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ABSTRACT

The selection of a strategy to control the flow of information and materials in a
manufacturing system is an important problem. Buzacott and Shanthikumar (1992)
presented a modeling framework, the Production Authorization Card Scheme (PAC), to
encompass several different traditional control strategies, such as Kanban, CONWIP, and
Base Stock Systems. The challenge they presented was to develop an analysis
framework to enable the determination of the best control strategy for a manufacturing
system, in terms of the performance measures of such a system, such as average
inventory and customer service levels.

While simple systems operating under the PAC scheme may be analyzed analytically
under very simplifying assumptions, complex systems do not permit this analysis. Thus,
simulation is necessary to study the effects of PAC parameter settings on system
performance. In this thesis, we discuss the PACSIM simulation model, which we
designed to estimate several performance measures for systems with complexities such as
multi-product systems, setup times, cells with multiple servers, and assembly cells.

With the ability to estimate this performance, the problem now becomes the ability
to determine the PAC system parameters which provide the best operating strategy in
terms of the system performance measures. This would suggest the use of simulation
optimization techniques. However, we believe that simulation optimization is
inappropriate for this framework. We argue that the correct approach is simulation
metamodelling, which is an attempt to approximate the expected value functions of the
system performance, with respect to the PAC scheme parameters. Such metamodels
provide the ability to apply deterministic optimization techniques, as well as the ability to
explore trade-offs amongst the various performance measures, so that the best control
strategy may be selected based on policies and outside decision factors not easily
integrated into any optimization approach.

Of the metamodel approaches available, neural networks present many attractive
advantages. In this thesis, we demonstrate that feedforward neural networks are a highly
practical and feasible approach, even for large numbers of input parameters. One key to
training reasonably accurate neural networks is efficient simulation experimental design.
We present a sampling strategy to with good space-filling properties, and a set of rules
designed to ensure that the PAC parameters included in the input space are feasible and
reasonable for future analysis purposes.

We demonstrate the potential of this analysis framework on several manufacturing
examples. The systems we selected have from four to ten input parameters. We illustrate
with these systems some of the types of analysis permitted by this framework.
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CHAPTER 1

INTRODUCTION

The design and analysis of production systems is one of the oldest problems in
industrial engineering (Altiok and Stidham, 1983). The choice of a manufacturing
control strategy for a given manufacturing system design is one component of this
problem. Control strategies or coordination schemes, such as MRP, CONWIP, Kanban
and Base Stock systems, are put in place to control the flow of material and coordinate
the flow of information in the manufacturing system, in order to control the performance
of the system.

In 1992, Buzacott and Shanthikumar commented on previous studies on the various
manufacturing coordination schemes found in the literature:

“None of these studies, however, has resulted in (A) providing a basic framework
under which all of these approaches can be systematically compared nor in (B)
choosing the coordination scheme most appropriate for the manufacturing system
at hand”. (Buzacott and Shanthikumar, 1992, p. 36)

They introduced a Production Authorization Card (PAC) coordination scheme for
material and information flow control in multiple-cell manufacturing systems. The PAC
scheme involves setting the right levels of inventory, the number of PACs for each cell,
along with the rules for card transmittal between cells (Buzacott and Shanthikumar,
1993). They further demonstrated that traditional mechanisms such as MRP, Kanban,
OPT, and CONWIP could be seen as special instances of their scheme. This new scheme
“provides a framework for developing coordination and control mechanisms that
combine the desirable features of more than one of these traditional approaches.”
(Buzacott and Shanthikumar, 1992, p. 36).

Buzacott and Shanthikumar (1992, 1993) presented the means to analytically
determine the optimal PAC parameters for a single-cell system and for multiple cell

series systems under special assumptions, such as exponentially distributed processing



times. However, they left the development of general performance models and
subsequent selection of the optimal PAC parameters to future research. They wrote

“...we do not provide an approach to the selection of the parameters
for the optimized system.

To obtain the best possible coordination system so as to maximize the
benefits (taking into account the inventory carrying cost), one needs to
obtain the optimal parameter values...This requires two steps:
development of a performance evaluation model and development of an
optimization model...no general model has been developed so far. It is
important that general performance models incorporating the PAC scheme
be developed. It is of equal importance that we develop optimization
models and efficient solution procedures to obtain the optimal parameter
values for the PAC scheme”. (Buzacott and Shanthikumar,1992, pp. 49-
50)

This thesis presents a unified framework for the modeling, analysis, and subsequent
determination of appropriate control strategy for complex manufacturing systems. The
Production Authorization Card (PAC) Scheme proposed by Buzacott and Shanthikumar
(1992), a general performance simulation model of systems operating under the PAC

scheme (PACSIM), and neural network metamodels form the basis of this framework.
1.1  Manufacturing Control Strategies

For a discrete manufacturing system, raw materials are converted into finished
products through a series of processes carried out at one or more work centres or cells in
the system. Cells in the system require raw materials and/or component parts produced
by another cell in the system. The time involved to complete processing at a cell is
usually variable. The flow of the parts through the system starts at some initial cell
(upstream) and flows downstream to subsequent cells along a predetermined route until
finally arriving at a finished goods inventory point. Along this route, component parts
may be immediately sent to the next cell for further processing, or temporarily stored
until requested by a downstream cell. Individual cells may be free to produce if the
materials required for the process are available, or they may be required to wait until they
receive authorization to do so. Upon receipt of this authorization, the producing cell will

request the required materials and components to be delivered from supplying stores (or
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simply remove them). If requested raw materials and/or component parts arrive at a cell

for further processing and there is already work in process at the station, they join a
queue and wait for an available resource. Demand for the finished products may come in
the form of actual orders from customers, or by orders generated by management to meet
a forecast of future demand. How and when information about this demand is
communicated through the system, and when and why individual cells receive
authorization to produce a part or product is determined by a control strategy.

The purpose of a control strategy is to limit the amount of work in process (WIP)
while ensuring adequate throughput and customer service levels. Little’s Law shows a
direct relationship between the amount of WIP in the system and the product of
throughput and cycle time (see Hopp and Spearman, 2001). If WIP is kept too low,
throughput will be low, as cells wait for work to do. If WIP is too high, throughput will
increase to its maximum theoretical value, but at the expense of an increase in cycle time
and holding costs. Various control strategies have been developed to allow management
to control the production in order to meet planned orders or finished goods replenishment
requirements.

Materials Requirements Planning (MRP) is a strategy where management uses a
forecast to predict the future demand. For each finished product, an estimate of the lead
time (time for a product to be produced by the system once it is started) is required. Jobs
are ‘released’ to the system using this lead time estimate; the goal is then to have the
finished product available in time to meet the anticipated demand. MRP is considered a
push strategy, so called because once work is released to the system, it is pushed through
the system; stations produce product provided there is work available to do, and the
amount of work released to the system depends on the forecast, not on the number of jobs
already in the system.

Pull strategies authorize production in the system based on the current state of the
system. These strategies respond to demand by authorizing new work only when an
actual demand materializes. Kanban strategies limit the amount of work in process ata

station by using a set number of Kanban cards for each product produced at the station.
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When a product is requested from a downstream cell, a Kanban card is pulled and sent to

the station, thus authorizing the station to produce a replacement. If an order arrives to
find no Kanban cards available, no authorization is created until a Kanban card is
returned to the store, which will occur upon completion of a product at the cell.
Therefore, the number of authorizations in process at the cell (jobs in the queue) cannot
exceed the set number of Kanban cards for the product. During this time, no information
about the waiting order is communicated further upstream. The number of Kanban cards
must be determined for each part or product produced at each station.

CONWTIP (Hopp and Spearman, 2001) strategies involve having a constant amount
of work in process for the entire system; when a customer order is filled with a product
from finished goods, an authorization is sent to the first cell(s) of the process to start
production of another unit. All cells downstream from the start of the process are
authorized to produce product whenever the required components are available.

A Base Stock system involves setting an inventory goal at each store supplied by a
production station; whenever product is removed from the store for processing further
downstream, an authorization to produce a replacement is provided to the cell. This
strategy differs from a Kanban system in that if the inventory at the store is depleted and
further requests arrive from downstream, authorizations are also generated to fill these
requests. Any time the amount of inventory in the store reaches the base stock level, it
means that there are no authorizations in process at the station.

There has been a great deal of literature evaluating and comparing these and other
strategies, leading to some generally accepted rules regarding the choice of strategy; for
example, Kanban systems are expected to work well only in situations where demand is
relatively constant (Askin and Goldberg, 2002). Even when only one type of strategy is
being considered, the determination of the best parameters for that strategy is not
straightforward, for example, for a Kanban system, one must decide on the number of
Kanban cards to use at each station. Recently, there has been some attention paid to

hybrid strategies, which are usually derivations or combinations of the traditional



strategies. Examples are a hybrid MRP/Kanban system (Deleersnyder et al., 1992) and
the Extended Kanban Control System (Dallery and Liberopoulos, 2000).

1.2  Performance Models of Manufacturing Systems

One of the difficulties in evaluating manufacturing control strategies is that exact
methods for calculating the performance of these complex manufacturing systems do not
exist, except for simple cases such as the two stage tandem production line, under quite
restrictive assumptions.

For a two stage tandem production line operating under a push control system, if the
processing times at each cell are assumed to be exponentially distributed, the arrivals to
the line are a Poisson process or are accepted freely into the system by the first station,
there is only one machine (or server) at each cell, and the buffer levels are infinite, then
the output of each station (which is the input to the next station) will also be a Poisson
process. Therefore, the system can be easily modeled as a series of M/M/1 queues, and
the average performance measures can be calculated from basic queuing theory (e.g.
Kleinrock, 1975). The interdeparture times of finished products from such a system,
regardless of the number of stations, will also be exponentially distributed (Ross, 1997).

For lines where the buffer levels are finite (pull systems), researchers have used
Markov chain models in an attempt to determine the average performance measures.
Unfortunately, the system state space becomes so large as the number of stations or
buffer levels increase that the model becomes mathematically intractable. While many
models of queuing networks are decomposable (portions of the system can be treated as
though they are isolated from other portions, with simple relationships among the small
models), Markov chain models of transfer lines do not have this property (Gershwin,
1994). Therefore, approximate decomposition methods have been developed (e.g.
Buzacott, 1972; Gershwin, 1987, Dallery, David and Xie, 1989). While these
decomposition models have been shown to be good approximations, they are only
applicable under certain limiting assumptions, and only for relatively simple systems.

Due to all of these issues, simulation is often used to estimate the system performance.
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We are interested in the ability to analyze more complex systems, with complexities

such as assembly or disassembly cells, setups, transportation times, and individual
stations capable of producing multiple parts. Given the difficulties in analytically

modeling much simpler systems, a simulation model will be used.
1.3  Investigating Control Strategies for a Manufacturing System

In the literature, there appear to be three approaches to investigating, analyzing and
choosing an optimal control strategy for a manufacturing system. The first approach is to
first limit the type of control to a traditional type strategy, and then find the optimal
parameters for that particular strategy (see Figure 1.1).

Manufacturing
System

Simulation Limited to a single type or family
Model of strategies for consideration

A 4

Optimization
Procedure

h 4

Optimal Control For strategy under consideration
Strategy
Parameters

Figure 1.1 Flowchart for a Common Approach to Control Strategy Analysis

For example, Akturk and Erhun (1999) provide an overview of literature on designing

optimal Kanban systems. Most researchers use simulation models of a manufacturing

system operating under this strategy, and the focus is to develop a methodology to find
the optimal parameter settings for the strategy chosen. In the case of Kanban systems,

the goal is to determine the optimal number of Kanban cards at each station, so as to

achieve some goal such as minimizing cost for inventory and customer service.



Another subset of the literature is dedicated to contrasting different traditional
strategies — such as push versus pull (for example, Grosfeld-Nir et al., 2000) — to
determine which is the best approach for a given system; the approach, however, is
similar to the first approach because the optimal settings for each strategy must be
determined in order to compare the best of both. Because of the type of modeling used in
each case, the analysis does not explore possible hybrid solutions — combinations or
variants of traditional strategies — which may provide even better solutions. Bonvik et al.
(1997) do include a defined hybrid policy, along with Kanban, CONWIP, base stock, and
minimal blocking, and then, similar to the approach above, find the parameters which
optimize the performance of each individual strategy and then compare the results.

Another approach, less often found in the literature, is to determine the appropriate
type of strategy using the characteristics of the system itself. For example, Huang and
Kusiak (1998) developed a methodology for developing a control system which pushes
through certain manufacturing stages and pulls elsewhere based on the characteristics and
value added at these stages. The methodology involves labelling each stage; for example,
a critical stage lies along the critical path, and a bottleneck stage has the highest
utilization. Their next step is to assign either a push or pull strategy to each stage based
on rules they developed, such as push at the critical stages, or pull up to a bottleneck
stage. For stages with multiple labels, the implementation priority of the rules depends
on the business objective, since each rule accomplishes a particular objective (reduces
WIP, shortens delivery lead time, etc.). They then develop different simulation scenarios,
with different buffer sizes or processing time distributions, and compare these with a
simulation of the system operating under a total push system, to show that their
methodology results in improved performance. Gaury et al. (2001) term Huang and

Kusiak’s system a customized control system.
14 Research on PAC Schemes and Other Unified Frameworks

There has been some limited work on developing unified frameworks for the study

of manufacturing control strategies. The Generalized Kanban Control System (GKCS)



(Frein et al., 1995) may be used to represent pull-type strategies, where Kanban,
CONWTIP and Base Stock may be seen as special instances of the scheme. It is similar to
the PAC scheme; however, the PAC scheme also allows for batch processing, and for
time-delay release of orders based on forecasts of demand, if available. The Extended
Kanban Control System (EKCS) (Dallery and Liberopoulos, 2000) is a combination of
Kanban and Base Stock systems, and also includes both of these as special cases. The
EKCS may be extended to include batch production and time delays in the issuance of
demand notices to queues.

Gaury et al. (2001) developed a pull control system for a given manufacturing line,
without a priori limiting of the control to traditional pull systems. Their design included
Kanban, CONWIP and Hybrid; local and integral control; and segmented and joint
systems. Their methodology simultaneously determines the type of policy, which may be
a hybrid policy, and the parameters of that policy which produce optimal performance.
Simulation and an evolutionary algorithm are used to find the policy which minimizes
WIP while maintaining a minimum customer service percentage. The methodology was
tested on tandem production lines with four to eight stations. They acknowledge that
more research is needed to extend their methodology to other types of production systems,
such as multi-product lines and assembly or disassembly systems.

Liberopoulos and Dallery (2000) have developed a unified framework for defining
pull-type control mechanisms. Four basic stage coordination systems (base stock, Kanban,
GKCS, and EKCS) are presented under a unified definition, and then on top of these they
superimpose a local mechanism to control WIP within each stage. Some other
production strategies, such as a CONWIP/Kanban hybrid control system, were shown to
be special cases of their definition. However, they conclude that “considerable work
needs to be done to be able to evaluate the performance of and optimize such systems”
(Liberopoulous and Dallery, 2000, p. 350). Very recently, Bollon et al. (2004) presented
a formulation using this framework which may be used for performance evaluation or

optimization, but only for serial, single product systems.



To our knowledge, the only attempt to extend the work of Buzacott and
Shanthikumar was by Bielunska-Perlikowski (1997) (Bielunska-Perlikowski and Gunn,
2002), who developed a general performance model for a manufacturing system
operating under the PAC scheme using simulation. This model is able to simulate
systems with assembly stations, multi-product stations, setup times and travel times. To
address the problem of finding the optimal PAC parameters for a simulated
manufacturing system, she developed a rudimentary simulation optimization approach.
This approach required that costs be assigned to the system performance measures, such
as work-in-process (WIP) inventory and customer service, in order to create a single
objective function to optimize. As we will see, this approach has several problems,
including the requirement to identify such costs, as well as the issues with the simulation

optimization procedure itself.

1.5  Modeling and Analysis Framework for Manufacturing Systems using Neural
Networks and the PAC Scheme

Buzacott and Shanthikumar (1992) introduced the Production Authorization Card
(PAC) Scheme as a means to model multi-station manufacturing systems and the
coordination scheme (or control strategy) used to control how information is
communicated and how materials and parts flow within the system. Several traditional
control strategies, such as Kanban and CONWIP, can be viewed as special instances of
the PAC scheme. This makes the PAC scheme an attractive modeling approach, as it is
possible to simultaneously study more than one traditional strategy or even a combination
of these strategies using a single model. This coordination scheme may be employed in
complex manufacturing systems, with assembly stations and multiple products. It is
therefore the basis of our analysis framework. A description of the PAC scheme is
provided in Chapter 2. Bielunska-Perlikowski’s (1997) (Bielunska-Perlikowski and
Gunn, 2002) original PAC simulation model has been updated for our purposes, and a
description of this new model, PACSIM, is also included in Chapter 2.
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Buzacott and Shanthikumar’s (1992) objective A, mentioned at the beginning of this

chapter, was to provide a framework for comparing different strategies simultaneously;
this is achieved by the use of the PAC scheme and the PACSIM performance model. We
then explored various options in order to achieve objective B: to determine the most
appropriate control strategy for a manufacturing system. In order to achieve this, we felt
it important to understand the trade-offs amongst the performance measures for a
manufacturing system, such as the relationship between average inventory levels and
customer service measures. With a simulation as our performance model, we
investigated various simulation optimization and simulation metamodelling techniques
found in the literature. These are discussed in detail in Chapter 3, as well as the reasons
why we determined that, for this problem, simulation metamodelling was the best
approach. The advantages of such metamodels include easier, faster evaluation than
running the simulation model itself, and the ability to apply deterministic optimization
techniques to find, for a given system, the appropriate control parameters. Our choice of
metamodelling approach, Neural Networks, is described in Chapter 4, along with the
issues in developing such metamodels from simulation data.

We discuss in detail the application of this framework in Chapter 5. Included are
examples of how the metamodels developed for a system may be used to gain a better
understanding of the system, through trade-off curves, deterministic optimization with
constraints, and other approaches. In Chapter 6 we provide examples of the use of this
framework through the analysis of several example systems, and show that the neural
networks provide a flexible means of performance analysis. Finally, Chapter 7 concludes

with a summary of this work and opportunities for future research.
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CHAPTER 2

PRODUCTION AUTHORIZATION CARD (PAC) COORDINATION SCHEME

This chapter provides an explanation of the PAC scheme, which is the basis for our
framework. Section 2.1 provides an overview of the PAC scheme, and Section 2.2
describes how traditional control strategies such as Kanban and CONWIP are special
instances of this scheme, thereby enabling the simultaneous evaluation of several
traditional strategies with the use of a single PAC model. Some issues with the use of the
PAC scheme are discussed in Section 2.3. The PACSIM model, a simulation model
designed to simulate the operation of a multi-cellular manufacturing system operating

under the PAC scheme, is described in Section 2.4.
2.1  An Overview of the PAC Scheme

The Production Authorization Card (PAC) scheme (Buzacott and Shanthikumar,
1992) uses requisition tags, order tags and PA cards to coordinate and control material
and part flow within the manufacturing system (Figure 2.1). A cell is defined as any
station in the system that performs some activity involving the material or part. A store is
defined as an inventory holding position. Each store holds only one type of product,
although several stores may be in the same physical location. A cell/store combination
refers to the cell which produces a particular product, and the store to which that product
is sent upon completion. If a cell is capable of producing more than one product, then it

will be part of more than one cell/store combination.
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Figure 2.1: PAC Coordination Scheme (Buzacott and Shanthikumar, 1993)

If a cell requires a part or material from an upstream store, it issues a requisition tag.
If the store has stock, it immediately fills the request. If there is no stock, the requisition
tag is held at the store until the demand can be met; therefore, the number of waiting
requisition tags represents the backlog at that store. The cell also issues the store an
order tag; depending on the nature of the control system, this order tag may arrive in
advance of the requisition tag, providing the upstream store with advance warning that a
part is going to be requested.
At each store, there are a set number of process tags. When an order tag arrives from
the downstream cell, it is paired with a process tag, if one is available, and this becomes a
production authorization (PA) card. This PA card is then sent to the cell which produces
the part, therefore authorizing that cell to begin production on the part. This cell would
then issue order and requisition tags for the required component parts. Once production
on the part is complete, the PA card is converted into a process tag, and this tag and the
part is sent to the requesting store. If an order tag arrives at a store and there are no
process tags available, the tag is held at the store until a process tag becomes available.
The flow of parts and information then is controlled by setting these parameters:
e 7z, the initial inventory at store i (i = 1,...,m where m=number of stores). This
will also be the amount of inventory at the store when there are no active PA

cards in the system.
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® k;, the number of process tags at each store i

e 7, the delay between the issuance of an order tag and the corresponding
requisition tag
* r;, the packet size for transmittal of PA Cards (represents batch production)
The initial inventory parameter, z;, in fact represents an inventory cap; there can

never be more than this amount of inventory in store i at any time. When the system is
empty, this value is equal to the amount of inventory in the store. When an order is
received for a part, the store immediately begins the process of authorizing the supplying
cell to replace the part. Increasing the value of z; at any cell will increase the probability
that an arriving requisition will find stock waiting at the cell, therefore decreasing the
probability of a production delay at the requesting cell. Increasing the value of z; at a
store which supplies finished product to customers will result in an increase in the
probability of a customer requisition being immediately satisfied, and a decrease in the
average customer wait time.

The process tag parameter, k;, controls the flow of information to upstream cells.
When order tags are received at store i, they are paired with a process tag and a PA card
is created for the supplying cell. This will also trigger orders for the necessary
component parts at upstream stores. If an order arrives at store i and no process tags are
available, this means that there are already &; active PA cards (and therefore a total of k;
jobs in production and in the queue) at the supplying cell. A process tag will become
available only when the supplying cell finishes the part currently in production. Until
then, the order must wait, and no information about this order is communicated upstream;
consequently, no more component parts will be ordered from upstream cells. If the delay
at the cell in question was due to a failure, then it is possible that eventually all upstream
cells would complete all the orders generated by the PA cards waiting at this cell. All of
the upstream stores would have z; inventory in stock, and further production would be
halted. Therefore, the amount of work in process inventory in the system can be

controlled by limiting the number of procéss tags at each store. This will prevent the
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“WIP Explosions” (Hopp and Spearman, 2001) which can occur when jobs are released

into a system without regard to the current state of the system.

The batching parameter, r, is really only relevant in systems where a single cell may
produce multiple products. Batching may be desirable when long changeover times are
required at the production cell. If 7> 1 at a cell/store, then orders for products received
by the store from a downstream cell are held there until r orders have been accumulated
and matched to procéss tags; only then is this batch of PA cards created and sent to the
cell. If the cell uses a first-in, first-out (FIFQ) priority scheme for processing waiting PA
cards, then the entire batch will be processed in sequence. It is important to note at this
point that there may be any type of scheduling algorithm used by the cell to determine the
next part to produce when multiple PA cards are waiting.

The requisition delay parameter, T, may be used in systems where forecasts provide
advance notice of expected demands. Orders for product enable the creation of PA cards
to authorize production upstream, while requisitions for product remove stock from the
store to be moved to the requesting cell or to the customer. Therefore, with advance
notice of upcoming demand, it may be desirable to start production for required
component parts in advance of requesting those parts to be delivered. In such a case, a
requisition for a part or product will be issued T time units after the order has been issued.

In order to deal with systems where orders are sent in advance of forecasted demand,
cancellation notices may be used to cancel any orders generated for forecasted customer
demand which did not materialize. These are propagated through the system, cancelling
any as yet unfilled orders for component parts. If any PA cards have already been
generated, a decision must be made whether to produce the part or cancel it. Surplus tags
are then affixed to any component parts which were produced for the original order.
When another order for the part is later received by the store where surplus parts exist, no
PA card will be generated at the upstream cell and the surplus part will be used to fill the
subsequent requisition. Surplus tags may also be assigned to a part produced as a by-

product of another part.
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A store may supply more than one downstream cell with the same part; when out of

stock, arriving requisition tags are held in a queue and the decision on the sequence in
which requests are filled must be made. The priority policy could either be made in
advance, as Buzacott and Shanthikumar (1992) assume, or it could be added as a policy
parameter, where several common policies could be identified and quantified as inputs to
the model. As well, multiple stores may be defined in the model to supply the same part
to different cells. In this case, some decision must be made on which store will receive
the required requisition tag, and the number of process tags for the part at each store does
not have to be the same. This last situation can occur in a production environment where
distance is a factor, and therefore a decision is made to have multiple stock points for the

same part to reduce travel times to the requesting cells.
2.2  Modeling Traditional Control Strategies using the PAC Scheme

Buzacott and Shanthikumar (1993) have shown that well known shop floor control
policies such as Produce-to-Order systems, Base Stock systems, MRP, Kanban,
CONWIP, and OPT are simply specialized versions of the PAC scheme described above.
For example, Kanban systems can be modeled by setting the number of process tags (k;)
at a supplying store equal to the initial inventory (z;) at that store. This means that, if a
store is empty, all process tags will be in use, and order information from downstream
cells will not be passed to upstream cells. It also means that at any time, the number of
process tags at the store will be equal to the current inventory at the store. Therefore, if at
any time the amount of inventory at the store equals the initial inventory, then all process
tags are also at the store, which means no PA cards are currently active. This means that
production of the part at the upstream cell will have been halted.

For a CONWIP system, the initial inventory at the final store (z,,) is set to the desired
WIP level for the entire system, and initial inventory at all other cells is set to zero. The
number of process tags at each cell is set equal to the initial inventory (CONWIP level) at
the final store. This is because it is possible for all of the WIP in the system to currently

be in process at any cell. There is no delay time between order tags and requisition tags.
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For an MRP system, the delay time between the sending of an order tag and a

requisition tag (%) is determined by the lead times for those parts or materials. Because
this is a push system, there is no limit to the amount of WIP in the system, and therefore
all cells have an infinite number of process tags. This means that there is never any delay
in the issuing of a PA card upon receipt of an order tag. The initial inventory at each
store is defined as the safety stock or planned minimum on-hand inventory. For a
discussion on the choice of parameters for other control systems, one can refer to
Buzacott and Shanthikumar (1993).

Since the PAC scheme can be used to emulate multiple control strategies simply by
changing the parameters discussed above, a single model can be built in order to study
the performance measures of the system under these different control strategies. It is
also possible to study the performance of a hybrid strategy; for example, a combined
‘push-pull’ strategy involves the line operating as a pull system from raw materials to a
particular cell, and then operating the system downstream from this cell as a push system.
This can be achieved by limiting the number of process tags at all upstream stations,
thereby controlling the work released into this part of the system, and then eliminating
such limits in all stations downstream from the cell. This would make sense in a situation
where a bottleneck cell was located somewhere in the middle of the process; limiting
production at upstream cells reduces the build up of inventory at the bottleneck, and the
bottleneck itself will act as a regulator for the downstream cells, thereby eliminating the

need for other control mechanisms at these downstream cells.
23 Issues with the PAC Scheme

The time delay parameter, 7 is the delay time between the issuance of an order for a
part, and the requisition for this part. In MRP systems, the goal is to produce to a master
schedule which is determined from a demand forecast, such that finished products are
completed by the time the actual customer demand for that product materializes.
Therefore, the time delays, T;, at each cell/store should be set to the expected lead time for

each product or component up to that stage. By the time the requisition (actual request to
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take the component from the store) arrives at the store, the advance order should have

triggered the production of a unit to fill that demand in enough lead time to have that
product completed and available at the store. Buzacott and Shanthikumar (1993) assume
that the forecasts are perfect; otherwise, the system would be required to generate
correction or cancellation notices as appropriate. The performance of a manufacturing
system where production is scheduled to meet a forecasted demand is affected by the
quality of the forecast; therefore, if we assume that the forecasts are perfect, we ignore
that effect. This makes it difficult to compare the MRP strategy to alternative strategies
that do not depend on such a forecast; one system would receive ‘advance warning’ of
demand while the other receives no such netification and responds to demand as it occurs.
If imperfect forecasts were used, the amount of error in the forecast would also make
comparison amongst systems difficult. Therefore, we have elected not to include
forecasting in the systems we have analyzed for this thesis, and therefore the analysis of
MRP type systems is not included. However, since we did not want to preclude the use
of this parameter in future work, it will remain a part of the framework, and is also a part
of the PACSIM model discussed later in this chapter.

Another issue is with the priority setting schemes. One store may receive
requisitions for a single part from more than one downstream production cell. In the case
of a store with a backlog of requisitions from more than one downstream cell, the
question arises as to which requisition is filled first upon the arrival of a completed part.
Buzacott and Shanthikumar (1992) say that when a store receives a finished part from a
cell, then the highest priority requisition should be filled first. This implies that the
priority setting scheme used is a management decision, and is a characteristic of the
system, not one of the assignable parameters within the scheme. Another priority
question arises when a single cell is capable of producing more than one part. When the

machine is changed from the production of one part to another, there may be setup time
involved. The choice of a queuing strategy (FIFO, SPT, longest queue, etc) will affect

the performance of the overall system. In our current framework, we have assumed that
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the priority setting scheme is a characteristic of the system and is assigned prior to any

analysis; in the PACSIM model, we assume that this priority scheme is FIFO.
24  Performance Model of a Manufacturing System using the PAC Scheme

Bielunska-Perlikowski (1997) and Bielunska-Perlikowski and Gunn (2002)
developed a general performance evaluation model for the PAC scheme using simulation.
This model included the ability to study manufacturing systems with complexities such as
setup times, travel times for requisitioned material, assembly stations and multiple
products. This model has been modified and incorporated into a framework (PACSIM)
which permits simulation of multiple design points, and captures several performance

estimates for each simulation replication.

2.4.1 Original PAC Simulation Program
The original discrete-event simulation program, pac.f, was used as the basis of the
new simulation model. It is written in FORTRAN77 and uses the SIMLIB routines of
Law and Kelton (2000).
There are seven simulation events (Table 2.1) which may occur in the simulation.

The event graph for the simulation is shown in Figure 2.2.

Table 2.1: Event List for the PAC Simulation (Based on Bielunska-Perlikowski, 1997)

Event Description
1 Arrival of a customer order or part order from a cell
Arrival of a requisition at a store
Arrival of a Production Authorization card at a cell
Part and Process tag arrival at a store
Completion of processing of a part at a cell
Arrival of work in process inventory at a cell
End of the simulation
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Figure 2.2: Event Graph for the PAC Simulation (Bielunska-Perlikowski, 1997)

The master array of SIMLIB maintains queues and lists. Queues contain entities;

each entity is stored as a record with several attributes, including such information as

type of product (for product entities or active PA card entities) or time of arrival. At each

cell/store combination, there are six individual queues maintained (Table 2.2).

Table 2.2: Queues at Each Cell/Store Maintained by SIMLIB

Queue | Entity Stored | Description

ORD Orders Orders awaiting a match with a process tag, or for a batch to be formed

REQ Requisitions Requisitions awaiting the arrival of the requested part/product (backlog)

PROD | Products/Parts | All stock at a store which has not yet been requested — entities are
distinguished by a product type attribute

PROC | Process Tags | Process tags available at a store for matching with orders

WIP Products/Parts | Work-in-process inventory — components requested by the cell in response to a
PA card, now awaiting processing. May contain several product types.

PAC PA cards Active PA cards (awaiting processing or in process)
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In addition to the queues, the program maintains several lists which track events and

entities (Table 2.3). The main list is the event list, which maintains all upcoming events
by event type. The remaining lists are not queues, but rather track the existence of

entities in the corresponding queues in Table 2.2 for statistical purposes.

Table 2.3: Lists Maintained by SIMLIB

List Description

CUST Waiting customer requisitions (backlog)

CORD Waiting customer orders

PPRD Products waiting at each product store — a separate list is maintained for each product type
PWIP Components waiting to be processed at a cell — a separate list is maintained for each product
type

EVENT The event list

A more in-depth explanation of the simulation model can be found in Appendix A.

24.2 Changes to the Original Simulation Program

The queues maintained by SIMLIB contain entities, and problems were encountered
for queues which held more than type of entity. Whenever a subroutine had to search the
contents of a queue for a particular record, such as when searching a WIP queue for the
right type of product, the program would call the appropriate SIMLIB routine to remove
the record so that it may be examined. If the record was not the one required, it was
added to end of the queue and the next record would be removed. This would be
repeated until the right record was found or the entire contents of the queue had been
checked. In some cases, when the right record was found, the search stopped. Thus,
records within some of the queues were reordered, and this resulted in entities not
necessarily being processed in a first-in, first-out manner. The affected subroutines were
altered so that whenever a queue was searched, that the entire queue would be put back in
the original order. This caused another problem when reporting on the minimum
number of entities in a queue; because records were removed in order to be checked, the
minimum number of entities in the queue was sometimes reported as one less than the

true number. This problem was discovered during verification and was corrected.
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Some of the statistical variables used to track performance measures were not being

properly reset by the simulation program once the warm-up period was reached.
Therefore, some of the performance measures contained observations from the transient
period. This was also discovered during the verification experiments, and changes were
made to resolve this problem.

One performance measure not originally tracked by the simulation model was cycle
time, or the length of time the product remained in the system. Additional statistical
variables were added, and the program altered to capture the cycle time whenever a
finished product was completed. Where a final product consisted of one or more
assembled products, the cycle time for the product was recorded as the length of time the
oldest component of the product had spent in production.

Because the simulation was going to be used to provide the data to train neural
network metamodels, an additional subroutine, REPORTC, was added to the program to
enable the calculation of only the key performance measures, and write those
performance measures to individual text files. Another subroutine, SSTATE, was added
to track and report on interdeparture times of product from finished goods inventory, as
well as other statistics on system performance. These measures would be used later to
check when the system had reached steady state during a simulation run.

Other minor changes and additions were:

= New parameters were added to allow for different random number seeds for the

calls for generation of new customer orders, the type of product demanded, and the
generation of product processing time.
* A new function was added to provide a random observation for a variable with a
Weibull distribution.

= The IRANDI function, used to randomly choose the type of product demanded in
systems which produced more than one final product, had an improperly defined
input variable. Although the arrival of orders was not affected, the type of product

demanded was not properly following the given distribution.
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* An error in the DEPART subroutine was resulting in a machine being made idle

even when parts and PA cards were waiting for processing. This occurred only

when the cell was capable of producing more than one type of product.

2.4.3 Overview of the New PAC Simulation Model (PACSIM)

As previously mentioned, the updated simulation program and its associated
subroutines formed the core of the new simulation model, PACSIM. Since the purpose
of the simulation model was to be able to generate estimates of performance for several
different PAC parameter combinations, this original program was changed to a
subroutine which is called by the new main calling program, pacsim.f.

Information on the system itself, such as the number of cells, products produced at
the cells, product routings, average processing times at machines and the average
interarrival time of customer demand, are provided to the model in the form of a text file
(pact.in). The overhead to begin the simulation of a new system is quite low as the
computer code does not need to be changed. This file used to be the input to the original
program, but is now processed by the new main program. An input file provides the list
of PAC parameter combinations (design points) to be simulated. Information on the
number of replications per design point, and other run parameters, are contained in
another new input file (foday.txt). After each simulation replication, the model writes the
performance estimates, such as average finished goods inventory and customer service
percentages, to separate output files. The original pac.out report may also be produced,
but within the today.txt file, the generation of this report can be suppressed (as would be
prudent when conducting several simulations). Figure 2.3 shows an overview of the new

model. Further details may be found in Appendix A.
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Figure 2.3 Overview of the PACSIM Model

Because it is written in a high level language (FORTRAN), the simulation model is
very fast; depending on the complexity of the system, it can execute several hundred runs
per minute, which, in our experience, is in the order of ten times faster than simulation

packages such as Arena.
2.5 Concluding Remarks

The motivation for this work was the development of a framework to enable analysis
of complex manufacturing systems operating under a variety of production control
strategies. The PAC scheme, with its ability to model several types of production control
strategies, is an attractive modeling scheme. The PACSIM simulation model provides
the ability to estimate the performance measures for manufacturing systems with
complexities such as multiple products or assembly stations. Chapter 3 discusses the next

stage of the framework: analysis and optimization options using the PACSIM model.
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CHAPTER 3

ANALYSIS AND OPTIMIZATION OF SIMULATION MODELS

This chapter discusses the options considered for the final component of this
framework; the analysis of a manufacturing system operating with the PAC scheme in
order to choose the right PAC scheme parameters. In Bielunska-Perlikowski (1997), a
simulation optimization approach was used to minimize a cost function, with respect to
the PAC parameters, of inventory holding costs and customer delay costs. She
acknowledged that, at best, her approach would only result in a local optimum.

We initially explored more sophisticated simulation optimization techniques for the
purposes of determining the best combination of PAC parameters for a system. However,
it became apparent that a simulation metamodelling approach would provide more
flexibility in the analysis of these systems. Some of the factors affecting this decision are
discussed in Section 3.1. A discussion of Bielunska-Perlikowski’s (1997) approach is
provided in Section 3.2. In Section 3.3, we describe several simulation optimization
techniques, including the issues with these approaches. Section 3.4 provides an overview
of the simulation metamodelling approach, where the goal is to develop a function
approximation of the performance measure expected value function. Finally, Section 3.5
summarizes our arguments for the choice of metamodelling over simulation optimization

for this framework.
3.1 Important Factors

There are several complicating issues with this problem that make it a challenge.
Firstly, three of the PAC parameters (initial inventory, number of process tags, and batch
value) are integer values. The number of possible combinations of PAC parameters for a
given system depends on the number of processing stations, the number of parts produced,
the number of PAC parameters under study at each cell/store, and the range of feasible
values for each of these parameters. Even for a relatively small problem, the number of

valid combinations can be very large. For example, a four-stage system where only
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process tags, k, and initial inventory, z, are decision variables (all r = 1 and T = 0) will

have a total of eight parameters. Even when each parameter is limited to one of five

possible values, there would be 5 or 390,625 possible parameter combinations to analyze.
Although there is some knowledge of the relationship between the PAC parameters

and the system performance, such as the expectation that increasing initial inventory at

final stores should improve customer service outcomes, the majority of these

relationships are not known. Finally, there are several performance measures (outputs)

which may be of interest; given the conflicting nature of these measures, any analysis

would certainly involve at least two of these performance measures.
3.2  Simulation Optimization of the PAC Performance Model

Bielunska-Perlikowski (1997) was interested in comparing traditional controls
strategies to the PAC scheme. She identified eight traditional strategies, including MRP,
Local Control, Integral Control, Kanban, CONWIP, Base Stock, and two variants of
Produce-to-Order. For MRP, she provided the system with perfect advance notification
of demand. She introduced a cost function of customer delay time and inventory levels to
the simulation model, which could then estimate the system cost for a given set of input
parameters. Her goal was to find, for each of the eight traditional strategies and the PAC
scheme, the parameters which minimized this cost function. Then, the best of each
strategy could be compared in order to select the best strategy for the system.

She developed a Hooke and Jeeves pattern search algorithm (Hooke and Jeeves,
1961) to find the values of the strategy parameters that optimized the cost function. The
procedure involved running a simulation for 300 24-hour days, with a 40 day warm-up
period, for each tested point. Because one of the input parameters, T, was a continuous
variable while the others were discrete, Bielunska-Perlikowski limited the range of
possible values to be integers, measured in minutes. Bielunska-Perlikowski then
proceeded on the assumption that the simulation results were accurate enough that the
output of each simulation run could be treated as an exact data value, rather than an

estimate, and therefore a deterministic algorithm could be used to optimize the cost
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function. In other words, the pattern search approach was applied using the simulation

model as the function; each time a function evaluation was required, the simulation
model was run at that design point, and the output of the simulation model was used as
though it were the exact value of a function.

For the eight traditional strategies tested, the values of the PAC parameters were
restricted so that they conformed to the definitions established by Buzacott and
Shanthikumar (1992). The optimization technique was applied to the simulation model
to determine, for each of these traditional strategies, the values which resulted in the
lowest cost system. She then removed these restrictions and again applied the
optimization technique to determine the lowest cost PAC scheme. In each case, the PAC
scheme resulted in the lowest cost, but since each of the tested strategies could be
considered a specialized version of the PAC scheme, this was an expected result.

Bielunska-Perlikowski (1997) also tested a random search optimization algorithm.
An initial point was chosen, and K points were randomly generated within a certain range
of the initial point. The best point within the test group was determined, which was then
designated as the new approximation of the optimal point, and a new set of K random
points were generated about this new point, with a slightly reduced range. This process
continued until a predetermined number of iterations was reached. She determined that
the number of simulations needed to achieve good results was large, and the technique
did not perform as well as the pattern search algorithm; however, she concluded that the
random search technique could be useful in finding a good starting solution for the
pattern search algorithm, or in exploring alternate solutions around the solution provided
by the pattern search algorithm.

Bielunska-Perlikowski (1997) did acknowledge that in each case, her simulation
optimization technique did not guarantee a global minimum. As well, the technique
required the use of a cost function, in order to reduce the multiple outputs of the
simulation into a single value to be optimized. In order to determine the total inventory
cost, a separate (arbitrary) cost was assigned to the value of WIP at each stage of

production, assuming that WIP further downstream in the system was more valuable than
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raw material due to the value that had been added by processing. Bielunska-Perlikowski

(1997) acknowledged that costing is problematic in that it introduced yet another
parameter to the problem, one which may very seriously influence the optimization result.
If the original cost coefficients were to be changed, even slightly, the entire optimization
procedure would need to be repeated.

While some of these problems could be resolved by applying a more sophisticated
simulation optimization technique, we argue that simulation optimization is not the right
approach to this problem. In the next section, we provide an overview of several
simulation optimization approaches, and the issues with those approaches, in order to

support this argument.
3.3  Simulation Optimization

Simulation optimization involves optimizing the parameters of a stochastic complex
system by using a simulation model as the objective function (Azadivar, 1999). The
optimization problem may be represented by

min £(x): £(x) = tim E[L(¢ |x.¢)] [1]

s 1->oo

where:

x = the parameter value(s)

S = the range of acceptable values for x

t = the length of the simulation run

& = stochastic process which drives the simulation

L(cf l X, t)= random simulation response given x and ¢

Given that the limit as t — oo, f(x), is a deterministic function, the optimization
problem in equation [1] is well posed. However, we generally will not know how to

evaluate fexcept as a result of two limiting operations: the one as part of the expected

value, and the other as t — oo,
The goal of the optimization technique applied is to find the optimal parameter
setting, x*, such that

x" =argmin f(x) 2]
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The choice of optimization approach depends on several factors. The function itself
may be multivariate or a single output measure. The parameter(s), x, may be continuous
or discrete. There may be system constraints involved. Also, depending on the nature of
the problem, it may be acceptable to find a good local solution, rather than attempting to
find a global one. This section provides an overview of several simulation optimization

approaches, and the issues with the application of these approaches to our problem.

3.3.1 Rigorous Methods

Only two methods, stochastic approximation methods and sample path methods,
have been shown to provide a rigorous approach to simulation optimization. Stochastic
approximation methods are based on the theory that a local minimum of a function can be
found by finding the zero of the gradient (Fu, 1994). The classical stochastic
approximation techhique (Andradottir, 1998) is a gradient descent technique that involves

generating a sequence {x,} of estimates of the solution, x", using the equation:

X . =x —alY [3]

n+l n ntn

where

Y, = an estimate of Vf(x,)

a, = the step size, where Zan =oo and lima, =0
n—yo0
n

The estimate of the gradient, Y,, is determined by a gradient estimate technique such
as perturbation analysis, likelihood ratios, or finite differences, among others (see
L’Ecuyer, 1991, for an overview). These techniques are based on the original work of
Robbins and Monro, and Kiefer and Wolfowitz (for a description of these approaches,
see Glynn, 1986). However, there have been several problems observed with these
techniques, including slow convergence and convergence far away from the optimal
solution (Yakowitz et al., 2000), and the absence of a good stopping rule (Kleywegt and
Shapiro, 2001). Several variants of stochastic approximation have been proposed to

address these issues (for example, Andradottir, 1995b), and while some have been shown
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to converge almost surely to the optimal solution, the number of iterations of the

algorithms may be extremely large.

The Sample Path (Robinson, 1996) or Stochastic Counterpart Method involves
approximating the underlying unknown objective function, f{xx), with a deterministic
function (Andradottir, 1998). In the context of simulation, this function could be the

average of one performance measure for a simulation run of length . It is assumed that:

flx)= tli_)IEf(x,t) [4]
where

x = controllable variable,
t = the length of the simulation run, and
f(x,t) = a function of the output of a simulation.

For a finite ¢, f(x,t) is dependent on the stochastic components, w, of the simulation.
Therefore, this technique involves selecting or generating a fixed w, so that the original
function can be approximated by a deterministic function of x, f (x| w, t). Therefore, the

problem is then to find x*, such that:

x" = arg min f(x| w,t) (5]

The assumption is that if ¢ is large enough, this deterministic function will be a good
approximation of the true function, f{x), and it may be minimized by applying a
deterministic optimization method (Robinson, 1996). The challenging issue that remains
is how to ensure that w remains fixed in each simulation run. Robinson (1996) suggests
that common random numbers may be used; however, in complex simulation models, this

application is not straight-forward, as there may be several stochastic processes involved,

and the order in which events occur may maitter.
Neither stochastic approximation methods nor sample path methods are commonly

applied. Both require very long simulation runs. Stochastic approximation methods are
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designed for continuous variables, and the Sample Path Method would be very difficult to

implement for complex simulation models.

3.3.11  Gradient Estimation Techniques
Gradient Based Search methods estimate the response function gradient and use
common mathematical programming techniques to minimize the function (Carson and
Maria, 1997). Finite Difference Estimation “is the crudest method of estimating the
gradient” (Azadivar, 1999, p.95). The estimate is obtained by simulating a system under
a set of input parameters, X, and then for each input in this vector, an estimate of the

gradient at X is obtained by

=[L(xl,...,xi+Axi,...,xp)—L(xl,...,xp)] 6]
Ax.

1

.4
&,

where
P = the number of input parameters, and
L = the random output of the simulation (as an estimate of the function).
This estimate itself is also a random variable. To estimate the partial gradient for all
input variables, P+1 simulations are necessary, and in order to get a good estimate of the
function, multiple observations may be necessary for each partial derivative. Because L
is a noisy estimator of the function, f, it is “quite likely that at least one of the estimates of
the gradient point the search in the wrong direction” (Azadivar, 1999, p.95). To be more
confident that each estimate within the gradient has the proper sign, several simulation
replications would be required, and a confidence interval for the gradient estimate
constructed.

