

MATIONAL LIERARY OTTAWA

BIBLIOTHĖQUE NATIONALE OTTAWA

NAME OF MTTIIOR. JƠHN MORG̣AN. COOLEY
TITLE OR TILSIS. THE LIFE:HISTORY, POPULATION DYNAMICS AND
I PRODUCTION OF LEPTODIAPTOMUS MI NUTUS LILLJ.
(COPEPODA: CALANOIDA) IN BLUFF LAKE, HOYA SCOTIA
UNIVERSITY OALHOUSIE UNI VERSITY
DEGREF FOR WIIICI THESIS WAS PRESENTED. DOCTOR OF PHILOSOPHY
year tilis degrir. grantid. 1973
Permassion is hereby granted to THE NATIONAL LTBRARY OF CANADA to macrofilm this thesis and to lend or sell copies. of the film.

The author reserves other puhlication rights, and neither the thesis nor extenswe extracts from it may be pranted or otherwase reproduced without the author's written permission.
(Signed
P] RMAII NT TODRLSS:
Canada. Ceptre. for. Inland Waters
867 lakeshore . Road: . P. . Ps . Rqx . 5050
Burlington. Ontaris.
DATED. September 4. 1973
NL-91 (10-68)

THE LIFE HISTORY, POPULATION DYNAMLCS AND PRODUCTION OF LEPTODIAPTONUS MTNUTUS LILLI. (Copepoda: Calanoida) in Bluff Lake, Nova Scotia.
by

Johin M. Cooley

Author \qquad

Title The Life History Population Dynamics and Production of Leptodiaptomus minutus LILLJ. (Copepoda: Calanoida)

Department or School \qquad

Permission is herewith granted to Dalhousie University to circulate and to have copied for non-commercial purposes, at its discretion, the above tifle upon the request of individuals or ins titutions.

Signature of Author
the author reserves other publication richts, and neither the THESIS KOR EXTENSIVE EXTRĂCTS FROM IT MAY BE PRINTED OR OTHERWISE REPRODUCED WITHOUT THE AUTHOR'S WRITTEN PLRMISSION.

TABLE OF CONTENTS

Page
0
b. Soviet Graphical Method for Estimating Production 67
c. Death Rate Method for Estimating Production 72
13. Production in Bluff L. by L. minutus - the 4 methods 74
GENERAL DISCUSSION 77^{*}

1. The Life Cycle of L. minutus in North Temperate Lakes 77
2. The Importance of Diapausing Eggs and Their Deveiopment 80
3. Subitaneous Egg Development 84
4. Estimating Naupliar and Copepodite Development Times 85
a. Rigler and Cooley's Graphical Method 85
b. Cohort Survivorship 89
c. Instar Development Times Using Krogh's Curve 94
5. Predation on L. minutus 97
6. Production by L. minutus in Bluff L. 99
SUMMARY AND CONCLUSIONS -103
LITERATURE CITED 105
APPENDIX 1 110
APPENDIX 2 113
APPENDIX. 3 115
APPENDIX 4 117
APPENDIX 5 119

LIST OF TABLES

Table Page
1 Seasonal. changes in the transparency of Bluff L. water as indicated by the depth of disappearançe of a 25 cm Secchi disc, All readings were taken at the deepest spot in the lake and are expressed in metres 8
2 A summary ofivarious chemical parameters of Bluff L. (after Gorham 1957, and Ogden 1972) 9
3 Volumes of various strata sampled in Bluff L. These figures are based on the area of contuurs in Fig. 1 10
4 Categories of zooplankton identified in addition to 1 . minutus from quantitative Bluff L. samples 14
5 Beginning and ending dates for the 4 cohorts of \underline{L}. minutus in Bluff L. in 1971 and 1972 28
6 Seasonal changes in percentages of eggs and NI of L. minutus found in the top 3.5 metres of water in Bluff L . -when stratified 33
7 Estimates of the number of animals passing through the egg and first naupliar instars assuming: A) an average development time over the entire cohort, and 8) 1/0 animals hatch or moult each day of the cohort. All answers are expressed as number of animals $\times 10^{2} / \mathrm{m}^{2}$ 34
8 Dry weight values of Leptodiaptomus minutus used in converting animal numbers to production estimates. Values marked with an asterisk were determined from laboratory weighings. The number of animals weighed for each determination is given in brackets 37
9 Seasonal changes in dry weight values of individual adult males and females of \underline{L}. minutus and A. spatulo- crenatus in Bluff L. The number of anithals used in each determination is given in brackets. The dates pragress sequentially from 1971 to 1972 . All dry weight values are expressed in micrograms 38
10 Galanoid copepod associations in selected Halifax- Dartmouth area lakes. All samples were collected with a conical tow net (75 micron mesh) near the deepest spot in each lake in the summer of 1971 43
11 A comparison of avallable parameters from Bluff L. samples needed to calculate the total number of dia- pausing eggs deposited on mud sediments by L. minutus in the fall of 1970 and 1971 46
Table Page
12 The numbers of eggs found in each of 10 sediment traps from october 17 to 0ct. 26 in Bluff L. The "small" eggs were assumed to belong: to L. minutus and the "large" eggs to A. spatulocrenatus. Two traps were located at each of the 5 major sampling stations in Fig. 1 48
13 Experiments performed in the laboratory on diapausing eggs of \underline{L}. minutus and A. spatulocrenatus from Bluff L. in 1971 50
14. Data used in the graphical method of Rigler and Cooley- to estimate instar mortality ąnd production of L. minutus in Bluff L. in 1971 57
15 Various parameters needed to calculate production of 步. minutus in each of the 3 cohorts produced in 1971 using the Soviet graphical method 69
16 A sumnary of production estimates using 4 different methods for the 3 cohorts of L. minutus produced in Bluff L. in 1971 75
17 Egg development times for L. minutus and A. spatulo- crenatus at several temperatures from laboratory experiments (Appendix 3) and Schindler's general equation which is supposed to adequately describe egg development for a variety of north temperate zooplankters (Schindler 1972) 86
18 'Estimates of L. minutus Ni and N2 in situ development times for the 3 cohorts of 1971 and the first cohort of 1972 93
19 The use of Krogh's curve to estimate in situ development times for all instars (excluding adults) in $71 / 2$ and $71 / 3$ using the development times generated for 71/1 by the graphical method of Rigler and Cooley. 95

LIST OF FIGURES.

Figure Following
Page
1 A contour map of Bluff $L_{\text {. (after Hayes et al }}$1952)7
2 Isotherms for Bluff L. at the deepest point in 1971 11
3 A diagrammatic representation of a pulse of:1 animal passing through the first two instars 20
4 Population dynamics of L. minutus in Bluff L. from November 15, 1970 to May 19, 1972 24
5 Number of eggs/sac and percent females carrying eggsfor L. minutus in Bluff L. from Feb, to November 197126
6 Egg and N1 development times plotted against temperature for 1 .-minutus and A. Spatulocrenatus 31
7 Population dynamics of zooplankters other than L.minutus common in preserved samples from Bluff \bar{L}.from April 18, 1971 to March 31, 197239
8 The results of experiments performed on diapausingeggs of ㄴ. minutus and A. spatulocrenatus and thetime of onset of diapause52
9 - Change in abundance with time for eggs, nauplii, and copepodites of \underline{L}. minutus in each of the 3 cohorts produced in Bluff L. in 1971 54
10 * The results of analysis of each of the 3 cohortsof L. minutus produced in Bluff L. © in 1971 usingthe graphical method of Rigler and Cooley. S...56
11 Changing abundance with tidee for the total numberof animals in the NI to CV instars in eachcohort62
12 Allen curves for estimating production by \underline{L}. minutus in Bluff L. for each of the 3 cohorts produced in 1971 65
13 The Soviet graphical method of calculating copepod production for the 3 cohorts of 1 . minutus in Bluff L. (after Winberg, Pechen, and Shushkina 1965, Pechen and Shushkina 1964, from Edmondson and Winherg 1971) 67

14 A diagram to show the relative number of diapausing and subitaneous eggs and the number of NI in the first cohort of 1971 and $1972 \ldots$.

15 Survivorship curves for the 3 cohorts of 1 . 'minutus produced in 1971, overwintering adults from 1970, and major zooplanktonic predators present during 1971

步

ABSTRACT

The life history, population dynamics, and production of ? Leptodiaptomus minutus (Calanoida: Cdpepoda) was Investigated in a small oligotrophic lake (Bluff L.) near Halifax, Nova Scotia, from Oct. of 1970 to Nay 1972.

An overwintering popflation of adults began producing subitaneous eggs in February which hatched in March to provide a first generation of animals that developed slowly and began maturing in midwAugust. A second generation of animals resulted from eggs laid by these "new adults". In addition there was a small recruitment of first naupliar instars which hatched in March from diapausing eggs formed by adults in the previous fall. These latter eggs spent the winter on the lake bottom.

For purposes of analysis, recruitment and development of all individuals were divided into 3 cohorts. A crude estimate of survivorship in each instar was obtaired for each cohort using a new graphical method of analysis developed by Rigler and Cooley. Mortality was greatest from May through Oc'tober pnd was most likely due in part' to predation by Epischura nordenskioldi and Mesocyclops edax.

Production expresifed as dry weight was estimated for each of the 3 cohorts using the survivorship estimates from Rigler and Cooley's method as well as 3 other methods referred to as Allen curve method, Soviet graphical method, and death rate method. In general there was good agreement, in production estimates among, the 4 methods.

Information was also collected on subitaneous and resting egg development, and first naupliar development as related to temperature for 1 . minutus and a larger less numerous congener also in Bluff L. Aglaodioptomus spatulocrenatus.

ACKNOWLEDGEMENTS

(Two people in particular were of immeasureable help during the course of the investigation, Dr. E. S. Deevey Jr., and Or. J-G. O., "Pete" Ogden Ill. Dr, Deevey especially must be commended for putting up with and encouraging a graduate student whose original topic, it was agreed, would be on one 万f his primary interests of either tropical limnology or nutrient cycling. Dr. Ogden cheerfully bankrolked my. project (and me) and was always available for advice, encouragement, and consultation.

Dr. Ian McLaren provided valuabla advice throughout the study as well as helpful criticisms of an earlier draft of the thesis.

My dedicated and capable assistants, Harold Birnbaum, Stephanie Guildford, and Aileen Waller made it possible to complete the study in 1973. Without their expertise I would most likely still be counting copepods.

Other friends and colleagues provided field assistance at various
-times during the course of the investigation. Wayne Stobo, Ken Ross, John Railton, Pierre Brien, John Underwood, Jeremy Gay, and John Pringle. The last of the aforementioned deserves a special thanks for venturing onto $2^{\prime \prime}$ thick ice to help me get those critical April samples, and then pulling me out.

This study was supported by grants from the Dept. of Energy, Mines and Resources (Environment Canada) and the National Research Council of Canada (NRC) to Dr. E. S. Deevey Jr., and Dr. J. G. O. Ogden 111 , and by a scholarship and graduate fellowship from NRC and Dalhousie University respectively, to the author.

Ecological research is undertaken with the ultimate hope and view $\|_{0}$ that if enough information was acquired on the dynamics of processes occurring in ecosystems, it would be possîble to manipulate them confidence and predict the consequences of our actions. Some workers (Andrewartha 1961) see the problem reduced to an ability to predict the nmbers and forms of organisms occurring in space and time. (1942) in recognizing,"the ecosystem is..... the more fundamental ecological uni $t^{\prime \prime \prime}$ suggested that in dealing with organisms they first be grouped according to their mode of obtaining energy: primary producers, secondary producers, tertizry produters, etc, , each group being "more or less () discrete" and representing a trophic level. He pointed out that the energy content of any level isin a state af constant flut, continually receiving energy from the previous level and passing a partion on to the next trophic level. Since this trophic-dynamic approach to ecosystem analysis has had wide acceptance from European as well as North. American warkers it seems reasonable to fssume that its progressive development will in the future depend directly on the ability to clarify processes of production. Thus the stated aim of the freshwater section of the recently completed five year International Biological Program (IBP) was "to study the basic factors of production and metabolism at all trophic levels in representative standing and rúnning, waters" (Anonymous 1967). However Rigler in ä recent 'discussion of the adequacies and inadequacies of the IBP program 0 . (Rigler 1972a) pointed out that the predictive ability desired by ecologists and environmental planners will result from useful scientific theories which at present are in short supply. He also noted that theories derived from erroneous data are unlikely to provide the predictions neéded.

If Rigler's statement is correct then the foundation of theoretical ecology wifl be laid by the accumulation of goal oriented data and not K by. the mere accumulation of facts which he points out is fommon in much of the present ecological literature. Andrewartha (1961) su wests three levels of complexity at which ecological studies should be focussed. The first level concerns the physiology and behaviour of the individual, the second populations, and the last communities. Although ecologists are workihgat-all levels, it has become apparent that in the limnetic envirgonment a lack of knowledge of the life cycle and, ecology of mos't species is bne barrier between $\mu \mathrm{s}$ and the generalizations we seek. Limnologists, particalarily in North. America, have attempted to obtain' , ecological generalizations without knowing the role of individual species in the community or the naturat history of these species. Recently McLaren (1969) concluded that Izooplankton production cannot be measured or explained, without detailed quantitative studies of life bistories,"

In the present study I have attempted ${ }^{\circ}$ to obtain quantitative information on the life history, population dyriamics, and production of a single freshwater calanoid copepod, Leptadiaptomus minutus, in a temperate lake. Leptodiaptomus minutus is a logical choice for a quantitative study because it is very common in north temperate*lakes, ${ }^{n}$ being a numerically important constituent of the great lakes (Davis 1961. Patalas 1969); and frequently a dominant inhabitant of smaller lakes in both Northern and Southern Ontario (Rigler and Langford 1967. Patalas 1971). Wilson (1959) lists its range as north to the Northwest Territories, Iceland, and Greenland, west to Wyoming, south to North Carolina, and east to the Atlantic coast of Canada and the U. S. A.' Recently Davis (1972) stated that in Newfoundland lakes L. minutus appeared to be the most

-要
$\$$

Perhapsit is peacause of its wide range that bady of information* alrady exists concerning its size, spatial and temporal distribution, vertical migrations: cohgeneric occurrences and breeding habits (Langford 1937, Rigler and Langford 1967, Sandercock 196\%, Turvey 1968. Cárter 1971, Patalas 1971, scéhindlere and Noven 1971, Cunningham 1972). These proexisting datudeat only provide foundation of information to plan and work from but also permit a more general explanationsof the sigmificance of results from an in-depth study.

Ultimately the trophic-dynmic malysis of single species popupation requires information on abundance of unfmels over tipe. These data arean . then converted into units of blomass and perhapsengergy using some conventional empirically derived conversion factor." Because the errors associated with this latter, step are probably small comparectivith the problem of accurately estimating population sizes 1 will concentrate further discussion on this latter point. The term productign will be used as defined by Ricker (1968) as an increase in biomass of individuals of a population occurring in given period of time but not necessarily surviving to the end of that period. Under this definition the termitroduction is vidwed as having the same meaning as."net production" in the sense of previous authors who considered it necessiary to idistinguish between "net" and "gross" production, the latter including not only the growth increment but also metabolic energy lost because of respiration and egestion (Winberg 1971). Under recent 18P guidelines the terms "production" and "het production" are viewed as synonymous (Mann 1971).
*-uthdermetrits definition the concept of secondary production becomes conceptually simple and raduces to suming growth lincmants of all mambers
of given population for all populations (i.e. spectes) in a communtey over tithe. In practica however the task can be quite formidable because of the dynamic nature of zooplankton gopulafions. Mortality and often "repriduction are continuous but rarel'y do rates of change remain constant for extended period of time. Freshwater temperate dopepods such as . Dleptomus spend less than a day in some of the early naupliar instars making it possible for a part of the population to enter and leave the zooplankton commulty before they have had a chance to be sampled. If for example the first stage of a zooplankter has a population size of X individuals on two consecutive sampling days the possibilities exist that A) there has been no recruitment to that instar during the sampling interval, B) the population bas entirely replaced itself in the Interval. or C) situation between A and B has occurred. Production in the last 2 . cases will be signiflcantly higher than'In the first but unless there. Is some information aviliable on the amount of time spent in that instar it cannot be determined. Unfortunately obtaining instar development times is generally difficult and at the very least expensive and time consuming. Methods which can estimate animal numbers without tedious laboratory culturing will necessarlly be usefel to both population and production cologists working in freshwater.
The genus Diaptomus contalns 78 North Amertcan species but on the basie of morphological criteria can be further divided into number of subgenare (Wilson 1959). Two subgenera contain the 2 species of Dlaptomus found in Biuff Lake, Leptodieptomus minutus and Aglmodiaptomus spatulocronatus. wifch $\|$ wlll subsequently refor to as L. minutus and A. spatulocronatus. As more data are accumulated on N. American species these subgenere * astexonomic units may becoma more meningfil in discussions of congeneric competition.

In development, diaptomids hatch from an egg and pass through 6 noupliar instars here designated with Arabic numbers and capital M (i.e. NI to NG) and 6 copopodite instars designated with Roman numerals and a capital C (I.e. CI to CVI). The last copepodite instar is more usually referred to as the adult instar; tither meta or female.

MATERIALS AMO METHODS

1. Bluff Limke

Most of the information 1 . minutus came from the population inhabiting Bluff Lake (W. $63^{\circ} 39^{\prime}$, N. $44^{\circ} 33^{\prime \prime}$, Figure 1) which is located approximately 11 kcm , west of Halifax, Mova Scotia, and has been briefly described and studied on several past occasions (Hayes et al 1952, Gorham 1957, Ogden 1972). It is a kettle lake located in a drumlin field whose soils are derived from Wolfville till and support a mixed second growth hardwood-spruce woodland approximately 60 to 80 years old. The bottom of the lake contains large areas of mud and towards mig-summer large patches of waterlily (Nuphar sp.) are visible on the surface around most of the lakes perimeter.

In past years Bluff L. was used as a baseline indicator for disturbed lakes in the area because it was ollgotrophic, very clear, and η^{*} its watershed was undisturbed, but recently extensive forest clearance of a drumlin along the northeght edge has allowed large quantities of silt - Jaden runoff to enter the lake. As a result transparency has decreased odramatically (Table 1). In 1949 and 1970 a Secchi disc was clearly visible on the bottom in the deepest spot (approximately 7 m) but after a. large storm (Hurricane Beth) on Aug. 15 and 16 in 1971 on subsequent days the disc disappeared at depths less than 2.2 m and water colour had - distinctive muddy appearance but dissolved oxygen concentrations in the thermocline and below were still only'slightly less than the saturated eplilmatic waters. A brief summary of the chemical characteristics of Biuff L. Is prasented in Table 2, to show its obigotrophy, and wolumes of various strata sampled for zooplankton are presented In Table 3.
figure 1

A contour map of Bluff L. (after Hayes et al., 1952).

- 3

TABle 1
Seasonal changes in the transparency of Bfoff L. water as indicated by the depth of disappearance of 25 cm , diamdrer Secchi disc. All readings were taken at the deepest spot in the lake and are expressed in metres.

