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Abstract

This thesis is devoted to the study of G-convex spaces.

In Chapter 1, we introduce the new concepts of M-convex spaces and M-convexity.
We present a KKM-type theorem, and two fixed point theorems which illustrate the
significance of these concepts. We also define a G-convex structure on the product of a
family of G-convex spaces.

in Chapter 2, we prove that any complete metric space with a continuous midpoint
function is a G-convex space.

In Chapter 3, we prove several Dugundji-type extension theorems in G-convex spaces.
Both cases of single and set-valued maps are considered. Important applications to the
theory of games are obtained from these extension theorems.

In Chapter 4, we define M-convexity and M-concavity for real functions on an M-
convex space. A continuous dual is also defined and we give solutions for some variational
inequalities.

In Chapter 5, we define classes of GLs and G Lgs-majorized correspondences. We
obtain some maximal element theorems for these correspondences and apply them to

generalized games and minimax inequalities.
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INTRODUCTION

In 1993, Sehie Park introduced the concept of a generalized convex space or a
G-convex space. Although this new concept generalizes the notion of a topological
vector space, it was mainly developed in connection with fixed point theory and
KKM theory. This is why it should come as no surprise that many known theorems

in that field remain true in G-convex spaces, after the necessary modifications.

In 1994, Park also defined admissible multifunctions on G-convex spaces and in
[PK2], Park and Kim proved a coincidence theorem and applied it to obtain an
abstract variational inequality, a KKM-type theorem and a fixed point theorem.

Their results included a large number of known theorems as particular cases.

As a more abstract setting for the concept of a topological vector space, this
new concept comes at the top of a chain of several generalizations that can now
be seen as particular forms of G-convex spaces. Michael’s convex structure for a
metric space [Mi| introduced in 1959 is one example. The S-contractible space [Pa]
of 1980, Komiya’s convex space [K] of 1981, Lassond’s convex space [L] as well
as the pseudo convex space [Hol] in 1983, Bielawskie’s simplicial convexity [Bi] as
well as Horvath’s H-space [Ho2] in 1987, and Joo’s convex space [J] of 1989 are all
particular forms of G-convex spaces. For the references and a detailed description

of the relations between these, see [PK1].

We believe that this new concept gives rise to many questions and provides a

rich area for research and study. This thesis is entirely devoted to this subject.

In Chapter One, the new concept of an M-convex space is introduced. An M-
convex space is a G-convex space with the additional structure of a G-map system.
Homogeneous G-map systems are also defined as a special case whose presence in

an M-convex space enables us to prove a selection theorem in this chapter and an
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extension theorem later on in Chapter Four. Other new concepts are introduced in
this chapter, like M-convexity of subsets. We believe this to be a more adequate
concept of convexity in M-convex spaces than that of G-convexity, the common
notion for convexity in G-convex spaces introduced in [PK2]. The definition of
M-KKM mappings is also given. Several results are presented in this chapter
which illustrate the significance of these new concepts. Among these, perhaps the
definition of a product G-convex space and the related theorem presented in section

three best illustrate the significance of these concepts.

In Chapter Two we introduce a new example of a G-convex space whose convexity
comes from a metric. Our main motivation is Takahashi’s convex metric spaces [Tak]
introduced in 1970. We begin Chapter Two by defining these spaces and refer to
them as G-metrically convex spaces. Then we prove that they are G-convex spaces.
This involves constructing a continuous function from the standard n-dimensional
simplex in R” to I'(A4), a certain subset of the metric space assigned for each finite
subset A. This continuous function must also satisfy a certain condition required
for the G-convex structure. Our goal is finally reached by the use of six lemmas.
Although these may look tedious at first glance, only some simple analysis is needed
for the proofs. Despite the fact that getting a new example of a G-convex space is
well worth the task, we also find that our constructive proof of G-convexity provides
us with two kinds of G-map systems which we present in the second section of
Chapter Two. Thus G-metrically convex spaces turn out to be M-convex spaces

after all.

Chapter Three contains new extension theorems in G-convex spaces and we are
not aware of any other work in this field so far. If X is an arbitrary metric space
and A a closed subset of X, Tietze’s extension theorem states that any continuous
f: A — R has a continuous extension f : X — R. In 1951, J.Dugundji [DJ,
Theorem 4.1] proved a generalization of Tietze’s theorem where R is replaced by

any locally convex toplogical vector space.

In 1972, Tsoy-Wo Ma [Ma, Theorem 2.1] proved a generalization of Dugundji’s
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theorem to upper semicontinuous mappings with compact convex values. Ma ap-
plied his theorem to a construction of the topological degree theory for compact

convex valued vector fields in locally convex spaces.

In 1996, Tadeusz Pruszko [Psz, Theorem 1.1] proved an extension theorem for
an upper semicontinuous mapping with compact convex values that is dominated
by a completely continuous mapping. In Pruszko’s theorem the extension obtained

is completely continuous and the range is assumed to be a normed space.

In 1997, Zhou Wu [TW, Theorem 2.4]| proved a version of Ma’s theorem where
the mapping is assumed to have star-shaped values instead of convex values. Wu
applied his theorem to the study of duals of the theorems of Gale-Mas-Colell and

of Shafer-Sonnenschein.

In Chapter Three we give generalizations of Dugundji’'s Theorem, Ma’s Theorem
and Pruszko’s Theorem to G-convex spaces. In Section 1, we give several extension
theorems for a single-valued continuous map into a G-convex space. In Section
2, we present a generalizaton of Ma’'s Theorem and in Section 3 we give a gener-
alization for Pruszko’s theorem. In Section 4, we adopt the method used by Wu
[TW, Theorem 3.3] to obtain applications of our extension theorems to equilibrium
existence theorems for qualitative games. We admit though that throughout all
the new extension theorems, Dugundji’s magic touch prevails, and his lemma [DJ,
Lemma 2.1] is used in all the proofs except for that of the last theorem. But we
must also say in fairness that Theorem 3.2.1 is a work of its own, especially where

nonlinear aspects are concerned.

Chapter Four deals with the subject of variational inequalities. As variational
inequality theory has many important applications in partial differential equations,
operations research, mathematical programming and optimization theory, we have

tried to generalize some of the known results to G-convex spaces.

The content of this chapter concerns generalizations of some variational inequal-

ities given by K.K. Tan, E. Tarafdar, and X.Z. Yuan in [TTY] to M-convex spaces.
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We introduce M-convexity, and M-concavity for real functions (both set-valued
and single-valued) on an M-convex space. We also introduce the concept of an M-
affine real function. Then we construct a so-called dual space X}, which consists
of all M-affine continuous real-valued functions.

Our main tools for obtaining the solutions of variational and quasi-variational
inequalities are a KKM-type theorem (Theorem 1.2.2 ) and a Fan- Glicksberg-type

theorem (Theorem 1.2.3 ).

In Chapter Five, we define the concept of GL s-majorized correspondences in
G-convex spaces. By imposing one condition on a G-convex space, a so-called
compact G-polytope property, we obtain several maximal element theorems for both
compact and noncompact domains. Applying these, we obtain equilibrium existence
theorems for generalized games. Although generalized games were dealt with in

Chapter Three, the correspondences considered there were upper semicontinuous.

Finally the concept of GLgs-majorized families of real functions on G-convex
spaces is also introduced. Minimax inequalities are also given for these in proving

which we apply the maximal element theorems obtained earlier.




CHAPTER ONE

M-CONVEX SPACES

In this chapter we define an M-convex space, which is a G-convex space together
with an additional structure, i.e. that of a G-map system. But we would like to
point out here that although an M-convex space is essentially a special case of a
G-convex space, it is also possible to view the latter as a special case of the former.
This is due to the fact that every G-convex space has an obvious or a trivial G-map

system as we show in Proposition 1.1.1.

In section 1. we give the definition of a G-map system and also define a special
kind of homogeneous G-map system. We also give a selection theorem for G-convex

spaces that have such G-map systems.

In section 2, we define M-convexity, M-KKM mappings and present a KKM-

type theorem together with some fixed point theorems.

In section 3, we define a G-convex structure on X = Il;¢; X; where each (X;, ;)

is a G-convex or an M-convex space.

Preliminaries.

Throughout this thesis, (X) denotes the collection of all nonempty finite subsets
of a given set X, A, denotes the standard n-dimensional simplex in R"®, and if 4

is any set, |A| denotes the cardinality of A.
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The following is the classical Knaster-Kuratowski-Mazurkiewicz (KKM) Theo-
rem in [KKM].

Knaster-Kuratowski-Mazurkiewicz Theorem. Let Fy, Fy,..., F, be closed sub-
sets of An,. Assume that co({eiy,...,€i,}) C Uf=0 F;; for any {ig,...,ik} C
{0,1,...,n}. Then (_, Fi #0.

Definition. Let X,Y be two topological spaces and T : X — 2Y be a set-valued
mapping. Then

(a) T is upper semicontinuous (USC) at o € X iff whenever O is an open subset
of Y containing T(zo) then there exists a neighbourhood (abbreviated as nhood )
N of zg in X such that T(z) C O, for all z € N. T is upper semicontinuous (USC)

on X if it is upper semicontinuous at every z € X.

(b) T is lower semicontinuous (LSC) at zo € X iff whenever O is an open subset
of Y such that T'(z¢) N O # 0, there exists a neighbourhood N of ¢ in X such that
T(z)NO #0, forall r € N. T is lower semicontinuous (LSC) on X if it is lower

semicontinuous at every - € X.

1. G-Map systems.

We begin by giving the definition of a G-convex space, a new concept introduced

by Sehie Park in 1993 [PK2].

Definition 1.1.1. (a) A generalized convex space or a G-convex space (X, D;T)
consists of a topological space X, a nonempty subset D of X, and a map I : (D) —
2X with nonempty values such that

(1) for each A,B € (D), A C B implies I'(4) C ['(B); and
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(2) for each n € BbbN and for each A € (D) with |4] = n + 1, there exists a
continuous function ¢ 4 : A, — I'(A) such that

J € (4) = ¢4(As) CT(J), (*)
where A denotes that face of A, corresponding to J € (A4); i.e.
if J ={ai,,...,a;,} C A, then ¢ s(co{eiy,---,€i.}) CT(J).

If D= X, then (X, D;I') will be denoted by (X;T).

(b) For a G-convex space (X; D;T), a subset C of X is said to be G-convex if for
each A € (C),T'(4) C C. The G-convex hull of a subset C, denoted by G-co(C), is

the smallest G-convex subset of X that contains C.

The structure of a G-convex space (X;I') gives a continuous map @4 : Aj4—1 —

[(A) for every finite subset A of X which satisfies the condition (*).

A G-map system is a collection of such maps assigned for each finite subset A in
such a way that the maps assigned for A and those assigned for 4, are related in a

certain way whenever A; C A.

Only one example of a G-map system is given in this section. But in Chapter 2

where the second one of these is homogeneous.

Definition 1.1.2. Let (X,I') be a G-convex space. A G-map system M on (X,T)
is defined as a collection {M(A) : A € (X)} such that

(a) M(A) is a nonempty collection of maps from A, to I'(A) for each A =
{ao,a1,...,a,} € (X). Moreover each ¢ € M(A) is continuous and satisfies the

following condition:

#(co({ej: 7€ J})) CT({aj:j € J}), for each J C {0,1,...,n}.
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(b) For each A = {ag,a1,...,a,} C X and each ¢ € M(A), if 4 = {ay,,ay,,-..
,ar,, } C A then there exists ¢* € M(A;) such that

H(EM oArer,) = " (EmArer) for all Ag,...,Ap 20 with A = 1.

r=0

Definition 1.1.3. An M-convex space (X, I', M) is defined to be a G-convex space
(X.T) together with a G-map system M.

Proposition 1.1.1. Let (X,I') be a G-convez space. Then there ezists a G-map
system M on (X,T) such that if M is any other G-map system on (X,T) then:

M(A) € M(A) for any finite subset A C X.

Proof. For each finite subset 4 = {ap,a;,...,ar} of X, let /\;((—1) be the collection
of all continuous maps ¢ from A to I'(A) that satisfy the following condition:

é(co({e; : j € J})) CT({aj : j € J}) for any subset J C {0,1,...,k}. (*)

Then M(A) is nonempty by the definition of a G-convex space and it is obvious
that M satisfies (a) in Definition 1.1.2 above. Next we show that M also satisfies
(b) in Definition 1.1.2.

Let 4, = {aiy,ai,---,ai,} C Aand ¢ € M(A). Let ¢* : Ayp — I['(A) be
defined by:

" (Eimorjej) = ¢(EjoAjei;)- (**)

We shall show that ¢* € M(4,).
First, by (*), we have:

¢*(Am) = ¢(Co({eiov €ijy-0yCipy }) - r({aio yQiyyeeey8ip, }) = P(Al ); hence ¢* is
indeed defined from A,, to I'(4;). Moreover ¢* is clearly continuous.
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Next we show that ¢* satisfies (*) above. So let J C {0,1,...,m}. Then

¢*(co({e; : j € J})) = #(co({ey; : j € J}))- (1)

By (*), the R.H.S. of (1) is contained in I'({a;; : j € J}. Therefore ¢* € M(4,).

Thus we have shown that M is a G-map system on (X,I') and it obviously

satisfies the assertion in the Proposition. O

Definition 1.1.4. Let (X,T’) be a G-convex space. Let M be a G-map system on
(X,T). Then M is said to be a homogeneous G-map system iff M(A) is a singleton
for each finite subset A of X.

Remark. Let (X,T) be a G-conver space with a homogeneous G-map system M.
Let M(A) = {¢p4} for each finite subset A of X. Let A = {ao,a1,...,an} and
Ay ={a,,ai,--. a1, } CTA. Then

dA(EioAjer) = b4,(Ej=gAje;) whenever Ag,...,Am 20 with L7\, = 1.
Example 1.1.1. Every nonempty convez subset of a topological vector space

(V,+, - ,7) 18 an M-convez space with a homogeneous G-map system.

Let T(A) = co(A) for every finite subset A of X. If A = {ap,a1,...,ax} C X,
let 94 : Ajaj—1 — ['(A) be defined by:

0 4(Z5=0rjej) = SiooAja;.

Then it is easy to see that M = {{da} : A € (X)} is a homogeneous G-map
system on (X, T).

In the following we give a selection theorem that holds for a G-convex space with

a homogeneous G-map system. We present it here to illustrate the importance of
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this new concept. One other illustration of the use of this concept will be seen in

Chapter Three where an extension theorem (Theorem 1.4) is presented.

Before we present our theorem, we state a selection theorem of Tan and Zhang

(Theorem 2.3 in [TZ]).

Theorem 1.1.1. Let X be a compact topological space and (Y;I') be a G-convez
space . Suppose S, T : X — 2Y \ {0} are such that

(1) for each x € X, S(z) C T(x);
(2) for each z € X, T(z) 1s G-convez;
(8) for each y € Y, S~} (y) is open in X.

Then there exist A € (Y), continuous functions g : Ap, = I'(A) and ¢ : X — A,
where |A| = n+1 such that f = go¢o s a continuous selection of T; i.e. f(z) € T(x)
forall z € X.

The following is a noncompact version of the above theorem. It is also a gen-
eralization to G-convex spaces of a selection theorem of Yennelis and Prabhakar

[YP].

Theorem 1.1.2. Let X be a paracompact topological space and (Y;T') be a G-
convez space with a homogeneous G-map system. Suppose S,T : X — 2Y \ {0} are

such that
(1) for each z € X, S(z) C T(z);
(2) for each x € X, T(z) i3 G-convez;

(3) for each y €Y, S™(y) is open in X.
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Then there ezists a continuous selection of T; t.e. a continuous map f : X —- Y

such that f(z) € T(z) for each z € X.

Proof. Using the assumption that (Y,I') has a homogeneous G-map system, we
assign for each finite subset A = {ag,....an} of Y a continuous map ¢4 : A, —
['(A) which satisfies (*) and (**) in the following.

Forany0<ig<i; <---<im £<n,
da(co({e; :0<j <k})CI({a; :0< 5 < k}). ()
For any subset A; = {ai,,4ai,,---.ai,, } of A, we have
oa(ZioAjei; ) = da,(EjeAje;)- (**)

By (3), {S™!(y) : y € Y} is an open cover for X. Let { be an open locally finite

refinement for this cover. For each U € U, choose yy € Y such that

U c S Y(yu). (1)

Let {8u }uew be a continuous partition of unity on X subordinate to the covering
U. Foreach r € X, let A; = {yv €Y : £ € U} = {yo,¥1,---,Ym} and define
f: X ->Y by

f(2) = 94 (BiZ0(Eyy=y: Bu(x))ei)-
We shall show that f is a continuous selection for T.
Indeed, let £ € X be given. Then the range of 4. C I'(A;) = T'({yo,---,ym})-
Moreover, for each y; € A;, we have £ € U C S~ !(y;) for some U € Y. ie. y; €

S(z) C T(z). Therefore it follows by the G-convexity of T(z) that range(¢4_) C
T(z). Hence f(z) € T(z). Thus f is a selection of T.

To complete the proof, it remains to show that f is continuous at every zo € X.
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Let W be an open nhood of £y € X that intersects with finitely many elements of
U, sayCw ={UeU:UNW #0}. Let Aw ={yv :U € Cw} = {20,91,---, Uk}

Define u : W — Ag by
p(z) = E50(Syu=y; Bu(z))e;-
Then we will prove the continuity of f at ry through the following two steps.

Step 1. u is well defined and continuous.

Indeed first let £ € W be given. Note that
Bu(z) #0=>>U € Cw = yu € Aw = yu = J; for some 0 < j < k.

Therefore Z;?:oEyU:g,}. Bu(xr) =1 and p is thus well defined.

Next we show that px is continuous. For each 0 < [ < k. let {U € Cw : yu =
yl} = {Ujl7”'7Lrjn(}'

Let r; : W — [0.1] be defined by :
ri(z) =T, By, (¢),

then r; is obviously continuous for each 0 < I < k. Also u(z) = £f_,ri(z)e;. Thus

it follows that u is continuous.

Step 2. (day o u)(x) = f(z), for each € W, where ¢4, : Ar — I'(Aw) =
T'({%0,---,Ux})) is the continuous map provided by the assumption that (Y;I') has

a homogeneous G-map system and satisfying (*) and (**).

Let £ € W and let A; = {yo,¥1,.-.,ym}- Then A; C Aw and therefore

{vo,v1,--- Ym} = {%i0-¥ir»- - - » Vi, } Where g;; =y; foreach 0 < j < m.

Now f(z) = ¢a.(ETeoAje;) where \j = By, =y, Bu(z)-



15

Since A; C Aw, applying (**) to the above we have:

f(z) = daw (Ejiorjei;) = Paw (Ejmo(Eyy=y; Bu(z))ei; )

. (2)
= G aw (Ej=0(Eyu=i:;; Bu(2))ei; ) = daw (Ziegio,...im {Eyo =0 Bu(z))er).
But we notice that
le {0717'”7’9} \ {ioril""’im} = zyu=§lﬂU(I) =0. (3)

Let us first prove (3). Indeed, [ € {0,1,...,k}\ {é0,---vim} =N ¢ {yv:z2 € U} =

r ¢ U whenever yy = y; = Buy(z) = 0 whenever yy = g1 = 4, =3 8v(z) =0.
Now, applying (3), the R.H.S. of (2) is equal to

baw (Eto(Eyo=0.Bu(x))er) = (Paw o p)(z).

Therefore it follows by (2) that f(z) = (d4, op)(z). O

2. M-Convexity And A Related KKM-type Theorem.

In this section we give a definition of generalized M-KKM mappings, which, as
we shall show, is a generalization of the definition of generalized G-KKM mappings
given by Tan in [T] (Definition 1.4). In [T], a G-KKM theorem is given which
generalizes the celebrated Ky Fan KKM Principle whose numerous applications to

minimax inequalities and variational inequalities cannot be over emphasized.

By modifying the proof of the G-KKM theorem in [T], a new generalization of
the theorem is obtained. Applications to the solutions of variational inequalities

will be seen in Chapter 4.

We also define a new kind of convexity in M-convex spaces, which we believe
will be very useful and may replace the concept of G-convexity in many cases. An
application of this concept will be presented in Chapter 4 when we study variational
inequalities for set valued mappings.
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We present generalizations of two fixed point theorems due to Park [P]. We also
show how a G-convex subspace is induced on any M-convex subset. Although an
obvious fact in the case of G-convex subsets, this statement needs proof in the more

general case of M-convex subsets.

Definition 1.2.1. Let X be a topological space, (Y;I') a G-convex space, M a
G-map system associated with I" and T : X — 2Y. Then T is said to be generalized
M-KKM if for any xg,z1,...,zn € X there exist yo,y1,---,Yn € Y such that
for any subset J C {0,1,...,n} and for any ¢ € M({yo,y1,---,yn}) we have
dAs) C UjeJ T(z;), where Ay is that face of A, corresponding to J.

We shall show in the following that the concept of a generalized M-KKM map-
ping generalizes that of a generalized G-KKM mapping introduced in Definition 1.4
in [T], which we quote below.

Definition 1.2.2. Let X be a topological space, (Y;I') be a G-convex space and
T :X — 2Y. Then T is a generalized G-K KM map if for each finite subset
{z1,... ,za} of X, there exists a finite subset {y;,... ,yn} of ¥ such that for any

subset {yi,,... ,yi, } of {y1,--- s yn}s G-co({y,-l,.,, ¥ie }) C Uf:lT(zi,' )-

Proposition 1.2.1. Let X be a topological space, (Y,I') a G-convez space, M a
G-mayp system associated with T and T : X — 2Y.
If T is a generalized G-KKM map then T is generalized M-KKM.

Proof. Let zg,...,z, € X, then there exists yq,...,yn € Y such that for any subset
Jc{0,1,...n} we have G-co({y;: 7€ J}) C Ujes T(zs;)-

Soif ¢ € M({yo,-..,yn}) and if Ay is that face of A, corresponding to J then:

$(As) CT({yj:5 € J}) C G-co({y; : j € J}) C Ujes T(zi;)- O
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Before we give our KKM-type theorem we quote the following from [T] (Definition

1.5, Theorem 2.5 and Theorem 2.6, respectively).

Definition 1.2.3. Let (X;I') be a G-convex space and A C X. Then A is said to
be finitely G-closed if for each B € (X), AN G-co (B) is closed in G-co (B).

Theorem 1.2.1. Let X be any non-empty set and (Y;I') be ¢ G-convez space.
Suppose T : X — 2Y \ {0} is such that each T(z) is finitely G-closed.

(1) If T is a generalized G-K KM map, then the family {T(z) : £ € X} of subsets
of Y has the finite intersection property.

(2) If the family {T(z) : £ € X} has the finite intersection property and {y} is
G-convez for each y € Y, then T 1s a generalized G-K KM map.

Theorem 1.2.2. Let X be any non-empty set, (Y;I') be a G-convez space. Suppose
T:X —2Y\ {0} is such that (a) each T(z) is compactly closed in Y and

(b) NT_, T(z;) 1s compact for some ry,...,zm € X.

(1) If T is a generalized G-K KM map, then N exT(z) # 0.
(2) If NzexT(z) # 0 and {y} 1s G-convez for eachy € Y, then T s a generalized
G-KK M map.

-The following lemma generalizes (1) in Theorem 1.2.1 above.

Lemma 1.2.1. Let X be a topological space, (Y,I') be a G-convez space, M be a
G-map system associated with T and T : X — 2Y. Assume

(1) T(x) s finitely G-closed for each z € X;

(1) T is generalized M-KKM.

Then the family {T(z) : ¢ € X} of subsets of X has the finite intersection property.
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Proof. Let zg,z1,...,zn, € X. Then there exist yo,y1,---,Yn € ¥ such that when-

ever 0 <ig < <---<ix <nandd € M({yo,y1,---+Yn})

k
o(As) C U T(x;;) where Ay is that face of A, corresponding to J.  (¥)

=0
Now let ¢ € M({yo,v1,---,Yn}, let S = G-co({yo,-.-,yn}) and
Gi=0¢"YT(z;)NS), foreach 0 <i < n.

Then the G;’s are closed and it is also easy to verify that Go,Gq,...,G, satisfy
all the conditions of the classical KKM theorem.

For let J = {¢0,¢1,-..,2¢} C {0,1,2,...,n}. Then by our assumption that T is
generalized M-KKM, we have ¢(A ;) C Uk T(z;;)-

=0

So it follows that A, C Uf:o ¢~ T(zi;) = U§=o Gi;. Hence by the KKM
theorem, we have ()._, G; # 0 and consequently ()._, T(zi) # 0. O

Applying Lemma 1.2, we get the following modification of Theorem 1.2.2 above.

Theorem 1.2.3. Let X be a topological space, (Y,I') a G-convez space, M a G-
map system associated with ', and T : X — 2Y. Assume

(i) T(x) 13 compactly closed and finitely G-closed, for each z € X;

(11) T 13 generalized M-KKM;

and (#i) there ezist x1,z2,...,m € X such that S =)
Then (,ex T(z) # 0.

m
i=1

T(z;) s compact.

Proof. By Lemma 1.2.1, the family {T(z) : £ € X} has the finite intersection
property and hence {T(z) NS : z € X} has the finite intersection property also.

Moreover, T(z) N S is closed in S for each r because S is compact. So it follows

that (,cx T(z)NS#0. O

In the following we define a new kind of convexity in M-convex spaces. An
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application of this concept will be presented in Chapter 4 when we study variational
inequalities for set valued mappings. We also show how a G-convex subspace is
induced on any M-convex subset. This fact will be used in proving Theorem 1.2.7,

a generalization of a fixed point theorems of Park.

Definition 1.2.4. Let (X,T') be a G-convex space and M be a G-map system
associated with I'. Then a subset C of X is said to be M-convex if

#(A,) C C, whenever A = {ag,a;,...,an} C C and ¢ € M({aq,...,an}).

The obvious proof of the following proposition is omitted.

Proposition 1.2.2. The intersection of M -convez sets is M-convez.

Definition 1.2.5. Let (X,I') be a G-convex space and M a G-map system on
(X,T). Let A ¢ X. Then M-co(A) is defined to be the smallest M-convex set

containing A i.e. the intersection of all M-convex sets containing A.

Definition 1.2.6. Let (X,I') be a G-convex space and M a G-map system asso-
ciated with I'. Then (X, TI') is said to be locally M-convex iff for each £ € X and
each open nhood U of z in X, there exists an open nhood V of z in X such that
M-co(V) CU.

Proposition 1.2.3. Let (X,I') be ¢ G-convez space and M a G-map system as-
sociated with I'. Let C be an M-convez subset of X and equip C with the relative
topology. Define T : (C) — 2€ by T'c(A) = |J{ image (¢) : ¢ € M(A*), A* C A}.
Then

(z) (C,T'¢c) is a G-convez space.

(#1) Tc(A) CT(A) for any finite subset A of C.

(33) Mc =U g0y M(A) is a G-map system on (C,Tc).



(i) If B is any subset of C then B is Mc-convez iff B is M-convez.
(v) If (X,T) is locally M-convez, then (C,I'c) is locally Mc-convexz.

Proof. (1) First we observe that for any finite subset A of C, I'c(A4) is indeed a
subset of C. This is so because the M-convexity of C means that image ¢ C C
whenever A is a finite subset of C and ¢ € M(A).

Let A, C Ay C C. We shall prove I'c(A4;) C T'c(42).

Let y € T'c(4,). then by the definition of I'c it follows that y € image ¢ and
¢ € M(A*) for some A* C A;. But then it follows that A* C 4, and therefore by
the definition of I'c(A2) we have image (¢) C I'c(A2) which implies y € ['c(A2).

