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NOMENCLATURE

The aim here is to present nomenclature which have recurrent meaning
throughout the report. Every use of a particular symbol is not listed here but no
ambiguity should occur since each re-definition of a symbol is explained in the
text. In general upper case bold face letters denote matrices and lower case bold

face letters denote vectors.

4y ith inertia term
C dimensionless damping matrix
C damping matrix

cos(-) cosine of .

D inertia matrix
D dimensionless inertia matrix
Cq combined damping of link-n and joint-n

det(-) determinant of .

diag(-)  diagonal matrix

dx perturbation of the tip motion vector
E{-} expectation operator

f dimensionless excitation vector

H; frequency response function of mode-i
i Al

| identity matrix

I; centroidal moment of inertia of link-i
J Jacobian matrix
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stiffness matrix

dimensionless stiffness matrix

combined stiffness of link-i and joint-i
lagrangian of system

axial coordinate of the centroid of link-i

length of link-i

mass of link-i

parameter deviations propagation matrix
power spectral density

elastic joint coordinate

random base excitation input vector

Rayleigh dissipation function

nonstationary covariance tensor of tip velocities
stationary covariance tensor of tip velocities
stationary covariance tensor of joints velocities
nonstationary covariance tensor of joints velocities
n m element of R44(0)

n m element of Rgq(t)

n m element of Rgq(0)

n m element of Rgq(7)

n m element of Rgq(®)

stationary covariance tensor of joints displacements

nonstationary covariance tensor of joints displacements

stationary correlation tensor of joints displacements

stationary principal variance tensor of tip displacements
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Rex®
Ry (0)
Ry (t)
Re(")
Res(-)
Rot

sin(-)
Sqnqm(m)
Sqq((o)

~

nonstationary principal variance tensor of tip displacements
stationary covariance tensor of tip displacements
nonstationary covariance tensor of tip displacements
real value of

residue of

rotation matrix

intensity of white noise

sine of .

n m element of Sqq(®)

PSD matrix of joints displacements

kinetic energy

time variable

dimensionless time variable

modal matrix

mass normalized modal matrix

damped natural frequency of mode-r

actual values of the tip displacement vector
nominal values of the tip displacement vector
asterisk indicates complex conjugate

surface roughness coefficient

Dirac delta

kronecker tensor

actual values of the dynamic parameter vector
estimated values of the dynamic parameter vector

nominal values of the dynamic parameter vector
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D(t,to)

Q(t,to)

Cr

system transition matrix
kinematic configuration of link i
dimensionless time lag
deterministic modulating function
natural frequency of mode-r

damping factor of mode-r
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ABSTRACT

The topic of this thesis is the dynamics of mobile manipulators. To
streamline the study and to facilitate systematic analysis mobile manipulators are
divided into two broad categories: the wheeled and the non-wheeled systems. A
non-wheeled mobile manipulator has a base which is much more massive than the
manipulator structure and the dynamics of the manipulator does not affect the base
dynamics. The wheeled mobile manipulator has a base mounted on wheels and the
base dynamics is of the same order of magnitude as the manipulator and they are

dynamically coupled with each other.

In non-wheeled mobile manipulators the base motion is modeled as a
random process. The responses of the joints and the tip of the manipulator are
studied as stationary and nonstationary random processes. Expressions for the
covariance tensors of the joint and the tip responses are developed. Single link and

two-link manipulators are used to demonstrate the proposed analysis.

Two different models are used to study wheeled manipulators: the so-called
quarter-car and the half-car models. The horizontal motion of the base is assumed,
deterministic and known. The response of the wheeled manipulator system results
from the motion on an irregular surface. The surface is modeled as a stochastic
spatial field. Two cases of forward motion of the manipulator have been explored:
uniform with constant speed and accelerated. The uniform forward motion
produces purely stationary stochastic response while the accelerated motion

produces nonstationary response in addition to a decaying deterministic

XX Vi




component. Expressions for the covariance of the tip and the joints responses of
the wheeled mobile manipulators are derived. Examples of two link manipulators

mounted on quarter-car and half-car models are fully investigated.

In all mobile manipulator models studied in the thesis, the Singular Value
Decomposition technique is used to derive expressions for the principal variance
of the tip responses. The sensitivity of the principal variance of the tip responses to
system parameters and configuration changes is investigated. It is shown that the
principal variance of the tip motion is almost unidirectional and highly
configuration dependent. To minimise the vibration of the manipulator tip it is
suggested that: the “lower” links should be longer than the “upper” links; the
damping efforts should be concentrated in the “lower” joints in addition to
suspension damping; the “lower” joints should be stiffer than the “upper” joints.
Therefore, it is suggested that for minimal tip vibration most of the design and

control efforts should be focused on the "lower links and joints."

The Singular Value Decomposition technique is used to derive computation
models for identification of the dynamic parameters of flexible mobile
manipulators as well. Optimization criteria which can be used to set the
manipulator configuration and excitation for efficient testing are proposed.

Numerical simulations are discussed to validate the ideas.
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Chapter One

INTRODUCTION

1.1. Background and Motivation

Robotics technology has been successfully applied in industry for
manufacturing automation since the early sixties. The need for application of this
technology in other areas has been reported in the literature (Murray et al.. 1994).
These areas include medical applications for the physically-challenged.
agriculture, nuclear plant toxic waste clean-up, forestry, mining, construction.
remote maintenance, fire fighting, space and sea explorations. These new
applications will require mobile manipulators mounted on vehicles. marine
vessels, and spaceships. A manipulator is an open loop mechanism which is
composed of a number of connected bodies. Unlike conventional industrial
manipulators which are structured for a specific tasks, the environments in which
the mobile manipulators are expected to operate are highly unstructured.
Manipulators mounted on vehicles, spaceships, and marine vessels experience
random motion resulting from the vehicle's interaction with the traction surface,
normal operation activities of the spaceships, and waves and wind affecting the

marine vessels respectively.

Most industrial manipulators are rigid and depend on bulky designs. This
rigidity results from design requirements to passively minimize the amplitude of

structural deflections and vibration. Such manipulators typically handle only
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objects that weigh less than five percent of the manipulator’s weight (Choi et al.,
1995). The bulky design results in high energy consumption, therefore, future light

weight and slender manipulators will result in more efficient energy usage.

The slender mobile manipulators will be subjected to base-induced
stochastic excitation. The stochastic vibration will result in fatigue, excursion
failures, and undesirable paths of motion of the tools attached to the manipulator
tip. To reduce and eliminate these undesirable effects an understanding of the
manipulator dynamics is crucial for the motion control and for the structural
design development. To the best knowledge of the author, no studies have been
reported on the stochastic dynamics of mobile manipulators. In addition, very few
reports are available on identification of structural parameters of flexible

manipulators. These two areas are the focus of this thesis.

1.2. Scope of the Thesis

This study deals with the vibration of manipulator structures excited from
the base. The base motion comes from traction vehicles, marine vessels,
spaceships, and foundation motion. Because the bases of the manipulators are not
stationary but moving, therefore, they are referred to as mobile manipulators. Two
classes of mobile manipulator dynamics are considered. In the first category it is
assumed that the mass of the base to which the manipulator structure is mounted is
so large, compared to that of the manipulator, that the motion of the manipulator
does not (practically) influence the base. Figure 1.1 shows a model of the first type
of mobile manipulator structure studied. In this thesis, the manipulators of this
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category will be referred to as non-wheeled by analogy to manipulators mounted

on large ships.

The second class of manipulator dynamics discussed includes the base to
which the manipulator is attached and the manipulator influences the motion of the
vehicle significantly. Models of the second family of mobile manipulator systems
are shown in Figures 1.2 and 1.3. In this thesis, this category of manipulators will

be referred to as wheeled manipulators.

For the two versions of manipulator systems studied, it is assumed that: the
manipulator is flexible and the flexibility is concentrated at the joints: the
kinematic configuration of the links of the manipulator can be represented as
0 =0, 0, ... ,G-)n]T and this configuration is assumed invariant when the
system vibration is studied; the horizontal alignment of the x-axes is the reference
zero-configuration (see Figure 1.4); the motion coordinate vector
qQ = [q;. 92, -eeeen. ,qn]T represents the elastic motion about a kinematic
configuration; the vector q is assumed very small such that the non-linear terms in
the equation of motion can be neglected; the system damping is viscous. below
critical value, concentrated at the joints, and invariant with respect to changes of

the kinematic configuration; the effect of gravity is neglected.

The thesis does not consider the vibration of spatial mobile manipulators
and walking manipulators. It is limited to the dynamics of planar mobile

manipulators.



1.3. Objectives of the Thesis

The objectives of the thesis are as follows:
I. To review published studies on structural dynamics of flexible manipulators:
2. To systematically advance knowledge on structural dynamics of flexible
mobile manipulators:

To review studies on estimation of dynamic parameters of manipulators and

(93]

to develop optimal estimation techniques for mobile manipulators.

1.4. Layout of the Thesis

The thesis may be roughly divided into four parts. The first part is
contained in the material up to Chapter two. It contains the introductions and the
literature review of studies on the dynamics of manipulators and parameter
estimation techniques. In Chapter two a number of useful mathematical concepts
are reviewed as well. The second part of the report explores the stochastic
dynamics of mobile manipulators. This is presented in Chapters three through
eight. Estimation of the dynamic parameters of flexible mobile manipulators is
studied in the third part of the thesis which is collected in Chapters nine and ten.
The last part of the thesis embodies the thesis conclusions in Chapter eleven.

references and a number of appendices dealing with long derivations.

Chapter two of the thesis begins with definitions and the term manipulator
is explained. Published studies on the dynamics of manipulators and vehicles are

summarized. Basic definitions relevant to the study of random dynamics are



discussed: they serve as foundation for studying the random vibration of mobile
manipulators. The distinction between the manipulator kinematics and the dynamic
parameters is explained. The reports on estimation of kinematics and dynamic
parameters of manipulators are then reviewed. Summaries of useful and recurrent
mathematical concepts and helpful background information on manipulators are

presented as well.

In Chapters three through eight various models of multi-degree of freedom,
articulated, and mobile manipulator systems are developed. These models are
employed for the study of the stochastic dynamics of mobile manipulators. In
Chapter three methods for studying the stochastic dynamics of manipulators
mounted on very large and massive mobile bases are developed (Figure 1.1). This
model of motion is applicable to spaceships, marine vessels, and foundations of
buildings during an earthquake. Numerical examples involving the models shown
in Figures 1.5 and 1.6 are presented in Chapter four to demonstrate the application

of the ideas discussed in Chapter three.

The stochastic dynamics of manipulators mounted on wheeled bases
(vehicles) are explored in Chapter five. A wheeled base such as a car can be
represented by the quarter car model (see Figure 1.2). Chapter six is used to
illustrate the applications of the ideas presented in Chapter five. The example
considered in Chapter six is shown in Figure 1.7. A study of manipulator dynamics
involving multiple wheels (Figure 1.3) is explored and an example demonstrating
the method are given in Chapters seven and eight respectively. The model

considered in Chapter eight is shown in Figure 1.8.



The third part of the thesis, contained in Chapters nine and ten. focuses on
the estimation of the dynamic parameters of mobile manipulators. Algorithms for
updating the nominal parameters of the manipulators. optimization of the
manipulator configurations for testing, and optimization of the excitations for
dynamic testing are presented in Chapter nine. Numerical validation of the

proposed model is discussed in Chapter ten.

Chapter eleven contains final remarks, major contribution and conclusions
of the thesis and the recommendations for further research. Bibliography is then
cited fully. Long derivations and useful background information are given in the

Appendices.

1.S. Summary and Concluding Remarks

In this chapter the motivation for the thesis is outlined. The various models
and the general assumptions used in the study have been discussed. Summaries of
the objectives and the layout of the thesis have been presented. In the next chapter,
the literature on the dynamics of manipulators and parameter estimation are

reviewed.
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Figure 1.1. Model of a Non-wheeled Mobile Manipulator
©j  i-th kinematic configuration

G i-th elastic motion variable

(x,y); Cartesian coordinate frame attached to the i-th link
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Figure 1.2. Model of a Single-wheeled Mobile Manipulator
O i-th kinematic configuration

G i-th elastic motion variable

(x,y); Cartesian coordinate frame attached to the i-th link
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Figure 1.3. Model of a Multiple-wheeled Mobile Manipulator

O] i-th kinematic configuration

qQi i-th elastic motion variable

(x,¥); Cartesian coordinate frame attached to the i-th link
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Figure 1.5. Single Link Non-wheeled Mobile Manipulator.

Figure 1.6. Two-Link Non-wheeled Mobile Manipulator.



Figure 1.8. Two-Link Multiple-wheeled Mobile Manipulator.
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Chapter Two

LITERATURE REVIEW

2.1. Dynamics of Manipulators and Vehicles

2.1.1. Basic Definitions

In this study the term manipulator refers to an open loop mechanism which
is composed of a number of connected bodies. The bodies, which could be rigid or
flexible, are referred to as links. The links are connected through joints. Each joint
can be either prismatic (sliding or telescopic) or revolute (pin or hinge). The tool

or end-effector is attached to the last link. The first link is the base which could be

fixed or moving.

A moving base is referred to as a vehicle or a mobile base. There are
basically two types of vehicles -non-wheeled and wheeled vehicles. The
non-wheeled mobile base include the foundation of buildings, spaceships and
marine vessels. The non-wheeled base is usually so massive compared to the
manipulator that the motion of the manipulator does not affect the dynamics of the
base. Further, the non-wheeled base may be subjected to motion (excitation) by
interaction with its environment. Examples of such interactions include motion of
the foundation of a building subjected to earthquake, vibration of marine vessel
due to hydrodynamic sea waves and winds, and flexural motion of spaceship due

to normal operation activities.
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The second type of mobile manipulators move on wheels. These include
cars and trains. The base is of commensurate dimension with the manipulator
structure, therefore the dynamics of the manipulator affects the base. Further, the
wheeled mobile manipulator is subjected to excitation due to the motion of its
wheels on a rough surface. In this report manipulators mounted on wheeled mobile
base are called wheeled mobile manipulators and manipulators mounted on non-
wheeled mobile base are referred to as non-wheeled mobile manipulators.

Manipulators mounted on a fixed base are called non-mobile manipulators.

2.1.2. Non-Mobile Flexible Manipulators

The past studies on the dynamics of manipulators considered only
deterministic joint excitation and assumed that the arms are rigid and that there is
no elastic deformation at joints. Under this assumption the manipulator’s equation
of motion established by methods such as Hamilton principle are basically a
description of the relationship between the input Jjoint torque and the output
motion (Asada and Slotine, 1986). The necessity for light manipulators has already
been pointed out in the introduction, therefore flexibility effects must be

considered both in the design and control process.

The need to consider flexibility of robotic manipulators first came from the
interest in better control system design (Book et al., 1975; Book, 1984; Chalhoub
and Ulsoy, 1986; Singh and Schy, 1986). These studies were intended to find
suitable control schemes to track desired trajectories as well as to regulate the

system position by recognizing the flexible nature of the structures and considering
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oscillation induced by elastic deformation. Books et al. (1975, 1984) studied the
control of a planar, two link manipulator including distributed mass and elasticity
effects. This system was composed of simple straight beams in fixed
configurations. Chalhoub and Ulsoy (1986) studied the controller design for a lead
screw-driven flexible robot arm. The dynamic model for the robot included the
effect of the distributed mass and the elasticity of the last link. The assumed modes
method was used to approximate the dynamics of the infinite dimensional link.
The study showed that by including the flexible motion in the controller design the
positional accuracy of the tool could be improved significantly. Singh and Schy
(1986) studied the control of elastic robotic systems by nonlinear inversion and

modal damping.

Several researchers have used the finite element techniques to describe the
elastic deformations of manipulators (Sunada and Dubowsky, 1983; Turcic and
Midha, 1984; Usoro et al, 1986; Smaili, 1993). Others have used global methods
such as the assumed modes method, Rayleigh-Ritz method and the two-coordinate
method (Anderson, 1985; Streit et al 1986, 1989; Krishnamurthy, 1989; Sasiadek
and Srinivasan, 1989; Rivin, 1988; Liu, 1992).

The two-coordinate method describes the position of a flexible manipulator
by two distinct coordinates. The first set of coordinates represents the kinematic
configuration of the manipulator while the second set of coordinates represents the
small vibration about the kinematic configuration. Anderson (1985) employed this
method to study the stability of a manipulator subjected to a compressive force at
its free end. Streit et al (1986) applied this method to develop a dynamic model of

a two degree-of-freedom robotic system composed of one prismatic joint and one
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revolute joint. The model was then used to study the parametric stability when a
manipulator performs a repetitive task. Liu (1992) used a similar model to study
parametric stability of a two degree-of-freedom manipulator with revolute joints
performing repetitive tasks. Liu and Kujath (1994) used the same model to
optimize the trajectory for a two link flexible manipulator. The authors -Liu and
Kujath- illustrated that the two coordinate model has an advantage over the
assumed mode and the finite element representations since the resulting equations

of motion are simpler and transparent without a compromise on accuracy.

In general it can be noted that all the studies that have been reported on the
dynamics of flexible manipulators have been focused on deterministic loading.
None of the aforementioned studies have addressed the crucial issue of stochastic

loading of flexible manipulators.

2.1.3. Wheeled Mobile Rigid Manipulators

Jacobs and Canny (1989) and later Yun-Hui and Suguru (1991) studied
wheeled mobile manipulators as simple vehicles without dynamics. They focused
on map building of unknown environments and motion planning algorithm. The
limited studies on the dynamics of wheeled mobile manipulators [Dubowsky and
Vance, 1989; Hootsman and Dubowsky, 1991; Hootsman, 1992] treated the
manipulators as rigid links on wheeled mobile vehicles. The excitation of the
manipulators due to the motion of the vehicle on a surface was assumed to be a
deterministic process. A more realistic model for the system excitation is a

stochastic process since the surface on which the vehicle is moving is in general
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irregular and uneven. None of the aforementioned studies addressed the issue of

stochastic excitation.

2.1.4. Non-Wheeled Mobile Rigid Manipulators

A limited number of scattered studies exist on the dynamics of non-wheeled
mobile rigid manipulators under random loading. The dynamics of the simplest
manipulator -a simple rigid pendulum- subjected to stationary stochastic base
excitation was reported by Bogdanoff and Citron (1965). Chang and Young (1989)
later studied the dynamics of a two degree-of-freedom rigid manipulator under
stationary random base and deterministic tip loading. Both studies focused on the
stochastic dynamics of the rigid manipulator joint motion. In practical
applications, however, the motion of the tip of a manipulator is very important
since the tool is attached there. These studies did not address the crucial issue of

the stochastic dynamics of the manipulator tip.

2.1.5. Dynamics of Wheeled Vehicles

Some research has been devoted to the stochastic motion of vehicles that
traverse uneven surfaces. Virchis and Robsin (1971) considered the vehicle as a
linear, time invariant, second order, single degree of freedom system running over
a spatially homogenous rough ground. The authors used the impulse response
function of the vehicle together with the autocorrelation function of the spatial
excitation to express the autocorrelation function of the vehicle. Sobczyk and

Macvean (1976) obtained a closed form solution for the variance of the response
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for simple velocity profiles. Yadav and Nigam (1978) transformed the dynamic
system to a pair of uncoupled equation using a spatial domain formulation. Since
the excitation was spatially stationary and the system coefficient space dependent,
the solution admitted an evolutionary spectral form. Hammond and Harrison
(1981) used the state space formulation in which the excitation could be
represented as a shaping filter for the vehicle problem represented by a linear, time

invariant, second order single degree of freedom system.

2.1.6. Random Dynamics of Simple Systems

The random vibration of systems like beams, plates and axisymmetric shells
with simple boundary conditions have been studied by To (1983, 1984, 1986), To
and Wang (1993), To and Orisamolu (1987), and Iwan and Hou (1989). The
expressions for evolutionary spectra and cross spectra density functions were
derived by To (1983). The time dependent variance and covariance of
displacement were obtained using the evolutionary spectrum approach. The time
dependent responses of axisymmetric shell structure and plates were computed by
To and Wang (1993), and To and Orisamolu (1987) respectively. The response of
a single degree of freedom system was studied using the state space approach by

Iwan and Hou (1989).

[t can be observed from all the reported studies that the stochastic dynamics
of flexible mobile manipulator subjected to stationary and nonstationary excitation
have not been addressed. This thesis will tackle this issue in subsequent chapters.

In order to set the background for the study of the stochastic dynamics of mobile
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manipulators basic terminology and properties of stochastic process have been

reviewed in Appendix A.

2.2. Identification of Manipulator Parameters

The design of controllers for manipulators to position the tip of the end-
effector at a specified point in the world coordinate require a mathematical model
relating the tool location and orientation with reference to the joint positions. The
goal of identification in robotics is either to derive, estimate, improve or verify the

parameters of the mathematical model.

Models for manipulator parameter estimation could be either kinematic or
dynamic. Kinematic models focus on the identification of only the geometric
parameters such as length and orientation of the manipulator links. Dynamic
models on the other hand are used for the identification of such parameters as

compliance, friction, and inertia of the manipulator links and joints.

2.2.1. Identification of Kinematic Parameters

A common method of representing the kinematic relationship between two
consecutive link coordinate frames is the convention defined by Denavit and
Hartenberg (1955). The representation uses four kinematic parameters to
completely describe the kinematic relationship for two consecutive links namely
length, offset, orientation and twist (Spong and Vidyasagar, 1989). Parameter

deviation errors in estimating the geometry of the manipulator structure will



20

produce corresponding errors in the Denavit Hartenberg [DH] kinematic
parameters. Kumar and Waldron (1981) developed a kinematic model for the tool
positioning error as a function of the joint variable error. Wu (1983a, 1983b, 1984)
developed a kinematic model for the tool positioning error as a function of the
errors in all four of the DH link parameters. Several other authors have addressed
the problem of kinematic models for tool positioning due to joint axis

misalignment (Veitschegger and Wu, 1987; Mooring ,1983; Hayati ,1983).

Whitney et al. (1984) devised a method for correcting both the geometric
and non-geometric parameter deviation for rigid manipulators and verified the
method experimentally on a PUMA 560. Chen et al (1985) proposed a kinematic
model for estimating geometric errors in the manipulator structure using six

parameter deviations per link plus three for the tool.

Menq et al. (1989) developed a kinematic model to address the problem of
identifiability of a set of kinematic parameters deviation for rigid manipulators and
later extended the work (Borm and Menq, 1991) to determine optimal
measurement configurations for identifying the basis set of kinematic parameters.
Other authors (Khalil et al.,, 1991) also addressed the issue of observability and

configuration optimization for measurement of the kinematic parameters.

2.2.2. Identification of Dynamic Parameters

Several methods for identifying the inertia parameters of rigid manipulators

have been presented in the literature. Mukerjee and Ballard (1985) suggested an
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identification procedure for rigid manipulators to deduce the inertial and friction
parameters from the measured reaction forces at the joint by incorporating force-
torque sensors in the robot inputs. Kshola (1988) presented an algorithm for
identifying the inertia properties of rigid manipulators. An experimental method to
estimate the inertia parameters of the manipulator links using rigid body model and
measured motor current, positions, velocities and acceleration has been discussed
by Atkeson et al. (1990). Seeger and Leonard (1989) presented an off-line
procedure to estimate friction forces and inertial parameters in small sets, using
test motions that allows the reduction of the general model to a few identifiable
parameters. Behi and Tesar (1991) discussed a technique for identifying the
stiffness and the inertia parameters of a manipulator using experimental modal
analysis. The foregoing studies addressed only non-mobile rigid manipulators and
have not addressed the issue of identifiability and optimization procedures for the
estimation of the dynamic parameters of mobile flexible manipulators. This topic

will be addressed in a later part of this report.

2.3. Lagrange Principle of Dynamics

This is an energy principle that can be used to derive the equation of
motion of dynamic systems (Meirovitch, 1990). Consider a dynamic system
with a set of generalized (independent) coordinates q =[ qy, q3,.....qn]T- Let
the kinetic energy for the system be given as

T =T(q;, qp) fori=1,2,........ ,n 2.1)
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The potential energy be given as

V =V(q) fori=12, ....... L. (2.2)

The Lagrangian /. for the system can be defined as

L=T-V (2.3)

If the Rayleigh dissipation function R (representing non-conservation

damping force) is

R =R(§;) fori=12, .....n (2.4)

and the generalized force acting on the system is

F; fori=1.2,........ . (2.5)

Then, the equation of motion for the system can be derived using Lagrange

energy equation (Meirovitch, 1990) as

doL aL __ &R i~
a(aqi) - 24, =F; - 2; fori=1,2,...... . (2.6)

In particular for the robotic system considered in this report, the generalized

coordinates vector q is the elastic motion of the manipulator joints.



