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Abstract

A compromise is needed between the presentation of highly variable estimates of inci-
dence for subregions and an overall estimate for the region as a whole. Smoothed
estimates are obtained by adding an inter-site distance penalty to a constrained
multinomial likelihood. An approximation is developed for the smoothed estimate
and approximate moments are obtained.

A test statistic is developed based on the smoothed estimates for detecting elevated
incidence at a site relative to the others. An appropriate critical region for the test
statistic is established. Clusters are defined to be contiguous elevated rates and the
technique is evaluated through simulation. Significant increases in detection ability
are observed in many situations and the size of the test is controlled. Techniques are
also discussed for determining the smoothing parameter from the data.

The overall method is applied to gastric cancer incidence in Nova Scotia. Canada.
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Chapter 1

Introduction

In this chapter. the motivation and background literature for the thesis problem
are described. Brief overviews of tests of clustering. spatial autocorrelation. and

smoothing are given. The remaining chapters of the thesis are also outlined.

1.1 Motivation

This thesis was motivated by an analysis of gastric cancer incidence data for Nova
Scotia. ('anada. Interest was expressed in the variation of incidence rates across sub-
regions and a method to detect elevated rates was required. Recent attention in gas-
tric cancer research has focussed on the micro-organism Heliobacter pylort (H.pylori).
Infection with H.pylori has been linked to chronic gastritis and ulcers which are es-

tablished precursors for intestinal gastric carcinoma.

Although motivated by health outcome data. the methodology developed in this
thesis is relevant to other aggregated spatial counts for which a risk population can be
established for a given subregion. These applications include traffic accidents. forest

infestation and disease prevalence in animal populations.
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1.2  Tests of Clustering

Spatial disease data can be categorized according to two basic forms. The most
common consists of case counts which have been aggregated over a known geographic
unit. The other possibility. which is less common for human health outcomes. is to
have a specific (. y} location associated with each case. Data in the latter form could
be considered in the alternative framework of spatial point processes (see Cliff and
Ord. 1981: Diggle. 1983). With the data in one of these two forms. tests for clustering
can be classified according to the overall purpose of the method. Most techniques
indicate if there is clustering somewhere within the region of interest. while others
give an indication of whether clustering has occurred near a specific hazard. Some
methods focus on temporal as well as spatial clustering . There is a large body of
literature in this area. The methods given in this section are only representative
examples of the research. For detailed reviews. see Marshall (1991) or Hills and

Alexander (1939).

Besag (1991) defines tests for detecting clusters as tests that look for “individual
hot spots of disease which merit further investigation and more detailed study’. This
definition should be kept in mind in that such tests should generate subsequent inves-
tigation. A test of clustering is meant to be an initial step. Many apparent clusters

can be easily explained by other factors or existing facts about the population.

Ore of the most commonly used statistics was one of the earliest developed. Man-
tel (1967) expressed the need to develop a sensitive procedure for detecting anyv non-
random component of disease. He suggested the form >k Zj‘;l f(xi;)g(y:,) for the
detection of clustering in both space and time. In this expression. f is a measure
of spatial closeness. g is a measure of temporal closeness. x;; 1s Euclidean distance

between the /'th and jth cases and Yi, is the difference in the /’th and j'th case




onset times. The sum is over all possible pairs of cases. A null hypothesis of no
clustering is equivalent to random spatial locations matched with random case onset
times. Testing is done against a permutation distribution under the null hypothesis.
The cell occupancy method of Ederer. Mantel. and Myers (1964) assumes the spatial
data is in the first form mentioned and there are associated fixed time periods for
the data aggregation. The test statistic reveals clustering if there is a tendency for
some space-time cells to contain an excess bevond expectation under a hypothesis
of no clustering. While temporal clustering alone is a related subject that will only
be mentioned briefly here. the scan statistic (Naus. 1965 : and Wallenstein. 1930) is
commonly used for temporal disease data. Its concept is similar to the cell occupancy
method in that a cell or interval of time is fixed. The test statistic is the maximum

number of cases observed for intervals of this length over the entire time period.

While Mantel's statistic has been popular due to its simplicity. it has been criti-
cized because it does not incorporate the underlying population structure (Roberson.
1990). Mantel’s statistic motivated the development of many other methods. While
using a multinomial model. Whittemore et.al (1987) developed a general test statistic
in the Mantel form which utilizes subregion populations. The index of Tango (1934)

is a special case of the Whittemore statistic.

Besag and Newell (1991) developed a method applicable when the location of cach
case is known. To test the null hypothesis that the distribution of cases is random. the
authors count the number of administrative zones occurring within circles centered
at each case. The risk population of small administrative zones is required. For
data which is case location specific. Cuzick and Edwards (1990) suggested drawing
a control set from the associated risk population and their test statistic counts the

number of cases among & nearest neighbour individuals.

The geographical analysis machine (GAM). first introduced by Openshaw et.al




(1933) has recently become very popular as an exploratory visual technique. Al-
though recent changes have been made. circles were originally displayed if there was
an excess relative to the expected Poisson count. Criticism of this approach has
involved the difficult estimation of the risk population for circular regions and com-

plications associated with overlapping circles.

Raubertas (1983) developed a method based on a generalized linear model for data
formatted into a table of time periods (rows) and geographical regions (columns). De-
partures from expectation are modelled into region. time and region-time effects. An
overall test of clustering is given but the noteworthy difference with this technique is
the attempt to identify the significance of contributions made by subregions. Unfor-
tunately subjective definitions of regional neighbourhoods must be made to achieve

this purpose.

In focussed tests of clustering. a smaller subregion is chosen for investigation due
to some previously hypothesized hazard. Hills and Alexander (1989) propose a test
statistic based on expected and observed mean distances from the source. Bithell and
Stone (1989) suggest testing for monotonic decay of risk with increasing distance. The
underlying logic and justification of these tests has been questioned (e.g. Besag and
Newell. 1991). These discussions have centered on possible preselection bias of the

subregion.

1.3 Spatial Autocorrelation methods

[n general. tests of clustering such as the ones given in the previous subsection assume

independence of the observations. The spatial configuration is included after making




this assumption. Attempting to model spatial dependence is another alternative.
Cliif and Ord (1931). Ripley (1981) and Cressie (1991) give extensive treatments of

the subject in their texts on spatial data.

Cliff and Ord (19Y81) define spatial autocorrelation as systematic spatial variation.
They describe various indices of spatial autocorrelation which attempt to determine
whether an observed spatial pattern is significant and worth interpreting. The index

of Moran (1943) is probably the most commonly used and is given by :

where W = (wy; ) is a matrix of weights describing the closeness of region i to region

J and @& is the average of the wi;'s. The elements of the vector z are =01, —F
and r; is the incidence rate of region . [ has been shown to be normally distributed
for only moderately large number of subregions (r > 20) but calculation of the first
two moments requires either an assumption that the n subregional incidences are a
random sample from a normal distribution or the randomization assumption in which
one assumes each of the permutations of = are equally likely. This second assumption
has been questioned (e.g. Besag. 1991). The incidence rates. r,. of more rural counties
will be more extreme and variable than those for more urban counties. In a series
of simulations. Walter (1992) demonstrated the effect of different population sizes on
the distribution of /. As a result. he adjusts the critical value of / prior to evaluating
the spatial autocorrelation of the incidence of lip. stomach. and thyroid cancer in the

counties of Qntario.

Cressie and Read (1939) suggested detailed modelling. which consists of several
steps. in their analysis of Sudden Infant Death Svndrome (SIDS) data. The analysis
consists of analyzing case counts within a table of rows and columns corresponding to
divisions of latitude and longitude. The authors suggest removing possible row and

column effects from their fitted model by using a median polish (Tukey. 1977) and




focus on a set of stationary residuals. Residual analysis makes use of the geostatistical
ideas of the variogram and covariogram (Cressie. 1991 ). The variogram indicates the

lag distance on the map for which independence can be assumed.

Modelling spatial dependence may also be considered within a regression context.
Covariate data may be available at each location. The usual assumption of uncor-
related errors is replaced by the assumption that Var(e€) = Ao? (Cook and Pocock.
1983). The covariance or off-diagonal elements of A are usually a decreasing function
of distance. The SIDS data was further analyzed by Cressie and Chan (1989) using a
conditional autoregressive model (Besag. 1974). In this model. the modelling of the
mean count of a particular subregion is conditional on the count of its neighbours.
Space-time autoregressive moving average models have also been developed (Martin

and Oeppen. 1975 : Pfeifer and Deutch. 1930)

1.4 Smoothing

The idea of smoothing has a broad scope within the field of statistics. While the work
within this thesis pertains to the topics of penalized likelihood. multinomial smoothing
and disease mapping. other areas include density estimation. nonparametric and ridge
regression and image processing. A comprehensive treatment of the subject can be
found in Titterington (1985). The common link within the methodology is the helief
that the true parameter(s) or function of interest has a smooth form. Some further
background on smoothing and its context within this thesis are presented in this

section.



-1

1.4.1 Background

Raw unsmooothed estimates such as the observed incidence rates of case count divided
by risk population constitute ‘ultra-rough” estimates. Reporting an overall constant
rate ignores the observed data and is "ultra-smooth” (Titterington. 1985). The form
or prescription for smoothing is defined by the smoothing technique chosen (Stone.

1974). The degree of smoothing is governed by a smoothing parameter.

The classical trade-off in smoothing is between the possible gains resulting from
decreased variance in the estimate and the possible losses incurred from introducing
bias. A common criterion for assessing the sampling properties of the estimates and
choice of smoothing parameter is to minimize the total mean squared error given by

the sum of the variances and the squared biases.

For a vector y of length & distributed as multinomial with m cases and cell
probability vector 8. Good (1963) was the first to suggest smoothing the maximum
likelihood estimates for the cell probabilities. While the maximum likelihood estimate
y,/m is -ultra-rough’. the ‘ultra-smooth” estimate for §, is the constant L/k. For

0 < a < L. his simple prescription of convex smoothing takes the form

00 = Q(Al) + (1 — a)f, . (1.1)

This smoothing prescription has some intuitive appeal due to its simplicity and will
be discussed again later in the thesis. In a Bayesian framework. Fienberg and Holland
(1973) as well as Leonard (1977) obtain smoothed multinomial estimates through the

use of this type of smoothing prescription.

In techniques which use penalized distance or penalized roughness. estimation




is performed under some constraint. [n multinomial smoothing. some examples of
penalties are Zf:l Zle(ﬂi —6,)* and Zf;ll(O,- —0,+1)%. The penalty chosen depends
on the context. In these two penalties. the former concentrates on general roughness
while the latter assumes a meaningful ordering among the cells and penalizes locally
through first differences. In a spatial context. the approach of smoothing via penalized

distance will be an integral part of the smoothing technique presented in Chapter 2.

Bayesian estimation is a large fraction of the smoothing literature and will be
discussed in the next subsection in the context of smoothing incidence rates. The
issue of the choice of smoothing parameter will be addressed in Chapter 4 and will

involve some of the concepts outlined above.

1.4.2 Smoothing Incidence Rates

Producing geographic estimates of incidence has become quite common. Atlases
of incidence and/or mortality ar~ now becoming more widely available (see Walter
and Birnie. 1991). Case counts are usually aggregated to a regional level such as

municipality or county and census data is referenced to establish the risk population.

A compromise is needed between the presentation of raw incidence rates for the
subregions and an overall mean rate for the entire map. Highly variable standardized
rates from a subregion of low population may hide the true underlying pattern. Be-
lieving that the true unknown incidence for the map takes on a smooth form and that
these subregion estimates are not independent are reasonable assumptions. Borrow-
ing information from geographically close areas is a logical step towards producing a

map of more stable estimates.
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Empirical Bayes (EB) methods have been popular for the purpose of stabilizing the
observed rates. A comprehensive review can be found in Clayton and Bernardinelli
(1992). Assume we have a case count of y, for subregion/site with population .V,. For
the & sites. denote the observed raw incidence vector by p- The EB approach uses a
multivariate prior for the underlying incidence vector p. Maximization of the resulting
posterior gives the EB estimates for the map. Various techniques may be used to
estimate the parameters of the prior for p. These techniques may be computationally
intensive but they have generally been preferred to the numerical methods required
to maximize the posterior distribution of a fully Bayesian approach. Application of
the Gibbs sampler (Geman and Geman. 1934) has generated some renewed interest

in the fully Bayesian approach.

Approaches within the EB framework can generally be classified by the type of
prior model used. Global approaches shrink the estimates towards a global expecta-
tion. If there is no spatial dependence included in the prior or sampling distributions.
these estimates remain unchanged by a rearrangement of spatial locations (see Devine
et al.. 1994). Local approaches shrink the estimate towards a local mean and have
generally used spatial auto-correlation models to model spatial dependence among
the p;. A weighting or adjacency matrix relates incidences pi and p; as in the the con-
ditional autoregressive model (CAR) described by Besag (1974). In a fully Bavesian
set-up. Besag (1939) models p; as the sum of a spatially defined global variable (the
realization of a spatial process) and another localized variable which has no spa-
tial definition. Marshall (1991) proposed a local moment based EB estimator. This
method relies on the reasonable assumption that local mean incidence is constant

over a certain predefined neighbourhood.
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1.5 Outline of the Thesis

[n general. tests of clustering do not highlight specific areas contributing to clustering
and do not attempt to test for elevated rates. Furthermore. these tests typically don't
give useful subregional estimates of incidence. The idea of smoothing to produce an
estimate with better sampling properties was considered appropriate in the context
of the motivating problem. However. smoothing by itself does not go far enough
to address the question of elevated rates or clusters. A testing strategy based on

smoothed estimates is developed.

In Chapter 2. smoothed estimation of incidence rates by penalized likelihood is
proposed. Conditional on the total number of cases. smoothed estimates are obtained
by adding an inter-site distance penalty to a constrained multinomial likelihood. An
approximation for the smoothed estimate is developed and approximate moments
of the smoothed estimate are discussed. Chapter 3 outlines a testing strategy to
identify elevated rates and to define clusters. Testing without smoothing and testing
based on smoothed estimates is described. Simulations evaluate the methodology.
The problem of choosing the smoothing parameter is addressed in Chapter 4 and a
strategy for this choice is suggested. The overall method is applied to Nova Scotia
gastric cancer data in Chapter 5. In Chapter 6. the thesis is briefly reviewed and

future work is outlined.



Chapter 2

Smoothed Estimates of Incidence
by Penalized Likelihood

[n this chapter. smoothed estimation of incidence rates by penalized likelihood is
presented. In Section 2.1. the form of the data and the Poisson likelihood approach to
estimation are reviewed. Penalized likelihood estimation is introduced. Conditional
on the total number of cases. a reparametrization and smoothed estimation from
a penalized multinomial likelihood are presented in Section 2.2. Examples of the
smoothed estimate are given in Section 2.3 and an approximation for the smoothed
estimate is developed in Section 2.4. Moments of the unsmoothed estimate and
approximate moments of the smoothed estimate are presented in Section 2.5. The
sampling properties of the smoothed estimate are addressed through bias and MSE
in Section 2.6. Simulations compare observed bias and MSE to their approximations
in Section 2.7. Other investigations which discuss simplified (reduced) estimators and

the normality of the smoothed estimate are presented in Section 2.8.

11




2.1 Poisson and Penalized Likelihood

For the time period of interest. assume we have data of the form (riesioyi. V).
i=1..... k. where r; and s; are the coordinates of site . y; 1s the case count. and .\,
is the associated risk population. For example. the Nova Scotia gastric cancer data
consists of case counts at the municipality or county level over specific time periods.
Census information was referenced to ascertain the relevant risk populations. The
assigned coordinates were the latitude and longitude of the municipality /county seat.
Another example of rare event data at known spatial locations is traffic accidents.
Estimates of incidence rates can be found by maximizing a Poisson likelihood. In this
section the case counts. y,. are considered to be independent Poisson random variables
and the concept of smoothing by penalized likelihood is introduced. However. most
of the work of this thesis considers the distribution of the case vector Y= (yi..... Yi)
conditional on the case total (m = "% ;) for the region. The issue of overdispersion

1s not addressed in this thesis.

Assuming that the y; are distributed as independent Poisson random variables

with mean N;p;. then the log likelihood up to an additive constant is

k k
(p)= = Nipi+ . yidog(Nip;) (2.1)
=1

=1

and the maximum likelihood estimate for p; is y,/.V,.

Assume now that the unknown incidence rates p = (p1--.px) have a smooth
form as discussed in Chapter 1. The spatial aspect of the problem can be intro-
duced through a roughness penalty which incorporates the inter-site distances and
the differences among the rates. For any pair of sites. the contribution to the penalty

should decrease with increasing inter-site distance d;j and increase with the absolute
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difference in the rates p; and p; . Therefore. the suggested penalty is

l )
pen(p) = 33 ——(pi —p,)° . (2.2)
. .(,
vogFaY
The penalty pen(p) can be written as a quadratic form as
pen(p) = 2p'(B-E)p . (2.3)

where the matrix E has €;j as its (i. ) th element and diagonal element ¢;; defined to

be 0 and B is a diagonal matrix with (i.i)th element b; = >,z €ij Where ¢;; = 1/d,;.

Up to an additive constant. the penalized log likelihood can be written as

lpen(p) = l(p) - hzz T(pl _pJ); . (24)

where h is the smoothing parameter. Assuming the same relative positions for the
sites. distance measured in different units gives the same penalized estimates as before

since a constant will factor out of the sum of squares.

The estimates p,,, . obtained by maximizing this function. are a compromise be-
tween the maximum likelihood estimates. Pmiy, = y;/.N,. and a constant estimate
which gives a zero penalty. Denote the total population Y Nias V.. Although any
constant p, makes the penalty zero. as h tends to infinity. the estimate Pr, =m/ N,
maximizes L., (p) evaluated at p, = (p,..... po)’. The ultra-smooth or flat estimate
pr.; puts no faith in the data. When h = 0. the maximum likelihood estimates are

unbiased while the ultra-smooth estimates have expectation
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k
Z.\'.'Pi
=1

m ;
BlR] - =

+

(8]
1]
~

which is an average rate. weighted by population.

Downer (1996). using the penalized likelihood Len(P). studied the normality and sam-
pling properties of the resulting smoothed estimate vector Psm- Penalized likelihood
can also be viewed in a Bayesian or Empirical Baves context. Within the Empir-
ical Bayes framework. Clayton (1990). Bernardinelli and Montomoli (1992) as well
as Clayton and Bernardinelli (1992) have discussed maximizing the posterior dis-
tribution as maximization of a penalized likelihood. Lpen(p) = L(ply)=(p) is the
penalized likelihood and the penalty corresponds to the logarithm of the multivariate
prior distribution #(p) for p. The penalty given in (2.3) can be interpreted as a
multivariate normal prior for p centered at p = 0. This prior is degenerate because

(B -E )1 =0 where1 isthe vector of ones.

2.2 Multinomial Estimation

The eventual goal of this thesis is testing for elevated rates. The magnitudes of
the individual rates carry no information about the differences among them. so it is
generally accepted practice to condition on the total number of cases. which is an
ancillary statistic (Lehmann. 1986 : McCullagh and Nelder. 1989). The distribution

of the case vector y conditional on the total number of cases is multinomial with index



m=Y* y and cell probabilities 8; = Npi /3, Npyoi= 1. k. The multinomial
probabilities @ = (6,.. ... 0:)" depend on the rates and the risk populations. Although
there are & distinct rates. the multinomial probabilities sum to one and this implies
a constraint on the rates. To simplify the dependence of the cell probabilities on the

rates. define the rate ratio

where p is as in (2.3). so

9,’2 ,. . (

[§™]
-1
~

A rate ratio 7, which is greater than one indicates a rate which is elevated relative to

the weighted average.

The multinomial log likelihood for 4 is. to an additive constant.

[SV]
o
~—

£ N
l(y) =) yilog ik (:

=1 S+

subject to &, Vi%;/\N. = L. To an additive constant. this becomes
J =1
k
l(v) =) _yilog(~).
=1

subject to the constraint 3% Ni%i/Ny = 1. In Appendix 2.1. it is shown that the

maximum likelihood estimate for 4; is 4, = Wi/ N [(m/NL) = pri/ by

I

The reparametrization to 4 can be utilized to form an equivalent penalty based

on inter-site distance and rate ratio difference. From (2.2).
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2 1 ] ] : .2 l 2
pen(p) = p-ZZI(’%—‘%) =P i) (29

i J#E

Therefore a reasonable choice for the penalty as a function of v is

1 2
pen(y) = ZZT("‘ -)? . (2.10)
t j#i(i]
or 1n matrix form.
pen(y) = 24'(B—-E)y . (2.11)

where B and E are as in (2.3). The penalty is zero if all the rate ratios 5, equal
one (i.e. complete homogeneity). Assuming the same relative positions for the sites.
distance measured in different units gives the same penalized estimates as before since

a constant will factor out of the sum of squares.

An alternative definition of the penalty involves multiplication by the average
inter-site distance d. Multiplication by d may be advantageous as both I(4) and
pen(<y) are then dimensionless and the choice of smoothing parameter does not depend
on the units of measurement of the inter-site distances.

The penalty is another constraint on the estimation and hence subtracting the
penalty (2.10). weighted by a smoothing parameter \. forms the penalized log likeli-

k

=1

hood. Subject to the multinomial constraint >

likelihood is

(:Ni3:/.V4) = L. the penalized log

Y yilog(v) — A o3 = (v — =)

i=1 iz Y

k
. . A . . - .
The constraint equation » (T) — 1 = 0 can be included as a Lagrangian giving

=1
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k k \ o~ 1
. v/ 2 9 .
ben(v) = 3_yilog(vi) —o(z( v ) - 1) A Y ) (212)
=1 =1 v+ i og# Y
J
A = 0 gives the unpenalized likelihood and no smoothing is performed. For A\ >
0. the smoothed estimates. 3, ,. which optimize l,., are a compromise between
the maximum likelihood estimates and the completely smoothed or flat estimate
3si = L. The smoothed estimates are the solutions to the penalized likelihood equa-
tions obtained by differentiating ., with respect to (for:=1..... k) and o. and

equating to 0. Differentiating with respect to o gives
| g g P g

a[pen k (-\'—1.’1')
()O =Zl .\'.’.
k
and solving gives Z.\',-*,,- = V. Differentiating with respect to =; gives
=1
0/ en t -\"i () ]
Zeen (2} oo g (2.14)
97 T A I
Multiplying by =, and summing over / = |..... k gives

kN koD
m - oZ( \ ) -y, 2
=1 '

vt

and equating to zero gives

k9
en

o =rm — ’\ZA/’J’ dp
=1 l'.j

Substituting (2.15) into (2.14) and equating to zero gives

é)‘lpm _ ¥ m:\',- . dpen B L k A;’ja'pen . (2.16)
;i i Ny i A J=1 d‘;‘j



where the derivative of the penalty with respect to ~ IS

dpen _
'),.. = -lb,‘“;‘,‘ - Zf,‘j“;j (211)
it s#
and b; and ¢,, are as described in Section 2.1.
The k equations 9l,.,/d~; = 0 for i = 1..... k are nonlinear in the +;’s and an

explicit solution isn’t possible. A solution can be found numerically. A Fortran quasi-
Newton optimization routine (Gill and Murray. 1976) was used to obtain the solution.
which is denoted as ¥,,,. Examples of these numerically obtained smoothed estimates

are given in the next section.

A smoothed estimate for site / can also be obtained via the convex smoothing pre-
scription given by (1.1). The approximate relationship between this convex estimator

and the one proposed in this section is discussed in Appendix 2.2.

2.3 Examples of Smoothed Estimates

The effect of smoothing on the estimates depends on several factors: the spatial
configuration. the populations .V;. the number of cases m. the number of sites & and

the parameter vector +.

The examples given in this section display the effect of smoothing for two different
spatial configurations and two different population vectors. The number of cases and
sites rernain constant. Only one incidence rate vector p was used and by definition

the rate ratio vector % changes with any different population.




19

Many possibilities come to mind for levels of the spatial configuration factor. The
two levels chosen minimize and maximize the coefficient of variation of the distances
d;, for k > 8. The minimum corresponds to k—1 sites which are equidistant on a circle
with a £’th site at the center. The maximum corresponds to & — | sites equidistant
on a circle while the A’th site is infinitely far from the others. The position of this
distant site was arbitrary but the two spatial configurations are very dissimilar using

the coefficient of variation criterion.

A logical choice for the population factor was equal populations. The other choice
changes just one of these populations to half the others. Estimates at the site with
the smaller population have a larger variance and hence the effect of smoothing is

more pronounced .

Tables 2.1 through 2.4 present examples of the effect of smoothing on a single case
vector for k = 10 sites with m = 100 cases. The true rate at site 10 is actually slightly
elevated at p. = .0075 while p, = .005 for sites | through 9. In Tables 2.1 and 2.3.

the populations are all 1000. Reparametrization leads to rate ratios =, = 0.952 for

500. reparametrization gives rate ratios 5, = 0.974 for y = 1..... 9 and 519 = 1.46.
The spatial configuration/population combinations are shown in Figure 2.1 and given
below

Table 2.1: Circle of 9 sites with site 10 in the center at N, =1000 for j = 1..... 10:

Table 2.2: Circle of 9 sites with site 10 in the center. Mo = 500 and .\, = 1000 for

J=1l..... iR

Table 2.3: Circle of 9 sites centered at (1.1) with site 10 located at (1.3). .\, = 1000

Table 2.4: Circle of 9 sites centered at (1.1) with site 10 located at (1.3). Vo = 500

and N = 1000 for j = 1..... 9.



Configuration for Table 2.1

1000 1000
1000

1000
1000 1000
1000
1000
1000 4600

Configuration for Table 2.3

1000

1000 1000
1000 1000

1000 10;800
1000 1000

20

Configuration for Table 2.2

1000
1000

1000

1000
500 1000
1000
1000
1000 1000

Configuration for Table 2.4

500

1000 1000
1000
1000

1000 1000

1000
1000
1000

Figure 2.1: Spatial Configurations and Populations for Tables 2.1 through 2.4
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The smoothing parameters used in these examples are somewhat arbitrarv. The
values of A were chosen simply to illustrate various amounts of smoothing. In all four
tables. the smoothed estimates move toward 1.0 as )\ increases. If “mii > 1. then
“sm. 18 less than 4,,,. The effect of any smoothing is largest for those sites in which
[9mi — 1] is large. In Table 2.1. the largest 3,.;; = 1.5 at site 10 (the elevated site)
and A = .025 gives a smoothed estimate “smao = L.46. At site 8. onlyv six cases
were observed and 4,,; 5= 0.60 is smoothed to “sms = 0.622. Most of the simulations
presented in this thesis represent no more than a small departure from homogeneity
and involve a set of similar populations. In these situations. “mii greater than 1.0

are generally smoothed down and 2, ; less than 1.0 are smoothed up. but situations

have been observed where these relations do not hold (see Chapter 3).