Other techniques in this category include Likelihood Ratios, Perturbation Analysis,
and the Frequency Domain Method. Once a gradient has been estimated, a mathematical
search technique can be used to search for an optimum. These techniques assume that the

variables involved are continuous.
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3.3.2 Response Surface Methodology

Response Surface Methodology (RSM} is a collection of statistical and mathematical
techniques useful for optimizing stochastic functions, not primarily in simulation (Gonda
Neddermeijer et al., 2000). In the simulation optimization context, the RSM technique
involves first developing an approximation of the simulation objective function by a low
order polynomial on a small subregion of the domain considered to be of interest. Then,
through successive stages, the size of this optimal search area is reduced by minimizing
the low order polynomial and reducing the size of the search area around this point. Then
a quadratic or higher order polynomial is fitted and the optimum determined through
usual deterministic methods (Fu, 1994).

In general, RSM requires a smaller number of simulation experiments relative to
many gradient based methods (Carson and Maria, 1997), however it has been shown that
for complex functions with sharp ridges and flat valleys it does not provide good answers
(Azadivar, 1992).

3.3.3 Simulation Optimization with Discrete Input Variables

Most of the methods discussed above required that the variables be continuous. As
pointed out by Glynn (1986), continuous algorithms and discrete algorithms are very
different, and “it is expected that solution methodologies for the discrete problem will
need, for the most part, to be tailor-made to the application” (Glynn, 1986, p.54).
Simulation optimization techniques for these classes of problems have typically involved
the adaptation of heuristic techniques designed for deterministic optimization or the

development of specially designed techniques. Some of these are described below.

3.33.1 Simulated Annealing
Simulated Annealing (SA) is a technique originally designed for deterministic
optimization (e.g. Kirkpatrick et al, 1983) which has been applied to simulation
optimization. One of the first applications of SA to simulation optimization was reported
by Bulgak and Sanders (1988). At each stage of the algorithm, they conduct two

replications of the simulation for both the point under consideration and the current point,
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and then calculate a confidence interval for the difference in function values; if there is

no statistically significant difference between the average function values, then another
replication at both points is conducted and new confidence intervals are calculated. This
process continues until a statistically significant difference can be determined, or until the
maximum number of iterations is reached. If there is a significant improvement with the
new point, it considered a better point, and is adopted; if there is not, then the point may
still be adopted based on the magnitude of the average difference and the current
temperature.

Haddock and Mittenthal (1992) employ the standard simulation annealing technique
to simulation optimization. They attempt to reduce the noise in the simulation responses
by conducting very long simulation runs at each point. They present numerical examples
which they claim found the optimal solution while only evaluating 30% of the total
possible parameter combinations. However, in order to reduce the significant
computational time required, they employ a rapid annealing schedule, but this technique
is not guaranteed to converge.

Alrefaei and Andradottir (1999) presented a modification of the standard simulated
annealing algorithm. They deal with the random response issue by holding the
temperature constant, and allowing the algorithm to continue checking points, while
recording the number of times each point is visited. In some cases they may even
conduct multiple replications at each point at each visit. They also present a second
variant of their approach where the optimal solution is the point with the best average
performance measure, which is updated every time the point is visited. While the authors
show that these techniques converge almost surely to the optimal solution, they require a
significant amount of simulation replications. The numerical example presented in
Alrefaei and Andradottir (1999) involved one variable and only 50 feasible solutions. In
their experiments with these algorithms, 400 — 1000 iteérations of the algorithm
(sometimes with multiple replications per iteration) were required to converge to the

optimal solution.
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While some success has been reported with the application of simulated annealing to

simulation optimization problems, it takes a significant amount of computational effort at
each stage of the algorithm to determine if there is a significant difference between a
candidate point and the current solution. The algorithm has been shown not to converge

when the estimates of the objective function are noisy (Gong et al., 1999).

3332 Tabu Search

Another heuristic originally developed for deterministic optimization which has been
applied to simulation optimization is the tabu search algorithm (see Glover et al., 1999).
Lutz et al. (1998) used tabu search to find the optimal buffer sizes for a six-station serial
production line. At each evaluation stage, four simulation replications are carried out and
the average value of the replications is taken as the actual function evaluation, and the
algorithm is carried out as in the deterministic case.

Martin et al. (1998) use tabu search to determine the number of Kanbans and lot
sizes for a 3 station serial line which produces two products, in order to minimize a single
utility function. The value of this function for a given configuration could only be
estimated via simulation. At each evaluation stage, four simulation replications were
carried out and the average value of the replications, and a 90 % confidence interval for
the true mean, were calculated. A move was defined as an improving move only if the
move had at least a 90% chance of being indifferent or greater than previous moves. If
the simulation response is at all noisy, then most moves will be non-improving under this
definition. They tested several variants of tabu search, and found a simulated annealing

algorithm found the optimal solution faster than their best tabu search technique.

3.3.33  Evolutionary Algorithms
Evolutionary algorithms include various methods such as genetic algorithms,
evolution strategies, and evolutionary programming (Pierreval and Paris, 2000). These
techniques were also originally developed for deterministic objective functions; however,
some researchers have applied the technique to simulation optimization problems (e.g.
Pierreval and Tautou, 1997, Tompkins and Azadivar, 1995). While EA’s provide the
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ability to include qualitative variables, they are often very slow (Pierreval and Paris,

2000). When used for simulation optimization, each time a function evaluation is
required, multiple replications of the simulation are conducted and the average of the
simulation responses is used as in the deterministic case. One major drawback is the lack
of results on the convergence of such an approach, although, as Pierreval and Paris

(2000) point out, there have been several positive results reported in the literature.

3.3.34  Specially Designed Discrete Simulation Optimization
Techniques

There are a few random search algorithms which have been investigated specifically
for discrete variable simulation optimization. Andradottir (1992, 1995a) proposed a
discrete optimization method where the idea is to generate a random walk through the
state space. Starting at a random point, a simulation is conducted and then a
neighbouring point is randomly chosen and a simulation is conducted at that point. If the
response of the neighbouring point is better than the current point, then the neighbouring
point is considered the current alternative. If not, a neighbouring point is again randomly
selected and the process repeated. She then shows that the alternative visited most often
over several iterations converges almost surely to a local optimizer of the objective
function. A similar approach was taken in Andradottir (1996), however instead of
limiting the choice of next possible alternative to that of a neighbouring point, any point
in the state space may be randomly chosen and compared to the current alternative. Her
assumptions include the idea that, even though the simulation generates random
responses at each stage of the algorithm, the probability that a correct move is taken is
higher than the probability that an incorrect move is taken. This method was shown to
converge almost surely to the global solution over a large number of iterations

The stochastic ruler algorithm (Yan and Mukai, 1992) is similar to simulated

annealing, however it deals with the stochastic nature of the problem somewhat
differently. Using their notation, assume the goal is to minimize the unknown objective

function g(s):

g(s)= E[n(s,Y(s))] [7]
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where

s = the decision variable, such that s S, the set of possible solutions,
h(s, y) = performance of the system, and
y = a sample of the random vector, Y(s).

A random variable, H(s) is defined by H(s) = h(s,¥(s)). Another random variable,
O(a,b), represents the stochastic ruler. The values of a and b are chosen, through
simulation experiments or experience, such that a < H (s) <b Vse §. In this paper, the

authors assign a uniform distribution to ©, but note that other distributions are possible.

They then turn the original minimization problem into the maximization problem:

max{P(s,a,b) |ses } [8]
where

P(s,a,b)= P[H(s) < @(a,b)]

The solution set for this problem, S*(a,b), is defined as

S™(a,b)={se S| P(s,a,b) 2 P(s",a,b) Vs'e S} 9]

A sequence {M;} of positive integers is chosen such that M — oo as k — oo, The
variable X, denotes the current solution, and the algorithm starts at an initial solution, Xy
=s0. At each stage, k, of the algorithm, a neighbouring point of the current solution, s,
is randomly chosen as a candidate solution. A sample of A(s’) from H(s’) is then drawn
(by running a simulation replication). A random observation of 0 is then drawn from
O(a,b). If h(s) > 0, then the candidate is discarded and the process begins again at k=k+1,
with X1 = X;; if it passes this test, then another sample of 4(s) and 0 is drawn and the
test is conducted again. This testing continues until either s(s’) > 8, whereby the
candidate solution is discarded, or until My tests have been conducted, in which case s’is
accepted as the current solution (Xi+1 = ). Therefore, at each stage of the algorithm, the
random sample, A(s”), must “beat” the sample from the stochastic ruler M times if it is to

be accepted as the current solution. They showed that the sequence of solutions, {X;}, is
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a nonstationary Markov chain, and under mild conditions they show that the probability

that the current solution, Xj, is the global solution converges to one as k — oo.

While Alrefaei and Andradottir (1997) suggested variants to this method to
accelerate the convergence, these methods do result in a very large number of simulation
replications in order to ensure a global solution. In fact, Yan and Makai (1992) choose
their neighbourhood structure so as to ensure that every possible solution in the state
space is covered by the algorithm; combining this with the increase in the number of
iterations at each stage of the algorithm, it can be easily seen that where the solution
space is large, the computational requirements for this algorithm will be considerable.
While the Alrefaei and Andradottir (1997) variants involve conducting only a fixed
number of simulations at each stage of the algorithm, their method also involves visiting
every possible point in the state space at least once. Finally, choosing the stochastic ruler
presents another problem,; it may involve another process in order to estimate the
‘bounds’ on the objective function.

The stochastic comparison method (Gong et al., 1999) is similar to the stochastic
ruler method in its implementation; however, the test at each stage of the algorithm is
simply whether the random sample of the function at the candidate solution is greater
than a random sample of the function at the current solution; if the candidate solution
passes this test M, times, it is adopted as the current solution. As well, the candidate
solution is not chosen from a neighbourhood of the current solution, but randomly from

the entire state space.

3.3.3.5 Comparison Procedures
Methods such as ranking and selection methods and multiple comparison procedures
use statistical methods to compare the outcomes of many simulation experiments to
determine the ‘best’ alternative from a discrete set of alternatives (see Swisher and
Jacobson, 1999). This approach is useful only when a small number of alternative
scenarios are under consideration, and the goal is to determine the best, according to

some system measure.
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3.3.4 Multiple Response Optimization

There has been some work on simulation optimization for multiple response systems.
Evans et al. (1991) detail approaches which involve some type of articulation of
preferences from the decision maker. For example, in the manufacturing case, a decision
maker may wish to minimize work in process inventory while maximizing throughput
and customer service levels. Preference articulation is then having the decision maker
decide which outcomes are more ‘important’.

Using a cost function, as described above, would be considered a prior articulation of
preferences. Fixing a large cost to late orders would result in a solution that keeps
customer service levels high, but most likely at the expense of work in process inventory.
Also, the problem could be formulated as a goal programming problem, where the
decision maker must decide which of the outcomes is most important. Another approach
involves a progressive articulation of preferences, where a solution which attempts to
find a good compromise amongst the output measures is produced and the decision
maker must decide which of the outcomes is least satisfactory and a new solution is
determined based on this articulated preference. This routine would be repeated until the
decision maker is satisfied with the result. A posterior articulation approach would
involve generating a series of (non-dominated) solutions, each of which provides the best
possible outcome for only one of the output measures, and allowing the decision maker to
choose which is most preferred. Evans et al. (1991) conclude that the best general
method for multicriteria optimization would involve all three types of approaches.
However, the ability of the decision maker to articulate various types of preference
information is perhaps the greatest concern. All approaches can involve running a
simulation procedure at least once for every possible outcome, and multiple times in the
interactive case. ’

Mollaghasemi and Evans (1994) approach the problem in an interactive manner for
a manufacturing design problem. Initially, the system is optimized with respect to one
value at a time, which then determines the ‘ideal’ value for each measure. Then, an

objective function representing the weighted deviation of each output measure from its
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corresponding ideal measure is created, and a solution which minimizes this deviation is
found using a gradient based approach. The decision maker can review this solution, and
then decide if one of the objectives should be improved. The algorithm then puts a
higher weight on deviations for this objective and repeats the optimization procedure.
This process continues until the decision maker is satisfied with the solution.

Another approach is to determine a minimum (or maximum) constraint on one or
more output variables while attempting to optimize another variable (Azadivar, 1999).
For example, again in the manufacturing case, a firm may want to minimize work-in-
process inventory, but require a certain minimurm customer service rate from the system.
Azadivar et al. (1996) perform such an optimization on a production system using an

algorithm based on the complex search method algorithm.

3.3.5 Simulation Optimization of Manufacturing Systems

Brennan and Rogers (1995) use an infinitesimal perturbation analysis (IPA)
technique on a simulation model to determine an operational policy for a production line
with machines that fail. The goal was to determine the line’s throughput sensitivity to
changes in mean time to repair (MTTR) for the stations, in order to identify which
stations should receive priority during failures. Sammons and Cochran (1996) use
simulation to study the impact of making design changes to a manufacturing work cell.
Because there were only three design changes under consideration, and therefore eight
possible alternatives, they studied all of the changes and compared them using statistical
techniques. However, they did indicate that a pattern search algorithm could eliminate
some design alternatives for larger problems.

Bulgak and Sanders (1988) simulated an automatic assembly system, and used a
modified simulated annealing algorithm to optimize buffer sizes. Paris and Pierreval
(2001) use a distributed evolutionary simulation optimization approach for finding the
optimal allocation of Kanbans in a four stage, three product production line. Sengupta et
al. (1999) use the Hooke and Jeeves algorithm to find the optimal Kanban allocation in a
in a three cell FMS.
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34  Simulation Metamodeling

An algebraic model of a model is known as a metamodel. A metamodel may be a

simplified version of a known formulaic relationship, such as a Taylor-series expansion

of a known function (Sargent, 1991), or a function fitted to observations of actual data,

usually through linear least squares regression. Simulation metamodels are response

surfaces fit to data generated by a simulation model, where the actual functional

relationship between inputs and outputs is unknown (Figure 3.1).
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Figure 3.1: Metamodelling Concept

Following a similar definition to that of Kleijnen (1979), the underlying (unknown)

function of the actual system, f, can be given as

where

y=flx.%,,...,%,) [10]

x; = a factor influencing the outputs of the actual system, i=1,..., a.

The simulation model attempts to approximate the output of the actual system

ys=g(xu,x2,...,xs,r) [11]
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where
ys = the output of the simulation,
x; = a factor chosen to be input to the simulation model, j = 1...5, s < a, and
r = random effects and effects of actual factors not included in the simulation model.

In the case where there are multiple simulation outputs, separate metamodels are
typically developed for each output (Barton, 1998, Kleijnen and Sargent, 2000). Finally,

a simulation metamodel is an approximation of the simulation model:

y, = h(x,.%,,....%,) [12]

where
ym = the metamodel estimate of the simulation response, and
xi = factors chosen to be input to the metamodel, k = 1...m, m < s, and

ym =E(y,)+e [13]

where
£ = fitting error, with expected mean of zero.

There are many advantages to metamodelling in post-simulation analysis, as
discussed by Friedman and Pressman (1988, p.939):

“Aside from the obvious advantage that working with a mathematical
function has over running and re-running costly simulation programs, and
aside from the pleasing elegance of a solution obtained by the union of
numerical and analytic techniques, the simulation metamodel has been
lauded for its many other uses, among them: model simplification,
enhanced exploration and interpretation of the model, generalization to
other models of the same type, sensitivity analysis, optimization,
answering inverse questions, and providing the researcher with a better
understanding of the behaviour of the system under study and the
interrelationships among the variables.”

While a simulation model can produce very good estimates of the actual measures of
interest, the outputs are random variables. Careful design of the simulation experiments

can reduce the variance of these measures, but cannot entirely eliminate the noise in the

output. If the goal of the analysis is to optimize output measures, then simulation
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metamodelling has a distinct advantage over simulation optimization. Metamodels are

functional approximations of the simulation expected value functions; deterministic
nonlinear optimization techniques may be applied to these functions to find the optimal
values.

Major issues in simulation metamodelling include determining the functional form of
the metamodel, determining the design points required to fit the metamodel to the

simulation model, and determining the adequacy of the fitted metamodel (Barton, 1998).

34.1 Forms of Simulation Metambdels

Often, simulation metamodels are linear regression models (Sargent, 1991) of the
following form:

".’ m 3 m-1 m
y=ﬁ0+2ﬂi~xi+2ﬁﬁxi +Z Zﬂijxixj+...+£
i=1 i=1

i=1 j=i+l

[14]

The procedure for fitting a regression model to simulation output has been
extensively reported in the literature (e.g. Kleijnen, 1979, Madu, 1990). Basically, it
starts with a low order model with minimal or no interactions, and the complexity of the
model is increased until an acceptable fitting error has been achieved. Unlike the
Response Surface Methodology approach in simulation optimization (Section 3.3.2), the
goal is to fit a regression model to the entire space, rather than a small subsection of the
space where an optimal solution to a function is believed to be.

In some cases, there may be some knowledge of the relationship between input and
output variables, and a functional form may be chosen based on that knowledge. For
example, Friedman and Pressman (1988) developed a simulation metamodel for an
M/M/s queuing system, with demands arriving according to a Poisson process with a
constant average arrival rate, A, and s identical servers each with service rate, 4. The
measure of interest was the time spent in the system, W. They assumed that this value
was dependent upon the utilization of the servers, p, where p = A/us, and therefore chose

a multiplicative model:
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where
W; = wait time observation from the simulation
A; = arrival rate for observation i
M; = service rate for observation i
s; = number of identical servers for observation i
o, f; = coefficients for the metamodel
V; = error term
They then transformed this function into a linear model by a logarithmic

transformation:
InW,=lna+ B In4 - B,Inyu — B,Ins, + Inv, [16]

They used regression analysis to estimate the coefficients for the simulation

metamodel, then applied antilogs to return to the original predictive metamodel:

where

W= the predicted output of the simulation model.

They conducted 10 experiments where the simulation generated 10 sets of observations.
A separate metamodel was constructed for each of these 10 sets of data, and they found
that the resulting form of the metamodel was consistent over the 10 experiments. They
tested several input combinations with these models and found that the average relative
error between the analytical result and the metamodel results varied between 1.36% and
4.71%. The authors used a similar approach to determine the total cost of an inventory
system based on ordering policy variables. Other metamodel forms, such as splines,
radial basis functions, and spatial correlation models, are described in Barton (1998).
Recently, artificial neural networks have been studied as another approach to
simulation metamodelling. They were originally developed as a simplified mathematical

version of biological neural networks (Rumelhart et al., 1994). Neural networks have
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been applied to several complex problems, such as pattern classification, forecasting,

clustering, and function approximation (Jain et al., 1996); for simulation metamodelling
purposes, we are interested in networks used to approximate functions. A neural network
computes a function (mapping) from input space to output space (Masson and Wang,
1990). This may be viewed as a weighted directed graph in which artificial neurons are
nodes and directed edges (with weights) are connections between neuron outputs
(dependent variables) and neuron inputs (independent variables) (Jain et al., 1996).
Neural networks may be viewed as another form of nonlinear regression analysis, and are
particularly attractive for problems where there is little or no knowledge of the

relationship between the inputs or outputs.
3.5  Simulation Optimization vs. Simulation Metamodelling for the PAC Model

The purpose of this framework is to enable the analysis necessary to determine the
most appropriate control strategy for the manufacturing system in question. The means
of performance estimation in this framework involves a simulation model; therefore, the
selection of either simulation optimization or metamodelling was dependent upon the
type of analysis that would be necessary to determine the appropriate strategy. This

section addresses the applicability of these approaches to our problem.

3.5.1 Discrete Parameters in the PAC Model

For each cell/store in the PAC model, there are potentially three discrete variables:
initial inventory, z;, number of process tags, k;, and the batch size, r;. Therefore,
simulation optimization techniques designed for continuous variables, such as stochastic
approximation methods, would not be applicable to this problem.

As for the simulation optimization techniques for discrete variables, as discussed in
Section 3.3.3, they could be roughly broken into categories; techniques designed
specifically for simulation optimization, and heuristic methods used in deterministic
optimization that researchers have attempted to apply to simulation optimization.

Techniques designed for simulation optimization, such as the Stochastic Ruler

Method, can be computationally expensive, as they require sampling at a large number of
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points, often more than once, due to the fact that the outcome of a simulation run is only

one realization of the random variable. In fact, the Stochastic Ruler Method actually
ensures that every possible solution candidate is included in the search and evaluated at
least once. Given the size of the systems we wish to analyze, this approach is not
practical. As for the heuristic techniques, such as tabu search or simulated annealing,
they were designed for optimization problems where the objective function can be
evaluated precisely, and where a single evaluation is all that is necessary. However, in
the simulation environment, we obtain random observations, rather than precise
evaluation, of the output measures. In order to create estimates and to reduce the
variance of these estimates from the actual (but unknown) values, one could replicate the
simulation many times at each point, and use the average as the estimate of performance.
However, there is still no guarantee that the level of accuracy of these averages will be
sufficient to ensure that the techniques will work well. It is easy to see that these types of

techniques can become computationally expensive for even moderately sized problems.

3.5.2 Identification of Costs

There has been little work published in the area of multi-response simulation
optimization, perhaps due to the difficulties presented by the stochastic nature of the
simulation responses, and the fact that multiple responses often conflict (Tekin and
Sabuncuoglu, 2004). Most of the simulation optimization techniques described in
Section 3.3 assume that there is only one objective function to evaluate; either there is
only one system measure (one output of the simulation) which can be minimized or
maximized, or multiple outputs can be combined into a single function to be optimized.

In the manufacturing environment, one cannot evaluate only one measure, because of
the interrelationship of these measures. For example, minimizing only work in process
inventory may result in low throughput, which would lead to poor customer service.
Therefore, a single function that combines the output measures would be required, such
as one which applies a carrying cost for inventory and a penalty for late orders. The
simulation optimization procedure would then attempt to find the control strategy which

would minimize this overall cost. If the cost function were changed in any way, the
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entire optimization procedure would need to be repeated. Cost coefficients for such

functions in manufacturing are very often difficult to determine (e.g. Silver et al., 1998).
For example, it would be difficult to assign a cost to a lost order; while lost profit for a
single transaction may be relatively easy to calculate, placing a cost on potentially lost
future business would be very difficult to do.

Therefore, to use simulation optimization, it may be necessary to assign somewhat
arbitrary costs of the individual measures in the cost function, to assign the level of
importance to these measures. For example, if customer service were the most important
factor, then a high cost could be placed on customer delays while a lower cost placed on
carrying inventory. However, even if the simulation optimization technique were to
provide the global optimum for this cost function, there may be parameter combinations
which would allow for much lower average inventory while only incurring a small
decrease in customer service; management may be interested in such a solution, but it
would not be identified in any simulation optimization approach. As well, as discussed
earlier, depending on the complexity of the manufacturing system, it could take an
extreme amount of computational expense to determine this optimal solution; however,
with a deterministic metamodel, a heuristic such as Simulated Annealing could easily be

applied to find this solution.

3.5.3 Exchange Curves

An alternate and more useful approach to determining an appropriate strategy is to
determine the trade-offs between two or more of the performance measures, and then
allow management to make the decision based on this information.

Starr and Miller (1962) introduced the optimal policy curve to aid in the selection of
inventory policies for multiple items when the inventory carrying charge and setup costs
were not known. Assuming deterministic demand rates, the total cost of an inventory

policy, TC,, for a single item the sum of the setup costs and the sum of the ordering costs:

r [18]

i

0 2

i
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where

A = setup (or ordering) cost, $/setup

D; = annual demand rate for item i (units/yr)
Q; = order quantity for item i (units/order)
v; = unit cost of item i ($/unit)

r = carrying charge ($/$/unit)

The optimal order quantity, O;* is the well known EOQ formula:

o = 24D =\/E 12D, [19]
v;r r V;

If the setup cost, A, and carrying charge, r, were known, the optimal ordering

quantity for every item could be determined, and the total average value of inventory for
the firm, 77, would be

__Q_Zﬁ=lﬁ£=éll [20]
TI'Z,.: 2 2;2(\/:\/ v, }" \/72,: el

and the total number of setups required per year, N, would be

D, e 21
R e T

The product of these two measures results in a constant term which is independent of

the ratio of the cost variables:

2
TI *N = (Z /%Divi j [22]

This relationship between the two measures of interest and provides the optimal
policy curve. Since this relationship was constructed on the assumption that the
inventory policies for each item were the optimal policies, then any combination of total

inventory and number of setups on this curve is an optimal choice. The other relationship

of interest is the ratio of total inventory to number of orders:
A
kol 1Dy,
- s,
N r Ty
\/:_4" Z v 3Dy,
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[23]
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Thus, by selecting a point on the curve as the desired operating point, management

implies the ratio of the setup cost to the carrying charge, A/r. This value may then be
used to find the order quantities for each individual item. An optimal policy curve is “a
most valuable tool in the frequently occurring and difficult cases where satisfactory
estimates of the relevant costs are not available.” (Starr and Miller, 1962, p. 164)

Brown (1967) assumed that the setup cost would be known, and suggested the
carrying charge, r, be considered a “policy variable” as there was “no correct value to use,
other than the value that results in what management wants.” (Brown, 1967, p. 30).
Rather than requiring that management identify the value of this variable in order to
determine the optimal policy, instead management selects the policy, which implies a
value for . He termed these optimal policy curves “exchange curves” since they showed
how concessions in one performance measure could be exchanged for improvements in
the other.

Lenard and Roy (1995) extended this idea to non-deterministic inventory systems.
They approximated the “efficient policy surfaces” for two or more performance measures
using a series of simulations of the system under different policy variables. The optimal
policy surface was then constructed from the performance measures for all non-
dominated policies. A policy is considered a non-dominated policy if there were no other
policy where all of the performance outcomes were considered better. Figure 3.2 shows
how point X is not a non-dominated policy since there is at least one policy (A) where the

performance measures are both better than those for point X.
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Figure 3.2 Example of Optimal Policy Curve (or Exchange Curve)

When two measures are of interest, this approach is feasible when the measures can
be evaluated (or estimated) for all possible policies. The curve itself may be constructed
by determining the convex hull of all the performance measure pairs.

When the number of possible policies is large, it may not be possible to obtain all of
these pairs. In this case, the curve may be estimated through an optimization approach.

Given two conflicting measures, x and y, a cost or score function, C, is given by

C=Ix+(1-A)y [24]
where

A = weighting parameter, 0 <A < 1
By varying the value of A between O and 1, we shift the weight on each of the measures.
Repeated minimizations of this function with different values of A will result in a set of

(x,y) pairs which would represent a set of non-dominated pairs. The convex hull of this

set represents an exchange curve for this problem.
It is clear from the discussion above that generating such exchange curves would
require a great deal of simulation effort compared to the computational effort required if a

deterministic function were available to approximate the performance measures.
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3.5.4 Optimization with Constraints

Another analysis approach that does not involve identifying costs would be to
minimize (or maximize) one of the performance measures subject to constraints on the
other measures. For example, minimization of system inventory could be carried out
subject to constraints on the customer performance measures. Some discrete simulation
optimization methods can deal with constraints, but since each constraint evaluation is
also an estimate, it simply increases the complexity of the problem as discussed in
Section 3.5.1. However, standard mathematical programming techniques could be

applied if metamodels were developed.
3.6 Concluding Remarks

In order to provide an analytical framework for the analysis of a manufacturing
system operating under a Production Authorization scheme, simulation metamodels are
an essential component. This then raises the question of how to construct these
metamodels. Neural networks offer several attractive properties which work for our
problem: the ability to model functions where the underlying form of the function is
unknown and may be highly nonlinear; and the ability to approximate such unknown
functions with reasonable accuracy. In Chapter 4, we will discuss the reasons why neural

networks are a highly appropriate choice for this problem.
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CHAPTER 4

NEURAL NETWORKS AS SIMULATION METAMODELS

It has become apparent that, in order to fully understand the impact of various PAC
combinations on the performance of a manufacturing system, we need to be able to
approximate the underlying performance functions for the system. One alternative way
of doing this is using neural networks. Any continuous function can be approximated by
a feedforward neural network with a single layer of hidden units and continuous
sigmoidal transfer functions (Cybenko, 1989). The result is a fully differentiable
function, which, as we will see, can provide an unbiased approximation of the expected
value function. |

The first section of this chapter includes a discussion on the reasons why neural
networks were chosen over regression models for this application. Some examples of the
application of neural networks in manufacturing are discussed in . The remainder of the
chapter discusses in detail feedforward neural networks, the architecture chosen for this
framework. For a review of other types of network architectures, see Masson and Wang
(1990).

4.1  Neural Networks vs. Regression for Simulation Metamodelling

The question of whether regression or neural networks are the best choice for a
metamodelling approach is dependent on the complexity of the problem, and whether or
not any a priori understanding of the underlying function exists. Regression metamodels
are typically constructed in two stages. First, the form of the underlying regression
function is selected, and then the parameters of the function must be determined. This is
rather straightforward to implement. For data that conforms to a low-order polynomial
form, regression has been shown to have significant advantages over neural networks in
terms of accuracy (Smith and Mason, 1997). Unfortunately, for manufacturing problems,

Yu and Popplewell stated that for modeling manufacturing systems, “multiple, rather
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than single, regression is almost always necessary” (1994, p. 789). Neural networks

provide a non-parametric approach to metamodelling; no predetermination of the
functional form is required. Networks have been shown to be robust to noise (Hurrion
and Birgil, 1999) and to deviations from traditional statistical assumptions of normal
random errors (Chaveesuk and Smith, 2003). However, the development of neural
networks can be difficult. Also, unlike regression models, an examination of the weights
of a trained network usually provides no help in understanding or interpreting the system
(Hurrion, 1997).

Since the purpose of this framework is to enable the analysis of a complex
manufacturing system operating under the PAC scheme, it is not possible to predefine a
functional form for the performance measures that is applicable in all cases. As we will
see, for even a moderately complex system, second and third order polynomial models
are most often not adequate to model these relationships. Although a standard procedure
for selecting network size and training does not exist, one can be prescribed for this

application.
4.2  Neural Networks as Simulation Metamodels in Manufacturing

While regression analysis has been combined with simulation by several
investigators, empirical work on using neural networks as metamodels in discrete event
simulation studies is sparse (Savsar and Choueiki, 2000). Savsar and Choueiki (2000)
used a simulation-neural network metamodel to determine the optimal number of
Kanbans in a just-in-time controlled production line. They compared their neural
network metamodel to a regression model, and found that for their problem “the neural
network model was superior to the regression model in its ability to interpolate accurately
within the design space.” (Savsar and Choueiki, 2000, pg. 3262). Hurrion (1997) used a
simulation-neural network metamodel to determine the optimal number of Kanbans for a
given manufacturing system. In this paper, it was concluded that the use of a simulation

optimization technique for this purpose was impractical, because the amount of
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simulation time would be excessive for all but the simplest problems, and because the

optimal solution found would only be valid for the given cost function.

Kilmer and Smith (1993) compared the use of neural networks and regression
models as simulation metamodels. They conclude that, for small numbers of input
parameters and output measures, the neural network approach can outperform the first
and second order linear regression models typically used in simulation response surface
methods. Kilmer et al. (1999) use a neural network metamodel for a simulation of a
classical (s,S) inventory problem.

Markham et al. (2000) also compare the use of neural networks, decision trees and
regression models as simulation metamodels for finding the optimal number of Kanbans
for a production system. They conclude that both the neural networks and decision trees
well outperform the regression models.

Mollaghesmi et al. (1998) use a neural network metamodel of a multi-response
simulation of a test operation at a manufacturing plant as a decision support system. The
desired performance measures of the system are obtained from management (cycle time,
WIP, and tester utilization), and the neural network is used to determine the design of the
system which can produce those measures (the number of testers at each station and the
type of queuing strategy to use). Nasereddin and Mollaghasemi (1999) also use this
reverse-simulation metamodel approach, and show that it outperforms a regression

metamodel developed from the same set of data.
4.3 Feedforward Neural Networks

The term Feedforward Neural Network (or Backpropagation Network or Perceptron)
refers to a network where signals are passed forward through the network from input(s) to
final output(s).

4.3.1 Neurons

The basic processing unit in a neural network is the neuron. A neuron is presented
with real valued input (independent variable) and transforms that input into a single

output value (or dependent variable). Figure 4.1 represents a simple neuron which
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computes the output value, y, for a single input value, x. The neuron first applies the

weight, w, to the input value, and then sums this result with the bias weight, wo. The
resulting sum is then transformed via a transfer (or activation) function, f, producing the

neuron’s output, y.

Input Neuron

N r N\
Output

X o w > ¥ u f y'

— \ Wo J

Figure 4.1: A Simple Neuron with One Input (adapted from Hagan et al., 1996)

The resulting output function for this neuron, therefore, is
y = f(wy +wx) [25]

A neuron may process an input vector, X, with R elements, and in this case, a

separate weight is applied to each individual element of the input vector (Figure 4.2).

Input Neuron
r N r A\
X
.\w Output

xzo\‘WZaz u‘f y
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AR J

Figure 4.2: A Neuron which Processes an Input Vector (adapted from Hagan et al., 1996)

For this neuron, output function is

y= f(wa, + i wixi) [26]

i=1



There are several different types of activation functions used in neural network
neurons. Some of the more common transfer functions are shown in Figure 4.3. The
parameter 3 is an optional slope parameter. The most common transfer function is the

logistic function (e.g. Jain et al., 1996).
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Logistic (or Sigmoid) Function:

14

Hyperbolic Tangent Function:

14

£(x)= tanb(x)

Linear Function:

f(x)= e /

|-

Hard Limit (Step) Function:

f(x)={—1 if x<0

+1 otherwise

Figure 4.3: Common Transfer Functions

4.3.2 Feedforward Neural Network Architecture

Neurons (often referred to as nodes) in the network are organized in layers, and there

may be layers of nodes between the input and output nodes. These are known as hidden

layers (Figure 4.4). The transformations at these hidden nodes produce output which is

then transmitted as input to the nodes in the next layer.
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Hidden Layer(s) Output Layer

Figure 4.4: A Multilayer Feedforward Neural Network

The details of the network architecture depend on the application for which the
network is to be used; the two main categories of applications are function approximation
(nonlinear regression) and pattern classification. In pattern classifiers, multiple output
nodes are required, and the activation function used in the output layer is nonlinear. For
function approximation, the output layer neurons are linear (Haykin, 1994), and there
may only be one output node in the layer. Constructing a separate neural network
metamodel for each performance function is a common approach in simulation
metamodelling (Barton, 1998, Kleijnen and Sargent, 2000). Where multiple output nodes
are used, they “can interfere with the learning of each” (Kilmer et al., 1999), and
therefore constructing separate networks alleviates this problem. The remainder of this
discussion is focused on feed-forward networks with a single output node used for
function approximation.

The notation used from this point on follows that of Smith (1993). For a
feedforward neural network with a single hidden layer, there are I input nodes (the

number of independent variables), and J hidden nodes. The single output node is the

dependent variable (Figure 4.5).
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Ilnputs  JHidden Nodes 1 Qutput Nodes

Hidden Node j Output Node

Figure 4.5: A Feedforward Neural Network with a Single Hidden Layer and One Output Node

At each hidden node in this network, the weighted sum of inputs, u;, is computed as

follows:

I
uj=a0j+zaijxi vj=1...,J 271
i=l

where
ag; = the bias weight for the 7" hidden node
a;; = the network weight applied to the i input to the j* hidden node
x; = the i component of the input vector, x.

This weighted sum is then transformed by the transfer function (in this case the

logistic function) to determine the output of the j”‘ hidden node, y;:

Vj=1,..,J [28]
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The output of the hidden layer, y;, are then passed to the output node. Here, the final

output of the network is determined. In this case, a linear transfer function (with slope S
= 1) is used at the output node, and therefore the output is simply the weighted sum of the

input from the hidden nodes:
v=by+ 2 by, [29]
J

where
v = output of the output node
box = the bias weight applied at the output node

by = the network weight applied to the 7" hidden node output at the output node

The resulting function [30] for each network output, v, is a nonlinear function in x.

J
v=by+) b;|1+e
j=1

, -1
a0j+2aijxi]

i=1

[30]

The network described above is capable, after assigning values to the weight

variables, of producing real-valued output in response to an input vector, X.
44  Neural Network Training

For function approximation, the network weights which provide the best input-output
mapping must be determined. In other words, the model must be fitted to the data. In the
neural network literature, this process is called network training or network learning. The
goal is to determine the network weights which minimize the difference between the
output of the network, v, and the corresponding actual or estimated system response, .

A training dataset is comprised of inputfoutput example pairs. Each example pair
consists of a set of input data (independent variables) and the corresponding observed or
actual response (dependent variables) obtained through experiment or observation.
During supervised training, an input/output pair is presented to the network, and a

learning algorithm adjusts the weights to reproduce these outputs with a tolerable error.
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Typically, the problem is formulated as a least squares problem, although other functions,

such as a logarithmic error function (Matsuoka and Yi, 1991), have been used. The
example pairs may be presented one at a time (online learning), and the learning
algorithm applied to adjust the weights, or the entire training dataset may be presented at
each iteration of the algorithm (offline or batch learning). Online learning is appropriate
when all of the data is not available at the start of training, or if the function may change
over time. In this application, batch learning is used.

In this application, we assume that there are N example pairs, X,,T, with inputs X, =
{X1nX2n,...,Xm} and observed simulation outputs T, =t,, foralln =1, ..., N. When
presented with the input, X, , the network will produce output v,. The goal of the training

will then be to minimize the mean squared error function:

E =ﬁ%(v,, _t ) [31]

where
Vn = the network output for the #” example, and
t, = the actual or observed output for the n™ example.

Some approaches to network training are discussed below.

44.1 Backpropagation (BP) Training

Backpropagation (Rumelhart et al., 1986) is a popular neural network learning
algorithm because it is a relatively straight-forward technique which often produces good
results (LeCun et al, 1998). Multi-layer perceptrons (networks with one or more hidden
layers) trained with backpropagation “have been found to perform well in many
applications and to find good solutions to the problems posed” (Lippman, 1988, p.4).

Backpropagation (BP) is a gradient descent optimization procedure that adjusts
weights to reduce the system error (Patterson, 1996). The BP method can be used for
supervised training, where the transfer functions are differentiable. It also requires that
the error function itself is differentiable, a requirement met by the use of the mean

squared error (MSE) function (Gallant, 1993). During training, the example sets are
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presented to the network and the resulting outputs are calculated (a feedforward pass).

Then, the partial gradient of the error functions with respect to the network weights are
fed back through the network (backward pass) in order to correct the weights.
The partial gradients of the error term [31], with respect to the network weights, are

then given by the following (for the derivation of these formulas, see Appendix B):

oE .
3 = [(vn —Iy )bj ]yjn (1 —Vin )xin [32]
a; ‘§
oFE
abj = N.(vn _tn)yjn [33]

At a stage during the algorithm, m, the weights for the next stage, m+ 1, are

determined by

m+l _ _m aE
4y =ay ‘77;;7 [34]
oE
1_
bt =bp - [35]

where
11 = the learning rate (step size)
The learning rate, 7, for each change is initialized prior to training, and is often
adapted during the training. The procedure is started by initializing the weights randomly
with very small values. A first pass through the network is calculated, and then the
derivatives computed for each network weight. The weights are updated during the
backward pass, and the output values, v,, are recalculated. The procedure is then

repeated until the error term becomes sufficiently small.

44.1.1 Modifications to Backpropagation
The original backpropagation learning technique is a gradient descent procedure, and
is therefore subject to the problems of any descent procedure — namely, the problem of
local minima (Rumelhart et al., 1986). As well, depending on the complexity of the
network, backpropagation can take a very long time to converge. Therefore, many
researchers have worked on improving this algorithm to reduce the necessary training

time.
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Rumelhart et al. (1986) proposed a momentum term to help speed up learning. Since

a large learning rate can lead to oscillations, the momentum term includes information on
past weight changes, which influence the direction the weight will change at each step.
For example, for the hidden layer weights at the m™ stage of training, the update formula

would be:

a m+1 __ m-1 ) [36]

io=ag —n§§+a<ai’;‘ —aj
i
where

«a = the momentum constant, and & € (0,1).

Adaptive Learning Rates (see Smith, 1993) uses separate learning rates for each
weight in the network, and these rates are changed according to the direction in which the
error has been decreasing recently. Other attempts to increase convergence of this
technique include normalizing the inputs and/or output values about zero, different ways
of initializing the weights prior to training, and other means of automatically adjusting
the learning rates (see LeCun et al., 1998).

Another common problem during training is known as weight saturation or network
paralysis. When a sigmoid function is used as the transfer function, as is the case here for
y; (equation [28]), problems result as the absolute value of the input to this function, u;,
becomes larger (e.g. Rohwer, 1991), resulting in y; approaching either 0 or 1. This is
because the derivative of the network output with respect to the input layer weights
(equation [32]) contains the term y; (1 —y;), which approaches zero in either case. When
this occurs, further learning is essentially halted. This can occur in the early stages of
training, when the weights are far from optimal and the gradients of the error function are

relatively large, resulting in large weight changes. This has led to researchers studying

techniques such as weight decay (eg. Bos and Chng, 1996), bounded weights
(Stinchcombe and White, 1990) and penalty terms (e.g. Saito and Nakano, 2000) to

prevent weights from becoming too large during network training.
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4.4.2 Other Approaches to Neural Network Training

Neural network training has been the subject of a great deal of literature since 1986.
This research could be broken into roughly two categories: ad-hoc techniques, such as
varying the learning rate, using momentum and rescaling variables; and standard
numerical optimization techniques (Hagan and Menhaj, 1994).

The Newton method, in its original form, has been generally felt to be unsuitable as a
solution method for this problem; firstly, because of the need to compute and invert the
Hessian matrix at each iteration, and secondly, because the Hessian is generally not
positive definite everywhere (LeCun et al., 1998) and can be ill-conditioned (Saarinen et
al., 1993). Equation [37] shows the Newton update formula for the weights in the
training problem.

Wt = w™ —(VzE)_IVE [37]
where

w = the vector of network weights.

Modifications to the Newton method for neural network training have included line
search methods, such as Armijo’s Rule (see, for example, Bertsekas, 1999), which ensure
sufficient progress at each iteration (Battitti, 1992). A modified Cholesky factorization
(Dennis and Schnabel, 1983) can be used when the Hessian is not positive definite
(Battitti, 1992).

The Conjugate Gradient Method has been applied to network learning in cases where
the number of weights, and therefore the size of the Hessian matrix, makes calculating
the inverse of the Hessian (or an approximation of the Hessian) computationally
prohibitive (e.g. Johansson et al.,1992). This is common in such applications as image
processing or character recognition, where the number of inputs can be quite large. For

such large scale networks, the Conjugate Gradient Method is generally felt to be a good

technique for network learning (Moller, 1993). The use of the momentum term discussed
earlier can be considered as an approximated form of the conjugate gradient method
(Battiti, 1992). Secant methods such as the Broyden, Fletcher, Goldfard and Shanno
Update (BFGS) provide a positive definite approximation to the Hessian matrix, using
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only information about the gradient. Another more recent approach to the network

learning problem is that of Interior Point methods (Trafalis, 1999). The Primal-Dual
algorithm (Trafalis, 1999) formulates the training problem as a non-convex nonlinear
optimization problem with linear constraints. These constraints on the weights are
chosen as to avoid saturation of the neuron outputs. .

There are special methods which have been developed for minimizing nonlinear least
squares problems, such as the error function in the network training problem. The Gauss-
Newton method is based on simplifying the computation of second derivatives and the
Levenberg-Marquardt method (Levenberg, 1944, Marquardt, 1963) is a modification of
the Gauss-Newton method (Battiti, 1992). We have chosen to use the Levenberg-
Marquardt method for this problem; an overview of this method is presented in the next

section.

4.4.3 The Levenberg-Marquardt Method

The Gauss-Newton Method (see Appendix C for more details) involves
approximating the Hessian matrix using the using the Jacobian matrix, J. To simplify the
notation, assume that the weights may be represented by a vector w = {aqy, ..., ar, bo1, ...,
bik}’, where wj represents the 7" weight in this vector, and the vector has M terms. The
goal is to minimize the MSE function, E (equation [31]), with respect to the weights, w.

If the network has one output variable, and there are N example pairs in the training set,

then the error function, E, will have N terms. Therefore,

e, = -%—(v,, ~t,) n=1..,N [38]

where
e; = the " error term in the MSE function, and

N
E(w)=1>e; =1e'e [39]

n=1

M=

where
T
€= [81 () ...eN] .

The Jacobian matrix, J, is a matrix which includes the derivatives of each error term

with respect to the weights, w;. The entries in this matrix are defined as
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de, [40]

ow;

(. j)=

The gradient of the error term with respect to the weights may then be written as
VE(w)=J"e [41]

Furthermore, the Hessian matrix can be written as:

V2E(w)=J"J+S [42]
where
al 0%e
S=Ye,- c [43]
; " Ow,ow j
If S is assumed to be small, then Hessian may be approximated by
VE(w)=~J"J [44]
This approximation then replaces the Hessian in the Newton update equation:
-1
W =w, = (17 (w, 0w, )] I7 (w, Je(w,) [45]

It is possible that the approximation may not be positive definite, and therefore the
matrix would be invertible. A modification of this method is to augment the

approximation with a multiple of the identity matrix:

G=YJ+uM [46]

Then, the update equation becomes

Woa =W, “( T(Ws)'](Ws)‘*'ﬂl)_lJT(Ws)e(Ws) [47]

This is known as the Levenberg-Marquardt method (Levenberg, 1944, Marquardt,
1963). (See Appendix C for a full description). This method has been found to be very
efficient in training networks with up to a few hundred weights (Hagan and Menhaj,
1994).
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4.5  Issues in Choosing a Network Architecture and Training

Generalization is the term used to describe the ability of a trained neural network to
fairly accurately predict the output for a given input not included in the training dataset
(Haykin, 1994). Essentially it is the ability of the network to interpolate. This ability is
usually influenced by the size of the training dataset, the samples within the dataset, the
architecture of the network (mostly the number of hidden nodes and layers), and the
complexity of the underlying function to be mapped. In order to provide “good”
generalization, much literature on this subject centres around the number of nodes to
include in the network, the number of example pairs to include in the training set, and
when (and how) to determine when the network has been sufficiently trained.

