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Abstract

Solutions to modern problems ir enalytical chemistry often require the use
of multivariate data sets in which the measurements for individual samples consist
of a vector or matrix. While present day instruments make the acquisition of such
data relativity simpie, the challenge has become presenting it in an informative and
logical manner. Chemometrics is the branch of analytical chemistry that sddresses
this challenge.

When treating multivariate data sets, the method of data analysis depends
greatly on the underlying structure of the data set. Itis found, for example, that the
presence of "order” in data sets can greatly simolify analysis. An ordered data set
is one in which the component contributions change systematically in accordance
with some underlying ordinal variable (e.g. time, pH). In this work, a method for the
analysis of such ordered data sets, called evolving projection analysis (EPA), is
extended to mixtures of more than two-components and to systems with nonideal
detector response. Applications to liquid chromatography and spectrophotometric
titrations are considered.

In contrast, the sequence of samples in disordered data sets is essentially
random. A number of standard methods have been devised for these kinds of data
sets and this work considers an interesting case involving conductivity prediction
of non-brine water samples using a variety of calibration methods. Im provements
to these methods and the limitations of this approach are discussed.

Finally, methods were sought to search for order in disordered data sets,
working from the hypothesis that many data sets that appear disordered are
actually ordered, if only the proper ordinal variable could be identified. It was found
that the ordering algorithm, implemented using the Genetc Algorithms could be
successfully applied to problems involving cluster analysis and evolving data sets.
A novel study of environmental receptor modelling data showed that this approach
can reveal unique information hidden in the disordered data set.

XV



Notation

The discussions that follow will obey these conventions:

X is a scalar value (i.e. a number) represented by a lower case letter,
except for established symbols, like A for absorbance, listed on the
following page.

X =[x, X, X;]is a vector, represented by a bold lower case letter.

X is a matrix of dimensions m x n as shown below and is represented by

a bold upper case letter.

PX‘H X2 = - Xy,
X9 = - - -
X=|- - _ _ _
Kot = 7 Xy

The superscript ? represents a predicted quantity ,e.g. x*.
The superscript ' indicates the inverse of a matrix, e.g. X'

The superscript T indicates the transposed matrix or vector, e.g. X".

Xy Xy -~ X
X2 - - - -
XT=1_ _ - _ _
_x1n - - = xnmd

Xvi
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1
Introduction

1.1 Chemometrics

To validate a hypothesis one needs to gather supporting evidence. This
evidence can take many forms, for example questionnaires, visual images, or
instrumental measurements. In chemistry, probably the most common form of
evidence is instrumental measurements. Once the measurements have been
collected, the challenge is to obtain the necessary information from these
measurements. This thesis examines methods for extracting information from
multivariate data sets in chemistry, although many of the techniques described can
be extended to other disciplines as well. The branch of chemistry that deals with
the extraction of information from chemical data is known as chemometrics [1-4].
Massart defines chemometrics as the application of mathematical, statistical, and
formal logic to provide the maximum relevant information from chemical data [1].

To illustrate how chemometrics can be used to enhance information from
chemical measurements, a simple example will be considered. The objective in
this case is to reliably monitor glucose ievels in blood plasma using infra-red
spectroscopy [5-8). Although spectrophotometric riieasurements of glucose in the
infrared region of the spectrum are possible, such measurements at physiological
levels are hampered by low sensitivity and relatively high noise. This is a

consequence of the short pathlength resulting from the use of attenuated total



2

reflectance (ATR) techniques. Sucn techniques are necessary for aqueous
samples such as blood plasma because of high background absorbance, and
measurements are further complicated by the presence of numerous interferents.
As a result, quantitative measurements based on absorbance at a single
wavelength are generally unreliable. This is illustrated in Figure 1.1a. Here,
glucose is determined through a calibration step which uses the wavelength of
maximum absorbance, 1038 ecm™. To generate Figure 1.1a, 26 samples of known
concentration were employed. Of these samples 25 were used for calibration, and
the concentration of the remaining sample was predicted using the calibration
model. This process was repeated 25 times, each time leaving a different sample
out for prediction. The procedure is known as cross-validation and is one of the
most reliable methods for evaluating a model's predictive ability. The results in
Figure 1.1a show the predicted versus actual concentrations of the cross-validation
samples. Perfect agreement is represented by the line with unity slope. Itis clear
from the figure that there is a high degree of uncertainty associated with this
approach.

In contrast to measurements made at one wavelength (i.e. univariate
calibration), multiple wavelengths can be used to improve the predictive ability of
the model (i.e. multivariate calibration). A multivariate calibration procedure called
principal components regression (PCR) was applied to the data in this case. PCR
and related techniques are discussed in more detail in Chapter 4. The effect of

PCR is analogous to weighted averaging - information from all wavelengths is
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used to reduce the overall noise in the model. The results of PCR are shown in
Figure 1.1b. Note that the predictive ability of FUR is greatly improved over that
of the univariate model. This is just one illustration of how chemometric
techniques can be used to improve the information yield of analytical

measurements.

1.2 Types of Analysis

Measurements made on chemical systerns can be described as zero-order
(one measurement per sample), first-order (a vector of measurements per sample,
such as a spectrum) or second-order (a martix of measurements per sample). All
of the systems studied in this work involve multiple measurements per sample.
The measurements or data can be arranged into a matrix, X, of m samples and

n measurements, i.e.,

Xiy X2 - - Xqp

o (1.1)
X=|- - - _ _

Xmt = = = X

The rows of this matrix represent different samples and the columns represent
measurements of different variables. For the glucose study described above, the
rows are samples at different concentrations of glucose and the columns are
absorbance measurements at different wavelengths.

In applying chemometrics to a data set, the structure of the data set is
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important, since it may influence the method of analysis used. In this work, two
different kinds of structure are considered: ordered and disordered. An ordered
data set is one in which the component contributions change systematically in
accordance with some underiying- ordinal variable, such as time. In this case, the
ordered structure of the data set can be exploited to yield information that might
otherwise be difficult to extract. A disordered data set, on the other hand, is one
in which there is no apparent relationship among the samples, or at least none
which can be used to advantage.

Chapters 2 and 3 of this thesis deal with some well-known cases of ordered
data sets in chemistry. The case of chromatography with first-order (;.e. a diode
array spectrometer) detection is considered most extensively. In this case the
ordering variable is time, since mixture components have a defined elution order.
Spectrophotometric titrations, in which the ordering variable is pH, are also
considered, and extensions to other systems, such as kinetic studies, are also
possible. All of these systems have been examined in the literature by methods
which take advantage of their order. In this work, the focus is on a technique
called evolving projection analysis (EPA) which seeks to determine the number of
components in unresolved mixtures. This method has been previously applied to
mixtures of two components, and Chapter 2 considers the extension of the method
to mixtures of more than two components. In Chapter 3, modifications to the EPA
algorithm necessary to adapt it to practical situations involving nonideal detector

response are examined. Specifically, it is shown that the method can be modified
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to deal with nonlinear detector responses and non-uniform (heteroscedastic) noise,
sttuations which are especially problematic for other methods.

Disordered data sets are more common in chemistry than ordered data sets,
and Chapters 4 and 5 consider a particular problem of this type. The problem
considered is the prediction of conductivity in non-brine water samples based on
the concentrations of ten predominant ions in natural waters, as well as other
water quality parameters. This problem is of practical importance for quality
assurance in analytical laboratories and more generally for the prediction of
conductivity. In Chapter 5, improvements to multivariate modelling using term
selection via genetic algorithms (GAs) are investigated. In the course of this
investigation, some general observations are made on the applicability of GAs to
term selection problems.

Chapter 6 considers an important question thus far ignored in the literature
involving the relationships between ordered and disordered data sets. It is
postulated that some disordered data sets are not inherently disordered, but are
simply ordered data sets for which an ordinal variable has not been found. It is
further postulated that ordering of these disordered data sets may reveal important
information that is not otherwise apparent. A method for ordering based on GAs
is described and used to reveal hidden information of practical importance in
widely studied data sets.

In the final chapter, a brief discussion summarizing the conclusions of this

work is presented.
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Ordered Sets 1: Multicomponent Systems

2.1 Muiticomponent Systems

Determining the number, identity and concentration of chemical components
in a mixture is a difficult problem in analytical chemistry. Often one ftries to
physically separate the mixture using methods such as chromatography. In many
cases the separation is not complete and one or more partially overlapped peaks
are present. Mathematical separation of these overlapped peaks may be paossible,
but before the identity and concentration of each component can be established,
the number of components in the mixture must be determined. This chapter will
deal with the determination of the number of components in multicomponent
mixtures. The methodology presented is applicable to ordered data sets, such as
those found in chromatography, spectrophotometric titrations and kinetics. The
discussion that follows uses chromatography as an exampie, but the arguments
can be extended to the other cases as well, such as the study of equilibria and
kinetics.

In 1882, Rosenthal [15] showed that the occurrence of overlapping
components is more common than previously thought. Although manufacturers
of iiquid chromatography columns give the number of theoretical plates as
approximately a couple of thousand per meter, and this translates into a possible

separation of few hundred peaks, this separation represents a maximum possible
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separation rather than an experimental figure of merit. Based on statistical
analysis Davis and Giddings [16] showed that, for the separation of a 50
component mixture and on a column with a possible separation of 100
components, total separation was not attainable in most cases. On average there
wouid be 18 one-component peaxs, 7 two-component peaks, 3 three-component
peaks, 1 four-component peak and 1 peak with five or more components. Of
course, in many analytical problems there may be fewer than 50 components and
the chances of multicomponent peaks would diminish accordingly.

‘Much of the past work on the mathematical separation of unresolved peaks
has focussed on determining the identity and concentration profiles of components
in a mixture. In 1971, Lawton and Sylvestre [17] developed a technique for
separation of two-component systems called self-modelling curve resolution
(SMCR). SMCR has been successfuily applied to gas chromatography-mass
spectrometery (GC/MS) [18] and high performance liquid chromatography-diode
array detection (HPLC/DAD) [18]. Extending SMCR to three-component systems
is difficult and authors have had only limited success [20-22]. Other techniques
such as iterative target transformation factor analysis (ITTFA) [23-25], have also
been applied to the problem with some success, but again have difficulties as the
number of components is increased. The success of such rmethods can be greatly
improved with the availability of prior knowledge regarding: (1) the number of
components present, and (2) the nature of the elution profiles, especially the

location of pure component regions which can be used to obtain individual spectra.



9

A number of methods have been developed for this purpose, including evolving
factor analysis (EFA) [26-31], fixed-window evolving factor analysis (FWEFA) [32-
36] and heuristic evolving latent projections (HELP) [37-40].

Another mathematical separation technique that attempts to determine the
number of components in ordered sets and the characteristics of their
concentration profile was previously developed in this laboratory. This technique,
called evolving projection analysis (EPA), has been applied to one- and two-
component systems [32]. In the work presented here, the adaptation of the
algorithm to systems of more than two components was developed and tested.
Before describing the extension of EPA to systems of more than two components,
a brief overview of the algorithm will be presented for one and two component

chromatographic mixtures.

2.2 Evolving Projection Analysis

Fundamentally EPA examines the responses observed for a chemicai
system to determine if it can be modelled by a given number of components. To
do this, the algorithm models data based on expected compaonent behaviour, and
monitors the fit error or prediction error to determine the number of components
present. In this work the technique will be applied to a multiwavelength
absorbance detector, but it could also be applied to other first-order detectors such
as a mass spectrometer. In the case of multiwavelength spectrometery,

absorbance measurements at various wavelengths are used as response
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measurements. In order to see how one can modei various systems it is
instructive to consider plots of absorbance at one wavelength against absorbance
at another wavelength.  These plots, which are referred to as A2 plots, are
critical to EPA. Parts b and d of Figure 2.1 show typical A? plots for one- and two-
component chromatographic systems. A, and A, are the absorbance values at two
wavelengths and the numerals represent various stages of a separation. It is
important to note that, for a one-component system, if Beer's Law holds, the shape
of the spectrum is not important since the spectrum will only change the slope of
the line not its linearity. It is also important to note how various stages of the
separation correspond to points on the A? plots (See Figure 2.1). The plot in

Figure 2.1b could be modelled by:

Af= aA, 2.1)
where A, represents the absorbance at wavelength 1, o is a parameter to be
determined and AP, is the absorbance predicted at wavelength 2. Although the
above equation will be valid for the one-component system, it obviously wouldn't
hoid for the two-component system if the two components have different spectrai
characteristics at the two wavelengths (See Figure 2.1d). However the equation

that would fit this case is:

Af= aA+ BA, (2.2)
where A, and A, are the absorbances at wavelengths 1 and 2, o and B are

parameters to be determined, and A%, is the absorbance predicted at wavelength
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3. EPA models the data according to equation 2.1 and 2.2 and monitors the
quality of the fit to assess the rank of the chemical system. In essence, EPA
exploits the fact that a one-component system can be modelled, within
experimental error, by a straight line (a one-dimensional model) in any A? space.
Likewise, a two-component system can be described by a planar equation (a two-
dimensional model) in any A® space, but is likely to be poorly approximated by a
linear mode' in at least some A? spaces. This argument can be extended to higher
dimensions with the use of hyper-planar models.

For convenience, EPA uses an algorithm called the Kaiman filter to model|
the system. The Kalman filter was developed in the communications industry
some 30 years ago [42], but has been used only recently in chemistry [43-46)].
The Kalman filter can be considered to be an algorithm for the recursive estimation
of parameters from a series of noisy measurements in accordance with a linear
system model [47]. For the one-component model, for example, the Kaiman filter
provides updates of o as each spectrum is acquired. In the usual implementation
of the Kalman filter, the validity of the model is evaluated using the prediction error

(PE), or innovation. The prediction error is,

{PE) = (A~ (A,

(2.3)
=(A)y- @p 1 (Agk

This is the difference between the value of A, measured for a given time (k) and

the value predicted by the model before that measurement is incorporated in the
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model. In this work, for reasons that will be given in Chapter 3, it was found to be
more effective to use the fit error (FE), which is the difference between the
measured value A, and the predicted value after incorporating the current

measurement. The fit error is,

(FE)x= (Az)k - (Azp)k

(2.4)
= (A~ a Ay,

In either case, note that, unlike least squares regression which uses all of the
points to evaluate model validity, this approach only considers points up to and
including the most recent one, and is therefore sensitive to instantaneous model
deviations.

Figure 2.2 shows how EPA would work for a one-component model applied
to a one-component system. Consider a data set of n responses measured m
different times. EPA analyzes the data as each time slice is acquired. Initially
only noise is acquired and the EPA program is only activated when the signal is
greater above the baseline (in this work, a level six times greater than the baseline
standard deviation was found to work well). Then an independent wavelength
must be selected and an obvious choice is the wavelength of maximum response
which will be designated as A,. For the one-component model and n responses,
n-1 models are monitored (e.g. A, vs A,, A; vs A,, etc). The fit error for each of
these models is combined in a root mean square sum; that is for the ith time slice

the root mean square (RMS(FE)) would be:
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Figure 2.2 Pictorial representation of Evolving Projection Analysis showing the
application of parallel one-component models to one-component systems.
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Y (FE) (2.5)
AMS(FE) =\| E—

Note that the trace of RMS(FE) in Figure 2.2 remains essentially flat throughout
the chromatogram since it reflects only model deviations due to experimental
noise. Such a flat trace indicates that there is only one observable in the mixture.

Typically more than one type of model is analyzed by EPA to determine the
number of components present. Figure 2.3 shows the spectrochromatogram for
a simulated two component mixture. In this case at least two types of models
reed to be monitored, namely the one- and two-component models. The top
panel of Figure 2.4 shows the noise-free concentration profiles for a two-
component chromatographic system and the bottom panel shows the results using
EPA for this system. The analysis by EPA starts from the left side and moves
along the data set until it reaches the right side. As each time slice becomes
available, EPA updates model estimates using data from this new slice and all the
previously coliected data. One sees that in the early stages of separation, only
one component is present and both the one- and two-component models fit the
data. This is because both linear and planar models can adequately represent a
single component. The RMS(FE) shows only random fluctuations and reflects the
magnitude of the experimental noise. However, when the second component
begins to elute, a systematic deviation occurs indicating the failure of the one-

component mode!, but the two-component mode! continues to hold. The two-
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component mode! is valid throughout the separation since the system contains
only two components. By analyzing the failure of models of progressively
increasing dimensionality, EPA allows the number of components present in the
mixture to be determined and can help o identify where each component begins
to elute. Note that EPA can also be applied in the reverse direction (right to left)

to give complementary information, although this can't be done in real time.

2.3 Advanced EPA Considerations

Many of the methods mentioned previously (i.e. SMCR, ITTFA, FWEFA and
EFA) were based on a technique called principal component analysis (PCA).
EPA is very similar to PCA, but with some important differences. Both EPA and
PCA estimate the number of components by observing how well an n-component
model! describes a muiticomponent system. However EPA and PCA differ in how
they mode! the data. EPA models the data using equations 2.1 and 2.2 and
similar equations for more than 2 components, whereas PCA models the data by
generating a set of orthogonal basis vectors. PCA determines the number of
components by the number of these vectors it needs to describe the data within
experimental error. How PCA selects these vectors is described below.

Figure 2.5 shows A? plots for the one- and two-component systems. In
PCA, the first principal component (PC,) is chosen to pass through the points in
the direction with the greatest variability in A, and A,. The second principal

component (PC,) is chosen to be at right angles to PC, and to account for the
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Figure 2.5 Results of PCA for simulated a) one-component and b) two-component
data sets.
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remaining variability. Note that in the A2 space, PC, is fixed by the choice of PC,,
but this will not be true in the more general case of spaces of higher
dimensionality (A"). Since PC, is essentially modelling random noise in Figure
2.5a, there is effectively only one component, or the data set is rank 1. In Figure
2.5b, however, both PC, and PC, would be needed to describe the data within
experimental error, indicating that this data set has a rank of two. In general the
number of PC's needed to describe the data is indicative of the number of
observable components. In both of these cases EPA and PCA would give similar
results, but EPA has certain advantages. First EPA is an evolutionary method,
meaning that it exploits the ordering of the data set to provide an indication of
wnere the rank changes. Although PCA can be applied in the same fashion, as
is done with EFA, the least-squares formulation of EPA and its recursive
implementation with the Kalman filter makes it more efficient and allows it to be
implemented in real-time. Additionally, by using the fit error, EPA provides a point
of reference for rank estimation (ie. the level of experimental noise). Other
advantages of EPA for the two component systems, such as the linear
concentration dependence of the fit error and its ability to estimate peak shapes
have been described elsewhere [48].

One aspect of EPA that needs to be addressed when maoving to higher
dimensions is the selection of wavelengths to be used. For a three-component

mode!, the general model would be:
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) (2.6)
A= “lAp + B/Aq+ YA (i2pg, 1)

The indices of the wavelengths corresponding to the independent axes in the
model have been designated as p,q, and r. The selection of these independent
axes is very important. For numerical stability, absorbances at these wavelengths
should exceed baseline values, and should not exhibit a high degree of collinearity
(i.e. not dependent on each other). Also, they should be selected to optimaily
distinguish among the components. For the one- and two-component cases the
selection of wavelengths is more straightforward than it is for models of higher
dimensionality. It was found [49] that the selection of wavelengths is important for
determining the success of the algorithm.

Several approaches to the problem of wavelength selection were attempted.
In one approach, a wavelength for the one-component rhodel was first selected
(e.g. maximum absorbance as discussed earlier) and that model was applied to
the data set. When the one-component model failed, the wavelength showing the
greatest deviation was then selected as the second independent axis, and the two-
component model was applied. This procedure was repeated until the
dimensionality of the model satisfied the data set. Unfortunately, the success of
this approach was found to be very dependent on the nature of the data set. For
example, the second wavelength, while effective for distinguishing between the first
two components, may not be as effective for the second and third components.

A successful alternative approach was found to be pretreatment of the data

set with PCA. The first k principal components (orthogonal vectors) were then
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used to represent the data; i.e. the scores on the first k eigenvectors were used
instead of the absorbances at n wavelengths. Typically k was chosen to be large
enough to ensure that it exceeded the rank of the data set, yet small enough so
some of the noise was excluded. A value of k=10 was found to be satisfactory for
this work. Since the eigenvectors are ordered according to the proportion of
variance they encompass, and since they are by definition orthogonal, the
independent axes were simply selected as the first j eigenvectors, where j is the
dimensionality of the model. Therefore, the three component model is defined in

a manner analogous to Equation 2.6:

Ti=a, T+ B To+y, Ty (7#1,2,3) (2.7)
where T, represents the score on principal component /. Using this data
pretreatment step had several advantages. First, it provided a reliable method of
variable selection that resuited in consistent performance of the aigorithm.
Second, it increased sensitivity to model deviations by reducing the contribution
of those wavelengths containing little or no information. Finaily, because the
algorithm only needed to deal with & variables rather than n wavelengths,
computation time was reduced. For all the resuits presented here, preprocessing

via PCA was used and the first ten principal components were retained.

2.4 Experimental
The muiticomponent EPA algorithm was applied to three problems: 1) a

simulated chromatographic separation (4 compenents), 2) the spectrophotometric
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titration of pyrocatechol violet (4 components) and 3) the liquid chromatographic
separation of aromatic hydrocarbons (3 and 4 components). All chemicals used
in this work were analytical reagent grade, except for the pyrocatechol violet which
was indicator grade. Spectra were obtained on a HP 8452A diode array
spectrometer (Hewlett-Packard, Palo Alto, CA) with 2 nm resolution. Spectra for
the spectrophotometric titration were taken with a standard 1 cm cuvette, whereas
detection for the chromatographic studies was facilitated by a 30 pL flow cell with
a 1 cm path length (Hellma cells, Jamaica, NY).

Gaussian profiles were used in both the spectral and chrematographic
domains for the simulated chromatographic data set. The spectrum and eiution
profile of each component were shifted by one standard deviation from the
preceding one. The effective concentration ratio (components 1 to 4) was 1:2:1:4.
The maximum absorbance was set to unity and gaussian noise was added at a
level of 0.1% of the maximum.

The spectrophotometric titration of pyrocatechol violet (Aldrich, Milwaukee,
WI) was carried out by first placing 100 mL of a 0.01 M solution of pyrocatechol
violet in a beaker and adding dilute hydrochioric acid to adjust the pH to 3.00. The
pH was recorded with a mode! 3D pH electrode and a model 119 pH meter (Fisher
Scientific, Toronto, ON) which was calibrated with buffer standards. Spectra were
obtained between pH 3.00 and 12.50 at intervals of 0.25 pH units by adding small
amounts of dilute sodium hydroxide. Spectra were obtained between 266 and

818 nm at 4 nm intervais with an integration time of 1 s.
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Chromatographic data from three- and four-component mixtures were used
to evaluate the EPA algorithm. The three-component mixture consisted of toluene
(11.48 mM), naphthalene (0.42 mM) and m-xylene (8.12 mM) in a 7:1 (vv)
methanol:water solvent (analytes are given in order of elution). The effective
concentration ratio (i.e. compensating for the maximum molar absorptivity of each
compound) is ca. 1.3:1:1.1. The four component mixture consisted of toluene
(11.54 mM), naphthaiene (0.42 mM), m-xylene (7.97 mM)and biphenyl(0.22 mM),
with an effective concentration ratio of 1.3:1:1.1:2. These mixtures were analyzed
on a chromatographic system consisting of a Shimadzu LC-6A pump (Shimadzu,
Columbia, MD), an injection valve with 50 L loop (Rheodyne model 5020, Cotati,
CA), a Partisphere C, column (12.5 ¢cm x 4.6 mm with 5 Hm packing) (Whatman,
Hillsboro, OR). Isocratic elution was used with 7:4 (v:v) methanol:water as the
mobile phase. These conditions ensured sufficiently poor resoiution to test the
algorithm. Spectra were obtained at 0.5 s intervals with an integration time of
0.4 s. Data were acquired between 61 s and 169 s after injection for the three-

component mixture, and up to 183.5 s for the four-component mixture.

2.5 Resuits

Initial investigations into the application of EPA to muiticomponent
chromatographic systems were carried out using simulations. This permitted an
examination of the algorithm in the absence of certain experimental artifacts that

can complicate real chromatograms. It also allcwed a direct comparison to be
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made between the times at which components begin to elute and the fit error
traces for EPA. Figure 2.6 shows the simulated spectrochromatogram for a four-
component mixture. Gaussian profiles were used in both the spectral and
chromatographic domains. Figure 2.7a shows the noise free chromatographic
elution profiles for the four components in the mixture, Figure 2.7b and ¢ show the
fit error traces after processing the data with the EPA algorithm in the forward and
reverse directions, respectively. Focussing first on Figure 2.7b, it can be seen that
the fit error trace for the one-component model shows deviations from the baseline
shortly after the appearance of the second component. Likewise, the two- and
three-component models fail with the elution of the third and fourth components.
As expected, the RMS(FE) for the four-component model remains flat throughout
the chromatogram.  Figure 2.7c, which is obtained by presenting the
chromatographic data to the algorithm in the reverse order, provides
complementary information to that in Figure 2.7b. The results confirm the
presence of four components and indicate where the elution of each component
is complete. A knowledge of the regions where each component elutes can be
useful in curve resolution for the individual components. In earlier work with two-
component mixtures, it was demonstrated that the fit errors for the one-component
model closely matched the chromatographic elution profile of the second
component [48]. With more than two components, the shape of the fit error
profiles is more complex, arising from a combination of elution profiles for multiple

components. The precise shape of the trace, including the position of the
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Figure 2.7 EPA of the data in Figure 2.6: a) chromatographic elution profiles for
each component, b) fit error traces obtained by processing the data with the EPA
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maximum, will dependt on a number of factors, including the order of the mode|,
the number of components present, spectral and chromatographic resolution, apd
relative concentration ratios. However, it appears that the trace for the final
component (i.e. the (n-1)th order model for an n-com ponent mixture) matches the
elution profile for that component well. Therefore, it is possible to obtain an
indication of the elution profiles for the first and last components with this
approach.

Another feature of the RMS(FE) traces is that they tend to decrease in
maximum amplitude as the order of the model increases. This is exgected, since
deviations from high-order models will be smaller than for the low-order models,
which are less capable of describing the multicomponent mixture. Again, absolute
magnitudes will depend on chromatographic resolution and spectral correlation of
the overlapped components, as well as their concentrations and elution order.
These factors, along with the level of measurement noise, will ultimately determine
the sensitivity of this method to minor components in the mixture. While the
sensitivity of this model has been studied for two-component mixtures [38], the
case of muiticomponent mixtures is more difficuit because of the large number of
factors influencing performance. Nevertheless, a simple study to test the
limitations of the method was undertaken. In this study, a four-component mixture
with Gaussian spectral and chromatographic profiles was simulated, with equal
peak separation in the chromatographic and spectral domains. The first three

components had a maximum absorbance of 0.25, while the fourth component
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varied from 0 to 0.025. The maximum amplitude of RMS(FE) was then measured
for the three-component model running in the forward direction. This should
represent a stringent test, since the last component will produce the smallest trace.
Results from this study are plotted in Figure 2.8 for peak separations of 0.75, 1,
and 1.25 standard deviations. As expected, larger model deviations are observed
as the relative concentration anc resolution (spectral and chromatographic) of the
fourth component increase. As found to be the case for peak purity detection [50]
the detectability of the fourth component will depend on the level of experimental
noise. For example, if noise at a level of 1x10°A.U. were added to the simulated
sets, the fourth component will not be detectable when its effective concentration
falls below 0.8% and 1.7% of the total for chromatographic/spectral separations of
1.25 and 1 o, respectively.

The spectrophotometric titration of pyrocatechol violet was empioyed as
further appiication of EPA. Although this is not an exceptionally challenging case
for rank analysis since the spectral profiles of the four species are reasonably well
separated, it serves to illustrate the principles of the method. Figure 2.9 shows the
data from the spectrophotometric titration. Figure 2.10a shows the expected
distribution of species calculated using reported equilibrium constants (50].
Figure 2.10b shows the fit error traces in the forward direction. The traces are not
smooth, but clearly indicate the presence of four components. The successive
failure of the models approximately matches the expected distribution, although

deviations for the two- and three- component models seem o lag the appearance
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of the third and fourth components slightly. There is also an unexpected
perturbation of the four-component model at the very end, but the number of points
is insufficient to support the presence of a fifth species. In addition the pH
measured could be outside the range of the pH electrode and the readings could
be incorrect. The more challenging cases for EPA are the chromatographic
systems.

The analysis of real chromatographic mixtures can be more problematic.
A number of nonidealities such as baseline variations, scan time effects, and
heteroscedastic noise are well-known to cause problems in the rank analysis of
real chromatographic data [48,51]. These problems are described in greater detail
in Chapter 3. Figure 2.11 shows the spectrochromatograms for the three- and
four-components mixtures used in this study. Spectra for the four components are
shown in Figure 2.12 and are presented in the order of elution. Figure 2.13a shows
the fit error traces for the three-component system. As expected, the traces
indicate the presence of the second and third components with the successive
failure of the one- and two-component models, but the traces are somewhat
different from the simulation results in several ways. First, the shape is different,
but this is expected since the nonideal chromatographic conditions promote non-
Gaussian peaks. Second, it is clear that the fit error traces for the three- and four-
component models don't remain completely flat, making it difficult to detect the
presence of additional minor components. It is expected that this is due to

baseline variations and/or non-ideai detector behaviour. Finally, smail
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perturbations in the fit error traces are often observed coincident with the
appearance of new components in the mixture. These perturbations, appearing
as small "bumps", precede the true failure of the model when it occurs. This
behaviour is routinely observed for real chromatographic data and arises from the
fact that the baseline noise has some nonrandom structure. In the case of the
one-component model, for example, this structure will be a fit to a model. When
the first component does appear, a couple of iterations are necessary for the
model to lock onto the true structure of the data, and it is during this transition that
increased errors are observed. Similar effects are observed for the higher order
models. Nevertheless, the fit error traces clearly indicate the presence of at least
three components.

The fit error traces for the four-component mixture are shown in Figure
2.13b. The comments made for the three-component case are also valid here,
except for the additional component. The deviations for the three-component
modet are smaller than for models of lower order, as expected from the simulation
studies, and begin to approach levels that make them difficult to discern from the
artifacts already noted. However the presence of a fourth component is still

indicated in this case.

2.6 Conclusions
The results presented here demonstrate that EPA is a useful technique for

the analysis of ordered data sets consisting of more than two components. Best



38

results were obtained when the original data were preprocessed with PCA and the
scores were used in place of the original data. EPA has the advantage of
providing relative measures of changes in rank and indicates where new
components appear in the data set. No prior information needs to be presented
to the algorithm. In the case of chromatographic data, simulations have shown
that, in the ideal situation, minor components can be detacted at relatively low

concentrations.
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Ordered Sets 2: Peak Purity Analysis: in the Presence of
Non-ideal Detector Response

3.1 Peak Purity Analysis

itis often important in chemical analysis to establish the purity of a sample,
such as in quality control applications in the pharmaceutical industry, where the
purity of a product is a primary consideration. Usually purity can be established
by subjecting the sample to an appropriate separation technique, such as
chromatography. Sometimes the chromatographic separation shows two or more
peaks, clearly indicating that the original sample was impure. However if only one
peak is observed, one does not know whether this peak is due to one or a number
of components. In the previous chapter the number of components present in
unresolved chromatographic separations was determined for ideal systems, "ideal"
referring to uniform (or homoscedastic) noise and linear detector response. This
chapter will discuss extensions to EPA to include experimental non-idealities,
specifically non-uniform (or heteroscedastic) noise and nonlinear detector
response. These nonidealities are especially probiematic in peak purity analysis

where they can give a false indication of additional components in a pure sample.

3.2 EPA in Nonideal Systems

Ideally, a one-component system should fit a one-component model (i.e.

39
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equation 2.1). However certain nonidea! experimental conditions can lead to a
false indication of additional components when the EPA algorithm is employed.
Modifications to EPA are needed so that these nonideal conditions can be
effectively incorporated into the one-component model. In order to illustrate
extensions of the EPA algorithm to nonideal conditions, data obtained from an
LC/DAD experiment wili be considered. Four nonideal conditions are important for
EPA when using absorbance spectra. These conditions are: 1) @ nonzero or
sloping baseline in the absorbance, 2) a scan-time effect in the measurement of
absorbance, 3) a nonlinear relationship between absorbance and concentration
and 4) heteroscedastic noise in the absorbance measurements. Each of these
conditions will be discussed below.

Baseline effects in EPA for one and two component systems have been
previously considered [41]. Baseline effects refer to nonzero or changing
absorbance measurements that are not due to the species of interest. With EPA,
the presence of a nonzero baseline will indicate that additional components are
present in the mixture. For drifting or slowly varying baselines, the problem is
normally reflected in the sequence of fit errors and can therefore be diagnosed.
Transient perturbations in the baseline are more problematic, however. For liquid
chromatographic-absorbance setups (i.e. high performance liquid chromatography-
diode array detection (HPLC/DAD)) baseline effects are mainly caused by
problems in the chromatographic anaiysis rather than from the detection system.

Baseline effects can often be eliminated by carefully planned chromatographic
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analysis. For the remaining discussion, a zero baseline will be assumed.

The scan-time effect arises from the fact that, although diode array
detectors can acquire spectra very quickly, they do not acquire absorbance
measurements at each wavelength simultaneously. For most diode array
detectors, the absorbance measurements are obtained sequentially until the entire
spectrum has been acquired. The total time to measure all the responses is
known as the scan time (typically 10-100 ms). Non-simultaneous measurements
can cause problems for data analysis when the sample composition in the cell is
not fixed, as in chromatography (i.e. the leading and falling edges of a one-
component peak will not produce the same spectra). Keller ef a/ [52] suggest that
the scan-time effect can be easily rectified by data pretreatment. Since scan-time
corrections have already been dealt with in the literature they will not be treated
here.

Nonlinearities that occur in absorbance detection are mainly due to apparent
deviations from Beer's law. Nonlinearities in Beer's law found in chemistry are
discussed in most undergraduate analytical chemistry texts [53,54] and a thorough
discussion is given by Ingle and Crouch [65]. There are a number of causes of
nonlinearities and these can be classed as chemical and instrumental effects. The
chemical nonlinearities arise from sources such as chemical equilibria and a
concentration dependence on molar absorptivity. Instrumental nonlinearities are
mainiy due to polychromatic radiation and stray light. Chemical nonlinearities are

difficult to compensate for but can be minimized by careful consideration of the
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system. Instrumental nonlinearities in absorbance spectra will be characterized in
this work and they will be incorporated into EPA. Incorporation of nonlinearities
is important because it allows one to model a one-component nonlinear system
with a one-compaonent model.

Heteroscedastic noise is noise whose magnitude depends in some fashion
on the magnitude of the measured variables. For absorbances measured with the
diode array detector in our laboratory, the measurement noise is generally found
to increase with the measured absorbance and also varies with the wavelength
used. Noise will therefore be largest where the absorbance is highest and the
source intensity is lowest. This is a problem since the innovaijon sequence will
estimate experimental noise, thereby producing a response which is not flat even
when the correct model is used. Keller et af [34,56,57] and others [58] have
suggested solutions to this problem based on normalization, but a more robust
approach has been employed here.

