INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced

form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howel! Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

Multiview Model for Protection and Access Control

by

Dawn N. Jutla

A Thesis Submitted to the
School of Computer Science
in Partial Fulfilment of the Requirements
for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: Computer Science

APPROVED;

Dr. Peter B {sor

Dr. Philip Cex; r Science
Dr. Allan Jost| Comiuter icience
Dr. Williifm“iimisl Devit. of Aiplied Mathematics

Dr. Williaga Robertsen rical Engineering

Dr. Michael Stumm, University of Toronto, External Examiner

TECHNICAL UNIVERSITY OF NOVA SCOTIA

Halifax, Nova Scotia

1996

National Library Bibliotheque nationale
of Canada du Canada
Acquisitions and Acquisitions et

Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

services bibliographiques

395, rue Weilington
Ottawa ON K1A ON4

Your Me Votre relerence

QOur Ne Notre retérence

L’auteur a accordé une licence non
exclusive permettant 3 la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-31529-0

Canadi

TECHNICAL UNIVERSITY OF NOVA SCOTIA LIBRARY

"AUTHORITY TO DISTRIBUTE MANUSCRIPT THESIS"

TITLE:

Multiview Model for Protection and Access Control

The above library may make available or authorize another library to make available
individual photo/microfilm copies of this thesis without restrictions.

Full Name of Author:

Signature of Author:

Date: 01/30/97

TABLE OF CONTENTS

LIST OF TABLES A UURPPPPITIIN). 4

LIST OF ABBREVIATIONS.......c..ciittiiiniiiiirinnnserssessessessssssssssssnses o nees X

ACKNOWLEDGEMENTS LS. { | %

L. INTRODUCTION....uitrrcsinnnsisissisississiesssssssssssssssssssssssssssssssssssssassesssssssosssssassens 1

1.1 Thread Synchronization and Address Space ISolation ... l

L2 OBJECUVES oot e e e 3

1.3 0uthine of the CRAaPLErS ... et 4

2. RELATED WORKciiiriniimninsessssssssssisssssnasisssssssssssssssssassssssasssssassessssssssssssssnssssass 6

2.1 Synchronization MeChaniSmsooooiiiiiiiiiii e 7
2B L SeMAPROTES...viviiiiiii e e 8

2B MONILOTS e e e h

19
s
g
=
o

Eﬂ

N

2.1.5 Virtual Memory Synchronization Mechanisms.......................cocooooo 9

2.2 Virtual Memory ProteCtion i e e 10
2.2.1 Software Based Virtual Protection Mechanisms..............oooo 1
2.2.1.1 Software Virtual Memory Primitives Used For Synchronization................................ (]
2.2.1.2 Address Space TSoLation............coiiiiiiiii e 12

2.2.2 Hardwarc-Based Schemes for Virtual Memory Protection............oooooiiniiriiin e, 14
3.2.2.1 The PA-RISC DESIgn. oo 15
2.2.2.2. The Proteciion Lookaside Buffer Design..........ccoocoeviiiiiiiiiiiieeeee e 16
2.2.2.3 Sharing Within The PA-RISC And PLB Designsoooooveoeiieciii e, 17

2.3 Variable Sized Protection Unils ... 19
2.3.1 Address Translation: Variable Sized System Pages.........ooooo 19
23,11 Simultancous Support of Two Page SIzes. ... 20
2.3.1.2. Architectural Support for Multiple Page Sizes: The MIPS R4000........................... 2]
2.3.1.3 Elastic Page AHOCAUHON.ovii i e, 21
2314 A Historical Perspective. ..o
2.3.2 Concurrency Control: Variable Sized Locking Unitscooooiiiinneiiiieieieee 22
2320 Page Level LOCKINE ..ouvviiiiiiie e e 23
2.3.2.2 Sub-Page Level LocKing..ooooooiiiiiiiiiiiiiiiiiie e 24

2.3.3 Coherence Control: Variable Sized Coherence Units..........oooiinin i 25
2.3.4 Problems Faced By OSs Due To Architecture-Provided Variable Page Sizes.........ovveeennn.... 26
2.4 Customizable Operating System SCIVICES ..o...iiiniiii e e 27
2.4.1 Microkernel Operating System SUPPOIT......ceiiiuieiiiiiiiie e, 28
2.4.2. Tempest And Typhoon: User Level Shared Memory.............cooooeiiiiiiiin e 29

2.4.3. SPIN: An Extensible Microkernel for Application -Specific Operating System Services 29

244 Acgis: Lowering the OS INCrface ...ooovvevei it 30

2.5 Cache FUnCionalitiesooooiiiriiiiie oo 30
2.6 ConCUSIONS. ... 31

3. MULTIVIEW MEMORY MODEL............... PRI, X
3.1 The Multiview Memory Model. ... 030
3.1.1 A Conceptual Representation of The Multiview Memory Model ... 34

3. 1.2 Flat Versus Segmented AdAress SPaceuvviiiie oo 37

313 Access Control State Model oo 37

LA Customizability ..o Kt

JES Kernel PRIMIUVES .o 39

3.1.6 Sharing of Memory Views In A Single Processor SYSWCML ... 40
3.1.6.1 Sharing in Multiple Address SPacescoovivveiiiiiioie e 40

3.1.6.2 Address Space ISOLtioN. ... 42

J2 SUMMIELY L. e e 42
4. ARCHITECTURE....... T |
4.1 Implementation OPtONS.c.uiiiiiii e 44
4.2 The Cache Protection AFChiteCture.o.oo oo 45
4.3 Variable Sized Protection Units and the Protection Lookaside Buffer........................ 49

4.4 Miss Handling For The PLB Cache....oooovviiiiiiii e 51

A5 CaCche ENUFICS c.ooviiiiii i e 53
4.5.1 The Data Cache ENTY c..oooiiiii e 83
$5.2The PLB ENIRY Loooiiiiiie e e h)
4.5.3 The FSM Cache ERMIY .ooooiiiiii e85
+4.5.4 ViewDefinition Cache Entry.....cooooooii e 56

6 CONCIUSIONS. c..oviiiii e e e 57

5.1 Virtual Cache Coherence Manager Protocol.... ... 59

5.2.Coherence ProtocolS ... i 63
5.2.0 Invalidation-based Coherence Protocol.......o 64
5.2.2 Update-based Coherence Protocol.....o..oo e 67
5.2.3 Integration of Concurrency/Coherence Protocols......o...ooiiiiiiiieiiiioi e 68
S 24 COMIMENIS Lottt 69

5.3 Supportfor Mach 3.0 Pager......cccoooii e 69

S CONCIUSIONS. ..o e 70

6. EVALUATION......cccceecencruncencncsnesacnnens SRR

6.1 The SIMUIAIOT ... e e 74
6.1.1 Simulation Input Parameters for the Multiview Memory Model Architecture.................... 75
6.1.2Memory Trace INPUL ...o.oovtmii e 75

vi

6.1.3 Hardware Parameters INPULoooiiiiiii i 80

6.2 The Access Control ProOtOCOL.........veetiiii e, 83
6.3 The EXPCrimENS. ..ottt et 86
6.4 Multiview Lock Management Results. ... e 87
6.4.1 PCU Delay Results ..o e 87
6.4.2 Access Results for the Transaction MIXes ..o 89

6.5 Conclusions of RESUIIS ...t 92

7. COMPARATIVE EVALUATION.....ccocmnintiniinnnsanensaemisanseresssssssssssssnssessssessensassssssses 93
7.1 Software Implementation of a Lock Manager. ... 93

T 1.1 Qualitative COMPALISON...ee i ittt e e e 95

7.1.2 Software Support for Multiview Lock Management. ..o 96

7.2 Statistical Results for Software SChemie ... 97
7.3 Summary and CORCIUSIONSouieiiinii ittt e e e e e 98
8. CONCLUSIONSciictninrninsinsnsisesisesssssssassssssssnsasnsens cersennnenncses 100
Bl ContrIBULIONS. ..ot e e 100
B2 FUIUIC WOTK oo e e e 101
REFERENCES..........cccovennines . S { | »4

vii

APPENDIX A

APPENDIX B

APPENDIX C

ttttt

viii

TABLE 2-1

TABLE 5-1

TABLE 5-2

TABLE 5-3

TABLE 5-4

TABLE 5-5

TABLE 5-6

TABLE 6-1

TABLE 6-2

TABLE 6-3

TABLE 6-4

TABLE 6-5

TABLE 6-6

TABLE 6-7

TABLE 6-8

TABLE 6-Y

LIST OF TABLES

CLASSIFICATION OF EXPLICIT AND IMPLICIT SYNCHRONIZATION
MECHANISMS L 8
STATE TRANSITIONS FOR VIRTUAL CACHE COHERENCE MANAGEMENT
IWHEELER 1992] ..o e 61
MULTIVIEW FSM DEFINITION FOR [WHEELER 1992] VIRTUAL CACHE
COHERENC E...........ooii e 62

A MULTIVIEW FSM IMPLEMENTATION OF GOODMAN [1983] INVALIDATE

PROTOCOL ...t 66
FIREFLY UPDATE PROTOCOL.........ooooiiiiiiiiiiii e 67
INTEGRATION OF CONCURRENCY AND COHERENCE PROTOCOLS................ 68
KERNEL TRANSITIONS TO SUPPORT THE MACH 3.0 EXTERNAL PAGER........ 70

THE NUMBER OF TUPLES TO BE INSERTED AND SIZES OF THE DATA TABLES

USED BY THE TRANSACTIONS IN MIXES 1-4......cooooooiiiiiiiiii 78
TUPLE SIZES FOR DATA TABLES ..ot 79
NUMBER OF UNIQUE LOCK UNITS PER TRANSACTION MIX..........ccooovviniin, 79

PERCENTAGES OF READ AND WRITE ACCESSES TO THE DATA TABLES FOR

EACH APPLICATION ..ottt e 79
OPERATIONS AND TYPICAL DELAY INCYCLES........ooooiiiie e 82
STATE TRANSITION TABLE FOR LOCKINGcooiiiiiiiiiiiiiiicies e 86

DELAY TO OBTAIN READ/WRITE LOCKS UNDER VARIOUS CACHE

CONFIGURATIONS ... 88

MISS RATES FOR TRANSACTION MIXES UNDER BASE CONFIGURATION (IN

TABLE 6-10

TABLE 7-1

TABLE 7-2

TABLE 7-3

STATISTICS FOR SETTING A LOCK FOR THE CONVENTIONAL LOCK MANAGER

AND MULTIVIEW et e e bbb s h ettt e ee it bat e aeenranas 97
AVERAGE COST (DELAY) IN CYCLES FOR TRANSACTIONMIX | 98
DATA AND TLB ACCESSES FOR LOCK MANAGER AND MULTIVIEW FOR

TRANSACTION MIX | oo 98

FIGURE 2-1

FIGURE 2-2

FIGURE 2-3

FIGURE 3-1

FIGURE 3-2

FIGURE 4-1

FIGURE 4-2

FIGURE 4-3

FIGURE 4-4

FIGURE 5-1

FIGURE 6-1

FIGURE 6-2

FIGURE 7-1

FIGURE 7-2

FIGURE 7-3

LIST OF FIGURES

APPLICATIONS IN A SINGLE 32-BIT ADDRESS SPACEcooovvviiiiiiei 13
PA-RISC PROTECTION DESIGN.........oooiiiiiiiiii i 16
THE PLB DESIGNoooiiiiii e 17
MULTIPLE VIEWS ON AN ADDRESS SPACEcocoooiiiiiiiiiiiieeee, 35
SHARING VIEWS IN MULTIPLE ADDRESS SPACES..........cccccccomiiiinaiiii 41
THE CACHES FUNCTIONALITIES.oocooiiiiiiiiioe e 46
THE PCU UNIT ... e 48
BIT ORDERING IN THE PHYSICAL ADDRESS.........coocccooiiiiiiiiiiiee i 50
THE STATE STORAGE ENTRY VIRTUAL ADDRESS..............coooovvviiiiaii .53
STATE DIAGRAM FOR THE GOODMAN WRITE-ONCE PROTOCOL 64
BLOCK DIAGRAM OF HARDWAREcoooiiiiiiiiiiiice e 81
STATE TRANSITION DIAGRAM FOR LOCKINGcoooviieeaeiieiieeeiiie 84
STRUCTURES OF THE LOCK CONTROL AND LOCK REQUEST BLOCKS 94
LOCK TABLE IMPLEMENTATION. ...t e, 94

SOFTWARE SUPPORT FOR THE IMPLEMENTATION OF MULTIVIEW LOCK

MANAGEMENT e 96

xi

LIST OF ABBREVIATIONS

ALU ARITHMETIC LOGIC UNIT

AU ACCESS UNIT

AUID ACCESS UNIT ID

BOT BEGIN OF TRANSACTION

CpPU CENTRAL PROCESSING UNIT
DBMS DATABASE MANAGEMENT SYSTEM
DC DATA CACHE

EOT END OF TRANSACTION

FIFO FIRST IN FIRST OUT

FPU FLOATING POINT UNIT

FSM FINITE STATE MACHINE

FSMID FSM IDENTIFIER

Lt DC LEVEL | DATA CACHE (ON-CHIP)
L2 DC LEVEL 2 DATA CACHE (OFF-CHIP)
LAPA LOCAL AVAILABLE PAGE AREA
LCB LOCK CONTROL BLOCK

LRB LOCK REQUEST BLOCK

LRU LEAST RECENTLY USED

LSB LEAST SIGNIFICANT BIT

MMU MEMORY MANAGEMENT UNIT
MRW MULTIPLE READ-WRITE

MSB MOST SIGNIFICANT BIT

Xii

oS
PCU
PDID
PFN
PID
PL
PLB
PTE
RISC
RPC
RTB
RW
SAPA
SID
TID
TLB
TPC
UDP
VAC
VFN
VIEWID

OPERATING SYSTEM

PROTECTION CONTROL UNIT
PROTECTION DOMAIN IDENTIFIER
PAGE FRAME NUMBER

PAGE GROUP IDENTIFIER
PRIVILEGE LEVEL

PROTECTION LOOKASIDE BUFFER
PAGE TABLE ENTRY

REDUCED INSTRUCTION SET COMPUTER
REMOTE PROCEDURE CALL
REVERSE TRANSLATION BUFFER
READ-WRITE

SYSTEM AVAILABLE PAGE AREA
SUBJECT IDENTIFIER
TRANSACTION IDENTIFIER
TRANSLATION LOOKASIDE BUFFER
TRANSACTION PROCESSING COUNCIL
UNIVERSAL DATA PACKET
VIRTUALLY ADDRESSED CACHE
VIRTUAL FRAME NUMBER

VIEW IDENTIFIER

VIRTUAL MEMORY

WRITE-WRITE

Xiii

ACKNOWLEDGEMENTS

Many people contributed to making the four years I spent working on my PhD degree and
other things very enjoyable. It was a pleasure to work with my supervisor, Dr. Peter
Bodorik, to whom I owe a great deal for my professional development. His knowledge of
the research areas represented in this thesis was an invaluable resource for me. He has
inexhaustibly contributed to and supported the final product presented here in many ways. I
am very grateful for the time he took to straighten out a few of my operating system
concepts and to hear me out even when we were disagreeing on some academic subject.
Not only did he patiently wade through several drafts of the thesis but he made invaluable
suggestions as to presentation and to the highlighting of the important contributions in this

work.

Canadian Microelectronics Corporation (CMC) is acknowledged for providing the
computer resources that were used for the quantitative analysis published in this thesis.
The School of Computer Science at TUNS is also recognized for providing the equipment,
academic training and scholarships that made this work possible.

During the years that I was registered in the PhD program, I was given the opportunity to
teach at three Universities in Metro Halifax. [am compelled to mention the friends and
colleagues that I made at these Universities because they have provided me with many fine
moments. I especiatly appreciate the support of Dr. Francis Boabang, Chair, Dept. of
Management Science and Finance of Saint Mary's University. My numerous
reappointments for teaching positions were his responsibility and constituted a welcome
subsidy to my scholarship. My friendship with Dr. Eric Lee of Saint Mary's University is

especially treasured.

The all-female faculty whom I currently work with in the Information Management
Department of Mount Saint Vincent University deserve mention for they provide me with a
stimulating day-to-day working environment. Eve Rosenthal. Barbara Casey, Jean Mills,
Glen Flemming, Paula Crouse, Dana Adams and Sonia Verabioff comprise a fabulous

Xiv

group of enterprising individuals and I am very happy to be associated with their
department.

The faculty at TUNS has been a constant in my academic life for the past six years. They
have been instrumental in providing me with a good education and I respect their abilities
and always cnjoy seeing their familiar fuces. 1 am also grateful to the administration for
providing me with the opportunity to teach courses at TUNS. I have a lot of fun in the

classroom when [am instructing the generally high-calibre TUNS students.

I thank the internal TUNS members of my examining committee, Drs. Peter Bodorik.
Philip Cox, Allan Jost, Bill Phillips. and Bill Robertson for the work they did in rcading
and evaluating carly sketches of the dissertation work, for both my PhD comprehensive
presentation and for the progress presentation. I am also indebted to the gentlemen listed
above, and to Dr. Michael Stumm for the work they did in preparing and conducting my
oral PhD defence. In addition. [thank the External Examiner. Dr. Stumm., for his critical
comments which further improved my work. Pam Griffin-Hody and the moderator. from
the Graduate Studies office. are also warmly thanked for their input.

About treasured friendships and loved ones I leave for last because they are the most
difficult to write. My grandparents. Arnold and Josephine (Tilda) Joseph are the reasons 1
do what [do. They have provided for me, guided me and loved me for all of my life: |
cannot repay them. Serina Ramberansingh and Karen Lank are very dear to me: Serina who
lives in Trinidad has been my “best friend” since I was 14 years old and Karen for all the
years [have lived in Halifax. They contribute greatly to my happiness. Marian and Cory
Lee Qui are very special people in my life.

I would also like to thank Bill, Stella and Kate Lord for their friendship. and the invitations
to join them at their very fun New Year’s Eve, birthday and dinner parties. [would also
like to acknowledge the Lords for their helpful participation in my wedding. Danyelle.
Laura, Tasia, and Jason are warmly acknowledged for their kindness and friendship, and
especially for all the hours of baby-sitting that they did for me. The community at Saint
Paul’s Anglican Church has contributed greatly to our life here, and though I have been
remiss in attending services this year (since Logan was born). I look forward to rejoining

them in the New Year.

Xv

My dearest husband, Eldon, and my son, Logan are the sources of my greatest delight.
Eldon has shown me how easy it is to be successful in your professional life when you
have a happy successful private life. He has helped me to create a wonderful environment
for our baby son who in his turn has literally opened up an entirely new and remarkable
world to us. Iam indebted to Eldon’s parents, Eugene and Joyce Olmstead for the many
happy hours [spent at their home and particularly to Joyce for the warm and wonderful
care she provides for Logan while I am at work.

Happy First Birthday, Logan!!

XVi

ABSTRACT

In recent years, there has been an increasing number of applications that efficiently use
virtual memory for access control purposes. In many cases, improved application
performance has been attained when the protection unit size is different from that of a
system page. Improved application performance has also been achieved through the
provision of alternative access control protocols per application within a computer system.
The advent of 64-bit architectures has caused the issue of maintaining isolation among
threads working in a single address space to assume new importance.

This dissertation presents a novel virtual memory model which provides efficiencies to
applications in terms of variable-sized protection units, customizability of access control
service per region of memory. access control handling without the use of software
handlers, synchronization at the level of threads, and fault isolation. These features are
accomplished by imposing views on the regions of memory. Applications are provided
with the flexibility of selecting from a large range of access control units’ sizes (sizes must
be powers of two). Protocols are implemented as fully as possible by table lookups. The
potential reloading of the tables facilitates the customizability of the operating system
control services. Synchronization at the level of threads and the maintenance of the views
on the regions of memory facilitate fault isolation.

The widespread applicability of the model is demonstrated. in the thesis. by illustrating
support for a number of access control protocols. The protocols are decomposed into state
transitions, and these descriptions are supported by a cache-based protection architecture.

A qualitative analysis is performed to compare the performance of the proposed system
with the performance of a traditional scheme. A quantitative performance study is
conducted to compare the costs. in terms of machine cycles, of performing access control
determination through the conventional method as opposed to using the virtual memory
model with the chosen protection architecture and operating system support.

Results from the performance study show an overall improvement over other schemes
in terms of cycle times. Much of this is due to a reduction in the frequency of faulting to
software handlers. lesser complexity in maintaining status of shared data and non pollution
of the TLB and primary data caches. The implementation of access control as shown in
this thesis results in an increased hit rate in the TLB cache which is a critical factor to

enhancing applications’ overall performance.

Xvii

CHAPTER 1
INTRODUCTION

1.1 Thread Synchronization and Address Space Isolation

This dissertation focuses on enforcement of protection upon access to virtual memory.
Memory protection can take several forms: security, synchronization and isolation. Two
aspects are considered in this thesis: access control in terms of thread synchronization and
address space isolation.

Synchronization and address space isolation both refer to the means by which a system
protects applications against illegal access to instructions or data stored in memory.
Synchronization ensures correctness by providing controlled access (e.g. mutual exclusion.
ordering of simultaneous multiple writers) to shared writable data and by the proper
sequencing of processes. The latter requirement is known as conditional synchronization
where threads (or processes) may need to wait until a set of variables is in a specific state
before proceeding. For example in a shared buffer implementation, there would be a wait
if the buffer was full and the next operation was an insertion. Mutual exclusion and
conditional synchronization ensure correct execution of processes despite exposure to race
conditions: the latter occurs when two or more threads (or processes) can access some
shared data and the results depend on the order in which the threads (or processes) were
run.

Address space isolation. in the context used throughout this thesis. refers to the
prevention of access across non-shared protection spaces. A trend in recent operating
system designs (e.g. Windows NT ™) is to map operating system code, service
managers’ code and application code into one single process space. The advantage of such
an organization is a saving in the number of context switches among the various code
subsystems. However the boundaries among components begin to blur; hence the need for
isolation among memory regions within one address space and the resulting distinction
between a process space and a protection space. For instance, the operating system code
will have its own protection space and so too would each individual service manager.
Hence the protection space may be considered to be a subset of the process’ virtual address

space or may be the entire address space. The various subsystems mapped into a process’

[5]

address space besides its own code and data regions may also be referred to as extensions
or untrusted modules.

Many issues from the latest advances in computer architecture, operating systems and
database systems have motivated the design of the virtual memory model which is
presented in this thesis. In many cases, improved application performance has been attained
when the protection unit size is different from that of a system page [Stonebraker 1984,
Kumar 1989, Appel 1991, Kagimasa 1991, Dubnicki 1992, Talluri 1992]). Hardware
platforms currently provide for variable sized page sizes (e.g. MIPS R4000). However
there is minimal OS support for the architecturally provided pages and the indexing of TLB
entrics becomes more complex.

Another issuc motivating this disserattion is that current research indicates that
improved application performance is achieved through the provision of alternative access
control protocols per application within a computer system. Alternative access control
protocols have traditionally been provided through provision of multiple user-level servers.
This generates a substantial increase in context switching if the servers are in address
spaces which are different from that of the client (e.g. in the Mach 3.0 microkemel
organization) [Anderson 1991]. Context switching is avoided if servers and clients are
mapped to a single address space, but protection boundaries must then be rigidly enforced
through address space isolation. There is no current support for the enforcement of
protection boundaries in many commercial applications (e.g. Microsoft's Object Linking
and Embedding ™. Xpress Quark™) where third-party code extensions are known to
cause software crashes [Wahbe 1993].

The problem of address space isolation is even more critical when moving from 32-bit
address spaces to the single space 64 bit-address spaces. Solutions appearing in recent 64-
bit computer architectures (e.g. HP-PA RISC) feature the separation of address translation
from protection. This facilitates the provision of different access rights by multiple subjects
(e.g. threads) to the same object (e.g. a data item).

Specialized, dedicated hardware support has also been developed for memory
management subsystems in order to support specific protocols. For example. Chang
[1988] reported on one of the first complete attempts to incorporate transaction management
functions in a Memory Management Unit (MMU) within IBM's 801 storage architecture.
Locking is provided by a hardware mechanism which monitors the read and write
references of individual transactions. The size of the lock unit is 128 bytes. A hardware

locking scheme which operates concurrently with the address translation subsystem of the

MMU unit was described in [Bodorik, 1992b]. Hardware support for directory-based and
snoopy cache protocols based on the write-invalidate and write-update mechanisms have
been widely studied [Censier 1978, Archibald 1985, Agarwal 1988]. The hardware based
solutions, although fast, are inflexible. This factor motivates features of the design for the
architectural support of the memory model presented in this thesis.

The processor speed to memory access time ratio is increasing dramatically [Hennessey
1996]. Techniques to reduce the impact of the ratio, such as through the use of caches, are
being explored. The importance of the use of caches as a means to provide increased
performance is evidenced in [Horowitz 1987, Heinrich 1992, Schimmel 1994]. Caches
are small high speed memories close to the processor. Data and instruction caches. on-chip
and hierarchical caches, caches in single processor and multiple processor architectures are
used for enhancing systems’ performance. Caching is also an important technique for
improving performance in distributed systems [Howard 1988: Nelson 1988]: it reduces
network accesses and server loading. These motivate the use of caches in the
implementation of the model proposed in this thesis since they arc expected to enhance

application performance.

1.2 Objectives

The introduction above provides a synopsis of the relevant developments in ficlds
which motivated the objectives of this work. Chapter 2 gives a detailed literature survey on
the various areas that impact this work.

The objectives of this dissertation include the design and support for a novel virtual
memory modcl and protection architecture which package efficiencies to applications in
terms of the following:

* variable-sized protection units

* customizability of applications through the choice of an access control protocol

per region of memory

* flexible hardware to support access control handling without the use of software

handlers in order to reduce kernel-user application communication

* on-the-tly access control which lowers access control overhead

* address space isolation within and across address spaces

* synchronization at the level of threads and/or tasks

* lower Instruction and Data TLB pollution

* increased concurrent access (e.g. multiple writers to the same system page)

* efficient support of different access rights to the same access unit by different
subjects (fine grain protection)

* efficient hardware support for protection - specifically the separation of protection
from address translation within a multiple address space where rights need not be
checked on each and every memory access.

The thesis shows how all the above objectives are met. It demonstrates how operating
systems can provide variable sized access control units without altering the underlying
fixed sized paging implementation by the use of views. It provides a proposal for reduced
context switching costs by placing decomposable access control protocols at the hardware
and OS level. Another benefit of the latter is the reduction in data and instruction TLB
pollution. Since the TLB is recognized as becoming the major bottleneck [Romer 1995} in
future systems, this is an important advantage. The customizability of OS services can also
be achieved on a per system basis. The thesis provides a costing of an implementation of
the memory model and architecture in terms of CPU clock cycles. A performance
comparison is made to a software implementation of a widely implemented conventional

access control scheme.

1.3 Outline of the Chapters

Chapter 2 provides further motivation for the objectives of this research along with the
presentation of research related to this dissertation. It includes surveys of schemes which
independently implement virtual memory access control, utilize variable sized units, and
provide customizability of operating system and application services. Literature on the use
of caches for improving performance is also presented in Chapter 2. Also included is a
survey on synchronization mechanisms. These topics were sketched out in the
Introduction and are thoroughly represented in Chapter 2 since my objectives include
virtual memory hardware support designed for flexibility.

Chapter 3 presents the description of the Multiview Memory Model. How the model
meets the objectives as outlined in Chapter | is discussed in detail.

Chapter 4 describes a design for the protection architecture required to support the
memory model. The modifications to kernel data structures and to the entries within the
data cache are described. Additional hardware structures are also defined.

Chapter 5 describes protocols which can be supported by the proposed model. The
widespread applicability of the model is demonstrated qualitatively by illustrating support
for various concurrency, coherence and paging protocols.

Chapter 6 presents the qualitative and quantitative evaluation of the Multiview model.
The main metric for evaluation and comparative purposes is that of CPU clock cycles. The
number of cycles of delay to determine whether a read or write access is allowed to
proceed for an example protocol is measured for four applications under different cache
configurations. The costs are given in terms of the number of accesses to the TLB, primary
data cache, secondary data cache, other supporting caches, and main memory for a given
application. The miss rates on the various caches are also provided in order to cost the
memory hierarchy.

Chapter 7 provides detailed qualitative and quantitative comparative results of the
software implementation of an example access control protocol with the Multiview
implementation of the same protocol.

Chapter 8 provides a synopsis of the motivation of this thesis. a summary of thesis

contributions, conclusions, and suggestions for future research on this topic.

CHAPTER 2
RELATED WORK

This chapter presents many details on the several areas of research related to this work.
The work presented in this thesis overlaps with the fields of operating systems, computer
architecture and with applications such as database systems. First, literature pertaining to
conventional synchronization mechanisms is surveyed and problems are stated. Provision
of efficient memory synchronization is the main thrust of this thesis, hence the important
synchronization mechanisms and their associated advantages and disadvantages are covered
in section 2.1.

Next, literature on virtual memory protection systems is presented in section 2.2.
Many virtual memory applications make use of the computer’s address translation hardware
to facilitate access control. This lays a basis for an aspect of the work presented in this
thesis, in that the hardware which supports virtual memory is explored to provide
sophisticated access control. The work contributed in this thesis also features a solution to
provide address space isolation.

Concurrency control and coherence control, which benefit from being serviced with
variable sized control units, are also surveyed. A simple solution for the provision of
access control to variable sized units is another contribution of this thesis. Literature
pertaining to other solutions for enforcing access control on variable and fixed sized units is
surveyed in section 2.3.

Various implementations of customizable operating system services are then
overviewed in section 2.4. Research in many environments clearly demonstrates that
application performance can be greatly improved by customizing operating system services,
such as paging algorithms, concurrency control and coherence control algorithms, to suit
the individual characteristics of an application. Customization of control services to
applications is an additional contribution made in this thesis.

Applications of caches are presented in section 2.5. It is proposed in this thesis that
tables, which are required to support implementation of access control to variable sized
units, customizability, and the other objectives presented in Chapter 1, be stored in
dedicated caches. Finally a summary is provided at the conclusion of the chapter.

2.1 Synchronization Mechanisms

This section first provides background on synchronization mechanisms and presents a
further categorization for these mechanisms in terms of implicit and explicit invocations.
The problems associated with explicit invocations of synchronization primitives will be
discussed.

Synchronization may be accomplished through hardware, software or combination
hardware/software mechanisms which regulate the sharing of data in memory. Hardware-
based synchronization mechanisms may include the disabling or issuance of process
interrupts, traps, and structural support for atomic read, write. and read-modify-write
memory operations.

In this thesis, attention is restricted mainly to the uniprocessor environment. although
synchronization support for policies in a shared memory multiple processor environment
will be brictly examined. A further refinement in the calegorization of synchronization
mechanisms is introduced in this work: explicit and implicit synchronization. Table 2.1
presents the results of a survey, to follow, of standard mechanisms that identify the
applicable category for the individual mechanism.

The definition of implicit synchronization in this work means that synchronization
operations are induced as a by-product of the standard read and write memory operations or
end of process execution. Implicit synchronization mechanisms are those which may
potentially occur in parallel with some other activity such as address translation and data
fetching. Synchronization is explicit when it is achieved through explicit use or activation
of the synchronization mechanisms (e.g. signal, a call to lock). Features of selected
synchronization mechanisms are examined below with a view to characterizing them as
either implicit or explicit.

Table 2-1 Classification of Explicit and Implicit Synchronization
Mechanisms

Synchronization Mechanism | Explicit [Implicit

Semaphore X

Monitor

Message Passing

Barriers

bl Bl Eaf Ko

Virtual Memory Protection Primitives

Hardware Protection X
(e.g. dedicated protection
caches. registers)

2.1.1 Semaphores

Semaphores are used for both access and sequence control. The proper sequencing of
processes is known as conditional synchronization (sequence control) where threads (or
processes) may need to wait until a set of variables is in a specific state before proceeding.
The representation of a semaphore variable is typically an integer and a queue. The
presence of the queue structure depends on whether busy waiting or positive-wakeup is
used. The semaphore is classified as an explicit mechanism since operations, P and/or V.
on the semaphore must be issued before access is allowed to data, and also on exit of the
critical section. Operations on semaphores must be explicitly invoked for access control by
the programmer who decides when to synchronize and upon what conditions; an
inadvertent omission of a wait or signal operation can deadlock a program or result in
incorrect execution. Generally, programs using semaphores are difficult to code,
understand and prove correct. This is especially the case when multiple semaphores are
used.

2.1.2 Monitors

The monitor is an encapsulation mechanism with a structure similar to an abstract data
object. It provides mutual exclusion by allowing only one process to be executing within it
at any instant. The monitor is classified as an explicit synchronization mechanism because
the application must issue explicit calls to the monitor entry procedures. From the
perspective of an application using a monitor, explicit synchronization occurs only when a
monitor entry procedure is called. Everything else is implicit within the monitor.

There are several disadvantages associated with the use of monitors. The signal-wait
complicates proving program correctness, since control of the monitor is relinquished to
another process or thread on either the signal or wait operation. The state of the monitor can
then significantly change between the times a process relinquishes the monitor and
subsequently regains control. Additionally. outstanding signals on condition variables are
not saved. Since the monitor is a programming language construct, the compiler must
recognize it and arrange for mutual exclusion. However most programming languages (for
example C and Pascal), do not support monitors and hence the compiler does not enforce

mutual exclusion rules [Tanenbaum 1992].

2.1.3 Message Passing

Monitors and semaphores are designed for solving the mutual exclusion problem on
onc or more CPUs that all have access to a common memory. The associated primitives are
inapplicable to a distributed network of computers: they do not provide for an exchange of
information among multi-computers. The message passing synchronization mechanism
solves this problem.

Message passing, by definition, is an explicit synchronization mechanism. It is usually
used across multiple address spaces in non-shared memory environments. Processes

synchronize by the explicit sending and receiving of messages.

2.1.4 Barriers

Parallel processes can be synchronized using barriers. another explicit synchronization
mechanism. A barrier has a specific number of processes associated with it. Only when all
participating processes have reached the barrier, can a process execute beyond it. A barrier
can be implemented by a shared memory word which keeps counting the number of
processes reaching the barrier [Hwang 1993]. An alternative hardware implementation
appears in the form of wired barriers for fast synchronization. Synchronization using
barriers is efficient when the synchronizing processes are short and/or the execution times
are roughly the same. Otherwise, a subset of the processors executing the short-lasting
participating processes will stall while waiting for some other longer process to

synchronize on the barrier.

2.1.5 Virtual Memory Synchronization Mechanisms

Appel [1991] defines virtual memory primitives which manipulate the status bits in
page table entries in order to effect synchronization. A process may modify the rights
required to access the page and thus prevent other processes from accessing that page,
thereby providing synchronization.

Use of the memory management primitives for synchronization can be more convenient
and efficient than most standard synchronization mechanisms. One process may perform
synchronization in accessing a page unilaterally without other processes actively
participating in synchronization. This is used, for instance, in checkpointing [Appel 1991].
Note that with respect to the checkpointing example only one (active) process performs the
synchronization without the other (passive) processes even being aware of the
synchronization with the exception of potentially increased delays. Such synchronization is
not only convenient but it is also efficient. in that it reduces the number of kernel calls when
compared to user-level synchronization servers which utilize kernel calls.

The HP PA-RISC and the PLB designs, described later in Section 2.2.2. include
mechanisms to provide extra hardware support for the automatic invocation of a check of
access rights on access to virtual memory. These mechanisms are classified as implicit.
Advantages include the following. The responsibility for synchronization is no longer a
burden on the application programmer. The synchronization may be faster depending on
the organization and speed of the hardware which supports it. There is an opportunity to
reduce the number of context switches and system calls if the protection is provided in

hardware as opposed through the use of user-level access control managers.

2.2 Virtual Memory Protection

The Virtual Memory (VM) system is being increasingly exploited to provide access
control, in addition to its fundamental support of mapping functions among address spaces.
In relatively recent proposals [Appel 1991, Eppinger 1989. Koldinger 1992, Li 1989,
Wilkes 1992], the protection mechanism of the virtual memory system has been exploited
by applications, kernels and operating systems for purposes such as the synchronization of
processes. The adoption of these proposals in commercial operating and hardware systems
(e.g. Windows NT™, Hewlett Packard PA-RISC) shows the rising emphasis on using
virtual memory for efficiently implementing control mechanisms. Some example control

applications are checkpointing and garbage collection.

The schemes which increase the functionality of the virtual memory mechanism can be
categorized into software and hardware based and will be described in sections 2.2.1 and

2.2.2. A problem common to all the schemes is that the smallest unit of protection is the

2.2.1 Software Based Virtual Protection Mechanisms
These schemes are further categorized according to whether they emphasize efficient

support for synchronization as opposed to that for address isolation.

2.2.1.1 Software Virtual Memory Primitives Used For
Synchronization

Virtual memory primitives are used, by application programs, to manipulate the
protection bits on page table entries for synchronization purposes. This is achieved either
by the use of explicit OS primitives [Appel 1991] or through function calls in conjunction
with exception handling as is done in Windows NT Version 3.1 [Kath 1992]. The page
protection hardware can efficiently test simple predicates on addresses, subject to the
restrictions discussed below. in order to determine whether access is allowed or not. This
can provide substantial savings over the fetch and store operations used by applications
which maintain lookup tables for control purposes (e.g. lock tables). For applications
utilizing virtual memory primitives, the parts of the operating systems structures and code
which support and define the primitives must be mapped into the user space of the calling
application for efficiency purposes. Otherwise, the increase in context switching due to the
crossover of user to kernel interface is too costly for this scheme to work efficiently.

Six Virtual Memory primitives were identified in [Appel 1991] as useful to many
applications. They include the batched protection of n pages, removal of protection for one
page at a time from a batch of protected pages, the protection of one page at a time, and the
mapping of a page to two different virtual address ranges. The primitive which supports
the dual mapping of a page facilitates the support of the rights of one thread to access the
page via one virtual address, and enables the faulting of all other threads in the other virtual
address space.

The Win32 subsystem in NT provides the VirtualProtect() and VirtualProtectEx()
functions to change page protection. The Ex extension on the function name allows

changes in a page protection in processes other than the calling process, provided that the
caller has appropriate privileges. Page protection states in the NT system are
PAGE_NOACCESS, PAGE_READONLY and PAGE_READWRITE. However 5 bits
are reserved to represent page protection in each page table entry in the NT system, thereby
allowing expansion of protection states to a maximum of 32, presumably for anticipated
future use.

Windows NT uses conventional forward mapped page tables. but with an additional
level of indirection for shared pages. To avoid having to update multiple Page Table Entries
(PTEs) on the change of state of a shared page (i.e. on a write access). Windows NT
implements another level in the page table for shared pages. A prototype PTE is introduced
which references the shared page. Therefore, the previous level in the page table hierarchy
points to the prototype PTE which in turn points to the page frame of the shared page. Only
the prototype PTE entry needs to be changed.

Performance studies [Hosking 1993, Wahbe 1992] of page level access indicate that
applications using software implementations of access control can outperform applications
using virtual memory primitives for access control. For instance, a dedicated software
locker can outperform a locker which uses VM primitives for locking pages. The problem
is not the cost of the virtual memory primitives but the large page size on which they
operate. Hosking [1993] states that sub-page protection and dirty bits, along with
appropriate operating system interfaces should overcome the performance disadvantages
that were observed. This further supports the motivation for providing access control on

variable sized access units.

2.2.1.2 Address Space Isolation

Operating systems such as Chorus [Rosier 1988] and Windows NT allow servers to be
loaded in the same address space and protection domain as the kernel. This is an alternate
to loading servers into their own address spaces.

Figure 2.1 illustrates Windows NT logical division of its address space. The Postgres
DBMS and TPC Benchmark applications are not built-in to NT, but simply illustrate an
example address space. Addresses of OS code and applications’ code can be differentiated
by examining the highest order bit. If it is set, the address references OS code or data.
However no further support for distinction of addresses is made within the 2 Gigabyte user

13

code area. All servers or extensions mapped into the process’s address space can
potentially access any of the 2 GB area.

A software technique which imposes logical boundaries between protection spaces
within a single address space is proposed in [Wahbe 1993]. Wahbe et al propose to divide
the process’ address space into segments such that addresses in each segment have a
unique patiern of higher-order/upper bits. Protection spaces are then made up of these
segments and are given unique segment identifiers. Each untrusted module or extension
that is mapped into the process’s address space is assigned at least two segments: one for
its data and one for its code. Two segments are needed in order to prevent an untrusted

module from modifying its code, while allowing it to modify its data.

Operating i
System
Code

Postgres
DBMS
Application

TPC
Benchmark

0000 0000

Figure 2-1: Applications in a single 32-bit address space

Wahbe [1993] modifies the upper bits of addresses targeted within unsafe instructions
using a software transformation technique called sandboxing. An unsafe instruction is one
whose target address cannot be statically verified. Examples are jumps through registers
which are commonly used to implement procedure returns, and stores that use registers to
hold their target address. Sandboxing sets the upper bits of the addresses to the bit pattern
of the protection identifier of the space in which the thread is currently executing. Hence.
instructions issued by a process will only affect addresses in its own protection space.
Sandboxing thus prevents access to memory using illegal addresses. Another technique
known as segment matching can be used to identify and trap illegal references. Segment
matching code, requiring approximately four instructions. is inserted before each unsafe

instruction. A trap may be generated if the segment identifier does not match the unique
number of upper bits of the target address.

Support for data sharing within a sandboxing and/or segment matching scheme cannot
be provided through manipulation of read/write or other state bits within page table entries.
Conventional hardware schemes implement protection by placing each process, extension
or untrusted module into its own address space. Hence shared data will have its own page
table entry in every address space to which it is mapped, thereby allowing different
protection rights to be associated with the individual mappings. The untrusted modules. in
multiple address spaces, co-operate in the following way. A context switch occurs
whenever an address in another process space is referenced (e.g. when a print server thread
is invoked). The appropriate page tables for the new process (thread) are then made current
and the access rights to the shared data for the new protection space are then enforced.

In Wahbe's [1993] software based scheme, the hardware page tables are modified in
order to map shared data to the same segment offset of every protection space which
participates in the sharing within the single process address space. This implies that the
number of TLB entries will be increased for shared data with implementation of this
method. TLB entries are a scarce resource which means that this is a highly undesirable
side effect. This problem will also appear again within the discussion of customizing
operating systems where user-level servers’ target addresses pollute the TLB.

Another overhead is introduced in Wahbe's [1993] scheme in the requirement for
translation of the unique shared addresses to addresses within the protection space of the
currently executing thread. The steps for the translation are identical to that of hardware
translation from virtual to physical addresses. except that it is being done through software.
Thus the provision for sharing complicates the overall management of virtual addresses.

2.2.2 Hardware-Based Schemes for Virtual Memory

Protection

The next major method to enforce and utilize protection on virtual addresses is
demonstrated in the PA-RISC virtual memory model [Wilkes 1992] and in the Protection
Lookaside Buffer (PLB) model [Koldinger 1992]. Both the PA-RISC and PLB protection
schemes use the concept of a protection domain to distinguish among process spaces in a
64-bit single space virtual memory system. Note that all addresses are globally addressable
in the single space virtual memory system. Protection in this environment is provided not

through conventional address space boundaries, since they do not exist, but through
protection domains that dictate which pages of a global address space a process can
reference [Koldinger 1992]. Hardware protection occurs on lightweight context switches
where the new protection domain identifier is loaded in a special register, and legal virtual
memory references are recognized by matching the protection domain tag of the address
space reference o the register’s contents. This level of protection does not yet describe the
type of allowed access (e.g. whether the access can be read-only or write or no-access
ctc.). Traditional hardware schemes maintain read/write bit information in the per page
entry in the TLB.

2.2.2.1 The PA-RISC Design

The PA-RISC scheme defines the protection domain to be the set of page-groups that
an executing entity may access. Each virtual page is uniquely assigned to exactly one page-
group by associating an Access Identifier (AID) with the page. The PA-RISC design
extends the page table entries with Access ldentifiers which, in turn. arc matched to the
contents of 4 special registers. containing Page-Groups Identifiers (PIDs). to determine
access rights privileges. Access is allowed on an exact match of the PID within one of the
registers and the AID stored in the TLB entry for the page. Access rights to a page may be
altered by setting different Privilege Levels (PLs) while maintaining the same PID-AID
pair. Thus only one set of access rights need be maintained on a per page basis. Note that
the Privilege Level can only distinguish multiple access rights among page groups, not at
the page granule level. That is, a PL change affects all pages within a page group. If the
requirement is merely to change privileges for one page. then the page must be moved to
another page group: an expensive operation since memory accesses will be involved. This
restriction penalizes the PA-RISC support for sharing when synchronization is required on
a per page basis.

Architectural support for the PA-RISC virtual memory system consists of a first level
virtually addressed, physically tagged direct mapped cache (VAC) and a TLB where the
latter contains the page's AID as well as translation mappings. When a memory reference
is issued, the VAC is indexed with the lower order bits of the virtual address.
Concurrently with the indexing of the cache, the TLB is accessed in order to obtain the

physical frame number for comparison with the VAC’s tag and also to obtain protection

information. The VAC must wait until the TLB access is complete before the matching of
the tags step can start.

There are four control registers which hold the PIDs in the current PA-RISC
architecture. This means that the process has access to at most four page groups at a time
without generating a PID control register fault. A register fault takes approximately the
same time as a TLB miss.

If the PID stored in one of the control registers matches the AID stored in the TLB entry
(denoted by "y" in Figure 2.2 an "n" represents no match), then the access rights obtained
from the TLB entry are modified with the Write disable bit (D) and the PL to obtain the
exact access rights of the accessing entity to the memory location.

TLB Virtual CPU
: ddress
VPN PFNTRightsJAID | [oIpip] [DlPD] [D]PiD] [D]PiD] [FL]
1] n n
> <

Access Rights

Figure 2-2: PA-RISC Protection Design

2.2.2.2. The Protection Lookaside Buffer Design

Koldinger [1992] proposes the use of a specialized cache called a Protection Lookaside
Buffer (PLB) which contains protection information on pages on a per protection domain
basis. The PLB model defines the protection domain as the entity defining the pages that
can be accessed by the current execution [Koldinger 1991]. The threads associated with

different Protection Domain Identifiers (PDIDs) can have different access rights to the same
page.

The scheme is based on a capability-style model where a process (analogously a task or
thread) is given a list of pages that it may access. The PLB design supports a complete
separation of protection from address translation. Koldinger proposes that the PLB and the
data cache be situated on chip, and the TLB relocated off chip. This can be done since both
the data cache and the PLB are virtually addressed and virtuaily tagged caches. However
this means that additional space is required to store the wider tag information. Relocating
the TLB off chip also means that the address translation cycle is slowed down: on cache
misses, line replacements will generate a second access to the off-chip TLB. The PLB
architecture is illustrated in Figure 2.3.

