INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced

form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700  800/521-0600






A New Test Method for Measuring
The Longitudinal and Shear Moduli
of
Fiber-Reinforced Composites
by
Seyed Javad Jalali Mosallam
A Thesis Submitted to the
Faculty of Engineering
in Partial Fulfilment of the Requirments

for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: Civil Engineering

APPROVED:

Dr. Farid Taheri

Dr. G. Fenton

Dr. T.S. Koko

Dr. S. V. Hoa, Department of Mechanical Engineering, Concordia University

DALHOUSIE UNIVERSITY, DALTECH

Halifax, Nova Scotia 1997



vl

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services
395 Waellington Street

Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliotheque nationale

services bibliographiques

395, rve Wellington
Ottawa ON K1A ON4

Your hie Votre relérence

Our hie Notre référence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-31527-4

Canadi



DALHOUSIE UNIVERSITY, DALTECH

“AUTHORITY TO DISTRIBUTE MANUSCRIPT THESIS”

TITLE:
A New Test Method for Measuring
The Longitudinal and Shear Moduli
of

Fiber-Reinforced Composites

The above library may make available or authorize another library to make available

individual photo/microfilm copies of this thesis without restrictions.

Full Name of Author: Seyed Javad Jalali Mosallam

Signature of Author:

Date: 3/ 26/1998



In memory of my father
this thesis is dedicated
to
my wife, my mother
and

my son, Pedrum

il



TABLE OF CONTENTS

Chapter 1

Chapter 2

LIST OF TABLES ...........cocoooiiiiiiiiieeeoeeeeeeee e,
LISTOF FIGURES ............cooooooiiiiiiiieeeeeeee e,
LIST OF SYMBOLS AND ABBREVIATIONS ................cc.o.......
ACKNOWLEDGEMENTS ..........cooooiiiiiiiieieeeeeeeeeee,
ABSTRACT ..o
INTRODUCTION .......cooooiiiiiiiiiiioeeeeeeeeeeeeee e,
1.1 Nomenclatures ................ccccooomiiiiiieieieececeeeee e
1.2 Evaluation of the Elastic Constants ..................................
1.3 Applicable Theories for the VSM .........................................
1.4 Organization of the Thesis .................c.ccccoooooiiiiiioin
AVAILABLE TEST METHODS REVIEW .................ccocooovi,
2.1 Tensiontests ..........co..ccooovvivieiiiieieeee e,
2.1.1 Strip-specimen tension test (ASTM D3039-93) ........
2.1.2 Dogbone-specimen tension test (ASTM D638M-93) .
2.1.3 Hydrostatic tensiontest ...........................c.ceccernn..
2.1.4 Split disk method (ASTM D2290-92) .....................
2.1.5 Filament-wound pressure vessel tension test (ASTM
D2585-68) ..ot
2.2 Compression tests .................c.oeveveveueeeevieireneereeeeeeeeeree,
2.2.1 End-loaded specimen (ASTM 695-91) ......................
2.2.2 Side-loaded specimen (ASTM D3410-95) .................
2.2.3 Sandwich edgewise compression test (ASTM C364-
94) e
2.2.4 Sandwich beam compression test (ASTM D5467-93)
225 Hydrostatic compression test ( ASTM D2586-68) ....
23 Flexural test (ASTM D790-93) ........coooovviieooeeeoe

iv

11
12
13

15
15
16

17
18
19
19



Chapter 3

Chapter 4

Chapter 5

24  In-plane shear tests ...................ocooooioiioiiiie e
2.4.1 Torsion test on a tube specimen ................................
2.4.2 Rail shear tests (ASTM D4255-83) .....c.ooovvvveiinil
2.43 10°off-axis tensile test ............................ccoooveriii.
244 Tensile test on +45° symmetric laminate (ASTM
D3518-94) ..o
2.4.5 losipescu shear test (ASTM D5379-93) ...................
2.5  Through-the-thickness sheartests .......................................
2.5.1 Short-beam shear test (ASTM D2344-84) ...............
2.5.2 Notched-specimen test method (ASTM D3846-94) ..
2.6  Recentachievements .........................ccoooovii i,
2.7  Summary and conClusions .......................c.occoooeeeinniin
THE EXACT SOLUTION FOR SIMPLY SUPPORTED BEAMS
UNDER THREE-POINT BENDING ...............cccocoooviiiiieninnn.
3.1  Solution for harmonic loading ..........................ccoooovveiii.
32 Solution for beam under three-point loading .........................
3.3 Numerical investigations ..........................ccooveeeeeere .
3.4  Summary and concClusions ........................c.ocoeooeeiviiie,

APPLICATION OF THE THROUGH-THE-THICKNESS

INEXTENSIBILITY THEORY TO ORTHOTROPIC BEAMS

4.1  Formulation for a beam subjected to harmonic loading .........
4.2 Numerical investigations ..........................cccceeovvvrveeeen .
421 Halfssineload ...........................cocoooiiiiiii
4.2.2 Concentrated load at mid-span .................................
43 Summary and conclusions ........................cocoooei
DEVELOPMENT OF THE VARYING-SPAN METHOD .............
5.1  The application of the through-the-thickness inextensibility

35
38
41
4]
42
43
45

48
50
53
57
62

64
66
70
70
73
78
80



(TTTI) theory ......ooouvieeiiiiiie e,
5.2 The application of Timoshenko beam theory .....................
53 Summary and conclusions ..................cccoccoeeiieiii i
Chapter 6 THEORETICAL INVESTIGATIONS ..............coooiviiioieeee
6.1 Efficiency ........cocoooiiiiiice e
6.2  Effect of support friction ........................coccooeiiiiiii,
6.3  Specimenalignment ...........................ocoeoeiiiiiieie
6.4  Influence of the interface contact and the non-linear behavior
of the specimens .................co.ooooiiiiioiceee,
6.5  Thevalue of “0” ..........cocoooviiiiiiieieeceeeee e
6.5.1 Evaluation of Q. ............cooooviviiiiiiiieee e,
6.5.2 The sensitivity of the method to the variation of a ...
6.6  Strainrateeffect ...
6.7  Effect of the lateral friction ..........................ccoooiii,
6.8 Summary and conclusions ..........................ccoocoeiiinn
Chapter 7 EXPERIMENTAL INVESTIGATIONS ..............coooooviiiiiiie,
7.1 Investigation on graphite/epoxy ................cccecveviieeeneennn.n.
7.2 Investigation on Kevlar/epoxy ..............ccccoooomveivieiiiinnn,
7.3 Investigation on E-glass/epoxy ...................ccoeeeviiiiineeninnn,
7.4 Summary and conclusions ...................................o
Chapter 8 SUMMARY AND RECOMMENDATIONS .........cooooooveieiiirn.
8.1 SUMMATY ..o,
8.2  Recommendations for future works and further development
References ...,
Appendix A ELAS-3PPROGRAM ...............ccooooiiiiiie e,
Appendix B ELAS-SINPROGRAM ...
Appendix C TTTI-SINPROGRAM ..o

vi



Appendix D
Appendix E
Appendix F

Appendix G

Appendix H

Appendix I
Appendix J

ELAS-CONPROGRAM ..........ocooiiiiiiiiee e, 174
TTTI-CON PROGRAM ...........ooooiiiiiiiiiieee e 178
THE MATERIAL PROPERTIES USED FOR THE

DETERMINATION OF @ ........ccooviiiiiic e, 182
VARIATION OF a AND THE ASSOCIATED ERRORS FOR THE
MATERIALS OF APPENDIXF ...........c.ocoooviiiiiiiiiee e, 186
THE VSM APPARATUS ... 210
SPECIFICATIONS OF THE TESTS SPECIMENS ......................... 216
LOAD-DEFLECTION CURVES OBTAINED FROM THE VSM .. 225

vil



LIST OF TABLES

Table 6.1

Table 6.2

Table 6.3

Table 6.4

Table 6.5

Table 7.1

Table 7.2

Table 7.3

Table 7.4

Table 7.5

Table 7.6

Table 7.7

Table 7.8

Table 7.9

The properties of the selected materials from Tsai (1988) ................
The variation of a and the associated percentage of error .................
Percent of error associated with different stain rate arrangements and
the assumed sensitivity to strain rate for long specimens ...................
Percent of error associated with different stain rate arrangements and
the assumed sensitivity to strain rate for short specimens ................
The ratio of the net mid-span deflection obtained from models with
and without lateral friction at the supports .....................ccooooeienn
Specifications of strain rate cases for different sets of graphite/epoxy
SPECIMIENS ......ooiiiiiiiiiiiiitie et
Values of G, and £, for different sets of the graphite/epoxy
specimens obtained by the VSM (GPa) ...................c.c.oooiiien.
Summary of the results obtained from different test methods and
95% confidence intervals for graphite/epoxy (GPa) ........................
Specifications of strain rate cases for different sets of Kevlar/epoxy
SPECHMENS ..........oiviiii i,
Values of G; and E), for different sets of the Kevlar/Epoxy
specimens obtained by the VSM (GPa) ........................c.ococoe,
Summary of the results obtained from different test methods and
95% confidence intervals for Kevlar/epoxy (GPa) ............................
Specifications of strain rate cases for different sets of E-glass/epoxy
SPECIHMENS ...,
Values of G13 and £, for different sets of the E-glass/epoxy
specimens obtained by the VSM (GPa) ...,
Summary of the results obtained from different test methods and

95% confidence intervals for E-glass/epoxy (Gpa) .........................

viit

119

119

120

124

128

129

130

134

135

136

139

141



Table F.1
Table G.1
Table G.2
Table G.3
Table G.4
Table G.5
Table G.6
Table 1.1
Table 1.2
Table 1.3
Table 1.4
Table I.5
Table 1.6
Table 1.7
Table 1.8
Table 1.9
Table I.10
Table I.11
Table I.12
Table I.13
Table I.14
Table .15
Table .16
Table .17
Table I.18
Table I.19
Table 1.20

The material properties used for the determination ofa ...................
Results of calculations for short specimens withb/h=1 .....................
Results of calculations for long specimens withb/h=1 ......................
Results of calculations for short specimens withb/h=3 ...................
Results of calculations for long specimens withb/h=3 ....................
Results of calculations for short specimens withb/h=5 .....................

Results of calculations for long specimens withb/h=5 .....................

Specifications of graphite/epoxy specimens in GR-1 set for the VSM.
Specifications of graphite/epoxy specimens in GR-2 set for the VSM.
Specifications of graphite/epoxy specimens in GR-3 set for the VSM.
Specifications of graphite/epoxy specimens in GR-4 set for the VSM.

Specifications of Kevlar/epoxy specimens in K-1 set for the VSM ...
Specifications of Kevlar/epoxy specimens in K-2 set for the VSM ...
Specifications of Kevlar/epoxy specimens in K-3 set for the VSM ....
Specifications of Kevlar/epoxy specimens in K-4 set for the VSM ...
Specifications of Kevlar/epoxy specimens in K-5 set for the VSM ...
Specifications of Kevlar/epoxy specimens in K-6 set for the VSM ....
Specifications of E-glass/epoxy specimens in GL-1 set for the VSM

Specifications of E-glass /epoxy specimens in GL-2 set for the VSM
Specifications of E-glass/epoxy specimens in GL-3 set for the VSM

Specifications of E-glass/epoxy specimens in GL-4 set for the VSM

Specifications of graphite/epoxy specimens in tensile test .................
Specifications of E-glass/epoxy specimens in tensile test ................
Specifications of graphite/epoxy specimens in losipescu shear test ...
Specifications of Kevlar/epoxy specimens in [osipescu shear test .....
Specifications of E-glass/epoxy specimens in losipescu shear test ....

Specifications of graphite/epoxy specimens in +45° shear test ..........



Page

Table .21  Specifications of Kevlar/epoxy specimens in 10° off-axis shear test ... 224



LIST OF FIGURES

Figure 1.1

Figure 1.2
Figure 1.3
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure 2.10
Figure 2.11

Figure 2.12

Figure 2.13
Figure 2.14
Figure 2.15
Figure 2.16
Figure 2.17
Figure 3.1

Figure 3.2

Page
Definition of material principal axes and loading axes for a fiber-
reinforced 1amina .................coocoooiiiii 2
Stress and strain nomenclature ..o, 3
The Coordinates system in beam type problem ............................. 7
Definition of various elastic moduli and the strength of materials ... 12
ASTM D3039-93 tensile test ................ocoecviiiiiiiiiiiiiii 14
A typical dogbone specimen for tension test .....................c.c.ooe 15
Test setup for split disk method ................ccoooeiiniin 16
Filament-wound pressure vessel .................c.ccoccooiieiiiiini 18
ASTM 695-91 fixture for FRPC compression test ......................... 19
Schematic of side-loaded specimen compression test ..................... 20
Sandwich edgewise compression test ..............c.cccooieviieenniininnns 23
Sandwich beam compression test ...............ccoccoevieviniviiiiiiiienn, 24
Hydrostatic COmpression test ...............occecevieiicieieiiininiicee e 25
Flexural test. (a) Three-point bending test. (b) Four-point bending
13- O OO OO TP PSR P P PPPOPPTSRRPO 27
Distribution of the longitudinal stress through the thickness of a
beam subjected to three-point bending at mid-span (£«/Gx.=50,
L/H=30) oo e 29
Test configuration for (a) two-rail and (b) three-rail shear tests ...... 31
10° off-axis tensile test ................cccooviiiiuiiiicee e 34
45 1eNSIlE LESE ..o 36
Tosipescu Shear test ..............cocuiiiiiiiiiiiiie e 38
Notched-specimen test method ... 43
Geometry of simply supported beam for analytical solution ........... 49

Simply supported beam subjected to harmonic loading on both its

xi



Figure 3.3
Figure 3.4
Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

SUFTACES .......ooviiiiiiiie e
Idealization of a beam subjected to three-point bending .................
Geometry of the beam used for the numerical investigation ............
The effect of load magnitude on mid-span deflections for r = S mm,
E.. =10 GPa and v, = 0.25. (a) Non-normalized results. (b)
Normalized results .................cccocooviiiiiiiccece e
The effect of rollers radius on mid-span deflections for E.. = 10
GPa and v.; = 0.25. (a) Non-normalized results. (b) Normalized
FESUILS ...
The effect of E. on the mid-span deflections for » =5 mm and v,; =
0.25. (a) Non-normalized results. (b) Normalized results ...............
The effect of v = 0.25 on the mid-span deflections for » = 5 mm
and £.. = 10 GPa. (a) Non-normalized results. (b) Normalized
TESUILS ..ot
Simply supported beam subjected to harmonic loading ..................
Distribution of the displacement in z direction over the thickness of
the beam in exact elasticity solution ....................ccc..ooooeveinreeennn
Comparison of the deflections of the TTTI and the exact elasticity
SOIULION ...ttt
Comparison of the stresses obtained from the TTTI and the exact
elasticity solution for a beam with L/h = 4. (a) Longitudinal
stresses. (b) Shear Stresses ..................c.ocoovoiviviiiiiie e
Configuration of the beams subjected to a concentrated load .........
Comparison of mid-span deflections determined from the TTTI and
the exact elasticity solutions .........................cccooooeiiic i
Comparison of deflections determined from the TTTI and the exact
elasticity solutions forbeamwith L/h=4 ...

Comparison of stresses determined from the TTTI and the exact

il

50
53
59

60

60

61

61

66

71

71

73

74

75

75



Figure 4.9
Figure 4.10
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 6.1
Figure 6.2

Figure 6.3

Figure 6.4
Figure 6.5

Figure 6.6
Figure 6.7

Figure 6.8

Figure 6.9

Figure 6.10

elasticity solutions forbeam with L/h=4 ...
Distribution of the through-the-thickness normal stress at various
levelofabeatawith L/h=4 ...
Comparison of the stresses obtained from the TTTI and the exact
elasticity solutions. (a) Longitudinal stresses. (b) Shear stresses ....
Representation of the mid-span concentrated load and the reactions
with uniformly distributed load ................c.coocoei
Graphic representation of Eqn (5.8). (a) For specimens with L/h =
7 and 30. (b) For specimens with L/h=5and 20 ...........................
Schematic view of the characteristic line ...................................
Variation of J with respect to Lhand o ...............cccooomnvnieinnnnn,
Flowchart for the VSM based on the Timoshenko beam theory .....
Variation of the shear effect in three-point bending .......................
Free body diagram of beam under three-point bending when the
supports are not friction-free ..............c.cccoeiiiiiiiiii
Effect of support friction on the net mid-span deflection. (a) For
material type I. (b) For material type Il ...
Two possible alignments for the VSM ...
Load-displacement curves. (a) From the elasticity analysis. (b)
From flexural test on a graphite/epoxy specimen withL/h=5.5 .....
Finite element three dimensional model ............................s

Variation of a for long specimens (7 < L/ h < 30) with b/h=1 and

Variation of o for short specimens (5 < L/ h < 20) with b/h=3 and

Niti

76

77

78

82

85

88

89

90
92

93

97
98



Figure 6.11

Figure 6.12

Figure 6.13

Figure 6.14

Figure 6.15

Figure 6.16

Figure 6.17

Figure 6.18

Figure 6.19
Figure 7.1

Figure 7.2

Figure 7.3

Figure 7.4

Figure 7.5

Variation of o for long specimens (7 < L/ h < 30) with b//=5 and
Gu/Gu’—"l .....................................................................................
Variation of o for short specimens (5 < L/ h < 20) with b/4=5 and

Plot of 1/ E’ versus J(h/ L)*and the material characteristic line
for GR-1 graphite/epoxy SPECIMENS ..............cocvevmrieeiiiiiiiiiies
Plot of 1/ E’ versus J(h/ L)* and the material characteristic line
for GR-2 graphite/epoXy SPeCImens ...................ooeiieiiinienen
Plot of 1/ E’ versus J(h/ L)* and the material characteristic line
for GR-3 graphite/epoxy SPECIMENS ..............ccoovuieiieniiiiiiee
Plot of 1/ E’ versus J(h/ L)* and the material characteristic line
for GR-4 graphite/epoxy SPECIMENS .................cccoevriiiniiiiieee
Plot of 1/ E’ versus J(h/ L)* for all graphite/epoxy sets ...............

Xiv

110
114

126

126

127

127



Figure 7.6 Plot of 1/ E’ versus J(h./ L)* and the material characteristic line

for K-1 Kevalr/epoxy Specimens ...................c..cccooveveeroceeevenen. 131
Figure 7.7 Plot of 1/ E’ versus J(h/ L)* and the material characteristic line

for K-2 Kevalr/epoxy SPeCimens ....................cccocoeverveeeeneenenenn, 131
Figure 7.8 Plot of 1/ E’ versus J(h/ L)* and the material characteristic line

for K-3 Kevalr/epoxy Specimens ....................c.cococoeveueveeeeeeenennnn. 132
Figure 7.9 Plot of 1/ E’ versus J(A/ L)* and the material characteristic line

for K-4 Kevalr/epoxy Specimens ...................c..ococoeveueveevieeenennnn. 132
Figure 7.10  Plot of 1/ E’ versus J(h / L)* and the material characteristic line

for K-5 Kevalr/epoxy specimens ...................ccooeeevevereeeieernenennn, 133
Figure 7.11  Plot of 1/ E’ versus J(h / L)* and the material characteristic line

for K-6 Kevalr/epoxy SPecimens ....................cccocoevvvrveensenerenennn. 133
Figure 7.12  The scatter plot of 1/ E’ versus J(h/ L)* for all sets of

Kevlar/epoxy SPECIMENS .................cccooveviieeeeeeeeeeeeeeeee, 134

Figure 7.13  Plot of 1/ £’ versus J(h/ L)* and the material characteristic line

for GL-1 E-glass/epoxy SPeCimens .................c.cc..cocveeereeueenneinnn, 137
Figure 7.14  Plot of 1/ E’ versus J(h/ L)* and the material characteristic line

for GL-2 E-glass/epoxy SPeCimens .....................c.ccocoevevevevceennnnn, 137
Figure 7.15  Plot of 1/ E’ versus J(A/ L)* and the material characteristic line

for GL-3 E-glass/epoxy SPeCimens ....................cccccooevveveeeurnenrnnnn. 138
Figure 7.16  Plot of 1/ E’ versus J(h/ L)* and the material characteristic line

for GL-4 E-glass/epoXy SPECIMeNS ...................ccccccevreveverrrrrernnnn. 138
Figure 7.17  Plot of 1/ E’ versus J(h/ L)* for all sets of E-glass/epoxy

SPECHMEIIS ........ov.oveeeieeeeee et re e 140
Figure H.1  The outline of the apparatus used for the VSM ........................ 212
Figure H2  The VSM apparatus installed in MTS testing machine .................. 213
Figure H3  E-glass/epoxy specimen in the VSM apparatus .............................. 214

Xv



Figure H.4
Figure J. 1

Figure J.2

Figure J.3

Figure J.4

Figure J.5

Figure J.6

Figure J.7

Figure J.8

Figure J.9

Figure J.10

Figure J.11

Figure J.12

Figure J.13

Figure J.14

Front view of the VSM apparatus .......................ccoooeeeiii . 215
Load-deflection curves obtained for graphite/epoxy GR-1

specimens. Top: First loading. Bottom: Second loading ................. 225
Load-deflection curves obtained for graphite/epoxy GR-2

specimens. Top: First loading. Bottom: Second loading ................. 226
Load-deflection curves obtained for graphite/epoxy GR-3

specimens. Top: First loading. Bottom: Second loading ................. 227
Load-deflection curves obtained for graphite/epoxy GR-4

specimens. Top: First loading. Bottom: Second loading ................. 228
Load-deflection curves obtained for Kevlar/epoxy K-1 specimens.

Top: First loading. Bottom: Second loading ....................c............. 229
Load-deflection curves obtained for Kevlar/epoxy K-2 specimens.

Top: First loading. Bottom: Second loading ..................cccc.cocoe 230
Load-deflection curves obtained for Kevlar/epoxy K-3 specimens.

Top: First loading. Bottom: Second loading ...................cc..cco 231
Load-deflection curves obtained for Kevlar/epoxy K-4 specimens.

Top: First loading. Bottom: Second loading .................cccccooovienine. 232
Load-deflection curves obtained for Kevlar/epoxy K-5 specimens.

Top: First loading. Bottom: Second loading ...................ccccooeii. 233
Load-deflection curves obtained for Kevlar/epoxy K-6 specimens.

Top: First loading. Bottom: Second loading .....................cocene 234
Load-deflection curves obtained for E-glass/epoxy GL-1

specimens. Top: First loading. Bottom: Second loading ................. 235
Load-deflection curves obtained for E-glass/epoxy GL-2

specimens. Top: First loading. Bottom: Second loading ................. 236
Load-deflection curves obtained for E-glass/epoxy GL-3

specimens. Top: First loading. Bottom: Second loading ................. 237

Load-deflection curves obtained for E-glass/epoxy GL-4

xvi



specimens. Top: First loading. Bottom: Second loading

xvii



LIST OF SYMBOLS AND ABBREVIATIONS

ade

Q

3 ~ 3 o 3

> X x5

o O

o

A1l

G, G, G33
h

~ S T

quantities defined by Eqn (3.1)

the nth coefficient of Fourier series for load on beam

the nth coefficient of Fourier series for load on bottom surface of beam
the nth coefficient of Fourier series for load on top surface of beam
area of section

unknown coefficients in Eqns (3.7), (3.8) and (4.27)

width of section

half width of mid-span load

function defining the distribution of shear force through the thickness of
beam

Laplace transformation of B

half width of reaction force in simply supported beam under three-point
bending

modulus of elasticity

modulus of elasticity under standard strain rate

moduli of elasticity in the principle directions of material

apparent modulus of elasticity defined by Eqns (5.13) and (5.18)
applied force

shear modulus

shear modulus under standard strain rate

shear modulus in material coordinates system

depth of section

horizontal reaction force of beam support

moment of inertia of section

coefficient defined by Eqns (5.15) and (5.19)

=F/A, flexural stiffness

Xviii



uv,w

Wo

b ) A

span of simply supported beam

total length of beam under three-point bending
quantity defined by Eqn (3.9)

positive integer numbers

wm

L
o
L
distributed load on beam
load distributed on bottom surface of beam
load distributed on top surface of beam
coefficient of Fourier series for horizontal reaction forces

stiffness matrix in material coordinate system
stiffness matrix in xyz coordinate system

radius of loading nose and/or support rollers
radius of loading nose

radius of support rollers

variable in the Laplace transformation domain
components of compliance matrix

compliance matrix in material coordinate system
compliance matrix in xyz coordinate system
thickness

strain transformation matrix
stress transformation matrix

components of displacement in xyz coordinate system
shear force of section
amplitude of deflection for sinusoidal load

coordinate axes

Xix



X distance measured from the center of beam support

y distance measured from the center of beam
1,23 material principle axes
a b
h
Jij quantity defined by Eqn (4.13)
31, &2 quantities defined by Eqn (3.15)
A deflection of beam at mid-span

AL, An, Asn, At quantities defined by Eqn (3.30)

A feura deflection due to bending

A shear deflection due to shear

Ao mid-span deflection of beam with friction-free supports

€ normal strain

€gl, Eg2, Eg3 strains from three strain gages attached to the 10° off-axis shear test
Exx» Eyys Ezz components of normal strain in xyz coordinate system

€11, €22, €33 components of normal strain in material coordinate system

E4s, €45 strains from two strain gages attached to the losipescu specimen
& normal strain rate

€ max strain rate at the outermost layer of simply supported beam

€, normal strain rate for standard test condition

{e} vector of strains in material coordinate system

{e} vector of strains in xyz coordinate system

Y shear strain

Yezs Yyzs Yy components of shear strain in xyz coordinate system

Y13, Y23, Y12 components of shear strain in material coordinate system

Y shear strain rate

Y o average shear strain rate in section

Y, shear strain rate for standard test condition

XX



n quantity defined by Eqn (4.21)

71 friction coefficient

Vi3, V23, Vi2 Poisson’s ratios in material principle directions

¢ =JE/G

c normal stress

Oxx, Oyy, Oz components of normal stress in xyz coordinate system

Gi1, 22, 033 components of normal stress in material coordinate system

{o} vector of stress in material coordinate system

{5} vector of stress in xyz coordinate system

T shear stress

Tz, Tyzs Ty components of shear stress in xyz coordinate system

T3, T23, T12 components of shear stress in material coordinate system

G rotation angle of axis / with respect to x axis as shown in Fig. 1.1
FRPC fiber-reinforced plastic composite

IITRI Illinois Institute of Technology Research Institute

TTTI through-the-thickness inextensibility

VSM varying-span method

XXi



ACKNOWLEDGEMENTS

In his name who is the most knowledgeable. This thesis has been completed due to the
assistance and support of many people. I would like to take this opportunity to thank all of

them, those with whom I was in direct contact, and those who assisted me indirectly.

I gratefully acknowledge the Ministry of Culture and Higher Education of Iran for
providing me with a scholarship for pursuing my Ph.D. at DalTech. I am also very
thankful for the University of Mazandaran, Iran, and in particular its president Dr. A.
Sheikholeslami for allowing me to undertake a Ph.D. program abroad while remaining a

faculty member of the university.

Special thanks and acknowledgements are due to my supervisor, Dr. F. Taheri for his
continuous support on all sides. While providing both technical and financial supports, he
has always been a friend to me. Thanks to his efforts and those of Professor H. Vaziri, the
head of the Civil Engineering Department, I had the pleasure of working as a part-time
faculty member in the Department while working on my Ph.D. program. I express my
gratitude to my guiding committee, Dr. G. Fenton and Dr. T.S. Koko, and my external

examiner Dr. S.V. Hoa for their technical guidance and reviewing my work.

The staff of DalTech were tremendous help to me. In particular, I would like to thank Mr.
R. Sarty, Mr. B. Nickerson, and Mr. A. Macpherson for their assistance in the fabrication
of my test apparatus and in the preparation of the test specimens. I would also like to
acknowledge the Advanced Material Engineering Center (AMEC), Halifax, NS for
providing me with the use of their facilities and raw materials. Special thanks goes to Mr.
Mike Pineo for his assistance. TW Pultrusion Ltd., Dartmouth, NS and Glasform Inc. San

Jose, CA are also acknowledged for providing me with materials.

XNif



I wish to thank my wife, Mehri, for producing an environment which enabled me to focus
my efforts on completing this thesis. I should also thank my son, Pedrum, for his patience
and co-operation, for whom I could not spend enough time, when he needed it the most. I
thank my mother, my brothers and sisters who have always been my encouragement for
my further education and a great help to me. Finally, I express my respect and appreciation

to my father whose presence is now sadly missed.

Xxiii



ABSTRACT

The longitudinal and the shear moduli of fiber-reinforced plastic composites (FRPC) are
commonly measured by separate test methods. This thesis introduces a new test method
which enables one to measure these properties simulta.neously. In the new test method,
specimens with different span-to-depth ratios (L/4) are subjected to three-point bending.
The method will be called the “Varying-Span Method” (VSM), since for a given material
producing different L/ is simply achieved by changing the test span.

One of the common methods for evaluating the longitudinal modulus of FRPC is to
conduct flexural tests on rectangular specimens. The longitudinal modulus is determined
by a simple equation which is based on the Euler beam theory. Since this theory does not
account for the shear deformation, the evaluated modulus is usually underestimated. The
effect of shear deformation reduces when L/ of the specimen increases. However, since in
general FRPC have low shear modulus, to eliminate the shear deformation effect from the
evaluated modulus, one must use specimens with large span to depth ratios (say L/h>60,
see for example, Zweben et.al. 1979). In the VSM, instead of eliminating the effect of the
shear deformation from the result of the flexural test, the attribute is used to
simultaneously evaluate both the longitudinal and the shear moduli of the material. In this
method, the test is considered as a phenomenon with two unknowns, namely, the
longitudinal and the shear moduli. Theoretically, these unknowns can be obtained by

conducting at least two tests on specimens with different L/,

Among the advantages of the VSM is its capability of measuring the through-the-thickness
shear modulus of specimens with relatively small thickness (say 2 mm). For this, a special
apparatus was designed and fabricated. The apparatus was used for the evaluation of the

longitudinal and shear moduli of composites made of graphite/epoxy, Kevlar/epoxy and E-

xxiv



glass/epoxy. The results and their comparison with the values obtained by other common

test methods are presented.

A review of the most popular methods for the measurement of the longitudinal and the
shear moduli of FRPC is presented in this manuscript. The advantages and the
disadvantages of each method are discussed. The exact elasticity solution of a beam
subjected to three-point bending is developed. This solution is used as a means to assess
the integrity of the VSM. The relevant theories with respect to the VSM are reviewed.
The application of these theories is discussed and a solution which accounts for the local
effect of the concentrated load and the reaction forces on the deformation of the beam is
presented. Factors that influence the accuracy and efficiency of the proposed method are
identified and investigated. The integrity of the method is examined and proved by

theoretical and experimental investigations.



Chapter 1
INTRODUCTION

Commercially available filamentary materials such as glass, carbon, boron and Kevlar
fibers provide a combination of high strength, high modulus and low specific gravity.
These fibers, combined with a matrix, produce materials with superior properties in
comparison to conventional metallic materials. The matrix material may be a polymer, a
metal, or a ceramic. In general, the function of matrix is to keep the fibers in the desired
location and orientation, to transfer the loads between the fibers, and to protect the fibers
from environmentally induced damages, while the fibers act as the principal load-carrying
elements. The materials produced in this way are called “fiber-reinforced composites”.
Comprehensive discussion on mechanics, design and manufacturing of these types of
materials can be found in Mallick (1993), Gibson (1994), Tsai (1988) and Schwartz
(1984).

In this thesis, attention is focused on fiber-reinforced polymeric composites (FRPC) in
which the polymeric materials constitute the matrix. FRPC are the most common type of
composite materials produced and used in industries. Metal and ceramic metal matrix
composites are comparatively new and do not yet have a large data base. However, since
there is no major difference between the mechanics of FRPC and the mechanics of metal
and ceramic matrix composites, most of the discussions and the solutions presented in this

thesis are applicable to these composites as well.

1.1 Nomenclatures

In structural applications, FRPC are used in several forms. The most common form is
called laminate. A laminate is obtained by stacking a number of thin layers composed of
fibers and matrix. These layers are also called plies or laminae. The fiber orientations and

the stacking sequences can be controlled to obtain the desired physical and mechanical



properties for the composite laminate in different directions. Consequently, the product
has an anisotropic nature, making the design and analysis process considerably more
difficult and complicated than that of structures made up of isotropic materials such as

metals.

The behavior of a laminated structure can be defined when the properties of its layers are
known. With some exceptions, the layers can be defined as orthotropic material with nine
independent elastic constants. These constants are defined according to each layer’s
principal axes. Figure 1.1 shows the definition of these axes for a fiber-reinforced lamina.
As shown in this figure, axis / is along the fiber length and represents the longitudinal
direction of the lamina. Axes 2 and 3 represent the transverse in-plane and through-the-
thickness directions, respectively. The exception occurs when fibers with different
orientations form a layer. In this case, it is convenient to assume each fiber direction is
located in a separate layer. Consequently, the assumption of orthotropy will not be

violated.
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Figure 1.1 Definition of material principal axes and loading axes for a fiber-reinforced
lamina.



The elastic constants relate the stress components to the corresponding strain components
produced in a body due to external and/or internal loads. To define these components, the
stress and strain nomenclature shown in Fig. 1.2 is adopted throughout the thesis.
Subscript x, y and z may be replaced by /, 2 and 3, however in this case, the reference
coordinate system will be the principal axes defined in figure 1.1. It is important to note
that only one xyz coordinate system is defined for a laminate, while each layer has its own
local /23 coordinate system. The stress components identified by o are the normal
stresses, while those denoted by t are the shear stresses. Strains correspond to these
stresses are denoted by € and vy, respectively. The stress-strain relations are usually

presented in a matrix form. These relations in local coordinate system can be represented

by,
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Figure 1.2 Stress and strain nomenclature
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or when written in compact form:
te}=[Sl{c} (1.2)
The inverse of Eqn (1.2) is
{o} = [S17'te} =[] {e} (1.3)

where {€}, {c}, [S] and [Q] are the strain vector, stress vector, the compliance matrix and
the stiffness matrix in the local coordinate system of 123, respectively. £, v and G
represent the elastic modulus, Poisson’s ratio and the shear modulus in a particular
principal direction denoted by their subscripts, respectively. These quantities are known as
the elastic constants of the material and are defined by Eqns (1.4) through (1.6) when the

stresses except in the specified direction are zero.
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The stress-strain relations in the xyz coordinate system have the following forms

{e}=[S}{5} (1.7



(5)=(3]"'(e} = [0]® 4 (1.8)
where {G} and (€} are the stress and strain vectors, and [S] and [Q] are the compliance
and the stiffness matrices in the xyz coordinate system, respectively. [S] and [O] are
related to [ S} and [Q] through the following relations

[81=[z]'1s1[7;] (1.9)
and

[0]=[z]'[o][z] (1.10)
where [7;] and [TE] are the stress and the strain transformation matrices, respectively. It is

common to define the xyz coordinate system in such a way that the z axis is parallel to the

axis 3 of the plies. In this case the transformation matrices take the following forms.
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0 0 0 sin® cosO 0
| ~2cos0sin® 2cosBsin® 0 0 0 cos’0—sin®6)

where 6, as shown in Fig. 1.1, is the angle between the x axis and the / axis. For a more
detailed and comprehensive discussion on the subject, and the proof of the above

equations the reader is referred to Whitney (1987).



In laminated structures, the thickness of the laminate with respect to its other dimensions
is usually small. Therefore, it is common to assume that the normal stress in the through-
the-thickness direction of the laminate (G.:) in comparison to the other stress components
is negligible. A special case of laminated structures is when the structure behaves as a
beam. The coordinate system for laminated beam is shown in Fig 1.3. In this case, the
dimensions of the beam in the y and z directions are small, and therefore, it is admissible to
neglect the stress components in these directions, i.e. normal stresses G,, and G-., and the
shear stresses T, and t,.. Notice that the assumption of 1, = 0 is valid only when there is
no lateral load in the y direction. Substituting zero values for o,,, G-, T, and T, in Eqn

(1.7), one obtains the following stress-strain relations.

o.=E.c¢_ (1.13)
1.=G.y. (1.14)
where
E. =[cos'8S,, +cos?0sin*B(2S,, + S,) + sin‘G)Sn]_l (1.15)
G, =cos’8G,, +5sin°8G,, (1.16)

811, S22, 812 and Ses are the members of the compliance matrix of Eqn (1.1). £ and G, are

also called the longitudinal and the through-the-thickness shear moduli of the layer,

respectively. For 6 = 0° and 6 = 90°, E,, and G, will become

For 0 =0
E_ =E,
G. =G, (1.17)
For 6 = 90°;
E_.=E,
. (1.18)



1.2 Evaluation of the Elastic Constants

An accurate evaluation of the elastic constants defined in Eqns (1.4) through (1.6) is
necessary for the correct simulation and prediction of the behavior of FRPC structures.
Several test methods have been developed to evaluate these properties. Some of these
methods have gained more popularity because either they have easy procedures and/or
they use specimens with simple geometry. A review of the most common test methods are
presented in the next chapter. The advantages and disadvantages of each of them are also

briefly discussed.

Figure 1.3 The Coordinates system in beam type problem.

Among these methods, three- and four- point bending tests are unique due to several
inherent properties. These methods use a simple fixture to host specimens with simple
rectangular geometry, and they do not require additional machining or tabbing. No strain
gages or other expensive instrumentation or grips are required either. However, since
most FRPC have low shear moduli, the evaluated longitudinal modulus by these methods
depend on the span-to-depth ratio (L/h) of the specimens. This characteristic of FRPC is
used as the basis for the development of the method introduced by Jalali and Taheri (1997,

1998d), and is presented in this thesis in more detail. The method can simultaneously



evaluate the longitudinal and the shear moduli of FRPC. The new method is called the
“varying-span method” (VSM). This is due to the usage of specimens with different spans

(L) for producing different L/h.

In the VSM, unidirectional specimens (usually 0° or 90°) are subjected to three-point
bending. The flexural stiffness of each specimen is obtained from the load versus net mid-
span deflection curve recorded during the test. The stiffness of the specimen is a function
of the longitudinal and the shear moduli of its material. The shear modulus has significant
effect when L/h of the specimen is small. The effect of the shear modulus rapidly decreases
as L/h increases. On the other hand, the longitudinal modulus has the dominant effect
when L/h is large. This characteristic enables one to evaluate both the longitudinal
modulus and the shear modulus of the material by subjecting at least two specimens with
different L/h (one with a small L/A and one with a large L/A) to three-point bending.

However, for higher accuracy and reliability one should test more than two specimens.

1.3 Applicable Theories for the VSM

The behavior of a beam subjected to three-point bending can be predicted by different
theories. Among these theories the Euler beam theory is the simplest one. It assumes that
the plane normal to the centriodal axis of the beam before deformation remains plane and
normal to the axis after deformation. This theory has been used extensively in structural
applications. For details and the applications of this theory one may refer for example to
text books by Timoshenko and Young (1965), Ghali and Neville (1978) and Smith (1988).
The Euler theory ignores the deformation due to shear. Nevertheless, it gives fairly
accurate results for most structural applications. This is due to the fact that in most
structural members made of traditional materials such as steel, concrete and wood, the
components’ span-to-depth ratios are sufficiently large so that the shear deformation effect
is quite negligible. For example for a simply supported concrete beam with rectangular

cross section the shear deformation is responsible for about 2% of the total deformation of



the beam when L/h = 10 and the load is distributed uniformly along the entire length of the
beam. It should be noted that in most cases L4 of structural members made of traditional

materials is larger than 10.

The longitudinal modulus is the only elastic constant that one requires for the Euler beam
theory. This theory, when applied to the data obtained from a three-point bending test will
provide one with the flexural modulus of the material. The flexural modulus obtained this
way is very similar to the longitudinal modulus when a relatively large L/4 specimen is

used. However, one cannot evaluate the shear modulus of the material using this theory.