The problem of nonideal response characteristics arises from the fact that
we are no longe: able to model a one-component system with a one-component
model. Forthe discussion presented here, only extensions to the one-component
models will be discussed, since the main problem being addressed is peak purity
analysis, but in principle the methods could be extended to two or more
components. To illustrate the problems caused by nonideal responses, F igure 3.1
a - ¢ shows typical A? plots obtained for one-component systems under various

conditions, whereas Figure 3.1d represents a two-component system.



43

Figure 3.1 Effect of various experimental factors on A? plots. a) one-component,
linear response, homoscedastic noise, b) one-component, linear response,
heteroscedastic noise, ¢) one-component, nonlinear response, no noise, d) two-
component, linear response, no noise.
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Figures 3.1b and ¢ show typical plots for cases of heteroscedastic noise and
noniinearities respectively. Parts a and d of the figure are for the one- and two-
component systems with an ideal detector (linear response, homoscedastic noise).
The presence of heteros:.dastic noise (Figure 3.1b) will cause an increase in
model errors as the absorbance increases, thereby suggesting failure of the one-
component model. In chromatography, model errors will typically be greatest at
the center of the eluting peak, since this is the point of greatest absorbance. In
fact, the mocei is still valid, but the error structure suggests the presence of
additional components. In the case of nonlinearities (Figure 3.1c), systematic
deviations from the model will be observed as it tries to adjust to the curvature in
the A? plot. Typically this results in model errors that first occur in one direction
and then the other as the chromatographic signal rises and then falls. Since an
RMS error is computed, this results in a bimodal trace in the error sequence which
passes through a minimum near the peak maximum. Although both
heteroscedastic noise and nonlinearities lead to an increase in model errors, it is
clear by comparison with Figure 3.1d that the underlying causes are radically
different from the maodel errors introduced by the two-component system.
Ultimately one wants to develop models to distinguish between the one-component

(8,b and c) and two-component systems (d).

3.3 Nonlinearities

The discussion here will focus on instrumental nonlinearities, although the
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solution to this problem is general in nature and should also accommodate
moderate nonlinearities introduced by chemical effects as well. For the instrument
used in our laboratory, the dominant source of instrumental noniinearities is
polychromatic radiation. This results not from a failure of Beer's Law, but rather
a violation of the assumptions for Beer's Law. Beer's Law assumes that radiation
measured at a particular wavelength setting is monochromatic. DADs, like other
spectrometers, measure a range of wavelengths for each setting. Nonlinearities
are also observed due to stray light, but this is generally not a problem until
absorbances become very high. Understanding when and to what extent
nonlinearities occur will help to incorporate nonlinear effects into EPA.
Nonlinearities in Beer's Law due to polychromatic radiation in the DAD have
been well characterized by Dose and Guichon [59]. The extent to which the
nonlinearity is observed can be reasonably expiained by considering the bandpass
of the detector, the moiar absorptivity of the analyte and its local spectral first
derivative. Dose and Guichon derived approximate expressions for nonlinear
behaviour in DADs and these agreed well with experimental resuits. The

expression they derived is given below,

(3.1)

Ay = A - log (sinh(Ka1Aa/2)]

KaA J2

where K is the natural logarithm of 10, A, is the bandpass of the detector, A, is

the absorbance predicted by Beer's Law, A, is the observed absorbance and a,
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is the local spectral first derivative, given by,
oA
=94 _ cbe (3.2)
& ETY 1
where g, is,

deq (3.3)

612—“

oA
and g, is the molar absorptivity for the analyte at this wavelength. The first term
on the right in Equation 3.1 is the absorbance that would be expected if Beer's
Law were obeyed. The second term is the term responsible for the nonlinear
behaviour. Since the second term will always give a negative value, the
absorbance observed will always be less than that predicted by Beer's Law. The
effect of various values of ¢, and ¢, is summarized in Figure 3.2. A bandpass (A,)
of 4.4 nm was chosen, since this bandpass is typical for the DAD used in this
study, and the pathiength was taken to be 1 cm. Molar absorptivity (g ) values of
500 and 3000 cm™ M were chosen to represent low and high absorbing
wavelengths, respectively. The spectral first derivative (e,) values of 0.1, 200 and
300 cm™ M nm™ represent the range of derivatives commonliy found in uv/visible
spectra. Figure 3.2 illustrates the effect of nonlinearities as described by Dose and
Guichon. As the derivative increases, the absolute contribution is the same for the
two wavelenghts, but the relative contribution of the nonlinearity to the observed
absorbance is greater for the lower absorbing wavelength. In other words, for a
given concentration, the nonlinearity contributes more for a smaller €,- This

nonlinearity will be incorporated into EPA.
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Figure 3.2 Calibration curves predicted by the equation of Dose and Guichon
{eqn 3.1), at two wavelengths (g, = 500 M cm™ and ¢, = 3000 M cm™) for
various values of g, (0.1, 200 and 300 cm™).
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The effect of stray light on the linearity of calibration curves is somewhat
different from the effect of polychromatic radiation and is given by:

3.4
Asragy = - 109(T + i} + log(1 + rg= - log(T + r) (4

where T is the ideal transmittance, lueay IS the stray light, I, is intensity of the
reference, and r, is the contribution of stray light (lrayfl)) [85]. The influence of
stray light for conditions used in our laboratory (r = 2.7 x 10 [60]) for the cases
used in Figure 3.2 are shown in Figure 3.3. The figure shows that the influence
of stray light becomes more important at higher absorbance values and that the
curvature eventually reaches a limiting value which corresponds to the stray light
level. The model modifications proposed below have a much more difficult time
dealing with the flat regions of the curve than with the relatively smooth variation
introduced by polychromatic radiation. Nevertheless, it should still be able to
handle relatively moderate stray light contributions.

Three approaches could be taken to mode| nonlinearities: 1) transform the
nonlinear data into linear data, 2) break the nonlinear system into a concatenated
series of linear systems and 3) propose a model incorporating the nonlinear
characteristics of the responses. Of the three approaches the third approach was
favoured as being the most flexible. In this work, the ability of @ modified model
to handle nonlinearities in one-component systems was investigated.

A representative A” plot for the calibration curves shown in Figure 3.2 is
shown in Figure 3.1¢c. Curves of this type will be observed whenever the extent

of the nonlinearity at wavelength is greater than that at wavelength 2.
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If the situation is reversed, the curve will be concave downward rather than
upward. It is also possible (although less common) to observe S-shaped or
reverse S-shaped curves if both polychromatic radiation and stray light play a role.
It is clear that the model given by Equation 2.1 is inappropriate for nontinear
systems. Since the line in Figure 3.1¢ exhibits a relativity small degree of
Curvature and may be approximated by a low order polynomial, a reasonable

model for a one-component system might be:

AL =aA, +BA? (3.5)

where o and B are parameters to be estimated and A, and AP, were defined
previously. The one-component model as given in Equation 3.5 will be calted the
one-component noniinear model and the models given by Equations 2.1 and 2.2
will be referred to as the one- and two-component linear models, respectively.
This nonlinear model, when used in conjunction with the one- and two-com ponent
linear models, will be able to distinguish between a one-component nonlinear
system and a two-component linear system provided that nonlinearities are not
severe.

In the implementation of the nonlinear EPA algorithm, the prediction error
could no longer be reliably employed due to the poor extrapolation ability of
polynomial mocels. On the rising portion of the chromatographic peak, where the
absorbance is increasing, prediction of the next measurement meant extrapolation
of the quadratic model. To circumvent this problem, the prediction error was

replaced by the fit error (FE), defined simply as the residual for the most recent
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point. This did not significantly alter the sensitivity of the algorithm to impurities
and dramatically improved the performance of the quadratic model for the one-

component systems. The FE and not the PE will used throughout the rest of this

work.

3.4 Heteroscedasticity

As in the case for nonlinearities, understanding when and to what extent
heteroscedastic noise occurs will help to incorporate it into EPA. The HP 8452A
DAD used in this work should be representative of DADs used for HPLC detection
systems, and so was used for noise characterization. |If the effect of
heteroscedastic noise can be reduced or eliminated in this system, the appreach
should be applicable to other DADs. For the DAD used in this study the typical
measurement noise in absorbance as a function of absorbance is shown in Figure
3.4. The plot was obtained by measuring the intensity of the sample (1), reference
(I) and dark current (l,) at each wavelength. The intensity at each wavelength
could be varied by changing the concentration of an analyte, e.g. methyl orange
but in this case cross-polarizers were used. In addition the standard deviation of
the sample intensity (s,) at each waveierigth was obtained. The conversion of

intensity readings to absorbance (A) is carried out in the instrument using:

A =-Iog[1‘;:“] (3.8)

lr_d
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The noise characteristics in the intensity were propagated to absarbance readings

according to:

(3.7)
s

-

where s, designatss the standard deviation in A. Note that the equation does not
incorporate the variance of I, or |, since these values are constant throughout a
chromatographic run with a single-beam instrument. The trend of increasing
standard deviation in absorbance with increasing absorbance was observed for all
wavelengths in this study.

The one-component linear model will be used to develop a model
incorporating noise correction. The one-component linear model was given in

Equation 2.1 as

A; =aA,
In dealing with heteroscedastic noise, the uncertainty in both A, and A, must be
considered. The proper way to deal with hetercscedasticity and uncertainty in both
variables (e.g. A, and A,) is to perform weighted regression using a variance that
takes uncertainty in both A, and A, into account. This variance will be referred
to as effective variance and for the one-component linear model it is obtained by

propagating the error in the x-axis onto the y-axis to give

sZy = azsi‘ + si (3.8)

where a was defined previously, s%,, is the effective variance, s%,, and s%,, are
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varances in measuring A, and A, (obtained directly from the diode array or
through an appropriate noise model). This effective variance is used for weighted
regression as implemented with the Kalman filter. The problem with weighted
regression of this form is that an estimate of o is needed. In practice first
unweighted regression is performed to obtain an estimate of o, and then weighted
regression is performed using this estimate to obtain an updated . For this work
satisfactory results were obtained by using only the unweighted o and the
calculation of s_;? as shown in Equation 3.8. Although this approach may provide
the correct weighted regression parameters, it does not yet solve the problem of
heteroscedastic noise. In order to obtain a flat innovation sequence it is necessary
to weight the fit error by the effective variance (i.e. s ).

One way to compensate for increases in measurement errors is to scale the
fit error according to the variance expected for the measurements at the
wavelengths corresponding to the model in question. Thus for the one-component
linear model the scaled fit error (SFE) is given by:

SFE - EE - A (measured) - A,(fitted) (3.9)

7 . 2.2
o 52 + a8,

However unlike the RMS(FE), the RMS(SFE) does not have units which allow it
to be readily compared to the measurement error. Although such comparisons are

not essential, they are sometimes useful, so in some cases the SFE is rescaled

to the baseline noise level (s,):
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SFE = ' =% _ (3.10)
ysz +o5s)
The above equation is for the one-component linear model. For the one-
component nonlinear model it is necessary to modify the scaled fit error to reflect
the propagation of error by the quadratic model. The equation for the quadratin

model is,

SFE = F'E*sb (311)
VS + (o, +2B,A )%

These modifications allow a direct comparison of modified and unmodified

algorithms.

3.5 Experimental

All absorbance measurements were made on an HP 8452A diode array
spectrophotometer (Hewlett-Packard, Palo Alto, CA) with a 30 pL flow cell (Hellma
Cells, Jamaica, NY). In addition all solutions were transported through the flow
cell using a peristaltic pump (Ismatec MS Reglo, Cole Palmer, Chicago, IL).
Calculations were carried out on a 33 MHz 80486 based computer using Matlab
4.0 (Mathworks, Natwick, MA) for Windows (Microsoft Redmond, WA).

Several systems were studied to assess nonidealities. For some
experiments, a photographic step tablet (#3, Eastman Kodak, Rochester, NY) was

used to reduce the source intensity. This strip was linearly graduated with 21
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neutral density filters ranging from approximately 0.05 to 3.05 AU. In other
experiments a set of cross-polarizers (Melles Griot, Irvine, CA) was used to vary
the intensity. Three sets of solutions were prepared using methyl orange in 0.1 M
HCI, PrCl, in 0.1 M HC! and p-xylene in methanol.

In some experiments a chromatographic peak was emulated using a
stopped-flow approach, this removed the effects of scan-time. Two computer
controiled pumps were used to adjust the ratio of solvent to analyte which were
mixed. The ratio was controlled in such a way to obtain the desired concentration
profile, with the flow being stopped between measurements. This allowed close

control over the shape of the peak and resuited in more reiiable data.

3.6 Results and Discussion

One of the difficulties in studying the effects of nonideal detectors on peak
purity analysis in chromatography is that the various instrumental effects are
difficult to separate from one another. For example, the effects of heteroscedastic
noise as well as nonlinearities due to polychromatic radiation and stray light will
become more pronounced as absorbance increases. Scan time effects are a
further complication present at al| signal levels. In order to separate these effects
from one another, it is convenient to incorporate them into a simulation program.
To ensure a realistic simulation, it was modeled on the diode array spectrometer
used in this work. This required that the instrument be well characterized. More

exhaustive studies of photodiode array detectors have appeared in the literature
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[61], but the results presented here permit a realistic replication of experimental
results and exceed the capabilities of the simulation methods used in this work.

The 8452A diode array spectrometer was designed more as a general
purpose spectrometer than as a chromatography detector. Although, it can be
used for this purpose, design considerations place a lower limit of about 30 ML on
the size of the flow cell. Nevertheless, it is expected that many of the features will
be similar to those of a DAD designed specifically for chromatography. The 8452A
DAD has a deuterium light source that is normally used for both uv and visible
regions of the spectrum. The detection elements are 316 readable photodiodes
read at 2 nm intervals over the range 190 to 820 nm. Each of these photodicdes
has an independent gain setting that can be adjusted over a linear range of
sixteen different values. The amplified intensity values recorded at each of the
diodes are sampled sequéntially by an A/D convertor. The amplified signals
appear to have a fixed offset added to them prior to conversion. A cycle time of
100 ms is required to read all the diodes. For a typical LC/DAD, this value is
reduced to 10 ms to minimize scan time effects.

The first step in characterizing the detector was to examine the linearity of
the response in the absence of physical or chemical effects. To do this a
calibrated step tablet was used. A reference scan was made using a step tablet
index of § and absorbance measurements were made at other index numbers.
One reason for making the reference scan at step index of five was that this index

approximated the light levels for the flow cell used in this work. The plot of
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absorbance vs the step tablet index exhibited excellent linearity up to at least 3
absorbance units, so this source of nonlinearity was not considered to be important
and was ignored in developing a model for the diode array response.

Other sources of nonlinearity in making measurements on solutions are
polychromatic radiation and stray light. Apparent deviations from Beer's Law due
to polychromatic radiation depend on the absorbance, the bandpass of the
spectrometer and the slope of the spectrum in the wavelength region of the
measurement. This is illustrated in Figure 3.5, which plots measured absorbances
vs those predicted on the basis of Beer's Law for various concentrations of p-
xylene at several wavelengths [60]. Note that the greatest departure from linearity
occurs for those wavelengths at which the spectrum is changing most rapidly.
Stray light will also contribute to noniinearity, but normally this only plays a role at
higher absorbance values. This contribution is difficult to quantify and will vary
with the solution being measured. In order to obtain an indication of the
contributions from polychromatic radiation and stray light, data for p-xylene at six
wavelengths (242, 250, 264, 270, 276 and 278 nm) were fit to a theoretical model
based on a first-order Taylor series expansion described by Dose and Guichon
[59] (see Equation 3.1). The fit of the experimental data at 278 is shown in Figure
3.6 (from [G0]) and exhibits excellent agreement with the model. Fit parameters
from the six wavelengths gave A=4.4+02nmandr=27 +1.1 x 10°. The
spectral bandwidth determined was fairly repeatable at each of the wavelengths

and is broader than the 2 nm spacing of the diodes, as might be expected. The
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stray light exhibited a much greater degree of variability but was generally between
0.1 and 1 % in this region of the spectrum. It should be noted that measures of
stray light are in general quite variable, depending on the methods used for their
estimation. The numerical values obtained here are taken to be typical for the
purposes of simulation.

The final step in the characterization of the DAD was an examination of the
heteroscedasticity in the noise. This study was complicated by the fact that the
gain for each diode is normally set automatically and independently. To
characterize the noise, all diodes were forced to the lowest gain setting and the
standard deviation in the intensity of the source was recorded at all wavelengths.
This experiment was repeated for several levels of source intensity, which was
varied through the use of cross-polarizers. The results are shown in Figure 3.7.
It was found that the variation of noise with intensity was essentially independent
of wavelength and moreover resulted in a smooth curve. The conversion of
intensity readings to absorbance is carried out by the diode array using equation
3.6. The noise characteristics in the intensity were propagated to absorbance
readings according to equation 3.7. This model worked well for describing the
noise in the diode array, but it was usually necessary to scale the resuits to
account for variations in the absolute level of the noise over time (i.e. the form of
Equation 3.7 is correct, but the relative magnitude of s, can vary somewhat over
time). For this work, it is the form of the model rather than the actual magnitude

of the eirors that is important. Figure 3.4 showed a comparison of measured
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Figure 3.7 Noise (standard deviation) characterisitics of the DAD. Points
represent measurements made at all wavelengths in the visible region. The solid
line is a second-order polynomial fit to the data.
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uncertainties in absorbance and uncertainties predicted by a propagation of errors
using the quadratic model (Figure 3.7) for heteroscedastic noise. For this plot the
absorbance uncertainties were measured for varying concentrations of methy|
orange and the errors predicted by Equation 3.7 were scaled by a factor of 1.2.
Agreement between the two sets of results is generally very good and supports the
form of the model.

To implement these results in a simulation, an intensity scan was recorded
with the shutter closed for all wavelengths, and the results were stored in a file.
These values, designated [, represent a measure of the dark current plus the
constant offset employed by the spectrometer. Then, intensity scans were
recorded for a variety of reference conditions (e.g. flow ceil with distilled water).
Both the dark current and reference scans were scaled to the lowest gain of the
16 possible settings. The actual gain for any diode depends on the source
intensity at the corresponding wavelength and is important in the reduction of
digitization errors, but is not important in the simulation, which is not limited in this
regard. To determine I, for the given absorbance, Equation 3.6 was used.
Uncertainties for i, were estimated using the fit to Figure 3.7, and errors were
propagated using Equation 3.7. To adjust for nonlinearities, the noise-free spectra
produced by the simulation were used along with the estimated values of spectral
bandpass and stray light, and the appropriate equations. Spectral derivatives were
caiculated using a five-point quadratic (Savitzky-Golay [62]) filter. The noise is

added after the nonlinearities have been introduced.
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The EPA algorithm was first applied to data generated from the DAD

simulator in order to independently evaluate the effectiveness of the
heteroscedastic noise and the noniinear corrections. As a model for this
simulation, the spectrum of praseodymium chioride (PrCl;) was used. This
spectrum, shown in Figure 3.8, shows the sharp features characteristic of certain
rare earth metal complexes. [t was hoped that these features would exaggerate
some of the nonlinearities in the response.

To examine the effect of the heteroscedastic noise corrections, nonlinear
effects were excluded in the generation of simulated results, and Gaussian noise
was added according to the model developed in the previous section. A typical
reference scan for the flow cell was used as the reference spectrum. A Gaussian
concentration profile (¢ = 10 s, centered at 50 s, sampied at 1 s intervals for
100 s) was assumed. To produce a significant amount of heteroscedasticity, the
concentration was adjusted to give a maximum absorbance of 2 AU. Figure 3.9a
shows the RMS of the fit error as a function of time for the linear, one-component
models with and without the noise correction. The model with noise correction
used variance estimates calculated with the DAD noise model. The one-
component model without noise correction shows a clear systematic variation in
the fit error as the peak is eluting. This would normally signal the presence of
additional components in the elution profile, but in this case is merely associated
with the heteroscedastic noise. The noise-corrected one-component model, on the

other hand, shows no deviation form the baseline noise level, correctly indicating



65

0.25 1 T T l

0.20 + « wavelengths used

0.15 | .

Absorbance

0.05 - -

0.00 & .

! {

400 450 500 550 600 650

Wavelength (nm)

Figure 3.8 Spectrum of PrCl, indicating the wavelengths used for the simulation.
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Figure 3.9 a) Effect of heteroscedastic noise on EPA maodels without {solid line)
and with noise correction (dashed line) and b) the effect of nonlinear detector

response on iinear (solid line) and nonlinear (dashed line) EPA models for the
simulated data.
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that there is only one component present.

A similar study was used to investigate the effect of the correction for
nonlinearities. In this case, homoscedastic noise at a level of 0.04% of the
maximum absorbance (0.5 AU) was assumed. Nonlinearities due to the effect of
polychromatic radiation were incorporated using a bandpass of 4.4 nm. The effect
of the nonlinearity on the viie-component fit error is shown in Figure 3.9b. Again,
the nonideal behaviour produces systematic deviations from the baseline with the
traditional [inear model. One important difference from the heteroscedastic noise
case, however, is that the trace of the fit arrors is bimodal. This is common when
noniinearities are important and the minimum corresponds to the point where the
data cross the model as they return to the baseline. It will be noted that the
noniinear one-component model (quadratic in this case) provides a flat trace for
the fit error, correctly indicating the presence of only one component.

When linear two-component models are applied to the above situations,
different effects are observed. When heteroscedastic noise is the dominant
artifact, the linear two-component model shows little difference from the linear one-
component model, as would be expected since the noise variations are random.
In practice, this similarity can indicate that heteroscedastic noise may be a
problem, but does not preclude the existence of additional components. In
contrast, if nonlinearities are the dominant cause of variation, a two-component
model will often dramatically flatten the fit error of its one-component counterpart,

but this depends to some extent on the nature of the data. This would Clearly give
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a false indication of a second component in the absence of a nonlinear one-
component model.

Although it has been shown that the one-component nonlinear model will
decrease the likelihood of a faise positive indication of a second compenent, it
remains to be demonstrated that it does not increase the likelihood of a false
negative in the case of a two-component mixture. Figure 3.10 is an illustration of
this case. In this example, overlapped elution profiles (gaussian, ¢ =10 s, At = 10
s, R, = 0.25) with a 10:1 concentration ratio were simulated. The spectral profiles
(gaussian, o = 10 nm, AL = 10 nm) were set at equal heights and adjusted to give
an overall absorbance maximum of 0.5 AU. The noice level was set at 0.04% of
the maximum (homoscedastic) and a linear response was assumed. |t is clear
from Figure 3.10 that both the linear and nonlinear one-component models fail
when there are two components present, whereas the two-com ponent model gives
a flat trace for the fit error, as expected. Although there are an infinite number of
ways to vary the parameters for a two-component system, this example is
representative. Thus, the use of one-component nonlinear models does not
significantly diminish the ability of the algorithm to detect an impurity.

The corrections for heteroscedastic noise and nonlinearity can be combined
into a single model as already noted. An experimental example is given below
that deals with this case. However in most cases one of these two effects will
dominate depending on the system under study.

in order to validate the results obtained from the simulations, several one



69

0.6 , , : :

—— Linear

05 LT Nonlinear

.................... 2 Component

RMS of Fit Error (x109)

0 20 40 60 80 100

Figure 3.10 Effect of a two-component mixture on finear one-component
nonlinear one-component, and linear two-component EPA models.



70

component elution profiles were investigated using the stopped-flow-injection
apparatus described in the section 3.5. One difficulty was isolating the effects of
heteroscedastic noise and nonlinear response from one another so that each of
the modified aigorithms could be tested independently. Both effects occur at high
absorbances, so it was necessary to modify measurement conditions somewhat
to enhance individual contributions.

To isolate the effects of heteroscedastic noise, the dye methyl orange was
used as the analyte. The chromophore of this dye has relatively broad spectral
features and it was felt that this would reduce nonlinearities arising from
polychromatic radiation. It was also necessary to place a neutral density filter (ca.
1.3 AU) in the light path to amplify the noise level. Figure 3.11a shows the effects
of heteroscedastic noise on the modified and unmodified one-component models.
For this experiment, wavelengths between 420 and 570 nm were used with steps
of & nm. The stopped-flow apparatus was used to generate a Gaussian peak with
a width (o) of 10 s centered at 30 s, with an effective sampling interval of 1 s. The
effective sampling period was 70 s and the maximum absorbance was 1.4 AU at
504 nm. The noise mode! described earlier for the diode array was employed to
estimate errors in absorbance in this case. It is clear from the figure that the use
of the unmodified EPA model would lead to the false conclusion that there is a
second component present. The trace of the RMS of the fit error for the modified
model is flat, however, indicating that such a conclusion is erroneous. These

experimental results also bear a striking similarity to the simulated results
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described above, validating the noise model for the DAD.

Experimental data in which the nonlinear response was accentuated were
obtained using PrCl, as the chromophore. As noted previously, the sharp spectral
features of these solutions exacerbate the effects of the polychromatic source,
even at relatively low absorbances. Figure 3.11b shows the EPA traces obtained
using the linear and nonlinear (second order) one-component models. For this
study, wavelengths between 436 and 486 nm were used with steps of 2 nm. No
neutral density filter was employed and the maximum absorbance of the solution
(3 wt% PrCl,) was 0.75 AU at 444 nm, which is below the level at which
heteroscedastic noise starts to become significant. The typical bimodal deviation
of the trace for the linear one-component model is evident, but missing for the
modified model, indicating that at this level the correction for polychromatic
radiation is successful.

To test the incorporation of both correction factors into the one-component
model, a solution which was 8 wi% PrCl; was used (maximum
absorbance = 1.77 AU). Although the trace of the fit error is much flatter for the
modified mode! in Figure 3.12, it is still higher than one would expect for a fully
compensating model. it is postulated that the higher absorbance levels necessary
to enhance the heteroscedastic noise in this case also bring about larger
contributions from stray light and reduce the effectiveness of the nonlinear
correction. The high concentration of the chromophore also introduce some

refractive index effects. Even the modified model will approach its limits under
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such demanding spectroscopic conditions.

3.7 Conclusions

The analysis of muitivariate data sets such as spectrochromatograms
carries the risk of extracting incorrect information when the models used are
inappropriate. As pointed out by Sanchez et al. [63] the most important barriers
to reliabie peak purity detection using multivariate data sets are the problems of
nonlinear detector response and heteroscedastic noise. This study outlined when
and why these effects occur and showed how to effectively correct for each. The
problem of heteroscedastic noise has been treated to a limited degree in the
literature. The algorithm presented here is the first treatment of correction for
nonlinear detector response. The methodology could easily be adapted to other
systems. The modified EPA algorithm is a straight-forward, robust solution toc peak

purity detection.
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Disordered Sets 1: Conductivity Prediction

4.1 From Order to Disorder

The objective of chemometrics when applied to multivariate data sets is to
find a model that adequately describes the systematic variations in the data. In
Chapters 2 and 3, the mode! sought was one based on the spectra and elution
profiles of the constituent components of the mixtures. It was demonstrated that
this process can be aided by the fact that the data sets can be considered to be
ordered. Because the rank of the data changes systematically with time or some
other ordering variable, the estimation of overall rank and the identification of pure
component regions were simplified. As a consequence, the underlying model can
be estimated more reliably. In many analytical applications, however, the data are
disordered, showing no systematic changes in rank. This may be an inherent
property of the data set (i.e. all subsets have a rank equal to the overall rank) or
may be due to the fact that the ordering variable is unknown or not measured. For
the latter case, it will be shown in Chapter 6 that the underlying order may be
established by a suitable algorithm. in the former case, a purely empirical
approach to model development may be warranted. In this chapter, several
empirical modelling methods are applied to a disordered data set of practical

interest. in Chapter 5, a method for improving such empirical models through term

75
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selection is investigated.

The problem under consideration is the estimation of conductivity in non-
brine water samples from the concentrations of major ions and other analytical
measurements. This problem is of interest for several reasons. First, conductivity
prediction is one way of assuring quality control in the analysis of a large number
of water samples. In routine analysis, errors can occur as the result of erroneous
measurements or when the results are compiled. Since the conductivity depends
on the concentration of the ionic species in the solution, gross errors in the
determination of these ions can be detected if the measured conductivity is
compared with that predicted by some model. The present standard method for
quality control in this manner is based on a semi-empirical model developed by
Rossum in 1875 [64]. This model has a dubious theoretical foundation and was
only tested on one data set with relatively low conductivities (i.e. <1400 uS cm™).
Thus, a second reason for carrying out this study was to evaluate the Rossum
model. A third reason is that the estimation of conductivity in multi-electrolyte
systems is a problem of general interest (e.g. in capillary electrophoresis) and is
virtually intractable from a purely theoretical standpoint. Fihal!y, as will be shown,
this problem presents a formidable challenge to empirical modelling methods since
semi-empirical approaches work remarkably well. In this chapter, modifications to
the Rossum model and the use of a number of chemometric modelling techniques
are used to help propose a_better model for predicting conductivity. However, in

order to place these techniques in a proper framework, a brief historical
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perspective on conductivity prediction will be given.

4.2 Background
4.2.1 Theoretical and Semi-Empirical Modelling Techniques

In the late 1800's, Kohlrausch experimentally observed that for many diiute
aqueous solutions of electrolytes their equivalent molar conductances (A) varied
as the square root of their equivalent concentrations. (In this work, "conductance"
will generally be used to refer to the molar quantity, whereas "conductivity" will be
used for the extensive property.}) He also proposed the Kohlrausch Law of the
independent migration of ions for conductance at infinite dilution (A°) [65,66]. The
law states that the conductance of an electroiyte at infinite dilution is the sum of
contributions from each ion present. For a single electrolyte, the conductance at
infinite dilution is the sum of the limiting equivalent conductances for the anion (2°)

and cation (A°,).

4.1
A% =22 +3° 1)

In 1923 Debye and Hiickel described the theoretical basis for the
concentration dependence of conductivity. Later, in 1926, Onsager madified their
model and it can summarized by the following formula.

4.2
A = A% - (aA% B)C2 42)

In this equation, C is the equivalent concentration of the electrolyte and o and B

are theoretically derived constants that depend on the temperature, dielectric
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constant, viscosity and other physical constants. Equations for a and B are
presented in slightly different forms by several authors [64-66]. A form similar to
that used by Rossum will be employed here. The constants o and B are
associated with relaxation and electrophoretic effects respectively. Both of these
effects decrease the equivalent conductance of an electrolyte at high
concentrations [66,67].

Although theoretical equations exist for predicting conductivity for multi-
electrolyte cases [68] they are quite complex. Rossum suggested that the
conductivity (G) of a water sample could be treated by considering the multi-
electrolyte solution as a binary electrolyte in which the ionic concentrations and

charges were represented as average or effective values., The Rossum Model

(RM) is
_ (7] o _ WAD * + !
G =G’ + G [7@?77—) Ka] (2. +z)c' P# (4.3)
where
w-zz-29 o- ZZA°
1+/Q (Z, + Z) (ZA) + Z2)
_ 24x(e DATY¥ K, - 105gF2
= 6w (cDAT)

Rossum used values of K, = 1152 mM *? and K, = 0.668 pS cm™ mM>? at

25 °C. The ronductivity (G) calculated will be in units of uS cm™. Additional
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parameters as deiined by Rossum are as follows:

G’ =Y ¢’
x G’ =Y ca’
2
> . cz? 2 . Y ¢ (.4)

A:,=li+3.£ c/=(zc++zc-)
2

The summations in the above expressions are over cations and anions that are
included in the model. For a summary of symbois and their units see Table 4.1.
The Rossum Model works reasonably well for solutions of relatively low
conductivity (<1400 pS cm™) and has been recommended as a standard method
since 1989 [69]. However, Rossum did not provide a theoretical basis for his
definitions of effective concentration and charge, and only tested the model on a
single set. Furthermore at higher conductivities, systematic deviations in the
model become apparent.

Two modifications to the Rossum Model were considered in this work. The
first deait with the definition of effective charge and the second was the addition
of an another term to the model. The alternative charge definition considered was
based on a weighted average of individual charges. This new effective charge

definition was
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Table 4.1 List of symbols and units related to conductivity measurements.

G

Cl

D

G°+, Go_

A'oo- 3 A'o.

AL

A!

C., C.

Equivalent concentration of an ion (mM).

Equivalert concentration of a salt (defined by Rossum). (mM).
Dielectric constant of a solution.

Proton charge (C)

Vacuum permittivity (J'C?*m™)

Faraday's constant (C mol™)

Solution cong:ictivity (US cm™)

lonic conductivities in a many electrolyte solution (defined by
Rossum).(uS cm™)

Solution viscosity (P)
Limiting ionic equivaient conductance (S cm? mol™)

Limiting ionic equivalent conductance (defined by Rossum). (S cm?
mol™)

Equivalent conductance of a solution (defined by Rossum). (S cm’
mol™)

Gas constant ( J mol'K™)
lonic charge (no units)

Effective charge in muitiple electrolyte solution (defined by Rossum).
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z - Y ez,
Ye. (4.5)
and likewise for Z. Rossum's only justification for using the previous definition
(see Equation 4.4) was that it worked better. This assumption regarding the
definition of charge was tested.
Extensions to Equiation 4.2 were suggested by Shedlovsky in 1932 [70].
Shediovsky observed, upon rearrangement of Equation 4.2 to,
Ao - (A+BCA) (4.6)
(1-«C'?)
that a plot of the right hand side of Equation 4.6 versus C was not constant but
varied linearly. He suggested that a term in C be added to equation 4.2.
Shedlovsky justified this modified equation on the basis that the equation
developed by Debye, Hiickel and Onsager was only valid as a limiting expression.

Thus, Equation 4.6 now becomes,

po - (A+BCR) o (4.7)
(1-aC"?)

where B is a fitted parameter and C, A°, o and 3 were previously defined. Interms

of A, rearrangement of Equation 4.7 gives,

(4.8)
A = A°C - (ah%+B)C¥ + BC(1-¢C'?)

Using Rossum's approximation for many electrolytes,
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G = Ggy + BC'(1-v/C) (4.9)
where Gg,, is the conductivity accounted for by the Rossum Model and y is given
by
(4.10)

_ WAYZ +Z )R
Ki

4.2.2.1 Empirical Modelling Techniques

Various chemometric techniques were used in this work an attempt to
improve the prediction abilities of conductivity modeis. These techniques include
multiple linear regression (MLR), principal component regression (PCR), partiai
least squares (PLS), continuum regression (CR) and artificial neural networks
(ANN). Each of these techniques are discussed briefly below and references are
given for more thorough treatments. However, a brief introduction to calibration
and prediction will be presented.

In any calibration problem, one is normally trying to determine the model
that best reflects the physical features of the system of interest. This invoives both
the selection of the form of the model and the estimation of parameters associated
with it. To do this one usually builds a modeil based on one data set, called the
calibration set. The model is generally built by minimizing the standard error of
calibration (SEC), also known as the standard error of the estimate, and in this

case is given by,
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SEC=J§(M (4.11)

= \(My - K

where G, is the measured conductivity, G” is the conductivity predicted by the trial
model, m_,, is the number of calibration samples in the calibration set, and k is the
number of parameters in the model. Unfortunately, a small SEC does not
guarantee a good mode! since overfitting may be a problem. Because of this,
validation of the model is usually carried out using an independent prediction data
set, which measures the ability of the model to generalize. The measure of
prediction ability chosen for this work is the standard error of predicticn (SEP).