The spatial configuration is the same in Tables 2.1 and 2.2. The center site 10
has elevated incidence in both tables but has population 500 in Table 2.2. In Table
2.1 Ameae = 130 and 4, 10 = 1.446 at \ = .025. However. the estimate drops from
“miio = 2.09 to 4,000 = 1.94 at A = .01 in Table 2.2. The effect of smoothing is more
pronounced when site 10 has the smaller population. Sites with population 1000 are
smoothed by approximately the same amount for the same value of \. One can also

observe that the site with the smallest population exhibits the greatest amount of

smoothing in Tables 2.3 and 2.4.

Comparing the effect of smoothing on the large estimate at site 10 in Tables 2.1
and 2.3 illustrates the effect of spatial configuration. In Table 2.3. site 10 is removed
from the other nine on the circle and is at a distance of five units from the center. A
larger A must be applied to see the same effect on this estimate in Table 2.3. as is seen
in Table 2.1. Examples with these same two spatial configurations and populations

are given for m = 200 cases in Appendix 2.3.




Table 2.1

Example of Smoothed Estimates

Circle Configuration: 10 sites. 100 cases. Equal Populations

0 .025 | .050 256

Site | Coords Y LN Y Yt | Fem | Yem | Yem
1| (L.76.1.64) { 0.95 [ 1000 | 9 | 0.900 { 0.913 | 0.924 | 0.967
2 (1.17.1.98) 1 0.95 | 1000 { 1 | 1.100 | 1.099 | 1.097 | 1.070
3| (0.5.1.86) | 0.95 | 1000 | 12| 1.200 | 1.189 | 1.179 | 1.116
4+ (0.06.1.34) 1 0.95 [ 1000 | 9 | 0.900 | 0.912 | 0.922 | 0.962
5 | (0.06.0.66) | 0.95 | 1000 [ 9 | 0.900 | 0.909 | 0.917 | 0.951
6 1(0.50.0.13) | 0.95 | 1000 | 3 | 0.800 { 0.314 | 0.827 | 0.892
1 (1.17.0.02) 1 0.95 | 1000 | 9 {0.900 | 0.907 | 0.913 | 0.941
3| (1.76.0.36) | 0.95 | 1000 | 6 | 0.600 | 0.622 | 0.642 | 0.774
91 (2.00.1.00) | 0.95 | 1000 | 12 { 1.200 | 1.185 | 1.172 | 1.101
10 [ (1.00.1.00) | 1.43 { 1000 | 15 | 1.500 | 1.446 | 1.402 | 1.222

ty
[EV]



Table 2.2
Example of Smoothed Estimates

Circle Configuration: 10 sites. 100 cases. One Smaller Population

Site Coords ¥ N Y mi Y sm Yem Ysm

(P
.

L | (1.76.1.64) | 0.97 | 1000 | 10 | 0.950 | 0.959 | 0.965 | 0.987

0.665 | 0.679 | 0.692 | 0.790

-1

2] (L.17.1.98) | 0.97 | 1000

31 (0.5.1.86) [ 0.97 [ 1000 | 12 | 1.140 | 1.139 | 1.136 | 1.101

)
o
NI
e
o2
o
Nt

0.760 | 0.774 | 0.

o

4 1(0.06.1.34) | 0.97 | 1000

51 (0.06.0.66) | 0.97 | 1000 | 10 | 0.950 | 0.960 | 0.967 | 0.996

6 | (0.50.0.13) | 0.97 | 1000 | 10 | 0.950 | 0.962 | 0.970 | 0.997

1 (1.17.0.02) | 0.97 | 1000 | 16 | 1.520 | 1.507 | 1.484 | 1.336

-

(v 4]

(1.76.0.36) { 0.97 { 1000 | 6 | 0.570 | 0.385 | 0.599 | 0.721

9| (2.00.1.00) | 0.97 | 1000 | 10 | 0.950 { 0.959 | 0.966 | 0.987

10 | (1.00.1.00) | 1.46 | 500 | Il |2.090 | 1.943 | 1.849 | 1.412




Table 2.3

Example of Smoothed Estimates

Circle + 1 Configuration: 10 sites. 100 cases. Equal Populations

0 .08 16 | .0.64

Site | Coords ~ NS Yo | Yom | Yem | Yo
L (1.76.1.64) [ 0.95 [ 1000 | 7 | 0.700 | 0.740 | 0.771 | 0.816
20 (1.17.1.98) { 0.95 | 1000 | 7 | 0.700 { 0.746 | 0.781 | 0.857
31 (0.5.1.86) {0.95(1000 | 12]1.200 | 1.140 | 1.116 | 1.061
41 (0.06.1.34) | 0.95 [ 1000 | 9 | 0.900 | 0.922 | 0.935 | 0.957
5 1(0.06.0.66) | 0.95 | 1000 | 9 { 0.900 | 0.923 | 0.937 | 0.959
6] (0.56.0.13) | 0.95 | 1000 | 11| 1.100 | 1.082 | 1.071 | 1.041
¢ (1.17.0.02) [ 0.95 | 1000 | 13| 1.300 { 1.239 | 1.187 { 1.108
S| (1.76.0.36) [ 0.95 | 1000 | 9 | 0.900 | 0.916 | 0.923 | 0.919
9 | (2.00.1.00) | 0.95 | 1000 | T | 0.700 | 0.741 | 0.775 | 0.850
10 | (1.00.5.00) { 1.43 | 1000 | 16 | 1.600 | 1.542 | 1.486 | 1.321




Table 2.4

Example of Smoothed Estimates

Circle + [ Configuration: 10 sites. 100 cases. One Smaller Population

0 05 | .10 | 495

Site | Coords Y LN Y Y | Yom | Yem | Vem
L (1.76.1.64) | 0.97 | 1000 | 11 | 1.045 | 1.037 | 1.031 | 1.009
2| (1.17.1.98) | 0.97 | 1000 | 9 | 0.355 | 0.874 | 0.839 | 0.940
31 (0.5.1.86) 0.97 | 1000 | 12 | 1.140 | 1.126 | 1.140 | 1.068
41 (0.06.1.34) | 0.97 | 1000 [ 12 { 1.140 | 1.127 | L.117 | 1.072
51 (0.06.0.66) | 0.97 | 1000 | 11 | 1.045 | 1.041 | 1.040 | 1.029
6 | (0.50.0.13) | 0.97 | 1000 | 11 | 1.045 | 1.041 | 1.037 | 1.021
T (1.17.0.02) 1 0.97 | 1000 | 9 | 0.855 | 0.3708 | 0.331 | 0.930
8 | (1.76.0.36) | 0.97 | 1000 | 10 | 0.950 | 0.9513 | 0.954 | 0.964
9 | (2.00.1.00) | 0.97 | 1000 | 7 | 0.665 | 0.694 |0.726 | 0.831
10 | (1.00.5.00) | 1.46 { 500 | 8 | 1.52 | 1.426 | 1.388 | 1.269

[
Ut
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2.4 An Approximation for the Smoothed Esti-

mate

One can’t directly see the dependence of the smoothed estimate Y4m ON the various
factors mentioned in the previous section. An approximation expressed as a function
of the smoothing parameter A. the populations. the inter-site distances and the case
counts is most useful for showing the effect of these factors on smoothing. A quadratic

expansion for 4, , about A = 0 is of the form

v}

e =6 o+ N+ N (2.18)

where ¢,./;. §; are constant. linear. and quadratic coefficients. Expressions for ¢;. 4
and ¢; are obtained by substituting 4, ; into (2.16) and equating to zero. Multiplying

though by 4., gives

yi - (i) No(é+ N+ )

N,
I 2 -\",.._’_ k ) . ) .
- A |:(E-,. + AL+ ,\“;Ii) 105, — ) e 50, + \_ (CJ + A+ ’\-;IJ) (){fn B
J#1 Tt =1 7

Collecting terms that are constant in \. these terms must equal 0 so

m
i — —Ni¢g, =0 .
b= e

and
N TAY
“ T AR




This constant term is 4,,;,. the maximum likelihood estimate for ~

collecting terms that are linear and

-
I -

Similarly. if 3, is denoted simply as 3,

quadratic in A and solving gives

m M J#
4 R Y
+\_. ',’xz o= szrs ir s (2.19)
+ r ros#Fr

and

roosE¥r

'r
4
- ‘(Z . ZZ(rs,slr chrs iris -(2.20)

rosEr

The approximate smoothed estimate for site i “A.- 1s the maximum likelihood

estimate plus terms which constitute the smoothing. These smoothing terms involve

A. the inter-site distances. the populations and the maximum likelihood estimates

\gain denoting <, by 3. the linear term of the approximation is

-\, ldpen ir dpen(¥) 39
e o] I

An examination of this expression reveals that [ is proportional to 4; as noticed in the
i 1 b}

examples. However this estimate is multiplied by a correction of two terms involving




the other factors. The second term in the square brackets is the same for all ; and Is
a weighted average of the first terms for all sites. Empirical evidence has shown that
the second term is much smaller than the first. Some of the contributions to this sum
are positive while others are negative (theyv all have the form of the first term) and
so this weighted average is tvpically be close to zero. The derivative of the penalty

has the form

dpen(4) k . . )
_p._'—— = "lzfu(‘:‘: = %) . (-

2.22)
dﬁ” =1
If <, is large (%, > 1.0). the differences (3, — 3, ) are also large and positive so an

overall negative correction for smoothing results. Similarlv. if 4, is small relative to
the others. most of the differences 3, — =, are negative and a positive correction for

smoothing results.
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The smoothed estimates from Table 2.1 at A\ = .025 are presented again in Ta-
ble 2.5. Also presented are the corresponding approximate estimate vector ¥, =
(%x1----- %) For this example. the difference between 4,,., and <, is less than
.001 for sites one through nine and is less than .002 for site ten. Similarly. these

quantities are shown for m = 200 in Appendix 2.3.

Table 2.5

llustration of 4, and 4,

Circle Configuration. 10 sites and 100 cases

A=0 A=.025

Site :,'ml ;:'sm :,'_\

1 10.9000 { 0.9136 | 0.9134

2 1 1.1000 | 1.0993 | 1.0991
3 1 1.2000 | 1.1395 | 1.13893
4 109000 | 0.9124 | 0.9122
5 | 0.9000 | 0.9099 | 0.9097
6 | 0.3000 | 0.3147 | 0.8145
v 1 0.9000 | 0.9077 | 0.9074
3 | 0.6000 | 0.6222 | 0.6222

9 1.2000 | 1.1854 | 1.1832
107 | 1.5000 | 1.4443 | 1.4464

* = site of elevated incidence
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2.5 Moments

[n this section. approximate moments of the estimates are derived using the expansion
for %sm.i. This approximation is a function of the maximum likelihood estimate. so

their moments are established initially.

2.5.1 Moments of the Unsmoothed Estimate

The case vector y is distributed as multinomial with m cases and cell probability vec-
tor 8. so y; is marginally distributed as binomial with index m and success probability

0;. As a result. E(y;) = m#, and Var(y;) = mé,(1 - 0,).

Denoting <., more simply as 3. then 3, = (y:i/N:)/(m/N,) and the mean and

variance for 4; are

and

Vim \; v,

2 - S+ Cta .
\far( ;,) — (nﬂ.\'?) (z ;:) (1 - H :1)
( .'\’.*. )- 1 -\-i .

m .\",’ i .\-+ i

Hence the maximum likelihood estimate 4; is unbiased. This is not unexpected

(2.24)

as it is the unbiased multinomial cell estimate ; multiplied by fixed constants. The
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variance of 4; decreases as m increases and increases with Ni/ N As expected.
estimates at sites with smaller population have larger variance. Higher moments

about 0 of the form. E(3]) are used in the next section and can be found in Appendix

2.5.2 Approximate Moments of 3,

The mean and variance of the approximate estimate <), can be used to better un-

derstand the distribution of the numerically smoothed estimate 4,,, ,.

Taking the expectation of the approximate estimate given by (2.17). E[5\] =

+ + AE[[] + A?E[¢;]. For moments. it is convenient to rewrite |, as

., i ]
| =% !__ bi — 3.5, 4
m l .\-,' " } ged IJJ
| N
+— bl‘/? - A,’,'-Zcijﬁu
-\+ -y
i s#E
T . )
o [ 5hA = A el (2.25)
‘\+ | r#&: rEISET
Hence.
- .\'-+ ‘l’ -2 a a
E(h) =— (- [6EG]) — Y e,E(G4))
m Vi J#i




[
1 ) .
+5 [BEG)) = YesEGH)
oL J#
[ o o
+ \ Zb"E(“;’lﬁir-) - ZZCrSE(‘,’i:'r‘:'s)
B K réisgr

Expectations of mixed products of the form yi'y;? are required. Such mixed mo-
ments for the multinomial are given by Johnson and Kotz (1969). E(y'y?) =
(rn)lrrral 0710’2, where (m)l'l denotes the product m(m —1)...(m —r + 1) . Deriva-

ATesTyan

tions of some mixed moments of the form E(%;*%,’4(") are given in Appendix 2.5.

The expression for E(/;) resembles the one for /: but is a function of the parameter
vector 7. Suppose one considers the first line of  as given by (2.25). The expectation

of this line is

-\,

m

4 . . .
~ E3) e (3 —4))

Y
¥+t

Substitution for E(5?) and E(<:%,) (found in Appendices 2.1 and 2.3 respectively)

it

gives

-Ny [ 4n rm— 1 Ny
TZG‘J kT(‘;i—‘u) + )

A Fry m.\;

m

This expression can be interpreted in similar manner as I (discussed in the previous
section). [t is the true parameter ~; weighted by its population .\; and multiplied by
a correction consisting of two terms. The first term ((m=1)/m)3 4 e(7i —7;) is
negative if +; is large relative to the others and positive if it is small relative to the
others. The second term is independent of v and increases with the number of sites

k.
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Prior to taking expectation. it is advantageous to rewrite ¢: as given by (2.20) so

that 4; and /; are expressed separately. Some rearrangement gives

N T
@ = n—j {—T l:’-?bi":ik - ","iZEiJIj - L‘Z%‘;,-J
J# 271
-
+\—l be‘:,'lzix + :‘2 - )- IIZEU | :,';?Zfij;,}J
U R JF JFEL
.l S
+ 2‘:}x br‘:,r[r + lxzbr;;rz
SR S r#i
1 . -
_\—— ‘;'izzers‘;'r[s szrsr,s‘ + lzzers r,s]}
T+ | rFs#Er r#t s¥r r#: s#r

Hence.

m N J# JF
{ r
+5m [26EGH) + LEGH) - 2Zcuze.,E<~,,-:,1.>J
+ JFEL R

v+ | r#: r# aa
[
_\_—¥ ZzersE(:ii‘::’rzs) + ZErSE(;;'l:I'Si"):'
Ny r#i s#Er

| r#t sFEr

1 .
- v E E :6rsE(','r'ls[i):'
Vi

————

r#i s#r

The term §; involves powers of 4 up to order five. the expression for E(4:) involves
mixed moments of powers of 4 to exponent five. Expressions such as E(324;4,4,) are

quite involved and some examples can be found in Appendix 2.5. Fortran subroutines
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were programmed for each of the required mixed moments. E() involves over sixty

of these expressions and hence was not simplified.

The estimate 4, is a quadratic approximation for Ysm. and its variance involves

powers of \ to order four

- a

Var(Ga.) = Var(Gme) + 20Cov(Fmiin b)) + \*Var(l))
2N CoV(mia. i) + 20°Cov(l i) + MVar(g) . (2.26)

If Zi is written in the full form given by (2.25). then \'ar(i,-) and Cov(3m;. §;)
both involve powers of 4 up to order six and are much too complicated for practical
use. The expression for Cov(% ;. 2{) involves powers of 4 to order four and is more
reasonable computationally. As a result. a linear approximation to the variance of

%1, was taken to be

Var (30, = Var(3mu) + 20Cov(Z . L) . (2.

8™
(V]
-1
~

2.6 Bias and MSE

As first mentioned in Chapter 1. the classical trade-off in smoothing is between the
gains associated with reduced variance of the estimate(s) and the losses incurred from
increased bias. A common indicator of the sampling properties of the estimator is

the total mean squared error (MSE). For the vector estimate Ysm-



k
MSE = 3 Var(fom.) + 3 [E(Gomi) = *

=1 =1

[n general. one hopes the reduction in the total variance outweighs the increase in
the total squared bias. In Tables 2.6a and 2.6b. one can see that this is indeed the
case for ¥4,,,. The summary estimates presented here are from a simulation of 5000
repetitions for the “circle + 1™ configuration. There are k = 10 sites. m = 100.
=72 = ... = %9 = 09524 and 5y0 = 1.4286. and equal risk populations of 1000.
In Table 2.6a. the observed variance and bias are sample variance and bias for the
simulation of 5000 estimates. Results for three of the five \ values are presented for
each site in Table 2.6a. Table 2.6b presents the observed total variance. total squared

bias and MSE for all five \ values used.

[n Table 2.6a. one can see the decreasing variance with A for all ten sites. The
absolute magnitude of the bias is increasing with A\. The average smoothed estimate
at the elevated site (site 10) is below the true ~10 for the positive A's shown and hence
the observed bias for this site is negative. In Table 2.6b. the total observed variance
and total squared bias are presented for all five of the \'s used. As expected. the
MSE decreases with A. For this configuration and small departure from homogeneity.

the observed MSE is dominated by the total variance for these small \.
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Observed Variances and Biases

Table 2.6a

Simulation of 3000 repetitions

Circle + 1 Configuration. 10 sites and 100 cases

=5 = 0.9524. 510 = 1.4286

A=0 A = .0167 = .0333
Site | Ob. Var | Ob. Bias | Ob. Var | Ob. Bias | Ob. Var | Ob. Bias
1| .08648 .00153 07925 .00091 07011 .00132
2| .03661 -.00062 .03010 00073 07153 .00119
3 .03294 -.00134 07821 .00051 07317 .00169
4 .08361 -.00046 .07639 .00067 07515 .00162
5 08432 .00006 07395 .00056 07256 .00036
6| .08563 .00033 07931 -.00015 07627 .00205
T .08636 .00029 07370 .00035 07269 | -.00013
S| .03659 -.00112 07827 .00139 07256 00253
9| .03363 00145 07036 -.00065 07320 .00116
107 | 12177 -.00069 11733 -.00048 11203 | -.01260

= site of elevated incidence

36
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Table 2.6b

Observed Total Variances and Total Bias

Simulation of 5000 repetitions

Circle + 1 Configuration. 10 sites and 100 cases

A Ob.Tot.Var | Ob.Tot.Sq.Bias | MSE
0 89795 9.4932 x<10~* | .89796
.00833 .85304 1.5291 <10~ | .83306
.01667 .32356 2.9324 x1073 | .32339
.02500 .19001 9.0438 <1073 |.79018
103333 76412 1.3703 x10™* | .76131

For a single site i. the bias of the smoothed estimate “sm. can be approximated

l

by using the quadratic approximation 3\,

bias(33i) = Elfsmi — %]
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and the total mean squared error for the smoothed estimate vector (over all sites)

can be approximated as

k

Ak
MSE(53i) = D Var(3,) + D [E(Gw) — ). (2.30)
=1

=1

The contribution of the i’th site to the total squared bias in the MSE (approx-
imated by the square of (2.29)) contains powers of A to order four. However. the
approximation for Var(4sm.) is only linear in A as given by (2.27). There are no
terms which are linear in A in the total squared bias so the approximate MSE is
approximated by total variance. One therefore expects that the approXimation is

decreasing in \.

2.7 Simulation Examples - Bias and MSE

[n this section. the approximations for bias and MSE given in the previous section are
compared to their observed counterparts from simulations. In each of 5000 repetitions.
the smoothed estimate vector 4, was obtained numerically for each case vector. The
overall sample average and sample variance of these estimates was recorded for each
site. The total sample variance added to the total squared sample bias gives the
observed MSE for the simulation. The \s chosen are at equal intervals but are
smaller than in the examples of Section 2.3. The expansion of %, ; is about A\ = 0
and this is reflected in the limits of the accuracy of the approximation. In each of the
three simulations presented in this section. the “circle + 1° configuration is used with

k = 10 sites. equal populations of N; = 1000 and m = 100 cases.
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First consider the case of complete homogeneity (i.e. +; = 1 for all /). I[n this
situation. the variance of the observed estimates is decreased by the smoothing as
desired. Presented in Table 2.7a are the observed and approximate biases for sites |
and 10 for the “circle + 1" configuration. Both the observed and approximate biases are
small. The standard error of the observed bias in the simulation is much larger than
the difference between the two. In Table 2.7b. the observed and approximate Y[SE
are presented. The approximate MSE to linear terms in \ is also the approximate
total variance as described in the previous section. As desired. the approximate
and observed MSE are close. The observed MSE is essentially the observed total
variance as there is very little bias. Hence the closeness of these values for each \ is

a verification of the accuracy of the linear variance approximation.




Table 2.7a

Observed and Approximate Biases for Two Sites

Circle + 1 configuration. 100 cases

Complete homogeneity. site 10 is distant

Site 1 Site 10

A Ob. Bias | Approx. Bias | Ob. Bias Approx. Bias

0 -.00112 0.0 .00730 0.0
00746 | -.00091 -.00259 .00065 .00014
01492 | -.00036 -.00965 .00322 -.00202
02233 | -.00763 -.02360 .00195 -.00653
02984 | -.00668 -.04210 -.00616 -.01322

Table 2.7b

Observed and approximate total mean squared error

(same simulation as Table 2.7a)

A Obs. MSE | Approx. MSE

0 0.9038 0.900
.00746 0.8627 0.3667
01492 0.3329 0.8334
02233 0.8034 0.3002
02984 0.7742 0.7669
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Presented in Table 2.3a are the observed biases for sites 1 and 10 for the same
simulation which produced the results presented in Table 2.6a. The incidence rate at
site 10 is slightly elevated. 419 = 1.46. while the other nine rate ratios are 0.95. The
departure from homogeneity is very small. Once again. the observed and approximate
biases are small and the difference between the two is smaller than the standard error
of the observed bias. In Table 2.8b. one can note that the influence of bias on the
total MSE is again only slight and is decreasing through the four positive \'s used.

The linear approximation to the MSE again does reasonably well.

The results given in Tables 2.9a and 2.9b are for a simulation in which the incidence
rate at site 10 is four times the other nine. This results in a 10 of 3.07 while the other
rate ratios are 0.76. Once again the “circle + 1 configuration was used for m = 100
cases. For a larger departure from homogeneity. one expects an increased bias with
smoothing. The observed and approximate biases for sites | and 10 are larger and
in close agreement. particularly for larger \. In Table 2.9b an initial decrease in the
observed MSE is evident but the MSE at the final A of .00872 is larger than the
observed MSE for A = .01492. The linear approximation to the MSE is less effective

at this larger \.

Presented in Figure 2.1 are the observed MSE and approximate MSE which were
given in Tables 2.7b. 2.3b and 2.9b respectively. Note that the vertical scales of
the three plots are the same while the horizontal scales are not. The departures from
homogeneity for the three simulations could be classified as none. low and moderately
high respectively. The overall drop in MSE is not as large in the data of Table 2.9b
and the increase in observed MSE at large A has alreadyv been noted. Except for
at large \ in the high departure simulation. the approximate MSE agrees with the
observed MSE. The same pattern was observed in other simulations. Appendix 2.6
gives the observed and approximate MSE for the same m. & and spatial configuration
but the population at the distant site has been changed to 500 (while the others

remain the same at 1000).




Table 2.8a

Observed and Approximate Biases for Two Sites

Circle + 1 configuration. 100 cases

Small departure from homogeneity. site 10 is distant

Site 1 Site 10

A Ob. Bias | Approx. Bias | Ob. Bias Approx. Bias

0 .00153 0.0 -.00069 0.0
008333 | -.00124 -.00234 .00034 -.0043
.01667 .00091 -.01054 -.00043 -.01333
.02500 | -.00067 -.02457 -.00755 -.02638
.03333 -.01320 -.044146 -.01260 -.0-4402

Table 2.8b

Total observed and approximate mean squared error

(same simulation as Table 2.8a)

A Obs. MSE | Approx. MSE

0 0.39796 0.89795
0038333 | 0.35306 0.86231
01667 0.32359 0.82767
02500 0.79018 0.79252
.03333 0.76431 0.75737
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Table 2.9a

Observed and Approximate Biases for Two Sites

Circle + 1 Configuration. 100 cases

Moderate departure from homogeneity. site 16 is distant

Site | Site 10

Ob. Bias | Approx. Bias | Ob. Bias | Approx. Bias

-.00047 0.0 -.00022 0.0
00218 | -.00030 .00096 -.00734 -.00906
.00436 00332 00167 -.01322 -.01349
.00654 00447 .00216 -.02521 -.02828
.00872 .00493 .00430 -.03693 -.03845

Table 2.9b

Observed and approximate total mean squared error

(same simulation as Table 2.9a)

A Obs. MSE | Approx. MSE

0 0.33940 0.35207
00213 | 0.834338 0.34579
00436 | 0.33316 0.33953
00654 | 0.82906 0.83326
00872 | 0.83440 0.82693
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2.8 Further Investigations

This section investigates simplified or ‘reduced” estimators and the normality of the

estimate ¥,,.. Application of these topics will appear in subsequent chapters.

2.8.1 Reduced Estimators

The approximate estimate 4,, = “mie + A + A?g; involves powers of “mii UP tO
and including order five. It is logical to consider the linear approximation <,;; + Al

as a simpler approximation. The term

. 1 , ]
== -~ |63 — f’izfij:u
m AW ! e
I N
Aol R T SN IE
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+\— ‘7izbr7r - ‘7izzfrs7r“is
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(where the subscript “m{” has been omitted) is still rather complicated and involves
powers of %,,;; up to and including order three. [ts variance involves terms with

powers of %,,;; up to and including order six. The first line of /,

: Ny =4 [, N
beas = (=) T (63 - et (231)

J#

was used to form a simpler or reduced linear estimator. Using these terms which

are linear in A. the estimators 4\ sni = 3mii + A and 3y ,op, = mbi F Aleqs
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are investigated. The ‘reduced estimator™ 4\ .4 is appealing due to its simple inter-
pretation (given in Section 2.4) and because its moments are more tractable. The
reduced estimates for the same examples presented in Tables 2.1 though 2.4 are given

in Appendix 2.7.