Now it only remains to show that for any finite subset 4 = {aq,...,an} of C,
there exists a continuous map ¢ : A, — ['c(A) such that for any J = {ig,%1...-, 2%}

c {0,1,...,n} we have:
¢(CO({ei0?"'?eik})CFC({aiov""afk})- (*)

Let ¢ be any map such that ¢ € M(A). Then ¢ is continuous. Moreover image(¢) C
I'c(A) by the definition of 'c(A4).

Also if J = {ig,71..-.. ir} C {0,1,...,n} then by the definition of a G-map

system, there exists ¢* € M({ai,,.--,ai, }) such that:

qﬁ(Sf:o/\je,'j) = @‘(S;'f:o/\jej) whenever Ag,...,Ar > 0 with Sf=0/\j =1.

So the above implies that

¢(CO({6,‘°,...,6,',=})) = ¢*(Ak)- (1)
But ¢*(Ax) C T'c({ai,,---,ai, } by the definition of ['¢, so it follows that ¢ satisfies
(*). ice. $co({eiqs- - e D) € Tol{aigs-- - as, .

(ii) Let A be a finite subset of C. Let A* C A and ¢ € M(A*). Then ¢ :
Ajpej-1 = T'(A"). But I'(A*) C T'(A). So image ¢ C I'(4) . Thus it follows that
Fc(A) CT(A).
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(iii) We notice that for any finite subset A of C, if ¢ € M(A) then image ¢ C
Cc(A) by the definition of I'. Also any ¢ € M(A) is continuous by definition. Now
all this, together with (*) in the proof of (i) above, implies that Mc(A) = M(A)
satisfies condition (a) in the definition of a G-map system i.e. Definition 1.1 in

section 1.

Condition (b) in Definition 1.1 holds immediately for M ¢ because (b) holds for
M and M(A) = Mc(A), for each A € (C).

Thus M is a G-map system on (C,['¢).

(iv) Let B be a finite subset of C. B is M-convex iff image ¢ C B whenever
¢ € M(A) and A C B iff image ¢ C B whenever ¢ € Mc(A)and A C B iff B is

M c-convex.

(v) Let zo € C and U be an open nhood of zo in C. Then U =UNC where U

is an open nhood of zg in X.

By local M-convexity of (X,I'), there exists an open nhood V of zq in X such
that
M-co(V) CU. (1)

Let V = V N C then V is an open nhood of zo in C. We shall show that
Mc-co(V) CU. (**)

First we have

V C M-co(V)NC = S. (2)

Since S is the intersection of two M-convex sets, it is M -convex. Applying
(iv) above, it follows that S is Mc-convex. Then it follows from (2) that Mc-
co(V)C S.
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Moreover by (1), S = M-co(V)NC Cc UNC = U. So it follows that Mc-
co(V) C U. Thus (**) is proved and the proof of (v) is completed. O

Proposition 1.2.4. (a) Let (X,T') be a G-convez space and let M be a G-map
system on (X,T'). Then any G-convez subset C of X is M-convexz.

(b) There ezists an M-convez set that i3 also M -convez for any G-map system

M but is yet not G-convez.

Proof. (a) Let A = {ag,a1,-..,a,} C C and ¢ € M(A). Then ¢(A,) CT'(4) CC.

Hence C is M-convex.
(b) Let X = R. Define I :< R >— 2R by:
co(A), if {5,6} is not contained in 4

I(4) = { co(A) U {0}, if {5.6} C A

Let C = [5,6]. Then C is obviously not G-convex. But we will show that C is
M-convex for any G-map system M on (R,T).

Indeed let M be any G-map system on (R,T), A = {ag,a1,...,ar} C [5,6] and
¢ € M(A). It suffices to show that ¢(Ax) C [5, 6].

We consider two cases.

Case 1. {5,6} is not contained in A. In this case I'(A) = co(A) C [5,6]. And so
the fact that ¢(Ax) C T'(A) implies that ¢(Ax) C [5, 6].

Case 2. {5,6} C A. In this case I'(A) = co(A) U {0} and hence ¢(Ag) C co(A)U
{0}. Moreover there exists j with 0 < j < k such that a; = 6 so that ¢(e;) = 6.
We shall show that ¢~1({0}) = 0. Indeed {0} is both relatively open and relatively
closed in T'(A). So by the continuity of ¢, it follows that ¢~'({0}) is both open
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and closed in Ag. Hence ¢~ !({0}) is either @ or As. But ¢~'({0}) cannot be A
because ¢(e;) = 6, so we have ¢~'({0}) = 0.

Hence it follows that ¢(Ax) C co(A) C [5,6] = C. Therefore C is M-convex. [

In the following we give two theorems; the first is a modification of a Schauder-
Tychonoff-type fixed point theorem and the second is a version of a Kakutani-type
fixed point theorem due to Park[P]. The modifications are that assumptions of

G-convexity are replaced by assumptions of M-convexity.

We begin by quoting the following theorems of Park [P]:

Theorem 1.2.4. Let (X,T') be a Hausdorff G-convez space such that for every x €
X and every open neighbourhood U of z in X, there ezists an open neighbourhood
V of £ in X such that G-co(V) C U. Let g : X — K be continuous, where K is a

compact G-convez subset of X.

Then g has a fized point.

Theorem 1.2.5. Let (X,T') be a Hausdorff G-convez space and assume that {z}
15 G-convez for each r € X. Assume also that for every compact G-conver subset

A of X and every open neighbourhood V of A, there ezists an open neighbourhood
U of A such that G-coU C V. Let T : X — 2% be such that:

(i) T has nonempty compact G-convez values;
(1) T is USC;
(1#11) T(X) C K, where K i3 a nonempty compact G-convez subset of X.

Then T has a fized point .



24

Definition 1.2.7. Let X be a topological space, R a cover for X, and St(B,R) =
U{Ve€R:BNV # 0} for each B C X. A cover R is called a star refinement
(resp. barycentric refinement) of a cover & whenever the cover {St(V,R): V € R}
(resp. {St(z,R) : £ € X}) refines Y.

The following theorem generalizes Theorem 1.2.4 above.

Theorem 1.2.6. Let (X,I') be a Hausdorff locally M-convezx space and M be a
G-map system associated with I'. Let g : X — K be continuous, where K is a
compact subset of X.

Then g has a fized point.

Proof. Assume g has no fixed point. Then for any z € X, there exist open sets V)
and V; such that z € V; and g(r) € V3 and V; N V2 = . Since g is continuous, we

may assume V) C ¢~ 1(V2).

By the assumption of the theorem, there is an open neighbourhood W; of z in

X such that M-co(W.) C V;. So it follows that:

M-co(W;) N g~ (W) C Ving™' (V1) Cg~'(Va)Ng™'(Vi) =0 forallz € X.
(1)

Now W = {W, : ¢ € K} is an open cover for K. Hence, by the compactness
of K, there exists an open star refinement &/ for W and an open finite subcover

R= {D?O,U‘[,...,Un} ofL(.

For each i = 0,1,...,n, choose any z; € U; and let X; = X\g~'(U;). Let
A= {1:0,1:1,...,;1:,,} and ¢ € M(A).

Now we shall show that ¢~(Xj),...,¢ }(X,) satisfy all the conditions of the
KKM-theorem. First ¢~!(X;) is obviously closed for each 1.
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Next let J = {ig,21,..-,2k} C {0,1,...,n}. And let A; be that face of A, corre-
sponding to J. We shall show A C Ji_, 67 1(X5;).

Assume not. Then there exists t = Sf=o)\je.-j € Ay such that = = ¢(¢) €

nf:o g~ '(U;; ) and therefore

g(z) € (U, (2)

In view of (2), Uf:o Ui; C St(Ui,,U) C Wz for some T € X. Therefore we have

on one hand that
g(z) € Wg, (3)

On the other hand,
{zig ziyso- - zi } C We. (4)

By the definition of a G-map system, there exists ¢* € M({z;,,...,Zi, }) such
that = = ¢>"‘(2f=0,\jej). But by (4) M-co(W3z) is an M-convex set containing
Ligy---,Tip, s0 it follows that ¢*(Ax) C M-co(Wz) and hence that

> € M-co(W3z). (3)
From (5) and (3), it follows that z € M-co(Wz)Ng~!(W3), which is a contradiction
to (1).

Thus the classical KKM-theorem can be applied and (., ¢~ '(X;) # 0, which
implies that [)_, Xi # 0 which is a contradiction because if w € Xj for all i =
0.1,...,n then g(w) ¢ U, forall : = 0,1,...,n which contradicts the assumption
that ¢(X)C K c U, Ui.

Thus g must have a fixed point. O

The following theorem is a modification of Theorem 1.2.5, replacing G-convexity

by M-convexity. We point out that neither of these implies the other.
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Theorem 1.2.7. Let (X,T') be ¢ Hausdorff G-convez space and M a G-map system
associated with I'. Assume that {z} 13 M-convez for each r € X. Assume also that
for every compact M-convez subset A of X and every open neighbourhood V of A,
there ezists an open neighbourhood U of A such that M-coU C V. Let T : X — 2%
be such that:

(i) T has nonempty compact M-convez values;
(1) T is USC;
(111) T(X) C K, where K i3 a nonempty compact M-convez subset of X.

Then T has a fized point .

Proof. Assume not, i.e. for each r € K, r ¢ T(z). Then there exist open sets U

and V containing r and T'(z) respectively such that U NV = 0.

By assumption there exists an open set Vi containing T(z) such that M-coV; C
V. By USC of T, there exists an open set U; containing z such that
T(Ul) = UanIT(a) C ‘/1

Let W, =UnU,. Then

W N M-co(T(W,)) =0, for each z € X (1)

Indeed W, N M-co(T(W.)) CUN M-coT(U1) CUNM-coVL cUNV = 0.

Since K is normal, it follows by [DJ2, Theorem 3.2 pg.167] that the cover W =
{W, : £ € K} has a barycentric refinement . Let U, Uy,...,U, € U be such that
K C U, Ui. And let Bo,B1,.-.,Bn be a partition of unity on K subordinated to
{Uo,-..,Un}. Also pick z; € T(U;) for each i € {0,1,...,n}.
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Let ¢ € M({zo,z1,...,Zn}). Note that ¢ : A, — ['({z0,Z1,...,Zn}) is contin-

uous such that

(a) #(An) C M-co({zg,---,2zn}) C K; and (b) for any subset J = {i0,21,...,2k}
of {0,1,...,n}, o(Ay) C M-co({ziy,Zi,,---,Zi,}, where Ay is that face of A,

corresponding to J.
Now define h : K — K by h(x) = ¢(EX,8i(z)ei). Then h is continuous.

We consider the G-convex space (K,I'g ) together with the G-map system Mg,
where 'y, My are as in Proposition 1.4. By (v) in Proposition 1.4, (K,T'k) is
locally M g--convex. Since K is compact and h is continuous, all the conditions of
Theorem 1.2.2 are satisfied and therefore h has a fixed point T € K. We shall show
that leads to a contradiction. Let J = {j € {0,...,n}: T € U;} = {do,i1,---,2k} C
{0,1....,n}. Thus

TelU;iffje J (2)

(2) implies that if 3;(F) # 0. then j € J. Hence it follows that A(T) € #(Ay).
(3)

Now by (2),

k
J Ui;  St(z,u) c W, for some zo € K. (4)

J=0
It follows that {z;,zi,,-.-, i, } CT(W,,)-
Now, by (ii), h(Z) € ¢(As) C M-co({ziy,--.,Ti, }) C M-coT(W,,). (5)

Using (2) and (4), we have T € W;,; so (5) would imply that T = h(Z) €
Wz, N M-coT(W,,) which is a contradiction to (1).

Therefore T has a fixed point. O
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3. Product G-Convex Spaces.

As we know every topological vector space is a G-convex space. (Define I :

(X) = 2% by I'({ag,...,an}) = {EPoAiai : Aoy---,An = 0 with B2 \; = 1}).

Since the product of a family of topological vector spaces is a topological vector
space, an obvious question is whether the product of G-convex spaces is a G-convex

space.

We shall answer this question in the affirmative. Thus given a family of G-convex
spaces {(X;,I:)}ier, if X = O, X, is equipped with the product topology, we shall
define T : (X) — 2¥ in such a way that the resulting G-convex space coincides with

the one provided by the linear space in case of topological vector spaces.

Our definition of a product G-convex space makes it possible to study generalized
games and abstract economies for G-convex spaces as shall be seen in chapters Three

and Five.

In the following lemma we give a construction for a certain map ¢4 from A, to
X = Il;erX; where A is any finite subset of X containing n + 1 elements. The proof

of the claim that this map is continuous is easy and it is therefore omitted.

Lemma 1.3.1. Let {(X;, Di;Ti)}ier be any family of G-convez spaces. Let X =
IIie s X be equipped with the product topology and D = ll;c;D;. For each it € I, let
7i : X — X; be the i’th projection. Let A = {ag,ai,...,an} be a finite subset of D.
For each : € I let
A; = mi(A) = {mi(ao), mi(a1),...,mi(as)}
= {mi(ag), mi(ag, ), - -» Wi(aqn,- )}

where mi(ag, ), mi(aq, ), - .., Ti(ay,,) are all distinct and 0 < qo < q1 < -+ < gn; < 1.

Also for each i € I, let ¢; = ¢4, : An; — T'i(A;i) be continuous.



Define ¢i : An — An; by
3i(Zh0)jei) = Trto(Srmi(aj)=rmilag) As)er-
Let ¢4 = Hicrdi : Ap — X be defined by
da(a) = (¢i o di(a))ier-

Then ¢4 = ﬁ,-elqﬁ,- 18 continuous.

The following theorem provides us with a G-convex structure on the product
space. We note that the proof becomes quite elaborate at the point where we show
that a certain map ¢ that we construct satisfies condition (2) in Definition 1.1.1
required for a G-convex stucture. It took long hours to work through those laborious

details, but we believe the outcome is worth it.

Theorem 1.3.1. Let (X;,I;, M;);c; be any family of M-convez spaces. Let X =
O;cr X; be equipped with the product topology. For each i, let w; : X — X; be the
1’th projection. Given a finite subset A = {ag,a1,...,a,} C X, let

M(A) = {Migr di : {#itier € MierMi(mi(4)},
(where M;cr0; : An — X is the continuous map constructed in Lemma 1.9.1.)
Let M = {M(A): A€ (X)}. Define Lpq: (X) — 2% by
T am(4) = U{ image(¢) : ¢ € M(A*), A* C A}.
Then (I) (X,T am) is a G-convez space;

(II) M is a G-map system on (X, pq).

Proof.
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(I) We first notice that M(A) is nonempty for each A € (X) and therefore I'y((4)

1s nonempty.

Suppose A, B € (X) are such that A C B. Then 'y (A) = U{image(¢) : ¢ €
M(4%), A* C A} C U{image(d) : ¢ € M(A*),A* C B} =T m(B).

Now suppose A = {ag,a;,.-.,an} C X. Let ¢ = f[ie[¢i € M(A), where ¢; €
M ;(m;(A)) for each z € I. Then ¢ : A, — X is continuous by the previous lemma.

Moreover image(¢@) C T m(A4).

To complete the proof of (I), it only remains to show that f 0 < lp < I} <--- <

lm <n, then
¢(Co({elm Clyy--n €y, }) - FJW({almalt yereyQly, }) (*)

Let 4; = {ay,,ai,,-.- a1, } C A. Fix an arbitrary ¢ € I. Let 4; = 7;(A) and A;; =
mi(A1); Clearly A;; C A;. Since ¢; € M;(A;), it follows from (b) in the definition
of a G-map system (Definition 1.1.2) that there exists ¢7 € M;(A,;) such that

0i(ZM o Aeeq, ) = T (SioAeer), (1)

where co({eq,,€q,,---€qs }) is that face of A4, determined by A;; as a subset
of 4;. Let ¢* = I:Ii€1¢f, then ¢* € M(4;) and ¢* : A, — X by Lemma 1.3.1. Let
Ay = co({ei,,et,s---,¢€1,}). Foreach a = T e, € Ay, let a® = ER Ace, €

Ap,. We shall show that ¢(a) = ¢*(a™).

Since ¢(a) = ((¢i0di(a))ies and ¢*(a*) = (6} 0$*;)(a*))ier; it suffices to show
that
(6i0 ¢:i)(a) = (67 0 ¢F)(a*), for each i € I. (**)

Soletz € I. Let
A; = mi(A) = {mi(ao), mi(ar),- - ., mi(aa)}
= {330',',.'171,,',. .- 7zn,i}

= {201217”-7Zh}a
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for some 0 < go < q1 < -+ < ¢ < 1 where we also have n < n.

Similarly let
Ay = mi(Ar) = {mi(aty)s- -+ Ti(a1n)} = {Ttoiv-- -2 Tt i}
= {zlovzlﬂ"":l""}’

for some m < m. Obviously we have {lo,l;,...,ls} C {0,1,...,n}.

By Lemma 1.3.1, @. : An — A; and ¢; 1 A; — Ti(A;), where
3i(Shoorsiei) = Tio(Te; =z Aj)es = Sinphses.
Also ¢7 : A — A and @7 : Ay — Ti(A4y;), where

¢* (M gArer) = B (T, =z, Ar)er.

Let a = ™  Acer, € co({ety,-.- €1, }) = As. Then ¢i(a) = £2_ (S, =z, Ar)es.

Now since {Ziq,isZlyis---+Zlmi} = {Zqos---+3qm }; it follows that for any s ¢

{g0.q1+--.,qm} we have z;_; # z,, forall 0 < r < m.

Thus q\i.-(a) = Sf’éo(zrtr.F:u

(i o0 ¢i)(a) = ¢i(2;?‘;0;\¢eq, ), which by (1) implies

— ym )
Ar)eq = X2y eq, . Hence

(¢i0 d"i)(a) = ‘15:(2?;0;\:6:)- (2)
On the other hand,
(87 0 67)(a*) = 87(6} (Mo rrer)

= OH (o (Zay, o=z, Ar)er) = 67(EMoheer).

3)
Therefore by (2) and (3) we have (¢; o ¢;)(a) = (g7 0 ¢>:‘)(a*) Thus (**) follows.

By (**), it follows that #(As) C image(¢*). But ¢* € M(A;), and hence by
the definition of I" o¢, we have image(¢*) C I'sm(A1) so that ¢(Ay) C Tam(A4,); ie

¢(co({elo’ <. 7elm}) - FM({alo" - valm})'



Thus (*) is proved and the proof of (I) is completed.

(II) Since in the proof of (I) above ¢ was an arbitrary map from M(A), where
A is also an arbitrary finite subset of X, we have actually proved in (I) that
for each A = {ao,ay,...,an} C X, for each ¢ € M(4) and any subset
{lo,51,...,Im} of {0,1,...,n}, there exists ¢* € M({ay,,ay,,-.-,ai,} such that

(M oArer) = 6% (S pArer), where Ag,...,Am 20 with ¥TLA, =1.

~r=0

Therefore, by Definition 1.1.2, M is a G-map system on (X, 's¢) and the proof
of (II) is completed. O

Definition 1.3.1. (a) Let {(X;,[i, M;)}ies be any family of M-convex spaces.
Let X = II;erX; be equipped with the product topology. Let M,I'y be as in
Theorem 1 above. Then (X, s, M) is said to be the product M-convex space of
the family {(X;, T, Mi)}ier-

(b) Let {(X;,Ti)}ier be any family of G-convex spaces. Let X = Il;c/X; be
equipped with the product topology.

Then the product G-convex space of the family (X;,I'i);c; is defined to be the
G-convex space (X,T'), where I' : (X) — 2<% is defined by

[(A) =T g (4),

where (X, Ty, M) is the product M-convex space of the family {(X;,T}, M) Yier
and M; is the natural G-map system on (X;,T;) as in Proposition 1.1.1.

Proposition 1.3.1. Let {(X;,Ti, M;)}ier be a family of M-convez spaces. As-
sume further that M; is a homogeneous G-map system for each i € I. Let (X,T pq, M)

be the product M-convez space.

Then M is a homogeneous G-map system on (X, T am).
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Proof. Let A be a finite subset of X.

Then M ;(=;(A)) is a singleton, for each : € I. Hence it follows from the construction
of M(A) in the statement of Theorem 1.3.1 that M(A) is a singleton. Since M is
a G-map system by (II) in Theorem 1.3.1, the conclusion follows. O

In the following Corollary, we see that the concept of a product M-convex space
generalizes that of a product topological vector space. The proof is obvious and is

hence omitted.

Corollary 1.3.1. Let {(Xi,+,-,7i)}ier be a family of topological vector spaces. Let
T; : (X) — 2% be defined by:

Fi({ai07ailv- . ~vain}) = CO({aio,ail,. .. ,a,-,,})
Let M;(A;) = {9pa,;} where ¢4, : Ap — co(A;) is defined by
d’Ae(Z?:o/\jej) = E}':O/\ja,-j.

Let (X,T s, M) be the product M-convez space and let A = {ag,a;,...,a,} C X.
Then

(i) Taa(A) = co(A),

(i) If 9.4 € M(A) then da(Z]_gAje;) = Zh_gAja; whenever Ag,..., A, > 0 with

n r—

Proposition 1.3.2. Let {(X;,[i, M;)}icr be any family of M-convez spaces. Let
(X,T aq, M) be their product M-convez space.

Then the product of M ;-convez sets is M-convez.

Proof. Let C = II;erC; where C; C X; is M ;-convex for each 7 € I.
To show that C is M-convex, it suffices to show that:

image(¢) C C, for any finite subset A of C, and any ¢ € M(A). (1)
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Indeed let ¢ € M(A) for A = {ag,a1,...,an} CC. Then ¢ = ﬁie[gbi where each
#i € Mi(mw;(A)), and where @; : Ayx;(4)j—1 — Li(mi(A4)).

Since m;(A) C C; and C; is M-convex; it follows that image(¢:) C I'i(mi(A)) C
Ci.

Next by the definition of ¢, we have ¢(a) = ((¢; o ef),-))(a))ie[. This implies that
image(@) C I;esimage(;) C H;erCi C C.

Thus (*) is proved and the conclusion follows. O

Corollary 1.3.2. Let {(X;,Ti)}ier be any family of G-convez spaces. Let (X,T)

be their product G-convez space. Then the product of G-convez sets is G-convez.

Proposition 1.3.3. Let {(X;, i, M;)}ier be any family of M-convez spaces. Let
(X, T aq, M) be their product M-convez space. Assume that for each 1 € I, singleton

sets in X; are M;-convez. Then singleton sets in the product space are M-convez.

Proof. Let z9 = (xoi)ier € X.

For each ¢ € I, {zq;} is M;-convex, so it follows that image (¢;) C {zo:}, for each
#i € Mi({o:i}). This implies that M ;({zo:}) contains one map only, namely ¢y, :
Ag — {z¢i} defined by ¢oi(eg) = zoi. Thus M({zo}) contains one map only,
namely ¢y = Ilic/poi defined by do(eo) = (doi(eo))ier = (zoi)ier = zo. Thus
image ¢ C {ro} whenever ¢ € M({zo}).

Hence {zq} is M-convex. O

Corollary 1.3.3. Let (X;,T'i)ier be any family of G-convez spaces. Let (X,T") be
their product G-convez space. Assume that for each i € I, singleton sets in X; are

G-convez. Then singleton sets in the product space are also G-conver.

The following is Theorem 4.1 in [TZ]. It gives a different definition for a product
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G-convex space.

Theorem 1.3.2. Let {(X;, D;;T:)}ier be any family of G-convez spaces. Let X =
;cr X; be equipped with the product topology and D = Il;c;D;. For each i € I, let
mi : X — X; be the projection. Define T : (D) — 2%\ {0} by

T(A) = Iies Ti(mi(A)) for each A € (D).

Then (X, D;T') 1s a G-convez space.

The following proposition characterizes closed G-convex subsets when adopting

the product G-convex space of [TZ].

Proposition 1.3.4. Let I be an indez set. For eachi € I, let (X;,T';) be a G-convez
space satisfying the property that singleton sets are G-convez. Let X = Il;c;X; be
the product G-convez space as defined in Theorem 1.5.2 above. Let A be a closed
G-convez subset of X. Then A = Il,ermi(A).

Proof. Let p = (pi)ier € Hiermi(A). We shall show p € A.

Let A be a nhood base for p, and for each N, N € NV, let N < Nif N C N.
Without loss of generality, we may assume that for each N € N, there exists a
unique subset Jy of I such that
N = H,-GIX.-, where

X, if: ¢ Jn,
X = { Ui, ifi € Jn, (1)
where U; is an open nhood of p; properly contained in X;.
For each i € I let a'¥ € A be such that wi(a(‘)) = p;, and for each finite subset J
of I,let Ay = {aP) :j € J}.
By the G-convexity of A, we have

I(As) = HierTi(mi(Ay)) C A. (2)
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Since p; = mj(a?) € w;(Ay) for each j € J, and since we are also assuming that

singleton sets are G-convex; it follows that
pj €Tj(rj(Ay)), forall j € J. (3)
(2) and (3) imply that
there exists @) € A such that «;(al’’) = pj, for all j € J. (4)
It is obvious from (4) and (1) that a/~) € N, forall N € V.

For each N € N, we let ay = @/¥). Then (an)nen is a net in A. Since Nis
a nhood basis for p, it follows immediately that this net converges to p. Hence the

closedness of A implies that p € A.

Since p is an arbitrary element in II;c;7;(A), the conclusion follows. [J
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CHAPTER TWO

G-METRICALLY CONVEX SPACES

Inducing a convex structure on a metric space is an old idea that can be traced
back as early as 1935, see [Me] and [Bu] for the related papers of K. Menger and

H. Buseman.

In 1970, Takahashi also gave a concept of convexity in metric spaces (See [Tak]);

he called these convex metric spaces.

Takahashi’s convex metric space is a metric space X with a mapping W from

X x X x [0,1] to X such that:
du,W(zr,y,\)) < Ad(u,z) + (1 — A)d(u,y), forall z,y,u € X and 0 < A < 1.

A Banach space is an obvious example of a convex metric space. For other examples

see [Tak].

Although motivated by Takahashi’s convex metric spaces, our definition of a
G-metrically convex space is different from the above. We feel that the relation

between these two concepts may need further study.

In presenting G-metrically convex spaces, our main interest is to offer an exam-
ple of an M-convex space that is rich with G-map systems, a new concept just

introduced in Chapter One.

1. G-Convexity In Certain Metric Spaces.
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In this section we present a certain type of metric spaces with a convex structure
(Definition 2.1.1). In Theorem 2.1.1, (which is the main theorem of this section),
we prove that these spaces are G-convex spaces. For that purpose, several lemmas

(Lemma 2.1.1 to Lemma 2.1.6) are needed.

Definition 2.1.1. A G-metrically convex space (X, d, F') is a complete metric space

(X, d) together with a function F : X x X — X such that
(1) F is continuous;
(i) For each z,y € X, d(z, F(x,y)) = d(y, F(z,y)) = (1/2)d(z,y).

When there is no ambiguity we refer to F(z,y) as the midpoint between r and
y and simply denote (X, d, F') by (X, d).
Example. (a) Let X be a Banach space and define F: X x X — X by
F(z,y) = (z +y)/2.

Then (X,d.F) s obviously a G-metrically convez space. where d is the metric in-

duced by the norm on X.

(b) Let I be the unit interval [0,1] and X be the family of closed intervals [a;, b;]
such that 0 < a; < b; < 1. Let D be the Hausdorff distance in X.

Define F: X x X — X by:
F([ai, bi], [aj,b;]) = [(ai + a;)/2,(b; + b5)/2].

Then (X, D, F) s a G-metrically convez space.