2.4. Singular Value Decomposition of a Matrix

This is a unique property of matrices. Consider any rectangular real
m x n matrix W, from linear algebra, the matrix W can be decomposed into

(Golub and Van Loan, 1990)
W=UZVT

where the columns of the m x m matrix U are the orthonormal eigenvectors
of WWT and are called the left singular vectors of W; the columns of the
n x n matrix V are the orthonormal eigenvectors of WTW and are called the
right singular vectors of W; T is a diagonal matrix with non-negative
elements on its main diagonal which are called the singular values of W.
The singular values are the non-negative square roots of the eigenvalues of

WIW or WWT- U and V are orthonormal matrices i.e.
UTu=uuT=1
Viv=vvT=]

UT=U~1

N
(V3]

(2.7)

(2.8)

(2.9)

(2.10)

vi=vy-l 2.11)

where I is the identity matrix.

If the matrix W is symmetric and positive definite, the singular

values are the eigenvalues of W. The columns of the matrix U are the
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orthonormal eigenvectors of W. Further, the matrix V is the transpose of U

1.€.

v=UT (2.12)

and
uv=viyT=1 (2.13)

2.5. The Concept of Manipulator Jacobian

The velocity of any robotic manipulator system can be represented,
in either the relative joint coordinates q or the absolute Cartesian
coordinates x. The manipulator Jacobian matrix J provides the relationship

between the joint velocities q and the tip Cartesian velocities x. In particular

x=Jq (2.14)
where
ox
J= 2q (2.15)

x is the position vector of the manipulator tip in the Cartesian coordinate,
while q is the joint coordinate. For very small motion of the joint q it can be

shown that (see Appendix C for details and examples)

x = Jq (2.16)



2.6. Summary and Concluding Remarks

In this chapter, fundamental terms used in the thesis have been
defined. A literature review on the dynamics of manipulator and vehicles
has been abridged. A summary of review works on the identification of the
parameters of manipulators has been undertaken. The basic terminology of
stochastic processes have been discussed. Useful concepts, singular value
decomposition, Lagrangian principle and manipulator Jacobian have been
summarised. In the next chapter a method for studying the stochastic

dynamics of non-wheeled flexible mobile manipulator is presented.

25
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Chapter Three

NON-WHEELED MOBILE MANIPULATOR,
ANALYSIS

3.1. Introduction

This chapter contains an original contribution of the author. Components of
this chapter have been accepted for publication in Kujath and Akpan, (1996a). The
originality is in the modeling of the joint and the tip covariance tensors of
responses of the flexible manipulator structure to the non-wheeled random base
motion. A selection and composition of known analytical tools such as Lagrange
principle, modal analysis and the state space procedure have been used in the

formulation.

The basic model of the manipulator structure used in this chapter is shown
in Figure 3.1. It is assumed that the base on which the manipulator structure is
mounted is so much more massive than the manipulator that the dynamics of the
structure does not practically influence the base. This type of base can be found in
large spaceships, marine vessels, and foundations of buildings. Such a base is
referred to as a non-wheeled mobile base. The non-wheeled mobile base is
subjected to motion (excitation) by interaction with its environment; examples are
the foundation of a building subjected to earthquake, interaction of the marine
vessel with hydrodynamic sea waves and winds, and flexural motion of the

spaceship due to normal operation activities. The base motion is assumed random
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and it couples kinematically as excitations into the dynamics of the manipulator
structure. This coupling involves the acceleration vector of the base motion.

Models have to be developed for the base excitations.

3.2. Base Excitation Models

Consider the manipulator of Figure 3.1. The base motion vector
9o = [Ax. gy ,qe]T relative to the inertia frame x;yj is assumed to be composed of

zero mean uncorrelated stochastic processes i.e.
E{q;(t)} =0, i=xy,0 (3.1)
E{qi(t;)q;(ty)} =0 i#]j (3.2)

where E{.} is the expectation operator. Two representations of the base

acceleration are used in this chapter.

Case I - Stationary Representation:

It is assumed that the base acceleration vector qg can be modeled as random

processes with power spectral density

Sig, = Si(w), i=X,y,0 (3.3)
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where o is the frequency of the excitation spectrum.

Case II -Nonstationary Representation:

In this case, it is assumed that the base excitation can be represented as a

modulated white noise i.e.

qi(t) = (1) (), i=xy,0 3.4)
E{wmj(t)} =0, 1=X,y,0 (3.5)
E{wi(t))mi(t)} = Sg;dit; - ty), i=x,y,0 (3.6)

where Q;(t) is a deterministic modulating function and w(t) is a stationary white

noise with intensity S; (i=x,y, 6).

3.3. Equation of Motion

Application of the Lagrange principle leads to the equation of motion

DG(t) + Cq(t) + Kq(r) = - f1Gx(t) - F,(1) - f3de(t) (3.7
f} -dynamic coupling vector between q and gy
15) -dynamic coupling vector between q and dy

f3 -dynamic coupling vector between q and g
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dx, Gy, and Gg are small stochastic vibrations of the massive base, q is the joint
motion vector. Chapter four contains examples of detailed derivations of the
equation of motion for specific manipulator structures. Equation (3.7) can be
decoupled by employing the technique of modal analysis. With a knowledge of the
natural frequencies and the mode shapes, the mass normalized modal matrix U is

defined as

U
U=—71, j=1,23,..... 0. (3.8)
\fdjli
where the term U is the modal matrix of the system given by equation (3.7), the

term djj is a diagonal element of the matrix UTDU and the symbol |J denotes
division of column j of matrix Uby the term \/:11] Introducing the transformation

q = Uz() (3.9)

where z(t) represents the vector of normal coordinates, substituting q = Uz into

equation (3.7) and premultiplying it throughout by matrix U™ the following results
UT'DUZ + U'CUz + UTKUz = -U(f; g (t) + fqy(t) + f34,(1)) (3.10)

U'DU=1, U'CU=[2%0,], UKU=[o] (3.11)

[ 2§, | is a diagonal matrix with the terms 2£ ., on the diagonal,
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[ cof | is a diagonal matrix with the terms cof on the diagonal.

Equation (3.10) reduces to the uncoupled set of equations

G+ 280 o zp=£(), =12 (3.12)
where

fut) = £1Gx(t) + faly(t) + £ (1), (3.13)

A (3.14)

fr=-u'f, (3.15)

f3=-u_f. (3.16)

T .
The term u_ represents the transpose of the r-th column of the mass normalized

modal matrix U. From linear system theory, it is known that a stationary stochastic
excitation will produce stationary responses while a nonstationary random

excitation will produce nonstationary responses.

3.4. Covariance Tensor of the Joint Responses

3.4.1. Stationary Responses
Consider the modal equation (3.12), using the Duhamel integral the

displacement response of mode-r is obtained as
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zZ, = j‘h,('c)fr(t - 7)dt, r=1,2, ... n G.17)
-0
1 /
h,= u(t)m— e-%@rdsin (@g4t), ®gr = O/ 1-&3 . (3.18)
dr

The displacement response qp(ty) of joint-p at time t; can be computed using the

relationship given in equation (3.9) as

n
qp(ty) = 2. Uprzdty) (3.19)

r=1

Application of equation (3.17) in equation (3.19) gives

n [o o]
ap(t) = 2 Upe [ hy(t)ftt - 1pdr (3.20)

r=1
-0

Similarly the response of joint-m is given as

n €0
m(t?) = 2 Une [ ()2 - T)dT, (3.21)

r=1
-0

Taking the ensemble average of Gp(t;) and qp(ty) the crosscorrelation of the

displacements of joint-p and joint-m is given as

Rogan(t1-t2) = E€ qp(t))qm(t2)}
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n n fove) pove)
=E{X 3 UpUmk S (et - 7)) ()it - T)duydry )
=lk=1 -

-0

n n o0 0
=2 2 UpUmi S f Edfitz - fdtty - )} he(tdhy(rp)drpdry.  (3.22)
=lk=1

The following relations can be obtained from equation (3.13)
fulty - ) = £ Gty - T1) + bty - Tp) + fr3Go(ts - 7)) (3.23)
fi(ty - Tp) = fi 14ty - T2) + finly(ts - 1) + fiade(tz - 1) (3.24)

Application of equations (3.2), (3.23) and (3.24) in equation (3.22) gives the

crosscorrelation of the displacement of joint-p and joint-m as

Ry g t1ot2) =

n n o0 00
2 2 UpUnuferfi S f E{dx(tz - ©)dx(t; - T} he(tphy(tp)drodry

r=1k=1

n n o0 ®
+2 2 UpUnufoofia S [ Eddyta - w)y(ty - T} he(ty)hy(rp)dradr,

r=lk=1

n n 0 ©
+2° 2 UpUnufiafis S f Edde(tz - ©)do(t; - T1)} he(t)hy(tp)dtodr,

r=1k=1

(3.25)
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If the process is stationary then the crosscorrelation is a function of the time

difference t; - t, = 1. Equation (3.25) can be rewritten as
quqm(tl-tZ) =

a n 0 ®©
2 2 UpeUmucfrifi S [ Raeaets - 71 - 2 + 1) he(ty)y(tp)dpdry

r=lk=1

n n 0 o
+ 2 2 UpUnufoofir J S Raya,(t - 1 - + 1) he(thy(tp)drpdr,

r=1 k=l -0-0

n n 0 o
+ 2 2 UpUmfsfics f f Rgge(ts - T1 -t + 1) he(t))hy(t)dtod7y.  (3.26)

=lk=1

The Power Spectral Density of the displacements of joint-p and joint-m is

determined by the Wiener Khinchine relation

Sapan® = ﬁ} R, o (De0Tdr. (3.27)

Defining the variable
K=1-7,+7T, (3.28)

Applying equations (3.28) and (3.26) in equation (3.27) gives
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Sopan(® =

n n 1 o . - | _ |
El EUprUmkfrlfkl an) Raa e @xdx [hy(r)e@m1dr, [ hy(ty)eiom2dT,

-0 -

LA ] = : oc : © :
+y UprUmkfermﬂ f Ry yiy(K)e"mKdK S h(ty)e‘@Tidr, J hy(ty)ef@T2dr,
=lk=1

-0 -0 -0

nn ] = ) @ ) @ )
+2. 2 UplUnmidfsfis - [ Rigig()e@xdx £ h(1))e @%1dr, [ hy(r)e@2dr,

=lk=1 -0 o -0
(3.29)
By definition H(o) is
[ he(Ty e 0t1d, = H(a) (3.30)
7hk(‘cz)e"m"2d1:2 = Hy(o) (3.31)

where H; = (cof - 02 + 2 wo,)l, i= -\/3 and H;(m) is the complex conjugate of

Hi (). Further, using equation (3.3) and by definition we have

1 © .
Zf R: “‘((K)e"“)'cd!( =S (®) (3.32)
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| = )

o S Ray("ly(uc)e"m'(dlc =Sy(w) (3.33)
] © .

o f Rgaqe()e@xdK = Sy(w) (3.34)

Application of equations (3.33), (3.32), (3.31), (3.30) and (3.34) in equation
(3.29) gives

n n *
Sean(@) = Zl E (Fr1Sxfict + £r2Syficx + fi3Sgfic3)UprUmiHe(@)Hy (o)
r=1k=1

- T T T T T T
=Z Z (ur fl qukfl + u, fZSyukfz + u. f3Seukf3)
r=1k=1
(UprUmkHr((’) JH(@)) (3.35)

Equations (3.35) can be used to construct the power spectral density matrix Sqq(®@)
of the joint displacements. The covariance matrix of the joint displacements is

obtained as

T e o]
Req(®)=E{qq } = [ Sgq@)o. (3:36)

-

From the calculus of stationary random processes the covariance matrix of the

Joint velocities is obtained as
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Ry = | 02qq@)io (3.37)

-0

Equations (3.36) and (3.37) can be integrated using the residue theorem.

3.4.2. Nonstationary Response

The spectral approach (frequency domain) used in the previous section for
the stationary response cannot be easily applied to the nonstationary responses
because of the time varying nature of the excitation. Therefore in this section, the
state space approach (time domain) will be used. The state vector z, for mode r

can be defined as

z,(t)

Equation (3.12) can be reformulated in state space as

z.= Az, + by(t) + bpy(t)+ bys(t) (3.39)
z(0) = 0
0 1
Ap = [ } (3.40)
-0, 28,0,
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by (t) = -u,f 1"x(t) (3.41)
T [0

bey(t) = -u, f; : Gy(t) (3.42)

b.(t) = -u, f, . qo(t) (3.43)

The transition matrix ®(t) for equation (3.39) can be obtained using the
relationship found in Iwan and Ho (1989). The solution of equation (3.39) for the

state z_ is obtained as

2= [ Dy(t-17) (bea(D) + bea(e)* bs()ic (3.44)
0

Using equations (3.44), the cross covariance matrix of the response of the state-r

and the state-s is given as
T
R (1) = E{z(t) z5(1)}

t
= [@Ut-DE{ b1 (D Hbra(t)bi3(D)] [bsi(D) + bia() + by (1) }@s(t - e
0

(3.45)
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Application of equations (3.4), (3.5), (3.6), (3.41), (3.42), and (3.43) in equation
(3.45) gives

E{[b,1(1)+ba(t)+be3(1)] [bgy(x) + bgy(x) + by(0)] ' }
= u; [fug FQ(D)Sgy + oty QTS0 + Fyt £,03(0)S0] ¥ (3.46)
where

[0 °] .

By algebraic manipulation, equation (3.45) can be written as

R(t) = L.G(tLe (3.48)

T. T t T t T t ,
Ges(t)=Tu (Fu5 S0y [Q(t-01Hpug £5Soy (Q(t-)+Eyus £, 00 (5(t-0)]
0 0 0

P(T)ps(t)de (3.49)

L, = (3.50)
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Ogr
L, = (3.51)
i . érQL
Wyr
{e‘éﬂ’st cos (Wyst )} 3
() = 52
Ps(t) etot sin (ot (3.52)
{e‘éﬂ’rt cos (@4t )J X
t) = 3.5
P(t) eZod sin (wyt) (3.53)
04 = 05\/ 1-E (3.54)

/ 2
Oy =o\[1-E, . (3.55)

The terms Lg and L, are constant matrices which depend on the system
parameters. The integrals involved in the computation of the elements of the
matrix G(t) can be obtained from standard integration tables (Beyer, 1987). By
replacing the subscript s in equation (3.48) by r the covariance matrix of state r
R (t) = E{z(t) z:(t)} can be computed. The components of the state covariance
matrices Rp(t), R (t), and R.(t) can be reassembled into the modal covariance

matrices R (t), R;(t), and R;(t). The covariance matrices of the joint motion
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vector q defined as Ryq(t) can be obtained using the modal transformation matrix U
(equation (3.9)) as

Req(t) = E{q()q"(t)} = E{(Uz(t))(Uz(1))"} = UR,()U" (3.56)
Similarly the covariance matrix of the joint velocities q is given as

Ry (1) = UE{z()zT(t)}U" = UR,(t)U" (3.57)

3.5. Covariance Tensors of the Tip Responses

Before discussing the responses of the manipulator tip it is important to
note that in this work each link of the manipulator structures can be assigned a
Cartesian coordinate frame. The coordinate frame for each link should be attached

to the end of that link (see for example the base and the tip link on Figure 3.1)

In the following discussion only the nonstationary response is presented.
Details on how to obtain the stationary response is discussed at the end of the
section. A Jacobian J relating the joint motion q to the tip motion vector x can be

applied to compute the latter, i.e.

x=Jq (3.58)
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The covariance matrix of the manipulator tip displacement can be expressed in any
Cartesian coordinate frame (for example frame x,= [X,,y,] attached to the base)

through the Jacobian associated with this frame J, as
_ T, _ T T T
Ryoxg® = E{xoxg } = JoE{q(t)q"(t)}Jp = JoRqq(t)y (3.59)

Similarly the covariance tensor of the manipulator tip velocities in the base frame

1S
Rigzo =E{ko¥o } = JoE{@Da (935 =JoRyq (1. (3.60)

The rotation matrix transforming the Cartesian base coordinate frame x, to the i-th
frame x; is defined as Rot:, and

J, = RotyJ; (3.61)

By substituting equation (3.61) in equation (3.59) the covariance matrix of the tip

displacement in the Cartesian frame x; can be obtained as

Ry () = (Rotg) Ry, ®Rot) (3.62)

Similarly, the covariance matrix of the tip velocity in x; frame is given as

Ry« () = (Roth) Ry (HRot, (3.63)

In particular, a rotated frame x, in which the covariance matrix of the tip

displacement is diagonal can be used. This frame will be referred to as the
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principal variance frame. The principal Jacobian matrix J, can be defined as the

Jacobian associated with the principal variance frame i.e.

R, () = J,Rgq(0J: (3.64)

where Ry ; () is the principal variance matrix and it is a positive definite diagonal
matrix. To compute the principal variance matrix R,, (t) singular value
decomposition of the tip displacement covariance matrix in a known frame, for

example R, , (t) is employed (see Section 2.4) and this process leads to
* * T
Ry x,(1) = (Roty)Z, ()(Roty) (3.65)

where Rot; is an orthonormal matrix. The diagonal matrix Z, contains the

eigenvalues of Ry ; (t) and its elements represents the principal variance of the tip

displacements R, « (t) i.e.

Ry x, () = Zg (1) (3.66)

The principal variance matrix of the tip displacement contains the maximum and
the minimum variance of the tip displacement due to the nonstationary base
excitation. The direction cosines of the principal variance of the nonstationary tip

response -principal Cartesian coordinate- is given by the columns of orthonormal
*
matrix Rot,.
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Similar by applying the singular value decomposition theorem to the tip
velocity in a known Cartesian frame, the principal variance of the nonstationary tip

velocity can be obtained

Ris. () =2 (D) (3.67)

A similar procedure as outline in this section can be used to develop expressions
for the stationary random response of the manipulator tip displacement and

velocity. In this case the time variable t is zero i.e. t = 0.

3.6. Summary and Concluding Remarks

In this chapter the equation of motion of a manipulator attached to a non-
wheeled mobile base has been developed using the Lagrange's principle. The base
on which the manipulator structure is mounted is assumed to be so much more
massive than the manipulator that the dynamics of the structure does not
practically influence the base. The base is subjected to stochastic motion which
couples kinematically as excitations into the dynamics of the manipulator

structure. This coupling involves the acceleration vector of the base motion.

Expressions for the covariance tensors of the joint motions have been
derived. Further, by using the kinematic relation between the joint motion and the
manipulator tip motion, expressions for the covariance matrices of the tip motion

have been obtained. Transformations which can be used to relate the covariance



matrices in various coordinate frames have been derived. The singular value
decomposition theorem has been used to develop expressions for the principal
variances and principal coordinate directions of the tip motion. The above
expressions have been developed for the stationary and the nonstationary
responses. Two examples and numerical simulations are presented in the next

chapter to illustrate the analysis discussed in this chapter.
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Figure 3.1. Model of a Non-wheeled Mobile Manipulator

i-th kinematic configuration

i-th elastic motion variable

Cartesian coordinate frame attached to the i-th link
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Chapter Four

NON-WHEELED MOBILE MANIPULATOR,
EXAMPLES

4.1. Introduction

Two examples are presented in this chapter to illustrate the method
discussed in chapter three. A dimensionless time t is introduced to generalize the

results where t is defined as

—A &
t—\/k:t 4.1
d ki d
N “2)

k.
2= adi2 (4.3)

a, and k; are the i-th inertia and stiffness terms respectively. It is assumed that the

massive base is excited only in the vertical direction i.e. Gy(t) = q«(t) =0.
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4.2. Examples of Excitation Models

Representation of the Stationary Base Excitation:

The power spectrum representation of the excitation used has the form as

suggested by Chang and Young (1989)
(4.4)

Siydy = Soy

where Sy is a positive constant i.e. §,(t) is a white noise.

Representation of the Nonstationary Base Excitation:

The modulating function for the nonstationary base excitation model has

the form as suggested by To (1986) i.e.
(4.5)

Q,(t) = Wu(t) (et - co2t)
where W, o , a, with o) < a, are positive constants and u(t) is a unit step

function.

4.3. Example 1: Single Link Flexible Manipulator

Consider the manipulator of Figure 4.1excited by the base random motion
qy. The Lagrangian /. and the Rayleigh dissipation function R for the system are

1 20 1 2 - ! 2
L= 3(m)q, + 5a,q; + a,qyq,c08(0)) - Fk;q) 4

1 .2
R=5¢q, 4.7)
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a; =1 +m1’§1 (4.8)

= mllcl (49)
Lagrangian principle (equation (2.6)) can be used to derive the equation of motion

for the system (equation (3.7)). Introducing the dimensionless time T, the equation

of motion becomes

qi(t) + 28q;(t) + q(t) = - a3 cos(®)§,(T) (4.10)
R 1
2= % (4.12)

The Jacobian matrix relating the tip motion to the joint motion in the base frame is

(see Appendix C)

_{"‘1[511’1(@[) (4 13)

1yc0s (@)

Stationary Response:
Using the procedure developed in Chapter three, and the excitation model defined
in equation (4.4), the covariance matrices of the system displacements can be

obtained:
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-~

Joint Variance (see equations 3.35 and 3.36)

Ryq(0) = So, 35 icosz(@l) (4.14)

Tip Covanance Matrices:

The covariance matrix of the manipulator tip displacement in the Cartesian base
frame x,= [X0,¥o]T (see equations 3.59) is

2 T

a, EA(GI) (4.15)

,
Ryxo(® = [1cos¥(©)S,,

{ sin}(©)) -cos(®;)sin(®,)
A(©O)) = cos¥(®,) . (4.16)
-c0s(@,)sin(©)) cos¥(©))

The principal variance matrix of tip displacement can be obtained (see equation

3.66). This is done by taking the singular values of A(®,) matrix.

Re.x.(0) = [1c05(©1)S5, 3 5,0(0)) (4.17)
[0 0]
(p(@1)=cosz(®l)[ 0 1J' (4.18)

Nonstationary Response:

Joint Variance (see equation 3.48)

— -2 _1 —
Ryiqi(t) = Soy a5 1 é2 cos?(©)A(T) (4.19)
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where the expression A(t) is obtained using Bayer(198) and is given as

251 _ @211 =221 . e-2051 e-22t _ e~(ay+to)t

Moy -8) T Awp-5 Coreg-2

A(t)=

'2“[(\] -£2)sin(2(\/1 ’é )t) + (a,-E)cos(2(\/1-E )t)] '7“‘T[(ar§)]
4[0‘1 +1-20,&] 4[0‘1 +1-2aé]

e (/1-82)sin2( /1 1 2)D) + (@E)cosCA1-END] | _e2nT{(o,-E)]
4y + 1 - 20,8] a1 - 20

'25‘[(\/ -E2)sin(2(\/ 1 -§ )t) + (@, + &, -28)cos(2(\ 1-ED)1)]
2
[ +°‘2-4(1 o,5-a,8)]

) e-(a,+a2)f[(al+a,2-2§)l (4.20)

(o) +a2-4(1 - a,E-0,E)]

Tip Covariance Matrices:

The covariance Matrix of the manipulator tip displacement in the base frame

Xo= [Xq,¥o] T is

2 1 _
Ry x (1) = /fSo,v a, —1- éz cos¥(@)A(DA(O®)) (4.21)

A(®)) is defined in equation (4.15). The principal variance of tip displacement can

be obtained (equation 3.66) as
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— 2 1 —

R, (1) = Pcos¥(©))S,, a, el ADP(O)) (4.22)
-G

@(O)) is defined in equation (4.18). Using the method developed in Chapter three

(section 3.5). it can be shown that for the stationary and the nonstationary tip

displacements there is only one direction in which the maximum variance is

reached. The direction cosine of this principal direction can be found as

1 [tan(@l)

Rot* =
" \[1+tan2(@)) 1

}t 1800 (4.23)

The highest value of the principal variance of the tip displacement occurs at

@1 =0.

