-settlement mortality. In
laboratory and field experiments, mortality of newly settled oysters (Crassostrea
virginica) increased with the density of fouling species, possibly due to food depletion
(Zajac et al. 1989, Osman et al. 1989) although some overgrowth occurred (Osman et al.
1989). Increased food supply in the laboratory experiments had mixed effects on oyster
spat survival, initially ameliorating density effects and later exacerbating them (Zajac et al.
1989). Underwood et al. (1983) showed that barnacles reduced survivorship of recruits
of the limpet Cellana tramoserica, probably by decreasing the space available for grazing.
In sedimentary habitats, competition for food may be less important as a source of early

post-settlement mortality. Although recruitment rates of several species of bivalves in soft
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bottom habitats are inversely related to the density of adult conspecifics (e.g. Peterson

1979, Moller 1986, Thrush et al. 1996), this is attributed primarily to a reduction in
settling larvae by filter feeding adults rather than early juvenile mortality (Olafsson et al.
1994). For example, Williams (1980b) found that settlement of clams (Tapes japonica)
on a beach in Washington was greater in areas with low or moderate densities of adult
clams, but adult density had no effect on survival of early juvenile clams (Williams

1980a).

RECRUIT-SETTLER RELATIONSHIP
Relationship between recruit and settler density

A positive relationship between the abundances of recruits and settlers (measured
at 1-4 day intervals) has been found in most studies of sessile species (mainly barnacles).
Recruitment of the bamacle Chthamalus fissus in Costa Rica reflected settlement for the
first 120 days (Sutherland 1990). Similarly, settlement explained >70% of the variance in
the number of Chthamalus anisopoma reaching maturity (6 weeks of age) in the Gulf of
California, Mexico (Raimondi 1990), and in the abundance of Semibalanus balanoides
recruits at the end of the main settlement season in Nova Scotia, Canada (Minchinton &
Scheibling 1991). Connell's (1985) analysis of unpublished data from several studies of
bamnacles revealed a positive relationship between recruit and settler density for
Tesseropora rosea at 2 of 3 shore levels in Australia, and for Semibalanus balanoides in
England but not in Scotland or Massachusetts, USA. In Rhode Island, USA, Bertness et
al. (1996) found that interannual differences in abundance and distribution of recruits of
S. balanoides reflected settlement patterns associated with wind-induced changes in larval
concentrations. Davis (1988a) monitored settlement of the colonial ascidian Podoclavella
moluccensis on wooden pilings in South Australia and found that settlement explained

86% of the variation in recruitment one month later. In California, zooid density of 2-4
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week old bryozoans (Membranipora membranacea) was primarily related (68% of
variance) to recruitment which was monitored bi-weekly (Yoshioka 1986).

Studies of the relationship between recruit and settler abundance for mobile
species have produced variable results. In North Carolina, USA, density of settlers of the
bay scallop Argopecten irradians concentricus on spat collectors explained 71% of the
variance in the number of recruits 2 months later in 1988, but only 4% in 1989 when
settlement was very high at 2 sites (Peterson & Summerson 1992). Herrnkind and Butler
(1994) were unable to make consistent, accurate predictions of recruitment of the spiny
lobster (Panulirus argus) over 3 years in Florida Bay, USA, based on samples of lobster
larvae in the plankton, settlers on floating and benthic collectors, and information on
geography and substratum type. More accurate models were generated based on data
from a single year, but the most influential variables varied from year to year. Butler and
Hermkind (1997) experimentally tested the importance of settler abundance and
availability of shelters for recruitment of P. argus. They found that the number of small
juvenile lobsters increased at sites where artificial shelters were added, apparently as a
result of reduced predation on small juveniles, but was not measurably increased by the
addition of new settlers. In New Zealand, Morgan et al. (1982) found no clear
relationship between density of juveniles of the rock lobster Panulirus cygnus and density
of settlers on collectors 1-1.3 years earlier, although Chittleborough and Phillips (1975)
had reported a significant relationship based on a smaller portion of the same data set.
However, Phillips (1990) suggested that the estimates of densities of juvenile rock
lobsters, based on mark-recapture methods, are inaccurate due to migration of lobsters
among reefs. There appears to be a stronger relationship between abundances of the early
life history stages of the American lobster (Homarus americanus) in the Gulf of Maine,
USA. Incze and Wahle (1991) found that the number of 1-year-old lobsters (10-16 mm)
was significantly correlated with the density of recent benthic recruits (7-8 mm carapace

length) sampled the previous year. In Australia, the density of juvenile (> 3 mm carapace
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length) tiger prawns (Penaeus semisulcatus) was related to the density of recently settled
benthic postlarvae (< 3 mm) 2 weeks earlier (Vance et al. 1996).

For soft bottom communities, studies examining temporal variability in early
juvenile densities provide some information about the recruit-settler relationship. Muus
(1973) monitored densities of 11 species of infaunal bivalves (<2 mm shell length) in
Denmark. Abundances of most species decreased rapidly after settlement peaked and
leveled off at a density unrelated to the peak settler abundance. In South Carolina, USA,
Feller et al. (1992) examined the correspondence between peaks of abundance of
meiofaunal (<0.5 mm) and macrofaunal-sized (>0.5 mm) polychaetes and bivalves in
sediment samples and larvae in plankton tows. There was better correspondence between
peaks of abundance of meiofaunal-sized individuals and planktonic larvae than between
macrofauna and larvae, or between macrofauna and meiofauna, suggesting that mortality
of new settlers was variable.

McGuinness and Davis (1989) have suggested that using correlation or regression
to analyze the relationship between recruit and settler abundance (as was done in most
studies described above) is not appropriate because recruit density is constrained to be
equal to or less than settler density. However, the relationship between recruitment and
settlement in these studies is generally clear even without the use of statistics.
McGuinness and Davis (1989) suggested that statistical analyses should be confined to
the relationship between mortality and initial settler density. Analysis of the relationship
between mortality and settler density is useful, but may not reveal whether spatial or

temporal patterns of recruitment reflect differences in settlement (see next section).

Under what conditions are recruit and settler densities positively related?
Connell (1985) suggested that recruitment will reflect settlement only when early
post-settlement mortality is density independent. However, Holm (1990) pointed out that
settlement and recruitment may still be positively related when mortality is weakly density
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dependent. When mortality is positively density dependent, predictions of recruitment

will be most accurate when settler densities are low, whereas when mortality is inversely
density dependent, predictions will be most accurate at high settler densities (Holm 1990).

Positive density dependence of early post-settlement mortality may result from
density dependent predation (Hurlbut 1991a,c, Gaines & Roughgarden 1985), lack of
suitable settlement sites (McShane 1991) or crowding (Weiss 1948). Crowding may be a
less important cause of density dependent mortality for recent settlers than it is for recruits
which have grown large enough to contact one another (e.g. barnacles: Grant 1977,
Denley & Underwood 1979, Bertness 1989, Stephens & Bertness 1991). Inversely
density dependent mortality of recent settlers may arise when conspecific settlers provide
protection to one another from harsh physical conditions, as is the case for post-
recruitment mortality of the barnacle Semibalanus balanoides in the high intertidal zone
(Bertness 1989, Stephens & Bertness 1991) .

Studies have reported a positive relationship between recruitment and settlement
when mortality was density independent (most studies analyzed by Connell 1985, Davis
1988a, Raimondi 1990, Minchinton & Scheibling 1991) or inversely density dependent
(Minchinton & Scheibling 1991). McGuinness and Davis (1989) reanalyzed the data of
Davis (1988a) by weighted least-squares regression (to meet the assumption of
homogeneity of variances), and those of Caffey (from Connell 1985) by pooling
observations, and found significant inversely density-dependent mortality. These studies,
all but one of which involved barnacles, are the only ones to have simultaneously
examined the relationship between recruit and settler abundance and the density
dependence of early post-settlement mortality. No consistent trend in the density
dependence of early mortality has emerged from other studies of sessile invertebrates.
Early post-settlement mortality was positively density dependent for the ascidian
Didemnum candidum on floating docks (Hurlbut 1991c) and for barnacles (predominantly
Balanus improvisus) on settlement panels (Weiss 1948). Hurlbut (1991a) found that
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mortality of 1 day old juveniles was density dependent for the 3 most abundant settlers on
subtidal plates (the serpulid polychaete Hydroides elegans, the bivalve Anomia nobilis,
and the bryozoan Schizoporella unicornis) but not for the less abundant ascidians
(Phallusia nigra, Didemnum candidum, Diplosoma listeranium, and Diplosoma sp.). In
laboratory studies, survivors of the coral Porites porites were clumped (Goreau et al.
1981), suggesting inversely density dependent mortality, while early post-settlement
mortality of the oyster Crassostrea virginica was density independent (Roegner 1991).
Mortality of bryozoans (Bugula neritina) transplanted to the field on artificial seagrass
blades was either inversely density dependent or had no trend with density (Keough
1986, Keough & Chernoff 1987).

The density dependence of early post-settlement mortality of mobile species has
been examined in fewer studies. McShane (1991) found that the decrease in recruit
density (after 5 mo.) of the abalone Haliotis rubra in southeastern Australia depended on
initial recruit density. In contrast, Haywood and Staples (1993) reported that mortality
rate of cohorts of the prawn Penaeus merguiensis was not significantly related to prawn
density, although densities decreased dramatically within 2 weeks of settlement regardless
of initial density. Guillou and Tartu (1994) found that the decline in density of the bivalve
Cerastoderma edule during the early post-settlement period was not clearly related to
initial recruit density. Early post-settlement mortality of sea stars (Acanthaster plancr)
transplanted to the field was density independent (Keesing et al. 1996). Pile et al. (1996)
found a hyperbolic relationship between densities of small instars of the blue crab
Callinectes sapidus, indicating density-dependent processes. They suggested that this
relationship was more likely due to emigration from the nursery habitat than to mortality.

Temporal or spatial variability in mortality may obscure any relationship between
recruitment and settlement, even if early post-settlement mortality is density independent

(Holm 1990). In the laboratory, Roegner (1991) found that temporal variability of
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mortality of the oyster Crassosstrea virginica precluded estimation of recruit density from

settler density, despite density independent mortality.

EFFECTS OF SETTLEMENT AND EARLY POST-SETTLEMENT
MORTALITY ON RECRUIT DISTRIBUTION
Sessile Species
Association with Substrata

Both selective settlement and early post-settlement mortality determine the
distribution of recruits at small spatial scales, such as among microhabitats on the
substratum. In California, USA, recruits of the ascidian Trididemnum opacum occurred
primarily in pits and crevices because of both selective settlement and predation of more
exposed settlers by fish and urchins (Keough & Downes 1986). Fish predation also
determined the spatial distribution of recruits of the bryozoan Tubulipora spp., such that
recruit abundance was related to the proportional surface area of microhabitat refuges, but
it did not affect the distributions of 2 other bryozoans (Scrupocellaria bertholetti and
Celleporaria brunnea) or a polychaete (Spirorbis eximus) (Keough & Downes 1982). In
North Carolina, USA, early post-settlement mortality did not modify the distribution of
recently settled barnacles (Balanus amphitrite) and bryozoans (Bugula neritina) on an
artificial substrata (Lego) with uniformly spaced roughness elements (Walters 1992).
Walters and Wethey (1996) found that both species selectively scttled between the
"bumps"” which acted as refuges from predation during the first week after settlement.
Larvae of 2 species (the bryozoan Schizoporella errata and the hydrozoan Tubularia
crocea) with unlimited growth along the substrata (clonal encrusting and stolon-mat forms
respectively) were less specific in their settlement locations and grew out of refuge
locations within days (Walters & Wethey 1996).

Recruits of sessile species are also non-randomly distributed at small spatial scales

on biotic substrata. In South Carolina, USA, Young (1991) found that preferential
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settlement resulted in greater recruitment of the barnacle Chthamalus fragilis in the axils of

cordgrass (Spartina alterniflora), despite higher early post-settlement mortality in this
location. In contrast, the distribution of the bryozoan Bugula neritina on seagrass
(Thalassia testudium) blades in Florida resulted more from early mortality than from
differential settlement (Keough 1986). Mortality of newly settled bryozoans on artificial
seagrass blades transplanted to the field was lowest on the distal (oldest) parts of the
blades where most adult colonies occurred; settlement accounted for < 20 % of the
deviation from a uniform distribution (Keough 1986). Early post-settlement mortality
also appeared to be important in determining the distribution of the colonial hydroid
Hydractinia echinata on hermit crab shells (Yund et al. 1987). The entire surface of the
shells was covered by settlement-inducing bacteria, but extensive differential mortality of
juveniles resulted in the concentration of recruits on the undersurface of the shell,
particularly at the aperture and siphon where polyps were bathed in the crab’s feeding
currents (Yund et al. 1987).

Early post-settlement mortality can also alter the association of settlers with
particular substrata. Gotelli (1987) found that the association of the compound ascidian
Aplidium stellatum with vertical surfaces in the field was stronger than the preference of
larvae for vertical substrata in the laboratory, suggesting that juvenile mortality also
contributed to the distributional pattern. Hurlbut (1991b) compared the distribution of
settlers, juveniles, and adults of 2 species of bryozoans (Flustrellidra hispida and
Alcyonidium polyoum) on various substrata in the rocky intertidal zone in New
Hampshire, USA. For both species, survival of new settlers appeared to differ among
substrata. The distribution of F. hispida seemed to result mainly from selective settlement
on the most abundant alga Ascophyllum nodosum. However, A. polyoum occurred
mainly on rock, although it selectively settled on the relatively rare algae Fucus distichus
and Chondrus crispus. Osman (1987) found that the vermetid gastropod Serpulorbis

squamigerus recruited primarily on encrusting bryozoans. Based on observations of
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newly settled individuals and measures of post-recruitment mortality, he suggested that

although the general association of Serpulorbis with bryozoans resulted from both
settlement and early post-settlement mortality, differences in recruitment among different

bryozoan substrata were caused primarily by mortality.

Vertical distribution

The relative importance of settiement and early post-settiement mortality in
determining the vertical distribution of barnacles differs among species. Numerous
studies have noted that barnacles settle above the distributional limit of adults, usually in
very small numbers, and that many of these settlers die shortly after settlement (for review
see Connell 1985). The vertical distributions of some species of barnacles (Tesseropora
rosea and Terraclitella purpurascens, Denley & Underwood 1979; Chthamalus
anisopoma, Raimondi 1988a, 1991) have been attributed to settlement patterns. The
vertical range of settlement can be limited by the vertical distribution of larvae in the water
column (Balanus crenatus and Balanus glandula, Grosberg 1982), induction of settlement
by conspecifics (Chthamalus anisopoma, Raimondi 1988a, 1991), or larval avoidance of
cues present on the upper shore (Balanus cariosus, Strathmann & Branscomb 1979). The
frequency of settlement above the upper limit of adults can vary among geographic
locations (Wethey 1984).

The abundance of recruits of subtidal sessile species often varies with depth. On
floating docks in Hawaii, USA, non-random settlement resulted in greater abundance of
the colonial ascidian Didemnum candidum at 0.25 m than 6 m depth, despite high density-
dependent mortality of settlers (Hurlbut 1991c). Stoner (1990, 1992) demonstrated that
vertical zonation of recruits of the ascidian Diplosoma similis in Hawaii was determined
by directional larval swimming and active site selection. In contrast, post-settlement
mortality appeared to determine the upper depth limit of subtidal ascidians in Florida
(Dalby & Young 1992). The lack of recruits in the intertidal oyster zone did not result
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from larval zonation, as ascidians recruited to floating plates in this zone. Adults
transplanted to the oyster zone died, primarily from physiological stress during emersion
(e.g. desiccation, insolation, osmotic shock, or freezing), suggesting that new settlers,
which are likely more vulnerable to these stresses, experience high mortality in this zone

(Dalby & Young 1992).

Horizontal Distribution

At horizontal scales of hundreds of metres to kilometres, early post-settlement
mortality appears to be less important than settlement in determining the distribution of
recruits of sessile species. Gaines and Roughgarden (1985) attributed differences in the
abundance of the bamacle Balanus glandula between 2 sites on a rocky shore in California
to settlement rate since survivorship was similar or greater at the site with lower bamacle
abundance. In the San Juan Archipelago, USA, Shanks and Wright (1987) found that
barnacle cyprids were abundant in the convergence zone of internal waves, suggesting
that cyprids (and other larvae) can be transported shoreward by these waves. Recruitment
of bamacles (B. glandula, Semibalanus cariosus) was greater in areas of a bay where
surface drifters were frequently transported by internal waves than in areas where drifters
were seldom transported. In the intertidal zone of Galveston Bay, Texas, USA,
differential settlement results in domination by oysters (C. virginica) within 10 m of shore
and by barnacles (Balanus eburneus) further from shore (Bushek 1988). Greater
settlement of barnacles on the farther pilings was attributed to both preferential settlement
and a higher rate of larval supply due to greater water motion (Bushek 1988). Bingham
(1992) showed that the distribution of epifaunal species among channels in a mangrove
island in Florida was best explained by larval supply; early post-settlement mortality of
settlers transplanted on panels was low, and varied among channels for only 1 of 5
species tested. A short larval lifespan appeared to explain the absence of the bryozoan

Bugula neritina from some suitable sites in seagrass beds in Florida. Keough and
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Chemoff (1987) found that early post-settlernent mortality of transplanted bryozoans was

lower at sites where adults were absent, suggesting that the patchy adult distribution
results from limited dispersal of the short lived larvae rather than from post-settlement
mortality. In a lagoon in the Great Barrier Reef, Olson (1985) showed that the
distribution of recruits and adults of the colonial ascidian Didemnum molle matched the
dispersal pattern of the short lived larval stage, indicating that early post-settlement
mortality (which was not measured) did not modify the distribution of settlers. Also on
the Great Barrier Reef, Sammarco and Andrews (1989) found that coral recruitment on
plates decreased with distance from the reef, even though early post-settlement mortality
due to overgrowth was higher on and directly adjacent to the reef. Coral spat were
concentrated at stations with high water residence times.

Early post-settlement mortality appears to be responsible for the dominance of
bryozoans in some New England, USA, fouling communities, although the contributions
of larval supply and settlement to this pattern have not been examined. Osman et al.
(1992) and Osman and Whitlach (1995a) found that micropredators (the gastropods
Anachis lafresnayi and Mitrella lunata) dramatically reduced the recruitment of ascidians,
resulting in dominance by bryozoans. The gastropods were fairly specific in their prey
preference and were capable of affecting the recruitment of ascidians throughout the

settlement season (Osman & Whitlach 1995a).

Mobile Species
The distributional pattern of settlers of mobile species can be modified by
migration (e.g. the sea cucumber Psolus chitonoides, Young & Chia 1982; the gastropod
Lacuna vincta, Martel & Chia 1991b) as well as early post-settlement mortality.
Movement frequency of early juveniles of some species can be high. For example,
Armonies (1994) estimated that juvenile bivalves (Macoma balthica and Cerastoderma

edule) in a soft bottom community in the German Wadden Sea moved at least once a week
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during summer. For species with high rates of movement, patterns of settlement and
early post-settlement mortality are likely to influence the distribution of recruits only at
scales larger than that of the movement of early juveniles.

Several studies have found evidence that early post-settlement mortality influences
the distribution of recruits of mobile epifauna. Eggleston and Armstrong (1995) found
that differences between sites in settlement rate of Dungeness crab (Cancer magister)
attributed to postlarval supply disappeared in less than 48 hours outside predator
exclusion cages. The high densities of juveniles of the red and purple sea urchins
(Strongylocentrotus franciscanus and S. purpuratus) beneath or near adults also have
been attributed to early post-settlement mortality rather than preferential settlement or
migration (Cameron & Schroeter 1980). However, Breen et al. (1985) found that
juveniles of S. franciscanus in laboratory experiments actively associated with adults,
particularly in the presence of predators, and suggested that the association in nature was
due to migration rather than mortality. Early post-settlement mortality also has been
implicated as a cause of between habitat differences in the distributions of S. franciscanus
and S. purpuratus. After a large settlement pulse, Rowley (1989) observed high densities
of recently settled urchins in both a kelp bed and an adjacent barrens area. The density of
these juveniles declined more rapidly in the kelp forest than in the barrens, suggesting that
the lower numbers of adult urchins in kelp forests than barren grounds results from
greater mortality in the kelp habitat (Rowley 1990). However, the generality of Rowley's
conclusions is limited by the lack of replicate sites and the observation of a single
settlement event.

Despite the influence of both mortality and movement, settlement can in some
cases determine the distribution of recruits of mobile epifauna. O'Connor (1993) found
that the distributions of the fiddler crabs Uca pugnax and U. pugilator in a salt marsh in
North Carolina were determined at settlement: the distributions of the 2 species differed

within the marsh but the distribution of individuals of each species did not vary with age.
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Early post-settlement mortality can influence the distribution of infauna in soft

bottom communities. In an intertidal community in South Carolina, Luckenbach (1984)
compared sites with different densities of the polychaete Diopatra cuprea and showed
that, although D. cuprea tubes did not influence settlement of the bivalve Mulinia lateralis,
they resulted in reduced numbers of bivalves in the smallest size class 1 month later. This
reduction could have been due to emigration, but more likely resulted from interactions
with other infauna (Luckenbach 1984). This conclusion was supported by a laboratory
experiment (Luckenbach 1987) indicating reduced survival of recently metamorphosed M.
lateralis in the presence of 2 polychaetes (Nereis succinea and Streblospio benedicti)
which are common around D. cuprea tubes. Both settlement and post-settlement mortality
appear to influence the distribution of male isopods (Paragnatha formica) in an English
salt marsh (Upton 1987). Settlement is probably not indiscriminate as isopods were
found only within a restricted vertical range and larval males were most abundant in core
samples which contained adult males. However, juvenile males were disproportionately
more abundant lower in the zone compared to adult males. Upton (1987) suggested that
mortality of juveniles was greater lower in the zone where their molting chambers became
waterlogged and anoxic. Settling larvac may be able to avoid some agents of early
juvenile mortality. For example, larvae of the spionid polychaete Pseudopolydophora
kempi appear to avoid the polychaete Abarenicola pacifica, whose defecation may have
negative impacts on small infauna (Woodin 1985). After sediment cores were outplanted
in the field for 1 week, densities of small spionids were greater in blank cores than in
cores which contained an undamaged polychaete, a regenerating polychaete, or worm
smell (worm removed before transplant to the field).

The vertical distribution in the deep sea of benthic invertebrates with planktonic
larvae can be influenced by patterns of both settlement and early post-settlement mortality.
In the Rockall Trough (2800-2900 m) off the Hebrides Islands ,U.K., Gage and Tyler
(1981) found large numbers of juvenile ophuroids (Ophiocten gracilis), many of them
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corpses, in benthic samples collected in summer, but few in fall. The adult population of

O. gracilis occurs from ca. 600 to 1200 m depth on the slope surrounding the Trough
and is most likely the source of this non-viable settlement in deep water (Gage & Tyler
1981). In some cases, individuals which settle below the lower depth limit of the
reproductive population survive. Mileikovsky (1961) argued, based on the hortizontal
distribution of larval stages in a series of plankton samples, that the deep water population
of the polychaete Euphrosyne borealis in the Norwegian Sea was a "pseudopopulation”,

existing only because of the influx of larvae from depths above 400 m.

CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH

Although our knowledge of the early post-settiement period is still limited, the
number of studies addressing this topic is expanding rapidly. While the literature is
currently biased towards a few groups of organisms (mainly barnacles and ascidians), the
evidence to date suggests that early post-settlement mortality influences recruitment
patterns of many different types of benthic marine invertebrates. The importance of events
during this period arises from the very high rates of mortality of recent settlers (usually
Type I survivorship, although mortality in the first few hours to days after settlement has
only been observed for a few species) and the spatial and temporal variability of this
mortality. Mortality patterns of early juveniles can not necessarily be predicted from those
of adults because vulnerability to different sources of mortality often varies with size
(age). In many studies, spatial patterns of settlement or early post-settlement mortality
were found to influence the distribution and abundance of adults, underscoring the
importance of studying events which occur in the carly benthic stage. Reviews of
recruitment in other groups of marine organisms [e.g. benthic algae (Vadas et al. 1992)
and coral reef fish (Booth & Brosnan 1995)] also have suggested the importance of high
rates of early post-settlement mortality, but have not as yet established a clear link between

early juvenile mortality and the distribution and abundance of recruits.
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Factors which are known to cause mortality of recent settlers of benthic marine
invertebrates include biological and physical disturbance, delay of metamorphosis,
physiological stress, predation, and competition for food and space (Gosselin & Qian
1997, this review). Predation has been the best documented cause of early post-
settlement mortality, particularly for mobile invertebrates, but most studies have focused
on individuals several weeks to months after settlement. Similarly, mortality of juvenile
fish on coral reefs is most often attributed to predation (Hixon 1991, Booth & Brosnan
1995). Physical disturbance has received relatively little attention as a source of early
post-settlement mortality of invertebrates, although wave action and water flow have been
shown to cause mortality of macroalgal zygotes and germlings (for review see Vadas et
al. 1992) and probably have the same effect on invertebrate settlers in the intertidal zone
of rocky shores. Many causes of mortality of recently settled algae are similar to those
reported for sessile invertebrates, including grazing, canopy effects, presence of algal
turf, and desiccation (reviewed by Vadas et al. 1992). Disease and parasitism are
potential causes of early post-settlement mortality which have not yet been addressed,
although the importance of these agents of mortality among older life history stages of
marine invertebrates is well known (Kinne 1980). Problems arising at or before
metamorphosis, such as developmental abnormalities (Rumrill 1990), complications
during metamorphosis (Roegner 1991), or insufficient energy reserves (Gosselin & Qian
1996), are other possible causes of early post-settlement mortality which should be
investigated. Observations of recently settled individuals under benign conditions in
laboratory aquaria may give some indication of the frequency of such problems and their
influence on survivorship. Even at sublethal levels, disease, parasitism, developmental
abnormalities, or poor physiological condition may increase mortality by increasing the
susceptibility of recent settlers to predation or physical disturbance. Future studies of
early post-settlement mortality should evaluate the influence of the various causes of

mortality on patterns of abundance and distribution of recruits. Because of the lack of
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data on many of the causes of early post-settlement mortality, it is not presently possible
to rank the various factors as selective pressures (Gosselin & Qian 1997).

Early post-settlement mortality did not obscure the relationship between recruit
and settler abundance in most studies of sessile invertebrates (almost all of barnacles), but
this relationship appears to be more variable among mobile species. When recruit and
settler density were related, mortality was either density independent or inversely density
dependent. However, there is still insufficient data to support general conclusions about
the conditions under which recruitment rate can be predicted from settlement rate. Studies
examining the relationship between recruit and settler density under conditions of both
density dependent and density independent mortality, and over a range of settler densities,
are needed before conclusions can be drawn. Both early post-settlement mortality and
settlement patterns have been shown to affect the distribution of recruits of sessile species
at small spatial scales, but there is less evidence of the influence of mortality at larger
scales. In addition to migration, early post-settlement mortality modifies the distribution
of recruits of some mobile species. Differences among spatial scales in the importance of
early post-settlement mortality may result from variation in the relative importance of
different causes of mortality. Variation in the processes operating at different spatial
scales has been documented for settlement. For example, active habitat selection becomes
important at scales of centimetres to metres, but larvae tend to be passively deposited at
large spatial scales (reviewed by Butman 1987). However, the scale dependence of
differing processes influencing early post-settlement mortality has not yet been addressed.

Early post-settlement mortality probably exerts strong selective pressure on
settlement patterns of both sessile and mobile invertebrates. A number of invertebrate
species selectively settle in locations where early post-settlement mortality is low
(Highsmith 1982, Young & Chia 1984, Davis 1987, Hurlbut 1993). However, species
with widely dispersing larvae may encounter different agents of mortality in different

areas, resulting in "fatal errors of set” (Strathmann et al. 1981). There may be tradeoffs
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between early post-settlement survivorship and adult or juvenile mortality (Keough 1986,

Schubart et al. 1995). These tradeoffs can only be assessed in studies which examine the
spatial and temporal variability of mortality of both settlers and older individuals.
Genotype-specific post-settlement selection has been documented for mussel populations
(for review see Gosling 1992), but most studies have not isolated the stage at which
selection occurs. Pedersen (1991) examined temporal variation in isozyme frequencies
within Mytilus trossulus and found no evidence of early post-settlement selection.
Further genetic studies contrasting settlers and recruits are necessary to determine whether
post-settlement selection varies among different micro-habitats or under different
environmental conditions.

Studies of barnacles and ascidians have contributed much of our knowledge of
early post-settlement mortality of benthic invertebrates. More information is now needed
for other groups of benthic marine invertebrates, particularly mobile ones. Obtaining
information about the fate of settlers of mobile species, which may undertake frequent and
extensive movements or remain cryptic or buried in sediment, is much more difficult than
mapping sessile organisms on exposed substrata. A combination of methods will
probably prove most useful. Field experiments involving tethering and predator
enclosures or exclosures can be used to identify causes of mortality (e.g. Table 2.3).
Settlement rate on collectors or in passive settlement traps can provide an index of larval
supply for comparison with subsequent censuses of recruits (e.g. collectors: Morgan et
al. 1982, Peterson & Summerson 1992, Herrnkind & Butler 1994, Forcucci et al. 1994,
Eggleston & Armstrong 1995, Balch & Scheibling in press; tube traps: Wilson 1990),
although patterns and rates of settlement on artificial substrates may differ from those on
natural substrata (e.g. Chapter 4). Laboratory reared settlers can be transplanted to the
field to examine mortality shortly after settlement when individuals from naturally settled
cohorts are rare or difficult to detect (e.g. Keesing & Halford 1992, Ray & Stoner 1995,
Keesing et al. 1996). Tagging and marking methods using dye (Qian & Chia 1994),
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microwire tags (Forcucci et al. 1994), nailpolish (Gosselin 1993), and plastic "bee” tags

(Barbeau et al. 1996) have been developed which enable researchers to follow the fate of
individuals or cohorts of very small invertebrates. Time-lapse video photography may
reveal early mortality events such as predation or dislodgment, particularly at times (e.g.
at night or during storms) when direct observations in the field are difficult or impossible.

