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ABSTRACT
It has been successfully demonstrated that the removal of all internal reinforcing steel from
the deck slab of concrete slab on steel girder bridges is possible. The internal steel
reinforcement is not replaced with another synthetic or non-ferrous reinforcement; but, rather
the whole bridge deck structural system is modified with the addition of external steel straps.
Such a system is now being referred to as a steel-free concrete bridge deck system.
Experimental testing has demonstrated the feasibility of the concept and the substantial
ultimate load capacity of the system. A highway bridge utilizing this technology has been
in operation since December, 1995. This thesis examines in detail the behaviour of the steel-
free concrete bridge deck system under static load conditions. A rational model is developed
which reliably predicts the behaviour of the system. Verification of the model is
demonstrated through analysis of previous experimental works. An experimental program
is undertaken to access many of the serviceability and ultimate load characteristics of the
system. Using the rational model, a parametric study is undertaken to establish the effect of
the various key geometric and material parameters on the behaviour of the system. Finally.
design recommendation are presented and discussed in light of the findings of this thesis as

well as the current draft recommendations of the new Canadian Highway Bridge Design

Code.
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1 INTRODUCTION
1.1 General

It has been successfully demonstrated that the removal of all internal reinforcing steel from
the deck slab of concrete slab on steel girder bridges is possible. The internal steel
reinforcement is not replaced with another synthetic or non-ferrous reinforcement; but, rather
the whole bridge deck system is modified with a system of external steel straps. Such a
system is now being referred to as a steel-free bridge deck system. Previous experimental
testing has demonstrated the feasibility of the concept and the substantial ultimate load

capacity of the system.

The thesis undertook to investigate in detail the fundamental behaviour of the steel-free
bridge deck system. A theoretical model for predicting the behaviour and the ultimate load
capacity is developed. The model is verified using the results of previous experimental tests.
A series of tests were conducted to experimentally investigate a number of behavioural
characteristics. The experimentation was also used to verify the design safety of the first
steel-free bridge deck constructed in the field. The key parameters which influence the
performance of the system were identified and the relative sensitivity of behaviour to
changes in these parameters were determined using the theoretical model. Finally, design

guidelines are presented based on the current state-of-the-art of steel-free bridge decks.

The thesis undertook to investigate the structural behaviour of the system under static loading
only. Response of the structure to cyclic, dynamic and impact loadings is beyond the scope
of this work. As well, the fatigue performance of the system and material durability of the
concrete is not included. The experimental work is limited to simple span structures;

however, the theoretical work is applicable to both simple and continuous spans.



1.2  Steel-Free Deck Concept

1.2.1 History
Originally concrete bridge deck slabs were designed as reinforced concrete with the level of

reinforcement determined from assumptions of flexural bending and failure. The slab was
assumed to be a transverse bending member between a series of supporting girders. This
method, commonly called the flexural design method, led to high levels of steel
reinforcement in the slab. Continuing research revealed that the mode of failure of bridge
decks was not flexure. In fact, deck slabs failed at concentrated load values that were several
times higher than predicted by flexural theory. It was determined that compressive
membrane forces, sometimes referred to as internal arching forces, were being developed
within the slabs and leading to a punching failure mode. These membrane forces gave the
bridge deck substantial reserve capacity beyond its flexural design capacity. By taking
advantage of this arching behaviour, a substantial reduction in the amount of reinforcing steel
required can be realized. Empirically it was shown that for many situations 0.3% reinforcing
steel in each direction, in a top and bottom layer, was sufficient. In 1979, the Ontario
Highway Bridge Design Code (OHBDC) was developed which included design provisions
for this empirical method. Bakht and Markovic (1985) provide a state-of-the art report on the

research that led up to this code development.

In 1988, researchers at the Technical University of Nova Scotia began further investigations
into the punching failure of concrete deck slabs. Mufti et al. (1993) demonstrated that the
entire removal of all internal steel reinforcement from a concrete slab on girder bridge deck
was possible. The key to the system was to provide adequate transverse lateral restraint such
that sufficient compressive membrane forces could be developed and the deck failed in
punching. This lateral restraint was provided by transverse steel straps, external to the deck
slab, which tied adjacent girders together. Recently, this concept has led to the construction
of the world’s first steel-free concrete bridge deck over Salmon River on the Trans-Canada

Highway in Nova Scotia.
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1.2.2 Steel-Free Bridge Deck Concept

To understand the behaviour that led to the development of the steel-free bridge deck
technology we consider a section of bridge deck shown in Figure 1.1. The concrete deck is
made composite with the steel girders through the use of shear connectors. If a concentrated
load is applied directly between two girders, the concrete deck will deform and stresses will
develop according to flexural theory. Ideally, the highest tensile stresses will develop in the
bottom of the slab directly under the load point and in the top of the slab directly over the
centerline of each girder. The applied load will eventually reach a magnitude where the
tensile stresses will cause the concrete to crack in these zones. If the slab has no internal
reinforcement to carry these tensile forces after cracking, and the girders are not sufficiently
stiff in the transverse direction, the deck will fail in flexure. It is observed that the top flanges
of the girders displace outward, moving away from the point of load application. If transverse
steel straps are welded to the top flanges of adjacent girders, as shown in Figure 1.2, then this
outward displacement is prevented. The steel straps develop tensile stresses and provide a
lateral restraining force to the concrete deck. In tum, compressive membrane forces develop
within the deck slab. After cracking of the concrete has occurred, these forces enable the slab
to sustain loads through arching action even though it has no remaining flexural capacity.
The degree of lateral restraint provided will determine the ultimate load at which the deck
fails in punching. This load value can be several times greater than both the load which
causes flexural cracking of the deck and the failure load of a reinforced concrete deck.

An isometric view of the steel-free concrete bridge deck system is shown in Figure 1.3. The
transverse steel straps are spaced at regular interval, typically 1000 to 1200 mm. The girders,
the straps and the deck act as one structural system; therefore, proper connection of the straps
is important. Force transfer between all three elements must be possible for the system to

function as described. Typically the strap is welded to the top flange of the girder and the
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Figure 1.2 Cross-section of a steel-free bridge deck slab



Figure 1.3 Isometric view of steel-free bridge deck slab system

concrete slab is connected to the girders through shear connectors. This detail has performed
well; however, Bakht et al. (1996) present a number of alternate straps connection designs

which do not have the same fatigue stress limitations as welded connections.

Concrete itself is a brittle material and cracks under low tensile stresses. Two common
sources of these tensile stresses in bridge decks, other than stresses from vehicle loads, are
the plastic shrinkage of concrete during curing and the thermal expansion/contraction of
concrete due to environmental conditions. Plain concrete without any reinforcing steel is
especially susceptible to these effects. In the steel-free deck low modulus polypropylene
fibres are added to act as a plastic crack control device and to provide some post-crack
ductility to the hardened concrete slab. It should be noted that the fibres are secondary

reinforcement and do not enhance the strength properties of the concrete.

The reinforcing steel, not being necessary as a primary structural element nor as a secondary
crack control element, is removed. The system shown in Figure 1.3 is known as a steel-free
concrete bridge deck; or in other references as a fibre reinforced concrete (FRC) bridge

deck, due to the use of fibres in the concrete.



1.2.3 Significance and Benefits of Technology
In North America, most bridge infrastructure is deteriorated or undergoing rapid

deterioration. Several studies have produced the following statistics:

. “... in the province of Alberta alone, there are over 500 bridges that will require some
sort of rehabilitation” (Alexander and Cheng, 1996)

. More than 200,000 bridges in the United States are structurally or functionally
deficient with an estimated repair cost of US $90 billion (Dunker and Rabbit, 1993).

. In the province of Ontario the estimated cost of bridge deck repair and replacement
from 1993 to 2003 is over $60 million (Bickley et al., 1993).

While many of these structures are suffering because they are reaching the end of their design
life, a significant number of structures are showing premature deterioration due to corrosion
of reinforcing steel, particularly in concrete bridge decks. In eastern and north-eastern North
America, the corrosion problem is made worse by the heavy use of de-icing salts during
winter months. Damage has reached a point where the cost of maintenance and repair is far
exceeding the original cost of construction. Attempts have been made to alleviate the
problem of corroding reinforcement through the use of increased concrete cover,
waterproofing membranes and epoxy-coated rebar. These solutions have been only
moderately successful, even in Ontario where the OHBDC empirical method allows for a

substantial reduction in the amount of reinforcing steel used, the problem still exists.

The steel-free concrete bridge deck allows for the removal of all reinforcing steel and thereby
removes the source of the corrosion entirely. The durability of the deck is increased and the
operation and maintenance cost is substantially reduced. It is predicted that the service life
span of the deck will increase. In addition, the real costs of traffic delays and re-routing

during repairs will also be reduced. The chief benefit of the steel-free deck is reduced long-

term infrastructure costs.



7

The technology does have two other significant benefits. Firstly, with further optimization
it can be shown that the steel-free deck will be cheaper than reinforced concrete decks based
on capital cost considerations (Newhook and Mufti, 1996). Secondly, the technology leads
to a better understanding of bridge deck behaviour in general.

1.3  Previous Research on Steel-Free Bridge Deck Technology

Work on the steel-free concrete bridge deck began in 1988 with pioneering credit belonging
to Dr. Aftab A. Mufti of the Technical University of Nova Scotia, Dr. Leslie G. Jaeger of
Vaughan International Consultants and Dr. Baidar Bakht of the Ministry of Transportation
of Ontario. Numerous publications have been produced either jointly or separately by these
individuals but only the key works will be referenced here. Mufti et al. (1993) first reported
the work on four half-scale bridge deck models which demonstrated that the concept was
possible. The test setups had two and three girders spaced 1000 mm apart with a 100 mm
thick fibre reinforced concrete deck. The successful test models had transverse steel straps
64 x 10 mm in cross-section welded to the top flanges of the girders at a spacing of 457 mm.
The fibre was a low modulus polypropylene fibre added to the concrete at 0.88% volume
fraction. The girders and the deck were made composite by shear connectors. These test
decks failed in punching shear. While further research has led to optimization and
investigation of new parameters, the fundamental system of the steel-free bridge deck has

remained unchanged from this original work.

While the work of Mufti et al. (1993) demonstrated the concept for rectangular bridge decks,
Bakht and Agarwal (1993) demonstrated that the concept is also valid for skewed bridge
decks. To complement the experimental work, Wegner (1992) undertook a non-linear finite
element analysis approach to developing a theoretical design tool for this system. Wegner
and Mufti (1994a) report some success with the method, particularly in guiding further
experimental work; however, the finite element model was found to be too cumbersome and

sensitive to modelling parameters to be of practical use in design. Wegner and Mufti (1994b)
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also proposed that a rational model developed for reinforced concrete slabs by Kinnunen and
Nylander (1960) may be able to be adapted to the steel-free bridge deck system. A thorough

investigation of this model was undertaken in this thesis.

Additional experimental work on a fifth half-scale model tested at TUNS is reported in
Newhook et al. (1995). The fifth half-scale model was important in providing direction for
further work in five key areas. Firstly, it demonstrated that the concept of an edge beam
(Mufti et al., 1993) at the free edge of a slab promoted punching failure in this region of the
slab. Secondly, it demonstrated that changing the spacing of the transverse steel straps altered
the failure load. Thirdly, it indicated that the diaphragms between girders did not have a
significant effect on the restraint stiffness. Fourthly, it indicated that the proximity of the
straps to the point of load application and the location of the load relative to the girder span
has an effect on restraint stiffness and failure loads. Finally, it indicated that a reduction in

the thickness of the concrete deck was possible.

Thorburn and Mufti (1995) reported research on the optimization of the system. Their
experimental work demonstrated that a reduction in deck thickness to 175 mm on a 2000 mm
girder spacing was possible. This represents a depth to span ratio of 11.4 which is an increase
from the previous ratio of 10. They also demonstrated that a reduction in the amount of steel
in the straps to 0.37% of the deck cross-sectional area was possible. Thorburn and Newhook
collaborated in a joint test (Thorburn and Mufti, 1995 and Newhook and Mufti, 1995) to

demonstrated a simple repair technique for the steel-free deck.

In a complementary investigation, Mahue and Bakht (1995) developed a design detail for a
concrete barrier wall which could be safely connected to a steel-free deck. As well,
Selvedurai and Bakht (1995) performed tests to verify the performance of the steel-free deck
under millions of cycles of moving wheel loads. Finally, Bakht et al. (1996) report on

alternative strap connection details and strap configurations for the system.



1.4  Original Work of This Author

1.4.1 Rational Model

As indicated above, Wegner and Mufti (1994b) proposed using the work of Kinnunen and
Nylander (1960) to develop a rational model for the steel-free concrete bridge deck. Some
initial work was performed by Wegner (1993) which demonstrated the feasibility of this
approach. [n this thesis a thorough investigation of the rational model was undertaken and
several improvements to the model were developed. The significant contributions of this

author to the rational model are categorized into five items.

1. As will be demonstrated in a later section, the concrete surrounding the point of load
application is in a state of three-dimensional compressive stress. Characterizing the
behaviour of the concrete in this zone is of key importance. Wegner (1993) used a
three-dimensional concrete failure criteria employed by ADINA (Wegner, 1993), a
non-linear finite element analysis package. In this thesis, a confinement relationship
similar to Richart’s (Demers and Neale, 1994) relationship for confined concrete
cylinders was employed. In addition, it was determined that a new empirical constant
was necessary to describe the confinement conditions in a deck slab as opposed to

a concrete cylinder.

2. A fundamental component of the steel-free deck is the lateral restraint which leads
to development of the internal arching forces. An experimental and theoretical study
was undertaken to develop a method for determining the lateral restraint value to be
used in the rational model. The method is able to account for the restraint stiffness
provided by both the straps and the girders as well as the variation in restraint

stiffness due to the proximity of the individual straps to the applied load.

3. The original model proposed by Wegner (1993) employed only one punching failure

criterion that being a failure associated with the attainment of a critical strain value
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in the deck slab. This work demonstrated that it is necessary to include a second

failure criterion associated with the yielding of the steel straps.

4. Whereas Wegner (1993) used only one experimental model to test his rational model,
this work includes experimental verification with all experimental models previously

tested. In addition, parameters other than ultimate load comparisons are investigated.

5. While the rational model was developed for steel-free concrete bridge decks, the
model is also applied to reinforced concrete bridge decks. Two experimental models

are analysed and show favourable comparisons.

1.4.2 Experimental Work

The main experimental work of this thesis was performed on a full-scale model of a bridge
deck built in the Heavy Structures Laboratory of TUNS. Testing was performed on the steel
frame before the addition of the concrete deck slab and on the completed system with the
concrete deck cast in place. A series of tests were performed to investigate parameters which

had previously not been studied. The following is a list of the original aspects of this testing

program:
. Testing a deck span to thickness ratio of 13.5

. Testing the effect of concrete haunches over the girders

. Testing a strap spacing of 1200 mm

. Testing the capacity of the system in a deteriorated condition
. Testing the effects of multiple wheel loads

. Testing the effects of diaphragms on restraint stiffness

. Testing the lateral restraint stiffness of the straps and girders
. [nvestigating service load behaviour

. Investigating load sharing between girders

. Investigating composite section behaviour
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1.4.3 Parametric Investigations
A parametric investigation was undertaken using the rational model to assess the effects of
the various key parameters on the failure load of the steel-free deck. The parameters are

ranked according to the level of influence and a summary of the influence of each parameter

is presented.

1.4.4 Field Application

The author had the distinct privilege of collaborating with Dr. Aftab A. Mufti, Dr. Leslie G.
Jaeger, Dr. Baidar Bakht and Dr. Gamil Tadros in the design of the world’s first highway
bridge using the steel-free concrete bridge deck technology (Newhook et al. , 1996). The
structure is located on the Trans-Canada Highway 104 over the Salmon River near
Kemptown, Nova Scotia. The full-scale model tested at TUNS is based on the Salmon River
Bridge design. The design of the structure is the original work of the five person design team

and the experimental work of this thesis serves as verification of its safety.

1.4.5 Design Recommendations

Design recommendations are presented and discussed based on the theoretical and
experimental work of this thesis as well as an extensive understanding of the previous work
of other researchers. The draft code clauses of the new Canadian Highway Bridge Design
Code (CHBDC) are also reviewed and discussed. The author’s own design guidelines are

presented and differences with the draft code are highlighted.



2 RATIONAL MODEL FOR PREDICTING THE PUNCHING FAILURE
BEHAVIOUR OF STEEL-FREE CONCRETE BRIDGE DECK SLABS

2.1 Overview of Existing Models

It has been known for sometime that reinforced concrete bridge decks fail in punching at
loads that can far exceed the flexural design load. Many structural concrete building slabs
subjected to concentrated loads also exhibit this behaviour. Because the punching failure can
not be predicted by flexural theory, researchers have investigated many approaches including
empirical formulas, semi-empirical formulas, rational models and non-linear finite element
analysis in an attempt to develop a reliable design tool. Some of these models have been
calibrated over a wide number of experimental results and have exhibited good results for
many situations. However, all available models have one or both of the following problems.
Firstly, models developed for bridge decks or structural slabs include forces developed by
the reinforcing steel as key parameters. There is an obvious problem when applying these
methods to reinforcing steel-free deck slabs. Secondly, almost all models do not account for
the effects of lateral restraint on punching behaviour. Hewitt and Batchelor (1975) did
include restraint parameters in their work; however, the restraint parameter relied on forces
developed by the reinforcing steel in a manner that is inappropriate for steel-free decks.
While all the work of other researchers in the field of punching shear models for reinforced
concrete will not be outlined in detail in this thesis, representative works will be referenced

throughout this chapter under the appropriate topics.

To demonstrate the problem with present punching shear models, let us consider the
provisions of several of the existing concrete codes. The four codes under consideration are
the Canadian Standards Association CSA A23.3-M95 Design of Concrete Structures. the
American Concrete Institute ACI 318-89 or the American Association of State Highway
Transportation Officials AASHTO, British Standard Institute BS 8110, and the European

Code CEB-FIP. The appropriate requirements are given in equation form for each code in
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equations (1) to (4) respectively. The reader is referred to the following references to
examine how others have used these equations for reinforced concrete slab results: Ebeido

and Kennedy (1996), Ahmad et al. (1994), Azad et al. (1994), Kuang and Morley (1992).

2
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Equations (3) and (4) have a term, p, representing the density of steel reinforcement in the
slab. The use of these equations in a slab devoid of steel reinforcement yields O kN as the
value of punching load. While equations (1) and (2) do not have terms associated with
reinforcement, nor do they have terms associated with restraint stiffness. For these equations
lets us consider the slab tested by Thorburn and Mufti (1995). This slab was tested to failure
at various locations; each location had a different value of restraint stiffness but the same
geometry and concrete strength. The punching failure values varied from 576 to 1127 kN.
Using either equation (1) or (2) we would get the same theoretical punch value at each
location. For the slab tested Pcs, = 830 kN and P, = 690 kN. Kuang and Morley (1992)
came to a similar conclusion regarding equation (2) when investigating restrained reinforced
concrete slabs. The equations cannot be used because they do not account for restraint
stiffness effects. Other researchers (Siao, 1994; Regan, 1974; Gardner, 1990; Bazant and

Cao, 1987) have investigated similar critical section style equations and have calibrated the
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equations for reinforced concrete slab test results. The use of the equations developed by
theses researchers would again have the same problems as illustrated by the code formulas

when applied to steel-free slabs.

Another common method of examining the failure of reinforced concrete slabs is the yieid
line method (MacGregor, 1992). In simple terms one examines the failure lines or yield lines
of the slab. A moment value is associated with the yielding of the reinforcement along these
lines. The load to cause yielding along all designated failure lines is then determined and is
considered to be the failure load. The application of the yield line model to steel-free slabs
has two obvious problems. Firstly, membrane action not flexure is the most significant
characteristic of slab behaviour. Secondly, a deck devoid of internal reinforcement cannot
form yield lines. If one proposes that the modulus of rupture replace the yield moment then
one can still not explain why the deck has two to three times the capacity of its cracking
moments. Kuang and Morley (1992) also investigated the yield line model for restrained
reinforced concrete slabs and found it to be inappropriate for slabs with either high degrees
of restraint or low reinforcement ratios. In both cases the membrane action is the most

significant contributor to slab behaviour.

It is necessary then to develop a new model suitable for the behaviour exhibited by the steel-

free deck.

2.2  Characteristic Behaviour of Slabs in Punching

2.2.1 Crack Patterns

In order to develop a model we will first examine some characteristic behaviour of the
punching failure of slabs. Common to all slabs that fail in punching is a very distinct crack
pattern. On the underside of the slab radial cracks grow outward from the centre of the point
of load application. On the top surface, circumferential cracks form at a diameter roughly

equivalent to the spacing of support points or girders. The radial cracks on the underside
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always form first, at relative low loadings compared to the ultimate failure load. The
circumferential cracks form next. Subsequently, the radial cracks will migrate to the top
surface to form full depth cracks. Before failure a third crack forms at an inclined angle to
the point of load application. This inclined crack starts at the bottom surface of the slab and
migrates upward and inward towards the load point. This shear crack forms the boundaries
of the punch cone, shown in Figure 2.1, which punches out at failure. Two important points
should be noted about the crack patterns. The cracks form early in the load history of the slab
and the slab has substantial capacity after the formation of cracks. These crack patterns are
not unique to steel-free deck slabs but have been reported by Gardner (1990), Ahmad et
al.(1994), Shehata (1990), Marzouk and Hussein (1991), Kuang and Morley (1992), Taylor
and Hayes (1965) and Kinnunen and Nylander (1960) for reinforced concrete slabs; by Azad
et al.(1994) , Ebeido and Kennedy (1996) and Fang et. Al (1986) for reinforced concrete
bridge decks and Malvar (1992) for reinforced concrete pier deck slabs.

Figure 2.1 Cross-section of deck slab showing shear cracks and punch cone
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2.2.2 Flexural Capacity

It has been known that reinforced concrete deck slabs have failure loads that far exceed their
flexural capacity (Bakht and Markovic, 1986; Beal, 1982 and Hewitt and Batchelor, 1975).
[n addition, the above mentioned crack patterns form early in the load history of a deck slab.
In the case of reinforced concrete, the reinforcing steel gives the slab moment capacity
beyond the cracking moment of the deck. However, in the steel-free deck, the slab has no
additional moment capacity beyond its cracking moment. [f the slab continues to accept
increasing loads after the formation of cracks, then it is obviously not through flexural

behaviour.

223 Lateral Restraint

When investigating the punching failure of slabs, and in particular bridge deck slabs, the
effect of the lateral restraint must be considered. Lateral restraint was described in Chapter
1 as the force which resists the outward movement of the concrete, generally by restraining
the outward displacement of the girders. This lateral restraint is synonymous with the
development of internal compressive membrane action. Ghoneim and MacGregor (1994),
Ebeido and Kennedy (1996), Hewitt and Batchelor (1975) Kuang and Morley (1992), Taylor
and Hayes(1965) all acknowledge the contribution of lateral restraint or internal arching to
increasing the load carrying capacity of slabs. However, only Ghoneim and MacGregor
(1994) and Hewitt and Batchelor (1975) made attempts to include this parameter in their
respective models. The former included its affect as a constant in-plane force applied at the
mid-depth of the slab and the latter used an empirical procedure based on reinforcing steel

forces and moments. Both these approaches are inappropriate for the steel-free concrete deck.

The early work of Mufti et al. (1993) clearly illustrates the importance of this restraint to the
performance of steel-free slabs. In early testing, no straps were provided between adjacent
girders for the model bridge deck slabs. The level of lateral restraint was low and the deck
slabs did not fail in a punching mode. The same test configuration was tested again but this

time steel straps were added to tie the adjacent girders together. The level of lateral restraint
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being significantly higher, the deck slab failed in punching at a load value twice that of the
previous tests. In addition, Thorburn and Mufti (1995) clearly demonstrate that by changing
only the lateral restraint parameter, a substantially different punching failure load value can
be achieved. The internal arching forces and hence the lateral restraint is essential to the

performance of the steel-free deck slab system.

224 Three Dimensional Compression

The concrete zone surrounding the point of load application is in state of a three dimensional
stress. This fact has been reported by Kinnunen and Nylander (1960), Jiang and Shen (1986),
and Marzouk and Hussein (1991). How these forces are developed will be detailed in a later
section; however, the existence of this three dimensional state is important. In effect, it
means that the principle compressive stress around the load point can reach values well in
excess of the uniaxial compressive stress, f°. . Therefore, a relatively small area of concrete
adjacent to the load point is able to develop compressive forces sufficient to sustain very high
applied loads. This compressive stress state is both a key to sustaining high loads and a

limiting factor in determining the failure criteria.

Any model of steel-free concrete bridge deck slab behaviour must therefore include at least

four parameters which are characteristic to the punching failure of slabs:

1. Consideration of the crack patterns which form before punching failure occurs.

2. Consideration of a mechanism which will allow the continued acceptance of load
after flexural capacity has been exceeded.
Inclusion of a term to define the lateral restraint stiffness of the system.

4. Inclusion of expressions to account for the increase compressive strength around the

load point due to the confinement of concrete.
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23 Development of a Rational Model

As indicated previously, many different models for punching shear of slabs have been
developed. Marzouk and Hussein (1991) state that the rational model developed by Kinnunen
and Nylander (1960) still provides the best account of punching behaviour and applied the
model to high strength reinforced concrete slabs. Hewitt and Batchelor (1975) incorporated
restraining boundary conditions and the compressive membrane action into the Kinnunen and
Nylander (1960) model and demonstrated its application to reinforced concrete bridge deck
slabs. Although the work of Hewitt and Batchelor (1975) was developed for bridge decks
with lateral restraint, it is primarily applicable to reinforced concrete slabs in which the

reinforcement is a boundary condition.