4.4. Example 2: Two Link Flexible Manipulator

The Lagrangian for the two-link manipulator system of Figure 4.2 is

1 2 1 21 . . . A
L= 73200+ 72,9 +522(q) + 42 )* + 39, (@, + G )c0s(O5+qy)
+as5qy q) cos(®+q) )+ a4 4, () + 42 ) cos(O+q;+ O,+q,)
1 2 1 2
-7 kg -3k (4.24)
ay =mj + my+ my (4.25)
a = [l + ml(lcl)z + m2(12)2 + [2 + mz([cz)z (426)
a = [2 + mz(lcz)z (427)



a3 = my(/r)y)
as =m (/) + my(/y)

ay = my(/c7).

The Rayleigh dissipation function R for the system is given as

1 2 1 .2
R=5¢1q; +5¢,4;

(4]
19

(4.28)
(4.29)

(4.30)

(4.31)

The detail derivation of the equation of motion using Lagrange principle is given

in Appendix B. The elements of the resulting system matrices are given below.

Elements of the inertia matrix

{Du Di, J
D=
Dy Dy

D“ =a) + 233 COS(@z)

A
[

= a, + a3 cos(©,)
Dzl = ay ta; COS(@z)

D')z = &

(4.36)



Ki =k,
Kij=0 fOI' l ¢j

Elements of the damping matrix

[Cyy ClzJ

Gy Cyp
Ci1=c
Cr=cy

Cij:O fOI' 1 #_j

Elements of the dynamic coupling vector

f31 = ascos(®;) + aycos(®, + ©,)

f‘)2 = ay COS(@l + @2)

The resulting dimensionless matrices (see section 4.1) are

1
a)

D=—D

1

C
Vaki

@]

(4.37)

(4.38)

(4.39)
(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)
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K - El‘ K (4.46)
1

f,= —f. (4.47)

o

1
aj

The Jacobian matrix of the tip motion in the base frame Xo= [X0.¥0]T is given as

5, =I:Jn J12 ;] (4.48)
Jar I

Jit =-1sin(@y) - ,sin(O; + ©,) (4.49)

J12 =-lsin(©] + ©,) (4.50)

Jy1 = [1c0s(©y) + [hcos(O) + O,) (4.51)

Jay = [,co8(©) + ©,) (4.52)

Detailed derivation of the elements of the Jacobian matrix J,, is given in Appendix
C. Using the procedure outlined in section 3.3 to section 3.5 the stationary and the
nonstationary responses can be computed. The contour integrals required for
computing the stationary responses (equations 3.36 and 3.37) using the white noise
excitation (equation 4.4) are derived in Appendix D and are derived in Section D2
(equations (D.7), (D.18), (D.23) and (D.30)). The formulae required for obtaining
the nonstationary responses (equation 3.48) using the modulated white noise
excitation are given in Appendix E. The nonstationary and the stationary joint and

tip responses have been computed numerically.
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4.5. Numerical Simulation

Programs to simulate the random vibration of the joint and the tip motion
of non-wheeled two-link mobile flexible manipulator under stochastic base
excitation has been developed. The flow chart for the programs are shown at the
end of the chapter (Figures 4.14 and 4.15). For the sake of simplicity in the
simulation, it is assumed that the links of the manipulators are uniform cylinders of
lengths /; =/, = | m, masses m; = m, = m kg and stiffness k; = k, = k N/m, where
k and m can have any arbitrary values. The parameters W, o, and o of the
modulating function Qu(t) used in the nonstationary responses have the values of
15, 0.1. and 0.5 respectively. Figure 4.3 displays a plot of the modulating function
Q.(t) used for simulation. The variance and covariances depicted in subsequent

figures have been normalized by the intensity of the white noise S,.

4.5.1. Joint Response

The statistical characteristics of a nonstationary response are time varying,
therefore for the discussion in this section, the figures are made for a time instant
of t =20. Figure 4.4 is made for the specified values of @, and @, + 1800 range of
one degree incremental values of ©,. It shows the variances of joint 1
displacements. The variances of joint 2 response is shown in Figure 4.5. It can be
noticed that the smaller the value of @ the larger the variance of joint 1 and this is
always greater than the variance of joint 2. The variances have zero values at the
configuration @ = 909, ©, = 0° since the manipulator moves as a rigid body at this
configuration. The covariance of the joint displacement is shown in Figure 4.6. It

is observed that at the configuration of @, of about +130° the covariance of the
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Joint displacement is zero. This result can be interpreted as follows. As the
absolute value of the angle ©, between the two links increases from zero and
approaches 1300, at about this configuration a mode reversal takes place. Before
1300 . at about 126° for example, the modal matrix U and the corresponding

natural frequency vector ® are given as

1.109 0.106 |
_ J (4.53)

0.059 -2.004
0.498

o0 = (4.54)
0.900

At about 1320 the modal matrix U becomes diagonal and the mass normalized

modal matrix U becomes a unit matrix (see equation (3.8)) i.e.

[ 1.0 0.0 J
U= (4.55)
0.0 1.0
[o.soo }
o = (4.56)
0.866

It has been discovered that. physically this means that in the first mode of motion
Joint 2 does not move and the whole manipulator moves as a rigid body about
Joint [ (see Figure 4.7a). In the second mode joint | does not move therefore link |
is stationary and only link 2 experiences motion about Joint 2 (see Figure 4.7b).

During a forced motion of the manipulator at this mode reversal configuration the
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first normal coordinate z; contributes only to the motion of joint I, ie., to the
motion q;; and the second normal coordinate z, contributes only to the motion of
joint 2 i.e. to the motion q,. It means that the joint coordinates q are now normal
coordinates as well. Therefore the joint motion is decoupled. Hence in the
equation of motion (3.7) the dynamic coupling terms vanish. For the chosen set of
motion coordinates the coupling between the joint motion is manifested by the
diagonal terms of the inertia matrix D. Therefore the off diagonal terms of the

inertia matrix become zero thus

D) = Dy = ay + a3 cos(@,) =0 (4.57)

The solution of equation (4.57) provides an accurate value for the mode reversal
angles as ®, = +131.81°. At the adjacent angles, to the mode reversal angle ©, the
modal parameters of each modal vector change their direction with respect to each

other, for example at about 1360

(1.185 0.0

U= (4.58)
| -0.050 2.010
[0.499

o= (4.59)
| 0.843

Therefore the covariance of the joint displacement change their signs.
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4.5.2. Tip Response

In this section the response is plotted as an explicit function of time in order
to shown the time varying nature of the nonstationary response. Since, in practical
applications, the maximum variance of the tip motion is of interest because it gives
the highest effect of the excitation, the major principal variance of the tip motion
will be discussed in this section (see equation 3.66). Figure 4.8 is made for the
specified values of ®; and @, = 0° and it shows the sensitivity of the tip response
to changes in the manipulator configuration ©,. It is observed that the more
perpendicular the manipulator structure to the excitation, the higher the response
to the excitation. Thus, the highest displacement occurs at ®, = ©, = 0°. At this
configuration the links of the manipulator are perpendicular to the stochastic base
excitation qy(t). It is noted that the stochastic response at ®; = 90° and ®,=00is
essentially zero since the links move as a rigid body. Subsequent plots are made
for the configuration ®1 = @5 = 0°. The influence of the relative lengths of link-2
to link-1 on the response is shown in Figure 4.9. It can be observed that the longer
the terminal link (link-2) compared to link-1, the higher the value of the tip

response.

The sensitivity of the tip response to damping is shown in Figure 4.10. In
both stationary and nonstationary cases the tip response can be reduced with the
presence of damping. Figure 4.11 shows the computed and scaled values of the
principal  variance and their orientations for five configurations
[©1. @3] = [00°, 90], [45°, 0°]. [45°, 90°], [90°, 90°] and [90°, 0°]. The principal
variances are illustrated by the crossed line segments located at the manipulator

tip. The major variance is very high compared to the minor variance i.e. the



stochastic motion of the manipulator tip is almost unidirectional though the

direction is different for different configurations.

The effect of the cross coupling terms of the modal covariance R(1) of the
normal modes on the tip response is shown in Figure 4.12. In the nonstationary
case, for both low and high damping factors, there is no observable difference
between the principal variance of tip motion, with and without the coupling terms.
Thus, the coupling terms have no influence on the principal value of the tip
response. On the other hand, for the stationary case, there is no observable
difference at low damping, but there is a marked difference at high damping.
Further, the nonstationary results obtained from the method developed in this
thesis was compared with that obtained with the evolutionary spectrum method
(To, 1984). The two methods yield the same results (Figure 4.13). The advantage
of the presented method is its simplicity since it makes use of already existing
standard integrals and yields both the velocity and displacement covariance

simultaneously.

4.6. Summary and Concluding Remarks

To illustrate the ideas developed in Chapter three, the Lagrangian and the
Rayleigh dissipation function for the single and the two links non-wheeled mobile
manipulator have been developed. The Lagrangian principle has been used to
develop the equation of motion for both systems. A dimensionless time variable

has been introduced to generalize the results. For the single link manipulator.
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closed form expressions for the covariance of the joint displacement and the
covariance of the tip displacement in the base frame have been developed. Further.
closed form expressions for the direction and magnitude of the principal variance
of the tip displacements have been derived. It is noted that while the stationary

response is time invariant the nonstationary response is time varying.

For the two link manipulator, numerical simulation has been undertaken to
study the joint response and to evaluate the influence of the system parameters on
the covariance of the tip response. For the joint response, it was noticed that the
manipulator has a family of configurations at which a mode reversal takes place.
The configurations are characterized by the mode reversal angle ®, = + 131.81°.
At these angles the covariance between the joint motion is zero since the joint
motion is decoupled. Further, at the adjacent angles to the mode reversal angle the
modal parameters of each modal vector change their direction with respect to each

other therefore the covariance of the displacement changes sign.

Results from the sensitivity analysis of the tip motion show that the
direction and the magnitude of the major motion varies significantly for different
configurations and is almost unidirectional along the major principal variance axis.
It can also be concluded that to minimize the maximum vibration of the tip motion
the links must be damped. Further, the upper links should be shorter than the lower

links.

[t has been noted from the computed results that the cross coupling terms

R of the modal response makes no significant contribution to the nonstationary
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tip response. Therefore, to simplify computation, the cross coupling terms can be
neglected. On the other hand, for the stationary tip response the cross coupling
terms R should be included when the system has high damping. The technique
developed in this thesis for the nonstationary response has been compared with the
evolutionary spectrum technique (To, 1984). The results from both methods are

the same, however, the presented method has the advantage of simplicity.
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Figure 4.1. Single link Non-wheeled Mobile Manipulator
©, kinematic configuration of link 1

q elastic motion variable of link 1
(x,¥) Cartesian coordinate frame attached to link 1
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Figure 4.2. Two link Non-wheeled Mobile Manipulator
©, kinematic configuration of link 1
0, kinematic configuration of link 2

qi elastic motion variable of link 1

q2 elastic motion variable of link 2
(x,y), Cartesian coordinate frame attached to link 2
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Figure 4.3. Plot of the Deterministic Modulating Function Used for Simulating the
Nonstationary Stochastic Dynamics of a Non-wheeled Mobile

Manipulator.
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Figure 4.7. Motion of the Manipulator joints at ®, =131.81°

(a) First Mode, ; = 0.5rad/s (b) Second Mode, w, = 0.866rad/s
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Figure 4.8. Sensitivity of the Major Principal Variance of the Tip Response to

Changes in @ of Non-wheeled Mobile Manipulator. The damping factor

€ =0.001. (a) Stationary Response (b) Nonstationary Response at t = 20.
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Figure 4.10. Effect of Damping on the Major Principal Variance of the Tip

Response of Non-wheeled Mobile Manipulator.

(a) Stationary Response (b) Nonstationary Response
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Figure 4.11. Magnitude and Orientation of the Normalized principal Tip

Displacement Variance of a Non-wheeled Manipulator
(a) Stationary Response (b) Nonstationary Response.
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Stochastic Dynamics of a Non-wheeled Mobile Manipulator.
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Chapter Five

WHEELED MOBILE MANIPULATOR, ANALYSIS

5.1. Introduction

The presentation in this chapter is an original contribution of the author.
Components of this chapter have been accepted for publication in Akpan and
Kujath, (1996b). The originality is in the modeling of the joint and the tip
covariance responses of the flexible manipulator structure to the traction induced
random base motion. A selection and composition of known analytical tools such
as state space techniques and modeling of traction induced excitation have been

used in the formulation.

5.2. Model Assumptions

The basic model of the manipulator structure used in this chapter is shown
in Figure 5.1. The manipulator structure is mounted on a mobile base whose mass
is of the same order of magnitude as that of the manipulator so that the
manipulator dynamics affects the mobile base. Further, the mobile base mounted
on wheels is supported by a suspension and it moves on a traction surface. The
suspension of the base is modeled by a linear joint. It is assumed that the
suspension motions q, and q, are known, q, is the horizontal motion of the base

which is taken as a deterministic function while q, is the surface irregularities of
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the traction surface and is assumed to be a random function. The random
excitation (due to the motion of the manipulator base on a traction surface) is
small and produces small responses. Also, the wheels maintains constant contact
with the surface and there is no deformation of the surface during motion. It is
noted that while for the non-wheeled mobile manipulator (Chapter 3) qy and q, are
known oscillatory random motion, for the traction mobile manipulator q is an

oscillatory random function and q, is a deterministic function.

5.3. Equation of Motion

Application of the Lagrangian principle leads to the linear equation of

motion
Dg(t) + Cq(t) + Kq(t) = fiqy(t) + £,q,(t) + F3G,(t) (5.1
f, -coefficient vector of the stochastic excitation qu(t),
f, -coefficient vector of the stochastic excitation qyu(t),
f; -coefficient vector of the deterministic excitation §(t)

A specific example of the components of equation (5.1) is given in Chapter six.
Using the principle of superposition. equation (5.1) can be written as two

equations
Dgy(t) + Cdq(t) + Kqq(t) = f34,(t) (5.2)

and
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Diis(t) + C‘.]s(t) * qu(t) = flq_v(t) + fZQy(t) (3.3)

where q = q; + qq. Since in equation (5.2) the excitation term f3q.(t) 1s
deterministic, then the response q induced by it is also deterministic and has a
mean value E{q4} = Hq = qq- Further. its covariance matrix has only zero elements.
On the other hand for equation (5.3) the excitation term fiq,(t) + £rq,(t) is

stochastic, therefore the response qg is stochastic and the associated covariance

. T . .
matrix E{qq } = Ry4(t)) has non zero elements. The deterministic and stochastic

responses can be treated separately.

5.4. Deterministic Response

Assuming that q has dimension 7 x1 then the state variable z (2n x 1) can
be define as

z=[q", 4" " (54)

Application of equation (5.4), to equation (5.2) transforms it to

z=A,z+Fs, (5.5)

0
f;, = Gi(t 5.7
37 [D"f;(t):]q'() (5.7)
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0 is an » x n null matrix, I is the n x n identity matrix. Equation (5.5) can be
solved for z which can be reassembled into q and q. The tip response can be
computed in any moving coordinate frame attached either to the vehicle or any of
the links. Since the vibration is small, (see Sections 2.5 and 3.5) a Jacobian J
relating the joint displacement vector q to the tip displacement vector x and the
joint velocity vector q to the tip velocity vector X can be applied to compute the

latter.

5.5. Stochastic Response

5.5.1. Joint Response

The excitation produced by the surface qy(t) has a correlation R, ,q, Which can be
modeled as output of a shaping filter to a white noise expressed by

(Narayanan and Raju, 1990)

4,(t) = £,(0a,(t) +by (HW(D) (5.8)
where w(t) is a vector of white noise with covariance matrix

E{w(t)w ()} = Qé(t, - ty) (5.9)

Q is the covariance matrix of the white noise; & is the Dirac delta function: f;.(t) 1s
a function of time and b,(t) is a vector function of time. The augmented

(2n+1) x Istate vector y can be defined as
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y=[z.q]. (5.10)

Application of equation (5.10) to equation (5.8) and (5.3) gives

y = Ay + Bw(t) (5.11)

[AZ D"fl+D'lf2fy(t)J

A= (5.12)
0, f,
[ o,
B=| Db, | (5.13)
T
b

Assuming the dimension of the white noise vector is m x 1 then B is 2n x » matrix.
0, is m x | vector and 0, is a 2n x 1 vector. Now, with the white noise w
considered as a function of the space coordinate qx (which in turn is a function of

time) equation (5.11) can be written as
¥ = Ay +3()BwW(qy(D)), for q,(t) > 0 (5.14)

E{w(qu(t;))Ww (qu(t2))} = Q3(qy(t)) - q(t3)) (5.15)

The solution of equation (5.14) is given as




t
y(t) = D (t,ty) y(to) + J D (t.t) qt)B(t)w(qy(ty))dt; (5.16)
to

D (t.ty) is the transition matrix of equation (5.16), t, is the initial time and tjis a
dummy time variable. The zero-lag covariance matrix of the augmented state y can

be defined as

P=E{yy"} (5.17)
so that

P=E{yy" +yyT} (5.18)
Application of equations (5.17) and (5.16) in equation (5.18) leads to

P = AP + PAT + 4 (BE{w(q 1)y} + G(E{ywT(q(1))} BT (5.19)

To solve equation (5.19) the averages in the equation have to be evaluated.

Considering the second average and application of equation (5.18) gives

E{yw™(qu(t))} = @(t,t)E{y(to)w " (q,(1))}

t
+ Ot qt)BE)E{W(a(t))w (q( 0)}dt,  (5.20)
to
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The first term in equation (5.20) is a zero vector since the initial state y(tp) is
uncorrelated with the excitation following t, To obtain the second average in

equation (5.20) it is noted that

E{w(q.(t))W'(qu(t)} = Q(t))8(qu(ty) - qu(t)) (5.21)

The Dirac delta function & can be simplified by making use of a result from the
theory of generalized function, namely that for a function f(t), having simple zeros

at f = f;, it may be shown (see Appendix F) that

3(f(t)) = —[(%(t_mll (5.22)

which is simply a convenient notation expressing the generalized sifting property

of delta functions. Equation (5.21) can be written as

E{w(q.(t))w'(q)} = Q(O‘E{'@l (5.23)

Since q,(t) > 0 the modulus operator may be dispensed with. By substituting
equation (5.23) in (5.20) and utilizing the sifting property of the delta functions,
and noting that the integrand is only defined at the upper limit of the integration
(see Appendix F) then only one half of integration makes any contribution.

yielding the final result

E{yw'(q(1)} = %QB (5.24)
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similarly the first expectation in equation (5.19) gives

.
E{w(q.(t)y"} =5QB" (5.25)

Application of equations (5.25) and (5.24) in equation (5.19) leads to

P =AP + PAT +3 (t)BQB” (5.26)

Equation (5.26) is the Liapunov matrix differential equation for the manipulator
Joint motion. It can be solved for the covariance P = E{yy"} using a numeration

integration algorithm.

5.5.2. Constant Velocity of the Mobile Base

The discussion presented in the preceding section applies to accelerating
wheeled mobile manipulators. When the manipulator base has constant velocity
i.e. qu(t) = 0, the deterministic component of the excitation in equation (5.1)
vanishes. Further, the equation for the system excitation (equation (5.8)) is time-
invariant and the frequency domain technique can be used to compute the
response. The two approaches -the state space (time) and the power spectral
density (frequency) approaches, used in this thesis for computing the joint

responses are presented below.
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5.5.2.1. State Space Approach

Using the state space approach the Liapunov's differential equation for the

Joint response (equation 5.26) degenerates to the algebraic form

AP + PAT = -4 (t)BQBT (5.27)

Equation (5.27) is the Liapunov matrix equation and can be solved using iterative
techniques. Smith's algorithm (Smith, 1970) can be used to solve equation (5.27).
Alternatively the elements of the symmetric matrix equation (5.27) can be
expanded and solved as systems of linear equations. The second approach was

adopted in this report.

S.5.2.2. Power Spectral Density Approach

Equation (5.10) is the state space representation of the excitation q(t) and
is also the time domain description. When the base velocity q\(t) 1s constant, the
system excitation qy(t) is stationary and its power spectral density can be found as

(see Chapter six for example)

Sq}qy = S,q,) (5.28)
The power spectral density of the derivative q,(t) can be computed as

quy = (.!)2qu,.Iy (5.29)

S
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Equations (5.28) and (5.29) give the power spectral density representation of the
excitation and these are the frequency domain presentations. The joint vector q can

be expressed in terms of the mass normalized modal matrix U and the normal

coordinate e as
q(t) = Ue(t) (5.30)

Equation (5.3) can be expressed in the decoupled form
. ) 2 T A
Ed) + 25040 + op edt) = u  (fqy + £,,(t)) (5.31)

where u: represents the transpose of the r-th column of U. Using the Duhamel

integral the displacement response of mode-r is obtained as

x T .
elt) = f he(t - Du, (F1qy + Fq,(t)) dt (5.32)
| P -
he(t) = u(ty— e-3lsin (w4t) (5.33)
®gr

" , 2 2
Odr =0 l'ér . (5-)4)

The crosscorrelation of the displacements of joint-v and joint-m is obtained as

n n
Riam(® = E{Qu(D) qu(t+D)} = 30 3 UyiU i Edey(t) ey(t+o)}. (5.35)
i=lk=1
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The power spectral density of q,, and q, can be obtained by the Wiener Khinchine
relation (equation (3.27)) using equations (5.35), (5.32), (5.29), and (5.30) as

T T T T, & & *
Squa (@) = (uvflsqﬂy(m)umfﬁ u‘.fZquqy(m)umfz >y UyiUmiHjHy
=1 k=1
(5.36)

2 _ : : ..
where Hj = (o) - 02 + 2i§ow;)l, i = \-1. The covariance matrix of the joint

displacements can be obtained as

Rqq(® =E{qq"} = [ Syq(e)do. (5.37)

-0

The covariance matrix of the joint velocities § can be obtained as

Rqq(®) =E{§q"} = i ©28gq(w)do. (5.38)

-C

The residue theorem can be used to solve equations (5.37) and (5.38).

3.5.3. Tip Response

The components of the covariance matrix P obtained by using either

equation (5.26) or equation (5.27) can be reassembled into the joint displacement

and the joint velocity covariance matrices defined as: Ryq(t) = E{qu} and

Rgq() = E{QQT} respectively. The tip velocity and displacement responses can be

computed using the method discussed in Section 3.5.
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3.6. Summary and Concluding Remarks

In this chapter the equation of motion of a wheeled mobile manipulator
attached to a traction mobile base has been developed using Lagrange principle.
The manipulator base has been modeled using the quarter car representation. Two

cases of the base motion have been considered.

(a) The uniform velocity case.

(b) The accelerating case.

In case (a), the mobile robotics system is subjected to only random
excitation. Expressions for the covariance tensors of the dynamics of the joints and
the tip of the mobile manipulator have been fully developed using the power
spectral density (frequency domain) representation and the state space (time

domain) representation.

For case (b) it has been seen that the system excitation is both stochastic
and deterministic. Further, principles of superposition for linear systems has been
applied to obtain the deterministic and stochastic responses separately. The
deterministic part of the excitation leads to a mean response and expressions for
this at the joints and the tip of the manipulator have been developed. The
stochastic excitation is nonstationary. Expressions for this time-varying
configuration dependent nonstationary covariance tensor of both the Joints and tip

responses have been derived.