The relative importance of the early post-settiement period compared to other life
history stages can only be determined in studies which examine several stages. Studies
examining larval supply, settlement, and early post-settlement mortality (or recruitment)
are necessary to provide information about the contribution of the various components of
recruitment (e.g. Davis 1988a, Bertness et al. 1992, Eggleston & Armstrong 1995). The
importance of settlement and recruitment rates in regulating the dynamics of adult
populations are best addressed in studies which follow individuals from settlement to
adulthood (e.g. Davis 1988a, Raimondi 1990, Minchinton & Scheibling 1991) or
compare patterns of abundance and distribution of various age classes over a time series
(e.g. Peterson & Summerson 1992, Feller et al. 1992, Pile et al. 1996). Comparison of
the distributions of different cohorts (settlers, recruits, and adults) at a single time also can
provide valuable information (e.g. Grosberg 1982, Raimondi 1988a, Hurlbut 1991b,c,
O'Connor 1993), but may confound temporal variation in abundance of cohorts with
patterns of mortality. Matrix models can be used to explore the sensitivity of adult
population size to changes in settlement rate and survivorship of various stages (e.g.
Hughes 1990), although such models have seldom been appiied to studies of marine
invertebrates.

Finally, one of the major impediments to any synthesis of studies of recruitment in
benthic marine invertebrates is the ambiguity in the operational definition of recruitment.
While an operational definition of recruitment is appropriate to fisheries research (ie. the
size at which new individuals join the harvestable stock), there is no clear analogue in

ecological studies of the marine benthos. The body size at which new individuals are
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recorded in invertebrate populations will be determined by the growth rate of early
juveniles and (or) their behavioural and morphological adaptations for crypsis (perhaps by
the persistence and eyesight of the observer as well!). Thus, the utility of the term
recruitment according to its current usage in ecological studies of benthic marine
invertebrates is questionable. The input of new individuals to a population can be
quantified by censusing juveniles (= recruits) at a particular size or time after settlement
without invoking a term which may do more to obfuscate than clarify an ecological
process. Recruitment may be more meaningful if it is used to quantify the addition of
new individuals to the adult (breeding) population. This would require knowing the size
(age) at sexual maturity for a given species, which can vary among populations and
habitats but is easily measured in most cases. Recruitment as the number of individuals
undergoing the transition to adulthood, a discrete biological event, would provide a more
readily quantifiable and standardized measure of a demographic process than that given by

current definitions of the term.



CHAPTER 3: Spatial and temporal variability of patterns of
colonization by mussels (Mytilus trossulus, M. edulis) on a

wave-exposed rocky shore

INTRODUCTION

Studies of the role of recruitment variability in the population and community
dynamics of benthic marine invertebrates have focused largely on processes influencing
patterns of settlement by planktonic larvae (reviewed by Butman 1987, Pawlik 1992,
Rodriguez et al. 1993). However, many benthic marine invertebrates, particularly
molluscs, can disperse in the water column as juveniles (e.g.Sigurdsson et al. 1976,
Beukema & de Vlas 1989, Martel & Chia 1991a, Armonies 1992). When the rate of
waterborne dispersal of juveniles is high, it may be an important determinant of the
distribution and abundance of adults (Woodin 1991). Post-settlement transport of
juvenile molluscs can be actively initiated (Martel & Diefenbach 1993), and is generally
facilitated by the production of long byssal threads which increase hydrodynamic drag
(Sigurdsson et al. 1976, De Blok & Tan-Maas 1977, Lane et al. 1985, Martel &
Diefenbach 1993). Young post larval mussels can use threads to drift in the water column
at least until they reach a size of ~2 mm shell length (Sigurdsson et al. 1976, De Blok &
Tan-Maas 1977, Lane et al. 1985). Bayne (1964) demonstrated that Mytilus edulis
entered a secondary pelagic phase at a size of 1-2 mm and moved from initial settlement
sites on filamentous algae to a more permanent attachment on established beds of adult
mussels. Although a temporary association between recently settled mussels and
filamentous algae has been observed in several other studies (e.g. Seed 19692, King et al.
1989), mussels also may settle directly onto adult mussel beds (McGrath et al. 1988,
Ciéceres-Martinez et al. 1993, 1994). Patterns of post-settlement dispersal may partially
account for sporadic and unpredictable pulses of recruitment which characterize many

populations of Myrilus (Seed & Suchanek 1992). Although byssal drifting in the water
67
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column generally involves small juveniles (<5 mm in length), larger mussels may be
redistributed by wave action or may move by crawling (Chapter 6; Paine 1974).

In this chapter, I examine patterns and rates of colonization of mussels (Mytilus
trossulus, M. edulis) in tidepools and on emergent rock, both in ice-scoured and non-
scoured regions of an exposed shore in Nova Scotia, Canada. The abundance and spatial
distribution of mussels differ between tidepools and emergent rock: mussels in tidepools
generally occur in centimeter-scale patches, whereas those on emergent rock tend to form
more extensive beds with centimeter-scale gaps (Hunt & Scheibling 1995, Minchinton et
al. 1997). Tidepools and emergent rock differ in several aspects which may influence
mussel colonization (see also Chapter 4). For example, they have different macroalgal
assemblages (the substrata upon which mussels settle) and they are differentially affected
by occasional ice-scour which generally disturbs tidepools less than emergent rock. To
examine the relative importance of initial settlement/colonization compared to subsequent
dispersal and mortality in determining the distribution and abundance of mussels, I
compare patterns and rates of mussel colonization at sampling intervals of days to months

over a 17 mo period.

MATERIALS AND METHODS

This study was conducted at an exposed rocky shore at Cranberry Cove (44° 28’
N, 63° 56' W) near Halifax, Nova Scotia, Canada. The shore is composed of granite
platforms and outcrops with occasional large boulders (glacial erratics). There are
numerous tidepools in irregular depressions along the shore, ranging from a few
decimeters to over 10 m in maximum dimension. The shore is exposed to southerly
swells which may reach 10 m in significant wave height (average height of the largest 1/3
of all waves measured) in fall and winter (unpubl. data, Department of Fisheries and

Oceans, Canada).
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Because M. trossulus and M. edulis, the two species of mussels at my study site
cannot be distinguished visually at small size, I used genetic assays to compare the
relative abundance of the two species between habitats. A preliminary sample of 27
mussels (4 to 44 mm in shell length (SL)) was collected from tidepools and emergent rock
in March 1996 and identified to species by polymerase chain reaction/restriction fragment
length polymorphism assays using a marker for the female mitochondrial DNA lineage
(Rawson & Hilbish 1995a,b) and a nuclear DNA marker for the adhesive foot protein
(Rawson et al. 1997). In March 1997, I collected 32 mussels in 3 size classes, <5 mm
(n=8), 5-9.9 mm (n=8), and 10-24.9 mm SL (n=16) from each of three tidepools and
three adjacent areas of emergent rock. The mussels were identified to species using a
polymerase-chain-reaction-based assay of a nuclear DNA segment (the ITS marker)
described by Heath et al. (1995). DNA was extracted from the whole animal for mussels
<10 mm, and from gill tissue for individuals =210 mm.

Between July 1993 and December 1994, I measured colonization by mussels in
two habitats, tidepools and emergent rock, within each of two strata in the mid intertidal
zone, areas scoured by sea ice and non-scoured areas. To set up a factorial design, I
selected 12 plots (tidepools or areas of emergent rock) along a horizontal distance of ~ 1
km of shoreline to make up 3 replicates of each of the 4 combinations of habitat and
stratum. Tidepools ranged from 2.7-7.2 m in length, 1.1-2.8 m in width, and 0.3-0.6 m
in depth; plots of emergent rock were comparable in area. Non-scoured tidepools were
somewhat higher on the shore (1.4-2.3 m above chart datum) than the other combinations
of habitat and stratum (0.8-1.6 m) (Fig. 4.1a). An index of water flux was higher on
emergent rock than in tidepools, and higher in ice-scoured than non-scoured areas (Fig.
4.1b). At the beginning of this study, emergent rock surfaces in areas scoured during
winter 1992-93 were bare except for the scattered thalli of crustose macroalgae, whereas

upright macroalgae remained in ice-scoured tidepools.
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I recorded colonization by mussels within 10 x 10 cm quadrats on the natural
substratum. I prepared 12 quadrats per plot in July 1993 by removing the existing
mussels with forceps or a pipette to avoid disturbing the rest of the macrobenthic
community. I also removed mussels (with a paint scraper) from a 10-cm border around
each quadrat to limit migration into the quadrat. The quadrats were spaced at least 10 cm
apart and marked by stainless steel screws in plastic anchors. I define initial colonization
as the arrival of mussels in the quadrats by larval settlement and/or post-settlement
dispersal (secondary settlement, sensu Bayne 1964). I examined the effects of post-
colonization mortality and dispersal on patterns of initial colonization of mussels by
sampling quadrats (i.e. collecting all mussel colonists) at different frequencies, since the
extent of mortality and dispersal will be directly related to the interval between samples
(Minchinton & Scheibling 1993b). I sampled three quadrats per plot at short sampling
intervals, 2-7 d (spring to fall) to 30 d (winter), resulting in a total of 105 sampling dates
over 17 mo. I examined patterns of longer term colonization over the same period by
sampling mussels in three quadrats per plot at each of three successive 5 to 6 mo
intervals, i.e. in November 1993 (5 mo), May 1994 (11 mo), and October 1994 (16 mo).
To examine the effects of season on patterns of long term colonization, I collected
colonists from the initial 5 mo quadrats at two other times, May and November 1994,
after 5 to 6 mo periods. This enabled me to examine seasonal variation between a winter
interval, November 1993-May 1994, and the preceding and subsequent summer/fall
intervals (July-November 1993, May-October 1994). Mussels were collected from each
quadrat using forceps or a pipette. A magnifying glass was used to detect settlers and
small postlarval mussels. A small proportion of <0.5 mm mussels, particularly those in
filamentous or jointed calcareous algae, may not have been detected. However, unless
these individuals died or dispersed immediately, they would have been detected when
they grew larger. After the short sampling intervals (2 to 7 d) and the first and second 5
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to 6 mo intervals, mussels were collected without disturbing the rest of the macrobenthic
assemblage. After the 11 mo interval, the 16 mo interval, and the third 5 to 6 mo interval,
mussels were collected by removing all macroalgae from the quadrats. Removal of all of
the macroalgae during sampling may have slightly increased the number of <0.5 mm
mussels detected, but should not have introduced a large bias in the counts. Samples
were frozen until they could be processed. Mussels were counted and shell length was
measured in 0.5 or 1 mm size classes using an ocular micrometer on a dissecting
microscope for the smallest individuals, or vernier calipers for larger ones (>5 mm SL).

I grouped the mussels collected at the shortest sampling intervals (2-7 d) into 4
size classes: <0.5, 0.5-1.9, 2-4.9, and >5 mm SL. I refer to mussels which are <0.5 mm
SL as settlers because they are equal to or smaller than the maximum size of settling larvae
(Bayne 1965). I grouped 0.5 to 1.9 mm mussels because individuals in this size class are
capable of drifting using byssal threads and are known to disperse frequently in some
populations (reviewed by Seed & Suchanek 1992). I summed, separately, the total
number of mussels from each size class collected from each quadrat for each of the two
main colonization periods in my study: July to November 1993 and May to November
1994. Short term colonization rate was negligible during winter/early spring (see
Results). Analyses were carried out using ANOVA. Cumulative colonization based on
short term samples was compared among plots, habitats (tidepool, emergent rock), and
strata (scoured, non-scoured) for each size class in both the 1993 and 1994 colonization
periods. In the analysis, Habitat and Stratum are fixed factors, each with two levels, and
Plot is a random factor nested within Habitat x Stratum, with 3 levels. Effects of Habitat,
Stratum, and the interaction between Habitat and Stratum were tested against the mean
square error of Plot, and the effect of Plot was tested against the residual mean square
error. The numbers of colonists at the end of the three 5 to 6 mo intervals were analysed

using the same model. To compare colonization at the end of the 5, 11, and 16 mo
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intervals beginning in 1993, Time, a fixed factor with three levels (5, 11, 16 mo) was
added to the model. Effects of time and the interactions between Time, Habitat, and
Stratum, were tested against the mean square error of the interaction between Time and
Plot. The interaction between Time and Plot was tested against the residual mean square
error. Prior to ANOVA, the raw data were log or log (x+1) transformed to successfully
remove heterogeneity of variance, as detected by Cochran's test (e<=0.05). For post-hoc
comparisons of means (x=0.05), I used t-tests for comparisons of two means and
Student-Newman-Keuls (SNK) tests for comparisons of multiple means.

I measured the cover of macroalgae, bamacles (Semibalanus balanoides), and
mussels on the substratum in each of the quadrats in September 1993, and April, July,
and October 1994. A plexiglass panel with 20 random points was placed over a quadrat
and the number of points overlying each species were counted and expressed as a
percentage of the total. Macroalgae were assigned to functional form groups after Littler
(1980) and Littler and Littler (1984): sheets, filamentous, coarsely branched, thick

leathery, jointed calcareous and crustose forms.

RESULTS
Genetic Analysis

Analysis of the mussels collected in 1996 indicated that ~80% of mussels both in
tidepools and on emergent rock were M. trossulus (tidepools: M. trosslus, 8, M. edulis,
2; emergent rock: 13, 3, respectively). I compared the frequency of M. trossulus and M.
edulis (Table 3.1) collected in 1997 among size classes (<5, 5-9.9, 210 mm) and between
tidepools and emergent rock using contingency tables. Hybrids were not included in the
analysis because of their low abundance (<3 individuals per size class per habitat). The
frequency of occurrence of M. trossulus and M. edulis did not differ significantly among
size classes in tidepools (G,=1.93, p=0.38) or on emergent rock (G,=5.64, p=0.06),

where the difference was only marginally non-significant. The frequency of the two
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species (pooled across size classes) did not differ significantly between tidepools (76%)

and emergent rock (66%) (G,=1.20, p=0.27).

Colonization over short sampling intervals

Less than 4 % of mussels which colonized the quadrats sampled at short (2 to 7
d) intervals (Fig. 3.1) were settling larvae (<0.5 mm SL). Settlement occurred from
August to November, while larger mussels colonized the quadrats over a more extended
period from May to December. The daily colonization rate by all size classes of mussels
was negligible in winter/early spring (January to April 1994). Settlement of <0.5 mm
mussels peaked in September in 1993 and in August and October/November in 1994.
Colonization by larger size classes was at a peak when sampling began in July 1993 and
again in June/July 1994. Colonization by 0.5-1.9 mm mussels also peaked in
September/October in both years.

ANOVA (Table 3.2) showed a significant interaction in the effects of habitat and
stratum on the cumulative density of colonists for each size class of mussels in both
years, except for 2-4.9 mm mussels in 1994 when the interaction was marginally non-
significant and the cumulative density of colonists was significantly higher in tidepools
than on emergent rock. Post hoc comparisons of means showed that settlers (<0.5 mm)
were 1-2 orders of magnitude more abundant in tidepools than on emergent rock in ice-
scoured areas, but did not differ significantly between habitats in non-scoured areas (Fig.
3.2, Table 3.2). Cumulative abundance of settlers was significantly higher in ice-scoured
than in non-scoured areas in tidepools, but did not differ significantly between strata on
emergent rock. In contrast, cumulative abundance of larger colonists was more similar
among ice-scoured tidepools and non-scoured tidepools and emergent rock, but was
consistently lowest on ice-scoured emergent rock (Fig. 3.2). Cumulative colonization by
these larger mussels was significantly higher in tidepools than on emergent rock in ice-

scoured areas, but did not differ significantly between habitats in non-scoured areas
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(Table 3.2). Moreover, colonization by larger mussels was significantly higher in non-
scoured than in ice-scoured areas on emergent rock, but did not differ between strata in
tidepools. There was significant variation among plots for initial settlers in 1994 but not
in 1993, and for 0.5-1.9 mm mussels in both years. Variation among plots in the
cumulative colonization by 2-4.9 mm mussels was marginally non-significant in both
years, but there was no significant effect of plot for >5 mm mussels. In both 1993 and
1994, the cumulative number of colonists summed across size classes was highest in ice-
scoured tidepools and lowest on ice-scoured emergent rock (Fig. 3.2). I did not compare
colonization between years because sampling in 1993 began in July when colonization by
large mussels was at a peak.

I examined the size distributions of mussel colonists by pooling individuals over
the main colonization periods in 1993 and 1994 (Fig. 3.3). Small mussels were
proportionately more abundant in 1993, when sampling began in July, than in 1994,
when sampling was carried out throughout the entire colonization period. In each year,
<3% of colonists in any habitat/stratum combination were recent settlers (<0.5 mm).
Mussels that were 0.5-1.9 mm represented the majority (50-81%) of colonists in 1993,
while 2-4.9 mm mussels were the most abundant (53-71%) colonists in 1994. Mussels
that were >5 mm represented 3-8% of colonists in 1993 and 11-16 % in 1994. For each
year, I compared the size distributions of mussels between strata within each habitats and
between habitats within each strata using Kolmogorov-Smirmov tests (Seigel & Castellan
1988) (Fig 3.3). Mussels were pooled across quadrats and plots within a habitat/stratum
combination. In both years, mussels <1 mm were proportionately more abundant in ice-
scoured tidepools than in the other combinations of habitat and stratum, such that the size
distributions of colonists differed significantly between ice-scoured and non-scoured
tidepools, and between ice-scoured tidepools and ice-scoured emergent rock. On
emergent rock, size distributions of colonists did not differ significantly between non-

scoured and ice-scoured areas in each year. In non-scoured areas, size distributions of
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colonists did not differ significantly between tidepools and emergent rock in 1993.

However, this difference was statistically significant in 1994, which reflected larger

sample sizes in 1994 since the degree of difference remained small (D,,,,=0.07).

Colonization over long sampling intervals

The pattern of long term colonization was similar to the pattern of cumulative short
term colonization (summed over all size classes of mussels): abundance was highest in
ice-scoured tidepools and lowest on ice-scoured emergent rock (Fig. 3.4). For the 5, 11,
and 16 mo intervals beginning in July 1993, ANOVA showed a significant interaction in
the effects of habitat and stratum on the density of mussel colonists (Table 3.3). Post hoc
comparison of means showed that the patterns of differences between habitats within
strata, and between strata within habitats were the same as those of cumulative short term
colonization of mussels >0.5 mm, i.e., colonization was greater in tidepools than on
emergent rock in ice-scoured areas, and greater on non-scoured than on ice-scoured
emergent rock. Colonization increased significantly over time, but not in proportion to
the time elapsed: abundance after 5 and 11 mo was 70% and 95%, respectively, of the
abundance after 16 mo (159 mussels/100 cm?, averaged across all habitat/stratum
combinations). There were no significant interactions between time interval and either
habitat or stratum, nor was there a significant three-way interaction. The density of
colonists also varied significantly among plots within combinations of habitat and
stratum. For each of the three 5 to 6 mo intervals, ANOVA showed a significant
interaction in the effects of habitat and stratum on the density of mussel colonists (Table
3.4). Differences between habitats within strata, and between strata within habitats, were
the same as for the 5, 11, and 16 mo intervals beginning in 1993, except for the third 5 to
6 mo interval when the difference between non-scoured and ice-scoured areas on

emergent rock was marginally non-significant (Table 3.4). Colonization varied
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significantly among plots within combinations of habitat and stratum after the third, but

not the first or second, 5 to 6 mo intervals.

After each of the longer term (5-16 mo) intervals, mussels <5 mm represented 72
to 100% of colonists and mussels >10 mm represented <10% (Fig. 3.5). I compared the
size distributions of colonists between habitats within strata and between strata within
habitats for each interval. Differences in the size distributions between combinations of
habitat and stratum were not consistent over time and did not reflect the pattern observed
in the size distributions of cumulative short term colonization (Fig. 3.5). However, after
each of the 5 to 6 mo intervals, and the 11 and 16 mo intervals, mussels <I mm SL were
proportionately less abundant on ice-scoured emergent rock than in the other
combinations of habitat and stratum. The absence of significant differences in size
distributions in some of the comparisons with ice-scoured emergent rock resulted from
the smaller sample sizes from this habitat/stratum combination and not from smaller
differences between cumulative size frequency distributions. I did not statistically
compare the size distributions among time intervals because the differences were clear and
larger than the differences between habitats and strata within an interval, and the analyses
would have necessitated a large number of comparisons. Mussels <l mm were
proportionately least abundant in May 1994, the end of the second 5 to 6 mo interval and
the 11 mo interval, and proportionately most abundant in October 1994, at the end of the
third 5 to 6 mo interval and the 16 mo interval. Mussels <0.5 mm were abundant only in
October 1994.

Comparison of sampling frequencies
To explore the importance of post-colonization mortality and dispersal in
determining the abundance of colonists at the end of the 5 to 16 mo intervals, I used
regression analysis to examine the relationship between long term (5-16 mo) colonization

and cumulative short term (2-7 d) colonization during each of these intervals (Fig. 3.6).
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Long term colonization was significantly related to cumulative short term colonization
during the 5, 11 and 16 mo intervals beginning in July 1993. The slope of the
relationship approached the maximum value of one during the first 5 to 6 mo interval and
the 11 mo interval, but was lower during the 16 mo interval. During the second 5 to 6 mo
interval, long term colonization also was significantly related to cumulative short term
colonization, and the slope of the relationship approached one. However, during the third
5 to 6 mo interval which corresponded to the end of the 16 mo interval, the relationship
was marginally non-significant. Results of these analyses should be interpreted
cautiously because long term colonization is constrained to be less than cumulative short
term colonization (McGuiness & Davis 1989). However, the statistically significant
relationships explained >69% of the variation which is unlikely due to chance.

Differences in the size distributions of colonists sampled at short and long
sampling intervals can result from growth of individuals or size specific mortality or
dispersal after initial colonization. I compared the size distributions of long term colonists
to those of cumulative short term colonists for the first and third 5 to 6 mo intervals (Figs.
3.3 and 3.5) using Kolmogorov-Smirnov tests. In the first 5 to 6 mo interval, mussels
<1 mm were proportionately more abundant when colonists were collected at short than at
long sampling intervals in both non-scoured (D,,=0.17, p<0.001) and ice-scoured
tidepools (D,,,=0.33, p<0.001), but proportionately less abundant when colonists were
sampled at short than at long intervals on non-scoured emergent rock (D, =0.15,
p<0.001). On ice-scoured emergent rock, where sample sizes were low, size
distributions did not differ significantly between sampling frequencies (D, =0.25,
p>0.10). In each habitat/stratum combination during the third 5 to 6 mo interval, mussels
<l mm were not only proportionately (D, tidepools, ice-scoured=0.46, non-
scoured=0.65; emergent rock, ice-scoured=0.37, non-scoured=0.50; p<0.001) but also
absolutely less abundant when colonists were sampled at short than at long intervals.

These results indicate that, in comparison to the quadrats sampled at short intervals, the
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abundance of small mussels (<1 mm) in the long term colonization quadrats was
enhanced during the first 5 to 6 mo interval on non-scoured emergent rock and during the

third S to 6 mo interval in all combinations of habitat and stratum.

Spatial and temporal variation in the macrobenthic assemblage

The macrobenthic assemblage in the short and long term colonization quadrats
varied markedly between habitats and strata (Fig. 3.7). Jointed calcareous algae were
found only in tidepools. Sheet algae were abundant in tidepools in April 1994, but rare
on emergent rock (see also Metaxas et al. 1994). Conversely, thick leathery macroalgae
and barnacles generally were rare in tidepools, but were more abundant on emergent rock.
Ice-scoured emergent rock lacked filamentous algae (except in April 1994) and coarsely
branched macroalgae, and had a lower cover of crustose macroalgae than non-scoured
emergent rock and tidepools. In ice-scoured habitats, the macrobenthic assemblage
differed between years: there was a greater cover of thick leathery algae and bamacles on
ice-scoured emergent rock, and of coarsely branched algae in ice-scoured tidepools, and
consequently less unoccupied space in October 1994 than in September 1993 .

For the quadrats sampled for long term colonization, I also estimated the cover of
mussels. Percentage cover of mussels was less than 1% after each of the three 5 to 6 mo
intervals, with the exception of ice-scoured tidepools after the third 5 to 6 mo interval
(x=6% cover). On average, percentage cover was less than 3% after 11 mo in each
combination of habitat and stratum. After 16 mo, percentage cover of mussels was <1%
on non-scoured and ice-scoured emergent rock, ~8% in non-scoured tidepools, and ~17%
in ice-scoured tidepools. Because many of the colonists were associated with
macroalgae, my low estimates of mussel cover may partly reflect an artifact of my
sampling method which recorded only the top species/group if there were several
organisms at the same point on the substratum. However, the relatively small size and

low abundance (less than 3 cm®) of mussel colonists at the end of each of the 5 to 6 mo
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interval, the 11 mo interval, and the 16 mo interval indicates that the cover of mussels was

probably not greatly underestimated.
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Table 3.1. Frequency of M. trossulus, M. edulis, and hybrids of the two species in three
size classes (<5, 5-9.9, and 10-24.9 mm) of mussels collected from tidepools and
emergent rock in March, 1997.

Species

Size Class Habitat M. trossulus M. edulis hybrids
<5 mm Tidepool 13 6 1
Emergent rock 20 3 0
5-9.9 mm Tidepool 19 3 1
Emergent rock 1 9 3
10-249 mm  Tidepool 36 10 1
Emergent rock 30 13 3

Total Tidepool 68 (76%) 19 (21%) 3 3%)

Emerggnt rock 61 (66%) 25 (27%) 7 (8%)
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Table 3.2. Three-way ANOVA of the cumulative density (no. 100 cm’®) of mussels of
each of four size classes colonizing quadrats sampled at short intervals from July to
November 1993 and from May to November, 1994. Factors are Habitat (H, tidepools
and emergent rock), Stratum (S, ice-scoured and non-scoured), and Plot (nested within H
x S). Degrees of freedom: Fyyy =8, 24; F,, Fg, and Fy, =1, 8. *p<0.05; ** p<0.01;
*** n<(.001. The results of a posteriori tests are presented in the column labelled
comparison.When there was a significant H x S interaction, means were compared
between habitats within each stratum and between strata within each habitat using t-tests
(TP=tidepool, ER=emergent rock, NS=non-scoured, S=ice-scoured). = indicates a non-
significant result, while < or > indicates a significant result (a=0.05)

Size Class Source MS F p Comparison
1993

<0.5 mm Plot (H x S) 0.07 1.48 0.22 TP: NS<S
Habitat 2.01 27.72 <0.001*** ER: NS=S
Stratum 0.81 11.14 0.01* NS: TP=ER
Habitat x Stratum 1.34 18.50 0.003** S: TP>ER
Residual 0.05

0.5-1.9 Plot (H x S) 0.65 3.71 0.006** TP: NS=S
Habitat 11.46 17.64 0.003** ER: NS>S
Stratum 0.25 0.38 0.55 NS: TP=ER
Habitat x Stratum 6.57 10.11 0.01* S: TP>ER
Residual 0.18

2-49 Plot (H x S) 0.29 2.21 0.07 TP: NS=S
Habitat 4.58 15.79 0.004** ER: NS>S
Stratum 2.39 8.23 0.02* NS: TP=ER
Habitat x Stratum 2.44 8.41 0.02* S: TP>ER
Residual 0.14

>5 Plot (H x S) 0.07 0.89 0.54 TP: NS=S
Habitat 2.45 34.39 <0.001*** ER: NS>S
Stratum 0.88 12.30 0.008** NS: TP=ER
Habitat x Stratum 1.18 16.54 0.004** S: TP>ER
Residual 0.08

1994

<0.5 mm Plot (H x S) 0.18 4.40 0.002** TP: NS<S
Habitat 3.82 21.56 0.002%** ER: NS=S
Stratum 2.06 11.64 0.009** NS: TP=ER
Habitat x Stratum 1.79 10.07 0.01* S: TP>ER

Residual 0.04




Table 3.2 continued

Size Class Source MS F P Comparison

1994

0.5-19mm Plot(HxS) 0.40 390 0.005*%* TP: NS=S
Habitat 6.26 15.75 0.004** ER: NS>S
Stratum 0.53 1.33 0.28 NS: TP=ER
Habitat x Stratum 2.71 6.81 0.03* S: TP>ER
Residual 0.10

2-49 Plot (H x S) 0.24 232  0.05
Habitat 3.70 15.50 0.004%*
Stratum 0.06 026 0.62
Habitat x Stratum 1.18 4.96 0.06
Residual 0.10

>5 Plot (H x S) 0.16 1.45 0.23 TP: NS=S
Habitat 4.60 28.81 <0.001*** ER: NS>S
Stratum 0.12 0.78 0.40 NS: TP=ER
Habitat x Stratum 2.08 13.05 0.01* S: TP>ER
Residual 0.110
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Table 3.3. ANOVA of the number of mussel colonists in 100 cm® quadrats after the 5,
11, and 16 mo intervals beginning in July 1993. Factors are Habitat (H, tidepools and
emergent rock), Stratum (S, ice-scoured and non-scoured), Plot (nested within H x S),
and Time (T, 5, 11, and 16 mo). Degrees of freedom: Fyy =8, 72; Fy=1, 8; F=1, &;
Fus=1, 8; F1=2, 16; Fyu5xr=16, 72; Fy1=2, 16; Fg, =2, 16; Fy s, =2, 16. *p<0.05; **
p<0.01; *** p<0.001. The results of a posteriori tests are presented in the column
labelled comparison. Since there was a significant H x S interaction, means were
compared between habitats within each stratum and between strata within each habitat
using t-tests (TP=tidepool, ER=emergent rock, NS=non-scoured, S=ice-scoured). Since
there was a significant effect of Time, means were compared among time intervals (5=5
mo, 11=11 mo, 16=16 mo) using SNK. = indicates a non-significant result, while < or
>indicates a significant result (0t=0.05)

"Source MS F P (-Zornparison
Plot (H x S) 1.09 464 <0.001***
Habitat 25.6 23.54 0.001**
Stratum 1.94 1.78 0.22
Time 1.66 7.90 0.004** 5<11=16
Habitat x Stratum 25.8 23.73 0.001** TP: NS=S
Time x Plot (H x S) 0.211 090 0.23 ER: NS>S
Habitat x Time 0.48 2.28 0.13 NS: TP=ER
Stratum x Time 0.43 2.04 0.16 S: TP>ER
Habitat x Stratum x Time 0.34 1.61 0.57

Residual 0.24
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Table 3.4. ANOVA of the number of mussel colonists in 100 cm? quadrats after the three
5 to 6 mo intervals. Factors are Habitat (H, tidepools and emergent rock), Stratum (S,
ice-scoured and non-scoured), Plot (nested within H x S). Degrees of freedom: Fpy 5=
8, 24; F,=1, 8; F=1, 8; F, =1, 8. *p<0.05; ** p<0.01; *** p<0.001. The results of a
posteriori tests are presented in the column labelled comparison. When there was a
significant H x S interaction, means were compared between habitats within each stratum
and between strata within each habitat using t-tests (TP=tidepool, ER=emergent rock,
NS=non-scoured, S=ice-scoured). = indicates a non-significantresult, while < or >
indicates a significant result (0t=0.05)

Interval Source MS F p Comparison
Ist 5 to 6 mo Plot (Hx S) 0.46 1.51 0.21 TP: NS=S
Habitat 8.25 17.82 0.003** ER: NS>S
Stratum 0.26 0.55 048 NS: TP=ER
Habitat x Stratum 12.93 2793 <0.001*** S: TP>ER
Residual 0.31
2ndSto6mo  Plot (HxS) 0.36 209 0.08 TP: NS=S
Habitat 3.81 10.51 0.01* ER: NS>S
Stratum 0.13 0.37 0.56 NS: TP=ER
Habitat x Stratum 413 114 0.01* S: TP>ER
Residual 0.17
3rd 5 to 6 mo Plot (H x S) 1.16 895 <0.001*** TP: NS=S
Habitat 1.46 1.27 0.29 ER: NS=S
Stratum 0.01 0.01 0.95 NS: TP=ER
Habitat x Stratum 11.02 9.53 0.02* S: TP>ER

Residual 0.13
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Fig. 3.1. Colonization rate (no. 100 cm?day™ ) of mussels of each of four size classes
(<0.5, 0.5-1.9, 2-49, and >5 mm SL) in quadrats in ice-scoured and non-scoured
tidepools and emergent rock monitored at short (2 to 7 d) sampling intervals from July
1993 to November 1994. Data were averaged across 3 quadrats per plot and across 3

plots within each combination of habitat and stratum.
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Fig. 3.2. Mean (+ S.E.) cumulative number of mussels (per 100 cm?) collected from July
to November 1993 and from May to November 1994 from the quadrats sampled at short
intervals in ice-scoured and non-scoured tidepools (TP) and emergent rock (ER). Data
were averaged across 3 quadrats per plot and across 3 plots within each combination of

habitat and stratum.
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Fig. 3.3 Size frequency distributions of mussels collected from July to November 1993
and from May to November 1994 from the quadrats of sampled at short intervals.
Mussels were pooled across quadrats and plots within a combination of habitat and
stratum. In the first bar, the black shading indicates settlers (<0.5 mm SL), while the
gray shading indicates individuals which were 0.5-0.9 mm. Individuals in the last bar
were >10 mm SL. Results of Kolmogorov-Smirnov tests are indicated above the panels

(D,,.. p). *** p<0.001, * 0.01<p<0.05, ns p>0.05
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Fig. 3.4. Mean (+ S.E.) density of mussel colonists (no. 100 cm?) in ice-scoured and
non-scoured tidepools and emergent rock after the 5, 11, and 16 mo intervals beginning
in July 1993, and after the second and third S to 6 mo intervals. Data were averaged
across 3 quadrats per plot and across 3 plots within each combination of habitat and

stratum.



