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ABSTRACT

With the development of more complicated structures in the field of electrical
engineering, the importance of the computational electromagnetics increases. With
computational electromagnetics, a designer can know what happens inside circuit
structures, namely, which components or elements radiate and how signals travel and
reflect. For microwave frequencies and wide band systems applications, time-domain
methods are increasingly preferred of their capability in handling wide band signals.
Among time domain methods, FDTD (Finite Difference Time Domain) method has
attracted more attention due to its simplicity and direct applicability to Maxwell’s
equations. It has been used in a large number of applications, and FDTD based software
has been developed commercially. Nevertheless, due to CFL (Courant-Friedrich-Levy)
stability constraint and numerical dispersion error, it takes large memory and simulation
time for electrically large and high Q structures. To circumvent the problems, many
improved FDTD methods have been developed. For instance, to make FDTD method
memory efficient, PSTD (Pseudospectral Time Domain) method was proposed, and to
reduce its dispersive error MRTD (Multiresolution Time Domain) was developed. To
remove the CFL constraint, unconditionally stable ADI-FDTD method was introduced
recently, although it takes more memory and is more dispersive at larger time steps.

To further improve the computational efficiency, in this thesis, hybrid FDTD and ADI-
FDTD method is introduced. By using this hybrid approach, advantages of both FDTD
and ADI-FDTD methods can be taken. In it, FDTD is applied in coarse mesh and ADI-
FDTD in fine mesh areas. The time step is the same as that of the FDTD region even with
smaller cell size in ADI-FDTD region. In this way, optimum saving in memory and
computation time can be achieved without sacrificing the accuracy.

Accuracy of the ADI-FDTD method deteriorates at larger time steps. To mitigate this
problem, two different error-reduced ADI-FDTD methods are presented. These error-
reduced methods are based on the more accurate Crank Nicolson (CN) method but the
simulation procedure is like the ADI-FDTD method. In these methods, modified splitting
error term, which is missing in ADI-FDTD formulation and causes inaccuracy, is
introduced to reduce the errors. The first method is found to be more accurate than the
second one, but both are better than the conventional ADI-FDTD method.

ADI-FDTD also has relatively large dispersion error in comparisons with the FDTD
method. To reduce it, dispersion optimized ADI-FDTD methods with different cases are
also developed in this thesis. In them, dispersion controlling parameters are introduced,
which result in different degrees of dispersion controls.

In summery all the methods proposed in this thesis are aimed at improving the efficiency
of FDTD method and the ADI-FDTD method. To improve computational efficiency an
efficient hybrid method is introduced. To have better results with larger time steps, error-
reduced ADI-FDTD methods are introduced, and to control the dispersion of ADI-FDTD
method dispersion optimized ADI-FDTD methods are proposed. These proposed methods
are then numerically tested for validity and effectiveness.

XV



Chapter 1 Introduction

1.1 Introduction

Today, realistic simulation of large and complicated systems has become possible, due to
increasing computation power of computers. For simulation purposes many analytical,
semi analytical and numerical methods have been proposed and are in use. Such kinds of
methods are being employed day by day for more accurate and efficient designs. Circuit
and prototype design without proper prediction of results is proven to be expensive and
time consuming. Accurate modeling and simulation of circuits can provide better
prediction of circuit performance before circuit prototyping. In general, it is very difficult
to get the analytical or semi analytical solutions of all kinds of circuit structures due to
their complexity and variations. To handle the situation numerical methods are then used.
On the other hand, due to increased computation power of computer, numerical methods,
which were considered to be expensive in the past, start to play an important role today in
solving the electromagnetic and RF/microwave structure problems. In addition,
continuous improved accuracy and efficiency of these methods are also making them
effective and popular. Many software packages based on these numerical methods have
been developed commercially, although efforts to develop more refined numerical

methods are still underway in both academia and industry.

There are two basic circuit designing CAD (Computer Aided Design) techniques, circuit-
theory based and field-theory based. The circuit-theory based techniques are simpler and
older than the field theory-based techniques. The circuit based techniques are used in
terms of voltage and current. The field based circuit designing techniques are
comparatively new and are applied in terms of electric and magnetic fields [1]. In them,
Maxwell’s equations are to be solved. The field based techniques are alternative to the

circuit based techniques; they take a more microscopic view of a structure to be analyzed.

The main reason for using field based techniques is their generality to consider all

electromagnetic effects including:



1) all loss mechanisms such as surface waves and radiation
2) parasitic coupling between elements
3) effect of compacting a circuit into small space

4) effect of package or housing on the circuit performance

With computer graphic technology, above effects can be visualized on screen, allowing

deeper understanding of circuit operations.

However, in the field based methods, size of a structure is critical because of needed but
limited computer resources. With the development of new efficient methods and high-
speed computers, such a constraint is relaxing. Major applications of the field-based
techniques are RF/microwave electronics, optical fiber communications, radar, satellite
communications, aircrafts  systems, electromagnetic = compatibility, mobile
communications, biomedical devices and antennas. These vast applications show the

importance of computational electromagnetics.

The field-based techniques can be categorized into two types: frequency and time
domain methods. The examples of the frequency domain methods are Method of Moment
(MoM) and Finite Element Method (FEM) while the examples of the time domain
methods are FDTD and ADI-FDTD. Frequency domain methods are efficient in narrow
band solutions, while the time domain methods are efficient for wide band solutions.
Although both have advantages in their own domains, the time domain methods are
getting popular because of their ability of handling wideband signals and the availability
of high power computers. A large number of time domain numerical methods have been
developed [2-5]. Among them the FDTD method is the most popular due to its simplicity
and generality. In the next section a brief review of both frequency and time dependent

methods is presented.

1.2 Review of the State of-the-Art Numerical Methods

As described before, numerical methods fall into the following two broad categories:



A) frequency domain

B) time domain

These two categories are also known as time harmonic and transient methods,
respectively. In terms of usage frequency domain methods are very old techniques as
compared to time domain methods. Before 70’s it was difficult to apply time domain
methods because of the required large number of calculations and limited computer
power. Therefore, frequency domain methods were more common. Frequency domain or
harmonic methods are very efficient in narrow or moderate bandwidth applications, but
not for wide bandwidth applications. Frequency domain methods can be obtained by

replacing the time domain differential operator with jo and time domain integral

operator by —.lz)-in Maxwell’s equations [1]. Frequency domain methods are applicable
J

and effective for linear problems. On the other hand, today the time domain or transient
methods have become popular due to availability of the high power computers. These
methods can cover a wide range of frequency spectrum in one simulation run. In addition,

time domain methods can also be applied easily to non-linear structures.

A) Frequency domain methods

With frequency domain methods the full wave frequency domain analysis of a problem
can be done at any frequency of interest. These methods can be used to calculate
frequency- dependent characteristics such as skin effect, losses, dispersion and reflection
at discontinuities. They are good for steady-state conditions and become inefficient for

transient analysis.

The following frequency domain methods, Finite Element Method (FEM), Method of
Moment (MoM), Finite Difference Method (FDM), Frequency Domain Transmission
Line Method (FDTLM), Method of Line (MoL), Spectral Domain Approach (SDA),
Boundary Element Method (BEM), and Mode Matching (MM) are briefly explained here.



Al FEM (Finite Element Method)

In 1968 FEM was applied for the first time in the field of electromagnetics by Silvester
[1], although it had been applied in the field of civil and mechanical engineering. Today it
is a well-known frequency domain method for electromagnetic and  RF/microwave
applications. It has been applied to both two-dimensional and three-dimensional
problems. Commercial software based on this method have been developed for
electromagnetics and RF/microwave applications, for example, HFSS by Ansoft [8],
FEMLAB by COMSOL [9], QuickField by Tera Analysis [10], and FlexPDE by PDE
Solutions [11].

FEM is effective for irregular boundaries and complex structures. It is also suitable for
shielding applications with apertures. However, it is complex to understand and to
prepare final equations for programming. In addition, it is not suitable for thin long wires
and for applications where there is a large distance between a source and a measurement
point. Although the FEM method is computationally expensive for complex structures
such as thin film resonators, the availability of high-speed computers favors FEM over

other frequency domain simulation techniques [12].

To solve a problem, FEM contains the following four steps [13]:
1) discretization of a structure into a finite number of elements or subregions that is
known as finite element mesh.
2) derive the equations for elements or subregions defined in step 1.
3) assemble all subregions or elements obtained in the discretized structure.

4) solve the obtained resulting equations by the Iterative or Banded Matrix methods.

The FEM mesh usually contains non-overlapping polygonal regions or elements.
Triangle and quadrilaterals are two well-known types of subregions or elements, but
triangle is mostly used, due to the availability of wide range variety of triangular meshing
techniques. The approximate solution of each element should follow the constraints: that

requires continuity along the edges of the subregions and boundary conditions. Adaptive



meshing techniques [14-15] are also used to optimize the meshing in structures and to
control the mesh density. A fine mesh can be used in the desired areas such as corners
where field variation is rapid etc, and a coarse mesh in the rest of the areas. For open
region structures FEM is not computationally economical. To handle open problems,
hybrid techniques or absorbing boundary conditions have been developed with the FEM
method [16].

A2 MoM (Method of Moments)

The MoM is one of the most well-known methods in frequency domain analysis of
electromagnetics and RF/microwave circuits. It was used initially in civil and mechanical
engineering and first introduced by R.F. Harrington to electromagnetics [17-18].
Basically, MoM uses two important concepts of electromagnetics: Green’s function and
superposition. In electromagnetics Green’s function is like an impulse response of a
circuit. For given boundaries (e.g. infinite free space or walls) and material bodies (e.g.
dielectrics and ground planes) Green’s function is used to find out the field at any
position due to an extremely small uniform current element at a particular position. For an
actual circuit that occupies a fixed area or volume current may have distributions along a
surface and in a volume. By dividing the current on a surface into many small current
elements, ficld components are measured by adding the contribution (or Green’s function)

from each current element (superposition) [19].

MoM is used normally to solve integral equations. It is a suitable method for long wire
and objects with considerable distances among them [20]. Therefore, it is very effective
for radiation and scattering problems. Based on MoM many commercial software
packages have been developed such as momentum (ADS) by Agilent EEsof EDA [21],
Ensemble by Ansoft [22], em by Sonnet software [23], IE3D by Zeland software [24],
and EMSight by Applied wave research [25].

In general MOM is good for computing the homogeneous and layered dielectrics. It is

difficult to apply MoM to nonlinear and non-homogeneous structures. To handle these



structures, hybrid methods [26] are used but they are still in the stage of infancy in

development.

Normally MoM is categorized into two types [1]. The first category is closed-box MoM -
and the second is open-box moment method. In the closed-box moment method, box
walls and circuits both are included in the formulation. Codes for these are made by using
fixed resolution grid and an analytical Green’s function is employed for fast computation.
However, the closed-box moment method is not suitable for millimeter wave applications
because the box wall may support some resonant modes that may cause interference with

the original signals. Another issue is that grid resolution is fixed and cannot be varied.

In the open-box method, there is no need of fixed grid resolution; triangular and
rectangular grids can be used for a structure. It is applied more often to open structures
e.g. rectangular microstrip patch antennas. Nevertheless, in the open-box moment
method, calculation of Green’s function is slower than in the closed-box moment method.
There is also need of image theory to implement symmetry and box walls. In addition, to
find impedance in open case there is need of a separate 2-D solution [1]. Nonetheless, the
moment method has worked very well for analyzing broad range of problems in the field

of electromagnetic and RF/ microwave circuits.

A3 FDM (Finite Difference Method)

Finite difference method is used to solve partial differential equations, and it is one of the
best-known methods that are applied to quasi-static problems. Quasi-static problems are
those that are used when a structure is much smaller than wavelength. To get accurate
results with FDM, a solution domain is first discretized into a collection of small cells.
The discretized cell size should be small; otherwise there will be un-negligible dispersion

errors due to discretization.

The FDM is one of the old numerical methods. It was widely studied from 1950 to 1970

and has been applied to many practical electromagnetics problems [27-28], including the



waveguide discontinuities problem [29-30]. FDM is attractive, straight forward and
simple. To solve a problem with FDM normally three conditions have to be known

before-hand [5][30-31]:

1) apartial differential equation to be solved, e.g., Laplace or Poisson’s equation
2) a solution region where the equation is applied

3) boundary conditions within the solution region

With these conditions, FDM can be applied. For example, a two-dimensional Laplace

equation problem can be solved with the finite difference method in the following steps:

Stepl: divide the solution domain into a finite number of cells as shown in Fig 1.1.
Step2: Approximate the differential equation and boundary conditions by a set of linear
algebraic equations as the result of replacing differentials with finite differences

that is,

is finite-differenced, which leads to
1
Vij =Z(Vi,j—1 +Vi e tVicyj Vi, ) (1.2)

Equation (1.2) is the discretized solution of equation (1.1) withAx = Ay. It shows
that the field value at a point is the averages of those at the four neighboring points
(see Fig 1.1).

Step3: Solve the resultant set of algebraic equations obtained in Step2 by either an

Iteration Method or Banded Matrix Method.
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Fig. 1.1 Finite difference for Laplace's equation

A4 FDTLM (Frequency Domain Transmission Line Matrix)

The FDTLM method [32] is an extended form of the TLM method [33], and was
introduced by Jin and Vahldieck in 1992. In general, FDTLM has approximately the same
advantages and disadvantages compared to the TD-TLM as frequency domain methods

have in comparison with time domain methods.

In FDTLM, a structure under study is discretized into meshes of transmission lines
connected with symmetrical condensed nodes. The FDTLM method is assumed to be in
steady state conditions, while the field interactions are represented or solved with
connecting and scattering matrices. In addition to many other applications, the FDTLM
method is efficient for thin layer structures as compared to the TD-TLM method [34-35].
By using absorbing boundary conditions, this method can also be applied to open
structures efficiently [36].

AS Mol (Methods of Lines)

The method of lines (MoL) is a method that is used to solve PDEs (partial differential



equations) in which time derivative is solved by using the ordinary differential equations
and the spatial derivatives by finite differences. MoL is a semi-analytical method, and is
used as one of the standard tools for many practical, complex electromagnetic problems
[37]. It was originally developed by a mathematician to solve the boundary value
problems [38-39]. R. Pregla, from Fern Universitat, Hagen, Germany, applied it first to
electromagnetics [40], and many other researchers [41-43] followed latter. This method
has results better than the finite difference method, and has been applied to many

applications successfully.

The basic concept of MoL is that a differential equation is usually discretized in one or
two dimensions but remains analytical in the remaining directions. Due to the
discretization in some directions and analytical solution in the remaining directions, it has
qualities of both finite difference and analytical methods. In MoL, the following five
steps are needed [43]:

1) divide the given structure into layers

2) discretize the given structure in one or two directions

3) make transformation to obtain decoupled ordinary differential equations
4) take the inverse transformation and apply the boundary conditions

5) obtain the solutions after solving the equations.

MoL does not have any problem with relative convergence and it also does not support
spurious modes. It has certain advantages like efficient computation and less
programming effort, due to its property of having the merits of both analytical and finite
difference method. Perfectly absorbing boundaries have been introduced in MoL; with
them, it can also solve open structures very efficiently and is not limited to closed

solution domains.

A6 SDA (Spectral Domain Analysis)

This method is known both as SDM (Spectral Domain Method) and SDA (Spectral



Domain Approach). SDA is the Fourier- transformed version of the integral equation
method, and has been applied to microstrip and other printed lines structures [44]. Many
commercial packages using this method such as VUSTLSn Model- LINMIC+/N (AC
Microwave), MMICTL- LINMIC+/N (AC Microwave), MCPL model - Ansoft Designer
(Ansoft) and SFPMIC- LINMIC+/N (AC Microwave) [1] are available. SDA was
proposed by Itoh and Mittra in 1973. They applied it to the calculation of dispersion
characteristics of microstrip line. This technique is basically a modification of Galerkin’s
approach adopted for applications in the Fourier transform or spectral domain [45]. In
general, the spectral domain analysis is a combination of analytical and numerical
techniques. It is very suitable for the solution of boundary value problems in microwave
and millimeter wave integrated circuits [46], or the applications where there is interface
between air and dielectric [47]; this is why the method is mostly applied to microstrip-like
structures. This method is highly effective due to its analytical preprocessing. However
this method has certain limitations. It is applicable to very thin layer conductor strips and
is not suitable for finite thickness strips. Discontinuity in the substrate of the sideward
direction is not permitted. In spite of these limitations, SDA is still one of the most widely

used numerical techniques [44].

A7 BEM (Boundary Element Method)

Boundary Element Method is an extension of the Finite Element Method (FEM) and is
obtained by applying the finite element method to Boundary Integral Equations (BIE)
[48]. In other words, it is a combination of the two methods, FEM and BIE, with the
advantages of both methods. It makes possible modeling of arbitrarily curved boundaries
with FEM and small mesh volume with BIE [49]. BEM method can deal with
inhomogeneous materials in a simple and efficient way [50]. BEM only requires
discretization at the boundaries. Therefore, the size of the solution matrix is small
compared to the FEM method and can be solved efficiently. Another important advantage
of this method is that there is no need to use absorbing boundary conditions because
fields at infinite distance are accounted for by using Green’s function [50]. The

commercial software ELECTRO by Integrated Engineering Software is based on this
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method [1]. BEM was also hybridized with other methods such as FEM and BEM [51],
and MoM and BEM [52], etc. The main disadvantage of BEM is that the matrix it

involved is usually a full matrix.