The SEP is calculated as,

(4.12)

SEP=J %"(L‘if"ﬁ

1 Morag

where G, and GP have the same definitions, and M, 1S the number of prediction
samples. Normally the best calibration model is assumed to be the model the that
provides the best prediction ability, i.e. the lowest SEP.

In many instances data are pretreated before calibration is performed. The
data pretreatment performed in this work is known as autoscaling, a two step
process in which, for each variable, the data are adjusted so that they have a zero
mean and a unit standard deviation. Mean-centering eliminates the need for

calculating an intercept, while adjusting the data to a standard deviation of one
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brings all variables within the same range, thus eliminating the excessive influence
of variables with inherently large magnitudes. In this work autoscaling was used

for MLR, PCR, PLS and CR.

4.2.2.2 Multiple Linear Regression
MLR [3] is probably the most familiar of the modelling techniques presently
considered. In this work the equivalent concentrations of the ions were used to

predict the conductivity of the sample. The MLR model applied can be expressed

for the ith samp!e with n ions as

7 4.
G = 3. (6 (4.13)

The b's are the regression coefficients that are to be determined by least squares.
The above equation can be expressed more compactly in matrix form for m
samples as,

(4.14)
G=0Cb

where G is a vector of dimensions m x 1 of measured conductivities, € is a matrix
of dimensions m x n of equivalent concentrations and b is a vector of dimensions
nx1 of regression coefficients. Solution of the regression coefficients in
Equation 4.14 is given as:

(4.15)
b=(CTC)'c"G

where Tr indicates the transpose of a matrix.
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4.2.2.3 Principal Component Regression

While MLR is an effective modelling strategy for many situations, it suffers
from two main disadvantages. First, for a reliable modef it is generaliy required
that the number of samples is much greater than the number of parameters to be
estimated. Second, models are generally sensitive to collinearities within the
modelling variables which can lead to unstable solutions. PCR [2] reduces these
problems by using principal component analysis (PCA, discussed in Chapter 2) to
compress the variability of the original varizbles in C into a smaller set of new
variables called latent variables. PCA decomposes the origi'1al data matrix into the

product of a scores matrix, T, and a loadings matrix, L,

C-=TL | (4.16)

The columns of the scores matrix represent the latent variables that are used for
PCR. The total number of latent variables wiil be equal to the number of originai
variables, n, but by using only the first p latent variables (columns of T), a data
compression effect is achieved which reduces the number of variables used.
These variables will also account for the greatest variability in the original data
matrix and model any collinearity that exists. This data compression also has the
effect of removing some of the random error from the data matrix (C) and tends
to lead lo better predictive ability than MLR. The PCR model is developed by

regressing the PCA scores according to the model!,
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P
G =315
=
4.17
G-TB *11

where T, is the reduced set of latent variables. The swviution is analogous to
eqn. 4.14. In PCR, the number of latent variables to be used in the development

of the model, p, also needs to be considered.

4.2.2.4 Partial Least Squares

One difficulty with PCR is that, in determining the latent variables, only the
variance in the concentration matrix, C, is considered. The correlation of these
variables with the desired property (G) is not considered until the regression step,
and at that point latent variables containing important information in this regard
may already have been dropped. PLS [71] proce:ds in a manner similar to PCR,
but the latent variables are modified in such a way that they also consider
correlation of the PCA eigenvectors with the property to be predicted. in this way,
the latent variabies are expacted to have better predictive properties, and variance
in C which is not correlated with G has a diminished influence. PLS is particularly
effective when unrelated sources of variance (e.g. interferences) are presentin the
data. Except for the manner in which latent variables are calculated, the
procedure for PLS regression is analogous to that described for PCA [72] and will

not be included here. As with PCR, the number of latent variables used, p, is an
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important parameter. In both cases, results are the same as MLR when p=n.

4.2.2.5 Continuum Regression

MLR, PCR, and PLS are all subsets of a more general approach to
regression which has been called continuum regression (CR). This method,
described by Lorber et al. [72], rationalizes the difference among the above-
mentioned methods in terms of the extent to which correlations of the variables
with the desired quantity are balanced against correlations among the variables
themselves. At one end of the spectrum, MLR does not consider correlations
among the predictor variables at all. At the other end, PCR considers only the
relationship among the predictors variables generating the latent variables. PLS
exists somewhere in between, considering both the inner and outer relationships.
It has been noted that there are, in reality, a continuum of methods between MLR
and PCR, and that these are characterized by a so-called power term, q, that
describes the extent to which correlations with the desired property are considered
in generating the latent variables. MLR corresponds to ¢ = 0, PLS to ¢ = 1, and
PCR to g =  (or in practice some large value). A continuum of solutions exists
over the range of g, although in practice all solutions become equivalent after, say,
q =10.

CR can be regarded as a method which unifies the regression methods of
this type. The best solution will depend on the problem and is reflected in the

optimum choice of two variables: p, the number of latent variables, and g, the
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power factor. The optimum model can be determined from a continuum regression
surface in which the prediction error (SEP) is plotted as a function of p and q. The

optimum model should correspond to the minimum in this surface.

4.2.2.6 Neural Networks

Neural network modelling is a technique based on how the brain is believed
to process information. Biological neural networks are very complex and the
computer simulations of these networks are known as artificial neural networks
(ANNSs). ANNs were first developed in the 1960's, but did not become widely used
until the early 1980's through the efforts of Rumelhart and McClelland [73]. A
recent tutorial article by Wythoff [74] provides a good discussion on neural
networks in analytical chemistry. Although ANNs will be described briefly below,
a thorough discussion on the neural networks applied here is available elsewhere
[75-78]).

Biological neural activities are based on a large number of neurons. These
neurons process a number of inputs and produce an output that may combine with
the outputs of other neurons and enter another neuron. A schematic diagram of
an ANN similar to the one used in this work is shown in Figure 4.1. The ANN
consists of a number of input neurons (equal to the number of independent
variables), a number of output neurons (equal to the number of dependent
variables), and a number of intermediate neurons (whose number depends on the

complexity of the problem). These /ayers are known as the input, output, and
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Figure 4.1 Neural Network topology like the one used in this work.
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hidden layers respectively. The circles in Figure 4.1 represent the nodes, or
processing elements of the ANN. It should be noted that the nodes un the input
layer are simply convenient for most diagrams and do not do any processing
(except perhaps a linear transformation for scaling purposes). A wide variety of
geometries are possible based on this simple framework, the most common being
the addition of more hidden layers.

The most common processing performed by nodes in the hidden and output
layer involves a two-step calculation. First, a weighted sum, y,, of the inputs i the

node is calculated. For node i, this corresponds to,

n

n=jz1im,x,,

where w; is the weight corresponding to input j of node i, x, is input j to node i, and

(4.18)

the summation is over the number of input nodes. The output of the node, o, is
given by a sigmoidal activation function,
(4.19)

o1 _
1+a™
which has a range of 0 to 1. Other activation functions can also be used, and a
bias term is sometimes included in the exponent. In practice, it is usually easier
to account for this bias by including an input fixed at unity for each layer.

The parameters associated with the scaling and transfer function are

optimized for the outputs being predicted. The implementation of neural networks

consists of a two step process involving training and validation. The training step
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consists of presenting to the neural network a number of samples for which both
the independent and dependent variables are known so that the operational
parameters associated with the network can be optimized. These parameters are
determined by a learning or fitting algorithm that makes adjustments until the error
between the actual and predicted values is deemed acceptable. The so-called
back-propagation algorithm is most widely used for training. The validation step
involves presenting a different set of samples to the trained neural network and

calculating the standard error of prediction (e.g. SEP) to evaluate performance.

4.3 Experimental
4.3.1 Chemical Analysis

Fenwick Laboratories of Halifax, Nova Scotia (nAow MDS. Environmental
Services) analyzed all of the water samples reported in this work. The
experimental procedures used in their analysis are based on standard methods of
analysis {69] and will only be summarized here. Metallic ions (Na, K, Ca, Mg, Fe,
Mn, Cu, Zn) were determined by flame atomic absorption on a Varian SpectrAA
40 spectrometer (Varian Canada, Geogretown, ON). Colorimetric methods were
used for chioride, ammonia, nitrate + nitrite, orthophosphate, reactive silica, and
alkalinity. These were carried out on an automated COBAS FARA centrifugal
analyzer (Roche Diagnostics, Mississauga, ON). Chloride was determined using
mercuric thiocyanate in the presence of Fe?*. The method for ammonia utilized the

formation of the biue indophenol by reaction with hypochiorite and alkaline phenol
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{(phenate method). Nitrate was reduced with hydrazine sulfate and total nitrate
pPlus nitrite was then determined by reaction with sulphanilamide and N-(1-
naphthyl)ethylenediamine. Orthophosphate and reactive silica were determined
by reaction with ammonium molybdate and ascorbic acid {heteroploy blue method).
Selectivity for phosphate was achieved kinetically, while, for silica, the phosphate
interference was removed through the addition of oxalic acid. Alkalinity, which is
the sum of all titratable bases [57], was measured colorimetrically using an
automated methyl orange procedure. In a typical water sample, alkalinity depends
predominately on the concentration of carbonate, bicarbonate, and hydroxide ions,
so the first two can be estimated indiractly from the pH and alkalinity as was done
here. Sulfate was determined by a turbidimetric method on a nephelometer
(Turner Designs Model 40, Mountain View, CA) using BaCl, to precipitate BaSO,.
Tot;i organic carbon (TOC) was determined using the persuifate ultraviolet
oxidation method performed on a Technicon autoanalyzer (Technicon, Tarrytown,
NY) with a phenolphthaiein indicator. A Radiometer GK2401C glass electrode
(Radiometer America, Westlake, OH) was used to measure pH and a flow-through
conductance cell (Radiometer Model CDC314) was used to measure conductivity,
which was corrected to 25°C. A summary of the parameters measured is given

in Table 4.2.

4.3.2 Computational Aspects

The computer analysis was conducted on a 486-based computer operating



Table 4.2 Statistical summary of water quality parameters.
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Measured Quantities

Parameter Units Mean | Min. Max. Std. | Med- | 25" & 75"
Value | Value | Dev. | ian percentile
Sodium mM 2.09 0.01 71.7 6.17 | 0.66 0.24 1.71
Potassium mM 036 |000 | 225 1.55 | 0.06 0.03 0.18
Calcium mM 217 | 0.00 17.5 242 | 166 | 061274
Magnesium mM 0.70 0.00 8.52 0.86 | 0.55 0.15 0.93
Sulfate mM 0.82 0.01 16.2 1.97 | 0.23 0.09 0.52
Chioride mM 1.94 0.00 80.3 7.42 | 062 0.20 1.43
Nitrate+Nitrite mM 0.39 0.00 7.43 1.18 | 0.01 0.00 0.05
Ammonia mM 0.20 0.00 14.6 1.03 | 0.00 0.00 0.01
Orthophosphate mM 0.01 0.00 1.19 0.08 | 0.00 0.00 0.00
Reactive Silica mM 0.37 0.00 1.80 025 | 0.36 0.18 0.49
Iron mM 0.05 0.00 1.42 0.21 | 0.00 0.00 0.01
Manganese mM 0.01 0.00 0.28 0.02 | 0.00 0.00 0.00
Copper mM 0.00 0.00 0.02 0.00 | 0.00 0.00 0.00
Zinc mM 0.01 0.00 | 249 0.12 | 0.00 | 0.000.00
pH 7.54 43 12.0 0.7 7.6 7280
Alkalinity mg/L CaCO, | 214 0.00 | 2500 228 | 200 70 280
TOC mg/L Carbon | 116 | 0.5 850 646 | 1.7 0.8 4.9
Conductivity pS cm’! 801 4.1 10400 | 1070 | 528 288 956
Calculated Quantities
Carbonate mM 002 ;000 |[0.76 0.05 | 0.0t 0.00 0.02
Bicarbonate mM 4.24 0.00 50 456 | 3.94 1.34 546
Hardness mg/L. CaCO, | 287 0.00 | 2100 301 | 236 79.4 360
L.angiier Index 065 | -9.15 | 447 1.73 | 0.03 | -1.170.38
Saturated pH 8.18 | 6.04 15.8 126 | 7.75 | 7.30 8.61




94
under DOS 6.0 and Windows 3.1 (Microsoft Corp., Redmond, WA). Exce! 4.0

(Microsoft Corp.) and MATLAB 4.0 (MathWorks, Inc., Natwick, MA ) were used for
data treatment. In addition, some of the MATLAB programs used were based on
code from the PLS Toolbox written by Barry Wise of Battelle Pacific Northwest
Laborateries (Richland, WA) [79].

The Rossum Model applied here differs slightly from Rossum's original
presentation [64]. Rossum did not include NH,”, but it was found that its inclusion
in the model gave improved performance, so it was included in our analysis. The
limiting equivalent conductance for ammonium ion that was used was
73.5 S cm? mol™ [80]. In addition, the A° used for carbonate was 63.5 S cm? mol”!
[81], slightly different from Rossum's value.

For all of the models studied, the SEP was determined for two conductivity
ranges: <11000 pS cm™ and <1400 puS cm™. The former range was selected
because this included all samples presently available and will be referred to as the
“all samples" range for the rest of the work. The <1400 uS cm™ range was the
range of samples analyzed by Rossum. The number of samples in these ranges
was 422 and 483 for <1400 pS cm™ and all samples, respectively. For calibration,
200 samples were randomly selected from each of these ranges and the remaining
samples were used for the prediction. Unless otherwise stated, this was repeated

50 times to estimate the SEP.
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4.4 Results and Discussion
4.4.1 Semi-Empirical Models

For the Rossum models, and unless otherwise stated, the set of ions used
was Na', K', Ca”, Mg®, SO%, Cr, NO;, NH,, CO* and HCO,. The
concentration of NO;” used in the computer analysis is actually the concentration
of NO; plus NO,” for the samples analyzed, but since it is unusual to have
significant amounts of nitrite present, the assumption is regarded as valid. The
NH," concentration was obtained from the total ammonia concentration and pH.
These same 10 ions were included in all calibrations performed but additional
parameters were also used for some of the neural network and MLR models.

Figure 4.2 shows how the Rossum Model performs over two conductivity
ranges: a) <1400 pS cm™ ar4 b) all samples. The solid fine in Figure 4.2 is the
measured conductivity versus the measured conductivity. It therefore has a slope
of unity and represents the ideal model. The circles show the predicted
conductivity based on the Rossum Mode! plotted against the measured
conductivity. From Figure 4.2b the Rossum Mode! shows a systematic deviation
above 2000 pS em™. Modifications are needed to this standard model to correct
for this deviation.

As mentioned previously, two main modifications to the original Rossum
Model were proposed for this work: the use of an alternate definition for the
effective charge and the addition of another term to the model. To compare the

influence of each of these modifications, the Rossum Model (RM) was compared
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io three other models. These other models are summarized in Table 4.3. The
results for the Rossum and its variations are shown in Table 4.4.

Table 4.3 Summary of modified Rossum models.

Model Acronym Comment
Modified Rossum MRM RM with alternative
Modei charge definition
Extended Rossum ERM RM with additional term
Model
Exiended Modified EMRM RM with alternative
Rossum Model charge definition and
additional term

Table 4.4 Standard errors of prediction for models investigated.

Model _Standard Eno:;f- Prediction (S cm™)
< 1400uS cm™ _ all samples

RM 64 211

MRM 67 148

ERM 67 109
EMRM 67 g5
MLRa 76 99
MLRb 68 89
MLRc 61 88

PCR 69 93

PLS 69 92

CR 69 92

NN 79 283

The modification of charge definition improved the prediction ability for the both
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ranges. For the <1400 pS cm™ range, the Rossum Model provides marginally
better results than the MRM, ERM and EMRM. However, for all samples, the
EMRM outperformed any of the other Rossum-like models. The EMRM reduced
the SEP by more than a factor of 2 over the RM when all samples were included.
Figure 4.3 shows the improved prediction ability of the EMRM for a typical

calibration/prediction set.

4.4.2 Empirical Models

MLR, PCR, PLS, CR and ANN were the empirical modelling techniques
used to examine the applicability of this approach to the problem of conductivity
prediction. With MLR, the conductivity is expressed as a linear combination of
ionic concentrations (Equation 4.13). Three different MLR models are listed in
Table 4.4. In addition to considering the MLR mode! including all 10 ions (MLRa),
all possible combinations (2'°-1 = 1023) of these ions in the MLR model were also
evaluated. MLRb is the best MLR model from this set of ions. Also, four
additional variables were considered for MLR: total organic carbon (TOC),
alkalinity, hardness, and silica. The results describe the best model from analyzing
all 16383 (2'*-1) possible models from this set of 14 variables. However, in MLRc
only 10 calibration/prediction sets were used rather than 50 to evaluate SEP due
to time constraints.

As shown in Table 4.4, MLR and the EMRM showed similar prediction

ability. The MLR mode! with all ten ions (MLRa) did not provide better prediction



899

1 2000 T T T I |

O calibration

10000 - v prediction 7

1

8000 i

6000 -

4000

Predicted Conductivity @S/cm)

2000

1 L I
0 2000 4000 6000 8000 10000 12000

Measured Conductivity (uS/cm)

Figure 4.3 Comparison of measured and predicted conductivities using EMRM.



100
than the EMRM in either range. For both ranges MLRb gave similar results to that

of the EMRM. The best MLR model (MLRY) below <1400 uS c¢m™ was obtained
when all five cations and no anions were used. In fact, the 30 best models of
1023 possible models all included the five cations with various combinations of the
anions. When all sampies were considered, the best model included CI"and NO,
in addition to all of the cations. Similarly, in this range the occurrence of all
cations in the top 20 models was observed. Obviously, both anions and cations
contribute to the conductivity of the sample, so it is interesting to note the
predominance of the cations term in the optimum model. This may reflect the
reliability of the respective measurements. In any case, this example illustrates
what can be considered both a weakness and a strength of MLR models: they
assume no underlying physical model and consider only the predictive abilities of
the variables used. Figure 4.4 compares the measured and predicted
conductivities for the MLRa and MLRb models for a typical calibration/prediction
set in the all samples region. This figure shows no significant difference in
prediction from that of EMRM, but are substantially better than the Rossum Model.
MLRc shows only a small improvement in prediction over the EMRM and other
MLR models (see Table 4.4). While there is no direct physical basis for the
inclusion of the additional four terms in the MLRc model, the results suggest that
they have some beneficial predictive value.

The PCR, PLS and CR results listed in Table 4.4 were similar to those of

MLRa. The fact that PCR, PLS and CR provided results that were about the
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same as the MLR results suggests that the ionic concentrations were not
sufficiently correlated to reduce the number of effective variables. As mentioned
previously, CR unifies MLR, PCR and PLS under one scheme through the use of
a power factor, g, in the development of the models. The value of g influences the
extent to which the dependent variables affect the determination of latent variables.
it was shown by Lorber et al [72] that the MLR, PLS and PCR solutions are
equivalent to.q = 0, ¢ = 1 and q = « respectively. Figure 4.5 shows the SEP
obtained by CR as a function of ¢ and the number of latent variables included in
the models or the all samples region. The best results for CR worked out to be
the PCR and PLS solutions for <1400 uS cm™ and all samples ranges
respectively. These techniques did not provide any significant improvement in
prediction.

The neurai networks used in this work consisted of one hidden layer. Due
to the nature of the ANN's, the inputs and outputs were scaled for the calibration
set. The inputs were adjusted to a mean of 0.5 and range of 2.0, and the output
to mean of 0.5 and range of 0.5. Two sets of variables were used in the neural
network analysis. One set contained the same 10 ions used previously and the
other contained five other variables in addition to the ten ions. The additional
variabies were pH, alkalinity, TOC, hardness and silica.

Initially the optimum number of nodes in the hidden layer had to be
determined. This can be viewed as analogous to finding the optimum number of

latent variables for PCR, PLS and CR. To determine the optimum number of
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hidden nodes the SEC and SEP were examined as a function of iteration number
during the training process for various numbers of hidden nodes. Figure 4.6
shows a plot of these parameters for conductivities <1400 pS cm™. One iteration
was considered to be when all 200 calibration samples are applied to the inputs
of the neural network once. As shown in Figure 4.6a, the SEC initially drops off
rapidly and then levels off where the neural network converges to a solution. The
convergence level of SEC tends to decrease as the number of hidden nodes
increases. However, as shown in Figure 4.6b the SEP passes through a minimum
and levels off to the same magnitude for each number of hidden nodes. Two
hidden nodes were chosen since this case was the smallest number of nodes
giving good prediction abilities (one node gave poor results) and solutions after
5000 iterations were used. As with other estimates of SEP, 50 randomly selected
calibration and prediction sets were used. The ANN using 10 ions (NN) gave
similar results to the Rossum Model for conductivities below 1400 uS cm™, but the
prediction results when all samples were included gave poor results. The ANN
using 15 variables also gave poor results.

The use of ANNs to predict conductivities in water has been further
investigated by Gates [82]. Although the same type of neural network was used,
modifications to the architecture and training algorithms were throughly
investigated. Variations to the basic ack-propagation learning algorithm included
the use of a gradient search method with an entropic learning algorithm and a

random gradient search method. These modifications result in more efficient
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training and more reliable location of the global optimum. The effect of the number
of hidden nodes was also more thoroughly investigated. Although this study was
abie to improve on the ANN reported earlier, it was not able to produce better
results than the EMRM.

The poor perfcrimance of the ANN, especially for the all samples case, was
somewhat surprising. ANNs are a nonlinear modelling strategy and should be able
to perform at least as well as the linear models in this study. One of the problems
inherent in ANNSs is the optimization of architecture and training methods, and that
is reflected in this study. One possible way to improve the results would be to use
an alternative convergence criterion. It will be noted in Figure 4.6b that the SEP
curve passes through a minimum. This is a commonly observed phenomenon
and results from overtraining of the network on subsequent iterations. While the
minimum represents the best predictive ability, it is not considered legitimate to
stop training at this point because the prediction set is presumably unknown in the
training. An alternative strategy is to divide the data set into three groups: a
calibration set, a prediction set used to determine the stopping or convergence
conditions, and a prediction set used to evaluate the model. In this way, a better
convergence point can be obtained without compromising the model. This

approach was not used here, however.

4.5 Conclusions

In this work, the Rossum Model was found to work remarkably well for
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samples with relative low conductivity (<1400 uS cm™), but alternative models were
found necessary for extending the range of conductivity prediction. Modifications
to the Rossum Mode! were incorporated into the EMRM, which exhibited the best
performance of the Rossum-based models and greatly improved the prediction
ability in the extended range.

Itis surprising and somewhat disappointing that the empirical models (MLR,
PCR, PLS, CR and ANNs), with a greater number of adjustable parameters, did
not substantially improve on the EMRM, which has only one adjustable parameter.
This does not mean that these multivariate models are not generally useful, but in
this case the integrity of a model based on physical principies proved to be
superior. Although some of the empirical methods gave equivalent or improved
results, the EMRM is favoured by the principle of parsimony, which holds that,
when two models give comparable performance. the simpler of the two (i.e. the
one with the fewer adjustable parameters) shouid be used.

Another problem often inherent in empirical methods is the time required to
find optimum models (e.g. the terms in MLR, architecture for ANINs). For MLR, the
selection of optimum terms (variabie selection) can be especially problematic
because the number of combinations can quickly become astronomical. Solutions

to this problem are considered in the next chapter.



5

Disordered Sets 2: Term Selection

5.1 Introduction
5.1.1 Term Selection

The problem of conductivity prediction presented is an interesting example
of a disordered data set because of its practical relevance and because of the
failure of empirical methods loosely based on physical models. Because of this,
further efforts were made in an attempt to improve the empirical models. These
attempts, made through the use of term selection, are described in this chapter.
One of the empirical modelling methods used was multiple linear regression
(MLR). MLR assumes that a quantity y can be modelled by an equation of the
following form:
Y = Bt + b5 + .. + B &0
where b; represents the coefficient for the corresponding basis function, f(x). In
this formulation, each f(x) is a linear function of the independent variables. In
Chapter 4, the basis functions used were simply the individual ionic concentrations.
Results suggested, however, that improved performance could be achieved if only
selected terms were used. Furthermore, the choice of basis functions was
somewhat arbitrary, leading to speculation that an alternate choice might yield

improved models, especially if those functions were based on physical principles.
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In Chapter 4, it was noted that Shedlovsky [70] had shown that the

conuctance of a salt couid be estimated by,

(5.2)
A=A%°-(A+ BAYC™R + mC - BmCH

where A, A° A, B, C and m were defined in the preceding chapter. This equation
was shown to be valid for a number of binary electrolytes. However, the water
samples examined in this work contain significant amounts of several cations and
anions, not just a single salt. An analogous expression for a single ion would be,

(5.3)
A=24°-(A+ Br9YC® + mC - BmC¥

where A, B and m are modified appropriately. The parameters A, A° and C are the
ionic conductance, limiting ionic conductance and concentration of a particularion,
respectively. The general form for Equation 5.3 is,

5.4
A=a+bCR +oC+ do¥ 54

where A and C are the same as before and a, b, ¢, and d are coefficients to be
determined. Assuming that this equation is valid and the conductivities are
additive, a reliable estimate of conductivity might be obtained from 10 most

abundant ions; that is,

10 10
G = gz,c, = §<a, + 5o+ g0, + dC¥ ¢

o (5.5)

= Y ( &G+ bGP+ ¢C*+ dc¥
-1

This equatibn suggests that an appropriate MLR model should contain not
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only terms that are first order in C, but also terms with order 3/2, 2 and 5/2. This
immediately poses two problems, however. First, this resuits in a total of 40 terms.
Such a large number of terms in an MLR model is not desirable since it is likely
to lead to unstable solutions with poor predictive ability. The principle of
parsimony suggests that one should attempt to find a suitable model with the
smallest number of terms. Thus, we should like to include only those terms which
have good predictive ability. This leads to the second problem. If we are to seek
the best combination of terms, there are (2*°-1) possible combinations to evaluate.
In Chapter 4, there were only 1023 models to evaluate for 10 terms, making an
exhaustive evaluation of all possible models feasible. In this case, however, a
similar study would require ca 4000 years! Clearly, then, an alternative approach
must be sought.

Although the problem under consideration here is that of term selection for
conductivity prediction, variable selection is a general problem in chemometrics.
Other examples are the selection of wavelengths for calibration [83] and feature
selection in pattern recognition problems [84]. The goal in all of these cases is to
find the optimum set of variables to solve the problem under consideration.

Optimization problems are very common in chemometrics [1-3]. In addition
to variable selection problems, experimental optimization problems are also widely
encountered. This might mean finding the set of conditions for which a response
is maximized (e.g. yield of a reaction, signal-to-noise ratioc of an instrument) or

minimized (e.q. yieid of a side reaction, deviation of an observed quantity from the
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ideal). The general goal in an optimization strategy is to proceed along the
shortest path from an initial guess to the global optimum. This is represented
pictorially in Figure 56.1. A major difficuity in optimization problems is the existence
of local optima, which often obscure the search for the true or global optimum.
Various optimization methods can be employed and some of these are discussed

in the next section.

5.1.2 Optimization Methods

In an optimization problem, perhaps the most straightforward way to find the
global optimum is to evaluate all the possible solutions and then pick the best
result. Although this exhaustive, or enumerative, approach is guaranteed to find
the global optimum, it_ is only practical when the search space is small. As
previously noted, many problems are so complex that evaluation of all possible
solutions is not feasible. Thus a search method is needed that is able to reliably
find the giobal optimum while only evaluating a small number of cases. For
illustration purposes consider the case of a multiple parameter optimization, such
as might be encountered in an experimental optimization or nonlinear curve fitting.
One of the simplest approaches to parameter optimization is find the optimum
value for each parameter independently (univariate optimization) [1]; that is,
varying one parameter at a time while holding the others constant. Once each
parameter is optimized, the process is repeated for all of the remaining

parameters. Although this method may work in some cases, it is not able to deal
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with interdependence among the parameters. Therefore an optimization method
is needed that allows all of the parameters to change simultaneously. One class
of methods with this feature is gradient methods (70].

Gradient methods, such as steepest descent and Levenberg-Marquardt
algorithms, have been used quite successfully in optimization problems. Such
methods, as the name implies, search along the steepest gradient in search
space. To do so, the derivative of the response surface for each of the search
variables must be known. The success of the gradient methods depends on the
validity of these derivatives and on the ability to calculate them. In many
instances, such as experimental optimization, these derivatives are not directly
available or would be cumbersome to calculate.

An alternative method known as simplex optimization [86] can be used if
little information is known about the shape of the surface being searched. Simplex
optimization does not require the estimation of derivatives, but rather uses simple
geometric rules to navigate the search space. Simplex optimization is often
applied to problems that are not suitable to solution by gradient methods.
However, like gradient methods simplex optimization requires the search surface
to be well-behaved, is usually only effective for a limited number of parameters,
and is prone to finding local optima. Furthermore, these methods are mainly
suited to numericai optimization problems and are not well adapted to the term
selection problem currently under consideration. Two methods which are well-

suited to large scale optimization problems of this type are simulated annealing
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[87] and genetic algorithms {88-93).

Simulated annealing is an optimization procedure that mimics the process
of annealing a solid. The physical process of aninealing involves heating a solid
to just below its melting temperature, at which time all the particles of the solid are
randomly arranged. The liquid phase is then slowly cooled by gradually reducing
the temperature. During this cooling the particles reach equilibrium at each
temperature, tending to arrange themselves in low-energy ground states. The
cooling is continued and the solid reaches its lowest energy state. The
optimization method of simulated annealing begins with a high energy state (the
initial guess) and explores large areas of the solution space by assuming a
Boltzmann distributions of solutions. When a lower energy solution is found,
smaller steps are taken until the global optimum is reached. Simulated annealing
is particularly well-suited to large scale optimization probiems which are prone to
local minima since there is an element of randomness in the search algorithm. In
this work, however, another technique with similar characteristics, genetic

algorithms, was employed. This approach is described in the next section.

5.1.3 Genetic Algorithms

A genetic algorithm (GA) can be described as a method for solving
large scale optimization problems that is loosely based on Darwin's principles of
evolution: the struggle for life and the survival of the fittest. Principies of evolution

hold that the development of any species did not occur by accident, but by a long
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process of slow modification that encouraged passing on desirable traits from one
generation to the next. For example, if two individuals of the same species
differed by one trait, and if this trait was essential to the survival of the individual,
the individual without the trait would not likely live to reproduce, whereas the other
would reproduce and the trait would be passed on. For each species, numerous
competitions have occurred to produce the diversity in nature. In a similar fashion,
the GA starts with a population of trial solutions and through competition and
modification, the desirable traits in the solutions are passed on from one
generation to the next. The GA moves progressively toward the optimum in a
systematic manner, but occasionally takes random steps (or mutations) that help
to search many regions of the search space.

For any search algorithm, there needs to be a balance between two
principles: exploration and exploitation. Exploration is the ability to effectively
search the whole set of possible solutions and exploitation is the ability to utilize
the characteristics of the search space or solution space to efficiently proceed
toward the optimum. Since approaches such as gradient methods and simplex
optimization are susceptible to finding local minima, one could view them as
having a greater emphasis on exploitation than exploration. On the other hand,
simulated annealing and genetic algorithms seem to strike a better balance
between exploration and exploitation for finding the global optimum on complex
surfaces with many parameters. In this work, only GAs were considered for the

term selection problem.
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The types of probiems that can be treated with GAs can be divided into
three areas: 1) numerical parameter estimation, 2) sequencing, and 3) subset
selection problems. No matter what type of problem a GA is used for, a numerical
sequence of genes is used to find the optimum. This sequence is analogous to
a chromosome in a living organism and is referred to as a String in GA
terminology. Figure 5.2a shows some simple string representations for each of the
three problem types. For numerical parameter estimation problems (such as curve
fitting), each of the parameters is coded in a binary sequence. In the example
shown, three parameters are coded in the string, each as a five-bit binary number.
Numerical parameter estimation is not used in this work and will not be considered
further. Sequencing problems are concerned with finding the optimum order of,
say, samplas [94] or events [95-97]. In this case, each gene is represented by a
number which corresponds to the position in the original sequence, and it is the
order of these genes in the string that is important. A sequencing problem is
considered in Chapter 6 and this category will not be discussed further in this
chapter. The last type of problem, subset selection, can be represented in two
ways, depending on whether a variable or fixed size subset is desired. For a
variable size subset, there are n genes, where n is the total number of variables
or terms. In this case, each gene is either 0 or 1, indicting whether or not that
variable is included in the subset. For a fixed size subset containing m variables,
there are m genes, each containing a number corresponding to the variable to be

included in the subset. In this case, there will be m! redundant solutions forms for
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each solution. The problem of subset selection the one of interest in this work.

Once a string is defined for a problem, its length, L, is usually held constant
for the running of the GA. The GA uses a collection of different strings called a
population, shown pictorially in Figure 5.2b. The size of the population or the
number of strings, N, can be held constant or vary as the GA runs. This
population not only allows the GA to explore different areas of the search space,
but also permits information to be exchanged among members of the population.
This exchange helps to locate the global optimum by exploiting complementary
genetic characteristics in different strings.

In order to show how a GA works, the term selection problem will be used.
Two important questions need to be considered before a GA is run: (1) how to
represent the problem being solved, and (2) how to discriminate among the various
test solutions?. In this case, the 40 terms were represented as a 40 bit binary
code, (i.e. variable size subset problem) where each bit represents a variable or
term in the model. As shown in Equation 5.5, all the terms here are functions of

ionic concentrations. The bit variable assignment is given in Table 5.1.
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Table §.1 The bit-term assignments for the term selection problem given by their
bit location and chemical symbol.

Bit Term Bit Term Bit Term Bit Term

1 (Na*)' 11 (Na*)*? 21 (Na*)? 31 (Na*)*?
2 (K9 12 (K")*" 22 (K*)? 32 (K2

3 (Ca*)' 13 (Ca*)*? 23 | (Ca*y? | 33 (Ca*)™?
4 | (Mg*) 14 Mg™)™ || 24 | Mg*y | 34 | (Mg™)*”
5 | (SO2) 15 1 (80,5 | 25 | (502 | 35 | (5022
6 (cn! 16 (Cry*? 26 (CIy? 36 (CI)*?
7 (NO,) 17 (NO,)*? 27 | (NO,)? || 37 (NO,)*?
8 (NH/") 18 (NH,")*? 28 | (NH,")? 38 | (NH*? N
g | (CO) 19 (COM® || 29 | (CO™)? | 39 | (CO)™
10 | (HCO,)' | 20 [ (HCO)™ || 30 [(HCO,) || 40 | (HCO,)™

solution might be,

For illustration purposes, consider the first 6 bits. An example of a trial

101001

(5.6)

where the 1's indicate inclusion of this term in this model and 0's indicate
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exclusion. Therefore the model presently under consideration is,

5.7
G = a,(Na*)' + &(Ca?y + g,(CI)' ©1

The best string will normally be the one for which the corresponding model gives
the lowest prediction error. The prediction error is therefore the obvious choice for

discriminating among strings. The standard error of prediction (SEP) was used as

the objective function for this problem; that is,

N
¥ (G-Gf? (5.8)
SEP=, | —— N

where GP is the predicted conductivity for prediction sample i, G, is the measured
conductivity, and N is the number of prediction samples. In GA terminology, a
string is usually evaluated in terms of its fitness, which is assumed to be
maximized for an optimum solution. Therefore, since the SEP is minimized for the
optimum solution, we can define the fitness function, f, as,
f= —5}579 (5.9)
In some implementations of GA's, the absolute magnitude of f ptays a role, but in
this work only relative magnitudes are considered, so the actual definition is not
of critical importance.
GAs are usually referred to in the plural because there are numerous
variations in the specific algerithms used for a particular problem [98].

