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Abstract 

The red alga Porphyra purpurea has a life cycle that alternates between shell-

boring, filamentous sporophytes and free-living, foliose gametophytes. The 

significant differences between these two phases suggest that many genes 

should be developmental^ regulated and expressed in a phase-specific 

manner. In this thesis, I prepared and screened subtracted cDNA libraries 

specific for the sporophyte and gametophyte of P. purpurea. This involved the 

construction of cDNA libraries, followed by the removal of common clones 

through subtractive hybridization. Of twenty putative phase-specific cDNAs 

selected from each subtracted library for further study, eight unique clones were 

obtained for the sporophyte and seven for the gametophyte. After confirming 

their phase-specificities by northern hybridizations, these 15 phase-specific 

cDN/2 J were sequenced and the deduced amino acid sequences were used to 

search protein data banks. The proteins encoded by two cDNAs from each 

phase were identified. One sporophyte-specific cDNA encodes an elongation 

factor 1a (EF-1 a) normally involved in translation. Using this cDNA as a probe, 

the constitutively expressed EF-1 a encoding gene (tef) was also isolated and 

sequenced. My results indicated that these are the only tef? in P. purpurea. 

The constitutively expressed gene encodes an EF-1 a very similar to those of 

most eukaryotes; however, the sporophyte-specific EF-1 a is one of the most 

divergent yet described. The other cDNA from the sporophyte encodes a 

serine protease-like protein that is structurally similar to mammalian tryptases 

that bind to sulphated glycosaminoglycans, suggesting that this protein may 

bind to sulphated galactans in the cell wall. One gameiophyte-specific cDNA 

encodes a lipoxygenase for fatty acid metabolism and the other one encodes a 

protein containing repeated regions with strong similarity to fungal cellulose-

binding domains. The results of in vitro translation studies of the latter cDNA 

suggest that, in vivo, the encoded protein enters the secretory system of the 

cell and may be a cell wall constituent that binds specific polysaccharides. 
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Chapter 1: General Introduction 

The development of multicellular organisms involves a complex series of 

events that is generally assumed to be controlled at the level of gene 

expression. Thus, an understanding of how development is controlled requires 

information on the regulation of gene expression. With the growing 

accumulation of information on DNA structure and function, it is becoming 

evident that the molecular mechanisms controlling gene activity are broadly 

similar in all organisms but that they can differ considerably in detail from 

species to species and from gene to gene. 

While vascular and nonvascular plants share a number of developmental 

features (Goldberg 1988), some unique characteristics of nonvascular plants 

offer experimental advantages over vascular plants for the study of common 

processes. For example, all plants undergo an alternation of a diploid spore-

producing generation (sporophyte) with a haploid gamete-producing generation 

(gametophyte) during their life cycle. In vascular plants, the gametopnyte is 

substantially reduced and is dependent on the sporophyte for nutrition and 

support. In nonvascular plants, the gametophyte is usually free-living and 

occupies a prominent position in the life cycle. In some algae, the gametophyte 

is the dominant phase of the life cycle with only a short period spent in the 

sporophytic phase. Thus, nonvascular plants, and particularly algae, are ideal 

for the study of processes that are dominant in the gametophyte. 

1 
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Although morphologically simple multicellular organisms, macrophytic 

algae undergo a number of intriguing developmental processes. Among the red 

algae, members of the genus Porphyra (subclass Bangiophycideae) have a 

particularly interesting life cycle (Bold and Wynne 1985) that alternates between 

two dissimilar phases: the filamentous sporophyte, usually referred to as the 

"conchocelis" (Drew 1949), and the foliose gametophyte. The transition 

between these two phases is usually, but not always, associated with changes 

in chromosome ploidy level. 

In nature, the conchocelis filaments bore into calcareous mollusc shells 

and emerge only to sporulate. Conchocelis filaments can also be cultured free 

of shells, using appropriate seawater medium. The cells of the conchocelis 

have peripheral chloroplasts (Pueschel and Cole 1985) and cell walls 

composed primarily of cellulose and galactans (Mukai et al. 1981). Between 

adjacent cells, proteinaceous "pit connections" (lens-shaped plugs) are present 

(Bourne et al. 1970). In contrast, the large leafy thalli of the gametophytes are 

conspicuous members of the benthic seaweed community, usually found 

attached to rocks, pebbles or other seaweeds. Cells of the gametophyte have 

a single, central, stellate chloroplast. The cell walls of the fronds contain mostly 

xylan and mannan, but no cellulose. Pit connections are absent in this phase. 

The striking differences batween the two Porphyra life history phases offer an 

excellent opportunity to study developmentally regulated genes. 

The Porphyra species I chose to work with is Porphyra purpurea (Roth) 
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C. Agardh. This species grows on the marine mudflats at Avonport, Nova 

Scotia, and its genetic and reproductive characteristics (Mitman and van der 

Meer 1994), as well as its chloroplast genome (Reith and Munholland 1993), 

have been described. In addition to the common characteristics of Porphyra, P. 

purpurea (Fig. 1.1) has a monoecious thallus that becomes longitudinally 

divided into a male part on one side and a more greenish female part on the 

other. Meiosis takes place in the germinating conchospore and sexual 

determination results from genetic segregation. The sporophyte of P. purpurea 

naturally grows in calcareous mud, but can be maintained as stock in culture 

(little or no growth) under very low light intensity (less than 5 uE'm"2,s"1). When 

the conchocelis is exposed to more intense light (30-40 pE-m'2-s"1), 

conchosporangial structures develop. This conchosporangial conchocelis can 

grow vigorously in culture by vegetative propagation and has therefore been 

used as materia! representing the sporophyte. Conchospore release and 

germination can be induced by shifting the growth temperature from 15°C to 

13°C and the photoperiod from 16L8D to 8L16D (Mitman and van der Meer 

1994). 

As an initial approach to understanding the developmental regulation of 

gene expression in P. purpurea, the objective of my study was to isolate and 

characterize cDNAs for genes that are expressed in a phase-specific manner. 

This study could then provide a foundation for further study of the molecular 

aspects of development in P. purpurea. 
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Figure 1.1 Life history of Porphyra 
purpurea. 



Chapter 2: Isolation and Characterization of Phase-specific cDNAs Using 

Subtracted cDNA Libraries 

INTRODUCTION 

Early attempts to study phase-specific gene expression in algae were 

focused on the differential detection of proteins. Using tissue from 

gametophytes and sporophytes of Ulva mutabilis, Hoxmark (1976) found a 

protein that appeared to be present only in the sporophyte; however this 

difference was not apparent in a reexamination of this species (Hushovd et al. 

1982). The techniques available at the time were simply too crude to obtain 

satisfactory results. This situation has changed dramatically with the advent of 

modern RNA and DNA technology. 

Molecular biology studies of development now use two general 

approaches for the isolation of tissue- and developmental stage-specific mRNA 

sequences. These methods do not require any prior knowledge of the target 

genes or their products. The first method is the differential screening of a 

cDNA library constructed from a tissue of interest, by probing with two sets of 

labelled first-strand cDNAs. One probe is prepared from the same mRNA used 

to construct the library, whereas the second probe is derived from mRNA 

extracted from one or more control tissues. Clones from the library that do not 

hybridize with the control probe are specific to the target tissue (Conkling et al. 

1990, John and Crow 1992). In a more sophisticated approach, "subtracted 

5 



6 

libraries" are produced from two cDNA libraries by the removal of common 

sequences to enrich for sequences specific to the tissue of interest. For this 

approach, single-stranded cDNAs derived from the target tissue are mixed with 

single-stranded cDNAs or mRNAs from another tissue. Sequences that are 

common to both tissues hybridize, and the resultant double-stranded DNAs are 

removed from the mixture. The putative tissue-specific cDNAs remaining in 

solution are then used to produce the subtracted cDNA library or, in some 

cases, a probe. The advantage of libraries formed by subtractive hybridizations 

is that they are enriched for differentially expressed mRNA sequences, and thus 

are much easier to screen than a complete cDNA library (Duguid et al. 1988, 

1989, Schweinfest et al. 1990, Kelly et al. 1990). 

I have initiated a study of developmental regulation of gene expression in 

the red algae by constructing subtracted cDNA libraries for both the sporophyte 

and the gametophyte of Porphyra purpurea. In this chapter, I describe 

improvements to existing protocols for the construction and screening of 

subtracted cDNA libraries. I also describe a series of library screening 

procedures that led to the isolation of 15 phase-specific cDNAs and report the 

preliminary results obtained in their characterization. 

MATERIALS AND METHODS 

Algal Materials and Standard Molecular Biology Techniques 

P. purpurea gametophytes and sporophytes were cultured in modified 
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D-11 medium at 15°C, under a 16:8 h light:dark cycle (Mitman and van der 

Meer 1994). Cultures were harvested twu hours after initiation of a light period 

so that both developmental phases were in a comparable physiological 

condition. Total RNA was isolated according to MacKay and Gallant (1991) 

and polyA* RNA was purified by multiple passage through oligo(dT) cellulose. 

Standard methods for phage and bacterial growth, plasmid DNA isolation, DNA 

and RNA gel electrophoresis, Southern and northern blotting and labelling of 

first strand cDNAs were according to Sambrook et al. (1989). 

cDNA Library Construction 

Double-stranded cDNA was synthesized from polyA+ RNA according to 

the method of Gubler and Hoffman (1983) (cDNA Synthesis System, 

Invitrogen). cDNA size selection, NotUEcoRl linker-adapter addition and T4 

polynucleotide kinase treatment were carried out according to the 

manufacturer's instructions. De-phosphorylated, EcoHI-cleaved X ZAP II vector 

and Gigapack II Plus packaging extract (Stratagene) were used according to 

the supplier's recommendations. These procedures yield a cDNA library with 

the inserts oriented in both directions. Four-fifths of the original cDNA library 

were amplified using Stratagene's procedure. 

Rescue and Purification of Single-stranded cDNAs from AZAPII Libraries 

To isolate single-stranded DNA from the cDNA libraries, five ml of 
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Escherichia coli XL1-Blue cells (Stratagene) in SM buffer at O D ^ = 1.0, 2 ml of 

the amplified X TAP II library containing 109 plaque forming units (pfu), and an 

appropriate amount of VCSM13 helper phage (Stratagene, see below) were 

combined in a 50 ml conical tube. The final volume was adjusted to 10 ml with 

SM buffer. After phage adsorption at 37 °C for 15 min, this phage-bacteria 

mixture was added to a 250 ml flask containing 100 ml 2 x YT medium and 

grown at 37 °C for 3 h, with vigorous agitation. The culture was then 

centrifuged for 30 min at 12,700 x g to pellet cellular debris. Single-stranded 

recombinant phage and helper phage were precipitated from the supernatant by 

adding one quarter volume of 20% (w/v) polyethylene glycol (8,000 Daltons), 

3.5 M ammonium acetate. After 2-4 h at 4 °C, the precipitate was pelleted by 

centrifugation at 15,700 x g for 25 min. Contaminating bacterial nucleic acids 

were removed by dissolving the phage pellet in 4 ml SM (minus gelatin) 

containing 10 ug DNase I and 10 ug RNase A and incubating the phage 

suspension for 30 min at room temperature. The phage particles were lysed 

by the addition of SDS to 0.5% (w/v) and successive extraction with phenol, 

phenol:chloroform (1:1) and chloroform. Finally, the single-stranded phagemid 

DNA was precipitated with one tenth of a volume of 3 M sodium acetate and 2 

volumes of ethanol. 

Different helper phages and individual preparations of a given helper 

phage were found to differ in their abilities to rescue recombinant phagemid 

genomes. Helper phage strains R408, VCSM13, MMP (all from Stratagene) 



9 

and M13K07 (Pharmacia) were tested. The best ratio of recombinant X ZAP II 

bacteriophage and helper phage had to be empirically determined. Typically, a 

series of quantities (105-107 pfu) of helper phage were used. For each attempt, 

1/20 of the single-stranded DNA product was subjected to electrophoresis on a 

1% agarose gel. Upon ethidium bromide staining, a faint band of double-

stranded X ZAP II DNA was visible at the top of the gel, a major band 

corresponding to the helper phage DNA occurred below and a long smear of 

phagemid single-stranded DNA ran below the helper phage band. The intensity 

and length of this smear were used to judge the effectiveness of the single-

stranded DNA rescue. 

Residual double-stranded DNA was removed by two rounds of digestion 

with restriction endonucleases ( Pvu II and Bgl I) and magnesium-phenol 

extraction (Rubenstein et al. 1990). Siliconized microcentrifuge tubes were 

used for all experiments involving single-stranded DNA. 

Construction of Subtracted cDNA Libraries 

For subtractive hybridization, 50 pg of driver phase single-stranded cDNA 

was labelled with 75 pg of long-arm photobiotin (Clontech) (Rubenstein et al. 

1990) and precipitated with 5 pg of single-stranded cDNA from the target 

phase. These DNAs were dissolved in 20 pi hybridization buffer containing 0.5 

M NaCI, 50 mM HEPES pH 7.6, 2 mM EDTA and 40% (v/v) deionized 

formamide (Rubenstein et al. 1990). The sample was incubated at 68-70 °C for 
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5 min, sealed in a hybridization bag and immersed in a 52 °C water bath for 

21 h. 