The exact elasticity solution is another method of predicting the behavior of a three-point
bending beam. A comprehensive discussion on elasticity solutions for isotropic materials is
given by Timoshenko and Goodier (1970) and for anisotropic materials, by Lekhnitskii
(1981). A solution for an orthotropic beam under concentrated load(s) is given by
Whitney (1985). A more accurate solution, however, for an orthotropic beam under three-
point bending will be presented in Chapter 3 of this manuscript. These solutions provide
exact results when the assumed boundary cenditions are compatible with the actual
boundary conditions of the beam. They are usually used for validating other solutions
which, because of their simplifying assumption(s), are approximate in nature. However,
the major problem with the elasticity solutions is that they provide solutions for only
simple cases. Besides that, they are often too complicated for every day applications.
Also, elasticity solutions depend on elastic constants other than the longitudinal and the
through-the-thickness shear moduli. This, coupled with the complexity of the elasticity

solution, make them unsuitable for use with the VSM.

A suitable theory to form the basis of the VSM is one that includes the longitudinal
modulus and the through-the-thickness modulus of the material as the only elastic

constants for the accurate prediction of the three-point bending beam’s deflections. For
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this, the Timoshenko beam theory and the through-the-thickness inextensibility theory are

two theories that can efficiently be implemented for the VSM.

In the Timoshenko beam theory, it is assumed that planes normal to the centriodal axis of
the beam before deformation remain plane after deformation. But in contrast to the Euler
beam theory, the planes do not remain normal to the centriodal axis after deformation.
The theory determines the deflections due to shear forces in addition to that caused by
bending. Timoshenko (1983) acknowledges Poncelet as the first person who considered
the effect of shear deflection for beams. However, the theory in its present form was
introduced by Timoshenko (1921 and 1922). Others, for instance Gere (1963) and
Cowper (1966) had also substantial contributions to the application of the theory. In this
theory, the deflection of beams are composed of two separate parts, the deformation

caused by bending and the deformation caused by shear.

The through-the-thickness inextensibility theory was developed for laminated plates by
Jalali and Taheri (1998a, b, c). In this theory, deflection of plates along the thickness is
assumed to be constant. This assumption, in conjunction with the equilibrium and the
stress-strain relationships, leads to at least one differential equation. The solution of the
differential equation(s) depends on the boundary conditions of the laminates, and as in the
case of the elasticity solutions, provides answers only for simple cases. One of the
advantages of the through-the-thickness inextensibility solution in comparison with the
elasticity solutions is that it requires a smaller number of elastic constants. In beam type
problems, the through-the-thickness inextensibility solution depends only on the
longitudinal and the through-the-thickness shear moduli. Therefore, one can effectively
apply the theory to the VSM. The solution for three-point beam based on this theory is
given in Chapter 4.
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While the Timoshenko and the through-the-thickness inextensibility theories provide
accurate results for the overall deflections, they are not capable of predicting the local
deformations due to concentrated load(s) and the reaction forces at supports. As a result,
to obtain accurate results from the VSM, one must be able to measure the overall
deflection of the specimen. In order to achieve this requirement, a special apparatus was
designed and fabricated in-house. The description of the apparatus is presented in
Appendix H. It was used for all the VSM tests conducted for the compilation of the data

for the thesis.

1.4 Organization of the Thesis

Chapter 2 of this manuscript presents a review of the common test methods used for the
evaluation of the elastic constants of FRPC. The test methods are critically evaluated and
several aspects, such as the economy, the practicality and the reliability are used for their
comparison. Chapter 3 presents the elasticity solution of a orthotropic beam under three-
point bending. The solution is used as a means for the evaluation of the integrity of the
VSM. Chapters 4 and 5 are dedicated to the development of the VSM based on the
through-the-thickness inextensibility and the Timoshenko beam theories, respectively. The
theoretical investigation to evaluate the integrity of the VSM is presented in Chapter 6.
Chapter 7 presents the experimental investigations. In this chapter the longitudinal and the
shear moduli of several FRPC are evaluated by the VSM and the comparison is made with
the results obtained by other common test methods. Summary and the conclusion of the
work are presented in Chapter 8. Computer programs written and used in the thesis and
the description of the VSM apparatus along with many complimentary data are provided

in the appendices.
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Chapter 2
AVAILABLE TEST METHODS REVIEW

Design and analysis of FRPC structures require one to know the stress-strain relationship
of the constituent laminates in their principal directions, defined in Fig. 1.1. In general, the
stress-strain relationships of materials may follow a nonlinear trend. However, in
engineering applications, it is common to define the stress-strain relationship by two
parameters, that is, the elastic modulus and the strength. As shown in Fig. 2.1, the elastic
modulus may be defined as the slope of the initial tangent to the stress-strain curve,
however, it is more common to take the slope of a secant line or a chord line for elastic
modulus. The definition of the strength is also shown in Fig. 2.1. In some cases the

strength is defined as the stress corresponding to a specified strain.

Strength . Chord modulus line

" Secant modulus line

Strain

Figure 2.1 Definition of various elastic moduli and the strength of materials.

The stress-strain diagrams for all reinforcing fibers in use are linear up to the point of

failure, therefore the tangent, the secant and the chord moduli are identical. However, for



polymeric solids, the stress-strain diagrams show nonlinear behavior. The shape of the
diagrams also change by the variation of loading rate and ambient temperature. In FRPC,
the matrix plays a minor role when the material is subjected to tensile load along the
longitudinal direction of fibers (axis /), therefore the stress-strain diagram like that of the
constituent fibers is linear and shows a brittle failure. However, the behavior of FRPC
when subjected to shear stresses is matrix dominant and exhibits a nonlinear stress-strain

relationship.

The evaluation of different moduli and the corresponding strengths of FRPC are the scope
of several test methods available in the literature. In this chapter we review some of these
methods. However, our effort will be focused on those that have gained more popularity,
and are commonly used. Furthermore, we restrict ourselves to those methods that measure
the properties that are evaluated by the VSM. These tests can be classified into four
categories: tension, compression, flexural and shear tests. The advantages and
disadvantages of each test will be discussed. A short review on the latest achievements in

this field is also presented.

2.1  Tension tests
The evaluation of longitudinal moduli along the material principal axes / and 2 (£, and
E3) and the corresponding strengths can be determined by tension tests. The various test

methods are discussed in below.

2.1.1 Strip-specimen tension test (ASTM D3039-93)

With this method a thin flat strip of material having a constant rectangular cross-section is
subjected to tension (Fig. 2.2) while the longitudinal and transverse strains, and the
applied load are simultaneously measured and recorded. The longitudinal and transverse
strains are measured in mid-length of the specimen using strain gages and/or

extensometers. The specimen must have sufficient length so that the measured strains
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would be free of the stress concentration regions due to the test grips. Tabs are attached
to the two ends of the specimen, to prevent the premature failure of the specimen in the

grip zones and to promote a mid-length failure.

The test result usually includes the effect of bending moment caused by the misalignment
of the grips, or the specimen itself. Misalignment of the specimen occurs when the
specimen is gripped improperly or when it is out of tolerance. Excessive bending causes
premature failure of the specimen and highly inaccurate modulus. ASTM E1012-93
provides a guideline for the evaluation of the bending and describes the potential sources
of such misalignment. The degree of bending in a tensile system can also be evaluated by
using the procedure described in ASTM D3039-93. A system with less than 3% bending is
considered to be a good testing practice. When bending is greater than 3%, the average
longitudinal strain should be used for the evaluation of the elastic modulus. In such a case,
one must attach two strain gages/extensometers on both faces of the specimen, in the

longitudinal direction.

The method provides £, and the corresponding tensile strength of the material when
unidirectional 0° specimens are used. Test on 90° specimens provides £, and the tensile
strength in this direction. The test method and the geometry of the specimen are simple;
however, the need for tabs and the misalignment problem are considered as major
shortfalls of this method. In addition, when testing thick 0° specimens, one often requires a

high capacity testing machine and expensive hydraulically operated grips.

Specimen \ Tabs
“ ; - '3

Figure 2.2 ASTM D3039-93 tensile test.



2.1.2 Dogbone-specimen tension test (ASTM D638M-93)

A dogbone specimen is shown in Fig. 2.3. It has a flat surface and uniform thickness. The
gradual increase in the cross section of the specimen at two ends are to prevent the
premature failure of the specimen due to stress concentration in the grip zones. The test
procedure is the same as outlined in the ASTM D3039 tension test, except for the fact that

the specimen needs no tabs.

The elimination of tabs in a dogbone specimen reduces one source of misalignment.
However, producing the dogbone shape requires precise machining which makes the test
expensive and time consuming. Machining of composites made of carbon and graphite
fibers should be done using special precautions since smoke and fumes produced during
cutting are very hazardous. Machining of Kevlar composites by conventional methods
using carbide blades or end mills induces delaminations and fuzzy edges. Therefore,
special cutting devices, such as laser or water jet cutting techniques, may be necessary.
The method is good for neat resin, however when it is used for FRPC, machining of the

specimen is the biggest problem.

Figure 2.3 A typical dogbone specimen for tension test.

2.1.3 Hydrostatic tension test

In this method, a ring type specimen of approximately 25 mm diameter machined from a
thin-wall composite cylinder is subjected to internal hydrostatic pressure. The procedure
for fabrication of the thin-wall composite cylinder for ring-type specimen is outlined in
ASTM D2291-83. The specimen is instrumented from outside by attaching strain gages

along the longitudinal and hoop directions. For the specifics of hydrostatic tension test
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setup, one may refer to Daniel and Ishai (1994). Munjal et. al. (1983) reported a good
correlation between the data obtained from tension tests on flat coupons and ring
specimens. Ring specimens are more representative of cylindrical filament-wound
components as compared to flat coupons. However, preparation of ring specimens is time
consuming and costly. Moreover, the need for strain gages and special fixtures has made

the method less attractive.

2.1.4 Split disk method (ASTM D2290-92)
The test setup for split disk method is shown in Fig. 2.4. As the figure shows, a ring-type
specimen is loaded under tension through the two split disks fitted inside the specimen.

The tensile stress in the specimen is calculated from the following equation

o=t @2.1)

where ¢ and b are the thickness and the width of the ring, respectively. However, the test
specimen experiences bending moment; as a result, the evaluated tensile modulus and
tensile strength cannot represent the true properties of the material. Test data obtained
from this method are recommended only for material evaluation and quality control

[Munjal (1989)].

o /
— Specimen

Figure 2.4 Test setup for split disk method.



To reduce the effect of the bending moment during the test, Chiao and Hamstand (1976)
and Clements and Chiao (1977) used elongated ring specimens. Clements and Chiao
(1977) compared the results of elongated ring specimens with those of flat panels
specimens. They obtained lower strength but higher modulus for the elongated ring.

Scatter of the data obtained for elongated ring specimens was also higher.

The fixture for the split disk method is simple. However, the preparation of the specimen
is time consuming and expensive. Moreover, the data obtained from this method is not
acceptable for design purposes. Nevertheless, the method provides a convenient way for

the quality control of tubular components, such as pressure pipes.

2.1.5 Filament-wound pressure vessel tension test (ASTM D2585-68)

In this test, a filament-wound pressure vessel with internal diameter of 146 mm is
subjected to internal hydrostatic pressure (Fig. 2.5). For the evaluation of elastic modulus,
strain gages are bonded to the outside surface of the vessel. Internal pressure is increased
gradually while the strains and pressure are recorded simultaneously. The method provides
the tensile strength and modulus of FRPC; however, the quantities obtained should not be
considered as the true properties of the material, because a) the material is subjected to
biaxial tension, and b) the fibers are not unidirectional. The latter phenomenon, as was
shown by Feldman et. al. (1966) and Pagano and Whitney (1970), produces a complex
behavior that makes the interpretation of the test results a complicated task. ASTM
D2585 calls the measured quantities “apparent properties” of FRPC. The method is good
for the evaluation of the material and the process of filament winding and curing. It is also
used for the purpose of quality control and acceptance or rejection of the actual product’s

manufacturing specifications.
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Figure 2.5 Filament-wound pressure vessel.

2.2 Compression tests

Unlike ductile metals, the compressive strength and modulus of 0° FRPC are not equal to
their tensile strength and modulus. Among the commercially used fibers, FRPC made of
Kevlar have considerably lower strength and modulus in compression than in tension.
Carbon and Glass FRPC show slightly lower strength and modulus under compression
than in tension, while there is virtually no difference between the tensile and compressive
properties of boron FRPC (See for example, Piggott and Harris (1980) and Mallick
(1993)). The compressive properties of FRPC are difficult to obtain because of the
tendency for premature failure due to buckling and end brooming. A number of test
methods incorporating a variety of specimen designs and loading fixtures have been
developed to overcome the associated problems with the compression tests. A review on
these methods was presented by Whitney et. al. (1985). Adsit (1983) and Lamothe and
Nunes (1983) showed that the values of compressive modulus are generally independent
of the test method. However, the compressive strength depends on mode of failure which
varies from one test method to another. If the failure mode is not truly compressive, low
compressive strength will be obtained. In general, a good test method induces a fiber
compression failure, giving a high compressive strength value. The more commonly used

compression test methods are reviewed in this section.
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22.1 End-loaded specimen (ASTM 695-91)

In this test method, a flat strip specimen with uniform thickness is placed in the jig shown
in Fig. 2-6. The nuts and screws on the jig are finger-tightened, so that the specimen can
slide freely inside. The specimen is then loaded at its two ends. The compressive strength
data obtained from this method on 0° specimen is consistently on the low side because of
premature failure due to end brooming. Despite the lateral support, there is also the
possibility of having a buckling mode of failure. In order to prevent the premature failure
due to end brooming, a dogbone specimen (Fig. 2.1) may be used. However, as stated
earlier, the preparation of this type specimen is not easy and is costly. Moreover, the data
obtained from tests on the dogbone specimens does not indicate considerable
improvement over those obtained from the strip specimens. Munjal (1989) attributes this
problem to the stress concentration present at the corners of the dogbone specimens which
causes premature failure. In the investigation undertaken by the ASTM Committee D-30,
Adsit (1983) reports that end-loaded specimens seem to fail by some form of delamination

or shear. He does not recommend the method for FRPC.

Figure 2.6 ASTM 695-91 fixture for FRPC compression test.

222 Side-loaded specimen (ASTM D3410-95)

A flat strip of material having a constant rectangular cross-section is used for the test. The
specimen, like the one shown in Fig. 2.2, is tabbed at two ends, but longer tabs are used to
leave only a short length of the specimen unsupported. The compression force is induced

in the specimen by shear action between the tabs and the specimen. Two types of fixtures
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are commonly used for this purpose. In both fixtures, the load is transferred to the tabs by
a shear load acting along the grips via wedge action between the tapered grips and the
tapered sleeves, Fig. 2.7. The difference between the two fixtures is that in one fixture the
wedges are conical and in the other one the wedges are trapezoidal. The former fixture is
known as the Celanese fixture. The latter one, which was first developed at the Illinois
Institute of Technology Research Institute, is known as the IITRI fixture. The
compression tests using the two fixtures are referred to as Procedure A and Procedure B,
respectively, by the ASTM D3410-95 standard.

A _Specimen

Tapered grips >Tapered sleeves

Figure 2.7 Schematic of side-loaded specimen compression test.

The conical wedges from Procedure A are known to be prone to cone-to-cone seating
problem. Mechanically, the Celanese fixture grips do not seat properly on a cone-to-cone
surface contact arrangement. Instead, contact occurs along a pair of lines on the opposite
sides of the specimen, at each end of the specimen. This unstable condition causes a lateral
shift in the grips, which in turn, produces high frictional forces in the enveloping cylinder.

This situation can result in erroneously high values for the compressive strength and
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modulus. This problem was discussed by Hofer and Rao (1977). The trapezoidal wedge
grips in IITRI fixture eliminates the problem of line contact, but the fixture is much bigger

in size and weight than the Celanese fixture.

The data resulting from both the Celanese and the IITRI fixtures are sensitive to the
flatness and parallelism of the tabs, as well as the whole system alignment. Therefore,
special care must be taken to assure that the specimen tolerance requirements are met.
This usually requires precision grinding of the tab surfaces after bonding them to the
specimen, which makes the test expensive and time consuming. System with poor
alignment, as was discussed in Sec. 2.1.1, produces bending moment in the specimen
which in turn, results in premature failure and erroneous modulus. Every effort should be
made to eliminate bending from the test system. Nevertheless, the experimental work done
by Adams and Odom (1991) did not show satisfactory results with this test method. They
studied the effect of the type of tabbing material and tab taper on the measured axial
compressive strength using the IITRI fixture. In part of their work, they report:

“Nearly every specimen of all the configurations tested failed in a region

in close proximity to the ends of the tabs, rather than randomly

throughout the gage section. Therefore, a true axial compressive strength

of the composite, i.e., a strength independent of the configuration, was

apparently not being measured. That is, the present results suggest that

tabbing material and geometry need to be studied further in the research

Jor an optimum specimen configuration.

In summary, compression testing of highly orthotropic, high strength
composite  materials, e.g., unidirectional-reinforced carbon-epoxy
composites, is very sensitive o specimen geometry and test technique.
Existing standards are sufficiently general that less than satisfactory

results can be obtained even if all guidelines are fully conformed to0.”
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The work done by Sinclair and Chamis (1983) also did not show that a unique failure
mode was associated with the compression failure of the specimens tested using the IITRI

fixture.

The specimen unsupported length must be short enough to prevent buckling. On the other
hand, this region must be long enough to allow stress decay to uniaxial compression and
to minimize the Poisson restraint effects due to the grips. This subject was discussed in

more detail by Bogetti et. al. (1988), and Adams and Lewis (1991).

Despite the problem stated by Adams and Odom (1991), use of the IITRI fixture for the
evaluation of compression properties is very common in industry. When compared with
more accurate methods, the IITRI method is less expensive and simpler. The work carried
out by the ASTM Committee D-30 [Adsit (1983)] showed the method gave test data

comparable to those obtained from the sandwich beam test method.

223 Sandwich edgewise compression test (ASTM C364-94)

In this test, a sandwich specimen composed of two composite coupons bonded to an
aluminum honeycomb core is subjected to compression, Fig. 2.8. The honeycomb core is
to provide lateral stability to the composite coupons. It is also assumed that the core does
not carry any load. Compressive load is applied through the end caps. They are for
supporting the specimen at its two ends to prevent premature buckling failure due to
separation of the facings from the core at the point of contact with the loading plates. The
caps also prevent end crushing. The two ends of the specimen must be machined so that
they are parallel to each other and at right angles to the length of the specimen. The results
of the test are very dependent on the parallelism of the loaded surfaces. The preparation of

the specimen is time consuming and expensive. Consequently, the test is not widely used.
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Figure 2.8 Sandwich edgewise compression test.

2.2.4 Sandwich beam compression test (ASTM D5467-93)

A four-point flexural test is conducted on a sandwich beam specimen composed of a
honeycomb core with a composite sheet bonded on the top and a metal sheet bonded on
the bottom side, Fig. 2.9. The top facing sheet undergoes longitudinal compressive stress.
The honeycomb is to prevent the top facing from buckling. But its material is so selected
that it does not carry considerable load. The thickness of the composite and metal faces
must be adjusted to ensure compressive failure in the top face. Longitudinal strain is
measured by attaching two strain gages to the top plate along the longitudinal axis of the
beam. These strain gages are located between the two concentrated loads and are
symmetric with respect to the mid-span of the beam. The readings from the two strain
gages should not differ mcre than 10%. The compression stress in the top plate is

calculated by ignoring the load carrying effect of the core.

Theoretical investigation by Whitney (1973) revealed that the free edge effect produced a
nonuniform compression stress distribution across the width of the composite facing while

accompanied by other in-plane and out-of-plane stresses. However, it seems that the



24

above mentioned problem does not have significant effect on the result of the test. The
experimental work of Shuart (1981) and Adsit (1983) confirmed the integrity of the
method for the evaluation of the compressive strength and modulus of FRPC.
Nevertheless, the test is not a popular method due to high cost for the preparation of the
sandwich specimens and large amount of material needed. The method is not
recommended for determining the in-plane Poisson’s ratio (vyy), since the lateral
deformation of the composite facing is influenced by the core deformation. Whitney et. al.
(1984) believed that the higher value obtained for Poisson’s ratio from a sandwich beam
as compared to that from a tensile coupon is probably due to boundary effects or to the

presence of transverse curvature in the sandwich beam.

To reduce the cost and the amount of the materials used in the sandwich beam test,
Gruber et. al. (1981) proposed the reusable sandwich beam concept. They showed that the
data obtained by using the reusable beam of glass/Kevlar hybrid composites were
consistent with those obtained from the compression test using the IIRTI fixture. Further

investigations are needed to extend the finding for general purposes.

Composite F/2 F/2

TF/Z F/2 T sheet

Figure 2.9 Sandwich beam compression test.

2.2.5. Hydrostatic compression test ( ASTM D2586-68)
In this test, a cylindrical specimen is plugged at its two ends and is subjected to an external

hydrostatic pressure within a compression chamber, Fig 2.10. The test provides the



compressive strength of the specimen. However, the specimen undergoes a state of biaxial
stresses composed of hoop and longitudinal compressive stresses. Therefore the data
obtained from this test cannot be considered as the true compressive strength of the
laminate. The ASTM D2586 states that the method is limited to constructions containing
greater than 50% by weight of glass reinforcement. The preparation of the test specimen is
expensive and requires special manufacturing equipment. However, the compressive
strength values obtained from this test provide a convenient means for assessing and
comparing the influence of different fiber layouts and resin contents in filament-wound
components. The test is also useful for quality control. The values obtained from this
method are not recommended for design purposes. ASTM discontinued the test method in
1996.
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Figure 2.10 Hydrostatic compression test.

2.3 Flexural test (ASTM D790-93)

Flexural properties, such as flexural strength and modulus, are determined by test method
I or II described in ASTM D790-93. Both methods use a specimen with uniform and
rectangular cross-section. In test method I, the specimen is loaded in a three-point bending
mode, Fig. 2.11a. In test method II, the specimen is loaded is in four-point bending mode,
Fig. 2.11b. The load is gradually increased while both the load and the deflection of the

specimen at mid-span are simultaneously recorded. When the three-point bending test is
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used, the flexural modulus and strength are obtained from the following equations,

respectively
F( L
E=— :
A (4bh3 j (22)
3F_ L
= mu’ 23
O =y (23)

where, F/A is determined from the slope of the initial straight portion of the load-
deflection curve and b is the width of the specimen. The other parameters are as shown in
Fig. 2.11a. When specimens with large span-to-depth ratio (say L/h>16) are used,
significant horizontal reaction forces are developed at the supports which affect the
moment in a simply supported beam. In this situation, ASTM 790-93 provides the
following equation instead of Eqn (2.3)

Y APOROT I

where A is the deflection of the beam at mid-span corresponding to F... Similar equations

are used to obtain the flexural properties of the material when four-point bending test is
used. When unidirectional 0° or 90° specimens are tested, the flexural modulus and
strength are expected to equate to the corresponding tensile properties. However, in
practice different values are obtained from the two tests. This problem will be discussed

later.

In comparison to other test methods, flexural tests have many advantages. For example:

a) The test specimen has simple geometry and can be cut directly from the actual
component.

b) The possible small curvature and misalignment of the specimen do not influence the test
result.

¢) Use of strain gage/gages, which are usually costly and time consuming, is not needed.

d) The test fixture is simple.



e) The flexural test results are less sensitive to the quality of the specimen and its
fabrication than the tensile test (see Whitney et. al. (1974)).

Because of these attributes, the flexural test methods have gained special popularity in

composite material industry. However, there are some limitations that must be recognized

when using the test methods. These limitations are discussed below.

(a) (b)
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Figure 2.11 Flexural test. (a) Three-point bending test. (b) Four-point bending test.

Some FRPC, as was stated earlier in this chapter, have different response under tension
than in compression. Due to this phenomena the stress-strain relationship obtained from
flexural test will be different from that obtained from the tensile and compressive tests,
since specimens under flexural test undergo a combination of tensile and compressive
stresses. On the other hand, the presence of a stress gradient in a flexural test results in
higher tensile strength compared to that obtained by tensile test under uniform stress.
Owing to the fact that flexural tests are less expensive and time consuming than the
tensile/compressive tests, many researchers have tried to correlate the flexural properties
to tension/compressive properties. For example, Zhang and Sikarskie (1996) introduced a
technique for generating stress-stress curves (for both tension and compression) for
composite materials from flexural data. A similar technique was presented by Arai and
Oku (1979) for isotropic graphite. Bullock (1974) used a two-parameter Weibull model to

correlate the strength data obtained from flexural and tensile tests. His work was limited
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to unidirectional graphite/epoxy composites. A much broader work was carried out by
Whitney and Knight (1980). Knight and Hahn (1975) presented similar work for
randomly-distributed fiber composites. Although in general, these authors did not find a
good correlation with the two-parameter Weibull statistical model, the model nevertheless

explained why the flexural strength was expected to be higher than the tensile strength.

Despite the difference between the values obtained from flexural and tensile/compressive
tests, the flexural test results can be considered acceptable for design and analysis,
because:

a) For design and analysis of FRPC, it is common to define a single value for elastic
modulus for both tension and compression in each principal direction. This value is
usually defined based on the tensile modulus.

b) For most FRPC the compressive and the tensile moduli do not differ significantly.

c) When determined properly, the flexural modulus correlates very well with the tensile
modulus. The experimental results presented in Chapter 7 confirm this fact.

d) The modulus and strength obtained from a flexural test are more representative for

structures that are mainly subjected to flexural loading.

A major drawback of the flexural test is the effect of shear deformation in the test results.
This problem leads to an underestimated value for flexural modulus. Since FRPC in
general have low shear modulus, the deflection measured in flexural test may include a
significant amount of shear deformation which is not accounted for in Eqn (2.2). The
effect of shear is reduced rapidly when L/h of the specimen increases. Zweben et. al.

(1979) suggest that L/A greater than 60 be used.

It is also instructive to mention that the validity of Eqns (2.3) and (2.4) are questionable.
These equations depend on two phenomena, a) the variation of longitudinal strain (e«)

through the thickness of the section under consideration must be linear, and b) the material
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must have a linear stress-strain relationship. There are several works in the literature, for
example Jalali and Taheri (1998a) and Sandorff (1980), that discuss the effect of
concentrated load on the behavior of simply supported orthotropic beams. These works
show that the concentrated load changes the distribution of stresses in the vicinity of the
load. This phenomenon is illustrated in Fig. 2.12 for a highly orthotropic beam
(Ex/Gx=50) with L/h=30. The deviation of the stress from a straight line decreases with
increasing L/h, and with decreasing orthotropy. The non-linear behavior of the material is
usually of minor concern, since in most cases FRPC show a linear behavior up to the

failure load or very close to it.
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Figure 2.12 Distribution of the longitudinal stress through the thickness of a beam
subjected to three-point bending at mid-span (E/G.=50, L h=30).

24 In-plane shear tests

The determination of in-plane shear properties of FRPC has been a controversial subject in
composites research and industry. This is due to the fact that producing a pure state of
shear stress in a given specimen is not simple. Several test methods are available; however,
the results obtained from them do not usually match with each other very well. In this

section, we review a few of the most widely used test methods.
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2.4.1 Torsion test on a tube specimen

In this test method, a unidirectional thin-wall tube is subjected to pure torsion. The
simultaneous recording of the applied torque and the wall strain at 45° angle with respect
to the longitudinal axis enables one to establish the shear stress-strain relationship. Instead
of strain gage reading, one may record the relative angular rotation between two points
along the length of the tube. Among the several methods available for the evaluation of
shear properties of FRPC, the torsion test method is believed to provide the most accurate
results. Therefore, it has been used as a mean for the evaluation of the accuracy and
validity of other shear test methods [Swanson et. al. (1985), Chiao et. al. (1977) and Sims
(1972)]. It is important to note that for tubes with filament wound fibers at angles
different from 0° and 90°, the interpretation of the results obtained from the test is not
simple. The laminate will undergo a combination of biaxial and shear stresses. Therefore,
three strain gages will be needed to record the strains at three different angles. However,
the end constraints will have a significant effect on the results except when a specimen
with sufficient length is used. Theoretical discussion of this subject was given by Pagano
and Whitney (1970) and Whitney and Halpin (1968). Rizzo and Vicario (1972) also
conducted a finite element analysis to evaluate the effect of the grip constraints on the
distribution of the stresses in tube specimens. The investigations showed that when 0° or
90° specimens are used, accurate data can be obtained using classical shell theory.
However, for helically wrapped tubes, the ratios of the wall thickness to diameter and the
length to diameter of the tube can influence the determination of the strength and the

modulus.

Despite the accuracy of the results obtained from the torsion test on a unidirectional tube
specimen, the method is not a cost effective and convenient one. That is, the fabrication of
FRPC tubes is an expensive task, requiring special manufacturing machinery. This is in
addition to a special apparatus that is required for conducting the test. It is also important

to recognize the difference between the fabrication methods of the tube specimen and that
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of the actual structure. Therefore, it is reasonable to expect that the results obtained from
the torsion on tube specimens not to be representative of the actual structures.

Consequently, in practice other methods that employ flat specimens are used.

2.4.2 Rail shear tests (ASTM D4255-83)

ASTM D4255 explains two test methods for the determination of the in-plane shear
properties of composite materials, i.e. Method A and Method B. Method A test
configuration is shown in Fig. 2.13a. As shown in the figure, two pairs of rails hold the
specimen along its sides. Bolts are usually used to fasten the specimen to the rails. This
procedure requires drilling holes in the specimen. An in-plane shear force is induced in the
specimen by applying a tensile force to the rails. For the evaluation of shear modulus one
must attach at least one strain gage in the center of the specimen at 45° to the longitudinal
direction of specimen. However for more accurate results, one may use two to four strain
gages. When four strain gages are used, they are mounted in +45° configurations to each

face.
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Figure 2.13 Test configuration for (a) two-rail and (b) three-rail shear tests.
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In Method B (Fig. 2.13b) the test fixture consists of three pairs of rails that are fastened to
the test specimen. As in Method A, the rails and the specimen are usually bolted to each
other. The in-plane shear force in the specimen can be produced by either a tensile or a

compressive force. Strain gages must be used if shear modulus is to be evaluated.

By simultaneous recording of load and strain, one can obtain the shear stress-strain curve
of the specimen. The shear stress and shear strain are related to the applied load and the
strain measured at 45° by the following equations

t=F/A (2.5)

¥y =26, (2.6)
where A is the area of sections resisting the shear force. €45 will be the average strain
reading when more than one strain gages are used. Note that since the shear stress at free
edges of the specimen must be zero, theoretically, a uniform distribution of shear stress
throughout the section is not possible. Therefore, the shear stress calculated from the
above equation cannot be the true stress at the center of the specimen where the strain is
measured. However, investigations conducted by Whitney et. al. (1971) and Garcia et. al.
(1980) showed that the difference between the true value and the value obtained from Eqn
(2.5) was not very significant. That is due to the fact that, in general, a uniform state of

shear stress can be obtained at a short distance away from the free edges of the specimen.

In the rail-shear tests, the specimens usually fail in an out-of-plane buckling mode. The
measured shear strength and shear modulus may be affected by the specimen dimensions
and/or physical constraints. As a result, the method is referred to as a “standard guide”
instead of a “standard method” by the ASTM. As was stated earlier, the tests produce a
uniform state of shear stress over most of the test section/sections, however, it is
accompanied by normal stresses having significant magnitude in the transverse direction.

The existence of the transversal normal stress causes a failure mode that is a combination
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of shear and normal stresses. Garcia et. al. (1980) recognized the existence of the
transverse normal stresses as the cause of premature failure in the 0° specimens compared
to the 90° specimens. Sun and Yamada (1982) also reported a difference of a factor of 2

between the strength results obtained from 0° and 90° specimens.

Besides the above mentioned shortfalls, the difficulty involved with the installation of the
test specimen in the fixtures makes the rail-shear test methods less attractive. Moreover,
the results of the ASTM round-robin on this method as reported by Lockwood (1981)
showed significant scatter among the average values, indicating that the method may not
be a preferred test method. It is, however, informative to mention that some researchers
like Sims (1973) reported good correlation between the results obtained from rail-shear

tests and other methods.

2.4.3 10° off-axis tensile test
In this test method, a 10° off-axis unidirectional specimen is loaded under tension. Like the
ASTM D3039 tensile test, the specimen is tabbed at its two ends and special precautions
taken to prevent bending in the test. As shown in Fig. 2.14 strains are recorded in three
different directions, usually using a Delta rosette strain gage. To account for the possible
out-of-plane bending, the use of two Delta rosette strain gages attached back-to-back of
the specimen is recommended [Chamis and Sinclair (1977)]. Knowing the tensile load and
the strains in the x and two other directions at 120° enables one to determine the in-plane
shear stress and the strain in the principle directions of the specimen using the following
equations, respectively
7, =017lo_, (2.7)
Y. =—1282¢,, +1879%¢,, - 0.598¢_, (2.8)

where €, €42 and €3 are the strains from strain gages 1, 2 and 3 shown in Fig. 2.14.



34

%—Strain gages

Figure 2.14 10° off-axis tensile test.

Chamis and Sinclair (1977) showed that when the tensile load is applied at a certain angle,
depending on the property of the material, the material will experience the highest
magnitude of shear stress and strain along the principal axes, while the two normal stresses
(611 and 62;) remain well below their critical limits. The investigation on Mod-I/epoxy, T-
300/epoxy and S-glass/epoxy showed that the angles were about 10, 11, and 15 degrees
respectively, considered to be close enough to 10°. The test is very sensitive to a small
misorientation error of strain-gage positioning and load alignment with respect to the fiber
direction. The end constraints of the specimen in the grips can produce considerable error
in the result of the test. However, the error can be reduced significantly by selecting a
relatively long specimen (see for example Pindera and Herakovich (1986)). The failure of
the specimen occurs under a combined state of stresses, therefore, the strength value
predicted by the method is an underestimated value. On the other hand, as the analytical
results of Pindera and Herakovich (1986) show, the method in general overestimates the
shear modulus. These findings were also confirmed by Chiao et. al. (1977). Pindera et. al.
(1987) do not recommend the method for the measurement of the shear strength. They
believe that the 45° off-axis tensile test provides more accurate results for shear modulus

as compared to the 10° off-axis test.

The 10° off-axis tensile test has the advantage of using specimens with a simple geometry.

However, measuring strains in three directions makes the method expensive. Moreover, as
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was stated earlier, the method is sensitive to small misalignment of the strain gages and to
the direction of the load with respect to the fibers. These are in addition to the bending
effect which is a common problem in all tensile tests. Nevertheless, Yeow and Brinson
(1978) and Lee et. al. (1990) reported good agreement between the results obtained by
the 10° off-axis test and the other acceptable methods when specimens with sufficiently
long length were used and/or the appropriate correction factor was applied. Lee and
Munro (1986), who evaluated nine in-plane shear test methods, ranked the method below
the £45° and the losipescu shear methods, as the most promising testing method. They
considered several parameters such as the cost of fabrication, testing cost, data
reproducibility and the accuracy of the experimental results as the criteria for their
ranking. It is, however, informative to mention that some researchers like Munjal (1989)

do not recommend the method for the evaluation of the shear properties of FRPC.

244 Tensile test on +45° symmetric laminate (ASTM D3518-94)
When a +45° symmetric laminate is subjected to a uniaxial tensile stress in 0° direction, the
shear stresses along the principal axes of the laminae are independent of the material
properties and equal to half of the applied tensile stress. This characteristic is the basis of
the ASTM D3518 test method. The configuration of the test is shown in Fig 2.15. The
specimen usually does not need tabs. Two strain gages are used to record the longitudinal
and the transversal strains. Use of four strain gages, two at each face, is recommended to
account for any possible bending. This enables one to calculate the shear strain along the
principal direction of the laminate as follows

y=¢& -¢, 2.9)
where €, and ; are the longitudinal and the transversal strains, respectively. Simultaneous
recording of the applied load and the strain enables one to determine the shear stress-strain

relationship of the specimen.
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Figure 2.15 +45° tensile test.

Tensile test on a +45° symmetric laminate for determining the in-plane properties of the
FRPC was first proposed by Petit (1969). The method was later improved by Rosen
(1972). This test method is believed to provide reliable information for the shear stress-
strain relationship of FRPC materials well into the nonlinear region. The fact was reported
by Chiao et. al. (1977), Terry (1979) and Hahn (1973). The method is also highly
recommended by several researchers (see for example Munjal (1989) and Lee and Munro
(1986)). In a recent investigation, Dickson et. al. (1995) employed a new method to
evaluate the accuracy of the +45° tensile tests along with the 10° off-axis tensile and the
losipescu shear test. In their method, they used the shear modulus obtained by these test
methods to determine the tensile moduli of several shear-sensitive laminates. The
comparison of the determined values with those obtained with experiments proved the

+45° tensile test to be the most accurate method.

Despite the wide acceptance of the +45° tensile test, the shear strength evaluated by the
method should be used with caution, since it does not represent the true strength value of
material. A premature failure may occur due to the existence of a complex stress field
close to the free edges and also due to in-plane stress normal to the fiber direction in each
ply. The existence of a complex state of stresses in the vicinity of free-edges, when a
laminated composite is subjected to uniaxial load, has been shown by different methods in

the literature. For example, Rybicki (1971) and Conti and De Paulis (1985) presented
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approximate solutions for the determination of these stresses, while Pipes and Pagano
(1970) and Isakson and Levy (1971) employed finite difference and finite element
solutions, respectively. The influence of these stresses on the strength of the laminate and
the possibility of the initiation of delamination failure from the free edges were discussed
by Soni and Kim (1986), Herakovich (1981) and Pipes et. al. (1973). From these works, it

becomes clear the failure of a £45° tensile specimen does not occur under pure shear.

Kellas et. al. (1993) believe that the free-edge effect is not as significant as the effect of
the in-plane normal stress. They state that an in-plane stress normal to the fiber direction
exists in all plies. However, the effect of this stress on a given ply is minimized by the
reinforcing fibers of the neighboring plies. Since the ply constraint is reduced by the
increase of the ply thickness, the thickness of each individual ply is an important parameter
that influences both shear stress-strain response and the ultimate failure load of this
specimen. Moreover, the surface plies of a given specimen, being constrained by only one
neighboring ply, will experience higher normal stresses compared to the interior plies.
Therefore, when a +45° specimen undergoes tension, a combination of shear and in-plane
normal stresses will initiate failure in the surface plies. The laminate can still carry more
load if the remaining intact plies are capable of carrying the total applied load. It is obvious
that the higher the total number of plies, the greater the chance that the remaining plies

will be able to carry the load without sudden ultimate failure.

The other problem discussed by Kellas et. al. (1993) was the effect of fiber scissoring
which occurs due to large deformation. This phenomenon changes the direction of the

fibers from +45°. As a result, the accuracy of the test procedure becomes questionable.

Although the +45° tensile test method provides a simple and efficient mean for evaluating

the in-plane shear properties of the laminates, it requires specimens with +45° lay-up



38

sequence. Thus, it cannot evaluate the properties of laminates with other types of lay-up

or randomly oriented chopped-fiber composites which are commonly used in practice.

245 losipescu shear test (ASTM D5379-93)

A small flat rectangular specimen having symmetrically located V-notches at its mid-length
is used in this method. The configuration of the test apparatus is shown in Fig. 2.16.
During the test, the specimen undergoes two counteracting moments and shear forces at
the two sides of the notches. The induced moments cancel out at the mid-length of the
specimen, thereby creating a state of pure shear force at the section. The V-notches are
there to promote a uniform distribution of shear stress at the section. Two strain gages (at
least) are used to record the strains at +45° and -45° angle with respect to the longitudinal
axis of the specimen (the x axis). If the specimen is likely to twist, one must use four strain
gages, two on each face. By simultaneous recording of the applied load and the strains,
one can determine the shear stress-strain relationship. The following equations are used

for the determination of shear stress and strain.

F
=T 2.10
Y (2.10)
V=E8 45 — € s (211)
where h is the width of the specimen between the notches and & is the thickness of the
specimen.
Strain gages lF Specimen
R Y
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Figure 2.16 losipescu shear test.
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The losipescu shear test was originally developed for metals by Iosipescu ( 1967) and was
later adopted for determining the shear properties of composite materials. Two
alternatives of this method are the method developed by Arcan et. al. (1978) and the
antisymmetric-four-point-bend method developed by Slepetz et. al. (1978). When
compared with the other available methods, the Iosipescu shear test is simpler and
provides reliable results. It can be used for measuring properties of unidirectional, cross-
ply laminates and randomly oriented chopped-fiber composites. By this method, one can
obtain both the in-plane (/-2 direction) and the through-the-thickness (/-3 and 2-3
directions) shear properties of FRPC, depending on the direction of the specimen in the
fixture. However, for the through-the-thickness shear properties, one needs specimens
with 20 mm thickness, which are usually difficult to prepare. Lee and Munro (1986)
ranked the Iosipescu shear test beside the +45° tensile test as the most practical technique
currently available for testing FRPC. Walrath and Adams (1983) and Adams and Walrath
(1987) also considered the method as one of the most versatile methods for measuring the

shear properties of FRPC.