The observed MSE for 4,,,.9.\. %, i, and ¥, .., were investigated empirically. In
Table 2.10 and Figure 2.3. the observed MSE is presented for the same simulation
described in Table 2.8 (one elevated rate. =, = 1.46). The observed MSEs are very
close for all the estimators. The lowest MSE is actually for the simplest estimator
¥:.req- The observed MSE among the estimators is also similar for the configuration of
higher departure from homogeneity (0 = 3.07. same simulation as Table 2.9). These
results are given in Table 2.11 and Figure 2.4. Other simulations were performed and
the observed MSEs of the four estimators are very close in each of them. The observed
MSEs of the three approximate estimators is almost the same for & = 20 with only a

small departure from homogeneity.
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Table 2.10

Total Mean Squared Error of Reduced Estimators
Small Departure From Homogeneity

(same simulation as Tables 2.8a and 2.8b)

MSE
A Y sm YA Vadin | Vired
0 0.89796 T T i
008333 | 0.85306 | 0.85310 | 0.35208 | 0.84742
01667 | 0.82359 | 0.82391 | 0.31985 | 0.78231
02500 {0.79018 | 0.79115 | 0.78231 | 0.76922
03333 1 0.76431 | 0.76641 | 0.75114 | 0.73442

i indicates all elements of row are same because A = 0

Table 2.11
Total Mean Squared Error for Reduced Estimators

(same simulation as Tables 2.9a and 2.9b)

MSE

A Yom ¥\ Y din Y e

0 0.35940 T T i
00213 | 0.84538 | 0.34562 | 0.34539 | 0.34227
00436 | 0.83316 | 0.33321 | 0.33312 | 0.32682
.00654 | 0.82906 | 0.82909 | 0.32838 | 0.31970
00372 | 0.33440 | 0.83444 | 0.83410 | 0.82229

f indicates all elements of row are same because A = 0

The estimators can also be compared through simple pairwise correlations. The

similarity of the values of the estimators was quite evident as the correlation between
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any pair was usually 1.0 and at least 0.99 for any simulation performed (regardless of

the departure from homogeneity).

Pairs of estimators were also compared with respect to Pitman Nearness (PN)
(Pitman. 1937). If 6, and 6, are two univariate estimators for the parameter f. then

the Pitman Nearness. PN is defined as
PN = P(|6, — 8] > |6, - 6])

where the absolute distance [0 — 0| is the chosen measure of distance between 6 and 6.
If the vector 8 is an estimator for the parameter vector 8. then the distance between
the estimator and the parameter vector can be taken as Euclidean and given by
116 — 8| = \/(0 — 8)(8 — 6). For a given simulation for which A\ > 0. the fraction

of case vectors in which one estimator was closer to v than another was taken to be

an estimator of PN.

Prior to pairwise comparisons among each of the smoothed estimators. each of
Ysm- Y- Y\din- Yr.req Were compared to the unsmoothed estimate Ymi- For small to
moderate departures from homogeneity and & > 20. each of these smoothed estima-
tors was always closer to 4 (PN = 1.0). Once the departure gets very large. the
PN decreases (e.g. PN was approximately 0.75 for each smoothed estimator in the

simulations of Tables 2.9 and 2.11).

The full approximation ¥, is slightly more distant from v than the numerically
smoothed estimate 4_,,. As a result the fraction PN was low (close to 0.0) for the
comparison between %, and and ¥,,. However Yain Was generally closer than 4,

(PN close to 1.0) and ¥, ., was closer than 4, .

There is little or no loss in estimating precision by using the simple estimator

Yrrea- In Chapter 3. 4, ., and its approximate variance are used to develop a test



statistic. This reduced estimate is later involved in criteria for the choice of \. to be

addressed in Chapter 4.

2.8.2 Normality of <,

The maximum likelihood estimate for the probability vector 8 is known to be asymp-
totically normal as m goes to infinitv (Kendall and Stuart (1957). Bishop. Holland
and Fienberg (1973)). The populations .\, are fixed and because Cmld = .\;01/-\’,. we
expect the maximum likelithood estimate vector ¥..; to be asymptotically normal as
m goes to infinity. The normal approximation for “mi. 1s examined in more detail in

the context of its quantiles in Chapter 3.

Brief investigations were performed to verify the approximate normality of ¥, .
For small \. normalitv of 4, , was expected because the approximation for Csma
is the maximum likelihood estimate plus small correction terms as a function of \.
Under complete homogeneity. =, = 1 fori = 1..... k. The expected number of cases
at each site is m\;/N.. If the expected number of cases is large enough five or
ten is suggested by different authors). normality of 3., , should result. Figures 2.4a
and 2.4b present Q-Q plots for <., for the “circle + 1° configuration under complete

homogeneity. 3000 repetitions were performed for & = 20 and m = 200 for equal

populations.

The discreteness of the estimates is evident from the figures. Presented in the
top left plot are the unsmoothed estimates “mi.- In this plot. each horizontal band
represents values of *,,, ; corresponding to a particular value of yi- As X increases. the

range of possible 3., changes. and hence the shape and slope of each "step” in a plot
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also changes. The estimates involved in Figure 2.3a are for a site on the circle which
is not contiguous to the distant site. The estimates in the tail of the distribution
tend to follow those of a normal distribution as more smoothing is applied. Figure
2.5b presents estimates for the same \ for the same simulation at the geographically
distant site. Under complete homogeneity. there is little difference between the Q-Q

plots of the estimates presented in Figures 2.5a and 2.5b.

Q-Q plots for additional simulations are given in Appendix 2.3. In general.
smoothing tends to bring the estimates closer to normality. The estimates for the
site with elevated incidence correspond to a much higher expected count and the
Q-Q plots indicate approximate normality for all the \'s used including 0. For simu-
lations involving larger m. the Q-Q plots indicate approximate normality for each \

used.
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Chapter 3

Testing for Elevated Rates

In this chapter. a testing strategy is outlined to identify elevated rates and define clus-
ters. In Section 3.1. the testing strategy is outlined and clusters are defined. Section
3.2 describes testing without smoothing and testing based on smoothed estimates is
presented in Section 3.3. The remaining sections of the chapter involve simulations
which evaluate the testing methodology. The simulations are described in Section 3.4
Results on the size of the tests are given in Section 3.5 while results on the method's

ability to detect elevated rates are given in Section 3.6.

3.1 Testing Strategy and Cluster Definition

The presentation of estimates does not specify whether the incidence at a particular
site is elevated relative to the others. Testing for elevated incidence at an individual
site ¢ corresponds to a null hypothesis of H,; : 7 = | where 5, = p;/p is the rate

ratio defined in Chapter 2. Complete homogeneity corresponds to all H,, true for

[Wl]
Ut
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t=1l..... k. Except under H,. at least one p; must be less than p. so at least one
rate ratio 3; must be less than 1.0. A priori. the multinomial constraint implies
that one estimate will be less than 1.0. Under complete homogeneity. a mistake of
incorrectly rejecting H, can only be made at k - | sites. As a result. only & — | tests
must be performed for a given case vector y . To maintain an overall error rate of a. a
correction for multiple testing is required. For most of this thesis. a simple Bonferroni
correction is applied and cach test is performed at site level a/{k — 1). Bonferroni

corrections are known to be conservative and a modified procedure (Hochberg. 1933)

is discussed for the application in Chapter 5.

To define elevated rates. the following procedure is proposed. After ranking the
k estimates 4,.; = l..... k. drop the lowest and perform & — 1 tests using these
estimates. Sites with the null hypothesis rejected are identified as being clevated

rates.

Sites or regions are defined to be contiguous if they share a common border. From
the spatial contiguities. spatial groups or clusters of elevated rates are formed. The
number of sites in a cluster defines its size. A safeguard is proposed which drops the
lowest ranking group if the total sites declared elevated exceeds k/2. This situation

was never observed in any simulations subsequently performed but can occur.

3.2  Testing with no smoothing

The strategy outlined for identifving elevated rates and clusters requires a test statistic

which is to be defined for each individual site. Without smoothing. the approximate




S}
=1

normality of 4,,;, (investigated in Section 2.3) suggests the test statistic

mt — 1
172
(o.i

Zml.i =

for testing the null H,, : =; = | versus the alternative H,.: =~ > 1. The variance of
%mei under H,, is given by
. 1.V, AY
Coi = Var(Gm) = —— (1 - -
m ‘\l .\+
Geography is not involved with the test statistic at A = 0 but the spatial contiguity

of the sites is required for cluster definition.

For testing at site level o= = a/(k —1). we need the critical value C',+«; such that
P( Znie 2 Cyiei) < a™. The test statistic Z,,,; is discrete and takes on values from
(-l/ri,-) to ((Vy/V, — 1)/L'E,-. as y; ranges from 0 to m. with the corresponding
binomial probabilities. Given in Example 3.1 are the first 22 possible values for Z,,;;
for a site of population .V, = 300 in a region of twenty sites with total population .V
= 19500 and m = 200 cases. Also shown are the case counts. y,. and the value of the

cumulative binomial probability.




Example 3.1

Y, Zomi cumm.prob.
0 [ -2.2941573 | 0.005543677
I |-1.84679666 | 0.03-472092
2 [ -1.39943593 | 0.11111924
3 1-0.95207530 | 0.24331106
4 -0.50471461 | 0.41573664
5 1 0.05735393 | 0.59319302
6 | 0.39000675 | 0.74492217
T 0.83736743 | 0.33333177
S | L.28472811 | 0.923583606
9 | 1.73203879 | 0.96527706
10 | 2.17944947 | 0.98510136
L1 | 262631015 | 0.99411240
12 ) 3.07417083 | 0.9978.1724
13 | 3.52153151 | 0.99926860
[4 | 3.96339220 | 0.99976821
15 | 4.41625288 | 0.99993124
16 | 1.363613356 | 0.99993035
17| 5.31097424 | 0.99999497
IS | 5.75833492 | 0.99999376
19 | 6.20569360 | 0.99999971
20 | 6.65305628 | 0.99999994
21 | 7.10041696 | 0.99999999
22 ) T.4TTTT64 | 1.00000000

o

To achieve the desired overall test level of a = .03. the probability of exceeding the
required C',.; must be less than .05/19 = .00263. In this example. C'5., = 3.52 and
the achievable site level is .0021. It is apparent that the normal approximation for
Zmi, 1s inadequate. The standard normal quantile Z,. is 2.79 and because P(Z,,, >

2.79) = P(Zmni 2 3.07) = .0059. the site and overall levels are not controlled. A



continuity correction is not advantageous in this context either. Details are discussed

in Appendix 3.1.

Given m. \i. and .N,. appropriate statistical software can be used to generate the
exact critical value for A = 0. For the simulations of this chapter. these exact critical
values were obtained using the Splus function pbinom. The normal approximation
with a continuity correction will be most accurate when m#é; > 5 and the cell proba-
bility is near 0.5 (Molenaar. 1970). Accurate transformations have been presented for
a small success probability (e.g. Peizer and Pratt (1968)). but these transformations

were not investigated due to the availability of the exact critical values.

3.3 Testing with smoothing

In this section testing based on smoothed estimates is presented. The motivation for
testing with smoothing is given in Section 3.3.1. The test statistic with smoothed
estimates is developed and refined refined in 3.3.2. The critical region for the test

statistic is determined in Section 3.3.3.

3.3.1 Motivation

The reduced variance and MSE of the smoothed estimate vector Ysm Were demon-
strated in Chapter 2. It is logical to investigate whether testing based on the individ-
ual smoothed estimates is better able to detect elevated rates or clusters than testing
without smoothing. A test statistic based on “sm.i incorporates the spatial configu-

ration of the sites through the estimate itself. The i'th element of the numerically
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obtained smoothed estimate vector gives the test statistic

:'sm [ [
Zsm.x = — (31)
\'?ar(‘:;sm.x)

for the test of H,, : 5, = | versus H,, : 5, > 1.

'

3.3.2 Refinement of the test statistic for smoothed esti-

mates

For a single estimate vector. 4,,,. Var(4,m.) in (3.1) is unknown. Rather than using
numerical optimization to obtain %, . it is also more practical to use the approximate
vector 9, which has th element given by the approximation (2.18). This argument

suggests the test statistic

g — 1
ZA\.i — ,.\.. ) (3_))
\".ar(:/.\.l )

where Var(<,,) is the linear approximation to Var(4,, ;) evaluated at current estj-

mates under H,.

The method for determining the critical region for Z\, is outlined in the next sub-
section. Further simplification of the test statistic Zy, is required to accomplish this
goal and an approximate test statistic which is linear in \ is derived. Consider AW

above with the following components:



the linear in \ estimate of the i’th rate ratio

2.
‘\Nina

with smoothing component

B
+ Y\,

and linear in \ variance estimate

= Tmila + ’\Ii

\'ar(:,-_\.,) =yt ['l.i’\

where

.
t vl -

and

['l.i = Cov

\'ar(‘::'ml.x,.li = l)
A (l AV,

m .\, N,

(Gmti-li = 1)

)

61

Maximum likelihood estimates are obtained under H,:-; =1 and are given by

Y, m—y;

NN N




for j # ¢ (details given in Appendix 3.2). These estimates and 3,,;, = | are used
1

to evaluate Var(4, ;) under H, Furthermore. Var(4.,) can be re-written as v2 (1 +

N 1 . . . .
(£1.iA)/vs, )7 giving the test statistic

(3.9)

~>
—
P
SN’
|
[S1[5d
N
—
1
o
R S
N—’
|
~j—-
oy »
P

where Z,,;, is as given in Section 3.2.

. . . - 1. -y oA
A one-term Taylor approximation (about \ = 0) for (I+1,:A)2 08 1=0.5(8,N) /ey .
and retaining only terms which are linear in \. the second term of (3.9) is [,A. giving

the approximate test statistic

3 ,',\ i,(\
Z.\.lm.x = (l - 031 L )Zml.x T
L I\
= Syidmii + . (3.10)
o

Within /;. the 4, ., for j # i are re-estimated under H,. Extensive empirical investiga-
tion revealed that 3, is relatively constant for a given site and population/geography
configuration. Henceforth. s, ; is considered non-random. Although linear in \. /; as

given by (2.25) and (3.4) involves powers of Ymt; up to order 3. This fact and the
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form of (3.14) complicates the investigation of the distribution of Zxtina- As a simpli-
fication. the linear term of %), was reduced to powers of 4, ; to order 2 (as previously
described in Section 2.3). The linear coefficient of \ in the approximate variance is
U1y = C'E)v(*},n;_i. l‘,-). It is adjusted in a similar fashion to include terms to power 3 in

Ymi giving

ii.red = tia (—bi':;;-) :,'iwi) (3.11)
where
t _ 4/\
e N(m/Ny)
and

w; = E €75

JF

Unless otherwise indicated. testing with smoothed estimates now involves the

reduced test statistic given by

[rrzd.t A

Z.\.rfd.i = ';,\.I'K'I.IZ"II.K +

o

r

where
S\ redy = l — 0'51'1.)"?’{.1/'*‘0

and

Uliredd = C'Ov(‘:,'ml.b [re:l.i)
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3.3.3 Determining the critical region for 7 Nored.i

At A = 0. exact critical values for Z,,;, are available as described in Section 3.2.1.
While tests at A = 0 may not achieve size o= = a/(k — 1) due to discreteness of the
test statistic. approximate tests at any level a for \ > 0 are possible. Although
Z\ red.i 1s also discrete. a large number of values near Zmii are generated for each y,
by the possible distributions of the remaining m — y; cases. An approximate critical
value for Zy .4, for level a* needs to be determined. Denoting the 1- a* quantile for

Zredi by Cye; then €. must satisfy

P(Zyreii 2Chey) <1 —a” . (3.13)

A conditional approach is used to find (,.,. A possible alternative approach is
the use of a C'ornish-Fisher expansion. A description of this technique is given in

Appendix 3.3

The left hand side of (3.13) is equivalent to

ZP( Z.\.I‘td.l 2 ('n‘.x |:Im1.l = -l.i)P(;:'ml.x = J‘x) . (311)
Yr,
The exact values for P (%,.;; = ;) are available from the marginal binomial dis-

tribution for 4., and 4, = r; ranges from 0 to N, /.\; as y, ranges from 0 to m.

The first term of the summand in (3.14) is



P ';,\.n:d‘iZml.l +

T 2 C'a‘.xl;;'ml.i = Iy (3'13)

which can be written as

P(Adh + Diwidmis 2 Hil s = x,) (3.16)

to emphasize the dependence on w; (the only term considered random given the
conditioning). where

—t,.\b;
4 = —5
Usi
(Sxredi + i)
D; = T
U5
and
) S\.red
[‘[, = Cn‘ ¢ .

Substituting r, for 3. P(Z\ g, > Cy-.) equals

s .
Zp(w,» > Hiz At .r,-)P(

Tmli = £y . 3.7
2- Doz, imli = i) (3.17)

We need to find C,., such that this sum is less than or equal to o”. For a particular

C’-... this can be computed if we can appropriately specify the distribution of w;
gi"en :/ml.i-
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Denote the & -1 dimensional vector of maximum likelihood estimates by ;. the
k - 1 dimensional vector €;; (for j # i) by €(;)- and the the variance-covariance matrix
of 4, by Es,. The quantity w; = e;i)‘?(l) is approximately normal with mean ezi)‘y(,)
and variance e;i)l‘.—,,e(;). The distribution of Wilfmes is approximately normal with

i

mean and variance

Cov (w;. % mii) (:;ynl.z' - l‘—:m,,,) -
Foey oy = Mo, + o (3.13)

‘ml.a

and

2 2 Cov i ;,'m i :
2. =gt [Cov (lL2 1.0)] _ (3.19)
1] mi,t t U:

‘ml.a

The unconditional mean and variance of w, are

o, = E(ng,‘:;ml.j)

JF
= D ey (3.20)
JF
and
P o .
O',L‘l - e(i)_..,‘”e“)

which simplifies to
2 s LN (N 1
Ty = qug—\- D\t TN T ;Z wafw 7
J#i . S+ IPIPEIN

Also.

(‘O\'(wi-:lml.i) = Zeijc‘ov(:lml.y:lml.i)
JFE

: Z
- —— El‘“"“’
J it

m

JFE
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which becomes —(1/m) )3 ,#i€ij7. under H, : 5 = . Finally.
of . =(Ng/mN)(l = N./N)) = v,; under the null hypothesis.

The rate ratios 5,. for j # / are unknown and not specified under H, and so
they must be estimated under the constraint ~;, = 1. As mentioned in the previous
section and described in Appendix 3.2. these estimates without smoothing are equal
to 3 = (y;/N))/((m = y) [(Ny = Ny)) for j 4. Substituting these estimates into
the expressions for g, s, and o? | gives fi and &2 . gives the following

we[4m welfmi 1wy |Fom

estimates after some rearrangement shown in Appendix 3.4

. N, - N y, AV
. — “z e _ (A — 3.2
Horlom m—y; Y <\) [1 i <.\'+ - X:) it l)} 321

JF

and

"~

~

s VeV —-\',)262 7Y N =N g
IR m(m - ) = t) .\.;) m—y, .\-+

1 -\'+ Y1Yq ‘\.‘
m(m—y,) ,:ZZ(J('\ .z, AWEESIAY

JFELqFE

AYAY

Y 9 9.
B (Ve = V) [qu \JzJ : (3.22)

m?

Both /1, and &7, depend on the the fixed value of y; as well as \. Finally then.

the cumulative probability (3.14) can be evaluated as




5 [l o (C__‘*_I)} Ply) (3.2

Yy, (}’L't[.‘ll
where P(y,) is the binomial probability.

The problem of finding the required critical value for Z, ,.,. has been reduced to

a one-dimensional numerical problem in C',.,;. A solution (,-, to the equation

Cor — i

s J'L'v L3

1s required.

Extensive preliminary simulations under H, revealed that the quantiles of Z. ,.;,
were smaller than the quantiles of Z,,;, for the same a*. Hence g.-. the exact critical
value for A = 0 is a logical starting point for a step-down algorithm. Denoting the
left hand side of (3.24) by ¢(C.,.,). C,., is decreased sequentially until ¢ becomes
negative. Once this occurs. the previous (.., is used as a new starting point for the
algorithm and the decrement is reduced. There is a range of possible Z,,.;, values
for each y, so ¢ is a step function. The change in g will very small for some steps.
The amount of probability accumulated at a particular (. depends on the value of
yi- The behavior of ¢ is illustrated in Example 3.2. There are m = 200 cases. k =
20 sites and a total population of \N. = 20000. The given site has population 1000
and the critical value under H,, for a = .05 is 3.36. This site is one of nineteen with
3 = 0.95. It is contiguous to a site with elevated rate ratio %, = 1.43. In the case
vector for this example. y, = 3 is observed while y, = 18 at the neighbouring site.
Breaks in the table indicate that the g is not changing to the decimal place shown.
The algorithm was subsequently restarted at 3.02 with a decrement of .001 and a

final C,., of 3.015 was obtained.
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Example 3.2

C'a‘.i g

3.56 | .0021506
3.54 | .0021505
3.52 | .0021505

3.46 | .0021505
3.44 | .0021503
3.42 | .0021437
3.40 | .0020764

3.32 | .0020762
3.30 | .0014910
3.28 | .0014741
3.26 | 0014718
324 1 0014717

3.14 [ .0014701
3.12 | .0014537
3.10 | .0013522
3.03 | .0010651
3.06 | .0005933
3.04 | .0001940
3.02 | .00001-t6
3.00 | -.000274

The final solution is a function of the data and involves a normal approximation
so the solution of the algorithm is actually an estimate of quantile and can be denoted
as (',+,. In some simple situations. a large final step in the algorithm to find Coei

gives a more conservative choice for the critical value.




3.4 Description of the Simulations

The approximate estimate 4 .4, and the test statistic Z\.red.i depend on the number
of sites k. the number of cases m. the populations N. the geographical configuration
{d;;}. the rate ratios v and the smoothing parameter A\. An investigation of these
factors in the context of testing with and without smoothing was carried out using
simulation. The test statistic’s ability to detect and identify existing elevated rates
and to control the number of false rejections under the null hypothesis was investigated
for each of these factors. Of particular interest is the performance of the test statistic
with smoothing (A > 0) versus its performance without smoothing (Z\; = Z,.. for

A=0).

Many levels of the factors could be examined but the following levels were chosen
to simplify the interpretation while still maximizing the information that could be
obtained. The set of simmulations investigated each of the factors (i) to (iv) given below
at two levels. The levels of 4 (factor (v)) are unique to the type of cluster/elevation
being investigated. While not part of the complete simulations set. some additional

simulations were performed and will be described in Section 3.3

(i) k: Two levels were chosen for the number of sites: 20 and 0. Although arbitrary.
these choices may correspond to data aggregation at the county and municipal level

respectively.

(ii) m: This factor could actually be combined with (i) and written as m/k. m was
chosen to correspond to an expected case count of 10 and 20 at each level of k. (i.e.
m was chosen to be 200 and 400 for & = 20. to be 100 and 300 for & = 40). The lower
level corresponding to the smaller case count may be more interesting as it is more

representative of rare diseases.




il

(iii) N: Many levels were possible for the population vector. The "equal” level was
a population of 1000 at each site. The 1 different population” level had & — I sites

with population 1000 while the other had population 300.

(iv) {di;}: Once again. many levels for geographical configuration are possible.
Minimizing and maximizing the coefficient of variation (CV) of the inter-site distances

was deemed to be appropriate.

The k sites arranged with & - 1 on a circle and one in the center minimize CVi(d;,))
for k > 3. However. for a given 4,,.,. the value of w; = e;i)-‘ym given y; in (3.17) is not
random if / is the center site because the €;; are equal. This results in a fixed value
for Z\ ;eq.: and C'L,-.,- at this site. To ensure a range of values for Z, ,.;; and f’a-,, at
all sites. the A'th site was moved onto the circle with the other & - |. C\V(d,,) for the
circle configuration is very close to the “circle + center’ configuration for & = 20 and
k = 10. The k — I sites arranged as a circle with the other site outside the circle at a
distance maximizes CV(d;,) so this configuration and the circle were taken as the two
spatial configurations. \ random set of locations was also used in a smaller number

of simulations to verify the methodology for finding C',. ..

(v) ~: The elevated rate(s) or cluster(s) depend on the true vector 4 (or rates p).
Many levels of this factor were investigated: homogeneity (overall null). a single ele-
vated rate. two contiguous elevated rates as a cluster and two geographically separate

elevated rates.

(vi) A: For the simulations presented in this chapter. a fixed set of \'s was used to
govern the amount of smoothing applied. In other words. the choices for \ were made
beforehand. and the values were not data dependent. The range for A was determined
by establishing an approximate upper bound. For each site. \-"jar(‘};__\) tends to 0 as
A increases. Using the known true % vector as input. the value for which Var(4;.4)
is approximately zero can be used as an upper bound for A at each site. The one

term approximation is Var(4,,) = Var(dmei) + 2ACov(Zmii.lreqs). and equating to
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zero gives \,, = =Var(%mii)/2Cov (3 mii. lrea,). The upper bound for A must be
applicable to all sites. the minimum of A, from: = 1..... k was taken as \;-g. For

observed values of <,,;, far from . A close to A\-g may still give a negative Var(<, )
for some /. As a result. only the first four fifths of the range from 0 to A5 was
used. A very small A of \-5/10 was chosen to see the initial impact of smoothing
and the chosen A set was: 0 .\;-g/10. Ave/5. 2M\8/5. 3A-g/5. 4A¢'g/5. The set of
A’s chosen is unique to a given simulation because Auw.: depends on V. \'s chosen for
the larger value of m were usually smaller. The overall Ar-g must be an upper bound
for A for the lower population site. Approximate variance estimates at this site g0
to zero much more quickly. Results on the detection of elevated rates in Section 3.6
should be considered with this in mind. Figures 3.1 and 3.6 of that section display

the ranges of A for several simulations.

A new simulation set of case vectors was generated for each \. The observed
response in all simulations is the fraction of tests rejected. For each generated case
vector. whether or not the test of H,:v, = | was rejected using Z\ ,.4, was tabulated
for: =1..... k. The total number of tests rejected for site ; divided by the number
of repetitions of the simulation gives the error rate for that site. The overall error
rate is the fraction of repetitions in which at least one site was declared elevated
(i.e. at least one test was rejected for / = 1..... k). The site error rate was
examined closely when f, was true for all ; (homogeneity) as it might be possible
for a site error rate to be bevond the acceptable range while the overall size of the
test is still controlled. Controlling the size of the test corresponds to control of the
number of false positives. Simulations of size 10000 were used for these simmulations
of homogeneity while simulations of size 5000 were used for “alternative” simulations

in which H,; was not true for at least one ;.




3.5 Results - Size of Tests

Homogeneity or complete null simulations were performed (H, true for all {) to in-
vestigate the ability of the method to properly control the number of false rejections.
For a given case vector. the estimate “\., and test statistic Z\ o4, are obtained. The
algorithm described in Section 3.3.3 is used to obtain f’.\.o’,,. I Z\reqa, > 6’,\,L,-.J.
then H, is rejected and the incidence at site j is declared -elevated”. For A = 0. the
exact critical values for Z,,;; are described in Section 3.2. When more than one site is
declared elevated. the spatial contiguity. as defined by a common border. determines
whether the sites form a cluster. Complete null or homogeneity simulations were
performed for each of the levels of . d,, and N described in the previous section. In
addition. a random set of populations was assigned to a set of random locatious from
a 10 by 10 grid for each level of & to further verify the met hodology under homogene-
ity. The method produced rejection rates that controlled the overall and site error

rates under all homogeneity simulations.