$\begin{aligned} & \text { Summer } \\ & 1949: \end{aligned}$	$\begin{gathered} \text { 5ummer } \\ 1970 \\ \hline \end{gathered}$	Aug. 1 1971	$\begin{gathered} \text { Aug. } 17 \\ 1971 \\ \hline \end{gathered}$	$\begin{aligned} & \text { Aug. } 21 \\ & 1971 \\ & \hline \end{aligned}$	Aug. 25 1971	$\begin{aligned} & \text { Sept. } 3 \\ & 197 i^{3} \\ & \hline \end{aligned}$
7 bottom	7 bottom	4.3	0.3	0.5	0.7	0.9
。						
		$\begin{gathered} \text { Sept. } 8 \\ 1971 \\ \hline \end{gathered}$	Sept. 16 1971	May 7 1972		4
		1.2	1.3	2.0		

On August 15 and 16, 1971, approximately 20 to 25 cm of rain fell on Bluff L. as Hurricare Beth passed over the Hallfax-Dartmouth area.
$\because($ from Hayes et 4 1952)

TABLE 2^{*}
A summary of various chemical parameters of Bluff L. (after Gorham 1957, and Ogden 1972).

TABLE 3
Volumes of various strata sampled in Bluff L. These figures are based on the area of the contours in Fig. I.

2. Sampling of Bluff L.

Quantitative samples of the limmetic zooplankton in Bluff L. were taken from Oct. 17, 1970 to May 19, 1972 using a $\frac{1}{2}$ metre high 32 litre transparent trap (Schindler 1969) with a 75 micron opening nylon mesh from small boat anchored at various stations on the lake. Sampling throughout the late fall was approximately every 6 to 7 days, throughout winter prior to ice breakup once or twice a month, every 5 days in May, and throughout summer and early fall every 4 days. On most days samples were taken at 5 fixed stations (see Fig. 1) but occasionally fewer stations ware sampled during the winter of $1970 / 71$ and especially when the fce was thin. On all days the entire water column was sampled to within $\frac{1}{2}$ metre of the bottom at each station and preserved in a 4% solution of formaldem hyde: Temperatures were routinely recorded throughout the water column (Fig. 2) using either a YSI thermistor (Yellow Springs Instrument Co.) or . a Whitney thermistor (Whitney Co.) in the deepest part of the lake. . In all a total of over 2300 thirty-two litre Schindler trap samples wera collected and analysed.
3. Counting of Preserved Samples
a. Leptodiaptomus minutus

In ordersto obtain estimates of the size of the L. minutus population preserved samples were analysed quantitatively in a small, homemade counting cell measuring $6 \mathrm{~cm} \times 4 \mathrm{~cm} \times 1 \mathrm{~cm}$ containing a bottom grid with - Wild MS binocular dissecting microscope (Wlid Ca.). For mbst sampling days 1132 litre trap samples from a given stratum were combined, diluted to anown volume of aither 50,100 , or 150 ml . thoroughly mixed and then subsampled with 5 ml HWnsen-Stempel pipette (Wildco Co.). This 5 ml diquot was then enptied Into the counting cell and thoroughly mixed
before a portion was counted and recorded to inster. In general counting was continuad until minimum of 100 naupliar instirs had been recorded or if few nauplil were present until 100 copepodites exclüding adults Thad been identified. For several sampling day ach satuple from each stratum was diluted. spbsmapled, and counted In a similar menner. On some days an entire 5 ml aliquot was staged for the adult instar when specific calculations deperfied on very accurate estimates of adult numbers. Final estimates of all zooplankters are expressed as numbers per square metre of lake surface area (Appendix I).
b. Other Zooplankters in Bluff L.

Quantitative estimates of the abundance of other 1 imnetic species were obtained from almost every other series of quantitative 32 IItre trap samples. Less emphasis was directed tomard theserspecies because they were numerically minor constituents of the zooplankton as compared with L. 首inutus. On most days the entire sample from a given stratum was identified for the categories of species listed in Table 4. Often, although such a sample represented 160 litrestof filtered lake ther (i.e. 32 litre trap sample, from a given depth at each of 5 different stations) the numbers were still quite low.*
4. Dry Weights

Estimates of the dry weight of various instars of L. minutus and A. spatulocrenatus ware made at various times throughout 1971 and 1972. . Live animals from Bluff L. plankton tóws no oldar than 2 or 3 days were lightly aneesthetized using a saturated solution of chloretone and removed individually to prevlously tared aluminum boats, driad for 24 hours in an oven at $60^{\circ} \mathrm{C}$, and welghed on the 1 me scule of cath G-1 alectrobalance (Cahn instrument Co.). The number of animils par boat was naver less than

TABLE 4
Categories of zooplankton identified in addition to \underline{t} minutus from quantitative Bluff L. samples.

SPECIES

Aglaodiaptomus spatulocrenatus

Epischura nordenskioldi
Mesocyclops edax
Daphnia pulex
Bosmina longirostris
Diaphanosome brachyurum
Holopedium glbberum

CATEGORIES IDENTIFIED

total adults, females with egg sacs toțal adults total copepodites ($C I$ to Adult)

罂 all individuals all individuals * all individuals all individuals
In addition, other very minor constituents of the limnetic zooplankton that appeared infrequently in samples were:
Leptodora kindtii
Polyphemus pediculus
Tropocyclops prasinus
Chaoborus sp.
Very fow rotifers were seen in preserved samples most likely due to the fact that a 75μ mesh opening would let many of the smaller forms through during flltering.

dead from groups of eggs collected from. Aug. 30 through 0ct. 17, 1971.
b. Diapause Development

A preliminary investigation was begun on the effect of temperature on the development of diapausing eggs of \underline{L}. minutus and A. spatulocrenatús. Diapausing eggs were collacted from fresh plankton samples and ware incubated under various "temperature regimes over varying periods of time from Sept. 1971 to June 1972. For experiments involving A. spatulocrenatus egg sacs, incubation occurred in single vial containing approximately 25 to 30 ml , of filtered Bluff L. Water while for experiments involving L. minutus each egg sát was incubated in a separate small vial containing several ml of filtered lake water. The temperatures of incubation depending on the regime followed were as follows. $4 \pm 0.5^{\circ} \mathrm{C}, 8 \pm 0.5^{\circ} \mathrm{G}$, and $13 \pm 1^{\circ} \mathrm{C}$. Fluorescent lights from normal room lighting were used where the experiment _ called for development to occur in a lighted environment.
c. Dropping of Diapausing Eggs by L minutus

In late October \underline{L}. minutus carrying resting eggs were collected from fresh live plankton samples and isolated in 8 dram glass vials of filtered Bluff L. water at $13 \pm 1^{\circ} \mathrm{C}$. The vials were checked daily and records were mide' of the time taken for each egg sac to be dropped.
d. Dlapausing Eggs Caught in Sediment Traps in Bluff L.

In order to estimate the number of dimpasing eggs that were being deposited by L. minutus in nature, pairs of 30 cm high cylindrical sed̃́ment traps (opening $78.5 \mathrm{~cm}^{2}$) were anchored approximately $\frac{1}{2}$ metre above the bottom et each of the 5 main sampling stations in Bluff L. A line was attached to a small float near the surface and to the middle of the inside bottom of tha trap by means of an eyebolt. The trap was kept vertically in place by a 20 cm square floatation collar of 2.5 cm thick styrofom
sandwiched between 2 pieces of 1.5 cm thick piywood and by a $1 / 2$ metre In joining common building brick and the bottom of the trap. The traps ware mptied by raising them vertically at a slow constant speed from small bout. The contents of each trap were filtered through a 75 micron opening nylon filament sieve and preserved with wif solution of formidehyde. In the laboratory each sediment sample was individually washed with ${ }^{3}$ saturated solution of MgSO_{4} into a 50 ml centrifuge tube and spun at low speed for 2 minutes. The resulting supernatant was sucked into large mouth pipette and emptied onto a 75 mieron opening nylon filmant sieve. The material caught by the sieve was washed with 4% solution of formaldehyde into a counting dish and examined undar a compound dissecting microscope.
7. Sampling for Zooplankyon in Other Lakes

From mid-June through early Sept. of 1971 a total of 38 , fakes within radius of 20 km of Halifax were sampled with a 75 micron opening nylon filamant tommet 25 cm in diameter to obtain qualitative estimates of the calanoid copepods present. The lakes visited together with information on morphometry are presented elsewhere (Table 10, page 43) Subjective decisions were made on the relative abundance of the four species of calanoids found locally (L. minutus, A. spatulocrenatus. Eplschure nordenskioldi, and Epischura lacustris) to all other zoop fankters present in the sample. These data were fir'st presented by Cobley, and by Ogden in report to the Metropolitan Area Planning Commission of the Halifax-Dartmouth area (Ogden,1972) but have been recalculated for presentation here.
8. Calculation of Population Statistics Using the Graphical Method of Rigler and Cooley

Southwood (1963, page 279) has shown that "crude" estimates of the number of individuals passing through a given instar can be obtained by dividing the area (in units of animal-days) of the curve of instar abundance plotted against time by the length of time spent in that instar. This last statistic is usually derived from laboratory studies relating temperature and development time and applied to the envirommental temperature experlenced by the population. However for calanoid copepod instars exclusive of egg and first nauplius, development is not exclusively dependent on temperature and development times are also dependent on food availability and nutrition (Eichhorn 1957, Cooley 1970). For these later instars in particular it would be degirable to infer development times from some property or properties of the population. If samples in the field were frequent and representative fnough one could the the interval between the appearance of the first individual of instar n and instar $n+1$ as an estimate of development time for instar n, but since some naupliar instars have an existence of less than a day and the required precision of, sampling has naver bedn achieved this method has been rejected. Instead a method wes chosen which used all of the sampling days in both instar n and $n+1$ in 'order to estimate $\mathbf{t}_{\mathbf{n}}$ '(t (he development time of instar, \boldsymbol{n}).

The statistic needed for the calculation is called the "mean pulse time" (μ_{n}) and is defined as the abscissa (in thist case day number) of the center of gravity of that pulse. A pulse here is defined as the increase and dacrease in numbers of an Instar as mimals pass through it and a cohort Is defined as members of apopulation that are born within a specified period of time. As will be described later some subjectivity is used in naming pulses and cohorts and there generations overlap a pulse may bie an
arbitrarily chosen maximum in the gurve of abundance with time.
, The basif of this method is illustrated in Fig. 3 which shows a cohort of one animal passing through 2 instars. The difference between the mean pulse time of the 2 successive instars $\left(M_{n+1}-M_{n}\right)$ is equal to half the time spent in both instars.

$$
M_{n+1}-M_{n}=\frac{1}{2}\left(t_{n}+t_{n+1}\right) \quad \text { Equation } 1
$$

In this simplest of cases the pulse is symmetrical so that the mode, median and mean of the pulse are identical. It can be shown graphically that for Individual cases of skewed pulses the same relation is true. In using this ; equat lon two assmaptions are made neither of which is likély to be verified.

ASSUMPTION I: mortality of each instar is uniform and symmetrically distributed about the mean pulse time

ASSUMPTION 2: development time of an instar remains constant throughout the pulse.

Analysis of population data for the complete life history of a copepod cohort yields a series of equations listed below in which the number of unknowns is one more than the number of equations, preventing direct solutions.

$$
\begin{aligned}
& M_{\mathrm{H} 2}-M_{N 1}=\frac{1}{2}\left(t_{\mathrm{N} 1}+t_{N 2}\right) \\
& M_{\mathrm{N} 3}-M_{N 2}=\frac{1}{2}\left(t_{\mathrm{N} 2}+t_{N 3}\right)
\end{aligned}
$$

\qquad

$$
M_{C V}-M_{C I V}=\frac{1}{2}\left(t_{C i v}+t_{C V}\right)
$$

Deganding on data avallable one can proceed to solve these equations in - number of ways. If the developmant time of any instar has been measured this value can be substituted into the approprfate equation and all other equations can then be solved. With calanoid copepods this development time *.

FIGURE 3

A diagrammatic representation of a pulse of 1 animal passing through the first two instars.

$M=$ mean pulse time
$t=$ development time
It can be shown graphically that this relation holds true for a skewed pulse of many animals.
should be for the first inupliar instar since it does not feed and its development time is function of temperature. Lacking I development time an iterative approch can be used by guessing at I development time and then solving for all others. If the guess underestimates the duration of the instar then the calculated time generated for the following instar by solution of an equation will be an overestimate of its true duration and so on. Since the total number of animals passing through an instar is drectly related with the area under the curve of numbers plotted against time (hereafter referred to as the area under the numbers curve) then the sign of errors in population estimates will be opposite to the duration estimetes. If inspection of the results show negative mortality to be excessive (a somethat subjective deaision) then a new time is chosen and this procedure is continued until negative mortality is minimized.

Although this method uses all of the data, sampling may still have been inadequate. On several occasions the calculated mean pulse time (M_{n}) of one instar came after the mean pulse time of the next instar $\left(M_{n+1}\right)$. This could have been caused by heavy mortality of animal's late in the cohort as they moulted into the next instar but in the absence of such information if is assured that this is the result of inadequate sampling and that

ASSUMPTION 3: the duration of each instar is equal to or longer than the preceding instar.

Therefore the difference between*successive mean pulse times should either be constant or increase. If a smooth curve is drown through calculated diffarences in mean pulse tlmes then values read from this curve can be used in subsequent celculations (i.e. these differences are the solutions to the left hand side of Equation 1). In practice it may be first necessary
to smooth out a curve of N_{n} 's plotted against instars (see Fig. 10). The areas under the numbers curves for each instar were determined by joining-datum points with straight lines and using the trapezoidal method to calculate the area under the constructed polygon.

To calculate the day when the centre of gravity occurs (the mean pulse time, M_{n}) the products of number of animals x day number were sumned at regular intervals of one day and dixided by the summed number of animals as illustrated below: •
$\mu_{n}=\frac{\text { Snumber of animals } x \text { day number in the year }}{\text { \&number of animals. }}$
The division of the area under the numbers curve by an average instar development time $\left(t_{n}\right)$ will yield numbers of animals that:
a. will be an estimate of the total number of animals that entered the instar if there is no mortality or if mortality occurred at ecdysis
b. approximate the total size of the population reaching the median age of the instar ($\frac{1}{2} \mathrm{t}_{\mathrm{n}}$) if mortality is constant over the stage. For simplicity and subsequent calculations I will assume that the situation in b is most closely approximated in nature and refer to these estimates as the number of animals passing through an instar.

RESULTS AND DISCUSSION

1. Cohorts of L. minutus in Bluff L.

Freshwater zooplankton in general and calanold copepods in particular have variety of life patterns which have been defined by Hutchinson (1967). An organism exhibiting single generation in year is said to be univoltine, and one heving several generations is sald to be multivoltine. Analysis of population statistics will necessarily be more complicated in the latter case if there are members from two or mare generations coexisting at the same time.

The L. minutus population in Bluff L. is multivoltine. First naupllar instars appear in early March (Fig. 4) and bégin a slow process of development through five more naupliar instars and six copepodite instars. (CI to cV plus adult). The adult instar is a breeding stage and first appears in August. Recruitment from prexisting overwintering adults in the form of nauplii hatching from subitaneous fon diapausing) eggs is continuous from Feb, until mid-October when all eggs produced become diapausing (often referred to as resting eggs) and with hatching of the last subitaneous eggs in early October naupliar instars begin to sequentially disappear completely from the lake (Fig. 4).

Inherent in any set of population data are variations resulting from sampling inadequacy, In some instances it is possible and desirable. to correct deviations from trends before analyses are carried out. In 1970 and 1971 the overwintering adult population of 1. minutus consisted amost entirely of adults with no effective recrultment from CV instars occurring (see Fig. 4). In this instance the population of adults can only remain the same or decrease and a best estlmate of adult numbers over time can be made by using all the date and drawing a smooth curve through delly estimates of adult numbers (Fig. 4, bottom). The small

Figure 4

Population dynamics of L. minutus in Bluff L. from November 15, 1970 to May 19, 1972.

Ald numbers are expressed as $\times 10^{4} / \mathrm{m}^{2}$ surface area. Subsequent calculations requiring estimates of either female or adult abundance were taken from smooth curves drawn by eye through data points. The curve of egg abundance (top row) was determined using the "smoothed" estimates of female abundance together with empirically frived estimates of eggs/sac and percent females with eggs. The vertical bars represent the end of one cohort and the beginning of the next.
.

amount of scatter about this curve suggests sampling was adequate for purposes of indicating population trends. A similar smooth curve was drawn through estimates of total females and together' with "corrected" values read from this curve and empirically derived estimates of viable eggs per female and percent females bearing eggs (Fig. 5) a curve of egg numbers versus time was constructed (top panel in Fig. 4). All subsequent calculations involving eggs and adults used these smoothed values read from the curves. Unless otherwise stated calculations involving all other instars used the original "unsmoothed" data.

For purposes of analysis the corrected curve of egg abundance could arbitrarily be separated into a number of pulses. These pulses occur as a result of several processes and are common in copepods where recruitment is continuous over a large fraction of the year (Rigler and cooley unpublished data, Comita 1972, Ravera 1954, Edmondson, Comita and Anderson 1962). When phytoplankton abundance is high, especially at spring and fall overturn, there is an increase in both the percentage of females carrying egg sacs and the number of eggs per sac creating the first pulse (Fig. 4 top panel, and Fig. 5). From mid-May through mid-Juneanother distinct pulse (second pulse) is evident followed by a period of low reproductivity in the warmest part of the year (third puise). A fourth pulse began in late August and continued until mid-November when egs production stopped.

- The first pulse in particular was distinct for most instars since shifts in peak numbers for subsequent stages could be followed easily and was treated as first cohort. The smaller second pulse was easily separable in the eggs and first few naupliar instars from an even smaller less obvious third pulsa (see Fig., 4, top panel). However the later

FIGURE 5

Number of eggs/sac and percent females carrying eggs for L. minutus in Bluff L. from Feb. "to November 1971.

On August 15 and 16 approximately 20 to 25 cm . of rain fell on the drainage area of Bluff L. as Hurricane Beth passed over the Halifaxroartmouth area.

\square

copmpedites in the second"end. third pulses were Insepmerable and for perpones of andysis the mecond and thitd pulsas wern tranted collactively as second cohort. . The-four th recganizable pulse wich continutd into 1972 mes distinct and was treated as third cohort. In sumany the population of L. Ginutus in Bluff L. in 1971 was divided for amiysis artitrarily into 3 cohorts. Although information on abundance in 1972 is avellabte only un until May 79 the begining of first cohort comparabla to the previous year is evident.

