PARALLEL RELATIONAL OLAP

By
Todd Eavis

SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
AT
DALHOUSIE UNIVERSITY
HALIFAX, NOVA SCOTIA
JUNE, 2003

© Copyright by Todd Eavis, 2003

National Library Bibliothéque nationale

of Canada du Canada

Acquisitions and Acquisisitons et
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Canada

Your file Votre référence
ISBN: 0-612-83717-3
Our file Notre référence
ISBN: 0-612-83717-3

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protege cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

DALHOUSIE UNIVERSITY

FACULTY OF COMPUTER SCIENCE

The undersigned hereby certify that they have read and recommend to the Faculty of
Graduate Studies for acceptance a thesis entitled “Parallelizing the Data Cube” by Todd

Eavis in partial fulfillment for the degree of Doctor of Philosophy.

Dated: July 23, 2003

External Examiner:
Research Supervisor:

Examining Committee: |

Departmental Representative:

DALHOUSIE UNIVERSITY

Date: June 27, 2003

Author: Todd Eavis
Title: Paralellizing the Data Cube

Department: Computer Science

Degree: Ph.D. Convocation: October Year: 2003

Permission is herewith granted to Dalhousie University to circulate and
to have copied for non-commercial purposes, at its discretion, the above title
upon the request of individuals or institutions.

Signature of Author

THE AUTHOR RESERVES OTHER PUBLICATION RIGHTS, AND
NEITHER THE THESIS NOR EXTENSIVE EXTRACTS FROM IT MAY
BE PRINTED OR OTHERWISE REPRODUCED WITHOUT THE AUTHOR’S
WRITTEN PERMISSION.

THE AUTHOR ATTESTS THAT PERMISSION HAS BEEN OBTAINED
FOR THE USE OF ANY COPYRIGHTED MATERIAL APPEARING IN THIS
THESIS (OTHER THAN BRIEF EXCERPTS REQUIRING ONLY PROPER
ACKNOWLEDGEMENT IN SCHOLARLY WRITING) AND THAT ALL SUCH USE
IS CLEARLY ACKNOWLEDGED.

il

To the two women in my life: Amber and Bailey.

v

Table of Contents

Table of Contents
List of Tables

List of Figures
Abstract

List of Acronyms
Acknowledgements

1 Introduction

1.1 Overview of Primary Research
1.1.1 Parallelizing the Data Cube
1.1.2 Computing Partial Cubes in Parallel
1.1.3 Parallel Multi-dimensional Indexing

1.2 Our Parallel Design Model

13 ALook Ahead

An Introduction to OLAP and the Data Cube

2.1 Introduction

2.2 Decision Support Systems
2.2.1 The Historical Context of OLAP

2.3 Defining OLAP o
2.3.1 OLAP: A Functional Definition

xii

xiii

Xix

XX

Xxiv

© S Ol = W W -

2.3.2 OLAP: The FASMI Definition 18

2.4 The Data Warehouse 20
241 Architecture o o 22
24.2 The Star Schema 0oL 23
2.4.3 MOLAP, ROLAP and Multi-dimensional Data, 25
25 TheDataCube 26
2.5.1 The Data Cube Operator 30
2.6 Data Cube Algorithms 31
26.1 TopDown 32
2.6.2 Bottom Up 37
2.6.3 Array-based 40
27 Conclusions L e 44
Computing Full Data Cubes in Parallel 46
3.1 Imtroduction 46
3.2 Related Work 47
3.3 Motivation L 54
3.4 A New Approach to Parallelizing the Data Cube 55
3.4.1 The Target Architecture 56
342 ASequential Base. L. 57
3.4.3 Partitioning for Parallel Computation 59
3.4.4 The Parallel PipeSort Algorithm 62
3.5 Optimizing Performance 65
3.5.1 Optimizing Sorting Operations 66
3.5.2 DataMovement o oo 0 oo 68
3.5.3 Aggregation Operations 73
3.5.4 Input/Output Patterns 76
3.6 The Costing Model, 80
3.6.1 Cuboid Size Estimation 82

3.6.1.1 Cardinality-based Estimation 82

vi

3.6.1.2 Sample Scaling 82

3.6.1.3 A Probabilistic Method 83

3.6.1.4 Our Own Probabilistic Approach 84

3.6.2 Pipeline Cost Estimation 86
3.6.2.1 Input/Output 87

3.6.2.2 Scanning e 88

3.6.2.3 Sorting 89

3.6.3 Putting it all together L. 90

3.7 Implementation o 92
3.7.1 Generating Data Cube Input 93

3.8 Analysis L 94
3.8.1 The Scheduling Phase, 95
3.8.2 Workload Partitioning 97

3.9 Experimental Evaluation 101
3.9.1 Parallel Speedup oL 103
39.2 DataSetSizeo 106
3.9.3 Dimension Count 107
3.9.4 Over-Sampling Factor 109
395 Record Skew o o 110
3.9.6 Pipeline Performance 112

3.10 Review of Research Objectives 113
3.11 Conclusions e 115
Computing Partial Cubes in Parallel 116
4.1 Introduction oL 116
42 Related Worko 117
4.3 Motivationo oo 123
4.4 A New Partial Cube Method 124
4.4.1 Adding Non-Essential Nodes to the Selected Set 125
4.4.2 Building the Complete Schedule Tree 130

vii

4.5 Analysis and Optimization 138
4.5.1 Complexity 138
4.5.2 Reducing the Cost of Building the Essential Tree 139

4.5.2.1 Recursive Pipeline Generation 139
4.5.2.2 An Aggressive Quadratic Time Algorithm 144
4.5.3 Reducing the Cost of Adding Non Essential Views 146
4.5.4 Extending the Algorithm into High Dimensions 1562

4.6 Parallel Partial Data Cubes 158

4.7 Experimental Evaluation 0oL, 159
4.7.1 Evaluation of Schedule Tree Generation Algorithms 160

4.7.1.1 Quality of Generated Trees 160
4.7.1.2 Run Time Performance on the Full Cube 161
4.7.1.3 Computing Partial Cubes 162
4.7.1.4 Addition of Non-Essential Views 166
4.7.1.5 Pruning the Guiding Graph 167
4.7.2 Performance of the Parallel Partial Cube Algorithm 169

4.8 Review of Research Objectives 172

4.9 Conclusions L e 173

Distributed Data Cube Indexing 175

5.1 Imtroduction 175

52 Related Worko 177
5.2.1 Sequential ROLAP Indexing 179

5211 TheR-tree 179

5.2.1.2 Packed R-trees 179

5.2.1.3 Packing Algorithms 180

5.2.1.4 Packed R-tree Updates 181

5.2.2 Distributed Relational Indexing 182

5.3 Motivationo 183
5.4 The RCUBE: A New Distributed Data Cube Index Model 184

viii

54.1 PackingtheData, 184

5.4.2 Data Partitioning 186
54.3 Updating the Indexes 187

5.5 The Distributed Query Engine 189
5.5.1 The Query Engine Model 189
5.5.2 The Search Strategy 192
5.5.3 Querying the Partial Cube 197
5.5.3.1 An Analysis of Sparsity in High Dimensions 197