Also, the restraint factor proposed by Hewitt and Batchelor (1975) was empirical and can
only be found through experimentation. Based on investigations of other models, as well as
observations from experimental work, this author also believes that the Kinnunen and
Nylander (1960) rational model is the most reasonable approach to modelling the punching
behaviour of bridge decks. This process allows for the inclusion of the four characteristics
of punching stated above. The use of this model was first proposed by Wegner and Mufti

(1994); however, significant changes have been made by the author, Section 1.4.1.

The basic model assumptions will be presented first, followed by the mathematical
development of the equations of equilibrium and an explanation of the failure criteria.
Discussion of two key concepts will be deferred until after the solution algorithm has been
defined. These two items are the concrete confinement relationship and the value of the

restraint stiffness parameter.

2.3.1 Basic Assumptions
l. The crack pattern described in Section 2.2.1 is idealized as shown in Figure

2.2. The three types of cracks are the radial cracks, the circumferential cracks
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and the inclined shear crack. The sections of the concrete outside the shear
crack can be divided into “wedges” bound by the three types of cracks
(Figure 2.3). Under loading, these wedges act as rigid bodies in the radial

direction rotating about a centre of rotation as shown in Figure 2.4.

At the intersection of the wedges and the loaded area is the region which
Kinnunen and Nylander (1960) described as a conical shell of very high
compressive stress (Figure 2.5). This region is in a state of three dimensional
compressive stress. The load is transferred into compressive membrane forces

through this conical shell.

Kinnunen and Nylander (1960) demonstrated that, immediately after the
appearance of the shear crack, the centre of rotation of the wedges is located
at the root of the shear crack. As the load increases, the centre of rotation
moves towards the centre of the load point. For this model, the centre of
rotation will be assumed to always be at the centre of the load. The centre of
rotation will be located at a distance y from the top surface of the slab (Figure
2.4).

The model developed by Kinnunen and Nylander (1960) assumed
axisymmetric geometry and loading. Hewitt and Batchelor (1975) proposed
a method of idealizing bridge deck loading and geometry into an equivalent
axisymmetric condition. This same method is followed here. The loaded area
of a bridge deck from a vehicle tire is approximately a rectangular patch. For
purposes of the theoretical model, the non-circular load area is converted into
a circular load area of equivalent perimeter, with a diameter B. An equivalent
circular slab is defined by the largest circle of diameter C which can be

inscribed between the centre lines of adjacent girders (Figure 2.2).
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2.3.2 Expression of Forces and Deformations Of the Rigid Body Wedge

23.2.1 Geometry of Wedge

The outer radius of the wedge is C/2. The inner radius is B/2. The depth of the wedge is the
full depth of the slab, d. The shear crack of angle e forms the inclined surface of the wedge.
The base of the conical shell at the root of the shear crack is designated ¢,. The depth of the
compressive stress block due to restraining forces is ¢,. The angle inscribed by the two radial

cracks forming the sides of the wedge is Ad.

23.2.2 Deformations
The angle of rotation of the wedge is { and the accompanying deflection under load is

A=—y 5)

The lateral deflection of the point of support is
A, =U(d~-y) (6)
2323 Vertical Load at Support

The vertical load at the support for the sector of the circle equivalent to the wedge is given

by the expression

PAG
y=_2%Y
o )
23.24 Oblique Compressive Force

The compressive stress in the conical shell is assumed to act in a direction parallel to the
shear crack. If T is the resultant force, acting on the wedge, then as the wedge rotates, T acts

at an angle to the horizontal of (a-y) such that the vertical component of the force is

T =T - sin(a-{) (8a)

v
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The horizontal component of this force is

T, =T - cos(a-{) (8b)

h

2.3.2.5 Lateral Restraining Force
If we designate K as the stiffness of the elements providing lateral restraint, principally the
straps, and remember that the rotation of the wedge leads to a lateral deflection, A, at the

support point, then the restraining force F can be expressed as

F = KA, ©)

or substituting from (6)

F = K ¥(d-y) (10)

The derivation of the value of restraint stiffness, K, will be given in Section 2.5. The variable
K has units of force/displacement per unit length of circumference and can be thought of as
the restraint stiffness per unit length of circumference. For simplicity K will be referred to
only as restraint stiffness. This being understood, the restraining force acting on the wedge,

F,, is derived as

sz-%Ad) 1)

F, = Ky (@) = Ad (12)

The restraining force is developed in the wedge through compression in the bottom outside
edge of the wedge and acts only in the radial direction. The compressive stress is idealized
by a rectangular compression block of depth ¢, and magnitude of 0.85 f'.. The force F,, acts
at a height of ¢,/2 above the bottom of the slab. Resolving the resultant F,, from the stress
block
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F, =085f %Acb ‘e, (13)

Equating equations (12) and (13), we find that

- K ¥(d-y)

0.85 £, (14)

It is important to note two assumptions regarding this formulation. Firstly, the restraining
force is related directly to the lateral deflection A, by the stiffness K. The calculation of A,
neglects any elastic shortening of the concrete wedge due to the restraining force. This is
approximately true when one considers that the area of the steel strap is typically only 0.6%
of the area of the concrete deck. Even with a modular ratio of 7, E A, is still over 20 times
E(A,, consequently the elastic shortening of the concrete is small compared to the elongation
of the straps. This factor is reduced somewhat by the fact that there is very localized bearing
stresses in the tip of the conical shell and at the support points; however, it is acceptable to
neglect any shortening of the slab. Secondly, the model assumes that the system is
axisymmetric, such that a uniform restraint is provided around the entire circumference of
the idealized circular slab. While it is easy to visualize restraint in the transverse direction
being provided by the steel straps, the restraint in the longitudinal direction is less apparent.
It is postulated that the in-plane stiffness of the concrete deck coupled with the girders acting
as very stiff straps in the longitudinal direction provides a sufficiently high degree of restraint
such that a uniform restraint, equivalent to the restraint in the transverse direction, can be
assumed around the entire circumference. This seems reasonable when one considers the
results of testing of early half-scale models (Mufti et al., 1993). Although a high punching
load was achieved in the central portion of the slab, lower failure loads resulted as the load
location approached a transverse free edge. In some cases the failure mode degenerated into
a hybrid mode of flexure and punch. It is easily understood that, as we approach the free
edge, the in-plane longitudinal restraint diminishes such that the assumption of uniform

radial restraint around the circumference is no longer valid. In subsequent tests (Newhook
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et al., 1995), edge beams were added to increase the in-plane stiffness of the deck at the free
edge.

Punching shear failure was achieved for loads close to the edge, although at a lower load
value than for a centrally located load. It is therefore reasonable to assume that the deck and

girders provide lateral restraint to the system.

23.2.6 Circumferential Compressive Force

[f we consider the rotation of the wedge about a centre of rotation located a distance y below
the horizontal top surface of the wedge, then all points above the plane defined by the y-
normal can be seen to be moving closer to the central axis of the circular slab by a dimension

0 (Figure 2.6).

As the location of the point above the y-normal plane increases, so does the displacement &.
The consequence is that the radial distance from the central axis is now r-6 and the change
in circumference is 27m(r-6). Equating the circumferential strain to the change in

circumference

Figure 2.6 Rigid body rotation of a wedge
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The displacement & is readily approximated by ¥-z where z is the distance above the y-

normal plane. Therefore

Ccr=yl (16)

with
Cec: =0 @ z=0

MIN an
echAx = Ery— @ z=y

The corresponding circumferential stress can be expressed as

o,=E ¥ - (18)

[t is noted that at z=y and r = B/2, g, is maximum and confirms that a state of three
dimensional compressive stress exists in this region. If we integrate this circumferential
stress in the vertical direction from 0 to y and in the radial direction fromr=B/2 +ytor=

C/2, we obtain an approximation of the total circumferential compressive force R acting on

the wedge.
£
R = 2 T E = dzdr
j;=—'y =0 ¢ w r
r=£ 1 2.
R=E ¢ [ —L|ar (19)
r=—2-’y rf2
2
£y L |in L2
2 BI2+y
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This integration neglects the triangular portion of the wedge above the y-normal between r
=B/2 and r = B/2+y. However, this portion is small compared to the total force and has been
omitted. Furthermore, Kinnunen and Nylander (1960) found that the radial concrete strain
in this region, near the load area, often decreased or became positive prior to failure such that
a mechanical model based on plane deformation is not valid for this region. It is worth noting

that the compressive conical shell is contained within this region.

While E_ is shown as a constant, it is actually a non-linear function of the concrete strain,
approximately similar to the uniaxial stress strain relationship for concrete in compression.
While several idealizations have been developed, concrete researchers have yet to reach a
consensus on a rigorous mathematical description of this function. Nevertheless it is
important to account for the decreasing value of E. as €, increases, otherwise the value of
R will be overestimated. To address this we follow the approach of Kinnunen and Nylander
who related R to the compressive stress in the top of the slab o,,, at r = B/2 +y. This is

achieved by substituting

- _E Yy
cW,:%., £+y (20)
2
into (19) such that
<
B 2
R = (o) % ln —=—|-o, (21a)
_+y ’AT Y
2
or
<
2
R=En X hn2| o0 (21b)
2 2 B BOEE-R
y B, .,
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This eliminates E_and y from the equation and relates the force to stress at a point at which

the stress can be measured.

Kinnunen and Nylander (1960) empirically established that for B/d > 2 using

=1 .
o, 007 +0.392 o, 22)

in psi, yields accurate values of R.

The relationship for 0. in terms of cylinder strength, f.' as given by Batchelor and Hewitt

(1975) is

fi
= (23)

0.75 + 0.000025f,

cube

Accepting this formulation, a value of R can be found for a given value of y.

[f we now consider the wedge with a sector angle of A¢, then the component of R in the

radial direction through the centre of the wedge is given by

R =R -2 sin (%) (24a)

r

such that R, is approximately

R = RAG . (24b)
233 Equilibrium Conditions
2.3.3.1 Vertical Equilibrium

Equating the vertical components acting on a wedge we find that
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T =P —L (25)
27 sin(a-y)
2.33.2 Horizontal Equilibrium - Radial Direction

The horizontal component of the oblique compressive force T from equation (8b) is
Ty =T cos(a-y).
Substituting from above, we find

r, = PAcb . cos(a-{) (26a)
2t sin(o-y)

or

T, =P A—d) cot (a-y) (26b)
2T

Equating the three horizontal forces acting on the wedge, we have

P -i—:i- cot (a-y) + RAD =K % Y(d-y)Ad (27a)

or

P C
— cot(o- R =K = WU(d-
0w (a-y) + 5 U(d-y) (27b)

This can be re-written as

P = 27 tan(a-{)W (28)
where

W o= K —;5 Wd-y) - R 29)



2334 Moment Equilibrium
A third equation of equilibrium may be obtained by summing moments in the vertical plane

about the point defined by the intersection of the horizontal restraining force, F,, and the

vertical support force PA¢/2T.
Rd -Z -_cl) £ cot(e-) |[d - & e R q;(g-ﬁ)
3 2 27 2 2 (30)
P lc B By =
— - = + d - — - =
w2z 2 W 2 )}
Substituting for P and solving for «
R c By ¢ C B
j;("‘f‘?f’*“ I
= tan-l ﬂ.' + ll] (31)
C B 4 ¢
—_ - — + d - — - —
l 2 7 ¥ 2 2)
234 Triaxial Compressive Stress

To find an expression for y we consider the region surrounding the conical shell. Following
the procedures of CSA-A23.3-M84, we can idealize the stress distribution at the intersection
of the conical shell and the edge of the loaded area as a rectangular stress block of depth B,y

and magnitude of 0.850, where

B, = 0.85 f. < 30MPa
/
. -30)
B, = 085 - 0.08 ——— 30MPa < f. < 55MPa (32)
B, = 0.65 f. 2 55MPa

Relating B,.y to the stress block ¢, associated with the force T, we have
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c, cos(e-y)
y = 2009 (33)
B,
The sum of all oblique forces around the perimeter of the loaded area is P/sin (e-¥) acting

on a stress block of area ¢; B such that the stress o,

P
0.850, = sin(a-¢) (34a)
cl‘IrB
or
¢, = i 34b
' 0.85 ©B sin(e-¥)0, (34b)

Considering the triaxial condition with ¢, < 0, < 05 then 0;=0,, 0, =0y and 0, = 0,

Ol=

£
4, (335)

where A, is the actual area of the tire print.

Richart (Demers and Neale, 1994) proposed the following model for the behaviour of
concrete under confinement

' Ol
Oy =fc |1 *k— (36a)
I
ag
=1 vk — (36b)
/e fe

where k =4.1.
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Adopting equation (36a) with k = 10 for this application, see Section 2.4 on concrete

confinement relationship, yields an expression for ¢, based on P

P

Cl =
0.85 ©B sin (a - q;)fc’[l .y ?_;] 37

I

and thereby gives a relationship for y in terms of applied load P through equations (33) and
(34).

23.5 Solution Algorithm

Based on the formulation given, the following parameters are necessary to define the system:
C, B, d, f' and K. If these parameters are known, then an iterative procedure can be used to
predict the equilibrium load for a given deflection, A. Using equation (5), the angle of
rotation. P, is determined. An initial estimate on y is made; a convenient estimate would be
y =d/10. Values for R, W, & and P are calculated in that order using equations (21) with
(22), (29), (31), and (28) respectively. A calculated value for y is determined by equations
(32) through (34). If the assumed y is equal to the calculated y, within a predetermined
tolerance (say 0.0001), then the equilibrium load P is correct for the chosen value of

deflection. If not, a new value of y is assumed and the process is repeated until convergence

is achieved.

This procedure can be repeated for incremental values of A between zero and a cut-off point
of A=d. A curve of equilibrium load versus deflection is plotted as shown in Figure 2.7 and
can be considered to represent the load-deflection history of the system. The failure load of
the steel free bridge deck system is then determined by applying one of three possible failure

criteria.
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Figure 2.7 Equilibrium load versus deflection

2.3.6 Failure Conditions
The mechanism postulated in this rational model can have three modes of failure or collapse:

instability, crushing of the concrete, or yielding of the restraint straps.

Instability collapse is best understood by examining the load-deflection history shown in
Figure 2.7. Each point on the curve represents the system equilibrium load, P, for a given
value of deflection, A. The wedge rotation mechanism can reach a state of geometric
instability such that any additional deflection leads to a reduction in the value of the load
required to maintain the equilibrium of the system. This condition occurs when the deflection

reaches the value corresponding to the maxima of the load-deflection curve or

dP
=0 8
A (38)

In this situation the outer wedges, unable to reach a condition of static equilibrium, continue

to rotate and the deck collapses. This mode of collapse is referred to as snap-through failure.
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The second failure mode, crushing of the concrete, leads directly to punching failure of the
deck. To understand this mode of failure, we must recall two important characteristics.
Firstly, the section of concrete inside the shear crack is supported by a compressive conical
shell developed in the wedge sections. Secondly, this conical shell is in a state of three-
dimensional compressive stress and these stresses increase proportionally as the wedges
rotate under increasing load. Under this triaxial compressive state of stress, the strength and
modulus of elasticity are substantially increased such that the maximum principle stress
reaches a value much greater than f,". Provided that the mechanism remains geometrically
stable, stresses in the supporting shell will reach an ultimate state where compressive failure
occurs. The conical shell can no longer support the inner core and it punches through the

deck.

Kinnunen and Nylander (1960) established an empirical criterion for this mode of failure.
When the circumferential strain at the top surface of the slab near the loaded area (r = B/2
+ y) reaches a critical value, the concrete softens in the circumferential direction and the
triaxial state is compromised. The strength of the conical shell is reduced and failure occurs.
Kinnunen and Nylander (1960) found that the strain behaviour of the concrete near the
loaded area was very complicated, particularly near the failure loads and could not be related
to the linear elastic theory of the model. However, at a distance equal to y from the edge of
the load area, correlation was established between the circumferential strain €, and punching

failure. Kinnunen and Nylander (1960) give the critical value of strain as €, = 0.0019.

In similar work on steel-reinforced high strength concrete slabs, Marzouk and Hussien
(1991) report that the average tangential strain next to the load patch was 0.00215 at
punching failure. These values correspond very closely to the value of strain at the maximum
uniaxial compressive stress, f_' and the commonly used value of €., =.002 is adopted. The
value for the tangential compressive strain €, can be calculated using the following

equation:



w)
(9 ]]

ct E (3 6)
2

The third failure mode, yielding of the restraint straps, is also considered to be a punching
failure criterion. The lateral restraint is provided to the system by means of the transverse
steel straps, generally made of steel. As given in equation (9), the magnitude of the
restraining force is controlled by the lateral restraint stiffness, K, and the amount of lateral
deformation, A, . In simple terms, the value of K is determined by both the geometry of the
strap system and the modulus of elasticity of the strap matertial. For steel straps the value of
K is constant while the stresses are in the linear elastic range. Therefore, as the load and
consequently A, increases, the magnitude of the restraining force F increases. However, if
the stress in the strap reaches the vield stress of steel then no further increase in F is possible
for that strap. The influence of the lateral restraint of that strap on the system behaviour is
reduced and the level of confining forces in the concrete are also reduced. Due to this
reduction in confinement, punching of the slab will occur with only a slight increase in
applied load. Thus, the yielding of the straps is set as a failure criterion and punching is
assumed to occur when yield strain is obtained. The actual failure load may be slightly higher
than the load corresponding to €; = € however this load is conservative. The increased
complexity of the solution algorithm does not warrant its development for a small increase

in predicted failure load value.

The actual failure load of the system is the lowest equilibrium load corresponding to the three
failure criteria. The instability mode dominates only at very low values of restraining
stiffness and is generally not of interest. The punching failure load is determined by
monitoring €, and €, throughout the load history.The punching failure load is reported as
punching failure due to either yielding of the straps, €, = €, or punching due to yielding of

the concrete, €, = 0.002.
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A FORTRAN program developed to automate the solution algorithm and check for punching

failure is presented in Appendix I.
24 Concrete Confinement Relationship

The concrete within the region of the conical shell, and most particularly adjacent to the load
patch, is in a state of triaxial compressive stress. The vertical compressive stress arising from
the applied load and given in equation (35) is designated as the maximum principal stress,
o;. The circumferential stress which leads to the development the force, R, is the
intermediate principal stress, 0,. The horizontal component of the compressive membrane
force, T, is the minimum principal stress, 0;. The triaxial condition is defined by o, > 0, 2>
o, ; however, because the stresses are compressive, the magnitude of o, is greater than the

magnitude of o, To be consistent with the nomenclature of this thesis o, =0, , 6, =05 and

0;=0,.

Because of the triaxial compressive stresses, the concrete in this region is confined and the
values of ©; can far exceed the uniaxial compressive stress of the concrete. Therefore we
need to define a relationship for the behaviour of concrete under confinement such that we

can relate o5 to 0, , the value of o, being readily available from equation (35).

Richart (Demers and Neale, 1994) proposed the following model for the behaviour of
concrete cylinders under confinement. This equation was given previously as equation (36a)

and is repeated here for clarity.

/ 01
o, = f. [l + k 7] (36a)

Richart gives a value of k=4.1 for concrete cylinder tests.
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In other literature, Hobbs and Pomeroy (Hannant, 1974) propose a similar relationship based

on a number of available triaxial compression testing results

03: _ ol
P =1 +k }7 (36b)

For the data used by these authors, the value of k = 4.8 +0.6. Similarly, Hannant (1974)
proposes that the value of k could range from 4.8 to 5.0. Both groups indicate that the value

of k is not significantly affected by the value of the intermediate principle stress, o,.

The confinement relationship given in equation (36) is of the right form to be used in the
rational model; however, it remains to select the appropriate value of k. An empirical
assessment of the punching strength results from a number of slab tests indicate that the
theoretical model correlates very well when a value of k=10 is used. This is much larger than

the values proposed by others, which ranges from 4.1 to 5.0.

Investigating this difference in k values we consider several important points. Firstly, the
constant is empirical and is derived directly from a number of test results. All researchers
acknowledge that their proposed value of k is only valid for the concrete matrices and test
setups covered by their research. Most of these results relate to a variety of test setups on
concrete cylinders and cubes. Testing on a bridge deck structural system had not been
performed by other researchers. By definition an empirical constant is specific to the testing
performed and it is quite possible that a different empirical constant is applicable to testing
which results in the punching failure of a slab rather than a constant which relates to the

crushing of concrete cylinders.

Secondly, one must consider the nature of the principal stresses. Richart’s constant of 4.1
was developed for cylinders wrapped with a material which provides confinement against
radial and circumferential expansion. The expansion occurs in a plane orthogonal to the

applied load. In this case, the confining stress can be described as a passive stress which
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develops in response to the poisson’s ratio type expansion of the cylinder. This is the lower
bound of the confinement condition. On the upper bound, all three stresses are directly
applied to the element by external conditions. This case can be described as active
confinement. It is proposed that active confinement has a much more beneficial effect on the
maximum principal stress which can be attained. The triaxial stress condition in the steel-free
deck more closely resembles the active stress condition. It is therefore reasonable to expect

that the confinement constant will have a higher value than the passive condition.

Finally, we examine the test results reported by Hannant (1974). Three figures showing o/f,
versus o,/ are given by Hannant which summarize the test results of many researchers.
The constants given by Hannant represent the lower bound estimate such that all test results
fall above the line. This approach is conservative but is certainly valid for the purpose of
developing general design guidelines. However. for the steel-free bridge deck, we examine
a line which characterizes the upper bound of these test results. This gives an equation of the

form

3 = a + b— (40)

This equation can also be used to describe Equation (36b) where a=1.0 and b=k. The values
of a and b for the upper bound of three figures given in Hannant (1974) are shown in Table
2.1 along with the corresponding values for Richart, Hobbs and Pomeroy and the one

proposed for the steel-free deck.



Table 2.1 Coefficients of Equation (40)

Equation Description a b

40a Hannant, Fig. 7, upper bound 225 346
40b Hannant, Fig. 8, upper bound 1.50 5.00
40c Hannant, Fig. 14, upperbound 235 3.75
40d Hobbs and Pomeroy 1.00 4.86
40e Richart 1.00 4.10
40f Steel-Free Deck 1.00 10.0

For the steel-free deck test, 6,/f, at failure ranges between 0.15 and 0.30. It is interesting
to note that the intermediate stress ratio 0,/f’. is approximately equal to 1.0. Table 2.2 can
be constructed of o,/f’, values at failure for the range of o,/ .. This information is also

represented graphically in Figure 2.8.
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Figure 2.8 o,/f°. versus o/f",
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Table 2.2 o/, Values for the Range of o,/f,

Equation .15 20 0.2 0.30

40a 277 394 312 229
40b 225 250 375 3.00
40c 291 3.10 328 3.48
40d 1.73 197 222 246
40e 1.62 182 203 223
40f 250 3.00 350 4.00

It can be seen that the results of the proposed equation are consistent with the upper bound
results of other researchers. Considering all of the above, the use of an empirical confinement
constant of k=10.0 is justifiable for the particular application of the punching failure of the

steel-free decks.

[t is interesting to compare the values of o,/f_ for equations 40e and 40f. The former
represents Richart’s equation with k = 4.1 and the latter represents the proposed equation
with k = 10.0. For the lower bound, Richart’s constant yields o,/f’. = 1.62 where as the
proposed constant yields oy/f’. =2.50. Correspondingly, for the upper bound, the values are
o,/f. = 2.23 and 0;/f. = 4.00 respectively. Although the ratio of the proposed constant to
Richart’s constant is almost 2.5, the corresponding ratio of o,/f*, is only 1.78.

24.1 Sensitivity to Concrete Confinement Constant

To further demonstrate the importance of the correct selection of a confinement constant let
us examine several typical steel-free bridge deck configurations. Each configuration will be
analysed using the rational model with all input parameters, except the confinement constant
held constant. The value of the confinement constant will be varied from Richart’s value of
4.1 to the proposed value of 10. The effect of the varying k value on the predicted failure

load and deflection will be examined.
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Three bridge deck configurations will be examined. The important input parameters are the
spacing of the girders, Sg, the thickness of the deck, d, the compressive strength of the
concrete, ', the area of the tire print, A, the equivalent loaded area diameter, B, the restraint
stiffness, K, the distance between the centerline of the load patch and the centerline of the
closest strap, Ss, and the yield strain of the strap, €,. The values for each case study is given
in Table 2.3.

Table 2.3. Input Parameters for Sensitivity Case Studies

Case S, d £, A B K S, €,
(mm) (mm) (MPa) (mm?) (mm) (N/mm/mm) (mm)
1 2700 300 39 125000 477.5 246 0 0.0015
2a 2000 200 30 125000 477.5 300 0 0.002
2b 2000 200 30 125000 4775 300 500 0.002
3 1067 100 46 32258 2445 630 0 0.002

The theoretical results from the rational model are given in Table 2.4. A ratio is calculated
for the deflection or load at the given value of k over the value corresponding at k=10 . The
predicted mode of failure is also noted as concrete for crushing of the concrete and strap for

yielding of the strap.

It can be seen from Case 1 in Table 2.4 that the value of the confinement constant does not
have a significant effect on the predicted results when the punching failure is initiated by
yielding of the straps. However, Cases 2 and 3 illustrate that the choice of the proper

confinement constant is essential when crushing of the concrete initiates the punching failure.
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Table 2.4 Concrete Confinement Constant Sensitivity Results

Case k 6 (mm) 06/6, P (kN) P/P, mode

1 100 10.29 1073 strap
80 1029 1.00 1058 099  strap
60 11.14 108 1029 096 strap
41  11.14 1.08 1088 1.0l  strap

2a 10.0 12.00 - 851 - strap
4.1 12.74 1.06 801 0.94 concrete

2b 10.0 15.98 - 1047 - concrete
4.1 12.75 0.80 800 0.76 concrete

3 10.0 7.00 - 415 - concrete
4.1 5.65 0.81 313 0.75 concrete

2.5 Lateral Restraint Constant

In equation (9) of the rational model the lateral restraint stiffness provided by the straps was
designated as K. It has been noted in Section 2.2, that the level of lateral restraint has a
significant effect on the punching failure load. Many researchers have acknowledged this fact
and some attempted to include the lateral restraint stiffness as a model parameter, most
notably Hewitt and Batchelor (1975). However, a value of K for a given bridge deck
configuration is not given but rather back calculated from experimentation once the failure
load is known. The relative simplicity of the steel-free bridge deck system allows us to
examine this term more carefully and arrive at a reliable method of calculating a value for

restraint stiffness directly.