The ability of a neural network to learn a complex mapping grows as the number of
hidden nodes is increased (e.g. Bebis and Georgiopoulos, 1994). However, it also
increases the possibility that the network is overparameterized, and will memorize or
overfit the data (e.g. Chaveesuk and Smith, 2003), leading to poor generalization. This is
of special concern when the data contains noise (as is the case with simulation data) and
the training sample is small. If the training data is limited, this can be a serious concern;
however, this situation may be avoided by simply generating more training points (e.g.
Smith, 1993, Demuth and Beale, 2001). Not everyone agrees on how many more, but
Haykin (1994, p.183) wrote “as a rule of thumb, we may state for good generalization the
number of training examples should be desirably larger than the ratio of the total number
of free parameters in the network to the mean squared estimation error.”

Another phenomenon widely reported in the neural network literature is that of
overtraining. Theoretically, this can occur even when the training algorithm is continued
too long, and the network begins to learn the data in the training set too closely; therefore,
this leads to poor generalization. Again, this is a concern when the training dataset size is
limited. Some techniques used to prevent this from occurring include early stopping, and
cross-validation (e.g. Twomey and Smith, 1998), where the training is stopped when the

mean squared error of the network estimates compared to a validation test set starts to
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increase. Since we have the ability to generate many more training examples than we

have network weights, such techniques will not be used in this application.

While there have been no definitive rules for choosing the right number of hidden
nodes to learn the mapping, one commonly held opinion is that the networks should be
trained with as few hidden nodes as necessary to adequately learn the mapping (Masson
and Wang, 1990). One approach to selecting the number of nodes is known as the
Constructive Approach (Kwok and Yeung, 1997), which starts with a network with a
small (maybe one) hidden node, and nodes are added until a network can be trained to an
acceptable level of error. Network Pruning methods, such as Optimal Brain Surgeon
(Hassibi and Stork, 1992), is the opposite approach: a network is trained with more
weights than estimated to be necessary, and then weights are systematically deleted until

no more weights can be eliminated without a large increase in the MSE.
4.6 Concluding Remarks

Feed-forward neural networks compose the final element of the framework for
analyzing performance of manufacturing systems operating under the PAC scheme. In
the next chapter, we will discuss the framework in detail, including the construction of

the feed-forward neural networks for our problem, and their use in performance analysis.
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CHAPTER 5

A FRAMEWORK FOR MODELING AND ANALYSIS OF PRODUCTION
CONTROL SCHEMES

As previously discussed, there are a variety of strategies, such as Kanban or
CONWTIP, which are used to control the production of a given manufacturing system.
Each of these control strategies has a variety of parameters to be set (such as number of
Kanban cards per station or CONWIP levels). Therefore, the decision maker must
determine which strategy to apply, and determine the appropriate parameter settings for
that strategy.

This chapter presents a framework for modeling and analyzing this problem for a
given manufacturing system. The PAC coordination scheme (Buzacott and
Shanthikumar, 1992), the general performance simulation model (PACSIM), and neural
network simulation metamodels form the essential elements of this framework. Using
this approach, the decision maker can determine the optimal parameter settings for a
control strategy which optimizes some combination of the performance measurements;
however, and perhaps more importantly, this framework will also provide the decision
maker with the ability to analyze the effects of the parameters on the system.

An overview of the framework is shown in Figure 5.1. The first step, described in
Section 5.1, is to initialize the PACSIM model by entering system characteristics, such as
process times and demand arrival information, as well as choosing which PAC
parameters are assignable variables, and which performance measures will be analysed.
Section 5.2 describes the second step, which involves determining the ranges for the
input values (PAC parameters), through experimentation and through the application of
rules for the choice of parameters within combinations to ensure only feasible
combinations are chosen. Section 5.3 discusses the sampling procedure for selecting the
design parameter combinations for the training dataset (Step 3). Step 4 involves the
selection of simulation run parameters, such as run length and warm-up period, in order

to generate steady-state observations of system performance, and is explained in Section



5.4. Step 5 is the construction of the neural network metamodels using the training
dataset generated in Steps 3 and 4, and is described in Section 5.5. Finally, Section 5.6

provides a discussion on the various options for analysis using the constructed

metamodels, which is the final step.

5.1

k, and, where relevant, the batch processing parameter, r, are used as control strategy

parameters for each cell/store combination in the manufacturing system. The delay

Step 1: Initialize PACSIM Model (Set up Simulation for Problem
and Choose Performance Measures to be Analyzed)

Y

Step 2: Determine Ranges for PAC Parameter Values
(Preprocessing, Maximum Values, Process Tag Rules)

Y

Step 3: Choose an Experimental Design and Generate Design
Points for the Training Dataset

v

Step 4. Generate System Performance Measures for Training
Dataset using PACSIM

Y

Step 5: Construct Neural Network Metamodels

v

Step 6: Conduct Analysis using Neural Network Metamodels

Figure 5.1: Framework for Modeling and Analysis using the PAC Scheme

Initializing the PACSIM Model

parameter, 7, may be dealt with in several ways.

67

The primary PAC scheme parameters of initial inventory, z, number of process tags,
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5.1.1 Delay Parameters and Priority Setting Policies

As discussed in Section 2.3, we have chosen to assume that the delay parameter, T, is
not used the models we will analyze; however, this does not exclude the use of this
parameter within this framework. This parameter has been included in the PACSIM
model, but it is set to zero for all of our experiments. If one were interested in studying
and comparing only MRP type systems, then, through the use of a forecast (perfect or
otherwise), these systems could be studied using this framework.

For the priority setting issue, we will assume that all stores and cells follow a first in,
first out (FIFO) priority policy for PA card and requisition tag queues. As previously
mentioned, this will affect the performance of the system, especially in the case of cells
which produce multiple parts where setups are required. An opportunity for future work
involves the integration of the type of priority strategy used at a cell/store for production

or for satisfying requisitions as another assignable system parameter.

5.1.2 Selection of Output Measurements

The performance of a manufacturing system cannot be summarized by a single
measurement. As previously discussed, there are often several conflicting performance
measurements which should be captured and analyzed in order to understand the
“goodness” of a control strategy. The following are measures that we have identified as
common system performance measurements, all of which are provided by the PACSIM
model:

¢ Customer delay time: For all customers whose demand is not immediately
filled from inventory, this measure represents the average time the customer
must wait. In the case of a produce to order system, this represents the order
lead time.

¢ Cycle Time: Time from the moment raw material is brought into the system
until the product arrives at finished goods inventory. In the case of assembly,

the “oldest” component determines the cycle time of the product. When there
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are no assembly operations, this measurement can be used to estimate work in
process inventory (Little’s Law).

e Customer Fill Rate: Percentage of orders filled immediately from finished
goods inventory.

¢ Number of Backlogged Customer Requisitions: The average number of
customer requisitions waiting to be filled.

¢ Finished Goods Inventory: Average number of finished products in inventory

e Work in Process Inventory: The average inventory of each raw material or
partially completed part in the system that is either waiting for processing at a
cell or in a store waiting to be requisitioned. This measure may or may not
include parts in process at a cell.

e Throughput: The average production volume per unit time, per product.

The conflicts between these performance measures are generally well understood
(e.g. Hopp and Spearman, 2001), although the magnitude of the impact depends on the
system under study. For example, it is usually desirable to maintain low inventory, but
this will have an impact on a system’s ability to respond to random demand; thus, lower
inventory may result in higher customer delay times, lower customer fill rates and a
higher average backlog of customer orders. Increasing the average work in process
inventory may result in higher throughput, but will also result in longer cycle times.

The measurements to be analyzed depend on the nature of the manufacturing system
under study. In the example systems we analyze in Chapter 6, we assume that the goal of
the system is to simply keep pace with randomly arriving customer demand; in other
words, the throughput must be equal to the customer demand, and therefore throughput is
not an interesting measure. However, if it were assumed that there was sufficient demand
for all products a system were capable of producing, then throughput would be an
interesting measure and should be studied.

The number of metamodels to be developed with the training data can be reduced by

reducing the number of performance measures (outputs) selected for analysis, and
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therefore requiring fewer networks. This is accomplished by selecting only those

measurements that would of interest in the subsequent analysis. For example, if the
manufacturing system being studied was a system where products were customized at the
final station, then no finished goods inventory could be held. Therefore, fill rate and
average finished goods inventory would not be relevant in our analysis. In fact, this
would also eliminate the input parameter z for the finished goods store from the
metamodel (as it would be fixed at zero), thereby reducing the number of input nodes.
However, for the purposes of this work, we will assume no such limitations; our goal is to
develop a metamodel which encompasses many possible configurations. At the analysis

stage, however, such limitations or fixed values could easily be applied.

5.2  Establishing Ranges of Valid Parameter Combinations for the Training
Dataset

Once the parameters for inputs are chosen, a decision must be made as to the range
of values from which to select values for each parameter in each combination (the input
space). Because the neural networks will be trained using this dataset, they will only be
valid for the ranges specified for each parameter in the training set. The minimum
parameter values must be determined in order to ensure the system can respond to the
customer demand. Maximum values should also be chosen, based on the nature of the
system. Finally, parameter combinations must be chosen so as to ensure feasible
systems; therefore, the rules used to produce the training set must be known when using

the neural network for analysis.

5.2.1 Determining Minimum Feasible Parameter Values
First, we must ensure that the parameter combinations we will use are feasible for the
system under study. By feasible, we mean that the system must be capable of achieving a
throughput at least equal to the customer demand rate given the PAC parameters. The
throughput is directly related to the amount of work-in-process inventory in the system;
this WIP is controlled by limiting the flow of information through the system. If this

information flow is constrained too much, the throughput will be less than the demand
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rate, and the queue of customer orders will grow without bound. The following simple
example illustrates how this may occur.

A simple two-stage production line (Figure 5.2), receives orders from customers at
an average rate of 1 order every 60 minutes. The line is balanced, and there is no travel
time for product between stations. Since each station requires 45 minutes of processing
time to produce one part, the bottleneck rate (rate of the slowest station), rp, of this
system is 1/45 units/min. Since the system can’t produce any faster than the slowest

station, the bottleneck rate is the maximum possible throughput for this line.
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Figure 5.2: Two-stage Production Line Example

According to Hopp and Spearman (2001), the critical amount of work in process
inventory required for such a system to achieve a maximum theoretical throughput equal
to the bottleneck rate, r, is given by

Wy =1rT,
where

Wy = critical WIP level, and
Ty = raw processing time (sum of the mean processing time at all stations).

When the amount of WIP in the system is less than the critical WIP level, W, then
the maximum theoretical throughput of the system is given by

TH = -
TO

where

TH = maximum theoretical throughput, and
w = amount of WIP in the system.
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For this system, the raw processing time, T, is 90 minutes, resulting in a critical WIP

level, Wy, of 2 units. Therefore, if w = 1, the maximum possible throughput of this line is
1 unit every 90 minutes. The single unit of WIP would have to be processed at the first
station while the second sat idle, and then processing would take place at the second
station while the first station sat idle. This throughput rate would be insufficient to meet
the arriving customer demand.

The WIP in this system would be limited to one if, using the PAC system, the
number of process tags at Station 2 were set to one. When a customer order arrived, a PA
card for the final product is created if the process tag is available. The process tag is tied
up with this PA card until the authorized product has been completed. If there is no
initial inventory at the supplying store, then this process tag is tied up until Station 1
produces and delivers required component, and Station 2 produces the final product. No
new jobs can enter the system during this time. Thus, the throughput of this line will be
limited to 1 unit every 90 minutes, which is less than the arrival rate of customer orders.

Therefore, it would appear that the minimum amount of process tags at the second
station must be at least two. However, Hopp and Spearman’s equations provide the
theoretical maximum throughput rates; if processing times or demand arrivals are
variable, of if material requires travel time between cells, then two process tags may still
be insufficient. For complex systems with assembly cells and several products, the
determination of these minimum WIP values (and thus minimum number of process tags)
is difficult to determine analytically.

Therefore, experimentation with the simulation model is necessary to determine a
sufficient number of process tags (particularly at downstream stations) to ensure
feasibility. Any combination of PAC parameters with less than these values would be
considered infeasible, and the system would never reach steady state. Customer wait
times would increase with time, and the interdeparture time of finished product would be

less than the interarrival time of demands.
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5.2.2 Choice of Maximum Parameter Values

Just as the minimum values for parameters must be addressed, the maximum values
to use are also an issue. Using extreme parameter values will have a negative impact on
one or more of the system measures without a complementary improvement in any other
measure. As a simple example, when customer fill rate is close to 100% at a finished
goods store, increasing the initial inventory level (z) at that store will result in a higher
average finished goods inventory without improving the fill rate by any significant
amount. If extreme points were excluded from the training data, we would not be able to
say with any confidence that the neural network metamodel could estimate performance
at these points; however, given the effect on performance, it is unlikely that these points

would be of any interest in the analysis of the system.

5.2.3 Rules for Selection of Combinations of PAC Parameters

In the following section, we address the issue of the selection of combinations of
PAC parameters. Buzacott and Shanthikumar (1993) discuss some of the requirements
for these parameters; we have articulated these in the first three rules outlined below.
The final two rules were inspired by a dispussion in Bielunska-Perlikowski (1997), with
regard to the selection of parameters in systems where batching is permitted. She
observed that it is possible to select parameter combinations which will cause a halt in
production, due to the limitations on process tags and the requirements for the formation
of batches for production. She presented two rules to avoid this problem; however, we
have determined that these rules did not cover all possible scenarios where this problem
may occur. Therefore, we have developed the final two rules to ensure that, in systems
where batching is permitted, the combination of process tag, batch, and initial inventory

parameters are chosen so as to ensure a feasible system.

5.2.3.1  Number of Upstream Process Tags
Referring to Figure 5.3, Buzacott and Shantikumar (1993) state that the maximum
possible number of active PA cards at an upstream cell, Cell U, is equal to the number of

process tags at the requesting downstream cell, Cell D, plus the initial inventory at Store
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U. Therefore, the maximum number of process tags allocated to Store U need not exceed

this amount. If additional process tags were available, they would never be used.
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Figure 5.3: Flow of Process Tags, Orders and PA Cards

The result is that without affecting the performance of the system, we may restrict
the number of process tags at an upstream cell

Rule 1: (Buzacott and Shanthikumar, 1993). The number of process tags at an
upstream cell/store (for each product) should not exceed the maximum possible number
of outstanding orders for the downstream part.

If a PA card at Cell D triggers an order for a single part from Store D, then the rule is

expressed as:

k <k, +z, [48]

If a PA card at Cell D triggers » orders for the part at Store U, then this limit must be
adjusted so that the right hand side is equal to the maximum number of outstanding

orders for the downstream part:

k, <nk,+z, [49]

The reason that this is relevant is that any design point which violates this rule is not

necessary in the training set. Including these points unnecessarily increases the size of
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the training set, thereby increasing the complexity of the network training. Therefore, it

may be possible to eliminate several level combinations from the training set to reduce
training complexity and time. Although the networks could be trained without imposing
this rule, the resulting points are not of any interest; the performance at these points is
equal to the performance at the point where the number of process tags at the upstream

station is equal to the maximum possible number of outstanding orders at the cell.

5232  Cells with Multiple Machines
When a cell has more than one processing machine, then there must be sufficient
process tags available at a cell/store so that all machines may be utilized. Therefore this
leads to Rule 2:
Rule 2: (Buzacott and Shanthikumar, 1993). The sum of process tags at all stores
associated with a production cell must be equal to or greater than the number of
machines at that cell.

For each store, this rule is expressed as follows:

k2 [50]
where !

¢; = number of processing machines (servers) at cell j
I = set of products produced at cell j

5233  Batching Rules
In order for a batch of PA cards to be formed at a cell, r orders must arrive and each
order must be paired with a process tag. This leads to the following rule:
Rule 3: (Buzacott and Shanthikumar, 1993). The value of the batch parameter, r, at
any cell must be less than or equal to the number of process tags at the cell.
This rule is expressed as follows:

k,2r, [51]

where
rg = the batch size at the downstream cell.
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The next two rules developed were inspired by some observations of Bielunska-

Perlikowski (1997). Since a store cannot form a PA card unless a process tag is available,
nor can that process tag be released from the PA card until the authorized product has
been completed, then the process tags, in a sense, could be regarded as a resource. These
resources are allocated to orders in order to form PA cards. At the downstream cell, if no
process tags are available (or not enough to form a batch of PA cards), then no PA cards
can be formed and no orders can be sent to the upstream cell until the required process
tags return to the store. If, at the same time, processing at the upstream cell is halted
because the cell is waiting for more orders from the downstream to form a batch of PA
cards, then we will encounter a “deadlocking” situation. Wysk et al. (1991) discuss this
phenomenon in FMS systems, and define deadlocking as the state where “parts are
assigned to various machines in a manufacturing system such that any further part flow is
inhibited.” (Wysk et al., 1991, p. 853). In this situation, the flow of information (in the
form of orders) becomes inhibited, and ultimately results in a halt to the flow of parts.

In order to prevent the stoppage of production, the batch values have to be set such
that it will eventually be possible to form a batch of PA cards at both cells at all times.
Assuming a store supplies only one downstream cell, there are two scenarios which must
be addressed. The first is when the batch size for PA cards at an upstream station, r,, is
less than the batch size at the downstream station, ;. When a batch of PA cards is issued
from Store D to Cell D, it will trigger the release of r; orders to Store U. Since r, < ry,
one or more batches of PA cards may be formed and sent to Cell U, possibly leaving
some orders waiting at Store U. In order to ensure another batch of PA cards will be
formed at Cell U, there must be sufficient product produced at the cell and sent to Store U
so that, when processing takes place at Cell D, a sufficient number of process tags will be
released, and another batch of PA cards will eventually be formed at Store D. This will
trigger additional orders to be sent to Store U, thus enabling additional batches of PA
cards to be formed. Therefore, in order to ensure production will not be halted, the

following inequality must hold:

(kd -—rd)+ Z, +{2Jru 2r, ifr,>r, [52]
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The left hand side of the inequality represents the maximum number of process tags

that will eventually become available at Store D after the issuance of a batch of PA cards

to Cell D. The first term, (k; —r, ), is the number of process tags remaining at Store D

after a batch of PA cards has been issued to Cell D. If there is any initial stock in Store U
(z4), then these components will be delivered to Cell D and processed, thus eventually
releasing the same number of process tags to the store. The final term represents the
number of PA cards that will be created and sent to Cell U upon receipt of the orders
generated by the r; PA cards issued to Cell D; these will eventually be processed at Cell
U, sent to Store U, and finally sent to Cell D, where they will be processed, thus releasing
process tags upon receipt of the finished parts at Store D. This number of process tags
must equal or exceed the batch size at Store D, in order for subsequent batches of PA
cards to be formed at Store D.

If the issuance of a PA card to Cell D triggers more than one order, n, for the same
component part from Store U, then equation [52] must be adjusted. Cell D requires n
parts from Store U in order to produce one product and release one process tag. When ry;
PA cards are created, Cell D generates nr; orders for the component part at Store U.

Upon receipt of these orders, | nr, /r, [r, PA cards will be issued to Cell U, and

eventually these parts will arrive at Store U. Combined with the initial inventory at that
store, z,, there will be one process tag released to Store D for every n components

available for processing through Cell D. Therefore, the inequality may now be written:

(kg “rd)'{%[zu +V:d Jru]erd if ry>r, [53]

u

If the batch size at Cell U exceeds that of the Cell D (r, > r3), then a different
problem may cause a halt in production. The system must be able to create a sufficient
number of orders for Store U to create a batch of PA cards for Cell U. Since orders are
generated by Cell D upon receipt of PA cards, then Cell D must receive a sufficient

number of PA cards in order to generate the necessary orders. When the first batch of PA
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cards is formed and sent to Cell D, the orders that will be generated and sent to Store U

will not be sufficient to trigger the generation of PA cards for Cell U. Depending on the
batch sizes, it will take two or more batches of PA cards to be delivered to Cell D before
a sufficient number of orders are sent to Store U. Therefore, PA cards that cannot be
completed at Cell D due to a lack of parts in storage at Store U must wait until an
additional batch of PA cards is created downstream, thus generating more orders for
materials from Store U. During this time, process tags from Store D are tied up in the PA
cards awaiting processing at Cell D. If there are not enough process tags available at
Store D to produce the additional batch(es) of PA cards (once sufficient orders have been
received), production will be halted.

When r; = 1, the maximum number of orders which may be outstanding at Store U is

equal to k, + z,. However, when r; > 1, the maximum number of outstanding orders at

Store U becomes a multiple of ;. Therefore, the constraint which must be satisfied in

this case is:

ky+z, :

—_— % >

“ " er 2r, ifrg<n [54]
If Cell D requires n components from Store U to produce one product, then each

time a PA card is created at Cell D, n orders are sent to Store U. If there is initial
inventory at Store U, then this will result in the production of one product at Cell D (and
thus the release of one process tag) for every n components in the store. Therefore,

equation [54] becomes:

{——-——————kd +lz, /nJJnrd 2r, ifry<r, [55]

Ta
If a cell/store which does not batch orders supplies a cell/store where batching is
permitted, then r; > 1, and r, = 1. In this case, the first inequality, equation [53], applies,
and since r, = 1, it reduces to k,; + [_zu / n|zr,. However, Rule 3 already requires that
k, 2 ry ; therefore this rule need not be applied in this case. If the supplying cell/store

does batch orders received from a downstream cell/store where such batching is



79
permitted, then r; = 1, and r, > 1. The second inequality, equation [55], applies and

reduces to nk, +n|z, /n|2r,. Rule 1 already requires k, < nk, + z, , and Rule 2

requires k, 2 r, ; therefore, combining these two inequalities leads to

nky+z,2k,2r,
snkgtz,2r, [56]
If n = 1, then equations [55] and [56] reduce to the same inequality. However, if
n > 1, then equation [56] will be binding, and must be applied. Finally, if r, = ry, then it
can be shown that both inequalities are the same. Therefore, the overall result is that this
rule on batch sizes must only be considered for each cell/store which is supplied by a
cell/store where batching is permitted. When a cell produces more than one product, this
rule must be applied to each of the products.
Rule 4: For each cell/store combination which is downstream from (supplied by) a
cell/store where batching is permitted, the following inequalities must hold for the case

where the upstream store supplies the product to only that downstream cell:

I‘MJJ’”‘J > r, lf ry; <r, [55]

Tq

(kd_rd)'*'“l[zu+{nrdJru]J2rd if1<rusrd [53]
n r,

where

n = the number of orders for product generated by the downstream cell upon receipt
of a single PA card (which is equal to the quantity of the upstream product
required for the production of one unit at the downstream cell).

Finally, when a cell/store where batching is permitted supplies the same product to
more than one downstream cell, orders for the product will be received from more than
one source. Therefore, the maximum number of orders which can be transmitted to the
upstream cell (before the upstream cell replenishes the store through production) is equal

to the sum of the maximum number of orders each downstream cell can create. If there is
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initial inventory at the upstream cell, then it will be sent downstream upon receipt of

requisitions, on a FIFO basis. There is no way to know in advance which downstream
cell will be transmitting the first batch.
If we assume for a moment that there is no initial inventory in the upstream store,

then the system is only feasible if the following is true:

kP
plih

where

r, = batch size at the p™ station downstream from Cell/Store U

k, = the number of process tags at the p™ station downstream from Cell/Store U

np = the number of products cell p demands from the upstream cell each time a
PA card is created at cell p

If the inequality in equation [57] is true, then the system is feasible with the current
parameters. If it is not true, then the system may still be feasible, provided z, > 0.
Referring to the discussion for Rule 1 (Section 5.2.3.1), the maximum number of orders a
downstream cell can generate depends upon z, and ky; the initial inventory can supply
some (or all) of the initial orders, thus eventually resulting in the release of process tags
at the downstream station (once production with the required parts has been completed at
the downstream cell), and potentially enabling more batches of orders to be created. The
problem in this case is that the initial inventory will be sent to one (or possibly more than
one) of the downstream stores, but we cannot know in advance which one will receive
this inventory. Therefore, in order to determine if the system is feasible, we must ensure

that no matter how the initial orders arrive, every possible scenario is feasible.

The first step in this process is to determine whether or not the initial inventory at the
upstream store will eventually allow for the downstream cell to form additional batches
of PA cards, and thus for additional orders to flow upstream. It is possible that the entire
initial inventory will be released to any of the downstream cells — it depends on which

cell transmits the first batch. Therefore, we must determine whether or not every
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downstream cell can form additional batches of PA cards if it receives the initial

inventory from upstream. The following calculation, similar to the one developed for

Rule 4, will enable this determination:

A= min {nPL"P—“LLz-"_/”LJJrP _ np{-’fﬂer} [58)

p Ty T

The first term represents the maximum number of orders which will be sent upstream
given that cell p receives the initial inventory, z,. The second term is the maximum
number of orders, assuming that the cell does not receive this inventory. If A =0 for any
cell/store p, then we know that the receipt of the initial inventory will not result in any
additional batches of PA cards to be formed, and therefore no more orders at the
upstream store. Therefore, since it is possible that cell p may receive the initial inventory,
and because we have already determined that the inequality in equation [57] is not true,
then we know that a halt in production may occur given these parameters. Therefore, we
would consider this combination of parameters infeasible.

If A > 0, then each downstream store can create at least one new batch of orders if it
receives some or all of the z, units. Therefore, we must determine the minimum number

of additional orders that can be created as aresult. If z, <n,r, Vp, then no matter

which downstream cell/store sends the first batch of orders, the inventory in the upstream
store will be immediately depleted. Therefore, A represents the minimum number of
additional orders which could be created. Whether this will be sufficient to form a batch
at the upstream cell must now be checked by adding the A orders to the right hand side of
the original inequality (equation [57]):

kP

Tp

r, S an.[
P

er +A [59]

If equation [59] holds, then the system is feasible. If it does not hold, and

z, Sn,r, V p, then the system is infeasible. However, if the inequality in equation [59]
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does not hold, but z, >n,r, for at least one p, then the determination of the minimum

number of additional orders possible becomes more difficult. Assume that the g"
cell/store creates the first batch of PA cards, r,, and therefore transmits n,r, orders
upstream. If z, > ngry, then there will still be inventory left in the upstream store after all
requested product is sent to cell/store g. This remaining product will be sent to the next
cell/store requesting product, and will influence whether or not this next cell/store will be
able to form additional batches. Thus, in order to find the minimum number of additional
orders possible, one would have to evaluate all possible sequences of order batch arrivals
at the upstream store. Instead, we will present a rule which will simply guarantee that the
selection of parameters will result in a feasible system.

Rule 5: When a cell/store where batching is permitted supplies more than one
downstream cell with the same product, and the downstream cells also permit batching,

the following inequalities must hold in order to ensure that the system is feasible:

r, < an\‘k—p‘lrp + rnin{A(p)} [60]

p Tp P
where
0 if z, =0
k,+\z,/n k
S

r r
p p

Wy if z, .>_nprp

In the special case where batching is not permitted at the downstream stations (r, = 1
for all p), this rule must still be applied to ensure production will not be halted at the
supplying cell.

5.3  Experimental Design

Even by limiting the range of possible input values as discussed above, there can still

be a very large number of combinations of these input values. Producing a very large
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training data set means longer simulation time, and longer training time. However, in

order to build reasonably accurate metamodels, the training set must adequately cover the
state space. Therefore, a space-filling experimental design method (Kleijnen et al., 2005)
should be used to select design points for the training dataset. Because we expect a
nonlinear, monotonic relationship between the input factors and output measures, it
would seem logical to use a 3-factorial experimental design for the production of the
dataset. In this situation, a low, mid-range, and high value for each input point would be
chosen, and the training set would include every combination of each of these co-
ordinates. This would result in 3* design points, where k is the number of co-ordinates
within a design point. However, Hurrion and Birgil (1999) presented an alternate
approach for choosing the design points. They first identified the minimum and
maximum values, and therefore the range of acceptable values, for each co-ordinate in
the design point. To construct a design point, a value for each co-ordinate was randomly
chosen from the acceptable range. They then trained neural networks with 2, 3 and 4-
factorial data sets, as well as with randomly designed datasets of the same size. Their
results showed that the networks trained with the randomly chosen datasets were more
accurate and efficient than those trained with full-factorial designs. Alam et al. (2004)
found that a Latin Hypercube design supplemented with domain knowledge
outperformed both the full-factorial design and the random sampling design.

We chose to use a form of stratified sampling (Helton and Davis, 2003) as the
sampling technique. In this approach, the range of acceptable values for each co-ordinate
is sub-divided into three smaller subsets, covering the entire range. Normally, the ranges
would be chosen such that each range is roughly the same size. Each subset is then
designated a coordinate level, and a factorial design is then used to generate the level
combinations for each design point. If there are k coordinates (input variables) for each
design point, then there could be 3 design points generated; however, if for any level
combination there is no way to choose a design point which would satisfy the rules
outlined in Section 5.2.3, then this combination is eliminated. Once the valid level

combinations for design points have been determined, then a value for each coordinate is
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randomly chosen from within the designated level, ensuring that each randomly chosen

point does not violate the rules. To ensure complete coverage of the design space, two
more points are then added to this dataset — one with every co-ordinate set at its minimum
feasible value, and one with every co-ordinate set at its maximum value in the high range.

Of course, as the number of input variables increased, the number of design points to
be simulated increases. Even though PACSIM is relatively fast, this approach may prove
too time consuming as the number of input variables increases. In this situation, we
would recommend either reducing the number of levels to two per variable, or exploring
a form of Latin Hypercube design.

Another problem may be encountered when the number of input variables is small
(less than 5). As discussed in Section 4.5, the size of the training set should well exceed
the number of network weights. Assuming each network will have only one output node,
the formula for the number of weights in a neural network with a single hidden layer is

given by:

W=J(+2)+1 [62]

where
I = the number of input variables, and
J = the number of hidden nodes.

Therefore, depending on the number of input variables, the number of training point
generated according to the sampling procedure discussed above may not exceed the
number of training. In order to avoid this problem, more than one design point may be
randomly chosen at each level combination, or the number of levels may be increased, in
order to increase the size of the training dataset. In the examples presented in Chapter 6,
the training datasets contained at least twice as many points as there were network

weights.
54  Generating Performance Estimates using PACSIM

With a set of design points chosen, the next step is to simulate each design point and

obtain steady-state estimates of performance using PACSIM. The run parameters which
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must be set are the length of each simulation replication, the number of replications per

design point, and the length of the warm-up period.

5.4.1 Selecting Run Length and Number of Replications

The accuracy of the simulation responses increases as the length of the simulation
and/or the number of simulation replications per design point is increased. This accuracy
is dependent upon the variance of the output of the simulation. However, given the
space-filling experimental design we have chosen, we expect that even with “noisy”
estimates, the networks will be able to fit the data to a reasonable degree of accuracy.

The simplest approach therefore would be to run only one replication per design point.

54.2 Transient Analysis

The system performance measurements used to train the networks must be
observations of the system operating at steady state; because the PACSIM model starts
with an empty system, early measurements of performance will not necessarily be
representative of the system operating at steady state, and therefore must be removed.
The challenge is in determining the point in time when the system has reached steady
state. Welch’s graphical procedure (see Law and Kelton, 2000) is one technique
commonly used to determine this point.

The average steady state performance measure is defined as the average observation

after [ initial observations have been removed;

.Y [63]

Welch’s technique involves running » simulation replications (usually at least 5 —
10) and computing the average of the observations from each replication:
37, [64]
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where
Y; = the i™ observation from the 7™ simulation replication, i =1,...,m and j =1,...,n.
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A moving average of these observations is then computed and plotted. The moving

average window, w, is chosen such that w is a positive integer and w <|m/4 . The

moving average is then calculated as:

=W ifi=w+l,....m-w
=] 65]

i+s

s=—(i-1) o
_—— fi=1...,w
L 2i-1 f

These averages, Y,(w), are plotted against the values of i. The point at which the

plot converges is considered the point at which the simulation has reached steady state,
and the number of initial observations to delete is then determined from this graph.

In order to determine a suitable warm-up period for the PACSIM model, the
minimum feasible design point should be simulated; the reason for this is that it is
assumed that this system will have the longest queues, and therefore will take the longest
(of all combinations of PAC parameters) to reach steady state. Therefore, any decision
on a warm-up period for this PAC parameter combination would be adequate for all PAC
combinations in the training set. The performance measure used for the analysis should
be the one which is expected to take the longest to reach steady state; in these problems,
the customer service delay, which will be based on the length of the customer order
queue, has been used for this analysis. Once the number of observations is determined
using the above technique, the point in time is approximated by multiplying this number

of observations, /, by the average time between demand arrivals.
5.5  Designing and Training Neural Network Metamodels

This framework involves the use of feedforward neural networks with a single
hidden layer and the logistic function as the transfer function. As previously mentioned
in Section 4.3.2, the typical approach when dealing with multiple responses is to

construct a separate neural network metamodel for each performance measure of interest.
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Since we have chosen this approach, each network to be constructed has only one output

node, and all networks for a particular model will be trained with the same training
dataset. Networks are trained using the Levenberg-Marquardt algorithm (Section 4.4.3).
The approach selected for determining the number of hidden nodes for each network
is a simple constructive approach (Kwok and Yeung, 1997). This approach involves
training a network with only a few hidden nodes (relative to the number of inputs), and
then training additional networks with more nodes until an acceptable level of error is

achieved. The following error measures were calculated for each trained network:

1Y 5
Mean Squared Error (MSE): MSE = N > a=ta) [66]
n=1
1 N
Mean Error(ME): ME = ﬁz (Vo —ta) [67]
n=1
1 N
Mean Absolute Error (MAE): MAE = Wz |Vn - tnl [68]
n=1

where
N = number of design points in the training dataset,
v, = the neural network output for the n” design point, and
t, = the observed (simulated) output for the n™ design point.

As well, the postreg function in MATLAB produces a plot of the performance
observations from the training set along the x-axis, and the corresponding network output
along the y-axis (called post regression plots). It also fits a linear regression line to these
points, and computes the equation for this line, and the regression coefficient, R. If the
neural network output mapped exactly to the training set, then this line would have a
slope of one and a y-intercept of zero. If either the regression coefficient, R, or the slope
of the regression line is far from 1, or if some of the points lie far from this line, then it is
possible that the network did not have enough hidden nodes to learn the mapping. A plot

was generated for each network.
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The process of adding nodes and retraining was continued until an acceptable level

of error was reached and the post regression plots were considered acceptable.
5.6  Metamodel Analysis

The trained neural networks are deterministic function approximations of the system
performance measures given the PAC control parameter settings. Therefore, there are
many possibilities available to analyze this system performance. Some of these are

outlined below.

5.6.1 Optimization of a Cost Function

If the goal of the analysis was to minimize the overall cost of a control strategy, then
a deterministic cost function of the system performance, using the neural network
function approximations for those performance measures, may be used. Costs such as
holding costs for inventory, or penalties for late orders, would be the coefficients of this
cost function. The advantage to using the neural network metamodels for cost function
optimization is that, if the decision maker wanted to change any of the cost parameters,
the process could easily be repeated, but without having to retrain any of the networks.

In situations where the number of input combinations are relatively small (<10°
points), one approach to determining a global optimal solution is to evaluate all possible
input combinations using the neural networks and determine the optimal result. Where
the state space is quite large, a heuristic such as simulated annealing or tabu search may
be directly applied, using the networks to compute the function evaluation at each point
in the search.

A nonlinear programming technique designed for continuous variables may be
applied, but the result will most likely be non-integer. Exploring the integer neighbours

of this optimal solution may result in a relatively good solution, but there is no guarantee
that the optimal integer solution resides in this neighbourhood. However, such a
technique may be applied if only to determine a good starting point for a heuristic

technique.
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The analysis may be an iterative process. For example, it is possible that the true

optimal solution to the minimization of a cost function lies in an area where the cost
function is somewhat flat, and therefore optimization using the metamodels may produce
a result which is close to, but not necessarily, optimal. The neighbourhood of this
solution would be a ‘region of interest’ (Figure 5.4). More simulation experiments would
be carried out in this region, and new network metamodels would be trained (but these
new models would only be valid for the neighbourhood from which the training points
were drawn). The result will be even more precise metamodels, and then optimization of

a function of these new metamodel functions may well lead to a more accurate result.

Train Neural Analvze the Identify
Simulate —» Network |—— Meta¥no dels [~ » Regions of
Metamodels Interest

A

Figure 5.4 Flowchart of Possible Analysis using Neural Network Metamodel

5.6.2 Optimization of One Performance Measure Subject to Constraints

Another possibility is to specify constraints for all but one of the output measures,
and then minimize (or maximize) the remaining output measure subject to those
constraints. For example, if a minimum fill rate and maximum cycle time were specified,
then the metamodel can be used to find the set of input parameters which minimize the
average finished goods inventory. Once again, every eligible design point can be
evaluated using the networks, or a heuristic search algorithm may be applied to find the

optimal solution.

5.6.3 Understanding the Effects of PAC Parameters
The neural network metamodels may also be used to gain a better understanding of
the impacts of the control parameters on the performance of the system. Scenario

analysis (evaluation of one point) can be quickly carried out with the neural network.
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However, it may be more interesting to learn more about the effects of the points in

general on the performance of the system. For example, how does increasing the initial
inventory parameter at the final store change the average finished goods inventory? One
approach to this is to calculate the partial gradients of the neural network function with
respect to the input variables at the point in question. The difference in magnitude of
these gradients should provide a better understanding of which parameters have the

largest impact on each performance measure at a particular point.

5.6.4 Constructing Exchange Curves

As discussed in Section 3.5.3, exchange curves are very useful tools for deciding on
the appropriate policy when the costs for performance measures, such as penalties for late
orders or inventory carrying charges, are not known. To construct useful exchange
curves, two conflicting measures (or composite measures, such as total inventory) must
be selected. Depending on the complexity of the manufacturing system (and therefore the
size of the networks), it may be feasible to evaluate the performance measures for all
possible combinations of PAC parameters and select the non-dominated points. When
this is not feasible, a heuristic such as simulated annealing applied to a parameterized
objective function should be applied to find the points on the exchange curves, using the

approach discussed in Section 3.5.3.

5.6.5 Evaluation of a Traditional Strategy

With the neural network metamodels, one can also evaluate the performance of a
traditional control strategy, such as Kanban, by constraining the combinations of design
parameters (according to Buzacott and Shantikumar, 1992), and evaluating only these
combinations using the network metamodels. For example, to represent a Kanban
strategy, all initial inventory parameters (z;) must equal the number of process tags (k;) at
each cell/store combination. No batching is permitted, and there is no requisition delay.
The results of the neural network evaluations can then be used to determine the optimal
strategies, whether through the use of a cost function, optimization of one performance

measure subject to constraints on the other measures, or a combination of both.



5.7 Concluding Remarks

Our framework provides the ability to analyze and optimize the selection of PAC
control scheme parameters in several different ways. In the next chapter, we will

demonstrate the application of this framework to some example manufacturing models.
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CHAPTER 6

EXAMPLE MODELS AND RESULTS

In this chapter we demonstrate the application of this framework and several
examples of the analysis discussed in Chapter 5. Throughout this chapter, five different
manufacturing systems are used in various experiments.

Section 6.1 provides more details of the experimental environment and the
implementation of the framework for a two-stage serial production line, Model 0. Details
of the construction of the training datasets and the neural network metamodels are
provided for this system. Similar procedures were followed for all example systems
discussed in this chapter.

Section 6.2 discusses the results of optimizing a cost function of the performance
measures for this model using OptQuest compared to using the neural networks. A
three-stage serial production line with material travel times, Model A, is introduced in
Section 6.3, and we show how the neural network metamodels trained for this system
may be used to optimize a single performance measure (in this case, minimize finished
goods inventory), subject to constraints on the other variables. In Section 6.4, a two cell
production system, Model B, is introduced. This system has one cell that produces two
parts and a second cell that assembles those components. This model is used to show
how the networks can be used to estimate performance, even when setup and travel time
is required — even for this small system, analytical models do not exist.

Section 6.5 discusses Model C, a three-cell system with one cell capable of
producing two parts supplying two downstream cells, each producing a final product.
The networks trained for this system are used to study the impact of batching on system
performance. Section 6.6 shows how a simulated annealing algorithm can optimize a
cost function of the system performance.

Section 6.7 demonstrates how exchange curves can be constructed using trained
neural networks. In the first example, exchange curves are constructed for Model A, but

only for parameter combinations fitting the PAC definition of a Kanban policy. This is
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then compared to an exchange curve constructed without this limitation. In both cases,

all possible policies were evaluated using the neural networks. For the more complex
Model C, simulated annealing was used to construct an exchange curve for this system
using the networks.

In Section 6.8, we address the issues of accuracy and suitability of neural networks
for this framework by conducting several experiments with an even more complex
manufacturing system, Model D. The generalization ability of the networks is
demonstrated in Section 6.8.1 by showing that the error measurements for a set of data
not used in the training set is only slightly higher than the results seen from the training
set itself. We also demonstrate that the networks can be trained to produce unbiased
estimates of the expected value functions in an experiment discussed in 6.8.2. In Section
6.8.3, we construct second and third order polynomial regression models from the same
training data, and show that the MSE of the trained networks outperforms both the

second and third order models in almost every case.
6.1 Experimental Environment

This section provides an overview of the experimental procedures used to apply the
framework to the example manufacturing systems. The PACSIM model was written in
FORTRAN77, and Absoft ProFortran 7.5 was used to compile and execute the programs
on a 2.0 GHz AMD2400 computer. The training datasets produced by the simulation
model were imported into MATLAB Version 7.0 (R14), where the Neural Network
Toolbox routines were used to train the networks. The experiments involved several
stages, which are described in the sections below (for more details, see Appendix A).

We illustrate these stages using Model O (Figure 6.1), which has two production cells
in series and produces a single product. Characteristics of this model are:

¢ Demand for the final product arrives according to a Poisson distribution with a

mean time between arrivals of 60 minutes.

¢ Processing time distribution at each station is Weibull with 0=2 and mean #,(i).

e Raw materials and requisitioned parts are immediately available (no travel time).
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Figure 6.1: Model 0
Table 6.1: Model @ System Parameters
Product Production Inputs Mean Processing
Cell (Part and Qty) Time (min)
1 C2 P2 (Qty 1) 36
2 C1 P3 (Qty 1) 45

6.1.1 Initializing the PAC Simulation Model

The first stage of each experiment involved providing the PAC general performance
simulation model with the required information about the system to be simulated, such as
number of cells/stores and processing times. This information is provided to the
simulation model in the text file, pact.in. In order to automate this process, a spreadsheet
application was built to allow for entry of this information in a form, and then, through
the use of a macro, the parameter file for the simulation was generated and saved as a text
file (see Appendix A). It was assumed for these models that customer orders are never
cancelled; therefore, no cancellation or correction tags were required. None of the
example models have by-product production, and therefore surplus tags were not required.

This process is common to all models discussed in this chapter.

6.1.2 Determining Feasible Design Points (Preprocessing)

The next step in the process involves the determination of the minimum values of the
control parameters required to ensure the manufacturing system could achieve the
required throughput, as discussed in Section 5.2.1. The process involved creating a test
file of design points with the initial inventory parameters all set to zero, and the number

of process tags at each station set to very low (usually 1) values. These design points
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were simulated several times each using PACSIM. A new program, preprocess.f, was

created to assist in determining whether the simulation was able to reach steady state for
these parameter combinations. This program reads in the output files from the simulation
runs (including the information provided by the new subroutine SSTATE) and produces a
report with the following information:
o the slope of the linear regression line of the independent variable (system time)
and the dependent variable (customer delay time).
¢ the average customer delay time for the entire simulation run, along with the
average of delays in the first half and the second half of the simulation run.
¢ the average time between product arrivals at the finished goods store(s) and the
average time between customer order arrivals.
For Model 0, the design point z; =0, k; = 1, z; = 0, and k; = 1 was simulated, and
then the preprocessing report generated for this point (Figure 6.2).

Preprocessing Report
Created on: 16-Mar-05

Number of RUNS per Design Point: 10
Length of each simulation run: 250 days

Design point tested 0 1 0 1

Product No. 1

Time BTW Time BTW Percent Reg Customer Delay Time Cycle
Run Departs Oxders Diff Line Average 1st Half 2nd Half Time
1 81.549 59.405 -37.28 1.37787 66648.2 42131.4 91343.3 8l.6
2 80.708 59.640 -35.32 1.32922 64185.0 40562.7 88180.9 80.7
3 81.326 59.060 -37.70 1.34214 64323.7 40146.7 88337.2 81.3
4 80.916 60.292 -34.21 1.26905 62186.9 40890.2 83977.7 80.9
5 81.150 61.813 -31.28 1.23617 60075.8 38725.9 81425.7 8l.2
6 81.326 61.405 -32.44 1.34819% 65944 .1 43211.6 88676.5 81.3
7 81.134 59.653 -36.01 1.31548 63684.9 40346.7 87044.1 8l.1
8 B81.343 61.503 -32.26 1.25127 60888.0 39476.7 82145.0 81.3
9 80.727 59.198 -36.37 1.37942 66143.1 42382.5 89544.0 80.7
10 81.419 59.200 -37.53 1.34182 64541.2 41177.4 87558.7 81.4
Average: -35.04 1.31906 63862.1 40905.2 86823.3 8l.2

Percent Difference less than -0.200%
Avg. Regression slope above 0.150
2nd half delay average is 112.3% higher 1st half delay average

***Design point probably INFEASIBLE **%*

Figure 6.2: Excerpt from the Preprocessing Report (Model 0)
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In this example, the simulation of the selected design point resulted in a time

between departures much higher than the time between arrivals for product; the customer
delay time appeared to be increasing and the slope of the linear regression line was quite
high; these all indicated that the system was unable to achieve the required throughput,
and therefore this point would be considered infeasible. For Model 0, a subsequent test
with the process tags for product 1 set to two did achieve the throughput rate, and
therefore established the minimum parameter values. For more complex models, several
experiments were sometimes necessary to determine this point. More details on this
program may be found in Appendix A. The minimum values for the process tag

parameters was determined through this process to be k1 =2, ky = 1.

6.1.3 Transient Analysis

Prior to generating the training data for the model, transient analysis was conducted
using the customer delay time as the measure for analysis. The minimum values for
process tags established through the preprocessing experiments were used for the design
point, as discussed in Section 5.4.2. Using Welch’s graphical technique (see Figure E.1,
Appendix D), it was determined that a 50 day warm up period for Model 0 was sufficient

to ensure the simulation had reached steady state.