A8 MM (Mode Matching Method)

This method is used usually when the solution domain structure is divided into two or
more regions. Each region has a set of well defined analytical solutions of Maxwell’s
equations that satisfy all the boundary conditions excluding at the intersections. When the
solutions in each region are orthonormal, they are known as normal modes. The main
concept of this method can be divided into two steps: Step 1 is the expansion of the
unknown fields in the individual region in terms of their respective normal modes and
Step 2 is the interface of the regions with continuity conditions [53]. It is appropriate for
two and three dimensional structures including scattering and eigenvalue problems. MM
is efficient for a structure where modes are known analytically. This method has been
used to many structures, comparatively to regular [53] than complex structures. Many
new modifications in mode matching method have been made and are underway to
increase the efficiency of this method [54-57]. However, there is still need of further

research in this method to increase its efficiency.

B) Time domain methods

Time domain methods are relatively easy to apply to non-linear structures, and provide
solutions for a wide spectrum of frequencies. The output of time domain methods is in
time domain, and Fourier transform is used to convert it into frequency domain. Time
domain methods were not very popular before the 1970’s due to heavy calculation
requirements, but after the development of high-speed computer technology these
methods are becoming more and more popular. A large number of commercial software
packages have been developed based on these time domain methods, and are efficient.

However, for structures with resonances, the time domain methods take long CPU time.
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Some of the well known time domain methods are Finite Difference Time Domain
(FDTD), Transmission Line Matrix (TLM), Alternating Direction Implicit FDTD (ADI-
FDTD), Multiresolution Time Domain (MRTD), Pseudospectral Time Domain (PSTD),
Method of Moments Time domain (MoMTD), Finite Element Time Domain method
(FEMTD), Complex Envelop (CE-FDTD), and Finite Volume Time Domain (FVTD).

They are reviewed in the following sections.

B1 FDTD (Finite Difference Time Domain)

FDTD (Finite Difference Time Domain) method was proposed by Yee in 1966 [2]. Since
then Maxwell’s equations based FDTD has become one of the most popular time domain
methods, and has been applied to almost all kinds of structures [3]. The reason for its
popularity is that it deals directly with Maxwell’s equations without pre-processing.
However, due to the explicit nature of the method, it has the Courant Friedrich Levy
(CFL) condition:

1

At <

c 1+1+1
szAyzAz2

This constraint is a disadvantage because the time step has to be small and within this

limit. As a result, CPU time will be large.

There are many commercial software packages available based on this method, such as
X-FDTD by Remcom, Concerto by Vector Fields, Microwave Studio 4.0 by Computer
Simulation Technology (CST) [1], SEMCAD X by Schmid & Partner Engineering AG
[58] and FIDELITY by Zeland Software [59].

There are six main reasons that make the FDTD method popular in industry and academia
[4]:
1) FDTD is a well defined method; sources of error have been well studied and can

be estimated.

12



2) FDTD can deal with impulsive behaviors naturally. In other words, FDTD can
compute the impulse response of an electromagnetic system with a single
simulation run.

3) Due to the explicit nature of FDTD, it does not encounter the difficulties of linear
algebra that limits the size of electromagnetics models.

4) FDTD can handle new structures by re-orientation of the mesh instead of the new
formulation.

5) FDTD method is becoming more and more CPU-time efficient, thanks to rapidly
increasing computer power.

6) FDTD allows visualization of solutions in time domain, a natural way in which

physical events occur.

Numerous papers have been written about FDTD. It has been applied to all kinds of
problems where electromagnetic fields are present. They include high-speed digital and
microwave circuits, electromagnetic effects on the human body, biomedical devices
(pacemakers, MRI), radars, heating effects on integrated circuits and food items,
microwave filters and amplifiers, optical structures and bio-photonics, cellular telephones,

LTTC, MEMS, NEMS and metamaterials.

B2 TLM (Transmission Line Matrix)

TLM method was first proposed by Johns and Beurle in 1971[60]. This method is
basically derived from Maxwell’s equations using the finite difference approximation
[61] and method of moment [62]. It has resemblance to the transmission line network, as

can be seen from its name.

In TLM method, the solution domain is divided into grids and nodes of grids are
connected with each other through transmission lines. Voltage and current terms are used,
instead of electric and magnetic fields, as in the case of FDTD. However, they are
analogous. Voltage corresponds to the electric field and current corresponds to the

magnetic field. When a current or a voltage impulse is used as a source and incident onto
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a node, as shown in Fig 1.2, it will be reflected, scattered and transmitted to the
neighboring nodes as shown in Fig. 1.3. The transmitted impulses will become the

incident impulses to the neighboring nodes.

A
\ 4

Fig. 1.2 Incident impulse at a node for Fig. 1.3 Reflected and transmitted impulse
TLM method at anode

The impulse scattering and propagation in the TLM mesh can be mathematically

represented as:

ksl as ikl ] (1.4)

where [S] and [C] are scattering and connection matrix respectively, V] and V} are the
vectors of reflected and incident impulses at the k,, time step. It is possible to combine

equations (1.3) and (1.4) but it is easy if both are handled separately [1].

In three-dimensional cases, the symmetrical condensed node (SCN) was presented by
Johns in 1986 [60] (see Fig. 1.4) and is the most extensively used. The SCN consists of
six branches with two transmission lines in each branch. The main advantage of these
symmetrical condensed nodes is that all the coupled field components are available at the
center of a node as well as at the cell boundaries. In almost all the modern TLM

simulators, this node technique is used with some variations.

TLM method is like FDTD and approximately has the same limitations as FDTD. It is not

suitable for applications where there are long distances between sources and points of
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interest. As well, it takes long simulation times when there is need of fine grids. Both
FDTD and TLM can be used for a wide range of applications. Simulation engineers

normally chose either FDTD or TLM based on their familiarity with it.

Both methods are effective for nonlinear applications and can run on parallel processing
systems. In general case the simulation time for the same size of matrix for both FDTD
and TLM is less than those of MoM and FEM [1]. No computer can store unlimited data.
To limit the extent of an open structure, absorbing boundary conditions (to act as an
infinite region or free space) are also needed for TLM [63]. The MEFiSTO-3D Pro by

Faustus Scientific [64] is a well-known TLM-based software available commercially.

A
N
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Y

Fig. 1.4 Three - dimensional SCN for TLM method

B3 ADI-FDTD (Alternating Direction Implicit — FDTD)

ADI-FDTD [65-66] is an extended unconditionally stable version of FDTD. Its
unconditional stability proof was presented in 2000 by Zheng, Chen and Zhang [66]. This
is why that this method is also known as ZCZ algorithm [4]. The CFL-condition is
removed with the uses of the ADI scheme. Due to the CFL-free nature of this method,
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larger time steps can be taken, which reduce the number of iterations and therefore the

simulation time. The total number of time steps Ny, needed to complete the simulation
can be calculated with the following formula [4]:

T,

= sim
sim
At ax

where T,;,, is the simulated time and is related to period T of Ay, » Afpay is the time
step selected with respect to the CFL limit. This method has been used in many
applications including RF/microwave circuits, optical ~structures, effects of
electromagnetic fields on the human body and dispersive material structures. The first
EM simulator based on this method is SEMCAD X [67]. One disadvantage of this
method is that it takes more simulation memory as compared to FDTD, but overall
advantages of this method overcome the disadvantage of memory. The reason is

explained in more detail in Chapter 2.

B4 MRTD (Multiresolution Time Domain)

MRTD was introduced by Krumpholz and Katehi [68-69]. This method has the potential
to solve the memory problems associated with FDTD by reducing the grid density close
to the Nyquist sampling rate. Due to the reduced grid density, MRTD is very efficient for
certain types of applications. For example, in the case of 3-D microstrip transmission line
analysis, an MRTD method runs seven times faster than FDTD and gets the same results.
The foundation of MRTD is dependent on the scaling and wavelet functions and the
application of the multiresolution analysis in coincidence with the MoM-based
discretization of Maxwell equations. In MRTD, rectangular pulse functions are used for
time variation while scaling and wavelet functions are used for spatial variation [70-71].
This method can save considerable computation cost in terms of CPU time and memory.

However, this method has the some constraints like the FDTD method:
1) time steps should follow the CFL limit for stability.

2) Source and measuring point positions must be selected carefully.

3) Long simulation time is required for electrically long or high Q-factor structures.
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4) Additional Discrete Fourier Transform or FFT is required to get results in
frequency domain to convert time domain results.
5) Boundary conditions are difficult to implement because high- order nature of the

scheme.

To circumvent the problem, Chen and Zhang, presented eigen-based spatial-MRTD and
ADI-MRTD [72-73]. To retain advantages of both MRTD and ADI-FDTD, Sarris and
Katehi presented hybrid technique for both methods [74].

MRTD method has been applied to printed transmission lines, patch antennas, planar
structures, multilayer package, waveguide discontinuities, RF MEMS structures,
nonlinear circuits, high-frequency active devices and other complex microwave

structures.

B5 PSTD (Pseudo Spectral Time Domain)

PSTD was proposed by Liu in 1997 [75]. PSTD like FDTD is also used to solve
Maxwell’s equation but the difference is that it uses FFT instead of finite difference to
represent spatial derivatives. In PSTD [77-79], only two cells per wavelength are needed
as compared to 10 cells per wavelength as a rule of thumb for the conventional FDTD.
This is due to the higher order nature of Fourier transform. The main drawback in the
PSTD is the wraparound effect (late time corruption effect on solution by waves
propagating from other periods as the result of FFT periodicity) and boundary condition
implementations. The wraparound effect however can be removed by using Perfectly

Matched Layer (PML) [76].

PSTD method can also be formulated with non-Fourier form. For instance, Chebyshev
PSTD method was proposed in [80]. It has advantages and disadvantages similar to the
Fourier PSTD but with 7 cells per wavelength for homogeneous and smooth varying
structures. In the case of inhomogeneous or multidomain structures, multidomain

Chebyshev PSTD was developed [81] and has been applied to complex scattering

17



structures. It requires a bit more computer resources as compared to Fourier based PSTD,

dueto 7 cells per wavelength.

PSTD also has the CFL constraint. To remove CFL, CFL-free ADI-PSTD was introduced
[82]. ADI-PSTD is more efficient than the PSTD methods, especially with Chebyshev
PSTD. Overall, as compared to FDTD, PSTD method is less dispersive and is efficient.
The disadvantage is the preprocessing that it requires as well as the boundary condition

implementations.

B6 MoMTD (Method of Moment in Time Domain)

MOoMTD is another time-domain method for solving electromagnetic problems. In i,
Time Domain Integral Equations (TDIEs) are first formulated and then MoM is applied to
those equations [83]. This method is an extended form of the MoM that is applied to
Frequency Domain Integral Equations (FDIEs). In MoMTD, marching-on-in-time
procedure is used to handle the time domain dependencies. This time domain method
contains the same kind of advantages and disadvantages over MoM as does time-domain
over the frequency domain methods [84]. MoMTD is very good for simulation of thin
wire structures because MoMTD is applied to electric field integral equations that are
very suitable for thin wire structures like thin wire antenna. MoMTD can also be easily
hybridized with other time domain methods; for example it was hybridized with FDTD to
improve simulation efficiency [85]. Another hybrid ADI-FDTD/MoMTD technique was

also developed and applied for ground penetration radar [86].

B7 FETD (Finite Element Time Domain)

FETD method is also known as Time Domain Finite Element Method (TDFEM). This
method introduces the advantages of time domain method into finite element method,
which is traditionally a frequency domain method. Initially a time domain algorithm was
developed by combining the Finite Element analysis with SPICE capabilities [87].

However, after the development of a new stand alone FETD method, it has become more
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popular. FETD method is reported to be better than the FDTD based methods as long as
the time step convergence to final solution is faster than the conditionally stable FDTD
method [88]. In1995, unconditional stable FETD method was presented by Gedney and

Navsariwala [89].

For complex structures with curved boundaries, the FETD method is more advantageous
than the FDTD method. To get the advantages of both methods in complex structures,
hybrid FETD and FDTD method was introduced [90]. This hybrid method was applied to
via-hole grounded microstrip; FETD was applied to via-hole for curved boundaries and

FDTD to the rest of the plane area.

The FETD method was extended to solve nonlinear microwave circuits {91] in addition to
other applications, including PML terminations [92]. A hybrid method that combines
FDTD, FETD and MoMTD methods was proposed and applied in [93]. It has the
advantages of all three methods; FDTD deals with arbitrary material properties, MoMTD

deals with thin wire structure, while FETD accurately models the curved geometries.

B8 EVTD (Finite Volume Time Domain)

The FVTD method deals with the Integral Maxwell’s equations instead of the differential

ones [94-95]. FVTD equations in integral form are given as:

J%—ljdv = —CSJ‘anda—;[jmdv
J%—?dv = —(sj.nxflda—;“jedv

where v is an arbitrary volume, s is surface enclosing volume v and » is a unit surface
normal.

FVTD is effective for non-rectangular structures as compared to stair case solutions with
the FDTD method. FVTD, cell size can be selected with respect to the shape of the
structure [96].
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A major disadvantage with the FVTD method is that it needs larger amounts of
information and computational time as compared to the FDTD method. To overcome this
problem, a hybrid approach known as FVHG (Finite Volume Hybrid Grid) method was
introduced [97-98]. In FVGH, a structure is divided into two types of grids i.e.
unstructured grids and rectangular grids. FVTD is used for unstructured grids and FDTD
is used for rectangular grids. In this way, the advantages of both methods FDTD and
FVTD can be obtained with better results and efficiency than their parent methods.

B9 CE-FDTD (Complex Envelop FDTD)

CE-FDTD is a new technique [99-100]. In the conventional FDTD method, time step is
selected with respect to the maximum frequency of the source after the CFL condition is
satisfied. In bandpass-limited applications, time step is selected with respect to the
bandwidth of the source rather than its maximum frequency as in the conventional FDTD.
This allows time step selection considerably larger than the conventional FDTD. The CE-

FDTD was developed on such a basis.

The stability and dispersion of the CE-FDTD is presented in [101-102]. It is found that to

make the CE-FDTD stable, carrier frequency must be between @, <@ < @,, where @y,

and @, are the lower and upper limits of threshold frequencies. More specifically,
2 2 2 2
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It was also stable even above s > ,,, . It was concluded that when = was in between the

set range or above the set range, the algorithm is stable. It was observed that when the
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carrier frequency is higher than @,, and even higher thanwz,,, the system was more

efficient and Ar can go up to 104 times of the CFL [102].

In short, CE-FDTD is less accurate than the conventional FDTD but works with larger
time steps [102]. Therefore, to obtain some benefits, an implicit technique known as CE-
ADI-FDTD was introduced [103]. It was found that this technique was better than the
conventional ADI-FDTD method for narrow bandwidth or bandpass electromagnetic
applications. With the same time step, CE-ADI-FDTD was less dispersive than ADI-
FDTD and more dispersive than the conventional FDTD.

1.3 Motivation of Thesis

The motivation of this thesis is to develop new efficient numerical methods and
improvements in the existing ADI-FDTD method. In this efforts hybrid ADI-
FDTD/FDTD, Error Reduced ADI-FDTD and dispersion optimized ADI-FDTD methods
are presented. A brief explanation is given below on the rationale that these methods are

presented.

Since the introduction of FDTD by K.S. Yee in 1966, it has been applied to many
applications successfully. However, CFL is the one of the major constraints for its
efficiency in computing high Q-factor and electrically large size structures. This
constraint increases computation resources for certain applications. To remove this
constraint, Zheng, Chen and Zhang proposed a 3D unconditionally stable ADI-FDTD
method. They proved the unconditional stability and showed dispersion analysis for this
method. This method requires two-step simulation as compared to FDTD, and therefore it
takes more memory. On the other hand, it can use a time step larger than the conventional
FDTD and saves CPU time. To take advantages of both FDTD and ADI-FDTD methods,
a hybrid ADI-FDTD/FDTD method is proposed in this thesis. This proposed method is
efficient and effective.

The Crank Nicolson FDTD (CN-FDTD) method is more accurate than the ADI-FDTD

method but it takes more computer resources comparatively. The higher accuracy of CN-
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FDTD method is due to a splitting term that is not present in ADI-FDTD. Consequently,
to reduce the splitting error of the conventional ADI-FDTD method and obtain results
close to CN-FDTD, new methods known as Error Reduced ADI-FDTD(ER-ADI-FDTD)
methods are proposed in this thesis. These methods incorporate the modified splitting
error term in order to reduce the splitting errors. They have a formulation pattern like the
CN-FDTD method but a simulation pattern like ADI-FDTD method. They improve the
accuracy of the ADI-FDTD method to a level comparable to the CN-FDTD method.

The conventional ADI-FDTD method has higher dispersion at larger time steps that
reduces its effectiveness of unconditional stability. To reduce this dispersion, DO-ADI-
FDTD (Dispersion Optimized ADI-FDTD) methods are presented in this thesis. These
DO-ADI-FDTD methods are applied to 1-D, 2-D and 3-D cases and the results show the

reductions in errors.

In short, the aim of this thesis is to develop new efficient numerical schemes that can
improve the accuracy of the ADI-FDTD method. The details of these techniques are

explained in the remaining chapters.

1.4 Scope and Organization of Thesis

This thesis concerns the development of advanced ADI-FDTD based techniques for

electromagnetic and microwave modeling. It consists of the following chapters.

Chapter 2 briefly reviews the FDTD method, its stability and dispersion. In addition to
this, constraints of the method are explained. This method forms the base for the ADI-
FDTD. A brief review of the ADI-FDTD method is then presented. These methods lay
the foundation for Hybrid ADI-FDTD/FDTD, error reduced ADI-FDTD and dispersion
optimized ADI-FDTD methods proposed in this thesis.

Chapter 3 describes the 2-D hybrid ADI-FDTD/FDTD method. It is applied to different

structures for validation and is compared with the conventional FDTD method.
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Chapter 4 illustrates the 3-D hybrid ADI-FDTD/FDTD method. It is then compared with
the conventional 3-D FDTD method by considering different applications.