Many experimental investigations have been carried out in which the results obtained by
the losipescu method were compared with the results of the other methods. For example
Sawnson et. al. (1985) compared the results of the Iosipescu test with those of the torsion
tube test. Lee et. al. (1990) compared the results of the Iosipescu test with those of the
$45° and the 10° off-axis tensile test. Pierron et. al. (1995) used an isotropic material and
determined the shear properties of the material indirectly from the tensile test for the
comparison with the results of losipescu test. The results of these investigations confirmed

the Iosipescu to be an acceptable test method.

Despite the wide acceptance of the losipescu shear test, the result obtained from this

method should not be considered as the true shear properties of the material. This is due
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to the fact that a uniform and pure shear stress state does not exist in the gage section of
the specimen. Investigations by Pinder et. al. (1987) and Morton et. al. (1992) showed
that the method overestimated the shear modulus of the material when 0° specimens were
examined, while the evaluated values from 90° specimens were always underestimated.
Pinder et. al. (1987) showed that the margin of the discrepancy depending on the degree
of the anisotropy of the material might reach 40%. Abdallah and Gascoigne (1989)
reported that the best results for shear modulus could be obtained from [0°%90°] and
[0°/+45°/90°] specimens. This fact was also reflected in ASTM D5379-93.

Since a state of pure shear stress does not exist in the gage section, the specimen usually
fails under a mixed-failure mode. This problem, beside the nonuniformity of the shear
stress in the gage section, promotes a premature failure of the specimen. The finite
element analyses conducted by Herakovich and Bergner (1980) and Abdallah et. al. (1989)
showed the severity of the problem in 0° specimens. Therefore, they suggested 90°
specimens be used for the determination of shear strength. Sullivan et. al. (1984)
conducted similar work, however, they supported their findings by photoelasticity on
vinyl-ester resin. Their numerical and photoelastic results indicated that for isotropic
material better results could be obtained by the antisymmetric four-point-bend method

compared to the common Iospescu fixture known as Adams and Walrath fixture.

Gipple and Hoyns (1994) conducted a comprehensive investigation on the losipescu shear
test when used for the through-the-thickness shear properties of FRPC. They measured
the shear strain at the gage section of the specimens by using conventional strain gages,
full section strain gages and moiré interferometry technique. They supported their results
by non-linear finite element analyses. Their findings confirmed the findings of the previous

researchers.
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The influence of the load location on the specimen and the notch geometry on the test
result was investigated by Spigel et. al. (1987). They reported that these parameters
significantly influenced the test results. Measurement of strains also has significant effect
on the test result. That is because the area of pure shear is very small. Abdallah and
Gascoigue (1989) reported that this area was about 1.5 mm long, and therefore they

suggested strain gages with a gage length of | mm be used for the test.

25  Through-the-thickness shear tests

Evaluation of the through-the-thickness shear properties of FRPC is more involved than
their in-plane properties. Among the various methods discussed in the above, only the
losipescu method can be used for the evaluation of through-the-thickness shear properties.
However, the method requires specimens with 20 mm thickness, which are not easy to
prepare. Because of this difficulty, the method is not popular in the industry, and the
related experimental works in the literature are very limited (see for example Gipple et. al.
(1994)). The other shear test methods that enable one to produce a through-the-thickness
shear stress in the materials are the short-beam shear test (ASTM D2344-84) and the
notched-specimen test (ASTM D3846-94). These methods are discussed in below.

25.1 Short-beam shear test (ASTM D2344-84)

When a FRPC specimen is subjected to three-point bending test, failure will occur due to
excessive bending moment, while the shear force will remain far below the specimen shear
strength. This phenomenon is reversed by selecting a specimen with small span-to-depth
ratio (usually L/4<5) in the short-beam shear test. Assuming a parabolic shear distribution
through the thickness of the beam, the shear strength is calculated from the following
equation

= 3F 2.12)
Tmax - 4bh ( .



42

where F . is the failure load and b and h are the width and the depth of the beam,
respectively. No practical method is available for determining the shear modulus from this

method.

In an early investigation, Sattar and Kellogg (1969) concluded that the failure in the short-
beam shear test was a pure shear failure starting from the center line of the beam. They
reasoned that the combination of shear and flexure at intermediate locations was not of
sufficient magnitude to cause failure. They had established their conclusions on the
assumption of a parabolic distribution of shear stress through the thickness of the beam,
which was later proved to be incorrect by other researchers. For example, Berg et. al.
(1972) used the finite element method to determine the correct distribution of the stresses
in the short-beam shear test while Whitney and Browning (1985) found the elasticity
solution of the problem. Both investigations showed that the distribution of shear stress in
the sections along the specimen is not even close to parabolic in shape. Indeed, the
maximum shear stress occurs close to the top of the beam adjacent to the loading nose
where high magnitude longitudinal compression stresses exist. The combination of shear
and compression stresses at this region produces a mixed failure mode which cannot be
correlated to the shear strength calculated from Eqn (2.12). Xie and Adams (1995) and
Chatterjee (1996) also confirmed these findings. As a result the value obtained from Eqn
(2.12) is referred to as the “apparent shear strength” by ASTM D2344-84 and the method

is only recommended for screening and quality control.

2.5.2 Notched-specimen test method (ASTM D3846-94)

The shear strength of the material is measured by applying a compressive load to a
notched specimen with the configuration shown in Fig. 2.17. The specimen is located in a
Jig similar to that of the ASTM D695 test method (Fig. 2.6) so that it cannot buckle
laterally. Assuming a shear failure along line ab, the shear strength is the failure load

divided by the shear area between the two notches.
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Figure 2.17 Notched-specimen test method.

The notched-specimen test does not provide the true shear strength of the material, since
the shear stress is not pure and uniform over the specified gage length. The work
conducted by Shokrieh (1995) indicated the existence of high stress concentration at notch
regions. Consequently, a mix-failure initiating at the tip of the notches governs the
strength of the specimen. As a result, as Chiao et. al. (1977) reported, the method
underestimates the shear strength of the materials. Since the degree of stress concentration
depends on the geometry of the notches, the results of the test is quite sensitive to the
notch machining. This method was originally designed to accommodate those types of
FRPC that could not be adequately characterized by the short-beam test. However,
because of the difficulty involved in the precise machining of the notches and the above
mentioned shortfalls, the method has not gained popularity. Munjal (1989) did not

recommend the method even for quality control.

26  Recent achievements

The anisotropic nature of composite materials and the difficulty involved with the
measurement of their elastic properties have always required the development of new test
methods and the modification of available ones. However, each new technique must be
validated through several investigations before it could be considered an acceptable testing
method. Even after this stage, the method may not gain popularity, since the popularity of
a given method depends mainly on the practicality of the test and the associated data

processing effort. A few recent achievements in this field are reviewed below.
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Tsai and Danial (1990) and Tsai et. al. (1990) developed a new test method in which thin
rectangular coupons were subjected to torsion. A closed form solution was obtained based
on the Mindlin-Reissner theory [Mindlin (1951)]. In this method, the strains on the width
and the thickness of the specimen must be measured at 45° angle with respect to
longitudinal axis. With a 0° specimen one can obtain both G,» and Gy; of the material.
However, at least two tests on specimens having different width-to-thickness ratios are
needed. The data from the tests, then, are used in a trail and error procedure to determine
the two shear moduli simultaneously. To obtain G»3, one must use a 90° specimen. When
compared with the tube torsion test, the new method uses specimens with simple
geometry. However, it requires a relatively complicated trail and error procedure to
extract the shear moduli from the test data. Moreover, the accuracy of the Mindlin-

Reissner theory for this problem needs further investigation.

Short (1995) proposed a new test method that enabled one to obtain the through-the-
thickness shear strength of composite materials. In his method a sandwich specimen
composed of two steel facings and composite core is subjected to four point bending. The
span-to-depth ratio of the specimen is selected such that failure occurs due to interlaminar
shear inside the core material. Short (1995) used classical laminated plate theory (CPLT)
to determine the maximum shear stress at the center line of the specimen. He reasoned
that the existence of the steel plates at two sides of the composite core prevented the
stress concentration in the vicinity of the loads and reactions, therefore, the method did
not have the problems associated with the short-beam shear test. Nevertheless, the
reported shear strength values obtained by this method and short-beam shear test did not
show significant differences. Furthermore, the validity of the existence of pure shear stress
at the centerline of the specimen and the adequacy of CLPT in this method need to be

investigated by finite element analysis or by some other numerical/mathematical methods.
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Bansal and Kumosa (1995) and Broughton et. al. (1990) developed a new fixture that
enabled them to subject the Iosipescu shear test specimen to a combined shear and axial
stress. Their fixture is good for characterization of mixed-failure modes of the material,

however it is not a suitable device for common use in industry and research centers.

2.7  Summary and conclusions

Several test methods available for characterizing the mechanical properties of FRPC were

discussed in this chapter. Among them, some are only suitable for quality control and

screening, and some are too costly and time consuming or require complicated data

processing. As a result, there remain only a few popular test methods that can provide

acceptable data for design purposes. These methods are the strip-specimen tension test

(ASTM D3039-93), the side-loaded specimen compression test (ASTM D3410-95), the

+45° tensile test (ASTM D3518-94) and the losipescu shear test (ASTM D5379-93).

However, each of them, as was discussed in detail, has some shortfalls. Consequently,

several attempts have been made to develop new test methods or modify available test

methods to overcome the existing shortfalls. One may consider the ideal test method as a

method that has the following attributes.

a) subjects the specimen to a state of stress that is similar to the state of stress that the
material experiences in its actual life.

b) can use as-received specimens (e.g. does not require a specimen with special lay-up
sequences).

¢) uses specimens with simple geometry.

d) does not require time consuming alteration and machining of the specimens.

e) does not require considerable effort for mounting the specimen in the fixture.

f) does not require strain gages and/or other expensive instruments.

g) produces reliable results.

h) can provide several properties from the same set of tests.
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Although in most engineering applications FRPC are subjected to a combined state of
stresses, the general trend in the design of testing methods has focused on producing a
state of pure stress along a gage length within a given specimen. As a result, the evaluated
properties from these methods may not represent the true in service behavior of the
materials. On the other hand, when there are test methods that subject the materials to a
combined state of stress, the interpretation of the test data either is not easy or the data are
not useful for design purposes. Furthermore, the state of stress produced by the test
method may not be close to the one that the material may experience in its service life.

Item a in the above list addresses this problem.

The development of the Varying-Span Method (VSM) is a step towards the development
of an ideal test method. The method is an extension of the three-point bending test and,
therefore, it has all the advantages of this method. On the other hand, the proposed
modification to the three-point bending test eliminates its associated shortfalls and
consequently makes the VSM a relatively ideal test method. With this method, specimens
with different span-to-depth ratios (L/h) are subjected to three-point bending from which
one can determine the longitudinal modulus and the through-the-thickness shear modulus
of the material. The flexural strength and the apparent interlaminar shear strength can also
be obtained from the results of the same tests, however the method does not lend anything
new to the evaluation of these two properties. Therefore, they will not be addressed in this

thesis.

Also among the several advantages of the VSM is its capability of evaluating the through-
the-thickness shear modulus of the FRPC from thin specimens (say 2 mm thick). The
evaluation of this property, as was explained when reviewing the different test methods in
this chapter, is not a simple task. For instance, the Iosipescu shear test, which is capable of

providing this property, requires 20 mm thick specimens; a thickness which is not easily
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achieved. On the other hand, the torsion test method developed by Tsai and Danial (1990)
and Tsai et. al. (1990) has the shortfalls that a) it is involves complicated data
interpretation and b) it requires a torsion machine which may not be available in many
facilities. Therefore, besides other positive attributes, the VSM is expected to receive

special credit for its ability to evaluate the through-the-thickness shear modulus.
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Chapter 3
THE EXACT SOLUTION FOR SIMPLY SUPPORTED BEAMS
UNDER THREE-POINT BENDING

Although the analysis of a simply supported beam is a simple task in structural mechanics,
its exact solution is lengthy and complicated. The Euler beam theory is adopted in
structural mechanics. This theory produces fairly accurate results for beams with large
span-to-depth ratios (L/h), however, it is unable to accurately predict the behavior of the
beams with small L/h. Moreover, as was shown in Fig. 2.12, the validity of the theory in
proximity of the concentrated loads is questionable. The exact solution for such a beam
can be obtained by the application of theory of elasticity. Sandorff (1980) used the finite
difference method to solve the differential equation of the theory of elasticity for the three-
point bending boundary conditions. Berg et. al. (1972) and Xie and Adams (1994) used
the finite element method to analyze the problem. Two different closed form solutions
proposed by Whitney and Browning (1985) and Chatterjee (1996) are also available in the

literature.

Chatterjee (1996) used a Fourier transform solution for the elasticity problem of an infinite
orthotropic strip. Although the solution is for an infinite strip, it gives accurate results for
beams of finite length when the overhang lengths are about two times the depth of the
beam. In this solution, the loads must be divided into antisymmetric and symmetric loads.
The final result is obtained by superposing the results of the analyses of the antisymmetric
and the symmetric loads. A numerical integration is employed for the Fourier

transformations.

Whitney and Browning (1985) and Whitney (1985) solved the problem for a beam of finite
length. The solutions were given for three- and four-point bending problems with the

assumption that the concentrated loads and the reactions are distributed uniformly over
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small lengths. In their solution, the shear stress at the free ends of the beam automatically
vanishes by the nature of the employed stress function. However, the boundary condition
of o = 0 at the free ends were not be fully satisfied. Instead, the force and moment
resultants are set to zero at the two ends. Although this brings approximation into the
solution, the solution for beams with sufficient overhangs, which is usually the case for
laboratory specimens, practically leads to zero longitudinal stresses at the two ends. As a

result, from a practical standpoint, the solution satisfies the required boundary conditions.

z
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Figure 3.1 Geometry of simply supported beam for analytical solution.

In this chapter we solve the problem of the simply supported orthotropic beam with a new
approach. The configuration of the problem is shown in Fig. 3.1. The distribution of the
concentrated load and the reactions are assumed to follow the Hertizian contact law. The
solution satisfies the conditions of zero longitudinal stress (5 = 0) and zero shear force at
the two free ends of the beam (x = 0, L). In general, the solution is simpler and more
representative of the problem of three-point bending as compared to the two existing
closed form solutions. The solution will be used for the evaluation of VSM and the
through-the-thickness inextensibility theory later. First we will find the solution of a simply
supported beam subjected to distributed harmonic loads on both sides. The solution will

then be extended to the beam subjected to three-point bending. We will define a new



terminology called the “net mid-span deflection”. Subsequently, the effects of variables
such as the transverse modulus of elasticity (£33), the Poisson ratio, the diameter of the
loading nose and the magnitude of the load on the net mid-span deflection are

investigated.

3.1 Solution for harmonic loading
Consider the orthotropic beam shown in Fig. 3.2. To produce such a beam from FRPC,
the fibers must be either in the x direction or perpendicular to the xz plane. The boundary
conditions at two ends are defined as follows

0.(0,z2)=0_(L"2)=0

w(O,z):w(L',z)=O -1
where w is the dispiacement in the z direction. As shown in the figure, sinusoidal loads
with different amplitudes, but with the same wave length act on the top and the bottom
surfaces of the beam. These loads are defined by the following functions
q,(x) =a," sin( px)

q,(x) = a,’ sin(px) G2

where a/ and a’ are the amplitudes of the top and the bottom loads, respectively, and

=27 =123 (3.3)
=T n=123,.... ‘

z
] /— a,’ sin(px)

|

Y
x

[ —_—

|

~L |
L —~— a/’sin(px)

Ll

B ls!l"”*

o

Figure 3.2 Simply supported beam subjected to harmonic loading on both its surfaces
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Idealizing the orthotropic beam as a plane stress problem, the following equations define
the stress-strain relationships within the beam

€a = 5,04 +5,0..

€. =8,0, +5,0. (3.4)

Ye = SeT e

where §, are the compliance coefficients of the material. These coefficients are defined by

- 1

Si =E:

— 1

AYH =E_

e (3.5)
Si3 ="

_ 1

Ses =G

where £, G and v are the elastic modulus, shear modulus and the Poisson’s ratio of the
material, respectively. Notice that as the definition of the orthototropic beam implies, the
principal axes of the material must be along the axes of the xyz coordinate system of the
beam. Otherwise, Eqn (3.4) will not be valid. The equations of equilibrium for the state of

plane stress are as follows

do, Jrt,_

dx | oz =0

o, Or, (36)
oz T ox O

The solution of differential equations (3.6) satisfying Eqns (3.1) through (3.4) was given
by Pagano (1969) in the following form

4
Ox = Sin(Px)Z Axmxz exp(m,z)
=1

c.. = -p*sin(px)D 4, exp(m,z) (3.7

=1

7. = -pcos(px)i Am, exp(m,z)

=1
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= co*px) Z.‘: Ar (‘§l3p2 - ‘ilmlz) exp(mlz)

. S (3.8)
kA5 S
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where » and w are the displacement components in the x and z directions, respectively.

The four values of m, are defined by the different combinations of the following equation.

ard

m, = tpy— (3.9
where
a=S8,+25,
d=.a’-4§, 83, (3.10)
=25,

A, (for i =1 to 4) are unknown constants which will be determined by satisfying the
boundary conditions on the top and the bottom surfaces of the beam. These boundary
conditions are
1 (h/2)=1_(-h/2)=0 (3.11)
c..(h/2)=q,(x)
o..(-h/2)=¢q,(x)

Equations (3.11) and (3.12) in conjunction with Eqn (3.7) provide four equations so that

(3.12)

one can solve them for the four unknowns. Knowing A, the components of displacement

and stress can be easily determined from Eqns (3.7) and (3.8).

It is important to note that the solution provided is only for one term of the Fourier series.
However, since any load can be transformed into a Fourier series, the above solution can
be used for general purposes. For this, the behavior of the beam under each term of the

series is determined separately. The final result will, then, be obtained by superposition of
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the results associated with each term of the Fourier series. This procedure will be used for

the solution of a beam under three-point bending next.

3.2 Solution for beam under three-point loading

Consider the beam shown in Fig. 3.3. This beam is to represent the simply supported beam
shown in Fig. 3.1, The beam has a total length of L’ while the span between the two
supports is L. The mid-span load and the reaction forces are distributed over small lengths
representing the contact phenomenon. As shown in the figure, there are two fictitious
supports at the two ends of the beam so that one can use the solution provided for the
harmonic loads in section 3.1. Since the loads at the top and the bottom of the beam are in
equilibrium, the supports do not apply any forces to the beam. As a result, the solution of
the beam in Fig. 3.3 provides the correct answers, except that it includes a rigid body
movement equal to the vertical displacement of the points located at the real supports
(wp). As a result, to determine the absolute values of the vertical displacements, one must

deduct the rigid body displacement from the displacement values obtained by the solution.
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Figure 3.3 Idealization of a beam subjected to three-point bending.

The solution of the beam shown in Fig. 3.3 satisfies the boundary condition of zero

longitudinal stress (o« = 0) at the two free ends of the beam. However, it does not



guarantee the condition of zero shear stress at beam’s two ends. Instead, the condition of

zero shear force, expressed by the following equation, exists.

hi2

Itxdz =0 atx=0,L (3.13)

-h/2
Because of the effect of the local reaction forces, the distribution of the shear stress in the
vicinity of the supports is irregular. As a result, despite the fact that there is no shear force
in the sections located between the supports and the free edges, shear stresses with
considerable magnitude may exist. However, as was shown by Jalali and Taheri (1998a),
the irregularity of the shear stress practically vanishes when the section has a distance
equal or greater than the beam thickness (/) from the point of application of local force.
Therefore, for beams with overhangs larger than the beam thickness (a situation that
always exists in laboratory specimens), Eqn (3.13) practically results in the condition of

zero shear stress at the two free ends.

It is also instructive to mention that the solution implies the restriction of equal vertical
displacement for the points located on the two free end sections. Although this restriction
is against the definition of free ends, such a situation practically exists in beams with over-
hangs equal or bigger than the beam thickness. This is due to the fact that sections located
far enough from the supports (Fig. 3.1) are free from stresses, and as a result no relative
vertical movement may occur in those sections. In summary, since the overhangs of the
laboratory specimens are bigger than the minimum amount required, the solution of the

beam in Fig. 3.3 accurately represents the true behavior of the acual test specimens.

As was stated earlier and as shown in Fig. 3.3, the concentrated load at mid-span and the
reactions are distributed over finite widths. This phenomenon is due to the deformation of
the contacting bodies under the applied load. A comprehensive discussion on this subject
was presented by Goldsmith (1960) and Timoshenko and Goodier (1970). They applied

the Hertzian contact law to determine the distribution of the stresses and the area of
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contacts for isotropic elastic materials. Sankar (1989) included the effect of bending in his
solution and Chatterjee (1996) presented a solution for anisotropic materials. However,
none of these solutions has the simplicity of the solution based on the Hertzian contact
law. Since the use of different contact laws does not alter the outcome of our
investigation, we adopt the Hertzian contact law which has the advantage of simplicity.
According to this, the width of contact for the mid-span concentrated load can be defined
by

2b =4,/F(5, +6.)r, (3.14)

where b denotes half of the contact width and r,, is the radius of the loading nose. Also

(3.15)

where E,, and E; are the elastic moduli of the two contacting bodies. The distribution of
load over the contact width is slightly modified from the one defined by the Hertizian
contact law to simplify the mathematical manipulations. For the mid-span load, the
distribution is defined by the following equation

nF zrf)

q=—7C0§ = (3.16)

4b 2b
where X is measured from the center of the contact width. The contact width and the
distribution of load at the supports are defined by
2¢ = 4,/05F (5, +6,)r,
nF (= fj (3.17)

where r, is the radius of the support roller. To solve the problem, the load on the top and
the bottom of the beam must be transformed into Fourier series separately. Since the
distribution of the loads with respect to the mid-span is symmetric, the Fourier series will
not include even components. Therefore, the transformation of loads into Fourier series

will have the general format of
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q=Za,, sin(px) n=135,... (3.18)
n=1

where p has the same definition given in Eqn (3.3). To find the coefficients of the series

mrx x
we multiply both sides of Eqn (3.18) by sin and integrate them over the entire

Lr
L
, nmx . mmx .
length of the beam. Since for n=m the result of J‘ sm—L—,—sm Iz dx is zero, the
0
following equation is obtained for the coefficients of the Fourier series.
2 L
nwx
,,=—I sin—aﬁr (3.19)
L 0
By changing the variable of x to
Lr
x=—+y (3.20)
2
and with some manipulation the result will be
LP
1. nw
a,=(-1)7 j qcos——yd n=113,5 .. (3.21)

where, y is measured from the mid-span. Note that because of symmetry, the integration
in Eqn (3.21) is only over half of the length of the beam, however a coefficient of two was
applied to provide the result for the whole length. The coefficient of Fourier series for the
load on the top and the load on the bottom of the beam must be calculated separately. To
determine a, for the load applied on the top surface of the beam, we substitute Eqn(3.16)

into Eqn (3.21). By replacing y with ¥ we obtain

= nF T
L=(-1) bL,IcosE cosudx n=1,3,5,.. (3.22)
This equation can be simplified to
n-l cos| pb b 1
2F _cos\pb) po .1 (3.23)
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a,' =(-1)7 Jor F==— (3.24)

To obtain a,, for the load applied to the bottom surface of the beam, the second of Eqn

(3.17) is substituted into Eqn (3.21). By changing the variable

L
y=—"+X 3.25
y=o+x (3.25)
and with some manipulation one obtains
d T F 33 ntx nnl
(-1)2 Icos—— o8 Tt ¥ n=13,5,.. (3.26)

2L .

After simplification, this equation becomes

L =(- 1)1-_' ZF cos(pc), cos( j for —’;—:_‘-xl (3.27)

4[_

=k L c 1
a’=(-17= %cos(p) Sor %-—"2—

and

(3.28)

Knowing the coefficients of the Fourier series components for the mid-span concentrated
load and the reactions, the stresses and displacement at each point are obtained by the
superposition of the results obtained from Eqns (3.7) and (3.8) for each components. As
was mentioned earlier, the z direction displacement components includes a rigid body
displacement equal to w,. To determine the absolute displacement values, one should
deduct the rigid body displacement from the value obtained directly from the solution.
However, since the VSM utilizes relative displacements of certain points along the beam,

deduction is an unnecessary operation.

3.3  Numerical investigations
In this section the influence of various parameters on the response of FRPC beam under
three-point bending is investigated. Since the effect of the local deformations is significant

for beam with small L/, a beam with L/h = 4 is considered. The geometry of this beam is
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shown in Fig. 3.4. The radii of the loading nose and the supporting rollers are assumed to
be equal. This radius is considered as a variable in the investigation. The magnitude of the
applied load, the modulus of elasticity of the beam in the z direction and the Poisson’s

ratio are also considered as variables. The material properties of the beam are taken as

follows
E_ =200 GPa
E_. =8-32GPa
G,. =4 GPa (3.29)
v, =015-045

The properties represent materials with very high anisotropy. As a result, the local effect
of the concentrated load and reaction forces is pronounced. The loading nose and the
rollers are assumed to be steel with modulus elasticity of £ =200 GPa. The elastic
modulus of the beam in the z direction (£_.) is also used for the determination of contact
behavior. The following quantities are defined for the purpose of the analysis.

Net mid-span deflection: Ay =w, —w,

Semi-net mid-pan deflection: Ag =w, -w,

Total mid-span deflection: Ar=we.-w, (3.30)

Local deformation : A, =A,-A,
The solution provided in this chapter was implemented into a computer program (ELAS-
3P) for determining the above mentioned quantities. The program was written in Qbasic
and is listed in Appendix A. In this investigation, the effect of the variables on the
quantities defined in Eqn (3.30) is studied. The results of the investigation are shown in
Fig. 3.5 through Fig. 3.8. The results are presented in the form of either the flexural
stiffness (F/A) or the stiffness ratio versus the variable. When the quantity //A is used, A is
the displacement according to the definitions of Eqn (3.30). The stiffness ratios are the
values of F/A normalized with respect to the F/A value of a situation which will be defined

for each particular case separately.
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Figure 3.4 Geometry of the beam used for the numerical investigation.

Figure 3.5a shows the influence of load magnitude on the mid-span flexural stiffness
values. As the figure shows, the behavior is nonlinear. However, the amount of
nonlinearity for net mid-span flexural stiffness is insignificant. The nonlinear behavior of
the flexural stiffness values is due to the increase of contact areas between the beam and
the load and the support rollers as the applied load increases. The lowest stiffness value
for each case is the stiffness at the start of the loading (initial stiffness). This value
increases as the load increases. In Fig. 3.5b, the stiffness values are normalized with
respect to the initial stiffness value. As this figure shows, the variation of the stiffness
values are about 1.5%, 15% and 39% for the net, semi-net and total mid-span deflections,
respectively. This indicates that the variation of the load does not have significant effect on

the linear behavior of the net mid-span deflection.

The influence of radius of the rollers on the response of the beam is shown in Figs 3.6a
and 3.6b. The values in Fig. 3.6b are normalized with respect to the stiffness value
corresponding to » = 5 mm. The figures show that the radius of the rollers has insignificant
effect on the net mid-span deflection, while the semi-net and the total deflections are quite

sensitive to this parameter.
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Figure 3.5 The effect of load magnitude on mid-span deflections for r = 5 mm, E.. = 10
GPa and v = 0.25. (a) Non-normalized results. (b) Normalized results.
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Figure 3.6 The effect of rollers radius on mid-span deflections for £.. = 10 GPa and v.. =
0.25. (a) Non-normalized results. (b) Normalized results.

The influence of E.. and v, values on the behavior of the beam are shown in Figs 3.7 and

3.8, respectively. The values in Fig. 3.7b are normalized with respect to the stiffness value

corresponding to £.. = 10 GPa. The stiffness value of v.. = 0.25 is also used for the

normalization of values in Fig. 3.8b. The net mid-span deflection and the local deformation
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are selected as the dependent variables in these figures so that one can observe the

variation of each of them separately. Figures 3.7a and 3.7b show that the variation of E..

has significant effect on the local deformation, while the net mid-span deflection is not

very sensitive to this parameters. The influence of v, as is shown in Figs 3.8a and 3.8b is

higher on net mid-span deflection than the local deformation, however the amount of

variation is not of significant value.
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Figure 3.7 The effect of E.. on the mid-span deflections for » = S mm and v,. = 0.25.
(a) Non-normalized results. (b) Normalized results.
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Figure 3.8 The effect of v,. = 0.25 on the mid-span deflections for = 5 mm and £.. = 10
GPa. (a) Non-normalized results. (b) Normalized results.
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Recognizing that the application of the exact elasticity solution is too complicated to be
considered as a practical tool for the evaluation of the VSM test results, one should rely
on an approximate theory for this purpose. The investigation conducted in this section on
beams with small L/A and high anisotropy indicates that among the three mid-span
deflections defined in Eqn (3.30), i.e. An, Asy and Ar, only the net mid-span deflection
(An) shows insignificant dependency to the parameters that usually are not accounted for
in the approximate theories available for beams. Therefore, when the approximate theories
are used, among the quantities defined in Eqn (3.30), the net mid-span deflection is
expected to be the most accurately determined quantity. The application of two
approximate beam theories will be presented in Chapter 5. It will be shown that the
solution based on these theories will be capable of accurately predicting the net mid-span

deflection.

3.4  Summary and conclusions

The exact solution of a simply supported beam subjected to three-point bending was
developed by the application of the theory of elasticity. The solution is different from the
solutions available in the literature. The governing boundary conditions in the solution
better represent the problem of the simply supported beam compared with those of
existing solutions. The solution was then implemented into a computer program called
ELAS-3P which was used to investigate the behavior of short beams with different

geometry and material properties.

In summary the effect of parameters, such as the magnitude of the applied load, the radius
of the loading nose and the supporting rollers, £.. and v.- on the response of a beam with
L/h = 4 and highly anisotropic material was investigated. A new terminology called the
“net mid-span deflection” was defined. The investigation showed that the net mid-span

deflection is not very sensitive to the above parameters.
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This finding is important, since for the VSM, approximate beam theories must be used.
This is due to the fact that the exact elasticity solution accounts for the through-the-
thickness properties and is very complex. The insensitivity of the net mid-span deflection
to parameters such as the radii of the loading nose and supports rollers and the through-
the-thickness properties is a promising sign that this quantity for all range of L/4 can be

accurately predicted by the approximate beam theories.
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Chapter 4
APPLICATION OF THE THROUGH-THE-THICKNESS
INEXTENSIBILITY THEORY TO ORTHOTROPIC BEAMS

The exact elasticity solution for an orthotropic beam was presented in the previous
chapter. The solution provided is very useful for academic and research verification
purposes. However, it is too complicated and lengthy for practical use. It requires the
through-the-thickness elastic properties (£.., v,:) of the material beside the longitudinal
and the shear moduli. Therefore, the solution treats the flexural test as a four-unknown
problem, requiring four independent tests and complicated data processing for the
determination of the four elastic constants. A practical solution for the VSM must depend
only on the longitudinal and shear moduli. As a result, the exact elasticity solution cannot
be considered a practical means for this purpose. In this chapter we investigate the
application of the through-the-thickness inextensibility (TTTI) theory developed by Jalali
and Taheri (1998a, b, c) in which the effect of E.. and v, is ignored. The theory is
approximate in its nature, since it assumes that the beam is inextensible through its

thickness; otherwise the theory involves no other approximation.

The through-the-thickness inextensibility theory was used by Jalali and Taheri (1998a, b,
¢) to solve the problems of simply supported laminated plates under cylindrical and planer
bending. Their results showed very good agreement with the results obtained by Pagano
(1969, 1970) and Jones (1970), who presented the exact elasticity solutions of the same
problems for static and dynamic cases, respectively. The main advantage of the TTTI
solutions provided by Jalali and Taheri (1998a, b, ¢) compared to the exact elasticity
solutions is that they do not require the through-the-thickness properties of the materials.
Furthermore, solutions based on the TTTI theory require less computational effort. On the
other hand, the theory is different from many higher-order laminate theories [Whitney and
Pagano (1970), Chow (1971), Whitney and Sun (1973), Lo et al. (1977) and Reddy
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(1984,1989)] and the layerwise laminate theories [Robbins and Reddy (1993), Basar et. al.
(1993) and Reddy (1989)] available in the literature, since it does not imply any
presumption on the in-plane displacement components of the laminate. Instead, the
engineering strain, %. and ., are used for developing the through-the-thickness

displacement field of laminates. These strains are defined as

o"w ﬁu

V== 52
@1

ﬁw o"v

Yw=5, "5z

where u and v are the in-plane displacements in the x and y directions, respectively, and w
denotes the out-of-plane displacement in the z direction. If one assumes w is constant
through the thickness, the integration of Eqn (4.1) with respect to z leads to a

displacement field in the x and y directions as follows

3
"= aw dz (4.2a)
v=- *%+v +Iy‘,dz (4.2b)

where #° and v’ are the displacements at z = 0. The assumption of a constant . and .
through the thickness in the above equations leads to the solution of Mindlin (1951) for
isotropic plates, and of Yang et al. (1966), Whitney and Pagano (1970) and Chow (1971),
for laminated plates. The assumption of linear variation of y. and 3. leads to the
solution of Whitney and Sun (1973) and by taking a parabolic function for y, one obtains
the solution of Reissner (1945, 1975) and Reddy (1984) for isotropic and laminated plates,

respectively.

The solutions provided by Jalali and Taheri (1998a, b, c) are different from the above

mentioned ones, since the exact form of y was found by solving the equilibrium differential



equation(s), satisfying the boundary and the compatibility conditions. They presented the
solutions for the multi-layer laminates. Their solution can be directly used for our single-
layer orthotropic beam in here. However, for the sake of clarity, the application of the

TTTI theory to this problem is discussed in this chapter.

41 Formulation for a beam subjected to harmonic loading

Consider the beam shown in Fig. 4.1 with the xyz coordinate system located at the center
of the beam. The beam is subjected to a distributed harmonic load and has two simple
supports at its two ends. It is composed of an orthotropic material with the principal
material axes parallel to the xyz coordinate system axes. Since we are only concerned with
the variables in the x direction, we omit the subscripts for simplicity. Therefore, o and ¢
are the stress and strain in the x direction and z is the through-the-thickness shear stress in
the zy plane, respectively. The boundary conditions of the beam at the two ends are
defined by

OL{W=O 43
X = ’ 0=0 ()

a, sin(px)
W /
T T

| |
a

[

Figure 4.1 Simply supported beam subjected to harmonic loading.

Assuming the above problem is a plane stress problem, one can write the stress-strain

relationship in the following form
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o=F¢ 4
r=Gy (4.4)

where E is the longitudinal modulus in the x direction and G is the through-the-thickness

shear modulus in the zy plane.

The first derivative of Eqn (4.2a) with respect to x gives the longitudinal strain, ¢ .
Multiplying the result by the longitudinal modulus (£), one can find the longitudinal stress

as

d*w _du’ E(du
Y L EE 2Ly, 4.5
2 TE TGl (4.3)

c=-zF

Recognizing that there is no body force in the x direction, the equilibrium condition in the

x direction is defined by

— 4= 4.6
&z ° (4.6)

Substituting Eqn(4.5) into Eqn(4.6) gives

dr d’w _d*u® E(d't
EAREY Ay )AL LA 4.7
L _ES G ~dz @a.7)

The harmonic load is defined by
q(x) = a, sin px (4.8)

where a, is a constant indicating the amplitude of the load and

p=% n=1273. (4.9)
The solution of Eqn (4.7) for the load defined by Eqn (4.8) is of the form
w =w, sin px (4.10a)
T =B cospx (4.10b)
u° =c cos px (4.10¢)

where B is a function of z but w, and c are constants. Substituting Eqns (4.10) into Eqn
(4.7) leads to
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L E L
§=—2EW0 p3+cEp‘+5p' IB d: 4.11)
0

To solve this differential equation, we use the Laplace transformation technique. Equation

(4.11) after transformation becomes

_ Ew p’ cEp* pBB
sB- B(0) = - ‘;‘;p +£ s” +ﬂs (4.12)

where B is the B function after transformation and s is the variable in the transformed

domain. Also
Ep’
= 4.13
p==5 (4.13)
Equation (4.12) after some manipulation can be written in the following form
.l Ew,p*l s Ew,p’ cEp’
B =| B(0) - —> - 42 4.14
PO [T s eop ¢19

The inverse Laplace transformation of this equation gives the B function as

B ={B(0)— Ewg i ]cosh(,/ﬁz) + E‘;;ps + C\E/:sz sini(yBz) (415

Equations (4.10) satisfy the boundary conditions of simple supports at the two ends of the
beam defined by Eqn (4.3). To satisfy the condition of zero shear stress at the top and the

bottom of the beam, it requires

B(h/2)=0 16
B(-h/2)=0 (4.16)
Applying these boundary conditions to Eqn (4.15) gives
[ cosh(Jﬁ z) ]
B=w,G p|l- 417
G P B D) (4.172)
c=0 (4.17b)

As aresult
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[ cosh(JE z) 1
1=w,G ptl ™ cosh(yp h/z)Jcos(px) (4.18)
_w,Ep® sinh(JB z) |
o= r-—’B cosh( ,—ﬂ "2 sm(px) 4.19)

To determine the shear force along the beam, one must integrate Eqn (4.18) over the
thickness of the beam. The result of the integration gives the following relationship

between the shear force and the amplitude of the deflection

tanhn |
V=w, Gph{l— an T]Jcos(px) (4.20)
where
n=+yBh/2 (4.21)
On the other hand from the mechanics of structures the following relation holds.
av
had RN 422
il (4.22)
Substituting Eqns (4.20) and (4.8) into Eqgn (4.22), one can determine w, as
S ' 4.23
wO_pZGhl—tanhn ( )

n
The longitudinal and the shear stresses can now be written in their final form by
substituting Eqn (4.23) into Eqns (4.19) and (4.18), respectively. Thus

1 a ¢’ sinh(2nz/h) .
o= > X 71— tanh(n) X cosh(n) sm(px) (4.24a)

1 a, ¢ [ cosh(2nz/h)-| s(x)

t= Ex n- tanh(n)l_ B cosh(n)

(4.24b)

where

6=VEIG (4.25)
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42  Numerical investigations

In this section we compare the solution provided in the previous section with the exact
elasticity solution of Section 3.1. The comparison is made for a distributed half-sine load
(n = 1) on the top of the beam and a concentrated load at mid-span. In both cases the

properties of the beam material are assumed to be

E. =200 GPa E_=10 GPa

G.=4 GPa v, =025 (4.26)

which represents a highly anisotropic material.

42.1 Half-sine load

Consider the beam shown in Fig. 4.1. The exact elasticity solution of this beam is the same
as what was presented in Section 3.1 when the amplitude of the bottom load is set to zero.
The solution was implemented in a program called ELAS-SIN. The program’s code is
presented in Appendix B. The computer program for the TTTI solution is called “TTTI-
SIN” and its code is presented in Appendix C. Both programs were written in the Qbasic

programming language.

First we compare the deflections of the two solutions for beams with different L/A. Since
in the exact solution the displacement in the z direction changes over the thickness of the
beam, we determine the average displacement of the section. For this, we integrate the
second equation of Eqn (3.8) over the thickness, and divide the result by the thickness of
the beam. The result is as follows
O M MR

~ = sinl px Zom 13Mm, m P~ | exp > ex > J 4.27)
The distribution of w normalized with respect to w,, for a beam with L/h = 4 is shown in
Fig. 4.2. As the figure shows the displacement in the z direction increases from the bottom
of the beam to the top. This is due to the through-the-thickness deformation of the beam.