To illustrate the ideas discussed in this chapter, a case study, and numerical

simulation are presented in the next chapter.



q

Figure 5.1. Model of a Wheeled Mobile Manipulator
©;  i-th kinematic configuration

di i-th elastic motion variable
xy)i Cartesian coordinate frame attached to the i-th link
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Chapter Six

WHEELED MOBILE MANIPULATOR, EXAMPLE

6.1. Example: Two Link Manipulator

A two link manipulator on a wheeled mobile base is used to illustrate the
procedures presented in Chapter five (Figure 6.1). The total kinetic energy T for

the mobile manipulator is
1 o2 2001 2 1
T=3a1(q *q) +33,q; +533(q2 *+q3)*+2;92(q3 +Qp)cos(@; +q3)

+25q1q; cos(0; +q3) + a6 q1(q2 + q3 ) c0s(0y + O3 +qp +q3)
- 35 Qy 42 SIN(Oy+ q3) - 36 4x(q2 + q3 ) SIN(O, + O3+ @ +q3) (6.1)
where
a,=mp tmp +m;y (6.2)
ay = I + my(/)? + my(/3)? (6.3)

a3 = I3 + m;(/;3)? (6.4)
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ay = m3lool, (6.5)
as = Myl; + my/s (6.6)
ag = myl. (6.7)

The potential energy, V, of the manipulator is

1 1 2 1 2
V= 5ki(qr-qy)? + 5k +5kq3 (6.8)

The Lagrangian for the system can be found using equation (2.3). The Rayleigh

dissipation function R is given as

R= %CI(QI - Q) + %szé + %cﬂi (6.9)
where
q, absolute vertical motion of the vehicle
m;  mass of the vehicle

m,  mass of link-2

m;  mass of link-3

| centroidal moment of inertia of link-2

centroidal moment of inertia of link-3

Using the Lagrange equation (see section 2.5) the equation of motion can be

obtained (see Appendix B for details). The inertia matrix is given as



D ={ Dy; Dy Doy (6.10)
D3y D;; Dsj
D=2 (6.11)
D)y = a5 cos(®,) + ag cos(®, + Os) (6.12)
Dy} = a5 cos(©;) + ag cos(O, + ©3) (6.13)
D35 = a4 cos(©, + ©3) (6.14)
D3, = ag cos(®, + O3) (6.15)
D,y = a; + a; + 2.0a, cos(©3) (6.16)
D,; = a3 + a; cos(®3) (6.17)
D3, = a3+ ay cos(©3) (6.18)
D33 = a3 (6.19)

The stiffness matrix is given as



Kip Ki2 Ky3
K =| Ky Ky Ky

K31 K32 Kss
Ki=k
Ky =k,
K33 =k;

Kij=0 for 1 -'vﬁj

The damping matrix is given as

Cit Cyp Cy3
C = C Cypn Cyp
C31 C3y Cys
Cn=c¢
Cy=c;
Cs3=c3

Cij=0 fori = j

(6.20)

(6.21)

(6.22)

(6.25)

(6.26)

(6.27)

(6.28)

(6.29)
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f,=| 0 (6.30)

B 0

f. = a5 Siﬂ(@z) + ag Sil’l(@z + @3) (632)

L aq sin(@z + @3) —

To generalize the results, a dimensionless time t defined as in equation (4.1) can

be introduced. The resulting dimensionless matrices are

1
a;

D=—D (6.33)

(@]
[

—il
@)
)
L
N

a)

N

(6.35)

7=
~
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1
f,=| o (6.36)
0
— El
0
— 0 —
?3 = 55 Sin(ez) + 56 Sin(ez + @3) (638)
56 Siﬂ(@z + @3) _J

c = 6. 9

— _3s
as =) (6.40)
a6 = g‘li (6.41)

The Jacobian matrix of the tip motion in the vehicle frame x,= [x,.y,]" is given as

Jit Ji2 I3
J, = (6.42)

Jor Jn U



Ji =0

Jp =- lzsin(@z) - I3sin(®2 + @3)

J12 = - sin(©; + O3)

Iy =1

Jys = [hc0s(©;) + [5c08(0, + O3)
J23 = l3c05(0, + ©3)

Detailed derivation of the Jacobian matrix is given in Appendix C.

6.2. Surface Profile Representation

(6.43)

(6.44)

(6.45)

(6.46)

(6.47)

(6.48)
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The wheeled mobile manipulator is assumed to move on a homogeneous

spatial surface. Before stating the specific surface profile model used in this

chapter the relationship between spatial and time correlation, spatial and time

power spectrum and autoregressive model will be derived.

6.2.1. Relation Between Correlation and Power Spectral Representation

Consider the height qy of the surface above a fixed horizontal datum plotted

as a function of the horizontal position q, (see Figure 6.2). The wave number y
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which expresses the rate of change of q, with respect to q can be defined.
Assuming the vehicle speed q, is constant let the time when the vehicle is at
position q; be t; and the time when it is at position q, be t,. The time lag can be

defined as

T =1ty -t (6.49)

and the spatial lag is given as

dx = qx2 - qx1 (6.50)
Further,
4 =% (6.51)

Define the wave number (Newland, 1984) for the surface profile as

_2zn

v =3 (6.52)

where A is the wavelength. Thus in the Fourier domain if a cycle of wavelength A

is covered in period T, then

and the time angular frequency is
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m %
T —%ﬂ (6.54)

y =2 (6.55)

In what follows it is shown that if the surface profile qy(qy) is spatially
homogeneous and the vehicle speed is constant then the motion of the wheel qy(t)
is a stationary random process. The spatial autocorrelation function of the surface

is defined as
E{ay(ax1)ay(@x2)} = E{qy(ay1)qy(ax1 + qy)}

= quqy(QvaQxl) = quqy((L‘Q'Qxl) = quqy(Qx) (6.56)

Since the surface is homogeneous. Using the Wiener Khinchine relation equation

(6.56) becomes

Rqyq,{Qx) = [ Squq,(Metaxdy (6.57)

-C

Application of equations (6.51) and (6.55) in equation (6.57) gives

Rq,q,(d:0) f %G (—)emdm (6.58)
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Since the vehicle velocity q, is constant then the spatial correlation function
(equation 6.58) is essentially a function of the time lag t. From Wiener Khinchine
relation in the spatial domain we have

[ =

quq_v(*{) =3 f quqy(qx)e"i’qxdq_‘ (6.59)

-
Also in the time domain we have

] <
Sq yqy(co) =5 f quqy(t)e"“"-’d'c (6.60)

-C

Using equation (6.51), and (6.55) in equation (6.60) gives

. [ = | o )
Sayay(@ = &0 =3~ [ 3 Rayq (1= ?1? e-faxdqy 6.61)

Comparison of equation (6.61) and (6.59) gives

1
—3S

(6.62)

Equation (6.62) gives the relationship between the spectrum of the surface profile
expressed in the frequency (time) domain and that expressed in the wave number
(spatial) domain. This expression is general and can be applied to any spatial

correlation. In this study the spatial autocorrelation of the surface is assumed to be
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of the form suggested by several authors (Narayana and Raju, 1991; Hac, 1985:
Harrison, 1981).

Rgq,(Gx2-Gx1) = 02l = ol (6.63)

Application of equation (6.63) in (6.59) gives the double sided spatial power

spectrum of excitation as

] o :
Sq ) =50 f c2e~ld e-Yaxdq, (6.64)
1,0 . o .
=5:C [ J e e¥axdq, + S e xeYaxdq, ] (6.65)
~C 0
__Ooa 6.6

Using equation (6.66) and the relationship defined in equation (6.62), then the

double sided time power spectrum of excitation is

(6.67)
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6.2.2. Power Spectrum Representation and Autoregressive Equation

The autoregressive model of the excitation represented in equations (6.67), (6.63)

and (6.66) is given as

dqg,
a:lt +aqy, = w(qy) (6.68)
E{w(ax)W(qx1+ a9} = Q8(qv) (6.69)

where

o2  variance of the surface irregularity

o surface constant coefficient

w(q,) white noise with intensity Q = 2ac?

5 Dirac Delta function

It is observed that although equation (6.68), and the other related representations
have been quoted in various references including the ones listed in Section 6.6.1,
none of the references derives the relationship between them. For the purpose of
this study this relationship will be derived. In the following discussion it is shown
that equation (6.68) and the spatial power spectrum function given in equation
(6.66) are equivalent. From the Wiener Khinchine relation the spectrum of the

white noise w(q,) in the wave number domain is

I = 1
S =57 [20028(q)dq = _ac? (6.70)

The wave number response function H(y) of equation (6.68) (equivalent to the

frequency response function in the time domain) can be found. To this end let
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w(qy) = efYax, (6.71)

q,(qy) = H(y)eax, (6.72)

Application of equations (6.72) and (6.71) in equation (6.68) leads to

H(y) = (6.73)

y+a
The spectrum of the surface profile in the wave number domain is given as

SqyayM = | HOISuutr) (6.74)

Application of equations ( 6.70), and (6.73) in (6.74) gives

ca

From the above derivations it is seen that equations (6.75), (6.67), (6.63) and
(6.68) are equivalent. Equation (6.68) can be used to represent the excitation in the
state space approach. Before this can be done the equation has to be transformed

to the time domain. The following transformation is introduced

T = da g (6.76)

Application of equation (6.76) to equation (6.68) transforms it to the time domain t
as

qy(t) = -q()aqy(t) + qy(t) w(qy(t)). (6.77)



Equation (6.77) is an example of the general surface profile representation

presented in equation (5.8). Therefore in equation (5.8)
f(t) = -qy(t)ar (6.78)
b, = qy(1) (6.79)

Further equation (6.77) is general and applies to both constant and varying q(t). It
is noted also apart from equation (6.77) all the other representation of the surface
profile are applicable to constant q,(t). Using the procedure outlined in Sections
5.4 and 5.5 the system response can be computed. This has been implemented

numerically.

6.3. Numerical Simulation

6.31. Case 1. Manipulator on an Accelerating Wheeled Mobile Base
INITIAL CONDITIONS

Deterministic Response:

It is assumed that the vehicle starts from rest with uniform horizontal
acceleration. To initiate the Runge Kuta integration algorithm for the deterministic
response of equation (5.5), a set of initial values of the state z(0) have to be
provided. Since the state vector z is normalized with the standard deviation of the

surface profile o and at time t = 0 there is no relative motion between the vehicle



104

q, and the suspension qq, then z,(0) = l/c. All other initial conditions are set to

Z€ro.

Stochastic Response:

In order to initialize the Runge-Kuta integration routine for the stochastic
response of equation (5.24) a set of initial values of the covariance matrix P(0)
entries is required. From the assumption of homogeneity of the surface profile, the
variance of the suspension's motion is E{qﬁ(f) } = o2, and this implies P;7(0) = 1.
Further, at t = 0, there is no relative motion between the vehicle body q; and the
suspension gy, therefore P;;(0) = P;7(0) = P47(0). All other initial conditions are

set to zero.

6.32. Case 2. Manipulator on a Constant Velocity Mobile Base
The spectrum of spatial excitation is given in equation (6.67) and the spectrum of

the velocity qq is

Sty = ©Syq (6.80)

6.4. Results and Discussion

6.41. Case 1. Manipulator on an Accelerating Mobile Base

Two programs have been developed to simulate the deterministic and
nonstationary random response of the tip motion of a two degree of freedom
flexible manipulator on an accelerating base respectively. The flow chart for the
programs are given in Figure 6.3 and 6.4 In this discussion, the term stochastic

response refers to the major principal variance of the tip displacement, while the
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term deterministic response refers to the square of the magnitude of the tip
deterministic displacement. Figure 6.5 shows the sensitivity of the tip response to
the changes of the manipulator configuration for ©; = 0°, a = .45, and q, = 1. In
general, it can be observed that the more perpendicular the manipulator to an
excitation, the higher the response to that excitation. Thus, the highest stochastic
response occurs at ©, = 0°. At this configuration the links of the manipulator are
perpendicular to the stochastic base excitations qy(t) and qy(t). Also, at this
configuration the deterministic response is transient and depends only on the initial
condition since the vector f; = 0. The highest deterministic response occurs at
©, = 90° when the vector f; reaches its maximum value. The stochastic response
for ©;, = 90° and ©; = 0° is only that of the wheeled mobile base since the dynamic
coupling terms between the mobile base and the links are zero
(D13 = Dy, = D3 = D3; = 0); therefore the mobile base moves with the links as a

rigid body.

Subsequent plots for the deterministic and stochastic responses are for the
configurations of maximum responses. Figure 6.6 shows the influence of the
damping on the responses. The deterministic and the stochastic responses can be
reduced by the presence of damping. But if only either joint or suspension
damping is present, the stochastic response has low sensitivity to damping. The
deterministic response, on the other hand, shows high sensitivity to the suspension
damping in the absence of the manipulator joint damping and low sensitivity to the
Joint damping in the absence of the suspension damping. Further, at the beginning
of motion the deterministic and stochastic responses show little sensitivity to

damping.
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Figure 6.7 shows the effect of the acceleration of the mobile base on the
deterministic response. In general, the deterministic response increases with the
increase of the acceleration of the mobile base except for the configurations when
f; = 0 i.e. when the excitation has no effect. Figure 6.8 shows the effects of the
acceleration mobile base and surface roughness on the stochastic response. At the
beginning of motion, the stochastic response is not sensitive to either surface
roughness or acceleration. As the motion continues, for low acceleration q, = .4, it
is noted that the higher the surface roughness coefficient the higher the maximum
value of the stochastic response; also the response under this condition is smooth.
On the other hand, for high acceleration q, = 4., the surface with high roughness
coefficient a = .9 produces uneven response with quick rise. The maximum value
of the response is also low under this condition. The surface with low roughness
coefficient a =.15 produces a smooth stochastic response with a slow rise and a

high maximum value.

Figure 6.9 shows the computed and scaled values of the principal variance
and their orientations for six configurations [©,, ©;] = [09, 0°], [0°, 90¢],
[450. 0°], [45°, 90°], [90°,90°] and [90°, 0°]. The principal variances are
illustrated by the crossed line segments located at the manipulator tip. The major
variance is very high compared to the minor variance i.e. the stochastic motion of
the manipulator tip is almost unidirectional though the direction is different for

different configurations.



107

6.42. Case 2. Manipulator on a Constant Velocity Mobile Base

Two general purpose programs to simulate the stationary random response
of the tip motion of a two degree of freedom flexible manipulator on a constant
velocity mobile base using the power spectral density approach and the state space
approach have been developed. The flow chart for the programs are given in
Figure 6.10 and 6.11. In the following discussion the term displacement refers to

the major principal variance of the tip displacement.

Figures 6.12 and 6.13 are made for the specified values of ©,, and for
+ 180° range of O3; a = .45; q, = 5. Figure 6.11 shows the displacements obtained
using the power spectral density and the state space representations. It is noted that
both representations yield the same displacements. The state space representation.
however, has some advantages over the power spectral density representation since
it can accommodate non-proportional damping. Also, unlike the power spectral
density, the state space representation yields the displacements and velocities
simultaneously (see equation (5.27)). Further, it avoids the contour integrals (see
Appendix D, section D3) required for the power spectral density representation
(equations (5.37) and (5.38)) and it can be used for very large degree of freedom

systems.

Figure 6.14 shows the sensitivities of the displacements and velocities to
changes in the manipulator configuration ©,. It is observed that the more
perpendicular the manipulator structure to the excitation, the higher the response.

Thus, the highest response occurs at @, = ©; = 00. At this configuration the links
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of the manipulator are perpendicular to the stochastic base excitations q_v(t) and

ay(t).

The influence of the manipulator and the suspension damping on the
displacement is shown in Figure 6.15. It is observed that the displacement can be
reduced with the presence of damping. But if only the suspension damping c, is
present, the response has low sensitivity to damping. On the other hand, if only the

manipulator joints are damped the response is very sensitive to damping.

Figure 6.16 shows the effect of the surface roughness coefficient o on the
responses for the configuration @, = ®; = 0. The surface with high roughness
coefficient a = .9 results in quick rise and very high responses. The influence of
the relative lengths of link-1 to link-2 on the displacements and velocities is shown
in Figure 6.17. It is noted that the longer the terminal link (link-2) compared to

link-1. the higher the responses.

6.5. Summary and Concluding Remarks

In this chapter, the Lagrangian and the Rayleigh dissipation function for a
two link wheeled mobile manipulator have been developed. The Lagrange
principle has been used to derive the equation of motion for the manipulator
mounted on an accelerating and a constant velocity mobile base. To generalize the
results dimensionless time has been introduced. The ideas presented in chapter five

have been employed to study the system.
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For an accelerating wheeled mobile manipulator it has been observed that-
the dominant system response (stochastic or deterministic) depends on the
manipulator configuration, thus the more perpendicular the manipulator to an
excitation, the higher the response to that excitation: the highest stochastic
response occurs at  ©, = @3 = 0° and the highest deterministic response occurs at
©, = 90° and ®@; = 0°; the stochastic response of the manipulator tip is almost
unidirectional along the major principal variance axis; the direction and magnitude
of the principal variance differs significantly for different configurations; the
deterministic response is generally more oscillatory compared to the stochastic

response.

Sensitivity of the tip motion to the base acceleration, surface roughness
coefficient, and damping have been investigated. In general, it has been observed
that the higher the vehicle acceleration, the higher the deterministic response; the
stochastic response is very quick and uneven when the base has high acceleration
on a very rough surface. It can be concluded that the base suspension damping
alone is not sufficient to minimize the stochastic vibration, damping has to be

added to the manipulator joints.

For a constant velocity wheeled mobile manipulator two representations -
the power spectral density and the state space- have been used to study the
stationary response of the manipulator tip. It has been observed that: the responses
obtained from the Power Spectral Density and the State Space representations are

the same; the State Space representation is, however. recommended for practical
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applications, because it gives the velocity and the displacement covariance
simultaneously; also, the state space representation can accommodate non-
proportional damping without computational complications and it avoids complex
contour integration. From the sensitivity analysis it can be concluded that to
minimize the stochastic vibration, damping has to be added to the manipulator
Joints. Further, the upper links of the manipulator should be shorter than the lower
links. The analysis presented in chapter five and the example discussed in this
chapter have been limited to single-wheeled mobile manipulator. In the next
chapter procedures for studying the dynamics of multiple-wheeled mobile

manipulators are developed.
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Figure 6.1. Two Link Wheeled Mobile Manipulator
©; kinematic configuration of link i
Qi elastic motion variable of link i

dx vehicles horizontal motion

(x,y)1  Cartesian coordinate frame attached to link 1
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Figure 6.3. Flow Chart of the Program Used for Simulating the Deterministic
Dynamics of a Wheeled Mobile Manipulator.
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Figure 6.4. Flow Chart of the Program Used for Simulating the Nonstationary

Stochastic Dynamics of a Wheeled Mobile Manipulator.
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Figure 6.9. Magnitude and Orientation of the Normalized Principal Tip
Displacement Variance of a Wheeled Mobile Manipulator for Six

Configurations.
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Figure 6.17. Magnitude and Orientation of the Normalized Stationary Principal

Tip Displacement Variance of a Wheeled Mobile Manipulator for Six
Configurations.



Chapter Seven

MULTIPLE-WHEELED MOBILE MANIPULATOR,
ANALYSIS

7.1. Introduction

The formulation reported in this chapter is an original contribution of the
author. Components of this chapter have been accepted for publication in Akpan
and Kujath, (1996c). The originality is in the modeling of the joint and the tip
covariance responses of the flexible manipulator structure to the traction induced
multiple-wheel random base motion. Known analytical tools such as state space
techniques and modeling of traction induced excitation have been used in the

formulation.

7.2. Model Assumptions

In this chapter the wheeled mobile base is modeled as a beam on multiple
suspensions. The suspensions are connected to the vehicle body by linear joints
The mobile base is modeled using a half car representation: there are two wheels
which are longitudinally aligned (see Figure 7.1). The base moves horizontally and
is subjected to heaving q, and pitching motion q;p; both the rear qy;, and the front

q,1 wheel motions follow the ground profile; the second wheel follows exactly the
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path of the first; the wheels maintain contact with the ground at all times; there is
no deformation of the surface during motion; the distance between the front and

the rear wheels does not change during motion.

7.3. Equation of Motion

Application of the Lagrangian principle leads to the linear equation of motion

Dq(t) + Cq(t) + Kq(t) = f1qy1(t) + F38,1(t) +H4q,5(t) + F5q,p(t) + F3(t)

(7.1)
where
f; coefficient vector of stochastic excitation dy1,
f, coefficient vector of stochastic excitation a1,
f, coefficient vector of stochastic excitation 4y,
fs coefficient vector of stochastic excitation dy2,
f5 coefficient vector of deterministic excitation g,(t).

Equation (7.1) is an expanded version of equation (5.1) and the terms
f1q,5(t) + f5q,,(t) have been added to take into account the trailing wheels. Using
the principle of superposition equation (7.1) can be separated into two equations -

the deterministic and the stochastic motion respectively

Dg(t) + Cq(t) + Kq(t) = f5q(t) (7.2)



and
DG(t) + Cq(t) + Kq(t) = fiqy (1) + £G4, (1) + Fyqq(t) + f5q,0(t) (7.3)

Equation (7.2) represents the deterministic part of the system while equation (7.3)
represents the stochastic part of the system. The deterministic and the stochastic
responses will be treated separately. The technique used in section (5.4) can be
applied to compute the deterministic response. The procedure for the stochastic
responses, however, is more complex since the second wheel experiences a time

delayed excitation and it will be developed in the next section.

7.4. Stochastic Response

7.4.1. Joint Response
The excitation of the front wheel produced by the surface qy((t) can be

modeled as output of a shaping filter to a white noise w(q,(t)) expressed by

a1 (t) = £,(0)ay (1) +by (OW(ay(D). (7.4)

Since the two-wheeled configuration is used, then the shaping filter representation

of the rear wheel is

42(8) = £()a,2(t) + by (HW(ay(®) - 1) (7.5)



where / is the distance between the front and the rear wheel. The covariance

matrix of the white noise vector for the two wheels is
T
E{w(q(t;))w,(q(t2))} = Q3(q.(t;) - qu(ty))

Qb)) s (7.6)

qx(tl )

See Appendix F. The term & is the Dirac Delta function. Assuming q has

dimension # x 1, the augmented state variable y can be defined as

y=[z", q, ql", z=[q%,q"I" (7.7)

where the state variable y has dimension 2(n+1) x 1. Application of equation (7.7)

to equations (7.2), (7.4) and (7.5) lead to

5’ = Ay + q\'(t)B!w(qx(t) ) + qw((t)B2w(qx(t) -1 ) (7~8)
~ A, DU, +hf) D, +f5f,) 7]
T
A= 0 f 0; (7.9)
T
| 0, 05 fy _




(7.10)

B, = (7.11)

0 I
Aﬁ[ 0 " } (7.12)
-D'K -D’'C

Assuming the dimension of the white noise vector is m x 1 then B and B, is
2(n - 1) x m matrix. 0y is m x 1 vector and 0, is a 2n x 1 vector. A, is matrix of

dimension n x n. The solution of equation (7.8) is given as

t .
y = @(t.t) y(tp)+ f(D(Ltl)qx(tl)(Bl(tl)W(qx(tl)) + By(t))w(qy(ty) - 7 ))dt,
ty

(7.13)



The term ®(t,t) is the transition matrix of equation (7.8), t, is the initial time and
t; 1s a dummy time variable. The covariance matrix of the augmented state y can

be defined as

P=E{yy™} (7.14)
so that

P = E{yy + yyT}. (7.15)

Application of equation (7.15) to equations (7.14) and (7.8) give

P = AP + PAT + G()E{yw"(q<(t))}B] + & (DE{yw (qx(t) - / )} B}

+a(OB1E{w(q\(t) Y} + qu()BE{w(qy() - /) y7} (7.16)

To solve equation (7.16) for the response covariance P the averages E{.} in the
equation have to be defined. Considering the first average and using equation

(7.13) gives
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E{yw(q(t))} = @(t,t))E{y(ts)w (q.(t))}

t :
f D(t4)ay(t (B (t)E{w(qy(t)))w(qy(t) }dt,
t

t .
tf D(t.t)qx(t B (t)E{w(qy(t;) - / ))wT(qy(t)}dt, (7.17)
to

The three terms of the sum in equation (7.17) can be evaluated individually. Since
the initial state y(t,) is uncorrelated with the excitation following t,, then the first
component of the sum is a zero vector. The second component of equation (7.17)

can be obtained using equation (7.6) as

B,Q (7.18)

19 | —

t .
S Pt a1 )(By(t)E{w(qy(t))w (qu() bdt; =
to

To evaluate the third component in equation (7. 17) note that

E{w(q(t)) - 1w (qu(1)} = Q(t})8(qu(t)) - / - qu(t)) (7.19)

The zero of the expression (q(t;) - / - q(t)) can be located at time
t; = qe'(adt) + /). Since qy(t) > 0 and / # 0, then qy(t) is a non decreasing

[
therefore t; > t for all t. Because t; < t and t,- 0 lags behind t; therefore when t,
X



reaches the integration limit of t the rear wheel never reaches qx(t). It only reaches
qx(t) - /. Therefore the value of the third term of equation (7.17) is zero and so this

term makes no contribution. Equation (7.17) becomes

1
E{yw'(q.(1))} =3BQ (7.20)

Considering the second expectation term E{.} in equation (7. 16) gives
E{yw " (qu(0)-)}=(t t)E{y(to)w (q,(t)-D)}

t .
+ f(D(t’tl)Q.‘((tl)(Bl(tl)E{w((h(tl)wT(qx(t)'[)}dtl
b

t .
£ O(t,4)qx(t)(Ba(tDE{w(ay(ty) - 1 )W (qy(t) - 1 )}dt, (7.21)
ty

Evaluation of the sum of the components in equation (7.21) results in the first term
equal to zero since the initial state y(t,) is uncorrelated with the excitation

following t,

To evaluate the second term the zero of the expression (qu(ty) + l-q (1)) is
located at t;, = q"!(qy(t)-/ ) = T. Because qx(t) > 0, then qx(t) 1s non decreasing.
Since / # 0, then T <t for all t but T may also be less than t,. This latter condition

is the period during which the rear wheel has not yet begun to pass over the same
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profile as the first. This is mathematically reflected by a zero contribution from the

rear wheel so that the following result is obtained

t )
£ D(tt)qy(t (B (8 )E{w(a(t)w (ay(t) - D},

to
0 qx(t) - 1 < qy(ty)
1
=9 P(t.t)B,(t,)Q Qx(t) - 1 = q,(t;) (7.22)
d(t . T)B(T)Q qx(t) - 1> q(to)

The third component of equation (7.21) is given as

t :
§ PEL)AENBEEWa® - IWT(a0) - ey =5B,Q  (7.23)

to

Equation (7.21) becomes

1
E{yw(au(t) - N} =5B,Q

0 Ax(t) - / < qy(ty)
I
+ E(D(t at())Bl(t())Q qx(t) -l= Q\((to) (7.24)
®(t . T)B,(T)Q au(®) - 1> qu(t)
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Similar results can be obtained for the third and fourth expectations terms E{.} in
equation (7.16) since they are transposes of the first and second terms respectively.

