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ABSTRACT

This thesis deals with a discrete time recurrent neural network (DTRNN) with a block-
diagonal feedback weight matrix, called the block-diagonal recurrent neural network
(BDRNN), that allows a simplified approach to on-line training and addresses stability
issues. It is known that backpropagation-through-time (BPTT) is the algorithm of choice
for training DTRNN due to the exact and local nature of gradient computation. However,
the BPTT algorithm stores the network state variables at each time instant and hence
requires large storage for long training sequences. Here, the block-diagonal structure of
the BDRNN is exploited to modify the BPTT algorithm to reduce the storage
requirements while still maintaining exactness and locality of gradient computation. To
achieve this, a numerically stable method for recomputing the state variables in the
backward pass of the BPTT algorithm is proposed. It is also known that the local or
global stability of DTRNN during training is guaranteed if a suitably defined norm of the
updated weight matrix is less than a bound determined by the slope of the sigmoidal
limiter. The determination of this norm at each weight update requires eigenvalue
computations and is computationally expensive. In linear systems, this is overcome by
using special sparser structures which facilitate direct monitoring of stability during
weight updates by examining appropriate matrix elements. In this thesis, this approach is
extended by exploiting the sparse structure of the BDRNN to monitor and maintain
stability. This is addressed, first, by developing a suitable stability function that provides
a measure of the system eigenvalues with reference to the unit circle; next, a penalty term
based on this stability function is incorporated as part of the cost function being
minimized during training. It is shown that the stability function can be suitably tailored
and formulated as a constrained feedforward neural network. This allows the stabilization
to be addressed in a feedforward BDRNN framework which can be trained using
conventional gradient descent techniques. Finally, a modular construction method is

presented that is suitable for modelling dynamic trajectories which can be decomposed

XX



into several subdynamics. The performance of the FF-BDRNN architecture, the new
learning algorithm, the stabilization technique and the construction method are

demonstrated using several simulation examples.

XX1



1 INTRODUCTION

1.1 CURRENT TECHNIQUES AND PROBLEM DEFINITION

Artificial neural networks can be classified broadly into two categories: static networks
and dynamic networks. Static networks are memoryless and generally consist of several
layers of neurons/units that are cascaded and are used to model systems whose outputs
are a complex nonlinear function of current external inputs to the system. Introducing time
delays or feedback (recurrence) in the neurons produces dynamic networks that have
memory. Dynamic networks with feedforward dynamics with discrete time delays [Waibel
et al] have been successfully used for recognition of voiced stop consonants in speech,
while. networks with continuous adaptive time delays have been applied to the prediction
of chaotic time series [Day and Davenport]. Dynamic networks with network output
teedback [Narendra and Parthasarathy 1990] have been used for nonlinear identification
and control problems. Dynamic networks with state feedback. also known as recurrent
neural networks (RNN), are gaining popularity due to their feedback structure which can
be harnessed to model dynamic characteristics of time varying signals [Williams and
Zipser 1989. Almeida, Pineda, Pearlmutter 1989. Narendra and Parthasarathy 1990 and
1991. Nerrand et al, Sato. Werbos. Tsoi and Back. Gori et al. Uchiyama et al]. The
system equations of such networks are generally described by differential or difference
equations for continuous and discrete recurrent networks respectively. Recurrent networks
with state feedback can be further subdivided into tully recurrent and locally recurrent
globaily-tfeedforward (LRGF) networks (see [Tsoi and Back] for a survey). The fully
recurrent architecture [Williams and Zipser 1989] is generally one-layered in which the
output of every neuron is fed back with varying gains to the inputs of all neurons. The
LRGF architecture is a hybrid architecture that incorporates some feedback elements
togoiher with a multi-layer feedforward network. DTRNNs having the same architecture
can be trained with two different distinct learning algorithms [Hunt et al], viz.. fixed point

learning and trajectory learning to model different dynamic behaviour. Therefore. a
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network is defined by its architecture together with its learning rule and the overall input-
output behaviour is the result of the interaction between the two. Fixed-point learning is
employed in DTRNNs to model finite state machines, while, trajectory learning is
employed in identification and control, to model or predict desired temporal trajectories.
Simulation studies on certain tasks involving trajectory learning have shown that locally
recurrent architectures can perform better and converge faster than fully recurrent
networks [Tsoi and Back]. Also networks with sparse feedback connections such as
locally recurrent architectures can be advantageous in terms of stability of learning and

computational and storage requirements.

1.2 THESIS OBJECTIVES AND MA JOR CONTRIBUTIONS

In discrete time recurrent neural networks (DTRNN) the learning algorithm, stability of
the network during learning and the network architecture play dominant roles in the

generalization capability and the optimal training of the network.

This thesis considers a sparse but structured architecture in which the feedback
connections are restricted to between pairs of state variables. This network has two layers,
the first of which is a DTRNN feedback layer made up of a block-diagonal structure and
the second an interconnecting output layer that combines the state variables of the
feedback layer to generate the network output. This architecture is referred to as the
block-diagonal recurrent neural network (BDRNN). The BDRNN structure is then
extended to include a multi-layer feedforward network in order to model any direct
complex nonlinear mapping between the external inputs and outputs of the system. The
resultant structure. referred to as the feedforward block-diagonal recurrent neural network
(FF-BDRNN), provides a framework to model both static and dynamic characteristics in
4 unified fashion. The importance of such an approach to practical applications has been

widely recognized [Narendra and Parthasarathy 1990 and 1991, Day and Davenport, Tsoi
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and Back]. The motivation for the choice of the BDRNN architecture is threefold: first,
a block-diagonal feedback weight matrix is capable of modelling plants with complex
eigenvalues; second, this structure is conducive to devising a training algorithm in which
the computation of the gradient is "local" in both space and time; third, the use of the
sparser but structured feedback matrix eases the problem of monitoring and maintaining
network stability at each weight update [Kung]. From linear time-invariant systems theory
it is known that an n-th order dynamics can be represented by a combination of several
first or second order dynamics, each of which can be modelled by a 2 x 2 feedback
weight matrix. Extending this concept to a nonlinear process, if its dynamics can be
"decoupled” into several lower order dynamics, then it may be feasible to model it with
a DTRNN having a block diagonal feedback weight matrix with blocks of size 2 with
each submatrix modelling a low order dynamic of the process (note that a purely diagonal
feedback matrix [Tsoi and Back, Gori et al, Ku and Lee] cannot model a second order
system with complex conjugate roots). Note that this structure is especially useful in

modelling the oscillating modes of a dynamic process.

Training of DTRNN is generally accomplished by using either real time recurrent learning
(RTRL) [Williams and Zipser 1989] or backpropagation through time (BPTT) [Werbos]
algorithms or variations thereof (see [Pearlmutter 1995] for a survey). Both the RTRL and
BPTT algorithms compute the exact error gradient [Beaufays and Wan]. RTRL is
computationally expensive due to the spatially nonlocal nature of its error gradient
computation. In BPTT, the computation of the error gradient in the backward pass
requires that the state, input and error vectors be stored at each time instant in the forward
pass and hence. the storage requirement for BPTT increases with the length of the training
pattern. The storage requirement for the state vectors can be eliminated by recalculating
the states vectors in the backward pass. This, however. requires that the feedback weight
matrix be inverted after each weight update. More importantly. this technique of
recalculating the state vectors is susceptible to numerical instability problems [Pearlmutter

1995]. The block diagonal structure of the BDRNN lends itself to ensuring invertibility
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as the feedback weight matrix is easily inverted by simple manipulation and scaling of
its elements. Also the reduced interaction between the state variables of the BDRNN helps
in reducing the numerical instability problem. This thesis proposes a modified online
BPTT algorithm for the BDRNN that recalculates the state vectors and computes the exact
error gradient. The question of ensuring numerical stability of the algorithm is addressed
by the following: first, state vectors at evenly spaced intermediate time intervals are stored
in the forward pass; second, these intermediate stored values are used as initial values to
recompute the state vectors during the backward pass while simultaneously monitoring
for signs of numerical instability; when numerical instability is detected, the state vector
for that time instant is recomputed by performing a forward pass using the nearest stored
intermediate state vector and the process of recomputing the state vectors is continued.
The proposed algorithm results in reduced storage compared to conventional BPTT by

trading off some of the later's computational advantage.

The feedback structure of the DTRNN necessarily raises the question of stability, both of
the network and during its training. While, for a stable network, the stability of training
is well understood and can be ensured by suitably choosing the learning rate [Almeida],
there are several unresolved issues in monitoring and maintaining the stability of the
network itself at each weight update. A major difficulty in monitoring the stability of a
fully connected DTRNN relates to the computation of a suitably selected norm of its
feedback matrix at each weight update during training. Conditions for the stability of
DTRNN, given a specific architecture, have been studied by a number of authors [e.g.,
Gori et al, Li, Jin et al 1994 and 1996, Simard et al]. For example, Jin et al (1994 and
1996) used Ostrowski and Gerschgorin theorems and the similarity transformation
approach to describe a region of absolute stability [Jin et al 1994] and globally
asymptotical stability [Jin et al 1996] that depends on the parameters and connection
weights of the network. However, using these conditions to ensure the continued stability
of the network during the training process has not been explored. Simard et al have

proposed a general, but complex, approach to the global stabilization of DTRNN using
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the contraction mapping theorem. DTRNNs with constrained or special network structures
that inherently ensure stability have been studied by several researchers [Sato, Gori et al,
Bruck, Vidyasagar, Ku and Lee]. For example, Gori et al considers a multi-layer
teedforward architecture which contains some self-recurrent neurons in which the stability
is ensured by restricting the magnitude of the self-recurrent weights to less than unity. Ku
et al have proposed a method to ensure stability and convergence of training of a
diagonally recurrent neural network by an adaptive learning rate algorithm. In this thesis.
the block diagonal structure of the BDRNN is exploited to find conditions that lead the
network towards stability at each weight update during training. This problem is addressed
in two steps: first, by devising a cost function that includes the desired stability margin
as one of its components; next, by ingraining the stability margin component as part of
the neural network architecture. For analytical tractability of the stability margin
component of the cost function, some constraints are imposed on the values that the block
diagonal weights can assume. It is shown that the stability margin components together
with these constraints can be implemented as a multi-layer feedforward neural structure

which augments the BDRNN structure.

The size and architecture of neural networks is gencrally determined by trial and error.
However, this technique results in training a number of networks and then selecting the
smallest network that meets the required pertormance criterion. This thesis also proposes
a constructive method of designing BDRNN. The motivation for such an approach can
be found in the idea that a nonlinear dynamic can be decomposed into a dominant
nonlinear dynamic and a series of progressively less dominant subdynamics. Blocks of
BDRNNs are employed, one each. to learn the dominant dynamic and each of the
subdynamics. The advantages of such an approach are that the size of the BDRNN is
determined automatically and methodically without any need for guesswork, and results
in a faster learning time in comparison with the larger equivalent network that may be
used to learn the same dynamic without construction. The construction algorithm starts

with a basic block consisting of ¥, BDRNN units. The basic BDRNN block can learn a
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fundamental and N,-I sets of harmonics in a linear sense. Learning is performed with this
basic architecture until there is no improvement in the output error. At any stage,
whenever a plateau in the error performance is encountered, the weights of the existing
architecture are frozen and incremental construction is accomplished by cascading a N,-
BDRNN unit block to the existing architecture. Blocks are grown iteratively until the
desired normalized root mean square error (NRMSE) threshold is met or a maximum
number of blocks have been added. The cascading constructive trajectory learning
algorithm constructs a series of BDRNNs whose combined output is required to model
the desired dynamic trajectory under consideration. The basic block is directly trained on
the desired trajectory being learned, while, each additional cascading block is trained on
the residual error between the most recent estimate and the desired trajectory. The new
estimate is a combination of the outputs of the basic block and previous blocks together
with the output of the current block being trained. A similar approach for functional
approximation using feedforward neural networks was arrived at independently by
[Draelos et al]. Such a constructive technique is ideal for learning nonlinear
"decomposable” dynamics such as the chaotic Mackey Glass time series and also practical
problems such as isolated-digit speech utterances. However, this technique may not be
suitable for problems where the error dynamics at any stage has greater complexity than

the input dynamics.

1.3 THESIS ORGANIZATION

Chapter 2 presents a review of the architectures, algorithms currently used for trajectory
learning in DTRNNS, techniques used for monitoring and maintaining DTRNN stability,
and methods adopted for determining DTRNN size. Trajectory learning in DTRNN is
generally accomplished using either real time recurrent learning (RTRL) [Williams and
Zipser 1989] or backpropagation through time (BPTT) [Werbos] algorithms or variations
thereof ([Williams and Peng 1990, Schmidhuber, Sun et al 1992], see [Pearlmutter 1995]
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for a survey). The techniques that are used for monitoring DTRNN stability are the local

stability approach which involves linearization of the state-space equation, and the global
stability approach which involves using the Liapunov function or the contraction mapping
theorem or both. The methods used in determining DTRNN size can be broadly classified
into destructive and constructive methods. Destructive methods start with a fairly large
network and then remove weights or units that do not contribute to the overall
performance. On the other hand, constructive methods start with a "small” network and

then add unit(s) to an existing or new layer(s) till the required performance is achieved.

Chapter 3 introduces a sparse but structured DTRNN architecture, viz., the block-diagonal
recurrent neural network (BDRNN). The motivations for this architecture are presented;
together with a plausibility argument for the potential capability of the BDRNN
architecture in modelling nonlinear dynamics. by considering how it relates to a fully
recurrent DTRNN architecture. Two specific architectures of the block-diagonal feedback
matrix that differ from each other in terms of complexity and degree of freedom are
introduced. The BDRNN structure is then extended to include a multi-layer feedforward
network in order to model any complex nonlinear mapping between the external inputs
and the outputs of the system. The resultant structure. referred to as the feedforward
block-diagonal recurrent neural network (FF-BDRNN), provides a framework to model

both static and dynamic characteristics in a unified fashion.

While RTRL requires spatially nonlocal error gradient computation which is
computationally expensive, BPTT calculates the error gradients using spatially local
computations with a storage requirement that increases with the length of the training
pattern. Chapter 4 makes the gradient computation in BPTT local in time, by recalculating
the state vectors in the backward pass thus reducing the storage requirement for the state
vectors. This. however, requires that the feedback weight matrix be inverted after each
weight update. The block diagonal structure of the BDRNN lends itself to ensuring

invertibility as the feedback weight matrix is casily inverted by simple manipulation and
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scaling of its elements. Also, this technique of recalculating the state vectors is susceptible
10 numerical instability problems [Pearlmutter 1995] especially, in fully recurrent
DTRNN. However, the reduced interaction between the state variables of the BDRNN
helps in reducing the numerical instability problem. In addition, Chapter 4 specifically
addresses the question of ensuring numerical stability of the algorithm. The recalculated
state vector modified BPTT algorithm is described in this chapter.

Chapter 5 addresses the question of BDRNN stability. First, the conditions for local and
global stability for the two BDRNN architectures are derived; next, the block diagonal
structure of the BDRNN is exploited to find conditions that guide the network towards
stability at each weight update during training. This problem is addressed in two steps:
first, by devising a cost function that includes the desired stability margin as one of its
components; next, by ingraining the stability margin component as part of the neural
network architecture. To quantify the stability of the FF-BDRNN at each weight update
during the training process, a stability function that is a measure of the norm of the
feedback weight matrix W is formulated. To ensure the stability of the FF-BDRNN and
hence of its training process, the cost function to be minimized during the training process
includes a penalty term which is a function of the stability function. It is shown that,
under certain non-restricting conditions, the stability function itself is formulated as a
multi-layer feedforward neural network using first order perceptrons which augments the

BDRNN structure and hence is ingrained in the FF-BDRNN architecture.

Chapter 6 presents several examples to illustrate the feasibility of the FF-BDRNN
architecture and its stabilization to model a wide range of nonlinear processes and to
demonstrate the performance of the modified BPTT trajectory learning algorithm and its
numerical stability. Several of these simulation examples are well documented in literature
and are useful in providing benchmark resulits. Finally, isolated-digit speech utterances are

recognized using speech prediction techniques.
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The cascading constructive trajectory learning algorithm outlined in Chapter 7, constructs
a series of BDRNNs whose combined output is required to model the desired dynamic
trajectory under consideration. Constructive learning is started with a basic BDRNN block
that is directly trained on the desired trajectory being learned, while, each additional
cascading block is trained on the residual error between the most recent estimate and the
desired trajectory. The new estimate is a combination of the outputs of the basic block
and previous blocks together with the output of the current block being trained. Such a
constructive technique is ideal for learning nonlinear "decomposable” dynamics such as

the chaotic Mackey Glass time series.

In Chapter 8. conclusions and suggestions for future work are presented.
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2 A REVIEW OF CURRENT ARCHITECTURES AND TECHNIQUES FOR
TRAJECTORY LEARNING, MONITORING STABILITY AND DETERMINING
NETWORK SIZE IN RECURRENT NEURAL NETWORKS

2.1 INTRODUCTION

In discrete time recurrent neural networks (DTRNN) the network architecture, learning
algorithm and stability of the network during learning play dominant roles in the
generalization capability and optimal training of the network. In this chapter, a review of
existing architectures, algorithms used for training DTRNN that learn trajectories,
techniques used for monitoring and maintaining DTRNN stability, and methods adopted

for determining DTRNN size is presented.

Currently, DTRNN architectures can be subdivided into two broad classes: fully recurrent
architectures and locally recurrent globally feedforward architectures. Introduced in
[Williams and Zipser 1989] is the single layer fully recurrent architecture in which the
output of any neuron in the network is fedback to all neurons (including itself) with
varying gain. The input is fed to all the neurons while, the output neurons are a subset
of the total neurons of the network. The feedback weight matrix W of the fully recurrent
architecture is full. The LRGF architecture consists of feedforward networks with self
recurrent connections in some of the neurons (see [Tsoi and Back] for a survey). The
LRGF network is said to have state feedback if the output of each neuron after the
sigmoidal squashing is fedback to itself [Ku and Lee]. The LRGF network is said to have
activation feedback if the activation of each neuron, ie., the output of the neuron before
sigmoidal squashing is fedback to itself [Gori et al]. The feedback weight matrix of such
LRGF networks is diagonal (representing the self recurrence) with all off-diagonal
clements equal to zero. In addition, feedforward networks are said to have local synaptic
teedback, if each synapse (connection between neurons) is modelled by an finite impulse

response (FIR) filter. or an infinite impulse response (IIR) filter {Tsoi and Back]. While
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the fully recurrent DTRNN is architecturally rich, it is difficult to monitor and stabilize
its feedback weight matrix and it also suffers from slow convergence and long learning
times. The LRGF architectures, because of their sparser feedback weight matrices, can be
casily stabilized. They have also been shown to have smaller learning times and faster
convergence for time series prediction problems [Tsoi and Back] and modelling finite
state machines [Fahlman 1991].

Currently, trajectory training of DTRNN is generally accomplished using either real time
recurrent learning (RTRL) [Williams et al 1989] or backpropagation through time (BPTT)
(Werbos] algorithms or variations thereof ¢.g. [Williams and Peng 1990, Schmidhuber,
Sun et al], (see [Pearlmutter 1995] for a survey). Both RTRL and BPTT algorithms
compute the exact error gradient [Beaufays and Wan|. While, RTRL is computationally
expensive due to the spatially nonlocal nature of its error gradient computation, BPTT

uses spatially local computations to compute the error and requires large storage.

Currently, two techniques are used for monitoring stability issues; the first involves
linearization of the state-space equation which provides information on the local stability
properties of the equilibrium state of the system; the second involves using the Liapunov
function or the contraction mapping theorem or both to derive sufficient conditions for
the global stability of the system. Considering the global stability of a system is more
appealing than that of the local stability, because, every globally stable system is also
locally stable; the converse is not true. However, since global stability constraints are
more stringent than local one's, satisfying the former may impose more restrictions on

weight placements than satistying the latter.

The methods used in determining network size can be broadly classified into destructive
and constructive methods. Destructive methods start with a fairly large network and then
remove weights or units that do not contribute to the overall pertormance. This is

accomplished by removing the weights with smallest magnitude or by including a penalty
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term in the output error function that encourages weight decay. On the other hand,
constructive methods start with a "small" network and then add unit(s) to existing or new

layer(s) till the required performance is achieved.

In the following sections, a detailed review of the above issues is presented.

2.2 REVIEW OF CURRENT DISCRETE TIME RECURRENT NEURAL
NETWORK LEARNING ALGORITHMS

2.2.1 Fully recurrent discrete time neural networks

The Williams and Zipser DTRNN structure [Williams et al 1989] is a completely
connected (fully recurrent) state-feedback system where the output variables are a subset
of the state variables. The state and output equations describing a DTRNN with N state

variables, M input variables and N, output variables is given by:

x(kel) = £, (37, wam® + YL b ), i = 1,.,N

»® = 30 8, %, h = 1,..N, (1)
where 8,; = 1, if h=j
=0, i h=+j

where x(k), u{k) and y,(k) are the i-th state variable, J-th input and A-th output elements
respectively, at instant k, w;;'s are the state-feedback weight parameters and b;;'s are the
external input weight parameters; 4,;s are the output weight parameters. fA) is a
symmetric sigmoidal squashing function of the form:

fm =122 20 2)

l+e”
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with ¢ = a.

The training of the DTRNN described by (1) and (2) is based on the minimization of Jy(k)
which is the total squared output error over all the N, output units for the p-th training

pattern and is given by:

50 = X200 o
where J(k) = %E Y @O  with e® = r,@®)-y,®
where K, is the length of the p-th training sequence, e,(k) and r,(k) are the error and
desired output for the h-th output unit at instant k. The techniques used for training
DTRNN can be broadly classified into two categories based on the nature of their exact
gradient computations. They are backpropagation through time (BPTT) which uses
spatially local computations and real time recurrent learning (RTRL) which uses spatially
nonlocal computations to find the gradient. In RTRL. the formulation of the gradients
which updates the DTRNN weights during training requires recursive computation of the
rate of change of state variables with respect to weights. In BPTT, the computation of the
error gradient requires that the state. input, and error vectors be stored at each time instant
and hence. the storage requirement for BPTT increases with the length of the training
pattern. In both cases, the weights are updated after the presentation of each training
pattern by accumnulating the respective error gradients over the length of each training

pattern.

The N x N state feedback weight matrix W =( w;;} is updated after each presentation of

the training sequence. according to:

Awi(
w‘.d(t+l) = w{)-u, A i,j=1.N

P
aJ (k1) aJ (o

2 :‘p 4 = P
k=L ow, A0 w0

4)

with Awid(t) =
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where ¢ is the iteration index for updating the weights, B, is the learning rate parameter
and K, is the length of the pattern presented for learning. Note that a given pattern can
be divided into subpatterns or several patterns can be combined into one superpattern for
the purpose of updating the weights. In such cases K, represents the length of the
corresponding pattern, subpattern or super pattern over which the accumulated

instantaneous error gradient, Aw;, is computed prior to weight update.

The learning algorithm also updates the N x M input weight matrix B after K, steps of

the training sequence have been presented, according to:
Abu(t)
Kp

arky)  ar®
. - ? - %
Wi Aby) - X2, b | 3,0

sy §=1.N, j=1.M

bu(t+1) = b,',(t)—pl
(5)

where Ab,; is the accumulation of the instantaneous error gradient over the K, steps of the

training pattern.

The basic difference between the RTRL and the BPTT algorithm lies in the way the
partial derivative 9J,(kt)/ow,(t) is computed. In the RTRL algorithm, this partial
derivative is computed directly as an iterative computation, while in the BPTT algorithm

it is computed in two passes using a chain rule.
2.2.2 Real-time recurrent leaming (RTRL)
For clarity ¢, the iteration index for weight update, will be omitted in the following

derivations. In the RTRL algorithm [Williams et al 1989], the partial derivative aJ,(k)/ow ;

in (4) is given by:
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Here p,/(k) is expressed as:

k
Pi® = a,’f) PR ECORD S MR )

W (7
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where §,; is the Kronecker delta function:
6," =1 ifi=s (8)

=0 otherwise

From (7) it is seen that the computation of p,/(k) is recursive and requires that the partial
derivatives of the state variables x,(k-1) with respect to the elements of W.p D (k-1) at
the k-1-th instant be stored. Hence. the exact gradient computation represented by (7) is
spatially nonlocal by nature and requires a storage of O(Nm) where m is the number of
weights in the feedback weight matrix W. In the case of a fully recurrent DTRNN the
number of weights m = N* and the storage required is O(N”). The gradient computation

p;; for RTRL is illustrated in Figure 2.1.