6.1.4 Verification of the Simulation Model

Prior to generating the training data for Model 0, we used the model to verify the
PACSIM model. This procedure was only performed for this model. Using exponential
distributions for the processing times at both cells, queuing formulas were used to find
the expected performance measures. The simulation model was run with all values of &
set to very large numbers, so that all information about customer orders would
immediately be passed up to the first cell. Initial inventory at both cells were set to zero.
Therefore, as soon as a customer order arrives at this system, a job would be released at
Cell 1.

Because orders arrived at Cell 1 according to a Poisson process, and processing time

at Cell 1 was exponential, then departures from Cell 1 (and therefore arrivals at Cell 2)
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would also be exponentially distributed (e.g. Ross, 1997). Therefore, both cells can be

modeled as M/M/1 queues, and basic queuing formulas can be used to predict the average
total time in the system (Table 6.2).

Table 6.2 Queuning formulas and calculations for Model 0

Measure Formula Cell 1 Cell 2 Total
Processing Rate (parts/minute) )7 1/45 1/36
Arrival Rate (parts/minute) A 1/60 1/60
Utilization p= A 0.75 0.6
yJ)
Average number of parts in cell L=_P 3 L5 4.5
I-p
Average waiting time in queue _ L 180 90 270
and in process (minutes) )
Average waiting time in the W o=W 1 135 54 189
queue (minutes) g — "7 ';
Average number of parts in the L, =W, 2.25 0.9 3.15
ueue

Total time in the system therefore should be 270 minutes. Forty replications of the
simulation were executed. Using the replication-deletion method for means (Law and
Kelton, 2000), the average cycle time, CT, was determined to be 269.86 minutes, and the
95% confidence interval for the true mean of the average cycle time was [265.48, 274.24]

(see Appendix D). Since this includes 270 minutes, the simulation model was assumed to
be correct.

6.1.5 Generating the Training Dataset

With the minimum feasible values for the design points established, the next stage
involved generating the design points to be included in the training dataset.

Because Model 0 is small, choosing only a single point from each level combination
would result in, at most, only 3* = 81 design points in the training set, which may be

fewer than the number of weights in the model. Therefore, three points were selected

from each level combination.
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The only applicable process tag rule was Rule 1, resulting in the following constraint

on the number of process tags at cell/store 2:

k2 < kl + ré)) [69]

A program, generate_random.f (Appendix A for description, and Appendix I for
code), was created to generate these points, based on the ranges for each coordinate and
the process tag rules for the system (Section 5.2.3). The program requires the number of
parameters and the ranges for each, and the number of desired replication for each level
combination. For each input parameter, three levels for the values were chosen (low,
mid-range, and high), such that the ranges covered the entire range of values for the given

parameter (Table 6.3). The ranges were designed to be roughly the same size.

Table 6.3: Model 0 Design Point Ranges

Low Mid High
Zi 0,2 3,6 7,10
ki 2,4 5,7 8,10
22 0,2 3,6 7,10
k; 1,3 4.6 7,10

Therefore, there was the potential to generate 3* design points, where k is the number
of input parameters, which would represent all possible combinations of levels for the
input parameters. However, for some of these level combinations, there would be no way
to randomly choose any point which would satisfy the process tag rules (as discussed in
Section 5.2.3). Therefore, these level combinations were dropped. The program would
then randomly generate a point for each level combination. If the point followed the
rules, it was added to the dataset; if not, another point would be randomly chosen and this
process repeated until a valid point was found.

The resulting dataset for Model O included 236 design points — 234 generated
randomly and the upper and lower bounds for the input space. These design points were

then simulated using PACSIM to generate performance estimates for the system.
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6.1.6 Training the Neural Network Metamodels

Following the procedure discussed in Section 5.5, the neural networks for these

experiments were trained using the MATLAB Neural Network Toolbox. A separate

network was trained for each of the performance measures of interest. The Levenberg-

Marquardt algorithm (trainlm) was used for training. The input and output data were

normalized to values between -1 and +1 prior to training, and then converted back to

actual values afterwards. The logic of this algorithm is described in Hagan et al. (1996)

and Appendix C.

A separate neural network was trained for each of average customer delay, average

cycle time, customer fill rate, and average finished goods inventory for Product 1 (Figure

6.3). The trained network parameters are shown in Table 6.4.

Table 6.4: Network Parameters, Model 0

Network Hidden Nodes Training Epochs
Customer Delay 12 300
Cycle Time 15 200
Fill Rate 15 250
FGI 12 150
Input (4) Network 1

Product 1, Initial Inventory (z;)
Product 1, Process Tags (k;)
Product 2, Initial Inventory (z3)
Product 2, Process Tags (k)

—— Customer Delay Time

Network 2

——» Cycle Time

Network 3

——— Fill Rate

Figure 6.3:

Network 4

—— Finished Goods Inventory (FGI)

Neural Networks for Model 0

A plot of the performance measures from the dataset versus the network performance

measures was generated using the postreg function in MATLAB (as discussed in Section

5.5). The x-axis (7) of this plot is the value from the training set, and the y-axis (A) is the
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network response. The equation for the linear regression line fit to these points is shown

at the top of the graph, and the regression coefficient, R, is shown in the upper left corner.
The plot for the Cycle Time network (Figure 6.4) shows that the network fits the data
very well. The plots for the other networks for this model are in Appendix D. These post

regression plots were similarly constructed for all networks in this chapter.
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Figure 6.4: Post Regression Plot for Cycle Time Network, Model 0

The error calculations for each network are shown in Table 6.5, along with the

minimum and maximum observations for each measurement in the training data set.

Table 6.5: Training Results, Model 0

Network Minimum Maximum MSE Mean Mean
Observation | Observation Error Absolute
Error
Customer Delay 0 325.07 | 49.718 -0.0476 4.5459
Cycle Time 87.64 693.09 | 44.716 0.4936 5.1399
Fill Rate 0 1.000 | 0.00048 5.4E-05 0.0161
FGI 0 8917 | 0.01360 1.6E-05 0.0927

Three design points not in the training set were chosen and presented as input to the

network. Design point 1 represents a Kanban system with three Kanbans at each
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cell/store. Design point 2 represents a CONWIP system with the maximum number parts

in the system set at six. Design point 3 is also a Kanban system, but with two Kanbans at
the first cell and four at the second cell. These design points were also simulated 10

times, and a 99% confidence interval for the expected was computed (Table 6.6).

Table 6.6: Some Neural Network and Simulation Results for Model 0

Simulations
LCL UCL NN*
Design zi1= 3|Delay 13.8 25.7 18.3
Point1 k1= 3|Cycle Time 233.3 238.8 229.6
z2= 3|Fill Rate 0.756 0.814 0.764
k2= 3}FGI 1.69 1.81 1.76
Simulations
LCL UCL NN*
Design :z:1= 6|Delay 12.4 26.1 16.7
Point2 k1= 6{Cycle Time 161.7 169.9 166.6
z2= O0]Fill Rate 0.823 0.870 0.870
k2= 6|FGI 3.13 3.34 3.34
Simulations
LCL UCL NN*
Design zi1= 4|Delay 11.3 19.9 14.3
Point3 k1= 4|Cycle Time 171.5 174.9 173.2
z2= 2|Fill Rate 0.810 0.865 0.812
k2= 2|FGlI 2.36 2.53 2.33

Since we do not have the true expected values for each of these functions, we must
estimate them by constructing confidence intervals. Obviously, tighter confidence
intervals could be constructed by collecting more samples. In Table 6.6, all but two of
the results fall within the confidence intervals; in these cases, we cannot reject the
hypothesis that the neural network result equals the expected value. For Design Point 1,
at a 99% confidence level, the true expected value of the Cycle Time lies between 233.3
and 238.8 minutes; the network estimated 229.6 minutes. It can then be said in this case,
at a 99% confidence level, that the relative error between the true expected value and the

network estimate is between -1.58% and -3.85%.
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6.2  Optimization using Neural Networks and Simulation Optimization

Model 0 was used to demonstrate the optimization of a cost function. The following
function, C, is a cost function with respect to the performance measurements:

Cc=C, (%) +C. K%a) —1.35} +C.D(l-v,)+Cy,

where

C = System Cost ($/hour)

C, = Cost of customer delay ($/hour)

va = Average customer delay time (minutes)

C. = Cost for cycle time beyond processing time ($/hour)

ve = Average product cycle time (minutes)

C, = Cost for orders not filled immediately upon arrival ($/order)

D = demand rate (orders/hour)

v, = Customer fill rate (percentage of orders filled upon arrival of demand)
C;= Cost for inventory ($/unit/hour)

v; = Average finished goods inventory (units)

The value of 1.35 in the second term is the total (in hours) of the processing time
required on the machines; thus, any value of v, above 1.35 represents waiting time in the
system. The values for the cost variables used in this example were Cy = $10/hour, C, =
$1/hour, C, = $20/order, C; = $1/unit/hour, and D = 1 unit/hour.

The goal was to find the PAC parameters which minimized this cost function with
respect to lower and upper bounds on the parameters, but no other constraints. In order
to determine the optimal solution to this problem, a dataset consisting of all of the
possible combination of PAC parameters was generated. The size of this dataset was
further reduced by limiting the number of process tags at the first cell to one, as any other
value served only to increase cycle time without any improvement in customer service, as
there was no travel time from raw materials to the first cell. All points with a cost greater
than $10 (as estimated by the neural networks) were eliminated, resulting in a dataset
containing 327 points; each of these points was then simulated 20 times. In practice, this

would rarely be a feasible approach, but since the model is very small this took just under
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17 minutes on a 2.0 GHz 2400AMD computer. The best results from this experiment are

reported in Table 6.7, where they are ranked in order of average cost.

Table 6.7: Top Results from Simulations at Each Point

Point Simulation (20 Runs)
Z1|k1|z2|k2| LCI |Average| HCI
6] 8 2| 1/$ 685}|% 741}%$ 797
71 101 1] 1[{$ 693 |$ 744|$ 794
8 9] O 1|$ 7.00|$ 750{% 8.00
6] 9 2| 1|$ 723|%$ 751|$ 7.79
8l 101 Ol 11$ 7.10|% 753|S$ 7.97
8 4 O 1|$ 7.15|8% 754 |$ 794
71 4 1| 1|$ 7.101$ 755[% 8.00
8l 10l 1] 1|1%$ 7361% 761|3$ 7.86
9 71 O] 1% 7.21|% 761|$ 802
71 4] 2| 11$ 739(% 762|3% 7.84

Note that even after 20 simulations, the 99% confidence intervals for the true mean

are quite wide; in fact, none of these points is statistically different. Of the 327 points

simulated, 120 points have a 99% confidence interval for the expected value which

covers part of the interval for the first point in this table.

All of the points were also evaluated using the neural networks, and the cost was

calculated from the results. The top results are shown in Table 6.8, along with the

corresponding results for 20 replications at each point.
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Table 6.8: Top Results from Neural Network Evaluations

Point Simulation (20 Runs)
Z1|{k1| 25| k3| NNResult] LCI |Average| HCI
6] 2| 21 11$ 73018 741]1% 798|8% 8.55
6] 2| 3] 1|$ 73218 725|8% 7871% 849
6] 31 2| 1[$ 73518 7133 76218 8.12
51 2| 31 1f$ 740§ 72513 785]8% 845
6] 3| 31 1]|$% 74218 7501% 776 % 8.01
6| 4| 2 1|$ 74518 759]|% 816]|$% 8.73
51 2| 4 1]1$ 7461 $ 8.18]$ 8.63|% 9.08
51 3] 31 1% 746 18$ 74713 8.09]% 872
71 21 21 11% 7501% 73918% 7.751% 8.11
71 2| 14 11$ 75118 790|% 834§ 879

A simulation model of this system was also built in Arena 9.0 (Appendix D). The
model was verified in the same manner as the FORTRAN simulation, using exponential
processing times, zero initial inventories, and unlimited process tags. The OptQuest
function was then used to find the optimal parameter settings subject to the same cost
function. The optimization procedure was permitted three simulations at each tested
point, and each simulation ran for 250 days (less the 50 day warm up period). The top 10
solutions from this procedure, along with the corresponding simulation results, are

reported in Table 6.9.

Table 6.9: Top 10 Results from OptQuest Optimization Procedure, Model 0

Point Optquest Simulation (20 Runs)

27 k 1122 k 2 Cost LCI Average HCI
70 3] 1f 1[$ 688|$ 7.11|$ 7748 8.38
6] 3 1] 1[$ 707|8% 707($ 770)$ 8.33
70 4 1] 1f$ 71218 7.10[$ 7558 8.00
70 5] 1] 1f$ 71518 7.021$ 772|8$ 8.32
71 91 1] 1|8 7.151% 742135 8.17]|$% 891
70 8 1] 1[$ 7.15]|8% 7.09($ 769§ 8.18
70100 1] 1[$ 71518 693[$ 744185 794
70 7] 1 11$ 71518 708($ 775|% 8.43
8] 3] If 11§ 722|$ 732|$% 784]|8$ 836
70 6] 1] 1{$ 732]18% 735]|$% 793|8$ 8.5l
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Optquest reported an optimal result at $6.88, which is much lower than the optimal

result reported by the networks. This point was simulated 20 times using the original
Arena model, which resulted in an average cost of $7.99, and a 99% confidence interval
of (7.47, 8.52). Figure 6.5 shows the results of 20 replications at this point using
PACSIM as well as Arena. The neural network estimation of the mean for this point was
$7.53. The reason that OptQuest reported such a low value may be explained by the
spread of the simulation results. Given the relatively high cost associated with customer
delay, a difference of only a few minutes has a significant effect on the total cost. At
each point during the procedure, OptQuest performs three replications, and the average of
these three is taken as the value for this point. Given the fact that there are so many
points that cannot be declared to be significantly different even after 20 replications, and
the fact that OptQuest was only permitted three replications at each point, it is logical to
assume that the likelihood of OptQuest seeing three consecutive “low” results for one of

these many points would be very high.

$10.50 -
*
$10.00 -
°
$9.50 A
°
]
$9.00 - ™
. .
8.50 - 99% C.I.
3 —3— 99% C.1. o
. s
$8.00 - ' Mean, $7.99
: Mean, $7.74 d
$7.50 A s NN, $7.53 e
: 3
$7.00 . | Optquest Result,
° O $6.88
$6.50
$6.00 PACSIM Arena

Figure 6.5: Comparison of Simulation Replications at OptQuest Optimal Point
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This experiment illustrates the problem in using simulation optimization, as
discussed in Section 3.5.1. By treating the simulation observation (or even the average of
a few simulations) at a point as a true expected value, there is no way to guarantee true

optimality, without conducting a very large number of simulation experiments at every

point.
6.3  Minimization of a Single Performance Measure Subject to Constraints

This example involves the determination of the PAC parameters required to
minimize the average finished goods inventory of Model A (Figure 6.6), subject to
constraints on the other performance measures. This system has three processing stations
in series. Demand for the final product arrives according to a Poisson distribution with a
mean time between arrivals of 60 minutes. The processing times have a Weibull
distribution (with ot = 2). The mean processing times at each station are shown in Figure
6.6. While raw materials are instantly available at cell 1, parts 2 and 3 require 5 minutes

of travel time (fixed) to arrive at the downsiream station after they have been

requisitioned.
(=0 tn(3)=5 t(2)=5

w

o) 5
g | P4 1 1 £
= P3 [=}] &
2 3
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Figure 6.6: Model A

Minimum and maximum values were chosen (as in previous models), and the ranges
for each parameter were then selected (Appendix E). The training dataset for this
example model, using three levels per variable, would have generated 729 points.

However, the following constraints were applied to the dataset:
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k, <k +2z,
ky, <k, +z,
This resulted in 677 design points in the training set. Four neural networks (Figure
6.7) were trained using this data (see Appendix E for the post regression plots). A
MATLAB m-file (Appendix I) was used to count the number of valid combinations of

parameters in the input space. For this model, it was determined that the networks would

be valid for 1,043,196 parameter combinations.

Input (6)

Network 1

— Customer Delay Time
Product 1, Initial Inventory (z)

Product 1, Process Tags (k1)
Product 2, Initial Inventory (z;)
Product 2, Process Tags (k2)
Product 3, Initial Inventory (z3)
Product 3, Process Tags (k3)

Network 2 |—» Cycle Time

Network 3 ——» Fill Rate

Network 4 — Finished Goods Inventory (FGI)

Figure 6.7: Neural Networks for Model A

The networks were then used to find the PAC parameters which minimized the
average finished goods inventory level for the system, subject to constraints on the other
measurements:

¢ Average customer delay time less than or equal to 60 minutes,
e Cycle time less than or equal to 300 minutes, and

¢ Fill rate equal to or greater than 90%.

The optimization problem is formulated as follows:
min z=v,
s.t.
v, S60
v, <300
vy 20.90
k,<k +z,
ky<k,+2z,
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where
v1 = output of network 1 - customer delay time (minutes)
v = output of network 2 - cycle time (minutes)
v3 = output of network 3 - fill rate
v4 = output of network 4 - finished goods inventory (units)

The purpose of the last two constraints on this problem is to constrain the search to
the space covered by the networks, as discussed in Section 5.2.3.

The approach to finding the minimum point for this simple model was to simply
evaluate all eligible points using the neural networks. The top 20 results from these
network evaluations were chosen and each simulated 20 times (see Appendix E). The
cycle time constraint was satisfied (on average) for all of these points, but the fill rate
constraint was not in all cases. Therefore, for each point, a 99% confidence interval for
the mean fill rate and finished goods inventory level was constructed. Table 6.10
contains the points where the confidence interval for the mean fill rate contains 0.90, and
therefore it cannot be concluded that the constraint is violated. In all cases, the finished
goods estimate is within the confidence interval, and in all but four cases, thé fill rate
value is within this interval. Of these four cases, the maximum relative error occurs at
the second point in the table, where that the network result differs (at a 99% confidence

level) from the true expected value by, at most, 2.92%.
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Table 6.10: Best Results from Neural Network Evaluation of All Points, Model A

Design Points Network Simulation
Fill Rate FG Inv
Z1lk1|z2lka|z3lks| Fill [FGInv] Avg. | 99% CI. | Avg. | 99% C.L
Rate
51 10 21 31 2] 1 0.904 3.268] 0.899 [0.888,0.911] 3.264 [3.216, 3.313]
51 6 21 3 2 1 0.912 3261} 0.897 [0.888, 0.907] 3.268 [3.222, 3.315]}
5| 4] 21 5] 21 1 0.916 3.280F 0.902 [0.890, 0.915] 3.269 [3.218, 3.320]
5| 8 2] 8 2 1 0.904 3260F 0.904 [0.895,0.913] 3.276 [3.237, 3.315]
51 4] 2] 6] 2 1 0.912 3.269) 0.898 (0.888, 0.908] 3.281 [3.238, 3.324]
50 51 2] 71 2] 1 0.910 3269 0.901 {0.890, 0.912] 3.284 [3.243, 3.324]
51 10] 2 2 2 1 0.909 32751 0902 [0.891, 0.914] 3.286 [3.233, 3.339]
5] 10] 2] 8 2| 1 0.904 3.260] 0900 [0.889, 0.911} 3.289 [3.249, 3.328]
5] 8 2| 6 21 1 0.907 32721 0902 [0.890, 0.914} 3.292 [3.238, 3.347]
5[ 77 2] 6 2 1 0.912 3.280] 0.904 [0.895, 0.912] 3.294 [3.242, 3.347]
51 71 2] 71 2| 1 0.909 3.269] 0.906 [0.898, 0.915] 3.305 [3.271, 3.339]
S| 9 21 8 2| 1 0.901 3.259I 0.908 [0.898, 0.917] 3.310 [3.264, 3.357]
51 9 21 5] 2f 1 0.904 32701 0.907 [0.900, 0.915] 3.311 [3.275, 3.347]
5t 6 21 71 2 1 0.911 3272 0910 [0.899, 0.921] 3312 [3.261, 3.362]
S| 77 21 8§ 2 1 0.910 3.261] 0910 [0.900, 0.920] 3.314 [3.270, 3.358]
S 8 2] 7] 2 1 0.903 3.265] 0.907 [0.896, 0.918] 3.314 [3.264, 3.364]
5] 91 2| 4] 2 1 0.909 3.278] 0.906 [0.897,0.915] 3.320 [3.284, 3.356]
5 8 21 51 21 1 0.911 32821 0910 [0.899, 0.921] 3.320 [3.271, 3.369]
51 5] 2] 6] 2 1 0.913 3.281] 0911 [0.902,0.921] 3.329 [3.294, 3.364]
51 10f 3] 8 1§ 1 0.500 32641 0916 [0.910, 0.923] 3.365 [3.338, 3.393]

Since many of these confidence intervals overlap, the optimal result is still unclear.

However, upon examination of the results in Table 6.10, there are similarities in the best

results. The only values which differ amongst the top results are the number of process

tags at Cells 1 and 2. The top solutions have values for k; between 4 and 10, and k; has

values between 2 and 8. This would indicate that the number of process tags at these two

cells do not have much impact on the performance of the system, given the values of the

other variables. It is straightforward to derive the partial derivatives of the network

functions with respect to the input values (Appendix B). The evaluations of those

derivatives at the top point are shown in Table 6.11.
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Table 6.11: Partial Derivatives of the Network Functions at a Single Point

Network
CT Fill Rate FGI
21 -0.5 0.049 0.950]
k1 -0.3 0.001 -0.001
Z2 39.2 0.040 0.194
k» -0.1 0.007 0.012
Z3 50.3 0.023 0.106
ks 30.9 0.004 0.002

The difference in magnitude of these derivatives indicates the effects of changing the
parameters from the current values. Note, as expected, that increasing the initial
inventory parameter at the finished goods store will increase the average finished goods
inventory, but increasing the number of process tags will have virtually no impact on this

outcome, nor on the fill rate.
6.4  Comparing the Impact of Setup Time and Travel Time

For a manufacturing system with cells capable of producing more than one product,
setup time at the cell would affect the performance of the system. To illustrate this,
another model, Model B, was used. This model has only two processing stations, but one
station produces two different products, which are both required by the second station for
assembly (Figure 6.8). Customer demand for the assembled product, Product 1, arrives
according to a Poisson distribution with mean time between arrivals of 60 minutes.

Average processing times (with Weibull distributions, o =2) are also shown (Figure 6.8).

o | pg |1 ‘@
©
: -
§ PS5 1 . /,—" é
& ci P3 T 2

1(2) =24 (1) =45

6,(3)=18

Figure 6.8: Model B
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Because Cell 1 produces two different products, there may be setup time involved

when switching between products. For this example model, two sets of networks were
constructed; Case I, with no setup time required at Cell 1, and Case II, with setup time at
Cell 1 and raw material travel time (which precludes any analytical modeling). Because
there is an assembly operation in this model, cycle time was no longer a convenient
measurement of performance, and therefore the work in process at each station for each

product was used. Therefore, seven networks were constructed (Figure 6.9, Appendix F).

Network 1 —» Customer Delay Time

Input (6) Network 2 —»= Fill Rate

Product 1, Initial Inventory (z1)
Product 1, Process Tags (k1)
Product 2, Initial Inventory (z5)
Product 2, Process Tags (k)
Product 3, Initial Inventory (z3)
Product 3, Process Tags (k3)

Network 3 —» Finished Goods Inventory (FGI)

Network 4 —» Work In Process, Product 2

Netwark 5 +——» Work In Process, Product 3

Network 6 ——» Work In Process, Product 4

Network 7 ——» Work In Process, Product 5

Figure 6.9: Neural Networks for Model B

6.4.1 Case I: No Setup or Travel Time
The training dataset was generated after selecting the minimum and maximum
parameter values and after applying the following constraints on process tags (Rule 1):
ky <k +z,
ky <k +2z,
With the lower and upper bounds included, there were 680 design points in the
training dataset. Training results, including error measurements and the post-regression

plots, are in Appendix F. Given the constraints and the ranges for the input values used
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to generate the training set, a MATLAB program was used to determine that these

networks are valid for 697,092 possible input parameter combinations.

Three design points were chosen to for network comparisons. The first represents a
CONWIP system with w = 8. The second is a Kanban system with six Kanbans at the
final assembly station and three for each of the subassemblies. The third example is a
produce to order system with a limit of eight jobs in the system, and a limit of three jobs
at the upstream station. The evaluations of these points using the neural network are

shown in Table 6.12, as well as the results of 10 simulation runs at each point.

Table 6.12: Results for Sample Design Points, Model B, Case 1

Design Point 1 Simulations (10 Runs)
LCL UCL NN*
z1= 8 {Delay 5.4 14.0 6.1
k1= 8 |[Fill Rate 0.200 0.934 0.950
z2= 0 |FGI 4.72 4.95 4.80
k2=8 [WIP2 1.10 1.26 1.6
z3= 0 |WIP 3 0.81 0.96 1.12
k3=8 |WIP4 0.79 0.88 0.81
WIP 5 1.19 1.29 1.16
Design Point 2 Simulations (10 Runs)
LCL UCL NN*
z1= 6 [Delay 6.5 20.5 15.1
k1= 6 |[Fill Rate 0.868 0.914 0.891
z2= 3 |FGI 3.74 3.98 3.92
k2=3 [WIP2 3.03 3.23 3.10
z3= 3 |WIP 3 2.73 2.92 2.86
k3=3 |WIP 4 0.68 0.73 0.69
WIP 5 1.02 1.08 0.99
Design Point 3 Simulations (10 Runs)
LCL UCL NN*
z1= 0 |Delay 185.4 203.1 202.4
k1= 8 |Fill Rate 0.000 0.000 0.008
z2= 0 |FGI 0.00 0.00 0.04
k2=3 |[WIP2 1.07 1.26 1.18
z3= 0 |WIP 3 0.77 0.96 1.13
k3=3 |WIP4 0.65 0.69 0.67
WIP 5 .99 1.03 0.99




6.4.2 Case II: Setup and Travel Time
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Model B, Case II, involved the same system parameters as Case I, but with a

constant travel time for raw materials and a constant setup time at Cell 1 (Table 6.13). At

Cell 1, the oldest PA card in the queue is processed first, regardless of the type of product

being authorized. The same design points were used for this model, but simulated again

with the new system parameters. Seven networks were trained, and results for the same

example points are shown in Table 6.14, along with the average results from 10

simulation replications. As expected, these networks produce different results than those

trained for Case I. For example, in Case I, for Design Point 1, the network reported an

average fill rate of 95%; however, with additional travel and setup time at Cell 1 in Case

I1, the expected average fill rate dropped to 76.8% for the same control parameters.

Table 6.13: System Parameters for Model B, Case 11

Product | Production | Inputs (Partand | Setup Mean Move Time
Cell Quantity) Time Processing to Next Cell
(Min) Time (Min) (Min)
1 2 2 (Qty 1),3 (Qty 1) -- 45 --
2 1 4 (Qty 1) 5 24 -
3 1 5(Qty 1) 5 18 -
4 -- -- -- 5
5




Table 6.14: Results for Sample Design Points, Model B, Case 11

Design Point 1 Simulations (10 Runs)
LCL UCL NN*
z;= 8 |Delay 34.4 65.4 58.1
k,= 8 |[Fill Rate 0.715 0.809 0.768
z,= 0 [FGI 3.28 3.76 3.06
k,=8 |WIP2 0.79 0.91 1.28
z3= 0 [WIP3 0.41 0.52 1.14
k;=8 |WIP4 213 2.50 2.20
WIP 5 2.53 2.91 2.55
Design Point 2 Simulations (10 Runs)
LCL UCL NN*
z;= 6 |Delay 21.3 68.4 32.6
k.= 6 |Fill Rate 0.733 0.848 0.803
z,= 3 |FGI 3.05 3.53 3.35
k=3 |WIP2 1.81 1.98 2.08
z3= 3 |WIP3 1.43 1.61 1.84
k.= 3 |[WIP4 1.31 1.48 1.28
WIP 5 1.52 1.66 1.61
Design Point 3 Simulations (10 Runs)
LCL UCL NN*
7= Delay 299.7 380.5 384.6
k.= 8 [Fill Rate 0.000 0.000 0
z,= 0 |FGI 0.00 0.00 0
k,=3 |WIP2 0.82 0.90 1.41
z3= 0 |WIP3 0.44 0.51 0.86
k;=3 |[WIP4 1.35 1.52 1.13
WIP 5 1.55 1.69 1.61

6.5  Analyzing the Impact of Batching
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When a manufacturing system has a single cell capable of producing more than one

product, there may be setup time required to switch between products (as discussed in
Section 6.4). In order to avoid some of these setups, it may make sense to produce

product in batches of more than one. This situation is explored through the use of

another example model, Model C.

Model C has three processing cells, and two final products (Figure 6.10). Demand

for the final product arrives according to a Poisson process with mean time between
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arrivals of 60 minutes. Demand is then randomly assigned to Product 1 (40%) and

Product 2 (60%). Processing times at the cells follow a Weibull distribution (¢t = 2).
Products 3 and 4 are both produced at Cell 1, where there is a 25 minute changeover time
required, either to go from processing of product 3 to 4, or vice versa. Priority at Cell 1
for PA cards is first-in, first out. Raw material is available immediately upon requisition,
but Products 3 and 4 require travel time to arrive at downstream stations. These move

times, (i), and the mean processing times, 1,(i), are shown in Figure 6.10.

(1) = 90
£3) =25 =15 | 1
P /—‘ZPa : Z P1 : >
i) e —
5 P c2 :
S (L= 8
2 17 (@ =10 | 1 5]
°‘ 1T P4 P2
1(4) =25 c3
1,(2) = 60

Figure 6.10: Model C

This model also allows for batch processing at Cell 1 (r3> 1, r4> 1). If the value of
r for either product 3 or 4 is greater than one, PA cards authorizing production of that
product are held at the store until a full batch is formed, and then the entire batch is sent
to Cell 1 for processing. Because a batch of PA cards arrives at Cell 1 at the same time,
once the first PA card in the batch is processed, all PA cards in the batch are processed in
sequence, thus avoiding any changeover time during the batch run.

In order to form the training set for this model, valid combinations of initial
inventory (z;), process tags (k;), and batch parameters (r;) were generated as in previous
models. The rules applied to choosing points for the training set were (from Rules 1, 3,
and 4):
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i<k
ra<ky
ks<k +z3
ki<ky+z4

One point for each valid combination was generated, and then batch sizes for
products 3 and 4 were randomly chosen for each point, such that the batch size for each
product did not violate the rules above. Because both of the requesting cells had batch
sizes of one, no further rules regarding batch values at cells 3 and 4 needed to be applied.
In all, 6086 design points were chosen for the training set. These points were simulated
for 200 days after the warm-up period of 50 days.

Because there are two final products and three other products produced or used by
this system, nine neural networks were required to model each of the output
measurements (Figure 6.11, Appendix G). Each network has 10 input values; the initial
inventory and number of process tags for each cell/store, as well as the batch size for
products 3 and 4 at Cell 1. Once again, given the constraints above and the ranges for the
input values, it was determined that the networks would be valid for 828,214,960 possible

combinations of input values.

Network 1 —» Delay Time, Product 1

Input (10)

Network 2 — Delay Time, Product 2

Product 1, Initial Inventory (z;)
Product 1, Process Tags (k;)
Product 2, Initial Inventory (z2)
Product 2, Process Tags (k)
Product 3, Initial Inventory (z3)
Product 3, Process Tags (k3)
Product 3, Batch Size (r3)
Product 4, Initial Inventory (z4)

Product 4, Process Tags (k4)
Product 4, Batch Size (74)

Network 3 —» Fill Rate, Product 1

Network 4 - Fill Rate, Product 2

Network 5 —» FGI, Product 1

Network 6 —» FGI, Product 2

—> WIP, Product 3

Network 8 ——» WIP, Product 4

Network 9 +—» WIP, Product 5

Figure 6.11: Neural Networks for Model C
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The networks were then used to study the effects of batch processing at Cell 1 on the

performance of the system. A configuration not found in the training dataset was chosen

(Figure 6.12), and then the networks were used to evaluate the performance of the system
for values of 3 and ry4 between one and four. To show that the networks may be used for
such analysis, each of these combinations was simulated 20 times. The complete results

can be found in Appendix G.

Z3=2
k=4
r3=(114) k1=5

1
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1 4
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C
Z4=2 3 =4
ky=4 ka=5

rs=(1,4)
Figure 6.12: Configuration of Model C for Batch Size Analysis

P5

Raw Materials
Customer

Upon examination of the performance measures, it appeared that any change in the
batch size for Product 3, 73, did not have any appreciable effect on the performance
measures for product 1, nor did changes to r4 have any impact on Product 1. Examining
these parameters separately, it can be seen from Table 6.15 that increasing the batch size
for Product 3 at Cell 1 results in a decrease in customer fill rate for Product 1, but also a
decrease in work-in-process inventory of Product 4. In particular, setting a batch size of
two has only a small effect on fill rate and customer delay time, but a more noticeable
impact on work-in-process inventory. These results, of course, are only valid for the
configuration shown in Figure 6.12, but as can be seen from this example, the networks
appear to be a fairly accurate approximation to the simulation results, and therefore could

be used for such analysis.
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Table 6.15: Performance with Different Batch Sizes, Model C, Product 2 ¢, = 1)

r=1 r=2 r=3 r=4
NN Sim NN Sim NN Sim NN Sim

Cust. Delay 6.1] (6.0,9.4) 7.1] (6.3, 9.3) 9.1] (8.4,12.0) 14.8] (16.5, 19.3)
Fill Rate 0.929} (.907,.928) { 0.921} 0.904, 0.920] 0.886] 0.880, 0.900) | 0.802] (0.807, 0.823)
FGI 2.80) (2.73,2.80) } 2.76] (2.68, 2.73) 2.52] (2.50, 2.55) 2.03] (2.02, 2.06)
WiP4 1.86] (1.84, 1.89) 1.35] (1.34, 1.38) 1.00} (0.97, 1.01) 0.90] (0.91, 0.94)
WIP5 0.59] (0.57,0.62) 0.62] (0.83, 0.66) 0.72} (0.71, 0.74) 0.84] (0.83, 0.86)
6.6  Optimization using Simulated Annealing

Model C has 828,214,960 eligible input combinations, therefore evaluating each

possible combination using the networks is not a feasible approach for optimization. It is

also worth noting that to simulate the 6086 design points in the training dataset took

13.010 minutes (see the PACSIM output report in Appendix G), for an average speed of

467 replications/minute. Even at this speed, it would take over 3 years to simulate all of

these points, making simulation optimization virtually impossible. Therefore, as

discussed in Section 5.6.1, a simulated annealing algorithm and the neural networks can

be used to optimize a cost function of the performance measures of the system.

In this experiment, the goal was to find the design point which minimized the

following cost function:

where

C = System Cost ($/day)
v3 = output of network 3 (fill rate, product 1)
v4 = output of network 4 (fill rate, product 2)
vs = output of network 5 (average finished goods inventory, product 1)
vs = output of network 6 (average finished goods inventory, product 2)
v7 = output of network 7 (average WIP, product 3)
vg = output of network 8 (average WIP, product 4)
vy = output of network 9 (average WIP, product 5)
C, = Cost for orders not filled immediately upon arrival ($/order)
D = average demand rate (orders/day)
C;= Cost for finished goods inventory ($/unit/day)
Cyip = Cost for WIP inventory ($/unit/day)

C= CrD[(l“V3)+ (1=v,)]+ Ci(vs +ve )+ Cip (v; +vg +vy)

[70]
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A simulated annealing algorithm was written in MATLAB: to optimize the function

(see Appendix I). The logic of the algorithm is shown in Figure 6.13, and the parameters
for the algorithm are shown in Table 6.16

Table 6.16: Parameters for the Simulated Annealing Algorithm

Number of Cooling Cycles 20
Initial Temperature 1000
Number of Iterations at First Temperature 5000
Number of lterations at Subsequent Temperatures 2000

Initialize Variables

Cbest = Cinlﬂal;
Ccurrent = Cini(lal;
lterations=0 N
lterations = Randomly choose
= iterations +1, —» S::r(cij?r:;!é(tjgoa?ts; — increase or Is trial point valid?
Xiriai™Xcurrent decrease (by 1)
* YES

Evaluate cost of
trial point (Ciia))
using networks

P= exp(ccurr - Ctrial J
I Cirial < Cpest? N IS Cyia1 < Ceurrent? NOM T
U =rand(0,1)
YES YES
Y A 4
Cbest fC!riaI » Ccurrent fcﬂnlal l-YE
Xbest =Xtrial Xcurrent =Xitrial
NO

Maximum
iterations
reached?

NO

YES

Maximum
Cooling Cycles
reached?

SetT=T/2;

herations=1 [ © N

C* = Cest
YESm .o

Figure 6.13: Flowchart of Simulated Annealing Algorithm
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In this algorithm, the current point and best point are set equal to the initial point.

The cost function is evaluated at this point, and the best cost and the current cost are set
equal to this value. At each iteration, a new trial point is selected from the
neighbourhood of the current point - this neighbourhood is defined as the set of valid
design points where only one of the coordinates differs from the current point by +/-1.
The function is evaluated at this point, and if the result is lower than the best point seen
so far, it is stored as the best point and also as the current point. If it is not the best, but is
better than the current point, it is adopted as the current point. If it is not better than the

current point, then two values are computed:
P =exp Ccurr ” Ctrial
T

where

Ceurr = the cost at the current point,
Crriar = the cost at the trial point,
T = the cooling temperature.

A random variable is drawn from a uniform (0,1) distribution, and if P is less than
this value, the trial point is adopted as the current point. Note that when the temperature,
T, is large relative to the difference in cost of the two points, then the value of P will be
close to one and the probability of accepting the trial point as the current point is close to
one. These iterations continue until the maximum number of iterations for the current
cooling cycle is reached, at which point the temperature, 7, is reduced by half. As the
algorithm progresses, the probability that a non-improving trial point will be accepted as
the current point becomes more dependent on the magnitude of the difference between
the costs.

For this experiment, the cost function values were set at C, = $10/order, C; =
$10/unit/day, and Cy,;p = $5/unit/day. The demand rate, D, was 24 orders/day. An initial
point was arbitrarily chosen, and the cost at that point was $137.79. Given the cooling
temperature and number of iterations at each temperature, the algorithm performed

45,000 evaluations to arrive at the solution shown in Table 6.17.
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Table 6.17: Results of Simulated Annealing Experiment

zy |ky |22 |ky |23 k3|13 |24 |ky|74]| Cost
5 2 5 3 1 3 1 1 4 1 | $103.52

This experiment was repeated a total of 25 times, each with a different starting point.
In 24 of the 25 experiments, the resulting solution was the same as in Table 6.17 (see
Appendix G for the complete results). The interesting result is that although using the
batch parameter will result in a reduction in the amount of setups, the best set of

parameters given this cost equation has both batching parameters set to one.
6.7  Developing Exchange Curves

Section 6.6 illustrated that when costs are available, the neural networks may be used
to perform optimization. However, when costs are not readily available, which is often
an issue in manufacturing, exchange curves provide the ability to understand the trade-
offs between performance measures, and the subsequent determination of where the
system can operate. In this section, we provide two examples where such exchange
curves were constructed.

In the first example, Model A was once again used. In this case, we were interested
in identifying the appropriate Kanban strategy for this system. As discussed earlier,

Kanban is defined within the PAC system as any combination of PAC parameters where

the initial inventory and number of process tags are the same at each station (k, = z; Vi).

Because Model A has a relatively small input space, when we limited eligible points to
those that fit the definition of a Kanban system, this was limited even further. Therefore,
it was possible to simply evaluate every possible Kanban strategy using the neural
network metamodels.

To construct the exchange curve, the two performance measures chosen for the curve
were Total Time in System, and Customer Fill Rate. Total Time in System (77) was a |

combination of Cycle time (CT) and average finished goods inventory (FGI):

IT=CT+20 71]
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where
TT = total time spent in system, including time in finished goods inventory (min),
D = average customer demand rate (units/min).

This measure represents the average total time in the system, including time spent in
finished goods inventory. These two measures were plotted for all combinations of
points. The resulting graph is shown in Figure 6.14. Note that the minimum fill rate is
just over 82%. The networks were trained with a minimum value of four process tags at
the first station, and therefore would not be valid for any lower value. According to the
definition of Kanban systems, the initial inventory at a cell must equal the number of
process tags; therefore, the minimum value of initial inventory at the final store is also

four, resulting in a rather high value for fill rate.
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Figure 6.14: Fill Rate vs. Average Time in System for Kanban Strategies, Model A
What may be of interest at this stage are the points which lie at the bottom right of

this graph, indicating a fill rate very close to 100% and a lower total time in system.
Eliminating all points with fill rates of less than 95% and total time in system greater than
650 minutes resulted in a list of 10 points, listed in Table 6.18. The second point on the

list, [7, 3, 1], has a much smaller cycle time than the first point, while only having
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slightly smaller fill rate and the same average finished goods inventory level. This list (or

an expanded list, by changing the limiting criteria above), presents the decision maker

with the ability to make a strategic determination of what to choose.

Table 6.18: Selected Points and Network Results for Kanban Example, Model A

# of Kanbans Cycle [Fill Rate] FG Inv | Total
Cell 1 Cell 2 Cell 3 Time Time
7 2 2 332.4 0.986 5.3 649.6
7 3 1 277.7 0.983 5.3 594.2
7 2 4 306.4 0.980 5.3 625.9
8 2 1 232.4 0.975 6.1 599.6
7 2 1 230.8 0.964 5.1 537.8
6 2 2 330.7 0.962 4.3 589.0
6 3 1 275.2 0.959 4.3 533.1
6 4 4 377.6 0.958 4.4 642.2
6 2 4 304.7 0.957 4.4 566.6
6 6 1 360.0 0.954 4.4 621.1

To construct an exchange curve, we opted to plot the percentage of demands not met

from stock (1 — Fill Rate). Figure 6.15 contains a subset of the same data used for Figure

6.14, but only includes points with a total time in system of less than 800 minutes (since

we can achieve a 100% fill rate with less than 700 minutes in the system).
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Figure 6.15: Exchange Curve for Kanban Strategies, Model A
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A second optimal policy curve was developed for this model by not constraining the

strategy to Kanban, but by letting the PAC parameters take on any eligible value. The
optimal policy curve was once again determined and the result plotted against the Kanban
curve (Figure 6.16) and labelled as “Hybrid”. As can be seen from this curve, by not
limiting the control strategy to a Kanban strategy, significant reductions in total time in
system (and thus inventory) as well as gains in customer service can be achieved. Bonvik,
Couch and Gershwin (1997) conducted a similar study to compare inventory levels and
customer service for Kanban strategies and hybrid strategies for a four-station serial
production line. They constructed the optimal policy curves for this system by
conducting 50-100 simulations at 1250 different Kanban strategies and 3000 hybrid
strategies. The computational expense of constructing such optimal policy curves using
the neural networks to evaluate each strategy is significantly lower for problems of this
magnitude.
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Figure 6.16: Exchange Curves for Kanban and Hybrid Strategies, Model A

When models are more complex and the input space is larger, this approach for

developing the exchange curve is not attractive. For example, with Model C, there are
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over 800 million eligible parameter combinations. Thus, an optimization heuristic such

as simulated annealing will be necessary to construct the curve. To illustrate this, we
used the same simulated annealing algorithm discussed in Section 6.6, along with the
networks previously trained for Model C.

The two measures we opted to study for this system were the percentage of customer
demands not immediately satisfied from finished goods, and waiting inventory. This
system produces two products; 40% of customer demand is for Product 1, and 60% is for

Product 2. Therefore, for the first measure, the percentage of demands not immediately

filled from inventory, 1 - f , was calculated as follows:

1- f =1-(0.40v, +0.60v, ) 2l
where

f = average fill rate for both products

v3 = fill rate for product 1
v4 = fill rate for product 2

The second measure is the total of the waiting inventory in the system, /,,. Since the
measures for WIP do not include material in process at a cell, the sum of the WIP
inventory and finished goods inventory will be the total number of products waiting
within the system. Although this ignores the value added by each processing step, it is
still proportional to the average amount of raw materials tied up in the system. Therefore,

I, is defined as
I, =(vs+vg)+ v, +vg +v,) [73]
where

(vs + v, )= sum of finished goods inventory (both products), and
(v, +vg +v, )= sum of work-in-process inventory at processing cells

To construct the curve, we first constructed the following function, C, as follows:

c=00-F)+(-0), [74]

where

0 = a weighting parameter, and



126
=t ~lu_
el b

where

I jj‘“‘ = minimum observation for I, from the training set data, and

1 7™ = maximum observation for /,, from the training set data.

The reason for the calculation of I/, was that all values of average fill rate, f , were
between 0 and 1, so therefore I,, was roughly “normalized” so that it would be closer in
magnitude to values of f.

Starting at © = 0.005 (rather than zero, to ensure there was still some weight placed
on the fill rate function), this function was minimized using the simulated annealing
algorithm discussed above. The value of 6 was then increased to 0.05, and the
optimization repeated. The value of © was repeatedly incremented in steps of 0.05, with
an optimization applied at each stage, until 8 reached 0.95. Finally, one minimization,
with of 0 = 0.995, was carried out. Thus, a total of 21 optimizations were carried out,
with five repetitions of the simulated annealing algorithm, each with a different initial
point, for each value of 6. The points and resulting performance measures were then

plotted, and the convex hull of these points determined. The curve is shown in Figure
6.17.
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Figure 6.17: Exchange Curve for Model C

Again, this curve represents the optimal policy curve for the example system. As
can be seen, only small increases in WIP are required to improve fill rate dramatically up

to about 50%, at which tifne the curve begins to increase steeply.

6.8  Accuracy, Generalization, and Comparison with Regression Models

In this section, we demonstrate that neural networks are a good choice for the
metamodeling approach to this problem. A more complex model, Model D, was used
for the experiments described in this section. Model D has four processing stations,
where two of them are assembly stations (Figure 6.18). Some products are required in
quantities of more than one. Again, customer demand arrives according to a Poisson
process with mean time between arrivals of 60 minutes. Because there are no cells which
produce more than one product, batch sizes of one were assumed for all products. Some

of the materials require travel time to arrive at the requesting cell. As well, Cell 1 has
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two parallel machines, which both produce Product 4. The system parameters for Model

D are shown in Table 6.19.
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Figure 6.18: Model D

Table 6.19: System Parameters for Model D

Products Station Inputs (Part and Qty)
1 4 2(Qty1),3(Qty2),5(Qty 1)
2 3 6 (Qty 1)
3 2 4Qty2),7Qty 1)
4 1 8 (Qty 1)

Where some cells require parts in quantities greater than one in order to produce one
product, the issuance of one PA card for such a product will generate multiple orders for
component parts. For example, when a PA card for Product 1 is generated and sent to
Cell 4, the cell will generate two orders for Product 3, three orders for Product 2, and one
order for Product 5.