Nevertheless, the basic steps remain the same and these are represented as a
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flowchart in Figure 5.3. Each of these steps is discussed in more detail below,

with specific attention given to the implementation used in this work.

1. Initiation
The initial population or the set of test strings is usually randomiy
generated. Specifically, the strings are generated using a random number
generator with a uniform distribution and converting the output to its
corresponding binary code. The number of strings in the initial population,
N, is an adjustable parameter for the GA. in this work, the value of N was

typically 100.

2. Evaluation
For each string in the population, the objective function is evaluated
for its fitness. First the appropriate terms are selected, then the model is
built using multiple linear regression, and finally the SEP (and the fitness)
is evaluated. In this work a calibration set of 200 samples was used to
build the model (i.e. the least-squares solution is used to generate the
coefficients). The remaining samples are used in the prediction set to

evaluate the fitness.

3. Exploitation

Once the strings havo been evaluated, the fittest strings are selected
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for reproduction. A number of strategies are commonly used in this step.
In some cases, a roulette wheel approach is used in which the probability
that a string will be reproduced is proportional to its fitness. In this work,
a simpler approach was employed where copies of the m fittest strings are
made to carry on to the next step (exploration). The best (N-m) strings in
the original population are also retained, but are not subjected to the next
step. The worst m strings are eliminated and are eventually replaced by
the m copies after the exploration step. In this way, the size of the
population was maintained constant. The proportion m/N will be referred
to as the reproduction rate and in this work a rate of 20% was typically

used.

4. Exploration

The m selected strings copied in the previous step are modified in
the exploration step by two procedures: recombination and mutation. These
two procedures are meant to be analogous to their biological counterparts.
Recombination, as shown in Figure 5.3, involves swapping genes (bits in
this case) between pairs of strings and is meant to mimic sexual
reproduction. The m strings copied in the previous step are paired up
randomly before the bits are swapped in this step. Several strategies can
be employed for the actual exchange of bits. In one approach, a crossover

point is selected and ail of the bits before (or after) that point are
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exchanged. In this work bits were exchanged according to a random
selection procedure. For each pair of bits, the probability of exchange is
given by the recombination rate, typically 30% in this work. This means,
that on average, each string would have 30% of its bits swapped with its
partner. Note that this does not mean that 30% will necessarily be
changed, however, since the bits swapped may be identical. The purpose
of the recombination step is to combine the complementary favourable
characteristics of the partners in the children. Of course, there is an equal
chance that undesirable characteristics will be passed on.

The problem with recombination alone as an operator is that it limits
exploration of the search space. This is particularly true if the population
becomes fairly homogenous so that most of the bits exchanged are
identical. For this reason, the mutation operator is employed following
recombination. This operator is intended to simulate the process in nature
by which genes are randomly altered. In the mutation stage, each bit has
a certain probability of being flipped to its complementary value. This
probability, termed the mutation rate, was typically set to 3% in this work.
The mutation operator incorporates a certain randomness to the exploration
and is instrumental for ensuring that the global optimum is found. As an
illustration of these operators recombination of two parent strings 110001
and 101101 at the fourth bit would result in two child strings 110101 and

101001, and mutation at the third bit of 110101 would result in 111101.
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The new strings generated in the exploration step replace the m worst

strings from the previous generation.

5 & 6. Evaluation and Termination

In the evaluation step, the fitness values of the new strings
generated at the exploration step are evaluated according to the objective
function. A decision is made at this stage to continue the GA or not. As
with any optimization method, the decisior to terminate can be based on a
number of criteria, none of which are foolproof. Most often with GAs,
convergence to a consistent solution is evaluated graphicaily. This is done
by plotting the objective function (or the fitness function) for each generation
as a function of the generation number. Typically, this piot approaches
some constant value in an exponential fashion and is considered to have
converged when the curve is essentially flat. If this has not occurred, the

process is continued with the new population at step 2.

The steps outlined above give the essential aspects of at least one of the
GAs used in this work for term selection. Depending on the type of the problem
andits representation, the nature of the recombination and mutation operators may
be different, but the basic steps remain the same. As well, the choice of
parameters (population size, reproduction rate, recombination rate, mutation rate)

is subject to the type of problem and is usually arrived at by trial and error and/or
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common sense. The choice of parameters used here is not necessarily optimali,

but seemed to work reasonably well.

5.2 Experimental

In the present study only ten species were considered: sodium, potassium,
calcium, magnesium, sulfate, chioride, nitrate, ammonium, carbonate and
bicarbonate. The details on the measurement of conductivity and ionic
concentrations were reported in Chapter 4.

Most calculations were performed on 486-based computers (486-DX, 486-
DX2 and 486-DX4) under DOS 6.0 and Windows 3.1 (Microsoft, Redmond WA)
with programs written in MATLAB 4.0 for Windows (The Math Works Inc., Natick,
MA). The 20 variable exhaustive search calculation was run on a Sun Sparc 10

under the Solaris operating system.

5.3 Results and Discussion
5.3.1 Variable Number of Terms

Using the methods described in section 5.1.3, preliminary studies were
conducted to select the best subset of terms from 10 term and 20 term models
(i.e. using only first order terms and then first and 3/2 terms.) This was done so
that the results of the GA could be compared to an exhaustive search of salutions.
The GA converged rather quickly for the 10 variable case as expected, since there

were only 1023 solutions and there were 100 strings in the population for each
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generation. The 20 term case was more difficult, since there are over a million
possibie solutions. Figure 5.4 shows convergence for a typical 20 term case. The
prediction error (SEP) for the best string in each generation is plotted against the
generation number. As expected, the SEP declines in an exponential fashion with
generation. In both the 10 term and 20 terms cases, the GA generally converged
on the correct subset of terms. Note, however, that these trials used the same
calibration and prediction sets throughout the GA run. This means thai ihe search
Space was essentially noise free, giving a relatively smooth trace in Figure 5.4 and
making it easier for the optimum to be found. Unfortunately, a solution found in
this manner is not necessarily robust. In other words, although the solution may
be optimal for the particular calibration and prediction set used, it may not be
optimal for another combination of calibration and prediction samples.

In order to produce a solution which is more robust, a better method for
detecting a globally optimum solution (i.e. one that gives the best average
performance over all combinations of calibration and prediction sets) is needed.
One way to do this would be to determine an average prediction error based on
multiple calitration and prediction sets for each trial solution. This would greatly
Increase computation time however, and instead a method for incorporating this
into the GA itself was sought. Two alternatives were investigated with this
objective in mind: (1) using a new calibration and prediction set for each
generation, and (2) using a new calibration and prediction set for each string.

Although the second method introduces more variations, results showed that the
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first method gave equivalent results and was computationlly more efficient. The
idea behind this modification was that a solution which performed well for one
generation (i.e. a particular calibration and prediction set) would not necessarily
perform well in the next generation, but those solutions that consistently performed
well (although not necessarily the best) would be retained over many generations.
This modification necessitated the recalculation of the SEP for all strings with each
new generation, but also presented an opportunity for further improvement. For
strings that were retained for more than one generation, an average SEP could be
calculated. This allows a more reliable estimate of the SEP for retained strings
that would be less prone to anomalous results from a particular calibration and
prediction set. For example, if two strings were retained by the GA for 5 and 7
generations, their performance would be evaluated over 5 and 7 prediction sets.
This would smooth the search landscape and therefore should make the optimum
model easier to find.

The modifications described above (new calibration and prediction set for
each generation and averaged SEPs) were implemented in the search for the best
subset for the 40 term model. The GA results for the two samples ranges used
are shown in Figure 5.5 and exhibit several features worth noting. First, although
the prediction errors attained with the GA looks lower for the two conductivity
regions when compared with the values obtained with the MLRb model described
in Chapter 4 their average SEP's (when caiculated with 50 calibration/prediction

sets) were actually higher (i.e. 69 S cm™ for the < 1400 uS cm™ and 125 uS cm™!
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for the all samples region). This is unfortunate since it was hoped that including
more terms would improve the predictive ability. A second feature worth noting is
that the resuits shown in Figure 5.5 do not exhibit a large change from the initial
popuiation results. This is somewhat disconcerting, since a larger improvement
was anticipated. Finally, the traces in Figure 5.5 are noisier than those in
Figure 5.4, but this was expected because of the new calibration and prediction
sets used for each generation. Unfortunately, this characteristic is indicative of
another problem with the GA results: the sclutions obtained on subsequent GA
runs were not entirely consistent. In other words, different terms were represented
in the final solutions obtained from different runs.

To summarize, the results for the 40 term case with a variable size subset
did not show significant improvement over the rigorousiy optimized 10 term model,
exhibited unexpected convergence characteristics and solutions that were not
particularly consistent. The reasons for these last two problems are addressed in

the next section.

5.3.2 Analysis of GA Results for the 40-term Model

In this section, a closer iook at the solution landscape is undertaken in an
attempt to diagnose the problems noted in the preceding section. One of these
problems was the poor convergence characteristics of the GA. This can be
understood by considering the characteristics of the solution space. To do this,

consider that all of the possible soiutions are exhaustively evaluated, ranked in
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terms of the objective function from best to worst and then plotted. The shape of
this plot will depend on the probiem under consideration and three possible
representative cases are shown in Figure 5.6. Curve a represents the case where
most of the solutions give poor results, curve b shows the situation where there
is a gradual change in the quality of solutions, and curve ¢ represents the extreme
where many solutions produce reasonably good results and a minority produce
very peor results. In this last case, a random sampling of solutions for the initial
population would be expected to yield a substantial number of solutions with
reasonably good results. It is this type of surface that is anticipated here, so the
net improvement seen is not large. Although all of the solutions for the 40-term
case (ca 10'?) cannot be evaluated, a view of the surface can be inferred from a
random sampling of 1000 solutions. This result is shown in Figure 5.7 and
confirms the anticipated shape. For a surface such as this, the solutions are not
highly discriminating in the quality of results produced, so the application of the GA
does not lead to substantial improvement over a trial-error approach.

Even though the surface observed in this work may contain large regions
that are fairly flat, the GA is based on relative comparisons, so one would expect
that it would be able to arrive at a stable solution. To understand why this is not
the case here, further analysis of the search landscape is useful. One way a
landscape can be characterized is by using an autocorrelation function. The
autocorrelation function gives a direct indication of the surface complexity.

Autocorrelation functions are very useful for revealing correlations among
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measurements in a sequence, ie. if there is a relationship between a
measurement and ones close to it. Autocorrelation functions can be most easily
iliustrated graphically. Consider a variable x that vaiies over time, such as the
time series shown in Figure 5.8a. For a function with mean (x,,) and standard

deviation (s,) the autocorrelation is calculated as,

n-t

3 D) -xJix(t+t) ~x;,] (5.10)

r(z) = M

(n-1-1)s?

where x(t) is the value of the series at time t, and x(t+1) is the value of x at a later
time, n is the number of points and 1 is the delay time. The above equation gives
the correlation coefficient at each r. Usually r is calculated from 1 = 0 to large
values of t. in Figure 5.8 the autocorrelation function for the series in part ais
shown in part c. The appearance of the autocorrelation function depends on the
series evaluated. A more correlated series is shown in part b along with its
corresponding autocorrelation function in part d. Note the behaviour of the
autocorrelation function for each series. For the random series, i.e. part a, the
autocorrelation function equals 1 at T = 0 but quickly drops off to near zero. For the
more correlated series, the autocorrelation also equals 1 at 1 = 0, but decreases
more gradually and only approaches zero at T = 15. This gradual decay is
indicative of a correlated series of measurements and roughly gives the period of
the correlation function.

In the context of GAs, correlation means that solutions that are close to one
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another in the search space should produce similar results. It is this assumption
that allows the GA to expioit the surface topology in the recombination step. Note
that the way a problem is encoded in the development of the GA is critical in
influencing this correlation. In order to determine if such a correlation exists, the
following approach can be used [98]. First a solution is chosen at random, and the
objective function (or fitness) is evaluated. Then, a step on the search landscape
is made by randomly changing one bit in the solution, and again the objective
function is evaluated. This process is repeated muitiple times and constitutes a
random walk over the solution surface. The series of objective functions
generated is the sequence analyzed by the autocorrelation function.

For the current study this method was used to generate autocorrelation
functions for the 40 term model in both the low and high conductivity regions. The
results, shown in Figure 5.9, were calculated using a series of 25,000 values
(SEPs) in each case. As shown, both autocorrelation functions drop off very
quickly after just one step, suggesting a low correlation among solutions in the
same region of the search space. Under these conditions, the GA becomes less
effective, since the exploitation features of the algorithm are not as useful.

A low correlation among soiutions in the search space can be caused by
two factors. First, the problem may be defined or improperly encoded so that
solutions in the same region of the Space have unrelated fitness values. By way
of a physical analogy, consider a solid surface which has a matrix of holes drilled

to random depths. If the objective is to find the deepest hole, there is no
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systematic way to exploit the features of the surface (since there are none) and
an exhaustive search is the only option. This is in contrast to a surface that is
smoothly contoured, guiding an algorithm to the lowest point. The second factor
that can lead to a low correlation is noise on the surface. If subsequent
evaluations of the objective function for the same solution give significantly
different results, then there will be noise on the surface. This will be the case, for
example, when a new calibration and prediction set is used for each generation.
Again, by physical analogy, consider the problem of finding the lowest point in a
wheat field. Although the surface itself is smooth varying, small gulleys will be
obscured by the varying heights of the wheat shafts, which are analogous to noise.

It is impossible to tell for certain from the autocorrelation function which of
the two problems (or both) is the source of the low correlation. However, the
nature of problem encoding would suggest that the solutions should be correlated
and that noise on the search landscape is likely to be the bigger problem. This is
also suggested by small, but nonzero, values of the autocorrelation function for the
first several steps. The problem of surface noise is discussed in greater detail in
the next section.

In order to show that the stability/noise problem has to do with the
landscape and not the GA or its implementation, a simulation experiment was
conducted. In this study the model was assumed to be:

(5.11)
y = 100x, + 100x, + 100x,

where y and x are the dependent and independent variables respectively. As with
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the experimeital data set, 10 variables and 40 terms were used. A set of 483
samples was generated using a random number generator with a uniform
distribution. The new x replaced the ionic concentrations and the y was calculated
as given in Equation 5.11 without the addition of measurement noise. With this
set of data, GA quickly converged on the optimum (see Figure 5.10), aithough an
interesting complication arose. Even though no measurement noise was included
in the simulation, solutions determined by the GA always had several terms in
addition to the three that were expected. These additional terms varied from run
to run, whereas the three expected terms did not change. This is one of the big
problems with models of this magnitude. Because of the enormous number of
possible solutions (ca 10'%), correlations with noise are virtually guaranteed, even
with the large number of samples here, and this will result in a number of models
that are (apparently) superior to the true model. The solution in this case was
simply to use a logical AND to combine the results of several runs. This left only
the bits (terms) that corresponded to the true model. Although this simulation
demonstrated that the GA was indeed working correctly (in fact, perhaps too well)

it also showed some the difficulties in searching such large spaces.

5.3.3 Fixed Number of Terms
Perhaps the most important element in the successful implementation of
any GA is the way the problem is encoded. When the GA does not perform as

anticipated, an alternative strategy for representing the problem may be warranted.
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In this case, this was accompiished by revising the question being asked. Instead
of asking what is the best modei?, the new question was what is the best mode!
with n terms?. The latter question embodies the second form of subset selection
represented in Figure 5.2 in which a fixed size subset is used, and for this problem
a new GA approach had to be developed. In this case the strings were not
encoded using 1's and 0's, but rather as integers from 1 to 40. Instead of
including or excluding a term based on its value, models were built by including
the first n terms. For example if we want to build 5 4 term model from a 12 integer
string, we would use the first 4 terms. |f the stingwas 3711512621108 4
a mode! would be built using terms 3, 5, 7 and 11. In this term selection problem

the model would be:

G = By(Ca®)' + B(SO;)' + b,(NC;)' + by, (Na®  (5.12)

Ancther aspect in which this GA differed from the previous GA is in the
exploration operators. Both the mutation and recombination operators were
different than the ones used previously. Figure 5.11 is a pictorial representation
of the mutation operator used in this new method for the case of selecting 4 terms

from a total of 9.
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The model in Figure 5.11 was buiit with 4 terms. New strings were created by
using the trade or transfer operator. Once a mutation is to occur, a gene from the
solution subset is switched with a gene from the complementary subset. A simple
recombination operator could be as follows, using the case of selecting 4 terms
from a total of 9 for illustration. Consider two strings 123654789 and 124567893,
where recombination is to occur between the third bits of the strings (i.e. 3 and 4).
Find the location of the third bit from the first string (i.e. 3) in the second string (i.e.
position 9) and find the location of the third bit from the second string (i.e. 4) in the
first string (i.e. position 6). Switch the two bits in each string, if this gives a new
solution, otherwise do nothing. The new strings after recombination would be
124653789 and 123567894. Although other operators could bé developed, resuits

seemed to be satisfactory using these two operators.
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Figure 5.12 shows the GA convergence for subset of 40 terms in the two
conductivity regions. Only the results from the first 5 terms are shown, i.e. what
is the best 1 term model?, what is the best 2 term model and so on, up to 5 terms.
The figure shows that all of the models converge on an improved solution.
although this is not always apparent because the noisy surface often leads to
~ individual cases with lower SEPs. Also there is not a significant change in soma
instances for the one and two terms models. This is expected, since there aru
only 40 combinations of solutions for the one term case, and 780 for the two tefm
case where there are 100 strings in the initial population. The number of
combinations increases rapidly after this, however, reaching 658,008 for the five
term model. There is also a substantial improvement in the quality o? the final
model (as measured by the SEP) as the number of terms is increased, but this
improvement bacomes less significant after five terms.

These results can be more easily interpreted if the SEP at a particular
generation is plotted against the number of terms in the model. Figure 5.13 shows
the SEP as a function of the number of terms in the model at the 100th
generation. The figure shows that for a small number of terms, the prediction error
decreases as the number of terms increases, but then begins to degrade as the
number of terms becomes large. This is consistent with overfitting, which results
from modelling noise in the calibration data. Furthermore, the principle of
parsimony dictates that the best mode! of those with equivalent performance is the

one with fewest terms [99]. This wouid suggest that in both regions, the best
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model would be one with fewer than 10 terms. Clearly, large values of n do not
help improve the predictive ability.

An advantage of this formulation of the problem is that it led to more
consistent solutions from the GA, something which was a problem in the original
model with a variable number of terms. This raises the question how has the new
approach made the problem more manageable?. This can be answered by
considering the complexity of the solution space for each approach. In the last
section, it was noted that the autocorrelation function for the variable number of
terms suggested a complex solution space, and it was postulated that this was due
to noise on the surface. This noise makes it difficult to distinguish among solutions
with similar SEPs. The role this noise plays in the success of the GA will be
investigated here.

Since it is impractical to look at all of the models for the 40 term case, the
10 term case was investigated first. Although the following treatment has been
developed for the 10 term case, the conclusions can be easily applied to the 40
term case. Table 5.2 lists the number of possibie fixed size modeis for 1 to 10
terms for the 10 term case. The first GA approach tried to find the optimum
solution from the set of all models, in this case 1023 models. Whereas the second
approach looked only at subsets of these models, the number of which is givenin
Table §.2. The ability of the GA to locate an optimum solution on a noisy surface
will be determined by the shape of the surface (i.e. how flat it is in the region of

the optimum) and the level of noise. Figure 5.14 shows the
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Table 5.2 A simpie example of the number of possible combinations

k Combinations k Combinations
1 10 6 210

2 45 7 120

3 120 8 45

4 210 9 10

5 252 10 1

characteristics of the search landscape (dashed lines) for the 1 term, 2 term and
3 term subsets of the 10 term case, as well as the case of all models. The plots
were generated by first exhaustively evaluating the average prediction error for all
combinations (50 calibration and prediction sets evaluated for each combination)
and then ranking these according to the average SEP. It will be noted that, as the
number of terms increases, models become increasingly flat in the region of the
optimum. The degree of flatness can only be assessed in relation to the noise on
the surface however. For this reason, Figure 5.14 also shows the standard
deviation in the SEP (solid line} for the associated modei. The old GA would look
at surface d whereas the new GA would look at a, b, and c. Although Figure 5.14
is helpful, one needs to clearly and concisely analyze the GA's ability to distinguish
among models. A crude way of assessing surface complexity is to examine the

change in SEP between adjacent solutions in the ranked sequence relative to the
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surface noise (i.e. the standard deviation in the SEP). In general, the bigger the
ratio (ASEP)/ogg, the easier the region of the surface will be to search. In order
to get a rough measure of model complexity, a parameter called the Model

Distinciion Indicator (MDI) was developed. MDI is calculated as,

N1|SEP,, - SEP

i

! (5.13)
(o‘izd +0I2)
(N -1)

MDi =

In this equation, the term in the numerator of the summation is the difference in
the SEP for adjacent models in the ranked sequence and the denominator is the
pooled standard deviation for the two values. The summation is over all pairs of
adjacent models, and is divided by (N-1), where N is the number of salutions, to
get an average value. In general one expects the MDI to decrease as the
complexity of the noisy surface increases. The MDI is plotted in Figure 5.15 for
the 1 to 9 term models, (the 10 term case has only one model so no MDI could
be calculated). It will be noted that the MDI is directly related to the number of
solutions possible, as might be expected since large surfaces tend to be more
complex. This is not the only factor, however, since the shape of the surface and
noise levels are also changing. Also shown in the figure (dashed line) is the MD!
for the original variable size GA. Note that this is somewhat lower, indicating that
the search space is more complex. Thus, the MDI| seems to be a useful indicator
of surface complexity and suggests why the fixed size approach seems to give

better convergence and more stable solutions.
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variable size subset selection.
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For the 40 term case, analysis of model complexity in this way is more
difficult. For a smaill number of terms the same approach can be used, and
Figure 5.16 shows the characteristics of the search landscape in a manner
analogous to Figure 5.14 for the 10 term case. It will be noted that the surfaces
in this case are flatter, already suggesting a more complex problem. It wouid be
useful to evaluate the MDI for this case as well, but this calculation becomes
impractical very quickiy because of the enormous number of solutions as the
number of terms is increased. To circumvent this problem, a Monte Carlo
approach was used to calculate the MDI for models with a large number of terms.
To do this, random solutions were chosen from the search space and the average
SEP and its standard deviation were evaluated as before {/.e. 50 calibration and
prediction sets each). Also, as before, the soiutions were ranked and the MD! was
evaluated, except that m solutions were used rather than the total number, N, to

give MDI(m). The true MDI was then estimated by,

MDI = -’NEMDl(m) (5.14)

This approach rationalizes that the complementary set of (N-m) solutions are likely
to fall randomly between the selected solutions, so the ASEP is likely to decrease
by a factor of m/N, whereas the noise level should remain roughly the same. The
validity of this approach was checked with the three term model. The exhaustive
calculation gave MDI =7x10* whereas the Monte Carlo method gave

MDI = 4 x 10, approximately the same.
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A figure analogous to Figure 5.15 for the 40 term case couid not developed
since this would require evaluation of about 50*10™ modeis. However the MDI
was able to be calculated for the 1 to 3 term cases, and they are 0.117, 0.008,
and 0.0007 respectively. For the ali term case the MDIi was 1.8 x 102 This value
was calculated using 1000 strings and Equation 5.14. As with the 10 term case,
for the points calculated, the MDI for the variable size model is lower than for the
fixed size case, reflecting the greater difficulty in searching the solution space for

the former.

5.3.4 Comparison with Iterative Searching

Although the results in the last section demonstrate that the GA apparently
converges to an optimum solution when searching for the best n-term mode] from
a set of 40 terms, a question that remains is could the results have been obtained
more easily by another method?. One method that is commonly used for this
purpose is called the iterative method. The iterative method is analogous to
univariate optimization and searches the space by first finding the best one term
mode! and then using this to search for the best second term. This procedure
continues until the best n terms have been found. The number of possible
combinations using the iterative method and the GA method differs considerably,
as shown in Table 5.3. It is clear from the table that the search space for the
iterative approach is only a fraction of that for the GA. However, the iterative

solution assumes that the best n-term model will contain the terms from the best
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(n-1) term model. While this may often be valid, it restricts the search space and

may lead to suboptimal solutions.

Table 5.3 Comparison of the number of possible evaluations for iterative and GA
approaches.

| Terms lterative GA
1 40 40
2 79 780
3 117 9,880
4 154 91,390
5 190 658,008

To compare the performance of the GA and the iterative approach for the
40 term case, the all samples range was used and the average SEP was
calculated for the best n term model found by each method, where n ranged from
1t0 10. The results are plotted in Figure 5.17. The GA and iterative methods find
identical 1 term solutions, but the GA gives significantly better results for the 2 and
3 term models, illustrating the weakness in the assumptions made by the iterative
method. The results are again identical for the 4 and 5 term models, even though
the search space for the GA was more than 3000 times as large for the 5 term

case. For models with more than 5 terms, the iterative method actually gives
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slightly better results in this case, probably due to the increasing complexity of the
noisy surface being explored by the GA. In any given problem, it is probably wise
to use both approaches, balancing the more extensive GA search with the more
restrictive but more efficient iterative method. The terms for the best models found

by each method are given in Table 5.4. for the first five models. The results are

Table 5.4 Best models found by the iterative method and the GA for the all
samples region.

Terms lterative GA
1 (Mg™)' (Mg*)'
2 (Mg™)", (Na*)’ (Na")', (Ca®)’
3 (Mg™)', (Na")', (K"’ (Na’)', (Ca™)", (K"’
4 (Mg*)', (Na")', (K")", (Ca®)’ (Mg*)", (Na")', (K")", (Ca®")!
S (Mg™)", (Na")', (K")", (Ca®)’, (Mg*™)', (Na")', (K")",,(Ca*)",
& (S0,2)’ (K)', & (80,7’

consistent with those found in Chapter 4, especially with respect to the dominance
of the cation terms. It will also be noted that only first order terms are observed
for the first five models. This perhaps explains why the use of the higher order
terms in the 40 term mode! did not give results significantly superior to those in
Chapter 4 with the 10 term model, since the first order terms have the best

predictive ability.
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5.4 Conclusions

The GA method did not provide any better results than, the 10 terms
considered in Chapter 4. In Chapter 4, only the first order terms were considered.
The GA showed that the best models contained only the first order terms.
Althougﬁ the GA did not suggest any new terms it was able to test other terms that
would not have been rigorously test by other methods.

In addition to the problems outlined here for term selection Leardi {100,101]

also outlines term selection problems.
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Ordering of Disordered Data Sets

6.1 Introduction

Thus far, the work presented has dealt with two kinds of data sets: ordered
and disordered. In Chapters 2 and 3 it was shown that pre-existing knowledge of
order in a data set can be of great utility in determining its rank and assist in
identifying components present (since the regions of lower rank are located). In
Chapter 4 it was noted that, although a data set may be disé;rdered, it may
possess an inherent order and it is only because we don't know the ordinal
variable that the data appear disordered. In such a case, it may be possible to
organize the samples in a logical manner according to similarities in the measured
features, such as the spectra. This assumes that changes in the ordinal variable
will be reflected by a relatively smooth transition in the feature space. The
ordering of samgples accordir g to the features has at least three useful functions:
(1) it allows relationships among the samples to be more clearly elucidated, (2) it
may permit the effective use of evolving rank analysis methods, such as EPA and
evolving factor analysis, and (3) it may aid in the discovery of an ordinal variable,
which could provide a better understanding of the system dynamics. Because of
these potential benefits it was the objective of the work presented in this chapter

to seek methods for ordering disordered data sets.

189
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6.1.1 The Ordering Problem

The concept of reordering is illustrated pictorially in Figure 6.1, where the
cbjects have been reordered by the reordering operator, R, using the features of
shape and shading. The ordering process reveals a systematic transition among
the objects (samples) that otherwise wouid not have been known. For a typical
chemical data set, there will be more features and more samples, but the
principles remain the same.

Clearly there are two problems in this reordering process: (1) how to
determine when the samples are correctly ordered, and (2) how to proceed with
the reordering process to obtain that objective efficiently. The former problem has
no single solution, but the approach used in this work is outlined in section 6.1.3.
The latter problem, finding the optimum order, is non-trivial and also has a number
of possible solutions. [n trying to order samples there are a great number of
possible ways to arrange the data set. For example, 3 samples can be arranged
in six ways: (12 3), (132),(213),(231), (312)and (3 21). Ingeneral, for n
samples the number of possible arrangements, or the number of permutations is
ni, where ! denotes factorial. As n increases the number of permutations
increases rapidly. Forn=2, 4, 6, 8 and 10, the number of pen. utations are 2, 24,
720, 40 320, and 3 628 800, respectively. That is, for each incremental increase
in n the number of samples, the number of permutations increases by a factor of
n. For a typical chemical set, we might have n = 30, for which there are

2.85 x 10 permutations. One can easily appreciate that evaluating all
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Figure 6.1 A pictorial representation of the ordering of samples.



162

arrangements would be almost impossible, so an efficient optimization procedure
is essential. In this work, the same general approach to optimization as was used
in Chapter 5, genetic algorithms, was em ployed for the ordering problems. Details

are discussed in section 6.1.4.

6.1.2 Problem Types

The reordering process is applicable to two general problem types:
(1) cluster analysis and (2) evolving data sets. The distinction is one ot; degree
rather than absolute categorization. in cluster analysis, there are distinct
boundaries between groups of samples and the ordinal variable can be considered
to be a class designation (i.e. which group does the sample belong t6?). For
evolving data sets there is usually a much smoother transition between samples,
and the ordinal variable can be considered to be continuous {e.g. time, pH).
These two cases are considered in more detail below.

Cluster analysis is defined as the study of algorithms and methods for
grouping, or classifying objects {102]. Cluster analysis techniques are often
classified in oné of two ways: partitioning or hierarchical [103]). Partitioning
techniques construct groups, or classes, by defining regions of the measurement
space that determine a sample's membership in a class. An example of partition
clustering for a simple case of two measurements (features) is shown in
Figure 6.2a. The lines divide the space into three regions and the points are

measurements from the 15 samples.
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Figure 6.2 Diagrams illustrating two common cluster analysis techniques:
a) partitioning clustering analysis and b) hierarchical clustering analysis.
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Generally, the effective partitioning classification (or pattern recognition) is
only effective when there are samples whose classification is known so that they
can be used to generate the partitions (i.e. supervised pattern recognition). A
more difficult problem is finding natural clusters within the data with no a priori
knowledge of class structure (i.e. unsupervised pattern recognition). For this
purpose, hierarchical clustering analysis (HCA) is norm=aiiv used.

Hierarchical techniques classify samples by grouping them according to
their similarity to one another in feature space. The clustering is usually
represented in the form of a dendrogram [104]. This can be constructed in a
manner similar to the following procedure. First, a distance matrix is calculated
which contains the distance from every sample to every other sample in feature
space {normally Euclidean distances are used, but other variants are possibie).
This will be a nxn matrix (where n is the number of samples, or objects) as shown

below,

(dyy )y . )
Gy Oy o Gy 61)

_dm dn2 e dnn‘
where d, represents the distance from sample i to sample j. Note that the diagonal
of this matrix will contain zeros and it will be symmetric across the diagonal. Next,

the smailest distance is found and those two samples are combined into one

cluster. The distance matrix is then recalculated, treating the two objects as one,
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thereby reducing the size of the distance matrix by 1 row and column. This
process is continued until there is only one cluster remaining. (Note that in
calculating the distance to the cluster, the median of the cluster is normally used,
but other variations are also possible). Finally, a dendrogram, such as that
represented pictorially in Figure 6.2b is generated. In this picture, the horizontal
length of the lines indicates the distance between the carresponding objects or
cluster. In this example (Figure 6.2b), three clusters are evident (j.e. distance
between is greater than distance within).

Hierarchical clustering can be very effective for exploratory data analysis,
but one of its weakness is that it is hierarchical. Because it tries to compress the
information about several samples into a single cluster, important relationships
among the individual samples may be obscured. The ordering process, on the
other hand, seeks to connect each sample with the one closest to it in the feature
space. In this way it is non-hierarchical and is analogous to the classical
“travelling salesman problem"_in that it seeks the order that will minimize the total
distance connecting all of the samples. Furthermore, this approach may be more
effective in cases where clustering is not distinct.

The second type of problem involves ordering evolving data sets. An
evolving data set refers tu one in which the component contributions for each
sample are related to some continuous ordering variable. A common chemical
example is a simple reaction cf the type A -—> B. Since the reaction leads to a

continuous decrease in the amount of A and an increase in the amount of B, the
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measurements in this case are ordered by time. This type of data, like the
chromatographic and titration data sets in Chapter 2 and 3, is said to be naturally
ordered. Of course, there is no point in reordering samples that are naturally
ordered, but it would be useful to develop a methodoiogy to order a disordered
data set. It is hoped that ordering data sets so that their evolutionary nature is

discovered will reveal new information about the system.

6.1.3 The Objective Function

In order to determine when the best sequence of samples has been found,
some quantitative measure of the reiative quality of a particular order is necessary.
To illustrate how this might be accomplished, consider the problem of ordering the
integers between 1 and 5. There are 120 arrangements of these five integers, but
only three will be considered for illustration. These three possible arrangements
are (13254),(51342)and (1234 5). One can distinguish among these
sequences if they are summed as shown in Figure 6.3. Simply taking the sum (or
the integral) of each arrangement is not enough since this is identical for ali
sequences. ltis necessary to take what can be called the cumdlative sum of the
cumulative sum in order to find the preferred arrangement. This double sum
distinguishes among the different arrangements. Itis clear from Figure 6.3 that the
ordered set, i.e. case (c), has the lowest objective function of the three, and, in fact
of all possible arrangements. Thus, this can be used to determine the correct

order for this problem. Aithough an identical approach will not work for chemical
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a) 1+ I+ 24 5+ 4

I
36

I
43

3+ 6 + 10 + 15
I

34

Figure 6.3 |lllustration of the double sum discrimination ability for the two
disordered arrangements (parts a and b) and ordered arrangement (part c).
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problems, this numerical example is used for illustration later.

For chemical problems, a somewhat different approach to the objective
function is taken. In this case, the goal is to maximize the similarity of adjacent
samples. This can be done by minimizing the variance of adjacent samples in
such a way that optimum continuity is maintained. The objective function must
also be flexible enough to accommodate a range of different data sets. To
ilfustrate the objective function used, a simple cluster analysis example will be
employed. This example consists of 30 samples, each with two simulated
measurements (x, and x,). The samples are organized into three classes and they
are shown projected into measurement space in Figure 6.4. The calculation of the
objective function used involves several steps. The process, illustrated in Figure
6.5, is outlined below:

1. First the samples are grouped by using a sliding window of length p. The
first such window (p = 9) is shown in Figure 6.5 and uses samples in
positions 1 to 9. The second window moves one position to the right and
uses samples in positions 2 to 10. The window continues to move right
until the last sample is encountered, ie. the last window would include
samples in positions 22 to 30. The window size can be adjusted for the
problem under consideration.