To remove biotinylated DNA, as well as DNA hybridized to the 

biotinylated DNA, the hybridization mixture was diluted to 600 pi with binding 

buffer (100 mM Tris pH 7.5, 150 mM NaCI) and incubated with 250 mg Vectrex-

avidin (Vector Laboratories), by gently rotating at 22 °C for 1-2 h (Swaroop et 

al. 1991). The beads with most of the biotinylated DNA were removed by 

centrifugation, leaving the target single-stranded cDNA in solution. The bead 

pellet was washed once with binding buffer and the wash supernatant was 

combined with the first supernatant. To determine whether or not the 

biotinylated DNA had been totally removed, 5 pi of supernatant was applied to 

a nylon membrane, incubated with streptavidin-alkaline phosphatase conjugate 

(Clontech) and stained for alkaline phosphatase activity according to the 

manufacturer's instructions. Known amounts of biotinylated DNA were applied 

to the same membrane as standards. After one round of Vectrex-avidin 

extraction, there was usually a small amount of biotinylated DNA left in the 

supernatant. To remove the remaining biotinylated DNA, the supernatant was 

first reduced to 200 pi by centrifugal ultrafiltration in a Centricon 100 device 

(Amicon). The concentrate was then added to 24 mg of streptavidin-coated 

MagneSphere particles (Promega, prewashed twice with 0.5 x SSC containing 

50 pg ml"1 sheared and denatured salmon sperm DNA) and incubated at 22 °C 

for 10 min. The particles and bound biotinylated DNA were trapped to the wall 
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of the tube with a magnetic stand. The supernatant was removed and single-

stranded DNA was precipitated with ethanol in the presence of 5 pg of E. coli 

tRNA. 

Single-stranded phagemid DNA was made double-stranded prior to 

transformation of E. coli. Single-stranded DNA was resuspended in 10 pi of 

annealing mixture containing 6.75 pi H20, 1.25 pi M13 reverse primer (3.75 ng) 

and 2 pi of Sequenase reaction buffer (US Biochemicals), incubated at 68 °C 

for 10 min and cooled over approximately 2 h to 30 °C. The annealing mixture 

was diluted to 20 pi by the addition of dithiothreitol to 5 mM, all four 

deoxynucleotides to 1.25 mM, and 2 units of Sequenase (US Biochemicals), 

and incubated at 37 °C for 1 h. Reactions with other DNA polymerases used 

the same concentrations of primer and deoxynucleotides in appropriate buffers 

(Sambrook et al. 1989). Five pi were used to transform 100 pi of E. coli XL1-

Blue supercompetent cells. The bacteria were plated on LB-agar plates, 

supplemented with ampicillin, X-gal and IPTG (Sambrook et al. 1989). White 

colonies were picked into 96-well microtitre plates and stored at -80 °C as 

described by Schweinfest et al. (1990). 

Screening of subtracted cPNA libraries 

To test the phase-specificity of the subtracted cDNA libraries, colonies 

from each library were hybridized with labelled first-strand cDNAs from both the 

sporophyte and the gametophyte. Recombinant colonies from subtracted 
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libraries were grown in 96-well microtitre plates. Six 11.5 cm x 7.5 cm 

autoclaved Zeta Probe membranes (Bio-Rad) were placed on a 24.5 cm x 24.5 

cm x 2.5 cm LB-ampicillin agar plate (Nunc Bio-Assay Dish) and three sets of 

96 colonies from the subtracted library were imprinted in duplicate (one set of 

96 colonies per membrane). The plates were incubated overnight at 37 °C. 

Membranes bearing 2-3 mm colonies were treated according to Sambrook et al. 

(1989). The two replica membranes of each 96-well plate were then hybridized 

separately with 32P-labelled first-strand cDNAs synthesized from polyA+ RNA of 

either the sporophyte or the gametophyte. Hybridizations were carried out at 

68 °C in a hybridization buffer used by MacKay and Gallant (1991). 

Membranes were washed twice in 6 x SSC, 0.1% SDS, four times in 2 x SSC, 

0.1% SDS and twice in 0.5 x SSC, 0.1% SDS; each wash was at 68 °C for 15 

min. Colonies that hybridized with only one of the gametophyte or sporophyte 

first-strand cDNA probes were selected for further studies. 

cDNA Characterization 

Twenty positive colonies from each subtracted library were chosen for 

further investigation. Since more than one colony may have been selected for 

each expressed gene, these sets of colonies were checked for genetic 

relatedness by Southern hybridization. Initially, the cDNA insert from one 

colony was hybridized to the other 19 cDNA inserts. After removing duplicates, 

a second insert was hybridized to the remaining cDNAs, and so on, until all of 
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the duplications had been identified. cDNA probes were prepared by EcoPA 

digestion of clones and purification from agarose gels using GeneClean (Bio 

101). All probe labelling and Southern hybridizations were done using the ECL 

kit (Amersham) according to the manufacturer's instructions. 

Northern hybridizations were performed under the same conditions as 

used above for testing the specificity of clones. A IMubulin cDNA of a mRNA 

species produced in both gametophyte and sporophyte (MacKay and Gallant 

unpublished results) was used as a control probe. 

Double-stranded plasmid templates were sequenced in both directions 

using synthetic oligonucleotide primers and a sequencing kit (US Biochemicals). 

Sequences were analyzed with the IBI/Pustell programs (Pustell and Kafatos 

1984). Data bank searches and similarity analyses were carried out with the 

BLITZ (Smith and Waterman 1981), FASTA (Pearson and Lipman 1988) and 

BLAST (Altschul et al. 1990) programs. 

RESULTS 

By modifying established methods (Rubenstein et al. 1990, Schweinfest 

et al. 1990, Swaroop et al. 1991), subtracted cDNA libraries for gametophytic 

and sporophyte tissues of Porphyra purpurea were constructed. A general 

outline of our procedure is illustrated in Figure 2.1. In the first steps, two cDNA 

libraries were generated in a bacteriophage Abased cloning vector, X ZAP II, 

that allows the production of single-stranded cDNAs. A key feature of X ZAP II 
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Figure 2.1 Flow chart for the construction of a subtracted 
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phases. Details are presented in Materials and Methods 
and in Results. 



15 

is that a linearized phagemid, that is, a plasmid with a phage f1 origin of 

replication, has been incorporated into the X genome. Co-infection of E. coli 

with phage from the X ZAP IS library and f1 helper phage results in single-

stranded replication of the phagemid portion of X ZAP II, which contains the 

cloned cDNA sequences, and the packaging of the single-stranded DNA into f1 

phage particles. The resultant single-stranded DNAs generated for each phase 

were purified and aliquots of each were labelled with biotin. For the subtractive 

hybridizations, unlabelled single-stranded cDNA of the target phase was mixed 

with excess biotinylated cDNA from the driver phase. Biotinylated DNA, and 

any hybridizing sequences, were removed with sireptavidin beads and the 

remaining single-stranded cDNA was made double-stranded with Sequenase. 

E. coli was transformed with the product to give the final subtracted cDNA 

libraries. 

During the construction of the subtracted cDNA libraries, I found that the 

standard procedures for the isolation of single-stranded phagemid DNA, while 

suitable for individual phagemid clones, did not give satisfactory results for the 

rescue of a population of recombinant phagemid genomes from a X ZAP II 

library. Both the quality and quantity of single-stranded cDNAs obtained by this 

technique appeared to be affected by the strain of helper phage that was used, 

the ratio of X ZAP II recombinant bacteriophage to helper phage and the 

duration of infection. Various strains of helper phage (R408, VCSM13, M13K07 

and MMP) were tested by analyzing the size distribution of the rescued single-
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stranded DNA on agarose gels (data not shown). Only the use of R408 and 

VCSM13 gave a good smear of single-stranded DNA. Compared to R408, 

VCSM13 appeared to produce a higher yield and wider size range of single-

stranded DNA. A 3 h infection period was sufficient to produce approximately 

30 pg of single-stranded cDNA. A growth period shorter than 2 h reduced the 

yield significantly, while an infection period longer than 5 h appeared to give 

preferential rescue of certain individual clones, which were apparent as distinct 

bands by gel electrophoresis. There was also more helper phage and X ZAP II 

DNA produced after prolonged growth of an infected culture. 

After the subtractive hybridization, Vectrex-avidin and MagneSphere 

particles were used to remove the biotinylated DNAs. 250 mg of Vectrex-avidin 

removed approximately 80% of the biotinylated cDNA as judged by our biotin 

assay (see Materials and Methods). Because the Vectrex-avidin beads occupy 

a relatively large volume (approximately 1 ml), some single-stranded target 

DNA is unavoidably trapped between the beads. Repeating the Vectrex-avidin 

treatment to remove the remaining biotinylated DNA would have resulted in 

unacceptable losses of single-stranded target DNA. MagneSphere particles are 

much smaller and were thus used to remove residual biotinylated DNA. The 

lower biotin-binding capacity of the MagneSphere particles precluded their 

exclusive use. 

To ensure efficient bacterial transformation, the phase-specific, single-

stranded cDNAs were converted into double-stranded cDNAs. As previously 
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reported (Rubenstein et al. 1990), the transformation efficiency of double-

stranded phagemid DNA was approximately 1000 times greater than single-

stranded DNA. T4 DNA polymerase, Klenow fragment of DNA polymerase I, 

T7 DNA polymerase and Sequenase were tested for performing the double-

stranded conversion. Double-stranded DNA prepared with Sequenase yielded 

twice as many colonies as that obtained from T7 polymerase, and several 

hundred-fold more than the product from T4 DNA polymerase or Klenow 

fragment. 

Transformation of E. coli with one quarter of each of the available 

double-stranded recombinant phagemid DNAs resulted in two phase-specific 

subtracted cDNA libraries. Approximately 3000 recombinant (white) colonies 

were obtained for the sporophyte and 4,600 for the gametophyte. Thus the 

total number of white colonies that could be obtained from the subtracted 

cDNAs were 1.2 x 104 and 1.8 x 104 for sporophyte and gametophyte libraries, 

respectively. 

Individual clones of the subtracted cDNA libraries were screened for 

phase-specificity by hybridizing with labelled first-strand cDNAs from both 

phases. Of approximately 2700 colonies screened from the sporophyte library, 

266 showed good hybridization to sporophyte cDNA and no apparent 

hybridization to gametophyte cDNA (Fig. 2.2). Similarly, 180 of approximately 

2300 colonies from the gametophyte library were apparently gametophyte-

specific. Thus, 8 to 10% of the recombinant colonies in the subtracted cDNA 
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Figure 2.2 Specificity test of the subtracted cDNA libraries. Two replica 
membranes with 96 colonies were hybridized with 32P-labelled first-strand 
cDNAs prepared from polyA+ RNA of either the sporophyte or the gametophyte. 
A) Hybridization of sporophyte first-strand cDNA to colonies from the 
sporophyte-specific subtracted cDNA library. B) A duplicate membrane 
containing the same colonies as in "A)" hybridized to the gametophyte first-
strand cDNA. C) Hybridization of sporophyte first-strand cDNA to colonies from 
the gametophyte-specific subtracted cDNA library. D) A duplicate membrane 
containing the same colonies as in "C)" hybridized to the gametophyte first-
strand cDNA. 
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libraries were evidently phase-specific. Among the negative colonies from both 

subtracted libraries, most produced signals on both membranes but gave 

stronger signals with the cDNA probe from the expected phase. These appear 

to represent mRNAs that are differentially synthesized, but are not phase-

specific. In some cases, different members of a gene family might be 

expressed in the two phases and have different affinities for the cDNAs in the 

recombinant colonies. There was also a small number of colonies that didn't 

hybridize to either labelled cDNA. These clones may encode cDNAs that are 

expressed at very low levels and could be phase-specific. A very low 

percentage of colonies showed equal hybridization signals to both labelled 

cDNAs. 

Twenty putative, phase-specific colonies from each of the subtracted 

gametophyte and sporophyte libraries were chosen for further investigation. 

Since the intensity of the hybridization signal for each colony reflects the 

relative abundance of the corresponding mRNA species (Fig. 2.2), I was able to 

select colonies that represented a spectrum of mRNA levels in the source 

tissue. Because each cDNA in the subtracted library may be represented by 

more than one colony, the selected colonies were first checked for relatedness 

by Southern hybridization. It was assumed that any cDNAs that hybridized with 

each other most likely originated from the same gene or from different members 

of a gene family. Where cross-hybridizing cDNAs were detected, clones with 

the longest inserts were selected for further characterization. Eleven unique 



clones were obtained from the sporophyte-specific library and seven from the 

gametophyte-specific library. 

To confirm that these clones truly represented mRNAs expressed only in 

the sporophyte or only in the gametophyte, their cDNA inserts were hybridized 

to mRNA from both phases in northern hybridization experiments (Fig. 2.3). 

Eight cDNAs from the subtracted sporophyte library clones hybridized to the 

sporophyte mRNA but not to that of the gametophyte, confirming that their 

respective genes were only transcribed in the sporophyte phase. cDNAs from 

three of the selected clones hybridized to mRNAs from both phases. Two of 

these showed substantially stronger hybridization to sporophyte mRNA, 

suggesting that the respective genes are subject to differential but not phase-

specific regulation (data not shown). Since the objective of this study was to 

isolate unambiguously phase-specific cDNAs, these three were not further 

characterized. The same protocol was repeated to confirm the phase-

specificity of the seven gametophytic cDNAs. In this case, all seven clones 

hybridized only with the gametophyte mRNA and not at all with that of the 

sporophyte. 

The 15 phase-specific cDNAs identified above were sequenced as the 

first step toward the identification of the corresponding genes. It was 

discovered that none of the cDNAs had a complete 5' terminal sequence 

containing the protein synthesis initiation codon; however, all 15 contained one 

or more open reading frames (ORFs). The amino acid sequences encoded by 
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Figure 2.3 Northern analysis of the 11 unidentified phase-specific cDNA 
clones. One pg polyA+ RNA from the sporophyte (S lane in each pair of lanes) 
and the gametophyte (G lane) were electrophoresed on a formaldehyde/agarose 
gel, blotted to a nylon membrane and hybridized to a 32P-labelled cDNA insert. 
Clone names of the labelled probes are indicated under each pair of lanes. 