To facilitate a better understanding of the contribution of the straps, let us examine in detail
the situation shown in Figure 2.9. The straps have an overall length equivalent to the centre
to centre spacing of the girders, S, and each strap has a cross-sectional area, A,. The spacing
of the straps is given as S,. If we consider the strap directly beneath the load, then we know

from our rational model that the elongation at either end of the strap from the rotation of the
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Figure 2.9 Plan view of steel-free bridge deck

wedge is A;. The strap can be seen to have a total elongation of 2A,. We know from strength

of materials that the force in the strap is given by equation (41a).

EA
F = —22A

; . (41a)

where E is the modulus of elasticity of the strap and L is the overall length of the strap.
Equation (9) is of the form

F = KA (41b)

It would appear therefore that the restraint stiffness term can be expressed as

EA

s

K =

S, (42a)
2
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where S, is substituted for L in equation (41a). However, in equation (9), K has units of force
per displacement per unit length of circumference of a wedge. In equation (41), K has units
of force per displacement. The zone of influence of an individual strap is considered to be
half the distance to its adjacent straps. This is equivalent to S/2 on either side of the strap.
The total zone of influence for one strap is therefore S,. If we now considered the stiffness
value as calculated in equation (42a) to be evenly distributed over this zone of influence then

we arrive at the following equation for restraint stiffness in units of force per displacement

per unit length

S (42b)

A further refinement can be made if we consider the situation of a welded connection
between the strap and the girder flange. If the strap is welded all around to the girder flange
then the effective length of the strap free to elongate with a prismatic cross-section of A, is
actual S, minus the width of the girder flanges or simply the clear spacing between the top
flanges of the adjacent girders. For connection details other than welding (Bakht and Mufti,
1996) the length of the strap may be greater or smaller than S,. Therefore, equation (42b)

should be re-written using the term S, to designate the effective length of the strap.

S 43)

Equation (43) is a conservative estimate of the lateral restraint stiffness of the system and is
seen to give good results when used to predict the failure of the half-scale and one third scale

experimental models tested by others (Newhook et al., 1995).

The conservative nature of Equation (43) arises from two considerations. Firstly, the

equation neglectsany contribution of the girders themselves in resisting the lateral deflection
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from the rotating wedges. Azad et al. (1994), Ebeido and Kennedy (1996) and Kuang and
Morley (1992) all acknowledge the fact that the girder size will affect the amount of lateral
restraint provided to the deck. Intuitively, for the strap directly below the load to elongate
and displace laterally, one of two situations must occur. Either the girder itself must displace
laterally as a rigid body or the girder must bend to the appropriate lateral deflected shape.
The former situation is obviously improbable; therefore, the girder must have a deflected
shape. This requires that it contribute to the restraint stiffness of the system. Secondly,
equation (43) neglects the effect of the proximity of the strap to the point of load application.
In Figure 2.9, the strap directly beneath the load is contributing to the lateral restraint in the
manner predicted by equation (43). The adjacent straps are not contributing as greatly to the
lateral restraint; however, their contribution is not negligible. The influence of individual
straps lessens farther away from the load point. This is seen in the small strap levels in straps
far away from the point of load reported by Thorburn and Mufti (1995). The interaction of
the straps, the deflected shape of the girders and the effect of load proximity is very
complicated to describe exactly and may only be possible using full finite element models
of the system. A reasonable approximation of this behaviour is to consider the system to be
a beam on elastic supports in the lateral direction as shown in Figure 2.10. The beam
properties are determined from the flexural rigidity of the girder in the lateral direction and

the elastic support properties are determined from the straps by equation (44).

EA,

K /- S
S, (44)
2

Each spring represents a strap and is spaced equivalent to actual strap spacing, S..

As before in deriving equation (43), we need to calculate a value of restraint stiffness in force
per displacement per unit length. For a particular tire load location, as shown in Figure 2.11,
the response of the system along a unit length centred on the tire print has the most influence
on the punching behaviour. The resultant force, P, for a 1000 mm width of slab is applied
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at the centerline of the tire print. A deflection is calculated from beam on elastic springs
analysis for a unit load at P. The restraint stiffness is calculated as the unit load divided by
the deflection. Remembering that P is the resultant force for a unit width, the calculated
stiffness is assumed to be uniformly distributed over that width. This yields a value for the
restraint stiffness term K in units of force per displacement per unit length. The actual
response of the system is obviously more complex; however, the advantage of this method
is that it reduces the behaviour to one characteristic value, K, which can be easily calculated.
In addition, the level of approximation is consistent with other idealizations made in the

rational model development.

This approximate method of calculating restraint stiffness is very simple and versatile. It
allows for calculation of restraint stiffness at any location along the beam and the inclusions
of parameters not covered by equation (43) such as changing the girder size, having variable

strap spacing and having variable strap sizes.

25.1 Experimental Testing for Restraint Stiffness

An experimental program was designed to test the validity of the beam on elastic springs
method of calculating lateral restraint stiffness. The testing helped to determine the
appropriate beam properties to input into the model and the contributions of intermediate
diaphragms to lateral restraint stiffness. A steel frame for a steel-free bridge deck system was
constructed as shown in Figure 2.12. Two W 610 x 241 steel girders were spaced 2700 mm
apart and simply supported at the ends. Nine steel straps of 100 x 12.5 mm dimensions were
welded to the top flanges of the girders at a spacing of 1200 mm centre to centre. At each end
a C 380 x 50 channel was bolted to the girder flanges and a K - type diaphragm was
constructed from L 100 x 100 x 10 sections as shown in Figure 2.13a. At mid-span a full X-
type diaphragm was constructed, again using L 100 x 100 x 10 sections as shown in Figure
2.13b. A lateral load was applied to the top flanges of the girders using the setup shown in
Figure 2.14 and the lateral deflections recorded. This procedure was repeated at the five

locations indicated in Figure 2.12. Once the five tests had been completed, the transverse
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chord of the full X-type diaphragm was removed leaving only the two diagonal members to
form an X-type diaphragm at mid-span as opposed to a full diaphragm. The five lateral load
tests were repeated. Finally, both diagonals were removed, Figure 2.15, leaving no
intermediate diaphragm in the system. The five lateral load tests were repeated. For each set
of load-deflection data linear regression analysis was performed and the lateral restraint
stiffness determined. This is the equivalent of dividing the applied load by the measured

deflection to determine a restraint stiffness value for the point of load application.

25.1.1 Diaphragm Contribution

It is important to assess the effect of intermediate cross-bracing on lateral restraint stiffness.
Intermediate cross-bracing of bridge girders is typically constructed using L sections in one
of the two configurations shown in Figure 2.13. These diaphragms are spaced no more than
7 500 mm apart along the length of the girders. If their effect on lateral restraint is
significant, then they must be included in the calculations and can perhaps be used to
optimize strap design. The experimental restraint stiffness value for each of the three tests

sets are given in Table 2.5.
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Table 2.5. Restraint Stiffness Values (N/mm/mm) for Lateral Load Experiment

Test Set 1 2 3
Mid-Span Diaphragm Type Full X-Type None
Test Number Location
1 3000 262 264 256
2 3 600 270 330 336
3 4 800 286 290 302
4 5400 262 242 232
5 6 000 318 296 282

Note: Test 2,3,5 are at strap locations; Test 1,4 are midway between straps.

It can be seen from Table 2.5 that, at the diaphragm location, the effect of the diaphragm on
lateral restraint stiffness is less than 12% of the total stiffness and quickly diminishes as the
load moves away from the diaphragm location. It is also seen that the X-type bracing has a
lesser effect than the full X-type bracing. Ignoring the diaphragms in the lateral restraint
calculations is a reasonable and marginally conservative simplification for design purposes.

Their inclusion would not lead to any significant reduction in strap size or spacing.

This finding is consistent with the findings of other researchers who have investigated the
effects of diaphragms on bridge behaviour. Stallings et al (1996) reported that under field
loadings the strains in the channel type diaphragms of a simple span steel girder bridge were
small and that their removal had little effect on load distribution in the bridge superstructure.
Azizinamini et al. (1995) performed laboratory testing on steel girder bridge models with
both K-type and X-type diaphragms. They report that the diaphragms have little effect on the

behaviour of bridges after construction.

2.5.1.2 Beam on Elastic Supports Model
For the test configuration given in Figure 2.12, a beam on elastic springs model was
developed and analysed. The input parameters for this model are given in Table 2.6. The end

springs were modelled from the properties of the C 380 x 50 channels and the nine
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intermediate springs were modelled from the properties of the straps. In both cases equation
(44) was used to calculate the spring constants. The theoretical analysis was carried out with
two different values of moment of inertia for the girders. Initially the moment of inertia for
both the top and bottom flange was used and then the analysis was repeated using the
moment of inertia of just the top flange. A unit load of 1000 kN was applied at the location
of the test load and the deflection calculated using finite element analysis. The restraint
stiffness was calculated by dividing 1000 kN by the calculated deflection and distributing
the stiffness over a unit width of 1000 mm. The resuits are given in Table 2.7. The restraint

stiffness value as calculated using equation (43) is also shown.

Table 2.6. Beam on Springs Input Parameters

Elastic Spring Parameters

Area Length K’ (Equ. 44)
Channels ( C 380 x 50) 6430 mm’ 2700/2 =1350 mm 476 296
Straps ( 12.5 x 100) 1250 mm®>  2370/2 =1185 mm 210970
Beam Parameters (W 610 x 241)
Moment of Inertia
Case 1 (top and bottom flanges) 184 x 10 mm*
Case 2 (top flange only) 92 x 10® mm*

Table 2.7 Restraint Stiffness Comparisons (N/mm/mm)

Expeﬁmental Lop aad bottom flange I(op flange qul. (43)
Location chp 6 (mm) [<thcor K(hcor/ 6 (mm) K K1heolj K thcor/
chp chp Kexp

3000 256 312 321 1.25 393 254 099 176  0.69
3600 336 289 346 1.03 3.34 299 0.89 176  0.52
4800 302 289 346 1.16 3.34 299 099 176  0.58
5400 232 313 319 1.38 393 254 1.09 176  0.76
6000 282 289 346 1.23 3.3 299 1.06 176  0.62

average 1.21 1.00 0.63




53
In a beam on elastic support analogy the critical beam properties are the modulus of elasticity
and the moment of inertia for bending in the lateral direction. For the moment of inertia it
would seem appropriate to use the moment of inertia corresponding to that of the top and
bottom flanges. However, as can be seen from Table 2.7, using the moment of inertia of the
top flange only yields a much better correlation with experimental results. It can also be seen
that the K value from equation (43) is conservative and, on average, only 63% of the

experimental restraint stiffness.

Several conclusions can be drawn from this experiment. Firstly, it verifies that the girders
do play a significant role in providing lateral restraint to the system; in this case it was an
average of 37% of the total value. It should be clarified that the girders have two inter-related
mechanisms for providing this additional stiffness. One mechanism is the lateral bending
stiffness of the girder itself. The other mechanism is to transfer load through this bending
action to straps that are some distance away from the load point such that every strap
participates in the lateral restraint based on its proximity to the load point. Secondly, the
beam on elastic springs model appears to be a reliable method of predicting the lateral
restraint stiffness at any given location along the length of the girder. Finally, the restraining
stiffness appears to be provided mostly by the top flange and not the entire depth of the
section. This is reasonable when one considers that the load is applied directly to the top
flange and that the restraint straps are also connected directly to this flange. The web itself
is weak in lateral bending and the connection between the web and the flanges is weak in
rotation about the longitudinal axis. Therefore, force transfer to and engagement of the
bottom flange in the restraint system is minimal, particularly in the region local to the load
point. This situation is true for any steel W-type section or plate girder section and will be
more prevalent as the depth of such sections increase. Similar testing has not been performed
for concrete girder sections; however, extrapolation of these results would suggest that
considering only the top flange of an [-shaped precast prestressed concrete girder would be

conservative.
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2.5.2 Restraint Stiffness verses Load Location

The experimental and theoretical work presented in Table 2.5 and Table 2.7 reveal that there
is a relationship between the location of the load and the magnitude of the lateral restraint
stiffness. Most noticeably, when the load is directly between two straps, the restraint stiffness
is lower than when the load is directly at a strap. This is evident in all experimental results
and in the beam on elastic supports theoretical results. The relative difference between the
two locations is obviously affected by the spacing of the springs and the relative stiffnesses
of the straps and girder. Equation (43) can not predict this phenomenon as it predicts the
same value of restraint stiffness along the entire length of the girder. The beam on elastic

springs model can provide a reliable estimate of this behaviour.

The experimental results in Table 2.7 also suggest that there is a trend towards slightly lower
stiffness values as the load moves closer to the mid-point of the girder span. The theoretical
results do not reflect this same trend. The beam-on-springs model is however, a simple
idealization of the system and it is not unreasonable that in actual behaviour the restraint is
marginally softer towards the mid-span of the girders. It would also be expected that as the
load point moved closer to the support points or the ends of the girders, the lateral restraint
stiffness would decrease. Experimental results are not available; however, the beam on
springs model can provide a useful tool in assessing this effect. A parameter that will affect
these results is the stiffness of the last spring. In the models used in Table 2.7 the end springs
were modelled on the end channels (see Table 2.6). As the point of load application moves
closer to this stiffer spring its influence will be greater. While the other springs may be
considered to be system parameters, the end springs can be considered as boundary
conditions. In general, one of three boundary conditions may be chosen: the end may be
pinned such that no displacement is possible, the end of the girder may have a spring with
the same stiffness as the rest of the straps in the system, or the end spring may be modelled
on the properties of the edge beam which is the C 380 x 50 channel for the experimental

setup given.



To test both the effect of the boundary condition and the effect of the load location on the
lateral restraint stiffness, the same beam-on-springs model was analysed for three different
cases. In the first case, the end spring was given very large stiffness to simulate a pinned end
condition. In the second case, the end spring was given the stiffness corresponding to the end
channel. In the third case, the end spring was given the same stiffness as the other straps in
the system. In each case the analysis was performed with the load moving from the end of
the girder, location 0, to the mid-span of the girder, location 6000. The load was

moved in increments of 600 mm thereby alternating between a strap location and directly

between two straps. The results are given in Table 2.8.

Table 2.8 Assessment of the Effects of Load Location and Boundary Conditions

Case 1 Case 2 Case 3
K’..q= 10" K’.,¢=952592 K’ ..a=210970
Load o] K o) K o) K
Location (mm) ON/mm/mm) (mm) EN/mm/mm) (mm) (N/mm/mm)
0 0 oo 2.05 4388 4.49 223
600 3.06 327 3.55 282 4.12 243
1200 3.48 287 3.51 285 3.54 282
1800 3.98 251 3.98 251 3.99 251
2400 3.33 300 3.34 299 3.34 299
3000 3.93 254 3.93 254 3.99 254
3600 3.34 299 3.34 299 3.34 299
4200 3.93 254 3.93 254 3.93 254
4800 3.34 299 3.34 299 3.34 299
5400 3.93 254 3.93 254 3.93 254
6000 3.34 299 3.34 299 3.34 299

[t can be seen from Table 2.8 that up to 1800 mm from the end of the girder the boundary
conditions and the proximity of the load to the end of the span both have an effect on the

lateral restraint stiffness values. After this point the restraint stiffness remains constant for



56
each case, varying only based on whether it is directly over a strap or between two straps.
These results are valid only for the configuration and system parameters given. However,
they do indicate that modelling of end conditions is important only when the load is near the

ends of the girders.

It can be seen that the beam on elastic supports model is a very effective and simple method
of estimating the lateral restraint stiffness of the system. As shown in this section it is also
versatile and able to account for different parameters with relative ease and accuracy. The
models investigated in this section involved systems where all the straps had the same
stiffness, except at the boundary, and the straps were all evenly spaced. In the Chapter 3, the
model will be used to account for the effects of both varying strap sizes within the same
model and in Chapter 4, the model will be used to account for the effect of varying strap
sizes within the same model. The simple model of equation (43) cannot fully account for

these parameters.
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3 VERIFICATION OF RATIONAL MODEL FROM EXISTING
EXPERIMENTAL DATA

Previous experimental work by others on steel-free concrete bridge decks was outlined in
Chapter 1. This work consisted mostly of a steel free concrete deck slab on a series of two
or three equally spaced girders. The girders were connected by transverse steel straps welded
to the top flanges of the girders. Each deck was tested to failure to determine the
experimental punching load. Each of these experimental tests has now been analysed using
the rational model of Chapter 2 and the theoretical punching load and deflection at failure
determined. This comparison verifies the validity of the rational model in predicting steel-
free bridge deck behaviour. In addition, two reinforced concrete decks, for which detailed
experimental data was available, were analysed using the rational model. This comparison
verifies that the rational model can predict the behaviour of bridge decks in general and leads
to a better understanding of the mechanism of failure of reinforced concrete bridge decks.

All these comparisons are presented below.

3.1 Half-Scale Models at TUNS

A complete description of all half-scale model testing performed at TUNS can be found in
Mufti et al. (1993) and Newhook et al. (1995). The relevant geometric and material

properties for each of these models is given in Table 3.1.
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Table 3.1 Geometric and Material Properties of Half-Scale Test Decks

Test Deck 1 2 3 4 Sa 5b
Girder size W460x82  W460x82 W460x82 W460x82 W460x82 W460x82
Girder Spacing (mm) 1067 1067 1067 1067 1067 1067
# of Girders 2 2 2 3 3 3
Strap Size (mmxmm) 64 x 10 64 x 10 64 x 10 64x10
Strap Spacing (mm) 457 457 457 610
Deck Thickness (mm) 100 100 100 100 95 95
Concrete . (MPa) 30 30 46 42 43 51

Load Area (mmxmm) 127 x 254 127 x 254 127 x 254 127 x 254 127 x 254 127 x 254

Edge Beam Size C200x17 C200x17 C200x17  C200x17  C200x17 C200x17

It should be noted that Test Deck 5a and 5b are the same deck but the tests were performed
at different locations. This was done because two different strap spacings were used on either
side of the mid-span of the girders (Newhook et al., 1995). As well, Test Decks 1 and 2 did
not have steel straps, similar to those shown in Figures 1.2 and 1.3. Instead, these decks had
a number channel sections (C 200 x 17) that were connected to the web of the W 460 x 82
as shown in Figure 3.1 and 3.2. While these channels were not connected directly to the top
flanges of the girders, they were connected very close to the top of the web and did have
some influence on lateral restraint stiffness. The amount of influence is not easily calculated
without the use of a three dimensional finite element analysis or experimentation. However,
as will be demonstrated later, the restraint stiffness can be back calculated using the rational
model and the known experimental failure load. It is also important to note that this system
of channels remained in place for Test Decks 3, 4 and 5. Again, this makes it difficult to
account for the effect of these channels, even using a beam on springs model as outlined in
Section 2.5. Therefore, equation (43) will be used as a first approximation of the lateral
restraint stiffness of the system. Obviously the stiffness for Test Decks 1 and 2 can not be

calculated in this manner. The calculated stiffness values are given in Table 3.2.
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Table 3.2 Lateral Restraint Calculations for Half-Scale Tests Using Equation (43)

Test Deck E, L, A, S, K
(MPa) (mm) (mm? (mm) (N/mm/mm)

1 200 000 438 640 - -
2 200 000 438 640 - -
3 200 000 438 640 457 640
4 200 000 438 640 457 640
Sa 200 000 438 640 457 640
5b 200 000 438 640 610 480
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First, let us consider Test Decks 3 through 5b. Table 3.3 contains the input parameters for

the rational model.

Table 3.3 Input Parameters for Rational Model

Model Parameter Test3 Testd TestSa Test5b

C (mm) 1067 1067 1067 1067
B (mm) 2445 2445 2445 2445
K (N/mm/mm) 640 640 640 480
Strap to Load (mm) 0 0 228 305
d (mm) 100 100 95 95
£, (MPa) 46 42 43 51
B 0.72 0.75 0.75 0.68
k (confinement) 10 10 10 10
load patch area (mm?) 32258 32258 32258 32258
€, (strap) 0.002  0.002 0.002 0.002

For each case, the theoretical punching load and ultimate deflection are compared with the
available test results. As can be seen in Table 3.4, the rational model predicts very closely

the behaviour of the deck.

Table 3.4 Comparison of Rational Model Results for Half-scale Test Decks

TeSt P P(heor éup alheor

exp

Deck (kN)  (kN) (mm) (mm)

418 415 5.9 7.0
418 409 7.1 7.0

a 370-388 362 5.5 5.6
5b 313 315 6.5 6.0

Note: Test Sa was performed twice and therefore has two failure loads

v W)

The comparison in Table 3.4 shows very close agreement between the theoretical results
from the rational model and the experimental test decks. The deflection data for Test Decks
5a and 5b are plotted in Figure 3.3 and Figure 3.4 It can be seen that for Test Deck 5a the

theoretical
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load-deflection curve is in very good agreement with the experimental data. For Test Deck
Sb the experimental curve is of the same general form as the theoretical; however, it is offset
by approximately 0.5 mm. It is noted that the experimental curve exhibits a “jump” at
approximately 50 kN. This shift is presumably due to cracking of the deck and redistribution
of forces. The results therefore validate that the rational model can predict the load capacity

and deflection behaviour of these decks.

Although the restraint stiffness was calculated using equation (43), which as discussed in
Chapter 2 is believed to be conservative, the restraint stiffness values of Table 3.2 would
appear to be correct. This is reasonable if we consider that two other effects discussed in
Chapter 2 are influencing this value. Equation (43) is believed to be conservative because the
influence of the girder stiffness and the proximity of all the straps to the point of load
application is not included in the calculations. This effect increases the value of K. However,
the close proximity of the load to the end of the girder span was also pointed out to have the
effect of lowering the value of K. It is not unreasonable that the effects of these two
parameters balance each other and the value from equation (43) is very close to the actual

value.

Considering Test Decks 1 and 2, it was stated that the restraint stiffness could not be directly
calculated because no straps were used. The situation is further complicated by the fact that
neither Test Deck 1 or 2 failed in a pure punching mode but rather in a manner more
consistent with the instability snap-through mode. However, we can use a method of back-
calculation to demonstrate that the rational model can predict this behaviour as well. Figure
3.5 plots failure load versus restraint stiffness for the geometric and material properties of
Test Decks 1 and 2 as given in Table 3.1. Both the curve for instability (snap-through) failure
and the curve for punching failure are shown. Knowing that the deck failed by instability we
can plot the failure loads on the instability curve and extend the points downward to the
restraint stiffness axis. Doing so we get restraint stiffness values of approximately 60

N/mm/mm for Test Deck 1 and 85 N/mm/mm for Test Deck 2. The punching failure curve



600
i fc' =30 MPa
i deck thickness = 100 mm
500 i tire print = 127 x 257 mm
' girder spacing = 1067 mm
~400 -
p-d
= ;oA
§ ; Pp : Punch Load
9 300 ‘
e LT
% - Ps : Snap-Through Load
uw 200 e 9
Ax_
First Model
100
Second Model
0
0 200 400 600 800 1000

Restraint Stiffness, K (N/mm?2)

Figure 3.5 Failure load versus restraint stiffness for half-scale tests 1 and 2

begins at a K value of approximately 75 N/mm/mm which means that punching failure will
not occur at restraint stiffness below this value. Test Deck 1 clearly falls into this category.
Test Deck 2 appears to be on the limit of instability versus punching failure. As with most
stability problems, the mechanism can be easily influenced by small deviations from ideal
conditions such that bridge decks with restraint stiffness values close to the limit may initial
indicate punching but ultimately fail in instability. Mufti et al. (1993) describe this very
situation when discussing the failure of Test Deck 2. Therefore, it can be concluded that even
in situations of very low restraint stiffness where punching does not occur, the rational model
can indirectly predict the behaviour of the bridge deck system. A further conclusion
regarding Test Deck 2 is that decks should not be designed with restraint stiffness very close

to the lower limit to avoid the undesirable instability failure mode.
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3.2 Skewed Bridge Deck Model

Bakht and Agarwal (1993) tested a one-third scale model! of a laterally restrained, steel-free
bridge deck with a skew angle of 45° and demonstrated that punching failure was possible
even with large skew angles. The relevant model parameters for input into the theoretical
model are given in Table 3.5. The rational model is used to predict the failure load and
ultimate deflection of punching tests that were performed near the centre of this test model.
The results of this comparison are given in Table 3.6. Once again the model gives results

consistent with the reported experimental work.

Table 3.5 Input Parameters for Skewed

Bridge Deck Model
Model Parameter Value
Girder spacing (mm) 800
Strap Size (mmxmm) 64x9.5
strap spacing (mm) 400
deck thickness 80
f. (MPA) 56
B 0.65
Load area (mm?) 23358
E, (MPa) 200 000
A, (mm2) 608
L (mm) 660
S,(mm) 400
K (N/mm/mm) 921
k (confinement constant) 10

e 0.002

y
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Table 3.6 Comparison of Theoretical and Experimental
Results for Skewed Deck

Pexp Plheor 6exp 611!00!’
(kN) (kN) (mm) (mm)

Skewed Deck 323-352 388 5.5-8.0 52

3.3  Full-Scale Bridge Deck at TUNS

Thorburn and Mufti (1995) tested a full-scale two-girder steel-free bridge deck. The bridge
girders spanned 12 000 mm with straps spaced every 1000 mm and edge beams at either end.
In total, 11 straps and 2 edge beams were used. The testing program was designed to evaluate
the effect of varying the strap size, and consequently the restraint stiffness, to experimentally
optimize of the strap system. Because several tests could be performed along the length of
the deck. several different sizes of straps were initially used and changed as the optimization
testing continued. In all, eight separate punching tests were performed. The general geometry
of the test setup which remained constant for all tests is given in Table 3.7. The strap
configuration for each test is given in Table 3.8. The location of the load in reference to the

end of the girder span is also given.