5.5.3.2 The Partial Cube Algorithm 201

5.5.4 Querying Hierarchical Attributes 205
5.5.4.1 Hierarchical Attribute Representation 206

5.5.4.2 An Algorithm for Querying Views with Hierarchical

Attributeso 211

5.5.5 The Virtual Data Cube 214

5.6 Experimental Results L. 215
5.6.1 Index Construction 216
5.6.2 Relative Speedupo 217
5.6.3 An Analysis of Scans and Seeks 218
5.6.4 Retrieval Balance o 0oL 219
5.6.5 Hilbert Packing Versus lowX 219
5.6.6 Indexing Versus Straight Sequential Scans 221
5.6.7 Using Surrogate Views 222
5.6.8 Querying Hierarchical Attributes 222

5.7 Review of Research Objectives 224
5.8 Conclusions e 226
Conclusions 228
6.1 Summary 228
6.2 Future Work 230
6.3 Final Thoughts, 231

ix

Appendix A An Introduction to Parallel Computing

Al
A2
A3

A4

A5

A6

A7

A8

A9

Introduction Lo oL
A Taxonomy of Parallel Architectures
The Memory Model
A.3.1 Shared Memory MIMD
A.3.2 Distributed Memory MIMD
The Interconnection Fabric.
A.4.1 Dynamic Interconnection Networks
A 4.2 Static Interconnection Networks
Contemporary Trends
A.5.1 The Symmetric Multi-Processor
A.5.2 The Cluster Alternative

A.5.2.1 Remaining Hurdles
Parallel Computing Models
A6.1 The PRAM
A.6.2 Bulk Synchronous Parallel
A6.3 LogP
A64 CGM

A71 Non-Optimality
A.7.2 Scalability of Parallel Algorithms
Application Supporto
A.8.1 MPI Primitives B
A.8.2 MPI Alternatives
A83 SMP Support

Conclusion

Appendix B The Theory of NP-Completeness

Appendix C Multi-dimensional Indexing Techniques

C.1

The Origin of Indexing

232
232
233
236
236
237
238
238
240
244
244
245
246
250
250
251
253
254
255
256
257
257
258
259
259
260

262

267

C.2 In-core methods 269

C.3 Disk-based Methods 274
C.3.1 Multi-dimensional Hashing 274

C.3.2 Hierarchical Tree-based Methods 276

C.3.3 Space-filling Curves oL 279

C.4 Comparative Results 281
Appendix D The Data Generator 283
Appendix E An Algorithm for Distributed Index Generation 287
Bibliography 291

xi

List of Tables

3.1

4.1

Al
A2

Evaluation of scheduling phase for reasonable values of d and p. The
dominant cost is listed as either C (spanning tree construction) or P

(spanning tree partitioning). L 97

Growth patterns for Steiner graph versus original lattice in tabular

form. ... 123
NAS parallel performance in MFLOPS on 8 processors [78]. 247
TCP/IP Overhead [116]. 248

xii

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7

2.8
2.9

2.10
2.11
2.12
2.13
2.14

3.1
3.2

Worldwide total OLAP market share in billions of dollars.
Roll-up and Drill-down on a simple three-dimensional cube.
Slicing and Dicing a three-dimensional cube.
The Pivot operation. L
The three-tiered OLAP model.
A four-dimensional Star Schema.
The data cube lattice consists of all possible attribute combinations.
The “all” node represents the aggregation of all records.
A three dimensional data cube. 0oL,
The parent level is augmented to include both sort and scan costs.
Bipartite matching gives us the “cheapest” way of producing level k
from level k& + 1. Note: “scan” edges are dashed, while “sort” edges
aresolid.
A four dimensional minimum cost PipeSort spanning tree.
The bottom up “perspective”. Partitioning proceeds left to right.

A three-dimensional chunked cube.
Access patterns for chunking versus row major storage.

Generating group-bys with ArrayCube.

The use of a “cut” hash table to support dynamic min-max.
Resolving an attribute reference by way of vertical and horizontal in-

direction. s,

xiii

19

41

3.3

3.4

3.5
3.6
3.7
3.8
3.9
3.10
3.11

3.12

3.13
3.14

4.1
4.2

4.3

4.4

4.5
4.6

An illustration of the data cube I/O manager, showing the resources
managed by one of its view “blocks.” oo
Dynamic cost calculations for a sample partition from a four dimen-
sional space. The numeric values inside each view represent the esti-
mated SiZes.
Speedup test for 1 to 24 processors on a Linux cluster.
Efficiency ratings for the Linux cluster.
Speedup test for one to 16 processors on the SunFire 6800.
Efficiency ratings for the SunFire 6800.

Record count evaluation.

Dimension test o
(a) Sample factor: two million records. (b) Sample factor: 10 million
records. ...
Skew test L
(a) Speedup: 1 to 16 processors. (b) Corresponding parallel efficiency.

(a) Performance comparison for sequential PipeSort on 10° records.

(b) The same comparison for 108 records.

Two options for construction of the “essential” view AB.
A three-dimensional lattice augmented so as to support a minimum
Steiner tree algorithm.
Growth patterns for Steiner graph versus original lattice. Note the
logarithmic scale. 0L
The three options for the insertion of AB in FindBestParent. Case
(1) Pipeline tail insertion. Case (2) Pipeline scan insertion. Case (3)
Re-Sort. Note: The emphasized lines represent new edges.
Graph Pruning, where bolded views belong to the selected set S. . . .
lustration of EstablishAttributeOrderings(R). The emphasized nodes
represent views whose attributes had to be re-arranged into a prefix

order. e e

xiv

79

91
104
104
106
107
108
109

110

111

112

113

120

121

122

129
135

136

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

Hlustration of FixPipelines(R). The dashed view is not included in the
reduced tree. The bolded nodes represent views (i) whose attributes
had to be re-arranged and/or (ii) were given a new scan child.

An example of how the greedy algorithm might identify fewer scan
edges than the bipartite matching approach. In this case, the greedy
method did not produce a scan edge for C.
An illustration demonstrating that the minimal number of sorts may
not always be optimal.
Significance of the order of addition. Case (a) shows the original tree.
In case (b) we decide to add ABCD with a scan insertion. However,
case (c¢) demonstrates that a more cost effective solution was actually
available.o
Pruning ineffective nodes. Case (a) shows the original tree. In case
(b), a more dense ABC node offers great benefit. However, in case (c),
we see that a sparse ABC node actually increase the cost.
The cost of the spanning tree in relation to the cost of those generated
by bipartite matching. The cubic time algorithms were not computed
for 11 and 12 dimensions. Lo oo
Run time performance for schedule tree generation on the full cube.
At 11 and 12 dimensions, the times for the cubic time algorithins are
estimated. L
Relative weight reduction for the schedule trees produced on subsets
of size (a) 10% (b) 26% (c) 50% (d) 75%. The baseline in this case is
chosen as the smaller of (i) a sort of the raw data set for each view or
(il) computation of the full cube. 0oL
Weight reductions for the recursive quadratic time algorithm when the
essential set contains views with three or less attributes.
The impact of adding non-essential views when the essential set con-

tains views with three or less attributes.