Application of the results of the expectation evaluation in equation (7.16) gives

P = AP + PAT + q(0[B/QB, + B,QB; + B,QB, ®'(tT) + ®(1T)B,QB]

(7.25)

Equation (7.25) is the generalized Liapunov covariance matrix differential
equation for the system. It can be solved for the covariance P using numerical

integration algorithm. In general, the covariance response P is nonstationary.

7.4.2. Constant Velocity of the Mobile Base
When the mobile base has constant velocity, i.e., 4x(t) = 0, the deterministic
component of the excitation in equation (7.1) vanishes. Further, the Liapunov's

covariance differential equation (equation 7.25) degenerates to the algebraic form

AP + PAT = - q,([B,QB, + B,QB, + B,QB, ®(1) + d(x)B,QB.]

(7.26)
[

where the time delay (t) is given by t = = L and the function T =t - ——. The
qx(t) qx(t)

Liapunov matrix algebraic equation can be solved for P using appropriate

numerical schemes. The responses in this case are stationary.

7.4.3. Tip Response
The components of the covariance matrix P can be reassembled into the

Joint displacement and the joint velocity covariance matrices defined as;
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qu(t)=E{qu} and Rgg = E{c]i]T} respectively. The tip velocity and
displacement responses can be computed using the method discussed in Section

3.5.

7.5. Summary and Concluding Remarks

In this chapter the equation of motion for a manipulator wheeled mobile
base has been developed. The mobile base has longitudinally aligned multiple
wheels. This results in time delayed stochastic excitations. Two cases of the
mobile base motion have been fully explored

(a) The accelerating case.
(b) The uniform velocity case.

For case (a) -the manipulator with an accelerating base- it has been seen
that the system excitation is both stochastic and deterministic. Further, the
determunistic part of the excitation leads to a mean response and expressions for
this at the joints and the tip of the manipulator have been developed. The
stochastic excitation is seen to be nonstationary. Expressions for this time-varying
configuration dependent nonstationary covariance tensor of both the joints and tip
responses have been derived. It is noted that no assumptions have been made about
the nature of the base acceleration or the surface.

In modeling case (b), it was discussed that the mobile robotics system is
subjected to only random excitation. Expressions for the covariance tensors of the
dynamics of the joints and tip of the mobile manipulator have been fully
developed.

To illustrate the procedures discussed in this chapter, a case study and

numerical example are presented in the next chapter.



[IRRY)

Figure 7.1 Model of a Multiple-Wheeled Mobile Manipulator
Ch i-th kinematic configuration

qi i-th elastic motion variable



140

Chapter Eight

MULTIPLE-WHEELED MOBILE MANIPULATOR,
EXAMPLE

8.1. Example: Two Link Manipulator
A two link manipulator mounted on two longitudinally aligned wheels is
used to illustrate the ideas presented in Chapter seven (see Figure 8.1). The

Lagrangian for the system /. is given as
L= 3 8@ a3l dlp + 33 (upta)” +3asup + dp + G5)’
tay (q2 +qipl(qy +q1p *+g3)cos(O3 +qs3)
+ a5 qu(q2 +qip)cos(@2+q; +qip)
+ 36 qi(qip+ G2 + Q3 ) cos(®y + O3 +qip +qy+ q3)
-5y (q2 +q)p)sin(@,+q; +qyp)
- 36 qx(qip + 42 t 43 ) sin(O, + O3 +qp + qy+q3)

1 1 1 2 1 2
2 k(@i - a1+ 1q1p)? - 5 ka(Qui - Gy - haip)? -5 ksq; -5 kuqs



a=my +tm;+my (8.2)
ay = I3 + m3(/3)? + my(l5)2 (8.3)
a3 = Iy + my(/4)? (8.4)
ay = myl3ly (8.5)
as = mylc3 + myls (8.6)
ag = myley. (8.7)

The Rayleigh dissipation function R is given as

1. . : 1. : : 1 2 1 .2
R=3C1(q1n - Gy1 + 191p)* + 5¢2(Q1m - Qya - rd1p)? + 5e35+ S48

(8.8)

It is noted that the total length of the vehicle base / is given as

[=[l+12 (89)

It is assumed that the vehicle (base) has uniform area and density so that

/
L =h=% (8.10)

141
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It is assumed further that the first link of the manipulator is attached to the center

. . o . /
of gravity of the mobile base (vehicle). This center of gravity is at a distance 5

from the front and rear suspensions. m, and I, are the mass and moment of inertia
of the vehicle about its center of gravity respectively; m; , m, and I5. I are the
mass and centroidal moment of inertia of the manipulator links respectively; /5. /,
and /.3, /o4 are lengths and distance along the links from the joints to the centroids
of the manipulator links respectively; the stiffness and damping coefficients of the
vehicle suspension are ki, k, and ¢, ¢, respectively, while the stiffness and
damping coefficients of the manipulator joints are k5, k, and 3, Cy respectively.
Using the Lagrange principle the equation of motions for the manipulator on an
accelerating base and on a constant velocity base can be obtained respectively. The

inertia matrx is

D = | (8.11)

Dy =a (8.12)
Dl2 = as COS(@z) + ag COS(®2 + @3) (8. 13)
D3 = a5 cos(0©,) + a5 cos(©, + O;) (8.14)

Dl4 = dg COS(®2+ @3) (8 15)



Dy = a5 cos(®y) + ag cos(@, + ©;)

D22 = Iz ta; +ay+ 2.034 COS(@‘_;)

Dy3=a, + a3 + 2.0a, cos(O3)

Doy = a3+ a, cos(0;)

D3 = a5 cos(©,) + ag cos(©, + O3)

D3, = ay + a3 + 2.0a, cos(®3)

D33 = atayt+ 2.0&4 COS(@:;)

Dsy = a3 +ay cos(©5)

Dy; = ag cos(©,+ O3)

Dy, = a3+ ay cos(®;)

Dy3 = a3+ a, cos(©s)

Dy = a;

(8.16)

(8.17)

(8.18)

(3.19)

(8.24)

(8.25)

(8.26)

(8.27)
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The stiffness matrix is

K = | (8.28)

- Ky Ky Ky Ky

K =k +k (8.29)
Kix =ki/y - kly (8.30)
Ki;3=0 (8.31)
Kiy=0 (8.32)
Ky =kl -koly (8.33)
Ky = 1\25’. + klﬁ (8.34)
Ky3 =0 (8.35)
Ky =0 (8.36)

Ky, =0 (8.37)



K3, =0

K33 =k;3

Ky =ky

The damping matrix is

[ Ci Cpy
Cy Cxn
Gy Cx
L Cy Cyp

Cii=c tcy

Cra=cili-cly

(8.38)

(8.39)

(8.40)

(8.41)

(8.42)

(8.43)

(8.44)

(8.45)

(8.46)

(8.47)



(8.48)

(8.49)

(8.52)

(8.53)

(8.54)

(8.55)

(8.56)

(8.57)

(8.58)

(8.59)

(8.60)
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C,L;:C_;

The excitation vectors and their components are given below

ky/y
fl = 0

L 0

[ ¢ ]

ci/y

(8.61)

(8.62)

(8.63)

(8.64)

(8.65)

147
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B 0 -
as sin(®,) + ag sin(@®, + Os)
3 a5 sin(©®,) + ag sin(©, + O3) (8.66)

3¢ sin(©, + O3) ]

To generalize the results, a dimensionless time t defined as in equation (4.1) is

introduced and this leads to.

~ 1
I
fi=| (8.67)

. 0

B El
¢/
i (8.68)

L 0

[ 1

y
2 (8.69)

0

[ ¢,

C212

|
]
Il

(8.70)

_ 0



B 0
as sin(@,) + aq sin(®, + O;)

Essin((-)z) +56 sin(@z + @3)

L 5(, Sil’l(@z + @})

— as

_as
as a,
- _3
ag a,

-

(8.71)

(8.72)

(8.73)

(8.74)

(8.75)

(8.76)

(8.77)

(8.78)
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The Jacobian matrix of the tip motion in the vehicle frame x,= [x0.YolT is given as



[Ju Jio Jis T J
Jo =

Jor 3 oy
5, =0
J12 =-1351n(©;) - [4s5in(O, + O3)
J13 = - 535In(©,) - [45in(©, + O5)

Jl4 = -{4Sin(®2 +®3)

J22 = [3COS(®2) + I4COS(@2 + @3)

= [5c08(0,) + [4c08(O, + O3)

ey
N
W
|

J24 = l_;COS(@z +®3)

8.2. Surface Profile Representation

(8.79)

(8.80)

(8.81)

(8.82)

(8.83)

(8.84)

(8.85)

(8.86)

(8.87)
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The surface profile representation used in this Chapter has the same characteristic

as that presented in Section 6.2. The system response is studied using numerical

simulation and the procedure developed in Chapter seven.
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8.3. Numerical Simulation

8.3.1. Case 1. Manipulator on an Accelerating Mobile Base

INITIAL CONDITION

Stochastic Response:

It is assumed that the vehicle starts from rest with uniform horizontal acceleration.
In order to initialize the Runge-Kuta integration routine for the stochastic response
of equation (7.26) a set of initial values of the covariance matrix P(0) entries is
required. From the assumption of homogeneity of the surface profile, the variances
of the suspension motion are E{qﬁl(f)} = E{qsz(f)} = o2. This implies
Pgg(0) = Pyg10(0) = 1. Further, at t = 0, there is no relative motion between the
vehicle heave motion q; and the suspension motion Qy; and qy,, therefore,
P} 1(0) = P19(0) = Pyg(0) = P 4,4(0) = P} 0(0). All other initial conditions are set to

Z€1O0.

Deterministic Response:

To initiate the Runge-Kuta integration algorithm for the deterministic response, a
set of initial values of the state z(0) have to be provided. Since the state vector z is
normalized with the standard deviation of the surface profile o and at time t = 0
there is no relative motion between the vehicle heave motion q; and the suspension

motion qy and qy,, then z,(0)= 1/c. All other initial conditions are set to zero.



8.4. Results and Discussion
8.4.1. Case 1. Manipulator on an Accelerating Mobile Base

A program to simulate the deterministic and nonstationary random response
of the tip motion of a two degree of freedom manipulator on an accelerating
mobile base having two wheels was developed. The flow chart for the program is
given in Figures 8.2 and 8.3. In this discussion, the term stochastic response refers
to the major principal variance of the tip displacement, while the term
deterministic response refers to the square of the magnitude of the tip deterministic

displacement.

Sensitivity to Link Configuration: Figure 8.4 shows the sensitivity of the tip

response to the changes of the manipulator configuration for ®; = 00, o = .45, and
qy = L. It can be observed that the more perpendicular the manipulator structure to
the excitation, the higher the response to that excitation. Thus, the highest
stochastic response occurs at ®, = 0°. At this configuration the links of the
manipulator are perpendicular to the stochastic base excitations dyl(t), cjyz(t), qy1(t)
and qy,(t). Also, at this configuration, the deterministic response is transient and
depends only on the initial condition since the deterministic excitation vector
f; = 0. The highest deterministic response occurs at ®, = 90° when the
deterministic excitation vector f; reaches its maximum value. The stochastic
response for ®, = 90° and @; = 0° is that of the vehicle since the dynamic coupling
terms between the vehicle (heave and pitch) motions and the links are zero
(D3 = D3, = D4 = Dy = D3 = D3, = D, = D, = 0); the vehicle moves with the
links as a rigid body. Subsequent plots for the deterministic and stochastic

responses are for the configurations of maximum responses.



Influence of Joint Stiffness: Figure 8.5 shows the influence of the relative

magnitude of the suspension and links' stiffness on the responses. Increase in the
vehicle stiffness for a fixed stiffness of the links leads to decreased stochastic
response and increased deterministic response. But, increase in the links stiffness
for a fixed value of the suspension stiffness leads to increased stochastic response
and decreased deterministic response. At the beginning of motion, the

deterministic and stochastic responses show little sensitivity to stiffness.

Sensitivity to System Damping: The sensitivity of the system response to damping

is shown in Figure 8.6. [t can be observed that both the deterministic and
stochastic responses can be reduced by the presence of damping. But if only
suspension damping is present, the stochastic response displaces low sensitivity to
damping. The deterministic response, on the other hand, shows high sensitivity to
the suspension damping in the absence of the links damping and low sensitivity to
the links damping in the absence of suspension damping. Further, at the beginning
of motion both the deterministic and the stochastic responses show little sensitivity

to damping.

Sensitivity to Manipulator's Length: The sensitivity of the manipulator response to

the relative lengths of link-2 to link-1 is shown in Figure 8.7. The longer the
terminal link (link-2) compared to link-1, the higher the value of the stochastic
response. The stochastic response is more sensitive to the relative lengths of the

links than the deterministic response.



Effect of Vehicle Acceleration and Surface Roughness Coefficient: Figure 8.8

indicates the effect of acceleration on the deterministic response. The deterministic
response increases with the increase of the vehicle acceleration except for the
configurations when f5 = 0 i.e. when the excitation has no effect. Figure 8.9 shows
the effects of the vehicle acceleration and surface roughness on the stochastic
response. At the beginning of motion, the stochastic response is not sensitive to
either surface roughness or acceleration. As the motion continues, for low
acceleration gy = .3, it is noted that the higher the surface roughness coefficient
the higher the maximum value of the stochastic response; also the response under
this condition is smooth. On the other hand, for high acceleration g, = 3., the
surface with high roughness coefficient a = .9 produces uneven response with
quick rise. The maximum value of the response is also low under this condition.
The surface with low roughness coefficient o =.15 produces a smooth stochastic

response with a slow rise and a high maximum value.

8.4.2. Case 2. Manipulator On a Constant Velocity Mobile Base
A program to simulate the stationary random response of the tip motion of a
flexible manipulator on a mobile base moving with constant velocity was

developed. The flow chart for the program is given in Figure 8.10.

In the following discussion the term displacement refers to the major
principal variance of the tip response. Figure 8.11 shows the sensitivities of the
displacements and velocities to changes in the manipulator configuration ©,. It is

observed that the more perpendicular the manipulator structure to the excitation,
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the higher the response. Thus, the highest response occurs at ©, = ©; = 00, At this
configuration the links of the manipulator are perpendicular to the stochastic base

excitations q;(t) and q,,(t).

The influence of the manipulator and the suspension damping on the
displacement is shown in Figure 8.12. It is observed that the displacement can be
reduced with the presence of damping. But if only the suspension damping is
present, the response has low sensitivity to damping. On the other hand, if only the

manipulator joints are damped the response is very sensitive to damping.

The influence of the relative lengths of link-1 to link-2 on the displacements
and velocities is shown in Figure 8.13. It is noted that the longer the terminal link
(link-2) compared to link-1, the higher the responses. Therefore, designing the
links of the manipulator so that lower links are longer than the upper links will

result in reduced stochastic vibration.

8.5. Summary and Concluding Remarks

In this chapter, the Lagrangian and the Rayleigh dissipation function for a
two link manipulator on a two-wheels traction mobile manipulator has been
developed. The Lagrange principle has been used to derive the equation of motion
for the manipulator on an accelerating and a constant velocity mobile base. To
generalize the results dimensionless time has been introduced. The ideas

developed in Chapter seven have been used to study the system.
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For the manipulator on an accelerating mobile base, sensitivity of the
system responses to the manipulator configuration. the relative lengths of the links.
stiffness, damping, vehicle acceleration, and surface roughness have been
explored. Results indicate that the more perpendicular the manipulator to the
excitation, the higher the response to that excitation. Thus, the highest stochastic
response occurs at ©®, = ©3 = 0° and the highest deterministic response occurs at
©, = 90° and ©; = (°. Further, to minimize the stochastic vibration on the
manipulator structure it can be concluded that the lower links of the manipulator
should be longer than the upper links, the vehicle suspension stiffness should be
high compared to the links' stiffness and the vehicle suspension damping is not

sufficient, the links of the manipulator have to be damped.

For the manipulator on a base moving with constant velocity, a two link
manipulator on a vehicle has been used to illustrate the principles. Influence of the
system parameters on the maximum variance of response has been studied. It can
be concluded that to minimize the stochastic vibration on the manipulator structure
the lower links of the manipulator should be longer than the upper links. Further,
the manipulator links as well as the suspension must be damped. In the next
chapter a model for the identification of the dynamic parameters of mobile

manipulators is developed.
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Figure 8.1. Model of a Two Link Two-Wheeled Mobile Manipulator

B, kinematic configuration of link i
qi elastic motion variable of link i
Ix vehicles horizontal motion

(x,¥); Cartesian coordinate frame attached to link 1
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Figure 8.2. Flow Chart of the Program Used for Simulating the Deterministic
Dynamics of a Two-Wheeled Mobile Manipulator.
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Figure 8.3. Flow Chart of the Program Used for Simulating the Nonstationary

Stochastic Dynamics of a Two-Wheeled Mobile Manipulator.
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Stochastic Dynamics of a Two-Wheeled Mobile Manipulator Using the

State Space approach.
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Chapter Nine

IDENTIFICATION OF MOBILE MANIPULATORS,
ANALYSIS

9.1. Introduction

This chapter contains an original contribution of the author. The originality
is in the development and optimization of the identification model for the dynamic
parameters of mobile manipulators. A selection and composition of known
analytical tools such as least square and singular value decomposition have been

used in the formulation.

9.2. Model Assumptions

Consider an n degree of freedom mobile flexible manipulator modeled
according to the general assumptions presented in Section 1.2. It is further
assumed that; the nominal (design) values of the manipulator dynamic parameters
are known and are close to their actual values; the geometric and kinematic
parameters of the manipulator are known accurately. The goals of this chapter are
twofold namely: to develop a mathematical model for estimating the discrepancies
between the nominal and the actual values of the structural dynamic parameters of

the manipulator links and joints, and to optimize the model in order to minimize
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the number of measurements required for estimation. In this report the
discrepancies between the design and the actual values of the dynamic parameters

will be referred to as the dynamic parameter deviations.

To estimate the dynamic parameter deviations a series of measurements
have to be made. If the motion of the manipulator tip is selected as the most
critical (since this is easy to measure) then measurements should be carried out at
manipulator kinematic configurations where small perturbations of the dynamic
parameters have dominant effect on the amplitude of the tip oscillation. Also,
system excitation should be such that the tip oscillations can be related to the
dynamic parameter deviation. Before, this can be done a model has to be
developed which relates the parameter deviations and the tip oscillation. Further,
the model has to be optimized so that the parameter deviations can be identified
with a small number of measurements. The optimization is in terms of the set of
manipulator kinematic configurations chosen for measurements, and the excitation
for measurement. The focus of this chapter, is therefore on the identifiability of the

dynamic parameter deviations of mobile manipulators.

9.3. Equation of Motion

The equation of motion for the mobile manipulator is as follows

Dg(t) + Cq(t) + Kq(t) = F(1) (0.1)
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where F represents the base excitation vector. The joint motion q i1s assumed to

have the form

q = Qe- (9.2)

where Q is the amplitude of the small joint vibration. Also the excitation vector is

assumed to be of the form
F(t) = Fye- ‘ot (9.3)
where F, is the amplitude vector of the excitation. Substituting equations (9.3) and

(9.2) into equation (9.1) and considering only the amplitude of the joint vibration

and excitation results in the eigenvalue problem

(-02D -ioC + K)Q =F, 9.4)

Equation (9.4) can be written as

Q = (-02D -inC + K)''F, (9.5)

Equation (9.5) gives the amplitude of the joint displacement Q as a function of the

system dynamic parameters -inertia, damping and stiffness parameters- and the

amplitude of system excitation F,,.



9.4. Identification Model

Since the amplitude of the joint motion Q is small, it can be related to the

amplitude of the manipulator tip motion x by a Jacobian J

x = JQ (9.6)

where:
X = [x7 yv aZ]T (9'7)

X, y, are the linear amplitude components and «, is the rotational amplitude
component of the tip displacement. Application of equation (9.5) in equation (9.6)

gives
x = J(-02D -ioC + K)'F, (9.8)

The Jacobian matrix J contains only the kinematic and geometric parameters of the
system. It does not contain the dynamic parameters of the manipulator joints and
links. A vector € containing the dynamic parameters of the manipulator can be
formed. If a small perturbation Ae of the dynamic parameter vector takes place
then the corresponding change in the amplitude of the tip oscillation vector dx can

be defined as



174

dx = %As

= ﬂ‘a'glm 9.9)

Application of equation (9.8) in (9.9) leads to

dx = PAe (9.10)
where
oD  C oK
= |-J-n2D -j I iy —tF — V2D - -1
P = [-J(-02D -ioC + Ky (-w 5 05t SO0 -ioC + K)IF,
Fy
+J(-02D -ioC + K)-laas ] (9.11)

Equations (9.10) and (9.11) constitute an identification model that can be used to
estimate Ae. The matrix P will be referred to as the parameter propagation matrix.
The propagation matrix indicates how the parameter perturbations Ae contribute to
the change of the amplitude of the tip oscillation dx. It can be observed that P

depends on:

. The manipulator Jacobian J i.e. the kinematic configuration ©;

2. The dynamic parameters K, C and D and the parameter sensitivity ga% , %
oK
and oe’

3. The location, and the parameter sensitivity of the amplitude of excitation Fo.
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When the nominal (v) and the actual (.1) values of the parameter vector € are used

to estimate the amplitude of the tip oscillation equation (9.6) can be interpreted as

follows
xV=xVeV,0, F,) (9.12)
x1=xA(e1,0, Fy) (9.13)

The actual values of the parameter vector &1, by definition, is given as

el=geV+ Agl (9.14)

The difference dx between the actual amplitudes x! of the tip oscillation reflecting

the actual values of the parameter £ and the nominal amplitude xV is defined as
dx =x1 - xV=xl(eV+ Ae!,®, Fy ) - xV(eV,0, F ) (9.15)

Equation (9.10) is a first order approximation of equation (9.15). The
identification model of equation (9.10) can be used as long as the assumption that
the parameter deviation vector Ae is very small when compared to the nominal
vector gV,

The aim of this chapter is to find a set of the manipulator configurations.

and excitations that will assure the best estimates of the vector As.
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9.5. Estimation of the Dynamic Parameter Deviations

To estimate the parameter perturbation vector Ae a series of measurements
have to be taken for various configurations and excitations. In general. to reduce
experimental cost, it is desired that the total number of configurations, and
excitations being considered be as small as possible.

Assuming that the number of the elements of the vector Ae is n and that the
3 components of the amplitude of the tip displacement are measured, then the total
number of measurements m has to be m > /3 to assure unique solution for Ag. For

m measurements equation (9.10) can be written in the form

dX = PAc (9.16)
where

dX=[dx,, dx,, dx;,....., dx]" (9.17)

P=(p.P, P . . P (9.18)

The 3m x 1 dX matrix and 3m x n P matrix are collection vectors pertaining to

individual m measurements.