Before the fiald work was started it was dacided that the sampling program would be intensive in order to obtain good deta on population dynamics of the min zooplankter L. minutus since a provious imilar study on another diaptomid (Rigler and Coolèy, unpublished) had shown that jnftequant samiling could lead to a condition where pulses could not be ousily separted蚛 open to many subjectiwe decisions. Howavar avan with frequent sampling there ware times when two pulses were not distinct. In particular the and of the first puise for the wh and W5 lnstars was not clear. There was also difficulty and some subjectivity used in separeting the first and second pulses In the copepodite instars because apparent mortality early in the * neupliar Instars eliminuted any noticeable modas in later instors. This Is most apparent after the CII instar where it becomen fupossibla frow the data to separate the second pulse from the thIrd. By the Cy instir the second and third pulses of $\overline{0}$ anlmels seem to have disappeared confletely. 'Fod this reasion melysis was carried out as described In the materlals and methodex for the cohorts as dafinad in table 5. This will intratuce () an error wich assume to be insignificent.

The third cohort produced In 1971 developd through the winter and

TABLE 5
Beginning and anding dates for the 4 cohorts of L. minutus in. Bluff L. in 1971 and 1972.

```
First Cohort 1971 (71/1) Eggs to CV
-begins Feb, 20, ends Nov. 27, 1971
Second Cohort 1971 (71/2) Eggs to CIV
-begins May 15, ends Oct. 26, 1971
Third Cohort 1971 (71/3) Eggs to CV
-bogins Aug. 21, ends May 19, 1972
First Cohort 1972 (72/1) Eggs to N3
-begins feb, 13, end of pulse of M3's assumed to occur on lure 5, 1972.
```

Into spring of 1972 but the smpling progrem for Eluff L. wase anded on Mey 19 before all of the CV had olther completed their development into edults or died. Since the numbers are mall (Fig. 4i It wes assumed shat all CV enimels alive op May 19 survived into adulthood, Agnin this will introduce small insignificant arror but sfaplify couparisons between cohortk.

The owerwintering femeles began producing subltwneous aggs at about the same time in feb. of 1972 as they did in the previous yoar but the first cohort of 1972 which is shown in Fig. 4 . up te May 19 is obviousiy smeller in size than that of 1971 in both the eggs end early naupliar instars. By Mey of 1972, as in 1971, fay CI of the first cohort wire found in samples. It should also be noted that there was much more scatter about the swoothed curves of abundance of adults and adult females even though smolling was more Infeinse" during the winter of $197 \overline{2}$.

In all subsequent discussion for slaplicity unless otherwise stated all numbers of L. minatus instars rafer to whole like estimates and will be expressed in units of $10^{2} / m^{2}$, dill aroaswnder curves in units of $10^{2} / m^{2}$, and all production figures as grams dry welght $/ \mathrm{m}^{2}$. The first three cohorts produced in 1971 and the first cohort of 1972 w111 be referred to as $71 / 1,71 / 2,71 / 3$, and $72 / 1$ respectively. Subitaneous eggs will be referred to as slmply "eggs" as opposed to diapeusing or resting eggs.
2. Empirically Derived Development Timas

Previous workers (Elster 1954, Eicthorn 1957, Cooley 1970) have shom that development fetes of eggs and first noupliar linsters of frasheter culanold copepods are temperature dependant. The results of laboratory

$$
D=a(T-\infty)^{b}
$$

Where D is developmant time, T is temparature, a, b, and α are constants, beceust it has been shown to adequataly describe developmenit rate and temperature when the relationship is morotonic and slightly curvilinear (McLaren 1965, 1966, Mclaren, Corkett, and Zillioux 1969, McLaren and Cooley \% 1972, Corket 1972). The constant α was chosen to achieve the best least squares fit between the natural logs of D and ($T-\infty$. Although a simpler form of this power curve (without α) would describe the data as well, the extre step is Included here because of the suggestion by McLaren (1963. 1965, 1966) that the 3 constants of belehridek's function may have blologicil maening at least within relitited groups such as copepods. Thys these fitted equations (Fig. 6) may be useful to future workars when more information on agg and first naupliar development ates become available.

Information derived from field sampling on the density of animals in each $\frac{1}{2}$ metre stratum and water temperatures (Fig. 2) for each sampling dey of a cohort were used in the following monner to astimate an average temperature experienced by aparticular instar (egg or MI) in the lake. The man dafly temperature experienced by an instar was calculated by multiplying, temperature of each scratum by the density of animals. suming over all strata, and dividing by the total number of anlmals- in the Iske. These mon dally temperatures maighted (mulitiplied) by the population slat of the Instar were used to estimate a man temperature over the entire cohort and were then corverted Into an werage cohort danelapment thm for thet instar by using the appropriate equation in F1g. 6.
o
figure 6
Egg and NI development times plotted against temperature for 1. minuths and A. spatulocrenatus.

BElehradek's temperature function was fitted to the date points to obtain an aquation for each curve. The statistics of the fit for each curve are located in Appendix 3.

$$
\mathrm{D}_{\text {egg }}=156046(\mathrm{~T}+8.0)_{\mathrm{m}}^{-2.314} \mathrm{\%}
$$

$$
D_{N 1}=14065(T+6,0)^{-2.048} \quad \text { Equation } 3
$$

A. spatulocranatus

$$
\begin{aligned}
& D_{e g g}=160020(T+4.9)^{-2.402} \\
& D_{M 1}=27790(T+6.6)^{-2.282}
\end{aligned}
$$

$$
D_{e q q}=160020(T+4.9)^{-2.402} \quad \text { Equation } 4
$$

$$
0
$$

D= development time in hours
T= temperature in degrees centrigrade :-

- For this and subsequent calculations it was mssumed that ony diurnal vertical migration that might be occurring by egg carrying famalas and MI did not affect the daily estimes of maan temperature. This lassumption is supported by the fact that on given day almost the entire population was located in the top 3.5 metres of the lake (Table 6) which was also the unstratified epilimnion (Fig. 2). Also Cooley (1970) found that the vertical distribution of the first naupliar instars of Skistodigitomus oregonensis had the same mean depth in the weter column during the day and at night even though vertical migrations became larger with fincreasing : age in the copepodites and adults.

3. Population Estimates of Eggs and MI

Estimates of the number of eggs and N1 passing through each of the 3 cohorts of L. minutus produced in 1971 and the first cohort of 1972 were calculated in 2 slightly different ways (Table 7). The first estimate Involved converting the mean cohort temperature for aggs and MI to mean developmant thes using Equations 2 and 3 and dividing these times into the area under the numbers curve (Southwood 1963). The second method has been used by several workers for estimeting birth rates of rotifers, cladocerans, and copepods (Edmondson and Winberg 1971).' It assumes that on a given day the fraction of eggs hatching is $1 / D$ where D is the duration of egg development in days determined from Eqn.: 2, and thus $1 / 0$ egg number will give the absolute number hatching in a day. If one takes an average of the number hatching on consecutive sampling days and multiplies this number by the interval between the 2 sampling days then an absolute estimate is obtained of the number of eggs hatching in the interval and sumaing over all intervals in a cohort gives an astimate of the total number of animels hatching. The same procedure was applied for Ml moulting

TABLE 6
Seasonal changes in percentages of eggs and N1 of L. minutus found in the top 3.5 metres of water in Bluff L. when stratified.

table 7

Estimaten of the number of animils passing through the egg and first naupliar instars assuming. A) an average development time over the entire cohort. and B) $1 / 0$ animals hatch or moult each day of the dohort. All answers are expressed as number of animals $\times 10^{2} / \mathrm{m}^{2}$.

	First Cohort 1971		Second Cohort 1971		Third Cohort - 1971		First Cohort 1972	
	eggs	$N 1$	eggs	NI	-ggs	N1	-ggs	${ }^{1}$
A	4384	3933	2933	3177	${ }^{\circ} 3490$	2813	2279	2633
B	4180	3733	3145	3488	3430	2818	2038	2375

Abstract

into N. A bias is introduced into these latter calculations if the age distribution of the eggs is not uniform. Table 7 illustrates that the estimates of eggs and Ml using these 2 methods are similar and for simplicity in subsequant celculations the results from the first method will be Used.

4. Dry Weights of Instars of ㄴ. minutus and A. spatulocrenatus

Animal numbers were converted to production units using the dry weight values listed in the first column of Table 8. The values marked with an asterisk were derived from 1 to 3 weighings on a microbalance as described in the materials and methods. The dry weights for the NI to 14 instars were approximated in the following manner. It was assumed that animals would have a lower mean dry weight as compared with eggs until te least the second or possibly third naupliar instar (Rigler and 。 Cooley unpublished, because feeding'does not begin until N2) and that - semilog plot of meen dry weight versus inster for the N2 to N6 instars高
would approximate straight line. The dry weights of N5 and N6 from Table 8 were plotted semilogarithmically and the resulting straight line was extrapolated by eye to the second naupliar instar and N2, N3, and N_{4} dry waights were interpolated along the ordinate axis from this line. Slallarly the ordinate at the mid-point of a line connecting egg and N2 ory malghts geve an estimate of $M 1$ dry meight.

Although these values were used for the 3 major cohorts analysed for instar mortalitles, it is probablevthat a given instars dry weight cen vary throughout the year depending on the nutrifional state of the food beling assimilated. The dry weights that mere determined came from Instars collecteat when their numbers were at pank levels lo the first cohort of i971. Similior experimants dond on the 1972 popelation at the same time of yout ipround to be signiftcently higher in the CII and CIII insters

tale 8

Dry weight values of Leptodiaptomus minutus used in converting animal numbers to production est fates. Values marked with an asterisk were determined from laboratory weighings. The number of animals weighed for asch determination is given in brackets.

- instar
\qquad
Egg
. 30
$\mathrm{N1}$
N 2
Nu
. 26
NS
MG
cl
ClII-
ClII
civ
CV
Adults
.30
.35 (76):
$.40(100)$.
$.52(100)$
.71 (47):
$\mathrm{b} .10(51)^{1}$
2.86 (200):
$C_{5.33(100) \text { : }}^{5.0}$
5.33 (160).
miCROGRAMS DRY WEIGHT

. $30(300):$
$\frac{1}{7}$

Average of 3 replicates from May 15, May 20, and May 26 of ,52, .52, and .51 micrograms dry weight respectively.
b
Average of 3 replicates from Aug. 1, and Aug. 5 twice, all equal to 2.86 micrograms dry wight.
Average of males and females (see Table 9).
(approximetely 32 and 48% respectively, Table 8). To illustrate the magnitudes of possible scasonal instar variances Table 9 lists dry weight values of adylt males and females for both L. minutus and A. spatulocrenatus at various times in the year. These data indicate that from mid-November of 1971 to late July of 1972 adult males and females mostly from the same cohort underwent almost a 50% loss in dry weight, Similar large seasonal differences in dry weight were recorded for the larger A. spatulocrenatus. For both species the highest values occurred continually from late fall ${ }^{\circ}$ through the winter. However in 1972 A. spatulocrenatus had its highest average adult wight on May 24 at a time when the dry weight of L. minutus was"decreasing to its lowest value of 2.9 micrograms.

These data show that using one set of dry weights for cohorts produced at different times in the year or in different years whll introduce erfors into production estimates if expressed as dry weight. However because I have only 1 set of dry weights from $71 / 1$ they will be used in estimating production for the other cohorts even though the errors may run as high as 50\%.
5. Zooplankters Other Than Diaptomids in Bluff L.

Figure ス illystrates seasonal life histories for 7 specles of zooplankton other than L. minutus in BJuff L. for the period from April 18, 1971 to March 30 , 1972. Because these data were collected only to indicatewhen competitive interactions with \underline{L}. minutus might be occurring, sampling was lass frequent. The seasonal occurrence of each species as indicated L e
Fig. 7 will be briefly presented below.

- Holopedlun gibberum

The rether sudden appearance of this animal early in May together with its totel bsence during winter indicates that it spent the winter in the

table 9

Seasonal changes in dry weight values of individual adult males and famales of \underline{L}. minutus and A. spatulocronatus in Bluff L. The number of animals used in each determinationis given In brachets. The dates progress sequentially from 1971 to 1972 . All dry weight values are expriassed in micrograms.

,form of resting eggs. The population (animals of all sizes) rose quickly in lete May with peak numbers of approximately $5000 / \mathrm{m}^{2}$ occurring throughout June and then rapidly declined during the first 3 weeks of EJuly. Smaly numbers were present from Aug. through oct, and none were seen in Novembeir.

b. Diaphanosoma brachyurum

This species was commonly found near the surface in open water trap samples in summer and was not restricted to weedy margins of the lake as "- is normily the case (Hutchinson 1967). Hutchinson (1967) describes it as a common summer species and notes that some workers do not separate the 2 described species of Bephanosoma (brachyurum and leuchtenbergianum) regarding the latter as just a planktonic form of the forimer. A summer peak was also observed in Bluff L. of approximately $4500 / \mathrm{m}^{2}$ in July and August. Its sudden appearance in May and disappearance in November suggest that it too spends the winter as resting eggs.

c. Daphnia pulex

This species is commonly found in both lakes and ponds all over the continent (Brooks 1959). In Bluff L. two population maxima occurred; one * In mid-Oct. of approximately $12000 / \mathrm{m}^{2}$ and a smaller one in mid-March of " 1972 of opproximately $4500 / \mathrm{m}^{2}$, but it is present in small numbers at all times of the year. Because of the confusion fegarding the taxonomy of the genus and because all specimens recorded could not be individually keyed it is possible that smell numbers of another species of Daphnia were also present since multiple congeneric associations are not uncommon (Tappa 1965, Haney 1970).
d. Bosming longirostris

This species was the only other zooplankter in Bluff L. that at any
time approximated the abundance of L. minutus. A large incrense in population size occurred during Sept. 1971 with maximams of $38000 / \mathrm{m}^{2}$ and $44000 / \mathrm{m}^{2}$ recorded an Sept. 12 and 24 respectively. In contrast, at the sman time numbers of L minutus (all instars excluding eggs) were of the order of $200,000 / \mathrm{m}^{2}$. The total absence of this animal in winter suggests it passes the winter as diapausing eggs.

e. Eplschura nordenskioldi

Almost no information is availat on the distribution and blology of this species although it is a regi, but uncommon inhabttant of lakes in the Halifax-Dartmouth area. This is to be expected since the genus Epischura Is known to be predatory (Main 1962). The sulden appearance of naupliar instars in May wheh no adults are found indicates it overwinters as resting eggs. Development ismarently rapid durimg May with - fow adults present by late May (Fig. 7). The large peak in adult numbers through Sept. may be derived from offspring of the second or perhaps third generation. The data are not adequate to be certain. Davis (1972) reports it as having 2 generations in Hogan's Lake in Newfoundland. By mid-Nov. in 1971 all instars were absent from the lake,

f. Aglaodiaptomus spatulocrénatus

Adults are present in varying numbers throughout the entire year (Fig. 7) but breeding is apparently restricted to May through August. Peak numbers of adults were, observed from Sept. through opt. apparently suffering little mortality but even during this latter period it is numerically a minor constituent of the zooplankton. As congener of L. minutus in Bluff L. its size is important and the adults were observed to be approximately 50 to 65% longer and much heavier then adult L. minutus (Table 9). Even when adults were most abundant they
mare outnubered by adult 5 :" inutus by approximately 20 to 1 .
6. L. minutus in Otber Halifax-Dartmouth Area Lakes

Table 10 shows the occurrence of \underline{L}. minutus and other calanoids in lakes in the Halifax-Dartmouth area. Only 1 of the 38 lakes listed (Russel Lake) did not contain adult calanoid copepods while \underline{L} - minutus was present in the remaining and, judged to be the numerical dominant in 22. It is also worth noting that L. minutus was found dominant in lakes. large and small, oligotrophic and eutrophic, stratified and unstraţified. Although 27 of 38 lakes contained an Epischura species, only First Lake contained both E. lacustris and E. nordenskioldi. This may.indicate an inadequacy in the sampling method or a possible competitive interaction between congeneric species.
7. The Onset of Diapause in L. minutus and A. Spatulocrenatus

Figure 8 illustrates when the shift to the production of diapausing eggs from subitanaous eggs occurred for the 2 diaptomids in Bluff L. in 1971. An egg was assumed to be in diapause if it did not hatch when expected by using Eqn. 2 and did not decompose and appeared heal thy after several weeks at $13^{\circ} \mathrm{C}$. For \underline{L}. minutus the data indicated that from 2 to 10% of all egg sacs found in Sept, were diapausing but, contrary to a suggestion of Cooley (1970), these were indistinguishable morphologically from the -subitaneous variety. By Oct. 11 all eggs collected from live plankton samples were in diapause.

It was observed that A. spatulocrenatus also switched to the production of diapausing aggs, but because of small sample sizes the time cannot be documented as precisely. On Aug. 30 and Sept. 8 one of 4 and 6 of 8 egg sacs respactively were judged to be in diapause. By Sept. 12, thirteen of 14 egg sacs falled to hatch in the expected time interval (Fig. 8).

TABLE 10

Calanold copepod associations in selected Hallfax-Dartmouth area lakes. All samples ware collected with conical tow net (75 micron mash) near the deepest spot in each leke in the summer of 1971.

Name of Lake	Area (hectares)	Mean Depth (m.)	Max. Depth (m.)	Stratlf.	Secehl Depth (m.)	Trophic Status	Culanoid L.m.	Copepods ..s, E.n.	Found E.I.

table 10 (cont'd)

Name of Lake	Area (hecteres)	Mean Depth (m.)	Max. Depth (m.)	Stratif.	Secch 1 . Depth (m.)	Trophic Status	Celanoid L.m.	Copepods A.s. E.n.	Found E.I.
Powder Mill	23.5	1.7	6.1	Yes	5.2		+	+	
Power Pond	7.3	2.6	10.7	Yes	--		+		
Rocky	186.6	2.2	11.0	Yes	5.8		+		+
Russel	33.6	3.1 =	7.9	No	1.2\%	Eu			
Sandy	66.8	7.6	19.2	Yes	2.1	-	C	+	
Second	103.6	3.7	22.9	Yes	2.9 =		0		
Spruce Hill	89.0	3.4	11.6	No	3.0	01	0	+	
Third	91.9	24.4	8.5	Yes	4.0\%	01	$+$		+
Three Mile	16.2	3.6	11.3	Yes	6.0		+		
Topsall	59.1	2.5	6.7	No	6.3	01	0	+	\bullet
Webber	37.2	5.1	16.8	Yes	1.0\%	01	0		
Lake Wllliam	338.7	28.3	11.6	Yes	-6.1		C		+
Will ams	- 46.5	2.5	20.1	Yes	4.9\%		D.	+	-

Explanation of Terms and Symbols Used in Table 10
-- data not lavallable
Stratif. - Yes if lake had a well developed hypollmnion and/or metalimnion
Trophic Status = only those lakes which on the basis of water chemistry and/or algal blooms were obviously oligotrophic (01) or eutrophic (Eu) have been categorized
\therefore Socchi disc readings taken within 3 weeks after hurricane of August 15 and 16; Most likely these figures are significantly lower than normal due to large amounts of runoff entering, the lake from the drainage basin.