Chapter 5 describes error-reduced ADI-FDTD methods as the new extensions of the
conventional ADI-FDTD method. These new methods are based on CN- FDTD (Crank
Nicolson-FDTD), but their simulation procedure is similar to the conventional ADI-
FDTD. After obtaining the formulations for these methods numerical experiments are
conducted. Results are obtained and compared with the results obtained from other

methods for validations.

In Chapter 6 new techniques to control the dispersion error of the conventional ADI-
FDTD method are proposed. A 1-D DO-ADI-FDTD (Dispersion Optimized ADI-FDTD)
case is considered and explained first, and then is extended to 2-D and 3-D cases. In all
these cases, results are compared with the conventional ADI-FDTD method and

explained.

Chapter 7 presents summary of the thesis and directions for future work.
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Chapter 2 FDTD and ADI-FDTD Methods

2.1 Introduction

In this chapter a brief review of the Finite Difference Time Domain (FDTD) method and
the associated problems are presented. This method forms the basis for the ADI-FDTD
and its extended methods. Kane S. Yee presented the FDTD method in 1966 [2]. Since
then, many new algorithms have been presented based on it [4]. The FDTD method has
been applied to different areas like military defense, medical, high speed communications

and computing, agricultural and the food industry [4][104-110].

The FDTD method is derived directly from the Maxwell’s differential equations:

,
- -
vxH=22, @.1)
ot
.
-—)
vxE=—28 2.2)
o

- - - -
where E and H are electric and magnetic field intensity, and D and B are electric

>
and magnetic flux densities respectively. In homogeneous and source free regions, J =0.

In addition,

D=¢E 2.3)
- -
B=uH 2.4)

with ¢ and u being the constant permittivity and permeability of the medium

respectively. Equations (2.3) and (2.4) hold for isotropic, dispersion-free, linear media
only. The equations (2.1) and (2.2) are also known as Ampere’s circuit law and Faraday’s

law respectively.
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The vector curl equations (2.1) and (2.2), coupled with equations (2.3) and (2.4), can be

expanded into a scalar form:

0E, 1(oH, OH, @5)
o el oy oz '
OE, 1(oH, ©oH, 2.6)
o g\ oz ox

0E, 1(0H, oH, @7
a e\ &x oy '
oH, 1(0E, OE, 2.8)
ot u\ 0z Oy .
OH, 1(@E, _0E, 2.9)
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(2.10)

Now for any function F of space and time, denote
F|:1jk =F(x=iAx,y = jAy,z =kAz,t = nAr)

where Ax, Ay , Az are space increments, A¢ is the time increment, i, j, k and n are real

number or integers.
After applying the second-order accurate central finite difference approximation to the

equations (2.5) to (2.10), the resulting equations can be used for programming. For

instance equations (2.5) and (2.8) are discretized and have the form:
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From equations (2.11) and (2.12) it is apparent that the electric field is obtained with the
magnetic field of previous time at four different neighboring locations. The magnetic
field can be obtained with the electric field of previous time at four neighboring locations.

The grid arrangement for the field components are shown in Fig. 2.1.

2.2 Numerical Stability

FDTD is an explicit method with six electric and magnetic field components at each cell.
As an explicit method, it is conditionally stable. The condition for the stability is known

as CFL (Courant-Friedrichs-Levy) limit [104]:

1

N
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where c is the velocity of light. As can be seen, Ar should always be less than or equal to

the above said limit to maintain the stability; otherwise the FDTD algorithm will become
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unstable. To keep the above condition fulfilled, space increments should be selected

properly, The CFL condition is derived under the assumption that # and & are constant.

Therefore if 2 and ¢ are variables, a precise stability criterion is difficult to obtain [2].
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Fig. 2.1 Graphical representation of the FDTD or Yee cell

23 Numerical Dispersion

In communication technology, "dispersion" is used to describe any process by which an
electromagnetic signal propagating in a physical medium is degraded and dispersed. It is
because the various wave components (i.e., frequencies) of the signal have different

propagation velocities within the physical medium.

The FDTD algorithm deals with electromagnetic waves propagating in a discretized or
discrete space, which exhibit different propagation velocities with different frequencies

and with different directions. They cause phase errors and delays. As a result they lead to
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non-physical property such as broadening and ringing of a pulsed waveform, imprecise
cancellation of multiple scattered waves, anisotropy, and pseudorefraction. The numerical
dispersion is a significant feature in the FDTD modeling that must be understood for its

accuracy limits, particularly for electrically large geometries [4] [111-113].

For explanatory purposes, in the three-dimensional FDTD case, consider a normalized,
lossless region with z=1, £=1 andc=1. Let j=+/-1, and the Maxwell’s equations in

spectral domain [4][104] are:

_) —)
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VXV =— 2.13
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where
- - -
V =H+ jE and

n j[a)nAt—kx iAx~ky jAy—k; kdz
= VOe

% (2.14)

i,j.k

kx , ky, k. are wavenumber in the x, y and z directions and @ is the angular frequency

of the sinusoidal traveling wave. By putting the wave expression (2.14) into equation

(2.13) and simplifying the resulting equations, the FDTD dispersion equation is found as:

2
1 . 2.1 1 ., 17 1 ., 1" 1 ... 17
—— | sin“(=wAt) = ——sin“(=k, Ax) + ——=sin“(—k, Ay)+ ——=sin“(=k, Az)(2.15

- ~ - ~ - ~
where kx =kcosgsingd , ky=ksingsin@ , k;=kcosf , & and ¢ define the

propagation directions.
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The phase velocity can then be determined by using the formula: V, =

2
k

The determined phase velocity ¥, can be different from the velocity of light ¢ for

varying wavelength, grid discretization and the direction of propagation (i.e. & and¢ ). In

contrast to the numerical dispersion, dispersion relation of a plane wave in a continuous

medium is given as:

o pe = k2 + k2 + k2 or (9)2 (. P+, F + (k] (2.16)

c

Equation (2.15) is different from equation (2.16) but it approaches equation (2.16)

when Ar, Ax ,Ay and Az tend to zero. To ensure accurate solutions, small cell sizes and

time steps need to be taken. The result is large memory and long simulation time.

2.4 Absorbing Boundary Conditions

Like with all other numerical methods, open structures to be simulated need to have open
boundaries or absorbing boundary conditions (ABC). Modeling and simulating these
open regions properly is very important. This is because improperly selected boundary
conditions lead to not only false results but also unstable solutions during simulation. The
absorbing boundaries absorb the wave impinging on them and therefore simulate the
infinite space. A large number of absorbing boundary conditions have been developed so
for, e.g. Mur's ABC [119], Liao's ABC [120], PML (Perfectly matched layer) [121],
UPML (Uniaxial PML) [122], CPML (Convolutional PML) [123] and GPML
(Generalized PML) [124]. Among them, PML initially proposed by Berenger in 1994 has
attracted more attention due to its absorbing efficiency. It features in the matching of the
plane waves of arbitrary incidence, polarization and frequency at the boundaries while
damping the energy inside the PML region. To obtain the perfectly matched planar
interface, loss parameters, that are consistent with a dispersionless medium, are selected.

Also a vector field component is divided into two orthogonal components, and therefore
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twelve components instead of six in Maxwell’s original equations are computed. Each of
these twelve components satisfies the coupled set of first order partial differential
equations. This concept was also introduced into the second order FDTD scheme [4] by

Berenger.

Based on Beregner’s PML compact PML were also developed e.g. Uniaxial PML
(UPML) and Convolutional PML (CPML). They are advanced versions of PML with a
higher computational efficiency than the original PML. In this thesis, CPML is used as an
absorbing boundary condition, due to its efficiency as compared to conventional PML.
The significance of CPML is that its formulation is independent of the material medium
or the host medium. It means that the formulations will remain unchanged for generalized
media such as inhomogeneous, dispersive, lossy, anisotropic, or non-linear media. It can
also absorb the evanescent waves and also provide memory-savings as compared to the

conventional PML.

25 ADI-FDTD

To tackle the CFL constraint in the FDTD method, an unconditionally stable FDTD
method known as ADI-FDTD was proposed in [6-7]. This method is based on Peaceman
~Rachford algorithm [125]. The absorbing boundary conditions used for the FDTD

method also can be used for this method.

In the ADI-FDTD method, computations of Maxwell’s equations are partitioned into two

steps. For example, for E, component,

2.17)

o ¢

OE, _1(0H, _6Hy
oy 0z

The ADI-FDTD computation procedure is as follows:
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This way of formulations gives unconditionally stable results. Its stability and dispersion
calculations are like that of the FDTD method, but are unconditionally stable [126].
Although this method is unconditionally stable, it takes more memory and has larger
dispersions at larger time steps. In the next chapters, to handle the disadvantage of both
FDTD and ADI-FDTD methods and to obtain their advantages, hybrid FDTD/ADI-
FDTD, error reduced ADI-FDTD and dispersion-optimized ADI-FDTD methods are

proposed and described in detail.

2.6 Conclusion

This chapter presents a brief review of FDTD and ADI-FDTD. It is necessary to
understand the methods proposed in the succeeding chapters. Methods presented in the

following chapters solve the constraints associated with these methods.
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Chapter 3 Two Dimensional Hybrid ADI-FDTD and FDTD Method

3.1 Introduction

Since the FDTD algorithm developed by Yee [2], it has been applied successfully to a
broad range of problems [3]. Nevertheless, its computational efficiency is limited by its
two inherent physical constraints: the numerical dispersion and the Courant-Friedrich-
Levy (CFL) stability condition. The first condition demands small spatial discretization
steps and the second condition small time steps. These conditions lead to large
computation memory and CPU time requirements for electrically large structures. The
first condition has been improved with the development of high-order schemes, such as
the Multi-Resolution Time-Domain (MRTD) method [70] and the Pseudo-Spectral Time-
Domain (PSTD) techniques [127]. The second condition has been removed with the
recent development of the unconditionally stable alternating direction implicit finite-

difference time-domain (ADI-FDTD) method [6][7].

The problem of large memory and long CPU time arises particularly in FDTD
applications when a structure that contains electrically small geometric features, including
sharp conducting edges, is modeled. To have the highest possible computational
efficiency, efficient techniques have been proposed that incorporate a priori knowledge
of the field behaviors near these fine structures into the FDTD algorithms with little
increase of computational expenditures [128-129]. However, they require the field
behaviors to be known and analytical processing to be done beforehand. Alternatively, the
so-called subgridding schemes [130] can be used (see Fig. 3.1). In these subgridding
schemes, fine numerical grids or meshes are applied to solution regions surrounding the
fine geometric features where strong field variations occur. In the rest of the solution
domain, coarse grids or meshes are still used in order to minimize the memory usage. A
scheme is required to interface the fine grid and the coarse grid, both in space and in time,

since the fine grids possess different spatial and temporal properties and conditions.
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Fine mesh " Coarse mesh

Fig. 3.1 An example of a subgridded scheme

In the subgridding scheme based purely on the conventional FDTD [130-13 1], one of the
critical issues is to interface the two grids in time. In a fine grid, the time step has to be
small, as stipulated by the CFL condition due to the fine grid cell sizes. However, in the
coarse grid, the time step can be much larger. The result is that the two grids are
simulated with two different time steps, or they simply are not synchronized.
Consequently, a very carefully designed scheme is needed to interface the two grids, not
only in space, but also in time where they are joined. Past experience has proven that
unless the small time step for the fine grid is also applied to the coarse grid, an interfacing
scheme often leads to instability or an overly complicated technique, which may still have

a late-time stability problem [132].

In this chapter, a hybrid technique that combines FDTD and ADI-FDTD methods for
subgridding is proposed to circumvent the problem. The solution domain is divided into
coarse grid regions and fine subgridded regions whenever necessary. The conventional
FDTD grid is then applied to the coarse grid regions, while the ADI-FDTD is used in the
finely subgridded regions. Because of the unconditional stability of the ADI-FDTD, a
large time step can then be taken for the fine grids. In other words, the same uniform time
step can now be used in both the coarse and the fine grid regions across the whole
solution domain. One of the immediate benefits is that an interfacing scheme needs only

to be developed in space, but not in time. The other advantage is that such a scheme
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minimizes the memory requirements since the relatively memory-expensive ADI-FDTD
is applied only in the fine-grid regions that need it. In comparison with subgridding
schemes using solely the conventional FDTD, the hybrid method allows for the use ofa
much larger time step and therefore reduces the CPU time. In comparison between the
subgridding scheme using purely ADI-FDTD schemes, the hybrid method minimizes the
use of the memory because the conventional FDTD algorithm is applied to the coarse

mesh region.

In the following sections, the hybrid subgridding scheme is introduced for 2D case.
Numerical validations of the proposed hybrid method and conclusions are also presented

at the end of this chapter.

3.2 The 2-D Hybrid Method

To illustrate the proposed scheme clearly, consider the two-dimensional case. Without
loss of generality, Fig 3.2 shows a typical interface at x=0 between a coarse grid region

(x<0) and a dense grid region (x>0).

T Hz HZIA
-{- $
Y hi}.
Ex¢ h2
h3y—
€y
—f - -
Hz Ey Hle €
e —
0 X

Fig. 3.2 Interface between coarse and fine mesh

For simplicity, a TE-to-z mode is considered. The related Maxwell’s equations are:
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The conventional FDTD method is now applied to the coarse grid for x<0 while the ADI-

FDTD method is used in the dense grid region for x>0.

The corresponding FDTD equations applied to the x<0 region are:

i
I1+2

1
H "+2 _H
!n+l -E |n +At_ z|i+%,j+'7 2‘i+%,j—% (3.4)
*li+d,j xlisd, j £ Ay
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lid oy = el 5 & |
H Y H

where n indicates the nth time step, and i and j correspond to the position

(x=iAx,y = jAy ). Ax and Ay are the space increments in the x and y directions in the

coarse grid region (x<0).

The corresponding ADI-FDTD equations applied to the x>0 region are:

n+l |n+1
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for the second sub-step.

(3.8)

3.9

(3.10)

(3.11)

(3.12)

Note that in the ADI-FDTD equations (3.7)-(3.12), Ax'and Ay'are the space increments

in the x and y directions in the dense grid region (x>0). They are different from the space

increments, Ax and Ay of equations (3.4)-(3.6), in the coarse grid region (x<0).

In order to synchronize the simulations between the FDTD and the ADI-FDTD, the time
step At taken for the ADI-FDTD is the same as for the conventional FDTD. Thus, one

single full ADI-FDTD iteration amounts to two FDTD iterations. However the time step

is same for both methods, which isAf. In doing so, the interpolation of the fields at the
interface (x=0) between the FDTD and ADI-FDTD grids needs to be carried out only in

space. An example is shown in Fig 3.2, where the field quantity to be interpolated
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between the dense and coarse grids is H,. A simple linear interpolation scheme is
employed. More specifically, the in-between values of H,, denoted ash,, h, and /s, can

be obtained as follows:

3 1

h1=ZHz L4 +ZHZ |5 (3.13)
1 1

h2=5Hz |A +—2_Hz |B (314)
1 3

hy =ZHZ |4 +2Hz |5 (3.15)

Note that in Fig 3.2, it is assumed that the dense grid is four times denser than the coarse
grid, or mesh ratio is four. For a general ratio of m, the above equation can be easily

written as:

m=""lw |, +Lm,, (3.16)
m m

where k,,1=1,2,...,m—1, are the field values to be interpolated in between points 4 and B.

It should be pointed out here that the relatively large time-step applied in the dense grid
will not cause unacceptable numerical dispersion errors as long as the time step does not
cause unacceptable errors in the coarse grid. This occurs because the ADI-FDTD and
FDTD present similar dispersion errors if their time and spatial step sizes are comparable
[126]. In our case, the ADI-FDTD actually has a smaller grid size than the FDTD.
Therefore, the numerical dispersion error in the dense grid should not be larger than the

coarse grid.

3.3 Numerical Validations

The hybrid scheme described above is first applied to a two-dimensional finned

waveguide and to an insulated fin line. Since these structures were also solved in [133-
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134] with the other techniques, comparisons and validations of the proposed scheme can
be made. The finned waveguide computed in our study has dimensions a = 2b = 64mm.
The cross section is shown in Fig. 3.3. Because of the symmetry of the structure, only
one-quarter of the waveguide needs to be modeled (as shown in Fig 3.4), where M and E
represent magnetic and electric walls respectively. The fin length considered is equal to
b/4. Because of the expected rapid changes of the fields around the fin, a dense mesh is
applied in the vicinity of the fin. The ratio of the coarse grid cell size to the fine grid cell

size was set to four.

*‘ n
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| ]
| |
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Fig. 3.3 Cross section of the finned waveguide
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Fig. 3.4 One quarter of Fig 3.3
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As described earlier the ADI-FDTD is applied in the fine grid region and the conventional
FDTD is applied in the coarse grid region. The following relationships between the dense

and coarse grid sizes were chosen:

A =2
4
and
Ay
Ay =—
T

Three different cell sizes Ax' = Ay’ = Al = 0.5mm, 0.25mm,and 0.125mm were computed

with At = 24 , where ¢ =3x 108 m/ s is the speed of light in the vacuum. For reference
c

purposes, a separate pure FDTD simulation was also run with a uniform grid whose cell

size was equal to the dense grid cell size of the hybrid method. The reason for taking a

uniformly fine FDTD grid is that the FDTD can achieve a level of accuracy similar to that

of the proposed method as shown below. The comparison made under such a condition

can then be deemed fair.

Table 3.1 shows the computer resources used by the proposed hybrid method. For
comparison, Table 3.2 shows the computer resources used by the pure FDTD method. In
both cases, the computer used is a Dell XPS T600 with 600 MHz CPU and 256MB of
RAM.

