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Abstract

In this thesis, an orthogonal spline collocation algorithm is formulated and im-
plemented within a method-of-lines approach for the numerical solution of a class of
linear parabolic partial differential equations. A detailed implemeatation of the or-
thogonal spline collocation algorithm for sclving elliptic partial differential equations
(PDEs) is given and the efficiency of the implementation is discussed. By collocat-
ing the elliptic PDEs at Gaussian points, a linear system in tensor product form is
obtained. A matrix decomposition approach is used to reduce the linear system to
a collection of independent almost block diagonal linear systems, each of which is
solved by the almost block diagonal linear system solver ARCECO. The same ap-
proach is then applied within a method-of-lines context to solve partial differential
equations of parabolic type. By collocating the parabolic PDE at Gaussian points,
systems of ordinary differential equations (ODES) are generated. The Jacobian ma-
trix of the ODE system has an almost block diagonal structure. This ODE system is
solved using the differential/algebraic solver DASSL, which is modified to take advan-
tage of the special structure of the Jacobian matrix. These algorithms are efficiently
implemented in a parallel architecture, using an eight processor Alliant/FX2800. Nu-
merical experiments are presented to demonstrate the parallel performance of these

algorithms.
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Chapter 1

Introduction and Background

Material

1.1 Introduction

Recent rapid developments in parallel computer architectures are having dramatic
effects on the scale of scientific computations which are now possible. The utiliza-
tion of special paralle] algorithms to take advantage of such architectures is clearly
important. In this thesis, we discuss the development of a method-of-lines, parallel,
collocation algorithm for solving time dependent linear separable parabolic partial
differential equations (PDEs) in two space dimensions.

There are three principal components in the method-of-lines approach for solving
two dimension linear separable parabolic PDEs: (i) a scheme for the discretization of
the spatial variables; (ii) an ordinary differential equation (ODE) solver used for the
system of ODEs in time which resuits from the discretization; (iii) the linear algebra
software which is chosen to take advantage of any special structure which is present
in the linear systems which arise during the numerical solution of the ODE system.

For (i) we use orthogonal spline collocation at Gaussian points. The spatial de-
pendence of the numerical solution is represented as a linear combination of basis

functions. The discretization of the spatial dimensions is obtained by requiring the

1



CHAPTER 1. INTRODUCTION AND BACKGROUND MATERIAL 2

numerical solution to satisfy the PDE at collocation points. These points are chosen
to be the images of the Gauss points [12] on each subinterval into which the problem
interval is partitioned by a given mesh. This still leaves open the choices of basis
functions. For reasons of efficiency and flexibility in order and continuity we choose
B-splines [14] as the basis functions.

For (ii) and (iii) the differential/algebraic solver DASSL [15], [59], is modified
to solve the ODEs introduced by collocation. The Jacobian matrix of the resulting
ODEs has an almost block diagonal (ABD) structure {19]. This leads us to modify
DASSL to take advantage of this structure by using the almost block diagonal linear
system solver ARCECO [20].

There have been many papers in the area of orthogonal spline collocation for
solving differential equations, (see [25] for a comprehensive survey). In [12] de Boor
and Swartz analyzed collocation methods for solving boundary value ODE problems.
They showed that the collocation approximation can achieve a high order of conver-
gence if the approximate solution is required to satisfy the differential equation at
Gaussian points. In [42] Keast, Fairweather and Diaz made a computational study
of finite element methods for second order linear boundary value ODE problems.
They verified the orders of convergence of the collocation method by numerical ex-
periments, and concluded that collocation is the cheapest method to solve a certain
class of boundary value problems and the easiest to implement. In [4] COLSYS, a
very successful implementation of collocation for solving boundary value ODEs, is de-
scribed. This package implements orthogonal spline collocation with B-spline bases,
and has proved to be very efiicient for solving a variety of boundary value problems.
Some research has been done on orthogonal collocation for solving elliptic PDEs, for
example {37], but most of these authors have not considered parallel features in their
implementation. Only recently Bialecki and Fairweather [11] introduced a matrix
decomposition algorithm for solving separable partial differential equations of elliptic
type which can be readily adapted for parallel computation. There exist efficient im-

plementations of orthogonal spline collocation for solving one dimensional parabolic
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PDEs, for example, PDECOL [51]. The package uses finite element collocation meth-
ods based on B-splines for the spatial discretization and a modification of Gear’s
method (31] for solving the ODEs. The systems of linear equations are solved using
a band solver. In [43] a modified form of PDECOL, called EPDCOL, is described,
which uses the more efficient linear equation solver COLROW [20], to take advantage
of the block structure of the linear systems which arise.

A brief outline of the thesis is as follows. In Chapter 2, a description of ELLDCM,
our implementation of Bialecki and Fairweather’s matrix decomposition algorithm [11]
for the solution of elliptic PDEs with simple Dirichlet boundary conditions is given,
and its efficiency is discussed. As we will show later, much of the work done for the
elliptic case will be incorporated into our later implementation for the parabolic case.
Also in Chapter 2, a comparison of ELLDCM with Kaufman and Warner’s code [41] is
given. Kaufman and Warner’s code solves two dimensional elliptic partial differential
equations using the Rayleigh-Ritz-Galerkin method. In [11] Bialecki and Fairweather
also proposed an algorithm for solving elliptic PDEs with general linear boundary
conditions; we extend their approach in Chapter 2. In Chapter 3, we concentrate on
the solution of PDEs of parabolic type. We develop and implement an orthogonal
spline collocation algorithm, PARCOL, for solving two dimensional parabolic PDEs.
By collocating the elliptic operator at Gaussian points, we obtain a system of ODEs.
The differential/algebraic solver DASSL is employed to solve the ODE system. An
almost block diagonal linear system solver ARCECO [20] is added to DASSL in order
to efficiently handle the special structure of the Jacobian matrix which arises. The
parallel performance of the algorithm is demonstrated through numerical tests on
a parallel computer system;, the Alliant/FX2800. In Chapter 4, we give the calling
diagram of our programs, ELLDCM and PARCOL. For each of the codes, we present
the initial comments in which we describe briefly the purpose and usage of each
routine. We present our conclusions and future research directions in Chapter 5. In

Appendix, we give sample driving programs for solving certain test probiems using
ELLDCM and PARCOL.
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1.2 Background Material

In this section, we first examine the structure of the systems of linear equations which
result from collocation with B-spline basis functions. The linear system which we will
solve in Chapters 2 and 3 can be expressed in terms of a matrix tensor product; here
we give the definition and some properties of this product. Also, we give the definition
of the matrix Hadamard product which is used to simplify the notation in Chapter

3. Finally, we discuss some background material concerning parallel processing.

1.2.1 The Structure of the Collocation Matrix with B-spline

bases

In order to illustrate the structure of the collocation matrix with B-spline hasis func-

tions, we give the collocation procedure for solving the following simple ODE problem:

B = f@), sl 1, (1)
u(0) = u(1) = 0. (1.2)

Let N be be a positive integer and let 7 = {z\)}/L; denote a partition of [0, 1]
such that
0=20<zW <. <z =1, (1.3)

and I¥) denote the interval [z0-1, 20}, j =1,2,---,N.
Let > 3 and let M(r, 7) be the space of piecewise polynomial functions defined
by

M(r,7) = {v € C'[0, 1] : v|gs-n, 00 € Pry j=1,...N, v(0)=wv(1})=0}, (1.4)

where P, denotes the set of all polynomials of degree < r. Note that we have chosen
M(r,7) so that the boundary conditions (1.2) are satisfied by the whole space. The
dimension of M(r, =), denoted by M, is N(r —1). Let {¢®¥};Z] and {w¥};Z] be
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the nodes and weights of the (r — 1) point Gauss-Legendre quadrature rule on [0, 1].

The Gaussian points on /() are defined by
gG-DIr=10+8) = pG=1) L 06N j=1, .. N, k=1,...,7r -1, (1.5)

where A = z()) — (-1},

The B-spline functions have been widely used for basis functions in collocation
and finite element Galerkin methods for the numerical solution of differential equa-
tions. The definition and properties of B-splines can be found in [14]. B-splines are
efficient representations of piecewise polynomial functions satisfying certain continu-
ity conditions at a given set of mesh points. To describe the support properties of
the B-splines, we must specify a set of knots {¢;}. These knot points are determined
by the mesh selection, the continuity conditions and the order of the B-splines. For
B-splines of order K (i.e. degree < K — 1) with C?! continuity on the mesh defined
by (1.3), the knots are defined as follows:

tl — t2="'=t}'{=x(o)
< tgpr ==tz =2z
< tagey=--r=tag_g =2®
< tikogjes = cr = sk = 2
< t(N—l)K—2(N-I)+3 == tNK—2(N—1) = :t:(N"l)
< tNK-2N43 = tNK-2N+4 = - = bNanK-2ne2 = 20D,

The space of B-splines of order K with C" continuity conditions is denoted by S§.
The dimension of SX is N(K — 2) + 2. The following lemmas from [14] are useful.

Lemma 1.1 Let {n;}X, and {;}}, denote the basis functions spanning the B-

splines of order K, on the subintervals IV) and I™), respectively. Let g®)(z) denote
the ith derivative of the function g(z). Then

’7;21 (3")1:::: = If.‘i’
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"/’_5‘21(3:),:,; = Uiy 4,j=0,1,---,K -1,
where

Li; = 0ifi<y,
u; = 0ifK—-i>j7+1.

Lemma 1.2 Let Bi(z), i = 1,2,-+-, N(K—2)+2, denote the B-spline basis functions
spanning SX. Then the support of Bi(z) is (i, tisk)-

From Lemma 1.1 we observe that to get a set of basis functions for the space
M(r,7), we can just use B-spline basis functions for M(r, ), where M(r, 7) is
defined as

M(r,m)={ve C0,1] : vl 1,z € Pry 5=1...N} (1.6)

except that we “discard” the first basis function spanning the B-splines on the subin-
terval J®) and the last basis function spanning the B-splines on the subinterval / (v,
The remaining B-spline functions form a basis for M(r, 7).

Let {¢n}*.; be a B-spline basis for M(r, ), where M = N(K —2). Suppose that
the approximate solution, U € M(r, 7), is given by

M
Uz) = Z Undn(Z),
n=1
where u,, n =1,---, M, are unknown coefficients to be determined. The orthogonal

spline collocation solution for (1.1), (1.2) (that is collocation at the Gaussian points

(1.5)) is obtained by requiring U to satisfy
PU ) (gt |
z;;(ﬁ( N=fE™), m=1,..., M. (1.7)

Note that U already satisfies the boundary conditions, which are imposed on M(r, ).
Let

T = {uy, tay ..., um]T and f=0f1, fayooon Sl
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where f, = f(€™). Then (1.7) can be written as
Ai = f, (1.8)
where ,
A= (amn)ﬂ,m y and Gmn = ¢:(E(m))-

From Lemma 1.2, the collocation matrix A is an almost block diagonal matrix (ABD)
[19], with the structure shown in Fig 1.1. The linear system (1.8) can be solved
efficiently by using the package ARCECO [20].

Figure 1.1: The structure of the collocation matrix.

In the above matrix, each block represeuts the collocation equations in one interval.
The column overlap between blocks is determined by the continuity requirements.
No three blocks overlap. Note that usually, for one dimensional boundary value
problems (BVPs), U(z) = =M+t v, B,(z), where {B,}+! is the B-spline basis for
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M(r, ) of (1.6), boundary conditions such as u(0) = u(1) = 0 are collocated, i.e.,
U(0) = U(1) = 0, and these equations are included in the linear system. We have
taken a slightly different approach here by making the basis functions satisfy the
boundary conditions. This is required for the work in Chapter 2. |

1.2.2 Order of Convergence

In [4], a method for spline collocation at Gaussian points is implemented for two
point boundary value problems using B-splines. The package can solve a mixed order
system of ODEs of the form:

u‘(‘me) = fi(msula"'?u£Ml—l)’u21°"1ufimd—l))
= fi(z,2(@)), 1<:<d, aLz<b, (1.9)
with multi-point conditions

9i(G,2@) =0, 1 <j <m0, (1.10)

where

d
#(z) = (w(2), -, ua(z))T, m" =3 mi, e<G <SG Shme S,
i=1
and (i(z)) = (w(2), -, w{™ (@), ualz), -+, ul™ ()T
Given a partition of [, b], denoted by =, the approximate solution

¥ = (v1,v2,"**,Vd),

is computed by requiring that v; € P, . N Ctmi-V[a,b] (r; = k + m;) and that v;
satisfy the differential equation (1.9) at k Gaussian points on each subinterval of 7.

As shown in [3] and [12], the error bounds of such approximations are, in general,
| w = o [lo= O(RF™ ), 1=0,--+,m;, i=1,---,d, (1.11)
and at mesh points,

1 = vO)(z;)] = O(h%), i=1,---,d, j=0,---,N, I=0,---,m;—1. (L12)
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Here h is the maximum subinterval length. By (1.11) the order of convergence for
the Lo, error for v‘w isk+mi—1Ifor: =1,---,dand 0 £ I £ m;. By (1.12)
the order of convergence for the maximum error at mesh points for v is 2k, for
:=1,---,dand 0 <! < m;. The higher order of convergence at mesh points is called
superconvergence.

An approximation to the order of convergence may be computed in the following
way: If the error is O(hR), then the error = c- A%, where c is a constant independent
of h. Let ERROR,, and ERROR,, denote the errors of two approximations with
two different uniform meshes having subinterval sizes k; and h; and ky; > hy. Then

ERROR,, = c- hf and ERROR,, =~ c- ki, therefore

ERROR;, _ (h\®
ERROR,, \hz) '

hence

ERRORy\ _
Iog (m) =~ Rlog(hl/hz).

Therefore the approximate order of convergence is given by

R log (ERRORy, [ERROR,,)
= log (h1/h2) '

Next we discuss the order of convergence of the interpolant which is obtained by

(1.13)

interpolation at the Gaussian points to a given function in the presence of mixed linear
boundary conditions. The result presented here will be used in the later discussion
about the order of convergence of the orthogonal spline collocation algorithm applied
to two dimensional elliptic PDEs with mixed linear boundary conditions.

Let the function u, defined on [0, 1], be such that

aou(0) — Bou'(0) = ¢p, e1u(l) — B1u'(1) = ¢;. (1.14)

Let » > 3 and .A;t(r, 7) be the space of piecewise polynomial functions defined by
(1.6). The dimension of M(r,7) is M + 2, where M = N(r —1). Let U be an

approximation to u such that U € A;((r, 7), U interpolates u at Gaussian points



CHAPTER 1. INTRODUCTION AND BACKGROUND MATERIAL 10

defined as in (1.5), and also satisfies (1.14). Let {¢a(z)}3C5' be a modified B-spline
basis for .A;I(r, 7) with o, 1, du and P4y satisfying the conditious,

cod0(0) = Bodh(0) = 1, codr(0) — ol (0) = O, (1.15)
a1um(l) — Bidi(1) =0, adpa(l) — Bidhra(l) =1. (1.16)

The remaining ¢;’s satisfy (1.14) with zero right hand sides. Using Lemma 1.1,
Bialecki and Fairweather [11] showed that bases satisfying equations (1.15) and (1.16)
can be chosen. The details are given in Chapter 2.

Suppose that U = £ M3 4;4;. Then we have colU(0) — BoU’(0) = co from (1.14).

In addition

M+1 M1
aU(0) — BoU'(0) = ao 2_) ui$i(0) — Bo 3, wigi(0)
B M+1 . M+1
= Olouo¢o(0) - ﬁouo%(o) + ap 2 #i¢i(0) —Bo E u,-¢§(0)
i=1 =1

= up, by Lemma 1.1 and equations (1.15).

Therefore up = cp. Similarly we can show that up4y = ¢;. The unknowns u;, for

i=1,---, M can be determined from the linear system At = f, where

Z=[u, -, uml, F=[ffull, m=1--, M,

where
Fn = u(E™) — uodo(6™™) — uprpr1dma (&tmy,

and Gmn = 65(6(), m,n=1,---, M, and £, m =1,---, M, is defined by (1.5).
As before for (1.1) and (1.2), the interpolant U{z) = TM1u, B, (z) could be
computed by collocating at the Gaussian points and at the end points, that is the
two equations agU(0) — BolU’(0) = co, e1U(1) — A1U’(1) = ¢; are included in the
system. We have followed a different procedure by imposing certain conditions on
the basis functions in order to prepare for the work in Chapter 2. In the following
we show experimentally the order of convergence of this interpolation process. The

results here are heuristic since they are only based on the observation on the output
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of a numerical experiment. See Section 5.1 in [10] for theoretical results in case of
Dirichlet boundary conditions with piecewise cubics. We choose u to be z° — z° + 1,

and note that u satisfies
u(0) —'(0) =1, u(1)—'(1) =0. (1.17)

In Table 1.1, E, denotes the L, error on [0,1], E,, denotes the maximum error at
the mesh points, V is the number of subintervals, and & is the number of collocation
points in each subinterval. The values R,, R, are computed according to (1.13) for
consecutive mesh sizes. The L., errors are computed by sampling the error at 100
uniformly distributed points. In Figure 1.2, we plot on a log-log scale the L, errors
and maximum errors at mesh points. Table 1.1 and Figure 1.2 show that the orders

of convergence for both the L, error and the maximum error at mesh points are

approximately & + 2.
k= k=
N| E, R, | En |Rn| E. R, | En | Bn
4 |9.14-04 8.17-04 2.47-05 1.69-05

8 |6.97-05 | 3.71 { 5.90-05 | 3.79 | 8.22-07 | 4.91 | 5.59-07 | 4.92
16 | 4.80-06 | 3.86 | 3.95-06 | 3.90 [ 2.65-08 | 4.95 | 1.79-08 | 4.97
32 | 2.55-07 | 4.24 | 2.56-07 | 3.95 | 8.41-10 | 4.98 | 5.67-10 | 4.98

Table 1.1: The errors of interpolation at Gaussian points.
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~—— Ly Error

----- Maximum
Mesh Point
35.88 Error

28,08 |-

<Log(Error) 21.08

14.00

7.28 -

~LogiStsp Size)
Figure 1.2: The order of convergence of function interpolation at Gaussian points.

The result shown here will be used for the discussion about the order of conver-
gence of the algorithms given in Chapter 2 and 3. One should note that the order
of convergence of the maximum error at mesh points is no higher than the order of
convergence of the Lo, error for the interpolation process discussed here. Although
superconvergence at the mesh points is observed for collocation at Gaussian points,

it is not observed for interpolation at Gaussian points.

1.2.3 Matrix Tensor Product and Hadamard Product

Let A and B be two matrices of size m X n and p X g respectively. The tensor product
of A and B, denoted by A® B, is defined by:
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[ 0113 algB o v . G}nB
0213 azzB . e az,.B

A® B =
am1B am2B . . . ap:B

Clearly A ® B is a matrix of order mp x ngq. The following properties of the tensor
product of the matrices will be frequently used ([53]).

(1) (A®B)(C® D)= (AC® BD).

(2) (A+C)®@B=AQB+CQB.

(3) (A® B)T = AT @ BT.

(4) If A and B are nonsingular, then A ® B is nonsingular and

(A® B) = (A" ® B™).

Next we give the definition of the matrix Hadamard product. The Hadamard

product of square matrices A and B of the same size m X m, denoted by A« B, is

defined by:

a11bin a2 . . . @imbim

az1ba1  @z2be2 . . . Gambom
AxB=

amlbml Qo 2bm2 o x e ammbmm

The definition and properties of matrix Hadamard product can be found in [53].
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1.2.4 Parallel Processing

Parallel architectures have lead to the development of parallel algorithms which have
challenged existing sequential algorithms for the numerical approximation of differ-
ential equations, and extensive work has been done on developing such algorithms,
[56], [66), etc. The speedup of a parallel algorithm is defined as the ratio of execution
time on a single processor to the execution time on a multiprocessor (see, eg; (46]).

If we have an n processor system, then the speedup is defined as
13} .
speedup = —, (1.18)
2

where ¢, is the execution time on a single processor and ¢, is the execution time on

n processors. Amdahl’s law [46] states that

n

= < n,
stp/n _pAn(l-p)

speedup < (1.19)

where s is the fraction of execution time spent in serial portions of the codes and
p is the fraction of execution time spent in parallelizable portions of the codes, and
s+p = 1. Amdahl’s Law expressed by (1.19) is based on the assumption that there are
only two different types of processing modes in the code; those which can be carried
out in parallel on n processors and those which can only be carried out on a single
processor. The execution time of a code run in sequential mode can be monitored by
using a profiling utility which keeps track of the time spent within each subroutine
or function. In the UNIX operating system this utility is called gprof (or lprof) [30].
By reading the output of gprof, we can get a rough idea of the profile of the code.
To get an accurate profile, we need to use the FORTRAN library function ETIME,
which returns elapsed user time and system time.

In our implementation of the parallel collocation algorithm, we are only interested
in parallel execution of the operations which can be carried out independently. Such
operations can be executed in parallel in any order. Our parallel implementation
will be done on a eight processor system Alliant/FX2800. To execute independent

operations in parallel on the Alliant/FX2800, we must first put these operations into
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a subroutine. The subroutine calls are executed in parallel within a “paralle]” DO
loop, identified by means of a compiler directive. We provide an example to illustrate
this.

Let us suppose we want to add two vectors @ and b. On an Alliant/FX2800, a

parallel add is performed as follows,

CVD$ CNCALL
b0 10 I=1,N
CALL SUMAB(A(I),B(I))
10 CONTINUE
STOP
END

RECURSIVE SUBROUTINE SUMAB(A,B)
REAL A, B

A = A+B

RETURN

END

The compiler directive CVD$ CNCALL makes the DO loop run in parallel. To
run the subroutine SUMAB in parallel, the key word RECURSIVE must be placed
before the word SUBROUTINE and the routine must be compiled with the -recursive

switch.



Chapter 2

Elliptic Case

Our ultimate goal is to develop software for linear parabolic differential equations in
two space variables subject to linear boundary conditions. The spatial dependence
of the parabolic equation is expressible in terms of an elliptic operator. The spatial
discretization of this operator is a significant step in the numerical solution of the
parabolic problem. Therefore in this chapter we look at the construction of a code to
solve linear elliptic boundary value problems. It turns out that much of this work will
be incorporated into the parabolic code. Concentrating on the spatial discretization

allows us, for the moment, to ignore complications arising from the time variable.

2.1 Introduction

We consider here linear boundary value problems of the form,

(Ll + Lz)u = f(xl, .'222) N (21, .'122) € Q= [0, 1] X [0, 1], (2.1)
u(z1, z2) =0, (21, z2) € 89, (2.2)
where
i .
L1 = —01(31)@ + Cl(.’t1), al(.’!,']) >0in [0, 11, (2.3)

16
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and

2
L, = ---ag(..":g)-aa73 + bg(:cz)a—i; + ca(z3), a2(z2) > 0in [0,1]. (2.4)

One reason for considering problem (2.1) is that a broad class of boundary value
problems is in the form of (2.1), such as elliptic boundary value problems in polar
coordinates with z; taking the role of angular coordinate and z; being the radius
coordinate. The absence of the 5% term ensures that we will get a symmetric-
definite generalized eigenvalue problem in the matrix decomposition step, as we will
show later in this chapter. Homogeneous Dirichlet boundary conditions (2.2) are
considered here for simplicity. We will later extend the discussion to nonhomogenous
Neumann, Dirichlet and mixed boundary conditions.

In order to describe the numerical procedure, we need some notation. This nota-
tion is used in [11] and [24].

For i = 1, 2, let N; be a positive integer and let 7; = {:z:,(j )};y__‘;o denote a partition
of [0, 1] such that,

0=z <zl <. <™ =1,

and let I,-(j) denote the subinterval [:z:‘(j—l), xsj)], j=12,---,N.

Let r; > 3 and let M;(r;, m;) be the =pace of piecewise polynomial functions

—

defined by,
M.’(‘l‘;, 7!',‘) = {v € 01[07 1] : vl[x(ij-l)’z?)] €EFR,5=1.. . N;, v(O) = U(l) = 0}, (2'5)

where P,, denote the set of all polynomials of degree < r;, 7 = 1,2. The dimension of
Mi(ri,m) is M; = Ni(r; —1). Let {o7i-t and {w® 72 be the nodes and weights
of the (r; — 1) point Gauss-Legendre quadrature rule on [0, 1], see [18]. The Gaussian
i

points on are defined by,

6.((5-1)("-'-1)-“‘) = xg:'—l) + hgj)a,(k), j=1,..., Ny k=1,...,m—1,

where hgﬂ = .t?) - xgj_l), i=1,2.
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2.2 Orthogonal Spline Collocation

Let {¢(’)} *, be a set of basis function for M;(r;, m;), where M; = Ni(r;i—1),:=1,2.
We denote the space spanned on products of functions, one from M, (r, 71) and one
from Ma(rz, m2), by My(r1, m1) @ Ma(rz, m2). That is

Mi(r1, m) ® Ma(rz, 72) = the linear span of {¢(’) (2)},
whereny = 1,--+, M; and ny = 1,---, Ma. Suppose that U € M;(r1, m)®Ma(ra, m2)

is given by
My M,
U(-'tla 32) = z z um'ﬂzq}'(])(ml)‘ﬁm)(z?)' (2‘6)

n1=1nz=1
The orthogonal spline collocation approximate solution is obtained by requiring U
given by (2.6) to satisfy (2.1) at the Gaussian points,

(L + LYU(E™, ) = fe™), &™), mi=1,..., M;, (2.7)

where M; = Ny(r; — 1), = 1,2.
Let

T = (U1, UL,2y ooy UL Mas -y UMy 15 - o ,uMhM,]T, (2.8)
and

F =1ty 12 e evs fiibas -oor St 10 +oes Sty 0] (2.9)
where f,.m, = (™), ™)), Then (2.7) can be written as,

-

(A1 ® B+ B ® A2)i = f, (2.10)

where
= @) ., o), = LigP(E™), (2.11)
=0, W =™, i=1,2. (2.12)

Matrices A;, B;, i = 1,2, can be easily shown to have the almost block diagonal

structure described in Chapter 1. See [10] for existence and uniqueness of U/ and its
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convergence rate in the H'-norm for some special cases of separable boundary value
problems.