The partial derivative dJ,(k)/db,; in (5) is given by:

aJ (k
6;1.) ) —Ele Z::l (r n(k)*yp.(k))c’-,f,{k) 9)

where (k) can be expressed as

&x (k)

C’{k [EN x,c a(k 1) * Zc =1 -'vﬂlu x(k_l)] (10)

- [8,(k-1)]

)



Figure 2.1

Gradient computation in the RTRL algorithm.
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2.2.3 Backpropagation through time (BPTT)

Backpropagation through time [Werbos] is accomplished by first unfolding the recurrent
network into a multi-layer feedforward network with one layer for each time instant k.
and then applying standard backpropagation [Widrow, Hush and Horne] to calculate the
exact error gradients used in updating the weights. The gradient computation in the BPTT
algorithm is accomplished in two passes; the forward pass and the backward pass. In the
torwardpass, the state vector {x,(k)} and the errors {eu(k)} are computed at all the time
steps k in an epoch of length K,, and stored. In the backwardpass, the error gradient is

computed using the stored state and error vectors with spatially local computations.

Replacing the partial error derivative 9J,(£)/0w (f) in (4) with the ordered partial

derivative of J, with respect to W

aJ, 3J, ax®)
A t = _ = (ll)
WU( aww E‘r k=1 ax(k) aw
where,
:()

= fs Ry k-1;

a'J aJ ax.(k+1) al, Jey(k) dy,(k)
P = = P J + ° 4
ORI Y (ax,.(kﬂ)I ax (6 ] Y B B a0

The state vector {x(k-1)} used in (12), is computed using (1) and stored in the forward

(12)

pass of the algorithm, while g(k) is computed in the backward pass from the value of

e/(k+1) using:

k) = 0., edkelw], flsAk+1))-Y 0 e,(0)3, .
with sAk+1) = 3w dR) + Yot boadk), ' =1, N
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where wT,;,’s are the elements of the transpose of the state-feedback weight matrix. The

initial value e(K,) given by:

edK) = -Y o (K8, (14)

The partial derivative dJ,(£)/0b,(¢) in (5) is computed using the chain rule:

5, 3, k) s
ab,(9) )21 ax(k) b, 0
where,
ax (k) . ®
T = flsDuk-1); Bt = ek
BB Fisfu-1; ® O 6

with s(k) = Z}t; w, x(k-1) + E;:l b uk-1)

From (12) and (13), it is seen that the error vector {ex(k)}, the state vector {x(k)} and the
input vector {uk)} have to be stored in the forward pass. This requires O(N,K,) storage
for the error vector, O(NK ») storage for the state vector and O(MK ) storage for the input
vector that increase with the length of the training pattern. From (13), it is seen that
computing the gradient at any time instant k requires O(m) spatially local computations.
The computations are local in nature, since computing the error gradient with respect to
a weight at any layer k requires information only from other nodes to which it connects.

The gradient computation for the BPTT algorithm is illustrated in Figure 2.2.
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Figure 2.2

Gradient computation in the BPTT algorithm.
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2.2.4 Variations of BPTT

Let us now review two popular techniques used to approximate the partial error derivative
al(k,t)/ox (k) = eLk) in (13).

2.24.1 Truncated backpropagation through time or BPTT-¢, step

The idea is to use only the most recent error e,(k), but unlike the regular BPTT where the
error from earlier time steps is also used, to approximate the partial error derivative
3.1,,(k,t)/8x,(k) at each time step k. Hence, any older information is forgotten. This error
is percolated through ¢, layers of the unfolded network to compute the appropriate weight
changes at each time step k. Thus, the BPTT-, step algorithm requires that the network

state variables and network inputs of only the last #,-time steps be stored.

A backwardpass through the most recent f,-time steps (instead of K ,-time steps which
represents the entire history of the network in regular BPTT) is performed by

approximating the partial error derivative dJ,(k,t)/dx(k) = efk) in (13) by:

17
TOD IRUY ) SARTETCS VT 3 bpfe+D)efc+1), k-t,st<k tn

with the initial value e(k) given by:
ek) = -Y,° e B3, (18)

The weights are updated, as given in (4), at every time step k in the training pattern, with
Aw ; the accumulation of the instantaneous error gradient over the t, steps of the training
pattern given by:

aJ,(z.k) .
Awi,'(k) = Zt#_”—a—wpqw' Jfor ,j=1.N (19)
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The formulation of the partial error derivative dJ,(T4)/dw k) is similar to that in (11) and
(12), with T replacing k. This process is repeated at each time step k and makes BPTT-¢,
step, f, times as computationally intensive as regular BPTT, while reducing the storage

requirements for the state variables from O(K,N) to O(z,N).
2.2.4.2 Williams-Peng BPTT

The Williams-Peng BPTT [Williams and Peng 1990] stores the network state variables
and network inputs of the last ¢,-time steps and in this respect is similar to truncated-
BPTT. However, the error in the ¢, most recent time steps with ( £,"<¢,) are used, instead
of the error in the most recent time step as in truncated BPTT, to approximate the error
gradients at these ¢,’ time steps. Thus. it is seen that the Williams-Peng BPTT will behave
like truncated BPTT, if t,' = 1. Similarly, if ¢," = t, = K, then it behaves like regular
BPTT.

A backward pass through the most recent £,-time steps is performed by approximating the

partial error derivative e(k) in (13) by:

QR IEIOLI DM ) JURTETCENED Dl FCIN TS

if k-t!<st<k (20)
=z:;; w,ff,,‘ y ;_i W E(T+1) +Z’:l b u(x +1))e (t+1), if k~t,<t<k-t,
with the initial value e(k) given by:

e k) = -Y oo (05, @1

The weights are updated every t,’ time steps. with Aw.. the accumulation of the
g p ry & p ij

instantaneous error gradient over the ¢, steps of the training pattern given by:
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al(z,
Aw (o) = E: ‘*"-ﬁ ij=1.N (22)

The partial error derivative ajp(t)/aw,.d(t) is identical to that in (20) and (21). This process
is repeated every ¢,’ time steps. Therefore in BPTT-(,1,), the computations required to
calculate the gradient is reduced by a factor of ¢,’ as compared to BPTT-¢,. However,

BPTT-(£,:z,") has the same storage requirement as BPTT-¢,.
2243 BPTT-RTRL hybrid

The BPTT-RTRL hybrid algorithm [Schmidhumber] computes the exact gradient by first
decomposing the calculation of the gradient into blocks of length ¢,, and then performing
regular BPTT (as described in section 2.2.3) on each block. RTRL calculations are
performed to integrate the results of the BPTT calculations of each block into the results
obtained from the previous blocks. BPTT-RTRL has an average computational
requirement of O(N?) if ¢, is chosen equal to N, and has the same storage requirement as
the RTRL algorithm.

2.2.5 Discussion on trajectory leaming algorithms

Table 2.1 summarizes the computation time required per gradient computation, quantities
stored and their storage requirement, and the nature and type of gradient computation for
each of the algorithms discussed in this section. In this table, N is the number of state
variables, M is the number of external inputs, N, is the number of outputs, m is the
number of weights in the feedback weight matrix, K,, t,,, and ¢t,’ represent the number of

time steps for which the various quantities are stored in the different algorithms.
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Table 2.1 Comparison of various DTRNN algorithms used for trajectory leaming.

" Algorithm | Time per Quantities | Storage Nature Local /
gradient stored requirement nonlocal
RTRL O(N’m) gradient O(Nm) forward, nonlocal in
p.k) exact space.
weights
BPTT (reg) | O(m) state. input, [ O(K,(V + backward, local in
o/p error M+ N,) exact space.
vectors;
weights O(m)
Truncated O(tym) state. input | O(f,(N+M)) | backward, local in
BPTT Vectors; approx- space.
The latest ON,) imate
o/p error;
weights O(m)
William- O((t,/t,"m) state. input | O(t,(N+M)) | backward, local in
Peng vectors for approx- space.
BPTT t, steps; imate
o/p error O@,'N,)
for ¢, steps:
weights. O(m)
BPTT- [O(m) + state. input | O(Nm) in backward / | nonlocal in
RTRL O(N’m))/N | and error RTRL forward in | space
hybrid = O(Nm) vector for phase BPTT (reg)
t,=N steps: / RTRL.
weights exact ___“
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The RTRL algorithm requires O(N’m) time units to compute the exact error gradient at
each time step, and O(Nm) storage units. The BPTT algorithm requires the least
computational effort to compute the exact error gradient, and a storage requirement of
O(K,N) that increases with the length of the training pattern. Hence, if the state variables
can be recomputed in the backward pass of BPTT with a small increase in the
computation time required to perform these state variable recomputations, then, the state
vector storage requirement can be reduced. Ideally, this would still require O(m) time to
compute the error gradient at each time step, while, the storage is reduced to O(N) and
is the best that can be achieved. However, as can be seen from (1), the technique of
recomputing the state vector in the backward pass would require inversion of the feedback
weight matrix. Generally, matrix inversion is a nonlocal operation and may result in
numerical stability problems if the feedback weight matrix is ill conditioned. Hence any
algorithm that involves recomputation of the state vector would have to address the twin
issues of
(i) matrix invertibility and

(ii) numerical stability of the state vector recomputations.

2.3 CURRENT TECHNIQUES FOR MONITORING THE STABILITY OF
RECURRENT NEURAL NETWORKS

2.3.1 Stability of network dynamics and leaming dynamics

The feedback structure of the RNN necessarily raises the question of stability, both of the
network and during its training. While, for a stable network, the stability of training is
well understood and can be ensured by suitably choosing the learning rate [Almeida],
there are several unresolved issues in monitoring and maintaining the stability of the

network itself at each weight update.
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The autonomous dynamics of the DTRNN, described by (1), can be described by

eliminating the forcing function from (1). It can be seen that the autonomous network

dynamic is given by:

xk+1) = f, (307, wA®),  i= LN (23)

From (23), it can be seen that the stability of network dynamics depends on the feedback
weight matrix W. Similarly, after eliminating the forcing functions from (7), it is seen that

the learning dynamics for the RTRL learning algorithm is given by:

ax (K
a:v( ) = pg;(k) =f¢: (‘) [2:2.1 w:.aipl:z(k-l) ] (24)
iy

where the maximum bound on If,(.)l is @2. From (24) it can be seen that. for a DTRNN
whose weights are updated using the RTRL algorithm. the stability of the learning
dynamics depends on W. Hence, ensuring the stability of the network dynamics will
automatically ensure the stability of the learning dynamics when the RTRL algorithm is

used to update the elements of W.

Similarly for the BPTT algorithm and its variations. after eliminating the forcing functions

from (13), (17), (20), it can be seen that the learning dynamics are given by:

et = Y0, w, e k+1) (25)

From (25), it can be seen that for BPTT and its variants, the stability of learning
dynamics depends cn the transpose of the feedback weight matrix, i.e., on W7. Since the
conditions that ensure the stability of a matrix W are the same as those that ensure the
stability of its transpose W', therefore, for BPTT and its variants too, ensuring the
stability of the network dynamic will automatically ensure the stability of the learning
dynamics. Summarizing, irrespective of the learning algorithm used, the formulation of

the gradients which updates the DTRNN weights has the same dynamics as the DTRNN
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state variables at a given instant in the training phase. Therefore, the stability of the
recursive computations requires that the DTRNN itself be stable at its equilibrium point
at each weight update [Williams and Zipser 1989, Almeida]. A major difficulty in
monitoring the stability of a fully connected DTRNN relates to the computation of a

suitably selected norm of its feedback matrix at each weight update during training.

Another issue worth investigating relates to whether one would like to ensure the local
or global stability of the DTRNN under consideration. Local asymptotic stability
conditions ensure that, for bounded inputs, the DTRNN will ultimately settle down to a
steady state provided that the initial state variables of the DTRNN are already in the
neighbourhood of the equilibrium state. However, global absolute stability conditions
ensure that the DTRNN will settle down to a steady state irrespective of the choice of
initial state variables and bounded inputs to the system. While, ensuring the global
stability of a DTRNN system is sufficient to ensure stability of its learning, it may place
100 many restrictions on the movements and assignment of weights of its feedback matrix,
thus restricting its learning ability. On the other hand, ensuring local stability may be
sufficient to ensure stable learning in the neighbourhood of the equilibrium point of the
system, and may not place as many restrictions in the movements or placement of the
feedback weight matrix. Here, the following sections will review sufficient conditions to

be satisfied by W to ensure the local and global stability respectively.
2.3.2  Global stability - Liapunov approach - contractive mapping approach - limitations

The global stability of a nonlinear dynamic system can be investigated by the direct
method of Liapunov. The Liapunov function is a continuous scalar function of the state
variables of the system. The properties of the derivative of the Liapunov function of the
autonomous state-space system with respect to the equilibrium point of the system are
investigated to find if the equilibrium point is asymptotically stable. The existence of the

Liapunov function is a sufficient but not necessary condition for the global stability of the
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system. While the Liapunov function provides a mathematical basis for investigating the
global stability of a nonlinear dynamic system, there does not exist any formal
mathematical results that can be used to find the Liapunov function. It is generally found
by trial and error [Haykin 1994] or by guessing a function appropriate to an application
[Hunt et al]. However, inability to find a suitable Liapunov function does not necessarily

prove that the system under investigation is unstable.

Conditions for the global stability of the network dynamics of a DTRNN, given a specific
architecture, have been studied by a number of authors [e.g., Goriet al, Li, Jin et al 1994
and 1996, Simard et al]. The global stability of a nonlinear dynamic system was also
investigated using the contraction mapping theorem by which it was shown that [Kelly],
if (1) is a contractive system, then (1) has an unique equilibrium point that is globally
asymptotically stable. The nonlinear dynamic system (1) is contractive if it satisfies the

following:
BIW| <1 (26)

where B is the bound on the | [fi(x) | i.e., the bound on the magnitude of the derivative of
the sigmoidal function (2) and W] is a suitably defined matrix norm. It can be easily
noted that B = @&/2 for (2). Hence, for the matrix norms Wi, Wk, IW[., the

tollowing are three sufficient conditions for the global stability of (1), [e.g., Jin et al 1996,

Bammnes|:
" 2
Wi, = max)" |w | < £
TR <G
W, = [ A (07w [ < 2 @7
i 2
Wl = maxy’ |w, | < =
I j=1 a

where A,.(W'W) is the maximum eigenvalue of the matrix WTW.
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[Jin et al 1994] used the intermediate value theorem to prove that the nonlinear dynamic
system (1) has at least one equilibrium point x* € [-1,1]%, for any bounded input u(k) and
complex feedback weight matrix W. A sufficient condition for the absolute stability of

system (1) using Ostrowski's theorem is:

lwyl + T 'RIC; T < 2 . 1,..N (28)
a

where y € [0,1] is arbitrarily chosen, and R; and C; are the deleted row and column sums
of W defined as:

N
R = E wyl,» G = X Iwl (29)
J=1j#i J=1j=i

For y= 1, (29) degenerates to the W], condition given in (28):

N 2
Y lwyl <= (30)

J1 4
A sufficient condition for the absolute stability of (1) can also be obtained using the
similarity transformation approach to describe a region of absolute stability [Jin et al
1994]. For a nonsingular N x N matrix T, it is known that the transformation T WT has
the same eigenvalues as W. Considering the particular case for which T is a diagonal
matrix described by diaglt,, ¢, ..., ty] with ¢, > 0 a sufficient condition for absolute

stability is:

wal + D RArecytr < 2 i-L.N 31)

21[

where y € [0,1] is given. and R/ and C/ are the deleted row and column sums of W

defined as:
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¢ _ il s _ a Wil 32
R'= Y gwyl, ¢'= X% (32)
j=Lj=i j=Lj#i %

The globally asymptotical stability (28) and absolute stability conditions (29) were shown
to depend on the parameters and connection weights of the network. However, using these
conditions to ensure the continued stability of the network during the training process has

not been explored in the literature.

2.3.3 A sufficient condition for local asymptotical stability of a fully recurrent neural
network

A sufficient condition for the local stability of the DTRNN for a bounded input is
determined by linearizing the state equation (1) with zero external input around the

equilibrium point:

Axge1) = f7 (3L war®) [Xn, wAx®)  i=L.N (33)

where f{(.) is the derivative of f(.). Defining X(k) as the state vector {x(k)}, at the

equilibrium point X = 0. equation (37) becomes:
AX(k+1) = fAOWAX(K)] (34)

The system is locally stable at the equilibrium point. if and only if

h QW[ <10,  i=1,...N (35)

where A(A) is the i-th eigenvalue of the square matrix A. The slope of f,(.) at the

equilibrium point x = 0 is:

1]

Ne

FA())

(36)
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Therefore, a sufficient condition for the local stability of the DTRNN with a nonsingular
feedback weight matrix W is given by

| AW | s % i=1,..N (37)

From (37), it is clear that the local stability of this system can be ensured by monitoring

the eigenvalues of the system at each weight update.
2.3.4 Structoral relevance to stability issues

In the case of DTRNN with only diagonal feedback the global and local stability
conditions (27) and (37) are equivalent and can be easily ensured by making sure that the
magnitude of the self-weights is less than unity. However, in fully recurrent DTRNN
satisfying the global stability constraints based on the matrix norms iwl. WL,
requires that Iw,-‘,l < I/N and therefore may place more restrictions on weight placements

than satisfying W |,.
2.3.5 On-line stabilization techniques

[Simard et al] have proposed a general, but complex, approach to the global stabilization
of fully recurrent DTRNN using the contraction mapping theorem. Equation (1) can also

be expressed as the mapping K given by:
x(t+1) = Kz, (@), x,(0), - , xp(0)) (38)
The mapping K is contracting in the direction of the unitary vector V if

KX s 1 (39)

where K'is the Jacobian matrix of K. [Simard et al] used this contraction mapping result

to devise an energy function E,(X,V) that makes the mapping K contracting at X in the
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direction V where V is chosen to be a unitary vector corresponding to the largest
eigenvalue of K'(X). A learning algorithm, based on the RTRL algorithm, that minimizes
the energy function E,(X,V) ensures globally stable convergence. However, determining
JE,(X, V)/dw ; is complex, and difficult as it involves nonlocal computations to recursively
compute the rate of change of state variables with respect to the weights. An alternate
method proposed involves matrix inversion which is also nonlocal and complex. In

addition nonlocal computations are required to find the largest eigenvalue of K'(X).

DTRNNs with constrained or special network structures that inherently ensure stability
have been studied by several researchers [Sato, Gori et al, Bruck, Vidyasagar, Ku and
Lee]. For example, Gori et al considers a multi-layer feedforward architecture which
contains some self-recurrent neurons. Each self recurrent neuron has a parameter X;
associated with it. The learning algorithm is based on the minimization of the total mean
square error with respect to ¥; and the gradient computation is given by dJ,(k,t)/dx.(t). The

parameter ¥; associated with each self-recurrent weight is updated according to:

Ax ()
K, ’
aJ (k,t

with Ayx() = 2‘;_1 %

i=1.N

xX(+1) = x,(0)-p,
(40)

where ¢ is the iteration index of the weights. Ay; is the accumulation of the instantaneous
error gradient over the K, steps of the training pattern and u, is the learning rate
parameter. Stability is ensured by the following relationship between the self recurrent

weight w;; and .

w() =B M 41
” (1 + e
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where B < 1, is a decay constant. Implementing (42) restricts the magnitude of the self-
recurrent weights to less than unity and hence satisfies both local stability (33) and the
sufficient conditions for global stability (28).

[Ku and Lee] have proposed a method to ensure stability and convergence of training of
a diagonally recurrent neural network by an adaptive learning rate algorithm. In this
approach the training rate is varied so as to maintain stability. The initial values of the
state feedback weight matrix W were chosen to be small positive numbers that ensured
that its eigenvalues are well inside the unit disk. Thereafter, the weights were updated

after each presentation of the input pattern according to the weight update rule:

W(t+1) = WD) - pAWQD) (42)

where AW(¢) is the Jacobian matrix given by:
a’
AW = | (43)
aw,

and p is the maximum value that satisfies
| A, [ Wie+1) 1] s L0, i=1, .., N, O<sp=<p,, (44)

where p,,, is the maximum limiting value that the learning rate can take to guarantee
convergence of learning. p,,,, for diagonally recurrent neural network is shown to depend
on the norm of the partial derivative of the output with respect to the input weight matrix
[Ku and Lee]. The validity of this approach is evident for small u,, from the first-order
small perturbation theory which states that the eigenvalues of a matrix vary continuously
with reference to the matrix elements for small perturbations in the matrix elements
[Stewart]. Extending this technique to the general DTRNN has several disadvantages
associated with it. First, it requires finding the largest eigenvalue of W at every weight
update which may be computationally expensive. Second, and more importantly, it does
not make use of this knowledge of the largest eigenvalue to ensure stability, but, rather

limits p at a value for which the DTRNN is marginally stable. Hence, when the
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eigenvalues of W are close to the unit circle, the p that satisfies (42) is very close to zero
for a majority of the training inputs used. This implies that in the above formulation,
when the system reaches a marginal stability region, it is rendered incapable of further

effective learning.

2.3.6 Discussion on stability issues

A major difficulty in monitoring the stability of a fully connected DTRNN relates to the
computation of a suitably selected norm of its feedback matrix at each weight update
during training. From (27) and condition (ii) of (37), it is clear that the local or global
stability of the DTRNN and hence of its training can be addressed by monitoring the
eigenvalue with the largest magnitude of W or (W)W, respectively, at each weight
update. The fully connected state feedback system makes this monitoring a difficult and
computationally expensive problem. This is one of the motivations for considering a
DTRNN with a sparse feedback weight matrix, where it is easily possible to monitor the
magnitude of the eigenvalues in (27) and (37) and hence address stability in a simpler

framework using local computations.

24 CURRENT TECHNIQUES FOR DETERMINING NEURAL NETWORK SIZE

The network architecture directly impacts the generalization capabilities of the network
and the time required to train it. So far, the selection of a suitable architecture has mainly
been empirical and there are no formal methods to customize or select the appropriate
network structure. Typically, the number of hidden units in a multi layer neural network
is determined by trial and error. Most work in this area is confined to feedforward

networks, although they can readily be extended to DTRNNS.
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2.4.1 Carrent techniques for determining network size in nonrecurrent networks

24.1.1 Trial and error method

Reported in [Hirose et al] is a trial and error approach that involves incrementing the
number of hidden layer nodes by one, if the error does not decrease by more than a
certain threshold value. The resultant network is trained using backpropagation and the
process of incrementing the nodes is repeated until the network converges. Thereafter the
number of hidden nodes is decremented by one, the reduced network is retrained and the
process of decrementing the nodes is repeated until the network no longer converges. The
architecture with the least number of hidden nodes for which the network converges is

taken to be the optimal architecture.

24.12 Destructive methods for determining optimal network size

[Mozer et al] addresses the problem of minimizing the number of hidden units in a
backpropagation network by estimating the senmsitivity of the error function to the
elimination of each of the hidden nodes. A non-quadratic error function which sums the
magnitude of the error between the desired and actual output was used, since this error
function provides a better estimate of sensitivity when the actual output activation is close
to the desired output activation. A disadvantage of this technique is that it is
computationally intensive, since two separate backpropagation phases are required. The
first phase computes the weight updates, and the second computes the sensitivity
measures. At the end of training the nodes with the smallest sensitivity numbers are
eliminated. Karnin [Karnin] prunes a backpropagation network to its optimal size by
estimating the sensitivity of the error (cost) function to the removal of each connection.
The error function used is the familiar quadratic error function. This technique is better
than the Mozer technique, since the sensitivity computation uses terms that are already

available during training. An array of sensitivity numbers, one for each connection in the
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network is maintained. At the end of training the connections with the smallest sensitivity

numbers are pruned.

24.13 Constructive methods for determining optimal network size

Dynamic construction (node creation) methods in feedforward networks can be broadly
classified into two categories depending on the type of weight update. In the first method,
the existing network is frozen and only the weights connecting the new node(s) to the rest
of the network are updated [Fahlman and Lebiere 1990]. In the second method the entire
network is retrained after each addition of new node(s) e.g. [Ash, Frean, Moody et al].
Node creation is started when a measure associated with the network is below (or above)
a certain threshold. The measures commonly used are squared error [Frean, Azimi-Sadjadi
et al, Moody et al], error slope [Ash], and error variance [Hanson, Fahlman and Lebiere
1990].

The dynamic node creation method [Ash] is designed for backpropagation networks in
which a new node is added to the hidden layer(s) if the slope of the average error curve
in a particular window of training epochs falls below a certain user defined threshold.

Node creation is disabled when the data mapping is learned to a user specified precision.

The upstart algorithm [Frean] starts with an input and an output layer. Each output node
(parent) that wrongly classifies the training patterns, builds a couple of daughter nodes
by interpolating them between the input and output layers (i.e., in a hidden layer). These
daughter nodes aim to correct some of the mistakes made by the output node. This

process is continued until all patterns are correctly classified by the output nodes.

In the meiosis network [Hanson], each connection weight has a mean and variance
measure associated with it. The algorithm measures a coefficient of input and output

variance (ratio of standard deviation to the mean) and mean at each hidden node. When
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the composite variance is > 1.0, the node is split into two hidden nodes. Each new node
is assigned half the variance of the old node with a new mean centred at the old mean.

This node splitting process is continued until convergence.