Hybridization of a p-tubulin cDNA probe derived from an mRNA occuring in both 
phases is shown as a control. Clones 10a11, 26d12, 26a7, 23b6, 26a8 and 
26b7 are from the sporophyte-specific library while clones 12g1,24,12,16a10 
and 13 are from the gametophyte-specific library. Exposure times varied from 1-
72 h, depending on the intensity of the signal. 
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these ORFs were used to search data banks for similar proteins. The proteins 

encoded by two cDNAs from each phase were identified in this manner. For 

the sporophyte, one cDNA encodes a member of the elongation factor 1a (EF-

la) gene family involved in translation. The other cDNA encodes a serine 

protease-like protein. One of the identified gametophyte cDNAs encodes a 

protein containing multiple, non-identical regions with sequence similarity to 

cellulose-binding domains found in fungal cellulases. As there is little or no 

cellulose in Porphyra gametophytes (Mukai et al. 1981), these repeated motifs 

might be binding domains for other polysaccharides with similar structure. The 

other gametophyte cDNA encodes a lipoxygenase involved in fatty acid 

metabolism. The detailed characterization of these four genes will be described 

in subsequent chapters. 

The putative proteins encoded by the remaining 11 phase-specific 

cDNAs did not show significant similarity to any proteins in the data banks, 

suggesting that their counterparts in other organisms have not yet been 

sequenced or have diverged beyond easy recognition. The established 

characteristics of these unidentified cDNAs from the sporophyte and the 

gametophyte are summarized in Table 2.1. Although these sequences for the 

most part are unremarkable, there were a few interesting observations. In the 

sporophyte phase, the cDNAs from clones 26a7 and 23b6 represent two 

members of a gene family. Both cDNAs hybridize to n.RNAs of 0.8 and 1.0 kb 

(Fig. 2.3), but because cDNA 23b6 is 1008 bp long, it could only be derived 
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Table 2.1 Unidentified phase-specific cDNAs. 

Clone # Insert Size 

sporophyte-specific 

10a11 

26d12b 

26a7c 

23b6° 

26a8 

26b7 

gametophyte-specific 

12g1 

24 

12d 

16a10d 

13 

(bp) 

510 

599 

746 

1008 

732 

632 

558 

335 

466 

717 

553 

mRNA Size 
(kb) 

1.5 

1.4 

0.8, 1.0 

1.0 

1.0 

0.9 

2.6 

1.2 

1.0 

1.0 

0.9 

Abundance8 

++ 

++ 

++ 

++ 

++++ 

+ 

+ 

++ 

++++ 

++++ 

++ 

GenBank 
Accession # 

U04722 

U04732 

U04729 

U04727 

U04731 

U04730 

U04724 

U04728 

U04723 

U04726 

U04725 

abundance scores are based on northern hybridization results 
b contains repeated "ACG" motifs 
c related cDNAs 
d related cDNAs 
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from the longer mRNA. These cDNAs encode two very similar proteins with 

identical carboxy-terminal ends. The main difference between the two cDNAs 

is the presence of a longer 3' untranslated region in 23b6. The two cDNAs are 

88% identical, while their encoded amino acid sequences are 83% identical. 

The DNA sequence differences are due to single base substitutions, rather than 

insertions or deletions. Clone 26d12 contains "..ACGACGACGACG.." strings of 

various lengths in its coding region. The nature of these tandemly repeated 

codons will depend upon the identification of the correct reading frame for the 

cDNA. The longest ORF is in the "ACG" (threonine) reading frame but the 

"GAC" (aspartic acid) frame cannot be completely ruled out. Clones 12 and 

16a10 from the gametophytic phase again represent different members of a 

gene family, but in this case the two mRNAs are the same size (Fig. 2.3). 

These two clones represent highly abundant mRNAs and have 77% DNA 

sequence identity. The sequences of these 11 unidentified cDNAs will appear 

in the GenBank DNA Database (Table 2.1). 

DISCUSSION 

In this chapter I describe the initial results from a long-term project 

designed to examine the molecular mechanisms regulating phase-specific gene 

expression in Porphyra. My first goal was to isolate genes that are 

unambiguously phase-specific in their expression. To initiate this work, I 

developed a cloning strategy based on the subtractive hybridization of cDNA 
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libraries. Although various techniques for the construction of such libraries 

have been described in the literature (Rubenstein et al. 1990, Schweinfest et al. 

1991, Swaroop et al. 1991, Rodriguez and Chader 1992), I was unable to 

obtain subtracted libraries containing cDNAs that adequately represented an 

entire population of phase-specific mRNAs by following any of these protocols. 

By combining and modifying useful aspects of the methods reported by others, I 

have succeeded in constructing two subtracted cDNA libraries enriched for 

phase-specific genes expressed in the gametophytes and sporophytes of 

Porphyra purpurea. 

A number of points regarding the more important methodological 

adaptations deserve additional comment. In my protocol, the strain and 

quantity of helper phage were first carefully selected, and an appropriate 

infection period was determined experimentally because variations in these 

parameters had a substantial influence on the quality and quantity of the single-

stranded phagemid cDNA pools obtained for the subtractive hybridizations. 

There are several DNA synthesis processes that take place simultaneously and 

even compete with each other in E. coli cells after co-infection with XZAP II 

and helper phage. Conditions that favour production of single-stranded cDNA 

while minimizing unwa.ited side reactions have to be defined empirically. Even 

so, side reactions such as the conversion of single-stranded into double-

stranded phagemid cDNA will still be present to some extent, and thus the 

additional restriction endonuclease clean-up steps suggested by Rubenstein et 
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al. (1990) were retained in my protocol to help ensure a high specificity of the 

subtracted libraries. Double-stranded phagemid cDNA would not be removed 

by the hybridization step and would be retained as non-specific clones in the 

subtracted library. In another adaptation, I used both Vectrex-avidin beads and 

streptavidin-coated MagneSphere particles to remove the biotinylated DNA after 

the subtractive hybridization. I found that the consecutive use of both types of 

beads allowed efficient and economical removal of biotinylated DNA with 

minimal loss of target DNA. The conversion from single-stranded to double-

stranded cDNA prior to bacterial transformation was another crucial step for 

ensuring success. In contrast to the use of the Klenow fragment of DNA 

polymerase I (Schweinfest et al. 1990), I found that double-stranded DNA 

prepared with Sequenase produced several hundred-fold more colonies after 

transformation. This improvement is likely due to the absence of both 

exonuclease and strand displacement activities in Sequenase (Sambrook et al. 

1989). 

The subtracted cDNA libraries obtained using my cloning procedure 

contained a large number of phase-specific clones. This outcome indicates that 

there are many transcriptionally regulated genes making contributions to the 

differences between the two phases of P. purpurea. The 15 phase-specific 

cDNAs I isolated are derived from mRNAs that are produced at various levels, 

indicating that my subtraction techniques have the sensitivity necessary to 

identify low-abundance, phase-specific mRNAs. There were some recombinant 
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colonies from the subtracted libraries that did not show hybridization to either 

sporophyte or gametophyte first-strand cDNA probes. Such colonies might 

contain cDNAs derived from very rare mRNAs that encode regulatory proteins. 

This possibility needs further examination. I also obtained several clones 

derived from abundant mRNA species. These may encode structural proteins 

needed at high levels such as those presumably found in cell walls and cuticles 

(both of which have different compositions in the two phases of Porphyra). It is 

interesting that the gene encoding the putative cellulose-binding protein was 

one of those expressed at a high level. 

One of the surprising results of genomic sequencing efforts is the large 

number of genes being discovered that encode proteins with no known 

homologues. As many as half the sequenced genes of simple organisms have 

no identified function (Cole and Hamilton 1993). I have encountered this same 

situation in Porphyra. It is not yet possible to predict the functions of the 

proteins encoded by the 11 unidentified phase-specific cDNAs I have isolated. 

Nevertheless, these cDNAs can be used to retrieve genomic clones for the 

isolation of red algal promoters sensitive to phase-specific regulation. Such 

promoters would be useful tools for studies of red algal gene regulation and for 

construction of genetically engineered strains for biotechnoiogical applications. 

I have demonstrated the power of subtracted cDNA libraries in the 

identification of phase-specific algal genes. However, careful monitoring of 

each step of the protocol was required to obtain a large number and variety of 
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clones. The construction of a subtracted cDNA library is more challenging than 

the construction of a cDNA library, but the screening procedures for a 

subtracted library are efficient due to the enrichment of specific cDNAs. The 

disadvantage of selecting cDNAs solely on the basis of their expression pattern 

is that they often show no sequence similarity to known proteins in the data 

banks and thus cannot be identified. To characterize the encoded proteins, 

extensive further study is required, for example, in situ hybridization or protein 

purification and analysis (Ursin et al. 1989, Koltunow et al. 1990, Theerakulpisut 

et al. 1991). Thus, in cases where one is interested in a tissue- or phase-

specific gene that encodes a previously characterized protein, traditional 

approaches using oligonucleotide probes based on a partial amino acid 

sequence or using antibodies to screen clones producing recombinant proteins 

might be more efficient (Young and Davis 1983). The method chosen will 

depend on the objectives of the study and the available information. With such 

a wealth of molecular tools available, questions concerning the regulation of 

gene expression during algal life cycles have now become tractable. 



Chapter 3: Two Different EF-1 a Genes Show Dissimilar Developmental 

Patterns of Expression 

INTRODUCTION 

Elongation factor 1a (EF-1 a) is a well-studied housekeeping protein 

found in all eukaryotic ceils, where it plays a central role in protein synthesis. It 

is part of the elongation factor 1 (EF1) complex, which also includes the EF-1 8 

and EF-1 y proteins. EF-1 a facilitates GTP-dependent binding of aminoacyl-

tRNA to the A site of the ribosome during the elongation phase of translation, 

while EF-1 B/y promotes the exchange of GDP for GTP OR EF-1 a (Riis et al. 

1990). In this process, EF-1 a must bind to GTP/GDP, aminoacyl-tRNAs, the 

80S ribosome and the EF-1 B/y protein complex. These multiple interactions of 

EF-1 a probably limit its evolution, and it is therefore not surprising that the EF-

1ccs characterized to date are highly conserved in their amino acid sequences. 

EF-1 a is essential for the production of al! cellular proteins and at least 

one active copy of the EF-1a-encoding gene (tef) is necessary for cell viability 

(Cottrelle et al. 1985). Both EF-1 a and its prokaryotic homologue EF-Tu are 

required in large quantities; EF-Tu is possibly the most abundant protein in E. 

coli (Pedersen et al. 1978). Many organisms contain multiple copies of tef. 

Even organisms with markedly reduced genomes such as Arabidopsis thaliana 

(Liboz et al. 1990) and Saccharomyces cerevisae contain four and two active 

tef genes, respectively (Cottrelle et al. 1985). Some bacteria also have more 

29 
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than one EF-Tu-encoding gene (Yokota et al.1980, Sela et al. 1989). However, 

in almost all cases members of each gene family encode nearly identical 

proteins. 

Divergent EF-1 as have, however, been found in a few animals. The 

genes encoding these divergent EF-1 as invariably exhibit tissue or 

developmental stage-specific patterns of expression. Drosophila has two EF-

1as, F1 and F2; F1 is expressed throughout the life cycle, while F2 is mainly 

expressed in the pupal stage (Walldorf et ai. 1985, Hovemann et al. 1988). Of 

the three EF-1 as characterized from Xenopus laevis (EF-1aS, EF-1aO, 

42Sp50 ), only the somatic elongation factor, EF-1aS, shows constitutive 

expression. The oocyte-specific copy, EF-1aO, is closely related to EF-1aS in 

sequence, while the RNA storage particle protein 42Sp50, which is also 

expressed only in the oocyte, is highly divergent (Dje et ai. 1990). A major 

function of the 42Sp50 protein appears to be the storage of tRNAs for later use 

in oogenesis and early embryogenesis. Purified 42Sp50 can function as an EF-

la, but is unique in that it exchanges GDP for GTP without the assistance of 

the EF-1 B/y and binds to uncharged tRNA more tightly than charged tRNA (Viel 

et al. 1991). Rats and humans also have an extra, slightly divergent tef gene 

that is expressed only in terminally differentiated tissues such as heart, brain 

and muscle (Lee et al. 1993, Knudsen et al. 1993). No studies on the 

developmental regulation of tef genes have been reported in fungi, plants or 

protists. 



31 

Among the cDNAs for genes that are only expressed in the sporophyte 

of P. purpurea, one was found to encode an EF-1 a . Following this 

identification, a constitutively expressed tef gene was also isolated. Here, I 

describe the isolation and characterization of these two tef genes from P. 

purpurea. I present evidence that these are the only members of the P. 

purpurea tef gene family and that one is expressed in both phases while the 

other is specific to the sporophyte. I also report the phylogenetic relationship of 

these two EF-1 as to those from other eukaryotes. 

MATERIALS AND METHODS 

Genomic DNA manipulation and analysis 

P. purpurea sporophytic cultures grown in modified D-11 medium 

(Mitman and van der Meer 1994) were used for DNA isolation. Nuclear DNA 

was extracted and purified according to Rice and Bird (1990), except that the 

proteinase K treatment was omitted. 

For Southern hybridization, 12 pg of nuclear DNA were digested with 120 

units of restriction enzyme (BamH\, Kpn\, Pst\ or Ssfl) at 37 °C overnight. The 

restricted DNA samples were electrophoresed on a 0.6% agarose gel and 

transferred to Zeta Probe GT nylon membranes (BioRad). Blotted membranes 

were hybridized to probe DNAs and washed as described in chapter two, 

except that the final wash was in 2XSSC, 0.1%SDS, at 68 °C. 

Bacteriophage clones harbouring tef genomic sequences were obtained 
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by screening a P. purpurea genomic library kindly provided by Dr. R. MacKay. 

Plaque lifts were prepared according to standard procedures (Sambrook et al. 