Proof. (b) For [a,b] € X, let O.([a,b]) = {y € [0,1] : d(z,y) < r for some z €
[a,8]}. Then D([ai,bi],[a;,b;]) = infrso{r : [ai,bi] € O+([a;,b;]) and [a;,b;] €
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Or([ai, bi]}- It is easy to verify that

D([ai, b;], [a;, b;]) = max{[a; — a;|,]b; — b;]}.

We begin by showing that (X, D) is complete.

Let ([@n,bn])22, be a Cauchy sequence. Then given ¢ > 0, there exists an integer

K such that
max{|a, — am|, |bn —bm|} <€, Vn,m> K.

It follows that (@, )3, and (b,)3%, are Cauchy sequences in [0, 1]. Let ag, bo be the

respective limits. Then it is easy to show that

im [an, bn] = [ao, bo]-

Next we shall show that (ii) in Definition 2.1.1 above holds.
D([ai, bi], F([ai, bi], [a;,b5])) = max{|(ai + e;)/2 — a;)|,|(b: + b;)/2 — bil}

= max{(la: — a;|)/2, (16: - b5)/2} = (1/2) - (D([ai, bi], [a;, b5]))
= D([aj, b;], F([a:, bi], [a;, b;]))-
Now it only remains to show that F : X x X — X is continuous. Let [a;, 1], [az, b2]
€ X. It suffices to show that for any € > 0, there exists § > 0 such that
D([a, b, [a1,b:1]) < 8 and D([a, b], [az, b2]) < &
= D(F([a, b],[&, b)), F([a1,b1], [az, ba]) < €.
Let 6 = ¢/4. Then
D([a, b],[a1,b:]) < €/4 and D([&, ], [az,b:]) < €/4 so that
lai —a| < €/4; |by —b| < €/4; |a—a—2|<ef/dand [b—b—2| <e/4. (1)
Now D(F([a,b],[a,b]), F([a1,b1], [az, b2])
= D([(a + &)/2,(b + b)/2],[(a1 + a2)/2, (b +b2)/2)])
= max{|(a +&)/2 — (a1 + a2)/2|, (6 + 8)/2 — (b1 + b2)/2]}
= max{[(a — a1)/2 + (& — a2)/2|,|(b - b1)/2 + (b — b2)/2[}
= max{|(a — a1)/2| + (& — a2)/2[, (5 — b1)/2| + [(b — b2)/2]} < e/2 < e.
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Thus we have shown that F : X x X — X is continuous. And it follows that

(X,D, F) is a G-metrically convex space. O

Definition 2.1.2. Let (X, d, F') be a G-metrically convex metric space. Let z¢,yo €
Xand S={m/2" : m,n € N;0 <m < 2"}. We define ¥ : S — X as follows:

(a) ¥(0) = yo and ¥(1) = zo.
(b) ¥(s) = ¥(m/2") is defined by induction on n as follows :
(1) ¥(1/2)= midpoint between zo and yo.

(ii) Assume ¥(m/2*%) is defined for all £ < n and for all 1 < m < 2¥ -1, then
define ¥(m/2") as follows:

If m is even. then ¥(m/2") = ¥((m/2)/2"!) is already defined by the induction
hypothesis.

If m is odd, then ¥(m —1/2") and ¥(m + 1/2") are both defined, and we define

¥(m/2") to be the midpoint between them.

Lemma 2.1.1. Let (X,d,F),z0,y0, S, and ¥ : S — X be as in Definition 2.1.2

above. Then:
(z) d(Z(m/2"), ¥(m + 1/2")) = d(z0, y0)/2".
(12) d(T(s), ¥(3)) = |s — 3|d(zo,y0), for any 5,3 € S.

(1) d(¥(s),zo) = |1 — s|d(x0,y0) and d(¥(s),yo) = sd(zo,y0)-

Proof. (1) We shall prove by induction on n.
Ifn =1, then d(¥(0), ¥(1/2)) = 1/2d(x0, yo) and d(¥(1/2), ¥(1)) = d(¥(1/2),y0) =
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1/2d(z0, yo)-

Next assume (i) holds for n = k. We will prove that (i) holds for n = k + 1 when

m is odd. The case when m + 1 is odd is essentially the same.

Now d(¥(m—1/25+1), (m+1/25+1)) = d(¥((m—1)/2/2%), ¥((m+1)/2/2"))
d(zo,y0)/2*; by the induction hypothesis.

Moreover, ¥(m/2k*1) is the midpoint between ¥((m — 1)/2%¥*!) and ¥((m +

1)/2k+1); so it follows that:
d(T(m/25F1), O((m + 1)/25%1)) = 1/2d(z0,10)/2* = d(z0,y0)/25*".

(i) Given s, $ € S, there exists integers m,m and n such that s = m /2" and s =

/2.

We will use induction on n to prove (i1). If n = 1, then (ii) obviosly holds. So

we assume (ii) is true for n < k, and let s = m/(25+1), 5 = m/(2F+!).
If m and m are both even, then (ii) follows by the induction hypothesis.

Next we will prove that (i1) holds if one of the integers, say m is even. In this
case let s* =m —1/(2F*!). Then s* = (m —1)/2/2F and 5 = m/2/2*; so it follows
by the induction hypothesis that:

d(2(s*), ¥(3)) = |s* - 3ld(20,y0) = (Th — m + 1)/2**'d(z0, yo)- (1)

Also by the triangle inequality and (i); we have
d(¥(s), ¥(3))

< d(¥(m/25Y), ¥(m + 1/25F1)) + d(T(m + 1/(2F+1)), O(m + 2/(2FH1))
+ oo+ d((rh — 1/(25F1)), B(m/(25H1Y) (2)
< d(zo,40)/(251) + - - + d(z0,30)/(2¥F1)

= (h —m)/(2**!) - d(z0, y0) = |3 — s|d(z0, v0)-
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Now, by the triangle inequality:
d(¥(s*), ¥(3)) < d(¥(s*), ¥(s)) +d(¥(s), ¥(3)) < d(z0,y0)/(2°F!) +d(¥(s), (3)).
The above implies that
d(¥(s), ¥(3)) > d(¥(s"), ¥(3)) — d(z0,30)/(2**").

By (1) and the inequality above, we have

d(¥(s), ¥(3)) = (m —m)/2**" - d(zo. o). (3)
Thus by (2) and (3), we have

d(¥(s), ¥(3)) = |s — 3| - d(zo, o)

And so (i1) is proved in this case.

In case T and m are both odd, we also let s* = m — 1/(2%¥*!). Then we obtain

an inequality analogous to (1) by our proof of Case 1 above (Since m — 1 is even ).

Also since both inequalities (2) and (3) are always true (regardless of either m

or m being odd or even ); we conclude that (ii) holds in this case also.

(111) ro = ¥(1) and yo = ¥(0). So applying (ii) above, the conclusion follows. O

Definition 2.1.3. Let (X, d, F) be a G-metrically convex metric space. Let zo,yo €
X.

Define ¥ (., 4o) : [0,1] — X as follows:

¥(t) as in Definition 2.1.2, if t € S;
U (z0,90)(8) = nli_:}go ¥(sn), if t ¢ S where (sn)ne; is a sequence in S converging to t.
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Proposition 2.1.1. ¥, ,.) above is well defined.

Proof. First we notice that if ¢y ¢ S, then there exists a sequence in S, say (s»)p=,
such that lim, ., s, = to. By (ii) in Lemma 2.1.1, (¥(s,))52, is a Cauchy sequence
in X. Moreover, X is complete; so this sequence must have a limit, say y, which

we defined as ¥(¢y).

It remains to show that if (s, )32, and ($,)32; are sequences in S which both con-
verge to tg and y, y are such that y = im, o ¥(s,) and y = lim,_.c ¥(35,), then y =

y.

Indeed, define (s},)5%, by

S

_ {3n+l/2a if n is odd ;

*
n Sn/2, i nis even .

Then it is easy to see that:
(1) lim,,_..x S; = to.
(i) Both (¥(sn))5%; and (¥(sn))52, are subsequences of (¥(s}))o;-

n=1

By (i), it follows that (¥(s};)) has a limit point in X, call it y*. And by (ii), it
follows that y =y* =gy. O

Lemma 2.1.2. Let (X,d,F) be a G-metrically convezr space. Let rq,yo € X, and
WU (z0.90) : [0,1] = X be as in the Definition 2.1.2. Then:

(i) d(\p(ro,yo)(t)v \I’(to,yo)(t‘)) = It - il d($01y0)7 for any t’t\ € [01 1];

(31) ¥(z4,40) 18 CONtinUOUS.
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Proof. (i) Given t,% € [0,1], let (s,)%%, and (3,)%; be sequences in S converging

to t and £, respectively. Then it follows that:
U(20,90)(8) = limn—oo U(24,50)(5n); ¥(z0,y0)(8) = liMn—oo ¥y 4,)(3n) and
A(¥ (20,90)(t): ¥(z0.50) (1)) = Lim d(¥(zq,40)(5n), ¥(z0,50)(3n))
By Lemma 2.1.1 (ii), we have
nli.ngo d(¥ (20,50)(5n)s ¥(z0,50)(5n)) = nlingo |sr — Snld(Z0,y0) = [t — ild(l'o,yo)
Thus the conclusion follows.

(i) follows immediately from (i). O

Lemma 2.1.3. Let (X.,d,F) be a G-metrically convez space, let a € X, and let
t € [0,1]. Define f; : X — X by fi(z) = ¥(a,r)(t). Then (i) f, is continuous for
each s€e S={m/(2"): m,ne€N and 0 <m <2"}.

(ii) fi i3 continuous for each t € [0.1].

Proof. (i) Let s = m/2". We shall use induction on n.
For n = 0 we have fo(z) = = and fi(z) = a, both are continuous.

If n = 2, it is easy to see that f;/,, f1/4 and f3/4 are all continuous.

For f1/2($) = F(a,zr), f1/4(1') = F(F(a,r),z) and f3/4(1:) = F(a,F(a,r)).
Thus all three functions are continuous since they are compositions of continuous

functions.

Next assume f, is continuous for s = m/2*F where 0 < m < 2¥. We will show f,

is continuous for s = m/2F+! where 0 < m < 2k+1,
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If m is even then the conclusion easily follows. So assume n = 2[ + 1. Then

fo(z) = Ta,0p((2 +1)/2541)

= the midpoint between ¥, ;((21)/25*!) and ¥(, .,((2] + 2)/2k+1
= F((a,e)(1/2), U(a,0)((1 + 1)/25)) = F(fij2x(2), fary 2+ (2))-

Since both f;/2¢ and f(;41)/2¢ are continuous by the induction hypothesis; it

follows that f, is continuous.
(i1) We will show f; : X — X is continuous for any t € [0,1] .

Given g € X and € > 0, let s € S be such that:
[t — s| < €/3[d(a,zo) + 1] (1)
Since f, is continuous by (i), there exists 0 < § < 1 such that
d(z.z9) < 6 implies d(fs(xz0), fs(z)) < €/3. (2)
We will show that:
d(z,z0) < ¢ implies d(fi(z), fi(zo)) < €. (*)

Let x be such that d(z,z9) < 1. Applying Lemma 2.1.2 (i), we obtain the following

two inequalities:
d(fs(x), fe(x)) < |t — 5] d(a,z) < |t — 5| (d(a,z0) + 1),
d(fs(zo), fe(zo) < [t — 5| (d(a,z0) + 1).

Applying (1) to the two inequalities above, we get
d(fs(z), fe(z)) < €/3, (3)
and d(fs(zo), fi(zo)) < €/3. (4)

From (2), (3) and (4); it follows that:

d(z,z) < 6 implies d(fi(z), fe(zo)) <e. O



46

Definition 2.1.4. Let (X,d, F) be a G-metrically convex space. Define I'r :

(X) — 2X as follows:
(i) If A = {ao}, then ['r(4) = {ao}-
(ii) If A = {ao, a1}, then Tp(A) = ‘P(ao,al)([o, 1]).

(iii) Assuming I' 7(S) is defined whenever |S| = k, define

k
Tr(4) =Tr({ao,ar,---;a) =) |J  Tr{aiy}).

i=0 yelr(A\{a;})

Corollary 2.1.1. Let (X, d, F) be a G-metrically convez space. LetTp : (X) — 2%
be as in Definition 2.1.4.

Then
(¢) A CTr(A) for any finite subset A of X.

(b) B C A imples I'p(B) C T'r(A).

Proof. (a) If A = {ao}, then I'p(A) =Tr({ao}) = {ac} = A.
(1) If A= {ao,al}, then a; = \I’(ao,al)(o) a.nd ag = ‘I,(ao,al)(l)-

(ii) Assume |A| > 2, and let a; € A. Then by (i), we have a; € I'r({ai,y}) for
any y € X. Hence a; € I'r(A) and the conclusion follows.

(b) It suffices to show that if B C A and |B| = |A| — 1, then I'p(B) C Tr(4).

So let A = {ao,a1,...,ar} and B = A\{a;} for some 0 < j < k.



Since I'p(4) = Uf=o Uyerraviaip TF({ai, y}); it follows that

U Tr({aj,y}) CTr(4).
yelr g (B)

But y € T'r({a;.y} by (a); so we have
Tr(B) CUyerp(8) T{a;,y}) CTr(4). O

Lemma 2.1.4. Let (X,d,F) be a G-metrically convez space. Let ['rp : (X) — 2%

be as in Definition 2.1.4. Then T'p(A) is bounded for any A € (X) .

Proof. First I'r({ao}) = {ao} is obviously bounded. Also if A = {ag,a;} and
y € Tr(A), then y = ¥(4,.q,)(¢) for some t € [0,1]. By Lemma 2.1.2 (i),

d(¥(ag,a,)(t):a0)) = (1 — t)d(ao,a1) < d(ao, a1).

So I'r(4) is bounded in this case also.

Next assume [z(4) is bounded whenever IAI =k; and let A = {ag,a1,...,ar}-

Let S; = Uye[‘p(A\{a.'}) Tr({ai,y})-

Then I'p(A) = Uf:o S;, and it suffices to show that each S; is bounded; since

the finite union of bounded sets is always bounded.

Now 'r(A\{ai}) is bounded by the induction hypothesis; so there exists zo € X

and a real number R > 0 such that
T'r(A\{ai}) C B(zo, R). (1)

We will show that
Si: C B(ai, R+ d(zg, a;)). (*)

Let w € S;; then w = ¥(,, ,(¢) for some ¢t € [0,1] and y € T'r(A\{a;:}).
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By (i) in Lemma 2.1.2, we have
d(w,a;) < |1 —tld(ai,y) < d(ai,y) < d(ai,z0) + d(zo,y)-
Applying (1) to the inequality above we have

d(w,a;) < d(a;, o) + R. Hence (*) is proved. O

Definition 2.1.5. Let X be a topological space and T : (X) — 2X. Let A =
{ag,ay,...,ax} C X, J C {0,1,...,k} and ¢ : co({e; : j € J}) = T({a; : 5 € J}).
Then ¢ is said to satisfy the G-condition iff for any subset J* of J, é(co({e; : j €
J*})) CT({a; : 5 € T*}).

Definition 2.1.6. Let (X, d, F) be a G-metrically convex space and let I'r : (X) —

2X be as in Definition 2.1.4.
Let A = {ag,a;,...,ar} C X, andlet A; = A\{a;} for somefixedi € {0,1,...,k}.

Let o : Ak_; — I'r(A;) be a continuous map satisfying the G-condition i.e. for

any subset J of {0.1,...,k — 1}, we have:

o(co({ej:j € J}) CTr({aj:j € J}), wherej=jif j<iandj=j+1ifj 24
(b1)
Let aq;,¢ : Ax = ['r(A) be defined in three steps as follows:

Step 1. Let J; = {0,1,...,k}\{¢} and A, be that face of A corresponding to
Ji.

Define ¢ : Ay, — I'p(A;) by
S(Tjesrjei) = d(EiZhAje; + Tho i djei).

Step 2. Define p; : Ax\{ei} — I'r(A;) as follows:
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pi(z) = Pi(SE jes) = B(EhLg 12i(Mj/Ai)e;) where X; = ).
Also let m; : Ay — [0, 1] be the usual projection, i.e.
mi(z) = Tr,-(E;;o/\jej) = Ai.
Step 3. Define a,, 4 : Ax — I'r(A) by:

a;, if z=e;;
aa.-.¢(3) = { \I,(a'_'p'_(:))(ﬁi(z)) , if =z # e; where \I’(a.’.P.‘(z)) is as in Definition 2.1.3.

Corollary 2.1.2. Let (X,d, F) be a G-metrically convez space and letT'r : (X) —
2X be as in Definition 2.1.4. Let A = {ao,...,ar}, 4i = A\ {ai}, ¢ : Apy —
T're(A4:), ¢ and p; be as in Definition 2.1.6.

Then for ¢ = k we have pila,_, = 0.

Proof. Let = = Zf;(},\jej € Ng-1.
Then n¢(z) = A =0 and Xk = 1; therefore,

,,,,,

Pe(2) = 8(Sjeqo,...n k1 (Ai/ Re)es) = B(EST5 Ajes) = B(S555A5e5) = 8(2). O
Lemma 2.1.5. The map aq,,, constructed in Definition 2.1.6 is continuous.

Proof. We shall show that ag, e is continuous at every zo in Ag. First assume
20 ¥ €.
Then given € > 0, we will show that there exists § > 0 such that
12— 20ll < & implies d(a;,6(), @ar,(70)) < €. *)

Let pi(z0) = wo € X and pi(z) = w € X. For simplicity, let ¢ = mi(2z9) and t =
mi(2), then aq; 4(20) = ¥ (a;,wo)(to) and aq;,¢(2) = ¥(a;,w)(t)-
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Next using the notation of Lemma 2.1.3, for ¢t € [0,1] let f; : X — X be defined
by fi(w) = ¥(4, w)(t). By Lemma 2.1.3, f; is continuous for any ¢ € [0,1]. Note
that

@a;,6(20) = feo(wo) and aa;,6(z) = fr(w). (**)
By changing the notation according to (**), (*) is equivalent to (*) below.
[z — zoll < ¢ implies d(fe,(wo), fe(w)) <. (*)
Let € > 0 be given. By continuity of f;, at wo, there exists 0 < € < 1 such that
d(w,wo) < € implies d( fi,(w), fio(wo)) < €/2. (1)
We notice that p; : Ax\{ei} — ['(A4:i) is continuous at zg; so there exists 6; > 0
such that

|l=—zol| < 61 implies d(pi(z), pi(20)) = d(w,wo) < & (17)

Combining (1) and (1*), we get
|l= — 20|l < 61 implies d(fz,(w), feo(wo)) < €/2. (17%)
Also by Lemma 2.1.2, we have
d(fe(w), fro(w)) < [t — told(ai, w). (2)

Now t = m(z) , to = mi(20) and m; : Ax — [0, 1] is continuous, so there exists

0 < & < 6y such that
||z — 20|l < & implies |t —%o] < €/(2[d(ai,wo) + 1]). (2%)

Combining (2) and (2%), we get
|z = zo|| < & implies
d(fe(w), fro(w)) < €/(2[d(ai, wo) +1] - d(ai, w)
< €[d(ai, wo) + d(wo, w)]/(2[d(ai, wo) + 1])
< e[d(ai, wo) + 1]/(2[d(ai, wo) + 1]) = €/2.

(2)
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Now from (1**) and (2**), we get ||z — zo}| < ¢ implies d(fi,(wo), fe(w)) < e
In other words, by changing the notation according to (**), we get ||z — zo|| < &

implies d(aq; 4(2), ®a;,6(20)) < €. Thus a4, ¢ is continuous at zg.
Next we prove continuity at e;.

Since ay,; ¢(€i) = a;, it suffices to show that given € > 0, there exists é > 0 such

that
||z — eil] < & implies d(aq;,6(z),ai) <e.

Since aq;,¢(2) = ¥(a; pi(z))(7i(2)), by Lemma 2.1.2 (i), we have
d(aq, ¢(z),ai) < [1 - mi(2)ld(ai, pi(z)). (3)

Moreover p;(z) € I'#(A:) and the latter is bounded by Lemma 2.1.4, so there exists

a real number R such that
d(a;,pi(z)) < R, V z € Ag\ {e,'}. (4)

Also m; : Ag — [0,1] is continuous and =;(e;) = 1; thus given € > 0, there exists

6 > 0 such that:
||z — ei]] < & implies |mi(z) — 1| < (¢/R). (8)

Combining (3), (4), and (5), we have the following
||z — eil| < & implies d(a,;,4(z), ai) <e.

Thus g, ¢ is continuous at a¢;. O

Lemma 2.1.6. The map aq;,¢ : Ax — I'r({ao,a1,...,ar}) (as constructed in

Definition 2.1.6) satisfies the G-condition .

Proof. First we will show that ¢ : A, — I'(A;) (defined in Step 1 in Definition
2.1.6) satisfies the G-condition.



52

Solet J C {0,1,...,k}\{:} and let = € Ay = co({e;j : j € J}. We want to show
that
#(z) €Trp({aj:j € J}). (*)
Now

¢( ) = (-—qu/\ ej) = ¢(—J,€Jn{o SR 1—1}'\ ej+ X jednfi+l,..., k}f\jej)

(1)
= ¢(Zjern{o,1,...i-1}Aj€j + jesnfi+1,...k}Aj€i—-1) € ¢(Ay-),
where J*={jeJ:j<i}u{j—1:j€ Jandj>i}.
By (bl) in Definition (6), we have:
#(8s) CTr({ay: j € J*}) =Tr({a; :j € J}). (2)
By (1) and (2), (*) follows.
Next we shall show that for any subset J of {0,1,...,k}, we have:
®a;0(Ay) CT({a; : j € J}). (**)

As in Definition 2.1.6, let Ay, = {z € A : mi(z) = 0}. Then for each =z € Ay, we
have:

aawﬁ(z) = \I’(a.‘,P.'(:))(O) = p,-(z). (3)

Moreover, for each = = “‘J—O/\ e; € Ay;, we have Xi = Sf—o j#iAi = 1 so that
Pi(z) = O(Thoo il 4))/ Kies) = 8(2). (4)
It follows from (3) and (4) that au; ¢la, = &
But <p satisfies the G-condition on A j;; so (**) is satisfied whenever Ay C Ay..

Next we consider A ; such that : € J i.e. A is not contained in A ;.

Let J* = J\{i}. We shall show that for each z € A, we have a,, 4(z) € I'({q; :
JE€J}
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First if z = e; then ag; ¢(2) = a; € {aj : j € J} CTr({a; : j € J} (By Corollary
2.1.1(a)).

Next assume z # e;. Then
@a;,0(2) = ¥(a;,pi=)(7i(2)) € Tr({ai, pi(2)}), (5)

and pi(z) = #(Z5_9 :(Aj)/(ANiej) € §(As) CTr({a; : j € J*}) (since ¢ satisfies

the G-condition as we proved above).

Combining the above with (5), we have a,; ¢(z) € T r({ai,y}) wherey € I'r({a; :
J € J}\{ai}. By definition of I'r({a; : j € J}, it follows that a,; +(z) € T'r({qa; :
JEJ}). O

Theorem 2.1.1. Let (X,d,F) be a G-metrically conver space (as in Definition
2.1.1). Let Tp : (X) — 2% be as in Definition 2.1.4. Then (X,T'F) is a G-convez

space.

Proof. By Corollary 2.1.1, we have B C A implies [#(B) C 'r(A). So it only
remains to show that for any subset A = {ag,a,,...,ar}, there exists a continuous
map ¢ : Ar — ['p(A) such that ¢ satisfies the G-condition. We use induction
on [4|. If A = {a¢} then let ¢ : A¢ — I'r({ao}) be defined by é(eq) = ao. If
A = {ao,a,}, thenlet ¢ : A} — I'r(A4) be defined by ¢(A1e1 + Aoeo) = ¥(qa,.a0)(A1)-

Then ¢ is obviously continuous and satisfies the G-condition.

Next assume that for any subset B of X having k elements, there exists ¢ :
Ag—1 — T'p(B) such that ¢ is continuous and satisfies the G-condition. Let A =
{ag,a1,...,ar} be given. Then there exists ¢ : Ag_; — [p(A\{ar} which is
continuous and which satisfies the G-condition. Consider aq, 4 : Ar — [r(4)
(as constructed in Definition 2.1.6). Indeed this is the required map since it is

continuous and satisfies the G-condition by Lemma 2.1.5 and Lemma 2.1.6. O
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Definition 2.1.7. Let (X,d,F) be a G-metrically convex space. Let Let I'p :
(X) — 2% be as in Definition 2.1.4. Then the G-convex space (X,[f) will be
denoted by (X,d,Tr) or just (X,d,I') when there is no ambiguity. From now on
by a G-metrically convex space we will mean the G-convex space (X, d.T') induced

on X by d and F as was proved in Theorem 2.1.1.

Definition 2.1.8. Let (X,d,T') be a G-metrically convex space. For rg,yo € X
and t € [0,1], let tzo B (1 — t)yo be defined by ¥ (., 40)(t); e.g-,

(1) 1zo @ Oyo = zo ; (i) Ozo D lyo = yo ; and (iil) (1/2)xo & (1/2)ys = the

midpoint between ¢ and yp.

The following is a characterization of G-convex subsets of a G-metrically convex

space.

Corollary 2.1.3. Let (X,d,I') be a G-metrically convez space . Then o subset
C of X is G-convez if and only if for any ro,yo € C and any t € [0,1] we have
tl’o (57) (1 - t)yo € C

Proof. (1) Assume C is G-convex and let zg,y0 € C. Then trg B (1 - t)yo €

W(zo.90)([0,1]) =T({z0,y0}) C C. Hence the required conclusion follows.

(i1) Assume that for any zg,y0 € C and any t € [0,1] we have tzq By € C.
We want to show that C is G-convex. It follows that for any zq,y0 € C we have
T({zo.40}) = ¥(20,50)([0, 1]) C Csie.,

I'(A) C C whenever A is a subset of C that consists of two elements. (1)
We will show by induction on |A| that I'(A) C C for any finite subset A of C.
Assume that ['(B) C C whenever B C C and |B| =k > 2. Let A = {aq,a1,...,ak}.

First we observe that the induction hypothesis immediately implies that:

I'(A\{a:}) C C for any a; € A.
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Next applying (1) to the above we have:
I'({y,ai}) C C whenever y € T'(A\{ai}) and a; € A. (2)

From (2) it follows that:

k
ra=J U rdyahcc

i=0 yer(A\{a:})

Hence C is G-convex. 0

In the following proposition we prove that bounded G-convex subsets of a G-
metrically convex space are contractible. Applications of this result will be seen in

Chapter 3.

Proposition 2.1.2. Let (X,I') be a G-metrically convez space. Let C be a nonempty
bounded and G-convez subset of X. Then C 13 contractible.

Proof. Let a € C'. Since C is G-convex; we have
Uiaz)(t) €C, V(z,t) € C x[0,1] (where ¥(, ;)(t) is as in Definition 2.1.2)

Let H: C x [0,1] — C be defined by H(zx,t) = ¥(, ,)(t). Then it follows from the
definition of ¥ that:

(i) H(z,0) = x, for each z € C.
(ii) H(z,1) = a, foreach z € C.
To complete the proof, it suffices to show that H is continuous.

Let (zq,%0) € C % [0,1]. Let € > 0 be given and let R be a real number such that
d(r,z) < R, forall z,z € C.