This phenomenon is ignored in the TTTI theory, and as a result the deflection at each
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section represents the z direction displacements of all the points in the section. The
comparison of the deflections obtained from the two solutions for beams with different L/A
is presented in Fig. 4.3. The figure depicts the deflections obtained from TTTI after
normalization with respect to those obtained from the exact elasticity solution. As the
figure shows, the maximum margin of error for the deflections obtained from the TTTI
solution is about 0.2%. This indicates that the TTTI theory is quite accurate in predicting

the overall deflections of the beams. The existing error vanishes when L/ increases.
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Figure 4.2 Distribution of the displacement in z direction over the thickness of the beam in
exact elasticity solution.
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Figure 4.3 Comparison of the deflections of the TTTI and the exact elasticity solution.
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The minute difference between the exact and the TTTI solutions is due to the TTTI
assumption that the beam is inextensible through its thickness. The over estimation of the
deflections can be explained using the principle of energy. The energy due to the applied
external load is transferred into internal energy comprising of various components. For the
present case study the constituents are due to €_6_, ¥.7,. and €_6G... The first two
constituents correspond to the overall deflection of the beam and the last corresponds to
the through-the-thickness deformation. Ignoring the through-the-thickness deformation,
and therefore the corresponding energy, leads to an over estimation of the energy
associated with the overall deflection. This, in turn, results to an over estimation of the
overall deflections. Note that the exact solution converges to the TTTI solution when the

through-the-thickness stiffness of the beam increases.

The comparison of the stresses obtained from the TTTI and the exact elasticity solution is
shown in Fig. 4.4. Since the discrepancy of the results increases as L/4 decreases, the
comparison is presented for a beam with L/4 = 4 which is considered to be the most severe
case in the VSM. The following normalized quantities have been used in connection with

the figure

5=—2 7 7= (4.28)

q, a
where a, is the amplitude of the half-sine load. As the figure shows, the TTTI solution
agrees very well with the exact elasticity solution. These results in conjunction with those
obtained for the deflections confirms the adequacy of the TTTI theory for predicting the

behavior of simply supported beams under distributed loads.
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Figure 4.4 Comparison of the stresses obtained from the TTTI and the exact elasticity
solution for a beam with L/A = 4. (a) Longitudinal stresses. (b) Shear stresses.

422 Concentrated load at mid-span

To investigate the adequacy of the TTTI theory for predicting the response of beams
subjected to a concentrated load at mid-span, consider the beam shown in figure 4.5. The
thickness of the beam and the diameter of the loading nose are selected to represent the
actual dimensions of a real FRPC specimen flexural test. The distribution of the stresses
beneath the loading nose is assumed to follow Eqns (3.14) through (3.16). The loading
nose is assumed to be steel with £ = 200 GPa. The elastic modulus of the beam in the z
direction is also used for the determination of the contact behavior. The Fourier
transformation of the load is expressed by Eqn (3.18). Replacing L' with L in Eqns (3.23)

and (3.24), the series coefficients are obtained from the following relations

1 2F  cod pb b 1
a =(~1)73 ———s(p—_)—T for B2 o2 (4.29)
L [pbj' T 2
1-4| £=
T
-l F b 1
a,=(-1)" Y for =5 (4.30)

where b is half of the contact length and p is defined by Eqn (4.9). The exact elasticity

solution and the TTTI solution of the beam are obtained by the superposition of the result
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obtained for the various series components. The procedures for the two solutions were
implemented in two different computer programs, called ELAS-CON and TTTI-CON,
and are documented in Appendices D and E, respectively. The results obtained from the

analyses of beams with different L/h are discussed next.

F =0.1 kN/mm

2 mm

e

L = Variable
g — -

Figure 4.5 Configuration of the beams subjected to a concentrated load.

Since the concentrated load produces a significant amount of through-the-thickness
displacement, the average deflection at mid-span from the exact solution cannot represent
the overall deflection of the beam. A more representative quantity for the comparison with
the deflection obtained from the TTTI solution is deemed to be the deflection obtained at
the bottom surface of the beam. This comparison for beams with different L/A is presented
in Fig. 4.6. As the curve identified by TTTI shows, the overestimation of the deflection in
this case is much higher than the previous case when a half-sine load was considered. The
figure also presents a curve identified by “TTTI-modified”. Definition of this curve will be
discussed later. In Figs 4.7a and 4.7b the comparison is made for a beam half length with
L/h = 4. In these figures y is the distance measured from mid-span. The figures show that
the difference of the results from the two solutions is significant in the vicinity of the
concentrated load, while the difference vanishes as the distance from the concentrated load

increases.
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Figure 4.6 Comparison of mid-span deflections determined from the TTTI and the exact
elasticity solutions.
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Figure 4.7 Comparison of deflections determined from the TTTI and the exact elasticity
solutions for beam with L/A = 4.

The longitudinal stresses at the top surface of the beam at the mid-span are significantly
affected by the presence of the concentrated load. As shown in Fig. 4.8, this stress is
several times higher than the stress at the bottom of the beam in the same section. The
local effect of the concentrated load rapidly vanishes as the distance from the contact point

increases. This is illustrated in Fig. 4.8 by the fluctuation of the top longitudinal stress in
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the vicinity of the contact point and the fact that its value approaches the bottom
longitudinal stress at a distance of about ¥ = 4. On the other hand, the variation of the
bottom longitudinal stress along the beam is quite smooth and is not affected by the
concentrated load. This is due to the fact that the bottom surface has sufficient distance
from the contact point of the load, so that the local effect of the load has completely

decayed at that distance.

The longitudinal stress obtained from the TTTI solution is also illustrated in Fig. 4.8.
Similar to the deflections, the stresses at the bottom of the beam from the two solutions do
not agree very well. The difference becomes significant at the vicinity of the mid-span.
This difference cannot be related to the local effect of the concentrated load, since as
stated earlier the bottom surface has sufficient distance from the contact point. The reason

for such differences and its remedy will be discussed next.

Bottom-exact
and modified TTTI

A
y/h
Figure 4.8 Comparison of stresses determined from the TTTI and the exact elasticity

solutions for beam with LA =4,

Figure 4.9 shows the distribution of o, at three elevations through the thickness of the
beam. These distributions were determined by the exact solution. The curve corresponding

to each elevation is normalized in such a way that the area underneath represents 0.1 kN.
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As the figure shows, the heavily concentrated stress distribution on the top surface (z4 =
0.5) becomes smoother as the distance from the top surface increases. The assumption of
inextensibility, which is the basis of the TTTI method, does not account for this gradual
distribution of the load, and as a result, it leads to an overestimation of the axial stresses
and the deflections in the vicinity of the mid-span. To account for the gradual distribution
of the load in the TTTI method, one must distribute the concentrated load over a slightly
wider length. For this purpose, we assume the distribution of load to be based on the

following relation, which is also illustrated in Fig. 4.9.

F

—,a%
q=g3s5l1+cos(z y/5)] (4.31)

where b is half of the width assumed for the distribution of the load. The value of b
depends on the degree of anisotropy of the beam material and increases as the anisotropy
increases. Jalali and Taheri (1998a) reported that for most practical purposes this value

falls between 1.3h and 1.6A. The curve in Fig. 4.9 is drawn for b = 1.45h.
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Figure 4.9 Distribution of the through-the-thickness normal stress at various levels of a
beam with L/h = 4.

The results of the calculations based on the modified distribution (Eqn (4.31)), as

presented by lines labeled “modified TTTI” in Figs 4.6 through 4.8, agree very well with
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those of the exact solution. The distribution of the stresses on a section at a distance equal
to the thickness of the beam from the mid-span is also shown in Fig. 4.10. The figure
compares the stresses obtained from the TTTI solution based on the modified distribution
and those from the exact solution. The agreement of the stresses except for a small part
close to the top of the beam is very good. The small discrepancy between the results of the
two solutions vanishes as the distance from the concentrated load increases. In summary
the good agreement between the results obtained from the modified TTTI solution and

those of the exact solution confirms the method of load distribution as discussed.

@ 057 zn 08 G

— Exact p 03+

--- TTTI-modified | 02~

o (kN/mm?) 0.1+
£

b + + { N 0

-0.2 -0.1 0.1 0.2 0.1 -

— Exact

--- TTTl-modified
\ T (KN/mm?)

0.025 0.05

Figure 4.10 Comparison of the stresses obtained from the TTTI and the exact elasticity
solutions. (a) Longitudinal stresses. (b) Shear stresses.

43  Summary and conclusions

The through-the-thickness inextensibility (TTTI) theory proposed by Jalali and Taheri
(1998a, b, c) was used to find a solution for a simply supported orthotropic beam. The
solution was used for the determination of the stresses and the deflections of a highly
anisotropic beam under a half-sine distributed load and a concentrated load. The results
were compared with those obtained by the exact elasticity solution discussed in Chapter 3.
The agreement between the results obtained from the two solutions was excellent for the

half-sine load. It was also shown (Fig. 4.9) that the transfer of the concentrated load to the
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beam occurred gradually. As a result, to compensate for this delay in TTTI method, the
concentrated load should have been distributed over a wider length than the one predicted
by contact law. A new relation was proposed for this distribution. In the concentrated load
case, the TTTI solution was incapable of predicting the accurate deflections and the
stresses in the vicinity of the load. However, the method provided accurate results for the
bottom and the sections farther than a distance equal to the thickness of the beam from the

concentrated load when the proposed distribution was employed.

The solution based on the TTTI theory requires only the longitudinal and the through-the-
thickness shear moduli (E.. and G.) of the material for predicting the behavior of an
orthotropic beam. In contrast, the exact elasticity solution additionally requires £ and v,,.
This characteristic of the TTTI solution makes it a practical tool for use with the VSM to
determine the longitudinal and the through-the-thickness shear moduli of the FRPC

specimens.
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Chapter §
DEVELOPMENT OF THE VARYING-SPAN METHOD

The exact solution of a simply supported beam subjected to three-point bending was
presented in Chapter 3. The solution assumed the beam was under a state of plane stress,
and as a result, E, E., Gx, V. were the elastic properties required in the formulation
provided. A new terminology, called the net mid-span deflection, was also introduced. It
was shown that this quantity was not sensitive to the through-the-thickness properties of

the beam (£:: and v.) and the contact phenomenon.

In chapter 4, we employed the theory of the through-the-thickness inextensibility (TTTI)
to predict the behavior of a simply supported beam. It was shown that the TTTI solution,
which does not consider the effect of £.. and v,., provided accurate results for the overall
behavior of the beam. For beams subjected to a concentrated load, the TTTI solution
overestimated the mid-span deflection. This shortfall, however, was resolved by using Eqn
(4.31), thereby applying the concentrated load on a finite width. The deflections predicted
by TTTI solution were then in very good agreement with those obtained by the exact

elasticity solution for the bottom of the beam.

These findings assure that the overall behavior of a simply supported beam can be
accurately predicted by knowing only the longitudinal and the through-the-thickness shear
moduli. The level of contribution of these two elastic moduli in the response of the beam
depends on the span-to-depth ratio (L/h) of the beam. The effect of the shear modulus for
beams with small L/h is quite significant, while its effect reduces rapidly as L4 increases.
On the other hand for a given L/A, the influence of the shear modulus becomes more
significant when the ratio of the longitudinal-to-shear moduli (£/G) of the material

increases.
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In three-point bending tests the net mid-span deflection is one of the quantities that is
controlled by the overall behavior of the beam. This quantity can easily be recorded during
the test and is selected for the characterization of the test specimen. Recognizing that
FRPC often have large £/G values, the net mid-span deflection measured for specimens
with small and average L/h carries a significant amount of shear deformation. This
characteristic brings the possibility of simultaneous evaluation of both the longitudinal and
shear moduli of FRPC by changing the effect of shear modulus in the three-point bending
test. This can easily be accomplished by conducting tests on specimens with different L/A.
We call the test method the “Varying Span Method” (VSM), due to the fact that in
practice variable L/ can easily be produced by only changing the span of the test.

The distribution of the concentrated load over a finite width according to Eqn (4.31), as
was shown in Chapter 4, produces good results for the deflections and also the stresses on
the bottom surface of the beam and at any location farther than “A” from the concentrated
load. However, further investigation has shown that even a simple uniform distribution of
the concentrated load produces acceptable results, as long as the only concern is the
deflection values. In Fig. 5.1b the applied mid-span load and the reactions are distributed
uniformly over a length equal to 25 . This configuration is used to predict the net mid-span
deflection of the beam shown in Fig 5.1a. Note that we are looking for solutions which do
not consider the effects of E.. and v... Otherwise, for the exact elasticity solution, the
distribution of the concentrated load must be based on the contact behavior of the
contacting bodies (i.e. interface of the beam with rollers and loading nose). Therefore, the
suggested technique of distributing the load and reaction forces over wider length should

not be applied.

For simultaneous evaluation of the longitudinal and through-the-thickness shear moduli of
the material, one needs a solution that can adequately predict the response of a beam

under three-point bending and requires only the two elastic constants. The solution based
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on TTTI theory, as was presented in Chapter 4, has the required characteristic. The
solution based on this theory for a beam with two simple supports at its two ends and
under a concentrated load at mid-span was presented in Section 4.1. However, it cannot
be used directly, since in the VSM, the supports are not located at the two ends of the
beam. Therefore, the appropriate solution and the procedure for determining the

longitudinal and the shear moduli from the test results are presented in this chapter.

(a) pz (b)
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Figure 5.1 Representation of the mid-span concentrated load and the reactions with
uniformly distributed load.

As was discussed earlier, among the various available higher-order theories proposed for
the laminated structures, the first-order theory is the simplest one and provides satisfactory
results for the deflections. For the beam type problem, this theory is identical to
Timoshenko beam theory. The application of this theory to the VSM is also discussed in
this chapter. The solution based on Timoshenko beam theory is much simpler than the one

provided by TTTI method and will be widely used later.

Notice that we denote the £, and G, by £ and G in the formulations. This is due to the
fact that these two quantities are the only elastic constants in the formulation used for the
VSM. Therefore, dropping the subscripts will not produce any confusion, while it provides

some simplicity in the formulations. The subscripts, however, will be added wherever
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there is the possibility of confusion between these quantities and the other elastic

constants.

5.1  The application of the through-the-thickness inextensibility (TTTI) theory

Consider the beam shown in Fig. 5.1b with the total length of L’ and two imaginary
simple supports at its two ends. The existence of the two imaginary supports enables one
to use the TTTI solution for the harmonic load condition presented in section 4.1.
However, since the loads at the top and the bottom of the beam are in equilibrium, the
imaginary supports do not carry any forces. As a result, the solution provides the correct
answers for the beam shown in Fig. 5.1b except that it carries a rigid body movement
equal to the vertical displacement of the points located at the real supports (wp). This

problem can easily be resolved by deducting wp from the deflection values.

To obtain the coefficients of the Fourier series for the loads shown in Fig 5.1b, we

substitute the loads in Eqn (3.21). With some manipulation the following equation is

derived
1 2F
a, =(-1)7 ’mgsm(pb)[l-cos(puz)] n=1357,.. (5.1)
where
p=’2—7f n=1357,. (52)

The deflections along the beam for a single term of the Fourier series are defined by Eqn

(4.10a). Substituting Eqns (5.1) and (4.23) into Eqn (4.10a) and superposing for all the
series terms, one reaches the following equation

2F &

W= GohE &

n=]

~ p

’((: Zﬂhf]) sin(pl;)[l—cos(pL/Z}] sin(px) (5.3)
n
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Since the deflection values obtained from this equation carry the rigid body movement of
ws, one must deduct wp from the values obtained from this equation. For the mid-span
deflection, A, one can write

A=w,-w, (5.4)
where w4 and w; are the deflection values at points 4 and B obtained from Eqn (5.3),

respectively. Substituting w, and w; from Eqn (5.3) into Eqn (5.4) gives

- (5.5)
~ Gbh ‘
or after rearranging
F  Gbh
—=— 6
A~ S (5.6)
where f is defined by the following equation
2 < 1 — 2
=== i 1- L /2 5.7
f==3 . 2(1 ] tanhn) sin(pb)[1 - cos{ pL /2)| (5.7

The left hand side of Eqn (5.6) represents the flexural stiffness of the beam and can be
determined from the slope of the load-deflection curve recorded from the flexural test.
Since £ and G are the only unknowns in Eqn (5.6), one needs two independent equations
for determining the two unknowns. The data required for these equations can be obtained
by conducting two flexural tests on specimens with different L/4. Using Eqn (5.6), one can

correlate the flexural stiffness values obtained from the two tests as

K _bht,
KZ bZh‘.’-fl

where K is the flexural stiffness defined by the left hand side of Eqn (5.6), and the

subscripts / and 2 correspond to the two different tests with different L 4. The only

(5.8)

unknown in Eqn (5.8) is the £/G value. This quantity, which determines f; and />, can be
easily calculated by a trail and error procedure. For this, one may determine the right hand

side of Eqn (5.8) by assuming different values of £/G until the equality of the equation is
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satisfied. The final E/G is then used to determine the value of G by applying Eqn (5.6) to
either test data. The value of £ is determined by multiplying G by E/G.

A graphical solution of Eqn (5.8) is presented in Fig 5.2. Figure 5.2a presents the solution
for the cases that specimens with L/#= 7 and 30 are used. The solution for the cases that
specimens with L/h = 5 and 20 are used is presented in Fig. 5.2b. In each figure three
curves representing different values of b / 4 are provided. To use these curves, one must
first obtain the quantity of the abscissa from the test data of the two specimens with
specified L/h values. The E/G value can then be easily obtained from the corresponding
curve when the value of b / h is known. Determination of 5 /4 will be discussed in the

next chapter.

50 1

40 +

E/G

30
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K1b2ha/Kabihy4 K1b2h2/Kzb4hy

Figure 5.2 Graphic representation of Eqn (5.8). (a) For specimens with L/4 = 7 and 30. (b)
For specimens with L/4 = 5 and 20.

One may, obviously, question the reliability of the £ and G values that are established
based on only two tests. To increase the reliability of the results, one can perform more
tests on specimens with different L/h. As a result, one will obtain N(N-1)/2 different
values of £ and G, where N is the total number of tests conducted on beams with different
L/h. Special statistical procedures will then be needed to determine the values of the most

probable £ and G.
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Alternatively, a simpler approach can be adopted to establish reliable values. One can use
two sets of specimens. Each set will have several specimens with the same L/A, while the
two sets will have different L/h. The K/bh value for each L/h will, then, be determined by
averaging the values of the different specimens in the same set. As a result, the outcome

will be statistically more reliable.

5.2 The application of Timoshenko beam theory
This theory assumes that the deflection of a beam comprises of two parts: one due to
bending moment and the other due to shear forces. These quantities can be calculated

separately. Therefore, for the deflection at mid-span one can write

A = AFIaumI + A:htar (59)
For the beam shown in Fig. 5.1b Agrexuras and Agp.., are determined from the following
equations, respectively
F 3 72 13
Aﬂm,d-4SE](L -2Lb% +b°) (5.10)
3F _
Ay -W(L—I.Sb) (.11
Therefore
- (D =208 +5) L (L-155) (5.12)
48E]

104G

where / and 4 are the moment of inertia and the cross section area of the beam,
respectively. Ignoring the contribution of the shear in the deflection of the beam, Eqn
(5.10) should express the total deflection. As a result, the £ value in the equation will be
smaller than its real value when based on the total deflection. We call this quantity the
“apparent modulus of elasticity” and denote it by £’. Substituting A instead of Ageqra in
Eqn (5.10) and rearranging the equation, one can express £’ as

_FL-2L8 +b°
A a8l

E' (5.13)
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In a flexural test the value of F/A can be obtained from the slope of the recorded load-
deflection curve. It is important to note that £’ is not a constant value. In fact it carries
the shear effect, and as a result, is a function of L/h of the specimens. The value of £’,

however, approaches E as L/h becomes large.

(L) -2Lb* +b°)

Dividing both sides of Eqn (5.12) by and setting / =bh’ /12 and

48/
A = bh gives
A 4bh’ 1 L-156 1 (h)z
F*(C-2157+b°) E "7 257 5 “G\L ©.14)
-— 4+ =7
L
The left hand side of this equation is the reciprocal of £’. Defining J as
Jeln L-15b (5.15)
ST 2k LB '
L I
one reaches the following equation
1 1 1 hjz
E E G'\L (5.16)

This equation is the equation of a straight line in which J#/L)’ and 1/ E’ are the
independent and dependent variables, respectively. An schematic view of the equation is
illustrated in Fig. 5.3. As shown in the figure, 1/ E and 1/G are the intercept and the
slope of the line, respectively. The line is called the “characteristic line” of the material,
since the properties of the line are defined by the longitudinal and the through-the-
thickness shear moduli of the material. To establish the characteristic line of a material one
needs at least two points in the coordinate system of Fig. 5.3. For this one must perform
flexural tests (Fig. 5.1a) on two specimens having different L/h. Determining the slope of
the load-deflection curve of each test provides a F/4 value for Eqn (5.13), from which the
corresponding E’ is calculated. Since the £’ value obtained from each test corresponds to

a specific value of J(/L)’, the two tests on specimens with different L' generates two
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distinct points in the coordinate system of Fig. 5.3 from which the characteristic line can
be established. Knowing the characteristic line, one can easily determine the value of E
and G.

It is obvious that the accuracy and the reliability of the results obtained from the two tests
are questionable. One can increase accuracy by conducting several tests, since each test
generates a point in the coordinate system of the characteristic line. A linear regression
analysis can then be used to establish the best fitted line. Statistically, the £ and G values
obtained from the intercept and the slope of the regression line are more reliable when the

number of data points increases.

. P
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Figure 5.3 Schematic view of the characteristic line.

The value of b is also an important parameter influencing the value of J and £. It is more
convenient to write b as a iraction of the beam depth,

b=ah (5.17)
in which case, Eqns (5.13) and (5.15) take the following forms, respectively

,_Lf(g)’ L]
E—4Abt p -2a h+aJ (5.18)
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L
— - 15

J=12 h (5.19)

Lo o)
h 2a L+a I

The J coefficient is a correction factor that includes the load and reaction distribution

effects. For zero load distribution (o = 0) the coefficient becomes 1.2, however for a > 0,
it is always smaller than 1.2. For beams with large L/h, the effect of the load distribution

becomes insignificant, and as a result, the value of J approaches 1.2. The influence of L/A

and a on Jis illustrated in Fig. 5.4.
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Figure 5.4 Variation of J with respect to L/4 and .

When compared with the TTTI formulation, the application of the Timoshenko beam
theory provides a much simpler and more practical procedure for evaluating the
longitudinal and shear moduli from the VSM test data. As a result, the next two chapters
of the thesis will focus on this procedure when investigating the integrity of the VSM and

the reliability of the results obtained from the method.

53  Summary and conclusions
For simultaneous evaluation of the longitudinal and through-the-thickness shear moduli of

FRPC by the VSM one needs a relationship between the applied load and the mid-span



deflection that only depends on these two elastic moduli. For this purpose, the TTTI and
Timoshenko beam theories were used in this chapter. While the relationship obtained from
TTTI theory is believed to provide more accurate results, the application of the
Timoshenko beam theory was shown to be simpler. The procedure for determining the
said elastic moduli from the VSM results based on the two relationships were discussed

separately.

When using the TTTI solution, one must have the result of tests on specimens with two
different L/h. Determination of the elastic moduli requires one to perform a trial and error
procedure, or to use the graphical solution provided in Fig. 5.2. Special statistical
procedures will be needed if one wishes to determine the £ and G values from testing

specimens with more than two different L/h.

The solution based on the Timoshenko beam theory led to the introduction of a new
terminology called the “characteristic line” of the material. One may conduct tests with
different L/h to produce several data points in the coordinate system used for constructing
the characteristic line. The characteristic line is obtained by fitting the best line among the
data points. The intercept and the slope of the characteristic line provide the reciprocal of
the longitudinal and shear moduli of the material, respectively. This procedure is

summarized in the flowchart of Fig. S.5.

Three-point Values of Fia from -
bending test on |-+ the slope of load versus Eqn(5.18)L ] 1E',
specimens with | | net mid-span deflection Eqn(3.19) J(h1)
different LA curves ]
o from Figs 6.7
through 6.18 or Intercept and slope of the o E
a=0.7 characteristic line (Fig. 5.3) G

Figure 5.5 Flowchart for the VSM based on the Timoshenko beam theory.
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Chapter 6
THEORETICAL INVESTIGATIONS

Two possible methods for interpreting the VSM data were introduced in Chapter 5. The
methods were based on two-dimensional models along with some simplifying assumptions.
Therefore, to assess the efficiency and the reliability of the method, comprehensive
theoretical and experimental investigations are needed. While the experimental
investigations will be presented in the next chapter, the theoretical investigations are
presented herein. Between the two methods of data processing developed in Chapter 5,
the method based on the Timoshenko beam theory is simpler and more practical. As a
result, the attention will be focused on this method. The effect of several influential
parameters on the accuracy and efficiency of the VSM are investigated and discussed

below.

6.1  Efficiency

The efficiency of the VSM method depends on the variation of the shear effect on the
response of FRPC when specimens with various L/h are subjected to three-point bending.
This variation is reflected in the magnitude of 1/ E’. Referring to Fig. 5.3, the variation of
1/ E' determines the slope and the intercept value of the characteristic line from which the
shear and the longitudinal moduli are obtained. Since there is always the possibility of
obtaining different properties from one specimen to another, a wide variation of 1/ £’ in a
set of tests is needed to compensate for possible variability due to errors in tests and

material nonuniformity.

In order to investigate the variation of the shear effect in the response of the FRPC
specimens, we multiply the two sides of Eqn (5.16) by E to reach the following equation.

£—1+J£(£)2 (6.1)
E'~ G\L ‘
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As the equation shows, the change in the shear effect is proportional to the change in
(WL)’E/G from one specimen to another. The characteristic of the equation for a = 0.7 is
illustrated in Fig. 6.1. As the figure shows, for specimens made of a material with £/G=30,
one can generate 47% change in the shear effect by changing L/ from 8 to 30. To get the
same change for a material with £/G=10, L/h has to vary from 4.5 to 30. However, for a
material with £/G=2, a wide change in L/h from 4 to 30, produces only a 9% change in
the shear effect. It is, therefore, clear that for the proposed method to work effectively,
one should be able to test specimens with relatively small spans. This factor is more critical

when materials with small £/G are tested.

0 10 20 30
L/h

Figure 6.1 Variation of the shear effect in three-point bending.

6.2  Effect of support friction

When a specimen is subjected to three-point bending, the points over the supports move
outward. This is due to the fact that the bottom surface of the specimen is under tension.
Free movement occurs only if the interface friction between the specimen and supports is
null. Otherwise, as shown in Fig. 6.2, two horizontal forces at the points of contact with
the supports will act on the specimen. These forces counteract the applied load and tend

to reduce the mid-span deflection. As a result, the flexural stiffness obtained from the test
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will be overestimated. To assess the extent of the phenomenon, the elasticity solution of
the problem is derived. The solution will then be used to investigate the phenomenon for

specimens with different material properties and with different L/A.

The elasticity solution for a simply supported beam subjected to harmonic loads at the top
and bottom surfaces was presented in Section 3.1. The applied loads were distributed
normal to the surfaces, and as a result, the shear stresses on these two surfaces were set to
zero by applying Eqn (3.11). To obtain the solution for our present case, we assume that
the shear stress at the bottom of the beam is not zero. Therefore, the boundary conditions
for the top and bottom of the beam are expressed as follows
t.(h/2)=0
t.(-h/2)=1,(x)
c.(h/2)=¢q,(x)
o.(-h/2)=q,(x)

6.2)

(6.3)

where ¢,(x) and q(x) are the harmonic loads on the top and the bottom of the beam

respectively defined by Eqn (3.2), and
t,(x) = Q, cod px) (6.4)
where p is defined by Eqn (3.3).

| H=uxF/2 H=uxF/2
IFr2 i |Fr2

Figure 6.2 Free body diagram of beam under three-point bending when the supports are
not friction-free.

e
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To include the effect of the horizontal reactions on the solution provided in Section 3.2 for
a beam under three-point bending, one must transform the horizontal reactions to Fourier

series as

=30 coslpx) n=135,... (6.5)

where 1 defines the distribution of the reactions on the bottom surface of the beam. To

mmn x
L

and integrate over the entire length of the beam. Since for n=m the result of

find the coefficients of the series one must multiply both sides of the equation by cos

nmx mnx
CO

N TI T dx is zero, one obtains the following equation for the coefficients of
Fourier series.
L
2 nmx
0, = —,Itcos——a& (6.6)
L L
By changing the variable x to
LI
= ——4 v 67
x="+7 6.7)
one can write
L2
0,=(- NS F frsm (ppddy n=13,5, .. (6.8)
=L'n

where, 7 is measured from the mid-span. Since both t and sin( py) are odd functions, the

integrand in Eqn (6.8) is an even function. As a result, O, can be determined by integrating

only over half of the beam as
1 LP

Q,=(-1)7 — ,frcos(py)dy n=13,5, ... (6.9)

Since the horizontal reactions are the result of friction, they can be calculated by the

multiplication of the vertical reactions by a friction coefficient, u. Assuming that the
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horizontal reactions follow the same distribution as the vertical reactions (Eqn (3.17)), one

can define the shear stress due to the friction, T, as

TuF nf)

S P (6.10)

8¢ 2c
where ¥ is measured from the center of the support and the other variables have the same
meaning as defined before. The negative sign occurs because a positive £ produces a
negative shear stress. Substituting this equation into Eqn (6.9) and applying the following

variable change

L
y=g+¥ (6.11)
one reaches
-1 ¢ xx (nmx mrLj B
Q,=(-17 T _Ecos o ST oL d¥ n=13,5,.. (6.12)
After simplification, the above equation becomes
12 cos| pc L c 1
Q,=(-1)> p.{: s(p_) ; sin(—p—J Sor Lo (6.13)
L | 4(25_)' 2 T 2
T
and
Ll 477 (p[,) pc 1
=(-1" = £ __ 14
0, =(-1) S sin(5 for = =3 (6.14)

The computer program ELAS-3P introduced in Chapter 3 can also treat the above
problem. The program accepts the friction coefficient as an input. When u = 0, the
horizontal reaction forces are zero, and as a result, the program simulates the problem as
outlined in Chapter 3. For u > 0, however, the effect of horizontal reactions are

implemented duly.

To investigate the effect of the support friction, we consider two laminae with the

following material properties
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Material I
E_ =200 GPa E_=1667 GPa
G. =667 GPa u; =025 (6.15)
Material 11
E_ =200 GPa E_. =50 GPa
- (6.16)

G. =20 GPa M. =025
which represent materials with £./G,. = 30 and 10, respectively, while £./G,. for both of
them is 2.5. The diameters of the loading nose and the support rollers are assumed to be
the same and equal to 10 mm. It is assumed that the beams are 2 mm thick and have 4 mm
overhangs at both ends. The results of the calculations for 7' = 0.1 kN/mm are presented in
Fig. 6.3. In this figure A and A, are the net mid-span deflections with and without the
effect of friction, respectively. As the figure shows, the effect of friction becomes more
significant as L/h becomes smaller. The effect of friction is also more significant for
material II which has a smaller E./G,. value. These results can also be demonstrated by
the application of the Timoshenko beam theory to the beam shown in Fig. 6.2. For this,
one must add the mid-span deflection due to flexure, shear and the horizontal load. The

total deflection can be expressed by

FlirLY 3 EL 3 (L]
“zz[z(z) *10%Gh 8 (;j | ©.17)

where the last term in the brackets is the contribution of the horizontal reactions. The

effect of friction as defined in Fig. 6.3 becomes

A 1.5u
1—AO = L+12E 5 (6.18)
R ROl
h G L

Although Eqn (6.18) is approximate, it shows a similar trend to that shown in Fig. 6.3.

The above investigation shows that the support friction can have significant effect on the
result of three-point bending. Moreover, the effect of friction changes with the changes in

L/h. As a result, the friction effect will influence both the slope and the intercept of the
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characteristic line, thereby causing inaccuracy in the evaluated £ and G values. Therefore,
every effort should be made to minimize the amount of friction at the supports, with the

clause that more precaution is needed when materials with small £/G are tested.

b
0.16 T ®

- _p'=0'l

. 0.12 "o- w03

? 208 | ...... u=0.5
0.04 + \

. ~ l~---\'.':;'_". ----------
; 20 40 60

L/h

Figure 6.3 Effect of support friction on the net mid-span deflection. (a) For material type
I. (b) For material type II.

6.3  Specimen alignment

As was discussed earlier, FRPC have three distinct values of £ and G corresponding to the
fiber direction and the two orthogonal axes to it. One can obtain these quantities by
changing the alignment of the material axes (Fig. 1.1) with respect to the loading axes.
Figure 6.4 shows two possible alignments for the specimens. In alignment type A, the
width of the specimen, b, in comparison to its other dimensions is small, and therefore, a
state of plane stress governs. Furthermore, producing L/4 equal to 4 or even less is easily
achievable. Consequently, not only the measurement of the moduli of materials with
relatively small £/G is possible, but also the accuracy and reliability of the results in
general is high. The shortfall of this type of alignment is the difficulty in providing
adequate lateral support to maintain the specimen in a vertical position and to prevent
lateral buckling. With this alignment, one can determine either £, and G,; or E., and G,;

by changing the direction of the material principal axes with respect to the loading axes.
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As it can be seen from Fig. 6.4, alignment type B is very simple and it enables one to
obtain simultaneously either E,, and G,; or E;; and G,;. Obviously, producing small L/A in
this case is not as easy as that in the alignment type A, unless relatively thick specimens
are used. This problem may make the method less attractive in situations where £/G ratio

is small. Therefore, one may not find this alignment suitable for the evaluation of £, and

Figure 6.4 Two possible alignments for the VSM.

It should be mentioned that the specimens in alignment type B behave somewhere between
the state of plane stress and plane strain. Having a constant width, specimens with large
L/h are almost in a state of plane stress, while as L/h decreases, they approach the state of

plane strain. From the theory of elasticity, it is known that the flexural stiffness of a plate
under plane strain is [1 / (l—v,yz)] times larger than when the same plate is under plane
stress state. Although the effect of this phenomenon will be considered in the
establishment of a values in Section 6.5, it suffices to mention that the phenomenon can

be problematic when materials with small £/G and v,y are tested. For example, consider a

material with £/G = 2.6 and v,, = 0.3. For a specimen with L/h = 4, the shear effect
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reduces the flexural stiffness by as much as 15% while, behaving under the state of plane
strain increases the stiffness by 11%. This leaves only a 4% difference for the
determination of the slope of the characteristic line, which obviously will not provide
sufficient accuracy and reliability. This problem, however, can be significantly reduced by

selecting specimens with smaller width.

It is obvious that as with any new test method, the VSM must be subjected to a significant
amount of theoretical and experimental investigations before any conclusion on the
integrity of the method based on each possible alignment can be made. Thus, a
comprehensive long term research program must be designed to investigate all the possible
cases. Considering the present work as the starting point of this program, the attention
will be focused only on one case. For this, alignment type B when the axis / of the

material is aligned in the x direction will be considered.

6.4  Influence of the interface contact and the non-linear behavior of the
specimens

The response of the test specimens subjected to three-point bending is a non-linear
behavior. This non-linearity is due to the increase in the interface contact areas; that is the
contact area between the specimen and the loading nose, and those between the specimen
and the supporting rollers. This non-linearity becomes quite significant in specimens with
small L/h. The problem was implicitly discussed in Section 3.3. However, to further
illustrate the influence of this non-linear behavior on the net mid-span deflection, a critical
case is investigated in here. For this, the exact elasticity solution presented in Section 3.2
is used. The properties of the beams are taken as follows

E_ =200 GPa E.=4 GPa

G.=4 GPa v, =025

xz

(6.19)

which represent a highly anisotropic material. The geometry of the test is assumed to be

L'=12mm, L=8mm, h =2mm, r,=5mm and r. =3 mm (see Fig. 3.1). The beam is



100

analyzed for a load F varying from zero to a maximum of = 400 N per millimeter width.
The maximum load was taken from a test on a graphite/epoxy specimen with

approximately the same geometry.

The result of the analysis is shown in Fig. 6.5a. The three different lines in the figure
represent the total displacement, the semi-net displacement and the net displacement at
mid-span. Referring to Fig. 3.1 and Eqn (3.30), these displacements are denoted by Ar,
Asv, An. As Fig. 6.5a shows, the effect of non-linear behavior of the beam on the net mid-
span deflection is quite negligible. The initial slope of this curve is only 0.5% different
from the slope of the best fit line through the first one quarter of the curve. The difference
remains less than 2% when the slope of the best fit line is obtained by considering the full
curve. On the other hand, the non-linearity of the total and semi-net displacements are
quite significant. The slopes of these curves vary along their length and are different from
the slope of net displacement. The initial slope of the semi-net and the total curves are
63% and 38% of the net curve, respectively. These values increase to 79% and 59% at the

end of the curves, respectively.

Figure 6.5b also shows the result of a flexural test on a specimen of graphite/epoxy with
L/h = 5.5. The solid line represents the measurement of the net mid-span deflection. The
deviation of this line from the initial linear portion is due to the non-linear response of the
material, and it does not reflect the geometric non-linearity due to the contact
phenomenon. Owing to such material non-linearity, the slope of the load-deflection curve
to be used in the evaluation of the elastic properties should be based on the slope of the
linear portion at the beginning of the curve. Alternatively, one can use the initial tangent
method to establish the slope. In either case, as the result of the numerical analysis in Fig,.
3.5a shows, the effect of geometric non-linearity on the measured net mid-span load-

deflection curve is quite insignificant.
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Figure 6.5 Load-displacement curves. (a) From the elasticity analysis. (b) From flexural
test on a graphite/epoxy specimen with L/h = 5.5.

The effect of the diameters of the loading nose and supporting rollers were already
investigated in Section 3.3. It was shown that the variation of the diameters had
insignificant effect on the net mid-span deflection. In general, it is more desirable to use
loading nose and supporting rollers with small diameters to make the test as close as
possible to the assumptions of the theory. Furthermore, rollers with small diameters
provide more freedom to produce small spans. However, the rollers and loading nose
diameters must be kept large enough to avoid premature failure of the specimen due to

stress concentration in the vicinity of the applied load and reactions.

6.5  The value of “a”

In Chapter 5 two different solutions were developed to determine the longitudinal and
through-the-thickness shear moduli of materials from the VSM tests results. In both
solutions, the applied load and the reactions were assumed to be distributed over a small
length denoted by 2b . This length, however, as defined by Eqn (5.17), was related to the
depth of the beam by a coefficient called a. The magnitude of o must be known before
either solutions can be used for the VSM tests results. The value of o depends on the

following factors.
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1- the alignment of the specimen with respect to the applied load ( Alignment type A or B
in Fig. 6.4),

2- the solution for which it is being used,

3- the elastic properties of the material, and

4- the ratio of width to depth of the specimens (b/A).

Considering the first two factors, it is obvious that there can be 4 different possibilities.
The effect of the two last factors then must be investigated for each case separately. In the
present work, attention will be focused on alignment type B. This will be in conjunction
with the Timoshenko beam theory discussed in Section 5.2, which provides an easier and
more straight forward solution compared to the TTTI theory. The evaluation of o and the
other investigations will only be performed for 0° specimens (where the axis 1 of the

material is aligned in the x direction).

6.5.1 Evaluation of a

As was shown in Section 5.2, evaluation of the longitudinal and the shear moduli of FRPC
requires one to determine the characteristic line in the coordinate system of Fig. 5.3. For
this one must draw a straight line through the data points obtained from a series of three-
point bending tests performed on specimens with different L/h. The evaluated moduli from

this procedure, however, depends on the value of a..

To establish the value of o for a particular set of material properties and b/h, the data
points are produced from theoretical analysis using the same properties and /% in the
analysis. The longitudinal and through-the-thickness shear moduli determined from the
characteristic line should match the moduli used for the generation of the data points. If
not, the value of a is changed in such a way until the two pairs of moduli are equal or very
close to each other. The o value obtained in this way is called the “best a” for the

specified case.
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Figure 6.6 Finite element three dimensional model.