Table 3.1 Computer resources used by the hybrid method

for the finned waveguide

Size of fine mesh | Normalized cut-off | Time for simulation | Memory used
cell (mm) frequency obtained | (Seconds) by program
5 2 632K
0.2241
25 13 708K
0.2263
125 0.2271 99 992K
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Table 3.2 Computer resources used by the conventional FDTD

for the finned waveguide

Size of fine mesh | Normalized cut-off | Time for simulation | Memory used
cell (mm) frequency obtained (Seconds) by program
5 0.2249 3 688K
25 0.2267 20 936K
125 0.2273 313 1912K

Figures 3.5, 3.6 and 3.7 are the graphical representations of Tables 3.1 and 3.2. Fig. 3.5
shows that the proposed hybrid method is slightly less accurate than the conventional
FDTD due to the dispersion problem. For both methods, however, the smaller the cell
size, the more accurate the results. Both methods converge to the same solution, as the
cell size tends to zero. When the cell size will be very small, i.e. approaches zero, both
methods will converge to the same point and give the analytical solution value; this value
then can be used as a reference to measure the error for both methods. Figs. 3.6 and 3.7
indicate that the proposed hybrid method takes less CPU time and memory than the
FDTD.

0.2275
0.227 -
0.2265 -
0.226 -
0.2255 -
0.225 -
0.2245 -
0.224 -

0.2235 . k 1 . . .
0 0.1 0.2 0.3 0.4 0.5 0.6

Cell Size (mm)

—o—FDTD
—o— Hybrid

Normalized cutoff frequency

Fig. 3.5 Normalized cut-off frequencies obtained vs. cell size
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Fig. 3.6 Computation time vs. cell size
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Fig. 3.7 Computer memory used vs. cell size

More specifically, when a fine cell size of 0.125mm is used, the proposed method uses
about half the memory required by the FDTD, whereas the CPU time is about one third of
that used by the FDTD. As a result, we conclude that the proposed hybrid method is

superior to the pure FDTD method when a fine grid is required.
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Another two-dimensional structure that was simulated with the hybrid method was an
insulated fin line structure. Its geometry was the same as that of the finned waveguide
except for the addition of insulation having permittivity of 2.2 around the fin (Fig. 3.8).
Again, for reference, a separate FDTD was computed with a uniform grid whose cell size
is equal to the dense grid cell size of the hybrid method. In the simulations with the

hybrid method, the coarse grid cell size, Ax = Ay , was fixed at 1mm, while the fine grid

cell size, Ax’ = Ay', was varied from 1 mm to 0.25mm. The simulation results are shown

in Fig. 3.9. These results indicate the differences in cutoff frequencies computed with
both the hybrid method and the FDTD method for increasing insulation width. As can be
seen, differences between the two methods are small and decrease as the width increases.
In the above simulation, the ADI-FDTD fine grid regions occupy only a small portion of
the whole solution domain. Consequently, the saving in memory is obvious. In the
subsequent experiments, we intentionally increased the areas of the dense grid regions

and examined the associated computer resources used.

Coarse Mesh Insulated Material
I g, =22
r

') l

Fine Mesh

Fig. 3.8 One quarter of Fig 3.3 with insulation in fine mesh area
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Fig. 3.9 Normalized cut-off frequencies obtained vs. width of insulator material

Figure 3.10 shows a cavity that is 50% filled with a FDTD grid and the rest 50% filled
with an ADI-FDTD grid. The cavity size was16 mm x 8mm. The coarse grid cell size was
fixed at 1mm while the dense grid cell size was varied with different ratios of coarse to

dense grid cell sizes.

Fig. 3.11 shows the relative errors when different cell size ratios are used. To measure the
relative error analytical frequency was used as a reference. Fig. 3.12 presents memory
used by the hybrid method and the FDTD method versus grid size ratios. Fig. 3.13
presents the CPU time used by the two methods with different grid size ratios.

As seen, it is observed that as the cell size ratio increases the errors decrease, memory
used by the hybrid method is slightly higher than that required by the FDTD also. When
the dense ADI-FDTD grid occupies 50% of the solution domain, the memory used by the
hybrid method starts to be larger than that used by the FDTD alone. This is due to the fact
that the ADI-FDTD method computes more components than the FDTD method.
Although the hybrid method starts to use more memory, the CPU time required by the
proposed hybrid method is still less than that of the FDTD, especially in the case of large

grid size ratios.

43



Coarse mesh Fine mesh
(FDTD) (ADI-FDTD)

4

b

[ a —

Grid size ratio 1:2

Coarse mesh Fine mesh
(FDTD) (ADI-FDTD)

|

o =
R B

fe it e o i
B o e . i 1 S A

Grid size ratio 1:3

44



Coarse mesh Fine mesh
(FDTD) (ADI-FDTD)

Grid size ratio 1:4

Fig. 3.10 Layout of the grids for cavity with different cell ratio
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Fig. 3.11 Error vs. grid size ratio for cavity with different cell ratio
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Fig. 3.13 Computation time vs. grid size ratio for cavity with different cell ratio
In all, it is concluded that the proposed hybrid method is effective and efficient for

numerical subgridding, provided subgridding regions do not occupy a large portion of the

solution domain. In the 2D case, they should not exceed 50% of the domain.
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34 Conclusions

In this chapter, a hybrid scheme is presented that allows the interfacing of conventional
FDTD grids and ADI-FDTD grids. Consequently, a solution domain that is divided into
locally coarse and locally dense mesh regions can now be computed more efficiently;
FDTD is applied in the coarse grid regions and ADI-FDTD is employed in the dense grid
regions. In this way, the time step can be made uniform across the whole solution domain
while the CPU and memory requirements are kept to a minimum. It is observed from the
numerical experiments that the hybrid method is particularly effective when a fine mesh
is required for regions surrounding fine geometrical features such as sharp conducting
edges. Approximately the same solution accuracy can be obtained with less time and
memory resources than with the conventional FDTD using a uniformly fine mesh. It is
also observed that the hybrid method is valid for 2D applications. Finally, it is noted that
special care needs to be taken in order to achieve better efficiency with the proposed
hybrid method: the dense ADI-FDTD region should not occupy a large portion of the

whole solution domain.
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Chapter 4 Three Dimensional Hybrid FDTD and ADI-FDTD Method

4.1 Introduction

The finite-difference time-domain (FDTD) method has been used in many fields since it
was firstly reported [1-4]. To make it more efficient, hybrid schemes have been proposed
in the past. Those were aimed at taking advantage of the methods that are efficient with
different conditions. For instance, the FDTD method has been interfaced with many other
methods such as TLM that has less numerical dispersion and MoM that is effective for
modeling open regions [135-136]. In this chapter, to save memory and computation_ time,
a three dimensional hybrid FDTD and ADI-FDTD technique is proposed. In it, the ADI-
FDTD is applied to fine mesh and the FDTD to coarse mesh. A subgridding interface is
then developed and the associated interpolation is applied in space domain only. This
technique is efficient for the applications in which there is need of fine subgrids. It leads

to savings in memory and computation time.

Usually for applications where fine meshes are applied, the FDTD method requires long
simulation time due to the small time step stipulated by the FDTD inherent CFL stability
condition. To tackle this problem, the unconditionally stable ADI-FDTD method can be
applied since it does not have the CFL stability condition. However, the ADI-FDTD
normally requires more memory than the FDTD method. Therefore, it will be efficient
not to apply the ADI-FDTD but the FDTD to wherever fine meshes are not needed. This
leads to a subgridding scheme where an interfacing algorithm is needed to connect the
FDTD-applied coarse mesh and the ADI-FDTD-applied fine mesh. In such a way,
advantages of both FDTD and ADI-FDTD methods are utilized and the uses of the

computation resources are optimized.

In this chapter, the FDTD method is hybridized with the recently developed ADI-FDTD
method [6-7]. The ADI-FDTD is an implicit technique while the FDTD is an explicit one.
Therefore, the proposed method hybridizes an explicit method with an implicit method.

The 2-D hybrid method was described in the previous chapter. In this chapter, it is
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extended to the 3-D. This chapter is divided into the following sections: development of
3-D hybrid technique, numerical experiments with RF/microwave, optical, and planar

structures, and conclusions are presented at the end.

4.2 The 3-D Hybrid Technique

A typical interface between the ADI-FDTD fine mesh and the FDTD coarse mesh is
illustrated in Fig 4.1. The mesh ratio of 1:2 is taken simply for clear illustration purpose.
Equations for the 3-D FDTD and ADI-FDTD used for interfacing are given as:

FDTD equations
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Here are the equations for 3D ADI-FDTD method [7]:
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It is difficult to handle equations (4.2) and (4.3) directly because both sides of the
equations contain the unknown E and H components. To handle this problem, these
equations are re-arranged and decoupled. After decoupling and simplifications, one of the
equations (here equation 4.2a) is given below:

n+t At 2

At? nel At?

—f ————e—— 2 2 _ n+%
(4#€Ay2 Walupime (4 2uehy? VErlss (4/18Ay2 VE it s
n At2 n n n
- E"|"+%J”‘ - 4 usAyAx (EY i+, 5+ 4k Tl etk il ISV + Ey ; j_%,k)
At ( n n ) At n "
" 2eAy H. Rk HZI’*%J‘%J‘ T Az 2 i e -H, sk j k-t

This equation contains the tridiagonal matrix on the left hand side, and can be solved

easily.

A similar procedure can be applied to all other electric field components. There is no need
to decouple magnetic field components because after calculating values of electric fields
these can be put into a magnetic field component equation to find the magnetic field. In

other words a tridiagonal matrix is applied to electric fields only.
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To interface these methods for three dimensional cases, interpolation is used at the
interface of FDTD and ADI-FDTD methods or at the interface of the coarse and fine
meshes (as illustrated in Fig 4.1). Because the time step taken with the ADI-FDTD can be
made the same as that with the FDTD meshes, simple linear interpolation can be applied.
This interpolation procedure is an extension of the interface of the 2-D hybrid method. In
other words, if the mesh ratio is an integer, the interpolation equation shown below can be
used:

m—1 /
h=—-=~H,|,+—H,|;
m m

where h,l=12,..,m—1, are the field values to be interpolated at the mid points in
between two points 4 and B. For example in the case of Fig. 4.1, only 4, is the value to

be found at the middle point of 4 and B for H filed, as the mesh ratio is 1:2, or m = 2.
Similarly the boundary values for E fields at interface used by the ADI-FDTD can be
obtained from FDTD by interpolation.

Hzl A N h1 Hzl A
Hzl & Ey Hzl A Sy ey
exi ex ex
Ex E h1
) — hit—s; s—th1
ex ex ex
Halp Hzlg Y ey ey
EY I x HZIB h1 HZ‘B
FDTD side of the intefface ADI-FDTD side of the interface

Fig. 4.1(a) Interface between the FDTD and ADI-FDTD mesh for one surface
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Fig. 4.1(b) Interface between the FDTD and ADI-FDTD mesh for three sides

Fig. 4.1 Interface between the FDTD and ADI-FDTD mesh

4.3 Numerical Experiments

In this sections 3-D hybrid approach is applied to RF/microwave, optical and planar

structures.

4.3.1 RF/microwave Structures

For validation purpose, the 3-D hybrid technique was applied to four applications in
RF/microwave range: a homogenous cavity, an inhomogeneous cavity, a waveguide with
capacitive iris of zero thickness [138-139], and a waveguide with inductive iris of zero
thickness [139-140]. In the first application, a homogeneous cavity with dimensions of
8mm x 8mm x $mm was computed since an analytical solution was readily available.
One-half of the cavity was filled with the coarse FDTD grid, while the other half was
filled with the dense ADI-FDTD grid. The results are shown in Table 4.1 (for a grid size
ratio of 1:2 and a coarse grid cell size (FDTD) of 0.333mm). It can be observed that the
error of the hybrid method is below 0.88%. This indicates that the proposed hybrid

method is also effective in the three dimensional case.
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Table 4.1 Computed and analytical results for the homogeneous cavity

Modes Analytical Computed frequency % Relative Error
frequency (GHz) | Hybrid method (GHz)

T™M110 26.51 26.58 0.26

T™210 41.93 42.30 0.88

TM220 53.30 53.10 -0.37

TM320 67.60 67.50 -0.15

TM330 79.55 79.20 -0.44

In the second application an inhomogeneous cavity consisted of two halves, the first half

filled with air and the second filled with dielectric material of permittivity 64. The

dimensions used were 1m x 2m x 1.5m. The FDTD was applied in the air filled region and
ADI-FDTD in the dielectric region; the cell size used for the FDTD was 0.1m and for the
ADI-FDTD 0.05m. Results obtained for cavity are shown in Table 4.2. From this, it can

be observed that the hybrid technique presents solutions very close to those of the

analytical and the FDTD results. The differences are less than 1% (FDTD results were

obtained with a uniform mesh whose cell size was equal to the fine mesh cell size of the

hybrid method).

Table 4.2 Results and relative error for inhomogeneous cavity

Analytical Computed Computed %Relative | %Relative error
frequency(MHz) | frequency with | frequency with error with Hybrid
FDTD Hybrid method | with FDTD method
18.63 18.61 18.60 0.11 0.16
27.17 27.12 27.30 0.19 -0.48
32.88 32.67 32.70 0.64 0.54

In the third application, a waveguide with capacitive iris was considered as shown in Fig
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4.2. The waveguide has a cross section of 7mm x 3.5mm and the gap d between the two
irises is 2.75mm. CPML absorbing boundary conditions were applied to both ends of the
waveguide with 10 CPML layers. As shown in Fig. 4.3, the denser ADI-FDTD mesh is
applied to the area around the iris, while the coarser FDTD mesh is appliéd to the rest of

the region. The cell size used for FDTD was 0.5mm and the cell size for ADI-FDTD was

ADI-FDTD

RO
FDTD oy,

Fig. 4.2 Waveguide with the capacitive iris

e 24.5mm _— i

—p

3.5mm

- .

| 4| -+ - | * > | - - ||

CPMI, FDTD  ADI-FDTD FDTD CPML

Fig. 4.3 Side view of capacitive iris waveguide with subgridding ratio 1:4
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varied and taken as 0.25mm, 0.166mm and 0.125mm, respectively. They amount to the

mesh ratios of 1:2, 1:3 and 1:4, respectively.

The CPML formulations used are given as follows:

oE, __I_(BHZ _6Hyj

ot g4\ Oy 0z
n+d n+l
H ln+% |n+-12— H 2 i — 2 1
ntl " At Felialpeda Tl L Vidikes T e dkeg
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In above equationsi = x or y or z , a; =0.08, k; =15,
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Al(= Ax = Ay = Az) is the cell size of the FDTD mesh. Note that only one equation is given

above for FDTD CPML; other equations have the similar forms and can be found in [142-
143). The beauty of the CPML is that it is independent of the host medium, i.e. the same
formulations can be used for all media either lossy or lossless. It is also more efficient
than the conventional PML. This is the reason that it has been adopted for our proposed

method.

In the fourth application, the waveguide with an inductive iris (shown in Fig.4.4) was
considered. The dimensions were also the same as those used in the second application
except the gap was now 4.95mm. The subgridding parameters used were also the same as
those used in the second application. Table 4.3 shows the memory and computation time
used for the waveguide with capacitive iris. The computation time and the memory used
by the inductive iris case (the fourth application) are the same as for the capacitive iris
case (the third application) because the dimensions are the same as in the capacitive iris
case. For comparison purpose, the FDTD of a uniform mesh was also used to compute the
structures. The cell size of the FDTD mesh was equal to the fine ADI-FDTD cell size of
the hybrid method. For notation purposes, we denote the FDTD results with the mesh
ratio number of the corresponding hybrid method. For instance, FDTD 1:4 means that the
FDTD cell size is taken the same as that of the dense cell size used in the hybrid method
with mesh ratio of 1:4. As seen from Table 4.3, the CPU time used by the hybrid method
is less than half of that used by the FDTD, while the memory used is also less than that
used by the FDTD method. Figs. 4.5 and 4.6 show the computed reflection coefficients
S11 obtained for the capacitive and inductive iris cases. As can be seen, the hybrid
method presents results that are of similar accuracy to that of the FDTD but with less

memory and CPU time.
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Fig. 4.4 Waveguide with the inductive iris

Table 4.3 Computer resources used for FDTD and Hybrid method for different

mesh ratio
Ratio FDTD FDTD Hybrid Memory | Hybrid Time
Memory (Kbytes) | Time (Sec) | (Kbytes) (Sec)
1:2 8640 55 6136 19
1:3 25428 369 10868 151
1:4 57524 1639 20176 732
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Fig. 4.5 Reflection coefficient S11 vs. frequency for waveguide

with the capacitive iris
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Fig. 4.6 Reflection coefficient S11 vs. frequency for waveguide

with the inductive iris
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4.3.2 Optical Structure

FDTD method already has been applied to optical structures successfully [144-145]. In

the previous section, the hybrid method was applied to RF/microwave structures; here it

is applied to the optical structure. Equations in the previous section are modified for the

optical structures. For simplicity electric and magnetic field equations are shown for

FDTD and ADI-FDTD respectively.

FDTD equations
1 1
n+2 _ n+2
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2 2/ n"g Ay
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(4.72)

(4.7b)

In above equations, n is the refractive index and n = [— =&, =41+ with g
€0

being electric susceptibility and £, being the dielectric constant. The above equations now

can be solved by using the tridiagonal matrix, similar to that discussed in the previous

section.

An optical dielectric slab waveguide as shown in Fig 4.7 was considered and computed.