We will need the following lemmas. Lemma 2.1 here is Lemma 3.1 in [11].

Lemma 2.1 Let W = diag(h{"w(V, -+, aPw{ ™ ... aMp{) ... p{M)y{n—D),
D = diag(1/a1 (€M), -+, 1/ay( (M)} and let {¢$11x)}an’=1 be a set of basis functions for
M:{r, 7). Let Ay and By be given by (2.11) and (2.12). Let Fy = BfWDB,, G, =
BTWDA,. Then Fy is a symmetric positive definite matriz and G, is a symmetric

malriz.

Another lemma which will be useful, and which we will refer to here as Lemma
2.2, is Corollary 8.7.2 in [29).

Lemma 2.2 If G is a symmetric matriz and F is a symmetric positive definite ma-

triz, then there ezists a nonsingular matriz Z such that
- 27GZ =\, ZTFZ =1, (2.13)
where A is a diagonal matriz and I is the identity matriz.

It follows from Lemma 2.1 and Lemma 2.2 that there exist a diagonal matrix A

and a nonsingular matrix Z such that,
ZTBIWDA,Z = ZTG1Z = A, (2.14)
and
ZTBTWDB,Z = ZTF,Z = L, (2.15)
where [I; is the identity matrix of order M;. As a result we have,
(ZTBTWD ® L)(A1 ® B2 + B1 ® A2)(Z ® I)
=(2TBTWDA:2Z) ® B+ (2TBIWDB,Z) ® A,

= (ZTGIZ) ® Bg + (ZTFIZ) ® Az
=ARB;+15L® Az, (2.16)
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where A = diag(};)} and I, is the identity matrix of order M,.
The matrix decomposition approach used here simplifies the linear system (2.10)
to a linear system with the matrix A ® By + 1 ® Az. As we will see, the algorithm

given in next section is based on this matrix decomposition.

2.3 The Algorithm and Implementation

The algorithm we implement is identical to Algorithm I'in [11].

Given A;, B;, i = 1,2, as (2.11) and (2.12), W and D as in Lemma 2.1,
Fy = BTWDB, and G; = BfWDA;.

Step 1 Determine A and Z satisfying (2.14) and (2.15).

Step 2 Compute §=(ZTBTWD ® L)f.

Step 3 Solve (A® B:+ 1 @ A3} =4g.

Step 4 Compute % = (Z @ I2)7.

Algorithm 2.1

The parallel features of the above algorithm have been discussed in [11]. We will
give some implementation details here.

To apply the algorithm one needs to set up the collocation matrices A; and B;,
i = 1,2. To do that we first need the nodes and weights of the (r — 1) point Gauss-
Legendre quadrature rule on [0, 1]. Rather than storing these as constants for some
range of values of 7, these are obtainad by calculating the eigenvalues of a symmetric
tridiagonal matrix of order r x 7 [18]. The amount of work required is negligible and
this improves the portability of our program. The eigenvalue problem for the sym-
metric tridiagonal matrix is solved by the EISPACK routines, IMTQLI and IMTQL2
[26]. Next, we need to calculate the matrices A;, B;, i =1, 2. Since we choose B-

spline functions as the basis functions for M; and Mz, we could use the algorithms
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for calculating B-splines given by de Boor [14], and implemented in a FORTRAN
package in [13]. Our use of the B-splines does not require the full generaiity of de
Boor’s package, and as noted by Ascher and Russell in [6], improvements in efficiency
are possible. Ascher and Russell have implemented an algorithm to do so, in [6], and
we use this implementation in our codes.

In Step 1, to find A and Z satisfying (2.14) and (2.15), we need to construct
the matrices Fj= BYWDB; and Gi= BfWDA;. The matrices By, A, have the
almost block diagonal structure described in Chapter 1. The matrices BIWDB, and
BTW DA, have a more complex block structure, but are symmetric. Since there is
no available software for computing eigenvalues of matrices of the form B} WDB;
which takes advantage of the block structure, we use band symmetric software. The
band matrix chosen to represent BT W DB,, for example, may be found in one of two

ways:
(i) represent B; as a band matrix and form BY W DB;

(ii) form the matrix BTW DB, keeping B; as an almost block diagonal and

then representing the result as a band matrix.

We now discuss these two approaches. Fig. 2.1 shows the structure of the matrix
B, for N; = 4 and k = 4. The matrix A; has the séme structure as B;. Here we
use N; to denote the number of partition along the z; direction and & to denote the
number of collocation points in each subinterval of the partition. V; is a k x (k — 1)
matrix; R;, i =1,...,, Ny — 1, are k x 2 matrices, Ry, is a k x (k — 1) matrix, V;,
i=2,...,Ny -1, are k x (k— 2) matrix, W;, ¢ = 2, ... ,N;, are k X 2 matrices.
If we take the matrix B; as a banded matrix, then the baudwidth for B; is 2k + 2,
and the bandwidth for the matrix BYW DB will be 4k + 1. If instead we take B
as an almost block diagonal matrix, and recall that W and D are diagonal, we see
that BTW DB, will have the same form as BT By, shown in Fig. 2.2. It is easy to see
the bandwidth for the matrix in Fig. 2.2 is 2k + 2. Thus there are 2k — 1 words of

storage saved per row if we choose the data structure for the matrix B, to be almost
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block diagonal instead of taking By as banded. The same discussion applies to Ay
and the formation of BTW DA,. While the computation costs for both (i) and (ii) are
O(N1k%), it is clear that (ii) is more efficient in time and storage than (i). Compared

to the total cost of the Algorithm 2.1 these costs are of lower order.

wa \ Ry

Wy

Figure 2.1: The ABD structure of the collocation matrix By.
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RT Ry + WTw;

v vT Ry

wlvy ] wir

vz | v R

wlvy | winrs

RE Ry + wlw,

Xvs | vl Rs

w7 R,

Figure 2.2: The structure of the matrix BT B;.
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It is easy to show that finding matrices A and Z such that,
ZTG\Z=A, Z'RZ =1,
is equivalent to solving a symmetric generalized eigenvalue problem of the form,
G\Z = R\ZA, ZTRZ = I,. ' (2.17)

This follows from multiplying both sides of the first equation in (2.17) by Z7 and then
using the second equation. To solve the first equation in (2.17), we use the NAG [49]
routine FO2FHF. This routine computes the eigenvalues of the generalized banded
symmetric eigenvalue problem, using the method of Crawford [17], which takes ad-
vantage of the banded structure of the matrix. Crawford’s method transforms the
original problem to a standard banded symmetric eigenvalue problem. After the
eigenvalues have been found, the eigenvectors corresponding to the eigenvalues can
be found by independent calls to another NAG routine F02SDF, which uses an inverse
iteration algorithm to obtain each eigenvector of (2.17). Peters and Wilkinson [58)
give a detailed discussion of the procedure for finding the eigenvector corresponding
to a given eigenvalue. Since the eigenvalue is accurate, one iteration will usually give
a small residual and thus a good approximation for the eigenvector. The calcula-
tions for each eigenvector may be carried out in parallel. The matrix of computed
eigenvectors, which we denote by Z;, does not necessarily satisfy the normalization
equation. However ZT Fy Z;, will be a diagonal matrix, say S = diag(d;)}\. Since F,
is a positive definite matrix by Lemma 2.1, d; > 0, i =1, ..., M;, and we can take
Z = Z,5-%, which gives ZTF1Z = I,. (The matrix decomposition algorithm could
be modified for ZTF,Z = § # I, to avoid computing $%. Some minor savings will
result.) The calculation of Z from Z; is simply a row scaling of Z; and can also be
done in parallel.

In Step 2, we have
§=(ZBTWD @ L)f = PT(I,® ZBTWD)Pf, (2.18)
where P is the permutation matrix such that

Pf= [fl.h f2.17 ceey sz.l) vvey fl.Mza “"fo,Mz]T' (2'19)
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Then,

[ ZBTW D,

L®(ZBTWD)Pf=1,® (ZBTWD)j = . ,

| ZBIW Dijn, |

where ¥ = Pf and 5 = (§7,--- +11,)7- The calculations within the tensor product
are thus decoupled and can be done in parallel.

In Step 3, the structure of (A ® Bz + I; ® Ag) is such that it can be broken into
independent subsystems, each of which is an ABD system. Solving each subsystem
in parallel would involve another level of parallel granularity. Several authors have
proposed parallel algorithms for solving almost block diagonal systems (see [39}, [57],
[72], [73]). While several experimental codes based on these algorithms are being
developed, no robust parallel ABD solver is currently available. Hence we solve each of
the subsystems using the sequential solver ARCECO [19], [20], which is a FORTRAN
package for solving almost block diagonal linear systems by modified alternate row
and column elimination. Any new parallel ABD solver could be easily incorporated
into our software.

In Step 4, we have
= (Z® )= PT(I,® Z) Py, (2.20)

where P is the permutation introduced in (2.18). As in Step 2, this decouples the
calculations so that they are suitable for parallel computation.

In our implementation of algorithm 2.1, level 1 BLAS, [44], [45], and level 2 BLAS,
[22], [23], routines have been employed. Level 1 BLAS routines are basic linear algebra
programs targeted at vector-vector operations and Level 2 BLAS routines are targeted
at matrix-vector operations.

In the next section we report on the numerical testing of ELLDCM which is our

implementation of the algorithm described here.
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2.4 Performance Analysis and Numerical Exper-

Iments

Our code ELLDCM for elliptic matrix decomposition, is written with parallelism in
mind. To enable parallelization, we need to avoid data dependency in loops, since
parallel computation may be prevented in the presence of data dependency variables.
Such a variable is one which is stored in one statement and subsequently appears on

the right hand side of another statement. For example, for the following code

X =0.0
DO 10 I=1,N
ACI) = A(T) + B(I)
X = X + B(I) * B(I)
10 CONTINUE
X = SQRT(X)

the variable X prevents the loop from being run in parallel, since the value X depends
on the X in the the previous loop iteration. Hence X is a data dependency variable.

However if we break the loop into two loops as follows:

X =0.0
DO 10 I=1,N
X = X + B(I) * B(I)
10 CONTINUE
X = SQRT(X)
DO 20 I=1,N
A(T) = A(D) + B(D)
20 CONTINUE

then in the second loop, each iteration is independent of the others and this loop may
then be run in parallel.

In this section we demonstrate results obtained by ELLDCM on the selection of
problems shown in Table 2.1. All test problems in Table 2.1 are in the form of (2.1)-
(2.4). The right hand function f(z1,2.) is computed using its final form obtained by
simplifying (L1 + L2)u, where u is the true solution given. With the UNIX utility
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command gprof, we obtained a rough execution time profile in sequential mode, which
is an account of the amount of CPU execution time spent in each subroutine. The
output of gprof tells us which parts of the program are taking most of the execution
time. However, in order to get more accurate times for the profiling we report in
this section, we use the more accurate FORTRAN library function, ETIME. We first
give results on profiling to show how parallelism improves the performance. Then we

give some convergence results and carry out comparisons with Kaufman and Warner’s

code, SERRG2 [41].

21) Li=-(1+3)5+a,
Ly=-(1+ zg)g—:;) - z23_23 + 23,
True solution: u = sin(7z,)sin(7z2)
= 9
(22) L= —:+x, 3 + ‘1'_7;—1,

— .1 2 2 08 _ _3
Lg— 1+;;'8_zg+l+xz 3y 14z ?

True solution: u = 422 ’1':_‘ ‘j_“ =2
1 2
(2.3) L] = -—631(.’81,/3‘1 + 1)'38—:?' + e“",
— — I3 32 zz_ﬂ_
L, (e™ + 1)53— + € +1,

dz2

True solution: u = sin(#z,)sin(rz,)

Table 2.1: Test problems for the elliptic solver.

2.4.1 Time Profiling and Speedup

We solve the test problems in Table 2.1 with M = 100 and k& = 2, where M is the
number of subintervals and k is the number of collocation points in each subinterval.

Here we choose the same partition and the same number of collocation points in
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the 2, and z, directions. The profiling was carried out on an Alliant/FX2800. We
are mainly interested in the routines which can be executed through a sequence of
independent calls. The prospects for efficient parallelization are good since these
routines perform about 90% of the work when the code is run in sequential mode.

These routines, ZTATV, ZV, EIGENV, ARCE and FUN, are described as follows:

e ZTATV is the subroutine to calculate ZT AT where Z is a full matrix, AT is

an almost block diagonal matrix, 7 is a vector. This routine is needed to carry
out Step 2 in Alg. 2.1.

e 7V is the subroutine to calculate Z% where Z is a full matrix and ¥ is a vector.

This routine is needed to carry out Step 4 in Alg. 2.1.

e EIGENV is a routine to find the eigenvector corresponding to a given real
eigenvalue for the generalized problem AZ = ABZ or for the standard eigenvalue
problem AZ = AZ, where A and B are real band matrices. EIGENV calls the
NAG routine FO2SDF [49], mentioned in the previous section.

e ARCE is the subroutine to solve an almost block diagonal linear system, this

routine calls ARCECO and it is used to carry out Step 3 in Alg. 2.1.

e FUN is the subroutine to evaluate the right hand side function of the differential

equation.

In Table 2.2 we present the running time of each routine for solving the test
problems in Table 2.1. Time is given in seconds. We use N_P to denote the number
of processors, CPU_T to denote CPU time and % to denote the percentage of the

running time which the routine takes. We also provide the overall running time for
ELLDCM.
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Problem 2.1 Problem 2.2 Problem 2.3
N_P | Routine |CPUT| % |CPU.T| % |[CPUT| %
1 | EIGENV | 13.68 |29.00 | 13.62 |24.74 | 13.59 | 28.30
ZTATV 10.98 |23.27 | 11.50 {2090 | 11.48 | 23.90
YAY 12.35 |26.17 ] 12.34 | 2241 | 12.55 | 26.13
ARCE 3.79 | 8.03 | 3.62 6.58 | 3.77 | 7.86
FUN 2.83 6.00 104 |[18.98 | 2.76 5.7
ELLDCM | 47.18 55.06 48.03
2 EIGENV 6.85 |25.73| 6.89 |[22.73| 6.61 26.06
ZTATV 5.50 |[20.67 | 5.55 1834 | 5.29 | 20.85
YA 6.29 123.65| 6.21 |20.51| 6.09 |24.02
ARCE 195 | 735 | 1.86 | 6.16 1.86 | 7.35
FUN 1.79 | 6.75 | 570 |[1881 | 1.66 | 6.56
ELLDCM | 26.62 30.30 25.38
4 | EIGENV | 3.37 [23.12| 3.54 |20.55| 3.38 |22.56
ZTATV 2.77 19.02} 2.72 | 1577 | 2.72 18.21
YA 293 |[20.12| 3.01 [1745| 3.10 |20.70
ARCE 0.87 | 6.02 | 0921 | 533 | 093 | 6.23
FUN 088 | 604 | 3.08 | 1788 | 0.82 | 5.49
ELLDCM | 14.57 17.26 14.98
8 | EIGENV | 1.76 [17.24| 1.79 |1637| 1.76 |17.48
ZTATV 1.57 [15.32] 1.53 | 13.98 1.72 | 17.06
v 1.78 |[1743} 1.72 1569 | 1.72 |17.10
ARCE 0.49 4.80 | 0.482 | 4.38 0.48 4.81
FUN 048 | 4.74 | 1.50 |13.66| 042 | 4.20
ELLDCM | 10.24 10.98 10.09

Table 2.2: Profiling for test problems 2.1-2.3.
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Table 2.2 shows that the running time of the routines which can be built into a
sequence of independent calls decreases in a linear fashion as the number of processor
increases. In order to determine the maximum speedup, we need to calculate the the
percentage of time spent in the parallelizable code when run on a single processor.
This fraction p equals the sum of the times spent on EIGENV, ZTATV, ZV, ARCE
and FUN divided by the total time. In Table 2.3, we present the actual speedup
we obtained and the maximum speedup we can expect. The maximum speedup is
calculated by Amdahl’s law (1.19) with » = 8 and the actual speedup is computed
by (1.18), given in section 1.2.4.

N_P Problem 2.1 | Problem 2.2 | Problem 2.3
2 1.77 1.81 1.89
4 3.23 3.19 3.20
8 4.60 5.01 4.76
Max. Speedup 5.24 5.53 5.11

Table 2.3: Speedup of the test problems 2.1-2.3 on an Alliant/FX2800.

2.4.2 Convergence

In the following, we describe some numerical results which show the convergence
properties of the orthogonal spline collocation algorithm on test problems 2.1-2.3
given in Table 2.1 for k = 2 and k = 3, where ¥ is the number of collocation points
in each subinterval. In Figures 2.3-2.5, we plot on a log-log scale the Lo errors
and maximum errors at the mesh points of the approximate solution obtained using
WD =k j=1,---,Nyi=1,2, for h =1/4, 1/8, 1/16, 1/32, 1/64. The Lo, errors
are computed on a 100 x 100 uniform grid. Recall that the rate of convergence can be
estimated by (1.13). The slopes of the lines in the log-log plot approximately equal
the rates of convergence. The degradations of the slopes for k¥ = 3 and —log(k) = §
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and 6 cases are because the approximation errors are so small that roundoff error
becomes significant.

From an examination of the figures, we can see that the slopes of the solid lines
corresponding to k = 2 and k = 3 are approximately 4 and 5 while the slopes of the
dashed lines corresponding to k = 2 and k = 3 are approximately 4 and 6 respectively.
Hence the convergence rates of the L., errors, corresponding to k = 2 and k£ = 3, are
4 and 5 respectively and the convergence rates of the maximum mesh point errors,
corresponding to k = 2 and k = 3, are 4 and 6 respectively. The convergence rate
of the maximum error at mesh points corresponding to ¥ = 3 demonstrates the
superconvergence. The data for Figure 2.3 are given in Table 2.4, where we use E, to
denote the L, error, E,, to denote the maximum error at mesh points, and R, and
R.. to denote values computed by (1.13) for consecutive step sizes. For the k = 3
and — log(h) = 5 and 6 cases the approximation error is so small in double precision,

that roundoff error becomes significant.

k=2 k=

—log(h) | —log(Ey) | Ry | —log(Em) | Bm | —log(Eu) | Ru | —log(Em) | Rm

2 12.36 14.32 18.51 24.99

16.36 4.00 18.25 3.93 23.49 4.98 31.06 6.07

20.35 3.99 22.24 3.99 28.52 5.03 37.06 6.00

24.35 | 4.00 26.23 3.99 | 33.50 4.98 43.66 6.60

S|Ov || W

28.36 4.01 30.23 4.00 38.48 4.98 43.88 0.22

Table 2.4: Data for plotting Figure 2.3.
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Figure 2.3: Convergence results for test problem 2.1 (k=2, 3).
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Figure 2.4: Convergence results for test problem 2.2 (k=2, 3).
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Figure 2.5: Convergence results for test problem 2.3 (k=2, 3).
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2.4.3 Comparison with SERRG2

Over the past 30 years, much research has been done on the numerical approxima-
tion of solutions of partial differential equations of elliptic type. Prior to 1980, as
mentioned in [50], the general packages [1], [38], [63], [64], [67] and [68] were already
available. More recent work in this area includes, e.g. [37] and [41].

We have compared our program, ELLDCM, with tke recent code SERRG2 [41],
by Kaufman and Warner, since it is the closest competitor. The program SERRG2
solves separable elliptic equations on a rectangular region, using a matrix decom-
position technique to solve the linear system arising from a Rayleigh-Ritz-Galerkin
approximation with tensor product B-spline basis functions. The elliptic problems
which can be handled by SERRG2 are of the form:

(L1 + Lz)u = f(.'l:-;, :1:2), (221)

Where
1 5 y25! T a T i 91 1) pl 1 3 .

) 0
Ly = -a—xz(Pz(mz)gx—z) + q2(22), paz2) > 0. (2.23)

Dirichlet, mixed and periodic boundary conditions are permitted by SERRG2. Simi-
lar to our code ELLDCM, SERRG2 finds the coefficients of a tensor-product B-splines
approximation to (2.21). As in ELLDCM, this involves solving a generalized eigen-
value problem, similar to (2.17). A set of linear equations in matrix tensor products
is obtained, in which each element of the coefficient matrix and the right hand side
of the linear system requires an integration. Compared to orthogonal spline colloca-
tion, this is a major drawback, since in orthogonal spline collocation each entry of
the coefficient matrix is simply a function evaluation. After setting up the matrix,
SERRG?2 uses the algorithm SESLV described in [41] to solve the linear system in
order to get the coefficients of the approximate tensor-product B-splines solution.
Following [41], we use

K - the order of the B-spline approximation, K = k + 2.
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M - the number of subintervals.

We solve the following Poisson equation with both SERRG2 and ELLDCM

(L1 + LoJu = f(z2,22), } (224)
u(z1, 22) = 0, (21, 22) € 39,
where
b? o? a
= — (2 —_ = —[e*2 —_— e
Ly (=3 + 1)63:% + /1 and L (e™ + 1)33:% e 972 +1,

and f is chosen such that the true solution of the differential equation is
u(z, 22) = €772 sin(rz,) sin(rzs).

Although the general problem classes that can be handled by ELLDCM and
SERRG2 are different, they do overlap to some extent. Equation (2.24) lies within
the overlap and can be treated by both programs. In Table 2.5 we report the results.
We use E, to denote the L., error and E,, to denote the maximum error at mesh
points. We calculate the Lo, error on a 100 x 100 uniform grid. Time reported here is
in seconds and sequential mode. The computations were carried out on a Sparc 1000
workstation. From Table 2.5, we can see that for a fixed order of B-spline and number
of subintervals SERRG2 achieves slightly better accuracy than ELLDCM does, but
the execution time of SERRG2 is much more than that of ELLDCM. For example,
for K = 4 and M = 64, the Ly, error of SERRG2 is about a half of the Lo, error of
ELLDCM, but the execution time for SERRG2 is about 7 times the execution time of
ELLDCM. Also we can see that for a fixed accuracy, say 107¢, the orthogonal spline
collocation requires less time than SERRG2. Finally we notice that the orthogonal

spline collocation achieves higher order of convergence at the mesh points.



CHAPTER 2. ELLIPTIC CASE 37

SERRG2 ELLDCM
E. TIME E. En TIME

M
4| 270-10"% | 0.05 | 5.43-107% | 1.57-107% | 0.03
8
16

217-10~* | 0.21 | 3.35-10~* | 9.83-10° | 0.08
1.43-107% | 1.01 | 2.09-10"% | 6.30-10"% | 0.27
32| 894-107 | 5.68 | 1.31-107° | 3.94-1077 | 1.17
64 | 5.59-10-% | 34.72 | 8.18-10"% | 2.46-10"% | 4.81
6.30-10~5 | 0.13 | 1.69-10~% | 1.01-10° | 0.03
8 | 1.76-10~¢ | 0.57 | 5.20-107® | 1.76-10"% | 0.16
16 | 5.23-10~% | 3.33 | 1.65-1077 [ 2.99-107%° | 0.62
32| 1.59-107° | 17.78 | 5.01-1079 | 4.61-107%% | 2.71
64 | 5.48-1071 | 108.33 | 1.54-1071° | 1.15- 102 | 13.50
1.70-10-% | 0.24 | 3.37-10"% | 2.28-10"% | 0.09
8 |295.10% | 1.24 | 6.05-10"% ;9.51-10"1 | 0.31
16 | 4.59-10"'° | 6.67 |9.95-1071° | 4.07-10"13 | 1.24
32| 7.50-10"12 | 38.02 | 1.27-107 | 1.97-10"12 | 5.77
64 | 4.09-10712 | 253.95 | 6.53 - 10712 | 6.51 - 1072 | 27.84

o:a:o:mmmmcnmm-&-k.h-hﬁ-‘-"m
o>

Table 2.5: Errors and running time of SERRG2 and ELLDCM on Equation (2.24).

After studying the time profile, we realized that SERRG2 spends a large portion
of the running time on solving the generalized eigenvalue problem. This is not surpris-
ing since SERRG2 solves the generalized eigenvalue problem by using the EISPACK
routine REDUC to transform the generalized eigenvalue problem to a standard sym-
metric eigenvalue problem. In [41], it is stated that “it was not worth the effort to
use a Crawford-like scheme as in Crawford [17] and Kaufman [40} to avoid forming a
full standard eigenvalue problem.” To investigate this, we modified SERRG2 to use
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the NAG implementation of Crawford’s algorithm to solve the generalized eigenvalue
problem, instead of using REDUC. This has an effect on the running time for the

following reason. For the generalized eigenvalue problem,
Gz = AFz,

where both G and F are n X n symmetric band matrix with bandwidth r, Kaufman-
Warner’s approach is to transform the problem to a standard eigenvalue problem by
forming the Cholesky decomposition of F' and then applying the QR algorithm to
the standard eigenvalue problem by first reducing it to a tridiagonal matrix problem
obtained by orthogonal similarity transformations. As indicated in [29], page 424, the
cost of the QR algorithm is 9n3. The factor 9 is caused by the accumulation of the
eigenvectors. The cost involved in first reducing the banded generalized eigenvalue
problem to a standard eigenvalue problem are of lower order than the cost of a single
QR step in the standard eigenvalue problem and we therefore ignore it. On the other
hand if we use Crawford’s algorithm and inverse iteration to solve Gz = AFz, the
total costs are only O(rn?) operations.

The principal difference between Kaufman-Warner’s algorithm and ours is in the
use of Crawford’s method for the generalized eigenvalue problem instead of reducing
to a standard eigenvalue problem. The difference in cost is O(9n°%) — O(rn?), where r
is considerably less than n. Since the O(n®) operations are the most time consuming
operations, there is a substantial saving when Crawford’s algorithm is employed. In
SERRG2 matrix-vector mﬁltiplica.tions arise during the computation of (I ® Z)g,
where Z is a full matrix and § is a vector. This step is analogous to Step 2 and
Step 4 in our Algorithm 2.1. In an attempt to improve its efficiency, we modified the
matrix-vector multiplication routine in SERRG2 by calling the level 2 BLAS routine
DGEMYV as we did in ELLDCM. We compare the modified version of SERRG2 with
ELLDCM and in Table 2.6 we report the results. The errors are not repeated in Table
2.6 since they are identical with the errors reported in Table 2.5.
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M|K=4|K=5|K=6

4| 0.03 0.11 0.20
0.18 | 0.44 | 0.94
16 | 0.63 1.88 | 3.94
32| 274 | 7.72 | 1111

64 | 12.37 | 35.95 | 80.29

Table 2.6: The running time of the modified SERRG2 on Equation (2.24).