Rules 1 and 2 were applicable to this model, resulting in the following constraints:

Rule 1:k, <3k + 22
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k3 < Zk]; + 23

ki <2k + z4

Rule 2:k4 22

Given these rules and the minimum and maximum allowable values for the
parameters, the input space was calculated to include 3,457,938 valid points. The ranges
for each parameter were divided into three levels (Appendix H), and a single point was
generated for each valid level combination, resulting in a training set of 6563 points. A
total of ten neural networks were trained using this dataset (Figure 6.19). The results of

the training can be found in Appendix H.

Network 1 —» Delay Time

Input (8) Network 2 — Fill Rate

Network 3 | FGI

Product 1, initial Inventory (z;)
Product 1, Process Tags (k1)
Product 2, Initial Inventory (z;)
Product 2, Process Tags (k,)
Product 3, Initial Inventory (z3)
Product 3, Process Tags (ks)
Product 4, Initial Inventory (z,)
Product 4, Process Tags (k)

Network 4 +—» WIP, Product 2

Network 5 ——» WIP, Product 3

Network 6 —» WIP, Product 4

Network 7 +—» WIP, Product 5

Network 8 —» WIP, Product 6

Network 9 +—» WIP, Product 7

Network 10 —» WIP, Product 8

Figure 6.19: Neural Networks for Model D

Once again, three points not included in the dataset were chosen and evaluated using
the networks, and as well, each was simulated 20 times. A 99% confidence interval for
the mean of each performance measure was also calculated from the simulation runs.

Table 6.20 shows the results of those comparisons. While some of the neural network
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results do not fall within the 99% confidence intervals for the mean value, those that fail

are very close to what amounts to quite narrow confidence intervals.

Table 6.20: Results for Sample Points, Model D

Design Point 1

Cl for Simulations

Network Response

z,=4 [Delay (18.0, 22.6) 20.1
k= Fill Rate (0.761, 0.786) 0.770
2;=3 |FGI (2.03, 2.11) 2.04
k=1 [WIP2 (4.63, 4.86) 4.90
z3= WIP 3 (1.54, 1.59) 1.59
k,=4 [WIP4 (1.93, 2.00) 1.96
z2.=2 [WIP5 (1.35, 1.45) 1.42
k=4 |WIP6 (0.00, 0.00) 0.00
WIP 7 (1.61, 1.67) 1.66
WIP 8 (0.95, 0.97) 0.94

Design Point 2

Cl for Simulations

Network Response

z,=0 [Delay (206.1, 213.9) 228.3
k= Fill Rate (0.000, 0.000) 0.004
z,=0 |FGI (0.00, 0.00) 0.02
ky= WIP 2 (5.28, 5.58) 5.48
2;=0 [WIP3 (1.08, 1.17) 1.09
k=4 |WIP4 (1.21, 1.25) 1.26
24=0 |WIP5 (2.60, 2.71) 2.64
ke=4 |[WiP6 (0.00, 0.00) 0.00

WIP 7 (2.04, 2.08) 2.06

WiP 8 (0.86, 0.88) 0.83

Design Point 3

Cl for Simulations

Network Response

Zy= Delay (3.6, 5.6) 4.9
k= Fill Rate (0.936, 0.950) 0.944
;= FGI (4.17, 4.25) 4.27
k,=3 WIP 2 (6.41,6.57) 6.44
3= WIP 3 (2.74, 2.80) 2.72
ky;=6 WIP 4 (2.14, 2.22) 2.20
74=2 WIP 5 (0.95, 1.01) 0.97
k,=6 WIP 6 (0.91,0.92) 0.91
WIP 7 (2.09, 2.15) 2.12
WIP 8 (1.68,1.71) 1.68
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6.8.1 Generalization

To illustrate the generalization properties of neural networks, a second set of 6,561
input data points was generated using the same rules as were used to generate the training
set. Each point was tested to ensure that it did not appear in the training dataset. Then,
all data points in this new set were evaluated using the ten neural networks produced for
Model D. A comparison of the error results for the training set and the test set are shown
in Table 6.21. As can be seen from this data, the overall error results for the test data set
are quite comparable to the training data set, even though a cross-validation procedure

was not used.

Table 6.21: Error Results for Training Data Set and Test Data Set, Model D

Mean Absolute
Observations | MSE __Mean Error_ Error_

Training| Test |Training| Test | Training| Test
Network Min Max Set Set Set Set Set Set
C. Delay 0 275.46] 10.76700 13.21200] 0.01688| -0.06573 2.2076 2.3447
Fill Rate 0 1]  0.000231 0.00026] 0.00002] 0.00042 0.0109 0.0115
FGI 0 8.634] 0.00545] 0.00610| -0.00114] 0.00124 0.0539 0.0564
WIP 2 1.446 16.591] 0.02686{ 0.02808| 0.00073| -0.00149 0.1257 0.1302
WIP 3 0.736 10.646] 0.00772] 0.00854| 0.00001] -0.00233 0.0692 0.0720
WIP 4 0.88 15.27) 0.01070{ 0.01100] 0.00001] 0.00128 0.0809 0.0815
WIP 5 0.502 2,861 0.00558] 0.00592] 0.00019| 0.00067 0.0573 0.0590
WIP 6 0 21250 0.00205] 0.00211] -0.00001] -0.00016 0.0315 0.0319
WIP 7 0.878 3763 0.00836] 0.01558] -0.00003] -0.01218 0.0683 0.0802
WIP 8 0 3.008] 0.00341] 0.00399] -0.00001] -0.00110 0.0404 0.0425

The post regression plots for the customer delay time for both the training dataset
and the test dataset are shown in Figure 6.20 and Figure 6.21. The plots for the other

networks are shown in Appendix H.
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Figure 6.20: Simulation Output vs. Neural Network Output, Customer Delay, Model D
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Figure 6.21: Simulation Output vs. Neural Network Output, Customer Delay, Test Dataset, Model D



133
6.8.2 The Networks Produce the Expected Value Functions

It has been assumed that the networks produce unbiased estimators of the expected
value of the simulation response. In order to demonstrate the validity of this assumption,
an additional test was conducted using the neural networks trained for Model D.

If the network does in fact produce unbiased estimators, then, over repeated
experiments, the average difference between the simulation response and the network

prediction should equal zero.
E [v(x)— s(x)] =0 [75]
where

v(x) = the network output for input x,
§(x) = a random simulation response for input x.

As described in Section 6.1.3, the ranges of values for each parameter were divided
into levels. In this experiment, ten unique points from each valid combination of levels
were randomly chosen. For example, one valid level combination is shown in Table 6.22.
In the training set, one point would be generated for this level combination by randomly
selecting a value from each range for each parameter. For this experiment, 10 such
points were randomly generated. Because there were 6561 valid combinations of levels

for Model D input, this resulted in 65,610 design points.

Table 6.22: Example of a Valid Level Combination for Model D

Level Range

21 Low 0,3
k; High 9,12
22 Mid 4,8
k; Mid 4,6
23 Mid 4,6
ks Mid 7,10
24 Low 0,5
k4 Low 2,4

~
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All of the points in this dataset were simulated once using the PACSIM model and

the performance measures were recorded. The points were also passed through each of
the neural networks to obtain the performance measures estimates.

Once the results were obtained from both the simulation and the networks, each set
of design points (10 points from the same region) were compared. The difference
between the neural network result and the simulation result was calculated, and then, for
each set of ten points, the average of these differences was calculated. A 99% confidence
interval (#, 44, = 3.250) for the mean difference for each set was calculated, therefore
resulting in 6561 confidence intervals for each network. For each of the networks, the
number of confidence intervals which contained zero was counted, and the results are
shown in Table 6.23. For all the sets of 10 points tested for each network, the confidence

interval contained zero at least 96.7% of the time.

Table 6.23: Number of Confidence Intervals for Level Sets which Contain Zero

Intervals Containing Zero
Network Number Percentage |
1 6342 96.7%
2 6405 97.6%
3 6443 98.2%
4 6463 98.5%
5 6439 98.1%
6 6459 98.4%
7 6452 98.3%
8 6407 97.7%
9 6430 98.0%
10 6453 98.4%

The results from this experiment support the claim that the trained networks are
satisfactorily unbiased in the prediction of the simulation response. For at least 96.7% of
the regions, the hypothesis could not be rejected at the 99% level (which is about 35, the

same amount used in control charting).

6.8.3 Comparison with Regression Models

In this experiment, second and third order regression models with two-way

interactions were fit to the same data used to train the neural networks for the eight input
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parameter Model D. The forms for the models are shown in Equations [76] and [77].

The coefficients were calculated using Matlab.

Second Order Model:
y= a0+2ap,+2bp,+z Zduplp] [76]
i=1 =1 j=i+l
Third Order Model:
y= a0+Zap,+pr, +Zlcpl+z1 Z+Idljp,p] [77]
i= =1 j=i
where

y = regression value (estimate of output)

a; by, c;, dij = regression coefficients

pi = input values (PAC parameters)

The second order model contained a total of 45 terms, and the third order model
contained 53 terms. The test data discussed in Section 6.8.1 was also presented to the
regression models, and the mean squared error (MSE) and the mean absolute error
(MAE) were calculated for both. Finally, for the two regression models, for each
performance measure, the order of difference between each regression model and the
neural network models were calculated by dividing the MSE of the regression model by
the MSE of the neural network model. The MSE results are presented in Table 6.24.

Table 6.24: Neural Network and Regression Results for Mean Squared Error (MSE), Model D

Neural Networks 2nd Order Regression 3rd Order Regression

Network: [|Training] Test |Training| Test | Factor |Training| Test | Factor

1 (Delay) 10.767 13.212 99.155 101.41 7.7 46.884 48.31 3.7
2 (Fill Rate) 0.0002 0.0003 0.0021 0.0023 8.6 0.0012 0.0012 4.7
3 (FGI) 0.0054 0.0061 0.0330 0.0345 5.7 0.0165 0.0179 2.9
4 (WIP 2) 0.0269 0.0290 0.1209 0.1307 4.5 0.0713 0.0788 2.7
5 (WIP 3) 0.0077 0.0085 0.0517 0.0572 6.7 0.0268 0.0303 3.6
6 (WIP 4) 0.0107 0.0110 0.0515 0.0517 47 0.0154 0.0160 1.5
7 (WIP 5) 0.0056 0.0059 0.0162 0.0174 2.9 0.0107 0.0116 2.0
8 (WIP 6) 0.0021 0.0021 0.0060 0.0066 3.1 0.0035 0.0039 1.8
9 (WIP 7) 0.0084 0.0156 0.0217 0.0244 1.6 0.0126 0.0152 1.0
10 (WIP 8) 0.0034 0.0040 0.0116 0.0164 4.1 0.0095 0.0138 3.5
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As can be seen in the table, the third order regression model outperformed the second

order model in each case, as would be expected. In comparison to the neural network
models, the third order regression model achieved virtually the same MSE for the WIP
value for Product 7 (WIP7), but resulted in an MSE about 4.7 times higher than the
networks for the Fill Rate. Closer examination of the post-regression plots for both the
customer service rate and fill rate indicates that the third order model is not sufficient for
modeling these two performance measures, especially when compared with the neural
network result.
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More experiments could be conducted with models with higher-order interactions, or

higher-order powers, until a better regression model was found. Obviously the third
order regression model is as accurate as the neural network model for WIP7 and much
easier to work with. However, none of the other results achieved this level of accuracy.
Obvoiusly if we know that some particular form is appropriate, such as models with
terms such as 1/p; we should be able to get good fits with regression models. However,
the purpose of this framework is to enable the study of any complex system, and we are
not likely, a priori, to have good ideas for specific appropriate model forms. Fully
populated third order models will have 149 terms, a number close to the number of
weights in the neural networks. This experiment demonstrates that simple fully
populated quadratic models and the extension of these models with third order monomial
terms are insufficient for the purposes of our framework. This supports the notion that

neural networks are the more appropriate choice.
6.9 Concluding Remarks on Experiments

As can be seen from the preceding examples, neural networks can be trained to be
are reasonably accurate, unbiased estimators of the expected value functions for system
performance. The network functions provide easy and flexible approaches to analyzing
or optimizing the system responses when compared to the alternatives of direct
simulation or simulation optimization.

Our experiments have also indicated that the results coming out of the neural
network analysis can be reasonably accurate portrayals of the simulation expected values.
For points not included in the original training set, and therefore not part of the fitting
process, we demonstrated that the neural networks provided reasonable approximations
of the expected values. We showed that the neural network results were often contained
within a confidence interval constructed for the true mean, and therefore we could not
reject the hypothesis that the network was in fact producing the expected values; where
this was not true, we showed that the relative error between the network approximation

and the true expected value were tightly bounded.
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We demonstrated that this framework provides the means to determine the most

appropriate control strategy for a manufacturing system. We demonstrated that exchange
curves can be constructed, even for complex models, to allow for the determination of the
right combination of performance measures for the system. We showed how exchange
curves for different types of strategies can be constructed and compared, with much
lower computational requirements than using simulation alone. We also demonstrated
the framework may be used to minimize a cost function of the performance measures, or
to optimize one performance function subject to constraints on the others. Therefore, this

framework addresses the original problem posed by Buzacott and Shanthikumar.
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CHAPTER 7

OBSERVATIONS, CONCLUSIONS, AND OPPORTUNITIES FOR FUTURE
WORK

7.1  Summary

We have addressed the important problem posed by Buzacott and Shanthikumar
(1992) of developing a framework for the systematic comparison of various
manufacturing control schemes and selection of the most appropriate control strategy for
a manufacturing system, provides a unifying formalism for a broad range of control
strategies, including the conventional strategies such as Kanban, CONWIP, and Base
Stock, to name a few. Since alternate control strategies arise from the PAC system as a
result of choices of PAC parameters, the natural questions to ask are how does system
performance vary as these parameter choices vary and how can we optimize the choice of
parameters for a given manufacturing setting. The contribution of this thesis is the
development of a framework that makes it possible to study these questions.

Since complex systems cannot be modeled analytically, a simulation model of a
system operating under the PAC scheme was required. The PACSIM simulation model
presented in this thesis is a result of ongoing work at Dalhousie. It provides estimates of
performance measures, such as average inventory at each production cell and customer
service levels for each finished product, for systems with complexities such as multiple-
product machines requiring setup time, travel times for requisitioned materials, assembly
stations requiring multiple subassemblies, and systems which produce more than one
finished product. Because PACSIM was developed in a high-level language
(FORTRAN), it can achieve execution speeds significantly higher than models built in
standard simulation packages.

We established in this thesis that the appropriate approach to this problem was to
provide a flexible means of analysis for the determination of the right operating strategy.

The definition of the best strategy is often difficult to determine in light of the conflicting
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performance measures of the system, and the difficulty in determining the various costs,

such as holding costs and lost order costs. Although the use of a simulation model for
performance estimation suggested the use of a simulation optimization technique, we
argued that this was not the right approach for this problem. Such techniques are
computationally difficult to apply to large problems, and in some cases, are inappropriate
as a modeling concept. We demonstrated that simulation metamodeling is the
appropriate choice for our framework. In metamodeling, the goal is to approximate the
expected value function for each performance measure of interest, with respect to the
PAC scheme parameters. Such metamodels provide the ability to apply deterministic
optimization techniques, as well as the ability to explore trade-offs amongst the various
performance measures, so that the best control strategy may be selected based on policies
and outside decision factors not easily integrated into any optimization approach.

Of the metamodel approaches available, neural networks presented many attractive
advantages. In this thesis, we demonstrated that feedforward neural networks are a
highly practical and feasible approach, even for large numbers of input parameters.
These models can be constructed easily based on a subset of data sampled from the input
space. Our simulation experimental design displayed good space-filling properties, and
was a contributing factor to the construction of such accurate metamodels. The rules we
developed for the selection of PAC parameter combinations ensured that only feasible
and reasonable design points were selected for training the network metamodels, and
were an important contribution.

Finally, through experiments conducted on several different manufacturing settings,
we provided the details on the implementation of this framework, and also provided
examples of the various types of analysis possible with this framework. We therefore
demonstrated that this framework addresses the original problem posed by Buzacott and
Shanthikumar.
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7.2 Areas for Further Research

7.2.1 Modeling MRP Strategies

The examples used in this work did not include forecasting, and therefore MRP type
systems which release work into the system based on forecasted future demand were not
represented. However, with only some modifications to the original simulation model,
MRP type systems could easily be included by introducing a forecast into the model, and
generating customer orders at some time previous to the expected arrival of this
forecasted demand. In fact, Bielunska-Perlikowski (1997) did originally create such a
model. However, she assumed (as did Buzacott and Shanthikumar, 1992), that forecasts
were perfect and therefore the only measurement of interest was the system’s ability to
meet demand given this advance notice. In the PAC scheme, MRP type systems are
modeled by removing the limit on the number of process tags at any station, therefore
allowing orders (and information) to flow freely upstream each time an order for a
finished product is received by the system. Because any study of MRP system would not
be complete without examining the effects of forecasting errors, cancellation notices and
surplus tags would also have to be included in the simulation.

This then brings up at least two opportunities for future work. The first would
involve determining a method to fairly compare MRP type systems using the PAC
scheme, including imperfect forecasts, the use of the delay parameter, T;, with pull type
systems where the delay parameter is not employed and the system typically responds to
actual demand. The second would involve the analysis of an MRP system specifically,
and whether or not such a system would see an improvement in performance if limits on
the number of avatlable process tags were placed on some or all of the production cells.
One criticism of MRP is that jobs are released into the system without regard for the
number of jobs already in the system (Hopp and Spearman, 2001); therefore, a limit on
information flow could reduce average work in process inventory and provide a lower,
and perhaps less variable, average lead time for jobs. Both of these issues should be

investigated.



142
7.2.2 Priority Schemes
In systems where a single cell produces more than one product, the priority scheme

used to determine the sequence in which PA cards waiting in the queue are processed was
assumed to be a management decision made in advance. This was also the case where a
single store supplied a part to more than one downstream cell. As was discussed earlier,
the priority scheme used will affect the performance of the system. Our assumption that
a FIFO strategy was used to determine the next product to produce at a multi-product cell
could have resulted in a large number of changeovers. Although not dealt with here,
there will be situations where the capacity of the cell would be insufficient to keep up
with demand if such a strategy were employed, especially if the cell were the bottleneck
in the process. However, a strategy designed to reduce the number of changeovers at a
cell may allow the cell to produce at the desired level, albeit at the expense of an increase
in inventory, as longer production runs of a each product would be necessary. The
batching parameter in the PAC system, r;, can influence this to some degree, since, with
the use of a FIFO system, a batch of r; orders for a single product arriving at a cell would
result in the cell would producing r; products in a row before changing to another product.
However, there may be opportunities to improve overall system performance by the
selection of a different type of priority scheme at any of these cells or store. Therefore,
the type of priority rule could be a parameter value for each cell/store where such
decisions are relevant. Various types of priority schemes (or queue disciplines), such as
shortest processing time (SPT), c4-rule (Rosa-Hatko and Gunn, 1997), or perhaps simply
processing all authorizations for the same product currently in the queue until none
remain or a time limit is reached. A set list of priority schemes could be coded in
PACSIM, and then an input parameter would instruct the program on which type to use.
Including this input parameter in the neural network metamodels would be more of a
challehge. The other PAC parameters are real-valued input; the selection of a strategy is
not. Further work would be necessary to determine the best neural network architecture

to deal with this type of input.
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7.2.3 Alternative Performance Measures

While PACSIM provides several common performance measurements, there are
other measures which should be explored. One such measurement of interest would be
the maximum possible throughput of the system, given different PAC scheme parameters,
and the corresponding average inventory levels required to achieve that throughput. This
would require a change to the simulation model so that the system no longer responds to
arriving demand, but instead to the completion of a product. One possible way to model
this would be to generate an order and requisition at the start of the simulation for each
unit of the initial inventory (z) assigned to the finished products store, and then, each time
a finished product is completed and arrives at this store, another “customer” order and
requisition would be generated for the product in order to immediately remove it from the

store. More work should be done to explore this option.

7.2.4 Modeling Other Real-World System Complexities in PACSIM
While PACSIM does allow for some realistic complexities, further work would need

to be done on this model to allow increase the ability of PACSIM to accurately model
actual systems. For example, it is assumed in PACSIM that items are free to move
individually; once a product is completed at a cell, it immediately begins travel to the
store, and will immediately begin travel from that store to a cell once a requisition is
received. In reality, there may be some requirement for parts to travel in batches, due to
limitations on transportation equipment. Although PA cards may be transmitted in
batches, to enable the sequential processing of like components at a cell, it is assumed in
the model that processing takes place sequentially until all the PA cards have been
completed. However, in some cases, such as a heat treating operation which takes

several hours, batch processing may be employed, and all PA cards would be processed

and released at the same time. It is assumed that the machines in the cells are always
available; in reality, breakdowns and operator absences will affect the performance of the
system. The PACSIM model again could be modified to include such random
breakdowns or stoppages. Another modification would permit sequence dependent setup

up times at multi-product production cells. Finally, it is also assumed although the time
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between demand arrivals is random, the quantity of the demand is always one; this

should be modified to include not only random demand arrival times, but also random
amounts, which is often a characteristic of many real systems.

It is important that this framework be applied in a real manufacturing environment;
however, the modifications discussed in this section should be made to PACSIM prior to

such an application.

7.2.5 Neural Network Development

We demonstrated that neural network metamodels are a useful tool for analysis and
optimization of manufacturing systems operating under a PAC scheme. Our focus was
not to determine the best possible network architecture, but to simply demonstrate that a
reasonably accurate neural network could easily constructed for such purposes.
Therefore, the design and training of the networks was achieved primarily through trial
and error.

The MATLAB Neural Network Toolbox was chosen for network training because it
was readily available, was easy to use, and worked well. For each network, a small
number of hidden nodes were arbitrarily chosen, and then the network was trained. This
number was increased until the resulting MSE seemed reasonable, and only small
improvements could be made by adding more nodes. The post-regression plots were
visually examined for obvious bias. For most examples, there were sufficient points to
reasonably guarantee good generalization as the number of points well exceeded the
number of network weights, however cross-validation is one technique which could have
been applied to improve the results. There are statistical validation techniques in the
literature for choosing a model architecture (e.g. Anders and Korn, 1999). However, we
simply chose the single hidden layer, using the logistic function for the transfer function,
and a linear output layer due to their ease of use. Other architectures or different transfer
functions could be investigated, however we found that choice of architecture did provide
a reasonable degree of accuracy.

Although we did have some knowledge as to the relationship amongst the

performance measurements, we did not incorporate any of this knowledge into the design
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of the networks. The networks are continuous functions, and the networks used in these

examples were designed with a linear output layer. Therefore, negative output values
were possible, and were sometimes observed, even though negative measures were not
possible in this model. As well, there could have been some knowledge built into these
networks — for example, where the initial inventory at a finished goods stock point were
set to zero, the fill rate and average finished goods inventory measures will always be
zero. This knowledge was not built into the models, and therefore these measures were

rarely exactly zero.
7.3  Concluding Remarks

In closing, the framework presented here enables the steady state performance
analysis of complex manufacturing systems under a variety of traditional manufacturing
control schemes, hybrids of these schemes, and any other scheme that can be described
using the PAC parameters. As such, the framework presents important opportunities for

future work as discussed above.
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Appendix A

PAC Simulation Model (PACSIM)

The PAC simulation model, PACSIM, is written in FORTRAN 77, and includes
some of the routines and functions from the SIMLIB routines of Law & Kelton (2000).
The starting point for the development of PACSIM was the simulation model developed
by Bielunska-Perlikowski (1997). The major components of PACSIM are explained in
this Appendix. The programs can be found in Appendix I, and can be compiled using
any FORTRAN compiler (we used Absoft ProFortran 7.5).

A.l1 Main Program Flow

The main calling program in the simulation model is pacsim.f. It calls the subroutine
PAC to execute one simulation run. Design points obtained from the input file may be
run multiple times, as specified in the input file today.zxt. Each time a simulation is
executed, output is written to either pac.out, or the measurement files, m_*.txz, or both,
based again on specifications in the file today.txt. An overview of pacsim.fis shown in

Figure A.1.

A.1.1 Input Files
Several input files are required to run the simulations. There are three declaration
files:
¢ pac.dcl: Declares common variables used throughout the simulation
subroutines
e system.dcl: includes parameters set for use throughout the model, based on
the manufacturing system to be simulated
e param.dcl: includes number of lists and statistical variables to be used in
SIMLIB. These parameters are used to declare array sizes in pac.dcl.
The description of the manufacturing system to be simulated is found in the input file

pact.in. A new worksheet (Figure A.2) was created in Microsoft Excel to allow for easier
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entry of the data required, and the generation (through use of a macro) of the file pact.in

in the correct format (Figure A.3). This worksheet also calculates the parameter values

for the system.dcl and param.dcl files (Figure A.4).

TODAY.TXT: PACT.IN:
Run Parameters System
Parameters

Read System
Parameters and
Run Parameters

INPUT FILE ‘
S'g?f:g: :Sr? ut Read Design Point
; . 7| to be Simulated
De! Points
(Design Paints) M_* TXT:
; Performance
B X measurements
Run Simuiation (Output)
(Call Subroutine Simulate System
PAC.OUT
PAC) (Optimal
A Simulation Report
Yes imulation Report)

"

More runs for
this point?

A

No

ore Points to
- Slmuiate?

Figure A.1: Overview of Program Flow (pacsim.f)
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Number of Number of Number of b/w Lengthof Warmup  Code for

Number of Final Type Final/Assy Number of RawMatl demand Simrunin periodin Control
Cells Goods Types Sub-Assy Parts arrivals  days days Type
NUNITS |FTYPES |MTYPES |ATYPES |RTYPES |MARRVT |LENGTH |WARMUP JCODE
2 1 0 7 1 60.0 2500 50.0 3

Number of machines in each cell:
Cell NO: 1 2
Machines: 7 1

For each manufactured product:

Mean Cell at Countof | Namesof | Qty of
Service | which itis | SubAssy's | SubAssy's| SubAssy

Product No. 2z k r T Time produced | needed | ist2nd,... | 1st, 2nd,...
1 2 1 1 0 36.0 2 1 2 1
2 (4] 1 -1 0 45.0 1 1 3 1

For each final or final/assy part, the probability that an arriving demand is for product |
Prod NO: 1
Probability: 10

Enter the number of transportation time records
Transportation Entries
Enter
Product | Cellitis | Transport |Cost Factor
Number | goingto Time | $/itemiday

2 2 00 4.0
3 1 0.0 4.0
Delay Cost
Product No. $/item/day
[ 1| 100 |For each Final or Final/Assy Item, Enter the cost of delay in meeting demand ($/item/day)
Holding

Cost  Setup Time
Product No. $/item/day per product

1 4.0 0.0  |For all manufactured products, input the cost of holding in product store,
2 4.0 00 and setup time at downstream celt

Figure A.2: Worksheet for Simulation System Data (Model 0)



Figure A.3: Contents of the pact.in File Produced by the Worksheet (Model 0)

For Param.DCL:

MA 5

MR 40000

ML B)m*6)+[2*(f+fa)]+n+[m*(n+1)]+1
ST 10dm+2n+r+3*(f+fa)
MT 33IML + ST

For System.DCL:

MU 2Im

MP 2In

MG 3An+r

MS 1| '

Figure A.4: Parameter Values for Declaration Files Provided by Worksheet (Model 0)
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If only one scenario is to be simulated, the design point (the z, &, r and T values for

each cell/store) can be specified in the pact.in file. However, if multiple design points are

to be simulated, a file containing these points must be provided to the model. The name

of the file containing the design points is specified in the file today.txt, which is a new

file created to easily change run variables between runs of the simulation model (Figure

A.5). This file also specifies the name of the parameter file (usually pact.in), whether

reports are required, the number of simulation runs per design point, and other variables.
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pact.in

Input_ModelA.txt

2 #RPT': Reports: 1: report, 2: data files, 3: both

0 #DBUG: Debug statements: 0: turn off, 1: turn on

2 #SCENS: Scenarios: 1: Just one, use pact.in, 2: read from input file
1 #RUNS : Number of runs (replications) per design point

0 #TRANSIENT: Transient Check? 1: Write to transient.txt 0: Otherwise

2 #DIST: Type of distribution: 1-Exponential, 2-Weibull, alpha=2

0 #BATCHING: Input includes r values (batching)? 1:Yes 0:No

Figure A.5: Contents of today.txt File

A.2  Main Simulation Subroutine (PAC)

The main sﬁnulaﬁon subroutine, PAC, is contained in PAC.F. This subroutine is
called for each simulation run for each design point to be simulated. The PACOPT.F
program passes the PAC values (design point) to this subroutine, and PAC executes one
simulation run. The simulation is a discrete-event simulation model. The PAC
subroutine handles the system clock, and calls the appropriate subroutine to process each

of the 7 system events may occur (as discussed in Section A.2.2).

A.2.1 Entities in the Simulation
There are five groups of entities which can be created in the simulation model.

e Product/Part: The initial inventory parameters, z;, determine the number
of parts or products created at each store at the beginning of the simulation.
Once a part (or group of parts) has undergone processing at a cell, each
component entity is destroyed and a new entity (the completed part or
product) is created. If the entity is a finished product, it leaves the system
when requisitioned by a customer.

e Orders: Order entities are generated by a customer order (demand) or the
arrival of a PA card at a downstream cell. If no batch production is

required, and a process tag is available, then the order entity is immediately

destroyed when the PA card is created. If no process tags are available, or
if batches of orders are required to form PA cards, then the order entities

remain at the store until these requirements are satisfied.
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Requisitions: Requisitions for products or parts are created after a delay, 7,

from receipt of the order for the product. They remain at the appropriate
store until the requested product arrives, at which point they are destroyed.
Process tags: These entities are created at each store at the beginning of
the simulation, according the parameters set for the simulation experiment.
Although in reality process tags would never be destroyed, in the simulation
they are destroyed when removed from the queue at the cell, and then
created again when the PA card originally generated returns to the store
with the processed part and no orders are waiting for matching.
Production Authorization (PA) cards: PA card entities are created when
an order entity is matched with an available process tag entity. They are
sent to the appropriate production cell where they remain until the part
authorized to be produced is completed and sent to the requesting store, at

which time they are destroyed.

A.2.2 Simulation Events

There are seven simulation events (Table A.1) which may occur in the simulation

model. The event graph for the simulation is shown in Figure A.6.

Table A.1: Event List for the PAC Simulation

Event Description

1

Arrival of a customer order or part order from a cell

Arrival of a requisition at a store

Arrival of a Production Authorization card at a cell

Part and Process tag arrival at a store

Completion of processing of a part at a cell

Arrival of work in process inventory at a cell

~N | NN B W N

End of the simulation




Customer Requisition

Order Arrives
(n

arrives at store

M

PA Card
Arrives at Cell

3y

Component
Arrives at Cell

(6)

End
Simulation

@

Requested
Product arrives
at store (4)

Figure A.6: Event Graph for the PAC Simulation

overview of the program flow for the PAC subroutine, including the main subroutines

called, is shown in Figure A.7.
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Each event is handled by a separate subroutine called by the PAC subroutine. An
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Figure A.7: Overview of Program Flow for pac.f
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A.2.3 Description of Subroutines
A.23.1 Arrival of an Order (ORDARR)

Orders can either be customer orders (NEW=1) or orders from cells  NEW=2). If
the order is from a customer, ORDARR immediately generates the next customer order
and adds this to the event list. Next, a requisition arrival event is added to the event list
to request the ordered part or product, with the time of arrival equal to 7minutes from the
current time. Finally, if a process tag is available for the part ordered, a production

authorization card arrival event for the appropriate cell is added to the event list.

A.23.2 Arrival of a Requisition (REQARR)

When a requisition arrival event occurs, the REQARR subroutine checks to see if
there is product available at the store; if there is, the number of 'products at the store is
reduced by one. If the requisition was from a customer, then the product leaves the
system; otherwise, REQARR creates a work-in-process arrival event at the requesting

cell, with the time of arrival equal to the current time plus the travel delay time, if any.

A23.3 Arrival of a Process Authorization Card (PACARR)
When a PA card arrival event occurs, PACARR immediately generates order arrival
events for all of the required components at the upstream cells, unless the required
component is a raw material, in which case the routine creates a WIP arrival event (type

6) at the cell to occur after the travel delay time for the material, if any.

A.23.4 Arrival of a completed part and process tag (PPARR)

The subroutine PPARR handles the arrival of a completed part and process tag at a
store. Upon arrival, the subroutine checks to see if there are any orders waiting for a
matching process tag; if there are, it then generates a PA card arrival at the appropriate
cell. It then checks to see if there are any requisitions waiting for the part. If there is a
waiting requisition from a cell, a work-in-process arrival event is generated for the
requesting cell, to occur after any travel delay. If a requisition is waiting from a
customer, it is immediately filled and the product leaves the system. If no requisition is

waiting, the part is added to the inventory at the store.
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A.23.5 Departure of a Completed Part a Cell (DEPART)

When the end of processing occurs at a cell, the completed part must then be sent to
the requesting location; therefore, a type 4 event is added to the event list, to process the
arrival of the finished part and the process tag to the requesting store. The original PA
card which authorized the production of this part is destroyed. The routine then checks to
see if there are more jobs waiting at the cell for processing, and if so, begins processing
and schedules the future departure of the next product; if not, the status of the machine is
changed to idle.

A23.6 Arrival of a part at the requesting cell (WIPARR)

The arrival of a part requested by a cell is processed by the WIPARR subroutine.
When a component is requested, the product for which it has been requested is recorded.
Therefore, upon the arrival of the component, the routine checks to see that all other
required components have also arrived; if not, the component waits in the cell queue. If

all required parts have arrived, and if the cell is not currently busy, production starts and

the routine creates the departure event for the part currently being processed.

A.23.7 End of the Simulation (REPORT or REPORTM)

At the end of the simulation, either the subroutine REPORT or REPORTM is called.
REPORT calls the statistical routines in SIMLIBG to do final the final statistical
calculations, and produces a simulation report (pac.out). REPORTM only calculates the
values which are written to the measurement files m_*.txt, which are described in Table
A.2. These files were added to the model to provide the training data for the neural

networks.

Table A.2: Input and Output Files and Programs for the Simulation

File Contents

m_fillrt.txt Average fill rate for each finished product for each simulation run

m_ct.txt Average cycle time per finished product for each simulation run

m_fgi.txt Average inventory for each fimished product for each simulation run
m_cdelay.txt Average time in the queue for customer orders for each product for each run
m_wipNQ.txt Average work-in-process inventory for all intermediate parts for each run
Transient.txt Optional data file for transient analysis

pac.out Simulation Report
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A.24 Cycle Time

For manufacturing systems where assembly stations are present, this means that the

model will have to determine the “oldest” component in order to determine the overall

cycle time, and track this value for each product produced. We define cycle time as the

time from the start of production on a product to the time it arrives in finished goods

inventory. As such, it is a means to approximate the work in process inventory in the

system, as cycle time and WIP (when throughput remains constant) are directly

proportional. In systems with no assembly stations, this single measure can be used

instead of the individual WIP amounts at each station.

A3

SIMLIB subroutines of Law & Kelton (2000)

The following routines from the SIMLIB set of routines (Law & Kelton, 2000) are

used in the PAC simulation model. These routines are used by the PAC model to

maintain the event list, queues and other lists, and to track variables needed for statistical

calculations.

A.3.1 File and Statistical Variable Subroutines

INITLK: Initializes the file lists

FILE (OPTION, LIST): Adds a record to the appropriate list. OPTION
determines how the item is added (ie. at the beginning, at the end, etc.)
REMOVE (OPTION, LIST): Removes a record from the list. OPTION
determines if the record removed is the first or the last record in the list.
TIMING: This routine removes the first (next) record from the event list. The
system time is then updated to the occurrence time of this event.

SAMPST (VALUE, VARIBL): A statistical routine which maintains a running

total of some value and the number of observations of this value. It also

maintains the maximum and minimum observation of this variable to this point.
When called with a negative value of VARIBL, the routine reports the results of
these observations, as well as the average value of the observations of the

variable. For example, the routine is called every time a part is completed on a
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machine, so that the average time to complete the part can be calculated at the end

of the simulation.

e TIMEST (VALUE, VARIBL): This routine calculates the time-averaged value of
a variable. The routine is called every time the value of a variable is changed.
For example, the average number of parts waiting in a store is calculated using
this routine, and the routine is called every time a part leaves or arrives at the
store. When called with a negative value of VARIBL, it does the final
calculations for VARIBL and reports the results.

e FILEST (LIST): This routine is called at the end of the simulation in order to call
TIMEST with VARIBL set to the negative value of LIST.

A.3.2 Random number generation
Function RANFN(ISTRM) is the random number generator provided with SIMLIB.
It produces a pseudo-random variable with distribution U(0,1). ISTRM is the seed value.
The following subroutines call RANFN(ISTRM) to obtain a random variable which
is uniformly distributed between zero and one, and then use that value and the inverse of
the appropriate distribution function, to generate a random variate.
e EXPONRMEAN,ISTRM): Generates an random variate from an exponential
distribution with mean RMEAN.
o WEIBULL(RBETA,ISTRM): Generates a random variate from a Weibull
distribution with B = RBETA and ot = 2.
¢ IRANDI (NVALUE, PROB, ISTRM): This routine first obtains a U(0,1) random
variate from stream ISTRM. It then converts this value into an integer between 1
and NVALUE in accordance with the cumulative distribution function PROB.

e UNFRM(A,B,ISTRM): Generates a random variate from a uniform distribution
with a = A and b = B.
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A4 Queues and Lists

The master array of SIMLIB maintains queues and lists. Queues contain entities,
and the lists manage additional information for statistical purposes, as well as the master
event list for the simulation.

At each cell/store, there are six individual queues maintained (Table A.3).

Table A.3: Queues Maintained by SIMLIB

Queue | Entity Stored Description

ORD Orders If an order for a product arrives at a store, and no product tags are available,
’ the order is added to this queue. Also, if batching is involved, this queue

holds orders which may have already been matched to a process tag, but are
waiting for the required number of orders to arrive in order to form the batch

of PA cards.

REQ Requisitions This queue holds requisition entities awaiting the arrival of the requested
part/product. The number of requisitions waiting in this queue represents the
backlog.

PROD | Products/Parts All stock at a store which has not yet been requested by a customer or
downstream cell.

PROC | Process Tags Process tags available at a store for matching with orders

WIP Products/Parts Parts requested by the cell for processing, but which are awaiting processing

at the cell. The reason entities may be held here is that the requesting cell
may be already busy, or for an assembly operation, other required
components have not yet arrived.

PAC PA cards Active production authorization cards at the cell (for product awaiting
processing or in process at the cell)

In addition to the queues, the program maintains several lists which track events and
entities. The main list is the event list, which maintains all upcoming events by event
type. The remaining lists are not queues, but rather track the existence of entities in the
corresponding queues in Table A.3. This was done for statistical purposes. These lists

are shown in Table A 4.




Table A.4: Lists Maintained by SIMLIB
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List

Description

CUST

When a requisition for a finished product arrives, and the demand cannot be immediately met,
a requisition entity is created and placed in the REQ queue at the store, and a corresponding
entry is made in this list. When the REQ entity is destroyed, this list entry is also removed.

CORD

When an order for a finished product arrives, and the demand cannot be immediately met, an
order entity is created and placed in the ORD queue at the store, and a corresponding entry is
made in this list. When the ORD entity is destroyed, this list entry is also removed.

PPRD

If a production cell produces more than one part/product type, then the associated product store
(PROD quene) will contain different product types. There is a separate PPRD list for each
product type produced by system, and each time a part/product entity is added to a PROD
queue, a list entry is made in the corresponding PPRD list.

PwIP

The WIP queue at a processing cell contains all part/product entities awaiting processing at the
cell, and therefore may contain different product types; there is a separate PWIP list for each
product type at each cell, and each time a part entity is added to the WIP queue, a list entry is
made in the corresponding PWIP list for that part

EVENT

The event list

Each record maintained in each of the queues or lists contain up to five values. For

the entities in a queue, these are the attributes of the entity. The attributes maintained for

each entry in the lists are described below and shown in Table A 5.

Table A.5: Entity Attributes

Attribute 1 Attribute 2 Attribute 3 Attribute 4 Attribute 5

ORD Arrival time Product type Miatched with
process tag

REQ Arrival time Product type Address
PROD | Arrival time Product type Start Time
PROC | Arrival time Product type
WIP Arrival time Product type Start Time
PAC Arrival time Product type
CUST | Armival time
CORD | Arrival time
PPRD | Amrival time Product type Start Time
PWIP Arrival time Product type Start Time
EVENT | Event time Event type Product type Address Other

“Address” refers to the cell to which the requisition entity is to be delivered (this is

relevant in the case where multiple cells produce the same product). “Matched with
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process tag” refers to whether the order is waiting in the queue because no product tags

are available (value 0) or whether the order has been matched to a process tag but is
waiting until sufficient orders arrive to form a batch (value 1). “Start time” is used for
products to maintain the total time to produce the product, and therefore this value is the
start time of the first component produced for this product. In the case of an assembled
product, this value is the start time of the oldest component.

Table A.6 shows the lists and queues maintained in the simulation, and the list

address within the master array.

Table A.6: List Addresses

List | Number of Lists | Addressed by

ORD* 1+(STORE-1)*6

REQ* 2+(STORE-1)*6

PROD* NUNITS each 3+(STORE-1)*6

PROC* 4+(STORE-1)*6

WIP* 5+(CELL-1)*6

PAC* 6+(CELL-1)*6

CUST FTYPES + MTYPES NUNITS*6+PRODTYPE

PPRD NTYPES NUNITS*6+FTYPES+MTYPES+PRODTYPE

PWIP NUNITS* NUNITS*6+FTYPES+MTYPES+NTYPES+

(NTYPES+RTYPES) (CELL-D)*(NTYPES+RTYPES) +PRODTYPE

CORD FTYPES+MTYPES NUNITS*6+FTYPES+MTYPES+NTYPES+
NUNITS*(NTYPES+RTYPES) +PRODTYPE

EVENT 1 NUNITS*6+2*(FTYPES+MTYPES)+NTYPES+
NUNITS*(NTYPES+RTYPES) +1

A.5  System States

The only state which needs to be maintained is the state of each machine at each cell.
A variable, NBUSY(I) maintains the number of busy machines at each cell.
A.6  Statistics

The average number of entities in a queue, and the minimum and maximum values
observed are maintained for each queue in Table A.3. As well, the time-averaged

number of entries in the lists of Table A.4, and the minimum and maximum observed




values, are also maintained. In addition to these statistics, there are other statistical

variables tracked by the simulation model. These are described in Table A.7.

Table A.7: Other Statistical Variables
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Description of Variable Number of Variables Subroutine used
Delay in Cell (on machines) NUNITS SAMPST

Delay in WIP Queue, by product (first ones | NTYPES+RTYPES SAMPST

for finished goods not used)

Customer Delay from time of requisition. FTYPES+MTYPES SAMPST

arrival

Customer Delay, from time of order arrival | FTYPES+MTYPES SAMPST

Delay in product stores NTYPES SAMPST

Cycle time FTYPES+MTYPES SAMPST
Number of Machines busy in a Cell NUNITS TIMEST

The subroutine SSTATE was added to the model to track some of the system

measures to determine whether, for the design point provided, the system could reach

steady state. This routine is called by several of the event subroutines each time a

customer order arrives, a customer order is filled, or a finished product arrives at a final

inventory point. The results from these calculations are written to a separate data file by

either REPORT or REPORTM. A sample output report, pac.out, is shown below for a

single simulation of Model A.

Sample pac.out full report:

L T R R R T R R R R R P L
* SIMULATION OF MULTIPLE-CELL SYSTEM COORDINATED BY PA CARDS (PAC) *

* Report created on: 03-Aug-05

*

khkhkkhkhhhkhkhkkhhhhhhkhhkhhhhhkkhkhhhhhkhhkhhhhhkhdkhhkkkhkhkhhkkhkhhkdkdkhkhkhhhkkhkkhkhkkkhkhkdkn

INPUT DATA

Number of cells/stores

Number of machines in each cell
Number of "final" products
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Number of "final/assembly" products 0

Number of "assembly" products 2

Number of "raw materials" 1

Distr.funct. of "final" product types 1.00

Mean interarr.time of all "final" prod. 60.00 min.

Length of the simulation 250.0 24-hours days
Length of "warming up” 50.0 24-hours days

Parameter settings for the coordination scheme:

Product Cell/Store Mean service time z-value k-value r-value t-value
type (in min.)