In [Waibel et al] recognition of several classes of consonants was demonstrated using a
construction method of a feedforward network. Here the authors start out by training
separate modular multi-layer feedforward networks (whose architectures were arrived at
by studying the individual characteristics of the consonants classes) for recognizing certain
features unique to each consonant class. The weights of these modular subnetworks are
then frozen and then integrated into a single larger network by adding some "glue" units
and training only the weights that connect these "glue" units to the various modular

subnets.

The cascade correlation learning architecture [Fahlman and Lebiere] as the name suggests
is used to construct a network with a cascading architecture. The architecture starts with
a minimal number of neurons in a single-hidden layer whose input and output weight
matrices are trained until there is no significant improvement in the error. In the cascading
architecture each new hidden node that is created is fully connected to the input nodes
and to all preexisting hidden nodes. At this stage the output of this new node is not
connected to the output nodes. After each pass of the training set the input weights to the
new node are updated, so as to maximize the magnitude of the covariance between the
output of the new node and the residual error observed at each output node over the
complete set of training patterns. The input weights to the new node are now frozen and
the new node is connected to all the output nodes. The output weights from the new node
arc now updated to maximize the above error covariance. The new node is installed when
there is no significant improvement in this covariance. The process of node creation and

installation is continued until convergence.
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[Moody et al] developed a dependence identification method for constructing feedforward
networks designed to work with continuous training problems. The algorithm uses the
concept of linear dependence to classify the total training patterns into groups of similar
patterns. Initially a single layer neural network is constructed that correctly classifies a
group of similar patterns that is a subset of the total training patterns. At this stage a layer
of hidden nodes is created to classify the data into groups of similar patterns such that
every pattern in the training set is correctly classified by at least one hidden node. The
outputs of the first hidden layer are treated as inputs to the next hidden layer, and the
process of linear dependence identification is repeated. New layers are added until the
number of layers equals a user defined maximum, or the network error is below a certain
threshold.

[Draelos and Hush] construct a composite network whose each stage consists of a single
hidden-layer feedforward network. The output of the composite network is required to
approximate a target function. This approach starts out by training a single hidden layer
feedforward network on the target function. At any stage, when the error performance is
not satisfactory, the weights in the previous and current stages are frozen and a single
layer network is added. The hidden layer at any stage of the composite network is trained
on the residual error between the most recent estimate (computed at the previous stage)
and the target function. At any stage in the construction process, the number of nodes in
the hidden layer are determined by functional approximation techniques which
approximate the target/residual error function at each stage by a series of hyperplanes.
Each of these hyperplanes is replaced by a set of piece-wise linear functions. A neuron

in the hidden layer describes each of these piece-wise linear functions.

2.4.2 Current techniques for determining recurrent network size

There are several approaches to dynamic construction methods in DTRNNs such as

structures supporting genetic algorithms [Angeline et al, McDonell], cascading
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architectures [Fahlman 1991], fully connected DTRNNs [Giles et al 1995], Gaussian
radial basis function RNNs [Obradovik].

Treated in [Fahlman 1991] is the recurrent version of the cascade correlation architecture
[Fahlman and Lebiere 1990}, in which an arbitrary minimal number of neurons in a single
hidden layer feedforward network with self recurrent connections is trained until there is
no significant improvement in the error. At this stage. if the performance of the network
is not satisfactory, the weights of the existing network are frozen and a single hidden self
recurrent neuron is added. The added hidden neuron is connected to all the external inputs
and to all preexisting neurons. These weights are updated so as to maximize the
covariance between the residual error of the frozen network and the output of the new
neuron. At this stage the input weights to the hidden ncuron are frozen and it is connected
to the output units. The output weights and the self recurrent weight are trained in a
similar fashion. The process of addition of hidden neurons is continued until the desired
pertormance is achieved. Simulations performed to learn finite state grammar. show that
the training time for this algorithm is fast compared to the traditional technique that starts
out with a single layer fully recurrent architecture. This may be so because only the
weights to and from the newly added neuron are trained. The time-delayed recurrent self

loop gives the recurrent cascade correlation network state memory.

[Giles et al 1995] start with a fully recurrent DTRNN with hard threshold neurons and
add one neuron at a time to the recurrent layer after a fixed number of epochs until the
network has learned all the training samples. Each added neuron is fully connected to the
existing network and is initially assigned very small values close to zero. This procedure
for assigning weights is thought to preserve the knowledge acquired by the network upto
that point. The old weights start with their trained values. however they are not frozen and
are sull trainable during and after the addition of the new recurrent nodes. This process

of adding new nodes is continued until convergence. They have demonstrated that this
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technique is successful in constructing minimal size networks for learning a number of

finite state automata.

24.3 Discussion on techniques used to determine DTRNN size

The destructive technique is computationally expensive, since most of the training time
is spent on a network of a larger size than necessary. Also large networks (larger than
required) may overfit the data being learnt leading to poor generalization capability. The
same data can be mapped by networks with different sizes, since, destructive techniques
start with a larger network size, this approach may lead to a nonoptimal architecture. The
Giles fully recurrent DTRNN construction method is computationally intensive since the
entire network is retrained after the addition of each node. Moreover each node is added
arbitrarily after a fixed number of training epochs. The cascade correlation architecture
[Fahlman 1991] is a freeze and learn approach that adds hidden self-recurrent neurons one
per cascading layer. However, it constructs "deep” networks that have limited state
memory. The functional approximation feedforward network construction technique
(Drealos and Hush] uses the freeze and learn approach together with the residual error to
construct a cascading feedforward neural network. However, this technique requires
considerable preprocessing of the target function in order to approximate it by a series of
hyperplanes and piecewise linear functions. Hence, any DTRNN construction technique
that involves the freeze and learn approach, together with automatic functional
approximation (without or with minimal preprocessing) by a series of cascading DTRNN
modules would enable the composite DTRNN network to approximate the target function

satisfactorily in terms of computation time required, performance and size of the network.
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2.5 CONCLUSION

This chapter provides a review of common DTRNN architectures, viz., the fully recurrent
and the locally recurrent architectures. The current algorithms for training DTRNN viz.,
real time recurrent learning (RTRL), backpropagation through time (BPTT) and its
variations are reviewed. The existing concepts of local and global stability of DTRNN and
its training and approaches to their stabilization are reviewed. Finally, constructive
learning techniques for DTRNN and for feedforward neural networks that can be extended
to DTRNN are reviewed. It is seen that, successful modelling of nonlinear dynamic
systems with DTRNN requires critical consideration of the network architecture, the

training algorithm and the stability of the network and its training.
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3 BLOCK DIAGONAL RECURRENT NEURAL NETWORKS

3.1 INTRODUCTION

In this chapter, a sparse but structured architecture in which the feedback connections are
restricted to between pairs of state variables is introduced. This network has two layers,
the first of which is a DTRNN feedback layer made up of a block-diagonal structure and
the second an interconnecting output layer that combines the state variables of the
feedback layer to generate the network output. This architecture is referred to as the
block-diagonal recurrent neural network (BDRNN) [Sivakumar et. al, 1995]. The BDRNN
structure is then extended to include a multi-layer feedforward network in order to model
any complex nonlinear mapping which exists directly between the external inputs and the
outputs of the system. The resultant structure, referred to as the feedforward block-
diagonal recurrent neural network (FF-BDRNN), provides a framework to model both
static and dynamic characteristics in a unified fashion. The importance of such an
approach to practical applications has been widely recognized [Narendra and Parthasarathy
1990 and 1991, Gori et al, Day and Davenport]. For example, Gori et al consider a multi-
layer feedforward architecture with some self-recurrent neurons to model speech signals
such as the voiced speech consonants "b" and "d". Reported in [Waibel et al,
Unnikrishnan et al], are multi-layer feedforward networks with time-delays to recognize
voiced stop consonants and speaker independent connected digits respectively. Reported
in [Tsoi and Back] are studies that show that the performance of locally recurrent globally
teedforward (LRGF) networks with state feedback, in the one-step prediction of the

utterance “one", is superior to that of a fully recurrent single layer network.
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32 MOTIVATION

The motivation for the choice of the BDRNN architecture is threefold:

first, a block-diagonal feedback weight matrix is capable of modelling plants with
complex eigenvalues in a linear sense; second, this structure is conducive to devising a
training algorithm in which the computation of the gradient is "local” in both space and
time; third, the use of the sparser but structured feedback matrix eases the problem of
monitoring and maintaining network stability at each weight update [Kung]. These

motivations are discussed in detail below.
3.2.1 Dynamic modelling

From linear time-invariant systems theory it is known that an n-th order dynamics can be
represented by a combination of several first or second order dynamics. This stems from
the fact that the characteristic polynomial with real coefficients of such a system can be
expressed as the product of a number of first degree polynomials with real roots and

second degree polynomials with complex conjugate roots of the form:

! i
ax" +a, x" + . + a5 = J]x*+bx+c) [] ¢+d) (D
i1 el

where n; and n, are integers related to n by (2n, + n,) = n. Here. the a;'s are the real
coefticients of the characteristic polynomial. &;'s and ¢;'s are the coefficients of the second-
order polynomial and d;'s are the coefficients of the first-order polynomial. The roots of
the first-order polynomials are all real and are of the form -d;, while the roots of the

second order polynomials are complex-conjugate pairs of the form (¢&; % jf3).

Let W, be a scaled orthogonal 2 x 2 weight matrix with elements as:
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W, = [u' ﬂ'] @)

-B; «a,

that models one of these first or second order dynamics. Then the coefficients of the

second order polynomial in (1) are related to the matrix elements of W, as follows:
b= 2a,, ¢ =a?+p? 3)

The second order polynomial modelled by (2) has a damped oscillatory dynamic and is
especially useful in modelling the oscillating modes of a dynamic process. On the other
hand, W; can be used to model the first order polynomials of (1) by setting B, = 0.
Although W; models a "double root" in this case, one of these roots can be deselected by
making it unobservable using the output matrix. Note that the coefficients of the first-

order polynomial are related to the matrix element ¢ by -d; = ¢ .

Alternately, let Wg, = T'W.T be a transformation of the scaled orthogonal weight matrix

W, such that T is a 2 x 2 nonsingular matrix, with elements as:

_ [Ylll Ylﬂ] (4)
Ya1r Y24

that models one of these first or second order dynamics. Then the coefficients of the

second order polynomial in (3) are related to the matrix elements of W, as follows:
€ = Yu¥zu ~ Yia¥au s B = ~(Yiy+¥2) ()

The second order polynomial modelled by (4) also has a damped oscillatory dynamic. On
the other hand, if W is to be used to model the first order polynomials of (1), then, the
off-diagonal elements %, and %,,; must be set equal to zero and the coefficients of the

first-order polynomial are related to the diagonal matrix elements Y and Yy by -d; =

= y .
225
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Extending this concept to a nonlinear process, if its dynamics can be "decoupled" into
several lower order dynamics, then it may be feasible to model it with a DTRNN having
a block diagonal feedback weight matrix with blocks of size 2 with each submatrix
modelling a low order dynamic of the process. It should also be noted that a purely
diagonal feedback weight matrix popular in literature, like the ones considered in [Tsoi
and Back, Gori et al, Ku and Lee], has only real eigenvalues and hence cannot model the
oscillatory dynamics of a second order system with complex conjugate roots. Thus, LRGF
networks with self-recurrent connections may not etfectively model the oscillating modes

of a dynamic process.

3.2.2 Training

As seen in Chapter 2, trajectory training of DTRNN is generally accomplished by using
either real time recurrent learning (RTRL) [Williams and Zipser 1989} or backpropagation
through time (BPTT) [Werbos] algorithms or variations thereof [Williams and Peng 1990,
Schmidhuber, Sun et al], (see [Pearlmutter 1995] for a survey). Both the RTRL and BPTT
algorithms compute the exact error gradient [Beautays and Wan]. RTRL is
computationally expensive due to the spatially nonlocal nature of its error gradient
computation. For RTRL. from equation (7) of Chapter 2. it is seen that the formulation
of the gradients which updates the DTRNN weights during training requires recursive
computation of the rate of change of state variables with respect to weights ax,(k)/aw,-',.
and requires that the partial derivatives of the state variables x,(k-1) with respect to the
elements of w, dx,(k)/dw ;. at the k-1-th instant be stored. This makes the exact gradient
computation spatially nonlocal and is computationally expensive. In BPTT., from equations
(12)-(15) of Chapter 2, it is seen that the computation of the error gradient in the
backward pass is spatially local in nature. since this computation at any layer k requires
information only from other nodes to which it connects. The exact error gradient
computation is done in the backward pass and requires that the state. error and input

vectors be stored at each time instant in the forward pass and hence. the storage
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requirement for BPTT increases with the iength of the training pattern. This makes the
error gradient computation in conventional BPTT nonlocal in time. The gradient
computation can be made local in time, by eliminating the storage requirement for the
state vectors, by recalculating the states vectors in the backward pass. This, however,
requires that the feedback weight matrix be inverted after each weight update. Also, this
technique of recalculating the state vectors is susceptible to numerical instability problems
[Pearlmutter 1995]. The block diagonal structure of the BDRNN lends itself to ensuring
invertibility through local computations as the feedback weight matrix is easily inverted
by simple manipulation and scaling of its elements. Also the reduced interaction between
the state variables of the BDRNN helps in reducing the numerical instability problem.
Thus, the BDRNN structure is conducive to devising a trajectory training algorithm in
which the computation of the gradient is "local” in both space and time, provided that the
numerical stability of the algorithm is ensured suitably. In Chapter 4 of this thesis, a
modified online BPTT algorithm that recalculates the state vectors and computes the exact
gradient is proposed. The numerical stability of the algorithm is ensured by the following:
first, state vectors at evenly-spaced intermediate time intervals are stored in the forward
pass; second, these intermediate stored values are used as initial values to recompute the
state vectors during the backward pass while simultaneously monitoring for signs of
numerical instability; when numerical instability is detected, the state vector for that time
instantlayer is computed by performing a forward pass using the nearest stored
intermediate state vector and the process of recomputing the state vectors is continued.
In the proposed algorithm the gradient computation is local in both space and time in the
time interval from one stored intermediate value to the next. Implementing the proposed
algorithm results in reduced storage compared to conventional BPTT by trading off some

of the later's computational advantage.
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3.2.3 Stability

The feedback structure of the DTRNN necessarily raises the question of stability, both of
the network and during its training. While, for a stable network, the stability of training
is well understood and can be ensured by suitably choosing the learning rate [Almeida],
there are several unresolved issues in monitoring and maintaining the stability of the

network itself at each weight update.

Defined in [Kelly] are the conditions that must be satisfied for nonlinear dynamics to
converge, while [Jin et al 1994 and 1996] define conditions based on the norm of the
teedback weight matrix that must be satisfied for the absolute and global stability of a
DTRNN. These conditions were summarised in equations (27) and (37) of Chapter 2.
However there is no simple mechanism for finding the weights required to implement
contractive nonlinear dynamics or find absolute and globally stable DTRNN networks. A
major difficulty in ensuring contractive dynamics or in monitoring the stability of a fully
recurrent DTRNN while training relates to the computation of a suitably selected norm
of the feedback matrix at each weight update during training. Satisfying the l-norm
requires that the column sum of the magnitude of the weights in each column be less than
2/a. similarly satisfying the c-norm requires that the row sum of the magnitude of the
weights in each row be less than 2/a. Hence. satisfying these conditions places severe
restrictions on the weight placement. in particular. for large order network. Satistying the
2-norm at each weight update requires computing the largest eigenvalue of the product
of the feedback weight matrix and its transpose. This condition is deceptively simple, and
in the case of a fully recurrent DTRNN is a difficult and computationally expensive
problem. However, if the feedback weight matrix is structured to be sparser, such that it
is possible to monitor these eigenvalues by simple manipulations of the weights, then the
stability of such DTRNN can be addressed in a simpler tframework. For example. consider
a DTRNN with only self recurrence [Gori et al]; in this case the feedback weight matrix

is diagonal and the global stability of such a network can be ensured by restraining the
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magnitude of each diagonal weight to less than 2/a. Now let us consider the case of the
BDRNN. In this structured architecture, the feedback connections are restricted to between
pairs of state variables. Hence the weight matrix consists of 2 x 2 subsections as shown
in (1). Hence, the stability of the BDRNN can be ensured by ensuring the stability each
individual 2 x 2 subsection of the BDRNN. Global and local stability conditions
pertaining to a particular 2 x 2 subsection can be found using local computations by
simple manipulation of the weights in that subsection and do not depend on the weights
in the other subsections. Since, the stability of the BDRNN architecture has been

decomposed it can be addressed in a simpler framework.

In Chapter 5 of this thesis, the block diagonal structure of the BDRNN is exploited to
find conditions that ensure network stability at each weight update during training. This
problem is addressed in two steps: first, by devising a cost function that includes the
desired stability margin as one of its components; next, by ingraining the stability margin
component as a multi-layer feedforward neural structure which augments the BDRNN

structure.

33 BLOCK-DIAGONAL RECURRENT NEURAL NETWORK STRUCTURES

3.3.1 Block-diagonal recurrent neural network

The block diagonal recurrent neural network (BDRNN) is now formally introduced. It

consists of a DTRNN with a block-diagonal state feedback matrix with 2 x 2 sub matrices

as given in (6), which is referred to as block diagonal recurrent neural network.
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Wy, W, .. O 0
Wy W . 0 0
—_— 0 0 0 0 (6)
0 0 0 0
0 0 - Wa_tn1 Waoin
0 0 Want  Wau |

An N state variable, M input, N, output BDRNN is shown in Figure 3.1. The system
equation for the BDRNN is given by:

XD, (0 wr) + S bu®)  i=L.N

where v =i, if iisodd,
v =i-1, if iis even.

7N

where x,(k) and ui(k) are the i-th state variable and j-th input elements respectively, at
instant k, w;;’s are the state-feedback weight parameters. b;;'s are the external input weight

parameters and f,(.) is a symmetric sigmoidal squashing function detined as:

€, 20 (8)

£@=1=
l+e™

with & = a. The output equation for the BDRNN of Figure 3.1 is given by:

»® = f (L0 ap®) . k=LA, (9)

where y,(k) is the A-th output element at instant k. ¢;;'s are the weights connecting the
decoupled state variables to the N, output units and f,(.) is a sigmoidal function as defined
in equation (8) with @ = b. In (7). the process dynamics are modelled by interactions
limited to between pairs of state variables. For example. state variables | and 2 interact

with cach other and with no other state variable in the system.
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(@)

Figure 3.1 N state variable, M input, N, output block-diagonal recurrent neural
network: (a) Block diagram (b) Actual connections in a BDRNN.

The matrix form of (7) and (9) is given by

Zk+1) = f(Wa®) + Bu(k)

10
8 = £(Cx(h) 19

where, x(k+I) = {x(k+D)}", uk) = (w0}, £Lx(K)) = (f.x(O}T, B = (b}, p(k) =
{ydk)}T. C = {c;;}. An alternate form of (10) can be given by substituting:

x'(k+1) = Wx(k)+Bu(k) (11)



50

the state equation of the BDRNN of (10) can be rewritten in the form:

'k+1) = W LK) + Bu(k) (12)

A plausibility argument for the potential capability of the BDRNN architecture (12) to
model nonlinear dynamics can be given by considering how it relates to a fully recurrent
DTRNN architecture given by (1) of Chapter 2 (in which the outputs are a subset of the

state variables) which is given by
%i(k+1) = XU wi Fly®) + T bla®  i=1.N (13

The matrix form of (13) is given by
Z(k+1) = WHE®) + Bu® (14)

where. xk) = {x[,(k)}7, uk) = (u,(k)}" and W = (w/, )}, B' = {¥;}. Let us assume that
W/ is invertible and has distinct eigenvalues. From linear systems theory it is well known

that. for this case, there exists a transformation matrix T such that
W =TIAT (15)

where A is also a block diagonal matrix with the same form as W in (6). Substituting z(k)

= Tx'(k) in (14) we obtain

z(k+1) = A T f(T '2(k)) + TBu(k) (16)

Comparing equations (16) and (12), the following observations are made:
(1) (16) and (12) have the same torm with Tf(T'z(k)) in (16) replaced by f(x(k)) in
(12).

(i) If a nonlinear process can be modelled by (13) with the characteristics that

TL(T'z(k)) in (16) is "weakly" nonlinear., which implies that the nonlinear system
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being modelled is "decomposable” with its decomposed dynamics related to the
eigenvalues of A, then Tf(T'z(k)) can be approximated as [(x(k)) with reasonable
accuracy; i.e., the above nonlinear process with decomposable dynamics can be

effectively modelled by the BDRNN given by (7) and (9).

(iii)  If a nonlinear process that is modelled by (13) with the characteristics that
Tf(T'z(k)) has a "strong” nonlinearity, which implies that dynamics of the
nonlinear system that is modelled has only a partial relevance to A, the
approximation of Tf(T z(k)) as £f(x(k)) is invalid and such a nonlinear system
cannot be effectively modelled by the BDRNN.

Several nonlinear systems considered in literature fall within the category (ii). These
include nonlinear limit cycles such as the "figure-0" and "figure-8" dynamics considered
by [Pearlmutter 1989 and 1995], chaotic systems with recognizable periodicity and
oscillatory modes such as the chaotic signal produced by integrating the Mackey-Glass
delay-differential equation [Mackey and Glass]. This signal is quasi-periodic with a
characteristic time of = 100, and provides a useful benchmark for testing predictive
techniques [Sanger, Day and Davenport]. Examples of practical nonlinear temporal
signals, which fall within the category (ii), include any speech signal with rich formant
content such as the voiced stop consonants ("b"-"d" considered by [Gori et al]) and digits

zero-nine of speech (digit "one" considered by [Tsoi and Back] ).

3.3.2 Feedforward block diagonal recurrent neural network (FF-BDRNN)

Dynamic nonlinear processes are generally modelled by recurrent networks [Nerrand et
al], while static nonlinear processes are generally modelled by multi-layer feedforward
networks [Hush and Horne]. However, there exist many practical systems, such as speech,
that possess both static and dynamic nonlinear characteristics. In order to model such

systems in a unified fashion. it is necessary to incorporate multi-layer feedforward
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structures in a recurrent framework. Although, several forms of feedforward structures are
suitable for this purpose, the structures considered here are restricted to be multi-layered
since these have proved extremely successful in pattern recognition problems [Waibel et
al, Unnikrishnan et al, Hush and Horne]. Therefore. the BDRNN structure is extended to
include a multi-layer feedforward network in order to model any complex nonlinear
mapping between the external inputs and outputs of the system. The resultant structure
is referred to as the feedforward block-diagonal recurrent neural network (FF-BDRNN).
Nlustrated in Figure 3.2 is the block diagram of a N state variable, M input, N, output,

L teedforward layer FF-BDRNN. The output equation for this FF-BDRNN is given by:

»® =1, (En ax® +X " a7 e ®), k=18, (17)
where
&) = f{3 dGe M ®), 12,1 i=1,.N, (18)

where the second summation term in the right hand side of the equation (17) represents
the feedforward connection. In (17) and (18), d,-J' ! is the feedforward interconnection
weight from the j-th unit of the /-1* layer to the i-th unit in the I-th layer: uj'(k) denotes
output activation of the j-th unit of the /** layer at instant k; V, is the number of units in
the /" feedforward layer of the network. f.(.) is a sigmoidal squashing function defined
in (8) with & = ¢. The bias weights are accounted for by defining the N +1 unit of each
layer / to be the bias unit. For notational convenience let the first feedforward layer hold
the input vector, i.e. uj'(k) = u(k). Also the L-th feedforward layer is the output layer of
the composite FF-BDRNN network. i.e. u,"(k) = y,(k), the output activation of the h-th
unit of the L-th feedforward layer equals the h-th component of the output vector. The

rest of the symbols in (17) and (18) are as defined for (9).
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Figure 3.2 Block-diagram of N state variable, M input, N, output, L feed-
forward layer FF-BDRNN

3.3.3 Training of FF-BDRNN

The training of the FF-BDRNN described by (7), (17) and (18) is based on the
minimization of a mean-squared output error function. In order to ensure that the feedback
weight matrix is stable, this training should be performed with the constraint that a
suitably defined norm of the updated W is within a bound determined by the slope of the
symmetric sigmoidal limiter (8). This problem can be restated by defining an augmented

error function E,, given by:

E =J+P, t=1,.,T (19)

4
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where J, is the mean squared output error and P, is a penalty term that is a function of the
stability constraint for the £* sequence of the T total number of training sequences. J, is

given by:

-1 lgw, 2
Jp = EZ:II 9 Lful (¢(R)) (20)
where ej(k) = rj(k) —yj(k)
where K, is the length of the ¢-th training sequence, ri(k) is the desired output for the j-th

output unit at instant k.