Let 0 < 61 < €¢/(2R). (1)
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Let fi, : X — X be as in Lemma 2.1.3; i.e., fi,(£) = ¥(q,r)(to). Then fi,(z) € C,
for each z € C, and moreover, H(z,ty) = fi,(z), for each £ € C. Since fy, is

continuous by Lemma 2.1.3, there exists 6, > 0 such that:

N

d(z,z0) < 82 = d(feo(2), fio(x0)) = d(H(z.t0), H(z0,t0)) < €/2. (2)
We shall show that:

d(r,x0) < 62 and |t —to| < 6 = d(H(x,t),H(zo,t0)) < €, for all (z.t) € C x[0,1].
(*)
Indeed let (z,t) € C x [0,1]. Then by (i) of Lemma 2.1.2, we have:

d(H(z,t), H(z,t0)) = d(¥(a,0)(t): L(a,r)(t0)) < |t — told(a, z) < b1 - R < /2. (3)

Since (2) holds for z, applying the triangle inequality to (2) and (3) it follows that
d(H(z,t), H(zg,t0)) < €. And (*) is hence proved.

Thus H is continuous and the conclusion follows. O

2. G-Map Systems.

In this section we prove that G-metrically convex spaces are M-convex spaces
(see Definition 1.1.2). The following definition and theorem provide an interesting
example of a G-map system M where M(A) is finite for each finite subset A C X.

Definition 2.2.1. Let (X,d,I') be a G-metrically convex space. We shall define
M(A) for each finite subset A of X by using induction on |A].

(a) If A= {ao}, define M(A) = {¢o} where é¢: Ag = '({ao}) and ¢o(eo) =

ag.

(b) If A = {ao, a1} define M(A) = {¢,} where ¢; : A; — I'({ap,a1}) is
defined by ¢1(Aoeo + Are1) = ¥(ar, ao)(Ar).
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(C) A= {ao, a, a2} let ‘M(“l) = {¢ao’ ¢al’ ¢82} where each ¢“i =
@q;.¢; and ¢; € M(A\{a:}).

(d) Let A = {aq,a1,...,ar} € (X). Assume M(B) is defined whenever |B| < k.

Then let M(A) = {agq, 6 : a; € A and ¢ € M({ao,---,ai—1,@it+1,--.,8&})},

where aq; 4 1s as in Definition 2.1.6.

Theorem 2.2.1. Let (X,d,T) be a G-metrically convez space. For each finite
subset A of X, let M(A) be as in Definition 2.2.1 above. Then M = UAe(X) M(A)

s a G-map system on (X,d,T).

Proof. Let A = {ag,a,...,ax} and A, = {ai,,ai,,--.,ai, } be a subset of A.

Then for each ¢ € M(A), we want to show there exists ¢ € M(A;) such that

o(ZilgAjei;) = 8" (Z7npAjej) for any Ao, Ar,--. 3 A 2 0 with T4 = 1. (eqr)

We proceed by induction on |A}.
If A= {ag,a1},41 = {a;} and ¢ € M(A) then let ¢* = ¢g € M({a1}).

The L.H.S. of (eq1) = ¢(e1) = a1, whereas the R.H.S.of (eq;) = do(e0) = a1.
Therefore (eq; ) holds for ¢ and ¢*. And the case when A; = {ag} is similar.

Next assume the proposition holds for any finite set B such that |B| < k. Let
A = {ag,a1,...,a;} and A; = {aiy, aiy,---,ai, } C A with m < k. Let ¢ € M(A).
Then ¢ = aq,,4, Where ¢; € M(A\{ai}) for some 0 < [ < k. Let B = A\{ai} =

{bo,b],...,bk-l} where
b a;i, if 1 <, 1
'—{ai_l,ifiZI. ()

We consider two separate cases:



Case 1. a1 ¢ A;.

In this case we have 4, = {a;,,....ai,} C B = {bg,...,bk—1}. So we may write
A = {b; .-+ by}, where

. i, ifi; <1,
1, = . . .
J z]—l, lflj)l.

(17)

Now since ¢; € M({bp,...,bk—1}) and since A; = {&.
by the induction hypothesis that there exists ¢; € M(Al) such that ¢; and ¢;

satisfy (eqy); 1.e.,

., by} C B, it follows

lo’

oi(X =0’\Je )= ¢I(v1—0’\'ej)' (2%)

Let ¢* = ¢;. Then in the following we will show that ¢ and ¢* satisfy (eq1).

So let Ao, A1,..-,Am € [0,1] be such that E2 A =1, let z = BT A ei; € Ag,

7=0
and let z* =37 Aje; € A,,. We shall prove

]—0
o(z) = ¢*(z%). (*)

Indeed /
@(:) = aal,d)((z) = lI’(a.‘,p((.’.))(Trl(::)) = ‘Il(a(,p((:))(o) = pl(:')

= Su( S0 i, (M) (M)es; )
= Gi(EMgAjes;)
= ou(E7h0,i; <tAiei; + EiL, i > jei—1)-
By (1*), the R.H.S. of the equation above is equal to ¢;(X74A; )

Applying (2%), the expression above is equal to ¢7(E7LoAjej) = 0" (ZTpAjej) =

¢*(z7).

=0

Thus (*) is proved; i.e., ¢ and ¢* satisfy (eq; ).

Case 2. a; € Ay; le,l € {io,il,...,im}.

In this case we have [ = 7, for some 0 < s < m.
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let By = A;\{a;}. Then B, C B. So we may write By = {bio,b‘-i,...,bn

im-1
where z, is defined for 0 < 7 < m - 1.

Then it can be shown that

N ij, lf] < s,
=3 . e - (2)
i1 —'1, lf] ZS.

Indeed

B, =A1\{ai.} = {aiovain“'7ain—l*ai:+lv”'~aim}

b, b b )

{ o) u R PP Rt PRI #

Then
ag; ifj<$,
b -{ a
if 7 > s.

ij .
! Gijprs

But j < siffi; <land j > siff i; > [, so applying (1) we have:

R b, if j <,
‘i—{b 1, i >

L4t

Hence (2) follows.

NOW ¢l€-M({bo,bl, . bk 1})—M(B) a.nd Bl —{
by the induction hypothesis, there exists ¢; € M(B,) sastisfying (eq ); i.e.,

b +.-onb;, _ }CB. So

oi1(E75, o Ajes )—¢,('>"'" fAjej). (3)

Now since ¢; € M(B1) = M(A1\{ai}, it follows that ag, ¢; € M(A;). Let

.
? = Qa0 -

We shall show in the following that ¢ and &* satisfy (eq;). Let Ao, A1,..., A >0

be such that £720A; = 1. Let z =X7 ) ei; € Ag and z* = X7 A e € A

We shall show that ¢(z) = ¢*(z*). (*)

First, let us consider the case A; = 1. In this case ¢(z) = ¢(e;,) = a;, (since ¢
satisfies the G-condition).



Moreover, ¢*(=*) = ¢*(es) = a;, (because ¢* : Ay, — ['({aiy,ai,,---.ai,,---

satisfies the G-condition). Therefore (*) holds in this case.

Next assume A, # 1 and let Xs = BT o s N
Indeed ¢(2) = @ay,6,(2) = ¥(ar,u0)(F1(2)) = ¥ar,90)(7i, (2)) = Y(ar,y)(As):

where
= (T i, 21N/ (A5 )esy )
= Bi(ZT0.i, <t(A)/(Ra)es; + STho i 51(A5)/ (R )es; -1)

= 6(Z]0,i<s(X)/(As)es; + Sig j»a(A)/(As)ei; 1), which by (2) is:

= ¢’l(v1_0 ]<3(Aj)/(xs)e?, + Z.;p=0.j>s(Aj)/(X3)e?;_x)
= di((M0)/Ns)es, + (A)/(Ro)e, + -+ + (Aact)/(Ao)es, _,
+ Ao 1)/ Ro)e;, + -+ (Am)/(X)

‘ml

Applying (3), the R.H.S. of the equation above is equal to:
1 ((A0)/(As)eo + (A1)/(As)er + -+ + (Aam1)/(Xs)es—1
+ Aat1)/As)es + - + (Am)/(Ae)em—1)
= 67(SMg j<s( A1)/ (As)ej + EMg j5s(A5)/(Rs)ej—1)-
It follows that

= 01 (EM0 jca( X))/ (No)ej + Mg s s(Xj)/(Xs)ej1)-

By equations (4) and (5), the left-hand side of (*) is equal to:

(4)

(5)

#(2) = ¥(a,,y,)(As) where y1 = 451(2;—0 J<s(’\ )/(’\ Je; + 21—0 J>s(’\j)/(xs)ej—l)~

On the other hand, the right-hand side of (*)=¢*(2*) = ¢*(Xje;)-
Now ¢* : A = T'({aig,---,@i, -+ @i })-

Moreover, ¢* = aq;,,¢;- So it follows from Definition 2.1.6 that
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6™(2*) = ¢*(E7L0Aje;) = Way, 4o (7a(27)) = Tay, 40 (As), (6)

¥2 = $1(Ef0,ja(X)/ (R )es) = 67 (ST, j<s(A)/(Ra)es + ST 5, (3)/ (X Jej).

(7)

From (5) and (7), it follows that y; = y,. And so by (4) and (6), we have ¢(z) =
lI’(ah!,h)(’\é’) = ‘I’(ai,,yz)(’\é’) = ¢*(z%).

Thus we have proved (*) and hence that ¢ and ¢* satisfy (eq;). O

The following definition and theorem present yet another interesting and very
useful G-map system in G-metrically convex spaces. As we have seen in Chapter
One, for G-convex spaces with a homogeneous G-map system, certain selection

theorems are true. We will also prove extension theorems for these spaces in Chapter

3.

Definition 2.2.2. Let (X,d,T') be a G-metrically convex space. Given a finite
subset A of X, we shall define a map ¢4 : Aj4—1 — I'(4) by induction on [A[.

First let <* be a total order on X.

If a ={ao} then 6.4 : Ay — I'(4) = {ao} is defined by ¢ 4(eo) = ao.
If |A] = 2, let A = {ag,a;} where ag <* a; and define

¢a:401 —T(A) by

da(Aoeo + Arer) = ¥, a0)(A1).

Next assume ¢p : A|gj—; — I'(B) is defined whenever |B| = k.

Let A = {ag,a1,...,ar} where ag <* a; <*--- <* a;.
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Then define ¢4 = aa, 4., (Where Ax = A\{ak} and aq, ¢,, is as in Definition
2.1.6).

Theorem 2.2.2. Let(X,d,T) be a G-metrically convez space. Let M =, ¢(x){4a},

where ¢ 4 13 as in Definition 2.2.2 above. Then M is a homogeneous G-map system.

Proof. It suffices to show that whenever A = {ag,a;,...,a,} C X is such that

ap <*a; <*--- <* ag, 4 = {ai;,Giyy.--.6i, } C A, and 64 : Ap 2 [(A) isasin
Definition 2.2.2 above, then for any Ag, A1,...Am € [0,1] satisfying £],A; = 1, we
have

¢-4(ET=0’\J'31',~) = ¢A1(2;'n=o’\jej)- (eg2)

We use induction on |A|. If |A] =1 or 2, then (eq2) obviously holds.

Next assume (eq2) holds for any finite subset of X with k elements, let 4 =
{ag,ai,...,ar} and let 4, = {aiy,ai,,.--,ai,} C A. We shall show that (eq2)
holds for A and 4,.

We consder two cases.

Case 1. a;,, # ar( t.e. ity # k).

Let Ay = A\{ax} and let =z = T oAjei; - Then

?a(2) = tar,04, (2) = Yay pp())(Tk(2)) = C(ay pe()(0) = Pr(2). (1)

Since z € Ag_,, it follows by Corollary 2.1.2 that pi(z) = ¢ 4,(2). So (1) implies
that
da(z) = da.(2) (2)

But 4, = {aiy,ai,,...,ai,} C {ao,a1,...,ar—1} = Ak, so applying the induction
hypothesis we have ¢ 4(X7LgAjei;) = da(2) = da.(2) = ¢4, (ET=oAje;)- Thus(egz)

holds in this case.
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Case 2. a;, . = Q.

Let z = SR )je;; and z* = Eg)je;. If A =1 then z = ex and =* = e On

the one hand we have ¢ 4(z) = d.a(ex) € T({ar}) = {ar}-

Also ¢4,(z*) = d4,(em) € T({ai,. }) = {ai} = {ar}. Thus (egz) holds in case
Am=1.

Next assume A, # 1.

First (p-l(z:]—o/\'eij) = \I’ak,pg(:)("rk(z)) = ‘I’ag,p‘,(:)(’\m)- (1)
Let . R
y1 = pr(z) = pe(EoAjei;) = dau(Zjeqo,n,...m}.i; k(A5)/(Am)es;) .
= 0.4 (ER A/ Om)es;) = 04, (ST, il (Am)es;)-
Now consider ¢ 4,(X724A e;). First let A" = A\{a;_,} = A1\{ar}. Then
¢A|(S?=0Ajej) = \I’a;m,pm(:‘)(”m(z‘)) = “Ila;m,pm(:‘)(/\m)- (1*)
Let
= Pm(2") = Sap(ET5' A/ (Am)ej) = ap (T3, /(m)ej). (2*)

Now since A" = {a;,,ai,,---,ai, }\{ai.} C A1 = A\{ax}, by applying the induc-

tion hypothesis. (2) and (2*), we have y; = ¢4,‘(V1_0 Aj /(/\ Jei; ) = <p4lm(3"1=0 Aj /(/\m)e]) =
y2. So substituting the abovein (1) and (1*), we have @ 4(Z7LqAj€i; ) = Yap,y0)(Am) =

W(a;, y2)(Am) = 04, (2 J—o’\ ej). Hence (eqz) is proved in this case also and the con-

clusion follows. O
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CHAPTER THREE

EXTENSION THEOREMS AND APPLICATIONS

This chapter contains several extension theorems for continuous maps from a
closed subset of an arbitrary metric space into a G-convex space. These are gen-
eralizations of the related theorems of Dugundji, Ma and Pruszko (See [DJ1], [Ma]
and [Psz] ).

In Section 1, we present four different extensions for the case of a single-valued
map f : A — Y where A is a closed subset of a metric space X and Y is a
G-convex space. These many versions reflect our several attempts to generalize
Dugundji’s theorem without imposing too many conditions on the range space, i.e.,
the G-convex space. It turned out however that only after assuming that the range
space has a homogeneous G-map system can we obtain such a generalization. This

indicates that G-map systems prove to be a useful tool.

The first theorem, Theorem 3.1.1, gives an extension f which is not necessarily
continuous on the whole space, but rather on a subset A U B, where B is an open
dense subset of X \ A. Theorem 3.1.2 gives a set-valued extension F' continuous
on A and LSC on X, whereas Theorem 3.1.3 gives a set-valued extension G which
is continuous on A and USC on X. We note that these three theorems contain
no conditions on either the domain or the range other than those assumed in the
original theorem of Dugundji. We also point out that, as far as we know, the
condition of local convexity of the range cannot be relaxed even in the linear case
i.e. the case of a topological vector space. Also note that whereas Theorems 3.1.1,
3.1.2 and 3.1.3 are only partial generalizations of Dugundji’s theorem, Theorem

3.1.4 is a true generalization of the theorem.



65

In Section 2, we present a generalizaton of Ma’s Theorem and in Section 3 we

give a generalization for Pruszko’s theorem.

In Section 4, we adopt the method used by Wu (Theorem 3.3 in [TW]) to ob-
tain applications of our extension theorems to equilibrium existence theorems for

qualitative games.

Finally, we point out that for all the extensions given in this chapter, as is also
the case in the original theorems, we have the image of the new extension contained

in the G-convex hull of the image of the original map.

1. Extension Of Single-Valued Maps.

As the results of this section are all directed towards generalizing Dugundji’s

extension theorem, we begin by quoting the theorem (Theorem 4.1 in [D.J}).

Theorem. let X be an arbitrary metric space, A a closed subset of X, Y a lo-
cally convez linear space, and f : A — Y a continuous map. Then there exists a

continuous extension f : X — Y of f; furthermore, f(X) Cco(f(A)).

Next we state Lemma 2.1 in [DJ], which is needed for all the extension theorems
given in this Chapter. Although its simple proof was omitted from the original

paper. we give it here for the sake of more clarity and precision.

Lemma 3.1.1. Let (X,d) be a metric space and A be a closed subset of X. Then
there exzists an open covering U of (X\A) such that:

(1.1) U 13 locally finite.
(1.2) If a € A and W is a nhood of a in X, then there ezists a nhood W of a in

X such that W C W and for everyU €U, UNW # 0 implies U C W.

Proof. For each z € (X\A), let e; = d(z,A). Let Uy = B(z,e./2) (the open ball
centered at z with radius €;/2). Then {U; : z € (X\A4)} is an open cover for
(X\A). Since X is a metric, the cover above has an open locally finite refinement,
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Uu.

Next let ap € A and W be an open nhood containing ag in X. Then there exists
r > 0 such that B(ag,r) C W. Let W = B(ao,r/3). We shall show that W satisfies
(1.2). Let U € U be such that = € W NU. Then by the construction of I, there
exists £ € (X\A4) such that U C B(z,€,/2) where e, = d(z, A). First we shall show
that

€ < 2r/3. (*)

Since = € U C B(x,e./2), it follows that:
d(z,z) < /2. (1)

= € W implies d(z,aq) < 7/3. (2)

So by (1) and (2), we have d(z,a9) < /3 +€./2. But ¢, = d(z,A) and a¢ € A4, so
the inequality above implies that e; < d(z,a0) < /3 + €./2. Hence (*) is proved.

Now let y € U, then:

d(y,a0) < d(y,z) +d(z,a0) < d(y,z) +r/3 <d(y,z) +d(z,z)+ /3. (3)
But both y and = belong to U C B(z,€./2), so (3) implies d(y,a0) < €-/2+¢€,/2+
r/3<2r/3+r/3=r.
So it follows that y € W. Therefore U Cc W. O

Next we present Lemma 3.1.2, which is true for any topological space in general.

We need it here for the proof of Theorem 3.1.1.

Lemma 3.1.2. Let X be a topological space and assume U is an open locally finite
cover for X. Let F(U) denote the collection of all finite subfamilies of U. Let
r1: X — F(U) be defined by: r1(z) ={U €U : z € U}. Then there ezists an open
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dense subset B of X such that for any by € B, there ezists an open nhood W of by
in X such that: ri(z) =ri(bo), for allz € W.

Proof. Let ro : X — F(U) be defined by: ra(z) = {U € U : z € cl(U)}. Let
B = {zx € X : ri(z) =rz(z)}. We shall first show that B is dense and open. Let O
be a nonempty open subset of X and let £ € O. Then there exists an open nhood
W of z in X such that W C O and W intersects with only finitely many elements of
U, say, Ui,Us,...,Unp. It follows that ri (W) = J{r1(y) :y € W} = {U1,...,Un}.

Choose an element b € W such that |ry(b)| > |r1(z)|, for each £ € W. We shall
now show that b € B. Since ri(b) C r2(b), it suffices to show that ry(b) C ri(d).
Let U € U, and assume U ¢ ry(b) = {U;,,Ui,,...,Ui. }. We shall show U ¢& r,(b).
Let W* = (ﬂf=lU.~J.) NW. Then W* is an open nhood of b in X. We claim that
W*NU = 0. This will imply that b ¢ cl(U) and hence that U ¢ rz(b).

Indeed if c € W*NU, then c € N¥_ \ U;, NUNW, ie. {U,Uy,...,U;;} Cri(c)
and hence |ri(c)| > |ri1(d)|, which contradicts the choice of b (since ¢ € W). This

shows that B is dense.

To complete the proof, it remains to show that for any bg € B, there exists an
open nhood W of by in X such that W C B and ri(z) = ri(bo), for each z € W.
Indeed let r1(bg) = r2(bo) = {U1,U2,...,Un}. Then there exists a nhood W; of by
such that W) intersects with Uy,...,U,, only; i.e. for any U € U, we have

Wan=0iﬁU¢{U1,...,Um}. (*)

Let W = W; N (N, U;), then W is open. We shall show W C B. If £ € W then

obviously,

{Ui,...,Un} C ri(z). (1)

U €U and z € cl(U) then W NU # 0 which implies W; N U # 0 and hence by
(*)7 U € {Ulyv--qu}-Thus

ra(z) C {U1, .-, Un}. )
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So, by (1) and (2), for any = € W we have:

{Ut,...,Un} Cri(z) Cra(z) C {Ui,...,Un}ie. ri(z) =ro(z) = {Ur,...,Un}-
Therefore W C B and ri(z) =ri(bp) foreach z €e W. O

Definition 3.1.1. Let (Y,I') be a G-convex space. Then (Y,T') is said to be locally
G-convex iff it satisfies the property that for every y € ¥ and every open nhood W
of y in Y, there exists an open nhood V of y in Y such that G-co(V) C W.

Definition 3.1.2. A G-convex space (Y,I') is said to be strongly locally G-convex
iff given any compact G-convex subset A of Y and any open subset U of Y containing

A, there exists an open subset V of Y containing A such that G-co(V) C U.

Remark. It is obvious that the local G-convezity defined above generalizes the usual
local convezity in topological vector spaces. But it i3 a well-known fact that any
locally convez topological vector space has the property mentioned in Definition 3.1.2,
i.e. any locally convez topological vector space is strongly locally conzez, if such an
ezpression may be allowed. But it is not at all clear whether such an implication
is true in the case of G-convez space. We suggest this as a problem worth further

investigation.

Theorem 3.1.1. Let (X,d) be a metric space and A a closed subset of X. Let
(Y.T') be a locally G-convezr space. Let f: A — Y be a continuous function. Then
there ezists a function f: X — Y such that

(i) fla=f.
(ii) F(X) C G-co(£(4)).
(13z) _)? 18 continuous at a for each a € AU B, where B 1s an open dense subset

of (X\A).

Proof. Let U be the locally finite open covering for (X\A) provided by Lemma
3.1.1. Let (Bu)veu be a partition of unity on X \ A subordinated to &. And let
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F(U) be the collection of all finite subfamilies of /. Also let r; : X \ A — F(U) be
defined as in Lemma 3.1.2. Let r{(z) be denoted by C. C Y.

For each U € U, choose an element zyy € U and ay € A be such that:

d(zy,av) < 2d(zy, A). (1)

For each C = {U,,U4,...,U,} C U satisfying the condition N2 ,U; # B, define
oc as follows:
oc : An — T({flay,y). flav,),-.., f(au,)}) isa c*ntinuous map as provided by

the Definition of a G-convex space.
(al)

Now define f: X — Y as follows:

= f(a), if z € A;
flz) = { bc.(Suv.ec. Bui(z)e:), if z € X\A.

Clearly, f is well defined. Also f clearly satisfies (i). Moreover if z € (X\A) and
ri(z) =C, = {Uo,Uy,...,Un}, then

f(z) e T({f(avy),- - -, flav.,)})- (a2)

By (a2), (ii) 1s satisfied.

Next we shall show that f is continuous on 4 U B where B is the open dense

subset of (X'\A) provided by Lemma 3.1.2.

First let by € B, and let r1(bo) = Cs, = {Uo,Un,...,Un}. Then by Lemma 3.1.2,
there exists an open nhood W of by in X \ A such that C; = r(z) = r1(by) = Cb, =
{Uo,...,Un} for each £ € W. Let u : W — Ap, be defined by u(z) = ™ ,8u,(z).

Then u is continuous.

Also for each z € W we have ¢c, = éc,, : Am — I'({f(av,),--., flav,,)}). So
we indeed have f(:z:) = ¢¢,,(u(z) VYV € W. Since W is open in X and both dc,,

and p are continuous, it follows that fis continuous at bg.
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Now it only remains to show that f is continuous at any point ag € A. Let V be
an open nhood of f(ao) = f(ag) in Y. Then there exists a nhood V of f(a¢) such
that G-coV C V. By continuity of f at ag, there exists § > 0 such that for each
a€ A

d(a,ap) < 6 implies f(a) € V. (2)

Let W = B(ag,/3) (the open ball centered at a; with radius (6/3)). We shall show
that

ifU el and U C W then f(ay) € V. *)

Indeed, if U C W then zy € W and hence
d(zxy,a0) < 8/3. (3)

Thus d(ay.ae) < d(av.zv) + d(zu,a0) < 2d(A,zy) + 6/3 < 2d(ap,zy) +6/3 < 6.
Applying (2), we have f(ay) € V so that (*) is proved.

Next, by Lemma 3.1.1, we choose an open nhood W of ao in X contained in W
such that for any U € U,U N'W # 0 implies U C W. We now show that

Fov)ycv. (*%)

Let £t € W. If z € A, then £ = a € W and hence, by (2), f(:z:) = f(a) €
V C V. Next assume £ ¢ A. Let C; = ri(z) = {Us,U1,...,Um}. Then z €
U; N W for all 0 < ¢ < m and hence it follows by the choice of W that U; C
W, V 0 <: <m. Using (*), it follows that:

flay,) eV forall 0 <i<m. (4)

Combining (a2) and (4), we have f(z) € T({f(av,), f(av,),---, flavn)}) C
G-coV C V.

Thus (**) is proved and hence f is continuouson A. O
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Theorem 3.1.2. Let (X,d) be a metric space and A a closed subset of X. Let
(Y,T) be a locally G-convez space. Let f : A — Y be a continuous function. Then
there ezists F : X — 2Y such that:

(1) Fla=f.

(1) F(X) C G-co(f(A)).

(#ii) F' 13 continuous at a for each a € A.

(iv) F 1s LSC on X.
Proof. Let U be the locally finite open covering for (X\A) provided by Lemma
3.1.1. Let (Bu)veu be a partition of unity on X \ A subordinated to U. Let F(U)
be the collection of all finite subfamilies of «4. Also let r; : X — F(U) be as in

Lemma 3.1.2. Let ri(z) be denoted by C, C U. For each U € U, choose an element
ry € U and let ay € A be such that

d(zv,av) < 2d(zu, 4). (1)

For each r € X\ 4, let N, be an open nhood of r in X \ A that intersects with only
finitely many elements of U, say, Uy,U;,...,U,. Since Y is a G-convex space, we

can find a map @y, satisfying (a;) and (a;) below.

én, : An = T'({f(av,)), flav,),--., f(au,)}) is continuous. (ayr)

For any subset J of {0,1,...,n}, if A, is that face of A, corresponding to .J then:

on.(As) CT({flav;):5 € T}. (a2)

Let W= {N;:z € X\A}. Then W is an open covering for X\A4.

We notice that if £ € N € W and if the set of all elements of { that have
a nonempty intersection with N is {Us,U1,...,U,}, then Bu(z) # 0 iff U €
{Uo,...,Un}. Therefore we can define a continuous function puy : N — A, by

pn(z) = LisoBu;(z)e:.



Now define F : X — 2Y as follows:

{f(=z)}, ifze A
F(z) = { {on(un(z)) :z € N e W}, if z € X\A.

Note that (i) follows immediately.

Next we shall show that for any z € X\A if C; = ri(z) = {Uo,...,Um} then

F(z) cT({f(av,); - - - fav,, )- (az)

Let y € F(z). Then y = dn(un(z)) for some N € W with z € N. Note that z €
NNU;foreach:=0,1,...,m. Let {U €U :UNN #0} = {ffo,(\fl,...,[‘]n}. Then
there exists a subset J of {0, 1,...,n} such that {Us,U;,...,Un} = {Uj :] €J}.

It follows that By(z) #0 = U € {Us,...,Um} = {U; : € J}. Hence we have
pn(z) € Ay, (that face of A, corresponding to J).

By (a2) it follows that y = én(un(z)) € on(As) C F({f(an) 1] e J}) =
I'({f(av,), f(av,),---, f(au,,)}- Hence (a3) is proved .

Now (ii) follows easily from (a3) because the left hand side of (a3) is always

contained in G-co(f(A)).
(11) F is continuous at a for each a € A.
Let ag € A, we shall first show that F is USC at ag.