1 3 40.00 2 4 1 0
2 2 36.00 2 3 1 0
3 1 42.00 2 1 1 0

Product type No. of subassemblies Subassembly name Units of subassembly

1 1 2 1
2 1 3 1
3 1 4 1
Product Cell Time to transport a unit of product WIP Cost
type from storage to cell (in min.) ($/day/item)
2 3 5.00 4.00
3 2 5.00 4.00
4 1 0.0Q 2.00
Product Customer Service Cost
type Delay Cost ($/item/day)
1 10.00
Product PROD Cost Setup
type ($/day/item) (in min.}
1 4.00 0.00
2 4.00 0.00
3 4.00 0.00

(calculated from time of arrival of requisition tag)

Product Probability an arriwving demand
type from a customer is met immediately
1 0.576
Product Delay in meeting a customer demand Number of
type Average Max Min units

1 34,521 482.031 0.000 4695.000



Overall average product total delay to customer =

SERVICE LEVEL
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(calculated from time of arrival of order tag)

Product
type

1

Overall average product total delay to customer =

Delay in meeting a customer demand

AV

34.

erage Max

521 482.031

34.521

Number of
Min units
0.000 4695.000
34.521

Product Cell Delay (waiting time) in Product Store
type Average Max Min

1 3 52.861 602.953 0.000

2 2 57.929 653.594 0.000

3 1 56.123 648.484 0.000
Product Delay (waiting time) in WIP -gqueue
type Average Max Min

2 28.009 208.562 0.000

3 17.793 139.562 0.000

4 0.000 0.000 0.000
Machines Average number Average Average delay
in cell in queue utilization in gueue

1 0.000 0.690Q 0.000

2 0.290 0.597 17.793

3 0.457 0.649 28.009
Product Completion Time from start of production
type Average Max Min

1 288.609 1035.359 82.133
INVENTORY LEVELS
PROD-queuves Time average Maximum Minimum
(per store)

1 0.915 2.00¢0 0.000

2 0.944 2.000 0.000

3 0.862 2.004Q 0.000
Time average inventory of parts in stores 2.721
PPRD-queues Time average Maximum Minimum
(per product)

1 0.862 2.000 0.000

2 0.944 2.000 0.000

3 0.915 2.000 0.000
WIiP -queues Time average Maximum Minimum
(per cell)

1 0.000 1.000 0.000

2 0.290 2.00¢ 0.000

3 0.457 3.000 0.000



Time average work-in-process inventory in cells: 0.747

PWIP-queues Time average
product cell

2 3 0.457

3 2 0.290

Total WIP waiting in queues/stores by product

Product Number in
Queues or Stores

2 1.401
3 1.205
4 0.000

STATISTICAL SUMMARY DATA ON RECORDS IN QUEUES

ORD -gqueues Time average
(per store)

1 0.680
2 0.136
3 0.181

REQ -queues Time average
(per store)

1 0.285
2 0.333
3 0.564

PROC-queues Time average
(per store)

1 0.310

2 1.747

3 2.480
PAC -queues Time average
(per cell)

1 0.690

2 1.253

3 1.520

CUST-queues Time average
(per product)
1 0.564

CORD-qgueues Time average
(per product)
1 0.564

CUST. "REQ" SERV.COST [$]

CUST. "ORD" SERV.COST [$]
PROD. INVENTORY <COST [8&]
WIP. INVENTORY COST [$]

Number of Replications:
Total run time: (seconds):
(minutes) :

Maximum Minimum
3.000 0.000
2.000 0.000

Maximum Minimum
4.000 0.000
3.000 0.000
9.000 0.000

Max imum Minimum
3.000 0.000
4.000Q 0.000

11.00¢Q 0.000

Maximum Minimum
1.000Q 0.000
3.00¢Q 0.000
4.000Q 0.000

Maximum Minimum
1.00¢C 0.000
3.000 0.000
4.000Q 0.000

Maximum Minimum
11.000 0.000
Maximum Minimum
11.000 0.000
1125.53 ( 28.9
1125.53 ( 28.9
2176.78 ( 55.8
597.26 ( 15.3
3899.57 (100.0
0.109
0.0Q02

175



176

A.7  Preprocessing (preprocess.f)
This FORTRAN 77 program produces a report to help determine the minimum

values for the design point values which will allow the simulation to reach steady state.

A.7.1 Determination of Feasible Design Points
The simulation model is run multiple times for a set of design points with very low
numbers of process tags and all initial inventory points set to zero. The preprocessing
program is then run to report the results of these simulations. This report,
pp_REPORT.txt (shown on the next page), contains the results of several simulation runs
each point. Information reported includes:
¢ Percent Diff: Percentage difference between demand arrivals and system
throughput. A large, negative value indicates that the system could not keep up
with demand.
Ord — Dep
Ord

Percent Diff =

where
Ord = Average time between arrivals of customer orders
Dep = Average time between arrivals of finished goods inventory at store
¢ Reg Line: The slope of a linear regression line fitted to the customer delay time

versus time. A large value indicates that the customer delay continues to increase
as time passes, once again indicating infeasibility. Although this relationship, in
the case of an unstable system probably non-linear, a linear regression line fitted
to these points will still have a positive slope.

e Customer Delay Time: The overall average of customer delay time is reported.
As well, the program determines the average for all observations occurring before
the half-way point of the simulation, as well as the average after this point, and
reports those values. If the average of the second half is significantly larger than

the first half, this once again indicates infeasibility.
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These results are reported for each finished product produced by the system. The

decision criteria were determined based on observation.

Preprocessing Report

Created on: 20-0Oct-05
Number of RUNS per Design Point: 5
Length of each simulation run: 200 days

Design point tested: 0 1 0 1 0 1

Product No. 1

Time BTW Time BTW Percent Reg Customer Delay Time Cycle
Run Departs Orders Diff Line Average 1st Half 2nd Half Time
1 128.157 61.304 -109.05 2.93509 115148.6 76874.0 153731.1 128.2

2 129.241 59.794 -116.14 2.83922 110642.1 72764.0 148554.2 129.2

3 128.533 60.135 -113.74 2.92068 1145%17.1 75868.0 153447.0 128.5

4 128.572 60.135 -113.81 2.92988 114959.1 75485.3 153458.2 128.6

5 127.748 60.049 -112.74 2.81208 1:09478.4 70469.5 148660.7 127.8

Average: ~113.10 2.88739 113029.1 74292.2 151570.2 128.4
Percent Difference less than -0.200%
Avg. Regression slope above 0.150
2nd half delay average is 104.0% higher 1st half delay average

***Design point probably INFEASIBLE ***

Design point tested: 5 5 5 5 5 5

Product No. 1

Time BTW Time BTW Percent Reg Customer Delay Time Cycle
Run Departs Orders Diff Line Average 1st Half 2nd Half Time
1 59.810 59.847 0.06 0.00009 5.0 6.7 3.3 683.7

2 59,914 59.920 0.01 0.00006 3.2 4.1 2.2 685.5

3 60.667 60.633 -0.06 0.00011 4.6 3.2 5.9 691.7

4 57.583 57.594 0.02 0.00016 6.8 4.8 8.7 665.4

5 59.972 59.982 0.02 0.00007 2.7 2.2 3.2 685.2
Average: 0.01 0.00010 4.5 4.2 4.7 682.3

Design point feasible

-- SUMMARY --
Feasible? Design Point

* NO * 01 0 1 0 1
Yes 5 5 5 5 5 5
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A.8 Testing Design Points (testreports.f)

During analysis, it was often necessary to compare the results of one design point
simulated multiple times with the results from the neural network. This program
generates a test report (shown below, for only one design point) for such purposes. It

also calculates confidence intervals for the simulation results.

Test Report
with 99% Confidence Intervals

Created on: 20-0ct-05
Number of RUNS per Design Point: 5
Length of each simulation run: 200 days

Design point tested: 5 5 5 5 5 5

Product No. 1

Run Cust Cycle Fill FG
Delay Time Rate Inv
1 15.02 711.23 0.8500 3.141
2 26.49 696.34 0.8190 2.993
3 20.13 697.80 0.8370 3.023
4 21.17 689.81 0.8300 3.066
5 15.05 700.76 0.8460 3.065
Avg 19.57 699.19 0.8364 3.058
LCL 14.04 690.15 0.8220 2.993
ucL 25.10 708.22 0.8508 3.122

WIP Results, by Product

Run Prod 2 Prod 3 Prod 4
1 4.571 3.905 1.059
2 4.412 3.960 1.133
3 4.448 3.895 1.125
4 4,344 3.773 1.238
5 4,473 3.941 1.107
Avg 4.450 3.895 1.132
LCL 4,407 3.857 1.099

UucL 4.493 3.932 1.166
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A.9 Generating the Design Points (generate_random.f)
The purpose of this program is to generate the dataset of design points to be used as
input to the simulation model and for training the neural networks. The logic of the

program is shown in Figure A.8.

Read in Ranges for
START co-ordinates

Generate Next
Level Combination

Valid Level No
Combination?

Yes
h 4

Randomly choose sample
values within each
co-ordinate range

No

Does point follow
process tag rules?

Yes

Write: design
point to file

L_Ye More Combinations?

Figure A.8: Overview of Program Logic for Generation of Design Points (generate_random.f)
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A.10 Transient Period Analysis

This program, transient.f, processes the file transient.txt which is produced by the
simulation model when the switch in today.txt is set to 1. The file produced prepares the

data in a table format for easier import into MS Excel for analysis.

A1l Procedure for Experiments
An overview of the procedure for producing a training dataset for a model and then

training neural networks for the model is shown in Figure A.9.



Use MS Excel
worksheet to
generate pact.in

Create a test file for
preprocessing

Edit today.ixt and set
number of simulation
runs to at least 10

v

Run simulation model
(pacopt.f)

Y

Run preprocess.f

~——

Copy input files and
m_".txt files to Matlab
directory

v

In Matlab, run
loadfiles.m to set up
variables in
workspace

v

Set number of hidden
nodes for each
network

Can minimum
values be
determined?

Yes

v

Add more values to
preprocess test file

v

Set ranges for each
coordinate

Y

Run
generate_random.f

v

Edit today.txt with
name of dataset and
#of RUNS =1

y

Run Simulation to
produce m_".ixt files

o

Run train*.m files to
train each network

Y

Produce post
regression plots for
each network

v

Run calc_errors.m to
generate error
measures for each

network
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Figure A.9: Flowchart of Procedure for Generating a Training Set and Training Networks
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Appendix B
Neural Network Formulas

In a training data set, there are N example pairs, X, t,, with inputs X, = {X15,X2n,...,X1 }
and the corresponding observed output, .

The feedforward calculations for each example input » are:
Uy =0y, + a4k, t
1
y. = 1
S expz—uj,, )

Vn =b0 +Zb]y]ﬂ
J

where
a; = weight on input from input node i to hidden node j
by = weight on output of hidden node j to output node &
0; = symmetry breaking constants for hidden node j (optional)

The difference between the network output for the n example at the output node, v,, and
the actual or target output, ,, represents the error. The goal of learning is to minimize the
error function over all of the example pairs:

E =511“\72(an _tkn)z
N

2 2 2
=511\7((V1 —n) e, —1,) ety —ty) )
Denote the n™ error term of E as E,:
E,=i(v,-1,)) n=1..,N
The derivative of a sum of terms is equal to the sum of the derivatives of each term.

Therefore, starting with the partial derivatives of the error function with respect to the
output node weights, we have

E ZaE,,
b, 4 b,
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Each error term, E,, is a function of the outputs, v,, which are the sums of the weighted
inputs to the nodes, and therefore a function of those weights. Using the chain rule to
find the partial derivative of each term E, with respect to each output node weight, b;:

JE, 3E, v,
ob, v, ob,

J
For the first partial derivative of E, with respect to one output, Vi,

aEn _ al%(vn _tn)ZJ
ov, ov,

=V, —t,

Then, the partial derivative of v, with respect to b;:
vn =b0 +Zb]y]n =b0 +b1y1ﬂ +.”+bjy]ﬂ +"‘+beJn
J

ov 0
{1 if j=0

Yn Otherwise

For ease of notation, assume that:
Yoo =1 Vn=L..,N
X, =1 Vn=L...,.N

Therefore,

av
ob

n

=Yin
J

Bringing all of the terms together,
dE, _OJE, dv,

db; dv, b,

= (vn =1, )yjn
J

Finding the partial derivatives of the error function with respect to the input weights is
somewhat more complex. Once again using the chain rule, the partial derivative of E,
with respect to gy is
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3E,

_OE, .ayj,, ‘auj,,
da; dy;, Ou

da

jn i
To determine the first derivative, recall that

En =%(vn _tn)z

Because each term in this function is itself a function of y;, then first the derivative of E,
in terms of y;, must be computed.

aEn _ a(%(vn —tn)z)_ a(%(vn —tn)z),, av’l -—(v —t ) av”
dy jn ay jn - avn dy n o ayj"
3[bo +ijy,-nj
v, _ J =b.
8yj,, ayjn !
. oE, = (v —t B
ady, "

The next partial‘ derivative is

9y, ) 1
M, ( j=y""(1—y"")

n auj,, 1+e_uj"

Finally,
ou 0
— = _(an +ax, +tapx, £t a,.,x,,l)= X
da, da,

g )
where x,, =1V n

Substituting all of these into the original equation:
OE, _OE, 9y Ouy
da; dy;, du, Oda;

=(vn _tn)bjyjn(l—yjn)xin
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To find the derivative of the original error function, E, sum the derivatives of all the error
terms E, over N. Therefore,

Second derivatives for the Error function:

The following second derivatives are required:
3’E ’E  9*E  J’E

To simplify, find the second derivatives of each additive term of the first derivatives, and
then sum these second derivatives over N.

First derivatives:
oE
3 L= ((vn —tn)bj))’jn(l_ yjn)xin
ay
oE
abn = (vn -1, )yjn

i

Second derivatives:

3 (oE,) 9 .
b, aij'abj, O =1)7)= 0710

a 1
—_— = - YinYim



0 (aEnJ= i ((vn—tn)yjn) Wherej’#o

aa,»j' ab] aai’j'
_ yj'n(l_yj’n)xi'n[bj’yjn+(vn_tn)] lf j=j,
yj’n (1 - yj’n )xi’n [bj’yjn ] otherwise

z|~

[yjn(l_yjn)xin(bjyj'n'l'(vn—tn))] if j=1Jj
b nl=y5)

jn (1 jn Xin (b] Y in )] otherwise

Lz

a [BE] aa (O =2) 8,y in0=yiuhei) where j#0, j'#0

aaif]' aal_] ai’j'
(bjbj')yjn(l—yjﬂ) = i
yall= v rea { (b,-(v,ﬁ—'tn))(l-bfn)} o

Yin (1 ~Yin )xi'n Xin [(b by )y" jn (1 ~Yin )] otherwise

0 {iE_j_ #% yjn(l yjn)xzn m|:+b'(vn"[n))(1_2yj'n

j
aa,.,j, da i

Partial derivatives of the neural network function with respect to the input

variables:

borntan) 1 s

7]‘\,';[)/],,(1 y]n) Xi'n m[(h}bj')yjn(l_yjn)]] otherwise

186



Appendix C

Levenberg-Marquardt Approach to Network Training

187

The following is a description of the Levenberg-Marquardt method (Levenberg, 1944,

Marquardt, 1963) for minimizing a function of least squares.

The error function to be minimized is the sum of squares function, E:

F(w)=E =71A7%:(vn

And the derivatives of this function are

N

=+ [Z }y,n L=y 50 a—E— =t )y

To simplify the notation, if we let w be the weight vector, w = {ag, ..., ay, b, -..

where C is the number of terms in the weight vector, then

en(w)= e, =V, —1I,

e=[e,(w) e,(w) ... ey(w)f
Then
Flw)=1Ye2 =heTe

1

3
il

then the j* element of the gradient of F would be:
N

- 213 a3 m2al e

n= n=l c

[VF(w

where J7. is the ¢® row of the transposed Jacobian matrix, J:
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(0 Oe e |
w, ow,  owg
de, Ode, de, v
J=1%w, ow,  awc 7, j)= 26
A ow;
dey Odey dey
T

Therefore, the gradient would be
VF(w)=J"e
To find the Hessian matrix, the (k,j 1" element of the matrix would be:

[VzF(W)]kj_aZF(WL : {ien("’)'m}

T dwdw,  ow | S o,

¥ -aen(W).aen(W) +e,(w) azen(W)i|

= oW ow ow,ow
2 de,(w) de,(w) +i , (w).aZen(w)
= O ow; o] ow, 0w

Therefore, the Hessian matrix can be written as:
VF(w)=J"J+S

NERAD)

where S .
ow, 0w

=Z=;e,,(w

If we assume S to be small, then we can approximate the Hessian as
VF(w)=J"]

Substituting these approximations in to the original Newton method we obtain the Gauss-
Newton Method (s = current stage):

Steepest Descent:
Ws+1 = w.v - asVF(ws)
Newton:

W, =w, - (VE(w,)] VF(w,)
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Gauss-Newton

W= w, = (07w, 0w, )] I (W, Je(w,)

With this method, J*J may not be positive definite, and therefore not invertible. This can
be overcome by using the following modification to the Hessian approximation (Hagan et
al., 1996, p. 12-21):

G=JJ+u

If {A1, Ay, ..., Ay} are the eigenvalues of the matrix J7J, then {41+ My Aot ... At 11}
are the eigenvalues of G. Therefore, G can be made positive definite by increasing u
until (4; + >0 for all i (convexification).

Therefore, the new update method becomes
Wi =W — (JT (Wk )J(Wk ) + ,ukI)—IJT (wk )e(wk )
This is known as the Levenberg-Marquardt method.

The value of 4 can be changed at each iteration. As t4 approaches zero, the method
approaches the Gauss-Newton method. If 4 is large, the technique approaches that of
the steepest descent method, with small step size .

The Levenberg-Marquardt backpropagation algorithm (LMBP) (Hagan et al.,
1996) is as follows:

1. Do a forward pass through the network with current weights. Calculate the squared
error.

2. Compute the Jacobian matrix.
3. Find next weight vector:

Wis = Wy — (JT (wk)J(wk)+ ,UkI)_IJT(Wk )e(wk)

4. Recompute the squared error with wy,;. I the new sum of squared errors is less than
the previous value, then divide ¢ by v (a predefined constant) and to go Step 1.
Otherwise, multiply # by v and go back to step 3.
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Appendix D

Results for Model 0

D.1  Transient Analysis

Forty replications of the simulation at the point z; =0, k1 =2, 20 =0, k2 = 1 were
conducted. If Y; represents the observation for customer wait time for the i observation
from the j” replication of the simulation, then the average for the i* observation across all

J observations is calculated, in this case, as

These values were used to plot a moving average (w =100) of average customer delay
time across replications (Figure D.1). The x-axis on this graph has been converted to
days (approximately) by using the information that customer orders arrive, on average, at
a rate of 1 order per hour, and there are therefore, on average, 24 observations per day.
From this graph, it can be seen that the simulation begins to level off around 20 days,
however 50 days was chosen as the warmup period to ensure steady state results.

350
300 -

250 -

Customer Delay Time (Min)

O T T T T T T T 1
0 10 20 30 40 50 60 70 80

Days

Moving Average w=100 -~ - — - Average after warmup

Figure D.1: Welch's Graphical Procedure for Customer Delay Time, Model 0
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D.2  Simulation Model Verification
Table D.1: Verification Results, Model 0
Replication X; (Y -X; )2 Replication X; (X_ -X; )2
1 243.38 701.35 21 258.58 127.43
2 260.40 89.55 22 278.36 72.26
3 265.14 22.30 23 270.34 0.22
4 292.90 530.81 24 276.19 40.04
5| 259.61 105.14 25 254.42 238.36
6 276.57 44.95 26 273.84 15.78
7 281.65 138.86 27 299.84 898.76
8 277.84 63.68 28 259.06 116.79
9 273.89 16.20 29 252.23 311.01
10 271.24 1.90 30 294.58 611.13
11 256.48 179.16 31 282.87 169.13
12 269.57 0.09 32 279.47 92.33
13 302.61 1072.20 33 271.96 4.41
14 271.70 3.39 34 275.55 32.38
15 267.02 8.08 35 254.44 237.82
16 273.41 12.54 36 282.93 170.65
17 267.57 5.2F7 37 247.07 519.36
18 262.88 48.79 38 260.10 95.33
19 253.29 274.76 39 272.50 6.94
20 269.14 0.52 40 253.92 254.34
40 40
D> X, =10794.55 >X, 10794.55
w0, X=X = = 269.86
3 (X -x,) =7334.00 4040 40
= Y(X-x,)
= ! 7334.00
5*(40)== = =188.05
39 39
2
Cl =X £ty 55 57(40) =269.8612.021 M =269.8614.38
' 40 40
Table D.2: Network Training Parameters, Model 0
Network Hidden Nodes Training Epochs
Customer Delay 12 300
Cycle Time 15 200
Fill Rate 15 250
FGI 12 150
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D.3 Network Weights

Network 1: Customer Delay Time

Table D.3: Network 1 Weights, Model 0

Hidden Layer Output Layer

Input Node i Output]

0 1 2 3 4 0 | 0.98299

1 | -0.1365] -0.59292] -0.07768] -0.39032| -0.21801 1| 0.67515

2 | 0.53888] -0.29162| -0.28026] -0.29337] -0.07048 2] 051218

3| 0.34897] 0.17181] 0.27223| 0.15394] 0.27231 3| 0.17278

"o L4 0.20458] 0.02017| 0.22607) 0.16813| 0.2577| “o~| 4 | 0.24368

B | 5]-0.13076] 1.5143] 0.40121)-048334) 0.02632| B | 5 [ 0.75087

Z | 6 |-0.16404] -0.24623| -0.12269] 0.30081} 0.0811] < { 6 | 0.33263

S | 7 [-0.53003] 0.04939] -0.56618] 0.56472] 0.00188] & | 7 | 0.47862

_'-g 8 | -0.32739] -0.07152 -0.27533| 0.27558] -0.2746 _'-g 8 | 0.39842

I | 9] 0.35519] -0.15865] -0.05944{ -0.11027] -0.04693] I | 9| 0.44672

10| 6.9168] 2.2384] 0.65408| 3.2332| 0.02643 10| -4.4404

11| -2.962] -2.1371] 0.13743] -0.08502] 0.08331 11{ 1.6993

12| 0.82506] -0.04588| 0.52261| 0.39442| 0.26234 12} 0.56744

Network 2: Cycle Time

Table D.4: Network 2 Weights, Model 0

Hidden Layer Output Layer

Input Node i Output

0 1 2 3 4 0 | 0.09054

1 | 0.82103] -0.10167] 0.11828] -0.92958] -0.06921 1 ]-0.60791

2 | 0.86626] -0.09441} 0.14117| -0.80613} -0.14253 2} -1.0552

3| 0.60113]-0.27041} 0.79396| -0.21885| 0.28959 3| 05835

4] 0.63895| -0.0447| 0.07318|-0.35513] -0.27645 4 |-097123

— 1 51-0.18311] 0.14882| -0.29408] -0.2952] 0.3108] ._ | 5 0.95796

8 | 6| 005087]-0.26607) -0.46907| 0.33522|-0.35901] .8 | 6 | -0.6623

S | 7| 0.07934|-0.56956] -0.04898| 0.41717| 0.15676] | 7 |-0.75034

e | 8 | 0.28027] -0.35946} -0.75094] -0.56635] 0.52092] & | 8] 0.72854

8 [ 9] 0.81658] 0.02289] 0.09881] -1.2288] 0.13800] & | 9| -1.2084

::E: 10 | -0.20393] -0.105639] 0.00986] 1.4802] 0.02945 % 10 1.7651

11{-0.15582] 0.11981]-0.10303] 0.01437] 1.4456 11]-0.74104

12| 0.37096] -0.05947| 0.30077] -0.18868| -0.99463 12] 0.34963

13} 1.9797|-0.06475} 0.06037]-0.13711] 1.1902 13| 15173

14 -0.37299] -0.39419] -0.02982] -0.29523{ 0.25831 14] 0.36063

15]-0.63581] 0.12523]-0.56657] 0.07291] 0.83812 15] -0.49528




Network 3: Fill Rate

Table D.5: Network 3 Weights, Model 0
Hidden Layer

Output Layer
Output

Input Node i
0 1 2 3 4 0 | -0.58915
1| 0.4854| 0.03175]-0.06536] -0.33353] -0.02725 1 | -0.52691
2| 18103] 3.3479]-0.01854] -0.48287| -0.12449 2| -2.919
3 | 0.21468]-0.59601} -0.00395] 0.2087]-0.16958 3 | 055102
4 |-0.10991| 0.36711}-0.21622] 1.1102| 0.12364 4 |-0.97371
| 5] 017843 o0.0709| 0.11594] -0.16224] -0.56126] ._ | 5 |-0.57537
8| 6] 019624 02763] 0.06531]-0.28801| -0.1209] B | 6] 0.03763
9 [ 7] ro1s2] 072066] 0.30114f 0.20042] o0005] Q[ 7] o996
= | 8] 0.08486| 0.09812] -0.29209] -0.5905] 0.29534] = | 8 |-0.88045
3 [T9-014127] o0.2322] 0.50737]-0.22274] -0.22743] 8 | 9 [-0.60503
-:l"é_. 10] 1.5267] 1.3347] 0.03893| 0.14914]-0.00064 % 10| 0.94358
11| 2235 2.2867] 0.26361 0.7]-0.11554 11| 1.2828
12| -2.7903| -2.8528| 0.00188] 1.4103] 0.01196 12| -3.0405
13]-0.45315| 0.04658] 0.00273] 0.63034]-0.17917 13| -0.11343
14| 1.8095| 1.5294]-0.04992| 0.07858]-0.19392 14| 1.0757
15| 3.215| 4.0022]-0.07959| 0.94053| 0.04429 15| 2.3179

Network 4: Finished Goods Inventory
Table D.6: Network 4 Weights, Model 0

Hidden Layer Output Layer
Input Node i Qutput
0 1 2 3 4 0| -1.3548
1 |-0.56516] 0.2351]-0.06444| -0.59302] -0.1311 1|-0.66416
2 | -0.40913| 0.10955| 0.39025| -0.01522} -0.29184 2| 019918
3 [ -0.15053] 0.69011]-0.03186] 0.73578| 0.00908 3| 1.6095
‘o |4 1-060103] 17834]-0.01774] 0.08044f 0.09750] | 4| 1.5248
Q| 5 |-0.68575] 0.93533] 0.07355| 0.32885{-034907] T [ 5] 0.60102
Z | 6 | 0.16876] 0.46054] 0.37895] -0.05375] 0.02622] 2 | 6 |-0.89597
5 | 7] 0.26301]-0.89117] 0.00856] -0.6366]-0.20754] & | 7 [-0.53943
B | 8 [-0.51783] 0.45065| 0.00753] 0.49655|-0.00179] S [8 | 0.88602
T |9 [-0.44353] -0.20286] -0.06842] 1.488] 0.01657] T [9] -2.3804
10]-0.10013] -0.3244| 0.13323| 0.28984] 0.09664 10| 0.76529
11} 0.85546] -0.12925] -0.03472] 0.68761]-0.03273 11| 1.2537
12| 0.53731| -0.05668] 0.30803] 0.24963]-0.30669 12| 0.13275
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Appendix E

Results for Model A

E.1  System Characteristics
Table E.1: Model A System Parameters
Product | Production Inputs Mean Travel Time to
Cell (Part and Processing Next Cell
Quantity) Time (min) (minutes)
1 C3 P2 (Qty 1) 40
2 C2 P3 (Qty 1) 36 5
3 C1 P4 (Qty 1) 42 5
E.2  Training Parameters

Minimum and maximum values were chosen (as in previous models), and the ranges

for each parameter were then selected (Table E.2).

Table E.2: Ranges for PAC Parameters, Model A

Low Mid High
2l 0,2 3,6 7,10
ki 4,6 7,9 10,12
22 0,2 3,6 7,10
ks 24 5,8 9,12
Z3 0,2 3,6 7,10
ks 1,3 4,6 7,10

The training dataset for this example model, using three levels per variable, would
have generated 729 points. However, the following constraints were applied to the
dataset:

ky <k +2z,

ky<k, +z,
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This resulted in 677 design points in the training set. A MATLAB m-file (Appendix

M) was used to count the number of valid combinations of parameters in the input space.

For this model, it was determined that the networks would be valid for 1,043,196

parameter combinations.
Table E.3: Network Parameters, Model A
Network Hidden Nodes
Customer Delay 20
Cycle Time 18
Fill Rate 15
FGI 18

E.3  Network Weights
Table E4: Network Weights, Model A, Network 1

Hidden Layer Output Layer

Input Node i Output

0 1 2 3 4 5 6 0| -2.3985

1| 44392] 3.4284] 0.3805| 4.5945| 7.0984] 2.7504| 1.6335 1| -4.9725

2| 3.184|-0.83215] 0.30636| 2.3277 -0.4] 1.8804| -0.2286 2| -t.7982

3 |-0.68112| -1.3038| -0.58117/-0.08989] -0.15388| 0.47078|-0.14398 3| 3.1021

4 | 0.41921| 0.76935| 0.25707| -0.1475]-0.36981| 1.7362] 0.30187 4| 59172

5| -2.176| -1.0833] 0.11514| -2.4978] -0.0565| 0.89442| 0.00169 5 | -0.52935

6 |-0.36008| -1.0274|-0.46365/-0.30088] 0.52749] -2.1384| -0.4065 6 1.543

7| 0.75424] 1.438| 1.0881| 0.48405| 0.23315] -0.602| 0.19694 7| o.9712

"o |8 -4.6051) -3.4323|-0.38350| -4.5408| -7.4225| -2.6722| -1.7024] ol 8| -3.0584
B |.9.1-0.31833] -15125] 0.16789] 0.76562] 0.06846| -0.1488|-0.22014] V| 9| 25568
< | 10| 0.48556] 0.5804] 0.13333] -0.44555| -0.2619] 1.402] 0.23321] 2 | 10| -6.1568
5 [11] 25182]-0.30002] 0.28145] 2.2451]-0.24072] 1.3080]-0.08477] G [11] 5.6584
S [12] 3.7555] 2.5827] 0.00402] 0.32445]-0.06059] 0.13046] 0.01711| o [12] -4.3287
T [13]-0.42101] -0.92271] 0.15405] 0.9483] 0.08401] -0.31519]-0.14246] T [13] -4.461
14| 0.61583| -1.2707] 0.08645| 0.22005| 0.07838] -0.02833]-0.00202 14| 1.3418

15| 3.0442| 0.27934{ 0.23773] 4.2844] -0.1458] 1.1867| 0.02249 15| 2.0375

16| -1.4296]-0.90358] 0.09333 0.96611] -0.13126{ 0.67125]-0.08227 16| 4.4485

17| 4.2313] 3.4746] 0.389768] 4.747| 6.6758] 2.8985] 1.5406 17] 1.922

18| 2.7733| 0.00646] 0.22739] 3.3613]-0.14525] 1.0498]-0.01021 18| -5.2004

19| 0.80587] 1.1864] 0.0767]-0.52282] 0.09562| -0.42745| 0.10818 19| 7.3349

20| -22.143] -10.184] -0.8482] -1.1999] -6.9771| -4.0068] 2.4459 20| 4.9831




Table E.5: Network Weights, Model A, Network 2

Hidden Layer Output Layer

Input Node i Qutput

0 1 2 3 4 5 6 o| 17207

1| 1.1945]|-0.02605| 0.69255] -2.2284] -0.2744|-0.72823| 0.92582 1] 2572

2 | 1.0377] 0.05665] -0.08172] 2.3335| 0.04268| 0.30341] 0.00177 2| 1.8232

3| -2.2534] 0.04895] 0.01328] 0.28482] -0.03441] 0.10012} -1.1761 3| -2.3311

4| 1.0363]-0.07027| 0.06443] 1.4038| 0.05506| 0.34485]-0.12318 4| -3.4596

5| 0.0519] 0.2037| -0.3429| 0.65812| -1.1776|-0.02945{-0.41473 5 |-0.71393

6 | 0.54853]-0.82684| -0.27821| 0.96563] 2.2127| 0.12609] -1.2489 6 | -0.30247

"o 7] 0:37303{ -0.18808] 0.22452| 0.43555| 0.08918[ 0.00848} 0.34515| “g*| 7| 1.7113

T [ 8] 003334 0.62175]-0.33541]-0.48042] -0.07912| -0.05854] 0.57861 B | 8] 040116

Z | 9| -1.183] 0.05142] -0.00604| -0.86026] 0.18257] -1.4706] 0.05323] 2 | 9| -1.7657

S [10]-0.10793] 0.04855| 0.02924]-0.59471] 0.70718] o0.2306| 0.07782] & [10] -1.7144

3 [11] -1.0423] 0.06083] 0.13101] 0.21438] -0.05472]-0.06079] -1.4101] B [11] 1.0186

T [12] -12228] 0.11025] -0.77729] 2.4741] 0.22200] 0.88503] -1.033] = [12] 1.6881

13| 0.21572] -0.59113] 0.5188] 0.24599] 1.9995| 0.06142]-0.16085 13| -0.47911

14| 2.2237| 0.85944] -0.35142] 1.6519] 0.91149]-0.04952] 0.16982 14] 0.42217

15| -1.6712]-0.06795] -0.00788| 0.427|-0.17758] 1.3419]-0.18688 15| 1.8036

16| 1.3074]-0.41454] o0.4033| -1.9568|-0.33422|-0.33282] 0.2751 16| -1.7178

17| -0.36774] 0.56486]-0.13665] -0.6048] -1.4397] -0.127| 0.61778 17| -1.2496

18| 0.27276] 0.02484| -0.09856] 0.95957] -0.16221] 0.14516{ 0.42329 18] -1.627
Table E.6: Network Weights, Model A, Network 3

Hidden Layer Output Layer

Input Node i O_lﬁyp_ml

0 1 2 3 4 5 6 o| 11.667

1| 0.86113] 1.6653| 0.17185| 0.51991]-0.10498| 1.4656| 0.02107 1| -6.865

2 |-0.44676] -2.2055] -0.26191 -0.70121| 0.14752] -2.0114]-0.05006 2 -2.48

3| 1.4516|-0.29586-0.119768| -1.4312] -11.104]-0.92481] 0.53002 3 |-0.02642

4| 200271 2.2227| 0.15551] 0.47121-0.10121] 1.5099] 0.029 4| 3.8703

| 5] 523435] 38814] 3.5518] 3.5861| 2.6197) 054417 345271 _ | 5| 0.83054

8 |[6| 26003 -1.7652] 0.23519) 4.5781}-0.16235(-0.26153] 0.03291] G| 6] 3.4515

S| 7| 34650 43298[-000526] 0.48176] 0.0193]-0.02643]-0.02114 S| 7] 22644

= | 8] 55015 4.0372] 3.8284] 356750 2.6923] 0.56739] 3.5307] = | 8]-0.81238

O 9| 34681] 1.6019]-0.16725] -2.256] 0.2983] -3.6151]-0.11793] o | 9| 2.8639

-'19: 10] 2.4564| -1.5885] 0.24817| 4.6053]-0.14664) -0.23966| 0.03618 E 10| -3.4727

11] -3.3535] 1.5956]-0.15524| -1.9944] 0.27659] -3.2609|-0.08904 11] -3.408

12| -7.3022] -5.0071]-0.26648| -4.9992] 0.03083] 0.01271| 0.18043 12]-0.37844

13]-0.03113] -2.0004] -0.04778| 0.21692] 0.0284] -0.31227] 0.02539 13] -5.6991

14] 0.60806] 1.9949] 0.02553| -0.81294] -0.02381] -0.02446| -0.03695 14] -9.815

15} -1.0362} -1.7999]-0.02484] 1.1391] 0.04728] 0.15195] 0.03727 15] -5.6882
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Table E.7: Network Weights, Model A, Network 4

Hidden Layer Output Layer
Input Node i Outpuﬂ
0 1 2 3 4 5 6 0] 03172
1| -1.4896|-0.73649] -0.22921} -2.0315| 0.60609| 1.7444]-0.82779 1| 1.8421
2| 2.4563| -1.8335] 0.07427] 1.7821]-0.05746]-0.03851| -0.1609 2| 1.7746
3 |-0.98227| -1.8752| 0.01964| 0.60605] 0.12772] 0.24988] 0.0047 3| -1789
4| 1.1492] -1.9762|-0.16996]-0.55419] 0.12852] -0.14543| -0.05748 4| -3.0725
5 | 0.50042| -3.8913|-0.35974] -1.0884) 0.21602]-0.33379]-0.11757 5| 0.81149
6 | 0.2808]-0.23829-0.18129] -1.7171] -1.4712] 0.18776| 0.18316 6 | -0.94976
‘o |7 | -0.363509] 0.56213]-0.08293] 0.27804] -0.30748 0.67081| 0.14485] o~ 7 | 0.82824
Y| 8| 25602] -3.122|-0.14839|-0.51518f 0.17305]|-0.29435|-0.08643] T [8] 16312
2 | 9| -3.0252]-0.01005] 0.17251] -1.5827] 0.04758| -2.9363]-0.02048] Z{ 9| 2.3645
S 110] 2.9325| 0.63328]-0.02981| 0.54854] -0.0463] 1.4527] 0.04826] § [10] -2.0301
B [11| 2.9783] 0.20207[-0.14389] 1.2993] -0.08075] 2.5711| 0.05681 :-f_:’ 11| 3.6654
I | 12]-0.41632] -0.44204] 0.11508] 0.66505] 0.66734]-0.03446|-0.13188] T |12| 2.1102
13| 0.41732] 0.02149] -0.17668] -1.4619} -1.2641] 0.15647] 0.17046 13| 1677
14| -2.203| 0.19939] -0.01843] -3.0855-0.11975] -0.0991] 0.05445 14| 2.4711
15| 2.2643| -2.2499] 0.04678] 0.87129] 0.03972| 0.07415-0.07719 15| -2.8476
16| 3.6216] 1.7965]-0.02835] 0.46978| 0.13312] 0.00276]-0.00458 16| -3.3378
17| -2.4145] -0.19495] -0.01079| -2.7812|-0.12301| -0.15639] 0.02545 17| -2.918
18] 1.5081] 0.76358] 0.21595] 1.9519]-0.58458] -1.7164] 0.79346 18] 1.9262
E.4 Error Results
Table E.8: Error Results, Model A
Network Minimum Maximum MSE Mean Mean
Observation | Observation Error Absolute
Error
Delay 0 332.27 5.932043 0.018386 1.832769
Cycle Time 149.15 1305.92] 66.842247 -7.20E-03 6.148351
Fill Rate 0 1 0.000142 0.000003 0.009179
FGI 0 8.579 0.002883 0.000171 0.039592
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E.S  Optimization of System

The training dataset was scanned to find all the points which, after one simulation each,
satisfied all of the constraints. There were 24 points in this set, and the top 10 results,
sorted by Finished Goods Inventory (FG Inv) are shown in Table E.9. The best point in
this set had an average finished goods inventory of 4.021 units.

Table E.9: Points in the Training Data Set which Satisfy Constraints, Model A

Point |z, |k;|23|k2|23]|k3]| Cust Cycle |Fill Rate| FG Inv
Number Delay | Time

239] 6] 8 1 4] 2 6 941 2974] 0915 4.021

6] 8 9 O] 21 1] 2 134} 201.1 0.908] 4.709

4711 & 6| O] 6] 1] 7 3.5 23491 0.945 4.927
2791 71 121 3] 6] O] 5 5.7 295.1 0.932]  4.929
4771 8| 10] O] 8 2] 9 3.6] 28721 0.951 5.262

87 8} 111 O 4 3] 1 0.8 278.6] 0.983 5.424

2701 8| 12f 1| 5| 2| 4 4.0] 296.6] 0.966] 5.880

31 8 51 2 4] 1| 1 1.6 236.4 0.979 6.087

60] 9] 111 Of 9] 2| 2 3.1 254.5 0.974] 6.236

811 9] 51 Of 3] 3] 1 0.5 284.7 0.989] 6.314




Table E.10: Top Results from Neural Network Evaluation of Most Points, Model A
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Network Results Simulation Results
(Avg. of 20 Replications)
Zy|k1|z2|k,|z3]k3| Cust | Cycle| Fill | FG | Cust | Cycle| Fill | FG
Delay | Time | Rate | Inv | Delay | Time | Rate | Inv
51 9] 2] 8] 2| 1 9.8 284.8 0.901 3.259 8.0 287.1 0.908 3.310]
5¢ 8] 2f 8| 21 1 9.4 286.6 0.904 3.260 8.2 285.5 0.904 3.276
51101 2] 8 2] 1 10.2 283.2 0.904 3.260 8.6 287.8 0.900 3,289
5| 6f 2| 8 2] 1 9.0 291.5 0912 3.261 9.1 287.0 0.897 3.268
S 71 2] 8 21 1 9.1 288.8 0.910 3.261 7.6 287.9 0.910 3.314
51101 3} 8] 1} 1 9.1 279.0] 0.900] 3.264 6.9] 286.6] 00916] 3.365
50 8 21 71 2] 1 10.9 287.1 0.903] 3.265 7.7 288.01 0.907 3.314
50100 2] 3) 2] 1 15.5 276.6 0.904 3.268 9.1 283.4 0.899 3.264
51 51 21 74 2] 1 10.0 295.4 0.910 3.269 8.0 286.1 0.901 3.284
51 4 2] 6] 2| 1 10.5 298.6 0912 3.269 9.6 286.2 0.898 3.281
51 70 21 71 21 1 10.4 289.3 0.909 3.269 8.0 288.6 0.906 3.305
5 91 2] 5] 2] 1 14.1 284.1 0.904 3.270} 8.1 287.6 0.907 3.311
50 6| 2 7] 21 1 10.1 292.0 0.911 3.272 7.2 287.5 0.910 3.312
50 8| 21 6] 2] 1 12.2 286.9 0.907 3.272 8.8 288.2 0.902 3,292
50101 21 2 21 1 14.5 270.5 0.909 3.275 8.8 280.2 0.902 3.286
51 9t 2| 4 21 1 14.7 281.7 0.909 3.278 8.6 287.91 0.906 3.320]
5 71 2] 6f 2] 1 11.6 288.9 0.912 3.280 8.5 288.2 0.904 3.294
5] 4 2| 51 21 1 10.3 296.2 0.916 3.280 9.1 283.7 0.902 3.269
51 51 21 6f 2] 1 10.7 294.7 0.913 3.281 7.7 286.9 0911 3.329
51 8 2] 5| 21 1 13.3 285.6 0.911 3.282 7.4 287.8 0910 3.3201



Appendix F

Results for Model B
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F.1  Network Parameters for Case I: No setups or travel times
Table F.1: Model B System Parameters

Products Production Inputs Mean Processing Time
Cell (Part and Quantity) "(Minutes)

1 2 2Qty1),3(Qty 1) 45

2 1 4 (Qty 1) 24

3 1 50Qty 1) 18

Table F.2: Networks for Model B, Case I
Network | Description Hidden Nodes

1 Average customer delay time 20
2 Average fill rate 12
3 Average finished goods inventory 1
4 WIP Product 2 18
5 WIP Product 3 18
6 WIP Product 4 15
7 WIP Product 5 15




F.2

Network Weights, Case 1
Table F.3: Network Weights, Model B, Case I, Network 1
Hidden Layer Output Layer
Input Node i Qutput
0 1 2 3 4 5 6 0 | -0.088304
1 -6.353| -0.84561| -0.34064] 0.1999] 0.17141} -3.7994] 0.2026 1 3.0545
2] -26208] -1.3047] 1.3856] -0.60552] 1.2981| 0.89175| 0.42609 2| -0.44065
3| -3.7079] 0.076976| -0.57646] -1.4455| -0.50839] -0.30566| -0.25954 3 11.924
4| -0.95682] -0.93844| 0.47918| -0.17031| -0.01125| -0.21069| -0.05089 4 5.1728
5| -35141] -1.3929] -3.0047] -1.3051] 1.2521| -3.4767] 3.9468 5| o0.18032
6| 0.32823| 0.00361] -1.2708] 0.17519| 0.5565| -1.0215| 1.1095 6 22657
7| -0.22542] -1.1541] 0.61881| -0.15299| 0.06436| -0.26819| 0.025787 7| -2.6509
‘o 81 24352] 0.92652] 0.031937] 0.49586| 0.32524 1.346] 0.093504f | o' |8 5.5083
Q|9 -017679] -0.10969] 1.3083| -0.18253] -0.514| 1.0031| -0.85916] | B | 9 2.372
Z |10| 3.1981| 0.14319] -05534| -1.8985] -4.799] 17701} 0.93386] | = |10]| -0.13668
S [11] 13547 050324] 032004 0.58138] 27049 0.219) 0.050362] | § [11 1.4834
8 [12] 422007] o49216] -0.3958] 0.6233] 0.44353] o.s1189] 27308 g 12|  1.6337
T [13] -1.001] -0.49437] 30681 4.3557] 1.8403] 28355 0.048091] | T [13] 0.12490
14| 2.9207] 0.77712] 0.66469] 0.97253| 0.57972| 2.2748] 0.21655 14| -6.8632
15| 8.0349] 1.1266] -0.44376] 4.0799] 0.4913| -0.24328| 0.009125 15| -4.5464
16] -5.5964| -0.49131] 0.20354] -0.34211| -0.13572| -0.9798] -2.4943 16| 5.7997
17] -1.2711] -0.44708| -0.48052] -0.41584| -2.4439| -0.45437| -0.18073 17|  1.6194
18] 5.0265] 2.3368| 0.1674] 0.041334| -0.00718| 0.081129| -0.01363 18 -8.541
19| 3.2766| -0.01477] o0.8966] 2.0392| 0.8617| 0.56367] 0.27628 19| 47828
20| 3.4184] 0.75431] 1.1973] 1.1959| 0.63368] 3.3083] 0.1603 20| 3.0521
Table F.4: Network Weights, Model B, Case I, Network 2

Hidden Layer Output Layer
Input Node i Output
0 1 2 3 4 5 6 0 9.7886
1| -25.098] 1.9047] o0.58556| -23.416] -2.1441] -1.4131] 1.3025 1 5.5285
2 24.02] 17272 0.50332] -22.484| -2.072| -1.2863 1.228 2| -5.6388
3| 12419) 5.1868] 0.054104] 0.21196| -0.32036] 4.5467] 0.41714 3 -10.29
‘o L4 -42851) -6.7725| 1.1858] -9.6529 2.1166| -0.66161] 0.10179] || 4 0.073112
B |5 -070707] -3.4465| -1.0247) 1.7082| -0.16561} -0.08261| -0.65222 BLs 23,779
Z | 6| -050054] -3.3788] -1.386] 1.3168] -0.18361] -0.18914] -0.84527| | Z | 6 -22.56
51 7] -053140] -3.421] -1.7076] 1.0852] -0.17793] -0.2799] -0.08759] | § [ 7 8.9623
E 8| -9.0671] -1.086] -0.54471] -0.3577] 0.23971] -6.3073] 0.38856 _-'S 8| -3.3621
T 9| 27208] 3.0591] -0.0381] 0.95717] 0.064584] -0.1074] -0.12149] | T |90 1.5178
10] -8.5443} -2.1981] 1.1092] 0.22157] 1.1181] -6.0768] -2.751 10| -0.33599
11| -0.82567}] -3.6664| -0.85141| 2.1212] -0.15156| -0.01149] -0.54031 11| -9.6519
12] -2.058] -2.0379| -0.04813] 0.43515] 0.028877| -0.05912] -0.0693 12] -3.3205
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Table F.5: Network Weights, Model B, Case 1, Network 3

Hidden Layer Output Layer

Input Node i Output

0 1 2 3 4 5 6 o| -6.2224

1 35543 -0.45183] -0.07682] 1.7356] 0.38184] -0.8041| -0.10332 1 9.0235

2| -37691] 2.5183] -0.10476] -0.25749| 0.059023] -1.1935{ -0.10938 2 2.0729

3| -074226] -1.419{ -0.00693| 0.43621| -0.44141] -2.6031 27732 3 3.32

‘o L4l 16417] 4.4363| -0.11165] 026409] 0.16609] 0.10412] 0.040014f |'g| 4] 0.33477