The penalty term P, is a function of the elements of the feedback weight matrix W and,
is generally chosen to be smooth, non-linear and continuously differentiable with respect
to the elements of W. The algorithm for training the FF-BDRNN is developed in Chapter

4. The specific choice of P, is addressed in Chapter 5.

3.3.4 Special block-diagonal structures

Two cases of block diagonal structure for the FF-BDRNN feedback matrix which differ
from each other in terms of complexity and the degree of freedom allowed in the values
that their elements can assume are considered. In the first case. each 2 x 2 submatrix of
the block-diagonal feedback matrix is a scaled orthogonal matrix of the form (2) (in
which the diagonal elements are identical and the off-diagonal elements are equal in
magnitude but opposite in sign). This scaled orthogonal submatrix models a second order
dynamic system with a complex-conjugate ecigenvalue pair using only two distinct
elements. Also. as will be shown later in Section 5.2.1. the global stability condition for
this structure is the same as the local stability condition and hence, satisfying the former

does not impose additional restrictions on the weights assignment.
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In the second case, each element of the 2 x 2 submatrices can assume any value of the
form (4). Each of such freeform submatrices can model a second order dynamic system
with real or complex-conjugate eigenvalue pairs using four distinct elements. Also, as will
be discussed in Section 5.2.2, the global stability condition for the freeform structure is
different from the local stability condition and imposes more restrictions on the weights

assignment.

While the FF-BDRNN with scaled orthogonal submatrices has fewer elements and is
hence less complex, the FF-BDRNN with freeform submatrices has more elements and

hence a larger degree of freedom.

The local and global stability conditions for the two structures considered will be derived

in sections 5.2.1 and 5.2.2 of Chapter 5.

34 CONCLUSION

In this chapter, a DTRNN with a block diagonal feedback weight matrix is introduced.
The BDRNN is shown to be advantageous in terms of its ability to model the oscillating
modes of a nonlinear dynamic process. The block-diagonal structure is conducive to
devising a trajectory learning algorithm in which the gradient computation is local. The
stability of the BDRNN is ensured by ensuring the stability of individual subsections of
the BDRNN. As static and dynamic characteristics are best modelled by feedforward and
recurrent connections respectively, a feedforward block-diagonal recurrent neural network
(FF-BDRNN) framework is proposed. A learning algorithm in which the computation of
the gradient is exact and local and which requires significantly reduced storage
requirement, but with marginally increased computations compared to conventional BPTT

will be presented in the next chapter.
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4 A RECOMPUTED STATE VARIABLE MODIFIED BPTT ALGORITHM FOR
BDRNN

4.1 INTRODUCTION

As seen in Chapter 2, trajectory training of DTRNN is generally accomplished by using
either real time recurrent learning (RTRL) [Williams and Zipser 1989] or backpropagation
through time (BPTT) [Werbos] algorithms or variations thereof {Williams and Peng 1990,
Schmidhuber. Sun et al, Pearimutter 1995]. To summarize, both RTRL and BPTT are
online techniques that compute the exact error gradient [Beaufays and Wan]. While RTRL
requires spatially nonlocal error gradient computation which is computationally expensive,
BPTT calculates the error gradients using spatially local computations with a storage
requirement that increases with the length of the training pattern. However. the exact
gradient computation in BPTT is nonlocal in time and requires storing the state variables.
the inputs and errors at all the time steps in an epoch. BPTT-z, step and BPTT-William-
Peng are online variations of BPTT that approximate the error gradient. have reduced
storage requirements and are computationally more complex when compared with
conventional BPTT. The BPTT-RTRL hybrid algorithm [Schmidhuber] computes the
exact gradient and has an average computational requirement of one order less than that
required in RTRL and the same storage requirements as RTRL. Thus BPTT is the least
expensive of the trajectory training algorithms because of the spatially local gradient
computations. However, the gradient computations are nonlocal in time and hence. it has

excessive storage requirements especially for long storage patterns.

The gradient computation in BPTT can be made local in time, by eliminating the storage
requirement for the state vectors by recalculating the state vectors in the backward pass.
This. however. requires that the feedback weight matrix be inverted after each weight
update. Since ensuring invertibility and inverting of a fully recurrent feedback weight

matrix are complex problems and is computationally cxpensive. this technique has not
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been considered a viable alternative in RNN research circles. The block diagonal structure
of the BDRNN lends itself to ensuring invertibility as the feedback weight matrix is easily
inverted by simple manipulation and scaling of its elements. Also, this technique of
recalculating the state vectors is susceptible to numerical instability problems [Pearlmutter
1995] especially, in fully recurrent DTRNN. However, the reduced interaction between

the state variables of the BDRNN helps in reducing the numerical instability problem.

The training of the BDRNN described by (7), of Chapter 3, is based on the minimization
of a mean-squared output error function. In order to ensure that the feedback weight
matrix is stable, this training should be performed with the constraint that a suitably
defined norm of the updated W is within a bound determined by the slope of the
symmetric sigmoidal limiter (8). This problem can be restated by defining an augmented

error function E,, given by:

E =J +P,, t=1..,T (1)

where J, is the mean squared output error and P, is a penalty term that is a function of the
stability constraint for the r-th sequence of the T total number of training sequences. J, is

given by:

1 : _1
J, = };Zf_'l YoM where ¢(B) = S(r(0)-y(bf 2)

where K, is the length of the p-th training sequence, r{k) is the desired output for the j-th
output unit at instant k. The penalty term P, is a function of the elements of the feedback
weight matrix W and, is generally chosen to be smooth and continuously differentiable
with respect to the elements of W. The specific choice of P,is addressed in Chapter 5.

The algorithm for training the BDRNN is developed below, assuming P, is given.
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4.2 TRAINING BDRNN WITH A RECOMPUTED STATE VARIA BLE MODIFIED
BPTT ALGORITHM

The proposed modified BPTT learning algorithm [Sivakumar et. al. 1996a] uses the
conventional BPTT technique [Werbos] to update the block-diagonal state feed-back
weight matrix W after K,-steps of the training sequence have been presented, according

to:

Awu.(t)_ dP,
K, w0
. ol (k1) 3)
with Aw, (1) = £ (
’J( E::l awi,f(t)
Jfor _/ . i+1_, if i is odd,

i
J=i-1.1 if i is even.

w 1) = wD-n,

where ¢ is the iteration index of the weights. Aw; is the accumulation of the instantaneous
error gradient over the K, steps of the training pattern and p, and p, are learning rate
parameters. For clarity ¢ will be omitted in the following derivations. J,(k) is the total

squared error over all the N, output units for the p-th training pattern and is given by:
lyw,
J k) = 221 (ra®)-y, () (4)

The algorithm is implemented by using the chain rule:

3'J 3J (k)
M) = S N s e )
ij i i
where.
ax (k) aJ
— = k-1); F =
oW, S @pED ax (k) #® (6)

with s(k) = 3" w x(k-1) + 3 b, u(k-1)
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In conventional BPTT, the state vector {xj(k-1)} used in (6) and the error vector e (k)
used in (7), are computed and stored in the forward pass, using (7) and (20) respectively

of Chapter 3. For the BDRNN, eg(k) is computed recursively in the backward pass:
e® = X RAI, eni B+ X wtds s De ke 1)
where
. = ¢/ op 2/ o
sk+1) = 3w m AR Y byl = 1N YT ¥J is odd

v =j’-1 ifj'is even
7

with the initial value g(K,) given by:

Thus, in conventional BPTT the state, input and error vector requires O(K,(N+M+N,))
storage. In the proposed modified BPTT algorithm, the state variables {x(k-1)} are
recomputed in the backward pass from the previously recomputed value of the state vector
{x.k)}. This recomputation process eliminates the requirement to store the state vector.

The recomputation of the state variables is done recursively according to:

x (k) = ZJV;‘ w,if;' "o (k+1)) - Z}_’l b,jtj(k)], ‘:,== ii_1 3: : ii: ;‘fg; ®

where x;(k) is the recomputed value of the i-th state variable at instant k, and W€ is the

inverse of the weight matrix W.

From (9) it is seen that the recomputation of the state variables requires the inversion of
the sigmoidal function f, and the inverse of W which presupposes that W is invertible.
The task of ensuring the invertibility of W will be addressed in Chapter 5. The block-
diagonal structure of W facilitates the computation of the inverse matrix W€ by simple

manipulation and scaling of the elements of W and is given by:
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Wying = r%s Wy ia = ‘rﬁ‘"‘;—”’
w
w w
where W' =W W - W W *0  n=24..N

It can be seen from (10) that the inversion of the block-diagonal W can be accomplished
by inverting each 2 x 2 submatrix of W. Thus, inverting the block-diagonal W is very
simple compared to inverting a fully recurrent DTRNN (which can be accomplished by

the use of a fairly complicated matrix inversion algorithm).

The recomputation technique helps to significantly reduce the storage requirement but
occasionally results in numerical instability problems. especially for long training patterns,
due to the recursive nature of the recomputations. The main reason for the occurrence of
numerical instability is a result of the amplifying effect of W€ on a small numerical error
introduced in any step of the iteration. This is especially true, since. maintaining W stable
would necessarily make W€ unstable. Another way to look at this is that the weights are
updated such that the computation of the state variables in the forward pass is contractive
or convergent, then the recomputation of the state variables in the backward pass is
expansive or divergent, since the recomputation in the backward pass involves the product
We£,/(.) which is the inverse mapping of the product f,W(.) that is used in computing the
state variables in the forward pass. The dynamics of the numerical stability error is the
same as the dynamics of recomputation of the state variable, which is divergent and hence
a small error introduced at any time step increases due to the recursive nature of the state
recomputations. In the case of the BDRNN. due to the block-diagonal structure of the
feedback weight matrix, the error in recomputing a state variable at a particular time step
affects the recomputation of only two state variables at the next time step. In the case of

a fully recurrent DTRNN with a full weight matrix. the numerical stability problem is
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more pronounced because the error in recomputing a state variable at a particular time

step affects the recomputation of all the state variables at the next time step.

Another reason for the occurrence of numerical instability is the amplifying effect of f,".
Figure 4.1 shows the inverse of the sigmoidal function given by (8) of Chapter 2. The
numerical instability is pronounced especiailly when the computed value of the state

variable in the forward pass is close to saturation i.e., close to 1.

-0.5 0 0.5

Figure 4.1 Inverse of the sigmoidal function given by ( 8) of Chapter 2
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For practical situations, despite the amplifying effects of W<£,/(.) it is still possible to

perform several recursive computations without significant loss of accuracy. If numerical

stability is degraded during this recursion, a recovery is possible by performing a forward

pass computation.

In this thesis. the numerical stability of the recomputed state variable modified BPTT

learning algorithm is ensured by the following steps:

(i)

(i)

(111)

recursive state variable recomputation: in the forward pass, intermediate values of
the state vector are stored at evenly spaced intervals over the length of the pattern.
In the backward pass. these intermediate stored values are used as initial values

for the recomputations performed over sublengths of the training pattern.

monitoring numerical stability: any signs of numerical instability in the backward
pass are monitored by a scalar shadow error e°(k). The shadow error is obtained
by comparing a scalar shadow output y*(k) computed in the forward pass with the
scalar shadow output y”(k) computed in the backward pass using the recalculated
values of the state vectors. The shadow error is thus a measure of the numerical

stability of the recomputations.

recovery computation: when a numerical instability is encountered at any time k.
the state vector {x/(k)} is computed from the nearest intermediate stored state

vector by iteratively using the forward pass computation given by:
_ +1 M .
x(k+1) = f, (Z};. wr k) + 3 bi_,uj(k)) i=1,..,N (ry

where the symbols are as defined for (7) of Chapter 3.
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The success of the above approach for a given problem depends on how few the number
of recovery computations performed in (iii) are in relation to the number of recursive

recomputations of the state variables performed in (i).

Now let us consider the weight updates for the input weight matrix B and the output
weight matrix C. The learning algorithm updates the N x M input weight matrix B after

K, steps of the training sequence have been presented, according to:

Ab,f0)

b (2+1) = b (O-u, y §=1Lu,N; j=1..,M

. aJ (k%)
with Ab ) = Y27, -a;;w

(12)

where ¢ is the iteration index of the weights. Ab;; is the accumulation of the instantaneous
error gradient over the K, steps of the training pattern. For clarity ¢ will be omitted in the

following derivations. The algorithm is implemented by using the chain rule:

a*Jp _ Z‘l a*Jp ax(k) (13)
abu(t) k=1 ax (k) abq

where,

ax (k)
ow, {6)

aJ (k)
hod AL
ax (k) =0 (14)

with s(k) = 30w x(k-1) + Y b uk-1)

= fisBuk-1);

The learning algorithm updates the N, x N output weight matrix C after K,-steps of the

training sequence have been presented, according to:



Ac, (t
cq(t+l) = c,‘,(t)—|.|.l ;”(), i=1. N, j=1.N

P
(k9

with Ac () = Y7 e ®

(15)

where ¢ is the iteration index of the weights. Ac;; is the accumulation of the instantaneous
error gradient over the K, steps of the training pattern. For clarity ¢ will be omitted in the

following derivations. The algorithm is implemented by using the chain rule:

by 5 0B (16)
dc, {0) nid 3R dc,,
where,
ay,(6) 8'J
= fi(s,(0)x k), P = —g(k
) s @nx® - o -

with s,®) = Y7 ¢ x8), h=1,.N,

The proposed algorithm is now described.

4.3 THE ALGORITHM

The forward pass. backward pass and the procedure for updating the weight matrices are

described in the following subsections.
4.3.1 Forward pass
The instants at which the intermediate state vectors are stored are defined as S1s 83y eee Sy

which are evenly spaced over the interval 0. ... K, with s; = 0 and sy, = K,. At any instant

k the following steps are performed:
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Step 1: The input vector {ugk)} is stored as it is required for the recomputation of

the state vector in the backward pass (see (9)).

Step 2: The state vector {x/(k+1)} is computed from the state vector {x/,(k)} using
system equation (11) by substituting x/(k) = x k).

Step 3: The state vectors at evenly spaced intermediate time intervals are stored

according to:

f (k=3s) then x/()=x/®), j=1,N; i=1.N (18)

where ¥, is the number of state vectors to be stored. Note that {x:(N} is

the matrix of intermediate state vectors stored in the forward pass.

Step 4: The output vector {y,(k)} is computed using equation (9) of Chapter 3.
Step 5: The output error is computed and stored according to:

ey (k) = (r,‘(k) —y,,(k)), h =1.N, (19)
Step 6: The state vectors are used to compute a forward pass scalar shadow output

y*(k) (which is to be compared later with the corresponding shadow output

computed in the backward pass) given by:

YK = (z:j'i . cj"xj(k)) (20)

where ¢;* are the constant weights connecting the state variables to the shadow

output unit.
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4.3.2 Backward pass

The elements of W€ = {w €} are computed by simple manipulation and scaling of the
matrix elements of W and are given in (10). Ensuring the condition w’ # 0 will be

discussed in Chapter 5.

At each instant & the following steps are performed:
Step I: An estimate {x'(k-I)} of the state vector {x/(k-1)} is recomputed

according to:

if k=35) then x/®) = x'() j= 1,..,{v,, .i = 1,..N o
else x/(k) = j_‘v‘ w, ‘jt',;'l(x‘r(k«r»l)) - E;:l buuj(k)], vv:;"-l g: g ggedn

The recomputation of the state vector is illustrated in Figure 4.2.
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Figure 4.2 State vector recomputation in the recomputed state vector modified
BPTT algorithm.
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Step 2:

Step 3:

Step 4:

Step 5:

e(k)
where
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The shadow output scalar y*(k) is recomputed as an estimate y?(k) given
by:

Y® = (X, %) (22)

The scalar shadow error €*(k), computed as
e’®) = G0~y ®) (23)

which gives an indication of the amount of numerical error in the

recomputation of the state vectors {x/(k)} at any time instant k.

When le’(k)l exceeds a certain threshold E, which indicates the occurrence
of numerical instability, the state vector at the k-th step is computed from
the nearest lower intermediate stored state vector {x/(j,)} by using the

forward pass (11) iteratively, with j, =max {j:j <k ,j = 1,.,N, }

€{k) are computed trom the value of g(k+1), the stored values of eq(k)

and {x/(k)} using:

° r +1 T
'Z:.l eh(k)fla(EjN_l Ch % (k))c,u + Zj/_v wuf:(sj,(kd))ej)(kﬂ) 24
sAk+1) = ;7_:, Wiy xti(k+1)+2:;"l by aAk+1)  j' = 1,..N

with the initial value &(K,) given by:

e(K) = Y, B, oz (Ko, (25)

The computation of g(k) for the numerically stable recomputed state

variable modified BPTT algorithm is illustrated in Figure 4.3.

The gradient computations for the W matrix are performed according to (5)

and (6) with x"(k) substituted for x,(k). Similarly, the gradient computation
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for the input matrix B is performed with (13) and (14) and the output

matrix C is performed with (16) and (17).

¢1(k) & O ¢1(IM)
o9 O— —O <&
‘v O— —QO W
¥ O QO W
o(uu‘ ) for stutes
@ amxnose O ) toraere
@ muroiiceson nade O(m) for weighes
5> summing node computation roquirement
— etored quantiies O(m) for ¢
Figure 4.3 Gradient computation in the recomputed state vector modified BPTT

algorithm.
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4.3.3 Weight updates

At the end of K, steps, the weights for the W, B and C matrices are performed according

to (3), (12) and (15) respectively.

4.4 STORAGE AND COMPUTATION REQUIREMENT

The recomputed state variable modified BPTT algorithm requires storage of O(NN,) for
storing the state vector at evenly spaced intermediate N, time intervals. In addition it
requires storage of ONK, + MK, + K,), for storing the error vector {e,(k)}, the input
vector {u;(k)} and the scalar shadow output y*(k). In conventional BPTT, the state vectors
{x.(k)} and the error vectors {e,(k)} are stored at each instant and require storage of
O(NK, + N,K,). Thus, with N, a fraction of K,, the storage requirement of the proposed
algorithm is a fraction of that required for conventional BPTT. This storage reduction is
achieved by a tradeoff of computational requirement when compared to conventional

BPTT.

In the best case. when no numerical instabilities are encountered at any time step, the
proposed algorithm computes the state variables twice. once in the forward pass and once
in the backward pass and requires O(2mK,=4NK,) computations for obtaining the state
vectors. In the worst case, which corresponds to encountering numerical instability at
every time step, the number of computations required to obtain the state vectors is
O(2K ;’N/N,). In reality one would expect that the actual computations required to obtain
the state vectors are larger than that for the best case and far smaller than that for the
worst case. This issue will be examined in detail. for a practical problem in Section 6.9

of Chapter 6.
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All other computations required to obtain the gradient are the same as for conventional
BPTT and is O(NV?) at every time step.

4.5 CONCLUSION

The proposed algorithm is a modification of the online BPTT algorithm, and computes
the exact gradient by recalculating the state vectors. The question of ensuring numerical
stability of the algorithm is addressed by the following: first, state vectors at evenly-
spaced intermediate time intervals are stored in the forward pass; second, these
intermediate stored values are used as initial values to recompute the state vectors during
the backward pass while simultaneously monitoring for signs of numerical instability;
when numerical instability is detected, a recovery is made by recomputing the state vector
for that time instant by performing a forward pass using the nearest stored intermediate
state vector and the process of recomputing the state vectors is continued. The proposed
algorithm results in reduced storage compared to conventional BPTT by trading off some

of the later's computational advantage.
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5 STABILIZATION OF BDRNN STRUCTURES

5.1 INTRODUCTION

This chapter derives the stability conditions for the two BDRNN structures introduced in
Chapter 3. These stability conditions are fashioned into penalty functions that are
implemented as part of the learning algorithm and guide the BDRNN towards
stabilization. The stability conditions can also be implemented as constrained feedforward

networks and ingrained as part of the FF-BDRNN architecture.

It was seen in Section 2.3.1 of Chapter 2, that the stability of the recursive computations
performed to compute the gradients that update the DTRNN weights requires that the
DTRNN itself be stable at its equilibrium point at each weight update [Williams and
Zipser 1989, Almeida]. In Section 2.3.3 of Chapter 2, it was shown that a sufficient
condition for the local stability of the fully recurrent DTRNN with a nonsingular feedback
weight matrix W’ was [Williams and Zipser 1989, Kung]

| AGWH | s % i = 1,.N )

where A(W/) is the i-th eigenvalue of the square matrix W/ = {w”,;}. In Section 2.3.2 of
Chapter 2, it was shown that a sufficient condition for the global stability of the DTRNN

with feedback weight matrix W/ was [e.g., Jin and Gupta 1996, Barnes]
[ AW 2 < 2 @
a

where A,,.(.) is the maximum eigenvalue of the matrix. From (1) and (2), it is clear that
the local or global stability of the DTRNN can be addressed by monitoring the eigenvalue

with the largest magnitude of W/ or (W/)"W/, respectively, at each weight update.
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The local and global stability conditions (1) and (2) directly apply to the BDRNN
architecture. Without loss of generality, all the results pertaining to stability conditions
for BDRNN will be derived in this chapter using @ = 2 in (8) of Chapter 3. As the
derivative of the symmetric sigmoidal function is unity for @ = 2, the local or global
stability of the BDRNN depend on the eigenvalue with the largest magnitude of W or
WTW, respectively.

5.2 LOCAL AND GLOBAL STABILITY APPROACHES

For an autonomous nonlinear dynamic system whose equilibrium point is given by g, the
following are the definitions for the uniform stability and convergence of the equilibrium

state, asymptotic stability and global stability of the system as given in [Haykin 1994].

Definition 1: The equilibrium state g is said to be uniformly stable if for any given

positive &, there exists a positive & such that the condition:
KO-zl <8 = b@®-al <e t>0 3)

This definition states that a trajectory of the system can be made to stay within a small

neighbourhood of the equilibrium state x if the initial state x(0) is close to X

Definition 2: The equilibrium state x is said to be convergent if there exist a positive 9,

such that the condition:

@)zl < & implies that x(t) -~ x as t—e 4)

This definition means that if the initial state x(0) of a trajectory is close enough to the
equilibrium state x, then the trajectory described by the state vector x(¢) will approach x,

as time ¢ approaches infinity.
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Definition 3: The equilibrium state x is said to be asymptotically stable if it is both

stable and convergent.

Detinition 4: The equilibrium state x is said to be globally asymptotically stable if it is
stable and all trajectories of the system converge to X ast — oo

This definition implies that the system cannot have other equilibrium states, and it

requires that every trajectory of the system remains bounded for all time ¢ > 0. Global

asymptoticity implies that the system will ultimately settle down to a steady state for any

choice of initial conditions.

In this section, the problem of ensuring FF-BDRNN stability during the training phase is
pursued. As seen in Section 2.3.3. linearizing the state-space equation (1) of Chapter 2
provides useful information about the local asymptotic stability propertics of an
equilibrium state. It was seen that. the eigenvalues of the nonsingular teedback weight
matrix W determine the local behaviour of the trajectories of the system in the
neighbourhood of the equilibrium state. If all the cigenvalues of W are within the unit
circle. then the equilibrium state x = 0. is a local asymptotical point of system (7) of
Chapter 3 and this equilibrium point is a sink. [f all the eigenvalues of W are outside the
unit circle. then the equilibrium state x = 0. is an unstable equilibrium point of the system
and this equilibrium point is a source. If some of the eigenvalues of W are within and
some are outside the unit circle. then the equilibrium state x = 0, is an unstable
equilibrium point of the system and this equilibrium point is a saddle. It must be noted
that. while the forward propagation equation (7) of Chapter 3. which defines the network
dynamics is nonlinear. the error propagation equation (19) of Chapter 4 is linear. This
means that in order to guarantee the local stability of the learning dynamic, it is essential
to closely match the dynamic properties of the error propagation network (learning
dynamic) with those of the forward propagation network (network dynamic) [Almeida].
As seen in Section 2.3.3. the local stability of the network dynamic depends on the

cigenvalues of W. while the local stability of the learning dynamic depends on the
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eigenvalues of W'. However since the eigenvalues of a matrix and its transpose are
identical, hence, the local stability of the network dynamic is a sufficient condition for

the local stability of the learning dynamic.

As seen in Section 2.3.2, the global asymptotic stability conditions for a nonlinear
dynamic system can be found by applying the contraction mapping theorem. It was seen
that, the square root of the eigenvalues of W'W determine the global behaviour of the
trajectories of the system for any initial state variable x(0) of the system. The global
stability of the network dynamic depends on the eigenvalues of W’W, while that of the
learning dynamic depends on that of WW?'. Hence, the global stability of the network

dynamic is a sufficient condition for the global stability of the learning dynamic as well.

It is desirable to ensure global stability in order to ensure the absolute stability of the
entire system, because the absolute stability does not depend on the initial conditions of
the state variables x(0) of the system. However, for most practical problems with bounded
external inputs and random initial state variables x(0), it is sufficient if the trajectory x(¢)
approach g as ¢ — oo, Here, satisfying the absolute global stability requirement may place
oo many restrictions on the placement of the weights. On the other hand the local
stability, ensures that the trajectory of the system can be made to stay within a small
neighbourhood of the equilibrium state x, provided that the initial state variables x(0) are
close to x and that this trajectory x(#) will approach x as time ¢ — oo, For a specific
bounded input bounded output problem, especially in problems where there is some
knowledge of the initial state variables x(0) of the system, the local stability while not
guaranteeing global stability, may afford better placement of the weights and be sufficient
to ensure stable learning with a small learning rate. In view of this, both global and local

stability requirements are presented in the following development.
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The local and global stability conditions for the two BDRNN structures will now be
derived, in section 5.2.1 for scaled orthogonal BDRNN and in section 5.2.2 for freeform
BDRNN.