2. For each of these windows a variance is calculated for each variable.
Using the example presented in Figure 6.4 if the first window contained

samples 3, 6, 8 13, 14, 18, 21, 23, and 25, the variance for the x, will be
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calculated using -1.33, -0.70, -0.67, 1.81, 0.34, 0.81, -0.03, 0.32 and -0.04.

Likewise a variance would be calculated for x,.
3. The variance for each window, s,f, is calculated as the mean of the

variances for each variable in each window. Thus, the overall calculation

is,

2 1 n k+p-1 ) ”
Sk = n(p‘1)j-21 ; (X” XW) (6.2)

where n is the number of variables (n = 2 in this case), x; is the value for
variable j for sample i, and Xy IS the mean for variable j in window k. This
function is shown in Figure 6.5a for the disordered data set and Figure 6.5b
for the ordered set.

4. The objective function is calculated as the integral of s,% that is,

m-p:1 6.3)
H = st (©.
2.

where m is the number of samples. In some cases, it was found

advantageous to integrate the standard deviation rather than the variance

for the objective function; that is,

m-p+1
(6.4)
H = 3§

The idea in using these objective functions is to minimize the variability
within each of the overlapping windows. This should be accomplished when the

samples are correctly ordered so that there is a maximum similarity between



172

adjacent samples. As shown in Figure 6.5a, the disordered data set leads to what
is essentially a random trace for the mean variance, since samples from different
classes will be included in each window. For the ordered data set, the variance
trace is much lower, except at the boundaries between classes. Consequently this
leads to a smaller value for the objective function.

In defining the objective function, two important aspects have not been
mentioned. The first has to do with scaling of the variables. If the measurements
represent significantly different ranges, (e.g. different absolute concentrations or
different types of measurements) or are on a different scale some kind of scaling
is necessary to ensure a consistent measure of similarity. This problem is
addressed later for particular cases. The second important aspect concerns the
inclusion of samples at the beginning and end of the sequence. This problem is

treated in the next section.

6.1.4 Ordering Modes

As noted in the last section, a problem arises with the objective function as
presented in equations 6.3 and 6.4. This probiem relates to the fact that samples
near the ends of the sequence are included in the variance calculation in fewer
than p windows, unlike the samples in the middie of the sequence which will
appear in p windows. This means that very dissimilar sampies may be pushed to
the ends, where their influence on the objective function will be reduced. The

result is that their order in the sequence may not be correctly specified. There are
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two possible remedies to this problem:

1. At the end of the sequence (i.e. k=m-p+1), the following (p-1) windows can
include the samples at the beginning of the sequence. [n other words, the
sliding window cycles the sample sequence in a circular fashion. For
instance, for the example in Figure 6.4, window number 29 would inciude
samples 28, 30,1, 2,3, 4,5 6 and 7.

2. At the beginning and end of the sequence, a variable size sliding window
can be used. [n the exampie presented, the first window would include
samples 1 and 2, the second would use (1, 2, 3), the third would include (1,
2, 3, 4) and so on, until the desired window siza is reached. At that point,
the window size remains constant and it simply shifts position. A similar
contraction of the window would occur at the right-hand side of the
sequence.

Both of these approaches have their advantages, but which one is used
depends on the nature of the data set. For a closed data set, there is a cyclical
relationship in the sequence, as shown in Figure 6.6a. In this case there is a
relationship between the last sample in the sequence and the first one, and the
cyclical window approach is an elegant solution to the boundary problem. in
chemistry, this case does not arise often, but can be approximated by certain
problems in cluster analysis, such as the example given in Figure 6.4. In these
cases, there are a number of redundant solutions due to the nature of the data

sets. (i.e. there is no definitive beginning and end). The number of redundant



174

Figure 6.6 Ordering modes: a) closed data set, b) open data set.
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solutions in this case is 2m, where m is the number of samples.

A much more common case in chemistry is an open data set, as
represented in Figure 6.6b. In this case, there is no relationship between the first
and last samples. If a cyclical sliding window is used in this case, problems arise
because the reordering algorithm tries to bridge the first and last sample with some
of the intermediate samples. For these cases, there will only be 2 redundant

solutions those corresponding to the forward and reverse sequences.

6.1.6 Genetic Algorithms

The two preceding sections dealt with finding a suitable objective function
for the reordering problem. Having addressed this problem, the task remaining is
to find a suitable way to search for the optimum order. The approach used here
is the general method outlined in Chapter 5, genetic algorithms.

As mentioned in Chapter 5, the problems a GA can handle can be divided
into three classes: 1) numerical parameter estimation, 2) subset selection and
3) sequencing. Much of the work on GAs has focussed on numerical parameter
estimation {89-83], and this will not be discussed in this work. The term selection
problem, the subject of Chapter 5, is classed as a subset selection probiem, and
ordering, the focus of this chapter, can be considered to be a sequencing problem.
By ordering, or sequencing, is meant that samples are arranged according to their
features or responses. The goal is to go from a disordered arrangement of

samples to an ordered arrangement. This can be achieved by using the ordering
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operator (R) as shown in Figure 6.1. A method using GAs to order samples wili
be outlined here.

As previously noted, the outline of the GA is same for any problem being
studied. The aspects that differ from problem to problem are the problem
definition and the exact search methodology used. For this present problem the
strings consist of a sequence of numbers, where the number represents the
position of the sample in the original sequence and its location in the string
represents its position in the test sequence. The objective function is caiculated
as described in the preceding two sections. The search methodology refers to the
exploitation and exploration operators (ie. reproduction recombination and
mutation) and the searching parameters (ie. number of strings, selective
reproduction rate, recombination rate and mutation rate) used.

The recombination operator used in this work is described as follows. Let
P,. and P, be the two parent strings (or source strings), and C, will denote a child
string, i.e. the result of the recombination of two parent strings. The recombination
will be described using the two disordered strings from Figure 6.3. LetP, =13
245and P, =51342 The production of the child strings is outlined below:
1. Create a binary template (T) that is equal to the length of the parent strings.

A possibie template could be;

T=01011
This template was generated simply by employing a uniform random

number generator to produce an integer between 0 and 2" where N is the
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number of samples to be ordered.

2. Let C, initially be a copy of P,:

C.=13245
3. Align C_, T and P, as shown below.
C.,=13245
T=01011
P,=51342
4. Select the elements in C, *hat correspond to the positions of the 1 bits in
T.
C,=13245
5. Select the elements in P, that correspond to the elements selected in C.
P,=51342
6. Rearrange the elements in C, according to their order in P,. The resulting
child string is:
C,=15234

To create the other child string, the procedure starts from Step 2 with the role of
parents switched. In this case the other child string is 5 1 3 2 4.

One of the parameters in the recombination step that is adjustable is the
number of bits that are activated in the template. in this work, this parameter was
set at 50 % (i.e. the number of zeros equalled the number of 1's in the binary
template) and this will be referred to as the exchange rate. One approach to

selecting the template might be to always activate the same number of bits, but
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the actual percentage of bits activated was around 50 %. Because of the method
used to generate the template, the mean number of activated bits can be
calculated from the binomial distribution as half the total number of samples.
Furthermore, the standard deviation in the exchange rate can be aiso calculated
from the binomial distribution, giving,

Exchange Rate=50% . 30% (6.5)

/N

where the latter represents the absolute standard deviation in the exchange rate.
The exchange rate is defined as percentage of bits in the total population that
undergo recombination. For example, for N = 30, the standard deviation in the
exchange rate is about 9 %. it was felt that this approach was more consistent
with the natural process, but alternatives were not rigorously investigated.
The mutation operator that was used involved switching locations of the

integars in the string. For example consider the string:

13245
The first step was to select the locations where the switch is to occur. If the switch
was to occur at the second and fourth bit locations.

13245
Then the mutated string was,

14235
The mutation rate, an adjustable parameter in this work, refers to the percentage

of child strings to which a single mutation of this type was applied.
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The adjustable parameters for the GA used in the ordering problem were
the number of strings in the population, the selective reproduction rate, the
recombination rate, and the mutation rate. In this work acceptable results were
obtained by keeping the searching parameters constant throughout the run, with
the exception of the mutation rate which was allowed to vary with the number of
generations. The parameters that were used are summarized in Table 6.1.

The popuiation size of 100 strings seemed to work well for all of the
problems employed, although a thcrough optimization was not carried out. The
selective reproduction rate of 50% was used to maximize the turnover of the
popuiation. Unlike the problem in Chapter 5, the search space in this case was
noise free in that the objective function for a given string never changed.
Therefore, there was no advantage in retaining any strings other than the ones
used for reproduction, since all of those ranked lower would always remain lower.
Thus, each new generation consisted of the best 50 in the previous generation
plus the new the children. As already noted, the recombination rate was 50 % (i.e.
50 % of the genes or bits were affected). with some level of variability built into this
value. Finally, it was observed that the GA seemed to perform better where the
mutation (percentage of chiid strings undergoing one mutation) was increased as
the algorithm proceeded, as indicated in the table. This was particularly true for

larger numbers of samples. It is thought that recombination,
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Table 8.1 Summary of the GA configuration used for the integer example.

Parameter Value (%)
Number of Strings (Popuiation) 100
Selective Reproduction Rate 50
Recombination Rate 100
(Exchange Rate) 50
Mutation Rate (Generation < 20) 5
Mutation Rate (Generation 21-30) 30
Mutation Rate (Generation 31-40) 50
Mutation Rate (Generation 41-50) 70
Mutation Rate (Generation > 50) 100

at least under the conditions employed here, is not as effective for fine tuning of

the order in the later stages and that Population homogeneity may be a probiem.

6.2 Experimental

In this section, the seven data sets used to test the ordering algorithm are
discussed. These consisted of both simulated data sets (to control the conditions
of the ordering) and experimental data sets (to evaluate performance on real

systems).

6.2.1 Integer Sorting
The simplest data set used in this work consisted of a sequence of integers
that was randomly arranged and then sorted with the GA using the double sum

procedure described in section 6.1.3. This permitted an initial evaluation of the GA
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without using the windowing approach for calculating the objective function
described for chemical data sets. Compiications arising from the definition of the

objective function and boundaries were thus removed.

6.2.2 Cluster Analysis - Simulated Data

To evaluate the ordering algorithm for clustering applications, a data set
was generated consisting of 30 sampies in three groups of 10. The three groups
were centered at the corners of an equilateral triangle in two-dimensional space
corresponding to the two simulated measurements made on each sample were
generated by adding normally distributed random values {# =0, oc=0.25) tc the

coordinates of the center of the cluster. The clusters were separated by 10c.

6.2.3 Cluster Analysis - Experimental Data

The data set used in this study was previously described by White et af
[105].  Briefly, a chromatographic procedure was used to measure the
concentration of primary amino acids in the digestion of 60 mushroom samples
representing six species. For the work presented here, a subset of this data set
consisting of 30 samples and representing three species was employed. These
three species were those most easily separated by traditional cluster analysis
techniques. The feature space consisted of the responses for six selected amino
acids (integrated signals) normalized by the total integrated signal for each

chromatogram.
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6.2.4 Simulated Chromatographic Data

As a simpie example of an evolving data set, a three-dimensional
chromatogram was simulated (absorbance vs. wavelength vs. time). The
specifications for this data set were as follows. The three concentration profiles
were Gaussian with ¢ = 7.5 s and a peak to peak separation of 10 s between
components 1 and 2 and 12 s between components 2 and 3. The middie profile
was centered at 35 seconds and all profiles were of equal height. The spectra
were also generated as Gaussians, with c =20 nm and a peak to peak separation
of 20 nm. Here the middle spectrum was centered at 250 nm and corresponded
to the middle concentration profile. Again, all three spectra were of eaual
amplitude. Data for the spectrochromatogram were generated at intervals of 2 s
between 0 and 70 s, and at intervals of 8 nm between 204 nm and 300 nm.
Gaussian noise at a level of 0.01 % of the maximum signal was added to the final
spectrochromatogram.

Of course, the spectrochromatogram generated in this manner is already
ordered, so to test the ordering algorithm, the spectral slices were randomly
ordered along the time axis. The ability of the GA to obtain the original order was

then examined as a test of its performance for ordering evolving data sets.

6.2.5 The Clock Reaction
An oscillating chemical reaction that will be referred to as the clock reaction

was used as an example of a titne variant process that was only partially ordered.
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The procedure used was adapted from Summerlin and Ealy [1086] and ‘vas carried
out in a specirophotometric cell with a pathlength of 1 cm. Five drops of ferrion
(phenanthroline ferrous sulfate) was added to the cell containing a solution of
NaBr, NaBrO, and malonic acid (full details are given in [107]). Spectra were
obtained at 2 nm intervals between 320 nm and 650 nm every 5 s for 480 s.

Approximately five oscillations were observed in this period.

6.2.6 Pyrocatechol Violet

The acid-base equilibrium characteristics of pyrocatechol violet were
employed in Chapter 2 to illustrate a data set where the ordinal variable is pH.
The same equilibrium, which consists of four absorbing species, was used in the
current study to simulate an evolving data set which has a totally disordered time
seqguence. In order to generate this disordered time sequence, the flow system
shown in Figure 6.7 was used. Pump 1 was used i provide a variable flow of
pyrocatechol violet (0.01 M) at a flow rate of ca 1 ml/min. Pumps 2 and 3 were
used to control the pH and the combined flow rate was set at ca 2 mi/min. The
composition of the buffer used was similar to the system described by Perrin and
Dempsey [108] and consisted of Na,HPO, (7.10 g), citric acid monohydrate (7 g,
C3-cyclohexylamino-1-propane sulfonic acid (CAPS) (11.2 g), and (250 m)1M
NaOH diluted to 1 L with CO, free distilled water. A solution of 0.1 M HCI was
added to this at a mixing tee to adjust the pH, and this mixture was then combined

with the pyrocatechol violet stream. The combined flow rate of the buffer and HCI
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streams was held constant. The ratio of flow rate of the buffer to acid and the flow
rate of the pyrocatechol violet stream were determined by a computer generated
random number sequence. The sequence values were drawn from a uniform
distribution. Although the pH of the buffer-base mixture is not exactly linearly
related to the ratio, the change is fairly gradual and monotonic. The pyrocatechol
violet mixture was directed to the diode array spectrophotometer a 30 u L flow cell
(Hellma Cells, Jamaica, NY) and spectra were obtained on the flowing stream.
The pH of the stream exiting the flow cell was measured with a flow through pH
electrode (Fisher Model # 3D) with a cell constructed in the departmental machine
shop.

The conditions used here were intended to roughly simulate a process
stream in which there are four observable components in the process stream
whose contributions change in accordance with some unknown process

variable(s).

8.2.7 St. Louis Data.

The data used in this study were provided by Prof. P. K. Hopke of Clarkson
University and were obtained as a part of an air poliution study in the St. Louis,
MO area carried out during the months of July and August, 1976. The data
consisted of concentrations of 27 elements in particulate matter gathered at one
maonitoring site (site 112), and were divided into four subgroups by particle size (<

2.4 pm and 2.4 pm - 20 ym) and time of collection {a.m. and p.m.). For this
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study, the coarse fraction collected during the a.m. period was used. Elemental
concentrations that were below the detection limiis were excluded, leaving 17
elements (Al, Si, S, Cl, K, Ca, Ti, Mn, Fe, Ni, Cu, Zn, Se, Br, Sr, Ba, and Pb) and
56 samples. [n order to account for the different concentration ranges, the data
were autoscaled prior to analysis. Further details on this data set can be found

in a paper by Hopke et af [109].

6.2.8 Computational Aspects
Calculations were performed on 486-based computers (486-DX, 486-DX2
and 486-DX4) under DOS 6.0 and Windows 3.1 (Microsoft, Redmond WA) with

programs written in MATLAB 4.0 for Windows (The Math Works Inc., Natick, MA).

6.3 Results and Discussion
6.3.1 Integer Sorting

The integer sorting problem was selected as the initial test of the GA
ordering algorithm for several reasons. First, complications arising from an
inappropriate choice of objective function were avoided since the simple doubie-
sum approach was known to work for this example. Also, the double-sum does
not require any adjustment at the boundaries. Because of this, the problem was
suitable as a test case for adjusting the GA parameters to near optimal values.
Finally, the nature of the ordering problem is such that the number of generations

required for convergence (assuming a starting point that is totally random) should
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be independent of the objective function used. This is becaﬁse the search space
can be regarded as essentially noise free. Thus, the integer ordering piablem
serves as a means to evaluate the convergence ability as a function of the number
of samples (of course, the significance of the final solution will depend on the
objective function, but that is not the issue in this case).

Figure 6.8 shows a typical result for the integer ordering problem. In this
case ordering of integers from 1 to 30 (i.e. n = 30) is shown. The objective
function, i.e. double sum, decreased dramatically for about the first 30 generations
and marginally improved after 50 generations. For this particular run, the GA
converged in 64 generations (i.e. the integers were ordered from 1 to 30). The
mean number of generations required for convergence as a function of n is shown
in Figure 6.9 a. The results are the averages of 3 runs and the error bars shown
represent standard deviations. These resuits show that the number of generations
required for convergence is nonlinear in n. Figure 6.9 tries to show that although
the search space increases quickly (e.g. logarithmic as shown in Figure 6.9 b) the
number of generations does not. For the present problem each generation
corresponds to approximately 7 seconds on a 100 MHz 486 computer. The actual
times change somewhat with the objective function and the dimensionality of the

problem.

6.3.2 Cluster Analysis - Simulated Data

The simulated cluster analysis data set was used as a test case for the



188

| I I I
6000 i
-
@
S
Q
C
3
(I
" 5500 F .
>
=
O
.(D
0
O
5000 |- —
l | ] |

20 40 60 80 100

Generation

Figure 6.8 A typical run for the integer exampie.



189

175 |- ]
vn 150 |- _
[

L o5 i
4
S 0
S 100 - i
[
) i
&)
Hﬁ —
o
St i
- .
-
N
O o
=
o
3 ]

Figure 6.9 a) Mean number of generations required for convergence of the GA as
a function of the integer number. b) The common logarithm of the number of
permutations for different n.



190

sliding window objective function. Since the data in this case were symmetrically
arranged around a central point, the data set was considered to be closed and the
sliding window was fixed at a size of @ samples. Although such closure is not
required in the general case, in this instance it permitted the more elegant
approach of a circular boundary to be used.

Figure 6.10 shows the convergence of the GA for the simulated set. It will
be noted that correct clustering of the sample (i.e. into groups 1, 2 and 3) is
obtained after about 37 generations, but more generations are needed to order the
samples within each group. The clustering shown in Figure 6.10, ie.
333333311111111112222222222333 is equivalent to
111111111122222222223333333333 because of the nature of the circular
approach to accommodate boundaries.

The GA will group samples that are most similar to each other even if they
are not in the same class. This can be illustrated through the use of a connective
diagram in which lines are drawn between the ordered samples in feature space,
indicating the sequence determined by the GA. Such a diagram is shown in
Figure 6.11 for the simulated set used here. Note that the sequence chosen
minimizes the total distance connecting all of the sampies. Of special interest is
how the GA organizes the samples that bridge the classes. For example in this
case three pairs of samples bridge the three classes: 8 & 14, 20 & 29 and 4 & 30.
While the GA correctly ordered the samples in the data set, the resulting sequence

does not provide a direct indication of the number of clusters present or where
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their boundaries lay. This information can be obtained by a number of methods,
however. One of these is a plot of the window variance as a function of the
location of the center of the window within the ordered sequence. Such as a plot
was shown in Figure 6.5b. Note that the variance function increases significantly
at the boundaries of the clusters and that there are 3 such maxima indicating the

presence of three clusters.

6.3.3 Cluster Analysis - Experimental Data

To illustrate the application of GA ordering to the cluster anaiysis of
experimental data, the mushroom data set described in section 6.2.3 was used.
The classification of these mushroom samples was previously investigated by
White et a/ [105]. In their study three species were able to be spatially
discriminated using only two principal component vectors extracted from a six
dimensional space. In this work the same six experimentally measured features
(i.e. normalized amino acid responses) were used as the sequencing variables.
As for the simulation, the data set was considered to be closed. The samples are
plotted in the space of the first two principal components in Figure 6.12. Samples
1 to 10 belong to the first species (Amanita flavoconia), samples 11 to 20 belong
to the second species (Amanita gemmata), and sampies 21 to 30 belong to the
third species (Amanita virosa). The sequence as determined by the GA is shown
in Figure 6.120 in the form of a connection diagram in the principal component

space. Note that all of the samples are grouped in the appropriate cluster.



194

-4 -3 -2 -1 0 1 2 3

1 PC,

Figure 6.12 a) Classification of mushroom data using two principal components.
b) Connection diagram for the mushroom data.
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In this example, the clustering provided by the GA proved to be better than
that obtained with other exploratory data analysis techniques, such as PCA or
hierarchial clustering (dendrograms). PCA is restricted to low dimensional
mapping, which may obscure spatial relationships, and hierarchial clustering
(because of its hierarchial nature) may suggest incorrect associations. This latter
point is illustrated for the mushroom data set by the dendrogram in Figure 6.13
obtained using the complete link method. It can be seen that the dendrogram
misclassified some samples, while the GA was able to provide the correct
classification for all samples. This suggesfs that the GA may be a better classifier

that the HCA method in some methods.

6.3.4 Simulated Chromatographic Data

The preceding two examples show how GA sequencing can be applied to
clustering problems. The remainder of this chapter will focus on the second type
of problem, evolving data sets. In this section the simulated chromatographic data
set described in section 6.2.4 was treated with the sequencing algorithm. Of
course, chromatographic data are naturally ordered in time, so the spectra
obtained at each time interval were randomly ordered prior to initiation of the
algorithm. By using simulated data, factors such as the noise level and degree of
spectral and chromatographic resolution could be controlled, and the success of
the ordering algorithm could be readily accessed. In this case, a closed data set

was once again assumed and the circular boundary was used. This was possibe
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here since the baseiine regions permitted continuity to be maintained between the
first and last components. A window size of 12 was used in treating these data.

Figure 6.14a shows the concentrations profiles for the three components in
the simulaied mixture and 6.14b shows the ordering of component concentrations
determined by the GA. Itis clear that the GA was able to correctly order the data

set, although the beginning and end of the sequence were arbitrarily defined.

6.3.5 The Clock Reaction

A further test of the GA method employed an experimental data set where
the samples were not entirely ordered by time. This set consisted of spectra
obtained over several cycles of the iodine clock reaction described in section 6.2.5.
This data set was a good choice for initial tests because it consisted of only two
observable components that were spectrally different. Since there were only two
components, it could be treated as a open data set. As shown in Figure 6.15, the
set is not entirely ordered by time and there appear to be almost five complete
cycles. The only difference in the treatment of this set from the chromatographic
data set is that a window of length 7 was used. The results of ordering for the
clock reaction are shown in Figure 6.16. Figure 6.16a shows the absorbance
measurements in the original order at one wavelength (444 nm). The bottom
panel shows the absorbance at the same wavelength obtained after GA
sequencing. For this example, the smooth transition of absorbance values

demonstrates that the GA has arranged the data in a consistent fashion, with
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Figure 6.15 Spectra obtained from the clock reaction as a function of time.
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composition of one sampie merging smoothly into the next. However, a truly
correct ordering would result in a monotonic change in absorbance values. The
results obtained here are a consequence of the circular boundary, and indicates

weakness of this approach for a data set which is not truly closed.

6.3.6 Pyrocatechol Violet

The clock reaction described in the last section consisted of only two
components and was already partly ordered. The pyrocatechol data set served as
a more rigorous test of the GA applied to experimental data since it consisted of

four components and was randomly sequenced by the nature of the experiment.

The nature of this data set necessitated some changes in the treatment. Unlike
the other cases discussed so far, this case was treated as an open data set with
a variable sized window at the boundaries. The full window size was 12 samples.
In order to account for variations in the magnitude of the spectra due to changes
in the dye concentration, spectra within each window were normalized to unit area.
Finally, it was shown that better results were obtained when the objective function
was calculated using the standard deviation rather than the variance (i.e.
equation 6.4).

The original sequence of spectra obtained with the randomized flow system
is shown in Figure 6.17. In this case, the ordering ability of the GA can be
accessed by examining the correlation of the sequence number with the pH, since

that is the underlying ordinal variable in this case. In Figure 6.18, pH is plotted as
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a function of sequence for the original data set (6.18a) and the GA ordered data
set (6.18b). Although the series of pH values i§ not perfectly monotonic, the
progression showed a definite positive correlation. !mproperly ordered samples
are likely the result of variations in the dye concentration. Low concentrations,
upon scaling, will have inflated errors relative to the higher concentrations and thus
may lead to an inflated estimate of the variance within the window. An alternative

objective function which accounts for this problem may yield better results.

6.3.7 St. Louis Data Set

For all of the evolving data sets presented so far, an underlying ordering
variable was already known. !t remains to be shown that the ordering process can
provide information that was not already availabie. In order to demonstrate this,
a suitable data set must meet two requirements. First, it must be truly disordered
and therefore represent a real problem and, second, there must be a way of
verifying that the order determined by the GA is somehow meaningful. To this
end, the St. Louis data set was chosen. This data is an example f data that is
used in receptor modeliing [110]. The original elemental profiles for this data set,
ordered by day, are shown in Figure 6.19. As can be seen from the figure, there
is no obvious order to these data. Itis also apparent that the ranges of elemental
concentrations differ significantly. For this reason, each column of elementali
concentration was variance scaled prior to ordering to reduce the influence of

values with a large magnitude. Since errors were generally of the proportionai
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type, this type of scaling was not regarded as particularly detrimental. Also, as in
the pravious case, the profiles were scaled to unit area within each window. The
data set was treated as closed with a window size of 12.

Following ordering by the GA, a corresponding ordinal variable was sought
by examining correlations with a number of auxiliary variables recorded with the
data set. When the ordering was tested against variables such as day of the week
or wind speed, no systematic relationship was observed. With wind direction,
however, a significant correlation was observed with the sequence number. This
is fllustrated in Figure 6.20. Although the relationship is not perfect (as expected,
since wind direction can vary over a twelve hour period), these results serve as
independent confirmation of a meaningful sequencing. Furthermore, the
correlation could have been anticipated, since the contribution of particular sources
to the overall receptor profile shouid be related to the direction of the wind carrying
the pollutants. Such information could prove very valuable in identifying the
sources of particular emissions and characterizing them in the absence of known

source profiles.

6.4 Conclusions

In this chapter, the ability of the GA to order disordered data sets from a
variety of sources has been demonstrated. These data sets differed in terms of
their origin, the nature of variables used, the number of variables, the number of

samples and the type of ordinal variabie. The sets are summarized in Table 6.2.
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Table 6.2 The six sets analyzed by the GA sequencing method.

Data Set Number of Samples | Number of Variabies

1. Cluster Analysis 30 2
Simulated Data

2. Cluster Analysis 30 6
Experimental Data

3. Simulated 36 13
Chromatographic Data

4, The Clock Reaction 33 43

5. Pyrocatechol Violet 29 50

6.. St. Louis Data 56 17

The algorithm described in th2 introduction was found to be generally
applicable to all of the problems discussed here with minor changes. For
convenience, some of the parameters associated with the GA were summarized
in Table 6.1. Additional details for each problem are given in Table 6.3. Although
the performance of the GA was not optimized (i.e. window size, window mode,
scaling and the type of objective function) in every case, acceptable convergence
was obtained for all problems. Further work needs to be done to refine the
objective function so that it can better accommodate variables of different scale

and compensate for measurement errors.
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Table 6.3 Summary of windowing GA parameters for the six sets considered in

Table 6.2.
Data Set | Window | Scaling Ob;j. Window # of gen. to
Size Function Mode converge

1 9 Autoscaled | Eq. 6.3 Closed 40

2 9 Autoscaled | Eq. 6.3 Closed 125

3 12 Scale To Eq. 6.3 Closed 1560
Unit Area

4 7 Scale To Eq. 6.3 Closed 40
Unit Area

5 12 Scale To Eq. 6.4 Open 50
Unit Area

6 12 Scale To Eq. 6.3 Closed 250
Unit Arez,

For the clustering problems presented here, the results of GA ordering

appear to be quite useful in providing more information than tracitional exploratory

data analysis methods. Further work needs to be done to examine the utility of

this method for dealing with more difficult clustering problems. For most of the

evolving data sets examined, the underlying ordinal variable was already known,

but for the last data set, it was shown that uniquely useful information could be

provided by the sequencing process.

Traditionally, this method of treating

disordered data sets has not been used, so it remains to be seen whether or not

wider application will bring more useful results. For example, the use of evolving

factor analysis methods in conjunction with GA ordering could prove to be

especially fruitful.
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Conclusions

Data can be acquired from many different types of instruments. Even
though this data might be coilected in a specific format one is not limited to
analyzing data in that format. This work demonstrated that many types of data
formats can be analyzed in the form of a matrix (See Eq. 1.1).

In Chapter 2, a method for determining the number of components in an
unresolved chromatographic peak was developed. A technique called Evolving
Projection Analysis (EPA) was originally developed for systems of one- and two-
components. This present work extended the EPA method to systems of three-
and four-components. The algorithm was successfully tested on a simulated
system (a four-component system) and three experimental system (a three-
component chromatographic system, a four-component chromatographic system,
and a four-component spectrophotometric titration). This method is easily able to
discern how many components are present in a sample. The main advantages of
EPA are that it is able to locate where components appear and disappear and little
or no prior information is needed about the system. This analysis focussed on
measurements from a diode array spectrometer, which was also used in
Chapter 3.

In Chapter 3, determining the number of components in a system can be
complicated if the detector is not ideal. Although the analysis focussed on a

absorbance measurements from a diode array detector this treatment can be

210
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extended to other detectors. The two problems investigated were nonlinear
instrument response and heteroscedastic noise in instrument response. The
present discussion focusse. on a one-component system but the treatment can
be extended to higher order systems if needed. The analysis showed that with
modifications to the EPA method, one can correctly identify the purity of a sample.
However, during the analysis it was found that for high absorbance measurements
(ca>2), where stray light becomes important, the method fails.

Analysis in Chapters 2 and 3 used data from a diode array spectrometer,
which commonly gives a series of measurements per sample. In contrast
Chapter 4 looks at measurements from instruments that give one measurement
per sample. In this chapter, the main analysis was the conductivity prediction.
The problem is that the present recommended model, the Rossum model, is not
able to deal with all samples. The validity of the Rossum model is questionable
and a variety of methods that can be classed as empirical and semi-empirical were
thoroughly investigated. The chapter concluded by recommending a method that
modifies the Rossum model.

Using the same data in Chapter 4, Chapter 5 also looked at trying to find
the best conductivity prediction model. Only the ten most abundant ions were
considered. Equation 5.3 showed that 40 terms were considered. It is not
possible to evaluate all combinations since this would require evaluation of ca 10"
models, which would take around 4000 thousand years. To find the best model,

one needs an intelligent search strategy. Genetic algorithms were used to find this
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model. GA's were helpful in the data analysis in Chapter 6.

In this chapter the following question was considered: How can disordered
samples be ordered? The motivation here is that placing samples in order may
give new information about the system. The main problem was finding a function
that ordered samples for different systems. The most successful of the methods
tried was called the variance method. Two areas of this work could be more
carefully investigated. The first area is that other ordering functions could be
considered and secondly that GA conditions could be more fully optimized.
However this chapter clearly showed how ordering can be accomplished.

This work has looked at a number of types of analysis. Although the
analysis from chapter to chapter may seem unrelated, a number of scenarios are
possible where one may want to analyze data using technigues from several
chapters. For example, consider the collection of samples from a process stream.
Sometimes these samples contain an analyte that is not ordered in time, but by
some other variable. One could use the technique outlined in Chapter 6 to order
the samples, and monitor the analyte's presence/absence using techniques from

Chapter 2 and 3. This is just one example how these techniques are related.
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Appendices

Several programs were written to analyze the data in this thesis. Some of

the program listings follow. All of all the programs were written in MATLAB. A

summary of the programs listed here is given below..

Program
Chapter 2
A multkf.m
Chapter 3

B henosim.m

C kfcorr.m
Chapter 4

D fenfinal.m

E mirfinal.m
F crfinal.m
Chapter 5
G gavarm
H gafixed.m
Chapter 6

| gaorder.m

Description

Program that perfoms EPA on a multicomponent system.

Program to simuiate the response from the HP 5242A diode
array detector.

Program that performs EPA on nonideal systems.

Program that caicuiates SEP for RM, MRM, ERM and
EMRM.
Program that calculates SEP for various MLR models.

Program that calculates SEP for continuum regression.

Program to select terms using the variable size method.

Program to select terms using the fixed size method.

Program to order samples.