92

)00Y
abiowg |oodepi]

v 81
3ooyY
weblewy |oodepi]

|
_
(¥6 100-Ae)
ow g

(6 Aep-g6 AON)
ow 9

0
00l
00c
00¢g
0ot
00§

PaIN0JS-UON []
paINods g

%00H

ebiaw3g joodapi|

N
. 7

(¥6 190-€6 In1)
ow 91|

—I

(6 fen-c6 InM)
ow ||

i
|

(€6 AON-INF)
ow g

o

0ot
00¢
00€
ooy
00S

(zwo g1 "ou) uoneziuojo) wia] HuoT



93

Fig. 3.5. Size frequency distributions of mussels after the 5, 11, and 16 mo intervals
beginning in July 1993, and the second and third 5 to 6 mo intervals. Mussels were
pooled across quadrats and plots within a combination of habitat and stratum. In the first
bar, the black shading indicates settlers (<0.5 mm SL), while the gray shading indicates
individuals which were 0.5-0.9 mm. Individuals in the last bar were >10 mm SL.
Results of Kolmogorov-Smimov tests are indicated above the panels (D_,,. p)- ***

p<0.001, * 0.01<p<0.05, ns p>0.05
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Fig. 3.6. Relationship between abundance of colonists (no. 100 cm?) after a 5-16 mo
interval (L) and the cumulative short term colonization (no. 100 cm®) during that interval
(S) for the S, 11, and 16 mo intervals beginning in July 1993, and the second and third 5
to 6 mo intervals. Data are averages for 3 quadrats per plot. The dashed line is the one to
one line, and the solid line is the regression line. The regression equation and statistical

results are presented on each panel.
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Fig. 3.7. Percentage cover of 6 functional form groups of macroalgae and of barnacles
and unoccupied substratum in ice-scoured and non-scoured tidepools and emergent rock
in September 1993 and April, August and October 1994. Data were averaged across
short and long term colonization quadrats within a plot (12 per plot in September 1993,
April 1994, 9 per plot in August and October 1994) and across 3 plots within each
combination of habitat and stratum. Cover of mussels in the long term colonization
quadrats was not included and percentage cover of macroalgae and barnacles in these

quadrats was adjusted to total 100%.
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DISCUSSION
Size of colonists and temporal pattern of colonization

Sampling at short intervals (2 to 7 d) indicated that more than 96% of mussels
colonizing the natural substratum were too large (>0.5 mm) to be settling larvac. Most of
these mussels (67-82% in 1994) were >2 mm and some were as large as 20-25 mm.
Because mussels of this size are probably too heavy to drift in the water column using
threads (Sigurdsson et al. 1976, De Blok & Tan-Maas 1977, Lane et al. 1985), their
redistribution occurs either by dislodgment and deposition by waves, or by crawling
(Chapter 6; Paine 1974). In a tagging study, I found that mussels larger than 5 mm SL
usually moved <5 cm over 4 weeks (Chapter 6). Because I cleared a 10 cm border
around my sampling quadrats, it is unlikely that postlarval colonists entered the quadrats
by crawling. The size range of colonizing mussels encompassed most of the size range of
the mussel population at Cranberry Cove: ~90 % of mussels are smaller than 5 mm and
<5% are larger than 20 mm (Chapter 5; Hunt & Scheibling 1995). Since growth rates are
low (<0.4 mm mo™" for mussels >5 mm, Chapter 6), the large size of many of the
colonists indicates that they are several years old.

Sampling at short intervals indicated that the colonization rate of mussels >2 mm
SL peaked in June to July in both 1993 and 1994. In contrast, settlement occurred in
August to October, similar to the pattern observed by Pedersen (1991) at another wave-
exposed shore ~30 km from my site. The peak of colonization of large mussels in late
spring and summer may be associated with the low wave action at this time of year. In
June and July of both years, <9% of measurements of significant wave heights recorded
at the mouth of Halifax Harbour (44.483 °N, 63.417 °W, ~ 40 km from my study site)
were >2 m (unpubl. data, Department of Fisheries and Oceans, Canada). In contrast,
from September 1993 to May 1994, 11 to 45% of records in each month were >2 m.

Decreased wave action is associated with decreased attachment strength of mussels to the



101

substratum (Chapter 6; Price 1980, 1982, Witman & Suchanek 1984). Consequently,
during periods of low wave heights, the probability of a mussel's dislodgment by
occasional large waves may have been increased.

The influence of colonization by mussels >2 mm is not usually considered in
studies of the dynamics of mussel assemblages on hard substrata, although dispersal by
smaller postlarval mussels is well known (reviewed by Seed & Suchanek 1992).
Detection of the movement of large mussels may depend on the substratum used to
monitor colonization. Most studies of patterns of settlement or recruitment of mussels
have monitored artificial substrata (usually filamentous) and have found no evidence of
colonization by mussels >5 mm (e.g. De Blok & Geelen 1958, King et al. 1990, Céceres-
Martinez et al. 1994). In contrast, Paine (1974) observed that large M. californianus (>3
cm) colonized plots of the natural substratum which had been cleared of mussels. I found
that mussels that colonized natural substrata were larger than those which colonized an
artificial filamentous substrate, suggesting that filamentous substrata are more suitable for
smaller than for larger mussels (Chapter 4). The high rates of colonization by large
mussels in my study compared to others also may result from differences between mussel
species. Genetic analysis indicated that ~70-80% of mussels at my study site were M.
trossulus, while most of the studies employing artificial substrata examined M. edulis or

M. galloprovincialis.

Patterns of colonization among habitats and strata
Colonization by Mytilus, measured both at short (2-7 d) and long (5-16 mo)
sampling intervals, differed consistently among combinations of habitat and stratum.
Mussel colonization was greatest in ice-scoured tidepools and lowest on ice-scoured
emergent rock. Although spatial distribution is known to vary among some of the closely
related species in the M. edulis species complex (e.g. M. edulis and M. galloprovincialis,
Skibinski et al. 1983, Gosling and McGrath 1990), variation in the distribution of M.
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trossulus and M. edulis probably did not contribute to the pattern I observed, since
genetic analysis indicated that the frequency of occurrence of the two species did not
differ between tidepools and emergent rock.

I investigated the factors influencing the pattern of mussel colonization among
habitat/stratum combinations by comparing colonization rates on natural and artificial
substrata (Chapter 4). In contrast to the natural substratum, colonization of artificial
substrata was greatest on ice-scoured emergent rock in direct relation to water flux
(Chapter 4). The difference in colonization pattern between artificial and natural substrata
suggests that colonization on natural substrata is influenced by variation in the
macrobenthic assemblage between habitats and strata. In fall 1994, colonization rate on
natural substrata was related to a suite of biological (macroalgal and barnacle cover) and
physical factors (water flux, tidal height, flushing time) (Chapter 4). I observed mussel
colonists on a variety of substrata, including filamentous algae (Cladophora sp.,
Spongomorpha sp.), jointed calcareous alga (Corallina officinalis), holdfasts of thick
leathery macroalgae (Fucus vesiculosus, Chondrus crispus) bamacle tests, and pits and
crevices in rock covered by crustose algae (Phymatolithon sp., Hildenbrandia rubra). In
contrast, I rarely observed mussel colonists on smooth, otherwise unoccupied substrata.
During the 17 mo period of this study, the macrobenthic assemblage differed among the
habitat and stratum combinations, and the percentage cover of different macroalgal groups
and bamnacles varied over time. Ice-scoured emergent rock, the habitat/stratum
combination with the lowest abundance of colonists, generally lacked filamentous and
coarsely branched algae, substrata with which recently settled mussels are often
associated (pers. obs., see also Chapter 4; Seed & Suchanek 1992). Filamentous algae
were abundant on ice-scoured emergent rock only in April 1994 when the short term
colonization rate of mussels was negligible. Ice scoured emergent rock also had less

crustose macroalgae than the other habitat and stratum combinations.
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The patterns of colonization on natural substrata correspond to patterns of
distribution and abundance of mussels on ice-scoured but not on non-scoured regions of
the shore. Colonization rate of ice-scoured emergent rock was low during all sampling
intervals and mussels are rare in these areas. In non-scoured areas, the spatial distribution
and abundance of mussels differs between tidepools and emergent rock, but I did not
detect a difference in colonization rate between non-scoured tidepools and non-scoured
emergent rock. However, the small size and low percentage cover of mussels after 16 mo
(17 %) suggests that differences in the mussel assemblage between the two habitats

develop slowly.

Sampling Frequency

Patterns of mussel colonization among habitats and strata were similar regardless
of the length of the sampling interval. This indicates that, over time scales up to 16 mo,
patterns of initial colonization were more important than post-colonization processes in
determining the pattern of spatial distribution of mussels. In addition, the long term
abundance of colonists was linearly related to the cumulative short term abundance during
each interval except the third 5 to 6 mo interval. With the exception of the 16 mo interval,
there was approximately a one to one relationship between long term and cumulative short
term colonization, implying that little post-colonization mortality or dispersal occurred
during these intervals. The low percentage cover of mussels after each of the intervals
indicates that there was probably little or no competition for space. However, some post-
colonization mortality or dispersal may have been offset by enhanced settlement in the
presence of conspecifics in the long term colonization quadrats. As evidence of this, the
abundance of <1 mm mussels after the third 5 to 6 mo interval, immediately after a
settlement peak in 1994, was greater than the cumulative abundance based on short term
sampling over the same interval. This disparity was not observed after the first 5 to 6 mo

interval in 1993 when quadrats were sampled a month after the settlement peak. An
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increase in the estimate of settlement in quadrats from which individuals have not been
cleared is contrary to the observations for barnacles (Connell 1985, Bertness et al. 1992,
Minchinton & Scheibling 1993a,b). However, barnacles require free space on the
substratum for settlement, wheareas mussels generally settle on filamentous or rough
substrata, which can include the byssal threads of conspecifics.

The lack of a significant relationship between long term and cumulative short term
colonization for the third 5 to 6 mo interval suggests that density-dependent post-
colonization processes were more important during this interval, when cumulative short
term colonization was highest, than during the other 5-16 mo intervals. Post-colonization
processes also influenced the size distributions of colonists. On ice-scoured emergent
rock (except in fall 1994) the size range of long term colonists was more limited than that
of colonists sampled at short intervals. This suggests that ice-scoured emergent rock is
not a suitable substratum for some sizes of mussels, particularly those <1 mm, and that
many mussels died or emigrated after initial colonization. Small mussels were relatively
more abundant in ice-scoured tidepools than in the other combinations of habitat and
stratum at short sampling intervals, but this pattern was not as apparent at long sampling
intervals. This change could result from differences among habitat and stratum
combinations in the rates of mortality, dispersal, or growth of small mussels. I found that
growth rates of large mussels (>5 mm) were slightly higher in tidepools than on emergent
rock over 5 mo intervals (Chapter 6). The size distributions of long term colonists also
may be influenced by an increased attractiveness of the substratum to settling larvae due to
the presence of conspecifics, as discussed above.

This study demonstrates the potential importance of post-settlement dispersal in
determining the distribution and population dynamics of benthic marine invertebrates
which remain mobile for a period of time after settlement. I found that dispersing
postlarval mussels were considerably more abundant than settlers and that mussels >2

mm represented a large proportion of colonists. Colonization by mussels >2 mm may be
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overlooked in many studies of mussel colonization because most researchers use a
filamentous artificial substratum, which may be more suitable for smaller than for larger
postlarval mussels. My results indicate that, over time scales up to 16 mo, patterns of
initial colonization by settlers and larger post-larval mussels were more important than
post-colonization mortality and dispersal in determining patterns of distribution and

abundance of mussels on this shore.



CHAPTER 4: Physical and biological factors influencing

mussel colonization on a wave-exposed rocky shore

INTRODUCTION

Spatial variation in settlement of larvae of benthic marine invertebrates arises
through a combination of passive (hydrodynamic) and active (behavioural) processes
operating at various scales (reviewed by Butman 1987). Larvae tend to be passively
deposited at large spatial scales (tens of metres to tens of kilometres) since horizontal
advection usually exceeds larval swimming speeds, although some larvae can vertically
migrate between water masses. Active habitat selection becomes important at smaller
scales (centimetres to metres) as larvae respond to various abiotic (e.g. surface texture and
chemistry) and biotic (e.g. microbial films, conspecifics, other macrobenthic species)
cues associated with the substratum (reviewed by Pawlik 1992). However,
hydrodynamic processes, such as turbulent eddies around biotic roughness elements, may
also influence the small-scale distribution of settlers (e.g. Eckman 1983, Eckman 1987,
Havenhand & Svane 1991, Harvey et al. 1995).

Since mussels continue to disperse after larval settlement (Chapter 3; Sigurdsson
et al. 1976, De Blok & Tan-Maas 1977, Lane et al. 1985), patterns of mussel colonization
may arise by the influence of passive and active processes on both settlement and post-
settlement dispersal. In their natural habitat, recently settled and small postlarval mussels
(Mytilus spp.) are usually associated with filamentous substrata (primarily macroalgae)
and small crevices or depressions in the bottom (reviewed by Seed 1976, Seed &
Suchanek 1992). Laboratory studies have shown that larvae of M. edulis and postlarvae
of M. galloprovincialis almost exclusively colonize natural or artificial filamentous
substrata (Bayne 1965, Petersen 1984, Eyster & Pechenik 1987, Céiceres-Martinez et al.
1994). A variety of artificial substrata (including rubberized hair pads, panels, ropes, jute

pads, shag rug, plastic pot scrubbers) have been used to collect mussel colonists (Menge
106
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1978b, King et al. 1990 and references therein, Petraitis 1991, Ciceres-Martinez et al.

1994, Menge et al. 1994, Molares & Fuentes 1995), since they provide a standardized
surface which is easy to sample. The abundance of mussel colonists on artificial substrata
probably reflects supply of colonists in the water column, as observed for settlement of
freshwater zebra mussels (Martel et al. 1994) and estuarine Dungeness crabs (Eggleston
& Armstrong 1995). King et al. (1990) observed that the temporal pattern of mussel
colonization on an artificial substratum (nylon pot scrubbers) was similar to that recorded
on filamentous algae and adult mussels at the same site.

In the previous chapter, I described the patterns and rates of mussel (M. trossulus
and M. edulis) colonization on natural substrata in ice-scoured and non-scoured tidepools
and emergent rock on a wave-exposed shore on the Atlantic coast of Nova Scotia.
Patterns of mussel colonization among habitats (tidepools, emergent rock) and strata (ice-
scoured, non-scoured areas) were similar over short (2 to 7 d) and long (5 to 16 mo)
sampling intervals, indicating that patterns of initial colonization were important in
determining the pattern of spatial distribution of mussels. Colonists were most abundant
in ice-scoured tidepools and least abundant on ice-scoured emergent rock. Variation in
mussel colonization among habitats and strata may result from differences in the
macrobenthic assemblage (the substratum for colonization) (Chapter 3) or in the supply of
colonists. In addition, colonization may continue during the period of tidal isolation in
tidepools but not on emergent rock. In this chapter, I compare colonization rates of
Mytilus on artificial collectors and natural substrata to examine the relative roles of supply
of colonists (as reflected by colonization on collectors) and substratum type in shaping
colonization patterns of mussels. I relate the observed patterns of colonization to physical

and biological characteristics of the local environment.
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MATERIALS AND METHODS

Physical Environment

I examined colonization of mussels in two habitats (tidepools and emergent rock)
within each of two strata (areas scoured by ice during winter 1992-93 and non-scoured
areas) at Cranberry Cove, Nova Scotia. Sampling was carried out in 12 plots (tidepools
and areas of emergent rock) along a horizontal distance of ~ 1 km of shoreline which
made up 3 replicates of each of the 4 combinations of habitat and stratum (see Chapter 3
for further description of the study site and sampling plots). By fall 1994, when this
study was carried out, foliose macroalgae had become re-established in ice-scoured areas,
and mussels were abundant in all areas except ice-scoured emergent rock. I measured the
height of each plot above chart datum using a transit level in May 1995. I measured
flushing time for each of the 6 tidepools in August 1993 and June 1994 as the time taken
for a fluorescent red dye (Rhodamine B, Sigma Chemicals), added at low tide at an initial

concentration of 1.4 to 6.4 mg. "', to become undetectable in a spectrophotometer
(Perkin-Elner, Lambda 3B). I measured isolation time of tidepools (the period during
which there is no sea water input) on the same dates as flushing time.

I measured relative water flux at each plot as the dissolution rate of dental stone
(calcium sulfate) (Yund et al. 1991). The dental stone (Denstone® Golden, Miles Dental
Products, South Bend, Indiana, USA) was cast in cylindrical molds 2 cm high and 11 cm
in diameter. After drying at room temperature for at least 24 h and at 40 °C for 24 h, the
sides and bottom of the cylinders were coated with polyurethane so that only the top
surface was exposed to flow. The cylinders were then dried for a further 24 h at room
temperature. The cylinders were fastened to 11 x 15 cm rectangles of galvanized mesh
(0.6 cm mesh size) with epoxy putty (Z*Spar A-788 Splash Zone Compound®, Kop-
Coat Inc., Los Angeles, California, USA), dried at 40 °C for 24 h, and then weighed. I
measured relative water flux for 2, 5-6 d periods (May 15-20 and June 30-July 6, 1995).

During each period, 2 cylinders were bolted to the substratum in each plot; another 2
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cylinders were deployed above the tidal range as controls for losses not due to water
flow, such as transport and rain. After each period, the cylinders were returned to the
laboratory, rinsed in fresh water, dried at room temperature for 48 h and at 40 °C for an
additional 24 h, and then weighed. In July, dissolution rate was not measured for one
plot because both cylinders were abraded by macroalgac. However, the missing value

was estimated from a regression equation relating dissolution rates in July (J) to those in

May (M) in all other plots (J=0.933M-12.719; ’=0.802, F1,9=36.344, p<0.001). The
ranks of dissolution rates in May and July were strongly correlated (Spearman Rank
Correlation: r;=0.944, p<0.001), and averaged to give an index of water flux for multiple

regression and principal components analysis (see Statistical analysis).

Larval/postlarval abundance

I measured the availability of Myrilus larvae and postlarvae in sea water at high
tide on September 24 and October 8, 1994, the same dates that artificial collectors were
deployed (see Colonization). Three 30-1 samples of sea water were collected at each of 3
(September) or 4 (October) positions separated by 100-400 m along ~1 km of shoreline. I
hand-pumped the water with a bilge pump through a hose fastened to the substratum at
the same height on the shore as my artificial collectors (see Colonization). The water
sample was filtered through a 60 um filter, which was rinsed with filtered sea water and
preserved in 70% ethanol. Larvae and postlarvae were enumerated and measured in the

laboratory under a dissecting microscope.

Colonization
I deployed artificial collectors to sample Mytilus colonists on September 24 and
October 8, 1994. The collectors [similar to those used by Pearce & Bourget (1996) for

scallop spat] were made of 9 x 11 cm pouches of plastic Vexar mesh (3 mm mesh size),

filled with ~ 1.5 g of polyester wool for aquarium filters ("Poly" Filter Wool®, Rolf C.
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Hagen Inc., Montreal, Quebec, Canada). The collectors were placed in running sea water

in the laboratory for ~ 1 wk before use to allow colonization by microflora. In each plot,
4 collectors were bolted to the substratum (through a grommet in the center of the pouch)
before tidal immersion, and removed after 6.5-10 h when the tide receded. A second set
of collectors was placed in the tidepools at this time, and removed after 2.5-5.5 h, before
immersion by the incoming tide. The collectors were returned to the laboratory and frozen
until they were processed. Mussels from each collector were counted and shell length
(SL) was measured using an ocular micrometer (accuracy: * 30 pum). Mussels on both
filter wool and Vexar mesh were counted, but those on the mesh were rare.

In each plot, I also sampled colonization of Mytrilus in 3, 10 x 10 cm quadrats on
the natural substratum (see Chapter 3 for further description). I collected mussel colonists
from each quadrat using forceps or a pipette after 2, 5-d intervals (September 22-26 and
October 7-11, 1994). The mussel samples were returned to the laboratory and frozen
until they were processed as described above. In October 1994, I estimated the cover of
macroalgae and barnacles (Semibalanus balanoides, the only sessile macrofaunal species
besides Mytilus) in each of the quadrats of natural substratum (see Chapter 3 for further
description). Macroalgae were assigned to functional form groups after Littler (1980) and
Littler and Littler (1984): filamentous, coarsely branched, thick leathery, jointed

calcareous and crustose forms.

Statistical analysis

I used 3-way analysis of variance (ANOVA) to analyze the colonization rate of
Mytilus on artificial collectors and natural substrata. Habitat (tidepool, emergent rock)
and Stratum (scoured, non-scoured) were fixed factors, each with two levels, and Plot
was a random factor nested within Habitat x Stratum, with 3 levels. Effects of Habitat,
Stratum, and the interaction between Habitat and Stratum were tested against the mean

square error of Plot, and the effect of Plot was tested against the residual mean square
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error. If Plot was non-significant at ®=0.250, I removed this term from the analysis and
calculated a pooled estimate of the residual error (Winer 1971). If Plot was significant at
0=0.05, I examined the Plot effect within each combination of Habitat x Stratum. I used
Student-Newman-Keuls (SNK) tests (0¢=0.05) for post-hoc comparisons of means. If
necessary, counts of mussels (x) were In (x+1) transformed to homogenize variances
(Cochran's C test, a=0.05).

I used Kolmogorov-Smirnov tests (Seigel & Castellan 1988) to compare size
distributions of mussels among habitats and strata for samples from both artificial
collectors and natural substrata.

I used forwards stepwise multiple regression to examine the relationship between
colonization rate of Mytilus on artificial collectors and the physical characteristics of the
plots (water flux index, tidal height, and flushing time). I did regressions for tidepools
and emergent rock separately, as well as for the two habitats combined. For analysis of
colonization on natural substrata, I used principal components analysis (PCA), based on
both the physical and the biological (cover of macroalgal groups/barnacles) characteristics
of the plots, to reduce the number of variables needed to explain the total variance in the
data (Kleinbaum et al. 1988). Only principal components factors with eigenvalues >1
were used in stepwise regression. Also, I analyzed 2 size classes of mussels (<2 mm and
>2 mm SL) separately because the larger mussels (postlarvae >2 mm) may have different
substratum preferences than smaller ones (Seed 1969a). Counts of mussel colonists on
natural substrata were In (x+1) or square transformed if necessary to homogenize

variances (as detected in plots of residuals).
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RESULTS
Environmental variability

The height of the sampling plots ranged from 0.80 to 2.33 m above chart datum
(Fig. 4.1a), and did not differ significantly between tidepool and emergent rock habitats
(F =101, p=0.344) or between ice-scoured and non-scoured strata (F,g=3.04,
p=0.119), and there was no significant interaction between Habitat and Stratum (F,s
=1.22, p=0.301). Ice-scoured tidepools were flushed within 2.8-3 h after low tide,
significantly faster (ty =5.329, p=0.006) than non-scoured tidepools which were flushed
in 4.0-5.0 h (Fig. 4.1c). Average isolation times during low tide were 3.8-4.8 h for
scoured tidepools and emergent rock, and 6.5-8 h for non-scoured tidepools.

The water flux index, measured as the dissolution rate of dental stone, differed
significantly with Habitat (F, 16=37.55, p=0.0001), Stratum (F, ¢= 48.14, p=0.0001),
and Sampling Date (F; 6=91.79, p=0.0001), but there were no significant interactions
between these factors (p>0.40). Water flux was higher on emergent rock than in
tidepools and greater in ice-scoured than non-scoured areas (Fig. 4.1b). Although water
flux and mussel colonization were measured at different times of year, significant wave
heights (x+SD) recorded at the mouth of Halifax Harbour (44.483 °N, 63.417 °W, ~ 40
km from my study site were similar during both measurement periods: 1.62+0.54 m and
0.73+0.18 m during water flux measurements in May and June 1995 respectively, and
0.9740.23 m and 0.86+0.17 m during sampling of mussel settlement in September and
October 1994 respectively (unpubl. data, Department of Fisheries and Oceans, Canada).

The macrobenthic assemblage varied markedly between habitats and strata (Fig.
4.2). Filamentous and jointed calcareous macroalgae were found only in tidepools.
Conversely, thick leathery macroalgae were rare (< 3% cover) in tidepools, but common
on emergent rock (24% and 50% for scoured and non-scoured strata respectively). Ice-

scoured emergent rock lacked coarsely branched macroalgae and had a much lower cover
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(5%) of crustose macroalgae than other Habitat x Stratum combinations (59-72 %).
Barnacle cover was somewhat higher on emergent rock (6% and 7% for scoured and non-

scoured strata respectively) than in tidepools (<1%).

Larval/postlarval availability
The abundance of Myrilus larvae and postlarvae >250 pum (the size at competency,
Bayne 1965) in the sea at high tide (Fig. 4.3) did not vary significantly along ~1 km of
shoreline within my study site, in either September (F,¢=1.750, p=0.252) or October
(F35=2.465, p=0.137). However, the mean proportion of mussels >250 pm in these
samples increased from 16% (n=37) to 92% (n=91) between the 2 sampling periods (Fig.
4.3).

Colonization on artificial collectors

In September 1994, colonization rate of Mytilus on the artificial collectors did not
vary significantly with Plot (within Habitat x Stratum), Stratum or Habitat (Table 4.1;
Fig. 4.4a). In October 1994, colonization rate also did not vary significantly with Plot,
but it was significantly higher in the ice-scoured than non-scoured stratum and
significantly higher on emergent rock than in tidepools; there was no significant
interaction between Stratum and Habitat (Table 4.1; Fig. 4.4a). In September, 33% and
38% of colonists in scoured and non-scoured tidepools respectively were collected during
the period of tidal isolation (combining counts for all collectors: n=12 and n=13
respectively). In October, however, no colonists in non-scoured tidepools and only 8%
(n=69) of those in scoured tidepools were collected during tidal isolation.

Mytilus sampled on the artificial collectors were <7 mm in shell length (SL) and
the size distribution was highly skewed to the right (Fig. 4.5). In September, 0.5-1 mm
mussels were the most abundant size class (Fig. 4.5), and size distributions did not differ
significantly between scoured and non-scoured tidepools (D;3,1,=0.378, p=0.281); strata

were not compared for the emergent rock habitat because of the small sample size (n=5



114

mussels) for non-scoured areas. There was no significant difference between tidepools
and emergent rock when strata were combined (D,s,,=0.316, p=0.178; Fig. 4.5). In
Qctober, >76% of mussels in all Habitat x Stratum combinations (n=17-110) were <0.5
mm SL (Fig. 4.5). The size distribution of mussels did not differ significantly between
scoured and non-scoured tidepools (Ds;;7=0.182, p=0.758) or emergent rock
(D11040=0.241, p=0.069). There was a statistically significant difference in size
distribution (Dgg ;50=0.233, p=0.012) between tidepools and emergent rock when these
strata were combined, although the distributions were very similar (Fig. 4.5).