5.2.1 BDRNN with scaled orthogonal submatrices

Theorem 1:  The local and global stability conditions are identical for a BDRNN with
scaled orthogonal submatrices. The BDRNN with scaled orthogonal
submatrices is globally and locally stable if the elements of each of its
submatrices satisfy the condition that its determinant is less than or equal

to 1.

Proof: Let W', denote the n/2-th 2 x 2 submatrix of the block-diagonal W obtained by

extracting rows n-1.n and columns n-1,n and constrained to be scaled orthogonal.

w. w
W, =[ re """'J n=2,4,..N (5)
-wn-l,u wu-l.u—l

Note that for a scaled orthogonal 2 x 2 submatrix the global and local stability

conditions (1) and (2). respectively, are equivalent

2 2
w +w 0
/ T / _ n-1a-1 n-in
A (W' (W', ) = 3 .
0 wn—l;u-l +wn-l,n
2 6
= wuz—l;l-l +wn-l.n ( )
2
A" ) |z = Wt s * Wi 1)

Hence (A (W) (W' P < 1s| AW/ ]y < 1 1=2,4,..N

For this case. the local and global stability conditions are given by.
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Woia1* Wi, <10 n=24.N )

5.2.2 BDRNN with freeform submatrices

Let W”,, denote the n/2-th 2 x 2 matrix of the block-diagonal W obtained by extracting

rows n-1,n and columns n-1,n and in which each of the elements is allowed to take any

value:
Wa-ta-1 Wit
Win =[ i " ’J n=24,..N ®)
wz,u-l wM
5.2.2.1 Global stability condition

Theorem 2: The BDRNN with freeform submatrices is globally stable if the elements
of each of its submatrices satisfy the condition that the sum of the square

of its elements less the square of its determinant is less than or equal to 1.

Proof: Let:
W - %21 Gnp 3
o2°" 2 a a
23 “al22
Then ) 2 9
an[Ll = wu-l.n-lwu,n-l
anﬂ.3 = wn—la-lwn-la * wn.u-lwu
2 2
82 = Wa1aWan n=24..N

For this case, the global stability condition (2) is

1
Aoa WP ) = 5 [@uzs * Bap3) * Y@y - B2} + 4“"20-3] (10)

From (2), the global stability condition is given by:
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Gz $ 1+ G i = (B + Gu) (n

Using (9) in (11), the global stability condition (2) for the freeform submatrix is

given by:

2 2 2 2y _ - 12
(wu-l.n-l + wn,n-l + wn-l,n + wn.n) (wu-l,n-lwn,n wu-lwn-lﬁ)z <1 ( )
5.2.22 Local stability condition

Theorem 3: The BDRNN with freeform submatrices is locally stable, if each of its
submatrices satisfy one of the following conditions:
Case (i): If (T,,)? >4V,
where T,, is the trace of W”, = w, ., + w,, and V_, is
the determinant of W “_,. then the local stability condition

is given by:

'T_"ﬂll+ 1 - P | oy (13)
2 (Tm)z

Case (ii): If (T,,)* = 4V, then the local stability condition is given
by:
Tw| | (14)
2
Case (iii): If (T,,)* < 4V, then the local stability condition is given
by:

Wnﬂj s 1 (15)
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Proof: The eigenvalues of W’ are given by:

T
T"‘” + ‘/Qm

(16)
= Tnﬂ ’
where de = -—2— - Vm
Case (i) If Q,, in (16) is positive, then the eigenvalues (16) are real and unequal.
The local stability condition determined by the eigenvalue with the larger

magnitude is given by:

[T, = sign(T,y)
i L ‘/0 <1

| 2 2 2

(17)
(17) can be rewritten as:

%3 PR PR/ Y (18)

2 (T wz)l
Case(ii): If Q,; in (16) is zero, i.e., (T,,)* = 4V,,, then the eigenvalues of W”_, are

real and equal. In this case, the condition for local stability is given by:

T
l——"’”‘ < 1.0 (19)
2
Case (iii): If Q,; in (16) is negative, then the eigenvalues of W ”,, are complex

conjugates. In this case, the condition for local stability is given by
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2
T
(T'ﬂ] + Q%) < 10
(20)

l wn-l,u—lwu

ie., IV,.n] < 1.0

= Wy iaWaat | S 1.0

QE.D

5.3 PENALTY FUNCTIONS AND STABILITY FUNCTIONS

The approach taken here is to minimize the output error function subject to the constraint
that the eigenvalues in (1) and/or (2) are limited to stay within a stability region. As
indicated in Section 3.4.1 of Chapter 3, this problem is overcome by including in the
output error function a suitable penalty term P, (sce (19) of Chapter 3), that is a function
of the relative stability of the FF-BDRNN. The technique considered here is to determine
where the eigenvalues are located in relation to the unit circle and use this information
to guide the ecigenvalue placement towards a more stable configuration while
simultaneously reducing the system output error at cach update of W. To this end, a
stability function that quantifies the stability of the FF-BDRNN at each weight update is
considered. The penalty function P, is then defined in terms of the error between the

stability function and its desired value.

Using the following notations

W' =W Jor local stability 21)
= W'W  for global stability

and representing the i-th 2 x 2 block-diagonal submatrix of W* as W*, the stability

function y; which quantifies the stability of W,* can be expressed as
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(=P, ) i-L.Ne2 (22)

where g(x) is a suitably defined monotonously non-decreasing function of the maximum

magnitude of the eigenvalue of W,*.

The penalty function P, can be defined as the mean squared error between this stability

function y; and its desired value 7 ie.,

- 1% o @

The stability function g(.) should be chosen such that whenever the stability condition y*
= r’ is violated, P, increases the value of the error function E, with larger violations

resulting in larger increases in E,. E, is given by:

E=J +P,, t=1,.,T (24)

where J, is the mean squared output error for the £® sequence of the T total number of
training sequences as defined by (20) of Chapter 3. The choice of g(.) is addressed in the

following sections.
5.3.1 Ideal stability function

An ideal stability function g(.) is given by:

g(];.(W,.jLu) -1 for |Mw‘)|mx < 1.0 25)
1 +(|1(W){m - l)k Jor ]A (W)Ln > 1.0

where the constant &, > 0 as shown in Figure 5.1(a). Here, the desired value r* = -1.0.

With the stability function as defined in (25), at any given instant during training, if all

the cigenvalues of W~ lie inside the unit circle then, (i) the stability conditiony® = -1.0
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is satisfied, hence, (ii) the penalty term P, = 0 and hence, (iii) only the mean squared

system output error contributes to E,.

At any given instant during training, if some or all the eigenvalues of W* were to lie
outside the unit circle then, (i) the stability condition is violated and ¥y =-1.0, hence. (ii)
E, contains both stability error P, and system output error J; components and also. (iii) the
more unstable the system, the larger the stability error component P, and the larger the

resultant E,.

The ideal stability function of Figure 5.1(a) has a major drawback in that it is

nondifferentiable at the border of the feasible region:

hav) = 10 (26)

This means that if the ideal penalty function as given in (25) were implemented as part
of the error function E, given in (24) then as the parameters of the BDRNN are varied,
the discontinuous first-order derivatives of E, along the boundary defined by (26) would
potentially result in parasitic oscillations. abrupt discontinuities. or nonconvergence of the
corresponding learning curve [Baldi]. Learning may be disrupted in the following ways:
when unwanted abrupt changes occur in the trajectory space of a dynamical system. or
when desirable changes to the structure of its trajectories are prevented tfrom occurring.
Such phenomena might be observed when the stability condition is satistied for a training
pattern and is violated for the next and so on. To avoid these problems and to ensure
good learning. it is essential that the selected stability function is smooth and continuously

differentiable with respect to the elements of W.



IDEAL PENALTY FUNCTION SIGMOIDAL PENALTY FUNCTION
— STABLE REGION

Figure 5.1 (a) Ideal stability function.
(b) Sigmoidal stability function.
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5.3.2 Sigmoidal stability function

A smooth and continuously differentiable function that provides a good approximation to

the ideal stability function of Figure 5.1(a) is the sigmoid function fA.) given by:

1-¢™)
8x) =f[1 -x) = d=na,n>1 (27)

1+¢ 91D’
where n is chosen such that (27) has a sharp midpoint slope as shown in Figure 5.1(b).

For this function. the stability condition is still y* = -1.0.

From Figure 5.1(b), it is clear that if the eigenvalues of W* lie within a circle of radius
P, < 1.0, (i) then the BDRNN is stable and in this region. y’ = -1.0, hence. (ii) P, =0 and

(iii) only the mean squared system output error contributes to E,.

Also, Figure 5.1(b) describes an annular disc of radius 1.0 whose width (P-py) 1S a
function of the slope of the sigmoid function f,(.) chosen. If the eigenvalues of W* lie in
this annular region. (i) the BDRNN is marginally stable/unstable. hence. (ii) the stability
condition y° = -1.0 is marginally violated. and (iii) E, contains a small stability error

component together with the system output error component.

The area outside this annular disc corresponds to the region of instability. If any of the
eigenvalues of W* were to lie well within this unstable region. then E, has a large near-

constant stability error component in addition to the system output error component.

Note that although any smooth continuously differentiable non-saturating stability function
can be used, here the sigmoidal stability function is used as it provides for better

numerical conditioning for large stability violations.
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It is desirable to formulate the above stability function in a neural network framework
such that the stability of the BDRNN at each training instant is computed locally in an

auxiliary neural network. The motivation for doing so are outlined below:

(i) In biological systems, learning of global tasks (i.e., a task that the organism is
trying to learn) is widely thought to result from local synaptic changes (ie.,
synaptic changes brought about by the local electrochemical environment). This
is a fundamental motivation for artificial neural network researchers to use

spatially local computations, in their effort to "mimic" biological systems.

(ii) It is also advantageous to use local computations, since, this means that each node
requires information only from other nodes to which it connects, resulting in
simpler hardware implementations as opined by several researchers [Almeida,

Pineda, Day and Davenport].

(iii)  Also, such an auxiliary network when added on to the existing BDRNN would
allow the use of a unified gradient search technique to ensure guidance towards

network stabilization simultaneously with output error reduction.

However, it should be noted that the stability constraint may also be implemented by

other means that do not require the use of a neural network.

5.4  STABILITY AND PENALTY FUNCTIONS FOR BDRNN STRUCTURES

The local and global stability functions together with the corresponding penalty functions
are now derived for the scaled orthogonal and freeform block diagonal structures of the
BDRNN feedback weight matrix, introduced in Section 3.4.3 of Chapter 3. These two

structures differ from each other in terms of complexity and the degree of freedom
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allowed in the values that their elements can assume. In the first case, each 2 x 2
submatrix of the block-diagonal feedback matrix is scaled orthogonal and models a second
order dynamic system with real or complex-conjugate eigenvalue pairs using only two
distinct elements. As was seen in Section 5.2.1, the global and local stability conditions
for this structure are the same and hence, satisfying the former does not impose additional
restrictions on the weights assignment. In the second case. each element of the 2 x 2
submatrices can assume any value and each of such freeform submatrices models a
second order dynamic system with real or complex-conjugate eigenvalue pairs using four
distinct elements. As seen in section 5.2.2, the global stability condition for this structure
is different from the local stability condition and imposes more restrictions on the weights
assignment. While the BDRNN with scaled orthogonal submatrices has fewer elements
and is hence less complex. the BDRNN with freeform submatrices has more elements and

hence a larger degree of freedom.
5.4.1 Local /Global stability and penalty functions for scaled orthogonal BDRNN

For BDRNN with scaled orthogonal submatrices. (W,)"W’, is a diagonal matrix with
cach diagonal element equal to the square of the magnitude of the complex eigenvalues
of W', as shown in (6). Hence. for this case as seen in Section 5.2.1. the local and global
stability conditions are equivalent and given by (7). However. from equation (10) of
Chapter 4. it is seen that W must be invertible for the recomputation of the state variables
in the backward pass. To ensure the invertibility of W. it is essential that det (W) 2
w?’ .. where w8 . » 0. Hence (7) is modified as:
Woin S Wo i, +Wi,, s 1.0 n=24, N (28)

-1,n

A suitable stability function for (28) that implements the upper limit is given by:

Yo = j"d(w,f_l AW, - 1.0) n=2,4,..N (29)
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A suitable invertibility function for (28) that implements the lower limit is given by:
Yo = SfWmn ~ Wi ipitwl,))  n=24,.N (30)

The corresponding penalty function is given by
1 2
) E[E'l:,f i) + X% (’f‘yt‘)z] where r{ =rf = -10  (31)

5.4.2 Global stability and penaity function for freeform BDRNN

A global stability condition for the freeform submatrix was derived in (9) through (12)
of section 5.2.2. For BDRNN with freeform submatrices, the global stability condition
given by (12) is satisfied, if the elements of each of its submatrices satisfy the condition
that, the sum of the square of its elements minus the square of its determinant is less than
or equal to 1. However, from (10) of Section 4.2, it is seen that W must be invertible for
the recomputation of the state variables in the backward pass. To ensure the invertibility

of W, it is essential that ldet w” )| > w? , with w? nin » 0. This is represented as:

wmin S| Watp1Wan = Wai ¥ -1 | (32)

The stabilization function corresponding to the global stability condition (12) is given by:

2
Yo = S [Watat Wan t W Wan ™ (Wacta-1Wan Was-1Wa-10) 1] (33)
n=24..N

An invertibility function that implements (32) is given by:
e 8
Yoz = S Paial = Wy piWon = Wo Wur ) n=24,.N (34)

The corresponding penalty function is given by
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54.3 Local stability and penaity function for freeform BDRNN

The local stability condition (1) for BDRNNSs with freeform submatrices was derived in
Section 5.2.2.2 using the eigenvalues of W’ ,. The eigenvalues of W*_, can be (a) real
and unequal. (b) real and equal, or (c) complex conjugates. The local stability conditions
for these three cases are given by (18), (19) and (20) respectively. These local stability
conditions should be considered along with (32) to ensure invertibility of W for the

recomputation of the state vector in the backward pass.

543.1 Real and unequal eigenvalues
Let us now consider the case when £ in (16) is positive i.e.. the eigenvalues of W’ , are
real and unequal. In this case, the stability condition is determined by the larger of the

two eigenvalues of W7, | ie..

T sign(T,;)
n2 (36)
) > + 2 ‘/ﬂm) s 1.0
re. it T,, 2 0.0 then
T ¥ (T
n2 n2 37
(T] + (T]"iﬁﬂﬁ + gnﬂ - 1.0 < 0.0
and it T,, < 0.0, then
. ¥ (T
| [l B (38)

The stability function corresponding to the constraining equation (37) and (38) is given
by:
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Yie =f{(T7m]2 * (TT"R}/“; * Oy - 1-0] (I LTS (3
: f,[(TT"ﬂ] - (B} + 0 I-OJ 1 - ZTPS 5 00

From (39), it can be seen that the SFNN that implements (38) will require a perceptron
that can multiply the outputs of two different constrained feedforward neural networks.
Hence a network that can implement (39) requires an algorithm that can be used for
higher order networks. Thus, the sign dependency introduces a discontinuity which
requires a neural network framework that uses higher order perceptrons [e.g.,
Kosmatopoulos et al, Giles et al 1992, Sun et al 1991] and will not be considered in this
thesis. However, the case of real and unequal eigenvalues will be considered in an indirect

manner as discussed later.
5432 Real and equal or complex conjugate eigenvalues

If the eigenvalues of W“,, are real and equal or complex conjugates, the local stability
condition is a smooth and continuous function of the elements of W ”_, as seen from (19)
and (20) and hence can be directly implemented in a neural network framework that uses
first order perceptrons. Note that (19) is a degenerate of (20) with Wen=Wainsand w,,,

= wn-l.n = O

The local stability condition for real and equal or complex conjugate eigenvalues

mandates that ,, <0, i.e.,

2
wn-l,n-l - 2w

u-l.n-lwu + w:,u + 4w w < 00 (40)

n-in an-1
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(20) and (40) constitute the basic constraining equations in the implementation of the
proposed local stabilization technique. The local stability functions corresponding to these

constraining equations are given, respectively, by:

Vi = i [ObnriWan = Woa g P - 10, n=24,.N (41)
and
Yo = Jg (Wasa1 - 2w neiniWan * Wan + 4w ow ) n=24, N (42)

The penalty function for the local stabilization case which includes the invertibility

function (34) is:

‘{E:m yfl) 2’"( Yfﬂ) z::m( )] (43)

2 e
where r, =r =r =-10

The case of real and unequal eigenvalues can be considered in this framework with
constraints (20) and (40), by suitably increasing the order of the block-diagonal system
in which a pair of block-diagonal sub-matrices each with real and equal eigenvalues
models a real and unequal eigenvalue pair. For example. a system with L real and unequal
eigenvalues can be modelled in a BDRNN by a 2L x 2L freeform block-diagonal

teedback weight matrix which satisties stability functions (41) and (42).



91

5.5 STABILITY FUNCTION AS CONSTRAINED FEEDFORWARD NEURAL
NETWORKS

In this section we will show that the stability functions (29), (33), (41) and (42) and
invertibility functions (30) and (34), which are polynomials of the weight elements Wi
can be implemented as constrained multi-layer feedforward neural networks. This
transformation allows for ingraining these equations as auxiliary neural networks that can
be added on to the existing FF-BDRNN architecture as depicted in Figure 5.2 which
facilitates a stable learning process. In Figure 5.2, the stabilizing feedforward neural
network (SFNN) and the feedback weight matrix W of the FF-BDRNN are linked to each
other through mutual constraints. In this figure, &, z*, 7 and ¢ are the input, the output,
the desired output and the output error, respectively, of the SFNN. The output Z° of the
SFNN is a vector of the stabilization and invertibility functions. The output error e’ of the
SFNN is the stability error of the overall system. The SFNN is trained using the standard
backpropagation algorithm simultaneously with the training of the FF-BDRNN. During
training, while the output error e”(k) of the FF-BDRNN impacts the updating of weights
W. B, C and D/s, the stability error ¢’ impacts the updating of weights of the SFNN and
hence W.
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Figure 5.2

Block-diagram of stabilizing feed-forward neural network (SFNN)
ingrained in the FF-BDRNN
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For BDRNN with scaled orthogonal block-diagonal matrices, the stability function (29)

can be transformed into an SFNN framework by the transformation described by:

y';;)- =fl [wu—l,u-l f::(wn-l,a-l) + wu—l,a .fc(wu-l,vl) - al)]: 0 <¢1<1-0; (44)

Note that o, in (44) replaces the limit 1.0 in equation (29) due to squashing of the
weights in the first layer. The SFNN described by (44) is a three-layer feedforward
network as depicted in Figure 5.3 for the n/2-th block-diagonal submatrix of W. It can be
seen from this figure that the SFNN has a constrained architecture with its weights set
equal to the elements of the scaled orthogonal W. The input & to the SFNN is the
constant bias 1. The bias input at the output layer is -o,. The output z* of the SFNN is
a vector of the elements y,;". In a similar manner the invertibility function (30) can also

be transformed into a feedforward network.

O Inputunt @ sigmoid unkt
1 Y101 W1 -«
S
Yoz
1 w
'n~1'n n-1,n

Figure 5.3 Stability function for scaled orthogonal BDRNN implemented as a
constrained three layer feedforward neural network.
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For a BDRNN with freeform block-diagonal matrix, the global and local stability
functions can similarly be transformed into suitable SFNN framework. Shown in Figure
5.4 is the implementation of the local stability functions (41) and (42) consisting of two
parallel networks, one for each transformation. As seen from this figure, these networks
are constrained feedforward networks with five and three layers, respectively, with
connection weights set equal to the elements of the freeform W. The input &’ to the SFNN
is the constant bias 1. The bias input at the output layer is -a,. The output z° of the SFNN

is a vector of the elements y,,* and y,,*.
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Table 5.1 Summary of the CFNNs that implement the invertibility condition for the
scaled orthogonal and freeforrn BDRNNs.

BDRNN - invertibility conditions

constraining feedforward neural network

that implements the invertibility

conditions.

SCALED ORTHOGONAL BDRNN

[} 2 2
wmin swu-l.n-l +wu-l,n
n=24..,N

o2 Sl Waim -
(wn—l,n—lf d(wn-l,u-l) +

wn-l;f d(wn-l,u))]
n=24..N

Yoo = FiWa) -
[wn-l,n—lﬂwn;ﬂw -l,n-lﬂwn.»))) +
2wn-1,n-1ﬂwuﬂwu-—uﬂw )

wn-l;ﬂwn,u-ﬂwn—l,ﬂwnﬁ-l)))]}
n=24,..N

Table 5.2 Summary of the SFNNs that implement the global/local stability condition,
for the scaled orthogonal BDRNN.

SCALED ORTHOGONAL BDRNN
Global and local stability condition

constraining feedforward neural network
that implements the global/local

stability conditions.

2 2
Weia-1*Waia < 1.0

n=24,..N

Yorr T f Wy g s Wy )+
wu-l;f;:(wu-l,u) - al]’
0 <a,<1.0;
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Table 5.3 Summary of the SFNNs that implement the global and local stability
conditions for the freeform BDRNN.

FREEFORM BDRNN
global and local stability conditions constraining feedforward neural network

that implements these conditions.

)’"' fd{[ -u-lﬂwu-l;l-l)+

Wan-SWon ) +W,_ W

3.1,.+w.i.) Wy O, S, 1,,,_,/(w,,,,)))—
n-13-1", M-lwu-l.n)z] W, 1 .u-lﬂwﬂ-iﬂ _ Wyt ,.)))"'
M-xﬂ n-1 Wz lf(wu-l,u)))]—l}

~(w,

.!1

-fd{[ —l,u-lﬂwnﬂw -l;l-lﬂwn.»)))—
[s1.0 T AT AP (L) b

n.u-lﬂ -l;ﬂ ;;-1,;)))]
-1 0} n=24,.N

lwu-l,u-lw wu l,n nn-

-l,u- T W 1a-1Wa, y’zﬂ —fd[;’( ~La-SO¥ a-La-1)
2w, . Sw J+w fw

* Way + 4w, W) < 00 +:w1;‘() ":)';(M)

n=24..N
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5.5.1 Network stability and stability of leaming in FF-BDRNN with stabilizing
feedforward neural networks (SFNN)

It can be seen that the architecture of Figure 5.2 has a framework with the FF-BDRNN
forming the inner core and the SFNN the outer layer. The FF-BDRNN training is
performed by accumulating the instantaneous output error gradient over a given training
epoch during which W is held constant. The SFNN, on the other hand, computes the
stability error gradient between epochs. W is updated at the end of each epoch using both
the accumulated output error gradient and the stability error gradient. It is clear from (7)
of Chapter 4, that the SFNN does not affect the dynamics of learning during an epoch,
as W is held constant during each epoch. The role SFNN plays is to "direct" W towards
a stable configuration between epochs and hence improve stability. Even with SFNN, it
is still possible that the learning becomes unstable. particularly when the initial W chosen
is highly unstable and the SFNN learning rate is so small in relation to the output error
learning rate that the stabilization effect is inadequatc. However, in the worst case. the
FF-BDRNN with the SFNN can perform only as badly as the FF-BDRNN without the
SFNN.

5.6 CONCLUSION

Conditions for local and global stability for two specific architectures of the block-
diagonal feedback matrix that differ from each other in terms of complexity and degree
of freedom are derived. The scaled orthogonal BDRNN in which the global and local
stability constraints are equivalent. unlike the BDRNN with freeform submatrices. does
not impose additional restrictions on weight assignments for satisfying the global stability
constraints. Also, in this chapter. global and local stability functions for these two
architectures are derived. The block diagonal structure of the BDRNN is exploited to tind

conditions that guide the network towards stability at cach weight update during training.
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This problem is addressed in two steps: first, by devising a cost function that includes the
desired stability margin as one of its components; next, by ingraining the stability margin
component as part of the neural network architecture. To quantify the stability of the FF-
BDRNN at each weight update during the training process, a stability function that is a
measure of the norm of the feedback weight matrix W is formulated. To ensure the
stability of the FF-BDRNN and hence of its training process, the cost function to be
minimized during the training process includes a penalty term which is a function of the
stability function. For analytical tractability of the stability margin component of the cost
function, some constraints are imposed on the values that the block diagonal weights can
assume. It is shown that, under these non-restricting conditions, the stability function itself
can be formulated as a multi-layer feedforward neural network using first order
perceptrons which augments the BDRNN structure and hence ingrained in the FF-BDRNN

architecture.
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6 SIMULATION STUDIES ON FF-BDRNN WITH STABILIZA TION

6.1 INTRODUCTION

In this chapter several examples are presented to demonstrate the feasibility of the FF-
BDRNN architecture proposed in Chapter 3 to model a wide range of nonlinear processes,
to illustrate the performance of the recalculated state variable modified BPTT learning
algorithm proposed in Chapter 4 and to show the effectiveness of the stabilization
technique presented in Chapter 5 for the scaled orthogonal and freeform BDRNN

structures.