We see that the running time of the modified SERRG2 is substantially reduced
by 1/3 for M = 64. We have profiled both codes and have found that the time spent
on solving the generalized eigenvalue problem and on matrix-vector multiplication is
close to that of ELLDCM. SERRG2 still has a longer running time since the finite
element Galerkin method involves the use of quadratures to set up the matrix and
right hand side. Also SERRG2 treats the linear systems as banded and does not take
advantage of the almost block diagonal structure as ELLDCM does in Step 3.

Next we consider an example for which a variable mesh is required. We chose a
problem that can be treated by both ELLDCM and SERRG2. The problem is

(Ly + La)u = (\/Z1 + 2)x? sin(r ;) sin(rz,), } (2.25)
u(xlv 32) = 0’ (zls zil‘-) € aﬂs

where
92 d*
Li=-(Vz1 + l)a_xf and L, = s
The true solution of the above differential equation is sin(xz;) sin(7rz,).
To use SERRG2, we need to transform (2.25) so that it conforms to the general
form of (2.21)-(2.23) as follows,

(Ly + Lo)u = (/Z; + 2)w? sin(xzy) sin(rz), }

(2.26)
u(zh :L‘g) =0, (317 2:2) € aQ,
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where 5 -
1
)+2\/x—;3:z:1 and Ly = ——

d a
L= "8z, ((1 + \/z_l)azl oz3’

Since the function 1/,/Z7 is singular at z; = 0, a2 uniform mesh is not appropriate,
and therefore we choose the graded mesh to be (I/M)3, I =0,.--, M, which causes
the points to cluster near the singularity. We also use this graded mesh for our code
ELLDCM. In Table 2.7 we report the results.

SERRG2 ELLDCM

M E, TIME E, TIME
8.79-10"%| 0.04 | 1.10-10~® | 0.01
8.04-10~*| 0.11 | 7.68-107> | 0.06
16 | 7.36-10"% | 0.53 | 4.92-10"% | 0.23
320515-10"¢| 3.40 | 2.80-10~7 | 0.77
64 | 5.25-10"7 | 23.50 | 1.84-10"% | 3.78
6.10-10% | 0.07 | 2.28-10"% | 0.04
3.93.10°5| 0.31 | 7.05-10"7 | 0.13
16 | 1.34-10°% | 1.70 | 2.19-10% | 0.52
32| 4.96-10% | 11.07 | 6.76-107*° | 1.99
64 [ 4.12-1077 | 78.00 | 2.14-10"1 | 10.15
4 |540-1075| 0.14 | 1.22-10°% | 0.07
9.92-10-7 | 0.67 | 2.15-107® | 0.24
16 | 2.06-10"% | 3.99 |[3.46-1071°| 0.99
3212.67-107% | 25.73 | 4.42-107'2 | 4.25
64 | 1.52-107" | 185.54 | 2.53-107"% | 23.96

'lammmmmmmmmﬁp.&pwm

Table 2.7: The Lo, error and running time of SERRG2 and ELLDCM on Equation
(2.26).
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The singularity in the derivative of the coefficient function does not effect ELLDCM,
but appears to give problems in the integrations in SERRG2. This time we see that
ELLDCM obtains a solution with a much smaller error than SERRG2 for a fixed B-
spline order and number of subintervals. Because of the singularity in the coefficient
function, there is a degradation in the accuracy for SERRG2 as the step size decreases.
Since the functions which ELLDCM needs for the evaluations have no singularity, the
errors from ELLDCM are as usual. The errors using SERRG2, provided all integrals
are done exactly, should also be as usual. However SERRG2 needs to approximate
integrals which involve the coefficients of the PDE and the singularity at zero causes
a degradation in the accuracy of the quadrature rules. See, for example, Davis and
Rabinowitz for a discussion of error in Gaussian quadrature. The running time of
SERRG2 here is less than the running time for solving (2.24) due to the simplicity of
the coeficient functions. When using Kaufman-Warner’s code for solving a equation
with complicated coefficient functions, we may expect high costs for setting up the
matrix and the right hand side vector.

In this section we have shown that our code, ELLDCM, has better performance
than SERRG2 for certain test problems. Even after we modified SERRG2 to use a
more efficient generalized eigenvalue problem solver, ELLDCM still takes less running
time because the orthogonal spline collocation matrices take less time to setup than

the matrices arising in SERRG2.

2.5 On More General Boundary Conditions

In section 2.1 and subsequent sections, we considered a family of elliptic PDEs with
homogeneous Dirichlet boundary conditions,

u(z1,29) =0, (21,22) € N where Q = [0,1] x [0, 1]

In this section we generalize the boundary conditions as follows: for scalar constants

a, B, 7, 6, we define the functional operators V, s and H, s as

Vo u(z1,22) = au(z,z2) — Bus, (21, 22), (2.27)
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Hysu(z1,22) = yu(z1,22) = ugy(21,22), (2.28)

where u , denotes %‘-, i = 1,2. We consider (2.1), (2.3), (2.4), subject to the following
boundary conditions,

Voousou(0,22) = go(z2), (2.29)
Vorgiu(l,22) = g1(z2), 22 € [0,1]; (2.30)
Hap 5ou(71,0) = ho(z1), (2.31)
H, su(z1,1) = h(z), 1 € [0,1). (2.32)

The boundary conditions (2.29)-(2.32) are assumed to be consistent. For example,
in the case of non-homogeneous Dirichlet conditions, when §; = § = 0,: = 0,1, at
z; = z2 = 0, (2.29), (2.31) give u(0,0) = go(0)/ao = ho(0)/70. This implies the
consistency condition yogo(0) = aoho(0). Similarly there are three other consistency
conditions at the corners (1,0), (0,1), (1,1) given, respectively, by a1ko(1) = 7061(0),
y190(1) = aphq(0), and 719:(1) = @1hq(1). In the case of general mixed linear bound-
ary conditions of the form (2.29)-(2.32) similar consistency conditions arise. For

example, it is easy to show that
Vaofo Hy 6%(21, T2) = Hop 6 Vo B t(Z1, T2)
for all zy, z,. If we put z; = z = 0, then (2.29), (2.31) give
aoho(0) — Boko(0) = 7090(0) — b0g0(0)- (2.33)

In the same way we can derive three other consistency conditions at (1,0), (0,1),

(1,1) respectively:

1091 (0) — b0g1(0) = 1 ho(1) — Brho(1), (2.34)
7190(1) — 6195(1) = coh1(0) — Bohy(0), (2.35)
')’191(1) - 519;(1) = a1h1(1) - ﬂlh;(l)- (2-36)

Let M;(r;, ;) be the space of piece polynomial functions defined by

J\;t,-(r,-,m) ={veCHo, 1] : vlls(j-l)':(j)] eP,, j=1,...N;},i=12. (2.37)
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Note that the restrictions v(0) = v(1) = 0 have been removed. The dimension of
M;(r;,m) is M; + 2, where M; = Ni(ri = 1), ¢ = 1,2. Let {quf)(z)}nM‘;%l be the B-
spline type basis for M;{r;, 7;). Assume that for 2 = 1 the first two basis functions

satisfy
a0d(0) = BoldiV1(0) = 1,06 (0) — Aol T'(0) = 0, (2.38)

and the last two basis functions are assumed to satisfy

g (1) - AR (1) = 0,008 () — Aldi () =1 (239)
For i = 2 the first two basis functions satisfy
w6(0) — &[41(0) = 1, 7087(0) — &l417]'(0) =0, (240)
and the last two basis functions satisfy

762 (1) - HIBETA) =0, Né{hn(1) - aldinal) =1  (241)

We also assume that

s90) = [691(0) = 0, and ¢8(1) = (¢ (1) =0, (2.42)

where n; = 2,---,M; — 1, ¢ = 1,2. If we write the orthogonal spline collocation
solution U (€ Ms(ry, m) ® M(rz, 72)) as

Miy4+1 Mo4+1

U(Z1, .1:2 Z Z unx,nz¢(l)(x ¢(2)(32)1 (243)

n1=0 n2=0
then we have a total of (M; +2)(M2+2) = M1 Mz+2M; +2M2+4 unknowns denoted
bY tnymgs 1 =0,..., My +1and n2=0,..., M+ 1.
Collocation at M; M, internal Gauss points of Q gives the following M; M equa-

tions

(L + La)U(E™, &) = f™, &™), mi=1,..., My i=1,2.  (244)
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Collocation at the Gauss points on the boundary gives the following 2M; + 2M;

equations

aoU(0,65™) — BoUz, (0,6™)) = go(&8™), (2.45)
UL &™) — Bl (1LE™) = a(&™), (2.46)
YoU(E™),0) — 6Uz,(6™),0) = ho(&i™), (2.47)
nU(E™),1) - §iUL(E™,1) = h(E™). (2.48)

m; =1,...,M;, i = 1,2. Now we have MiM; +2M; + 2M, equations for MiM; +
2M; + 2M, + 4 unknowns. To obtain the last four equations we could collocate at

the four corners. However there is no unique way of doing so. To collocate at (0,0),

for example, we could set

aoU(0,0) —_ ﬂoUzl(O, 0) = go(O) (2.49)
YU (0,0) — 86U, (0,0) = ho(0). (2.50)

In a similar manner, we appear also to have a choice from two collocation equations
at each of the corners (1,0), (0,1), (1,1). To resolve this ambiguity, we will, instead
impose on U the same consistency conditions at the corners as we have on u. For

example, at (0,0), we require

H’Yayso Vao,ﬁoU(Oa 0) = Qoho(O) - ﬁoha(o)
= VaoyﬁoH'm.GoU(Oa 0)

= 70g0(0) — dugo(0)- (2.51)
From (2.43) we have
H‘Yo,so Vao,ﬁoU(zls 32)
M;+1 Ma+1
Z z Uny,ng H’Yo,ﬁoVao,ﬁo¢(n(x1)¢$§(x2)
ny1=0 ny=0
Mi4+1 Mp+1

= Z z uﬂx,nzH'ro,6o[0‘0¢(l)(zl) "ﬂo[ (1)]'(-'”1)]43(2)(32)

n1=0 ny=0
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Mi41 Ma+1
=2 X tny ma[208 ) (21) — Bol4S)] (21)] 1065 (z2) — Gol#)] (2)] (2.52)

Putting z; = z, = 0 and using the fact that
#9(0) = [671(0) =0, j=2,---,Mi+1, i=1,2,

we can reduced (2.52) to

Z E Uy ma [0 (21) = Bo[8) (1)) (1082 (w2) — Bol$ )] (z2)]- (2.53)

ny1=0ny=0
Finally, applying (2.38), (2.40) we see that (2.53) reduced to uo,o alone. Thus
Up,0 = &oho(O) - ﬂoha(O) (2.54)

Similar arguments at the other corners give

Uo, Ma+1 = '7190(1) - 5196(1), (2-55)
Up+r,0 = Y091(0) — dogi(0), (2.56)
um, et = anha(1) = Bily(1). (2.57)

We let U in the form of (2.43) satisfy the boundary conditions (2.29)-(2.32) at the
Gaussian points and let 1,0, Yo, My+1, UM, 41,0 UM;+1, Mz41 D€ given by (2.54)-(2.57).
Then from (2.45) we have

U0, ™) — BoU, (0, 65™) = go(&57™). (2.58)
Here the interpolation at Gaussian points takes place. Equation (2.58) is equivalent
to
M +1 Ma+1 (m2) Mi4+1 Ma+1 (m2)
o Z Z unl.nz¢(1)(0 ¢(2)(§ Y= Bo 2 E '“ru.nz[¢(1) (0)¢ (2)(6 )
n3;=0 ny=0 ny=0 nz=0
= go(&5™). (2.59)

Since ¢)(0) = [¢))'(0) = 0, ny =2,---, My + 1, and the second equation in (2.38),
equation (2.59) can be simplified to

Z o, 82 (5) (ct0 5 (0) — Boldl1(0)) = go(s‘"‘”) (2.60)

nay=0
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Using the first equation in (2.38) and extracting the first and last terms from the

summation and moving them to the right hand side, we can then write equation
(2.60) as

Z Uo,m @B (E™) = go(657) — uo,08$ (E5™) -
ng=1

uo, My+1Bot 41 (E57)- (2.61)

Similarly we have,

E 1 8D(E™) = 01 (6™) - 41,085 (€) —

na=1

U1 M1 S (672, (2.62)
5% i o™ = ™) = 004 (E™) ~
ny=1

uM1+1,0¢5t2+1(§§ml))1 (2'63)

& (m1) 1) (1) plm1)
Z uﬂl.Mz+1¢£:11)(€l ' )= hl(fl ! )_ uO.M2+1¢0 (El ' )_
ny=1

uM1+1,M2+1¢$1)1+1(§§ml))‘ (2-64)

The coefficients ug,nyy UM, +1,n25 Uny,0 20d Uny Myt 7 = 1,000, M, @ = 1,2, can be
obtained by solving equations (2.61)-(2.64).

To solve for the remaining unknowns, let % and f asin (2.8) and (2.9), respectively,
but with

foyme = f(f(m’) 6('“2)) Ly ¢(1) e(‘ml) Z % ’qugﬁ-;)(f(mz))

N U (3 E Uom LD (E)

nz =0

@) plma)y S 2), ¢(ma)
- L1¢M,+1(51 ! ) z qu+1.M¢( )(f 2)

- $aE™) Z iy +1my L2 (E™)

nz=0
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Lzé(z) (Mz)) 2 Uy, .0¢(1) (g(ml))

ny=1

My
— $PE™NY un, oL dD(E™)

ny=1

— L) (€5 2 Uy ey 1 O (™)

nl =1

- ¢g)3+1 (""2)) Z: un1 JMa+1 Ll¢(1)(§(ml))' (2.65)

ni=1

From (2.61)-(2.64), (2.65) can be simplified as

frama = FE™, ‘"‘*’) LigP (€ g0(657)
_ (1)(£(m1)) Z u 'n2L2¢(2)(£(m2))

nz=1

- qus&‘,lﬂ(e%"‘“)g ()

- %ﬂ(égml)) Z UM, +1m2 qub(’)(f(’"’))

na=1

— Lo (Em )R8
L HOE™) 3 oL dD(E™)

n;=1
- L2¢531+1(e£’“=’)h (€™
— ¢ (&™) Z: Uyt L1 (), (2.66)
ny1=1

m; = 1,...,M;, i = 1,2. The linear system for the remaining unknowns, 4, can
be written as (2.10), where A;, B;, i = 1,2, are defined as (2.11)-(2.12) and with f
modified as in (2.66).

The following lemma ensures that we can still use the Algorithm 2.1 in Section 3

to solve the linear system in the form (2.10) with f modified as in (2.66).
Lemma 2.3 Let J\;(‘l’(rl,m) be defined as

A;t?(rl,?rl) ={ve J\;{1(r1,1r1) : agv(0) — Bov’(0) = 0, ayv(1) — Brv'(l) = 0}, (2.67)
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where My(r1,m) is defined by (2.87). Let {$M}ML, be a basis for MS(ri, ;) and
let Ay and B, be defined as (2.11) and (2.12), respectively, and W and D be defined
as in Lemma 2.1. Let Iy = BTWDB,, Gy = BTWDA,. Then F, is a symmetric

positive definite matriz and G, is a symmetric matriz.

To prove Lemma 2.3, we need the follow lemma which is Lemma 3.1 in [24] and

Lemma 2.4.

Lemma 2.4 For dll f, g € My(r1,m), let < -, - > denote the quadratic form defined

as

Ny r1—1
ek NV
<frg>=> ki > wif( (U=Dr=1+k)) o (G-Dra=14k)y
=1 k=1

Then

< f, g">= _(fl’ 7))+ f()g (1) - f(0)g'(0) — P, 2 (rx) (rx) h(J) 21-:—1, (2.68)
=1
where f}"), gJ(r‘) are the (ry)th derivatives of f and g on [:r,(J -1 (’)] respectively, P,

is a positive constant depending on r1 only, (-, -) is the standard inner product and
hgj) = zgj) - :z:gj_l), t=1,---, Ny

Next we give the proof of Lemma 2.3. The proof is essentially the same as Lemma
5.1 in [11], the only difference being the consideration of more general boundary

conditions.

Proof: Clearly Fy is symmetric. Since the diagonal elements of the matrices WD
are positive and B is nonsingular, then Fj is positive definite.

To show G is symmetric, first note that it is easily shown that,
Gy = BTWA, + BITWDB,,

where A; = (@)™ _, &) = -[435}’]"(&{'")) and D is a diagonal matrix with diago-
nal element d.-,,- = cl(E{’))[al(Ef)), i=1,---, M.
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Clearly we just need to show that BT W A, is symmetric, which is equivalent to

showing that
o0, [0 >=< [0, 6" > (2:69)

fori=1,---,Mi, j =1,---,M;. By Lemma 2.4, equation (2.69) is equivalent to

#MHTQ) - 60©O6T(0) = 6T - SO0 (270)

The above equation follows from Lemma 1.1. =

Next we show that the treatment for solving (2.1) with homogeneous Dirichlet
boundary conditions given in Section 2.2 is just a special case of our treatment for
more general boundary conditions. Suppose we are solving (2.1) with homogeneous
Dirichlet boundary conditions as in (2.2). Let

Mi+1 Ma+1

U(Ila 222) = z: Z Un, .ﬂ2¢5111)(xl)¢5122)(x2)

ny=0 ny=0

be the orthogonal spline collocation solution, where {¢g)}ﬁ{2:,‘, 1 = 1,2 are basis

functions for M.-(r;,‘zr,-). From equations (2.2) and (2.54)-(2.57), we have uog =

UoMat1 = UM, 41,0 = UM, +1,M+1 = 0. Consequently equation (2.61) becomes
E $O(E™ up, = 0. (2.71)
na=1

me = 1,..., M,. Since the coefficient matrix of the linear system (2.71) is nonsingular,
then

Uom, =0, n2=1,..., M.

Similarly we have

UMy +1ny = 0, Ng = 1, ey Mg,

Un,y 0 = Un) Mo+l = 0, n = 1,...,M1.

Hence
M, M;

Uz, 22) = Z E uﬂhﬂ2¢(1)(x1)¢$l22)(xz)‘

n1=1naz=1
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Note that {g{)}Mi, i = 1,2 are basis functions for M;(r;, ;) defined as (2.5), and
therefore this U is exactly the same as the solution obtained by the procedures given
in Section 2 for solving (2.1).

Next we give a procedure for determining the B-spline type basis functions for
Mi(ri,7), 1= 1,2, so that (2.38)-(2.42) are satisfied. The basis functions {éff‘)},‘M‘.‘:";,
i = 1,2, are the standard B-spline basis functions for J\;(l(r,,vr.) t=1,2,s0(242) is
satisfied. The only problem here is to determine o8 gt qS(') ¢M 41+ Since the pro-
cedures for J\;Il(rl,arl) and Mg(rg,arg) are the same, we give only that for Ml(rh?rl)
and state the result for My(r;, 7).

Let B(l), - Bg}fﬂ denote the B-spline basis functions for M (r1,m), where B,

. Bg) are the B-splines on the first subinterval of 7; and B,(&z PR B,(J,z +1 are
the B-splines on the last subinterval of =;. The first two and last two basis functions,
((,1), 9), ¢§3,)1 , ¢§3,1 +1, can be expressed in terms of the first two and last two B-spline

functions. Following the approach in [11], we define

40 = 4O E0 4 4B, 2.72)
M = N BM + ¢{BY, (2.73)
o4 = 850 0BAn) + B4 Biti41s (2.74)
841 = 650 41,0850, + Bira11 Bhas 41 (2.75)

where 683, 6511, 813, 613, 852 01 631 1» 854, 41,00 bty1,1, are scalar constants. Putting
expressions (2.72)-(2.75) into (2.38)-(2.41), we have

ao(¢(1) (1) (1)3(1))(0) ﬂo(d’(l) (1) (I)B(l))() 1, (2.76)
co(¢0BS" + 11 BIV)(0) - ﬁo(¢‘“33"+¢£E%B£")'(0)=0, 277)

and
a1 (65 0B + ¢ BB (1) ~ B85 0B + 65 1 Bi (1) =0,  (2.78)

(¢ 110BY +60 1 BB (1) = Bi(85 10850 + 850111 B V(1) = 1. (2.79)
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By Lemma 1.1, we know that

B0y # 0, [BM)(0) # 0, BY(0) =0, [BI](0) #0,
BY0) = [BM"(0)=0, j=2,...,n

and

BV = [BM(1) =0, j = Mi+1=ri,...,M; - 1,
BR) =0, [BR(1) #0, B ,,(1) #0, [BY]'(1) #0.

Therefore equations (2.76) and (2.77) become

(a0B"(0) — Bl BE 1 (0))#43 — Bl BIY'(0)463 = (2.80)

and
(a0B(0) — Aol B (0))4L3 — Bo[ BT (0)41] = (2.81)

Let
(Uzl (1)=___£°_ 2.89
0,0 éﬁ-i-ﬂ&, 0,1 &0 +ﬁga ( )
y__ Bo )y _ _ 6o (2.83
1,0 &[2) + ﬂAo2 1,1 .o + ﬁ )

and

&0 = aoBM(0) = B BS)(0), Bo = BolBM(0).

Then (2.80) and (2.81) are satisfied. Since of + 82 # 0, then &2 + 82 # 0, ¢83,

((B, 5{3 and 4582 are well defined. Similarly we choose ¢§t14)1 and ¢§:,)1+1 as defined by

(2.74)-(2.75) with

& ) Jo5)
¢5‘14); = a2 ¢M 1= a2 (2.84)
3 0 &¥ ﬁlz 1 &% ﬂlz
31 1 &
¢Et14)1+1.o == =32 ¢§v[),+1,1 = a2 (2.85)
51 ajy + ,31

and
o = alBMﬁ-l (1) - ﬁl[BﬁZ“ J'(1), B = BB }Vl!z,ll (1),
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to satisfy (2.39).

In the same way we can determine the basis functions for .A;iz(rg, 7a).

two basis functions can be chosen as

45(2) ¢(2) 3(2) + ¢(2) B'f?)’
¢ = 610B0 + 411817,

where
@ _ Y @ _ bo
a0 — . PR 0,1 — %n?
%+ 82 % + 63
=t g
¥+ 8 e + 52
and

50 = 10B(0) - 6[BY(0), bo = &[B](0).
The last two basis functions can be chosen as

¢2 = ¢ B + 6% B{D s

¢(2) — ¢(2) (2) )+ ¢(2) (2)

Ma+1 = PMa+1, 0 Ma+1,1 M2+17
where
N (2) 4
¢(2) = - _ ¢M = - .
WOTRE TR R
é 2 & ¢§»21) g
M. 0= 2 1,1 -
2+1,0 %"‘6%, 2+ 7]2 +612
and

= 1B (1) - (BRI, & = &(BZN ().

52

The first

(2.86)

(2.87)

(2.88)

(2.89)

We have implemented the algorithm for general boundary conditions in the form

of (2.29)-(2.32). The generalization from the homogeneous Dirichlet boundary case

to general boundary condition case is straightforward since the matrix structure of

the linear system does not change. The changes are in the routines to set up the

collocation matrix and the routine to set up the right hand side vector.
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We now show the performance of our implementation by solving two test problems.
The first example is Examples 4 in Kaufman-Warner [41]. It is a Poisson’s equation

in polar coordinates having the form,

19 ( du 1 8%u . |
o (a_) +agE = 1o (2.50)

on the quarter disk, 0 < r < 1, 0 < < 7/2, with boundary conditions,

u(0,0) =0, u(1,0) =1— cos(48) for 0 < & < /2,
Uy (r,0) =0, u.(r,x/2)=0for 0<r<1.

The solution to the above problem is u(r,8) = (1 — cos(44)). In order to use our

program, we make the following changes in variables: z; = %, zy = 1, v(21,2) =

u(r, 6). Then equation becomes

-5;%- - :132-5;;? - :Bz-a—a; = —161;. (291)

The domain is now 0 < 71,72 < 1 and the boundary conditions become

_ (2)2 v L, v

T

v(z1,0) =0, v(z1,1) =1 = cos(2mz1), } (2.92)

vz, (0,22) =0, v(1,22) =0.

The solution is z3(1 — cos(27z,)).

In Table 2.8 we present the results based on (2.91) for different values M and &,
where M is the number of subintervals and & is the number of collocation points in
each subintervals. We use E;,, ¢ = 1,2, to denote the L, error for -g—;‘;, i=1,2, and
E;m, t = 1,2, to denote the maximum error for 33—;, i = 1,2, at mesh points. The
L., errors for v are computed on a 100 x 100 uniform grid and the computations are
carried out on a Sparc 1000 workstation. Time is given in seconds. The L, errors
behave like O(h**?) for k = 2, 3, and 4, respectively, while the Lo, errors for ug,
and u,, behave like O(h*+?) for these k values. Therefore the convergence rate of
the L, error for the derivative is one less than the convergence rate for the function.

We also observed this same phenomena for the problem with homogeneous Dirichlet
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boundary conditions. The convergence rates of Lo, errors shown here agree with
the theoretically results, [4], [12]. On the other hand, it appears that the maximum
errors at mesh points behave differently from that of the problems with homogeneous
Dirichlet boundary conditions. For example, for k = 3, we observe that the errors
behave only like O(A®) while for the homogeneous Dirichlet case the errors behave
like O(R®).