Tables 3.1 and 3.2 display the percentage of tests rejected for ‘complete null” or
"homogeneity” simulations for the two spatial configurations for & = 20. Given are

the fraction of tests rejected at the site and overall level based on 10000 repetitions.

At A =0 the critical values obtained are exact. The achieved level which is denoted

by ..k is described in Section 3.2. The upper probability limit for the percentage

of tests rejected (at the site level) is approximately a,., + 2\/0“;,(1 — Q04 )/10000.
Footnoted between the tables are acceptable upper bounds for the percent rejected
for A\ > 0. Lower bounds are not listed since Bonferroni test levels are known to be
conservative and hence we are only concerned with not exceeding the upper bound.

There are two possible upper bounds for the *N different configuration’. the larger
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was used. The standard error is based on a normal approximation for the proportion
of tests rejected and this bound was not exceeded in any simulation. The observed
percent rejected is useful for comparison in simulations with at least some departure
from homogeneity. For A = 0. the upper probability limits for Tables 3.1 and 3.2
(footnoted as (1) through (3)) are : .0019. .0258. .0024. .0363. .0031. .0438. .0025 and
.0359. For A > 0. the upper probability limits at the site and overall levels for Tabies

3.1 and 3.2 are .0037 and .0544 respectively.

The critical values at A = 0 are exact: it is the percentage of tests rejected for
A > 0 that is most relevant for establishing the utility of the methodology which gives
Corni- With @™ = a/(k - 1). and once again using a standard error based on a

normal approximation. the upper probability limit for the acceptable fraction of tests

rejected at the site level is approximately a* + 2\/a'(l —a~)/10000. In Tables 3.1
and 3.2 as well as all other null simulations. the upper bound is not exceeded for any
A. and the fraction of repetitions with at least one test rejected is quite conservative
in many instances. One might note an increasing trend with \ for some simulations
for the overall level but it remains less than the upper bound. Appendix 3.5 presents

the circle configuration null simulations for & = 10.




Table 3.1
Homogeneity Simulations

Circle Configuration. 20 sites

m = 200 m = 100
N's equal 1 .V, different N's equal 1.V, different
max site | overall | max site | overall || max site | overall | max site | overall
A frej. frej. frej. frej. frej. frej. frej. frej.
0 0017 L0243 .0022 0327 .0028 .0403 .0023 0326
(1) (2) (3) (4) (3) (6) (7) (3)
A .0034 0518 .0025 .0331 .0030 .0383 .0030 .0432
Ay .0032 0462 .0024 0316 .0033 0413 .0030 0456
A3 .0033 0506 0027 0104 .0034 .0426 .0031 0477
Ay .0032 0434 .0033 .0503 .0030 0436 .0030 .0493
As .0034 0511 0034 .0508 .0027 0420 .0031 0511
max site frej. = maximum fraction of tests rejected at any site
overall frej. = fraction of repetitons with at least one test rejected

Upper probability limits (1) through (8) are given in text




Table 3.2

Homogeneity Simulations

Circle + 1 Configuration. 20 sites

Upper probability limits (1) through (8) are given in text

m = 200 m = 400
N’s equal 1 .V, different N's equal L.V, different
max site | overall | max site | overall || max site | overall | max site | overal!
A frej. frej frej. frej. frej. frej. frej. frej.
0 0015 0213 .0020 .0349 .0027 .0410 0016 0287
(1) (2) (3) (4) (3) (6) (7) (3)
Al .0033 .0510 .0023 .0337 0023 .0396 .0031 0473
Ay .0031 0508 0023 0397 .0030 0407 0032 0433
A3 .0029 0181 .0030 0502 .0030 0410 .0034 0523
Ad .0034 05138 .0026 0373 .0023 0402 .0032 .0493
As .0030 .0500 .0026 0345 .0029 0412 .0032 04383
max site frej. = maximum fraction of tests rejected at any site
overall frej. = fraction of repetitons with at least one test rejected



3.6 Results - Detection of Elevated Rates

The simulation results under complete homogeneity show that the site and overall
error rates are controlled under H,. As a result. simulations under H, can be con-
sidered. In these simulations. H, : =; = 1 is not true for at least one site. The true
< vector is known in simulation so one can express 5 in terms of a departure from
overall homogeneity. Under H,. the traditional Pearson statistic has a noncentral
chisquare distribution with noncentrality parameter § = m SE_ (8, — 0,,)° /0,,. In
the present context. this corresponds to § = m r AT 1)? /N4 A wide range
of alternatives was possible for the simulations but low to moderate departures were
considered. As an illustration. consider 20 equal populations .\, = 1000 with case
total m = 200 The incidence at site & is elevated with rate pe = .0075 and p; = .005
for j # k. giving rate ratios 7 = 1.46 and % = 0.977 for j # k and a departure
from homogeneity of & = 2.79. Two elevated rates at sites & and & — I with incidence
Pk—1 = pr = .0075 and p, = .005 for j # k.k — | give rate ratios T = k-1 = 1.43
and 7, = .933 for j # k.k — | and a departure from homogeneity of § = 1.03. All

simulations under an alternative were of size 5000.

Presented in Table 3.3. are the results of four simulations involving a single ele-
vated site on a circle. They involve simulations for & = 20 sites for each of the two
choices for N. In those with rate ratios et = L.46 or ~,; = 1.43. the incidence rate at
the site of the elevated rate is one and a half times the incidence rate of the others.
The differing populations in two of the simulations causes ~,; to be slightly different
in those simulations although the incidence rates are the same. Within each table
entry is the following: “frej.” - the fraction of repetitions with at least 1 site declared
elevated: “ftcor.” - the fraction of repetitions in which only the elevated rate was
declared elevated. and “fincl.” - the fraction of repetitions in which the elevated site

was included among those declared elevated. As an illustration. consider the top left




entry in the table. In 354/5000 = .0778 repetitions. at least one site was declared
elevated. In 301/5000 = .0602 repetitions. the site of the elevated rate was the only
one declared elevated and in 304/5000 = .0608 the site with elevated incidence was

among those sites which had the null hypothesis rejected.

Several observations can be made from this table which also were made for other
simulations/factor combinations which involve a single elevated site. A significant
increase in detection ability is observed when ) is increased from \ = 0 (testing at
level @ = .05). This observation is relevant for the fraction of repetitions with at least
one rejection and the fraction totally correct. A significant increase in the observed
fraction from A\ = 0 to the first \ is indicated by (*™) while (*) indicates that the
observed fraction is significantly greater than that observed at A = 0 but not from the
previous A. Significant increases in detection ability with smoothing were observed
but no significant decreases in detection ability were found with smoothing. This

important result held true throughout the entire simulation set.

The simulation results presented in Table 3.4 involve the same 7. m and N as those
of Table 3.3 but the circle + 1" configuration was used. In this configuration. the
distant site is located at (1.5) while the other 19 are equidistant on a circle centered
at (1.1). See Appendix 3.7 for their locations and spatial contiguity. The observed
maximum achieved for the fraction with at least one rejection and fraction totally
correct are similar but a significant increase from A = 0 occurred at the second \ of
the set. This is intuitively sensible since it should require more smoothing within the
proposed range to bring the estimate of incidence at the geographically separate site
towards the others. Hence a larger \ is required to achieve the benefit of smoothing
with respect to inference. In both tables. no significant increase in detection abiljty

is found when the elevated incidence occurs at the lower population site.




Table 3.3
Ability to Detect Single Elevated Rate

Circle Configuration. 20 sites and 200 cases

N's equal L.V, different

v || 146 1.90 | 148 | 1.95

frej. frej. frej. frej.
ftcor. ftcor. | ftcor. | ftcor.
fincl. fincl. fincl. | fincl.
0 0778 3648 1 0730 | 2174
.0602 3536 | L0430 | .1964
.0603 3560 | .0452 | 1990

Ap o 1278 | 46747 | 0720 | 2248
093477 | 43827 | L0432 | 1996
09507 | 44627 | L0446 | .2040

Az B33 4674 L0691 | 2183
0986 | .4392% | 0420 | .1962
0994 | G L0422 | 11990

Az || 12987 | 43947 | 0726 | 2364
09527 1 4348 | L0434 | 2092
09647 | 43830 | L0442 | 2112
Ay | L1H08™ | 16407 | 0752 | L2262
10038™ | 4370 | .0460 | .1963
0127 ) L0470 | 1990

As 1284 A4636™ | L0710 | 2251
0910~ A346™ [ L0444 | 1948
.0920* A548™ 1 .0438 | 11956
frej. = fraction of repetitions with at least one test rejected
ftcor. = fraction of repetitons in which only elevated site is declared elevated
fincl. = fraction of repetitons in which elevated site is among those declared elevated

** indicates significant difference from observed fraction at A = 0
* indicates significant difference from observed fraction at A = 0 but not previous A




Table 3.4
Ability to Detect Single Elevated Rate

Circle + 1 Configuration. 20 sites and 200 cases

N's equal 1 .V, different

el 1.46 1.90 1.438 1.95
frej. frej. frej. frej.

ftcor. ftcor. | ftcor. | ftcor.

fincl. fincl. fincl. | fincl.
0 .0310 23580 | L0673 | 2104
L0640 34760 1 .0392 | L1894
L0642 3492 10396 | 1916

A .0986 3722 1.0682 | 2242
.0660 S494 1 .0394 | L1983
.0670 23526 | .0900 | .2014

Ag [ 124477 ] L6 | L0732 | L2344
037477 ] . 4206™= | L0410 | .2094
088677 | 4248 | L0422 | 2188
Az Il L1260% | 4426 | L0846 | .2372
0926™ | 4204 | 0446 | 2076
0936™ | 42547 | 0448 | 2108

Ag 1332~ 4680 [ .0776 | .2370
0930~ CH90" 10432 1 .2052
.0938™ A4536™ | .0436 | .2078
As 234 AE527 10754 | .2392
1010~ A4 | L0436 | 2106
1020~ A3727 L0433 | 23384
frej. = fraction of repetitions with at least one test rejected
ftcor. = fraction of repetitons in which only elevated site is declared elevated
fincl. = fraction of repetitons in which elevated site is among those declared elevated

** indicates significant difference from observed fraction at A = 0
* indicates significant difference from observed fraction at A = 0 but not previous A

v 2
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More results for a single elevated rate are presented in Appendix 3.6 based on
simulations for & = 20 and m = 400 as well as & = 40 and m = 100 are presented.
Figure 3.1 displays results from simulations for tw enty sites in the circle configuration.
The top panel shows the fraction with at least | rejection for m = 200 (from Table 3.3)
while the lower plot shows the fraction with at least one rejection for m = 100 (from
Appendix 1.6). Points with labels A through D correspond to columns | through -t
for each simulation. Significant increases in detection ability were found less often
with the higher m/k ratio. The plot is relatively flat and this observation holds for
both & = 20.m = 1400 and k = 40.m = 300. It is also worth noting that simulations
involving the one differing .\, (with points labelled C' and D) have a somewhat smaller

A range.

Without smoothing. only one critical value exists for each value of y,. As described
earlier. Z\ ,.4; can assume a large number of values due to the possible distributions
of the remaining case counts at the other sites. Corresponding values of (.., are also
generated and rejection may now occur at a y, not previously included in the rejection
region. As a result. testing with smoothing is at a level closer to a* = a/(k-1) than
is achieved at A\ = 0 (see Section 3.2). Therefore. tests are performed at a more
liberal level with smoothing. leading to the observed increases in detection ability.
Furthermore. no significant decreases in detection ability have been observed with

smoothing.

Presented in Tables 3.5 and 3.6 are the inference results for two elevated contiguous
rates (a cluster of size two) for & = 20 and m = 200. The departure from homogeneity
has now increased because of the two elevated rates. The departure. populations and

v are as follows:
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Figure 3.1 : Fraction of at least 1 Rejection, Single Elevated Rate
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equal N
A: departure: 4.03. ~. = o = 1.13
B: departure: 9.84. ~.;; = 1.86. 5. = 1.40
C: departure: 9.31. vy = 1.40. .o = 1.86

1 N different
D: departure: 3.29. ~.;; = 7ol 44
E: departure: 6.43. ~,;; = 1.90. vp» = 1.43
F: departure: 6.43. 5., = 1.43. 4.0 = 1.90

In the simulations described in Table 3.5. the two elevated rates are contiguous neigh-
bours among the twenty sites which are equally spaced on a circle of radius one. In
the simulations summarized in Table 3.6. one of the elevated rates is always at the
distant site while the other is on the same side of the circle as the distant site. In
a table’s column headings. “frej. is the fraction of repetitions in which at least one
site was declared elevated f(1)in." represents the fraction of repetitions which include
the first elevated site among those declared elevated (similarly for "f(2)in."). The ab-
breviation “ftcor.” represents the fraction totally correct or the fraction of repetitions
which had only the two elevated sites declared as elevated. Asterisks have the same
meaning as in Tables 3.3 and 3.4 while a **x" indicates a significant increase in the

observed fraction from the previous \.

The results of both tables are very similar. As with the single elevated rate(s). the
largest gains in detection for simulations A through (" can be observed in the change
from A = 0 to A = \;. The maximum detection ability achieved for simulations B
and C is similar within both tables. Comparing simulations B and C between Tables
3.5 and 3.6. we see that a slightly higher detection ability is achieved with the two
elevated contiguous rates are closer together (i.e. in Table 3.5). This observation can
not be made between tables for simulations E and F. In simulations D. E and F of

both tables. if a significant increase from an observed fraction at A = 0 is observed.
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then it is achieved at a larger \ in the set than in simulations A through C. This
observation can be interpreted as meaning that more smoothing may be required to
obtain the same gains in inference if the two populations in the cluster of size two
are very different. The observed fraction totally correct is very low due to the small
departure from homogeneity and small probability of observing a large number of
cases at each of the elevated sites. The results for a cluster of size two for the circle

configuration and k = 40 are presented in Appendix 3.3.




Table 3.5

Ability to Detect Two Contiguous Elevated Rates

Circle. £ = 20.m = 200

o
ot

A A B C D E F
frej. frej. frej. frej. frej. frej.
f(L)in. | f(1)in. | f(1)in. | f(1)in. | f(1)in. f(1)in.
f(2)in. f(2)in. f(2)in. f(2)in. f(2)in. | f(2)in.
ftcor. ftcor. ftcor. ftcor. ftcor. ftcor.
0 1040 3438 23320 1136 .3962 2440
0494 .3086 0422 .0613 3640 .0602
0472 .0376 3128 .0380 .0298 1782
.0016 .0093 .0096 0012 0120 0074
Ay 18467 | 45T | 4506 | .1190 1036 2354
07927 1 .3962=> | .0630™ 0670 YRS .0666
08347 | .0630*™ | .3348™ 0318 0314 1850
00627 | 0174== | .0154== | .0014 0126 .0104
Ay || L 1876™ 4661™ 45380™ 242 152 2598
0842~ A074 0648 0710 | 38347 | 0652
.0803™ 0694~ -4030™ .0334 .0322 .1900
.0058™ 0250" | .0234*x | .0014 0128 .0097
Ay || 1768 .1636™ ABL6™ 112327 | A1T67T | L2532
0794~ A054™ 07127 1 .0768™ | .3850* .06-3
.0820~ 0670~ 3998 0338 .0319 84S
.0062~ 0226~ .02338* .0016 0128 .0094
Ayl 184 A456™ 4396~ A3 A2 2514
.0850" 3918™ 0638 .0796™ 3998~ .0633
0748™ .0620~ 3936 .036- L0324 1302
.0052~ .0206* 0244 .0020 .0130 .0106
As || L1904 4626 4646 324 33 2568
0790~ .3946™ .0700* .0826> 4036™ .0690
.0832* .0706™ 4010~ .0320 .0316 1826
.0016™ .0198* 0022~ 0222 0126 .0016
frej. = fraction of repetitions with at least one test rejected

f(1)in. = fraction of repetitions in which first elevated site is among those declared elevated
f(2)in. = fraction of repetitions in which second elevated site is among those declared elevated
ftcor. = fraction of repetitions in which only elevated sites are declared elevated

** indicates significant difference from observed fraction at A = 0

* indicates significant difference from observed fraction at A = 0 but not previous A

*x indicates significant difference from ohserved fraction at A = 0 and previous A



Circle + 1. £ =20.m = 200

Table 3.6

Ability to Detect Two Contiguous Elevated Rates

A A B C D E F
frej. frej. frej. frej. frej. frej.
f(1)in. | f(1)in. | f(1)in. | f(1)in. | £(1)in. f(1)in.
f(2)in. f(2)in. f(2)in. f(2)in. f(2)in. f(2)in.
ftcor. ftcor. ftcor. ftcor. ftcor. ftcor.
0 1108 34380 3530 1282 3950 .2502
.0540 3050 0414 0762 .3638 .0652
0430 0422 3160 0352 0314 1763
.0016 .0098 .0100 .0016 .0096 .0084
Ap || LT | 44d8== | 1236 1290 4020 .2590
.0800™ 4001~ .0708* .0708 3660 0616
0634 0452~ .3636™ 0420 .0356 1384
.0030~ 0142 0244 .0022 .0036 .00941
Ay il 1490 ~4408™ 4046~ 1194 4166™" 2472
.0760™ 3980~ 0642~ .0676 3798 0632
0518 0412 3322~ 0383 0376 1755
.0026~ 0140~ .0156* 0018 .0083 .0032
Az || 1618 ~106™ 3982~ 1310 074 2498
0780~ .3986™ 0722~ .0730 3763 0643
0612~ .0373™ 3086 0384 0382 TS
L0044 O114= 0172* .0024 0132 0038
Ay || -1870*x | . 4470™ A0LO™ | L4427 | 42987x | 2696
0828~ 002> .0666* .0850 23926*x | .0794™"
0310™ | .0552*x | .3360*x .0396 .0396 1362
0044~ .0120* 0130~ 0024 0103 | .0130™~
As Il 1738 2™ 4062~ 1436 A4286" 27167
.0310~ .3962> 0672~ .0860 3942 07938~
.0736™ 0454 .3546™ .0389 .0323 1368
.0032~ 0126~ .0220~ 0024 .0094 L0134~
frej. = fraction of repetitions with at least one test rejected
f(1)in. = fraction of repetitions in which first elevated site is among those declared elevated

f(2)in. = fraction of repetitions in which second elevated site is among those declared elevated
ftcor. = fraction of repetitions in which only elevated sites are declared elevated
** indicates significant difference from observed fraction at A = 0

* indicates significant difference from observed fraction at A = 0 but not previous A

*x indicates significant difference from observed fraction at A = 0 and previous A
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Presented in Figure 3.2 are the entries corresponding to the fraction of repetitions
with at least one rejection in Table 3.5. The large initial increase in detection ability
in the simulations with equal populations is the most striking feature of the upper
plot. The chosen range of \ in the simulations D. E. F of the lower plot is much
smaller. As described in Section 3.-4. the approximate variance for the low population

site tends towards zero much more quickly.

The results for two noncontiguous elevated rates for k = 20.m = 200 in the “circle
+ 1" configuration are presented in Appendix 3.3. The magnitude of the true +,’s and
the departure from homogeneity for simulations A - F are the same as described above
for Tables 3.5 and 3.6. The results for this configuration are similar to the contiguous
rates of Table 3.6. However. the initial impact of smoothing on inference is not as
large in these simulations as when the two clevated rates are equal (simulations A
and D in Table 3.6). Perhaps this implies that less smoothing is required when the
two elevated rates are very close together and the same. Results for two elevated
noncontiguous rates for & = 10.m = 100 are also presented in Appendix 3.3. A
small drop in detection ability can be observed with the increase in & but not in all

situations.

As a practical check of the methodology. some simulations were run with a set
of randomly chosen populations between 300 and 1000. assigned to 20 randomly
chosen locations on a 10 by 10 grid. Regions were formed around each (r.y) location.
The populations. locations and sets of contiguous sites are given in Appendix 3.9.
Complete null or homogeneity simulations for this configuration controlled the a

level at the site and overall level for all A's considered.

Presented in Table 3.7 are results for a single clevated site for this new configura-

tion at m = 200 and m = 100. Although an arbitrary choice. site 13 in Table 3.7 was
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chosen as the elevated site. [t is geographically near at least two others. The elevaied
rates for these four simulations are: (1) ver = LAT. (31) 50 = 1.93. (iii) =y = 1.47. {iv)

el = 1.93.

As in the equal population simulations of Tables 3.3 and 3.1. an increase in detec-
tion ability is observed from A = 0 to A = \, and this ability is maintained throughout
the set. However. there are noteworthy differences. There are significant increases
for m = 400. At m = 400. the simulations presented in Tables 3.3 and 3.4 in which
the elevated incidence rate was twice the others showed no significant improvement
in detection ability with smoothing. However -, is virtually the same in the simula-
tions of Table 3.3. In the simulations of Table 3.3 and Table 3.4~ was 1.90 while
et was 1.93 in these simulations. Perhaps this implies some limitations to the effect
of smoothing on inference with the chosen spatial configurations of the simulation
set. The maximum observed fraction is an increase of approximately 15 percent from
A = 0. Significant increases in observed fractions occur between positive \'s in the
chosen set (indicated by *x). Results for two elevated rates and m = 200 cases for

this new configuration are presented in Appendix 3.3.




Table 3.7

Ability to Detect Single Elevated Rate

Random populations/locations Configuration

| k=20.m =200 | k=20.m =100
1 i ii v

frej. frej. frej. frej.

fincl. fincl. fincl. fincl.

ftcor. ftcor. ftcor. ftcor.

0 .0680 2402 d122 3293
.0373 2260 .0356 5203

.0372 2234 0342 3138
Ap | -09347 | 3368 | L1580 | .6241==
063377 | 3162 | (12927 | 6143~
062677 ¢ 3116™= | 1270 | .6020=*

Az i 0988 | 3363 | .I1814*x | 6356~
06907 | 3190 | .15304*x | .6236=
06747 | 3126 | .1463™x | .6083"
As L1026 | 33907 | .1954%x | .6792"x
! 06927 1 32038 | L16347x | .6632x
06307 | 3148™ | .1398%x | .6332*=x

Ay if L0940 | 33307 | .2004% | 63167
07027 | 3170 | 1T10" | 6720~
06367 | 3120 | 1666 | .6626

As il 0938 | 3442= | 1912* | 6308
06447 3218" | L1664* | .6T14™
06307 | .3160= | .1632* | 6624~

frej. = fraction of repetitions with at least one test rejected

fincl. = fraction of repetitons in which elevated site is among those declared elevated
ftcor. = fraction of repetitons in which only elevated site is declared elevated

** indicates significant difference from observed fraction at A = 0

* indicates significant difference from observed fraction at A = 0 but not previous A
*x indicates significant difference from observed fraction at A = 0 and previous \

90
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Finally. as another practical check of the methodology. a large "bump” cluster of
contiguous elevated rates was considered. [t was suspected that smoothing would in-
crease the inclusion rate of several elevated rates into the cluster. Or in other words.
smoothing should be advantageous in identifving elevated rates within one existing
large cluster. Presented in Table 3.3 are four simulations with & = 20.m = 200 in
which seven out of twenty sites are indeed elevated in the following form. The inci-
dence rate at the highest point on the bump is five times the common thirteen while
pairs of neighbouring sites in the cluster have incideince which are four times. three
times. and twice as elevated as the common thirteen. The locations and contiguity

can be found in Appendices 3.7 and 3.10. The populations and v values are as follows

(I) Random Population/Location Set (see Appendix 3.10 for populations) :

Tetl =23t = vz =225 50 = s = 169,40 = v = 112

(IT) Circle. equal populations. all .V, = 1000:

Teit = 208 = = 22205, = g5 = 16T v = 2 = L1

([II) Circle. .N,;; = 300. others 1000:

et =290 % = 53 = 23305y = s = LT s = s = 116,

(IV') Circle + 1. equal populations of 1000. ~,;; at distant site:

en =208 = n =222 4 = s = 6T, ~etg = "~ = 111,

Entries in the table are the fraction of tests in which there was at least one
rejection (frej.) and the percent of tests in which at least four of the seven sites are
included in the declared cluster. The abbreviation *> hf.in.’ represents the fraction
of case vectors in which greater than half of the elevated rates are declared elevated.
Since the fraction of tests with at least one rejection is approximately 1.0. we are
most interested in the inclusion of more than half of the elevated sites in the cluster.

As denoted previously. (*~) indicates the initial significant increase from \ = 0. ()




indicates that the observed fraction is still significantly greater than the observed
fraction at A = 0 while (*x) indicates that the observed fraction is significantly greater

than the observed fraction at A\ = 0 and the observed fraction at the previous A.

Simulations (I) and (IV) show gains in the inclusion rate with each successive A
For simulation (I). these gains are significant up to the third \ in the set. Simula-
tion (I) is the simulation using the random population/location set and the ohserved
inclusion fraction levels off at approximately twice the initial inclusion rate. Simula-
tions (I1) and (iII) with circle configurations show similar patterns to those discovered
earlier in the main simulation set. In the equal population simulation (II). there is
a large significant initial gain with smoothing and this inclusion rate is maintained.
Although the initial gain is smaller. the same pattern exists in (IT). With the peak of
the "bump’ separated from the circle in simulation (IV). the observed inclusion rate
at the final A is almost four times that which was observed at A\ = 0. but is still at

only two percent.




Table 3.8

Ability to Detect Many Elevated Rates

Bump Situation. Four Configurations

k=20.m = 200
i elevated contiguous rates
[ I1 [1I v
frej. frej. frej. frej.
> hf.in. [ > hf.in. | > hf.in. | > hf.in.
0 9978 9932 9934 .9992
0814 1022 1648 .0052
M 9998 1.0 9934 .9992
23477 1 20827 | 18767 | .0158=
As 9992 .9993 .9936 9978
A28t 02062 | .2030% | .0170*
Az 9994 1.0 9988 9993
A592%x | 11998 | L2082 | 0178
Ay .9992 9996 .9936 9998
6847 | 20047 | 20447 1 .0190F
As 9998 9996 .99388 9993
[1666™ 1 .2090* | 2070 | .0200*
Configurations () to (IV) described in text
fre). = fraction of repetitions with at least one test rejected

> hf in. = fraction of repetitons in which more tiian half of elevated rates are included
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Chapter 4

Choice of Smoothing Parameter

[n this chapter. the problem of choosing the smoothing parameter is addressed. The
relevant issues associated with this choice are introduced in Section 4.1. [n Section
+.2. an MSE based criterion is given. Two case deletion criteria are presented in
Section 4.3. Section 1.4 outlines a combined strategy for the choice of \ and Section

1.5 presents results for this suggested strategy.

4.1 Introduction

In the previous chapter. the smoothing parameter \ was considered fixed. For each
of the simulations performed. an upper bound for A was established using the known
7 vector. In practice. the true v vector is unknown and the observed data consists of
only have a single case vector y. It is unlikely that one has any prior knowledge about
the appropriate degree of smoothing. An estimate A must be made from the data

according to certain criteria. The smoothed estimate vector ¥, has better sampling

94




95

properties than its unsmoothed counterpart %, , but any estimation-based criterion
must be considered in conjunction with criteria which consider the ability to detect

elevated rates or clusters.