For the generation of the data points, one can follow the elasticity solution given in
Chapter 3.2. However, the solution is only valid when a state of plane stress exists. For
other situations, one should obtain the required data from a three dimensional finite
element analysis. Here, the required data is obtained by conducting a set of finite element
analyses. Three dimensional solid elements with 20 nodes (parabolic elements) are used to
model beams with L/h = 5, 7, 10, 20 and 30 and &/h= 1, 3 and 5. Figure 6.6 shows the
finite element model used for L/h =7 and &/h = 5. Because of symmetry, only half of the
beam is modeled and, therefore, the displacements of the nodes in the x direction at mid-
span are constrained. Beam elements with very large flexural stiffnesses are also used to
simulate the rigid loading nose. The vertical displacements of points A and B, as shown in
Fig. 6.6, are the major focus of the analyses. The net mid-span deflection is calculated
from the vertical displacement of these points, and the flexural stiffness, F7A, is determined

subsequently.

The best o value for each case is calculated based on the results of three different values

of L/h. For this, two ranges are considered, beams with L/h = 5, 7 and 20, representing



104

tests on short specimens, and beams with L/ = 7, 10 and 30, simulating tests on longer
specimens. The procedure was performed for 120 different sets of assumed properties, as
tabulated in Appendix F. The different sets of the properties were taken in such a way that
the effect of the following normalized quantities on a could be investigated. The values of

the normalized quantities used in the investigation are as follows

E, _
= 10, 20, 30, 40, 50

GlS
E
2212734
Gl]
(6.20)
GI3 ___1 2
G ]

23

v, =025, 03, 035
It was also assumed that Ex = E33, Gi2 = Giz and w3 = w3 = vi2. Considering 3 different
cases for b/h and 5 different cases for A/L, a total of 1800 analyses were performed. For
this, the general purpose finite element program NISA was used. The a values obtained
from the finite element analyses and the procedure explained above are tabulated in
Appendix G. These values are also presented in graphical form in Figs 6.7 through 6.18.

As the plots show, a varies from 0.5 to 0.9 with an average value of 0.7.
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Figure 6.7 Variation of a for long specimens (7 < L / h < 30) with &/4=1 and G,3/G»=1.
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Figure 6.8 Vanation of a for short specimens (5 < L/ h < 20) with /=1 and G,3/G=1.
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Figure 6.9 Variation of a for long specimens (7 < L/ h < 30) with &/h=3 and G,3/G»=1.
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Figure 6.10 Variation of a for short specimens (5 < L/ h < 20) with 5/4=3 and G,3/Gx=1.
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Figure 6.11 Variation of o for long specimens (7 < L/ h < 30) with b/4=5 and G,3/Gn=1.
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Figure 6.12 Variation of a for short specimens (5 < L/ h < 20) with b-h=5 and G,3/Gx=1.
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Figure 6.13 Variation of a for long specimens (7 < L/ h < 30) with b/4=1 and G,:/G»5=2.
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Figure 6.14 Variation of « for short specimens (5 < L/ h < 20) with &/h=1 and G3/G3=2.



0.9

0.8

0.7

06

0.5

0.4

0.9

0.8

0.7

0.6

0.5

0.4

G13/G23=2
R S L Lt 1 v e
-------- /
RIS S N ExGy=2 ... -]
R e e Ex/Gi=3.
=SSR ¥ viutedeteduiute ittt ey
\.‘_ s ikt E1/G3=4
N v=0.25
-==v=0.3
------ v=0.35
|
10 20 30 40 50
E1/G1a

G13/G23=2
---------':_'-_L‘_'-_':.“_':-‘-‘—“—
IR BRSSP ety o N
ST, oot
- Ex/Gy72
"""""" TR TEDS (R T T IS Aahgs Sl ettt
________ R T PP
R P i
'\@tu_ ’—.-.i r~ s
T -de RIS RSPt S P
— E1/Gy2=4
v=025
--=-v=03
------ v=035
|
E11/G13

109

Figure 6.16 Variation of a for short specimens (5 < L/ h < 20) with 5/4=3 and G,3/G5=2.
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Figure 6.17 Variation of o for long specimens (7 < L / h < 30) with b/4=5 and G,3/G2=2.
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Figure 6.18 Variation of a for short specimens (5 < L /A < 20) with 54=S and G,:/G»=2.
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6.5.2 The sensitivity of the method to the variation of o

The prerequisite for the use of Figs 6.7 through 6.18 is the knowledge of the material
elastic properties. However, since these quantities cannot be accurately known before
performing different types of tests, one must usually depend on previously available data
or one’s own judgment to attain some values for the normalized quantities needed in these
Figures. As a result, the o value will be approximate. The question which arises is how

sensitive the results of the VSM are to the variation in o (from its best value).

To answer this question, first the feasibility of taking the average value of o = 0.7 for all
cases is investigated. For this, the values of £ and G for the various cases used for the
evaluation of the best « in Section 6.5.1 are calculated correspondingly. The difference
between the correct £ and G and the values obtained based on o = 0.7 indicates the
sensitivity of the method to the variation of a. The amount of errors in calculation of £
and G for all cases are determined and are tabulated in Appendix G. These values show
that the percentage error in no case exceeds 2% and 12%, respectively, for £ and G, while
the corresponding average errors are 0.58% and 4.4%. The maximum error recorded for
long specimens is lower than what was recorded for small specimens. Also cases with
larger b/h show less error for the value of G. For example, the maximum errors obtained
for long specimens with b/4 = 5 are only 1% for E and 5% for G. Recognizing the other
uncertainties involved with the design of engineering structures and the variability involved
with the manufacturing of the FRPC structural components, the error induced by taking
the average value of o = 0.7 can be considered negligible. Moreover, the uncertainty of
the results obtained from other established methods used for evaluating the longitudinal
and shear moduli of composites are usually higher than 0.58% and 4.4%, respectively.
Therefore, one can conclude that using the average value of a = 0.7 is sufficient to obtain

reasonably accurate £ and G values for most practical purposes.
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The above investigation clearly indicates that the VSM is not sensitive to small variations
in o. While the average value of o = 0.7 provides sufficient accuracy, more accurate a. can
be easily obtained from Figs. 6.7 through 6.18. For this, one needs to know the quantities
of E33/Gs, Ev/Gis, G13/Gx and v of the material. However, a close examination reveals
that G13/G2; has insignificant effect on the value of a. The variation of the other quantities
also do not change the value of a significantly. As a result, if no data exist for these
quantities, approximate values obtained by the rule-of-mixture will provide sufficient
accuracy. A more accurate value for £,,/G,3, however, can be obtained by using the £},

and G; values determined based on the approximate value of o from the VSM.

The above investigations were conducted based on assuming a wide range of elastic
properties to encompass all commonly used FRPC. Nevertheless, further validation was
carried out by applying the above procedure to 8 commercially available FRPC. The
elastic properties of these materials were obtained from Tsai (1988), and are listed in

Table 6.1. The following assumptions were also made.

E, = E33
12 =Gy
2 6.21
st = '3’ze ( )

Ui, = U3 = Uy
The best values of o and the errors associated with the evaluation of the £ and G for long
specimens with /4 = 5 are tabulated in Table 6.2. The errors tabulated in the columns 3
and 4 are those resulting when the best values of oo were used in the calculations; those
resulting from a = 0.7 are also listed in the columns 5 and 6. As can be seen from Table
6.2, the changes in o has insignificant influence on the accuracy of E. Nevertheless, the
corresponding error in no case exceeds 0.5%. The error associated with the evaluation of
the G values based on o = 0.7, except for one case, is always less than 2%. Figure 6.19

shows the characteristic lines of these materials based on o = 0.7.



Table 6.1 The properties of the selected materials from Tsai (1988).

Materials  Fibers Resin Ey Exn Gis Vi2
ID
1 T-300 N5208 181 10.3 7.17 0.28
2 B(4) N5505 204 18.5 5.59 0.23
3 AS H3501 138 8.96 7.1 03
4 E-glass Epoxy 386 827 4.14 0.26
5 Kev 49 PEEK 76 55 23 0.34
6 AS4  Epoxy 134 8.9 5.1 0.28
7 IMé6 PEEK 203 11.2 8.4 0.32
8 T300  Epoxy 148 9.65 4.55 0.3

Table 6.2 The variation of a and the associated percentage of

error.
Materials Best %Error based %Error based on
ID a on the best o =0.7
E G E G

1 0719 022 -0.06 0.20 0.63

2 0569 022 0.05 0.48 -4.28

3 0.742 0.26 0.08 0.22 1.77

4 0681 044 -0.04 0.45 -1.05

5 0653 039 0.04 0.48 -1.56

6 0.681 0.25 0.03 0.28 -0.65

7 0.747 028 -0.04 0.22 1.72

8 0663 030 -0.09 0.37 -1.37

113
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Figure 6.19 Characteristic lines of the materials identified in Table 6.1.

6.6  Strain rate effect

The standard procedure for a FRPC flexural test involves increasing the mid-span
deflection at a constant rate while recording the corresponding load. The same procedure
is adopted for the VSM. Since the mid-span deflection and the specimen strains are
correlated, one can adjust the desired strain rate by changing the rate of mid-span
deflection. To do this, the relations between the mid-span deflection rate and the strains

rate must be known.

In determining the net mid-span deflection of a beam under three-point bending in Section
5.2, the load and reactions were assumed to be distributed over a length equal to 2a.
This was to eliminate differences between the Timoshenko beam theory and the exact
elasticity solution. The assumption was important, since any inaccuracy in prediction of
the mid-span deflection would directly affect the values of elastic moduli evaluated from
the VSM tests results. However, for the strain rate, the situation is not so sensitive. As a

result, and for the sake of simplicity, the load and the reactions are assumed to be
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concentrated (i.e. o = 0). Under this assumption, Eqns (5.10) and (5.11) are simplified as

follows
FL’
= — 6.
A e 4Ebh’ (6.22)
FL
A,n =03 Gbh (6.23)
respectively. The total deflection will then be determined by
FL FL
A= st 03 (6.24)
Taking the ratio of Eqns (6.22) and (6.23) gives
A SGL
Flexure - (625)

2
AShwr 6Eh
On the other hand, the maximum longitudinal strain and the average shear strain are

determined from the following equations
3FL

= 2

ermx 2Ebh2 (6 6)
F

Yor = 2Gbh (627)

Substituting Eqns (6.26) and (6.27) into Eqns (6.22) and (6.23), and dividing the two
equations gives
Apiare 1085, L
Asiear 36 h

The left hand sides of Eqns (6.28) and (6.25) are the same. As a result, one can equate the

(6.28)

right hand sides of the two equations to obtain

3 G L

Zmx _ L L 29

Yoo CE"h (629)
or

b G L

—max _ e — 6.30

Vo CEh (6.30)

where € . and 7, denote the longitudinal and shear strain rates of the specimen,
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respectively, in three-point bending. As Eqn (6.30) shows, the ratio of €__ to ¥, is a
function of L/A of the specimen. Consequently, it is not possible to maintain a constant
strain rate for both longitudinal and shear strains in the VSM from one specimen to
another. For example by maintaining one of € , and v, constant for the specimens with
L/h varying from 4 to 30, the other strain rate changes by an order of 7.5. This
phenomenon influences the accuracy of the VSM when strain rate sensitive materials are
tested. Whether the influence is significant when characterizing FRPC, depends on the
degree of strain rate sensitivity of a given material. The works of Daniel et al. (1982) and
Adams and Adams (1990) provide good information for the strain sensitivity of some
FRPC. Considering the range of strain rate change in the VSM and the strain sensitivity of
FRPC, one can conclude that for most FRPC the variation of strain rate in the VSM does
not have significant effect on the evaluated properties by this method. However a definite
conclusion can be reached only when the results of VSM obtained under different strain
rate arrangements are compared to each other. It is also important to compare the results
obtained by the VSM with those obtained from other standard test methods. These
comparisons will be carried out in Chapter 7. However, the theoretical background of the

problem is presented here.

To obtain relationships between the strains and the mid-span deflection, Eqns (6.26) and
(6.27) are substituted into Eqn (6.24). Taking the first derivative of the resulting equation

with respect to time, one obtains

-

.1 L
A=—¢__—+ 06y 6.31
6smu h + YawL ( )
where A is the rate of the mid-span deflection. By combining this equation with Eqn
(6.30), one can express the mid-span deflection rate of the beam in the following forms

, [ _Enh ILJ

b=t L{025T+2S (6.32)
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. [ 2
A=y,,L L0.6 + O-S%G;‘) } (6.33)

To maintain a constant longitudinal strain rate from one specimen to another, the rate of
mid-span deflection must be determined from Eqn (6.32). Equation (6.33) is for
maintaining a constant shear strain rate. Which equation to be used in practice depends on
the sensitivity of £ and G to strain rate, and to other parameters which will be discussed
below. It is obvious that when one of the £ and G values is considerably more sensitive to
strain rate than the other, the corresponding strain rate must be kept constant. For other
cases, one may find it useful to implement the following consideration to improve the

consistency of the results.

The shear does not have significant influence on the result of the tests when specimens
with L/h>20 are tested. However, the results are quite sensitive to the longitudinal
properties. Therefore, in testing specimens with large L/A, maintaining a constant
longitudinal strain rate has more importance than a constant shear strain rate. In specimens
with L/h<10, when the longitudinal strain rate is kept constant, the shear strain rate varies
by 2.5 when L/h changes from 4 to 10. Although this variation is quite insignificant, one
may find it more useful to calculate the rate of the mid-span deflection by taking the
average of the values obtained from Eqns (6.32) and (6.33). Nevertheless, for most
common composite materials, the use of Eqn (6.32) for determining the mid-span

deflection rate seems to be quite adequate.

A numerical investigation will better show the effect of strain rate sensitivity and the
implementation of the above guidelines on the result of the VSM. For this, the sensitivity
of £ and G to strain rate are assumed to obey the following equations

E=E, (1 +005 log-.e—J (6.34)

st
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G= G,,(l +005 log.—y-] (6.35)

where €, and y,, are the standard rate for the evaluation of £ and G, respectively. These
values usually are taken equal to 0.01 sec™’. £, and G,, are also the value of £ and G at the
standard strain rate. Considering the variation of £ and G according to Eqns (6.34) and
(6.35), Eqn (5.16) is used to produce data points in the coordinate system of Fig. 5.3. The
characteristic line is drawn and the estimates of £ and G are calculated accordingly. By
comparison of these values with £, and G.; used for the generation of the data points, the

percentage error associated with the VSM is evaluated.

To carry out the investigation, three different cases of strain rate arrangements are
considered. In case I, the mid-span deflection rate is assumed to be calculated from Eqn
(6.32). As a result the shear strain rate is variable from specimen to specimen, while the
longitudinal strain rate remains constant. The variation of G is, therefore, determined from
Eqns (6.35). In case II, Eqn (6.33) is used for mid-span deflection and the variation of £ is
determined from Eqn (6.34). In case III, Eqn (6.32) is used for L/A > 20 and the average
value of Eqns (6.32) and (6.33) is used for other L/h. The variation of E and G are
accordingly determined from Eqns (6.34) and (6.35). The results of the investigation on
five types of materials are presented in Table 6.3 and 6.4 for long and short specimens,
respectively. The investigations for the long specimens were based on producing data
points for L/h =7, 8, 10, 14 and 30, while L/A = 4, 5, 7, 10 and 20 were used for short

specimens.

It is important to notice that the sensitivity to strain rate provided by Eqns (6.34) and
(6.35) is considerably higher than the sensitivity of most FRPC. As a result, the errors
tabulated in Tables 6.3 and 6.4 may be exaggerated for many cases. Nevertheless, in
general, the results of the investigation confirm the earlier discussion on the application of

Eqns (6.32) and (6.33) for the determination of the mid-span deflection rate. The results
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also show that when the mid-span deflection rate is determined properly, the effect of

material strain rate sensitivity can be significantly reduced.

Table 6.3 Percent of error associated with different strain rate arrangements
and the assumed sensitivity to strain rate for long specimens.

EG Percent of error
Case | Case II Case 111
E G E G E G
10 0.08 1.36 44 12.16 0.89 1.24
20 0.16 0.15 2.89 6.65 0.40 0.55
30 0.24 1.03 2.01 461 0.11 0.30
40 0.31 1.65 1.38 3.54 0.09 0.12
50 0.39 2.14 0.90 2.88 0.25 0.52

Table 6.4 Percent of error associated with different strain rate arrangements
and the assumed sensitivity to strain rate for short specimens.

EG Percent of error
Case | Case I1 Case 111
E G E G E G
10 0.22 0.16 334 5.16 0.72 0.79
20 0.43 1.35 1.83 2.72 0.04 0.1
30 0.63 2.23 0.95 1.86 0.37 0.85
40 0.82 2.85 0.33 1.42 0.68 1.42
50 1.02 3.34 0.16 1.15 0.95 1.88

It is also important to note that both Eqns (6.32) and (6.33) are dependent on the value of
E/G, a ratio that is not precisely known before testing. Therefore, one must use an
approximate value for £/G. A close investigation of Eqns (6.32) and (6.33) shows that the
rates calculated by these two equations are not very sensitive to the change in £/G. For
example, for L/h>20 the variation of £/G from 10 to 50 alters the rate calculated by Eqn
(6.32) (the equation which is recommended for use for beams with large L/h) by less than
11%. On the other hand, for L/A<10, when E/G changes from 10 to 50, the rates obtained
by Eqns (6.32) and (6.33) vary less than 2.7 and 3.5 times, respectively. Recognizing these
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facts, assuming an average value of £/G = 30 can be considered quite accurate for most
practical purposes. However, one can easily estimate a more reasonable value for EG,

based on the rule-of-mixture, or from the literature.

6.7  Effect of lateral Friction

For the evaluation of o in Section 6.5.1, the lateral (y direction) movements of the finite
element models at the supports and loading nose were assumed to be free. However, in
practice, due to the existence of the friction forces such an assumption may not be fully
valid. The magnitude of this friction, even though it may be very small, is unknown. To
examine the influence of the friction quantitatively, the finite element models used in
section 6.5.1 (Fig. 6.6) are used to examine two extreme cases. In one case, the nodes on
the contact lines are restrained against lateral displacement. This case simulates the
extreme situation where the friction between the contacting surfaces in the y direction is
very large. In the other case, the nodes are allowed to move freely laterally, thus
simulating a friction free contact. The investigation is conducted for the material
properties used in section 6.5.3 (Table 6.1). To determine the effect of friction for the
worst condition, beams with L/ = 4 and b/h = 5 are examined. The ratio of the net mid-
span deflection obtained from the two models are determined and tabulated in Table 6.5.
As the results show, the difference between the results of the two cases are quite
insignificant, leading to the conclusion that friction between the contacting surfaces in the

lateral direction is not an influential parameter.

Table 6.5 The ratio of the net mid-span deflection obtained from models with and
without lateral friction at the supports.
Material ID 1 2 3 4 5 6 7 8

Ratio 1.0043 1.0019 1.0046 1.0013 1.0037 1.0036 1.0054 1.0036
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6.8  Summary and conclusions

The effect of several influential factors on the efficiency and the accuracy of the VSM was
theoretically investigated and discussed. Between the two possible alignments for testing
the specimens (Fig. 6.4), the alignment type B was the focus of the investigations. The
effect of lateral friction at the supports was shown to be insignificant, while maintaining
friction-free hinge supports was shown to be very important for obtaining accurate results.
The non-linear behavior due to the contact of the specimen with the loading nose and the
supporting rollers was shown to have insignificant effect on the net mid-span deflection.
The values of « for materials with different properties were established. It was found that
this quantity varied between 0.5 and 0.9, while the use of the average value of a = 0.7 was
shown to be sufficient for practical purposes. The influence of the vanation of the
longitudinal and shear strain rates from one specimen to another was discussed.
Considering the relative insensitivity of most FRPC to strain rate, it was postulated that
the range of changes in the strain rate in the VSM would not have significant effect on the
results of the tests. Nevertheless, special guidelines and equations were provided to obtain

the best results.

In general, the theoretical investigation validates the integrity of the VSM as a promising
method for the simuitaneous evaluation of the longitudinal and the through-the-thickness
moduli of FRPC. The errors produced due to the nature of the method and those
associated with the simplifying assumptions are all less than other uncertainties present in
the design of FRPC engineering structures. In addition, the accuracy of the results are

better than or at least comparable to the resuits of other available test methods.
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Chapter 7
EXPERIMENTAL INVESTIGATIONS

This chapter discusses the results of the experimental investigations designed to assess the

integrity of the VSM. The materials considered in these investigations were unidirectional

graphite/epoxy, unidirectional Kevlar/epoxy and unidirectional E-glass/epoxy. The

investigations were to evaluate the following issues:

a) the applicability of the VSM for the selected materials,

b) comparison of the longitudinal and the shear moduli values determined by the VSM
with other common test methods in practice,

c) the reliability of the VSM test results, and

d) the effect of the variable strain rate inherent in the VSM on the result of the test.

The applicability of the VSM method was assessed by the scatter of the data points
obtained from the test results when they were plotted in1/ £’ versus J(h/ L)*coordinates
system. A linear distribution of the data points was interpreted to mean that the VSM was

a viable test method to the selected material.

The reference test method for the comparison of the longitudinal modulus evaluated by the
VSM for all cases was the ASTM D3039-93 tensile test. However, as was mentioned in
Chapter 2, the evaluation of the through-the-thickness shear modulus (G;3) of the
materials is only possible by the Iosipescu shear test (ASTM D5379-93) which requires a
20 mm thickness specimen; a configuration usually not easy to prepare. As a result,
depending on the situation, one or two of the common test methods for the in-plane shear
properties, such as the +45° (ASTM D3518-94), the Iosipescu (ASTM D5379-93) and the
10° off-axis shear tests, were used to assess the shear modulus obtained by the VSM. It
should be mentioned that theoretically, if the distribution of fibers through the thickness

and through the width of the laminate follows the same pattern, G,3 and G,; should be
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equal. In practice, however, the situation may not be ideal. For instance, in hand lay-up
laminates, the layer interfaces are more susceptible to defects and therefore a smaller value

for G\3 can be expected.

The reliability of the VSM was estimated by determining the 95% confidence interval for
the test results. This was accomplished by a linear regression analysis for the material

characteristic line.

To assess the effect of variable strain rate from one specimen to another, different sets of
specimens were prepared from each material. The test speed for each set was determined
in such a manner that either the longitudinal or the shear strain rate remained constant for
all the specimens in the given set. Equations (6.32) and (6.33) were used for this purpose.
Since a constant net mid-span deflection rate could not be maintained through the loading
device, the values from Eqn (6.32) and (6.33) were used directly to establish the speed of

the actuator of the loading device.

A special apparatus was designed and fabricated for the VSM. It was to allow the
measurement of the net mid-span deflection and also to allow testing of specimens with
small spans. The schematic and the description of the apparatus are documented in

Appendix H. The loading device was an universal MTS testing machine.

7.1 Investigation on graphite/epoxy

Experimental investigation on graphite/epoxy was carried out by conducting the VSM, the
ASTM D3039-93 tensile test, the ASTM D3518-94 +45 shear test and the ASTM D5379-
93 Iosipescu shear tests. The specimens were cut from 300x300 mm hand lay-up panels
made of 24 layers of Fiberite graphite/epoxy prepreg. The panels were vacuum bagged
and were cured in an autoclave using the curing cycle specified by the supplier of the

prepregs. The specimens for the VSM, the tensile and the losipescu shear tests were cut
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from unidirectional panels, while a symmetric cross-ply laminate was used to provide the
specimens for the +45° shear tests. The panels were cut into strips of approximately equal
width. These strips were then used to prepare specimens with different lengths. To
eliminate the effect of resin reach layers on two sides of the specimens and also to ensure
smooth surfaces and uniform thickness, the specimens were sanded with No. 400 silicon
carbide powder. The final thickness of the specimens was between 2.51 and 2.72 mm for
the VSM tests, between 2.33 and 2.51 mm for the tensile tests, between 2.41 and 2.51 mm
for the 45 shear tests and between 2.55 and 2.58 mm for the losipescu shear tests. The
width of the specimens were about 12.5, 13 and 25 mm for the VSM, tensile and for +45°
shear tests, respectively. The dimensions of specimens for the losipescu shear test were
based on the dimensions specified by the ASTM D5379-93. The details for the specimens

are presented in Appendix I.

Four sets of specimens were prepared for the VSM. The speed of the test for the first two
sets were determined by assuming a constant longitudinal strain rate of é___ =001 sec™
and assuming E/G=30 for use in Eqn (6.32). For the third set, the value of £/G in Eqn
(6.32) was assumed to be equal to 10, while the longitudinal strain rate was assumed to be
the same as that used for the first two sets. The fourth set of specimens were subjected to
a constant shear strain rate. Equation (6.33) with the assumption of y_, =0.01 sec™ and

E/G=30 was used for this set. Table 7.1 summaries the different strain rate cases.

Table 7.1 Specifications of strain rate cases for different sets
of graphite/epoxy specimens.

Designation  Equation EG € Y o
GR-1 6.32 30 0.01 var.
GR-2 6.32 30 0.01 var.
GR-3 6.32 10 0.01 var.

GR-4 6.33 30 var. 0.01
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Each set of specimens were tested with S different spans, for L/ from 5.52 to 30.05. For
each span, at least three specimens were tested. Each specimen was tested twice. In the
first trial, depending on the linearity limit, the specimen was loaded to about 50% to 80%
of the failure load. The test was stopped before the specimen showed significant
nonlinearity. In the second trial, the specimen was loaded until failure. The initial siope of
the load-deflection curve of each test was evaluated. This value was used for 7/ A in Eqn
(5.18) to calculate the corresponding E’. The plots of 1/ E’ versus J(h/ L)* for the
results obtained from the tests for each set, and the corresponding materials characteristic
lines are presented in Figs 7.1 through 7.4. The £ and G values, respectively, determined
from the reciprocal of the intercept and the slope of the characteristic lines for different
sets of the specimens are tabulated in Table 7.2. The approximate value of a=0.7 was used
for all cases. The load-displacement curves for all these specimens are included in

Appendix J.

The plot of the test data in Figs 7.1 through 7.4 for both loadings follow a clear linear
trend which confirms the applicability of the proposed method for the selected material.
The E and G values obtained for different strain rate cases (Table 7.2) are quite similar,
their differences being in the acceptable range of accuracy in practice. Furthermore, as Fig.
7.5 shows an obvious pattern between the results obtained for different strain rate cases
(Table 7.1) does not exist. Consequently, it can be concluded that the variable strain rate,

inherent in the VSM, is not problematic for graphite/epoxy.
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Figure 7.1 Plot of 1/ E' versus J(h/ L)*and the material characteristic line for GR-1
graphite/epoxy specimens.
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Figure 7.2 Plot of 1/ E' versus J(h / L)* and the material characteristic line for GR-2
graphite/epoxy specimens.
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Figure 7.3 Plot of 1/ E’ versus J(h/ L)* and the material characteristic line for GR-3

graphite/epoxy specimens.
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Figure 7.4 Plot of 1/ E’ versus J(h/ L)* and the material characteristic line for GR-4

graphite/epoxy specimens.
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Table 7.2 Values of G,3 and £y, for different sets of the graphite/epoxy specimens obtained
by the VSM (GPa).

First loading Second loading
Set ID. GR-1 GR-2 GR-3 GR-4 GR-1 GR-2 GR-3 GR-4
En 151.9 150.8 155.8 149.4 151.0 1583.1 1564 151.0
Gis 4.55 4.59 432 5.07 4.87 4.7 444 4 88

0.015 T 1st loading ° 0.015 + 2nd loading
Y 3
z 3
* 0012+ Z0012 1
g s GR-1 E » GR-1
g 1 o GR-2 il 0.009 - e GR-2
¢ 0009 2GR3 = > GR-3
L GR-4 a GR-4
0.006 $ f t ~ 0.006 i f ¢ 2
0 0.01 0.02 003 0.04 0 001 002 003 0.04
J(hiL)? J(hIL)?

Figure 7.5 Plot of 1/ E' versus J(h/ L)* for all graphite/epoxy sets.

Four specimens of graphite/epoxy were used to evaluate the longitudinal modulus by the
tensile test. Two extensometers, with 25.4 mm gage lengths, were attached back to back
on each specimen to measure the elongation of the specimens during the test. The
longitudinal moduli obtained from these tests were 149.8, 146.7, 153.3 and 150.9 GPa

giving an average value of 150.2 GPa.

To evaluate the shear modulus of the material by the +45° and the losipescu shear tests,
three specimens were used for each method. In the +45° shear test the longitudinal strain
was measured by attaching two 25.4 mm gage length extensometers to the two surfaces of
the specimens while the transverse strain was measured by strain gages. The shear moduli
obtained from these tests were 4.86, 5.0 and 4.76 GPa for the +45° shear test, and 5.83,

6.11 and 6.51 GPa for the losipescu shear test for average values of 4.87 and 6.15 GPa,
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respectively.

Table 7.3 Summary of the results obtained from different test methods and 95%
confidence intervals for graphite/epoxy (GPa).

Ist loading 2nd loading  Tensile test  +45° shear Iosipescu

VSM VSM test shear test
En 152.4+4 4 153.1+2.8 150.8 — —
Gi3 4.57+0.21 4.6940.15 —_ —_ —
G2 — — — 487 6.15

Table 7.3 summarizes the results obtained from the various test methods. The values of
Eyy and G,z of the VSM in this table were evaluated from the results of the tests on all the
specimens (Fig. 7.5). The 95% confidence intervals are also reported for the results
obtained by the VSM. The small margin of the confidence intervals confirm the reliability
of the proposed method. The difference between the values of longitudinal moduli
obtained by the tensile test and the VSM is less than 2%, indicating a good agreement.
The value of G obtained by the +45° shear test and the G5 values obtained by the VSM
are also in good agreement. Nevertheless, as was mentioned earlier, the G, and G, values
of the materials may not be equal due to different distribution of the fibers through-the-
thickness and through-the-width of the specimens. Moreover, in hand lay-up materials,
G2 is expected to be larger than G,s. The results obtained from the losipescu shear test
are considerably higher than the other values. This difference, as mentioned in the ASTM
5379-93, can be attributed to the nature of this method which usually produces higher
value for shear modulus when highly anisotropic 0° specimens are used. Finally, it should
be emphasized that the fixture fabricated for the VSM is in its preliminary design stage.

Refinement and enhancement of the fixture is expected to further improve the results.

7.2 Investigation on Kevlar/epoxy
The specimens of Kevlar/epoxy were cut from a pulltruded panel with average thickness

of 1.9 mm. The panel was provided by TW Pultrusion Ltd of Dartmouth, NS. The
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specimens were prepared for the VSM , 10° off-axis and losipescu shear tests. The tensile
properties of the material had been provided by the supplier of the material. The width of
the specimens was about 12.5 mm for the VSM and 13 mm for the 10° off axis. The
dimensions of the specimens are presented in Appendix I. No sanding or polishing was

applied to the surfaces of the specimens.

Six sets of specimens were subjected to the VSM, with the L/h varing between 7.02 and
30.6. There were at least 15 specimens in each set for five different spans. The speed of
the tests for each set was calculated based on the strain rate specifications of Table 7.4.
Similar to the previous case, the specimens of Kevlar/epoxy were tested twice. The load-
deflection curves of the tests are presented in Appendix J. The initial slopes of the load-
deflection curves are also presented in Appendix I. These values were used to draw the

plots of 1/ E’ versus J(h/L)* for each set of specimens in Figs 7.6 through 7.11. The

value of a for all cases was taken to be 0.7. Also shown in these figures are the
characteristic lines of each sets which were determined by linear regression analysis. The £
and G values of each set were determined from the reciprocal of the intercepts and slopes
of the characteristic lines, respectively. The values are tabulated in Table 7.5. The plot of

1/ E’ versus J(h/ L)* for all sets are shown in Fig. 7.12.

Table 7.4 Specifications of strain rate cases for different sets
of Kevlar/epoxy specimens.

Designation  Equation EG € max. Y avr
K-1 6.32 30 0.01 var.
K-2 6.32 30 0.01 var.
K-3 6.32 10 0.01 var.
K-4 6.32 10 0.01 var.
K-5 6.33 30 var. 0.01

K-6 6.33 30 var. 0.01




0.03 T 1st loading

Z 0.026 1

E

£ 0.022 +

- o test

w 4

= 0018 —regression
0.014 t } i

0 0.01 0.02 0.03
J(h/L)?

131

2nd loading
Z 0.026 +
E !
€ 0022
Yoo18 | °fest
—regression
0.014 : t |
0 0.01 002  0.03
J(h/L)?

Figure 7.6 Plot of 1/ E' versus J(h/ L)* and the material characteristic line for K-1
Kevalr/epoxy specimens.

0.03 +  1stloading

Z 0026 1 )

= f

£ 00227 v

S a o test

w L

= 0.018 . —regression
0.014 +° H * !

0 001 002 003
J(h/L)?

1/E' (mnf/ kN)

0.03 2nd loading
0.026 +
0.022 +
0.018 + °test
—regression
0.014 +* } ; =
0 0.01 0.02 0.03
J(h/L)?

Figure 7.7 Plot of 1/ E' versus J(h/ L)* and the material characteristic line for K-2
Kevalr/epoxy specimens.
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Figure 7.8 Plot of 1/ E’ versus J(h/ L)* and the material characteristic line for K-3
Kevalr/epoxy specimens.

1/E' (mmf/ kN)

003 T 1st loading
0.026 + s
?
0.022 +
o test
0.018 + 7 —regression
0.014 += } + {
0 0.01 0.02 0.03
J(h/L)?

1/E' (mn?/ kN)

0.03 v 2nd loading

0.026 1 :

0.022 +

0.018 1 °test
~—regression

0.014 4 " - |

0 001 002 003
J(hiL)?

Figure 7.9 Plot of 1/ E’ versus J(h/ L)* and the material characteristic line for K-4
Kevalr/epoxy specimens.
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Figure 7.10 Plot of 1/ E’ versus J(h/ L)* and the material characteristic line for K-5
Kevalr/epoxy specimens.
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Figure 7.11 Plot of 1/ E’ versus J(h/ L)* and the material characteristic line for K-6
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Table 7.5 Values of Gy3 and E, for different sets of the Kevlar/Epoxy specimens obtained by the
VSM (GPa).

First loading Second loading
SetID K-1 K-2 K-3 K4 K-5 K-6 K-1 K2 K-3 K4 K-5 K-6

Ey 669 679 69.7 683 676 694 660 684 689 676 674 683
G 182 175 159 171 173 168 176 162 158 169 168 1.73

0.03 + 1st |oading 0.03 + 2nd loading
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Figure 7.12 The plot of 1/ E’ versus J(h/ L)* for all sets of Kevlar/epoxy specimens.

As can be seen in Figs 7.6 through 7.11, the distribution of the data points in the 1/ £’
versus J(h/ L)* coordinate system closely follows a linear pattern. As a result, one can
conclude that the VSM is applicable to the Kevlar/epoxy composite. The £ and G values
obtained from different sets of specimens are also quite close to each other and do not
show dependency on the strain rate cases of Table 7.4. Figure 7.12, which shows the
scatter of the data points for all specimen sets, also does not indicate a dependency on the
strain rate cases. As a result, the variation of strain rate for specimens with different L/A is

not a problem for this material.

The values of the tensile modului, as provided by TW Pultrosion Ltd., were 67.8, 66.6 and
65.3 GPa with an average of 66.6 GPa. The panel used to obtain the tensile test specimens

was the same one that later was used for the VSM, the 10° off-axis and the losipescu
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tests. To evaluate the G, value of the material, three specimens were used for the
losipescu and two specimens were used for the 10° off-axis shear tests. The G, values
obtained from these tests were 2.09, 2.13 and 2.24 GPa for the losipescu shear tests, and
1.86 and 1.72 GPa for the 10° off-axis shear tests giving average values of 2.15 and 1.79

GPa, respectively.

Table 7.6 Summary of the results obtained from different test methods and 95%
confidence intervals for Kevlar/epoxy (GPa).

Ist loading 2nd loading  tensiletest  10° off-axis  losipescu

VSM VSM shear test shear test
En 68.3£1.3 67.8+1.3 66.6 — —_
Gis 1.72+0.06 1.68+0.07 —_ — —_
Gz — — — 1.79 2.15

The summary of the various tests results are tabulated in Table 7.6. The material
characteristic line fitted to the results of all the VSM specimens (Fig. 7.12) was used for
the determination of £y, and G values in this table. The 95% confidence intervals
reported for the VSM results are very small. This confirms the integrity and reliability of
the method for the evaluation of £ and G values for the Kevlar/epoxy composite. The
difference between the values of longitudinal moduli obtained by the tensile test and the
VSM is quite small. Recalling the earlier discussion on the difference between G, and Gis,
the values of G;; obtained by the VSM are quite close to the G, value obtained by the
10° off-axis shear test. Nevertheless, as it was discussed in Chapter 2, one should expect
an overestimated value for shear modulus from the 10° off-axis method, unless relatively
long specimens are used. The values from the Iosipescu shear test are considerably higher
than the other values. This difference, as mentioned in the previous section, can be
attributed to the nature of this method which usually overestimates the shear modulus
when highly anisotropic 0° specimens are used. The errors introduced by the VSM fixture
due to possible fabrication imperfection can also be considered as another source for

discrepancy.
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7.3  Investigation on E-glass/epoxy

The specimens of E-glass/epoxy were subjected to the VSM, tensile and losipescu shear
tests. The specimens were cut from pulltruded bars provided by Glasforms Inc., San Jose,
California, with an average thickness of 6.3 mm. The average width of the specimens was
about 13.4 mm for the VSM and 14 mm for the tensile test. The exact dimensions of the
specimens are presented in Appendix I. Similar to the Kevlar/epoxy specimens, no sanding

or polishing was applied to the surfaces of the specimens.

For the VSM tests, four sets of specimens were prepared. There were 12 specimens in
each set which were tested at 4 different spans. The L/A of the specimens varied between
4.93 mm and 17.82 mm. The speed of the tests for each set was calculated based on the
strain rate specifications of Table 7.7. Similar to the previous cases, the specimens of E-
glass/epoxy were tested twice. The load-deflection curves of the tests are presented in
Appendix J with the initial slopes reported in Appendix 1. The values of the initial slopes

were used to draw the plots of 1/ E’ versus J(h/ L)* for each sets of specimens. These

plots are presented in Figs 7.13 through 7.16. Similar to the previous cases, a=0.7 was
used for all sets of the specimens. The characteristic lines of each set, determined by linear
regression analysis, are also drawn in the figures. The £ and G values of each set,
determined respectively from the reciprocal of the intercepts and slopes of the
characteristic lines, are tabulated in Table 7.8. The plot of 1/E’ versus J(h/L)?

containing the results of tests for all sets of specimens are also shown in Fig. 7.17.

Table 7.7 Specifications of strain rate cases for different sets
of E-glass/epoxy specimens.

Designation _ Equation EG € ma Yar
GL-1 6.32 30 0.01 var.
GL-2 6.32 10 0.01 var.
GL-3 6.32 10 0.01 var.

GL-4 6.33 10 var. 0.01
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Figure 7.13 Plot of 1/ E’ versus J(h / L)* and the material characteristic line for GL-1
E-glass/epoxy specimens.
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Figure 7.14 Plot of 1/ E’ versus J(h / L)* and the material characteristic line for GL-2
E-glass/epoxy specimens.
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Figure 7.15 Plot of 1/ E’ versus J(h / L)* and the material characteristic line for GL-3
E-glass/epoxy specimens.
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Figure 7.16 Plot of 1/ £’ versus J(h/ L)* and the material characteristic line for GL-4
E-glass/epoxy specimens.
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Table 7.8 Values of G; and £, for different sets of the E-glass/epoxy specimens obtained
by the VSM (GPa).

First loading Second loading
Set ID GL-1 GL-2 GL-3 GL-4 GL-1 GL-2 GL-3 GL-4
En 478 514 47.5 49.2 47.6 50.3 46.6 48.7
Gi3 9.72 5.98 7.75 6.56 9.78 7.66 9.09 6.57

A linear trend between 1/ E’ and J(h/ L)? is evident from Figs 7.13 through 7.17. For
this material, the deviation of the data points from the regression lines appears to be
significant. A closer examination of the figures reveals that the relative deviation (ratio of
deviation to the measured value) is in the same range of those of Kevlar/epoxy and
graphite/epoxy. However, the range of 1/ £’ in this case is considerably smaller than for
the other two materials. That is, the ratio of the maximum 1/ £’ to the minimum 1/ E’ in
the E-glass/epoxy tests is less than 1.3, while the same ratio for the Kevlar/epoxy and the
graphite/epoxy tests results is lager than 2. As a result, a usual variation of 5 to 10 percent
in the material properties appears as a significant discrepancy in Figs 7.13 through 7.17 for
the present case. This problem, as was discussed in Chapter 6, is due to the small £/G
value of E-glass/epoxy which makes the VSM less efficient. Consequently, the values of G
obtained from different sets of specimens do not agree with each other very well. A wider

range in 1/ £’ could be obtained by testing specimens with wider range of L/h.