Lo Error Max. Error at Mesh Poin—;
(M| E Eyu Eru | Em Eym Eqm
4 [ 4.9603 | 1.25-01 | 3.18-02 | 4.71-03 | 1.14-01 | 1.99-02
8 | 4.70-04 | 2.12-02 | 2.94-03 | 3.95-04 | 8.71-03 | 2.94-03
16 | 3.29-05 | 2.86-03 | 4.24-04 | 2.67-05 | 5.76-04 | 4.24-04
32 | 1.82-06 | 3.36-04 | 6.01-05 | 1.70-06 | 3.65-05 | 6.01-05
64 | 1.25-07 | 4.50-05 | 8.40-06 | 1.07-07 | 2.29-06 | 8.40-06
4 | 3.56-04 | 1.30-02 | 3.89-03 | 1.81-04 | 1.30-02 | 1.95-03
1.54-05 | 9.52-04 | 3.56-04 | 2.89-06 | 9.52-04 } 5.19-05
16 | 5.55-07 | 6.43-05 | 2.52-05 | 4.54-08 | 6.15-05 | 1.51-06
32 | 1.87-08 | 3.88-06 | 1.53-06 | 7.10-10 | 3.88-06 | 4.94-08
64 | 6.40-10 | 2.55-07 | 1.09-07 | 4.37-11 | 2.43-07 | 1.17-08
4 | 2.26-05 | 9.27-04 | 2.74-04 | 1.08-05 | 7.67-04 | 1.50-04
5.17-07 | 3.72-05 | 7.03-06 | 2.15-07 | 1.34-05 | 6.82-06
16 | 9.32-09 | 1.22-06 | 2.33-07 | 3.56-09 | 2.16-07 | 2.33-07
32| 1.40-10 | 4.53-08 | 2.07-08 | 7.35-11 | 3.51-09 { 2.07-08
ﬁ@g-lo 5.88-09 | 5.74-08 | 1.65-10 | 1.42-08 | 5.74-08

[~

Table 2.8: The errors in solving Equation (2.91) with boundary conditions (2.92)
using ELLDCM.

We conclude that the convergence of the maximum error at mesh points is de-

pendent on the boundary conditions of the differential equation. The reason for the
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drop in the rate of convergence with general boundary conditions is that we perform
interpolation of function values at Gaussian points for the boundary conditions. In
fact convergence depends ou how non-homogeneous boundary conditions are approx-
imated, see [11].

The second example is also a Poisson’s equation with mixed boundary conditions.
The reason for using this example is that the convergence rate is clearly demonstrated

by the result. The problem is as follows:

Pu  Bu
i f (2.93)

The boundary conditions are

w(0,22) — ug, (0,22) = 2P — 2P + 1, u(l,z2) =2+27"" + 27,

u(z1,0) = Uz, (21,0} = 2P + 1, u(zy,1) =27 + 21 + 2,

} (2.94)

The function f is chosen such that the solution u = z7* + z* + ;25" + 1, where m
is an integer and m > 3.

First we solve the above problem for m = 5. In Table 2.9 we report the results.
We solve the problem with & = 2 and k = 3. The errors are zero for any larger &
value since the degree of the approximate solution is higher than the degree of the
solution. The convergence rate of the maximum error at the mesh points is the same
as the convergence rate of the L., error.

We also observed that the convergence rate of the maximum error at the mesh
points is the same as that of the L., error for m = 6. The numerical results given
above further support our claim that the convergence of the maximum error at mesh

points is dependent on the boundary conditions presented.
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Loo Error Max. Error at Mesh Points
M| E, Evu I Eqq Ey, Eym Eqm

4 | 1.91-03 | 1.60-02 | 1.76-02 | 4.68-04 | 1.31-02 [ 1.61-02
1.26-04 | 2.07-03 | 2.26-03 ; 3.35-05 | 1.76-03 | 2.13-03
16 | 8.10-06 | 2.65-04 | 2.88-04 | 2.26-06 | 2.27-04 | 2.74-04
32 | 4.64-07 | 2.89-05 | 3.47-05 | 1.49-07 | 2.89-05 | 3.47-05
4 | 1.77-05 | 2.68-04 | 2.68-04 | 3.69-06 | 2.02-04 | 2.02-04
5.54-07 | 1.67-05 | 1.67-05 | 1.16-07 | 1.26-05 | 1.26-05
16 | 1.71-08 | 9.82-07 | 9.81-07 | 3.66-09 | 7.92-07 | 7.92-07
32| 5.85-10 | 5.92-08 | 5.91-08 | 1.57-10 | 4.95-08 | 4.95-08
4 |19.33-13 | 1.01-11 | 2.20-11 | 7.82-13 | 1.47-12 | 2.20-11
4.08-11 { 6.92-10 | 1.86-09 | 3.69-11 | 7.01-11 | 1.86-09
16 | 2.62-10 | 8.39-09 | 2.27-08 | 2.49-10 | 5.97-10 | 2.27-08
32| 9.43-11 | 6.37-09 | 1.55-08 | 9.23-11 L8.05- 10} 1 .55-08_j

alalalsn]lw|w|w]|winw] ool =
oo

Table 2.9: The errors in solving Equation (2.93) with boundary conditions (2.94)
using ELLDCM, m = 5.

2.6 Concluding Remarks

In this chapter, we have examined an algorithm for the numerical solution of a
family of linear separable elliptic PDEs based on orthogonal spline collocation and
matrix decomposition. The parallel performance of this algorithm was investigated
through numerical experiments on a multiple processor system, the Alliant/FX2800.
As mentioned previously, the orthogonal spline collocation and matrix decomposi-
tion algorithm, described in this chapter, will be used as a major component within
the method-of-lines algorithm for numerical solution of parabolic partial differential

equations, to be described in the next chapter.
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Parabolic Case

3.1 The Method of Lines

The method of lines approach for solving time dependent initial value partial differ-
ential equations has received considerable attention recently, see e.g. [51], [55], [69].
The idea of this method is to discretize all but one of the independent variables,
giving a system of ordinary differential equations with one independent variable. In
the case of parabolic PDEs, where one variable is time and the others are space vari-
ables, discretizing the time results in a sequence of elliptic boundary value problems,
related by some difference equations. This is called the transverse method of lines.
Discretizing in the spatial variables results in a system of initial value ODEs, and is
known as longitudinal method of lines. The distinction between the transverse and
longitudinal method of lines was first made in [47). We consider only the longitudinal
method of lines here.

The method of lines has been successful in solving one space variable parabolic
PDEs, see e.g. [51]. We will apply this method for solving two space dimension linear
parabolic PDEs. When applying this method, careful consideration of the following

three components is imporiant,

(1) the spatial discretization,

37
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(ii) the time-stepping procedure in the solution of the system of ODEs,
(iii) the linear equation solver.
For (i) the usual following choices are
¢ Finite difference methods,
o Finite element methods, such as L? Galerkin, H~! Galerkin, etc,
¢ Collocation methods, such as orthogonal spline collocation.

As described in Chapter 1, orthogonal splines have several advantages. Compared
to other choices, they are conceptually simpler, easer to implement and inherently
parallel. For (ii), we choose the efficient differential/algebraic solver DASSL, [59], to
solve the system of ODEs. We will discuss this choice further in the next section.
For (iii), we perform a decomposition of the linear system into independent ABD
subsystems and then solve each subsystem with an ABD solver, ARCECO. This will

also be discussed further in the next section.

3.2 The Numerical Solution of Linear Parabolic
PDEs

We consi.  Lere the following linear parabolic equation with homogeneous Dirichlet

boundary conditions,

a

5 = (Lt Le+ Jla, zt), (onont) €Qx 0T, (3.1)
U(El, T, t) = 0, (I], .'Bz) € 69, (3.2)
u(xly Z2, 0) = 0(3:13 -'52), (.‘51,2:2) € Q, (3'3)

where

2
L, = 01(371)(7?; +¢(z1), ai(z1) > 0in|0,1], (3-4)
1
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2 d .
L, = az(xg)-:?g <+ bz(xg)'a—zz' + 02(222), (12(222) >0im [0, l], (3.5)

2 =[0, 1] x [0, 1].
We require the orthogonal spline collocation approximation U € Mi(r, ™) &
Ma(ra, m2), with Mi(ri, m), ¢ = 1,2, defined as in (2.5), to satisfy

ou

3t( (m:), fgmz), 1) = (Ll + Lg)U( {ml), gm:), t)+f( gml), gmz), £),

i"'l’"'a Mh te[O’Tla (3'6)

where M; = Ni(r; = 1),i =1,2.
Let {¢Sf‘.)}nM..‘=1 be a set of basis functions for M;(r;, ;). Suppose that

Ulor, o0 ) = 3° f’;lum,,,, o216 (z2), (3.7
=l ngm
and set
(1) = [ur1(8), w28y oevy vy (E)s - -y Upsy 1 (E), <o s by, (2] (3.8)
and

t) = [[,1(8), f1,2(8), ooy S1,0(2)s ooy S 2(2)s oo ey Fay (), (3.9)

where fin,,m,(t) = j(g("‘" §(m’), t). Then (3.6) can be written as

dit ]
(B ®B2)d—': = (A1 ® By + By ® A)i + f(t), t € [0,T], (3.10)
where
= (@@ )M, o) = LigP(e™), (3.11)
=DMy, b, =P(E™), i=1,2. (3.12)

It follows from Lemma 2.1 and Lemma 2.2 that Fy = BfWDB, is symmetric
and positive definite and Gy = BTW DA, is symmetric, where W and D are defined
in Lemma 2.1. Let I; and [, be identity matrices of order M; and M; respectively.

Further, as before, there exists a nonsingular matrix Z such that

ZTG\Z=A, ZTRZ =1, (3.13)
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where A = diag()\;)¥}. Hence we have,
(ZTBTWD @ L)(A1® B:+ Bi® ANZ® 1) =A® B; + 11 ® A

As a result, from (3.10),

du o -
(BTWD® I)(B @Bz)d—‘t‘ = (BTWD @ I,)(A1® B2+ B ® A)ii + (B WD ® 1) [(t),

which may be written,
di -, =
(F® Ba) 5 = (G1 ® Byt Fy @ A} +31(0),

where §(t) = (BTWD ® L) f().
If we multiply both sides of the above equation by (Z7 ® /2), then,

- d"
(ZTQL)YF®B)Ze L) Z'® zz)d_‘t‘ =

which by (3.13) is equivalent to
do .. 7
(11 @ BQ)E' = (A ® BQ + 11 ® Az)w + h(t), (314)

where B(t) = (- ® L)i(t) and h(t) = (2T BTW D) ® L)f{(2).

Equation (3.14) gives a system of linear initial value ODEs. For some ODE solvers
such as DSS/2, [62], [65], GEAR [31], or EPISODE, (32], [34], we would have to ex-
press 2 explicitly, by inverting B,. There are some ODE solvers, e.g. GEARIB [33],
LSODI [35], which can handle this type of equation directly. However in anticipation
of a future extension of our algorithm involving the use of monomial basis functions for
the space variables, we will use a differential/algebraic solver to solve equation (3.14).
Differential/algebraic solvers such as DASSL [59] or the differential/algebraic solver
in SPRINT [9] can handle equation (3.14) directly. Differential/algebraic equations

of the form o
At =56, te[0.T), (3.15)
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where A(t) is a matrix and 7 and § are both vector functions, are often enccuntered
when applying the method of lines based on splines for solving parabolic differential
equations. There are several issues that one should be aware of when trying to solve
such systems. Many DAE systems can be solved using numerical methods for solving
stiff ODE systems [28], but DAE systems may have some properties which are very
different from those of ODE systems [60]. The initial conditions for the function
and its derivative must be chosen to be consistent since error estimates used in the
selection of stepsizes are sensitive to inconsistencies in the initial conditions. Also a
DAE solver needs a more accurate approximation to the iteration matrix than a basic
ODE solver.

One good choice for a DAE solver is DASSL. There are several reasons for this
choice. First DASSL does not need to invert the left hand matrix and thus the ABD
structure of the iteration matrix itself is preserved. In addition, DASSL is a well
written and robust program; even in the current context where we are solving an
ODE system, DASSL is just as efficient as any standard ODE solver. Furthermore,
if we use a monomial basis [5] instead of the B-spline type basis then the resulting

system of ODEs has the form
dy - =
Alt)= = BO)F(t) + f(t), (3.16)

where the matrix A(t) is not square. Together with this we have continuous conditions
on §. In such a case, only an DAE solver, such as DASSL, can handle the above
system.

DASSL solves systems of differential/algebraic equations {15] of the form
Ft,3,9) =10, §lto) =70, §(to) =5y (3.17)

where F, § and 7 are vectors of the same dimension. As described in (27], the basic
idea for solving DAE systems is to replace the derivative §” in (3.17) by a difference
approximation, and then to solve the resulting equation by Newton’s method. If we

replace the derivative in (3.17) by a simple first order backward difference formula
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(BDF), then we have the following implicit Euler scheme

= — ﬂ'n+1 - 371;
F tﬂ 1IN Y = 0’ 3-18
(fat1, Ynt1 X ) (3.18)

where Atni1 = tn41 — t.. Then the resulting equation (3.18) is solved for §n41 by
using Newton’s method. Let g}‘f,?.), be the mth Newton iterative approximation of

Yns+1- Then Newton’s iteration can be written as,

| m) _ -
m m - m) Yntl1 — Yn
3}‘1(14-.1*.1) = g‘v(z-i-% - (G 1F)(tn+h gfz-}-)l?:}—z"{—)v m = 07 19 Tty (319)
n+1
where . .
G = 6_[‘: -+ 1 3_F
“\87 " Atam 0oy ]

The algorithm implemented in DASSL uses a kih order backward difference formula,
where k ranges from 1 to 5, to approximate the derivative. It chooses the order & and
the step size Aty depending on the behavior of the solution over & previous steps
([15], {60], [61]). For our case, only one Newton’s iteration will be performed since
our problem is linear with respect to Fn41-

As we have seen, the spatial discretization is used to transform (3.1)-(3.3) into
the ODE system (3.14). This system is solved using DASSL within the context of a

generalization of Algorithm 2.1 as follows.

Given A;, B;, i =1,2, as (3.11), (3.12), W and D as in Lemma 2.1,
Fy=BITWDB, and G, = BTWDA,.
Step 1 Determine A and Z satisfying Z7G1Z =A, ZTRZ = 1.
Step 2 Compute w(0) and 2Z(0).
Step 3 Use DASSL to solve

(h®B)=(A®@B:+ H® As)5 + h()

where i(t) = (ZTBTWD @ L) f(t).
Step 4 Compute @(T) = (Z ® I2)w(T)-

Algorithm 3.1
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We need to pay particular attention to Step 3. The ODE system in Step 3 is
decoupled, and we can solve it by solving in parallel each subsystem
dt
where B(t) = [B1(t), -+, War, ()] and A(t) = [Ba(2), -+, hag, (£)]. But we should realize

that in order to evaluate each hi(t), i = 1,--+, M;, we need to compute the whole

By =" = (A\:Ba + A)w; + hift), i=1,---, My, 1 €[0,T],

vector f(t). These computations can also be done in parallel, but we still need to do
extra calculations. On the other hand, since some of the subsystems may need fewer
time steps due to the magnitude of the eigenvalues and therefore fewer evaluations of
1 () for these subsystems, it may in fact be more efficient to do Step 3 in this way.
Examining this decoupling approach in detail will be part of our future work.
For equation (3.14) in Step 3, the Jacobian matrix required by DASSL for each
time step is,
(A—cx)® B+ 1, ® Az, (3.20)

where c is a scalar determined by DASSL. In general the matrix in (3.20) decouples
into matrices

Ag-}-(Ai—C)Bz, 1= 1,'“,M1.

For example, for k£ = 3 and M = 4, the above matrix has the structure shown as Figure
3.1. Here we use k to denote the number of collocation points in each subinterval and
M to denote the number of subintervals. The Jacobian matrix here can be decoupled
into independent subsystems as indicated by the x’s in Figure 3.1. Note that each

subsystem has an ABD structure.
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Figure 3.1: The structure of the Jacobian matrix.

64



CHAPTER 3. PARABOLIC CASE 65

DASSL has the option of treating the Jacobian matrix as a full or banded system.
If the matrix of Fig. 3.1 is viewed as banded, then the band would contain the

non-zero blocks as in Figure 3.2.

Fill-in

Figure 3.2: The structure of the banded Jacobian matrix.
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Obviously there is substantial excess storage used for elements which are in fact
known to be zero. This storage takes up to 50% percent of that of the nonzero
elements. Since only the elements inside the small square boxes are nonzero, consid-
erable fill-in occurs inside the band and even beyond the band when we include the
fill-in introduced by Gaussian elimination, with partial pivoting, on a banded matrix.

It is better to consider modifying DASSL in order to solve (3.14) efficiently. The
modifications are (i) decoupling the Jacobian matrix of the ODE system, (ii) aug-
menting the linear algebra features of DASSL to handle an ABD system structure
within each decoupled subsystem. For each time step, we need to solve a linear system

involving the Jacobian matrix and having the form,
((A—C* I])®Bz+11®A2)5=1-", (321)

where 7 is a known vector and £ is to be determined. The above linear system can
be solved in parallel as in Chapter 2, that is the system can be divided into smaller

independent systems which can be solved in parallel. Each smaller linear system has

the form
(A —c)Be + AQ)z; =14, (3.22)

in which the matrix has an almost block diagonal structure and thus can be factored

by ARCECO.
In order to use DASSL to solve the ODE system arising in Step 3 of Algorithm
3.2, we need to supply the initial conditions for w, i.e. @(0) and @'(0). Collocation

of the initial condition (3.3} gives us

-

(B: ® By)i(0) =6, (3.23)

where
A T
9 = [01,1, 91'2, ceeq gl,Mz, ceny aMh], soey GM]'le .

With O, mg = B(E™), €). Since #(0) = (27 ® I)B(0), (3.23) yields

(BiZ ® By)i5(0) = 0.
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From ZTBTWDB,Z = I, we have
(I ® B2)w(0) = (Z*BTWD ® IL)§

which can be used to compute w(0). We give the following algorithm to compute
w(0).

Step1 Compute 6 = (Z7BTWD @ L,)0.
Step 2 Solve {I; ® B,)w(0) = 6~

Algorithm 3.2

It is easy to see that both steps in Algorithm 3.2 are highly suitable for parallel
computations. The computations for Step 1 are the same as those in Step 2 of
Algorithm 3.1. Step 2 of Algorithm 3.2 can be performed by one call to ARCEDC,
and M; calls to ARCESL.

Since, from (3.14),

i (0)

~ =(A®B;+5® A2)5(0) + R(0), (3.24)

(I ® By)

after computing @(0}), we can solve for i‘%’&‘!l from (3.24).

3.3 Modification of DASSL

We present a section of the calling tree for DASSL. This will be useful during the
description of the modifications to DASSL.
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DASSL

68

DATRP

DASTP

+ DANRM [«

DAINI

DAWTS

Figure 3.3:

DASLV

RES

DAJAC

JAC

The calling tree of DASSL.
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The purpose of each routine pictured in Fig. 3.3 is as follows

e DASSL - Driver routine.

e DATRP - To use polynomials to approximate the solution.

e DASTP - One-step solver to advance the solution by one time step.

e DANRM - To compute the weighted root-mean-square norm of a vector.

e DAINI - To find the initial YPRIME.

DAWTS - To set the error weight vector.

DASLYV - To solve the linear system.

RES - To define the system of DAEs (User defined).
e DAJAC - To compute the iteration matrix and form the LU-decomposition.
e JAC - To define the Jacobian matrix (User defined).

The driver routine DASSL allocates storage, and checks for illegal input and other
error conditions. It also sets up the initial step size and optionally calls the DAINI
subroutine to compute the initial derivative. If the user provides the initial solution
and derivative values for the ODE system, they must be chosen to be consistent.
For our case, the consistency of the initial conditions is guaranteed by Algorithm
3.2. DASSL gives the user two options for the linear algebra solver. They are the
LINPACK [21] routines GEFA, for a full Jacobian matrix, and GBFA, for a banded
Jacobian matrix.

The call to DASSL is

CALL DASSL(RES,NEQ,T,Y,YPRIME,TOUT, INFO,RTOL,ATOL,
* IDID,RWORK,LRW,IWORK,LIW,RPAR,IPAR, JAC)
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We will discuss only the parameters which have be modified, referring the reader to the
detailed discussion of all parameters in the documentation for DASSL. As mentioned
in {15), many of DASSL’s features can be activated by setting an element in the
array INFO. We have added one element to this array: INFO(16) = 1 corresponds
to our modification and INFO(16) = 0 corresponds to using DASSL without our
modification. In the original DASSL, the parameters RPAR and IPAR are provided
for communication between the DASSL and the subroutine RES. We use RPAR to
store the values of the Jacobian matrix, the eigenvalues and etgenvectors for matrix
decomposition, etc, and IPAR to store the information about the matrix structure,
such as the number of collocation points and the number of intervals, etc.

In summary, the modifications to DASSL are

¢ the addition of an option to the routine DAJAC to factor matrix (3.20) by a
sequence of calls to ARCEDC.

o the addition of a similar option to the routine DASLV to make a sequence of

calls to ARCESL.

Here ARCEDC is the factorization routine of the ABD soiver, ARCECO, and ARCESL
is the back substitution routine of ARCECO.

3.4 Time Dependent Coefficients

In the proceeding discussion L, L; were assumed to be independent of time. If either
Ly or L, is dependent on time, then changes must be made to the algorithm. There

are four distinct cases, namely,
(i) L, and L, are both independent of £,
(i1) L, is dependent on ¢, L, is independent of £,
(iii) L, is independent of ¢, L, is dependent on t,

(iv) Lp and L, are both dependent on ¢.
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For the moment let us assume that both operators depend on time (case (iv)). There-
fore we consider the following linear parabolic equation with homogeneous Dirichlet

boundary conditions,

0
“61:' = (Ll,t + L2,t)u + f(zh T2y t)? (xl,x%t) € 1 x [0’ T]? (3'25)
u(z1, T2, t) = 0, (z1, z2) € 09, (3.26)
u’(zh T2, 0) = 9(31’ .'132), (.’81,32) € Q, (3.27)
where
32
Ll,t = al(zls )a 2 +C1(.’L‘1,t), al(zht) >0, (328)
d? g
L2,t = a2($2a )a 2 + b2(x2st)g; + Cg(.’bg,t), az(.‘tg,t) >0, (329)

where 0 = [0, 1] x [0, 1]. Using orthogonal spline collocation, we require the ap-
proximation U € M;(ry, 71) ® Ma(r2, m2) to satisfy equation (3.25) at the Gaussian
points. We obtain the following system of ODEs,

(B ® Bg)-d— (Ar(t) ® Bz + By ® As(8))E + [1), t € [0,T], (3.30)

where
P = (a(‘) (t))m.n-l ’ Gmn(t) = ¢(;)(£(m) t), 1= 1121

B;, i = 1,2, are defined as in (2.12) and #, f(t) are defined as in (3.8), (3.9), respec-
tively. In the previous case, (3.1)-(3.5), the matrices A;, B; were time independent,
and hence it was possible to apply the matrix tensor product decompesition to the
ODE system prior to providing it to DASSL. Here we defer the matrix tensor prod-
uct decomposition until a later point inside DASSL. When equation (3.30) is given

to DASSL, the Jacobian matrix required for each t:. ‘e iteration will be,
(Al(t) —Cx* B1) ® Bz + Bl [0 Ag(t),

where c, as before, is a scalar chosen by DASSL.
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For each time step, we need to solve a linear system involving the Jacobian of the

form,

((Al(t) —C* B]) B, +B® Ag(t))f =T. (3.31)

We can now apply the matrix decomposition approach at this stage. For a given
¢, it follows from Lemma 2.1 and Lemma 2.2 that there exist a diagonal matrix A(t)
and a matrix Z(t) such that

ZT(0)G:(8)Z(2) = At), ZT(1R()Z(t) = h, (3.32)

where G (t) and F,(t) are defined as Gy(t) = BTW D(t)A:(t), Fi(t) = BTWD(t) B,
with W = diag(h{Pw®, -+, AMwl{=D o MM L pM{nD) and D) =
diag(1/a,( {1),t), N l/al({'{M‘}, t)). As a result, from (3.31) and (3.32) we get,

((Z7(t)BTWD(t)) ® I2)(Ai(t) ® Bz + By ® Aq(t) — c* By @ By)
(Z7(t) @ LYZ7'(t) ® I2)Z = ((ZT(1) BfWD(1)) = I,)¥

which is equivalent to
((A®) —ex )@ By + 1 ® As(t))v = §, (3.33)

where 7 = (Z-1(t) ® I,)F and § = ((ZT(t)BTW D(t)) ® I2)F.
We have modified DASSL to use the following algorithm to solve (3.31) at each

time step:

Step 1 Determine A(t) and Z(t) satisfying
Z@TG(R)Z() = A®), ZWTR(DZ(E) = ]

Step 2 Compute § = (Z7(t)BfWD(t) ® I.)r.

Step 3 Solve ((A(t)—c*I)® By + I; ® A(t))0 = g.

Step 4 Compute Z = (Z(t) ® ).

— e — L et ——— it—

Algorithm 3.3
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Next we given the procedure for forming the collocation matrices A;(t) and Aa(t).

Let B! and B!, i = 1,2, be matrices such that,

B! = (580)M oy, 59 = [697(6™) (3.34)
BY = (XM ., o) = [p0)(e™) i=1, 2. (3.35)

Let C; and C¥ be matrices such that,

C‘ ( S:L)n)m.n..h CS:'LL = Ci({:(m):t)~ (336)
Cl = (M, &) =af€l™,1), i=12 (3.37)

Let C} be matrix such that,

= ()M _ | o) = by(el™, 1) (3.38)

m,n=1"

Each entry of the matrices C;, C¥ and C} is a function of ¢. In order to compute the

matrices A;(£) and Ay(t) efficiently, we use the equations,

Ar(t) = C"% B! + Cy % By, (3.39)
Az(t) = Cg* Bg + Cé * B; + Cq % By, (3.40)

where * is the Hadamard Product. Therefore we can compute the time independent
matrices by calling the B-splines package and at each time iteration, for a given ¢, we
can form the matrices A;(t) and A»(t) by equations (3.39) and (3.40). It is easy to
see that this step can be done in parallel.