Regression analysis showed no significant relationship between mussel
colonization rate on artificial collectors and the physical characteristics of plots (water
flux, tidal height, flushing time) when tidepools and emergent rock were analyzed
separately. However, when plots in both habitats were included in the same regression
analysis, there was a significant positive relationship between colonization rate and water

flux in October (F,9=9.653, p=0.006; water flux p=0.002, tidal height p=0.074).

Colonization on natural substrata

The colonization pattern of Mytilus on natural substrata differed markedly from
that on the artificial collectors. In September 1994, colonization rate varied significantly
with Plot, mainly because of differences among ice-scoured tidepools (F;14=3.792,
p=0.037); differences among plots for other Habitat x Stratum combinations were non-
significant (Table 4.1, Fig. 4.4b). There were no significant differences in colonization
rate with Habitat or Stratum, and no significant interaction between Stratum and Habitat
(Table 4.1, Fig. 4.4b). In October 1994, however, there was no significant variation in
colonization rate among plots but there was a significant interaction between Habitat and
Stratum (Table 4.1): colonization rate was significantly higher in ice-scoured tidepools
than on the scoured emergent rock (SNK, p<0.05), but did not differ significantly among

the other Habitat x Stratum combinations (Fig. 4.4b).
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In contrast to artificial collectors, the size distributions of Mytilus on the natural

substratum were relatively uniform and the mussels were larger (Fig. 4.6). In October,
only 4% (n=52) of mussels in tidepools and no mussels on emergent rock were <0.5mm
SL, the dominant size class on artificial collectors. I only found 1 mussel >5mm on
artificial collectors; however, mussels sampled on the natural substratum were up to 12
mm, and 31% (n=109) in September and 20% (n=69) in October were >5 mm. The size
distributions of mussels did not differ significantly between ice-scoured and non-scoured
pools for either sample period (September: Ds;2,=0.152, p=0.803; October: Ds;0=
0.262, p=0.321); strata were not compared for the emergent rock because of the small
sample sizes in scoured areas (n = 2, 3 in September, October). The size distributions of
mussels in tidepools and on emergent rock were similar in September (D773,=0.241,
p=0.131), but differed significantly in October (Ds; 7=0.519, p=0.002) when mussels
<1 mm were absent on emergent rock, but comprised the most abundant size class in
tidepools (Fig. 4.6).

To examine the relationship between mussel colonization rate on the natural
substratum and the physical and biological characteristics of plots, I used 3 PCA factors
for tidepools (94.9% of variance) and emergent rock (92.8% of variance) and 4 PCA
factors for the combined habitats (87.7% of variance) (Table 4.2). There was no
consistent relationship between colonization rate and PCA factor scores between sample
periods and mussel size classes (Tables 4.2, 4.3). In September, mussels <2mm SL on
emergent rock varied significantly with a factor (Factor 1) with high positive component
loadings for water flux and crustose macroalgae. In October, mussels <2mm SL in
tidepools varied significantly with a factor (Factor 1) with high negative component
loadings for flushing time, bare space, tidal height, and water flux index. When both
habitats were combined in the same analysis, mussels >2mm SL in September varied
significantly with one factor (Factor 3) with a positive loading for coarsely branched algae

and a negative loading for bare space, and another (Factor 4) with a positive loading for
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thick leathery macroalgae and a negative loading for coarsely branched macroalgae. In

contrast, mussels <2mm SL in October varied significantly with one factor (Factor 1)
with positive loadings for crustose macroalgae, water flux, and jointed calcareous and

filamentous algae, and another (Factor 2) with a positive loading for tidal height.
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Table 4.1. Three-way ANOVA of abundance of Mytilus colonists on artificial collectors
(no. collector”. tidal cycle™) and natural substrata (no. 100cm™?. 5d"') in September and
October 1994. Factors are Habitat, Stratum, and Plot (nested within Habitat x Stratum).
For artificial collectors, degrees of freedom are: Plot (H x S)= 8,36; Habitat, Stratum and
H x S=1,8 if Ppoyuxs)<0-25 and df=1,44 if pp,,uxsy>0-25. For natural substrata, degrees
of freedom are: Plot (H x S)= 8,24; Habitat, Stratum and H x S=1,8 if ppuxs<0-25 and
df=1,32 if Ppioyaxsy>0-25. Pooled error is the estimate of experimental error when Plot is
removed from the model (When Py uxs,>0.25). *** p <0.001; ** p<0.01; * p <0.05.

Source MS F . p
Colonization of
Artificial Collectors
September Plot (HxS) 1.50 1.07 0.41
Habitat 0.33 0.23 >0.25
Stratum 3.00 2.11 0.10< p <0.25
Habitat x Stratum 2.08 1.47 0.10< p <0.25
Residual 1.40
Pooled Error 1.42
October Plot (HxS) 11.52 1.93 0.086
Habitat 133.33 11.57 0.009 **
Stratum 225.33 19.56 0.002 **
Habitat x Stratum 24.08 2.09 0.186
Residual 5.97
Colonization of
Natural Substrata
September Plot (HxS) 23.97 3.19 0.013 *
Habitat 56.25 2.35 0.164
Stratum 0.03 0.001 0.974
Habitat x Stratum 90.25 3.77 0.088
Residual 7.53
October Plot (HxS) 1.50 0.42 0.898
Habitat 34.03 11.12 <0.005 **
Stratum 0.03 0.01 >0.25
Habitat x Stratum 14.69 4.80 <0.05 *
Residual 3.58

Pooled Error 3 :06
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Fig. 4.1. Physical characteristics of the sampling plots. Mean (+S.E.) a) height of plots
above chart datum (m) b) water flux index: dissolution of dental stone (g-d-!) c) Flushing
time: number of hours required after low tide for the tidepool to be flushed with new sea

water.
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Fig. 4.2. Mean percentage cover of 5 functional form groups of macroalgae and of bare
substratum and barmacles in ice-scoured (S) and non-scoured (N-S) tidepools and

emergent rock in October 1994.
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Fig. 4.3. Mean (£S.E.) concentration of Myrilus larvae and postlarvae (no. 301!) in sea
water at high tide at four locations at Cranberry Cove, Nova Scotia (total horizontal
distance ~ 1 km) on September 24 and October 8, 1994. n=3 samples at each location.
ND=no data.
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Fig. 4.4. Mean (+S.E.) abundance of Mytilus on a) artificial collectors (no.collector
Ltidal cycle-!) on September 24 and October 8, 1994 (n=4 collectors per plot) and on b)
natural substrata (no. 100 cm2.5 d-!) September 22-26 and October 7-11, 1994 (n=3
quadrats per plot) in ice-scoured and non-scoured tidepools and emergent rock (n=3 plots

per habitat/stratum combination) at Cranberry Cove, Nova Scotia.
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Fig. 4.5. Size-frequency distributions of Mytilus on artificial collectors in a) tidepools and
on b) emergent rock on September 24 and October 8, 1994 at Cranberry Cove, Nova
Scotia. Mussels from all collectors (n=4 per plot, n=6 plots) from a habitat, including
those from both ice-scoured and non-scoured strata, are pooled. In tidepools in October,

animals in the last column are 5.05-7 mm SL.
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Fig. 4.6. Size frequency distributions of Mytilus on natural substrata in a) tidepools and
on b) emergent rock September 22-26 and October 7-11, 1994 at Cranberry Cove, Nova
Scotia. Mussels from all quadrats (n=3 per plot, n=6 plots) from a habitat, including
those from both ice-scoured and non-scoured strata, are pooled. Animals in the last

column are 6.05-12 mm SL.
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DISCUSSION

Colonization rate of Myrilus on artificial collectors was directly related to water
flux, and was highest on ice-scoured emergent rock and lowest in non-scoured tidepools.
This pattern probably reflects an increase in supply of colonists with increased water flux.
Bushek (1988) found a similar positive relationship between barnacle settlement rate and
water motion which he attributed to both larval supply and selective settlement. In my
study, colonization on collectors placed on ice-scoured emergent rock may also have been
enhanced by the apparent unsuitability of the surrounding substratum (where colonization
rate was low). A similar effect has been reported by Pineda (1994) who found that
barnacles settled at higher densities at sites surrounded by unsuitable sandy substratum.
Horizontal variability in the availability of colonists did not contribute to the pattern, since
the abundance of competent larvae and of postlarvae in the surrounding sea water did not
vary significantly over the 1 km of shore spanning my sampling plots.

Artificial collectors have been widely used in studies examining colonization by
mytilids (and references therein King et al. 1990, C4ceres-Martinez et al. 1994, Molares
& Fuentes 1995), but such studies can not fully explain colonization patterns between
habitats or sites because they do not account for the spatial variability of the natural
substratum. In my study, the colonization patterns of Mytilus differed markedly between
artificial collectors and natural substrata. In contrast to the collectors, colonization on
natural substrata was greatest in ice-scoured tidepools and minimal on scoured emergent
rock (see also Chapter 3). The difference in colonization patterns between artificial and
natural substrata is probably related to variation in the macrobenthic assemblage between
habitats and strata (see also Chapter 3). Ice-scoured emergent rock was devoid of
filamentous or coarsely branched macroalgae, which settlers and small postlarval Mytilus
are known to be associated with (Chapter 3; reviewed by Seed 1976, Seed & Suchanek

1992), and had less crustose macroalgae than the other habitat and stratum combinations.
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Multiple regression did not reveal a consistent relationship between colonization rate on
natural substrata and any particular macroalgal group, but there were some associations
between either small or large colonists and a suite of biological and physical factors.

In October, mussels <1 mm on natural substrata were common in tidepools but
absent on emergent rock. Filamentous and jointed calcareous algae, which were found
only in tidepools, may be more suitable sites for mussel larvae and early postlarvae than
thick leathery macroalgae, the predominant erect form on emergent rock. Also, mussels
<1 mm colonize tidepools during the period of tidal isolation, although only a small
proportion of colonists on artificial collectors were collected during tidal isolation in
October.

The relationship between the colonization rate of Mytilus and macroalgal substrata
may depend upon both active substratum choice and passive hydrodynamic processes,
and the processes and cues involved probably vary with spatial scale. Active substratum
choice by Mpytilus was suggested by Bourget et al. (1994) who examined the
establishment of an epibenthic community on panels with various combinations of scales
of substratum heterogeneity (1, 10, 100 mm wide grooves). Bivalve settlers, including
M. edulis, were aggregated at particular scales of heterogeneity, suggesting they are active
settlers (in contrast, bryozoans were uniformly distributed suggesting they are passive
settlers). However, Harvey et al. (1995) found that passive settlement processes were
sufficient to explain settlement patterns at decimetre scales (on plastic filamentous
substrata) of several species of bivalves, including M. edulis. Ciceres-Martinez et al.
(1994) have suggested that the association of postlarvae of M. galloprovincialis with
filamentous substrata results from passive ensnarement of these substrata by byssus
threads secreted by the postlarvae, rather than active selection.

Most Mytilus colonists in this study (with the exception of those on artificial
collectors in October) were >0.5 mm SL and were too large to be settling larvae. This is

consistent with the pattern I observed on the natural substratum over 17 mo (Chapter 3).
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In this study, the size distribution of mussel colonists was much smaller on artificial
collectors than on natural substrata. I found only one mussel >5 mm SL on a collector,
which is consistent with the small sizes reported in previous studies using artificia!
collectors (e.g. Bayne 1964, Bohle 1971, King et al. 1990). In contrast, 20 to 30% of
colonists on natural substrata were >Smm SL, suggesting that postlarval mussels in this
population move repeatedly (see also Chapter 3). Paine (1974) also observed that
relatively large large M. californianus (>3 cm) colonized cleared plots in the intertidal zone
in Washington, USA. The filamentous substrata generally used in artificial collectors
may be more suitable for smaller, early postlarvae than for larger, later mussels (Seed
1969a). Also, mussels >5 mm SL may disperse by crawling but are probably too heavy
to drift on mucous threads, reducing the likelihood of sampling them in studies which use
collectors suspended in the water column.

The results of this study indicate that rates and patterns of colonization by mussels
on this shore were influenced by both biological (macroalgal/barnacle cover) and physical
factors (water flux, tidal height, flushing time). The low colonization rates on natural
substratum on ice-scoured emergent rock was not due to a limited supply of colonists to
these areas, since the highest colonization rates were recorded on artificial collectors on
ice-scoured emergent rock. This study underscores the importance of measuring
colonization on both a standardized artificial substrate and on the natural substratum to
unravel the relative roles of supply and substratum type in determining patterns of

colonization in a spatially variable environment.



CHAPTER 5: Effects of whelk predation on mussel assemblages
- in tidepools and on emergent rock on a wave-exposed

rocky shore

INTRODUCTION

Environmental factors, such as temperature and wave action, which influence
predator-prey interactions may be important determinants of community structure in the
marine benthos. Changing environmental conditions may alter the behaviour and/or
relative abundance of predators, resulting in variation in feeding rate (Menge 1978a,b,
1983, Barbeau et al. 1994, Carroll & Highsmith 1996, Pile et al. 1996, Scheibling &
Hatcher 1997), susceptibility of prey to capture (Barbeau & Scheibling 1994b), or size
selectivity of predators (Richardson & Brown 1990, Hughes & Burrows 1991). Menge
and Sutherland (1987) have proposed a model of community organization for rocky
shores that predicts that increased environmental stress reduces the importance of
predation, assuming predators are more affected by these stresses than their prey. The
model is based on experimental studies of the impact and intensity of predation by whelks
(Menge 1976, 1978a, 1978b, 1983, Lubchenco & Menge 1978) and grazing by littorinid
snails (Lubchenco 1986) along a gradient of wave action.

Predation on mussels, which are often the dominant sessile organisms (Menge &
Farrell 1989), can have dramatic effects on intertidal community structure on temperate
rocky shores (Paine 1966, 1974, Menge 1976, Lubchenco & Menge 1978, Robles 1987,
Robles & Robb 1993, Carroll & Highsmith 1996). The whelk Nucella lapillus is a
common predator of mussels on wave-exposed rocky shores in the North Adantic
(Stephenson & Stephenson 1972). Its predation rate is affected by various abiotic and
biotic factors which moderate the intensity of physical disturbance and desiccation stress,
including wave forces, height on the shore, weather, substratum heterogeneity, and the

presence or absence of canopy algae (Menge 1978a,b, 1983, Burrows & Hughes 1989,
135
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Gosselin & Bourget 1989, Hughes & Burrows 1990, 1991). Previous studies of the
effects of whelks on mussel assemblages have focused on adult whelks and mussels.
Newly recruited whelks are much less visible than adults, but can be seasonally abundant.
Predation by recently recruited whelks has been examined in a few laboratory studies
(Largen 1967a, Palmer 1990, Gosselin & Chia 1994), but the effects of recruits on
natural prey assemblages in the field are unknown.

Along the Atlantic coast of Nova Scotia, the mussels Mytilus trossulus and M.
edulis co-occur in the low and mid intertidal zones (Pedersen 1991, Mallet & Carver
1995). The cover and spatial distribution of Mytilus differs among intertidal habitats.
Mussels in tidepools generally occur in centimetre-scale patches (Hunt & Scheibling
1995), whereas those on emergent rock tend to form more extensive beds (personal
observations; Minchinton et al. 1997). Colonization rates of mussels do not differ
between these habitats (Chapters 3 and 4), suggesting that this pattern reflects lower post-
settlement mortality of mussels on emergent rock. Predation by N. lapillus, which is
likely an important source of mortality for mussels in both habitats, may be influenced by
environmental differences between tidepools and emergent rock. Predators such as
whelks may have more time to search for prey in tidepools, where organisms are
continually submerged, than on emergent rock. Also, tidepools provide a refuge from
extreme fluctuations in environmental conditions which may influence the feeding rate of
predators (Metaxas & Scheibling 1993).

In this chapter, I compare predation on Mytilus by N. lapillus between tidepools
and emergent rock. During the study, I observed a large recruitment event of whelks,
indicating that recently recruited whelks can be numerically dominant. In a field
experiment, I manipulated the density of recently recruited whelks and of older juveniles
and adults (hereafter post-recruits) to test their relative effects on percentage cover and

size distribution of mussels. I compare the feeding rate and size selection of recently
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recruited and older whelks preying on mussels in both the field and the laboratory, and
use these data to estimate the direct and indirect effects of whelk predation on the mussel

assemblage.

MATERIALS AND METHODS
Laboratory experiments

Nucella lapillus drills through mussel shells by scraping with its radula and
secreting an erosive chemical (Hughes & Burrows 1993), resulting in a distinctive,
approximately circular drill hole (Palmer, 1990). Laboratory experiments were conducted
to determine the relationship between the size of Nucella lapillus and their drill holes, and
to investigate size selective predation of Mytilus by the whelks. Thirty four whelk post-
recruits 5-26 mm in shell length (SL) were used in an experiment in May 1995; 32
recruits <5 mm were used in a second experiment in October 1995. In each experiment,
individual whelks were presented with two mussels from each of four size classes: <5, 5-
9.9, 10-14.9, and 15-24.9 mm SL for post-recruits; <2, 2-3.9, 4-5.9, and 6-7.9 mm for
recruits. Whelks and mussels were collected from my field site (see Field Experiment).

Each experiment was conducted in a seawater table supplied with running sea
water at a flow rate of ~ 3 1"'min"'. Water temperatures ranged from 5.5 to 8 °C in May
and 9.5 to 16.5 °C in October. Natural lighting was provided by windows in the
laboratory. Post-recruits were held in cages (diameter 1S5 cm, height 7 cm) constructed of
PVC pipe and 3 mm Vexar mesh. Recruits were held in glass dishes (diameter 6.5 cm,
height 5 cm) covered with cheesecloth. The duration of the experiment was 26 d for post-
recruits and 34 d for recruits. Whelks which did not feed during the experiments (5
recruits and 3 post-recruits) were excluded from the analysis.

The experiments were monitored daily and dead (predated) mussels were
replaced. Dead mussels were examined for a drill hole using a dissecting microscope.

Drill hole diameter and whelk and mussel shell length were measured using an ocular
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micrometer (accuracy + 0.03 mm) or vernier calipers (whelks and mussels >5 mm,
accuracy * 0.05 mm). Mean drill hole diameter was related to whelk shell length by non-

linear regression after pooling the data from the two experiments (n=58).

Field Experiment-Manipulation of whelk densities
Methods

I compared the effect of predation by recruits and post-recruits of Nucella lapillus
on the percentage cover and size distribution of Myrilus between tidepools and emergent
rock at Cranberry Cove, Nova Scotia. For a detailed description of the study site, see
Chapter 3. The experiment was set up in four blocks separated by at least 50 m to
intersperse treatments along ~1 km of shoreline. Four plots in each block were selected:
two tidepools and two areas of emergent rock (Fig. 5.1). The boundaries of plots of
emergent rock were defined by crevices and other topographic features. Tidepools ranged
from 1.5 to 4 m® in area and 0.2 to 0.4 m in depth. Plots of emergent rock were
comparable in area. Distances between plots within a block ranged from 1 to 5 m.
Height of each plot above chart datum (C.D.) was measured in August 1996 using a
transit level: plots of emergent rock were 0.7 to 1.6 m above C.D. and tidepools were 0.6
to 2.2 m above C.D.

In June 1995, whelk post-recruits (=5 mm SL) were manually removed from one
of the two plots within each habitat (tidepool and emergent rock) in each block; the
remaining plots served as controls (Fig. 5.1). In late September, about two weeks after a
large recruitment event, recently recruited whelks (<5 mm SL) were manually removed
from two 0.04 m* quadrats and from a 2-cm-wide border around each of these quadrats in
each plot (Fig. 5.1). Two other 0.04 m? quadrats in each plot served as controls in which
recruits were not manipulated. Quadrats were marked in two corners with stainless steel

screws. Treatments with reduced densities of post-recruits or recruits were monitored
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every 3 to 10 d until mid November 1995 and invading whelks were counted and
removed.

Densities of whelk recruits and post-recruits were measured in 5 randomly placed
0.04 m’ quadrats in the experimental plots where densities of post-recruits were not
manipulated. Whelk densities were recorded at 1-2 mo intervals from June to December
1995, and in June and October 1996. Because of extremely high densities of recruits in
September and December 1995, they were counted in a 0.01 m’ quadrat nested within
each 0.04 m’ quadrat. In December 1995, densities of recruits were estimated both in
plots where densities of post-recruits were not manipulated and in plots where they were
reduced. In September and December, the sizes of whelks in the sample quadrats were
measured with vernier calipers (accuracy + 0.1 mm). Densities of whelk recruits and
post-recruits were recorded in a similar manner in one tidepool plot and one plot of
emergent rock in each of four other blocks on the shore (which did not correspond to the
experimental blocks) at 1-2 mo. intervals from July 1994 to October 1995 and in June and
October 1996.

Percentage cover of Mytilus was estimated in each of the four permanently marked
0.04 m® quadrats in each plot in June (before manipulation of the density of post-recruits)
and in August, October, and November 1995. A plexiglass panel with 60 random points
was placed over a quadrat and the number of points overlying mussels were counted and
expressed as a percentage of the total. The size distribution of Mytilus was determined
from samples collected in random 12 cm’ quadrats in late September (3 from each plot
where post-recruits were not manipulated) and in late November or early December (from
all permanently marked 0.04 m? quadrats). Empty shells with drill holes also were
measured. Predator size was determined from the drill hole diameter using the
relationship determined in the laboratory (see Results). Drill holes less than 0.34 mm

were considered to have been made by recently recruited (<5 mm) whelks. Whelks
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experienced with feeding on mussels will sometimes attack small individuals between the
posterior margins of the shell (Hughes & Burrows 1993). I was able to detect these
attacks and estimate the size of the predator from the semi-circular mark left on the shell

margin.

Statistical Analysis

ANOVA was used to examine spatial and temporal patterns in whelk abundance
and to test the effects of experimental factors on mussel cover and size structure. All
analyses were conducted as randomized block designs. Because of the lack of replication
within blocks, the full model including interactions with block could not be tested.
However, Tukey's test for non-additivity (a=0.05) indicated that additive models (i.e.,
interactions with block pooled as the residual error) were appropriate (Kirk 1995) for all
analyses. Prior to ANOVA, Cochran's test was used to ensure that the data satisfied the
assumption of homogeneity of variances (¢=0.05). Where necessary, raw data were
transformed to satisfy this assumption.

Peak densities of whelk recruits and post-recruits were compared between habitats
(tidepool, emergent rock), years (a fixed factor with 2 or 3 levels), and blocks using
three-way ANOVA. Post-recruit and recruit density was In (x) or In (x+1) transformed
to remove heterogeneity of variance (Cochran's C test, 0c=0.05).

Due to preexisting differences in Mytilus cover between habitats, change in
percentage cover of mussels was used as the dependent variable in ANOVA to examine
the effects of habitat and reduction of whelk density on mussel cover. Mussel cover was
averaged for the four 0.04 m” quadrats in each plot. Change in cover between June and
August and between August and October 1995 was analysed by 3 way ANOVA. Habitat
(tidepool, emergent rock) and Post-Recruit Density (reduced, natural density) were fixed

factors, each with two leveis, and Block was a random factor with 4 levels.
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Change in mussel cover from October to November 1995, when density of
recruits was manipulated, was analysed by four-way ANOVA using a split plot design
(Damon & Harvey 1987). Each plot existed in one habitat (tidepool or emergent rock)
and one block and received one of the levels of the treatment of post-recruits, but received
both of the levels of the recruit density treatment (the split plot factor). To minimize the
effects of spatial variability within plots, replicates of recruit density treatments were
randomly located within plots rather than assigned to opposite sides of each plot (Fig.
5.1). Before analysis, mussel cover was averaged for the 0.04 m’ quadrats with and
without recruits respectively for each plot. Effects of Block, Habitat, Post-Recruit
Density, and Habitat x Post-Recruit Density were tested among plots. The interactions of
Habitat and Post-Recruit Density with Block were pooled as the error term. Recruit
Density (a fixed factor with two levels: reduced, natural density), Recruit Density x Post-
Recruit Density, Recruit Density x Habitat, and Recruit Density x Habitat x Post-Recruit
Density were tested within plots. Interactions containing both Block and Recruit Density
were pooled as the within-plot error term.

Three way ANOVA was used to compare the percentage of mussels <2 mm SL
(recruits) between September and December, with Month and Habitat as fixed factors
(each with two levels), and Block as a random factor with 4 levels. For samples collected
in December, four-way split plot ANOVA (as described above) was used to compare the
percentage of mussel recruits between blocks, habitats, and recruit and post-recruit
density treatments.

Kolmogorov-Smirnov tests (Seigel & Castellan 1988) were used to compare the
size distributions of whelks, live mussels, and empty mussel shells drilled by recruits or
post-recruits between dates (September and December 1995) and habitats for plots where
post-recruits were not manipulated. Due to low numbers of drilled shells in December,

shells drilled by recruits were pooled across recruit density treatments. Kolmogorov-
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Smirnov tests also were used to compare size distributions of live and drilled mussels in
September and December 1995 and to compare size distributions of live mussels between

habitats and whelk density treatments (recruits and post-recruits) in December 1995.

Comparison of feeding rates of whelk post-recruits in tidepools and on
emergent rock

The feeding rate of N. lapillus on artificially constructed mussel patches with a
specific composition (number and size distribution) was examined in tidepools and on
emergent rock using cage enclosures in September and October 1995 and June 1997.
Mussel patches were constructed in the laboratory. Each patch consisted of 150 mussels
(109 <5 mm, 23 5-9.9 mm, 14 10-14.9 mm, and 4 15-24.9 mm) which were placed on a
12.5 x 12.5 cm piece of fiberglass window screen (mesh size=2 mm). This size
distribution is the average of the size distributions of mussels in tidepools (Hunt &
Scheibling 1995) and on emergent rock (unpubl. data) at Cranberry Cove. Patches were
held in running sea water in the laboratory for two weeks before transplantation to the
field. During this time, patches were placed on rings of PVC pipe to prevent mussels
from attaching through the mesh to the bottom of the tank. While in the laboratory,
patches were placed in front of the tank inflow for several days to stimulate stronger
byssal attachment to the mesh and were removed from the water once a day for several
hours to acclimate to emersion.

Mpytilus patches for the first caging experiment were transplanted to the field on
June 25, 1995. The mesh base of each patch was fastened to the substratum with marine
epoxy putty (Z*Spar A-788 Splash Zone Compound). Patches were covered with
another piece of fiberglass window screen for several days to reduce wave stress while
the mussels attached to the substratum. Three mussel patches on emergent rock and two
in tidepools were selected to examine feeding rates of whelks from August 26 to

November 2 1995. Any dead mussels were removed from the patches before each was
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enclosed in a round cage constructed of PVC pipe (height 7 cm, diameter 15 cm, three 4 x
13 cm holes cut in the sides) and covered with 3 mm Vexar mesh. The cages were
fastened to the substratum with epoxy putty and one whelk (15.5 to 16.5 mm SL) was
enclosed in each cage. Two of the patches on emergent rock were exposed to whelk
predation for 36 and 52 days (because damage to cages by storms and the death of the
enclosed whelks interrupted the experiment); the other patches were exposed to whelk
predation for 68 days. A second caging experiment was set up on June 13, 1997. Three
mussel patches in each habitat were enclosed for 10 days in cages containing two adult
whelks (15 to 17.5 mm). The number of mussels eaten by each whelk was determined
from the number with drill holes. Any empty mussel shells with drill holes too small
(based on the regression equation from the laboratory experiment) to have been created by
the enclosed whelk were considered to have been consumed by invading whelk recruits

and were excluded from the analysis.

RESULTS
Laboratory experiments

Drill hole diameter (D) was positively related to whelk length (L) (Fig. 5.2) as

given by the regression equation:
D(mm)= 0.135 x L(mm)>>"® (:>=0.986).

This equation predicts that whelk recruits (<5 mm) create drill holes <0.34 mm in
diameter. To determine if mussel size affected drill hole size, drill hole diameters in two
size classes of mussels (5-9.9 and 15-24.9 mm SL for post-recruits, n=7; 2-3.9 and 4-
5.9 mm for recruits, n=13) were compared using paired t-tests for whelks which
consumed individuals of both size classes. There was no significant effect of mussel size
on drill hole diameter of recruits (T;;=-0.106, p=0.918) or post-recruits (T¢=0.640,
p=0.419). A significant relationship between drill hole size and gastropod size also has
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been reported for adult (>5 mm SL) Ocenebra lurida feeding on limpets (Palmer 1988)
and for juvenile (<7 mm SL) N. emarginata feeding on barnacles (Palmer 1990).

The feeding rate (FR) of N. lapillus recruits in October was significantly related to
mean body size (L, average of initial and final length):

FR (mussels week')=2.32 + 0.992 x L (mm), r’=0.403, F,,5=16.8, p=0.0004)
(Fig. 5.3). Whelk recruits (mean SL+S.E.=3.5+0.2 mm) consumed an average of
1.240.2 mussels week' (X+S.E.). In contrast, the feeding rate of post-recruits in May
was not linearly related to whelk size (r*=0.08, F,=2.65, p=0.11) (Fig. 5.3). On
average, post-recruits (mean size =15.4+1.1 mm) consumed 0.710.1 mussels week .

There was a significant positive relationship between mean size of mussels (M)
consumed and mean size (L, average of initial and final length) of both whelk recruits and
post-recruits (Fig. 5.4):

Recruits M(mm)=2.594 + 0.546 x L(mm), r’=0.371, F, ,5=14.77, p=0.001

Post-recruits M(mm)= 8.485 + 0.312 x L(mm), r’=0.254, F, 2,=9.88, p=0.004.
Although large recruits (>3 mm SL) rarely consumed mussels <2 mm SL and post-
recruits rarely consumed mussels <5 mm SL, both recruits and post-recruits were capable

of consuming the full size range of mussels presented to them.