The first example, presented in section 6.2, illustrates the importance of maintaining the
stability of the feedback weight matrix for successtul learning, by training it without the
stabilization technique presented in Chapter 5 and studying the effect of an unstable or
a stable initial weight matrix on learning. This issue is further explored in the example
in section 6.3. The examples in sections 6.3 and 6.4 compare the pertormance of scaled
orthogonal and freeform BDRNN in modelling the dynamics of a plant with block-
diagonal feedback structure. In the example of section 6.3, the plant output is a weakly
nonlinear combination of the plant state variables. while. in the example of section 6.4
this nonlinearity of the plant is more pronounced. Also explored in the example of section
6.3. is the movement of the magnitude and phase of the eigenvalues of W” as the training
progresses, with and without stabilization. in comparison with the plant eigenvalue
placcment. In the example of section 6.5. a plant with a fully recurrent DTRNN
architecture is modelled with scaled orthogonal and freeform BDRNN and the issue of
global versus local stabilization is explored and tradeoffs discussed. In section 6.6-6.9,
examples studied previously in literature with well documented results are considered. In
the example of section 6.6. a nonlinear single-input driven single-output plant is
considered for modelling with a BDRNN plant. The example of section 6.7, considers a

nonlinear multiple-input driven multiple-output plant in which the dependence of the
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current plant outputs on previous plant inputs and outputs is separable, is modelled with
an FF-BDRNN. In the example of section 6.8, a BDRNN is used to reproduce the "figure
8" limit cycle without any inputs from the plant generating the limit cycle; this example
poses special challenges due to the conflicting requirements of stable learning of
marginally unstable autonomous plant dynamics. The example of section 6.9, consists of
training a FF-BDRNN to predict the evolution of the chaotic process generated by a
classic delay-differential equation; the numerical stability performance of the recomputed
state vector modified BPTT algorithm is also studied. Finally, in section 6.10, an isolated
word speech recognition problem is considered in which several FF-BDRNN modules are
used for correctly classifying the utterance of numerals "zero"-"nine" using speech
prediction techniques. The network and training parameters for the examples in section

6.2-6.10 are summarized in Table 6.4.

For these examples, the normalized root mean square error (NRMSE), €,

, —
g, - ETox(®) - yy(R)] B Lo, k= 1K, "

EOf B -Ey? 0D

is used as a measure to assess the performance of the BDRNN/FF-BDRNN networks
modelling a given plant. In each example, unless otherwise mentioned, the initial weights
of the network feedback weight matrix W" are assigned random numbers chosen such that
the eigenvalues of its 2 x 2 submatrices are placed on the unit circle. The weight
assignment is intended to fully "excite" the oscillatory modes of the network so as to
enable the network to effectively model the plant dynamics. The initial weights of the
input matrix B" and the output matrix C” are also assigned random values in the interval
[-1.0,1.0]. In examples 6.7, 6.9 and 6.10 where the FF-BDRNN was used to model given
plants, the weights of the feedforward network are assigned random values in the interval
[-0.5.0.5]. The shadow output matrix C* connecting the state vector x/(k) and x"(k) to the

shadow output scalar y/(k) and y“(k), respectively, (which monitors the numerical stability
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of state vector recomputations in the backward pass) is chosen as [1,1...,1] to facilitate full
observability of all the state variables. The numerical instability threshold @ is chosen as
(2.5E-3 N).

6.2 IMPORTANCE OF NETWORK STABILITY

This example provides simulation results to illustrate the feasibility of modelling a given
dynamic process with a stable feedforward block-diagonal recurrent neural network. Let
us consider a plant with a block-diagonal feedback structure. Let us also assume that the
order of the plant is known apriori and set the order and structure of the FF-BDRNN the

same as that of the plant.

The structures of the plant and the FF-BDRNN modeclling the plant are shown in Figure
6.1. The plant uses a scalar input and generates a scalar output using a fourth order block
diagonal state feedback matrix and a two-layer feedforward network. The output scalar
generated by the plant at instant k& is applied as external input to the FF-BDRNN. The
one-step output estimate provided by the FF-BDRNN is compared with the plant output
at instant k+1 to calculate the error. Several plant output vectors are generated as training
data by setting the initial state variables of the plant to random values. In the training
phase. the error is accumulated over the entirety of cach training pattern and the FF-
BDRNN weights are updated using the training algorithm outlined in Chapter 4. As the
structure of the FF-BDRNN is chosen the same as that of the plant, if the training is

successtul. one would expect that the output error asymptotically reduces to a small value.
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Figure 6.1 Plant-Recurrent neural network architecture in the example of
Section 6.2
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In training the FF-BDRNN, two cases are considered. In the first case. the initial values
of the elements of the feedback weight matrix W” are chosen to be small positive values
SO as to ensure that the eigenvalues of the initial (W")"W" are well inside the unit disk
and thus ensure the global stability of the initial W”. In the second case, these initial
values are chosen such that the eigenvalues of the initial (W™)TW" lie outside the unit disk
and is initially unstable. Shown in Figure 6.2 are the results of training the FF-BDRNN
for these two cases. Plot (a) depicts the output error performance of the FF-BDRNN as
the training progresses. Plots (b) and (c) of Figure 6.2 depict the tracking performance of
the trained FF-BDRNN with initial globally stable and unstable W" respectively, for
arbitrary outputs generated by the plant. As can be seen from plot (a), the output error for
the first case with the initial globally stable feedback weight matrix (with small positive
initial values of the elements of (W")’W" converges to a small value over the training
iterations. Apparently. for this case, the global stability of the FF-BDRNN has been
maintained through the training process which enabled successtul learning. This is also
evident from plot (b) which shows that an arbitrary output of the plant has been tracked
by the FF-BDRNN with near perfection. On the other hand., for the second case with the
initial globally unstable feedback weight matrix (with the initial values of the elements
of (W"TW" chosen such that its eigenvalues lie outside the unit disk), the output error has
remained high over the training iterations. Apparently. for this case, the FF-BDRNN has
remained unstable through the training process resulting in poor learning. This is evident

from plot (c) which shows a poor tracking performance for an arbitrary plant output.
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Figure 6.2. Training results of FF-BDRNN in Section 6.2 (a) with stable initial feedback
weights - (—) BDRNN output compared with an (—) arbitrary plant output. (b) with
feedback weights initialized to unstable values - (—) BDRNN output compared with an
(--—) arbitrary plant output. (c) (—) with stable initial weights output error vs. training

iterations. (—--) with unstable initial weights output error vs. training iterations.
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Possible explanations for the poor learning in this example, include factors such as (i)
improper choice of learning rate p,, (ii) very small error gradient, and (iii) saturation
effects of the sigmoidal function caused by improper scaling of the input data. It was not
possible to improve learning performance of the second case by changing pu,. However,
these factors may not be solely responsible for the poor learning exhibited by the second
case, since the conditions under which the simulation is performed are identical to those
of the first case. This suggest that the initial choice of an unstable W", and the continued
instability of FF-BDRNN during training are significant factors that result in poor learning
pertormance. This example underlines that. for successful learning, the stability of the

recurrent neural network is an important factor for consideration.

6.3 MODELLING A WEAKLY NON-LINEAR AUTONOMOUS PLANT WITH A
BLOCK-DIAGONAL FEEDBACK STRUCTURE USING SCALED
ORTHOGONAL AND FREEFORM BDRNN

Let us first consider an autonomous plant with a block-diagonal feedback structure

described by the following:

k1) = f, (0, wh '), i=L,.N
where v=i, if i is odd (2)
v=i-1, if i is even

W® = £ (0 o @), h=1..N,

where xf(k) is the i-th state variable of the plant at instant &, {w./} = W? is the block-
diagonal state-feedback weight matrix of the plant. f,(.) is a sigmoidal squashing tunction
defined in equation (8) of Chapter 3. y?(k) is the i-th output element at instant k, {c;’}

= C” are the weights connecting the N plant state variables to the N, output units.
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For this example, the number of plant state variables is N = 4, with the number of plant
outputs N, = 1. The number of sampling instants, K,, for each pattern, was chosen to be

32. The plant is an oscillator with weights given by:

[cos(@,) -sin(®,) O 0

sin(®) cos(8) O 0
0 0  cos(8,) -sin(6,)
0 0 sin@®) cos(@,)| &

14 4

where 0, 2K—“; 6,=36,; K,=32

y 4
CP=[070 00 030 00]

W? models a fundamental and a third harmonic waveform in the sense of a linear system.
The objective is to model the above plant, using one-step prediction, with a BDRNN

described by the following:

&) = LT wia'® + X b ¥ ®), i=1,...N

Where v=i, ifi is Odd (4)
v=i-1, ifiis even
W@ = £, eny 5'®), k=1,..N,

where x;"(k) is the i-th state variable of the network at instant k, {w."} = W" is the state-
teedback weight matrix of the network, {b,"} = B" is the external input weight matrix of
the network, y;"(k) is the i-th output element at instant &, {c;"} = C" is the weight matrix
connecting the N state variables to the N, output units of the network. The order of the
plant is assumed to be known apriori and the order of the BDRNN is set the same as that
of the plant. The output vector generated by the plant y/(k) at instant k is applied as
external input to the BDRNN. The one-step output estimate provided by the BDRNN
y:'(k+I) is compared with the output of the plant y?(k+I) to calculate the error e(k+I).
In the training phase of the BDRNN, the error magnitude lefk)l accumulated over the

entire pattern is used to update the weight parameters W”, B* and C" after each
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presentation of the output pattern. Several plant output vectors are generated by setting
the initial state variables of the plant to random values so as to enable the network to
model the dynamic modes of the plant irrespective of the initial values of the plant state
variables. The initial state variables of the BDRNN are set to random values for each
presentation of the plant output pattern. It is expected that the output error at initial
sampling instants will be impacted by the choice of initial conditions and hence larger
than the error at later sampling instants. The output error minimization at later sampling
instants is weighted more than at earlier instants for each pattern by modifying the output

error function (20) of Chapter 3 with an exponential decay as:
1 Ng "’k’
J, = SER[Zhrm-ymL - ™) &)
where ¢, is a positive scaling constant.

The initial weights of the BDRNN were chosen such that the eigenvalues of the feedback
matrix W* are outside the unit circle. This represents a possible situation during the
training phase where the BDRNN is unstable. A total of 10,000 training patterns were
presented, each generated by setting the initial state variables of the plant at random. The
learning rate p, is chosen arbitrarily as 0.025. The training is performed with the weighted

output error function (5) with ¢, = 0.0625.

The plant described by (2) and (3) is now modelled by the two BDRNN structures, viz.,
the scaled orthogonal and freeform BDRNN introduced in Chapter 3.

6.3.1 Modelling with scaled orthogonal BDRNN with and without global stabilization
Shown in Figure 6.3.1 (a) to (f) are the results of training a scaled orthogonal BDRNN

with no stability compensation compared to the corresponding results with global stability

compensation. In Figure 6.3.1. (a) and (b) show the migration of the magnitude and the
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phase, respectively, of only one eigenvalue of each complex conjugate pair of W" with
stabilization as compared to the corresponding results without stabilization, (c¢) and (d) are
the plots of the output and the stability error, respectively, over the training iterations with
stabilization as compared to the corresponding result without stabilization; (e) and (f) are
the plots of the one-step output prediction of the scaled orthogonal BDRNN, with and
without stabilization, respectively, compared to an arbitrary plant output. For the given
choice of initial weights, the behaviour of the scaled orthogonal BDRNN without stability
compensation, is in general observed to be very poor. From Figure 6.3.1(a) it is seen that
both the eigenvalues of W" hover in the unstable region (their magnitude is greater than
1.0). This is also reflected by a large stability error in Figure 6.3.1(d), which shows little
improvement with training iterations or with reduction in the learning rate p,. It appears
as though that the network has found a local minima from which it has little incentive to
climb out, consequently resulting in a large near constant output error as seen in Figure
6.3.1(c). From Figure 6.3.1(e), which depicts the tracking performance of BDRNNSs with
unstable W”, for an arbitrary output generated by the plant, it can be seen that the
BDRNNs without stabilization have not been successful in modelling the plant. On the
other hand, with stability compensation, the eigenvalues of W* migrate into the stable
region (their magnitude is less than 1.0) as seen in Figure 6.3.1(a), resulting in a very
small stability error as seen in Figure 6.3.1(d). It is also seen that the network eigenvalues
closely match the eigenvalues of the plant. From Figure 6.3.1(f), which depicts the
tracking performance of BDRNNs with stable W”, for an arbitrary output generated by
the plant, it can be seen that the BDRNN with stabilization has been very successful in
modelling the plant. This as also reflected by the low output error as seen in Figure
6.3.1(d).
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arpitrary plant output (—). (f) output of BDRNN with stabilization (—-) compared to
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6.3.2 Modelling with Freeform BDRNN with and without global stabilization

Shown in Figure 6.3.2 (a) to (f) are the results of training a freeform BDRNN with no
stability compensation compared to the corresponding results with stability compensation.
The behaviour of the BDRNN with the freeform submatrix structure. with and without
global stability compensation. is observed to be similar in terms of final eigenvalue
placement. and output and stability errors to that of the corresponding cases of the
BDRNN with the scaled orthogonal submatrix structure (Figure 6.3.1). In this example.
for convergence, the freeform BDRNN with global stability compensation requires more
than half the number of training iterations as the scaled orthogonal BDRNN with stability
compensation. It appears that the freeform BDRNN in this case, spends more time,
cxploring several additional pathways (because of its larger degree of freedom). before

settling on the solution.
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6.4 MODELLING A NON-LINEAR PLANT WITH A BLOCK-DIAGONAL FEED
BACK STRUCTURE USING SCALED ORTHOGONAL AND FREEFORM
BDRNN

Let us now consider a plant with a higher degree of non-linearity when compared with
the plants of the previous examples. The state equation for the fourth order non-linear
plant is the same as the state equation in (2) with feedback weight matrix W, given by
equation (3) with K, = 48 and 6. = (5.6,). However. the plant output is a non-linear
combination of the state variables and is given by:

P P
Yo = —2 ® =0 (6)

L+xf® 1 +xfk)

The objective is to model this plant. first by a fourth-order. and subsequently by an
eighth-order BDRNN with scaled orthogonal and free-form submatrices. The training of
the two classes of BDRNNs was performed with global stability compensation and with
the following parameters: pu, = 0.025; weighted output error function (5) with ¢, =
0.03125. Shown in Figure 6.4.1 are the results comparing the training of a fourth-order
scaled orthogonal BDRNN with the corresponding results for the freeform structure.
Shown in Figure 6.4.2 arc the results comparing the training of a eighth-order scaled
orthogonal BDRNN with the corresponding results for the freeform structure. [n these
tigures. plots (a) and (b) depict the output error performance of the scaled orthogonal and
freceform BDRNNs as training progresses: plots (¢) and (d) depict the tracking
pertormance of the scaled orthogonal and freeform BDRNNS. respectively. for arbitrary

outputs generated by the plant.
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It is apparent from these figures that both the fourth and eighth order scaled orthogonal
and freeform BDRNNS5 have been successful in tracking the plant output with small error.
However. the eighth order BDRNN outperforms the fourth order BDRNN as is evident
from the lower output error (plot (b) of Figures 6.4.2 and 6.4.1) and better tracking, in
particular, at the initial sampling instants (plots (c) and (d) of Figures 6.4.2 and 6.4.1).
The performance difference between the fourth and eighth order BDRNNS is obviously
due to the fact that the eighth order BDRNN has a much higher degree of freedom to
model the nonlinearity described in (6) more accurately than the fourth order BDRNN.
A noteworthy observation is that, in BDRNNSs of the same order, the freeform BDRNN
converges to a lower output error than the scaled orthogonal BDRNN (plot (b) of Figures
6.4.1) and 6.4.2). This is also evident from the better tracking performance, in particular,
at the initial sampling instants (plots (c) vs. (d) of Figures 6.4.1 and 6.4.2). This
performance difference is due to the fact that the freeform BDRNN has a higher degree
of freedom than the scaled orthogonal BDRNN to model the nonlinearity described in (6)

more accurately.

6.5 MODELLING A NON-LINEAR FULLY RECURRENT DTRNN PLANT WITH
SCALED ORTHOGONAL AND FREEFORM BDRNN

In this example, the pertormance of scaled orthogonal and freeform BDRNN for a one-
step prediction problem for a plant with a DTRNN structure with a fully connected

feedback weight matrix is considered. The plant is described by:
x[k+1) = f{3 whxf®) =14 7

where W?=(w" } is described by:
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The plant output is a nonlinear function of the state variables x?; described by:

xi (k) (k)
1+ GIE*+ GPOY+ PR+ LK)

Y@ = 9)

The state equation (7) of the plant generates a periodic signal which can be decomposed
into a fundamental and a fifth harmonic component in the linear sense (without the
sigmoidal squashing) with a sampling rate of K, = 48. The plant is modelled by an
cighth-order BDRNN with scaled orthogonal and freeform submatrices. For freeform
BDRNN both local and global stability constraints are considered. The training of the two
classes of BDRNN has been performed with stability compensation and with the
following parameters: p, = 32E-3 with momentum = 16E-3, p, = 25E-3. number of
intermediate storage state-vectors = 5 and w®_, = 0.5 in (28) or (32) of Chapter 3, for
scaled orthogonal or treeform BDRNN. The initial conditions for the state variables of
the network were chosen to be random numbers in the interval [-1.0.1.0]. Shown in Figure
6.5(a) are the output errors of the BDRNNS as training progresses. Shown in Figure 6.5(b)
and 6.5(c) are the tracking performance of the scaled orthogonal BDRNN and freeform

BDRNN with local stabilization. respectively. tor arbitrary output generated by (9).
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Figure 6.5 Simulation results for modelling a non-linear fully recurrent DTRNN plant with

a stabilized eighth order BDRNN in Section 6.5: (a) output error vs. training iterations for
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arbitrary plant output compared to (—) output of scaled orthogonal BDRNN. (c) (-—)

arbitrary plant output compared to (—) output of freeform BDRNN with local stability.
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As can be seen from Figure 6.5 (a), the freeform BDRNN with local stability
compensation out-performs both scaled orthogonal BDRNN and freeform BDRNN with
global stability compensation in terms of output error. This performance difference may
be attributed to the fact that the freeform BDRNN with local stability compensation has
a higher degree of freedom than the other two BDRNNS in modelling the nonlinearity
described in (9). However. in several simulation runs for this and other examples, it has
been observed that the learning performance of the freeform BDRNN with local
stabilization is highly dependent on the choice of learning rate which should be kept small
to ensure stable learning. On the other hand. the BDRNNSs with global stabilization are

more tolerant of higher learning rates.

6.6 MODELLING A NONLINEAR SINGLE-INPUT SINGLE-OUTPUT PLANT
WITH A SCALED ORTHOGONAL BDRNN

In this example. a BDRNN is trained to identify a single-input single-output (SISO) plant
studied in [Narendra and Parthasarathy 1990] whose output is a nonlinear function of the

previous outputs and the previous inputs described by the difference equation:

XP(ke1) = ZPOEP(k-1)xP(k-2)u?(k-1)[x?(k-2) - 1.0] +u P(k) 00)
1 + xP(k-1)* + xP(k-2)?

A scaled orthogonal BDRNN with eight state variables. one input unit and one output unit
is trained to model (10). The only input u,"(k) to the BDRNN consists of the plant input
(k) which is assigned random values in the interval [-1,1]. The initial conditions for the
network state variables are chosen to be random numbers in the interval [-1.0,1.0]. The
training is pertormed by updating the weights after every epoch of fifty time-steps. For
this. p, is chosen to be 4E-3 with a momentum of 2E-3 and p, is chosen to be 32E-4. The
number of intermediate storage state vectors to ensure numerical stability is chosen to be

tive at evenly spaced intervals of cach epoch. The stability region is constrained to within
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the unit disk by setting & = 0.95 in (44) of Chapter 5. The invertibility of W” is ensured
by setting w? . =0.5 in (28) of Chapter 5. The network converged in 11,000 epochs of
training. In Figure (6.6), the output of the plant and of the network are shown for an input
(k) = sin (21k/25) + sin (2mk/10). The NRMS output error for this input pattern was
observed to be 1.56 at the start of training and was 0.1 at the end of training. Note that
this example requires a scaled orthogonal BDRNN with eight state variables and one input
compared to the fully connected three layer feedforward network with five input units,
twenty units in the first hidden layer, ten units in the second hidden layer and one output
unit considered in [Narendra and Parthasarathy 1990] required to model (10) with
comparable results. With the scaled orthogonal BDRNN, the number of weights required
is eight in the BDRNN layer and eight each in the input and output layers compared to
about 300 weights required for the network reported in [Narendra and Parthasarathy
1990].
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Figure 6.6 SISO Plant (—) and FF-BDRNN (-—-) output trajectories in Section 6.6:

(a) Output traces for input: sin(2wk/25) + sin(27tk/10) (b) Output traces for random input.
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6.7 MODELLING A NONLINEAR MULTIPLE INPUT MULTIPLE OUTPUT
(MIMO) PLANT WITH A SCALED ORTHOGONAL FF-BDRNN

In this example, an FF-BDRNN is trained to identify a multiple-input multiple-output
(MIMO) plant in which the non-linear dependence of the output on the previous outputs
and the previous inputs is considered separable [Narendra and Parthasarathy 1990]. An
example of such a plant is the two-input two-output plant given by the difference

equations [Narendra and Parthasarathy 1990]:

@)
HED)| (1« HOP| [ulfo VHCTIREA(C

20| | ed | o bre| ke
1+ HoP

(11)

A two input, two output BDRNN with 12 state variables is trained to model this plant.
The inputs to the BDRNN consists of the plant input u,(k), u(k) together with the plant
outputs y,’(k) and y*(k). The output of the BDRNN is the predicted value of y ./ (k+I) and
y£(k+I). The plant inputs at every time step k are assigned random values in the interval
(-2,2]. The initial conditions for the state variables of the network are chosen to be
random numbers in the interval [-1.0,1.0]. The training is performed by updating the
weights after each epoch of fifty time-steps. For this, p, is set to 16E-3 with a momentum
of 8E-3 and p, to 12E-3. The number of intermediate storage state vectors, to ensure
numerical stability, is chosen to be five at evenly spaced intervals of each epoch. The
stability region is constrained to within the unit disk by setting o, = 0.95 in (44) of
Chapter 5. The invertibility of W”" is ensured by setting w® . =0.5 in (28) of Chapter 5.
The network converges in 100,000 epochs, with NRMS output error of less than 0.35.
Increasing the order of the BDRNN network or changing it to freeform with global
stability constraint and retraining it, does not significantly improve the performance of the

network. Since. for this example, the dependence of the current output on the previous
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outputs and the inputs is assumed to be separable [Narendra and Parthasarathy 1990}, the
BDRNN is augmented with a feedforward network ( equations 17 and 18 of Chapter 3)
that models the nonlinear mapping between the inputs and outputs of the plant. The
teedforward section consists of one hidden layer with sixteen units. The resulting FF-
BDRNN. when trained afresh converges in 100,000 epochs, with NRMS output error of
less than 0.15. In Figure 6.7, the response of the plant and the FF-BDRNN to a input
vector [1/2{sin (2rk/25) + sin (21k/10)}, 1/2cos (2mk/25)) is shown. Note that this
performance is comparable to those obtained in [Narendra and Parthasarathy 1990, Parisi

et al .



0.5

'8
1 [ !
470 430 90 500
1 i 1 1 1 ] i i i
- N \ /s
(b) ~N // ““ /\/\\ /\/ .!‘
or \\\ '/,'"\, \;:\ :; \ ;’I \ ) H’
\ / N \ \g\ [f
N \\-‘{ \\/" ‘i!
1 ' 3 | 1 ] | 1 |
100 410 420 430 40 150 460 470 480 90 500
0.5 T T n T ] 3 ] T S
\ \ ;\q /\ / A | ,-’\ e A
' ba ~‘4. A l\- A / ll!A \ \
@ o | j\ ,M%,'“;;\ M NL \N /\ [‘V 1
I AT TRV &
AR BN 4 v [
—O_J [} 13 V’ | ] ] 1 ] | ’ ]
300 110 420 430 40 450 160 470 480 490 500
1 e 1 i ] ] | b 1
hay 7 '
Ao / /f \ / \ R
d ofF SV \f § VAN \/'/\. YA \ NV A
VA S\ LA \/ ! YA’
'.‘ ! ‘\Al \ y
\\T‘ ; ‘/ J
i ! I ! ! ] I ! |
300 410 420 430 440 450 460 470 430 490 500

Sampling time instant k&

124

Figure 6.7. MIMO Plant (—) and FF-BDRNN (—-) output trajectories in Section 6.7:
(a) First output traces for input: [ 1/2{sin(2rk/25) + sin(2nk/10)}, 1/2 cos (2nk/25) ]
(b) Second output traces for input: [ 1/2{sin(21tk/25) + sin(2rk/10)}, 1/2 cos (2nk/25) ]7.