Presence of Calanold Copepods
0 - abviously the numerical dominant zooplankter of all species present in the sample
C - common in the sample(s)

+ - present in small numbers
L.m.mLeptodiaptomus minutus A.s.*Aglaodiaptomus spatulocrenatus

E,n, Epischura nordenskioldi E.1, Epischure lacustris
"

Even with the small numbers it seems clear that diapause egg production begins approximately 1 month sooner in the larger diaptomid.
8. The Dropping of Dlapausing Egg Sacs by 1 . minutus

An attempt was made in the laboratory to estimate the average amount of time taken by female L. 的inutus to drop an egg sac containing diapausing eggs. Mormally subitanoous eggs are carried by the female untll hatchIng but neither diapausing nor subltaneous eggs can be produced untll previous eggs either hatch or fall off. Some diapausing eggs took 4 to 7 days to be dropped but the average was 2.4 days (standard deviation= 1.4 days). If it is assumed that there is on even distribution of eggs of all ages, an estimate of the average amount of time an egg sac is carried before being dropped would be $2 \times$ the mane $2 \times 2.4=4.8$ days, rounded off to 5 days.

An estimate can be made of the total number of diapausing eggs deposited on the mud sediments if the area under the numbers curve of diapausing eggs is divided by the average length of time each egg sac is carried. This is likely to be an overestimate of the true numbersof diapausing eggs dropped since females in the laboratory were in an artificially small and unnatural enviroment and were observed to bang into the walls of the incubation vial which concelvably hastened the removal of the egg sac.

Since quantitative sampling of Bluff L. was begun on Oct. 17, 1970, almost a full week aftey the total switchover to diapausing eggs had occurred in 1971, a number of assumptions had to be made about the female population as it existed before this date. A few qualitative samples collected on Sept($\mathbf{Y} \mathbf{K})$ and Sept. 26, 1970 with a tow net were used to estimate the \mathcal{Z}, of females carrying egg sacs and the number of eggs per sac. From Table 11 it can be seen that in both years the absolute numbar of females in the lake determined from quantitative samples is remarkably similar

TABLE 11
A tomparlsen of avallable parameters from Bhiff L. samples needed to calculate the tetial number of diapausing eggs deposited on mud sedinents by L. minutus in the fall of 1970 and 1971.

| | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Final estimates of the number of diapausing eggs degosited on mud sediments: $1970=376 \times 10^{2} / \mathrm{m}^{2}$
$1971=452 \times 10^{2} / \mathrm{m}^{2}$

1 Estimates of the $\%$ of females carrying egg sacs and the number of eggs per sac were determined from qualitative samples taken with a tow net.
2 Quantitative sampling of Bluff L. with a 32 litre Schindler trap began on this date.

3 The size of the total adult female population in Bluff L. In 1970 on Sept. 15 and Sept. 24 respectively was assumed to be the same as it was in 1971 on Sept. 16 and Sept. 24 respectively.

Total number of diapausing fraction of fraction of eggs in the population $=(/ l$ of Fem.) \times (fem. with $) \times$ (eggs in) any day \quad. eggs diapause

The fraction of the eggs in the population that was in diapause on any date was determined from Fig. 8 and was assumed to be the same in both years.
nt.men
but the x of femeles with eggs and the number of eggs/sec are conisiderably lowar in 1970 during late Sept. and Oct. To make the, necessary calculations it was assumed that) the onset of dlapause ws the sume in both years, b) the absolute number of females ws the sume, and c) the number of eggs/ sac from Sept. through Noy. in 1970 was 1.8 . The percentage of females carrying eggs at any time was read from a straight line plot of avallable Information for the 5 qualitative and quantitative sampling dates in 1970. The final estimetes of $376 \times 10^{2} / \mathrm{m}^{2}$ for 1970 and $452 \times 10^{2} / \mathrm{m}^{2}$ for 1971 suggest that the number of diap\#using eggs deposited on the sediments wes very similar in both years.
9. Eggs Caught in Sediment Traps (Fill 1971)

Sediment traps were set in Bluff L. in the-fall of 1971 in ordar to obtain another independent estimate of the number of diapausing eggs that were dropped by L minutus females. The results from this experiment were not entirely consistent with the estimates resulting from the analysis. of diapausing egg abundance over time. Assuming that $1 / 5$ of all diapausing eggs are dropped each day (the invarse of 5 days, the amount of time an egg sac is carried before being dropped) and solving Eqn. 6 in Table Il with the necessary paremeters from field data will produce an absolute estimate for the number of eggs dropped on a per m^{2} basis on 0ct. 17 and 0ct. 26 of 780 and 304 respectively. "Assuming a constant change in the production rete ietwent the 2 yafs the expected 9 days accumulation of eggs would be $\frac{780+304}{2} \times 9=5328 / \mathrm{m}^{2}$.

The results from the analyses from the 10 sedimant trap samples are glven in Table 12. Two different kinds of eggs were found which had the same approximate size and appearance of L. minutus and A. spatulocrenatus eggs respectively. However it is possible that some of the smaller eggs

thele 12

The numbers of eggs found in each of 10 sediment traps from october 17 to Oct. 261971 in Bluff L. The "swall eggs" were assumed to belong to L. minutus and the "large eggs" to A. spatulocrenatus. Two traps were lbcated at each of the 5 mijor sampling stations in Fig. 1.

belonged to Eplschura nordenskioldi since I inconclusive laboratory experiment showed that its eggs were silghtly smaller but gemerally ; similar to those of ㄴ. minutus and Fig. 7 shows that its adults were present but rapidly decreasing in numbers in late oct. No information Is avallable on the number of eggs this species lays per clutch or how often this occurs. Almost all of the free eggs in the sediment traps were single even though they are most llkely deposited in a sac by diaptomids. According to available Information Epischura lay their eggs singly (Main 1962) but it is likely that the membrane around a diaptomid egg sac is destroyed as result of the treatment encountered before being andysed under the microscope. The average number of eggs found per trap wes. 18.8 with standard deviation of ± 5.0 eggs. since most of the population is above 3 metres it is not unusual that the same number of eggs were found in the shallow water traps as compared with the deep water ones.

Assuming that all of the small eggs belonged to \underline{L}. minutus and that an average of 18.8 eggs fell onto each 78.5 sq . cm of mud surface (the area of the opening of each trap was $78.5 \mathrm{~cm}^{2}$) then the number accumulated over the 9 day interval between Oct. 17 and 0ct. 26 would be $2395 / \mathrm{m}^{2}$. or slightly less than $1 / 2$ of the expected $5328^{\circ} / \mathrm{m}^{2}$ from the previous estimete. Also implicit in the former estimate is that the traps are 100% efficient in catching and retaining everything falling directly above the opening.
10. The Effect of Temperature on the Development of Diapausing Eggs

To determine how temperature affects the development of diapausing eggs of $L_{\text {. minufus and A. spreulocremtus from Bluff L. the procedures }}^{\text {and }}$ listed in Table 13 were carried out.
talle 13
Experiments performed in the laboratory on diapausing eggs of b - minutus and A. satulecrentus from Bluff L. in 19才1.

$\begin{aligned} & \text { Expt. } \\ & \text { Fipt. } \end{aligned}$	Date eggs collected	Light conditions	Temperature treatment (degrees centrigrade)	.	No. of egg sacs	\% hatching

- Equipment failure on Kay 1, 1972 forced termination of the experiménts at $8^{\circ} \mathrm{C}$:

All A: spatulocrenatus eggs from each experiment were incubated in a single vial, whlle each egg
sac of L. minutus was incubated in a single vial.
All experiments were terminated on June 19, 1972. "On this date: *
Expt. 12-some eggs still appeared to be alive
Expt. 13-33 of the 35 eggs appeared to be allive
a. L. minutus

The results in Table 13 and Figure 8 show that in general greater mumbers of diapausing eggs hatch soonar at moderate temperatares of about $14^{\circ} \mathrm{C}$ than tt 4 and $8^{\circ} \mathrm{C}$. The results from Expts. 1 through 3 show that a minimum amount of time of approximately 1 month is needed before any diapausing eggs"will hatch even if they are transferred to warmer tempermtures sooner. Figure 8 suggests that eggs incubated under lighted conditions hatch sooner at $4^{\circ} \mathrm{C}$ than eggs incubated in the dark. The results of Expt. 8 (incubation in the dark at $8^{\circ} \mathrm{C}$) show however that diapausing eggs do not absolutely require incubation at temperatures of $4^{\circ} \mathrm{c}$, approximating "winter conditions under ice before they will hatch since after 6 months tt $8^{\circ}{ }^{\circ} \mathrm{C}$ (Expt. 8) diapausing eggs began hatching. However none- of the eggs incubated at $14^{\circ} \mathrm{C}$ ever hatched unless they had a prior cold treatment at $4^{\circ} \mathrm{C}$.

5. A. spatulocrenatus

Scarclty of material allowed fewer experiments involving fewer eggs to be performed on this species but the results seem to be consistent with those of L. minutus. Apparently A. spatulocrenatus also requires that its diapausing eggs develop at cold temperature before hatching will occur and diapause development in the Ilght again seemed to be faster" (Expts. 10, 12, and 13). Eggs could also be made to hatch sooner by completing development at moderate temperature of $14^{\circ} \mathrm{C}$ providing they had spent 3 months at $4^{\circ} \mathrm{C}$. Without this time at $4^{\circ} \mathrm{C}$ no eggs hatched after-almost 9 months at $14^{\circ} \mathrm{C}$. In contrast to the results on L. minutus, no eggs hatched at $8^{\circ} \mathrm{C}$.

Figure 8

The results of experiments performed on diapausing eggs of \underline{L}. minutus and A. spatulocrenatus and the time of onset of diapause.

All of the diapausing eggs used in these, experiments were collected from Bluff L. between Oct. 28 and Nov. 4, 1971 for L. minutus, and Sept. 3 to Oct. 11, 1971 for A. spatulocrenatus and incubated under the varying temperature and light regimes listed in Table 13.

Symbols used in Figure 8
dk - eggs incubated in dark It - eggs incubated in light mo - months
Numbers in circles refer to expeximent numbers in Table 13.

Abstract

11. Analyses of Population Data of L. minutus

Because of the cost and time involved it is not unusual to find that analyses of data on copepods are done only on major life-history subdivisions such as egg, nauplif, copepadites, and adults. In such analyses the population in each of these 4 groups should rise to a

 maximum and then fall to 0 as mortality and/or moulting exceeds recruitment from the younger group. The data of Fig. 4 have been replotted in this manner and are presented in Fig. 9 to iTlustrate several obvious anomalies. With the disappearance of the last $N 6$ instar in the first cohort on June 17 the total abundance curve for copepodites should only decrease. Even with the scatter among the points on the copepodite curve the trend sems to substantiate the prediction of an increase In gumbers until late June or early July before falling. The copepodite estimatesfor Aug. 5 and 17 appear too high and too low respectively. With greater amounts of time spent in copepodite stages one would expect the curve to be positively skewed to the right and it is.To a lesser extent a similar problem exists in the second cohort. After the last naupliar instar has moulted the CI to CIV curve drops as expected from Aug. 25 to Sept. 8 but then rises on Sept. 16 only to fall again. Most likely these anomalies are due to inadequate sampling of the lake because numbers were very low and many more trap samples would be needed before estimates could be quantitative enough to approximate the true situation better. The amount of scatter in the third cohort of copepodites appears to be even less.

In summary, although anomalies exist in the data they appear fsmall and I will assume they will lead to insigniflcant errors in the final estimates of inster mortality and production. The results of the analyses using the

54

FIGURE 9
an. Change in abundance with time for eggs, nauplii, and copepodites * of L. minutus in each of the 3 cohorts produced in Bluff L. in 1971,

\hbar

graphicel method of Rigier and Cooley are presented in fig. 10. Parts of the deta from Fig. 10 together with estimates of meian development time are sumarized in Table 14. Each vertical panel. in Fig. 10 represents an analysis of ewch of the 3 cohorts produced in 1971. In each of these panels the top figure is amooth curve dram through a plot of the mean pulse time (M_{n}) agyinst instar. The differences in smoothed values of M_{n} read from the top curve are plotted in the figure below ($M_{n+1}-M_{n}$ against instar). The third row contains estimates of instar survivors greater than $100 \times 10^{2} / \mathrm{m}^{2}$, including eggs, (but not diapausing eggs) which were determined independently of the graphical method for reasons given elsewhere.
a. First Cohort 1971 (71/1)

In 1971 the first cohort was the most important of the cohorts in terms of production and absolute number recruited. There was very little mortallty-from the eggs through the N3 instar and from N6 to the CIV instar. Most of the mortality could be accounted for in 3 instars, N4. NS, and CV. The eggs, CIV, and CV instars accounted for approximately 28, 34, and 20\%, respectively of the total production for this cohort.
b. Second Cohort 1971 (71/2)

Although egg numbers for the second cohort were approximately $2 / 3$ of the first cohort, total production was only about $1 / 4$ as large. This can be explained by the large mortality beginning with $N 2$ and continuing through until CIV, the last instar included in this cohort. "of approximately 2900 eggs formed, for this cohort only 60 to 90 or 3% made it as far as the CIV instar. This accounts for the fact that 88% of the total production of this cohort was in the eggs. .

Figure 10
The results of analysis of each of the 3 cohorts of $ㄴ$. minutus produced in Bluff L. in 1971 using the graphical method of Nigher and Cooley.

The first row is a plot of mean pulse time of each iffistar $\left(M_{n}\right)$ versus instar. The second row is a plot of the successive differences in mean pulse time against instar. The third row is a histogram plot of the number of animals reaching the mid-point of development of each instar. The fourth row is the production of each instar plotted individually and cumulatively on the day when the mean pulse time occurs for each instar.

$\%$
$: \quad-\quad+x_{i=0}^{k}$

Table 14
Data used in the graphical method of Rigier and Cooley to estimate instar mortallty and production of L. minutus in Bluff.L. in 1971.

Instar Area M_{n} (day number) Estimated $\| /$ of Anim. Instar $\%$ of RIW Smooth t_{n} (days) $\left(\times 10^{2} / \mathrm{m}^{2}\right)$ Prod, Total

	First Cohort						
Egg	66637	-	-	$15.2{ }^{\text {a }}$	4384	1315	28
$N 1$	12585	109.1	105.5	$3.2{ }^{\text {b }}$	3933	-197	-4
N2	20270	108.4	109.6	5.0	4054	-81	- 2
N3	26588	117.4	115.5	6.8	3910	117	3
N 4	18848	128.3	122.6	7.4	2547	102	2
N5	17876	137.4	130.3	8.0	2235	112	2
N6	7447	143.4	'139.5 ${ }^{2}$	10.4	716	36	1
$C 1$	9734	153.2	150.7	12.0	811	97	2
CII	12421	165.4	165.4	17.4	714	136	3
Clll	20171	185.8	185.8	23.4	862	336	7
CIV	27037	213.1	213.1	31.2	867	1525	34
CV	32495	268.5	268.5	79.6	408	881	20
$A D^{C}$	-	-	-	.	408	126	3

TOTAL COHORT PRODUCTION $=0.45$ grams dry weight $/ \mathrm{m}^{2}$

TOTAL COHORT PRODUCTION $=0.10$ grams dry weight/

Third Cohort								
Egg	11167	-	-	$3.2{ }^{\text {a }}$		3490	1047	65
Ni	2250	258.1	259.8	$0.8{ }^{\text {b }}$		2813	-141	-9
N2	3825	260.0	260.9	1.4		2732	- 55	- 3
N3	8948	262.9	263.5	3.8		2355	71	4
N_{4}	6106	268.7	267.7	4.6		1327	53	3
N5	3214	267.4	273.9	7.8		412	16	1
N6	2799	271.9	281.9	8.2		341	17	1
Cl	5613	288.0	293.7	15.4		364	- 44	3
CII	7413	314.8	311.0	19.2		387	74	- 5
Clll	5132	339.0	335.0	28.8		178	69	4
civ	4179	369.3	367.0	35.2 .		118	208	13
CV	$4845{ }^{\text {e }}$,	$414.0{ }^{\text {f }}$	58.8 ?		82	177	11
$A D^{C}$	-	-	-	-	$\stackrel{ }{*}$	82	25	2

- TOTAL COAPRT PRODUCTION $=0.16$ grams dry weight $/ \mathrm{m}^{2}$

Key to Symbols used in Table 14° and Explanation of Calculations

* development times calculated using Equation 2 and In situ water temperatures
b mevelopment times calculated using Equation 3 and In situ water temperaturas
$c=a l l$ adult estimates in ach cohort assumed to be same as estimate of CV's
d = In second cohort it was assumed that no CIV's made it into the CV instar or adult instar
e = area under the numbers curve for CV up to May 19/72.
f = determined by extrapolation in Fig. 10
Sample calculation: Number of Animals Passing Through N1 and N2 Instars in. First Cohort

Number of animals passing through minstar in a cohort

$$
=\frac{\text { area under the numbers curve }}{\text { mean cohort development time }}
$$

t_{n} mean cohort development
For NI $=\frac{12585}{3.2} \begin{gathered}\text { anim-days } \\ \text { days }\end{gathered}=3933$ animals
Using Equation $1 \quad M_{N 2}-M_{N!}{ }^{\prime \prime} 1 / 2\left(t_{N 1}+t_{\mathrm{N}_{2}}\right)$
Assuming that $\mathrm{t}_{\mathrm{NI}}=3.2$ days (from in situ watef temps. and Eqn 3) therefore $109.6-105.5=1 / 2\left(3.2 * t_{\mathrm{M}_{2}}\right)$
and $\quad t_{N 2}=5.0$ days
Therefore for N2
the number of animals is $=\frac{20270}{5.0}=4054$
(Nóte: all estimates in this example of areas and animals are $\times 10^{2} / \mathrm{m}^{2}$)
Area * area under the numbers curves in animal-days ($\times 10^{2} / \mathrm{m}^{2}$)
M_{n} mean pulse time, given as day number in the year
Raw $=M_{n}$ estimated from raw or "unsmoothed" data
Smoothed $=M_{n}$ estimated from adjusted or "smoothed" data
t_{n} estimated mean instar development time
Instar Prod. = expressed in micrograms dry wt. $\times 10^{2} / \mathrm{m}^{2}$

$$
+i r
$$

c. Third Cohort 1971 (71/3)
of epproximetely 3500 eggs in the last cohort of 1971 only about 70 or $\mathbf{2}$ \%'made it to the CV instar. Mortality was greatest from N3 to NS when nearly $\mathbf{2 0 0 0}$ or 58% of the initial cobort died as survivors dropped from 2355 to 412. Although sampling was terminated in 1972 before all of the overwintering CV had moulted into the adult instar or died, for the calculations it was assumed that all CV (approximately 72) made it into the adult stage. Astinn thefsecond cohort eggs accounted for most of the total production (approximately 65%).
d. First Cohort 1972 (72/1)

Only a portion of the population dynamics for this cohort are shown in Fig. 4 because sampling ended on May 19, 1972 just as CI ware beginning to appear. Using Eqn. 2 and Eqn. 3 and in situ water temperatures estimates were made of the number of subitaneous eggs and NI produced respectively and have already been presented in Table 7. These results suggest that the first cohort of 1972 was only about $\frac{1}{2}$ as large as the first cohort of 1971. The abundance curves for the other instars represented in samples from 72/I are too incomplete to permit further analyses at this time.
e. Adult ts 1971-72

An estimate of the number of adults produced in a cohort cannot be obtalned by solving Eqn. I as was done for the other instars since. they do not pass out of this instary the same way that juvenile animals do and therefore calcuation of a mean pulse time is staperfluous;: for the purpose of estimating production it was assumad that all CV animals beceme adults although the true figures are likely smaller. = In early Aug. of 1971 the number of adults that had overwintered from the previous
yeir dropped to 20 before rising beceuse of recruitment from CV of 71/1. The estimute of $C V$ in the first cohort of 1971 was 408 , and the maximum number of adults from the smoothed curve of adult numbers was. 500 (Appendix 1). In terms of added production the difference between these two independent adult estimates is small since the dry weight - increment for CV to Adult on the average for males and females is only 0.3 micrograms. Estimating adult numbers recruited from the second cohort of 1971 was not a problem since lit was assumed for reasons given elsewhere that no animais made it past CIV. The estimate of CV and therefore adults for the third cohort was 82 and in terms of production by the adults represinted only 2% of total cohort production. Even if none of the 82 CV reached adulthood the error involved is considered insignificant.