In general. various strategies are used to choose a smoothing parameter. The total
mean squared error is an estimation-based criterion as the reduction in total variance
is balanced with increase in bias. The minimum MSE can be viewed as minimization
of a quadratic loss function. A predictive loss function criterion emphasizes the ability
of the smoothing prescription to predict a future observation. For predictive loss
functions such as the one presented in Section +4.3. the actual choice of smoothing
parameter is usually determined by cross-validation. In the Bavesian framework. the
smoothing parameter is contained within the specified prior density. If appropriate
hyperparameters can’t be established. Empirical Baves methods are usually employed.
Typically. these empirical estimates are found by maximizing a posterior for the

smoothing parameter.

4.2 An MSE choice for )\

As outlined in Section 2.6. the total MSE for the numerically obtained smoothed

estimate vector %, s

TOTMSE(Fm) = D Var(ioms) + 3 [EGams) — ). (4.1)

This function can be minimized numerically over a specified range for \. However.
the moments of ¥,,, are not know exactly but only approximately through expansion

as described in Section 2.5.
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Alternatively. an approximation to 4, can be used and its mean squared error
given exactly. For example. if the approximate estimate given by (2.13) is linear in

A. the overall expression for the total mean squared error is quadratic in \.

The first or variance term of (4.1) is

k k . k .
D Var(Gmi) + 20D Cov(Gmu ) + NS Var(ly). (4.2)
=1 =1 =1

Details concerning Var(l;) are given in Appendix 4.1.

The contribution of site / to the second or bias term of (4.1) is

EGi) — % = v + AE() — -,

R

The sum of the squared biases is simply \? F [E(i,)} . Hence the total mean

squared error for 4, is

k

TOT‘\[SE(;Y\) = Z\"ar(:im/.l) + 2«\2('0\'(‘31711.1-[1)
=1 =1

k . r A 12
+ XX Var(l) + A3 [EL)] (4.3)
=1

k
=1

The minimum of this quadratic occurs at

k -
—Z('O\’( :;‘ml.i- ll )
=1

’\m:n(.\ISE) =

2 .
S-Var(iy) + T, [EG)]
i=1
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Differentiating TOTMSE(<,) twice and evaluating at ., \sg) confirms that the
critical point is indeed a minimum. In general. sites with a large <,.;, are smoothed
down due to a negative [, while low “mis are smoothed up with a positive [,. This

i

La=1]

results in an overall negative Cov(“,,.1,) and a positive solution for \,,,.xrsE)-

The expression for TOTMSE as given by (4.3} and the location of the minimum
given by (4.4) depend on the unknown v vector. Hence they must be evaluated at
the current estimates. Evaluation of the solution by using the current estimates gives
a possible data-based choice for \. Recommending this choice implies a complete
emphasis on an estimation-based criterion. The MSE choice for \ is incorporated

into a combined strategy to be outlined in Section 1.1.

4.3 Case Deletion Criteria

Deleting a case or subset of the data and using the reduced data set for prediction
has wide application within the area of smoothing. The subset of the data is used
within some criterion so that the choice of smoothing parameter is determined or
validated by the data. In ridge regression. for example. one has the overall solution
3 = (X'X + hIY™' X'y where h is the smoothing parameter. Deleting the /'th
row of the design matrix X and the /'th element of the observation vector y. one
obtains the deleted estimate vector B(,)(lz) and the case deleted prediction ,, of the
removed observation. Denoting the predicted observation from the full data set by
y.(h). the sum of squares ¥, (j, — §(iy(h}))? can be minimized with respect to h. The
solution is the cross-validatory choice for the smoothing parameter. Two procedures

are considered for the choice of \ in this section.




4.3.1 Predictive Loss

The convex smoothing prescription for the multinomial cell probability estimate is
given by 8,, = a(l/k) + (1 — a)8, and was first introduced in Section 1.4.1. The
approximate equivalence of this smoothing prescription and the one proposed in this

thesis is presented in Appendix 2.2.

Stone (1974) suggested a cross validatory choice for the smoothing parameter
based on convex smoothing and quadratic loss. The data of m cases among & cells
can be viewed as an m by k table in which the i 'th row has only one non zero element
in the cell in which case 7 occurred. The rows indexed by ¢ can be used sequentially
generate case deletions from the vector y. In a deleted vector Y(,)- there are now y,
- | cases at cell ¢ while the counts at the other sites remain the same. The deleted
vector ¥, follows a multinomial distribution with m — 1 cases and & - 1 dimensional
cell probability vector 8. If §, is the vector which is the i'th row of this table then
&, is the j'th element of this vector. Following Stone. the cross validatory predictive

loss function

. 1 m & ) . 2 }
CVPLA) = =33 (&, = b,n0n) (4.5)
m R
1=i;=1
where 0., ,(,, = = %sm., 15 the numerically smoothed estimate with smoothing pa-

rameter A for the /'th case deletion.

There are y, repetitions of each row in the table and re-estimation for the /'th case
deletion occurs y; times. For table entries with J = t. a smoothed estimate 9.5,,1.”,)
which is close to one gives a small contribution to the loss function. Averaged over
all m cases. the function is an indicator of the smoothing method’s ability to predict
the deleted observation. Minimization over \ gives the cross-validatory choice for \

based on predictive loss.
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The CV'PL criterion was considered using the numericallv-obtained smoothed cell
estimate 0.5,,1,]. Empirical investigation involving complete homogeneity to moderate
departure revealed that CVPL(A) is not alwavs a function which initially decreases
and then increases. Frequently it is monotonically decreasing function over the entire
range for \. Minimization chooses \ at infinity. Using m—1 cases. & re-estimations are
required to obtain the sum given by (4.5). For simulations in which only one elevated
rate existed. the contribution to (4.5) from the & — | non elevated sites decreased
with A. This decrease was not offset by an increase at the site with the elevated rate.
Such results led to further investigation of the function CVPL(A) which is given in

Appendix 4.2.

In Appendix 4.3. the C\'PL function is discussed in terms of the convex multi-
nomial smoothing prescription. It is shown that some smoothing is always beneficial
with respect to predictive loss. Under equal populations and homogeneity. E{C'V P L!
1s shown to be uniformly decreasing with the smoothing parameter. The C\V'PL func-
tion has shown strictly decreasing behavior in fairly general situations (such as a
homogeneity and a low departure from homogeneity). In these situations. adapting
the C\V'PL criterion suggests taking the smoothing parameter at infinity. This C\V'PL
criterion emphasizes the ability to predict a deleted or future observation. However
testing for elevated rates is of primary interest in this thesis. The testing results of
Chapter 3 indicate that although some smoothing is often advantageous. an infinitelyv

large amount of smoothing is not necessarv.
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4.3.2 A testing-based choice for )\

The results of the \-fixed simulations of Chapter 3 indicate that as \ increased.
significant increases were observed in the ability to detect elevated rates. It was
logical to establish a criterion for selecting the smoothing parameter based on the

testing procedure developed.

Power is the probability of rejecting the null hypothesis when it is false. The
ability to detect elevated rates or clusters is a related quantity based on correct
decision(s) following the rejection of H,. Power and detection ability are a function
of the unknown parameter vector «. If smoothing is applied. expressions for these
functions can’t be found because the critical region at site / involves the complicated

determination of (',. . as described in Section 3.3.3.

The cross validation algorithm of Stone (1974) outlined in Section 1.3.1 can be
adapted to the testing procedure. The existence of elevated rates is unknown and a
correct or incorrect decision in this sense can’t be recorded. However. the number of
tests rejected out of & can be recorded for each case deletion. The distribution of the
deleted case vector y;, was discussed in Section 1.3.1. For each \. a case from each
of the ¢ sites is deleted sequentially. For the deletion of a case at site i. the maximum
likelihood vector %, is estimated and the approximate smoothed estimates at each
site are obtained. For this case deletion at site i. the test statistics Z\.red,,. and
critical values CA'Q..J are determined for j = 1..... k . The fraction rejected out of
k. fry ). is then calculated. The following criterion is calculated over the & required

case deletions

1 k
C\P\\’(/\) = n—Zy;fr,\_(f) . (46)
[

=1
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Averaged over the entire data set. this quantity indicates the power to reject with an
observation removed. The function CVPW(\) is maximized numerically over a set of

A to give the choice of smoothing parameter.

A maximum of & case deletions are required at each \. However. empirical inves-
tigation showed that k deletions were not necessary for computing CVPW(A). Only a
large <\, can lead to a rejection of H, ;. and hence only case deletions corresponding
to sites having a 4, greater than | made any contribution to the overall sum in
(4.6). This observation is helpful for reducing the amount of computing if a large

number of \'s are to be used in the numerical maximization.

The same method for establishing the upper bound for \ in the simulations of
Chapter 3 can be used to set an estimated upper bound for the grid of A values to
be used in the maximization of CVPW()). In Section 3.1. the upper bound was
described as being that value of A at which the approximate variance for %, equals 0.
This solution depends on the unknown 4 vector. The maximum likelihood estimate
vector is the logical choice for substitution into this solution to obtain an estimated

upper bound for A.

CVPW(A) is step function with a range of [0.1] and increnients as small as L/mk.
A unique A to maximize CVPW(\) may not be found. A maximum level or plateau is
more likely. The width of the interval of maximum level could depend on the number
of A in the grid search. Some possible examples of the form of the step function are

given in the next section.

The CVPW(A) criterion is appropriate in the inference setting which has been
presented. Due to its step function form. this criterion can be combined with the

minimum MSE choice for A to establish a more comprehensive strategy for selection



of the smoothing parameter. This strategy is outlined in the next section.

4.4 A combined strategy for choosing \

The power criterion CVPW emphasizes power in testing as a criterion for choosing
the smoothing parameter. This emphasis can be maintained while still recognizing
the sampling properties of the estimate vector ¥\ Even with a large number of \ in
the grid search. the CVPW function is likely to give an interval choice for A\. The
minimum MSE choice as outlined in Section 4.2 can be considered after this interval

has been found. The following strategy is proposed.

(1) Using the established \;-g. select n =+ 1 equally spaced values for A between 0 and

AeB.
(2) For each value of \. calculate CVPW(A ) forj=1..... n + L. where \; = 0.

(3) Find max[CVPW(),)]

i

(4) Establish where max[CVPW(A,)] occurs. In other words. search to verify if
max[CVPW(A))] occurs at a single \. If it does not. find the A limits [Ai. As] of this

maximum plateau.

5(a) If the maximum occurs at a single point \,.... perform a new search from the
previous A to A\,,.. If a plateau is now found. check to see if Amin(MSE) Is contained
within the \ range. If it is not. take the average A of the plateau as the \ choice. If

no new plateau is found. take ),.,, as the choice for \.




103

5(b) If the original search gives an interval [\,.\;] for the max{CVPW(A,)] then
perform a more refined search over the range. If no new plateau is found. check to see
if the min(MSE) choice for \ is within the interval [Aa- Ag]. Ifitis. take the min(MSE)

choice for A. If it is not. take the midpoint (\, + Ay)/2 as the choice for \.

5(c) If more than one plateau occurs. consider the \ range of the highest plateau

only and perform the operations described in (b).

5(d) If the original search shows that the C\VPW function is flat over the entire range
for A then take the min(MSE) choice for \. This option is quite likely for situations
which are a small departure or no departure from homogeneity. The recommendation
of the min(MSE) choice for smoothing parameter suggests taking a A that gives an
estimate with better sampling properties. although the ability to detect elevated rates
may not be improved. The simulations of fixed \ in Chapter 3 imply that there is no

significant loss in the ability to detect elevated rates if some smoothing is performed.

The four examples in Figures 4.1 and 4.2 illustrate some of the possible outcomes
for the CV'PW function. The estimated upper bound. \;-g is approximately .02 for
each. In plot | of Figure 4.1. the X interval [.01..02] is checked for ,.\,,“,l(.\,sg). Ifit is
not within this range. the midpoint .015 would be chosen for \. In the second plot
of Figure 4.1. the highest plateau is approximately on the interval [.013..015]. If no
new plateau is found on a more refined search of this interval. and if :\,,1,,,(.\155) Is
not found within this interval. .014 is chosen for A. In the first plot of Figure 4.2.
the highest plateau. approximately on the interval [.012..02]. is considered. If no new
plateau is found and if :\m,-n(,\,SE) is not found within this interval. .016 is chosen for
A. The CVPW function is flat over the entire \ range in the second plot of Figure

1.2, The proposed strategy suggests taking Amin(vsg) in this situation.
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4.5 Results - Combined Strategy

The strategy proposed in Section 4.4 is evaluated using simulation in this section. In
practice one would have only one case vector at the known locations and no prior
knowledge of the amount of smoothing required. In the simulations discussed in
this section. five thousand case vectors were generated. For each case vector. the
smoothing parameter \ was chosen according to the strategy proposed in the previous
section. Approximate smoothed estimates for 4 were then obtained using the chosen
A. A critical value was obtained for the test statistic Zy.req, and testing was performed
in the same manner as described in Chapter 3. For comparison. testing was also done
with A = 0. Preliminary simulations were performed to assess the computing time
of these extensive simulations. Based on these simulations. it was decided that an
original grid search of twenty-five A\ values was sufficient for each repetition. In

practice. with only one data vector. many more \ values could be used.

Firstly. homogeneity or complete null simulations were carried out with - =

= =% = 1.0. The upper probability limit for the fraction of tests rejected for
Ak = 20.m = 200. equal populations of 1000 and one different population situation
were given in Section 3.3. These limits at the site and overall level remain the same
for the complete null simulations summarized in Table 4.1 given below. The limits
for this Table are (a) .0037. (b) .0019. (c) .0544. (d) .0233. (e) .0024. (f) .0363. As
mentioned in Chapter 3. for A\ = 0. there are two possible upper bounds for the *N
different configuration’. the higher was used. As can be seen in the table. the upper

limit was not exceeded and the achieved levels are quite conservative.




Table 4.1

Homogeneity Simulations with Data-based Choice of \

20 Sites. 200 Cases

] Circle + 1 Circle
Smoothed | Unsmoothed | Smoothed | Unsmoothed
Site Site Site Site

Overall Overall Overall Overall

Equal 0024 (a) .00i6 (b) 0020 (a) 0013 (b)
Popns .0432 (¢) .0202 (d) 0476 (c) 0234 (d)
1 Popn 0023 (a) .0020 (e) .0030 (a) .0020 (e)
Different | .0472 (c¢) 0334 () .0402 (¢) 0316 (f)

107

Site = max. fraction of tests rejected at any site
Overall = fraction of repetitions with at least one rejection
Probability limits (a) through (f) given in text

A complete null simulation was also carried out for the ‘Random/location Popu-
lation” configuration. The site and overall levels were again conservative for the tests

with and without smoothing.

Simulations with elevated incidence at one site were performed for these three
configurations and are presented in Tables 4.2 and 1.3. The fraction of tests rejected
and the fraction totally correct are given. The fraction totally correct is the fraction
of tests in which the only site declared elevated is the elevated site. In Table 4.2.

the elevated incidence rate in each simulation is one and a half and two times the
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true incidence rate of the other nineteen. The elevated site in the other simulation
of Table 1.2 is once again the distant site in the "circle + 1° configuration. and it has
population 500 in the two simulations in which the populations are not equal. The
elevated rate ratio 5. is indicated in the left column. The simulations with a single
elevated site for the ‘Random Population/Location” configuration are given in Table
1.3. The row corresponding to ., = 2.79 are results for a simulation in which the

elevated site has incidence rate three times that of the common nineteen.




Ability to Detect Single Elevated Rate (Data-based choice of A)

Table 4.2

20 sites and 200 cases

Circle + 1 Circle

Smoothed | Unsmoothed | Smoothed | [ nsmoothed
Populations f.rej. f.rej. f.rej. f.rej
and = f.corr. f.corr. f.corr. f.corr.
Equal Popns 1222 .0700 .1320* .06-£2
“el = 146 .08338* 0534 .0978* .0510
Equal Popns 4500~ .3608 4640 3520
et = 1.90 128> 3522 L1382 3408
| Different Popn 0732 0742 0730 0726
el = 143 0474 0454 .0436 .0430
I Different Popn 2218 2182 2252 2162
~er = 1.95 2024 .1963 1943 1918

frej. = fraction of repetitions with at least one test rejected
fcorr. = fraction of repetitions in which only elevated site is declared elevated
* indicates significant difference from observed fraction without smoothing
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Table 4.3

Ability to Detect Single Elevated Rate (Data-based choice of A)

Random Populations/Locations. 20 sites and 200 cases

Single Elevated Rate
k=20.m =200
Random Populations/Locations
Smoothed Unsmoothed
f.rej. f.rej.
Yel f.corr. f.corr.
147 .0930™ .0196
.0826™ 0414
1.93 3216~ .2336
2958 .2200
2.79 ST70™ .8066
.83602* L1934
-
frej. = fraction of repetitions with at least one test rejected
fcorr. = fraction of repetitions in which only elevated site is declared elevated

* indicates significant difference from observed fraction without smoothing

The results presented in Table 1.2 are similar to those presented in Chapter 3
for a single elevated rate. In Table 4.2. the observed detection ability (the fraction
with at least one rejection or fraction correctly declared elevated) with smoothing
performed is similar to the the maximum observed fraction with fixed positive A in
the simulations of Table 3.3 and 3.4. An asterisk indicates that the observed fraction

with smoothing is a significant increase from the observed fraction with A\ = 0. The
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fraction with at least one rejection or totally correct from the tests with smoothing is
significantly greater than the observed fraction with no smoothing in the simulations
with equal populations. There is no significant difference in power when the elevated
site has the lower population (as in the simulations of fixed A in Chapter 3). The
elevated site for the ‘Random Populations/Locations’ configuration of Table 4.3 is
the same as for the simulation presented in Table 3.7. In the first two simulations
(70 = L4750 = 1.93). the fraction of tests rejected and fraction totally correct
with smoothing applied are similar to the highest achieved previously with fixed \.
Although the fraction totally correct without smoothing is near eighty percent in the
third simulation. the observed fraction with smoothing (0.3770) is also a significant

increase.

Simulations with the “circle” and “circle + 1" configurations which use the data
based choice for A reveal results which are very similar to those obtained in Chapter 3.
As a result. only the circle + 1" configuration and the ‘Random Population/Location’
configurations are used in simulations with two elevated contiguous rates. As in
Chapter 3. true 4 vectors which represent a small departure from homogeneity were
chosen. The results for two contiguous elevated rates with & = 20.m = 200 for
the “circle + 1 configuration for simulations with fixed .\ appeared in Table 3.7.
For simulations in which the elevated (distant) rate had the differing population
(previously labelled simulations D through F). no significant difference exists in the
observed detection ability between tests with and without smoothing {both fraction
with at least one rejection or totally correct). The results for equal populations
are given in Table 4.4 along with simulations for the ‘Random Population/Location’
configuration. The elevated rate ratios and departure measure & for these simulations

are as [ollows

('ircle + | (Equal Populations)
At d =1.08.% = 2 = 113




6= 9.584. Tell = 1.36. Tel? =
C:6=93847y =140~ =

Random Populations/Locations

Aro= 3.20. Tell = Ten2 = 1.-

B: 6 = 7.64. %1 = 1.89. v,
C:é= 7.90. Tell = 1.42. Tei2

[n each of the simulations representing a cluster of size two summarized in Table

1.-4. the observed fraction of tests with at least one rejection with smoothing applied

is significantly different from the unsmoothed fraction. The corresponding observed

fractions totally correct were not always significantly different.

Ability to Detect Two Contiguous Elevated Rates (Data-based choice of \)

Table 4.4

20 sites and 200 cases

Circle + 1 Random Popns/Locns
Smoothed | U'nsmoothed | Smoothed | ['nsmoothed
f.rej. f.rej. f.rej. f.rej
f.corr. f.corr. f.corr. f.corr.
A A582 7 1064 1288 < 1012
.003G 0014 0028 .0010
B 4330 * .3502 3330 2608
0132 .0096 .0086 ~ .006+
C 4400 ~ 3508 3628 - 3292
0256 = .0102 Ol = .0056
frej. = fraction of repetitions with at least one test rejected
fcorr. = fraction of repetitions in which only elevated sites are declared elevated

* indicates significant difference from observed fraction without smoothing




Chapter 5
Application

For an ongoing analysis of gastric cancer rates in Nova Scotia. assessing the signif-
icance of elevated rates or clusters was required. This goal is achieved by applying
the method developed in this thesis. The resulting smoothed estimates of incidence
possess better sampling properties than estimates obtained if smoothing is not con-
sidered. Sixty-six municipalities are used by the Nova Scotia Cancer Registry. Eight
municipalities were combined because of the closeness of their co-ordinates. The lati-
tudes and longitudes as weil as the contiguity of the & = 33 sites or regions. are given
in Appendix 5.1. The diagnosed cases of gastric cancer for the population aged 65
and over were aggregated for the five vear period ending December 31. 1931. The
risk population was determined from 19381 Statistics Canada census data. The total

risk population is Ny = 92335 and the total number of cases is m = 211,
5.1 Estimation and Testing with fixed \

C'ase counts. risk populations and estimates for the 38 sites are presented in Table
3.1. At A = 0. the maximum likelihood estimates “mei of the rate ratio 5; range from
0.0 (occurring at 13 sites) to 4,720 = 15.69 (Guysborough Municipality). Nearly half

of the maximum likelihood estimates are greater than 1.0. and over half of these sites
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have a risk population less than 1000. Metropolitan Halifax (site 33) has close to
20 percent of the risk population and a maximum likelihood estimate of 1.3373 =

(55/17755)/(214/92385).

The smoothed estimate vector ¥,,, is presented for four smoothing parameters.
The range for these \'s was chosen in the same manner as in the fixed \ simulations
of Chapter 3. The true - is not known so an upper bound A;-g, for each site is
found by using the value at which the approximate variance (evaluated under H,) is
approximately zero. The presence of relatively small N/s led to an overall \(-5 which
1s small for other sites with larger population. The range of A used is smaller than
the range of the simulations presented in this thesis because the average d,, s now

much less (defined by latitude and longitude rather than on a 10 by 10 grid).

As expected. the effect of smoothing is most pronounced on the extreme estimate
at site 20 (Guysborough municipality). The estimate for site 20 is smoothed down
from 15.5983 to 11.7909 for the set of \'s used. Smoothed estimates corresponding
to sites with zero cases are actually less than that listed (e.g. an estimate of 53 x 10~°
is given as 107%. [t is interesting to note that some smoothed estimates which are
greater than 1.0 are larger than their unsmoothed counterparts. For example. site 3
(Antigonish) is contiguous and very close to site (rural Antigonish municipality).
The maximum likelihood estimate for rural Antigonish (site 1) is 3.6432 and the esti-
mate withont smoothing for the town of Antigonish (site 3) is 1.1589. The smoothed
estimate at site 5 increases for each successive \ used. Such a result was not seen
in the simulations presented in earlier chapters. The increase with smoothing of an
estimate greater than 1.0 can be attributed to the higher estimates observed in this
data set and the smaller inter-site distances. Despite the large estimate at \ = 0.
the estimates at site 4 do not quickly decrease with smoothing. They decrease from
3.6432 to 3.6338 (from A = 0 to A = 5.305 x 10~3) while the estimate for site 11
decreases from 3.1973 to 3.1230 with the same amount of smoothing applied. The
estimate at site 1 may not be smoothed down because of its proximity to the very

high estimate at site 20.




Nova Scotia Gastric Cancer Data

Table 5.1

Cases. Populations and Estimates using fixed A

Site | y | N Ym
Ax 107 384 1.763 3.537 5.305
Ly 11375 0.3139 | 0.3146 | 0.3152 | 0.3163 | 03172
20 112625 0.1644 | 0.1648 | 0.1652 | 0.165T | 0.1662
31 1) 175 | 24669 | 2.4608 | 2.4539 | 2.4391 | 2.4233
191065 | 3.6482 | 3.6478 | 3.6441 | 3.6414 | 3.6383
51 2| 745 | 1.1389 | L1617 | 1.1641 | 1.1631 | 1.1716
6 2| 1215] 0.7106 | 0.7119 | 0.7131 | 0.7149 | 0.7165
T 1| 735 ATIT | 05728 | 0.5738 | 0.5753 | 0.5765
S L} 395 | 1.0929 | 1.0953 | 1.0973 | 1.1007 | 1.1035
91 3] 245 | 5.2862 | 5.2291 | 5.1733 | 5.0672 | 1.9636
10| 31 830 5237 | 1.5254 | 1.53268 | 1.5286 | 1.3297
LL| L] 135 | 3.1978 | 3.1878 | 3.1763 | 3.1504 | 3.1230
12112 | 3795 3651 | 1.3674 | 1.3694 | 1.3727 | 1.3754
13 11315 283 | 0.3290 | 0.3297 | 0.3308 | 0.3313
41 211330 6 | 0.6269 | 0.6279 | 0.6296 | 0.6311
15 0] 135 i 1078 10~8 10-7 10-7
161 213110} 0.2776 | 0.2782 | 0.2736 | 0.2794 | 0.2800
LT 512525 0.8548 | 0.8363 | 0.3577 | 0.8593 | 0.3616
IS | 21270 | 0.6799 | 0.6811 | 0.6323 | 0.6842 | 0.6358
191 0 465 ) 10~° 103 10-3 10-8
20| 4| 110 | 15.6983 | 14.6697 | 13.8683 | 12.6690 | 11.7909
211 1215690 | 0.9104 | 0.9121 | 0.9134 | 09157 | 0.9175
220 21 1340 | 0.6443 | 0.6457 | 0.6463 | 0.6437 | 0.6504
231 01285 10~ 10 10—9 102
241 0 160 108 10—* 10~ 10—
25 712370 1277 | 1.2789 | 1.2816 | 1.2837
26 41 T35 | 2.1998 | 2.1943 | 2.1902 | 2.1831 | 2.1833
271 513785 0.5703 | 0.5714 | 0.5723 | 0.5739 | 0.5751
281 0] 515 10-° 1078 10-3 1078
201 0| 135 ) 10-8 103 10-8 10-3
301 L] 170 | 2.53394 | 2.3375 | 2.5347 | 2.5275 | 2.5190

Smoothed estimates for sites with zero cases are listed to next decimal place
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Table 5.1
Nova Scotia Gastric Cancer Data

Cases. Populations and Estimates using fixed A

Site Yy N ‘?ml :Ysm
Ax107? 0.0 884 1.768 | 3.537 | 5.305
3L 2 3225 | 0.2677 | 0.2683 | 0.2687 | 0.2695 | 0.2702
320 1| 670 |0.6443 | 0.6458 | 0.6472 | 0.6195 | 0.6515
331 1] 260 | 1.6604 | 1.6593 | 1.6576 | 1.6534 | 1.6186
303 335 1 3.8660 | 3.3481 | 3.8295 | 3.7915 | 3.7538
351 0] 1060 0.0 10-9 10~? 10~° 1072
361 0 290 0.0 10-3 10-8 10-® 10-%
30 2] 385 | 22426 1 2.2409 | 2.2384 | 2.2325 | 2.2256
38| 6 2430 | 1.0659 | 1.067S | 1.0694 | 1.0721 | 1.0742
391 L} 645 {0.6693 | 0.6709 | 0.6722 | 0.6715 | 0.6765
107 0] 205 0.0 10— 10-8 10-" 10-"
411 3| 1410 | 0.9185 [ 0.9201 | 0.9215 | 0.9237 | 0.9256
4205 1 90 | LST | L4513 1 1.4336 | 1.4573 | 1.4603
31 0] 655 0.0 10-° 10-8 10-8 10-3
0] 2385 0.0 10-# 103 10-* 10-*
51 5 330 | 2.6006 | 2.5933 | 2.5908 | 2.53383 | 2.5833
46 | 1 160 | 2.6932 | 2.6350 | 2.6711 | 2.6431 | 2.6155
471 01 490 0.0 10-° 10-¢ 10-% 10-8
A8 [ L4 | 4080 | 14313 | 1.4839 | 1.4339 | 1.4395 | 1.4923
A9 T F 1995 | LIS | LALT2 | 15193 | 1.3227 | 1.5253
50 | 20 1195 [ 0.7225 | 0.7240 | 0.7253 | 0.7275 | 0.7279
3L 31 75 | L7134 | L7166 | L.T172 | 1.7177 | 1.7170
3201 0 530 0.0 1o-? 103 10-® 10-8
53 [ 3| 1310 | 0.9336 | 0.9904 | 0.9913 | 0.9943 | 0.9963
S0 4 LISS | L4572 | L4594 | 14611 | 1.1638 | 1.4630
25 155 | L7535 | 1.3373 | 1.3395 | 13415 | 13447 | 1.3473
56 | 6| 3900 | 0.6642 | 0.6653 | 0.6663 | 0.6631 | 0.6695
50| 3] 3085 | 0.4198 | 0.4206 | 0.4213 | 0.4225 | 0.4235
38 3| 1780 | 0.7276 | 0.7290 | 0.7303 | 0.7323 | 0.7341

Smoothed estimates for sites with zero cases are listed to next decimal place
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Test statistics at A =0 (Z,,;) and A > 0 (Z\.req.) were calculated for each of the
38 sites. Exact critical values for A = 0 were obtained as described in Section 3.1.
Approximate critical values C,.; (at level o= = .05/57) were obtained through the
method described in Section 3.3. Site 20 (Guyshorough municipality) was declared
elevated for all five \'s (including A = 0). Site 4 (rural Antigonish municipality) was
declared elevated for the last 3 \'s in the set. These two sites share a common border.
Hence smoothing results in the declaration of a cluster of size two while only site 20 is
declared elevated without smoothing. The reduced estimates “red. and test statistics
Z.req for these two sites are given in Table 5.2. A map of Nova Scotia which displays
the 53 municipalities is given in Figure 5.1. The municipalities of Guysborough (site

20) and Antigonish (site 1) are indicated by an “N™ and “x" respectively.