Let V be open in Y such that F(ay) C V. This implies that f(ao) € V. Let V
be open in Y such that f(ag) € V C G-coV C V. By continuity of f at e € A,

there exists > 0 such that for each a € 4, we have
d(a,ag) < 6 implies f(a) € V. (2)

Let W = B(ag,6/3). Then it can be shown (See the proof of Theorem 3.1.1) that
for any U € U we have:

UCW implies f(ay) € V. (*)



73

Now by Lemma 3.1.1, there exists an open nhood W of ap in X such that W c
W and for each U € U we have: UNW # 0 implies U C W. We shall show that

FW)cV. (**)

Indeed, let £ € W. If £ = a € A then F(z) = {f(z)} C V C V. Next assume
z ¢ A Let C, = ri(z) = {Up,U1,...,Un}, then r € UNWforall0<i<m
and therefore U; C W for all 0 < ¢ < m. It then follows by (*) that

{f(av,), flav,),- -, flav,, )} C V- (4)

Applying (a3) to the above, we have: F(z) C T'({f(av,),---.f(av,.)} C G-coV C
V. Thus (**) is proved and F is USC at aq.

Next we shall prove that F' is LSC at ag. So let V be open in Y such that
F(ag)NV #0.

Then F(ag) C 1% (since F is single valued at ap), and by USC of F at aq, there
exists a nhood W of ao in X such that F(W) C V.

It follows that for each z € W, F(z)NV = F(z) # 0. Hence F is LSC at ao.
(iv) F is LSC on (X\A).
Let zo € (X\A), and let V be an open set in ¥ such that F(zo) NV # 0.

By definition of F, it follows that there exists an open nhood N of zg in X \ A
such that ¥ € W and

on(pn(zo)) =(dnopun)(zo) € V. (5)

Since ¢y o un : N — Y is continuous, it follows from (5) that there exists a nhood

N3 of 24 in X \ A such that
N2 CN and (¢nopun)(N2)CV. (6)

We shall show that
F(y)NV # 0 for all y € N,. (***)
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For let y € Ny, then y € N and by definition of F at y, it follows that (onoun)(y) =
én(pn(y)) € F(y). This together with (6) implies:
on(pn(y)) € F(y)NV # 0.

Thus we have proved (***) which implies that F' is LSC at ro. Therefore F is
LSCon (X\A). O

Theorem 3.1.3. Let (X,d) be a metric space and A a closed subset of X. Let
(Y,T) be a locally G-convez space. Let f : A — Y be a continuous function.

Then there ezists G : X — 2Y such that
(1) Gla=f.

(ii) G(X) C G-co(f(A)).

(i5i) G is continuous at a for each a € A.

(iv) G is USC on X\A.

Proof. Let U be the locally finite open covering for (X\A4) provided by Lemma 1.

Let (v )veu be a partition of unity on X\ A subordinated to . Let F(U) be
the collection of all finite subfamilies of &/. Also let r; : X — F(U) be as in Lemma
3.1.2. Let ri(x) be denoted by C, C U. For each U € U choose an element xy € U
and let ay € A be such that

d(zy,ay) < 2d(zy, A). (1)
For each r € (X\4), let V., be an open nhood of r in X\A that intersects with

only finitely many elements of U, say Uy, Uy, .. .,Un.

Since Y is a G-convex space, we can find a map ¢y, satisfying (a;) and (az)

below.
N, : Ap = L({flavy), flau, ), - ., f(au,)}) is continuous. (al)
For any subset J of {0,1,...,n}, if Ay is that face of A, corresponding to J then

¢n.(As) CT({f(ay;) : 7 € T}) (az)



(6]
Let W = {N, :z € X\A}. Then W is an open covering for X'\ A.

We notice that if £ € N € W and the set of all elements of & that have
a nonempty intersection with N is {Up,Ui,...,Us}, then Bu(z) # 0 = U €
{(Us,...,Un}-

Therefore we can define a continuous function gy : N — A, by pn(zr) =

vr o Bu.(x)ei. Let fx = ¢n o un. Then fy is continuous from N to Y.

Next let K be a locally finite closed (i.e. consisting of closed sets) refinement
for W. For each K € K, assign Ny € W such that K C Ngx. Moreover for each

KekK let fk = fng-
Now define G : X — 2Y as follows:

o [ @) fred
(z) = { {fu(z)):z € K €K}, if z € (X\A)

Note that (i) follows immediately .

Next we shall show that for any z € X\A4, if C; = r(z) = {Uo,...,Un} then

G(J) CF({f(an)?"'?f(aUm)° (03)
Let y € G(x). Then y = fx () = N (2) = dn (N, (z)) for some K C Ng € W.
Then N has a nonempty intersection with U; for each 0 < : < m.

Let the set of all elements of &/ that have a nonempty intersection with Nx be
{ﬁo, U,..., U,,} Then there exists a subset J of {0,1,...,n} such that
{Uo,Urv....Un} ={U;:j € J}.

It follows that By(z) # 0 = U € {U; : j € J}. Hence we have un,(z) € A
(that face of A, corresponding to J).

By (a2 ) the above implies that y = fr(z) = fne(z) = dne (kN (T)) € I’({f(afjj ):
i€ J}Y) =T{f(av,),--- flau,)})-

Hence (a3) is proved.
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Now (ii) follows easily from (a3) because the left hand side of (a3) is always
contained in G-co(f(4)) .

(iii) G is continuous on A.
Let ag € A, we shall first show that G is USC at ayo.

Let V be open in Y such that G(ag) C V. This implies that f(ag) € V. Let V
be open in ¥ such that f(ap) € V C G-coV C V.

By continuity of f at ag € A, there exists § > 0 such that for each a € A, we

have

d(a,ap) < ¢ implies f(a) € V. (2)

Let W = B(ao,6/3). Then it can be shown ( See the proof of Theorem 1) that for
any U € U we have:
U cCW implies f(ay) € V. *)

Now by Lemma 3.1.1, there exists an open nhood W of ao in X such that W C
W and for each U € U we have UNW # 0 implies U C W. We shall show that

G(WcV. (**)

Forlet t € W. If £ = a € A then G(z) = {f(a)} and sincea € W C W, (**)

follows from (2).

Next assume z ¢ A. Let C, = ri(z) = {Uo,U1,...,Un}, then z € U; N
W for all 0 < i < m and therefore U; C W for all 0 < i < m. It then follows from
(*) that

{f(an)1 f(aUl )1"'1f(aUm )} cV (3)

Applying (a3) to the above, we have:

G(z) Cc T({f(av,),---, f(av, )} C G-coV C V. Thus (**) is proved and G is
USC at ag.-
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Next we shall prove that G is LSC at ao. So let V be open in Y such that
G(ag) NV # 0. Then G(ao) C V (since G is single valued at ag), and by USC of G
at ag, there exists a nhood W of ao in X such that G(W) C V. It follows that for
each zr € W, G(z) NV = G(z) # 0. Hence G is LSC at ao.

(iv) G is USC on X\ A.

Let ro € X\A4, and let V be an open subset of ¥ such that G(ro) C V. Let
{Ko,K,...,Kn} be the set of all elements of K that contain zo. Then G(zq) =
{fro.(xo)s fKi(z0)s-- - fK,(T0)}. And so it follows that fk;(zo) € V forall0 <
J < m. Now for each 0 < j < m, fg;(z0) = fWKj (zo) where fw,\.j :Wg; =Y is
continuous. So there exists an open nhood of zg, call it Oj, such that fwK,, (0;) =

fr;(0;) C V. Let M, = ﬂ;’;o O;. Then M, is an open nhood of o such that
fr;(My)CVioral0<j; <m. (4)

Next let M, be a nhood of ry in X \ A that intersects with only finitely many
elements of K, say Ko, K1,....Km, Kmt1,---,Rn.
Let M = M, 0N M, N( ﬁ (X\K;))- (5)
Jj=m+1
Then we shall show that
GM)cCV. (*¥**)

Indeed let £ € M. Then z € M, and therefore
{Ke K:!.'II € K} C {KQ,Kl,...,I{m,Km.{.l,...,Kn}

. Moreover by (5), z ¢ K; for all m < j < n. Therefore it follows that {K € X :
z € K} = {Kj : j € J for some subset J of {0,1,...,m}}. This in turn implies
that:

G(z) = {fx;(2) 15 € T}. (6)

But z also belongs to M, so it follows from (1) that fg;(z) € Vior all 5 € J, which
by (3) implies that G(z) C V.
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Hence (***) is proved and G is USC at zo. O

The following theorem is a generalization of Dugundji’s extension (Theorem 4.1

in [DJ]) to G-convex spaces.

Theorem 3.1.4. Let (X,d) be a metric space and A be a closed subset of X.
Let (Y,T) be a locally G-convez space with o homogeneous G-map sysiem M. Let
f:A > Y be a continuous function. Then there ezxists a function f: X =Y such
that

(i) fla=f.
(i) F(X) C G-co(f(A)).

(333) f is continuous on X.

Proof. Let U be the locally finite open covering for X\ A provided by Lemma 3.1.1.
Let (Bv)ueu be a partition of unity on X\ A subordinated to . For each U € U,

choose an element z;y € U and let ay € A be such that
d(zvu.av) < 2d(zu, 4). (1)

Foreachz € X\4,let C, = {U€U:z € U}. Andlet B = {f(ay): U € C;} =
{y0,Y1+--- Yym}. Also let ¢p, € M(B;) ie. éB, : A,j-1 = T({yo,y1,---,Ym} is
the continuous map provided by the assumption of the theorem and satisfying the

G-condition; i.e., such that for any subset J C {0,1,...,m}, we have ¢p_(co({e; :
j€J}))cT{y;:5€J})-

Now define _)? : X — Y as follows:

7 ) { f(z), if z € A;
z) = .
(¢B:(2yi EBx(Zf(au)=y,-:BU(x))cj)v ifze X\A
Since for any £ € X\ A we have By(z) # 0iff U € C; iff f(ay) = y; for some y; €

B_, it follows that £y, B, (Ef(ay)=y;fu(z)) = ZveuBu(z) = 1. Hence f above is
well defined and it clearly satisfies (i).
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It is also easy to see that f satisfies (ii), since for every r € X\A, we have

B, C f(A), from which it follows that f(z) € ¢5_(A|p,|-1) C I'(Bz) C G-co(f(A)).

Next we will show that f is continuous on X. Let ¢ € X\ 4. Let W be an open
nhood of r, that intersects with finitely many elements of U, say Cw = {U € U :
UNW #0}. Let Bw = {f(av):U € Cw} = {0, 91,-... %}

Let ¢y : ABw|—1 — T({%0,%1,---.Ux}) be such that ¢p, € M(Bw). Next
define p: W — Ay |-1 by
u(z) = 2§=O(Ef(av)=§lj Bu(z))e;-

To show that p is continuous, for each y; € Bw, let {U € U : f(ay) = yj} =
{Ujo-Uji»---,Uja, }- Thenlet rj = T20Bu;,(z). Obviously, r; is continuous from
W to [0,1], and hence it follows that u(r) = Zf=0rj(z)ej is continuous. It follows

that ¢g,, ou: W — I'(Bw) is also continuous.

To prove the continuity of f at ro, it suffices to show that f(z) = éB, ©
p(z)forallz € W. Solet r € W. It follows that B, C Bw. Let B =

{ior irs-- -+ im } = {¥0,¥1,-- -, ym} where y; = y;; for 0 < j <m.
Now f(r) = 0 (X7gAje;j) where A; = L flap)=y; BU(T)-

But B, C Bw and {{#4} : A € (Y)} is a homogeneous G-map system, so it
follows by the remark following Definition 1.1.3 that:

~

f(z) = ¢Bw (Ej0Ajei;) = 88w (X720(Z f(av)=4:, Bu(z))ei; )

= ¢ Bw (Z12: (Z fav)=3.Bu(z))er)-

But since whenever ! € {0,1,...,k}\{%,...,im} and U € U is such that f(ay) =
y1, then we must have gy (z) = 0, it follows that the R.H.S. of (2) is equal to:

98w (Zfo(Z flar)=0Bu(z))et) = (dBy o p)(z).
Therefore f is continuous at zg.

Now it only remains to show that f is continuous at any point a¢g € A.
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Let V be a nhood of f(ao) = f(ao) in Y. Then there exists a nhood V of f(ao)
such that G-coV C V. By continuity of f at ag, there exists § > 0 such that for
each a € A:

d(a,ap) < § implies f(a) € V. (3)

Let W = B(ao,6/3) (the open ball centered at ag with radius (6/3)). We shall show
that

ifU €U and U C W then f(ay) € V. ™

For U ¢ W implies zy € W and hence d(zy,aq) < 6/3. So d(ay,ap) <
d(ay,zy) + d(zy,a0) < 2d(4,zy) + 8/3 < 2d(ag,zv) + 6/3 < 6. Thus applying
(3), we have f(ay) € V and (*) is proved.

Next, by Lemma 3.1.1, we choose an open nhood W of ag in X contained in W

such that U N W # 0 implies U C W for each U € U. We shall show that
fw)ycv. (**)
Let € W. If £ € A, then = = a € W and hence, by (2), f(z) = f(a) eV C V.
Next assume r ¢ A. Then for each U € C; we have U N W # 0, which implies
that U C W and hence by (*), f(ay) € V. So it follows that B, C V and hence that

I'(B;) C G-coV C V. But f(z) € ['(B;) by definition, so (**) follows. Therefore f

1s also continuous at ao. O

2. Extension of Set-Valued Maps.

The following extension theorem is Theorem 2.1 of Ma in [Ma).

Theorem. Let A be a nonempty closed subset of a metrizable space X, E be a
Hausdorff locally convez space, and KE be the family of all nonempty compact
convez subsets of E. If F : A — KE is an upper semicontinuous set-valued map
on A, then F has an upper semicontinuous set-valued extension G : X — KE such

that G(X) s contained in the convez hull F(A).

Theorem 3.2.1 below generalizes Ma’s theorem.
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Theorem 3.2.1. Let (X, d) be a metric space and A a closed subset of X. Let (Y,T)
be a strongly locally G-convez space such that G-co({y1,y2,-...Yn}) is compact for
any Yi....,yn €Y. Let F: A — 2Y be USC with nonempty compact and G-convez

values. Then there ezists an USC extension F : X — 2Y such that:
(i) F(X) C G-co(F(A)).

(i) F(x) is nonempty, compact and G-convez, for each z € X.

Proof. Let U be the locally finite cover for X\ A provided by Lemma 3.1.1. Let
(Bu)ueu be a partion of unity on X \ A subordinated by ¢/. For each U € U, pick
any ry € U and let ay € A be such that

dlay,zv) < 2d(zy, A). (1)
Also for each U € U, choose any yy € F(ay).

Now for each z € X\ A4, let N, be an open nhood of z in X \ A that intersects with
only finitely many elements of U, say, Ug, Uy, ..., U, and such that clx(N;) C X\ A.
Let ¢on, : Ay — I'({yu,,---yu,}) be a continuous map having the property that
for any subset J C {0,1,...,n}, we have:

on.(co({ej:j € J}) CT({yy; : 5 € T}) (al)

Let un, : N, — A, be defined by pn_(2) = Ti,Bu.(z)ei. Let fy, : N —
T({yuy,---.yu, }) be defined by fn, = ¢n_opun,. Then fn, is obviously continuous.
Now let X’ be a locally finite closed (i.e. consisting of closed sets ) refinement for
the open cover W = {N, : £ € X\ 4}. For each K € K, assign Nn € W such that
K C Ni and let fr = fny-

Define F : X — 2Y by
- F(z), if £ € A;
F(z) = { .
G-co({fr(z):z € K € K}), if z € X\A.
Obviously, F|4 = F. We shall show in the following that (I) F is USC at every
point in A; (II) F is USC at every point in X\A; and that F satisfies (i) and (ii) in

the statement of the theorem.



First we shall prove that forany z € X\A, f {U €Y : z € U} = {Uo,U1,...,Um}
then
F(z) C G-co({yuy: - - - » YU }- (a2)

Forlet K€ K best. € K andlet {U€U:UNNg #0} = {Uo,Un,...,U,}.
Then there exists a subset J of {0,1,...,n} s.t. {Up,Ur,...,Un} = {f]j :jeJ}
And, moreover, pn,(z) € co({e; : j € J}. This, by (al), implies that:

f’\"(r) = ‘»bNK(I‘NK(z)) € F({ij J € J}) = P({yUovalv" . 7yU,,,}~ (2)

Since K is any arbitrary element of K containing z, (2) implies that {fx(z):r €
K €K} CT({yuo,---»y0un}) C G-col{yvy; -- - yv, })- Thus F(z) = G-co({fx(z) :
z € K}) C G-co{yu,,---,yu,. }) and (a2) is proved.

From (a2) it follows that F satisfies (i), since yy € F(ay) C F(A), for all U € U.
Moreover, by the assumption that the G-convex hull of any finite subset of Y is

compact, (ii) is obviously satisfied for F.
(I) F is USC at every point in A.

Let ap € 4 and V be an open subset of ¥ s.t. ﬁ'(ao) cV. By the local G-
convexity assumption on Y, there exists an open subset V of ¥ such that F(aq) =

F(ag) CV C G-co(V) C V. By USC of F on A, there exists § > 0 such that
for each a € A, d(a,ap) < 6 implies F(a) C V. (3)

Let W = B(ag,6/3). And let W be a nhood of ag open in X as provided by Lemma
3.1.1, i.e. such that

VU eU,UNW #0 implies U C W. (4)

We shall show that
FW)cV. (*)
First we notice that W has the property that

for each U € U, U C W implies F(ay) C V. (**)
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For U C W implies that zy € W and hence d(zy,ap) < 6/3. Also by (1),
dlay,ry) < 2d(ao,zu) < 26/3. So it follows by the triangular inequality that

d(ay,ap) < 6. Applying (3), (**) follows immediately.
To show that F(W) C V, we take z € W.

Casel. t=a € A . Then a € W (since W C W) and hence d(a,ao) < §/3. By
(3), this implies that F(z) = F(a) CV C V.

Case 2. t ¢ A. Let {U €U :z2 €U} = {Up,Uy,...,Un}. Then U; nNw #
@, forall 0 < : < m. Thus by (4) we have U; C W, for all 0 < : < m. Applying
(**), it follows that yy;, € F(ay,) CV, forall 0 <i < m, i.e. {yuy,--- yu.} CV.
By (a2), this implies that F(z) C G-coV C V. Thus it follows that FW) c V and
hence that F' is USC at every point in A.

(II) F is USC at every point in X\A.

Let o € X\A. Let V be an open subset of ¥ such that F(xo) C V. By the
local G-convexity assumption on Y, there exists an open subset V' of ¥ such that
F(zo) CV C G-co(V)C V. Let {K € K :zo € K} = {Ko,K1,....,Km}. Then
F(zo) = G-co({fro(0)s---+ fr.(Za)}. Let M; be an open nhood of zg contained
in X\ A that intersects with finitely many elements of K say {R € K : M1 N K #
0} = {Ko....,Km,Km+1,---,Kn}. Since F(zq) C V, we have fx,(zo) € F(zo) C
V, for all 0 < ¢ < m. And by the continuity of fg,’s, there exists an open nhood O
of zo in X \ A such that

fr.(O)CV, forall0 <z < m. (5)

Let M =0NM; N(X\Kn+1)N---N(X\K,). Then M is an open nhood of z4 in
X \ A. We shall show that

F(M)C V. (¥**)

For let £ € M. Then it is easy to see that

{(KeK:zeK}={K;:jeJ}C{Ko,...,Kn}, where J={0,1,...,m} (6)
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It follows that {fx(z):z € K € K} = {fx;(z) : j € J} where J C {0,1,...,m}.
Since r € O, it follows by (5) that fx;(z) €V, forall j € J,ie, {fx(z):z €K €
K} C V. This implies that F(z) = G-co({fx(z) :z € K € K}) C G-coV C V.

Thus (***) is proved and therefore F" is USC at every z € X \ A.

Therefore F is USC on X. O
3. Completely Continuous Extensions.

Definition 3.3.1. Let (X, d) be a metric space, Y a topological space. An USC
mapping ¢ : X — 2V is said to be completely continuous if for any bounded subset

N of X, the set cl({J,cn #(2)) is compact.
The following is an extension theorem of Pruszko (Theorem 1 in [Psz]).

Theorem. Let M C X be a nonempty closed subset of a metric space X, E be a
normed space, F' : M — cf(E) be an upper semicontinuous map, (where cf(E) is
the family of all nonempty bounded convez and closed subsets of E), ¢ : X — cf(F)
be a completely continuous map such that F(y) C ¢(y) and ¢ s continuous at y for
each y € M. Then there ezists a completely continuous map F : X — cf(E) such
that F|M = F and F(z) C ¢(z) for each r € X.

Theorem 3.3.1 below is a generalization of Pruszko’s extension theorem to G-

convex spaces.

Theorem 3.3.1. Let (X.d) be a metric space and M be a nonempty closed subset
of X. Let (Y,T') be a metrizable G-convez space whose topology comes from a metric
p. Assume that 'Y is strongly locally G-convez and has the property that cl(G-co(A))
is compact whenever A is a compact subset of Y. Let F : M — 2Y be USC with
nonempty, closed and G-convez values. Let ¢ : X — 2Y be completely continuous
such that (i) F(y) C ¢(y), forally € M, (i1) ¢ has nonempty closed G-convez
values and is continuous at everyy € M. Then there ezists F* : X — 2Y such that:
(i) F*|m = F, (ii) F*(z) C ¢(z), and (iii) F* is completely continuous.
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Proof. The proof is divided into three steps.
Step 1.
For each r € X\ M, we let r(z) be a real number such that
0<r(z) <(1/2)d(z,M). (1)

Consider the open cover {B(z,r(z)) :z € X\M}of X\ M. Let U = {U, : t € T}
be a locally finite open refinement for this cover. Let z; € X be such that U; C
B(z¢,r(z.)). For each U; € U, let y, € M be such that

d(ye, Uy) < 2d(M,U,). )

Let {p: }:er be a partition of unity on X \ M subordinated to ¢{. For each z € X\ M,
let N(z) = {y. € M : z € U;}. Obviously, N(z) is a finite subset of M. We shall
prove that for any y € M, and any z € X\ M, we have

N(z) C B(y,5d(z,y))- (3)

We will need to show the following:
d(z¢, M) < 2d(Uy, M), VYV, € X \ M, VteT. (a0)

Indeed let € > 0 be given. Then there exists y € M, z € U, such that
dly,z) <d(Uy,, M) +¢
= d(z,y) < d(xe,2) +d(z,y) <r(ze) +d(U, M) + €
< (1/2)d(ze, M) +d(Ue, M) + €.

But d(z;, M) < d(z:,y); so it follows that
d(z¢, M) <(1/2)d(z¢, M) + d(Uy, M) + € = d(z¢, M) < 2d(U;, M) + €.
Now since ¢ is arbitrary, the above implies (a0).

Next we prove (3). So let y, € N(z). Then

d(y,ye) < d(ye, ) + d(y, z). (al)
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By (2), there exists u; € U, such that
d(ye, ue) < 2d(M,Uy). (a2)
Since z € U, C B(zx¢,r(z:)), we also have
d(ue, ) < d(ue,ze) +d(ze, ) < r(ze) + r(ze) < d(ze, M). (a3)
By (a3) and (a), it follows that
d(ue,z) < 2d(U,, M). (ad)
Now by (al), (a2) and (a4), we have

d(ylv y) S d(yt,l’) + d(yv't) S d(yh ut) + d(uhz) + d(yv .'B)
< 2d(M,Uy) + 2d(Uy, M) + d(y, z) < 5d(y, z).

Step 2.

For each r € X\M, and t € T, let
6 b ( : aF <2 . 1F ? . ;
» {1 € 0(2) : p(w, F(ye)) < 20(0(2) FWe)}s o ooom
t\T)— .
if ¢(x) N FY( 0.
#(z) N F(yo), ()0 Fly) #

Given r € X\M, let {U € U : £ € U} = {Us,....Us,}. For each A =
(@0 @1,y ... 0n) € e (T)XWe, (T) X - xYy, (2), let fa:An = T({ao,a;,...,an})be
a continuous map. Note that {ag,a,...,a,} C ¢(z) whenever A = (aq,ai,...,an)
€ Yy, (x) X ¢, (z) X ... ¥, (z). Thus the G-convexity of ¢(z) implies that image(fa)
c I'{ao,ai1,--.,an}) C &(z).

Define
G(z) = {fa(Zicopr.(x)ei) 1 A € Yo (x) X e, (T) X - -+ X P, (x)}.

We observe that G(z) C ¢(z) for each z € X\M. Now define F* : X — 2Y as

follows:
F(u), .

oo ifue M,
[ cl(G-cof |J G@)), ifug M.

n=1 d(z,u)<(1/n)

F*(u) =
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Step 3.

We shall show first that F*(z) C ¢(z) for each z € X\M. Assume on the
contrary that there exists zg € X\M and y € F*(z¢) such that y ¢ ¢(xo). Then
there exists an open nhood V of &(z0) in Y such that y ¢ cl(f/). Let V be an open
nhood of ¢(z¢) in Y such that G-co(V') C V. By USC of ¢, there exists § > 0 such
that B(xo,8) C X\M and ¢(B(ze,68)) C V. Since G(z) C ¢(z), forall z € X \ M,
the above implies that

G(z) CV Vz € B(zo,6) and hence | ] G(z) C V-
d(z,z0)<6
Therefore G-co(Uy(; zq)<s G(&)) C G-co(V') C V which in turn implies that cl(G-
co(Ua,(r'zoKis G(z)) C cl(V) and hence F*(zo) C cl(V) which contradicts y €
F*(zo)\el(V).

Thus we have shown that F*(z) C ¢(z) for each r € X \ M. Therefore for any
subset N C X, we have

cl(|J F@) c e o))
rEN zEN
Since ¢ is completely continuous,

cl( U F*(z)) is compact for any bounded subset N C X. (4)
zeN

Next we shall show F™* is USC at every y € M. Let yo € M and let V be open in ¥
such that F(yo) C V. Let V be an open nhood of F(yo) such that cl(G-co(V')) C V.
By compactness of F(yo), there exists ¢ > 0 such that O(F(yo)) C V. Since ¢ is

continuous at yg; there exists 8; > 0 such that
D(¢(z), 9(yo)) < €/8 whenever d(z,yo) < 61, (b1)

(where D(¢(z), #(yo ) denotes the Hausdorff distance).
Also, by USC of F', there exists é; > 0 such that

F(y) C O¢/s(F(y0)) whenever y € M N K(yo,62)- (b2)
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Let 6 = min{é;,62/5}. We shall show that F*(B(y),6/2)) C V.Solet u €

B(yo,6/2). We consider two cases.

Case 1. u € M. In this case F*(u) = F(u). Therefore by (b2) we have F*(u) C
O.s(F(yo)) CV C V.

Case2. ue X \ M.

We will first show that

G(z) C G-co(V') whenever d(z,y0) < 6 and r € X \ M. (*)

Indeed let £ € X \ M be such that d(z,y0) < d and let {U; e U : £ € U,} =
(U .Ut,y-.., U }. Then N: = {y¢g,---,Yt, } and applying (3) and (b2) above, it

follows that for every 0 < : < n, we have

F(ye;) C O ys3(F(yo))- (b3)
Also since F(yo) C #(yo); (bl) implies that

F(yo) C O¢/s(9(z))- (b4)

From (b3) and (b4), we have F(y,) C O./4(é(x)) = p(F(yt, ), 8(z)) < €/4, for all
0 <7 < n. Therefore it follows that ¥ (z) C O/2(F(yy;)), for all 0 < ¢ < n, which
by (b3) implies that

Y1,(z) C Ose/s(F(yo)) CV, forall0<i <n. (b5)

Now let w € G(z). Then by definition of G, for each 0 < : < n , there exists a; €
¥¢,(z) such that w € I'({ao,ai1,...,an}). By (b5) we have a; € V, forall0 <: <
n which implies I'({ag, @1,...,an}) C G-co(V) so that € G-co(V). Thus (*) is

proved.