For purposes of comparison, 3 other approaches were employed to estimate the production of 1 . minutus in each of the 3 defined cohorts produced in 1971. For convenience these methods will be referred to as a) Allen curve method, b) Soviet graphical method, and c) death rate me thod.

Because of the extra time and cost of obtaining data on ati Instars, it is not unusual to find that individuals of a poputation have been placed into age categories such as egg, nauplit and/or copepodites, and adults (i.e. not all individuals have been identified to a specific instar). This practice while considerably reducing labour will inevitably lead to a Joss of information concerning the population dynamics of individual instars but it is possible that for purposes of estimating,production by the population they may be adequate.

In the Soviet graphical and death rate methods I have made the necessary calculations by assuming that 1 only had data on eggs, total nauplii,
total copepodltes, and adults in each cohort. For the Allen curve method I have used the data on all instars as was done for the Rigler and Cooley graphical method. The question I wish to answer irs are there significant differences in production estimates that use data on age categories as opposed to individual instars for a given côhort?

The data on abundance of all instars excluding eggs and adult's have been replottedyfor each cohort in Fig. 11 and a smooth curve has been drawn through the points. In subsequent calculations where estimates of dally cohort abundance are needad they will be read from the curve. By doling this it is assumed that sampling errors will be reduced and that if - sampling error was present on a particular day it affected all instars proportionally. This last point is most likely not rigidly correct (Cooley 1970) but it is assumed, that the error involved as a result of the correction will be minimal and will lead to a better overall estimate than if no correction for obvious anomalies was made at all."

In each of these alternative methods it was also necessary to estimate the number of eggs and the number of animals reaching the last instar fof the cohort (adults for $71 / 1$ and $71 / 3$, and CIV for $71 / 2$). For eggs the simplest and most direct approach ${ }^{\text {a }}$ was to divide the area under the egg abundance curve by a mean deqelopment time as described previously, and. thus in all 4 methods the absolute estimate of egg contribution will be the same for ärticular cohort.

Estimating the number of adults in a cohort is more difficult since animels do not moult througly this last instar and the amount of time they spend in it is determined by predators, food supply, and senility. An estimate of an average tima spent in the adult instar is' impossible even with information avallable on temperature and food supply. The adult

FIGURE 11
Changing abuhdance with time for the total number of animals in the NI to CV instars in each cohort.

Smooth curves have been drawn by eye through the data points after peak numbers have been attained and the cohort abundances have begun to decline. In subsequent calculations where cohort abundance estimates are neaded they are interpolated from the curve.

population mavy aven bre, made up of individuals derived from differment cohoris in different years. For exmple in Fig. 4 the adults of Nov. 1970 can clearly be followed to mid-August of 1971 at which time now adults began to appear. In spite of these difficulties minimum estimate of the number of ádults, contributed by each cohort can be derived by taking the observed adult population size near the time when the last CV disappars in the cohort. For example in $71 / 1$ the last CV are found near the end of Novenber when the maximm adult population of 500 was fourid (Appendix I). Assuming all overwintering adults from 1970 have died (the population wins approximately 20 on Aug. 17, '1971) this, population represents a minimum estimate of the number of adults recruited from $71 / 1$. The estimate Arom the method of Rigler and Cooley was 408 (Table l4) which further. . suggests that 500 adul彩 produced in $71 /$ is not an unreasonable figure. However it should be nofed that if' mortallty early in the life of an adult is large severe, underestimate, will respult from this approach.

The second cohort could not be traced. with confidence past the civ Instar pand for simplicity it was assumed that no instars reached CV although it is probable that a few did. The last Clll of $71 / 2$ appeared on Sept.' 24 when the size of the CIV population was approximiately 50. On the previous sampling day of sept. 16 the es 绝mated number of civ, was 83 'but the "smoothed" cohort total for all instars "on this day from Fig. 11 was 60 as opposed to the unsmoothed estimate of 131. Assuming all instars were equally affectedaby this apparent sampling anonaly a corrected "titmate offiv abundance would be $60 / 131 \times 83^{\prime}=46$. Similarly * x_{∞} corrected estimates of CIV abundances for Sept: 29 and oct: 5 when recruitmant from the lower instar had ended were both 50 . Therefore it was assumed that \because 'least 50 , CIV wíre recruited in $71 / \%$ The indapendent
estimate from the method of Rigier and Cooley was 87.
In a similar fashion it was estimated that 44 CV were recruited in 71/3. On Jan. 23 the unsmoothed CV population was estimated to be 57. but the smoothed and unsmoothed cohort tatals on this day were 100 and 161 respectively. Therofore the adjusted estimate of CV for Jan. 23 is $100 / 161 \times 57=44$. The estimate from Rigler and Cooley's method is $8 \dot{2}^{\circ}$. For purposes of comparison with their method it was also assumed that all of these 44 CV became adults.

These arbitrary assumptions will almost certainly lead to errors in final production estimates but because the number of animals involved is so small and because the weight increment from CV to adult ${ }^{\circ}$ is small compared with increments between other copepodite instars these errors will be unimportant to overall cohort production.
a. Allen Curvétstimates of Production.

* A curve which approximates the decline in numbers of a cohorit against changing ntean weight of an individual is often referred to as an Alten curve (waters' 1969) although Mann (1969) has recently pointed out that the concept can be traced as far back as Boysen Jensen in 1919

In plotting the Allen curve a mean dry weight representing all Individuals excluding eggs and adults on each sampling day of each cohorta wés determined by multiplying the dry weight of each instar from Table 8 by its abundance (Appendix 1). The top teft point in each Allen curve is the number of aggs that were laid fo form the cohort. Since an Allen curve follows the decline of a cohory-the next lower point and all subs sequentxpoints in each curve were determined by the declining numbers read from the right hand side of the cohort peaks from Fig. 11. This type of an estimate does not directly make use of the information

Figure 12
Allen curves for estimating production by L. minutus in Bluff L. formech of the 3 cohorts produced in 1971.

The top left point in each curve is an estimate of the number of eggs produced in each cohort. All other estimates of animals, humbers are excluding eggs and adults and were obtained by interpolation from Figure 11.

describing the initial rise of cohort when hatching rate exceeds \} wortallity.

Until Nh, animels do not gein weight and it is possible for the meandry weight of an individual to be less than that of eggs after peak numbers in cohort (from Fig. II) have been reached. This was the case in the second cohort and these losses are taken into account in the calculations.

Estimatesof production as the area under Allen curves were determined planimetrically. The area under the 3 curves in Fig. 12 representing. the 3 cohorts includes production by all instars, including eggs, but excluding adults. The contribution"to total cohort production by nauplii and copepodites was calculated by subtracting the contribution of the eggs (maximum number of eggs x mean dry welght). For purposes of comparison the results are summarized in Taple 16 (page 74) as"production by 1) eggs, 2) nauplif and (bopodites, and 3)adults. Adiscussion of the production estimates for each category will be deferred until| similar calculations have been presented for the next 2 methods.
b. Soviet Graphical Method for Estimating Production

When data are available only for general age categories (eggs, nauplii. copepodites, adults) a graphical method developed by the Soviet workers Winberg, Pechin", and "Shushkina (1965) can be used to estimate cohort production. This method is illustrated in Winberg (1971) and Edmondson and Winberg (19又1) and for simplicity 1 will refer "tp it as the Soviet graphical method.

Four separate graphs for each cohort are used to estimate the production of immature, instars "excluding eggs. The top rowsis plot of the declinefin number's oyer time basad on 4 estimates of population size (Figure 13)., Basicaly their appronch' is to estimate the number of eggs

FIGURE 13
The Soviet graphical method of calculating copepod production for the 3 cohorts of L minutus in Graf L. (after Winberg, Pechen, and Shushkina 1965, and Peahen and Skushkina 1964, from Edmondson and Winberg 1971).

The alternate estimates of cohort production in $71 / 1$ using a_{A-1} and a_{2} growth curves for the individual in row B are: $0.424 \mathrm{gm} / \mathrm{m}^{2}$ and $0.310 \mathrm{gm} / \mathrm{m}^{2}$ respectively, as compared with $0.348 \mathrm{gm} / \mathrm{m}^{2}$ using the more empirically derived growth curve.

Symbols used in Figure 13

- t_{E} is the average egg development time over the cohort
- t_{N} is the average total naupliar development time over the
- ${ }^{\mathrm{C}} \mathrm{C}$ is the average total copepodite development time over the ${ }^{\text {con }}$, t_{E}, t_{N}, and t_{C} "were taken from Table 14
-4

$\left(N_{E}\right)$, nauplii $\left(N_{N}\right)$, and copeppdites $\left(N_{C}\right)$ produced by a cohorit' by dividing the total number of given gtage by its development time for each day of its life. Since 1 do not have the necessary laboretory derived information ${ }^{\prime \prime}$ instar development timés to make these calculations 1 will use the estimetes of total naupliar and total copepodite development times generated by the graphical method of Rigler and Cooley (Table 14) and my estimate of the average number of animals produced in each major group will be derlved by dividing these times into the area under the appropriate abundance curve. The fecessary information neededito construct the four curvertor each cohort is sumarized in Table 1.5.

For example in the first cohort of 1971 the average development times for eggs, nauplil, and copepodites are $15.2,40^{\prime} .8$, and 163.6 days respectively and are marked on the X axis as shown in the first column of the first row of Fig. 13. The average number of individuals for each major category is detprmined by dividing the development time into the area under the numbers curve (from Fig. 9) for that category. In the first cohore the area under the naupliar curve was 10,302 animal-days which When divided by the average naupllar development time of 40.8 days yields an average nauplii estimate of 2520 animals. This and similar estimates for copepodites are placed in the middle of the segment on the X axis which corresponids to the length of development for that age category. The last point in this first curve is the number of adults produced and : : is placed after all egg, naupliar and copepodite development is completed. A line joining the 4 points is assumed to approximate the decfine in individuals of a chort over time.

TAble 15

Various prameters needed to calculate production of L. minutus in each of the 3 cohorts produced in 1971 using the Sovlet graphical me thod.

\checkmark '		$\begin{aligned} & \text { First } \\ & (71 / 1) \end{aligned}$	$\begin{aligned} & \text { Second } \\ & (71 / 2) \end{aligned}$	$\begin{aligned} & \text { Third } \\ & (71 / 3) \end{aligned}$
Average development times in	Eggs ${ }^{\text {c }}$	15.2) 4.6	3.2
days for each major age	Nauplil	40.8	38.0	26.6
category (from table 14)	Copepodites	163.6	81.6	-1574
	*	,	:	
Areas under the numbers	Eggs	66637	13490	11167
curves in animal-days for	Naupii	10302	31944	27301
each of the major "age categories (Fig.) 9) $\left(\times 10^{2} / m^{2}\right)$	Copeprodites	102942	6153:	25610
, . . .		\bigcirc		
Average number of animals	* Eggs	4384	2933	3490
producfa in each pajor	Nauplii	2520	840	1030
age coltegory ($\times 10^{2} / \mathrm{m}^{2}$)	Copepodites	625	75	164
(,	Adul'ts	500	0:	44

[^0]Dry weight of an egg at the mid-point of its development $0.3 \mu \cos _{4}^{*}$ Dry weight of Cl at the beginning of its developmente $=\frac{1}{2}(.40+.52)=.46-\mu \mathrm{gms}$. Dry weight of an adult at the beginning of its development $=\frac{1}{2}(502+5.33)$ $=5.18 \mu \mathrm{gms}$.
For second conort only, dry weight of a CIV at the end of its development $=\frac{1}{2}(2.86 .+5.02)=3.99 \mu \mathrm{~ms}$.
devalopment timas from Table 14 was again used to draw the \mathbf{S} shaped curve of the second row. However the Soviet mathod is supposed to be mplicable" to situations where information on development and dry weight is only avilable for 3 major life divisions and from these 3 points on S shaped curve is assumed to approximate true individual growth. Thos for the first cohort two altermate 5 shaped curves aif and az were drawh by eye using only, the weight of $N 1, C I$, and Ad individuals at the beginning of their development period.

* The third row in Fig. 3 contains graph's of the daily weight increment of an individual in the population over time. These points were obtained by interpolating the dry weight increment of an individual at regular 10 day intervals in the previous graph.

The last row of graphs is a plot of daily production by the cothort obtainéd by multiplying the interpolated number of animals in the fopulation determined from the first row of figures by the daily individual dry weight Increment of the third row of figures and ploting these numbers at the "same 10 day intervals over time. The area undar this curve is total production for the cohort.

The adult production is determined by taking estimates of the number of bdults, produced in cohort and murtiplying them by the weight increment from CV to adult. It should be pointed out that the dry weights of all instars of ㄴ. minutus in Table 8 more. closely approximate the weight of an instar "fter, $\frac{1}{2}$ of the dovelopment has been completed. Thus if the dry" welght of CY and adults are 5.02 and 5.33 miorograms respectively then the weight of CV just baforajit moults or comersely an adult as it enters this Instar is $\frac{1}{2}(5.02+5.33)=5.18$ wicrograms. Therefore in this method the production increment of edults will be the surviving adults \times (5.33 -
$5.18)=0.15$ micrograms dry welght. Similarly the weight of an animal - at the end of egg development wlll be $\frac{1}{2}$ the dry waight of an egg and an $N 1=\frac{1}{2}\left(0.3^{+}+\dot{0} .25\right)^{\circ}=0.28$ micrograms. This accounts for the negative daily dry weight increment per individual in the third row of figures as eggs. pass into the first naupliar instar, and the subsequent negative dafly production early in the cohort as deplcted in the last row of figures in Figure 13.

A summary of the contribution of each of the major groups to total production is given in Table 16 . The estimates of production by NI to CV instars in the first cohort based on the" 2 alternate assumed S shaped growth curves and at are 0.424 and 0.310 gms dry $w t . / \mathrm{m}^{2}$ as compared with 0.348 gms dry wt. $/ \mathrm{m}^{2}$ from the more empirically derived curve. This corresponds to differences of +22 and -11% respectively. In, terms of total cohort production the differtences are even smaller at +15 and -8% respectively since in all 3 cases the contribution by eggs" " and adylits would be the same.
c. Death Rate Method for Estimating Production

Anöther estimaţe of cohort production was determiñed, based on an restimate of the finite death rate of the cohort (excluding eggs and adults). "The total production by the cohort was taken as the sum of 1) the production of eggs (mean dry weight x number) 2) the dry wei ght increment from the previous instar of surviving adults (5.33-5.02 x number of adults produced by the cohort. and 3), the biomass lost due to mortility in the $\mathrm{N} \mid$ to CV instars. The last term is determined by calculating the biomass lost between 2 consecutive sampling days of interval t days and summing for all intervals over the cohort until all CV havew either died or become adults. The production lost in each interval P_{t} is.
defined by

$$
P_{t}=\left(\frac{w_{0} N_{0}+N_{t} w_{t}}{2}\right) \cdot t . D
$$

Equation?
where w_{0} and w_{t} and N_{0} and N_{t} are the average weight of an individual and the size of the cohort on 2 consecutive sampling days respectively of interval 't days, and D is the finite death rate for the cohort over the interval. In a simpler form Equation 7 becomes

$$
P_{t}=\bar{B} . t . D
$$

Equation "7"
where \bar{B} is the average cohort biomass over the interval.
The instantaneous death rate d of the cohort was determined from the equation

$$
\because d=b-r
$$

where b is the instantaneous birth rate determined from

$$
b=\frac{\ln (E / A)+1}{D}
$$

Equation 8
and E is the total number of eggs in the population, A is the total number of adults, D is egg development, time, and r is the instantaneous rate of increase of the cohort determined from two successive estimates of cohort size N_{0} and N_{t} from

Equation 10
(see Appendix 4 for an explanation of Equation 9). Once d is known" then the finite mortality rate of the cohort can be approximated by

$$
D=1-e^{-d}
$$

Equation 11
where is the base of natural logarithms.
In using these equations ore assumes that over a sampling interval.
.b and.r rain, constant (stable age distribution) but this is usually, not the case because of the dynamic nature of various" parameters controlling
retes of increese and decresse. The megnituas of eviations in both b and r over the interval will determind the error in 0uhlch will directly affect the production estimate.

Theoretically n should never be greater than b but was at the beginning of each cohort. " This is most likely due to lnaccurate estimates of cghort size when the population is small, and changing environmental conditions over the interval. Since r is determined from successive estimetes of cohort size this error will be inherent in restimates. "On those Ffow occasions when r was greater than calcuiated b ikfos assumed that d wes zero. Most likely in these instances d was in fact mall but since this anomaly occurred only when numbers were small the total productiof will - also be small and the error in P_{t} will be minimial.

Estimates of production using the death'rate method are summarized in Table 16.
13. Production in Bluff L. by L. minutus - the 4 methods

The estimates of production summarized in Table 16 show remarkable agreement- for the 4 methods discussed above in all 3 cohorts with-1 exception. As\$uming that the first 3 methods more closely approximate the true figures, because in all in'stances they are nearly the same, then the estimate for $71 / 3$ using finite cohort death rates is iwide as large and probably anomalous. The estimate for $71 / 1$ using this last method is also slightly larger than the other 3 wile for $71 / 2$ it is approximately the same as the others. Possible explanations for these differences will be treated in the General Discussion after cohort survivorship curves have been presented to explain partlally the discrepancy.

One reason for the close agreement in these mathods is that. production of eggs mis culculated in the same way for all methods and contribute a significant proportion to totalytohort production. In the 3 cohorts oggs

TABLE' 16

A summary of production estimates using 4 different methods for the 3 cohorts of ㄴ. minutus praduced in Bluff L. in 1971.