To select the desired mode of propagation, wavelength A and width d need to be selected

carefully. The following are the steps for the determination of the wavelength 4 and

width d of a thin film layer:
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c 1
Step 1: compute 4, with c,=/4, , A,=—= andc,=
’ v v Ho€o

Step 2: compute A within the film
_h

n

A

Step 3: compute “d” of the thin film or core for optical slab waveguide with the following

formula d = __m_/l___
24/ nt — n3 ,

dielectric, n, is the refractive index of core, and n, is the refractive index of

where m is the mode number, A is wavelength in

. . d
cladding. To minimize the number of modes one can choose 1 small or n, close

ton, . In our case, we selected parameters in such a way that only one mode was

allowed to propagate.

The dielectric slab waveguide (see Fig 4.7) has dimensions of 4.29x 2.96 x 6.56 um - The
cross sectional view of this application is shown in Fig 4.8 with CPML as an absorbing
boundary condition. The width of the thin film layer was taken 0.686um while 4 used
was (.82 um - Refractive indexes for thin film layer and cladding were 3.6 an_d 3.55
respectively. These dimensions of the thin film for this structure allow only one mode for
propagation.

Cell sizes taken for FDTD were Ax=0.082um, Ay=0.0683um and Az=0.0729um
while cell sizes taken for ADI-FDTD were,

_ Ax(FDTD) py' =Y (FDTD) \,/ _ Az(FDTD)

Ax/
2 2 2

The propagation constant  was computed numerically with the following equation:

1
= —1 1
A= 58 5(zG, j, P)

where 33 represents Fourier transform, 4 is the distance between the source point “P1”
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and the destination point “P2”.

The phase velocity v, is computed withv , =

SRS

Fig. 4.9 shows the computed normalized propagation constant verses frequency. Fig 4.10
is shows normalized phase velocity versus frequency. It is obvious from these results that

there is very good agreement between the FDTD and the proposed hybrid method for

optical applications.

Ilclading = 3.55

d Ncore = 3.0

Yl f Nelading = 3.55
X
zZ

Fig. 4.7 3-D view of the optical dielectric slab waveguide

ADI-FDTD FDTD CPML

36 Ay

b 60 Ax —]

Fig. 4.8 The cross section of the rectangular optical slab waveguide
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Fig 4.9 Normalized propagation constant vs. frequency
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Fig. 4.10 Normalized phase velocity vs. frequency.
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4.3.3  Applications of the Hybrid Method to Planar Circuit Structures

The planar structures are the most frequently used structures in RF and microwave
electronics, in particularly, the coplanar structures. The coplanar structures feature in that
their metal plates or films are deposited on the upper side of the substrate. Consequently,
RF energy is concentrated on the plane surfaces and the active components can be
mounted very easily. The easy mounting makes it very effective for microwave integrated
circuit (MICs) and monolithic microwave integrated circuit fabrications. To further
improve the RF efficiency, some coplanar structures have ground planes also at the
bottom side of the substrate [146-149]. In this section, coplanar waveguide, coplanar strip
line without ground planes at the bottom side and microstrip line are used as simulation

examples.

In [150-151][153] the hybrid method was applied in such a way that a uniform fine mesh
is applied around sharp varying field regions and coarse mesh in the rest of region. In this
section the hybrid method was applied to the coplanar structure with a non-uniform mesh
in the metallic region and a uniform mesh for the rest of the solution domain. Nonuniform
mesh is very suitable for planar circuits and is applied in the regions of edges and corners
of the strips. This is because fields concentrate around the metal surfaces and require finer
numerical grids than the rest of the regions to resolve the fields. The ADI-FDTD method
was employed in the nonuniform mesh region, and the conventional FDTD method was

used for the rest of the region where there are no sharp changes of the fields.

The reason for the above arrangement is justified as follows: if the conventional FDTD is
used in the nonuniform region, the time step is determined by the smallest spatial step in
the nonuniform mesh region, as dictated by the CFL constraint; consequently, the time
step may become very small and the CPU time becomes large. If a uniform mesh is used,
the computational efficiency is reduced as a large number of cells are needed to resolve
the sharp changes of the fields. The memory and CPU time will be significantly
increased. With the above arrangement, the ADI-FDTD employed in the nonuniform

mesh regions can have a larger time step as the ADI-FDTD does not have the CFL
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constraint. At the same time, in the remaining coarse mesh region, the use of FDTD can
ensure the minimum memory requirement and thus the uses of least CPU time. To
terminate open solution domains, the convolutional perfectly matched layer (CPML)

[142-143] was implemented.

The hybrid method was explained in detail earlier for 2-D and 3-D cases. The difference
here is that a nonuniform mesh was used with the ADI-FDTD to resolve the fields around
the edges of the metal strips. Due to the use of the nonuniform mesh, the circuit boundary
can be modeled in a more conformal way than modeled with a uniform mesh. If a
numerical grid is uniform but does not cover a boundary wall, we then have to reduce the
cell size of the whole grid to better fit the boundary. This will increase computation
expenditures. On the other hand, with a nonuniform mesh or grid, the boundary can be
covered by changing the cell size only in the region near the boundary. This is the
advantage of the hybrid method with a nonuniform grid. It should be pointed out that a
nonuniform mesh is overall second-order accurate because it converges with higher order

accuracy [3].

4.3.3.1 Simulation Results for Planar Structures

In [146], coplanar waveguides have been studied for various heights of the substrate. It
was observed that the attenuation loss will be less with a reasonable height of substrate. In
[147], results were observed for coplanar waveguide with different widths of ground

metals while keeping the gap and centre strip widths constant.

In our case, the coplanar waveguide was studied with the hybrid method and FDTD
method. The structure considered is shown in Fig 4.11 where w is the width of ground
metal strips and both strips have the same size. s is the width of the signal line, and m is
the width of the gap between the signal line and the ground strip, which is the same for
both gaps. In our computations, the thickness of the strips was assumed to be

zero,w=60um,s=30um and m=20gum. The width, height and length of the structure

are 250, 500 and 700 um respectively.
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Fig 4.11 Coplanar waveguide structure with dimensions

Fig. 4.12 shows the cross sectional view of the structure used including CPML. Ten

CPML layers were used on the top, sides and ends. In them,

m+1

P 1507 s, Al e

a=0.05, k=16, o

The following cell sizes were used for simulations:
Ay =5um, Axpa =10pm, Ayyin =2.5um , Aypax =20 um and Az=10um

The numbers of cells used were 66, 61 and 90 in x, y and z directions respectively. The

height of the dielectric substrate was 500 g m with dielectric constant being 9.4. Both the

hybrid and the conventional FDTD were used to compute the structure. They were
computed in three numerical grid arrangements: 1) a uniform coarse grid, 2) a uniform

fine grid, and 3) a nonuniform grid.
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Air CPML X ADI-FDTD

Fig 4.12 The cross sectional view of coplanar waveguide with CPML

However, in all cases, the time step A¢ used with the hybrid method was chosen to be

three times larger than that in the FDTD case. Thus the total number of iterations required
with the hybrid method was one-third of that with the FDTD method. The advantage of the
nonuniform mesh is that we can take cells of different sizes in each direction. With a
variable mesh, cell size can be adjusted close to the desired area easily. It should be
pointed out, that in a nonuniform mesh, the FDTD scheme appears to be first-order
accurate. However, Monk proved that a nonuniform mesh is overall of second-order

accuracy because it converges with higher-order accuracy [4].

Fig 4.13 shows the computed effective dielectric constant of the coplanar waveguide and
its variations with frequency. Fig 4.14 shows the phase velocity. In these figures fine
mesh means plot for the smallest cell size of nonuniform mesh for whole structure with
the FDTD method. FDTD and ADI-FDTD coarse mesh means that the cell size selected
for whole structure is equal to the largest cell in the nonuniform hybrid mesh, while the
FDTD or Hybrid nonuniform mesh means variable mesh as shown in Fig. 4.12. The
effective dielectric constant and the phase velocity were computed with the following

formulas:

2
ﬁ(f)c), yoo2 Ly C

S )z( 21f PEN P gD
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where the phase shift constant B(f) was computed numerically [152].
As can be seen, the effective dielectric constant is increased with the increase of
frequency, while the phase velocity decreases. It is observed that the hybrid method with

the nonuniform mesh agrees well with the FDTD method with a uniform fine mesh.
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Fine Mesh
56 ——— FDTD nonuniform mesh
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- ADIFDTD coarse mesh
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Fig. 4.13 Effective dielectric constant vs. frequency for coplanar waveguide
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Fig. 4.14 Phase velocity vs. frequency for coplanar waveguide
However, the time and memory used by the hybrid method was 1510 seconds and 80.18
MB, respectively, while those used by the FDTD were 3157 seconds and 88.06 MB.
Therefore, we can conclude that the hybrid method is more efficient than the FDTD, in
particular in terms of CPU time. All the computations were performed on a PC Pentium
IV with 512 RAM and a CPU of 2.4GHz.

In addition to the coplanar waveguide, coplanar strip line and microstrip line were also
computed. Dimensions and cell sizes used for the coplanar strip line were exactly the
same as those used for the coplanar waveguide, so the memory and the time used were
also same. Its cross- sectional view is shown in Fig. 4.15. The computation results are
shown in Fig. 4.16 and 4.17. As can be seen, the hybrid method is in very good agreement
with other methods but with better efficiency in terms of the computer resources used

which are the same as those for the coplanar waveguide.

Next application considered is the microstrip line [154]. Its crossectional view is shown in
Fig. 4.18. In this case the cell ratio used for the coarse and fine mesh is 1:2; for the pure
FDTD case, the whole domain was modeled with fine mesh. The effective dielectric
constant used for this structure is shown in Fig. 4.19. It can be observed that there is a
very good agreement between the proposed hybrid method and the FDTD method.
However for the hybrid FDTD/ADI-FDTD, if permittivity of the substrate will change
then to keep the same accuracy there is need to change the cell size in the substrate area,
same is for the conventional FDTD method also. The cell size will decrease with the

increase of substrate permittivity and vice versa.
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Fig. 4.15 Cross sectional view of the coplanar strip line
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Fig. 4.16 Effective dielectric constant vs. frequency for coplanar strip line
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Fig. 4.19 Effective dielectric constant vs. frequency for the microstrip line

4.4 Conclusions

In this chapter, 3-D hybrid ADI-FDTD/FDTD technique has been described. It is found
that the hybrid technique improves the computation efficiency in terms of both CPU time
and memory for modeling RF/microwave and optical structures. In addition to the above
applications, it has been applied to the planar structures. It shows that the hybrid method
is faster in simulation time, with less memory requirement and the same accuracy level

as that of the FDTD method.
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Chapter 5 Error Reduced ADI-FDTD Methods

5.1 Introduction

Efficient numerical algorithms are required to solve complex and electrically large
structures. The existing FDTD method plays an important role in the simulation of
different structures [1-4], especially RF and microwave, photonics, and VLSI. Many
commercial software packages currently available are based on the FDTD method, and
many more are in development. In addition FDTD-based hardware accelerators [155]
were also developed to increase the computation speed. However, the Courant-Friedrich-
Levy (CFL) stability condition makes the explicit FDTD methods computationally
expensive in applications where small cell sizes are needed to resolve high variations of
fields. To solve this problem, a subgridding technique was introduced in the previous

chapter. Many other techniques were also proposed [3 -4] but CFL condition persists.

To remove this restriction, unconditionally stable ADI-FDTD method and Crank-
Nicolson (CN) FDTD methods have been proposed recently [6-7][156-157]. Due to their
unconditional stability, both methods have attracted much attention in recent years. It has
been found that although the ADI-FDTD is computationally efficient, but it has large
errors with large time steps [156]. Such a property compromises the uses of the ADI-
FDTD with its unconditional stability. On the other hand, the CN-FDTD method is of
much high accuracy, even with large time steps, but at the cost of much larger
computational time [157-159]. Therefore, it will be desirable to develop a method that has
the advantages of both methods.

In fact, further studies on the ADI-FDTD and the CN-FDTD methods have shown the
ADIL-FDTD method can be considered as the perturbed form of the CN method with the
so-called splitting error term [156]. Based on it, an iterative method that solves the CN-
FDTD method in an ADI-FDTD fashion was reported [158]. It embodies a loop of
iterations at each FDTD marching time step. Consequently, it achieved much higher

accuracy than that of the ADI-FDTD at the cost of more computation time. In this
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chapter, the novel ADI-FDTD methods are proposed that are based on the CN-FDTD
formulation but with the same computational efficiency as that of the conventional ADI-
FDTD. Although the achieved accuracy may not be as high as that with the CN-FDTD
method, it is sufficient for most of the large time step simulations without increasing
computation expenditures. We name the methods as the error-reduced (ER) ADI-FDTD
methods due to their less error at higher time steps as compared to the conventional ADI-
FDTD method.

This chapter is divided into the following sections: in section 5.2, formulations and
numerical results of the proposed methods for 2-D case are presented; in section 5.3
formulations and numerical results are extended to the 3-D case; and in section 5.4

conclusions are presented.

5.2 Formulations of the 2-D ER-ADI-FDTD

For simplicity, the TE-to-z wave is considered. The related Maxwell’s equations in the

matrix form are:

o o 2
G Ex gaay Ex
5 Ey = O 0 —'E Ey (5.1)
H, ) P H,
=0
| pOy o |
or
oU
e
ot €]
&y E,
where [C]=|0 O —;gx— and U=|E,
2 0 A,
| HOy  pOx
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[C] can be broken up into [4] and [B] such that:

ou

=, =AU + [BIU (5.2)
with

- [ |

0 O 0] 0 0 0

g0y :
M]=|0 o o |and[B]=|0 0 -——
5 £0x
——0 0 0o -2 o
L,uay i I 10x

Replacement of the time derivative with central finite difference leads to

([1]——A2£[A])([I]—ézi[l‘?])U'”l ([1]+——[A])([I]+ [1’3])U"+—A—t—[z‘1][13](U"+1 v (3)

To compute (5.3), two ADI-FDTD-like steps can be taken:
Step 1
ek 2
<[11—325[A])U 2 =([1]+%[B]>U" +—“§—[A][B](U"*‘ ~umy (5.4)
and

Step 2

1

([I]——[B])U"*‘ (I11+~ [A])U"*2 +AL[A1[B](U"+‘ U™y (5-5)
However, the above two equations are both implicit: the right-hand sides contain the
quantities to be found or updated. Although the iterative method [158] may be applied for
solutions, it may increase the CPU time as iterative computations are involved at each
time step. Therefore, efficient approaches need to be developed. In this paper, we

propose the following two methods.
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Method #1
To make the computation explicit on the right-hand sides of the above equations, the term
At ? n+l n

T[A][B](U -U") (5.6)

is modified with the following approximating equations:

1

s " L ntl | n
2 2

U

Then, the two ADI-FDTD steps are computed as:

Step 1

1

n—-—

nes 2
(-2 ey =+ SN U + S AaNBIO” -UT D) (57)
and
Step 2

me A

1
(n-SLBDU™ =+ F DU + S ABUT 2 -U") (5:8)

More specifically, in the context of TE mode, the above equations become:

Stepl

By =En + 2L L oA o (E"—En_%) (5.9)
* oy C 8ue axdy 0 7 )
" At 8

E =E"- ——H! 5.10
y y 2¢ o z ( )
"3 At 8 "*% At 8
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and

Step 2
oA LS AR 6,
Exn+1=Ex 2 e - 2___ Ey Z—E;)
2¢ Oy 8 e OxOy

1
n—

+_ 2 At O H +1
By =E, - 26 &x :

1 1
H n+l =Hn+5 n+5 _At_i En+1

+_A_t_a_ )
z z 2/1 ay x 2/1 o y

The above equations are then discretized as follows:

Step 1
n+— n+—
n At n+—
E, =E | , - H|
it—, i+E-,j 28Ay l+7 j+; i+— j—?
n n E n + E
Ylivl, j+— Ylivt, j-= Y i,j+l- y|i,j—%—
1 1 1
At2 n—— n—— n—— n-—
- —Ey 2 +Ey 2 _E,VI 21+Ey 21
SusAxAy i+l j+— i+l j=— Lt hi-—
n+— At
n n n
Ey o yl,, .1~ Hz| 11 Hzl 1.1
L+ i+j+s 2eAx I A
n+=— n+l n+
n At 2 At n
H, , =H; 1"’2 ‘_1. “Exl 1 |73 Pisn sl
i+ j+§ it—, j+— /jAy z+5,1+1 i+ :qu >
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(5.13)

(5.14)

(5.15)

(5.16)

(5.17)



Step 2
1 1 n+—
n+l +— +—
BTy <EE s gme | HALE - A
il TR 2¢eA PR el oL
/ 2’ Y 2772 2772
E n+— £ n+? E ‘ +? E n+—;—
- - +
Tlis g Thiat j-5 Yl Yh-3
Atz n n n
- - Yii+1, j+ y|< 1 -—_Ey| -(»1 +Ey|‘ L (518)
8usAxAy i+l i+l =
ntl s At n+l n+l
Eyl.. ¥ - H,| -H |
hity ivjr-  28Ax Ay =ity (5.19)
}'H-l n+1
n+l n+= At 2 2 At n+l n+l
H, 1 1=Hz 121+ Ex|1 -E, R Ey. 1 yl. .1
i ity 2y i+5,/41 i | 24Ax iHlj4 ity (5.20)

Like the conventional ADI-FDTD method, these equations can be used for programming.

Method #2
n+l n-1
v+ is used in equation (5.6). The

In this method, the approximation U” =
following two-steps are computed as follows:
(5.21)

Step 1
Atz n n-1
[ABIU" -U™)

K

([1]—%[3])U"+1 =([1]+%[A])U" +

and
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Step 2

2
(n-Ssnu? ~(+ 2y U+ S LB U (5.22)

The equations above are different from the conventional ADI-FDTD formulations [6-7]
in the addition of the terms on the right-hand sides that are proportional to the square of
the time step [156]. The terms are related to the truncation errors and the additions of
these in the computations are therefore expected to reduce the errors [158]. A numerical

example is shown in the section below.