Whelk Manipulation Experiments
Whelk density and size distribution
Peak densities of post-recruits of N. lapillus in both experimental plots (1995-96)
and in plots in adjacent areas (1994-1996) varied significantly between habitats and
among blocks along the shore but not between years, and there was no significant
interaction between habitat and year (Table 5.1, Fig. 5.5). During my field experiment in
1995, post-recruits were three times more abundant on emergent rock than in tidepools.
Peak densities of whelk recruits varied significantly between each of the years (Student-

Newman-Keuls Test, p<0.05): densities in 1995 were forty times higher than in 1994
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and ten times higher than in 1996 (Fig. 5.5, Table 5.1). Densities of recruits also differed
significantly among blocks, but there was no significant effect of habitat and no
significant interaction between habitat and year. Manual removal was an effective
technique for reducing densities of post-recruits of N. lapillus at this site, resulting in
densities 10-12% of initial values from July to November (Fig. 5.6). Removal of recruits
reduced densities to 15-27% of initial densities during October and November (Fig. 5.6).
However, because whelk densities were declining naturally in the fall, densities of
recruits in particular did not differ greatly between treatment and control quadrats.

After the peak of whelk recruitment in September, recruits were numerically the
dominant component of the population (Fig. 5.7). The size distributions of whelks in
unmanipulated control plots did not differ between emergent rock and tidepools in
September (Dg9,620=0.04, p>0.10) or December (Dg4;70=0.18, p>0.10). However, the
size distributions differed significantly between months (habitats pooled, D439.117=0.41,
p<0.01) as whelks <3 mm SL were less abundant in December than in September (Fig.
5.7). When post-recruits (25 mm SL) were analysed separately, the size distributions
differed between tidepools and emergent rock in September (Dj;99,=0.25, p<0.01), when
post-recruits were larger in tidepools than on emergent rock, but not in December

(D20'23=0.1 I, p>0 10).

Effects on mussel cover
In the field experiment, mussel cover generally remained stable where densities of
whelk post-recruits were reduced and decreased, particularly on emergent rock, where
whelk density was not manipulated. However, the magnitude of the effect of whelk
density varied over the course of the experiment. Before whelk density was manipulated
in June 1995, percentage cover of Mytilus (averaged over plots in both habitats) was
significantly greater on emergent rock than in tidepools, but did not differ significantly

among blocks along the shore or between plots assigned to the different post-recruit
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density treatments, and there was no significant interaction between habitat and post-
recruit density treatment (Fig. 5.8, Table 5.2). Between June and August 1995, mussel
cover decreased by 5% in unmanipulated control plots and increased by 6% where
densities of post-recruits were reduced (Fig. 5.8). Change in percentage cover of
mussels varied significantly among blocks and differed significantly between whelk
density treatments, but did not vary between habitats, and there was no significant
interaction between habitat and post-recruit density (Table 5.2). Between August and
October, percentage cover of mussels declined by 43% on emergent rock and by 9% in
tidepools in unmanipulated control plots (Fig. 5.8). In plots where densities of post-
recruits were reduced, percentage cover of mussels remained relatively constant (Fig.
5.8). Change in percentage cover was significantly greater on emergent rock than in
tidepools and greater in control plots than in plots where post-recruit densities were
reduced; there was no significant effect of block and no significant interaction between
habitat and post-recruit density (Table 5.2).

Following a large recruitment event of whelks in September 1995, manipulation
of the density of recently recruited whelks was added as a factor in the experiment.
Between October and November, mussel cover changed by less than 7% in any
combination of whelk density treatment and habitat (Fig. 5.8) and did not vary
significantly among blocks, between habitats, or between treatments with reduced or
unmanipulated densities of whelk recruits or post-recruits; there were no significant

interactions between any of the factors (Table 5.2).

Effects on size distribution of mussels
Size distributions of live mussels differed significantly between tidepools and
emergent rock in September for the control treament where post-recruit density was not
manipulated (Djog0, 2895=0.215, p<0.001), and in December for each post-recruit density
treatment (reduced: D629 2700=0.13, p<0.001, not manipulated: D30 296:=0.19, p<0.001;
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data pooled across recruit density treatments, which were not significantly different) (Fig.
5.9). In December, size distributions of live mussels also differed significantly between
post-recruit density treatments in each habitat (tidepools: Djgg;2706=0.05, p<0.01,
emergent rock: Dsj12620=0.09, p<0.001) (Fig. 5.9). ANOVA indicated that the
percentage of mussel recruits (< 2 mm SL) in December was significantly greater in
tidepools than on emergent rock, but did not differ significantly among blocks or between
whelk density treatments, and there were no significant interactions (Table 5.3; Fig. 5.9).
Size distributions of mussels in the control treatment where density of post-recruits was
not manipulated differed significantly between September and December both in tidepools
(D2080.2061=0.05, p<0.01) and on emergent rock (D1gg9s3101=0.13, p<0.01) (Fig. 5.9).
ANOVA indicated that the percentage of mussel recruits in the control treatment was
significantly higher in tidepools than on emergent rock, but did not differ significantly
between blocks or between months, and there was no significant interaction between

habitat and month (Table 5.3, Fig. 5.9).

Drill hole analysis

The size distribution of drilled mussels indicated that the percentage drilled by
whelk recruits was greater than that drilled by post-recruits in control plots in both
September and December (Fig. 5.10). Although only 2-10% >10 mm SL were drilled by
whelk recruits, mussels as large as 22 mm SL were drilled (estimated whelk size: 3.8 mm
SL). In September, the size distribution of shells drilled by whelk recruits differed
significantly from the size distribution of live mussels in tidepools (Dgs2080=0.23,
p<0.01), where the proportion of shells <! mm SL was lower for drilled than for live
mussels, but not on emergent rock (Dj462985=0.10, p>0.10) (Fig. 5.9, 5.10). In
December, the size distributions of drilled and live mussels did not differ significantly in
either habitat (tidepools: D3g296:=0.25, 0.05<p<0.10; emergent rock: Dj33101=0.17,

p>0.10). In control plots where post-recruits were not manipulated, the size distribution
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of shells drilled by recruits did not differ significantly between tidepools and emergent
rock in September (Dg4 146=0.20, p>0.10) or December (D30 4,=0.10, 0.05<p>0.10), and
did not differ significantly between months when habitats were pooled (D;;07,=0.12,
p>0.10) (Fig. 5.10).

The size distribution of shells drilled by whelk post-recruits indicated that they
consumed mainly the largest mussels, although small post-recruits (estimated whelk size:
6 mm SL) drilled mussels as small as 1-2 mm SL (Fig. 5.10). In September, the size
distribution of shells drilled by post-recruits in control plots differed from the size
distribution of live mussels both in tidepools (D50 080=0.94, p<0.001) and on emergent
rock (Ds; 239s=0.64, p<0.001) (Fig 5.9, 5.10). The size distribution of shells drilled by
post-recruits differed between tidepools and emergent rock (Do3:=0.52, p<0.01):
mussels <10 mm SL comprised 74% of shells drilled by post-recruits on emergent rock
but only 35% of those in tidepools (Fig. 5.10). In December, low sample sizes of shells
drilled by post-recruits precluded further analysis.

Estimated mortality due to whelk predation

The mean feeding rates of post-recruit N. lapillus enclosed in cages did not differ
significantly between tidepools and emergent rock in fall 1995 (0.82 and 0.77 Mytilus
week ! respectively; T,=2.15, p=0.165) or June 1997 (0.58 and 1.4 Mytilus week’
respectively; T,=2.21, p=0.157). The size of mussels consumed did not differ
significantly between habitats in fall 1995 (mean SL, emergent rock: 13.1 mm, tidepool:
13.5 mm; T,=0.554, p=0.618) or June 1997 (mean SL, emergent rock: 11.0 mm,
tidepool: 12.5 mm; T,=0.633, p=0.599).

To estimate the reduction in mussel density due to predation by post-recruits
between June and October 1995 (115 d), I multiplied the maximum density of N. lapillus
(115 and 320 whelks m? in tidepools and on emergent rock respectively) by the estimated

mean feeding rate of individual whelks (0.70 and 1.09 mussels week ™' based on the
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average of the cage experiments) during this period. According to this calculation, whelk
predation accounted for the loss of 1,326 mussels m’ in tidepools and 5,701 mussels m
on emergent rock. For comparison, I estimated the reduction in mussel density
represented by the decrease in percentage cover of mussels over the same period (40%
and 10% on emergent rock and in tidepools respectively). I assumed that the mean
densities of mussels in December in plots where post-recruit density was reduced (all
sizes for tidepools and emergent rock respectively: 121,836 and 126,663 mussels m?;
>10 mm SL: 5,714 and 7,776 mussels m™ >10 mm SL on emergent rock and in tidepools
respectively) were representative of the densities at the start of the experiment. According
to this calculation, the decrease in mussel cover represented a loss of 12,798 mussels m’>
in tidepools and 49,242 mussels m? on emergent rock. Assuming that the size
distribution of mussels >10 mm SL in December in the plots where densities of post-
recruits were reduced was representative of the size distribution during the summer in
plots where densities of post-recruits were not manipulated, the estimated loss of these
large mussels was 786 mussels m?in tidepools and 3,361 mussels mZon emergent rock.
Thus, although my estimates of whelk predation only accounted for ~1% of the estimated
reduction in the total density of mussels, it could account for all of the estimated reduction
in the density of large mussels if whelks selectively preyed on mussels >10 mm SL.
Predation by post-recruits probably has greater effects on mussel cover than on
mussel density because post-recruits selectively prey on large mussels. I estimated the
reduction in percentage cover of mussels due to whelk predation between June and
October. [ assumed, based on the laboratory study (Fig. 5.5), that post-recruits
consumed only mussels >10 mm SL, but that they selected mussels within this size range
in proportion to their abundance. I assumed that the size distribution of mussels >10 mm
SL in December in the plots where densities of post-recruits were reduced was

representative of the size distribution during the summer in plots where densities of post-
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recruits were not manipulated. I used a non-linear regression equation based on a sample
of 33 mussels in December to relate mussel shell length (SL) to cross sectional area (A,
for an ellipsoid):

A (cm?)=0.003 x SL(mm)"** (*=0.987).

For mussels in each 1 mm size interval >10 mm SL, I calculated the estimated loss in
mussel cover which could be attributed to whelk predation by multiplying the estimated
loss of mussel density (the number of mussels consumed by whelks multiplied by the
proportion of mussels in that size class) by the estimated cross-sectional area. I then
summed these decreases in mussel cover across size classes. The estimated losses of
mussel cover due to whelk predation were 635 cm®m? in tidepools and 2028 cm’ mZ on
emergent rock. These estimated losses due to whelk predation accounted for 63% of the
reduction in mussel cover in tidepools (1010 cm? m'z) and 51% of the reduction on
emergent rock (4042 cm’ m’2) between June and October 1995.

Nucella lapillus were the only abundant predators of mussels at my field site. Sea
stars (Asterias vulgaris) were never observed in the experimental plots (although a few
new recruits were observed in adjacent tidepools). Green crabs (Carcinus maenus) were
observed only on two occasions, once in a tidepool plot and once on a plot of emergent

rock.
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Table 5.1: Three-way ANOVA of peak density (no. m) of recruits and post-recruits of
N. lapillus in experimental plots where densities of post-recruits were unmanipulated
and in other plots on the shore at Cranberry Cove, Nova Scotia. Peak density of whelk
post-recruits was recorded in June or July and that of whelk recruits in September or
October. Factors are Block, Habitat (tidepool, emergent rock), and Year (1995, 1996 or
1994, 1995, 1996). Tukey's test for non-additivity was non-significant: experimental
plots F; »<0.02, p>0.25, other plots F; s<1.4, p>0.25. ***p < 0.001; ** p<0.01l; *p
< 0.05.

Source df MS F P

Experimental Plots

Whelk Post-recruits Block 3 3.1 6.4 0.013*
Habitat 1 12.3 25.1 0.0007***
Year 1 0.7 1.4 0.272
Habitat x Year 1 1.0 2.0 0.194
Residual 9 0.5

Whelk Recruits Block 3 2.7 5.7 0.018*
Habitat 1 0.3 0.7 0.416
Year 1 23.5 50.8 0.0001 ***
Habitat x Year 1 0.03 0.07 0.791
Residual 9 0.5

Other Plots

Whelk Post-recruits Block 3 2.2 39 0.031*
Habitat | 6.6 11.5 0.004**
Year 2 0.7 1.3 0.306
Habitat x Year 2 0.8 1.4 0.284
Residual 15 0.6

Whelk Recruits Block 3 2.3 3.8 0.033*
Habitat 1 0.001 0.002 0.967
Year 2 24.4 39.6 0.0001 ***
Habitat x Year 2 0.2 0.3 0.768
Residual 15 0.6
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Fig. 5.1. Schematic diagram of one of four blocks in the field experiment in which
densities of whelk recruits and post-recruits were manipulated at Cranberry Cove, Nova
Scotia. Tidepool plots are indicated in grey and plots of emergent rock (white) are
indicated by a dashed line. The boundaries of plots of emergent rock were defined by
crevices, ridges, and other topographic features. Within a block, plots were separated by
1 to 5 m. Density of post-recruits (large snail symbol) was manually reduced (no snail
symbol) in one plot in each habitat (tidepool, emergent rock) and not manipulated (snail
symbol present) in the second plot in each habitat. Within each plot, density of recruits
(small snail symbol) was manually reduced in two 0.04 m® quadrats (no snail symbol in

quadrat) and not manipulated (snail symbol in quadrat) in two other 0.04 m’ quadrats.
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Fig. 5.2. Relationship between the mean diameter of drill holes made in Mytilus and shell
length of Nucella lapillus. Sample size=58.
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Fig.5.3. Mean number of Mytilus week ! consumed by Nucella lapillus as a function of
mean whelk shell length (mm, average of initial and final length): recruits (<5 mm SL)
offered mussels 0.2-8 mm SL in October (n=27) and post-recruits offered mussels 1-25

mm SL in May (n=31).
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Fig. 5.4. Mean size (mm) of Mytilus consumed by Nucella lapillus as a function of mean
whelk shell length (mm, average of initial and final length): recruits (< 5 mm SL) offered

mussels 0.2-8 mm SL (n=27) and post-recruits offered mussels 1-25 mm SL (n=31).
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Fig. 5.5. Mean (£S.E.) densities (no. m'z) of post-recruits (25 mm SL) and recruits (<5
mm SL) of N. lapillus in tidepools and on emergent rock (averaged for 4 blocks per
habitat) between July 1994 and October 1996 at Cranberry Cove, Nova Scotia.
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Fig. 5.6. Mean (+S.E.) densities (no. m'z) of post-recruits (25 mm SL) and recruits (<5
mm SL) of N. lapillus in whelk density treatments in tidepools and on emergent rock
(averaged for 4 blocks per habitat) between June and December 1995 at Cranberry Cove,
Nova Scotia. Where densities of post-recruits were reduced, pre-manipulation densities of
recruits were recorded only for quadrats from which juveniles were removed. The
dashed lines indicate the start of manipulation of densities of recently recruited or post-

recruit whelks.
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Fig. 5.7. Size frequency distributions of N. lapillus in September and December 1995 in
tidepools and on emergent rock in plots where density of post-recruit N. lapillus was not
manipulated. Whelks were pooled over quadrats and blocks (n=20) within a habitat
(September for tidepools and emergent rock respectively: n=620, 819; December: n=70,
47).
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Fig. 5.8. Mean (£S.E.) percentage cover of Myrilus in whelk density treatments in
tidepools and on emergent rock (averaged for 4 blocks per habitat) from June to
November 1995 at Cranberry Cove, Nova Scotia. The dashed line indicates the start of

manipulation of densities of post-recruits.
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Fig. 5.9. Size frequency distributions of Mytilus in September and December 1995 in
tidepools and on emergent rock in plots where density of post-recruit N. lapillus was not
manipulated (September and December) and where it was reduced (December only).
Mussels were pooled over quadrats and blocks (September: n=12, December: n=16)
within a habitat, including treatments with reduced and unmanipulated recruit density

(n=2629-3101). Mussels in the last bar are 10.05-33.7 mm SL.
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Fig. 5.10. Size frequency distribution of empty Mytilus shells drilled by whelks in
September and December 1995 in tidepools and on emergent rock in plots where density
of post-recruit N. lapillus was not manipulated. Mussels were pooled over quadrats and
blocks (September: n=12, December: n=16) within a habitat, including treatments with
reduced and unmanipulated recruit density (September for tidepools and emergent rock
respectively: 64, 146 drilled by recruits, 20, 31 drilled by post-recruits; December: 30, 42
drilled by recruits, 5, 13 drilled by post-recruits).
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Fig. 5.11. Frequency distribution of significant wave heights recorded from June to
November in 1995 and from 1970-1995 at the mouth of Halifax Harbour, Nova Scotia
(44° 50’ N, 63° 25’ W).
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DISCUSSION
Predation by post-recruits of N. lapillus

Removal of post-recruits of N. lapillus had a significant effect on percentage cover
of Mytilus during my experiment. Cover of mussels between June and October remained
relatively stable where the density of post-recruits was reduced but declined where whelks
were not manipulated. The size distribution of mussels also differed at the end of the
experiment between whelk removal treatments and controls. From October to November,
mussel cover remained relatively stable and no effects of habitat or density of post-recruits
were detected. During this period, however, densities of whelks in the intertidal zone
declined markedly as they migrated to the subtidal zone for winter. Furthermore,
decreasing temperatures probably depressed the feeding rates of whelks (Largen 1967b,
Bayne & Scullard 1978, Stickle et al. 1985) which would lessen their impact on mussel
abundance.

Manipulation of densities of whelk post-recruits also has been shown to affect
Mpytilus cover on temperate rocky shores in other regions. In New England, USA,
Menge (1976) and Lubchenco and Menge (1978) found that exclusion of N. lapillus
from cleared plots resulted in the eventual replacement of Semibalanus balanoides by M.
edulis in the mid and low (where other predators also were excluded) intertidal zones at
moderately wave protected sites but not at wave exposed sites. In contrast, at a sheltered
shore in Maine, Petraitis (1990), found no effects of N. lapillus on recruitment of M.
edulis when barnacles were provided as alternative prey. Petraitis (1990) suggested that
the abundance of M. edulis is controlled by the presence of barnacles which provide a
settlement site for mussels and are the preferred prey of N. lapillus. However, Menge
(1991b) reanalyzed Menge and Lubchenco's data, controlling for initial barnacle cover,
and found that predation still had a strong effect on mussels at wave-sheltered sites. In

Oregon, USA, Navarette (1996) found that exclusion of N. emarginata and N.
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canaliculata in the mid intertidal zone resulted in increased cover of M. trossulus and M.
californianus, but that varying the intensity and frequency of whelk predation had
unpredictable effects on mussel cover. In the mid-low zone where the sea star Pisaster
ochraceus is abundant, whelks significantly affected the survival of transplanted M.
trossulus in the absence but not in the presence of Pisaster (Navarette & Menge 1996). In
Alaska, Carroll and Highsmith (1996) observed that, after a severe freeze greatly reduced
the abundance of M. trossulus, mussels did not recover spatial dominance at sites with
high densities of the whelk N. lima. In field experiments, they recorded significant
decreases in mussel cover within two weeks in cages with average densities of N. lima
compared to exclusion cages without whelks (Carroll & Highsmith 1996). In contrast,
Wootton (1994) found that manually reducing densities of whelks had no significant
effects on cover of any sessile species, including M. californianus, in the mid intertidal
zone in Washington State.

In my study, the reduction in Mytilus cover attributed to whelk predation was
greater on emergent rock than in tidepools. This probably reflects differences between
habitats in whelk densities, since feeding rates and sizes of mussels consumed by post-
recruits enclosed in cages in the two habitats were similar. However, I did not assess
cage artifacts and must assume that any effects of caging on whelk behaviour did not
differ between emergent rock and tidepools. The greater reduction in mussel cover on
emergent rock than in tidepools is contrary to predictions of the model of Menge and
Sutherland (1987) that the importance of whelk predation should diminish along a
gradient of increasing environmental stress. However, this model may be more
applicable to habitats where stress gradients are large and conditions are relatively severe
(Menge & Olson 1990), and may be less appropriate for contrasts between tidepools and

emergent substrata on the same shore.
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My calculations indicate that predation by whelk post-recruits accounts for ~63%
of the reduction in mussel cover in tidepools, and ~51% of the reduction on emergent
rock. I attribute this between habitat difference to an interaction between whelk predation
and wave action. Dislodgment of the shells of predated mussels by waves would remove
small mussels associated with the empty shells and weaken the surrounding mussel
matrix. Because whelk predation is more intense on emergent rock than in tidepools,
losses due to this interaction between whelk predation and wave action were probably
greater on emergent rock, particularly in August 1995 due to the passage of Hurricane
Felix. During each month of the experiment, significant wave heights recorded at a
station ~ 40 km from the study site (unpubl. data, Department of Fisheries and Oceans,
Canada) were larger in 1995 than in a pooled data set from 1970-1995 (Fig. 5.11). In
August 1995, 16% of observations of significant wave heights were 23 m compared to
1% of observations in the long term record (Fig. 5.11). This study suggests that
predation by whelks on exposed rocky shores may have a greater impact than would be
predicted from whelk density and feeding rate because of the indirect effects of wave
action.

Size selection of mussels by post-recruits of N. lapillus in the laboratory has been
well documented (for review see Hughes & Burrows 1993). However, analysis of
mussels collected in the field suggests that post-recruits may have a greater impact on
juvenile mussels than predicted from laboratory studies. In my laboratory feeding
experiment, post-recruits appeared to avoid preying on mussels <5 mm SL. Similar
results were reported for adult N. emarginata preying on M. trossulus and/or M.
californianus (Gosselin & Chia 1994). The mean size of mussels consumed in the
laboratory increased with increasing whelk size (for both recruits and post-recruits),
although individual whelks consumed a broad size range of mussels. In the field, whelk

post-recruits were size selective, but small post-recruits would consume Mytilus as small
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as 2 mm SL and >35% of mussels drilled by post-recruits were <I0 mm SL. Shells
drilled by post-recruits were larger in tidepools than on emergent rock, perhaps because
of the between-habitat difference in size of post-recruits in September. Although wave
action may remove large shells more rapidly than small shells, potentially biasing these
estimates, these results demonstrate that predation by whelk post-recruits on mussels <5
mm SL is not unusual in the field. In contrast, Hughes and Burrows (1990, 1991), who
recorded the diets of individual whelks in Yorkshire, UK, found that whelks consumed
few to no mussels <5 mm SL, primarily preying on individuals 10-20 mm SL. Size
selection by whelks at my field site may be influenced by the relatively small size of post-
recruits (cf Hughes 1972; Hughes et al. 1992) and by the highly skewed size distribution
of mussels (Fig. 5.9; see also Hunt & Scheibling 1995).

A number of studies have shown that the feeding rate of N. lapillus is strongly
temperature dependent (Largen 1967b, Bayne & Scullard 1978, Stickle et al. 1985).
However, the feeding rate of post-recruits in my field enclosures in September and
October (0.8 mussels week™") was similar to the feeding rate in my laboratory study in
May (0.7 mussels week'l), despite large differences in temperatures (5.5-8 °C in the
laboratory in May and ~ 15 °C in the field in October). Bayne and Scullard (1978)
measured drilling and ingestion time as well as time between meals for N. lapillus preying
on mussels at various temperatures in the laboratory. Using their data, I have calculated a
feeding rate (2.4 mussels week') for whelks of 16 mm SL (the size used in my cage
enclosures) at 16 °C in October which is three times higher than that measured in my field
enclosures. The relatively low feeding rate of post-recruits in the cage enclosures is
presumably due to constraints on foraging in the field by factors such as desiccation and
wave action (Burrows & Hughes 1989, Hughes & Burrows 1990, 1991). The feeding
rate of post-recruits in the laboratory in May at 5.5-8 °C is higher than the feeding rate

(0.16 mussels week") reported by Largen (1967b) at 7 °C (month and size of whelks not
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reported) but is similar to the feeding rate of whelks of 16 mm SL at 9 °C in March (0.8

mussels week ') calculated from Bayne and Scullard's data.

Predation by recruits of N. lapillus

My laboratory studies showed that feeding rate of N. lapillus is directly related to
body size for recently recruited whelks but not for post-recruits. Bayne and Scullard
(1978) found that time spent drilling and ingesting M. edulis did not vary with body size
for whelks 8.5-34 mm SL (probably because smaller whelks drilled smaller mussels) but
that time between meals decreased with increasing body size. The feeding rate of whelk
recruits in my study at 9.5-16.5°C in October (1.2 mussels week ") is 50% of that which
I calculated from Bayne and Scullard's (1978) data for whelks of 16 mm SL at 16°C in
October (see previous paragraph). Extrapolating Bayne and Scullard's (1978) data to a
whelk of 3.5 mm SL (the mean size of recruits in my laboratory experiment) gives a
predicted feeding rate (1.4 mussels week™!) similar to that measured for recruits in my
laboratory study.

Although size of Mytilus consumed generally increases with whelk size, whelk
recruits are not constrained to preying on recently recruited mussels. In the laboratory,
recruits were able to consume the largest mussels offered to them (8 mm SL).
Examination of empty shells collected from the field indicated that recruits of N. lapillus
are capable of consuming even larger mussels than those offered in the laboratory study,
up to 22 mm SL. The ability of recruits to consume prey much larger than themselves has
been reported in other laboratory studies (N. lapillus, Largen 1967a; N. emarginata,
Palmer 1990). The size distribution of shells drilled by recruits was similar to the size
distribution of live mussels except in tidepools in September where mussels <I mm SL
were proportionally less abundant as drilled shells than as live mussels.

In contrast to the marked effect of post-recruits of N. Ilapillus on mussel

assemblages in my field experiment, reduction of the density of recently recruited whelks
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had no effect on either cover or size distribution of Mytilus. Manual removal of whelk
recruits was less effective than removal of post-recruits because the high densities of
recruits necessitated a smaller spatial scale of manipulation which was harder to maintain.
Furthermore, although densities of recruits were reduced to 15-20% of initial values,
whelk abundance was declining naturally during this period due to mortality and
migration to the subtidal zone. Therefore, the difference in density between recruit
treatments was small (Fig. 5.6). However, examination of drilled shells suggests that
whelk recruits consumed large numbers of mussels during this period. In both
September and December, the percentage of mussels which had been drilled by recruits
was greater than that drilled by post-recruits, although differential removal of large empty
shells by wave action may bias this comparison. The empty mussel shells in these
samples likely reflect predation which occurred after August 1995 when waves from
Hurricane Felix probably removed the large numbers of empty shells which had
accumulated during the summer due to intense predation by post-recruits. Although I was
unable to detect a significant effect of whelk recruits on mussel assemblages in my
experiment, the high abundance of recruits following a large recruitment event in
September 1995, their high feeding rate relative to their body size, and their ability to
consume mussels larger than themselves all suggest they can have an important impact on
mussel assemblages. This is the first study to attempt to examine the effects of predation

by recently recruited whelks in the field, and more research is necessary.

Patterns of abundance and distribution of mussels and the role of whelk
predation
Predation by N. lapillus, particularly post-recruits, affects mussel assemblages
both in tidepools and on emergent rock, but does not fully explain the differences between
habitats in the patterns of distribution and abundance of mussels. In my field experiment,

the reduction in mussel cover was greater on emergent rock, where mussel patches are
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larger and more continuous, than in tidepools. This disparity between the effects of
whelk predation and the pattern of abundance of mussels may have resulted, in large part,
from the interaction between whelk predation and unusual wave action in August 1995
which may not be typical of this shore. At the end of the experiment in December 1995,
mussel cover in control plots (where density of post-recruits was not manipulated) was
lower on emergent rock than in tidepools, in contrast to the more typical pattern observed
at the start of the experiment in June. However, densities of post-recruits were greater on
emergent rock than in tidepools each summer between 1994 and 1996, although the
difference between habitats was greatest in 1995. Because feeding rates of whelk post-
recruits are similar in tidepools and on emergent rock, whelk predation at this site is
probably usually at least as intense on emergent rock as in tidepools. The long term
effects of whelk predation on mussel assemblages will depend on the balance between
rates of predation by whelks and rates of growth and recruitment of mussels (Petraitis
1995). Recently recruited whelks may have long term effects on mussel cover by limiting

recruitment and preying on fast-growing juvenile mussels.



CHAPTER 6: Patch dynamics of mussels in contrasting
intertidal environments
INTRODUCTION

Many populations and communities can be viewed as dynamic mosaics of patches
or islands among which individuals are exchanged (Pickett & White 1985, Paine 1994).
Assemblages of marine mussels are a good model system to examine patch dynamics
because of their simplicity: they are effectively monocuitures in a two-dimensional matrix.
Mussels are common on rocky shores in many parts of the world in aggregations that
range in size from patches a few centimeters in diameter (e.g. Hunt & Scheibling 19935) to
large beds containing meter scale gaps (e.g. Paine & Levin 1981). The structure and
dynamics of mussel assemblages will depend on the balance between processes
decreasing the size of aggregations and those increasing their size (Petraitis 1995). For
example, predation is important in determining the distribution and abundance of mussels
on many shores (e.g. Paine 1966, 1974, Menge 1976, Robles 1987). Under certain
conditions, high individual growth rates of mussels enable the persistence of mussel
patches subjected to intense predation (Reusch & Chapman 1997). On wave-exposed
shores, dislodgment by waves is a major cause of loss of mussels in the intertidal zone
(Paine & Levin 1981) and the shallow subtidal zone (for mussels overgrown by algae
Witman 1987). Because mussels are not permanently attached to the substratum,
aggregation size also may change due to passive dispersal of mussels by wave
dislodgment or active dispersal by crawling. Redeposition by waves and movement of
large mussels have been shown to be important in structuring mussel assemblages on soft
substrata (e.g. Bertness & Grosholz 1985, Reusch & Chapman 1997), but these
processes have received little attention in studies on rocky shores.