All produstion figures are expressed as gms. dry wt. $/ \mathrm{m}^{2}$. The production by eggs was calculated in the same manner for all 4 methods. It was assumed for reasons given elsewhere that no'animals developed past ${ }^{\text {mas }}$ CIV in 71/2.

Method Used to Estimate, Production

-Alternate estimates of production by MI-CV for $71 / 1$ using the Soviet method and 2 differment assumed growth curves (a) and an in Fig. 13) for the individual are . 449 and .563 gns. dry wt. / m^{2} respectivaly

$$
22
$$

accounted for approximately 29, 88, and 63\%, respectively of total cohort production. However there is still close agreement for estimates of total nauplii and copepodite production between the methods excluding the one exception noted above.

GENERAL DISCUSSION

The primary purpose of this study was to obtain information on the population dynmics and production of an important zooplankter Lepto- overwhelming numerical dominance suggested that the situation would be a simple one'for study. The small and shallow nature of Bluff L. made it easy to sample all strata while the lack of an inlet and only a trickling outlet prevented significantyimmigrations and emmigrations of any plankters. again simplifying the system. Since most of the lake is isothermal, it was "relativély onsy to obtain good estimates of mean temperatures *experienced by various fractions of the population over extended periods ${ }^{\infty}$. of time. Although isolated, Bluff L. was still close enough to the láboratory to make it reindily accessible at any time, and a continuing study on its chemical characteristics (Ogdén unpublished) provided important accessory data. It was decided that to interpret the results from field sampling more fully informetion was needed on a variety of perameters that could only be determined from laboratory experitnents. As a result information on egg and-paupliar development as related to temperiture dry weights, and diapause development of minutus and a possible competitive congener, A. spatulocrenatus have alsd been included. 1. The Life Cycle of \underline{L}." minutus in North Temperate Lakes

Information on abundances of calanoid life stages or groups of life , stages (egg, nauplii., copepodites, adults) are needed to elucidate fully the life cycle of copepods. Without such data sampling variability will make it difficult to say with certainty that small peaks and accompany-, Ing depressions represent true population phenomena (Cassie 1971). Al though, to my knowledge, this is the first in depth study of the
population dynamics of this species, the prexisting information on, abundance of egg, nauplii, copepodite, and adult groups reveal that there is a consistency in the life cycle of L. minutus in the western and eastern limits of its range. An overwintering population, primarily adult, begins breeding intenselx late in winter under ice or early in spring, . and continuestordo so until late in the fall. Throughout the summer, egg production is quite low but may increase again in the fall as was the case in Bluff L. in 1971. By including data on juvertile abundance Davis (1972) was able to argue convincingly that L. minutus in Hogan's Lake in Newfoundland had 2 distinct generations. In 2 consecutive years summer pulses of juveniles in July and mid-October gäve rise to peak adult numbers in August and late fall respectively. He fur ther clarified the life cycle By noting that throughout ${ }^{\text {a }}$ the winter naupliar instars were absent and suggested that egg carrying females were producing diapausing eggs. This description is consistent'with the population in Bluff L. except that no eggs were present in the population from Nov. to Jan. Schindler and Noven (1971) report a basically similar life cycle for \underline{L}. minutus in Lakes 122,132 , and 229 of the Experimental Lakes Area . : in the Kenora region of Northern Ontario and in Clear Lake in Southern Ontario.

The data from these studies suggest that one can expect to find a Targe population of adult L. minutus in small north temperate lakes during* the winter. However Rigler and Langford (1967) noted an absence "in the winter in Silver L. In Southern Ontario of L. minutus adults which in the summer represented more than 80%, of the total number of adult diaptomids of 3 congeneric species (Leptodiaptomus sicilis, Keptodiaptomus minutus, and Skistodiaptomus oregonensis). In the winter $\underline{\text { L }}$ sicilis
raprestented 100 , $^{\text {, of }}$ the adult population of diaptomids. In Leland Lake which contained 2 diaptomid species, ㄴ. minutus and \underline{L}. sicilis, they found 99% of the adults were 1 . minutus in summer to only $I \%$ for L sicilis. The exact revertse was true for the winter pgpulation of adults. Clearly the situation in these'last 2 lakes is more complicated but in view of the results from bluffol. and the others mentioned it appears that there is competition fin the winter for some resource-and that L sicillis has a significant effect in limiting population numbers of L. minutus. The fact that both of these species have been put in the same subgenus on the basis of morphology" further suggests that they are clasely related even though . L. sicilis adults are approximately 50% longer. A study of the population dynamics of both species cöfexisting in lake like Leland or Silver would be logical extension of the results from this study.
it also appears as though A. spatulocrenatus does not significantly influènce the population of L. minutus in Bluff i. since its numbers are always at least $20 x$ smaller. Three mechanisms have been suggested whereby species such as \underline{L}. minutus and A. spatulocrenatus reduce competition between themselyes (Sandercock 1967): 1) size differences implying different sizes of food filtered, 2) vertical separation, and 3) seasonal separation." Like L. sicilis, A. spatulocrenatus is larger
 much as $5 x$ heavier as indicated by dry weight (Table 9). Both species appear to suffer little mortality through winter but the faster developing larger species quickly approaches adult size in the warmer part of the year and thus prolonged competition of similar sized instars is probably minimal. There was no obvious vertical separation of adults wich may be partially accounted for by the fact that most of the lake was
unstratified and quite shallow. Rigler and Langford (1967) in examining congeneric occurrences of Diaptomus species in 100 small Southern Ontario headwater lakes noted that generally, coexisting species tended to congregate at different depths but vertical separation was not as complete as had been reported by some authors previously in a few isolated cases (Langford 1937, Worthington 1931). Although more data are needed it appears at most times of the year at least 2 of the mechanisms for reducing competition, seasonal and size differences, were in effect for L. minutus and \mathbf{A}. spatulocrenatus in Bluff L. A similar conclusion was arrived at by Sandercock (1967) for 3 coexis'ting diaptomids inhabiting stratified Clarke L. in Ontario. Whatever the reasons, A. spatulocrenatus was never more than 5% as abundant as the dominant L. minutus in Bluff L. and was never more abundant in any of the other 5 lakes in the Halifax-Dartmouth area that contained both species. 2. The Importance of Diapausing Eggs and Their Development.

Although both L. minutus and A. spatulocrenatus appear to survive the winter in Bluff L, with little mortality neither species breeds over the whole period and both produce resting eggs in early october and late August respectively, that are dropped to the sediments apparently in preparation for winter Diapause is ar obvious and common mechanism to insure that the species will not be eliminated from the lake if for example it were to so anaerobic under ice. Depending on the species there may be several parameters (food shortage, density, temperature) which play a role in the induction of diapause (Stross 1969, Watson and Smallman 1971, Elgmork 1959, 1967) but photoperiod may be most important. Termination of a specific diapausing stage may also be controlled by different factors in different species. Brewer

- (1964) found diapausing eggs of Aglaodiaptomus stagnalis, an inhabitant of seasonal ponds, had 2 periods of blocked development, one in summer and the other in winter. Insthis instance reduction of dissolved oxygeri was necessary condition for terminating the diapause. Cooley (1971) found that diapausing eggs of Skistodiaptomus oregonensis incubated under winter ctemperatures of $4^{\circ} \mathrm{C}$ would hatch'at the same time in the laboratory as diapausing eggs that had spent the winter on the bottom of the lake. He also found that these resting eggs could be induced to hatch sooner if they were subjected to warmer temperatures only after a minimum amount of time $t^{*} 4,{ }^{\circ} \mathrm{C}$. Elgmork (1959) working'with diapausing copepodite stages of Cyclops strenuus strenuus found the diapause "may be terminated by.internal physiological changes alone in constant environment". Later (1967) he suggests that there"is, an internal clock that can wake the animals in the absence af environmental fluctuations. These statements accurately describe the diapause development of eggs of $\underline{\mathbf{S}}$. oregonensis and probabla ㄴ. minutus and A. spatulocrenalus, all North temperate calanoid copepods. For the latter 2 species in this study it was observed (Fig. 8) that they hatched at the same time as the overwintering adults began to produce subitaneous eggs in the lake, in late Feb, and mid-May respectively, so that nauplii from the two kinds of eggs cannot be distinguished frompreserved samples.. .

Other factors may also modify the diapause development of copepod eggs. For example, the results also suggest that exposure to light over the period of incubation may speed development rate (Expt. 8, Table 13) and Cooley (1971), from experiments on resting eggs of \underline{S}. oregonensis, and tain (1962) working with diapausing aggs of Epischura lacustris, suggest that low concentrations of dissolved oxygen over the period of

Incubation may slow the development rate.
It is of interest that diapausing and subitaneous eggs of both \underline{L}. minutus and A. spatulocrenatus, were a reddish-brown colour and indistinm guishable morphologically. Cooley (1971) in noting that the subitaneous o aggs of $\underline{\underline{S}}$. oregonensis were green and the diapausing eggs were reddishbrown had suggested that the difference might be found in other calanoids and thus useful in recognizing the 2 types of eggs. "It is clear now that this is not universally true.

In Bluff L. the production of diapausing eggs does not-oppear to be absolutely necessary for the continuation of the species. The maximum estimates of 380 and $450\left(\times 10^{2} / \mathrm{m}^{2}\right.$ of mud surface area) deposited in. the fall of 1970 and 1971 respectively are, small compared to ${ }^{\circ}$ the 4384 and $2280\left(\times 10^{2} / \mathrm{m}^{2}\right)$ subitaneous eggs laid by the overwintering adults. However it has been noted that the estimate of 5 days as the average time diapausing eggs are carried before being dropped is too low and an artifact of experimental design suggesting the number of diapaiusing eggs lafid may be less. The results from the sediment traps also suggest that the contribution of diapausing eggs may be smaller by about onehalf. Clearly more field and laboratory experiments are needed before accurate estimates of the number of diapausing eggs dropped to the sediments can be mide.

In any case if there is little mortality in the development of diapausing eggs as indicated by the laboratory experiments and there is Iftle mortality in the flrst cohort of subitaneous eggs as indicated by malysis of field data then, it is not surprising that the first cohort of N1 in 1972 (2633) was "sllghtly larger thar the number of subitaneous eggs formed (2279, see Fig. 14). The "extra" diapausing eggs on the

FIGURE 14
A diagram to show the relative number of diapausing and subitaneous.
eggs and the number of M1 in the first cohort of 1971 and 1972.
The numbers of diapausing eggs shown in the figure are based on an estimate of 5 days as the length of time a female carries an egg sac before it is dropped. Independent but inconclusive experiments involving sediment traps suggest that the number of diapausing eggs dropped may have been approximately $\frac{1}{2}$ the numbers shown in the figure.
a. LePtodiaptonus minutus bluff l.

bottom, of the lake could account for this difference but it should be noted that these 2 figures are at best only approximate. Also the mortality observed in the culturing of subitaneous eggs in inte laboratory was close to zero, and predators that might selectively prey on animals the size of NI are almost nonexistent in March and April (Fig. 7).

While the evidence suggests that the production of resting eggs of L. minutus in Bluff L; are unnecessary for its continued existence there from year to year there is at least 1 documented case where they are essential. In Teapot L., Southern Ontario, S. oregonensis and all other zooplankters are annually eliminated from the limnetic zone in the winter due to anaerobosis under ice. In this extreme case the entire first generation of thiy species is recruited from mud sediments (Rigler and Cooley unpublished).

A full discussion of the importance of resting eggs for the continuation of A. spatutocrenatus in Bluff L. is impossible due to the lack of good quantitative data, however it appears that the situation may be the same as for L. minutus. -Resting'eggs are apparently produced late in' August until early November, at which time all egg production stops (Figure 7). An overwintering population of adults begins forming subitaneous eggs in May which provide the basis of a new generation.

The situation for the other calanoid in Bluff L. Epischura nordenskioldi, is different. Apparently the entire first generation is derived from, resting eggs since there are no adults in the lake from November through May. Further it was observed that plankton samples in May contained nauplii which were clearly neither L. minutus nor A. spatulocrenatus, nor typically cyclopoid in shape. These nauplia in fresh, preserved plankton samples had areyish tinge, noticeably
different from the reddish diaptomid nauplii but morphologically similar to the diaptomids. They were first observed in May samples and by the first of June Epischura adults were present. Sincè there are no recorded instances of Epischura species diapausing in copepodite instars as is common in cýclopoids (Elgmork 1967), it is reasonable to assume these were Epischura nauplii and the entire development from NI to adults took approximately 1 month.
3. Subitaneous Egg Development

The integration of field and laboratary derived data has bean encouraged (Hall 1971) for workers interested in defining and elucidating processes of production in'freshwater zooplankton. As a result, information on egg development as a function of temperature has proliferated for many freshwater crustaceans. "Schindler" (1972) in a recent summary of the literature on this subject noted a "great similarity in the development times required by eggs of different species of freshwater crustacean zooplankton" and subsequently fitted a curve to data representing 11 different species ircluding calanoids and cladocerans. McLaren (1965) and McLaren and Cooley (1972) have shown that Belehradek's temperature equation $D=a(T-\alpha)^{b}$, a power curve; when fitted to empirical data on egg development for marine copepods and for frogs respectively, adequately describes the process. They have shown that the constant α is related to temperature adaptation and a with egg diameter if b is assumed to be the same for all species of a related group. They (suggest that it should be passible to predict egg development rates in related groups of species such as marine copepods, and frogs, ", fröm a minimum of empirically derived data. It is this latter bypothesis that justifies the extra work involved in using an equation with 3 constants,

- point apparently overlooked by Winberg (1971. page 51) who recommends simpler equations to describe egg development in copepods.

Table 17 is presented to show estimates of egg development at several temperatures over the natural range for the 2 diaptomids found in Bluff L. using Schindler's general equation and results from láboratory experiments. Schindler's equation' does seem to describe . adequately egg development for both species especially at temperatures 'above $10^{\circ} \mathrm{C}$ but is clearly inadequate for A. Spatulocrenatus at lower temperatures. In 㫙uff to at least, "this would not pose a problem since subitaneous eggs of this species were not present when water temperatures were, this low. The large hortalities observed in eggs of A. spatulacrenatus incubated at $4^{\circ} \mathrm{C}$. imply they are not adapted to survive these extremes. More information on other common mertherate zooplankters is needed before it can be said with certainty that the relation is adequate. 4. Estimating Naupliar and Copepodite Development Times
a. Rigler and Cooley's Graphical Method

Laboratory derived equations relating instaf development and environmental temperatures are useful in estimating suryivorship and production but there is a lack of information for life stages other than eggs. Fresthwater copepods are notoriously difficult to culture successfully in a laboratory situation with excessive mortality often casting doubt on the feliability of applying the data to in situ conditions. Saviet workers apparently commonly estimate developmént rates at a variety of temperatures for instars other than eggs by employing a temperature torrection factor based on an empirjcally derived curve (commonly "called krogh's curve) relating respiratory measurements of different species of animals (Winberg 1971). The basis of these cor-药

rection factors is that wile abisoluta development timies change depend-各解 on the animal the rate at wich they change from temperature to temp-
 development time is known at any temperature the development time at
W any other temperature can ${ }^{6}$ be determined by multiplying the known time by conversion factor. A tabla of the necessary conversion factors and the calculations Involved can be found in Wiaberg (1971) and Edmondson * . E and Winberg (1971).

It wes the lmost complete lack of information on development retes for freshwiter calanoid copepod"instars other than eggs and NI at any temperature that led to tite development of Rigler and Cooley's graphical method of estimating in situ development times. With these elusive parametèrs for each instar of cohort it is possible to estimate the onuber of animals that pass through each instar and thus estimate ". mortallty, at each stage of an animals life. To fully interpret how an animal is adapted to and interacts with its environment it is necessary "to understand how variouş factors affect its development and mortality.

Because some of the assumptions in theory or methodology are not rigidly correct the results are subject to error, but if gross they would necessarily be reflected in the data on survivorship. An excessive emiount of negative mortallity in the succeeding instars would be ecriterion for rejection, but in none of the 3 cohorts is this seen to be a serious problem and small amounts of observed négative mortality are assumed to result from sampling errors and minor violations of the 3 stated assumptions.

It is unfortunate that the thodology of Rigler and Cooley's approuch is open to number of subjective and perhaps blased decislons
which ultimately could'affect the final results. In particular the draining of smooth curves through plots of M_{n} against instar, and $M_{n+1}-M_{n}$ against instar is in many cases matter of some choice. However Riglar and Cooley (unpublished manuscript) found that ihile varying the shepes of possible, curves may alter final instar numbers, especially In the youngar naupliar instars, final production estimates are very similar. This results because implicit smoothing always occurs in, the naupliar instars, because their life span is short compared with older stages but the number of sampling days determining their abundance curves is not'proportionally greater. Therefore the estimate of a mean pulse time $\left(M_{n}\right)$ from the field data for a naupliar instar is less accurate than for a copepodite instar. For example the estimated mean development time of NI in the second cohort of 1971 was 1.1 dafys (Table 14): A change of 0.1 days would result in a $0.1 / 1.1 \times 100 \%,=9 \%$ change in estimates of the number of NI passing through this instar: A difference of, 0.1 days In later stage would have decreasing effect on estimated numbers because development times would be greatar in these older instars. By the Clll instar that had a calculated mean development time of 21.3 daj́s the change would result in only a $0.1 / 21.3 \times 100 \%=0.5 \%$ difference and in * terms of production would result in an insignificant change. Because of this maknes's in the method and because mean development times are related to differences in consecutive mean pulse times (Equation 1) - it seemed best to have independent estimates of the mean development time of the NI instar. This necessitated culturing the animals under varying temperetures in the laboratory and applying this information to in situ conditions. Another meakness in the method is that it does not provide a direct estimate of the number of eggs laid because of the violation
of the essumption that developmant times are Ionger in successive. Insters. It has been shown in this study and in others (Elster 1954, EIchhorn 1957) thet development times are longer in eggs as opposed to M. This fact could also be deduced from the observiation that the "ares undier the numbers curwe for eggs is almays much larger than for the first few nupliat insters. A mossive egg mortality could also explain this observation. For these reasons eggs were also cultured In the laboratory at various temperatures.

b. Cohort Survivorship

Assuming that this mathod does yleld aproximations of the number of inimels that reach the median age in an instar or pass throgh that instar. discussion of the factors contributing to instar mortality is werrented. The nomber of survivors of eiech instar in aiven cohort have been replotted against cumblative age ($1 . e$. K_{n}) in Figure 15 . Also suryivorship curve for the averwintering adults of . 1970 has been included and was calculated by assuming that their maximum numbers were $580\left(\times 10^{2} / h^{2}\right)$ on Nov. 15, 1970. Survivorship has been expressed as the number of survivors/1000, born for each of the cohorts and in semi\log plot such es this a straght line implies constant rates of mortallty with respect to age. Besldes predation, mortality can result from old age, difease, and pertueps nutritional deficiencies; Poor food conditions mey preyent an animal from completing moult or force it to spend longer times in instiers. I have observed death at the foult with apparently healthy NI and. N2 In culturing vials in the' laboratory but because this is highly ertificial and unneturil emvironiment 1 cannot state with certalnty thet this fimpens regularly in nature. In the absence of predators. It would sem reasonable to expact eggs

FIGURE 15

Survivership curves for the 3 cohorts of 1 . minutus produced in 1971, overwintering adults from 1970, and major zooplankgonic predators present during 1971.