The G values of Table 7.8 for second loading and also the plots of the second loading test
results in Fig. 7.17 indicate that the results of the GL-4 set of specimens are considerably
different from those of other sets. This difference may be interpreted as the influence of
the strain rate sensitivity of E-glass/epoxy in the VSM. However, a more detailed
investigation, as follows, would imply that the reason for the difference must be attributed
to the variation of the material properties and the other variables involved with testing and

estimating the initial slopes of the load-deflection curves.
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Referring to Fig. 7.17, the £’ values obtained for the second loading of GL-4 specimens
are considerably smaller than those of other sets for tests with the smallest span (31.19
mm). Obviously, this difference is the reason for the small value of G obtained from this
set of specimens. By checking Appendix J, one will realize that the speed of tests for GL-4
specimens was between those of GL-1, GL-2 and GL-3 specimens. As a result, in case of
sensitivity to strain rate, the £’ values of GL-4 specimens should have fallen between the
E’ values obtained from the other sets of the specimens. Since this was not the case, the

existing difference cannot be related to the strain rate sensitivity of the material.

The G value of the GL-1 set of specimens in Table 7.8 for first loading is also considerably
higher than the G values of the other sets. Since the plot in Fig. 7.17 of the first loading
does not show an obvious dependence of the GL-1 specimens to strain rate, one can again
attribute the higher value of G to the variation of the material properties and the other

variables involved with testing and estimating the initial slopes of the load-deflection

curves.
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g 0024 ;/ ; lGL—1 .gt_;
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Figure 7.17 Plot of 1/ E’ versus J(h/ L)* for all sets of E-glass/epoxy specimens.

The tensile test was conducted on three specimens. The £ values obtained from these

specimens were 47.2, 50.61 and 47.7 GPa with an average value of 48.5 GPa. The result
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from the Iosipescu shear tests were 7.07, 7.39 and 8.27 with an average value of 7.57
GPa. These average values, along with the £ and G,3 obtained from the characteristic line
of all the VSM specimens (Fig. 7.17), are tabulated in Table 7.9. The 95% confidence
intervals for the results of the VSM are also determined by statistical means and reported
in the same table. The small confidence interval for the £ value confirms the reliability of
the VSM method for evaluation of the E-glass/epoxy’s longitudinal modulus. The 95%
interval for the shear modulus is more than 10% of the modulus itself which is
considerably higher than the values obtained for the Kevlar/epoxy and the graphite/epoxy
investigated earlier. The cause of this problem, as was discussed earlier, is due to the small
range in 1/ E’ for the tests. The consistency of the results could be improved by increasing
the range of L/h of the specimens. Nevertheless, both values of £ and G calculated from
the VSM test results on all sets of specimens, agree very well with the values obtained by

the tensile and the Iosipescu shear tests.

Table 7.9 Summary of the results obtained from different test
methods and 95% confidence intervals for E-glass/epoxy (GPa).

Ist loading  2nd loading  tensile test losipescu

VSM VSM shear test
Ey 48.9+1.1 48.3+1.0 485 —
G 7.41+1.03 8.06+1.09 —_ —_
Gz — — — 7.57

7.4 Summary and conclusions

In this chapter, the integrity of the VSM was experimentally investigated. For this, three 0°
unidirectional FRPC, inciuding graphite/epoxy, Kevlar/epoxy and E-glass/epoxy, were
considered. The longitudinal and the through-the-thickness shear moduli of the materials
were evaluated by subjecting them to the VSM test. The longitudinal moduli obtained by
the VSM were verified by conducting the ASTM D3039-93 tensile test on the materials.

Since there was not a simple method to evaluate the through-the-thickness shear moduli of
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the matenials, the in-plane shear moduli were evaluated by common available shear test
methods to assess the values obtained by the VSM. For this, the losipescu shear test was
used on all materials while the +45° shear test was applied only to the specimens of
graphite/epoxy and the 10° off-axis test was applied to the Kevlar/epoxy specimens. With
the exception of the losipescu test results for graphite/epoxy and Kevlar/epoxy, which
were about 30% higher than the shear moduli obtained by the VSM, the values obtained
by the different test methods were in good agreement. The higher values obtained from
the Iosipescu test method for graphite/epoxy and Kevlar/epoxy were attributed to the
nature of the test method which is known to generally overestimate the shear modulus of
highly anisotropic 0° specimens. The small discrepancies for other cases is quite acceptable
for practical purposes. Nevertheless the discrepancy can be attributed to the following

parameters.

a) The results obtained by the tensile test can be influenced by possible bending due to
specimen and/or system misalignment.

b) The shear modulus obtained by the VSM method is G,3, however the results
obtained from the other methods are G),. As explained, these values are not
necessarily equal.

¢) None of the shear test methods used here are considered to be exact.

d) The 10° off-axis shear test generally gives higher values, unless when applied to
specimens with very large aspect ratios.

e) The quality of the material may not be uniform for all specimens.

f) None of the test methods has an exact procedure for the determination of the
modulus value from the test data.

g) The fabricated fixture for the VSM is in its preliminary stage; further modification

and enhancements of the fixture may improve the results.
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The effect of variable strain rate for specimens with different L/h, which is inherent in this
method, was also investigated by performing tests under different strain rate cases. No
apparent dependency was observed between the results obtained for different cases.
Consequently, one can conclude that the non-constant strain rate in the VSM is not an
issue for the materials tested. Based on the results of the VSM on all the specimens of
each material, the 95% confidence intervals for the £ and G values were statistically
determined. With the exception for the G value of the E-glass/epoxy, the 95% confidence
intervals were quite small, confirming the reliability of the VSM. The larger confidence
interval obtained for the shear modulus of the E-glass/epoxy was due to the small range in
1/ E' over the VSM test results, which in turn was due to the low E/G value of this
material. Selecting a wider range of L/ for the specimens is believed to improve the

results.
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Chapter 8
SUMMARY AND RECOMMENDATIONS

A novel test method called the “Varying-Span Method” (VSM) was introduced and was
extensively discussed in the previous chapters. Every effort was made to study and
investigate the VSM from various angles so that one could recognise its advantages and
its limitations. A summary of the investigation is presented below. Recommendations for
future work and further development of the method are also provided in this chapter.
Despite the extensive effort carried out, the author believes that the subject is still in its

preliminary stage and requires further research and development.

8.1 Summary

A new test method capable of simultaneous evaluation of the longitudinal and through-
the-thickness shear moduli of FRPC was introduced in this thesis. With the new test
method specimens with different spans were subjected to three-point bending. Therefore,
the method was called the “Varying-Span Method” (VSM). The importance of evaluating
the elastic properties of FRPC as an orthotropic material in different directions and the
corresponding nomenclatures were presented in Chapter 1. Chapter 2 reviewed the
common test methods available for the determination of the longitudinal and the shear
moduli of FRPC. As a result of the review, it became clear that the VSM was a unique test
method due to its capability of simultaneously evaluating two elastic moduli of a given

FRPC while being a simple and efficient test method.

Chapter 3 provided the exact elasticity solution for three-point bending of orthotropic
beams. This solution was used later to assess two approximate, yet simple solutions
developed for treating the same problem. The approximate solutions sought for this

problem were based on the through-the-thickness inextensibility and the Timoshenko
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beam theories. The first theory was discussed in Chapter 4 and references were given for

the second.

The fundamentals of the VSM were presented in Chapter S. It was shown that by
determining the flexural stiffness of specimens with different length-to-depth ratio (L/h),
one could theoretically evaluate the longitudinal and through-the-thickness shear moduli
of elastic materials, simultaneously. Chapter 6 showed that the efficiency of the method
depended on the ratio of the longitudinal to shear moduli (£/G) of the material, providing
higher efficiency for materials with larger E/G. As a result, it was concluded that the
method would be particularly applicable to FRPC. The theoretical and the experimental
investigations in Chapters 6 and 7 confirmed that the VSM would be an efficient and a

practical test method for this type of material.

The VSM'’s development, outlined in Chapter S, was built on the two approximate
theories introduced earlier, that is, the through-the-thickness inextensibility and the
Timoshenko beam theories. Because of the simplicity of the second theory, the theoretical
and the experimental investigations were limited to the use of this theory. In the solution
developed based on the Timoshenko beam theory, a new quantity called the “apparent
modulus of elasticity” was introduced. This quantity, as defined by Eqn (5.18), is
determined from the result of three-point bending test. It was shown that when the
apparent moduli of elasticity of specimens with different L/h are plotted in the coordinates
system of Fig. 5.3, a straight line called the “material characteristic line” is obtained. One
could then evaluate the longitudinal and the shear moduli of the material from the

reciprocal of the intercept and the slope of this line, respectively.

The distribution width of the applied load onto the specimen, and the supports reaction
forces were defined by a parameter denoted by “o”. It was shown in Chapter 6 that o was

a function of specimen geometry and material properties. The exact values of o were
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provided in Figs 6.8 through 6.18. It was also shown that for most practical cases,
determination of the exact value of oo was not necessary and the use of an approximate
value of a. = 0.7 would provide sufficient accuracy. This approximate value was later used

in Chapter 7 for the experimental investigations.

The materials considered in the experimental investigations of Chapter 7 were 0°
unidirectional graphite/epoxy, Kevlar/epoxy and E-glass/epoxy. The longitudinal and shear
moduli evaluated by the VSM were compared with the values obtained by the tensile test
(ASTM D3039-93) and the +45° (ASTM D3518-94), Iosipescu (ASTM D5379-93) and
l‘0° off-axis shear test methods. The results obtained by the VSM were in close agreement
with those obtained from the other test methods. The small differences were attributed to

the following factors:

a) The effect of the possible bending due to fiber, specimen and/or system
misalignment in the tensile test.

b) The inherent difference between the quantity of the through-the-thickness shear
modulus obtained by the VSM method and the in-plane shear modulus obtained by
other shear test methods. These two shear moduli are not necessarily equal.

c) None of the shear test methods used is considered to be an exact method.

d) The overestimation of shear modulus by the 10° off-axis shear test when specimens
with very large aspect ratios are not used.

e) The variation of material properties from one specimen to another.

f) The fact that the procedure for the determination of £ and G values from the tests
results is not an exact procedure.

g) The imperfections in the VSM fixture due to its preliminary design and fabrication.

In Chapter 6, it was shown that maintaining a constant strain rate for both the longitudinal

and shear strain when the specimens with different L/h are used is not possible. This
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phenomenon prompted the question of “how accurate would the results of the VSM be if
the materials were strain rate sensitive?”. The influence of the strain rate was therefore
evaluated by numerical and experimental investigations outlined in Chapters 6 and 7,
respectively. The numerical investigation showed that the variation of the strain rate from
one specimen to another would not impact the results of the VSM for common FRPC
materials. The same conclusion was reached from the experimental observations in
Chapter 7. Nevertheless, the necessary guidelines to reduce the possible effect of variable

strain rates were provided in Chapter 6.

The reliability of the VSM was assessed by determining the 95% confidence intervals for
the £ and G values evaluated by this method in Chapter 7. Except for the shear modulus
of E-glass epoxy, the 95% confidence intervals were quite narrow, indicating the reliability
of the results. The exception was the shear modulus (G) of the E-glass epoxy whose 95%
confidence interval was larger than 30% of the G value. This was attributed to the low
E/G ratio of the material which did not produce sufficient change in the value of 1/E’

obtained from the tests. A wider range of L/4 is believed to resolve the problem.

In conclusion, the VSM was shown to be a promising test method for evaluating the
longitudinal and shear moduli of FRPC. The efficiency of the method increases for
materials with large ratios of £/G. For a material with a small ratio of E/G, the predicted
value of G by the VSM becomes less reliable. However, from practical point of view, this
is not of significance, since in a material with low E/G ratio, the through-the-thickness
shear modulus has insignificant role in effecting the behavior of the structure.

Consequently, the importance of having an accurate value for the shear modulus fades.

In comparison to other available test methods, the VSM has significant advantages. In

summary, these advantages are:
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a) The test specimens are subjected to a combined state of stresses which is representative
of the in-service behavior of the material and is therefore more realistic.

b) The specimens can be extracted directly from the as-received structural components.

c) The specimens have simple rectangular geometry.

d) The specimens do not require special alteration (i.e. notches or holes).

¢) Mounting of the specimens in the fixture is easy.

f) No strain gages and/or other expensive instruments are required.

g) The longitudinal and the through-the-thickness shear moduli are obtained
simultaneously.

h) The properties obtained by the other methods are representative of the material
behavior in a small gage length. In contrast, the properties obtained by the VSM

reflects the response of the material in its entirety.

8.2 Recommendations for future works and further development

The limitations of time and resources usually do not allow one to reach to one’s desired
destination in research and science. However, while these are available, the spread of
unknowns to be answered is so vast that they overwhelm one’s capability. As a result,
there must be others to continue and improve earlier works and accomplishments. The
work presented in this thesis obviously is not an exception, and it follows the same rule.
To keep the work started here going, a few recommendations for future work are
provided below. In these recommendations different aspects of the VSM which require

work and improvement are discussed.

i) Experimental investigations on other types of 0° unidirectional FRPC: The
experimental investigations in this thesis were limited to graphite/epoxy, Kevlar/epoxy and
E-glass/epoxy having certain percentages of fibers. To validate the applicability of the
VSM to other types of FRPC, experimentation on other composites, similar to the ones

carried out in this thesis are recommended.
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it) Application of the VSM to more general types of FRPC: The VSM can also be used
for FRPC such as randomly oriented chopped-fiber, mat-fiber and woven-fiber

composites. Additional experimental investigation, therefore, is recommended.

ii) Development of a fixture for the alignment shown in Fig 6.4a: All the theoretical and
the experimental investigations in this thesis were based on the alignment of Fig. 6.4b.
Moreover, the apparatus developed for the experiment was also designed for this purpose.
As a result, the development of a fixture capable of holding a specimen based on the
alignment of Fig. 6.4a and the corresponding investigations remain for future. This
alignment will enable one to evaluate either £, and Gy, or £ and G,; of the material,
simultaneously. A state of plane stress always exists and specimens with very small L/A
can be tested. As a result, the shear modulus of materials with small £/G values can be

determined with sufficient accuracy.

iv) Extension of the VSM to dynamic testing: The same fundamentals used for
simultaneous evaluation of the longitudinal and shear moduli of materials can be used to
evaluate these properties by dynamic method. In the same vein, the method can be based
on the effect of shear modulus on the flexural natural frequency of a composite beam. The
effect of shear modulus increases for beams with small L4 and for higher natural
frequencies. Consequently, determining the first natural frequency of a specimen for at
least two different L/h, or determining at least two different natural frequencies of the
same span enables one to evaluate both the longitudinal and shear moduli of the matenial.
For the evaluation of the two moduli from the test results, however, one needs to apply a
beam theory which accounts for the shear effect. For this, use of the Timoshenko beam
theory, despite its simplicity, is not recommended. This is due to the fact that the theory
cannot provide the needed accuracy. This subject was discussed by Jalali and Taheri

(1998b) and several others. Jalali and Taheri (1998b) showed that the through-the-
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thickness inextensibility theory provided very accurate values for the natural frequency of

laminated beams. Therefore, this theory can efficiently be used for the suggested purpose.
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‘The net, semi-net and total mid-span deflections of orthotropic beam under three-point ‘'bending

is predicted by elasiticity solution

DECLARE SUB SOLVE (N!, A() AS DOUBLE, B() AS DOUBLE)
‘LT: TOTAL LENGTH OF THE BEAM
‘L: SPAN LENGTH
'H: THICKNESS OF THE BEAM
'F: CONCENTRATED LOAD AT MID-SPAN
‘NSERI: NUMBER OF FOUREIR SERIES COMPONENTS IN THE ANALYSIS
'EX: MODULUS OF ELASTICITY IN X DIRECTION
'EZ: MODULUS OF ELASTICITY IN Y DIRECTION
'‘NUXZ: POISSON'S RATIO
'‘GXZ: THROUGH-THE-THICKNESS SHEAR MODULUS
'RM: THE RADIUS OF LOADING NOSE
‘RS: THE RADIUS OF SUPPORTING ROLLERS
‘ER: MODULUS OF ELASTICITY OF THE ROLLERS AND THE LOADING NOSE

'‘SDYNAMIC
DEFDBL P
CLs
READ LT, L, H, F, NSERI
READ EX, EZ, NUXZ, GXZ
READ rm, rs, ER
DATA 16,8,2,.1,100
DATA 200,4,.25.4
DATA 5,5,200

Pl =4 *ATN(1)
DEL1 =1/ (EZ*PJ)

DEL2 = 1 / (ER * Pl)

BBAR = 2 * SQR(F * (DEL1 + DEL2) * rm) 'CONTACT WIDTH AT MID-SPAN

CBAR =2 * SQR(F / 2 * (DEL1 + DEL2) * rs) 'CONTACT WIDTH AT THE SUPPORTS
R11 = 1/EX

R33=1/EZ

R13 = -NUXZ / EX

R66 = 1/ GX2Z

AA = R66 + 2 *R13

BB = SQR(AA * 2 - 4 *R11 * R33)

CC=2*R11

DIM COEFMAT(4, 4) AS DOUBLE, A(4) AS DOUBLE

FOR Il = 1 TO NSERI

N=2*(l-1

P=N*PI/LT

M(1) = P * SQR((AA + BB) / CC)

M(2) = P * SQR((AA - BB) / CC)

M(3) = -P * SQR((AA + BB) / CC)



M(4) = -P * SQR((AA - BB) / CC)
'UNKNOWN COEFFICIENTS ARE DETRMINED IN THIS PART
'BY SATISFYING THE BOUNDARY CONDITIONS AT THE TOP
‘AND THE BOTTOM OF THE BEAM

FORJ=1TO 4

COEFMAT(1, J) = -P A 2 *EXP(-MWJ) * H/ 2)
COEFMAT(2, J) = -P A 2 *EXP(M(J) * H / 2)
COEFMAT(3, J) = -P * M(J) * EXP(-M(J) * H/ 2)
COEFMAT(4, J) = -P * M(J) * EXP(M(J) * H/ 2)
NEXT J

IFP*CBAR/PI=.5 THEN
BETAS =PI/2
ELSE
BETAS =2*COS(P*CBAR)/(1-4*(P*CBAR/PI)*2)
END IF

IF P *BBAR /Pl = .5 THEN
BETAM =PI/ 2
ELSE
BETAM = 2 * COS(P * BBAR) / (1- 4 * (P * BBAR/ P) A 2)
END IF

A)=(C1)A({(N-1)/2)*F/LT *"BETAS*COS(P*L/2)
AR)=(-1)"((N-1)/2)*F/LT " BETAM

A@3)=0

A@4)=0

CALL SOLVE(4, COEFMAT(), A()

'‘Determination of Deflections

FORJ=1TO4

DA = A(J) * (R13 * M(J) - R33 * P A 2/ M(J)) * EXP(-M(J) *H/ 2)
WA = WA + SIN(P *LT/2) * DA

DB = A(J) * (R13 * M(J) - R33 * P A 2/ M(J)) * EXP(M(J) * H / 2)
WB = WB + SIN(P * (LT -L) / 2) * DB

DC = A() * (R13 * M(J) - R33 * P A 2/ M(J)) * EXP(M(J) *H/ 2)
WC = WC + SIN(P *LT/2) *DC

DD = A(J) * (R13 * M(J) - R33 * P * 2/ M(J)) * EXP(-M(J) *H / 2)
WD = WD + SIN(P * (LT - L) / 2) * DD

NEXT J

NEXT Il

PRINT

PRINT

PRINT TAB(8); "WC-WD="; USING " ##.#Hs# A" WC - WD
PRINT TAB(8); "WA-WD="; USING " ##.#HH-# A", WA - WD
PRINT TAB(8); "WA-WB="; USING " ##.#::#"\". WA - WB
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REM $STATIC
DEFSNG P

'GUASS ELIMINATION METHOD FOR SOLVING SIMULTANEOUS EQUATIONS
SUB SOLVE (N, A() AS DOUBLE, B() AS DOUBLE)

10

20

FORI=1TON-1
MAX# = 0
J=1
FORJ=I1TON
IF ABS(A(J, 1)) > MAX# THEN
MAX# = ABS(A(J, 1))
W=J
END IF
NEXT J
IF JJ = | GOTO 10
BB# = B(): B(l) = B(JJ): B(JJ) = BB#
FORJ=ITON
AA# = A(l, J)
A(l, J) = A, J)
AW, J) = AA#
NEXT J
FORII=1+1TON
IF A(ll, ) = 0 GOTO 20
COF#= A(ll, )/ A(l, I)
B(ll) = B(ll) - B(l) * COF#
FORJ=ITON
A(ll, J) = A(ll, J) - COF#* A(l, J)
NEXT J
NEXT II
NEXT |

FORI=1TON

H=N-1+1

SUM#=0

FORJ=1TOI-1
JW=N-J+1

SUM# = SUM# + A(ll, JJ) * B(JJ)
NEXT J

B(l) = (B(I) - SUM#) / A(ll, I})
NEXT |

END SUB
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Appendix B
ELAS-SIN PROGRAM

‘The behavior of simply supported orthotropic beam under HALF-SINE
"load is predicted by elasiticity solution

DECLARE SUB SOLVE (N!, A) AS DOUBLE, B() AS DOUBLE)
'L: SPAN LENGTH
‘H: THICKNESS OF THE BEAM
‘EX: MODULUS OF ELASTICITY IN X DIRECTION
'EZ: MODULUS OF ELASTICITY IN Y DIRECTION
'‘NUXZ: POISSON'S RATIO
'‘GXZ: THROUGH-THE-THICKNESS SHEAR MODULUS
‘Note: The amplitude of the SINE load is 1.
' The load is applied on the top of the beam.

'‘SDYNAMIC
DEFDBL P
CLsS
OPEN "ELAS-SIN.OUT" FOR OUTPUT AS #1 ‘Open Output file

‘Data Input

READ L, H, EX, EZ, NUXZ, GXZ
DATA 8,2, 200,10,.25,4

Pl =4*ATN(1)

R11=1/EX

R33=1/EZ

R13 = -NUXZ / EX

R66 = 1/ GXZ

AA =R66 +2*R13

BB = SQR(AA*2-4"R11*R33)

CC=2"RMNM

DIM COEFMAT(4, 4) AS DOUBLE, A(4) AS DOUBLE

P=PI/L

M(1) = P * SQR((AA + BB) / CC)

M(2) = P * SQR((AA - BB) / CC)

M(3) = -P * SQR((AA + BB) / CC)

M(4) = -P * SQR((AA - BB) / CC)
‘UNKNOWN COEFFICIENTS ARE DETRMINED IN THIS PART
'BY SATISFYING THE BOUNDARY CONDITIONS AT THE TOP
'‘AND THE BOTTOM OF THE BEAM

‘Coefficients of the simultaneous equations
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FORJ=1TO4
COEFMAT(1,J)=-P*2*EXP(-M(J) *H/2)
COEFMAT(2,J)=-P*2*EXPM@) "H/2)
COEFMAT(3, J) =-P * M(J) * EXP(-M(J) *H/2)
COEFMAT(4, J) =-P * M@J) *EXP(M(J) *H/2)
NEXT J

'KNOWN VECTORE

A(1)=0
A@@2) =1
A@R)=0
A@)=0

CALL SOLVE(4, COEFMAT(), AQ)

'‘Determination of Deflections and stresses

FORJ=1TO4

‘Average deflection

COF = A(J) *(R13*M(J) -R33 * P * 2/ M(J)) / M(J)
COF = COF * (EXP(M(J) *H/2) - EXP(-M(J)*H/2))/H

WA = WA + COF

NEXT J

PRINT TAB(8); "Average Deflection:"; WA
PRINT

PRINT TAB(8); " Z/H Deflection  Sigxx";
PRINT " Sigzz Tuxz"

PRINT #1, TAB(8); "Average Deflection:"; WA
PRINT #1,

PRINT #1, TAB(8); " Z/H Deflection  Sigxx";
PRINT #1," Sigzz Tuxz"

‘Stresses at 11 points through the thickness
FORI=0TO 10
DFL=0
COFXX =10
COFZZ=0
COFXZ=0
Z=1"H/10-H/2

FORJ=1TO 4
DFL = DFL + A(J) * (R13 * M{J) - R33 * P A 2/ M(J)) * EXP(M(J) * 2)
COFXX = COFXX + A(J) * M(J) » 2 * EXP(M(J) * 2)

COFZZ = COFZZ + A(J) * EXP(M(J) * 2)

COFXZ = COFXZ + A(J) * M(J) * EXP(MWJ) * 2)

NEXT J

DEFLECTION = DFL



SIGXX = COFXX
Sigzz=-P*2* COFZZ
Tuxz = -P * COFXZ

PRINT TAB(8); USING "##.##". Z / H;
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PRINT USING " ##.###° ", DEFLECTION; SIGXX; Sigzz; Tuxz

PRINT #1, TAB(8); USING "##.##", Z / H;

PRINT #1, USING " ## #HH# """, DEFLECTION; SIGXX; Sigzz; Tuxz

NEXT I

REM $STATIC
DEFSNG P

'‘GUASS ELIMINATION METHOD FOR SOLVING

10

20

SIMULTANEOUS EQUATIONS

SUB SOLVE (N, A() AS DOUBLE, B() AS DOUBLE)

FORI=1TON- 1
MAX# = 0
W=
FORJ=ITON
IF ABS(A(J, 1)) > MAX# THEN
MAX# = ABS(A(J, 1))
W=
END IF
NEXT J
IF JJ = | GOTO 10
BB# = B(l): B(l) = B(JJ): B(JJ) = BB#
FORJ=ITON
AA# = A(l, J)
Adl, J) = AW, J)
A, J) = AA#
NEXT J
FORIl=1+1TON
IF AQll, ) = 0 GOTO 20
COF#= A(ll, )/ A(l, 1)
B(ll) = B(ll) - B(l) * COF#
FORJ=1TON
A(ll, J) = A(ll, J) - COF#* A(l, J)
NEXT J
NEXT i
NEXT |

FORI=1TON
H=N-1+1

SUM# = 0

FORJ=1TOI-1
J=N-J+1

SUM# = SUM# + A(ll, JJ) * B(JJ)
NEXT J

B(ll) = (B(Il) - SUM#) / Al 1)
NEXT |

END SuB
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Appendix C
TTTI-SIN PROGRAM

‘The behavior of simply supported orthotropic beam under HALF-SINE load
'is determined by the application of the through-the-thickness inextensibility
‘theory.

DECLARE FUNCTION SINH# (X AS DOUBLE)
DECLARE FUNCTION COSH# (X AS DOUBLE)
DECLARE FUNCTION TANH# (X AS DOUBLE)
‘L: SPAN LENGTH
'‘H: THICKNESS OF THE BEAM
'EX: MODULUS OF ELASTICITY IN X DIRECTION
'‘GXZ: THROUGH-THE-THICKNESS SHEAR MODULUS
‘Note: The amplitude of the SINE load is 1.

'$DYNAMIC
DEFDBL P
CLs
OPEN "TTTI-SIN.OUT" FOR OUTPUT AS #1 ‘Open Output file

ARSI N AN AR AN AN I AT A AT AR AR AANANAN AR AR NN AT AR RATNNY

‘Data Input

READ L, H, EX, GXZ
DATA 8,2, 200,4

Pl =4 *ATN(1)
P=PI/L
BETA=EX*P*2/GXZ
ALFA# = SQR(BETA) *H / 2
Fl = SQR(EX / GX2)

‘Deflection
WO=1/(P*2*GXZ*H)/(1- TANH(ALFA#) / ALFA#)
DEFLECTION = W0

PRINT TAB(8); "Deflection:"; DEFLECTION
PRINT

PRINT TAB(8); " ZH Sigxx Tuxz "
PRINT #1, TAB(8); "Deflection:"; DEFLECTION
PRINT #1,

PRINT #1, TAB(8); " Z/H Sigxx Tuxz "

ISR AN AR IR R AN S AR R R AR AL A NN AN R AANAN RN AN O S AN R AT NN RN RO NNNN

‘Stresses at 11 points through the thickness
FORI=0TO 10
Z=1"H/10-H/2



'Sigmaxx
C1=FI*2/(ALFA# - TANH(ALFA®#)) / 2
C2 = SINH(2 * ALFA# * Z / H) / COSH(ALFA#)
Sigxx = C1 * C2

"Tuxz
C1 =Fl/ (ALFA# - TANH(ALFA#)) / 2
C2=(1-COSH(2 * ALFA# * Z/ H) /| COSH(ALFA#)
TUXZ=C1*C2

PRINT TAB(8); USING "##.##", Z / H;

PRINT USING " ## #HHH1" A", Sigxx; TUXZ
PRINT #1, TAB(8); USING "##.##", Z / H;

PRINT #1, USING " ##¢.#####" 1", Sigxx; TUXZ

NEXT |

‘Function to determine "cosine hyperbola”
FUNCTION COSH# (X AS DOUBLE)
COSH = .5 * (EXP(X) + EXP(-X))
END FUNCTION

'Function to determine "sine hyperbola"
FUNCTION SINH# (X AS DOUBLE)
SINH = .5 * (EXP(X) - EXP(-X))
END FUNCTION

‘Function to determine "tan hyperbola"
FUNCTION TANH# (X AS DOUBLE)
TANH = SINH(X) / COSH(X)

END FUNCTION
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Appendix D
ELAS-CON PROGRAM

‘The behavior of simply supported orthotropic beam under a concentrated load
‘at mid-span is determined according to the elasiticity solution.

DECLARE SUB SOLVE (N!, A() AS DOUBLE, B() AS DOUBLE)
‘L: SPAN LENGTH
'H: THICKNESS OF THE BEAM
'F: CONCENTRATED LOAD AT MID-SPAN
‘NSERI: NUMBER OF FOUREIR SERIES COMPONENTS IN THE ANALYSIS
'EX: MODULUS OF ELASTICITY IN X DIRECTION
'‘EZ: MODULUS OF ELASTICITY IN Y DIRECTION
'NUXZ: POISSON'S RATIO
'GXZ: THROUGH-THE-THICKNESS SHEAR MODULUS
‘R: THE RADIUS OF LOADING NOSE
'ES: MODULUS OF ELASTICITY OF THE ROLLERS AND THE LOADING NOSE
'X: COORDINATE OF THE SECTION THAT THE CALCULATION MUST BE DONE
FOR

‘SDYNAMIC
DEFDBL P
OPEN "ELAS-CON.OUT" FOR OUTPUT AS #1
CLS
READ L, X, H, F, NSERI
READ EX, EZ, NUXZ, GXZ
READ R, ES
DATA 8,4,2,.1,200
DATA 200,10,.25,4
DATA 5,200

Pl =4*ATN(1)

DEL1=1/(EZ"PY)

DEL2=1/(ES * Pl)

BBAR =2 * SQR(F * (DEL1 + DEL2) * R) 'HALF OF CONTACT WIDTH

R11=1/EX

R33=1/EZ

R13 = -NUXZ / EX

R66 = 1/GXZ

AA =R66 +2 *R13

BB = SQR(AA*2-4*R11 " R33)

CC=2"R11

DIM COEFMAT(4, 4) AS DOUBLE, A(4) AS DOUBLE

FORN =1 TO NSERI STEP 2
P=N"Pi/L

M(1) = P * SQR((AA + BB) / CC)
M(2) = P * SQR((AA - BB) / CC)
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M(@3) = -P * SQR((AA + BB) / CC)
M(4) = -P * SQR((AA - BB) / CC)

‘UNKNOWN COEFFICIENTS ARE DETRMINED IN THIS PART
'‘BY SATISFYING THE BOUNDARY CONDITIONS AT THE TOP
'‘AND THE BOTTOM OF THE BEAM

FORJ=1TO4

COEFMAT(1,J) =-P "2 *EXP(-M(J) *H/ 2)
COEFMAT(2,J) =-P*2*EXP(M(J) *H/2)
COEFMAT(3, J) = -P * M(J) * EXP(-M(J) *H/ 2)
COEFMAT(4, J) = -P * M(J) * EXP(M(J) *H/ 2)
NEXT J

IF P *BBAR /Pl =.5THEN
ACOF =PI /2 'SERIES COEFFICIENTS
ELSE
ACOF =2 *COS(P *BBAR)/(1-4* (P *BBAR/PI)*2)
ENDIF .

A(1)=0
AR)=(-1)"((N-1)/2)*F/L"ACOF
A@3)=0

A4)=0

SUMM = SUMM + A(2) * SIN(P * X)
CALL SOLVE(4, COEFMAT(), AQ)

‘Average deflection

FORJ=1TO4

TEMP = A(J) * (R13 *M@J) - R33 *P 4 2/ M(J)) / M(J)
TEMP = TEMP * (EXP(M(J) *H/2) - EXP(-M(J)*H/2))/H
WAVER = WAVER + TEMP * SIN(P * X)

NEXT J

‘Determination of Deflection AND STRESSES FOR 11 ELEVATIONS AT x=X

FORI=0TO10
Z=1"H/10-H/2
FORJ=1TO4

W0 =A@J) * (R13* M) - R33*P * 2/ M()) * EXP(M(J) * 2)

W(l) = W(l) + WO * SIN(P * X)

SIGXX(l) = SIGXX(l) + A(V) * M{J) * 2 * EXP(M(J) * 2) * SIN(P * X)
SIGZZ(I) = SIGZZ(l) - P * 2 * A(J) * EXP(M(J) * 2) * SIN(P * X)
TUXZ(l) = TUXZ()) - P * A(J) * M(J) * EXP(M(J) * 2) * COS(P * X)

NEXT J
NEXT |
NEXT N
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'‘PRINT QUTPUT

PRINT

PRINT TAB(8); "AVERAGE DEFLECTION"; WAVER
PRINT

PRINT TAB(8); " Z/H Deflection  Sigxx";

PRINT " Sigzz Tuxz"

PRINT #1, TAB(8), "Average Deflection:"; WAVER
PRINT #1,

PRINT #1, TAB(8); " Z/H Deflection  Sigxx";
PRINT#1,"  Sigzz  Tux2"

FORI=0TO 10

Z=1"H/10-H/2
PRINT TAB(8); USING "#t.##"; Z / H;

PRINT USING " ##. 4 W(I): SIGXX(T); SIGZZ(T); TUXZ(1)
PRINT #1, TAB(8); USING “##.##", Z / H;

PRINT #1, USING " ##H7AA W(1); SIGXX()); SIGZZ(l); TUXZ(!)

NEXT |

REM SSTATIC
DEFSNG P
'GUASS ELIMINATION METHOD FOR SOLVING SIMULTANEOUS EQUATIONS

10

20

SUB SOLVE (N, A() AS DOUBLE, B() AS DOUBLE)

FORI=1TON- 1
MAX# = 0
=1
FORJ=ITON
IF ABS(A(J, ) > MAX# THEN
MAX# = ABS(A(J, 1))
J=J
END IF
NEXT J
IF JJ = 1 GOTO 10
B8B# = B(l): B(l) = B(JJ): B(JJ) = BB#
FORJ=ITON
AA# = A(l, J)
A(l, J) = A(JJ, J)
A(JJ, J) = AAR
NEXT J
FORII=1+1TON
IF A(ll, I) = 0 GOTO 20
COF# = A(ll, 1) / A(l, )
B(Il) = B(H) - B(l) * COF#
FORJ=ITON
A(ll, J) = A(ll, J) - COF#* A(l, J)
NEXT J
NEXT i
NEXT |



FORI=1TON

N=N-1+1

SUM# =0

FORJ=1TOI-1

JJ=N-J+1

SUM# = SUM# + A(ll, JJ) * B(JJ)
NEXT J

B(ll) = (B(I) - SUM#) / A(lI, 1)
NEXT |

END SuB
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Appendix E
TTTI-CON PROGRAM

‘The behavior of simply supported orthotropic beam under a concentrated load
‘at mid-span is determined by the application of the through-the-thickness
‘inextensibility theory.

DECLARE SUB SERIESCOFF (LOADDIST!, P#, BBAR!, ACOF!)
DECLARE SUB SERICOFF (LOADDIST!, P#, BBAR!, ACOF!)
DECLARE SUB HERTZIAN (P#, BBAR!, ACOF!)