(c) First output traces for random input. (d) Second output traces for random input.
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6.8 MODELLING A MARGINALLY UNSTABLE PLANT THAT PRODUCES
"FIGURE 8" LIMIT CYCLES USING A BDRNN

An autonomous BDRNN network with no input units is trained to reproduce a "figure 8"
limit cycle studied in [Pearlmutter 1989, Fang and Sejnowski]. Since the network has no
inputs. it is expected that the network must be marginally unstable if its outputs are to
move through limit cycles. Given the stability focus of this thesis, this example provides
a suitable benchmark to study the conflicting requirement of stable learning versus the
reproduction of the output of a marginally unstable plant. The training is expected to be

slow and difficult for the following reasons:

1 [nitially, the network has no specific information on the error at each time step.
but has a total consolidated error over the entire length of the trajectory, which

could result in slow convergence.

u Second, as the network has to emulate a marginally unstable plant. the training

could become unstable unless suitable measures are taken to ensure stability.

The "figure 8" trajectory is generated by the autonomous plant given by:

in 2™ .

4. 04| (12)
¥ ~cos 3™
KP

where K, is the number of samples per cycle of the trajectory. A plot of y,, versus y,,
vields the required trajectory. A scaled orthogonal BDRNN with four state variables. no
Input units and two output units. is considered to reproduce the “figure 8" trajectory with
a sampling rate K, = 32 units of time per cycle. The sclection of four state variables is

motivated by the fact that the plant has a fundamental and second order dynamics each



126

of which can be modelled by a 2 x 2 block diagonal submatrix. The error gradient
accumulated over the entire length of the trajectory is used to update the weight
parameters W" and C". For this, p, is chosen to be 64E-5 with a momentum of 32E-5. As
a marginally unstable plant is to be modelled, the penalty function for stabilization is
chosen so as to constrain the eigenvalues of W* to an annular ring around and close to
the unit circle. This is achieved by setting o = 1.1 in (44) and w%_=09 in (28) in
Chapter 5, which also ensures invertibility of W". Parameter . is chosen as 2E-4. During
simulations, for the chosen initial conditions and training parameters it is observed that,
with no stability constraint the training is unstable. On the other hand, with a very tight
stability constraint (¢4 < 1.0) the network did not learn as the eigenvalues of W" were
placed well within the unit circle, resulting in near-zero outputs towards the end of the
trajectory. The number of intermediate storage state vectors required to ensure numerical
stability is chosen to be five at evenly spaced intervals over each epoch. At the start of
training, the initial state variables of the BDRNN are set to random values in the interval
(-1.0,1.0]. The training is started by presenting only one circuit of the trajectory at each
run. As the learning progresses, two, four, five and finally ten circuits of the trajectory
are presented at each run while still updating the weights at the end of each circuit. At
the end of training, the network outputs are observed to continuously trace the trajectory
well beyond ten cycles as shown in Figure (6.8). This technique of gradually extending
the length of the epoch is useful in avoiding local minima and hence improving the

network performance.

The training performance of the network is evaluated using the normalized root mean
square error (NRMSE) magnitude. The initial value of the NRMSE at the output is 2.18
and its final value is 0.025. The NRMSE is down to less than 0.2 by 20,000 epochs of
training, however, about 200,000 epochs are required to bring the NRMSE to less than
0.025. Note that this example requires a BDRNN with four state variables compared to
a ten hidden unit (state variable) fully connected RNN reported in [Pearlmutter 1989] to

produce the "figure 8" limit cycles. With the scaled orthogonal form of the BDRNN, the
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number of weights required is just four in the BDRNN layer and eight in the outpur layer

compared to about hundred weights in the hidden layer and ten weights in the output

layer considered in [Pearimutter 1989].

—0s

05 0 - 05

Figure 6.8 Plot of actual outputs y,” vs. y," of the BDRNN generating the "figure 8" limit
cycle trajectory in Section 6.8.
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6.9 MODELLING THE CHAOTIC MACKEY-GLASS DIFFERENTIAL-DELAY
EQUATION USING A FF-BDRNN NETWORK

In this example the plant is described by the chaotic Mackey-Glass differential-delay

equation [Mackey and Glass]:

0.2 x?(t - <)

¢P(1) =
*0 1+ [xP(t - ©)]'°

- 0.1 x7(1) (13)

This equation is integrated using a fourth-order Runge-Kutta method with a step size of
0.1 to provide values of x’ at discrete time intervals. T is chosen to be 30 and the initial
condition for the plant is x’(¢) = 0.8 for < 0. Also the d.c offset of the signal is subtracted
from x° and the BDRNN network is presented with a single input x?(¢-30). The BDRNN
output is the predicted value of x°(¢+6). The inputs to the network are taken from the
continually evolving time series x°(f). Initially, the plant is modelled by a 24 state
variable, single input, one output scaled orthogonal BDRNN. At the start, the initial
conditions for the state variables of the network are chosen to be random numbers in the
interval [-1.0,1.0]. Thereafter, after each epoch, the initial values of the state variables are
set equal to their final values at the end of the previous epoch. The training is performed
by updating the weights after each epoch of hundred time-steps. For this, p, is chosen to
be 0.128 with a momentum of 0.064 and m, is chosen to be 0.0512. The number of
intermediate storage state vectors, to ensure numerical stability, is chosen to be ten at
evenly spaced intervals of each epoch. The stability region is constrained to within the
unit disk by setting a; = 0.95 in (44) of Chapter 5. The invertibility of W" is ensured by
setting w?,,, = 0.5 in (28) of Chapter 5. With these parameters, the network converges
in 20.000 epochs, with a six-step NRMSE of less than 0.33. Increasing the order of the
scaled orthogonal BDRNN network or replacing it with a freeform BDRNN with
global/local stabilization and retraining it, does not significantly improve the performance
of the network. The scaled orthogonal BDRNN network is then augmented with a

teedforward subnetwork (equation (17) and (18) of Chapter 3) that consists of six inputs
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together with one hidden layer with ten hidden units. The feedforward subnetwork is
presented with six input values x*(¢ - 6¢q), q = 0,..5. The resulting FF-BDRNN, when
trained afresh with the same parameters as the BDRNN. converges in 30,000 epochs, with
a4 NRMSE at the output of less than 0.03 with a performance comparable to that reported
in [Sanger, Day and Davenport]. Figure 6.9 shows the time series dynamics of the plant

and the six step prediction output of the FF-BDRNN.
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When the FF-BDRNN with the scaled orthogonal structure is replaced with a freeform
structure with global stabilization and retrained, the resulting NRMSE at the output is
observed to be 0.06. The extra restrictions imposed on the weight assignments by the
globally stabilized freeform structure may be the reason for the poorer learning of this
network when compared to the FF-BDRNN with scaled orthogonal structure. When the
global stabilization requirement of the freeform FF-BDRNN is relaxed to local
stabilization. the performance of the freeform FF-BDRNN is observed to be identical to
that of the scaled orthogonal FF-BDRNN.

For this example. the effect of the number of intermediate storage state vectors on the
numerical stability of the recomputation of the state vectors in the backwardpass of the
algorithm is also studied. For this, a track of the average number of times the FF-BDRNN
encounters numerical instability during the backward pass for varying numbers of
intermediate storage is kept. Also. a track of the average number of feedforward
computations i.e.. recovery computations required to recompute the state variable from the
nearest stored intermediate state vector when a numerical instability is encountered. is
kept. The results are tabulated in Table 6.1. It is seen from this table that. for this
example. when the stored intermediate state vectors exceeds 9% of the total storage
required by the conventional BPTT algorithm. no numerical instabilities are encountered.
Thus. this example suggests that the proposed algorithm reduces the storage requirement
for the state variables by about 90% when compared to conventional BPTT. with no
requirement for forward recomputations of state variables in the backward pass. Even
when numerical instabilities are encountered the number of feedforward computations
required to recompute state vectors are moderate. For example, with 4% intermediate
storage state vectors the total average forward computations required in the backward pass
arc 17.5 for an epoch length of 100. This significantly reduces to 4.5 when the

intcrmediate storage is increased to 5%.
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Table 6.1 Storage vs. computational requirement for state vector recomputation in

Example 4
stored in an epoch in % instabilities encountered in computations performed
each cycle with K, = 100 each time a numerical
instability is encountered
| 432 46
2 4 20
L 3 3.5 12.5
r . 35 5
|| " s ;
6 0.65 2.15
7 0.11 1.35
IL 8 0.065 1.6
I ; ) 0
10

6.10 EXPERIMENTS WITH SINGLE-DIGIT SPEAKER-DEPENDENT SPEECH
DATA

Speech sounds can be characterized by their spectral and temporal properties that depend
on the acoustic features of the sound and are manifest in the waveform, the spectra, or
both [Rabiner]. In this section, we study the application of FF-BDRNN to raw speech data
with a objective of recognizing isolated word utterances. The difficulties encountered in
speech recognition are primarily due to the complexity of the speech signal itself. Speech

is produced by the vocal tract with slow dynamics, with speech cues distributed over time
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in a complex manner. Speech prediction/recognition is hampered by several factors
including the variability of the cues caused by coarticulatory effects, dynamic behaviour
of the spectral properties. the nonlinear nature of the signal and cues that vary from

speaker to speaker.

The current approaches to speech recognition include:

Q) the acoustic approach which directly uses the properties of sound.

(in) the signal processing/pattern recognition approaches which can be subdivided into
- speech spectra modelling techniques such as filter banks. linear predictive
coding (LPC) [Rabiner and Juang].
- statistical modelling techniques like hidden Markov modelling (HMM)
[Rabiner 1989], and
- dynamic programming techniques to temporally align and compare speech

utterances of differing lengths.

(ii1)  the neural network approach which includes time-delay neural networks (TDNN)
[for example. Waibel et al. Sivakumar 1992a. Sivakumar et al 1992b and 1992¢]

and adaptive-time delay networks. and self organizing feature finders [Kohonen].

Betore speech classification or recognition is attempted, the speech signal is generally
preprocessed. to extract important information from the speech waveform. by quantizing,
scaling, preemphasising. windowing, filtering. auto/crosscorrelating, fast fourier
transforming. time warping etc. The information extracted includes location and transition
of tormants. location of end points. number of zero-crossings, energy in various spectral

bands. frequency content etc.
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The performance of the FF-BDRNN architecture introduced in Chapter 3, learning
algorithm of Chapter 4, and the stabilization approach of Chapter 5, are used in the six-
step ahead prediction of a practical time-series, viz., the speech utterances from "zero" to
“nine”. The one-step ahead prediction of speech utterances has previously been
demonstrated by [Haykin and Li (1995)] on a continuous speech signal using a pipelined
recurrent neural network and by [Tsoi and Back] on the utterance "one" using a class of
LRGF networks. In this chapter, the speech utterances chosen are those of an adult male
with a Boston accent and consist of the ten isolated digits "one", "two", "three", "four”,
“five”, "six", "seven”, "eight", "nine" and "zero" which form part of the TIMIT connected-
digit speech corpora [TIDIGIT]. The speech in the database is sampled at 20 kHz and a
15 bit linear A/D converter is used to quantize the speech. The total length of the
utterance varies from digit to digit and ranges from about 17,000 to 30,000 samples. For
the purposes of this simulation a small segment consisting of 2000 samples is sliced out
of each utterance. In all the digits, the slicing is done in a section about halfway through
the utterance where the energy is generally large. This is done so as to select sections that

exhibit strong nonlinear behaviour. The actual speech signal is scaled to between [-

0.9,0.9] and is not otherwise preprocessed.

The focus of this simulation is not on how precisely the model predicts the speech
waveform, but on how the prediction performance of a network trained on one utterance
varies when the input to the network is the waveform of other utterances, and to use this
performance variation in speech classification i.e., speech recognition is attempted based
on speech prediction techniques [Pearlmutter 1995]. Each digit recognition module
consists of a single input, 24 state variable, single output FF-BDRNN with the
feedforward section consisting of six input and 10 hidden units. The inputs to the
feedforward section consist of the speech signal at six time steps x*(t - 6q), g = 0,..5 The
BDRNN network is presented with a single input x*(£-30). The output of the FF-BDRNN

digit recognition module consists of the predicted value of the speech waveform x*(t+6).
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Shown in Figure 6.10 (a) is the waveform of the utterance “"zero". Figure 6.10 (b)
compares the sliced section of the actual utterance "zero" (in solid line) with the DRM
predicted value (in dotted line) when the input to the DRM is "zero". Figure 6.10(c)
compares the actual utterance "zero" on which the DRM was trained with the DRM
predicted value when the input to the DRM is "two". Figure 6.10(d) compares the actual
utterance "zero" on which the DRM was trained with the DRM predicted value when the
input to the DRM is "five".
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Figure 6.10 Simulation resulits for isolated word recogntion example in Section 6.10: (a)
Waveform of the utterance "zero”. (b) Plot of the sliced section of the acrual utterance
“zero” (—) vs. DRM predicted value (—-) when the input to the DRM is “zero". (c)
Plot of the actual utterance "zero" on which the DRM is trained (—) vs. DRM predicted
value (—~--) when the input to the DRM is "two". (d) Plot of the actual utterance "zero”
on which the DRM is trained (—) vs. DRM predicted value (-—-) when the input to the

DRM 1s "five".
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Ten separate modules are trained to predict the waveforms of the ten digits respectively.

Each of these modules is tested on the utterance it was trained on and also on all the

other nine utterances on which it is not trained. The results are tabulated in Table 6.2.

Each column in Table 6.2 tabulates the NRMSE when each of the digit recognition

modules is input the digits from "one" to "zero". The entry in bold corresponds to the

NRMSE when each module is input the utterance on which it was trained.

Table 6.2

on

DRM tested

NRMSE when a BDRNN module trained to model a 'digit' is tested on
digits 0-9.

Digit Recognition Module trained for “

" 1 " "2" "3" 1'4" "5" "6" "7" "8" "9"

037 [ 1.24 | 142 [ 1.08 | 1.09 | 1.60 | 096 | 1.12 | 1.11 | 1.39

l " 1.26 1046 | 074 | 074 | 169 | 147 | 202 | 066 | 1.87 | 065
"3 1.78 1 0.81 ] 0.55 | 1.08 1.61 1.30 | 1.84 1.02 | 1.80 | 0.88
"4" 049 074 1080 (034 | 1.39 | 146 | 126 | 0.77 1.30 | 0.93

I "s" 163 | 144 | 144 | 138 ]0.60 | 167 |10 1.39 | 1.14 | 1.53
"6" 194 | 1.12 { 1.05 {185 | 203 {050 119 1.09 | 195 | 1.29
"7 1.58 1.11 1.30 } 0.74 | 0.84 | 1.44 | 0.38 1.26 | 0.80 | 1.35 I

B "8" 1.08 1077 | 1.16 | 1.76 | 1.75 | 1.0 258 1 0.44 | 2.68 | 1.06
"Q" 204 | LI2 LR L1141 096 [ 165 [087 | 1.54 1 0.28 | 099
"O" 1.3 1073 {075 078 | 1.2 192 1152 | 1.11 1.16 | 0.33

| N R B NN N SR N R

Table 6.3 tabulates the pertformance of the DRM when it is input a second set of digits

spoken by the same speaker. The entry that is underlined in column 2 corresponds to the
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NRMSE when the "one" recognition module is input the digit "one", that was not used
to train the module, and was spoken by the same speaker a second time. Similarly, the
other underlined entries correspond to the performance of the other DRMs on the second

set of utterances not used in training the respective DRMs.

Table 6.3 NRMSE when each digit recognition module is tested on a second set of

"digit" utterances by the same person.

DRM tested Digit Recognition Module trained for

on a second
set "l" n2n "311 "417 "5" "6" n7n "8" 10911 uon

ufterances
"3 1.78 1081 [0.64 | 093 | 1.59 | 137 | 147 [ 1.21 | 1.39 | 0.75 "
"4 049 | 074 | 080 (041 | 140 | 145 [ 1.15 | 0.78 | 1.13 [ 0.98
5" 163 | 144 [ 144 | 133 | 062 | 1.74 | 095 | 140 | 1.09 | 1.48
"6" 194 | 1.12 [ 1.0S | 1.14 | 2.15 | 0.6 200 | 1.3 225 | 1.13
"7 1.58 | I.11 | 130 | 1.07 | 1.O5 | 1.26 | 0.74 | 1.38 | 1.05 | 1.54
"8 1.08 {077 | 1.16 | 147 | 2.61 | 1.05 | 250 | 0.53 |2.84 | I.1 "
"9 204 | 112 | 1.13 | 1.04 [0.88 [ 1.74 1094 | 146 | 045 | 0.92
"0" 134 1073 [ 075 | 081 | 139 | 134 | 154 | 1.14 | 1.45 | 0.61

It can be seen from Table 6.2 that. the NRMSE is the least when the DRM is input the
wavetorm that it is originally trained on. It is scen that the NRMSE is, in general. 150%
to 400% as bad when the DRM is input any other utterance with the exception of the

performance of the DRM trained on "one” when tested on “four”. This is due to the



139

similarity in the sliced sections of the two waveforms. Comparing the diagonal entries of
Table 6.2 and 6.3, it can be seen that, the performance of the DRM slightly degrades

when it is input the second set of digits on which it was not trained.

A possible scheme for recognition of the digits can be formulated in the tollowing

fashion:

(1) Design ten modules to perform the six-step prediction of the digits "one” to "zero"
respectively.

(i1) Quantize the utterance to be recognized and then slice out a section of samples
corresponding to a maximum in speech energy. Scale the sample.

(iii)  Input the scaled utterance to all the ten modules and observe their NRMSE.

(tv)  The module that predicts the input utterance with the least NRMSE has

"recognized” the utterance.
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Table 6.4 Summary of network and training parameters for the examples of sections
6.2 - 6.10.
Plant | network M, n, mom K, ws,,,,-,,,al N, | iteration
6.2 FF- 0.025 --- 0.012 32 - 4 10000
BDRNN
6.3 BDRNN - 0.025 0.016 {0.012 32 05.095 | 4 10000
h O&F
6.4 BDRNN - 0.025 0016 |[0.012 |48 0.5.095 |5 10000
O&F
]
6.5 BDRNN - 0.032 0.025 |[0.016 48 05,095 |5 10000
O&F
i,
6.6 BDRNN - 0.004 0.0032 { 0.002 50 0.5,095 |5 11000
l O&F
l 6.7 FF-
BDRNN - 0.016 0.012 | 0.008 30 0.5.095 |5 100000
O&F
6.8 BDRNN -O | 64 E-5 | 0.0002 | 32 E-5 | 32 09.1.1 |5 200000
6.9 BDRNN -O | 0.128 0.05 0.064 100 | 0.5.095 | 10 | 20000
FF-
BDRNN -O
6.10 FF- 0.160 0.063 | 0.080
BDRNN -O

Note: O - scaled orthogonal. F- treeform
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6.11 CONCLUSION

The scaled orthogonal BDRNN in which the global and local stability constraints are
equivalent is the better of the two architectures for modelling nonlinear plants with
oscillatory modes as it does not impose undue restrictions on weight assignments.
Simulation studies presented indicate the viability of the proposed FF-BDRNN
architecture with stabilization together with the learning algorithm for modelling plants

with a variety of nonlinear dynamics.

In all the examples presented in this chapter. the stability of learning was also assessed
without imposing the network stability constraints. In all such cases, in many instances.
the learning was observed to be unstable. One reason for this instability was traced to the
choice of the initial weights of the network (note that the weights of W” were assigned
random numbers chosen such that the eigenvalues of the 2 x 2 submatrices of the network
were on the unit circle) in relation to the choice of learning parameters. Also. even when
the initial weight matrix was chosen to be stable. in some cases the network was observed
to migrate into instability when the stability constraint was not imposed during training.
However, with the stability constraint in place. in all cases the learning was observed to

be stable for the same network and training parameters.
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7 CASCADING CONSTRUCTIVE TRAJECTORY LEARNING IN BLOCK-
DIAGONAL RECURRENT NEURAL NETWORKS

7.1 INTRODUCTION

The size and architecture of DTRNN are generally determined by trial and error.
However. this technique results in training a number of networks and then selecting the
smallest network that meets the required performance criterion. This chapter proposes a
constructive method of designing BDRNN s to model trajectories. The motivation for such
an approach is derived from the possibility that a nonlinear dynamic trajectory can be
decomposed into a combination of a dominant dynamic and a series of progressively less
dominant subdynamics. Blocks of BDRNNS can be used, with each block employed to
learn the dominant dynamic or one of the subdynamics. The advantage of such an
approach is that the size of the BDRNN is determined methodically with better error
performance and a faster learning time in comparison with the larger equivalent network

that may be used to learn the same dynamic without construction.

As discussed in Chapter 2, Waibel et al [Waibel ct al] have demonstrated a construction
technique for feedforward networks used for a speech recognition application by using
“glue” units that integrate the output of network submodules assigned to recognize
subclasses of consonants. In this technique. the weights of these submodules are first
trained and frozen and only the weights that connect the glue units to the submodules are
trained during construction. Fahlman [Fahlman 1991] has constructed cascading
teedforward neural networks with self recurrent neurons, by adding one hidden neuron at
a time. Giles et al [Giles et al 1995] also have used similar techniques to construct fully
recurrent DTRNN with hard threshold neurons by adding one neuron to the recurrent layer
after a fixed number of epochs to learn a number of finite state automata. Draelos et al
[Draclos and Hush] have constructed a composite feedforward network whose each stage

consists of a single hidden-layer feedforward subnetwork with the output of the composite
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network approximating the target function to be modelled. The hidden layer at any stage

of the composite network is trained on the residual error between the most recent estimate

and the target function.

As considered in the references cited above, any construction algorithm must address

issues related to the following:

(1)

(ii)

(111)

Addition of construction units: a construction unit may consist of either a single
neuron or a module made up of several neurons. The purpose of construction is
either to improve the performance of, or to add new information to. an already
trained network: and hence. improve the generalization capability of the neural

network.

Weight update strategy: one of the following two approaches may be adopted for
updating the weights: (a) update all the weights by completely retraining the entire
network after the addition of each neuron/module, (b) tfreezing the weights of the
existing network and train only the weights associated with the added
neuron/module by partial retraining of the network. The complete retraining
method is computationally much more expensive than the freeze and retrain
method. but has a larger degree of freedom than the latter in finding the global
solution. Hence, the freeze and retrain method may need more neurons/modules

resulting in non-minimal networks.

Choice of performance index for training: at cach construction stage, the weight
updating may be pertormed to effect the reduction of either the output error of the
composite network or the residual error which is the output error at that stage of
construction. In general. the output error reduction method is adopted together
with the addition of a single neuron at a time. The residual error reduction method

is adopted whenever a new packet of information is to be learnt.
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(iv)  Criterion to be used for starting network growth: there are two commonly used
criterions. In the first, a neuron/module is added after an arbitrary number of
epochs of training, until convergence. In the second, a neuron/module is added
each time the output training error shows no significant improvement, until
convergence. Either technique may lead to a large number of neurons/modules

being added especially towards the end of training.

7.2 CONSTRUCTION IN THE CONTEXT OF BDRNN

Although successful modelling with FF-BDRNNs of several nonlinear dynamic
trajectories has been demonstrated in the previous chapters, there exist situations where
the effectiveness of learning is restricted by the presence of dominant dynamic
components within the target system being modelled. and their degree of dominance over
other less dominant dynamics. This type of "decomposition” is analogous to a wavetorm
in a linear system, which can be decomposed into a fundamental and several harmonics

of diminishing magnitude. In a nonlinear dynamic system, a desirable strategy for learning

would be:

(1) the decomposition of the target system. it possible. into their constituent dynamic
components,

(1) classification of these components into groups based on the degree of the dynamic

dominance and
(i) individual stable learning of each of these groups.

A construction strategy which addresses these objectives is presented in this chapter.

In the context of BDRNNG. let us define the dominant dynamic of a target system as that
obtained with a single BDRNN that provides the best output error performance. i.c.. the
trajectory output by the BDRNN when no improvement or a deterioration in its

pertormance is achieved with an increase in its order. At this performance level. one may
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say that the BDRNN has learnt the dominant dynamic in the target system. The output
error trajectory then represents the subdynamics that remains after subtraction of the
dominant dynamic from the target system. The above definition of dominant dynamic
assumes that its order is known apriori and is matched with the order of the BDRNN.
However, in practical situations, the order of the dominant dynamic is not known apriori
and can be found only by trial and error, which is computationally expensive. In such
situations, the best that can be done is to assume an arbitrary sufficiently large order
BDRNN to model the dominant dynamic of the target system in a reasonable fashion. Let
us now define the estimate of the dominant dynamic as the output of a single BDRNN
of a specific order with the best error performance. The BDRNN output error then
represents the sum of the error in estimating the dominant dynamic and the remaining
subdynamics of the target system. Assuming that the estimate error is small. the output
error can now be suitably scaled and presented to a second BDRNN module as its target
trajectory. The second BDRNN similarly extracts an cstimate of the dominant dynamic
in its target trajectory. This process can be continued until the desired output performance

goal is achieved.