The analysis was reperformed without metropolitan Halifax (ys; = 55. and V55 =
17755 were removed). A new range of \'s was used and a new set of estimates. test
statistics and critical values were obtained. Sites 4 and 20 are now both declared

elevated at A > 0 (4,4 = 3.9665 with the smaller N

Table 5.2

Approximate Estimates and Test Statistics for Sites Declared Elevated

Site Site 20

Ax 107 “red.d Z.\.red.-l Tred.20 Z.\.rcd.2l)

0.0 3.6432 1 11836 | 15.6983 | 7.4239

0.384 3.6447 | 41778 | 144843 | 6.9963 ¢
1.768 3.6412 | L1742 § | 13.2703 | 6.5687 1
3.537 3.6341 | 41647 7 | 10.3423 | 5.7135 ¢
3.305 3.6272 | L1552 1 | S.4143 | 48584 1

i = declared elevated
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Figure 5.1: Nova Scotia Map and Municpalities

( Elevated incidence indicated by an x )
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5.2  Analysis using data-based selection of \

Estimation and testing were carried out using the data-based choice of (described in
Section .4). The upper bound for A (required for the strategy's grid search) was the
same as in the previous section (i.e. the minimum \ over all sites at which \"Elryu(i,,_d,,)
is approximately zero). The \ chosen was 2.2193 x 10-5. The smoothed estimates.
approximate estimates and test statistics at A are between those for \ = 1.768 x 10~°

and A = 3.5337 x 107° given in the previous section.

The top panel of Figure 5.2 presents the difference in the smoothed and maximum
likelihood estimates versus the maximum likelihood estimate. The extremely large
estimate and large negative difference for Guysborough municipality is not shown.
Only 12/53 estimates are smoothed down (l.e. 2smi—%mii < 0) but as expected these
sites have large maximum likelihood estimates. The increase in the other estimates
with smoothing is much smaile: and includes the 13 sites for which zero cases were
observed. Twelve sites which have maximum likelihood estimates between 1.0 and
1.7 have their estimates increased by the smoothing. The second panel of Figure
1.2 presents the difference in estimation versus the risk population .\,. Metropolitan
Halifax is not shown because its population is so large relative to the others. As was
seen in previous examples. the effect of smoothing is larger for the sites with smaller
populations. The large decrease with smoothing in the largest estimate (Guyshorough

municipality). which has a small population is evident.

Site 4 (Antigonish municipality) and site 20 (Guysborough municipality) are de-
clared elevated at \ (A = 2.2193x 1073 is greater than first fixed \ at which site
4 1s declared elevated). Hence the utility of simoothing and the testing method are
demonstrated because only site 20 is declared elevated based on the maximum likeli-
hood estimates. Estimation and testing were repeated without metropolitan Halifax.

Sites 4 and 20 were declared elevated with and without smoothing applied.
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Classical Bonferroni corrections are known to be conservative and so the sharper
correction of Hochberg (19338) was applied. Rather than use a., =.05/(k—-1) for all
(k — 1) tests as above and as in the simulations of Chapter 3. the observed p-values
are ordered. The Z,,;; giving the smallest p-value is tested at level a/(k—=1). the Z,;,
giving second smallest p-value is tested at level a/{k—2) and so on. The exact critical
value for this new level at A\ = 0 was used as the starting point in the algorithm to
find C,- . the critical value for the test with smoothing. Even with the more liberal

testing level (at sites other than 20). site 20 was still the only one declared elevated

without smoothing and sites 4 and 20 were once again declared elevated at the chosen

-

A.
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Chapter 6

Discussion

In this chapter. the methodology and main results are summarized. followed by a

discussion of future work.

6.1 Summary

Smoothed estimation of incidence rates by penalized likelihood has been proposed.
The parameter +,. the ratio of the incidence rate p:i to the weighted average p =
2 -Vipi/ V4 was introduced because relative incidence is of interest. Conditioning on
the total number of cases led to smoothed estimates based on a penalized multinomial
likelihood. The resulting estimates %, are a compromise between the overall rate
ratio for the region and the maximum likelihood estimates for individual sites. An
approximation was developed for the smoothed estimate and approximate moments
of the smoothed estimate were obtained. An approximation to the total mean squared

error of 4, performed well under simulation.

Detecting sites with elevated incidence is of primary interest and a test statistic
based on simnoothed estimates was developed to meet this objective. A method for

determining the critical region of the test statistic was determined. Further refinement
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of the test statistic was required to accomplish this goal. The testing procedure was
evaluated through simulation. Under complete homogeneity (=; = | for all i. no
elevated rates). the level of the tests was controlled at both the site and overall levels.
The ability to detect elevated rates increased significantly with smoothing in many
situations while no significant decreases were found. More smoothing is required to
observe benefits with respect to inference if the site of an elevated rate is distant from
the others. Significant gains in detection ability were observed with smoothing for

two contiguous elevated rates. particularly if these rates were very similar.

The choice of smoothing parameter \ was addressed by considering a minimum
MSE choice and case deletion ideas. A criterion based on the testing procedure
developed was combined with the MSE choice to establish a strategy for choosing
A. This strategy was evaluated by simulation and the observed detection ability was
similar to the maximum achieved under fixed \ for the same configuration. Smoothing
using the chosen \ significantly increased the detection ability in some situations while

significant decreases were not observed.

The overall method was applied to gastric cancer incidence data in Nova Scotia.
For the time period considered (1977-31). two municipalities were declared elevated
with smoothing applied while only one of these sites was declared elevated without

smoothing.

6.2 Further Work

The methods proposed in this thesis have accomplished several objectives. The penal-

ized likelihood incorporates the spatial aspect of the data and the resulting smoothed
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estimates have better sampling properties than their unsmoothed counterparts. The
test statistic developed demonstrated an improved ability to detect elevated rates.
A data-based method for choosing the smoothing parameter has given satisfactory
results.

Further investigation is possible within each of these topics. The convex smoot hing
prescription %en, = dmri(l — a) + a(l) will be pursued further. The approximate
equivalence of 4., ; and <;,,, was shown in Appendix 2.2 but the moments of 4,,, and
a possible test statistic based on this estimate have not been considered. A Cornish-
Fisher expansion produced critical values for Z\ ,.,; which were very conservative but

this method may be revisited if other test statistics are developed.

More work on the choice of smoothing parameter is planned. If prediction of a fu-
ture observation becomes more relevant. the cross-validatory predictive loss criterion
may be pursued. This thesis has not focussed on Bayesian ideas but as mentioned in
Section 2.1. exp{—A\ pen (v)} can be interpreted as a prior for 7 and A is a hyper-
parameter. Techniques for the choice of A in this framework have not been explored.
These methods include improper hy perpriors for \ and estimates obtained through

Empirical Baves methods.

Allowing for case counts to occur over several time periods at each location is
a natural extension of the proposed method. For t = |..... T time periods and
it =1..... k sites. the case count y,, is distributed as Poisson but with mean \yp,,.
Conditioning on the total number of cases. m,. in each time period (conditioning on
the grand total is another approach). y,|m. is distributed as multinomial with index
m, and cell probability vector 8, where 8,; = Neipei/ T, Neypey- A possible penalty for
the penalized likelihood is df ¥, 3, 5 25 L/ (digt ) (7ir — 7,5)* (multiplication by td
eliminates problems with differing units). The contribution to the penalty is large
for large absolute differences in rate ratios which are temporally and spatially close

together. Another possibility is having a separate penalty for time and space but this
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also requires two smoothing parameters.

Administrative investigation may reveal that high estimates of incidence are at-
tributable to external factors. If data on potential risk factors such as soclo-economic
status or level of medical care are available. these covariates could be included (a-
priori) into the methodology within a generalized linear model framework. For y;
distributed as Poisson with mean .V;p;. then we can model log(.Vip:) as the linear
function 37, x,;3;; where r; represents the jth covariate at site / and 3)i is a param-
eter to be estimated for this effect. Conditioning on the total cases as before. the cell
probability §; or the rate ratio +; can be expressed as function of >, I3, The issue

of overdispersion will be considered in this new framework.

There are a vast variety of spatial configurations and levels of the factors IN. m. &
and + that have not yet been investigated. The method developed can be applied to
data consisting of counts other than human health outcomes. Assuming traffic volume
data is collected to establish an associated risk population. smoothed estimates of
accident incidence can be presented. Other applications are possible within fields

such as forestry and biology if appropriate risk populations can be determined.
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Appendix 2.1 Multinomial Likelihood Estimation

[n this appendix. maximum likelihood estimates for the multinomial likelihood

[(7) are obtained.

To an additive constant. the multinomial log likelihood was given by (2.8) as

k

I(v) = ylog(+:).

=1

The constraint % | Vi4,/\N, — | = 0 is included as a Lagrangian and the con-

)=

Differentiating with respect to o and equating to 0 gives

strained multinomial likelihood becomes

£ £ N
I(y) = yilog(y) —o (Z ( \+

=1 =1

do

2 £ /N
()(7)=—Z(\\i">+l=0.
A

k
Solving gives Z,\,-‘;.,- = \,.
=1

Differentiating with respect to ~; and equating to 0 gives

Ay _ __(‘_) 0.
y A




which implies 0 = m.

Substituting into dl(v)/+; gives

and solving gives the maximum likelihood estimate

2= (Y m
L= (3)i(2)
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Appendix 2.2

The approximate relationship between estimators obtained through con-

vex smoothing and the proposed method

The penalized log likelihood .. (v) was given by (2.10) as

u u N ')
pan :" ZJIIO :l _O(Z (T) - ) - \Z .

i=1 a#i diq

Maximizing this function numerically gives the smoothed estimate Yem- Alterna-

tively. one can restric the penalized estimate 4 ¥sm.. to be a convex combination of the

maximum likelihood estimate 4,,;; and the constant 1. Yeond = Ymii(l —a) + a(l)

rm

(see Sections 1.4.1 and 4.3). Substituting this estimate into Len(7y) gives

k k \ _
beala) = Y plogl(l = @)inis +a] — o(z A ".""‘““’]_1)

=1 .\+

=

—

- \sz :mlx (l—“) mlq] . (2.21)

t ¥

. . 2
If one writes pen(%,,) = ¥, D i ;'— [Amii = Fmig)” then (2.2.1) reduces to
iq

Len(a) = Zyilog [(l —a)imii + (z] - AMI - (1)',[)511(‘}"1,)

=1
Differentiating with respect to «a gives

()[prn

&
Tmi.i .
- - | :-).l\ .
; 1—a),m1,+a peEn( ¥ my)
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quating a one-term Taylor series expansion about a = 0 for the right hand side

of this equation to zero gives

- /\[’fn(:ym[)

a =

K
Apen(Y ) + 3 _yir?

=1
as an approximate solution for @ in terms of \. where re = (1 — 2,0/ %m.. Hence
the choice for @ in 4., is approximately equal to the estimate proposed in Section
2.2, For A\ =0.a =0 and 4.,n; = %m;. For A approaching infinity. @ approaches 1

and ..., tends to 1.




Appendix 2.3 Additional Examples of Smoothed Estimates

In this appendix. additional examples of the numerically smoothed estimate ¥,
are given. There are & = 10 sites and the spatial configurations and population
vectors are the same as the simulations of Tables 2.1 through 2.4. The number of

cases is now m = 200 so the ratio m/k has increased from 10 to 20.

The following table supplements Table 2.1 in that the same 7 vector. spatial
configurations and populations are used. The upper bhound for \ is approximately

twice as high. The effect of smoothing is similar.

Site Coords ¥ N v %l “sm “sm “sm

I} (1.76.1.64) [ 0.95 | 1000 | 19 | 0.950 | 0.953 | 0.965 | 0.987
21 (L.17.1.98) | 0.95 | 1000 | 21 | 1.050 | 1.047 | 1.044 | 1.024
3] (0.5.1.86) | 0.95 | 1000 | 13 { 0.650 | 0.670 | 0.639 | 0.310
(0.06.1.34) | 0.95 | 1000 | 19 | 0.950 | 0.955 | 0.953 | 0.97¢
(0.06.0.66) | 0.95 | 1000 | 21 | 1.050 | 1.048 | 1.046 | 1.029

61 (0.50.0.13) | 0.95 | 1000 | 21 | 1.050 | 1.043 | 1.046 | 1.023
(1.17.0.02) 1 0.95 | 1000 | 14 | 0.700 | 0.720 | 0.7338 | 0.843

51 (1.96.0.36) { 0.95 | 1000 | 22 | 1.100 | 1.095 | 1.091 | 1.057
91 (2.00.1.00) | 0.95 | 1000 | 24 | 1.200 | 1.136 | 1.175 | 1.107
10| (1.00.1.00) | 1.43 [ 1000 | 26 | 1.300 | 1.266 | 1.246 | 1.134

The following table supplements Table 2.2 in that the same rate ratios ~. spatial
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configurations and populations are used. The upper bound for A is higher than in

that simulation. The effect of smoothing is similar to that of Table 2.2.

A

0 .025 05 40

Site | Coords Y LN ¥ A ] G | G | dem
Ly (1.76.1.64) | 0.95 | 1000 {20 | 0.950 | 0.953 | 0.955 | 0.971
2| (1.17.1.98) 1 0.95 | 1000 | 18 | 0.855 | 0.361 | 0.866 | 0.915
3] (0.5.1.86) | 0.95 1000 | 17 | 0.8075 | 0.814 | 0.821 | 0.336
41 (0.06.1.34) | 0.95 | 1000 | 13 | 0.855 | 0.861 | 0.867 | 0.919
51 (0.06.0.66) | 0.95 | 1000 | 20 | 0.950 | 0.955 | 0.959 | 0.986
61 (0.50.0.13) ] 0.95 | 1000 |27 | 1.2825 | 1.273 | 1.267 | 1.166
¢ (1.17.0.02) 1 0.95 | 1000 | 22 | 1.045 | 1.043 | 1.041 | 1.031
81 (1.76.0.36) | 0.95 | 1000 | 27 | 1.2825 | 1.269 | 1.262 | 1.161
91 (2.00.1.00) | 0.95 | 1000 [ 16 | 0.760 | 0.769 | 0.730 | 0.870
10 | (1.00.1.00) | 143 ] 500 | 15 | 1.425 | 1.382 | 1.324 | 1.146

The following table supplements Table 2.3 in that the same rate ratios . spatial
configurations and populations are used. The upper bound for A is higher and the

effect of smoothing is similar to that of Table 2.3.




A
0 N .2 1.05
Site |  Coords ¥ N Vo “ism “sm “sm

1} (1.76.1.64) | 0.95 | 1000 | 21 | 1.050 | 1.038 | 1.030 | 1.013
20 (L.17.1.98) 1 0.95 | 1000 | 22 | 1.100 | 1.074 | 1.056 | 1.027
31 (0.5.1.86) [0.95 | 1000 | 16 { 0.800 | 0.832 | 0.855 | 0.906
4 (0.06.1.34) { 0.95 | 1000 | 14 { 0.700 | 0.74+ | 0.778 | 0.853
5 1 (0.06.0.66) [ 0.95 | 1000 | 18 | 0.900 | 0.912 | 0.920 | 0.942
61 (0.50.0.13) | 0.95 | 1000 | 19 | 0.950 { 0.957 | 0.962 | 0.970
T (1.17.0.02) ] 0.95 { 1000 | 21 | 1.050 | 1.040 | 1.031 | 1.014
31 (1.76.0.36) | 0.95 | 1000 | 23 { 1.150 | L.114 | 1.093 | 1.050
9 [ (2.00.1.00) { 0.95 { 1000 | 17 { 0.850 | 0.832 | 0.903 | 0.942
10} (1.00.5.00) | 1.43 | 1000 | 29 | 1.450 | 1.406 | 1.369 | 1.312

134
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The following table supplements Table 2.4 in that the same rate ratios <. spatial
configurations and populations are used. The upper bound for \ is higher and the

effect of smoothing is similar to that of Table 2.1.

A

Site Coords 2% N v “ml “sm “ism “sm

L} (L76.1.64) 1 0.95 | 1000 | 25 | 1.1875 | 1.163 | 1.143 | 1.088
(1.I7.1.98) 1 0.95 | 1000 { 19 | 0.9025 | 0.9180 | 0.931 | 0.96.
(0.5.1.86) | 0.95 | 1000 | 25 | 1.1875 | 1.163 | 1.142 | 1.086
(0.06.1.34) ] 0.95 | 1000 | 19 | 0.9025 | 0.915 | 0.925 | 0.955
(0.06.0.66) | 0.95 | 1000 { 19 | 0.9025 | 0.913 | 0.922 | 0.919
(0.50.0.13) [ 0.95 | 1000 | 21 | 0.9975 | 0.998 | 0.999 | 0.999
(1.17.0.02) [ 0.95 | 1000 | 19 { 0.9025 | 0.912 | 0.913 | 0.916
(
(
(

[V

H—

T

-1

[.76.0.36) | 0.95 | 1000 | IS | 0855 | 0.371 | 0.882 { 0.925
2.00.1.00) 1 0.95 | 1000 | 21 | 0.9975 | 0.999 | 0.999 | 1.000
1 )| LA3 [ 500 | 14| L.333 | 1.299 | 1.276 | 1.119

Nole s

10 .00.5.00
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Appendix 2.4 Higher Moments for the Unsmoothed Estimate

Higher moments of <,,;, are required to obtain E(z,-) and E(¢) in E(3\,). For
yi distributed as binomial with index m and success probability ,. the r’th moment
about 0 can be found through the use of the moment generating function M (¢) =
((1 —8;) + 0:¢")™. The r'th derivative of M(t) evaluated at 0 gives the r'th moment
about 0. Using the relationships 4,,; = (4:/N)/(m/Ny) and 0; = Ni», /N, M)
for the binomial distribution was used to obtain the higher moments for 4,,;, (denoted
as 7; below. In the following expressions. m!1is the factorial product m(m—1)...(m—

r+1)

2 -\-i- 2
BG) = — [T+ im0l
m .\',’
1 2 Ny, 3
E(3)) = — [(—*) o+ Bm = 1)+ '"—~?J
m* i AY m
. l AY - Y 22
EG = —[(550 + = 1)(55)%2]
m- -\"i - Y
m- m AY m
.5 Lo, Ny . Ny o,
B = o (555 + Blm — (S5 ]
m SV ~\i
+L 25_"23]_(\_’*‘)2.”3 Qﬂ‘\*'.”;
m m .\ m .\




1 [( A

ms .\r"

s foom e ;?}
m?> m .\,
L[ mb] Ny
m3 ? m (.\"i it
L [ _mbBl v, 5}

= |15 -7

m? m .\
l Fm["'l‘g,

m® | m i
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Appendix 2.5 Mixed Moments

. . . - N 3 > a .
The moments of the approximate estimate i = Smii + AL+ Mg require ex-
Anstisn

pectations of the form E (5[*4,74/*) where 4, is the maximum likelihood estimate for

site 1.

For y distributed as multinomial with m cases and probability vector
0. Cov(yi.y,) = —mb0; and E(yiy;)) = m(m - 1)8,0,. Writing 3., as
i = (y:/N)/(m/NL) and S0, = (y;/V )/(m/NL). it can be show that Cov(3 .,

J
Aty ) = -(1/m)vin; and E(Rpm 255) = ((m — )/m)s;.

For expectations of products involving powers of 3,,;; and “mi,; which are greater
than one. a more general expression for the mixed moment is required. Johnson and

Kotz (1967) give the expression

S

E(l [rx]l [ra] [r.]y _ <4=l 1) 0;-]
Yyi Yao -y t) = m []6]
J

where ml™ is the factorial product m(m — 1j...(m —r + 1). Similarly. gl is y(y -
l})...(y =r+1). The required mixed moment can be found by rearrangement of this

expression for the factorial moment. For example.

Elyy] = Elyy - Ly,

mPlo2o; = Ely?y] + Elyiy))
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mPle20, — m(m - 1)6,6j = E[y3y)]

Substituting 4 = (y:/.V:)/(m/N,) and “miy = (y,/.N,)/(m/N,). one obtains

Denote the quotient (rn —1)...(m —r + 1)/m""" as m(r). Some other examples

of required mixed moments which were obtained in a similar manner are given below.

2~ B .\' - a
E(3/3)) = m)]y + —=E(32%5)
J m.\;
AV , m(2) N3
~E(523, e
* m.\; ('J')+ m2 N\, Y
. AY m(2) r N\
E(334) = 1)~3+ Y E(324) — 2 (_*’) ~
( L ] ) ,n( )/1 rJ + ;,71 \—l E( it ;_/) ”12 .\-l. ity

AW 3 V2 e m(2) N2
- o) 3 t __E(5%5, D T~
* m.\; (%%) m2\,\ (3% m3 NZN, Y
AY

22 2 5 . +
E(G57%) = m()dy + +m(3)m‘;.“u‘;1
-y
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Appendix 2.6 Additional Results: Observed and Approximate MSE

The following tables compare the observed and approximate MSE for simulations
involving the same m. k and spatial configuration as for the results of Tables 2.7
through 2.9. The “circle + 1" configuration was used for k& = 10. and m = 100. In the
simulations presented in Section 2.7. the populations were equal (.V; = 1000). The

population at the distant site is 300 in the simulations summarized below.