CPU
Virtual Address Protection
< Domain ID
To * *
TLB Data
Cache VPN [PD-ID| Rights

Figure 2-3: The PLB Design

In contrast to the PA-RISC scheme, the PLB maintains multiple entries in the PLB for
each page in order for each to represent a different set of access rights to the page. In the
PLB case, the entries are differentiated by the use of different PDIDs for the same virtual
address. The index for the PLB cache is a concatenation of the PDID and the virtual
address. Since the data cache entries do not contain protection information. each data cache
access generates a PLB cache access.

2.2.2.3 Sharing Within The PA-RISC And PLB Designs

Sharing is accomplished on the PA-RISC through the use of common PIDs. Thus the
smallest granularity of sharing is the page-group. There are two sharing situations which
generate complicated operations in the HP model: when the unit of sharing is a subset of a
page-group and when a subset of a page-group's rights are to be modified. These two

issues are not the same, although the second can be the outcome of the first. Consider the
first situation; it may arise if two or more processes require access to pages in a page-group
such that for security reasons, one process is to be permitted access to only a subset of the
pages in the page-group. The second scenario may emerge even if the entire page-group is
to be shared on a long-term basis. Here regions of the page-group may be set as
inaccessible or accessible throughout the processes' lifetimes.

If a domain should require the sharing of only a subset of pages of one page-group. the
page-group will have to be split and the PIDs (re)assigned to the emergent page-groups.
Cascades may be generated in that a change of PID through memory will also be necessary
for all processes sharing the page-group. Loading of new PIDs and the purging of page-
group PIDs from the page-group cache are involved.

When a page's access rights are to be modified such that the resultant access rights are
distinct from those of the associated page-group then the page will have to be dissociated
with that page group. The page is placed into another page group which has different
access rights associated with it. This is an example case where support of the various PL
levels is not sufficient to differentiate among multiple access rights.

Sharing can be done in two ways within the PLB scheme. One way is to share the
same protection domain identifier (PDID) and the same virtual addresses. Processes have
exactly the same access rights to shared pages. The second way to accomplish sharing is
through the use of a common virtual address only: the PDIDs are different. leading to
different simultaneous access rights to the same set of pages.

There is potential difficulty when PDIDs are shared by multiple processes since
attachment or detachment of segments within a protection domain affects all sharing
processes. It may not be desirable for all processes to share attaching segments, and
similarly all processes that share through the same PDID will be affected by a detaching
segment. Redefinition of the protection domains will result in some cases. This may be
costly in terms of the (re)assignment of PDIDs in memory and for cache entries. The
identification of the relevant PDIDs to be changed in the cache, on its own is an expensive
task.

If only one domain has access rights to a page then a sole change is made to a PLB
entry. If multiple domains share the same page, and access to all but one copy of the page
should be the same, every PLB entry for that page would have to be updated; additionaily
any stored information for the PDID/virtual page pair in memory would need to be updated

too.

The PLB scheme is the more flexible of the two in terms of providing for
simultaneously different access rights to the same memory unit. The PLB model presents
an opportunity for the support of the access units sizes which are different from that
defined by the system for a page, that is, the access units can be variable-sized. This arises
because the protection mechanism is separate from address translation. However the
architecture defined by Koldinger is for system page sized protection units. Koldinger
[1991] contends that fine grained protection should be provided by the language and
compiler.

The PA-RISC model differs from the PLB model in that unique rights are associated
with each page which implies only one protection entry is required per page. In contrast,
explicitly different rights may be associated with each page in the PLB model thereby
necessitating multiple protection entries for a page. However sharing is much less
complicated and less expensive within the PLB model.

2.3 Variable Sized Protection Units

The disadvantages of using a page of fixed size as the control unit for various purposes
in a virtual memory system are numerous. This statement will be exemplified. in the
following subsections 2.3.1 to 2.3.3, by detailed consideration of the following three

areas: address translation, concurrency, and coherence.

2.3.1 Address Translation: Variable Sized System Pages

The common virtual memory page size in modern operating systems (e.g. Windows
NT) and architectures is 4 Kb. The page sizes are likely to grow larger as processor
speeds improve and physical memories and applications' working sets grow. The working
sets of sequential applications tend to be large which would imply that such applications
will benefit from a larger page size. The working sets of random access applications tend
to be much smaller leading to a bias toward a smaller system page size. A large page size
can cause more unused program to be in memory than a smaller page size for some
applications [Tanenbaum 1987]. Most systems' costs depend more strongly on the number
of pages in a region than on the number of bytes in it [Fitzgerald 1986]. Small page sizes

can cause more remapping of physical memory and more faulting operations than would

occur with larger pages, and thus lowers the effectiveness of address translation caches by
reducing the size of the address range covered by a single cache entry. The small page size
can also increase the costs of kernel data structures such as an Inverted Page table, whose
size 1s the number of physical pages in the system. Small disk page size often implies large
overhead to transfer a large amount of data. However some programs are tuned to a
smaller page size and get more page faults with a larger page size due to internal
fragmentation of real storage. Thus the appropriate page choice for applications is an
important decision.

2.3.1.1 Simultaneous Support of Two Page Sizes

Talluri et al [1992] examine the support of two page sizes within an address space and
report on the increased complexity of architectural structures (e.g.TLB) and OS data
structures (e.g. page tables), and other side effects introduced with the support of a second
page size. The indexing of TLBs using a fixed number of bits. in prearranged positions
(c.g. the lower order bits of the virtual frame number). no longer suffices. The
performance of a TLB design is greatly affected by the efficiency of its miss handling.
Supporting multiple page sizes complicates TLB miss handling. Talluri [1991] reports a
25% increase in execution time in the miss handling routine [Slater 1991] for a TLB which
supports two page sizes. Address translation mappings must be aligned in both virtual and
physical memory so that concatenation. rather than addition, can be used in the address
translation process. Finally external fragmentation becomes a problem once more since
page sizes are no longer fixed.

A series of experiments were carried out on applications from the SPEC benchmark
suite to determine the effect on TLB performance by supporting either a 4Kb or 32 Kb
page size within a single page size system, and also, for a system which simultaneously
supports the two page sizes. The large page size is expected to increase TLB effectiveness
due to the fact that the pages translated through TLB entries span a larger portion of
memory. However results show that the simultaneous support of the two page sizes leads
to a smaller increase (10%) in working set size than moving to a larger fixed page size
where the working set increase was reported at 60%. It is surmised that the larger page
size results in an increase in internal fragmentation. Talluri et al [1992] state that their
results are not conclusive due to a lack of OS and multiprogramming behaviour within the

input address traces. The work represents a first effort in understanding the issues arising

due to the support of multiple page sizes.

2.3.1.2. Architectural Support for Multiple Page Sizes: The
MIPS R4000

The MIPS R4000 [Mirapuri 1992] is a good example of an architecture designed with
an understanding of applications' needs for variable sized pages and for multiple coherence
protocols within the multiprocessor environment. The machine features an on-chip CPU.
FPU. MMU, primary caches and secondary cache control logic. The MIPS R4000
supports seven page sizes (4Kb to 16Mb) using a 48 entry fully-associative TLB. Each
entry in the TLB maps 2 consecutive pages. Each page size in the specified range must be
a multiple of 4 Kb. A mask is stored within each TLB entry. These masks determine
which bits of the virtual address and tag will participate in the comparison for determining a
TLB hit. The data cache organization is direct mapped, virtually addressed, physically
tagged. write-back, and supports a choice of 4-word or 8 word cache line.

A coherency attribute is stored with each page entry within the TLB. Each page can be
marked as cither uncached. noncoherent. coherent exclusive. coherent-write exclusive. or
coherent -write update. Thus the processor supports write-invalidate and write-update
protocols on a per page basis.

The R4000 supports a pair of instructions (load linked. store conditional) which work
in conjunction with the cache coherency scheme to provide synchronization between
processors on the system bus. The store conditional instruction fails if the location has
been updated or invalidated since the preceding load linked instruction. The mechanism
can implement bit-locks. semaphores and indivisible fetch-and-add instructions among
other synchronization mechanisms.

2.3.1.3 Elastic Page Allocation

Kagimasa [1991] proposed a multi-size paging architecture with elastic page allocation
(EPA) to provide a solution to efficient storage management for very large virtual/real
storage systems. In the EPA scheme the virtual address space and the physical address
space are divided into two regions - one for large pages and one for small pages. EPA
uses several methods to allocate real pages to virtual pages with different page sizes: all
methods involve a lookup of either the System Available Page Area (SAPA) defined in real

9
9

memory for large or small pages, or a Local Available Page Area (LAPA), depending on
whether the requested virtual page size is small or large. Virtual storage management
overhead was measured in terms of the page faulting procedure while real storage
management overhead was measured by page stealing and page measurement. Page
measurement is the CPU overhead required to maintain unreferenced indexes of real pages
for page replacement algorithms.

The experimental system supported four sizes of large virtual/real page: 16. 64. 256
and 1024 kilobytes, and the small page region of virtual/real storage is partitioned into 4 Kb
pages. The Elastic Page allocation procedure was tested with Gaussian Elimination.
Random Probe. Quicksort and Relational Database Retrieval Algorithms. In one scenario
the virtual page size was set at 4Kb and the real page size at 64Kb and it was found that
EPA dramatically reduced the CPU overhead. Then the effect on performance by varying
the virtual page size was examined. It was found that the performance of Quicksort
improved for larger page sizes. the performance of the random probe procedure improved
for smaller page sizes, and that the virtual page size influenced performance more than the

real page size.

2.3.1.4 A Historical Perspective

Randell [1969] proposed a partitioned segmentation scheme where different page sizes
were supported. He investigated the phenomenon of storage fragmentation and found via a
series of simulation experiments that using fixed sized pages results in more loss of
storage. than allowing a number of different sizes of blocks to coexist in storage. That is,

the increased internal fragmentation outweighed the decreased external fragmentation.

2.3.2 Concurrency Control: Variable Sized Locking Units
Although many applications require locking of data units in virtual memory, locking is
generally implemented by applications themselves instead of using OS facilities. One of the
reasons is that locking fixed-size pages. for the purposes of concurrency control. leads to
the problem of unintentional locking (also known as false sharing) where other units are
locked on a page besides the targeted unit. For example, in a system where the unit of
locking is the same as the unit of address translation, say a page, if only one record on a

page were to be updated, then all other records would be locked also. This is unacceptable
to many applications that access "hot spot" data, such as frequently accessed catalog or
index information, because concurrency and hence performance are unnecessarily
penalized. It is difficult to avoid this problem by data layout techniques.

2.3.2.1 Page Level Locking

Stonebraker [1984] described a hardware scheme which supports OS virtual memory
transaction management at a fixed-size page level. Concurrency control and logging for
recovery purposes were both done at the page level. A known disadvantage of having
fixed-size page level locks is that they are inefficient for B+-Tree index pages in instances
where an index is split or underflow occurs. It has been shown [Kumar 1989} that Data
Base Management Systems (DBMS) Transaction Managers (TMs) outperform TM services
provided by an OS, because the OS provides control only on a page-level basis, whereas
the DBMS's TM can provide control at finer granularities. Thus the OS is not generally
used by the Transaction management system for locking services.

The hardware proposal [Stonebraker 1984] assumes that locking is the concurrency
control method and that direct update is the technique used for the recovery procedure.
Several implications of binding a file into a user's address space led to concern over
consistent updates and the addressability of data. The binding scheme makes the entire file
addressable by the client, thus implying a file lock. If the file is in a shared segment. a
breach in concurrency control can occur since several clients can access the file without the
intervention of the operating system. The problem is handled by providing addressability
only after a page lock is obtained. The latter requirement is expensive, and in an effort to
reduce it the lock manager is run in the user space and the lock table can be accessed from a
shared segment.

The following fixed-page size level locking scheme [Stonebraker 1984] is included in
this literature survey to show that the OS supported software and assistance provided by
hardware for transaction management is a practical alternative to current software-only
DBMS algorithms that run in user space. With the inclusion of variable unit sizes it should
become a competitive alternative.

To cater for the page locking and addressibility issues described above. four bits and a
count field are associated with each page, acting as part of the address translation hardware.
The title and use of each bit when set is shown below.

don't care bit ... I - activate hardware checking

write-lock bit... | - presence of write lock

access bit ... | - page has been read

update bit ... | - page has been written to

count field ... value = # of readers who have referenced the page

When a transaction begins. the lock manager assigns two newly initialized bit vectors to
it. One vector represents access bit values and the other write bit values; the bit values are
on a per page basis. On the first read access to the page, the page’s access bit is set and
the count field is updated. The transaction accessing the page also sets its access bit for the
page in the appropriate vector. On write access, the page’s write bit is set and the
transaction’s write vector is updated.

When an interrupt occurs control is passed to the lock manager which saves the two
vectors and the associated process id at each task switch. The lock manager is also
responsible for loading the memory management hardware with the vectors of the new
process. On commitment of a transaction. the lock manager first forces all the pages with a
write bit of one to disk and resets the write bit to zero. The count field is decremented for
each page that had its access bit set to one. Once the transaction is committed, the vectors
can be deallocated and destroyed.

One drawback to this hardware proposal is the absence of fairness provision. A
transaction wishing to write to a heavily accessed page may wait indefinitely [Stonebraker
1984]). Another hardware bit can be implemented along with the algorithm given to avoid
the situation. However, the main drawback is that the granularity of locking is fixed at the

page level.

2.3.2.2 Sub-Page Level Locking

Chang [1988] reports on one of the first complete attempts to incorporate transaction
management functions in a MMU unit within the IBM's 80! storage architecture.
Described is a hardware locking mechanism which monitors the read and write references
of individual transactions to 128 byte lines of storage. A page segmentation scheme was
used; the page size was fixed at 2Kb. This scheme provides finer granularity locking and
logging than Stonebraker's[1984] scheme. Also only a transaction id register must be
changed on a process switch. As was already stated above, there are several reasons for

the specialized hardware. The 801 handles the problem by utilizing the line (128 bytes).
which has a different size than the page as the unit of locking.

There are other reasons, however. for the specialized hardware. The hardware locks a
unit for a transaction and not for a thread or a task. Thus any thread working on behalf of
the transaction can access that unit. Furthermore, the access is without software
intervention. If a unit is not locked by another transaction in an incompatible mode, the
unit is locked in hardware and the access continues without software intervention. The
mechanism provides for shared read locks on lines and exclusive locks on whole pages. In
effect. when a thread accesses the unit, the state of access is checked and. potentially.
changed in hardware. If there is a lock fault, that is the locks in the line are not for the
current transaction. then software intervenes and searches a memory implemented lock
table. The lock is granted if no conflict is determined, and is subsequently recorded in the
lock table. The software (storage manager) then copies the current transaction’s locks into
the inverted page table entry.

Locking information is stored in two tables. One table is accessed by a hash of segment
identifier and virtual page address. This lock table is used to determine lock conflicts and
record locks granted and requested. The second table is accessed by the Transaction
identifier and is used by the commit software to find all locks held by the committing

transaction on all pages.

2.3.3 Coherence Control: Variable Sized Coherence Units

In terms of coherence, the cost of /O transfer for pages of a system-wide fixed size
may be needlessly expensive. System designers are faced with the tradeoff between the
requirement of a large page size for minimizing I/O transfer and a small page size for
maximizing storage utilization, when determining the system's fixed page size. The issue
of false sharing also arises here as in the concurrency control case [Bennett 1991, Dubnicki
1992]. Large coherence access unit sizes exploit processor and spatial locality, but cause
false sharing. Small access units can reduce the number of invalidations or updates, but
increases the bus or network traffic.

Dubnicki [1992] proposes a cache organization that dynamically adjusts the cache block
size according to recently observed reference behaviour. A power-of-two buddy scheme is

used to split and merge cache blocks across cache lines based on recent access patterns.

Each cache line is associated with size, LU (Lower/Upper bits) and split-merge counter
fields. The size indicates the size of the data block in the cache line; the LU field contains
bits for the upper half and lower half of the data block stored in a cache line: the split-merge
counter records the number of processors that accessed only the lower or upper half of the
cache block. The coherency protocol is responsible not only for the maintenance of
coherence but must also distribute reference information and choose when to split and
merge cache blocks.

Experiments were performed with input from C-Threads, the SPLASH suite and
sample Presto applications. Results from the power-of-two buddy scheme showed that for
every fixed block size, some programs suffer a 33% increase in average waiting time per
reference and a factor of 2 increase in the average number of words transferred per
reference, when compared to an adjustable block size cache. The Plus [Bisiani 1991]
distributed shared memory system employs a hardware supported cache manager with a 4
Kb page as the unit of replication and a 32-bit word for its unit of memory access and
coherence maintenance. Arguments for the required hardware support for coherence are
similar to that of concurrency where synchronization is done on-the-fly with the recording
of state transitions in hardware.

2.3.4 Problems Faced By OSs Due To Architecture-Provided

Variable Page Sizes

Current virtual memory (VM) systems are not suited to the support of multiple page
sizes since the use of only one page size is assumed in most OS code. Adding OS support
for multiple page sizes raises many new issues. Examples are how should physical
memory be managed, how should common optimizations such as copy-on-write, read-
ahead and clustering be implemented, and should virtual memory data structures be
affected? A problem that is tied closely to the architectural design is that of modifying page
table structures to support multiple page sizes.

The VM data structures will undoubtedly grow more complex. For example consider
the situation when two mappings are made simultaneously to a page frame where one
mapping is to a large page and the other to a small page. The traditional hash lists of page
frame numbers kept and indexed on page frame identifier will need to be arranged and
accessed differently. Also traditional page protection strategies will have to be modified.

Another problem that needs to be addressed is with regards to the choosing of a page
size. Talluri [1993] considers the user application, the compiler and the virtual memory
subsystem of the OS as candidates for the decision-making of what page size is suitable for
a given mapping. He settles on the OS as being the most suitable since it maintains the
information as to whether the system can satisfy requests for large mappings and can
“suggest” a number of small mappings as a substitute. Therefore it is currently
recommended that the notion of multiple page sizes should be exported to the user/compiler
as a hint only [Talluri 1993].

Physical memory must also be managed on multiple page size architectures within the
additional constraint that mappings must be aligned. The VM system will have to structure
its "free” and "clean” page lists into several lists of the supported page sizes. A physical
memory allocator must find a clean page of the required size when a mapping is requested.
If a page of the appropriate size is not found, then the system may need to use smaller
mappings or coalesce smaller pages into larger ones. Then another issue arises as to when
and how should the allocator coalesce memory? Will it be worth it to copy memory around
to create larger pages should physical memory become so fragmented that no large mapping
requests can be accommodated? How will page replacement strategies be affected? Will one
page size receive preferential treatment over other sizes? How is the page faulting rate
affected by a system that manages free lists according to size?

In conclusion, the question arises as to whether the operating system should provide
support for multiple page sizes in light of the additional complexity envisaged. or the
hardware and operating system should be redesigned to support a single page size more
efficiently. For reasons that will become clear as the reader progresses through this thesis,
the author believes that the third option is the most straightforward. most beneficial and the

simplest of the three given options.

2.4 Customizable Operating System Services

Many researchers [Anderson 1992, Black 1993, Kiczales 1993] have arrived at the
consensus that there is a need for providing customizable services to applications in order
to improve their performance. To this end. some operating systems have been restructured
into a group of servers communicating with each other via message passing (e.g. Mach

3.0, Chorus). Others define interfaces which expose low-level communication and

memory-system mechanisms to programmers and compilers [Reinhardt 1994, Bershad
1995]. The issues and problems of such schemes are presented below.

2.4.1 Microkernel Operating System Support

Modern microkernels attempt to cater to the need for applications to be provided with
the flexibility to choose their individual service protocols. This requirement has been
manifested in the form of the movement of services such as paging out of the kernel and
into user-level space, where, as an example, applications may choose among servers with
FIFO, LRU or other replacement policies. The highly modular and thus flexible structure
of microkernels, such as Mach 3.0, allows the prospective user to easily debug and modify
code.

However, care must be taken with the writing of user level servers to prevent race
conditions due to having more than one process looking after memory management and.
also, to avoid untrusted intervention. Some operating system designers also consider
Mach's upcalls to user level servers inelegant [Tanenbaum 1992] since it is in violation of
the principle that services should only be provided by layers below. Changes to the
bottom layers could then proliferate in changes to upper levels when upcalls are allowed.
In addition. Mach 3.0 has not performed as well as the monolithic 2.5 version [Anderson
1991]. Because operating system calls are implemented by cross address space RPCs to
operating system servers running at user level. each invocation of an OS service requires at
least two system calls and two context switches to do the work of one system call in a
monolithic system [Anderson 1991]. This effect is compounded on RISC architectures
since the latter generate more instructions per OS primitive function in order to save
pipeline and register window states.

Maeda [1992] has demonstrated that a Universal Data Packet (UDP) protocol user-
level server implemented in Mach 3.0 gave comparable performance to an in-kernel
implementation. It should be noted that the desired performance was obtained by the
restructuring of the UDP protocol server with a smaller number of primitive locking

operations and context switches.

2.4.2. Tempest And Typhoon: User Level Shared Memory

Reinhardt's [1994] position is that the user-level software control of the shared address
space provides more flexibility and improves performance over dedicated hardware support
for coherence protocols.

In [Reinhardt 1994], a customized user-level software update-based protocol is shown
to outperform (by +35%) a hardware Dirngi invalidate-based protocol for a graph
application running on parallel processors. This result does not separate the value of the
customization from the gains in performance due to the fact that Reinhardt compared a
should hardware invalidate-based protocol to an update-based software coherence protocol.
It would have been fairer to compare an update-based hardware protocol to the update-
based software protocol. But Reinhardt’s study does point out that hardware protocols are
inflexible and while they perform well for certain applications. flexibility to customize them

is required so that they pertorm as well for other applications.

2.4.3. SPIN: An Extensible Microkernel for Application -

Specific Operating System Services

In SPIN [Bershad 1995], application-specific services are implemented with code
sequences which are installed in the kernel at runtime: hence an extensible microkernel. The
code sequences expose alternative interfaces to computer system rescurces. The operating
system interface is defined by an actual programming language (instead of a set of
primitives) through which applications can define and install new interfaces. Safety and
performance factors are left to the language and its compiler. Type safety, object based
methodology and explicit guards are used to limit the access of untrusted extensions, also
known as spindles (SPIN's Dynamically Loaded Extensions). The performance is
dependent on aggressive compiler technology: intraprocedural data flow analysis, symbolic
evaluation, and inline expansion. Inline expansion of calls in spindles to kernel operations
can result in direct data structure access and the use of the partial evaluation technique is
claimed to reduce the cost of crossing from the spindle's execution domain to the kernel's.

30

2.4.4 Aegis: Lowering the OS Interface

Customizability is provided by an exokernel which exposes the machine primitives to
the applications [Engler 1995]. The burden of use of these primitives lies directly with the
programmers; they are responsible for the direct management of physical resources. No
operating systems services which abstract the physical resources are used. This is to
provide the maximum allowable flexibility in the customization of a system. Sandboxing is
the method proposed to provide protection across boundaries [Wahbe 1993]. The
disadvantages are that portability issues arise due to machine dependent implementations
and that the programmer is burdened with formerly OS policy management and

implementation.

2.5 Cache Functionalities

Two significant uses of caches are to improve throughput in (a) compute-bound
systems where the speed of main memory is the limiting factor and in (b) multiprocessors
to reduce demand on the bus bandwidth. However, caches have been used for many
purposes, some of which are described below. The wide use of caches is examined here
because caches will be used as a part of the architectural support for the memory model
proposed in this thesis.

A common usage of a cache is for maintaining virtual to physical address translation
mappings on Von Neumann machines, where it is known as a Translation Lookaside
Buffer (TLB). The speedup of a system with an on-chip TLB as opposed to a system with
no TLB is of several orders of magnitude[Hwang 1993). Other traditional usages as data
caches and instruction caches or unified caches are also widely found in computer systems’
designs.

An early example of the use of dedicated cache is that of the recovery cache proposed
in Lee [1980]. The recovery cache is used with programs whose code has been divided into
recovery blocks. The recovery cache functions as follows. When a recovery block is
entered, and an object is to be written to for the first time, the original object and its address
is stored in the cache before it is written to. Backward error recovery merely involves

restoring the values from the recovery cache.

31

An add-on recovery cache is used so as to be compatible with existing CPUs, memory
and other peripheral devices. The kernel contains the routines to interface with the recovery
cache and provides recovery services for the objects which cannot be cached in the
recovery cache such as intenal CPU registers. The kernel also generates the error log for
the system on a peripheral device. New “instructions™ are added to the CPU instruction set
to interface with the recovery cache. As alterations to the CPU are to be avoided, the new
instructions are obtained by making the recovery cache appear as a bus peripheral device
which is controlled by writing to its status registers.

The recovery cache slows down the system in two ways: the time needed to interpret
the recovery cache instructions and the potential interference of the memory cycles on the
host system. Storing of data in the recovery cache needs to be done on read-modify-write
and write cycles. However, typical applications show a much smaller percentage of writes
than read memory accesses. An analysis of the performance gains of the recovery cuche
was not presented in the paper so we do not know how the hardware recovery cache would

compare to other conventional recovery schemes.

2.6 Conclusions

Section 2.1 reviewed existing synchronization mechanisms. The explicit mechanisms
place the burden squarely on the application programmer for their invocations in all the
right places. Even programmers experienced with working at the system level are prone to
make errors in code that requires synchronization services. The programmers accustomed
to working at the GUI level or at the application engine levels often have a difficult time
with the correct invocation of synchronization primitives. For this reason, implicit and thus
automatic synchronization is pursued in this work. The synchronization is transparent to
the programmer.

Section 2.2 detailed existing state-of-the-art virtual memory models. It is efficient to
provide protection and thus access control at this level. The common appearance of
pipelines and floating point units in today’s machines make the heavy duty operating
system overheads such as context switching even more expensive. It may be desirable for
OSs to provide support for the avoidance of context switching in as many situations as
possible. Also, applications which result in the mapping of muitiple service routines in a
single address space are obtaining minimal or no support (e.g. Windows NT) from current

OS:s for protection space isolation.

From the review of variable sized system pages (section 2.3.1) it may be concluded that
the operating system should either provide support for multiple page sizes, or the hardware
should be redesigned to support a single page size more efficiently. or the operating system
redesigned to support the single page size more efficiently. The unit of coherence control
should no longer be tied to the size of the cache blocks nor the unit of concurrency control
to the system page size. In general, the size of the protection unit for access control
purposes should not be tied to the system page size.

Customizability of the services to applications is a desirable feature as shown in Section
2.4. Hardware solutions to provide access control have been provided by others
[Stonebraker 1984, Chang 1988, Stenstrom 1990] but thus far they have been inflexible,
in that all applications were forced to use a single protocol embedded in the hardware.
Caches can be used to attain a flexible hardware implementation of access control policies
and for storage of state information since their entries can be unloaded and reloaded.
Section 2.5 showed examples of applications which used cache services for performance
enhancements.

These factors motivate a single solution which would provide for efficient and
automatic access control, address space isolation, synchronization at the thread level.
access control to variable sized access units, application services customizability, and
reduction in kernel-application context switching at no further cost to the TLB and primary

cache systems.

33

CHAPTER 3
THE MULTIVIEW MEMORY MODEL

This and the subsequent chapters present a clean and elegant means of providing
efficient and automatic access control, address space isolation, synchronization at the thread
level, access control to variable sized access units, application services customizability, and
reduction in kernel-application context switching at very minimal cost to the TLB and
primary cache systems.

Section 3.1 presents the virtual memory model which supports the above features.
Section 3.2 summarizes the contributions of the work presented in this chapter. Chapter 4
presents an architecture required to support the memory model.

3.1 The Multiview Memory Model

Many issues raised in Chapter 2 motivate the need for additional features to be
incorporated in the virtual memory model for a computer system. The memory model is
given the responsibility of providing features for purposes of increased efficiency and for
the possible customization of access control protocols. I do not believe that the burden of
providing synchronization should be placed squarely on the application programmer for
several reasons:

(1) mass duplication of effort will result across applications as occurred in database
applications that were individually optimized by reimplementing OS-type routines
instead of using the OS services.

(2) lessening of the designers and programmers’ productivity due to the need to
address finer details:

(3) individual programmer's efforts are more likely to be error-prone than well tested
reusable services provided by the operating system.

The rest of this section synopsizes the features which are selected for incorporation into
a virtual memory model. Reasons for the selections are also given.

Firstly, memory management should provide access control to memory units which
may be of different size than the pages, the units of address translation. In this thesis. a
more efficient way of utilizing a single system page size is advocated: variable sized

34

protection units are defined within or across pages. The option to provide virtual memory
support for hardware-provided multiple page sizes is not pursued due to the numerous
problems associated with such support (see Chapter 2, section 2.3.4).

Synchronization should be at the level of threads so that threads of the same task can
have different access rights to access units within the address space of the task. This caters
for isolation of extension code modules and their data areas within a single address space.
Protection can thus be provided through lightweight context switches (see Chapter 2,
Section 2.2.

The memory management should provide, at least conceptually at the memory interface
level, support to different memory access control protocols to the same region of memory.
Multiple access control protocols defined on a memory unit must all be for different
purposes. It is obvious why, for example, both a timestamping and locking method for the
same purpose of concurrency control cannot be applied to the same memory unit. In a
shared memory environment supporting transaction processing, it is desirable to apply
several protocols on the same memory location. A byte can be part of an access unit on
which a locking protocol should be applied. The same byte can be a part of a coherence
access unit for the purposes of a coherence protocol. Even in a single processing
environment, it may be useful to have the simultaneous application of both a checkpointing
protocol and a locking protocol to the same memory unit.

In order to reduce the number of kernel calls, the access control should be on-the-fly:
hardware support should be provided for not only checking the access rights but also for
recording changes of state of access to the accessed data units. Furthermore, any
supporting hardwarc mechanism should be flexible so that it could support various

protocols to control access to data.

3.1.1 A Conceptual Representation of The Multiview
Memory Model

A conceptual representation of memory protection under the Multi-view memory model
is given in Figure 3.1. Consider the memory region AB. A view may be imposed on a
region of memory such that the region is logically divided up into equal sized memory
access units and such that an association is made between the view and a single FSM
definition of an access control policy. Several views may be imposed on memory such that

each view can support a different sized protection unit and each view on the same region is

35

for a different access control purpose. For example. one view may be for concurrency
control, another for coherence control and yet another for recovery purposes. A view can
correspond to any memory control area which requires an access protection protocol.
Hence different protocols may be applied for the same control purposes to virtual address
spaces belonging to different applications within a single system. Each access control unir.
or access unit for short, has the same size within a single view of the memory region AB,
but the size can vary across views. An access unit is interchangeably referred to as a
protection unit in this thesis. Applications can thus be serviced with various sizes of access
units. A read or write memory access may only proceed if access is allowed in each of the

views defined on the memory region.

A —— A T A ——
L ock 1 COHERENCE RECOVERY
—T uNITs —T— CONTROL UNITS
—}— UNITS
—_— — #1
x ——
#4 1
#8
1T #2
#8 .
B B #16 B
(a) Concurrency (b) Coherence (¢) Recovery
View View View

Figure 3-1 Multiple Views On An Address Space

EXAMPLE

Consider a single memory location. It may "belong" to a number of access units, one
access unit per view which may be defined for that location. An operation on that location
causes the access control system to be invoked for each view, such that different policies
are applied to the different views. In Figure 1, for instance, the memory location x

36

“belongs™ to access unit #3 of the Concurrency view. access unit #5 of the Coherence view
and access unit #1 of the Recovery view. For a read operation to be permitted on the
memory location with the memory address x, the thread which issued the operation must
have appropriate access rights in all three views.

Consider, for example, the Concurrency view and state of access to that view as
represented by the standard access matrix A[S,0] as described in current Operating system
texts [Singhal 1994, Nutt 1992]. Each row of the matrix corresponds to a subject. In a
transaction processing environment each subject would correspond to a transaction.
Threads of a task working on behalf of the same transaction would be bound to the same
subject which represents that transaction. Each matrix element a[S,O] represents the state of
access of the subject (transaction) S to the data item (locking access unit) O. Examples of
state values might be “‘unlocked”, “locked by S in a shared mode”, “locked by S in an
exclusive mode™, “locked in a shared mode by many transactions™, “locked by another
transaction in an exclusive mode™. If a thread, bound to a subject S in the Concurrency
view, issues a read of the memory location with the address x. the read may proceed only if
the concurrency unit #3 is cither “unlocked”. “locked by S in a shared mode” or “locked in
a shared mode by other transactions™. It it is assumed that the memory read can proceed in
all control views, then state transitions must be effected. For the Concurrency view this
implies that the state of access to the control unit #3 must be changed, possibly for all
subjects. If, for instance. the control unit #3 was originally unlocked. then. as a result of
the read operation, the state of a[S,#3] changes to “locked by S™, while the state of access
to the unit #3 by all other subjects changes to the state “locked in a shared mode by other
transactions’.

The model avails itself of the regular address translation paging mechanism in order to
avoid problems associated with variable sized system pages. Please note that there is a
distinction between variable sized system pages and variable sized protection units.
Variable sized protection units may be provided within regular system pages. For
implementation efficiencies, restrictions are that views must be aligned (the starting view
address should be on a power of two boundary), the views must be a multiple of the
system page size and the protection units sizes within a page must be powers of two. The
reasons for these efficiency constraints will become apparent in the following chapter.
System page size is the page size defined by the particular operating system

implementation.

37

3.1.2 Flat Versus Segmented Address Space

In current RISC architectures, pure paged schemes for virtual memory management
dominate the segmented counterparts due to an emphasis on the reduction of the cycle per
instruction (CPI) count requirement, rather than on sharing and protection issues. In
comparison to the flat paged address space, the segmented address space requires an
additional level of lookup in the determination of physical addresses and it also requircs
explicit manipulation of the segment registers. It is for the same reasons that the multiview
memory model also assumes a flat address space. Consequently, the following discussion
assumes that virtual address spaces are flat and also that tasks, virtual address spaces and
threads have the usual meanings: zero. one or more threads execute in an environment of a

single task which has one virtual address space shared by all of the task’s threads.

3.1.3 Access Control State Model

The standard access matrix to enforce access rights of subjects to objects has been
adopted as a basis for the proposed memory model because it may represent access rights
by Finite State Machines [Bodorik 1994a]. In the access matrix method [Nutt, 1992}, each
subject has a row while each object has a column. Each matrix entry A[S, O] is determined
by a Finite State Machine (FSM) which defines the access rights of S to O depending on
the current state and the desired operation/access. Since different FSMs used for various
control purposes can define access rights on an access unit (an object), the access matrix
can be conceptualized in three dimensions. That is, the same subject and object can have

multiple FSMs associated with them.

Subject

Object

FSMi

More simply, however, the access state of a single view can be represented by an
access matrix A. Access is in terms of memory access by the read, write and execute

38

operations. Objects are units of a view, i.e. they refer to data contained in memory
locations and FSMs define the access rights for threads, or sets of threads which actually
issue the memory operations. Subjects represent the executing entity such as a transaction
or a thread working on behalf of a transaction or a procedure. More than one thread can
associate to a single Subject ID. For example the subject ID can be associated with a
transaction and the transaction can have several threads working on its behalf. If access
control is defined with the transaction and not the individual thread then one subject ID
would be associated with the transaction’s threads. Synchronization can thus be provided
at the level of threads or at the level of tasks, that is at any granularity.

The term "state” is used to mean “access state”. Each view of a memory region has its
own state which is independent from the states of the other views. Accessibility here
implies accessibility “on-the-fly”, i.e., without the operation causing a fault and possibly
even without invoking kernel software. Consequently, for a memory operation to succeed.
access must be permitted for each view defined on the referenced memory location. Once
access is permitted for each view, the state changes independently for each one. Each view
has a unique identifier (ViewID): views are unique across memory regions even if the same
FSM identifier is associated with more than one view.

The concept of a protection domain is intrinsic to the multiview memory model. The
protection domain defines the group of access units to which one or more subjects may
have access; access is subject to further restrictions from the access control protocol(s)
operating on the domain. A protection domain need not be one contiguous span of pages,
unlike a view. but may consist of several groups of pages and/or a union of views. The
protection domain is used to enforce fault isolation. A view can exist in several protection
domains.

A subject is bound to exactly one protection domain. If a subject attempts to operate
outside its protection domain, an illegal access will be captured.

3.1.4 Customizability

Different FSMs, which can be defined on a single memory region or on different
regions, satisfy the requirement of flexibility to support various protocols: a protocol is
represented by an FSM definition. As long as FSM definitions, that is the outputs and rules
for transitions are not hardcoded, defining an FSM to be used in determining the access

rights defines a protocol.

39

The model is sufficiently flexible to support many protocols. For instance, various
coherence protocols for distributed shared memories can be supported. More than one
coherence handler can coexist in the system: one such handler may use an invalidation
based policy for copy coherence while another may use a write-update method. Another
example protocol is that of locking. Locking is performed on concurrency control units, not
on address translation units. In addition to explicit manipulation of locks by invoking
appropriate kernel primitives, granting of locks can also be initiated upon a transaction's
first request for either read or write on a concurrency unit, if that unit is not locked by some
other transaction. With appropriate hardware support this provides locking “on-the-fly"”,
i.e., without delay due to software intervention.

Integration of protocols. such as for concurrence and coherence. is feasible within the

model as well. Further discussion is deferred to section 3.2.

3.1.5 Kernel Primitives

This subsection deals with kernel primitives required to support the multiview memory
model within a single address space (task). i.c.. it deals with the creation of views. subjects
and operations which are required to support general protocols on views.

Since access control is specified for protection domains while memory operations are
issued by threads. a thread (subject) must be bound to (associated with) a protection
domain. A thread is restricted to be bound to only one protection domain at any one time.
Of course, many threads can be bound to a specific protection domain. The kernel provides
the primitive needed to bind a thread to a protection domain. Multiple views can be
associated with a protection domain. For a memory read/write/execute operation on a
particular address to succeed, it must be permitted in each view defined for that location.

It should be noted that the definition of a view is such that it is defined on a region of
consecutive memory locations. Because views are independent of each other, at least
conceptually, there is no constraint on where these ranges are relative to each other within
an address space. Sharing of views, however, does impose such constraints which will be
discussed in the following section.

To support general protocols for views, there must be explicit operations which enable
the forcing of the entries of the access matrix to a specified state. An example of an explicit
operation can be found in transactional locking, when at the end of a transaction all locks
acquired by the transaction must be released. Similarly, operations to examine the state or
states of the access matrices must also be provided.

40

All of the following operations are provided as kernel functions; their implementation
depends on the provided memory interface. To create a view within a task (address space)
the following parameters need to be supplied: the size of access units and the definition of
the FSM to be applied to the view. An FSM definition includes states. rules for transitions
and a default initial state. This definition serves as a “template” to create instances of FSMs
for the access matrix of the view. Minimally a view identifier is returned as a result of the
invocation of the primitive to create a view.

When a subject is deleted, the operation may be rejected or a special action may be
taken depending on the states of the whole row of the access matrix which corresponds to
the subject. For instance, deletion of a subject may be rejected if the states in its access
matrix row do not permit successful deletion of the subject, that is. when the states of the
objects are such that the responsible subject cannot be deleted. Deletion of a view is

constrained in a similar way.

3.1.6 Sharing of Memory Views In A Single Processor
System

The multiview memory model supports present-day models of sharing: the traditional
model where shared memory regions are mapped into multiple address spaces in a single
system, and also sharing within a single address space.

3.1.6.1 Sharing in Multiple Address Spaces

To request the sharing of views among address spaces, parameters such as the view to
be shared (e.g. viewID) and the starting address of the view in the local address space is
passed to a kernel function responsible for the creation of the mapping of the appropriate
view table entry. Figure 3.2 illustrates the mapping of a page in a region on which a view
is defined to two address spaces and the sharing of a view. The view defines the access
unit size for the page. Hence when the page is mapped into two or more different address
spaces as shown in Figure 3.2, the view must also be shared in order to keep control
information on the same units in both address spaces. The graduations shown on the view
and the page in Figure 3.2 illustrate the access units and their sizes.

41

It should be noted that the memory model does not impose sharing of “all” views which
may be defined on a region of memory. The kemnel may, however, enforce sharing of all
views defined on a memory region upon request of applications. The mapping information
contains the size of the shared region, which of course must be the same for all of the

address spaces sharing the region, and the starting address in each address space.

A Page in
Access Virtual
c_ce:\s Address
unit size Space #1
as e Physical
defined :
defined | Memory
Access Units
Shared page
A Page in
Virtual
Address
Space #2

Figure 3-2: Sharing Views in Muitiple Address Spaces

Sharing a view across tasks implies sharing the underlying mechanism enforcing access
controls on the view, i.e., sharing the subjects, objects (access units) and also the FSMs
which specify the access controls. This is necessary since shared protection units mapped
to different protection spaces must comply to the same access control protocol for each
purpose. That is, if locking is the concurrency control protocol defined on the shareable
data within one address space, then the identical locking protocol must also be activated in
any other region to which the data is mapped. Also the protection unit sizes cannot change
across shared regions if inconsistency is to be avoided. Hence the view definitions are

shared.

3.1.6.2 Address Space Isolation

In systems where the server runs in the same address space as the client, the Multiview
memory model can enforce automatic address space isolation through the use of protection
domains. Recall that the protection domain defines the group of access units which one or
more subjects may access. To provide fault isolation. a view for that purpose can be set
up on the memory regions(s) to be protected. The entire memory region, on which the
view is defined, is considered the protection unit on which fault isolation will be enforced.
A subject will incur an illegal access to a memory address if the fault isolation view for that
memory region does not belong to its protection domain.

On an instruction or data cache miss, the requesting subject is matched to its protection
domain. Consequently a check is made to ascertain that the address to be accessed is within
a view in the protection domain. If it is not, the attempted illegal access will be captured.

Note that the multiview memory model allows for different access rights to exist for
different threads operating within the same address space. Hence only one copy of a
shared region need be present within an address space. This can be contrasted with
Wahbe's [1993] proposal, presented in Chapter 2, Section 2.2.1.2, for sharing data where
the data must be mapped into each participating protection space even if they are within the

same address space.

3.2 Summary

The Multiview model supports variable sized access units through a novel view
concept. Information on views is kept and can be used to trap illegal accesses thus
providing for address space isolation. State information is conceptually maintained on the
variable sized units through use of the access matrix method, thus providing for fine grain
synchronization by the association of subject IDS to state information. Memory access
triggers the access controi mechanism which is implemented by an FSM, thus providing
automatic and implicit access control. Different FSMs can be applied to different regions
of memory within a single or multiple address spaces, thus allowing for the customization
of access control services on a per application basis. Access control handling can be
implemented by table lookups (through FSM definitions) without the use of software
handlers thereby removing additional TLB and data cache cost inherent in software

43

implemented synchronization mechanisms. A reduction in kernel calls will be achieved
since cross address space calls to synchronization software servers are reduced.

CHAPTER 4
ARCHITECTURE

This chapter presents a proposal for the architectural support required to implement the
Multiview memory model. In the past, hardware support has been proposed to provide for
memory synchronization (e.g. the IBM 801 system) but this support has been inflexible in
that only one protocol is represented in the hardware. To provide maximum flexibility in
the representation of multiple access control protocols and for enhanced performance, a
cache based architecture is proposed in this thesis. The caches' content organizations are
novel to kernel designs in terms of their functionalities. An important feature is that access
control need not be invoked on each and every memory access. Other surveyed access
control methods [Koldinger 1992, Wheeler 1992, Wilkes 1992] enforce protection on
every memory access.

Section 4.1 briefly outlines the implementation options for the support of the model.
Section 4.2 describes the chosen implementation for the protection architecture. Section
4.3 presents the alternatives for addressing a cache (Protection Lookaside Buffer cache)
which contains information on variable sized memory units and the proposed schemes for
PLB miss handling. Section 4.4 describes the entries within each of the caches. Section

4.5 discusses cache coherence issues associated with the protection architecture.

4.1 Implementation Options

There are many possible implementations of the protection control unit which supports
the Multiview memory model. They can be classified broadly into software-only and
hardware assisted implementations. A number of the proposed implementations are
currently being investigated by others [Bodorik 1995]. Some are briefly outlined here. All
implementations minimally require three tables: one to store view information, a table to
store access control or state information and a table to store state transition (FSM)
definitions.

These tables may be easily implemented in software along with access routines and
routines for the logic defining the functions of the Protection Control Unit (PCU) which is

45

the entity that describes the support structure for the Multiview memory model. The
software implementation would involve design decisions such as table organization (e.g.
natural, ordered, inverted) and access methods (e.g. binary search. hashed).

Alternatively. a hardware controller can be implemented to retrieve information from the
three tables stored in memory. The determination of where the required information is
stored would involve simple operations such as shifting and comparisons. Simple logic
would be used to decide whether the executing thread has sufficient access rights to
accessed memory location.

Another implementation is the one pursued in this thesis, that of the use of specialized
caches to contain the tables* contents. This implementation is expected to provide the
highest performance with respect to the other two outlined above. Of course, it will also be
the most expensive in terms of hardware cost. There are two reasons for pursuing this
option in this thesis: one is that it is expected that the TLB will be the bottleneck [Homer
1995, Wulf 1995] in very near future computers, given the vast leaps in processor speed in
the last year. The cache implementation of the protection architecture avoids excessively
polluting the TLB with access control information, unlike any software scheme (either
existing conventional or multiview memory model software implementations) which passes
access control information through the data cache and will thus need translation information
in the TLB. The table which stores the state information for the access units in memory is
implemented in the virtual address space and only those translations that pertain to accesses
to this table will affect the TLB entries. The second reason for use of specialized caches is

that flexible hardware assistance for numerous protocols could be explored.

4.2 The Cache Protection Architecture

The cache-based protection architecture to support the Multiview memory model
consists of three specialized caches: a Protection Lookaside Buffer (PLB) cache, a
ViewDefinition cache and a cache labeled the FSM cache because it contains entries
denoting state transition definitions. As a group these three caches and their controllers are
referred to as the Protection Control Unit (PCU). The TLB entry is not affected in this
architecture. In addition, the organization of the data cache allows simultaneous read
synonyms to be mapped to it. The functionalities and characteristics of each cache are
summarized in Figure 4.1.

46

V/R
Data
Cache

Protection
Lookaside
Buffer

FSM
Cache

View
Definition
Cache

* Tagged to avoid flushing on context switches

* Tagged to allow read aliases in cache which
maximizes concurrency and supports fine grain
synchronization among executing entities (e. g.
threads)

* Presence of R/W bit and tag imply that access
rights need not be checked on each and every
memory reference

* Allows simultancous and yet different access
rights to the same access unit by different subjects

* Stores information on variable sized protection units
* Allows multiple writers to the same system pages

* Very Fine to very Coarse grain access control

* Flexibility in providing a choice of access control protocol
* Protocols not hardcoded but cached

* Reduces context switching by support of protocols at this
level

* Facilitates fast formation of physical addresses for use
in efficient support of virtual memory backing store for
the FSM and PLB caches

* Supplies mask

 Contains view definition and address of state
information in memory

Figure 4-1 The Caches Functionalities

The PCU is proposed to be off-chip, and is not on the critical path for data cache read

hits, and for data cache write hits when the line's W bit is set. Note that the Protection

47

Control Unit is disabled if applications do not need views to be defined on them, thus not
affecting the computer’s normal CPI rating.