DECLARE FUNCTION SINH# (X AS DOUBLE)

DECLARE FUNCTION COSH# (X AS DOUBLE)

DECLARE FUNCTION TANH# (X AS DOUBLE)

‘The distribution of the concentrated load on the beam may follow
‘one of the following options:

'1- Uniform; LOADDIST=1

'2- Hertezian contact law; LOADDIST=2

'3- Eqn (4.31); LOADDIST=3

‘L: SPAN LENGTH

'H: THICKNESS OF THE BEAM

‘X: THE COORDINATE OF THE POINT THAT THE ANALYSIS IS DONE FOR
'EX: MODULUS OF ELASTICITY OF THE BEAM IN X DIRECTION

'EZ: MODULUS OF ELASTICITY OF THE BEAM IN Z DIRECTION

'ES: MODULUS OF ELASTICITY OF THE LOADING NOSE

'‘GXZ: THROUGH-THE-THICKNESS SHEAR MODULUS

'F: MAGNITUDE OF THE CONCENTRATED LOAD

‘R: RADIUS OF THE LOADING NOSE

‘NSERIES: NUMBER OF THE SERIES COMPONENTS TO BE CONSIDERED
'‘BBARRATIO: HALF CONTACT LENGTH TO THICKNESS RATIO. IS NOT

' USED FOR LOADDIST=2

'‘SDYNAMIC
DEFDBL P
CLS
OPEN "TTTI-CON.OUT" FOR OUTPUT AS #1 ‘Open Output file

‘Data Input

LOADDIST =3

READL, X, H, EX, GXZ

DATA 8,2,2, 200,4

READ F, EZ, ES, R, NSERIES

DATA .1,10,200,5,200

READ BBARRATIO 'FOR LOADDIST=1 AND 3
DATA 1.45



BBAR = H * BBARRATIO
Pl =4 * ATN(1)

'HALF OF CONTACT LENGTH FOR HERTZIAN CONTACT
IF LOADDIST = 2 THEN
DEL1 = 1/ (EZ * PI)
DEL2 = 1/ (ES * Pl)
BBAR = 2 * SQR(F * (DEL1 + DEL2) * R)
END IF

FOR N =1 TO NSERIES STEP 2

'SERIES COMPONENTS COEFFICIENTS
CALL SERIESCOFF(LOADDIST, P, BBAR, ACOF)
ACOF =(-1)A((N-1)/2)*ACOF *F /L

BETA=EX*P*2/GXZ
ALFA# = SQR(BETA) "H /2
Fl = SQR(EX / GX2)

'‘Deflection

WO = ACOF /(P " 2* GXZ* H)/(1- TANH(ALFA#) / ALFA#)

DEFLECTION = DEFLECTION + WO * SIN(P * X)

IAAAAARANENARARA R AN AN N A RAN SRR R AR AN TN AT RTAAR

'Stresses at 11 points through the thickness
FORI=0TO 10
Z=1"H/10-H/2

'

‘Sigmaxx
C1=FIA2/(ALFA# - TANH(ALFA#)) /2
C2 = SINH(2 * ALFA# * Z / H) / COSH(ALFA#)
SIGXX(l) = SIGXX(l) + ACOF *C1 *C2 * SIN(P * X)

‘Tuxz
C1 =FIl/ (ALFA# - TANH(ALFA#)) / 2
C2=(1-COSH(2 * ALFA# * Z / H) / COSH(ALFA#))
TUXZ(l) = TUXZ(l) + ACOF *C1*C2 " COS(P * X)

NEXT |
NEXT N

PRINT TAB(8); "Deflection:"; DEFLECTION
PRINT

PRINT TAB(8); " Z/H Sigxx Tuxz "
PRINT #1, TAB(8); "Deflection:"; DEFLECTION
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PRINT #1,
PRINT #1, TAB(8); " Z/H Sigxx Tuxz "

FORI=0TO 10

Z=1"H/10-H/2

PRINT TAB(8); USING "##.##", Z/ H,

PRINT USING " ## 80" SIGXX(I); TUXZ(I)
PRINT #1, TAB(8); USING "#t.##"; Z / H,

PRINT #1, USING " ##.#HRHAMAN SIGXX(T); TUXZ()
NEXT |

'Function to determine "cosine hyperpola
FUNCTION COSH# (X AS DOUBLE)
COSH = .5 * (EXP(X) + EXP(-X))
END FUNCTION

REM $STATIC
‘Subroutine to determine the coefficinets of Fourier series
SUB SERIESCOFF (LOADDIST, P, BBAR, ACOF)
SHARED PI
IF LOADDIST = 1 THEN
ACOF =2 * SIN(P * BBAR) / (P * BBAR)
END IF

IF LOADDIST = 2 THEN
IFP*BBAR/PI=.5THEN
ACOF =PI/ 2
ELSE
ACOF =2*COS(P*BBAR)/(1-4*(P*BBAR/PI)*2)
END IF
END IF

IF LOADDIST = 3 THEN
CC = SIN(P * BBAR)
C1=CC/P
IF P *BBAR =4 *P| THEN
C2=BBAR/2
ELSE
C2=-(P*BBAR*2/(16*Pt*2)*CC/(1-(P*BBAR/(4"PI)) *2))
END IF
IF BP * BBAR = 3 * PI THEN
C3=BBAR/2
ELSE
C3=(P*"BBAR"2/(9*PI*2)*CC/(1-(P*BBAR/(3*PI))*2))
END IF
IF P *BBAR =2 *PI THEN
C4=BBAR/2
ELSE
C4=-(P*"BBAR"2/(4"PI122)*CC/(1-(P*BBAR/(2*Pi)) *2))
END IF
IF P * BBAR = PI THEN
C5=BBAR/2
ELSE



C5=(P*BBAR*2/(PI*2)*CC/(1-(P*BBAR/PI)*2)
END IF
TEMP =4.375°C1+ .125*C2+C3+35°C4+7*C5
ACOF =4 /(8.75 * BBAR) * TEMP
END IF
END suB

REM $DYNAMIC

‘Function to determine "sine hyperbola”
FUNCTION SINH# (X AS DOUBLE)
SINH = .5 * (EXP(X) - EXP(-X))
END FUNCTION

'Function to determine “tan hyperbola”
FUNCTION TANH# (X AS DOUBLE)
TANH = SINH(X) / COSH(X)

END FUNCTION
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Appendix F

THE MATERIAL PROPERTIES USED FOR THE
DETERMINATION OF a

Table F.1 The material properties used for the determination

of a
Maretial En E, E33 V12, Vi3, Gz, Gis G
ID V3

AAO 200 4 .25 4 2
AAl 200 8 25 4 2
AA2 200 12 25 4 2
AA3 200 16 25 4 2
ABO 200 5 25 5 25
ABI 200 10 25 S 2.5
AB2 200 15 25 5 25
AB3 200 20 25 5 25
ACO 200 6.667 25 6.667 3.333
ACI 200 13.333 25 6.667 3.333
AC2 200 20 25 6.667 3.333
AC3 200 26.667 25 6.667 3.333
ADO 200 10 25 10 5
ADI 200 20 25 10 S
AD2 200 30 25 10 S
AD3 200 40 25 10 5
AEQ 200 20 25 20 10
AE] 200 40 25 20 10
AE2 200 60 25 20 10
AE3 200 80 25 20 10
BAO 200 4 3 4 2
BAl 200 8 3 4 2
BA2 200 12 3 4 2
BA3 200 16 3 4 2
BBO 200 5 3 5 2.5
BB1 200 10 3 5 2.5
BB2 200 15 3 5 2.5
BB3 200 20 3 5 2.5
BCO 200 6.667 3 6.667 3.333
BCl1 200 13.333 3 6.667 3.333
BC2 200 20 3 6.667 3.333
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Table F.1 (Continued)

Maretial En Ex, Eis Vi2, Vi3, G, Gis Gx
ID V23

BC3 200 26.667 3 6.667 3.333
BDO 200 10 3 10 S
BDI 200 20 3 10 5
BD2 200 30 3 10 5
BD3 200 40 3 10 5
BEO 200 20 3 20 10
BEI 200 40 3 20 . 10
BE2 200 60 3 20 10
BE3 200 80 3 20 10
CAO0 200 4 35 4 2
CAl 200 8 .35 4 2
CA2 200 12 35 4 2
CA3 200 16 35 4 2
CBO 200 5 35 5 2.5
CB1 200 10 35 5 2.5
CB2 200 15 35 5 2.5
CB3 200 20 35 S 2.5
CCo 200 6.6667 35 6.667 3.333
CCl 200 13.333 35 6.667 3.333
cC2 200 20 35 6.667 3.333
CC3 200 26.667 35 6.667 3.333
CDo 200 10 35 10 5
CD! 200 20 35 10 5
CD2 200 30 35 10 5
CD3 200 40 35 10 5
CEO 200 20 35 20 10
CEl 200 40 35 20 10
CE2 200 60 35 20 10
CE3 200 80 35 20 10
DAO 200 4 25 4 4
DAl 200 8 25 4 4
DA2 200 12 25 4 4
DA3 200 16 25 4 4
DBO 200 5 .25 5 5
DBI1 200 10 .25 5 5
DB2 200 1S 25 5 5
DB3 200 20 25 5 5
DCO 200 6.667 25 6.667 6.667
DCl1 200 13.333 25 6.667 6.667
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Table F.1 (Continued)

Maretial En Ex, Es3 Vi2, Vi3, Gz, Gis G
ID Va3

DC2 200 20 .25 6.667 6.6667
DC3 200 26.667 25 6.667 6.6667
DDO 200 10 25 10 10
DD1 200 20 25 10 10
DD2 200 30 25 10 10
DD3 200 40 25 10 10
DEO 200 20 25 20 20
DEI 200 40 .25 20 20
DE2 200 60 25 20 20
DE3 200 80 25 20 20
EAOQ 200 4 3 4 4
EAl 200 8 3 4 4
EA2 200 12 3 4 4
EA3 200 16 3 4 4
EBO 200 5 3 S 5
EBI1 200 10 3 5 5
EB2 200 15 3 5 5
EB3 200 20 3 5 5
ECO 200 6.667 3 6.667 6.6667
ECl 200 13.333 3 6.667 6.6667
EC2 200 20 3 6.667 6.6667
EC3 200 26.667 3 6.667 6.6667
EDO 200 10 3 10 10
EDI 200 20 3 10 10
ED2 200 30 3 10 10
ED3 200 40 3 10 10
EEO 200 20 3 20 20
EE1 200 40 3 20 20
EE2 200 60 3 20 20
EE3 200 80 3 20 20
FAO 200 4 35 4 4
FAI 200 8 35 4 4
FA2 200 12 .35 4 4
FA3 200 16 35 4 4
FBO 200 5 35 S 5
FBI 200 10 35 5 5
FB2 200 15 35 5 5
FB3 200 20 35 S 5
FCO 200 6.667 35 6.667 6.6667
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Table F.1 (Continued)

Maretial En Exn, E33 Vi2, Vi3, G2, Gia G
) vay
FCl1 200 13.333 35 6.667 6.6667
FC2 200 20 35 6.667 6.6667
FC3 200 26.667 .35 6.667 6.6667
FDO 200 10 .35 10 10
FDI 200 20 35 10 10
FD2 200 30 35 10 10
FD3 200 40 .35 10 10
FEO 200 20 35 20 20
FEI 200 40 .35 20 20
FE2 200 60 35 20 20
FE3 200 80 35 20 20
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Appendix G

VARIATION OF a AND THE ASSOCIATED ERRORS FOR THE

MATERIALS OF APPENDIX F

Table G.1 Results of calculations for short specimens with b/4=1.

Material Best %Error based on %Error based on
ID a the best a a=0.7
E G E G

AAQ 0.864 -0.19 -0.04 -1.59 7.54
AAl 0.677 -0.01 0.01 0.19 -1.06
AA2 0.592 0.05 0.05 0.97 -4.83
AA3 0.545 0.12 -0.09 1.44 -7.07
ABO 0.841 -0.21 0.08 -1.17 6.76
ABI 0.66 -0.02 0 0.26 -1.86
AB2 0.578 0.05 0.02 0.88 -5.64
AB3 0.531 0.1 -0.07 1.25 -7.87
ACO 0.817 -0.18 -0.04 -0.78 5.81
ACI 0.639 -0.03 0.1 0.29 -2.88
AC2 0.564 0.06 -0.08 0.76 -6.66
AC3 0.517 0.09 -0.09 1.04 -89
ADO 0.784 -0.15 -0.06 -0.44 4.52
ADI 0.62 0 -0.06 0.28 -4.28
AD2 0.545 0.05 -0.01 0.59 -8.1
AD3 0.501 0.09 0 0.78 -10.34
AEO 0.735 -0.11 0.02 -0.18 2.4
AEl 0.597 0.01 -0.05 02 -6.77
AE2 0.534 0.06 -0.01 0.36 -10.67
AE3 0.496 0.09 -0.02 0.46 -12.95
BAO 0.873 -0.15 -0.06 -1.63 7.96
BAIl 0.686 0.05 -0.07 0.17 -0.71
BA2 0.602 0.12 -0.05 0.96 -4.51
BA3 0.55 0.14 0.01 1.42 -6.76
BBO 0.852 -0.16 0.01 -1.2 7.25
BB1 0.667 0.01 0.09 0.24 -1.44
BB2 0.587 0.1 -0.02 0.87 -5.24
BB3 0.536 0.12 0.09 1.24 -7.49
BCO 0.829 -0.14 -0.02 -0.81 6.42
BCl1 0.653 0.03 -0.04 0.27 -2.34
BC2 0.573 0.09 -0.02 0.75 -6.15
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Table G.1 (Continued)

Material Best %Error based on %Error based on
ID o the best a a=0.7
E G E G

BC3 0.527 0.13 -0.04 1.03 -8.4
BDO 0.798 -0.12 0.02 -0.47 5.38
BD1 0.634 0.04 -0.02 0.27 -3.5
BD2 0.559 0.09 0.03 0.58 -7.34
BD3 0.517 0.13 -0.08 0.77 96
BEO 0.759 -0.08 0 -0.19 3.98
BE1 0.62 0.04 -0.03 0.19 -5.26
BE2 0.557 0.09 0.03 0.35 -9.18
BE3 0.522 0.12 -0.09 0.45 -11.47
CAO 0.883 -0.1 -0.08 -1.66 8.37
CAl 0.691 0.07 0.06 0.15 -0.37
CA2 0.606 0.14 0.05 0.94 -4.19
CA3 0.555 0.17 0.09 1.41 -6.46
CBO 0.864 -0.11 -0.08 -1.23 7.74
CBl1 0.677 0.06 0.07 0.22 -1.03
CB2 0.597 0.15 -0.06 0.85 -4 85
CB3 0.545 0.17 0.04 1.23 -7.12
CCoO 0.841 -0.11 0.01 -0.83 7.03
CCl1 0.663 0.06 0.04 0.26 -1.8
CcC2 0.583 0.13 0.04 0.74 -5.64
CC3 0.536 0.17 0.01 1.02 -79
CDO 0.815 -0.08 -0.03 -0.48 6.23
CDl1 0.648 0.07 0.02 0.25 -2.72
CD2 0.573 0.13 0.06 0.57 -6.58
CD3 0.531 0.17 -0.05 0.76 -8.85
CEO 0.782 -0.05 -0.02 -0.2 5.58
CEl 0.644 0.08 -0.02 0.18 3.73
CE2 0.583 0.13 -0.07 0.34 -7.68
CE3 0.545 -0.16 -0.04 0.44 -9.98
DAO 0.864 -0.22 0.08 -1.62 7.65
DAl 0.681 0.01 -0.09 0.17 -0.95
DA2 0.597 0.07 -0.05 0.95 -4.72
DA3 0.545 0.1 0.01 1.42 -6.96
DBO 0.845 -0.2 -0.03 -1.19 6.89
DB1 0.663 -0.02 0.01 0.24 -1.74
DB2 0.583 0.06 -0.07 0.86 -5.52
DB3 0.531 0.08 0.04 1.24 -7.76
DCO 0.82 -0.18 -0.02 -0.8 5.94
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Table G.1 (Continued)

Material Best %Error based on %Error based on
ID a the best a =0.7
E G E G

DCl1 0.644 -0.02 0 0.28 -2.75
DC2 0.564 0.04 0.04 0.75 -6.53
DC3 0.517 0.08 0.02 1.03 -8.77
DDO 0.784 -0.16 0.1 -0.46 4.68
DDI1 0.62 -0.01 0.08 0.27 -4.13
DD2 0.55 0.06 -0.09 0.58 -7.95
DD3 0.503 0.08 0.02 0.77 -10.19
DEO 0.737 -0.12 0.07 -0.18 2.6
DEI1 0.599 0.01 0.01 0.19 -6.56
DE2 0.536 0.06 0.05 0.36 -10.46
DE3 0.498 0.09 0.05 0.45 -12.73
EAO 0.873 -0.18 0.1 -1.66 8.1
EAl 0.686 0.02 0.07 0.14 -0.57
EA2 0.602 0.09 0.08 0.93 -4.37
EA3 0.555 0.16 -0.07 1.4 -6.63
EBO 0.855 -0.17 0.05 -1.23 7.41
EB1 0.672 0.02 0.03 0.21 -1.29
EB2 0.592 0.11 -0.08 0.85 -5.1
EB3 0.541 0.13 0.02 1.22 -7.35
ECO 0.831 -0.15 0.04 -0.83 6.58
EC1 0.655 0.03 0 0.26 2.17
EC2 0.578 0.1 -0.08 0.73 -5.99
EC3 0.529 0.13 0 1.01 -8.24
EDO 0.803 -0.12 -0.05 -0.48 5.57
EDI 0.639 0.04 -0.08 0.25 -3.31
ED2 0.564 0.09 -0.02 0.57 -7.15
ED3 0.517 0.12 0.09 0.76 -9.41
EEO 0.761 -0.09 0.1 -0.2 4.24
EE1 0.625 0.05 -0.07 0.18 -4.99
EE2 0.562 0.09 0.01 0.34 -8.91
EE3 0.524 0.12 0.03 0.44 -11.20
FAO 0.885 -0.12 -0.01 -1.7 8.55
FAl 0.695 0.07 0.02 0.11 -0.19
FA2 0.611 0.15 0.01 0.91 -4.03
FA3 0.559 0.18 0.05 1.38 -6.29
FBO 0.866 -0.12 0.01 -1.26 7.93
FB1 0.681 0.06 0.04 0.19 -0.84
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Table G.1 (Continued)

Matenial Best %Error based on %Error based on
ID a the best a a=0.7
E G E G

FB2 0.602 0.15 -0.09 0.83 -4.68
FB3 0.55 0.18 0 1.2 -6.94
FCO 0.845 -0.11 -0.03 -0.86 7.23
FCl1 0.667 0.06 0.01 0.23 -1.6
FC2 0.587 0.13 0.02 0.71 -5.44
FC3 0.541 0.17 -0.02 1 -7.71
FDO 0.817 -0.09 0.08 -0.5 6.47
FD1 0.653 0.07 0.01 0.23 -2.49
FD2 0.578 0.13 0.05 0.56 -6.35
FD3 0.536 0.17 -0.06 0.74 -8.63
FEO 0.787 -0.06 -0.04 -0.21 5.89
FE1 0.648 0.07 0 0.17 -3.41
FE2 0.587 0.13 -0.04 0.33 -7.35

FE3 0.55 0.15 0.01 0.43 -9.64




Table G.2 Results of calculations for long specimens with b/4=1.

Material Best %Error based on %Error based on
ID a the best a a=0.7
E G E G

AA0Q 0.855 -0.11 0 -0.54 4.99
AAl 0.677 -0.03 0.03 0.04 -0.71
AA2 0.597 0.01 0.03 0.3 32
AA3 0.55 0.03 0 0.45 -4.68
ABO 0.831 -0.11 0.02 -04 4.42
AB1 0.663 -0.01 -0.09 0.08 -1.32
AB2 0.583 0.02 0 0.28 -3.81
AB3 0.536 0.03 0.01 0.4 -5.29
ACO 0.803 -0.09 0.03 -0.27 3.71
ACl 0.639 -0.01 0.05 0.09 -2.07
AC2 0.569 0.02 -0.07 0.25 -4.59
AC3 0.522 0.03 0.02 0.33 -6.06
ADO 0.77 -0.07 -0.08 -0.15 2.73
ADI 0.62 0 -0.05 0.09 -3.14
AD2 0.55 0.02 0.04 0.19 -5.67
AD3 0.513 0.04 -0.07 0.25 -7.16
AEOQ 0.719 -0.05 0.02 -0.06 1
AE1 0.597 0 0.06 0.06 -5.13
AE2 0.545 0.03 -0.07 0.12 -1.73
AE3 0.513 0.04 -0.06 0.15 -9.24
BAO 0.864 -0.1 0.06 -0.55 5.35
BAI 0.686 -0.01 0.05 0.03 04
BA2 0.606 0.03 0.03 0.29 -2.91
BA3 0.559 0.05 0 0.44 4.4
BBO 0.845 -0.08 -0.04 -0.4 4.84
BB1 0.672 0 -0.01 0.07 -0.93
BB2 0.597 0.04 -0.09 0.27 -3.45
BB3 0.55 0.06 -0.08 0.39 -4.93
BCO 0.817 -0.08 0.06 -0.27 4.25
BC1 0.653 0.01 0.05 0.09 -1.58
BC2 0.578 0.04 0.09 0.24 -4.11
BC3 0.536 0.06 0.01 0.33 -5.6
BDO 0.789 -0.06 -0.06 -0.16 3.52
BD1 0.639 0.01 -0.04 0.08 -2.41
BD2 0.569 0.04 0.05 0.19 -4.96
BD3 0.531 0.06 -0.06 0.25 -6.46
BEO 0.747 -0.03 -0.04 -0.06 2.44

190



191

Table G.2 (Continued)

Material Best %Error based on %Error based on
ID a the best a a=0.7
E G E G
BE1 0.625 0.02 0.09 0.06 -3.72
BE2 0.573 0.04 0 0.12 -6.32
BE3 0.541 0.05 0.03 0.15 -7.84
CAO 0.878 -0.07 -0.05 -0.56 57
CAl 0.7 0.03 -0.09 0.03 -0.09
CA2 0.616 0.05 0.03 0.29 -2.62
CA3 0.569 0.08 -0.01 0.44 -4.11
CBO 0.859 -0.06 -0.09 -0.42 5.27
CBl1 0.681 0.02 0.06 0.06 -0.56
CB2 0.606 0.06 -0.04 0.27 -3.09
CB3 0.559 0.07 -0.02 0.39 -4.58
CCo 0.831 -0.06 0.1 -0.28 48
CC1 0.672 0.03 -0.1 0.08 -1.08
CC2 0.597 0.06 -0.07 0.24 -3.63
CC3 0.55 0.07 0.02 0.33 -5.12
CDO 0.808 -0.04 -0.05 -0.16 4.29
CDl1 0.658 0.03 -0.04 0.08 -1.69
CD2 0.587 0.06 0.07 0.19 -4.25
CD3 0.55 0.08 -0.04 0.25 -5.76
CEO 0.775 -0.02 -0.07 -0.07 3.93
CEl 0.655 0.03 0.01 0.06 -2.28
CE2 0.602 0.06 0.06 0.11 -4.91
CE3 0.571 0.07 0 0.15 -6.44
DAO 0.859 -0.1 -0.08 -0.55 5.06
DAl 0.681 -0.02 -0.04 0.03 -0.63
DA2 0.602 0.02 -0.04 0.29 -3.13
DA3 0.55 0.03 0.07 0.44 -4.61
DBO 0.831 -0.11 0.1 -04 4.5
DBI1 0.663 -0.02 0 0.06 -1.23
DB2 0.587 0.02 -0.08 0.27 -3.74
DB3 0.541 0.04 -0.06 0.39 -5.21
DCO 0.808 -0.09 -0.06 -0.27 3.79
DC1 0.644 -0.01 -0.02 0.08 -1.98
DC2 0.569 0.02 0.02 0.24 -4.49
DC3 0.522 0.03 0.09 0.33 -5.98
DDO 0.77 -0.08 0.03 -0.16 2.84
DDl 0.62 0 0.05 0.09 -3.04

DD2 0.555 0.03 -0.02 0.19 -5.57
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Table G.2 (Continued)

Material Best %Error based on %Error based on
ID a the best o a=0.7
E G E G
DD3 0.513 0.04 0.03 0.25 -7.05
DEO 0.721 -0.05 0.01 -0.06 1.12
DEI 0.602 0 -0.02 0.06 -4.99
DE2 0.545 0.03 0.07 0.12 -7.58
DE3 0.513 0.04 0.09 0.15 -9.08
EAO 0.869 -0.1 0 -0.57 545
EAl 0.691 0 0 0.02 -0.3
EA2 0.611 0.03 -0.02 0.28 -2.81
EA3 0.559 0.04 0.09 043 -4.3
EBO 0.85 -0.08 -0.1 -0.42 495
EBI 0.672 0 0.09 0.06 -0.83
EB2 0.597 0.04 0.01 0.27 -3.35
EB3 0.55 0.06 0.01 0.39 -4.84
ECO 0.822 -0.07 0 -0.28 436
ECl1 0.658 0.01 0.01 0.08 -1.47
EC2 0.583 0.04 0.04 0.24 -4
EC3 0.541 0.06 -0.03 033 -5.49
EDO 0.789 -0.06 0.07 -0.16 3.64
EDI1 0.644 0.01 -0.08 0.08 -2.27
ED2 0.573 0.04 0.01 0.19 -4.83
ED3 0.531 0.05 0.07 0.25 -6.32
EEO 0.752 -0.04 -0.09 -0.07 2.64
EE] 0.63 0.02 0.06 0.06 -3.52
EE2 0.578 0.04 -0.02 0.11 -6.12
EE3 0.545 0.05 0.02 0.14 -7.64
FAO 0.878 -0.08 0.07 -0.57 582
FAl 0.7 0.02 0.03 0.02 0.03
FA2 0.62 0.06 0 0.28 2.5
FA3 0.573 0.08 -0.04 0.43 -4
FBO 0.859 -0.07 0.04 -0.43 5.4
FB1 0.686 0.02 0.03 0.05 -0.43
FB2 0.606 0.05 0.09 0.26 -2.96
FB3 0.559 0.07 0.09 0.38 -4.46
FCO 0.836 -0.06 0.06 -0.29 493
FCI 0.672 0.02 0.04 0.07 -0.94
FC2 0.597 0.06 0.07 0.23 -3.49
FC3 0.555 0.08 -0.01 032 -4.99

FDO 0.813 -0.05 -0.07 -0.17 4.46




Table G.2 (Continued)
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Material Best %Error based on %Error based on
ID o the best a a=0.7
E G E G

FD1 0.663 0.04 -0.07 0.08 -1.53
FD2 0.592 0.06 0.05 0.18 -4.09
FD3 0.555 0.08 -0.06 024 5.6
FEO 0.78 -0.03 -0.09 -0.07 4.17
FEI 0.66 0.03 0 0.06 -2.05
FE2 0.606 0.06 0.07 0.11 -4.67
FE3 0.578 0.07 -0.08 0.14 -6.18




Table G.3 Results of calculations for short specimens with &/=3.

Material Best %Error based on %Error based on
ID a the best a a=0.7
E G E G
AAOQ 0.869 0.04 -0.01 -1.4 7.78
AAl 0.681 02 0.1 0.36 -0.76
AA2 0.602 0.29 -0.06 1.12 -4.52
AA3 0.55 0.3 0 1.58 -6.76
ABO 0.85 0.04 -0.07 -0.98 7.07
AB1 0.667 0.19 0.07 0.42 -1.46
AB2 0.587 0.26 0.01 1.03 -5.22
AB3 0.541 0.31 -0.07 1.4 -7.45
ACO 0.827 0.05 0.1 -0.6 6.22
ACl1 0.653 0.21 -0.02 0.45 -2.31
AC2 0.573 0.26 0.08 091 -6.05
AC3 0.527 0.29 0.08 1.18 -8.27
ADO 0.794 0.06 0.08 -0.26 5.17
ADI1 0.637 0.23 0.01 0.45 -3.35
AD2 0.564 0.28 0.07 0.76 -7.06
AD3 0.522 0.32 0.02 0.94 -9.25
AEO 0.759 0.13 -0.05 0.03 3.92
AE1 0.632 0.28 -0.02 041 -4.49
AE2 0.576 0.34 -0.01 0.57 -8.05
AE3 0.541 0.38 0.07 0.66 -10.14
BAO 0.878 0.13 0 -1.39 8.23
BA1l 0.691 0.3 0.04 0.38 -0.39
BA2 0.606 0.36 0.07 1.16 -4.17
BA3 0.559 041 -0.07 1.61 -6.42
BBO 0.859 0.12 0.03 -0.97 7.61
BB1 0.679 0.3 -0.01 0.45 -0.99
BB2 0.597 0.36 0.03 1.06 -4.76
BB3 0.55 0.4 -0.06 1.43 -7
BCO 0.838 0.13 0.02 -0.59 6.92
BC1 0.667 0.31 -0.06 0.48 -1.67
BC2 0.587 0.36 0.04 0.94 -5.42
BC3 0.541 0.39 0.04 1.22 -7.64
BDO 0.813 0.15 0.07 -0.24 6.2
BDI1 0.658 0.33 -0.1 0.48 -2.34
BD2 0.585 0.39 -0.01 0.79 -6.04
BD3 0.541 042 0.08 0.98 -8.23
BEO 0.789 0.23 -0.07 0.07 6.02
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Table G.3 (Continued)

Material Best %Error based on %Error based on
ID V1 the best a =0.7
E G E G

BE1 0.667 04 -0.09 0.46 -2.27
BE2 0611 0.47 0.07 0.63 -5.74
BE3 0.58 0.51 -0.04 0.73 -7.78
CAO 0.888 0.21 0 -1.39 8.67
CAl 0.7 0.41 -0.04 0.41 -0.04
CA2 0.616 0.47 -0.02 1.19 -3.85
CA3 0.564 0.49 0.03 1.65 -6.1
CBO 0.871 0.21 0 -0.96 8.15
CBl 0.691 0.41 -0.1 0.48 -0.54
CB2 0.606 0.46 0.03 1.1 -4.33
CB3 0.559 0.5 -0.06 1.47 -6.57
CCo 0.852 0.22 0.01 -0.57 7.62
CCl1 0.679 0.41 0 0.52 -1.03
CC2 0.602 0.47 -0.01 0.98 -4.79
CC3 0.555 0.51 0 1.26 -7.01
CDO 0.831 0.24 0.08 -0.21 7.25
CDl1 0.677 0.44 -0.07 0.52 -1.32
CD2 0.606 0.51 -0.07 0.84 -5.01
CD3 0.564 0.55 -0.07 1.02 -7.19
CEO 0.82 0.33 -0.03 0.12 8.19
CEl 0.7 0.52 0.05 0.52 0.05
CE2 0.648 0.6 0.07 0.7 -3.33
CE3 0.62 0.66 -0.08 0.8 -5.29
DAO 0.873 0.04 0.07 -1.44 8.08
DAl 0.691 0.23 0 0.31 -0.43
DA2 0.606 0.29 0.06 1.08 -4.19
DA3 0.559 0.34 -0.07 1.54 -6.42
DBO 0.855 0.04 0.02 -1.02 7.38
DBI1 0.677 0.22 -0.01 0.38 -1.11
DB2 0.597 0.29 -0.05 1 -4.85
DB3 0.545 0.31 0.08 1.37 -7.07
DCO 0.831 0.05 0.02 -0.63 6.56
DCI 0.663 0.23 -0.07 0.43 -1.91
DC2 0.583 0.28 0.06 0.89 -5.62
DC3 0.536 0.32 0.08 1.16 -7.82
DDO 0.803 0.08 -0.04 -0.28 5.57
DDI 0.646 0.24 0.01 0.43 -2.85

DD2 0.578 0.32 -0.09 0.74 -6.5




Table G.3 (Continued)

Material Best %Error based on %Error based on
ID o the best a a=0.7
E G E G

DD3 0.536 0.35 -0.1 0.93 -8.66
DEO 0.766 0.14 0.04 0.02 4.5
DE1 0.644 03 0.03 04 -3.68
DE2 0.592 0.37 -0.08 0.57 -7.09
DE3 0.559 0.41 -0.01 0.67 -9.07
EAO 0.888 0.15 -0.07 -1.45 8.6
EAl 0.7 0.33 0.02 033 0.02
EA2 0.616 0.39 0.06 1.1 -3.76
EA3 0.569 0.45 -0.08 1.57 -6.01
EBO 0.869 0.14 -0.03 -1.02 8
EB1 0.688 0.32 0 04 -0.55
EB2 0.606 0.38 0.06 1.02 -4.3
EB3 0.559 0.43 -0.02 1.39 -6.54
ECO 0.845 0.13 0.1 -0.62 7.35
ECI1 0.677 0.33 -0.02 0.45 -1.16
EC2 0.602 041 -0.09 0.92 -4.88
EC3 0.555 0.44 -0.06 1.19 -7.09
EDO 0.822 0.17 0.06 -0.26 6.7
EDI1 0.667 0.35 0.03 0.46 -1.72
ED2 0.597 0.42 0.08 0.78 -5.35
ED3 0.555 0.46 0.1 0.96 -7.5
EEO 0.798 0.24 -0.01 0.06 6.73
EE1 0.681 0.42 -0.01 0.46 -1.26
EE2 0.63 0.5 0.07 0.63 -4.54
EE3 0.602 0.56 -0.03 0.74 -6.44
FAO 0.897 0.23 0.01 -1.45 9.12
FAl 0.709 0.43 0.03 0.35 0.45
FA2 0.625 0.49 0.06 1.13 -3.34
FA3 0.578 0.56 -0.09 1.6 -5.6
FBO 0.883 0.24 -0.1 -1.02 8.62
FBI 0.7 0.43 0 0.43 0
FB2 0.62 0.51 -0.06 1.05 -3.77
FB3 0.569 0.52 0.07 1.42 -6.01
FCO 0.864 0.24 -0.07 -0.61 8.14
FCl1 0.691 0.43 0.04 0.48 -0.42
FC2 0.616 0.51 -0.03 0.95 414
FC3 0.569 0.55 0 1.23 -6.34
FDO 0.843 0.26 0.03 -0.24 7.86
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Table G.3 (Continued)
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Material Best %Error based on %Error based on
ID a the best a a=0.7
E G E G

FDI 0.691 0.47 -0.07 0.5 -0.57
FD2 0.62 0.54 0.03 0.82 -4.18
FD3 0.578 0.58 0.09 1.01 -6.3
FEO 0.831 0.35 0.01 0.11 9.06
FEl 0.719 0.56 0.02 0.52 1.27
FE2 0.672 0.65 0 0.7 -1.86
FE3 0.644 0.71 0.05 0.82 -3.65




Table G.4 Results of calculations for long specimens with b/4=3.

Material Best %Error based on %Error based on
ID a the best a a=0.7
E G E G

AAQ 0.869 0 0.1 -0.47 5.54
AAl 0.695 0.09 0 0.1 -0.15
AA2 0.616 0.12 -0.01 0.35 -2.66
AA3 0.569 0.14 -0.06 0.51 -4.16
ABO 0.85 0.01 0.03 -0.32 5.07
ABI 0.681 0.09 0 0.14 -0.61
AB2 0.606 0.13 -0.06 0.34 -3.12
AB3 0.559 0.14 -0.06 0.46 -4.62
ACO 0.827 0.02 0.01 -0.19 4.55
ACl 0.667 0.1 0.02 0.16 -1.13
AC2 0.597 0.14 -0.06 0.31 -3.63
AC3 0.55 0.15 0.02 04 -S5.11
ADO 0.798 0.04 0.02 -0.07 3.98
ADI1 0.658 0.12 -0.02 0.17 -1.66
AD2 0.592 0.15 0.01 0.27 -4.13
AD3 0.555 0.17 -0.06 0.33 -5.6
AEQ 0.77 0.09 -0.09 0.05 3.65
AE1 0.667 0.16 -0.03 0.17 -1.72
AE2 0.62 0.18 0.02 0.23 -4.02
AE3 0.592 0.2 0.03 0.27 -5.38
BAO 0.888 0.06 -0.09 -0.46 5.98
BAI 0.709 0.14 -0.05 0.12 0.25
BA2 0.625 0.16 0.08 0.37 -2.28
BA3 0.578 0.18 0.03 0.52 -3.79
BBO 0.869 0.06 -0.07 -0.31 561
BB1 0.695 0.14 0.05 0.15 -0.11
BB2 0.62 0.18 -0.02 0.35 -2.63
BB3 0.573 0.19 -0.02 0.47 -4.13
BCO 0.845 0.07 0.04 -0.18 5.26
BCl1 0.686 0.15 0.06 0.17 -0.44
BC2 0.616 0.19 -0.02 0.33 -2.94
BC3 0.569 0.2 0.08 0.42 -4.43
BDO 0.827 0.09 -0.07 -0.05 5.04
BDI1 0.686 0.17 -0.03 0.19 -0.58
BD2 0.62 0.2 0.05 0.29 -3.03
BD3 0.583 0.22 0 0.36 -4.5
BEO 0.808 0.14 0.1 0.08 59
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Table G.4 (Continued)

Material Best %Error based on %Error based on
ID a the best a a=0.7
E G E G

BEl 0714 0.22 -0.03 0.21 0.71
BE2 0.672 0.25 -0.04 027 -1.49
BE3 0.644 0.28 0.08 0.31 -2.79
CAO 0.897 0.1 0.04 -0.45 641
CAl 0.719 0.18 0.04 0.13 0.64
CA2 0.639 0.22 0.01 0.39 -1.91
CA3 0.592 024 -0.04 0.54 -3.42
CBO 0.883 0.11 -0.03 -0.3 6.14
CBl1 0.709 0.19 0.08 0.17 0.39
CB2 0.634 0.23 0.01 0.37 -2.14
CB3 0.587 0.24 0.01 0.49 -3.64
CCo 0.864 0.12 0.06 -0.16 5.96
CCl1 0.709 0.21 -0.07 0.19 0.26
CC2 0.634 0.24 0.03 0.35 -2.25
CC3 0.592 0.26 -0.02 0.44 -3.74
CDO 0.85 0.14 0.04 -0.03 6.12
CDl 0.714 0.23 -0.03 0.21 0.53
CD2 0.653 0.27 -0.08 0.32 -1.91
CD3 0611 0.28 0.07 0.38 -3.36
CEO 0.85 02 0.07 0.11 8.24
CEl 0.761 0.29 0.03 0.25 3.26
CE2 0.723 0.33 -0.05 032 1.18
CE3 0.7 0.36 -0.05 0.36 -0.05
DAl 0.705 0.1 -0.04 0.09 0.11
DA2 0.625 0.13 -0.04 034 -2.39
DA3 0.578 0.15 -0.07 0.49 -3.89
DBO 0.859 0.02 -0.04 -0.34 5.32
DB1 0.691 0.1 -0.02 0.12 -0.33
DB2 0616 0.14 -0.06 0.33 -2.82
DB3 0.569 0.15 -0.04 045 -4.3
DCO 0.836 0.03 -0.05 0.2 4.82
DCl1 0.677 0.11 0.02 0.15 -0.8
DC2 0.606 0.14 -0.02 0.3 -3.26
DC3 0.559 0.16 0.09 0.39 -4.73
DDO 0.808 0.05 -0.03 -0.07 431
DDI 0.667 0.13 0.05 0.16 -1.23
DD2 0.606 0.16 -0.02 0.27 -3.64

DD3 0.569 0.18 -0.05 0.33 -5.07




Table G.4 (Continued)
Material Best %Error based on %Error based on
ID a the best a a=0.7
E G E G

DEO 0.78 0.09 -0.08 0.04 418
DE!1 0.681 0.16 0.01 0.18 -0.96
DE2 0.639 02 0.01 0.23 -3.09
DE3 0.616 0.22 -0.07 0.27 -4.34
EAO 0.892 0.05 0.05 -0.48 6.27
EAl 0.719 0.15 -0.03 0.1 0.57
EA2 0.639 0.18 -0.02 0.35 -1.94
EA3 0.587 0.19 0.08 0.5 -3.45
EBO 0.878 0.07 -0.09 -0.33 592
EBI 0.709 0.16 -0.06 0.14 0.25
EB2 0.634 0.19 -0.1 0.34 -2.25
EB3 0.587 0.21 -0.08 0.46 -3.74
ECO 0.855 0.07 0.04 -0.19 56
ECI 0.7 0.16 -0.02 0.16 -0.02
EC2 0.63 0.2 -0.04 0.32 -2.48
EC3 0.587 0.22 -0.07 0.41 -3.95
EDO 0.836 0.1 -0.04 -0.06 5.46
EDI1 0.7 0.18 -0.04 0.18 -0.04
ED2 0.639 0.22 -0.05 0.29 -2.42
ED3 0.602 0.24 -0.04 0.35 -3.83
EEO 0.822 0.15 -0.03 0.07 6.56
EE1 0.733 0.23 -0.06 0.21 1.66
EE2 0.695 0.27 -0.08 0.28 -0.33
EE3 0.672 0.3 -0.02 0.32 -1.47
FAO 0.906 0.1 0.08 -0.48 6.75
FAl 0.733 0.2 -0.02 0.11 1.02
FA2 0.653 .0.24 -0.02 0.37 -1.5
FA3 0.606 0.26 -0.06 0.52 -3.01
FBO 0.892 0.11 0.03 -0.32 6.52
FBI 0.723 0.2 0.05 0.15 0.83
FB2 0.648 0.24 0.01 0.36 -1.68
FB3 0.602 0.26 0.04 0.48 -3.17
FCO 0.878 0.13 -0.04 -0.17 6.39
FCl 0.723 0.22 -0.06 0.18 0.76
FC2 0.653 0.26 -0.06 0.34 -1.69
FC3 0.606 0.27 0.08 0.43 -3.16
FDO 0.864 0.15 -0.04 -0.04 6.63
FD1 0.728 0.24 0.08 0.21 1.19
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Table G.4 (Continued)

Material Best %Error based on %Error based on

ID o the best a a=0.7
E G E G

FD2 0.672 0.28 -0.06 0.32 -1.16
FD3 0.634 0.31 0 0.38 -2.55
FEO 0.864 0.21 0.07 0.11 9.04
FEI 0.784 0.3 -0.08 0.26 443
FE2 0.749 0.36 0.01 0.33 261
FE3 0.73 0.39 -0.01 0.37 1.59
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Table G.5 Results of calculations for short specimens with b/4=5.