1989). Membranes were hybridized and washed under the same conditions as 

the genomic Southern blotting. Recombinant bacteriophage DNA was prepared 

from positive clones by the method of Sambrook et al. (1989). The insert DNA 

was mapped by Southern hybridization using the ECL kit (Amersham). The 

DNA fragment containing tef was subcloned into the plasmid vector, pUC18, 

and sequenced in both directions from double-stranded plasmid template using 

an ABI 370A sequencer. 

cDNA characterization 

PolyA* RNA extraction, subtracted cDNA library construction and 

screening, northern hybridization and DNA sequencing were performed as 

described in chapter two. The missing 5' end of the cDNA was obtained by 

PCR from single-stranded cDNA extracted from the unsubtracted sporophyte 

cDNA library, which presumably contains longer cDNA inserts. The 5' PCR 

primer (with its 3'-terminus directed towards the cDNA insert) was 

complementary to the multiple cloning site sequence adjacent to the EcoRI 

cDNA insertion site on the T7 side of pBluescript II SK" (Stratagene). The 3' 

PCR primer (with its 3' terminus directed towards the 5' PCR primer site) was a 

gene-specific sequence 120 bp from the 5' end of the originally isolated cDNA. 

The PCR product of expected size was purified from an agarose gel by 
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Geneclean (BIO 101), cloned into a TA cloning vector (Invitrogen) and 

sequenced as described in Chapter 2. Protein secondary structure prediction 

was carried out with the PHD program (Rost and Sander 1993). 

Phylogenetic analysis 

Sequences were aligned on a SUN workstation using the GCG procram 

Pileup with default gap penalties (Devereux et al. 1984). Minor modifications 

were made by eye to minimize insertion/deletion events. For phylogentic 

analyses, regions not alignable with confidence among all taxa were deleted. 

Deleted regions include the amino-terminus, one small internal region, the 

carboxyl-terminus, and all insertions unique to Porphyra sequences. These 

correspond to positions 1-4, 157-165, 191-216, 240-243, 417-435 and 485-524 

of the Porphyra alignment (Fig. 3.1). All parsimony analyses were performed 

on amino acid sequences using PAUP 3.0r (Swofford 1991) with 50 replicates 

of random addition and branch-swapping by tree bisection reconnection. 

Bootstrap analyses used 100 replicates of simple addition with one tree held at 

each step. Distance matrices were calculated using the PHYLIP 3.5c program 

PROTDIST with the George-Hunt-Barker and Dayhoff amino acid substitution 

matrices. Phylogenetic trees were constructed by the NEIGHBOR or FITCH 

programs (Felsenstein 1991). The eukaryotic EF-1 a consensus sequence 

shown in Figure 3.1 was compiled from all known EF-1 as (Baldauf and Palmer 

1993). 



RESULTS 

Isolation and characterization of a sporophvte-specific EF-1 a cDNA 

Among the cDNAs from the sporophyte-specific library (Chapter 2) was 

one whose deduced amino acid sequence showed significant (>60% identity) 

similarity to EF-1 as. As this 1.2 kb cDNA sequence contained only the C-

terminal half of EF-1 a, PCR was used to isolate the 5' half of the gene from the 

unsubtracted sporophyte cDNA library. The combined sequence from these 

two clones is 1882 bp in length and contains a single open reading frame 

(ORF) encoding an entire EF-1 a of 515 amino acids (Fig. 3.1). This ORF is 

preceded by 53 bp of 5' leader sequence and followed by 281 bp of 3' 

untranslated region without a poly A tail at its extreme 3' end (databank 

accession number U08841). 

Northern hybridization of the 1.2 kb cDNA insert with poly A+ RNAs from 

both the sporophyte and the gametophyte detected a single 2.1 kb mRNA that 

is present only in the sporophyte (Fig. 3.2A). This sporophyte-specific EF-1 a 

has been designated Porphyra-s (P-s), while its gene is referred to as tef-s. 

Isolation and characterization of a second, constitutively expressed. EF-1 a 

Since tef-s was apparently only expressed in the sporophyte and EF-1 a 

is essential for translation, it was expected that there must be at least one more 

tef that is expressed in either the gametophyte or in both phases. Using the 

P-s cDNA as a probe to screen an unamplified P. purpurea genomic library, 
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Figure 3.1 Alignment of Porphyra EF-1 as with a eukaryote EF-1 oc consensus sequence. 
Amino acids involved in GTP and tRNA binding are boxed. In the consensus sequence, 
upper case letters indicate absolutely conserved amino acids while tower case letters denote 
either 1-3 conservative substitutions, or 1-2 non-conservative substitutions. Dashes indicate 
insertions/deletions. Symbols under the consensus sequence are as follows: A - "universally 
conserved sites, not conserved in Porphyra-s; 0 - highly conserved sites, not conserved in 
Porphyra-s; * - "universally" conserved sites, not conserved in Porphyra-c; ~ - highly 
conserved sites, not conserved in Porphyra-c;! - universally or highly conserved sites, not 
conserved in either Porphyra EF-1 a. 
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Figure 3.2 Northern analysis of the two tef genes from P. purpurea. Onepg 
polyA+ RNA from the sporophyte (S lanes) and the gametophyte (G lanes) were 
electrophoresed on a formaldehyde agarose gel, blotted to a nylon membrane 
and hybridized to a 32P-labelled DNA fragment (2x106dpm ml'1). Final washing 
was in 0.5 x SSC, 0.1%SDS at 68 °C. Signals were detected by 
autoradiography with an intensifying screen overnight. A) Hybridization with the 
3'-specific probe of tef-s (from the Xhol site to the end of the cDNA including the 
3' untranslated region, see Fig. 3A). B) Hybridization with the 3'-specific probe 
of tef-c (from Kpnl site to Sstl site, see Fig. 3A). 
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four positive clones were obtained from approximately 200,000 plaques. The 

cloned fragments were mapped, subcloned and sequenced. Three of these 

genomic clones contained a complete tef whose sequence differed from tef-s, 

and the fourth contained a portion of the same gene. No genomic clone 

carrying tef-s was isolated during this screen. The coding region of the second 

tef sequence revealed a single ORF of 449 amino acids (Fig. 3.1) with no 

interruptions by any introns (databank accession number U08844). 

To test the expression of this new tef, northern hybridization was 

performed under high stringency using the 3' coding region of this sequence as 

a gene-specific probe. The results indicate that the transcript of this new fer" is 

present at equal levels in both the sporophyte and the gametophyte (Fig. 3.2B) 

suggesting that it is constitutively expressed. I designate this gene as tef-c and 

its encoded EF-1 a as Porphyra-c (P-c). The mRNA size of this tef is 

approximately 1.5-1.6 kb, a size consistent with the coding region determined 

by sequencing. The larger size of the P-s mRNA is apparently due to several 

insertions in the coding region (see below). 

Estimation of gene copy number of te/in P. purpurea 

The number of copies of tef" in the P. purpurea genome was determined 

by Southern hybridizations with the 5' or the 3' coding region of tef-c (Fig. 3.3). 

The 5' probe of te/-cgave rise to two hybridization signals in the BamHI, Pst\ 

and Sstl lanes (Fig. 3.3B). Based on similar hybridizations with both 5' and 3' 
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Figure 3.3 Physical maps of P. purpurea tef genes and Southern analysis of 
genomic DNA. A) Physical maps of tef-c genomic DNA and tef-s cDNA. 
Positions of relevant restriction enzyme digestion sites are those predicted from 
the nucleotide sequencing data. Hatched boxes represent coding regions. 
DNA fragments used as probes for Southern hybridization are indicated by 
arrows. B) and C) Hybridizations with the 5' and 3' coding regions of tef-c 
respectively. B, BamHI; K, Kpnl; P, Pstl; S, Sstl. Size markers are in kb. 
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end probes of tef-s, sequencing data and the restriction mapping results of the 

genomic clones (data not shown), one fragment in each digestion can be 

assigned to tef-c (15 kb BamHl, 6kb Pst\ and 8kb Sst\ fragments), while the 

other signal in each lane is produced by tef-s (1.9 kb BamHl, 1.5 kb Psfl and 

3.9 kb Sstl fragments). The probe from the 3* coding region of tef-c (Fig. 3.3C), 

which overlaps the 5' tef-c probe, hybridizes to the same BamHl, Pstl and Ssfl 

fragments as the 5' end probe and to two additional Pstl fragments. The two 

additional Pstl fragments are due to the existence of a Psfl site in the 3' region 

of both genes. According to the sequence data, there is a second Psfl site in 

the 3' end of tef-s. However, a 513 bp Psfl fragment was not detected in the 3' 

probe hybridization, suggesting that one of two P-s Pstl sites might be 

protected by DNA methylation. The hybridization signals obtained with Kpnl 

digests also appear to be consistent with those of the other enzymes except 

that some of the hybridizing fragments are large and either partially digested, or 

possibly degraded during isolation, making it difficult to determine their exact 

sizes. Taken together, these data indicate that there are two tefs in P. 

purpurea and each gene is present as a single copy per haploid genome. 

Sequence comparison and phylogenetic analysis of EF-1P;S 

Amino acid sequence comparison of the two Porphyra EF-1 as with each 

other reveals 63% sequence identity and 17% conserved residue substitutions. 

P-s shows a relatively low sequence identity (60-67%) with other eukaryotic 
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EF-1 as, while the identity between P-c and other eukaryotic EF-1 as is 70-78%. 

In addition, comparison of the P-s sequence with other eukaryotic EF-1 as 

revealed four unique insertions of 4,19, 20-25 and 26 amino acids (aa) each 

(Fig. 3.1). Among known eukaryotic EF-1 as even small insertions are very rare 

and only one insertion longer than 10 aa is known (Baldauf and Palmer 1993). 

The amino acid composition of the 26 aa insertion is also striking in that it 

contains 50% lysine residues. 

Secondary structure predictions of the amino acid sequences of both 

Porphyra EF-1 as reveal a striking conservation of a-helix and 6-sheet elements 

with the bacterial EF-Tu (Kjeldgaard and Nyborg 1992, Berchtold et al. 1993). 

The important elements of EF-1 a predicted to be involved in GTP-binding and 

hydrolysis based on tertiary structure studies of EF-Tu, as well as residues 

demonstrated by cross-linking studies to interact with the aminoacyl tRNA, are 

all completely conserved in both Porphyra EF-1 as (Fig. 3.1) (Woolley and Clark 

1989, Metz-Boutigue et al. 1989, Kinzy et al. 1992). A comparison of the 

secondary structure predicted by the PHD program (Rost and Sander 1993) of 

P-s with bacterial EF-Tu showed that the 4 aa and the 26 aa insertions are 

located within loops in the GTP-binding domain. The 26 aa insertion, in 

particular, appears to extend the existing loop that protrudes from the surface of 

this domain. The 19 aa insertion extends a loop that occurs in domain III. 

Finally, the 20-25 aa insertion (depending on the alignment) occurs four 

residues from the extreme 3' end of EF-1 a, and part of this insertion may form 

4 
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an extra a-helix. Only a singl° I jertion was found in the P-c sequence relative 

to other eukaryotic EF-1 as. This 4 aa insertion is located within a loop of the 

GTP binding domain in a position different from any of the P-s insertions. 

The relationship between the two Porphyra EF-1 a sequences and other 

known EF-1a and EF-1a-like proteins was investigated by phylogenetic 

analysis. All trees derived by either parsimony (Fig. 3.4) or distance methods 

(data not shown) show that both EF-1 as from Porphyra are of eukaryotic origin, 

although only very distantly related to each other (Fig. 3.4). In all trees P-c 

occupies a similar and relatively derived position, close to plants, animals and 

fungi, though its exact position relative to the slime mold, Dictyostelium, and 

green plants is unresolved. Four equal length trees were found, two of which 

differed from the tree shown in placing P-c as a separate branch immediately 

below that of Dictyostelium, while the single distance tree placed P-c and 

Dictyostelium together on a branch with plants (data not shown). All methods 

placed P-s as the deepest branch among eukaryotes after Giardia EF-1 a, 

identical to the tree in Figure 3.4. However, it should be noted that P-s has a 

similarly low level of identity to all known EF-1 as suggesting that it may, 

instead, be evolving at a much faster rate than the other proteins in the tree. 

This is also reflected in the relatively long terminal branch of P-s in the tree 

(Fig. 3.4). Thus the position of P-s may be an artefact, and it may, in fact, 

share a recent common ancestry with P-c. 
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Figure 3.4 The relationship among Porphyra and other eukaryotic EF-1 as as predicted 
by phylogenetic analysis. The phylogenetic tree shown was derived by parsimony analysis 
of amino acid sequences with all amino acid changes weighted equally. Branches are 
drawn proportional to the number of inferred amino acid substitutions as indicated by the 
scale bar. The tree is rooted with the archaebacteria (Iwabe et al. 1989). Bootstrap values 
above 50% are indicated above the nodes defining major groups only. This tree is one of 
four shortest trees found and has a length of 2309 steps, a consistency index, excluding 
uninformative characters, of 0.496, and a retention index of 0.615. The three additional 
trees found at this length differ from the tree shown in placing P-c as a separate branch 
immediately below that of Dictyostelium and in the branching patterns within plants and 
within animals. 
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DISCUSSION 

In this chapter, I describe the isolation and characterization of two P. 

purpurea tef genes that are strikingly different from each other with respect to 

sequence and expression pattern. According to the results of genomic 

Southern analysis, only one copy of each tef exists in the Porphyra genome. 

My data demonstrate that tef-c encodes a typical EF-1 a that is expressed in 

both the sporophyte and the gametophyte, while tef-s encodes an EF-1 a with 

an unusual primary structure that is expressed ^nly in the sporophyte. While it 

has been shown that Drosophila and Xenopus contain f genes that are 

developmental^ regulated (Walldorf et al. 1985, Hovemann et al. 1988, Dje et 

al. 1990), this is the first example of a developmental stage-specific tef outside 

of the animal kingdom. My results provide direct evidence that the evolution of 

specialized, stage-specific tef genes is more widespread i previously 

thought and has occurred independently more than once in the evolution of 

multicellular eukaryotes. 