Figure 4.2 illustrates the flow of information among the three caches in the Protection
Control Unit. The Multiview model assumes a virtually indexed, physically tagged set
associative data cache which provides the first level of access control determination through
its maintenance of a read/write bit. The first level of access rights determination is
described in detail within Section 4.4.1.

A data cache hit upon a read request to an access unit allows read access to proceed
automatically. That is, the PCU unit is not invoked. Write cache hits however will only
proceed if the R/W bit is set. A write access control fault occurs when a write is requested
and the R/W bit is not set. If a data cache miss or a write access control fault occurs then
the PCU unit is invoked.

When the PCU unit is activated, the PLB and View definition caches are first accessed
to obtain the current state of the access unit including the stored subjectID if any. The
appropriate PLB entry is detected by addressing the PLB cache with the masked physical
address of the access unit. This is to be discussed in detail in the following subsection.
The physical address of the access unit is obtained from the TLB.

The information from the PLB is sent to the FSM cache which uses it to access the
appropriate FSM state transition entry. The correct FSM entry is found upon a match of
the requested operation (read or write). the result of the match of the requesting subject
identifier with the subject identifier retrieved from the PLB and a match of current statc
retrieved from the PLB and that stored in the FSM entry. The result stored in the
“Proceed/Fault” field of the FSM entry (see section 4.4.3 for details on the FSM entry
description) indicates whether the subject has appropriate access rights. A successful
memory operation may cause a state transition with respect to the accessed unit's current
state. The “New State” to be transitioned to is stored in the FSM - the “*New State” value is
thus sent to the PLB to update its corresponding entry. The output of the PCU is a signal
to the executing entity either to proceed, on a positive result, orto fault. The value of the
PCU’s output is that retrieved from the FSM entry’s *“Proceed/Fault” field.

The detailed description of each of the above described operations follows.

From
™
View Defimtion Cache
IF»M . Mask. View D, other
Subjet ID from CPL
mak
) vh,\ FSM Cache
Swse, ViewD tag | New *
masking masked PA Sige
—T> lgsieel —
PLB FSM Proceed /
Eauy Fault
Protection
Buffe Suse
FSM D
Memory State table

PA...... Physical Adbess

Figure 4-2 The PCU Unit

48

49

4.3 Variable Sized Protection Units and the Protection
Lookaside Buffer

The problem with keeping state information on variable sized protection units is to
efficiently find this information both in the PLB cache and in memory. This section
addresses the locating of the information in the PLB cache. The range of virtual addresses
within a protection unit must map to the same PLB entry. The number of virtual addresses
in the protection unit is defined by its size. A bit mask may be used to mask out the
loga(size of protection unit) lowest bits within the offset to achieve mapping to a single
cache entry. Hence a mask that represents the protection unit size is stored in the
ViewDefintion entry for each view. The masked physical address represents the start
address of the physical protection unit in memory. The constraints here are that the access
unit size is a power of two, and its size is less than or equal to the physical frame size.
Note that the location of the protection unit's state information in memory is quite different.
Section 4.3 addresses the retrieval and storage of the state information in memory.

The PLB cache is physically indexed and physically tagged. The PLB is indexed using
bits from a masked physical address. The choice of the set bits (that is, bits used for
indexing the cache) has implications on the choice of a tag, the size of the cache, the degree
of associativity of the cache and on the miss rate of the PLB. The implication on the latter
only holds true for a masked address since it is possible for only a portion of the cache to
be addressed with the masking action. The number of physical memory page frames to the
number of cache sets ratio also has implications on the degree of associativity to be chosen
for the cache. For organizations with large ratios. collision handling will benefit from a
higher degree of associativity, since more addresses can be generated with identical set bits.
For small ratios such as a factor of 2, 4, or 8 the set associativity can be small, i.e. , 2 or 4-
way set associativity has a good hit rate potential. The ratio cannot be considered alone.
however, since the system's software reference pattern will determine which subset of
addresses are generated most frequently. If the degree of associativity chosen by the
designer is too large there may be unused entries in the cache.

Please refer to the following diagram (Figure 4.3) for explanation of the terms: line
offset, frame offset and frame number. These terms will be used in considering the
following alternatives for which bits should be used as the set bits for the indexing of the
PLB. Assume for purposes of reading the diagram that only 8 bits are required as set bits
to access the PLB cache. That is, assume that the number of sets to be indexed is 2356.

50

31 20 | 0

Page Frame Number Frame Offset Line
Offset

Figure 4-3 Bit Ordering in the Physical Address

Little-endian ordering is applied to the bits within an address. The most significant bit
(MSB) is numbered bit 31 and the least significant bit (LSB) is numbered 0. Recall that if
the cache is to be byte addressable then the LSBs, (e.g. bits 0 through 7 if the line size is
128 bytes) will be assigned as the line offset.

There are several altematives in choosing the index bits. As an example, bit range
<28..21> may be used to index a cache with 256 sets. A cache with a high degree of
associativity, e.g. 8, can be used to store entries whose addresses collide due to the
identical <28..21> bit range settings. Thus there could be 8 entries (lines) within a set
which may correspond to different access units on the same or different pages.

Alternative 1: If set bits are chosen from the masked frame offset part of the address, the
PLB miss rate will increase since only a subset of the PLB cache entries will be accessed.
For example, assume that the line size is 128 bytes, the access unit size is 2Kb and that the
index bits are bits 19..9. Then masking of the address will result in zeroing bits 10..0.
Bits 9 and 10 are part of the index bits. Therefore 2 bits of addressability are lost. Here we
assume that the system page size is large enough that the offset bits within the frame are
sufficient to address the PLB cache (i.e. the number of PLB lines is the equal or less than
the number of bytes on a page) Since the set bits in Alternative | equate to the offset of an
access unit within a page, then the tag in each PLB cache line must be the physical frame
number component of the physical address. More collisions are likely to occur with this
form of addressing in a cache when an application’s read or write references are to many
pages with the same access unit size. This may lead the designer to decide that a PLB
cache with a larger degree of associativity may have a better hit rate due to a system's
software mix that references many different pages where only a small number of differently
sized units need be accessed. That is, reference may be made to many pages with access
unit sizes within a small set, say {512, 1024 and 2048} bytes.

Alternative 2: The increased PLB miss rate due to the variable number of bits used to
access the PLB cache may be resolved by right shifting, from the page frame component of
the address, a number of bits equal to the number masked out from the index bits. For
example, again assume that the line size is 128 bytes, the access unit size is 2Kb and that
the index bits are bits 19..9. The masking of the address will result in zeroing bits 10..0.
But right shifting two bits from the page frame component will allow the full 11 index bits
to be utilized. The tag in each PLB cache line will be the physical frame number component
of the physical address. A barrel shifter will need to be incorporated in the supporting
hardware for the PLB cache. The number of set collisions here should be smaller here than
in alternative 1, providing that the system's applications’ reference patterns are the same.

Alternative 3: Use LSB bits from the page frame number component of the address as
the set bits. That is, candidate bits are in the range 31..20 with respect to the above

51

diagram. There will still be more than one address resulting in the same index to the
cache. To differentiate among them the tag must be the whole masked physical address.
This means that the on-chip area of the cache is increased for a wider than normal tag. The
tag usually consists of the PFN. With respect to 32-bit addresses, approximately 12 bits
are used for the PFN. This option avoids the use of a barrel shifter and hence avoids
increased delay due to shifting within the PCU unit. It also avoids the problem of using a
variable number of bits to access the PLB cache.

Alternative 3 is chosen for implementation with the proposed cache-based design since
it does not suffer from a higher PLB miss rate as in alternative | and it does not require

additional hardware as in alternative 2.

4.4 Miss Handling For The PLB Cache

Virtual memory is used as backing store for the PLB cache. The table that backs the
information in the PLB cache is referred to as the State Storage table. One of the objectives
of the design of the PCU is to locate state information in memory as quickly as possible.
To do so a virtual address is formed which represents the address of the state storage table
entry. This virtual address is sent to the TLB for translation. Figure 4.3 illustrates the
mapping that is required, that is the logical connection between an access unit and its state
storage entry in virtual memory.

The method of calculation requires a lookup to the ViewDefinitionCache. The PAddr
attribute in the View Definition entry (described later in Section 4.4.4) is the virtual
address of the start of the State Storage Table for a view. The start address of the State
Storage Table must be combined with an offset to form the virtual address of the required
state table entry. To calculate this offset and the resulting address of the State Storage
Entry. the access unit number of the view must be determined and then modified by the size
of the State Storage Entry.

The virtual address of the State Storage Entry is determined as follows:

(1) Right shift the original VA for the data by
| access unit size bi
g2 (F57 bytes for State Storage Entry) bits

(2) The logs (size of State Storage Entry) least significant bits must be zeroed.

(3) Next the remaining offset bits (after the shift) and the lower logs (# of frames in
view) bits of the VFN are ORed with the virtual address of the start of the State
Storage table.

For the above procedure to be correct, views must be aligned on locations that are

powers of two such that addresses with their lower n bits zeroed can uniquely identify the

2" pages within a view. This is to avoid having to subtract the base address of the view
from a virtual address in the process of forming the backing store address. All state storage
unit sizes must be a power of two in order to facilitate the calculation of the above address.

The bits associated with the virtual page number are sent for translation to the TLB.
Next the location in memory is accessed and the access unit state information is loaded in
the PLB cache.

The following example illustrates the above process. Assume that a view is defined on
a region consisting of 128 pages. Each access unit within the view has a size of 256 bytes
and the PLB state storage unit is 8 bytes in size. Also assume that the system page size is
IKb. Assume also that the virtual page number at the start of the view is
0000000000000001000000 and that the virtual page number at the start of the backing
store region for the view is 0010000000000000000000. Let us say that the virtual address
that caused the miss on the PLB cache is 000600000000000011111111010000000.

The first step (right shift by 5 bits) applied to the faulting address yields bits
0G000000000000000000111111110100. When the second step is applied (zeroing the 3
least significant bits), the VA becomes 000000000000000111111110000. The remaining
offset bits are the least significant 5 bits: the lower log(128) bits of the VFN are the 7 bits
immediately left of the offset. Together they form [11111110000. This value (the leftmost
bit positions in the 32-bit VA are zero-filled) is then ORed with 0010000000000000000000
to obtain 00100000000000000000111111110000.

Figure 4.4 can be used to illustrate the above calculation. The faulting address is in
page 127 within the view. This can be easily verified by stripping the 10 offset bits from
the faulting address given above (00000000000000011111111010000000 to
000000000000000111111). Each page has 4 access units defined on it. Therefore 128
pages require (128*4*size of state storage entries(8) = 4096) bytes or 4 pages of storage in
the State storage Table. The faulting address belongs to the third access unit within page
127 of the view. Therefore the state storage entry for that access unit is in page 3 of the
State Storage Table at byte offset 1008 (in decimal) from the start of the page.

Note that there is no software handler invocation for the PLB miss handling procedure.
It is assumed that the ViewDefinition cache is large enough to contain all the views as
defined on a system's virtual addresses. Also note that the TLB miss rate is affected. since
access control information mappings are maintained by the TLB but that the control
information (e.g. PLB and FSM entries) are not cached to the data cache, in order to avoid
pollution of the data cache with control information. The number of mappings in the TLB

53

increases only by a small amount for this control information, since a system page can

contain access control state information for a large number of virtual pages.

Access Units

Page O

Page 127

Pages within a view

State Storage
Entries

Page 0

Page 3

Pages within the
State Storage Table

Figure 4-4 The State Storage Entry Virtual Address

4.5 Cache Entries

The tradeoffs among cache organizations and types, and the identification of what

information is stored in each cache are presented in this section.

4.5.1 The Data Cache Entry

One of the objectives of the Multiview model is to provide fine grain synchronization

among threads. Access control may be at a fine grain level within a task in that not all

threads of one task may have identical rights to the whole address space. Subjects will

have access rights to control units as defined for a view and threads must associate

themselves with (bind to) the subjects to gain appropriate access rights. The architecture

supporting the Multiview Memory Model provides fine grain synchronization among

subjects by tagging the data cache entries with a subjectID and by associating subject IDs
with access unit state information. Copies of shared data items can appear as synonyms in
the cache since each copy is accessed by a unique subject-VA address combination.

The first level of access control rights determination to an access unit is supplied by the
data cache through its use of the read/write bit. For a memory access to proceed, first the
subjectID (e.g. thread id) must match that found in the tag and then the memory operation
type must match the status of the read/write bit in the case of a write. In the case of a read
access, the R/W bit need not be checked since if a subject holds write access privileges to
data, it is automatically assumed that it also has read rights. The setting of the R/W bit
allows for automatic access on write hits following the first write access to cached data. [f
access is allowed to proceed on this level, this is the end of the access control determination
procedure. However, if a write access fault occurs, due to the incompatibility of the
memory operation with the R/W bit, or a miss occurs then access control determination is
extended to another level. The protection control unit (PCU) to be discussed later must
then be tnvoked.

Data Cache Entry
[SubjectD | Physical tag | Data | R/Whit |

The tagging of the cache with SubjectIDs also solves the problem of homonyms, that is
when two or more physical addresses map to the same virtual address. Recall that virtual
addresses are reused across tasks. Hence the tags avoid having to utilize flushing of the
cache on context switches to resolve homonyms. However, the support of fine grain
synchronization among threads by use of a tag implies that synonyms. that is the mapping
of more than one virtual addresses to a physical address are created. In a virtually
addressed cache, this situation occurs in any event. The synonym resolution method has
implications on the cache type chosen for the data cache implementation.

Two alternatives were identified for synonym resolution: one employs the reverse
translation buffer (RTB) solution [Smith 1982] while the other imposes a view for access
control on the cache. The former method benefits from a physically tagged cache. in that
the tag can be used directly by the comparators to find all synonyms. This synonym
resolution method implies that if the physical invalidation of the cache lines is to be
performed in one cycle, then all lines must be identified during the time of one comparison.
using the physical tag as key. This, in turn, implies either the use of a fully associative

55

cache or a set-associative cache where the mapping policy is such that all synonyms are
mapped to the same set. More than one cache cycle will be required by our tagged data
cache for synonym resolution via a view [Jutla 1995] or software. In these cases a
synonym list may be maintained and a special Invalidate instruction may be issued to the
data cache for each synonym.

4.5.2 The PLB Entry

Components of the PLB entry are given below. The Current State field maintains the
present statc of the access unit. The SubjectID field purpose changes according to the
synchronization protocol for the view. For instance in a concurrency control view, the
SubjectID field is used to store the ID of the subject which holds a write lock on the unit.
For coherence control, the Subject ID field can be used to hold the identity of the owner of
the cached object.

Recall that views are given unique identifiers (ViewIDs): they are unique across
memory regions even if the same FSMIDs are associated with several views (see section
3.1.3). The ViewlID is required for each PLB entry since a memory access unit can exist in
several states if more than one protocol is defined on it.

PLB Entry
ViewlD Physical | Subject ID | Current State
tag

4.5.3 The FSM Cache Entry

The Multiview memory model's support of multiple access control protocols is
provided by storing protocols' state transitions in a structure such as the FSM entry
illustrated below. In this implementation of the architecture for the Multiview model. the
FSM entries are stored in an FSM cache. See Chapter 5 for the FSM entries for some
important synchronization protocols.

FSM Entry

Memory Subject Current Proceed New State
Operation Match Bit State /Fault

56

The FSM controller receives the state of access to the referenced protection unit and a
recorded subject ID from the PLB. The FSMID is supplied from the ViewDefinition cache
(see the following section). The identifier for the currently executing subject is supplied by
the CPU (executing thread). The subject match result is determined by the comparison
between the SubjectID supplied by the CPU and the SubjectID retrieved from the PLB as
part of the state of the protection unit. The subject match result is represented as | for a
match, and O for a non-match. The Subject Match Bit content must be the same as the
subject match result in the procedure for obtaining the correct FSM cache entry.

The FSM cache is accessed using an index formed from the FSMID, the current state of
access retrieved from the PLB, the subject match result and the desired (read/write) access.
Each cache entry defines a state transition (if any) and whether or not the desired cache
access may proceed. It also specifies whether it is necessary to set the cache line state to
reflect newly acquired access rights to the line. If there is a state transition. the new state
(possibly with new SubjectID) must be stored in the PLB.

Thus support for multiple protocols is achieved by the loading and unloading to and
from the FSM cache with the state transition tables that represent individual protocols.
Essentially the protocol action is determined by a cache lookup given a particular FSMID.
memory operation, subjectID Match result and current state of the access unit. A direct
mapped cache is a candidate for implementation of the FSM cache since this cache may be
indexed by a concatenation of FSMID. memory operation. current state and the subject
match result. Consider a system which supports a mix of applications which require up to
8 different access control protocols. Assume that 2 memory operations and 16 current
states are to be supported, then the index length will be 8 bits and a 256 byte direct mapped
cache will suffice. In this case the mapping will be I-1 and hence there will be no
collisions unless the example maximum numbers given above increase. Of course, it is
possible to use a lesser number of bits to index the cache, and use an even smaller cache

size.

4.5.4 ViewDefinition Cache Entry
A specialized cache, the ViewDefinition cache is reserved for cache information
pertaining to the definition of views. These entries are cached in order to effect PLB and

57

possibly FSM miss handling without a context switch. Entries within a ViewDefinition
cache define the view imposed on a virtual memory range. A view defines the access unit
sizes (through the Mask attribute) as well as an associated protocol (via the FSMID). The
virtual address that signifies the start of the view is stored in the attribute VFNstart and the
last address in the view is denoted by VFNend. The SID (Subject ID) entry represents the
subject (task, transaction or thread) associated with the view.

A particular ViewDefinition entry is found by comparing the incoming virtual address
to the VFN start and VFNend. To find the view information the virtual address must be
larger than the VFNstart and smaller than VFNend.

ViewDefinition Cache Entry
ViewID | VEN | VFN FSMID [Mask | Faddr | PAddr | VIDptr
start | end

VIDptr contains the next ViewID which was defined on the Virtual Memory
FAddr refers to the start of the FSM table in Virtual Memory

PAddr refers to the start of the State Storage Table (superset of the PLB entries) in
memory

4.6 Conclusions

This chapter presents a design for the architecture which is required to support the
Multiview memory model. The objectives of the model as listed in Chapter | are met in the
following ways. Support for variable sized protection units is shown while still utilizing
the single system page size. Locating state information on variable sized protection units is
achieved through the use of a bit mask which masks out the loga(size of protection unit)
lowest bits within the address offset. A mask that represents the protection unit size is
stored in the ViewDefinition entry for each view. The ViewDefinition cache maintains all
management information on the views imposed on memory on a per address space basis.
Address space isolation is achieved through the use of a view imposed on the region of
memory to be protected.

The architecture provides for fine grain synchronization among subjects by tagging the
data cache entries with a subjectID, by associating subject IDs with access unit state
information and by supporting FSM definitions of protocols.

Access rights need not be checked on each and every memory access as is done in
many other protection schemes [Koldinger 1992, Wilkes 1992]. The protection

58

architecture enables the invocation of access rights checking only on the first write access to
the data item or on a data cache miss. For long write runs to the same data item this avoids
unnecessary control activity. This is an advantage compared to other schemes (e.g. HP
PA-RISC) which provide cache based access rights checking on each and every read/write
memory access.

Greater read concurrency at the data cache level is achieved by supporting multiple
concurrent read aliases. The protection architecture also includes efficient formation of
physical memory addresses for backing store to the PLB cache through virtual memory.

Customizability of applications through the choice of an access control protocol per
region of memory is supported by the Views (along with their associated FSMs) defined on
the memory regions. Flexible architectural support for protocol information was described
in the chapter. The protocols are not fixed into the hardware as in [Goodman 1987,
Stenstrom 1990] but their FSM definitions may be loaded/unloaded from a specialized
cache. Since hardware support is chosen for the architectural design of the Multiview
memory model, pollution of the TLB and data caches is also reduced. Also software
schemes will incur more kernel-user application communication or message exchange when
compared to the cache supported design presented in this chapter.

59

CHAPTER §

PROTOCOL SUPPORT

This chapter shows the model's flexibiliry in its support of different access control
protocols. The protocols are defined per view. The idea is to maintain state information per
access control protocol on cach memory protection unit. Descriptions of a number of
example protocols which may be decomposed and supported by the model are provided.
First a virtual cache coherence protocol is examined in section 5.1. Next memory coherence
protocols are considered in section 5.2. A further example is given in the decomposition of
Mach's external pager algorithm in section 5.3. The two phase locking concurrency
control protocol is yet another example. However, it is used as the example protocol for

purposes of the model’s evaluation within this thesis, and is fully presented in Chapter 6.

5.1 Virtual Cache Coherence Manager Protocol

The scheme described below is attributed to [Wheeler 1992]. It is a software
implementation strategy for maintaining consistency between memory and virtually indexed
caches, particularly write-back virtual caches. The scheme may be implemented on any
memory whose content is cacheable. Four operations may cause the cache and memory
entries to become inconsistent: CPU-read, CPU-write, DMA-read. DMA-write. CPU-
read can cause a line with the same physical address to be mapped through different virtual
addresses to two or more different lines in the cache. If a DMA-write occurs between
loads to the cache, it is possible for at least one cache entry to be inconsistent. CPU-write
can cause memory to become inconsistent with respect to the cache. DMA-read can read
stale data in memory if the cached version is the up-to-date copy. DMA-write can cause
cached data to become out-of-date. The control software is thus invoked on detection of
any of the above operations. Virtual memory protection detects state transitions during
cvery CPU read and write. Cache purge and cache flush operations rectify inconsistencies
by eliminating copies from the cache. OS software must invoke the consistency control

software before DMA operations are scheduled.

ou

A cache line may be in any of four states: empty (E), present (P), dirty (D) or stale (S).
The empty cache line does not contain data for the accessed virtual address. A present line
contains the correct data. A dirty line is one where the data has been written to since it was
cached. A stale cache line contains out-of-date data: the newest version of the data is either
in another cache line or is in memory.

Note that the states are kept on cache pages in order to reduce the amount of stored state
information. Wheeler defines a cache page as “the set of lines onto which the cache index
function maps all virtual addresses within a virtual page. In the implementation evaluated
by Wheeler [1992], the cache page size is the same as the physical page size. This scheme
can also be used with hardware which supports multiple page sizes, with modifications to
OS software whose purpose would be to ensure that a cache page is mapped only to
similarly sized virtual pages.

The table below (Table 5.1) shows the state transitions upon memory operations as
detailed in Wheeler [1992]. Note that a cache flush causes all flushed items to be written
back to memory and invalidated in the cache; a cache purge causes the purged items to be
invalidated in the cache. The purged items are not written back to memory.

The FSM definition, as would be implemented for the Multiview model for Wheeler's
scheme is as presented in Table 5.2. In the Multiview model, the object is the cache page.
The requesting thread with its associated subject ID is the subject. The items in brackets
(e.g. read in. flush, update) found in the New State column are external actions, mainly
occurring on a fault, before the change of state for the object occurs. For example. when a
CPU-read is issued, if the issuing subject does not match the current owner of the cache
line and the current state of the cache page to which the line belongs to is Dirty (D), a fault
occurs. The cache page must be flushed, so that memory can be updated before the
requested line or lines are read into the cache. The state of the cache page is then set to
Empty (E).

A fault occurs if a CPU-read is attempted on a line which is in the Stale state; software
is invoked to purge the line and all other lines belonging to the cache page, then the data is
read in from memory, and the state of the page and thus the line is set to Present (P). One
example of where a subject is allowed to proceed immediately with its access is in the case

where a subject match is made and the current state of the cache page is dirty.

Table S-1 State Transitions for Virtual Cache Coherence Management
[Wheeler 1992]

ol

F(.)pc:ralions Target cache line Aliases

Current State New State Current State New State

CPU-read E P E E

P P P P

D D D (flush) E

S {purge) E S S

_ (ﬁread in) P f .

CPU-write E D E E

P D P S

D D D (flush) E

S (purge) E S S

(read-in and
write to) D o

"Cache l-)urge E E E E

P E P P

D E D D

S E S S
Cache Flush E E E E

P E P P

D E D D

S E S i
DMA-rcad E E E E

P P P P

D (flush) E D (flush) E

S S S §
"DMA-write E E E E

P S P S

D (purge) E D (purge) E

S S S S

Table 5-2 Multiview FSM Definition for [Wheeler 1992] Virtual Cache

|)

Coherence
F-Operalions §ubject Match | Current State Result New State
Bit O - no match
l1-match
CPU-read 0/1 E Fault (read in) P
0 P Fault (read in) P
| P Proceed P
0 D Fault (flush) E
(readin)P
(update SID)
I D Proceed D
0/1 S Fault (purge) (read in)
P
"CPU-writc 071 E Fault (read in) P
(write) D
0 P Fault S
(read in) P
(write) D
(update SID)
| P Proceed D
0 D Fault S
(flush) E
read in) P
write D
(update SID)
1 D Proceed D
0 S Fault (purge) E
(read in) P
(write) D
(update SID)
I S Fault purge) E
(read in) P
(write) D

Cache purge and flush instructions are initiated through the software fault handlers

which provide support for the Multiview memory. DMA reads and DMA writes cause

forced state transitions for the cached data if the latter is in the Dirty state. A flush is

initiated upon a DMA-read so that the most up-to-date copy of the data would be in

memory; upon a DMA write. only a purge is needed. DMA writes will also cause cached

data to change from the Present to Stale state.

Note that the objective of presenting Wheeler’s scheme to enforce consistency on a

<))
(WS

virtually addressed cache is to show how casily the Multiview model can support it. In
addition, the advantages of the Multiview model can be realized in enforcing control on
variable sized units (we can change Wheeler’s constraint of maintaining state on a cache
page), reducing the potential amount of context or thread switching and avoiding data cache
pollution. Some TLB pollution is avoided in the Multiview implementation because the
state information is cached in the PLB cache (i.e. hardware support for the state
information is provided). With respect to the Multiview model, the TLB is affected on
accessing the State Storage table and for any software fault handlers. Data cache pollution

is avoided in the procedure to determine whether access can proceed or not.

5.2 Coherence Protocols

The memory model can be applied to state based coherence protocols by replicating the
software and hardware support on each processor. All state-based coherence protocols are
based on one of two mechanisms - invalidate or update. There are some extensions of the
invalidate mechanism that includes update features [Rudolph 1984). These mechanisms
may be implemented in hardware, software with hardware assistance, or purely in software
[Goodman 1987, Stenstrom 1990, Thacker 1987, Tomasevic 1993].

Hardware based protocols arc fixed into the architectural design and all applications
thus use the same protocol. It has been shown [Eggers 1988, Bennett 1990, Reinhardt
1994] that some applications’ performance can improve vastly by their use of alternative
cache coherence protocols. For example, Reinhardt [1994) shows how a user customized
coherence protocol implemented in software outperformed an invalidation based hardware
protocol. This was because an update scheme was more suited to the application under
investigation. The update based protocols provide higher data availability and are good for
applications that exhibit ping-pong effects within their invalidation patterns. The ping-pong
effect is evidenced whenever multiple processors share a variable which is updated
frequently by each, leading to heavy network traffic caused by read misses. A penalty
associated with an update scheme is where processors may needlessly continue upduting
variables that will not be accessed locally again, but has not yet been replaced or will not be
replaced for a long time due to a large cache size.

The main advantage of the FSM subsystem is that it can support both the invalidate and
update-based coherence protocols within one computer system [Jutla 1994], yet it is faster

than a pure software implementation of these mechanisms. Applications are not forced to
use a protocol that is not suited to their access characteristics, but can select and apply the
protocol best suited to their needs.

5.2.1 Invalidation-based Coherence Protocol

This section describes how the Goodman [1983] write-once invalidation-based protocol
could be implemented by an FSM definition. The Goodman [1983] protocol associates
one of the following states with a cache line: Invalid. Valid, Reserved and Dirty. The
Invalid state represents an out-of-date cache line. The Valid state signifies a coherent copy
of the cache line is present, and several such copies may be present in the various memories
in the system. A cache line in the Reserved state indicates that this copy of the object is the
only up-to-date copy in the primary memory, and the only other consistent copy that exists
is in another level of the memory hierarchy. Figure 5.1 illustrates the state diagram for the
Goodman [1983] protocol.

CPU read hit/ write miss

CPU write Miss

Invalid

Snoop | C?U
write | wnte

hit | miss CPU write hivmiss

CPU write
hit

Snoop read hit

CPU read
Snoop read hit miss

CPU read/write hit

Figure 5-1 State Diagram for the Goodman Write-Once Protocol

The Reserved state is used when it is known that the number of the other copies (the
copy set size) of the data in the other caches within a system, is zero. It is used to enable a
write operation through hardware without invoking a coherence fault, because invalidation
commands need not to be initiated. Therefore, the write operation resulting in an Reserved
to Dirty state transition can occur on-the-fly, without software handlers.

All other write operations on cached data that is not in the Reserved or Dirty states,
generate coherence write faults. The Dirty state represents a copy of the data which is the

only up-to-date copy in the system.

The Invalid state may be entered upon a forced state transition. That is. the state
transition is through software which is responsible for changing the current state of the
cache line to Invalid. The Invalid state may be entered from any of the other three states.

The hardware implemented Goodman protocol additionally uses a snooping bus
mechanism to maintain cache consistency, specifically by using CPU read/write requests to
trigger the invalidation of cache lines. The invalidate instruction causes a forced state
transition from either the Reserved, Dirty or Valid state to the Invalid state.

Table 5.3 shows the Multiview FSM definition for the Goodman Protocol. State
information can be kept on a cache line or group of cache lines (access unit) basis. The
Current state refers to the present state of the access unit. The New state refers to the state
(defined by the FSM) corresponding to the transition, if any, caused by the memory
operation on the access unit. A memory operation is either prohibited, i.e.. a fault occurs.
or it proceeds in which case a transition to a new state occurs, even if it is to the same state
as the present one. State transitions occur not only on successful memory operations but
on forced transitions, such as invalidation requests. Recall that a forced state transition is
one performed in software by a fault handler. Note that forced state transitions are not
explicitly shown in the table but are described in the following text. Certain state transitions
depend on the result of a match between the requesting subject and the owner of the cache
line. Hence the subject ID or owner information is part of the state information kept for a
cache line.

A CPU read miss causes a fault which is first served and then the fault handler forces
the cache line state to transition to the Valid state. The first write to data causes a write-
through to main memory. Write hits. represented by matching subject IDs, cause invalidate
commands to be issued to all other cached copies of the data item as well as the state
transitions listed above for write hits. Read misses, as denoted by a non-match of subject
IDs (0), represent the snoop read hits shown in the state diagram for the Goodman
protocol.

The Goodman snooping bus mechanism does not have a hardware equivalent in the
Multiview model but would be implemented through a software implemented invalidate
instruction for snoop write hits. The invalidate instruction causes a forced state transition
from either the Reserved, Dirty or Valid state to the Invalid state. Snoop write hits are
emulated on a local write miss when the data is subsequently found cached in another
processor’s cache. Snoop read hits are emulated in the FSM definition by a non-match of

66

subject IDs.

Table 5-3 A Multiview FSM Implementation of Goodman [1983] Invalidate
Protocol

Memory Subject ID Current Result New State
Operation Match State (Proceed/
0 - no match Fault)
| - match
Eead 0 Uaila Fault (read-in)
Valid
] Valid Proceed | Valid
0 Reserved Fault (read-in)
Valid
| Reserved Proceed [Reserved
0 Dirty Fault (flush)
(read-in)
Valid
| Dirty Proceed | Dirty
0/1 Invalid Fault (read-in)
Valid
Write 0 Valid Fault (read-in)
Reserved
1 Valid Proceed | Reserved
0 Reserved | Fault (purge)
(read-in)
Reserved
1 Reserved Proceed | Dirty
0 Dirty Fault (flush)
(read-in)
Reserved
1 Dirty Proceed | Dirty
0/1 Invalid Fault (read-in)
Reserved

The Goodman protocol is implemented in hardware with support from a bus based
snooping mechanism. Hence it outperforms the Multiview implementation which relies on
software fault handlers to issue invalidation instructions to other caches. However the
advantage of the Multiview model is its flexibility to support a variety of protocols whereas
the Goodman protocol, once implemented, is fixed and must be used by all applications on
the system. The Multiview model allows applications to customize their consistency
control requirements by choosing the most appropriate (highest performance) consistency

protocol for their particular access characteristics.

67

5.2.2 Update-based Coherence Protocol

The Firefly [Thacker 1987] protocol which uses an update mechanism requires three
states - Dirty, Valid-Exclusive and Shared. There are similarities in the state definitions to
those of the write-invalidate mechanism. The Valid-Exclusive state is equivalent to the
Reserved state above: the Shared state to the Valid state. The Invalid state is not needed
since updates to copies are generated upon a subject's write operation. The Dirty state
occurs only if there are no other copies to be found within the various address spaces. that
is the copy set size is zero. Recall that in an update scheme writes to shared blocks are
transmitted to each cache every time a write access completes. Table 5.4 shows the FSM
definition for the Firefly protocol. Reads may proceed immediately once there are no
pending updates to the data. Writes may also proceed immediately if the data is cither in the
Valid-exclusive or Dirty states since both these state signify that there is only one cached
copy of the data item. However, a write to data in Shared state will generate further

consistency operations to propagate the new data value to the rest of the copyset sites.

Table 5-4 Firefly Update Protocol

Memory | Subject ID [Current State Result New State
Operation | Match (Proceed/
(hit) 0 -no match Fault)
| - match
0 Valid-Exclusive | Fault (read-in) S
] Valid-Exclusive | Proceed Vahd-Exclusive
0 Shared Fault Shared
! Shared Proceed Shared
0 Dirty Fault (flush)
(read-in) Valid-Exclusive
] Dirty Proceed Dirty
Write 0 Valid-Exclusive | Fault (read-in) Dirty
1 Valid-Exclusive { Proceed Dirty
0 Shared Fault (purge copyset) (read-in) Dirty
I Shared Fault (purge copyset) Dirty
0 Dirty Fault (flush)
(read-in) Dirty
1 Dirty Proceed Dirty

68

5.2.3 Integration of Concurrency/Coherence Protocols

Details on the viability as well as the benefits of integrating the concurrency and
coherence protocols may be found in [Bellew 1990, Bodorik 1994b, Jutla 1993]. Briefly.
the premise behind this integration is that a check for coherence of the data may be
performed at the same time as the determination of the lockability of the data item.
Generally these two tasks are handled by separate software handlers, that is a coherence
manager and a transaction or lock manager respectively. Here, on-the-fly access control
may be attained by the loading of the protocol transitions table into hardware and its
incorporation into the protection mechanism.

The state transition table for the integration of the locking and the write invalidate views
is shown in Table 5.5. There are five requisite states: Read-Only-Reserve (ROR), Read-
Shared-Valid (RSV), Invalid, Write-Exclusive-Reserved (WER), and Write-Exclusive-
Dirty (WED). The default state for data items is ROR; this corresponds to a combination of
unlocked and reserved states.

Table 5-5 Integration of Concurrency and Coherence Protocols

Memory Subject ID Current Result New
Operation Match State State
Read 0 ROR, RSV Fault (read-in) RSV
] ROR.RSV Proceed ROR,RSV
0 WER Fault (purge) Invalid
(read-in)
| WER _ Proceed WER
0 WED Fault (flush) Invalid
_ (read-in) ROR
1 WED Proceed WED
Write 0 ROR Fault (purge)
(read-in)WER
1 ROR Proceed WER
/1 RSV Fault
0 WER Proceed WED
1 WED Proceed WED

The WER and WED states may be used to distinguish between the case of a first write
by a subject and the case of subsequent writes performed by the same subject. This leads to
a minimization of the work done on a write; as can be seen from Table 5.5, neither state

transitions nor invalidation would be needed for a write operation issued on a data item

69

which was in the WED state. A restriction is imposed on the size of the protection units of
views that are to be integrated: they must be of the same size.

5.2.4 Comments

Note that the families of invalidation and update hardware based protocols. such as the
[llinois [Papamarcos 1984] and the Berkeley [Katz 1985] can be similarly decomposed into
state transitions. Some protocols which require hardware support. in addition to that
responsible for state transitions, such as the Dash protocol [Lenoski 1990] where the latter
uses a special remote access cache to store states of pending memory requests and remote
replies in order to optimize performance, will be slower in the Multiview model but are
implementable.

5.3 Support for Mach 3.0 Pager

Table 5.6 shows the state transitions defined by the Mach 3.0 for external user-level
pagers as described in [Loepere 1992]. and also as would be described by a Multiview
FSM implementation. The column labeled "Action" is not part of the FSM definition but
has been included in the table for fuller comprehension of the Mach 3.0 external pager by
the readers of this document. Note that the subject ID match column is omitted since it is
not applicable to this protocol, as the subject ID for this application is equivalent to the task
ID. There would always be a subject ID match as the threads of one task share the same
task ID.

The r and w stand for read and write access respectively. States are denoted as a triple
such as (m,r,r) and (m,r,w), and are formatted as <modified. current access. desired
access>. The two values of the modified field are not shown here as this bit representation
is used with the page replacement strategy. and do not affect states or transitions. It is
shown here only for conformity with the presentation of the page states in [Loepere 1992].
The wait_r and wait_w states signify that the requested page is not yet in memory but that
readers and writers are awaiting access. The wait_r state is entered when a read access is
requested for a page that is not in memory. Transition into the wait_w state can occur in
two ways: when a writer makes a request to a page that is in the wait_r state or when a

write access is requested on a page which is not in memory.

70

Table 5-6 Kernel Transitions to Support the Mach 3.0 External Pager

Memory External Current | New Fault/ [Action
Operation Operation State State Proceed
Read e wait_r | Fault obtain page from sec.
memory
Write e wait_w | Fault obtain page from sec.
memory
Read /Write wait_r - Fault thread waits
Read wait_r m,n,r Fault kernel requests upgrade in
protection
Read Page is wait_r m,r,r Proceed
supplied into
memory
Read Kernel wait_r m,w.w | Proceed
generates a
writeable
page or page
is supplied
with write
access rights
Write Page is wait_w | m,r,w | Fault Kernel sends message to
supplied manager requesting write
with read access
access
Write Kernel wait_w 1m,w.w [Proceed
generates a
writeable
page or page
is supplied
with write
access rights
Write Kernel wait_w | m,n.w | Fault Kernel requests upgrade in
supplies protection
page with no
access
Read wait_r e Fault Memory access exception
Write wait w |e Fault Memory access exception

5.4 Conclusions

This chapter showed the wide applicability of the Multiview memory model in its
support of a variety of important protocols. In addition, the model avoids the heavy use of
software for access control purposes. This benefits in the avoidance of TLB and data cache
pollution. The examples show that the Multiview model provides for flexibility - no one

71

protocol has to be used for all applications.

The FSM implementation for the important 2-phase locking protocol is provided in the
next chapter. The evaluation of the 2-phase locking protocol FSM implementation versus a
conventional software 2-phase locking implementation is presented in subsequent chapters.

CHAPTER 6
EVALUATION

This chapter describes the evaluation of the architectural design presented for the
Multiview Memory Model in Chapter 4. The main objectives of this evaluation are the
following.

(1) To determine the delays due to the operations of the Multiview Memory model

when providing access control services.

(2) Evaluate how the sizes, and consequently the miss rates, of the TLB, PLB and L2
caches affect the overall delay in determining whether a read or write access can
proceed or not.

(3) To determine which cache component in the architectural design dominates the
delays due to the PCU.

The evaluation is done for one access control protocol. that of locking. and hence for
one view. Locking is commonly used by a wide range of applications to provide access
control services. Specifically, the study targets the measurement of the cost of lock
acquisition without conflicting access. Note that in the common case, locks do not conflict.
The main performance metric is delay in machine cycles for lock acquisition on a read or
write access. It would have been better to obtain execution time, but there is no actual
implementation of the Multiview memory model as yet. Other metrics, used in the
analysis, include number of TLB. PLB and Data cache misses/hits. and number of Page
Table. State Table and data memory accesses.

The entire evaluation exercise spans this and the next chapter. Chapter 6 costs lock
acquisition under the Muitiview memory model and Chapter 7 costs lock acquisition
implemented in the traditional manner through software. The comparison is made with a
software scheme rather than a dedicated hardware locking mechanism, since software
implementations are flexible and an important advantage of the Multiview model is its
flexibility in its support for a wide range of protocols. Chapter 7 not only provides a
quantitative comparison of the lock acquisition methods but also a component description
of lock acquisition and a qualitative comparison of the methods (see Section 7.1.1).

Trace-driven simulation is used to obtain values for the performance metrics for the
model since actual program traces facilitate the capture of the characteristics of an

73

application better than an analytical model can. Many conflicting results have been
published in the literature through the use of analytical models to describe, in particular,
database application behaviour [Rodriquez-Rossell 1976, Smith 1978, Kearns 1983,
Effelsberg 1984]. This has mostly been because real application behaviour cannot be
exactly modeled by statistical means, particularly with the numerous assumptions that are
inherent to analytical modeling.

The simulation study represents one of the steps to an actual systems implementation of
the Multiview memory model. Simulation can uncover or confirm expected bottlenecks
and their associated costs. [t provides quantitative results which can be used to justify a
decision to implement or not. Simulation is particularly applicable to the architectural
support selected for the Multiview model in this work since additional off-chip caches are
proposed and these are expensive to implement for experimental purposes.

A database application was chosen to be traced because it is in an important class of
applications which maintain shared files and thus frequently require access control services.
There have been many previous attempts to support locking in a more efficient manner than
through software -only means [Chang 1988, Stonebraker 1985]. The traced database
application is along the guidelines of the Transaction Processing Council’s TPC-C
benchmark for evaluation of Database Management Systems. Descriptions of the
characteristics of the traced application and the various transaction types are given in
Section 6.1.2. What is important in this study is that the application is query and insertion
intensive, thus generating many read and write requests for locks.

The outline of this chapter is as follows. Section 6.1 presents the simulation
environment. [t describes the simulation inputs: for example, the format of the memory
traces, hardware parameters and cost assignments. The characteristics of the applications
which were memory traced for creation of the simulator’s input are presented. Section 6.2
describes the example access control protocol (locking) and its FSM description. The
experiments are described in section 6.3 and the results are provided in section 6.4.

Section 6.5 discusses the results produced from the simulation exercise.

74

6.1 The Simulator

For the evaluation, a simulator that traces access through a hierarchical memory system
was designed. The code for the simulator is provided in Appendix A. The simulator
models caches, physical/virtual memory, and thread/context switches. Statistics are kept on
the activity incurred at all levels of the memory hierarchy. Statistics kept on caches include
the number of hits/misses due to read access or write access, the number of misses and the
entire delay due to caching activity. Statistics on memory are primarily targeted at the
number of memory accesses and the number of faults to secondary storage.

Caches support a number of organizational parameters - three major ones being cache
line size, the degree of cache associativity and the number of sets. Additionally a cache can
be virtually or physically addressed, and virtually or physically tagged. The contents of a
cache line’s tag determine what is a "hit" on the cache. The tag, and the number of
operations needed for the determination of a hit, differ from cache to cache. Management
policies exist for caches such as line replacement policies (e.g. LRU. random). write
policies (e.g. write back. write through). write miss policies (e.g. write allocate, no write
allocate), and coherence policies (e.g. invalidate, update). How LRU approximation is
implemented on one cache can be different from another implementation. The choice of
design parameters impacts a cache’s miss rate. miss penalty, hit time and hardware
complexity. System designers must be allowed to configure a cache with any combination
of the above parameters and policies. Therefore the simulator was designed to accept any
cache configuration.

Accesses to caches are triggered on read and write references issued by an application
program. Cache accesses may also occur due to explicit operations such as cache flushes
and invalidations. For systems under design and development, memory traces are used to
drive cache and memory accesses within simulation exercises. The Quick Profiler and
Tracing Tool (QPT2) [Larus 1995] is used in this work to produce address traces.

The software for the simulator includes code which releases locks at transaction end.
The costing of release operations is not included in this analysis. As stated before, the
study targets lock acquisition. The interested reader is referred to Jutla [1996] for a detailed
description of the design of the simulator. The source code for the simulator is provided in
Appendix A.

75

6.1.1 Simulation Input Parameters for the Multiview Memory
Model Architecture

This section describes the various inputs to the simulator. First the memory trace is
described. Then the costs for activities in the memory hierarchy are tabulated. Arguments
for the assigned costs are presented.

6.1.2 Memory Trace Input

An executable program is memory traced to provide input to the simulator in the form
of reads and writes to virtual addresses. The format of the address trace is as follows. The
R stands for a read access and the W for a write access to the 32-bit virtual address
represented in hexadecimal notation.

R: efffc40

W: 2aa22048

R: effdd330

The executables used to measure the locking function performance generate a repeatable
number (24) of 5 types of transactions which in turn issue read and write accesses to 7
shared data tables. The read and write data accesses are skewed with respect to the targeted
access units and are generated by a random number generation function. Transactions are
interleaved in varying orders to provide several input files. The variation in transaction mix
allows for control of the ratio of read and write accesses within an application and for
different locality of access. Access units here are defined to be tuples of the relation.

Four transaction mixes (applications) are memory traced and used as input to the
Multiview simulator. There are 5 different types of transactions used in the TPC-C
benchmark [Transaction Processing Council 1992]. The TPC-C benchmark represents a
generic wholesale supplier workload. The transactions are reproduced from [Leutenegger
1993]. They are presented to describe each transaction type. The transactions operate on
seven shared data tables: Warehouse, District. Customer, Order, Stock, New-Order, and
History data tables.