Arabic numbers refer to naupliar instars and the Roman numerals refer to copepodite stages. The first point in each of the 3 cohort survivorship curves is an estimate of the number of eggs laid (excluding .- diapausing eggs) to form the cohort.

7
*
-

$-\dot{\square}$
and NI to pass into the next instar with minimal mortality since these stages do not feed, their develepmient rate being determined by temperáture. Cooley (1970) found that development times could also be predicted above $10^{\circ} \mathrm{C}$ for N2 of \underline{S}^{*} oregenens 15 From Teapot L. if phytoplankton wes added to culturing vials in the laboratory. The amount of fiod necessary to insure predictable times was not determined, but may be minimal since stored food would most likelyustill exist from the egg stage. If this is true, then the sucgess of N 2 could vary depending on the availability and kind of foods that were present when the egg was formed by the femmie. There may also be a difference in food reserves for future naupliar development past N l between diapausing and subitaneous eggs.

A low early naupliar mortality rate is evident in the data on survivarship in April of 71/1, when major zooplanktonic predators were absent (Fig, 15). Ignoring the presumably small contribution to the N1 from diapausing eggs, 89% of the eggs make'it past the N3 instar and if all of the estimated $380\left(\times 10^{2} / \mathrm{m}^{2}\right)$ diapausing eggs laid also hatched the success is stith as high as 82%.

The lack' of data* over the entire first cohori of 1972 prevents a similar calculation but rough estimates can be made if a number of assump* tions about early instar development times are made. The calculated mean templarature experienced by eggs, $N 1$, and $N 2$ in both years is similar (for eggs, N1, and N2 in 71/1 the mean temperatures experienced are 5.7, 6,9 , and $7.0^{\circ} \mathrm{C}$ respectively, and in $72 / 1$ are $6.0,7.8$, and $7.6^{\circ} \mathrm{C}$ respectively). If it is assumed that the $M 2$ of both years experienced similar food conditions (their requirements are assumed to be minimal anyway) then the estimated $t_{N 2}$ of 5.0 days from $71 / 1$ (Table 14) can be
used to estimete the inmmer of $N 2$ in $72 / 1$ by dividing It into the arom under the 1972 N2 numbers curve. Although only approximate this estimate $11,812 / 5,0=2362 \mathrm{~N} 2$ is very close to both the estimeted number of eggs 1aid, 2730, (i.e, 2280 subltaneous eggs +450 diapausing eggs) and surviving number of Wl produced, 2630 (from Table 7). *A, similar calculation can be made for the 13 in $72 / 1$ if the decrease in thetr numbers is extrapolated to zero (at mpproximately June 5, 1972 ff Fig. 4) and the area under the numbers curve is calculated. Using the $t_{N 3}$ from the pravious yoar in $71 / 1$ of 6.8 days yields an estimate $16385 / 6.8=2409$ animals, suggesting in actual incresse in N3 from N2 wich although quantitatively impossible implies little actual mortality. Thus the data from the first cohort in both years suggest little mortallity in the first 3 naupliar instars.

Assuming that food does not play an important role in N 2 developdent in nature it malso be possible to obtain independent estimates of $t_{\text {N2 }}$ for each of the 3 cohorts produced in 1971 and for the first cohort of 1972 Independentily of Rigler and Copley's graphical method. Table 18 shows that any of the equations describing $N 1$ development with respect to temperature for the 2 diaptomid species investigated here and 5 . oregonensis from Teapot Lake (Cooley 1970) could be used interchangeably to estimete development time of NI if the mean temperature experienced by that instar oyer the cohort is known. If food was unlmportant then It is possible that the same interchangeability could be true for the N2 'of these 3 species and the equations relating N2 development and temperature available for \mathbf{S}. oregonensis can be used to predict N2 development times for L. minutus in Bluff L. (Table 18). In 71/! and 71/3 the estimed whole coliort mean development times for N2 based on water

table 18

Estimates of L. minutus N1 and N2 in situ development times for the 3 cohorts of 1971 and the first cohort of 1972.
*

Cohort	Calc. mean temp: ${ }^{\circ} \mathrm{C}$ experlenced	Estimpted N 2 d iusing eqns. for S. oregon. (Cooley, 1970)	Generated from graphical method of Rigler \& Cooley (Table 14)		
71/1	7.0	4.8	5.0		
71/2	15.8	2.0	3.1		
71/3	18.8	1.5	1.4	。	
$72 / 1^{\circ}$	7.6	4.5	cohort incomplete		

'Equations Describing Egg, N1, and N2 development of Skistodiaptomus oregonensis from Teapot L. (after Cooley, 1 (170)
t = development time in hours. $\quad \mathbf{T}=$ temperature in ${ }^{\circ} \mathrm{C}$
egg development time: $t=47690(T+4.3)^{-2.08} \quad$ Equation 12
total egg + N1 development time: $\quad t=98300(T+5.3) \quad$ Equation 13
total egg $+\mathrm{N} 1+\mathrm{N} 2$ development time: $\quad t=119957(T+5.8) \quad \rightarrow$ Equation 14
To obtain N1 development time at any temperature T , solve Eqn 12 and Eqn 13 for T and subtract former from latter.

To obtaln N2 development time at any temperature T, solve Eqn 13 and Eqn 14 for T and subtract former from latter.
temperature and laboratory derived davelopment data for N2 of S, oregonensis are remarkably similar.

The dissimilarity of the estimates for $t_{N 2}{ }^{\text {kin }} 71 / 2$ (2.0 versus 3.1 days) might be attributed at least in part to food supply which cireumstantial evidence suggests may have been low from mid-June to midAugust because both the number of eggs per sac and the number of females carrying eggs mere near the lowest levels recorded at any time during the year (Fig. 5).

c. Instar Development Times Using Krogh's Curve

For each instar excluding adults of each cohort produced in 1971 the average development temperature experienced gver the whole cohort together with "q" read from Krogh's curve (page 54, Winberg 1971) and the estimated development time generated by the graphical method of Rigler and Cooley are presented in Table 19. If the development time is known for any instar $\left(t_{k}\right)$ at temperature T_{k} and a development t ime is desired for thet same instar at another temperature T_{u}, then by interpolating the conversion factors q_{k} and q_{u} from Krogh's curve at temperatures T_{k} and T_{u} respectively, t_{u} can be derived from the following equation:

$$
\frac{t_{k}}{t_{u}}=\frac{q_{k}}{q_{u}}
$$

The use of Equation 15 is explained In Table 19.
Much of the variation between the calculated and predicted t_{n}. values of $71 / 2$ and $71 / 3$ based on t_{n} values of $71 / 1$ and Krogh's curve can be explained if it is postulated that food abundance or quality varied significantly over the year cousing changes in development rate for given Inster that could not be explained knowing only temperature. For exampla, if it is assumed food was abundent and acceptable in the

TABLE 19
The use of Krogh's curve to estimate in situ development times for all Instars (excluding adults) in $71 / 2$ and $71 / 3$ using the development times generated for $71 / 1$ by the graphical method of Rigler and Cooley.

For each instar of $71 / 2$ and 71/3 Equation 15 was solved for t_{μ} using calculated mean instar temperatures experienced in the lake over the cohort and the generated development times for $71 / 1$ from Rigler and Cooley's graphical method (Table 14). Thus the known temperatures (T_{k}) and known development times (t_{k}) for Equation 15 in all cases came from data of 71/1. The necessary conversion factors q_{k} and q_{u} were read from Krogh's curve (page 54 Winberg, 1971) at each temperature.

Explanation of the Derivation of t_{u} using Krogh's Curve
For any instar-
$t_{k}=$ "known" development time from $71 / 1$ at temperature T_{k} from the graphical method of Rigler and Cooley (REC).
$t_{u}=$ "unknown" development time from either $71 / 2$ or $71 / 3$ that is to be calculated using Krogh's curve and t_{1} from above and compared with a similar estimate generated from the Graphical method of R\&C.
$q_{k}=$ Krogh's conversion factor read from Krogh's curve at temperature T_{k}. the estimated mean temperature experienced by the instar as it developed in 71/1.
$q_{u}=$ Krogh's conversion factor read from Krogh's curve at temperature T_{u}, the estimated mean temperature experienced by the instar as it developed in either $71 / 2$ or $71 / 3$.

Example of Calculation of t_{u} for the eggs of $71 / 2$

$$
\begin{aligned}
\frac{t_{k}}{t_{u}} & =\frac{q_{k}}{q_{u}} \\
\frac{15.2}{t_{u}} & =\frac{4.75}{1.55} \quad \text { therefore } t_{u}=5.0
\end{aligned}
$$

Equation 15
spiting. (Aprll and Hey) and fall (September and October) at times near overturn and that the reberse was true in simmer (June, July, and August) then the variations In predicted Ǩrogh development times follow pattern. Animals developing in the summer have in all cases proportionally eslower development times than their counterparts of spring and fall. For example both the cill of $71 / 1$ and $71 / 2$ developed in summer, experienced mean temperatures over their cohort of approximately $19{ }^{\circ} \mathrm{C}$ and spent approximately 23 days in that instar (Table 19). The fall population of cill from $71 / 3$ experienced mach lomer man temperature, $10.6^{\circ} \mathrm{C}$, but wes observed to have a mean development time of approximately 28 days. Besed on Kroghis curve and the suspected slow rate of development by the 2 summer populations the CIII of the last cohort would have been expected to take nearly 54 days.

Even though these calculations are unlikely' to be very precise they nevertheless do suggest that foód quality in lake can play very / large role in development rates of feeding copepod instars, perhaps even the second instar, and that trying to predict development rates at one time of the year based solely on witer temperatures using Krogh's curve or any other temperature function can lead to serious errors. Rigler and Cooley's method tries to avoid this possibility by estimating t_{n} in situ from cohort abundance curves but clearly more laboratory work is needed on instar development times and their relationship to temperature and food so that their assumptions can be evaluated independently. Also thére may be subtle variations in development rate masked by these 2 factors Including density effects and seasonelity.

Corkett and McLaren (1970) found that the values of b and α in Wlehridek' equation derived from egg development could also be applied
$\not{ }^{*}$
to describe larval development (hatching to (1) in 4 species of marine copepods providing food was abundant. If their suggestion is çorrect then it is only necessary to measure development rates of older stages at I temperâture (in order to solve Bělehrádek's equation for a) to calculate rates at any other temperature. This hypothesis may be true for freshwater copepods and should be tested.

Rigler (1972b) has shown that the instars from N4 to adult of Limnacalanus macrurus from Char Lake showed a continuous shift of optimum sized particles filtered. Although there was substantial overlap smaller instars had a smaller preferred food size. Thus high fecundity values may not indicate ample food supplies for small nauplif since the latter are more restrictive in the size of food they filfer.
5. Predation on L. minukus

While the rate of development is "determined by food and temperature, predators are probably most important in determining the number of animals that survive in each instar. In Bluff L. these would include possibly Brook trout (Salvelinus fontinalis), Leptodora kindtii, Polyphemus pediculus, Chaoborus sp., Mesocyclops edax, and Epischura nordenskioldi. Since I have only limited information on the population dynamics of the last two (probably most important) in thls list (Fig, 7) it is impossible to assess quantitatively the role of predators in Bluff L. in determining mortality and population levels of L. minutus. There are however some striking corretrondences between high mortality in \underline{L}. minutus cohorts and times when Mesocyclops edax copepadites and Epischura adults are bundant. For example the highest mortality rates occurred in 71/3 in Sept. at a time when both these predators were near their highest levels and when phytoplankton levels as evidenced by high fecundity levels were
high. In 7i/i mortality was not high until the N4 instar at about the isamestime that Mesocyclops edax diapausing copepodites began emerging from the bottom. A striking feature of the survivorship curve for the fir'st cohort is the changé after the "W6 instar, when morzality seems to have become very small ups to the CV stage. This abrupt change in rate is to lesser extent ovident in the other 2 cohorts of 1971. There are several interpretations thet could account for these changes. A strong size-selective predation may on on smiler instars. It is also possible that copepodites of L. minurus are more able than are nauplil to avoid their predators because their mejor swimaing appendage, the first antenna, is more highly developed. An additional explanation might be that the figures generated by the method of Rigler and Cooley are in error and mortality rates do not change with the onset of the Cl instar.

Assuming, however, that the results do approximate the true situation then it seens reasonable to postulate that the overwintering adults which begin to die off in early dune and are almost completely gone by-mid-August are nibt doing so because of predators. In the late part of July the survivorship curve for the first cohort of 1971 and the overwintering adults from 1970 cross, and the rates of mortality of these 2 different populations are very different even though the sízes of individuals are similar (CIII and CIV from 71/1, and adults from 1970). At this time and shortly after it is reasonable to assume that both populations were being influenced by the same food supplies and predators but only the adults are dying, probably therefore from old age. Similarly the sur- . vivorship curves for $71 / 2$ and $71 / 1$ cross in early July, with the $N 4$ of $71 / 2$ dying rapidly while the copepodites from $71 / 1$ are sustaining their numbers.

From earl/ Hov. of 1971 through Feb. of 1972 the CII through Cl
of $71 / 3$ are dying at fairly constant rate at a time when Epischura and Mesocyclops are virtually absent from the zooplankton. In this instance it is probable that death is in part due to food conditions in the lake.

Without supporting data concerning the abundances of other possible predators of L. minutus in Bluff L. and information on their preferred prey it is impossible to assess with certainty the effect other populations had on the cohorts of ㄴ. . minutus. Whatêver the causes it is obvious that only small percentages of eggs laid to form the 3 cohorts of 197% were alive by the first copepodite stage (approximately 16,5 , and 10% respectively.
6. Production by L. minutus in Bluff L.

In calculating production using finife cohort death rates it was assumed that average weight of an animal leaving the population due to mortality was the same as an average animal surviving at the same time. By using the dota on the number of animals dying and surviving and their mean weight at each instar up to. N6 from data of Rigler and Cooley's method (Table 14), it is possible to approximate for each cohort the average dry weight of a survivor over this period (.29, .29, and .37 gm respectively) and an animal dying (. $32, .28$, and .29 gm respectively). There is good agreenent in average weight of animals lost and surviving in the first and second cohorts but not in the third which was also the case when production was compared by the finite death rate method and the other 3 methods. While once again these figures are unlikely to be very accurate they do provide possiblé explanation for an observed discrepancy. The finite death rate method is not desirable for celculating production where population is, divided arbitrarily into cohorts and each cohort is followed independently. While there is no standard
'by'which to judge, the close "agremment of the other 3 methods suggests they more closely approximate the true situation.

The asitest method to apply for production estimetes is the Allen curve but serious errors, could arise with this approach if the maximum slze of the cohort (number of eggs produced) cannot be approximated.

The graphical approach employed by Soviet workers is conceptually,o simple but not without some questionable techniques. They also make good use of egg developmerif times to set the upper linit of the cohort but * also require information on total development times of naplii and copepodites obtained from laboratory studies. For reasons given elsewhere I am sceptical about the accuracy of such data:especially when they are applied to dynamic situations such es lakes. They apparently minimize the laborabry rearing of instars by growing them at 1 temperature and therepply Kroghis curve to obtain development times at other temperatufes. I believe serióus errors can be introduced with this approach. Comita (1972) also noticed that the rate at wich different cohorts developed at different times in the year could not be entirely explained by temperature differencos.

Assuming an individuals growth curve is S shaped and then drawing it from only 3 points is also a questionable practice. The Soviets also recognize this deficiency (Winberg 1971) and correctly suggest more data are needed with view that an emplrically derived general equation describing the proce'ss would be useful.

In the application of the Soviet approach in this study both the decllning numbers curve for the cohort and the $\$$-shaped growth curve of the individual were derived in part from data obtalned from Rigler and Cooley's method. This would partlally account for the close
agreament in final results between these two methods.

- Rigler and Cocley's graphical. method for cohort analysis is the 1 most difficult of all methods to apply because the data must be good enough to define instar pulses or cohorts before any andysis can begin and is heavily dependent on the concept of a weighted mean (mean pulse time): which over extended periods of time will'include a large variance. Final estimates of instar numbers indicate anything from the number of animals entering to leaving the instar, or reaching a median age depending where mortality has occurred. The calculations are made assuming mortality is constant over the pulse affecting animals of all ages within an instar. While such assumptions of constancy are common in all production methods they can conceivably lead to serious errors. Where data are applicable for this treatment I feel the final results justlfy the effort, but the need for nore work with different types of zooplankton is obvious.

Though each of these methods has required information relating égg development time and temperature as a means of setting the upper limit of the cohort such data are useful in other ways. When egg development times are fitted to Bylehradek's equation and compared with similar data on related species (other copepods) the fitted constants may have biological meaning (McLaren 1965, Corkett and McLaren 1970). The shape of the egg development cuves for L. minutus and A. spatulocrenatus are consistent with these ideas. A. spatulocrenatus adults though present throughout the year only produced subitaneous eggs from mid-May to August when water temperatures were warmest wile L. minutus adults also présent annually had its greatest period of reproduction of subitaneous oggs in spring and fall. At summer temperatures of approximately 16 to
$23^{\circ} \mathrm{C}$ the 2 cyrves separate until at $4^{\circ} \mathrm{C}$ the "summer" species eggs "(A. spatulocrenatus) toke approximately" $70 x$ longer to develop. Also the resting eggs of A. Spatulocrenatus did not hatch until May wherens those of \underline{L}. minutus begank emerging-in-the, wirter' under ice.

The shape of the N development curves wich are also temperature dependent are also consistent with the idea that A. Spatulocrenatus is "summeri" species and L. minutus more of a "spring and fall" species sincé at warmer temperatures A. spatulocrenatus NI actually develop faster.
.

SIMMAAYY AND CONCLUSIONS

1. A method is presented for estimating the number of animals passing through each instar of a copepod cohort and is demonstrated with 3 cohorts of Leptodiaptomus minutus (Calanoida: Copepode) from Bluff L . Nova Scotia.
2. , The $1970 / 71$ overwintering population of mainly adult L. minutus produced subitaneous eggs in Feb. which provided the basis of a first cohort or first generation that developed slowly through spring and summer to provide a new population of adults that formed subitaneous eggs in Sept. for a second generation. Most of the second generation died before reaching adulthood so that the overwintering population in 1971/72 was mainly adults from the first generation.
3. In the fall, apparently in preparation for winter, L. minutus females switch from producing subitaneous to diapausing eggs. These eggs pass the winter on the brottom of the lake and hatch at approximately the same time in the next year (March) as subitaneous eggs formed in Feb, by the overwintering females.
4. A sumner or second cohort of k. minutus had a proportionally slow rate bf develapment ${ }_{c}$ which most ithely resulted from. food conditions in the lake at the time. Heavy mortality through naupliar instars in all cohorts of 1971 is probably duc to predation by other zooplankters. In the absence of predators in the first cohorts pf 1971 and 1972 Ittile mortality was observed in eggs and the first 3 naupliar instars.