XV

137

143

145

148

155

161

162

4.17 Number of views pruned with an increase in dimension count (assurming
confidence factor =omne). L 169
4.18 The impact upon schedule tree weight reduction as the confidence fac-
tor is increased. Note that (i) reduction is relative to the baseline
algorithm, and (ii) with a confidence factor = 3, no views are pruned. 170
4.19 Parallel performance on a data set of 14 dimensions with selected views

having three attributes or less. Results for one to 16 processors are

plotted as (a) wall clock time in seconds and (b) efficiency ratings. . . 171
4.20 Efficiency ratings when considering “build” times only. 171
5.1 A three dimensional data cube depicting automobile sales data. . . . 178
5.2 The distributed data cube R-tree model. 185

5.3 Hilbert curve packing versus lowX on a slice query along the “Y” di-
mension. Note that all blocks intersecting the query rectangle must be
retrieved. Lo 186

5.4 Striping the data across two nodes. (Block capacity =3) 187

5.5 Query resolution using Linear BFS. The query is passed to the query
engine which, in turn, uses a sequence of page lists to eventually iden-
tify relevant records in the leaves/data blocks. 195

5.6 (a) Comparison of view count and storage requirements by dimension.

(b) Analysis of record sparsity by dimension. 198

5.7 The density threshold for varying dimension counts and data set sizes.

Note that a data set is considered sparse only when it contains at least

99% of the records in the original fact table. 201
5.8 The process of resolving a user query on a non-existent view. 203
5.9 The Time hierarchy. Note the two distinct branches. 207
5.10 The linear relationship of sub-attributes in the Time hierarchy. 208
5.11 The mapping tables., 210

5.12 The process of resolving a user query containing a hierarchical attribute.213

Xvl

5.13 (a) Parallel wall clock time for index construction, and (b) the corre-
sponding Speedup.
5.14 (a) Wall clock time for distributed query resolution, and (b) the corre-
sponding Speedup.
5.15 (a) Disk blocks received vs. number of disk seeks required on 16 pro-
cessors, and (b) The ratio of block retrievals to block seeks.
5.16 The relative imbalance with respect to the number of records retrieved
oneachnode. o
5.17 (a) Comparison of number of blocks retrieved for Hilbert versus lowX
and (b) wall clock read time for the same queries
5.18 Sequential Scans versus Hilbert indexing.
5.19 (a) Distributed query resolution in surrogate group-bys, and (b) Rel-
ative percentage cost of using surrogate view instead of materialized
Primary view. e e e e e

5.20 Querying performance using hierarchical attributes.

A1l (a) SIMD Architecture. (b) MIMD Architecture.
A.2 (a) All memory is global. (b) Processors have a mix of local and global
memory. (c) All memory is local. Hardware provides remote memory
ACCESS. « . v o e e e e e e e e e e
A.3 Each node in a distributed memory parallel machine contains its own
CPU and local memory store.
A4 Acrossbarswitch.. oo o oo
A5 (a) A multi-stage shared memory network (The “S” nodes indicate
dedicated switching units). (b) Shared memory with a common bus. .
A6 (a) A simple array. (b) A ring formed by joining the first and last node
of thearray.
A7 (a) The star design. (b) The more sophisticated fat-tree.
A8 (a) A four-by-four mesh. (b) The wraparound mesh or torus.
A9 (a) A four-dimensional hypercube. (b) The fully connected network. .

xvil

217

218

219

220

223
224

235

236

238
239

240

242

A.10 Bandwidth Comparison: VIvs UDP.
A.11 The PVFS architecture.

C.1 A simple multi-dimensional query. In this case the query identifies
those sales made during the third quarter whose individual value was
between 3000 and 4000 dollars.

C.2 The point quad-tree. Lo

C.3 The k-d-tree. e

C.4 The range tree. The upper figure shows the space partitioned by x-

value. The thickness of the vertical lines denotes the level of the binary

C5 Thegridfile.
C.6 The k-d-b-tree.
C.7 The R-tree. e e e

C.8 Common space filling curves.

D.1 The current BISON DSSL specification.

D.2 Example of data set schema.

xvilii

269
270
272

Abstract

On-line Analytical Processing (OLAP) has become a fundamental component of con-
temporary decision support systems and represents a means by which knowledge
workers can efficiently analyze vast amounts of organizational data. Within the
OLAP context, one of the more interesting recent themes has been the computation
and manipulation of the data cube, a relational model that can be used to represent
sumrmarized multi-dimensional views of massive data warehousing archives.

Over the past five or six years a number of efficient sequential algorithms for data
cube construction have been presented. Given the size of the underlying data sets,
however, it is perhaps surprising that relatively little effort has been expended on the
design of load balanced, communication efficient algorithms for the parallelization
of the data cube. This thesis investigates such opportunities, with a particular em-
phasis upon coarse-grained, distributed memory parallel architectures. New parallel
algorithms for the computation of both the complete data cube and the partial data
cube are presented. In addition, a model for distributed multi-dimensional indexing
is proposed. The associated parallel query engine not only supports efficient range
queries, but query resolution on non-materialized views and views containing hierar-
chical attributes. All of the proposed algorithms and data structures have been fully

implemented and evaluated on contemporary distributed memory parallel machines.

Xix

List of Acronyms

API Application Programming Interface
APL A Programming Language

ASL Affinity Skiplist

AVL Adel’son-Velskii and Landis tree
BFS Breadth First Search

BPP Breadth First Writing, Partitioned Parallel BUC
BSP Bulk Synchronous Parallel

BUC Bottom Uf) Computation

ccNuma Cache Coherent NUMA

CGM Coarse Grained Multi-computer
CPU Central Processing Unit

CRCW Concurrent-read, Concurrent-write
CREW Concurrent-read, Exclusive-write
DBMS Database Management System
DMA Direct Memory Access

DSS Decision Support System

ERCW Exclusive-read, Concurrent-write

XX

EREW Exclusive-read, Exclusive-write

FASMI Fast Analysis of Shared Multi-dimensional Information
GB Giga Byte

GHz Giga Hertz

GIS Geographic Information System

GM Glenn’s Messages (Myrinet)

GNU GNU’s Not Unix

HPCVL High Performance Computing Virtual Lab

I/ O Input/Output

IT Information Technology

LAN Local Area Network

LEDA Library of Efficient Data Structures and Algorithms
logP Latency/Overhead/Gap/Processors

Mb Megabit

MBB Minimum Bounding Box

MCST Minimum Cost Spanning Tree

MFLOP Million Floating Point Operations per Second
MIMD Multiple Instruction Multiple Data

MISD Multiple Instruction Single Data

MMST Minimum Memory Spanning Tree

MOLAP Multi-dimensional OLAP

MPI Message Passing Interface

xxi

MPP Massively Parallel Processor
NAS NASA Advanced Supercomputing Division
NP Non-deterministically Polynomial
NUMA Non-uniform Memory Access
OLAP On-line Analytical Processing
OLTP On-line Transaction Processing
PC Personal Computer

PE Processing Element

PRAM Parallel Random Access Machine
PVES Parallel Virtual File System
PVM Parallel Virtual Machine

RAM Random Access Memory
RCUBE Relational Cube

RDBMS Relational DBMS

ROLAP Relational OLAP

RP Replicated Parallel BUC

SIMD Single Instruction Multiple Data
SISD Single Instruction Single Data
SPMD Single Program Multiple Data
SQL Structured Query Language

STL Standard Template Library

STR Sort Tile Recursion

xxii

TB Tera Byte

TCP/IP Transmission Control Protocol/Internet Protocol
TPL Total Path Length

UDP User Datagram Protocél

UMA Uniform Memory Access

VIA Virtual Interface Architecture

xxiii

Acknowledgements

Thanks to Dr. Gao, Dr. Milios, Dr. Cercone, and Dr. Bhavsar for your time and
your patience.