Matenal Best %Error based on %Error based on
ID a the best o =0.7
E G E G

AAQ 0.845 0.01 0 -1.23 6.7
AAl 0.667 0.27 -0.03 0.55 -1.53
AA2 0.587 0.37 -0.01 1.33 -5.09
AA3 0.541 0.43 -0.02 1.79 -7.2
ABO 0.827 0.04 -0.08 -0.83 5.94
ABI 0.653 0.29 -0.08 0.61 -2.27
AB2 0.573 0.37 0.05 1.24 -5.82
AB3 0.531 0.45 -0.1 1.61 -79
ACO 0.801 0.06 0 -0.46 5.01
ACl 0.634 03 0.02 0.64 -3.18
AC2 0.562 0.41 0 1.13 -6.68
AC3 0.517 0.47 0.06 1.41 -8.73
ADO 0.77 0.12 0.03 -0.12 3.83
ADI1 0.62 0.38 -0.1 0.66 -4.31
AD2 0.552 0.49 0 l -7.72
AD3 0.513 0.56 0.05 1.21 -9.68
AEO 0.733 0.27 0.03 0.22 2.24
AE1 0.616 0.56 -0.06 0.7t -5.58
AE2 0.569 0.71 -0.08 0.95 -8.55
AE3 0.541 0.81 0.07 1.1 -10.12
BAO 0.85 0.09 0.02 -1.19 6.94
BAI 0.672 0.39 -0.02 0.63 -1.3
BA2 0.592 0.5 0.03 1.42 -4.85
BA3 0.545 0.56 0.04 1.88 -6.93
BBO 0.831 0.11 0.03 -0.79 6.26
BB1 0.658 0.4 0.02 0.69 -1.95
BB2 0.583 0.53 -0.02 1.33 -5.46
BB3 0.536 0.58 0.06 1.71 -7.52
BCO 0.81 0.16 0 -0.41 5.49
BClI 0.644 0.44 0.06 0.73 -2.68
BC2 0.573 0.57 -0.02 1.23 -6.14
BC3 0.531 0.65 -0.02 1.52 -8.15
BDO 0.784 0.24 0.04 -0.05 4.62
BDI1 0.634 0.53 0.03 0.76 -3.45
BD2 0.571 0.68 -0.01 1.13 -6.77
BD3 0.534 0.77 0.01 1.35 -8.66
BEO 0.761 0.44 -0.08 0.33 4.05
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Table G.5 (Continued)

Material Best %Error based on %Error based on
ID o the best a a=0.7
E G E G

BE1 0.648 0.79 -0.03 0.88 -3.43
BE2 0.606 0.99 -0.02 1.16 -6.12
BE3 0.585 1.13 -0.03 1.33 -7.45
CAO 0.855 0.17 0.03 -1.15 7.17
CAl 0.677 0.51 -0.03 0.71 -1.09
CA2 0.597 0.63 0.04 1.51 -4.62
CA3 0.55 0.7 0.07 1.98 -6.68
CBO 0.838 0.21 0.02 -0.74 6.58
CBl1 0.665 0.53 0.01 0.77 -1.64
CB2 0.587 0.66 0.1 1.43 -5.12
CB3 0.545 0.76 0 1.81 -7.15
CCo 0.82 0.27 0.01 -0.35 5.96
CCl 0.653 0.58 0.1 0.83 -2.19
CcC2 0.583 0.74 0.08 1.34 -5.6
CC3 0.545 0.85 -0.09 1.65 -7.56
CDO 0.798 0.37 0.07 0.02 542
CD1 0.653 0.72 -0.07 0.88 -2.56
CD2 0.59 0.89 0.01 1.27 -5.78
CD3 0.555 1 0.01 1.51 -7.58
CEo 0.787 0.62 0.06 0.47 5.96
CEl 0.684 1.06 -0.05 1.09 -1.14
CE2 0.646 1.31 0.04 1.4 -3.5
CE3 0.63 1.49 0.03 1.62 -4.56
DAO 0.845 0.01 0.04 -1.22 6.73
DAl 0.667 0.28 0.05 0.56 -1.45
DA2 0.59 0.4 0 1.34 -4.98
DA3 0.545 0.48 -0.09 1.8 -7.06
DBO0 0.827 0.04 -0.03 -0.83 598
DBI 0.653 0.3 0.01 0.62 -2.18
DB2 0.578 0.42 -0.03 1.25 -5.69
DB3 0.531 0.47 0.05 1.63 -7.74
DCO 0.803 0.08 -0.07 -0.45 5.06
DCI 0.639 0.34 -0.09 0.65 -3.07
DC2 0.564 0.44 0.05 1.14 -6.52
DC3 0.522 0.52 0.04 1.44 -8.52
DDO 0.773 0.14 -0.03 -0.11 391
DDI 0.62 0.4 0.05 0.67 -4.16

DD2 0.557 0.53 -0.01 1.03 -7.49




Table G.5 (Continued)
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Material Best %Error based on %Error based on
ID a the best a a=0.7
E G E G

DD3 0.52 0.61 0 1.24 -9.38
DEO 0.735 029 0 0.23 2.37
DE1 0.62 0.59 -0.06 0.73 -5.28
DE2 0.573 0.76 0.09 0.98 -8.07
DE3 0.552 0.88 0 1.15 -947
EAO 0.85 0.09 0.07 -1.18 6.99
EAl 0.672 04 0.08 0.64 -1.2
EA2 0.597 0.55 -0.04 1.43 -4.71
EA3 0.55 0.62 0 1.9 -6.76
EBO 0.831 0.12 0.09 -0.78 6.32
EBI 0.663 0.44 -0.08 0.7 -1.84
EB2 0.587 0.57 -0.07 1.34 -5.3
EB3 0.541 0.64 0.05 1.73 -7.32
ECO 0.813 0.18 -0.05 04 5.55
ECl1 0.648 0.48 -0.03 0.74 -2.54
EC2 0.578 0.62 -0.03 1.25 -5.94
EC3 0.536 0.7 0.01 1.55 -7.89
EDO 0.787 0.26 0 -0.04 4.71
ED! 0.639 0.57 -0.02 0.78 -3.25
ED2 0.578 0.73 -0.08 1.16 -6.48
ED3 0.541 0.84 0.03 1.39 -8.27
EEO 0.761 0.46 0.09 0.35 422
EEI 0.653 0.83 0.04 0.92 -3.05
EE2 0.616 1.06 0 1.21 -5.5
EE3 0.597 1.22 0.08 1.41 -6.61
FAO 0.855 0.18 0.1 -1.14 7.22
FAl 0.677 0.52 0.09 0.72 -0.97
FA2 0.602 0.69 0 1.53 -4.45
FA3 0.555 0.77 0.07 2 -6.47
FBO 0.841 0.23 -0.03 -0.73 6.65
FBI 0.667 0.57 0.03 0.79 -1.5
FB2 0.592 0.71 0.08 1.45 -492
FB3 0.55 0.82 0.03 1.84 -6.9
FCO 0.822 0.29 -0.03 -0.34 6.05
FCI 0.658 0.63 0.04 0.84 -2.02
FC2 0.587 0.79 0.1 1.37 -5.35
FC3 0.55 0.91 -0.01 1.68 -7.24
FDO 0.803 04 -0.08 0.04 5.54




Table G.5 (Continued)

Material Best %Error based on %Error based on
ID a the best a a=0.7
E G E G

FDI1 0.658 0.76 -0.08 091 -2.32
FD2 0.597 0.95 0 1.31 -5.42
FD3 0.564 1.09 0 1.56 -7.11
FEO 0.791 0.65 -0.07 0.49 6.17
FEI 0.691 1.12 -0.04 1.13 -0.66
FE2 0.658 14 0.05 1.48 -2.73

FE3 0.646 1.62 0.03 1.72 -3.5




Table G.6 Results of calculations for long specimens with &//=5.

Matenial Best %Error based on %Error based on
ID a the best a a=0.7
E G E G

AAO 0.841 0.04 0.03 -0.35 4.55
AAl 0.677 0.16 -0.02 0.23 -0.76
AA2 0.602 0.21 0.03 0.48 -3.05
AA3 0.559 0.24 -0.02 0.63 -441
ABO 0.822 0.06 -0.05 -0.21 4.04
ABl1 0.663 0.18 -0.01 0.26 -1.24
AB2 0.592 0.23 0 0.47 -3.51
AB3 0.55 0.26 0.01 0.59 -4.84
ACO 0.798 0.09 -0.07 -0.08 3.44
AC1 0.648 0.2 0.02 0.29 -1.78
AC2 0.583 0.25 0.05 0.45 -3.98
AC3 0.545 0.29 0.02 0.55 -5.27
ADO 0.77 0.13 -0.05 0.05 2.76
ADI1 0.639 0.25 0.06 0.32 -2.31
AD2 0.587 0.31 -0.05 0.44 -4.36
AD3 0.555 0.35 0 0.52 -5.53
AEQ 0.742 0.23 0.01 0.2 2.23
AEl 0.663 0.38 -0.09 04 -2.02
AE2 0.634 0.46 -0.04 0.5 -3.38
AE3 0.62 0.52 0.05 0.57 -3.98
BAO 0.85 0.1 -0.04 -0.31 4.79
BAl 0.686 0.24 -0.03 0.28 -0.47
BA2 0.616 03 -0.08 0.53 -2.73
BA3 0.569 0.32 0.04 0.68 -4.06
BBO 0.831 0.12 -0.03 -0.17 437
BBI 0.672 0.25 0.08 0.31 -0.84
BB2 0.606 0.31 -0.01 0.52 -3.06
BB3 0.564 0.35 0.04 0.65 -4.36
BCO 0.813 0.15 -0.08 -0.04 3.94
BCl1 0.667 0.29 -0.04 0.35 -1.18
BC2 0.606 0.36 -0.08 0.52 -3.32
BC3 0.569 0.4 -0.04 0.62 -4.55
BDO 0.789 02 0.04 0.1 3.61
BDI 0.667 0.35 0 0.39 -1.28
BD2 0.616 0.43 0.05 0.53 3.2
BD3 0.587 0.48 0.04 0.61 -4.27
BEO 0.78 0.34 0.06 0.29 431
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Table G.6 (Continued)
Material Best %Error based on %Error based on
ID a the best a a=0.7
E G E G

BE1 0.712 0.53 0.01 0.52 0.63
BE2 0.695 0.65 -0.07 0.65 -0.31
BE3 0.691 0.73 -0.09 0.74 -0.57
CA0 0.855 0.16 0.03 -0.27 5.02
CAl 0.691 0.3 0.1 0.33 -0.2
CA2 0.625 0.38 -0.06 0.59 -2.42
CA3 0.578 041 0.09 0.75 -3.72
CBO 0.841 0.19 -0.02 -0.13 4.7
CB1 0.686 0.34 0.01 0.37 -0.45
CB2 0.62 041 -0.01 0.59 -2.61
CB3 0.578 045 0.08 0.72 -3.87
CCo 0.822 0.22 0.08 0.01 4.44
CCl1 0.681 0.38 0.08 0.41 -0.58
CC2 0.625 0.46 -0.03 0.59 -2.63
CC3 0.587 0.51 0.07 0.7 -3.8
CDO 0813 0.29 -0.05 0.16 448
CDl1 0.695 0.47 -0.02 0.48 -0.2
CD2 0.648 0.57 0.02 0.63 -1.98
CD3 0.625 0.64 -0.03 0.72 -2.93
CEO 0.822 0.47 -0.07 0.39 6.51
CEl 0.766 0.71 0.01 0.67 3.48
CE2 0.756 0.86 0.08 0.83 3.04
CE3 0.761 0.98 -0.04 0.94 3.18
DAO 0.841 0.04 0.08 -0.35 4.6
DAl 0.681 0.18 -0.07 0.23 -0.67
DA2 0.606 0.22 0.01 0.48 -2.93
DA3 0.564 0.26 -0.01 0.64 -4.26
DBO 0.822 0.06 0.01 -0.21 4.09
DBI 0.663 0.18 0.09 0.26 -1.13
DB2 0.597 0.24 0 0.47 -3.36
DB3 0.559 0.28 -0.1 0.6 -4.65
DCO 0.798 0.09 0 -0.08 3.51
DCl1 0.653 0.21 -0.01 0.29 -1.64
DC2 0.587 0.27 0.08 0.46 -3.79
DC3 0.555 0.31 -0.05 0.56 -5.03
DDoO 0.77 0.13 0.04 0.05 2.85
DDI 0.644 0.26 0.07 0.33 -2.12

DD2 0.592 0.33 0.06 0.45 -4.08
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Table G.6 (Continued)
Matenal Best %Error based on %Error based on
ID o the best a a=0.7
E G E G

DD3 0.564 0.38 0.02 0.53 -5.16
DEO 0.747 0.24 -0.07 0.21 241
DEI 0.667 04 0.07 042 -1.62
DE2 0.646 0.49 0 0.53 -2.75
DE3 0.639 0.57 -0.02 0.6 -3.13
EAOQ 0.85 0.11 0.02 -0.31 485
EAl 0.691 0.25 -0.06 0.28 -0.36
EA2 0.616 0.3 0.07 0.54 -2.58
EA3 0.578 0.35 -0.06 0.69 -3.87
EBO 0.831 0.12 0.04 -0.17 444
EBI1 0.681 0.28 -0.09 032 -0.71
EB2 0.611 0.33 0.03 0.53 -2.87
EB3 0.573 0.38 -0.02 0.66 -4.13
ECO 0.813 0.16 0.01 -0.03 4.02
EC1 0.672 0.31 -0.03 0.35 -1.02
EC2 0611 0.38 0 0.53 -3.08
EC3 0.578 0.43 -0.05 0.64 -4.24
EDO 0.794 0.21 -0.04 0.11 3.72
EDI1 0.672 0.37 0.06 04 -1.04
ED2 0.625 0.46 0.06 0.54 -2.84
ED3 0.602 0.52 -0.01 0.64 -3.8
EEO 0.784 0.35 0.02 0.3 4.53
EE1 0.723 0.56 -0.09 0.55 1.14
EE2 0.709 0.69 0.03 0.69 0.52
EE3 0.709 0.79 0.07 0.79 0.56
FAO 0.859 0.17 -0.05 -0.27 5.09
FAl 0.7 0.34 -0.06 0.34 -0.06
FA2 0.63 04 -0.02 0.6 -2.23
FA3 0.587 0.45 0.03 0.76 -3.49
FBO 0.841 0.19 0.06 -0.12 4.78
FBI1 0.691 0.36 0.02 0.38 -0.29
FB2 0.625 0.43 0.06 0.6 -2.39
FB3 0.587 0.48 0.06 0.74 -3.59
FCO 0.827 0.23 0.01 0.02 4.54
FC1 0.691 0.41 -0.05 0.42 -0.37
FC2 0.634 0.5 -0.06 0.61 -2.34
FC3 0.602 0.56 -0.03 0.72 -3.43

FDO 0.813 0.3 0.09 0.17 4.62




Table G.6 (Continued)

Matenal Best %Error based on %Error based on
ID a the best a a=0.7
E G E G
FDI 0.7 0.49 0.1 0.49 0.1
FD2 0.663 061 -0.07 0.65 -1.53
FD3 0.639 0.69 0.02 0.75 -2.35
FEO 0.827 0.48 -0.06 0.41 6.78
FEIl 0.777 0.75 0.02 0.7 4.13
FE2 0.777 092 -0.02 0.88 4.09
FE3 0.787 1.06 0 1.01 461
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Appendix H
THE VSM APPARATUS

Figure H-1 illustrates the apparatus developed and used for the VSM. Each component of
the apparatus is identified by a number. As the elevation of the apparatus shows, it
comprises of a base (4), two supporting blocks (3), a middle assembly composed of parts
(5) through (13), two side assemblies composed of parts (14) through (20) and two
connecting bridges (21).

The test specimen (1) sits on two supporting rollers (2) parallel to each other. The rollers
(2) are located on the support blocks (3), and the support blocks (3) rest on the base (4).
By sliding the support blocks (3) over the base (4) one can change the span of the

specimen (1).

Part (5) is a loading nose which is connected to the top plate (6) and is parallel to the
supporting rollers (2). The top plate is rigidly connected to the load frame by a screw
between the threaded hole (7) and the load frame. By relative vertical movement of the
base (4) with respect to the top plate (6), load is applied to the specimen (1) through the

support rollers (2) and the loading nose (5).

A locating beam (8) passes underneath the test specimen (1). The contact point (9) on the
top of the locating beam (8) makes contact to the bottom of the specimen (1) at the center
of the loading nose (5). The locating beam is connected to two guide bars (10) which
restrict the movements of the locating beam, except in the vertical direction. The two
guide bars (10) slide through two holes provided in the top plate (6). The bars (10) are
hold by two compression spring (11) placed between the top plate (6) and the stop collars
(12). By this assembly, the bottom vertical displacement of the specimen (1) at its mid-

span is transferred to the mounting plates (13).
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The top vertical displacements of the specimen (1) at supports are transferred to the side
assemblies and from there to connecting bridges (21). Each assembly consists of a pointer
(14), a locating arms (15), a guide plate (16), a guide bar (17), two sliders (18), two side
screws (19), and an adjusting screw (20). The pointer (14) is located at the center of the
support (2) and transfers the top vertical displacement of the specimen to the assembly
through the locating arm (15). The guide plate (16) can slide freely in vertical direction
along the guide bar (17) and over the back of the support block (3). Two sliders (18) are
provided to reduce the friction between the guide plate (16) and the support block (3).

The adjusting screw (20) is to adjust the vertical position of the side assembly.

The connecting bridges (21) are hinge connected to one of the side assemblies through the
side screws (19) and sit on the two other side screws (19) of the other side assembly. The
change of vertical distance between the connector bridge (21) and the mounting plate (13)
located on one side of the apparatus is the net mid-span deflection of the specimen (1).
This displacement can be measured by mounting a displacement transducer (LVDT) to the

mounting plate (13), while the moving end of the device sits on the connecting bridge

(21).

Figures H.2 through H.4 show the general view of the VSM apparatus and test setup.
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Figure H.3 E-glass/epoxy specimen in the VSM apparatus.



Figure H.4 Front view of the VSM apparatus.
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Appendix I
SPECIFICATIONS OF THE TESTS SPECIMENS

The specifications of the specimens used in the VSM test are tabulated in Tables I.1
through [.14. The values tabulated in columns 5 of these tables are the rate of
displacement of the actuator. Initial slopes of the load-deflection curve from the two
consecutive tests on the specimens are presented in columns 6 and 7, respectively. The
specification of the specimens used for tensile and various shear tests are tabulated in
Tables I.15 through I.21. The corresponding modulus obtained from each test is tabulated

in the last column.

Table I.1 Specifications of graphite/epoxy specimens in GR-1 set for the VSM.
Specimen  Width  Thickness  Span Rate (F/A), (F/A),

ID (mm) (mm) (mm)  (mm/sec) (N/mm) (N/mm)
GR-SAl 12.65 2.64 14.97 03 21417 21417
GR-SA2 12.58 26 14.97 0.3 21160 21463
GR-SA3 12.71 2.58 14.97 0.3 19563 21836
GR-EA1l 12.59 2,57 17.57 0.354 13350 13708
GR-EA2 12.63 2.63 17.57 0.354 15336 15105
GR-EA3 12.63 26 17.57 0.354 13742 14337
GR-TAI 12.64 2.57 21.95 0.467 8599 8530
GR-TA2 12.64 2.6 21.95 0.467 9136 9194
GR-TA3 12.56 2.62 2195 0.467 8885 8885

GR-FAl 12.34 2.56 31.99 0.82 3126 3155
GR-FA2 12.42 2.58 31.99 0.816 3256 3303

GR-FA3 12.44 2.58 31.99 0.816 3221 3340
GR-XALl 12.56 2.47 74.22 3.865 268 268.7
GR-XA2 12.53 2.51 74.22 3.808 270.1 270

GR-XA3 12.54 2.54 74.22 3.767 292.8 2933




Table 1.2 Specifications of graphite/epoxy specimens in GR-2 set for the VSM.

Specimen  Width  Thickness  Span Rate (F/A), (F/A),
ID (mm) (mm) (mm) (mm/sec) (N/mm) (N/mm)
GR-SB1 12.41 2.7 14.97 0.3 20218 20122
GR-SB2 12.52 2.71 14.97 03 22973 23031
GR-SB3 12.58 2.67 1497 03 21312 21507
GR-EB! 12.41 2.71 17.57 0.352 16208 15576
GR-EB2 12.6 2.71 17.57 0.352 16627 16570
GR-EB3 12.53 2.72 17.57 0.352 17559 17333
GR-TBI 12.59 2.66 2195 0.461 9230 9303
GR-TB2 12.52 2.7 2195 0.459 9857 9767
GR-TB3 124 2.66 21.95 0.461 8792 8835
GR-FB1 12.45 2.71 31.99 0.792 3553 3657
GR-FB2 12.44 2.7 31.99 0.794 3558 3735
GR-FB3 12.44 2.7 31.99 0.794 3405 3675
GR-XBI1 12.66 2.65 74.22 3.624 335.5 335
GR-XB2 12.66 2.6 7422 3.687 313.3 3204
GR-XB3 12.67 2.65 74.22 3.624 335.3 3348

Table I.3 Specifications of graphite/epoxy specimens in GR-3 set for the VSM.

Specimen  Width  Thickness  Span Rate (F/A), (F/A),
ID (mm) (mm) (mm) (mm/sec) (N/mm) (N/mm)
width h L F/defl F/defl
GR-SC1 12.59 2.69 14.97 0.193 20346 21422
GR-SC2 12.51 2.69 14.97 0.193 21096 21648
GR-SC3 12.52 2.7 1497 0.192 22776 22776
GR-ECI 12.49 2.69 17.57 0.245 14781 15317
GR-EC2 12.6 2.71 17.57 0.244 15589 15764
GR-EC3 12.62 2.69 17.57 0.245 16234 15530
GR-TC1 12.66 2.66 21.95 0.355 9365 9229
GR-TC2 12.63 2.69 2195 0.352 9648 9712
GR-TC3 12.65 2.68 21.95 0.353 9687 9613
GR-FC1 12.36 2.67 31.99 0.692 3477 3587
GR-FC2 12.4 2.66 31.99 0.694 3531 3550
GR-FC3 12.36 2.7 31.99 0.686 3368 3628
GR-XCl1 12.55 2.64 74.22 3.53 330.1 329.7
GR-XC2 12.56 2.64 7422 3.53 336.4 334.6
GR-XC3 12.56 2.64 74.22 3.53 336.8 335.2
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Table 1.4 Specifications of graphite/epoxy specimens in GR-4 set for the VSM.

Specimen  Width  Thickness  Span Rate (F/A), (F/A),
ID (mm) (mm) (mm)  (mm/sec) (N/mm) (N/mm)
GR-SDI1 12.48 2.59 14.97 0.173 21429 21429
GR-SD2 12,5 2.59 14.97 0.173 22696 22578
GR-SD3 12.54 2.58 14.97 0.174 21062 20680
GR-EDI 12.49 261 17.57 0.238 15042 14872
GR-ED2 12.47 26 17.57 0.239 14697 14654
GR-ED3 12.47 261 17.57 0.238 14690 13946
GR-TDI 12.52 2.59 21.95 0.394 8870 8790
GR-TD2 12.5 261 21.95 0.39 8419 8646
GR-TD3 12.48 2.57 21.95 0.399 8424 8571
GR-FDI 12.45 2.57 31.99 1.018 3052 3062
GR-FD2 12.44 2.57 31.99 1.018 3111 3202
GR-FD3 12.5 2.59 31.99 1.005 3381 3358
GR-XDI1 12.44 2.54 74.22 11.007 291.1 290.3
GR-XD2 12.52 2.51 74.22 11.261 286.2 2842
GR-XD3 12.48 2.53 74.22 11.091 295.5 2949

Table I.5 Specifications of Kevlar/epoxy specimens in K-1 set for the VSM.

Specimen ~ Width  Thickness  Span Rate (F/A), (F/A),
ID (mm) (mm) (mm) (mm/sec) (N/mm) (N/mm)
K-S05 12.56 1.86 13.55 0.276 5106.8 51068
K-S06 12.52 1.91 13.55 0.275 5661.6 5409
K-S07 11.24 1.93 13.55 0.274 4858.1 4594
K-EO1 12.58 1.86 15.13 0317 3950.1 39339
K-E02 12.57 1.91 15.13 0314 4305 42804
K-E03 12.59 1.88 15.13 0.316 4220.8 4203.2
K-E04 12.67 1.9 15.13 0.315 4091.7 41339
K-TO1 12.3 1.92 18.97 0.428 21834 2324
K-T02 12.44 1.92 18.97 0.428 25949 2477.5
K-T03 12.54 1.91 18.97 0.429 2401.2 23524
K-T04 12.34 1.86 18.97 0.434 2114.04 2072
K-FO01 12.5 1.93 26.51 0.723 1066.6 1063
K-F02 12.56 1.9 26.51 0.73 1073 1076
K-FO03 12.05 1.86 26.51 0.741 922.8 899
K-X01 12.63 1.91 56.92 2.942 118.9 116.5
K-X02 12.63 1.91 56.92 2.942 125.1 123.3
K-X03 12.51 1.93 56.92 2914 125.1 122.9
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Table 1.6 Specifications of Kevlar/epoxy specimens in K-2 set for the VSM.

Specimen  Width  Thickness  Span Rate (F/A), (F/A),
ID (mm) (mm) (mm) (mm/sec) (N/mm) (N/mm)
K-S08 12.59 1.91 13.55 0.275 5369.3 5102
K-S09 12.49 1.91 13.55 0.275 5241.6 5060
K-S10 12.21 1.93 13.55 0.274 5468.8 5118
K-EO5 12.6 1.87 15.13 0316 4288.9 42825
K-E06 12.47 1.86 15.13 0317 3852.71 3952
K-EOQ7 12.46 1.92 15.13 0314 4232.11 4192
K-EO08 12.58 1.93 15.13 0313 43472 4243
K-TOS 12.57 1.9 18.97 043 2414.8 2351
K-T06 12.43 1.86 18.97 0.434 2153.8 2093
K-T07 12.54 1.87 18.97 0.433 2426.6 2376
K-F04 12.41 1.91 26.51 0.728 1015.5 1000
K-F0S5 12.43 1.93 26.51 0.723 1071 1053
K-F06 12.56 1.87 26.51 0.739 1014.5 1018
K-F07 12.46 1.93 26.51 0.723 1061.4 1055
K-X04 12.49 1.93 56.92 2914 127.1 127.1
K-X05 12.46 1.86 56.92 3.015 118.8 119.4
K-X06 12.38 1.93 56.92 2914 112.1 122.5
K-X07 12.58 1.92 56.92 2.928 118.9 119.4

Table .7 Specifications of Kevlar/epoxy specimens in K-3 set for the VSM.

Specimen  Width  Thickness  Span Rate (F/A), (F/A),

ID (mm) (mm) (mm) (mm/sec) (N/mm) (N/mm)
K-S11 12.39 1.88 13.55 0.2 4910 4992
K-S12 12.54 1.93 13.55 0.197 5266.7 5292
K-S13 12.53 1.92 13.55 0.198 5008.6 4773
K-E09 11.79 1.92 15.13 0.237 3885.2 3798
K-E10 12.52 1.89 15.13 0.24 4052.3 4003
K-El1 12.63 1.91 15.13 0.238 4140.3 4101
K-TO8 12.53 1.94 18.97 0.348 2482.1 2362
K-T09 12.56 1.87 18.97 0.358 2503 .4 2428
K-T10 12.56 1.91 18.97 0.352 2504.1 2461
K-FO8 12.5 1.9 26.51 0.654 1062.8 1055
K-F09 12.55 1.86 26.51 0.667 9543 939
K-F10 12.53 1.86 26.51 0.667 954 944
K-X08 12.59 1.86 56.92 2.94 110.1 110.2
K-X09 12.5 1.9 56.92 2.88 1242 125
K-X10 12.44 1.89 56.92 2.895 120.5 122.1
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Table 1.8 Specifications of Kevlar/epoxy specimens in K-4 set for the VSM.

Specimen  Width  Thickness  Span Rate (F/A), (F/A),
ID (mm) (mm) (mm)  (mm/sec) (N/mm) (N/mm)
K-S14 12.59 1.9 13.55 0.199 5192.2 5236
K-S15 12.5 1.92 13.55 0.198 5210.6 5268
K-S16 12.54 1.86 13.55 0.202 4884 4839
K-E12 12.55 1.91 15.13 0.238 4420.3 4357
K-E13 12.59 1.89 15.13 0.24 4225.4 4117
K-E14 12.52 1.91 15.13 0238 4192.5 4083
K-E15 12.55 1.9 15.13 0.239 4282.6 4210
K-T11 12.54 1.86 18.97 036 23424 2303
K-T12 12.48 1.91 18.97 0.352 23894 2345
K-T13 12.62 1.91 18.97 0.352 25228 2465
K-F11 12.36 1.87 26.51 0.664 924.3 909
K-F12 12.58 1.87 26.51 0.664 1056.3 1035
K-F13 12.59 1.92 26.51 0.648 1049.9 1046
K-X11 12.39 1.95 56.92 2.808 1215 121.8
K-X12 12.57 1.86 56.92 2.94 120.7 121.1
K-X13 12.58 1.91 56.92 2.865 119.9 120.3

Table 1.9 Specifications of Kevlar/epoxy specimens in K-5 set for the VSM.

Specimen  Width  Thickness  Span Rate (F/A), (F/A),
ID (mm) (mm) (mm)  (mm/sec) (N/mm) (N/mm)
K-S17 12.52 1.86 13.55 0.201 4561.3 4480
K-S18 12.46 1.89 13.55 0.197 5381.9 5407
K-S19 12.53 1.92 13.55 0.194 5357.4 5270
K-El16 12.54 1.91 15.13 0.249 4215.3 4210
K-E17 12.52 1.9 15.13 0.251 4259.3 4185
K-E18 12.49 1.9 15.13 0.251 4106.1 4019
K-E19 12.55 1.84 15.13 0.261 3731 3634
K-T14 12.62 1.92 18.97 0.422 24733 2456
K-T15 12.56 1.87 18.97 0.439 2202.2 2147
K-T16 12.69 1.91 18.97 0.426 23724 2321
K-F14 12.62 1.86 26.51 1.057 1038.7 1039
K-F15 12.61 1.88 26.51 1.038 951 943
K-F16 12.56 1.9 26.51 1.019 1042.7 1040
K-X14 12.62 1.93 56.92 8.593 128.7 128.4
K-X15 12.58 1.9 56.92 8.856 127.3 126.9
K-X16 12.58 1.93 56.92 8.593 1293 129
K-X17 12.59 1.91 56.92 8.767 117.6 117.7
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Table 1.10 Specifications of Kevlar/epoxy specimens in K-6 set for the VSM.

Specimen  Width  Thickness  Span Rate (F/A) (F/A),
ID (mm) (mm) (mm) (mm/sec) (N/mm) (N/mm)
K-S20 12.51 1.86 13.55 0.201 5053.5 4872
K-S21 12.38 1.89 13.55 0.197 4959.3 5262
K-S22 12.44 1.92 13.55 0.194 53409 5301
K-E20 12.55 1.84 15.13 0.261 4095 4047
K-E21 12.57 1.84 15.13 0.261 3957.1 3985
K-E22 12.46 1.88 15.13 0.254 3884 3851
K-T17 12.55 1.89 18.97 0.432 2436.7 2369
K-T18 12.51 1.93 18.97 0.419 25719 2491
K-T19 12.63 1.86 18.97 0.443 2417.1 2385
K-F17 12.68 1.93 26.51 0.993 1105.9 1087
K-F18 12.54 1.95 26.51 0.976 1123.8 1105
K-F19 12.66 1.91 26.51 1.01 1030.3 1019
K-F20 12.51 1.92 26.51 1.001 1042.7 1044
K-X18 12.53 1.93 56.92 8.593 131.3 131.1
K-X19 12.57 1.9 56.92 8.856 124 4 124.5
K-X20 12.54 1.85 56.92 9.322 108.2 108.7

Table I.11 Specifications of E-glass/epoxy specimens in GL-1 set for the VSM.

Specimen  Width  Thickness  Span Rate (F/A) (F/A),
ID (mm) (mm) (mm) (mm/sec) (N/mm) (N/mm)
GL-S01 13.28 6.32 31.19 0.636 18806 18529
GL-S02 13.31 6.33 31.19 0.636 18660 18513
GL-S03 13.5 6.33 31.19 0.636 17863 18151
GL-EOI 13.55 6.3 37.53 0.751 11265 10896
GL-E02 13.27 6.32 37.53 0.751 10445 10679
GL-EO3 13.44 6.33 37.53 0.751 11526 11252
GL-TO1 13.33 6.32 51.18 1.07 4395 4508
GL-TO02 13.25 6.33 51.18 1.07 4698 4660
GL-TO3 13.53 6.3 51.18 1.07 4484 4389
GL-FO1 13.41 6.32 112.24 3.701 4533 452.8
GL-F02 13.44 6.31 112.24 3.706 4393 4379
GL-FO3 13.45 6.31 112.24 3.706 456.8 453.2
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Table I.12 Specifications of E-glass /epoxy specimens in GL-2 set for the VSM.

Specimen  Width  Thickness  Span Rate (F/A), (F/A),
ID (mm) (mm) (mm)  (mm/sec) (N/mm) (N/mm)

GL-S04 13.3 6.3 31.19 0.383 16802 17883
GL-S05 13.48 6.33 31.19 0.383 18631 18631
GL-S06 13.3 6.3 31.19 0.383 16905 16770
GL-E04 13.62 6.34 37.53 0.497 11266 11768
GL-EOS 13.27 6.33 37.53 0.497 11172 11282
GL-E06 13.43 6.32 37.53 0.498 10240 10597
GL-T04 13.26 6.33 51.15 0818 4747 4665

GL-TOS 13.34 6.33 51.15 0818 4840 4746

GL-T06 13.51 6.34 51.15 0.818 4833 4883

GL-F04 13.25 6.33 112.24 3.444 467 463.2
GL-FO05 13.44 6.33 112.24 3.444 469.9 470.2
GL-F06 13.44 6.33 112.24 3.444 470.2 470.4

Table I.13 Specifications of E-glass/epoxy specimens in GL-3 set for the VSM.

Specimen  Width  Thickness  Span Rate (F/A), (F/A),
ID (mm) (mm) (mm)  (mm/sec) (N/mm) (N/mm)
GL-S07 13.48 6.32 31.19 0.383 19415 19817
GL-S08 12.7 6.29 31.19 0.383 14976 15375
GL-S09 13.57 6.32 31.19 0.383 17845 18215
GL-E07 13.65 6.3 37.53 0.499 10540 10690
GL-EO08 13.33 6.32 37.53 0.498 10760 10727
GL-E09 13.53 6.3 37.53 0.499 10779 10792
GL-TO07 13.39 6.3 51.15 0.818 4283 4275
GL-T08 13.57 6.3 51.15 0.818 4401 4410
GL-T09 13.21 6.3 51.15 0818 4393 4282
GL-F07 13.52 6.3 112.24 3.459 440.5 4394
GL-F08 13.45 6.3 112.24 3.459 444 437.1
GL-F09 13.45 6.31 112.24 3.454 4573 448.9
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Table I.14 Specifications of E-glass/epoxy specimens in GL-4 set for the VSM.
Specimen  Width  Thickness  Span Rate (F/A) (F/A),

ID (mm) (mm) (mm) (mm/sec) (N/mm) (N/mm)
GL-S10 13.62 6.31 31.19 0.568 17838 17697
GL-S11 12.41 6.29 31.19 0.571 15559 15641
GL-S12 13.58 6.32 31.19 0.567 15763 17142
GL-E10 13.29 6.3 37.53 0.891 10364 10741

GL-El1 13.35 6.33 37.53 0.885 11983 11914
GL-E12 13.48 6.33 37.53 0.885 10921 10891
GL-T10 13.24 6.32 51.18 1.99 4576 4392
GL-T11 13.55 6.33 51.18 1.99 4622 4524
GL-T12 13.31 6.32 51.18 1.99 4540 4419
GL-F10 13.49 6.33 112.24 18.32 4723 473.1
GL-F11 13.5 6.32 112.24 18.37 454 .4 451.4
GL-F12 13.42 6.3 112.24 18.49 438.8 438.2

Table .15 Specifications of graphite/epoxy specimens in
tensile test.
Specimen  Width  Thickness Length E

ID (mm) (mm) (mm) (GPa)
GR-TN-1 12.15 2.33 140 149.8
GR-TN-2 12.15 2.36 140 147.2
GR-TN-3 12.21 2.49 140 1533
GR-TN-4 13.81 2.62 290 150.1

Table 1.16 Specifications of E-glass/epoxy specimens in
tensile test.

Specimen  Width  Thickness Length E
ID (mm) (mm) (mm) (GPa)

GL-TN-1 1428 6.26 200 472

GL-TN-2 1346 6.25 200 50.6

GL-TN-3  14.27 6.27 200 47.7
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Table 1.17 Specifications of graphite/epoxy specimens in
losipescu shear test.

Specimen  Width  Thickness Length G
ID (mm) (mm) (mm) (GPa)
GR-ISH-1 1137 2.56 760 583
GR-ISH-2 1134 255 760 6.11
GR-ISH-3 1137 2.58 760 651

Table 1.18 Specifications of Kevlar/epoxy specimens in
losipescu shear test.

Specimen  Width  Thickness Length €
ID (mm) (mm) (mm) (GPa)
K-ISH-1 10.97 1.83 760 2.09
K-ISH-2 11.21 1.83 760 213
K-ISH-3 10.80 1.91 760 2.24

Table 1.19 Specifications of E-glass/epoxy specimens in
losipescu shear test.

Specimen  Width  Thickness Length G
ID (mm) (mm) (mm) (GPa)
GL-ISH-1 10.57 6.28 760 707
GL-ISH-2 10.64 6.28 760 7.39
GL-ISH-3  10.52 6.29 760 8.27

Table 1.20 Specifications of graphite/epoxy specimens in
+45° shear test.

Specimen  Width  Thickness Length G
ID (mm) (mm) (mm) (GPa)
GR-FSH-1 2529 2.51 240 4.86
GR-FSH-2 2485 241 280 5.00
GR-FSH-3 2494 2.45 280 4.76

Table I.21 Specifications of Kevlar/epoxy specimens in 10"
off-axis shear test.

Specimen ~ Width  Thickness Length G
ID (mm) - (mm) (mm) (GPa)

K-TSH-1 12.34 1.84 330 1.86

K-TSH-2  13.55 1.84 330 1.72
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Appendix J
LOAD-DEFLECTION CURVES OBTAINED FROM THE VSM
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Figure J.1 Load-deflection curves obtained for graphite/epoxy GR-1 specimens. Top: First
loading. Bottom: Second loading.
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Figure J.2 Load-deflection curves obtained for graphite/epoxy GR-2 specimens. Top: First
loading. Bottom: Second loading.



227

2500 1$RSC1
5R-SC2 GR-EC1
GR-FC1
7 GRFC2
%" GRFC3
7~
7
P
—_ -~
Pld
: /
hel
Q
[+]
-4
GR-XC1
GR-XC2
GR-XC3
4 4 4 J
L] L] L] 1
0.4 0.6 0.8 1

Displacement (mm)

6000 +
GR-FC1
— GR+C2
g GR-FC3
o Se=a
§ W puni
GR-XC1
GR-XC2
GR-XC3
0 —— 4 $ 3 {
0 0.2 04 0.6 0.8 1

Displacement (mm)

Figure J.3 Load-deflection curves obtained for graphite/epoxy GR-3 specimens. Top: First
loading. Bottom: Second loading.
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Figure J.4 Load-deflection curves obtained for graphite/epoxy GR-4 specimens. Top: First
loading. Bottom: Second loading.
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Figure J.5 Load-deflection curves obtained for Kevlar/epoxy K-1 specimens. Top: First

loading. Bottom: Second loading.
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Figure J.6 Load-deflection curves obtained for Kevlar/epoxy K-2 specimens. Top: First

loading. Bottom: Second loading.
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Figure J.7 Load-deflection curves obtained for Kevlar/epoxy K-3 specimens. Top: First
loading. Bottom: Second loading.
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Figure J.8 Load-deflection curves obtained for Kevlar/epoxy K-4 specimens. Top: First
loading. Bottom: Second loading.
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Figure J.9 Load-deflection curves obtained for Kevlar/epoxy K-5 specimens. Top: First
loading. Bottom: Second loading.
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Figure J.10 Load-deflection curves obtained for Kevlar/epoxy K-6 specimens. Top: First

loading. Bottom: Second loading.
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Figure J.11 Load-deflection curves obtained for E-glass/epoxy GL-1 specimens. Top: First
loading. Bottom: Second loading.



236

1600 -

z
<
k-l
@
o
-4
GL-FO4
GLF0S
GLF06
-—-'//—-
3 3 4 4 -]
L4 Al T v L]
0.4 0.5 0.6 0.7 0.8

Displacement (mm)

3000 +
GL-S04

Load (kN)

Displacement (mm)

Figure J.12 Load-deflection curves obtained for E-glass/epoxy GL-2 specimens. Top: First
loading. Bottom: Second loading.
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Figure J.13 Load-deflection curves obtained for E-glass/epoxy GL-3 specimens. Top: First
loading. Bottom: Second loading.
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Figure J.14 Load-deflection curves obtained for E-glass/epoxy GL-4 specimens. Top: First
loading. Bottom: Second loading.




IMAGE EVALUATION
TEST TARGET (QA-3)

1.6

1.4

150mm

1.25