The two algorithms which have described, one for the time independent coefficient
case and one for the time dependent coefficient case differ in two principal ways. In
the time independent case, the matrix decomposition is carried out on the ODEs
themselves whereas in the time dependent case it is carried out only at the level of
solving the linear systems. A consequence of this is that Step 4 in Algorithm 3.1 is
carried out at the end point T, while Step 4 of Algorithm 3.3 is done at every time
step. The second principal difference between the two algorithms is that for time

dependent Ly, G, and F, are computed and the generalized eigenvalue problem is
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solved for every time step when the Jacobian matrix is evaluated. For time dependent
L., the matrix Az(t), must be recompuied at every time step. Some savings can be
made in the cases (ii), (iii). For case (ii), A2 is computed only once, but the generalized
eigenvalue problem must be solved for every time step. For case (iii), the eigenvalues
and eigenvectors are computed only once, but Az(t) must be recomputed at cvery
time step.

In our code these four cases are allowed by 2 switches, TDEPCX and TDEPCY.
Set TDEPCX = 0 if L, is time dependent and set TDEPCX # 0 if L is time
independent. Similarly, set TDEPCY = 0 if L; is time dependent and set TDEPCX
# 0 if L, is time independent.

3.5 Performance Analysis and Numerical Exper-

Iments

In order to demonstrate the parallel performance of our algorithms, we solved the
test problems listed in Table 3.1. The experiments were carried out with M = 100,
k = 2, and the user defined parameters for DASSL taken as TOUT = I, RTOL
= 0 and ATOL = 10~'°. Here M is the number of subintervals, & is the number of
collocation points in each subinterval, TOUT is the time value at which a solution
is desired, ATOL is the absolute tolerance used by DASSL and RTOL = 0 implies a
pure absolute error tolerance is being applied. The profiling was carried out on an

Alliant /FX2800.
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3.1) Li=(z%+ I)ai:? + 21,
Ly = (=3 + 1)(,,8-1:2 + Za52 + 22,
True solution u = (e~ + 1) sin(7z,) sin(7z3)
(32) Ly=(+1)}zt+ 2)33% + tsin(7rzy),
Ly=(t+2)(zi + 5)‘,),%’-g + tsin(nzg)52 + cos(wz2)t?,
True solution u = (e~* + 1) sin(wz;) sin(7z2)
(3.3) Li=(1+t+z)Zg +t,
Ly=(1+ x%)-a"’—:; + Zage + 22,

True solution u = (e~ + 1) sin(7rz,) sin(7z2)

Table 3.1: Test problems for the parabolic solver.

3.5.1 Time Profiling and Speedup

In a manner similar to that of Chapter 2, we concentrate on the routines which can be
executed through a sequence of independent calls. These routines are ZTATV, ZV,
ARCE, EIGENV, ARCEDC, ARCESL and FUNRH. Routines ZTATV, ZV, ARCE
and EIGENV have been described in Chapter 2. The roles of routines ARCEDC,
ARCESL and FUNRH are as follows,

¢ ARCEDC performs the modified alternate row and column decomposition, with
partial pivoting, of an almost block diagonal matrix. This routine is from the
package ARCECO [20].

o ARCESL finds the solution of the linear system Az = gusing the decomposition
of the matrix A already generated in ARCEDC. This routine is also from the
package ARCECO.
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o FUNRH evaluates the right hand side function of the partial differential equa-

tion, ie the function f in equation (3.1).

There are some other routines which also can be embedded in a sequence of
independent calls, such as FUNINT, which evaluates the initial function of the partial
differential equation, but the running times of these routines make up a very small
fraction of total running time, and are not significant when we calculate the total
fraction of parallelizable code. On the other hand, the routine DANRM can not be
embedded in a sequence of independent calls, but does make a significant contribution
to the overall run time. However, it is possible to paralielize DANRM at a lower level.

If we have a vector ¢ with length n, then DANRM returns the weighted root-mean-

Il = J%z (ﬁ)

We can perform the calculations of (v(¢)/w(i))?, ¢ = 1,--+,n, in parallel and thus

square norm of the vector v,

significant improve the parallel efficiency of DANRM. The time which we report for
DANRM is the time spent on calculating (v(z)/w(z))?, ¢ = 1,---,n; this represents
most of the execution time for DANRM.

In the following table we present the results of profiling of our code, which we call
PARCOL, for the test problems given in Table 3.1. Time is given in seconds. We
also provide the overall running time for PARCOL.
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Problem 3.1 Problem 3.2 Problem 3.3
N_P | Routine |CPU.T| % |[CPU.T| % |CPUT| %

1 _EIGENV - 9.5 0.33 | 3679 | 7.78 | 256.1 | 6.82

ZTATV | 918.6 | 32.41 ) 1432.0 | 30.28 | 1139.5 | 30.35

/A'S 874.3 | 30.85 | 1342.7 | 28.39 | 1072.7 | 28.56

ARCEDC | 349 1.23 | 515 1.08 | 358 ! 0.95

ARCESL | 130.6 | 4.61 | 202.5 | 428 | 161.6 | 4.30

ALBDVE | 2629 | 9.28 | 407.7 | 8.62 | 325.3 | 8.66

FUNRH | 286.4 |10.10| 397.0 | 839 | 340.3 | 9.06

DANRM 88.5 3.12 | 1294 | 2.73 | 105.0 | 2.79
PARCOL | 2833.7 4728.5 3754.7

4 | EIGENV 3.0 0.29 { 117.0 | 6.67 | 81.0 | 5.93

ZTATV | 211.0 |20.96( 3305 |[18.85| 258.8 | 18.95

yAY 229.1 |22.76 | 357.2 |20.37 | 278.4 | 20.38

ARCEDC | 99 0.98 15.0 | 0.85 103 | 0.75

ARCESL | 36.2 | 3.60 | 56.4 | 3.22 | 44.7 | 3.27

ALBDVE | 69.4 6.89 108.4 | 6.18 85.4 6.25

FUNRH 83.5 | 830 ( 1169 | 6.67 | 101.0 | 7.39

DANRM | 25.1 250 | 36.9 | 2.10 | 29.7 | 2.17
PARCOL | 1006.3 1753.4 1365.9

To be continued in next page
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8| EIGENV | 1.5 | 0.22 | 59.3 [4.98] 40.9 | 4.40
ZTATV |120.1 | 17.35| 181.4 | 15.2 | 142.6 | 15.34
A% 131.0 | 18.92 | 198.2 | 16.6 | 155.4 | 16.71
ARCEDC | 5.2 | 0.76 7.8 | 065 53 | 0.57
ARCESL | 185 | 2.67 | 28.5 |240 | 22.7 | 2.45
ALBDVE | 35.9 | 5.19 | 55.4 |4.66 | 43.9 | 4.72
FUNRH | 42.5 | 6.14 | 58.7 |4.94| 50.7 | 5.45
DANRM | 12.7 | 1.83 | 18.7 | 157} 15.1 | 1.62

PARCOL | 692.1 1189.6 | 929.7

Table 3.2: Profiling for problems 3.1-3.3.

Table 3.2 shows that the running time of the listed routines decreases in a linear
fashion as the number of processor increases. To determine the maximum speedup, we
need to calculate the the percentage of time spend in the parallelizable code when run
on a single processor. This value is computed by adding the time spent on EIGENV,
ZTATV, ZV, ARCEDC, ARCESL, FUNRH, and part of DANRM and dividing by the
total time. In Table 3.3, we show the actual speedup we obtained and the maximum
speedup we can expect. The maximum speedup is calculated by Amdahl’s law (1.19)

with n = 8 and the actual speedup is computed by (1.18) given in section 1.2.4.

N_P Problem 3.1 | Problem 3.2_ _Problern 3.3
4 281 | 269 | 24
8 4.09 3.97 4.03
Max. Speedup 5.11 | 502 _L 5.01

Table 3.3: Speedup of the test problems 3.1-3.3 on an Alliant/FX2800.
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3.5.2 Convergence

In the following, we show the convergence properties of our algorithm. The results
here are experimental since they are only based on the observation on the output of
numerical experiments.

Table 3.4 gives the maximum error at mesh points for the test problems 3.1-3.3
for the number of collocation points & = 2 and 3, and for the number of intervals
M= 4, 8, 16, 32, and 64. Here we choose the same numbers of collocation points in
each subinterval along the z; and z, directions. In Table 3.4 we also report the values

R which are computed by (1.13) for consecutive step sizes.

Problem 3.3

—

Problem 3.1 Problem 3.2

Errors.
M k=3 |k=2|k=3|k=2|k=3
4 |9.64| 49-7 | 9.6-3 | 6.87 | 9.7-4 | 4.6-7
6.0-5 989 | 595 1.2-8 | 6.0-5 | 1.1-8
16 | 3.7-6 | 1.5-10 | 3.7-6 | 1.8-10 | 3.7-6 | 1.9-10
32| 23-7 | 1.6-11 | 2.3-7 { 3.0-11 | 2.3-7 [ 1.8-11
64| 1.4-8 | 4811 | 1.4-8 [ 2.7-11 | 1.4-8 | 2.5-11
The ratios computed by (1.13).
81400 | 564 | 7.34 | 582 | 401 | 538
161 4.01 | 6.02 | 3.99 | 6.05 | 401 | 585
321{ 4.00 | 3.22 | 4.00 | 2.58 | 4.00 | 3.39

64| 4.03 | -1.58 | 4.03 | 0.15 | 4.03 | -0.47

E )
i
o

Table 3.4: The error at mesh points for test problems 3.1-3.3

From Table 3.4 we can see that the convergence of order O(h?*) has been achieved
whenever the error is bigger than the tolerance of the time integration, here chosen

as 107°. These results support the conjecture that the error bound of this algorithm
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at mesh points is O(h%*) 4- O(TOL), where TOL is the error tolerance of the time
integration.

3.6 On More General Boundary Conditions

For constants «, 8, 7, 6, let the functional operators V, g and H. s be defined as (2.27)
and (2.28) respectively.

We consider (3.1) subject to the following time dependent boundary cond:tions

Voosa (0, 22,8) = go(2,1), (3.41)
Vormu(l,22,8) = ;i(z2,t), (3.42)
H,, 5u(z1,0,t) = hol(z1,t), (3.43)
H, su(z1,1,t) = hi(z1,1). (3.44)

Let M;(ri,m), i = 1,2, be defined as in (2.37) and {{}(z)}}% be a B-spline type

basis for M;(r, ;) satisfying (2.38)-(2.39). We write the orthogonal spline collocation
solution U € M;(ry, 1) ® My(re, 7p) as

Mi+1 Mz+1
Uz, @2, 8) = 3 D tnyma (895 (21)880 (z2)- (3.45)
ni=0 ns=0

Collocating at M; M, internal Gauss points of 2, we get the following M; M; equations,

B (b LU, 67,00+ ™, E7,0), (3.46)

form;=1,..., M;, 2 =1,2. Note that we consider the case with time independent
coefficients, the time dependent case can be done in a similar way.

Similar to the result in Chapter 2, we can get that,

u0,0,(t) = aoho(0, t) — Boho,z (0, B),
uo, My +1() = Mg0(1, t) — 6190, (1, 1),
ur;41,0(t) = Y091(0, £) — 8og1,2, (0, £),
upy 1, Ma41(t) = aaha(1, t) — Brha s, (1, £).
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Based on the above results and the interpolation at the Gaussian points on the bound-

ary, we have

M;
S uom(I$(E™) = go(&™, 1) — w0, ()67 (657) -

- o, w1 (D852 (657, (3.47)
3% st mOHE™) = (6,0~ o) -
uan 41,041 ()81 (657, (3.48)
,uz_, e, o )GE™) = ho(E™)1) = ua,o1)687(E1™) -
u o, 0() 8341 (E6™), (3.49)
ng Uy Ma41 ()BE™) = Ry (€0™),8) — w1 ()60 (™)) -
wans1,m (D650 (). (3.50)

We next set Z and f as in (2.8) and (2.9), respectively, but with,

Frma(®) = FEM, €7 1) — Ligd) (™) z Uomg (1) 8 (ES™))

nz=0

- 1 Ma+1
— GEM™) ST uom () Lag@(E7)

ny=0

— Lig§ (6™ Z Unty 41,0 (D) ()

nz-o

- ¢§t14)x+1 glm)y E “M1+1,nz(t)52¢(2)(§(m2))

'nz=0

- ¢(2)( (m2) Z Uy o t)¢(1)(§(mx))

n1 =1

- (2)(5("&:) Z un,,o(t)L1¢(l)( (mt))

ny=1

~ L2¢§&)3+1 (mz)) Z um,Mz+1(t)¢(1)(§(ml))

ny =1
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- ¢§3f)3+1 (mﬂ) E Un,y, M:+1(t)L1¢S.1,)(§ ml)), (3.51)

ny=1

m; =1,...,M;, i = 1,2. We can simplify the right hand side of equation (3.51) by
using equations (3.47)-(3.50),

Frnma(8) = FEM™, €7 1) — LD (€™ )g0 (5™, 8)

M
= #E™) 3 womOLEE™) ~ Lighd (6™ (7 0)

ng=1
M,
= HRalE™) Y wann (VL8 DE™) — LD (Ehale™,1)
n2=1

M,
= GPED) Y tn o () L1 dD(E™) = Lag G (6™ R (E™), 1)

nl—l
= $pn(E@™) Z Uny p 1 (8) L18E (E). (3.52)
ny=1

The ODE system (3.46) cap be reduced to the form (3.10) with f(t) defined as above,
and Algorithm 3.1 can be applied.

The the initial value, @(0) can be solved from the following equation

(B ® B,)i(0) =6, (3.53)

where

Omymy = O(E™, €02y — (€™ )y g0 (5™, 0)
— 6% (ET g (6, 0) — 6567 ) ho(E™, 0)
- 5‘2“({("":))}11(&7711) 0) + uo 0¢(1)(§£mx))¢(2)(5(ﬂu))
+ up1,085 (6N G (ET) + o148 (E)
{2} (mz) {mi)y £(2) (mz)
+ O (8s )+ ur4, Mz+1¢M,+1(fl )Py 1(&2 )

Now we define h(‘) = %&: and g (') %9{ for : = 0,1. then we have

ub o () = a0k (0, t) — Boh$) (0, 1),
U raer (V) = ML, 1) - 6195 ,8)(L, 1),
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"‘;W,-M,O(t) 70910(0 t) - 60.91.::1 (0, t),
uj’m-&-‘l,Mzé-l(t) = alhgt)(L t) - ﬂlh(?ﬂ(l’ t)a

and

M,
S ¢@Em N (1) = g8(ET, 1) — up o (1) B (™) -

uo , Ma+1 (t)¢M2+1 (E{m:))’ (3.54)
le BDE™ Vel 10 (1) = O™ 1) = w1 oS (7)) -
Ui 41.00051 (£S5 (670, (3.55)
Zl FOE™ N, ot) = BP(E™), 1) — uf o(8)45 (™)) -
U, 41, D(t)¢§l}1)+l (éml)), (3.56)
,,?;1 BOE™ Yl 2y (8) = BOE™), 8) — iy (DS E™) -
Ut 141 (B B304 (E7). (3.57)

The vector %(0) satisfies the following equation,

(B1® Bz) (0) (3.58)

where,

¢m;,m, = Zl Zi ‘u,m’,.,'2 ¢(2)(££m2))L1¢(1)(£§m1)) + ¢£‘11)(§§m1))L2¢$‘22)(€§m3))]

ny=1ne=1

FE™, 67,0) + (L E™))a(€5™,0)
(L6 11 (€ g1 (6™, 0) + (L2g$ (6572 ho(E(™, 0)
(Lafpa N ha(E™),0) - 4™ gt €™, 0)

_ 5\}!),4-1(5{’“1))9?)( (mz) 0) — ¢(2)(£(mz))h(t)(§(mx) 0)

glﬂ(ém:))h(!)(f (m1) ,0) +¢(1)(€(m1)) z uo.naL2¢(2)(f(m2))

ng=1

5 BDalE™) 3ttt 2E) 4 ™) 3 oL ™)

na=1 ni=1

+ + +
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M,
SPET) Sty g1 L gD(E™) + w088 (61087 (6574))

ni=1

+ U0 (EVED(E) 4 gy 1 08 ()B4 (E7)

+ qu'H Ma+1 ¢M; +1 (égm‘))égfi-{-l (é(mn))

Hence the initial value £2(0) can be computed by applying Algorithm 3.2, replacing
g with 1/-; as given above.
We have implemented Algorithm 3.1 for general boundary conditions in the form of

(3.41)-(3.44). To show the performance of our implementation, we solve the equation:

17,
5 = Lyt Layut J(a, 220 ), (3.59)
where ) o
J
Ll —'a-'m—% and Lz —-a—xzz'.

The boundary conditions are

(0, 23) — ug, (0, 22) = (e~ + 1)(zF — 2P +1), |
u(l,23) = (e~ + 1)(2+ 277" +27),

3 (3.60)
11.(.'81,0) e u:,(zl,()) = (e" + 1)(.‘8{“ + 1),
‘U.(.'Bl,].) = (6-t+ 1)(.'3;“-*'31 +2). )
The initial condition is
w(z1, T2, 0) = 2(2T + 23 + 2125~ +1). (3.61)

The function f is chosen such that the solution is (et + 1) (2P + 2]+ 2125~ +1). We
solve the equation for m = 6. In Table 3.5 we report the Lo, error and the maximum
error at mesh points for various values of M and k where M is the number of intervals
and % is the number of collocation points in each subinterval. Again we use £, to
denote the L, error and E,, to denote the maximum error at mesh points. R, and
R, are computed by (1.13) for consecutive step sizes. We choose the absolute error
tolerance for the time integration as 10~'°. The computation was carried out on a

Sparc 1000 work station.
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From Table 3.5 we can see that the convergence of order O(£**?) has been achieved
for both the maximum error at the mesh points and the Lo, error. This agrees with
our conjecture that the error bound for voch the maximum error at the mesh points
and the Lo, error is O(h*+2) + O(TOL), where TOL is the error tolerance of the
time integration. The degradation of the order of convergence for M=64and k=3
is because that the absolute error tolerance for DASSL, 10719, is bigger than the

approximate error.

T &= [l &~
2] 4 [1.64-03 75203 | |
91 8 | 1.34-04 | 3.61 | 5.23-04 | 3.84
5 [ 16 | 9.54-06 | 3.81 | 3.44-05 | 3.92
5 | 32 | 6.44-07 | 3.88 | 1.89-06 | 4.18
5 | 64 | 4.26-08 | 3.91 | 1.26-07 | 3.90
3
3
3
3
3

4 | 7.98-06 1.36-04
2.05-07 | 5.28 | 4.37-06 | 4.95
16 | 5.73-09 | 5.16 | 1.40-07 | 4.96
32 | 1.68-10 | 5.09 | 4.55-09 | 4.94
64 | 1.11-11 | 3.91 | 1.48-10 | 4.94

e e e e —

Table 3.5: The errors in solving Equation (3.59) with boundary conditions (3.60) and
initial condition (3.61) using PARCOL.

3.7 Concluding Remarks

In this chapter, we developed and implemented an algorithm for the numerical so-
lution of a family of linear separable two space dimension parabolic PDEs using a
method-of-lines approach. By collocating the elliptic operator at Gaussian points, a

system of ODEs is introduced. The differential/algebraic solver DASSL is employed
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to solve the ODE system. An almost block diagonal linear system solver ARCECO
(20] is added to DASSL to efficiently handle the special structure of the Jacobian ma-
trix required by DASSL. The parallel performance of this algorithm was investigated

through numerical experiments on a multiple processor system, the Alliant /FX2800.



Chapter 4
Software

In this chapter, we describe the software the packages ELLDCM and PARCOL, for
which the algorithms have been described in Chapter 2 and 3, respectively. Each of the
packages consists of a set of independent modules. Both ELLDCM and PARCOL are
written in FORTRAN 77 and use DOUBLE PRECISION real variables throughout.
In Appendix A we give sample driving programs for solving test problem 2.1 in Table
2.1 and test problem 3.2 in Table 3.1, using ELLDCM and PARCOL, respectively.

In this chapter, we use = to denote z; and y to denote z.

4.1 Programm ELLDCM

4.1.1 The Calling Diagram

ELLDCM is designed to compute the coefficients u;; of the approximate solution U,
(2.6), to equation (2.1) with Dirichlet or mixed boundary conditions with a variable
mesh, as described in section 2.2. Figure 4.1 shows the calling diagram for ELLDCM.
The elliptic problem is completely defined by the right side function f, the coefficient
functions of the operators L; and L, of (2.1), and by the boundary conditions. They
are provided to ELLDCM through user supplied subroutines indicated by the circles.
The right hand side function f must be provided through the FUN routine, the

87
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coefficient functions for the operator L;, a;(z), and ¢;(z), are provided through the
AX and CX functions, and the coefficient functions for the operator Lo, az(y), ba(y),
and ¢(y), are provided through the AY, BY, and CY functions. The boundary
conditions are provided through the HO, H1, GO, and G1 functions. The routines
indicated by rectangles are part of the ELLDCM package. The routines indicated
dashed rectangles are routines from ARCECO, EISPACK, LINPACK, NAG, etc.
The BLAS routines, [22], [23], [44], [45], are used in various places through ELLDCM
but are not shown in Figure 4.1 in order to simplify the diagram.

A main program is needed in order to call ELLDCM. It serves five purposes as

follows:
o Allocate the proper real and integer work storage.
o Read in the inputs.
e Define the mesh.
e Call ELLDCM.
e Evaluate the solution at required points and produce the output.

To compute the coefficients up,0, e, My+1 UM +1,0 20d UM, 41, Mp41, WE need to know
the values g5(0), }(0), h4(1) and ¢}(1). These values can be either supplied by the
user through the parameter list to ELLDCM or approximated by finite difference
techniques. However it should be noted that the less accurate finite difference ap-
proximation will degrade the order of convergence of the approximate solution. The
values defined by (2.82)-(2.88) are also returned by ELLDCM. These values are used

to define the basis functions.
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] — ELLDCM routines.
QO ~— User defined routines.

773 — Routines from other packages.

3
3
Ll

| ELLDCM l—b{ ELLDRI }—D
CALDIR
*} PREMOD] @
"@
[_RIGFUN | FUN

......... )

!

Figure 4.1: The calling tree of ELLDCM.
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The ELLDCM code requires a double precision work array and an integer work

array. The required amount of double precision storage is no less than,
58 + 30k Ny + K2 N? + 15k, Np + 10K} Ny + KN, + (81 + 1Tk )k1 /2 + (7 + ko) k2 /2,
while the required integer storage is no less than,

3Ny + 3Nz + ki Ny + ko Na.

Also ELLDCM needs one double precision array of length (k1N + 2)(kz2 Nz +2) to
store the coefficients of the solution, where k; and k; are the numbers of collocation
points in each subinterval and N; and N; are the numbers of subintervals along the
z and y directions respectively. The program EVALSN, which is called in order to
evaluate the solution after the coefficients u;j, i = 1,-+, My, § = 1,--+, M, are

obtained, is discussed at the end of this chapter.

4.1.2 Using ELLDCM

In this section we give the comment section for ELLDCM.

SUBROUTINE ELLDCM(KX, NBLOCX, KY, NBLOCY, AX, CX, AY, BY, CY,
1 FUN, A0, BO, Ai, B1, RO, DO, R1, Di, HO, H1, GO, G1, BFLAG,
2  DGODYO, DHiDXO, DHODX1, DG1DYi, COEFF, NCOEFF, XI, YI,

3 CONTX, CONTY, WORK, NWORK, IWORK, NIWORK)

Qo

sk OR KRR kKRR KRR R Rk Kb Aok KRk MR AR sk K o ok
PURPOSE

THIS PROGRAM SOLVES ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS
OF THE FORM

(L +«L )U=TFKEY
1 2

THE BOUNDARY CONDITIONS ARE

A0 U(0,Y) - BO U_X (0,Y) = Go(Y),
Al U(1,Y) - B1 U_X (1,Y) = G1(Y),
RO U(X,0) - DO U_Y (X,0) = HO(X),
R1 U(X,1) - D1 U_Y (X,1) = H1(X),

AN OO0O00O0000
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1

anaaanonoaaaan

THE DOMAIN OF THE EQUATION IS OMEGA = [0,1]*{0,1]

2

2
WHERE L = -AX(X) D + CX(X) AND L = =AY(Y) D + BY(Y) D + cY(Y).

X 2 Y Y

AX(X) > 0 FOR X IN [0,1] AND AY(Y) > 0 FOR Y IN [0,1]

TEE PROGRAM ALSO RETURNS THE SCALAR VALUES IN EQUATIONS
(2.82)-(2.89) WHICH ARE USED FOR DEFINING THE BASIS FUNCTIONS.

***************#****#*****#******#*#******#*******************#***##

sxsckkkkk INPUT TO ELLDCM *sskakax

Cc

Cc

c

Cc xk%x ON ENTRY *xx*
C

C KX

C

C

C

C NBLOCX
C

c

C XY

C

c

C

Cc NBLOCY
C

C

Cc A0, BO
o}

C

C

c A1, Bl
C

C

C

C RO, DO
C

c

o

C R1, D1
C

C

C

c BFLAG
C

C

C

C

C

INTEGER
THE NUMBER OF COLLOCATION POINTS PER SUBINTERVAL
IN THE X DIRECTION.

INTEGER
THE NUMBER OF SUBINTERVALS IN THE X DIRECTION.

INTEGER
THE NUMBER OF COLLOCATION POINTS PER SUBINTERVAL
IN THE Y DIRECTION.

INTEGER
THE NUMBER OF SUBINTERVALS IN THE Y DIRECTION.

DOUBLE PRECISION VARIABLES
THE CONSTANTS TO DEFINE THE LEFT SIDE BOUNDARY
CONDITIONS.

DOUBLE PRECISION VARIABLES
THE CONSTANTS TO DEFINE THE RIGHT SIDE BOUNDARY
CONDITIONS.

DOUBLE PRECISION VARIABLES
THE CONSTANTS TO DEFINE THT BOTTOM SIDE BOUNDARY
CONDITIONS.

DOUBLE PRECISION VARIABLES
THE CONSTANTS TO DEFINE THE TOP SIDE BOUNDARY
CONDITIONS.