Thanks Michelle for a fresh pair of eyes.
Thanks Andrew for your input and your commitment to getting this thing done.

And a giant thank-you to Amber for your indefatigable and often under appreciated
support.

XX1v

Chapter 1

Introduction

Effective data collection and management has always been a cornerstone of corporate
success and changes in the economic landscape over the past decade have only served
to intensify the associated computational requirements. The maturation of the global
Internet and its graphical sibling, the World Wide Web, has lead to an exponential
increase in the amount of data that corporations collect, manage, and analyze. And
while the past two decades have also witnessed impressive increases in computing
power, it is nonetheless true that large scale data warehousing and decision support
systems now tax even the the most powerful uni-processor machines.

This thesis explores the use of parallel algorithms and data structures in the
context of high performance On-line Analytical Processing (OLAP). OLAP is the
foundation for a wide range of essential business applications, including sales and
marketing analysis, planning, budgeting, performance measurement and data ware-
house reporting [56, 88]. To support this functionality, OLAP relies heavily upon a
data model known as the data cube [50, 57]. Conceptually, the data cube allows users
to view organizational data from different perspectives and at a variety of summa-
rization levels. In fact, the data cube model is central to our parallelization efforts.
We note that this is a particularly rich area for new parallel research, one that builds
on the significant amount of work that has already been performed in the sequential

setting [57, 10, 50, 101, 105, 122, 3]. In particular, scalable methods are required

for the construction, querying, and analysis of OLAP data on contemporary parallel
machines.

Our approach to the design of parallel OLAP systems has been to first identify
sequential algorithms that have proven themselves to be both practical and efficient in
an OLAP setting. By exploiting these optimized procedures on each of the compute
nodes of a parallel machine, we have been able to focus our own attention more
completely on the key parallel issues of load balancing and communication efficiency.
The Coarse Grained Multicomputer or CGM model of parallel computing [33] shapes
our algorithm design decisions and is used primarily because it is intended to capture
the characteristics of current, practical computing architectures rather than purely
analytical models such as the PRAM.

Many of the problems addressed in this thesis are either NP-complete or do not
have tight bounds, even in the sequential setting, and we consequently explore a
number of heuristic techniques. These heuristics are evaluated in the context of a

three-phase evaluation strategy:

1. Use simulations to explore algorithmic trade-offs associated with load balancing

and communication.

2. Design, implement, and optimize robust applications and then systematically

evaluate them.

3. Use the feedback and insight obtained via the first two steps to tune the existing

algorithms and to suggest new approaches to be explored.

While this thesis has a strong algorithmic component, and includes formal analysis
where possible, the emphasis is ultimately upon systems and experimental research.
The reason for this approach is worth noting. Asymptotic analysis of parallel algo-

rithms is notoriously unreliable as a predictor of real performance on real machines.

Because of a plethora of commercial architectures — including propriety and some-
times exotic communication fabrics — the transition from “paper to silicon” is often
a disappointing exercise. In the parallel setting there is simply no single reliable
architectural abstraction that would be comparable to the von Neumann model rep-
resentative of sequential computing architectures. As such, assumptions about issues
such as latency, memory hierarchies, and computational bottlenecks are often not
borne out in practice.

This thesis addresses an instance of applied computer science, namely data ware-
housing, and as such it is imperative not only that we build upon well motivated
heuristics, but that we demonstrate clearly and convincingly that our techniques can
and do work on existing parallel machines. Throughout the thesis, we attempt to
strike a balance between a presentation of the high-level algorithmic work, detailed

discussions of the implementation considerations, and experimental evaluations.

1.1 Overview of Primary Research

In this section we briefly discuss the key elements of this thesis. Though each element
_can be described and studied in isolation, we note that collectively they represent a

cohesive approach to parallel OLAP.

1.1.1 Parallelizing the Data Cube

We have designed and implemented parallel algorithms for the efficient generation
of the data cube. We work within the relational paradigm to produce a set S of 2¢
summarized views (where d is the number of dimensions). Our general approach is
to partition the workload in advance, thereby allowing the construction of individual
views to be fully localized. Initially, we compute an optimized task graph, called a
schedule tree, that represents the cheapest way to compute each view in the data cube

from a previously computed view. We then employ a partitioning strategy based on

a modified k-min-maz partitioning algorithm [6] that divides the schedule tree into p
equally weighted sub-trees (where p is the number of processors). We support schedule
tree construction with a rich cost model that accurately represents the relationship
between the primary algorithmic components of the design. In addition, we present
efficient algorithms and data structures for the physical disk-based materialization of
the views contained in each sub-tree. Algorithm design choices are supported through
both analysis and experimentation.

The end result of this process is a system that is load balanced, produces minimal
communication (network utilization has been reduced to a single transfer of task
information) and is computationally efficient. Extensive experimental evaluation has
been conducted on a variety of data sets (both synthetic and “real world”), and we
have examined performance for a range of values on d, p and n (record count). The
results confirm parallel efficiency of 80% to 95% on processor counts from 1 to 24,
and a near linear performance curve for increases in view count and data set size. We
also note that in terms of “raw performance”, a 24-node Linux cluster has been used
to produce a 1.2 Terabyte, 14-dimensional data cube in just over one hour.

Preliminary reports of this research are described in [25, 26, 29, 27].

1.1.2 Computing Partial Cubes in Parallel

The complete data cube, as originally defined by Gray et. al. [50], consists of all 2¢
possible views. When d and/or n, the size of the underlying data set, gets large, gen-
erating the entire data cube may be neither feasible nor desirable [101]. In Chapter 4,
we describe a suite of new sequential algorithms for the generation of efficient partial
cube schedule trees, where a partial cube represents a user-selected subset S of the
2¢ views in the full space. In addition to the views initially selected for construction,
we show that the inclusion of intermediate (i.e., non-selected) views can significantly

reduce computation time. Since existing proposals for the partial cube problem,

such as a minimum Steiner tree approximation [105], are simply infeasible in high-
dimensional space, we propose new methods based on a greedy approach. We extend
our sequential methods to the parallel setting by passing the partial cube schedule
tree to the partitioning algorithm described in Chapter 3 for parallel execution.

Experimental evaluation has shown that, for the special case of full cube construc-
tion, the new methods are capable of producing schedule trees whose weight is less
than 1% greater than that of the best existing data cube scheduling algorithm. More
importantly, for true partial cube construction, the new algorithms generate trees
that are 25% to 70% cheaper than those produced by more naive approaches.

Preliminary results have been reported in [28, 30].