Similar procedure can be developed for a 2-D TM mode also.

5.2.1 Numerical Results

In this section, proposed Method # 1 and Method # 2 are applied, and their results are
compared with the conventional ADI-FDTD and FDTD methods. It can be observed from
equations (5.9) and (5.12) that in these two equations each contain one extra term as
compared to the conventional ADI-FDTD method. These extra terms are proportional to
the square of the time step and are responsible for the accuracy improvement of the

methods.

A structure of two parallel plates of zero thickness in free space was considered and
studied. The plates were 2m long and have a distance of 0.2m in between them. The
geometry is shown in Fig. 5.1. To truncate the surrounding environment for simulation
purpose, Perfect Magnetic Wall (PMW) was used on all four sides. The thickness of
parallel plates considered was zero and Perfect Electric walls (PEC) were placed at these
two lines. Cell size considered for both methods in each direction was 0.2m. Basically
this is the same structure used in [156] and was a very good example to examine the
errors. The raised cosine waveform with frequency 750 kHz was used as a source. Fig 5.2

shows the computed electric field E, along the x axis with different CFL factor “s”

which is the ratio of time step to the CFL limit. It can be observed from this figure that
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for s<15 results with the Method # 1 are the same as those with the conventional ADI-
FDTD method ats=0.5, while the results with Method # 2 are similar but have much
larger errors. In Fig. 5.3 relative errors of the three methods, the conventional ADI-
FDTD, Method # 1 and Method # 2 are plotted. The relative error is defined as:

ea of
ET* _ E}f

Relative error =
Eref
y

where E;** is a measured electric field, while E ;ef is the reference field computed with

the conventional FDTD method by using a CFL factors=0.5.

As can be seen, all the methods have similar errors at smalls <0.5. With the increment of
CFL factor, the error of the Method # 2 is increasing like the conventional ADI-FDTD
method, but for s <15 Method # 1 has almost zero error. The Method # 1 also has error
for s <15 but the error is so small that it is not visible for the scale of Fig. 5.3; this is the
reason why it seems to be zero. Table 5.1 shows the computer resources used by the
conventional ADI-FDTD and proposed error reduced methods. It is clear from there that
simulation time used by Method # 1 and Method # 2 is approximately same as for the
conventional ADI-FDTD with minor increment in memory for proposed methods. At
s<15 Method # 1 is taking less than one second and has the same results as Method # 2,
the conventional FDTD, and the conventional ADI-FDTD ats=0.5.

Fig 5.4 shows computation time used by the proposed methods and the conventional
ADI-FDTD method with different values of s. As can be seen, the computation time is
almost the same for all the three methods. The memories used with three methods are
1.336MB (with the conventional ADI-FDTD), 1.344 MB (with Method #1) and 1.344
MB (with Method #2). The proposed two methods used slightly more memory but

insignificantly.
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Fig. 5.1 Parallel conducting plates

Table 5.1 Computer resources used by the conventional ADI-FDTD and

the proposed ADI-FDTD methods

Conventional New ADI-FDTD | New ADI-FDTD CFL No. of
ADI FDTD Method #1 Method # 2 factor | iterations
Time Memory | Time | Memory | Time | Memory “F”
(sec) (MB) (sec) (MB) (sec) | (MB)
43 1.336 43 1.344 43 1.344 0.5 2000
4 1.336 4 1.344 4 1.344 5 200
1 1.336 1 1.344 1 1.344 10 100
<1 1.336 <1 1.344 <1 1.344 15 67
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Fig. 5.4 Simulation time vs. CFL factor

53 Formulations of the 3-D ER-ADI-FDTD

Now the 2-D equations are extended to 3-D equations, and are written on the same pattern

and are shown below:

o 0 0 _o 9
g0z £0y
0 0
ol 0 0 0 — 0 -——1r
E, &0z £0x Ex—\
E E
Y 0 0o o -2 2 0 ¢
OE: | _ coy  ax E; (5.23)
at Hx 0 __a_ ___(?_ 0 0 0 Hx
H, Hoz Oy H,
H] -2 0 -2 0 o 0 |LH:
Hoz HOx
o _9 0 0 0
L/Uay HOx |
This can be generalized as:
oU
— =[C1 ] Ul (5-24)
ot
where

U1=[E1,Ey,Ez,Hx,Hy,HZ]T and
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o 0o o o -2
g0z
0 0 0 _6_ 0
&0z
& £0x
[C1]= a a
0 — —— 0 0
uoz oy
0, -2 0
Oz HOx
6 _ 0 o 0
oy o

Matrix [C,] is further divided into two matrices [4,] and [B,].

oU
_a—ti =[A1]U1 + [BI]UI

with

0 0 0 0 0 —?—W
g0y
0 0 0 __6_ 0 0
g0z
0 0 0 0 0 0
e and
[Al ] = 2
0 — 0 0 0 0
Loz
0 0 —i— 0 0 0
HOx
_8_ 0 0 0 0 0
| HOy J

By using the following approximation

ou, U™ +U/
ot 2
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_9
§0z
0
&y
0 0
0 0
0 0

(5.25)




U1n+1 + U n

U™ = —_E_l— equation (5.25) becomes,
n+ n At n+ n At n+ n
Ut -u, =410, '+U, )+ 1B, "+U") (5.26)

It can be rewritten as:

2
(11-514] AN-S1BD U™ =([1]+§[AJ)([1]+%[BJ>UJ+%[A1][BJ(U1"*‘ _y©-27)

where []] is the identity matrix. To compute (5.27) in the ADI-FDTD fashion, two-step

computation is applied with the introduction of an intermediate variable U P

Step 1

([1]—%[4])%’""’ =<[1]+§[31]>U{' +2A4NB10" U (5.28)

and
Step 2
At n At — el pom
(- (B DU =+ ADU™ + = [ANBI, =) (5.29)
The above equations are still implicit: the right hand sides contain the field quantities to

be computed. Therefore, the approximations similar to the 2D case are applied. The final

equation procedure for Method #1 and Method # 2 is given in Appendix A.

5.3.1 Numerical Results for 3-D ER-ADI-FDTD

A cavity of dimensions 9mm x 6mm x 15mm was computed. Its geometry is shown in Fig
5.5. The cell size used was equal to 0.6mm in all the three directions. Gaussian pulse was
used as a source. The result obtained is shown in Fig. 5.6. It is clear from this result that

the proposed methods for 3-D case unfortunately become unstable after few hundred
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iterations.

In [160], a comparison has been made between the ADI and CN methods. It is shown that
the ADI method is much computationally efficient than the CN method; however CNis
more accurate than the ADI method. Efforts are continued to find some ways to make 3-D
ER-ADI-FDTD methods stable so that the efficiency of the method is better than the
conventional ADI-FDTD method and faster than the CN method.

54 Conclusions

In this chapter, error-reduced ADI-FDTD methods have been proposed. They not only
retain the same numerical computational efficiency as the conventional ADI-FDTD
method, but also achieve similar accuracy to that with the CN-FDTD. In particular, the
first method presents superior performance with the large time steps. Therefore, the work
presented in this chapter has laid the foundations for further studies and extensive
applications of the ADI-FDTD method.

Unfortunately error reduced ADI-FDTD is unstable in the 3-D case, still reason of
instability is not clear, we are trying to find some way for it , while it is stable for the 2-D
case. The simulation time and the memory taken by both methods are approximately the
same as those for the conventional ADI-FDTD method with only minor increase in

memory.
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Fig. 5.6 3-D splitting error reduced ADI-FDTD
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Chapter 6 Dispersion Optimized ADI-FDTD Methods

6.1 Introduction

Since Yee presented the FDTD method in 1966 [2], it has become such a mature
technique [3-4] that many commercial software packages based on this algorithm have
been developed and more are under way. However its CFL limit is still a limiting factor
for electrically large and high Q structures. To compensate for this limit, unconditionally
stable ADI-FDTD [6-7] method was presented and now is becoming an alternate to the
FDTD method. Although ADI-FDTD is CFL free, it faces the problem of larger
dispersion errors with bigger time steps. To get the real advantage of this unconditional
stability, efforts have been put into controlling this dispersion problem [126][161-163]. In
[161], dispersion reduction is presented for the two-dimensional case. In [162], higher
order ADI-FDTD is introduced to reduce the dispersion but at the cost of simulation time
and memory. In the previous chapter, error-reduced terms are added into the existing
ADI-FDTD method to get the better results but instability problems still exist for the
three-dimensional cases. In [164], improvement in dispersion is presented for the 2D

ADI-FDTD method by introducing artificial anisotropy.

Similar to the FDTD method, the dispersion of the ADI-FDTD method is an inherent
feature of the algorithm, which affects the overall accuracy. To circumvent this problem,
reductions in cell size are needed and, as a result, increase the computation load. In this
chapter, novel ways to minimize the numerical dispersion of the ADI-FDTD method are
presented. In them, additional controlling parameters are introduced to reduce the
dispersion error. These dispersion-optimized ADI-FDTD (DO-ADI-FDTD) methods
improve accuracy in comparison with the original ADI-FDTD method but without
additional computational complexity and loads. They are initially applied to one-
dimensional ADI-FDTD and then extended to two and three-dimensional ADI-FDTD

methods.

This chapter is divided into the following sections: in section 6.2, formulations of the 1-D
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DO-ADI-FDTD method, its unconditional stability and dispersion are presented; in
sections 6.3 and 6.4 this technique is extended to 2-D and 3-D cases respectively.

Conclusions are presented in section 6.5. Note that the contents of this chapter have been
published in [165].

6.2 Numerical Calculations for 1-D DO-ADI-FDTD

In a linear, lossless and isotropic medium, the differential form of Maxwell's equations is

given as:

VxE=—pu (6.1)

VxH=¢ 6.2)

&"%s @‘Sﬁ;

To control the dispersion, a controlling parameter B is introduced in the 1-D ADI-FDTD
equations. Consider only E, and H, field components that travel in the x direction.

Equations (6.1) and (6.2) become:

Step 1
n+—1- n n+ ”*l 6.3a
E|7=E]| +B A’(%;-HyllzJ (6.3a)
2&Ax i+ '-—2‘
nes n nel nit 6.3b
H, 12=HY-1+B A (Eii:lz_Erli+2) ( )
i+ iy 2 uAx
and
Step 2
n+ n+l n+= n+l 6.4a
Ezi1=Ezi2+B o (HYIZ—HJ’IZ} ( )
2eAx '+§ i)



n+l n+l
2

zlivt zli

ned il 6.4b
P+ B At (E z) (6.45)
“2— 2,qu

where A? is the time increment and Ax space increment in x direction.

Equations (6.3) and (6.4) are basically same as the conventional 1-D ADI-FDTD
formulations except a controlling parameter is introduced. It will be shown latter that B
can lead to dispersion reduction. It is not easy to solve unknown field components in
(6.3). For efficient computation, these equations should be decoupled. This decoupling is
obtained by putting equation (6.3b) into (6.3a) and the resulting equation is (6.5a). There
is no need of re-arrangement in equation (6.4) due to its explicit nature. The two-step

computations then become:

Step 1
2 2 2 l
_(BAC_ —=_E,|, 12+(1+B At )E, 1”* - (B, ar |2
4ushx*” T 2 ushx 4 ushx
(6.52)
—E[ +B2 B -H|
YV R -2
2 1 2 pel
_(B4AAx A7 g | (1+32A;Ax2)Hy +12—(B4A8Ax2)Hyl_l2
S g > ’ (6.5b)
n n
:Hy '+1 +B (E '1+1 ll)
i+ 2uAx
and
Step 2
+1 At n+l
E|" =E,| *+B H| 2-H| 2 6.6a
z" z" 2eAx y\i+% Y -; (6.62)
n+l n+l At n+% n+—;—
Hy il = Hy .+12 +Bm EZ i+l _Ezli (6.6b)
2 i+



In the following paragraphs, the above scheme will be shown to be unconditionally stable

even with the parameter B. Assume that the spatial frequency is k, along the x direction.

The field components in the spatial spectral domain can be written as:
E,|'= Ele /%9 (6.72)

)
H |n e Jkx( +2)Ax) (67b)

y ;17
1+2

H

n
y

Substitution of equations (6.7) into equation (6.5) leads to equations in the spatial spectral

domain in terms ofk,,At and Ax .

Step 1
k Ax
2V 2
sin“ (——)A¢ L1 .
n+= w . Sin(k Ax/2)At
(1+B2 Iugzxz )Ez 2 =Ez —.]B ngx H; (683)
k
s 20Vx 2
sin “ (—=—)At 1 .
2 2 nts . sin(k Ax/2)At _,
(1+B e YH, 2 =Hy - jB r E; (6.8b)
or
[ 1 - jP, ]
E:+—2- R, &R, ‘:Ez" :|
aE P, L LES (6.9)
L MRy Ry |
2
where W, =£-sin(k"Ax),Px =BW,,R, =1+£"—
Ax 2 HE
In compact form
nt
F 2=AF" (6.10)
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n
H, Hn+E
y
and
1 P, |
R, ER,
A=
JP, 1
| KR, Ry |
Step 2
. 2 2 1 . 1
sin“ (k, Ax)At 1 nt sin(k Ax/2)At _n+o
14238 T yprl o 2 B —— X ———H 2
( o e TR Ax y (6.112)
) 2 1 . 1
sin” (k,Ax)At 1 nt sin(k Ax/2)At _n+3
a+p2 5 gl g2 - jp——* ———E, 2
uehx? M, y oY eAx z (6.11b)
, ~jP,. |
n+—
liEgH:\ g Ez 2
Hn+1 n+— |
y iP
L 1 | Hy
L H i}
In compact form,
n+l n+l
F"™" =AF *2 (6.11¢)
n+_1. En"‘% En+1
where F 2=| |, Fl = znﬂ
e H7,
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—1 ‘J'wa
£
A=
_I5 i
4 _

Now combination of (6.10) and (6.11c) reads

F*™ = A, A F" = AF"

where
—1_5_,3_ — 2P, |
& &
| 7
4 =%
x -
2P B
. pe

The eigenvalues of A can be found as:

HE — P2 + j2P, ue ,ua—sz — j2P, ue

M= and A, =
T ya+P2 & ,u£+Px2
or simply:
/11:\/#6‘+j:Px and 4, = - ,U8+jP
VuE = jP; —Vue - jP,

It is not difficult to see

JLZ)Z+(P) _ (Juef +(2,)
4| = ; and |2,|= -
Weef +CP) \/#5)2+(—P)

Therefore, the 1-D DO scheme is stable.
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6.2.1  Numerical Dispersion

Numerical dispersion of (6.3)-(6.4) can be derived in the same way as that described in

[126]. After some linear algebraic manipulations, the dispersion is found as:
(e/®1-A)F =0 (6.14)
Here I is a2 by 2 identity matrix. To have a non-trivial solution of (6.14),

det(e/*Y1-A)=0

or

pe — P}

cos(wAt) = 5
ue + Py

(6.15)

. _p2
since 1+ cos(wAr) =1+ Lui._lfz—
ue + Py

cosz(wAt) . > (6.16)
2 ue + P;

Equation (6.16) can be further simplified (see Appendix # B) as:

2

2 gint | | L (6.17)
Ax B>At? 2 AL

cos (T)

k =

Bytaking B = N (see Appendix # C)
w,Ax
cos ( )
C
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~ 2
k =z2x—sin'l pedx L (6.18)

2
At COSZ(____)

where o, is a chosen frequency at which the dispersion is sought to be minimized.