INTEGER

IF THE USER CAN PROVIDE THE VALUES GO’(0),
H1’(0), G1’(1) AND HO’(1), SET BFLAG = 1.
OTHERWISE SET BFLAG = O AND THE VALUES GO’(0),
H1°(1), H1’(0) AND HO’(1) WILL THEN BE
APPROXIMATED BY FINITE DIFFERENCES.
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c

c DGODYO
c

c

c

c

C DH1DXO
c

c

c

c

c DHODX1
c

c

c

c

c bG@ibY1
c

c

c

c

c XI

c

c

c YI

c

c

c WORK
c

c

c NWORK
c

C

C

C

C

C

c IWORK
C

C

c NIWORK
c

c

c

c

c

C

C

C

c COEFF
C

C

C

DOUBLE PRECISION VARIABLE

DGODYO = GO’(0) WHEN BFLAG = 1. WHEN BFLAG = O,
IGNORE THIS PARAMETER BY TREATING IT AS A DUMMY
ARGUMENT.

DOUBLE PRECISION VARIABLE

DH1DX0 = H1’(0) WHEN BFLAG = 1. WHEN BFLAG = O,
IGNORE THIS PARAMETER BY TREATING IT AS A DUMMY
ARGUMENT.

DOUBLE PRECISION VARIABLE

DHODX1 = HO’ (1) WHEN BFLAG = 1. WHEN BFLAG = O,
IGNORE THIS PZRAMETER BY TREATING IT AS A DUMMY
ARGUMENT.

DOUBLE PRECISION VARIABLE

DGIDY1 = G1’(1) WHEN BFLAG = 1. WHEN BFLAG = O,
IGNORE THIS PARAMETER BY TREATING IT AS A DUMMY
ARGUMENT.

DOUBLE PRECISION ARRAY OF LENGTH NBLOCX+1
THE MESH IN THE X DIRECTION.

DOUBLE PRECISION ARRAY OF LENGTH NBLOCY+1
THE MESH IN THE Y DIRECTION.

DOUBLE PRECISION ARRAY OF LENGTH NWORK.
WORK STORAGE.

INTEGER

THE LENGTH OF WORK

NWORK >= 58 + 30 KX NBLOCX + KX*%2 NBLOCX#*2 +
15 KY NBLOCY + 10 KX*x2 NBLOCX +
3 KY*%2 NBLOCY + ((81+17KX) KX)/2 +
((74KY) KY)/2

INTEGER ARRAY OF LENGTH NIWORK.
INTEGER WORK STORAGE.

INTEGER

THE LENGTH OF IWORK

NIWORK >= 3 NBLOCX + 3 NBLOCY + KX NBLOCX +
KY NBLOCY

206 3 30 2k 2 53¢ 3 20 3 20 e e 36 70 28 24 30 5 58 28 53 e o e 3 ae o e 3k a3 3 55 a8 3 2 o o a3 e o 0 30 ok o o o ol e o ol R o o8 K o e e R Ko
skkekxxk QUTPUT FROM ELLDCH #kikiokkk

- DOUBLE PRECISION ARRAY OF LENGTE NCOEFF.

THE COEFFICIENTS OF THE B-SPLINES IN THE
APPROXIMATE SOLUTION.
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c
c
c
c
c
c
c
c
c
c
c
C
c
C
C
c
C
c
C
C
c AX
C
C
c
C cX
c
C
c
C AY
c
C
C
c BY
C
C
C
c CcY
C
¢
c
c GO
C
C
C
C
C G1
C
C
c
C
c HO
C
C

NCOEFF

CONTX

CONTY

- INTEGER

THE LENGTH OF COEFF
NCOEFF = (KX*NBLOCX+2)*(KY*NBLOCY+2).

- DOUBLE PRECISION ARRAY OF LENGTH 8.

THE SCALAR CONSTANTS GIVEN BY (2.82)-(2.85)
FOR DEFINING THE BASIS FUNCTIONS.

- DOUBLE PRECISION ARRAY OF LENGTH 8.

THE SCALAR CONSTANTS GIVEN BY (2.86)-(2.89)
FOR DEFINING THE BASIS FUNCTIONS.

m——————————per 2 T T2 T TS DT LI L LS L L L Lt bttt
skkkkokxk USER DEFINED FUU " NS mickkkiokn

THE FOLLOWING USER DEFINED FUNCTIONS SHG. . BE DECLARED AS

EXTERNAL IN THE MAIN PROGRAM. THE ARGUMEN I TO EACH FUNCTION

ARE DOUBLE PRECISION VARIABLES X AND Y.

- DOUBLE PRECISION FUNCTION TQ EVALUATE THE

FUNCTION AX IN OPERATOR Li. THE HEADING IS
DOUBLE PRECISION FUNCTION AX(X)

DOUBLE PRECISION FUNCTION TO EVALUATE THE
FUNCTION CX IN OPERATOR Li. THE HEADING IS
DOUBLE PRECISION FUNCTION CX(X)

DOUBLE PRECISION FUNCTION TO EVALUATE THE
FUNCTION AY IN OPERATOR L2. THE HEADING IS
DOUBLE PRECISION FUNCTION AY(X)

DOUBLE PRECISION FUNCTION TO EVALUATE THE
FUNCTION BY IN OPERATOR L2. THE HEADING IS
DOUBLE PRECISION FUNCTION BY(X)

DOUBLE PRECISION FUNCTION TO EVALUATE THE
FUNCTION CY IN OPERATOR L2. THE HEADING IS
DOUBLE PRECISION FUNCTION CY(X)

DOUBLE PRECISION FUNCTION TO DEFINE THE
BOUNDARY CONDITIONS ALONG THE RIGHT HAND
OF THE REGION. THE HEADING IS

DOUBLE PRECISION FUNCTION GO(X)

DOUBLE PRECISION FUNCTION TO DEFINE THE
BOUNDARY CONDITIONS ALONG THE LEFT HAND
OF THE REGION. THE HEADING IS

DOUBLE PRECISION FUNCTION G1(X)

DOUBLE PRECISION FUNCTION TO DEFINE THE
BOUNDARY CONDITIONS ALONG THE BOTTOM SIDE
OF THE REGION. THE HEADING IS



CHAPTER 4. SOFTWARE

c

c

c H1

c

C

c

c

c FUN

c

c

c

c

c

c

C

c

c ELLDCK
c

c

c ELLDRI
c

c

c

C

c FIX

c

c

c GAULEG
c

c

c

C DIAG

c

c

c GCOLRV
c

C

c

C

c

c MULTDA
C

c

C

c ALBDVE
¢

c

c PALBM
C

C

C

c MODRIS
C

DOUBLE PRECISION FUNCTION HO(X)

DOUBLE PRECISION FUNCTION TO DEFINE THE
BOUNDARY CONDITIONS ALONG THE TOP SIDE
OF THE REGION. THE HEADING IS

DOUBLE PRECISION FUNCTION H1(X)

DOUBLE PRECISION FUNCTION TO EVALUATE THE RIGHT

HAND SIDE FUNCTION OF THE DIFFERENTIAL EQUATION.

THE HEADING IS
DOUBLE PRECISION FUNCTION FUN(X,Y)

***#t**#*****t****************************#***#*******************t*

ssckkknk PACKAGE SUBROUTINES wkxcsokdddok

CHECKS STORAGE PARAMETERS, BREAKS UP THE WORK
AREA. CALLS ELLDRI.

MANAGES ALL CALLS TO PROGRAM MODULES.

CALLS FIX, GCOLRV, DIAG, MULTDCA, PALEM, EIGENV,
BONRIG, CALDER, ARCEDC, HODRIS, ARCESL, PREMOD,
ALBDVE, RIGFUN, MODRIG, ZTATV, ARCE AND VA'S

COMPUTES THE FIXED VALUES, SUCH AS GAUSSIAN
POINTS ETC. CALLS GAULEG.

COMPUTES THE POINTS AND WEIGHTS FOR
%AUSS-LEGENDRE QUADRATURE OVER THE INTERVAL
0,1].

COMPUTES THE DIAGONAL MATRIX WD DEFINED IN
LEMMA 2.1.

COLLOCATION MATRIX SETUP ROUTINE. THIS ROUTINE
CALLS THE B-SPLINE ROUTINE BSPDER, IN THE
MODIFIED FORM AS IN COLSYS. ALSO THIS ROUTINE
RETURNS NECESSARY VALUES FOR HANDLING THE
BOUNDARY CONDITIONS.

COMPUTES THE VALUE OF DD*A, WHERE DD IS A
DIAGONAL MATRIX AND A IS AN ALMOST BLOCK
DIAGONAL MATRIX.

COMPUTES A*V, WHERE A IS AN ALMOST BLOCK
DIAGONAL MATRIX AND V IS A VECTOR.

COMPUTES BT A, WHERE A AND B ARE ALMOST BLOCK
DIAGONAL MATRICES. THE OUTPUT IS STORED IN A
BAND MATRIX.

HANDLES THE CHANGES IN THE RIGHT HANDSIDE VECTOR

FOR GENERAL BOUNDARY CONDITIONS.

94



CHAPTER 4. SOFTWARE 95

QQOOOQOOOOOG(‘)OOOOOOOGOOOOOOQOOOOOOOQQQQOQQOOOOOOOOOO

BONRIG

CALDER

PREMOD

MODRIG

RIGFUN

ARCE

EIGENV

PREFSD

VEC22

ZTATV

PATVEC

v

ARCECO

BSPDER

HANDLES THE CHANGES IN THE RIGHT HANDSIDE VECTOR
FOR GENERAL BOUNDARY CONDITIONS.

USES FINITE DIFFERENCE TO COMPUTE THE FUNCTION
DERIVATIVE FOR BOUNDARY CONDITIONS.

HANDLES THE CHANGES IN THE RIGHT HANDSIDE VECTOR
FOR GENERAL BOUNDARY CONDITIONS.

HANDLES THE CHANGES IN THE RIGHT HANDSIDE VECTOR
FOR GENERAL BOUNDARY CONDITIONS.

COMPUTES THE RIGHT HAND SIDE VECTOR.

SOLVES THE ALMOST BLOCK DIAGONAL LINEAR SYSTEM,
THIS ROUTINE CALLS ARCECO.

COMPUTES THE EIGENVALUES AND EIGENVECTORS OF
THE GENERALIZED EIGENVALUE PROBLEM.

IS CALLED BY EIGENV. THIS ROUTINE COMPUTES THE
EIGENVECTORS.

COMPUTES X~T A X. A IS AN ALMOST BLOCK DIAGONAL
MATRIX, X IS A VECTOR.

COMPUTES Z°T A~T V, WHERE Z IS A FULL MATRIX,
A IS AN ALMOST BLOCK DIAGONAL MATRIX, V IS A
VECTOR.

COMPUTES A"T V, WHERE A IS AN ALMOST BLOCK
DIAGONAL MATRIX, V IS A VECTOR.

COMPUTES Z V, WHERE Z IS A FULL MATRIX, V IS
A VECTOR.

ALG. 603, ACM TOMS, VOL.9 (1983), PP. 376-380.

ALG. 569, ACM TOMS, VOL.7 (1981), PP. 223-229.

DSCAL, DCOPY - ALG. 539, ACM TOMS, VOL.5(1879), PP.324-325.

DGEMV, DSBMV - LINPACK ROUTINES. LINPACK USERS’ GUIDE, SIAM

PUB., PHILADELPHIA, 1879.

IMTQL1, IMTQL2 - EISPACK ROUTINE. LECTURE NOTES IN COMPUTER

SCIENCE 51, SPRING-VERLAG, NEW YORK, 1977.

FO2FHF, FO2SDF - NAG ROUTINES. NAG FORTRAN LIBRARY MANUAL,

MARK 15, VOL. 5, NAG LTD., 1991.
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4.2 Program PARCOL

PARCOL is designed to compute the the coefficient u; ;(t) of the approximate solution
U, (3.7), to equation (3.1) with initial condition (3.3) and Dirichlet or mixed boundary

conditions.

4.2.1 The Calling Diagram

Figures 4.2 and 4.3 show the calling diagram of PARCOL. The user defined routine
are shown by circles in Figure 4.2. The routines indicated by rectangles are part or
the PARCOL package. The routines indicated dashed rectangles are routines from
ARCECO, DASSL, EISPACK, LINPACK, NAG, etc. The parabolic problem is com-
pletely defined if we specify the right side function f, the coefficient functions of
operators L; and L in (3.1), the initial condition, and the boundary conditions. The
right hand side function f must be provided through the FUNRIG routine, the coef-
ficient functions for the operator L,, a;(z,t), and ¢(z,t), are provided through the
PAX and PCX functions, and the coeficient functions for the operator L2, as(y,t),
ba(y,t), and cz(y,t), are provided through the PAY, PBY, and PCY functions. The
initial condition is given by FUNINI routine. The user must also provide the deriva-
tives with respect to time of the boundary condition functions, i.e. 252(z,1), %Q-(y,t),
%‘-(z,t), %(y,t). These routines are named TPHO0, TPH1, TPG0 and TPGI1. To
compute the coefficients ugo(t), uom+1(t); Uss+1,0(t) and up41,0+1(2), the values
904(0,1), h12(0,1), 914(0,t) and ho(1,t) are needed. These values can either be
supplied by the user or approximated by finite differences. We should realize that
the lower order of accuracy of these finite difference approximations will effect the
accuracy of the solution. The routines PGODY, PH1DX, PG1DY and PHODX define
90,4(0,%), h12(0,2), g1,4(0,t) and hor(1,t). These routines are not shown in Figure
4.2 for simplicity. Similarly, in order to compute upo(t), Ugrg41(t)s Uhs41,0(t) and
Uhg 1041 (E), the values goye(0,1), h1,24(0,1), 91,,(0,t) and hoz,e(1,2) are needed.
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The routines PHODTX, PH1DTX, PGODTY and PGIDTY serve to define these val-
ues. The BLAS routines are used in various places through PARCOL but are not
shown in Figure 4.2 in order to simplify the diagram.

A main program is needed in order to call PARCOL. In this main program we
need to allocate real and integer work storage arrays. The real work storage required
includes two real arrays, RWORK and RPAR. The dimension of RWORK must be
no less than

42 + 11k Ny ko Ny — 2k Niky + ki N1 K3 N,

The dimension of RPAR must be no less than

84 + 31k Ny + 1Tko Ny + E2N? 4 £y (81 + 17k1)/2 + Ny + Na + 2k Nikea N2 +

The integer work storage required also includes two arrays, IWORK and IPAR. The
dimension of IWORK must be no less than 20 + &; Nyk2 N2, and the dimension of
IPAR must be no less than 100 + 3Ny + 3N, + 2k N + 2kaN,. Also PARCOL needs
two arrays, Y and YPRIME, of length (K Ny +2)(k2 N2 +2), respectively to store the
coefficients and the derivatives of the coefficient with respect to ¢, where k; and k; are
numbers of collocation points in each subinterval and N; and Nz are the numbers of
subintervals along z and y directions respectively. Program EVALSN is called in order
to evaluate the solution at a given time T after the coefficients, u;;(T), ¢ =1,---, My,
j=1,---, Mp, are obtained. Similar to ELLDCM, the values defined by (2.82)-(2.88)
are returned by PARCOL. These values are used to define the basis functions.
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— — PARCOL routines.
O =~ User defined routines.

73 — Routines from other packages. pemmann
LIMTRRY
CALGAU I—"‘ GAULEG prmm——— -
—'{ FIXVAL IMTQL2!
rresece 5  Ltesamee
LBSPDER
=®
-6
()
(o)
. S
L FP23RES
ponmmnan
LDSBEMY

roonsmacwy

FO2FHF .:

honeman

- -y

p—y
LARCESL

{—%¢ DDASSL !
| Sy I--.l
pom————
] 1 .
1 DDASTP |

BONRIG >
t—+{cacoes} -

b TPHC
¢ ARCEDC!
ALBSLV Cecasand
coomm=n

‘ﬁ§§§§’;.§
—luruv — ALBDVE |

OOOO®

I

5od

Figure 4.2: The calling tree of PARCOL.
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—1 - PARCOL routines.

RIGRTV

MODRIG

[l

l

ARCESL

ALBDVE

COLMAT

COLVEC

poetanan
! DDASTP ™"

- -

pre=eeean

= DDAJAC P

MTMV

- .-

pe=—eaen

=t DDASLV _:-’

0N

il

pemm—eey

GENDIA

MULTDA

PALBM

EIGENV

Figure 4.3: The calling tree of PARCOL, DASSL part.
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4.2.2 Using PARCOL

In this section we give the comment section in PARCOL.

Qa0

aoaaanaanoaaccnonoaaoanaaaoaaaoaonoaaaaaaann

aanoaan

SUBROUTINE PARCOL(KX, NBLOCX, KY, NBLOCY, TDEPCX, TDEPCY,
TOUT, PAX, PCX, PAY, PBY, PCY, FUNINT, FUNRIG, 40, BO,
A1, B1, RO, DO, R1, D1, PHO, PH1, PGO, PGi, BFL)G PHODX
PHlDX PGODY PGiDY, TBFLAG PHODT, PKiDT, PGODT, PG1DT,
PHODTX, PHiDTX, PGODTY, PG1DTY, RTUL ATOL, Y, YPRIME,
NY, CONTX CONTY, RWORK, NRWORK, RPAR, NRPAR, IWORK,
NIRDRK IPAR NIPAR)

andNP

******************t**#**********************************************

PURPOSE

THIS PROGRAM SOLVES PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS
OF THE FORM

DU/DT = ( L ‘+L ) U+ F(X,Y,T),
. 1 2

THE INITIAL CONDITION IS
U(x,Y,0) = G(X,Y),
THE BOUNDARY CONDITIONS ARE

A0 U(0,Y,T) - BO U_X (0,Y,T) = PGO(Y,T),
Al U(1,Y,T) - B1 U_X (1,Y,T) = PG1(Y,T),
RO U(X,0,T) - DO U_Y (X,0,T) = PHO(X,T),
R1 U(X,1,T) - D1 U_Y (X,1,T) = PH1(X,T),

THE DOMAIN OF THE EQUATION IS OMEGA = [0,1]*[0,1]

2

2
WHERE L = AX(X,T)D + CX(X,T), L = AY(Y,T)D + BY(Y,T)D + CY(Y,T).

1 X 2 Y Y
FOR ALL T, AX(X,T)>0 FOR X IN [0,1] AND AY(Y,T)>0 ¥OR Y IN [0,1]

THE PROGRAM ALSO RETURNS THE SCALAR VALUES IN EQUATIONS
(2.82)-(2.89) WHICH ARE USED FOR DEFINING THE BASIS FUNCTIONS.

e e o o o e e ool ool ook ksl kKoK R K gl ool sk ok i e e s ol ok sk okok i e el ok ol ek kok ok Aok ok ok

sk INPUT TO PARCOL kdokakkokskk

*xx ON ENTRY »*%

100
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NBLOCX

KY

NBLOCX

TDEPCX

TDEPCY

TQUT

A0, BO

A1, Bl

RO, DO

R1, D1

BFLAG

TBFLAG

INTEGER
THE NUMBER OF COLLOCATION POINTS PER SUBINTERVAL
IN THE X DIRECTION.

INTEGER
THE NUMBER OF SUBINTERVALS IN THE X DIRECTION.

INTEGER
THE NUMBER OF COLLOCATION POINTS PER SUBINTERVAL
IN THE Y DIRECTION.

INTEGER
THE NUMBER OF SUBINTERVALS IN THE Y DIRECTION.

INTEGER

THE NUMBER TO INFORM PARCOL TF WE HAVE TIME
DEPENDENT COEFFICIENTS IN THE X DIRECTION.
SET TDEPCX=0 IF THE COEFFICIENTS ARE TIME
DEPENDENT, OTHERWISE SET TDEPCX TO BE NONZERC.

INTEGER

THE NUMBER TO INFORM PARCOL WHETHER WE HAVE TIME
DEPENDENT COEFFICIENTS IN THE Y DIRECTION.

SET TDEPCY=0 IF THE COEFFICIENTS ARE TIME
DEPENDENT, OTHERWISE SET TDEPCY TO BE NONZERO.

DOUBLE PRECISION VARIABLE
THE TIME AT WHICH A SOLUTION IS DESIRED.

DOUBLE PRECISION VARIABLES
THE CONSTANTS TGO DEFINE THE LEFT SIDE BOUNDARY
CONDITIONS.

DOUBLE PRECISION VARIABLES
THE CONSTANTS TO DEFINE THE RIGHT SIDE BOUNDARY
CONDITIONS.

DOUBLE PRECISION VARIABLES
THE CONSTANTS TO DEFINE THE BOTTOM SIDE BOUNDARY
CONDITIONS.

DOUBLE PRECISION VARIABLES
THE CONSTANTS TO DEFINE THE TOP SIDE BOUNDARY
CONDITIONS.

INTEGER

IF THE USER CAN PROVIDE THE ROUTINES TO EVALUATE
D(PGO(Y,T)) /DY, D(PGL(Y,T))/DY, D(PHO(X,T))/DX
AND D(PH1(X,T))/DX, SET BFLAG = 1. OTHERWISE
SET BFLAG = O AND THESE VALUES WILL THEN BE
APPROXIMATED BY THE FINITE DIFFERENCES.

INTEGER



CHAPTER 4. SOFTWARE 102

IF THE USER CAN PROVIDE THE ROUTINES TO EVALUATE
D(PGODT(Y,T))/DY, D(PG1DT(Y,T))/DY,
D(PHODT(X,T))/DX AND D(PH1DT(X,T))/DX, SET
TBFLAG = 1. OTHERWISE SET TBFLAG = 0O, THESE
VALUES WILL THEN BE APPROXIMATED BY THE FINITE
DIFFERENCES.

ATOL - DOUBLE PRECISION VARIABLE
THE ABSOLUTE ERROR TOLERANCE FOR THE ODE SOLVER.
SEE DASSL DOCUMENTATION FOR FURTEER EXPLANATION.

RTOL - DOUBLE PRECISION VARIABLE
THE RELATIVE ERROR TOLERANCE FOR THE ODE SOLVER.
SEE DASSL DOCUMENTATION FOR FURTHER EXPLANATION.

RWORK - DOUBLE PRECISION ARRAY OF LENGTH NRWORK.
WORK STORAGE.
NRWORK - INTEGER

THE LENGTH OF RWORK
NWORK >= 42 + 11 KX NBLOCX KY NBLOCY -
2 KX NBLOCX KY + KX NBLOCX KY**2 NBLOCY

RPAR - DOUBLE PRECISION ARRAY OF LENGTH NRPAR.
WORK STORAGE.
NRPAR ~ THE LENGTH OF RPAR

NRPAR >= 84 + 31 KX NBLOCX + 17 KY NBLOCY +
KX*#2 NBLOCX*%2 + ((81+17*KXTOP) KXTOP)/2+
NBLTOX+NBLTOY+2 KXTOP NBLTOX KYTOP NBLTOY+
11 KXTOP*#2 NBLTOX + ((7+KYTOP) KYTIOP)/2 +
S5 KYTOP**2 NBLTOY

IPAR - INTEGER ARRAY OF LENGTH NIPAR.
INTEGER WORK STORAGE.

NIPAR - INTEGER
THE LENGTH OF IPAR
NIPAR >= 100 + 3 NBLOCY + 3 KX NBLOCX +
2 KXTOP NBLTOX + 2 KY NBLOCY.

INORK - INTEGER ARRAY OF LENGTH NIWORK.
INTEGER WORK STORAGE.

NIWORK INTEGER
THE LENGTH OF IWORK

NIWORK >= 20 + KX NBLOCX KY NBLOCY.

(e X2 X222 N2 X2 R2X2 X222 2 e ke e e N2 K K2 K2 N2 Ee e e e N2 E2 N2 N N e X2 2 N2 N2 N2 Hs Nz s e EeRo e Ne e N PR 2 M2 |

o020 0 20 2 030 03 3 030 2 e o a0 B R o o ok o o e o o a0 ok e e o ol o e e kol kel sk o o ok ok e Kok K oK K

dkkokkkkk QUTPUT FROM ELLDCM #kkkkskkk

aQaaQaan

Y ~ DOUBLE PRECISION ARRAY OF LENGTH NY.
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THE SCALAR CONSTANTS GIVEN BY (2.86)-(2.89)
FOR. DEFINING THE BASIS FUNCTIONS.

- b odo e she

3 ook e ol e ok s o ol 3o o ok o oK sl R ool ok ko e ok e o e o ok ok e a9 ok 3 ool e 3 3 o ke 20 2 o 0B ke e e 3 o ol ol ol e R o

c THE COEFFICIENTS OF THE APPROXIMATE SOLUTION.
c

c YPRIME - DOUBLE PRECISION ARRAY OF LENGTH NY.

c THE DERIVATIVE OF THE COEFFICIENTS WITH

¢ RESPECT T0 T.

c

c NY - INTEGER

¢ THE LENGTH OF Y AND YPRIME

c NY = (KX+«NBLOCX+2)#*(KY+NBLOCY+2)

c

c CONTX - DOUBLE PRECISION ARRAY OF LENGTH 8.

C THE SCALAR CONSTANTS GIVEN BY (2.82)-(2.85)
c FOR DEFINING THE BASIS FUNCTIONS.

c

c CONTY - DOUBLE PRECISION ARRAY OF LENGTH 8.

c

c

c

C

sokkxkkkk USER DEFINED FUNCTIONS skkskaadkskik

THE FOLLOWING USER DEFINED FUNCTIONS SHOULD BE DECLARED AS
EXTERNAL IN THE MAIN PROGRAM. THE ARGUMENTS FOR EACH FUNCTION
ARE DOUBLE PRECISION VARIABLES X, Y AND T.