Compared to the half-scale model tests, the system for the full-scale test was clean. The
support system contained girders, straps and three diaphragms. No channels or other sections
were connected to the web. Therefore a beam on elastic springs model could be easily
constructed to calculate the iateral restraint stiffness values. The model contains a spring for
each edge beam and one for each of the eleven straps. [n this manner, the model accounted
for the effect of the varying strap sizes along the length of the beam. The bending properties
of the beam were taken from the characteristics of the top flange only, giving a moment of
inertia 0f 92 x 10 mm*. A summary of the spring and beam properties are given in Table 3.9.
The spring stiffness are calculated using equation (44) and the properties given in Tables 3.7

and 3.8.



Table 3.7. Geometry of TUNS Full-Scale Deck

Model Parameter Value
Girder Size W 610x241
Girder spacing (mm) 2000

# of girders 2
strap spacing (mm) 1000
deck thickness 175
f. (MPa) 27
B 0.85
Load area (mm?) 250x500
E, (MPa) 200 000
A, (mm?) varies
L,(mm) 1670
S,(mm) 1000
edge beam size 2 L150x150x20
k (confinement constant) 10
€ 0.0015

y

Table 3.8. Strap Size (mm?) for Each Load Test
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Test

[~ N o R R N U R S

Location

1 500
7 500
10 500
4 500
9 000
6 000
1 500
4 500

Strap Number

2 3 a4 5 6 7 8 9 10 11
2500 2500 2500 1875 1875 1875 1250 1250 1250 950 950
2500 2500 2500 1875 1875 1875 1250 1250 1250 950 950
2500 2500 2500 1875 1875 1875 1250 1250 1250 950 950
2500 2500 2500 650 650 650 1250 1250 1250 950 950
2500 2500 2500 650 650 650 650 650 650 650 950
2500 2500 2500 650 650 650 650 650 650 650 950
2500 2500 2500 650 650 650 650 650 650 650 950
2500 2500 2500 650 650 650 650 650 650 650 950




Table 3.9 Spring Properties for Beam-on-Springs Model for Full-Scale Deck

Area K’ (N/mm)
(mm?)

edge beam

11200 2715000
straps

2500 598 800
1875 449 100
1250 299 400
950 227 550
650 155700
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For each load case the restraint stiffness value was determined and the ultimate failure load

was calculated from the rational model. For purposes of comparison, the restraint stiffness

value as calculated by equation (43) was also used to predict the failure load. The results of

each are compared in Table 3.10 along with the experimental failure loads reported by

Thorburn and Mufti (1995). Unfortunately, the ultimate deflection values from the

experimental results were not available for comparison.

Table 3.10 Comparison of Punching Failure Loads for Full-Scale Deck

Test P

(kN)

1127
923
911
844
576
715
785
687

O NNV HWN —

Beam-on-Springs

K
(N/mm?)

592
387
315
250
265
265
592
250

Plheor

(KN)

1087
860
745
608
491
491

1040
608

Pipead
Py

0.96
0.93
0.82
0.72
0.85
0.69
1.32
0.89

K
(N/mm?)

599
300
228
156
156
156
599
156

Equation (43)

Pthcor

(kN)

1094
693
565
403
317
317

1094
403

Plheolj

P

exp

0.97
0.75
0.62
0.48
0.55
0.44
1.39
0.59
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Based on the ratio of theoretical load to experimental load for the two methods of calculating
restraint stiffness as shown in Table 3.10, it can be concluded that the beam-on-spring model
produces better results than the Equation (43) model. From Table 3.10 the theoretical
predictions are much better for Tests 1 and 2 than for the other tests. The test numbers
indicate the order in which the testing occurred. Therefore crack patterns formed from Test
1 and 2 may have had some influence on the experimental results of Test 3. This situation
would continue to occur through to Test 6. For Tests 7 and 8 the punch cones from Tests 1
and 4 were removed and the void filled with new concrete. Tests 7 and 8 were then
performed in the exact same location. For these tests, the radial and circumferential cracks
outside the shear cone existing from initial loading. Failure at Test 7 is believed to have
occurred prematurely due to some slippage at the conical shell interface with the shear cone.
However, it is important to note that the failure load was significantly large and that the deck
was behaving as predicted up to this failure point. The results of Test 8 were more favourable
and demonstrate that the mechanisms related to the formation of wedges and subsequent
rigid body rotation assumed in the rational are indeed correct. The presence of the existing
cracks means that the deck had no flexural capacity as the “yield lines” were already formed
at zero load. The load carrying mechanism had to be due solely to the assumptions of
arching, wedge rotation and lateral restraint which are the foundations for the rational model.

Test 7 and Test 8 are therefore very important validations of the rational model.

[t should be noted that Newhook and Mufti (1995) reported different K values and theoretical
failure loads for this same set of experimental tests. Although the beam-on-springs analogy
was used to calculate the restraint stiffness, the moment of inertia of both the top and bottom
flange of the girder was used. Because of the higher moment of inertia for the beam
elements, the overall restraint stiffness values were higher, consequently the predicted failure
loads reported by Newhook and Mufti (1995) were higher. This theoretical work was
performed without the benefit of the results of the lateral load testing described in Chapter
2. The lateral load testing indicated that only the top flange should be included in lateral

stiffness calculations and this procedure was followed for the results presented in Table 3.10.
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It is worth noting that even though there is a 15% difference in restraint stiffness values
reported by Newhook and Mufti (1995) and Table 3.10, there is less than a 10% difference
in predicted failure loads for Tests 1,2 and 3. It is also worth noting that the numbers reported
in Table 3.10, with the exception of Test 7, do not over estimate the capacity of the steel-free

bridge deck structural system.
3.4  Isotropically Reinforced Concrete Bridge Decks

The behavior described by the theoretical model for steel-free bridge deck is believed to be
equally applicable to steel-reinforced concrete slab on girder bridge decks. Isotropically
reinforced decks designed by the OHBDC empirical method fail in a punching shear mode.
The theoretical PUNCH model developed here is tested on two reinforced concrete bridge

deck models.

Fang et al. (1986) designed and tested a full scale bridge deck with the reinforcement as
shown in Figure 3.6. The level of reinforcement provided was consistent with the OHBDC
empirical design criteria. Based on the work with steel-free decks, it is believed that the
reinforcement in conventional concrete deck slabs behaves as a lateral restraint mechanism
and not as flexural reinforcement. In the lateral direction, the bottom layer of # 4 bars @ 220
mm provides lateral restraint to the system, in a similar manner as steel straps. Analyzing the
system with # 4 bars @ 220 mm as straps in a beam on spring model gives K =113
N/mm/mm. The ultimate load reported by Fang et al. (1986) is 631 kN. The ultimate load
predicted by the rational model is 627 kN. For comparison, a load deflection curve is given

in Figure 3.7. A summary of the comparison is presented in Table 3.11.

Bakht (1996) constructed and tested a one-third scale model of a bridge that had one section
steel-free and one section reinforced. In the bottom transverse layer of reinforcement several
of the bars were replaced by an instrumented Dywidag bar. A longitudinal section and a

cross-section from Bakht (1996) is reproduced directly in Figure 3.8. From the strain results
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of this bar, Bakht (1996) demonstrated experimentally that the reinforcement was behaving

as a tie and not as flexural reinforcement. The theoretical model was used to predict the

punching
T 74 pgrs @ 220 each way toc & oottcm
/
/ 1
[ 111 = I 111 |22
‘ 1l
; .
N w926 x 20: ! '
J |
990 | 2732 2133 ' ge0 |

Figure 3.6 Isotropically reinforced bridge deck tested by Fang et al. (1986)
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Figure 3.7 Load-deflection curves for test by Fang et al. (1986)
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Figure 3.8 Reinforced deck tested by Bakht (1996)

failure of this system. Again the bottom layer of transverse reinforcement is assumed to serve
the same function as the steel straps and the appropriate lateral restraint stiffness is

calculated. The comparison is presented in Table 3.11.
From these two comparisons, it can be concluded that the same arching behaviour assumed

for the steel-free deck occurs in reinforced concrete decks. Hence, the theoretical model

presented here can also be used to aid in the design and analysis of these decks.

Table 3.11 Comparison of Theoretical and Experimental Results for Isotropically

Reinforced Concrete Decks

Test S, Straps Depth K Ptheor  Pexp Ptheor/
(mm) (mm) N/mm? (kN) (kN) Pexp
Fang et al. 2133 Rebar 190 200 627 631 0.99
Bakht 2000 Rebar 150 428 629 622 1.01
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Hewitt and Batchelor (1975) estimated the lateral restraint empirically. The above discussion
indicates that the empirical estimation of lateral restraint stiffness is not necessary. The

lateral restraint stiffness can be calculated directly as illustrated.
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4 EXPERIMENTAL INVESTIGATION OF BRIDGE DECK BEHAVIOUR

4.1 Experimental Program

4.1.1 Description of Experimental Model

An experimental program was undertaken to examine the behaviour of the steel-free bridge
deck structural system. A full scale two girder bridge model was constructed in the lab. The
12 000 mm long girders (W 610 x 241) were spaced 2700 mm apart and were connected at
either end by diaphragms. Nine steel straps (12.5 x 100) were welded to the top flanges of
the girders and spaced at 1200 mm intervals. The C 380 x 50 channels served as the straps
at either end of the span. The fibre reinforced concrete deck was 200 mm thick with 100 mm
haunches over each girder. Typical cross-sections and plan views are shown in Figures 4.1

and 4.2.

The mix design and mechanical properties of the fibre reinforced concrete are given in Table
4.1. The mechanical properties of the concrete were tested both before and after the addition
of the fibres and are reported accordingly in the Table.

Table 4.1. Fibre Reinforced Concrete Mix Design and Properties

Component Value

Type 10 Cement 415 kg/m3
Water 160 kg/m3
Coarse Aggregate 980 kg/m3
Fine Aggregate 754 kg/m3
Fibres 7.28 kg/m3
Low Range Water Reducer I L/m3
High Range Water Reducer 3 L/m3
Air Content 6.0%
Before Fibres:

Compressive Strength 41.4 MPa

Modulus of Rupture 6.0 MPa
After Fibres:

Compressive Strength 39.0 MPa

Modulus of Rupture 5.9 MPa
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4.1.2 Description of Instrumentation

In all tests the load was applied using hydraulic cylinders ranging from 50 tonnes to 100
tonnes in capacity. The value of applied load was determined by calibrating the in-line
hydraulic pressure with load using a universal testing machine. An electronic foil gauge with
a 6 mm gauge length was bonded to each of the nine straps to record the strain during
loading. The gauges were located at the midpoint of the underside of each strap and oriented
along the length of the strap to measure axial strain. Three electronic strain gauges were also
mounted on the web of each girder at the mid-span location. The height of each of these
gauges is given in Figure 4.3. The gauges were oriented along the longitudinal axis of the

girders to measure flexural strains.

At each load location a series of dial gauges were used to measure deflections. A typical dial
gauge setup is shown in Figure 4.4. Six dial gauges were located along a line perpendicular
to the girders to obtain the transverse deflection profile of the deck at the point of load
application. In addition, two gauges were placed at the top flanges of the girders to measure

the horizontal deflection of the girders at the point of load application.

4.1.3 Description of Testing

[nitially, a load of 17.5 tonnes was applied to 25 different load points as shown in Figure 4.5.
For each load test, all deflection and strain readings were recorded. The 17.5 tonne load
range was chosen to be comfortably less than the load which would cause cracking of the
slab. The results of this set of testing reflects the linear elastic serviceability behaviour of the
deck. The location of each of these tests can be established by referring to grid lines as shown

on Figure 4.5. By way of example, load point 1 is load test 4c.

Three ultimate load tests were also performed on the full-scale model and the location of
each is shown in Figure 4.6. At the location of load Test 1, the load was cycled between 0

tonnes and 40 tonnes. This was done to investigate any ‘shakedown’ effect which may occur.
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The shakedown phenomenon was reported by Bakht (1996) and will be discussed later in the
context of the test results. After the five cycles of load a single point monotonically

increasing static load was applied to determine the behaviour the system up to and at failure.
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For load test 2, two loads were applied to simulate the effect of multiple wheel loads which
result from the axles of a truck. The was done to investigate how the load effects from one
axle may influence the ultimate failure load of another adjacent axle. It is obvious that the
proximity of the two loads will have some effect on the degree of influence and it is intuitive
that the closer the two loads, the greater the effect. OHBDC gives a design truck where the
closest spacing of two axles is 1200 mm. For test 2 an axle spacing of 600 mm was chosen
and is believed to be more severe than any situation which may occur on an actual bridge.
The load on each point was increased simultaneously such that, at each of the load points,
the load was exactly half the total applied load. Due to the capacity of the loading frame and
concerns about safety, the testing was stopped at a total load value of 145 tonnes. Although
the deck was severely cracked, it still had capacity in excess of this load value. The double
axle load was removed and replaced by a single wheel load in the centre of the previous two
points. This single wheel load was increased until failure to determine the reserve capacity

of the system in a deteriorated state.

For load test 3, the strap directly beneath the load point was removed. This test assessed three
key parameters: the reserve capacity of the system in the event of a strap failure, the ability
of the structural system to sustain loads by alternate load paths, and the effect of a strap
spacing of 2400 mm, which is approximately the clear spacing between the adjacent girders.
The deck was initially loaded to 830 kN, causing severe cracking of the deck. The load was
removed and then reapplied up to punching failure. This sequence of load is very important
in establishing a level of comfort with the structure strength and safety of the steel-free
bridge deck structural system. In addition to the strap being removed, the remaining straps
had yielded from previous testing and exhibited visible signs of plastic deformation. The
concrete deck in general was cracked from load Test 1 and 2 and the concrete surrounding
the load point was severely cracked from the initial loading up to 830 kN. The ability of the
system to still sustain significant loads in this highly deteriorated condition clearly

demonstrates the validity of this design approach.
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4.2 Experimental Behaviour of the Structural System

The behaviour of the bridge deck system can be divided into two categories: the behaviour
before cracking of the concrete deck slab and the behaviour after the cracking of the slab.
Data on the former comes from the 25 service load testing points and the initial stages of the
first ultimate load tests. Data for the latter comes from the three ultimate load tests. The

observed behaviour of the system in both the uncracked and cracked condition is reported.

4.2.1 Deformations

The general deflected shape of the deck before cracking is similar to that of most rectangular
bridge deck slabs on steel girders. The girders deflect longitudinally in proportion to their
load acceptance and stiffness. The deck deflects transversely as a structural slab spanning
two supporting girders. A typical transverse deflection profile, taken from test 4c, is shown
in Figure 4.7. In addition, Figure 4.7 shows the deflection profile for test 4b and 4d in which
the load is not applied at the mid-span of the deck. Similar deflected shapes can be seen in
all load tests b, c and d gridlines. The noteworthy aspect of the transverse deflection profile
is that it is not a smooth sagging shape similar to that of a simply supported beam. Although
there are only five deflection points, it is clear that the deflected shape has some reverse
curvature at the ends. This indicates that some moment is being taken at the ends of the span
due to the rotational stiffness of the girders. This is typical of composite bridge deck
construction. The importance of this fact is it demonstrates that in the uncracked condition
the steel-free deck has positive and negative bending stresses. To examine the deflection
profile after cracking we compare three deflected shapes from ultimate load test 1 shown in
Figure 4.8. The first curve represents the deflected shape in the uncracked stage and shows
the reverse curvature near the girders. The second curve represents the deflected shape after
cracking has occured on the underside of the slab. Again the reverse curvature can be seen
near the girders indicating that they are still carrying some moment. The final curve
represents the deflected shape just prior to failure. At this point the deck is cracked on the

topside near the girders.
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This curve can be seen to be flattened out near the girders indicating that the girders are no
longer carrying any negative moment and the deflection of the deck is now governed purely
by the rotation of the wedges.The deflected shape of the deck with a load applied directly
over one of the two girders is shown in Figure 4.9 for tests 4a and 4e as well as load test Se
and 3a. Common to all these curves is the fact that the deflected shape resembles a hogging
moment deflected shape. This indicates that with a load directly over a girder, the deck was
almost entirely in negative bending moment stresses. Because cracking had not occurred, it
is safe to assume that the bending stresses in this situation at a wheel load of 17.5 tonnes

does not exceed the tensile capacity of the concrete.

A further important deformation in the system is the lateral deflection of the girders, and in
particular the top flanges of the girders. The rational model assumes that the top flanges
displace away from the point of load application due to the rotation of the wedges. Using
test 2c as a typical example, it can be seen in Figure 4.10 that the flanges do move laterally
away from the load point even before cracking of the deck occurs. Using the data from
ultimate load test 1, it is again demonstrated that the girders rotate away from the load,
Figure 4.11. During ultimate load test 1, cracking of the deck occurred at a load of
approximately 48 tonnes. This can be seen in the change in slope of the lateral deflection
curve. The lateral deformation occurs at a greater rate after cracking as the deflection is
governed by the rotation of the wedges rather than the bending of the deck. To further verify
this outward displacement of the girders, the deflection values for a load of 17.5 tonnes for

all load tests on grid line ¢ are shown in Figure 4.12.



82

deflection (mm)

0 600 1200 1800 2400
transverse distance (mm)

Figure 4.9 Transverse deflection profile for loads applied over girders

200

150

100

appliad load (kN)

(5]
o

0 0.05 0.1 0.15 0.2
lateral deflection (mm)

Figure 4.10 Lateral deflection from test 2¢



1400

1200 ¢

1000 ¢

800

600

applied load (kN)

400 ¢

200

0.5 1 15 2 25 3 35§ 4 45 5
lateral deflection (mm)

Figure 4.11 Lateral deflection from ultimate load test 1

0.1

0.08

lateral deflection (mm)

0.02 {

Figure 4.12

0.06 {

0.04 {

1c 2c 3c 4c 5c 6c 7c
test location

Lateral deflections at 17.5 tonnes for tests on gridline ¢

83



84

4.2.2 Unsymmetrical Loading

In tests by other researchers, behaviour was evaluated based on the load being applied
directly between two girders at the mid-span of the deck. This creates a symmetry in which
the arching action is well accepted. Because vehicle loads are live loads and can be located
anywhere on the surface of a deck, it is important to know if the same tendency for arching
behaviour occurs if the load is applied unsymmetrically. Indicators of arching behaviour will
be an outward displacement of the girder top flanges and a tensile strain in the strap adjacent
to the load. Figures 4.13 and 4.14 show the lateral deflection of the top flanges and the strain
in strap 5 for load test 4a through 4e, respectively. It is noted that outward displacement is
positive. These results are typical of all other service load tests performed. The values are
maximum at 4c; however, the same behaviour is exhibited to a smaller degree at 4b and 4d.
This indicates that some arching is still occurring with loads applied at the quarter points of
the span. When the load is directly over the centerline of a girder as in 4a and 4e, the lateral
deflection behaviour is not predictable and the strain in the straps is negative. These values
are however consistent with the deflected shape which suggested that the deck was almost
entirely in negative bending for this load situation. Therefore, some arching action does take
place when the load is placed between the two girders, however, no arching is present when
the load is directly over a girder. This statement applies only to a two girder system in which
the concrete is not cracked. The behaviour of a cracked decked with an unsymmetrical load

could not be determined from this experimentation.

423 Composite Action

The Ontario Highway Bridge Design Code, typical other bridge and building codes, specifies
the width of the slab overhang that may be considered to be the effective width of the
compression flange when the concrete deck acts compositely with the steel girders. The
design of the steel-free deck assumes that the same level of composite action is present in the
steel-free system as would be present in reinforced concrete slab systems. During the service
load testing, the strain in the steel girders was measured at the mid-span of the girders using

the gauges shown in Figure 4.3.
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Using the OHBDC Clause 3-10, the total effective width of the compression flange should
be 1650 mm. Calculating the location of the neutral axis using the first moment of area of
the transformed section, y is found to be 635 mm up from the bottom of the steel girder.
Coincidentally, this corresponds to the full depth of the girder. A typical strain profile for the

theoretical composite section is shown in Figure 4.15.

Eleven of the twenty five service load tests were chosen to be representative of the behaviour
of the system. A typical strain profile is shown for various load increments of test lc in
Figure 4.16. From the strain profile the location of zero strain and consequently, the location
of the neutral axis of the composite section, can be calculated. For each test, a strain profile
similar to those shown in Figure 4.16 was used to locate the neutral axis in each girder. The
strain profile at an applied load of 17.5 tonnes was chosen as characteristic of the behaviour
of the beams and free from any initial settling-in effects. The values of strain and the
corresponding values of y from the bottom of the girders are shown in Tables 4.2 a_ b, and

C.

Table 4.2a Strain Values and Neutral Axis Locations for Tests on Gridline ¢

Gauge Test 1c Test 4¢ Test 6¢
Location

(mm) Girder!  Girder2 Girder1 Girder2 Girderl Girder2
540 4 4 -16 -13 7 10
310 12 11 29 33 44 48
80 20 20 84 73 81 83

y (mm) 655 643 458 475 585 606
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Table 4.2b Strain Values and Neutral Axis Locations for Tests on Gridline b

Gauge Test 1b Test 4b Test 6b
Location

(mm) Girder ]| Girder2 Girderl Girder2 Girderl  Girder 2
540 3 3 85 80 6 10
310 10 13 118 137 31 59
80 15 24 137 193 56 588
y (mm) 664 601 1288 866 595 588

Table 4.2¢ Strain Values and Neutral Axis Locations for Tests on Gridline a & e

Gauge Test 4a Test 4e Test S5a
Location

(mm) Girder 1 Girder2 Girderl Girder2 Girderl Girder 2
540 66 83 97 23 16 6
310 65 139 138 40 79 21
80 82 197 192 57 152 29
y (mm) 1745 873 995 851 588 672

In the tests along grid line c, Table 4.2a, the loading of the deck is symmetrical. At load
test 4c the longitudinal location of the load corresponds to the longitudinal location of the
gauges. In this case, the strain readings indicate that full composite action does not occur.
As the point of load application moves farther away from the strain gauge location, test
6c and 1c respectively, the location of the neutral axis moves closer to the theoretical
location of y=635 mm such that full composite action is recorded at mid-span for a load
at test 1c. Therefore, the girders develop full composite behaviour in the global sense;
however, girder section very close to the applied load are not able to develop the full
effective concrete compressive flange width. This effect is local to the applied load region
and does not appear to significantly effect the assumption of overall full composite

behaviour.



89

The loads in tests along grid line b, Table 4.2b, are offset such that the loading is no
longer symmetrical. This causes additional stresses due to the warping of the deck and the
twisting of the girders. This effect dominates in load test 4b in which the location of the
neutral axis does not have any physical meaning. These strain values are obviously
affected by the unsymmetrical loading. However, as the load moves farther away from
the gauge location, the location of the neutral axis moves closer to the theoretical

location.

The loads in tests along grid lines a or e, Table 4.2c, are directly over one of the girders.
This is the most severe form of unsymmetrical loading. The strain values at test 4a and 4e
are affected by the unsymmetrical effects. However, the values at test 5a give a neutral

axis close to the theoretical value.

[t is concluded that composite-action criterion of OHBDC is valid globally for the steel-
free system with the exception that at sections very close to the load points, local effects

may prevail. This is the case for the deck in an uncracked condition.

The girder strains were monitored during the ultimate load test 1. The load was applied at
1800 mm from the end of the span while the strains gauges were located 6000 mm from
the end of the span. Based on the response of the system from the service load tests, full
composite action should be occurring at the strain gauges. During the ultimate load test
local cracking occurred on both the underside and the top side of the deck at failure. A
longitudinal crack on the underside extended past the gauge locations.. In a field
structure, it is this longitudinal crack which is most likely to occur and it is the one of
concern with regard to its effect on the composite behaviour. The strain profiles from load
test 1 were interpreted in the same manner as above. The strain values are given below in

Table 4.3 along with the calculation of the neutral axis location, y.
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Girder 1 Girder 2
Load strains N.A. strains N.A.
(KN) Gauge! Gauge2 Gauge3 y(mm) Gaugel Gauge2 Gauge3 y(mm)
0 0 0 0 0 0 0

78 2 7 14 601 2 7 12 632
157 4 14 26 616 5 13 24 646
235 7 20 38 629 7 20 35 648
314 9 27 50 630 10 27 47 657
392 11 33 58 642 12 33 57 657
471 14 40 70 649 14 39 68 653
549 18 46 80 665 18 47 80 668
628 22 54 94 670 23 55 92 687
706 27 61 104 690 29 63 105 706
785 32 68 117 698 34 69 116 716
863 37 76 129 710 39 79 130 726
942 42 84 142 717 44 84 140 734
1020 49 92 155 733 49 94 156 734
1099 53 100 168 733 53 101 166 741
1177 62 108 181 754 60 110 182 747

Four typical strain profiles are shown for Girder 1 in Figure 4.17. The profiles represent

the strain in the girder when the concrete is in an uncracked condition, after cracking of

the underside, after cracking of the topside and just prior to failure. Although the profile

for the uncracked condition is approximately linear, the other profiles become

increasingly non-linear. In addition, the location of the neutral axis calculated from the

strain values, Table 4.3, is initially close to the theoretical value of 635 mm but becomes

increasingly larger as the load increases. In the higher load range the calculated value of

the neutral axis is too large for the physical limitations of the deck. To understand this

phenomenon we examine a plot of load versus strain for each of the gauge readings. The

plots for both girders are shown in Figure 4.18. Initially all the curves are linear;

however, at approximately 470 kN the curves for gauges 1 and 2 become non-linear with

gauge 1 increasing at a faster rate. For ease of interpretation, dashed lines are drawn to

represent the initial slope of each gauge. This non-linearity is not consistent with a beam
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in pure bending about one axis. The non-linearity does explain however the increasing
value of y calculated shown in Table 4.3. It also means that the calculation of y using the
simple bending theory is not appropriate at load values greater than 470 kN and must also
be considered carefully at load values lower than 470 kN. Therefore the calculated values
of y which seem to indicate that the neutral axis is well above 635 mm are incorrect and
meaningless as shown. The non-linear behaviour of the strain readings though is not
insignificant and can be explained by the behaviour of the steel-free bridge deck system.
Cracking of the deck occurred at the 470 kN load increment. After this point, the arching
behaviour becomes effective and the system deforms accordingly. As outlined Section
4.2.1, the top flanges of the girders will rotate outward at a much faster rate than before
the deck cracks. If the top flange is deflecting outward, then the web of the girder must
bend to maintain compatibility at the web flange connection. The bending of the plate
will cause a component of strain to occur in the longitudinal axis of the girder web. This
is the additional strain being recorded by gauges | and 2 and causing the apparent non-
linear behaviour. The lateral load testing indicated that only the top flange, and not the
top and bottom flange, acted to resist the lateral bending. This means that the bending of
the web and the accompanying longitudinal strains are larger near the top flange of the
girder. This appears to be the case as the non-linear behaviour is greatest for gauge 1
which is closest to the top flange. Gauge 2 exhibits non-linear behaviour but to a lesser

degree and gauge 3 appears to be unaffected by this web bending.