In this chapter, I continue my examination of mussel assemblages (Mytilus
trossulus and M. edulis) in tidepools and on the surrounding emergent rock in the mid

intertidal zone on a rocky shore on the Atlantic coast of Nova Scotia, Canada. The
184
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abundance and spatial distribution of mussels differ between these two habitats: mussels

in tidepools generally occur in centimeter-scale patches (Hunt & Scheibling 1995),
whereas those on emergent rock tend to form more extensive beds with centimeter-scale
gaps (personal observations; Minchinton et al. 1997). In both habitats, the scale of the
aggregations and the size of the individuals in them are smaller than those described in
most previous studies of mussel patch dynamics. Previous studies of mussels have
focused on a single habitat, either emergent rock in the intertidal zone or the subtidal zone
(e.g. Paine & Levin 1981, Svane & Ompi 1993, Petraitis 1995, Reusch & Chapman
1997). There are few experimental studies of processes influencing the structure and
dynamics of species assemblages in tidepools compared to emergent rock (reviewed by
Metaxas & Scheibling 1993).

Differences in the pattern of distribution and abundance of mussels between
tidepools and emergent rock may result from environmental differences between the two
habitats. Strong gradients or differences in environmental stress are predicted to influence
the relative importance of biotic and abiotic factors in structuring communities and the
intensity and outcome of biological interactions (Connell 1975, Menge & Sutherland
1976, 1987). For example, these models of community structure, which are based on
research in the rocky intertidal zone, predict that predation will decrease with increasing
environmental stress, which inhibits consumers more than their prey. Tidepools fluctuate
in temperature, salinity, oxygen saturation, and pH over the tidal cycle, but the degree of
environmental fluctuations is less than on emergent rock (reviewed by Metaxas &
Scheibling 1993). Most importantly, organisms in tidepools are continually submerged
and do not experience desiccation during low tide. Thus, tidepools are potentially
important refuges from stressful environmental conditions on emergent rock which may
explain differences in the structure and dynamics of species assemblages in tidepools

compared to emergent rock (Metaxas & Scheibling 1993).
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To monitor the dynamics of mussel patches and investigate processes influencing
patch size and structure both in tidepools and on emergent rock, I transplanted artificially
constructed patches with a specific composition (size and number of mussels) to each
habitat at a wave-exposed rocky shore for different periods and in different seasons of the
year. I measured rates of recruitment, immigration, predatory and non-predatory
mortality, and growth of individuals in these experimental patches and monitored changes
in patch area and biomass, and in the size distribution of individuals. In addition, I
monitored the movement of tagged mussels and estimated the probabilities of wave
dislodgment of mussels from measurements of water velocities and attachment strengths
of mussels. Collectively, these mensurative experiments provide insight into the relative
importance of interacting physical and biological processes in determining the structure
and dynamics of mussel assemblages and their role in shaping the patterns of distribution

and abundance observed in these two different habitats.

MATERIALS AND METHODS
Transplantation Experiment
Design
This study was carried out at an exposed rocky shore at Cranberry Cove, Nova
Scotia (for further description, see Chapter 3). I constructed experimental mussel patches
in the laboratory on 12.5 x 12.5 cm (156 cm?) panels of fiberglass window screen (mesh
size=2 mm). Each patch consisted of 150 mussels in four size classes: 1) <5.0 mm SL
(n=109), 2) 5.0-9.9 mm (n=23), 3) 10.0-14.9 mm (n=14), and 4) 15.0-24.9 mm (n=4).
This size distribution was based on the average of the size distributions of mussels in
tidepools (Hunt & Scheibling 1995) and on emergent rock (unpubl. data) at Cranberry
Cove prior to this study. The experimental patches were submerged in a flowing (~ 3
L/min) seawater tank at ambient temperature. The patches were elevated on rings of PVC

pipe to prevent mussels from attaching to the bottom of the tank and placed by the tank
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inflow for several days to stimulate byssal attachment to the mesh. The mussels were

tightly aggregated in the patches which were roughly circular (Fig. 6.1). Patch area was
~14 cm?, based on the average of 4 patches. Patch biomass was ~4.8 g dry mass after
drying in an oven for 48 hours at 80 °C, based on the average of 5 patches (range 4.1 to
5.1 g). After 1-4 weeks in the laboratory, I transplanted the experimental mussel patches
to tidepools and emergent rock at Cranberry Cove. The mesh base of each patch was
fastened to the substratum with marine epoxy putty (A-788 Splash Zone Compound;
Z*Spar, Los Angeles) (Fig. 6.1). Patches were covered with another panel of fiberglass
window screen for several days to reduce wave stress while the mussels attached to the
rock substratum.

My transplantation experiments were set up in four blocks along ~! km of
shoreline with at least 100 m between blocks. I selected two plots in each block: one
tidepool and one area of emergent rock. Tidepools ranged from 4.6 to 9.5 m’ in area and
from 0.3 to 0.6 m in depth. Plots of emergent rock were comparable in area and
delineated by crevices and other topographic features. The height of plots above chart
datum (C.D.), measured in May 1995 and August 1996 using a transit level, ranged from
0.7 to 1.8 m. Maximum tidal range is approximately 2 m. To examine changes in patch
structure over a 15 mo period, I transplanted 9 mussel patches to each plot in July 1994
and collected three patches per plot at successive 5 mo intervals, i.e. in December 1994 (5
mo), April 1995 (10 mo), and October 1995 (15 mo). To examine the effects of
transplantation date on patch structure and dynamics, I transplanted an additional three
patches to each plot at two other times, December 1994 and May 1995, for 5 mo periods.
This enabled me to examine seasonal variation between a winter interval, the second 5 mo
set (December 1994-April 1995), and the preceding and subsequent summer/fall intervals
(July-December 1994, May-October 1995). The first set of 5 mo patches was used in

both the time-series and seasonal comparisons.
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In July 1994, many of the mussels in the 10 and 15 mo patches on emergent rock
died shortly after they were transplanted to the shore on a hot, sunny day. The first set of
5 mo patches was transplanted 3 days later on a cool, cloudy day and subsequent
mortality was negligible. I transplanted a new series of 10 and 15 mo patches to emergent
rock two weeks later. To avoid further mortality, I acclimated the replacement patches,
and the additional patches transplanted in December 1994 and May 1995, by removing
them from the water once a day for 2 to 6 hours at room temperature (for patches
transplanted in spring/summer) or in a 10 °C cold room (for patches transplanted in
December). At the end of each experimental interval, patches were collected by chiseling
the epoxy and mesh base off the rock. The mussels remained attached to the mesh and to
one another by their byssal threads. In some cases, a few mussels had attached to the
outside of the epoxy ring or recruited to the rock substratum under the mesh. I did not
collect these mussels for analysis. Patches were frozen in the laboratory until they could

be processed.

Patch Structure and Dynamics

In each plot, I measured the area of the experimental patches and of 3 natural
patches (initially similar in size to the experimental patches) in each plot within 2 to 6
weeks of transplantation and then at 5 mo intervals (before sets of patches were
collected). Patches were photographed or their outlines were traced on acetate sheets if
algal growth or light conditions prevented photography. Computer images were created
from photographic slides using a dissecting microscope connected to a black and white
video camera and a computer. Tracings of patch outlines were scanned. Images from
photographs and tracings were analyzed using a computerized image analysis system
(NIH Image, Version 1.59; National Institutes of Health, Bethesda, Maryland, USA).
Because the camera angle was not directly perpendicular to the substratum and because of

the low resolution of computer images obtained from photographic slides, photographs
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underestimated patch area by ~12% compared to tracing, as assessed by comparison of
photographs and tracings of 22 patches. Patch areas calculated from photographs were
therefore adjusted to compensate for this underestimation.

After each set of experimental patches was collected, I counted and measured the
mussels in each patch. Mussels were measured in 1| mm size classes using an ocular
micrometer on a dissecting microscope for the smallest individuals or vernier calipers for
larger ones. I measured final patch biomass as total mass of mussels (excluding empty

shells) in each patch after drying for 48 hours at 80 °C.

Growth and Immigration

To measure individual growth rates, the mussels were marked with calcein (ICN
Biochemicals, Inc., Cleveland, Ohio), a dye which binds to calcium and fluoresces under
UV light. The mussels were immersed in a 125 mg/L solution (Wilson et al. 1987) for 40
hours before being assembled into patches. After the patches were collected from the
field, mussels >5 mm SL in the three sets of 5 mo patches, and the set of 10 mo patches,
were examined for the presence of the calcein mark. Shells were placed in 10% sodium
hypochlorite bleach for 15 to 18 h to remove the periostracum and any other organic
material, and then examined under long wave (peak 365 nm) ultraviolet light (Blak Ray
UVL-22 lamp, Ultraviolet Products Inc., San Gabriel, California USA) with a dissecting
microscope. Initial (exposure to calcein) and final shell length of all individuals with a
visible calcein mark was measured with calipers or an ocular micrometer. Mussels <5
mm were not examined for calcein marks because the preparation of the shells made them
brittle and difficult to examine. Mussels in the 15 mo patches were not examined for
calcein because most of the patches contained no individuals >5 mm SL.

I also used the calcein marks to estimate the number of immigrant mussels in each
set of experimental patches at the time they were collected from the field. To determine

the proportion of mussels exposed to calcein which had a visible mark, I held 60 to 90
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marked mussels in the laboratory for comparison with each set of experimental patches,
except the third 5 mo set. While in the laboratory, mussels were held in sand-filtered

running seawater at ambient temperature; no additional food was provided.

Mortality

I recorded the number of whelks (Nucella lapillus) present on the experimental
patches at approximately weekly (in summer) or monthly (in winter) intervals. From
June to October 1995, I recorded the number of whelks on the natural patches at
approximately weekly intervals. I compared the number of whelks on experimental and
natural mussel patches to determine if the mesh base and epoxy attachment of the
transplanted patches altered whelk behavior.

To assess sources and rates of mussel mortality, I collected empty mussel shells in
the experimental patches on the same dates as I recorded the number of whelks. Empty
shells were measured and examined for a drill hole indicative of whelk predation (Chapter
5). Whelks experienced with feeding on mussels will sometimes attack small individuals
between the posterior margins of the shell (Hughes & Burrows 1993). I was able to
detect these attacks from the semi-circular mark left on the shell margin. 1 summed,
separately, the number of empty shells with whelk drill holes and the number of non-
drilled empty shells collected from each patch. The cumulative number of drilled shells
collected from a patch provides an index of predation intensity. The cumulative number
of non-drilled shells provides an index of mortality resulting from causes other than
predation, assuming they did not result from sea star predation because sea stars were rare
at my site. Some empty shells were undoubtedly dislodged by waves before they could
be collected, and mortality of mussels <5 mm SL was probably less detectable than that of
larger individuals. I did not include mussels that died after the last date a patch was

checked for empty shells but before the patch was removed because these shells were
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included in the final patch area and [ wanted to examine the relationship between

cumulative mortality and final patch area.

Statistical Analysis of Transplantation Experiment

I excluded from analysis data from one of the 4 blocks for the second and third 5
mo sets, December 1994-April 1995 and May-October 1995. Most experimental patches
from these sets in this block were detached and washed away by waves within days of
transplantation and before the mesh covers were removed. As a result, comparisons of
the three sets of 5 mo patches include only 3 blocks while comparisons of the 5, 10, and
15 mo patches which were transplanted in July 1994 include 4 blocks.

Most analyses were carried as randomized block designs using ANOVA. Data
were averaged across patches for each plot. Because of the lack of replication of plots
within blocks, the full model including interactions with block could not be tested. My
choice of blocks was arbitrary and, although I consider block a random factor, I do not
wish to draw inferences about the population of blocks from which they were selected.
With the exception of one analysis, Tukey's test for non-additivity (e<=0.05) indicated
that there were no significant interactions resulting from multiplicative effects of
differences due to blocks and those due to the other factors (Kirk 1995). Therefore, I
used an additive model, assuming no interactions with block (see Newman et al. 1997 for
discussion of models for analysing block designs). Block was a random factor with 3 or
4 levels, habitat (tidepool and emergent rock) was a fixed factor with 2 levels, and patch
age (5, 10, or 15 mo, transplanted in July 1994) or transplantation date (the three sets of 5
mo patches) was a fixed factor with 3 levels. The effect of each of these factors was
examined against the residual error. In the single case where Tukey's test was
significant, I used a non-additive model. In this case, the effect of habitat was examined
against the habitat x block interaction term, the effect of patch age was examined against

the patch age x block interaction term and the effect of the habitat x patch age interaction
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term was examined against the habitat x patch age x block interaction term; no tests of the
effect of block or of any the interactions between block and the other factors could be
carried out. Prior to ANOVA, Cochran's test was used to ensure that the data satisfied

the assumption of homogeneity of variances («<=0.05). Where necessary, raw data were

log or log (x+1) transformed to satisfy this assumption.

Wave forces and probabilities of mussel dislodgment

I measured maximum water velocities in tidepools and on emergent rock from
October 1994 to April 1995 using meters based on the design of Bell and Denny (1994).
Each meter consists of a practice golf ball attached to a spring in a plastic housing which
is anchored to the substratum. I used a spring with a tension similar to the tension of the
stiff spring described by Bell and Denny (1994), but modified the attachment system
slightly: each meter was fastened to the substratum by hooking it to a stainless steel
fishing swivel attached to the substratum by a stainless steel screw. Two or three velocity
meters were deployed in each habitat and checked and reset at 10 to 43 d intervals. The

extension of the spring (x, in m) was converted to water velocity (u, m/s) using the
1

kx+c
a

relationship u =( )b where k and c are constants (2924 and 5, respectively) which

are properties of the spring determined from the relationship between force (F) and
spring extension, F=k x + ¢, (F,=101.6, p<0.001, r’=0.95). The constants a and b
(0.575 and 1.93, respectively, Bell and Denny 1994) are hydrodynamic properties of the
practice golf ball. To compare these velocity measurements to wave heights, I obtained
records of significant wave heights from a buoy at the mouth of Halifax Harbour (44.483
°N, 63.417 °W, depth 56.7 m) ~ 40 km from the study site (unpubl. data, Department of
Fisheries and Oceans, Canada).

I measured attachment strength of mussels in natural assemblages as the force
required to dislodge them from the substratum. In July and August 1997, I measured

dislodgment forces for 10 mussels from both the tidepool and the emergent rock plot in



193

each of 3 experimental blocks. The problematic fourth block was excluded because there
were very few large mussels (>10 mm), precluding sampling of the entire experimental
size range. In July 1997, I also measured dislodgment forces for an additional 10
mussels from both a tidepool and an emergent rock plot in each of 3 areas adjacent to the
experimental blocks. Dislodgment force was measured perpendicular to the substratum
because mussels are most strongly affected by hydrodynamic forces acting in this
direction (Denny 1987). A thin multifilament fishing line was tied around each mussel
and attached to a 250 g or 2000g spring scale (Ohaus). The dislodgment force was
measured on the scale by pulling it at a right angle to the substratum until the mussel was
detached. Shell length (SL, mm) of each detached mussel was measured and converted to
cross-sectional area (A, cm?) using the relationship: A=0.003 x SL'** (Chapter 5). I
was not able to measure dislodgment force for mussels in the center of patches, or for
individuals <5 mm SL, because of difficulties in tying the line around these individuals.
Because dislodgment force of mussels in the center of patches is generally lower than that
of individuals at the edge (Witman & Suchanek 1984), my measurements may
overestimate average dislodgment force.

I pooled dislodgment forces of mussels across blocks within a habitat for the
analysis. I used Denny's (1995) method to calculate probabilities of wave dislodgment
using the measured dislodgment forces and estimates of the hydrodynamic forces
imposed on mussels. The data relating dislodgment force (f) to mussel size (A, cross-
sectional area) were fit to an allometric model: f,=j + m A% where f; is the predicted
dislodgment force and j , m, and q are constants fit to the power curve for each date using
a nonlinear, simplex iterative procedure (Systat, Wilkinson 1992). Each measured
dislodgment force was normalized by dividing the measured force by the dislodgment
force predicted by the allometric model. The normalized dislodgment forces (f,=f/fp)
were ranked in ascending order and the probability (P) that an individual had a normalized
dislodgment force less than a force of rank i was estimated as: P (f,<f, ;) =i/ (N + 1)



194
where N is the total number of individuals sampled. The cumulative probability

distribution of normalized dislodgment force (P(f,)) was estimated by fitting a modified
Weibull model: P(f)= exp{-[(a- bffn)/(a-bc)]"b}, where a, b, and ¢ are constants.

I then predicted the hydrodynamic force which would be imposed on mussels.
Water movement exerts three types of forces on benthic organisms: lift, drag, and the
acceleration reaction (Denny et al. 1985, Denny 1987, 1995). In a tightly packed mussel
patch, mussels shield their neighbors from hydrodynamic forces acting along the direction
of flow (drag and acceleration) and provide physical support in resisting these forces
(Denny 1987). However, lift forces, which are caused by a difference in pressure
between the top and bottom of a mussel and act perpendicular to the direction of water
motion, can potentially dislodge mussels (Denny 1987). The relationship between lift (L)
and maximal water velocity (U) is: L=(1/2pU*C,A where p is the density of seawater
(1025 kg/m?), C, is the coefficient of lift and A is the cross-sectional area of a mussel
(Denny 1987). Denny (1987) estimated that C, for M. californianus is 0.88. Because the
relationship between shell height, length, and width of M. trossulus is similar to that of
M. californianus, 0.88 is also a reasonable estimate of the lift coefficient for M. trossulus
(Bell & Gosline in press). Using this equation, I calculated lift forces imposed on
mussels of 4 sizes, the midpoints of the experimental size classes (2.5, 7.5, 12.5, 20 mm
SL), from maximal water velocities measured by my wave meters in tidepools and on
emergent rock. I normalized the calculated lift force for each mussel size by dividing it by
the predicted dislodgment force (f,) for a mussel of that size (see above), and used this as
the normalized force (f,) in the Weibull model (see above) to obtain the probability of

dislodgment.

Movement of Mussels
I investigated the mobility of mussels in tidepools and on emergent rock by

tagging individuals from ~5 to 25 mm SL with numbered plastic bee tags (Stecle &
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Brodie Ltd., Hampshire, England). These tags are small (2.6 mm diameter, 0.02 mm

thickness) and lightweight (0.0014 g) and presumably have no measurable effect on
movement of mussels. The same tags have been used to study swimming movements of
juvenile scallops within a similar size range (Carsen et al. 1995). I tagged the mussels in
situ after draining the water from the tidepools. I dried one shell valve on each selected
mussel, cleaned it with acetone, and affixed a tag using cyanoacrylate glue. Mussels <5
mm were not tagged because their small size made it difficult to attach a tag without gluing
the valves shut. In August 1994, I tagged 15 individuals in each of two tidepools
(outside of the experimental blocks) and two plots of emergent rock (in two of the
experimental blocks) and monitored them for 2-3 weeks. In July and August 1995, I
tagged 20 mussels in both a tidepool and an adjacent plot of emergent rock (in one of the
experimental blocks) and monitored them for ~4 weeks. I determined the location of each
tagged mussel at 2-10 d intervals by measuring the distances between the mussel and 2
reference bolts drilled into the rock. Tagged mussels were grouped into two categories of
initial position: in patches (at center or edge) and isolated (alone or in a small group, or on
top of the monolayer of mussels in a patch). Mussels on top of a patch were considered
to be isolated rather than in a patch because their frequencies of movement and
disappearance were more similar to those of mussels which were alone than to those in
patches. Contingency tables (G-test) were used to compare the frequency of movement
and disappearance of mussels between habitats, positions, and dates. I converted the
distances of the mussels from the reference bolts to x and y coordinates and calculated the

total distance moved by each mussel trigonometrically.

RESULTS
The Physical Environment
Tidepool salinity was relatively constant and similar to sea surface salinity (Fig.

6.2). Mean water temperature in tidepools was usually a few degrees higher than mean
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sea surface temperature in spring and summer. Tidepool temperatures closely tracked air
temperatures (Fig. 6.2). Although I sampled once a month, air temperatures on my
sampling dates were representative of average maximum air temperatures. Monthly
means of maximum air temperature ranged from -0.2 °C in February 1995 to 23.9 °C in
July 1994 and 22.6 °C in July 1995 (unpubl. data, Environment Canada). Variability in
temperature and salinity among tidepools was low, probably because these mid-zone

pools were isolated from seawater input during low tide for only 3-8 h (pers. obs).

Patch dynamics

The mean area of experimental patches remained relatively constant over
successive measurements of patches of different ages (5, 10 and 15 mo), and of 5 mo
patches transplanted at different times (Fig. 6.3). The final area of patches transplanted in
July 1994 did not differ significantly between habitats (F,,,=0.52, p=0.48), blocks
(F,,5s=1.70, p=0.21), or patch ages (5, 10, and 15 mo, F,,;=0.46, p=0.54), and there
was no significant interaction between habitat and patch age (F,,;=0.66, p=0.53).
Similarly, the change in area of natural patches over the same 15 mo period did not differ
significantly between habitats (F, ;=0.05, p=0.84) or blocks (F;3=4.0, p=0.14). Also,
there was no significant variation in final patch area of the three different sets of 5 mo
patches between habitats (F, ,=0.13, p=0.73), blocks (F,,,=0.22, p=0.81) or
transplantation dates (F, ,,=0.37, p=0.70); there was no significant interaction between
habitat and transplantation date (F, ,,;=0.001, p=0.99). Despite the constancy of mean
patch area, the area of individual mussel patches (experimental and natural) varied
markedly. Many patches disappeared or decreased considerably in size. For example,
~44% of experimental patches in tidepools and 25% of those on emergent rock were <5
cm” in final area (i.e. <45 % of the mean area at the first sampling date after

transplantation, 11 cm?). Large increases in patch area were less common than decreases:
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~10% of experimental patches had a final area of >25 cm’ (i.e. ~225 % of the mean area
area after transplantation).

Final patch biomass for each set of experimental patches was, on average, lower
than the estimated initial biomass of 4.8 g (Fig. 6.4a) For the experimental patches
transplanted in July 1994, final patch biomass varied significantly with patch age
(F,,5=6.7, p=0.01): final biomass of the 15 mo patches was significantly lower than that
of the 5 and 10 mo patches, which did not differ significantly (SNK, p<0.05). Final
biomass did not differ signficantly between habitats (F,,;=1.3, p=0.27) or blocks
(F,,5s=2.5, p=0.10), and there was no significant interaction between habitat and patch
age (F,;=1.5, p=0.25). For the three sets of 5 mo patches, final patch biomass did not
differ significantly between habitats (F, ,,=0.78, p=0.40), blocks (F,,,=0.38, p=0.69)
or transplantation dates (F, ,,=0.96, p=0.42); there was no significant interaction between
habitat and transplantation date (F, ,;=0.03, p=0.97).

Final number of mussels in a patch was greater than the initial number of 150
individuals, except for the second (winter) set of 5 mo patches (Fig. 6.4b). Final number
of mussels in the experimental patches transplanted in July 1994 did not differ
significantly between habitats (F, ;,=0.42, p=0.53), blocks (F;,s=2.05, p=0.15), or
patch ages (F, ,;=0.94, p=0.41), and there was no significant interaction between habitat
and patch age (F, ,,=0.55, p=0.59). For the three sets of 5 mo patches, variation in final
number of mussels in a patch with transplantation date was marginally non-significant
(F,,0=3.48, p=0.07), indicating a trend towards a lower number of mussels in the
patches from the second (winter) set of 5 mo patches compared to the other sets of
experimental patches. There were no significant differences between habitats (F, =0.01,
p=0.91) or blocks (F,,,=1.61, p=0.25) and no significant interaction between habitat
and transplantation date (F, ,,=0.02, p=0.98).

The size distribution of mussels in experimental patches changed after

transplantation as the proportion of small mussels (<5 mm SL) increased in both habitats.
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The size distribution of mussels in the experimental size classes (<5, 5-9.9, 10-14.9, 15-
24.9 mm), compared using contingency tables (G-test) differed significantly from the
initial size distribution in the S, 10 and 15 mo patches transplanted in July 1994 (mussels
pooled across patches and blocks; emergent rock, G,=63.3, 156.5, 420.3, respectively;
tidepools, G,=128.4, 187.3, 218.1, respectively; p<0.001), in the second set of 5 mo
patches on emergent rock (G,=14.8., p=0.002) but not in tidepools (G,=3.3., p=0.35),
and in the third set of 5 mo patches in both habitats (emergent rock, G,=186.6; tidepools,
G,=81.9; p<0.001). Mussels <1 mm SL were proportionately more abundant in
tidepools than on emergent rock (Fig. 6.5) such that, in Kolmogorov-Smirnov tests, size
distributions (in 1 mm size classes) differed significantly between habitats in the 5, 10 and
15 mo patches transplanted in July 1994 (D_,=0.15, 0.09, 0.12 respectively, p<0.001)
and the third set of 5 mo patches (D_,,=0.08, p<0.001), but not the second set of 5 mo
patches (D, =0.06, p>0.10). Small mussels (<2 mm SL) are also proportionately more
abundant in tidepools than on emergent rock in natural mussel assemblages (Chapter 5).
In each habitat, cumulative size distributions also differed (D, >0.11) among patches of
different ages (5 vs 10, 10 vs 15, 5 vs 15 mo: tidepools, D_,=0.11, 0.24, 0.35,
respectively; emergent rock, D, =0.10, 0.23, 0.28, respectively; p <0.001) and
transplantation dates (1st vs 2nd, 2nd vs 3rd, Ist vs 3rd set of 5 mo patches: tidepools,
D,,=0.40, 0.15, 0.28, respectively; emergent rock, D, =0.29, 0.16, 0.24, respectively;
p <0.001). Overall, the proportion of mussels <1 mm decreased with patch age and was
greater in the first set of S mo patches than in the second or third set (Fig. 6.5). In
tidepools, mussels >5 mm were proportionately less abundant after 15 mo than after 5 or

10 mo in patches transplanted in July 1994 (Fig. 6.5).

Growth
Marking with calcein indicated that transplanted mussels grew slowly: mean

change in shell length of mussels >5 mm ranged from 1.2 to 2.2 mm among the 3 sets of



199

5 mo patches (Fig. 6.6). These growth rates were consistent with my previous estimates
for mussels in tidepools at Cranberry Cove, based on external rings on the shell (Hunt &
Scheibling 1995). Prior to ANOVA, change in shell length was averaged across mussels
(n=4-32) within a patch and then across patches within a block for each habitat. Mean
change in shell length of the three sets of 5 mo patches varied significantly among blocks
(F,.10=10.69, p=0.003) and was significantly greater in tidepools than on emergent rock
(F1.10=17.91, p=0.002) and significantly lower for the second set of 5 mo patches
(December 1994-April 1995) than for the first and third sets (F; 16=16.55, p=0.001, SNK
p<0.05) (Fig. 6.6); there was no significant interaction between habitat and
transplantation date (F, jp=1.19, p=0.344). In contrast, change in shell length of the 10
mo patches did not differ between habitats (F, ;=0.45, p=0.55) or blocks (F33=0.89,
p=0.54) (Fig. 6.6). These results indicate that growth rates of mussels in 5 mo, but not
10 mo patches, were slightly higher in tidepools than on emergent rock and that growth
rate was lower in winter than in summer and fall. Mean change in shell length (£1S.D.)
of mussels held in the laboratory was 1.9+1.2 mm and 0.6+0.3 mm for mussels in the
first and second 5 mo sets respectively, and 1.1+1.0 mm for mussels in the 10 mo
patches, indicating that growth rates in the laboratory were similar to those in the field.

As growth rates of mussels often vary with size (Seed & Richardson 1990), I
examined the relationship between change in shell length and initial shell length of marked
individuals. I used ANCOVA to compare this relationship between tidepools and
emergent rock (block was not included as a factor). If there was no significant interaction
between habitat and initial shell length, patches from both habitats were pooled in a
regression. If the interaction was significant, regressions were carried out separately for
tidepools and emergent rock. There was a significant relationship between change in shell
length and initial shell length for mussels in the first (F, ;53=8.68, p=0.0037, r’=0.054)
and third sets of 5 mo patches (F; ;30=6.33, p=0.013, r*=0.22). Change in shell length

of mussels in the second set was significantly related to initial shell length on emergent
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rock (F;,30=15.8, p<0.001, r’=0.11) but not in tidepools (F,;;;=0.15, p=0.70).
However, the low values of r in these analyses indicate that initial shell length explains
little of the variance in growth rate of mussels in the three sets of 5 mo patches. There
was no significant relationship between change in shell length and initial shell length for
mussels in the 10 mo patches (F; ;65=0.023, p=0.88).

Since individual growth rates of mussels may be influenced, either negatively or
positively by neighbouring mussels in a patch, I examined the relationship between
individual growth rate and patch size using the same procedure I employed with initial
shell length. Mean change in shell length (pooled over habitats) was significantly
positively related to patch area and the number of mussels in a patch for 10 mo patches
(area: F ;5=4.83, p=0.04, r’=0.243; number: F, ;5=7.26, p=0.02, r’=0.346) (Fig. 6.7).
Individual growth rate in the second set of 5 mo patches also was significantly related to
patch area on emergent rock (F, ;=7.72, p=0.03, r2=0.56) (Fig. 6.7), but not in tidepools
(F,6=1.0, p=0.36). In contrast, mean change in SL of mussels in the second set was not
significantly related to number of mussels in a patch (pooled over habitats, F, ;=0.12,
p=0.74). There was no significant relationship between mean change in shell length and
patch area or number of mussels in a patch in the first (area, F; ;6<0.001, p=0.99;
number, F, ;4=4.18, p=0.06) and third sets of 5 mo patches (area, F, s=4.5, p=0.07;
number, F; s=2.07, p=0.21 for emergent rock only as there were insufficient numbers of
patches with marked mussels from tidepools). These results indicate that over a 10 mo
interval (and in some cases over S mo), a positive relationship develops between the
growth rate of individual mussels and the size of a mussel patch, at least among mussels

>5 mm SL.