PAX - DOUBLE PRECISION FUNCTION TO EVALUATE THE
FUNCTION AX IN OPERATOR LX. THE HEADING IS
DOUBLE PRECISION FUNCTION PAX(X, T)

PCX - DOUBLE PRECISION FUNCTION TO EVALUATE THE
FUNCTION €X IN OPERATOR LX. THE HEADING IS
DOUBLE PRECISION FUNCTION PCX(X, T)

PAY - DOUBLE PRECISION FUNCTION TO EVALUATE THE
FUNCTION AY IN OPERATOR LY. THE HEADING IS
DOUBLE PRECISION FUNCTION PAY(X, T)

PBY - DOUBLE PRECISION FUNCTION TO EVALUATE THE
FUNCTION BY IN OPERATOR LY. THE HEADING IS
DOUBLE PRECISION FUNCTION PBY(X, T)

PCY - DOUBLE PRECISION FUNCTION TO EVALUATE THE
FUNCTION CY IN OPERATOR LY. THE HEADING IS
DOUBLE PRECISION FUNCTION PCY(X, T)

PGO - DOUBLE PRECISION FUNCTION TO DEFINE THE
BOUNDARY CONDITIONS AT THE THE RIGHT HAND
OF THE REGION. THE HEADING IS
DOUBLE PRECISION FUNCTION PGO(X, T)

PG1 - DOUBLE PRECISION FUNCTION TO DEFINE THE
BOUNDARY CONDITIONS AT THE THE LEFT HAND

OOOOOOOOOOOOOQOOOGOOOGOOO000000000
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PHO

PH1

PHODX

PH1DX

PGODY

PG1DY

PHODT

PH1DT

PGODT

PG1DT

OF THE REGION. THE HEADING IS
DOUBLE PRECISION FUNCTION PG1i(X, T)

DOUBLE PRECISION FUNCTION TO DEFINE THE
BOUNDARY CONDITIONS AT THE THE BOTTOM SIDE
OF THE REGION. THE HEADING IS

DOUBLE PRECISION FUNCTION PHO(X, T)

DOUBLE PRECISION FUNCTION TO DEFINE THE
BOUNDARY CONDITIONS AT THE THE TOP SIDE
OF THE REGION. THE HEADING IS

DOUBLE PRECISION FUNCTION PHi(X, T)

DOUBLE PRECISION FUNCTION, PHODX = D(PHO)/DX.
WHEN BFLAG = O, IGNORE THIS PARAMETER BY
TREATING IT AS A DUMMY ARGUMENT.

THE HEADING IS

DOUBLE PRECISION FUNCTION PHODX(X, T)

DOUBLE PRECISION FUNCTION, PH1DX = D(PH1)/DX.
WHEN BFLAG = O, IGNORE THIS PARAMETER BY
TREATING IT AS A DUMMY ARGUMENT.

THE HEADING IS

DOUBLE PRECISION FUNCTION PHiDX(X, T)

DOUBLE PRECISION FUNCTION, PGODY = D(PGO)/DY.
WHEN BFLAG = O, IGNORE THIS PARAMETER BY
TREATING IT AS A DUMMY ARGUMENT.

THE HEADING IS

DOUBLE PRECISION FUNCTION PGODY(X, T)

DOUBLE PRECISION FUNCTION, PGiDY = D(PG1)/DY.
WHEN BFLAG = O, IGNORE THIS PARAMETER BY
TREATING IT AS A DUMMY ARGUMENT.

THE HEADING IS

DOUBLE PRECISION FUNCTION PG1DY(X, T)

DOUBLE PRECISION FUNCTION, PHODT = D(PHO)/DT.
THE HEADING IS
DOUBLE PRECISION FUNCTION PHODT(X, T)

DOUBLE PRECISION FUNCTION, PHiDT = D(PH1)/DT.
THE HEADING IS
DOUBLE PRECISION FUNCTION PH1DT(X, T)

DOUBLE PRECISION FUNCTION, PGODT = D(PGO)/DT.
THE HEADING IS
DOUBLE PRECISION FUNCTION PGODT(X, T)

DOUBLE PRECISION FUNCTION, PG1DT = D(PG1)/DT.
THE HEADING IS
DOUBLE PRECISION FUNCTION PGIDT(X, T)
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c
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C
Cc
Cc
C
C

Cc
C
c
c
c
c
c
C
c
C
C
C
C
c
C
C
c
C

PHODTX

PHIDTX

PGODTY

PG1DTY

FUNINI

FUNRIG

PARCOL

FIXVAL

COLFIX

DOUBLE PRECISION FUNCTION, PHODTX = D(PHODT)/DX.
WHEN TBFLAG = O, IGNORE THIS PARAMETER BY
TREATING IT AS A DUMMY ARGUMENT.

THE HEADING IS

DOUBLE PRECISION FUNCTION PHODTX(X, T)

DOUBLE PRECISION FUNCTION, PH1iDTX = D(PH1DT)/DX.
WHEN TBFLAG = O, IGNORE THIS PARAMETER BY
TREATING IT AS A DUMMY ARGUMENT.

THE HEADING IS

DOUBLE PRECISION FUNCTION PH1DTX(X, T)

DOUBLE PRECISION FUNCTION, PGODTY = D(PGODT)/DY.
WHEN TBFLAG = O, IGNORE THIS PARAMETER BY
TREATING IT AS A DUMMY ARGUMENT.

THE HEADING IS

DOUBLE PRECISION FUNCTION PGODTY(X, T)

DOUBLE PRECISION FUNCTION, PG1DTY = D(PG1DT)/DY.
WHEN TBFLAG = 0, IGNORE THIS PARAMETER BY
TREATING IT AS A DUMMY ARGUMENT.

THE HEADING IS

DOUBLE PRECISION FUNCTION PG1DTY(X, T)

DOUBLE PRECISION FUNCTION TO EVALUATE THE
INITIAL FUNCTION G OF THE DIFFERENTIAL
EQUATION. THE HEADING IS

DOUBLE PRECISION FUNCTION FUNINI(X, Y)

DOUBLE PRECISION FUNCTION TO EVALUATE THE RIGHT
HAND SIDE FUNCTION F OF THE DIFFERENTIAL
EQUATION. THE HEADING IS

DOUBLE PRECISION FUNCTION FUNRIG(X, Y, T}

T ——— T T T T T E T S e o S S e L L L L Ll Lt L Ll
sxkdkkkkk PACKAGE SUBROUTINES skxkiokiokskokk

- CHECKS STORAGE PARAMETERS, BREAKS UP THE WORK

AREA. THIS ROUTINE IS THE DRIVER FOR THE
PACKAGE. IT CALLS FIXVAL, COLMAT, COLVEC, DCOPY,
GENDIA, MULTDA, PALBM, EIGENV, BONRIG, RIGINV,
CALDER, MODINR, ALBSLV, MODRIS, ARCESL, ALBDVE,
RIGHTV, MODRIG, MTMV, CARCES AND DDASSL.

CALCULATES THE FIXED VALUES WHICH ARE MEEDED
BY PARCOL. THESE VALUES DEFINE THE MESH POINTS,
THE COLLOCATION POINTS, THE COLLOCATION MATRIX
AND THE FIRST AND SECOND DERIVATIVE OF THE
COLLOCATION MATRIX.

IS CALLED BY FIXVAL. THIS ROUTINE CALCULATE
THE COLLOCATION MATRIX, FIRST AND SECOND
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DERIVATIVE OF THE COLLOCATION MATRIX.

GENDIA - COMPUTES THE DIAGONAL MATRIX WD DEFINED IN
LEMMA 2.1.

COLMAT - COMPUTES THE COLLOCATION MATRIX AX AND AY.

COLVEC - COMPUTES THE TIME DEPENDENT VALUES WHICH ARE
USED TO HANDLE BOUNDARY CONDITIONS.

RIGINV - COMPUTES THE INITIAL VALUE VECTORS FOR GETTING
THE INITIAL VALUES OF ODE.

MODINR - HANDLES THE BOUNDARY CONDITIONS.

RIGHTV - COMPUTES THE RIGHT HAND SIDE VECTOR.

DDASSL - THE DRIVER ROUTINE FOR DASSL, THE DAE SOLVER.

DDAJAC - THE ROUTINE FROM DASSL TO COMPUTE THE ITERATION

MATRIX AND FORM THE ’LU?-DECOMPOSITION.

DDASLV - THE ROUTINE FROM DASSL TG THAT MANAGES THE
SOLUTION OF THE LINEAR SYSTEM ARISING IN THE
NEWTONK ITERATION.

MTMV - COMPUTES (A TENSOR B)*V, WHERE A AND B ARE
ALMOST BLOCK DIAGONAL MATRICES, V IS A VECTOR.

DRES - DEFINES THE ODES.

DJAC - RETURNS THE JACOBIAN MATRICES OF THE ODE.

ALBSLV - SOLVES THE LINEAR SYSTEM IN THE FORM OF

(A TENSOR B)*X = C. THIS ROUTINE CALLS
ARCEDC AND ARCESL.

CARCESL - SOLVES THE LINEAR SYSTEM IN THE FORM OF
(A TENSOR B)*X = C, WHERE A AND B ARE ALREADY
FACTORIZED BY ARCEDC. THIS ROUTINE CALLS ARCESL

ONLY.
ARCEDC - ARCEC0’S FACTORIZATION ROUTINE.
ARCESL - ARCEC0’S BACK SUBSTITUTION ROUTINE.

THE DESCRIPTIONS OF CALGAU, MULTDA, PALBM, MODRIS, EIGENV,
PREFSD, VEC22, MODRIG, ALBDVE, BONRIG, CALDER, BSPDER,
DSCAL, DCOPY, DGEMV, DSBMV, IMTQL:i, IMIQL2, FO2FHF AND
FO2SDF CAN BE FOUND IN THE INITIAL COMMENTS OF ELLDCM.

e Xe s Ro e R Re Yo ReRe o R R R R R Rz e R R N K2 N2 K2 KN s EeNe N o Rs e No N o Ne No o No No o Ko e o R N Re RO NO RO A L B 2
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4.3 Program EVALSN

The program EVALSL takes the output {u;,;} from ELLDCM or PARCOL aund eval-
uates the approximate solution at arbitrary (z1,z2). Note that EVALSN needs the
values, (2.82)-(2.88), in order to define the basis functions. These values are returned
by ELLDCM or PARCOL. Here we give the comment section from EVALSL.
SUBROUTINE EVALSN(XARRAY, SARRAY, DXARAY, DYARAY, YP, COEFF,

* XI, YI, NP, NBLOCX, KX, NBLOCY, KY, CONTX, CONTY, WORKX,
*  WORKY, WORKXY, IEVAL)

c
C*****************t****************#*******#******t**####t#****#***#*

. PURPOSE

aaaOoaa

EVALUATE THE SOLUTION.
c****m****t*****m********u**n#***n**ut*#****ﬂu#n*nunun*
sokseksokkk INPUT TO EVALSL kkckkaokkok

XARRAY - DOUBLE PRECISION ARRAY OF LENGTH NP.
THE X VALUES OF THE POINTS IN THE X DIRECTION
AT WHICH THE SOLUTION IS DESIRED.

YP - DOUBLE PRECISION VARIABLE.
THE Y VALUE OF THE POINTS AT WHICH THE SOLUTION
IS DESIRED.

COEFF - DOUBLE PRECISION ARRAY OF LENGTH (KX«NBLOCX+2)*
(KY*NBLOCY+2) .
THE COEFFICIENT ARRAY RETURNED FROM ELLDCH OR
PARCOL.

XI - DOUBLE PRECISION ARRAY OF LENGTH NBLOCX+1.
THE X MESH. :

YI - DOUBLE PRECISION ARRAY OF LENGTH NBLOCY+1.
THE Y MESH.

NP - INTEGER
THE NUMBER OF POINTS AT WHICH THE SOLUTION IS
DESIRED.

KX - INTEGER
THE NUMBER OF COLLOCATION POINTS PER SUBINTERVAL
IN THE X DIRECTION.

QOOOOOOOOOOOOOOOOQOOQQQOOOOOOQ
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NBLOCX

INTEGER
THE NUMBER OF SUBINTERVALS IN THE X DIRECTION.

Ky - INTEGER
THE NUMBER OF COLLOCATION POINTS PER SUBINTERVAL
IN THE Y DIRECTION.

NBLOCY INTEGER

THE NUMBER OF SUBINTERVALS IN THE Y DIRECTION.

CONTX - DOUBLE PRECISION ARRAY OF LENGTH 8.
THE SCALAR CONSTANTS GIVEN BY (2.82)-(2.85),
FOR DEFINING THE BASIS FUNCTIONS. THESE VALUES
ARE RETURNED FROM ELLDCM OR PARCOL.

CONTY ~ DOUBLE PRECISION ARRAY OF LENGTH 8.
THE SCALAR CONSTANTS GIVEN BY (2.86)-(2.89),
FOR DEFINING THE BASIS FUNCTIONS. THESE VALUES
ARE RETURNED FROM ELLDCM OR PARCOL.

WORKX - DOUBLE PRECISION ARRAY
REAL WORK STORAGE. THE LENGTH OF WORKX MUST
BE 'NO LESS THAN ((3+KX)*(2+KX))/2+3%(2+KX).

WORKY DOUBLE PRECISION ARRAY
REAL WORK STORAGE. THE LENGTH OF WORKY MUST

BE NO LESS THAN ((3+KY)*(2+KY))/2+3%(2+KY).

WORKXY - DOUBLE PRECISION ARRAY
REAL WORK STORAGE. THE LENGTH OF WORK MUST
BE NO LESS THAN KX*NBLOCX.

IEVAL - AN INTEGER INDICATING WHETHER THE SOLUTION AND
ITS DERIVATIVE SHOULD BE EVALUATED
IEVAL = 0, FOR FUNCTION VALUES ONLY
IEVAL = 1, FOR FUNCTION VALUES AND DERIVATIVES.

aaaaaaaoaaaaoaaaaaooaaaaOOOOO0Oaa0QaQOO0O0aOan

s AR AOR AR R S KRR AR A K ek o s iR R R ok AR A e Aok
*koiokkk QUTPUT FROM ELLDCM okskokokaokokk

SARRAY - DOUBLE PRECISION ARRAY OF LENGTH NP.
THE APPROXIMATE SOLUTION VALUES AT (XARRAY, YP)

DXARAY - DOUBLE PRECISION ARRAY OF LENGTH NP.
THE DERIVATIVE OF THE SOLUTION WITH RESPECT
T0 X

DYARAY - DOUBLE PRECISION ARRAY OF LENGTH NP.
THE DERIVATIVE OF THE SOLUTION WITH RESPECT
0 Y

2 X2 X2 K2 K2 ek NeEe RN e NN e NS NS




Chapter 5

Concluding Remarks and Future
Work

In this thesis we have described a parallel collocation algorithm based on orthogonal
spline collocation and matrix decomposition techniques for solving partial differential
equations of elliptic type. We have implemented this algorithm on a parallel computer
system, the Alliant/FX2800, and have demonstrated the parallel speedup of our algo-
rithm through numerical examples. The efﬁcéency of our software was demonstrated
by a comparison with another popular package SERRG2 [41]. We have proposed and
implemented a parallel collocation algorithm for solving partial differential equations
of parabolic type. The algorithm is based on a method-of-lines approach in which
orthogonal spline collocation and matrix decomposition techniques are incorporated.
The differential/algebraic solver DASSL [59] was employed to solve the ODE systems
introduced by the collocation. An ABD solver ARCECO [20] was added to DASSL
to efficiently handle the special structure of the Jacobian matrix associated with the
ODE system. This approach greatly improves the performance of DASSL. We have
shown that our algorithm can achieve nearly linear speedups in parallel computation
mode through numerical experiments on an Alliant/FX2800 system.

Future work will continue in several directions. We plan to implement our software

on other parallel computer systems. Parallelism is exploitable at several levels of

109



CHAPTER 5. CONCLUDING REMARKS AND FUTURE WORK 110

granularity. Hence a more massively parallel system could be usefully employed.

Another area of future investigation includes the different choice of the spline basis.
In our algorithm, B-spline basis functions [14] are used for the spatial discretization
component. With B-spline basis functions, the continuity conditions are built into the
basis functions. Ascher, Pruess and Russell [5] have shown, however, that monomial
basis functions hav~ certain advantages over the B-splines. For example, compared
to the B-splines, monomial splines are easier and cheaper to implement. In our
future research we will consider using monomial splines for the spatial discretization
component. When these basis functions are used, the linear systems which arise
still have a special almost block diagonal structure. For such special ABD structure,
algorithm [52], similar to those employed in ARCECO, can be employed.

Another area of future work is to study the possibility of decoupling the ODEs,
as mentioned in Section 3.2. Solving each of the ODE subsystems independently may
lead to efficiency improvements.

Another area of future work is to extend our algorithms both for elliptic and
parabolic cases for problems with higher space dimensions. It should be noted that
three or more dimensions can be handled in a similar way without increasing compu-
tation complexity, {48]. |

Another area of future research is to extend our algorithms to handle certain
non-linear PDEs. The algorithms which we have constructed are restricted to linear
separable problems, with linear boundary conditions. Extending the matrix decom-
position technique to linear non-separable or non-linear elliptic problems, or linear
problems with non-linear boundary conditions is not trivial. If a non-linear elliptic
problem is approximated by collocation, a system of non-linear equations results.
The question is whether the structure of the Jacobian of the non-linear system allows
the matrix decomposition technique to be used. Similarly, if collocation is used on
a non-linear parabolic PDE, the problem is whether the Jacobian of the non-linear
equations which are solved at each time step has the same structure as the Jacobian

for linear parabolic PDEs. In one space variable, this is the case, [51]. Further work
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is needed to determine if the technique can be applied to two dimensional non-linear
parabolic PDEs.

The matrix decomposition method as we have presented it, cannot be applied to
non-separable problems. It does not seem likely that the method could be modified
for such problems. Non-separable problems can be solved using Alternating Direction
Implicit (ADI) Galerkin methods and Crank-Nicolson for the time stepping. An
important advantage of this method over matrix decomposition is that each time
step is O(P), where P is the number of unknowns, which is much less than for matrix
decomposition. However whereas DASSL may use higher order BDF formulas for the
time stepping, the Crank-Nicolson method is restricted to O(At)?. In addition the

time error is not as effectively controlled as in DASSL.



Appendix A

- Example Drivers

A.1 Example Driver for Testing ELLDCM

In this section we give the main program and user defined routines for solving the

problem:
(Ly + L)u = f, (A1)
where & 5
Ll = —--a-a and Lg = —a'g, (A.2)

and the boundary conditions are,

2‘&6(0, 3;2) - un‘(oa 32) = 4e™ + 1’ u(]-’ 32) - u$1(1a$2) = 26::2’

u(z,0) — uz,(21,0) = €, u(zy,1) — ug(z1,1) = ™.

The function f is chosen such that the solution is u = 2e** + ™.

Aok kR OR R KRk KRR R R KRRk kK ARk KRR AR KRRk ok koK koK
c PROGRAM MAIN

DOUBLE PRECISION LX, LY, ONE, DLX, DLY, ZERO, TWO, FOUR, HUDRD
PARAMETER (ONE=1.0DO, ZER0=0.0DO, TW0=2.0DO, FOUR=4.0DO,
*  HUDRD=100.DO, LX=0ONE, LY=ONE)

INTEGER KXTOP, KYTOP, NBLTOX, NBLTOY, M, NSLT02, BWORKX,

112
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*  BWORKY, NWORK, NIWORK
PARAMETER(M=2, KXTOP=2, KYTOP=2, NBLT0X=32, NBLTOY=32)

o THE SIZE OF WORK ARRAY ETC.

PARAMETER(NSLT02=(KXTOP*NBLTOX+2)* (KYTOP*NBLTOY+2),
BWORKX=( (M+KXTOP+1)* (M+KXTOP) } /2+(M+1) *(M+KXTOP),
BWORKY= ( (M+KYTOP+1) * (M+KYTOP) ) /2+ (M+1) » (M+KYTOP))

#* *

PARAMETER (NWORK=58+30%KXTOP#NBLTOX+KXTOP**2*NBLTOX**2+
15*KYTOP*NBLTOY+10*KXTOP*#*2%NBLTOX+
3xKYTOP**2%NBLTOY+( (81+17*KXTOP)*KXTOP)/2+
((7+KYTOP)*KYTOP)/2,

NIWORK=3%NBLTOX+3*NBLTOY+KXTOP*NBLTOX+KYTOP*NBLTOY)

* #* ¥ *

Q

DECLARE THE WORK ARRAY ETC.

DOUBLE PRECISION WORK(NWORK), COEFF(NSLTO02), XI(NBLTOX+1),
« YI(NBLTOY+1), AX, CX, AY, BY, CY, FUN, GO, Gi, HO, Hi,
*x A0, BO, A1, Bi, RO, DO, Ri, Di, CONTX(8), CONTY(8),
=  DGODYO, DH1DXO, DHODX1, DG1DY1

EXTERNAL AX, CX, AY, BY, CY, FUN, GO, Gi, HO, Hi

INTEGER IWORK(NIWORK), KX, NBLOCX, KY, NBLOCY, NX, NY,
* NSOL2, NBLXP1, NBLYP1, BFLAG, IEVAL, IN1, NP, J

c - FOR EVALUATION OF THE SOLUTION.
DOUBLE PRECISION XPOINT(200), YPOINT(200), SARRAY(200),
* DXARAY(200), DYARAY(200), LINFSL, LINFER, EXACTP, Y1,
* SOLERR, DXERR, DYERR, LERRDX, LERRDY, LERDXY, TEMP,
*  EXACT, DXEXAT, DYEXAT, WORKX(BWORKX), WORKY (BWORKY),
*  WORKXY(KXTOP*NBLTOX+2), ABS, EXP
EXTERNAL EXACT, DXEXAT, DYEXAT
INTRINSIC ABS, EXP

c INPUT DATA.
READ(S,*) KX, NBLOCX
READ(5,*) KY, NBLOCY
READ(S,*) BFLAG
READ(S,*) AO, BO, A1, Bl
READ(S,*) RO, DO, R1, D1

c DEFINE THE VALUES IF THE FINITE DIFFERENCE ARE NOT USED.
IF(BFLAG .EQ. 1) THEN

DGODYO = FOUR
DG1DY1 = TWO*EXP(ONE)
DHODX1 = EXP(ONE)
DH1DXO = ONE

ENDIF

c SETUP UP THE SIZE OF COLLOCATION MATRIX, MESH SIZE, AND
c TOTAL NUMBER OF UNKNOWNS.

NX = KX*NBLOCX

KY = KY*NBLOCY

NBLXP1 = NBLOCX+1
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10

20

b3

NBLYP1 = NBLOCY+1
NSOL2 = (NX+2)*(NY+2)

GET THE STEP SIZE.
DLX = LX/FLOAT(NBLOCX)
DLY = LY/FLOAT(NBLOCY)

SET UP MESH.
DO 10 INi=1,NBLXP1

XI(IN1) = (FLOAT(IN1)-ONE)=*DLX
CONTINUE _
DO 20 INi=1,NBLYP1

YI(IN1) = (FLOAT(IN1)-ONE)*DLY
CONTINUE

WRITE(6,*)’KX, NBLOCX ARE ’, KX, NBLOCX
WRITE(6,*)’KY, NBLOCY ARE ’, KY, NBLOCY
WRITE(6,*)’A0, BO, A1, Bi ’, A0, BO, A1, Bl
WRITE(6,*)’RO, DO, R1, D1 ’, RO, DO, R1, D1

CALL ELLDCM(KX, NBLOCX, KY, NBLOCY, AX, CX, AY, BY, CY,
FUN, AO, BO, A1, Bi, RO, DO, Ri, D1, HO, H1, GO, Gi,

2  BFLAG, DGODYO, DH1DXO, DHODX1, DGiDYi, COEFF, NSOL2,
3 XI, YI, CONTX, CONTY, WORK, NWORK, IWORK, NIWORK)

150

SETUP FOR COMPUTATION OF THE MAXIMUM ERROR AT MESH POINTS.
LINFER = ZERO
LINFSL = ZERO
LERRDX = ZERD
LERRDY = ZERO
LERDXY = ZERO

SETUP THE X VALUES AT WHICH THE SOLUTIONS ARE DESIRED.
NP = NBLXP1
DO 150 INi=1,NBLXP1
XPOINT(IN1) = XI(IN1)
CONTINUE

EVALUATE THE SOLUTION AND FIND THE MAXIMUM ERROR AT MESH
POINTS.
IEVAL = 1
DD 170 J=1,NBLYP1
Y1 = YI(J)
CALL EVALSN(XPOINT, SARRAY, DXARAY, DYARAY,

* Y1, COEFF , XI, YI, NP, NBLOCX, KX, NBLOCY, KY,
* CONTX, CONTY, WORKX, WORKY, WORKXY, IEVAL)

160

FIND THE MAXIMUM VALUES OF ERROR.
D0 160 INi1=1,NBLXP1
EXACTP = EXACT(XPOINT(IN1),Y1)
IF ( LINFER .LT. ABS(EXACTP - SARRAY(IN1)) ) THEN
LINFER = ABS(EXACTP - SARRAY(IN1))
ENDIF
CONTINUE
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SOLERR = LINFER

¢ FIND THE MAXIMUM ERROR AT MESH POINTS FOR THE DERIVATIVES.
IF(IEVAL .NE. 0) THEN
DO 161 INi=1,NBLXP1
EXACTP = DXEXAT(XPOINT(IN1),Y1)
TEMP = ABS(EXACTP - DXARAY(IN1))
IF ( LERRDX .LT. TEMP ) THEN
LERRDX = TEMP
ENDIF
161 CONTINUE
DXERR = LERRDX
DO 162 INi=1,NBLXP1
EXACTP = DYEXAT(XPOINT(IN1),Y1)
TEMP = ABS(EXACTP - DYARAY(IN1))
IF ( LERRDY .LT. TEMP ) THEN
LERRDY = TEMP
ENDIF
162 CONTINUE
DYERR = LERRDY
ENDIF
170 CONTINUE

c OUTPUT THE ERROR.
PRINT *,’FUN NODE ERROR = ’,SOLERR
IF(IEVAL .GE. 1) THEN
PRINT *,’DX NODE ERROR = ’>,DXERR
PRINT *,°DY NODE ERROR = ’,DYERR
ENDIF

c SETUP FOR COMPUTATION OF THE L-INFINITY ERROR.
LINFER = ZERO

LINFSL = ZERO
LERRDX = ZERO
LERRDY = ZERO
LERDXY = ZERO

c SETUP THE SAMPLE POINTS FOR THE L-INFINITY ERROR.
DLX = LX/HUDRD
DLY = LY/HUDRD
p0 250 IN1=1,101
XPOINT(IN1) = FLOAT((IN1-1)*DLX)
YPOINT(IN1) = FLOAT((IN1-1)*DLY)
250 CONTINUE

C EVALUATE THE SOLUTION AND FIND THE L-INFINITY ERROR.
NP = 101
DD 180 J=1,101
Y1 = YPOINT(J)
CALL EVALSN(XPOINT, SARRAY, DXARAY, DYARAY,
* Y1, COEFF, XI, YI, NP, NBLOCX, KX, NBLOCY, KY,
* CONTX, CONTY, WORKX, WORKY, WORKXY, IEVAL)
DO 180 IN1=1,101
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EXACTP = EXACT(XPOINT(IN1),Y1)

TEMP = ABS(EXACTP - SARRAY(IN1))

IF ( LINFER .LT. TEMP ) THEN
LINFER = TEMP

ENDIF

190 CONTINUE
SOLERR = LINFER

c FIND THE L-INFINITY ERROR FOR THE DERIVATIVES.
IF(IEVAL .NE. 0) THEN

DO

181 IN1=1,101

EXACTP = DXEXAT(XPOINT(IN1),Y1)

TEMP = ABS(EXACTP - DXARAY(IN1))

IF ( LERRDX .LT. TEMP ) THEN
LERRDX = TEMP

ENDIF

181 CONTINUE
DXERR = LERRDX
DO 182 IN1=1,101

EXACTP = DYEXAT(XPOINT(IN1),Y1)

TEMP = ABS(EXACTP - DYARAY(IN1))

IF ( LERRDY .LT. TEMP ) THEN
LERRDY = TEMP

ENDIF

182 CONTINUE
DYERR = LERRDY

ENDIF

180 CONTINUE

PRINT

#, FUN MAX ERROR = ’,SOLERR

IF(IEVAL .GE. 1) THEN

PRINT #*,’DX MAX ERROR = ’,DXERR
PRINT *,’DY MAX ERROR = ’,DYERR
ENDIF
PRINT *
STOP
END

The following functions define the operators Ly and L.