Transaction Type 1: New Order Transaction

1. Select (whouse-id) from Warehouse

2. Select (dist-id,whouse-id) from District

3. Update(dist-id,whouse-id) in District

76

Select(customer-id,dist-id,whouse-id) from Customer
Insert into Order
Insert into New-Order

~N O s

For each item (10 items):

(a) Select(item-id) from Item

(b) Select(item-id,whouse-id) from Stock
(c) Update(item-id,whouse-id) in Stock
(d) Insert into Order-Line

Transaction Type 2: Payment Transaction

I. Select (whouse-id) from Warehouse

2. Select (dist-id.whouse-id) from District

3 (a) Case I: Select(customer-id.dist-id,whouse-id) from Customer

(b) Case 2: Non-unique Select(customer-name.dist-id,whouse-id) from Customer

FS

. Update(whouse-id) in Warehouse
Update(dist-id,whouse-id) in District
6. Update(customer-id, dist-id.whouse-id) in Customer

w

7. Insert into History

Transaction Type 3: Order Status Transaction
l.(a) Case I: Select (customer-id. dist-id,whouse-id) from Customer
Case 2:Non-Unique-Select(customer-name.dist-id.whouse-id) from Customer
2. Select(Max(order-id),customer-id) from Order
3. For each item in the order
Select(order-id) from Order-Line

Transaction Type 4: Delivery Transaction
1. For each district within the warehouse
(a) Select(Min(order-id),whouse-id,dist-id) from New-Order
(b) Delete (oredr-id) from New-Order
(c¢) Select (order-id) from Order
(d) Update (order-id) Order
(e) For each item in the order
(1) Select (order-id) from Order-Line

77

(i) Update (order-id) Order-Line
(f) Select(customer-id) from Customer
(g) Update (customer-id) Customer

Transaction Type 5: Stock Level Transaction (given in SQL)
SELECT d_next_o_id INTO :o_id
FROM District
WHERE d_w_id =:w_id AND d_id =:d_id ;
SELECT COUNT(DISTINCT(s_i_id)) INTO :stock_count
FROM Order-Line, Stock
WHERE
ol_w_id =: w_id AND ol_d_id = :d_id AND ol_o_id < :0_id AND
ol_o_id >= (:0_id-20) s_w_id = :w_id AND
s_i_id = ol_i_id AND s_quantity < :threshold;

The transactions in the mixes operate on data tables which are pre-initialized to the sizes
as shown in Table 6.1. The tuple sizes, in bytes. arec shown in Table 6.2. The Order-Line
and History Tables are not pre-initialized since their entries are created as the transactions
are processed.

Transaction mix | is created from the serial exccution of 24 transactions in the
following order by type. The order was randomly generated as per TPC-C specifications.
and are listed by type below:

1,2,3,4.5.1,3,3,4,4,3,4,3.3,1.5.4,1.1.3.3,.3, 1.4

Transaction mix 2 is a serial execution of 24 transactions generated in the same order as
above. All database sizes are increased by a factor of 10.

Transaction mix 3 results from a change in the order of transaction execution. The
database sizes are the same as for mix 2. The order in which the transactions are generated
are (by type):

1,2,3,4.5,3,4,4,1,5,4,2,3,2,1,1,1.3,4,1,2. 1,5, 3

Transaction mix 4 is generated using a size of 2000 records for the Customer database.
500 Warehouses, 15000 records in the Items database and 10000 items in the Stock
database. The order of execution of the transactions is the same as transaction mix 3 except
that the numbers of tuples to be inserted are changed as shown in Table 6.1

The sizes of the data tables are varied across the transaction mixes to achieve

78

differences in the locality of access and hence to impact the miss rates on the various caches

under study. The varying data table sizes also results in a differing number of unique data

accesses. The order of transaction execution is changed in Transaction mix 3 from that

found Transaction mixes | and 2 as one means to vary the content of the various caches

when one transaction finished and another started in the mixes. Other ways to vary caches’

content for each transaction mixes are by specifying variations in the various cache sizes

which will be discussed later.

Table 6-1 The Number of Tuples to be Inserted and Sizes of the Data
Tables used by the Transactions in Mixes 1-4.

"Transaction Mix | Data Table Size of Data Table | Number of Tuples
Number (raw data only) (kB) | to be inserted in Data
Table

1 Warehouse .64 5
Diustrict 2.56 10
Customer 100 20
Item 3.2 20
Stock 51.2 20

2 Warehouse 6.4 50
District 25.6 100
Customer 1000 200
Item 32 200
Stock 512 200

3 Warehouse 6.4 50
District 25.6 100
Customer 1000 200
Item 32 200
Stock 512 200

4 Warehouse 64 250
District 25.6 100
Customer 2000 800
Item 1920 1200
Stock 5120 900

A view, with a unique view ID, is defined on each data table in order to enforce the 2-

phase locking protocol. For each view, the access unit size is defined to be the data table’s

tuple size. The FSM definition for the 2-phase locking protocol is associated with each

view.

Table 6-2 Tuple Sizes for Data Tables.

Data Table Name Tuple Size (in bytes)
Warehouse 128

District 128

Customer 1024

Item 128

Stock 512

Order 32

New_Order 8

Order-Line 64

History 64

79

Table 6.3 provides the number of unique lock units accessed by the respective

applications. Table 6.4 shows the percentages of rcad and write accesses for each

application.

Table 6-3 Number of Unique Lock Units per Transaction Mix

Transaction Mix

Number of Unique Lock
Units

t9

W

482

Table 6-4 Percentages of Read and Write Accesses to the Data Tables for

each Application

Transaction Mix

% of Read Accesses

% of Write Accesses

to Data Tables to Data Tables
l 75 25
2 77 23
3 74 26
4 76 24

80

[t is acknowledged that the size of the data component of the data tables in this study is
small. Transaction mix 4 sets the data tables sizes and. in particular, the number of tuple
insertions, at the largest for the study. The number of tuple insertions were limited by
available disk space on the machine on which the simulations were run. A sample size of
one of the input trace files which were generated from the application working on the seven
data tables is 112 Mb. The initial input file was then used as input to a utility program
which detected where the shared data regions existed in the virtual address space and where
the transactions began and ended. Begin-of-Transaction (BOT) and End-of-Transaction
(EOT) markers were then placed at appropriate places by the utility program which
generated yet another trace file while processing the first. Undoubtedly, with advances in
computer technology. these sizes will appear to be puny in a short while. Nevertheless. at
the time of experiments, we worked with available disk sizes.

Another drawback of the simulator’s input is that the tracing tool is unable to trace
operating system code so it is not possible to measure the impact of context switching
overhead on the TLB and data caches. Even if we had an OS tracing tool. there is no OS
that currently supports the Multiview memory model. The measurements of the TLB miss
rates arc undoubtedly affected by the lack of OS code tracing. Because we do not have a
trace of OS code on context switches. the effect of these switches was minimized by the
serial execution of transactions: one transaction is run to completion before another starts.
That is. the TLB miss rates are more optimistic in this study than actual values. Also the
caches are not flushed on transaction completion since their entries are tagged and hence

this policy has a much smaller effect at context switch time than mandatory cache flushing.

6.1.3 Hardware Parameters Input

A block diagram of the simulated hardware architecture is shown in Figure 6.1. The
PCU unit is situated in between the CPU and the main system bus. Dedicated data paths
exist between the CPU and the L2 cache. and between the CPU and the PCU unit.
Description of the PCU invocation can be reviewed in Chapter 4. Please note that when the
term “data cache” is used without qualification, throughout this work, it refers to the LI
cache.

Table 6.5 summarizes the hardware cost in cycles discussed here. It is assumed that the
CPU cycle time is equivalent to the data cache cycle [Przybyiski 1990]. The data cache

81

type is virtually indexed, physically tagged. L1 and L2 caches are simulated. Read hits on
the L1 cache take one CPU cycle (L1R). Write hits, (L1w), take two [Handy 1993] - one
to access the tags, and one to access the R/W bit. Write-back with no fetch done on a write
miss is the write policy used with the data cache. There is an automatic fetch on a read
miss. On an LI data cache read miss, there is an overlap of the memory-to-cache data
transfer and the operations of the Protection Control Unit. However, memory accesses are
serialized for all caches with respect to misses. A four line write buffer between the cache
and the memory is assumed. A 128-byte line is assumed in the data cache. A two word (8
byte) line is sufficient for the PLB cache. It is also assumed that the memory interference
from DMA devices is negligible. The loading of the L2 cache from memory consumes 50
cycles.

CPU
L2 | PCU
System
Bus
Main
Memory

Figure 6-1 Block Diagram of Hardware

The access of the mask from the ViewDefinition cache and its transmission to the PLB
takes two cycles. The masking procedure before a PLB access is assumed to take | cycle
which is reasonable for logic that requires a parallel bank of AND gates or analogously a
bank of NAND and inverter gates. It is assumed that the masking logic is laid out close to
the PLB cache. Thus it takes 5 cycles for a PLB hit. The delay due to a PLB miss is

calculated by summing delays due to the masking operation, the PLB cache access time, the
forming of the virtual address of the state information, the average TLB access time. the
sending of the physical address to memory, memory latency and the memory-to-PLB cache
transfer. Itis assumed that the virtual page number component of the VA was found via a
ViewDefinition cache lookup. The procedure (involving shifting, masking and ORing)
required for the formation of the virtual address of the state information unit in memory is
assumed to take 3 cycles. The delays due to wiring capacitance and lengths are assumed to
be negligible as compared to memory access times.

The ViewDefinition and FSM caches hit ratios are assumed to be 100%. The
ViewDefinition cache must be flushed and reloaded on every context switch and the
number of ViewDefinition entries is expected to be small. There are 9 views as there are 9
data tables, and there is one view per table. If a system only needs to support a medium
number of different protocols at any one time. say 10, then the FSM cache can be designed
so that the 100% hit rate is certainly achievable. Only one protocol was modeled in this
simulation study. Table 6.5 provides the hardware input costs.

Table 6-5 Operations And Typical Delay In Cycles

Operations Typical Delay (in cycles)
L IR : Data cache read hit]
L 1w : Data cache write hit 2
L1irMm : Data cache miss: (L2 read and write hit) 13
L2rM : Data cache miss (L2 read and write miss) 50
WCEF : Write access control fault 2
PLBy : PLB hit 5
PLBp : PLB miss 40
FSMy : FSM hit 5
VTy : ViewDefinition cache hit 7
TLBy : TLB hit l
TLBy; : TLB miss 20
SSVA: State Storage VA formation 4
Dpi g : Data Transfer between PLB and FSM 1
L: Accessing mask from the View Table 2
(involves VT access and transmission)
5

Dgsm :Transfer from FSM to PLB cache

83

6.2 The Access Control Protocol

An example access control protocol is selected for measuring the operations and
overhead of the Multiview memory model when providing its synchronization services.
The two phase locking protocol, the standard protocol used by database applications, is
used as the access control protocol. The FSM definition of this protocol is given below.

The handling of lock requests in the multiple readers-single writer locking protocol can
be fully decomposed into state transitions as shown in Figure 6.2. This decomposition
facilitates the determination of whether a subject can be granted a lock, or whether the
subject must be suspended, without hashing to a Lock Table and the subsequent traversal
and access of linked lists in memory. The determination of whether to grant the requested
lock can be performed, in the best case, through less than five cache lookups.

Maintenance of four states - Single Reader (SR), Muitiple Readers (MR), Write-locked
(W) and Unlocked (U) is required. Recall that on each transaction, the subject ID of the
thread issuing the read/write operation causing the transition, is recorded with the state.
Also recall that some transitions depend not only on the current state of access and the
operation (read/write) but also on whether the Subject ID of the thread issuing the operation
matches the subject ID recorded in the state.

The SR state indicates that only one reader has a lock on the access unit. The subject ID
recorded with the state represents the transaction ID holding a read lock on the access unit
(tuple). The MR state represents the presence of multiple read locks on the access unit by
various subjects. The W (Write-locked) state is entered when a write memory operation
succeeds and all other subjects are prohibited from accessing the object. As in the single
reader’s case, the subject ID of the writer recorded with the state of the access unit
represents the ID of the transaction holding a write lock on the access unit.

When the concurrency control view is created for a data table. the initial state in the
access matrix is the Unlocked state. In the initial state, no subjects are associated with the
lock units. When a read or write request is issued, the state of the lock unit transitions to
SR or W, respectively, while the subject ID (transaction ID) is recorded in the state. If a
read operation is issued on a unit in the SR state. the state can transition either to the MR
state, or remain in the SR state. depending on whether the thread’s subject ID matches that
stored with the state. Complementary information, in the form of a match between the
requesting subject ID and that stored in the state information for the lock unit, is needed in
order to distinguish the cases SR->SR and SR->MR. The SB=0, SB=1 and SB=0/I
labels in Figure 6.2 represent the match results. SB=0 means that the requesting subject

84

and the subject that currently holds the lock, i.e.. the subject ID recorded with the state. are
not the same. SB=1 represents a match, and SB=0/1 means that the result of the match
does not affect state transitions. The transition SR->W represents a lock upgrade. That is,
if the lock unit is in the SR state, and a write request is made by the subject which currently
holds the read lock (Write (SB=1) in Figure 6.2), the write lock will be granted. When a
transaction completes, locks it holds are released which is represented by the unlock
transition. For lock release when a unit is in the MR state, two possibilities exist: if there
are more than two readers, transition is back to the MR state, while if there are two readers,

the transition is to the SR state.

[Read (SB=0)

Write (SB=0) |

x K Write (SB=0/1) |

[Write (SB=1) |

[Read (SB=1)

]

IUnlock (recaders=2)

IUnlock (readers>2) |

Figure 6-2 State Transition Diagram for Locking

Table 6.6 shows the FSM definition of the lock requests handling portion of the
locking protocol. When a memory operation is issued by a subject S on the memory
location contained within a concurrency control unit, the memory operation is either
prohibited. i.e., a fault occurs, or access is granted. If access is granted, indicated by a
“proceed” flag in the Result column of Table 6.6, transition to the state indicated in the
column New State occurs. Note that the table shows only a subset of the state transitions
shown in Figure 6.2. It shows only the transitions for read/write requests, the transitions
determinable through table lookups only. State transitions due to unlocking are not shown

85

as these are achieved in software at transaction end. Recall that such software-performed
transitions are, in the Multiview model, referred to as forced transitions.

The Subject Match bit is required in order to implement the protocol as mainly table
lookups. The Subject Match bit caters for having the access unit in a single state when
viewed by all accessing subjects, yet triggering different state transitions depending on
which subject may currently hold a lock on the access unit. For example, a read operation
on a unit that is in the SR state can trigger either of two state transitions (either SR->SR or
SR->MR). The SR->SR state transition occurs if a subject issues a repeated read to an
access unit for which it already holds a Read lock. This is represented in the Read/1/SR
entry in the table. Read/1/SR stunds for the Read memory operation, a Subject Match Bit of
I and a Current State of SR. The SR->MR state transition occurs when a subject other
than the one currently holding the Read lock issues a read request on the access unit.

Note that the subjects in this environment are transactions. Thus subject IDs will be
transaction IDs (TIDs). The Multiview FSM definition is more storage efficient than that of

information were kept on a per transaction basis. thus generating more state information.
That is, various transactions see the same unit in different states in the IBM 801
implementation of hardware locking because state information is stored on a per transaction
basis in a special table.

Whether the subject has access rights is determined by matching the subject ID stored in
the state entry for the access unit (entry in PLB table) with that of the accessing subject and
by matching the issued memory operation with that in the appropriate FSM entries.
Wherever there is an cntry of “Proceed™ in the table it means either. that locks may be
granted on-the-fly. that is, without faulting to the software supported portion of the lock
manager, or that access can proceed because the issuer of the memory access already owns
the lock. There are no Read/1/Unlocked and Write/1/Unlocked entries in the table since an
access unit in the unlocked state does not have a Subject ID associated with it.

The recording of the transaction’s lockset for lock release and thus transaction commit
purposes is done on each transaction’s data access. The storage of the transaction’s lockset
is implemented in a hardware queue. On a context switch, the queue is forwarded to the

view manager which records the lock acquisitions stored in the queue in its data structures.

86

Table 6-6 State Transition Table for Locking

Memory Subject Match Bit Current Result New
Operation 0 - no match State (Proceed/ State
1 - match Fault

Read 0 Unlocked Proceed SR
Read 0 SR Proceed MR
Read] SR Proceed SR
Read 0 MR Proceed MR
Read I MR Proceed MR

Read 0 w Fault w
Read] w Proceed w
Write 0 Unlocked Proceed w
Write 0 SR Fault SR
Write | SR Proceed w
Write 0 MR Fault MR
Write | MR Fault MR
Write 0 w Fault w
Write | W Proceed \"Y

6.3 The Experiments

A transaction mix is generated from a repeated selection of one of the five transaction
lypes. The transaction mix represents a database application requiring access control
services. Each transaction is unique even if the transactions are of the same type in that the
access units selected for access by each transaction were randomly chosen from a skewed
distribution, as specified by the TPC-C benchmark [Transaction Processing Council 1992].
Each transaction mix demonstrates differing locality of access per cache (resulting in
varying miss rates), and variation in the read/write ratio.

All caches are simulated with a copy-back write policy, LRU replacement policy and
write allocation. The line sizes for the PLB, TLB, ViewDefinition cache and FSM caches
are sct at 8 bytes. The line sizes for the L1 and L2 data caches are set at 128 bytes. The
TLB and the FSM caches have capacities of 256 bytes, or 32 entries. each. The L1 data
cache is set at 8Kb within all the experiments. The ViewDefinition cache has a capacity of
128 bytes, or 16 entries. Recall that the PLB, ViewDefinition cache, L2 data cache and
FSM caches have cycle delays assigned to them assuming that they are situated oft-chip.

The average delays, in terms of cycles, before a read or write access is allowed to

proceed or a fault occurs, are measured for each transaction mix in a simulation run. This

87

is translated into the delay incurred by the operations of the Multiview model when
providing access control services. The sizes of the L2 data cache and the PLB caches are
varied to meet objective two of the evaluation, that is, to evaluate how the relative sizes.
and consequently the miss rates, of the PLB and L2 caches affect the overall delay in
determining whether a read or write access can proceed or not. The input of different
transaction mixes to the simulated architecture results in variations in the TLB miss rate and

hence shows the impact of the TLB on the architecture.

6.4 Multiview Lock Management Results

The results of the simulation are presented in the next two subsections. First the values
for the average delay of the PCU unit in processing a read or write request is presented in
subsection 6.4.1. Section 6.4.2 presents the results of the measurements of the number of
page table accesses, TLB accesses. PLB accesses, state storage table accesses and L1 data

cache accesses for each transaction mix.

6.4.1 PCU Delay Results

Table 6.7 documents the results in terms of the number of cycles expired before a
read/write is allowed, i.e., before it is determined that the lock is acquired or denied.
Recall that since the primary data cache(L1), as is used in experiments here, is constrained
by on-chip area and in many systems is approximately 8K in size. the secondary (L2) data
cache (off-chip) was varied in size to determine its effect on the lock acquisition delay. The
L1, L2 and PLB caches are 2-way set associative. The L2 Miss Rate is defined as the
(Number of L2 Cache Misses / Total L2 Cache Accesses). The L2 Miss Rate definition is
the local miss rate on the L2 cache as opposed to the global miss rate. The global miss rate
(Number of L2 Cache Misses/Number of Data Accesses) on the L2 cache is much lower
than its local miss rate.

The PLB Miss Rate is defined as the (Number of PLB Cache Misses) / (Total Number
of PLB Cache Accesses). The Average Read Delay is obtained by the (Total Accumulated
Read Delay for a Transaction Mix) / (Total Number of Read Accesses). Similarly, the
Average Write Delay is obtained by the (Total Accumulated Write Delay for a Transaction
Mix) / (Total Number of Write Accesses).

88

Table 6-7 Delay to Obtain Read/Write Locks under Various Cache
Configurations

Transaction Number of | L2 Miss Number | PLB Avg. Avg.
Mix sets Rate of sets | Miss Read Delay Write Delay
(L2) (%) (PLB) | Rate (cycles) (cycles)
()

| 4096 42 512 9 49 45

2048 42 512 9 49 45

1024 42 512 .9 49 45

512 42 512 9 49 45

512 42 1024 .9 49 45

512 42 256 9 49 45

512 42 128 I 49 45

512 42 64 2 50) 45

512 42 32 3 50 46

2 4096 50 512 3 63 61

2048 50 512 3 63 61

1024 50 512 3 63 61

512 50 512 3 63 61

512 50 1024 3 63 6l

512 50 256 3 63 61

512 50 128 3 63 61

512 50 64 6 64 62

512 50 32 8 64 62

3 4096 59 512 3 79 69

2048 59 512 3 79 69

1024 59 512 3 79 69

512 39 512 3 79 69

512 59 1024 3 79 69

512 59 256 3 80 69

512 59 128 4 80 69

512 59 64 9 80 70

512 59 32 Y 80 71

4 4096 68 512 4 82 73

2048 68 512 4 82 73

1024 68 512 4 82 73

512 68 512 4 82 73

512 68 1024 4 82 73

512 68 256 5 82 73

512 68 128 6 82 73

512 68 64 9 83 75

512 68 32 13 83 77

The PLB miss rates for Transaction Mix 4 vary between 4 and 13 %. However the
corresponding cycle times for read and write delays before access is allowed or denied

89

change by less than 2 cycles. The PLB miss rates for Transaction mix 3 varies between 3
and 9 % and the corresponding measured cycle times change by less than | cycle. This
shows that the tested variations in the PLB miss rates have little effect on the measured
cycle times for a particular transaction mix. The L2 miss rate is fairly stable within each
transaction mix for variations in cache sizes from 128Kb (line size of 128 bytes * cache
associativity of 2 * number of sets (512)) to 1Mb.

The variation in cycles measured for Transaction mixes 1 thru 4 must be explained.
From above, it is not due to the PLB miss rates. If the number of cycles obtained for
Transaction mix 2 with a PLB miss rate of 8 % (63 cycles) is compared to the number
obtained for Transaction Mix 3 with a PLB miss rate of 3% (79 cycles), it is clear that the
PLB miss rate does not affect the measured delay overhead. The L2 miss rate is a
contributing factor to the increase in delay (from 49 cycles in transaction mix 1 to 83 cycles
in transaction mix 4) since its miss rates change from 42 to 68%. However at this point.
we cannot say the L2 miss rate is the only contributing factor to the increase in delay
overhead. The values of the other metrics (e.g. number of Page Table Accesses. Number
of data accesses to memory) are documented below to provide for further analysis.

In conclusion. the two main results shown in Table 6.7 are the average read and write
delays incurred before the read/write request is satisfied or denied and that the variation in
PLB and L2 cache sizes show little effect on the average number of cycles which expire

before a read or write access is resolved within a particular transaction mix.

6.4.2 Access Results for the Transaction Mixes

A particular configuration of cache sizes is assigned as the base system configuration:
8K L1 Cache, 128K L2 cache (512 sets. 2-way associative). and 8K (1024 sets) PLB
cache. These cache sizes were selected after analysis of the results shown in Table 6.7
since the PLB and L2 data cache sizes have very small effects on the overall read/write lock
acquisition delays within a single transaction mix. Note that the relative values for other
configurations within a particular transaction mix are similar and hence are not presented
here. The number of accesses to various levels of the memory hierarchy and to the caches

within the PCU unit, for the base system configuration. are recorded in Table 6.8.

90

Table 6-8 Access Characteristics of Transaction Mixes

Access Type Mix | Mix 2 Mix 3 Mix 4
Number of Accesses

Page Table (Main Memory) 820 13304 28489 35801
State StorageTable (Memory) 702 1230 1347 2204
Data (Main Memory) 3285 3693 3226 3378
Data Cache (L1) 251838 267810 267470 279622
PLB 10668 9664 10539 12934
TLB 252612 280982 295818 315122

Table 6.8 shows a large increase in page table accesses (equivalent to TLB misses)
from Transaction mix | to 4. There is a difference of almost 35000 page table accesses
between transaction mix 4 and transaction mix I. The number of TLB accesses increases
by 62510 accesses (315122-252612) from transaction mix | to transaction mix 4. The
difference in PLB accesses from transaction mix | to transaction mix 4 is 2266, and the
number of State Storage Table accesses changed by 1502 accesses. These differences are
due to the larger working set for transaction mix 4 as compared to transaction mix |. to the
larger number of tuple insertions and to the larger number of collisions in the caches. Also
note that on transaction commit when locks are released the PLB cache entries are updated
and so are the corresponding State Storage table entries.

In a system with virtually indexed and physically tagged data caches. the TLB is
accessed on each data cache access in order to retrieve the physical page number which is
then compared with the tag of the data cache entry. Thus, the number of TLB accesses is
equal to the number of data cache accesses. Here, however. the numbers for TLB
Accesses are higher than the numbers for the L1 Data Cache accesses, as shown in Table
6.8, since PLB fault handling needs translations for virtual memory addresses.

The 4 applications exhibit high spatial locality of access as can be seen from the low
miss rates on the L1 data caches (see Table 6.9). One other reason that locality of access is
high is that the caches are not flushed on a context switch since their entries are tagged.

Table 6.9 shows once more that the PLB miss rate varied by approximately 3% from
Transaction mix | to Transaction mix 4 and thus the PLB is not the dominant contributing
factor to the measured overhead delay. However there is a wide variation in the TLB miss

rate from Transaction Mix | to Transaction mix 4 and there is very little variation in the L1

91

miss rate. Note also that the variation in the miss rate on the L2 cache is much less
significant. This is because of the high locality of access demonstrated by the transaction
mixes with respect to the L1 data cache and also despite the increase of 27784 Data Cache
accesses between transaction mix | and transaction mix 4 (shown in Table 6.8). there was

only an increase of 93 accesses to memory to get data.

Table 6-9 Miss Rates for Transaction Mixes under Base Configuration (in
Percentages)

Transaction Mix | TLB Miss Rate [L1 Miss Rate L2 Miss Rate PLB Miss Rate
] .3 1.30 41.55 91

2 4.69 1.38 49.42 2.38

3 9.58 1.21 58.56 2.43

4 11.27 1.21 68.44 3.97

Table 6.10 shows the total data accesses, the number of shared data accesses, the
number of TLB accesses and the number of PLB accesses incurred by each transaction
mix. The results are obtained for the base configuration of the simulation environment.

The shared data accesses are the reads/writes to the data tables on which views are defined.

Table 6-10 Data Accesses for Transaction Mixes under Base Configuration

Transaction Mix | Total Data Shared Data TLB Accesses PLB Accesses
Accesses Accesses
(Read/Write) (Read/Write)

| 25 !_838 16958 252612 10668

2 267810 18684 280982 9664

3 267470 19085 295818 10539

4 279622 21647 315122 12934

The ratio of PLB accesses to shared data accesses for the transaction mixes is roughly
between 52 % - 62 %, for the 4 transaction mixes . This clearly shows that access control
in the Multiview model is not invoked on each and every access to the data tables. Recall
that PLB access is triggered on the L1 data cache miss or on a write access control fault
(where the write is to the line for the first time). However the PLB accesses shown in
Table 6.10 are not only attributed to data cache and write access control faults but also to

PLB line replacement and to updates to the PLB entries upon access unit state transitions.

6.5 Conclusions of Results

The results show that variations in the PLB size, for a given application and hardware
parameters, have negligible effect on the read/write lock acquisition delays for a given
transaction mix. Wide variations in the L2 data cache size also show small effects on the
read/write lock acquisition delay within a transaction mix. It is most decidedly the access
characteristics of the applications themselves which have the most impact on the read/write
lock acquisition delay. If the application’s working set is sufficiently small. resulting in a
low TLB miss rate, the read/write lock acquisition delay is smaller when compared to
applications with larger working sets. and thus higher TLB miss rates. This is
demonstrated by comparison of Table 6.9 with Table 6.7. The largest delay is incurred for
the application with the highest TLB miss rate. The TLB component dominates the costs in
the memory hicrarchy. This is not surprising since the TLB cache has a mere 32 entries; a
32-entry TLB is standard for TLB caches on most platforms.

The traces of the database application show that the number of read and write memory
accesses to the data tables compared to data required for the application’s execution is very
small (see Table 6.10). This further explains why the variation in PLB cache size does not
affect the lock acquisition delay appreciably. That is, the loads on the TLB and the data
caches have greater impact to application performance than the delay generated from
hardware support for the Multiview model. The result thus strengthens the advantage that
the Multiview model holds over the conventional software schemes in that TLB and data
cache pollution are avoided. It will be particularly important to applications with large
working sets.

The results show that the PLB cache can be very small. say 256 byies: the FSM size is
sufficient at 256 bytes and the view definition cache’s size is set at 128 bytes to provide for
concurrency control views on the data tables. Less that IKb of cache memory is required
in total for the PCU Unit to support the two phase locking protocol. Chapter 5 illustrates
the FSM definitions of other access control protocols. Clearly at four bytes per FSM
entry, 64 entries are more than sufficient to support all the protocols described in Chapter 5
without any misses.

Conventional lock management performance will also depend on the application’s
memory hierarchy costs. However the conventional lock manager will also add its memory
hierarchy costs to that of the applications’. In particular, the data cache and TLB cache
miss rates will be affected. Those costs are estimated in Chapter 7 and compared to the
Multiview memory implementation of lock management.

93

CHAPTER 7
COMPARATIVE EVALUATION

To show how conventional approaches for access control may compare to the
Multiview approach, a software scheme for a standard lock manager is implemented (see
Appendix B for a program listing). The resulting program is profiled to obtain the average
number of instructions for the access control protocol. The average number of calls to key
procedures and instructions per procedure are obtained. The main performance metric is
that of machine cycles. The instruction counts obtained for the conventional software
schemes are converted to cycles for correct comparisons.

The conventional lock manager providing services to transaction mix | is memory
traced and run through the cache simulator in order to cost the memory hierarchy and hence
(conservatively) estimate the delay in cycles to grant a lock request.

The statistics for the setLock() function of the conventional lock manager is obtained
using a Sun Sparc 20 piatform and GNU's gcc compiler version 2.6.3 with the
optimization (-O) directive set.

7.1 Software Implementation of a Lock Manager

The lock manager implementation described here is as outlined in [Gottemukkaka 1992,
Gray 1993, Daynes 1995]. The lock information is found through named access of a
fixed-size hash table of locks. A lock is implemented by a Lock Control Block (LCB)
which contains information such as its name, its current mode (R or W), and links [Daynes
1995]. These are illustrated in Figure 7.1.

The LCB is at the head of two doubly linked lists of Lock Request Blocks (LRBs).
One list represents granted requests (must at least contain a list of identifiers of transactions
which have access to the lock unit), and the other implements the pending requests (the
suspend queue where blocked transactions are held). The LRB contains the transaction
identity, the requested locking modes, the access unit name and an indication as to which of
the two lists it is presently on. The latter facilitates efficiency in the transaction commit or
abort procedures. Each LRB is associated with exactly one transaction (requester).

94

Lock
Name

Mode| Granted [Pending

Next

Lock Control Block

Requests|Requests |LCB
q q \/.E\Aode Requester |[Key |Ind Eﬁ‘g

Lock Request Block
d , Next
ode| Requester [Key {Ind LRB
Lock Request Block

Figure 7-1 Structures of the Lock Control and Lock Request Blocks

T+ LCB }J—% LCB)

Hash Chain

T2| Transactions

lockset(T2)

Figure 7-2 Lock Table Implementation

Obtaining a lock involves accessing the lock table (illustrated in Figure 7.2) using the

resource’s name as the hash key. If there is an LCB entry in the hash chain, the LRB chain

for Granted Requests is scanned to determine whether the requester already has a LRB.

The latter occurs for lock upgrade requests. When there is no LCB entry, a new entry is

initialized and appended to the hash chain. If there is no LRB for the requester. the lock

manager allocates a new LRB. chains it to the requester’s lockset. and chains it to the

appropriate LCB chain (granted or pending) according to whether a conflict is determined

or not.

Conflict detection is performed upon a request to set a lock. First the current state of

95

the access unit is obtained from the LCB entry in the routine which sets the lock. Then the
LRB chain of the Granted Requests is scanned (if it exists) to look for cither the LRB entry
of the requester or the presence of multiple readers. or the identity of the transaction
holding a write lock. The latter of course is tested only if the access unit was originally
locked for write. Conflicts are detected when there are multiple readers and a write lock is
requested, or a single reader other than the transaction requesting the write lock is on the
Granted requests list, or a write lock is held by a transaction other than the current
requester.

A transaction’s lock set is maintained on a linked list whose nodes point to LRB entries
on both the Granted Requests and Pending queues. When a transaction commits or aborts.
the lock set list is traversed to delete the corresponding entries on the Granted Requests

and/or Pending lists.

7.1.1 Qualitative Comparison

This section presents qualitative comparisons between the conventional lock manager
and the cache supported implementation of the Multiview model. First the advantages of
the Multiview implementation are considered and then contlict detection is contrasted.
Context switches. lightweight if the lock manager is in the same address space,
heavyweight otherwise, are eliminated for setting locks on currently unlocked access units.
Recall (see Section 3.3) that the state transitions from Unlocked to Single Reader or Write
states (U->SR, U->W) and from SR to Write state (SR->W) and the SR to Multiple
Reader (SR->MR) are all handled in the PCU unit. TLB accesses are minimized for the
latter cases. Calls to expensive memory allocation routines such as malloc() are reduced in
Multiview scheme since the information needed to be kept in software is minimized. For
example only the IDs of multiple readers need to be kept on a list. not the ID of a writer
since the latter is always stored in the PLB entries.

Next conflict detection is contrasted. In the conventional software implementation, the
average number of memory accesses to determine a Write-Write (WW) conflict, once the
hash table (Lock table) has been indexed. is the average length of the chain of LCBs plus
one access to the LRB chain to obtain the ID of the transaction currently holding the lock.
The average number of memory accesses needed to determine a Multiple Reader-Writer
(MRW) conflict is the same as for the WW conflict; however instead of needing to compare
identifiers, the variable holding the length of the LRB list is accessed. The average

96

number of memory accesses required to determine a Read-Write (RW) conflict is the same
as for the WW conflict plus one more access to a Count variable which contains the length
of the chain. A lock upgrade from R to W incurs the same average number of memory
accesses as in the determination of a RW contlict.

Conflicts and RW upgrades can be ascertained immediately in the Multiview memory
model once the state information for the access unit is available in PLB cache. Therefore
the PLB cache hit ratio impacts the expected improvement in performance of a Multiview

lock management implementation.

7.1.2 Software Support for Multiview Lock Management

The main support structure is a hash table of pointers (Figure 7.3) accessed by the
access unit identifier (AUID). The hash chain contains nodes with the matching AUID. a
pointer to a pending list and a pointer to a list of readers. This structure is only accessed
after conflict is detected - not used to determine conflict - it is used to store the TIDs of
multiple readers and to implement the transactions’ suspend queues. It therefore facilitates
the commit / abort transaction procedures. A transaction must be removed from the
suspend list if it is aborted. Other transactions are taken off the suspend list and placed on
a CPU ready queue when resources they are awaiting are released by a committing/aborting

transaction.

Hash Chain
—®»AuD | | =

TSB
Suspend List Multiple Reader List

Figure 7-3 Software support for the implementation of Multiview lock
management.

97

7.2 Statistical Results for Software Scheme

Measurements of instruction counts for the software lock manager are obtained using
the QPT2 tool. QPT2’s output includes a Unix-style flat statistical profile for an input
program (see Appendix C). For each procedure within the manager, the number of
instructions, the percentage of time spent executing the procedure in ms, the number of
calls to the procedure, the number of instructions per call and the routine's name are
provided. See Appendix C for the profile listing of the input program. Only totals are
presented here. All input programs are compiled with gcc 2.6.3 with and without the

optimization flag set. Please refer to Appendix B for a program listing of the lock manager.

Table 7-1 Statistics for setting a Lock for the Conventional Lock Manager
and MultiView

Function Instructions Number of Multiview
(Mustang -SPARC -20 Instructions (cycles)
Executed (Unoptimized) | (Optimized)

setLock() 102 41 49

The number of cycles for the setLock() function is obtained by using the following

equation [Hennessey 1995]: CPU clock cycles = iCPli * IC; where CPI; represents the
I

average number of clock cycles for instruction i and IC; represents the number of times

instruction i is executed in a program. If we assume that the SPARC-20’s CPI is | and that

each instruction is identical for simplification purposes. then the number of CPU clock

cycles=1*41 =41 for the setLock() function. This estimate is low because the memory

hierarchy costs are not included yet.

The memory hierarchy costs for the entire lock manager (not solely for setLock()) are
obtained from the cache simulator for transaction mix 1. The following table (Table 7.2)
shows a costing of the memory hierarchy. This is the minimum memory hierarchy costs
since it is obtained from cold caches. That is, no other applications are competing for TLB
and data cache space.

As shown in Table 7.2, there are 91037 cycles expended due to delay in the memory
hierarchy (TLB. L1. L2 and Main Memory). At 699 calls (shown in Appendix C) to
setLock() within Transaction mix I, it means that on average 91037/699 = 131 additional

cycles can be added as an estimate to the overhead to satisfy each lock request. Therefore,

98

roughly (41+ 131) = 172 cycles will be incurred by the conventional lock manager as
opposed to the 49 incurred by the Multiview memory model’s implementation of lock
management for transaction mix 1.

Table 7-2 Average Cost (delay) in cycles for Transaction Mix 1 - base
configuration : TLB capacity = 256 bytes, L1 DC = 8K and L2 DC = 1 Mb

Access Type - Memory

Number * miss penalty

Total Cost in cycles

L1 Data Cache Misses

5429 * 13

70577

L2 Data Cache Misses 402 * 50 20100
TLB Misses 18 * 20 360
TOTAL - 91037

Table 7-3 Data and TLB Accesses for Lock Manager and Multiview for
Transaction Mix 1

Application Total Data TLB Accesses
Accesses

Lock Manager | 322978 322996

Multiview 251838 252612

From Table 7.3. the number of TLB and data cache accesses arc greatly increased for
the conventional lock manager. thus showing that the data cache and TLB performances
decrease in a conventional scheme as opposed to the Multiview model’s implementation of
the same protocol.

7.3 Summary and Conclusions

The Multiview model provides better performance for lock acquisition at an average of
49 cycles as opposed to 172 cycles for the conventional lock manager. This is partially
attributed to the reduction in kernel calls; the profile listing of the conventional lock
manager (Appendix B) shows that kernel calls for memory allocation are particularly time
consuming. Protocol enforcement in the particular implementation of the Multiview model
found in this thesis is by simple table lookup rather than by evaluation of multiple clauses
in software.

99

The reduction in kernel calls would be even more evident when compared to a client-
server situation which uses explicit requests for access control. For example. a
microkernel such as Mach 3.0 would provide an access control policy through user-level
implementation, incurring two system calls and two context switches and possibly message
delays to satisfy a lock request, for example.

There is less pollution of the data and TLB caches in the Multiview implementation of
lock management. The reduction in TLB pollution is an important contribution considering
that the TLB is becoming a major bottleneck in the high processor-speed computer systems

on the market today.

100

CHAPTER 8
CONCLUSIONS

8.1 Contributions
This thesis presents the Multiview memory model which incorporates many desirable

features for improvement of application performance. The presented work is new.

Specifically, the contributions of the model are as follows:

Variable-sized protection units are obtained through the use of view definitions
without altering the underlying tixed sized paging implementation. This avoids
many problems (e.g. modifying page table structures to support multiple page sizes
and changes in management of physical memory) encountered by other proposals
that architecturally provide variable sized pages.

Address space isolation is provided within and across address spaces through usc
of the same view definition mechanism. The only other known scheme for address
isolation is called sandboxing [Anderson 1993] and it has the disadvantage of
mapping the shared region several times within the same address space for each
application running in the address space. Sandboxing is provided by the compiler.
Customizability of applications is achieved by enabling one or more associations
with single purpose access control protocols on a region of memory.

Access control handling reduces the use of software handlers in order to reduce
kernel-user application communication. Hence reduced context switching costs are
obtained by placing decomposable access control protocols at the hardware and OS
level.

Transparent access control which heightens programmers productivity.

The following contributions are also found in this thesis.

The wide applicability of the model is illustrated by how several protocols can be
decomposed into FSM representations. The model can be used to support a

host of different protocols, where the only constraint is that the candidate protocols
must be partially of fully decomposable into state transitions.

101

* Avoidance of affecting the miss rates of the TLB and Data Caches, by storing the
decomposed access control protocols in a specialized cache, is attained.
Conventional software implementations of access control schemes can cause not
only context switching but also increase the TLB and Data Cache miss rates by
changing the working set. Recall that the TLB miss rate is the most critical factor
affecting applications’ performance.

* Development of a simulator to measure memory hierarchy costs for the Multiview
model. The logic for the respective cache controllers are all customized. C++
classes developed to model caches and their parameters and to track statistics for the
simulation can be reused in the development of other cache architecture simulators.
[Jutla 1996].

* Analysis of a multiview implementation of locking and a comparable software
implementation of locking.

* Performancc estimates for sizing the caches in the proposed cache architecture.

8.2 Future Work

Degree of conflict amongst transactions competing for access to shared data should be
added as another parameter to the lock acquisition analysis done in this work, particularly
since conflict determination is another area where the Multiview model locking
implementation supersedes others (see Section 6.1.1). Other access control protocols
should also be evaluated for performance purposes.

Traces which contain operating system code should be obtained for input applications,
particularly to obtain platform dependent measurements for context switch times.

Kernel support for the Multiview memory model needs to be implemented. OS support
such as modifying the Virtual Memory Mapping Manager to align views would be
valuable.

Compiler aids such as indicating the beginning and end of a view at the application level
should be explored. Simple “Begin Data” and “End Data” statements may suffice. It is
intuitive with database applications that the smallest granularity of an access unit should be
the record size. but tools for automating the choice of the appropriate access unit sizes for
different regions of memory could be developed.

The application of the Multiview Memory Model in the multiprocessor environment is
another area for development.

REFERENCES

Agarwal 1988; Agarwal, A., Simoni, R., Hennessy, J., and Horowitz, M., "An
evaluation of directory schemes for cache coherence.” Proceedings of the [5th Annual

International Symposium on Computer Architecture, June 1988, pp 280-289

Anderson 1991; Anderson T.E., Levy H.M., Bershad, B.N., Lazowska E.D., "The
Interaction of Architecture and Operating System Design."” Fourth International

Conference on ASPLOS, 1991.

Appel 1991; Appel A., Li K., "Virtual Memory Primitives for User Programs.” ACM.
0-89791-380-9/91/0003-0096, 1991.

Archibald 198S; Archibald, J. and Baer, J.-L., "An Economic Solution to the Cache
Coherence Problem." Proceedings of the 12th Annual International Symposium on

Computer Architecture. June 1985, pp 355-362

Bennett 1990; Bennett J.K.. Carter J.B., Zwaenepoel W., "Adaptive Software Cache
Management for Distributed Shared Memory Architectures.” 17th Int. Symp. on
Computer Architecture, Rice COMP TR90-109, Dept. of Comp. Sc. Report, Rice

University, Houston, Texas, 1990.

Bershad 1995: Bershad, B.N., Savage, S.. Pardyak, P., Sirer, E.G., Fiuczynski, M.,
Becker, D., Eggers, S., Chambers, C., "Extensibility, Safety and Performance in the

SPIN Operating System.” Technical Report, The University of Washington. 1995.

Bisiani 1991; Bisiani, R., Ravishankar, M., Proceedings of the 17th Annual

International Symposium on Computer Architecture, 1990, pp 115-124.

Bodorik 1994a; Bodorik P. and Jutla D., "Multi-View Access Control Memory

Computer System." 22nd Annual ACM Computer Science Conference. Phoenix Arizona,

103

1994, pp. 241-248.

Bodorik 1994b; Bodorik P., Jutla D., Riordon, J.S., "Integrated On-the-fly Access
Control,” International Conference on Systems Integration (ICSI'94), Sao Paulo. Brazil,

August 15-19, 1994,

Bodorik 1995: Bodorik, P.. Jutla, D.N., Davis A., "A Protection Cache Architecture for
the Multiview Memory Model and Its Performance". International Symposium and
Workshop on Systems Engineering of Computer Based Systems, Tucson, Arizona,

March 6-9, 1995. (IEEE)

Censier 1978; Censier, L.M. and Feautrier, P., "A new solution to coherence problems
in multicache systems.” IEEE Transactions on Computers C-27, 12, December 1978,

pp-ill12-1118.

Chang 1988 Chang A. and Mergen M.F., "801 Storage: Architecture and
Programming." ACM Transactions on Computer Systems, Feb. 1988, Vol. 6, No. 1.
pp.- 28-50.

Cheriton 1986: Cheriton D.R., Slavenburg, G.A., Boyle P.D., "Software -Controlled
Caches in the VMP Multiprocessor.” Proceedings of the 13th Annual International

Symposium on Computer Architecture, 1986.

Daynes 1995: Daynes, L., Gruber, O., Valduriez, P., “Locking in OODBMS Client
Supporting Nested Transactions”, | Ith International Conference on Data Engineering.

March 1995, pp. 316-323.

Dubnicki 1992; Dubnicki C. , LeBlanc, T.J., "Adjustable Block Size Coherent
Caches." Proc. of the 19th International Symposium on Computer Architecture, 1992,

pp. 170-180.

104

Effelsburg 1984: Effelsburg W., Loomis, M.E.S, Logical, Internal and Physical
Reference Behaviour in CODASYL Database Systems, ACM Transactions on Database

Sytems, Vol 9, No. 2, 1984, pp. 187-213.

Eggers 1988: Eggers, S., "A Characterization of Sharing in Parallel Programs and its

Application to Coherency Protocol Evaluation..” IEEE CH2545-2/88/0000/0373.

Engler 1995; Engler E.R., Kaashoek, M.F., O'Toole Jr., .W., “The Operating System

Kernel as a Secure Programmable Machine.” OS Review, January 1995.

Goodman 1983; Goodman. J.R., "Using cache memory to reduce multiprocessor -
memory traffic.” Proceedings of the 10th Annual International Symposium on Computer

Architecture, June 1983, pp 124-131.

Goodman 1987; Goodman, J.R.. ** Coherency for Multiprocessor Virtual Address
Caches,” Second International Conference on Architectural Support for Programming

Languages and Operating Systems, October 1987, pp. 72-81.

Gottemukala 1992; Gottemukala, V., Lehman T., “Locking and Latching in a Memory
Resident Database System.” Proc. of the Int. Conference on Very Large Data Bases,

1992, pp. 533-544.

Gray 1993: Gray J., Reuter, A., Transaction Processing: Concept and Techniques.

Morgan Kaufmann, Palo Alto, California, 1993.

Handy 1993; Handy, J., The Cache Memory Book, Academic Press Inc.. California.
1993,

Heinrich 1993; Heinrich , J., MIPS R4000 User’s Manual, Prentice Hall, 1993.

Hennessey 1990; Hennessy J.L.. Patterson D.A., Computer Architecture A
Quantitative Approach, Morgan Kaufmann Pubishers Inc., Palo Alto, California, 1990.

105

Horowitz 1987; Horowitz M., Chow, P., Stark, D., Simoni, R.T., Salz A..
Przbylski,S., Hennessy, J., Gulak, G., Argawal, A., and Acken, J., MIPS-X: A 20
MIPS peak, 32-bit microprocessor with on-chip cache, IEEE of Solid-State Circuits. Vol

22, 1987, pp. 790-799.

Hosking 1993: Hosking, A.L., Moss J.E.B., "Protection Traps And Alternatives For
Memory Management Of An Object-Oriented Language”, ACM SIGOPS'93 0-89791-
632-8/93/0012

Howard 1988; Howard, J.T., Kazar, M.L., Menees, S.G., Nichols, D.A.,
Satyanarayanan M., Sidebotham, R.N., West, M J.., "Scale and Performance in a
Distributed File System," ACM Transactions on Computer Systems. Vol. 6, | Feb

1988, pp.51-81.