In the following discussion it is assumed that there are no linearly
dependent or unobservable parameters in the vector As and no useful parameters

have been excluded. The case of linearly dependent and unobservable parameter
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will be discussed later. With the above assumption, singular value decomposition

(Golub and Van Loan, 1990) of the matrix P can be performed to obtain
P=yuxvH (9.19)

The superscript H denotes complex conjugate (hermitian) transpose. The unitary
matrices U and V are composed from 3m x 1 u; and n x 1 v; vectors respectively

1.e.

U= [ul, L) 3 TS, ,U3m] (920)

V= [vl’ V2seemenane ’Vn] (92 l)

The 3m x n ¥ matrix is composed from an n x n diagonal matrix X, and

a (3m-n) x n null 0 matrix i.e.
5= 2, 0T (9.22)
2| =diag(oy, 0y, 0j,........0,) (9.23)
The components of X, are listed in a descending order and

O 2 63 2 03 2.......26,, With o; > 0. Using the relations defined in equations

(9.23), (9.21) and (9.20) then equation (9.16) can be written as

n
dX = Zo-iv?Aeui (9.24)

i=1
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Since V is an n x n unitary matrix, its columns form a linearly independent
set of vectors of rank n. The parameter deviation vector A¢ has dimension and

can be expanded in terms of the elements of the columns of V as

zn:fsivi (9.25)

i=1

where B are constant parameters to be determined. Application of equation (9.25)

in equation (9.24) gives

ax = ZGBV v;u;

=1

= [o(upen..... .G, 1[B1, Bs......... BT (9.26)

where B are the constant coefficients to be determined. The following
simplifications can be used to determine Bj. Multiplication of both sides of

equation (9. 26) by the transpose of the complex conjugate of the unitary

eigenvector u; leads to

H H
u; dX = u; [ouy,..........0,u,][B1, BaeeeonnoonsB]T (9.27)
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Noting that u; are unitary vectors the right hand side of equation (9.27) reduces to
H T—

oy, S G TR G YO Bal" = oiBid;; (9.28)
where §;; is the kronecker delta with property

8 =1, i=j, & =0 P #j (9.29)

i 1]

Substituting equation (9.29) in equation (9.27) leads to

9.6. Identifiability and Excitability of the Parameter Deviation
Vector
Equation (9.31) can be defined as an n-dimensional ellipsoid in » (uiH dax)

coordinates when the perturbation vector Ae is bound by a norm of constant

2
magnitude. Taking the 2-norm |Ag| = constant, this ellipsoid can be expressed as
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H
—dX

asf” = E == (9.32)
;i

Thus the shape and size of the ellipsoid are functions of the singular values

(o), 1= 1,23.......... ,h) of the propagation matrix P. When the volume of the
ellipsoid is large then all components of the vector Ae have significant contribution

to changes in the amplitude of the tip oscillation dX. The volume of this ellipsoid
is proportional to the determinant of the matrix P P (Nakamura, 1991). P'P can

be expanded as
PP = vEHUHySVH
= vzHyyH (9.33)

where the unitary properties of U has been utilized. Since V is a unitary matrix,

then
det(V) = det(VH) = +1] (9.34)

Taking the determinant of equation (9.33) and utilizing the properties of the

determinants then

det(P"' P) = det(V)det(ZHE )det(VH) (9.35)
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Since 1Y is a diagonal matrix with the elements o

therefore

n
det(P"P) = I s (9.36)

1=1

The identifiability measure for the parameter deviation (Id) is proposed as

(9.37)

. 1 )
A scaling factor m (m -total number of measurements) has been used in the

proposed index in order to account for the requirements that the number of
measurements should be as small as possible. Equation (9.37) is very general, it

can be used in many ways:

. If the manipulator configuration is fixed while the excitation is varied then
the index Id serves as a measure of the effect of excitation on the
identifiability of Ae. During an experiment, the system can be excited
through any of the n joint coordinates q. It is most probable that the
excitation will be executed through a motion q, of the manipulator base. In
that case the excitation vector F will be of the form
F = -02qo[Dgy;, Dy, .....Dpp]T; where Dy, i = 1,2,......n are dynamic

coupling terms between the base motion and the joint coordinates q. Dy; are
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functions of the inertia parameters of the links and the configurations of the

manipulator.

19

If the excitation is fixed while the manipulator configuration is varied. then
the index Id provides a measure of the effect of the manipulator

configuration on the identifiability of As.

If both the excitation and the configuration are varied then Id provides a

)

general measure of the identifiability of Ae.

It is important to point out that it has been assumed that all the elements of
the perturbation vector Ae contribute to the discrepancies in the amplitude of the
tip oscillation dX i.e. all of them are identifiable and linearly independent. But in
practice, some of the elements of the vector Ag might not be observable from dX,
in which case there is a need to isolate such elements and remove them from the
vector Ae. This leads naturally into the problem of identification of the basis

vector of perturbation.

The observable perturbation vector Ae™ becomes a subvector of As- A
method is proposed for identification of Ae*. The singular value decomposition of
the parameter deviation matrix P (equation 9.19) produced diagonal n x n X,
matrix. If the matrix P has rank s (s < #) then all the singular values of P
c; (1= s+l, s+2,.....n) will be very small. The rank s is the number of linearly

independent columns of V and the dimension of the identifiable elements of the



perturbation vector Ac*. An individual identifiability index for the element of the

perturbation vector A can be defined as the ratio

If the rank of identifiable parameters equals s, then Og4; Wil be very small

G,

compared to o and the ratio kg defined as ¢ = —=  will be very high compared
Os+1
Cs-1
to kg1 =
c

S

9.7. Estimation Error and Improvement of Estimated
Parameter

To assess the quality of the proposed identifiability indices (equations 9.38,
9.37) and the estimated parameters to be estimated the following measure is used.
The relationship between the nominal value of the parameter vector €, its actual

value €, and the estimated value £ are defined as follows

geE =gN+ AgE (9.40)

Each element of the parameter vector can be normalized as
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€
= (9.41)
Therefore
E ¢E
Ry (9.42)

The relative estimation error is defined as

E A
error _ g, - €,

n " no. of parameters

Ag (9.43)

Once the vector €E is obtained it can then be used as the current values of the

. . . . €
nominal parameter and the process of estimation repeated until At:nm)r or |ldx]|,

(equation 9.18) is or tends to zero.

9.8. Practical Application of the Proposed Model

Apart from being used for estimation of the dynamic parameter deviation of
terrestrial mobile manipulator, this model will be extremely useful for identifying
the dynamic parameters of space manipulators. This is because many of the
dynamic parameters of space manipulators cannot be verified on the ground

because of the effect that gravity has on the manipulator structure.
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Space manipulators are designed to be light because of the high cost
involved in launching and maneuvering masses in space. Therefore, they are
flexible. The in-orbit testing of space manipulators has to be limited to a very short
time compared to ground base experiments. This is because of the high cost
involved in any space operation. These constraints on space experiments pose very
strict requirements for testing. It is therefore expedient that measurements are
carried out at the best configurations and system excitations. By undertaking a
computer study using the identifiability index defined in this chapter and the
nominal parameter of space manipulators, configurations and types of excitations
of high identifiability can be identified and used during in-orbit testing. This will
minimize the cost of experiments in space. Further, it should be noted that
although the system excitation has been restricted to the base due to the mobile
manipulator nature of the study, the model which has been presented will still be

applicable if the excitation is at other locations such as joints.

9.9. Summary and Concluding Remarks

In this chapter a model has been developed for identifying the dynamic
parameter deviations of mobile flexible manipulators. Practical interpretation has
been given to the model. Further by utilizing the elliptic geometry, the model has
been optimized in terms of the excitation, and the configuration used for
measurement. The properties of singular value decomposition of matrices has been
used to identify the rank space of the parameter deviation and to estimate the

system dynamic parameter deviations. For the case of unidentifiable parameters, a
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a technique has been developed on how to identify such parameters and eliminate
them from the model. Practical application of the model for space experiments has
been noted. In the next chapter numerical simulation is undertaken to illustrate the

proposed model.
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Chapter Ten

IDENTIFICATION OF MOBILE MANIPULATORS,
EXAMPLE

10.1. Example: Two Link Manipulator

The two link non-wheeled mobile manipulator (Figure 4.2) is used to
illustrate the ideas presented in chapter nine. It is assumed that the Jjoint damping is
negligible and equal to zero. The dynamic parameter vector for the manipulator

can be formed as

€= (10.1)

|k, _

The deviation between the nominal values of these parameters and the actual
values constitute the dynamic parameter deviation vector Ag. Since a change in the
inertia components of the dynamic parameters results in a change in the inertia
terms a; - as (equations (4.26)- (4.30)), the dynamic parameter vector for the

system under consideration is therefore chosen as
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e=| a (10.2)

In this chapter the dynamic parameter deviation vectors are the deviations of the
components of the vector given in equation (10.2). Since the excitation is through

the base, the amplitude of the excitation vector F, is given as

Fo = ©2Q,D, (10.3)
where the components of the dynamic coupling vector D, are given in equations
4.42 and 4.43; ® and Q, are the frequency and amplitude of the excitation vectors
respectively. The derivative of the tip motion coordinate with respect to the

elements of the dynamic parameters & can be obtained using (9.10) as

Tip Motion derivative with respect to a,:

ox _ 2 (10.4)

da, “oa

J 1s the Jacobian matrix given in equation (4.48) and

5Q 1 {‘DzzDzz Dy3Dy, }F (10.5)
6a;  ©X(DyDy; - D3;D12)?| Dy,Ds, -D;yDp, | ° .
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Tip Motion derivative with respect to a,:

ox _ JQFO (10.6)

| -DiDy;+2D2Dy;  -DyDyy-Dy»D5+D D, 1}
aaZ mz(DllDZZ-DZIDIZ)ZL-DI|D22'D|2D12+D|2D“ 'D|1D11+2D22D“

(10.7)
Tip Motion derivative with respect to as:
‘% = ?;F 0 (10.8)
Q cos (©,) | 2Dy»Dj3-2DpDy;  -DyyDyy-DyyDy5+2D Dy,

da; (D, lD22‘D21D12)2‘_-D1 1D22-D,D1,+2D,D5;  -D3Dyp+2Dy,Dy,

(10.9)

Tip Motion derivative with respect to a,:

o _ 3Q
2, ~ Vo, (10.10)

0,+0
aQ =(-D + mzK)-l[COS( ! Z)J (10.11)
aa4 COS(@] +®2)



Tip Motion derivative with respect to as:

ox _ 9Q
3a5 8a5

Q: N cos®,
2, (-D + w?K) L)

Tip Motion derivative with respect to k;:

ox _ 2Q
ok, ok,

Q 1 Koy O
ok, (KpKyp?|o o |°

Tip Motion derivative with respect to k:

ox _ 9Q
ok, °ok,

5Q I 0 O
ok, (KpnKypPlo x,, |°

The dynamic parameter propagation matrix (equation 9.11) can be written as

p- ;[2Q 2Q 20 2Q 2Q 2Q 2Q

akl’ akz, 6a]’ aaz, 583’ 334’ aas

(10.12)

(10.13)

(10.14)

(10.15)

(10.16)

(10.17)

(10.18)

190
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and the parameter deviation vector is

Ag = [Ak|_Ak, ., Aa,, Aa,, Aa;, Aay, Aas]T (10.19)

10.2. Numerical Simulation

Numerical simulation is undertaken to validate the proposed identification
model (equation 9.33) and to verify the accuracy of the identifiability and
excitability index (equations 9.41) and the usefulness of the individual parameter
identifiability index (equation 9.43). The nominal values of the links dynamic
parameters and the actual values used for simulation are given in Table 10.1. Table
10.2 shows the details of the configurations used for simulation. The 5 cases given
in table 1 are excited through the manipulator base. Table 10.3 shows the values of
the identifiability index Id, the estimation error and the number of measurements
done for the five cases. Tables 10.4a, 10.4b, 10.4c, 10.4d and 10.4e show the
actual and the estimated values of the parameter deviation for the five cases
considered. It is observed that configurations with high identifiability index result
in better estimation of the parameter deviation vector; Further, it is seen that the
number of measurements is not as important as the configuration used for

estimation.

To explore the use of the individual parameter identifiability index ki Case 4 and

Case 5 are reconsidered. Table 10.5 shows the individual parameter identifiability
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index for the five cases. It can be seen from the table that only 5 parameters are
identifiable in Case 4 and Case 5. A reduced model of dynamic parameter vector
with five parameters is then used. The estimated and the actual values of the
parameter obtained using the reduced model is shown in Table 10.6a and Table
10.6b. The identifiability indices and the estimation errors for the reduced model
are shown in Table 10.7. It is noted that reduction of the dimension of the
parameter deviation vector using individual identifiability index xj leads to

improved estimation of the identifiable parameters.

10.3. Summary and Concluding Remarks

In this chapter, the procedures presented in chapter 9 for the estimation of
the dynamic parameter of mobile manipulators has been verified using a two link
non-wheeled mobile manipulator. The dynamic parameter vector for this case has
been formed and the components of the dynamic parameter propagation matrix for
the elements of the dynamic parameter vector have been derived. Numerical
simulation has been undertaken to validate the models (equation 9.33, 9.41 and
9.43). It can be concluded that it is practical to use the introduced model (equation
(9.33)) to compute the parameter deviations; the observability index Id is a useful
measure for evaluation of the effect of manipulator configuration on the
identifiability of the parameters; the number of measurements used for estimation
1S not as important as the configuration; elimination of low sensitive parameters
from the parameter deviation vector model & using the individual identifiability

index «j (equation (9.43)) leads to improve estimation of the high sensitive



parameters. A summary of the conclusions from the thesis and suggestions for

future research are presented in the next chapter.



Table 10.1 Nominal and actual values of Parameters Used for Simulation

Parameter | Nominal Value | Actual Value | Unit
k, 4596 4656 N/m
k, 3215 3325 N/m
m; 5.6 6.0 kg
m, 3.5 3.9 kg
I, 2.5 2.7 kgm?2
[, 1.9 2.2 kgm?
I 0.35 0.45 m
. 0.45 0.35 m
/) 1. 1. m
l, 1. 1. m
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Table 10.2 Configuration Used for Simulation

Configuration Set 0, O
Casc 1 00 00
100 45.50
0° 85.60
4590 1350
115° 1800
Case 2 00 900
1700 45.50
600 1779
450 90°
1200 160
459 45
Case 3 09 900
1700 45.50
60° 1779
450 90°
1200 160°
450 450
669 2049
1300 1400
370 530




Casc 4 00 0°
100 45.59
00 85.69
450 1359
1150 180°
900 900
900 45.59
1779 60°
900 450
1200 | 1600
450 450

Case 5 0° 909
909 45.5¢
900 1800
2700 09
00 2700
450 450
710 1990
1859 850
900 109
090 2700
119 799
200 569
870 420
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Table 10.3 Identifiability Index, Number of Measurements and Estimation Error

for Case 1 to Case 5.

Case |Id Number of Measurements | Estimation Error in %
1 3.25 15 8.58

2 2.86 18 14.87

3 1.94 27 17.02

4 0.67 33 280

5 0.08 39 225

Table 10.4a Actual and Estimated Parameters for Case 1

Parameter | Actual Value | Estimated Value
Ak, 140 134.512

Ak, 110 113.643

Aa,; 1.225 1.094

Aa, 0.069 0.077

Aa, 0.020 0.0195

Aay 0.020 0.0188

Aas 1.140 1.143




Table 10.4b Actual and Estimated Parameters for Case 2

Parameter | Actual Value | Estimated Value
Ak, 140 125.18

Ak, 110 97.54

Aay 1.225 0.987

Aa, 0.069 0.076

Aa, 0.02 0.0276

Aa, 0.02 0.0177

Aas 1.14 1.176

Table 10.4¢ Actual and Estimated Parameters for Case 3

g Actual Value | Estimated Value
Parameter

Ak, 140 132.910

Ak, 110 104.112

Aa, 1.225 1.064

Aa, 0.069 0.052

Aag 0.02 0.031

Aay 0.02 0.0197

Aag 1.14 1.151
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Table 10.4d Actual and Estimated Parameters for Case 4

Parameter | Actual Value | Estimated Value
Ak, 140 97.18

Ak, 110 156.54

Aay 1.225 2.087

Aa, 0.069 1.076

Aa,y 0.02 .05

Aagy 0.02 .004

Aas 1.14 3.176

Table 10.4e Actual and Estimated Parameters for Case 5

Parameter | Actual Value | Estimated Value
Ak, 140 85.9

Ak, 110 170.2

Aa, 1.225 3.087

Aa, 0.069 0.566

Aay 0.02 0.052

Aa, 0.02 0.0677

Aag 1.14 3.51
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Table 10.5 Values of individual identifiability indices for Case 1 to Case 5

K; Case 1 Case2 |Case3 |[Case4 |Case$s
S| 3.51 3.43 4.15 4.87 3.56
Ky 3.43 2.88 3.77 4.65 2.99
K3 3.99 2.96 3.98 5.12 3.87
Ky 2.86 3.21 4.45 4.97 3.89
Kg 3.04 2.79 3.22 276.93 543.0
Kg 3.47 3.08 4.02 1.2 1.12

Table 10.6a Actual and Estimated Parameters for Case 6 (Case 4 Reduced Model)

Parameter | Actual Value | Estimated Value

Ak, 140 129.8
Ak, 110 96.59
Aa, 1.225 1.387
Aa, 0.069 0.066

Aay 0.02 0.014
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Table 10.6b Actual and Estimated Parameters for Case 7(Case 5. Reduced Model)

Parameter | Actual Value | Estimated Value
Ak, 140 155.19

Ak, 110 107.73

Aa, 1.225 1.087

Aa, 0.069 0.081

Aay 0.02 0.021

Table 10.7 Identifiability Index, Number of Measurements and Estimation Error
for the Case 6 and Case 7.

Case Id Number of Measurements | Estimation Error in %
1 1.95 33 13.41
2 2.06 39 93
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Chapter Eleven

CONCLUSIONS

11.1. Final Remarks

The studies presented in the previous chapters lead to the following final

remarks:

1. Mobile manipulators have been classified into two groups -the non-wheeled
and the wheeled manipulators. The non-wheeled mobile manipulator has a
base which is much larger than the manipulator structure therefore the
dynamics of the manipulator does not affect the base dynamics. The wheeled
mobile manipulator has a base mounted on wheels and the dynamics of the
manipulator base is of the same order of magnitude as the manipulator

therefore they are coupled with each other.

2. In non-wheeled mobile manipulators the base motion has been modeled as a
random process. The response of both the joints and the tip of the
manipulator have been studied as stationary and non-stationary random
processes. Expressions for the covariance tensors of the stationary responses
have been studied in the frequency domain using modal decomposition and
the concept of power spectral density. State space variable concepts have
been applied in the time domain to derive expressions for the nonstationary

responses.
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Single link and two-link manipulators have been used to illustrate the
nonstationary and stationary joint and tip covariance responses of
non-wheeled mobile manipulators. Closed form expressions for the response

of the single-link have been developed.

Two models have been used to study wheeled locomotion: the so-called
quarter-car model and the half-car model. A deterministic horizontal motion
of the vehicle has been used to investigate the wheeled motion . The elastic
response of the system, including motion of the vehicle, that results from the

surface irregularity has been modeled as a stochastic process.

Two cases of horizontal vehicle motion have been explored: uniform and
accelerated motions. The uniform motion produced purely stationary
stochastic response while the accelerated motion produced nonstationary

response in addition to a deterministic motion.

Expressions for the covariances of the tip and joint stationary response of
wheeled mobile manipulators have been developed for the quarter-car model
using two techniques: modal decomposition combined with the power
spectral density method and the state space concept. Response from both
methods have been shown to be practically the same. The state space
concept however, has been recommended for practical applications because:
(1) it gives the displacement and the velocity covariances
simultaneously;
(ii) it can accommodate non-proportional damping without
computational complications;

(iii) it avoids complex contour integration.
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(iv) it can also accommodate nonstationary responses.
The State Space representation has therefore been employed to study the tip
and joint nonstationary covariance responses of wheeled mobile

manipulators for the quarter-car and the half-car models.

7. Examples employing two link manipulators mounted on the vehicles have
been explored. Sensitivity of the principal variance of the manipulator tip

responses to system parameters have been investigated.

8. The Singular Value Decomposition technique has been used to derive
procedures for computation of the optimal configurations and excitations for
the estimation of the parameters. An algorithm for eliminating unobservable
parameters has been presented. Examples and numerical simulations have

been given to illustrate the ideas.

11.2. Major Contributions and Conclusions

l. In the author's opinion, the thesis is the first reported attempt to

systematically review the theoretical dynamics of mobile manipulators.

2. The thesis classifies mobile manipulators into two broad categories:
non-wheeled and wheeled. Such classification streamlined the study and

allowed systematic analysis of the system response.

3. The reported research includes the first known attempt of study of the

random dynamics of flexible mobile manipulators.
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The concept of the covariance tensor has been known in the field of
multidimensional random process and adopted for the first time to the

mobile manipulator dynamic analysis.

The concept of the principal variance of the manipulator tip motion has been

introduced for the first time.

It has been shown that the principal variance of the tip motion is almost
unidirectional and highly configuration dependent for all the mobile

manipulator models and types of random motion studied.

The author has investigated the sensitivity of the manipulator tip response to
system parameters and has suggested several design considerations to

minimize the manipulator tip random response.

The suggestions relate to:

(1) selection of links length; the “lower” links should be longer than the
“upper” links.

(i) the relative magnitude of damping in the joints; the damping efforts
should be concentrated in the “lower” joints.

(iii) the relative stiffness of the joints; the “lower” joints should be

stiffer than the “upper” joints.

New computation models to identify the dynamic parameters of flexible

mobile manipulators have been derived.
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10.  The author has introduced new optimization criteria which can be used to set

the manipulator configuration and excitation for efficient testing.

11.  For the two link manipulators on a non-wheeled mobile base it has been
discovered that the manipulator has a family of configurations at which a
mode reversal takes place. The mode reversal configurations has been
characterized by the angle between the two links ®, = + 131.81°. It was
discovered that for the manipulator studied at these angles the covariance
between the joint motion is zero since the joint motion is decoupled. Further,
at the adjacent angles to the mode reversal angle the modal parameters of
each modal vector change their direction with respect to each other because

the covariance of the displacements changes sign.

11.3. Recommendations for Future Work

The author believes that the study presented will lead to several promising
research studies such as experimental validation of the unidirectional motion of the
manipulator tip and experimental verification of the dynamic parameter
identification model etc. From the results presented the following

recommendations can be made for future research

1. The analysis of the stochastic responses of the manipulator joint motion did
not include the small non-linearities inherent in the joint vibration of the
manipulator. It is expected that inclusion of the kinematic non linearities will
lead to studies of the large joint motion and to studies of the combination of

vibration and the controlled large angle motion.
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The random vibration analysis, in this study, has neglected the small varying
nature of the kinematic configuration of the manipulator. This variation will
invaniably lead to parametric excitation (Liu, 1992) of the mobile
manipulator small vibration. The stability and the response bounds of
parametrically excited mobile manipulators under random excitation can be

investigated.

The system parameters have been assumed to be deterministic while the
excitation has been assumed stochastic. However, in some cases the
parameters may vary in a stochastic way as well. There are reports on related
topics [Wien and Sinha, 1984] and [Sinha and Wien 1989]; they were
focused on stability under deterministic excitation. It will be worth
investigating the stability and response bounds under stochastic excitation as

well.

It has been illustrated in this thesis that the principal variance of the tip
motion of the manipulator is unidirectional. An experimental study can be

carried out to validate the findings.

The study of the stochastic responses of joint motion has been limited to
planar manipulators. The analysis could be extended to spatial manipulators;
for example the observed unidirectional nature of the tip response can be

investigated.

Algorithms have been developed for dynamic testing of flexible
manipulators and optimization of the configuration and excitations have

been reported. These findings can be verified experimentally.
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Appendix A

FUNDAMENTALS OF RANDOM PROCESS

Al. Terminology of Stochastic Process

System excitations or responses can be deterministic or stochastic (see
Figures A.1. and A.2. for illustration). In this discussion, the word process is used
to denote either excitation or response. For a deterministic process mathematical
expressions to determine the instantaneous value of the process at any time t can
be written. However, this is not the case for a random process. Statistical methods
and probability theories have to be used. Consider the stochastic process shown in
Figure A.2. In spite of the irregular nature of the process some degree of statistical
regularities can be found. Averaging procedures can be applied to establish gross

characteristics of the process.