T=...=%510=10

A Obs. MSE | Approx. MSE

0 0.95322 0.94500
007384 0.90029 0.90936
.01569 0.36414 0.87171
02353 0.85369 0.83957
03133 0.32335 0.850-442

1= =79 =0.97.5 = 1.46

A Obs. MSE | Approx. MSE

0 1.00623 1.00396
00459 | 0.98254 0.97998
00918 | 0.94663 0.95601
01377 | 0.94396 0.93203

01837 | 0.93040 0.903805




.= g = 0.36. 10 = 3.45

Obs. MSE

Approx. MSE

.00076
.00152
.00227
.00303

1.18902
118776
1.18265
1.16761
1.17933

1.20831
1.20031
1.19232
118432
[.17633
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Appendix 2.7 Additional Examples: Estimators Yom- Y Yasin- and ¥y .,

The following tables presents several forms of the approximate estimates for the
same examples presented in Table 2.1. through 2.4. In the table below the following
are given at A = .025: the numerically smoothed estimate “sm: the full approximation
AN =G+ M+ A%¢, : the linear approximation 4mii + A : and the reduced linear
approximation §,;; — 4/.N;{(m/\,) (b,--’,’,'-" - 4 Z,‘;&iei;‘;j)» The reduced estimators

¥\ 1in and Y \.reqa Were introduced in Section 2.9.1

/
I
o
P
I
o
[
Ut

Site Ymi Ysm 5 Y\lin T N\ored

P

I 10.9000 | 0.9136 | 0.9134 { 0.9155 | 0.9109
2 | 1.1000 | 1.0993 | 1.0991 | 1.1005 | 1.0949
3 1.2000 | 1.1895 | 1.1893 | 1.1896 | 1.1835
4+ 10.9000 | 0.9124 | 0.9122 | 0.9141 | 0.9095
0.9000 | 0.9099 | 0.9097 | 0.9112 | 0.9067
6 | 0.3000 | 0.8147 | 0.3145 | 0.8160 | 0.8120
0.9000 { 0.9077 | 0.907+ | 0.908% | 0.9043
0.6000 | 0.6222 | 0.6222 | 0.6231 | 0.6201
1.2000 | [.1854 | 1.1352 | 1.1847 | 1.178
10 | 1.5000 | 14448 | L1464 | 11361 | 1.428

Ut

O L o~y
(o9

~1

~1
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The following table presents several forms of the approximate estimates for the
same example presented in Table 2.2. For A\ = .0l. the following are given : the
numerically smoothed estimate 4,,,: the full approximation 5y = 4., + M + A\2g;:
the linear approximation 3, + ,\i; : and the reduced linear approximation <,;, —
4/ Ni(m/Ny) (b,“:,-"-')' — eij-'f/j). The reduced estimators 4, ;;, and Y \res Were

introduced in Section 2.9.1

A=0 A= .01

Site Imli Tsm A T \din T \ored

L] 0.9500 1 0.9591 | 0.9586 | 0.9611 | 0.9533
0.6650 | 0.6795 | 0.6792 | 0.6308 | 0.6753
3] L1400 | L1425 | L1418 | 1.1447 | 1.1353
+10.7600 | 0.7740 | 0.7736 | 0.7756 | 0.7693
0.9500 | 0.9602 | 0.9597 | 0.9622 | 0.95.5
6 10.9500 | 0.9619 | 0.9614 | 0.9610 | 0.9562
1.5200 | 1.5041 | 1.5032 | 1.5039 | 1.4934
0.5700 | 0.3855 | 0.5852 | 0.3365 | 0.5819
0.9500 | 0.9592 | 0.9587 | 0.9612 | 0.9534
10 | 2.0900 | 1.9475 | 1.9565 | 1.9151 | 1.8930

(EV]

(1}

Nolv e
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The following table presents several forms of the approximate estimates for the
same example presented in Table 2.3. For A\ = .03. the following are given : the
numerically smoothed estimate 4,,,: the full approximation 4y = 4., + ,\i, + A%G,:
the linear approximation <, + ,\ii : and the reduced linear approximation %, ; —
1/ Ni(m/Ny) (bﬁ,f - '},-Z,#e;f,r,-). The reduced estimators %, ;. and ¥, ,,, were

introduced in Section 2.9.}

Site | 4 * sm A “ANdin | Ared

I 1 0.7000 | 0.7402 | 0.7394 | 0.7438 | 0.7366
2 1 0.7000 | 0.7465 | 0.7453 | 0.7540 | 0.7443
3 | 1.2000 | 1.1481 | 1.1539 | 1.1311 | 1.1154
4+ 10.9000 | 0.9226 | 0.9199 | 0.9309 | 0.9191

5 1 0.9000 | 0.9237 | 0.9211 | 0.9320 | 0.9202
6 | 1.1000 | 1.0843 | 1.0328 | 1.0835 | 1.0710
¢ 1 1.3000 | 1.2303 | 1.2391 | 1.2075 | 1.1904
3 10.9000 | 0.91338 | 0.9160 | 0.9261 | 0.9143
9 1 0.7000 | 0.7425 | 0.7416 | 0.7133 | 0.7396

10 | 1.6000 | 1.5418 | 1.5404 | 1.3378 [ 1.5169
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The following table presents several forms of the approximate estimates for the
same example presented in Table 2.4. For A\ = .05. the following are given : the
numerically smoothed estimate 3,,.: the full approximation 4\ = 4., + M, + A2g;:
the linear approximation %,;, + A, : and the reduced linear approximation <,,, —
4/ Ni(m/N,) (b,‘},-" = L 6,'_,’:,'}')- The reduced estimators ¥, ,,, and ¥, ., were

introduced in Section 2.9.1

Site “mi ~sm A “\.lin Thired

1 1.0450 | 1.0365 | 1.0366 | 1.0353 | 1.0313

2 1 0.85350 | 0.8740 | 0.8739 | 0.8769 | 0.3736
31 L1400 | 1.1257 | 1.1258 | 1.1241 | 1.1198
+ | L1400 | 1.1276 | 1.1276 | 1.1266 | 1.1222
5 1 L0450 | 1.0447 | 1.0444 | 1.0436 | 1.0416
6 | 1.0450 | 1.0410 | 1.0409 | 1.0409 | 1.0369

0.3530 | 0.3707 | 0.3705 | 0.83727 | 0.8694
S 1 0.9500 | 0.9518 | 0.9513 | 0.9521 | 0.9484
9 10.6650 | 0.6937 | 0.6937 | 0.6951 | 0.6928
10 | 1.5200 | 1.4673 | 1.4685 | 1.4593 | 1.4539

(v ]




47

Appendix 2.8 Further Investigation: Normality of 4, ,

This appendix gives additional Q-Q plots investigating the normality of 4, . In
the simulation for Figure A28.1. the expected nmumber of cases out of 200 at the
distant site is larger because of its elevated incidence. More smoothing is required to
brings the estimates at other sites closer to normality. In the simulations for Figures
A23.2 and A28.3. m = 100 cases are used and the estimates for all \ (including 0)

are approximately normal.

Figure A28.1 presents Q-Q plots for the estimates at the distant site in the -circle
+ 1" configuration for & = 20 sites and m = 200 cases. The incidence rate at the
distant site is twice that of the common nineteen. resulting in rate ratios ~; = =, =

.19 = 0.95 and 0 = 1.90.

Figure A28.2 presents Q-Q plots for the estimates at the distant site under complete
homogeneity. (as in Figure 2.5b) but twice the number of cases (m = 1400) There are

k = 20 sites in the “circle + 1° configuration.

Figure A28.3 presents Q-Q plots for the estimates at the elevated/distant site as in
Figure A23.1 but twice the number of cases (m = 400) have now been used. At this

site. 7, = 1.90. There are k = 20 sites in the “circle + 1 configuration.
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Appendix 3.1

Use of a continuity correction

With no smoothing. the test statistic

“mti — |
Zml.i = ‘1/2
Uo.i
has been proposed for testing H,; : ~; = 1 versus Hii @ 5 > 1. where v,, =

Var(dmei) = (1/m)(Ne /[N (L = (Vi/Ny)) under H,.,.

For testing at level @ = a/(k — 1). the critical value C,-; such that

P( Zn 2 Cyei) < a. is required.

One can attempt to use the standard normal quantile Z,. as C's-.i because 3, , is
approximately N(l.r,,) under H,. In Section 3.2. the standard normal approximation
was shown to be inadequate in this context. Too many rejections under H, occur at

the site and overall levels.

[n an attempt to improve the normal approximation. continuity corrections are
often used. If X is a discrete random variable. the general idea is to replace the point
probability P(.X' = r) by the interval probability P(r — 1/2 < X < o+ 1/2) from the
approximating continuous distribution ( see Johnson and Kotz(1970)). The estimator
¥mii = (y:/Ni)/(m/N4) has increments of 1/(m.N;/ N, ) as y; ranges from 0 to m. The
test statistic Z,,;; has a discrete distribution with probabilities corresponding to the
binomial y; as described in Section 3.1. The distance between possible values of
Lty s l/(v:./,»znz.'\",-/-\;). Taking half this distance as a continuity correction (cc). a

continuity-corrected normal approximation for the required probability is



P(Zml.i Z C'c-'.z') = I — (D(C'u‘.i - CC)

Solving for C,-, in

or
®(Chey—cc) = 1 — a~
gives
Cc.‘_,‘ — CcCc = Zo.
or

Cvﬂ'.i = ZC" + cc

If €, must be a possible value for Z,,,. then to ensure P(Zu, >C,.)<a.. C,.,

should be the next value of Z,,;; which exceeds Z,- + cc

Example 3.1 illustrated that the continuity corrected standard normal quantile
is also inadequate. For o” = .05/19 = .00263. the standard normal quantile Z,.,
is 2.79. The distance between consecutive Znii values is approximately 0.45 and
taking 0.225 as the continuity correction. one finds that the next possible Z,,, value
beyond Z,. + 0.225 is 3.07. If 3.07 is taken to be the critical value for Z,;;. then
P(Zmni; > 3.07) = 1 —0.9941 = .0059. This probability is more than twice as large
as a” and hence the site level is not achieved. As described in Section 3.1. an exact

critical value of 3.52 conservatively achieves the required site and overall error rates.




Appendix 3.2

Estimation under the constraint ~;, = 1
(1) Maximum Likelihood Estimation (Unpenalized)

The multinomial likelihood Mult(m. ) is described in Section 2.2. The Jth cell prob-

ability 8, is N4, /.V, .

With +, = 1 under H,,. the likelihood becomes

A\ Yy \'_ W
w1 ()
(1) JI#I‘ -\+ -\+

and to an additive constant the log likelihood is simply

Loy = D y,log(+,) .
e

The multinomial constraint Zle 0, = | under H, can be written as 2 (N /Ny

+ Ni/N4 = I = 0and can be included in the likelihood using a Lagrange multiplier

N N -\
liy = Z-'/J’OQ(T'J)—O(Z( X J) - +\,- )

SR 7 Y

Differentiating. we find that dl;)/do = 0 returns the constraint equation and

N ()
0‘;’1 T Ny




Multiplying by +; and setting to 0 gives

and solving gives

Substituting into (3.2.1) gives

(m —y) Ny Ve _
(A AN

Y,

and solving gives the constrained maximum likelihood estimate

:' o - .'/J/‘\—J
O i =) )N = N




(2) Penalized Likelhood

As described in Section 2.2 the multinomial constrained penalized likelihood has the

form

j=i J=1 a#s G

k k .\’_,.( 1
ben(v) = Y y,log(+;) —O[Z (%) - 1} - J\Z[_(‘;i—'/
Vg

The rate ratio +; is now fixed at 1.0 and the equation above becomes
k k \" -~ \
- ! -t
ben( Yy = Yyjlog(s,) —o|d L2 + £ _
=% - - .\+ _\+
71 J#

1 2 l 2
- A [Zf(j-,, - 1.0)° + ZE(‘;J — %)

(eI

Using the same notation as in Section 2.2. rearrangements show

|

2)°

that

for

JF Al Open /07 = by, — €, — 2 4#5.4 €i077) and. as in equation (2.16) of that

section.

N AT
9 i My i

Multiplying by 5, and setting to 0 gives

AY d
s - (\_) _ ). Open o
- .+. y

Summing over [ # i. vields




or

Solving. gives the Lagrangian

dpen AYN
°= (m — o= A = ) (-\'+ —.\"i)

(£

Substituting this result into equation (3.2.2).

Y, (m—y).\, \ dpen N, _Open| 0
~ ,\-_4_ - .\.,' ’ 0";‘/ .\'+ - -\-i 1#i . a‘:’l B

‘]

and multiplying by +, gives

(m=y)\, | dpen AW _dpen| .
Y; — ‘\-+ _ .\-, 15 A 1] d‘,'_, - ﬁ Z i ()‘;[ =10 (3_;)

l#1

As first outlined in Section 2.2. the k — | equations for j # ¢ are once again nonlinear
in the ;. As before. assume that for small \ the approximate solution takes a form

which is quadratic in . In other words .

Tadi) = Gyt Ay + A g

Substituting the approximation into (3.2.3) gives




._.
[l
(04

y, — (\"—::"T") N, + LA+ q)

M, + LA+ q)) —"DT - (_\-:'j\-')g(cr + LN+ f{)(-”—") =0

Collecting terms constant in \ {(i.e. no \ involved ). then these terms must sum to

zero and hence
N )
Yyy—l~w——=1| Ve =0
J <‘\+ — .\') PR

Solving gives

Ay
J - -
(m — .'/x’)/(-\-{» - ~\1)
Hence the first term of the approximation under the constraint ~ = | is the maximum

likelihood estimator under this constraint. This result coincides with the first term
of the approximate smoothed estimate without the imposed constraint (as described

in Section 2.4).

Further collection of terms gives the same form for the linear term as previously
obtained. It now involves the adjusted maximum likelihood estimate ¢, where m —y,

replaces m and Ny — \, replaces N.. One finds

N 9
=) [ ()

M)

l 9
[, T
N, -\, |

Similarly. collecting terms gives the quadratic term. which is similar in form in the

previous approximation without the constraint.
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Appendix 3.3

Use of a Cornish-Fisher expansion

Perhaps the most common technique for finding the quantile of an unknown dis-
tribution function was introduced by Cornish and Fisher (1937). A Cornish-Fisher
expansion expresses the quantile of an unknown distribution function ¢ in terms of

the cumulants and corresponding quantile for a known distribution function f.

Assume f(r) and g(.r) are probability densityv functions and that g(.r) has cumu-
lants Ky. Koo .. .. #. and f(r) has cumulants x| 4+ €;.xk3 + €o. .. .. Ky + €. As given in

Johnson and Kotz (1970). one can write:

g(x) = exp [Ze,{(—mf/ﬂ}} flo) . (33.1)
J=1
where D’ f(r) = ii_’; (r) and the exponent must be expanded as an operator and

applied to f(r). In other words. the exponent must first be expanded as

> [i {(—D)J/j!}} i

=0 | =1

and then applied to f(.r). Asis typically the case. assume f(x) is the standard normal
probability density function z(r) = (v27)~! exp (__T'.rz). Denote Z, as the known
standard normal quantile with cumulative probability ¢ and r, as the corresponding
quantile for g. One can then consider the equation
Iq Zy
/ g(r)dr = / (r)dr . (3.3.2)
- —-xX
Hermite polynomials (see Cramer. 1970) allow us to conveniently express the

derivatives of the standard normal p.d.f. as follows: D'z(r) = (=1)H;(x)z(x)
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where H,(x) = 1. H|(r) = r and Hix) =xrH_((r) — (i = 1)H;_y(x) for i > 2. The
right hand side of (3.3.2) is the standard normal cumulative distribution function
evaluated at Z,. denoted as ®(Z,). A Taylor expansion for ®(Z,)=®(r,+Z,—1,)
gives

- M[{i“l(r?) ) . (3.3.3)

Equation (3.3.2) can be written as G/(r,) = ®(Z,) . Substituting (3.3.3) and (3.3.1)
into this equation and performing extensive manipulation allows one to express .r,
as a function of its own moments and Z,. This expression is usually referred to as
the inverse Cornish-Fisher expansion. Most references assume standardization of the
first two moments of g(z) but this simplification is not assumed here. From Kendall
and Stuart (1957). the terms of the inverse Cornish-Fisher expansion which include

moments of g(r) up to and including the fourth are
. 1 I _,
I, = Z,, + K+ 3[,,/\'2 + (—i(l,; — l)K3

L ) - - o
-i-.—):(Z}3 - 3Z,)Ky — %(2[3 —5Z,)K3

| =72 . l 3 7+ = 72 -7
~op(Z) =32 4 maks + (122 = 5377 + 11K}
L s i3 o2 L 75 : T7 w2
—aRr 34 - AL+ 292,k 4+ Sas (147 — 10327 + 1072, w3,
! .
—====(2327] — 168872 + 1511Z,)x3 . (3.3.4)

This expansion was applied to the reduced test statistic Z ,.q; in an investiga-

tion of its quantiles under H,:y; = 1. Moments of Z\,,4.i bevond the fourth were
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considered intractable. As a result. terms involving the fifth and sixth moments are
not included. The cumulants listed in the expansion are moments abou! the mean.
In general. if &, represents the rth cumulant and g, represnts the rth moment about

the mean then &y = ), = p. Ky = py = 0% K3 = p3. and &y = 1y — 3o,
o= / ' /

The momentsof Z\ ,.; were required. As given by (3.12). the reduced test statistic

is defined as

-

. lred.iN
Zxredi = S\redilmii + T (3.3.5)
Us.i
where
S\redi = 1= 0580 peqi/ o

A necessary simplification was to consider S\redi fixed (i.e. non-random) for fixed \.
Empirical investigation showed this to be a reasonable assumption. Moments up to
and including the fourth were required so powers up to four of 3, ,,,,; were also needed.
The approximation for 4, and \"'Aar(‘;l\,‘-) are linear in A. and this same convention

was followed for the powers of 3y ,.y,.

Higher moments of Z\ ,.4; were found by expanding powers of the right hand side
of (3.3.5). The higher moments of Z,.;; were found under H, ;. Via direct calculation
of the third and fourth moments of Z\ redi- it was found that manv terms of order \2
or greater were dropped to maintain the convention of keeping expressions to linear
in A. Since Z\ ;eq,;, = f(A.mi)- the delta method for calculating the moments of a
function of a random variable can be used. In empirical investigation. this method
gave approximate third and fourth moments that were closer to the observed third and
fourth moments of Z, ..4; than the approximate moments derived directly. However.
critical values r, calculated according to (3.3.1) were very conservative under H,. This
resulted in a low detection ability under H, and the conditional approach described

in Section 3.3 was chosen for the dermination of the critical value of L red.i-




Appendix 3.4

Conditional moments of w; given 3.,

In Section 3.3.3. the first two conditional moments of w; given %, were given as

Cov (wi. %) (4 — ps,)
Bogss = p, + ) Gi =

we |, u, D

Denoting 4,.;; as 4;. the uncontional mean and variance of w; are

Hyy, = E(Zfij:fj)

I
= D ey
i
and
- L all .
Ty = €)=, )
which simplifies to
. , 1.V A l
2 2 '+ Y. .
Tu = DG TN T =2 D €t
s Y Y+ M i gt

Also.
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Cov(wi%i) = Cov(d e 4,. %)

IF#L
>3
= - €557
M #
which  becomes  —(1/m) 2 ,#i€;% under H, : “ = l.

. Finally. oiffmh = (Nyg/mN)(L = N, /N)) = v, under the null hypothesis.

The parameter ;. (j # ¢) is not specified under H, : ~; = L. so it must be estimated
under this constraint. It was shown in Appendix 3.1 that

_‘:' . — -’/J/'\.J
B R VI P

Substituting this estimate into the expressions for ,u,L.,.Cov(w,-.‘,,-).rffl and subse-

quently substituting into the expression for M), giVes

As expected for a conditional mean. each f,. s, involved in (3.24) depends on the
% on which we are contitioning. Further simplification of sias (yi/ VD) [ (m/Ny)
could express fi,,};, as a function of y and N. Replacing Cov (w;.4,) by its estimate

Cov (w;.4;) gives the following expression

. 2
52 2 LNy, V. 1 .. Cov (w;. %)
Tl = Z :j;ij (l - ﬁ‘\l/)) - EZ Z €€ — [ 2 ]

JE qE i 9;

[

“~
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The third term of this expression becomes

Y€, Cov (3,.4,) >ei (22 463
JF1 _

m iy
JEL
o3 o?
t re
-2
. i 2z 2
T 252 Zﬁu iy Z Z €€
7, IE

SESNETR

-+ . . 2
Substituting o7 =

(.V+ — Ni)/m.V; and setting +; = | in the previous line

. ! 222
- 2 -y €7 €;
R 2 j: iy /) § : § : 17€iq7; 5
[C'O‘ (lL“. it )} ™ % J

_ JFL JEL4FE )
2 - AFEAY
Tz =
Tl S o
= —_————— €
R iy €i €750
m(.Ny -\ Y

JFEC R
Inserting this expression i

into the third term of the expression for 52 |5, gives

2 1Ny ( _*_J,) - iy s
5 — - €T
oy m .\, Ny

JELFE

m(.N qu + Z Z €ij€ig%)
JFE JELQE)A
Substituting %) = (y,/N,)/ [(m — yi)/ (Vs

— V)] and rearranging gives

<2 -\’+( -'\"+ — -\’i)
a;'l l;’l =

2 [ Y 1 Ny =N Y,
= e 20\ [\
At 2] e

m-—y, J Ny



1 .\“'.*. - -\"' Yy .\','
—_—— <_) Z Z 6._] iy \J \q [l - _‘——-\_* _ .\',J

m m= Y JFELTFE G

.\’i .\":)_ I/j
- mA (N, — ;) Zﬁu' N2

JEL

which is given in Section 3.3.3.

The usual conditional variance X,|.X, for a bivariate normal vector (\X1..X3) does
not depend on the conditioning variable .\'; and that is still the case for a’L 5, - How-
ever. in the re-estimation of %, under H, given above. the estimate &t does indeed

depend on y; and ;. Hence in (3.21) r}i,'l_.” changes for each y; in the sum.
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Appendix 3.5

Additional Results: Complete Homogeneity, i = {0 sites

This appendix gives results for complete null simulations for & = 40 sites arranged
on a circle of radius one. Given below the table are the probability limits for the

acceptable fraction of rejections for the site and overall levels for a simulation of this

size.
Circle configuration
» = 40.m = 400 k= 10.m = 300
N’s equal 1.V, different N's equal I\, different
max site | overall | max site | overall | max site | overall | max site | overall
A frej. frej. frej. frej. frej. frej. frej. frej.
0 .0010 .0252 .0009 .0286 .0010 .0267 .0012 0335

(1) (2) (3) (4) (5) (6) (V) (3)

A L0018 ) 0528 | 0014 | .0373 | .0016 | .0513 | .0017 | .0390
Ay | 0013 | .0526 | .0016 | .0503 | 0017 | .0499 | .0017 | .0431
Ay | 0018 | 0536 | .0013 | .0514 | .0013 | .0333 | .0018 | .0511
Av| 0017 | 0522 | 0018 | .0494 | 0017 | .0497 | 0015 | .0308
As | 0018 | .0530 | .0017 | .0502 | .0018 | .0494 | .0019 | .05l%

max site frej. = maximim fraction of repetitions rejected at site level
overall frej. = fraction of repetitions with at least one test rejected
(1) through (8) refer to upper probability limits given below

Upper probability limit for acceptable fraction rejected

A>0

site level .0020 . overall level .0342

A =0

(1).0011 (2).0267 (3).0012 (4).0300 (5) .0012 (6) .0297 (7).0014 (

09

).0366
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Appendix 3.6

Additional results: Single elevated rate

The following three tables present additional results for simulations involving a
single elevated rate. The first and second tables involve the same levels of v and N at
each of the two spatial configurations (as in Tables 3.3 and 3.4 respectively). However
m is now -00. The third table presents results for & = 40 and m = 400 for the circle
configuration. As in the tables of Section 3.6 (™) indicates the initial significant
increase from A = 0 while (*) indicates significantly higher from the observed fraction
at A = 0 but not the previous A. The increases in detection ability observed in the
third table with & = 40 and m = 100 are very similar to Table 3.3. In the simulation

of Table 3.3. m/k was also 10.




Ability to Detect Single Elevated Rate

Circle Configuration. 20 sites and 100 cases

N’s equal I N, different

Yer || 148 1.95 143 1.95
frej. frej. frej. frej.
ftcor. | ftcor. | ftcor. ftcor.
fincl. | fincl. fincl. fincl.

0 | .2210 | ..7860 | .1043 510
1978 | L7662 | .0816 1302
1998 | L7806 | .0834 4360

Ay 2248 | L7782 Jd174 554
1990 | .7600 .0366 4292
2008 | 7773 .0886 4384
Az || 2298 | L7870 | 1194 | 4196

.2060 | .7684 .0360 4306
2074 | L7306 .0870 1336

Az | 22332 | .7882 1210 1602
2064 | 7686 0810 4270
79

2092 | 7798 0822 A37S
Ay || 2206 | .7T870 .1296 AT10™
1960 | .7700 0814 1360
19384 1194 L0834 AT
As | 2232 | 7858 1290 1652
1958 | L7664 .0808 A310
1988 7183 0326 A2
frej. = fraction of repetitions with at least one test rejected
ftcorr. = fraction of repetitons in which only elevated site is declared elevated
fincl. = fraction of repetitons in which the elevated site is among theose declared elevated

** indicates significant difference from observed fraction at A = 0



Ability to Detect Single Elevated Rate

Circle + 1 Configuration. 20 sites and 100 cases

N’s equal 1 .V, different
Tel 1.46 1.90 1.48 1.95
frej. | frej. frej. frej.
ftcor. | ftcor. | ftcor. | fteor.
fincl. | fincl. | fincl. fincl.
0 2312 T 1140 1616
2054 | .7632 .0894 4456
2086 | L7722 .0904 A72
Ay || -2198 | .7896 1292 4596
1926 | 7758 .0900 4338
JA946 | L7824 0914 4408
Az [ .2354 | L7790 | .1380== | .1302
2108 | L7704 .0906 470
2340 | L7752 .0924 4516
A3 2354 | .T832 | 1314 | 4644
2096 | .7732 .0902 1346
2122 | 7794 09138 420
Ag [ 22238 | .T916 | .1324%= | 4642
2076 | .7320 .0901 1340
2090 | .7874 .0916 1396
As 2320 | .7940 1230 1692
2134 | .7332 .0830 4410
2156 | .7912 .0396 TS
frej. = fraction of repetitions with at least one test rejected
ftcorr. = fraction of repetitons in which only elevated site is declared elevated
fincl. = fraction of repetitons in which the elevated site is among those declared elevated

** indicates significant difference from observed fraction at A = 0
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Ability to Detect Single Elevated Rate

Circle Configuration. 40 sites and 400 cases

N's equal I .V, different
Tel 1.43 1.95 1.49 1.975
frej. frej. frej. | frej.
ftcor. ftcor. | ftcor. | ftcor.
fincl. fincl. | fincl. | fincl.
0 .0612 3164 0472 | L1330
.0450 3012 0224 | (1310
0450 3040 | .0228 | (1328
Ay || LLTL64™= | AL18™ | .0538 | .1596
06987 | 3738 | .0256 | .1334
07087 | .3824== | .0260 | .1352
Ay 1150~ A272% 1 .0600 | .1532
.0678* .3892% 10292 | 1246
0691~ 23968 | .0324 | .1278
Az 1163~ 4230% | .0572 | .1662
.0630* 3316™ | .0260 | 1262
0704~ 23922 1 .0274 | L1306
Ay 1232 4193 10570 | 1704
0776~ 3763 ] .0260 | 1343
.0798™ 3896 | .0268 | 13738
As 1192~ A2627 1 .0542 | (1668
071 3936 | .0233 | .1230
0732~ 0437 [ .0262 | 1242
frej. = fraction of repetitions with at least one test rejected
ftcorr. = fraction of repetitons in which only elevated site is declared elevated
fincl. = fraction of repetitons in which the elevated site is among those declared elevated

** indicates significant difference from observed fraction at A = 0

* indicates significant difference from observed fraction at A = 0 but not previous A
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Appendix 3.7

Locations and Contiguities: Main Spatial Configurations

The following table lists the locations for & = 20 for the two spatial configurations
used in the simulations with fixed A in Chapter 3 and also in the simulations with

data-based choice of A in Chapter 4.

Spatial configurations. & = 20
Circle Circle + 1
Site (x.v) Loc Contig Sites (x.v) Loc Contig Sites
1 (1.95. 1.30) 2.20 ( 1.94. 1.32) 2.19.20
2 | (1.80. 1.38 ) 1.3 (1.78. .61 ) 1.3.20
3 | (1.38. .80 ) 2.4 (1.54. 1.83 ) 2.4.20
4 ( 1.30. 1.95) 3.5 ( 1.24.1.96 ) 3.5.20
5 (1.2) 1.6 ( 0.91.1.99 ) 1.6.20
6 | (0.69.1.95) 5.7 ( 0.59. 1.91) 5.7.20
T 1 (0.41.1.80) 6.3 ( 0.32. 1.73) 6.3.20
3 (0.19. 1.58) 7.9 ( 0.12. 1.47) 7.9.20
9 |1(0.04. 1.30) 3.10 ( 0.01.1.16) 3.10.20
10 (0.1) 9.11 ( 0.01.0.33 ) 9.11
It | (0.04.0.69 ) 10.12 ( 0.12.0.52) 10.12
12 1(0.19.0.41) I1.13 ( 0.32.0.26 ) [1.13
13 | (0.41.0.19) 12.14 ( 0.59.0.03) 12,14
14 | (0.69.0.04 ) 13.15 ( 0.91.0.00 ) 13.15
15 (1.0) 14.16 ( 1.24.0.03) 14.16
16 | ( 1.30.0.04) 15.17 ( 1.54.0.16) 15.17
17 (1.58.0.19 ) 16.18 ( 1.73.0.33 ) 16.18
18 | ( 1.30. 0.41 ) 17.19 ( 1.94.0.675 ) 17.19
19 | (1.95.0.69 ) 18.20 ( 2.1) 13.20
20 (2.1) 19.1 (1.5) 1 to 9.19




Appendix 3.8

Additional Results: Two elevated rates

The following tables give additional inference results for two elevated rates.