The sporophyte and gametophyte of Porphyra differ in both morphology 

and subcellular details and there are many transcriptionally regulated genes 

contributing to the differences between the two phases (Chapter 2). Under the 

growth conditions used in this study, the P. purpurea sporophyte rapidly 

develops conchosporangial branches, in which conchospores develop. The 

conchospores are eventually released and germinate to form the gametophyte, 
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which then produces male and female gametes. One possible role for the 

sporophyte-specific EF-1 a in P. purpurea may be that P-s functions specifically 

in the conchosporangia. This would parallel the situation in Xenopus where EF-

1aO and 42Sp50 are found only in the developing oocyte. 

Secondary structure predictions for both Porphyra EF-1 as show that the 

overall arrangement of structural elements in the GTP and the aminoacyl-tRNA 

binding sites is very similar to that of EF-Tu. P-c, in particular, is very highly 

conserved in terms of primary sequence and predicted secondary structure, all 

of which suggest that P-c is a typical eukaryotic EF-1 a representing the 

"housekeeping" EF-1 a required in all living cells. Although P-s has a highly 

divergent primary structure, all the elements involved in GTP and tRNA binding 

are absolutely conserved. Amino acid substitutions are mostly in the non-

conserved regions. Studies in Xenopus have shown that such amino acid 

drterences have not led to an important modification in function (Dje et al. 

1990, Viel et al. 1991). Although three of the insertions in P-s are quite large, 

they all appear to be restricted to pre-existing loops with the possible exception 

that part of the last insertion may form an extra helix located at the very end of 

the protein. Given the locations and structural properties of these insertions, it 

is unlikely that they would affect the proper folding or function of the protein. 

Thus, P-s may still be a functional EF-1 a. 

Alternatively, it is possible that P-s has an altered or additional function 

relative to other known EF-1 as. Since both tef-c and tef-s are actively 
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transcribed in the sporophytic-phase of P. purpurea, one cannot simply infer 

that P-s participates directly in translation. The high degree of conservation of 

the important elements in its primary and secondary structure suggests that P-s 

retained most EF-1a-related functions which may still require interacting with 

GTP, tRNAs, ribosomes or EF-1 B/y. However, the unique insertions and 

numerous sequence substitutions may reflect the evolution of function. For 

example, the lysine-rich 26 aa insertion in the GTP-binding domain probably 

forms a large positively charged loop located on the surface of the protein, 

which would allow an interaction with negatively charged molecules. 

Probably the largest and most highly divergent member of the EF-1a/EF-

Tu family known is the E. coli selenocysteyl-tRNAsec-specific elongation factor. 

This protein is 614 amino acids long and is homologous to, but extremely 

divergent from, the eubacterial EF-Tu (Forchhammer et al. 1990). Although 

selenocysteyl-tRNAs that decode UGA have been found in representatives of 

all major groups of organisms (Lee et al. 1990, Hatfield et al. 1992), a 

eukaryotic selenocysteyl-tRNA^-specific EF-1 a has not yet been identified. 

Comparison of the amino acid sequence of P-s with the E. coli selenocysteyl-

tRNA880 elongation factor reveals no sequence similarity in the regions where 

the insertions are located and the overall sequence identity is 29%. Since two 

functionally related proteins, P-c of P. purpurea and EF-Tu of E. coli, only have 

30% sequence identity, the low degree of sequence similarity between P-s and 

the E. coli selenocystyl-tRNA560 elongation factor may not mean that they are 
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functionally unrelated. More information is required to determine the 

relationship between P-s and the selenocysteyl-tRNAMC-specific EF-1 a. 

There are a number of reports that relate EF-1 a or EF-1a-like proteins 

to functions other than peptide elongation. The EF-1 a in Dictyostelium 

reversibly binds to the actin cytoskeleton. This may affect the activity or 

availability of EF-1 a in protein synthesis and may therefore contribute to 

temporal and spatial regulation of protein synthesis (Yang et al. 1990). 

However, the proposed actin binding site in Dictyostelium EF-1 a does not 

appear to have any sequence similarity to the corresponding region in P-s. In 

E. coli, EF-Tu also regulates rRNA synthesis by stabilizing a particular 

conformation of the RNA polymerase (Travers 1973) and is a subunit of RNA 

dependent RNA polymerase of the bacteriophage Q8 (Blumenthal et al. 1972). 

In carrot, an EF-1a-like protein functions as a phosphatidyl inositol 4-kinase 

activator, binds actin and facilitates actin polymerization, while still retaining EF-

l a function in an in vitro assay (Yang et al. 1993). A mitotic-apparatus-

associated protein from sea urchin eggs is also structurally and functionally 

related to EF-1 a (Kuriyama et al. 1990, Ohta et al. 1990) and the suf12 

suppressor protein of yeast has a high degree of sequence identity with EF-1 a 

(Wilson and Culbertson 1988). Most of these observations concerning the 

alternative functions of EF-1 as and EF-1a-like proteins in eukaryotes are quite 

recent and it is as yet difficult to relate any of these functions to P-s. 

Nevertheless, the maintenance of tef-s in Porphyra as an open reading frame 
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despite the numerous substitutions and large insertions suggests that there is 

selective pressure to maintain this gene. 

Although phylogenetic analysis suggests an ancient origin for P-s, the 

low sequence similarity of this protein to P-c and all other known EF-1 as leads 

to an alternative explanation: P-s is evolving more rapidly than other eukaryotic 

EF-1 as. This rapid rate of evolution interferes with accurate phylogenetic 

analysis (ie.Jong branch effects; Swofford and Olsen 1990). This is especially 

a problem when there is a lack of taxonomic representation. A similar obstacle 

was encountered in early phylogenetic analyses of the 42Sp50 protein of 

Xenopus (Viel et al. 1991). These placed 42Sp50 very distantly from the 

Xenopus EF-1aO and EF-1aS, presumably due to the rapid evolutionary rate of 

42Sp50 and the lack of representation of higher eukaryotic EF-1 a sequences. 

In all of my trees, which contain a much broader taxonomic representation, all 

three Xenopus sequences group together with other vertebrates, with 42Sp50 

having the expected long terminal branch. I would predict that with the addition 

of more protistan sequences, P-s would show a closer relationship with P-c. 

This would, in turn, suggest a relatively recent origin for P-s perhaps reflecting 

the evolution of a new function specific for a unique developmental stage. 



Chapter 4: Isolation and Sequence Analysis of a Sporophyte-specific 

cDNA Encoding a Serine Protease-like Protein 

INTRODUCTION 

As already demonstrated in the first two chapters of this thesis, specific 

phase differences between sporophytes and gametophytes of Porphyra can be 

detected at the level of gene expression. While screening and characterizing 

the subtracted cDNA libraries constructed for this study (Chapter 2), I found 

one sporophyte-specific clone, 10c3, that contained an interesting insert of 842 

bp. Preliminary sequence analysis revealed a single open reading frame (ORF) 

of 233 amino acids that was followed by a 140 bp 3' untranslated sequence. 

This ORF did not contain an initiation codon near the N-terminus indicating that 

it likely was missing the 5' end of the protein coding region. Protein data bank 

searches (Altschul et al. 1990, Pearson and Lipman 1988, Smith and Waterman 

1981) with the deduced amino acid sequence (Pustell and Kafatos 1984) 

indicated that the protein encoded by the ORF was similar to serine proteases. 

Not all members of the serine protease family have enzyme activity. 

One serine protease-like protein, the a-subunit of 7S nerve growth factor, 

contains all the active-site residues, but lacks catalytic activity due to an amino 

acid replacement near one of the active-site residues (Isackson and Bradshaw 

1984). Other serine protease-like proteins have substituted two of the three 

active-site residues, histidine and serine, with other amino acids nnd 
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subsequently lost their proteolytic activity (Hajrup et al. 1985, Kurosky et al. 

1980, Nakamura et al. 1989). Most of these serine protease-like proteins have 

adopted an alternative function as a subunit of a protein complex, such as the 

B-chain of human hepatocyte growth factor, the a-subunit of the 7S nerve 

growth factor and the B-chain of human haptoglobin, which binds to 

haemoglobin. The precise function of these serine protease homologs in their 

protein complexes is still obscure. The amino acid sequences of these 

homologs are not very similar to each other and some of the proteins have 

replaced some of the cysteine residues that are involved in disulphide bridge 

formation in active serine proteases. They appear to have evolved 

independently and are thus unlikely to have maintained a similar function. 

In view of the diversity of serine proteases and related proteins, I 

decided to obtain a full length copy of the ORF in clone 10c3 so that a proper 

comparison could be made with other members of this family of proteins, and a 

possible function for the Porphyra protein more accurately deduced. 

MATERIALS AND METHODS 

General methods have been described in Chapter 2. To obtain a full 

length cDNA of the ORF in clone, 10c3, first-strand cDNA was synthesized 

from sporophyte mRNA using a biotinylated poly(T) primer that was attached to 

streptavidin magnetic beads (Lee and Vacuier 1992). An "anchor" 

oligonucleotide containing an EcoRI sequence was then ligated to the 5' end of 
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the cDNA (Troutt et al. 1992). PCR was performed using the bead-attached 

cDNA as the template, a 5' end primer that was complementary to the anchor 

oligonucleotic^ sequence and a 3' end gene-specific primer that was 

complementary to the sequence 49 bp downstream of the 10c3 cDNA stop 

codon. A single 1.1 kb PCR product was obtained and cloned into EcoRI -

digested pUC18. 

RESULTS AND DISCUSSION 

As confirmed by northern hybridization (Fig. 4.1), the 10c3 cDNA 

represents a gene that is expressed only in the sporophyte . The intensity of 

the hybridization signal clearly indicates that the mRNA for this cDNA is present 

in high abundance. The size of the mRNA estimated from the northern 

hybridization is 1.2 kb, which is in keeping with the conclusion that the 10c3 

cDNA is not full length. 

The new clone obtained by PCR contained a cDNA fragment encoding 

a protein of 303 amino acids that is preceded by a 147 bp 5' non-coding region. 

Combining the sequences from both cDNAs gives a total length of 1199 bp 

(Fig. 4.2). 

Protein data bank searches showed that the Porphyra protein had 

highest similarity to the tryptase family of serine proteases. Tryptases are a 

class of serine proteases in mammalian mast cells that have trypsin-like activity 

(Miller et al. 1990). Comparison of this Porphyra tryptase-like protein (TLP) 
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Figure 4.1 Northern analysis of the 10c3cDNA. One u.g polyA+RNA from the 
sporophyte (S lanes) and the gametophyte (G lanes) were electrophoresed on a 
formaldehyde agarose gel, blotted to a nylon membrane and hybridized to a 32P-
labelled cDNA fragment (2x106 dpm ml"1). Final washing was in 0.5 x SSC, 
0.1% SDS, at 68 °C. The first pair of lanes is a control hybridization with a p-
tubulin cDNA probe derived from an mRNA occurring in both phases. The 
second pair of lanes is the hybridization with the 10c3 probe. The signals in the 
control panel were detected by autoradiography with an intensifying screen for 
48 h. The signal for the 10c3 hybridization was detected by autoradiography 
with an intensifying screen for 1 h. 
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976 GCTGCGCTTGCGCGGCGGCTCACAGATGTTGTCATGACTTGATTGTGTGGCTTGTGTGGGCTGCTCTAGCATCTCAA 

Figure 4.2 cDNA nucleotide sequence and deduced primary structure of the encoded 
protein. Numbers in the left margin refer to nucleotide positions. Numbers in the right 
margin refer to amino acid residues. The signal peptide is underlined. The two amino 
acids replacing the usual histidine and serine in the charge relay triad of serine 
proteases are indicated by thin boxes. The conserved aspartic acid residue in the 
charge relay triad is indicated by a thick box. 



with representative tryptases revealed 34%, 31 % and 29% sequence identity 

plus 28%, 27% and 28% conserved residue substitutions for dog tryptase 

precursor (Vanderslice et al. 1989), mouse mast cell protease 6 (Reynolds et 

al. 1991) and human a-tryptase precursor (Miller et al. 1989), respectively. 

Alignment of the Porphyra TLP with these tryptase precursors shows that the 

amino acid sequence of the TLP contains all regions that are highly conserved 

in tryptases (Miller et al. 1989) (Fig. 4.3). These include three regions 

surrounding the three active site amino acids and the IVGG activation site 

region, where cleavage of the propeptide occurs to produce the mature protein. 

In addition, the six cysteine residues that are characteristic of serine proteases 

and important for determination of structure (De Haen et al. 1975, Yun and 

Davis 1989) are all conserved in the TLP (Fig. 4.3). Although serine proteases 

of different species have different numbers of cysteine residues, the ancestral 

active enzyme appears to have contained three disulphide bridges that occur in 

analogous positions in the Porphyra TLP. Some vertebrate serine proteases 

have more than three disulphide bonds, such as the mammalian mast cell 

tryptases (Fig. 4.3), but three disulphide bridges are common to all known 

invertebrate serine proteases (Yun and Davis 1989, Jany et al. 1983). Further, 

the Porphyra TLP also has a typical signal peptide as one would expect for a 

secretory protein (Fig. 4.2). The signal peptidase cleavage site determination 

was based on the rule of vor Heijne (1984). 