1.1.3 Parallel Multi-dimensional Indexing

Once the views of the data cube have been materialized, they are capable of support-
ing arbitrary queries on their summarized records. Such queries might be associated,
for example, with user-directed visualization or sophisticated data mining operations.
In either case, two of the most important forms of OLAP queries are the point query
(a match against a single record) and the range query (arbitrary ranges on one or more
of the d dimensions). Due to the size of the generated data cube views, it is gener-
ally not possible to effectively support point and range queries in a high dimensional
OLAP context without some form of multi-dimensional index. However, for high
dimension spaces, most conventional indexing methods perform quite poorly [9, 45].
Furthermore, the performance penalties associated with dynamic indexing techniques
make most existing methods impractical in large data warehousing environments.

In Chapter 5 we propose a parallel indexing technique called the RCUBE that
is optimized for the OLAP setting. It is based on a packed R-tree model [102], a
design in which data is preprocessed so that efficient R-tree indexes can be generated.

In using packed R-trees, we propose a sophisticated packing strategy based upon

the Hilbert space filling curve [70] that improves performance in high dimensional
spaces. Since one of our primary objectives is to provide high performance OLAP
indexing solutions, our R-trees are constructed as distributed data structures; queries
are answered in parallel on each node that contains a portion of the relevant view.
The proposed indexing model has been completely integrated into the data cube
infrastructure. Users can query views within full or partial cubes, including ones that
contain attribute hierarchies. Efficient index updates are also supported. In the case
of partial data cubes, we introduce the concept of surrogate views and show how
queries on views that have not been materialized can often be efficiently answered
using these surrogates.

Experimental evaluation demonstrates that for arbitrary queries on a 16-processor
parallel machine, the imbalance with respect to the number of records retrieved per
node is less than 0.3%, while the corresponding speedup for parallel query resolution
is close to linear. In high volume environments, the parallel query engine can resolve
1000 random multi-dimensional range queries on a 20 GB data cube in less than 10
seconds. Moreover, post-processing overhead associated with view surrogates and
attribute hierarchies has been shown to add just 5% to 15% to the time taken for
query resolution.

Preliminary results have been reported in [32, 31].

1.2 Owur Parallel Design Model

Given the strong systems orientation of this thesis, the hardware, software, and design
models associated with parallel computation are of particular importance. Our goal
has been to avoid those abstractions and models that are not predictive of observed
performance when real systems are constructed. Instead, we have tried to integrate
a deep understanding of contemporary parallel computing issues into the algorithm

design process. For an introduction to the concepts and terminology relevant to such

an approach, see Appendix A.

In terms of the current research, we note that MIMD computer systems [43]
have been used throughout the thesis to implement parallel algorithms and data
structures that are relevant to high performance data warehousing. Two distinct
physical architectures have been used for performance evaluation purposes. The first
parallel machine — and our primary implementation platform — is a fully distributed
Linux cluster [95]. The cluster is an example of a “commodity” system — it consists
of open source software and low cost, widely available hardware.

Primary software components include:

e NPACI Rocks (RedHat based Linux)

e RedHat GNU C/C++/Fortan Compiler version 2.96
e GNU C/C++/Fortran Compiler version 3.2.2

e LAM (Local Area MultiComputer)/MPI version 6.5.6
e Portable Batch System (OpenPBS version 2.2p5)

e MAUI scheduler version 3.0.5.p11

e PVM 34.3

e standard development tools like make, emacs, vi, automake, autoconf, etc.

Primary hardware components include:

32 nodes (dual processors), with each node contained in a 1U 19” case

64 1.8 GHz Intel Xeon (x86) processors (2 per node)

32 GB distributed memory (1 GB per node shared between 2 processors)

2.56 TB of distributed external memory (two 40 GB IDE hard disks per node)

e 100 MBit/s 100Base-Tx (Fast Ethernet) switched interconnect

e front-end node is connected to a UPS

A second machine, a more traditional 24-CPU SunFire multi-processor, located
at the High Performance Computing Virtual Lab [62] was used for final testing on
the data cube algorithms discussed in Chapter 3.

SunFire hardware includes:

24 x 900 Mhz (8 MB E-Cache) UltraSPARC-III processors

24 GB of memory shared in a cc-NUMA design

Gigabit Ethernet Network Interface Cards

Multiple Fibre Channel Arbitrated Loop (FC-AL) host adapters

11.7 TB of Sun StorEdge T3 Fibre Channel disk technology (disk array)

SunFire software includes:

Soloris 8 Operating System

Sun Forte Developer 6 (C, C++, Fortran compilers and debuggers)

Sun HPC ClusterTools 4.0

Sun Grid Engine 5.3 Enterprise Edition

We note that the SunFire was used because it is configured with a disk array. A
disk array is a coordinated collection of I/O devices that is seen by the operating sys-
tem (and, by extension, user processes) as a single logical device. On-board hardware
stripes data (by byte or by block) across the disk units so that multi-process reads
and writes on a single data store can be processed in parallel. The justification for

using a disk array will be presented in Chapter 3.

In all cases, the Message Passing Interface [83] was used for the communication
subsystem, providing us with a number of significant benefits. First, the very rich
API of MPI allowed us to improve performance by exploiting a number of its less
trivial primitives. Second, and perhaps more importantly, the broad acceptance of
the MPI standard guarantees a form of portability that is not possible with any other
system. Not only does it allow us to port the code from our Linux testbed to virtually
any other distributed memory platform with a minimum of effort, but it also allows
us to move the code to SMP-based machines [24] since these platforms almost always
have efficient MPI implementations. This is an advantage worth noting since many
distributed memory algorithms work quite well in shared memory environments (the
actual coding may be more difficult of course), while a movement in the opposite
direction — from OpenMP [89] to MPI — is much more problematic.

Algorithmically, our focus has been the coarse-grained computing paradigm syn-
onymous with MIMD architectures. To avoid the performance penalties often as-
sociated with message passing on most MIMD machines (particularly the cluster),
algorithms have been constructed so as to reduce the quantity of message transfers
to a minimum while, at the same time, exploiting the power of today’s microproces-
sors. This is a style of design directly supported by the CGM model [33] (though
BSP [121, 12] and logP [23] analysis could also be used to justify our design choices).
Standard performance metrics such as Parallel Speedup and Efficiency are used to
support algorithm and data structure design decisions. The end result is a software
infrastructure that, in BSP terminology, efficiently bridges the gap between abstract

algorithm design and real architectures and applications.

1.3 A Look Ahead

The thesis is organized as follows. Chapter 2 provides an overview of Online Analyt-

ical Processing, including such things as fundamental OLAP operations and server

10

architectures. The chapter also presents the data cube operator and describes a
number of the algorithms that have been designed for its efficient construction.

The succeeding chapters present the core contributions of this thesis, including
the proposed algorithms, the implementation issues, and the experimental results.
Chapter 3 focuses on the construction of the complete data cube and describes the
workload partitioning algorithm, the costing model, and the algorithms and data
structures for view materialization. The related problem of partial data cube con-
struction is discussed in Chapter 4. A new greedy model is presented, including a suite
of algorithms for the generation of efficient partial cube schedule trees in high dimen-
sional space. Chapter 5 then presents our new parallel RCUBE model. We discuss
methods for partitioning, building, and updating the supporting multi-dimensional
indexes. As well, we present the details of a parallel query engine, one that includes
OLAP-specific functionality for resolving queries on partial cubes and views contain-
ing attribute hierarchies. Finally, in Chapter 6, we briefly describe possible future

work.