Re-examining Figure 4.18 we see that gauge 3 increases at a constant slope which
indicates that the bending behaviour recorded by this gauge is the same throughout the
loading. The initial readings before 470 kN show that the neutral axis for experimentation
is close to the theoretical neutral axis location. The constant slope of gauge 3 would
therefore indicate that the bending strain rate remains constant and hence the composite

section behaviour in pure bending remains constant.



Figure 4.19 shows the experimental gauge readings plotted alongside the theoretical
strains determined from the applied moment and the composite section size given by the
OHBDC. The theoretical values are slightly higher than the experimental values because
the modulus of elasticity, E, value for concrete, which is used to calculate the moment of
inertia, I, of the transformed section, is conservative and hence the theoretical I value is
slightly conservative. However, the plot does illustrate that the readings of gauge 3 are
consistent with the same theoretical composite section strains. The readings of gauge 1

are initially consistent with the theory but deviate from the theory at higher loads.

Using gauge 3 as an indicator, it is concluded that the composite section behaviour for
longitudinal bending did not change after cracking of the deck. There is however, some
lateral bending of the web which causes additional bending stresses in the web near the
top flange. Fortunately, the longitudinal strains are low in this region such that the

combination of the two strains will still be within acceptable limits.
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Figure 4.19 Gauge readings versus girder strains for ultimate load test 1
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4.2.4 Load Sharing Between Girders

In reinforced concrete bridge deck design, the load sharing between the girders in the
system can be calculated using a number of methods from the coefficient method of
either OHBDC or CSA S6 Design of Highway Bridges to the semi-continuum method
(Jaeger and Bakht, 1989). In these systems it is clear that the deck transfers the load to
adjacent girders through flexure and shear. In the steel-free deck system, arching action is
being relied upon as the principle load carrying mechanism. For design purposes two
important questions need to be answered: firstly, does load transfer occur in this system
and secondly, does the same level of load sharing occur ? While the two girder model
tested will not provide a complete answer to these questions, it will provide a useful
indicator of the behaviour. Unfortunately, the results of this testing program apply only to
the behaviour of the deck in a uncracked state. While it remains uncracked, the deck can
transfer loads in flexural action and not just purely by arching action. The results must be

regarded with due consideration to this fact.

The first question is easily answered by examining the deflection of the girders under a
variety of loadings. Table 4.4 presents the deflection of each girder for an applied load of
17.5 tonnes. A variety of load cases are selected from the twenty five service load tests to

represent the range of possible load positions.



Table 4.4 Girder Deflections

Location Deflections (mm)

Test Girder 1  Girder 2

1b 0.68 0.21
Ic 0.45 0.41
4a 4.06 0.65
4b 2.92 1.32
4c 2.20 2.13
Se 0.62 4.56
6b 2.76 1.32
6¢ 2.04 1.98

It is clear that load sharing does take place even when the load is applied directly over
one of the girders. To examine the second question related to the amount of load sharing
we will consider the deflection values to be indicators of the amount of moment carried
by each beam. The girder strain readings would be a better indicator of load sharing,
except that the secondary strain effects discussed in the previous section make simple
interpretation of the moment strains impossible. The theoretical load sharing is
determined by analysing the system with the SECAN program (Mutfti et al., 1992). The

theoretical moments for an applied load of 17.5 tonnes are given in Table 4.5

Table 4.5 Theoretical Girder Moments from SECAN

Location Moments (kN-m)

Test Girder 1  Girder 2
1b 134.2 51.6
Ic 92.8 92.8
4a 454 8 61.2
4b 358.0 158.0
4c 258.0 258.0
Se 60.2 404.0
6b 317.0 178.0

6¢ 247.7 247.7
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Using Tables 4.4 and 4.5 the amount of load sharing is calculated for the experimental
model and the theoretical analysis. The load sharing is reported as a percentage of load

taken by each girder. The comparison is presented in Table 4.6.
Table 4.6 Comparison of Experimental and Theoretical Load Sharing

Location Theoretical Experimental

Test Girder1 Girder2 Girder1 Girder2
1b 76% 24% 2% 28%
Ic 52% 48% 50% 50%
4a 86% 14% 88% 12%
4b 69% 31% 69% 31%
4c 51% 49% 50% 50%
Se 12% 88% 13% 87%
6b 68% 32% 64% 36%
6¢c 51% 49% 50% 50%

This simple comparison indicates that the same amount of load sharing which is assumed
to occur on a reinforced concrete slab on girder system can safely be assumed to occur in
the steel-free bridge deck system. This conclusion only applies to the deck in the
uncracked condition and has only been verified for a two girder system. Load sharing of a

cracked deck and of a multi-girder system were beyond the scope of this work.

4.2.5 Strap Force Distribution

A typical distribution of strain in the straps for a specified load is shown in Figure 4.20.
The distribution is for a 17.5 tonne load applied directly in the centre of the model, test
4c. As expected the straps closest to the load take the larger portion of the lateral force
and the straps farther away from the load take a smaller portion. Because all the straps are

of the same material, size and length, the distribution of restraint forces is similar to the

distribution of strap strains.

By way of comparison the strain distribution for the same 17.5 tonne load applied directly

over the strap closest to the end of the span, test 7c, is shown in Figure 4.21. [t can be
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seen for both these plots that the force in the straps dies away very quickly. After four
strap spacings the force in the straps becomes very small. This is important for assessing
the field of influence of a load on the straps, particularly when considering the effect of

adjacent wheel loads on the overall strap forces.

It is noted from Figures 4.20 and 4.21 that the magnitude of the strap forces is not the
same. In other words, the strap strain for strap 5 for Test Ic is not the same as the strap
strain for strap 1 for Test 7c even though both straps are directly beneath the respective
loads. This is undoubtedly due to boundary conditions playing a more dominant role in
load tests near the edge of the deck. As a further aid in examining the distribution of strap
forces, a series of influence lines is constructed for the strain in a given strap as the load
moves along the span, Figure 4.22. The strains are given as micro strain per kN of applied
load. In this manner the influence lines will be consistent with the standard form of
response due to an applied unit load. Only the influence lines for straps 5 through 9 are
shown as those for straps 1 to 4 are symmetrical with straps 6 to 9 due to the reciprocity
in the system. The influence line for strap 6 does not seem to be consistent with the
others. [t is believed that this strap had some sag in the unloaded condition such that, at
low loadings, it does not participate fully in the load sharing. Once the initial sag has been
overcome the strap will participate more fully. This same behaviour is observed for strap
4. It should be noted that the diaphragm at mid-span was present during the welding of
the straps. The removal of the diaphragm may have caused some change in the unstressed
position of the girder such that some straps relaxed, mainly 4 and 6, causing this sagging

to occur.

It is clear that the relative magnitude of the strap force increases for straps which are
farther away from the end of the span. For the model tested, this appeared to be maximum
at the centre strap. However, it is not clear that this trend would continue for longer spans.
It seems more reasonable that at a certain distance from the end of the span, all straps

would have the same influence line shifted by their location along the span.
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The strain distributions shown in Figures 4.20 to 4.22 are for the deck in the uncracked
condition. While the magnitude of strain per kN of load will change for the cracked
condition, the overall shape of the distribution curves remain unchanged. For verification.
the strain distribution curves for the three ultimate load tests are shown in Figures 4.23.
The strains are given in micro strain per kN of applied load and are taken from readings
after the deck has cracked. For load test 1 the strain distribution was also available for the
deck in the uncracked condition. The distributions for both conditions is compared in

Figure 4.24.

As a final comparison, the strain distribution for a load at the mid-span of the deck is
compared to that of a load at the quarter span of the deck. As expected, the strain
distribution is of the same general shape but the magnitude is smaller for the quarter point
loading. The distributions for test 4c and 4b only are shown in Figure 4.25; however. the

trend is similar for other load combinations.
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4.2.6 Shakedown

Selvadurai and Bakht (1995) reported a load deflection response of a steel-free deck
which changed slightly after each cycle of loading and unloading. The load deflection
curve for a complete cycle forms a hysteresis loop which continues to be reduced with the
number of load cycles until it reaches a stable state. Bakht (1996) refers to this process as

shaking down to a stable state or simply shakedown.

To examine this effect, five cycles of loading to 40 tonnes and unloading were applied at

the location of ultimate load test 1. The deflections and strap strains were recorded for

each cycle.

The load-deflection curves for all five cycles are shown in Figure 4.26. For load cycle
one, the change in response is quite large but by load cycle four the structure has

stabilized considerably. For clarity, the hysteresis loops for cycle one and cycle four are
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shown in Figure 4.27. The shakedown effect can be clearly seen, even for a low number
of load cycles. The hysteresis loops for the strain values in strap 8 are also shown for load

cycles one and four. Again the shakedown effect can be seen, Figure 4.28.

4.2.7 Effect of Haunches on Ultimate Load Behaviour

As shown in Figure 4.1b, the model bridge deck was constructed with 100 mm haunches
over each girder. This model was the first such steel-free deck constructed and tested with
haunches. The assumptions made in the rational model regarding the mechanics of the
wedge rotation would indicate that the lever arm for rotation is based on the difference
between the top surface of the slab where the load is applied and the point at which the
lateral restraint is applied over the girders. Although 75% of the deck is only 200 mm
thick, the effective depth for the PUNCH program would actually be 300 mm. Using the
beam on springs analogy. the restraint stiffness for this location is determined to be 251
N/mm/mm, see Table 2.9. (Newhook and Mufti, 1996, had reported the stiffness to be

243 N/mm/mm for this same location. The difference is due to the level of sophistication
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of the software used for the beam-on-springs model. The work in this thesis is based on
the finite element analysis and is believed to be more accurate; but, the overall difference
is less than 3%.) The Punch program is used to model the system with depths of 200, 250
and 300 mm. Four key parameters are selected for comparison to the experimental results.

These are failure load, deck deflection, lateral deflection and strap strain, Table 4.7.

Table 4.7. Actual versus Predicted Behaviour

Theoretical (PUNCH)

Parameter Actual d=200mm d=250mm d=300mm
Failure Load (kN) 1275 728 1015 1306
Deck Deflect. (mm) 12.3 19.8 15.7 12.65
Lateral Defl. (mm) 3.0 2.38 2.64 2.58
Strap Strain (ustrain) 1555 1415 1500 1500

From this comparison, it can be seen that the deck behaviour corresponds very closely to
that of a theoretical deck thickness of 300 mm. Therefore, the effect of the haunch is to
increase the effective thickness of the deck and thus increase ultimate load capacity. This
confirms the assumptions of the rational model. From pure mathematical considerations,
the restraint force acts at the depth equal to thickness of the slab available at the support
(above the girders), see Figure 4.1a; therefore, the thickness assumed as input data should

be the full depth of the deck including the haunch.

4.2.8 Load-Deflection Behaviour

The data from ultimate load test 1 is used to study the load-deflection behaviour of the
steel-free system as the deck progresses from an uncracked condition through to failure.
The deflection of the deck under the load point as well as the deflection of the girders is
shown in Figure 4.29. It is observed that the deflection curve for the deck exhibits an
abrupt change of slope at about 470 kN and the behaviour of the deck is substantially
different after this point. During the testing, it was observed that the first crack on the

underside of the deck occurred at 470 kN load increment. The behaviour of the deck
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before cracking is governed by flexural behaviour of the concrete slab and the behaviour
after cracking is governed by the rotation of the wedges or arching action. The theoretical
deck deflection is also shown in Figure 4.29. The theory assumes that cracks are present
from initial loading. The experimental curve therefore begins with a much stiffer
behaviour due to flexure but meets up with the theoretical curve at failure. The deflection
behaviour of the girders remains unchanged throughout the load history as the load

sharing between girders remains unaffected by the cracking.
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Figure 4.29 Vertical deflections for ultimate load test 1

The lateral deflection curve is given in Figure 4.30 along with the theoretical curve from
the PUNCH analysis. This curve exhibits the same basic behaviour as the vertical deck
deflection. Initially the response is quite stiff with a substantial change in slope after
cracking occurs. The experimental curve eventually meets the theoretical curve near

failure.
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Finally, the experimental and theoretical strap strains are compared in Figure 4.31. Again
the strap strains exhibit the same behaviour as the deflection curves. Initially governed by
bending behaviour, the slope changes after cracking and the experimental values coincide

with the theoretical values at failure.

All three plots indicate that a substantial change in behaviour occurs after cracking and

that the after-cracking behaviour is governed by arching action and not flexure.
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4.29 Multiple Load Points

Vehicle loads on bridges are caused by large, heavily loaded trucks. These trucks come in
a variety of configurations but most significant is the spacing and number of axles.
Punching capacity of a deck is determined in terms of a single wheel load; however, the
effect of closely spaced adjacent axles is important. While the exact mechanics of the
interaction is complicated a simple method can be developed for predicting the effect of

adjacent loads (Mufti and Newhook, 1997).

Consider Figure 4.32 in which a line of loads is moving on the bridge. We assume that
interaction between two wheels is based on the outer diameter of the wedges which
would be formed during the punching failure. The diameter of these circles is
approximately equal to the girder spacing. Thus if the two circles do not overlap then the
individual loads do not effect each other. If the circles do overlap then the amount of
influence can be quantified by the percentage of overlapping area. The circular fields of

influence can be further simplified to rectangular fields of influence at failure, as shown
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in Figure 4.33. The reduction in the ultimate punch load can be calculated as follows:

- S
Reduction in the area of one wheel = ‘—2"- x Sg “45)

where S, is the spacing between adjacent girders and S,, is the spacing between adjacent

loads.

Total reduced area =S x§ -2 _“x5§ (46)
g g 2 g
. i, S
Ratio with total area = 1 += 47)
2 S
gl
Thus the reduction in the load will be given by
S
P "’ =P 1+ (48)
Sg

where P, is the ultimate punch load due to a single load and P’, is the ultimate punch

load due to the total load.

For test 2 the loads were spaced at 600 mm apart and the girder spacing was 2700 mm.
From load test 1 the ultimate capacity of a single wheel load was 130 tonnes. Substituting

into equation (48) we get
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P! =130 [1+2%2] .
2700

This gives a predicted total load of 160 tonnes or 1570 kN. The load-deflection plot for
the tandem wheel load test is shown in Figure 4.34. Data was only available up to a load
of 1020 kN after which the deflection values exceeded the stroke of the gauges. The load
was applied up to a value of 1422 kN and then stopped for safety reasons. Before the
loading was stopped, the deck was sustaining the load and showing no signs of failure.
While it is unfortunate that the deck could not be taken to failure the test did demonstrate
that the total failure load was in excess of a single wheel failure load and the deck

appeared to be capable of sustaining the predicted load.
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Figure 4.34 Load-deflection curve for ultimate load test 2
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To examine the validity of this formula further, we investigate the test results of an
isotropically reinforced deck. Fang et al. (1986) tested an isotropically reinforced deck by
applying tandem loads a girder spacing of S, =2133 mm and an axle spacing of S,, =
1220 mm. The ultimate load for the tandem loading was 907 kN, the single load capacity

was 631 kN. Substituting these values in Equation (48)

1220
1+ ——

=992 kN .
2133

P = 631 (

This compares well with the experiment results of P, = 907 kN.

When the load was removed from the two wheel loads at test 2, a single wheel load was
reapplied at the midpoint of the previous two load pads. A full crack pattern was already
formed on both the topside and underside from the tandem wheel loading. The deck failed
at a single wheel load of 1020 kN. It is interesting to note that this value is approximately
20% less than that for load test 1. The crack pattern for the tandem wheel load was
approximately 22% bigger than that of a single wheel load crack pattern. It is believed
therefore that the pre-existing crack pattern from the double wheel load influenced the

failure of the single wheel load.

4.2.10 Reserve capacity of the system

As described previously, load test 3 was performed to determine the reserve capacity of the
system in a deteriorated condition. Two of the most likely modes of deterioration are the
corrosion or failure of a strap and the severe cracking of the deck. Both these conditions were
simulated by the test. To establish the initial behaviour the deck was loaded up to 36 tonnes
with the deck and strap in good condition. The strap was then removed and the deck loaded
to 85 tonnes and the load removed. This achieved a condition whereby the strap beneath the
load was ineffective and the concrete surrounding the load patch was severely cracked. In

addition, the deck in general was cracked throughout and most of the remaining straps
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showed visible plastic deformation from having yielded during previous tests. The deck in
this condition was then tested to failure. The deck sustained a maximum load of 1118 kN
before failing at a load of 951 kN. Using the beam on springs model, the lateral restraint
stiffness for this test was 86 kN/mm? and the predicted failure load from PUNCH using a 300
mm thick deck was 951 kN.

The load-deflection curves for all three stages of the load test as well as the theoretical curve
are shown in Figure 4.35. The curves indicate that the load-deflection behaviour is not
significantly changed in the initial load portion by either the removal of a strap or the
cracking of the deck. This may be due to the fact that the initial loading with the strap still
in place was not taken to a high enough value to see the full effects of the arching behaviour.
The final loading path does; however, exhibit more linearity than the first load cycle with the
strap removed. It also shows a reduction in stiffness of about 30% from the initial two load
curves. This illustrates that the cracking during the first load cycle with the strap removed
eliminated much of the flexural capacity of the slab. Therefore, arching was the main
behavioural characteristic during the final loading. As demonstrated by the theoretical curve
the load-deflection relationship for pure arching behaviour (pure wedge rotation and no
bending) is linear. The experimental curve for the final load cycle tends toward the
theoretical curve at the end of the loading. The theoretical predicted failure load is reasonably
close to the actual mode of failure demonstrating that the rational model can still be used as
an analysis tool even in this less-than-ideal condition. A comparison of theoretical versus
experimental strain is not so favourable with the maximum theoretical value being 830 micro

strain and the maximum experimental value being 1500 micro strain.

The test does clearly demonstrate that the steel-free bridge deck system has substantial
reserve capacity even in a severely deteriorated condition. Even in the event of the failure of
a primary load carrying member, such as the strap directly beneath the load point, the system
is able to sustain load through a redistribution of loads to the remaining straps. This fact is

of great importance when considering the design safety of such a system.
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5 FIELD APPLICATION

Construction of a steel-free bridge deck on the Trans Canada Highway 104 was completed
and opened to traffic on 5th December 1995. This project represents the world’s first field
application of the steel-free bridge deck technology. The design was undertaken by a five
person design team consisting of Dr. Aftab A. Mufti, Dr. Leslie G. Jaeger, Dr. Baidar Bakht,
Dr. Gamil Tadros and Mr. John Newhook. Much of the experimental work described herein
was conducted to verify the design of the field structure.

5.1 General Arrangement

The general form is that of concrete slab-on-steel-girder construction with two simply
supported spans of 31 200 mm each. One of the spans was designed using the steel-free

bridge deck technology. A plan view of the bridges is shown in Figure 5.1.

Both structures are located on a vertical and horizontal curve in the road alignment. The
radius of curvature of the horizontal curve was such that the girders could be designed as
straight, not curved, girders with the centerline of the road offset from the centerline of the
structure. Both structures were designed with a skew angle of 22° 15' 0". The deck was also
super-elevated with a 4.8% cross-slope. To compensate for the vertical curve alignment both
the conventional and the steel-free concrete deck were haunched over the girders. The
haunch of the steel-free concrete deck was increased slightly to allow for removal of the deck

formwork. The average haunch dimension was 130 mm.
At the abutments, the reinforced concrete footings rested on reinforced earth backfill.
Because of the potential for settlement at these abutments, the bridges were constructed as

two simple spans with a deck joint at the central pier rather than as continuous over the pier.

The typical cross-section and elevation of the Salmon River Bridge is shown in Figure 5.2.
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Figure 5.2 Typical section and elevation of Salmon River Bridge
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The design of girders, piers and footing was done according to CAN/CSA-S6-88 Design on
Highway Bridges (CSA-S6) using dead and live load provisions. The conventional deck was
also designed according to the CSA-S6 Standard.

A partial cross-section of the steel-free concrete bridge deck is shown in Figure 5.3. In both
systems the concrete deck was made composite with the steel girders using the shear
connector requirements of CSA-S6. The size and spacing of shear studs is sufficient for both
longitudinal shear and internal arching forces. The general details of both bridge deck
designs are given in Table 5.1 and the mix design is given in Table 5.2.

1350 : =50

Figure 5.3 Partial elevation of steel-free deck
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Table 5.1. General Design Details

Item Conventional Steel -Free
Design Design

Girder Spacing 2 700 mm 2 700 mm

Slab Thickness 200 mm 200 mm

Concrete Strength 35 MPa 35 MPa

Steel Reinforcement 1.9% 0%

Steel Straps 0% 0.5%

Table 5.2. FRC Concrete Mix

Component Mix Design
Type 10 Cement 415 kg/m3
Water 160 kg/m3
Coarse Aggregate 980 kg/m3
Fine Aggregate 754 kg/m3
Fibres 5.0 kg/m3
Low Range Water Reducer 1 L/m3
High Range Water Reducer 3.5 L/m3
Air Content 6%

5.2 Experimental Verification of Ultimate Strength

Considering only the restraint stiffness of the straps the theoretical ultimate load for this
configuration was 550 kN. As demonstrated by ultimate load test 1, described in Section
4.2.7, the ultimate load capacity of the system was 1275 kN. If one considers the maximum
permissible wheel load to be 49 kN and the factored design wheel load to be 196 kN then the
actual failure load represents factors of safety of 26 on permissible loads and 6.5 design loads
respectively. It was determined that the first cracking load of the concrete in the lab model
was approximately 470 kN. If this is considered as the serviceability limit state for this
system then there is a serviceabilify safety factor of 4.8 on the maximum observed

unfactored wheel load of 98 kN. However, it should be noted that after 4 months of service,
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cracking was observed on the underside of the deck on the Salmon River Bridge. The testing
in the lab was performed only 1800 mm from the end of the slab. In this case, the transverse
edge beam and diaphragm act as a fixed support. The flexural behaviour in the lab, therefore,
closely resembled that of a two way slab. In the field, the cracking occured close to midspan
of the structure. The precracking flexural behaviour in the field closely resembled a one way
slab in bending. Considering a 1000 mm wide strip, a deck thickness of 200 mm, and a
flexural modulus of rupture of the concrete of 6.0 MPa, the cracking load of the field slab
is calculated as 6 tonnes for simply supported end conditions and 12 tonnes for fully fixed
end conditions. The actual cracking load can be assumed to be between these two limits. In
addition, it is believed that a series of load effects including impact, dvnamic loading,
thermal stresses and shrinkage stresses all combined to make the actual stress range in the
field significantly higher than that of just static wheel loading alone. These effects were not
present in the laboratory testing. The combination of different precracking flexural behaviour
and increased stress range leads to the cracking of the field slab under ordinary vehicle loads

whereas the laboratory deck cracked under a much higher monotonic static load.

The tandem wheel load test (Section 4.2.9) demonstrated that the proof load for an axle
spacing of 600 mm was 1422 kN. For a typical design truck, as given by the Ontario
Highway Bridge Design Code, the minimum axle separation is 1200 mm. The lab test can
be considered to be a much more severe condition then would occur on the actual structure.
The corresponding single wheel proof load is 711 kN. Considering that the ultimate factored

wheel load is 200 kN, this corresponds to a factor of 3.6 for the proof load.

It was discussed in Section 4.2.10 that the system has a reserve capacity of at least 951 kN
even in a deteriorated condition where the straps have yielded or failed and the deck is
severely cracked. Therefore, even at the lower bound of failure loads, the system has a factor

of 4.75 on the ultimate single wheel design load.
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5.3  Design of Connections and Barrier Wall

The steel-free bridge deck system at Salmon River involved two important connection
details, the first was the welded connection of the straps to the girder flanges and the second
was the connection of the crash rail to the bridge superstructure. In the case of the welded
strap connection, two considerations were important: design of the weld for ultimate strength
and design for fatigue. For ultimate strength design, the critical load was determined from
the yield strength of the strap. For fatigue, the stress range in the weld was limited to 48 MPa
as per CSA-S6 requirements for a class W connection detail with over 2 million cycles of
load reversal. The program PUNCH was used to predict the stresses in the welds due to
service loads. Fatigue criteria were found to govern the weld design. From the testing
performed in the lab, typical values of strap strain for various load locations under a service
load of 90 kN are presented in Table 5.3. It is seen that the assumed fatigue strain for design

is well above any of the corresponding strain values recorded.