Next we notice that u € B(yp,8/2) = G(z) C G-co(V) whenever z € X \
M is such that d(z,u) < §/2. Let 0 < 63 < §/2 be such that B(u,d3) C X \ M.
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Then it follows that [y, 4)<s, G(z) C G-co(V). And this in turn implies that cl(G-
co(Ud(z,u)<s5 G(£)) C cl(G-co(V)) C V. Therefore F*(u) C V whenever d(yo,u) <
§/2. Thus we have shown F* is USC at y,.

Next, we shall show F™* is USC at any zo € X\ M.
Let A, = cl(G-co(Ud(z,“Kl/n G(z)),n = 1,2,.... Then, by definition of F'*, we

have
oo

F*(z0) = [ ) 4a. (3)

n=1

We shall first show that 4, is compact for each n.
Indeed, A, C cl(G-co(cl(Uy(;,z0)<1/n #(2))))- But AUa(z.z0)<1/n #(2)) is compact
by our assumption that ¢ is completely continuous, and since we are also assuming
that the closure of the G-convex hull of a compact set is compact, it follows that
cl(G-co(cl(Ug(z,z),1/n #(z) is compact. Therefore An is a closed subset of a compact

set and hence it is compact.

Now it follows from (5) that F*(zo) is the Hausdorff limit of the sequence
{A.}5%,. Let V be open in Y such that F*(ro) C V. Choose € > 0 such that
O.(F*(xo) C V. Then there exists an integer ng such that A, C O(F*(zo)) for

each n > ng.

Choose m > ng such that B(xg,1/m) C X\M. Let u € B(xq,1/(2m)). Then it

follows that

cl(G-co( U G(z))) Cel(G-co( |  G(z))) = Am C O(F*(20))
d(z,u)<1/(2m) d(z,z9)<1/m

Thus it follows that F*(u) C O(F*(zxo)) C V whenever d(zg,u) < 1/(2m). There-
fore F™* is USC at xzq.

Since F* is USC; it follows from (4) that F* is completely continuous. []

4. Applications.

In this section we give applications for the extension theorems of the previous

sections. Following the method of Tan and Wu in [TW], we obtain equilibrium
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existence theorems for some qualitative games and generalized games. We note
here that in all these applications the G-convex structure in the product space is as

in Definition 1.3.1.

Lemma 3.4.1. (Park) Let (Y,T') be a G-convez space such that for any y € Y,
[(y) = {y}. Assume further that for any compact G-convez subset A of Y and any
open neighbourhood U of A there ezists an open neighbourhood V' of A such that
G-coV C U. Let D be a compact G-convez subset of Y, and F : X — 2P be USC
with nonempty closed G-convez values. Then there exists y € Y such thaty € F(y).

Lemma 3.4.2. Let X and Y be topological spaces and F : X — 2Y be USC. Then
the set {r € X : F(X) # 0} is a closed subset of X.

Theorem 3.4.1. Let {(X;i,T:i)}ier be any family of strongly locally G-convez com-
pact G-convez spaces. For each i € I assume: (i) singleton subsets of X; are G-
convez, and (ii) G-co(A) is compact whenever A is a finite subset of X;. Let (X,TI')
be their product G-convez space and assume that X is metrizable and strongly locally
G-convez. For eachi € I let F; : X — 2Xi be USC with closed and G-convez values.
Then there ezists T € X such that for all i € I, either Fi(T) =0 or I; € Fy(T).

Proof. Foreachilet C; = {x € X : Fi(z) # 0}. Then C; is closed by Lemma 3.4.2.
Define F; : X — 2Xi as follows:

Case 1. If C; = 0 then let Fi(z) = X;, for all z € X.

Case 2. If C; = X then let Fi(z) = Fi(z), for all z € X.

Case 3. If C; is a proper nonempty subset of X, let F; be the USC extension of
F; provided by Theorem 3.2.1.

We notice that Fj(z) is nonempty, closed and G-convex,Vz e X, Vie I.

Let F : X — 2X be defined by

F(z) = Lier Fi(z).
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Then F is USC by a lemma of Fan ( Lemma 3 in [F] ). Moreover, F'(r) is obviously
nonempty and compact, for all z € X. We also have F'(z) G-convex, for all z € X
by Corollary 1.3.2. Moreover by (i) and Corollary 1.3.3, we have ['({z}) = {z}, for
all r € X.

Applying Lemma 3.4.1, it follows that there exists Z € X such that Z € F(T)
which implies that Z; € Fy(Z) for all i € I and hence for each i € I either Fi(T) =
Qorz; € Fi(r). O

As an immediate consequence of Theorem 3.4.1, we obtain the following equilib-

rium existence theorem for a qualitative game.

Theorem 3.4.2. Let {(Xi,[i)}ier be any family of strongly locally G-convez com-
pact G-conver spaces. For each i € I assume: (i) singleton subsets of X; are G-
convez, and (i1) G-co(A) is compact whenever A is a finite subset of X;. Let (X,T)
be their product G-convez space and assume that X is metrizable and strongly locally
G-convez. For each i € I let P; : X — 2%i be USC with closed and G-convez values
such that z; ¢ Py(z), for alli € I, for allz € X.

Then (X;, P;)ic; has an equilibrium i.e. there exists T € X such that for all
1 € I.Pg(.‘?) =0.

The following is an improvement of Lemma 3.8 in [TW].

Lemma 3.4.3. Let (Y,T') be a strongly locally G-convez compact G-convez space.
Assume also that the closure of a G-convez set is always G-conver. Let F : X — 2Y

be USC. Then T : X — 2Y defined by T(x) = cl( G-co(F(z))) s also USC.

Proof. Let 2o € X. Let U be open in Y such that T(zq) C U.

By assumption, T'(z¢) is compact and G-convex. So 3 an open nhood V; of T'(z¢)

such that

cl(G-co(V7)) C U.
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Now V; is an open nhood of F(xzg); so by USC of F,3d an open nhood N of zy
such that F(z) C Vi, V& € N = cl(G-co(F(z))) C cl(G-co(V1)) CU, Vr € N =
T(x) C U, V z € N. Therefore T is USC. O

Theorem 3.4.3. Let {(Xi,Ti)}iesr be any family of strongly locally G-convex com-
pact G-convez spaces. For each i € I assume: (i) singleton subsets of X; are
G-convezr, and (ii) G-co(A) is compact whenever 4 13 a finite subset of X;. Let
(X,T) be their product G-convez space (As in Definition 1.3.1). Assume that X 1is
metrizable and strongly locally G-convez. For each i € I let P; : X — 2% be USC
such that x; & cl(G-co(Pi(z))), for allx € X. Then the qualitative game (X;, F;)ier
has an equilibrium i.e. there ezists T € X such that Pi(T) =0, foralli € I.

Proof. For each i, let T; : X — 2% be defined by
Ti(x) = cl(G-co(Pi(x))).

Then T; is USC by Lemma 3.4.3. Applying Theorem 3.4.2 to (X;,T;)iecs, there
exists T € X such that T;(Z) = 0, for all : € I. It follows that P;(T) = 0, for all

rel. O

In the following we recall the concept of Uy-majorized correspondences introduced
by Tan and Yuan in 1993 [TY] and observe that these concepts can be immediately

carried on to G-convex spaces which is how we present them here.

Definition 3.4.1. Let X be a topological space and Y be a nonempty subset of
a G-convex space Z,.0 : X — Z be a map and ¢ : X — 2Y be a correspondence.

Then

(1) ¢ is said to be of class G-Uy if (a) for each z € X,6(z) ¢ ¢(z) and (b) ¢ is

upper semicontinuous with closed and G-convex values in Y/;

(2) ¢ is a G-Uy -majorant of @ at z if there is an open nhood N(z) of z in X and
¢z : N(z) — 2Y such that (a) for each z € N(z),#(z) C ¢z(z) and 8(z) ¢ ¢:(2)

and (b) ¢, is upper semicontinuous with closed and G-convex values;
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(3) ¢ is said to be G-Up-majorized if for each r € X with ¢(z) # 0, there exists

a G-Up-majorant ¢, of ¢ at x.

We shall deal mainly with either the case (I) X = Y and X is a nonempty G-
convex subset of a G-convex space Z, and 8 = Ix, the identity map on X, or the
case (II) X = IIie/ X, and = 7; : X — X is the projection of X onto X; and
Y = X is a G-convex space. In both cases (I) and (II), we shall write G-U in place
of G-Uy.

The following is Lemma 2.10 of [TY]:

Lemma 3.4.4 (Tan-Yuan). Let X and Y be two topological spaces, and let A be
a subset of X. Suppose Fy : X — 2Y F : A — 2Y are LSC (respectively, USC)
such that Fy(z) C Fi(z), for allz € A. Then the map F : X — 2Y defined by

o JFi(z) ., ifz ¢ 4
F(x)—{F;(x), if r € A.

18 also LSC ( respectively USC).

The following Lemma 2.2 in [TY] which is an improvement of a result due to

Hildenbrand ( Proposition B.IIL.2, p.23 in [H] ).

Lemma 3.4.5. Let X be a topological space and Y be a normal space. If F,G :
X — 2Y have closed values and are USC at £ € X, then FN G is also USC at z.

Theorem 3.4.4 (Tan-Yuan). Let X be a paracompact space and Y be a normal
G-convez subset of a G-convez space Z. Let  : X — Z and P : X — 2Y \ {0}
be G-Ug-majorized. Then there ezists a correspondence ¥ : X — 2Y \ {0} of class

G-Uy such that P(x) C ¥(x), for allz € X.

Proof. Since P is G-Us-majorized, for each z € X, let N(z) be an open nhood
of £ in X and ¢ : N(z) — 2¥ \ {0} be such that (1) for each z € N(z),P(z) C
¥z(z) and 8(z) ¢ ¥.(z) and (2) ¥, is USC with closed and G-convex values. Since
X is paracompact and X = (J,cx N(z), by Theorem 8.1.4, p.162 in [DJ2], the
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open covering {N(z)} of X has an open precise nhood-finite refinement {N(z)}.
For each z € X, define ¢, : X — 2Y \ {0} by

. (), if z € N(z);
v=(2) = { Y,  ifz¢ N(x)

Then ¥, is also USC on X by Lemma 3.4.4 such that P(z) C Pz(z), Vz€ X.

Now define ¥ : X — 2V \ {#} by ¥(z) = Nzex 1&,(::) for each = € X. Clearly, ¥
has closed and G-convex values and P(z) C ¥(z), V z € X.

Let = € X be given, then z € N(z) for some r € X so that Pz(z) = ¥z(2) and
hence ¥(z) C ¥:(2); as 6(z) € ¥z(z), we must also have that 6(z) ¢ ¥(z). Thus
0(z) ¢ ¥(z), Vz€ X.

Now we shall show that ¥ is USC. For any given u € X, there exists an open
nhood M, of u in X such that the set {z € X : M, N N(z) # 0} is finite, say
= {z(u.1),....z(u,n))}. Thus we have

n(u)
T(w) = () e(w) = [ bequn(w), ¥ w € M,.
reX =1

Fori =1,...,n(u), since each 1,/:',(,,‘,') is USC on X and hence on M, with closed
values and Y is normal, by Lemma 3.4.5, ¥ : M, — 2Y is also USC at u. Hence ¥
is of class G-Uy. O

Applying Theorem 3.4.4 above and Theorem 3.2.1, we obtain the following equi-

librium existence theorem for a qualitative game.

Theorem 3.4.5. Let (X;, P;)ics be a qualitative game, where {(X;,[i)}ier 1s any
family of strongly locally G-convez compact G-convez spaces. For each: € I assume:
(i) singleton subsets of X; are G-convez, and (i) G-co(A) is compact whenever A
is a finite subset of X;. Let (X,I') be the product G-convez space and assume that
X is metrizable and strongly locally G-convez. For each i € I let P;: X — 2%i be
G-U-majorized such that the set C; = {z € X : Pi(z) # B} s closed for each : € I.
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Then the qualitative game (X, Pi)ier has an equilibrium i.e. there ezists T € X
such that P(Z) =0, forall: € I.

Proof. Let ¢ € I be arbitrarily fixed. Since C; is paracompact, X; is normal and
P; : C; — 2%\ {0} is G-U-majorized; by Theorem 3.4.4, there exists ¢; : X —
2%\ {0} such that ¢; is of class G-U and P;(z) C ¢i(z), for all r € C;.

By Theorem 3.2.1, there exists ¢; : X — 2Xi such that ¢;(z) = ®i(x), for all
z € C;, and ®; is USC with nonempty compact G-convex values.

Let & : X — 2¥X be defined by ®(z) = ;e ®;(x). Then ® is USC by the lemma
of Fan (Lemma 3 in [F]), and it obviously has nonempty compact values. It also
follows that ® has G-convex values by Corollary 1.3.2. Since X is strongly locally
G-convex by assumption and since singleton subsets are G-convex by Corollary

1.3.3, it follows by Lemma 3.4.1 that ® has a fixed point, i.e.
there exists T € X such that Z; € $;(7), forall: € I.

It follows that T ¢ C;, for all : € I (For otherwise z; € ®;(Z) = ¢:(T) which is not
possible because ¢; is of class ), and hence Pi(T) =0, forall: € I. O

As an application of Theorem 3.3.1, we obtain the following equilibrium existence

theorem of an abstract economy.

Theorem 3.4.6. Let (X, P;, Fi)ier be an abstract economy, where {(X;,T';)}ier
13 any family of strongly locally G-convez compact metrizable G-convez spaces. For
each 1 € I assume: (i) singleton subsets of X; are G-convez, (1) cl(G-co(A)) 1s
compact whenever A is a compact subset of X;, (iii) the closure of a G-convez
subset of X; s always G-convez. Let (X,T') be the product G-convez space and
assume that X is metrizable and strongly locally G-convez. For each i € I let

P;, F; : X — 2% satisfy the following conditions:
(1) F; is continuous with nonempty closed G-convez values;

(2) P; is USC such that z; ¢ cl(G-co(Pi(z))), for all z € X.
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Then (X;, Pi, F;)ier has an equilibrium i.e. there exists T € X such that T; €
Fi(Z) and P(Z)N Fi(Z) =0, for all: € I.

Proof. Let ¢ € I be arbitrarily fixed. Define G; : X — 2Xi by
Gi(z) = Fi(z) N cl(G-co( Pi(x))).

Then G; is USC by Lemmas 3.4.3 and 3.4.5. Let C; = {z € X : Gi(z) # 0}. Then
C; is closed by Lemma 3.4.2.

Notice that G; : C; — 2%¢\ {0} is such that Gi(z) C Fi(z), V z € Ci. So all the
conditions of Theorem 3.3.1 are satisfied and hence 3 G; : X — 2% such that G; is

USC with nonempty compact G-convex values satisfying Gi(z) C Fi(z), Yz e X.

Let G : X — 2X be defined by G(z) = IIGi(z). Then G is USC by the lemma
of Fan (Lemma 3 in [F]) and it obviously has nonempty compact values. It also

follows that G has G-convex values by Corollary 1.3.2.

Since X is strongly locally G-convex by assumption and since singleton subsets
of X are G-convex by Corollary 1.3.3, it follows by Lemma 3.4.1 that G has a fixed
point Z so that z; € é.-(.’E), for all - € I which implies that
(1) z; € Fi(T) and
(2) ¢ C;, for alli € I, for otherwise we have Z; € Gi(T) = cl(G-co(Pi(T))) N
F;(Z) which contradicts the assumption. Thus Z; € Fi(Z), for all : € I and Pi(Z)N
Fi(Z) € Gi(Z) = 0. Thus it follows that T is an equilibrium for the generalized game
(Xi, Pi, Fi)ier- O

In the following we present other versions of Theorems 3.4.1, 3.4.2, 3.4.3, 3.4.5
and 3.4.6. These are true for G-metrically convex spaces and they differ from the
equilibrium theorems presented so far in the fact that we do not require the product

space to be strongly locally G-convex.

We shall need the following fixed point theorem due to Eilenberg-Montgomery
(see [EM] ).
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Lemma 3.4.6. Let X be an acyclic absolute nhood retract and F : X — 2% be an
USC correspondence such that for every z € X, the set F(z) is acyclic. Then F
has a fized point.

Theorem 3.4.1. Let (Xi,Ti)iesr be o family of strongly locally G-convez compact
G-metrically convez spaces where I is countable. For each i assume that (G-co(4)))
13 compact whenever A C X; 1s finite. Let (X,I') be their product G-convez space.
For each i € I let F, : X — 2%i be USC with closed and G-convezr values. Then
there exists T € X such that for alli € I, either F;(T) =0 or T; € Fi(T).

Proof. We notice that for each : € I, X; is an absolute retract by Theorem 4, Section
1. Therefore it follows that X = II;c;X; is an absolute retract and hence an absolute
nhood retract (See 2.18 in [B], p. 103). For each i let C; = {z € X : Fi(z) # 0}.
Then C; is closed by Lemma 3.4.2. Define F:: X — 2% as follows:

Case 1. If C; =0 then let Fi(z) = X;, for all z € X.
Case 2. If C; = X then let Fi(z) = Fy(z), for all £ € X.

Case 3. If C; is a proper nonempty subset of X, let F; be the USC extension
of F; provided by Theorem 3.2.1. We notice that F;(;c) is nonempty, closed and
G-convex, for all r € X, for all € I.

Let F: X — 2% be defined by F(z) = H;e;Fi(z). Then F is USC by the Lemma
of Fan (Lemma 3 in [F]). Moreover, F(z) is obviously nonempty and compact, for

all z € X.

We shall also show that F(z) is acyclic, for all z € X. Indeed, 1':‘,-(:1:) a compact
and hence bounded G-convex subset of X;. Therefore it follows by Proposition 2.1.2
that F’,—(:z:) is contractible. Since the product of contractible sets is contractible, it

follows that F(x) is contractible and hence acyclic.

Applying Lemma 3.4.6 to F' : X — 2X; it follows that there exists Z € X
such that T € F(Z) so that Z; € Fi(Z), for all ; € I which implies that for each i €



I either Fi(T) = 0 or ; € Fi(T).

a
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CHAPTER FOUR

SOME VARIATIONAL INEQUALITIES IN M-CONVEX SPACES

The content of this chapter is particular generalizations of some variational in-

equalities given by K.K.Tan, E.Tarafdar, and X.Z.Yuan in [TTY] to M-convex

spaces.

In chapters one and three we have seen how a homogeneous G-map system is a
useful tool in proving a selection or an extension theorem. In this chapter although
our study is restricted to M-convex spaces, i.e. G-convex with a G-map system,

however we do not require the G-map systems to be homogeneous.

We introduce M-convexity, and M-concavity for real functions (both set-valued
and single-valued) on an M-convex space. We also introduce the concept of an M-
affine real function. Then we construct a so-called dual space X}, which consists
of all M-affine continuous real-valued functions. As we shall see in the definition of
an M-convex, M-concave or M-affine map, it only seems natural that the smaller
the size of the set M(A) the better. This indicates that it is an advantage to have
a G-map system in which M(A) is finite for each finite subset A4, as we have seen
in Theorem 2.2.1. Nevertheless we feel that this subject needs further investigation

and study.

Our main tools for obtaining the solutions of variational and quasi-variational
inequalities are a KKM-type theorem (Theorem 1.2.3 ) and a Fan-Glicksberg-type

theorem (Theorem 1.2.7).

As a final remark, we observe that Lemma 4.1.3 was our very first motivation

for defining M-convexity of sets (Definition 1.2.4). In this Lemma we prove that a
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certain set W is M-convex, and indeed, such a set cannot be proved to be G-convex,

no matter how one tries.

Now before we proceed to give our generalizations, we quote some definitions

and some results from [TTY] for easier reference.

Definition 1. Let X be a nonempty convex subset of a topological vector space E

and let E* be its dual.

(1) A mapping T : X — 2E” is said to be monotone if for each z,y € X, Re(u —
v,z —y) 20 for all u € T(z) and v € T(y).

(2) If f,g: X x X — 2R then {f,g} is said to be a monotone pair if for each
r,y € X, u+v > 0for each u € f(z,y),v € g(y,z). In particular when f = g
and is single-valued, the notion of monotone pair reduces to that of a monotone
mapping defined by Mosco [M] (See Tarafdar [Ta] and also Husain and Tarafdar
[HT]).

(3) f : X x X — 2R is said to be hemicontinuous if for each z,y € X, the mapping
k : [0,1] — 2R defined by: k(t) = f((1 — t)z + ty,y), for all ¢ € [0, 1] satisfies the
following property
For each given s € R with f(z,y) C (s,+00), there exists ¢o € (0, 1] such that

f((l - t).'lf + tyv y) - (S, +OO), for all ¢ € (OvtO)'
We note that if f is single-valued this definition of hemicontinuity reduces to the

classical one given by Mosco [M], i.e. the function ¢ — f(z + t(y — z), y) from [0, 1]

to R is lower semicontinuous as ¢ | 0.

(4) f : X — 2R is said to be concave (respectively convex) if for each n €
N, z1,z2,...,Zn € X and each Aq,..., A, > 0 with £, \; = 1 and for each u €
F(EE, Aiz;), there exists v; € f(z;) for each i = 1,...,n such that

u > (resp. <)EL,Ajv;.

(5) h : X — R is said to be lower semicontinuous (respectively upper semicon-

tinuous) if for each A € R, the set {z € X : h(z) < A} (resp. {z € X : h(z) > A})
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is closed in X.

(6) H : X — 2R is lower (resp. upper) demicontinuous if for any s € R and any
z € X with H(z) C (s, +00) (resp. H(z) C (—o0,s)) there exists an open nhood N
of z in X such that H(y) C (s, +o0) (resp H(y) C (—o0,s)) whenever y € N. We
note that when H is single-valued, the notions of lower demicontinuity (resp. upper

demicontinuity) and lower semicontinuity (resp. upper semicontinuity) coincide.
The following are Lemmas 2.2 and 2.4 in [TTY].

Lemma 1. Let X be a nonempty conver subset of E and let H : X — 2R be
lower demicontinuous. Then the mapping h : X — R U {—oo} defined by h(r) =

inf H(z) for each z € X i3 lower semicontinuous.

Lemma 2. Let X be a nonempty convez subset of E. Suppose G : X — 2R is LSC.
Then W = {xr € X : inf G(z) > 0} s closed in X.

1. Real Set-Valued Mappings.

In this section we introduce the concepts of M-concavity and M-convexity for
real valued mappings on an M-convex space. We also define hemicontinuity for
a mapping f : X x X — 2R, which generalizes the concept of hemicontinuity as

defined in [TTY].
Definition 4.1.1. Let (X,I') be a G-convex space, and let M be a G-map system
associated with T'.

(i) f : X — R is said to be M-concave (respectively M-convex) if for any
A = {ag,...,a,} C X and any ¢ € M(A), we have

f(o(E g Aiei)) > ( respectively <) 2 A, f(a;), whenever Aq,..., A, > 0 with

(ii) f : X — 2R is said to be M-concave (respectively M-convex) if whenever

A= {ao,...,an} € <X), ¢ € M(A), /\0,...,/\,, Z 0 with E?=0/\,' =1and r €
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f(#(SPgAi-€:)), then there exists r; € f(a;) for each i = 0,1,...,n such that

r > (respectively <) T Air;.

Remark 1. We note that in the case where X is a nonempty convezr subset of
a topological vector space, if we let M and ¢4 be as in Ezample 1.1.1, then any
concave (resp. convez) set-valued function f : X — 2R {5 M-concave (resp. M-

convez).
Indeed for any A = {ag,...,an} € (X), and ¢ € M(A), we have
H(Egri-ei) = £ g Ai.a;.
Thus the two definitions i.e. (4) in Definition 1 above and Definition 4.1.1

coincide.

The following is a generalization of the definition of hemicontinuity in [TTY].

Definition 4.1.2. Let (X.I') be a G-convex space. Let M be a G-map system

associated with T.

Let f : X xX — 2E. Then f is said to be M-hemicontinuous if whenever zo,z; €
X are distinct, » € M({xo,z1}) and s is a real number such that f(zq,z1) C (s, ),
there exists to € (0,1] such that f(¢((1 —t)eo +ter),z1) C (s,0), for all ¢ € [0, to).

Remark 2. We note that in the case where X is a nonempty convez subset of
a topological vector space, if we let M and ¢4 be as in Ezample 1.1.1, then any

hemicontinuous set-valued function f: X x X — 2R is M-hemicontinuous.

Indeed whenever zo,z, € X are distinct, and ¢ € M({zo,z1}) then
(6((1 — t)eo + ter),z1) = ((1 — t)zg + tx1,21) for any t € [0,1]. Thus Definition
4.1.2 above and (8) in Definition 1 coincide.

The following lemma generalizes Lemma 2.1 in [TTY].

Lemma 4.1.1. Let (X,I') be a G-convez space, and let M be a G-map system
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associated with T'. Let f,g : X x X — 2R,
(a) If f,g is a monotone pair and inf f(z,y) < 0 then inf g(y,z) = 0.

(b) Assume f is M-hemicontinuous, inf f(z,z) < 0 for each z € X and y —
f(x,y) is M-concave for each z € X. If there ezists ro € X such that inf f(y,zo) 2
0 for all y € X then inf f(zo,y) <0 for ally € X.

Proof. (a) See the proof of Lemma 2.1 (1) in [TTY].

(b) Assume not, i.e. there exists yo € X such that inf f(zo,y0) > 0. Then

Zo # yo and f(zo,ye) C (s,00) for some s > 0.

Let ¢ € M({zo,y0)}. It follows by M-hemicontinuouity of f that there exists
to € (0, 1] such that:

f(ze,y0) C (s,00) for all ¢ € (0,¢0], where z¢ = ¢((1 — t)eo + ter). (1)

Now let 1 € f(zt5,2t,) = f(Zt0,9((1 — to)eo + toe1)). By M-concavity of y —
f(zty.y), it follows that there exist rq € f(z¢,,r0) and r € f(zey,y0) such that

r > (1 —tg)ro +tor1. Hence r > tor; since inf f(z,,o) > 0 by assumption.

By (1) and the inequality above, we have r > #3s > 0. And hence it follows
that inf f(z¢,,d((1 — to)eo + toe1)) = inf f(z¢,, 2to) = tos > 0 which contradicts the
assumption that inf f(z,z) <0 foreachz € X. O

Lemma 4.1.2. Let (X,T') be a G-conver space and let M be a G-map system
associated with T. Let f : X x X — 2R be such that

(i) inf f(z,z) <0 for each z € X;
(ii) y — f(x,y) is M-concave.
Then the mapping T : X — 2% defined by T(w) = {z € X : inf f(z,w) < 0} s

generalized M-KKM.