Jutla 1996: Jutla D. , Bodorik P., Olmstead E., “An Application FrameWork for
Modelling Cache Based Virtual Memory Systems”, 8th Annual International Conference

on Computing and Information, ICCI'96, Waterloo. Ontario, Canada, June 1996.

Jutla 1995: Jutla D.N, Bodorik P., "A Fast Cache-based Method for Concurrency
Control”, 7th Annual International Conference on Computing and Information, ICCI'935,

Trent, Ontario, Canada, July 1995.

Jutla 1994; Jutla, D., Bodorik, P., Riordon. J.S., "Access Control Protocols for Multi-
View On-the-Fly Computer System." Canadian Conference for Electrical and Computer

Engineering, Halifax, September 25-28, 1994,

Jutla 1993; Jutla, D., Bodorik. P., Riordon, J.S., "Integrated Concurrency-Coherence
Control in Distributed Shared Memory," Fifth International Conference on Computing

and Information (ICCI'93), Sudbury, Ontario, Canada, pp 251-255.

106

Kagimasa 1991; Kagimasa, T., Takahashi, K., Mori T., Yoshizumi S., "Adaptive
Storage Management for Very Large Virtual/Real Storage Systems." ACM 0-89791-394-
9/91/0005/0372

Kath 1992; The Virtual Memory Manager in Windows NT, Microsoft Developer

Network Technology Group, 1992.

Katz 1985; Katz R., Eggers, S., Wood, D.A., Perkins G.. Sheldon, R.G..
“Implementing a Cache Consistency Protocol.” Proceedings of the 12th International

Symposium on Computer Architecture, IEEE, New York, 1985, pp. 276-283.

Kearns 1989; Kearns, J.P., DeFazio S., “Diversity in Database Reference Behaviour™,

Performance Evaluation Review, Vol. 17, No. |, May 1989. pp. 11-19.

Koldinger 1991: Koldinger. E.J., Levy, H.M., Chase, J.S., Eggers, S.J.. "The
Protection Lookaside Buffer: Efficient Protection for Single Address-Space Computers.”

Technical Report 91-11-05. University of Washington, November 1991.

Koldinger 1992: Koldinger. E.J., Chase, J.S.. Eggers, S.J., "Architectural Support for
Single Address Space Operating Systems.” ASPLOS V., October 1992.

Kumar 1989; Kumar A, Stonebraker M., “Performance Considerations for an Operating
System Transaction Manager." IEEE Transactions on Software Engineering, Vol 15. No.

6, June 1989.

Larus 1995; Larus J.. The QPT Tracing Tool Software Package, Computer Sciences

Department, University of Wisconsin-Madison, Madison, Wisconsin, 1995.

Lee 1980; Lee P.A., Ghani N., Heron K.. “A Recovery Cache for the PDP-11", IEEE

Transactions on Computer Systems, June 1980, Vol C-29 pp. 546-549.

Lee 1989; Lee, R.B., "Precision Architecture.” Computer, January 1989, pp 78- 91.

107

Lenoski 1990; Lenoski D., Laudon J., Stevens L., Joe T.. Nakahira D., Gupta A..
Hennessey J., “The Directory-Based Cache Coherence Protocol for the DASH
Multiprocessor.”, Proceedings of the 17th International Symposium on Computer

Architecture, pps. 148-159, May 1990.

Leutenegger 1993; Leutenegger S.T., Dias D., A Modeling Study of the TPC-C
Benchmark™, ACM SIGMOD, Washington, DC. 1993.

Loepere 1992; Locpere, K., "Mach 3 Kernel Principles.” Revision 2. Open Software

Foundation and Carnegie Mellon University, 1992

Mirapuri 1992; Mirapuri S., Woodacre, M., Vasseghi, N.. "The MIPS R4000
Processor.” IEEE Micro, April 1992.

Moon 1987; Moon D.A., "Symbolic Architecture.” 0018-9162/87/0100-0043, IEEE
1987.

Nelson 1988; Nelson M.N., Welch B.B, Outerhout J.K., "Caching in the Sprite
Network File System.” ACM Transactions on Computer Systems, Vol. 6, | Feb 1988.

pp.134-154

Nutt 1992; Nutt G.J., Centralized and Distributed Operating Systems, Prentice Hall,
New Jersey, 1992,

Papamarcos 1984; Papamarcos M., Patel, J., * A Low Overhead Coherence Solution
for Multiprocessors with Private Cache Memories.” Proceedings of the 12th
International Symposium on Computer Architecture, IEEE. New York, 1985. pp.276-

283.

Patterson 1996; Hennessy J.L., Patterson D.A., Computer Architecture A Quantitative

Approach, 2nd Ed., Morgan Kaufmann Pubishers Inc., Palo Alto, California, 1996.

108

Przybylski 1990: Przybyiski, S.A, Cache and Memory Hierarchy Design, Morgan

Kaufmann Publishers, Inc., California, 1990.

Randell 1969; Randell B., " A Note on Storage Fragmentation and Program

Segmentation.” Communications of the ACM, Vol. 12, No. 7, July 1969.

Reinhardt 1994: Reinhardt, S K., Larus, J.R., Wood, D.A., "Tempest and Typhoon:
User-Level Shared Memory." 21st Annual Symposium on Computer Architecture, 1994.

pp. 325-335.

Rodriquez-Rosell 1976; Rodriquez-Rosell, J. “Empirical Data Reference Behaviour in
Data Base Systems, IEEE Computer, Vol. 9, No. 11, November 1976, pp. 9-13.

Romer 1995. Romer T.H., Olrich W.H., Karlin, A.R., Bershad, B.N., “Reducing TLB
and Memory Overhead Using Online Superpage Promotion” ACM International

Symposium on Computer Architecture, Italy, 1995.

Rozier 1992;Rozier M., Abrassimov V., Armand F., Boule I, Glen M.. Guillemont.
M. Herrman F., Kaiser C., Langlois, S., Leonard, P., and Neuhauser W., “Chorus
Distributed Operating Systems,” Computer Systems Journal, 1. 4, pp.305-370

Rudolph 1985; Rudolph L., Segall. Z., "Dynamic decentralized cache consistency
schemes for MIMD parallel processors.” In Proceedings of the 12th Annual International

Symposium on Computer Architecture, June 1985, pp 340-347.

Schimmel 1994: Schimmel C., Unix Systems for Modern Architectures: Symmetric

MultiProcessing and Caching for Modern Programmers. Addison Wesley ,1994

Slater 1991; Slater, M., "MIPS Previews 64-bit R4000 Architecture.” Microprocessor

Report §, 2.

Smith 1978; Smith A.J., “Sequentiality and Prefetching in Database Systems’, ACM

109

transactions on Database Systems, Vol. 3, No. 3, Sept. 1978, pp. 223-247.

Smith 1982; Smith A.J,, “Cache Memories”, Computing Surveys, Vol. 14, No. 3,
Sept. 1982, pp. 473-530.

Stenstrom 1990; Stenstrom, P., “A Survey of Cache Coherence schemes for

Multiprocessors,” IEEE Computer, June 1990, pp. 12-24.

Stonebraker 1984; Stonebraker M., "Virtual Memory Transaction Management.” ACM

Operating Systems Review, Vol. 18, No. 2, 1984, pp. 8-16.

Stonebraker 1985; Stonebraker M., DuBourdieux D. and Edwards W., "Problems in
Supporting DB Transactions in an Operating System Transaction Manager.” ACM

Operating Systems Review, Vol. 19, No. 1, 1985, pp. 6-14.

Talluri 1992; Talluri, M., Kong S., Hill, M.D., Patterson, D.A., "Tradeoffs in
Supporting Two Page Sizes." ACM Nineteenth Annual Symposium on Computer

Architecture, 1992,

Tanenbaum 1987 Tanenbaum A.S., Operating Systems: Design and Implementation,
Prentice-Hall, Inc., New Jersey, 1987.

Tang 1976: Tang, C.K., "Cache Design in the Tightly Coupled Multiprocessor System.”
AFIPS Conference Proceedings National Computer Conference, 1976, pp. 749-753

Thacker 1987; Thacker C.P., Stewart, L.C., "Firefly: a Multiprocesor Workstation."
Proceedings Second International Conference on Architectural Support for Programming

Languages and Operating Systems, October 1987, pp. 164-172.

Tomasevic 1993; Thomasevic, M., and Milutinovic, V., “The Cache Coherence
Problem in Shared-Memory Multiprocessors: Hardware Solutions, Los Alamitos. CA:

IEEE Computer Society Press, 1993.

110

Transaction Processing Council 1992; Transaction Processing Performance
Council, “TPC Benchmark C, Standard Specification, Revision 1.0’ Edited by Francois
Raab, August 13, 1992.

Wahbe 1992; Wahbe R., "Efficient Data Checkpoints”. In Proceedings of the Fifth
International Conference on Architectural Support for Programming Languages and

Operating Systems, pp. 200-212, Boston, Massachusetts, Sept. 1992.

Wahbe 1993, Wahbe, R., Lucco S, Anderson, T.E., Graham, S., " Efficient Software-
Based Fault Isolation" , 14th ACM Symposium on Operating System Principles.

December 1993.

Wheeler 1992; Wheeler B., Bershad B., ** Consistency Management for Virtually
Indexed Caches™. ACM SIGPLAN Notices, Vol 27, No. 9. September 1992, pp. 124-
136.

Wilkes 1992; Wilkes J. and Sears B., "A Comparison of Protection Lookaside Buffers
and the PA-RISC Protection Architecture”, HP Laboratories Technical Report HPL-92-
55, March 1992, Hewlett-Packard Company.

Wulf 1995; Wulf A., Mckee D., “Hitting the Memory Wall: Implications of the

Obvious™, Computer Architecture News, 1995.

111

Appendix A
Source Code for Simulator
Header Files

Filename: object.h
class Object

public:
virtual ~Object() { }
virtual void dump(ostream &os) = 0;

friend ostream& operator <<(ostream &o, Object &obj);
friend ostream& operator <<(ostream &o, Object *obj):

b

#if _DEBUG

#define DbgPrint(x) x
#else

#define DbgPrint(x)
#endif

i
Filename: list.h
class Node : public Object

public:
Object *obj:
Node *next;
Node *ptr;

Node(Obiject *0):
virtual ~Node() { delete obj; }
virtual void dump (ostream &os) { obj->dump(os); }

'
T T T LT LT T LT LT T

class List : public Object
{
protected:

Node *list;

Node *tail:

Node *cursor;
int count;

public:
List() { count = 0 list = 0: tail=0;}
virtual ~List() {}
List *decl_specifiers(List *1,Object *o):
virtual void dump(ostream &os);
virtual void add(Object *0); // adds an object packaged in a node to the end of the list
virtual void addn(Node *n); // adds an object packaged in a node to the end of the list
virtual void push(Object *o, Node *n); // adds node to the head of the list
Node * remove (Object *0); // removes a node from anywhere in the list
virtual Object * replace (Object *ob); // replaces the head of the list and
// returns the ptr to the object previously stored in it.
virtual void del(Node *n): // permanently deletes a hanging node
virtual List *join(List *1);
virtual Node *next();
virtual void reset():
virtual Node *first();
virtual Node *last():
virtual int total() { return count; }
Object * find(unsigned int VA): // page table entries
Object * find(int unitPA.int ViewID, int &i); // plb entries
/1 void find(int PA, Object *o);
Object * search(int addr, int pdid, int viewflag); //dc entries
int getCount() {return count;}
Object * findtrans(int tid):
Object * find AU(Object *mp);
Object * findTSB(Object *t);

)
TR T T T T I T T T

class SuspendQueue

unsigned int VA,
int ViewlID:;
List *Q;

public:
SuspendQueue():;
~SuspendQueue():
void setVA(unsigned int v) {VA =v;}
void setViewID(int vid) {ViewID = vid;}
void setList (List *p) {Q = p:}
unsigned int getVA() {return VA;}
int getViewID() {return ViewID:}
List * getList() {return Q;}

}

T T T T T T T T I T i T T e

Filename: hash.h

class HashTable : public Object
{

List **table;
int count;
int max;

int PRIME;

public:

HashTable(int n);

~HashTable() {}

List ** getTable() {return table:}
void setTable(List **t) {table = t;)}
void setPRIME(int n) {PRIME = n;}
void setmax(int n) {max = n;}

void setcount(int n) {count = n;}

int getPRIME() {return PRIME:}

int getmax() {return max;}

int getcount() {return count;}

void dump(ostream &os):

int hashaddr(int key);

List *operator([](int):

void add(int hash, List *]);

List * access(unsigned int key, int &index):

).

113

T

Filename: input.h

class Input : public ifstream

{

public:

unsigned int addr;
char at;
char pad;

Input(char *name) : ifstream(name) { }

~Input();

void readAccessType() {*this >> at; *this >> pad.: }
void readInst(){int temp; *this >> temp; *this >> pad:}
void readaddr() { setf(hex); operator>>(addr): }
unsigned int getVA() {return addr;}

int getAccessType() {return at;}

}:
T T TT T T T T LT T T T T

class Configlnput : public ifstream

public:

114

ConfigInput(char *name) : ifstream(name) {}
~Configlnput();

}:
//

Filename: spec.h

#define Dread 0

#define Dwrite 1

#define CFlush 2

#define NUMACCESSTYPES 4

#define NUMMISSTYPES 4

#define NUMPACCESSTYPES 5

#define memsize 4096 //4096 4K pages = 16 Mb RAM
#define numTransInPage 128 // 128 VA->PA translations to a page
#define LINESIZE 7 I/ cache line size is set to 227 =128 bytes
#define MAX (memsize + 1)

#define 1gPAGESIZE 12

#define WRITEBACK 1

#define READ 0

#define WRITE I

#define maskZeroP (OxFFFFFFFF - memsize + 1)

#define offsetMask 0x00000fff

#define maskZcroUP 0xO000fffff

#define mplimit 30

#define timeout 300

#define AddressSpaceSize OxffFFefee

TN INPUT IN CYCLES W i i i i

/! The following represent delays in cycles

#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

DFC 10000000 // number of cycles to retrieve a page from disk

LRU 8
PTE 8

DCRead
DCWrite
WControlFault
PLBhit
TLBhit
FSMhit

VThit
TLBmiss
PLBmiss
DCReadMiss
DCWriteMiss
L2Miss
MemoryAccess
L2access

R — O W —I)— — — " —
w w o

/Imumber of cycles to find a replacement page
/Inumber of cycles to create a page table mapping

// data cache read hit

// write access control fault

115

#define CacheTransfer 1 // from DC to VDU: from DC to PLB:
// PLB to FSM or from VDU to PLB

#define SynonymHandling 1

#define CSID 1 /f comparison of SubjectIDs after PLB
/1 access and before FSM access

class CacheStats {

int fetchNUMACCESSTYPES]: /le.g. fetch[0] holds the number of DC read
/l accesses
/1 tetch[1] = # of DC write accesses
/1 fetch[2] = # DC cacheline flushes
int miss[NUMMISSTYPES]; // miss[0] = number of compulsory DC read misses
// miss[1] = number of compulsory DC write misses
// miss[2] = number of capacity DC read misses
// miss[3] = number of capacity DC write misscs
int L2fetch(NUMACCESSTYPES]:. //c.g. fetch[0] holds the number of DC read
/Il accesses
/l fetch[1] = # of DC write accesses
// fetch[2] = # DC cacheline flushes
int L2ZmissNUMMISSTYPES}.// miss[0] = number of compulsory DC read misses
// miss[1] = number of compulsory DC write misses
// miss[2] = number of capacity DC read misses
// miss[3] = number of capacity DC write misses
int sfetchNUMACCESSTYPES]: // similar to fetch but holds number of accesses
// to shared data.
int smissINUMMISSTYPES]; // similar to miss but holds the number of
/I misses due to shared data.

int Pfetch[NUMPACCESSTYPES)]; //Pfetch[0] = # of PLB read accesses
// Pfetch[1] = # of PLB write accesses
// Pfetch[2] = # PLB cacheline flushes
// Pfetch[3] = # accesses due to state transitions
// Pfetch[4] = # accesses due to initial load

int PmissINUMMISSTYPES]: // Pmiss[0] = number of compulsory PLB read
// misses
// Pmiss[1] = number of compulsory PLB write
// misses
// Pmiss{2] = number of capacity PLB read misses
// Pmiss[3] = number of capacity PLB write misses
int Tfetch[NUMACCESSTYPES]; //e.g. Tfetch[0] = # of TLB read accesses
// Tfetch[1] = # of TLB write accesses
/l Tfetch[2] = # TLB cacheline flushes
int TmissINUMMISSTYPES]; // Tmiss[0] = number of compulsory TLB read
// misses
// Tmiss[1] = number of compulsory TLB write misses
// Tmiss[2] = number of capacity TLB read misses
// Tmiss[3] = number of capacity TLB write misses
int PTable[NUMACCESSTYPES]; // PTable[0] = # of page table read accesses

116

// PTable[1] = # of page table write accesses
int PLBTable[NUMACCESSTYPES]:// PLBTable[0] = # of PLB table read
/I accesses
// PLBTable[1] = # of PLB table write accesses due to WBs
// PLBTable[2] = # of PLB table write accesses due to
// PLB entry creation
int DTable[NUMACCESSTYPES]: // DTable[0] = # of memory data write accesses
/1 # of memory data read accesses = # DC cache misses
int RWDelay[NUMACCESSTYPES]: // RWDelay[0] = delay due to READ access
//RWDelay[1] = delay due to WRITE access
int FlushLine; // flushes are triggered on a write when synonyms are
// detected or when the view manager memory updates
int FlushCache; /l flush is triggered when policy dictates e.g. on a context
I/ switch for the VDU cache.
int FlushMemWrite; // number of write backs to memory due to cache
// flushes. Differs from the flushline count in that not
// all flushes will cause a write-back e.g. if the target cache line was not dirty.
int [InvalidateInTraffic;
int InvalidateOutTraffic;

int InBusTraffic: // total in values
int OutBusTraffic; // total out values
int ICount: // instruction count - can be used to state the percentage of
data/instr
// accesses within an application.
int delay: // delay in cycles
int hWACFault: // number of write access control faults on the DC cache
int mMWACFault; // number of write access control faults on the DC cache
int dcAccess: // total number of L1 data cache accesses
int L2Access; // total number of L2 data cache accesses
int tibAccess: // total number of TLB cache accesses
int plbAccess: // total number of PLB cache accesses
int fsmAccess: // total number of FSM cache accesses
int vduAccess; // total number of VDU cache accesses
public:
CacheStats();
~CacheStats():

void incrDCAccess (int n) {dcAccess = dcAccess + n;}
void incrPLBAccess (int n) {plbAccess= plbAccess + n;}
void incrTLBAccess (int n) {tIbAccess= tlbAccess + n;}
void incrFSMAccess (int n) {fsmAccess= fsmAccess + n;}
void incrVDUAccess (int n) {vduAccess= vduAccess + n:}
void incrL2Access (int n) { L2Access = L2Access + n;}

void setDelay(int d) {delay = delay + d;}

void sethWACFault(int w) {hWACFault = hWACFault + w:;}
void setmWACFault(int w) {mWACFault = mWACFault + w;}
void setICount (int i) {ICount = i;}

void setInBusTraffic (int i) {InBusTraffic = i;}

void setOutBusTraffic (int i) {OQutBusTraffic =1i;}

void setInvalidateOutTraffic (int i) {InvalidateOutTraffic =1i;}
void setInvalidateInTraffic (int i) {InvalidateInTraffic =i;}

117

void setFlushMemWrite (int i) { FlushMemWrite = i;)
void setFlushCache (int i) {FlushCache = i;}
void setFlushLine (int i) {FlushLine = i;}

void setMiss(int i, int num) { miss(i] = miss[i] + num:}

void setFetch(int i, int num) {fetch[i] = fetch[i] + num;}

void setL2Maiss(int i, int num) {L2miss[i] = L2miss{i] + num; }
void setL2Fetch(int i, int num) {L2fetch[i] = L2fetch(i] + num:}

void setSMiss(int i, int num) {smiss[i] = smiss[i] + num; }
void setSFetch(int i, int num) {sfetch(i] = sfetch[i] + num:}

void setPMiss(int i, int num) {Pmiss[i] = Pmiss[i] + num;}

void setPFetch(int i, int num) {Pfetch[i] = Pfetch[i] + num:;}

void setTMiss(int i, int num) {Tmiss[i] = Tmiss[i] + num;}

void setTFetch(int i, int num) {Tfetch[i] = Tfetch[i] + num;)

void setPTable(int i, int num) {PTable[i] = PTable[i] + num;)

void setPLBTable(int i, int num) {PLBTable[i] = PLBTable[i] + num:;}
void setDTable(int i, int num) {DTable[i} = DTable[i] + num;}

void setRWDelay(int i, int num) {RWDelay[i] = RWDelay[i] + num:}

int getDelay() { return delay:}

int getDCAccess() { return dcAccess; }
int getPLBAccess() {return plbAccess:}
int getTLBAccess() {return tlbAccess:;
int getFSMAccess() {return fsmAccess; }
int getVDUAccess() {return vduAccess; }
int getL2Access() { return L2Access: }

int gethWACFault() { return hWACFault;}

int getmWACFault() {return mWACFault:}

int getlCount () { return ICount;}

int getinBusTraffic () { return InBusTraffic;}

int getOutBusTraffic () { return OutBusTraffic;}

int getinvalidateOutTraffic () { return InvalidateOutTraffic;}
int getInvalidateInTraffic () { return InvalidateInTraffic;}
int getFlushMemWerite () { return FlushMemWrite: }

int getFlushCache () { return FlushCache;}

int getFlushLine () { return FlushLine;}

int *getMiss() { return miss;}
int *getFetch() { return fetch;}
int *getL2Miss() { return L2miss:}
int *getL.2Fetch() { return L2fetch;}

int *getSMiss() { return smiss;}

118

int *getSFetch() { return sfetch;}

int *getPMiss() { return Pmiss;}
int *getPFetch() { return Pfetch;}
int *getTMiss() { return Tmiss;}
int *getTFetch() { return Tfetch:}

int *getPTable() { return PTable:}
int *getPLBTable() { return PLBTable:)
int *getDTable() { return DTable;)}

int *getRWDelay() { return RWDelay:}
b
T
class Cache
{ // Cache parameters
int tagtype; /f0=physical: 1= virtual
int tagwidth;

int subblocksize;
int transfersize;

nt assoc;

int numlisets; //0 for our caches

int numUorDsets;

int pdisplacement: /1 0 if no prefetch

struct Policies

{
int fetch: /1 0= fetch; 1= prefetch
int replacement; // 0=LRU: 1=FIFO etc,
int write; // O=copyback ; 1= writethrough
int allocate; // O=no write allocate ; | = write allocate
int coherence; // 0 = invalidate: |=invalidate

} policies;

public:
Cache() {}

~Cache() {}

void setTagType(int p_type) { tagtype = p_type. }

void setTagWidth(int width) { tagwidth = width;}

void setSubBlockSize (int sb_size) {subblocksize = sb_size:}
void setTransferSize (int tr_size) {transfersize = tr_size;}

void setAssociativity (int deg_assoc) {assoc=deg_assoc: }

void setNumlIsets (int inum) {numlsets = inum;}

void setNumUorDsets (int dnum) {numUorDsets = dnum;}
void setPrefetchDisp (int jump) {pdisplacement = jump; }

void setFetchPolicy (int fpolicy) {policies.fetch = fpolicy; }
void setReplacePolicy (int rpolicy) { policies.replacement = rpolicy: }
void setWritePolicy (int wpolicy) { policies.write = wpolicy;}
void setAllocatePolicy (int apolicy) {policies.allocate= apolicy:}

B

119

void setCoherencePolicy (int cpolicy) {policies.coherence = cpolicy:}

int getTagType() {return tagtype:}

int getTagWidth() {return tagwidth;}

int getBlockSize() {return subblocksize;}

int getTransferSize() {return transfersize:;)

int getAssoc() {return assoc;}

int getNumlSets() {return numlsets; }

int getNumUorDsets() {return numUorDsets:; }

int getPrefetchDisp() {return pdisplacement; }

int getFetchPolicy() {return policies.fetch: }

int getReplacePolicy() {return policies.replacement;}
int getWritePolicy() {return policies.write: }

int getAllocatePolicy() {return policies.allocate: }

int getCoherencePolicy() {return policies.coherence: }

i

class LineControlBits : public Object

{

public:

}:

int tag; // primary tag

int tagl; // accommodates another tag such as VFN

int valid: /1 valid bit

int dirty; /1 write bit

int reference; // only used here for prefetching. Demand fetching implies
// that once the line is read in, it is implicitly referenced.

LineControlBits();

~LineControlBits();

void dump(ostream &os);

void setTag(int t) {tag =1t;}

void setValidBit(int v) {valid = v:}
void setDirtyBit(int d) {dirty =d:}
void setRefBit(int r) {reference =r:}
void setTagl(int v) {tagl = v:}

int getTag() {return tag;}

int getValidBit() {return valid:}

int getDirtyBit() {return dirty; }

int getRefBit(} {return reference: }
int getTag () {return tagl:}

T

class DataCacheLine: public Object // This class is not needed now but is

// made into a separate class in case R/W data
// is needed to be kept in the future.

LineControiBits *LineBits; // reps. what is kept in the data cache

int PDID; /1 Protection Domain ID (SID, TID, XniD)

public:
DataCacheLine();
~DataCacheLine();
void setLine(LineControlBits *b) {LineBits = b;}
LineControlBits *getLine() {return LineBits;}
void setPDID(int id) {PDID = id;}
int getPDID() {return PDID;}
void dump(ostream &os);

b
T
class DataCache : public Object

{ // Cache contents
Cache *cache;

List **dcache; // points to an array of pointers to lists
List **line; // points to the zeroth set of the cache (base ptr)
DataCacheLine *cline: // points to the current line (base ptr)
int numlines;
int PFN; /fcurrent translation
public:
DataCache(int size);
~DataCache():

void setCache(Cache * ¢) {cache = c:}

Cache * getCache() {return cache:;}

List ** getDCache() {return dcache:}

List ** getLine() {return line:}

void setDCache(List **t) {dcache =t;}

List *operator[)(int);

void add(int index. List *1);

DataCacheLine * getCurrentLine() {return cline;}

void setCurrentLine(DataCacheLine * p) {cline = p:}

int getCacheSize() {return (cache->getNumUorDsets() * cache->getAssoc().}

void setCacheSize(int dsets,int assoc, int blocksize):

void indexDCCache(unsigned int va, DataCacheLine *&q. int idx. int &full. int id.
int vflag, int uid):

void writeCache(int status); //status- line replacement and/or write

int findSynonyms(int PA);

void replace(int index, CacheStats *&s. int ac, int level);

DataCacheLine * createDCLine(int ix. unsigned int VA, int PA. int id, int v):

void dump (ostream &os);

b
T

class Mapping: public Object

{

unsigned int va;

int pa;
unsigned int vaddr;

public:

)

Mapping():

~Mapping();

unsigned int getVA(){return va;}
unsigned int getVAD(){return vaddr;}
int getPA() {return pa;}

void setV A(unsigned int n) {va =n;}
void setPA(int n) {pa=n:}

void setVAD(unsigned int n) {vaddr = n;}
void dump(ostream &os);

T

class TLBLine
{

int ASID;
Mapping *mp:
LineControlBits *LineBits;

public:

}:

TLBLine();

~TLBLine();

void setASID(int ID){ASID = ID:}

void setMP(Mapping *m){mp = m:}

int getASID(){return ASID:}

int getPA(){if (mp!=0) return mp->getPA():else return MAX;}
unsigned int getVA(){ if (mp!=0) return mp->getVA():else return 0:)
Mapping * getMP() {return mp;}

LineControlBits * getLineBits() {return LineBits:}

void setLineBits(LineControlBits *b) { LineBits = b:}

T

class TLB
{ // Cache contents

Cache *cache;
int LineAddress;
TLBLine *Line;
int numlines;

int status;

public:

TLB(int size);

~TLB();

int getCacheSize();

void setCacheSize(int SIZE);

Cache * getCache() {return cache;}
int getTranslation(unsigned int VA);

b

void createMapping(int VA, int PA);
void CacheToMem(TLBLine *line);
void MemToCache(TLBLine *line);
TLBLine operator[](int);

int replace();

int findFree();

void doLRU(int index);

int getStatus() {return status; }

void setStatus();

i

class PLBLine: public Object

{

LineControlBits *LineBits;
int ViewlD;

int PDID;

int CurrentState;

int OtherCurrentState;

int Count;

public:

b

PLBLine();

~PLBLine();

void setViewID(int ID) {ViewlID = ID;}

void setPDID(int ID) { PDID = ID; }

void setCurrentState(int state){ CurrentState = state: }
void setOtherCurrentState(int ostate) {OtherCurrentState = ostate: }
void setCount(int count) { Count = count; }

void setLineBits(LincControlBits *b) {LineBits = b:}
int getViewlD() {return ViewID:}

int getPDID() {return PDID: }

int getCurrentState() {return CurrentState;}

int getOtherCurrentState() {return OtherCurrentState: }
int getCount() {return Count;}

LineControlBits *getLineBits() {return LineBits: }
void dump(ostream &os);

i

class PageTable: public Object

int ASID;
int size;
HashTable *PTable;

public:

PageTable(int s, int VAID):
~PageTable();
void dump(ostream &os);

)

void delMapping(Mapping *map):

void flushMappings();

int getTranslation(unsigned int VA);

int PTread(unsigned int v);

void PTwrite(unsigned int VA, int PA);

int replace(); //break LRU mapping . free PFN for reuse.
HashTable * getTable() {return PTable:)

void setASID(int id) {ASID =id:}

int getASID() {return ASID:}

i

class PLBTable: public Object

{

int size:
HashTable *plbTable;

public:

'

PLBTable(int s):

~PLBTable();

void dump(ostream &os);

PLBLine * access(int PAunit,int ViewlD, int &cstate, int &ocstate, int &PDID.
int action, CacheStats *&cst);

void write(unsigned int VA,int ViewID, int PDID, int cs. int ocs);

int replace(): // use LRU

PLBLine * createEntry(int PAuid, int ViewlID, int PDID. int cs. int ocs);

PLBLinc * plbMissHandler(int PAu.int ViewID.int &cs,int &ocs,int &PDID. int a,
CacheStats *&st);

HashTable * getTable() {return plbTable;}

T T T T T T T T T i i i

class PLB : public Object

{

Cache *cache;

List ** plbline;

int numlines:

List **cline; // current line

public:

PLB(int size);

~PLB() {delete [] plbline;}

Cache * getCache() {return cache;}

void setCache (Cache * p) {cache = p;}
void setCurrentLine(List **p) {cline = p:}
List ** getCurrentLine() {return cline;}
PLBLine readPLBCache...);

void flushCacheLine(int lineaddress,...);
void CacheToMem(PLBLine *line);

}:

124

void MemToCache(PLBLine *line);

int findSynonyms(int PA);

List **getPLBLine() {return pibline;}

void writeCache (PLBLine *c,int newstate.int othernewstate):
void dump(ostream & os);

void replace(int index,PLBTable *pt,CacheStats *&st):

T

class FSMLine

{

int FSMID;

int accesstype;

int CurrentState;

int OtherCurrentState;
int NewState:

int OtherNewState;
int Result;

public:

b

void setFSMID(int ID) {FSMID = ID:}

void setAccessType(int ac) {accesstype = ac:}

void setCurrentState(int state){ CurrentState = state; }

void setOtherCurrentState(int ostate) { OtherCurrentState = ostate: }
void setResult(int r) {Result =r:}

void setNewState(int nstate){ NewState = nstate; }

void setOtherNewState(int onstate) {OtherNewState = onstate:}
int getFSMID() { return FSMID: }

int getAccessType() {return accesstype; }

int getCurrentState() {return CurrentState:}

int getOtherCurrentState() {return OtherCurrentState: }

int getNewState() {return NewState:)

int getOtherNewState() {return OtherNewState: }

int getResult() {return Result:}

T

class FSM

{

Cache *cache;
int Line Address:
int numlines;

public:

struct CacheLine

{

LineControlBits LineBits:

FSMLine LineContents:
b
CacheLine *fsmline; // pointer to the start address of the actual cache lines
CacheLine *cline;

FSM(int s);
~FSM() {delete [] fsmline: delete cache;}
void indexFSM(int fsmid, int act.int cs, int ocs, CacheLine *&p):
int getCacheSize():
void setCacheSize(int SIZE);
Cache * getCache() {return cache;)
void CacheToMem(CacheLine *line);
void MemToCache(CacheLine *line):
b

iy,

class VDULine
{
int ViewlD;
unsigned int VFNStart;
unsigned int VFNEnd;
int FSMID;
int Mask:
int AddrStateInMem;
VDULine *VIDPtr,
public:
VDULine();
~VDULine():
void setViewID(int ID) { ViewlID = ID;}
void set VFNStart(unsigned int vfn) { VFNStart = vfn:}
void setVFNEnd(unsigned int vfn){ VFNEnd = vfn:}
void setFSMID(int ID) {FSMID = ID;}
void setMask(int m) {Mask = m:}
void setAddrinMem(int addr){ AddrStateInMem = addr: }
void setVIDPtr(VDULine *v) { VIDPtr = v;}
int getFSMID() { return FSMID:}
int getViewlID() {return ViewID;}
unsigned int getVFNStart() {return VFNStart:}
unsigned int getVFENEnd() {return VFNEnd:}
int getMask() {return Mask: }
int getAddrStateInMem() {return AddrStateInMem;}
VDULine *getVIDPtr() {return VIDPtr:}

}:
T

class VDU

{
Cache *cache;
struct CacheLine

LineControlBits LineBits;
VDULIine *contents;
'

CacheLine *Lines;

126

CacheLine *cline;
int numlines:
public:

VDU(int s);

~VDU();

int getCacheSize();

void SetCacheSize(int SIZE);

Cache * getCache() {return cache:}

void indexVDUCache(unsigned int v, int &mask, int & ViewID., int ¬found. int
&FSMID);

int lookup(unsigned int vaddr, int & vmask, int &vstart);

VDULine *getVDULine() {return cline->contents;}

CacheLine *getCurrentLine() {return cline;}

void setCurrentLine(CacheLine *c) {cline =c:}

int calcMask(int unitsize);

b
I T T LT T L T T T T T

template <class T>

class Stack: public Object

{
int size;
T *top:
T*s:

public:
Stack(int sz) {top = s = new T[size=sz};}
~Stack() { delete[] s:}
void push (T t) { *top++=1; }
T pop() { return *--top;}
void initPM();

void dump(ostream &os);

int *getTop() {return top:}
int *getStackPointer() {return s}

'

i
template <class T>

void
Stack<T>::dump
(
ostream &os
)
{

inti=0;

T *p = top:;

os << "Stack contents:" << endl;

while (p>s)
{

0s << "t" << "Entry " << i++ << " "<< *--p << endl;

}

//

tempiate <ciass T>
void
Stack<T>::initPM()
{

int i;

for (i=0; i < size; i++)

push(i);

}

T
template <class T> class Memory : public Object
{
T* p:
int sz;
public:
Memory(int sz):
~Memory() { delete []p:}

void dump(ostream &os);
/Ivirtual T& read(int location,int nbytes.int offset):
virtual void write(T x,int location);

B
T
template <class T>
Memory<T>::Memory
(
ints
|
if (s<=0) cerr << "memory size cannot<=0" << endl;
SZ=§;

p=new T[s]:

for (inti=0:1i<sz; i++)
pli] =0

i

template <class T>
void
Memory<T>::write(T x,int location)

{

T* ptr;

ptr=p;
ptr += location;
*ptr=x;

J
O

template <class T>
void
Memory<T>::dump(ostream &os)

for (inti=0;i<sz; i++)
if (p[i] '=0)
os << *p[i] << endl;

class Integer : public Object

{

int value:

public:
Integer(int i_value) : value(i_value) {}
Integer() : value(0) {}
~Integer() {}
void dump(ostream &os);

Ve

T T T T T T T T T T T T T T T T T
class MemStats
{
int pagefaultstNUMMISSTYPES]:
/1 O=capacity data read: 1=capacity data write; 2=compulsory data read:
// 3=compulsory
// data write; 4=capacity PageTableReadFault: S=capacity PageTableWriteFault:
I/ 6=compulsory PageTableReadFault; 7=compulsory PageTableWriteFault;

int fetchfNUMACCESSTYPES]; /le.g. fetch[0] holds the number of read

/1 accesses to memory

Il fetch(1] = # of write accesses to memory
int InvalidateInTraffic;
int InvalidateOutTraffic;

int InBusTraffic; // total in values

int OutBusTraffic; // total out values
public:

MemStats();

~MemStats();

)
T T T LT LT LTI T T

class CPU
{
DataCache *dc;
DataCache *12cache;
TLB *tlb;
FSM *fsm;
VDU *vdu;
PLB *plb:;
CacheStats *Stats;
PageTable *PT;
PLBTable *memPLB;
Stack<int> *PMFreeList: / The Physical Memory Free List is managed as a stack
/I of PFNs
HashTable *TransLog;
int SID;
ofstream errfile;

public:
CPU(int dcsize,int 2size, int tlbsize. int pibsize, int fsmsize. int vdusize. int
ptsize. int pbtablesize);
~CPU():
unsigned int getVFN(unsigned int v);
int accessTLB(unsigned int va, int accesstype):
int accessDC(unsigned int va, int act, int &pa, int &mr. ofstream &Im. int &vdef)
void accessFSM(int fsmid, int accesstype, int cs. int ocs, int &signal.int &ns, int
&ons):
PLBLine * accessPLB(unsigned int VA, int uPA. int act, int &cs. int &ocs. int
&FSMID):.
void accessVDU(unsigned int va, int & ViewID, int &fsmid. int &mask. int
&nfound):
void setSID(int pdid) { SID = pdid;}
int getSID() {return SID;}
void setupPMFreeList() { PMFreeList->initPM():}
DataCache * getDC() {return dc:}
TLB * getTLB() {return tlb:}
FSM * getFSM() {return fsm:}
VDU * getVDU() {return vdu;}
PLB *getPLB() {return plb:}
DataCache * getL2() {return 12cache;}
CacheStats * getStats() {return Stats; }
Stack <int> *getPMFreeList(){return PMFreeList;
PageTable * getPageTable() {return PT;}
PLBTable * getPLBTable() {return memPLB;}
friend unsigned int getDCV A(unsigned int v);

}:
T

130

class AUE: public Object

{

public:

b

Mapping *map: // mapping for AU

List *suspendQ; // contains TSBs

List *mreader; // contains TID (subject ID) of multiple reader
AUE():

~AUE();

void setAUID(Mapping *m) {map = m:}
void setQ(List *q) {suspendQ = q:}

void setReaders(List *r) {mreader = r;}
Mapping * getAUID() {return map;}
List * getQ() {return suspendQ: }

List * getReaders() {return mreader: }
void dump(ostream &os).

T

class System: Object

{

Configlnput *ip; // configuration file.
Input *tracefp: Il trace file.

List *MPL: // multiprogamming limit
CPU *cpu:

HashTable *AUtable: // lock management specific

List * ReadyQuecue: // transaction Ready Queue - contains TSBs

Transaction *xn;

int xnprocessing; // boolean flag to indicate whether process is a non xn or a xn

public:

unsigned int VA // current address

int PA; // current translation

int AT; // current accesstype

int SID: // current Subject ID (e.g PDID, Transaction ID, Thread ID)
int ASID: // current Address Space ID

ofstream lItrace; // trace file for conventional lock manager

int dcount; // count of the number of processed trace file addresses
ofstream xnOrder;

System(char *config, char *trace);

System():

~System():

void invokeCPU();
void setAccessType() {tracefp->readAccessType();
AT = tracefp->getAccessType(); }
void setCVA() {tracefp->readaddr(): VA = tracefp->getVA():}
//gets one VA from the trace file
void setPA(int p) {PA =p;}
void setFP(Input *i) {tracefp = i:}
void setCurrTrans(Transaction *t) {xn =t;}
unsigned int getVAddr() {return VA;}
int getPAddr() {return PA:}

131

int getAType() {return AT:}
CPU * getCPU() {return cpu:}
List *getMPL() {return MPL;

void start(); //starts the simulation

void getNextAddress(): // get the next data access address.
void loadPageTable():

void printTables();

void dump(ostream &os);

void setASID(int id) {ASID = id;}

void setSID(int id) {SID = id:}

int getSID() {return SID;}

int getASID() {return ASID;}

void printResults();

void getParameters(Cache *c, char *name, ofstream ff);

void getActivityStats(char * activity, int n, int mWAC, int h(WAC, int *fetch.

int *miss, ofstream ff);

void getHitsStats(char * activity, int n, int mWAC, int h\WWAC, int *fetch. int
*miss, ofstream ff);

Transaction * TransStartup(int id);

void suspend(Mapping *mp);

TSB * saveContext(Transaction *tran); / put transaction on AU's wait Q

List * offSuspendQ(Transaction *in, AUE * au):

void updatePLBLocks(Mapping *m, DataCacheLine *q):

void releaseLocks(Transaction *t, int commit);

void contextSwitch();

T T T T T T T T T T

Filename: lock.h

#define UNLOCK 0
#define READ |
#define WRITE 2

class LCB: public Object
{
int name;
int mode;
List * grants;
List * pending;
public:
LCB():
~LCB():
int getName() {return name; }
int getMode() {return mode;}
List * getGrants() {return grants;}

List * getPending() {return pending:)
void setName(int key){name = key:}
void setMode(int op) {mode = op; }

void setGrants(List * p) {grants = p;}
void setPending(List * p) {pending = p;}
virtual void dump(ostream &os);

)i

class LRB: public Object
{
int requesterID;
int mode;
int key;
int listname; // 0 - Grants list; | - Pending list
public:
LRB():
~LRB();
int getID() {return requesterID; }
int getMode() {return mode; }
int getKey() {return key:}
int getListName() {return listhame:}
void setID(int id){requesterID = id;}
void setMode(int op) { mode = op: }
void setKey(int k) {key = k:}
void setList(int t) {listname =1t;}
virtual void dump(ostream &os):

}:

class LockTable: public Object
{
HashTable *It: / lock table
char *dbname: // file or database name
public:
LockTable(int s, char *name);
~LockTable();
void setLockTable(HashTable *h) {It = h;}
HashTable * getLockTable() {return It:}
void setDB(char * n) {dbname =n;}
char * getDB() {return dbname; }
List* access(unsigned int key, int &index);
int setLock(unsigned int key, int Imode, Transaction * tid);
void dump(ostream &os);
void add(List *p, LCB *c, int setpend, Transaction *tid.int lockmode);
int releaseLocks(Transaction *tid);

T

Filename: cpu.cpp

#include <iostream.h>
#include <fstream.h>
#include "object.h”
#include "list.h"
#include "hash.h"
#include "input.h"
#include "trans.h"
#include "spec.h”

G
CPU::.CPU
(
int dcsize,
int 12size,
int tibsize,
int plbsize,
int fsmsize,
int vdusize,
int ptsize,
int pbtablesize
)
{
dc = new DataCache(dcsize);
12cache = new DataCache(12size);
tlb = new TLB(tlbsize);
plb = new PLB(plbsize);
fsm = new FSM(fsmsize);
vdu = new VDU(vdusize);
Stats = new CacheStats:
PT = new PageTable(ptsize.0);
memPLB = new PLBTable(pbtablesize);
PMFreeList = new Stack<int>(memsize);
TransLog = new HashTable(mplimit):
errfile.open("error.dat”, ios::beg);
// set up cache parameters

/I de->cache->setAssociativity (getSim()->getip()->getDCAssociativity();

/letc.

// below must be changed - a shortcut
dc->getCache()->setAssociativity(2);
I2cache->getCache()->setAssociativity(2):
plb->getCache()->setAssociativity(2);
fsm->getCache()->setAssociativity(1):
vdu->getCache()->setAssociativity(1):
tlb->getCache()->setAssociativity(1);

dc->getCache()->setSubBlockSize(128);

12cache->getCache()->setSubBlockSize(128);

plb->getCache()->setSubBlockSize(8);
tlb->getCache()->setSubBlockSize(8);

133

134

fsm->getCache()->setSubBlockSize(8):
vdu->getCache()->setSubBlockSize(8);

dc->getCache()->setWritePolicy(0); // copyback
I2cache->getCache()->setWritePolicy(0); /I copyback
plb->getCache()->setWrite Policy(0);
tlb->getCache()->setWritePolicy(0);
fsm->getCache()->setWritePolicy(0);
vdu->getCache()->setWritePolicy(0);

dc->getCache()->setReplacePolicy(0): // LRU
I2cache->getCache()->setReplacePolicy(0); // LRU
plb->getCache()->setReplacePolicy(0):
tib->getCache()->setReplacePolicy(0);
fsm->getCache()->setReplacePolicy(0);
vdu->getCache()->setReplacePolicy(0);

dc->getCache()->setAllocatePolicy(1); /l write allocate
I2cache->getCache()->setAllocatePolicy(1); // write allocate
plb->getCache()->setAllocatePolicy(1):
tlb->getCache()->setAllocatePolicy(1):
fsm->getCache()->setAllocatePolicy(1);
vdu->getCache()->setAllocatePolicy(1);

j
i
CPU::~CPU()

{

)
i
unsigned int getDCVA(unsigned int v)

{
unsigned int mask = OxO | fffff; /lzeroise the upper 7 bits

unsigned int DCVA;

DCVA =v >> LINESIZE;
DCVA =DCVA & mask;

return DCVA;
/}//
unsigned int CPU::getVFN(unsigned int v)
{ unsigned int mask = 0xQ0O0fffff;

unsigned int VFN;

VEN = v >> IgPAGESIZE;
VEN = VFN & mask:

return VFN:

135

T T T i i i

// Initial assumption - no synonyms. Will flush simulator after
// each trace file is processed. A trace file may contain many

// transactions. The xns are all in the same address space.