Chapter 2

An Introduction to OLAP and the
Data Cube

2.1 Introduction

While database and data management systems have always played a vital role in the
growth and success of corporate organizations, changes to the economy over the past
decade have seemed to exaggerate their significance. Both communication patterns
and corporate/client relationships have evolved within the context of a new digital
age. To keep pace, I'T departments have begun to exploit rich new tools and paradigms
for processing the wealth of data and information generated on their behalf. Along
with relational databases, the venerable cornerstone of corporate data management,
knowledge workers and business strategists now look to advanced analytical tools in
the hope of obtaining a competitive edge.

In this chapter, we examine the current trends, technologies, and terminology
relevant to an understanding of On-line Analytical Processing or OLAP [17, 19, 34],
perhaps the most ubiquitous of today’s sophisticated processing models. We provide
an introduction to the general area of decision support systems (DSS) in Section
2.2, making a distinction between OLAP and two other primary DSS components,
information processing and data mining. Section 2.3 defines OLAP in terms of its

core operations and functionality. Section 2.4 discusses the data warehouse, the

11

12

fundamental structural building block for virtually all OLAP systems. We present
the data cube model in Section 2.5, and discuss a number of important sequential
algorithms for data cube construction in Section 2.6. Section 2.7 concludes the chapter

with a brief summary.

2.2 Decision Support Systems

As the name implies, decision support systems are designed to empower the user with
the ability to make effective decisions regarding both the current and future state of
an organization. To do so, the DSS must not only encapsulate static information,
but it must also allow for the extraction of patterns and trends that would not be
immediately obvious. Users must be able to visualize the relationships between such
things as customers, vendors, products, inventory, geography, and sales. Moreover,
they must understand these relationships in a chronological context, since it is the
time element that ultimately gives meaning to the observations that are formed.
Discussions of DSS applications often implicitly assume that such systems are part
and parcel of a single homogeneous technology. In fact this is typically not the case.
Rather, knowledge-based systems come in a number of distinct forms, each extending
the functionality of the core Database Management System (DBMS) [56, 17, 34, 75].
Below, we describe the three primary DSS models, including OLAP which is the focus

of our current research.

e Information Processing. Here, we are concerned with fundamental querying
and reporting functions. IT professionals typically design queries — whether
“ad hoc” or pre-defined — that extract detailed information directly from the
supporting database management systems. Some form of visualization module
may also be utilized to streamline the user interface. Analysis at this point is
likely to be quite simple, consisting of sorting and basic aggregation, and lacks

the sophistication to uncover anything but the most obvious features of the

13

stored data.

e OLAP. Online Analytical Processing extends the basic reporting capabilities of
Information Processing systems by allowing a robust multidimensional analysis
of the archived data from a variety of perspectives and hierarchies. Operations
such as drill-down, roll-up and pivot (to be discussed in Section 2.3) provide
insights into corporate growth, spending, and sales patterns that would simply
not be possible otherwise. Additional OLAP functionality may include opera-
tions for ranking, moving averages, growth rates, statistical analysis, and “what
if” scenarios. Note that the terms “DSS” and “OLAP” are sometimes used in-
terchangeably. However, in this thesis OLAP refers to only one approach to the

design of DSS functionality.

e Data Mining. This third class represents the “natural evolution” of knowledge-
based data management systems. In this case, our goal is to automate the
discovery process so that trends and patterns can be retrieved with minimal
user input. The patterns are not necessarily those that are embedded directly
in the aggregated fields of the data warehouse. Rather, they may consist of
subtle regularities that cross hierarchical and/or dimension boundaries and, as
such, would be less likely to be discovered by conventional OLAP techniques.
Typical data mining operations include classification (categorization of novel
items), association (identification of patterns and trends), and cluster analysis

(identification of data groupings via multi-attribute similarity).

2.2.1 The Historical Context of OLAP

The multi-dimensional analysis of data can in some sense be traced back to the intro-
duction of the programming language APL in the early 1960s [66]. While particularly

obscure syntactically, APL was interesting from a data analysis perspective in that

14

it explicitly supported the use of multi-dimensional variables. Nevertheless, its “un-
friendly” nature prevented it from being more widely used.

A decade or so later, the first true multi-dimensional product — Express [37] —
arrived on the market. It stored data in an array-based format and permitted some
degree of dimensional analysis. Over the next ten or fifteen years, numerous other
decision support products, from companies such as Comshare [20], Metaphor, and
Pilot [96], were developed. Over time, these systems moved away from time-shared
mainframe implementations towards client /server network-centric applications. Still,
none were widely supported since they either required excessive hardware resources,
were limited in functionality, or were non-intuitive to use. In fact, during this time
period, it was the spreadsheet that was most often associated with multi-dimensional
analysis.

By the 1990s, processing power had grown to such a degree that serious data-
intensive applications were now completely viable on cost-effective PC networks. In
addition, the emergence of the Internet/Web lead to a marked increase in the amount
of digital information available for analysis. The combination of these two factors
eventually encouraged the introduction of a whole new generation of advanced multi-
dimensional tools, a trend that has continued into the present time frame. In fact,
current projections set the value of the OLAP market at five billion dollars by 2004
[88]. Figure 2.1 depicts annual growth rates for successive years, beginning in 1994.

At present, the list of major “players” includes companies such as Hyperion, Cog-
nos, Microsoft, Oracle, MicroStrategy and Business Objects. Microsoft, in particular,
with the introduction of its low cost SQL Server 7.x and Analysis Services 2000, has
become the fastest growing vendor and will likely challenge Hyperion as the market
leader within the next two or three years. Conversely, many of the original power-
houses, such as Pilot, Gentia, and Informix, have succumbed to competitive pressure

and have all but vanished.

15

$Billion
]

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
Year (Actual 1994 - 2001, Projected 2002 - 2004)

Figure 2.1: Worldwide total OLAP market share in billions of dollars.

In summary, the message to be drawn from this short introduction is that, after a
lengthy evolutionary period, OLAP has emerged as a pervasive and crucial element
of decision support systems. At present, the list of vendors includes some of the
world’s largest software providers. Given the significance of the area, it is perhaps
not surprising that OLAP-centric publications have become increasingly common in

the database literature during the past five or six years.

2.3 Defining OLAP

Despite the long history of applications for multi-dimensional analysis, the term
“OLAP” was not coined until 1992. In that year, E. F. Codd, the originator of
the relational database model, produced a report entitled “Providing OLAP (on-line
analytical processing) to user-analysts: An IT mandate” [19] that formally identified
the new field. The following list, taken from that report, identifies the twelve features

that would/should make up any OLAP application:

1. Multidimensional conceptual view. This supports “slice-and-dice” opera-

tions and is usually required in financial modelling.

10.

16

. Transparency. OLAP systems should be part of an open system that supports

heterogeneous data sources. Furthermore, the end user should not have to be

concerned about the details of data access or conversions.

Accessibility. OLAP should present the user with a single logical schema of

the data.

Consistent reporting performance. Performance should not degrade as the

number of dimensions in the model increases.