Y (5] -20786] 058791[ -0.09672| -1.8266| -0.33950] -1.1332| -0.26463| | B | 5| -21379

Z | 6| 28578 0.018234| -0.09149] 2.5831| 0.47689} -0.02076| o0.19767] | < | 6| -5.2009

S[7] 28641] -0.88686] 0.1948] -0.07392] -0.11637] 3.2867] 0.13504] | §{ 7] -4.6857

B |8 078889 2.1162] -0.01813| 0.012256 0.005658] -0.27253] -0.05379 § 8 2.1403

T [o| o7013] 1.3839] -0.01316] -0.41423] 0.42600] 2.6253] -27081] | E [9] -3.3804

10| 2.8527] -0.91395] 0.14117] -0.10772| -0.12213| 27584 0.13719 10 6.9065

11] 3.3011] 0.49557] -0.16284] 3.0521| 0.51589| -0.08692] 0.26441 11 2533

12| -3.8781] 050914| 0.081369| -1.4305| -0.36436] 1.3733] 0.24441 12| 54788
Table F.6: Network Weights, Model B, Case I, Network 4

Hidden Layer Output Layer

Input Node i Qutput

0 1 2 3 4 5 6 0 1.3208

1| -2.4452] -0.016] 0.64548] -0.0555| -0.02451| -0.53902| -3.5844 1] -0.33689

2| 1.4918] -0.08975] 0.35192] -0.91966| -0.81568| -0.16256] -0.28639 2 4.3061

3| 20624 0.19418] -0.96913| -0.41997 3.546) 0.57401| -0.41527 3 1.1613

4| 29513] -0.11104] 0.23353] -0.08686{ -0.04048| 2.8468| -0.00943 4 6.6307

5| -0.42993] -0.01407| 0.83182) 0.05141] 0.075483} 0.14471| -0.18207 5| -3.1032

6| 3.0084| -0.20693] 0.68988] -0.1558| -0.14352] 3.2101] 0.21482 6] -1.5832

"o L7| -3.3473| 0.071963| -0.12249] 0.25369| 0.098447| -2.539] 0.10264| |''| 7 7.7309

BLs -0.582| -0.06862) 0.44691| -1.1559| -0.69113] -2.161) -0.46169 | P | 8] -0.5173

Z | 9| 05598 1.851] 5.8494] -3.9087| -5.0813| 15319 59797 | < | 9] -0.023685

& [10] 0.47276] 0.009003] 0.28215] 0.093594] 0.10934| -0.04127] -1.1151 $ (o] 47967

S [11| 54009 069561] 054583 -3.6452] -5.0056| 0.29926] -0.33268] | B [11] -0.079291

T [12] 0.13292] 0.086969] -0.00601] 0.93351] -0.71106| -0.14839] -0.04117] | £ [12 1.1175

13 2.312} -0.00644| -0.01413 1.88] 0.23126] 0.1637] -0.05534 13| -5.0769

14| 2.2686| 0.000937] -0.05957] 2.6237] 0.1405| -0.08933] -0.02266 14 27143

15] -0.43794] 0.049235] -0.16950] 1.0593| 0.25977| -0.66426] 0.10585 15| 2.8787

16| -0.03003] 0.012157] -0.32393} -0.05519] -0.11748] -0.05559] 0.46817 16] -13.977

17| -1.8059] 0.058991} -0.41351] 0.95775 0.711] 063934 0.44416 17 3.707

18] -1.9402] -0.17305] 0.87774] 0.45995| -3.4921| -0.57254] 0.27961 18 1.2391




Table F.7: Network Weights, Model B, Case I, Network 5

Hidden Layer

Output Layer

Input Node i Output

0 1 2 3 4 5 6 0| 016817

1 1.1851] -0.10314| -0.68329] -0.23266{ 2.3748| -0.22205| -0.17722 1 3.4468

2 | -0.25147] -0.05491] 0.35885] -0.52355] -0.09606| -1.5951| -0.08947 2| -1.2175

3| -0.4038] -0.04015] 0.67339] 0.042902| 0.051573] 0.19484| -0.09453 3 -5.328

4| -43868] -0.101468| 0.31254] -3.5585] -0.36748{ 0.33346] -0.28727 4] -2.0095

5| -1.3859] -0.05891] -0.24618| 0.050802| -0.05378| 0.78378| . -1.1586 5| -29776

6 5.284] 0.10146| -0.24194| 3.564| 0.28721] -0.43793] 0.19069 6] -44416

"o |7.] 0.085314] -0.02093) 0.061241| -0.80114| -0.18305| 1.3231] 0.044652| || 7 3.8718

T [8] -0.36901] 0.036392] -0.1791| 1.5192] 0.34816| -1.5536| -0.05585| | T | 8 1.2013

Z | 9| 1.6874] -0.03044| -0.56525] -0.44099| 0.96655] 0.006224] -0.88627] |2 | 9 2.3505

S [10] 1.6672] 0.013883] 0.82198] 0.26214] -0.08005] -0.41675] -0.73279] | § [10] 15645

B [11|  1.44a97] -0.05087] -0.43103| -0.06573] -0.51454] o0.83506] -0.08211] | B [11] -3.0706

T [12] 13708 0.019217] 1.1998| 0.050736] 0.009754] -0.62068] 2.5746] | T [12] -0.18016

13| -1.4182| -0.06349] 0.34404{ 0.044619| -0.34139] -1.2941] -0.01942 13| a.8319

14| -2.2215| 0.023878] 0.13201] 0.16213| -0.03211] -3.0862] -0.00195 14] -1.3669

15| -0.08644] -0.0795| 0.28026] 0.22888] 0.084536] 0.89357] 0.035902 15]  4.4399

16] 1.3008] 0.049399] -0.09281| 0.042352| 0.027054| -0.7383] 1.5581 16] -1.9411

17| -1.2356] 0.19069] 0.95827] 0.44737| -2.8808] 0.26783| -0.05979 17] 11938

18| -1.3568] 0.063219] 0.55259] 0.21606| -1.4903] 0.17586| 0.45876 18 4.875
Table F.8: Network Weights, Model B, Case I, Network 6

Hidden Layer Output Layer

Input Node i Qutput

0 1 2 3 4 5 6 0| -0.86402

1| -2.0375] -0.11331] 0.19327] 0.094682| -3.4622| 0.15975] 1.0445 1 6.2658

2| -0.15425] -0.18621] 1.2034] 0.08219| -0.18247| 0.41453] -1.1795 2| 58529

3| 3.43233] -0.19185| 0.95794| 0.049638| -0.10816] 1.1087] 2.0%02 3 2.6774

4] 2.2041] -0.03204] -0.17903] -0.03416] -0.81675| -0.37957] 26745 4 5.6394

151 -50019] -0.31042] -7.6505] -10.285| -3.8979] 2.3888] 1.3893| |._.| 5] -0.19571

Y161 27084] oo7663| 4858 87849 2.0047] -1.4455) -1.9207| (@ | 6| -0.21943

S | 7] -13526 021506 -0.37203] 024225| -1.0989 0.17996] 0.15573| | Q7] -35652

c | 8] -0.44308| 0.34223] -1.3532} -0.19324] 0.1644| -0.47954] 1.7869] | = [ 8| -7.6401

8 [ o] -33334] -1.4815] -0.1872] -1.6745] 6.3055] -1.0683] -1.8089] | S [@| -0.24397

% 10| -0.6729| -0.17262] 0.7843] -0.00393] -0.0344] 15135 0.45858 -E 10|  3.2324

11| -2.6846| 0.043555] 0.3412] -0.05343{ -2.281] -0.0325] -0.01571 11 -6.603

12| 2.6604| 0.26551] -0.35939] -0.12138] 4.3256| -0.34471] -1.8201 12|  3.0064

13| 0.85317] -0.79776] 2.0964] o0.4562| -0.36208] 0.9255] -2.8421 13|  -1.8941

14| 2.1248| -0.05865] -0.29708{ 0.017334| -0.64376| -0.33508] 3.243 14] -47121

15| 0.43653] 0.14502] -0.59367] 0.1829| 0.061066] -1.9926] -0.07108 15| 2.3696
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Table F.9: Network Weights, Model B, Case 1, Network 7

Hidden Layer Output Layer
Input Node i Qutput
0 1 2 3 4 5 [ 0 15.311
1| 5.6424] -0.05573{ -0.29414| 0.061543] 5.2672] 0.17561] -1.0883 1 2.1271
2| 71278] -16.89] -3.9022] 2.7625| -0.33041] 3.8221] 27825 2| 0.087936
3| -13097] -0.00808] 0.6338| -0.02418| -0.22949] 0.021562] -1.3422 3| -65213
a| -39591] 21881 57947 -54508] o6218] 7111 11383 4 | -0.098313
| 5] -1454a] -0.4089]| -0.53202] 0.41626| -0.63194| 0.034173] -1.6434| | _[5] -2.6025
86| 10219] 015129] -0.01518 -001728] -1.5792| -0.0v269] 2083 | Y |6 9.1523
87| oaoser| 028528] 03706 0.30821| -0.28832| 048775 27524] | Q[ 7] -2.1265
e | 8] -0.62421| o0.16567| -0.24935] -0.19741| 0.067175| -0.11557| -0.90777| | = [ 8] -11.777
O [o| 3o574] 2.4s87| -0.14008] -1.4566] 1.71e8] -0.27582] 3.2658] | S [ 9| 0.42361
E 10§ -0.1322| -0.01281] 0.38154| -0.12241] -0.15257] 1.0476l -0.68304 ::5: 10] -4.3239
111 1.0355| 0.13878] -0.07864| -0.04312] -1.2499| -0.12528] 1.7016 11| -14.568
12| 2.2323| 0.044992| -0.18558] -0.08982| -0.48472] -0.08318] 3.1145 12| 12536
13| -0.07727] 002745} -0.16412] 0.083861} 0.30313] -0.28283| 0.86466 13] -12.638
14| 2.00s8| -041714] 1.0491] ose48] 4.5889| -0.18585] -5.3019 14| -0.11591
15| 2.3917| 0.078346] -0.20534] -0.14616] -0.72027| -0.11482] 2.7858 15] 14912
F.3  Error Measurements, Case I
Table F.10: Error Measurements for Trained Networks, Model B, Case 1

Network| Minimum Maximum MSE Mean Mean
Observation | Observation Error Absolute

Error
Delay 0.01 383.2] 31.890268 0.014512 4.264647,
Fill 0 0.999 0.00041 1.00E-06 0.015434
FGI 0 8.145 0.011735( -0.000009 0.077397
WIP 2 0.245 11.28 0.006622 0.000023 0.063497
WIP 3 0.174 11.192 0.007107 0.000023 0.06415
WIP 4 0.105 1.098 0.001792 -0.000002 0.032153
WIP 5 0.381 1.511 0.00199] -0.000038]  0.033288
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F.4  Post Regression Plots, Case I

Best Linear Fit: A =(0.988) T + (0.584)
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Figure F.1: Customer Delay Time (Network 1) Post Regression Plot, Model B

Best Linear Fit: A =(0.986) T ¥ (0.00234)
1.2 T T T T T T T T

O Data Points
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Figure F.2: Fill Rate (Network 2) Post Regression Plot, Model B, Case 1
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Best Linear Fit: A = (€:396) T + (0.00531)

9 T T T T T T T T

o Data Points
Best Linear Fit

8 R=0999 ng T oo A=T

-1 L : 1 L 1 L ) L

Figure F.3: Finished Goods Inventory (Network 3) Post Regression Plot, Model B, Case I

Best Linear Fit: A =(0.989) T + (0.00381)
12 . , S - .

O  Data Points
- Best Linear Fit
coee Az T

12

Figure F.4: Work-in-Process, Product 2 (Network 4) Post Regression Plot, Model B, Case I
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Best Linear Fit: A = (0.589) T + (0.0041)
12 T T I T T

O Data Points
Best Linear Fit
U, A=_T

12

Figure F.5: Work-in-Process, Product 3 (Network 5) Post Regression Plot, Model B, Case I

Best Linear Fit: A = (0.958) T + (0.0273)

14 : : , ‘ ‘
O  Data Points
Ri=0.979 ———-— Best Linear Fit
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06

041

Figure F.6: Work-in-Process, Product 4 (Network 6) Post Regression Plot, Model B, Case 1



Best Linear Fit: A =(0.976) T + (0.0236)
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Figure F.7: Work-in-Process, Product 5 (Network 7) Post Regression Plot, Model B, Case I

F.5 Network Parameters for Model B, Case II (Setup and travel time)
Table F.11: Networks for Model B, Case I1

Network | Description Hidden Nodes
1 Average customer delay time 30
2 Average fill rate 12
3 Average finished goods inventory 12
4 WIP Product 2 18
5 WIP Product 3 24
6 WIP Product 4 20
7 WIP Product 5 18
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F.6

Network Weights, Case 11
Table F.12: Network Weights, Model B, Case II, Network 1

Hidden Layer Output Layer
Input Node i Output
0 1 2 3 4 5 6 ) 4.0205
1 11.177] 7.7347| -2.7542] 15.393] -1.3193| -0.42584| -1.5856 1| o0.15449
2| -0.60157| 3.5459| -1.7008| 0.81587| -8.9265] 2.9698] -10.072 2| -0.14566
3| 23828] 1.2022] 0.32947] 1.0875] 0.72577| 0.54676] 4.5045 3 3.3446
4| -24471] 11995} -14.47] 15278] 9.2334] -20.155] -0.47545 4| -0.40201
5| 046134] -1.6328] 1.8139] 1.9772] -1.0822] -0.55091| -0.69168 5 2.6681
6| 3.6987] 3.8857] 3.4463] 4.8756] 24668 7.9027| -2.1664 6| -38177
7 | -0.41769] -0.73222} 1.8367] 1.1497] 1.9475] 0.44213] 2.1452 7| -0.55579
8| 1.0043] -1.8443] -0.93358f 0.81207] 2.1741] -32313 1.8177 8| -0.40857
9 1.118] -5.8025] 12109 8.6224] 15.307] -0.71932] -11.329 9| -0.10268
10| 0.24905] -1.6436] -0.33404{ 0.033343| -0.49092] 0.074296] 0.41887 10] 5.8073
11| 3.5962] 3.6286] 3.3846| 4.7818] 2.302] 7.4820] -2.0778 11 4,005
12| -0.08301] 1.6839] 0.30838| -0.14177] 0.55353| -0.14524] -0.33729 12]  5.6283
"o 13| _-7.3%01] -6.0086[ -0.43939| 5.3483] 15.897 -4.1731] -7.2059] “o*|13]| -3.8496
Y |14] 068976 20.089] -35.661| -16.045| 7.2476| 6.4617| 1.0805| G | 14] -0.088706
< 15| 1.9265] -1.4932] 0.71756] 1.7923] 8.3629| 9.7284| -0.78056] 2 |15] -0.20891
S [16] -26735] -3.2335] o0.31108] 2.1533] 0.058403| -1.2009] 0.034180] & [16] o0.6823
§ 17| 6.5283] 044886 6.6077] 7.1731] 2.4709] -1.0189f 0.69551 _'-E 17| 0.18667
I 18| 1.2924] 0.062009] 0.36326] -1.6682{ -4.9787] 5.1888] 1.4507] L |18] -0.2451
19| 22436 1.1238] 0.30438] 1.1082| 0.6955] 0.41421] 4.1479 19] -3.6562
20| -o1.518] -2.9855| -7.3602] -2.0945] 17.986] -21.303] -6.4309 20] 0.17685
21| 7.4355] 6.2724] 0.41612] 5.4578] -16.322] 43959  7.304 21| -3.7856
22{ -49114| 3.9869) -0.40268] -1.8401] -13.329]| -11.836] 3.0115 22| -0.16796|-
23] 10.184| 5.9487| -0.28959] -0.5723g9| -0.39981| 1.4223| -0.08075 23|  -11.437
24| -47331] -1.5638] 0.2695 -1.99] -0.15353{ 0.10599] 0.10473 24| 42222
25] -1.0153| -0.05091} 1.7855] 1.4457 1.615] 0.79769 1.216 25 0.661
26] 0.43975| -1.6400f 2.0131] 1.8488] -1.0621| -0.51183] -0.74148 26| -2.6529
27| -6.3804| -0.13805] -2.4847] 0.49041| 1.5263] -6.1753] 0.27831 27| 0.83282
28| 24248 22337] 1.2406] 0.12944] -1.093] 2.1185| -1.3066 28| 4.8802
29 11.86] 3.6463] 9.1898 14.05( 10.831] 9.9121] -9.7441 29| -0.11043
30| -2.3083| -2.1974] -1.2057| -0.40377] o0.88159] -1.7081] 1.1924 30 5.21
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Table F.13: Network Weights, Model B, Case II, Network 2

Hidden Layer Output Layer

Input Node i Output

0 1 2 3 4 5 6 0| -0.15946

1| 0.54381] 0.90126] 0.28246] -0.74769] 0.95132] 0.52922| -0.42029 1 -5.2142

2| -1.9131] 15212] 0.48193] 0.84966] -2.6789| -0.77376| 1.7215 2| 0.26514

3| -1.8794] 3.7883] 2.9195| 1.0588| -2.4225| -4.2332| 0.047233 3| -0.13946

"o L4 -0.44605| -0.86307| -0.28044] 0.66409| -0.76451) -1.2115] 0.3988] "*| 4! -11.815

T [5| -20124) -039788| 0.000262] -1.9189| 0.14139] 0.28059| 0.017938] B |5 9.8587

Z | 6] 083634 1.2331] 055355| 0.074766] 0.8619] -2.9964| -0.70519] <€ | 6| 0.40324

§ 7] 23761] 0.19894] 0.092009] 2.1268] -0.54763] 0.13201] o0.11139] G |7 48312

B[ 8| -14437] -2.0634] 0.008585] 1.1651] 0.40027| -16904] -0.47543] 9 [8| -0.69389

I 2.195] 056784| -0.07152] 1.6757| o0.12624] -051968| -0.11112] T [ 9 7.8798

10| 0.39417] o0.92899| 0.30852| -0.71046] 0.63679] 1.7762| -0.38813 10| -6.3858

1] -1.8211] -2.8566] -0.26281] -1.1233] 0.20123] -1.0486] 0.032596 11| -0.70662

12 -3.87] -3.8153| 0.083307| 0.61466] 0.12466] 0.48045| -0.03874 12| -1.5801
Table F.14: Network Weights, Model B, Case II, Network 3

Hidden Layer Output Layer

Input Node i Output

0 1 2 3 4 5 6 0| -42058

1| 0.14404| -0.93418] 0.61771] 1.3929} 0.82761] -0.64619] -1.5973 1 -4.3862

2| 1.5919] -0.20899] 0.094118] -0.49203| 0.022703] 0.76712| 0.007718 2 14.261

3| 04719 -1.2373] 0.21747] -0.23206] 1.4868| -0.194768] -1.3635 3 3.1817

‘o L4l 077118] -1.2073] 0.027042] -0.24292) 0.028689] -0.12573] 0.020271] [ 4| -5.3541

B |.5] -0.39593] -0.09691) -0.16329] 0.063645| -0.07966 0.495| -0.15019| F 5| -8.1402

Z1s6 1.4362] -0.22624] 0.049306] 0.49008] -0.03929| 0.60348| 0.021527] 2 | 6 13.17

57| 15431 -055422] -0.07882] o0.36561] 1.0131] -1.8014] -07086] 7] 081892

§ 8| 0.34506] 0.17977] 0.25482| -0.22566| 0.1833| -0.09309] 0.13497 § 8| -6.8067

I |9 -0.20712 1.103] -0.25993| 0.000639] -1.3822| 0.36546] 1.4279] L | 9 4.6335

10| -0.19584] 0.8998| -0.59647| -1.1526] -0.91806| 0.60523] 1.6528 10| -55117

11}  1.0455] -0.36339| -0.08618 2.145| -0.17233] -0.279] 0.04892 11|  -1.3521

12] 1.1131] -0.36704| 0.12578| -0.08275] -0.0638 1.35] 0.031403 12] -8.1255




Table F.15: Network Weights, Model B, Case I1, Network 4
Hidden Layer

Output Layer

Input Node i Output

0 1 2 3 4 5 6 0| -1.2631

1 -1.1] -0.02726] -0.13054] 0.57299| 0.11022] -1.7607| 0.088344 1] -6.0317

2 | -0.23034| 0.074466| 0.12435] -0.36391] -9.9142| 0.80389] 9.4873 2| -46225

3 | -0.45318] o0.10855] 0.020032| -0.5392| -10.338] 0.89229] 10.397 3 2.5608

‘4| 081671] -0.37774| 0.66343} 0.80534| 0.57147] 0.16248] -0.35161 4| -1.0195

5| 0.26233] -0.17341| 0.20792| -0.68046| 0.51588] 0.71947| 1.1125 5| -22729

6 | -0.96821| -0.07758| -0.23553] 2.0644| 0.88786] -1.4615| -1.6521 6| 0.39973
"o |71 28501 1.2747] 0.096313| -0.62543| 2.8181] -57076] -2.3232| “=~| 7] -0.90296
V8] -47713] 16973] 18058 2733| 4.0238| -0.37006| -8.7565| Y| 8| 0.046475
Z 9| -1.0228 007118 0.001837] -2.2743} -0.1379] 041645 0.34689] 2| 9! -1.1136
& [10] 1.3102] 0.012256] 0.088648] -0.72611] -0.07384] 1.3015] -0.0519] & [10] -8.9114
3 [11] -0.07337] 0.047204] 0.17234] -0.2387 -9.62) 0.65723| 87097 _% 11 2.0255
T [12]| o.29109] -0.04097] 0.69982] 0.56731] -1.6488] 045477] osetes] E [12] 27085
13| 0.43309] -0.07019] 0.050211| -0.51705] 0.10347] 0.33923| 0.87089 13|  9.8667

14] -1.9734] 0.003392| 0.027593| -0.35805] 0.096171] -0.52629| -0.46618 14| 7.2822

15| 0.77078] -0.38189] 0.92303] 0.22012] 0.74013| 0.071064| 0.013864 15| 0.80841

16| -1.0913] 0.034016] -0.01068] 0.55905] 0.000427] 0.1645| -0.56319 16] 9.5658

17| -2.6914] -1.4288| -0.23022 0.82 297] s6.04668] 26242 17| -0.82239
18] -0.12074] 0.045825| -0.70668| -0.60959] 1.6725| -0.67037| -0.89169 18| 23747
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Table F.16: Network Weights, Model B, Case II, Network 5

215

Hidden Layer Output Layer

input Node i Output

0 1 2 3 4 5 6 0 3.8508

1| -0.81074] 0.19339] -1.2937} -0.97335| -2.8826] 0.04768| -0.88294 1] -1.6972

2| -2.0728] -027223] 0.1649] 0.75908] 0.30153] 0.82935] -0.48046 2| -86374

3| -1.3305] 1.1884| -0.63651] -0.26166| -0.14347] -0.00657| -0.52093 3 -1.076

4| -2.1565| -0.23442| -0.00069] 0.19767] 0.30644] 1.6485| 0.004436 4 8.272

5| 1.1734] -0.02826] 0.10046 1.0814] 6.4087] 0.1126] -5.1842 5| -0.25402

6| 1.4827] 0.010167] 0.12722] 2.4934] 0.15431] -0.3793] -0.50673 6 4.9005

7| 1.8966] -0.05126] -0.05476] 0.044824] -0.31105] -1.5346] -0.54121 7 2.0476

8 -1.291] 0.22554] -0.23606] -0.13453] 1.1437] -0.97257] -0.49353 8 1.6494

9| -042127] 1.3978] 0.1294] -0.75108] -4.804| -0.11376] 3.4744 9| -2.3999

"o |10} 16259] -003232 -0.0622] -19678| -0.05768| 0.22748] 0.28405| "o~|10] -3.6148
Y |11] -2.4927] -0.02281] -0.20067| -3.6868| -0.40451] 0.96312] 0.97663] B |11 1.3507
Z (12| -1.4452] -1.656] -0.18426] -0.29008] 0.41156| -0.09889] 0.30479] 2Z [12] 19175
& [13] -0.6353] 0.12525| -0.01942] -0.05819] -0.00405] -1.6811| 0.003003] & [13] -4.6951
E 14| -1.0848] -0.42929] 0.13022] 25183 -20.368] -1.2439] -21.561 :-‘g’ 14]  4.4511
T [15] o.82691| -0.07320] o0.18241] o0.95978] o0.16882] 0.30484] -0.46571] T [15] -10.036
16| -0.8723] 0.21855] -1.3743] -0.9739] -2.7488| -0.02358| -0.87616 16{ 17581

17| 0.99675| 0.41717] -0.16857] -2.5033| -19.811] 1.1598] 21.08 17] 45127

18] 0.62685] -1.7657] -0.11101] 0.91363] 4.9269] 0.32982] -3.9868 18 -4.009

19| -0.84162] 1.9446] 0.10405] -1.1134| -5.1783| -0.52767] 4.6483 19| -1.9115
20| -1.5252] 1.0857| 1.1192] -0.49617] 0.087184| -0.34159] -2.7736 20 1.265

21| 1.2553] 0.78456] 0.30508] 0.43111] -0.15078| -0.15781] -0.25017 21} 5.6934
22| 0.25526f 0.15611] -0.23643]  0.1268] 0.034418| -0.12226] 0.65083 22| -5.3205
23] -1.4301] 0.81195] 1.0813] -0.46555| 0.18309] -0.37072| -2.5267 23] -1.6243

24| 0.48928] 0.31035] 0.15692] 1.8604] 0.54032] -1.6384] -0.43662 24| -0.54505




Table F.17: Network Weights, Model B, Case II, Network 6
Hidden Layer

Output Layer
Input Node i Qutput
0 1 2 3 4 5 6 0 -6.2443
1 -1.8618] -0.35357| 0.22557 1.2009] -11.294 1.1672 10.625 1 -5.2343
2 3.3477] -0.10752| 0.63046] 0.16342] -2.0706] 0.36312 2.658 2 1.5023
3 0.21257| -0.29007| -2.3696] 0.071211 3.265( -2.3633 2.6165 3 -1.4607
4 1.0763] 0.053854| -0.07398{ -0.33918| 0.20081 -2.6382} 0.54813 4 0.77823
5] 0.13739] -0.94598 2.1011 1.0635 1.0019] -0.04233] -0.04251 5 -11.638
6 -3.4737] 0.00464| -2.8125] 0.36024| -0.64617] -3.0049 2.1675 6 -1.4252
7 -1.697| -0.34187{ 0.25121 1.2932] -10.916 1.1863 10.265 7 5.121
; 8 | -0.03181] -0.14686{ 0.74775] 0.34633 0.1339] 0.14653| -0.95681 ; 8 5.0693
'g 9| 0.27373| -0.17509 -2.487| 0.19987 2.5845] -2.4043 2.342 '8 9 1.7225
< |10 5.3109] 0.028938 5.6694| -0.35833| -0.47475 6.0127| -4.6043 < [10] -0.74914
5 1 -4.6148] -0.28352| -1.3416] -0.34494 3.4178 3.1219 2.3673 5 11 0.54775
g 12| -0.15472} -0.94736 2.1317 1.2036} 0.65343| 0.070633} -0.36734 -g 12 14.862
T 13| -5.6249] -3.8597{ -1.2097 5.9686 9.6784 30.172 3.2173 T 13 0.14301
14| -0.10703] -0.00734| -0.16494| 0.17179 3.0133} -0.1175] -1.5187 14 -1.1454
15| -6.4479 -1.608] -2.6676] -1.1586 1.8803 2.0495 1.3234 15| -0.73471
16 8.5815 2.3626 6.4066 19.704 27.773 5.1411 12.178 16 -3.7459
17| -0.47092] 0.81608{ -1.7565{ -0.75091| -1.3108 0.0699{ -0.13977 17 -4.876
18 1.1701] 0.11196|. -0.48479| -0.04001 1.1519] 0.27017] 0.72313 18 3.1941
19| 0.27818] 0.77713| -1.8796] -1.1156| -0.40177]| -0.16784] 0.64162 19 9.5821
20| -8.9416| -2.3776] -6.7029] -20.228| -28.767] -5.1393] -12.535 20 -3.7222
Table F.18: Network Weights, Model B, Case II, Network 7
Hidden Layer
Input Node i
0 1 2 3 4 5 6
1 -3.337] 0.039856| 0.002606] -0.10073| -3.3728] -0.13317 1.1794
2 0.36538|] -0.04507| 0.26837| 0.36003 7.3951] 0.000217] -7.4196
3 | 0.054185| -0.01485] 0.18894| 0.10818] 7.9533| -0.10555| -7.6695
4 -17.574] -5.9749| -13.662 3.3948| -4.6482 9.0076 8.566
5 -2.954] 0.00256] 0.044107{ 0.001787] 0.093417| 0.057359] -1.7584
6 25.525 1.1992 19.335] -43.194| -10.093] -4.8812 9.1398
‘o 71 -1.1869] 007679) -1.6208| -6.4474| -14.234| -1.3645| 14.457
'g 8 45531 6.7574 -18.71 -12.036 -22.82 12.265] -19.562
Z|9 -1.8079] -0.66477 3.0471} 0.62296 7.3729 -3.936 5.5603
5 10} -1.7919] 0.88352 1.7162] -0.32156] -5.1818 1.9879 -3.242
% 11 19.852 18.229 4.2442 48.522| -11.855 12.4 -45.81
¥ [12] -1.8963| osoa4s] 1.6971] -0.37454] -5.2978] 2.0158| -3.3552
13} -25.054] -1.1508] -18.847 42,175 9.584 4.796] -8.9927
14 14.03] -2.4792| -2.5743} -9.0055 -18.04] -44.008] -4.5608
15| -3.4512] 0.16235| -1.5978] 0.33121 1.4739] -0.82096 2.0045
16] -18.502] -0.88992| -9.9924] -0.59295| 0.81814] -13.078 8.3237
171 -3.7321] 0.22205] -1.8323| 0.27134 1.4999] -0.89023 2.0374
18| -17.151] -5.8268} -13.201 3.2233| -4.6159 8.7986 8.2682

Output Layer
Output

o] 31815

1| -1.2685

2| 26372

3| 22795

4| 61805

5| -4.6007

6] -3.4317
‘o L7| oza3183
B [8] o135
2 [o| o0.17956
5 [10 5.133
38 [11] -0.080123
X [12| 50707
13| -3.4685
14 -0.058484

15] 6.0624
16| -1.7605
17| -6.1366
18] -6.2959
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F.7

Error Measurements, Model B, Case 11
Table F.19: Error Measurements for Trained Networks, Model B, Case II
Network| Minimum Maximumn MSE Mean Mean
Observation | Observation Error Absolute
Error
Delay 0.38 395.47] 80.468268| -0.002416 7.172903
Fill 0 0.992 0.000989| -1.00E-06 0.024146
FGI 0 7.833 0.02518] -0.000432 0.114295
WIP 2 0.341 11.352 0.013097 0.000012 0.088943
WIP 3 0.256 10.022 0.01105 0.000426 0.081834
WIP 4 0.574 3.373 0.011469{ -0.000004 0.079452
WIP 5 0.859 3.729 0.009737| -0.000251 0.071524
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Appendix G

Results for Model C

Table G.1: Model C System Parameters

218

Product | Production Inputs Setup Time | Mean Processing | Move Time
Cell (Part and (Minutes) | Time (Minutes) | to Next Cell
Quantity) (Minutes)
1 2 3 Qtyl) -- 90 --
2 3 4(Qty 1) -- 60 -~
3 1 SQty 1) 25 25 15
4 1 S Qty 1) 25 25 10
Table G.2: Neural Networks for Model C
Network | Description Hidden Nodes
1 Average customer delay time, Product 1 15
2 Average customer delay time, Product 2 15
3 Average fill rate, Product 1 15
4 Average fill rate, Product 2 15
5 Average finished goods inventory, Product 1 15
6 Average finished goods inventory, Product 2 15
7 WIP Product 3 15
8 WIP Product 4 15
9 WIP Product 5 15




Table G.3: Network 1 Weights, Model C

219

Hidden Layer Output Layer

Input Node i Output

0 1 2 3 4 5 6 7 8 9 10 0 | 0.65565

1 | -0.5403| -0.3278{ -0.0017] 0.02262| 0.0008] -2.5667] 0.017] 2.1284| -0.0371] 0.06669] 0.08279 1| 1.135

2| 3.9608| 3.2262| 0.0186] -0.0345] -0.016] -0.1341} 0.04498] 0.13452{ -0.0219] -0.0031] 0.05356 2] 2606

3 | -2.2497] -1.4057] 0.01428] 0.00281] -0.0088} -3.3724] 0.03516] 2.6142] -0.0075| 0.00835( 0.05289 3| 43318

4| 1.1268] 0.60835] 0.00838] -0.0126] 0.00524] 2.1647} -0.0057| -1.7797| 0.0213] -0.0458] -0.071 4| 3.4894

5 | -0.1737 0.01844] -0.0015| 7.5€-05] -0.0011] -0.0051] 8.7E-05] 0.00077| -0.0004{ -0.0024] 0.00083 5| 1659

"o | 8] 3.6564| 1.1695} 0.05329f 0.04425| 0.2875] 1.6904] 0.10187| -2.3804] -0.0135) -0.309] -1.2124] | ' | 6 | 0.79475

B [7] 28164] -0932] -0.0299] 0.02151| -0.0952] -1.307| -0.0121| 1.5273] -0.0086] 0.09214] 0.57748] | B | 7| 2.7326

E 8 | 6.6403| 2.9405| -0.0166| -0.0373] -0.0091| 4.5984 -0.0586| -0.9177| 0.1479| 0.18714] -0.7883 E 8 | -0.1948

§ 9 | 2.1782| 1.0171] -0.0086] 0.10174] -0.1124] 1.5263) 0.11669] -0.7429] -0.0668| -0.0049] 0.89246 § 9 | 0.82892

F |10 10.582| 0.7258] 4.461t] -0.5624] 0.02501| 7.6739] 0.69532] -4.7583] -0.287] 0.05714] -0.231| | E | 10] -8.9574

11| -2.2697| -1.0058] -0.0022| -0.0426] 0.05752] -1.4251| -0.0563] 0.89731] 0.02931] 0.01601] -0.4301 11| 3.1482

12| 3.6688] 4.0618| 0.0505] -0.0206] 0.04999] 1.823 -0.0296] -1.2714] -0.0339] 0.08791] -0.1266 12| -0.4686

13| -9.9804] -0.7828| -4.7935{ 0.66741| -0.0333| -8.3537| -0.6799] 5.0174| 0.35992| -0.0659] 0.23841 13| -2.6262

14| 4.5555| 3.3746] 0.00822| -0.0253] -0.0176] -0.2676] 0.03469] 0.20917] -0.0144] -0.0079] 0.04624 14| -3.9325

15] 2.3114] 1.8088} -0.0138| 0.00327| 0.00604| 3.5158| -0.035] -2.6729} -0.0051] 0.00187] -0.0295 15| 34117
Table G.4: Network 2 Weights, Model C

Hidden Layer Output Layer

Input Node i Output

0 1 2 3 4 5 6 7 8 9 10 0 | 0.19872

1 | 0.43359] 0.04552] 0.00079| -1.3979| -0.0785] 0.01895] -0.0467| 0.0214| -0.7958| -0.1384 0.63539 1] 2118

2 | -6.8338] 0.0397] 0.06619 -0.2846} -3.3004] 0.13075 0.07531] -0.0491] -4.9954| -0.4022| 3.4794 2 | -1.8401

3 | -3.1814 0.01491| -0.0108} -2.7236} 0.03826( -0.0277| -0.0214] -0.0031| -4.2111| -0.056| 3.2835 3 | -2.3589

4 | -1.1851| -0.1107| -0.0124 -0.2886] 0.15615] -0.0111 0.09436] -0.0717] 0.12084| 0.26951 0.18224 4| 26998

5 | 0.63052| 0.00516} 0.00562] -0.8901] -0.0131] 0.01187| -0.0089] 0.02622| -1.1316| -0.0428 0.81636 5| -2.4574

"o | 6 | -2.4056{ 0.04037] 0.00298| -2.1598] -0.0601) 0.00866/ -0.0306] 0.02379] -0.9466] -0.1041} 0.73903] | ‘g | 6 ] 3.8703

8 [ 7| -1.072] -0.0043] 0.00828| -0.3785] 0.01731] 0.00341] -0.0073 0.08988] -1.6153| -0.0006] 0.79501] | B [ 7 | 43015

i 8 | 31772 -0.0183} 0.00904| 2.5121] -0.0304] 0.03579| 0.02566] 0.0673| 4.0997 0.04098] -3.2591 E 8 | -2.5477

§ 9 | -2.1587] -0.0068] -0.0085 -1.1611| 0.02818] -0.0108] 0.00227] 0.01217} 0.48735] 0.02093| -0.636 ﬁ 9] 18719

E | 101 -1.7666] -0.2053] -0.0195{ 0.34314] 0.29605] -0.0327) 0.17251] -0.1044] 0.42597] 0.51048| -0.0406] | T | 10] -0.9623

11| 0.60634| 0.00396] 0.00397] 1.5437] -0.0076] -0.0023] 0.00042} 0.0214| -0.335] -0.0097] 0.20301 11} 1.8929

12| 2.6477] -0.0023 0.03084] 3.6455} -0.027} 0.02049} 0.00203] 0.00436| -0.2396| 0.00275] 0.30721 12 0.52282

13] 1.0006] -0.008} -0.0103 0.66776| -0.0156] -0.006| 0.02885| -0.1344] 1.991] 0.0398] -0.8045 13| 2.2037

14| 1.1907| 00015 -0.0099] 1.3577] 0.02475] -0.004] -0.0077| -0.0313| 1.8771] 0.00183] -1.551 14| 1.7511

15| 7.4979] -0.0318] -0.0593] 0.30613| 3.0426] -0.1108] -0.0816| 0.03612] 4.6317} 0.37328| -3.2928 15| -5.1054




Table G.5: Network 3 Weights, Model C
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Hidden Layer Output Layer

Input Node i Qutpui

0 1 2 3 4 5 6 7 8 9 10 0| 26399

1 | -1.9643| -0.3615] 0.00416{ 0.01185| 0.04426| 2.4784] -0.0074| -1.5812] 0.01907} 0.01085| -0.0359 1] 13111

2 | -0.4539] -1.9854] -0.0394] 0.0038] 0.03537} 2.3683 -0.0221| -1.8748| -0.0028} -0.0007| -0.038 2| 3658

3 [0.40889] 2.1497] 0.05466] -0.0106} -0.0205| -2.1453| 0.02854] 1.6043| -0.0451| -0.0085{ 0.0263 3 | -2.3584

4 |0.17719) 2.6916] 0.07826] -0.0205| -0.0436] -2.4474] 0.04219| 1.9803| -0.0283] -0.0077] 0.04363 4| 27135

5 | 5.3766| 5.492] 0.00981] -0.0451] 0.01258] 6.2548 -0.0038| -4.9453| -0.0209] -0.0452] -0.0062 5 0.93044

‘o | 61 7.1045] 1.4148] 0.24953] 0.22655 -0.0462| 4.6084) 0.24386] 2.4991] -0.1041] 0.17265| -0.266 g 6 | 0.07787

§ 7 | -8.3803] 0.02053) -5.4745] 0.60848] 0.00226| -5.2228] -0.3185| 3.1031} 0.37536| -0.1863} 0.68164 S| 7] 21404

= | 8| -9.0783] 0.00093] -5.0444 0.50532| -0.001] -4.7437} -0.4488| 3.0064| 0.29859] -0.1276] 0.57327| | ‘= | 8 | -7.5481

§ 9 | 1.7608] 0.24409) -0.0416] 0.04756] 0.03769| -6.5544] -0.0476| 4.9861 0.07781| 0.12572| -0.2168 § ol 2813

T | 10| -5.1906] -4.7786] 0.02219] 0.01032| 0.00962] 0.90305| -0.0206] -0.324] 0.01262| 0.00997) -0.0195| - | & | 10| -2.0302

11| -4.5874{ -4.0573| -0.0163] -0.0185| -0.0071| -1.5501| -0.0299| 1.3464] 0.01805] 0.02262| 0.06356 11| 44198

12| 47757} 6.2878| 0.03415] 0.02663| -0.0033] 0.83395} -0.041] -0.3522] 0.02143| 0.01544| -0.0382 12]0.84214

13| 0.9222| -1.358 -0.0211] 0.00344] 0.02565| 2.1847] -0.0145| -1.5593} 0.01791] 0.00414{ -0.0271 13] -5.5393

14] -3.1719| -2.7549] -0.0174) -0.0198} -0.0139| -1.6142| -0.021} 1.1995] 0.00984| 0.01518] 0.06665 14| -4.4442

15 -1.6518| -0.3637] 0.04369§ -0.0487| 0.0378] 6.3723] 0.05059| -4.8884| -0.0814] -0.1198] 0.19628 15/ -2.9507
Table G.6: Network 4 Weights, Model C

Hidden Layer Output Layer

Input Node i Output

0 1 2 3 4 5 6 7 8 9 10 0| 07708

1] -2.86] -0.0162| -0.0363] -2.8986| 0.01315] -0.0311] -0.0398{ 0.05517] -1.1936] -0.003| 2.2032 1| 53228

2| 2843 -0.0126] 0.0301| 5.9324| -0.0586] -0.0107] 0.00601] -0.0863| 0.50464| -0.0035| -0.2156 2| -1.689

3| -2.019] -0.0094} 0.01388] -2.81] -0.0187] 0.00137] 0.00162} -0.0288| 0.59485| 0.0026] -0.4191 3| 1651

4 | -1.0464{ 0.10286] 0.16671] -1.0266{ -0.0209] -0.0275| 0.55639| -0.2177| -4.3763] 0.23473] -0.3879 41 0.0693

5 | -0.4672] 0.08232] 0.03978] -3.4364} -0.0917| -0.0421 0.06973| -0.0872| -4.441] -0.0089| 3.1095 5| 3.0285

‘o | 6] -0.71170.04136] 0.04544] 1.0925} -0.0568) 0.03244] -0.0518f 0.10827| -3.3861] -0.0428] 2.7041] | ' | 6 | -0.993

E 7 | -1.1446 0.07768 -0.0034§ -2.1601] -0.1628] -0.0555] 0.04679| -0.1781| -5.0882| -0.0083] 3.6825 § 7| 11749

= | 8| -3.5077| 0.02356] -0.0043| -3.9528| -0.0852| -0.0095{ -0.004] 0.06882| -3.58| -0.0452| 2.9776| | = | 8 } -6.7256

é’ 9 | -2.5009{ -0.0049] 0.01244] -2.6135] -0.0107] 0.00406} 0.00149| -0.025| 0.8718| 0.00445| -0.5594 § 9 | -2.3579

T | 10] -0.3354] 0.02492] 0.03451] 0.6692| -0.0648] 0.02467| -0.0413] 0.08913| -3.1541| -0.0508] 2.4669| | E | 10| 2516

11| -1.0539} 0.06673] 0.06715§ 1.5728| -0.0546] 0.04883| -0.078] 0.14123] -3.8444| -0.0352] 3.135 11] 1.3453

12| 0.97488] 0.04509| -0.0328] -2.1706/ 0.44155{ -0.0187| 0.04363| -0.2237| -1.6173{ 0.18516] 0.8049 12] -2.3244

13| -1.0446| -0.0376] 0.02635| 2.1919] -0.3865( 0.01641]  -0.04] 0.20733| 1.6591] -0.1647| -0.8286 13| 3.0251

141 -2.4735 0.00045] -0.0075f -4.1176] 0.0208] 0.00065] 0.00028] 0.02657| -0.5437] 0.00218| 0.28224 14| -2.6641

15| 2.9646| -0.004]0.01974f 2.9927} 0.0105] 0.0168] 0.02102| -0.0727| 1.6673] 0.01504] -2.1121 15| -2.2245




Table G.7: Network 5 Weights, Model C
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Hidden Layer Output Layer

Input Node i Output

0 1 2 3 4 5 6 7 8 9 10 0| -2e4

1 { 2.3737| -1.7532] 0.01314] 0.00988| 0.00344] 0.84861 0.02648] -0.2962] 0.00894] -0.0158} -0.0082 1| -4.0248

2 | 8.5216) -1.0956] 4.2612] -0.1161{ 0.01509| 5.4086] 0.03486] -3.6609] -0.1169] -0.0564] -0.2287 2| 8.885%

3| 3.0691| 2.4332} 0.00375] 0.00462] 0.00816] 1.1983} -0.0062] -1.0364 0.00872] 0.00487| -0.0301 3| -1.7704

4 | -1.4695| 0.8184] -0.0734] -0.0137] -0.0191] -1.7168] -0.067] 0.17096] -0.0253] 0.05024] 0.02623 4| 1.419

5 | 1.5987] 0.05889} -0.0069] -0.0061] -0.0015] 0.48933] -0.0191] -0.5381| 0.01248] -0.0028] 0.00453 5| 4.2479

"o | 6]008982] 2.0131] -0.0054] -0.0041} -0.0045) -0.5809{ 0.00303| 0.3873| -0.0076| -0.0017] 0.00529 _ﬁg 6| 17266

8 [ 7| 1.7673] 0.9408] 0.03247] 0.01347] 0.00945] 1.1386] 0.04087] -0.255) 0.00012] -0.02] -0.0197] | B [7] e.1001

E 8 | 2.3431] 2.6709] 0.03993} -0.0182] 0.0209] 4.2894] 0.02313{ -3.2562| -0.009| -0.0062| -0.023 E 8 | 0.35477

I | 9 | 0.05402 0.49973) 0.03589) -0.0794| 0.0728| 2.1131] 0.01484) -2.1144] 0.01899) -0.0746( -0.0565| | B | 9 | -3.0495

X | 10] 0.12659] -0.3024| -0.0265] 0.05296| 0.0517} -2.3677] -0.0031] 2.1509} -0.0114{ 0.04646] 0.08254] | T | 10] -7.0144

11| -0.4297] 0.21168] 0.02026] -0.0356| -0.0377] 2.6708 -0.0042| -2.281] 0.00638] -0.0273] -0.1029 11| -3.7661

12| -0.0289] -0.0027] -0.0539] 0.03709] 0.01895| -8.6013| -0.015| 6.4408] 0.048{ 0.04315| -0.0811 12{0.13826