Proof. Let wg,w,...,w, € X, then we shall show that forany 0 <2 <?; <--- <
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ix <n and any ¢ € M({wo,...,wn}), #(As) C Uf:o T(w;; ) where A is that face

of A, corresponding to J = {io,%1,---,2k}-
Suppose not. Then it follows that there exist ¢ € M({wq,...,wa}), J =
{i0,.-- ik} C {0,1,...,n} a.nd:::é(ZJ_O . ei;) such that
z ¢ T(wy) forallj =0,1,....k. (*)
Hence there exists a real number s > 0 such that

inff(::,w,-,.)>sfora.llj=0,1,...,k. (1)

Now let r € f(z,2) = f(.,,<15(“""_0)\,J ei;)) = f(= ¢(V]_o j€i; +Xjgs0-¢€j)). Since
¢ € M({wo,...,wy}, it follows from (ii) that there exist ri; € f(z,w;;) for each
0<j <kandr € f(z,w) for each I ¢ J such that

k k
r2 ($j=0’\i,‘ Ti; + Sle.lorl) = Ej:o/\ij Ti; -

Hence by (1), we have r > J_O/\ s =s > 0. And so inf f(z,z) > s > 0, which

is a contradiction to (i). O

In the following we give a sufficient condition for the existence of a solution for

the variational inequality inf f(z,y) <0, for all y € X.
Theorem 4.1.1. Let (X,T) be a G-convez space and M be a G-map system asso-
ciated with T. Let f: X x X — 2R be such that

(i) inf f(z,z) <0 for allx € X;

(i) y = f(z,y) is M-concave for each fized z € X;

(iii) £ — f(z,y) is lower demicontinuous for each fized y € X;

(1v) there ezist a monempty compact subset B of X and wo € B such that
inf f(z,wo) > 0, for all z € X\B.



105

Then the set S = {r € X :inf f(z,w) <0, Vw € X} is a nonempty compact
subset of B.

Proof. Define T : X — 2X by T(w) = {z € X : inf f(z,w) < 0} for each w € X.
Then each T(w) is a closed subset of X, by Lemma 1. Also, by Lemma 4.1.2, T is
a generalized M-KKM mapping.

Hence, by Theorem 1.2.3 , we have § = [, T(w) # 0. Clearly S is closed.
Moreover S C B, since otherwise there exists zq € X\B such that inf f(z¢,wo) <0,

a contradiction to (1v).
Now that S is a nonempty closed subset of B it is compact and the proof is

completed. 0O

Lemma 4.1.3. Let (X,T') be a G-convez space, M be a G-map system associated

with T and g : X — 2% be M-concave. Then W = {z € X : infg(z) > 0} 1s

M-convez.

Proof. Let wq,...,w, € W and let ¢ € M({wq,...,wn}. We shall show that
#(A,) C W. Indeed, let = = @(EigAie;), where Ag,...,Ap > 0 with ¥ A; = 1.
Let r € g(z) = g(o(Z2yAiei)). By M-concavity of g, there exists r; € g(w;) for
each ¢ such that r > 2  \;r;. Since r; > 0 for each i, by the definition of W, it
immediately follows that r > 0 and hence that infg(z) > 0. O

Theorem 4.1.2. Let (X,I') be a Hausdorff G-convez space, M be a G-map system
associated with T and f: X x X — 2R be such that

(i) f is monotone;

(ii) f is M-hemicontinuous;

(iiz) inf f(z,z) <0 forall z € X;

(iv) y — f(z,y) 18 M-concave and LSC for each fized z € X;

(v) there ezist a nonempty compact subset B of X and wo € B such that
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inf f(z,wo) > 0, for all x € X\B.

Then the set S = {r € X : inf f(z,w) < 0,V w € X} s a nonempty compact

M -convez subset of B.

Proof. Define F,G,H : X — 2X by
F(w) = {z € X : inf f(z,w) < 0};
G(w) = clx(F(w));

H(w) = {z € X : inf f(w,z) > 0}.

Then by (iii) and (iv), F is M-KKM and hence G is M-KKM too. Moreover
F(wq) C B which implies G(wq) C B since B is closed. Therefore G(wq) is compact.
Thus all the conditions of Theorem 1.2.3 are satisfied for G : X — 2% and it follows

that (), cx G(w) # 0.

Now F(w) C H(w), by monotonicity of F. Moreover, H(w) is closed by Lemma
2. So it follows that F(w) C G(w) C H(w), Yw € X. Hence [,cx F(w) C
Nwex G(w) CNyex H(w).

Next we shall show that ),y H(w) C (1,ex F(w). So let zo € N,ex H(w)-
Then inf f(w,zo) > 0, for all w € X, and by (ii), (ii1), (iv) and lemma 1.1, it follows
that inf f(zg,w) < 0, for all w € X; 1.e. g € anX F(w). Thus it follows that
S = nwex F(w) = anX G(’U)) = nweX H(w) # 0

The above also implies that S is closed (being an intersection of closed sets).

Also S C B, since otherwise there exists £ € S\ B such that inf f(wg,z) < 0 which

is a contradiction to (v).

Moreover, H(w) is M-convex for each w € X, by Lemma 1.3 and (iv). So S is

the intersection of M-convex sets and is hence M-convex. O

2. Some Implicit Variational Inequalities For Monotone Mappings .

Here we define a dual space X}, and introduce a weak topology for it. We also
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define monotonicity for mappings like T : X — 2% which generalizes the usual

monotonicity in the linear case.

Applying Theorem 4.1.2 and Theorem 1.2.7 , solutions of variational inequalities

and quasivariational inequalities are obtained.

Definition 4.2.1. Let (X,I') be a G-convex space, M be a G-map system asso-
ciated with I and f : X — R. Then f is said to be M-affine if whenever A =
{zos..-,Zn} is a subset of X and ¢ € M(A) then f(H(Tigriei)) = TAif(z:)
for all Ag,...,Ap =0 with ¥ X; =1.

Definition 4.2.2. Let (X,I') be a G-convex space and M a G-map system asso-
ciated with I'. Let X}, denote the collection of all continuous M-affine real-valued
functions on X. For each z € X , let h; : X}, — R be defined by h (u) = u(z),
for all ¥ € X3 . And for each z,y € X, let h(;,) : X34 — R be defined by
Bz y(u) = u(z)— u(y). for all u € X3,. Let H = {h; : £ € X}. Then the topology
7p on X3,. is the weak topology induced on X3}, by the elements of H, i.e. the

smallest topology on X}, that makes all the elements of H continuous.

Remark. We note that since constant real functions on any M-convex space are

M-affine; the space X\, is always nonempty.

Definition 4.2.3. Let (X,I') be a G-convex space, M be a G-map system as-
sociated with I and T : X — 2¥X. Then T is said to be monotone iff for any

z,y € X.u € T(z) and v € T(y) , we have u(z) + v(y) — u(y) — v(z) = 0.

Definition 4.2.4. Let (X,I') be a G-convex space and M a G-map system on
(X,T'). Then a subset L of X is said to be an M-line segment iff there exist
zg,yY0 € X and ¢ € M({zo,y0}) such that L = ¢(A;).

As an application of Theorem 4.1.2, we give the following variational inequality.

Theorem 4.2.1. Let (X,I') be a Hausdorff G-convez space and M a G-map system
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associated with T'. Assume that {c} is G-convez, for eachz € X. LetT : X — 2%

be such that
(a) T is monotone;
(b) T(z) is compact w.r.t. T, for each r € X;
(c) T is USC from M-line segments in X to 7, on X3 ;

(d) there exist a nonempty compact subset B of X and wo € B such that u(z) —
u(wo) > 0, for allu € T(z), for all z € X\B.

Then the set S = {zo € X : inf,eT(zq) ¥(To) —u(z) <0, forallz € X} 15 a

nonempty compact M-convez subset of B.

Proof. Let f: X x X — 2R be defined by f(z,y) = {u(z) — u(y) : v € T(z)}.
We shall prove the following;:
(1) f is monotone;
(ii) y — f(x,y) is M-concave for each fixed r € X;
(iii) y — f(z,y) is LSC for each fixed z € X;
(iv) f is M-hemicontinuous.

(i) Let ry € f(z,y) and ro € f(y, z) for some z,y € X. Then there exist u € T(x)
and v € T(y) such that r; = u(z) — u(y) and r2 = v(y) —v(z). Hence r; +r; =
u(x) + v(y) — u(y) — v(z) > 0 by monotonicity of T. Thus f is monotone.

(ii) Let yo,...,yn € X, ¢ € M({yo,---,yn}) and r € f(z,d(X’yAiei)), where
Aos-- s An > 0 with Z2oA; = 1.

We shall show that there exists r; € f(z,y:) for each : € {0,...,n} such that

r > X2 Airi. From the choice of r, there exists u € T'(z) such that

r = u(z) — u($(SizeAiei))-
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Now, since u is M-affine, we have

u(p(EioAie:)) = TioAiu(yi)-

So r = T2 jAi(u(z) — u(yi)) = SigAiri, where r; = u(z) — u(y:i) € f(z,y:) for
each z.

(ii1) Fix any zo € X. Let U be an open subset of R and assume U N f(zo,y) # 0.
Then there exists u € T(xo) such that u(ze) — u(y) € U, and hence u(y) € U +
u(o),(an open subset of R). By continuity of u, there exists an open neighbourhood
N of y such that u(z) € —U + u(zg) for all = € N, i.e., u(xo) — u(z) € U for all
= € N. It follows that f(z¢,2)NU # 0, V z € N. Hence y — f(zo,y) is LSC.

(iv) Let zo,y0 € X, ¢ € M({z0,y0}) and s be a real number such that f(zo,y0) C
(s,00). It suffices to show that there exists tq € (0, 1] such that f(é(z¢),y0) C (s,00)
for all t € (0.to) where z; = (1 —t)eo + te;. First we show that f(ro,y0) is a closed
subset of R. Indeed let h : X}, — R be defined by:

h(p) = p(x0) — p(Yo) = hzo(P) — hyo(P)-

Then h is continuous w.r.t. 7p, being the difference of two continuous functions.
Now f(zxo,y0) = {u(zo) — u(ye) : u € T(x0)} = h(T(z0)) which is compact; being
the continuous image of a compact set. Therefore f(zo,yo) is closed, and hence

inff(zo,y0) = 1o > s.
We shall consider two separate cases.
Case 1. s > 0. Welet r = (rg +s)/2 and ¢; = (r — s)/r.
Case 2. s < 0. We choose r € (s,79) such that r < 0 and let t; = 1/2.

In each case above let V' = (r,00) and U = (s,00). Then it follows that:

t1 €(0,1), f(zo,y0) CV and (1—-¢t)V CU for all t € (0,%). (*)
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Indeed, the assertion that ¢, € (0,1) is obvious. Also in both cases we have

r < ro which implies f(zo,y0) C (r,00) =V.
To prove the last assertion in (*), we consider each case separately.

Case 1. Let t € (0,¢;) then (1 —¢) > (1 —¢;) and hence (1 —¢)r > (1L —t;)r =
(1 —(r —s)/r)r =s. Therefore ((1 —t)r,o0) C (s,0); i.e (1 —t)V CU.

Case 2. Let t € (0,¢;). Then 0 < (1 —t) < 1 and since r < 0 in this case, it
follows that (1—¢)r > r. But r > s, so we have (1—t)r > s which implies that ((1—
t)r,00) C (s,00); ie. (L—-t)V CU.

(*) actually means that u(zg) —u(ye) € V for all u € T(zq); i.e. h(u) € V, for all
u € T(xg) or, in other words, T(z¢) C h~}(V') = G, where G is open by continuity
of h.

Let L, = &(A;). Then zo € L; since ¢(eg) = o by the G-convexity of {z¢}.
Now the upper semicontinuity of T on M-line segments of X implies that there

exists an open nhood N of zq in L; such that
T(z) CG, forall z € N. (1)

But ¢ : Ay — L, is continuous, so $~}(N) is an open nhood of ey. This implies
that there exists g € (0,¢;) such that

o(z¢t) € N, forall t € (0,%y). (2)
By (1) and (2), we have T(¢(2:)) C G, for all t € (0,¢0). In other words
v(zo) —v(yo) € V, for all v € T(4(z:)). (3)

Now we shall show that f(é(z:),y0) = {v(d(z:)) — v(ye) : v € T(é(z:))} C (s,00),
whenever t € (0,1o).

First let v € T(#(z¢)). Since v is M-affine, v(¢(z:)) — v(yo) = v(#((1 — t)eo +
te1)) = v(yo) = (1 — t)v(2o) + tv(yo) — v(yo) = (1 — t)(v(z0) — v(y0)) € (1 —t)V by
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(3). But (1 —¢)V C U for all t € (0,%p), so it follows that
v(p(2:)) — v(yo) € U for all v € T(¢(z,)) and for all t € (0,%0); i.e., f(d(2t),y0) C
(s,00) for all t € (0,%9). Thus f is M-hemicontinuous.

So now by (i), (ii), (iii), (iv) and (d) in the assumption of the theorem, it is clear
that f satisfies all the conditions of Theorem 4.1.2. Hence the set S = {z¢9 € X :
inf f(zo,z) < Oforallz € X} = {xo € X : inf,e7(z,) u(To) — u(x) for all £ € X}

is a nonempty compact M-convex subset of X. O

Theorem 4.2.2. Let (X,T) be a compact Hausdorff G-convezr space and M be a
G-map system associated with T'. Assume that {z} is M-convez for each r € X.
Assume further that for any compact M-convez subset A of X and any open subset
U of X containing A, there ezists an open subset V of X containing A such that
M-coV CcU.

Let g: X x X x X — 2R satisfy the following conditions:

(i) for any v,z € X, inf g(u,z,z) <0;

(12) for any fized u € X. (z,y) — g(u,z,y) s monotone and M-hemicontinuous;
(1) for any u.x € X, y — g(u,z,y) is M-concave;
(1) for any r € X, (u,y) — g(u,z,y) ts LSC.

Then the set W = {u € X : inf g(u,u,w) <0, for allw € X} is a nonempty

compact subset of X.

Proof. For each u € X, let f, : X x X — 2R be defined by f.(z,y) = g(u, z,y).
Then f, satisfies all the conditions of Theorem 4.1.2. Thus there exists a nonempty
compact M-convex subset S, of X such that inf g(u,z,w) < 0, for all w € X, for
all z € S,. We define $: X — K(X) by S(u) = S..

Next we shall show that S is USC. It suffices to show that S has a closed graph.
So let (ra,Ya)aecr be a net in X x X such that y, € S(z4) for each a. Assume
To — To and yo — yo. We will show yo € S(z¢). Let w € X. For each «, since
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Ya € S(za), inf g(Ta,Ya,w) < 0. Then, applying (ii), we have:
inf g(za,w,ya) > 0. (1)

Let Cy = {(z,y) € X x X : inf g(z,w,y) > 0}. Then C,, is closed by (iv) and
Lemma 2. Moreover, (Za,Yo) € Cw for all @ € R. So it follows that (z¢,y0) € Cw
i.e. inf g(zo,w,yo) > 0. And, because w is any arbitrary point in X, we actually

have

inf g(zo,w,y0) = 0 for all w € X. (2)

Now by (i), (i1), (iii), (2) above and Lemma 4.1.1, it follows that inf g(ze,ye,w) <0,
for all w € X. In other words yo € S(zo). Thus S has a closed graph and is hence
USC.

Now by Theorem 1.2.7, it follows that S has a fixed point, and therefore, the set
W ={u € X :inf g(u,u,w) <0, for all w € X} is nonempty.

It only remains to show that W is closed. Indeed let (u4)aex be a net in W
and assume u, — ug. Then (uq,uq) € graphS for each «, and therefore (ug,uo) €

graphS, since S has a closed graph. Clearly then ug € W and W is closed. O

The following quasi variational inequality is an application of Theorem 4.2.2

above.

Theorem 4.2.3. Let (X,T') be a compact Hausdorff G-convez space and M be a
G-map system assoctated with T'. Assume {z} is M-convez for each z € X. Assume
also that for any compact M-convez subset A of X and any open subset U of X

containing A, there erists an open subset V of X containing A such that M-coV C

U. Let S: X — K(X) be USC with M-convez values. Let g: X x X x X — 2R pe
such that:

(3) for any u,z € X,inf g(u,z,z) < 0;
(i) for any v € X, (z,y) — g(u,z,y) is monotone and M-hemicontinuous;

(#32) for any u,z € X, both y — g(u,z,y) and y — g(y,z,y) are M-concave;



113
(v) for any r € X, (u,y) — g(u,z,y) s LSC;
(v) the mapping (u,z) — g(u,z,u) is LSC.

Then (a) there exists § € X such that §y € S(y) and inf g(y,y,w) < 0 for all
w € 5(y),

and (b) the set {y € X : y € S(y) and infg(y,y,w) <0 for allw € S(y)} is a

nonempty compact subset of X.

Proof. For any fixed u € X, let X = S(u), I' = [gy) and M = Mg, be as in
Proposition 1.2.3 . Then it is easy to verify that all the conditions of Theorem
2.2 are satisfied for the mapping g : S(u) x S(u) x S(u) — 2R. Therefore T, =
{y € S(u) : infg(y,y,w) < 0 for all w € S(u)} is nonempty and compact. Define
T : X - K(X) by T(u) = T,. We shall now show that T(u) is M-convex,
for each u € X. Indeed, let yo,y1,...,yn € T(u), & € M({yo,---,yn} and =z =
O(Zighiei) € #(An), where Ag,.... A, >0 with 2 A; = 1.

We claim that = € T(u).

Notice that = € S(u) by the assumption of M-convexity of S(u). Let w € S(u)
and let C,, = {y € S(u) : inf g(y,w,y) > 0}. Then, by Lemma 1.1(a) and (ii), we
have y; € C,, for each : € {0,1,...,n}. Also, Cy is M-convex by (iii) and Lemma
4.1.3: so it follows that = € Cy, i.e. inf g(z,w,z) > 0. And this inequality would
hold for any w € S(u) so that we have:

inf g(z,w,z) >0, for all w € S(u). (1)

So if we define f : S(u) x S(u) — 2R by f(z,w) = g(z,z,w), then by (1) above, (i),
(i1), (i), all the conditions of Lemma 4.1.1 are satisfied when taking zo = z and we
have inf f(z,w) = inf g(z,z,w) < 0 for all w € S(u); i.e. z € T(u). Therefore T(u)

is M-convex.

Next we shall prove that T is USC by showing that it has a closed graph. Let
(¥a)Ya)aen be a net in X x X such that y, € T(uq) for each a, yo — yo, and u, —
ug. We shall show that yo € T'(uo).
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Notice that yo € S(ue) by USC of S. So it only remains to show that
inf g(yo,yo,w) < 0 for all w € S(uo).

Let w € S(ug). Then by LSC of S, there exists a net (wq)aca such that wy, — w
and w, € S(uy) for each a. Thus we have inf g(ya,Ya,we) < 0 for all a. By
(ii), it follows that inf g(¥a,Wa,Ya) > 0 for all a. Let C = {(y,w) € X x X :
inf g(y.w,y) > 0}. Then C is closed by (v) and Lemma 2. Moreover, (yo,wq) € C

for all «, so it follows that:
(yo,w) € C, i.e. infg(yo,w,y0) 2 0. (2)

Since (2) holds for each w € S(uog), it follows by (1), (ii), (iii) and Lemma 4.1.1 (b)
that inf g(yo, yo, w) < 0 for all w € S(uo), ie., yo € T(uo)-

This shows that T : X — 2% is USC with nonempty compact M-convex values.
Therefore all the conditions of Theorem 1.2.7 are satisfied and hence there exists

y € X such that § € T(3), i.e., § € S(y) and inf g(y,y,w) < 0 for all w € S(¥).

To complete the proof, it only remains to show that W is closed. So let (ya)aenr
be a net in W such that yo — yo. Then (yo,ya) € graph T for each a € R, and since
T has a closed graph by the argument above, (yo,%0) € graph T. Thusyo € W. 0O



CHAPTER FIVE

SOME MAXIMAL ELEMENTS IN PRODUCT
SPACES WITH APPLICATIONS TO GENERALIZED
GAMES AND MINIMAX INEQUALITIES

In this chapter we give some maximal element theorems and fixed point theorems
for GLs -majorized correspondences in product G-convex spaces. The G-convex
structure for the product, as we study it here is the one we defined in Theorem

1.3.1.

Ls-majorized correspondences were defined in [DTY], where some maximal and
fixed point theorems for these correspondences were given. Here we generalize this
concept to G-convex spaces and use the notation GL s-majorized correspondences.
With the help of a fixed point theorem of Tan and Zhang (Theorem 3.1 in [TZ}),
in section 1 we are able to give generalizations of those maximal element and fixed

point theorems of [DTY].

For the G-convex spaces studied throughout this chapter, we assume a so-called
compact G-polytope property (Definition 5.1.1 (c) below). As in [DTY], maximal
elements and fixed point theorems are given for both compact and noncompact

domains.

In section 2, a new maximal element theorem is given, which we prove by using

the G-convex generalization of Theorem 7 in [DTY] i.e., Corollary 5.1.11.

In section 3, we apply the results of the previous sections to obtain equilibrium

existence theorems for generalized games.

In section 4, applications to minimax inequalities are given.
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1. Maximal Elements for GLs majorized Correspondences.
The following definition generalizes the concept of class Ls and of class Ms

mappings in [DTY] to G-convex spaces.

Definition 5.1.1. Let X be a topological space and I be an index set. For each
i € I, let (Y;,T;) be a G-convex space. Let ¥ = Iic/Y; be the product G-convex
space and S : ¥ — X be a single-valued map. Foreach: € I, let 4; : X — aYi,
Then

(a) The family {4;}:cs is said to be of class GLs (or {Ai}ier € GLs(X, Yi)ier)
if for each z € I,

(1) Ai(z) is G-convex, for each r € X;
(2) A7!(y:) is open in X, for each y; € Y;
(3) yi ¢ Ai(S(y)), foreach y €Y.

(b) {Ai}ier € GMs(X,Y:)ier (or the family {Ai}ier is GLs-majorized) if for
each : € I and for each z € X, there exists an open neighbourhood N; of z in X

and a mapping B; : X — 2¥ such that
(1) B; has G-convex values;
(2) B;!(y) is open in X for each y; € ¥j;
(3) yi € B:(S(y)) for each y € Y3
(4) Ai(z) C Bz(z) for each z € N;.

(c) A G-convex space (Y, T') is said to satisfy the compact G-polytope property
iff whenever A is a compact G-convex subset of Y and y1,...,yn € Y then G-

co(AU {y1,---,Yn}) is contained in a compact G-convex subset of Y.
The following Lemma generalizes Theorem 3.2 in [TZ].

Lemma 5.1.2. Let X be a compact topological space. Let (Y,T') be a G-convez
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space satisfying the compact G-polytope property. Let f : Y — X be continuous and
S,T:X —2Y satisfy

(a) S(z) C T(z) for each x € X;
(b) S~'(y) is open in X for each y € Y;
(c) T(z) is G-convez for each z € X;
(d) y ¢ T(f(y)) for each y €Y.

Then there exists £ € X such that S(r) = 0.

Proof. Assume S(z) # 0, for all z € X. Consider the cover {S™!(y):y € Y}. By

compactness of X, there exist y1,...,yn € Y such that
X CUi=1,..nS (yi) (*)

Let Yy be a compact G-convex subset of ¥ containing G-co({y1,...,yn}). Define
FG:Y, — 2Yo by:

F(y) = S(f(y)) nY, and G(y) = T(f(y)) N Yo

. Obviously we have:
(1) F(y) C G(y), for all y € Y;.
(2) G(y) is G-convex, for all y € Yp.
(3) F~'(y) = f71(S7'(y))NYo isopenin Y.

(4) F(y) # 0, for all y € Y;: For let y € Yp; then f(y) € X and by (*) there exists
i € I such that f(y) € S™!(y;); i.e. yi € S(f(y))- But y; € Yo; hence y; € F(y).

Now by Theorem 3.1 in [TZ], there exists § € Y such that ¥ € G(y).ie. ¥ €
T(f(y)) which is a contradiction to (d). O

Lemma 5.1.3. Let X be a paracompact Hausdorff topological space. Let (Y,T) be a
G-convez space. Let S:Y — X be continuous. Let A: X — 2¥ be GLs majorized.
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For each r € X, let ¢, : X — 2Y be a GLs majorant of A at z i.e. there ezists

an open neighbourhood of x, N, such that:
(i) A(z) C ¢-(2), for all z € Ng;
(1) 7' (y) is open for each y € Y;
(i) y & ¢2(S(y)) for each y €Y.
(iv) ¢:(2) is G-convez, for each z € X.
Then there ezists B : X — 2Y such that
(I) B is of class GLs and (II) A(z) C B(x) C ¢:(z), for each r € X.
Proof. Since X is regular, there exists an open neighbourhood V; of z in X such

that cl(V;) C N,. Let {W; : z € X} be a locally finite refinement of {V; : r € X}.
Then for each z € X define

~, 6:(2), if = € cl(W;)
@r(") - { Y’ if z € X\CI(WI)

Then we shall show that
(a) q‘b;l(y) is open, Vy € Y.

Indeed 67 (y) = [X\el(W.)] U [¢7'(y) N cl(W:)] = [X\cl(W:)] U ¢7'(y) which

is open.
(b) ¢:(z) is G-convex, Vz € X.

Now define

B:X =2 by :B(z) = m &z(z)- (*)
reX

Then it can be verified that
(c1) y ¢ B(S(y)), forally €Y.

(c2) B(z) is G-convex, for all z € X.
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(c3) A(z) C B(z), for all z € X.

(cs) B~ !(y) is open, for all y € Y: By using the local finite property of the family
{W_.;z € X}, this can be proved in a way similar to the proof of Lemma 2 of Ding
and Tan [3, p.230-232] or see the proof of Lemma 3.2.2 of Yuan [4, p.94-95].

By (c1),(c2), (c3) and (c4) above, (I) is true.

Moreover, For any z,z € X we have A(z) C ¢.(z), hence it follows by (*) that
A(z) C B(z), for all z € X. Also by (*) B(x) C <P;(1’) Hence (II) follows since
$=(2) = 0z(z). O

Theorem 5.1.4. Let X be a compact Hausdorff topological space. Let (Y,IT') be a
Hausdorff G-convez space satisfying the compact G-polytope property. Let S:Y —
X be continuous. Let A : X — 2Y be GLs majorized. Then there exists T € X
such that A(T) = 0.

Proof. By Lemma 2, there exists B : X — 2Y such that B € GLs(X,Y) and
A(z) C B(x), for all £ € X. Now, applying Lemma 1 and taking S =T = B and
f = S, there exists T € X such that B(Z) = 0. Hence A(Z) =0. O

Theorem 5.1.4 above generalizes Theorem 1 of [DTY] to G-convex spaces. As
an immediate consequence, we obtain generalizations of Theorem 2, Theorem 3,
Lemma 4, Theorem 6, Theorem 7 and Theorem 8 of [DTY] to G-convex spaces.
We state these as Corollary 5.1.5, Corollary 5.1.7, Lemma 5.1.9, Corollary 5.1.10,
Corollary 5.1.11 and Corollary 5.1.12, respectively. We note that the proofs of these

generalizations are mere modifications of the analogous results in [DTY].

Corollary 5.1.5. Let X be a Hausdorff topological space, (Y,I') be a Hausdorff
G-convez space with the compact G-polytope property, S :Y — X be a continuous
compact map and A € GMs(X,Y). Then there ezists T € X such that A(T) = 0.

Proof. Let X, be a compact subset of X containing S(Y). Then the restriction
of A to X satisfies all the conditions of Theorem 5.1.4. Therefore there exists
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T € Xp such that A(Z)=0. O

Corollary 5.1.7. Let X be a Hausdorff topological space. Let I be an indez set. For
each i € I, let (Y;,T;) be a Hausdorff G-convez space with the compact G-polytope
property. Let Y = Il;c;Y; be the product G-convez space and assume it satisfies the
compact G-polytope property. Let S :Y — X be a continuous and compact single
valued map. Let {A;}ier € GMs(X,Y:)ict- Assume that {J;c,{z € X : di(z) #
0} = Ui int({z € X : Ai(z) # 0}. Then there ezists T € X such that Ai(T) =0,
foralliel.