6.2.2 Numerical Results

In this section, optimization is discussed for the one-dimensional case. The optimization
analysis is done at the frequency of interest. Fig 6.1 shows the results between normalized
phase velocity and number of cells or points per wavelength. It is apparent from this
figure that the dispersion results for both the proposed and the conventional methods
become very close when the number of cells per wavelength increases. On the other hand,
at lower number of cells per wavelength the proposed method is better than the
conventional method. Fig. 6.2 shows values of the optimizing parameter B at different
number of cells per wavelength. It is clear from this figure that the value of B decreases
when the number of cells per wavelength increases and it is close to 1 above 90 cells per
wavelength. This is the reason why normalized phase velocity of both methods is close to
each other in Fig 6.1, when numbers of samples are above 90 per cell. It can be concluded
from these results that when B =1, then the proposed method reduces to the conventional
ADI-FDTD method. Additionally, it also supports the corollary that when the number of
cells per wavelength increases, it causes small cell size and, as a result both methods will
approach to analytical results. In the next sections, 2D and 3D methods are explained with

their numerical results.
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Fig. 6.2 The optimizing parameter B and the grid sampling density
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6.3 Two-dimensional Dispersion-Optimized ADI-FDTD

For the two-dimensional electromagnetic structures, the procedure similar to that for the
one-dimensional DO-ADI-FDTD method can be followed. In this section, 2-D equations

for linear and lossless medium are considered for TE and TM modes. Maxwell’s

equations for 2-D TE case are:

%y =-1—(0"H2] (6.19a)
o e\ o

_Z’E_yzl(_é’ffz] | (6.19b)
a € &

H, =l(5’Ex _dEYJ (6.19c)
a 23 &

These equations in discretized form are given below in two DO-ADI-FDTD steps:

Step 1
E n+2 E n H n+2 H n+5
* |i+% T li+%,j ‘i+l el S ‘i+%,j—%
=A4— (6.20a)
Atl2 g Ay
el
Ey Ijil —Ey l:’j+l 1 Hz |7+—- j+l —Hz ‘:’—-l,j+l
2 2=B—|- 2.2 22 (6.20b)
At/2 £ Ax
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1
+—
H |} | -H.[
z |, l . _1— z I, L . l
l+2,_]+2 l+2,j+2
At/2
1
E n+5 _E |n+5 E n E n
1 * l+-l-_]+1 * i+—1-,j Y i+1,j+—1— Y i,j+l
= 4 27 B 2 2
y7, Ay Ax
Step 2
il n+-;— +% n+%
Ex I 1, —Ex |f+lj Hz |,+l W1 '"Hz |i+l 1
: > _ 4L 2’ 2/
At/2 £ Ay
1
E 'n+l -E "y H n+l H n+l
AR vl 5 z|.1.1"z|.1.1
i, j+— i, j+= 1 i+, A= =
2 2 =B—| - 27 2 2" 2
At/2 £ Ax
1
n+l h*3
H, li+—1— i+l H, ‘:+l s+l
27 2 272
At/2
E |n+—;— __E n+% E n+l E |n+1
1 * x+1 Jj+l * i+—1-,j ¥ i+1,j+l y i,j+-1—
=—| 4 2° _ B 2 2
y7; Ay Ax

(6.20c)

(6.21a)

(6.21b)

(6.21c)

oH
0§, = l( y M, ) (6.22a)
g\ & &
dr—Ix = l _ %‘z
3 ﬂ( 3 J (6.22b)
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(6.22¢)

@_L(QE_L)
a p\ &

These equations in discretized form are given below in two steps of DO-ADI-FDTD:

Step 1
n+—2— n
Ez li,j —Ezli,j
At/2
o tn+% % |n+E o |n o I"
| _-:_1. B » il yli-Lj _4 *lij+d x -1
£ Ax Ay
(6.23a)
it
H.| 21 -H.|" 1
e e E \"..—-E_|I.
2 2 =_1_ —A z ‘l,j+1 z ‘l,j (6.23b)
At/2 M Ay
el
H |2 -H, | wel pel
Y i+l,j Y i+—1—,j E . 2. -—E ..2
2 2 _ gL Ee iy E: (6.23c)
At/2 Y7, Ax
Step 2
1 el
n+
Ez Ii,j —-Ez |i,j2
At/2 (6.24a)
wl el 1
H,| 2 -H,| 2  HJI", -HI"
=l B y Iz+%,] y |l—%,] _ 4 x |1,_]+-]2— x |l,j—-%
£ Ax Ay
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1 l x| l n+l n+l
i j+= Lj+= E i —E-. i f
! g 1 BN : i) (6.24b)
At]2 7 Ay
1
H |n+l _H |n+5 n+vl ﬂ+l
y 1. yl. 1.
I+, 4 E i 2 _E i 2
: 2 _ 1| p Bl Bl (6.24c)
At/2 H Ax

Now after decoupling the coupled equations in each step of both the TE and TM cases,

these equations can be solved efficiently.

6.3.1 Numerical Stability of the Two-dimensional DO-ADI-FDTD

The stability analysis pattern is the same as for the 1-D DO-ADI-FDTD case; here, only

results are presented for both TE and TM cases.

TE case
i 1 PP, -jP, ]
R,  ueR, R,
iP,
A =] 0 AL (6.25)
&
B -] Py .] P, x _!__
i MR,  HR, R, i
_ =
1 0 -j—=
P.P §
iP,
a,=| 2 LI (6.26)
peR, R, &R,
_ij .]Px _1_
/JRx IURX Rx .
In short, the 2-D TE case equations in matrix form are shown below:
ns
F"l =A, - F 2=A,AF" =AF" (6.27)
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Here F” contains 3 x 1 matrix.

Ey
n _ n
F'=| E,
H;
and
p2et + us(PE - P+ PIP]  2P.P, ~2jP,
pe’R.R, HeR.R, eR.R,
2 .
A= ZPXPJ’ /1€—Px 2]Px
HER, HER, &R,
-2jP, 2jp, W& —ps(P+P)-PP)
I HRR, HR.R, 1E’R.R,

At k, Aa
P, =Q, —:sinl 24— | a=x,
« =Ca ( > j y

p2
where 0, =B Q,=4 Ra=1+fg—, a=xy

The eigenvalues obtained after solving equation (6.29) are:

Ny + jN, P _Ni - Ny

A 2 N N,

where
Ny =(ye+Wnys+Wy2)

N, z\/@zgz(ﬂgpf + pP? + szPyz)

Ny = pte? — ueP? — peP} — P2 P}

The magnitudes of the eigenvalues are then
lﬂz‘=|/13|=|N1+jN2‘=iN1—jN2|___ ’le“*Nz2 -1
l Ny | | N | N5®
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(6.29)

(6.30)

(6.31)

(6.32)

(6.33)

(6.34)



Therefore, the 2-D dispersion-optimized ADI-FDTD method is also unconditionally
stable.

TM case:

The TM case is exactly like the 2-D TE case, except with different field components that

are givenasE,, H, andH ,instead of H,, E, and E,, .

In this case vector F”

E;
F"=|H"|. (6.35)
Hy

A;, A, and A like TE case are given as:

B
Rx ng aRx
= "
N Z R (6.36)
H 2
_JPx PxPy _L
L HR, HER, R, R

(1 BB
R, R, eR,
JjP 1 PP
4| 2 L 6.37)
MR, R, peR,
iP,
LT 1
L H J
2% — us(P? + P - PIP. 2jP, _2jP, |
[2ERR, eR.R, oR,R,
N 2jP, 126 + pus(B; ~B)+BIP)  2RP, (6.38)
LR.R, #e’R.R, HER,R,
_2ij 2PxPy .UE—PJ?
,qu 'ung ’ung
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Here definitions of P, and R, are the same as given by equations (6.30) and (6.31),

respectively.

The eigenvalues for the TM case are given below:

at, =ty Nim N (6.39)
N; N;

. . 2 2
| = =|N1+JN2|=‘N1“JN2|= N +Ny
R I B R I

Hence this case is also unconditionally stable.

6.3.2  Numerical Dispersion of 2-D TE and TM Case

After some linear algebraic manipulation, equation (6.27) is written in the form
(e/®MI-A)F =0 (6.40)

Here A and I are 3 x 3 matrices, and dispersion relation in the form of eigenvalues is

given as:
(eijt -4 )(ej“’At ~ A )(eijt -A3)=0 (6.41)

A, A, and A, are given in equations (6.32) and (6.34)

After solving of equation (6.41), two answers are obtained:
®=0 (6.42)

and
M? 4;1252(;15sz +,u.s‘Py2 +PxZPy2)

in? === 6.43
sin” (wAr) (Iug N sz )2 (’ug . PJ% )2 ( )

L2
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First solution in equation (6.42) indicates the non-propagating solution in the
unconditionally stable DO-ADI-FDTD method, and the second solution (6.43) indicates

the propagating solution.

The dispersion relation depends on the eigenvalues as is shown in equation (6.42). The
eigenvalues found for the TM case are exactly the same as for the TE case; therefore

dispersion relation for TE and TM mode is the same and is given as:

M2 4;1252(/4an2 + peP} +Px2Py2)

in? = = 6.44
sin“ (wAf) 7 (ﬂg N sz )2 (/15 N Py2 )2 ( )

This dispersion equation is further simplified by using a double angle formula:

eP? + peP? + P2 P?
sin?(28y - £2x TERy TTx oy (6.45)
2 Tﬂ“’Px X,ue+Py)

Equation (6.45) can also be written in the cosine form:

2.2
cos2(P2hy - K (6.46)

2" (ue+P2fus+P?)
By dividing equation (6.45) with equation (6.46), the resulting equation is:

ﬂA_f)= ,ustz +,u.c,'Py2 +P)52Py2

tan 2 ( (6.47)

2 /1282

6.3.3 Numerical Results for 2-D DO-ADI-FDTD

For the 2-D case, the dispersion analysis of DO-ADI-FDTD and the conventional ADI-
FDTD methods are explained for four different options. The dispersion error can be
minimized by varying the parameters 4 and B. In comparisons with the 1-D case, here are
two dispersion optimizing parameters, 4 and B. By using different combination of these
two parameters, dispersion error can be reduced. In the following, three combinations of

A and B are considered.
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-Combination #1

w/,uf; Ay tan lckAt/ pe Axtan lckAt/
2 2
A= N B..—_
. (1 / (1 /
sin EkAy At sin EkAx At

Here k is the numerical wavenumber, parameter 4 is obtained by setting ¢=90°, while B

is obtained by sétting ¢=0° in equation (6.47) and then optimizing (6.47). Ax and Ay

At

ferL

are cell sizes in x and y direction respectively. The CFL number (CFLN) is cFIN =

.
b

where Aty , the CFL limit is:

1
Atcpp = -

cl—s+—=
Ax? Ay2

Fig. 6.3 shows the dispersion with different time steps or CFL number. It is clear from
this figure that the DO-ADI-FDTD is better than the conventional ADI-FDTD method,

even with an increment in CFLN. The dispersion improvements are larger than 1%.

Combination #2

N HE Aytan(%ckAt/)

A= s B=1

sin(% k ij At

In this option, 4 is the same as that in combination #1, while parameter B is intentionally
taken as 1. This setting is chosen to examine the dispersion effect if the optimization is

taken along the y direction only. Fig 6.4 shows the results obtained for this option.
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It demonstrates that when the propagation angle is small, then both methods have

approximately the same dispersion errors. However, at an angle larger than50°, the DO-

ADI-FDTD has much less dispersion error.

Combination #3

N ue Axtan(%ckAt/)

B 1
sin(E k Ax] At!

In this combination, B is the same as that in Combination #1, while 4 is taken as 1. The
reason for this combination is to see the effect of dispersion when the optimization is
taken along the x direction only. Fig 6.5 shows the results obtained for this combination
are opposite to those obtained for Combination # 2. In this option, dispersion of the DO-

ADI-FDTD is better than that of the conventional method at lower propagation angles but

becomes almost the same beyond 50°.
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Fig. 6.5 Normalized phase velocity vs. propagation angle ¢ for different CFLN with
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Combination #4

In this combination, 4 and B are the same as that in the 1-D case.

1

o, At
cos( ——
( 5 )

A= B =
w, is the frequency at which the dispersion is sought to be minimized. The dispersion is
shown in Fig. 6.6. It is clear from this figure that the proposed combination has less
dispersion than the conventional method. However, the improvements are above 0.6%

and not as good as those with the other three combinations

¥ - * .:_.,..;:.'...-;-¢4‘4.4-0-0-0-.:-:-_‘:.._.,"_;‘_;_):"‘_‘ oy AT e
Q
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@
w
©
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N
= .
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—+— DO-ADI-FDTD CFLN =3
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Fig. 6.6 Normalized phase velocity vs. propagation angle ¢ for different CFLN with

combination 4

64 Three-dimensional DO-ADI-FDTD

In the three-dimensional case, the same procedure as before can be followed. The

Maxwell’s equations to be solved are:
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OE, 1(éH, OH,\ ©OE, 1(0H, ©oH,
a eloy &) o e\l ox
0E, 1(0H, @H, oH, 1(0E, OE.
o &g\ ox oy | o u\oz Oy
0H, 1(0E, OE,\ ©oH, _1(0E O,
o ulox oz) o v ox

The DO-ADI-FDTD formulations are then:

Step 1
R e s [ " (6.482)
il g~ il ik * 2eA Ziz+l ale z|i+—- Ll " oAz | L s T T L et
5/ 2 \y A R 25+ XA
,,% , M ek A (6.48b)
i +lk =Eyi '+_1- + HJ‘L Ly 1 - ‘ 1, 1 -B—H |,+__ +.. H ll-——, +_
Sy sfpk 2eAz JAy ket Lj+gk—5 2eAx o J
1 1
n+— n Ar n+— n+— At n (6480)
2l 'i+l =k, ij e+t +BZ£Ax H}"Hf i e+ L —Hy i——1-2 s _AZEA [Hxlij+lk+-l- -H ‘7/ lk+—}
oI HEy 2 2,1, 2 2,.1, 5 \y A
1 1
3 n Lo B, ney LA [ . (6.484d)
ijd el lJ+—Jf+- 2uhz J’lu+1 K+l ,j+lk - 2 A z'i,j+l,k+l - zli,j,k+l
AT y 2 2
1 1
Fi n At n+— n+— At n (6486)
2 — 2 2
H)’ ,'_,,ljk,,,l - Hy il j e+l +B 2‘qu[Ez|,'+ljk+L —Ezlijk+l:\—c2 [E |l+—-j k+1 -k li+—1—,j,k]
3 lk+s AL Ay Sk HAZ 0l
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1
net At ! el A [ ; (6.48f)
H el j+lk H ‘+lJ+lk +A2 Ex|'+l j+1,k _Ex|‘+l ik -8B i, +lk Yli '+-1—,k
LAGY 2/ HAY i+, o0 Z/Ax »J Wy
Step 2
1
el n At s n At n+l n+l (6493)
Eeidjp =Eel 1, +4 26A HZLA Wl |z+1 1k |7C 2eAz Byt jaed id k-1
2 2,1, ) 2,1 Tk 2! 2 R 5
1 1 1
n+l _ ary c At H |"+5 _y ln+5 _p Ay ‘n+l _H. |,,+1 (649b)
Mijekk = SVl T 2ehz | M pkey i, j+d =4 Zan gk =Gk
1 1
n+l ey At ht= At n+l n+l (6490)
Ezijk+—1-=Ez i ‘i+_1_+B Hyl-lz-]”_l _Hy '—f‘kl -4 [Hxlij+lk+l_ Ilj——k+l
oKty bty 2eA\x Brgalaty i~5.J, +3 2£Ay Wty 5
1 1 l
nl i At s At n+l n+l (649(1)
Holy poderd = Hxl 1 ¢ E ‘ YI 1 E.f; it ™ b e
Wty :,14—2,k+§ 21Az 11+— k+1 ity & 2uAy STl VAL
1 1 1
n+l _ nts B At E l"*‘i _E I’”’E _c- 2t At E |n+l _ |n+l (6.493)
y i+%,j,k+% Y i+—;—, j,k+% 2pAx| Tl j,k+% =, j,k+% 2 Az f+l,j,k+1 * i+%,j,k
1 1
H n+% 1 _H. n+5 4 At E |n+—2— _E |n+3 _p_At At E n+l n+1l (649f)
2, j4 gk z i+%, j+%,k 2y x i+%, J+Lk x i+%, ik 2 piAx Vi j+— e ah Lk

It is not easy to handle unknown field components in equations (6.48a-6.48f) and (6.49a-
6.49f). These equations can be re-arranged for efficient computation. For example,

equation (6.48a) contains the unknown field components E, and H, . After substituting
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equation (6.48d) into equation (6.48a), it becomes:

l 2 1

+1 At n+l

) x‘ k—(A2 P xl. 12. &
z+7 J s 4/16Ay I+—2-,_]—1,

n n n
-E, -E,)| +E,|
lj+——k 1+1J—-5k lj——k
" ol j
ST L 4 P A |
1-1»2,1,k+2 l+2,_]k 2

—(A2

1
+(1+4°
4,U€A )"‘z+—1+1k ( 2#&‘

n

SB[, -aB— g
H'— Wk 4 ueAyAx I+1,j+i,k

e LAIRURTEY A A —cAly,
2eAy 1+——j+—k i+ j——k 2eAz

Here three constants 4, B and C are introduced to minimize the dispersion errors. By

writing (6.48 — 6.49) in the spectral domain one can obtain:

F™1 = AF" (6.50)

where A was obtained by using Maple 9.0 and is given as:

[ E+F  2usRP, 2ueRFP,  -2jul  2ji’eP,  2juDy
RR,R,  RR, R,R, R.R, R,R,  RRJR,
2ueP,P, E,+F, 2uePP  2juD,  -2jul  2jp’eR

RR, RRR  RR  RRR  RR R,R,
2ucPP, 2pePP,  E+Fy 2P, 2juDy - 2juT

A| BR R.R, RnyRz RR, RRR  RR,
-2jeT  2jeD, 2jue P, E+F, 2uePP, 2usPP,

RR, RRR, RR  RRR  RR R.R,
2jus’P, -2jeT  2jeDy 2uERFP,  E,+F 2uERE

R.R, RR, RRR  RR, RRR  RKE
2jeD, 2jus’P, -2jeT  2usPP, 24P E+F

| RR,R,  RR, R.R, R,R, R,R,  RR,R; |

where

At k,Acx At k Ac
P =0 —-sin . a=x,y,24 W, =—:sin| - ., a=Xx,y,Z
o QaAa ( 5 J ¥zs Wo =1 ( 2 ) y
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P? P} P?
R =1+, R, =l+—>, R,=1+-%, ,T=PP,P,
HE ME HE
At . ksin@singAx At . ksinfcosgA At . kcosOAz
P =B—sim(———)° = 4—si _______.__y’P =C—sm(———
x Ax ( 5 ) P, AAysm( 5 )y £ Az ( > )

E = ped + p2e?(PE —PE - P+ T, Ey =48’ +u2e} (P} - P} -P)+T?
Ey = p6d + u?e* (P2 P} ~P1)+T7, F, = ps(P P} ~P2P}-P}P})

F, = us(P2P2 - P2P} ~ PIP2), F, = pus(P} P} — PIP} ~ P} ;)

D, =P,P,T - p&*P,, D, =P, P,T - pi’¢’P,, Dy =P, P,T —u2e’P,

The eigenvalues of 4 can be found as:

M1+JM2’/14=A6=/13:M1—JM2

/’11:'22:1’/13:’15: M, M,

where

M =18~ ys(yg P2+ P2 + pusB? + PIP} + Py B + P}Pf)+ PP}

My = J4uslus P2 + peP? + peb? + LDy + BIPE 4 2P |2 + 2R
and

M; = (yg+Px2X,ua+Py2X,ua+Pzz)

The magnitudes of the eigenvalues are:
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M1+ jM2
=i, l=1A:1= 1A =‘
23] = a| = [4s] = |46 BTE

_ |M12+M2?
B M32

Therefore, the 3D dispersion-optimized ADI-FDTD is unconditionally stable.