DOUBLE PRECISION FUNCTION AX(X)
DOUBLE PRECISION X, ONE
PARAMETER ( ONE = 1.0D0 )

AX = ONE

RETURN

END

DOUBLE PRECISION FUNCTION CX(X)
DOUBLE PRECISION X, ZERO
PARAMETER ( ZERO = 0.0DO )

CX = ZERO

RETURN

END



APPENDIX A. EXAMPLE DRIVERS 117

DOUBLE PRECISION FUNCTION AY(X)
DOUBLE PRECISION X, ONE
PARAMETER ( ONE = 1.0D0 )

AY = ONE

RETURN

END

DOUBLE PRECISION FUNCTION BY(X)
DOUBLE PRECISION X, ZERD
PARAMETER ( ZERO = 0.0DO )

BY = ZERO

RETURN

END

DOUBLE PRECISION FUNCTION CY(X)
DOUBLE PRECISION X, ZERO
PARAMETER ( ZERO = 0.0DO )

CY = ZERO

RETURN

END

The following function gives the right hand side function of the differential equa-

tion.

DOUBLE PRECISION FUNCTION FUN(X,Y)
DOUBLE PRECISICN X, Y, TWO, EXP
INTRINSIC EXP

PARAMETER ( TW0=2.0DO )

FUN = -(EXP(X)}+TWOXEXP(Y))

RETURN

END

The following functions give the boundary conditions.

DOUBLE PRECISION FUNCTION GO(X)
DOUBLE PRECISION X, ONE, FOUR, EXP
INTRINSIC EXP

PARAMETER ( ONE = 1.0DO, FOUR=4.0DO )
GO = FOURXEXP(X)+ONE

RETURN

END

DOUBLE PRECISION FUNCTION G1(X)
DOUBLE PRECISION X, TWO, EXP
INTRINSIC EXP

PARAMETER ( TW0=2.0DO )

Gi= TWO*EXP(X)

RETURN

END



APPENDIX A. EXAMPLE DRIVERS

DOUBLE PRECISION FUNCTION HO(X)
DOUBLE PRECISION X, EXP
INTRINSIC EXP

HO = EXP(X)

RETURN

END

DOUBLE PRECISION FUNCTION H1i(X)
DOUBLE PRECISION X, EXP
INTRINSIC EXP '

Hi= EXP(X)

RETURN

END

The following functions give the solution and the derivatives of the solution.

DOUBLE PRECISION FUNCTION EXACT(X,Y)
DOUBLE PRECISION X, Y, TWO, EXP
INTRINSIC EXP

PARAMETER ( TWO=2.0DO )
EXACT=EXP (X) +TWO*EXP(Y)

RETURN

END

DOUBLE PRECISION FUNCTION DXEXAT(X,Y)
DOUBLE PRECISION X, Y, EXP

INTRINSIC EXP

DXEXAT=EXP(X)

RETURN

END

DOUBLE PRECISION FUNCTION DYEXAT(X,Y)
DOUBLE PRECISION X, Y, TWO, EXP
INTRINSIC EXP :
PARAMETER ( TW0=2.0DO )
DYEXAT=TWO*EXP(Y)

RETURN

END

Some sample input data:

(S SEo R SN N
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The corresponding output:

KX, NBLOCX ARE 2 32

KY, NBLOCY ARE 2 32

A0, BO, A1, Bl 2.00 1.00 1.00 1.00
RO, DO, R1, D1 1.00 1.00 1.00 1.00
FUN NODE ERROR = 3.6218441579134D-09

DX NODE ERROR = 9.8302548323658D-09

DY NODE ERROR = 6.2531260169862D-09

FUN MAX ERROR = 2.0926357535700D-08

DX MAX ERROR = 6.0558739356508D~07

DY MAX ERROR = 1.2198256715834D-06

A.2 Example Driver for Testing PARCOL

In this section we give the main program and user defined routines for solving the

problem:

%-:— = (Ll + Lg)u + f(zly Z2, t)’ (A'a)

where
5
L1 = (t + 1)(.’8? + 2)—3 +t sin(1r:z:1),
ozt
Ly = (t+2)(z3+ 5)12- -+ (sin(7zz) + t)i + cos(wzy)t?
2 3z§ 6:1:2 ’

the initial condition is,
u(q;l, Z2, 0) = 2(8"':1 4~ 2812), (A.4)

and the boundary conditions are,

u(0, z3,t) — 2uz, (0, 22, 1) = go(Z2, t), uz(l,22,t) = g1{22t),
u(21,0,1) — 2uz, (21,0,¢) = ho(Z1,t), Uz (21,0,8) = h1(z1,t).

The functions f go, g1 ko and &, are chosen such that the solution is

(et + 1)(e™ + 2¢™).
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m——————r T T T TP TR PR LR LR LR B L S L D L it b
C PROGRAM MAIN

DOUBLE PRECISION LX, DLX, LY, DLY, ONE, ZERO, HUDRD
PARAMETER (ONE = 1.DO, ZERO=0.DO, HUDRD=100.D0)
PARAMETER( LX = ONE, LY = ONE )

*

c
*
*
*
*
»*
™
*
*
*
*
*®
*

C
*
*
*
*
*
*
*
»

C

x
x
*

INTEGER KXTOP, KYTOP, NBLTOX, NBLTOY, M, NRWORK, NIWORK,
NRPAR, NIPAR, NSLT02, NP, INCX

PARAMETER(¥=2, KXTOP=2, KYTOP=2, NBLT0X=32, NBLTOY=32)

INTEGER BWORKX, BWORKY, NKSXP2

THE SIZE OF WORK ARRAY ETC.

PARAMETER (BWORKX
BWORKY
NKSXP2
NSLTO02

PARAMETER (NIWORK
NIPAR

NRWORK
NRPAR

( (M+KXTOP+1) * (M+KXTOP) ) /2+ (M+1) * (M+KXTOP) ,
( (M+KYTOP+1)* (M+KYTOP) ) /2+(M+1) * (M+KYTOP) ,
KXTOP*NBLTOX+2,

NKSXP2* (KYTOP*NBLTOY+2))

20+KXTOP*NBLTOX*KYTOP*NBLTOY,
100+3*NBLTOY+3*NBLTOX+2*KXTOP*NBLTOX+

2*KYTOP*NBLTOY,

42+11*KXTOP*NBLTOX*KYTOP*NBLTOY-2+xKXTOP*
NBLTOX*KYTOP+KXTOP+#NBLTOX*KYTOP#*2+NBLTOY,
84+31*KXTOP*NBLTOX+17*KYTOP*NBLTOY+
KXTOP*#*2#NBLTOX**2+( (81+17*KXTOP)*KXTOP) /2+
NBLTOX+NBLIOY+2*KXTOP*NBLTOX*KYTOP*NBLTOY+
11%KXTOP**2+NBLTOX+( (7+KYTOP) *KYTOP) /2+
S*KYTOP#**2+«NBLTOY)

DECLARE THE WORK ARRAY ETC.

DOUBLE PRECISION XI(NBLTOX+1), YI(NBLTOY+1), RWORK(NRWORK),
RPAR(NRPAR), Y(NSLT02), YPRIME(NSLTO02}, T, TOUT, TOL,
CONTX(8), CONTY(8), RTOL, ATOL

PARAMETER ( TOL=1.0D-10, INCX=1 )

INTEGER IWORK(NIWORK), IPAR(NIPAR), KX, NBLOCX, KY, NBLOCY,

TDEPCX, TDEPCY, BFLAG, TBFLAG, NYDIM, IN1, IN2, IEVAL

DOUBLE PRECISION PAX, PCX, PAY, PBY, PCY, FUNINT, FUNRIG,

PGO, PG1, PHO, PH1, TPGO, TPG1, TPHO, TPH1, PHODX, PH1DX,
PGODY, PGiDY, PHODTX, PHiDTX, PGODTY, PGiDTY, A0, BO, A1,
B1, RO, DO, R1, D1

COMMON /BCNDS/ A0, ‘8O, Al, Bi, RO, DO, R1i, D1
EXTERNAL PAX, PCX,PAY, PBY, PCY, FUNINT, FUNRIG, PGO, PGi,

PHO, PH1, TPGO, TPG:i, TPHO, TPHi, PHODX, PH1DX, PGODY,
PG1DY, PHODTX, PH1DTX, PGODTY, PG1DTY, DRES, DJAC

FOR EVALUATION OF THE SOLUTION.
DOUBLE PRECISION WORKX(BWORKX), WORKY(BWORKY), WORKXY(NKSXP2),

XPOINT(200), YPOINT(200), SARRAY(200), DXARAY(200),
DYARAY(200), LINFER, LINFSL, EXACTP, EXACT, DTEXAT, TEMP1,
TEMP2, FLOAT, ABS

INTRINSIC FLOAT, ABS
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C  INPUT DATA.
READ(S,*) TDEPCX, TDEPCY
READ(S5,*) AO, BO, A1, Bl
READ(S,*) RO, DO, R1, D1
READ(5,*)KX, NBLOCX
READ(S,*)KY, NBLOCY
READ (5, %) TOUT
RTOL = ZERO
READ *,ATOL
IF(ATOL .LE. ZERO) THEN

ATOL = TOL

ENDIF

o SETUP FOR THE TOTAL NUMBER OF UNKNOWNS.
NYDIM = (KX*NBLOCX+2)*(KY*NBLOCY+2)

c USE FINITE DIFFERENCE FOR THE DERIVATIVE WITH RESPECT TO T
c OF THE BOUNDARY FUNCTIONS.

BFLAG = 0

TBFLAG = 0

c THE INITIAL VALUE OF TIME VARIABLE IS ZERO.
T = ZERO

c GET THE STEP SIZE.-
DLX = LX/FLOAT(NBLOCX)
DLY = LY/FLOAT(NBLOCY)

c SET UP MESH.
DO 2 IN1=1,NBLOCX+1
XI(IN1) = (FLOAT(IN1)-OKE)*DLX
2 CONTINUE

DO 3 IN1=1,NBLOCY+1
YI(IN1) = (FLOAT(IN1)-ONE)*DLY
3 CONTINUE

CALL PARCOL(KX, NBLOCX, KY, NBLOCY, TDEPCX, TDEPCY,
T, TOUT, PAX, PCX, PAY, PBY, PCY, FUNINT, FUNRIG,
XI, YI, A0, BO, A1, Bi, RO, DO, Ri, D1, PHO, PH1,
PGO, PG1, BFLAG, PHODX, PH1DX, PGODY, PGiDY, TPHO,
TPH1, TPGO, TPG1, TBFLAG, PHODTX, PHiDTX, PGODTY,
PGIDTY, RTOL, ATOL, Y, YPRIME, NYDIM, CONTX, CONTY,
DRES, DJAC, RWORK, NRWORK, RPAR, NRPAR, IWORK,
NIWORK, IPAR, NIPAR)

~NONpWN P

WRITE(6,*)*T AND TOUT ARE ’, T, TOUT
WRITE(6,*) KX, NBLOCX ARE ’, KX, NBLOCX
WRITE(6,*)’KY, NBLOCY ARE ’, KY, NBLOCY
WRITE(6,*)’A0, BO, A1, Bl ’, A0, BO, A1, Bl
WRITE(6,*)’RO, DO, R1, D1 *>, RO, DO, R1, D1
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c SETUP THE X VALUES AT WHICH THE SOLUTION IS DESIRED.
NP = NBLOCX+1
DO 100 INi=1,NBLOCX+1
XPOINT(IN1) = XI(IN1)
100 CONTINUE

c SETUP FOR COMPUTATION OF THE MAXIMUM ERROR AT MESH POINTS.
LINFER = ZERO
LINFSL = ZERO

c EVALUATE THE SOLUTION AND FIND THE MAXIMUM ERROR AT MESH
c POINTS.
IEVAL s 1
DO 170 IN2=1,NBLOCY+1
TEMP1 = YI(IN2)
CALL EVALSN(XPOINT, SARRAY, DXARAY, DYARAY,

* TEMP1, Y, XI, YI, NP, NBLOCX, KX,
* NBLOCY, KY, CONTX, CONTY,
* WORKX, WORKY, WORKXY, IEVAL)

DO 160 INi=1,NBLOCX+1i

EXACTP = EXACT(XPOINT(IN1),TEMP1,T)

IF ( LINFER .LT. ABS(EXACTP - SARRAY(IN1)) ) THEN

LINFER = ABS(EXACTP - SARRAY(IN1))

ENDIF

IF ( LINFSL .LT. #BS(EXACTP) ) LINFSL=ABS(EXACTP)
160 CONTINUE
170 CONTINUE

C OUTPUT THE MAXIMUM ERROR AT MESH POINTS.
PRINT *,’NODE ERROR ’, LINFER
PRINT *,’LINFTY NORM >, LINFSL

c SETUP THE SAMPLE POINTS FOR THE L-INFINITY ERROR.
DLX = LX/HUDRD
DLY = LY/HUDRD
DO 250 IN1=1,101
XPOINT(IN1) = FLOAT((IN1-1)*DLX)
YPOINT(IN1) = FLOAT((IN1-1)*DLY)
250 CONTINUE

c SETUP ZERQO FOR THE L-INFINITY ERROR.
LINFER = ZERD
LINFSL = ZERO

c EVALUATE THE SOLUTION AND FIND THE L-INFINITY ERROR.
NP = 101
DG 180 IN2=1,101
TEMP1 = YPOINT(IN2)
CALL EVALSN(XPOINT, SARRAY, DXARAY, DYARAY,

* TEMPL, Y, XI, YI, NP, NBLOCX, KX,
* NBLOCY, KY, CONTX, CONTY,
* WORKX, WORKY, WORKXY, IEVAL)

DO 190 IN1=1,101
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190
180

99998

EXACTP = EXACT(XPOINT(IN1),TEMP1,T)
TEMP2 = ABS(EXACTP - SARRAY(IN1))
IF ( LINFER .LT. TEMP2 ) THEN
LINFER = TEMP2
ENDIF
IF ( LINFSL .LT. ABS(EXACTP) ) LINFSL=ABS(EXACTP)
CONTINUE
CONTINUE

OUTPUT THE L-INFINiTY ERROR.

PRINT *,’UNIFORM ERROR = *, LINFER
PRINT *,’LINFTY NORM = *, LINFSL
STOP

END

The following functions define the operators Ly and L.

DOUBLE PRECISION FUNCTION PAX(X,T)
DOUBLE PRECISION X, T, ONE, TWO
PARAMETER ( ONE = 1.0D0, TW0=2.0DO )
PAX = (T+0NE)*(X*%2+TWO)

RETURN

END

DOUBLE PRECISION FUNCTION PCX(X,T)
DOUBLE PRECISION X, T, PI, ONE, SIN, ACOS
INTRINSIC SIN

PARAMETER ( ONE = 1.0D0 )

PI = ACOS(-ONE)

PCX = T*SIN(PI*X)

RETURN

END

DOUBLE PRECISION FUNCTION PAY(X,T)
DOUBLE PRECISION X, T, TWO, FIVE
PARAMETER ( TW0=2.0DO, FIVE=S5.0DO )
PAY = (T+TWO)*(X*%4+FIVE)

RETURN

END

DOUBLE PRECISION FUNCTION PBY(X,T)
DOUBLE PRECISION X, T, PI, ONE, SIN, ACOS
INTRINSIC SIN, ACOS

PARAMETER ( ONE = 1.0D0 )

PI = ACOS(-ONE)

PBY = SIN(PI*X)+T

RETURN

END
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DOUBLE PRECISION FUNCTION PCY(X,T)

DOUBLE PRECISION X, T, ONE, PI, C0S, ACOS
DOUBLE PRECISION COS, ACOS

PARAMETER ( ONE = 1.0D0 )

PI = ACOS(-ONE)

PCY = COS{(PI*X)#*T*#2

RETURN

END

The following function gives the initial value function.

DOUBLE PRECISION FUNCTION FUNINT(X,Y)
DOUBLE PRECISION EXP, X, Y, ONE, THWOD
INTRINSIC EXP

PARAMETER (ONE=1.0D0,TW0=2.0D0)
FUNINT = TWO*{(EXP(X)+TWO*EXP(Y))
RETURN

END

The following function gives the right hand side function of the differential equa-

tion.

DOUBLE PRECISION FUNCTION FUNRIG(X,Y,T)

DOUBLE PRECISION EXP, X, Y, T, ONE, TW0, FIVE, PI,

= SIN, COS, ACOS

INTRINSIC SIN, COS, ACOS, EXP

PARAMETER (ONE=1.0D0,TW0=2.0D0O, FIVE=5.0D0 )

PI = ACOS(~ONE)

FUNRIG = -EXP(~T)*(EXP(X)+TWO*EXP(Y))~
(T+ONE) * (X**2+TW0) * (EXP (~T) +ONE) *EXP (X) -
T*SIN(PI*X)*(EXP{-T)+0NE)*(EXP (X)+TWO*EXP(Y))}-
TWO* (T+TW0) % (Y*x4+FIVE) * (EXP (-T)+0ONE) *EXP(Y) -
TWO* (SIN(PI*Y)+T)*(EXP(-T)+0ONE)*EXP(Y)-
COS(PI*Y)*T**2x (EXP (-T)+ONE)* (EXP (X)+TWO*EXP(Y))

RETURN

END

LK IR SR R

The following functions define the boundary conditions.

DOUBLE PRECISION FUNCTION PGO(X, T)

DOUBLE PRECISION X, T, ZERO, XBNDRY

PARAMETER ( ZERO = 0.0D0 )

DOUBLE PRECISION AO, BO, Ai, Bi, RO, DO, Ri, D1
COMMON /BCNDS/ A0, BO, A1, Bi, RO, DO, Ri, D1
PGO = XBNDRY(A0,BO,ZERO,X,T)

RETURN ‘

END
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DOUBLE PRECISION FUNCTION PGi(X, T)

DOUBLE PRECISION X, T, ONE, XBNDRY

PARAMETER ( ONE = 1.0D0 )

DOUBLE PRECISION A0, BO, Al, Bi, RO, DO, Ri, D1
COMMON /BCNDS/ A0, BO, A, Bi, RO, DO, Ri, D1
PGi = XBNDRY(A1,B1,0NE,X,T)

RETURN

END

DOUBLE PRECISION FUNCTION PHO(X, T)

DOUBLE PRECISION X, T, ZERO, YBNDRY

PARAMETER ( ZERO = 0.0DO )

DOUBLE PRECISION AO, BO, Ai, Bi, RO, DO, Ri, D1
COMMON /BCNDS/ AO, BO, A1, B1, RO, DO, R1, D1
PHO = YBNDRY(RO,DO,X,ZERO,T)

RETURN

END

DOUBLE PRECISION FUNCTION PHi(X, T)

DOUBLE PRECISION X, T, ONE, YBNDRY

PARAMETER ( ONE = 1.0D0 )

DOUBLE PRECISION AO, BO, A1, Bi, RO, DO, R1, D1
COMMON /BCNDS/ AO, BO, At, Bi, RO, DO, R1, D1
PH1 = YBNDRY(R1,Di,X,0NE,T)

RETURN

END

DOUBLE PRECISION FUNCTION XBNDRY(AU,AUX,X,Y,T)
DOUBLE PRECISION AU,AUX,X,Y,T,EXACT,DXEXAT
YBNDRY = AU*EXACT(X,Y,T) - AUX*DXEXAT(X,Y,T)
RETURN

END

DOUBLE PRECISION FUNCTION YBNDRY(AU,AUY,X,Y,T)
DOUBLE PRECISION AU,AUY,X,Y,T,EXACT,DYEXAT
YBNDRY = AUEXACT(X,Y,T) - AUY+DYEXAT(X,Y,T)
RETURN

END

The following functions give the derivatives of the boundary conditions with re-

spect to L.

DOUBLE PRECISION FUNCTION TPGO(X, T)

DOUBLE PRECISION X, T, ZERO, TXBNRY

PARAMETER ( 2ERQ = 0.0DO )

DOUBLE PRECISION A0, BO, A1, Bi, RO, DO, R1i, D1
COMMON /BCNDS/ AO, BO, A1, Bi, RO, DO, Ri, D1
TPGO = TXBNRY(AO,BO,ZERO,X,T)

RETURN ‘

END
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DOUBLE PRECISION FUNCTION TPG1i(X, T)

DOUBLE PRECISION X, T, ONE, TXBNRY

PARAMETER ( ONE = 1.0DO )

DOUBLE PRECISION AO, BO, A1, Bi, RO, DO, R1i, D1
COMMON /BCNDS/ AO, BO, A1, Bi, RO, DO, R1, D1
TPG1 = TXBNRY(A1,B1,0NE,X,T)

RETURN

END

DOUBLE PRECISION FUNCTION TPHO(X, T)

DOUBLE PRECISION X, T, ZERO, TYBNRY

PARAMETER ( ZERO = 0.0DO )

DOUBLE PRECISION A0, BO, A%, Bi, RO, DO, R1, D1
COMMON /BCNDS/ AO, BO, A1, Bi, RO, DO, Ri, D1
TPHO = TYBNRY(RO,DO,X,ZERO,T)

RETURN

END

DOUBLE PRECISION FUNCTION TPH1(X, T)

DOUBLE PRECISION X, T, ONE, TYBNRY

PARAMETER ( ONE = 1.0D0 )

DOUBLE PRECISION AO, BO, A1, Bi, RO, DO, R1, D1
COMMON /BCNDS/ AO, BO, A1, Bi, RO, DO, R1, D1
TPH1 = TYBNRY(R1,D1,X,0NE,T)

RETURN

END

DOUBLE PRECISION FUNCTION TXBNRY(AU,AUX,X,Y,T)
DOUBLE PRECISION AU,AUX,X,Y,T,DTEXAT,DXTEXA
TXBNRY = AUXDTEXAT(X,Y,T) - AUX+DXTEXA(X,Y,T)
RETURN

END

DOUBLE PRECISION FUNCTION TYBNRY(AU,AUY,X,Y,T)
DOUBLE PRECISION AU,AUY,X,Y,T,DTEXAT,DYTEXA
TYBNRY = AU*DTEXAT(X,Y,T) - AUY*DYTEXA(X,Y,T)
RETURN

END

The following functions give the solution and the derivatives of the solution.

DOUBLE PRECISION FUNCTION EXACT(X,Y,T)
DOUBLE PRECISION EXP, X, Y, T, ONE, TWO
INTRINSIC EXP

PARAMETER ( ONE = 1.0DO,TWO0=2.0DO0 )
EXACT = (EXP(-T)+ONE)*(EXP(X)+TWO*EXP(Y))
RETURN

END

DOUBLE PRECISION FUNCTION DXEXAT(X,Y,T)
DOUBLE PRECISION EXP, X, Y, T, ONE
INTRINSIC EXP
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PARAMETER ( ONE = 1.0D0 )
DXEXAT = (EXP(-T)+ONE)*EXP(X)
RETURN

END

DOUBLE PRECISION FUNCTION DYEXAT(X,Y,T)
DOUBLE PRECISION EXP, X, Y, T, ONE, TWO
INTRINSIC EXP

PARAMETER ( ONE = 1.0DO,TWO0=2.0DO )
DYEXAT = (EXP(-T)+ONE)*TWO*EXP(Y)
RETURN

END

The following functions need to be supplied as below. Since we use finite differ-

ences to approximate the derivatives, they are not called in this sample program.

DOUBLE PRECISION FUNCTION PGODY()
RETURN
END

DOUBLE PRECISION FUNCTION PG1DY()
RETURN
END

DOUBLE PRECISION FUNCTION PHODX()
RETURN
END

DOUBLE PRECISION FUNCTION PH1DX()
RETURN
END

DOUBLE PRECISION FUNCTION PGODTY()
RETURN
END

DOUBLE PRECISION FUNCTION PGIDTY()
RETURN
END

DOUBLE PRECISION FUNCTION PHODTX()
RETURN
END

DOUBLE PRECISION FUNCTION PH1DTX(}
RETURN
END
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Some sample input data:

OO WWOOo O
(S48 V]
(v e ]

0o

[l S A SRS KR e
[ . L]
oONNO O

)
-3

0.p0 -1.D0
3.D0 -4.D0

The corresponding output:

T AND TOUT ARE
KX, NBLOCX ARE
KY, NBLOCY ARE
A0, BO, A1, Bl
RO, DO, R1, D1
NODE ERROR
LIKFTY NORM
UNIFORM ERROR
LINFTY NORM

o
W W
NN

a0 aNNFEFONE
oo

[y
o
o

2.0 0.0 -1.0
-5.0 3.0 -4.0
7.8227486710603D-08
11.154845485377
2.4845705945356D-08
11.154845485377
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