The His/Asp/Ser charge relay triad, the active site for all serine 
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PORPHYRA 
TRYT-CANFA 
MCP6-MOUSE 
TRYA-HUMAN 

MARLTSTTTLIAAL-LLVAVSFTAVAAVNTKESSTRKKALKAKAPRGRSGR 
M PSPLVLALALLGSLVPVSPAPGQ ALQ RVG-
M—LKRRLLLLWALSLLASLVYSAPRPAN Q RVG-
M LSLLLLALPVLASRAYAAPAPVQ ALQ QAG-

PORPHYRA 
TRYT-CANFA 
MCP6-MOUSE 
TRYA-HUMAN 

IVGGREVDD—YDEDTGVHFIAKLFLPDGNGFYCSGSVISKSGHVLTRAGC 
IVGGREAPGSKWPWQVSLRLKGQYWRH-
IVGGHEASESKWPWQVSLRFKLNYWIH-
IVGaQEAPRSKWPWQVSLRVRDRYWMH-

-ICGGSLI-HPQWVLTAAHC 
-FCGGSLI-HPQWVLTAAHC 
-FCGGSLI-HPQ5fyLTAAHC 

P0R2HYRA 
TRYT-CANFA 
MCP6-MOUSE 
TRYA-HUMAN 

-EPRVNDV \7RLGGSRLY-NGWARVAKVSIHPKYDPAGEVADVAVLK 
VGPNWCPEEIRVQLREQHLYYQDHLLPVNRIVMHPNYYTPENGADIALLE 
VGPHIKSPQLFRVQLREQYLYYGDQLLSLNRIWHPHYYTAEGGADVALLE 
LGPDVKDLATLRVN-SGTHLYYQDQLLPVSRIMVHPQFYIIQTGADIALLJE 

* * * * * * * * 

PORPHYRA 
TRYT-CANFA 
MCP6-MOUSE 
TRYA-HUMAN 

PORPHYRA 
TRYT-CANFA 
MCP6-MOUSE 
TRYA-HUMAN 

LKGVSESRLLRAGWPVFLNRVWDN-PHGM—YFTGYGATDKAAQSAGSLT 
LEDPVN VSAHVQPVTLPPALQTFPTGTPCWVTGWGDVHSGTPLPPPFP 
LEVPVN VSTHIHPISLPPASETFPPGTSCWVTGWGDIDNDEPLPPPYP 
LEEPVN ISSRVHTVMLPPASETFPPGMPCWVTGWGDVDNDEPLPPPFP 

* * 

LKRAYLPVAPWWNCRRITDTWVPGLSRPGLPISPAAQVCLRGGRGAGALC 
LKQVKVPIVENSMCDVQYHLGLSTG DGVRIVREDMLC—AGNSKSDSC 
LKQVKVPIVENSLCDRKYHTGLYTG DDFPIVHDGMLC—AGNTRRD3C 
LKQVKVPIMENHICDAKYHLGAYTG DDVRIIRDDMLC -AGNSQRDSC 
** 

PORPHYRA 
TRYT-CANFA 
MCP6-MOUSE 
TRYA-HUMAN 

EjRDPGGPMYRVSTHRGVKIYTLYAVSSYWIGLGADNR CPRA-MPNVGS 
CGDSGGPL VCRVRGVWLQAGWSWGEGCAQPNRPGIYT 
CGDSGGPL VCKVKGTWLQAGWSWGEGCAQPNKPGIYT 
HGDSGGPb VCKVNGTWLQAGWSWDEGCAQPNRPGIYT 

PORPHYRA 
TRYT-CANFA 
MCP6-MOUSE 
TRYA-HUMAN 

KVAFYYSWIQNQV 
RVAYYLDWIHQYVPKEP 
RVTYYLDWIHRYVPEHS 
RVTYYLDWIHHYVPKKP 

Figure 4.3 Comparison of the Porohyra TLP with mammalian mast cell tryptases. The 
alignment was done using the CL' o .ML V program (Higgins et al. 1992) with minor 
adjustments made by eye. "*" - conserved residues. "." - conserved substitutions. 
Highly conserved regions characteristic of serine proteases are boxed. Cysteines that 
are involved in disulphide-bridge formation common to all sequences are bold. Two 
cysteines forming an extra disulphide bond in sequences other than the Porphyra TLP 
are indicated by "A ' \ TRYT-CANFA: doq tryptase precursor, MCP6-MOUSE: mouse 

mast cell protease 6, TRYA-HUMAN: human a tryptase precursor. 
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proteases, does not occur in the Porphyra TLP because two of the three active 

residues, histidine and serine, are replaced by glycine-98 and proline-247, 

respectively (Fig. 4.2). It is clear that the TLP cannot show any proteolytic 

activity due to the replacement of these essential amino acids. However, the 

conservation of the activation site sequence and the amino acids surrounding 

the active-site residues, as well as the disulphide bridges strongly suggest that 

the TLP is evolutionary related to the tryptases. 

The amino acid sequence of the TLP does not show substantial similarity 

to any of the other known serine protease-like proteins that lack a catalytic 

function. Although the Porphyra TLP lacks the active-site histidine and serine 

residues, it has retained all the important cysteines required to maintain the 

structural features of tryptases. Thus it appears quite possible that the 

Porphyra TLP has a function that remains related to specific characteristics of 

tryptases other than their proteolytic activity. 

Functional characteristics unique to tryptases are their tetrameric 

structure and their binding to and stabilization by highly sulphated 

glycosaminoglycans, such as heparin and chondroitin sulphate (Vanderslice et 

al. 1989, Schwartz and Bradford 1986). Sulphated polysaccharides stabilize 

tryptases through a direct interaction with the enzymes rather than by an 

indirect, ionic association (Schwartz and Bradford 1986). Both the sugar chain 

and the sulphate groups of the polysaccharide contribute to this interaction and 

the basic residues of the enzymes are assumed to be important for binding 



(Vanderslice et al. 1989, Evans et al. 1992, Petersen 1983). The Porphyra 

TLP, excluding the signal peptide, contains 39 basic residues (15 lysines and 

24 arginines) and has a net cumulative charge of +19. Although this protein 

does not have proteolytic activity, the similarity of its primary structure to the 

tryptases suggests that it might have maintained the capacity to bind sulphated 

polysaccharides. 

Some of the striking differences between the two life cycle phases of 

Porphyra exist in the composition and structure of the cell walls (Mukai et al. 

1981, Gretz et al. 1983, Gretz et al. 1986). The cell walls of the sporophyte 

are composed mainly of galactans, which frequently contain 6-sulphated 

residues, whereas the gametophyte cell wall consists mostly of mannans with 

galactans as only minor components. Northern hybridization demonstrates that 

the gene encoding the TLP is expressed only in the sporophyte which is the 

phase with abundant sulphated residues. The deduced amino acid sequence 

for the TLP begins with a typical signal peptide suggesting that it enters the 

cell's secretory system and thus may be transported to the cell wall. The 

mRNA species encoding the TLP is highly abundant indicating that the TLP 

exists in large amounts in vivo as would be required for a major wall 

component. Taken together, these characteristics suggest a possible role of 

the TLP as a cell wall protein that interacts with the sulphated galactans in the 

sporophytic phase. 



Chapter 5: Isolation and Characterization of a Gametophyte-specific 

cDNA Encoding a Lipoxygenase 

INTRODUCTION 

Lipoxygenases are nonheme iron-containing enzymes that catalyze the 

oxygenation of fatty acids containing a cis,cis-1,4-pentadiene moiety. The 

oxidized lipid products, hydroperoxides, are important precursors in a variety of 

metabolic pathways (Vick and Zimmerman 1987). Lipoxygenases have been 

isolated from plants, animals, fungi and algae, indicating that these enzymes 

are widely distributed in nature (Hildebrand et al. 1988). The primary structures 

of some plant and animal lipoxygenases have been determined by molecular 

cloning and sequencing of genomic DNA or mRNA species (as cDNAs). 

Animal and plant lipoxygenases do not show a high degree of overall amino 

acid sequence identity; however, they are more similar in the C-terminal half of 

the proteins where five conserved residues acting as ligands for the 

enzymatically active iron are located (Minor et al. 1993). A region of 38 amino 

acids containing five conserved histidine residues (Minor et al. 1993, Steczko et 

al. 1992) is found in all known lipoxygenases. 

Some mammals and higher plants contain isozymes for lipoxygenase 

that are developmental^ regulated (Funk et al. 1992, Hildebrand et al. 1988). 

Most lipoxygenases found in mammals are tissue-specific (Boado et ai. 1992, 

Funk et al. 1992, Thiele et al. 1987). In plants, the level of lipoxygenase 
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activity can vary not only among different organs of a given plant, but also 

between developmental stages of a tissue (Siedow 1991). Lipoxygenase 

activity has been reported in algae (Beneytout et al. 1989, Moghaddam and 

Gerwick 1990, Zimmerman and Vick 1973), but the amino acid sequences of 

these enzymes have not been determined. In this chapter, I report the isolation 

and characterization of a lipoxygenase cDNA from the red alga Porphyra 

purpurea and demonstrate that its gene is only expressed in the gametophytic 

phase of the life cycle. 

MATERIALS AND METHODS 

General materials and methods have been described in Chapter 2. The 

missing 5' end of the cDNA was obtained by a PCR approach described in 

Chapter 3 except that the 3' PCR primer was complementary to a sequence 

that occurs 149 bp from the truncated end of the 12g5 ORF. 

RESULTS AND DISCUSSION 

Following construction of a subtracted cDNA library for the gametophyte 

of P. purpurea (Chapter 2), several gametophyte-specific clones were randomly 

selected for further characterization. One of these, 12g5, contained an insert of 

2037 bp with a single open reading frame (ORF) that encodes 582 amino acid 

residues. Protein data bank searches (Altschul et al. 1990, Pearson and 

Lipman 1988, Smith and Waterman 1981) with the deduced amino acid 
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sequence (Pustell and Kafatos 1984) indicated similarity to plant and animal 

lipoxygenases. As this cDNA did not encode the N-terminus of the 

lipoxygenase, a PCR approach was used to isolate the N-terminal coding 

region. The second cDNA clone obtained by this method contained an 891 bp 

fragment encoding the N-terminal region of the protein. The combined 

sequences of these two clones (2779 bp) define a single ORF of 830 codons 

(including the termination codon) and a 3' untranslated region of 289 bp 

(databank accession number U08842). The first ATG codon occurs at position 

78 and there is no stop codon upstream of this ATG. These observations 

suggest that this ATG is not the initiation codon and that these cDNAs do not 

encode the N-terminus of the protein. 

Alignment of the Porphyra sequence with rice, soybean and human 

lipoxygenases (Fig. 5.1) (Ohta et al. 1992, Shibata et al. 1987, Matsumoto et al. 

1988) shows that the N-terminal portion of the proteins are divergent, while 

regions in the middle and C-terminal portion exhibit substantial sequence 

similarity. This result is in agreement with other alignments of various animal 

and plant lipoxygenase amino acid sequences (Ohta et al. 1992, Siedow 1991, 

Sigal et al. 1988). For example, the N-termini of the three soybean 

lipoxygenases are not at all similar, while the C-terminai nine amino acids of all 

known plant lipoxygenases are identical. All plant lipoxygenases are about 

25-30% longer than the animal proteins due to the presence of several large 

insertions (relative to animal proteins) in the N-terminal half of the plant 
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Figure 5.1 Sequence comparison of different lipoxygenases. Porphyra 
lipoxygenase was aligned with rice lipoxygenase-2, soybean lipoxygenase-1 and 
human lipoxygenase-5 using MULTALIN (Corpet 1988) with minor adjustments 
made by eye. "*" indicates conserved residues. ":" indicates conserved 
substitutions. The conserved 38 amino acid region is underlined. The five 
conserved residues known to bind the enzymatically active iron atom in soybean 
lipoxygenase-1 are boxed. 
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Figure 5.1 
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lipoxygenases (Fig. 5.1). A 38 residue region containing a cluster of five 

histidines in the form of His-X4-His-X4-His-X17-His-X8-His is found in all known 

lipoxygenase sequences (Steczko ei al. 1992) and in the Porphyra 

lipoxygenase (Fig. 5.1). An additional conserved histidine residue, about 150-

160 residues towards the C-terminus from this histidine-rich region, is also 

present in the Porphyra sequence. Further, the five residues that act as ligands 

for the enzymatically active iron atom in the soybean lipoxygenase-1 (Minor et 

al. 1993) are all found in the Porphyra lipoxygenase (Fig. 5.1). The evidence 

clearly shows that this cDNA encodes a lipoxygenase. 

The original Porphyra lipoxygenase clone was isolated from a subtracted 

cDNA library enriched for gametophyte-specific cDNAs. To confirm the 

expression of the originating lipoxygenase gene, I performed northern 

hybridization witn the C-terminus-encoding half of the cDNA insert as a probe of 

polyA+ RNA from both the sporophyte and the gametophyte (Fig. 5.2). The 

lipoxygenase transcript (3.2 kb) is only detectable in the gametophyte and is 

present in high abundance relative to the major pMubulin transcript. The P. 

purpurea lipoxygenase gene that generated this transcript is the first such gene 

shown to be developmentally regulated in algae. This phase-specific 

expression resembles the pattern of lipoxygenase gene expression in plant and 

animal tissues (Boado et al. 1992, Hildebrand et al. 1988, Thiele et al. 1987). 

Plant lipoxygenases do not have a clearly defined developmental or 

physiological role. They function by providing fatty acid hydroperoxides, which 
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Figure 5.2 Northern analysis of the Porphyra lipoxygenase cDNA. One pg 
polyA+ RNA from the sporophyte (S lanes) and the gametophyte (G lanes) were 
electrophoresed on a formaldehyde agarose gel, blotted to a nylon membrane 
and hybridized to a 32P-labelled cDNA fragment (2x106 dpm ml"1). Final 
washing was in 0.5 x SSC, 0.1 % SDS, at 68 °C. The left panel is a control 
hybridization with a p-tubulin cDNA probe derived from an mRNA occurring in 
both phases. The right panel is the hybridization with the Porphyra lipoxygenase 
cDNA probe. The signals in the control panel were detected by autoradiography 
with an intensifying screen for 48 h. The signal for the Porphyra lipoxygenase 
cDNA was detected by autoradiography with an intensifying screen for 1.5 h. 
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act as precursors in a variety of metabolic pathways. Plant lipoxygenases are 

active in many different stages of normal growth and development, and in 

senescence, pest resistance and wound responses (Hildebrand et al. 1988, 

Siedow 1991). My results have shown that this Porphyra lipoxygenase gene is 

expressed only in the gametophyte. Although the sporophyte and gametophyte 

of Porphyra differ in morphology and subcellular structure (Pueschel and Cole 

1985), and many genes are differentially transcribed in the two life cycle stages 

(Chapter 2), it is not possible to assign any of the general functions mentioned 

above exclusively to the gametophyte and thus relate lipoxygenase activity to 

gametophyte development. 