/

/I 'The PCU access (VDU,PLB and FSM) is triggered on a R/W miss and
// on a write access control fault

N

int CPU::accessDC(unsigned int VAddr,int accesstype, int &pa, int &mr. ofstream &Im.,

{

int &vdef, int &unitID, int & maskedPA)

int PFN;

int offset, oset, omask:

int ptag;

int ¢s,0cs;

int FSMID:;

int ns. ons;

int viewstart, viewmask:

PLBLine *pb:;

unsigned int dcva: /1 used to store the va >> linesize
int setfull=0;

int sfull = 0;

int proceed = 0;

List **c;

Node *n:

DataCacheLine *p, *Ip: //contains pointer to cache line
int index, dex:

int action = 0; /faction '=0 implies the process will suspend
int dcPA;

Stats->incrDCAccess(1);

Stats->setFetch(accesstype.1); /1 increments the type of DC access (R/W)

dcva = getDCVA(VAddr);

index = dcva % (dc->getCache()->getNumUorDsets() - 1):

vdef = vdu->lookup(V Addr,viewmask,viewstart);

unitID =dcva; // for non-controlled access

if (vdef)

{
Stats->incrVDUAccess(1);
Stats->setDelay(VThit):
Stats->setRWDelay(accesstype,VThit):
Stats->setSFetch(accesstype, 1). // adds to the number of r/w shared

/I accesses

unitlD = ((VAddr - viewstart)/(AddressSpaceSize - viewmask +
1))*(AddressSpaceSize - viewmask + 1) + viewstart;
Stats->setDelay(CacheTransfer). // from VDU to PLB
Stats->setRWDelay(accesstype,CacheTransfer);

}

dc->indexDCCache(VAddr,p,index,setfull,SID,vdef,unitID);

PFN = accessTLB(V Addr,accesstype); // get translation - phys.frame no.
pa = (PFN << IgPAGESIZE) & maskZeroP:

136

offset = VAddr & offsetMask:

pa = pal offset; / constructs full physical address
dcPA = getDCVA(pa):;

if (vdef)
{

omask = AddressSpaceSize - viewmask;
oset = unitID & offsetMask;
maskedPA = (pa & maskZeroP) | oset;

}

if (p'=0) // data cache set contains entries

ptag = p->getLine()->getTag():
if (ptag == dcPA) // && (p->getPDID() == getSID()))
// compare tag with translation from TLB
{ // a hit in the data cache
if (vdef) // view is defined on address
{
if (accesstype == READ)
{

Stats->setDelay(DCRead): // add delay of | cycle
Stats->setRWDelay(accesstype, DCRead):

clse

Stats->setDelay(DCWrite); // add delay of 2 cycles
Stats->setDelay(1); // delay due to comparison of
// the W bit
Stats->setRWDelay(accesstype.(DCWrite + 1)):
}

if (((p->getLine()->getDirtyBit()==0) && (accesstype ==
WRITE)) ll (accesstype == READ))
{

/I 'The check for read access is present here because access units are not presently
// aligned.. (as generated from QPT2) This means that shared and
// non-shared data can coexist in a data cache line. Thus first read to a
// shared access unit does not necessarily have to result in a miss, if access
// to non-shared data brought part of (or whole) unit in the data cache. I compensate
/I here by invoking the PLB on a READ as well even on a data cache hit but do not
/l increment the relevant stats for it.
// find or place PLB state info in the PLB cache
pb = accessPLB(VAddr,unitID,accesstype,cs,ocs FSMID);
if (accesstype == WRITE)
Stats->sethW ACFault(1); // Write access
control fault
Stats->setDelay(CSID);
Stats->setDelay(CacheTransfer); // bet. PLB and FSM
Stats->setRWDelay(accesstype,(CSID + CacheTransfer)):
accessFSM(FSMID,accesstype,cs,ocs,proceed,ns,ons);

137

if (proceed == 1)
{

if ((cs==0)ll(cs==3)ll(cs == 1) Il ((cs == 1) &&
(pb->getPDID() == getSID())))
{

if (cs ==0)

{
pb->setPDID(SID): // first
// time lock acquisition
p->setPDID(SID);

}

if ((accesstype == READ) && (ns == 3))
{

if (pb->getPDID() != SID)
{

mr=1;

else // repeated read by the
same xn

{
if (cs == 1) //asingle
reader's repeated read
{
ns = 1;
ons = 2;
Stats->setPFetch(3.-1);
Stats->setPFetch(accesstype.-1):
Stats->incrPLBAccess(-2);

Stats->setDelay(-(CacheTransfer)):
Stats->setRWDelay(accesstype.(CacheTransfer)):
)

}

plb->writeCache(pb,ns,ons): // write back to PLB entry
Stats->incrPLBAccess(1):

Stats->setPFetch(3.1):/ state transition and
Stats>setRWDelay(accesstype,CacheTransfer):

Stats->setDelay(CacheTransfer);
pb->getLineBits()->setDirtyBit(1):
}

else proceed = 0: // the check for matching
subject IDs is done afterwards
!

if (proceed)
{

if (accesstype == WRITE)
dc->writeCache(2); // sets the dirty bit
and ref bit
else

dc->writeCache(0);
}

else

action = |; // write failed
return action;

}

else // dirty bit is set

{

if ((SID != p->getPDID()) && (accesstype == WRITE))
{

action = 1;
return action; // locked by another reader/writer

}

/Irecord shared access in input file to the conventional LM
if (accesstype == WRITE)
Im << "\t\t\tLocktable->setlock (0x" << hex <<
unit]D <<" WRITEt[" << SID <<"}):" << endl;
else
Im << "\\t\tLocktable->setLock (0x" << hex <<
unitID <<",READ{[" << SID <<"]):" << endl;

else // no view is defined on the address

if (accesstype == 1)
dc->writeCache(2);
else
dc->writeCache(accesstype): // accesstype =0
}
} }
if ((p==0) Il ((p!=0) && (p->getLine()->getTag() '= dcPA)))// no dc entries or
// match not found on tag comparison
o - a MISS
{ // now obtain replacement line or add a line to a sct
Stats->setMiss(accesstype. 1):
if (accesstype == READ)
{

Stats->setDelay(DCReadMiss);
Stats->setRWDelay(accesstype, DCReadMiss):
else

Stats->setDelay(DCWriteMiss);
Stats->setRWDelay(accesstype.DCWriteMiss):

138

139

p = dc->createDCLine(index,VAddr,dcPA.SID.unitID): // adds line to Ist
// position in a set

if (setfull == 1)
{

dc->replace(index,Stats, accesstype,0); // choose which line in the

set is to be replaced
// remember to add delay for line replacement in the dc.replace
// routine

dex = dcva % (12cache->getCache()->getNumUorDsets() - 1);
I2cache->indexDCCache(V Addr,lp,dex.sfull, SID,vdef,unitID);
Stats->incrL2Access(1);
Stats->setL2Fetch(accesstype. 1);
if (Ip == 0) // secondary data cache miss
{
Stats->setL2Miss(accesstype, 1);
Stats->setDelay(Memory Access);
Stats->setRWDelay(accesstype,Memory Access):
if (accesstype == READ)
{

Stats->setDelay(L2Miss).
Stats->setRWDelay(accesstype,L2Miss);

else

Stats->setDelay(L2Miss):
Stats->setRWDelay(accesstype,L2Miss);

}
Ip = 12cache->createDCLine(dex.VAddr.dcPA .SID.unitID): // adds
line to |st position in a set
if (sfull == 1)
{
[2cache->replace(dex,Stats,accesstype,). // choose which
line in the set is to be replaced

}

}

if (vdef)

{
Stats->setSMiss(accesstype.1); //to SHARED data
pb = accessPLB(VAddr,unitlD,accesstype.cs.ocs,FSMID);
Stats->setDelay(CSID);
Stats->setDelay(CacheTransfer);
Stats->setRWDelay(accesstype,(CSID + CacheTransfer));
accessFSM(FSMID,accesstype,cs,ocs,proceed,ns.ons):
if (proceed == 1)

if ((accesstype == READ) Il ((accesstype ==
WRITE)& & ((pb->getPDID() == getSID())
Il (pb->getPDID() == 0))))

140

{
// for a write we test whether the cs is UNLOCKED (cs = 0)

no SID) or LOCKED (4)

if (cs ==0) // either for single reader or first
writer
{

pb->setPDID(SID);
p->setPDID(SID);
}

if ((accesstype == 0) && (ns == 3))
{ if (pb->getPDID() !'= SID)
{ mr=1:
else // repeated read by the same xn

{
if (cs==1) //asingler
reader’s repeated read
{
ns =1;
ons = 2;

j
if ((accesstype == READ) && (cs==4) &&
(pb->getPDID()!=SID))
proceed = 0: // unit is locked for
write by another transaction
else
{
plb->writeCache(pb.ns.ons); // write
// back to PLB entry
Stats->incrPLBAccess(1);
Stats->setPFetch(3,1):
Stats-> setRWDelay (accesstype,
CacheTransfer);
Stats->setDelay(CacheTransfer);
pb->getLineBits()->setDirtyBit(1):
} }
else proceed = 0: // the check for matching subject IDs is
// done afterwards

)

if (proceed)
dc->writeCache(accesstype);

else

else

}

141

Stats->setmWACFault(1);
action = 1; //suspend process
return action:
}
if (accesstype == 0)
Im << "\t\ttLocktable->setLock(0x" << hex << unitlD <<
" READ,[" << SID <<"]);" << endl;
else
Im << "\W\t\tLocktable->setLock(0x" << hex << unitID <<
"WRITEt[" << SID <<"]);" << endl;

dc->writeCache(accesstype):
Stats->setDelay(1);
Stats->setRWDelay(accesstype, 1);

/I access has been succesfully made at this point - run LRU and "touch”routines
¢ = dc->getLine():
// can test for whether a line was not created but only accessed later on
/1 to avoid unnecessary removes and adds
if (c[index]->getCount() > 1) // List must have more than one item

}

n = c[index|->remove((Object *) p); // LRU on access
c[index}->push((Object *) p. n): // removes node from position in list and

return action;

/1 adds it back to the top of the list.

}
i
int CPU::accessTLB(unsigned int va, int accesstype)

int PFN;
int VFN;

Stats->incrTLBAccess(1);

Stats->setTFetch(accesstype. |): // incoming access due to eithera R/ W
VEN = getVFN(va);

PEN = tlb->getTranslation(VFEN);

if (PFN==MAX) //mapping not in TLB

{

Stats->setTMiss(accesstype, 1):

Stats->setDelay(TLBmiss); //delay to lookup page tables

Stats->setRWDelay(accesstype, TLBmiss);

PFN = PT->getTranslation(VFN); //find mapping in the PAGE
TABLE

Stats->setPTable(0.1): // read access to page table

Stats->setDelay(MemoryAccess); // taken care in the TLB Miss

if (PFN==MAX) // IF mapping is not found here then we may have

// a "soft" fault. We need

142

// to determine whether the page is actually in memory. Then we will
/fonly have to create a mapping for it.

// ASSUMPTION:IGNORE SOFT FAULTS!

// Note: this if stmt. is not entered in this version of the simulator

// because the

// page table has been previously loaded.

/ffault to disk.

// PFN=memory.replace():

Stats->setDelay(LRU); //expired cycles due to finding a page
/1 to replace

Stats->setDelay(DFC); //cycles due to disk fault

Stats->setDelay(PTE); //cycles due to creating page table

entry
Stats->setPTable(1,1); /1 write access to page table
Stats->setDelay(MemoryAccess);
PT->PTwrite(va,PFN); /Iplace mapping in page table

}
tib->createMapping(VFN,PFN); /Iplace mapping in TLB.
Stats->incrTLB Access(1):

Stats->setTFetch(3.1); // write access - tlb load
élse // tlb hit
{ Stats->setDelay(TLBhit);
Stats->setRWDelay(accesstype, TLBhit);
r}etum (PFN);

}
M T i i i

PLBLine * CPU::accessPLB(unsigned int VA, int uPA. int accesstype. int &cs. int &ocs,
int &FSMID)

{

int res=0;

int mask:

int index;

int notFound;

int ViewlD:

int PDID;

List ** p;
PLBLine *pb =0:;
PLBLine *pl;
LineControlBits *c;
inti=l;

Stats->setPFetch(accesstype, 1). // increments the # of PLB accesses of one type
Stats->incrPLBAccess(1);

accessVDU(VA,ViewID,FSMID,mask,notFound);
Stats->setRWDelay(accesstype, VThit);

if (notFound)

else

cerr << "unable to locate view information” <<endl;
// suspend process ?
res = 2; //error

PA = PA & mask; /luse masked address to index cache
index = uPA % (plb->getCache()->getNumUorDsets() - 1): // a number

other than a power of two

p = plb->getPLBLine():
if ((plindex] == 0) Il ((pl = (PLBLine *) p[index]->find(uPA. ViewID. i))

{

else

==0))

Stats->setPMiss(accesstype, 1);
Stats->setDelay(PLBmiss);
Stats->setRWDelay(accesstype, PLBmiss):

PDID = getSID();

pb = memPLB->plbMissHandler (uPA,ViewID.cs.ocs,PDID .0.
Stats) ; // action = 0 (read)

Stats->incrPLBAccess(1);

Stats->setPFetch(4,1); // load PLB cache

pl = new PLBLine;

pl->setPDID(pb->getPDID()):
pl->setCurrentState(pb->getCurrentState());
pl->setOtherCurrentState(pb->getOtherCurrentState()):
pl->setViewID(pb->getViewlD()):

¢ =new LineControlBits;
c->setDirtyBit(pb->getLineBits()->getDirtyBit()):
c->setRefBit(pb->getLineBits()->getRefBit()):
c->setValidBit(pb->getLineBits()->getValidBit()):
c->setTag(uPA);

pl->setLineBits(c);

if (p[index] == 0) // empty set - place line in plb
{

plindex] = new List;
plindex]->push((Object *) pl, 0):

else
plindex]->push((Object *) pl, 0):

if (plindex]->getCount() > plb->getCache()->getAssoc())
plb->replace(index,memPLB,Stats):

// simply access

Stats->setDelay(PLBhit):

143

144

Stats->setRWDelay(accesstype,PLBhit);

cs = pl->getCurrentState();
ocs = pl->getOtherCurrentState();

if (plindex]->getCount() > 1) // do LRU on access

Node *n = p[index]->remove((Object *) pl);
plindex]->push((Object *)pl.n);

/1 get PLB entry; send to FSM unit for comparison // set cs and ocs parameters elc.

}

return (pl):

}
HHHTTTTITTTTTTTTT T T T
void
CPU::accessVDU
(
unsigned int va, // Virtual address
int &ViewlD,
int &fsmid, // FSM identifier
int &mask, // Address Mask
int &nfound
)

{

Stats->incrVDUAccess(1);

Stats->setDelay(VThit):

vdu->index VDUCache(va, mask, ViewID. nfound. fsmid):
// usage of viewid is not implemented as yet since attention
/1 is being restricted to the SINGLE VIEW SYSTEM

)

i

void CPU::accessFSM(int fsmid,int accesstype,int cs.int ocs.int &signal,int &ns.int
&ons)

{

FSM::CacheLine *f;

Stats->incrFSMAccess(1):
fsm->indexFSM(fsmid,accesstype,cs.ocs,f):
if (f!=0) // this is expected under our current assumption of a no-miss FSM cache

{
ns = f->LineContents.getNewState():
ons = f->LineContents.getOtherNewState();
signal = f->LineContents.getResult():

else

signal = 99;

cout << "fault on FSM cache" << endl;

}
}
TN i i i

Filename: system.cpp

#include <iostream.h>
#include <fstream.h>

#include <iomanip.h>
#include <stdlib.h>

#include "object.h”
#include "list.h”
#include "hash.h"
#include "input.h"
#include "trans.h”
#include "spec.h”

int loading = I;
#define DEBUG_INTERVAL 1024
T e T e i iy
System::System(char *config, char *tracefile)
{

int desize = 32;

int 12size = 1024

int tlbsize = 32:

int plbsize =512;

int fsmsize = 32;

int vdusize = 16;

int ptsize = 1023

int pbtablesize = 1023;

// dcsize = Config.getDCSize():
// tibsize = Config.getTLBSize():
/1 plbsize = Config.getPLBSize().

ip = new Configlnput(config);
tracefp = new Input(tracefile);
AUtable = new HashTable(1023);
if (AUtable ==0)

{

cerr << "Unable to create lock data structure” << endl:

ReadyQueue = new List;
MPL = new List;

145

cpu = new CPU(dcsize,I2size.tlbsize,plbsize, fsmsize,vdusize,ptsize,pbtablesize)

146

}
HTTHITTTTTTTITTETTT T T T T T T
System::~System()

Itrace << "End" << endl;
Itrace.close():

}
T i i
void System::dump(ostream &os)

0s << "Printing the CPU ReadyQueue\n" << ReadyQueue << "\n";
0s << "Printing the MPL List: \n" << MPL << "\n";

}

IR T e e

Transaction * System::TransStartup(int id)

/"

// processes a BOT from the trace file. If the transaction id is new, a

// transaction is instantiated. If not. the transaction ready queue is checked
// 1o determine whether the transaction can proceed. If it can, the file pointer
/7 in the tracefile is moved to the appropriate position.

{

Transaction *t;

dcount = 0,
if (MPL->getCount() < mplimit)
{

if (MPL->getCount() == 0) Il (MPL->findtrans(id) == 0) &&
(ReadyQueue->getCount()==0)))

{

t = new Transaction(id.tracefp):

MPL->add(t):

Xxn=t;

setSID(VA);, // VA here is not a virtual address but the transaction
identifier

cpu->setSID(VA).

else // transaction already started

{
contextSwitch();
=Xn;
}
}
else
{

cout << "Processes at MPL limit\n";
t=0;
}

return t;

147

}
TN T T T T T T

void System::start()

long mark;
ofstream tp;
inti=0;

dcount = 0:
Itrace.open("Immain.cpp”.ios::ate); // opens an existing file and seeks to its end
xnOrder.open("tranorder.dat" ios::ate):

if (tracefp->is_open() && ltrace.is_open())

)

tracefp->clear():
tracefp->seekg(0,i0s::beg); // reset file ptr
cpu->setSID(0): //will have to set SID on each context
// switch
setASID(0):
xnprocessing = 0;
tp.open("mark.dat");
tp << "Printing Stored File Pointers" << endl;
while (!tracefp->eof())
{
mark = tracefp->tellg(): // mark file ptr
getNextAddress():
if ((AT==0) l (AT == 1))
invokeCPU():
}
tracefp->close():
tp.close():
Itrace << "\t\t} \n\t}\n }\n";
Itrace.close():
xnOrder.close();
printTables();
printResults();

}
T i i T
void System::suspend(Mapping *mp)

{

TSB *b;
List *p, *q:
int index;
AUE *a;
int mPA;

b = saveContext(xn);
mPA = mp->getPA();
p = AUtable->access(mPAindex);

i{f ((p == 0) Il ((a = (AUE *) p->findAU(mp))==0))

else

p = new List;
AUtable->add(index.p):
a=new AUE;

g = new List;
a->setQ(q);
a->setReaders(0);
a->setAUID(mp);
p->add(a):

q = a->getQ();

if (q ==0)

{

q = new List;
a->setQ(q):

}
g->add(b):

)
it
TSB * System::saveContext(Transaction * tran)

{

TSB *t;

int tid;

long mark:

L =new

TSB;

tid = tran->getID();

mark =

tracefp->telig();

t->setkey(tid);
t->setTID(tran);
t->setMark(mark);
return t;

}
I T i T
List * System::offSuspendQ(Transaction *tn,AUE *a)

{

List *q;

TSB *t;

Node *n;

if (a '=0)

{
q = a->getQ():
if (q'=0)
{

if ((t=(TSB *) g->findTSB(tn)) != 0)

148

{
n = g->remove(t);
q->del(n);
}
}
}
else
q=0:
return q;

}
AT T i

void System::releaseLocks(Transaction *t, int commit)
{

List *Iset, *Q, *p;

Node *n, *wake:

Mapping *mp;

AUE *au;

int pa, index, ndex, full, ulD;

DataCacheLine *qd;

unsigned int dcva:

unsigned int vad:

Iset = t->getLockset();
if (Iset)
{
Iset->reset();
while ((n = Iset->next())'= 0)
{
mp = (Mapping *) n->obj;
pa = mp->getPA();
vad = mp->getVAD(),
ulD = mp->getVA():

p = AUtable->access(ulD,index):;

i{f (p)
au = (AUE *) p->findAU(mp);
if (au)
{
if (!commit)
Q = offSuspendQ(t,au);
else
Q = au->getQ():
if (Q)
{

wake = Q->first():
if (wake)
{

ReadyQueue->add(wake->obj);

149

150

wake = Q->remove(wake->obj):
Q->del(wake);

}
!
dcva = getDCVA(vad),
ndex = dcva % (cpu->getDC()->getCache()->getNumUorDsets() -
1)
cpu->getDC()->indexDCCache(vad,qd,ndex,full, VA.i,ulD);
updatePLBLocks(mp,qd);
}
Iset->reset();
while ((n = Iset->next())!= 0)

Iset->remove(n->obj);
Iset->del(n),

}

}

T T i T

void System::updatePLBLocks(Mapping * m, DataCacheLine *q)
{

PLBLine *p, *pt:
int cs, ocs, FSMID., vid;
int css =0;
intos=0;
intidp=0;

List *Iptr;

int i,num = 0;
AUE * a;

int pa:

unsigned int va;
Node *x:
CacheStats *cc;

pa = m->getPA();

va = m->getVA();

p = cpu->accessPLB(va,va,l,cs,ocs FSMID); // write to plbline
vid = p->getViewlD();

cc = cpu->getStats();

i{f (p)

switch (cs)

case O: //unlocked
DbgPrint((ltrace << "illegal action: unit already in unlocked state:
PA: " << pa<< " VA: " << va<<endl));

151

DbgPrint((cout << "illegal action: unit already in unlocked state: PA:
"<<pa<<" VA:" << va<<endl));

p->setPDID(0);

if ()

break:

case |: // Single Reader
p->setCurrentState(0); //unlocked
p->setOtherCurrentState(0); //unlocked
p->setPDID(0):
p->getLineBits()->setDirtyBit(0);

q->setPDID(0),

if (q)

{
g->getLine()->setRefBit(0);
g->getLine()->setDirtyBit(0);
q->setPDID(0);

)

pt = cpu->getPLBTable()->access(va,vid.css,0s,idp. | ,cc):

break;
case 2: // Other Single Reader - not used
p->setCurrentState(0): /funlocked

p->setOtherCurrentState(0); //unlocked
p->setPDID(0);
p->getLineBits()->setDirty Bit(0);

if (q)
{

q->getLine()->setRefBit(0);
g->getLine()->setDirtyBit(0);
g->setPDID(0);

!

break;
case 3: //Multiple Reader

Iptr = AUtable->access(pa,i);

if (Iptr)

{
a=(AUE *) Iptr->findAU(m);
if (a->getReaders() '=0)
{

if ((num = a->getReaders()->getCount()) == 1)
/1 2 readers

p->setCurrentState(i); /ISR
p->setOtherCurrentState(2); //OSR

x = a->getReaders()->first():
p->setPDID(((Transaction *)x->obj)->
getID()); //record SID of reader that's left

if (num> 1)

{
// more than 2 readers
X = a->getReaders()->first();
p->setPDID(((Transaction *)x->obj)->
getID()); //record SID of reader that's left

// the foll. should not be entered

if ((a->getReaders() == 0) Il (a->getReaders()->getCount()
==0))

{

p->setCurrentState(0); //unlocked
p->setOtherCurrentState(0): //unlocked
p->setPDID(0);
pt = cpu->getPLBTable()->
access(va,vid,css,os.idp, 1 .cc):
if (q)
q->setPDID(0);

}
break;
case 4: // Write Locked
if (p->getPDID() == getSID())
{

p->setCurrentState(0); //unlocked
p->setOtherCurrentState(0); //unlocked
p->setPDID(0);
p->getLineBits()->setDirtyBit(0);

i{ f(q)

q->getLine()->setDirtyBit(0).
q->getLine()->setRefBit(0);
q->getLine()->setValidBit(0);
q->setPDID(0);

pt = cpu->getPLBTable()->access(va.vid.css.0s.idp. 1 .cc):

}
break;

default:
cout << "illegal attempt: cannot release lock\n";
}

)
}
T T i i

void System::invokeCPU()
{

153

int result,i, entry=0;

Mapping *mp;

List * p, *Iptr, *readq;

int state: // flag for a multiple reader
AUE *a;

Transaction *tran;

TSB *ts;

int viewdefn, uid, mPA;

result = cpu->accessDC(VA,AT,PA state,ltrace,viewdefn,uid, mPA);
mp = new Mapping;

mp->setVA(uid);

mp->setPA(mPA); // PA is used to look up the PLB table subsequently
mp->setVAD(VA),

if (state == 1) // record reader ID when there are multiple readers

{

tran = 0;
Iptr = AUtable->access(uid,i):
if (Iptr)
{
a = (AUE *) Iptr->findAU(mp):
if (a)
{
readq = a->getReaders():
if (readq)
tran = (Transaction *)(readq->findtrans(xn->getID())):
else
{
readq = new List;
a->setReaders(readq).
}
J
else
{
a=new AUE;
readq = new List;
a->setQ(0);
a->setReaders(readq);
a->setAUID(mp);
Iptr->add(a);
}
}
else
{

Iptr = new List;
AUtable->add(i, Iptr):
a =new AUE;

readq = new List;
a->setQ(0);

a->setReaders(readq);
a->setAUID(mp);
Iptr->add(a):
}
if (tran == 0)
readg->add(xn);
}

if ('result)

if (xnprocessing && viewdefn)
{
// records all AUs touched by a transaction
// facilitates commit procedure
p = xn->getLockset();
i{f (p)

if (p->find(uid) == 0)
xn->add(mp): // adds mapping for AU to the transaction

lockset
J
else
xn->add(mp);
}
clse // suspend xn
{
if (xnprocessing && viewdefn)
entry = |;
suspend(mp);
contextSwitch():
}
}
if (‘entry)
{

if (dcount == timecout)

{
ts = saveContext(xn);
contextSwitch(); // this is done before adding to the
// ReadyQueue so that the transaction would not go on just to be
/ taken off immediately on context switch.
ReadyQueue->add(ts);

154

T T i i
void System::contextSwitch()
{
Transaction *t;
Node *n;
TSB *tsb:
long spot;
int k;
Obiject *o:

dcount =0;
if (ReadyQueue->getCount()>0)
{

n = ReadyQueue->first();

0 = n->obj;

tsb = (TSB *) o;

t = tsb->getTID();

xn=t;

DbgPrint((ltrace << "Current TID: " << xn->getID() << " dequeued
off RQ" << endl)):

spot = tsb->getmark();
tracefp->seekg(spot,ios::beg):
k = tsb->getKey():

setSID(k); // trans id
cpu->setSID(k):

n = ReadyQueue->remove(o):
ReadyQueue->del(n).

else //move forward in the trace file

{

AT =99;
while (('tracefp->eof()) && (AT !'='B")) // AT =3 ="B" = BOT
{
setAccessType():
if (AT =="T)
tracefp->readInst();
setCVAQ);
if ('tracefp->eof())
{
setCurrTrans(TransStartup(VA));
}
else
{

Itrace.close():
xnOrder.close();

Itrace << "\t\t} \n\tj\n }\n";
Itrace.close();
printTables();

156

printResults();
exit(1); // entire file processed

)

T e e i
void System::getNextAddress()

{

Transaction * tkill;

Node *n;
do
{
setAccessType():
if (AT =="'T")
tracefp->readlnst();
setCVA():

} while (AT '='R' && AT !'='W' && AT '='I' && AT '='B' && AT '='E'
&& AT !'="T' && AT !="'U' && !tracefp->eof());

it (AT =="R")
AT =0;
dcount++; // transaction's CPU timeout count

}

else if (AT =="1")
AT =2;

else if (AT =='W")
{
AT =1,

dcount++; // transaction's CPU timeout count

)
else if (AT =='B")
{ if ('loading)
{ xnprocessing = 1;

setCurrTrans(TransStartup(VA)).
AT =3;

}
else if (AT =='E")
{

if ('loading)

{
AT =4;
xnprocessing = 0:
tkill = xn;
if (MPL->getCount()> 1)
tkill = (Transaction *) MPL->findtrans(VA);
Itrace << "\n\t\t\tLocktable->releaseLocks(t["<< VA <<"]):\n\n":
if (tkilh)
{
releaseLocks(tkill, 1); //commit
n = MPL->remove(tkill); // dequeue from active xn list
MPL->del(n);
delete tkill; // kill the transaction
xn = 0;
}
else
cerr << "release locks failed (Trans null)\n";
}
b
else if (AT =="U")
{
AT =5§:
}
clse if (AT =="'T")
{
AT =6;
cout << "Transaction type : " << VA <<endl:
xnOrder << "Transaction type : " << VA << endl:
}
else

AT =-1; /! Error detected

}
i
void System::loadPageTable()

// Note that the simulator does not include the delay for loading the
// Page tables

int PFN;

unsigned int VFN;

int mask = OxQOQOfffff;
getNextAddress():

while (!tracefp->eof())

157

158

VEN = (VA >> IgPAGESIZE);
VEN = VFN & mask; // to zero fill the leftmost 12 bits
PFN = cpu->getPageTable()->PTread(VFN);
if (PFN==MAX) // mapping does not exist
{
if (cpu->getPMFreeList()->getTop()==cpu->getPMFreeList()->
getStackPointer())
PFN = cpu->getPageTable()->replace();
else
PFN = cpu->getPMFreeList()->pop():
cpu->getPageTable()->PTwrite(VFN,PFN);
cpu->getStats()->setPTable(1,1):// write access to page table

getNextAddress():
}
loading = O;
DbgPrint((cout << "Finished Loading Pagetable" << endl)):

}

T T T i i iy
void System::printTables()

ofstream outp:

outp.open(”output.dat”);

outp << "Printing Page Table" << endl:
outp << cpu->getPageTable();

outp << "Printing PLB Table" << endl:
outp << cpu->getPLBTable();

outp << "Printing Data Cache" << endl:
outp << cpu->getDC().

outp << "Printing PLB Cache" << endl:
outp << cpu->getPLB();

outp << "Printing Ready Queue\n" << ReadyQueue << "\n";
outp << "Printing AU Table\t" << "\n":
outp << AUtable << "\n";
if (xn)
outp << " Last xn's lockset:\n" << xn->getLockset() << "\n":

outp.close():

}
M T T T T T T T T T T
void System::printResults()

ofstream f;
Cache * cp;
CacheStats *s;
char *cachename;

159

float dlay;

f.open("results.dat");

f << "\\\\MMtCACHE AND MEMORY SPECIFICATIONS\n\n":

f <<"NAMEW" << "CAPACITY(kB)\t" << "LINE SIZE(B)\t" << "ASSOC\t" <<
"SETS\t"
<< "WRITE POLICY\t" << "REPLACE POLICY\t" << "ALLOCATE
POLICY\n\n";

cp = cpu->getDC()->getCache():

cachename = "Data(L1)";

getParameters(cp, cachename,f);

cp = cpu->getL2()->getCache();

getParameters(cp, 'Data(L2)" f):

cp = cpu->getPLB()->getCache();
getParameters(cp,”"PLB\t" f);
cp = cpu->getTLB()->getCache():
getParameters(cp,"TLB\t",f):
cp = cpu->getVDU()->getCache();
getParameters(cp,"VDUW" f);
cp = cpu->getFSM()->getCache():
getParameters(cp,"FSM\t".f);

f << "\n\n\t\\\AAMLASSIGNED INPUT COSTS\n\n";

f << "Data Cache Read Hit\t\t\t\t" << DCRead << "\n";

f << "Data Cache Write Hit\t\i\t" << DCWrite << "\n";

f << "Write Access Control Fault\t\t" << WControlFault << "\n";
f << "PLB Hit\t\t\t\t\t\t\t" << PLBhit << "\n";

f << "TLB Hit\t\t\t\t\t\t\t" << TLBhit << "\n";

f << "View Table Hit\t\t\t\t\t" << VThit << "\n";

f << "TLB Miss\t\t\\t\t\t" << TLBmiss << "\n";

f << "PLB Miss\t\t\t\t\t\t" << PLBmiss << "\n";

f << "L Data Cache Read Miss\t\t\t" << DCReadMiss << "\n":

f << "L1 Data Cache Write Miss\t\t" << DCWriteMiss << "\n":

f << "L2 Data Cache Read Miss\t\\t" << L2Miss << "\n";

f << "L2 Data Cache Write Miss\t\t" << L2Miss << "\n";

f << "Delay due to Memory Access\t\t" << MemoryAccess << "\n":
f << "Cache to Cache Data Transfer\t" << CacheTransfer << "\n":
f << "Synonym Handling\t\t\t\t" << SynonymHandling << "\n":

f << "Subject ID Comparison\t\tt" << CSID << "\n":

f << "\n\\\M\MMtMMCACHE ACTIVITY STATISTICS\n\n";
f << "ACTIVITYW\t" << "TOTALM\t" << "READS\t" << "WRITES\t\t" <<
"WAC FAULTSUW" << "% READS\t\t"

<< "% WRITES\Wt" << "% WAC FAULTS \n\n";

s = cpu->getStats():

int * p = s->getFetch();

char * a = "Data Accesses";

getActivityStats(a, s->getDCAccess(),s->getmW ACFault(), s->
gethWACFault(),p, s->getMiss(), f);

getActivityStats("\nL2 Data Accesses", s->getl.2Access(),0.0,s->getL.2Fetch(). s-

160

> getL2Miss(), f);
getActivityStats("\nShared Data Accs. (L1)",0,0,0,s->getSFetch(),s-
>getSMiss(),f);
getActivityStats("\nPLB Accesses" s->getPLBAccess(),0,0,s->getPFetch().s-
>getPMiss().f);

int *q = s->getPFetch();

f << "Writes due to State Transitions: " << q[3] <<"\tLoad :" << q[4] <<end!:

getActivityStats("\nTLB Accesses",s->getTLBAccess(),0.0.s->getTFetch(),s-
>getTMiss().f):

int *r = s->getTFetch();

f << "TLB Loads: " << r[3] << "\n\n";

getHitsStats("L1 DC Hits\t", s->getDCAccess(),0, s->gethW ACFault()P, S-
>getMiss(), f);

getHitsStats("L2 DC Hits\t", s->getL.2Access(),0, s->gethWACFault().s-
>getL2Fetch(), s->getL2Miss(), f);

getHitsStats("PLB Hits\t" s->getPLBAccess(),0,0.s->getPFetch().s-
>getPMiss().f);

getHitsStats("TLB Hits\t" s->getTLBAccess().0.0,s->getTFetch(),s->
getTMiss().f):

f <<"\n";

getActivityStats("DC Misses\t”, 0,s->getmWACFault(), 0.s->getMiss().p. 1)

getActivityStats("L2 Misses\t”, 0,0,0,s->getL2Miss(),s->getL2Fetch(). f):

getActivityStats("PLB Misses\t”,0,0,0,s->getPMiss(),s->getPFetch().f):

getActivityStats("TLB Misses\t",0,0,0,s->getTMiss().s->getTFetch().0);

int num = s->getDCAccess(); q = s->getMiss():

f << "\nL1 Miss Rate\t" << float(q[0] + g[1]) / num << "\n";
num = s->getL.2Access(): q = s->getL2Miss():

f << "L2 Miss Rate\t" << float(q[0] + q[1])/ num << "\n":
num = s->getPLBAccess(): q = s->getPMiss():

f << "PLB Miss Rate\t" << float(q[0] + g[1])/ num << "\n":
num = s->getTLBAccess(); q = s->getTMiss();

f << "TLB Miss Rate\t" << float(q{0] + q[1])/ num << "\n";

f << "\n\\M\A\VVMEMORY ACTIVITY STATISTICS\n\n";
f << "Please note that this table shows the number of read and write accesses to\n”
<< "a particular table in memory WHEREAS the table above shows the number

of accesses\n" << " (either read or write) to a cache caused by read and
write references in the address trace.\n\n";

f << "ACTIVITYW\t" << "TOTALM\t" << "READ ACCESSES\t" << "WRITE
(Write Backs)t" << "WRITE (Loads)\n\n";

r = s->getPTable();

f << "Page Table\Mt\t" << r[0] + r{1] << "W\\\Mt" << r[0] << "M\M\MMt" << O <<
"\t << 1] << "\n";

r = s->getPLBTable();

f << "PLB Table\\t" << r[0] + r[1] + r[2] << "\t\\t\t" << r[0] << "\(\\\t" << 1] 1]
<< "\t\tMt" << rf2] << "\n";

161

r=s->getDTable(); int * t = cpu->getStats()->getMiss();

f << "Data Table\\t" << t{0] +t{1] + r[0] << "\\\M\t" << t[O]+t[1] << "\\\ML" <<
r[0] << "\t\\t\t" << "N/A" << "\n";

f << "\n\n\t\\\\VVMDELAY STATISTICS\n\n';

r = s->getRWDelay(); q = s->getSFetch();

dlay = (float) r[0] / (float)q[O]:

f << "Average Delay due to Read Lock Acquisition: " << dlay << "\n" << endl:

dlay = (float)r[1}/ (float) g[1];

f << "Average Delay due to Write Lock Acquisition: " << dlay << endl;

f << "Total Delay: " << s->getDelay() << endl:

f.close();
}
void System:: getParameters(Cache *c, char *name, ofstream ff)
{

int Isize,assoc,sets,write,rep.alloc:
char *r, *w, *al;
float capacity;

capacity = float(c->getNumUorDsets()*c->getAssoc()*c->getBlockSize())/1024;
Isize = c->getBlockSize():

assoc = c->getAssoc();

sets = c->getNumUorDsets() :
write = c->getWritePolicy():

if (write == 0) w = "Copy Back":
else w = "Write Through";

rep = c->getReplacePolicy():

if (rep==0) r="LRU";

else r = "Random";

alloc = c->getAllocatePolicy();

if (alloc == 0) al = "No Allocate";
else al = "Allocate";

ff << name << "\t"<< setw(5) << setprecision(4) << capacity << "\\M\t\t" <<Isize
<< "\tii\t”
<< assoc << "Mt" <<sets << "M << w << "WML << 1 << "\t << al
<< "\n\n";

}

void System:: getActivityStats(char * activity, int n, int mMWAC, int hAWAC, int *fetch,
int *miss, ofstream ff)
{

int W, R, WAC;
float PW, PR, PWAC;

W = fetch[1];
R = fetch [0];
WAC =hWAC+mWAC;
if (n==0)
n=W+R:

PW = (float)(W*100)/(W+R):
PR = (R*100)/(float)(W+R);
PWAC=(WAC/(float) W)* 100;

ff << activity << "\t" << n << "WW\t" << R << "\IM\t"<< W << "\t << WAC <<
"\(\M\t" << setprecision(4) << setw(5) << PR <<
"M << setw(5) << PW << "\IM\t" << setw(35) << PWAC << endl:

void System:: getHitsStats(char * activity, int n, int mMWAC, int h(WAC, int *fetch. int
*miss. ofstream ff)
{

int W, R, WAC;
float PW, PR, PWAC;

W = fetch[1]-miss[1];

R = fetch [0])-miss[0]:
n=W+R:

WAC = hWAC;

PW = (float)(W*100)/n;

PR = (R*100)/(float)n;
PWAC=(WAC/(float)W)*100;

ff << activity << "\t" << n << "M\t" << R << "\\W"<< W << "\t << WAC <<
“\IMt" << setprecision(4)<<

setw(5) << PR << "\MIt" << setw(5) << PW << "\\I" << setw(5) << PWAC <<
endl;

}

Filename: datacache.cpp

#include <iostream.h>
#include <fstream.h>
#include "object.h"
#include "list.h"
#include "hash.h"
#include "input.h”
#include "trans.h"

#include "spec.h”

T T e T e el
DataCache::DataCache (int s)

{

if (s<=0) cerr << "Data Cache size cannot<=0" << endl;
numlines = s;

cache = new Cache;
cache->setNumUorDsets(s);

line = (List **) new List *[s];

for(inti=0;i<s;i++)

{ line[i]=0;
/}//
l{)ataCache: :~DataCache()

delete [}line;
delete cache;

}
G

void DataCache::writeCache(int status)

{

// Assuming each line size is 128 bytes..to generalize: n bytes..this means
// that the lower log n bits can be discarded from the address
// stored as the tag in the cache line. ?? confirm this.

// Assume other function previously set the "line” member in the DataCAche instance

// so that "line” points to the cache line to be written or replaced.

switch (status)

{

J

case 0:

case I:

case 2:

case 3:

/Nline fetch and read access
cline->getLine()->setValidBit(1);
cline->getLine()->setDirtyBit(0).
cline->getLine()->setRefBit(1):
break;

/Nine fetch and write access
cline->getLine()->setValidBit(1):
cline->getLine()->setDirtyBit(1):
cline->getLine()->setRefBit(1):
break;

// write access and no fetch
cline->getLine()->setDirtyBit(1):
cline->getLine()->setRefBit(1);
break;

/Nine fetch and no access (prefetch)
cline->getLine()->setValidBit(1);
cline->getLine()->setDirtyBit(0);
cline->getLine()->setRefBit(0);
break;

HITTTTTHTHTTTTT T i i

void

DataCache::indexDCCache(unsigned int va, //full virtual address (32 bits)

163

{

DataCacheLine *&q, // returns a ptr to the line searched for
int idx, // cache index

// var indicates whether a set is full or not

int &full,
int id,

int vflag,
int uid)

// indicates whether a view is degined or not

// uses the virtual address reference to find the corresponding line in the
// cache if it exists. Returns a pointer to the line in the cache

int addr;

if (line[idx]==0)

q = (DataCacheLine *) line[idx]->search(addr.id.vflag):
if (line[idx]->getCount() == cache->getAssoc())
// all lines have been created in a set

q=0:
clse
{ .
if (vflag)
addr = uid;
clse
addr = getDCVA(va);
full=1:
I
cline=q;

}

I T T T T T
DataCacheLine *
DataCache::createDCLine

(
intix,

unsigned int VA,

int PA,
int id,
intv

)

{

// index

/! virtual address

// physical frame number
/1 pdid that owns the rights to a line

// unit id - needed to differentiate units that are cached into the same line

DataCacheLine *p;
LineControlBits *q;

p = new DataCacheLine;

q = new LineControlBits;
p->setPDID(id);
p->setLine(q);
p->getLine()->setTag(PA);

p->getLine()->setValidBit(1):

p->getLine()->setRefBit(1);

p->getLine()->setDirtyBit(0).

/Iv = getDCVA(VA);
p->getLine()->setTagl(v);
if (line[ix]==0)

// no datacache entries in a set

164

165

line[ix] = new List;
line[ix]->push((Object *) p,0); //adds entry to the top of the list so that
// LRU can be maintained.

cline =p;
return p;

}
W T T T T T
void
DataCache::replace(
int index, " identifies the list in the DC wherein an element is to be replaced
CacheStats *&s,
int ac,
int level
)
{
List ** p;
DataCacheLine *d:
Node *n;

p = getLine():

d = (DataCacheLine *) (p[index]->last()->o0bj):
if (d->getLine()->getDirtyBit() == 1)

{

if (level == 1)

s->setDelay(MemoryAccess); //increment stats to show a write back
to memory
s->setRWDelay(ac,MemoryAccess); //increment stats to show a
// write back to memory
s->setDTable(0.1); // write back to memory

else

s->setDelay(L2access): // write back to secondary cache
s->setRWDelay(ac,L2access): //increment stats to show a write back
// to secondary cache

}

n = p[index]->remove((Object *) d);
plindex]->del(n):

}
i

void
DataCache::dump(ostream &os)
{
int i;
for (i=0; i<numlines; i++)
if (line[i]'=0)

line[i]->dump(os):

166

}
U

Filename: hash.cpp

#include <iostream.h>
#include <fstream.h>

#include "Object.h”
#include "list.h"
#include "hash.h"
#include "input.h"
#include "trans.h"

#include "spec.h”
T T T e i
HashTable::HashTable(int n)

table = (List **) new List *[n];

setPRIME(1023);

for (inti=0;i<n; i++)

{
table[i] = 0:
}

count =0;
max = n;

}
i

void
HashTable::dump
(ostream &o0s)

L
int i;
for (i = 0: i < max; i++)

{
if (table[i] '=0)
{

os << "Dumping Hash table " << i << endl:
table[i]->dump(os);

}

}
i G
void

167

HashTable::add
(

int hash,

List *]

)

{
tablefhash] =1;

)
G

List *
HashTable::operator[](int i)
{

return tablefi];

}
i
int
HashTable::hashaddr(int key)
{

key = (key > 1) + key:

return key % PRIME:;

}
T T T
List * HashTable::access(unsigned int key, int &index)
{
List **p;
List *Iptr;

index = hashaddr(key):// calc. the hash address of virtual address v

p= getTable(). // retrieves the ptr to ptr to the list
Iptr = p[index]: // retrieves the ptr to the list of mappings for a hash address
return Iptr;

}
T T T T T T T T LT T T T T T T
Filename: list.cpp

#include <iostream.h>
#include <fstream.h>

#include "object.h"
#include "list.h"
#include "hash.h"
#include "input.h”
#include "trans.h"

#include "spec.h”

T T T T T T
Node::Node

(

Object *o

) : obj(0), next(0)
{

}

T T T T T T T e
SuspendQueue::SuspendQueue()
{

Q = new List;
}
I T T i T e e

SuspendQueue::~SuspendQueue()
{

}
i

void

List::add /1 adds to the end of the list
(

Object *o

)

Node *n = new Node(o);
if (list == 0)
{
list = n:
tail = n;

else
tail->next = n;
tail = n;

count++;

!
it

void
List;:addn // adds to the end of the list

(
Node *n

)

{
if (list ==0)
{

list = n;

168

169

tail = n;
}

else

{
tail->next = n;
tail = n;

}

count++;

}

IR T T T T T T T T)
List *

List::join

(

List *

)

{
if (1==0)
{

return this;

}

else
{
if (list == 0)

list = I->list;
tail = I->tail;
count = |->count;

}

else

tail->next = I->list;
tail = I->tail;
count += |->count;
}
}

return this;

}
TN T T T T T
Node *
List::next()

Node *p:

p = cursor.

if (cursor '= Q)
Cursor = cursor->next:

return p;

}
i
Node *

List::first(void)

{

return list;

}
TN T T T
Node *

List::last(void)

{

return tail;

}
T T T T
void
List::reset()
{
cursor = list;

)

T T T T
void

List::dump

(

ostream &o0s

)

{
Node *nptr;
intj=0:

reset():
while (nptr = next())
{
08 << J++ << ":" << (Object *) nptr << endl:
}
}

i
List *

addlist

(

List *1,

Object *o

)

{
if (I==0)
| = new List;

|->add(o);

return I;

170

171

}

TR T i i T

/1 List::push can be used for either of 2 purposes

/1 (1) package an object in a node and add to the start of the list

// or (2) the ptr to the node is passed as an input parameter i.e. a hanging node exists.
// The second use is part of the LRU algorithm where a list will be reordered on access.
// That is the content at the top of the list is the most recently accessed and the one at the
// bottom the Least Recently Used.