Recruitment
Based on the low growth rates, mussels <2 mm SL were considered to be recent

recruits to the patches. Mussels recruited to each set of experimental patches (Fig. 6.8).
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When recruit abundances per patch were compared among patches of different ages, there
were no significant differences among blocks (F, ,s=2.5, p=0.10), habitats (F, ,=0.003,
p=0.96), or patch ages (F,,;=0.43, p=0.66), and no significant interaction between
habitat and patch age (F,,,=0.47, p=0.63) (Fig. 6.8). When recruit abundances were
compared among sets of 5 mo patches with different transplantation dates, recruit
abundance was significantly lower in the second (winter) set than in the first or third
(summer/fall) sets (F,;0=5.30, p=0.027, SNK p<0.05) (Fig. 6.8), but did not vary
significantly among blocks (F, 0=2.88, p=0.103) or between habitats (F;,0=0.32,
p=0.585); there was no significant interaction between habitat and transplantation date
(F.10=0.038, p=0.963). These results indicate that recruit abundance in a patch did not
differ between tidepools and emergent rock or among patches of different ages, but was
lower in S mo patches transplanted in winter than in those transplanted in summer.

Since recruitment rate may be influenced by the presence of conspecifics, I
examined the relationship between recruit abundance in a patch and patch area using the
same procedure I employed for change in shell length. Recruit abundance was
significantly positively related to patch area for 5, 10, and 15 mo patches transplanted in
July 1994 (5 mo, F; 19=9.14, p=0.007, r’=0.33; 10 mo , F, ;5=7.37, p=0.01, r’=0.28;
15 mo, F, ;,=56.6, p=0.0001, r’=0.83) and for the third set of 5 mo patches (F, 14=24.9,
p=0.0002, r’=0.64) but not for the second set, although this relationship was only
marginally non-significant (F, ;5=3.77, p=0.07) (Fig. 6.9). Because the area available
for mussel settlement (the mesh bases of the experimental patches) was the same size for
all experimental units, this positive relationship is directly or indirectly attributable to the

abundance of conspecifics.

Immigration
The increase in area of some experimental patches was too large to be accounted

for by gains due to growth and recruitment. Large increases in patch size often occurred
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within a few days between observations and were associated with storms, suggesting that
waves deposited large mussels on the patches. For example, a patch which increased in
area to 50 cm? contained 25 mussels larger than 15 mm in December 1994, 5 mo after it
had been transplanted to the shore with only 4 mussels in this size range. Given the low
growth rates of mussels at Cranberry Cove, these large individuals must be immigrants. [
estimated the number of immigrant mussels > Smm SL (the size limit for detecting the
calcein mark) in a patch by subtracting the estimated number of mussels exposed to
calcein from the total number of mussels >5 mm. The number of mussels >5 mm
exposed to calcein was estimated by dividing those with a visible calcein mark by the
proportion of mussels exposed to calcein and held in the laboratory which had a visible
mark (32-39%, Table 6.1). This assumes no difference between mussels held in the
laboratory and those transplanted to the field in the proportion with a detectable calcein
mark. Calcein marks which were not visible were probably very close to the edge of the
shell or obscured by disturbance rings formed when the mussels were brought into the
laboratory. For the 5 and 10 mo patches transplanted in July 1994, the percentage of
mussels with a visible calcein mark in the field (29-36%) was not significantly different
from that in the laboratoy (36-39%) (Table 1) (habitats pooled: 5 mo, G,=2.64, p=0.10;
10 mo, G,=0.76, p=0.39). At the end of these intervals, the number of mussels >5 mm
estimated to have been present at the time of transplantation (i.e. non-immigrants) was
always lower than or similar to the known initial number of mussels >5 mm. The
percentage of mussels with a visible calcein mark in the second set of 5 mo patches was
significantly higher in the field than in the laboratory (habitats pooled, G,=18.0,
p<0.001) (Table 1). I have no explanation for this discrepancy and consequently I did
not estimate immigration for this interval.

According to my calculations, the percentage of mussels >5 mm SL which were
immigrants ranged from 15 to 26 % in the S and 10 mo patches and did not differ
significantly between habitats (5 mo, t;=0.51, p=0.63; 10 mo, t,=0.32, p=0.76). The
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percentage of immigrants in the third set of S mo patches was estimated using the
mean percentage of mussels with a visible calcein mark in the laboratory during the other
time intervals. According to this calculation, the percentage of immigrants was
significantly higher in tidepools (55 %) than on emergent rock (16 %) (t,=7.50,
p=0.002).

Whelk Predation and Other Mortality

Whelks were often present on the experimental patches in summer and fall. The
mean number of whelk post-recruits (>5 mm SL) per patch was 0.11 and 0.04 in
tidepools and on emergent rock, respectively, from July to October 1994, and 0.10 and
0.20, respectively, from May to October 1995 (Fig. 6.10). No whelks were observed on
the experimental patches from November 1994 to March 1995. Mean number of post-
recruits per patch from July to October 1994, and from May to September 1995, did not
differ significantly between tidepools and emergent rock (F, ;=0.04, p=0.85) or among
blocks (F,,=0.72, p=0.56) or between the two time intervals (F, ,=2.1, p=0.19); there
was no significant interaction between habitat and time interval (F, ,=3.16, p=0.11).

To determine if the mesh base and epoxy attachment of the transplanted patches
altered whelk behavior, I compared whelk densities on experimental and natural mussel
patches. I compared whelk densities rather than number of whelks per patch because
natural patches were slightly larger than experimental patches (Fig. 6.3). Mean whelk
density (number/cm’ of mussel patch) on patches from June to October 1995 did not
differ between experimental (third set of 5 mo patches) (0.01/cm?) and natural patches
(0.03/cm®) (F,(=4.29, p=0.084), between habitats (F, (=0.30, p=0.607), or between
blocks (F,¢=0.57, p=0.592), and there was no significant interaction between habitat and
patch type (F, =1.30, p=0.30). Therefore, I conclude that, both in tidepools and on
emergent rock, whelks encountered experimental and natural mussel patches at a similar

rate and exhibited natural foraging behavior on experimental patches. The pattern of
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whelk abundance on the experimental and natural patches also was similar to that
observed at the larger scale of the plots: mean densities of whelk post-recruits in the plots
peaked in 1994 at 58/m? and 76/m’ in tidepools and on emergent rock, respectively, and
in 1995 at 68/m? and 250/m? respectively (Chapter 5). Whelk densities were <10/m” in
both habitats in winter.

The cumulative number of empty shells with whelk drill holes collected from the
experimental patches provides an index of predation rate. I compared the cumulative
number of drilled shells between habitats for the first (July-December 1994) and third
(May-October 1995) sets of 5 mo patches using a non-additive model since Tukey's test
indicated significant non-additivity (p<0.05). I did not include the second set of S mo
patches (December 1994-April 1995) in my comparisons since no drilled shells or whelks
(Fig. 6.10) were observed in the patches during this winter period. I did not compare
between habitats for the 10 and 15 mo patches because mussels in tidepools were exposed
to whelks for 2 weeks longer than patches on emergent rock at the start of the experiment.
For the first and third sets of 5 mo patches, the cumulative number of drilled shells per
patch did not differ significantly between habitats (non-additive model, F,,=1.2,
p=0.39), or transplantation dates (F,,=0.02, p=0.91), but there was a significant
interaction between habitat and transplantation date (F,,=173.6, p=0.006). The
cumulative number of drilled shells per patch was significantly higher in tidepools
(8.4/patch) than on emergent rock (1.7/patch) for the first set of 5 mo patches, but
significantly lower in tidepools (3.9/patch) than on emergent rock (7.7/patch) for the third
set of 5 mo patches (t-tests, p<0.05) (Fig. 6.11). The cumulative number of drilled shells
per patch was significantly higher for the first than the third set of 5 mo patches in
tidepools, while the reverse was true on emergent rock (t-tests, p<0.05). Regression
analysis indicated that the number of drilled shells collected from a patch was significantly
related to the number of whelks observed on a patch (pooled over habitats and sets of

patches, F, ,,=8.94, p=0.005, r’=0.19). These results indicate that whelk predation was
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greater in patches in tidepools than on emergent rock in 1994, but lower in patches in
tidepools than on emergent rock in 1995.

The cumulative number of non-drilled empty shells collected in mussel patches
provides an index of non-predatory mortality. No non-drilled empty shells were
observed in the patches during the winter. The cumulative number of non-drilled empty
shells was significantly higher for the first set of 5 mo patches (5.7/patch) than the third
set of 5 mo patches (0.8/patch) (F, =46.9, p<0.001), but did not differ significantly
between habitats (F,,=0.18, p=0.69) or blocks (F,,=1.5, p=0.29); there was no
significant interaction between habitat and transplantation date (F,,=0.07, p=0.80).
Mussels in the 10 and 15 mo patches in tidepools probably experienced some
physiological stress shortly after transplantation when patches on emergent rock died (see
Methods, Transplantation Experiment). For 10 and 15 mo patches, there was a
trend towards a higher cumulative number of non-drilled empty shells per patch from July
to December 1994 for patches in tidepools (x+S.E.=6.4+1.7 and 6.3+2.2, respectively)
than for the replacement patches on emergent rock (0.8+0.6,1.1x0.4, respectively).
However, the number of non-drilled shells did not differ significantly between habitats
(sets pooled, F, ;=4.4, p=0.13) or blocks (F,,=0.6, p=0.66). These results indicate that
non-predatory mortality was similar in tidepools and on emergent rock and that, for
patches transplanted in spring or summer, it was lower for those which were acclimated
to emersion before transplantation (10 and 15 mo patches on emergent rock, 3rd set of 5
mo patches) than for those that were not acclimated (1st set of 5 mo patches, 10 and 15
mo patches in tidepools).

To determine whether mussel mortality influenced patch size, I examined the
relationship between final patch area and the cumulative number of drilled and non-drilled
empty shells collected from a patch. Because most drilled mussels are >5 mm SL, whelk
predation probably has a greater effect on patch area than on the number of mussels in a

patch. However, regression analysis showed no significant relationship between final
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patch area and the number of drilled mussels collected from July to December 1994 (all

patches, F, ,=2.3, p=0.14, r’=0.04) or from May to October 1995 (3rd set of 5 mo
patches, F, ,=1.69, p=0.21, r’=0.10). Similarly, there was no significant relationship
between final patch area and number of non-drilled mussels collected from July to
December 1994 (all patches, F, (,=2.4, p=0.12, r’=0.04) or from May to October 1995
(3rd set of 5 mo patches, F, ,,=1.54, p=0.23, r’=0.09). The low values of r* indicate

that cumulative mussel mortality explains little of the variation in size among patches.

Wave Disturbance

Mean maximum water velocities between November 1994 and April 1995 ranged
from 5.2 to 11.2 m/s in tidepools and from 7.6 to 12.2 m/s on emergent rock (Fig. 6.12).
These water velocities correspond to maximum forces of 14 to 72 N, which are
comparable to the maximum wave forces measured (with the same type of wave meter) by
Blanchette (1997) at a wave-exposed site in Oregon, USA. The greatest water velocities
were measured in February 1995 when significant wave heights of up to 9.4 m (Fig.
6.12), and a maximum wave height of 14.5 m, were recorded. Mean maximum water
velocities were significantly greater on emergent rock than in tidepools (F,,,=5.9,
p=0.032) and differed significantly among dates (F,,,=15.4, p=<0.001); there was no
significant interaction between habitat and date (F,,,=0.6, p=0.69) .

In July and August 1997, the force required to dislodge mussels ranged from 0.5
to 18 N, increasing with increasing mussel size (Fig. 6.13a). In both months,
dislodgment force was significantly related to mussel cross-sectional area (July,
F1.116=36.1, p=0.0001; August, F, 5=50.5, p=0.0001), but did not differ significantly
between habitats (July, F; ;;6=0.8, p=0.13; August, F| 5¢=3.61, p=0.06). Although the
difference between habitats was only marginally non-significant in August, this was
mainly due to the influence of the high dislodgment forces measured for two of the largest

mussels in tidepools. There was no significant interaction between mussel area and
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habitat (July, F,;,6<0.001, p=0.98; August, F,s=3.38, p=0.07). Consequently, I
pooled measurements from the two habitats before fitting the data to the allometric model
(see Methods, Wave Dislodgment). The relationship between dislodgment force and shell
area was exponential in July but nearly linear in August (Fig. 6.13a). As a result,
dislodgment forces were higher in August than in July for mussels within the range of the
experimental size classes (up to 1.1 cm? cross-sectional area, 25 mm SL), but similar in
both months for larger (>1.1 cm?) mussels (Fig. 6.13a). This change in dislodgment
force (attachment strength) may be a response to increased wave action between the
measurement dates. The maximum significant wave heights in the 3 weeks preceding the
July measurement were <2 m (unpubl. data, Department of Fisheries and Oceans,
Canada). Between the July and August measurements, recorded wave heights were also
<2 m (unpubl. data, Department of Fisheries and Oceans, Canada) with the exception of
one day when they were >4 m (T. Balch, surfer, pers. comm.). As previously
described, I converted each measurement of dislodgment force (f) to a normalized force
(f,) by dividing it by the predicted force (f,) from the allometric model and then calculated
the probability (P) that an individual had a normalized dislodgment force less than a force
of rank i (see Methods, Wave Dislodgment). The Weibull model provided a good
estimate of the cumulative probability distribution of the normalized dislodgment forces in
both July and August (r*>0.99, Fig. 6.13b).

For comparison with dislodgment forces, I predicted the hydrodynamic lift force
exerted on mussels of each of 4 sizes, the midpoints of the experimental size classes (2.5,
7.5, 12.5, 20 mm SL, which correspond to cross-sectional areas of 0.02, 0.12, 0.31,
and 0.73 cm’ respectively), over a range of water velocities. Water velocity in tidepools
averaged 87% of that on emergent rock, based on the five intervals when wave meters
were deployed in both habitats (Fig. 6.12). Consequently, at a given time, predicted lift
forces exerted on mussels were up to 1.3 times higher on emergent rock than in tidepools

(Fig. 6.14). Predicted lift forces increased with increasing water velocity and mussel
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size. For example, lift forces on 7.5 and 20 mm mussels were 0.1 and 0.82 N,
respectively, at 5 m/s and 1.2 and 7.4 N, at 15 m/s (Fig. 6.14).

I estimated the probability of dislodgment of each of the 4 sizes of mussels by
water velocities of up to 15 m/s using the predicted lift forces (Fig. 6.14) and the
cumulative probability distribution of dislodgment forces (Fig. 6.13b). The probability of
dislodgment of mussels in the smallest size class (2.5 mm SL) was ~ 0 in both tidepools
and emergent rock but it increased markedly with increasing mussel size (Fig. 6.15)
because lift forces increased faster with size than dislodgment forces. Because of the
difference in water velocities between tidepools and emergent rock, the probability of
dislodgment, at a given time, of mussels from 7.5 to 20 mm SL was higher on emergent
rock than in tidepools (Fig. 6.15). For 12.5 and 20 mm SL mussels, probabilities of
dislodgment were 2-5 times greater in July than August 1997 because of differences in
dislodgment forces. Probabilities of dislodgment increased with increasing water velocity
(Fig. 6.15). For example, maximal water velocities of 6 m/s, such as those observed
during the last period (April 18-27, 1995) during which wave meters were deployed,
maximum significant wave height=3.4 m, (Fig. 6.12), were predicted to dislodge <3 %
of mussels in either July or August. By comparison, maximal water velocities of 9 m/s
on emergent rock (7.8 my/s in tidepools), such as those observed March 12-April 18, 1995
(maximum significant wave height=4.5 m) (Fig. 6.12) were predicted to dislodge ~27 %
of large mussels (12.5 and 20 mm SL) on emergent rock and ~15 % in tidepools in July.
In contrast, these velocities would only dislodge 3-7% of large mussels on emergent
rock, and 1-2% in tidepools in August. Probability of dislodgment would, of course, be
higher in the largest storms, but mussels are probably more strongly attached in fall and
winter when large storms are most frequent. Overall, this model indicates that mussels
>10 mm SL are vulnerable to dislodgment by waves and that mussels on emergent rock

will be dislodged more frequently than those in tidepools.
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Movement

The tagging study indicated that mussels of 5-20 mm SL are mobile, although
they move infrequently and for short distances. In August 1994 and July 1995, 21 to
56% of mussels in patches and 67 to 86% of isolated mussels moved within 13-27 days
(Fig. 6.16). In October 1995, only 7-10% of mussels in patches and 43-66% of isolated
mussels moved within 30 days (Fig. 6.16). The percentage of mussels that moved did
not differ significantly between tidepools and emergent rock during each study period
(August 1994: in patches, G,=2.87, p=0.09; isolated, G,=0.27, p=0.60; July 1995: in
patches, G,=1.44, p=0.23; isolated, G,=0.07, p=0.79; October 1995: in patches,
G,=0.11, p=0.74; isolated, G,=0.56, p=0.46). Isolated mussels in both habitats were
significantly more likely to move than those in patches (habitats pooled; August 1994,
G,=6.66, p=0.01; July 1995, G,=10.48, p=0.001; October 1995, G,=11.49, p=0.001).
In 1995, a higher percentage of mussels in patches moved in July, when maximum
significant wave heights were 2.8 m (Fig. 6.12), than in October (habitats pooled,
G,=4.93, p=0.03), when wave heights reached 4.9 m (Fig. 6.12). The percentage of
isolated mussels that moved did not differ significantly between these dates (habitats
pooled, G,=1.16, p=0.28).

Distances moved by tagged mussels were usually <5 cm with a modal class of 1-2
cm, although 6 out of 68 individuals moved 10-49 cm (Fig. 6.17). I pooled all mussels
since distance moved during each of the study periods did not differ significantly between
tidepools and emergent rock (August 1994, pooled across plots: F, ,,=1.20, p=0.29; July
1995, F, ,=0.84, p=0.37; October 1995, isolated mussels: t,=0.49, p=0.64, there were
insufficient data to include mussels in patches in the analysis), or between mussels in
patches and isolated mussels (August 1994: F, ,,=0.009, p=0.93; July 1995, F,
,s=0.008, p=0.93), and there was no significant interaction between habitat and position

(August 1994: F, ,,=0.93, p=0.35; July 1995: F, ,,=0.37, p=0.55).
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During each of the study periods, some tagged mussels were not relocated. These

mussels probably were dislodged by waves and moved beyond my limited survey range
of ~50 cm radius around their initial location. These disappearances were unlikely to
have been tag losses because some tags from 1994 were still visible in 1995. In August
1994 and July 1995, 10 to 22% of mussels in patches and 13-27% of isolated mussels
disappeared (Fig. 6.16). In October 1995, when wave heights were greater (up to 4.9
m), 42% of mussels in patches in tidepools and 17% of those on emergent rock and 44-
50% of isolated mussels in both habitats disappeared (Fig. 6.16). The frequency of
disappearance of mussels in July 1994 and August 1995 was too low to permit statistical
comparisons of disppearance rate between habitats and positions. In October 1995, the
frequency of disappearance did not differ significantly between tidepools and emergent
rock, both for mussels in patches, (G,=3.40, p=0.065), where the difference was only
marginally non-significant, and for isolated mussels (G,=0.13, p=0.72). The frequency
of disappearance also did not differ significantly between mussels in patches and isolated
mussels (habitats pooled, G,=2.38, p=0.12). In 1995, the frequency of disappearance in
tidepools was significantly greater in October than in July, both for mussels in patches
(G,=10.8, p=0.002) and isolated mussels (G,=6.5, p=0.011). In contrast, the frequency
of mussel disappearance on emergent rock did not differ significantly between dates for
mussels in patches (G,=0.14, p=0.710) and for isolated mussels, although this difference
was marginally non-significant (G,=3.2, p=0.07). These results indicate that the
frequency of mussel disappearance was generally similar between positions (in patches,
isolated) and habitats with the exception of the higher frequency of disappearance in

October than in July 1995 for mussels in tidepools but not those on emergent rock.
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Patch Dynamics: effects of growth, recruitment, immigration, mortality,
and other losses

I graphically examined the relationship between mean shell area and number of
mussels in a patch to relate changes in this relationship to changes in patch size, and to
examine the contributions of mortality, growth, and recruitment to these changes (Petraitis
1995, Reusch & Chapman 1997) (Fig. 6.18). For calculation of final mean shell area of
each set of experimental patches, I used the mid point of each 1 mm size class as the shell
length of mussels in that size class and converted shell length to cross-sectional area (see
Methods, Wave Dislodgment). Mean shell area before transplantation could only be
roughly estimated from the number of mussels in each of the 4 experimental size classes.
For this calculation, mussels in the smallest size class (0.1-4.9 mm) were assumed to be
1 mm SL based on the size distribution of mussels at this site (Chapter 5; Hunt &
Scheibling 1995), and the midpoint of each of the other three size classes (7.5, 12.5, and
20 mm respectively) was used as the shell length of mussels in that size class.

In the graph (Fig. 6.18), changes within the transplanted mussel patches are
expressed as vectors from the initial mean conditions to the final mean for each set of
patches. These changes in the relationship between shell area (y-axis) and number of
mussels in a patch (x-axis) reflect the effects of mortality, growth, and recruitment
(defined here as the arrival of new individuals and their growth during the time interval)
(Petraitis 1995). Vectors which are parallel to the axes can be attributed to growth (if
parallel to the y-axis and increasing) or non size-specific mortality (if parallel to the x-axis
and decreasing) (Fig. 6.18). Recruitment leads to decreases in the mean size of mussels
and increases in the number of individuals in a patch. The isoclines (dotted lines on the
graph) represent lines of zero change in patch area which were calculated by assuming
that patch area was constant when mean shell area multiplied by number of mussels in a

patch was constant. Packing of mussels was assumed to be constant.
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The graph of changes in cross-sectional shell area and number of mussels in a
patch (Fig. 6.18) indicates that each set of patches decreased from the initial size after
transplantation. This initial decrease likely resulted from dislodgment by waves of
loosely attached mussels. Trajectories of change in shell area and mussel number in the
two habitats diverged over 15 mo (Fig. 6.18a). On emergent rock, patches exhibited a
trend of decreasing shell area and increasing mussel number, consistent with effects of
recruitment, which resulted in a relatively constant patch area after 10 mo. In tidepools,
mean shell area decreased considerably over 15 mo as mussel number increased slightly,
resulting in a decrease in patch area. For the three sets of 5 mo patches, vectors of
patches in tidepools and on emergent rock were similar (Fig. 6.18b). Mean shell area
decreased from July to December 1994 and May to October 1995, presumably as a result
of both recruitment and mortality. From December 1994 to April 1995, number of
mussels in a patch decreased but shell area remained relatively constant, consistent with
non-selective mortality.

I estimated the influence of processes resulting in increases (growth, recruitment,
immigration) and decreases (predatory and non-predatory mortality) in patch area in
tidepools and on emergent rock for each set of experimental patches (Fig. 6.19). Because
losses of mussels from patches due to wave dislodgment or emigration by crawling were
not directly measured, I estimated the percentage of decreases in patch area which could
not be accounted for by mortality. To estimate the increase in patch area due to
recruitment, I multiplied mean recruit abundance by recruit shell area. I assumed an
average size of 1 mm SL for recruits and converted this to area (Methods, Wave
dislodgment). According to these calculations, recruitment alone would increase patch
area by <1 cm’ for each set of experimental patches, assuming no mortality or other
losses, accounting for <9% of potential increases in patch area (Fig. 6.19). This
calculation does not take into account growth after recruitment. To estimate the increase

in patch area due to growth, I multiplied the change in shell area for mussels in each of the



213

four size classes by mean number (average of initial and final number) of mussels in that
size class and then totalled the increases across size classes. For this calculation, I
assumed that the average initial size of mussels was 1 mm for the smallest size class (<5
mm SL) and 7.5, 12.5, and 20 mm (the midpoints of size classes) for progressively
larger size classes. I used mean growth rates in my calculations, since initial shell length
explained little of the variance in growth rate. According to these calculations, growth
alone would increase patch area by as much as 6 cm? in 5 mo and 13 cm? in 15 mo,
approximately doubling patch area, if I assume no mortality or other losses (Fig. 6.19).
Growth was estimated to account for >54% of increases in patch area.

I estimated the increase in patch area resulting from immigration by multiplying
the number of immigrants in a size class by the estimated average shell area of that size
class (7.5, 12.5, 20 mm, as described above). To simplify the calculation, I assumed that
the percentage of immigrants was the same in all size classes. For a conservative
estimate, I used the lowest percentage from the other sets of patches as the percentage of
immigrants in the second set of 5 mo patches and the 15 mo patches. According to my
calculations, immigration of individuals larger than 5 mm accounted for 23-37% of
potential increases in patch area for the first and second sets of 5 mo patches (Fig. 6.17).
For the third set of 5 mo patches, in which the estimated proportion of immigrants was
higher in tidepools than on emergent rock, immigration of individuals > 5 mm was
estimated to account for 37% of potential increases in patch area in tidepools and 16% on
emergent rock. Immigration accounted for an estimated 12-14% and 4-5% of potential
increases in area of the 10 and 15 mo patches, respectively. Because the estimated
percentage of immigrants in the 10 and 15 mo patches was relatively similar, the lower
percentage increase in patch area attributable to immigration for 15 mo patches is a
consequence of a decrease in number of mussels larger than 5 mm in a patch.

I estimated the decrease in patch area due to the death of mussels that I collected as

drilled and non-drilled shells. I multiplied the number of empty shells in a size class by
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the area of a mussel in that size class (assuming average sizes of 1, 7.5, 12.5, and 20 mm
for successive size classes, as described above). Because mean patch area remained
relatively constant or decreased (Fig. 6.3, 6.18), decreases in area due to mortality must
have been equal to or greater than increases due to growth, recruitment, and immigration.
I calculated the losses which could not be accounted for by empty shells by subtracting
the area accounted for by the empty shells from the sum of the increases in patch area due
to growth, recruitment, and immigration. Mortality of mussels was negligible in the
second set of 5 mo patches (December 1994 to May 1995) since no empty shells were
collected from this set of patches. For patches transplanted in July 1994, predatory
mortality accounted for a greater percentage of decreases in area of patches in tidepools
than of patches on emergent rock: drilled empty shells accounted for 29% of decreases in
area of 5 mo patches, 18% of decreases in 10 mo patches, and 35% of decreases in 15 mo
patches in tidepools and 7%, 1%, and 5%, respectively, on emergent rock. In contrast,
for the third set of S mo patches (May to October 1995), drilled empty shells accounted
for 7% of decreases in patch area in tidepools and 31% of decreases on emergent rock.
Predation undoubtedly accounted for a greater percentage of decreases in patch area than
my estimates since some empty shells would have been washed away by waves before
they were collected. These results indicate that whelk predation accounted for a greater
percentage of decrease in patch area in tidepools than on emergent rock for patches
transplanted in 1994, while the reverse occurred in 1995.

According to my calculations, non-predatory mortality accounted for 22% of
decreases in patch area in tidepools and 54% on emergent rock for the first set of 5 mo
patches, and 1% and 5%, respectively, for the third set of 5 mo patches. For the 10 and
15 mo patches, non-predatory mortality accounted for 21 and 28%, respectively, of
decreases in patch area in tidepools and 3 and 2%, respectively, of decreases in patch area
on emergent rock. The percentage of decreases in area accounted for by non-predatory

mortality in the experimental patches is probably higher than in natural patches because of
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the stress of transplantation. For the experimental patches, much of the variability in the
percentage of decreases in area in patch area accounted for by non-predatory mortality
may be attributable to differences in acclimation to emersion in the laboratory. The sets of
patches and habitats for non-predatory mortality accounted for the greatest decreases in
patch area are those in which mussels were transplanted to the shore in July 1994 without
acclimation to emersion. However, differences in the stress imposed by transplantation
likely did not influence variation in size among patches within a habitat or transplantation
date since the number of non-drilled empty shells collected from a patch was not
significantly related to final patch area.