Four methods are presented to estimate production in each of the 3 cohorts of L. minutus in 1971: 1) Rigler and Cooley graphical, 2) Allen curve, 3) Soviet graphical, and 4) death rate. For all 3 cohorts the first 3.methods give very similar estimates but the last is judged

Inedequate, A curve relating eg development and temperature derived in the labofratory is presented and usiad in each of the 4 methods to atimate grg numbers. A simklar curve for NI is used in the first method for estimuting the number of NI produced in each cohort.
6. Denta . NI, subitaneous and diapausing egg development were al so collected for the larger but less numerous congener of $\underline{\text { L. minutus, " }}$ A. spatulocrenatus. The data indiciate that the 2 are not in complete competition with each other.

LITERATURE CITED

Andrewartha, H. G. 1961, Introduction to the study of animal populations. Univ. Chicago Press, Chicago. 281 p .

Agonymous 1967. 1..B. P. News. 9: 1-68.
Brower, R. H. 1964. The phenology of Diaptonks stagnalis (CopepodaCalanoida): The development and the hatching of the egg stage.

- Physiol. Zool. 37: 1-20.

Brooks, J. L. 1959. Cladocera, p. 587-656. In W. T. Edmondson (ed.), Freshwater Biology. John Wildy and Sons. New York.

Carter, J, C. H. 1971. Distribution and abundance of planktonic Crustacea in ponds near Georgian Bay (Ontario, Canada) in relation to hydrography and water chemistry. Arch. Hydrobiol. 68: 204-231.

Cassie, R. M. 1971. Sampling and statistics. p. 174-209. In W. T. Edmondson and G. G. Winberg (ed.), A manual on methods for the assessment of secondary productivity in fresh waters. Blackwell Scientific Publications, Oxford and Edinburgh.

Caswell, H. 1972. On instantaneous and finite birth rates. Limnol. Oceanogr. 17: 787-791.

Comita, G. W. 1972. The seasonal zooplankton cycles, production and transformations of energy in Severson Lake, Minnesota. Arch. Hydrobial. 70. 14-66.
Cooley, J. M. 1970. The effect of temperature on the develapment of the egg, first, and second naupliar stages, and vertical migration in Diaptomus oregonensis Lillj. (Copepoda: Calanoida). M. Sc. Thesis. Unilv. Toronto. 114 p .

Cooley. J. M. 1971. The effect of "temperature on the development of resting eggs of Diaptomus oregonensis Lillj. (Copepoda- Calanoida). Limnol. Oceanogr. 16: 921-926.

Corkett, C. J. 1972. Development rate of copepod eggs of the genus Calanus. J. Exp. Mar. Biol. Ecol. 10: 171-175.

Corkett, C. J., and IF A. McLaren. 197Q. Relationships between deyelopment rate of eggs and older stages of copepods. J. Mar. Bior. Assoc. 50: 161-168.

Cunningham, L. 1972. Vertical migrations of , Daphnia and copepods under ice. Limnol. Oceanogr. 17-301-303.

Davis, C. C. 1961. Breeding of calanoid copepods in Lake Erie. Verh. Internat. Verein. Limnol. 14 933-942.

Davis, C. C. 1972. Plankton dynamics in a Newfoundland lake. Verh. Internat. Verein. Limnol. 18: 278-263.

Edmondson, W. T. 1962. Food supply and reproduction of zooplankton in relation to phytoplankton population. Cons. Internat. Explor, Mer. Rapp. et Proc-Verb. 153: 137-141:

Edmondson, W. T. 1972. instantaneous birth rates of zooplankton. Limnol. oceanogr. 17: 792-794.

Edmondson, W. T., G. W. Comita, and G. C. Anderson. 1962. Reproductive rate of copepods in nature and its relation to phytoplankton population. Ecol. 43: 625-634.

Edmondson, W. T., and G. G. Winberg. 1971. A manual on methods for the assessment of secondary productivity in fresh waters. Blackwell Scientific Publications, Oxford and Edinburgh. 358p.

Eichhorn, R. 1957. Zur Populationsdynamik der calanoiden Copepoden in Titisee und Feldsee. Arch. Hydroblol.: Suppl. 24: 186-246.

Elgmork, K. 1959. Seasonal occurrence of Cyclops strenuus strenuus. Folia Limnol. Scand. II: 1-196.

Elgmork, K. 1967. Etological aspects of diapause in copepods. p. 947954. In Proc. "Symp. Crustacea, Part 3.

Elster, H. J..1954. Wher Ge Populationsdynamik von Eudiaptomus gracills Sars und Heterocooe korealis Fischer im Badensee - Obersee. Arch. Hydrobiol. Suppl. 20:546-614.

Gorham, E. 1957. The chemical composition of lake waters in Halffax County, Hova Scotia. Limnol. Oceanogr. 2: 12-24.

Hall, D. J. 1971. The experimental field approach to secdndary production. p. 210-221 In W. T. Edmondson and G. G. Winberg (ed.), A manual on methods for the assessment of secondary productivity in fresh waters. Blackwell Scientific Publications, Oxford and Edinburgh.

Haney, J. F. 1970. Seasonal and spatial changes in the grazing rate of of limnetic zooplankton. Ph. D. Thesis. Univ. Toronto. 177p.

- Hayes, F. R., J. A. McCarter, M. L. Cameron, and D. A. Livingstone. 1952. On the kineties of phosphorous, exchanger in lakes. J. Ecol. 40: 202-216.

Hillbricht-llkowska, A., Z. GIiwicz, and I, Spodniewska. 1966. Zooplankton production and some trophic dependences in the pelagic zone of two Masurian lakes. Verh. Internat. Verein. Limol. 16: 432-440.

Hutchindon, 6. E. 1967. A treatise on limnology. Vol, 2, fintroduction to lake biology and the limnoplankton. John Wi fey and Sons. New York. 1115p.

Kibby, H. V. 1971. Energetics and population dynamics of Diaptomus gracillis. Ecol. Monographs 41: 311-327.

Langford, R. R. 1938. Diurnal and seasonal changes in the distribution of limnetic crustacea of Lake Nipissing, "Ontario. Univ. Toronto Stud. Biol. Ser. No. 45: 1-142.

Lindeman, R. L. 1942. The trophic dynamic aspect of ecalogy. Ecöl. 23: 399-418.

Main; R. A. 1962. The life history and food relations of Epischura lacustris Forbes (Copepoda: Calanoida). Ph. D. Thesis. Univ. Michigan. 135p.

Mann, K. H. 1969. The dynamics of aquatic ecosystems. Advances Ecol. Res. 6: 1-81. Academic Press. London.

Mann, K. H. 1971. p. 160-165. Use of the Allen curve method for calculating benthic production. In W. T. Edmondson and G. G. Winberg (ed.), A manual on methods for the assessment of secondary productivity in fresh waters. Blackwell Sclentific Publications. Oxford and Edinburgh.

McLaren, I. A. 1963. Effects of temperature on growth, and the adaptive value of vertical migration. J. Fish. Res. Bd. Can. 20. 685-727.

McLaren, 1. A. 1965. Temperature and frog eggs: a reconsideration of metabolic control. J. Gen. Physiol. 48: 1071-1079.

McLaren, 1. A. 1966., Predicting development rate of copepod eggs. Biol. Boil. 131: 457-469.

Mclaren, I. A. 1969. Population and production ecology of zooplankton in Ogac Lake, a landlocked fiord on Baffin island. J. Fish. Res. Bd. Can. 26: 1485-1559.

Mclaren, I. A. and J. M. Cooley. 1972. Temperature adaptation of embryonic development rate among fregs. Plysiol. Zool. 45: 223-228.

Mclaren, I. A., C. J. Corkett, and E. J. Zillioux. 1969. Temperature adaptations of copepod eggs from the arctic to the tropics. Biol. 8ul1. 137: $488=493$.

Nouverck, A. 1963. Die Beziehungen zwischen Zooplankton und Phytoplankton Im See Erken. Symbolae Botanicae Upsallenses. 163p.

Ogden, J. G. O. III. 1972. Water quality survey for selected metropolltan lakes. Task Group on Water Supply and Waste Disposal, Matropolitan APla Planning Committee. Halifax. 188p.

Paloheimo, J. E. 1973. Calculation of instantaneous birth rate. As. 8p.

Pavoni, M. 1963. Die Eedeutung des Mannoplanktons im Vergleich zum Matzplankton. Qualitative und quantitative Untersuchungen im Zurichsee, Pfaffikersee und andersen Seen. Schweiz. Z. Hydrol. 25: 219-342.

Patalas, K. 1969. Composition and horizontal distribution of crustacean plankton in Lake Ontario. J. Fish. Res. Bd. Can. 26: 2135-2164.

Patalas, K. 1971. Crustacean plankton communities in forty-five lakes in the Experimental Lakes Area, north-western Ontario. J. Fish. Res. 日d. Can. 28: 231-244.

Pechen, G. A. and E. A. Shushkina. 1964. The production of planktonic crustaceans in lakes of diverse types (In Russian) Biol. Osnovy Rybnogo Khoz. na Vnutr. Vodoemakh Pribaltiki. Minsk, 249-256.

Raverra, 0. 1954. La struttura demografica del copepodi del Lago Maggiore. Hem. 1st. |tal. di |drobiol. 8: 109-150.

Ricker, W. E. 1968. Methods for assessment of fish production in fresh waters. Blackwell Scientific Publlcations, Oxford and Edinburgh. 313p.

Niglar, F. H. 1972a. Adequacies and shortcomings of the energetic concept and the mineral cycling concept. Ms. 21p.
\downarrow
Rigler, F. H. 1972b. Feeding behaviour of Limnacalanus macrurus. p. 32-36. In F. H. Rigier (ed.). Char Lake Project PF-2 Annual Report 1971-72.

Rigler, F. H. and R. R. Langford. 1967. Congeneric occurrences of species of Dlaptomus in Southern Ontario Lakes. Can. J. Zool. 45: 81-90.

Sandercock, G. 1967. A study bf selected mechanisms for the coexistence of Diaptomus spp. in Clarke Lake, Ontario. 12: 97-112.

Schindler, D. W. 1969. Two useful devices for vertical plankton and
, water sampling, J. Fish. Res. Bd. Can. 26: 1948-1955.
Schindler, D. W. 1972. Production of phytoplankton and zooplamkton In Canadian shield lakes. (In Press).

Schindier, D. W. and B. Noven. 1971. Vertical distribution and seasonal abundance of zooplankton in two shallow lakes of the Experimental Lakes Area, northwestern Ontario. J. Fish. Ros. Bd: Can. 28: 245-256.

Southmood, T. R. E. 1963. Ecological methods with particular references to the study of insect populations. Methuen and Co. London. 391p.

Stross;' R. G. 1969. Photoperiod control of diapause in oaphnia. II. Two stimulus control of long-day, short-day induction. Biol. Bull. 137: 359-374.

Tappa, D. W. 1965. The dynamics of association of six limnetic species of Daphnia In Aziscoos Lake, Maine. Ecol. Monographs 35: 395-423.

Turvey, L. H. 1968. The anomalous distribution of Diaptomus reighardi Marsh (Copepoda: Calanoida) in southern Ontario with emphasis on possible competitive exclusion. M. Sc. Thesis. Univ. Toronto. *
Waters, T. F. 1969. The turnover ratio in production ecology of Froshwater Invertebrates. An. Naturalist 103: 173-185.

Watson, N. H. F. and B. N. Smallman. 1971. The role of photoperiod and development in two species of freshwater cyclopoid copepods. Can. J. Zool. 49: 855-862.*

Milson, M. S. 1959. Calanoida. p. 783-794. In W. T. Edmondson (ed.) Freshwater Biology. John Wiley and Sons. New York.

Winberg, G. G. 1971. Methods for the estimation of production of aquatic animals. Academic Press. New York. 175p.

Winberg, G. G., G. A. Pechen, and E. A. Shushkina. 1965. Production of planktonic crustaceans in three lakes of different types. Zool. 2h. 44: 676-688.

Worthington, E. B. 1931. Vertical movements of freshwater macroplankton. Internat. Rev. Hydrobiol. 25: 394-436.

Yablonskaya, E. A. 1962. Study of the seasonal population dynamics of the plankton copepods as a method of determination of their production, Cons. Internat. Explor. Mer. Rapp. et Proc-Verb. 153: 224-226.

APPENDIX 1

A table to show instar abundences for L minutus in Bluff L. from Oct. 17, 1970 to May 19, 1972. These data are graphed in Fig. 4.

Key to Symbols Used

```
N = naupliar instar
C - copepodite inster
M - adult mule
F - adult femele
FE - adult female with an egg sac
E - egg sac
<
On some doys (dishes) quantitative samples were collected but were not andysed for ell instars. In some cases portions of these samples were used to estimete the percentage of females-carrying egg sacs and the number of eggs per sac.
```


APPENDIX 2

1
One set of data all production methods used in this thesis have in common is their need at some point in the calculations for information relating egg development and temperature. This common need suggested to me that very accurate estimaternf this parameter could be very useful. One approach tried was to isolate males and females withour eggs in 300 ml. aquariat observe frequently, and then remove any females carrying the newly formed egg sacs to constant temperature baths. This approach proved tedious and alsofl found that very young eggs (i.e. less than 1 hour old., at room temperature) were susceptible to daninge bacause egg membranes had not hardened sufficiently to permit routine transfer from aquaria to * culturing vial. An alternative approach that did not, I believe, sacrifice any significant accuracy was based on a method described by Cooley (1970) arid modified slightly for this study. I found with practice that L. minutus oggs In the cleavage cycle and therefore very young could be distinguished from all other eggs at older stages of development. Cooley'(1970) also found this working with $\underline{\underline{S}}$. oregonensis eggs from Teaport L. and was able to approximate the time taken to pass through the early cleavage divisions $>$ at various temperatures. His results are presented below:

4	-	22	122.7 7.5	.125 .9	${ }^{1} 2.5$
7		11	72.9 ± 3.0	, 73.6	-1.0
10		16	47.6 ± 2.2	48.1.	-1.0
14		10	50.4 ± 0.9	30.5	-0.3
18		14	20.0 ± 1.3	17.8	12.3
23		4	14.4 ± 0.3	- 14.2	-1.4

*

Apptume 4

Recently there the been a, reconsideration of formulas defining. rates of increase by planktonic species (Cassel 1972, Edmondson 1972). Cassel (1972) has suggesment that commonly cited formula relating the instantaneous and finite rates of increase.

$$
b=\ln (1+B) .
$$

Equation 16
where A is the instantaneous rate of increase and B is the finite per capita rate of increase is incorrect, pointing out that such a relationship depends on the overall instantaneous rate of increase r. and citing Leslie (1948) suggests the correct formula should be

$$
b=\frac{r b}{\left(e^{r}-1\right)}
$$

Equation 17
The finite per capita birth rate B is defined as
where E is the total number of egg in the population, $A=\frac{E / A}{D}$ is the total.

* number of adults, and D is the development time in days of the eggs.

However, more recently Paloheino (unpublished manuscript) has shown that casweli's or frore appropriately Leslie's formula (Equation 17) is "exact under rather specific assumptions" and "falls to account for the fact that the ag g ratio (E / A using my notation) par development time (D) is not an appropriate measure for thafinite per capita birth rate'. He furthers on to develop "correc te" formula relating B and b which is

$$
b=\frac{\ln (E / A)+1}{D}
$$

Equation 9
Palohimg paint out that B is readily culcuiated from Leslie's original formant equation 47 es.

APREMDIX 5

Although it way not an objective of the study, it seems worthwhile to compare estintate of 'annual production by L. minutus in Bluff L. With similar estimatiss for other herbivorous copepods. These Yalues are sumarized in Appendix Table 1. In many cases data were converted so that all production estimates could be expressed in kcel per square metry of surface area in one year. It was assumed that I gm dry wh of organic matter represented 10 gm of fresh or wet weight, was 44\% carbon, and contained 5.6.kcal. Although these values are likely to be crude estimates of the true situation because of different techniques and assumptions used in calculation, they should nevertheless be adequate for the purpose of indicating simple "trends" between lake type" and production.

Clearly no simple relationships are evídent from the data presented. This is not unexpiected because of the dynamic nature of the factors controlking secolndary roduction. the total amount of secondary production will be datermined in part by lower and higher trophic levels (primary production and predators) as, well as by the kinds and whandarice' of other herbivores "competing"'for similar food stuffs.

In eutrophic lakes higher primary productivfty will not necessarily be accompanied by proportional increase in herbivores because nmmoplankton (whe preferred food size of herbivores) does not necesserily Increste Qroportionally. 'In fact Pavoni (1963) found that the

APPENDIX TABLE 1
Annul produstion extimates of herbivorous copepods.

Specter	Body of Water, Type	N. Lut.	Max Depth奛	Area (h)	Production kcal $/ m^{2} / y r$	Author
Aretodlentoane allous	Aral Sea	$45^{\circ} 01$	68	62×10^{6}	2.6	Yaktonskay (1962)
Lentadisptax min minutur	Oluffots, Ollgotrophic	$44^{\circ} 30$	7	4.8	4.0	This Study
Mradinetenut Lacinlatus	Titisoe, Mesotrophic	$47^{\circ} 541$	40	11	4.8.	Elchhorn (1957) ${ }^{\text {1 }}$
 	Ogac L., 011 lgotrophic	$\begin{gathered} 62^{\circ} 52^{\prime} \\ 11 \end{gathered}$		148	$\begin{aligned} & 5.4 \\ & 3.3 \end{aligned}$	Mctaren (1969)
	Teapot L., Dystrophic	$43^{\circ} 45^{\prime}$	12	0.5	$\begin{array}{r} 6.6(1965) \\ 15.0(1966) \end{array}$	Rigler and Cooley (unputilished)
	Taitowisko, Mesotrophic Mikolajskle, Eutrophic	$54^{\circ} \mathrm{i}$		$\cdot ?$	9.5 11.8	Hillbricht-llkowska制 뇨 (1966)
	Severson L., Eutrophic	$46^{\circ} 53^{\prime}$	5	11.2	13.9	Conita (1972)
	- Ellzabeth II Reserbolr	. $53^{\circ} 30^{\prime}$?	16	120	52	Kibby (1971)
	Lake Erkan, mod-Eutrophic	$59^{\circ} 25^{\prime}$		2287	134	Neuwarck (1963)
CIftit frugrghlcus	SW part. coastal area garents sea	$68^{\circ} ?$			36.4	Yoblonskay (1962)
Clinask cin merchiean	Coastal areas of E. Part, Imerents Sea	68° ?			30.8	Yeblonskaya (196z)

Fatediaged uting the graphical method of Rigler and cooley Thypiol rulon blow 10 m

[^0]: in $71 / 2$ it was assumed that only. 50 CIV's were'produced and that none ${ }^{\circ}{ }^{\circ} f_{n}$ these animals, made it past this instar