The proposed construction algorithm [Sivakumar ct. al. 1996b] starts with a basic module
consisting of N, block-diagonal units capable of modelling dynamic modes corresponding
to .V, eigenvalue pairs of the system being modelled. Learning is pertormed with this
basic architecture until there is no improvement in the performance criterion. at which
stage. the weights of the existing architecture are frozen and incremental construction is
accomplished by cascading « BDRNN module made up of N, block-diagonal units to the
existing architecture and training only the weights in the new module. This process is
continued until the desired output performance criterion is achieved or a selected
maximum number of modules have been added. The block diagram of the cascading

constructive learning architecture is illustrated in Figure 7.1.
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7.3  MATHEMATICAL FORMULATION OF THE CONSTRUCTION PROBLEM

7.3.1 Motivation

Let us assume that the nonlinear trajectory g,(x,%¢) to be modelled can be written as a

sum of several dynamic trajectories ordered in descending order of dominance, i.e.,
8iat) = kyfiit) + BffCon) + e ¢ iy, Gt o)) (D

with k_ is a constant < 1, representing the degree of dominance of the constituent dynamic
trajectory f (x,ut). Let us assume that f,(x,u¢) can be extracted from (l/k))g,(x,ut) by a
BDRNN with reasonable accuracy. Then what remains is the weighted sum of the

subdynamics of the target trajectory and is given by:
Bt) = ffy i) + Ry ud) + o+ hylfy G} )

Let us again assume that f,(x,u,) can be extracted from (1/k;)g,(x,ut) by another BDRNN

with reasonable accuracy. Continuing this process, the target trajectory at stage g is given

by:

Bxbd) = kff i) + Koo Goltd) + o+ by ffy, b)) 3)

This process can be continued until all the subdynamics in the R.H.S of (1) is extracted.
Let f,,(x,u,t) be the output of the g-th BDRNN module that estimates fJx,ut). The

composite error at the g-th stage is then given by:

kiqg,(x,u,t) - f,,(x,u,t) = C®) + Ky (f ) + koffpa®mud) + ) @

where L (¢#) is the error in estimating f,(x,ut). The implementation of the construction

technique, will be successtul if:
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101 s W ff,. cu0)l (5)

is satisfied where |.] is a suitably defined norm, for e.g., Euclidean norm. If (5) is not
satistied. the subdynamic constituents of the target trajectory of the g+1-th BDRNN may
be corrupted by the estimate error in the g-th construction stage resulting in poor

performance thereafter.
7.3.2 Construction algorithm description

The algorithm starts by constructing a basic module made up of N, block-diagonal

submatrices with M inputs and N, outputs. The output y,*(k) of the g-th module is given

by:

=GO, (70 wisf® + T blu®)  i=1,..N,

where v = |, if iisodd, (6)
v =i-1, if iis even.
W® = 1y (X7 cixf®) h=1,..N,

The input u(k) is the external input to the plant. The residual error from the q-th stage

is computed as:
el k) = dj®)-yi®) , h=1,..,N, (7

A scaled version of the frozen residual error in the g-1-th stage is the desired trajectory

to the module in the g-th stage. The desired value d,7(k) is given by:

k) = 8, e ® = 0 ("' B'®) ,
h=1,.N, k = g,..K,

(8)

where d,'(k) = d,(k) is the desired value of the target trajectory and 9, is an amplifying

scaling factor 2 1.0.
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The composite estimate 6,7(k) of the desired trajectory at the g-th module at any instant
k and is given by:

S YO § B 1.3 . 1
ol = %@ ?l(yh ® + 07(’" ® + s E(y,;'at))]...], o

h=1,..N,

Each BDRNN module is trained with the algorithm described in Chapter 4 with the
stability compensation technique described in Chapter 5, with the objective of minimizing
the residual output error e,”/(k). The algorithm starts with a basic module made up of N,

block-diagonal submatrices with M external inputs and N, outputs.

(FF)
MODULE 2

0O OO0 0 O

O
(o)
[e]
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ot s () summingu
K

) soating uni

Figure 7.1 Block diagram of the cascading constructive FF-BDRNN
architecture.
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7.3.3 Stability of the composite network

From (1) it can be seen that the stable learning of the trajectory requires that each of the
individual trajectories given by the R.H.S of (1) can be learned by individually stable
BDRNN modules. Thus, the stability of the composite BDRNN can be ensured by
ensuring the individual stability of each module of the composite network. At any instant
in the training of the ¢-th module, the weights of the previous ¢-1 modules have already
been frozen (and are assumed to be stable). Hence, stability of the composite network and
its learning requires the individual stability of each g-th module during its training. The

local stability of the composite BDRNN can be ensured by:

2 .
| A(WD) | < P i= 1,...,NQ (10)
q = 1L..N,

where A(W?) is the i-th eigenvalue of the square matrix W7 = {w?,}. For the global
stability of the composite BDRNN with a nonsingular feedback weight matrix W?

[ Al WW) 2 < % g = 1..N, (11)

where A,,(.) is the maximum eigenvalue of the matrix. These conditions can be directly
ensured by using the methodology discussed in Chapter 5, when training each module of

the composite BDRNN.
7.3.4 Analysis and discussion

7.34.1 Strengths
The cascading constructive trajectory learning algorithm offers the following advantages
over conventional learning techniques:

1 This technique has faster learning time and good generalization capabilities as
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each module focusses on learning the dominant dynamics of its desired trajectory.
The various modules do not interact with each other. Each module is presented
with the same input data and uses the residual error from the previous module as
its desired trajectory. Hence, at any instant, any one BDRNN module is being
trained by propagating the error signals through the connection weights in that
module and not through all the connections in the composite network. This

reduces training time and complexity.

The problem of ensuring network and learning stability is also decomposed, as the
various modules do not interact and are not being trained simultaneously. At any
instant, the stability of the composite network is addressed by addressing the
stability requirements of only the module that is being trained. This simplifies the

stability problem.

Limitations

This method of construction presupposes that the nonlinear dynamic trajectory
being learnt is decomposable into subdynamics in decreasing order of dominance
as defined by (1). This technique may fail if used for problems requiring fixed-
point learning such as in modelling finite state machines. For such problems it
might not be possible to "decompose” the finite state dynamics into meaningful

subdynamics.

This technique will also fail when the error {(¢) in estimating the dynamics
already learnt at any stage is comparable to the dynamics yet to be learned. Under
such conditions, the estimation error {(¢) introduces an unwanted dynamic that is
as dominant as, if not more dominant than, the residual error e,’(k) dynamics, and
may result in the module toggling between learning the unrequired estimation error

dynamic and the required residual error dynamics, resulting in poor overall
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learning performance.

(iii) ~ While this technique results in a collection of small decomposed networks, the
resultant network at the end of training may not be the optimal size of the network

for a given problem.

74  SIMULATION RESULTS ON CONSTRUCTIVE LEARNING

74.1 Six-step prediction of the MacKey-Glass delay differential equation with BDRNN

The plant considered in this example is the Mackey-Glass delay differential equation
described by (13) of Chapter 6. The objective here is to first simulate the six-steps ahead
prediction results of the Mackey-Glass delay differential equation with only BDRNN
construction modules with no feedforward networks. A comparison in performance
between a single-input 24-state variable, single-output BDRNN and a constructively
trained BDRNN consisting of four modules is provided in Table 7.4.1. The training
parameters and performance details for these two networks is listed in this table. The
conditions under which the BDRNN networks are trained is identical to that described in
section 6.9 ot Chapter 6. From Table 7.4.1, it can be scen that the output NRMSE for the
single-input, 24-state variable, single-output BDRNN network converges to 0.33 after
training it for 20.000 iterations. Increasing the order of the BDRNN to 32-state variable
or larger and retraining has not vielded appreciably better results. Next, a BDRNN
network is constructive built from scratch by first. beginning with a single-input, 8-state
variable. single output BDRNN as the basic module. During training the output NRMSE
reduces steadily from a initial 0.73 to a final 0.464 and does not reduce any further when
training is continued. At this stage. a second BDRNN block consisting of 8-state variables
is added. The input to the second block is the output error of the basic BDRNN module.

On training the NRMSE of the second stage reduces to 0.574, yielding an effective
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NRMSE of 0.266 for the composite network consisting of these two cascading blocks. At
this stage. a third block also consisted of a 8-state variable BDRNN is added. The input
to the third stage is the output error from the second stage scaled by a factor of 2. During
training the NRMSE of the third stage reduces to 0.83, yielding an effective NRMSE of
0.22 for the composite network consisting of the three cascading blocks. At this stage, a
fourth module again consisting of an 8-state variable BDRNN is added. The input to the
fourth stage is the output error from the third stage scaled by a factor of 2. During
training the NRMSE of the fourth stage reduces to 0.94, yielding an effective NRMSE
of 0.153. It is seen that with constructive learning there is significant improvement in
trajectory prediction performance and the effective NRMSE of the composite network
consisting of four cascading BDRNN blocks is twice as better as the 24-state variable
"monolithic" BDRNN. The six step prediction results of the 24-state BDRNN and the
cascading constructive four stage BDRNN are shown in Figure 7.2 along with the plant
output. It is also seen that training the cascading constructive BDRNN requires
approximately 56% of the training time required for the monolithic 24 state variable

BDRNN.
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7.4.2 Six-step prediction of the MacKey-Glass delay differential equation with FF-
BDRNN

The plant considered in this example is the Mackey-Glass delay differential equation
described by (13) of Chapter 6. The objective here is to simulate the six-steps ahead
prediction results of the Mackey-Glass delay difterential equation with FF-BDRNN
construction modules. A comparison in performance between constructively trained FF-
BDRNN consisting of four modules is provided in Table 7.4.2. The training parameters
and performance details for these constructively trained networks is listed in this table.
The conditions under which the FF-BDRNN networks are trained is identical to that
described in section 6.9 of Chapter 6. From section 6.9 of chapter 6, it can be seen that
the output NRMSE for the single-input, 24-state variable, single-output FF-BDRNN with
a teedforward subnetwork (equation (17) and (18) of Chapter 3) that consists of six inputs
together with one hidden layer with ten hidden units. converges to 0.03 after training it
for 30,000 iterations. Next. a FF-BDRNN network is constructive built from scratch by
first. beginning with a single-input, 8-state variable, single output FF-BDRNN with the
feedforward section consisting of six inputs together with one hidden layer consisting of
ten hidden units as the basic module. On training the basic module the output NRMSE
reduces steadily from a initial 1.92 to a final 0.23 and does not reduce any further when
training is continued. At this stage. a second FF-BDRNN block that is identical to the
basic module in architecture is added. The input to the second block is the output error
of the basic FF-BDRNN module scaled by a factor of four. On training the NRMSE of
the second stage reduces to 0.475, yielding an effective NRMSE of 0.11 for the composite
network consisting of these two cascading FF-BDRNN blocks. At this stage, a third block
also identical to the basic FF-BDRNN module is added. The input to the third stage is the
output error from the second stage scaled by a factor of 2.5. During training the NRMSE
of the third stage reduces to 0.85. yielding an effective NRMSE of 0.095 for the
composite network consisting of the three cascading blocks. At this stage, a fourth FF-

BDRNN module again identical to the basic module is added. However. a significant
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improvement in the output NRMSE performance is not observed on the addition of the
fourth module. Hence construction was stopped with a composite architecture consisting
of three cascading FF-BDRNN modules. However, it is noted that with constructive
learning there is no significant improvement in trajectory prediction performance and the
effective NRMSE of the composite network consisting of three cascading FF-BDRNN
blocks when compared to the "monolithic" 24-state variable, FF-BDRNN with a
feedforward subnetwork of six-input and ten hidden units. The six step prediction results
of the cascading constructive three stage FF-BDRNN are shown in Figure 7.2 along with
the plant output. It is also seen that training the cascading constructive FF-BDRNN
requires approximately 57% of the training time required for the monolithic 24 state
variable FF-BDRNN.

Table 7.2 Training parameters and perfformance for FF-BDRNN construction

Network

inputs (M), states momentum NRMSE iterations

(N), outputs (N,)

FF-BDRNN construction M = I, N, =, N, =N, =N, =8, N, = | with the

feedforward section input = 6, hidden units in the first hidden layer = 10.

Module 1 0.128 0.0512 0.064 1.92 to 2000
0.202
! Module 2 0.128 0.0512 0.064 0.112 12000
Module 3 0.128 0.0512 0.064 0.095 3000
SIS T ————.
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7.5 CONCLUSION

This chapter deals with the idea of constructively designing an FF-BDRNN on the
assumption that the target nonlinear dynamics can be decomposed into a dominant
dynamic and a series of less dominant subdynamics. The construction technique employs
cascaded BDRNN/FF-BDRNN modules to learn the dominant and each of the
subdynamics. The size of the network arrived at by this technique may not be the optimal
one required to model a given dynamic trajectory, however, this technique results in faster
learning time in comparison with a single FF-BDRNN network that is trained to model

the same trajectory without construction.
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8 CONCLUSION AND DIRECTIONS FOR FUTURE RESEARCH

In this thesis a new DTRNN architecture, called the FF-BDRNN., is introduced, which
with its sparse and block-diagonal structure, (i) is capable of effectively modelling a class
of nonlinear dynamic trajectories, (ii) provides an efficient framework for developing a
technique for the stabilization of the network and its training. (iii) is conducive to
designing a BPTT based learning algorithm with significantly reduced storage requirement
and (iv) provides a framework for network construction using modules. The applicability
of the proposed architecture, its stabilization, the training algorithm and the construction
method are demonstrated for several examples encompassing the following: production
of limit cycles. emulation of autonomous plants with fully-connected DTRNN
architecture, prediction of the outputs of single-input single-output and multiple-input
multiple-output nonlinear plants, chaotic time series and speech recognition using speech

prediction techniques.

8.1 MA JOR CONTRIBUTIONS

The major contributions of this thesis are the tollowing:

(i) BDRNN / FF-BDRNN architecture: A block diagonal recurrent neural network
architecture (BDRNN) is proposed in which the complex eigenvalues of the block-
diagonal submatrices of the feedback weight matrix are better suited, than purely
self-recurrent networks. to model the oscillatory dynamic modes of non-linear
trajectories. This architecture is extended to include feedforward connections (FF-
BDRNN) to provide a tramework for modelling both static and dynamic

characteristics in a unified fashion.



(i)

(iii)
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Recalculated state vector modified BPTT leaming algorithm: A learning algorithm

that has a significantly reduced storage requirement when compared to the
conventional BPTT algorithm is proposed. The algorithm reduces the requirement
for state vector storage by recalculating them in the backward pass. Successful
implementation of the algorithm requires that the computations are numerically
stable and the feedback weight matrix is invertible. In the selected BDRNN
architectures the occurrence of numerical instability is significantly reduced due
to the reduced interaction between the state variables and invertibility is easily
monitored by simple manipulation of the feedback weight matrix elements. More
importantly, numerical instability is continuously monitored by a scalar shadow
error and when the occurrence of one is detected, numerical stability is restored
by performing recovery computations. The invertibility of the feedback weight
matrix is ensured by introducing a penalty term in the cost function being

minimized during training.

Stabilizing technique: The stability of the FF-BDRNN and its training is ensured
by including, in the cost function being minimized during training, a suitable
penalty term that is a function of the relative stability of the feedback weight
matrix. For this purpose, closed form conditions for local and global stability of
the FF-BDRNN are derived using the location of eigenvalues in relation to the
unit circle. The relative stability is thus quantified and formulated as a stability
function that measures how far this condition is met or violated at each weight
update. The stability function is implemented as a constrained feedforward neural
network, termed stabilizing feedforward neural network (SFNN), which augments
the FF-BDRNN architecture. This approach guides the feedback weight matrix
towards a stable configuration while simultaneously reducing the system output

error at each weight update.
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(iv)  Construction methodology: The construction methodology is based on the notion
that if a nonlinear dynamic trajectory can be decomposed into a combination of
a dominant dynamic and a series of progressively less dominant subdynamics, then
blocks of FF-BDRNNs can be used with each block employed to learn the
dominant dynamic or one of the subdynamics. The construction method uses
several cascaded FF-BDRNN modules to construct a composite network whose
output is required to approximate the target function being modelled. The FF-
BDRNN module at any stage of construction is trained with the scaled residual
error between the most recent estimate of the target trajectory and the target

trajectory as its desired trajectory.

8.2 CONCLUSIONS ON THE BDRNN / FF-BDRNN ARCHITECTURE

The BDRNN architecture is capable of effectively modelling nonlinear dynamic systems
as demonstrated in the examples presented in Chapter 6. This architecture. without
feedforward connections, is particularly suited to accurately model trajectories generated
by systems with strong autonomous dynamic behaviour. This is demonstrated in the
example of section 6.8 of Chapter 6. where a BDRNN uccurately generates the co-
ordinates of "figure 8" trajectory without any external inputs. This is also demonstrated
in the example of section 6.6 of Chapter 6 where a BDRNN models a single-input single-
output non-linear plant with a comparable accuracy to. but with a much smaller network

size than. that reported previously in literature.

The FF-BDRNN architecture is more suitable to modelling dynamic systems where, in
addition to autonomous dynamic behaviour. there exists a strong direct correlation
between the system output trajectory and the external inputs. This is demonstrated for the
multiple-input multiple-output plant of the example considered in section 6.7 of Chapter

6. where the FF-BDRNN is observed to outpertorm the BDRNN with an output NRMSE
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of less than 50% of the latter. A similar, but better, performance is also observed in the

six-step prediction of the Mackey-Glass delay differential equation considered in section
6.9 of Chapter 6, where the FF-BDRNN, with an output NRMSE of 0.03, is observed to
clearly outperform the BDRNN whose output NRMSE is 0.33.

The following conclusions are drawn with regard to the two special structures for the

BDRNN feedback weight matrix presented: one with scaled orthogonal submatrices and

the other with freeform submatrices.

(1)

(i1)

(1i1)

Each submatrix in the freeform feedback weight matrix is suitable for modelling
a second order dynamic system with a real pair or a complex-conjugate eigenvalue

pair in the linear system sense using four distinct elements.

Each submatrix in the scaled orthogonal feedback weight matrix is suitable for
modelling a second order dynamic system with a complex-conjugate eigenvalue

pair in the linear system sense using only two distinct elements.

The BDRNN with freeform submatrices has a larger degree of freedom in weight
assignments than the BDRNN with scaled orthogonal submatrices under local
stability conditions and performs marginally better than the latter for a given
problem provided that the learning rate is chosen suitably small. However, the
global stability condition for the freeform BDRNN imposes more restrictions on
the placement of its weights than the corresponding condition for the scaled
orthogonal BDRNN. Hence, under global stability conditions the scaled orthogonal
BDRNN outpertforms the freeform BDRNN for a given problem with a better

tolerance to higher learning rates.
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8.3 CONCLUSIONS ON THE RECALCULATED STATE VECTOR MODIFIED
BPTT ALGORITHM

The block-diagonal structure of the FF-BDRNN is well suited to afford recalculation of
the state vectors during the backward pass of the BPTT algorithm. The occurrence of
numerical instability normally associated with such recalculation is considerably reduced
tor the FF-BDRNN in comparison with the fully recurrent DTRNN, as the recurrent
connections are limited to between pairs of state variables. Moreover, the block-diagonal
structure of the FF-BDRNN is exploited to address various aspects of the state vector

recalculation task as follows:

(1) calculating the inverse of the state feedback weight matrix is accomplished using

spatially local computations with simple manipulation and scaling of its ¢lements.

(1) ensuring feedback weight matrix invertibility by implementing the invertibility

criterion as a penalty term in the cost function being minimized during training.

(ii1)  ingraining the invertibility criterion in the FF-BDRNN architecture as a

constrained feedforward neural network.

(iv)  monitoring and detecting numerical instability using a shadow output error,

(v) restoring numerical stability by pertorming recovery computations using the

intermediate state vectors previously stored during the forwardpass.

It is shown that for this algorithm

() the storage requirement for the state vectors is a fraction of that required for

conventional BPTT as only intermediate state vectors are stored in the forwardpass



(i1)

(iii)

8.4
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for numerically stable recomputations of the state vectors in the backwardpass. For
example, as shown in modelling the Mackey-Glass delay differential equation
considered in section 6.9 of chapter 6, no numerical instabilities are encountered
when 9% of the state vectors are stored at evenly spaced time intervals in the

forwardpass.

the reduction in storage requirement is achieved by a tradeoff between state vector
storage and recovery computations performed to restore numerical stability. For
example, as shown in modelling the Mackey-Glass delay differential equation
considered in section 6.9 of chapter 6, the storage requirement for intermediate
state vectors is reduced to 5%, with an average allowance of less than 5 recovery

computations per epoch of length 100.
the spatially local nature of all computations involved has been rerained while still

maintaining the exact nature of gradient computation as is the case with

conventional BPTT.

CONCLUSIONS ON STABILIZATION OF FF-BDRNN

The local and global stability conditions for the scaled orthogonal and the freeform
BDRNNs are given by:

(1)

(ii)

A BDRNN with scaled orthogonal submatrices is both globally and locally stable
if the elements of each of its submatrices satisfy the condition that its determinant

is less than or equal to 1.

A BDRNN with freeform submatrices is globally stable if the elements of each of

its submatrices satisfy the condition that the sum of the square of its elements less
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the square of its determinant is less than or equal to 1.

(iii)  The local stability of a BDRNN with freeform submatrices depends on whether
the eigenvalues of each of its submatrices are real or complex conjugates.
Restricting the eigenvalues of the submatrix to be real and equal or complex
conjugates, the local stability condition is shown to be that the magnitude of the
trace should be less than or equal to 2 or that the magnitude of the determinant

should be less than or equal to 1, respectively.

The closed form of the local and global stability condition of the scaled orthogonal FF-
BDRNN and the global stability condition of the freeform FF-BDRNN allows the
formulation of the stability functions in a constrained feedforward neural network
framework using first order perceptrons. In the freeform FF-BDRNN with the eigenvalues
of its feedback weight matrix restricted to be real and unequal, the neural network
implementation of the stability function corresponding to the local stability condition
requires the use of higher order perceptrons; however. restricting these eigenvalues to be
complex-conjugate pairs allows the use of first order perceptrons in the neural network

implementation of the stability function.

Based on the simulation examples presented in Chapter 6, for most cases. the scaled
orthogonal BDRNN / FF-BDRNN performs better than or as well as the freeform
BDRNN / FF-BDRNN with global stabilization (see e.g., section 6.9 of Chapter 6). This
is attributable to the fact that although the freeform architecture has a larger degree of
frecedom than the scaled orthogonal architecture, the global stability condition imposes
more restrictions on the weight placements of the former. On the other hand. with local
stability compensation a better output error performance is obtainable with the freeform
BDRNN / FF-BDRNN as seen in the example of section 6.5 of Chapter 6 that models the
tully recurrent DTRNN plant.
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85 CONCLUSIONS ON CONSTRUCTIVE TRAJECTORY LEARNING

Based on the example presented in Chapter 7 on modelling the Mackey-Glass delay
differential equation, it is seen that training with constructive learning is at least 40%
faster than training a single BDRNN / FF-BDRNN. It is also seen that, constructive
learning with BDRNN without feedforward connection outperforms learning with a single
BDRNN described in section 6.9 of Chapter 6. In the case of constructive learning with
FF-BDRNN the output error performance, although is better than the corresponding
BDRNN with constructive learning, is marginally worse than that of the single FF-
BDRNN described in section 6.9 of Chapter 6. This is attributable to the fact that as the
NRMSE of the composite network reduces to small values, the dynamics of the resulting
residual error become increasingly difficult to be modelled by the BDRNN / FF-BDRNN

modules, hence, resulting in poor performance improvement.

8.6 DIRECTIONS FOR FUTURE RESEARCH

(1) A mathematical characterization of the tradeoff between state vector storage and
number of recovery computations performed to restore numerical stability of the
BDRNN architecture using stochastic or deterministic methods would be useful.
This would result in a methodical study of the numerical instability behaviour and

can later be extended to fully connected DTRNN as well.

(i1) It would be worthwhile to perform an in-depth study of the special architectures
of the FF-BDRNN (scaled orthogonal and freeform) with particular relevance to

their applicability to model target trajectories with special characteristics.

(ii) It would be interesting to rigorously apply the FF-BDRNN architectures to

practical problems such as speech recognition and speech generation. With suitable
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preprocessing of the speech signal such as dynamic time warping, the modelling

capability of these architectures can be better utilized.
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