Chapter 6: A Gametophyte-specific cDNA Encodes a Protein with Four 

Apparent Polysaccharide-binding Domains 

INTRODUCTION 

Red algal cell walls contain a variety of sulphated galactans, some of 

which (the agars and carrageenans) are commercially exploited and, 

consequently, have been chemically and physically well characterized (Percival 

and McDowell 1981, Craigie 1990). The sulphated galactans are flexible 

polysaccharides that constitute the bulk of the cell wall matrix. Embedded 

within this matrix, are more rigid, structural polysaccharides such as cellulose, 

mannans and xylans. Cellulose appears to be present in all red algae 

investigated, although in the gametophyte of bangiophytes it is replaced by 

mannan and xylan microfibrils (Turvey and Williams 1970, Mukai et al. 1981, 

Craigie 1990). Compared to the polysaccharides, very little is known about red 

algal cell wall proteins. The composition of proteins extracted from red algal 

cell walls varies among species and between life cycle stages of a single 

species; however, specific cell wall proteins have not been isolated or studied 

to any significant extent (Craigie 1990). Hydroxyproline, a distinctive 

component of the extensins, which are the major higher plant and green algal 

cell wall proteins (Siegel and Siegel 1973, Adair and Apt 1990, Schowalter 

1993), is rarely detected in rhodophyte cell wall proteins. This observation 

suggests that, if the polysaccharides in rhodophyte cell walls are cross-linked 
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by proteins, a class of proteins different from the extensins must be involved. 

The differences between the two life cycle phases of Porphyra are 

evident in the subcellular anatomy (Bourne et al. 1970, Mukai et al. 1981, 

Pueschel and Cole 1985) and the cell wall structure and composition (Mukai et 

al. 1981, Gretz et al. 1983, Gretz et al. 1986). The cell wall microfibrils of the 

sporophyte are primarily cellulose, while the gametophyte forms xylan 

microfibrils and contains little or no cellulose. Further, the gametophyte cell 

wall contains a large amount of a granular, insoluble mannan, whereas 

sporophyte walls have a high proportion of sulphated galactans, with mannan 

as only a minor component. The sporophyte galactans are chemically distinct 

from those of the gametophyte. In addition, the amino acid compositions of the 

total cell wall proteins of the two phases are different, with the sporophyte 

proteins distinguished by their high arginine, histidine and aspartic acid co.itent 

and the gametophyte by high levels of alanine and glycine (Mukai et al. 1981, 

Gretz et al. 1986). Thus far, no cell wall proteins have been purified and 

characterized for either life cycle phase of Porphyra. 

Among several cDNA clones isolated from a P. purpurea gametophyte-

specific subtracted cDNA library was one that encodes a protein containing four 

apparent polysaccharide-binding domains (PBDs). In vitro translation studies 

demonstrate that this protein is glycosylated and is released to the lumen of the 

ER. The deduced characteristics of this protein suggest that it may be a 

secreted protein that binds cell wall polysaccharides. 
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MATERIALS AND METHODS 

P. purpurea gametophytes and sporophytes were cultured as described 

by Mitman and van der Meer (1994). PolyA+ RNA isolation, subtracted cDNA 

library construction and screening, northern hybridization and DNA sequencing 

were as described in Chapter 2. Since the isolated cDNA did not appear to 

encode an initiation codon, the amino terminus-encoding end of the mRNA 

sequence was obtained by a PCR approach described in Chapter 3, except that 

the 3' PCR primer was complementary to a sequence 60 bp downstream from 

the termination codon of the truncated cDNA and included an EcoRI recognition 

site at its 5' terminus. A PCR product of the approximate expected size (based 

on the mRNA length) was purified from an agarose gel using Geneclean (BIO 

101) and was cloned into EcoRI digested pUC18 to produce clone 12a5L This 

clone was sequenced as described previously (Chapter 2) and analyzed with 

the IBI/Pustell programs (Pustell and Kafatos 1984). Data bank searches and 

similarity analyses were conducted with the BLITZ (Smith and Waterman 1981), 

FASTA (Pearson and Lipman 1988) and BLAST (Altschul et al. 1990) 

programs. Sequence alignments were done w;th MULTALIN (Corpet 1988) and 

slightly modified after visual inspection. 

For in vitro transcription and translation, the 12a5L cDNA was subcloned 

(Sambrook et al. 1989) downstream of the T7 promoter of the pTZ18R vector 

(Phamacia). The cloned gene was transcribed with the MegaScript kit (Ambion) 

and 3 pg of the product was translated in a reticulocyte lysate system (Ambion). 
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Two microliters of canine pancreatic microsomal membranes (Promega) were 

added to the in vitro translation reactions when testing signal peptide function. 

Translation products were digested (Andrews 1987) with either proteinase K 

(0.1 mg ml1, 0 °C, 45 min) or endoglycosidase H (0.5 mU ml"1, 37°C, 16 h), 

both from Boehringer Mannheim. Microsomal membranes were separated from 

the soluble proteins as described (Fujiki et al. 1982). Typically, 25 pi of 

translation mixture was diluted to 500 pi with 0.1 M sodium carbonate pH 11.5, 

incubated at 0 °C for 30 min and centrifuged at 4 °C for 1 h at 175,000 x g in a 

Beckman TL-100 rotor. The membrane pellet was washed with ice-cold 

distilled water and dissolved in 25 pi SDS gel buffer (Schagger and van Jagow 

1987). Soluble proteins in the supernatant were precipitated with 10% 

trichloroacetic acid, washed three times with ice-cold ethyl ether and dissolved 

in 100 pi SDS gel buffer. One fifth of each of the soluble and membrane 

samples was loaded on an SDS-polyacrylamide gel. SDS-PAGE was 

according to Schagger and van Jagow (1987). 

RESULTS 

cDNA characterization 

In the process of screening the P. purpurea subtracted cDNA libraries 

(Chapter 2), I found a cDNA clone, 12a5, that was apparently derived from a 

gene expressed only in the gametophytes. Northern hybridization experiments 

confirmed a gametophyte-specific expression pattern and showed that the 1 kb 
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transcript of the 12a5 gene was present in high abundance relative to the major 

(5-tubulin transcript of P. purpurea (Fig. 6.1). The 12a5 cDNA was sequenced 

and found to contain a single open reading frame (ORF) of 193 codons 

(including a termination codon; and a 3' untranslated region of 170 bp. Protein 

data bank searches with the deduced amino acid sequence revealed that it 

contains four regions similar to the cellulose-binding domains (CBDs) of fungal 

cellulases. However, the 12a5-encoded amino acid sequence does not contain 

a methionine codon near its N-terminus, indicating that the ORF is incomplete. 

A cDNA (clone 12a5L) with the complete ORF (as defined by the presence of a 

complete signal peptide and initiation methionine codon at its N-terminus) was 

obtained by PCR amplification with the oriy.nal, unsubtracted gametophyte 

cDNA library as the template. The complete ORF encodes a protein of 210 

amino acids (Fig. 6.2A) that I have tentatively named the P. purpurea 

polysaccharide-binding protein or PBP. 

Amino add sequence analysis 

Inspection of the amino acid sequence of the PBP indicates that the 

entire protein can be divided into discrete domains (Fig. 6.2B). The major 

feature of the protein is the occurrence of four very similar regions of 40 - 45 

amino acids that resemble fungal CBDs. This protein also has a typical (von 

Heijne 1985) eukaryotic signal peptide of 22 amino acids that includes a 

charged N-ierminus, a hydrophobic core and a probable cleavage site 
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Figure 6.1 Northern analysis of the 12a5 cDNA. One ng polyA+ RNA from the 
sporophyte (S lanes) and the gametophyte (G lanes) were electrophoresed on a 
formaldehyde agarose gel, blotted to a nylon membrane and hybridized to a 32P-
labelled cDNA fragment (2x106 dpm ml"1). Final washing was in 0.5 x SSC, 0.1 % 
SDS, at 58 °C. The first pair of lanes is a control hybridization with a p-tubulin 
cDNA probe derived from an mRNA occurring in both phases. The second pair of 
lanes shows hybridization with the 12a5 cDNA probe. The signals in the control 
panel were detected by autoradiography with an intensifying screen for 48 h. The 
signal for the 12a5 hybridization was detected by autoradiography with an 
intensifying screen for 1.5 h. 
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GAA'ITCGCTGCCCTCTTCCCATCCCCCGQCGCTGCTGCTCCTTGCCCCGCCACACCACCCACAAG 

ATG GGC TTC CTC AAG GGC ACC GCC GCC GCG CTG ACG CTC CTG TCG GCC GCT GCC GCC GCA 
_ M C P L E <2 T „ A A h L I L _L S h h h h A 

TCG GCG TGC GGT GTi' CTC TAT 
_JJ A C G V L Y 

5AG CAG TGC GGT GGC ATT GGC TTT GAC GGC GTC ACC TGC 
E Q C G G I G F D G V T C 

TGC T f GAG GGG CTG ATG TGC ATG AAG ATG GGC CCC TAT TAC AGC CAG TGC CGC GCC ATG 
41 C !. E G L M C M K M G P Y Y S Q C R A M 

CCC G3'' ATC, ATG GGC CAG GTT AAG CCC TAC GGC CAG TGC GGC GGC ATG AAC TAC TCT GGC 
f,l P G M M G y V K P Y G Q C G G M N Y S G 

* * * 
AAG AC'c ATG TGC AGC CCC GGC TTC AAG TGC GTG GAG TTG AAC GAG TTT TTC TCG CAG TGC 

HI K T M C S P G F K C V E L N E F F S Q C 

GAC C T G GCC AAC AAG TCG CCG GTC GCG ACG CCC AAG GTG TCG CCG ACG TCC CCG CCG GGT 
1 0 1 P L A N K S P V A T P K V S P T S P P G 

* * * 
"VG GCG (-AC, GTG TGC GGC AAG GAG TAC GCA GCG TGC GGT GGC GAG ATG TTC ATG GGG GCG 

1 . U P A Q V C G K E Y A A C G G E M F M G A 

AAG TGC TGC AAG TTC GGC CTC GTC TGC TAC GAG ACG TCG GGC AAG TGG CAG TCG CAG TGC 
1 4 1 K C G K F G L V C Y E T S G K W Q S Q C 

CGC GCG CCG err, CCC AAG ATG GGT GAG GTC GGG CGC TAT GCG CAG TGC GGT GGG ATG GGC 
lfil P A P P P K M G E V G R Y A Q C G G M G 

TAC ATG GGC TCG ACC ATG TGC GTG GGC GGC TAC AAG TGT ATG GCG ATC TCG GAG GGC TCG 
181 Y M G S T M C V G G Y K C M A I S E G S 

ATG TAC AAG CAG TGC CTC CCC ATG CAC CCG TAG TGCGCCTCTTGACTGGACGGCGGGGGCCCTGTGGG 
2(11 M Y K Q C L P M H P -

GTCGCCATCATCGGCTAACATGATAGCGTAGCGCGCGGGGCCTTGCTGACAGGCTCTGGTTCGTCAAACACTTGTAGTC 

ACTTGCCTTCTGGCGCGCGTGGGGTAGCACATTATTCTATTTTTGTCAGACGGCGT 

B 

v v 
sssssaiss^^ 

Figure 6.2 A)_ cDNA nucleotide sequence and deduced amino acid sequence of the 
encoded protein. Numbers in the left margin refer to amino acid residues. The signal 
peptide is underlined. Bold amino acids indicate the linker sequence. Asterisks 
under the amino acids indicate putative N-linked glycosylate signals. B) A 
schematic diagram showing the organization of the 12a5L-encoded protein. The thin 
hatched bar represents the signal peptide. The solid line refers to the linker. The four 
similar polysaccharide-binding domains are shown by shaded thick bars. The two 
glycosylation sites are indicated by inverted triangles. 
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"Ala-Ser-Ala" (Fig. 6.2A). The signal sequence is immediately followed by 

polysaccharide-binding domains (PBDs) I and II and a 19 amino acid linker 

sequence rich in proline and hydroxy amino acids connects domain II to domain 

III, with domain IV adjacent to III (Fig. 6.2A, 6.2B). The linker region is similar 

to the linkers joining the catalytic and cellulose-binding dcmains of cellulases 

from bacteria and fungi (Gilkes et al. 1991). There is no linker between PBD I 

and II, or PBD III and IV. Two putative N-linked glycosylation sites (Asn-Tyr-

Ser and Asn-Lys-Ser) are located in the second PBD (Fig. 6.2A, 6.2B). 

An alignment of the four PBDs of the Porphyra PBP with the CBDs of 

fungal endoglucanases and cellobiohydrolases is shown in Figure 6.3A. All the 

conserved residues in the various fungal CBDs, including the cysteines shown 

to be involved in disufide-bridge formation (Kraulis et al. 1989), are conserved 

in the PBDs. The important aromatic residues that presumably make contact 

with the polysaccharides (Poole et al. 1993, Beguin 1990) are present in the P. 

purpurea PBDs. There is a single amino acid insertion in domain III and a two 

amino acid insertion in domain IV, relative to domains I and II. These insertions 

appear to be located at the same site within the respective domair>3. An 

alignment of the two adjacent pairs of PBDs (PBDs I and III with PBDs II and 

IV) shows the high degree of sequence similarity between these two halves of 

the protein (Fig. 6.3B). In addition, PBDs I and III both have an extra potential 

disulphide-bridge, similar to that of the CBD of the T. reesei cellobiohydrolase !l 

(Kraulis et al. 1989). 
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QC 

QC 

QC 

QC 

QC 

QC 
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IP GAT 

LP GAA 

L* 

L* 

Y* 
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L* 

Ref. 