In any statistical method, however, a large amount of data is necessary to
establish reliability. To establish useful statistics of the random process of a

manipulator hundreds of records of the type shown in Figure A.3 may be required.

Realization: Each record is called a realization.

Ensemble:  This is the total collections of records.



Al.1. Probability Structure of Random Processes

Let the random process X at time t; be X; i.e.

X(t) = X

Probability Distribution Function (CDF) Px;(xi)
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(A.1)

It is defined as the probability that the value of the random process X; is

less or equal to some number x; i.e.
Px, = P{X; < xj}

where P{.} -probability that

Probability Density Function (PDF) PX;

oP,.
y= L
pxi(xl) aXi
Probability Structure of a Random Process at n different times t|.t5....... th

Joint Probability Distribution Function (JCDF) Py X2 Xi

Px XX = P{X1 2 X1 NXp < xp M, X <X

Joint Probability Density Function PX X2 Xq

oP

pxl’ X2 Xn - oX X -"(
"2 n

(A.2)

(A.3)

(A.4)



A1.2. Statistical Properties of a Random Process

First Order Moment (Mean Function)

[t 1s defined as

Helt) = E(X(5)} = [ Xipy(xpdX; (A.6)

-0

where E{.} is the expectation operator.

Second Order Moment (Autocorrelation Function) Rxx(titj)

Rex(tit) = E{X;Xj} = f j‘Xinpxi x(Xix)dXdX; (A.7)

-0~C

Autocovariance function (Second Order Central Moment) Cxx(titj)

Cux(tit)) = E{[Xi-mit)IX-i(5)D }

= 1 DX I -6y, 50X dX;
= Rys(tt) -1ty (5) (A.8)

whent; = tj = t, equation (A.8) reduces to the variance function Gyx(t) given as

Oyx(t) = Ryx(t) -p(t) (A.9)
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Al.3. Statistical Properties of Two Random Processes

In this section the statistical properties of two different random processes X and Y

and their definitions are summarized

Cross correlation Function) ny(titj)

ny(titj) = E{Xin} = finYjpxi YJXmdYJ (A.10)

S of

Cross covariance function C xy(tit;)

Cyy(tity) = E{[X;-pe()IYj-nu(t)]) }

= [ XY -1y (lpy, v XY

-X0~C

= Ryey(ti)) -ty () (A1)

when t; = tj = t, equation (A.11) reduces to the Covariance function Cyy(t) given

as

Cyep(t) = Ryy(t) -D)ny(t) (A.12)

It is noted that in all the above statistical operations, the expectations have been

taken across the ensemble of the random processes.
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A2. Definitions of Nonstationary and Stationary Random
Processes

Nonstationary Random Process

A random process X is said to be nonstationary or non-homogenous if all

the orders of the probability density function (PDF) vary with time t.

Stationary Random Process

A random process X is said to be stationary or homogenous if all the orders
of the probability density function (PDF) are invariant under arbitrary translation

of time t.

Statistical Properties of Stationary Random Processes

ot
.

Hy(t) = py = constant

2. Cyx(tt) = oy (t) = constant
3. R)O((titj) = Ryx(ti -tj) = Ry (1)

where 1 is the time lag t; -t; In practice only very few or a single realization is
obtained. To simplify analysis, the concept of weakly stationary random process is

usually introduced.



Weakly Stationary or Ergodic Random Process:

This is a special case of a stationary random process in which the statistical
properties of the ensemble are the same as those taken over a single realization.
Figure A.4 summarizes the various types of excitations or processes that a system

can experience.



Figure A.1. Sample of A Deterministic Process

A A L
, V/VMWW/\W /W'\/'VWVW

Figure A 2 Realization of a2 Random Process
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Figure A.3  Records of Realization of a Random Process



TYPES OF SYSTEM EXCITATIONS & RESPONSES

DETERMINISTIC RANDOM
| .
NON-PERIODIC PERIODIC
STATIONARY NONSTATIONARY
ERGODIC NON ERGODIC
Figure A 4

Classifications of Processes
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Appendix B

LONG DERIVATIONS OF EQUATIONS OF
MOTION

Bl. Introduction

To simplify the expression derived in this appendix, all second and higher
order terms in the elements of the equation of motion involving the small joint
motion q;, or g; 1 = 1, 2, ..... n are neglected since their values are very small. Also
for the small coordinate q; the following approximate relations have be implicitly

used in the derivations

cos( q;+qisy) = 1, Sin(qi*tqi+ 1) = Qi+ Qi+ (B.1)
cos(O;tq; +O;41+qj+1) = €0S(Q;+O;4 ) - (qi+qi+1)sin(O+O;, ) (B.2)
SIN(O;+q; +O;1 +q4y ) = SIN(O;+O;41) + (q; Hqi+1)c08(O);) (B.3)

It is noted that equations (B.1) to (B.3) applies for any i = 1, 2.....n and the

number of terms n can be reduced or increased.

B2. Two Link Non-Wheeled Mobile Manipulator

The Lagrangian and the Rayleigh dissipation function for the two-link

non-wheeled mobile manipulator are given in equations (4.24) and (4.31)



(8]
(V%)
(o))

respectively. The derivative of the Lagrangian function with respect to the time

derivative of base velocity q, is

oL . _ L.
aq, 2%y T aiq cos(®)) + as (q; +q, ) cos(0,+ O,)
y

d oL .. .. S
dtGa ) = 20Gy + 8,4 cos(®)) ~ a5 (g, + ;) cos(0,+ ©,)
qy i

Consideration of the joint motion coordinate q; leads to

oL i ) ) ) ) )

éaz aq; +ax(q; + q2 ) + a3 (q; + 4y )cos(®,) + a;q,cos(O,)
+a4 q}' COS(@I) + as q}- COS(@|+ @2)

d aL o L i}

a(aql) = a1q; tax(q; * q2) * a3(q *+ Gz )cos(©,) + a3Gcos(@,)
+a, g, cos(0) + a5 qy cos(O+ O,)

oL

—=_k

aq, 191

9R _ i

aql 191

Similarly for the joint motion coordinate q, we have

d JL o .. ..
dtlag,) = (A1 d2) +23G,008(0;) + a5 Gy cos(@+ ©)

(B.4)

(B.5)

(B.6)

(B.7)

(B.8)

(B.9)

(B.10)



dL

aql—-k2q2 (B]l)
oR )

gz:'cz Q2 (B.12)

Since the base motion qy is known (see equations 4.4 and 4.7) then equations (B.5)
is not required. Assembling of equations (B.7) to (B.12) in matrix-vector form

gives the system's equation of motion (equation (3.7)).

B3. Two-Link Wheeled Mobile Manipulator

The Kinetic Energy and the Rayleigh dissipation function for the two-link
wheeled mobile manipulator are given in equations (6.1) and (6.9) respectively.
The Lagrangian for the system can be found using equations (2.3), (6.1) and (6.8).

The derivative of the Lagrangian function with respect to the motion q, is

oL , o o _
2q. M -5 sin(©3)- a5 (qz + q3 ) sin(©, + ©5) (B.13)
N
d oL L Ly
d—t(aq ) = a1qy - a5 G5 sin(®,)- ag (4, + G5 ) sin(O, + O3) (B.14)
X

Considering the vehicle motion coordinate q,



d JL .. .. L

dilag) = 141+ a5q2c08(0;) + a5 (G, + 3 ) cos(O, + O5)
t'aq,

oL ,

aq, =-Kkjqp+ '\lCIy

R

4, I B VIR I 8

Considering the manipulator joint coordinate q,

d oL . .. .. e ..

a(a_qz) = 3y *ta3(qy * q3) + a4 (G * G3 Jcos(O3) + ayq,cos(O5)
+as5 () cos(©,) + ag | cos(O,+ Os)
-a5 {y sin(®,) - ag g, sin(0,+ O3)

oL

aqz - kZ qQ2

JR )

5—512 =-C

Considering the manipulator joint coordinate q;

d oL e .. "
d—t(aj) =a3(qy * G3 ) + a4 G cos(O3) + a6 G cos(O,+ O;)

- ag S Sin(O,+ O3)

N
)
[«°]

(B.15)

(B.16)

(B.17)

(B.18)

(B.19)

(B.20)

(B.21)
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oL

JR A
= - - - ‘)"\
ETH C3 q3 (B.23)

Since the base motion q, is known then equations (B14) can be ignored.
Assembling of equations (B.15) to (B.23) in matrix-vector form gives the system's

equation of motion (equation (5.1)).

B4. Two-Link Two-Wheeled Mobile Manipulator

The Lagrangian and the Rayleigh dissipation function for the two-link
manipulator on a a two-wheel mobile base are given in equations 8.1 and 8.8
respectively. The derivative of the Lagrangian function with respect to the time

derivative of vehicle motion g, is

3L . o .
aq.  219x ~ 36 (1p + G2) sin(©)) - a6 (qup + G2 + §3) Sin(©, + ©3)  (B.24)
X

d aL n pad P . . .. .. .
a(éq_) = a1qx- 36 (qp + q2) SI(O7) - a6 (q)p + Gy + d3) sin(O, + O3)(B.25)
X

Considering the vehicle motion coordinate q;

d JL . .. .. .. L
dtQqy - 21t as@ip + G2) cos(®) + a6 (Gyp + G2 +{i3) cos(@; + ©3)



(B.26)

oL

2, ki (Quu- Qg -/191p)- k2 (Qip - 642 + 1qp) (B.27)
cR . ) .. .

aq, St (-9 - 1iqip) = €2 (@1 - 4y + qp) (B.28)

Considering the vehicle motion coordinate q,p

d oL . .. . . e .. .

d—t(aq,p) = hap+ax(@p + G2) +a3(Gp + Gy + G3) + a3 (G1p + Gy )cos(O3)
taydp + 4y * G3)c0s(03) +as 4 cos(0;) + ag §y cos(O,+ O)

-a5 4y Sin(®;) - a4( sin(O,+ O) (B.29)
oL -
P HiKy (@w- Qg1 -Niqip)- Kafa (@ - Q42 + 12q5p) (B.30)
OR ) ) ) . A . -
ET ey (Quu - Ay - 1141p) - 162 (@i - Gy + LG1p) (B.31)

Considering the manipulator joint coordinate g,

d oL .. . .. .. . .. ..
a;(gz—]';) =ax(qip + G2 ) tas(qp + G2 + G5) + a3 (Gp + 2 Jcos(O5)



+ay(qp + 4 + G3)cos(©3) +as g cos(©,) + ag Gy cos(O,+ O)

- 85 (y SIN(O,) - agq, sin(O,+ O3)

oL

=k
aq, 392
R
aqz 3492

Considering the manipulator joint coordinate qs

d oL .. . .. ..
dtag,) = 23(dip + 2 +83) + a4 [@ip + 42 Jeos(O;)

26 4 €0s(Oy+ O3)- a6hy sin(O,+ O5)

oL

gf-kms
R
a('B 4 q3
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(B.34)

(B37)

Since the vehicle motion q, is known then equations (B25) can be 1ignored.

Assembling the elements of equations (B.26) to (B37) in a vector matrix form

leads to equation (7.1).
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Appendix C

DERIVATION OF ROTATION AND JACOBIAN
MATRICES

C1. Introduction

In this appendix, elements of the Rotation matrices and the manipulator
Jacobians used in computing the tip responses in the various coordinate systems
are derived using the Denavit Hartenburg Homogenous transformation. The
approach employed for flexible manipulators is similar to that used in Mackerrow

(1991). and Spong and Vidyasagar (1989) for rigid manipulators.

C2. Non-Wheeled Mobile Manipulator

C2.1 Single-link Manipulator

: ol : o
The homogenous transformation matrix T, of the manipulator is given as

i
L ROt(l) d(l)
T, =[ (C.1)
0

cos(®; +q;) -sin(®; +q,) O
ROt(l, =1 si(®; +q,) cos(®;+q,) O (C.2)
0 0 I



ficos(O, + q))
do = IISiH(@l+ql) (C3)
0

—

The matrix Reot, is the rotation matrix of the manipulator tip with respect to the

base frame, while the vector d,, is the position vector of the manipulator tip with

respect to the base frame. Note that q; = A®, and only small motion q = AO, has

taken place at the joint.

C2.1.1 Jacobian Matrix in the Base Frame
The manipulator Jacobian matrix J, with respect to the base frame can be

obtained using equation (2.14) as

-1 .
dy = Jogq (C.4)
1 1
ady  ad,
Jo=—7—=— C.5
0= 2q " 2q, (C.5)
J
3 =[ n J (C.6)
Ja1
Ty =-1sin(@ +q,) (C.7)
le = [[COS(®l+ ql) (C.S)

Since the joint motion q, is small then



Q)+ q; = O (C.9)

Application of equation (C.9) to equations (C.7) and (C.8) lead to equation (4.13).
[t is now shown that the Jacobian matrix J, can also be applied to small
displacement of the tip. Multiplication of equation (C.4) by a small change in time

At leads to

d, At = JodAt (C.10)

Equation (C.11) can be written as
Ady = Joq (C.11)

. : . : :
where Ad,) is the small displacement of the position of the manipulator tip as seen

in the base frame due to a small displacement at the joint q. In particular, in this
1. :

report the vector Ad,, is denoted by x). It is noted that the vector x,, represents a

change in the position vector of the manipulator tip as seen in the base frame due

to the small displacement of the joint q.

C2.1.2 Transformation of Jacobian Matrix Between Cartesian Frames

Equation (C.4) gives the relationship between the manipulator tip velocity as seen
in the base frame d(l) and the manipulator joint motion velocity q. The rotation of
the tip cartesian frame as seen in the base cartesian frame is given by equation
(C.2). Since velocity is a free vector (vectors which can be positioned anywhere in

space without loss or change of meaning provided the magnitude and direction are
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preserved i.e. the action of a free vector is not confined to a unique line). it can be
transformed from one cartesian frame to another, by premultiplication with a
rotation matrix. This is because the relative locations of the origins of the two
cartesian frames is not important with a free vector (Mackerrow. 1990).
Application of this property to (C.4) give the velocity of the manipulator tip

motion in the i-th cartesian frame as

Rotyd, = d; = Rot:Jogq = Ji§ (C.12)

Comparison of the coefficients in equation (C. 12) gives

Ji = RotbJ, (C.13)

where J; is defined as the manipulator Jacobian matrix in the i-th Cartesian frame.

Similar reasoning can be applied to compute the small change in displacement Ad(l,

in the ith Cartesian frame..

C2.2. Two-Link Manipulator

. .2 . .
The homogenous transformation matrix T, of the manipulator is given as

2 2
2 - Rot, d,
0~

(C.14)
0 1



COS(@I + ®2+ q; *qo) -Siﬂ(@l + @2 +qp t+ qz) 0
2 . -
Rot) =] sin(@, +©,+q; +qy) cos(®, +Oy+q; +qy) O (C.15)
0 0 |

[1€08(0) + q1) + 1rcos(©| + Ozt q| +qp)
df; =1 [;sin(®+q,) + /,5in(O, + 0O +q +q9) (C.16)
0

The matrix Rot, is the rotation matrix of the manipulator tip with respect to the

. . 2. ... .
Cartesian base frame, while the vector d,, is the position vector of the manipulator

tip with respect to the base frame. Note that q; = A®; and q; = A®, and only
small motion q = [A©,, A®,]T = [q), q,]" has taken place at the joint.

C2.2.1 Jacobian Matrix in the Base Frame
The manipulator Jacobian matrix J,, with respect to the base frame can be

obtained using equation (2.14) as

-2 .

d, =Joq (C.17)
2

J() - (:vq (C 18)
TR ITE

Jo = J (C.19)
Jar J»



Jit =-sin(®) + qy) - 1sin(©,+ q; + O+ q,) (C.20)
Ji2 =-bsin(@+ q + O+ q) (C.21)
Ja1 = 11cos(©,+ q; ) = [,cos(O+ q + Oy+ q3) (C.22)
J22 = hheos(©+ q; + O+ qy) (C.23)

Since the joints motion q, and g, are very small motion . then

O,+q; =0, O, qy= 0, (C.24)

Application of equation (C.24) to equations (C.23), (C.22), (C.21) and (C.20) lead
to equations (4.49), (4.50), (4.51) and (4.52). Using the reasoning advanced in
Section C2.1 and multiplication of equation (C.17) by a small change in time At.

leads to
dg At = Joda = ad? = Jq (C.25)

where Ad(z) is the small displacement of the position of the manipulator tip in the

base frame due to a small displacement at the joint q.



C3. Wheeled Mobile Manipulator

C3.1 Two-Link Manipulator

. .3 . .
The homogenous transformation matrix T, of the manipulator is given as

3 3

- Rot, d

,r(; =,: 0 0 } (C_26)
0 1

cos(®; + O3+ qy +q3) -sin(@; +O@3+qy +q3) O
Rotg =| sin(®@, +O3+q, +q3) cos(O, + O3+q+q3) O (C.27
0 0 1

[,c08(0; + q;) + 5c05(O, + O3+ q, + q3)
3 . .
dy =| qi+5Hsin@,+qy) + £sin(@, + O3 +q, + q3) (C.28)
0

The matrix Rot,, is the rotation matrix of the manipulator tip with respect to the
vehicle frame (which is moving in the horizontal direction), while the vector d, is

.. i .. . 3
the position vector of the manipulator tip with respect to the vehicle frame d,.

Note that q = A®|, q; = AO®, and q3; = A®; and only small motion
q=[A0,, A®,, AO; |T= [q1, 92, q3 ] has taken place at the joint.
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C3.1.1 Jacobian Matrix in the Vehicle Frame

The manipulator Jacobian matrix J,, with respect to the base frame can be

obtained using equation (2.14) as

d, = g (C.29)
od,
=7 (C.30)
UTRRIEI T ]

0 _[Jn T T3 | (€30
Jyp =0 (C.32)
Ji2 = -hsin(©; + qy) - f3sin(@,+ q; + O3+ q3) (C.33)
Ji3 = - 3sin(©,+ q; + O3+ q3) (C.34)
Jy =1 (C.35)
J22 = 1,c05(0; + qy ) + [5c08(@5+ q; + O3+ q3) (C.36)

Ja3 = heos(©y+ q; + O3+ q3) (C.37)
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Since q, q, and q5 are very small motion , then

O,+qy= 0O, O3+ q3~ 05 (C.38)

Application of equation (C.39) to equations (C.38), (C.37), (C.36), (C.35), (C.34)
and (C.33) lead to equations (6.43), (6.44), (6.45), (6.46), (6.47) and (6.48).
Further

6(3, At = JyqAt = Adg =Joq (C.39)

where Ad,) is the small displacement of the position of the manipulator tip in the

vehicle due to a small displacement at the joint.

C4. Two-Wheeled Mobile Manipulator

C4.1 Two-Link Manipulator

: 3 : o
The homogenous transformation matrix T, of the manipulator is given as

3 3

Rot, d

T, = { o0 J (C.40)
0 I



I\
(V)]

Cos(©y + O3+ qip + @2+ q3) -SinN(@ + O3+ qp + qa +q3) O
Rot, =| sin(®, + O3+ qp + Q2+ q3) €oS(@ +Os3+qp+qy+q;) O

0 0 I
(C.41)
[3¢08(0; + qip + q;) + [,c0s(O4 + O3+ qp+qs + q3)
dy =| quu + 1sin®, + qup Q) H4Sin(@; + Oz+ qup +qy + q3)
0
(C42)

The matrix Rot('; is the rotation matrix of the manipulator tip motion with respect

to the vehicle frame (which is moving in the horizontal direction), while the vector

3. .. . L. : 3
d,) is the position vector of the manipulator tip with respect to the vehicle frame d,.

Note qiy = A®|, qip = AO,, q; = A®, and q; = A®; and only small motion
q=[A0|, 405, A®,, AO; |T =[qu. qip- 9. 3 | T has taken place at the joint.

C4.1.1 Jacobian Matrix in the Vehicle Frame
The manipulator Jacobian matrix J,, with respect to the base frame can be

obtained using equation (2.14) as

dy = Jod (C.43)



_[J“ Jo T3 T ]
()

Jar Jaa Jaz Uy
5y =0
Ji2 =-3sin(@; + qa+ qyp) - 45in(Oy+ qp + qy+ O3+ q;3)
Ji3 = -I5sin(©; + qy+ qyp) - 145In(O5+ qyp + qy+ O3+ q3)

Jig =- [sin(@,+ qp + g+ O3+ q3)

J22 = [5c08(0, + qa+ qpp ) + [4c08(Oy+ qip + q2+ O3+ q3)

= 13c08(®, + qa+ qip ) + 14c0s(Oy+ q)p + qy+ O3+ q5)

L]
N
d

|

Ja4 = [4cos(@y+ qpp + qa + O3+ q3)

Since q,p, q3, and q; are very small motion , then

Ot qip+qy O, O3+ q3 =05

19
n
19

(C.44)

(C.45)

(C.46)

(C47)

(C.48)

(C.49)

(C.50)

(C.51)

(C.54)

Application of equation (C.58) to equations (C.57), (C.56), (C.55). (C.54). (C.53).
(C.52), (C51), and (C50) lead to equations (8.80), (8.81), (8.82), (8.83), (8.84),

(8.85), (8.86), (8.87). Further



N
V)
(93]

dy At = Jydat = Ad; = Joq (C.55)

where Ad,) is the small displacement of the position of the manipulator tip in the

vehicle due to a small displacement at the joint.
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Appendix D

CONTOUR INTEGRALS USED FOR THE
STATIONARY RESPONSES

D1. Introduction

To compute the elements of the covariance tensors of the joint
displacements and velocities for the stationary random responses of the non-
wheeled and the wheeled mobile manipulators (see Sections 3.41 and 5.5.2.2) a
number of complex contour integration associated with the different modes of
vibrations of the manipulator have to be carried out. It is only after this has been
done that appropriate transformations can be applied to obtain the joint and tip
responses (Section 3.5). In the following discussions expressions for the
covariances of the modal responses associated with the random function used in
the illustrative examples of chapters four and six are derived. For simplicity of
presentation the same notations are used to denote the modes of vibration of non-
wheeled and wheeled mobile manipulators. For clanity of presentation some of the

common notations used are stated upfront.

D1.1 Common Notations

® natural frequency term

©, natural frequency of mode r
i =

& damping factor of mode r

Res(.) residue of .
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Re(.) real part of .
Other symbols and expressions are defined as they are encountered or at the end of

the appendix.

D2. Non-Wheeled Mobile Manipulator

D2.1 Covariance of Modal Responses
The power spectrum representation of the excitation used is given in

equation (4.4). Equation (4.4) can be normalized by the intensity of the white

*
noise Sy,.. To compute the modal responses the integral of the term H H, given in

equation (3.35) for modes r and k have to be evaluated since it appears implicitly
in equation (3.36). The two integrals in equation (3.36) are erHrdo) and }HrH;
dw. Further, for the velocity responses (equation 3.37) the two integrals which

have to be evaluated are }c‘mZHrH:dm and j’colHrH;do).

-0 -0

Evaluation of }H,H:dm = }F (®)dw

- -~

where

Fi(©) = ———— (D.1)

(0 - 02 + (25w )?

Using the residue theorem to evaluate the integral leads to

}C'F,((o)d(o = 2niZRes(F (o)) (D.2)

-

The function F|(w) has 4 poles but only two of them lie in the region of

integration. These are



2 \
®r = ( I'E.»r +iG ),

- / 2
©p = (- l'{;r T )wy

Res(wy) = limyy_ o)1 (0 -0 )F |(©)]}

1
8igo, \| 1-6; (162 +12,)

Res((‘)rz) = ”’"m—»corz{(ﬂ) = (‘)rZ)Fl((U)}

_ 1
iz, \/1-5 (\/ 1 - ig,)

Application of equations (D.5) and (D.6) in (D.2) gives

0 © * T
f Fl((l))dﬁ) = erHrd(!) = 3
s S %0,

Evaluation of ?Hrl—{;d(o

-C

Using the residue theorem then

THH do = 2 [ Fy@)do = 4niSRes(Fy(w))
SHrby R 2

—0 -

where
Fy(w) = Re(HH,)

(o)f - mz)(colz( - @2) + 4E EL o on

[(@f - 022 + (00 Yo - 022 + (5o )

(D.5)

(D.6)

(D.7)

(D.8)

(D.9)
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The function F(w) has eight poles but only four of them lie in the region of

integration. These are

o = ( l-éf + g o, (D.10)
0p = (1€ +iZ)o, (D.11)
g = ( l-ii + iy )wy (D.12)
Wgy = (- l-éi + gy oy (D.13)

Consideration of the poles associated with mode r lead to

Res(wpy) = limgy 01 {(@ - 0,))Fo(0)}

Dir - iDZr

- Kr(Plr+ iPZr) (D'l4)
Res(wp) = limgy g0 {(® - 0;)F)(w)}
Dy, +/D
= =k (D.15)

Kr(Plr'i P2r)

the terms Dy, Dy, Py, Py, and K, are defined at the end of this Appendix.