220



Appendix A

Program listing for muitkf.m
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% multkf.m

% Written by Stephen Hughes

% Dalhousie University

% Last modified July 1993

Clear

clg

tic

%Options

% &) orthogonal or vertical fit

% if want vertical set vert=1;

% if want orthogonal set vert=0;
vert=0;

% b) forward and/or reverse filtering
% if want forward only set forrev=1;
% if want forward and reverse set forrev=2;
forrev=2;

% c) select wavelength

% if want to specify independent wavelengths set wave_select=0;
% if want to search independent wavelengths set wave_select=1;

wave_select=0;

% d)Scan time correction
% yes set scantime==1
% no set scantime==0
scantime=1;

% Load in data

timread4
load absorb.dat

D = absorb;
nmd=4;

t=61:0.5.183.5;
w=230:2:300;

nw = length(w);
k = length(t);
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[m,n]=size(D);

WOorig=w;
rmsfitfr=zeros(2*nmd,k);
rmsinnfr=zeros(2*nmd,k);
Dcorr=D;

if scantime==1;
tscan=0.1;
ndiodes=328;
for i=2:m
for j=1:n
lamda=((w(j)-190)/2)+9;
Dcorr(i,j)=D(i.j)-(D(i.j)-D(i-1,)))*((}amda-1 M(ndiodes-1))*(tscan/0.5);
end
end
end
clear D

D=Dcorr(2:m,:);

Dorig=D;

meanD=mean(Dorig);

stdD=std(Dorig);

for i=1:length(meanD)
asD(:,i)=(Dorig(:,i}-meanD(i))/stdD(i);

end

[V,eigD]=eig((asD™asD)/(length(meanD)-1 n;

V=flipir(V);

T=asD*V;

V(1:10,1:3)

T(1:10,1:3)

%pause

nw=36;

Dorig=T(:,1:nw);

D=Dorig;

pass=1;
fr=1;

while fr<=forrev
fr
sent=zeros(nmd,1);

if fr==2;
D=flipud(Dorig);



end

if wave_select==0;
if fr==1;
id(1)=1;
id(2)=2;
id(3)=3;
id(4)=4;
sent=ones(nmd,1);
end
end

if pass==2;
temp=id;
id{1)=temp(1);
id(2)=temp(2);
id(3)=temp(3);
id{4)=temp(4);
sent=ones{nmd,1);

end

e=zeros(k,nw*nmd);
f=zeros(k,nw*nmd);
maxf=zeros(k,nmd);
e2sum=zeros(k,nw*nmd);
f2sum=zeros(k,nw*nmd);
rmsinn=zeros{nmd,k);
rmsfit=zeros(nmd, k):

bg = 75;
if fr ==

bg=5;
end
Back = D(bg,:);
sd = std(Back),
clear Back
R = sd.A2;
thres = 6*sd

ct=2

while ct<=k
ct
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if ct==
xprev=zeros(nmdA2, nw);
Pinit1=diag(linspace(10e10,10e10,nmd));

for i=1.nmd
if i==
Pinit2=[Pinit1];
else
Pinit2=[Pinit2 Pinit1];
end
end

for i=1:nw
if ==
Pinit=[Pinit2];
else
Pinit=[Pinit2; Pinit);
end
end

end
if max(D(ct,:))>= thres | sent(1,1)>0
for md=1:nmd
if sent(md,1)>0
iw=md+1;
if sent(md,1)==1
Did = D(.,id(md)); % Locate the position of the ind. variable in D
Dbe = D(:,md:id(md)-1);
Daf = D(:,id(md)+1:nw);% Reconstruct D so that id in the 1st col. of 0}
wid = w(:,id(md)); % Locate the pesition of the ind. variable in D
wbe = w(:,md:id(md)-1);
waf = w(:,id(md)+1:nw);
if md==
D = [Did,Dbe,Daf;

w = [wid,wbe,waf];
wid
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end %md==

if md==
D = [D(:,1),Did,Dbe,Daf};
w = [w(:,1),wid,wbe,waf];
wid

end %md==2

if md==3
D = [D(:,1:2) Did,Dbe,Daf};
w = [w(:,1:2) wid,wbe, waf];
wid

end %md==3

if md==
D = [D{:,1:3) Did,Dbe,Daf];
w = [w(;,1:3) wid,wbe,waf];
wid

end %md==

Dall(:,(md-1)*nw+1:md*nw)=D;
clear wid wbe waf Did Dbe Daf
end % sent(md,1)==

Trans = diag(linspace(1,1,md));
Q = diag(linspace(0,0,md));

for cw = iw:nw

Aprevsub = xprev(nmd*(md-1)+1:nmd*(md-1)+(md-1)+1,cw);
Pinitsub = Pinit(nmd*(cw-1)+1:nmd*(cw-1)+md,nmd*(md-1)+1:nmd*
(md-1) +(md-1)+1);

if md==1 H=[Dall(ct,nw*(md-1)+1)]; end
if md==2 H=[Dall(ct,nw*(md-1)+1) Dall(ct,nw*(md-1)+2)]; end
if md==3 H=[Dall(ct,nw*(md-1)+1) Dall(ct,nw*(md-1)+2)
Dall{ct,nw*(md-1)+3)]; end
if md==4 H=[Dall(ct,nw*(md-1)+1) Dall(ct,nw*(md-1)+2)
Dail(ct,nw*(md-1)+3) Dall(ct,nw*(md-1)+4)]; end

HT = H
K = (Pinitsub*HT)/(H*Pinitsub*HT + R);
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e(ct,cw+nw*(md-1)) = Dall(ct,cw+nw*(md-1))-H*xprevsub;
xest = xprevsub+K*e(ct,cw+nw*(md-1));
f(ct,cw+nw*(md-1;) = Dall(ct,cw+nw*(md-1))-H*xest;

% Calculate the innovations eij

if vert==0;
if md == 1, pdt=xest(1)*xest(1); end
if md == 2, pdt=xest(1)*xest(1)+xest(2)*xest(2); end
if md == 3, pdt=xest(1)*xest(1)+xest(2)*xest(2)+xest(3)*xest(3); end
if md == 4,

pdt=xest(1)*xest(1)+xest(2)*xest(2)+xest(3)*xest(3)+xest(4)*xest(4): end

e(ct,cw+nw*(md-1))=e(ct,cw+nw*(md-1))/sqrt(pdt+1);

end

% Calculate the innovations fij

if vert==0;
if md == 1, pdt=xest(1)*xest(1); end
if md == 2, pdt=xest(1)*xest(1)+xest(2)*xest(2); end
if md == 3, pdt=xest(1)*xest(1)+xest(2)*xest(2)+xest(3)*xest(3); end
if md == 4,

pdt=xest(1)"xest(1)+xest(2)*xest(2)+xest( 3)*xest(3)+xest(4)*xest(4); end

f(ct,cw+nw*(md-1))=f(ct, cw+nw*(md-1))/sqri(pdt+1);

end

Tpose = (Trans - K*H)"
P = (Trans - K*H)*Pinitsub*(Tpose)+K*R*K’;

TransT = Trans'

xprevsub = Trans*xest;

Pinitsub = Trans*P*TransT + Q;
xprev(nmd*(md-1)+1:nmd*(md-1)+(md-1)+1,cw)=xprevsub;

Pinit(nmd*(cw-1)+1:nmd*(cw-1)+md,nmd*(md-1)+1 :nmd*(md-1)+(md-1)+1)=Pinit
sub;

end % for wavelength w
clear HT K xest Tpose P TransT

sent(md,1) = sent(md,1)+1;
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e2sum = sum((e(ct,iw+nw*(md-1):nw+nw*(md-1))").A2);
rmsinn(md,ct) = sqrt(e2sum/(nw-md)):

f2sum = sum((f(ct,iw+nw*(md-1):nw+nw*(md-1))).A2);
rmsfit(md,ct) = sqrt(f2sum/(nw-md));

end %if sent(md,1)>0
end % if model md
end % if max(D(ct,:))>= 6*sd | on(1) > 0

if ct==
clear Pinit Pinit1 Pinit2
end

ct=ct+1:;
end % while time t

if fr==2
rmsfit = fliplr(rmsfit);
end

rmsfitfr(nmd*(fr-1)+1:fr*'nmd,.)=rmsfit;
rmsinnfr(nmd*(fr-1)+1:fr*nmd,:)=rmsinn;
if fr==1, wir=w; end

if fr==2, wha=w; end

fr = fr+1;

%if pass ~=2, fr = fr+1; end

if pass <3, pass=pass+1; end

if pass==2;
plot(t,rmsfitfr(1 )= Lrmsfitfr(2,:),'-. t rmsfitfr(3,:)," .t rmsfitfr(4,:),'--'
title("1com - 2com -. 3com : 4com --')
xlabel('Time")
ylabel('Rms Fit')
pause(0.1)
end % fr==1

if pass==3
piot(t,rmsfitfr(1,:),"',t,rmsfitfr(2,:),'-." t,rmsfitfr(3,:),"" t, rmsfitfr(4,:) '--'
hold
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plot(t,rmsfitfr(nmd+1,:),"- t, rmsfitfr(nmd+2,:),"-." t, rmsfitfr(nmd+3,:),"",t,rmsfitfr(nmd
+4,:),"--")

plot(t,rmsfitfr(nmd+1,:),'0" t, rmsfitfr(nmd+2,:),'0" t, rmsfitfr(nmd+3,:),'0".t,rmsfitfr(nm
d+4,:),'0")
hold
titie("Icom - 2com -. 3com : 4com --)
xiabel('Time")
ylabel('Rms Fit")
pause(0.1)
end % fr==2

end %for fr

clg

if forrev==1;
plot(t,rmsfitfr(1 ,:),‘-',t,rmsﬁtfr(2,:),'-.',t,rmsﬁtfr(a,:),‘:',t,rmsﬂtfr(4, )=
title("1com - 2com -. 3com : 4com --')
xlabel('Time')
ylabel('Rms Fit')
pause(0.1)

end % forrev==1

if forrev==2;
plot(t,rmsfitfr(1 2=\ Lmstitfr(2,0), -t rmsfitfr(3,:), " t rmsfitfr(4, ),
hoid

plot(t,rmsfitfr(nmd+1 ,:),'-',t,rmsﬁtfr(nmd+2,:),'-.',t,rmsﬂtfr(nmd+3,:),':',t,rmsﬁtfr(nmd
+4’:)'I_")

plot(t,rmsfitfr(nmd+1 ,:),'o',t,rmsﬁtfr(nmd+2,:),'o',t,rmsﬁtfr(nmd+3,:),'o',t,rmsﬂtfr(nm
d+4,:),'0")

hold

title("1com - 2com -. 3com : 4com --')

xlabel('Time")

ylabel('Rms Fit')

pause(0.1)
end % forrev==

rmsfitfr = rmsfitfr';



Appendix B

Program listing for henosim.m

% henosim.m

% Written by Stephen Hughes
% Dalhousie University

% Last modified January 1994

% Program to simulate nonideaiities in "LC/DAD"
% 1) Scantime effect

% 2) Nonlinearities

% 3) Heteroscedatic Noise

% Need the following files in directory
%henosim.m

%prci3lo2.txt

%blankflo.txt

%blank1cm.txt

%dark.dat

%gauss.m

% Input section
% 1) Nonidealities
% a) Include Scantime effect?
% yes, then set scantime = 1
% no, then set scantime =0
scantime = 0;

% b) Include nonlinearity?
% yes, then set nonlin = 1
% no, then set nonlin =10
nonlin = 1;

% c) Include heteroscedastic noise?
% yes, then set hetnoise = 1
% no, then set hetnoise =0
hetnoise = 0;
% also if hetnoise = 0 must set amount of homoscedastic noise
% fraction(f) of maximum absorbance
fr =0.0004;

% 2) Blank (assumes water as blank)
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% Do you want the flow cell or 1cm cell?

% if want flow cell set flow = 1 and onecm = 0;
% if want 1 cm cell set flow = 0 and onecm = 1:
flow = 1; % Need to modify

onecm = Q;

% 3) Load in spectrum and concentration profile of analyte(s)
analyte =1;

% a) Load in spectrum of analyte
% Need spectrum where Beer's Law holds.

if analyte ==

load prcl3lo2.txt; % load spectrum

abs = prcl3lo2;

c = 0.025; % concentration in moles/iiter
end
if analyte ==

load methor.txt; % load spectrum

abs = methor;

€ = 2/(1000*327.347); % concentration in moles/liter
end
b=1; % pathlength in cm

W= i90:2:820; % wavelength of spectrum in nm

% b) Load in spectrochromatogram or generate
% (done later within simulation program)
t=1:1:100;, % t=Time
tr = [50]; % tr = retention times (#m = #components)

% 4) Kalman filter parameters
delwkf = 10; % for kalman filtering want to select wavelengths
% delwkf(in nm) apart
% wavelength of interest wi:dwkf:wf

idw(1) = 440; % independent wavelength
idw(2) = 480;

niter = 1; % number of passes through kalman filter
% 1 pass unweigthed regression
% 2 or more weighted regression
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nmd = 3; % if nmd = 3 want to analyze
% 1L,1NL and 2L

% 5) Other parameters
maxabs = 0.5; % maximum absorbance
wi = 400; % lowest wavelength to analyze
wf = 650; % highest wavelength to analyze

scantime = Q;

% 6) Include Stray Light effect?
% yes, then set stray = 1
% no, then set stray =0
stray = Q;
r=0.0020; % Fraction of Stray Light

% Assumptions
% 1) length(blank) = length(dark) = 316
% 2) bandpass = 4.5; %
bpass = 4.4;

% Linear One Component Model md=1
% Nonlinear One Component Model md=2
% Linear Twc Component Model md=3
% Nonlinear Two Component Model md=4

% load in blank and dark current
randn('seed',0)

wr = 190:2:820;

% load in blank

if flow == 1 & onecm ==

load blankpo
bl = blankpol;
end

if flow == 0 & onecm ==
load blank1cm.txt
bi = blank1cm;

end

% load in dark current
load dark.dat
dark = dark’;

delw = w(2)-w(1);
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int = delwkf/delw; % assumes dw is a multiple of dwkf

% Estimate spectral first derivative with a
% 5 Point Quadratic polynomial Savitzky-Golay type filter

[m,n] = size(abs);
e1 = zeros(m,1);

eo = abs/(b*c);
for i=3:m-2

e1(i) = ((-2)*eo(i-2)+(-1)*eo(i-1)+(1)*eo(i+1)+(2)*eo(i+2))/10/deiw;
end

% Want to take subset of data set to do EPCIA
% wid is the location of wi in vector w
% wid is the location of wf in vector w
wid = ((wi-w(1}))/delw)+1;

wfd = ((wf-w(1))/deiw)+1;

wp = w(wid:int:wfd);

eop = eo(wid:int:wfd);

e1p = e1(widiint:wid);

absp = abs(wid:int:wfd);

% widr is the locaiion of wi in vector wr
% widr is the location of wf in vector wr
widr = ((wi-wr(1))/deiw)+1;

widr = ((wf-wr(1))/deiw)+1;

darkp = dark(widr:int:wfdr);

blp = bl(widr:int:wfdr);

idwloc(1) = ((idw(1)-wp(1))/delwki)+1;
idwloc(2) = ((idw(2)-wp(1))/deiwkf)+1;

% Generating spectrochromatogram

delt = t(2)-t(1);

C = gauss(t,tr)’; % C = concentration matrix
D = C*eop’, % Data matrix

Scale = max(max(D)); % Maximum in D

D = (maxabs/Scale)*D; % Scale D to maxabs

Csc = D*eop*(inv(eop™eop)); % Scale conc profile

cif
plot(t,Csc);
%pause



plot(wp,absp)
%pause

[mD,nD] = size(D);
Dcorr = zeros(mD,nD);
strayD = zeros(mD,nD);

% Now caiculate contribution due to stray light

if stray == 1;
for i=t:mD
for j=1:nD
T = (10.A-1"D(i.j));
strayD(i,j) = -log10(T+r);
end
end
D = strayD;
end

nonl = zeros(mD,nD);
al = zeros(mD,nD);

% Now calculate contribution due to polychromatic radiation

if nonlin == 1;
K = log(10);
for i=1:mD
for j=1:nD
ai(i,j) = e1p(j)*Csc(i)*b;
pdt = K*a1(i,j)*bpass/2;
noni(i,j) = -log10({sinh(pdt))/pdt);
Dcorr(i,j) = D(i,j)+nonl(i,j);
end
end
D = Dcarr;
end

mesh(D)
%pause

% Now Incorporate the Scan Time Effect
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if scantime == 1;
tscan = 0.1;
ndiodes = 316;

for i=2:mD
for j=1.nD
lamda = (delwkf/delw)*j-(delwkf/delw)+wid:

Dcorr(i,j) = D(i,j) + (D(i,j)-D(i-1,j))*((lamda-1)I(ndiodes—1))'(tscan/delt);

end
end
Dcorr(1,:) = D(1,2);
D = Dcorr,
end % if Scan ==

fit = polyfit(Csc(1:10),D(1:10,idwloc(1)),1);
Dfit = polyval(fit,Csc);

plot(Csc,D(:,idwloc(1)),'0")
str=sprintf(‘Calibration Curve at %g nm',idw(1));
title(str)

ylabel('absorbance")

xlabel('concentration')

hoid

plot(Csc,Dfit,"-")

hold

%pause

% Now incorporate heteroscedastic noise

% Now want to calculate variance in measurement
% Must calculate measurement standard deviation in intensity
% with ( std_dev = al.A2+bl+c)

[(mD,nD] = size(D);
NR = randn(size(D));
N = zeros(mD,nD);

if hetnoise == 1;
a = 4.3056e-9;
b = 3.6897e-5;
c = 0.1125;

R = zeros(mD,nD);
Is = zeros(mD,nD);
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for i=1:mD
for j=1:nD
Is(i,j) = (10.8(-1*D(i.j)))*(blp(j)-darkp(j))+darkp(j);
stdls = a*(Is(i,j).*2)+b*Is(i,j}+c;
stdbl = a*(bIp(j).A2)+b*blp(j)+c;
stddk = a*(darkp(j).*2)+b*darkp(j)+c;
stdpart1 = (stdIs.~2)/((Is(i,j)-darkp(j)}.A2); %+stddk.*2
stdpart2 = 0; %(stdbl."2+stddk."2)/((b|p(j)-.darkp(j))."z);
var_abs = (1/(2.303).42)*(stdpart1 +stdpart2);
R(i,j) = var_abs;
end
end

rootR = sqrt(R);

for i=1:mD
for j=1:nD
N(i.j) = NR(i,j)*rootR(i,j):;
end
end
end % hetnoise = 1

if hetnoise ==
fr = fr/(maxabs/0.25);
sigma=fr*maxabs;
N = NR*sigma;
R = ones(mD,nD)*(sigma."2);
end

D=D+N;

Rorig = R;

R1L = zeros(mD,nD);
R1NL = zeros(mD,nD);
R2L = zeros(mD,nD);
R2NL = zeros(mD,nD);

nt = length(t);
nw = lengith(wp);
e = zeros(nt,nw);

xestt = zeros(1,nw);
xesttiter = zeros(niter,nw);
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rmsinn = zeros(nmd,nt);
rmsfit = zeros(nmd,nt);
rmsinnhe = zeros(nmd,nt);
rmsfithe = zeros(nmd,nt);

bg = mD; % variance estimate
% as estimates of background variance

Back = D(bg,:);

sd = std(Back);

clear Back

varhoabs = mean(mean(Rorig(bg-5:1:bg,:)));
for md=1:nmd

if md == 1
n=1;
dw = 2;

end

if md ==2
n=2;
dw = 2;

end

if md ==
n=2
dw = 3;

end

if md ==
n=4;
dw = 3;

end

xestt = zercs(n,nw);
e2he = zeros(nt,nw);
f2zhe = zeros(nt,nw);
for | =1:niter
ifmd==1|md==

if 1==

Didw = D(:,idwioc(n)); % Locate the position of the independent

variable in D
Dbe = D(:,n:idwioc(n)-1);
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Daf = D(:,idwioc(n)+1:nw); % Reconstruct D so that id in the 1st
column of D

Ridw = R(:,idwloc(n)); % H Locate the position of the independent
variable in R

Rbe = R(:,n:idwioc(n)-1);
Raf = R(:,idwloc(n)+1:nw): % Reconstruct R so that id in the 1st
column of R
if md ==
D = [Didw,Dbe,Daf]; % Reconstruction or swap assignment
R = [Ridw,Rbe,Raf];
end % md == 1
if md ==
D = [D(:;,1),Didw,Dbe,Daf]; % Reconstruction or swap assignment
R = [R(:,1),Ridw,Rbe,Raf];
end % md ==
clear Didw Dbe Daf Ridw Rbe Raf
end % if I==
end%ifmd==1|md==3
Reff = R;
for cw = dw:nw

% Initialize x and Pinit
xprev = zeros(n,1);

Plinit = diag(linspace(10e10,10e10,n));

% Define the Transition matrix and Q matrix
Trans = diag(linspace(1,1,n));
Q = diag(linspace(0,0,n));

for ct=1:nt

% Use D in the Kalman Filter
if md ==



H=[D(ct,1)];
end

if md ==
H=[D(ct,1) D(ct,1)*D(ct,1)];
end
if md ==
H={D(ct,1) D(ct,2)];
end
if md ==
H=[D(ct,1) D(ct,1)*D(ct, 1) D(ct,2) D(ct,2)*D(ct,2) J;
end
HT = HY;
% Kalman Gain
K= (Pinit*HT)/(H*Pinit*HT + Reff(ct,cw)):
% Update the estimate (xest) with measurement Dn
e(ct,cw) = D(ct,cw) - H*xprev;
xest = xprev + K*e(ct,cw);
f(ct.cw) = D(ct,cw) - H*xest;
% Compute Error Covariance for updated estimate

Tpose = (Trans - K*H)"
P = (Trans - K*H)*Pinit*(Tpose)+K*Reff(ct, cw)*K";

% Project Ahead values of xestnext and Pestnext
TransT = Trans"
xprev = Trans*xest;
Pinit = Trans*P*TransT + Q;
end % for time ct

xestt(:,cw) = xest;

end % for wavelength cw
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if md ==
for i=1:nt
for j=dw:nw
RAL(L.]) = (xestt(1,)).22)*(R(i,1)) + R(i.});
end
end
Reff = R1L;
end % if md ==1

if md ==
for i=1:nt
for j=dw:nw
RANL(,j) = ((xestt(1,)) + 2*xestt(2,))*D(i,1)).22)*(R(i, 1)) + R(,j);
end
end
Reff = R1NL;
end % if md ==

if md ==
for i=1:nt
for j=dw:nw
R2L{1,j) = (xesti(1,j).22)*(R(i,1)) + (xestt(2,)).42)*(R(i,2)) + R(i,j);
end
end
Reff = R2L;
end % if md ==

if md ==
for i=1:nt
for j=dw:nw
R2NL(i,j) = ({xestt(1,j) + 2*xestt(2,))*D(i,1)).22)*(R(i,1)) + ((xestt(3,j) +
2*xestt(4,j)*D(i,2)).*2)*(R(1,2)) + R(.j);
end
end
Reff = R2NL;
end % if md ==

end % for niter |

e2 = eN2;
f2 = £.A2;

e2sum = sum(e2(:,dw:nw)‘);
rmsinn(md,:) = sqrt(e2sum/(nw-n));
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f2sum = sum(f2(:,dw.nw)");
rmsfit(md,:) = sqrt(f2sum/(nw-n));

scale=1;
if scale==0;
Rprop(md,:) = mean(Reff);
for i=1:mD
rmsinnhe(md,i) = sqrt({rmsinn{md,i)).*2 - Rprop(md,i));
rmsfithe(md,i) = sqrt((rmsfit(md,i)).*2 - Rprop(md,));
end
end

if scale==1;
for i=1:mD
for j=dw:nD
e2he(i,j} = e2(i,j)*(varhoabs/Reff(ij));
fZne(i,j) = f2(i,j)*(varhoabs/Reff(i j));
end
end

eZhesum = sum(e2he');

rmsinnhe(md,:) = sqrt(e2hesum/(nw-n));

f2hesum = sum(f2he’);

rmsfithe(md,:) = sqrt(f2hesum/(nw-n));
end

clear xestt e2sum f2sum
end % nmd
if nmd == 2

subplot(211)
plot(t,rmsinn(1,:),"-',t,rmsinn(2,:),-.")
title("L -, INL -.))
xlabel('Time'")
ylabel('Rms Inn')

subplot(212)
plot(t,rmsinnhe(1 )=\ trmsinnhe(2,:),'-.)
titie('Corrected for heter 1L -, 1NL -
xlabel('Time')
ylabel('Rms Inn‘)
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subplot(211)
plot(t,rmsfit(1,:),""t,rmsfit(2,:),'-."
titte("1L -, INL -.")
xlabel('Time')
ylabel('Rms Fit')

subplot(212)
plot(t,rmsfithe(1 ), trmsfithe(2,:),'-")
title('Corrected for heter 1L -, 1NL -.')
xlabel('Time'")
ylabel('Rms Fit")

pause

end % if nmd ==
if nmd ==

subplot(211)
plot(t,rmsinn(1 2Ehrmsinn(2,0), -t rmsinn(3,:),"
title("L -, INL -. 2L:")
xlabel('Time")
yiabel('Rms Inn')

subplot(212)
plot(t,rmsinnhe(1 ,:),‘-',t,rmsinnhe(z,:),'-.',t,rmsinnhe(S,:),':')
title('Corrected for heter 1L -, 1NL -. 2L
xlabel('Time')
ylabel('Rms Inn')

subplot(211)
plot(t,rmsfit(1,:),"-'t, rmsﬁt(2,:),'-.',t,rmsﬂt(a,:),':')
titis{"1L -, INL -. 2L:")
xlabel('Time")
ylabel('Rms Fit')

subplot(212)
plot(t,rmsfithe(1 ,:),'-‘,t,rmsﬁthe(2,:),'-.',t,rmsﬁthe(s,:).':')
titte('Corrected for heter 1L -, 1NL -. 2L
xlabel('Time")
ylabel{('Rms Fit')
end % if nmd ==



Appendix C

Program listing for kfcorr.m

% kfcorr.m

% Written by Stephen Hughes

% Dalhousie University

% Last modified January 1994

% Evolving Principal Component Innovation Analysis 11:34AM 1/12/94

% Program to compensate for

% 1) Uncertainty in both x and y -- Doubly Weighted Regression

% 2) Scan Time Effect

% 3) Heteroscedastic Errors

- Pretreat data by Using Massart Equation
-- Weigth innovations by their variances

% 4) Nonlinearites due to polychromatic radiation -- Quadratic Model
% 5) Muiticomponent Nonlinear Models

% Linear One Component Model

md=1

% Nonlinear One Component Model md=2

% Linear Two Component Model

md=3

% Nonlinear Two Component Model md=4

clear
timread2
load abs.dat
load var.dat

Dall = abs;

Rall = var;

D = Dall(;,1:3:76);

R = Rall(;,1:3:76);

w = 420:6:570;
t=1:1:70;

save art15abs.dat D /ascii
save art15var.dat R /ascii
save art15w.dat w /ascii
bg = 70;

id(1) = 15;

id(2) = 10+1;

niter=1;

nmd=3

pause
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delwkf = 2; % for kalman filtering want to select wavelengths
% delwkf(in nm) apart
% wavelength of interest wi:dwkf:wf

subplot(211)

piot(w,D)
xlabel(‘wavelength’)
ylabel('Absorbance')
subplot(212)

plot(w,R)
xlabel('wavelength')
ylabel(*Variance in Abs')
pause

clg

plot{t,D")
xlabel('time")
ylabel('Absorbance')
pause

{mD,nD] = size(D);

Rorig = R;

R1L = zeros{mD,nD);
R1NL = zeros(mD,nD);
R2L = zeros(mD,nD);
R2NL = zeros(mD,nD);

% Now Incorporate the Scan Time Effect
% The scan time effect is discussed in Anal. Chim. Acta. 256, 125-131,1992

Scan = 0; %1 scan time correction applied 0 not applied

% Scan time effect will have to be considered later
if Scan ==1
Ccorr = zeros(mD,nD);
for i=1.mD
for j=1:nD
lamda = (deiwkf/delw)*j-(delwkf/delw)+wid+9;
ndiodes = 328; % ???
Dcorr(i,j) = D(i.j) - (D(i.j}-D(i-1,j))*((lamda-1)/{ndiodes -1))*(tscan/delt);
end
end
D = Dcorr;
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end % if Scan ==

% A program to do Kalman Filtering in Matlab
%

% Matrices and vectors defined

% H = observation matrix

% X = state vector

% K= Kaiman gain

% P = Covariance Matrix

% As mentioned earlier this program incorporates uncertainty in both the
% independent and dependent axis.
% Reference Data Analysis For Scientists and Engineers by S.L.Meyer p.75

k = length(t);

nw = length(w);

e = zeros(k,nw);

f = zeros(k,nw);

rmsinn = zeros(nmd,k);
rmsfit = zeros(nmd,k);
rmsinnhe = zeros(nmd,k);
rmsfithe = zeros(nmd,k);
varho = zeros(nmd,k);

Back = D(bg,:);

sd = std(Back); -

clear Back

varhoabs = mean(mean(Rorig(65:1:70,:)"));

for md=1:nmd
md
fmd==
n=1;
iw=2;
end
ifmd==2
n=2
iw=2:
end
if md ==
n=2;
iw=3;
end

if md == 4
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n =4
iw = 3;
end

xestt = zeros(n,nw);

for | =1:niter
ifmd ==1 | md ==
if I==
Did = D(:,id(n)); % Locate the position of the independent variable
in D

Dbe = D(:,n:id(n)-1);
Daf = D(.,id(n)+1:nw); % Reconstruct D so that id in the 1st column of

Rid = R(:,id(n)); % Locate the position of the independent variable
inD

Rbe = R(:,n:id(n)-1);

Raf = R(:,id(n)+1:nw); % Reconstruct D so that id in the 1st column of

if md ==
D = [Did,Dbe,Daf]; % Reconstruction or swap assignment
R = [Rid,Rbe,Raf];
end %md==
if md ==
D = [D(:,1) Did,Dbe,Daf]; % Reconstruction or swap assignment
R =[R(:,1) Rid,Rbe,Raf];
end %md==
clear Did Dbe Daf Rid Rbe Raf
Reff=R;
end % if I==1
end % if md ==1 | md ==
for cw = iw:nw

on=0,%0



% Initialize x and Pinit
xprev = zeros(n,1);

Pinit = diag(linspace(10e10,10e10,n));

% Define the Transition matrix and Q matrix
Trans = diag(linspace(1,1,n));
Q = diag(linspace(0,0,n));

for ct=1:k

if max(D(ct,:))>=6*sd j[on==1 % |is or
on =1,

% Use D in the Kalman Filter
if md ==

H=[{D(ct,1)];
end

if md ==
H=[D(ct,1) D(ct,1)*D(ct,1)];
end
if md ==
H=[D{ct,1) D(ct,2)];
end
if md ==
H=[D(ct,1) D(ct,1)*D(ct, 1) D(ct,2) D(ct,2)*D(ct,2) J;
end
HT = H
% Kalman Gain
K = (Pinit*HT)/(H*Pinit*HT + Reff(ct,cw));
% Update the estimate (xest) with measurement Dn

e(ct,cw) = D(ct,cw) - H*xprev;
xest = xprev + K*e(ct,cw);
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f(ct,cw) = D(ct,cw) - H*xest;

% Compute Error Covariance for updated estimate
Tpose = (Trans -~ K*H)";
P = (Trans - K*H)*Pinit*(Tpose)+K*Reff(ct,cw)*K’;
% Project Ahead values of xestnext and Pestnext

TransT = Trans',
xprev = Trans*xest;
Pinit = Trans"P*TransT + Q;

end % if D > 6*sd
end % for time ct
xestt(:,cw) = xest;
end % for wavelength w

if md ==
for i=1:k
for j=iw:nw
RIL(L,j) = (xestt(1,j).*2)*(R(i,1)) + R(i,j);
end
end
Reff = R1L;
end % if md ==

if md ==
for i=1:k
for j=iw.nw
R1INL(I,j) = ((xestt(1,j) + 2*xestt(2,j)*D(i,1)).22)*(R(i,1)) + R(i.j);
end
end
Reff = R1NL;
end % if md ==

if md ==
for i=1:k
for j=iw:nw
R2L(i.J) = (xestt(1,j)."2)*(R(i, 1)) + (xestt(2,)).2)*(R(i,2)) + R(i.j);
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end
end
Reff = R2L;
end % if md ==
if md ==
for i=1:k
for j=iw:nw

R2NL(i,j) = ((xestt(1,)) + 2*xestt(2,j)*D(1,1)).42)*(R(i,1)) + ((xestt(3,j) +
2*xestt(4,))*D(i,2)).42)*(R(i,2)) + R(i,j);
end
end
Reff = R2NL;
end % if md ==

end % for niter |

e2 = e 2,
f2 = £.12;

e2sum = sum{e2(:,iw:nw)");
rmsinn{md,:) = sqrt(e2sum/(nw-n));
f2sum = sum(f2(:,iw:nw)");
rmsfit(md,:) = sqri{f2sum/(nw-n)};

scale=1;
if scale==0;
Rprop(md,:) = mean(Reff);
for i=1:mD
rmsinnhe{md,i) = sqrt((rmsinn(md,i)).*2 - Rprop(md,i));
rmsfithe(md.,i) = sqrt((rmsfit(md,i)).A2 - Rprop(md,i));
end
end

if scaie==1;
for i=1:mD
for j=iw:nD
e2he(i,j) = e2(i,j)*(varhoabs/Reff(i,j));
f2he(i,j) = f2(i,j)*(varhoabs/Reff(i,j)):
end
end

e2hesum = sum(e2he');
rmsinnhe(md,:) = sqrt{e2hesum/(nw-n));
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fZhesum = sum(f2he');
rmsfithe(md,:) = sqri(f2hesum/(nw-n));
end

clear xestt e2sum f2sum
end % nmd

clg

if nmd ==
subplot(211)
plot(t,rmsfit(1,:),"-")
title('x 1com -")
xlabel('Time")
ylabel('Rms Fit")

subplot(212)
plot(t,rmsfithe(1,:),'-")
title("Hetcor x 1com -')
[a,maxfit] = max(rmsfithe(1,:));
str = sprintf('Std dev in abs %4.2¢' sqrt(varhoabs));
text(t(2),rmsfithe(1,maxfit), str);
xiabel('Time")
ylabel('Rms Fit')
end % nmd ==

if nmd ==
subplot(211)
plot(t,rmsfit(1,:),'t,rmsfit(2,:),-.)
title(’x 1com - x x*2 1com -.")
xlabel('Time')
ylabel('lRms Fit")

subplot(212)

plof(t,rmsfithe(1,:),'-'.t,rmsfithe(2,:),-.")

title("Hetcor x 1com - x x*2 1com -.")