Proof. For each : € I, define Ai: X = 2Y by Ai(z) = 7 '(Ai(z)). Foreach z € X,
let I(z) ={: € I: Ai(z) #0}.

If there exists £ € X such that I(z) = @, then we have nothing to prove. So we
assume that I(z) # 0, for all z € X. Define 4 : X — 2 by A(z) = /(s Ail2)-
In the following we will show that 4 is GLs-majorized.

Let o € X. Then by our assumption that I(z) # @, for all £ € X; there exists
J € I such that Aj(z) # 0. Since 4; : X — 2Y; is GLs-majorized, there exists an

open nhood N, of zg in X and a mapping ¢, : X — 2Y such that
(i) ¢, has G-convex values;
(ii) ¢! (y;) is open for each y; € Y};
(iii) y; € 02,(S(y)), forally € Y;
(iv) Aj(2) C @z4(2), for all z € N,.
Without loss of generality we may assume that Nz, C int({z € X : Aj(z) # 0}).

Let 1., : X — 2Y be defined by v.,(z) = 7rj_l(¢,0(.1:)). We shall show that .,

is a GLs-majorant of A.

(I) ¢z, has G-convex values by (i) because 1rj’1(C ) is G- convex whenever C is

G-convex.
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(ID) ¥z (y) = {2 € X 1y € hzo(2) = 75 ($20(2)} = {z € X : y; € ¢2(2)} =
#7.}(z) which is open in X by (ii).

(IT) y ¢ ¥2,(S(y)), for all y € Y. Indeed assume the contrary. Then there exists
§ € Y such that § € ¥;,(S(§) = 7; ' (82,(5(¥)))- But then g; € 6:,(5(7)), which

is a contradiction to (iii).

(IV) A(2) C ¢z,(2), for all z € N,. Since Aj(z) # 0, for all = € N,,, it follows
that
A(2) € 4j(2) = 771 (4j(2)), for all z € Ny,

But by (iv), for each = € N.,, we have 7rj_l(Aj(::)) C WJ—'-I(¢:O(Z)) = Y (2).
Therefore A(z) C z4(z), for all z € Ny,.

By (1), (II), (III), and (IV), it follows that 1., is a GLs- majorant of A. Thus
A € GMs(X,Y). Thus all the conditions of Theorem 5.1.4 are satisfied for A and
therefore there exists T € X such that 4(Z) = 0,i.e. Ai(Z) = 0,for all z € [ so that

I(Z) = 0, which is a contradiction. O

Definition 5.1.8. Let X be a topological space. Let (¥;,I';) be a G-convex space
for each 7 in an index set I. Let A; : X — 2¥. Then {A;}ies is in class GKF (or

{A:}ier € GKF(X,Y:)ier) iff:
(1) Ai(z) is G-convex for each r € X;
(2) .4.,-_1(y,-) is open in X for each ¢ € I and each y; € Y¥;;

(3) For each r € X there exists ¢ € I such that A;(z) # 0.

Lemma 5.1.9. Let X be a compact topological space, and I be an index set. For
each i € I, let (Y;,T;) be a Hausdorff G-convez space with the compact G-polytope
property. Let {A;}ier € GKF(X,Y:)icr- Then there ezists a subset C = Il;ie;C; of
Y = ;c;Y; such that for each r € X there exzists ¢ € I such that Ai(z)NC; # 0.
Moreover for all but finitely many ¢ € I, C; is a singleton and for those finitely

many indices where C; is not a singleton, it is compact and G-convez.
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Proof. Consider {A;'(yi) : yi € Yi and i € I}. Since for each z € X, there exists
¢ € I such that A;(z) # 0, it follows that this collection of open subsets of X covers
X. By compactness of X, there exists a finite subset J of I and for each j € J a
finite subset W; = {y},4?,..., y;-nj } of Y; such that
m;
x = U4"u).
JE€J i=1
Fix y° = (y?)ier- And for each j € J, let C; be a compact G- convex subset of
Y; containing G-co(W;). f j ¢ J, let C; = {y?}. Then C = II;¢,C, is the required
set. O

Corollary 5.1.10. Let X be a Hausdorff topological space. Let I be an indez set.
For each ¢ let (Y;,I;) be a Hausdorff G-convez space with the compact G-polytope
property. Let Y = Ilic1Y; and assume it satisfies the compact G-polytope property.
Let S : X — Y be continuous and compact. Assume {A;}ic; € GKF(X,Y;)icr.
Then there ezists Y € Y and ig € I such that §;, € A;,(S(¥))-

Proof. Assume the contrary. Then for each y € Y and : € I we have y; ¢ A:(S(y)).
Thus the family {A;}iesr € GLs(X,Y:)ier- Moreover {z € X : Ai(z) # 0} =
Uyev: A7'(yi) is open so that the family {A;}ies satisfies all the conditions of
Corollary 5.1.7. Thus there exists T € X such that A;(7T) = 0, for all : € I, which
contradicts the assumption that {Ai}ier € GKF(X,Y,)ier- O

Corollary 5.1.11. Let X be a Hausdorff topological space and (Y;,T';) be a Haus-
dorff G-convez space with the compact G-polytope property for each i in an indez
set I. Let' Y = I;erY: and assume it satisfies the compact G-polytope property.
Let S : Y — X be continuous. Let {A;}ier € GLs(X,Y;)ics. Assume there ez-
15t @ nonempty compact subset K of X and a nonempty compact G-convez subset
C; of Y; for each t € I such that for each £ € X\K there exists ¢ € I such that
Ai(z)NC; #0. Then there exists T € K such that A;(Z) =0, for alli € I.

Proof. Assume the contrary. Then for each r € K, there exists € I such that
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Ai(z) # 0. Applying Lemma 1.9 to K and {Ai|x }ier, it follows that there exists a
subset D = [l;e;D; of Y having the property that for each z € K, there exists 1 € I
such that 4;(z)ND; # 0. Moreover the D;’s are either singletons or G-convex hulls

of finite sets, also being singletons for all but finitely many indices.

Now for each : € I, since Y; satisfies the compact G-polytope property, there
exists a nonempty compact G-convex subset H; of Y; such that D; UC; C H;. Let
H =1;c;H;. Then H is a compact G-convex subset of Y. Let Xo = S(H). It also
follows that X is compact. Let S; = S|y : H — Xo.

We notice that for each z € X, if z € K then § # A;(z)ND; C Ai(z) N H;. And
if £ ¢ K, then 0 # A;i(z)N C; C Ai(z) N H;. Thus

Ai(z)NH; #0, forall z € X.
Now for each i € I. we define 4; : Xo — 2 by
Ai(z) = Ai(z) N H;.

It is easy to see that {:"1,'}.'61 € GRF(Xo,H;)icr- Applying Corollary 5.1.10,
it follows that there exists y € H and i € I such that y;;, € .-"1,‘0(51(y)) =
Ai(S(y)) N Hyy, C Ai(S(y)), which is a contradiction to the assumption that
{A4:}ier € GLs(X,Y;)ies. This shows that there exists T € K such that A;(Z) =0,
forall: € I. O

Corollary 5.1.12. Let X be a paracompact Hausdorff topological space and (Y;,T;)
be a Hausdorff G-convez space with the compact G-polytope property for each i in
an indez set I. Let Y = Il;e1Y; and assume it satisfies the compact G-polytope
property. Let S : Y — X be continuous. Let {A;}icr € GMs(X,Y:)ier- Assume
there ezist a nonempty compact subset K of X and a nonempty compact G-convez
subset C; of Y; for each i € I such that for each z € X\K there exists ¢ € I such
that A;(z) NC; # 0. Then there ezists T € K such that A;(Z) =0, for all: € I.

Proof. For each : € I, (by a slight modification of Lemma 5.1.3), it is possible to

construct B; : X — 2Y¢ such that
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(I) Ai(z) C Bi(z), for all z € Xj;
(I1) {Bi}ier € GLs(X, Yi)ier-
Now applying Corollary 5.1.11 to the family {B;}ics, we obtain T € K such that
Bi(Z) = 0, for all : € I, which implies that A;(Z) =0, forall: e I. O
2. A Maximal Element Theorem.

Applying Corollary 5.1.11, we give the following maximal element theorem for

the case when X and S are not compact. X is a G-convex space in this theorem.

Theorem 5.2.1. Let (X,A) be a Hausdorff G-convez space satisfying the compact
G-polytope property. Let I be an indez set. Let (Y;,I';) be a Hausdorff G-convez
space satisfying the compact G-polytope property for eachi € I. LetY = Il;erY; and
assume it satisfies the compact G-polytope property. Let S:Y — X be continuous.
Let {A;}ier € GLs(X,Y:)icr. Assume there ezist a nonempty compact subset K of
X and a continuous function h: X x X — X such that

(i) Ai(h(z1,22)) C Ai(z1), for each (r1,22) € X x X and each 1 € I,
(1) (X x K)C K,
(i1z) K contains a nonempty compact G-convez subset K.

Then there exists T € K such that A;(Z) = 0, for each i € I.

Proof. Let J =IU{I}. Let Y; = X.

Define 4; : X — 2Y by

K, ifr € X\K,
A’(z)z{o if z € K.

Then A; has G-convex values and

A71(£)= X\K7 lfxe{{v
0, ifz¢K,
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so that AI_I(I) is open for each z € X.
Let Y = II;csY;. Define §:Y — X by:

S'((yj )jes) = h(S(yj)jer,yr)-Then it can be shown that S is continuous. Next
we shall show that the family {A;},es satisfies all conditions of Corollary 5.1.11.

(I){A4,}jes € GL4(X,Y;)jes- It suffices to prove that

y; ¢ AJ-(S(y)), for each y € Y, and for each j € J. *

Let y = (yj)jes
Case 1. y € I.

4;(S(y)) = A;(h(S((y))jer ¥1)) C A;j(S((y))jer)) by condition (i). The latter
does not contain y;, because {A;}jer € Ls(X,Yj);jer. Thus (*) holds.

Case 2. j =1.

We notice that A4;(S(yj)jes) = K or 0. So if y; ¢ K, (*) obviously holds.
Next assume that y; € K, then S(y;j)jes = h(S(yj)jer.yr) € K by (i1) and hence
Ar(S(yj)jes) = 0. Hence (*) holds.

(II) Let C; = G-co({y;}) for any fixed choice y; € Y;, if j € I. And let C; = K.
Then for any z € X\K, we take j = I € J so that C; N Af(z) = KN K # 0.

So by (I) and (II), all the conditions of Corollary 5.1.11 are satisfied so that there
exists T € K such that 4;(Z) = 0, for each j € J. It follows that 4;(Z) = 0, for
each:e€ 1. O

Remark. Condition (i:) on K in Theorem 5.2.1 above holds if X is a convex
subset of a topological vector space or if X is a G-convez space with the compact

G-polytope property and K contains G-co({z,,...,z,}) for some z;,...,z, € X.

Corollary 5.2.2. Let (X,A) be a Hausdorff G-convez space. Let I be an indez
set. Let (Y;,T;) be a Hausdorff G-convez space satisfying the compact G-polytope
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property for each i € I. Let Y = Il;e;Y; and assume it satisfies the compact G-
polytope property. Let S : Y — X be continuous. Let {A;}icr € GLs(X,Y:)ier-
Assume there exists g € X such that A;(zo) C Ai(z), for all z € X and for all
i € I. Then there exists T € G-co{zxo} such that Ai(T) =10, for allic I.

Proof. Let K = G-co{zo}. Define h : X x X — X by h(zx;,z2) = z¢ for each
1,72 € X. Then it is easy to see that all the conditions of Theorem 5.2.1 are

satisfied. Hence there exists T € K such that A;(Z)=0,forall: € I. O

Lemma 5.2.3. Let X be a paracompact Hausdorff topological space and (Y,T') be a
G-convez space with the compact G-polytope property. Let S : Y — X be continuous
and A: X — 2Y be GLs majorized. Let h: X x X — X be continuous such that

For any z,,z2 € X and zo = h(xy,xz2) there ezists a GLs majorant ¢, of A at

zo satisfying the condition
dz,(T0) C A(z1) N A(z2). *)

Then there ezists B: X — 2Y such that:

(I) B is of class GLs;

(II) A(z) C B(z), forallz € X;

(III) B(h(xy,z2)) C B(x1) N B(x2).
Proof. By Lemma 5.1.3, it follows that there exists B : z — 2Y that satisfies (I) and
(IL).

Also by Lemma 1.3, B(h(z1,z2) = B(z0) C ¢z,(z0).

So it follows from (*) that B(h(z1,z2)) C A(z1) N A(z2).

Since by (II) we have A(z;) N A(z2) C B(z1) N B(z2), (III) follows. O

Theorem 5.2.4. Let (X,A) be a paracompact G-convezr Space. Let (Y;,T';) be a

G-convez space with the compact G-polytope property for each i in an indez set
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I. Let Y = ic;Y; and assume it satisfies the compact G-polytope property. Let
S :Y — X be continuous. Let {A;}icr € GMs(X,Yi)icr- assume there ezist a
continuous h : X x X — X and a nonempty compact G-convez subset K of X such

that:

(1) (X x K) C K;

(ii) For any r = h(x,,z;) in X and for any i € I, there ezists a GLs majorant
dr of A; at x such that ¢.(z) C Ai(z1) N Ai(z2).

Then there exzists T € K such that 4;(T) =0, foralli € 1.

Proof. By Lemma 5.2.3, there exists B; : X — 2Y such that (1) Ai(z) C Bi(z), (2)
B; is of class GLs and (3) Bi(h(z1,z2)) C Bi(z1) N Bi(x2).

It then follows that the family {B;}.cs satisfies all conditions of Theorem 5.2.1
and hence there exists T € X such that B;(Z) = 0, for all i € I, hence Ai(T) =0,
forall: €I. O

3. Generalized Games.

The following theorem is an application of Corollary 5.1.12. It gives an equilib-
rium point for the generalized game (Y;; A;; P;)ier when Y = II;¢/Y; is paracompact

where each (Y;,T';) is a G-convex space.

Theorem 5.3.1. Let X be a Hausdorff topological space. Let I be an indez set.
For each i € I, let (Y;,T;) be a G-conver space satisfying the compact G-polytope
property.

Let Y = Il;¢;Y; be paracompact and assume it satisfies the compact G-polytope
property. Assume S :Y — X is continuous. Let A;, P; : X — 2Yi. Assume there
ezist a nonempty compact subset K of Y and for each 1 € I a nonempty compact

G-convez subset C; of Y; such that

(1) for each y € Y\K, there exzists 1 € I such that A;(S(y))NPi(S(y))NC; #0;
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(2) the family {(Ai N Pi)}ier € GMs(X,Yi)ier:
(8) clA; is upper semicontinuous, for each i € I;
(4) A7 (y) is open in X, for each y € Y;;
(5) Ai(z) is nonempty and G-convez for each r € X.
Then there ezists § € K such that:
(i) Ai(S()) N P(S(y)) =0. for all: € I, and

(i1) yi € clAi(S(Y)), for each i € I.

Proof. Foreachi €I, let Fi = {y €Y : y; € cl(Ai(S(y))}. Clearly, F; is closed by
upper semicontinuity of c/A;. Define Qi(y) : ¥ — 2Yi by

Ai(S(y)) N P(S(y)), ify € Fi;

Quly) = { A(S@)), if y ¢ Fr.

Then we will show that the family {Q;}.er satisfies all conditions of Corollary
5.1.12with Y = X, and S = Iy.

(1) {Q:i}ier € M1, (Y,Y:)ier-
Let weY.
Case l. w € F;.

Let x=S(w). Then by (1), there exists an open neighbourhood N of r and an

Ls majorant B; of A; N P; at .
Let ¥, : Y — 2Y be defined by

B:(S(y)) N Ai(S(y)), ify € F3;

Tuly) = { A(S()), if y ¢ F.

Then ¥, is an L;, majorant of Q; since

(1) ¥, has convex values;
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(2) yi ¢ Uu(S(y))for each y € Y: If y € F; then ¥, (y) C B:(S(y))- Moreover,
yi ¢ B:(S(y)), because B, is an Ls majorant of A; N P;. Hence y; ¢ ¥y(y). On the
other hand, if y ¢ F;, then by definition of F}, yi ¢ 4i(S5(y)). Hence (2) obviously
holds in this case also.

(3) If y; € Y;, then ¥ '(y;) is open in X. Indeed,

L (y) = [STHAT ) N (Y\F) U [STHAT (w:) 0 STH(BI (i) N Fi
= [STHAT () N (Y\F)] U [STHAT () n STHBI ()],
which is obviously open in X.

(4) Qi(y) C ¥u(y), for each y in the open neighbourhood S~YN.) of y.

Case 2. w ¢ F;.

Define )

Ai(S(y)), ify ¢ Fi;
Yu(y) = . :
0, if y € F;.

Then Qi(y) C ¥Yu(y), for each y in the open set Y'\F;. Obviously, ¥y, is an Ly,

majorant of Q); at w.

(II) For each y € Y'\R, there exists : € I such that Q;(y) N C; # 0. We notice
that Q:(y) D 4:(S(y)) N Py(S(y)). The refore (II) follows from (1).

By (I) and (II), all the conditions of Corollary 5.1.12 are satisfied zzd hence there
exists § € Y such that Q;(y)) = 0, for all € I. It follows that 7; € cl(A:i(S5(y)), for
all : € I, and that (4; N P)(S(y)) =0,forall: e I. O

Corollary 5.3.2. Let (Y;,T;) be a compact G-convez space with the compact G-
polytope property, for each i € I in an indez set I. Let Y = Il;crY; be the product
G-convez space and assume it satisfies the compact G-polytope property. For each

i€1,let A;,P;:Y — 2Y be such that
(1) the family {(A:i N P;)}ier € GMs(X,Y:)ier;

(2) clA; is upper semicontinuous, for each i € I;
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(3) A7'(y) is open in Y, for each y € Y;;
(4) Ai(z) is nonempty and G-convez, for each r € X.
Then there exists y € Y such that:
(1) Ai(¥)) N Pi(y)) =0, forall: € I and
(ii) §; € clAi(Y)), for each i € I.

Proof. Apply Theorem 5.2.1 with X = K =Y, C; =Y; and S = Iy, the conclusion
follows. O

Applying Theorem 5.2.4, another equilibrium existence theorem is obtained.

Theorem 5.3.3. Let (Y;,I';) be a G-conver space with the compact G-polytope
property for each i in an indez set I. LetY = ;e Y; be the product G-convez space
and assume it is paracompact and satisfies the compact G-polytope property. Let

A; P.: Y — 2Y Let K be a nonempty compact G-convez subset of Y and h be a
continuous function fromY x Y to Y. Assume that

(1) (Y x ) C K and for any y1,y2 € Y and any i € I, we have A;(h(y1,y2)) C
Ai(y1) N Pi(y1) N Ai(y2) N Pi(yz2);

(2) the family {(A: N P;)}ier € GM 1, (X, Yi)ier;

(3) clA; is upper semicontinuous, for each i € I;

(4) A7 (y) is open in Y, for each y € Y;;

(5) Ai(z) is nonempty and G-convez, for each z €Y.
Then there ezists y € K such that:

(i) Ai(¥) N Pi(y) =0, for alli € I and

(31) yi € clAi(Y), for each © € I.

Proof. Foreach it € I, let F; = {y € Y : yi € cl(Ai(y)}. Clearly, F; is closed by
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upper semicontinuity of clA;.

Define Qi(y) : Y — 2 by

L Ady) N Bi(y), ify e F;;
aw={ tver

Then we shall show that the family {Q; }:er satisfies all conditions of Theorem 5.2.4,
withY = X, and § = Iy.

(I) {Qi}ier € GM (Y, Yi)ier-
Let weY.
Case 1. w € F}.

By (2), there exist an open neighbourhood N, of w and a GL, majorant B,

of A; N P; at w.

Let ¥, : Y — 2¥ be defined by

{ B (y) N Ai(y), if y € Fy;
WY Auw) ify ¢ F.

Case 2. w ¢ F;. Define

Ai(y)v if Yy ¢ Fi;
\I,w(y) - { w, ifye€ F;.

Then in each case it can be verified that v, is a GL;, majorant of Q; at w, (see
the proof of Theorem 5.3.1).

(I1) For any y1,y2 € Y, let yo = h(y1,y2). Let 3y, be a majorant of Q; at yg as

defined above. Then we can show that 1, satisfies the following condition :

Yy (¥0) C Qi(y1) N Qi(y2)- (*)

Indeed for any w € Y, it follows from the definition of ¥,, that ¥.(y) C Ai(y). In
pa.rticula.r ¢wo(w0) - A.‘(U)o)-

Moreover by (1), Yw,(wo) C Ai(w1) N Pi(wy) N Ai(w2) N Pi(w2).
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So by definition of Q;, the right hand side above is contained in Q;(w)NQ;(w-).
Hence (*) holds.

Now by (I) and (II), the conclusion of Theorem 2.3 holds and there exists y € K
such that Q;(y) =0.for all z € I.

It follows that ¥; € cl(Ai(y)), foralli € [ and A;(§)NPi(y) =0,forall: € I. O

4. Minimax Inequalities.

As an application of Theorem 5.2.1, we have the following.

Theorem 5.4.1. Let (X,A) be a G-conver space. Let I be an index set. Let
(Y;,T;) be a G-convez space with the compact G-polytope property for each i € I.
Let Y = Il;c/Y; be the product G-convezr space and assume it has the compact G-
polytope property. Let S : Y — X be continuous. Foreach: €I, let f; : X xY; - R
be such that:

(i) for each fized r € X,y; — f(x,yi) 15 quasi-concave;
(11) for each fized y; € Yi,x — f(r.y;) 1s lower semi-continuous;

(i11) there ezist a nonempty compact G-conver subset K of X and a continuous

function h : X x X — X such that

(1) fi(h(z1,x2),y:i) < min{fi(z1,y:), fi(z2,y:)}, for each (z2,z2) € X x X and
each y; € Y;; and

(2) (X x K)CK.

Then we have

(A) For any real number A, one of the following is true:

(a1) there exists y €Y and i € I such that fi(S(y),yi) > A.
(az) there ezists T € K such that sup,crsup, cy; fi(Z,yi) < A

(B) The following minimaz inequality holds:
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inf.ex sup;es supy,ey; fi(7,¥i) < supier supyey; fi(S(y),y)-

Proof. (A) Assume (a;) does not hold.

For each i € I. define A; : X — 2Y by Ai(z) = {y € Y:: f(z,yi) > A}. Then the
family {4,}ies satisfies all conditions of Theorem 5.2.1. Hence there exists T € K
such that A;(Z) =0, forall : € I, i.e. (az) of (A) holds.

(B) Take Ao = sup;e;supyey fi(S(y),y)- By applying (A), obviously (a;) does

not hold. Hence (a;) is true, i.e., there exists £y € X such that

sup sup fi(Zo,¥:i) < Ao-
el y;€Ys

Therefore inf e x sup;e; supy,ey. fi(z,yi) < sup;ersupyey fi(z, S(y)). O

For the case when I is a singleton and X =Y is a convex subset of a topological

vector space and S = Iy, we have the following corollary.

Corollary 5.4.2. Let X be a nonempty convez subset of a Hausdorff topological
vector space. Let f : X x X — R be such that

(i) for each fized z € X,y — f(x,y) i3 quasi-concave;
(11) for each fized y € X,z — f(z,y) s lower semicontinuous;

(21i) there ezists a nonempty compact convez subset K of X and a continuous
function h : X x X — X such that: (1) f(h(z1,z2),y) < min{f(z1,y:), f(z2,¥i)},
for each (r2,z2) € X x X and each y € Y; and (2) h(X x K) C K.

Then we have

(A) For any real number A, one of the following is true
(a1) there exists z € X such that f(z,z) > A.

(a2) there exzists T € K such that sup,ey f(Z,y) < A

(B) The following minimaz inequality holds:
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The following is a generalization of the concept of an Ls majorized family of

functions in [DTY] to G-convex spaces.

Definition 5.4.3. Let X be a Hausdorff topological space. Let (¥;,I';) be a G-
convex space for each ¢ in an index set I. Foreach : € I, let f; : X xY; — R.
Then the family {fi}ies is said to be GLs majorized if the following conditions are
satisfied for each : € I:

For each A € R, if there exists (z,y;) € X X Y; such that f;(z,y;) > A, then
there exists a non-empty open nhood N; of r in X and a real-valued function
ff : X xYi — R such that

(c1) for each fixed z € X, yi — fF(z,y:i) is quasi-concave;
(ce) for each fixed y; € Y;, = — f¥(z,yi) is lower semicontinuous;
(c3) fi(z,yi) € fF(=z,yi) for each z € X and each y; € Yj;

(ca) fF(S(y),yi) > A implies that f;(S(y),yi) > Aforeachy € Y.

The following is an analytic formulation of Theorem 5.2.4.

Theorem 5.4.4. Let (X,A) be a paracompact G-convez space and I be an indez
set. Let (Y;,T;) be a G-convez space with the compact G-polytope property for each
t: €I. LetY =1Ilie;Y: be the product G-convez space and assume it satisfies the
compact G-polytope property. Let S : Y — X be continuous. For each : € I, let
fi : X xY; = R. Assume the family {fi}ier 138 GLs majorized. Assume that

(I) there ezists a nonempty compact G-convez subset K of X and a continuous

function h : X x X — X such that (X x K) C K;

(II) for any z = h(zx,,z2) € X, there 1s a GLs majorant fF : X x Y; — R such
that f7(z,y:) < min{fi(z1,y:), fi(z2,yi)} for each y; € Y.
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Then we have

(A) for any real number A\, one of the following is true

(ay) there ezist y € Y and i € I such that fi(S(y),yi) > A;

(az) there ezists T € K such that sup;¢;sup,, ey, fi(T.y:) < A.

(B) the following minimaz inequality holds:

inf,ex Sup;e; Supy, ey; fi(Z, yi) < sup;esupy,ey; fi(S(y), y)-
Proof. (A) Assume (a;) does not hold. For each ¢ € I, define 4; : X — 2Y by:
Ai(z) = {y € Yi: f(z,yi) > A}. Then we shall show that the family {A;}icr satisfies
all conditions of Theorem 5.2.4. Indeed, the family {A;}icr is GLs majorized. Since
for any z € X, if Ai(z) # 0, then (by the assumption that the family {fi}ies is

GLs majorized) there exists a real-valued function f7 : X x Y; — R satisfying
(c1),...,(cq). Define ¢, : X — 2Yi by ¢.(z) = {y; € Y:: 6:(z,y:) > A}

Then it is easy to show that ¢, is a GLs -majorant of A; at =.

Also if £ = h(z,,z2) € X then ( by condition (II ) above), there is a GLg

majorant 7 : X x Y; — R such that
fE(z.yi) < min{fi(x1,¥:), fi(z2,yi)} for each y; € V..

Again define ¢, : X — 2Yi by ¢.(z) = {y: € Y; : ¢z(z,yi) > A}. Then the
condition (ii) of Theorem 5.2.4 is satisfied. Hence, by Theorem 5.2.4, there exists

T € K such that 4;(T) =0, for all € I, i.e. (a2) of (A) holds.
(B) Take Ao = sup;e;sup,ey fi(S(y),y)- By applying (A), obviously (a1) does

not hold. Hence (a3) is true, i.e. there exists o € X such that

sup sup fi(zo,yi) < Ao-
i€l y;eY;

Therefore infex sup;er supy,ey; fi(Z,yi) < sup;e) supyey fi(z,S(y))- O
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