Table | presents results for two noncontiguous elevated rates for & = 20.m = 200
in the ‘circle + 1" configuration. The magnitude of the elevated rate ratios are the

same as the simulation results presented in Table 3.6 and are given again below.

equal N
A Yt = je2 = 143
B: ven = 1.86. 702 = 1.40
C: 5o = 1407 = 1.56

1 N different
D: vy = Serz L4

E: 7o = 1905, = 143
k- Tel1 = [.43. Yeld = 1.90

Table 2 presents results for two elevated rates ( contiguous and noncontiguous
) in the random population/location configuration with & = 20 and m = 200. The

elevated contiguous incidence rates are sites 3 and 20 while the elevated noncontiguous

incidence rates are sites 12 and 20 (see Appendix 3.9 for locations). The elevated rate

ratios for Table 2 are as follows

Al e = e = 1L
B: +n = 1.88. 9e2 =

y—
H—
—

C: Tell = 1.41.“1612 = 1.

[04]
[0}
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Table 3 presents results for two elevated rates at contiguous sites on a circle for &
= 40 and m = 400. Table 1 presents results for two elevated noncontiguous rates in
the circle + 1" configuration for £ = 40 and m = 400. In simulations A\ through C of
Tables 3 and . all 40 sites have a population of 1000 while one site has a population of
500 in simulations D through F. One of the two elevated sites has this low population
in simulations D through F. The magnitude of the elevated rate ratios given below
has been rounded to two decimal places but it is interesting to note than with 40
sites. the overall p is less affected by the low population and the + vector is now
approximately the same in simulations B and E as well as C and F. The elevated rate

ratios are

equal N
A: Tell = Tel2 = 1.16
B: ven =1.93.7 = 1.45

C: Tell = 1'45"."612 = 1.93

1 N different
D:venn =5e2 = LAT
E:~p =193~ =145
Freon = 145,50 = 1.93

Table entries and significance markers are as denoted previously.

The results in Table 1 indicate that the initial impact of smoothing on inference
is not as large as in these simulations as when the two elevated rates are equal
(simulations A and D in Table 3.6). This implies that less smoothing is required
when the two elevated rates are very close together and the same. A (**x) in Table 1
such as for A; of simulation B. indicates that the observed fraction is the first \ in the

set which is significantly different from the observed fraction at A = 0 but it is also




L7+

significantly different from the observed fraction at the previous \. These significant
increases for changes in \ other than from A = 0 to A = \, are also different from the

contiguous rates for this configuration presented in Table 3.6.

The results presented in Table 2 show that the observed rejection and inclusion
rates are slightly lower for the noncontiguous rates for the same ~’s. The position of
the second elevated site appears to play a role for the unequal elevated rates. Also.
the observed fraction totally correct at some positive \ becomes significantly different
from the observed fraction totallv correct at A\ = 0 prior to significant increases in

other observed fractions in simulation C.

The results for & = 40 in Tables 3 and 4 show that there are slight drops in

detection ability with the increase in k in some situations.
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(1]

2 Noncontiguous Elevated Rates
Circle + 1. & =20.m = 200
A A B C D E 3
frej. fre;j. frej. frej. frej. frej.
f(L)in. | f(1)in. | f(1)in. | f(1)in. f(L)in. | f(1)in.
f{(2)in. | f(2)in. | {(2)in. | £(2)in. f(2)in. | {(2)in.
ftcor. ftcor. ftcor. ftcor. ftcor. ftcor.
0 .1060 3416 3438 .1160 074 2476
0472 3054 .0394 0624 3762 .0580
04838 .0398 .3080 .0318 0312 1828
.0012 .0106 .0096 001+ .009-1 .0081
Ay || I3 | 44607 | 37507 | L1346== 1063 2551
07547 [ 39727 | .0644== | .07T50== 3754 .060-1
0513 .0508** 3100 0420 .0322 L1872
.0026* 0162 .0128 .0024>> .0120 .0086
Ay il L1576 470 .3362™ A312= 4076 2570
.0328* .39382* 0671~ 071 3792 .0692
0542 0454™ 23210 .01416™ .0320 A8Td
.0018* 0110 0176™* 0018 0122 .0084
Az | L1484 ASLST [ LTSN | L1316™ | 43127 | 2532
.0800™ 3968~ 0678~ .0800" | .3994%* | .0736
0452 0514 | L3564 .0358 .0326 772
.0024~ 0148 .0192= .0039™ .0106 0116
Ag 16267 A6927 1 16227x | L 1504x | 4418 2756
.0793™ AL 0732 .0836™ 104 0794
06207 | 0653 | .3934*x | .0398=> .0310 1896
.0026 0238 | 0224~ .003.4™ .0010 .0126
As I L 1806%x | 1162 4560~ .1586™ 470 2640
.0792* 3900~ .0596* .0946™ AL 076
.0818*x | .0660* 4042 .0336 10334 1766
.0050™x | .0226™ .0192* .0032= 0110 0122
frej. = fraction of repetitions with at least one test rejected
f(1)in. = fraction of repetitions in which first elevated site is among those declared elevated
f(2)in. = fraction of repetitions in which second elevated site is among those declared elevated
ftcor. = fraction of repetitions in which only elevated sites are declared elevated

** indicates significant difference from observed fraction at A = 0

* indicates significant difference from observed fraction at A = 0 but not previous A
*x indicates significant difference from observed fraction at A = 0 and previous A
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2 Elevated Rates
Random populations/locations
contiguous noncontiguous
A A B C A B C
frej. frej. frej. frej. frej. frej.
f(L)in. | f(D)in. | f(l)in. | £(1)in. f(1)in. | f(1)in.
f(2)in. f(2)in. f(2)in. f(2)in. f(2)in. f(2)in.
ftcor. ftcor. ftcor. ftcor. ftcor. ftcor.
0 1192 3496 3372 1054 3370 3250
.0528 3013 .0460 0420 2946 .0390
.0502 0424 2878 0514 .0430 27938
.0018 .0093 .0092 .0020 .0102 .0106
Ay || (1366 | 3958~ 3454 3487 | 4288 3270
070477 | L3522== 0602 | .07007™ | .3794== | .0606=*
.0409 0428 2881 03380 0440 2782
.0024 .0124 0128 .0030 0114 .0128
Ay || S [ 410" 3338 1334 A1767 3306
07427 136647 | .0602== | .0700* 3688 .0608™
.0516 0440 2794 0102 0452 .2786
.0026 .0126 .0132 .0022 .0128 0134
Az [ .16247x | 4536 3392 .1340* 1190~ 3282
0894%x | 4100%x | 0T34 0690~ .0792* .0602~
0542 0416 .2820 .0400 .0396 2760
00327 1 .0156== | .0168=~ .0026 0124 .0132
Ay |l 1528* A307 | 35487 | 11362 A8 3284
.0340™ 024" 0756 0704 3762 .0602*
0528 0428 2844 0410 0452 2762
0034~ .0138™ .0170~ .0023 0150 .0130
As 15388 4490 5187 1 1384 A248™ 3316
.0910 1030 .0758" .0698™ .3866™ .0620~
0544 04443 2844 0410 0162 2780
0046 0173 01738" .0023 0153 .0120
frej. = fraction of repetitions with at least one test rejected
f(1)in. = fraction of repetitions in which first elevated site is among those declared elevated
f(2)in. = fraction of repetitions in which second elevated site is among those declared elevated
ftecor. = fraction of repetitions in which only elevated sites are declared elevated

** indicates significant difference from observed fraction at A = 0

* indicates significant difference from observed fraction at A = 0 but not previous A

*x indicates significant difference from observed fraction at A = 0 and previous A




2 elevated contiguous rates
Circle. k = 40. m = 100
A A B C D E F
frej. frej. frej. frej. frej. frej.
f(L)in. | f(1)in. | f(L)in. | f(1)in. f(1)in. | f(1)in.
f(2)in. | t(2)in. | f(2)in. f(2)in. | f(2)in. | f(2)in.
ftcor. ftcor. ftcor. ftcor. ftcor. ftcor.
0 .0962 3282 3343 .0938 3456 1816
.0420 .2990 .0336 0512 3163 0146
0424 .0273 .2988 0234 01384 1216
.0013 .0088 .0072 .0006 .0036 .0032
Ap | TS 158 | 4132%= | L0932 | .3T10%= | 1733
064077 1 3654 | L0554 | 0526 | .3390%= | .0452
05767 | 053407 | 3338 | 0216 0183 d212
0024 1 .0180™= | .0152==| .0010 | .0060~= | .0056
Ay || (1606= | 4174 | 4118 .0992 .3848™ .1904
0650 | 3578 | .0548% .0568 .3540" 0476
06187 | 0620~ | .3514= .0190 .0162 1296
.0026 0218 | .01380* .0012 0053 .0063
Az || 16587 | 4334 | 43107 | LL188** | 4140*x | .1388
06947 | 37047 | 0550 | .0670%* | .3812*x | .0562
06727 | 0604 | .3718" 0194 0171 A176
.0030 02107 | 0183 = | .0012 .0063 0053
A |l 15547 | 43727 | 8T | 1300 | 44647x | 2054
06327 | 3790 | .0578* | .0716™ | 4106*x | .0566
0644 | L0563 | .3856™ 0210 0178 L1294
.0030 .0218* | .0190™ .0013 006+ | .0074==
As || (15627 | 4274 | 4290% | 14027 | 44307 | 29356
06227 13698 | 0396 | .0792= | 4050 | .0636<*
06327 | 0566 | 3734 .0192 0168 1308
.0026 0196~ | .0216™ .0012 .0064 .0080™
frej. = fraction of repetitions with at least one test rejected

{(1)in. = fraction of repetitions in which first elevated site is among those declared elevated
f(2)in. = fraction of repetitions in which second elevated site is among those declared elevated
ftcor. = fraction of repetitions in which only elevated sites are declared elevated

** indicates significant difference from observed fraction at A = 0

* indicates significant difference from observed fraction at A = 0 but not previous A

*x indicates significant difference from observed fraction at A = 0 and previous A




2 elevated noncontiguous rates
Circle + 1. k = 40. m = 100
A A B C D E F
frej. frej. frej. frej. frej. frej.
f(L)in. | f(1)in. | f(1)in. | f(1)in. f(1)in. | f(1)in.
f(2)in. f(2)in. | f(2)in. f(2)in. f(2)in. f(2)in.
ftcor. ftcor. | ftcor. ftcor. ftcor. ftcor.
0 .0900 3288 3426 .0894 3430 1764
0420 .2906 .0330 0473 3186 0474
0150 0348 3082 .0208 0142 1188
.0020 .0064 .008- .0008 .0036 .0054
Ap |l L1348 | 4118 | 3494 | 11247 | .3640%= 19647
061477 136437 | L0552 | 05817 | .3368== .0536
.0390= 0332 3074 .0226 0170 1252
0026 | .0100*= | .0136 .0010 .0034 .0064
A, 1376™ A04S™ | 3544 | L12707x | 1050%x | .2146%x
0610~ A35747 ) .0580 | .0T44"x | .3706*x | .0602*=
0410~ 0354 3076 .0202 .0198== 1230
.0020 0104~ 0172 .0016 .0070™~ .0058
Az || L1334 | 4300%x | .3610 38T | 42827k | 2262
0570 | .3822%x | 0564 0722% 1 39147x | .0706=x
0422 .0364 2994 0213 017 1278
0016 .0096™ 0174 0018 .0070 .0082
Ag |l J1490*x | 4222= | 3576 3427 007 x | 2230
O7047x | 3732 | 0434 0726~ 3994* 0663™
0434 04307 1 2972 .023.1 0210~ L1284
0020 0124~ 0168 .0012 0068~ .006-1
As Il 1314 4162 3540 .1366™ 4302~ 2276
0524 3636™ | .0504 0732 132 0634™
0476 0496 3024 0216 .0206™ | .1358™>
.0024 0124 | 0164 .0010 .0070~ .0072
frej. = fraction of repetitions with at least one test rejected
f(1)in. = fraction of repetitions in which first elevated site is among those declared elevated
f(2)in. = fraction of repetitions in which second elevated site is among those declared elevated
ftcor. = fraction of repetitions in which only elevated sites are declared elevated

** indicates significant difference from observed fraction at A = 0
* indicates significant difference from observed fraction at A = 0 but not previous A
*x indicates significant difference from observed fraction at A = 0 and previous A

oL



Appendix 3.9

Locations and Contiguities: ‘Random’ Configuration
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The following table lists the locations for & = 20 for the random population and

location configuration used in simulations of Chapter 3 and Chapter 4.

Random Populations/Locations. & = 20
Spatial Configuration and Contiguity

Site | Population (x.v) Loc Contig Sites
L 397 ( 5.54.3.73 ) 7L 14

2 923 ( 0.22. 7.53) 7.10.13

3 722 ( 7.34.3.836 ) 3.7.11.20
1 25 ( 9.08.0.37) 5.20

5 396 (6.47.0.42) 11.15

6 697 ( 8.63. 8.89 ) 10

T 594 (4.19.5.86 ) | 10.11.13.14.16.19.20
S 598 ( 0.60. 5.13 ) 13.13.19
9 313 ( 1.50. 2.60 ) 12.16.17.13.19
10 852 ( 3.60. 8.90 ) 2.6.7

11 960 ( 7.0L.3.39 ) 1.3.5.7
12 793 ( 0.19.0.01 ) 9.16

13 553 ( 0.32.5.38 ) 2.7.3

14 926 (124,247 1.7.16

15 356 ( 2.83. 1.38) 5

16 955 ( 2.73.3.17) T9.11.14
17 306 (0.95.0.25) 19

18 906 ( 0.37. 4.65 ) 9

19 373 ( 2.14. 3.83 ) 7.6

20 586 ( 8.13. 3.65 ) 3.7
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Appendix 4.1 Var(

The details below for Var( lA,,_,i‘,) are used in the expression for TOTMSE and the

solution for A,..n1rsE) given in Section 1.2.

[t is more computationally convenient to work with l..4, (first presented in Section

-
-

il
shown a lower TOTMSE for irfd_,-. \"ar(i,ed.,) is of

simply as 4;. the expression for Var(l,.,;) given in

2.9) which ignores higher powers in

irff].x)

Further. empirical investigation also has

order four in <,,,. Denoting <

(1.2) 1s

\”ar([‘red.z) = Var [{i (—bz:::) + %’izeu:lj>}
JFe
= l:bf\'ar(‘,-f) + el Var(43,) — 26,5 ¢, Cov(32.4)
FE ET]
where
Po— 4
T m/NY
Var(3?) = E(3}) - {E(‘::,"))z}
Var(4i4,) = E(373}) - [E(5.4)))°
and
CO\'(‘:;?.:;J) = E(;:‘};:J) - E(:}?)E(A))




Appendix 4.2

Further investigation of CVPL(\)

The function CV'PL()) can be better understood by considering its limits at zero
and infinity. As an aid to the investigation of this function. the case vector Y consisit-
ing of m cases among & cells can be rearranged such that the first y1 rows correspond
to the cases falling into cell | and so on. In Table 1.1.1 below. three cases fell into

cell 1 while four fell into cell 4.

Table 4.1.1

Alternate arrangement of m indicator vectors

/7 112 A
L Lo |0
2 1110 0
3 1110
1 |
m-4 110
m-3 l
m-2 1
m-1 l
m 1

Without smoothing. the cell estimate é,\d.(,, in (4.5) is the maximum likelihood




estimate with the deletion of a case from cell / . For \ at infinity. 5\ ;) = 1 and

éj'(,-)“\ = N,/ N4, For A = 0. (4.6) becomes

lmk

CVPL(0) = —3°3" (5, = d,0)" (L.1.1)

xl_]l

where 6; ;) is the maximum likelihood estimate under a case deletion from cell i and

b, is the jth element of an indicator vector such as row i of Table 1.1.1.

The order of summation in (+.1.1) can now be reversed so that summation is down
a column of a table formatted as Table 1.1.1 If one substitutes OAJ,(,») =(y,—1)/(m—=1)

for table entries with j =/ and éj_(i) =y, /(m—1)for j #1.

& yr — 1\? ~yr \2
CVPL(O —TZ[ ( m—l) +(m—yr)<m—l>]'

r=1
Some manipulation shows that
l . £
CVPL(0) = —)2 (m" - qu)

(m-—1 =

The relation m? = (¥ y,)? > ¥ y? ensures that CVPL(0) is positive.

Taking A to infinity gives 0}-'“) = .\,/V; regardless of whether j = i. Reversing

the order of summation as before. then as A goes to infinity. CVPL tends to

I & N & AV
;'; ,:yr (I - ;\.+> + ’;(nl - yr) (_-\-+) ] .




Some further rearrangement shows that as A goes to infinity. CVPL tends to

m

l ) & ] k " )
— [ln - \__' E .’/j‘\_j + mZ.\‘;/.\+ .
=1 j=ti

Assuming equal populations. this limit for CVPL reduces to (1 = 1/&). This in-
vestigation of C'VPL(A) prompted futher work on predictive loss using the simple

convex smoothing prescription introduced in Section 1.4. This material is presented

in Appendix 1.3.




Appendix 4.3

CVPL for Convex Smoothing
In this appendix. predictive loss through simple convex smoothing is investigated.

The following function was considered in Section 1.3 as a possible criterion for
the choice of smoothing parameter. [ncluding the y; case deletions at each site. the

predictive loss criterion written in terms of the smoothing parameter \ is

k

: s TR
CVPL(A) = EZ!J.‘Z (511’ —(}j.(i)..\) »
—

=

The function can be reconsidered with the simple convex smoothing prescription
described in Sections 1.4. 4.3 and Appendix 1.2. For j = i-(),.(i).fx = (y, — I)(I —
a)/(m—1)4a.\,/N; while for j # i.OAJ,(,-)_I, =y,(I=a)/(m=1)+a\,/N,. Substituting

in these expressions. the predictive loss function becomes

KTk 2
CVPL(a) = LY [y,-Z (1= -zt — )’

This equation can be re-expressed as the quadratic CVPL(a) = Aa® + Ba + C. The
limits of C'VPL were once again considered by evaluating this quadratic at « = 0 and
a = 1. These analytic results for convex smoothing were compared to those found for

the criterion involving the smoothing parameter \.
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The value of the function at @ = 0 is the predictive loss function with no smooth-
ing. The estimate 0, ;) is the maximum likelihood estimate with case i deleted from

the observations. We obtain the value " of the quadratic as

which reduces to

As expected. this is the value of the predictive loss function obtained previously in

Appendix 1.2 for A = 0.

The loss function can be written as CVPL(a) = da® + Ba + C. the first deriva-
tive 2-la + B evaluated at @ = 0 will indicate whether the function is increasing or

decreasing at a = 0. The derivative is

~1 -\.x ¢ -\’1
CVPL(a) = —Zq,(l- (= ay¥: —af) (-” ‘—f)

and B = CVPL'(0) is




which reduces to

m(m — 1)2

B =

The relationship (% W) > Zf_ y} implies that CVPL'(0) < 0. Hence CVPL(a)
is decreasing at zero unless 3% y? = m? (which occurs only if all m cases occur at
one site). This result implies that smoothing will almost always be beneficial with

respect to predictive loss. Taking the derivative once again gives

A A v, o )
'VPL"(a) = =%y, [ L2220 _ 2 =Sy - - — -
C (a) Yy ( ‘\-_*_) + m ;y ; (_.\+ m — l)

Some extensive manipulation gives

CVPL"(0 2.4 2 AW 1)
LA Y ” J— — —l— _
(0)=2. m(m — 12N, " (m Z'/’
ul 2 _l 2k -
_ (,n _ 2).\'+Zyl?' " III m Z -
=1 =1

Adding the constants A. B and C gives the value of CVPL at ¢ = 1. the upper limit

for «.

1

CVPL(l) = — [71

— 25y, —1)2/N
- (m sz (m AW
k v 2
+(m ZJ,+mm—lzz( )
=1 =]

(m—1)2




.._.
[ 2
9.4

+ ; 2 (iy? - m?)}

(m—1)* |m \Z

1 [

k
+ m _m —;y,] .

Rearrangement and simplification gives

2 R _ZN:.'/:'-\'}
CVPL(l) = 1+Z( ) — =
AR

which is the same solution as that obtained for CVPL as \ tends to infinity.

The expectation of CVPL(a) = Aa? + Ba + C (where A. B. (' have been given
above) can also be considered as an aid to understanding the predictive loss function.

Under complete homogeneity (4, = 1 fori = 1..... k) it can be shown that

E[-IO[C“‘.PL((I:)] = ‘ . a’ +

Hence Ey,[CVPL(a)] is the quadratic function Da® + Ga + H where

! O
D=Ey(4) = — (1 - ZT (\—+) ) .

69

)

k
G=Ey,(B) = ———l: Z(

(m—1)2

/I/




and

k N\ 2
T -t}
V4

m—1 =1

Denoting E[CVPL(«)] under homogeneity as simply E,(a). the limits at « = 0 and

a=1 are

and

E, (1) = " (1_i<L))+<l—§(‘%)>( 2 +1)_(_ﬁ’_

m—1

The two limits are equal as m goes to infinity.

The first derivative of E,(a) at the extremes for a reveals whether it Is increasing

or decreasing at these limits. E'{a) =2Da + G so

E(0) = G
2 VA
= “(nl — 1)3 [l - ; (1_—.&) - "l}

which is negative because the term inside the square brackets is negative. Hence the
expected value of the predictive loss function is decreasing at @ = 0. This result is

not unexpected because CVPL(«a) was shown to be decreasing at @ = 0 in general .

E(l) = 2D+ G

2 LN l 2m
m— | ( z;(\_,,) ) ( +m—l) (m—1)2
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Under the assumption of equal populations E!(1)is

(m—1)2 &k (m—1)?

- == (3)

which is negative. Hence the expectation of the predictive loss criterion under homo-
geneity and equal populations is decreasing as « approaches 1. This result supports
empirical evidence which revealed that the CVPL function was decreasing under ho-

mogenity and small departures.
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Appendix 5.1

Nova Scotia Municipalities

Co-ordinates. Names and Contiguous Sites

152

Site | Latitude (x) | Longitude (v) Municpality Name Contiguous Sites
l -64.003 45.864 AMHERST 45.17.37

2 -65.2 14.95 ANNAPDMUN 3.9.34.41.27.18
3 -63.517 44.75 ANNAP.ROYAL 9.34.2

1 -61.75 45.533 ANTIGONIGH.MUN 5.38.40.20

3 -61.917 43.617 ANTIGONISH 4

6 -65.825 13.75 ARGYLE.MUN 54.7.18

T -63.565 13.575 BARRINGTON.MUN 15.43.6

S -64.75 45.045 BERWICK 26

9 -65.333 +4.833 BRIDGETOWN 3.2

10 -64.5 4-.364 BRIDGEWATER 33.31

11 -61 15.364 CANSO 20

12 -60.43 46.05 C.B.MUN 30.56.58.438.50.42
13 -61.25 14.65 CHESTER 3121

14 -66.167 11,25 CLARE.MUN 13.53

15 -63.625 13.483 CLARKS.HR. T

16 -63.55 45.909 COLCHESTER.)MUN 16.49.17.21.33.23
I -63.75 13.9 CUMBERLAND.MUN 16.1.36.37.45
LS -65.925 4.5 DIGBY.MUN. 14.19.2.6

19 63.75 1-1.636 DIGBY I3

20 -61.5 15.318 GUYSBOROUGH.MUN 1113547
21 -63.357 T HALIFAX.MUN 33.47.23.31.6
22 -63.73 15.1 HANTS.EAST.MUN 21.23

23 64.033 45.035 HANTS.WEST.MUN 21.22.24.51.16
24 -6-4. 183 45.063 HANTSPORT 23

25 -61.375 1435.591 PORT.HAWKESBURY 40.35.42

26 -61.5 45.091 KRENTVILLE 52.27

27 -6-1.45 45.227 KINGS.MUN 3.26.52.2.23.31
23 -64.75 44,045 LIVERPOOL 41

29 -65.125 13.704 LOCKEPORT 12

30 -60 15.833 LOUISBOURG 10.32.33.13.2.41
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Site | Latitude (x) | Longitude (v) Municpality Name Contiguous Sites
31 -6-4.42 4+4.25 LUNENBURG.MUN 32

32 -6-1.3 11.3 LUNENBURG 31.33

33 -64.375 11425 MAHONE.BAY 10.32.32.13.41
34 -65.067 +1.917 MIDDLETON 9.3.2

35 -61.375 45.614 MULGRAVE 20

36 -63.34 45.75 OXFORD 1517

37 -64.313 45.4 PARRSBORO 117

38 -62.55 43.515 PICTOU.MUN 39.57.4.20.16
39 -62.688 143.682 PICTOU 33

10 -61.501 16.065 INVERNESS.MUN. 42,124

11 -61.6 45125 QUEENS.MUN 28.31.2.18.43
42 -60.35 45.65 RICHMOND.MUN 25.40.12.35.20
13 -65.1 13.6 SHELBOURNE.MUN 41.42.53
4 -65.313 13.75 SHELBOURNE 29

45 -64.075 15.636 SPRINGHILL 1.36.17

16 -63.3-44 45.136 STEWIACKE 16

47 -61.9 45.136 STMARYS.MUN 35.21.38
13 -60.333 46.167 SYDNEY 56.57.12
19 -63.281 145.364 TRURO 16

50 -60.75 16.15 VICTORIAMUN 12,40

51 -6-4.125 15.167 WINDSOR 23

52 -64.375 15.05 WOLFVILLE 26.27

53 -66.063 13.92 YARMOUTH.MUN 5-4.6.43.14
54 -66.125 13.84 YARMOUTH 53

55 -63.6533 141.636 HEXMETRO () 21

56 -60 16.25 GLACE.BAY (=) 13.12

57 -62.656 45.591 NEW.GLASGOW (===) 33.13

58 -60.5 46.25 NORTH.SYDNEY (****) 43.12

* Site 55 is an amalgamation of Halifax. Dartmouth. and Bedford

** Site 56 is an amalgamation of Glace Bay. New Waterford. and Doninion

*** Site 57 is an amalgamation of New Glasgow. Stellarton. Westville and Trenton

**** Site 58 is an amalgamation of North Sydney and Sydney Mines
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