The percentage of decreases in patch area not accounted for by mortality (as
measured by the empty shells collected from the patches) is attributable to active and
passive dispersal of mussels. Passive dispersal by wave dislodgment is probably the
most important loss not due to mortality, although tagging indicates that mussels may also
actively disperse by crawling. For the second set of 5 mo patches (December 1994 to
April 1995), 100% of decreases in patch area were unaccounted for by mortality (Fig.
6.19). The percentage of decreases in patch area not accounted for by mortality was
similar in tidepools and on emergent rock for first set of 5 mo patches (48% and 39%,
respectively), lower in tidepools than on emergent rock for 10 (61 and 96%, respectively)
and 15 mo patches (37 and 89%, respectively), and greater in tidepools than on emergent
rock for the third set of 5 mo patches (92 and 64%, respectively). These calculations
suggest that the percentage of decreases in patch area due to losses other than mortality
varies over time and between habitats, although not consistently, and that these losses are

important in maintaining the balance between increases and decreases in patch size.
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Fig. 6.1. a) Tidepool (tp) and emergent rock in the mid intertidal zone at Cranberry Cove,
Nova Scotia. Fucoid algae (Fucus vesiculosus, Ascophyllum nodosum) and extensive
beds of mussels (mb) are visible on emergent rock b) Patches of mussels (p) and
macroalgae in a tidepool (scale bar=10 cm) c) and d) Experimental mussel patches on

emergent rock (scale bar=1 cm).
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Fig. 6.2. Mean (£1S.D.) a) tidepool and sea surface salinities (ppt, measured by
refractometer) and b) tidepool, sea surface, and air temperatures (° C, measured by
mercury thermometer) between July 1994 and October 1995 at Cranberry Cove, Nova
Scotia. Tidepool measurements are averaged across four tidepools and sea surface
measurements are averaged for two locations (2 measures per tidepool and location). A

single reading of air temperature was taken on each date.
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Fig. 6.3. Mean (+1S.E.) area (cm?) of natural mussel patches and of 5, 10 and 15 mo
experimental patches and the 2nd and 3rd sets of 5 mo patches, in tidepools and on
emergent rock between July 1994 and October 1995. Patch area was first measured 2-6
weeks after transplantation (the date of transplantation is indicated by an arrow; the
second arrow for the 10 and 15 mo patches indicates the date of transplantation of the
replacement patches on emergent rock). Data for the 5, 10, and 15 mo patches
transplanted in July 1994 are averaged for 4 blocks per habitat; those for the second and

third set of 5 mo patches are averaged for 3 blocks per habitat.
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Fig. 6.4. Mean (£1S.E.) a) dry mass (g) of experimental mussel patches and b) number
of mussels in a patch in tidepools and on emergent rock for 5, 10, and 15 mo patches
transplanted in July 1994 and for the second and third sets of 5 mo patches. Data for the
5, 10, and 15 mo patches transplanted in July 1994 are averaged for 4 blocks per habitat;

those for the second and third set of 5 mo patches are averaged for 3 blocks per habitat.
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Fig. 6.5. Size frequency distributions (SL, mm) of mussels in tidepools and on emergent
rock in 5, 10, and 15 patches transplanted in July 1994 and in the second and third sets of
5 mo patches. Mussels were pooled over patches and blocks within a habitat. Data for
the 5, 10, and 15 mo patches transplanted in July 1994 are from 4 blocks; those for the

second and third set of 5 mo patches are from 3 blocks.
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Fig. 6.6. Mean (£1S.E.) growth rate (change in shell length, mm) of mussels in
experimental mussel patches in tidepools and on emergent rock in 5, 10, and 15 mo
patches transplanted in July 1994 and in the second and third sets of 5 mo patches. Data
were averaged across individuals (n=4-32) within a patch and across patches within a
block for each habitat. Data for the 5, 10, and 15 mo patches transplanted in July 1994
are averaged for 4 blocks per habitat; those for the second and third set of 5 mo patches

are averaged for 3 blocks per habitat.
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Fig. 6.7. Relationship between mean growth rate (change in shell length, mm) and final
patch area (cm?) and number of mussels in a patch for mussels in tidepools and on

emergent rock for the second set of 5 mo patches (n=15) and the 10 mo patches (n=17).
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Fig. 6.8. Mean (+1S.E.) abundance of recruits (<2 mm SL) in experimental mussel
patches in tidepools and on emergent rock in 5, 10, and 15 mo patches transplanted in
July 1994 and in the second and third sets of 5 mo patches. Data for the 5, 10, and 15
mo patches are averaged for 4 blocks per habitat; those for the second and third set of 5

mo patches are averaged for 3 blocks per habitat.
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Fig. 6.9. Relationship between mean number of Mytilus recruits (<2 mm SL) in a patch
and patch area (cm?®) in tidepools and on emergent rock in 5, 10, and 15 mo patches
transplanted in July 1994 and in the second and third sets of 5 mo patches. One patch
which increased in size to 50 cm? within a few days between observations was excluded
from analysis. Sample size, n=14 to 21. Note that data for the third set of 5 mo patches

were log transformed prior to analysis and therefore are plotted on a log scale.
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Fig. 6.10. Mean (£1S.E.) number of whelks (V. lapillus) >5 mm SL on a experimental
mussel patch in tidepools and on emergent rock between July 1994 and October 1995.
Data are averaged across 4 blocks per habitat. From July 1994 to April 1995, nine
mussel patches (first or second 5 mo, 10 mo, 15 mo) were monitored per block per
habitat except the problematic block in which only 6 patches (10 mo, 15 mo) were
monitored from December 1994 to April 1995. From May to October 19935, six patches
(3rd Smo, 15 mo) were monitored per block per habitat except the problematic block in

which only 3 patches (15 mo) were monitored.
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Fig. 6.11. Mean (£1S.E.) cumulative number of empty mussel shells with and without a
drill hole (indicative of whelk predation) collected per patch from the first (July to
December 1994) and third (May to October 1995) sets of 5 mo patches. Data were
averaged for 4 blocks per habitat for the first set of 5 mo patches and 3 blocks per habitat

for the second set.
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Fig. 6.12. Daily maximum significant wave heights (m, solid line) at a nearshore
oceanographic buoy between July 1994 and December 1995 and mean (*1S.D.)
maximum water velocities (m/s, symbols) in tidepools and on emergent rock (averaged
across 1-3 velocity meters per habitat) at Cranberry Cove between December 1994 and
April 1995. There are gaps in the record of maximum significant wave heights when the

buoy was not functioning.
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Fig. 6.13. a) Relationship between the force (f, N) required to dislodge a mussel and
mussel cross-sectional area (A, cm?) in tidepools and on emergent rock in July and
August 1997. The curve is fitted using the allometric model of variation in predicted
dislogment force (f)) with mussel area: f,=j + m A? where j, m, q are constants (1.43,
5.64, 2.12, respectively, in July, ’=0.80; 0.67, 7.23, 0.89, respectively, in August,
r’=0.80). b) Cumulative probability distribution of normalized forces (f, =f/f) in July
and August 1997 (habitats pooled) fitted using the modified Weibull model: P(f,)= exp{-
[(a- bfﬁ,)/(a-bc)]”b} wherea, b, c are constants (0.24, -0.22, 0.70, respectively, in July,
r’=1.0; 0.30, -0.09, 0.77, respectively, in August, r’=0.998). Sample size, n=60 per
habitat in July and 30 per habitat in August.
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Fig. 6.14. Relationship between predicted hydrodynamic lift force (N) and water velocity
(m/s) for mussels of 2.5, 7.5, 12.5, and 20 mm SL in tidepools and on emergent rock.
The different scales used for water velocity indicate that, at a given time, water velocities

in tidepools are 87% of those on emergent rock.
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Fig. 6.15. Relationship between probability of dislodgment and water velocity in a) July
and b) August 1997 for mussels of 2.5, 7.5, 12.5, and 20 mm SL in tidepools and on
emergent rock. The different scales used for water velocity indicate that, at a given time,

water velocities in tidepools are 87% of those on emergent rock.
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Fig. 6.16. Frequency (%) of movement and disappearance of tagged mussels in patches
and isolated (alone or in small group, or on top of the monolayer of mussels in a patch) in
tidepools and on emergent rock in August 1994 (pooled across plots within a habitat) and
July and October 1995. Frequency of movement was calculated as a percentage of the
mussels which were tracked throughout a monitoring period.  Frequency of
disappearance was calculated as a percentage of the total number of tagged mussels.

Sample size, n, is indicated in parantheses.
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Fig. 6.17. Frequency distribution of distances moved by tagged mussels. Mussels were
pooled over habitats (tidepools, emergent rock), positions (in patch, isolated) and dates

(August 1994, July and October 1995). Sample size, n=68.
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Fig. 6.18. Partioning of changes in mussel patch area into changes in mean shell area of
individuals (mm?) and mean number of mussels in a patch. Vectors connect the initial
conditions with mean conditions in tidepools and on emergent rock a) 5, 10, and 15 mo
after transplantation to the shore in July 1994 and b) 5 mo after transplantation on
different dates: July 1994, December 1994, May 1995, respectively. Dashed lines
indicate ratios of individual shell area and number of individuals giving the same patch
area; a trajectory which is not parallel to these lines indicates a change in patch area.

Effects of growth, recruitment, and non size-selective mortality are shown in the inset.
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Fig. 6.19. Balance between increases in patch area due to immigration, recruitment, and
growth and decreases in area due to predation, other mortality, and other losses for 5, 10,
and 15 mo experimental mussel patches transplanted in July 1994 and for the second and
third sets of 5 mo patches in tidepools (TP) and on emergent rock (ER). Patch area at the

first sampling date after transplantation was ~ 11 cm’.
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DISCUSSION

Determinants of patch structure and dynamics
Mean area of both the experimental and natural mussel patches remained relatively
constant over each of the experimental time intervals, suggesting that, on average,
processes increasing patch size (growth, recruitment, immigration) were balanced by
processes decreasing patch size (mortality, wave dislodgment, and emigration). Despite
this constancy in average patch size, individual patches varied in size and mean size of

individuals decreased while numbers of individuals in a patch increased.

Growth
Growth of mussels can potentially be important in offsetting mortality and
maintaining the spatial dominance of mussel assemblages (Petraitis 1995). The growth

rates of Mytilus in this study and a previous one (Hunt & Scheibling 1995) (0.4 mm

mo™) were low compared to those reported in most previous studies of this species on
rocky shores (e.g. Bayne & Worrall 1980, Gardner & Thomas 1987), but were
comparable to the growth rate measured for M. edulis in Yorkshire, UK (Seed 1969b,
Seed 1973). At these low growth rates, my calculations suggest that growth can balance
losses of patch area of no more than 6 cm”5 mo. In contrast, Reusch and Chapman
(1997) concluded that a high growth rate (~30 mm/yr) enabled subtidal patches of the
mussel M. edulis in the Baltic Sea to persist in spite of intense predation by sea stars.
Previous studies have found a negative relationship between mussel growth rate
and patch size (Okamura 1986, Newell 1990, Svane & Ompi 1993), presumably due to
competition among mussels for food and space. Interestingly, I found a positive
relationship between growth rate and patch size for the 10 mo patches in both habitats and
for the second set of S mo patches on emergent rock, but not in tidepools. There was no
significant relationship between growth rate and patch area for the other sets of

experimental patches. Because the mussel patches in my study were small and exposed to
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high flow rates on a wave-exposed shore, food was not likely to become depleted above a
patch. A positive relationship between growth and patch size may result from effects of
mussels on water flow: larger mussel patches may increase water turbulence and enhance
the delivery of food to the substratum compared to smaller patches. Butman et al. (1994)
found that a mussel bed significantly enhanced turbulent stress compared to a smooth
bottom in flume experiments. On emergent rock, patch size also may affect the
microenvironmental conditions to which a mussel is exposed. During low tide,
individuals in large patches may gain some protection from their neighbors from

desiccation and freezing.

Recruitment, Movement, and Immigration

The relationship between changes in mean shell area and number of mussels in a
patch suggests that recruitment contributed to the changes in the size structure of each set
of experimental patches, except the second set of 5 mo patches which was transplanted in
winter when settlement rate of Mytilus is negligible (Chapter 3; Pedersen 1991).
Recruitment rates of mussel on the experimental patches (mean 2-4 recruits/cm? of patch
area per month) were comparable to those measured on other rocky shores in the
northeast Atlantic (Petraitis 1991). I found a positive relationship between recruitment
rate of mussels and patch area which may have resulted from a hydrodynamic effect, as
suggested for growth rate, or because mussels selectively settled on conspecifics.
Mytilus are known to settle on a wide variety of filamentous substrata, including byssal
threads of adult conspecifics (reviewed by Seed & Suchanek 1992).

The ability of mussels to crawl along the substratum using their foot has been
shown to influence the population dynamics of the mussel Geukensia demissa in salt
marshes (Bertness & Grosholz 1985), but is not usually considered in studies of the
dynamics of mussel assemblages on hard substrata. I found that 22-56% of mussels in

patches in summer moved within 4 wk. Anthony and Svane (1995) recorded a higher
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movement frequency for M. edulis in a subtidal mussel bed (94% moved within 4 wk)

possibly because lower water velocities in the subtidal permit mussels to be less strongly
attached to the substratum. The distances moved by tagged mussels in this study were
generally small (<10 cm), resulting in changes in the position of a mussel within a patch
or, less frequently, in immigration to a new patch (natural patches were usually separated
by 5-15 cm). Movement within a patch may result in changes in growth rate or risk of
predation, as these factors may vary with position in a patch (Okamura 1986). Movement
of mussels among patches by crawling is probably more important in natural assemblages
than in the experimental patches because I cleared the substratum (up to 10 cm) around the
patches as part of the attachment process.

Immigration of mussels probably also occurs by dislodgment and deposition of
individuals by waves, as suggested by the sudden large increases in area of some of the
experimental and natural patches. Comparison of the percentage of mussels with visible
calcein marks in the field with those held in the laboratory suggested that immigrants
constituted >10% of mussels larger than 5 mm in each set of experimental patches. At
Cranberry Cove, mussels larger than S mm SL arrive in plots cleared of mussels at a rate
of up to 3 mussels day" 100cm? (Chapter 3). Dislodgment and reattachment of large
mussels is known to be an important mode of dispersal in soft bottom habitats (Reusch &
Chapman 1997), but has received less attention in studies on rocky shores (but see Paine

1974, Wooton 1993).

Predation and Wave Dislodgment
Predation by whelks can have dramatic effects on mussel assemblages (e.g.
Menge 1976, Lubchenco & Menge 1978, Carroll & Highsmith 1996). I found that
drilled shells indicative of whelk predation accounted for up to 36% of the decrease in
patch area. As wave action would have removed some empty shells before they were

collected, the percentage of mortality resulting from whelk predation was certainly higher.
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I examined the effect of whelk predation on mussel assemblages at Cranberry Cove
(Chapter 5) by reducing densities of whelk post-recruits in 1.5 to 4 m?” tidepools and plots
of emergent rock. Mussel cover decreased in unmanipulated control plots in both
habitats, more so on emergent rock than in tidepools, but remained constant in plots
where whelk densities were reduced. In this study, however, final area of mussel patches
was not significantly related to the cumulative number of drilled shells collected from a
patch. This suggests that, although whelk predation can be an important cause of mussel
mortality, it was not an important source of variation in patch area.

Mussels living on wave-exposed shores are subjected to large wave forces,
particularly during fall and winter storms. Most studies of wave disturbance of mussels
on hard substrata have involved M. californianus, the dominant mussel on exposed
shores in the north east Pacific. Disturbance by waves is known to cause gaps in beds of
M. californianus in Washington, USA (Levin & Paine 1974, Paine & Levin 1981) and
Denny (1995) calculated that M. californianus experience forces near their modal
breaking force. Dislodgment by waves may be even more important as a cause of
mortality of other mytilids, such as M. edulis, M. trossulus, and M. galloprovincialis,
since their byssal attachment (per unit of cross sectional area) is much weaker than that of
M. californianus (Harger 1970, Witman & Suchanek 1984, Bell & Gosline in press).

My calculations of the probability of wave dislodgment of mussels at Cranberry
Cove suggest that mussels >10 mm SL are vulnerable to dislodgment by water velocities
27 m/s. My predicted dislodgment rates are in the same range as those calculated by Bell
and Gosline (in press) for M. trossulus on a moderately exposed shore in British
Colombia, Canada. The importance of wave dislodgment as a cause of mussel mortality
at my site is supported by the high proportion (37-100%) of decreases in area of the
experimental patches which were not accounted for by in situ mortality (empty shells),
and by the greater percentage of tagged mussels which disappeared in tidepools in
October (when wave heights were greater) than in July and August. Dislodgment by
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waves of one or a few mussels in a patch would render the remaining mussels more
vulnerable to hydrodynamic forces acting parallel to the substratum, drag and the
acceleration reaction, and could lead to the dislodgment of many other mussels in a patch
(Denny 1987). Wave action may also interact with other causes of mortality. For
example, when [ experimentally reduced whelk densities (Chapter S), predation could not
entirely account for the decrease in mussel cover and abundance which occurred in
unmanipulated plots. I attributed this discrepancy to wave action, as dislodgment of the
shells of predated mussels would remove recruits associated with the drilled shells and
weaken the surrounding mussel matrix.

Attachment strength of mussels depends on the number of byssal threads
anchoring them to the substratum (Bell & Gosline in press). Unlike the permanent
attachment of a barnacle, these threads decay and must be replaced to maintain a constant
attachment strength, which can be metabolically costly (Hawkins & Bayne 1985).
Mussels respond to their flow environment by varying their attachment strength (Price
1980, 1982, Witman & Suchanek 1984). I found that attachment strength was higher,
and, consequently, probability of dislodgment by a given water velocity was lower, after
mussels had been exposed to 4 m high waves than during a period of low wave heights
(<2 m). At Cranberry Cove, probability of dislodgment by a given water velocity is
probably lower in fall and winter (when large waves are more common) than in summer.
Seasonal variation in attachment strength may counteract seasonal changes in wave action
to dampen any seasonality in the probability of wave dislodgment. Similar probabilites of
dislodgment during infrequent hurricane-generated storms in summer, compared to winter
storms with greater wave heights, may partly account for the lack of seasonality in mean
patch size.

In summary, these results suggest that variation in individual patch area was
probably dve primarily to wave dislodgment and immigration of larger mussels, since the

largest increases and decreases in patch size usually occurred suddenly and were often
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associated with storms. Recruitment and size-selective mortality due to whelk predation
and/or wave dislodgment seemed to be the most important determinants of patch
structure. Low growth rates undoubtedly also contributed to the small mean size of
mussels but growth was important in balancing mortality and other losses. The
importance of wave dislodgment in the structure and dynamics of mussel patches at
Cranberry Cove is typical of many wave-exposed rocky shores (e.g. Harger &
Landenberger 1971, Levin & Paine 1974, Paine & Levin 1981). However, predation
seems to be less important in structuring these mussel assemblages than those at many
other sites, particularly those where seastars or crustaceans are the dominant predators
(e.g. Kitching et al. 1959, Paine 1966, 1974, Robles 1987, Reusch & Chapman 1997).
The intense predation in those mussel assemblages is generally balanced by much higher

growth rates than at Cranberry Cove.

Effects of habitat on mortality, growth, and recruitment

My observations at Cranberry Cove over 6 years indicated that the cover and
spatial distribution of mussels differed between tidepools and emergent rock. When I
transplanted mussel patches to both habitats in this study, the divergence in patch
structure and size developed slowly. Mean area of experimental patches remained
relatively constant during the 15 mo experiment and did not differ significantly between
tidepools and emergent rock. However, there was a clear trend of decreasing patch
biomass and area in tidepools. When each set of experimental patches was collected,
except the second set of 5 mo patches (December 1994 to April 1995), small mussels
were relatively more abundant in experimental patches in tidepools than on emergent rock.
Differences in size distributions likely resulted from greater mortality of large mussels in
tidepools than on emergent rock since recruit abundance did not differ significantly
between habitats. I observed a similar between-habitat difference in the size distribution

of natural mussel assemblages at Cranberry Cove in fall 1995 (Chapter 5).
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I compared rates of mussel growth, recruitment, and mortality between tidepools
and emergent rock to determine if they were influenced by environmental differences
between the habitats. I found that growth rates of mussels were significantly higher in
tidepools than on emergent rock for each of the sets of 5 mo patches, particularly for the
second set in winter. However, these between-habitat differences in growth rates were
small and there were no significant differences in growth rate between tidepools and
emergent rock for mussels in the 10 mo patches. My results are inconsistent with the
prediction of Clarke and Griffiths (1990) who concluded that scope for growth of the
mussel Choromytilus meriodionalis in South Africa was lower in tidepools than on
emergent rock. They reasoned that mussels in tidepools would continue filtering water
during low tide even though the pools would be rapidly depleted of food, while aerially
exposed individuals on emergent rock would reduce their metabolism and conserve
energy. At Cranberry Cove, however, Metaxas and Scheibling (1994) found that total
abundance of phytoplankton in mid-zone tidepools did not decrease during the period of
tidal isolation, suggesting that mussels either do not deplete their food resources during
tidal isolation or cease feeding during this time.

Recruitment rate of mussels did not differ significantly between tidepools and
emergent rock in any of the sets of experimental patches. Although mussels could
potentially settle in tidepools throughout the tidal cycle, only a small proportion of
mussels colonize tidepools during low tide (Chapter 4). In the present study, the
substrate available for mussel settlement (the experimental patch and mesh base) was the
same in both habitats, unlike the natural substratum (macroalgal assemblage) which
differed considerably between tidepools and emergent rock (Chapter 3). However, I
found that colonization of Mytilus on the natural substratum did not differ between the
habitats in areas of the shore that were not recently scoured by ice (Chapter 3).

Based on models of the effects of environmental stress on predation (Connell

1975, Menge & Sutherland 1987), whelk predation on mussels would be expected to be
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greater in tidepools than on emergent rock because of increased time available for
foraging. In 1994, I found significantly more drilled shells in patches in tidepools than in
those on emergent rock, which is consistent with this prediction. In 1995, however, the
number of drilled shells was greater in patches on emergent rock than in tidepools and
manipulation of whelk densities had greater effects on emergent rock than in tidepools
(Chapter 5). The between-year difference probably reflects changes in whelk densities
since the cumulative number of drilled shells collected from a patch was related to the
mean number of whelks observed on a patch. Feeding rates of whelks held in cages are
similar between tidepools and emergent rock (= 1 mussel/whelk/week, Chapter 5),
suggesting that foraging time is not a major factor controlling whelk predation rates on
this shore. Predation rates of whelks probably differ more consistently between tidepools
and emergent rock in places where canopy-forming algae, which provide shelter from
desiccation (and possibly wave dislodgment) for foraging whelks (Menge 1978a), are
less abundant on emergent rock than they are at Cranberry Cove.

My calculations suggest that the probability of dislodgment of mussels larger than
5 mm SL is approximately twice as high on emergent rock as in tidepools. The greater
probability of dislodgment on emergent rock than in tidepools results from 15% higher
maximal water velocities, since attachment strength of mussels did not differ between
habitats. Between-habitat differences in probabilities of dislodgment are larger than
differences in water velocities because hydrodynamic forces exerted on mussels are
related to the square of water velocity. Predicted probabilities of dislodgment of small
mussels (2.5 mm) are negligible in both habitats. However, small mussels are often
attached to the byssal threads or shells of a larger individual, and would likely be lost if
the larger mussel was.

In summary, my results indicate that differences in environmental conditions
between tidepools and emergent rock did not strongly affect predation rates on mussels.

My estimates of the probability of dislodgment of mussels by waves were considerably
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higher for emergent rock than for tidepools, but rates of growth and recruitment were
similar in both habitats. Over the time scale of this experiment (15 mo), differences
between habitats in rates of mortality, wave dislodgment, and growth cannot account for
the observed differences between the two habitats in the patterns of mussel abundance and
distribution. This suggests that differences in mussel distribution and cover between
tidepools and emergent rock develop gradually and can be altered by stochastic events,
such as ice scour (Chapter 3) and hurricanes which generate large wave forces (Chapter

5).

Comparison with other shores

The scale of mussel aggregations and the size of the component individuals are
smaller at Cranberry Cove than those described in most other studies. At my site (and
elsewhere in Nova Scotia), mussels occur in centimetre-scale patches in tidepools and in
larger beds (with centimetre-scale gaps) on emergent rock. In a previous study (Hunt &
Scheibling 1995), I recorded ~150 mussel patches/m” in tidepools at this site (unpubl.
data). In contrast, Levin and Paine (1974) and Paine and Levin (1981) modelled the
dynamics of gaps of up to 6 m” in mean size in extensive beds of M. californianus (a
much larger mussel than M. edulis and M. trossulus) in Washington, USA. Reusch and
Chapman (1997) described patches of M. edulis up to 5 m’ on subtidal soft substrata in
the Baltic Sea. The size distribution of mussels at Cranberry Cove is highly skewed
towards small individuals: ~90 % are <5 mm (Chapter 5; Hunt & Scheibling 1995).
Mean size of mussels in the experimental patches at the end of each of the experimental
intervals was only 2-4 mm SL. This is much smaller than the size of individuals
described in most studies of intertidal mussel assemblages (e.g. Mossop 1921, Gardner
& Thomas 1987, Petraitis 1995, Reusch & Chapman 1997). For example, Petraitis
(1995) reported that the mean length of M. edulis on a sheltered rocky shore in Maine was

31 mm. The size structure of mussel assemblages at Cranberry Cove is similar to those
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of M. edulis on exposed rocky shores in Yorkshire, UK (Seed 1969a,b), where growth

rates are comparable, and M. galloprovincialis on Santa Catalina Island, California
(Robles 1987), where growth rates and predation intensity on larger mussels are much
higher. The smaller size of aggregations and component individuals in my study
compared to most previous studies of M. edulis and M. trossulus probably result from
the low individual growth rates at Cranberry Cove. The size distribution of mussels also
is probably influenced by size selective loss due to wave dislodgment and predation.
Differences between M. trossulusledulis and M. californianus likely result from life
history differences between species: M. californianus attains a greater maximum size, is
longer lived, and is better protected from predators by a thicker shell than M. trossulus
(Suchanek 1981). M. californianus also appears to be better adapted to strong wave
action due to stronger byssal attachment (Harger 1970, Witman & Suchanek 1984, Bell &
Gosline in press).

At Cranberry Cove, I found that mean size of experimental patches was relatively
constant over time despite high variability among individual patches. Natural patches also
exhibited a lack of seasonality in patch size, both in this study and in my previous work at
this site (Hunt & Scheibling 1995), which is inconsistent with other studies of Mytilus.
Gaps in beds of M. edulis in New England (Menge 1976) and of M. californianus in
Washington (Paine & Levin 1981) form more frequently in winter than in summer. In
Oregon, Navarette and Menge (1996) described extensive beds of M. trossulus which
covered >70% of the substratum the low intertidal zone in spring, but were eliminated by
predators by mid summer. As previously discussed, seasonality in the probability of
wave dislogment may be dampened by seasonal variation in attachment strength. In
addition, the magnitude of seasonal variation in growth rate was relatively small because
growth rates were low.

In summary, there are a number of differences in spatial scale and in ecological

and physiological rates between the mussel assemblages at Cranberry Cove and those
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examined in other studies. These include differences in scale of aggregations, size of
component individuals, individual growth rates, seasonality in patch size, and the relative
importance of wave dislodgment compared to predation. My results, in particular,
emphasize the importance of wave disturbance as a cause of both redistribution and loss
of mussels. By demonstrating the variation which exists among regions in the structure
and dynamics of mussel assemblages, and in the relative importance of processes which
influence them, this study cautions against generalizing pattern and process across

different spatial and temporal scales.



CHAPTER 7: General Discussion

This thesis examines the biological and physical processes influencing the
structure and dynamics of mussel assemblages in tidepools and on emergent rock on a
temperate rocky shore. Sampling mussel colonization at short intervals (2 to 7 d) indicated
that most colonists (>96%) on the natural substratum were postlarval mussels (usually >2
mm) rather than settling larvae (Chapter 3). Mussels that colonized natural substrata were
larger than those which colonized an artificial filamentous substrate, indicating that
detection of the dispersal of large mussels may depend on the substratum used to monitor
colonization (Chapter 4). Comparison of colonization on artificial collectors and natural
substrata revealed that differences in rates of colonization among non-scoured and ice-
scoured tidepools and emergent rock were influenced by differences in the substratum
(Chapter 4). Colonization rate on natural substrata was related to a suite of biological
(macroalgal/bamacle cover) and physical factors (water flux, tidal height, flushing time).
Comparison of colonization patterns on the natural substratum at sampling intervals of
days to months indicated that, over time scales up to 16 mo, patterns of initial colonization
were more important than post-colonization processes in determining the pattern of
abundance and distribution of mussels (Chapter 3).

Size of established mussel patches varied over time, but mean patch area remained
relatively constant (Chapter 6). This constancy suggested that, on average, processes
increasing patch size were balanced by processes decreasing patch size. Growth of
individuals was important in balancing losses of mussels, although individual growth
rates were low in comparison to other shores (Chapter 6). Increases in patch area also
occurred by increases in the number of individuals, including immigration of mussels >5
mm. Predation by the whelk Nucella lapillus was an important cause of mussel mortality
in the experimental patches (Chapter 6), as it was in plots in which the density of whelk

post-recruits was manipulated (Chapter 5). However, whelk predation was not an

266



267

important source of variation in area among the experimental mussel patches (Chapter 6).
I predicted probabilities of wave dislodgment of mussels using measures of water velocity
and attachment strength of mussels (Chapter 6). These calculations suggested that wave
disturbance was an important cause of loss of large (> 10 mm) mussels and that
probabilities of dislodgment at a given water velocity varied over time because of changes
in attachment strength. My results suggest that wave disturbance is more important than
predation in determining the structure and dynamics of mussel patches on this shore
(Chapter 6), although effects of wave disturbance and predation may interact. When I
experimentally reduced whelk densities (Chapter 5), predation could not entirely account
for the decrease in mussel cover and abundance which occurred in unmanipulated plots.
This discrepancy is most likely due to dislodgment by waves of the shells of predated
mussels, as well as the live mussels surrounding the empty shells.

Over the time scale of these studies (up to 17 mo), rates and patterns of
colonization, growth, mortality, and wave dislogment could not account for the observed
differences in the distribution and abundance of mussels between tidepools and emergent
rock. On non-scoured areas of the shore, rates of colonization of mussels over both short
(2 to 7 d) and long (5-16 mo) sampling intervals did not differ between habitats (Chapter
3). Rates of recruitment in the experimental mussel patches were similar in tidepools and
on emergent rock (Chapter 6). Individual growth rates were slightly higher in tidepools
than on emergent rock, particularly in winter, but these differences were relatively small
(Chapter 6). Between-habitat differences in effects of whelk predation varied between
years and were dependent on whelk density, since feeding rate of whelks held in the two
habitats were similar (Chapters 5, 6). The higher probabilities of wave dislodgment of
mussels on emergent rock than in tidepools (Chapter 6) cannot account for the larger beds
of mussels on emergent rock. Patterns of distribution and abundance of mussels appear
to develop slowly on this shore, primarily due to low individual growth rates. This is

illustrated by the low cover and small size of individuals after 16 mo of colonization
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(Chapter 3). In addition, in the experimental mussel patches, mean size of individuals

and patch biomass began to diverge between tidepools and emergent rock only after 10
mo. Further understanding of differences in the distribution and abundance of mussels
between tidepools and emergent rock will probably require studies of longer duration. It
may also be valuable to examine interactions of mussels with other species, such as the
snail Littorina littorea which is abundant in tidepools (Metaxas et al. 1994) but rare on
emergent rock (pers. obs.). Littorinids may influence mussel abundance by causing early
post-settlement mortality through biological disturbance (Chapter 2) or by indirect effects
through their influence on the macroalgal assemblage.

The results of this thesis extend our understanding of the structure and dynamics
of mussel assemblages by demonstrating the importance of wave disturbance as a cause
of redistribution as well as loss of mussels. Dislodgment and reattachment of large
mussels has been reported in other studies on rocky shores (e.g. Paine 1974) and is
known to be an important mode of dispersal in soft bottom habitats (Reusch & Chapman
1997), but has not been recognized as a major determinant of the structure and dynamics
of mussel assemblages on hard substrata. Because the substratum used to monitor
mussel colonization may influence the size of colonists (Chapter 4), the relative
importance of colonization by large mussels is unlikely to be recognized in the many
studies using artificial filamentous substrata. The results of this study also emphasize the
importance of wave disturbance as a cause of loss of mussels. Attachment strength of
mussels, and consequently, probability of dislodgment by a given water velocity, is
variable (Chapter 6). The interacting effects of seasonal variation in wave action and
attachment strength on probability of wave dislodgment require further investigation.
Future directions for research also include examination of the response time of attachment
strength to changes in wave action, and the potential tradeoffs between allocation of

resources to byssal attachment and other activities such as reproduction.
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