Table 5.3. Maximum Strain (micro strain) in Straps at a Load of 90 kN

Test # Strap Distance  Micro
to Load  Strain

1 8 600 33

1 9 1 800 63

p 5 300 113

3 2 0 68
3 1 1200 106
4c 5 0 94
design - 0 257

The connection of the aluminum crash rail post to the deck curb and parapet required a
unique design detail. Standard practice with this system is to anchor the posts to the
curb/parapet which is in turn anchored to the deck with steel rebar. A crash causes an
overturning moment on the system which is resisted by the top steel in the bridge deck. A

deck devoid of reinforcement therefore cannot be used as the principal load resisting system
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for this type of loading. An alternate connection was designed (Figure 5.4) where the post
anchor bolts, which are in tension, are extended through the curb and deck concrete and
anchored to cross-members connected to the girders. The anchor bolts are encased in PVC
tubes to prevent forces being transferred to the concrete by bond with the bolts. The
structural steel is then the primary load resisting system for tension. The deck and curb
concrete resists only compressive and secondary forces which may arise in the event of a

crash.
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Figure 5.4 Typical curb and railing detail

54 Design of Curb Using NEFMAC

Steel reinforcement in curbs is a primary location for deterioration caused by de-icing salts.
To provide durability similar to the steel-free deck, a fibre-reinforced plastic reinforcement
was used in the curbs and parapets. Because the curbs are not participating in the tension

forces from the crash rail, reinforcement in the curbs resist only secondary load effects from
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a crash and shrinkage effects under normal conditions. Therefore, glass fibre reinforcement
was chosen for the curbs. In particular three layers, two horizontal and one vertical, of
NEFMAC (type G10) were used, see Figure 5.4. This is a two-way reinforcement with

individual bars of 35 mm?’ cross-section in a 150 x 150 mm grid.
5.5  Construction of the Steel-Free Bridge Deck

After completion of the substructure, the six girders were simply supported at the free ends.
The girders were fabricated with the top flanges at 4.8% slope, rather than perpendicular to
the girder web, to match the cross slope of the deck. This allowed the steel straps to be
continuous across all six girders with no gaps between the top of the girder and the strap.
This reduced the amount of welding and simplified the girder strap connection detail. The
cost of fabrication of the girders was not significantly affected by this detail. To provide
composite action with the deck, rows of three 22 mm diameter shear studs were used. In the
conventional design. these rows were spaced at 300 and 250 mm, at the midspan section and
end sections respectively. This spacing was adhered to in the steel-free design; however.
some local adjustments to spacings were made to accommodate placement and welding of
the straps. During erection of the girders a standard system of diaphragms were installed
according to the provision of CSA-S6. This consisted of two end diaphragms and four
intermediate diaphragms spaced at approximately 7200 mm. At each end diaphragm, a C380
x 50 channel was welded to the top flanges of adjacent girders and made composite with the
deck, which was thickened at these edges. In a conventional design, this channel would be
installed with its strong axis in the vertical plane. However, in the steel-free design, the
strong axis was placed in the horizontal plane (Figure 5.5) to provide in-plane restraint in the
longitudinal direction of the slab. This type of edge beam is necessary to achieve punching
failure behaviour at the free edge of the deck slab (Newhook et al., 1995). In addition, C200
X 28 channels (see Figure 5.5) were welded between the C380 x 50 edge beams and adjacent
girders to compensate for the effect of the skew angle on the lateral restraint of the slab near

the edge, (Bahkt and Agarwal. 1995).
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Figure 5.5 View showing edge beam and channels

Figure 5.6 View showing welding of steel straps
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The straps (100 x 14) were welded to the top of the girder and spaced at an average spacing
of 1200 mm. Because the straps were uncoated weathering steel, a strap size of 100 x 14 was
considered to be only a size of 100 x 12 in design. This was to allow for a 2 mm loss of

section thickness due to the weathering process (Figure 5.6).

After the completion of the steel supporting frame system shown in Figure 5.6, the
polypropylene fibre- reinforced concrete was placed. Figures 5.7 and 5.8 show the concrete
deck being constructed. The absence of the steel reinforcement which would be present in

a conventional bridge deck is immediately noticeable.

Although in the lab, 0.8% fibre content by volume was mixed with the concrete, this amount
was not user-friendly in field conditions using large quantities of concrete. A slight reduction
to 0.55% fibre content made the workability of concrete easier for the concrete suppliers and
for placement by the contractor. The fibres are essentially being used for shrinkage crack

control and the reduction in the fibre volume fraction did not affect the design.

After completion of the asphalt wearing surface, the Salmon River bridge was opened to

traffic (Figure 5.9).
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Figure 5.8 View showing no internal reinforcement in deck slab




Figure 5.9 Salmon River Bridge Trans-Canada Highway 104

5.6 Economic Analysis

The total cost, in 1995 Canadian funds, of the two bridge structures at Salmon River was
$2,300,000. The cost of each of the four spans, including deck, girders, foundations and
abutments, is estimated to be $575,000. For comparisons based on square metres of bridge
deck, the area of the deck on each span is taken as 440 m>. The total cost of the conventional
deck construction alone was $63,000 or $143/m? The total cost of the steel-free deck
construction alone was $66,850 or $152/m?. It should be noted that, while both styles of
construction used the same volume of concrete, the cost of the conventional bridge deck
concrete was $420/m® whereas the cost of the fibre reinforced bridge deck concrete, with
0.55% polypropylene fibre, was $542/m’ . It is cautioned that the quoted prices are based on
the negotiated unit prices between the contractor and the owner for the Salmon River Project.
As such, they must be scrutinized in light of three considerations: 1) the prices are based on

pre-construction estimates not actual post-construction costs; 2) the prices are based on one
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project only not the average of a number of projects; 3) the prices undoubtedly include some
level of contingency as this was the first ever usage of this system and the contractor had no
previous experience. Based on experience gained from this project, the designers feel that

capital cost savings can be realized in future projects by:

. reducing the concrete deck thickness from 200 mm to 175 mm, giving a unit cost of
$138/m?.

. reducing the polypropylene fibre content from 0.55% to 0.4%, giving a unit cost of
$134/m?

These two changes would represent a 6.3% capital cost savings for the steel-free deck
technology compared to conventional technology. A further cost savings can be realized by
eliminating the waterproofing membrane and asphalt wearing surface on the steel-free deck
for a savings of about $26/m’. This can be replaced by a 10 mm thick concrete wearing
coarse costing $5/m’ for a net savings of $21/m?. In this case the cost of the steel-free deck

can be reduced to as low as $115/m?.

The most significant savings with the steel-free deck system is in operation, maintenance and
repair costs. A recent study by the US National Institute of Standards and Technology (Ehlen
and Marshall, 1996) estimates that the typical cost of these three factors is $51/m>.
Approximately 80% of these costs are user costs. The steel-free deck has the potential to
eliminate almost all of these costs. In Salmon River Bridge design, the only maintenance
item should be the external steel straps. These straps are accessible from beneath the
structure and should be on the same maintenance cycle as the steel girders. The required
maintenance, if any, will not disrupt traffic flow and therefore the user costs will be
eliminated. The agency costs for materials and labour, which makes up the other 20% of the
maintenance costs, should be substantially less than that required for concrete deck repair or

replacement as is often required for reinforced concrete bridge decks.

The unique curb connection shown in Figure 5.4 also merits discussion. The cost of this curb

connection detail was $48,500 compared to a conventional connection detail costing $11,700
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for one span. If we now include the cost of the curb connection with the deck costs given
above, we see that the conventional design cost $170/m> while the steel-free design cost
$262/m?. While the connection detail used may have substantially lower long-term
maintenance cost compared to the conventional design, some owners may be concerned more
with initial cost reduction. To address this situation, the designers suggest two alternatives:
. use a steel-free deck with conventional steel reinforced curbs, in which case the cost
of the system will be approximately $167/m>.
. use the concrete barrier suggested by Bakht and Mufti (1996) at a total cost of
$169/m*



6 PARAMETRIC INVESTIGATION OF BEHAVIOUR USING THE
RATIONAL MODEL

6.1 Deck Behaviour Investigation

The rational model, which was developed in Chapter 2 and validated in Chapters 3 and 4,
can be used to theoretically investigate the effect of the key parameters on the system
behaviour. The key parameters are identified as the girder spacing, S,; the effective depth of
the deck, d; the restraint stiffness, K, the yield strain of the straps, €,, the compressive
strength of the concrete, f; and the ultimate failure load, B . The tire print is taken to a
constant size of 250 x 500 as given by the OHBDC. In addition, the concrete confinement
constant, k, is also taken to be a constant with a value of 10 as demonstrated in Section 2.4.

The range investigated for each of these parameters is given in Table 6.1.

Table 6.1 Parameters and Range of Values for Investigation

Parameter Range
S, (mm) 1500 2000 2500 3000 3500
d (mm) 175 200 225 250 275
. (MPa) 25 30 35 40 50
P, (kN) 400 500 600 1000
€ 0.0015 0.00175 0.002

Y

A base case representing a typical bridge deck, given in Table 6.2, was chosen. One
parameter was then selected and varied over the range given in Table 6.1. The Punch
program was used to analyse each new configuration and predict the change in behaviour of

the system or the effect on other parameters.



Table 6.2 Base Case Bridge Deck Parameters

Parameter Value Parameter Value
S, (mm) 2500 tire print (mm X mm) 250 x 500
d (mm) 200 strap to load spacing (mm) 0
. (MPA) 30 B 0.85
€, 0.0015 confinement constant 10

6.1.1 Restraint Stiffness

Holding all other values constant, the restraint stiffness is varied from 80 N/mm/mm to 700
N/mm/mm. Assuming the ultimate design wheel load to be 200 kN, the values of strap strain
,E,, and central deflection, A, at 200 kN are recorded for each increment of restraint stiffness.
The strap strains are converted to an equivalent restraining force, F in unit of force per metre

of circumference of the wedge. by equation 49.

s
F=e FK (49)

5

This comparison demonstrates the effect of changing the restraint stiffness on the system

behaviour for the same value of applied load.

Table 6.3 System Response for Varying K at an Applied Load of 200 kN

K P € A F
(N/mm/mm) (kN) (mm) (kN/m)
80 200 0.00136 1143 136
100 200 0.00109 9.14 136
200 200 0.00054 4.57 135
300 200 0.00036 3.04 135
400 200 0.00027 2.29 135
500 200 0.00022 1.81 137
600 200 0.00018 1.51 135

700 200 0.00015 1.30 131
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The results of Table 6.3 are plotted in Figure 6.1, K versus A, and Figure 6.2, K versus €,.
As expected the increase in restraint stiffness causes a decrease in central deflection. The
relationship is exponential with the most significant decrease occurring up to 400 N/mm/mm.
After this point, the change in the absolute value of deflection is small. A similar trend
applies to the change in strap strain. An increasing value of K results in an exponentially
decreasing value of strap strain. The most interesting comparison, however, is the value of
restraining force. It is a constant value of about 135 kN/m for all values of restraint stiffness.
The slight variations in Table 6.3 are presumably due to round-off errors in the strain values.
Therefore, for the configuration given in Table 6.2, the restraining force for an applied load
of 200 kN is constant and independent of the value of restraint stiffness. In more general
terms, for a given deck configuration, each value of applied load has a characteristic value
of restraining force which is not dependant upon the magnitude of restraint stiffness. This
has an implication on understanding the function of the straps in the system. The influence
of the straps on system behaviour is not in the amount of force developed by an individual
strap for a unit displacement but rather in the stiffness of the strap. The strap stiffness will
actually determine the amount of lateral deflection which must occur to develop the

restraining force for the applied load.

Extending the evaluation of the restraining stiffness on the behaviour of the system, Table
6.4 presents the failure data for the deck configuration given in Table 6.2. Again the
restraining force F is calculated for each failure. The failure is designated as concrete when
crushing of the concrete initiates punching failure and strap when yielding of the strap

initiates punching failure (Section 2.3.6).
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Table 6.4 System Response for Varying K Values at Failure

K P €, A F failure
(N/mm/mm) (kN) (mm) (kN/m) mode

80 215 0.0015 12.69 150 strap
100 265 0.0015 12.87 188 strap
200 506 0.0015 13.71 375 strap
300 720 0.0015 14.29 563 strap
400 920 0.0015 14.86 750 strap
500 1100 0.00149 15.17 936 concrete
600 1210 0.00139 14.49 1042  concrete
700 1310 0.00132 1594 1155 concrete

As expected, the failure load increases as the restraint stiffness increases. The relationship
is plotted in Figure 6.3. It is noted that when the mode of failure switches from strap yielding
to concrete crushing, the slope of the line also changes to become flatter. When the failure
is determined by strap yielding, the benefit of increasing the restraint stiffness is much
greater than when the failure is controlled by concrete crushing. Also, strap yielding
dominates at low values of restraint stiffness while concrete crushing dominates at higher

values.

A curve of deflection at failure versus restraint stiffness is plotted in Figure 6.4. Again the
curve changes as the failure mode switches from strap yielding to concrete crushing. For
strap failure, the deflection at ultimate will increase with increasing values of restraint
stiffness. However, the ultimate deflection decreases as the restraint stiffness increases for

conditions in which the concrete crushing dominates.

The restraining force is calculated and presented in Table 6.4. Unlike Table 6.3, where the
restraining force was invariant with respect to restraint stiffness, the restraining force in this
case increases with an increase in restraint stiffness. This is undoubtedly due to the increase
in failure load. A plot of failure load versus restraining force, Figure 6.5, shows a consistent

relationship between the failure load and the restraining force. This relationship is not
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affected by the failure mode and appears to be quite linear. Based on the information in
Tables 6.3 and 6.4, it can be concluded that for a given girder spacing, deck thickness and

concrete strength, there is a characteristic value of restraining force associated with each

value of applied load that is independent of the value of restraint stiffness.
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Figure 6.3 Failure load versus restraint stiffness, Table 6.4
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6.1.2 Yield Strain of the Straps

The next parameter to be investigated is the yield strain of the straps. The deck configuration
given in Table 6.2 is used as the base model and the restraint stiffness is varied as in Table
6.1. However, the yield strain of the strap is changed from 0.0015 to 0.002. Table 6.5
presents the same investigation as Table 6.4 except that the yield strain of the strap is higher.
Changing the yield strain is obviously a failure criteria consideration only and the behaviour

exhibited in Table 6.3 at a constant applied load of 200 kN will be unaffected.

Table 6.5 System Response at Failure for €, = 0.002

K P €, A F failure
(N/mm/mm) (kN) (mm) (kN/m) mode

80 277 0.002 17.26 200 strap

100 342 0.002 17.57 250 strap

200 637 0.002 18.86 500 strap

300 826 0.00178 17.42 667 concrete

400 971 0.00161 16.10 805 concrete

500 1100 0.00149 15.17 936  concrete

600 1210 0.00139 14.49 1042  concrete

700 1310 0.00132 13.94 1155 concrete

With a yield strain value of 0.002, the concrete failure mode dominates at a much lower
value of restraint stiffness. Figures 6.3, 6.4 and 6.5 are repeated in Figures 6.6, 6.7 and 6.8
respectively; however, the data from Table 6.5 is added for comparison. The failure load
versus restraint stiffness follows the same behaviour as before except that the magnitude of
the failure loads is much higher up to a restraint stiffness value of 500 N/mm/mm. The
change in curve is again noticeable when the failure mode switches from strap yielding to

concrete crushing.

Figure 6.7 clearly shows that the deflection values at failure decreases with increasing
restraint stiffness when the concrete crushing dominates. The relationship between failure

load and restraining forces is consistent with that presented in Figure 6.5.
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It is noted that €, = 0.0015 (Table 6.4) gives mostly strap yielding failure while €, = 0.002
(Table 6.5) gives mostly concrete crushing failure. This fact will be used in subsequent

studies to help assess the behaviour of the system for both failure modes.
By way of further investigation, the configuration in Table 6.2 is used with a constant
restraint stiffness value of 200 N/mm/mm. The yield strain of the strap is varied from 0.0015

to 0.00175 to 0.002. The results are given in Table 6.6.

Table 6.6 System Response for Varying €,

€, P A failure
(kN) (mm) mode
0.0015 506 13.71 strap
0.00175 573 16.23 strap
0.002 637 18.86 strap
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Figure 6.10 Deflection at failure versus yield strain
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A plot of failure load versus yield strain, Figure 6.9, and deflection versus yield strain, Figure

6.10, reveal a nearly linear increase in values with respect to yield strain. The case presented

is for conditions which lead to failure by strap yielding. In cases where the failure is initiated

by concrete failure, the yield strain of the straps has no effect.

6.1.3 Girder Spacing

The configuration in Table 6.2 is used with a constant restraint stiffness of 400 N/mm/mm.

The spacing of the girders is varied according to the values given in Table 6.1. The resulting

failure data is given in Table 6.7 for a yield strain of 0.0015 and Table 6.8 for a yield strain

of 0.002.

Table 6.7 System Response for Varying Girder Spacing and €, = 0.0015

S, P €, A F failure
(mm) (kN) (mm) (kN/m) mode
1500 749 0.0015 4.64 450 strap
2000 845 0.0015 8.79 600 strap
2500 920 0.0015 14.86 750 strap
3000 811 0.00117 17.48 702  concrete
3500 704 0.00090 18.90 630 concrete

Table 6.8 System Response for Varying Girder Spacing and €, = 0.002

S, P €, A F failure
(mm) (kN) (mm) (kN/m) mode
1500 969 0.002 6.29 600 strap
2000 1070 0.002 12.05 800 strap
2500 971 0.00161 16.10 805 concrete
3000 811 0.00117 17.48 702  concrete
3500 704 0.00090 18.90 630 concrete

As in previous examples, the behaviour of the system is affected not only by the girder

spacing but also by the failure mode. The deflection at failure versus girder spacing, Figure

6.11, appears to be the most consistent relationship with a general trend of increasing
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deflection for increasing girder spacing. The behaviour of the failure load is very much
influenced by the failure mode, Figure 6.12. With all other parameters held constant. the
failure load will increase with an increase in girder spacing provided that strap yielding
initiates failure. The failure will decrease with increasing girder spacing if concrete crushing
initiates punching. The relationship between restraining force and failure load, Figure 6.13,
is not as well-behaved as in Figure 6.5 or 6.8. It does however indicate that the relationship
is not only a function of girder spacing as the same failure load has more than one possible

value of restraining force based determined by the girder spacing.
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Figure 6.11 Deflection versus girder spacing
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6.14 Deck Thickness

The deck configuration given in Table 6.2 is used as a basis with a constant value of restraint
stiffness of 400 N/mm/mm. The thickness of the deck is varied according to the range given
in Table 6.1. The results of the study are given in Table 6.9 for a yield strain of 0.0015 and
Table 6.10 for a yield strain of 0.002.

Table 6.9 System Response for Varying Deck Thickness and €, = 0.0015

d P €, A F failure
(mm) (kN) (mm) (kN/m) mode
175 700 0.00135 16.08 675 concrete
200 920 0.0015 14.86 750 strap
225 1084 0.0015 12.56 750 strap
250 1242 0.0015 1092 750 strap
275 1398 0.0015 9.67 750 strap

Table 6.10 System Response for Varying Deck Thickness and €, = 0.002

d P €, A F failure
(mm) (kN) (mm) (kN/m) mode
175 700 0.00135 16.08 675 concrete
200 971 0.00161 16.10 805 concrete
225 1307 0.00190 16.34 950 concrete
250 1581 0.002 14.89 1000 strap
275 1785 0.002 13.03 1000 strap

[t is interesting to note that in this case, the smaller thickness leads to punching initiated by
crushing of the concrete and the larger thickness leads to punching initiated by yielding of
the straps. The failure load follows a clear trend of increasing failure load for increasing deck
thickness, Figure 6.14. The deflection values decrease with increasing deck thickness except
when concrete failure initiates punching. In this case, the deflection increases marginally as
deck thickness increases, Figure 6.15. The restraining force remains constant when strap
yielding controls, even though the failure load increases, Figure 6.16. The restraining force

does however change with deck thickness when concrete crushing controls.
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Figure 6.16 Restraining force versus failure load for varying deck thicknesses

6.1.5 Concrete Strength

The deck configuration in Table 6.2 is used as a basis with the restraint stiffness being held
constant at 400 N/mm/mm. The concrete compressive strength is varied according the range
given to Table 6.1. The results of the study are given in Table 6.11 for a yield strain of
0.0015 and Table 6.12 for a yield strain of 0.002. Table 6.11 produces results in which the
failure is controlled by yielding of the strap. Table 6.12 produces results in which the failure

is controlled by crushing of the concrete.

Table 6.11 System Response for Varying f.’ and €, = 0.0015

. P €, A F failure
(MPa) (kN) (mm) (kN/m) mode

25 897 0.0015 15.19 750 strap

30 920 0.0015 14.86 750 strap

35 946 0.0015 14.76 750 strap

40 961 0.0015 14.67 750 strap

50 984 0.0015 14.77 750 strap




Table 6.12 System Response for Varying f.’ and €, =0.002

. P € A F failure
(MPa) (kN) (mm) (kN/m) mode

25 905 0.00152 15.48 760 concrete

30 971 0.00161 16.1 805 concrete

35 1009 0.00164 16.34 820 concrete

40 1038 0.00166 16.5 830 concrete

50 1078 0.00168 16.66 840 concrete

Both sets of data follow the same general trend, an increase in concrete compressive

strength results in an increase in failure load. In this case however the increase is only
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marginal. Doubling the concrete strength from 25 MPa to 50 MPa results in only a 10%

increases in the failure load when strap yielding controls and a 19% increase in failure

load when concrete crushing controls, Figure 6.17. Therefore. merely increasing the

concrete compressive strength to a medium or high strength concrete does not appear to

be an efficient way to achieve extra strength for the bridge deck system. Studying the

strap strain and the deflection values, the effect of increasing the concrete compressive

strength is only marginal. Figure 6.18.
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6.1.6 Girder Span / Deck Thickness Ratio
The data compiled in Tables 6.7 through 6.10 is re-organized in Tables 6.13 and 6.14 to

reflect the span to thickness ratio for each configuration.

Table 6.13 System Response for Varying Span/Thickness Ratio and €, = 0.0015

S./d S, d P €, A F failure

(mm) (mm) (kN) (mm) (kN/m) mode
7.5 1500 200 749 0.0015 4.64 450 strap
9.0 2500 275 1398 0.0015 9.67 750 strap
10 2000 200 845 0.0015 8.79 600 strap
10 2500 250 1242 0.0015 10.92 750 strap
I11.1 2500 225 1084 0.0015 12.56 750 strap
12.5 2500 200 920 0.0015 14.86 750 strap
14.3 2500 175 700 0.00135 16.08 675 concrete
15 3000 200 811 0.00117 17.48 702  concrete
17.5 3500 200 704 0.00090 18.90 630  concrete

Table 6.14 System Response for Varying Span/Thickness Ratio and €, = 0.002

S,/d S, d P €, A F failure

(mm) (mm) (kN) (mm) (kN/m) mode
7.5 1500 200 969 0.002 6.29 600 strap
9.0 2500 275 1785 0.002 13.03 1000 strap
10 2000 200 1070 0.002 10.92 800 strap
10 2500 250 1581 0.002 14.89 1000 strap
11.1 2500 225 1307 0.0019 16.34 950 concrete
12.5 2500 200 971 0.00161 16.10 805 concrete
14.3 2500 175 700 0.00135 16.08 675 concrete
15 3000 200 811 0.00117 17.48 702  concrete
17.5 3500 200 704  0.00090 18.90 630 concrete

From Figure 6.19 it can be seen that no clear relationship exists between the S,/d ratio
and the failure load. The values are very much affected by the combination of girder

spacing and deck thickness that lead to that S /d value. The relationship between
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deflection and S /d is also not consistent, although it generally increases as the ratio
increases, Figure 6.20. A plot of restraining force versus applied load, Figure 6.21, does
not yield any discernable correlation to the S,/d ratio. Therefore, S,/d by itself is not a

good indicator of system behaviour unless it is considered in conjunction with other

parameters.

1800
1600 -
= 1400
é —i—
U -
‘_3 1200 yield = 0.0015
[¢)] ——
5 .
% 1000 yield = 0.002
800
600

6 8 10 12 14 16 18
girder spacing/ deck thickness

Figure 6.19 Failure load versus S/d



149

N
o

-
(2]

-
»

—
Hn

i

yield = 0.0015

-

yield = 0.002

—_
o

o]

deflection at failure (mm)
N

()]

H

6 8 10 12 14 16 18
girderspacingl deck thickness

A

Figure 6.20 Deflection at failure versus S/d

1000

900
< 800
[+3} i
o .
£ 700} yield = 0.0015
R ——
=
s ield = 0.002
= 600 ne
®

500

400

600 800 1000 1200 1400 1600 1800
applied load (kN)

Figure 6.21 Restraining force versus failure load for varying S /d ratios



6.1.7 Summary
The parametric study revealed several basic behavioural characteristics of the steel-free

bridge deck behaviour. They can be summarized as follows:

All other parameters being held constant, at the same value of applied load, an

increase in restraint stiffness leads to a decrease in deflection and strap strain.

. An increase in the restraint stiffness causes an increase in the failure load.

. The basic system behaviour is affected by whether the failure mode is initiated by
yielding of the straps or crushing of the concrete.

. The restraining force developed by the system is closely linked to the applied load
and is independent of restraint stiffness. It does however, depend heavily on the
geometry of the system including girder spacing and deck thickness.

. The contribution of the straps is most significant in the stiffness they provide and
not the amount of force developed by an individual strap.

. Strap vielding initiates failure at lower values of restraint stiffness, girder spacing.
S./d ratios and higher values of deck thickness. Concrete crushing initiates failure
at higher values of restraint stiffness, girder spacing, S./d ratios and lower values
of deck thickness.

. Concrete compressive strength has only a marginal influence on deck behaviour
and increasing concrete strength is not an effective means of increasing capacity.

. Increasing the yield strain of the straps has the general effect of increasing the
failure load; however, a higher yield strain also produces lower values for the
transition from failure initiated by strap yielding to failure initiated by concrete
crushing.

) Ranking the parameters in order of their influence on the failure load, from
greatest to least, we have restraint stiffness, deck thickness, girder spacing, yield

strain and concrete strength.