. Client /server architecture. Requirement for open, modular systems.

Generic dimensionality. Not limited to 3-D and not biased toward any
particular dimension. A function applied to one dimension should also be able

to be applied to another.

Dynamic sparse-matrix handling. Related both to the idea of nulls in rela-
tional databases and to the notion of compressing large files, a sparse matrix is
one in which not every cell contains data. OLAP systems should accommodate

varying storage and data-handling options.

Multiuser support. OLAP systems need to support multiple concurrent

users, including their individual views or slices of a common database.

Unrestricted cross-dimensional operations. Similar to Rule 6; all dimen-
sions are created equal, and operations across data dimensions do not restrict

relationships between cells.

Intuitive data manipulation. Ideally, users shouldn’t have to use menus
or perform complex multiple-step operations when an intuitive drag-and-drop

action will do.

17

11. Flexible reporting. Save a tree. Users should be able to print just what they
need, and any changes to the underlying financial model should be automatically

reflected in reports.

12. Unlimited dimensional and aggregation levels. A serious tool should

support at least 15, and preferably 20, dimensions.

The list is largely self-explanatory and clearly emphasizes the multi-dimensionality
of the data and the ease with which users should be able to access it. However, while
significant in that it was the first meaningful attempt to describe the OLAP environ-
ment in a structured manner, it is worth noting that the report did not become the
definitive industry standard — as had Codd’s earlier work on relational databases
[18]. Perhaps some of the public skepticism stems from the fact that the report was
commissioned by Arbor Software, a leader in the OLAP application field. Neverthe-

less, it remains one of the few formal OLAP specifications.

2.3.1 OLAP: A Functional Definition

Though the Codd report indirectly emphasized the functionality that a commercial
AOLAP application should possess, it did not explicitly define the core OLAP op-
erations. In fact, there are five such fundamental features that have come to be
synonymous with the OLAP label. The list below presents these functions, while

graphical examples are provided in Figures 2.2, 2.3, and 2.4.

¢ Roll-up. The roll-up operation collapses the hierarchy along a particular di-
mension(s) so as to present the remaining dimensions at a coarser level of ag-
gregation. Figure 2.2 illustrates how the “location” dimension, originally listed

in a city-by-city fashion, is aggregated in order to provide provincial totals.

18

e Drill-down. In contrast, the drill-down function allows users to obtain a more
detailed view of a given dimension. Again, in Figure 2.2, we see how the “prod-
uct” dimension is broken down from its initial, broad categories into product-

specific listings.

e Slice. Here, the objective is to extract a slice of the original cube corresponding
to a single value of a given dimension. No aggregation is required with this
operation. Instead, we are allowing the user to focus in on values of interest.

Figure 2.3 illustrates the process for a single value of the “product dimension”.

e Dice. A related operation is the dice. In this case, we are defining a subcube
of the original space. In other words, by specifying value ranges on one or more
dimensions, the user can highlight meaningful blocks of aggregated data. In
Figure 2.3, a subset of dimension values on product, location, and customer

have produced the 3 x 2 x 2 subcube.

e Pivot. The pivot is a simple operation that allows OLAP users to visualize
cube values in more natural or intuitive ways. While Figure 2.4 provides a
simple example with a symmetrical 4 x 4 x 4 cube, the pivot operation can be

equally effective with dimensions of varying cardinality.

2.3.2 OLAP: The FASMI Definition

The OLAP Report — an independent journal that provides product and marketing
information for the OLAP industry — has itself defined a metric they call FASMI
or Fast Analysis of Shared Multidimensional Information [88]. The FASMI definition
succinctly describes the criteria that may be used to grade or compare OLAP products
and, though simple and decidedly informal, it has nevertheless become one of the most

commonly referenced OLAP metrics. Its criteria are presented in the following list:

Halitax

Mencton

St. John < 1

Tabl
able P
Chair »”

Halifax Tires
MB:&Z‘:”‘“ Nova Scotia d
St. John New Brunswick ? Spark Piugs A
Household Househotd Toaster L’
Automotive Automotive Microwave L
Kitchen Kitchen Television L~

Entertainment Entertainment Stereo

Original View Roll-up on Location Drill-down on Product

Figure 2.2: Roll-up and Drill-down on a simple three-dimensional cube.

Halifax
Dartmouth
Mongton
St. John s Nj‘",‘f“’"
t. John
Household Halifax
Automotive Automotive Dartmouth
Moncton
Kitchen Kitchen St. John
Entertainment Entertainment Entertainment

e P’ PlS
Original View Dice Slice

Figure 2.3: Slicing and Dicing a three-dimensional cube.

Halifax Household
Dartmouth Automotive
Moncton Kitchen
St. John Entertainment
Household Bob
Automotive James
Kitchen Susan
Entertainment Mary

P T’ x\iﬁ@i&"i’}@
Original View Pivot View

Figure 2.4: The Pivot operation.

20

e Fast. Vendors must be able to efficiently trade off pre-calculation costs and
storage requirements with real-time query response. Studies have shown that

users are likely to abort queries that take longer than thirty seconds to complete.

e Analysis. Tools should not only provide the five fundamental operations but
extras such as times series analysis, currency translation, and data mining ca-
pabilities. Most of the business and analytical logic should be available without

sophisticated 4GL programming.

e Shared. Security and concurrency control should be available when required.
As stated earlier, however, most OLAP systems assume that user-level updates

will not be necessary.

e Multidimensional. This is the key FASMI requirement. Regardless of the
characteristics of the physical implementation, the user must see the data in

subject-oriented hierarchies.

e Information. Applications must be able to handle vast amounts of data.
Again, regardless of the server model that is used, good OLAP applications

may have to support data cubes that scale to the terabyte range.

The FASMI list is significant in that it reduces the more technical Codd report to
a concise subset of intuitive requirements. More to the point, it highlights three of the
primary objectives of the current research — building an OLAP computational model

that is fast, inherently multi-dimensional, and scalable to very large data warehouses.

2.4 The Data Warehouse

While OLAP can be defined in terms of the functionality it offers, it is important to
note that sophisticated contemporary OLAP systems are almost always constructed

on top of a physical data management system known as a data warehouse. In fact,

21

our own research can be described as providing parallel OLAP processing in the
context of a data warehousing environment. It is therefore important to understand
the philosophy and design of these systems.

The classic definition of the data warehouse was provided by W. H. Inmon when
he described it as a “subject-oriented, integrated, time-variant, and non-volatile col-
lection of data in support of management’s decision-making process” [65]. What does
this imply? And why can we not simply use our production databases to support
OLAP processing and data mining activities?

To answer the second question first, there are a number of reasons why day-to-day
operational databases, often referred to as On-line Transaction Processing or OLTP
systems, are particularly ill-suited to decision support. The most salient of these

issues are as follows:

e OLTP databases contain detailed, transaction-oriented records. While this de-
gree of detail may be appropriate for day-to-day processing activities, it is not

well-suited to the problems of classification and trend analysis.

e Production systems record current information, typically by day or by week.
Again, this is inappropriate for decision support since one of the key components
of such systems is the ability to provide a complete history of the activity of

the organization.

e For the most part, OLTP systems are customer-oriented, in that they focus
on transaction activities that are driven by individual purchases (or some sim-
ilar metric). For decision support systems, on the other hand, we require a

perspective that helps to identify all market forces.

e Because operational databases function in high volume, read/write environ-
ments, they require sophisticated mechanisms for record locking and data recov-

ery. Conversely, apart from periodic updates, decision support systems should

22

only require read access to the data. As such, the server can be constructed so

as to provide more efficient access characteristics.