1 

2 

3 

4 

3 

5 

6 

B 

1+2 CGVLYEQCGGIGFDGVTCCSEGU1CMKM-GPYYSQCRAMPGM1GQVKPYGQCGGMNYSGKTMCSPGFKCVEL--NEFFSQCDLANK 

3 + 4 CGKEYAACGGEMFMGAKCCKFGLVCYETSGKWQSQCRAPPPKMGEVGRYAQCGGMGYMGSTMCVGGYKCMAISEGSMYKQCLPMHP 

Figure 6.3 A) Alignment of the Porphyra PBDs with the CBDs from fungi. Highly 
conserved residues among all sequences are boxed. HA" indicates the conserved 
aromatic amino acids. TR -Trichoderma reesei, PC - Phanerochaete chysosporium, 
TV - Trichoderma viride, HG - Humicola grisea, EGL - endoglucanase, CBH -
cellobiohydrolase, "*" - N or C terminus of the protein. Ref. 1 - Saloheimo et al. 
1988,2 - Teeri et al. 1987,3 - Sims et al. 1988, 4 - Penttila et al. 1986, 5 - Cheng et 
al. 1990, 6 - Azevedo et al. 1990. B) Comparison of Porphyra paired PBDs. The 
possible disulfide-bridges equivalent to those in fungal CBDs are also indicated. 
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In vitro translocation and glycosylation of the PBP 

To establish that the first 22 residues in the P. purpurea PBP do function 

as a signal peptide, 12a5L transcripts were translated in a rabbit reticulocyte in 

vitro translation system in the presence of microsomal membranes (Fig. 6.4A). 

Inclusion of microsomes in the translation mixture should yield a protein of 

lower molecular weight if the 22 amino acid signal peptide is cleaved after 

transport across the microsomal membrane. In contast to the p-lactamase 

control, the major protein detected by SDS-PAGE did not decrease in size with 

the inclusion of microsomes in the translation mixture (Fig. 6.4A, lanes 2 and 

3), indicating that the signal peptide was not cleaved. However, two additional 

higher molecular weight proteins appeared on the gel. One explanation for the 

appearance of these proteins is that they result from the glycosylation of the 

PBP at either one or both of the putative glycosylation sites (Fig. 6.2A, 6.2B). 

Since glycosylation is another feature indicative of proper translocation across 

membranes, this result suggests that the signal peptide does function in 

directing the protein into the microsomes. 

If translocation across the microsomal membrane does occur, the 

proteins in the lumen of the microsomes should be protected from proteolytic 

digestion. When the translation mixture was digested with proteinase K, both 

the non-glycoslylated and the apparently glycosylated forms of the protein were 

efficiently protected from digestion (Fig. 6.4A, lane 4). Protein molecules 

smaller than the expected product, probabiy premature termination products 
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Figure 6.4 In vitro translocation and glycosylation of the Porphyra 
polysaccharide-binding protein (PBP). Signals were detected by autoradiograpy 
for 18 h. A) Translocation of the PBP: lane 1 - translation without 12a5L 
transcript; lane 2 - translation with 12a5L transcript but without microsomes; lane 
3 - translation with 12a5L transcript and microsomes; lane 4 - translation as in 
lane 3 followed by proteinase K digestion; lane 5 - translation as in lane 3, 
followed by 0.1 % Triton X-100 treatment and proteinase K digestion. B) 
Glycosylation and solubility of the PBP in the microsomes: lane 1 - translation 
with 12a5L transcript and microsomes; lane 2 - translation as in lane 1 followed 
by endoglycosidase H digestion; lane 3 - translation as in lane i , soluble 
proteins in the supernatant of the microsomal lyscie; lane 4 - translation as in 
lane 1, membrane proteins in the pellet of the microsomal lysate. 
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from in vitro synthesis, were completely digested during the proteinase K 

treatment. This experiment confirmed that the PBP is efficiently translocated 

into the microsomal lumen, even though the signal peptide is not cleaved (the 

bands in lane 4 are weaker than those in lane 3 due to the unavoidable rupture 

of some of the microsomes during handling). Solubilization of the microsomes 

with Triton X-100 allowed digestion of all bands by proteinase K (Fig. 6.4A, 

lane 5). 

To test the hypothesis that the higher molecular weight species in Figure 

6.4A (lanes 3 and 4) resulted from the addition of N-linked oligosaccharides, the 

translocated products were treated with endoglucosidase H, which cleaves 

between the two basal sugar residues that anchor the oligosaccharides to the 

protein. This enzyme treatment reduced the size of the two higher molecular 

weight proteins to near that of the non-glycosylated species (Fig. 6.4B, lanes 1 

and 2), confirming that the PBP is glycosylated in the microsomes. 

The observation that the signal peptide of the PBP is not cleaved after 

translocation suggested that the signal peptide might remain anchored in the 

membrane and keep the PBP associated with the membrane. Alternatively, the 

PBP might be released from the membrane by a mechanism other than the 

cleavage of the signal peptide. To test these hypotheses, I separated soluble 

and membrane-attached proteins by using high pH to lyse the microsomal 

membranes after translation. The soluble fraction (Fig. 6.4B, lane 3) of the 

lysate contained all of the glycosylated proteins and a portion of the 



non-glycosylated species. Only the small, incomplete proteins and some of the 

non-glycosylated molecules remained attached to the membranes (Fig. 6.4B, 

lane 4), suggesting that the mature PBP is not membrane-bound. Thus, 

although the signal peptide is not cleaved, the PBP is released to the lumen of 

the microsome^. 

DISCUSSION 

In this study, I have characterized a cDNA derived from a gene that 

apparently encodes a polysaccharide-binding protein and is expressed 

specifically in the P. purpurea gametophyte. I have obtained circumstantial 

evidence that this protein is a structural element of the gametophyte cell wall: 

(1) the encoded protein consists almost entirely of four domains that each 

resemble the CBDs of fungal cellulases and it lacks any obvious catalytic site; 

(2) the cDNA is derived from an abundant mRNA species as would be 

expected for a gene encoding a major cell wall protein, given that cell walls 

make up a large portion of the gametophyte biomass, and; (3) the encoded 

protein has a typical signal peptide that allows it to be translocated into the 

microsomal lumen, suggesting that the protein is secreted in vivo. 

The hypothesis that the repeated domains of the P. purpurea 12a5L-

encoded protein bind polysaccharides is further supported by their similarity to 

the chitin-binding domains of plant chitinases and wheat germ agglutinins 

(WGAs). Chitin-binding domains are also 40 - 45 amino acids in length but 
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have four, rather than two or three disulphide bridges. Nearly all of the boxed 

residues of PBDs in Fig. 6.3 (except the first C and the last Q) can be aligned 

with their counterparts in chitin-binding domains by the insertion of a three 

amino acid gap near the beginning of the chitin-binding domains. The overall 

amino acid identity of the PBDs to chitin-binding domains is approximately 25%. 

In addition, the structural organization of the P. purpurea PBP is similar to that 

of WGAs, which also contain a signal peptide and four domains with similar 

amino acid sequences (Wright and Raikhel 1989). However, WGAs lack the 

linker region between PBDs II and III of the PBP. The similarity of the P. 

purpurea PBDs to both cellulose- and chitin-binding domains strongly suggests 

that PBP binds carbohydrate polymers. 

While amino acid sequence similarities point toward a polysaccharide-

binding function for the Porphyra PBP, the identity of these polysaccharides 

remains unclear. The Porphyra gametophyte lacks cellulose, instead having 

xylan microfibrils and a granular, insoluble mannan (Mukai et al 1981). The 

PBDs are similar to domains that interact with cellulose or chitin, both of which 

are p(1,4)-linked polymers of six carbon sugars (glucose or N-acetyl 

glucosamine, respectively). Since mannose differs from glucose only in the 

orientation of the hydroxy! group on carbon-2, it seems possible that a p(1,4)-

linked mannan is the likely target for the Porphyra PBP. An additional 

uncertainty about the P. purpurea PBP is the number of polysaccharide 

polymers it might bind. Since a single CBD in funga! cellulases binds cellulose 



efficiently, it is possible that the PBP might interact simultaneously with four 

individual polymers. However, the placement of the flexible linker domain 

between PBDs II and III suggests that only two polymers are bound 

simultaneously, with PBDs I and II or PBDs III and IV binding adjacent regions 

of the same polymer, and each pair of PBDs binding a different polymer. Such 

a mechanism would probably result in the tight crosslinking of the two 

polysaccharide chains. 

The observation that the Porphyra PBP has a typical signal peptide but 

appears to undergo translocation across the microsomal membrane without 

cleavage of the signal peptide is unusual. An N-terminal signal peptide is 

necessary to direct the protein translation machinery to the ER and to promote 

entry of the nascent polypeptide chains into the secretory pathway (Chrispeels 

1991). Usually, signal peptides of secretory proteins are then cleaved by a 

signal peptidase; however, exceptions have been reported (Lingappa et al. 

1979, Chrispeels 1991), and thus the actual cleavage of the signal peptide 

appears to be dispensable in at least some systems (Gorlich et al. 1992, 

Rapoport 1992). The signal peptide in the Porphyra PBP contains a typical 

cleavage site (Ala-X-Ala) at the C-terminus, so recognition of the cleavage site 

by the signal peptidase should not be a problem. However, immediately 

adjacent to the cleavage site is a cysteine residue that, based on the known 

disulphide bridges in fungal CBDs, is likely to participate in a disulphide bridge 

(Fig. 6.3B). If this disulphide-bridge is formed prior to the complete 
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translocation of the protein through the ER membrane, the cleavage site might 

not be accessible to the signal peptidase and the PBP would have to be 

released from the membrane through a different mechanism. 

The cellular destination of a signal peptide-containing protein can often 

be inferred from its amino acid sequence. The default pathway for any protein 

entering the ER is secretion through the Golgi apparatus to the cell surface. All 

diversions from this path to cellular compartments require additional information 

in the protein's amino acid sequence (Pryer et al. 1992). The amino acid 

sequence of the P. purpurea PBP does not contain any of the known signals for 

ER retention (Chrispeels 1991, Bednarek and Raikhel 1992), Golgi retention 

(Hurtley 1992) or vacuole targeting (Chrispeels and Raikhel 1992), suggesting 

that this protein is probably secreted to the cell wall. However, Golgi retention 

signals have not been specifically identified in plants or red algae and the 

biosynthesis of some red algal cell wall polysaccharides occurs in the Golgi 

(Hawkins 1974, Tsekos 1985). Thus, an alternative hypothesis is that the PBP 

has a role within the Golgi to aggregate polysaccharides destined for the cell 

wall. 

In vitro studies have shown that the P. purpurea PBP is glycosylated at 

two sites, but it is not known whether the glycosylation events are critical to the 

function of the mature protein. N-linked oligosaccharides added to proteins in 

the ER promote the correct folding of the nascent polypeptide and prevent 

proteolytic breakdown in the Golgi (Chrispeels 1991). Glycosylation of WGAs 
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on the C-terminal propeptide is important for their transport from the Golgi 

bodies to the vacuoles (Wilkins et al. 1990). The propeptide together with the 

N-linked oligosaccharides are then removed in the vacuole to yield the mature 

protein. The glycosylation sites of the Porphyra PBP are located near the 

middle of the protein and are unlikely to be removed by the cleavage of a 

propeptide, suggesting that the mature protein is glycosylated. A glycosylation 

signal occurs in the T. reesii cellobiohydrolase II CBD at the same position as 

the first putative glycosylation site of PBP (Fig. 6.3A), but is absent on most 

other CBDs suggesting that the occurrence of glycosylation at this position does 

not influence substrate binding. 

The isolation of a P. purpurea gametophyte-specific cDNA that 

apparently encodes a cell wall structural protein has demonstrated that-

subtracted cDNA libraries and database-searching methods can provide a novel 

approach to phycological questions. If the protein described in this work does 

bind cell wall polysaccharides, its isolation and characterization by traditional 

methods would probably prove difficult. With the present information, protein 

purification could be guided by the characteristics expected for the amino acid 

sequence, or antibodies could be made to part or all of the expressed protein. 

Further characterization of the PBP, and further screening of the P. purpurea 

subtracted libraries for additional developmentally regulated cDNAs encoding 

cell wall proteins could provide new insights into the structure of red algal cell 

walls. 



Chapter 7: Conclusions 

This study has demonstrated that subtracted cDNA libraries are powerful 

tools for isolating a large number and variety of developmentally regulated algal 

genes without requiring any prior knowledge about the genes or their products. 

Following the isolation and sequencing of such phase-specific cDNAs, the 

putative functions of those genes whose counterparts have been characterized 

from related organisms can be identified through protein data bank searches. 

These approaches have allowed me to isolate and identify phase-specific 

cDNAs encoding the first developmentally regulated EF-1 a outside the animal 

kingdom, two putative red algal cell wail proteins that would be difficult to obtain 

by traditional methods, and a gametophyte-specific lipoxygenase. For those 

phase-specific genes that cannot be identified by data bank searches, the 

isolation and sequencing of their respective cDNAs is still an important step 

towards the identification of their functions. The cloned cDNAs could be 

expressed in E. coli and the purified proteins could then be used either to 

produce antibodies for immunological studies or other assays leading to the 

identification of these proteins. The phase-specific cDNAs could be used to 

produce RNA probes for in situ hybridization experiments to determine the 

spatial and temporal regulation of these genes. In addition, the labelled cDNA 

inserts could be used as probes to retrieve genomic clones for the isolation of 

red algal promoters sensitive to phase-specific regulation. Once transient 
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expression systems or the capability to produce transgenic plants are available 

in Porphyra, the cis-acting elements controlling phase-specific gene expression 

can be more precisely identified and characterized. The various cis-acting 

elements would be useful probes for the identification of specific regulatory 

proteins essential to the control of development. Furthermore, phase-specific 

promoters would be useful tools for construction of genetically engineered 

strains for biotechnological applications. 
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