13| 2.5482] 3.2496] 0.01143] 0.01417] 0.01073] -0.5328] 0.01564} 0.42904] -0.0104] 0.00956 -0.0081 13| 0.75872

14| 7.666] -1.4095] 4.6467] -0.0968| 0.06226] 5.9635{ 0.1524| -3.9857] -0.2431] -0.0804 -0.1686 14| -5.2834

15| -7.8153| 1.663| -5.0478] 0.07226| -0.1129| -6.4326| -0.2885{ 4.3274| 0.3647] 0.11193] 0.08564 15| -2.1374
Table G.8: Network 6 Weights, Model C

Hidden Layer Output Layer

Input Node i Output

0 1 2 3 4 5 6 7 8 9 10 0| 0.7708

1 | -1.3973| -0.0776] 0.07096} 0.58553] -0.0542] 0.0098| 0.04876] 0.01686| -1.8351] 0.01986{ -0.3196 1| 53228

2 | -2.965] 0.00887| 0.02809) -2.0087| -0.1345) 0.00357] 0.00169f 0.01396| -3.0388| -0.0624| 2.2498 2| -1689

3 | 1.7323] -0.0028] 0.00083} 2.5078] 0.0696| -0.0119| 0.01012] -0.0041| -0.4343] -0.0102| 0.265 3] 1651

4 | 1.2981] -0.0085| 0.01454] -0.204] 0.00791] 0.03644] -0.0236} 0.02792| 5.3419] 0.05894| -4.1552 4| 0.0693

5| 0.2822] -0.071) 0.06704] 1.6649] -1.0898] 0.14379] -0.0534{ 0.20407] 1.1708] -0.2038] -0.7259 5| 3.0085

'5 6 | -1.1316] -0.0082 -0.0429] 2.7713| 0.00124} -0.0136) 0.01964] -0.0548| -0.1804] -0.0267| -0.0272| | ‘o | 6] -0.993

o [ 7 {0.72684] 0.00581] 0.01233] " 1.119] -0.0505] 0.00828[ -0.0231] 0.05752[ -1.9081] 0.0262| 1.4583] | B [ 7| 1.1740

i 8 | -2.0789] 0.00655] 0.0164] -0.356) -0.0263] 0.0287] -0.0086| 0.09514] -2.5914] 0.02083| 1.8402 E 8 | -6.7256

§ 9 | 3.3785| -0.0055) 0.0024] 2.9692) 0.03408] 0.014] -0.0053 0.01844| 0.98655] 0.02369] -0.7012 § 9 { -2.3579

T | 10] 1.7128| 0.03728] -0.0405f -0.86] 0.02656] 0.00095] -0.0281| -0.0292] 1.0005] -0.018] 0.30132] | X | 10] 2516

11| 3.5267| -0.0149] -0.0291] 2.3015| 0.10408] -0.0133| 0.00418| -0.0618] 3.3825] 0.04055 -2.5604 11| 1.3453

12} 1.0857|] -0.0078| -0.0002§ -0.2966| 0.04493] 0.02934{ -0.0249{ 0.05555{ 5.0155] 0.06105} -3.8203 121 -2.3244

13} -2.4919] -0.0013] 0.01238| 1.6668| 0.01093] -0.0051] 0.00597] 0.00782] 0.09916] 0.01112} -0.2512 13| 3.0251

14 -0.1534| -0.0167] 0.01115| 1.1794] -0.341] 0.05688{ -0.0257| 0.06994] 1.3689] -0.0535 -0.982 14 -2.6641

15| 0.02228| -0.0438| 0.0346] 1.4351] -0.755| 0.09998| -0.0401] 0.13644] 1.3066] -0.1444] -0.867 15| -2.2245




Table G.9: Network 7 Weights, Model C
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Hidden Layer Output Layer

Input Node i Output

0 1 2 3 4 5 6 7 8 ] 10 0| -1.0421

1 | 0.29658 -0.0141] -0.0309] -0.0282| 0.0318] 0.12493] -0.108| 0.70537} 0.04478] -0.0072{ 0.38099 1] -2.204

2| -0.807] 0.01985] -0.7735{ -0.0127| -0.0455| -0.9183] -0.0426] 0.52013| -0.0848| 0.022] 0.13965 2 [ 0.70764

3 | 0.11891| -0.1814 0.00624] -0.0374) -0.0955| -0.1021} -0.3581]  1.45 0.15731] 0.18957] 1.1537 3 | 0.43764

4 | 0.00092| -0.0058] -0.0071] -0.0015] 0.01035] 0.58589| -0.2006] -0.9115| 0.0279] -0.0011} -0.1888 4] 1913

5| 1.3834] -0.0497| -0.0589] -0.0415] -0.0605| -0.2327| -0.2265| 0.75495| 0.02834| 0.08235| 0.45604 5| 1.3425

‘o | 6| -1.5417] 0.00857] 0.01809] 0.01709f -0.0036] -5.4811} 0.00239] 4.0208] 0.02236] 0.01346] 0.02319] | '@ | 6 | 1.7454

g 7 | 2.4975] 0.00342] -0.0485] 0.0007| 0.0257] 0.46263| 0.58071] 0.8445| -0.0298] -0.0439] 0.74549 E 7| 26749

& 8 | 2.4916]0.00343| -0.1016] 0.01503] -0.0041] 2.5278| 0.06419] -1.725| -0.0143} 0.01201] -0.066 5 8 | -1.2668

3 | 9 | -1:5208[ 0.00821} -1.0743| -0.016{ -0.0102] -0.1276] 0.01382f 0.00272) -0.0188| 0.0073] 0.02859| | T | 9 | -2.831

T | 10] -0.8849] 0.02084] -0.0547] -0.0154] 0.02564] 0.65024{ 0.26213] -0.0824f -0.0339] -0.0525] 0.40157] | € | 10] 2.0697

11| 2.7534] 0.00023} -0.0663} 0.00229} 0.02421| 0.17267] 0.71599{ 1.4144} -0.0414] -0.0468] 0.85804 11} -1.5702

12| -0.4569{ 0.11339}  -0.01| -0.0347| 0.06058| 0.27281] 0.17989] -0.8778} -0.0786] -0.104] -0.8135 12| 0.88128

13| 1.3115] -0.0046] -0.0421} -0.0139] 0.0046] 5.2081] 0.00329] -3.7179| -0.0241] -0.0095{ 0.01193 13} 1.7214

14| 1.2335] -0.0106] 1.5069] 0.03541 0.01028| -0.0586] -0.0125| -0.0031{ 0.00911{ -0.0071| -0.0154 14) -1.104

15} 0.05341{ 0,01384 0.00568{ -0.0184| -0.0176] -0.6062] 0.06775| -0.1656] -0.0345] -0.0058] 0.02125 15| -3.3747
Table G.10: Network 8 Weights, Model C

Hidden Layer Output Layer

Input Node i Output

0 1 2 3 4 5 6 7 8 9 10 0| -1.0428

1 | -1.2574] -0.0059] 0.00273| -0.0228] 0.03303] 0.00759{ 0.01386 0.26062] 0.9471] 0.02138] -0.0044 1| 24852

2 | 0.66971] 0.00067| 0.00692 0.00479] 0.00053] 0.01148| -0.0358| -0.1895| -0.7155} -0.0223| 0.90514 2| -1.5958

3 | 0.58096| -0.0167| 0.00089] -0.0166{ 0.54281 0.01157] -0.0499| -0.1035) 0.53464| -0.1401] -0.3084 3| -1.4105

4 | -0.2155} 0.00344] 0.03141] 0.02185] -0.2683} -0.0143{ 0.09566 0.30429} -0.4181] 0.35422] 0.36482 4| -0.9416

5 | -1.5312] -0.0241] 0.0053| 0.00185{ -0.245] 0.011] -0.0461] 0.15813] -2.891| -0.0025| 1.5341 5 ] 0.86046

'é‘ 6 | -0.2191] -0.331] -0.0702] -0.6946{ -0.292| 0.02436] 0.24744| -0.1647] -0.2198| 0.0429] 0.05604| | "o | 6 | -0.1174

k] 7 | -0.9682} 0.01077] -0.0092| -0.0148} 0.08494| 0.00674] 0.00895] -0.0407} -5.0686] -0.0113] 4.2035 E 7| 2.0949

& 8 | -2.8242} 0.01102| -0.0073] 0.01908f -0.9963] -0.0087] -0.0273{ 0.07933| -0.2067| 0.03248| 0.1085 & 8| -1.5233

B | 9 | -0.0773} 0.18365) -0.1033) -0.0107} 0.25432} 0.12217] 0.78405 -0.7428) 0.65687] 0.03805| 0.1622| | B | 9 | -0.1257

T | 10] -2.5901] 0.00393] -0.0501] -0.0018{ 0.00058] 0.00228] 0.04453| -1.8345| -0.2237| -0.0808] -1.0411] } T |10]| 1.1086

111} 0.79832] -0.0069] 0.00874| 0.017071 -0.0682] -0.0076{ -0.0085{ 0.06268| 4.8668| 0.01113{ -3.9861 11| 2.2371

12] 1.1438] 0.00749] -0.0168| -0.0159] -0.0183| 0.00412] 0.0302| -0.0263| 1.9525] -0.0002| -0.5146 12| 1.7081

13| 1.6413{ -0.0021] -0.0073] 0.00954| -0.272] 0.00695] -0.0318 -0.0089{ 1.5062] 0.00256] -0.8013 13| -2.2865

14| -2.4101] 0.00581] -0.0362{ 0.00958} 0.00206] -0.002] 0.04226| -1.4554] -0.4857] -0.063} -0.7179 14| -1.7869

15| -0.0783{ -0.0096] 0.00914] 0.00329{ -0.0381) 0.00852| 0.0114} -0.532 0.46762] 0.04816| -0.5812 15| 1.8833




Table G.11: Network 9 Weights, Model C
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Hidden Layer Output Layer

Input Node i Output

0 1 2 3 4 5 6 7 8 9 10 0| 07708

1 | 0.10341} 0.01157] -0.0057] 0.00845] 0.15928] 0.01716] -0.0502] 0.45347| -0.013] 0.01018] 0.15572 1] 5328

2 [ 072549} -0.0092] -0.0713] -0.0043] 0.03648] -0.0551] -0.0332| -0.1604] -0.0036] 1.4241] -2.5773 2| -1.689

3 [ 0.50059] -0.0022] 0.33083| 0.0085] -0.3092] 0.20365{ 0.04943{ 0.90098] -0.0582] -1.0517] 2.8189 3| 165

4 | -0.2346] -0.3067] 1.944] -0.1027| -0.303] 0.06168| 0.84626| -1.4963] 0.17761] -0.5972] -0.2835 4| 0.0693

5 | -1.539] -0.0412] 0.0023| 0.0134] 0.10386] 0.0026] 0.13419} 0.29107] 0.10365} -1.8266] -0.0464 5| 3.0285

'_ig 6 | -0.7338] -0.0121] 0.03527 0.00882] -0.0038] -0.0387] 0.10532] 0.21223} 0.06346] 0.10864| -2.1225 § 6| -0.993

o | 7| 2.3551] 0.05756] 0.03165| -0.0091] -0.1371] 0.04193| -0.1387| -0.3861] -0.1093| 1.848] 1.276] | & | 7| 11749

.z: 8 | 5.9072] -0.0176] 0.11273] 0.03153] 0.01319] 0.02252| -0.0277| 2.708{ 0.03054] -0.0296| 1.638 i 8 | -6.7256

§ 9 | -1.0968| -0.0263] 0.01156 0.01753] 0.10225] 0.01239| 0.11176| 0.24901| 0.11664] -1.9943| 1.2399 ﬁ 9 | -2.3579

T | 10( -0.3508] -0.000] -0.2463{ -0.0058| 0.2488| -0.1685 -0.0242| -0.729) 0.0037| 1.1038| -2.5803| | = [10| 2516

11]0.01396| -0.0333] -0.0379] -0.0228| -0.6536| -0.0869| 0.21648] -0.2151] 0.03502] 0.06575| -0.1445 11| 13453

12| -5.443 0.02929] -0.2123] -0.0411] -0.0484] -0.0231] 0.03225| -3.1368] -0.0699 -0.0222} -1.9416 12| -2.3044

13| 6.6495] -0.0717] -0.0842| -0.0989] 0.18606| 0.01725]  4.642] -0.7922| -0.0118} -0.0254| -0.0982 13| 3.0251

14 -6.0071] 0.04777] -0.1208| 0.01942| 0.12824| 0.01788] -4.2786| -0.2905| -0.0374} 0.03679| -0.6017 14] -2.6641

15| 5.6526] -0.0852] 0.13647| -0.0528] -0.0784] -0.0178] 4.3314 0.25391] 0.04247] -0.0186] 0.61172 15 -2.0245
G.1 Batch Parameter Analysis, Model C

Table G.12: Results for Example Model, Products 1 and 2, Model C

Product 1 Product 2
Delay Fill Rate FGI Delay Fill Rate FGI
tslrs] NN |Sim| NN |Sim| NN | Sim| NN | Sim| NN | Sim| NN | Sim
1| 1] 220] 22.8| 0.842} 0.831 19| 19] 1] 7.7{ o929 0918] 28 28
1] 2| 212| 218] o840l 0835 18| 19| 71| 7.8 0921] 0912] 28 27
1] 3| 210] 21.1] o838} 0.833] 1.9 18] 91| 10.2] os8s6] 0.890] 25 25
11 4| 21.0] 22.8] 0.836] 0.831 19 19] 148| 17.9] 0.802] 0.815] 2.0 2.0
2] 1| 22.4] 20.3| 0.844] 0840l 1.9 19| 6.3 62| 0926 0.927] 28] 28
2] 2| 215] 201| 0840] 0.842] 19] 19} 75| 67| 0917 0918] 27] 27
2l 3] 213] 211 o0837] 0838] 19] 19| 100| 105{ o0.881] o881 25| 25
2] 4] 217] 244 0834f 0822] 18] 1.8] 16.1] 18.1] o797] 0.810] 20| 20
3] 1] 27.3| 265 0798] 0807] 177 17] 65| 67| 0924] 0.922] 28] 28
3| 2| 26.4] 259 0.794] 0804l 17| 17] 80| 83| 0914] 0913 271 27
3| 3| 266f 27.2| 0.791] o796] 17| 17] 10.8] 10.3| 0.876] 0.884] 25 25
3| 4] 27.8] 29.3] 0.787] 0.791 1.8] 1.7] 17.5] 17.4] 0792] o815] 2.0f 20
4] 1] 442] 412| oe8s| 0703 1.3] 13| 67| 73| 0922 0917 28] 27
4| 2| a38] 485| oes2| 0679] 1.3] 1.3} 85| 85| 0910] 0g08] 27] 27
4| 3| 449] 459| 0678] 0.685] 13| 13] 11.7] 12.1| os71| o872l 25| 25
4l 4] 471| 447] o674 0693] 13| 1.3] 18.9] 19.8| 0787] 0.803] 20| 20




Table G.13: Results for Example Model, WIP, Model C

G.2 Simulated Annealing Results, Model C

WIP
WIP3 WIP4 WIPS
r3{rs] NN | Sim| NN | Sim | NN | Sim
1 1] 21 241 1.9 1.9 0.6 0.6
1] 2] 21 21 1.3 1.4 0.6 0.6
11 8] 24} 21 1.0 1.0 07 0.7
1] 4 21 24 0.9 0.9 0.8 0.9
2] 1 15| 15 19 1.9 0.6 0.6
2 2| 16l 15/ 14 1.4 0.7 0.7
2| 3] 16 18 1.0 1.0 0.8 0.8
2 4 16| 16| 09 0.9 0.9 0.9
3l 1 12] 12| 20 2.0 0.6 0.6
3 2 12| 14 1.4 1.4 0.7 0.7
3 8l 12| 12] 11 1.0 0.9 0.9
3 4f 12| 12| 09 0.9 1.0 1.0
4f 1 1.1 1.1 2.0 2.0 0.7 07
4 2] 11 1.1 1.5 1.5 0.8 0.8
4 3 11 1.1 1.1 1.1 0.9 1.0
4 4 14 1.1 0.9 1.0 1.1 1.1

Table G.14: Simulated Annealing Algorithm Parameters

Number of Cooling Cycles 20
Initial Temperature 1000
Number of iterations at First Temperature 5000
Number of lterations at Subsequent Temperatures 2000
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Table G.15: Initial Points for Simulated Annealing Experiments

Exp. Initial Point Initial
No. z; k; z; ko z3 k3 r; z4 kg ry Cost
1 3] 3 3 a3l 38 3 3/ 3] 3] 3]s 13779
2 4 4 2f 10 31 e 1| 3] 3 1]$ 17175
3 5| e o 5 9 e 2 1 2 2|$ 33676
4 8f 6] 3 4 ol 1ol s 1] 3] 1]$ 178.60
5 4 2| 8 8 1] 38 1 5] 3 1]$ 14358
6 6] 3] 2 8 71 4 1 4 2 2|3 19659
7 3] e 4 8 3 71 3 e 3 3]s 13988
8 8] 3l 3 3 10] e s 5 3 1% 191.90
9 8l 4 4 7| e} 1ol 1 6 3 1]$ 17550
10 6l 6 2 3] 1 2 1| 7 2f 2|$ 18154
11 8l 6] 10f 9 9o 3 1 8 2f 2|3 23873
12 6] 8 10f 8 e 7| 1| 10f 4 4]$% 21334
13| 100 4 9o s 71 9o s5f 10] 2 2|$ 239.69
14 ol e 2 51 71 3 3] 3] 6 3]s 37813
15 71 e 10 8 5 7t 71 1| 6 6 $ 138.00
16 5| o 3 4 e 1 1| 51 e 4]s 15191
17 8] of 3l 9o 4 9of 2 s 6 1]$ 16944
18 2l 2y of 8 8 4 3 100 s 3]s 41344
19 5] 9of 1 3 1 9 6 8 6 5|$ 32011
20 8 71 2f 10f 2] 1 1] 3| 10| 7| $ 289.59
21 9] s 71 e 1 6 6 3] 8 2}$ 13522
22 2l 51 8 5 e 1 1 6 9 7% 20554
23 2l 71 71 8 3| 8 5 6 9 4{3% 22028
24 5 38 5| 4 4 s 5| 9] 10] 8]$ 13526
25 2l 9o 3 a3l 8 8 6 7] 10] 4|$ 206.18




226

Table G.16: Results of Simulated Annealing Experiments

Final
Cost

Final Solution

k;
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k3 rs 24 k4 T4
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Appendix H

Results for Model D

Table H.1: Parameter Ranges for Model D

Low Mid High

7] 0,3 4,6 7,10

k; 3,5 6,8 9,12

22 0,3 4,8 9,12

k; 1,3 4,6 7,10

23 0,3 4,6 7,10

ks 3,6 7,10 11,15

24 0,5 6,10 11,16

k4 2,4 5,7 8,10

Table H.2: Networks for Model D
| Network | Description Hidden Nodes

1 Average customer delay time 15
2 Average fill rate 15
3 Average finished goods inventory 15
4 WIP Product 2 15
5 WIP Product 3 15
6 WIP Product 4 15
7 WIP Product 5 18
8 WIP Product 6 15
9 WIP Product 7 18
10 WIP Product 8 15
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Table H.3: Network 1 Weights, Model D

228

Hidden Layer Output Layer

input Node i Output

0 1 2 3 4 5 6 7 8 0 | 0.64983

1] 9.6399| 0.46097| 4.6809|-0.55398] -0.35708] 1.879| 0.8949] 1.7878| 0.77406 1| 2.0591

2| 2.8242| 0.80161} 0.01588{-0.12215] 0.0066] 1.1112| 0.00638] -0.00567| -0.00429 2| -8.2602

3 | -10.466] -0.41388| -4.7984] 0.43375| 0.33653| -1.7907|-0.83379] -1.538]-0.61763 3| 5.5831

4| 26851] 1.0661] 0.04918] 2.6963]-0.02444] -0.6939]-0.01835] -0.00747} 0.00461 4| 27571

1 5]-0.30763] -1.0185[-0.12001] 1.2762| 0.04134] 0.26065| 0.01757]-0.05042]-0.00323| |._ | 5] -4.9791

8|6 008s51| 1.2516] 0.28845| -1.2622|-005162] 0.74942] 0.07814 -0.06535-0.03707| |8 | 6| 22564

S [ 7] 0.54102| 0.74916| 0.08725] -1.4622-0.04557| -0.27463| -0.0471] 0.09196f 0.01178} | Q7] -2.631

= |8l 19199 1.0008| 0.01648]-0.11406| 0.00984| 1.4578]-0.00045] -0.00405]-0.00097] | = | 8| 2.7622

I [ 9| 8.3323] 1.7562| 0.18428] 0.57243 0.00] 1.6957] 0.51426] 6.0494]-0.03905| | § [9| 3.3051

-E 10| 3.0313] 1.7566| 0.54146| 1.6841] -0.131] 1.7514]-0.11092] 0.40034| -0.11494 -':% 10| 2.0271

11| -0.08076] -1.286]-0.22486] 1.1823] 0.04555] 0.5401|-0.04411] 0.03056] 0.01981 1| 4.4727

12| -8.2087| -1.7343]-0.18536| -0.49486] -0.08899| -1.6974|-0.47445] -5.8045| 0.02361 12| 3.8757

13] -2.9818| -1.7561] -0.4486] -1.6868] 0.12051] -1.6227] 0.12212]-0.38147| 0.08676 13| 2.3966

14| 4.2044] 3.0057] 0.01955| 0.15608] 0.00489|-0.14327| 0.01093} -0.02511| 0.00059 14| -3.2819

15] 2.5529] 1.1779] 0.05600] 2.679]-0.02984] -0.60525] -0.02109] -0.00299] 0.0085 15 2.8189
Table H.4: Network 2 Weights, Model D

Hidden Layer Output Layer

Input Node i Outpuﬂ

0 1 2 3 4 5 6 7 8 0| -55172

1| 1.0137] 0.23346] 0.14826] -0.05942] -0.08926] 1.8059| 0.11374] 2.5379] 0.16008 1| -01717

2 | -0.92396] -1.7388}-0.00795| -0.3525] 0.00266| 0.99236| 0.00655| 0.0292{ 0.00148 2| -4.9155

3| 0.66981] 2.015] 0.00773] 0.14625| -0.0022]-0.69164] -0.00413] -0.0132} 0.00425 3| -6.4713

4| -2.6912]-0.24082| -0.0942| -2.3673| 0.00997] 0.59396{ 0.01129] 0.03913| -0.02909 4| -3.1025

— 15| -2.3631] -3.3957] 0.01219]-0.16765] 0.00163| -0.60207] 0.00092] -0.0387{ 0.00118} |._ | 5] -4.3953

8| 6] -1.6343] -1.5759] 0.01684] 0.06367]-0.01014]-0.30536 0.00401| 0.09513|-0.00229} | 8 | 6] 16.749

z° 7| -2.1981|-0.53237-0.06813] -1.7799| 0.01364] 0.43661| 0.01109| 0.02589| -0.01953 ‘23 7| 5.8959

= | 8] 1.8933] 1.7203}-0.03632|-0.04745| 0.04446| 0.1761]-0.02739] -0.66727|-0.01149] | = | 8] 2.908

S [ 9| 1.1215]-0.33788] 0.04224] 0.49472]-0.01578] 1.3513] -0.00811] 0.13804] 0.02179] | S [9| 1.6181

g 10| 4.1271] 3.4781] 0.0373] 1.9914]-0.01156] -0.47651| -0.01803] -0.01942] 0.03156 -.f:-’ 10| 1.7513

11| 0.43185]  1.814] 0.00907| 0.26184]-0.00602] 0.13749|-0.00261| 0.01202] 0.0109 11| 7.0275

12| -0.81982} -0.0743] -0.06221] -0.19921] 0.01276] -1.9614 0.0216] -0.00653( -0.03013 12 1.0383

13| -3.3762] -8.5174|-0.01418] 0.15989] 0.13181] 0.15727] 0.0423] 0.3381| 0.08936 13| 0.1792

14| -5.7707] -5.2657] 0.00661] 0.07492| 0.01373] -2.2948]-0.01517]-0.19851| -0.03895 14] -0.96659

15| -1.9294] -1.363| 0.02273] 0.74564]-0.01573] -0.36602] -0.00499] -0.03963| -0.0071 15| -4.9894




Table H.5: Network 3 Weights, Model D
Hidden Layer

229

Output Layer

Input Node i Qutput

0 1 2 3 4 5 6 7 8 0| -3.4093

1| -3.9074] -3.0241]-0.00356) -0.37273] -0.00367] -0.34546| -0.01044] -0.05137| 0.00654 1] 1.5613

2 |-071741] 1.2211]-0.01203] 0.18165] 0.00492| -0.1449|-0.00571} -0.02367| -0.00087 2] 5.2159

3| -2.8061| 1.3298] 0.00004| 1.1671} 0.00121}-0.51998] 0.00435{-0.00186} -0.0064 3| 24451

4| 4.1261}-0.66389| 0.27299]-0.02896| 0.02991] 1.2005{ 0.2504] 2.4489|-0.00474 4] -1.3869

| 51 -1.781] 0.66397]-0.00253| 0.54709|-0.00093-0.79339| 0.00082| 0.01257|-0.00114] | ,_ | 5| -6.4025

8 | 6 |-087569] 0.64443]-0.00943| 0.20419]-0.00127] -1.2807| 0.00446| 0.08264) 0.00775| | 8 | 6| 23155

§ 7 | -1.2882]-0.86624] -0.01288] -0.78185| -0.00152] -0.2275] -0.00574} -0.0192| 0.00972 z° 7| -2.4479

= | 8]-0.40225] 0.7911] -0.01165] -0.94453| 0.00077| 0.45898| 0.00661} 0.03264] 0.00261] | = | 8| 2.7937

O "9 [-0.76919] 1.7243]-0.02621] 0.02979| 0.03057]-0.75402] 0.00384]-0.42998]-0.01308] |G | 9 | -2.5801

-% 10{-0.63858] 1.5699]-0.01018| 0.0657] 0.04516] -1.0121] 0.01072] -0.74615] -0.02693 -':% 10] 1.2806

11| 4.7409]-0.50865| 0.2168|-0.07706] 0.01318]  1.104] 0.21542] 2.3304} 0.00273 1] 2.9429

12| -0.1321] 0.06233| 0.51198|-0.97832] -0.76775] 0.8953} -0.22023] 0.85351| 0.24202 12] 0.02038

13| -1.1218] 2.1531] 0.00638{-0.21891] 0.04485] -0.36613| -0.00708] 0.99103| 0.07478 13| -0.2114

14| 2.1656]-0.31832| 0.01372] 1.6961]| 0.01725] 1.3644|-0.01164] -0.03129] -0.00141 14| 0.43562

15| -0.84495] 1.1534] -0.01247{ -0.61126] -0.00267] 0.86771| 0.00484] 0.05272] -0.003 15] -1.8196
Table H.6: Network 4 Weights, Model D

Hidden Layer Output Layer

Input Node i Outpu7c|

0 1 2 3 4 5 6 7 8 0] -1.6457

1| -1.6944] -0.01225] -0.09017|-0.42012] -0.00815] 1.0559| 0.0941] 0.36226] 0.00534 1| -4.6259

2 -2.7] -0.04471} 0.30122{ -0.14329] 0.10248] -0.46479| -2.3793] -2.279|-0.13823 2 |-0.19544,

3| 1.8897] 0.00320]-0.00345] 4.629| 0.02697] -2.2185] 0.03105] -0.2192] 0.05721 3| -1.3218

4| 17554 0.00284|-0.01949] 4.6255] 0.02329] -2.0046] 0.0274]-0.19767| 0.0456 4| 1.4786

w1 5 ]-0.79819} 0.00951| 0.11691| 0.45122| 0.01088] -1.765] 0.02545| 0.28225! -0.0051} | ._ | 6] -1.6197

Q| 6| 79983] 0.0515|-0.04003)-0.42992] 0.14989) 10.788) 0.06687| 0.45776]-0.04204| | 8 | 6 [-0.11532

z° 7| 4.202]-0.00761| 2.1773| 0.13529]-0.00322| 0.52926| 0.04258| 0.1383) 0.0226 § 7| 11679

= | 8| -1.8277] 0.01039] 0.09982| 0.18615| 0.00521| -0.8676]-0.10845| -1.1001]-0.01272] | = |{ 8| 5.2853

8 9| -1.6728] -0.01585| -0.12069] -0.16589] -0.0099] 1.4131] 0.00893| -0.1268]-0.00291] | [ 9| 3.4654

-}:’ 10| -2.1149]-0.00226] -1.7267| 0.07998] 0.03065] -1.744|-0.09969] -0.43441] -0.08931 -}:’ 10| 0.20427

11} 1.8779] -0.01862] -0.1062|-0.16147] 0.00749] 1.0726| 0.02827] 2.1003| 0.02356 11] 1.7092

12| 0.72508]-0.01397| 0.09489|-0.07032] 0.03228}-0.03477| -1.1461}-0.72334] -0.08227 12]-0.61564

13| 0.60117] 0.00261| 0.00399| 0.00654] -0.00785| -0.25159| 0.07205] -1.0091] -0.00396 13| -2.3628

14| 3.2381] 0.05487]-0.01934] 5.0637] -0.00089] 1.0016| 0.03181]-0.00805] 0.02357 14]-0.19524

15{ -1.0975] -0.00019] 0.04286| 1.0415] 0.00119] -0.86551| -0.03834] -0.04213] -0.01162 15| 2.7943




Table H.7: Network 5 Weights, Model D

Hidden Layer

230

Output Layer

Input Node i Qutpu

0 1 2 3 4 5 6 7 8 0] -1.3663

1} -1.3177}-0.01089] -0.37696| -0.0546]-0.00459] 0.41395| 0.38069] 0.17951} 0.01574 1| -4.2974

2| 1.9063] 0.00773] 0.5942] 0.04975| 0.001| 0.01144] 0.16965] 0.10331] 0.01701 2| 46186

3| -1.7346] 0.01149] 0.0161] 0.07534] -0.02295] -0.76861{ -0.00565| -2.9444] -0.00273 3| -1.5198

4| -1.9132]-0.00754] 0.00595] -2.481| 0.00757| -1.3575}-0.00303] -0.07781| -0.0198 4 | 0.49517

1 5] -1.7196| 0.00881[-0.00132| 0.04248]  -0.03] -0.56108] -0.0097| -3.6469]-0.00162| |._ | 5| 0.92024

8 | 6] 0.00308]-0.00428| 0.00572] -0.06918] 0.01789| 0.50664)-0.03017] -1.031]-0.00495| |8 | 6] 21211

S | 7-0.93752] 002842| -1.3928]-0.04816] -0.02|-0.47298| 0.1804] 0.12694| 0.03137 S [ 7] 069545

c | 8] 1.0734{-0.01036| -0.04881] -0.68269] -0.00263{ 4.6124] -0.00785} 0.47431| 0.02486] | = | 8 | 0.25987

8 ["e [-0.60976] -0.01338| -0.02961] 1.8908] 0.01267]-0.76909] -0.00688] -0.0877]-0.02055] | 5 [ | 0.80235

-% 10| -0.36844] 0.11791]-0.15653] 0.02102] -1.5076] 0.92081] 0.01697]-0.71049f -0.4742 % 10| 0.02258

11| -1.2961]-0.00327] 0.17477| 0.02111] 0.01535] 0.38712] -0.2844] -0.37001]-0.01933 11| -6.539

12| 2.0663| 0.0113]-0.11256] 8.3584] -2.7E-05] -0.95607] 0.00187] -0.26287| 0.02994 12| 0.09245

13| -1.3031]-0.00377}] 0.16444] 0.03949] 0.03339] 0.2241] -1.0154]-0.84312] -0.07882 13]  1.225

14| -1.1664]-0.04121] -0.64285| -0.16645] -0.00406] 0.64224] 0.16188] 0.20808|-0.01938 14| 2.2492

15} 1.0591]-0.00466] -0.04803| 0.26155] -0.00756| -1.2611] -0.0052} -0.21146| -0.00929 15| -4.3818
Table H.8: Network 6 Weights, Model D

Hidden Layer Output Layer

Input Node i Output

0 1 2 3 4 5 6 7 8 0 | 0.04379

1] 1.6009}-0.56003) -0.02581| -1.1168] -0.97122] -0.59072| -0.72598] -1.0514] 0.1451 1 ]-0.06817

2 | 0.74525| 0.00303] -0.00957| -0.00304{ 0.00356] -0.00358] 0.14585{ -1.226| -0.00766 2| -3.4971

3| 2.0008| 0.04856] 1.5526-0.04562]-0.05077| 0.87279]-0.06813} 0.15854] -0.00741 3{ -1.2206

4 |-0.12887} 0.20387| 0.06665| 0.22194]-0.27877]-0.21027| 0.12559{ -0.03079] 0.04087 4 |-0.54128

=151 2115] 0.05992] 1.1604| 0.00087|-0.04698| 0.61327] 0.36052|-0.01133|-0.00202 |._ | 5] 2.2987

8| 6] 45393] -0.0582| 0.03224] 0.09816]-0.00729| 0.00973| -0.4612 9.3467| 0.0107 | 8| 6] 0.0936

S | 7] 26711] 000314] 0.33331] 0.00704| 0.02823] 0.23061| -1.0696] -2.059| 0.01181 S [ 7071232

= | 8] 0.69692] -0.05035] -0.43893] 0.0343] 0.00301|-0.28469| 0.70704] 0.21968] 0.00882| | = | 8] 1.7906

8 179 [-0.64155| 0.04597| 0.05407] -0.02139] -0.03023] 0.03054] 0.10758] -5.3111] 0.03416] | & [ 9 |-0.17497

; 10{-0.10155] 0.0245] -0.23111] -0.04204] -0.05165] -0.19352] 1.3775] 1.9452] 0.00674 E 10 0.33762

11] 0.18533| 0.03181] -0.51288) -0.03001] -0.01806] -0.19541{ 0.34755] -0.34828} -0.02054 11| 1.5901

12| -2.3413] 0.73129|-0.65122] 1.8485 1.43] 0.71118] 0.55669| 0.58432| -0.26074 12 -0.03732

13]-0.69221] 0.07435] 0.51082| 0.03964] -0.05353]  0.191] 0.44511}-0.25233| 0.01346 13| 2.0747

14-0.76113] 0.0174] -0.1875] 0.00187] -0.00102] -0.11686] 1.0613} 0.2569| 0.00156 14| -2.605

15| -1.5450| 0.04084] 0.2711] 0.00912]-0.00282| 0.13055] -2.6865] -0.25066] -0.00441 15| 0.35386




Table H.9: Network 7 Weights, Model D

Hidden Layer

231

Output Layer
Qutput

Input Node i
0 1 2 3 4 5 6 7 8 0| 0.8038
1] o.18681| -0.185 1.4988| 0.29792] 0.5165| 2.2903] -1.0448] -1.7883{ 0.12096 1| 0.07943
2| -2.4587] 0.03557] 0.13208] 0.10291]-0.01025] -1.1622| 0.13606] -2.4217] -0.0534 2| -2.8782
3| 0.74912] 0.04968] 0.25731] -1.2138]-0.00963] 0.78011{ 0.02966| 0.04962| 5.8E-05 3| -2.1515
4| 2.3905]-0.00331] -0.03142] -0.21109] -0.01535] 4.9857| 0.01847] 0.17634] -0.00625 4| 22616
5| -6.7474] 0.02277} 0.25414] 0.00241}-0.07084] -0.2821| -2.6132] -2.9008] 0.01577 5| 5.4925
6 | 6.1595] -0.01885{ -0.25508] -0.02404} 0.10202] 0.33399| 2.9552] 3.2286]-0.04266 6] 20383
"o |L7.1-0.65702] 0.11077] 1.2242|-0.16253| 0.09292| 0.57234| 0.10965| 0.3394| 0.03712f |"o*| 7| 0.92671
B |8 |-049858] 0.01916] 0.72648] 1.3033|-0.00633| -1.2748| -0.0229| 0.06926|-0.01585| | B | 8 1.881
< | 9| 27489]-0.02545]-0.09702] -0.06478] 0.00429| 0.91571|-0.11113{ 2.0953| 0.03854] | < | 9| -4.662
& [10] 1.9666] -0.00918] -0.02463] 5.6246] 0.02972] -2.5592] 0.05715]-0.34583] o0.0359] | § [10] 1.9364
B [11] 2.3904] -0.08945| 0.11671]-0.14449] -0.00588] 4.2529] 0.02938| 0.18405]-0.00017 _-'g 11| -3.1099
T [12] 21049 0.00474] 0.0145] -5.6217] -0.0376] 2.8338|-0.07143| 0.40053] -0.0497] | T [12] 1.7143
13| -4.0015{-0.11645( -0.04157] -5.9213) -0.00283| -0.98898] -0.07406] 0.02815] 0.00445 13| 0.36423
14]-0.23167] -0.01171] -0.24993| -0.6934| -0.02673 -0.10023] 0.00381} 0.02862] -0.00377 14| 41245
15| 2.3701] 0.19727] -1.5452| 0.76632]-0.08743] 3.9843]-0.20943| 0.37373]-0.04519 15| -0.30555
16| -0.0455] 0.01935| 0.59885 1.06] -0.0895] -1.9081|-0.07765] -0.47336] -0.01909 16| -1.2046
17]-0.21644] -0.04487| 0.49956] 1.0526| 0.04715{ -1.4936| 0.02397] 0.62354| 0.00965 17| -1.1389
18| -3.8631]-0.02881] -2.5554]-0.19106| -0.02696} -0.45731] -0.03963] -0.15228] -0.00717 18| -2.3524

Table H.10: Network 8 Weights, Model D

Hidden Layer Output Layer
Input Node i Eﬁym
0 1 2 3 4 5 6 7 8 0 | -0.58852
1] 0.74362] 0.04872| 0.69158} 0.46764]-0.04143| -0.5032]-0.07048] -0.20194| 0.00441 1] 4.6568
2 | -2.7255{ 0.01016] -1.7826|-0.42137] 0.80936| -0.05583] 0.01958] 0.0024| 0.01071 2| -6.4082
3| 1.2808] 0.1353] 0.58894] 0.03219] -1.008| 0.21807}-0.00395| 2.2804]-0.32192 3| 1.0193
4 | -0.28859] -0.03092] -1.1931]-0.49152] 0.23802] 0.50341] 0.07952| 0.17507] 0.01894 4| 5.1902
— |51 0.42164] -0.02714] 0.8332| -0.652241 -0.31583| -0.16737| -0.02762| -0.07229] -0.01218] | ._ | 5] -4.1806
8 |6 ] -2.1644] 0.01863| -2.1238)-0.20211)-0.10987] -0.60879| 0.03853| -0.2254|-0.03176| | .8 [ 6 | -3.4063
§ 7| -3.3533] 0.00507|-0.06288| 0.00431 -2.58] -0.00446| 0.00059| 0.00448{ 0.01126 £ 71 -3.7636
= | 8]-0.27359] -0.01649| 0.89943| 0.00389| 1.2438] 0.17556]-0.03675| 0.05252| -0.06381 18] 1.059
8 |79 [-0.62369] 0.02553]-0.42027] 1.0161] 0.21347] 0.08216] 0.00027] 0.04196]-0.01721 39| 22093
% 10] -1.9729] 0.02211] -2.0574]-0.13371] 0.21127| -0.65498] 0.01347] -0.2008] -0.03728 -E 10| 3.9158
11] 1.2555] 0.11283| 0.61615]-0.00152] -1.1706{ 0.31948]-0.06353] 2.424] -0.31682 11]-0.95727
12| 6.5863] 0.44713] 1.4367]-0.61763] -1.7182] 4.7091]-0.00137} -0.1209] 0.39214 12} 0.17589
13] -2.0276] 0.691821 1.7774] -1.0187] 1.2076} 0.20997| -2.0382] -2.371| -1.0306 13| -0.0298
14| 0.00408] -0.03019| 1.5963] 0.00303|-0.52341} -0.39924] -0.06673| -0.12559] -0.03923 14| 2.6039
15] 2.9054] 0.03201] 2.1915] 1.099]-0.66578} -0.26612| -0.08685] -0.07189] -0.01776 15| -2.781




Table H.11: Network 9 Weights, Model D
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Hidden Layer Output Layer

Input Node i Qutput

0 1 2 3 4 5 6 7 8 0| -3416

1| -1.1851] 0.01952]-0.17334| -0.11661] -0.00236] 0.12665| 0.32124] -1.3109| 0.03275 1| -4.1606

2| 27873 4.5499| 6.2787| -2.7571] 0.12124] 8.3741| -4.7739| 0.81281| 1.0497 2 |-0.00642

3 |-0.71049| 0.03845| -0.97381| 0.06209] 0.01518| -0.16776] 0.45235] 0.05686| 0.00582 3| 67148

4 | 0.20532] -0.29259| 0.19513}-0.24706| 0.10305]-0.44163] -2.6417| 0.79473}-0.16767 4 | -0.35805

5| -1.2633| 0.0194]-0.97319] -0.02707| -0.01171] -0.16064} -0.24377| 0.02639| 0.02679 5| -5.1067

6 | 7.5615]-0.04959| 0.03989| 0.03471] 0.02338| 0.20008]-0.08257| 8.8697| 0.14886 6 |-0.52013

"o L7 _21623] 0.00314]-0.03988] -0.06549] 0.00471-0.09775| -0.81968| 1.1284)-0.03065| | "g*| 7| -5.9497

' |8 | 0.55882] 0.99222] -14699]-0.82126) 0.34623| 0.43985| -1.9852] -2.1932] -1.6142| | B | 8| 1.0701

Z 19| 39113] 0.06212] 1.9341|-0.07829] 0.06057| 1.4731|-0.70623] 0.14002}-0.00763] |2 | 9| 5.9161

§ [10] -3.4414] -0.1241] -2.5524] 0.13053]-0.10243] -1.7988] 0.82253]-0.17047]-0.00195] | G [10] 2.556

3 {11| 1.6417| 0.00891]-0.07396] -0.07321] 0.01452] 0.04986] 0.75773] 1.2819] 0.02007] | | [11] -3.8523

T [12] -1.3305] 0.03159] 0.17502] 0.5005] -0.0167]-0.16346] 0.29252| -0.86351]-0.04842] | T [12] 2.4184

13| 1.1924] 0.02229] 0.98792| 0.14153| 0.01524] -0.01343] -0.88218] -0.18576] -0.02144 13| 8.0341

14| 1.0036] 0.07174| 1.3008] 0.43996] 0.04818] -0.13209| -0.73569} -0.09472] -0.06267 14| -3.5048

15{ 1.8664] 0.68779|-0.89766|-0.55119] 0.41314| 0.07336| 0.08613| -2.6163] -0.26905 15| -0.2091

16| 3.8462| 0.04288| -0.20744] -0.00606] -0.00011] 0.01785] 2.6888] 0.3433| 0.03945 16| 3.3589

17| 6.5033] 0.51525{ 6.2972] 0.11085| -0.02686] 2.7138| 0.49445| 0.83745| 0.37127 17| 0.1502

18| 0.51592] 1.0745] -1.5711}-0.84807| 0.38892] 0.50842] -2.23] -2.3256| -1.8067 18| -0.94026
Table H.12: Network 10 Weights, Model D

Hidden Layer Output Layer

Input Node i Output]

0 1 2 3 4 5 6 7 8 0| -3.4404

1| -2.2033] 0.01771} 0.16032} 0.08088] 0.03933| 0.03875| -3.0401|-0.02241} 1.1923 1| 1.5818

2| -2.527| 0.04088] -2.0699| 0.14209]-0.03938] -1.8047| 0.5189]-0.11776] 0.59263 2{ 1.1031

3| 8.1405] 0.03854| -0.05576] -0.02412] 0.00711|-0.03989] 3.216] 3.6329|-0.57329 3| 55097

4 |-0.43003] -0.01108] 0.01499{ 0.04036| 0.02437]-0.01965| -1.0007}-0.03713| 0.90464 4 -4.7241

I -3.24] -0.00899| -0.08198{ 0.00619] 0.01379| -0.0185| -0.15562] -0.01484] -2.0431} | ,_ | 5] -2.4683

£ 6] 011751]-0.03541] 0.24978] 0.07854] 0.03801) -0.05502] -2.1126|-0.05979] 14872 | B 6] 1.1273

S [ 7] 23969f 000269] 15068) 0.08362] 0.01216] 0.50616] -0.588| 0.03155) -0.39097 z° 7| 46313

= | 8 |-0.25581] 0.00964] -0.13446| -0.01238] 0.00225| -0.01706] -0.20609] 0.00978{-0.53238] | = | 8| -6.6274

8 [ 9 |-0.26452} -0.01505] 0.40263[ -0.15402] 0.00403] 0.68948] -0.02405] 0.07224]-0.13753] | B |9 | -2.9321

g 10| 0.74481] -0.02459{ -0.49035] -0.19444] 0.02218| 0.46025] 0.22898] 0.04851] 0.09637 -'19: 10| 3.3238

11| -2.6646] -0.00296{ -0.59036] -0.06314] 0.01411]-0.03787] -1.3541] 0.017] 0.75899 11| -4.2902

12| 6.2275] 0.06468] -0.05185] -0.03547] -0.00485] -0.03141]  2.682] 3.0143] 0.23062 12| -4.9548

13| -1.7795] -0.04279] -1.7804] -0.27352] 0.01739] 0.04237| 0.20989] 0.01631] 0.5538 13| 2.1622

14| 0.50978] 0.03202| 0.44291] 0.05644] 0.00304| 0.06959| -1.2949} 0.00975| 0.23911 14| 2.9296

15| -5.7391]-0.06813| 0.04926| 0.04087] 0.00495} 0.03808| -2.6309] -2.9469]-0.39649 15| - -2.4956
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H.1  Results for Testing Data and New Input Dataset
The following are plots of the output of the simulation model and the neural network for

the same input dataset. The first plot for each network is for the training set, while the
second plot is for a test set and the corresponding network output.

Training Set Test Set
12 Best Linear Fit: A =(0.998) T + (0.00168) 12 Best Linear Fit A =(0.998) T + (0.00214)
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Figure H.1: Simulation Results vs. Network Results, Fill Rate, Model D
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Figure H.2: Simulation Results vs. Network Results, Finished Inventory, Model D
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Figure H.3: Simulation Results vs. Network Results, WIP Product 2, Model D
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Figure H.4: Simulation Results vs. Network Results, WIP Product 3, Model D