// In LRU we would want to remove a node from somewhere in the list and push it on as
// the head

/1 or we could have a new entry and want to add it to the top of the list.

void
List::push(Object *o, Node *n)
{

Node *m;
if (n==0)
{
m = new Node(o0);
n=m;
}
if (list==n)
cerr << "Node 1s already in the list" << endl;
clse
{ .
if (list == 0)
{ .
list=n;
tail = n;
}
else
{ .
n->next = list;
list= n;
}
count++;
}

}

i
// Replaces the contents of the first node on a list - can be used in the LRU strategy

Object
*List::replace(Object *ob)

Object *o = list->o0bj:

list->obj = ob:
retuin o;

i
void List::del(Node *n)
{

n->obj = 0;

delete n;

}

i

// Removes a node from anywhere in the list and leaves it hanging. Must follow
// up this function by a call to either List::del or List::push

Node * List::remove(Object *0)

Node *n;
Node *found = 0;
Node *p;

if (list == 0)
cerr << "Error: Attempted deletion from an empty list" <<endl:
else
{
reset():
p = hist;
n =next().

while (found == 0 && n'=0)
{

if(n'=0)
{
if (n->0bj==0)
found = n:
else
{
p=n:
n = next():

}
}
if (found '=0)
{
p->next = found->next;
if (tail == list)
if (list == found)
list = list->next;
tail = list;

else

if (list == found)
{

}

if (tail == found)
{

}
}
found->next = 0;
count--;

list = list->next;
tail = p;

)

return found;

J

i
Object * List::find(unsigned int VA)
{

Node *n;

Mapping *map:

reset();

n = next():
map = (Mapping *) n->obj;
while ((VA'!'=map->getVA()) && (n!=0))
{
n = next();
if (n!=0)
map = (Mapping *) n->ob;j;

if (n!'=0) return n->obj:
clse return O;

)
i
Object * List::findtrans(int tid)
{

Node *n;

Transaction *t:

reset();

n = next();
t = (Transaction *) n->obj;
while ((tid'=t->getID()) && (n!=0))
{
n = next();
if (n!=0)
t = (Transaction *) n->oby;

173

174

if (n!=0) return n->obj;
else return O;

}
i
Object * List::find AU(Object *m)
{

Node *n;

AUE *aue;

unsigned int va;

int pa;

reset();

n = next();
aue = (AUE *) n->obj;
va = ((Mapping *) m)->getVA();
pa = ((Mapping *) m)->getPA();
while ((va != aue->getAUID()->getVA()) && (n'=0))
{

n = next();

if (n!=0)

aue = (AUE *) n->obj:
}
if (n!=0) return n->obj;
else return O;

}
i
Object * List::findTSB(Object *t)
{

Node *n:

TSB *b:

reset();

n = next();

b = (TSB *) n->obj;

while (((Transaction *) t != b->getTID()) && (n!=0))
{

n = next();

if (n!=0)

b = (TSB *) n->obj;
}
if (n!'=0) return n->obj:
else return O;

}

i
Object * List::find(

int unitPA, // masked physical address
int ViewID,

int &i)

175

Node *n;
PLBLine *entry:

reset();
n = next();

entry = (PLBLine *) n->obj;
while ((unitPA '= entry->getLineBits()->getTag()) && (n'=0))

{
n = next();
if (n!=0)
{
i++;
entry = (PLBLine *) n->obj;
}
}
if (n!=0)

if (entry->getViewID() == ViewID)
return n->obj;

else
return 0;

clse return 0;

}

i

/1 Searches a list containing instances of class DataCacheLine for a match.

/1 If a view is defined on the virtual address, the PDID must be checked to ascertain
/I which subject owns rights to the line.

Object * List::search(int addr. // unsigned virtual address
int pdid. // PDID identifier
int viewflag /0 - no view defined | - view defined on addr
)
{
Node *n;

DataCacheLine *entry;
reset();

n = next():
if (n '=0)
{
entry = (DataCacheLine *) n->ob;:
while ((addr = entry->getLine()->getTag1() Il (entry->getPDID() != pdid))
&& (n'!=0))
{

n = next();
if (n'=0)

entry = (DataCacheLine *) n->obj:

}
if (n!=0)

return n->obj;
else return O;

}

176

T

Filename: pagetable.cpp

#include <iostream.h>
#include <fstream.h>
#include "object.h"
#include "list.h"
#include "hash.h”
#include "input.h"
#include "trans.h"”
#include "spec.h”

T T T T T T T T
void
PageTable::dump(ostream &os)

{

os << "Page Table ASID : " << ASID << endl:

0s << "Size 1" << size << endl;
0s << "Page table follows : " << endl:
os << PTable;

)
i
PageTable::PageTable(int s. int VAID)

PTable = new HashTable(s);
size = s;
ASID = VAID;

)

I T i iy
PageTable::~PageTable()

{

}
AT T T e
int PageTable::PTread(unsigned int v)
{
List **p:
List *Iptr;
Mapping *mp;
int PFN;
int index;

177

index = PTable->hashaddr(v):// calc. the hash address of virtual address v
p= PTable->getTable().// retrieves the ptr to the hash table

Iptr = p[index]; // retrieves the ptr to the list of mappings for a hash address
if (Iptr!=0)
mp = (Mapping *) Iptr->find(v); // retrieves a pointer to the required

/I mapping if it exists
if ((Iptr==0) Il (mp==0))
PFN = MAX://hard page fault -- to secondary storage - create PT mapping
clse
PEN = mp->getPA():
return PFN;

)
AT T T T T
int PageTable::getTranslation(unsigned int VA)

{

)

int p;

p = PTread(VA),

// increment stats for delay due to PageTable access
return p;

i
void PageTable::PTwrite(unsigned int VA, int PA)

{

}

List **p;

List *Iptr;
Mapping *mp;
int index:

mp = new Mapping;
mp->setVA(VA); /l sets the VA attribute of mp
mp->setPA(PA); /1 sets the PA attribute of mp
mp->setVAD(0);
index = PTable->hashaddr(VA), // calc. the hash address of virtual address v
p= PTable->getTable(): // retrieves the ptr to the hash table
Iptr = p[index]: /l retrieves the ptr to the list of

// mappings for a hash address
if (Iptr==0)
{

Iptr = new List:
PTable->add(index.Iptr);
}

Iptr->add(mp); /l adds the mapping to Page Table.

T T LT LT T T T T T T T T
Filename: plb.cpp

#include <iostream.h>

#include <fstream.h>
#include "object.h”
#include "list.h"
#include "hash.h"
#include "input.h"
#include "trans.h"

#include "spec.h”

TG T T T T
PLB::PLB (int s)
{

cache = new Cache;

if (s<=0) cerr << "PLB size cannot<=0" << endl;

cache->setNumUorDsets(s);

numlines = s;

plbline = (List **) new List *[s):
for (inti=0:1<s; i++)

plbline(i]=0;

)
i

/1 plbMissHandler(...) is responsible for finding the required PLB entry in the

178

// PLB memory table and loading it in the PLB cache. Replacement on the PLB cache may

// be necessary.

PLBLine*
PLBTable::pibMissHandler
(
int PAu, // Address
int ViewID, /I VIEWID
int &cs, // Current state
int &ocs, // Other subjects' current state
int &PDID, /I process or subject identifier
int a,
CacheStats *&st
)
{
PLBLine *b:

b = access(PAu, ViewlD, cs, ocs,PDID, a, st); //returns output variables

return b;

G
void PLB::writeCache (PLBLine *c.int newstate,int othernewstate)
{
c->setCurrentState(newstate);
c->setOtherCurrentState(othernewstate);

}
HIHTTHITTTTTTT T T i i

PLBTable::PLBTable(int s)
{

plbTable = new HashTable(s):
size = s;

)
T T i i
void
PLB::dump(ostrcam &os)
{

int i

for (i=0; i<numlines; i++)

if (plbline[i]!'=0)
plbline[i]->dump(os):

}
T T T T T T T T T T T
void
PLBTable::dump(ostream &os)
{
os << "PLBTable : " << endl:
os << "\tSize : " << size << endl:
os << "WPLB Table follows: " << endl << plbTable:

}
T e T
PLBTable::~PLBTable()

{

}
T T T e e e
PLBLine * PLBTable::access(
int PAunit, // masked physical address
int ViewlD,
int &cstate,
int &ocstate,
int &PDID,
int action,
CacheStats *&cst
)
{
List **p;
List *Iptr;
PLBLine *pline;
int index;
inti1 = 1;//not used in this function - is present for reusability of find(..)

179

180

index = plbTable->hashaddr(PAunit); // calc. the hash address

p = plbTable->getTable(); / retrieves the ptr to the hash table

Iptr = p[index]; // retrieves the ptr to the list of entries
// for a hash address

if (Iptr!=0)

pline = (PLBLine *) (Iptr->find(PAunit.ViewID,i)); // retrieves a pointer to

//the required entry if it exists

if ((Iptr==0) Il (pline==0))

//normally a hard page fault -- to secondary storage. I assume enough space

// available

// in memory to hold the PLB table. Therefore if an entry does not exist in it. it

// will be create
pline =

if (Iptr==0)
{

}

d with default values.

createEntry(PAunit,ViewlD, PDID, 0, 0): // ¢s = ocs = 0 default

Iptr = new List:
plbTable->add(index.Iptr);

Iptr->add(pline): // adds the entry to PLB Table.
cst->setPLBTable(2,1); // incr. PLB entry creation
cst->setDelay(MemoryAccess);

if (action == 0) // read access

{

}

cstate = pline->getCurrentState().
ocstate = pline->getOtherCurrentState();
PDID = pline->getPDID();
cst->setPLBTable(0.1):
cst->setDelay(MemoryAccess).

else // writeback

{

!

pline->setCurrentState(cstate);
pline->setOtherCurrentState(ocstate):
pline->getLineBits()->setTag(PAunit):
pline->getLineBits()->setDirtyBit(0):
pline->getLineBits()->setRefBit(0);
pline->getLineBits()->setValidBit(1):
pline->setViewID(ViewID);
pline->setPDID(PDID);
cst->setPLBTable(1.1):
cst->setDelay(MemoryAccess);

return pline;

J

181

TN T T T T T T T
void PLBTable::write(unsigned int VA, int ViewID, int PDID, int cs, int ocs)

{

}

List **p:

List *Iptr;
PLBLine *pb;
int index;

pb = createEntry(VA,ViewlID, PDID, cs, ocs):

index = plbTable->hashaddr(VA); // calc. the hash address

p= plbTable->getTable(); // retrieves the ptr to the hash table

Iptr = pfindex]; / retrieves the ptr to the list of entries for a hash address
if (Iptr==0)

{

Iptr = new List;
plbTable->add(index.lptr):
}

Iptr->add(pb); // adds the entry to PLB Table.

i
PLBLine * PLBTable::createEntry(int PAuid. int ViewID. int PDID. int cs. int ocs)

{

PLBLine *p;
LineControlBits * q;

p = new PLBLine;

q = new LineControlBits:;

p->setLineBits(q):

p->getLineBits()->setTag(PAuid); // sets the VA attribute of pb's tag
p->getLineBits()->setValidBit(1);

p->getLineBits()->setDirty Bit(0);

p->getLineBits()->setRefBit(1);

p->setViewID(ViewlD); / sets the ViewlD attribute of pb
p->setPDID(PDID):

p->setCurrentState(cs);

p->setOtherCurrentState(ocs):

return (p);

}
T i i i i

void PLB::replace(int index, PLBTable *pt, CacheStats *&st)
// removes a line from the set. The contents of the line are written back to memory
/1 if the dirty bit was set.
{
List **p;
PLBLine *q, *r;
int mPA, vid, s, os, pid:

p = getPLBLine():

q = (PLBLine *) (p[index]->last()->obj);
if (@->getLineBits()->getDirtyBit() == 1)
{

/lincrement stats to show a write back to memory

mPA = g->getLineBits()->getTag();

vid = g->getViewlD();

s = g->getCurrentState();

os = q->getOtherCurrentState();

pid = g->getPDID();

r = pt->access(mPA,vid.s,0s.pid. 1.st): /faction is WB - write back
}
Node *n = p[index}->remove((Object*)q):
plindex]->del(n);

}
I T i
Filename: tlb.cpp

#include <iostream.h>
#include <fstream.h>
#include "object.h”
#include "list.h"
#include "hash.h"
#include "input.h"
#include "trans.h"
#include "spec.h”

i
TLB:: TLB (int s)
{
cache = new Cache;
cache->setNumUorDsets(s);
if (s<=0) cerr << "TLB size cannot<=0" << endl:
numlines = s;
Line = new TLBLine[s];

for (int i = 0; i < numlines; i++)
{
Line[i].setASID(0);
Line[i].setMP(0).
Line[i].setLineBits(0);

183

}
i
TLB::~TLB()

{

delete [JLine;
delete cache;

}
i
// Searches the entire TLB: a sequential version of a fully associative TLB.
int TLB::getTranslation(unsigned int VA)
{
inti=0:
Mapping *m:

TLBLine *p = Line:
if (p!=0)
while (i < numlines)

{
m = p->getMP():

if (m)
{
if (VA ==m->getVA())
{
return m->getPA();
}
}
p++:
I++;

}
return MAX;

}
TN T T T T T
void TLB::setStatus()

{

int j:

} = findFree():
if (j == numlines)
status = [;
else
status = 0

}
M T e
void TLB::doLRU(int index)
{

int i,

TLBLine tmp;

tmp = Line[index];

for (i = index; i==0; i--)

Line[i] = Line [i-1];

Line[0]= tmp;

}
TN T T T T
int TLB::replace()

doLRU(numlines-1);
return O;

}
i
int TLB::findFree()
{

inti=0;

int notfound = I;

while ((i < numlines) && notfound)

if (Line[i).getLineBits() '=0)
{

if (Line[i].getLineBits()->getValidBit() == 1)

1++;

else notfound = 0;

)

return i;
}
TN T T T T T T

void
TLB::createMapping
(

int VA, /! Virtual address
int PA // Physical address
)
{

int index;

setStatus();

int TLBfull = getStatus();

if (TLBfull)

index = replace():
else

index = findFree();
Line[index].setMP(new Mapping):
Line[index].getMP()->setVA(VA):
Line[index].getMP()->setPA(PA):
Line[index].setLineBits(new LineControlBits);
Line[index].getLineBits()->setValidBit(1);

}
i
TLBLine

184

185

TLB::operator[](int i)
{
return Line[i];

}
L
Filename: trans.cpp

#include <iostream.h>
#include <fstream.h>

#include "object.h”
#include "list.h"
#include "hash.h"
#include "input.h"
#include "trans.h”
#include "spec.h”

Transaction::Transaction(int ident, Input * i)

fd =1i;
id = ident;
lockset =0:;

}

T T T T T T
Transaction::~Transaction()

{

}

i
TSB::TSB()
{

}
i
TSB::~TSB()

{

}

T T T T T T T
AUE::AUE()

{

}
T T T T T
AUE::~AUE()

{

}
TR T T T T T T

void Transaction::add(Object * r)

{

if (lockset == 0)
lockset = new List;

186

lockset->add(r);

}

T T T T T T T e T i
void Transaction::wakeup()

{

}

I T T i i
void Transaction::dump(ostream &os)

{

0s << "Transaction ID: " << id << "\nTransaction Lockset : " << lockset <<"\n":

)
T T i i
void TSB::dump(ostream &os)

{

os << "TSB Transaction ID: " << key << "\tByte in file " << mark << "\n";

}

i

void AUE::dump(ostream &os)

{
0s << "AU ID: " << map << "\n";
0s << "Suspend Queue:\n" << suspendQ << "\n";
0s << "Multiple Readers: \n" << mreader << "\n":

}
T T T T T T T T T T T T T
Filename: spec.cpp

#include <tostream.h>
#include <fstream.h>
#include "object.h"
#include "list.h"
#include "hash.h"
#include "input.h"
#include "trans.h"
#include "spec.h”

G
Input::~Input()
{

}
HIHHHATIR T T e T
Configlnput::~Configlnput()

{

}
i
DataCacheLine::DataCacheLine()

{

}

T T T T T

DataCacheLine::~DataCacheLine()
{

}
T T T T T T T T
void DataCacheLine::dump(ostream &os)
{
os << "Data Cache Line : " << endl;
os << LineBits << "\n":
os << "PDID: " << PDID << endl:

}
T T T T T T e
void LineControiBits::dump(ostream &os)
{
os << "LineControlBits : " << endl;
os << "\tDirty(" << dirty << ")" << endl;
0s << "\tRef(" << reference << ")" << endl;
os << "tTag(" << tag << ")" << endl:

os << "WTagl(" << hex << tagl << ")" << endl:

os << "\tValid(" << valid << ")" << endlI;
}
T T T T T T T e e

LineControlBits::LineControlBits()

{

}
T e i
LineControiBits::~LineControlBits()

{

}
G
Mapping::Mapping()

{

|
i G
Mapping::~Mapping()

{

}

T T T T T e i
void

Mapping::dump(ostream &os)

{

187

0s << "PA="<<hex <<pa<<" VA ="<<va <<" Whole VA "<< vaddr <<

endl;

}
G

PLBLine::PLBLine()
{

}

T T T T T T T T
PLBLine::~PLBLine()

{

}
T T T T
void
PLBLine::dump(ostream &os)
{

os << "PLBLine Object :" << endl;

os << "\tCount : " << Count << endl;

os << "\tCurrent State : " << CurrentState << endl;

os << "\tLineBits : " << LineBits << endl;

os << "\tOther : " << OtherCurrentState << endl;

os << "IPDID : " << PDID << endl:
0s << "\tViewld : " << ViewlID << endl;

}
T T T T T
TLBLine::TLBLine()

{

}
TN T T T
TLBLine::~TLBLine()

{

}
T T T L
VDULine::VDULine()

{

}
T T T T T T T T
VDULine::~VDULine()

{

}
i
int VDU::calcMask(int unitsize)

{

int mask;

mask = AddressSpaceSize - unitsize + 1;
return (mask);

J
i

VDU::VDU(int s)

{
int tupleSize:
int mask;

188

189

cache = new Cache;
if (s<=0) cerr << "VDU size cannot<=0" << end!:
cache->setNumUorDsets(s);

numlines = s;
Lines = new CacheLine[s];

for (inti=0:i<s; i++)
{

Lines[i].LineBits.setTag(0);
Lines[i].LineBits.setValidBit(0);
Lines[i].LineBits.setDirtyBit(0);
Lines[i].LineBits.setRefBit(0);
Lines[i].contents = new VDULine;
Lines[i].contents->setView1D(999); // default
Lines[i].contents->setFSMID(0); // default
Lines[i).contents->set VFNStart(Oxffffffff); // default
Lines[i].contents->set VFNEnd(Oxffffffff); // default
Lines[i].contents->setMask(0xfffff000): // default 4K pages
Lines[i].contents->set VIDPtr(0); // default

i=0: // multiple views defined
// Warehouse Relation
tupleSize = 0x00000080:
mask = calcMask(tupleSize);
Lines[i].LineBits.setValidBit(1):
Lines[i].contents->setViewlID(0);
Lines[i].contents->set VFNStart(0x0001 f060):
Lines[i].contents->set VFNEnd(0x00051984);
Lines[i].contents->setMask(mask); // 4K unit size

i=1;

// District Relation
tupleSize = 0x00000080:
mask = calcMask(tupleSize):

Lines[i].LineBits.setValidBit(1):
Lines[i].contents->setViewID(1);
Lines[i].contents->set VFNStart(0x00052a28);
Lines[i].contents->set VFNEnd(0x001200c4);
Lines{i].contents->setMask(mask); // 4K unit size
i=2;
/I Customer Relation
tupleSize = 0x00000400;
mask = calcMask(tupleSize).

Lines[i].LineBits.setValidBit(1);
Lines[i].contents->setViewID(2);
Lines[i].contents->set VFNStart(0x00121 148);

i=3;

Lines[i].contents->setVFNEnd(0x00602ce4);
Lines[i].contents->setMask(mask); // 4K unit size

// Item Relation

i=4;

tupleSize = 0x00000080;
mask = calcMask(tupleSize);

Lines[i].LineBits.setValidBit(1):;
Lines[i].contents->setViewID(3);
Lines[i].contents->set VFNStart(0x006040e8);
Lines[i].contents->set VFNEnd(0x00705 14c¢);
Lines[i].contents->setMask(mask); // 4K unit size

// Stock Relation

i=5;

tupleSize = 0x00000200:;
mask = calcMask(tupleSize):

Lines[i}.LineBits.setValidBit(1);
Lines[i].contents->setViewID(4);
Lines[i].contents->set VFNStart(0x00960d98);
Lines[i].contents->set VFNEnd(0x00dbceb8):
Lines[i].contents->setMask(mask); // 4K unit size

// Order Relation

i=6:

tupleSize = 0x00000020;
mask = calcMask(tupleSize):

Lines[i].LineBits.setValidBit(1):
Lines{i].contents->setViewID(3);
Lines|i].contents->set VFNStart(0x00706 1d8):
Lines[i].contents->setVFNEnd(0x007cedd4);
Lines[i].contents->setMask(mask): // 4K unit size

// Neworder Relation

i=7;
// OrderLine

tupleSize = 0x00000008;
mask = calcMask(tupleSize);

Lines[i].LineBits.setValidBit(1);
Lines[i].contents->setViewID(6).
Lines[i].contents->set VFNStart(0x007cfdf8):
Lines[i].contents->setVFNEnd(0x0095ed84);
Lines[i].contents->setMask(mask); // 4K unit size

tupleSize = 0x00000040;

190

i=8;
// History

mask = calcMask(tupleSize);

Lines[i].LineBits.setValidBit(1);
Lines[i).contents->setViewID(7);
Lines{i].contents->setVFNStart(0x0dbe(098);
Lines[i].contents->setVFNEnd(0x00e88574);
Lines[i].contents->setMask(mask); // 4K unit size

tupleSize = 0x00000040;
mask = calcMask(tupleSize):;

Lines[i].LineBits.setValidBit(1);
Lines[i].contents->setViewID(8);
Lines[i].contents->setVFNStart(0x00e895b8);
Lines[i].contents->setVFNEnd(0x00f53a94);
Lines[i].contents->setMask(mask); // 4K unit size

}
T T T T T T T
VDU::~VDU()

{

}
IR T e T T i
int VDU::lookup(unsigned int vaddr, int & vmask.int &vstart)

{

VDULine *p:
int found = 0;

inti;

setCurrentLine(Lines); // currentline is at the zeroth entry in the cache
for (i=0: ((i<numlines) && (found == 0)); i++, cline++)

{

p = getVDULine():
if ((vaddr >= (p->getVFNStart())) && (vaddr <= (p->getVFNEnd())))
{

)

}
if (found == 0)
{

found = I;

vstart = p->get VFNStart();
vmask = p->getMask();
break;

cline=0;
} // note that here we assume no faults on the VDU cache.

return found;

}
T T T T T
void VDU::indexVDUCache(unsigned int v, int &mask, int & ViewlID. int ¬found. int

&FSMID)

191

192

int m,s;

lookup(v.m,s):

if (cline '=0)

{
mask = cline->contents->getMask();
FSMID = cline->contents->getFSMID():
ViewID = cline->contents->getViewID();
notfound = 0;

else
notfound = |;

}
s

CacheStats::CacheStats()
{

int i;

for (i=0:i<NUMACCESSTYPES:i++)

fetch[i] = O;
sfetch{i] = 0:
RWDelay[i] =0;
L2fetch(i] = 0:

)
for (i=0:i<NUMMISSTYPES:i++)
{

miss[i] = 0:

smiss[i] = 0;

L2miss[i] = 0;

)

for (i=0:i<NUMPACCESSTYPES.:i++)
Pfetch[i] = 0;

for (i=0;i<NUMMISSTYPES;i++)
Pmiss[i] = 0:

for (1=0;i<NUMACCESSTYPES:i++)
Tfetch[i] = 0;

for (i=0;i<NUMMISSTYPES:i++)
Tmiss[i} =0;

for (i=0;i<NUMACCESSTYPES:i++)
PTable[i] =0;

for (i=0;i<cNUMACCESSTYPES:i++)
PLBTable[i] =0;

for (i=0;i<NUMACCESSTYPES:i++)
DTable[i] =0:

FlushLine = 0;
FlushCache = 0;
FlushMemWrite = 0;
InvalidateInTraffic = 0;
InvalidateOutTraffic = O
InBusTraffic = 0;
OutBusTraffic = 0;
[Count =0;

dcAccess =0;
fsmAccess = 0;
vduAccess = 0;
plbAccess =0:
tibAccess = 0;
L2Access =0;

delay = 0;

hWACFault = 0:;
mWACFault = 0;

}
T T
CacheStats::~CacheStats()

{

}
i
FSM::FSM (int s)

{

cache = new Cache;

if (s<=0) cerr << "FSM size cannot<=0" << endl;
cache->setNumUorDsets(s):

numlines = s;

fsmline = new CacheLine[s]:

for(inti=0;1<s:i++)

// the LineBits structure is not currently used in this FSM implementation
fsmline[i].LineBits.setTag(0);
fsmlinefi].LineBits.setValidBit(0);
fsmline[i].LineBits.setDirtyBit(0):
fsmline[i].LineBits.setRefBit(0);
fsmline[i].LineContents.setFSMID(0):

fsmline[i].LineContents.setAccessType(0); //default op is a READ

}

// the following statements will be used in the function to load the FSM cache.
// these are only temporarily here
i=0;
fsmline[i].LineContents.setCurrentState(0): // 0 - Unlocked
fsmline[i].LineContents.setOtherCurrentState(0);
fsmline[i].LineContents.setNewState(1); //'1 -SR
fsmline[i].LineContents.setOtherNewState(2); /2 -0SR
fsmline[i].LineContents.setResult(1); // proceed

193

194

i++

fsmline[i].LineContents.setCurrentState(1); // 1 -SR
fsmline[i].LineContents.setOtherCurrentState(2):
fsmline[i].LineContents.setNewState(3);

fsmline[i].LineContents.setOtherNewState(3); /12 -0OSR
fsmline[i].LineContents.setResult(1); // proceed
i1++;

fsmline[i].LineContents.setCurrentState(2);
fsmline[i].LineContents.setOtherCurrentState(1);

fsmline[i].LineContents.setNewState(3); /'3 -MR
fsmline(i].LineContents.setOtherNewState(3):
fsmline[i].LineContents.setResult(1); /1 proceed
1++;

fsmline[i].LineContents.setCurrentState(3);
fsmline[i].LineContents.setOtherCurrentState(3);

fsmline[i].LineContents.setNewState(3); //3-MR
fsmline[i].LineContents.setOtherNewState(3):
fsmline[i].LineContents.setResult(1); /Il proceed
i++;

fsmline[i].LineContents.setCurrentState(4); /14 -Write

fsmline{i].LineContents.setOtherCurrentState(5); //5 - Prohibit
fsmline[i].LineContents.setNewState(4);
fsmline[i].LineContents.setOtherNewState(5):
fsmline[i].LineContents.setResult(1); /1 proceed
i++:

fsmline[i].LineContents.setCurrentState(5):
fsmline[i].LineContents.setOtherCurrentState(4);
fsmline[i].LineContents.setNewState(5);
fsmiline[i].LineContents.setOtherNewState(4);
fsmline[i].LineContents.setResult(0): /1 fault
i++:

fsmline{i].LineContents.setCurrentState(5):
fsmlinefi].LineContents.setOtherCurrentState(5):
fsmline[i].LineContents.setNewState(5);
fsmline[i].LineContents.setOtherNewState(5);
fsmline[i].LineContents.setResult(0); // fault

//write ops

i++:

fsmline[i].LineContents.setAccessType(1):
fsmline[i].LineContents.setCurreniState(0):
fsmline{i].LineContents.setOtherCurrentState(0);
fsmline[i].LineContents.setNewState(4):
fsmline[i].LineContents.setOtherNewState(5):
fsmline(i).LineContents.setResult(1): /I proceed
i++

fsmline{i].LineContents.setAccessType(1):
fsmline[i].LineContents.setCurrentState(|);
fsmline[i].LineContents.setOtherCurrentState(2);
fsmline[i].LineContents.setNewState(4);
fsmline[i].LineContents.setOtherNewState(5);

fsmline{i].LineContents.setResult(1);

i++:
fsmline[i].LineContents.setAccessType(1):
fsmline(i]).LineContents.setCurrentState(4);

fsmline[i].LineContents.setOtherCurrentState(5);

fsmline[i].LineContents.setNewState(4);
fsmline[i].LineContents.setOtherNewState(5);
fsmline[i].LineContents.setResult(1);

i++;
fsmline{i].LineContents.setAccessType(1):
fsmline[i].LineContents.setCurrentState(2);

fsmline[i}.LineContents.setOtherCurrentState(|):

fsmline{i].LineContents.setResult(0);

i++;
fsmline[i].LineContents.setAccessType(1);
fsmline[i].LineContents.setCurrentState(2);

fsmline[i].LineContents.setOtherCurrentState(2);

fsmline[i].LineContents.setResult(0):

i++;
fsmline[i].LineContents.setAccessType(1);
fsmline[i].LineContents.setCurrentState(3):

fsmline[i].LineContents.setOtherCurrentState(3):

fsmline[i].LineContents.setResult(0):

i++;
fsmline[i].LineContents.setAccessType(1):
fsmlinefi].LineContents.setCurrentState(5):

fsmline[i].LincContents.setOtherCurrentState(4);

fsmline[i].LineContents.setResult(0);

i++;
fsmline[i].LineContents.setAccessType(1):
fsmline[i].LineContents.setCurrentState(5);

fsmline[i].LineContents.setOtherCurrentState(5);

fsmline{i).LineContents.setResult(0):

}
i

void FSM::indexFSM(int fsmid, int act,int cs, int ocs, CacheLine *&p)

{

int condn, i;

CacheLine *cacheptr;

condn = 0;
i=0;

cacheptr = fsmline;
while ((condn==0)&&(i<numlines))// loop through the lines of the specified FSM

{

// proceed

// proceed

/1 fault

// fault

/ tault

// fault

/f fault

195

condn = (fsmid == cacheptr[i].LineBits.getTag()) && (act== cacheptr{i].
LineContents. getAccessType()) && (cs == cacheptr[i}.LineContents.

i++:

getCurrentState()):

196

if (condn!=0)
p =cacheptr +1 - |;

else
p=0:
}
M T T e i i i
int
main
(
int argc, // Number of arguments
char *argv| |, // Arguments
char *envp(| // Environment variables
)
{ .
System *sim;
if Cargc<3)
{
cerr << "Usage: " << argv([0] << " <config file> <trace>" << endl;
return O;
}
clse
{
}
cout << "Starting simulation..." << endl;
sim = new System(argv[1], argv[2]);
if (sim==0)
{
cerr << "Unable to create simulator” << endl;
return O;
)
else
{
sim->getCPU()->getPMFreeList()->initPM().
sim->loadPageTable():
sim->start();
}
return 42;
}

W T T T T T T T T e i

197

APPENDIX B

Source Code for Conventional Lock Manager

Filename: lock.cpp

#include <iostream.h>
#include <fstream.h>

#include "object.h"
#include "list.h"
#include "hash.h"
#include "trans.h"
#include "lock.h"

void LCB::dump(ostream &os)
{
0s <<"key = " << name << " mode = " << mode <<endl:
os <<"\nGrants list: " << endl;
0s << grants << endl;
os <<"Pending list: " << endl;
os << pending << endl:

}

i
void LRB::dump(ostream &os)

{

os <<"transaction ID =" <<requesterID << " lockmode = " << mode
<< " key =" << key << " listname =" << listname <<endl:

!

i
LockTable::LockTable(int s, char *name)

{
It = new HashTable(s);
dbname = name;

}
i
LockTable::~LockTable()

{
}
s

/111 Finds the LCB hash chain for the key.

List* LockTable::access(unsigned int key, int &index)

{

List **p;
List *Iptr;

index = It->hashaddr(key); // calc. the hash address of virtual address v

198

p= it->getTable(); /l retrieves the ptr to ptr to the list
Iptr = p[index]; /i retrieves the ptr to the list of mappings for a hash
address

return Iptr;

}

G

// Adds a Lock Request Block to either the Grants List or the Pending
// List. Also chains a list through the transaction's lockset.

void LockTable::add(List *p, LCB * c.int setpend.Transaction *tid, int lockmode)

{

LRB *r;
int transid. k, q:

transid = tid->getID();
k = c->getName();

if (p==0)

{

= new List;
(setpend==1)
c->setPending(p);

p
if

else
c->setGrants(p);

r =new LRB; // create new LRB entry
r->setID(transid);
r->setMode(lockmode);
r->setKey(k):
if (setpend == 1)

q=1:

q=0;
r->setList(q):
tid->add(r); // add to transaction's lockset
p->add(r); // place LRB entry on either the grants or pending list

else

}
M T T T e i e nn i i i
int LockTable::setLock(unsigned int key, int Imode, Transaction *tid)

{

List *Iptr, *p, *q;
int ¢s; //current state
LCB * Icb;

LRB * Irb;

int success = 0;

int i=0;
int id;

199

id = tid->getID():
Iptr = access(key.i):

if (Iptr!=0)

lcb = (LCB *) Iptr->find(key); // retrieves a pointer to the .. if it

else

{

exists

Iptr = new List;
It->add(i,Iptr); // adds the list to the hash table

Icb =0;

}
if (Icb==0)
{

}

Icb =new LCB;

Icb->setName(key);

Icb->setMode(0);

Icb->setGrants(0);

Icb->setPending(0);

Iptr->add(lcb); // adds the LCB to the list

cs = leb->getMode():
p = lcb->getGrants():

if (cs==UNLOCK) // access unit is currently unlocked

{

lcb->setMode(Imode):
add(p.lcb.0.tid.Imode):
success = |

else

if (cs==READ) // access unit is currently read locked

if (Imode==WRITE) // request for a write lock
{
/lcheck to see if requester already has a read lock
/1 if (p'=0) //this should be always true if ¢s>0 . so not
needed
Irb = (LRB *) p->search(id);
if (Irb !=0) // requesting transaction has access currently
{// here we assume write and read locks only (no intention
etc.)
if (p->getCount()==1) //read locked by requester

Icb->setMode(Imode); // upgrade to a WRITE

lock
Irb->setMode(Imode);
success = 1;

else //read lock is held by one or more subjects
{
q = Icb->getPending(): // place on pending queue
add(q.Icb, 1.tid,Imode); //place LRB entry on
pending list
}

else // conflict - read lock is held by another transaction

q = Icb->getPending(); // place transaction on
pending queue
add(q.lcb, [tid,Imode): //place LRB entry on
pending list
} }
if (Imode == READ) // request for a read lock
add(p.lcb.0.tid.Imode):
success = 1,

}

}
if (cs==WRITE) // if request is for a W and the unit is already locked for
write

/Icheck if W lock already belongs to the requesting transaction
Irb = (LRB *) p->search(id);
if (Irb '=0)
success = |;
else // WW conflict

q = Icb->getPending(); // place transaction on pending queue
add(q,lcb, 1,tid,Imode): //place LRB entry on pending list

}
)
return success:;

}

o
int LockTable::releaseLocks(Transaction *tid)
{

List *Iset,*p, *Iptr :

Node *n;

LRB * Irb;

LCB *Icb;

int q, k, i;

201

Iset = tid->getLockset();
Iset->reset();
while ((n = Iset->next())!= 0)
{
Irb =(LRB *) n->o0bj;
q = Irb->getListName();
k = Irb->getKey();
Iptr = access(k.i):
Icb = (LCB *) Iptr->find(k): // retrieves a pointer to the .. if it exists
if (Icb == 0)
cout << "crror in release routine\n";
if (q==0)
p = lcb->getGrants();
else
p = Icb->getPending();

p->remove(lrb):
Iset->remove(n);
Iset->del(n):

}

return |
}
T I T

void
LockTable::dump(ostream &os)

{

0s << "Lock Table for file : " << dbname <<"\n\n":
os << It;

)
T T T T T e
Filename : init.cpp

#include <iostream.h>
#include <fstream.h>

#include "object.h"
#include "list.h"
#include "hash.h"
#include "trans.h”
#include "lock.h"

Transaction::Transaction(int ident)

id = ident;
lockset = 0;

T T T T T T e e
Transaction::~Transaction()

{

}

AT T i i i
void Transaction::add(Object * r)

{

if (lockset == 0)
lockset = new List;
lockset->add(r);

}
AT T T e i
Filename: serial.cpp

#include <iostream.h>
#include <fstream.h>

#include "object.h"
#include "list.h"
#include "hash.h"
#include "trans.h"
#include "lock.h"”

void tl(LockTable * Locktable, Transaction *t[])
{

Locktable->setLock(0Ox 1fO60,READ, [1]):
Locktable->setLock(0x 1f0e0,READ [1]);
Locktable->setLock(0x242f8.READ.{[1]):
Locktable->setLock(0x243f8, READ [1]);
Locktable->setLock(0x242f8, WRITE, ([1]);
Locktable->setLock(0x24 38, WRITE, [1]):
Locktable->setLock(0x42d48,READ,t[1));
Locktable->setLock(0x44 148, READ,t[1]);
Locktable->setLock(0x4 1948 READ.t[1]);
Locktable->setLock(0x3dd48,READ,t[1]);
Locktable->setLock(0xcfbcO,WRITE,t[1]);
Locktable->setLock(0xcfbcO,READ [1]);
Locktable->setLock(0xcfdcO,WRITE t[1));

Locktable->setl.ock(0xd09¢0,WRITE,t[1));

Locktable->setLock(0xe3e90,WRITE. [1));
Locktable->setLock(0xe3e98, WRITE, [1));
Locktable->setLock(0xe3e98, READ [1]);

Locktable->setLock(0xe4698 WRITE,t[1]);

Locktable->setLock(0xe56a0, WRITE,t[1));
Locktable->setLock(0xb5ed4,READ,t[1]);
Locktable->setLock(0xb5fd4, READ,t[1));

202

203

Locktable->setLock(0x 10e220,READ,t[1]);
Locktable->setLock(0x 10f420,READ,t[11]);
Locktable->setLock(0x 10d020,READ.t{1]);
Locktable->setLock(0x10d220,READ;[1]);
Locktable->setLock(0x 10d020,WRITE,t{1));
Locktable->setLock(0x 10d220,WRITE,t[1]);
Locktable->setLock(0x 17bba0, WRITE t[1]);
Locktable->setLock(0x 17bba0,READ,t[1]):
Locktable->setLock(0x 1 7bcaQ,WRITE t[1});
Locktable->setLock(0x 1 7cae0,WRITE t[1]);
Locktable->setLock(0xb5f54, READ, [1]);
Locktable->setLock(0x 10f620.READ t[1));
Locktable->setLock(0x 10f420,WRITE. t[1]);
Locktable->setLock(0x 10f620,WRITE t[1]);
Locktable->setLock(0x 17caeO,READ,[1]);
Locktable->setLock(0xb6054 READ.[1));
Locktable->setLock(0x 10c020,READ,t[1]);
Locktable->setLock(0x 10c020,WRITE t[1]):
Locktable->setLock(0x110620.READ. [1]);
Locktable->setLock(0x | 10620,WRITE t[1]);
Locktable->setLock(0x110820,READ.[1]):
Locktable->setLock(0x 1 10820,WRITE t[1)):

Locktable->releaseLocks(t[1]);

}

void t2(LockTable * Locktable, Transaction *t[})
{
if (Locktable==0)
{
cout << "error message” << endl;
return;

}
Locktable->setLock(0x 1f060,READ t[2]);

Locktable->setLock(0x 1f0eQ,READ t[2]):
Locktable->setLock(0x242f8, READ {[2]);
Locktable->setLock(0x24478 READ,t[2]):
Locktable->setLock(0x42d48, READ,t[2)):
Locktable->setLock(0x44 148 READ,t[2]);
Locktable->setLock(0x41948 READ,t[2));
Locktable->setLock(0x40548 READ,t[2));
Locktable->setLock(0x 1f060,WRITE,t[2]);
Locktable->setLock(0x 1f0eQ,WRITE. t[2});
Locktable->setLock(0x242f8, WRITE, t[2]);
Locktable->setLock(0x24478 WRITE,{[2]);
Locktable->setLock(0x40548, WRITE, t[2]);
Locktable->setLock(0x 1900f0,WRITE,t[2)):
Locktable->setLock(0x 1900f0,READ,t[2]);
Locktable->setLock(0x 1901 f0,WRITE.t[2));
Locktable->setLock(0x191030,WRITE,t[2]):

}

Locktable->releaseLocks(t{2]);

void t3(LockTable * Locktable, Transaction *t[])

{

}

Locktable->setLock(0x42d48 READ,t[3]);
Locktable->setLock(0x44 148, READ.t[3));
Locktable->setLock(0x3b548 READ,t[3]);
Locktable->setLock(0x3c548 READ,t[3]):
Locktable->setLock(0x3a148, READ t[3}]);
Locktable->setLock(0xcfbcO,READt[3]):
Locktable->setLock(0xcffcO,READ,t[3]);
Locktable->setLock(0x 17bba0,READ.t[3]):
Locktable->setLock(0x 17bf20,READ.t[3]);
Locktable->setLock(0x 17bfeQ,READ,t[3]);
Locktable->setLock(0x 17becO,READ,t[3}]):
Locktable->setLock(0x 1 7bfaO,READ.t[3]);
Locktable->setLock(0x17¢c060,READ.t[3]);
Locktable->setLock(0x 1 7bf60,READ,t[3));

Locktable->releaseLocks(t[3]):

void t4(LockTable * Locktable, Transaction *t[])

{

Locktable->setLock(0xe3¢98, READ.t[4]);
Locktable->setLock(0xe3e90,READ t[4]);
Locktable->setLock(0xe4698 READ t[4]):
Locktable->setlock(0Oxed4ea0.READ t[4]);
Locktable->setLock(0xe3¢98. WRITE.t[4]):
Locktable->setLock(Oxed4ea0, WRITE.t[(4]).
Locktable->setLock(0xcfbcO,READ,t[4]);
Locktable->setLock(0OxcffcO,READ,t[4]);
Locktable->setLock(0xcfbcO,WRITE, t[4));
Locktable->setLock(0xcffcO,WRITE,t[4]):
Locktable->setLock(0x17bba0,READ.,t[4]):
Locktable->setLock(0x 17bfa0,READ,t[4]);
Locktable->setLock(0x 17bba0,WRITE,t[4]):
Locktable->setLock(0x 17bfa0,WRITE, t[4]):
Locktable->setLock(0x17beeO,READ,t[4));
Locktable->setLock(0x | 7bee0, WRITE, t[4]);
Locktable->setLock(0x 1 7bf60,READ,t[4]);
Locktable->setLock(0x 17bf60,WRITE,t[4]);
Locktable->setLock(0x17¢020,READ,t[4)):
Locktable->setLock(0x 17¢020,WRITE, t[4}]);
Locktable->setLock(0Ox 1 7bf20,READ.t[4]);
Locktable->setLock(0x 17bf20,WRITE, t[4]):
Locktable->setLock(0x42d48, READ.t[4]);

}

Locktable->setlLock(0x44 148, READ,t[4));
Locktable->setLock(0x4 1948, READ. t[4]);
Locktable->setLock(0x40548 READ t[4]);
Locktable->setLock(0x40548 WRITE.t[4));

Locktable->releaseLocks(t[4]);

void t5(LockTable * Locktable, Transaction *t[])

{

}

Locktable->setLock(0x242f8, READ, t[5]):

Locktable->setLock(0x243f8 READ.{[5));

Locktable->setLock(0x 17bba0,READ,t[5]):
Locktable->setLock(0x17bee0,READ.t[5}):
Locktable->setLock(0x 10e220,READ{[5)):
Locktable->setLock(0x 10f420,READ. t[5]):
Locktable->setLock(0x 10d020,READ t[5));
Locktable->setLock(0x 10d220,READ t[5));
Locktable->setLock(0x 10f620,READ.t[5]);

Locktable->releaselocks(t[5]):

void t6(LockTable * Locktable, Transaction *t[])

{

Locktable->setLock(0x 1f060,READ,t[6)):
Locktable->setLock(0x 1f0e0,READ.t[6]);
Locktable->setLock(0x242f8 READ,t[6]);
Locktable->setLock(0x24478 READ.t[6]);
Locktable->setLock(0x242f8, WRITE t[6]);
Locktable->setLock(0x24478 WRITE.t[6]);
Locktable->setLock(0x42d48, READ,[6]):
Locktable->setLock(0x44 148, READ,t[6]):
Locktable->setLock(0x41948 READ,{[6]);
Locktable->setLock(0x40548 READ,([6));
Locktable->setLock(0xcfbcO,READ.t[6]);
Locktable->setLock(0xd09e0,READ, t[6]);
Locktable->setLock(0xcfbcO,WRITE, [6));
Locktable->setLock(OxcfdcO,WRITE,t[6)):
Locktable->setLock(0xd09e0.WRITE,t[6}));
Locktable->setLock(0xe3¢98,READ,t[6});
Locktable->setLock(0xe3¢90,READ,t[6]):
Locktable->setLock(0xe56a0,READ,t[6));
Locktable->setLock(0xe3e98, WRITE t[6]);
Locktable->setLock(0xe46a0,WRITE.,t[6));
Locktable->setLock(0xe56a8, WRITE,t[6));
Locktable->setLock(0xe3e90,WRITE,t[6));
Locktable->setLock(0xb5ed4, READ. t[6]);
Locktable->setLock(0xb6054, READ,t[6]);

205

}

Locktable->setLock(0x 10e220,READ.,t[6]);
Locktable->setLock(0x 10f420,READ, t[6]);
Locktable->setLock(0x 110620,READ t[6));
Locktable->setLock(0x 1 10820,READ.t[6]);

Locktable->setLock(0x 110620, WRITE,t[6]);
Locktable->setLock(0x 110820,WRITE,t[6]);

Locktable->setLock(0x [7bba0,READ, t[6]);
Locktable->setLock(0x 17cae0,READ,t[6));

Locktable->setLock(0x 17bba0,WRITE,t[6));

Locktable->setLock(0x 17bca0,WRITE t[6));
Locktable->setLock(0x | 7cae0,WRITE t[6]);
Locktable->setLock(0xbSfd4, READ.t[6]);
Locktable->setLock(0x 10e420.READ.[6]);

Locktable->setLock(0x 10e220,WRITE,t[6});
Locktable->setLock(0x 10e420,WRITE,t[6]):

Locktable->setLock(0xb5f54 READ t[6]);
Locktable->setLock(0x 10f620,READ 1[6]);
Locktable->setLock(0x 10f420,WRITE,t[6]);
Locktable->setLock(0x 10f620,WRITE,t[6]);
Locktable->setLock(0x 17bce0,WRITE, t[6));
Locktable->setLock(0x 10c020,READ.[6]));

Locktable->setLock(0x10c020,WRITE.t[6]):
Locktable->setLock(0x 17bbe0, WRITE.t{6]):

Locktable->setLock(0x 1 7bbe0,READ.1[6]);

Locktable->setlock(0x 17¢b20,WRITE,t[6]);

Locktable->setLock(0x17¢b20.READ,1[6]);

Locktable->releaseLocks(t[6]):

void t7(LockTable * Locktable, Transaction *t[])