[a,maxfit] = max(rmsfithe(1,:));

str = sprintf('Std dev in abs %4.2¢’,sqrt(varhoabs)):
text(t(2),rmsfithe(1,maxfit),str);

xlabel('Time")

ylabel('Rms Fit'")

end % if nmd ==
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if nmd ==

subpiot(211)

plot(t,rmsfit(1,:)."-" t,rmsfit(2,:),-." .t rmsfit(3,:),":")
titie(’x 1com -, x x*2 1com -. x1 x2 2com ")
xlabel('Time")

ylabel{'Rms Fit')

subplot(212)
plot(t,rmsfithe(1,:),-',t,rmsfithe(2,:),-." t,rmsfithe(3,:),"")
titte("Hetcor x 1com - x x*2 1com -. x1 x2 2com )
fa,maxfit] = max(rmsfithe(1,:));

str = sprintf('Std dev in abs %4.2¢',sqrt(varhoabs));
text(t(2),rmsfithe(1,maxfit), str);

xlabel('Time")

ylabel('Rms Fit')

end % if nmd ==
if nmd ==

subplot(211)

plot(t,rmsfit(1,:)," .t,rmsfit(2,:),'--' t, rmsfit(3,:),"" t,rmsfit(4,:),"-.")
title(" com x1 - x1 X142 -- 2 com - x1 x2 : x1 x142 x2 x2A2 -.')
xlabel('Time")

ylabel('lRms Fit')

subplot(212)
plot(t.rmsfithe(1,:),'-',t,rmsfithe(2,:),'-- t,rmsfithe(3,:),"".t, rmsfithe(4,:),'-.")
title('! com x1 - x1 x142 - 2 com - x1 x2: x1 x142 x2 x2A2 -
[a,maxfit] = max(rmsfithe(1,:));

str = sprintf('Std dev in abs %4.2e',sqrt(varhoabs));
text(t(2),rmsfithe(1,maxfit),str);

xlabel('Time')

yltabsl{('Rms Fit')

end % if nmd ==



Appendix D

Pregram listing for fenfinal.m

% fenemp.m

% Written by Stephen Hughes
% Dalhousie University

% Last modified July 1993

% A Program to analysis conductance data
% cond.dat contains the conductance values ns x 4

% Column Comment

% 1 Rossum

% 2 Diluted Sample

% 3 Infinite Dilution

% 4 Measured Conductance

% nine.dat contains the ionic concentrations expressed in mg/L ns x 9
% Column Comment

% 1 Sodium

% 2 Potassium

% 3 Calcium

% 4 Magnesium

% 5 Sulfate

% 6 Chloride

% 7 Nitrate + Nitrite
% 8 Carbonate

% 9 Bicabonate

% other.dat contains the other measured parameters ns x 5
% Column Comment

% 1 Alkalinity

% 2 Silica

% 3 Orthophosphate
% 4 Ammonia

% 5 pH

clear

load cond.dat

ioad other.dat

load nine.dat

[mc,nc] = size(cond);
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% Eliminate #448 Incomplete Data Sample

nine = [nine(1:447,:); nine(449:mc,:)];
cond = [cond(1:447,:), cond(449:mc,’)];
other = [other(1:447,:); other(449:mc,:)];

Cation = [ nine(:,1:4) other(;,4)];
Anion = [ nine(;,5:9) other(:,3)];
pH = other(;,5);

% Cation contains the ionic concentrations expressed in mg/L ns x5

% Column Comment
% 1 Saodium

% 2 Potassium

% 3 Calcium

% 4 Magnesium

% 5 Ammonia

% Anion contains the ionic concentrations expressed in mg/L ns x 6
% Column Comment

% 1 Suifate

% 2 Chloride

% 3 Nitrate + Nitrite

% 4 Carbonate

% 5 Bicabonate

% 6 Orthophosphate

[mc,nc] = size(cond);
[(mc,ncat] = size(Cation);
[mc,nani] = size(Anion);

LamdaCa = [ 50.11 73.5 59.5 53.06 73.5];
LamdaAn = [ 80.0 76.35 71.4 69.3 44.5];

ValenceCa=[1122

ValenceAn=[21221];
lonsCa=[11
lonsAn=[11
Phos = 0; % 0 off 1 on
quart=0; % 0 off 1 on

% Convert to equivalents
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Cationeq = [Cation(:,1)*(1/23) Cation(:,2)*(1/39.1) Cation(:,3)*(2/40.08)
Cation(:,4)*(2/24.31) Cation(:,5)*(1/14)];

Anioneq = [Anion(:,1)*(2/96.06) Anion(:,2)*(1/35.45) Anion(:,3)*(1/14)
Anion(:,4)*(2/100) Anion(:,5)*(1/50) Anion(:,6)*(1/30.97)]; %Anion(:,5)*(1/100)

% Need to modify Ammonia Concentrations reported

OH = zeros(mc,1);
NH4 = zeros(mc,1);
Kb = 1.774e-5; % From CRC Handbook 58th edit D-151
for i=1:mc
OH(i) = 10.A(-1*(14-pH(i))):
NH4(i) = (Kb*Cationeq(i,5))/(OH(i)+Kb);
end % for i

%plot(pH,NH4,"™")
%xlabel('pH")
%ylabel('NH4")
%pause

%Cationeq(:,5) = NH4;

if Phos ==
% Need to modify Phosphate Concentrations reported
% Columns 6 of Anioneq is divided into three other columns
% Coiumn lon Lamda
% 6 H2P0O4- 33
% 7 HPO42- 57
% 8 PO43- 69

LamdaAn = [ LamdaAn 33 57 69j;
ValenceAn = [ ValenceAn 1 2 3J;
lonsAn ={ lonsAn 1 1 1];

H2PO04 = zeros(mc,1);
HPO4 = zeros(mc,1);
PO4 = zeros(mc,1);

Ka1l = 7.11e-3;
Ka2 = 6.34e-8;
Ka3 = 4.2e-13;

for i=1:mc
H = 10*(-1*pH(i));
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Denom = H*H*i + Ka1*H*H + Ka1*Ka2*H + Ka1*Ka2*Ka3;
H2PO4(i) = (Anioneg(i,6))*Ka1*H*H/(Denom);
HPOA4(i) = 2*(Anioneq(i,6))*Ka1°Ka2*H/(Denom);
PQO4(i) = 3*(Anioneq(i,6))*Ka1*Ka2*Ka3/(Denom);
end

Anioneq(:,6) = H2PO4:
Anioneq(:,7) = HPO4;
Anioneq(:,8) = PO4;

plot(pH,H2P04,™"
xlabel('pH")
ylabel("H2P04")
pause

plot(pH,HPO4,"*")
xiabel{'pH')
ylabei('HPO4'")
pause

plot(pH,PO4,™")
xlabel("pH")
ylabel('PO4")
pause

end % if Phos == 1

if Phos ==
Anionegnew = [Anioneq(:,1:5)];
Anioneq = Anionegnew;
Anionnew = Anion(:,1:5);
Anion = Anionnew;

end

[mc,ncat] = size(Cationeq);
[mc,nani] = size(Anioneq);

% Now calculate conductance using Rossum model

G = zeros(mc,1);

K1 = zeros(mc,1);
Gnewcon = zeros(mc,1);
K1newcon = zeros(mc,1);
C = zeros(mc,1);



for i=1:mg¢

Gop = 0;
CpZpsq = 0;
CpZp = 0;
SumCa = 0O;

for j=1:length(lonsCa)
Gop = Gop + (lonsCa(j))*(LamdaCa(j))*(Cationeq(i,j));
CpZpsq = CpZpsq + (lonsCa(j))*(ValenceCa(j).A2)*(Cationeq(i,j));
CpZp =CpZp + (lonsCa(j))*(ValenceCa(j))*(Cationeq(i.j));
SumCa = SumCa + (lonsCa(j))*(Cationeq(i,j)):

end

Gon = 0;

CnZnsq = 0;

CnZn = Q;

SumAn = 0;

for j=1:length(lonsAn)
Gon = Gon + (lonsAn(j))*(LamdaAn(j))*(Anioneq(i,j);
CnZnsq = CnZnsq + (fonsAn(j))*(ValenceAn(j).*2)*(Anioneq(i,j));
CnZn =CnZn + (lonsAn(j))*(ValenceAn(j))*(Anioneq(i,j));
SumAn = SumAn + (lonsAn(j))*(Anioneq(i.j));

end

% Zn = CnZnsq/CnZn;
% Zp = CpZpsq/CpZp;

% Definition of Effective Charge
Zp = CpZp/SumCa;
Zn = CnZn/SumAn;

Yp = Gop/SumCa;
Yn = Gon/SumAn;
Yo = Yp+Yn;

C(i) = (SumCa + SumAn)/2;

Q = (Zn*Zp*Yo)((Zp+Zn)*(Zp*Yn+Zn*Yp));

K1(i) = (Zp*Zn/1156.2)*(2*Q/(1+sqrt(Q)))*((Zp+Zn).A(0.5));
K1newcon(i) = (Zp*Zn/114.4)*(2*Q/(1+sqrt(Q)))*((Zp+2Zn).(0.5));

Gi = Gop + Gon - (Yo*K1(i)+0.668*((Zp+Zn).A(1.5))*(C(i)*1.5);
G(i) = Gj;
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Gnewcon(i) = Gop + Gon -
(Yo*K1raweon(i}+0.676*((Zp+2Zn).A(1.5)))*(C(i)*1.5);

end
% Sort Data according to measured conductance values

Cationegsort = zeros(mc,ncat);
Anionegsort = zeros(mc,nani);
Condsort = zeros(mc,nc);
Gsort = zeros(mc, 1),
Gnewconsort = zeros(mc,1);
Csort = zeros(mc,1);

K1sort = zeros(mc,1);

pHsort = zeros(mc,1);
othersort = zeros(mc,4),

[conds,lc] = sort(cond(:,4));

for i=1:mc
Cationegsort(i,:) = Cationeq(lc(i),:);
Anionegsort(i,:) = Anioneq(lc(i),:);
Condsort(i,:) = cond(lc(i),:);
Gsort(i,1) = G(lc(i},1);
Gnewconsort(i,1) = Gnewcon(lc(i),1);
Csort(i,1) = S(lc(i),1);
Kisort(i, 1) = K1(lc(i),1);
pHsort(i,1) = pH(Ic(i),1);
othersort(i,1:3) = other(lc(i),1:3);
othersoit(i,4) = other(lc(i),5);

end

condsub = [cond(1:436,4); cond(438:mc,4)};
[conds,Icsub] = sort(condsub);

% Sample # 422 Conductivity 1390
% Sample # 423 Conductivity 1430
cutoff = 422;

plot(Condsort(:,4),Condsort(:,4),'-r',Condsort(:,4), Gsort,'+g");
titte('Rossum’)

text(2000,10000, '- Actual’)

text(2000,28000,'+ Rossum’)
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xlabel(‘'Actual Conductance’)
ylabel('Predicted Conductance')
pause

piot(Condsort(1:mc-1,4),Condsort(1:mc-1 ,4),'-r',Condsort(1:mc-1,4),Gsort(1:mc-1
).'+g')

title('Rossum”)

text(2C00,10000,'- Actual')

text(2000,8000,'+ Rossum')

xlabel('Actual Conductance")

ylabel('Predicted Conductance')

pause

plot(Condsort(1:cutoff,4), Condsort(1 :cutoff,4),'-r', Condsort(1:cutoff 4), Gsert(1:cut
off),'+g’)

title('Rossum’)

text(200,1300,'- Actual')

text(200,1200,'+ Rossum’)

xlabel('Actual Conductance')

ylabel('Predicted Conductance")

pause

% Caiculate Errors

errRossum = zeros(me-1,1);
errRossumNC = zeros(mc-1,1);
errRossumfen = zeros(mc-1,1);

for i=1:mc-1
errRossum(i) = Condsort(i,4) - Gsort(i);
errRossumNC(i) = Condsort(i,4) - Gnewconsort(i);
errRossumfen(i) = Condsort(i,4) - Condsort(i,1);
and

RMSRossum1400 = sqrt{(sum(errRossum(1:cutoff).A2)/cutoff):
RMSRossumall = sgrt(sum(errRossum(1:mc-1).A2)/(mc¢-1));

RMSRossumNC1400 = sqrt(sum(errRossumNC(1:cutoff).A2)/cutoff);
RMSRossumNCail = sqrt(sum(errRossumNC(1:mc-1).A2)/(mc-1));

RMSRossumfen1400 = sqrt(sum(errRossumfen(1 :cutoff).A2)/cutoff);
RMSRossumfenall = sqrt(sum(errRossumfen(1:mc-1).A2)/(mc-1));

RMSSummary = [ RMSRossum1400 RMSRossumall RMSRossumNC 1400
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RMSRossumNCall ]
pause

RMSfensum = [RMSRossumfen140C RMSRoss mfenall]
pause

plot(Condsort(1:cutoff,4),Condsort{1:cutoff,4),'-r", Condsort( i :cutoff,4), Condsort(1:
cutoff,2),'+g')

title('Diluted Sample')

text(200,1400,'- Actual’)

text(200,1300,'x Diluted Sam’)

xlabel('Actual Conductance')

ylabel('Predicted Conductance’)

pause

plot(Condsort(1:cutoff,4), Condsort(1:cutoff,4),"-r', Condsort(1:cutoff,4), Condsort(1:
cutoff,3),'+g'}

title('Infinite Diiution’)

text(200,1400,'- Actual’)

text(200,1300,™ Inf Dilution’)

xlabel('Actual Conductance’)

ylabel('Predicted Conductance')

pause

errDil = zeros(mc-1,1);
errinf = zeros(me-1,1);

for i=1:mc-1
errDil(i) = Condsort(i,4) - Condsort(i,2);
errinf(i) = Condsort(i,4) - Condsort(i,3);
end

RMSDIiil1400 = sqrt(sum(errDil(1:cutoff).*2)/cutoff);
RMSDilall = sqrt(sum{errDil(1:mc-1).22)/(mc-1));

RMSInf1400 = sqri(sum(errinf(1:cutoff).A2)/cutoff);
RMSInfall = sqri{sum(errinf(1:mc-1).42)/(mc-1));

RMSDilinf = [ RMSDIil1400 RMSDilali RMSInf1400 RMSinfall ]
pause

% Sample # 422 Conductivity 1390
% Sample # 423 Conductivity 1430
cutoff2 = 483



Cationegsort = Cationegsort(1:cutoff2,:);
Anionegsort = Anionegsort(1:.cutoff2,:);
Gsort = Gsort(1:.cutoff2,1);

Condsort = Condsort(1:cutoff2,:);

Csort = Csort(1:cutoff2,1);

K1sort = K1sort(1:cutoff2,1);

pHsort = pHsort(1:cutoff2,1);

othersort = othersort(1:cutoff2,1:4);

% First And Third Quartiles Stuff
data = [ Cationegsort Anioneqsort pHsort ;

[md,nd] = size(data),

first = (md/4),
third = (md/4)*3;

if quart ==
for i =1:nd
[sorted,|data] = sort(data(:,i));
for j=1:md
Gsortquart(j,:) = Gsort(ldata(j),:);
Condsortquart(j,:) = Condsort(ldata(j),:);
end

plot(Condsortquart(1:first), Gsortquart(1:first),"r)

xlabel(’Actual Conductance'}
ylabel('Predicted Conductance’)
title('r first g middie b third")
hold

plot{Condsortquart(first+1:third), Gsortquart(first+1:third),"*g')
plot(Cundsortquart(third+1:md), Gsortquart(third+1:md),"b")

hold
pause
end
end % if quart ==

ncolumn = Q;

for i=1:ncat
if lonsCa(i) ==
if ncolumn ==
X1Cat = [Cationegsort(:,i)];
end
if ncolumn == 1
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X1Cat = [X1Cat Cationegsort(.,i)];
end
ncolumn = 1;
end
end

ncolumn = 0;

for i=1:nani
if lonsAn(i) ==
if ncolumn ==
X1Ani = [Anionegsort(.,i)];
end
if ncolumn ==
X1Ani = [X1Ani Anioneqsort(:,i)];
end
ncolumn = 1;
end
end

X1 = [X1Cat X1Ani];
[mX1,nX1] = size(X1);
% Modelling Section

nset = 1;

ncalsam = 200; %cutoff2; 200;

npredsam = (cutoff2)-ncalsam; %cutoff2; (cutoff2)-ncalsam;
predsam1 = 201;

Bi = zeros(nset,1);

exfit = zeros(npredsam,1);
funC = zeros(cutoff2,1);
deviation = zeros(cutoff2,1);
errexRos = zeros(npredsam,1);

% Randomize Data Points
rand('seed',0)
rand('uniform’

Xim = zeros(CUtOff2,ﬂX1 );
Grn = zeros(cutoff2,1);
Gnewconm = zeros(cutoff2,1);



MeasCondrn = zeros(cutoff2,4);
Crn = zeros(cutoff2,1);

K1m = zeros(cutoff2,1);

otherrmn = zeros(cutoff2,4);

RMSEP1 = zeros(nset,1);
RMSEP32 = zeros(nset,1);
RMSEP132 = zeros(nset,1);
RMSEPexRos = zeros(nset,1);

clear Anion Anioneq Anionegnew Anionegsort Anionnew Czton Cationeq
Cationeqsort nine data X1Ani X1Cat other cond cond2

| = zeros(cutoff2,nset);
plotmod = 1; % 0 off 1 on

for set=1:nset
set
m = rand(cutoff2,1);
[rn,I(:,set)] = sort(rn);

for i=1:cutoff2
X1m(i,:) = X1(I(i,set),:);
Grn(i,1) = Gsort(I(i,set),1);
MeasCondrn(i,:) = Condsort(!(i,set),:);
Crn(i,1) = Csort(I{i,set),1);
K1rn(i,1) = K1sort(I(i,set),1);
othermn(i,:) = othersort(l(i,set),:);

end

% MLR Models
% eq.M

b1 = X1m(1:ncalsam,:)\MeasCondrn(1 :ncaisam,4);
Cal1 = X1rn(1:ncalsam,:)*b1;

Pred1 = X1rn{predsam1 .cutoff2,:)*b1;

err = (Pred1-MeasCondrn(predsam1:cutoff2,4));
RMSEP1(set) = sqri(sum(err1.42)/(npredsam));

if plotmod == 1
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piot(MeasCondrn(predsam1 :cutoff2,4),MeasCondrn(predsam:cutoff2,4),'-r', Mea
sCondrn(predsam1:cutoff2,4), Pred1,"*g’)

titte('MLR 1)

text(200,1400,- Actual')

text(200,1300,™ Predicted')

xlabel('Actual Conductance')

ylabel('Predicted Conductance')

pause

plot(MeasCondrn(predsam:cutoff2 4),err1,"*g)
titte('MLR 1)

xlabel('Actual Conductance')

ylabel('Error’)

pause

end % if plotmod ==

% eq.A3/2

X32m = X1m.A(3/2);

b32 = X32rn(1:ncalsam,:)\MeasCondrn(1 :ncalsam,4);

Pred32 = X32rn(predsam1:cutoff2,:)*b32;
ern32 = (Pred32-MeasCondrn(predsam1:cutoff2,4));
RMSEP32(set) = sqrt(sum(err32.42)/(npredsam));

if plotmod ==

plot(MeasCondrn(predsam1 :Cutoff2,4),MeasCondrn(predsam1:cutoff2,4),'-r', Mea
sCondrn{predsam1 -cutoff2,4),Pred32,*g")

title('MLR 3/2")

text(200,1400,- Actual’)

text(200,1300," Predicted")

xlabel('Actual Conductance')

ylabel(’Predicted Conductance')

pause

plot(MeasCondrm(predsam1 .cutoff2,4),err32,"g"
titte(MLR 3/2")
xlabel('Actual Conductance')
ylabel('Error’)
pause
end % if plotmod ==
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% eq.* eq.A3/2

X132rn = [X1rn X32rn];
b132 = X1 32rh(1 ‘ncalsam,:)\MeasCaondrn(1 :ncalsam, 4);

Pred132 = X132rn{predsam1 -cutoff2,:)*b132;
errt32 = (Pred1 32-MeasCondrn(predsam1 -cutoff2 4));
RMSEP132(set) = sqrt(sum(errt 32.42)/(npredsam))

if plotmod ==

plot(MeasCondrn{predsam1 :cutoff2,4), MeasCondrn(predsam1 :cutoff2,4),'-r' Mea
sCondrn(predsam1:cutoff2 4), Pred1 32,"g")

title('MLR 1 3/2")

text(200,1400,- Actual')

text(200,1300,"* Predicted')

xlabel('Actual Conductance')

ylabel('Predicted Conductance’)

pause

plot(MeasCondrn(predsam1 :cutoff2,4),err132,*g")
titte('MLR 1 372"

xlabel('Actual Conductance')

ylabel('Error')

pause

end % if plotmod ==

% Extended Rossum Mode|

% y = B*f(C) where y is the deviations from the Rossum Model and
% f(C) = C.22(1-K1*C.A1/2)

for i=1:cutoff2
funC(i) = (Crn(i).A2)*(1-K1 rn{iy*sqrt(Crn(i)));
deviation(i} = MeasCondrn(i,4) - Grn(i);
end

Bi(set) = funC(1 :ncalsam)\deviation(1:ncalsam);
for i=predsam:cutoff2

exfit(i-predsam1+1) = Gm(i) + Bi(set)*funC(i);
end
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for i=1:ncalsam
CalEMRM(i) = Grn(i) + Bi(set)*funC(i);
end

if plotmod ==
plot(MeasCondrn(:,4),MeasCondrn(:,4),'-r')
titte('Rossum and Extended Rossum')
text(2000,10000,'- Actual’)
text(2000,9000,'+ Rossum')
text(2000,8000,'x Extended Rossum’)
xiabel('Actual Conductance')
ylabel('Predicted Conductance')
hold
plot(MeasCondrn(predsam1:(cutoff2),4), exfit,'xb')
plot(MeasCondrn(predsam1:(cutoff2),4), Grn(predsam1:(cutoff2), 1 ),'+g")
hold
pause

plot(MeasCondrn(:,4),MeasCondrn(:,4),-r")
title('Extended Rossum?)

text(2000,10000,'- Actual')

text(2000,8000,'x Extended Rossum')
xlabel('Actual Conductance')

ylabel('Predicted Conductance')

hoid

piot(MeasCondm(predsam1:(cutoff2),4), exfit,'xb')
hoid

pause

diff = exfit - Grn(predsam1:(cutoff2),1);
plot{MeasCondrn(predsam1:(cutoff2),4),diff,"*g')
xlabel('Predicted Conductance')
ylabel('Difference’)
title(' Difference Between ERM - Rossum')

end % if plotmod ==

for i=1.npredsam

errexRos(i) = exfit(i) - MeasCondm(predsam1+i-1,4);
end
RMSEPexRos(set) = sqrt(sum((errexRos).A2)/(npredsam));

end % for nset
pause
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Datazll = zeros(483,16);

Dataall(:,1:15)=[X1m otherrn MeasCondrn(:,4)};
Dataall(1:200,16)=CalEMRM";

Dataall(201:483, 16)=exfit;

Dataali(1,:)

save dataall.dat Dataall -ascii

pause

MLRRMSEP = [ RMSEP1 RMSEP32 RMSEP132 ]



Appendix E

Pregram listing for mirfinal.m

% mirfinal.m

% Written by Stephen Hughes
% Dathousie University

% Last modified July 1993

load X1.dat
load Condsort.dat
%load othersort.dat

% Sample # 422 Conductivity 1390
% Sampie # 423 Conductivity 1430
cutoff2 = 483

x = [X1(1:cutoff2,:)]; % othersort(1:cutoff2,:)];
y = Condsort(1:cutoff2,4);
x = [x(:,1:9) x(:,10)*2);

[m,nv] = size(x);

%save concions.dat x /ascii
%save conduct.dat y /ascii
ncalsam = 200

%pause

npredsam = m-ncalsam;
nset = 1;

nmd = (2.4nv)-1;
table = zeros(nmd,nv);

for i=1.nmd
inew =i
for j=1:nv
pow2 = 2.A(nv-j);
if (inew/pow2) >= 1

table(i,j) = 1;
inew = inew - pow2;
end
end % for j
end % for i
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% Randomize Data Points

rand('seed',0)
rand('uniform')

ayrn = zeros(m,1);
yrn = zeros(m,1);
Xrn = zeros(m,nv);

RMSEP = zeros(nmd,nset);
RMSEPcum = zeros(nmd,nset);

for set=1:nset
set

m = rand(m,1);
[mn,1] = sort(rn);

for i=1:m
yrn(i, 1) = y(I(i),1);
xrn(i,:) = x(I(i),:);
end

% Autoscale the data
mx = mean(xrn(1:ncalsam,:));
stdx = std(xrn(1:ncaisam,:));

my = mean(yrn(1:ncalsam,:));
stdy = std(yrn(1:ncalsam,:));

for i=1:m
axm(i,:) = (xr(i,:)-mx)./stdx:
ayrn(i,:) = (yrn(i,:)-my)./stdy;
end

for i=1:nmd
cnt=0;
for j=1:nv
if cnt>0
if table(i,j) ==
xnew = [xnew axrn(:,j)};
end % if
end % if
if cnt==0;
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if table(i,j) ==
xnew = axrn(:,j);
cnt=1;
end
end % if
end

B = xnew(1:ncalsam,:\ayrn{1:ncalsam);
ypred = stdy*xnew(ncalsam+1:m,:}'B + my;

if i==992

MLRoptpr = ypred;

MLRoptca = stdy*xnew(1:ncalsam,:)*B + my;
end

if i==1023
MLR10pre = ypred;
MLR10cal = stdy*xnew(1:ncalsam,.}*B + my;
end
RMSEP(i,set) = sqrt(sum((yrn(ncalsam+1:m)-ypred).*2)/npredsam);
clear B

end % for i

end % for nset



Appendix F

Program listing for crfinal.m

% crfinal.m

% \Written by Stephen Hughes
% Dalhousie University

% Last modified July 1993

% Load ‘n data

load X1.dat
load Condsort.dat

% Sample # 422 Conductivity 1390
% Sample # 423 Conductivity 1430
cutoff2 = 422

x1 = X1(1:cutoff2,:);
y = Condsort(1:cutoff2,4);
x = [x1(:,1:9) x1(;,10)*2];

% Autoscale the data
{m,n] = size(x);

ncalsam = 200;
npredsam = m - ncalsam;,
nset = 1;

plotmod = 0; % 0 off 1 on

mx = mean(x(1:ncalsam,:));
stdx = std(x(1:ncalsam,:));

my = mean(y(1:ncalsam,:));
stdy = std(y(1:ncalsam,:));

mcx = zeros(ncalsam,n);
mcy = zeros(ncalsam,1);

ax = zeros(ncalsam,n);
ay = zeros(ncalsam,1);

for i=1:ncalsam
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mex(i,:) = (x(i,:)-mx);

mcy(i’:) = (Y(I’)'mY):
end

for i=1:ncalsam
ax(i,:) = (x(,;)-mx)./stdx;

ay(i,)) = (y(i,:)-my)./stdy;
end

echo on
% Now we will do PCA analysis
echo off

[scores,ioads,ssq1,res,q,tsq] = pca(ax,D);
pause

% Labels
labels =['Na ' 'K ', 'Ca’, 'Mg ', 'NH4'; 'SO4'; 'C| '; 'NO3"; 'C03"; 'HCO'];

echo on
% Now e can plot the loadings
echo off

%pltscrs(scores)

echo on
% Now we can plot the scores
echo off

%pltloads(loads,labels)

powers =[ 8 5.66 4 2.82 2 1.41 1 0.707 0.5 0.353 0.25 0.177 0.125 |;
flunk,npowers] = size(powers);
nmd = 1+npowers+2;

RMSEPpcr = zeros(nset,n);
RMSEPmMIras = zeros(nset,1);
RMSEPMIr = zeros(nset,1};
RMSEPmirme = zeros(nset,1);
RMSEPcum = zeros(nmd,n);
RMSEPcumave = zeros(nmd,n);
RMSEPind = zeros(nset,n+2);
RMSEP = zeros(nmd,n);



mexrn = zeros(m,n);
mcym = zeros(m,1);
axrn = zeros{m,nj;
ayrn = zeros{m,1);
ym = zeros(m,1),
xrn = zeros(m,n),

bmirall = zeros(ri,nset);
bmirmcall = zeros(n,nset);
bmirasall = zeros(n,nset);

Ypred = zeros(npredsam,n),
Ypredas = zeros(npredsam,nmd);

rand('seed',0);
rand(‘uniform')

for set=1:nset
set
rn = rand(m,1);
[m,1} = sort(rn);

for i=1:m
ymn(i,1) = y(\i),1);
xrngi,:) = x(1(),:);
end

% Autoscale the data

mx = mean{xm(1:ncalsam,:));
stdx = std(xm(1:ncalsam,:});

my = mean(ym(1:ncalsam,:));
stdy = std(yrn(1:ncalsam,:));

for i=1:m
mexm(i,:} = (xm(i,:)-mx);
meymi,:) = (ym(i,:)-my);
end

for i=t:m
axm(i,:) = (xr(i,:)-mx)./stdx;
ayrn(i,:) = {yrn(i,:)-my)./stdy;
end
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% PCR Analysis

[T,P,bper] = per1(axm(1:ncalsam,:),ayrn(1:ncalsam,1),n);

for i=1:n
r="T(:,1:i\aym(1:ncalsam,1);
Tpred = axm(ncalsam+1:m,:)*P(:,1:i);
Ypredv= Tpred*r;
Ypred(:,i) = stdy*Ypredv + my;
RMSEPpcr(set,i) = sqrt({(sum((Ypred(:,i) -

ym(ncalsam+1:m,1)).A2))/npredsam);
end

% Compare to MLR

bmir = xrn(1:ncalsam,:)\yrn(1:ncalsam);
ymir = xrn{ncalsam-+1:m,:)*bmir;
RMSEPmIr(set) = sqrt({sum((ymir - yrn(ncalsam+1:m,1)).A2))/npredsam);

bmirmc = mexrn(1:ncalsam,:)\mcym(1:ncalsam);
ymir = mexrn{ncalsam+1:m,:}*bmlirmc + my;
RMSEPmIrmc(set) = sqrt((sum((ymir - ym(ncalsam+1:m,1)).~2))/npredsamj;

bmiras = axrn(1:ncalsam,:)\aym(1:ncalsam);
ymir = stdy*axrn(ncalsam+1:m,;)*bmiras + my;
RMSEPmIras(set) = sart{(sum({ymilr - yrn(ncalsam+1:m,1)).A2)}/npredsam):

bmirall(:,set) = bmir;
bmirmcall(;,set) = bmirmc;
bmirasail(:,set) = bmlras;

bmirsum = [ bmir bmirmc bmiras]

pause(1)
if plotmod ==1
xpiot = 1:1:n;

plot(xplot, RMSEPpcr(set,:),'-r' xplot, RMSEPpcr(set,:),'0g")
xlabel('Number of Latent Variables')

ylabel('RMSEP'}

titte('MLR +b MLRas *w')

hold

plat(n,RMSEPmIras(set),'+b")

plotin, RMSEPmiIr(set),*w')



hold
pause
end % for plotmod ==1

RMSEPind = [ RMSEPpcr RMSEPmiras RMSEPMIr];

ber = powerpls(axrn(1:ncaisam,:),ayrn(1:ncalsam),n,powers);
bees = [ bpcr; ber; bmiras'; bmir;

for i=1:nmd
for j=1:n
if i<nmd-1
Ypredas(:,i) = stdy*(axrn(ncalsam+1:m,:)*(bees({(i-1)*n+j),:))) + my;
RMSEP(i,j} = sqrt{(sum((Ypredas(:,i) -
yrn(ncaisam+1:m,1)).A2))/npredsam);
end
if i==nmd-1
Ypredas(:,i) = stdy*(axrn(ncalsam+1:m,:))*bmiras + my;
RMSEP(i,j) = sqrt({sum((Ypredas(.,i) -
yrm(ncalsam+1:m,1)).A2))/npredsam);
end
if i==nmd
Ypredas(.,i} = xm(ncalsam+1:m,:)*bmir;
RMSEP(i,j) = sqrt((sum((Ypredas(.,i) -
ym(ncalsam+1:m,1)).A2))/npredsam);
end
end
end

if set==

RMSEPcum = RMSEP;

% save Rmsmat1.dat RMSEP /ascii
end

if set==
RMSEPcumave = RMSEP
pause

end

it set>1
for i=1:nmd
for j=1:n
RMSEPcumave(i,j) = (RMSEPcumave(i j)*(set-1) + RMSEP(i,j))/set;
end
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end
end % if set >1

end % for set=1:nset



Appendix G

Program listing for gavar.m

% gabin.m

% Written by Stephen Hughes
% Dalhousie University

% Last madified October 1995

clg

clear

% Conductance and GA
% Conductance Stuff
load x1.dat

load condsort.dat

% Sample # 422 Conductivity 1380
% Sample # 423 Conductivity 1420
cutoff = 422

x = [x1(1:cutoff,:)];

y = condsort(1:cutoff,4);

X = [x(:,1:9) x(:,10)*2 x(:,1:9).A(3/2) (x(:,10)*2).A(3/2) x(:,1:9).4(4/2)
(x(:,10)*2).2(4/2) x(:,1:9).2(5/2) (x(:,10)*2).A(5/2)];

[m,nv] = size(x);

tic

ncatsam = 200;

% GA stuff

% if want new calibration and prediction set each generation then mode = 1
% if want new calibration and prediction set each string  then mode = 2
mode = 1;

% objective function criteria

% if criteria 1 set then criteria = 1

% if criteria n set then criteria = 2

criteria = 2;

% if plotstuff==0 plotting off ==1 plotting on

plotstuff = 1;

% if plotting minimum RMSEP then plotm = 1

% if plotting mean RMSEP then plotm = 2

plotm = 1;
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nstr = 100;
sel_repr = 0.2*nstr;
mutation = 0.03;
recomb = 0.30;
max_gen = 100;

% Matrix Declaration

npredsam = m-ncalsam;

yrn = zeros(m,1);

Xm = zeros(m,nvy);

tot_nmd = (2.%nv); % Matlab can handle up to 241023
toptab = zeros(nstr*max_gen,nv);
toprms = zeros(nstr*max_gen,1);
pop = zeros(nstr,nv);

popsort = zeros(nstr,nvy);

RMSEP = zeros(nstr,1);
RMSEPsort = zeros(nstr,1);
minpred = zeros(max_gen,1);
meanpred = zeros(max_gen,1);
pairs = zeros(sel_repr,nv);

ctpop = ones(nstr,max_gen);
ctrms = ones(nstr,max_gen);

if rem(sel_repr,2) ==

disp("You dunderhead! You need a even number of strings to selectively

reproduce’)
pause
end

% Generate Initial Strings
rand('seed',0)

rand('uniform’)

Randnum = rand(nstr,1)*tot_nmd;

for i=1:nstr
inew = Randnum(i);
for j=1:nv
pow2 = 2.A(nv+j);
if (inew/pow2) >= 1

pop(i.j} = 1,
inew = inew - pow2;
end
end % for j

end % for i
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if mode == 1
m = rand(m,1);
[rn,1] = sort(rn);
ymn(:,1) = y(1,1);
xrn = x(l,:);
clear |

end % mode

% Quality Function

for i=1:nstr

i

if mode ==
m = rand(m,1);
[rm,1] = sort{rn);
ym(:, 1) = y(1,1);
xrn = x(1,:);
clear |

end % mode

% Selecting x variables
ent=0;
for j=1:nv
if cnt>0
if pop(i,j) == 1
xnew = [xnew xrn(:,j)];
end % if
end % if
if ent==0;
if pop(i.j) ==
xnew = xrn(:,j);
cnt=1;
end
end % if
end

% MLR
if ent>0

B = xnew(1:ncalsam,: \ymn(1:ncalsam);

ypred = xnew(ncaisam+1:m,:)*B;

RMSEP(i,1) = RMSEP(i,1) +
sqrt(sum((ym(ncalsam+1:m}-ypred).A2)/npredsam);

end
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if cnt==
RMSEP(i,1) = RMSEP(i,1) + 100;
end

end % for i

% Sorting Strings
[sorted,]] = sort(RMSEP(:,1));

popsort = pop(l,:);
RMSEPsort(:,1) = RMSEF{!,1);

clear sorted xnew

RMSEP = RMSEPsort;
pop = popsort;
Popprev = pop;
RMSEPprev = RMSEP;

RMSEP(1)
minpred(1) = RMSEP(1);

toptab(1:nstr,:) = pop;
toprms(1:nstr,1) = RMSEP(1:nstr,1);
meanpred(1) = mean(RMSEP(1:nstr,1));

if plotstuff ==
if plotm == 1;

% Displaying Prediction

plot(1:1:max_gen,minpred,'cg’)

xlabel("Generation')

ylabel{'min RMSEP")

axis([1 max_gen min(minpred(1))-0.1*min(minpred(1))
max(minpred)+0.1*max(minpred)]);

pause(C.1)
end
if plotm == 2;

plot(1:1:max_gen,meanpred,'og')
xlabei('Generation')
ylabel('mean RMSEP')
axis([1 max_gen min(meanpred(1))-0.1*min(meanpred(1))
max(meanpred)+0.1*max(meanpred)]);
pause(0.1)
end
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for t=2:max_gen
t
RMSEP = zeros(nstr.1);
best = pop(1.sel_repr,:);

% Recombination/Mutation

Randpair = rand(sel_repr,1):
[Randpairsort,Irandpair} = sort(Randpair);
Npair = (sei_repr/2);

for i=1:length(Randpair)
pairs(i,:) = best(lrandpair(i),:);
end

% Recombination
rn_sel_repr = rand{Npair,nv);
for i=1:Npair
for j=1:nv
if rn_sel_repr(i,j)<=recomb;
if pairs((i-1)*2+1,j) ~= pairs((i-1)*2+2,j)
temp=pairs({i-1)*2+1,j);
pairs((i-1)*2+1,j)=pairs((i-1)*2+2,j);
pairs((i-1)*2+2,j)=temp;
end
end
end
end