6.2 Restraint Stiffness Investigation

6.2.1 Strap Size and Spacing

The magnitude of the restraint stiffness provided to the bridge deck system is affected by
several parameters: girder spacing, strap spacing, strap size, strap material and the top
flange of the girder. If we assume that the girder spacing is determined by other
considerations and the strap material will always be steel then the designer has control
over only three parameters. The top flange of the girder is also largely determined by
other design consideration such that restraint stiffness design is essentially a choice of
strap size and spacing. Placing issues of constuctability aside, the optimum strap
configuration is one which provides the highest level of restraint. The restraint, as
demonstrated in Section 2.5, can be calculated using a beam on elastic springs model. In
this analogy, the best situation is one in which the beam is continuously supported an the
elastic continuum. Considering only the elastic modulus of the supporting material, the
interaction of the beam and the supports is typical called a Winkler beam (Den Hartog.
1952) and its behaviour is well studied. For a beam of infinite length or conversely for a
loading situation which is free from end effects, the deflection under an applied point load

can be calculated from the following Equation:

"o

S =

1
A where A = (__l_c_) 4 (50)
2 4FE7T

b

Similar to the method developed for interpreting the beam on springs results in Section
2.5, the restraint stiffness K is calculated as

P k
K = — | such that K =2— 51
5 7 (51)

where k is the spring modulus which can be found from equation (44). The values E and
I correspond to the modulus of elasticity of the beam and the moment of inertia of the

beam. If we consider the laboratory model shown in Figure 4.1, then

W



‘- 200,000-1,250 _ 176 Nimm/mm

2,370/2-1,200

and

1
A= 176 4 = 0.0012456
4-200,000°92x/0°

Substituting into equation (51) yields K = 284, 200 N/mm per metre length of
circumference or K = 284 N/mm/mm.

The effective spring modulus k was calculated based on a strap size of 1250 mm? every
1200 mm. This converts to 1.0417 mm?mm spacing. This same effective spring modulus
can be achieved by an infinite combination of strap sizes and associated spacings.
However, the implication is that the more discrete and farther spaced the support springs.
the less the structure behaves like a beam on a continuous support. To examine this effect
in terms of the Iab model, the finite element procedure was emploved to analysis the
beam on spring model for a variety of strap spacings and sizes and to determine the
effective restraint stiffness. For each case an upper and lower bound for stiffness was
determined based on the load being directly over a strap or directly between two straps.

The results are presented in Table 6.15.

[t can be seen that up to a strap spacing of 1000 mm the effective restraint stiffness is
very close to the ideal restraint stiffness value of 284 N/mm/mm as calculated in equation
(51). At a strap spacing of 1200 mm there is a noticeable difference in the lower and
upper bound values, however, there is still only a 10% variation from the ideal value. Ata
spacing of 1500 mm, the variation is large, approximately 25% less for the lower bound.
While this example is specific to the beam size chosen ( I =92 x 10° mm?*), it is indicative

of a typical design configuration. It should also be noted that below a strap spacing of 800



mm no noticeable improvement can be seen. It is concluded therefore that the strap

spacing should be between 800 and 1200 mm.

Table 6.15 Effect of Strap Spacing on Restraint Stiffness

Strap Upper Bound Lower Bound
Spacing As Krap o K o) K
(mm) (mm?) (N/mm) (mm) N/mm/mm) (mm) (N/mm/mm)

200 210 35,443 3.514 285 3.514 285
400 415 70,042  3.544 282 3.550 282

500 520 87,763  3.535 283 3.547 282

800 830 140,084  3.510 285 3.611 277
1000 1050 177,215 3.421 292 3.690 271
1200 1250 210,970 3.339 299 3.929 254
1500 1560 263,291 3.108 322 4.556 219

6.2.2 Girder Size

The girder size will obviously have an influence on the effective restraint stiffness value.
The largest influence is due to the moment of inertia of the top flange of the girder.
While the size of the girder is determined largely from the bending stresses in the girder,
the designer does have some control over its dimensions. It is therefore important to
know the relative importance of the magnitude of this moment of inertia on the
magnitude of the restraint stiffness. Equation (51) is a useful tool in assessing this
parameter. Table 6.16 summarizes the calculated restraint stiffness value for a range of
top flange moments of inertia. The model tested in the lab has a value of 92 x 10® mm*

while the girder at Salmon River has a value of 485 x 10° mm®.



Table 6.16 Effect of Varying Moment of Inertia

Moment of Inertia A K
( x 10° mm4) (N/mm/mm)

92 0.0012456 284

200 0.0010255 345

300 0.0009267 382

500 0.0008156 434
600 0.0007792 454
1000 0.0006858 516

In relative terms, it can be seen that the restraint stiffness is only marginally sensitive to
the value of the moment of inertia. Considering the two extremes given in Table 6.16. a

ten times increase in moment of inertia does not even double the restraint stiffness value.



7 DESIGN RECOMMENDATIONS

A sub-committee of the new Canadian Highway Bridge Design Code (Bakht et al., 1996)
charged with creating Section 16-Fibre Reinforced Structures has included, for the first time
in any bridge code, clauses pertaining to the design of Fibre Reinforced Concrete Deck Slabs.
Fibre reinforced concrete deck slabs are synonymous with the steel-free bridge deck
structural system described through this thesis. Based on involvement in research work, the
design and construction of the Salmon River bridge and the findings of this thesis, this author
provides a series of design recommendations for the steel-free deck system. These
recommendation are evaluated against the proposed clauses for the CHBDC. The author’s
recommendation are based on the current state of the art. With increased laboratory testing
and in particular, increased field experience some of the recommendation may prove to be

too conservative.
7.1 General Discussion

7.1.1 Bridge Superstructure

The work of this thesis and all of the work recorded to date has been performed on concrete
slab on steel girder system. With the exception of the most recent testing, not completed at
the time of writing this thesis, all of the work was performed on simple span structures. The
technology however is by no means limited to this particular superstructure type. Indeed the
system may be even more effective if used with concrete girder bridges. The rational model
and other theoretical tools would apply equally well to concrete bridge deck slabs on all
girder types. The defining behavioural element of the technology is the lateral restraint
provided to the deck. The challenge with other girder types is to design the construction
details such that proper interaction between the straps, the girders and the deck is achieved.
It is therefore recommended that the steel-free deck technology can be used with any girder
system if testing is performed to demonstrate that the connection details achieve the proper

level of lateral restraint.



156
The system is not limited to simple span structures but may also be used in continuous bridge
structures. The technique is to design the girders themselves to carry all the negative moment
for ultimate strength design and to establish adequate crack control for the concrete deck over
the piers for service load design. Testing is currently underway to address the latter issue.

The current draft of CHBDC states:

For continuous span bridges, the deck slab contains longitudinal negative moment
reinforcement in at least those segments in which the flexural tensile stresses in the

concrete due to bending in the SLS are larger than 0.6f.,....

The steel-free technology is not limited to only new construction or cast-in-place
construction. The principle of arching action can be employed in deck replacement projects
or in precast deck projects. Again. the challenge is not in whether or not the technology is
applicable but in the design of proper details to achieve the lateral restraint and arching

behaviour.

[t is noted that extensive experimental work has been performed for cast-in-place decks on
steel girder systems. Use of the steel-free deck with other systems will require some further
testing, not to establish the technology or behaviour, but to test the effectiveness of the

design details employed.

7.1.2 Concrete Strength

It was demonstrated in Section 6.1.5 that the concrete compressive strength has only a
marginal effect on the ultimate load capacity of the system. It is therefore recommended that
concrete compressive strengths of 30 MPa or 35 MPa be used as required by the standard
practices of the agencies responsible for the structure. The use of concrete strengths higher
than these values will not adversely affect behaviour. The decision to use higher strengths

however should be based on other considerations, such as durability, and not on improving
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the ultimate capacity of the system. A slight increase in strap size is a much more efficient

means of attaining increased capacity.

7.13 Transverse Negative Moments

The steel-free system relies on the development of compressive stresses in the concrete
through lateral restraint and arching action. Due to certain possible load situations, portions
of the deck may be subjected to tensile stresses due to negative transverse bending moments.
Two examples of this are the bending stresses created by the cantilever overhangs and the
bending stresses caused by crash loads on the barrier rails or walls. Two design options are

possible.

The first option is to design the superstructure such that these stresses do not develop. This
approach was chosen for the Salmon River Bridge Project. Initially the bridge was designed
with six girders and a cantilever overhang of approximately 500 mm on either side of the
bridge. The spacing of the girders was increased such that the overhang was eliminated
(Figure 5.3). In addition the connection detail between the crash rail and the deck was
modified such that the crash rails was anchored to the structural steel girders and not the
concrete deck, see Figure 5.4 This eliminated the need to design for tensile concrete stresses

due to a crash load.

The second option is to design for these stresses in the usual manner and reinforce the deck
in the tensile regions. Mahue and Bakht (1993) have demonstrated that it is possible to
design the barrier wall and the overhang using fibre reinforced plastic reinforcement instead
of steel reinforcement. In this manner, the deck still has a high level of durability even
though it contains reinforcement. While use of steel reinforcement is not prohibited.
transverse negative moments require that the steel be placed near the top of the deck and in
the zone where the curb or barrier wall meets the deck. This is the most corrosion susceptible
area of the deck and therefore use of steel reinforcement may lead to essentially the same

maintenance problems as with standard reinforced concrete construction. It may be argued
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that the lowest capital solution should prevail and that steel reinforcement should be used in
the negative moments regions regardless of the corrosion problems. The design will be less
expensive than the conventionally designed deck and will have at least the same level of
durability. While this may be a valid approach, the author believes that a marginal increase
in capital costs due to the use of FRP reinforcement is justified based on the significant
reduction in life cycle costs which may be achieved. In many cases, the steel-free design with
FRP reinforcement may actually be less expensive on a capital costs basis than the

conventional design. Use of the non-corrosive FRP reinforcement is recommended.

These recommendations are consistent with the current draft of CHBDC which states:

A deck slab of fibre reinforced concrete .... need not be analyzed except for negative

moments due to loads on the overhang and barrier walls; ...

The deck contains appropriate tensile reinforcement for ransverse negative
moments, resulting from loads on deck slab overhangs and loads on railings or

barrier walls.

7.1.4 Deck Geometry
The general geometry of the bridge superstructures which can be used with the steel-free
bridge deck technology should be limited. The CHBDC draft suggests the following:

The spacing of the supporting beams, S, does not exceed 3.0 m.
The deck slab thickness. t, is at least 175 mm, and not less than S/15.
These limits are reasonable and it is recommended that they be followed. Testing to date has

demonstrated that a girder spacing of 2 700 mm is feasible; therefore, a spacing of 3 000 is

consistent with the current state of knowledge. Wider girder spacing may be possible but
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these systems would require further experimental verification before they could be adopted

for construction.

[f we consider the test model shown in Figure 4.2 to have S = 2700 mm and t = 200 mm,
then S/t = 13.5 . Therefore S/15 is a reasonable limit. Designs not meeting this limit will
require further testing. However, in Section 4.2.7. It was demonstrated that the effective
thickness of this deck was actually t plus the thickness of the haunch or 300 mm. It is
recommended that, given the present state of the art and limited field experience, the actual
value of t be used for code purposes in establishing geometric limits. This will add a level
of conservatism to the design. For analysis; however, the effective depth should be used in

determining the capacity of the system.

The use of haunches over the girders has been demonstrated to be an effective means of
increasing the performance of the system. Again, limitations need to be placed on the size
and configuration of the haunch such that it does not have an adverse effect on the structure.
Obviously a haunch of large height will not be beneficial to the system . In addition, an
abrupt change in deck thickness from the haunch area to the remainder of the deck is not

recommended. The CHBDC draft makes the following recommendation:

...the height of the haunch between the deck and the top of a supporting beam is

between 25 and 125 mm ..

This recommendation is endorsed. The lab testing has been performed with a height of 100
mm and the Salmon River Bridge has an average haunch depth of 130 mm. The height of the
haunch used will be affected by two parameters, the straps should remain external to the
concrete and adequate breathing room must be present between the top of the strap and the
underside of the deck such that moisture is not trapped causing rapid and undetectable

corrosion. Also, the formwork used to construct the deck will generally be above the strap
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Figure 7.1 Typical haunch detail

and will have to be removed. The height of the haunch will have to be great enough to allow
its removal. In general, the height of the haunch will be closer to the upper limit for

constructability.

Careful thought must also be given to the transition in depth. As a minimum, the transition
should be made at a 1:1 slope as shown in Figure 7.1. Figure 7.1 is based on Figure 16.7 (a)
of the draft CHBDC. The author makes a further reccommendation that if a load is applied at
the mid-span of the deck, then a clear line of arching must be able to be made from the load
point to the top of the girder. In other words, the geometry of the haunch must be such that
the imaginary line arching forces does not exit the deck before it reaches the girders which
support the deck. While it can be argued that the shape of this imaginary line is curved, it is
conservative to assume that it is linear. Using this principle the geometry shown in Figure
7.2a would be unacceptable while the geometry shown in Figure 7.2b would be acceptable.
This philosophy is based on the idea of having to maintain a continuous compression field
within the concrete. The linear arching force rule is simple and conservative; however a
designer may chose to use engineering judgement provided the designer believes that the
compression field can be maintained. The impact of this recommendation is that the width

of the haunch may have to extend a short distance past the edge of the girder flanges. If this
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extension exceeds 100 mm, then the designer should consider making some overall changes
to the deck geometry such as increasing the deck thickness. Another possibility is to make
an even smoother transition from the haunch to the deck. While more expensive to construct,
a circular or parabolic profile for the underside of the slab may be the geometric optimum.

In general, very thin decks with deep haunches and abrupt transitions should be avoided.

......

Figure 7.2 Geometry of haunch and arching forces

Equally important to the development of arching action is the effectiveness of the studs on

the top of the girders. The CHBDC draft requires that:

... the projection of the shear connecting devices in the deck slab, t, is at least 50
mm; in addition the distance between the top of the shear connecting devices and the

top surface of the deck slab is a minimum of 75 mm.
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Figure 7.1 provides an illustration of this requirement. The author supports this requirement

as a means of ensuring effective shear connection and arching action.

7.1.5 Restraint Strap Configuration

Most testing to date has been performed with steel straps welded to the top flanges of the
girders. This need not always be the case and in some instances, such as concrete girders,
may not even be readily possible. Bakht (1996) and the CHBDC provide som:< alternative
strap connection details. The recommendation for the strap connection is that it be designed
for adequate interaction such that lateral restraint is provided by both the girders and the
straps. The top flange of the girder is the most important element in providing continuous
lateral support to this system whereas the straps provide restraint at a series isolated points
along the girder. A girder without straps may not provide the required lateral restraint.
Likewise, series of widely spaced straps may be effective only when the load is applied close
to a strap and ineffective when the load is applied a some distance from a strap. The girder-
strap interaction can be considered to be mutually dependent in that the straps enhance the
restraint of the girders through beam on spring behaviour and the girders enable lateral forces
to be transferred to straps not directly adjacent to the load. Connection with the deck must

be made such that the restraining forces can be transferred from the concrete to the girder-

strap system.

It is recommended that strap connections exist between all adjacent beams. The straps used
in the Salmon River Project were continuous across all six girders; however, the welded
connection was made at each girder. In interior panels, it can be argued that the deck has a
high degree of global lateral stiffness due to the girders and the deck. While this may be true,
the punching behaviour has specific local influence and global stiffness should not be relied
as the sole lateral restraint. At every location of the deck, a clear system of a compressive

arch in the deck with and a tension tie must be present. The CHBDC draft states that:
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The top flanges of all adjacent supporting beams are connected by an external
transverse confining system, comprising straps, which are perpendicular to the

supporting beams, and which are either connected directly to the top flanges ... or

connected indirectly ... alternatively transverse confining systems comprises devices

which have been proven through full-scale laboratory testing.

[t should also be noted that the strap connection need be on the top surface of the top flange.
In the Salmon River Project the straps were placed on top of the flanges to facilitate
construction. The system works equally effective if the straps are welded to the underside of
the top flange as shown in Figure 7.3. This method requires overhead welding and may be

more expensive but it can be used as an effective repair technique.

ies aegerc 1T oLngers.ce of tienge

Figure 7.3 Cross-section of strap welded to underside of top flange

The CHBDC recognizes the increased global lateral stiffness of the superstructure in interior
panels by reducing the minimum area of strap required by 20%. The author endorses this
concept but recommends that the reduction not exceed 20%. Also a minimum cross-sectional
area of strap always be provided. This minimum is discussed in Section 7.1.6. In addition,
considering the lateral restraint provided by the straps only, the theoretical punching load

should be at least twice the ultimate limit states design wheel load.
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The CHBDC requires that:

The spacing of the straps, S, is not more than 1.5 m.

The author recommends that, except in special cases, the spacing of the straps should not
exceed 1200 mm. As demonstrated in Table 6.15, a strap spacing of 1500 mm gives a 25%
reduction in stiffness compared to the average restraint stiffness of the strap system. By
comparison, the 1200 mm spacing gives only a 10% reduction. While testing demonstrated
that a strap spacing of 2400 mm gave adequate strength performance, the deck suffered
severe cracking at low loads for this test. Therefore, a large strap spacing may lead to

serviceability and fatigue problems even though it meets ultimate strength requirements.

The experimental testing described in Chapter 4 and the parametric study of Chapter 6
demonstrated that yielding of the straps can occur and that it is most likely at low values of
lateral restraint. It is recommended that a design philosophy be adopted such that the strap
connection strength should not be less than the strength developed in the strap. Considering
that yielding is a possible failure mode, the ultimate limit states strength of the strap
connection should be greater than the yield strength of the strap. This is very important for
two reasons. Firstly, the connection between the strap and the girder can not be visually
inspected such that failure of a connection can only be detected by failure of the system.
Strap yielding on the other hand, can be detected by visual inspection. Secondly, if a
connection fails, and more importantly, if more than one connection fails, then the capacity
of the deck is substantially reduced and wide-spread catastrophic failure of the deck can
occur. If a strap yields, punching may occur but this is a more local effect. A yielded strap
can still provide a lateral restraining force equivalent to is yield strength and once the loading
is removed it continues to function with only a slight reduction in overall capacity. In the
event that the fundamental behaviour of the system is modified due to exceptional loads. or
other unforseen circumstances, then the presence of straps which can sustain loads up to their

yield strength provides the deck with a reserve capacity. Therefore connection failures can
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lead to disaster, whereas strap yielding may lead to serious problems but less likelihood of

catastrophic failure. The CHBDC draft requires that;

The direct or indirect connection of a strap to the supporting beams is designed to

have a strength in Newtons of at least 200A.

The connection strength in this case is less than the factored yield strength of the strap, taken
to be 270A for 300 MPa steel. The philosophy behind the code approach is that structure will
not see loads high enough to cause yielding of the straps and therefore the system should not
be penalized with the expense of connection strengths greater than that of yielding of the
strap. This reasoning has merit especially if the failure load of the deck is in the order of
magnitude of 1000 kN for a single wheel load. With time however the design capacity of this
deck may be substantially reduced to a value much closer to the ULS design wheel load. In
the case of the Salmon River Bridge Project, the design of the welded strap connection was
governed by fatigue design requirement such that the ULS of the connection was much
greater than the yield strength of the strap at no addition expense to the project. It is this
author’s recommendation that, as safety measure against unforseen failure or problems, the
strap connection be designed with a strength in excess of that of the yield strength of the
strap. In situations where this may provide undue expense to the construction of the system
then a lesser connection strength may be considered if no other alternative is possible. If the
connection has to be reduced then it should be no less than that recommended by the
CHBDC requirements and should still provide a ultimate capacity which is acceptable to the

design engineer.

The straps on the Salmon River Bridge were 14 x 100 mm in size. It was found that these
straps will vibrated as heavy vehicles passed over the structure. Preliminary calculation
revealed that the natural frequency of the strap is very close to the natural frequency of the

structure. While this does not pose any apparent problems, it is recommended that this
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situation be avoided in the future. The strap cross-section should be closer to a 2:1 ratio

rather than a 8:1 ratio as was used in the Salmon River Bridge Deck system.

7.1.6 Lateral Restraint Value

Section 2.5 demonstrated that a beam on elastic spring analogy is necessary to accurately
predict the amount of lateral restraint provided by the girder-strap interaction. While this is
a useful tool for analysis and leads to a better understanding of the influence of each
component, a simpler procedure is recommended for design. Equation (43) which accounts
only for the restraint provided by straps is a very fast and useful design tool. The designer
should use this equation to determine the lateral restraint of the system. The rational model,
through the PUNCH program, can then be used to predict the ultimate capacity of the system.
The effective depth of the concrete slab including the height of the haunch should be used.
Where a variable depth haunch is constructed, the haunch height used to calculate the
effective depth should be the minimum guaranteed height. [n addition, the effective depth
used in design should not exceed 1.33 times the actual depth or 300 mm. Using this method,
the designer should have a target design capacity of not less than 3.0 times the ULS design
wheel load. It is well known that conventionally reinforced concrete bridge decks have
reserve capacity in excess of twice the ULS design wheel load. The use of a minimum of 3.0
times ULS will be consistent with current deck capacities. This method is simple and
sufficiently conservative, such that a designer inexperienced with this technology can have

a level of comfort with the design process.

Some designers may wish to take full advantage of the lateral restraint provided by the girder
strap interaction and, through a more rigorous analysis, reduce the strap requirements
calculated from the above method. While this is a valid design approach, care must be taken
not to attribute too much of the lateral restraint to the girder, unless the lateral restraint has
been verified by testing. In lieu of specific test results, a minimum value of restraint stiffness
should be provided in all cases. To address the issue of minimum lateral restraint the

CHBDC draft proposes a minimum area of strap which must be provided:



FEach strap has a minimum cross-sectional area, A, in mm’, given by

F-S*S,
A = x 10°
Et

where the factor F is 6.0 for outer panels and 5.0 for inner panels.
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The CHBDC values of minimum strap area per metre length of girder is presented in Table

7.1 for a range of standard design configurations. It should be noted that the depth refers to

the actual depth of the slab, t, and not the effective depth.

Table 7.1 CHBDC Minimum Strap Area (mm?)*

Girder Depth of Deck (mm)
Spacing

(mm) 175 200 225

1500 386 338 300

2000 686 600 533

2500 1071 938 833

3000 1350 1200

* These values can be reduced by 20% for interior panels.

The use of a minimum strap area is a simple guideline to follow; however, there is one main

drawback. The function of the strap is to provide stiffness. The spring constant of an

individual strap is based both on its cross-sectional area and its length. Depending upon the

type of strap connection detail, the length of the strap could be up to 20% shorter than the

girder spacing, 20% longer than the girder spacing or equal to the girder spacing. Obviously

the same cross-sectional area will not give the same level of restraint in all three cases. To

be conservative, the minimum area requirement should be increased by the ratio of the

effective length of the strap over the spacing of the girders in cases where the effective length

is longer than the value of S,.
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Using the simple design method proposed by the author leads to the cross-sectional areas
given in Table 7.2. It was assumed that the length of the strap was approximately equal to
the spacing of the girders and that the strap had a vield strain of 0.0015. A design load of 400
kN was used for spans up to and including 2500 mm and a design load of 500 kN was used
for spans in excess of 2500 mm. It is believed that the larger girder spacings should have a

higher design load particularly when considering minimum values.

Table 7.2 Proposed Minimum Strap Area (mm?)

Girder Depth of Deck (mm)

Spacing

(mm) 175 200 225 250 275 300
1500 900 790 675 600 550 525
2000 1050 900 775 750 625 600
2500 1200 940 850 720 660 650
3000 1350 1200 1020 900 900

[t is noted that the value for spans lengths of 2500 mm and 3000 mm are in close agreement
with the CHBDC values; however, the values below a span 2500 mm are much higher than
the CHBDC values. The depth in Table 7.2 is. however, the effective depth of the slab
including the height of the haunch. In addition, these values would be reduced by 10% if the
designer were to use steel straps with a yield strain of 0.00175 and 20% if the designer were
to use steel straps with a yield strain of 0.002. provided that strap yielding governed the
failure. Furthermore, these values are based on the use of steel straps with a modulus of
elasticity of 200, 000 MPa. If another material is used for the strap, then these values would

obviously change.

For comparison, the results of full-scale experimental testing are compiled in Table 7.3 to

illustrate the parameters tested to date.



169

Table 7.3 Summary of Experimental Punch Tests

Girder Spacing Depth Area of Strap Punch Load
(mm) (mm) (mm? m) (&N)
2000 175 2500 1127
2000 175 1250 923
2000 175 950 911
2000 175 650 844
2000 175 650 576
2000 175 650 715
2700 200+100 haunch 1040 1275

Of particular interest are the results for a deck thickness of 175 mm and strap area of 650
mm?. The failure load for this case ranged between 576 kN and 844 kN. Table 7.2 would
have suggested that a strap area of 1050 mm? needed to be used. This would have resulted
in a failure load of approximately 900 kN according to Table 7.3. It can be demonstrated that
the combination of the effective length of the strap being 15% shorter than the centre to
centre spacing of the girders and the contribution of the girder flanges to the lateral restraint
leads to an actual restraint stiffness that is almost twice that of calculated for Table 7.2. This

illustrates the conservative nature of the proposed method.

[t is evident from this discussion that the selection of an appropriate minimum strap area is
not a straight forward process. Many elements have to be considered including the type of
strap provided, the connection detail and the complex interaction of the system. However,
in design, a simple approach should prevail. It is therefore recommended that, in lieu of
specific test results which demonstrated the safety and serviceability of a particular design,
Table 7.2 be adopted as the minimum required area of strap with a further requirement that
the area of an individual strap not be less than 625 mm?. The values in this table should be
increased for straps made from materials with lower values of modulus of elasticity or straps

with effective lengths in excess of the centre to centre spacing of the girders.
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7.1.7 Edge Beam

Mufti et al. (1993) and Newhook et al. (1995) demonstrated the need for in plane lateral
stiffness at the free edge of the concrete deck slab. This has been achieved in the past by
using an edge beam which is made composite with the concrete deck and has high bending
stiffness in the plane of the deck. The CHBDC code states that:

The transverse edges of the deck slab are stiffened by composite edge beams having
a minimum flexural rigidity, El, in the plane of the deck slab, of 3.5 x L,’ MN-n7,
where L, is the unsupported length of the edge beam.