{

Locktable->setLock(0x42d48, READ,t[7]);
Locktable->setLock(0x44 148 READ,t[7]);
Locktable->setLock(0x3b548, READ.{[7]));
Locktable->setLock(0x3c548, READ,{[7));
Locktable->setLock(0x38d48 READ,t[7]);
Locktable->setLock(0OxcfbcO,READ [7)):
Locktable->setLock(0xcffe0,READ,t[7]);
Locktable->setLock(0x17bba0,READ,t[7)):
Locktable->setl.ock(0x17bbe0,READ. t[7]);
Locktable->setLock(0x 17bf20,READ t[7]);
Locktable->setLock(0x 1 7bf60,READ t[7}]);
Locktable->setLock(0x17¢1e0,READ. t[7]):
Locktable->setLock(0x 1 7c0e0,READ.t{7]);
Locktable->setLock(0x17¢220,READ t[7));
Locktable->setLock(0x17¢060,READ, ([7]):
Locktable->setLock(0x17¢c160,READ,t[7]);
Locktable->setLock(0x17¢120,READ {[7]);
Locktable->setLock(0x 1 7bfe0,READ,t[7]);

206

207

Locktable->releaseLocks(t[7]);

|

void t8(LockTable * Locktable, Transaction *t[])
{

Locktable->setLock(0x42d48, READ,t[8]);
Locktable->setLock(0x44 148 READ,t[8]);
Locktable->setLock(0x3b548, READ,t[8]);
Locktable->setLock(0x3¢c548 READ,t[8]);
Locktable->setLock(0x38d48, READ,t[8]);
Locktable->setLock(0xcfbcO,READ t[8]);
Locktable->setLock(0xcffeO,READ,t[8]);
Locktable->setLock(0x 17bbaO,READ.{8));
Locktable->setLock(0x 17bbeO,READ,[8)):
Locktable->setLock(0x | 7beeO,READ, t[8]);
Locktable->setLock(0x17c160,READ,t[8]):
Locktable->setLock(0x17¢120.READ,[8)):
Locktable->setLock(0x17¢020,READ.t[8]):
Locktable->setLock(0x17¢220,READ.[8]);
Locktable->setLock(0x17¢0a0,READ.t[8]):

Locktable->releaseLocks(t{8]);

}

void t9(LockTable * Locktable, Transaction *t[])
{

Locktable->setLock(0xe3e98, READ.t[9}]);
Locktable->setLock(0xe3e¢90.READ,t[9));
Locktable->setLock(0xe46a0,READ,t[9]);
Locktable->setLock(Oxed4ea0.READ.t[9]):
Locktable->setLock(0xe3e98.WRITE, t[9]):
Locktable->setLock(0Oxed4ea0,WRITE,t[{9]);
Locktable->setL.ock(0xcfbcO,READ t[9)):
Locktable->setLock(OxcffcO,READ,[9]);
Locktable->setLock(0xcfbcO,WRITE, t[9]);
Locktable->setLock(0OxcffcO,WRITE.t[9));
Locktable->setLock(0x17bba0,READ,1[9]):
Locktable->setLock(0x17bbeQ,READ,t[9]);
Locktable->setL.ock(0x 17bfaO,READ,t[9]);
Locktable->setLock(0x 1 7bba0,WRITE, t[9)):
Locktable->setLock(0x 17bfa0,WRITE,t[9]):
Locktable->setLock(0x17¢120,READ,t[9));
Locktable->setLock(0x17c120,WRITE,t[9));
Locktable->setl.ock(0x17c0a0,READ,t[9));
Locktable->setLock(0x 17¢0a0,WRITE, t[9]);
Locktable->setLock(0x17¢020,READ,[9]);
Locktable->setLock(0x17c020,WRITE,t[9)):
Locktable->setLock(0x17¢060,READ,t[9));

}

Locktable->setLock(0x 17¢060, WRITE t[9]);
Locktable->setLock(0x42d48,READ,t{9)):
Locktable->setLock(0x44 148 READ t[9]);
Locktable->setlL.ock(0x3b548, READ,t[9]);
Locktable->setLock(0x3c548, READ.t[9));
Locktable->setLock(0x38d48 READ,t[9));
Locktable->setLock(0x38d48 WRITE,t[9)):

LLocktable->releaseLocks(t[9]):

void t10(LockTable * Locktable, Transaction *t[])

{

}

Locktable->setLock(0xe3e98, READ,t[10]);
Locktable->setLock(0xe3¢90,READ,t[10)):
Locktable->setLock(0xc4698, READ,t[10]));
Locktable->setLock(Oxe4eaO,READ ([10));
Locktable->setLock(0xe3e98 WRITE, t[10)):
Locktable->setLock(Oxedea0,WRITE.t[10]);
Locktable->setLock(0xcfbcO,READ t[10]);
Locktable->setLock(OxcffcO,READ,t[10]):
Locktable->setLock(0OxcfbcO,WRITE.t[10});
Locktable->setLock(0OxcffcO,WRITE,t[10]):
Locktable->setLock(0x17bba0,READ,t[10]):
Locktable->setLock(0x 1 7bbe0,READ t[10]);
Locktable->setLock(0x17bfa0,READ,t[10});
Locktable->setLock(0x 17bba0,WRITE,t[10]):
Locktable->setLock(0x 17bfa0.WRITE.t[10});
Locktable->setLock(0x 1 7bec0,READ,t[10]);
Locktable->setL.ock(0x 17bee0,.WRITE,t[10]):
Locktable->setlock(0x17¢220,READ,t[10]);
Locktable->setLock(0x 17bbe0,WRITE.t[10]):
Locktable->setLock(0x17¢220,WRITE,t[10]):
Locktable->setLock(0x17bfe0,READ,t[10]);
Locktable->setLock(0x 17bfe0,WRITE,t[10]):
Locktable->setLock(0x17¢0e0,READ,t[10)):
Locktable->setLock(0x 17¢0e0,WRITE,t[10)):
Locktable->setLock(0x17c0a0,READ t[10]);
Locktable->setLock(0x17¢0a0,WRITE,t[10]):
Locktable->setLock(0x42d48 READ t{10]);
Locktable->setL.ock(0x44148 READ,t[10));
Locktable->setLock(0x3b548, READ,t[10});
Locktable->setLock(0x3c548,READ,t[10});
Locktable->setLock(0x38d48 . READ,t[10]);
Locktable->setLock(0x38d48 , WRITE,t[10]);

Locktable->releaseLocks(t{10]);

void tl1(LockTable * Locktable, Transaction *t[})

209

Locktable->setLock(0x42d48, READ,t[11));
Locktable->setLock(0x44 148, READ,t[11]);
Locktable->setLock(0x41948, READ,t[11));
Locktable->setLock(0x3f148 READ.t[11]);
Locktable->setLock(0xcfbcO,READ [11]);
Locktable->setLock(Oxcffe0,READ,t[1 1]);
Locktable->setLock(0x 17bbaO,READ,t[11]):
Locktable->setLock(0x 17bbeO,READ.{[1 1]);
Locktable->setLock(0x 1 7c0a0,READ,t[11]);
Locktable->setLock(0x 1 7bfaQ,READ,t[1 1]);
Locktable->setLock(0x17¢ 1eO,READ,t[11]);
Locktable->setLock(0x17c1a0,READ,t[11}]);
Locktable->setLock(0x 17c060,READ. t[11}):
Locktable->setLock(0x 1 7bf20.READ,t[1 1]);
Locktable->setLock(0x 17c120,READ.t[1 1]);

Locktable->releaseLocks(t[11});

}

void t12(LockTable * Locktable, Transaction *t[])

{

Locktable->setLock(0xe3e98, READ.t[12]);
Locktable->setLock(0xe3e90,READ,t[12]);
Locktable->setLock(0xe4698, READ,t[12]);
Locktable->setLock(Oxed4ea0,READ t[12});
Locktable->setLock(Oxe3e98, WRITE,t[12]):
Locktable->setLock(OxedeaO,WRITE.t[12]):
Locktable->setLock(0OxcfbcO,READ, [12]):
Locktable->setLock(0xcffcO,READ.t[12));
Locktable->setLock(0xcfbcO.WRITE.t[12]):
Locktable->setLock(0xcffcO,WRITE,t[12]);
Locktable->setLock(0x 17bba0,READ,t[12));
Locktable->setLock(0x 17bbeO,READ 1[12]);
Locktable->setLock(0x17¢ 1a0,READ.t[12));
Locktable->setLock(0x 1 7bbeQ,WRITE, t[12));
Locktable->setLock(0x17¢1a0,WRITE,t[12]):
Locktable->setLock(0x 17bf20,READ.t[12)):
Locktable->setLock(0x 1 7bba0, WRITE, t[12)):
Locktable->setLock(0x 1 7bf20,WRITE,t[12}):
Locktable->setLock(0x 17c020,READ.t[12]):
Locktable->setLock(0x 17¢020,WRITE, t[12]);
Locktable->setLock(0x 17bfe0,READ,t[12]):
Locktable->setLock(0x 17bfeQ,WRITE t[12]);
Locktable->setLock(0x17bee0,READ,t[12));
Locktable->setLock(0x | 7beeO,WRITE,t[12]);
Locktable->setLock(0x 1 7bfaQ,READ,t[12});
Locktable->setLock(0x 17bfa0, WRITE,t[12]);
Locktable->setLock(0x 17¢060,READ,t[12)):

}

Locktable->setLock(0x 17c060,WRITE. t[12]);

Locktable->setLock(0x42d48 READ.t[12}]);
Locktable->setLock(0x44 148 READ t[12));
Locktable->setLock(0x4 1948 READ,t[12]):
Locktable->setLock(0x3f148, READ,t[12));
Locktable->setLock(0x3f148 WRITE, t[12]);

Locktable->releaseLocks(t[12]);

void t13(LockTable * Locktable, Transaction *t[])

{

}

Locktable->setLock(0x42d48, READ [13));
Locktable->setLock(0x44148 READ,t[13]);
Locktable->setLock(0x4 1948, READ t[13)):
Locktable->setLock(0xcfocO,READ t[13]);
Locktable->setLock(0xcffeO,READ [13]);
Locktable->setLock(0x | 7bbaO,READ,{[13)):
Locktable->setLock(0x 17bbe0,READ t[13));
Locktable->setLock(0x 17bee0.READ t[13});
Locktable->setLock(0x 1 7c060,READ, t[13]);
Locktable->setLock(0x 17¢0¢0,READ t[13]):
Locktable->setLock(0x 17¢120,READ,t[13]);
Locktable->setLock(0x 17c0a0.READ.t[13]);
Locktable->setLock(0x 1 7bfa0.READ,t[13)):
Locktable->sctLock(0x17¢ 1a0.READ [1 3]):

Locktable->releaseLocks(t[13]);

void t14(LockTable * Locktable, Transaction *t[])

{

Locktable->setl.ock(0x42d48, READ [14]);
Locktable->setLock(0x44148 READ t[14)):
Locktable->setLock(0x4 1948 READ t[14}):
Locktable->setLock(0x40548, READ, t[14]);
Locktable->setLock(0xcfbcO,READ,t[14]);
Locktable->setLock(OxcffeO,READ, [14]);
Locktable->setLock(0x | 7bba0,READ,t[14]);
Locktable->setLock(0x 17bbe0,READ,t[14});
Locktable->setLock(0x 17bee0,READ,t[14]);
Locktable->setLock(0x17¢c1a0,READ,t[14]);
Locktable->setLock(0x17¢ 1e0,READ,t[14]);
Locktable->setLock(0x 17c0e0,READ,t[14]);
Locktable->setLock(0x 17bf20,READ,t[14]):
Locktable->setLock(0x 17bfa0,READ,t[14]):
Locktable->setLock(0x17c060,READ,t[14]);

Locktable->releaseLocks(t[14]);

!

void t15(LockTable * Locktable, Transaction *t[])
{

Locktable->setLock(0x 1f060,READ, ([15));
Locktable->setLock(0x 1f0e0,READ t[15]);
Locktable->setLock(0x242f8 READ,t[15));
Locktable->setLock(0x243f8 READ,t[15});
Locktable->setLock(0x242f8, WRITE, [15]);
Locktable->setLock(0x243f8, WRITE,t[15));
Locktable->setLock(0x42d48 READ,t[15]);
Locktable->setLock(0x44 148 READ, t[15]);
Locktable->setLock(0x4 1948 READ,t[15]);
Locktabie->setLock(0xcfbcO,READ [15]));
Locktable->setLock(0xd09e¢0,READ,t[15]);
Locktable->setLock(0xcfbcO,WRITE, t[15]):
Locktable->setLock(0xcfdcO,WRITE,t{15]);
Locktable->setLock(0xd09¢0,WRITE. t[15]);
Locktable->setLock(0xe3e98, READ,t[15));
Locktable->setLock(0xe3e¢90,READ,t[15]);
Locktable->setLock(0xe56a8 READ,t[15));
Locktable->setLock(0xe3ea0,WRITE,t[15]);
Locktable->setLock(Oxe3eaO,READ, t[15));
Locktable->setLock(0xe46a0, WRITE, t[15));
Locktable->setLock(0xe56a8 WRITE,t[15));
Lecktable->setLock(0xe3e90,WRITE, t[15));
Locktable->setLock(0OxbSed4,READ,t{15]);
Locktable->setLock(0xb5fd4. READ,t[15]):
Locktable->setLock(0x10e220,READ. t[15]):
Locktable->setLock(0x 10f420,READ.t[15]);
Locktable->setLock(0x10c020,READ [15]);
Locktable->setLock(0x 10c020,WRITE.t[15]):
Locktable->setLock(0x 17bba0,READ.t[15]):
Locktable->setLock(0Ox 1 7bbe0,READ,t[15]):
Locktable->setLock(0x17¢cb20,READ t[15));
Locktable->setLock(0x 17bbeQ,WRITE, t[15]);
Locktable->setLock(0x17bce0,WRITE,t[15));
Locktable->setLock(0x17¢b20,WRITE,t[15]);
Locktable->setLock(0x 17bba0,WRITE,t[15]);
Locktable->setLock(0xb6054,READ,t[15]);
Locktable->setLock(0x 10f620,READ.t[15]);
Locktable->setL.ock(0x10f420,WRITE,t{15]):
Locktable->setLock(0x10f620,WRITE,t[15]):
Locktable->setLock(0x110620,READ,t[15));
Locktable->setLock(Ox110820,READ t[15));
Locktable->setLock(0x110620,WRITE,t[15));
Locktable->setLock(0x110820,WRITE,t[15));
Locktable->setLock(0xb5f54, READ,t[15));
Locktable->setLock(0xb60d4,READ,t[15]);
Locktable->setLock(0x 10d020,READ t[15));

}

Locktable->setLock(0x10d220.READ, [15]);

Locktable->setLock(0x 10d020, WRITE,t[15));
Locktable->setLock(0x 10d220,WRITE,t[15]);

Locktable->setLock(0x10e420,READ,t[15]));

Locktable->setLock(0x 10e220,WRITE, t[15]);

Locktable->setLock(0x 10e420,WRITE.t[15]):

Locktable->setLock(0x17bd20,WRITE,t[15]):

Locktable->releaseLocks(t[15]):

void t16(LockTable * Locktable, Transaction *t[])

{

}

Locktable->setLock(0x242f8,READ,t[16));

Locktable->setLock(0x243f8, READ,t[16]);

Locktable->setLock(0x 17bba0,READ,t[16]);
Locktable->setLock(0x17bbe0,READ.t[16]):
Locktable->setLock(0x 1 7bfa0,READ,t[16]):
Locktable->setLock(0x10e220,READ.t[16]):
Locktable->setLock(0x 10f420,READ.t[16));
Locktable->setLock(0x110620,READ.t[16]):
Locktable->setLock(0x 110820,READ.t[16]);
Locktable->setLock(0x 17bf60,READ,t[16]):
Locktable->setLock(0x 10c020,READ,t[16}):
Locktable->setLock(0x 17¢3e0,READ,t[16]):
Locktable->setLock(0x 10f620,READ.t[16]);

Locktable->releaseLocks(t[16]);

void t17(LockTable * Locktable, Transaction *t[])

{

Locktable->setLock(0xe3e98, READ.t[17]);
Locktable->setl.ock(0xe3e90,READ.[17));
Locktable->setLock(0xe3eaO0,READ,t[17]);
Locktable->setLock(0xe4698 READ,t[17]));
Locktable->setLock(Oxe4eaO,READ,t[17)):
Locktable->setLock(0xe3e98, WRITE,t[17]);
Locktable->setLock(Oxed4ea0,WRITE,t[17]);
Locktable->setLock(0xcfbcO,READ,t[17));
Locktable->setLock(0xcffeO,READ t[17]);
Locktable->setLock(OxcfbcO,WRITE.t[17]):
Locktable->setLock(OxcffeQ,WRITE.t[17]);
Locktable->setLock(0x 17bba0,READ.t[17]):
Locktable->setLock(0x 1 7bbe0,READ,t[17]);
Locktable->setLock(0x 1 7bf60,READ,t[17]):

Locktable->setLock(0x | 7bba0,WRITE t[17]);

Locktable->setLock(0x17bf60,WRITE.t[17]);
Locktable->setLock(0x 17bf20,READ,t[17]);

t9
(5]

J

Locktable->setLock(0x 1 7bf20,WRITE.t[17]);

Locktable->setLock(Ox 1 7bfaO,READ,{[17]);

Locktable->setLock(0x 17bfa0,WRITE t[17]):

Locktable->setLock(0x 1 7beeO,READ t[17]);

Locktable->setLock(0Ox 1 7beeO,WRITE,t[17]);

Locktabie->setLock(0x 17¢c3e0,READ,t[17));

Locktable->setLock(0x 1 7bbeO,WRITE,t[17]);
Locktable->setLock(0x 17¢3e0,WRITE,{[17]);

Locktable->setLock(0x17¢3a0,READ,{[17]);

Locktable->setLock(0x17¢3a0,WRITE,t[17)):

Locktable->setLock(0x17c¢360.READ,t[17));

Locktable->setLock(0x17¢360,WRITE,{[17]);

Locktable->setLock(0x42d48, READ,t[17]);
Locktable->setLock(0x44 148, READ,t[17)):
Locktable->setLock(0x4 1948 READ t[17]);
Locktable->setLock(0x4 1948 WRITE.t[17]):

Locktable->releaseLocks(t[17]);

void t18(LockTable * Locktable, Transaction *t[])

{

Locktable->setLock(0x 1 {060,READ, t[18));
Locktable->setLock(0x 1f0eO,READ t[18]);
Locktable->setLock(0x242f8 READ,t[18]):
Locktable->setLock(0x24478 READ,t[18]);
Locktable->setLock(0x242f8 WRITE, ([1 8]):
Locktable->setLock(0x24478 WRITE, [18]);
Locktable->setLock(0x42d48. READ.t[18]);
Locktable->setLock(0x44 148, READ t[18]);
Locktable->setLock(0x3b548,READ,t[18]);
Locktable->setLock(0x3c948 READ, [18)):
Locktable->setLock(0xcfbcO,READ [18]);
Locktable->setl.ock(0xd09¢0,READ,t[18]);
Locktable->setLock(0xcfbcO,WRITE,t[18));
Locktable->setLock(0OxcfdcO,WRITE,t[18]);
Locktable->setLock(0xd09¢0,WRITE,t[18});
Locktable->setLock(0xe3e98, READ [18]);
Locktable->setLock(0Oxe3e90,READ [18));
Locktable->setLock(Oxe3eaO,READ [18]);
Locktable->setLock(0Oxe56a8, READ,t[18]):
Locktable->setLock(Oxe3ea0,WRITE,t[18)):
Locktable->setLock(0Oxe46a8 WRITE,t[18));
Locktable->setLock(0xeS6b0.WRITE, [18)):
Locktable->setLock(0xe3e90,WRITE,t[18));
Locktable->setLock(0OxbSed4, READ,t[18));
Locktable->setLock(0xb5f54, READ,t[18]);
Locktable->setLock(0x10e220,READ,t[18]));
Locktable->setLock(0x 10f420,READ,t[18));
Locktable->setLock(0x110620,READ,[18));

}

{

Locktable->setLock(0x 1 10820,READ,t[18));

Locktable->setLock(0x 110620, WRITE t[18]);
Locktable->setLock(0x 110820, WRITE.t[18]);

Locktable->setLock(Ox 1 7bba0,READ t{18));
Locktable->setLock(0x | 7bbe0,READt[18]):
Locktable->setLock(0x17cb20,READ,([18]);

Locktable->setLock(0x 17bc20,WRITE, t[18]);

Locktable->setLock(0x17bc20,READ t[18]);

Locktable->setLock(Ox17bd20,WRITE,t[18]);
Locktable->setLock(0x 1 7¢b20,WRITE, t[18]);
Locktable->setLock(0x 1 7bba0,WRITE, [18]);

Locktable->setLock(0xb6054, READ [18]);
Locktable->setLock(0x 10e420,READ [18]);

Locktable->setLock(0x10¢220,WRITE t[18]);
Locktable->setLock(0x 10e420,WRITE, t[18));
Locktable->setLock(0x | 7cb60,WRITE,t[18]):

Locktable->setLock(0x 10f620,READ,t[18]):
Locktable->setLock(0x 10f420,WRITE, [18]);
Locktable->setLock(0x 10f620,WRITE, [18]);
Locktable->setLock(0x 1 7cb60,READ, [18));
Locktable->setLock(0x 10c020,READ.t[18]);

Locktable->setLock(0x 10c020,WRITE.t[18]):

Locktable->setLock(0xb5fd4 READ,t[18));
Locktable->setLock(0x10d020.READ.1[18]);
Locktable->setLock(0x10d220,READ,{[18));

Locktable->setLock(0x 10d020,WRITE,t[18]);
Locktable->setLock(0x10d220.WRITE.t[18]);

Locktable->releaseLocks(t[18));

void t19(LockTable * Locktable, Transaction *t[])

Locktable->setLock(0x1f060,READ,t[19]);
Locktable->setLock(0x1f0e0,READ t[19}):
Locktable->setLock(0x242f8, READ,t[19]);
Locktable->setLock(0x24478 READ,t[19]):
Locktable->setLock(0x242f8 WRITE,t[19]);
Locktable->setLock(0x24478 WRITE,t[19]);
Locktable->setLock(0x42d48,READ,t[19));
Locktable->setLock(0x44148 READ,t[19]);
Locktable->setLock(0x3b548, READ,t[19]);
Locktable->setLock(0x3c948, READ,t[19]);
Locktable->setLock(0xcfbcO,READ, t[19));
Locktable->setLock(0xd09¢0,READ,t[19])):
Locktable->setLock(0xcfbcO,WRITE, t{19]);
Locktable->setLock(0OxcfdcO,WRITE,t[19]);
Locktable->setLock(0xd09e0,WRITE,t[19)):
Locktable->setLock(0xe3¢98,READ,t[19));
Locktable->setLock(0xe3¢90,READ.t[19]);

}

{

Locktable->setLock(0xe3eaO,READ, 1[19));
Locktable->setLock(0xe56b0,READ,t[19]);
Locktable->setLock(Oxe3ea8 WRITE, t[19]);
Locktable->setLock(0xe3ea8 READ ([19]);
Locktable->setLock(0xe46a8, WRITE t[19]);
Locktable->setLock(0xe56b0,WRITE,t[19]);
Locktable->setLock(0xe3e90,WRITE, [19]);
Locktable->setLock(0xbSed4, READ,t[19]);
Locktable->setLock(0xb60d4,READ,t[19]);
Locktable->setLock(0x 10e220.READ [19));
Locktable->setLock(0x 10f420,READ {[19));
Locktable->setLock(0x110620,READ t[19});
Locktable->setLock(0x 1 10820,READ t[19));
Locktable->setLock(0x 110620,WRITE t[19));
Locktable->setLock(0x110820,WRITE t[19]);
Locktable->setLock(0x 1 7bba0,READ [19]);
Locktable->setLock(0x 1 7bc20,READ [19]):
Locktable->setLock(0x 1 7¢cb60,READ t[19]);
Locktable->setLock(0x 1 7bc20,WRITE. t[19));
Locktable->setLock(0x17bd20,WRITE,t[19));
Locktable->setLock(0x | 7cb60,WRITE, t[19));
Locktable->setLock(0x 1 7bba0,WRITE,t[19)):
Locktable->setLock(0xb5fd4 READ,t[19]):
Locktable->setLock(0x 10f620,READ.t[19]);
Locktable->setLock(0x 10f420,WRITE,t[19)):
Locktable->setLock(0x 10f620,WRITE.t[19]):
Locktable->setL.ock(0xb6054 READ.t[19]):
Locktable->setLock(0x 10d020,READ t[19));
LLocktable->setLock(0x 10d220,READ.t[19)):
Locktable->setLock(0x 10d020,WRITE,t[19]):
Locktable->setLock(0x 10d220,WRITE t[19));
Locktable->setLock(0xb5f54 READ,t[19}));
Locktable->setLock(0x 1 7bd60.WRITE.t[19]):
Locktable->setLock(0x 10e420,READ t[19]);
Locktable->setLock(0x 10e220,WRITE,t[19]);
Locktable->setLock(0x 10e420,WRITE t[19]));
Locktable->setLock(0x 17bc60,WRITE,t[19]);
Locktable->setLock(0x 17bc60,READ,t[19]):
Locktable->setLock(0x 10c020,READ.t[19]);
Locktable->setLock(0x 10c020,WRITE,t[19]):
Locktable->setLock(0x 17cba0,WRITE,t[19));
Locktable->setLock(Ox 17¢ba0,READ,t[19]):

Locktable->releaseLocks(t[19]);

void t20(LockTable * Locktable, Transaction *t[])

Locktable->setLock(0x42d48, READ,1[20)):

}

Locktable->setLock(0x44 148 READ.t[20]):
Locktable->setLock(0x4 1948 READ,t[20]);
Locktable->setLock(0OxcfbcO,READ,t[20));
Locktable->setLock(0xcffe0,READ,t[20});
Locktable->setLock(0xdOO0O,READ.,t[20]);
Locktable->setLock(0x17bba0,READ,t[20));
Locktable->setLock(0x17bc60,READ,t[20));
Locktable->setLock(0Ox17bc20,READ,t{20));
Locktable->setLock(0x17¢520,READ.t[20));
Locktable->setLock(0x17¢c4a0,READ,1[20]);
Locktable->setLock(0Ox17bbe0,READ. t[20]);
Locktable->setl.ock(0x17c420,READ.t[20)):
Locktable->setLock(0x17¢760,READ,t[20]);
Locktable->setLock(0x17¢2¢0,READ,t[20));
Locktable->setLock(0x17¢360,READ.t[20]):
Locktable->setLock(0x17¢c1e0,READ.1[20]);
Locktable->setLock(0x17¢1a0,READ,t[20]);
Locktable->setLock(0x17bee0,READ,t[20]):
Locktable->setLock(0x 17¢7a0,READ,t[20]).

Locktable->releaseLocks(t[20));

void t21(LockTable * Locktable, Transaction *t[])

{

}

Locktable->setLock(0x42d48,READ.t[21]):
Locktable->setLock(0Ox44 148, READ,t[21]):
Locktable->setLock(0x3b548,READ,t[21]);
Locktable->setLock(0x3¢948, READ,t[21]):
Locktable->setLock(0xcfbcO,READ t[21]);
Locktable->setLock(OxcffeO.READ,t[21]):
Locktable->setl.ock(0Oxd0OOOO,READ.t[21]):
Locktable->setLock(0x17bba0.READ.t[21]):
Locktable->setLock(0x17bc60,READ,t[21]);
Locktable->setLock(0x17bc20,READ.t[21]):
Locktable->setLock(0x17bbe0,READ t[21]);
Locktable->setLock(0x17c3e0,READ,t[21));
Locktable->setLock(0x17¢ 160,READ.t[21]);
Locktable->setLock(0Ox17¢c1e0,READ.,t[21]);
Locktable->setLock(0x 1 7bfeQ,READ,t[21]);
Locktable->setLock(0x17c2a0,READ,t[21]);
Locktable->setLock(0x17¢c0e0,READ,t[21]);
Locktable->setLock(0x17¢060,READ,t[21]);
Locktable->setLock(0x17¢560,READ.t[21]));
Locktable->setLock(0x17c0a0.READ.t[21]);

Locktable->releaseLocks(t[21]);

void t22(LockTable * Locktable, Transaction *t[])

}

Locktable->setLock(0x42d48, READ, t[22));
Locktable->setLock(0x44148 READ, t[22));
Locktable->setLock(0x4 1948 READ t{22});
Locktable->setLock(0x3f148, READ,t[22]);
Locktable->setLock(0xcfbcO,READ t[22));
Locktable->setLock(0Oxcffe0,READ t[22]):

Locktable->setLock(0xd0OOOO.READ,t[22}));

Locktable->setLock(0x17bba0,READ t[’72]);
Locktable->setLock(0x 1 7bc60,READ.t[22)):
Locktable->setLock(0x17bc20,READ 1[22)):
Locktable->setLock(0x17bbeO,READ, t{22]);
Locktable->setLock(0x 17beeO,READ,t{22]);
Locktable->setLock(0x17¢360,READ,t[22]);
Locktable->setLock(0x17¢1e0,READ,t[22]);
Locktable->setLock(0x17bf60,READ,t[22]);
Locktable->setLock(0x17¢520,READ.t[22));
Locktable->setLock(0x17¢120,READ,t[22]);
Locktable->setLock(0x 17¢6a0,READ,t[22]):
Locktable->setLock(0x17¢160.READ t[22));

Locktable->releaseLocks(t[22]):

void t23(LockTable * Locktable, Transaction *t[])

{

Locktable->setLock(0x | fO60,READ.t[23]):
Locktable->setLock(0x 1f0e0,READ,t[23]));
Locktable->setLock(0x242f8 READ.t[23)):
Locktable->setLock(0x243f8 READ,t[23]):

Locktable->setLock(0x242f8 WRITE.t[23));
Locktable->setLock(0x243f8, WRITE.t[23));

Locktable->setLock(0x42d48 READ,t[23}]);
Locktable->setLock(0x44 148, READ,t[23]);
Locktable->setLock(0x3b548, READ.t[23]);
Locktable->setLock(0x3c548, READ,t[23]);
Locktable->setLock(0x3a148 READ,t[23));
Locktable->setLock(0xcfbcO,.READ,t[23]):

Locktable->setLock(0xd09¢0,READ,t[23}]);
Locktable->setLock(0xcfbcO,WRITE, t[23]);
Locktable->setLock(0xcfdeO,WRITE,t[23]):

Locktable->setLock(0xd09¢0,WRITE, t[23));

Locktable->setL.ock(0xe3e98, READ,t[23]));
Locktable->setLock(0xe3e90,READ,t[23));
Locktable->setLock(Oxe3ea8 READ,t[23));
Locktable->setLock(0xe56b0,READ,t[23));

Locktable->setLock(0Oxe3ea8,WRITE,t[23]);
Locktable->setLock(0xe46b0,WRITE,t[23]);
Locktable->setLock(0xe56b8, WRITE,t[23));

}

Locktable->setLock(0xe3e90,WRITE,t[23]):
Locktable->setLock(0xbSed4, READ,t[23]);
Locktable->setLock(0xb6054, READ,t[23]);
Locktable->setLock(0x 10e220,READ t[23]);
Locktable->setLock(0x 10f420,READ,t[23]);
Locktable->setLock(0x 10c020,READ t[23]):

Locktable->setLock(0x 10c020,WRITE,t[23));

Locktable->setLock(0x 17bba0,READ t[23]);
Locktable->setLock(0x 1 7bc60,READ,1[23]);
Locktable->setLock(0x 17¢baO,READ.t[23]);

Locktable->setLock(0x 17bc60,WRITE t{23]);
Locktable->setLock(0x 17bd60,WRITE t[23)):
Locktable->setLock(0x 1 7cba0, WRITE, t[23]);
Locktable->setLock(0x 17bba0,WRITE t{23]):

Locktable->setLock(0xb5fd4,READ,t[23]):
Locktable->setlock(0x 10f620,READ.t[23]);

Locktable->setLock(0x 10f420,WRITE.t[23)):
Locktable->setLock(0x 10f620,WRITE,t[23]):

Locktable->setl.ock(0xb5f54, READ,t[23));
Locktable->setLock(0x 110620,READ t[23}]):
Locktable->setLock(0x 110820,READ,t[23]):

Locktable->setLock(0x110620,WRITE t[23]):
Locktable->setLock(0x 1 10820,WRITE, t[23])):

Locktable->setLock(0x 10d020,READ. t[23]):
Locktable->setLock(0x 10d220,READ.t{23]):

Locktable->setLock(0x 10d020,WRITE t[23));
Locktable->setLock(0x 10d220,WRITE t[23]):

Locktable->setLock(0xb60d4, READ,t[23)):
Locktable->setLock(0x 10e420,READ 1[23]);

Locktable->setLock(0x 10e220,WRITE,t[23)):
Locktable->setLock(0x 10e420,WRITE, t[23]):

Locktable->releaseLocks(t[23]):

void t24(LockTable * Locktable, Transaction *t[])

{

Locktable->setLock(0Oxe3e98,READ.t[24)):
Locktable->setLock(0xe3¢90,READ,t[24));
Locktable->setLock(0xe3ea8, READ,t[24));
Locktable->setL.ock(0xe46b0,READ,t[24]);
Locktable->setLock(0Oxe4eb0,READ,t[24]);
Locktable->setLock(0xe3ea8, WRITE, t[24]);
Locktable->setLock(0xedeb0,WRITE, t[24));
Locktable->setLock(0xcfbcO,READ, t[24]);
Locktable->setLock(0xd0OOOO,READ,t[24));
Locktable->setLock(0xcfbcO,WRITE, t[24]);
Locktable->setLock(0xd0000,WRITE,t[24]):
Locktable->setLock(0x17bba0,READ,1[24));
Locktable->setLock(0x 1 7bc60,READ,t[24]);

Locktable->setLock(0x17bc20,READ,t[24));
Locktable->setLock(0x 17c5¢0,READ,t[24));
Locktable->setLock(0x 17bc20,WRITE t[24]);
Locktable->setLock(0x17¢5¢0,WRITE, t[24]):
Locktable->setLock(0x 17¢960,READ,t[24]);
Locktable->setLock(0x 1 7bc60,WRITE,t[24]);
Locktable->setLock(0x 17¢960,WRITE,t[24]);
Locktable->setLock(0x 17bbe0,READ, t[24));
Locktable->setLock(0x 17c2a0,READ,t[24]);
Locktable->setLock(0x 1 7bbe0,WRITE, 1[24]):
Locktable->setLock(0x 17¢2a0,WRITE, t[24));
Locktable->setLock(0x 17c4e0,READ,t[24));
Locktable->setLock(0x 17¢c4e0,WRITE,t[24]);
Locktable->setLock(0x 17¢5a0,READ,t[24));
Locktable->setLock(0x 17c5a0,WRITE.t[24]);
Locktable->setLock(0x 17¢8¢0,READ.1{24]):
Locktable->setLock(0x 17¢8¢0,WRITE,t[24}):
Locktable->setLock(Ox 17¢360,READ.t[24)):
Locktable->setLock(0x 17¢360,WRITE, t[24]):
Locktable->setLock(0x 17¢520,READ,t[24]);
Locktable->setLock(0x17¢520,WRITE, t[24));
Locktable->setLock(0x 17c¢820,READ,t[24));
Locktable->setLock(0x 17¢820,WRITE, t[24));
Locktable->setl.ock(0x42d48 READ t[24)):
Locktable->setLock(0x44 148, READ t[24));
Locktable->setLock(0x3b548, READ,t[24]);
Locktable->setLock(0x3c548 READ,1[24));
Locktable->setLock(0x3a148, READ.t[24]):
Locktable->setLock(0x3al148, WRITE.t[24)):

}

int

main(

int argc, // Number of arguments
char *argv][| // Arguments

{
inti;
LockTable *Locktable;
ofstream lockout;
Transaction * t[25]:

for (i = 0; 1<25; i++)
t[i] = new Transaction(i);
if (argc<2)

cerr << "Usage: " << argv{0] << " <size>" << endl;
return O;

else

cout << "Starting initialization..." << endl;
Locktable = new LockTable(1023, argv{2]);
if (Locktable == 0)

{

else

cerr << "Unable to create lock ds" << endl;
return O;

lockout.open("lock.dat");

Locktable->setLock(0x 1f060,READ,t[1]);
Locktable->setLock(0x 1 f0e0,READ,[1]);
Locktable->setLock(0x242f8 READ,t[1]):
Locktable->setLock(0x243f8,READ,t[1]):
Locktable->setLock(0x242f8 WRITE t[1]):
Locktable->setl.ock(0x243f8 WRITE t[1]):
Locktable->setLock(0x42d48, READ.t[1]);
Locktable->setLock(0x44 148 READ.t[1]):
Locktable->setLock(0x4 1948 READ,t[1));
Locktable->setLock(0x3dd48,READ.t[1}):
Locktable->setLock(0xcfbcO.WRITE.t[1]):
Locktable->setLock(0OxcfbcO,READ.t[1]):
Locktable->setLock(0xcfdcO.WRITE.t[1]);
Locktable->setLock(0xd09¢0.WRITE.t[1]):
Locktable->setLock(0xe3e90,WRITE.t[1]):
Locktable->setLock(0xe3e98, WRITE.t[1]):
Locktable->setLock(0Oxe3e98, READ.t[1]):
Locktable->setLock(0xe4698 WRITE t[1]);
Locktable->setLock(0xeS56a0,WRITE. t[1]);
Locktable->setLock(0OxbSed4,READ.t[1]);
Locktable->setLock(0xb5fd4.READ,t[1));
Locktable->setLock(0x 10e220,READ.t[1]):
Locktable->setLock(0x 10f420,READ t[1]):
Locktable->setLock(0x 10d020,READ.t[1]);
Locktable->setLock(0x 10d220.READ.t[1}):
Locktable->setLock(0x 10d020,WRITE.t[1]):
Locktable->setLock(0x 10d220.WRITE,t[1]}):
Locktable->setLock(0x 17bba0,WRITE,t[1]):
Locktable->setL.ock(0x 17bba0,READ t[1]):
Locktable->setLock(0x | 7bca0,WRITE,t[1]);
Locktable->setLock(0x 17¢cae0,WRITE,t[1]):
Locktable->setLock(0xb5f54, READ [1]);
Locktable->setLock(0x 10f620,READ [1]):
Locktable->setLock(0x 10f420,WRITE,t[1)):
Locktable->setl.ock(0x 10f620,WRITE,t[1]);
Locktable->setLock(0x 17caeO,READ [1]);
Locktable->setLock(0xb6054, READ.t[1]);

[E8]

!
)

return 20;

(S
[

Locktable->setLock(0x 10c020,READ,t[1]);
Locktable->setLock(0x 10c020,WRITE, ([1]);
Locktable->setLock(0x 110620,READ,t[1]);
Locktable->setLock(0x 110620, WRITE.t[1]);
Locktable->setLock(0x110820,READ,t[1]);
Locktable->setLock(Ox 1 10820,WRITE [1));
Locktable->releaseLocks(t[1]);

t2(Locktable,t);
t3(Locktable.t);
t4(Locktable,t);
tS(Locktable,t);
t6(Locktable,t);
t7(Locktable,t);
t8(Locktable,t);
t9(Locktable,t);
t10(Locktable,t):
t11(Locktable,t);
t12(Locktable,t);
t13(Locktabie,t);
ti4(Locktable.t);
t15(Locktable.t);
t16(Locktable.t);
t17(Locktable,t);
t18(Locktable,t);
t19(Locktable,t);
t20(Locktable,t);
t21(Locktable,t):
t22(Locktable,t);
t23(Locktable,t);
t24(Locktable,t);
Locktable->releaseLocks(t[24]):
lockout << "\n\n\t\t\tPrinting Released Locks" << endl:

return 30;

t9
(3]
[\S]

APPENDIX C

Optimized Executable of the
Conventional Lock Manager

QPT?2: the Quick Profiler and Tracer.

Version 1.00 of May 9, 1995.

Copyright (c) 1993-1995 by James R. Larus. All Rights Reserved.
Quick profiling with estimated weights:

Flat Procedural Statistics: For counts > 1.000000

836460 Total Instructions
Dynamic % Cum% Inst/
Inst Time Time Calls Call Routine
211516 25.3 25.3 1956 108. _malloc
103735 12.4 37.7 2410 43. .rem

98546 11.8 49.5 518 190. _free

65456 7.8 57.3 518 126. malloc.o

35921 4.3 61.6 1115 32. _find__4Listi

33764 4.0 65.6 1468 23. malloc.o@0x 1524

30806 3.7 69.3 24 1284. _releaseLocks__9LockTableP! | Transaction
29854 3.6 729 506 59. _remove__4ListP60bjcct
28682 3.4 76.3 699 41. _setLock__9LockTableUiiPl | Transaction
21842 2.6 789 1110 20. _add__4ListP60bject

21635 2.6 81.5 2411 9. _next__4List

19540 2.3 83.8 1954 10. __ builtin_new

15344 1.8 85.7 506 30. _add__9LockTableP4ListP3LCBiP! | Transactioni
13255 1.6 87.3 1205 11. _access__9LockTableUiRi

13132 1.6 88.8 506 26. _remove__4ListP4Nodc

9640 1.2 90.0 1205 8. _hashaddr__9HashTablei

9504 1.1 91.1 491 19. malloc.o@0x15¢18

8880 1.1 92.2 1110 8. ___4NodeP60Object

8096 1.0 93.1 506 16. __$_4Node

7352 09 940 1838 4. _reset__4List

7014 0.8 94.9 519 14. _realloc@0x167ec

6794 0.8 95.7 506 13. _add__1ITransactionP60bject

6154 0.7 96.4] 6154. __ 9HashTablei

6072 0.7 97.1 506 12. _del__4ListP4Node

5983 0.7 979 193 31. _search__4Listi

4048 0.5 98.3 506 8. __ builtin_delete

2530 0.3 98.6 506 5. __3LRB

2460 0.3 98.9 492 5. _realloc@0x168f0

591 0.1 99.0 1 591. _main

549 0.1 99.1 11 50. _realloc@0x166e4

490 0.1 99.1 98 5. __3LCB

450 0.1 99.2 90 5. _add__9HashTableiP4List

441

0.1 99.2
0.0 99.3
0.0 99.3
0.0 99.4
0.0 994
0.0 994
0.0 99.5
0.0 99.5
0.0 99.5
0.0 99.5
0.0 99.6
0.0 99.6
0.0 99.6
0.0 99.6
0.0 99.7
0.0 99.7
0.0 99.7
0.0 99.7
0.0 99.7
0.0 99.7
0.0 99.8
0.0 99.8
0.0 99.8
0.0 99.8
0.0 99.8
0.0 99.8
0.0 99.8
0.0 99.8
0.0 99.8
0.0 99.9
0.0 99.9
0.0 999
0.0 99.9
0.0 99.9
0.0 999
0.0 99.9
0.0 99.9
0.0 99.9

0.0 99.9
0.0 999

0.0 99.9
0.0 99.9

0.0 999
0.0 100.0
0.0 100.0
0.0 100.0
0.0 100.0
0.0 100.0

—
—
—

e T S S —

N ~—

——— s ——) D -

W

e WO = I — = e O e = = =) — — — D

— T s
—

40.
374.

339.
317.
312.
305.
289.
240.

div
__fwalk
_t19__FP9LockTablePPI | Transaction
_t18__FP9LockTablePPI 1 Transaction
_t23___FP9LockTablePP! 1 Transaction
_t15__FP9LockTablePP1 1 Transaction
_t6__FP9LockTablePPI1 | Transaction
_t24__FP9LockTablePPI! | Transaction
.umul
_sbrk
_t12__FP9LockTablePP1 | Transaction
_t17__FP9LockTablePP!1 1 Transaction
_t10_FP9LockTablePP! | Transaction
_fwrite
_memchr
_t9__FP9LockTablePP1 1 Transaction
_t4__FP9LockTablePP1 I Transaction
_t20__FP9LockTablePP1 | Transaction
_t21___FP9LockTablePP11Transaction
_t22__FP9LockTablePP1 | Transaction
_t7__FP9LockTablePP1 I Transaction
_t2__FP9LockTablePP1 [Transaction
__ 1lTransactioni
_tl1__FP9LockTablePP! | Transaction
_t14__FP9LockTablePP1 I Transaction
_t8__FP9LockTablePP! I Transaction
_fclose
_t13__FP9LockTablePPI I Transaction
_t3__FP9LockTablePP! | Transaction
_t16__FP9LockTablePP! I Transaction
_strlen
_memcpy
___Is__T7ostreamPCc
__lO_file_overflow
_t5__FP9LockTablePPI1 | Transaction
__IO_unbuffer_all
__IO_default_setbuf
_fflush
__IO_do_write
__I10_flush_all
start
.mul
__IO_file_setbuf
_ IO_setb
__xflsouf
__IO_file_sync
__findbuf
—_do_global_ctors
__wrtchk
udiv

_exit

22 0.0100.0
21 0.0100.0
17 0.0100.0
16 0.0100.0
16 0.0100.0
15 0.0100.0
15 0.0100.0
15 0.0100.0
13 0.0100.0
13 0.0100.0
13 0.0100.0
12 0.0100.0
0.0 100.0
0.0 100.0
0.0 100.0
0.0 100.0
0.0 100.0
0.0 100.0
0.0 100.0
0.0 100.0
0.0 100.0
0.0 100.0
0.0 100.0
0.0 100.0
0.0 100.0
0.0 100.0
0.0 100.0
0.0 100.0
0.0 100.0

olomulc‘hO\O\\l\l\x\J\l\oaa::

Total ed-ge counter increments = 8
Block counter = 323058. (3.76)

— — —

(35
9
JSS

22. _sync__8stdiobuf

7. _close
17. _endl__FR70stream
16. ___do_global_dtors

16. _xsputn__8stdiobufPCci
15. __1O_doallocbuf

15. _on_exit

15. _sys_write__8stdiobufPCci
13. _flush__7ostream

13, _isatty
13. _overflow__8stdiobufi
12. ___9LockTableiPc

1. __IO_sb_write__FP8_IO_FILEPCvi
__1O_sb_xsputn__FP8_IO_FILEPCvUI

1.
10. __IO_sb_overflow__FP8_IO_FILEi
10. ___ _main
9. __ overflow
7. _IO_cleanup
7. _getpagesize
7. _ioctl
7. _overflow__T7filebufi
7. _write
6. ___builtin_vec_new
6. __cleanup
6. _flush__FR7o0stream
5. _GLOBAL_SDS$_ 11 _ios_fields
2. _GLOBAL_SIS_ 11_ios_fields
2. __exit
2. start_float
5813.

.,'a\e %N.%JM\\
OQLVQWMW\&_V// W//M.\\\ .o\\\
1\ Vo, W
/%\\0 /v\\\//
VR
V4
27
=S
=i
W<
-
20
—ll
B

2.2

20
I
16

=
|
il
I

28

;

= 2

m_m._w_w_..__n_,._.:.g_

1.4
= IMAGE . inc
ast Main Street

150mm

.0

© 1993, Applied Image, Inc.. All Rights Reserv

.25

APPLIED