% Mutation
m_mutation = rand(sel_repr,nv);
for i=1:sel_repr
for j=1:nv
if rn_mutation<=mutation;
if pairs(i,j) ==
pairs(i,j) = 0;
else
pairs(i,j) = 1,
end
end
end
end
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% Quality Function
pop = [pop(1:nstr-sei_repr,:); pairs;];

if mode ==
rm = rand(m,1);
[m,l] = sort(rn);
ym(,1) = y(l,1);
xrn = x(,:);
clear |

end

for i=1:nstr

i

if mode ==
rm = rand(m,1);
[rn,i] = sort(rn);
yrn(;, 1) = y(i,1);
xrn = x(l,:);
clear |

end

% Selecting x varizbles
cnt=0;
for j=1:nv
if cnt>0
if pop(i.j) ==
xnew = [xnew xrn(:,j)];
end % if
end % if
if ent==0;
if pop(ij) ==
xnew = xrn(.,j);
cnt = 1;
end
end % if
end

% MLR
if cnt>0
B = xnew(1:ncalsam,:)lym(1:ncalsam);
ypred = xnew(ncalsam+1:m,:)*B;
RMSEP(i,1) = RMSEP(i,1) +
sqrt(sum({yrn{ncalsam+1:m)-ypred).*2)/npredsam);
end % fori
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if ent==
RMSEP(i,1) = RMSEP(i,1) + 100;
end
end % for i

if criteria ==
for i=1:nstr
trigger=0;
for j=1.nstr
if pop(i,:) == popprev(j,:)
ctrms(i,t) = ctrms(j,t-1)+1;
trigger=1;
RMSEP(i,1)=(RMSEPprev(i,1)'(ctrms(i,t)-1)+RMSEP(i,1))Ictrms(i,t);
end % if
end % j
if trigger == 0 ctrms(i,t) = 1; end
end % i
end % criteria

%Sorting Strings
[sorted,l] = sort(RMSEP(;,1));

popsort = pop(l,:);
RMSEPsort(:,1) = RMSEP(I,1);

clear sorted | xnew

RMSEP = RMSEPsort;
pop = popsort;

% for i=1:nstr

% trigger=0;

% for j=1:nstr

% if pop(i,:) == popprev(j,:)

% ctpop(i,t) = ctpop(j,t-1)+1;

% trigger=1;

% end % if

% end %j

% if trigger == 0 ctpop(i,t) = 1; end
% end % i

Popprev=pop;
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RMSEPprev = RMSEP;
RMSEP(1)
minpred(t) = RMSEP(1);

toptab((t-1)"nstr+1:(t-1)*nstr+nstr,:) = pop;
toprms((t-1)*nstr+1:(t-1)*nstr+nstr,1) = RMSEP(1:nstr,1);
meanpred(t) = mean(RMSEP(1:nstr,1));

if plotstuff ==
if plotm ==
plot(1:1:max_gen,meanpred,'og',1:1:t, meanpred(1:t,1),-r")
xlabel('Generation')
ylabel('mean RMSEP')
axis([1 max_gen min(meanpred(1:t))-0.1*min(meanpred(1:t))
max(meanpred)+0.1*max(meanpred)));
pause(0.1)
end
if plotm ==
% Displaying Prediction
plot{1:1:max_gen,minpred,'og’,1:1:t,minpred(1:t,1),"-r')
xlabel('Generation’)
ylabel('min RMSEP')
axis([1 max_gen min(minpred(1:t))-0.1*min(minpred(1:t))
max(minpred)+0.1*max(minpred)]);
pause(0.1)
end
end
end %for t



Appendix H

Program listing for gafixed.m

% gaperm.m

% Written by Stephen Hughes
% Dalhousie University

% Last modified October 1995

clg

Clear

% Conductance and GA
load x1.dat

load condsort.dat

% Sample # 422 Conductivity 1390
% Sample # 423 Conductivity 1430
cutoff = 422

X = [x1(1:cutoff,)];

y = condsort(1:cutoff,4);

X = [x(:,1:8) x(:,10)*2 x(:,1:9).4(3/2) (x(:,10)*2).4(3/2) x(:,1:9).A(4/2)
(x(:,10)*2).A(4/2) x(:,1:9).M5/2) (x(:,10)*2).A(5/2)];

[m,nv] = size(x);

tic

ncalsam = 200;

% Scaling Auto scale data? No auto = 0 Yes auto = 1

auto=0;

% GA stuff

% if want new calibration and prediction set each generation then mode = 1
% if want new calibration and prediction set each string  then mode = 2
mode = 2;

% objective function criteria (Use RMS from previous sets)

% if criteria 1 set then criteria = 1

% if criteria n set then criteria = 2

criteria = 2;

% if plotstuff==0 plotting off ==1 plotting on

plotstuff = 1;

% if plotting minimum RMSEP then piotm = 1

% if plotting mean RMSEP then plotm = 2

plotm = 1;
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nstr = 100;

sel_repr = 0.5"nstr;

mutation = 0.03;

recomb = 0.3;

max_gen = 100;

n_terms=[1234567891011 1213 14 15 16 17 18 19 20 25 30 35]

num_mutation=ceil(mutation*sel_repr);

% Matrix Declaration

nga = length(n_terms),

npredsam = m-ncalsam;

yrn = zeros(m,1);

Xrn = zeros(m,nv);

tot_nmd = (2.*nv); % Matlab can handte up to 241023
¢s = cumsum{n_terms(1:nga));

toptab = zeros(max_gen,cs(nga));

toprms = zeros(max_gen,nga);

for ct_nga=1:nga

pop = zeros{(nstr,nv);

RMSEP = zeros(nstr,1);
best=zeros(sel_repr,nvj,
minpred = zeros(max_gen,1);
meanpred = zeros(max_gen,1);
pairs = zeros(sel_repr,nv);
ctrms = ones(nstr,max_gen);

if rem(sel_repr,2) ==
disp("You dunderhead! You need a even number of strings to selectively
reproduce’)
pause
end

% Generate Initial Strings
if ct_nga==1 rand('seed',0), end
rand('uniform')

for i=1:nstr
pop(i,:) = randperm{nv),
end



285

if mode ==
m = rand(m,1);
[n,I] = sort(m);
yrn(:,1) = y(1,1);
xm = x(i,:);
clear |

end % mode ==

% Quality Function
for i=1:nstr

if mode ==
rn = rand(m,1);
frn,] = sort(rn);
yrn(;,1) = y(4,1);
xrn = x(1,:);
clear |

end % mode ==

% Selecting x variables

xnew = xrn(:,pop(i,1:n_terms(ct_nga)));
cnt=1;

% MLR
if ent>0
B = xnew(1:ncalsam,:)\yrn(1:ncalsam);
ypred = xnew(ncaisam+1:m,:)*B;
RMSEP(i,1) = RMSEP(i,1) +
sgrt(sum((yrn(ncalsam+1:m)-ypred).A2)/npredsam);
end

if cnt==
RMSEP(i,1) = RMSEP(i,1) + 100;
end
end % for i

% Sorting Strings
[sorted,l] = sort{(RMSEP(:,1));

clear sorted xnew
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pooprev = pop;
RMSEPprev = RMSEP;

minrms=RMSEP(I(1))
minpred(1) = RMSEP(I(1));

for i=1:n_terms(ct_nga)

if ct_nga ==1 toptab(1,i)=pop(1(1),i); end

if ct_nga >1 toptab(1,cs(ct_nga-1)+i)=pop(I(1),i}; end
end

toprms(1,ct_nga) = RMSEP(I(1,1));
meanpred(1) = mean(RMSEP(1:nstr,1));
meanrms=meanpred(1)

if plotstuff ==

if plotm == 1,
% Displaying Prediction
plot(1:1:max_gen,minpred,'og’)
str=sprintf('%g',pop(l(1),1:n_terms(ct_nga)));
title(str)
xlabel('Generation')
ylabel('min RMSEP")
axis([1 max_gen min(minpred(1))-0.1*min(minpred(1))

max(minpred)+0.1*max(minpred)));

end

if plotm==
plot(1:1:max_gen,meanpred,'og')
xlabel('Generation’)
ylabel('mean RMSEP')
axis([1 max_gen min(meanpred(1))-0.1*min(meanpred(1))

max(meanpred)+0.1*max(meanpred)]);
end '
if ct_nga == 1 pause; end
end % if plotstuff

for t=2:max_gen
t
RMSEP = zeros(nstr,1);
best = pop(l(1:sel_repr),:);

Randpair = rand(sel_repr,1);
[Randpairsort,Irandpair] = sort(Randpair);
Npair = (sel_repr/2),



for i=1:length(Randpair)
pairs(i,:) = best(lrandpair(i),:);
end

% Recombination/Mutation

% Recombination (deveioped by PDW)

rn_sel_repr = rand(Npair,1);
for i=1:Npair
for j=1:n_terms(ct_nga)
if rn_sel_repr(i,1)<=recomb;

if pairs((i-1)*2+1,j; ~= pairs((i-1)*2+2,))

%pairs((i-1)*2+1,:)
%pairs((i-1)*2+2,:)
temp1=pairs((i-1)*2+1,j);
temp2=pairs((i-1)*2+2,j);
for k=1:n_terms(ct_nga)

if pairs((i-1)*2+1,k) == temp2

m_sel_repr(i,1)=1,;
end
end
for k=1:n_terms(ct_nga)
if pairs((i-1)*2+2,k) == temp1
rn_sel_repr(i,1)=1;
end
end
if rn_sel_repr(i,1)<=recomb

M=find(pairs((i-1)*2+1,:)==temp2);
12=find(pairs((i-1)*2+2,:)==temp1),

pairs((i-1)*2+1,j)=temp2;
pairs((i-1)*2+1,11)=temp1;
pairs((i-1)*2+2 j)=temp1;
pairs((i-1)*2+2,12)=temp2;

end

%pairs((i-1)*2+1,)

%pairs((i-1)*2+2,:)

m_sel_repr(i,1)=1;

%pause(1)

end
end
end
end

% Mutation D_TM operator
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for i=1:num_mutation
rn_mutate=rand(sel_repr,1);
[rm,11]=sort(r_mutate);
pairs=pairs(i1,:);
clear 11
m_swap=rand(n_terms(ct_nga),1);
frs,11]=sort(rn_swap);
11_1=11(1);
clear 11
m_swap=rand(nv-n_terms(ct_nga),1);
[rs,|1]=sort{rn_swap);
11_2 = 1(1)+n_tenvis(ct_nga);
clear 1
temp=pairs(1,:;
pairs(1,11_1)=temp(l1_2);
pairs(1,i1_2)=temp(I1_1);
clear |1

pause
end

% Quality Function
pop(l(nstr-sel_repr+1:nstr,1),:)=pairs;

if mode ==
rm = rand(m,1);
[rn,1] = sort(rn);
ym(:,1) = y(1,1);
xm = x(l,:);
clear |

end

for i=1:nstr

if mode ==
rm = rand(m,1);
[m,1] = sort(rn),
ym(:,1) = y(1,1);

xrn = x(l,:);
clear |
end

% Selecting x variables

xnew = xrn(:,pop(i,1:n_terms(ct_nga)));
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ent=1;

% MLR
if cnt>0
B = xnew(1:ncalsam,:)\yrn(1.ncalsam);
ypred = xnew(ncalsam+1:m,:)*B;
RMSEP(i,1) = RMSEP(i,1) +
sqrt{sum{(yrn{ncaisam+1:m)-ypred).*2)/npredsam);
end % for i

if cnt==
RMSEP(i,1) = RMSEP(i,1) + 100;
end
end % for i

for i=1:nstr
trigger=0;
for j=1:nstr
if pop(i,:) == popprev(j,:)
ctrms(i,t) = ctrms(j,t-1)+1;
trigger=1;
if criteria ==
RMSEP(i, 1)=(RMSEPprev(i,1)*(ctrms(i,t)-1)+RMSEP(i, 1))/ctrms(i,t);
end
end % if
end %
if trigger == O ctrms(i,t} = 1; end
end % i

%Sorting Strings
[sorted,l] = sort(RMSEP(:,1));
clear sorted xnew

popprev=pop;
RMSEPprev = RMSEP;

minrms=RMSZP(I(1))
minpred(t) = RMSEP(I(1)};

for i=1:n_terms(ct_nga)
if ct_nga ==1 toptab(t,i)=pop(i(1),i); end



if ct_nga >1 toptabt,cs(ct_nga-1)+i)=pop(l(1).,i); end
end

toprms(i,ct_nga) = RMSEP(i(1,1));
meanpred(t) = mean(RMSEP(1:nstr,1));

if plotstuff ==

if plotm==2
% Displaying Prediction
plot(1:1:max_gen,meanpred,'oqg’,1:1:t, meanpred(1:t,1),'-r)
xlabel{’Generation’)
ylabel('mean RMSEP")
axis([1 max_gen min(meanpred(1:t))-0.1*min{meanpred(1:t))

max(meanpred)+0.1*max(meanpred)});

enc

if plotm==
plot(1:1:max_gen,minpred,‘og',1:1:t,minpred(1:t,1},'-r')
str=sprintf("%g’,pop(l(1),1:n_terms(ct_nga))),
title(str)
xiabel{'Generation")
ylabei('min RMSEP')
axis([1 max_gen min{minpred(1:t))-0.1*min(minpred(1:t))

max(minpred)+0.1*max(minpred)]);

pause(0.1)

end

end % plotstuff

save tabpm1.mat toptab
save rmspm1.mat toprms

end %for t
pause(1)

end % for ct_nga

total = toc
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Appendix |

Program listing for gaorder.m

% gaorder.m

% Written by Stephen Hughes
% Dalhousie University

% Last modified October 1985

clear
rand('seed’,0)
randn('seed',0)

%Parameters

obj_fun = 2 % 1 eigvalue 2 variance no meas var 3 var with meas var
NumPC = 3;

slice = 12;

%Options

graph_gen = 1; % Generate graph? No O Yes 1

auto = 1; 9. Scale data? No 0 Yes 1

data_set = 2 % Data Simulated Methyl Orange 1

% Chromatographic 2
% Real Methyl Orange 3

% Pyrocatechol Violet 4
% From Disk 5

% Rain water 6

% Clock Rxn 7

% PCYV buffered 8

% GA

nstr = 100;

sei_repr = 0.5*nstr;

mutation = [0.05 0.3 0.5 0.7 1.0];
recomb = 1;

max_gen = 250;

if data_set==
pKa1l = 3.46;
Ct=0.102/327.347;
pH = 0.0.4.7;
% Generate data



Ka1 = 107{(-1*pKa1);

C=zeros(length(pH),2);

for i=1:length(pH)
H=10%(-1*pH(i));
C(i,1)=(H*Ct)/(H+Ka1);
C(i,2)=(Ka1*Cty/(H+Ka1);

end

if graph_gen ==
clg
plot(pH,C(:,1),pH,C(:,2))
xiabel('pH")
ylabel(*Concentration’)
tittle("Conc')
hold
plot(pH,C(:,1},'0',pH,C(;,2),'0")
hoid
%pause

end

load meth3.dat
load meth16.dat
S(1,:)=meth3";
S(2,:)=meth16";
=8(:,81:8:206);
w = 350:16:600; % w = Wavelengths

if graph_gen ==
clg
plot(w,S(1,:),w,S(2,:))
xiabel{'wavelength’)
ylabel('Absorbance’)
hold
plot(w,S(1,:),'0',w,8(2,:),'0")
hold
%pause

end

X =C*S; % Data matrix

Scale = max(max(X)); % Maximum in X

X = (1/Scale)*X; % Scale X to 1

f=0.0001; % Fraction of Random Noise of max X
NR = randn(size(X));

sigma = f"max(max(X));
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R = sigma*sigma;

N = NR*sigma;

X X+N; % Add random noise

if graph_gen ==
clg
mesh(w,pH,X)
xlabel('wavelength')
ylabel('pH")
zlabel('Absorbance')
clear NR Scale
pause(1)

end

end % data_set ==

if data_set==
t=1:2:70; % t = Time
tmax = [25 35 47]; % m = retention times (#m = #components)
st =7.5;
C = gausssig(t,tmax,st)’; % C = concentration matrix
C = C*diag([1 1 1)); % relative concentrations
if graph_gan == 1
clg
plot(t,C)
xlabel('time')
ylabel('Concentration')
% print
pause
end

w = 204:8:300;, %4 % w = Wavelengths
wmax = [230 250 270]; % m = Maximum wavelengths (#w = #
components)
wi=20;
S = gausssig(w,wmax,wt); % S = spectra
S = diag([1])*S;
if graph_gen ==
clg
piot(w,S)
xlabel(‘wavelength")
ylabel('Absorbance’)
pause
end

X =C*S; % Data matrix
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Scale = max(max(X)); % Maximum in X
X = (1/Scale)*X; % Scale X to 1
f = 0.0001; % Fraction of Random Noise of max X
NR = randn(size(X));
sigma = f*max(max(X));
R = sigma*sigma:;
N = NR*sigma;
X=X+N; % Add random noise
if graph_gen == 1
clg
mesh(w,t,X)
xlabel{'wavelengih')
ylabel('time")
Zlabel('Absorbance’)
clear NR Scale
pause
end
end % data_set ==

if data_set ==
load meth.dat
meth=meth';
X=[meth(1:16,:); meth(19,:); meth(18,:); meth(17,:);];
X=X(:,81.8:2086);
if graph_gen ==
cig
mesh(X)
pause
end
end % data_set ==

if data_set ==
load specdat2
X=specdat?;
X=X(7:31,1:2:139);

if graph_gen ==
clg
pH = 3.00:0.25:12.50;
pH=pH(1,7:31);
w = 266:4*2:820;
mesh(w,pH,X)
view({-127.5 60))
pause
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end
if graph_gen ==

pKal = 0.2;

pKa2 = 7.8;

pKa3 = 9.8;

pKa4 = 11.7;

Ka1 = 10*(-1*pKa1);
Kaz2 = 107(-1*pKa2);
Ka3 = 107(-1*pKa3);
Ka4 = 10*(-1*pKa4);

for i=1:length(pH)
H = 10%(-1*pH(i));
Denom = H*H*H*H + Ka1*H*H*H + Ka1*Ka2*H*H + Ka1*Ka2*Ka3*H +
Ka1*Ka2*Ka3*Ka4;
C(1,i) = H*H*H*H/(Denom);
C(2,i) = H*H*H*Ka1/(Denom);
C(3,i) = H*H*Ka1*Ka2/(Denom);
C(4,) = H*'Ka1*Ka2*Ka3/(Denom):
C(5.i)) = Ka1*Ka2*Ka3*Kad/(Denom);
end

clg
plot(pH,C)
xlabel('pH')
ylabel('Concentration')
pause
end % graph_gen
Xerr=(1e-4)*ones(size(X));
end

if data_set ==

load camat.dat

X=camat,

%13 and 30

xa=[X(1:4,:); X(6:13,:); X(14:19,:); X(21:33,:); X(34,:); X(36:42,3); X(46:49,:);
X(54:66,:);];

%18

xa=[xa(:,1:2) xa(:,4:8) xa(:,11:15) xa(;,18:19) xa(:,21) xa(;,25) xa(:,27) xa(:,30)
xa(:,31)];

I_xa=length(xay};

rm_num=rand(l_xa,1);
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[Y.la}=sort(rn_num);
X=xa(la(1:30),1:17);
% save la.dat la /ascii
% save xa.dat xa /ascii
load caerr.dat
Xerr=caerr,
%Exclude Samples
xaerr=[Xerr(1:4,:); Xerr(6:13,:); Xerr(14:19,:); Xerr(21:33,:); Xerr(34,:);
Xerr(36:42,:); Xerr(46:49,:); Xerr(54:66,:);];
%Exclude Variables
xaerr=[xaerr(:,1:2) xaerr(:,4:8) xaerr(:,11:15) xaerr(:,18:19) xaerr(;,21)
xaerr(:,25) xaerr(:,27) xaerr(:,30) xaerr(:,31)};
Xerr=xaerr(la(1:30),1:17);
end

if data_set==
load lana1.dat
X={lana1(2:32,1:13) lana1(2:32,15:20)]; % Exclude Mould Bay
Xerr=ones(size(X));

end

if data_set==
load osci8.dat
osci8sub=[osci8(1:21,:); 0sci8(23:97,:);};
X=0sci8sub{1:3:96,1:2:84);
load osci8var.dat
osci8sub=[osci8var(1:21,:); 0sci8(23:97,:):I;
Xerr=sqri(osci8sub(1:3:96,1:2:84));

end

if data_set==

load pcv7.dat

% 8 19 27 28 33 36 38

pev7sub={pcv7(1:9,:); pcv7(10:18,:); pcv7(20:26,:); pcv7(29:32,:);
pcv7(34:35,:); pev7(37,:); pev7(39:40,)); 1;

X=pcv7sub(;,21:6:316); %6

load pcv7var.dat

% 9 19 27 28 33 36 38

pcv7sub=[pcv7var(1:9,:); pcv7var(10:18,:); pcv7var(20:26,:); pcv7var(29:32,:);
pcv7var(34:35,:); pev7var(37,:); pcv7var(39:40,); I;

Xerr=sqrt(pcv7sub(;,21:6:316)); %6

load pcv8.dat

%689111213 182223 313439

pcvBsub=[pcv8(1:5,:); pcv8(7,:); pev8(10,:); pcv8(14:17,:); pev8(19:21,:);
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pcv8(24:30,:); pcvB(32:33,:); pcvB(35:38,:); pcv8(40:41,:);1:
X=pcv8sub(:,21:6:316);
save pcv8sub.dat X /ascit
load pcv8var.dat
pcv8sub=[pcvBvar(1:5,:), pcv8var(7,:); pcv8var(10,:); pcv8var(14:17,:);
pcvBvar(19:21,:); pcv8var(24:30,:); pcvBvar(32:33,:); pcv8var(35:38,:);
pcv8var(40:41,.);];
Xerr=sqrt(pcv8sub(;,21:6:316));
end

[m,n] = size(X)

if data_set==
Xerr=cnes(m,n);
end

if auto ==
% Autoscale the data
ax = zeros(m,n);
aXerr = zeros(m,n);

sum_X = sum(X");

for j=1:n
aX(:,j) = (X(.j))-A(sum_XY);
aXerr(.,j) = (Xerr(:,j})./(sum_X);
end

X =axX;
Xerr = aXerr;

end % auto
num_recombine=ceil(recomb*sel_repr);

if nstr<sel_repr

disp("You dunderhead! You cannot selectively reproduce more strings than
you have’)

pause
end

if rem(sel_repr,2) == 1
disp("You dunderhead! You need a even number of strings to selectively
reproduce’)
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pause
end

% Quality Function Optimum Solution
if obj_fun ==

eigvalues_ordered=zeros(m,NumPC);
var_data=zeros(m,1);
opt_obj_function=zeros(m,1);

for i=1:m-(slice-1);
xsub=X(i:slice-1+i,:);
[vsub,dsub]=eig{xsub"xsub);
for i=1:NumPC
eigvalues_ordered(i,j)=dsub(n-j+1,n-j+1);
end
end

term=cumsum(eigvalues_ordered);
cpt_obj_function=term(:;,1);
var_data;

if graph_gen ==
clg
plot(eigvalues_ordered)
titte('eigvalues')
pause

end

differ_opt=zeros(m-1,1);
for i=1:m-1
differ_opt(i,1)=opt_obj_function(i+1,1)-opt_obj_function(i,1);
end
end % if obj_fun == 1
if obj_fun ==

%0bjective Function

var_m_data=zeros(m+(slice-2),1);
opt_obj_function=zeros(m+(slice-2),1);
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xnew=[X; X(1:slice-1,:)];

for i=2:(slice-1)+{m-1)
if i<=slice idxi=1; end
if i>slice idxi=i-(slice-1); end
if i<=m idxf=i; end
if i>m idxf=m; end
xsub=xnew(idxi:idxf,:);
size(xsub)
var_nx=(std(xsub}); %((idx)/idx+1).42
var_m_data(i,1)=sum{var_nx);
Y%idxi
%idxf
%pause

end

opt_obj_function(:,1)=cumsum(var_m_data(:,1));

if graph_gen ==1
clg
plot(var_m_data)
title('variance’)
pause
end
end % if obj_fun ==

if obj_fun==3
%Q0bjective Function

chi_m_data=zeros(m+(slice-2),1);
opt_obj_function=zeros(m+(slice-2},1);

xnew=[X; X(1:slice-1,:)];
xnewerr=[Xerr; Xerr(1:slice-1,:)I;

for i=2:(slice-1)+(m-1)
if i<=slice idxi=1; end
if i>slice idxi=i-(slice-1); end
if i<=m idxf=i; end
if i>m idxf=m; end
xsub=xnew(idxi:idxf,:);
size(xsub)
xsuberr=xnewerr(idxi:idxf,:);
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var_nx=(std(xsub)); %((idx)/idx+1).A2
var_meas = mean(xsuberr.A2);
chi_m_data(i,1)=sum(var_nx./var_meas);
%idxi
%idxf
%pause

end

opt_obj_function(:,1)=cumsum(chi_m_data(:;,1));

if graph_gen ==
clg
plot(chi_m_data)
title('chi sq')
pause(2)
end
end % if obj_fun ==

tic
1=2;

pop = zeros(nstr,m);

popopt = zeros(max_gen,m);
Fitness = zeros(nstr,1);

pairs = zeros(sel_repr,m);
minpred = zeros(max_gen,1);

% Generate Initial Strings

rand('seed’,0)

for i=1:nstr
pop{i,:}=randperm(m);

end

if obj_fun ==
% Testing Initial Strings
eigvalues=zeros(m,nstr*NumpPC);
obj_function=zeros(m,nstr);

for k=1:nstr
xnew=X(pop(K,:),));
for i=1:m
xsub=xnew(1:i,:);
[vsub,dsub]=eig(xsub™xsub);



for j=1:NumPC
eigvalues(i,(k-1)*"NumPC+j)=dsub(n-j+1,n-j+1);
end
end

term=cumsum(eigvalues(:,(k-1)*NumPC+1:(k-1)*NumPC+NumPC));
obj_function(: k)=term{:,1)+term(;,2);
Fitness(x, 1)=obj_function(m,k);
end
end % if obj_fun ==

if obj_fun ==
%0Objective Function

obj_function=zeros(m+(slice-2),nstr);
var_m_data=zeros(m+(slice-2),nstr);

for k=1:nstr
xnew=[X(pop(k,:),:); X(pop(k,1:slice-1},:);];
for i=2:(slice-1)+(m-1)
if i<=slice idxi=1; end
if i>slice idxi=i-(slice-1); end
if i<=m idxf=i; end
if i>m idxf=m; end
xsub=xnew(idxi:idxf,:);
%size(xsub)
var_nx=(std(xsub)}; %((idx)/idx+1).A2
var_m_data(i,k)=sum(var_nx);
%idxi
%idxf
%pause
end
obj_function(:,k)=cumsum(var_m_data(:,k));
Fitness(k,1) = obj_function(m+(slice-2),k);
end % k

end % if obj_fun ==2
if obj_fun ==
%0Objective Function

chi_m_data=zeros(m+(slice-2),nstr);
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obj_function=zeros(m+{slice-2),nstr);

for k=1:nstr
xnew=[X(pop(k,:),:); X(pop(k,1:slice-1),:);]:
xnewerr=[Xerr(popik,:),:); Xerr(pop(k,1:slice-1),:);];
for i=2:(slice-1)+(m-1)
if i<=slice idxi=1; end
if i>slice idxi=i-(slice-1); end
if i<=m idxf=i; end
if i>m idxf=m; end
xsub=xnew(idxi:idxf,:);
%size(xsub)
xsuberr=xnewerr(idxi:idxf,:);
var_nx=(std(xsuby)); %({(idx)/idx+1).A2
var_m_data(i,k)=sum(var_nx);
var_meas = mean(xsuberr.A2);
chi_m_data(i k)=sum(var_nx./var_meas);
%pause
end

obj_function(:,k}=cumsum(chi_m_data(: k));
Fitness(k,1) = obj_function(m+(slice-2),k);
end % k

z2nd % if obj_fun ==

% Sorting Strings
[sorted,i] = sort(Fitness);
pop = pop(l,:);
Fitness(:,1) = Fitness(l);

if obj_fun ==
best_obj = obj_function(:,1(1));
differ=zeros(m-1,1);
for i=1:m-1
differ(i,1)=best_obj(i+1,1)-best_obij(i,1);
end
end % if obj_fun ==

clear sorted |

popopt(1,:)=pop(1,:);
minpred(1)=Fitness(1);
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if graph_gen==
clg
% Display resulits
plot(1:1:max_gen,minpred,'og’)
str=sprintf(‘%g’,pop(1,:));
title(str)
xiabel('Generation')
ylabel('Fitness')
axis([1 max_gen min(minpred(1))*0.9 max(minpred)*1.1])
pause(1)

end

while t<=max_gen
t
if t<=20 num_mutation=ceil(mutation(1)*sel_repr); end
if t>20 & t<=30 num_mutation=ceil(mutation(2)*sel_repr); end
if t>30 & t<=40 num_mutation=ceil(mutation(3)*sel_repr): end
if t>40 & t<=50 num_mutation=ceil(mutation(4)*sel_repr); end
if t>50 num_mutation=ceil(mutation(5)*sei_repr); end

% Recombination
% Permutation operator P_OX2 as described in Carlos' thesis p.91

Randpair = rand(sel_repr,1);
[Randpairsort,Irandpair] = sort(Randpair);
pairs = pop(lrandpair,:);
Round05=round(rand(num_recombine,m));

for i=1:num_recombine/2
rn_recomb=rand(sel_repr,1);
[rr,1]=sort(rm_recomb);
pairs=pairs(l,:);
clear |

for j=1:2
(1,J] = find{(Round05(i,’));

for k=1:length(J)
temp(k)=pairs(2*(i-1)+j,J(k));

end

ind=zeros(length(J},1);

if j==



for k=1:length(J)
for I=1:m
if temp(k)==pairs(2*(i-1)+2,)
ind(k,1)=l;
end
end
end
temp1=zeros(1,m);
if length(J)~=0
[lind,Jind}=sort(ind(:,1));
for k=1:length(J)
temp1(1,J(k))=pairs(2*(i-1)+2,lind(k));
end
end
[Inot,Jnot}=find(Round05(i,:)~=1);
for k=1:length{Jnot)
temp1(1,Jnot(k))=pairs(2*(i-1)+1,Jnot(k));
end
clear [ J lind Jind Inot Jnot ind temp

end

if j==

for k=1:length(J)
for I=1:m
if temp(k)==pairs(2*(i-1)+1,1)
ind(k,1)=l;
end
end
end
temp2=zeros(1,m);
if length(J)~=0
[lind,Jind]=sort(ind(:,1));
for k=1:length(J)
temp2(1,J(k))=pairs{2*(i-1)+1,lind(k));
end
end
[Inot,Jnot]=find{Round05(i,:)~=1);
for k=1:length(Jnot)
temp2(1,Jnot(k))=pairs(2*(i-1)+2,Jnot(k));
end
clear | J find Jind Inot Jnot ind temp

end

end
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pairs(2*(i-1)+1,:)=temp1;
pairs(2*(i-1)+2,:)=temp2;
clear temp1 temp2

end

% Mutation
for i=1:num_mutation

rn_mutate=rand(sel_repr,1);

[rm,{]=sort(rn_mutate);
pairs=pairs(l,:);
clear |
rn_mutate=rand(m, 1);
frm, l]=sort(rn_mutate);
temp=pairs(1,:);
pairs(1,1(1))=temp(I(2));
pairs(1,I{2))=temp(I{1));
clear |

end

% Quality Function

pop = [pop(1:nstr-sel_repr,:); pairs;];

Fitness = zeros(nstr,1);

if obj_fun ==
% Testing Initial Strings

eigvalues=zeros{m,nstr*NumpPC);

obj_function=zeros(m,nstr);

for k=1:nstr
xnew=X(pop(k,:),:);
for i=1:m
xsub=xnew(1:i,:);

[vsub,dsub]=eig(xsub'xsub);

for j=1:NumPC

eigvalues(i,(k-1)*NumPC+j)=dsub(n-j+1,n-j+1);

end
end

term=cumsum(eigvalues(:,(k-1)*NumPC+1:(k-1)*NumPC+NumPC)):
obj_function(:, k)=term(:,1)+term(:,2);
Fitness(k, 1)=obj_function(m k);

end
end % if obj_fun ==1
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if obj_fun == 2
%Objective Function

obj_function=zeros(m+(slice-2),nstr);
var_m_data=zeros(m+(slice-2),nstr);

for k=1:nstr
xnew=[X(pop(k,:),:); X(pop(k,1:slice-1),:);];
for i=2:(slice-1)+(m-1)
if i<=slice idxi=1; end
if i>slice idxi=i-(slice-1); end
if i<=m idxf=i; end
if i>m idxf=m; end
xsub=xnew(idxi:idxf,:);
%size(xsub)
var_nx=(std(xsub)); %((idx)/idx+1).42
var_m_data(i,k)=sum(var_nx);
%idxi
%idxf
%pause
end
obj_function(:,k)=cumsum(var_m_data(: k));
Fitness(k,1) = obj_function(m+(slice-2),k);
end % k

end % if obj_fun ==

if obj_fun ==
%0Objective Function

chi_m_data=zeros(m-+(slice-2),nstr);
obj_function=zeros(m+(slice-2),nstr);

for k=1:nstr

xnew=[X(pop(k,:),:); X(pop(k,1:slice-1),));];
xnewerr=[Xerr(pop(k,:),:); Xerr(pop(k,1:slice-1),:);];
for i=2:(slice-1)+(m-1)

if i<=slice idxi=1; end

if i>slice idxi=i-(slice-1); end

if i<=m idxf=i; end

if i>m idxf=m; end

xsub=xnew(idxi:idxf,:);

%size(xsub)

306



xsuberr=xnewerr(idxi:idxf,:);
var_nx=(std(xsub)); %((idx)/idx+1).A2
var_m_data(i,k)=sum(var_nx);
var_meas = mean{xsuberr.A2);
chi_m_data(i,k)=sum(var_nx./var_meas);
“pause

end

obj_function(:,k)=cumsum(chi_m_data(:,k));
Fitness(k,1) = obj_function(m+(slice-2),k);
end % k

end % if obj_fun ==3

% Sorting Strings
[sorted,l] = sort(Fitness);
pop = pop(l,:);
Fitness(:,1) = Fitness(l);

if obj_fun ==
best_obj = obj_function(:,(1));
differ=zeros(m-1,1);
for i=1:m-1
differ(i,1)=best_obj(i+1,1)-best_obij(i,1);
end
end % if obj_fun ==1

clear sorted |

popopt(t,:)=pop(1,:);
minpred(t)=Fitness(1);

if graph_gen==1
% Display results
plot(1:1:max_gen,minpred,'og’)
str=sprintf("%g’,pop(1,:));
title(str)
xiabel('Generation’)
ylabel('Fitness')
axis([1 max_gen min(minpred(1:t))*0.9 max(minpred)*1.1])
pause(0.1)
end

t=t+1,
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end % while t

total = toc