Therefore

2(Perlr - PZrD2r)
2 2
Kr(Plr+ P2r)

Res(owpy) + Res(wpn)= (D.16)
rl

Similarly by interchanging the subscript r with k the residues associated with mode

k is obtained as



2(Py Dy~ PoyD
Res(oy,) = Res(ogy) = ik =2k 21) (D.17)
Ki(Pyg + Py)

Application of equations (D.17) and (D.16) in (D.8) and substituting for K and Ky

leads to
x x 7(P,.Dy, - P,,D (P Dy - Py D
fHeHdo = T(} e ")2 + 1(3 Hie—2k ”‘2 (D.18)
<o GO\ & (P + Py) e\ 1-E (P + Pyy)
Equations (D.18) and (D.7) are used implicitly in equation (3.36).
Evaluation of j‘mlH,H:dm = 7‘F3(co)dcu
where
R Y
F3(0) =w?(HH,)= — 5 ; ; (D.19)
(o, - ®?)? + (28w )*
Using the residue theorem then
f F3(w)do = 2n/ZRes(Fz(w)) (D.20)

The function F3(w) has the same poles as Fj(w) and the two poles that are in the

region of integration are given in equations (D.3) and (D.4). Therefore

Res(wyp) = limg 01 {(0 - 0 )F (o)}

-gr F I(c:r)’

i, \/1 & (1€ + ig)

(D.21)




Res(wyy) = limgy ey (o - ®p)F3(w)}

\/1 'éf - iér)z

8i%,0,\[ 15, (\[ 18] - i&,)

Application of equations (D.21) and (D.22) in equation (D.20) gives

p o) *

o?H H do =
Jortddo =5, o
-0

Evaluation of j‘le,H;dco

-

Using the residue theorem then

j‘mZHrH;dm = 2} Fy(@)do = 4miZRes(F (o))

-0 -

where
Fy(w) = Re(w2H, Hy)

w2[(wF - o) wp - ©2) + 4EEwwo? |

[(@; - @22 + (&0 )2][(0f - 022 + (2w )]

(D.22)

(D.23)

(D.24)

(D.25)

The function Fy(w) has the same poles as F(®) and the four poles that are in the

region of integration are given in equations (D.10), (D.1 1), (D.12) and (D.13)

Considering the poles associated with mode r lead to

Res(wpy) = limgy 0 {(o - o, )F4(w)}

. 2
_ (nlr + anr)(or
Kr(Plr+ iP2r)

(D.26)
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Res(op) = limgy oy {0 - ©)F (o)}

;5
(ﬂ“- Irlzr)(l); ,
- Kr(Plr - ’PZr) (D.-7)

Therefore

D)
2(”lrplr - n2rP.'Zr)(')r

Res(opy) + Res(op) = (D.28)

) 2
[\r( Plr + Plr)
Similarly by interchanging the subscript r with k the residues associated with mode

k are
2
2(TT Py + TPy ooy

2
Ki(Pyy + Py)

Res(oy)) + Res(oy,) = (D.29)

Application of equations (D.28) and (D.29) in (D.24) and substituting for K, and
Ky (see the end of chapter for definition of symbols) gives
(I Py ¥ MyePyr) ([P + TloPyy)

. 2. 2 2 2 2 2
Geor\[ 1€ (P + Py) & \[ 1-E, (P + Py )

}(OZH,H;d(o = (D.30)

-

Equations (D.23) and (D.30) are used implicitly in equation (3.37).

D3. Wheeled Mobile Manipulator

D3.1 Covariance of Modal Responses
The power spectrum representation of the excitation used is given in
equation (6.53) and (6.54). Equation (6.53) can be normalized by the variance of

. .. 2 .
the surface irregularities 6~. To compute the modal displacement responses the

integral of the terms:



(2) S, (@HH, = ————“*——H Hy
(w2 + azq )
. 202 .
(B) S, @HHy =02, @HH, = —— Ao g0

Gty 2
o (w2 + alqy)

given in equation (5.36) have to be evaluated for modes r and k since they appear

implicitly in the equation (5.37). Further, for the velocity responses (equation

5.38) the integral of the terms:
(c) @3S, @HH

(d) wZSq)qy(m)Her
have to be evaluated. Since equations (b) and (c) are identical then six integrals

(with two associated with each equation) have to be evaluated.

Evaluation of ¥ o (OHH, d o%oqy H H*dco o2ug 'IF (w)d
valu © ® = = s(w)dw
Evaluation _'{;S Jﬂ(m +a2q2) iy T __f:
where
|
Fs(®) = (D.31)

[(©2 + a2q)][(o] - 022 + (28,00 )?]

Using the residue theorem to evaluate the integral leads to

2640, © 200
-G—:qi [F3(0)do = G—:‘hzmmes(f‘s(m)) (D.32)

-

The function Fs(w) has 6 poles but only three of them lie in the region of

integration. These are



Or = (F\J1-&; + i o, (D.33)
o = (\J1-5 + iZ)o, (D.34)
0Oq = Ia(']x (D.35)
Res(wyy) = [im(x)—>(orl {(o- ©.)Fs(w)}
1
= - S (D.36)
. 3 - )
i \[1-&, (T -iTy,)
Res(w,,) = hm(:)—)(x)rz{((” -0p)Fs(w)}
1 n
= - = (D.37)
8'&r(‘fr I'é; (Ty, + iTy,)
Res((oq) = lim(,)_,(oq{((o -0y)Fs(w)}= m (D.38)
X>r
Ty, |
Res(wey) + Res(mwpr) + Res(wg) = 3 > 2 5 T 2iaq U
4i§r(0r l - E.,r(T“.'*' Tzr) NTr
(D.39)
Therefore
. 2 ° 5

£ 0'2(1 ] * G aqulr _0:
147 HH do = 0 (D.40)

2 = 3 2.2 2
“ (o + alqy) 26,0\ -E(T)+ Ty)



R «x© * 71‘ G’zaq\ *
Evaluation of qu\.q\(c))H,dem = >~ HH, do

(o> + alqy)
—-c - ’

Using the residue theorem then

P 2 * Yo5laa - 2 200
Ry =20 e e = 299 2iZRes(F(w)) (D.41
r* 'k T J 6 T >

(2 + alc 2)

-

where
[(c)f - mz)(mi -m2) + 4§,§k(okcow2 ]

F =
() (@2 + a2qQ[(0; - 022+ (2500 P][(of - 02 + (2o Y]

(D.42)
The function Fg(w) has ten poles but only five of them lie in the region of

integration. These are

o = ( l-éf + i€ ), (D.43)
0 = (A\[1-E + iZ)o, (D.44)
©q = faqy (D.45)
o = (\/1- *+ Z oy (D.46)
o = ([ 144 + oy, (D.47)

Res(wpy) = limgy 1 {(@ - 071 )F ()}

— Dlr' iDZr
K(W+iW,,)

(D.48)
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R(,'.S'((l)rz) = /im(,)_m)r?. {((D - er)F()(m)}

- —Dir + Dy (D.49)
Kr(wlr - 1W2r) ’
2AW,, D, - W, D
Res(wp) + Res(o,y) = W, 2 20) (D.50)
Kr(\’vlr H “’.’.r)
Similarly the residues associated with mode k are
2(Wu Dy - Wy D
Res(wyy) + Res(oy,) = Wk —2k 2) (D.51)
Re(Wie+ Wi
And the residues associated ®q IS
Res(wq) = limw_,mq{((o - 0g)Fg(w)}
Y
——rk <9
Ziaqu, Uk (D'D-’)
Therefore
n@ o'za(’]\' *
2 Her

_Cn((o-’- +alqy)

D W, + Dy W, N D Wik + Dy Wy . 2Y
3 2. .2 2. . 3 2.2 2 aq UUL
E N1 -5 (Wi i+ Wy) Eo\[1-E(W+ Wy ) @Ik

- Gaqyl
(D.53)

x * £s 2qq. * 2qq. -
Evaluation of fcx)Zquq (@)HH do = = © aq\fz ®?HH, do = Q%IAIF-/((D)dO)
B (o + a’qy) _

- -

-7

where



IV
(o)
W

2
Fow) = .2 2 = o , (D.54)
[(©2 + a2q](w; - @22+ (2Ew0 )2
Using the residue theorem then
o2aq, » c2aq,
= fF7(m)d(o - 2niZRes(F+(w)) (D.535)

The function Fy(w) has the same poles as Fs(w). Using the poles specified in

equations (D.33), (D.34), (D.35) lead to

\/ 166 + E)oRes(wry) = limgy g {(e - 0p)Fo(w)}

12+ By = ARLSE (D.56)

. 3 / 2 )
8w, 1-& (T, - iTy,)

Res(wp) = limg g0 {(0 - ©4)F(o)}

}‘-lr+ i}"Zr

=— ' (D.37)
81&,0),3 \/ l'érz (Tlr + 'TZr)
| aq, ]
Res(wg) = /lmm_,mq{((o -0g)F(w)}= 2iU, (D.58)
+ (1' .
Res(wyy) + Res(op) + Res(wg) = t”T" SHLE -,3‘ (D.59)
=™r

" 2.2 2
4’C.rwr I- E:r(Tlr+ Tlr)
Therefore

=o ‘ . A Tie+ Ay Top g,
S8, @HHdo = o?aq, [~ A= - - U‘] (D.60)
- 2&,-0)[. \/ 1- ‘:r(Tlr+ TZr) '
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2

: * * = o2aq, . 2¢q. =
Evaluation of fmzsq W(oHHdo = S & =5~ o2H H do = Sy st((g))d(o
vy 7 (= + alq;) T .
where
2 2
o?(o, - o) o) - 0?) + 4E E oon? |
[‘:8((!))= S .22 5 2
(o= + g )[(o; - 02)2 £ (2Eom )2][(o; - 022 + (250 )]
(D.61)
Using the residue theorem leads to
202aq = 262ag
— [Fa@)do = =1 20T Res(Fy(w)) (D.62)

The function Fg(w) has the same poles as Fq(w). Using the poles given in

equations (D.43), (D.44), (D.45), (D.46) and (D.47) lead to

Res(w,p) = limg g0 {(@ - 0 )Fg(w)}

_ Q]r + inr -
T KW+ W) (D.63)

Res(wp) = limg g0 {(0 - ©)Fg(w)}

— Qir - io7r
Kr(“”lr - iWZr) (D'64)

2(W,Q) + W, Q,)
2 2
[\r(wlr + WZr)

Res(wy)) + Res(o,) = (D.65)

Similarly by interchanging the subscript r and k we have



AW + W
Res(epy) + Res(wgy) = = “‘Q”; 2§Q2“) (D.66)
KW + W)

(o) = I Fueo)= - 99 567
Res(wq) = hmw_,mq{(co - 0g)Fg(w)}= - 2:U, Uy, (D.67)
Therefore
[0S, , @HHdo
_ c’aq erWu + QWo Qlkwlk + Qo Wok zaq\Yrk]
s 2 T U U
\/ EWi+ W) ika’k \V!I- §k(W21k+ Wék) «

(D.68)
Equations (D.68), (D.60), (D.53) and (D.40) are used implicitly in equation (5.37).

. © * x Gzan * 0-2(19. -~
2Q. . = 4H H d = F( d
Evaluation of f(o quqy(m)HrHrda) f7:(0)2+a261i) o*HH do Tt _{c 9(®)dw
where
Kl
Fo() = = (D.69)

[(©2 + 2)][(0; - ©2)? + (20,0 )?]

Using the residue theorem then

c~aq = 2.
— [Fy(@)do = 9%% 21iE Res(Fo()) (D.70)

The function Fy(w) has the same poles as Fy(w). Using the poles specified in

equations (D.33), (D.34), (D.35) lead to
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Res(wpy) = limgy a1 {(® - o )Fg(®)}

_ Elr 'iE7r

= PO (D.71)
8iér(0r I-E_,r (Tlr - iTZr)

Res(wp) = limg g0 {(®-mp)Fg(m)!

Elr + iEZr
=— : (D.72)
8l§r(!)r l-ér (Tll’ + ITZI')
| o3q;
Res((oq) = hm(,)_,mq{(co - o)q)F()(co)}= 21U, (D.73)
E; T +E, T, aq,
Res(wr)) + Res(wp) + Res(wg) = s — o (D.74)
4'iirmr \/ I- ér(T.l-r"' Tgr) ot
Therefore
- . . E; Ty, + Ey Ty a’q,
fcoqu\,qy(m)HrHrdw = caq, [ 3“ i > 2 22 St >~ (D.75)
-0 - 2ér(‘)r l- ér(Tlr+ T2r) '

. o« * o czaq\_
Evaluation of f“’zsqu,.(erdew = JL

* G uq, *
) 2 (04H,de(o= ___r—q‘\“me(G))dm
~c -007[((0- * a-qx) -r
where
2 2
o(o; - 02) (0 - ©2) + 4 & oo.m |
Flo(w) =

- 2. 2 3 2
(02 + a2q )[(w, - ®2)2 + (28,0,m )2][(co; -m2)2 = (22 o0 )?]

(D.76)
Using the residue theorem then
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202aq, « 262aq,
- . fFl()((D)d(D = '

2riXRes(Fp(w)) (D.77)

-
The function F,(w) has the same poles as Fg(w). Using the poles given in

equations (D.43), (D.44), (D.45). (D.46) and (D.47) leads to

Res(og)) = limgy e §(0 - @ )F p(®)}

Vi +iVy

e (D.78)
Res(wp) = limgy L qea{(® - ©)Fo(w)}
— Vir - ivl[
Kr(“/lr 'iwzr) (D.-]())
2(W, Vi, + W, .V
Res(w) + Res(o,) = W L2 21) (D.80)
Kr(\Nlr + \VZr)
Similarly by interchanging the subscript r and k we have
2(Wp Vi + Wy V
Res(oogy) + Res(eop) = 2l t——2k 2 (D.81)
KW + Wa)
, Yrka"z(.]:\y'
Res(eq) = limgy _yqyq{(©@ - 0g)F jo(@) }= 21U, Uy (D.82)

Therefore

f(l) 234"4\_(0) yH r["l:d(l) =

-~



— <2~ vlrwlr + VZrWZL Vllek + vZkW2l\ "a3(:l:(Yrk
= 6-0((]\[ WZ WZ UrUl\ ]
V ( Zr) ék(’) \’ I- ék(wlk*‘ 2K)
(D.83)

Equations (D.68). (D.60), (D.84) and (D.73) are used implicitly in equation (5.38).

D4. Definitions of Symbols Used Appendix D.

. 2 2 2 2 2 2 .. 3 2
Dir = 2& 0 @y - 0p + 25,0;) ~( B0 \[1-€2 Y + 48 Zw. oy (1-220)
(D.84)

2 2,2 2. .22 2\ [1-€2
Dy, = 2§rcor l-‘:r (C!)k -0+ zérmr) + 4(§rmr)2§rmr I-E’f

- 88 60,0\ 18 (D.85)

Eir=(1-8 +88)o; (D.86)
Eyr = dpgr\| 1€; (1-22)) (D.87)
K, = 8i¢,03\1-E2 (D.88)
Pir =\ 1-Go 1w - ) + 2620 o - m2+2§f ;- (250 1-8] Y +4El 0w’

222

(1-28))] - 85 goroe\[ 1-EL - 4(E 0l 1 Yob- o> + 26202) (D.89)

Py = \/ 16 [8E Lo, wk\/ 1€ - 4o, 1€ Yoy - o F+ 20 9]
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~l

‘ 2 2 .22 2 2 22 2 25,2 2 2 2
& [0y - o + 28 @)ooy - o T 28 o - (28w \[1-, ) +4kar(’)k(]’2§r)]

(D.90)

2, )

2 2 2 3

Qir = [0, - 20, &, J[2(E )2((”k -0, + "c ©® ) -( 7&,(0 1€, ) - 4E& o,
2 .2 2 2 L2 2 22

wy( l-?_ér)] + [2€rwr l"*;:r Hz@r(”r I'gr (o) - O T Zgr(’)r)

. 2 2 2 L2 3 L2
4'(gr(’)r)v&.r(’*)r l'&-r - 8C.r§kwrmk I-gr ] (D.91)

2 = [2eon\[15, I2G0 ey - o + 20D « %o \/lér 2o
1o 0 (1-25)] - [o] - 2078] [2grw\/lgr(mk-(g c gkl -

2 72 V.' ”
4(&_r(‘)r)zér(’)r \, I'C.:r - 8gr§k(0rwk I-Qr ] (D.92)
2 2 ) 2 2.2 2
Ty = (0] - 28,0, + o2 QN[ 1€, - 20E.\] 1-E2 (D.93)
o2, 2 2 2 .2 2
Ty = Qo g\ 1-E, N\JI-€, + (o, - 2& 0, + a? q )&, (D.94)
2 .2 .
Ur = (o0, +a2qy )?- (28,aq,0,)2 (D.95)

2 A 52 2 22 ) 2,
vlr = [(l - Sér + Sgr)wr][z(grmr) ((Dk - O, + zgrmr) '( 2c.;r('0r l'EJr )~ -
.3 2 4 2 22 2 2 2
IE G on(1-28)] + [407e\[ 1-€] (1-2g,)1[7qro> \/l-&, (-0
2 2 v fed 2
+28 ) + 4(g,co,)2gr(or‘\/ l-ér 8grckc) o \/ I- Ej,r 1 (D.96)

4 zz .2 - 2, 2 2 L2 2 . 2 .2 .9
VZI’ = [4wr§r l-‘:r (l-?_gr)][Z(Qr(Dr) ((ok = (’)r + zgl'wr) -( zgrwr l'c.:r )~ +
S 3 L2 L2 L4 4 2 L2 2 2 L2 2
4€l’€k(‘0r(0k(l-2€r)] -(l- sgr + Sgr)mr[zél’wr l-gr (mk - @, + 2gr(0r)
- . 2 L2 L2 3 L2
+ 4(E0) o\ 1-€; - 82 £y i \[1-Z; | (D.97)



2 2 .2 2.2 2 2 2. 2 2 2 2
wlr = ((’)r - 2grmr + o? q\)[ l'ér[(wk -0t 2“;l’mr)(")k -+ 2érwr -
2 2 2 22 2 2,2 2 2 [ 2 22 [T
(zérwr l"C.r )2+4C-k0)rmk( l'zér)] - Sgrgkmrmk l'gr - 4(C.r ®, l'gr

Moy - op + 22200 | - QoleAf1-8 ) A\[1-22 [BeLrolon/1-E -

L2 U2 2 2 .22 . 2 2 L2 2002 2
HEo \[1-C, Noyg - o, + 28 o)] + & [(o - o + 2,00, - o +
2 2 2 2.9, ,.2 2 2 2
28 0; - 28,0\ 1-E, )2 +4E o o (1-28)]] (D.98)

2 2 2 2 2 2 2 2 2 w2 2 2
Wzr = (2(Dr§r—\/l‘§r )[\/l'ér[((‘)k - @ + 2érwr)mk - O + 2gr(°r - (zél’mr

L2 2 2 2 2 2,2 2 2 2 2 2 L2 2

\ l'gr )2+4ékmr(°k(l'2€r)] - 8§rgk(°r‘”k \/ - - 4(§rmr I'C.r )(C‘)k
2 2 2 2 . 2 -2 2 L2 22 2

-op 28 o) ]+ (o - 280, + a? g \[1-€; [BE L o 0\ 1-§, -

.2 2 2 2 .22 2 2, .22 2 2
HEro 18, Moy - o + 25 0)] + & [(0 - o + 28 @ )0, - o +

2 2 2 2., .2 22 2
28,0, - (2 \[1-E; )-+4§kmrmk(l'2§r)” (D.99)
2 522 2 52
Yoo = (04 a2 G o - 624y) - 48 E 0402 (D.100)
k|,=(03-2(of§, (D.101)
2 2
Ayr = 280\ 1-E; (D.102)

. 2 2 2 2 2 2 3 2
My = (1-28)[2(E 0 ) (040 +28,0,)-(2Ew \[ 1€, Y HEE o o 1-280)]
[ e 2 2. 2 2 L2 2 2 [ 2
+(2§r l'grz )[zgl'('l)r l'ér ((Dk -O‘)r + zgl'(l)l')-*- 4(§rmr)2§r(l)l' l'qr
L2, 3 2 A
-8 Erw o \[1-€, ] (D.103)



[RV]
~
)

— v v v 2 2 2 2 2 - 2 "2 3
My =28V 1-E,2 )[2(E, ) (G)k'(!)r+2ér(')r)‘(2‘;rwr I-&; )2+4§"ékmf0)k

2 2 22 2 2 2
(128)] - (1 - 26 )[2ZZ o\ 1€, (0 - o + 26207) + Heuw,) ]

"2 vzr } ,,2
\/1-¢; - 8&, 8o o \[1-E; | (D.104)



Appendix E

SPECIAL INTEGRALS USED FOR THE
NONSTATIONARY RESPONSE

The following integrals apply to section 3.4.2. Specifically the integrals are
applicable to the modulating functions of equation (4.5). The integrals are obtained
using Beyer (1987).

atfa <inl(hec)t) - (he _
gessintoncostes = SR Crees(-0n]

e*t[a sin((b+e)t) - (b+e)cos((bte)t)]
: 2[a? + (b+c)?] (E-D

atf(h-c)ein((h- )
[eatsin(bt)sin(otyat = 1O °)Slg<[g; i)g) _*;)azc]os«b )]

e2![(b+c)sin((b+c)t) + acos((b+c)t)]
- 2[a2 + (b+o)]] (E.2)

e[ (b-c)sin((b-c)t) + acos((b-c)t)]

fealcos(bt)cos(ct)dt = 2[a2 + (b-c)?]

e2l[(b+c)sin((b+c)t) + acos((b+c)t)] -
+ 2[a2 + (b+c)?] (E.3)

where a, b and c are some constants and in particular c is associated with the
damped natural frequency of the modes wy while, a and b are associated with the

®, of the mode and the parameters «, a, of the excitation.



Appendix F

SOME PROPERTIES OF THE DIRAC DELTA
FUNCTION

F1. The Delta Function Under a Change of Variable

The delta function is usually considered as the derivative of the unit step
function i.e.

_d _ 40 t=0
5(t) = af @ = { 0 elsewhere (F.1)

In the more general case for 8(f) where f = f(t), one may write by the product rule

of differentiation

d
d ~ d _ di dt"f®)
3(6) = gpu(d = g uEO)ge= 37— (F.2)
ot

Now, if f(t) has simple zeros at t = t; and making use of the equivalence that
u(f(t)) = u(t - t;); f monotonically increasing

=u(t; - t); f monotonically decreasing



gives

d d
da u(f(t)) = dr u(t - ;) = 8(t - ;) f monotonically increasing

or (F.4)
d d
at u(f(t)) = dt u(t - t;) = 8(t; - t) f monotonically decreasing

but, since S is regarded as an even function then
O(t-t;) =3(t; - t) (F.5)

Using equation (F.4) in (F.1) yields

S(t - t.
6(f(t)>=—,§fzt7‘-;2 (F.6)

The derivative in the denominator is associated with f; since when the expression
in equation (F.6) is multiplied by a testing function, r(t), say, and integrated over

an appropriate range i.e. if a <t; <b one may write

b b S(t-t. |
[0t = fr(t)—lgtjﬁldwrfr(%))—! (F.7)

a a
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F2. The Delta Function Occurring at the Limit of Integration
As stated before the delta function is an even function having the property

}r(t)S(t - t;)dt = r(t;); a<t; <b

a

(F.8)

=0 otherwise
Therefore if the zero of the argument of the delta function lies either at a or b, half
of the contribution of the integrand will be lost due to this even property i.c.

} r(t)3(t - t)dt = zlr(a)

a

(F.9)

This is a common definition and it is employed in this thesis. (see for example
Gopal, (1989)).
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