IM1- jM 2|
BZE

|
!

The numerical dispersion can be obtained from equation (6.50)
(e’ 1-A)F =0
which can be simplified to:

apslpep? + peP? + usP? + P2P} + PIP} + P2 P} \ie* + P2P2P2) 651)

(pg+Px2)2(ys+Py2)2(ya+Pf)2

sin® (wAr) =

Equation (6.51) indicates the propagating mode of the DO-ADI-FDTD method. The

dispersion relation for the conventional ADI-FDTD method is

apeleW? + e ? + us2 + W2WE +WIW2 A WIW? \ue? +w2wiw?)

(ue + w2 P (ue+ w2 ) (e + w2 f

(6.52)

sin? (wAf) =

Calculating the dispersion error from equation (6.51) is complex, and can be simplified

by using the double angle formula,

sin? (wAt) = 4sin’ (wm)cos2 (szt) = 4sin’ (fo—zét-) —4sin* (E)zét—) (6.53)

2

By comparing equations (6.51) and (6.53), the following equation is obtained,

—sinz(fuﬂ)+sin4(wm)+ ) (6.54)
2 2 ) (J+G)

where
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J= 5;1(8,qu2 + g,uPy2 + guP} + P,CZPy2 + Pszz2 + szPzz) G=e34 + szPyZPZ2

Now equation (6.54) is further simplified as:

. o OAL
m —
sin” ( 3 )
ya(,ust + ueP? +peP? + PP} +P) P2 +P? Pf)
= 2 2 2
(ys+Px Lug+Py Xps+Pz) (6.55)

Equation (6.55) can be written in cosine form,

cos2(2é£)= (/1353+Px2Py2P22)
2 (,ug+Px2 X/‘EJ“ P} Xy£+ Pzz) (6.56)

After dividing equation (6.55) by (6.56), the dispersion equation in tangent form is

WAt
(50

ys(/za sz + ug Pf + ue Pz2 +sz Py2 +P},2 Pz2 +P_,2Px2)
(3> +P2P2P2)

6.57)

Now equations (6.55)-(6.57) are more simpliﬁed as compared to equation (6.51) and are
easy to handle for dispersion analyses. Any of the equations (6.55-6.57) can be used for

dispersion analyses by using Newton’s iterative method.

6.4.1 Numerical Results for Three-dimensional DO-ADI-FDTD

In the three-dimensional case, three controlling parameters A, B and C are introduced.
Different combinations of 4, B and C will lead to different dispersion characteristics. In

the following, four combinations are considered.
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Combination #1

In this option, 4 and B are taken as one, C is obtained by setting 8 =0° and ¢ =90° in

equation (6.57) and then optimized it.

N HE Aztan(%ck At)

sin(lkAz) At
2

CFLN is the CFL number equal to_2? _ with Afcgy being the CFL time step limit.
Atepy

Fig 6.7 shows the dispersion characteristics. It can be seen that the DO-ADI-FDTD has

4=1, B=1l, C=

less dispersion than the conventional ADI-FDTD for8 <50°.

0.95

Normalized phase velocity

M Conv ADLFDTD CFLN=5
{:Do ADI-FDTD CFLN 5 :

30 ' 30
8 (degree) ©0 90 60 ¢ (degree)

Fig. 6.7 Numerical dispersion for combination 1 and the conventional ADI-FDTD
method
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Combination #2

J;g_ Ax tan(% ck AIJ

sin(% k Ax) At

In this combination, parameter B is obtained by setting ¢ = 90° and ¢ = 90° in equation

(6.57) and optimizing it. The parameters A and C are set to 1 in order to examine the
dispersion characteristics due to the optimization in the x- direction only. The results

obtained are shown in Fig 6.8. The DO-ADI-FDTD method has better dispersion
characteristics than that of the ADI-FDTD method when & >50°.

,,,,, f -Conv AD|-FDTD CFLN 5
il [:lDOADIFDTD CFLN .5

Normalized phase velocity

30 ¢ (degree)
6 (degree) 30 0

Fig. 6.8 Numerical dispersion for combination 2 and the conventional ADI-FDTD

method
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Combination #3

A=

e Ay tan(% ck At)

. (1
siny —
2

, B=1, C=1
kAy)At

The parameter setting for this combination is set to see the effect on dispersion

characteristics by optimization only in the y direction. A is obtained by setting & = 90°

and ¢ = 0°

in equation (6.57) and then optimizing it. The dispersion characteristic is

shown in Fig 6.9.

=
(%
°
@
>
3
(0]
=
[
©
(o]
N .
= :
£ !COHV ADLFDTD CFLN =5 :
2 gs i L JDOADHFDTD CRIN=S_ [ o™
g0 60 ” 30
8 (degree) 30 90  (degree)
Fig. 6.9 Numerical dispersion for combination 3 and the conventional ADI-FDTD
method
Combination #4

In this combination, the setting is used to see the dispersion characteristics when

optimization is made in all three directions (x, y and z).
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N HE Ay tan(—lz—c kAt j

2 . 1
sin(%kAyJ At sin[%kAx) At! sm(EkAz)At/

Fig 6.10 shows the numerical dispersion for this combination with CFL factor equal to 5

and it demonstrates that the DO-ADI-FDTD is better than the conventional method.

1
JEAxtan(%ckAt’) \/Tw—Aztan(EckAt/)
c

A= , B=

=

S
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Fig. 6.10 Numerical dispersion for combination 4 and the conventional ADI-FDTD
method

Combination #5

In this combination 4, B and C are taken the same as those for the one dimensional case.

1

A
cos(w° t)

A=B=C=

, is the frequency at which the dispersion error is to be minimized. Fig 6.11 shows the
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normalized

phase velocity vs. wave propagation angles @ and ¢ for this combination,

while the cell size = 5% and the CFLN = 1. Fig 6.12 shows the results of the normalized

phase velocity vs. propagation angle for different cell sizes with the CFL number (ratio of

time step to CFL time step limit) equal to 5. It is clear from these figures that the

proposed combination is better than that of the conventional method. The improvement,

however, is

rather moderate, about 0.4%.

S 099 5
> e R L :
qé 0.984 SR '5 .............
< T S LY. ¥
o DT :
T e : . : :
3 097 4o : : S S :
T : I Conv. ADI-FDTD CFLN =1 :
= I [ IDOADLFDTD  CFLN=1 "o
S 096" P : e e :
= : T T
e

0 e T
..................................... 0

Fig. 6.11

o (degree) 60 - 80 ¢ (degree)

Numerical dispersion for the combination 5 and the conventional ADI-FDTD

method

Fig 6.13 shows the absolute error versus the CFL number, where absolute error is

indicated in percentage. To calculate the percentage absolute error FDTD at CFLN = 0.5

was used as a reference. The DO-ADI-FDTD method shows less dispersion than that of

the conventional ADI-FDTD method. These results are obtained by using Combination
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#3 as an example. Similar results can be obtained for other four combinations.

— — —— —

GeM-QGe%_eo
©

oyl
.-O'e"o‘eo %e-e
0.95¢-0 © < QOO0 B

i Conv.ADI-FDTD /30 CFLN=5
’ —— Conv.ADI-FDTD A/20 CFLN=5
—— Conv.ADI-FDTD /15 CFLN=5
—»— DO.AD-FDTD 15 CFLN =5
— ©—-DO.ADIFDTD A20 CFLN =5
—— DO.ADI-FDTD A/30 CFLN =5

D . 85 i 1 L] i 1 L] 1 1
0 10 20 30 40 50 60 70 80 0

Propagation angle ¢ (degree)

Normalized phase velocity

Fig. 6. 12 Normalized phase velocity vs. propagation angle for different cell sizes with

combination 5

- - -- DO.ADI-FDTD —e— Conv.ADI-FDTD

% Absolute Error

CFLN

Fig. 6.13 Absolute error vs. CFLN with combination 3

To confirm the above analysis, a homogeneous cavity of dimensions 9mm x 6mm x 15mm
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was simulated. The numbers of cells in the x, y and z directions were 16, 10, and 26

respectively. A Gaussian pulse was excited for TE;(; mode and was positioned at (8, 5,

8) and measurement was made at (8, 8, 13). The measured frequency with DO-ADI-
FDTD was 19.50 GHz and 19.27 GHz with the conventional ADI-FDTD. The analytical
frequency is 19.42 GHz and is the frequency at which optimization is required. To find
the value of control parameters normally the frequency used in the control parameter
equations is the frequency at which optimization is required. The relative error for the
conventional ADI-FDTD method is 0.77% and for the DO-ADI-FDTD method is 0.41%.
The electric field measured vs. frequency is shown in Fig 6.14. These results are obtained
by using the Combination # 3 as an example. The value of 4 used is 1.0304, while the
simulation time and memory used are the same, i.e. 11 seconds and 1.648MB for the
proposed method and the conventional ADI-FDTD method.

7 T 1 T T T
Conv.ADI-FDTD

------- DO.ADIFDTD

T e—

Frequency (GHz)

Fig. 6.14 Measured electric field E, vs. frequency

6.5 Conclusions

In this chapter, to reduce the dispersion error associated with the unconditionally stable

ADI-FDTD method, dispersion-improved ADI-FDTD algorithms are proposed with the
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introduction of dispersion controlling parameters. Thorough studies of the improved
versions of the ADI-FDTD method are presented in one-, two- and three-dimensional
cases. Choices of different controlling parameters are investigated. From these detailed
analyses of all the cases, we conclude that the proposed methods are in general better than
the conventional ADI-FDTD method; however, the controlling parameters need to be

chosen optimally to lead to better dispersion error reductions.
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Chapter 7 Conclusions and Future Work

7.1 Summary

In this thesis, different numerical algorithms have been developed and implemented to
increase the efficiency and accuracy of the existing time domain algorithms. This
improvement is necessary due to the complexity of the modern circuit structures.
Therefore, efficient algorithms are very important for accurate and efficient designs. In
this thesis, efficient methods are presented that are better for electromagnetic structures
design and simulations. These efficient methods are time domain methods and are very
useful for wide frequency spectrum solutions as compared to frequency domain methods.
Approaches presented in this thesis are more efficient and provide a competitive edge

over the methods developed before.

In Chapter 1, a brief review of time and frequency domain methods was presented. In
Chapter 2, FDTD and ADI-FDTD methods were described, that provided the basis for all
the remaining chapters in this thesis. In Chapter 3, a hybrid FDTD and ADI-FDTD
method for two-dimensional cases was proposed. In it, the FDTD and ADI-FDTD
interfacing scheme was given, and then numerical experiments were run. This hybrid
approach was found better than the FDTD and ADI-FDTD methods alone in terms of
simulation time and memory usage. In Chapter 4, the hybrid technique was extended to
three-dimensional cases. This technique was applied to different examples including
RF/microwave and optical structures. Again the results were found better than the FDTD
and ADI-FDTD alone in both time and memory usage. To reduce the splitting error of
ADI-FDTD method, novel error reduced ADI-FDTD methods were proposed in Chapter
5. They made the ADI-FDTD method more promising in terms of modeling accuracy and
efficiency. In Chapter 6, new dispersion-optimized ADI-FDTD methods were proposed to
mitigate the problem of larger dispersion errors with larger time steps. These approaches
were applied to the 1-D, 2-D and 3-D cases. It is concluded from the results that proposed
novel optimization techniques improve the dispersion of the ADI-FDTD method, while

using the same simulation time and memory as the conventional ADI-FDTD. Thus these
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novel approaches provide better results without increasing the use of computation

resources.

In brief, methods proposed in this thesis improve the computation time and memory as
well as accuracy for the FDTD and ADI-FDTD methods.

7.2 Future Directions

In previous chapters, novel numerical approaches were proposed and used for different
applications. The results obtained are very promising. These methods can be applied to
many other problems that are affecting the efficiency of FDTD and ADI-FDTD methods
individually. However, there are still a number of issues that need to be addressed. These

are discussed briefly below:

Hybrid with FEM and MoM

FEM is effective for irregular boundaries as compared to both FDTD and ADI-FDTD
methods; on the other hand, FEM is not as efficient as the hybrid FDTD and ADI-FDTD
method. In these situations, the hybrid FDTD/ADI-FDTD/FEM can be very useful.
Therefore, FEM can be applied to the region containing irregular boundaries, while

hybrid FDTD and ADI-FDTD methods to rest of the region.

MoM is effective for computing the homogeneous and layered dielectrics. It is difficult to
apply MoM to nonlinear and non-homogeneous structures, while the hybrid FDTD and
ADI-FDTD can be applied to these structures relatively easily. In structures having
layered dielectrics and non-linear characteristics, the hybrid FDTD/ADI-FDTD/MoM can
be applied efficiently.

Hybrid with other numerical methods

Error reduced ADI-FDTD method that is more accurate than the conventional ADI-
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FDTD method can be used with FDTD to make a hybrid FDTD/ER-ADI-FDTD method
instead of the hybrid FDTD/conventional ADI-FDTD that has been used in this thesis.

ABC for error reduced ADI-FDTD

ABCs have not been developed for error reduced ADI-FDTD methods. Therefore, ABCs
can be used with error reduced ADI-FDTD methods for further applications of these

methods.

3-D error reduced ADI-FDTD

The error reduced ADI-FDTD method is unconditionally stable for 2-D cases, but is
found unstable for 3D cases. Further studies are needed on the issue so that unconditional
stability may be achieved for 3-D structures. If unconditional stability becomes possible,
the splitting error of the conventional 3-D ADI-FDTD method can be reduced and the

error-reduced techniques become more useful.
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APPENDICES

Appendix # A Simplification of 3-D ER-ADI-FDTD Equations

In 3-D case, as can be seen from equations (5.25) to (5.29) there are approximately same
steps as for the 2-D case, but with the difference that matrices are 6 x 6 instead of 3 x 3
for the 2-D case. From equations (A-3) and (A-4) in this Appendix, it can be observed
that all the 12 terms in both steps have one extra term, and this extra term is the difference
between two consecutive time steps. These terms are modified for both proposed methods
by using the same approximate modifications as used for the 2-D case. After replacing the
extra terms with approximate terms these equations run like the conventional ADI-FDTD

method.

In this appendix equations for Method # 1 of 3-D ER-ADI-FDTD method are simplified

that are obtained on the same pattern as for 2D case.
Method # 1
Step 1

2
([I]——[A ])U”‘ —([I]+—-—[B])U +—A~—[A][B](U -U"” ) (A-1)

Step 2
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After putting values of [1],[41], [B!] and U! in equation (A-1)
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After solving this matrix, following equations are obtained:

Step 1
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Similarly, equations for Method #2 can be obtained.
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Appendix # B Simplification of Dispersion Equation for 1-D DO-ADI-FDTD

In this appendix equation (6.16) is simplified to get equation (6.17)

Ax 2
sinz(""2 ) = "iA"z 1wAt - (B-1)
BAt Cosz(T)

After simplification of above equation, obtained results are:
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In this equation, k, =kcos¢sin@ where k is numerical wavenumber and for 1-D case in

x direction #=90° ¢=0° so k, ~k and equation B-2 becomes

. 2 kAx HEAX? 5 oAt -2 L, \/;ts‘sz 5 WAL
sin = tan , k =—sin tan
R B2Ar? ) Ax B*At? ( 2 )

Similarly equation B-1 can be written as:

k =—2——sin~1 peta” ! -1 (B-3)
2 2
Ax B At COSZ(m_At'

)
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Appendix # C Calculation of Optimization Parameter “B” for 1-D DO-ADI-FDTD

The value of B can be found by comparing the FDTD or analytical dispersion relation
with that of the 1D ADI-FDTD dispersion equation.
The dispersion relation for optimized ADI-FDTD method is:

2
Ax) _ HEAX 1 1 (-1
PRIIAYS
cos (—2—)

k
sin? (=% >
2 B°At

and the dispersion of the FDTD method is:

24,2
k., Ax
Sil’l2 (l)At) _ cAt sin2 % )
2 sz 2

It can be written as:

N Ax?
2 c2Ar?

sinz(szt ) (C-2)

sin?(

Comparing (C-1) and (C-2)

2, oA, pehx? 1
5 sin ()= 5= AL
c At 2 B°At cosz(co_t_)

2 o2 (@Bt Ax? 1
c2Ar? 2 B2c*Ar? cosz(Q—A—t)
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oAt

1-cos® (—

B2 sin? (220 - o)
2 2 AL

cos“(—)
2

1 1
B?=|————| B=|—— (C-3)
cos’ (Qzéi) cos( a)oAx)
C

Another way to obtain value of B is by comparing with the dispersion relation of
analytical results. The analytical dispersion relation for a plane wave in a continuous

lossless medium for 1-D case is simply

Put value of &, in (C-2)

2
sin? coAx) _ peAx 1

2¢’ B 2 @Bty

after simplification

2
sinz(a;Ax) = 'uisz 1wAt -
¢ BA cosz(——)
2 oAl
sinz(w ) A e (—2—)
0 A o2
c 2
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5 WAL

sin“(—)
smz(——wa) ——17 ——ZAt
20 B cos?(2Y,
@
o L
51n2(—) =—
2c B cosz(————w )
2,
sin“(—)
. 2. WAx 1 2¢ 2 1 1
== | B = B = -
sin™( 2¢ ) B2 2, WOAX , 0N o, Ax €4
cos” (—) cos” (—) cos ( )
2¢ 2¢ 2¢

So equations (C-3) and (C-4) are the same with both FDTD and analytical dispersion
results. Now this value of B will directly optimize the ADI-FDTD method depending on
the spatial step. This variation of B with space step suggests the variation of dispersion of
the ADI-FDTD method. It can be concluded that this is the difference between DO-ADI-
FDTD and ADI-FDTD methods with different cell size.
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