The CHBDC draft also presents a number of possible design alternatives from steel channels

or beam sections connected to the deck with shear studs to a thickened slab with

reinforcement. The author supports these recommendations.

7.1.8 Fibre Content

Design of an optimum fibre content was beyond the scope of this thesis. Work is currently
underway to establish the optimum fibre content and proper engineering guidelines for
selecting the appropriate fibre types and fibre volume fractions. The CHBDC draft is
proposing a simple procedure for determining the minimum fibre volume fraction based on
a ratio of post-cracking strength to nominal cracking strength. The use of fibre is for the
primary purpose of controlling shrinkage and thermal cracking in the deck slab. The fibres

are not believed to have any effect on the ultimate load capacity of the deck.

The fibre content used in the Salmon River Bridge Project was 5.0 kg/m’ or a volume
fraction of 0.55% of collated fibrillated polypropylene fibres approximately 40 mm in length.
The author can only recommend that this volume fraction is acceptable for design. Other
fibre types or volume fractions may be used but they should meet the requirements of the
CHBDC draft and should be selected in consultation with an expert in the field of fibre

reinforced concrete.
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7.2 Design Clauses

For clarity, the design recommendations are summarized below. The recommendations are
presented as code clauses as this will be a familiar style for design engineers. Clauses
marked by an asterisks are taken in whole or in part from the CHBDC draft without revision.
Clauses marked by a cross are taken from the CHBDC draft but contain some revisions.
Some clauses refer to other sections of the CHBDC code dealing with conventional design
requirements, fibre reinforced plastic reinforcement requirements or fibre reinforced concrete
material requirements. These references are highlighted in italic font and are not discussed
in detail as they are beyond the scope of this work. Where the specific CHBDC clause

numbers are not known, the clauses are referred to in general terms.

X. Steel-Free Bridge Deck Structural Systems

X.0 Notation

S, = centre to centre spacing of girders (mm)

S, = centre to centre spacing of straps (mm)

A = cross-section area of straps (mm?)

E = modulus of elasticity (MPa)

t = thickness of deck (mm)

t, = project of shear connectors into the deck slab (mm)
t. = effective thickness of deck for analysis (mm); X.
L, = effective length of strap (mm); X.

K = lateral restraint stiffness (N/mm/mm)

t, = height of haunch (mm)

[ = moment of inertia (mm?*)

L, = unsupported length of edge beam (mm)

F. = strength of strap connection (kN)
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f, = yield stress of strap (MPA)

k, = lateral restraint reduction factor for support system stiffness

X.1

a)

b)

X.2

General

A steel-free bridge deck structural system shall be comprised of a concrete deck slab
on supporting girders with a system of external straps between girders. The system
shall be designed such that the girders and straps interact to produce an adequate
level of lateral restraint such that the deck carries applied loads through arching
action and its principle failure mode is that of punching of the deck under a

concentrated load.

The concrete shall contain randomly distributed synthetic fibres to control cracking

due to shrinkage and thermal effects. The fibres shall be added in accordance with

Clause 16.6 of CHBDC.

The deck slab shall be made composite with the supporting beams in both the
positive and negative moment regions. In the negative moment region the shear
connectors shall be designer to transfer the maximum lateral restraining forces which

can be developed by the straps.

Concrete Strength

The compressive strength of the fibre reinforced concrete shall be at least 30 MPa.

X3

X.3.1

Analysis

Transverse Moments*

The deck slab of a steel-free bridge decks satisfying the conditions of clauses X.1 through
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X.12 need not be analyzed for transverse moments except where loads on the overhang or

barrier walls will cause transverse negative moments in the deck slab.

X3.2 Composite Action
The steel-free bridge deck system shall be assumed to provide full composite action with the
supporting girders. Design of the composite section for longitudinal bending shall be done

in accordance with the appropriate CHBDC design clauses for composite beam behaviour.

X33 Ultimate Load Behaviour
The steel-free deck slab shall be analysed by assuming the deck derives its capacity from the
lateral restraint provided by the girders and straps. This restraint causes arching forces in the

deck which leads to punching of the deck under wheel load as the ultimate failure

mechanism.

X.34 Wheel Load
Unless otherwise specified, the design wheel load shall be assumed to have a tire print area

of 250 x 500 mm with the shorter dimension in the longitudinal direction of the structure.

X.35 Load Sharing
The calculation of load sharing between girders shall be done in accordance with the CHBDC

clause for load sharing for reinforced concrete deck slab construction.

X.4 Edge Stiffening*

The transverse edges of the deck slab are stiffened by composite edge beams having a
minimum flexural rigidity, EI in the plane of the deck slab, of 3.5 x L,* MN-m?, where L,
is the unsupported length of the edge beam.
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X.5.1*
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Deck Thickness

Minimum Thickness

The deck slab thickness, t, shall be at least 175 mm, and not less than S/15.

X.5.2

a)t

Haunch Dimensions

As illustrated in Figure X.5.2 (a), the height of the haunch, t,, shall not be greater

than 125 mm.

b) The transition from the thickness of the deck at the haunch, t + t,, to the deck
thickness, t, shall be made over a lateral distance not less than t,.
c) The haunch shall have sufficient width such that an imaginary line of force drawn
from the top of the deck at the mid-span to the top flange of the girders at the centre
line of the girders remains entirely within the concrete, Figure X.5.2 (c).
d) The haunch width shall not extend beyond the edge of the girder flange more than
100 mm.
e) The height of the haunch shall be such that a minimum clearance of 15 mm is
provided between the top of the strap and the underside of the concrete deck.
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Figure X.5.2(a) Typical Haunch and deck details
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Figure X.5.2(c) Geometry of arching forces
X.53 Effective Depth

For analysis of deck slabs with haunches over the girders, the effective depth of the slab. t..
may be increased to account for increased thickness at the haunch by
a) t.=t+t,

b) except that t, shall not be greater than 1.5t or 300 mm

X.6  Height of Shear Connectors'

The height of the shear connecting devices shall be such that

a) the projection in the deck slab above the haunch is at least 50 mm; and

b) the distance between the top of the deck and the top of the shear connectors is a
minimum of 75 mm.

X.7  Girder spacing*

The centre to centre spacing of supporting beams. S,, shall not exceed 3000 mm.
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X.8 Strap Size and Spacing

X.8.1 Maximum Strap Spacing

The spacing of straps, S,. shall not exceed 1200 mm.

X.8.2
The minimum size of an individual strap shall not be less than 625 mm* unless the strap

spacing is less than 500 mm.

X.83 Minimum Strap Size

The dimension of the straps should be proportioned such that

a) rectangular straps will have an approximate width to depth ratio of 2:1

b) the natural frequency of the strap is greater than the natural frequency of the

structure.
X.9 Effective Strap Length

a) The effective strap length. L, shall be the length of the continuous prismatic section
of strap which is free to elongate under axial load.

b) In general, L, will be equal to the distance between the centre of the connection of the

straps to the girder flanges.

c) For welded connections, L, may be taken as the clear distance between the ends of

the welds on adjacent girders.
X.10 Strap Connection
X.10.1"

The top flanges of all adjacent supporting beams shall be connected by external transverse

restraint system, comprising straps, which are perpendicular to the supporting beams, and
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which are either connected directly to the top flanges through welding, or connected

indirectly through shear connectors on both the strap and surrounding girder flange.

X.10.2*

Alternative connection details may be used if proven by full-scale laboratory testing.

X.10.3

The direct or indirect connection of a strap to the supporting beams shall be designed such
that the factored strength of connection
a) F.2¢,f, A.

X.10.4

For welded connections, the weld must be designed to meet the fatigue requirements of

CHBDC for the axial stresses in the strap due to live loads.
X.11 Lateral Restraint
X111 Simplified Method

X.11.1.1

The lateral restraint system should be designed using the assumptions and procedures

developed for the PUNCH program.

a) In lieu of specific experimental testing, the level of lateral restraint provided by the
external straps, K, should be such that the failure load is at least 3 times the ULS
design wheel load.

b) t. is calculated according to X.5.3

c) the tire print area is as given in X.3.4
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X.11.1.2 Strap Area
a) The cross-sectional area of the strap is calculated by
KLSS,
A =
2°E
b) L, is calculated according to X.9.
c) This area may be reduced by 20 % for interior panels.

d) The strap area shall not be less than that given in X.8.2 and X.11.1.3.

X.11.1.3 Girder Lateral Restraint

When the system of supporting girders and diaphragms has a demonstrated high level lateral
restraint, A as calculated from X.11.1.2 may be reduced to (1-k,)A, where

a) k, = 0.0002(3000-S,); and

b) k, is not greater than 0.25
X.11.2 Minimum Strap Area
a) The minimum cross-section area of strap per metre length of deck shall not be less

than given in Table X.11.2
b) The area in Table X.11.2 shall be increased by 200 000/E for strap material other

than structural steel.
c) The area in Table X.11.2 shall be increased by L/S, when L, is greater than S,.
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Table X.11.2 Minimum Strap Cross-Section Area per Metre Length of Slab

(mm-*/m)

Girder effective depth of deck, t, (mm)
Spacing

(mm) 175 200 225 250 275 300
1500 900 790 675 600 550 525
2000 1050 900 775 750 625 600
2500 1200 940 850 720 660 650
3000 1350 1200 1020 900 900

X.11.3 Full-Scale Testing

X.11.3.1

The requirements of X.11.2 may be waived if the ultimate load capacity and serviceability
performance of a transversely restrained bridge deck system is proven through full-scale

laboratory testing under static and dynamic loading conditions.

X.11.3.2

Design criteria include, but are not limited to. the following:

a) The ultimate load capacity of the system shall not be less than 3.0 times the ULS
design wheel load.

b) The system must have proven arching behaviour and the failure mode must be that
of punching failure of the concrete.

c) Under service loads, the concrete must not crack or otherwise deteriorate to the extent
that the ultimate capacity of the deck is reduced.

d) The system must not be susceptible to failure or reduction of ultimate load capacity

due to fatigue of either the concrete or the transverse restraint system.
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X.12 Tensile Stresses in the Deck Slab

X.12.1 Overhangs and Barrier Walls'
Where the deck slab is subjected to tensile stresses due to loads on overhangs or barrier walls
or railings, the deck shall contain tensile reinforcement sufficient to resist the transverse

negative moments. This reinforcement may be

a) steel reinforcement, designed to meet the CHBDC clauses on reinforced concrete
structures.

b) fibre reinforced plastic reinforcement, designed to meet the requirements of Section
16 of the CHBDC.

X.12.2 Continuous Bridge Deck Structures'

For continuous span bridges, the deck slab shall contain longitudinal negative moment
reinforcement in at least those segments in which the flexural tensile stresses in the concrete

due to longitudinal bending in the SLS are larger than 0.6f.
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CONCLUSIONS AND RESEARCH NEEDS

Conclusions

The behaviour of the steel-free bridge deck structural system under static loading conditions

was investigated and a rational model developed to theoretically predict the behaviour of the

system. The conclusions which can be derived from this research are summarized into the

following points.

1y

2)

3)

4)

The capacity of the deck is derived from arching forces arising from the lateral
restraint of the supporting girders. Both the girders and the external steel straps
connected to the adjacent girders act together to produce the lateral restraint. The
contribution of the diaphragms to this lateral restraint can be ignored. A beam on

elastic springs analogy can be used to directly determine the level of lateral restraint

in the system.

The fundamental behaviour of the deck is not flexural bending but rather
compressive arching with the ultimate capacity of the system being governed by

punching failure and not flexural strength.

The concrete surrounding the wheel load is in a state of three-dimensional
compressive stress such that the compressive stresses in the concrete reach values
well in excess of the uniaxial compressive strength of the concrete. A new triaxial
confinement relationship is established for the particular application of a bridge deck

under punching loads.

The failure of the deck can be initiated by either crushing of the concrete around the

wheel load or yielding of the transverse restraint straps.
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6)

7

8)

9)

10)

11)
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The rational model was verified by comparison with existing experimental test
results. A method was developed for applying the rational model to reinforced
concrete deck slabs and demonstrated by two examples. The key element of this

approach is to assume that the bottom layer of transverse reinforcing steel is acting

as restraining straps.

The rational model was also used to identify the key parameters which affect the
ultimate capacity and behaviour of the system. The key parameters, listed in order of
decreasing influence or sensitivity, are restraint stiffness which includes the strap size
and material, deck thickness, girder spacing, yield strength of the strap and concrete
compressive strength. A summary of basic behavioural characteristics is presented

in Chapter 6.

It was demonstrated experimentally that the girder flanges displace lateral away from

the point of load application as predicted by the theory.

The system performs adequately for a girder spacing of 2700 mm, a deck span to

depth ratio of 13.5 and a girder spacing of 1200 mm.

The haunches over the girders increase the effective depth of the concrete slab to the

sum of the deck thickness plus the haunch height.

The system has substantial reserve capacity even in a deteriorated condition. The
system capacity with a strap missing and the deck severely cracked is approximately

75% of the ultimate load capacity.

The global composite behaviour of the girders and deck is consistent with the
guidelines of the OHBDC clause for composite section behaviour in reinforced

concrete deck slabs and does not appear to be affected by the cracking of the deck.
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12) The load sharing for the two girder system in an uncracked condition was found to

be consistent with the level of load sharing predicted by a semi-continuum analysis

of the structure.

13) The capacity of both steel-free and reinforced concrete bridge deck construction

under multiple wheel loads can be predicted by a simple formula.

14) A series of design recommendations and guidelines are presented which can be used
by engineers to design a steel-free bridge deck system. The recommendations of the
author are compared to the draft recommendations proposed by the CHBDC sub-
committee on Fibre Reinforced Structures and any differences in approach have been
noted. The most important difference is the author’s recommended minimum area

of straps is more conservative than the draft CHBDC, particularly at smaller girder

spacings.

8.2 Research Needs

The steel-free bridge deck system is still evolving as a technology and many different issues
and concepts still need to be investigated. In general terms, more experience with field
performance of these structures is required. This will lead to a better understanding of design
requirements and may produce less conservative design guidelines. Also. experimental
testing needs to be performed on a variety supporting girder systems, such as prestressed
concrete girders. More experimental testing should also be undertaken to verify the minimum
lateral restraint requirements, or produce new ones, over a wide range of girder spacings and

deck thicknesses.

A list of specific research topics are identified as important to the further advancement of the

technology in the near future. The list is by no means all inclusive.
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Development of a standard set of connection details for various types of straps and
supporting girder configurations.

Investigation of multi-girder laboratory models and field structures to exactly
determine the level load sharing between girders and, in particular, is the load sharing
affected by cracking of the deck slab.

Determination of optimal design parameters for serviceability and fatigue in regions
of longitudinal negative moment.

Testing to establish the capacity of the system to resist longitudinal shears and
associated transverse tensile stresses from composite action in longitudinal bending.
Development of design and construction techniques for a precast steel-free deck
structural svstem.

Establishment of clear and concise design techniques for determining fibre volume
fraction requirements for varying types of synthetic fibres.

Development of a stay-in-place formwork system that will become part of the steel-
free bridge deck and eliminate the need for formwork removal.

Investigation of impact and dynamic loading and their effect on the behaviour of the

system.
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Appendix I - Fortran Program for Rational Model Solution
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Fortran Program to automate the solution of the rational model presented in Chapter 2.

PROGRAM TO CALCULATE PUNCH SHEAR AND SNAP-THROUGH LOADS

oNoNoNe)

WRITE(6,*) 'START CALCULATION'
OPEN(70,FILE="FPSFST.DAT)
OPEN(80,FILE='FPSFST.RES")
OPEN(90,FILE='FPSFST.PLT")
WRITE(6,*) ' READING DATA'
READ(70,*) C,B,FPC,SK,SL,D,.B1,CK,A,SNY,IU
C
C IU=0, STRESS IN PSI ; IU=1, STRESS IN MPA
C
C THE'FCTF' STRESS IN 'PSI' USED IN K&N MODEL
C
ICOUNT=0
[FAU.EQ.1) FPC1=145.*FPC
IF(IU.EQ.0) FPC1=1000.*FPC
FCB=FPC1/(.75+.000025*FPC1)
FCTF=1007.+0.392*FCB
IF(IU.EQ.0) FCTF=FCTF/1000.
IFAU.EQ.1) FCTF=FCTF/145.
[F(IU.EQ.0) WRITE(80,*) 'UNITS ENGLISH KIPS, INCHES, SECONDS'
[FIU.EQ.1) WRITE(80,*) 'UNITS METRIC KN, MM, SECOND'
WRITE(80,*) 'Clear Span Between Girders='",C
WRITE(80,*) 'Diameter of Equivalent Circle for Load=',B
WRITE(80,*) 'Maximum Compressive Stress of Concrete=',FPC
WRITE(80,*) 'Elastic Axial Stiffness of Strap=",SK
WRITE(80,*) 'Strap to Load Spacing=',SL
WRITE(80,*) 'Depth Of Slab=",D
WRITE(80,*) 'Beta to Define Rectangular Stress Block=',B1
WRITE(80,*) 'Concrete Constant used for confinement=',CK
WRITE(80,*) 'AREA of Load Patch=",A
WRITE(80,*) 'Yield strain=".SNY
WRITE(80,*Y DELTA ASI Y R4 W ALPHA P
I EPS PFAIL STRN'
WRITE(90,1000) DELTA.ASIL Y ,R4,W,ALPHA P .EPS PFAIL,STRN
WRITE(80,1000) DELTA.ASI.Y.R4,W,ALPHA P,EPS.PFAIL,STRN
IPFAIL=0
DELTA=0.
Y=D/100.



oNoEoNoNoNo NN o NoNe!

FACT3=.5*(C-B)
1 CONTINUE
DELTA=DELTA+D/350.
ASI=2*DELTA/C
ITER=I
2 CONTINUE
FACTO0=LOG(.5*C/(.5*B+Y))
IF(FACTO.LE.0) WRITE(80,*) 'FACTO0.LT.0 PROGRAM STOPPED'
IF(FACTO0.LE.0) WRITE(6,*) 'FINISH CALCULATION'
IF(FACTO.LE.0) STOP
SS=2.*SL
SSDC=SS/C
CTHS=1.-SSDC**2
STRNB=ASI*(D-Y)/(.5*C)
STRN=CTHS*STRNB
R4=0.5*(Y**2)*(0.5*B/Y+1.)*FCTF*FACTO
W1=0.5*C*SK*ASI*(D-Y)
IF(STRN.GE.SNY) [COUNT=ICOUNT+1
IF(ICOUNT.EQ.1) WC=W1
IFICOUNT.GT.1) W1=WC
W=W1-R4
C2=SK*ASI*(D-Y)/(.85*FPC)
FACT1=D-0.333333*Y-.5*C2
FACT2=D-.5*B1*Y-.5*C2
FACT4=FACT3+ASI*FACT?2
FACTS5=FACT2-ASI*FACT3
FACT=((R4/W)*FACT1+FACTS5)/FACT4
IF(FACT.LE.0) WRITE(80,*)FACT.LE.0 PROGRAM STOPPED'
[F(FACT.LE.0) WRITE(6,*) 'FINISH CALCULATION'
IF(FACT.LE.O) STOP
ALPHA=ATAN(FACT)+ASI
P=2.*3.14159*W*TAN(ALPHA-ASI)
SIGMA1=P/A

RITCHART FAILURE CRITERIA FOR 3-D STRESSES IN CONCRETE

SIGMA3C=FPC*(1.+CK*SIGMA 1/FPC)

ADINA FAILURE CRITERIA FOR 3-D STRESSES IN CONCRETE

SIGMA3C=FPC*(1.+1.5*SIGMA1)
[FAU.EQ.1) SIGMA1=.145%(P/A)
IF(IU.EQ.1) SIGMA3C=FPC*(1.+1.5*SIGMAI)
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C1=P/(.85*3.14159*B*SIN(ALPHA-ASI)*SIGMA3C)
Y1=C1*COS(ALPHA-ASI)/B1
EPS=ABS(Y-Y1)
IF(EPS.EQ.0.) GO TO 3
IFITER.EQ.1000) WRITE(80,*) 'Y="Y,'Y1=,Y1
IFITER.EQ.1000) WRITE(6,*) 'FINISH CALCULATION'
IFITER.EQ.1000) STOP
IF(EPS.GT..00001) Y=Y1
ITER=ITER+1
IF(EPS.GT..0001) GO TO 2

3 ESTH=Y*ASI/(.5*B+Y)
PFAIL=.002-ESTH
IF(PFAIL.LE.O.) IPFAIL=IPFAIL+1
IF(IU.EQ.1) W=W/1000.
IF(IU.EQ.1) R4=R4/1000.
[F(IU.EQ.1) P=P/1000.
DEG=180./3.14159
ASI=DEG*ASI
ALPHA=DEG*ALPHA
IF(IPFAIL.NE.1) GO TO 100
DELTAP=(DELTAP*PFAIL-DELTA*PFAILP)/(PFAIL-PFAILP)
ASIP=(ASIP*PFAIL-ASI*PFAILP)/(PFAIL-PFAILP)
YP=(YP*PFAIL-Y*PFAILP)/(PFAIL-PFAILP)
R4P=(R4P*PFAIL-R4*PFAILP)/(PFAIL-PFAILP)
WP=(WP*PFAIL-W*PFAILP)/(PFAIL-PFAILP)
ALPHAP=(ALPHAP*PFAIL-ALPHA*PFAILP)/(PFAIL-PFAILP)
PP=(PP*PFAIL-P*PFAILP)/(PFAIL-PFAILP)
EPSP=(EPSP*PFAIL-EPS*PFAILP)/(PFAIL-PFAILP)
STRNP=(STRNP*PFAIL-STRN*PFAILP)/(PFAIL-PFAILP)
PFAILP=0.
WRITE(80,1000) DELTAP,ASIP,YP,R4P,WP,ALPHAP,PP,EPSP,PFAILP,STRNP
WRITE(90,1000) DELTAP,ASIP,YP,R4P, WP, ALPHAP,PP,EPSP,PFAILP,STRNP
WRITE(80,*)'******* Punch Load-Strain in concrete=.002 ******#:
STOP

100 CONTINUE
WRITE(90,1000) DELTA,ASI, Y, R4, W ,ALPHA,P,EPS PFAIL,STRN
WRITE(80,1000) DELTA,ASI, Y, R4, W,ALPHA,P ,EPS,PFAIL,STRN
IF(ICOUNT.GT.1) WRITE(80,*)'******* Punch Load-Yield Strain
l in Strap % ok % ok ke k!
IF(ICOUNT.GT.1) STOP
1000 FORMAT(1X,F5.2,1X,F5.2,1X,F5.2,2F8.2,F8.2,1X,F8.2,1X F8.5,2(1 X F8.

*6))
DELTAP=DELTA
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ASIP=ASI
YP=Y

R4P=R4

WP=W

ALPHAP=ALPHA

PP=p

EPSP=EPS

STRNP=STRN

PFAILP=PFAIL

write(6,*)' STILL COMPUTING AT DELTA='DELTA,ITERATION=",ITER
I[F(DELTA.LE.D) GO TO 1

WRITE(6,*) 'FINISH CALCULATION'
STOP

END



Sample input data file

2000. 477.5 35. 190. 0. 175. .81 10.

Sample output file

UNITS METRIC KN, MM, SECOND
Clear Span Between Girders= 2000.00
Diameter of Equivalent Circle for Load=
Maximum Compressive Stress of Concrete=
Elastic Axial Stiffness of Strap= 190.000
Strap to Load Spacing= 0.000000

Depth Of Slab= 175.000

Beta to Define Rectangular Stress Block= 0.810000
Concrete Constant used for confinement= 10.0000
AREA of Load Patch= 125000.

Yield strain= 0.150000E-02

477.500
35.0000

125000. 0.0015 1

A
0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00
5.50
6.00
6.50
7.00
7.50
8.00
8.50
9.00
9.50
10.0

##*¥*%* Punch Load-Yield Strain

v Y
0.00 0.00
0.03 1.66
0.06 3.19
0.09 4.61
0.11 5.93
0.14 7.17
0.17 8.34
020 9.44
0.23 10.48
0.26 11.47
0.29 12.42
032 13.32
034 14.18
037 15.01
0.40 15.81
0.43 16.57
0.46 17.31
0.49 18.02
0.52 18.71
0.54 19.38
0.57 20.08

R4
0.00
6.42

12.36
17.89
23.07
27.94
32.53
36.88
41.00
44.93
48.68
52.27
55.70
59.00
62.18
65.25
68.20
71.06
73.83
76.52
79.35

w
0.00
10.05
20.29
30.67
41.17
51.78
62.46
73.22
84.03
94.88
105.77
116.69
127.63
138.58
149.55
160.52
171.49
182.46
193.42
204.38
216.33

o

0.00
20.54
20.12
19.74
19.39
19.08
18.79
18.52
18.28
18.05
17.84
17.64
17.45
17.27
17.11
16.95
16.80
16.66
16.52
16.39
16.26

P

0.00
23.63
46.54
68.81
90.47
111.60
132.21
152.35
172.04
191.31
210.17
228.66
246.78
264.56
281.99
299.11
315.91
332.41
348.61
364.53
381.70

€ PFAIL STRN
0.00000 0.000000 0.000000
0.00007 0.001997 0.000087
0.00008 0.001987 0.000172
0.00007 0.001972 0.000256
0.00007 0.001952 0.000338
0.00007 0.001927 0.000420
0.00007 0.001899 0.000500
0.00009 0.001867 0.000579
0.00010 0.001832 0.000658
0.00007 0.001794 0.000736
0.00010 0.001753 0.000813
0.00007 0.001709 0.000889
0.00010 0.001664 0.000965
0.00008 0.001616 0.001040
0.00006 0.001565 0.001114
0.00009 0.001513 0.001188
0.00007 0.001459 0.001262
0.00005 0.001403 0.001334
0.00010 0.001346 0.001407
0.00008 0.001287 0.001478
0.00004 0.001224 0.001549

in Strap kkkkkkx
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