For supporting this kind of OLAP functionality, data warehouses provide an effec-
tive alternative to the transaction-oriented environment of the operational database.
They are organized around subjects, rather than atomic transactions. They represent
aggregated or summarized information from a variety of sources. They house data
collected over very long periods, typically years. And they are tuned for read-only ac-
cess. In other words they represent a “subject-oriented, integrated, time-variant, and

non-volatile collection of data in support of management’s decision-making process.”

2.4.1 Architecture

In general, data warehouses can be seen as three-tiered data models [56, 17]. Fig-
ure 2.5 provides a graphical representation. Information is first extracted from oper-
ational sources and then cleaned, transformed and loaded into the data warehouse.
We will refer to this pre-processing stage as Level 0. Though this first step is itself
outside the scope of the data warehouse proper, it is nonetheless a crucial activity
that has received considerable attention from OLAP vendors. Often, the production
data resides in a collection of remote, heterogeneous repositories and must undergo
considerable massaging before it can be integrated into a single clean store.

In any case, once the data has been culled from the remote sources, it is placed into
the data warehouse at Level 1, which at this point in time is almost always a relational
DB. The data warehouse itself may be constructed as a monolithic enterprise-wide
entity and/or a series of data marts, each containing some subset of the corporate
data. In either case, it will be the job of the OLAP server at Level 2 to actually supply
analytical functionality for the DSS system. In practice, there are two forms of OLAP
servers, known as ROLAP and MOLAP (discussed in greater detail in Section 2.4.3),

that may be used for this purpose. We note that while their conceptual aims are quite

23

Query Reports Analysis Data Mining

% Mol Pl Front-End Tools
Monitoring

Olap Server Olap Server
s 42
.
Administration

]
D o Date Warehouse %

=

=
—J =2 e

-

Olap Engines

Meta Data Repository

Extract Data Marts
Clean
Transforrn
Load |
Data Cleaning
s Rl W [S
. i Integration
Operational Databases External Sources

Figure 2.5: The three-tiered OLAP model.

similar, their internal data representations are quite different. Finally, in the top-tier,
we find the front end tools that provide a user-friendly (often graphical) interface for

the knowledge workers who will exploit the system.

2.4.2 The Star Schema

Operational databases are typically designed using the Entity-Relationship model.
Here, objects or entities of interest are defined, along with the sometimes numer-
ous and complex relationships between them. This type of database is well-tuned
for transaction processing which typically requires rapid insertion/deletion of small
records. However, it is not particularly well-suited for data warehousing, where the
goals are (i) resolving complex queries and (ii) batch loading and updating. In partic-
ular, we do not want numerous join operations on many small tables; such processing
would be far too expensive for the multi-dimensional queries typical of OLAP com-
puting.

Instead, the standard database design for OLAP is what’s known as the Star

Schema. Figure 2.6 provides a simple illustration. In this particular case, the Star

24

Location Product
Location Key Product Key
City Name
Prov/State Category
Country List Price

Fact Table
Location Key
Date Key
Product Key
Date Customer Key
g:;e Key Total Sales Customer
Month ﬁ;’rsntgmer Key
Yea
ear Address

Figure 2.6: A four-dimensional Star Schema.

Schema identifies a group of four dimensions that are of interest to the user group.
Each of these dimensions is associated with a table or relation that encapsulates the
core information necessary for a complete understanding of that dimension. One of
the fields in the dimension table serves as the primary index (depicted in italics).

In addition to the dimension tables, a fact table is also included. The fact table
‘houses the detail records for the data warehouse and consists of the dimensional
coordinates (primary keys from the dimension tables), plus the value of one or more
numeric aggregations. In this case, we are describing “Total Sales” as it relates to
each unique combination of dimensional values. For example, a particular record in
the fact table might provide us with the value of all purchases of boating equipment
at the Halifax location for Customer John Smith during March of 2002.

This simple arrangement is appropriate for data warehousing because it allows
rapid querying/loading of the main fact table and because it reduces join operations
by creating a minimal number of secondary dimension tables. Moreover, it maps very
nicely to the multi-dimensional perspective of the data that end users will actually

visualize.

25

As a final note, we add that more complex design frameworks are possible. Such
extensions might be required, for example, when dimensions can be sub-divided into
hierarchies of sub-attributes (a full discussion of hierarchies will be provided in Chap-
ter 5). Nevertheless, even in such cases, the Star Schema still serves as the funda-

mental design model.

2.4.3 MOLAP, ROLAP and Multi-dimensional Data

One of the most important elements of OLAP environments is their reliance upon
multi-dimensional data values. As mentioned previously, data warehouses represent
subject-oriented records rather than transaction-oriented ones. As such, aggregated
values can be viewed as existing within a logical cube, where the user is free to index
the cube on one or more dimensional axes. In the nomenclature of OLAP, this type
of conceptual representation of the data gives rise to what is known as a data cube
(see Section 2.5 and Figure 2.8). It is this cube-like model, in fact, that is the focus
of the second tier of the DSS architecture, the OLAP server.

Since the data cube suggests a multi-dimensional interpretation of the data space,
a number of OLAP vendors have chosen to physically model the cube as a multi-
dimensional array. These multi-dimensional OLAP (MOLAP) products offer rapid
response time on OLAP queries since, in theory at least, it is possible to index directly
into the data cube structure to retrieve subsets of aggregated data. Unfortunately,
MOLAP solutions have not proven to scale effectively to large, high-dimensionality
data sets [10] (though MOLAP capacity has grown significantly in recent years).
The problem is that as the number of dimensions grows, the data in the data cube
becomes increasingly sparse. In other words, many of the attribute combinations
represented by the data cube structure do not contain any aggregated data. As such,
a fully materialized MOLAP array can contain an enormous number of empty cells,

resulting in unacceptable storage requirements [101]. Though compression techniques

26

are often used to alleviate this problem, doing so destroys the natural indexing that
makes MOLAP so appealing. As a result, awkward hybrid indexing schemes — that
combine both sparse and dense sub-arrays — are required.

In contrast, relational OLAP (ROLAP) seeks to exploit the maturity and power of
the relational paradigm. Instead of a multi-dimensional array, the ROLAP data cube
is implemented as a collection of relational tables, each representing a particular view
of the data. Because the views are now conventional database tables, they can be
processed and queried with traditional RDBMS techniques (e.g., indexes and joins).
More importantly, however, they can be more efficient on very large data warehouses
since only those data cube cells that actually contain information are housed within
the tables. The “empty” portions of the space do not have to be represented in any
way. On the downside, there is no “built-in” indexing with a ROLAP cube as there
would be with a MOLAP implementation. Instead, all attribute values within the
record must be included with the aggregated or summary values so that the record’s
position within the cube can be determined. One might liken this to a fully-qualified
path name in operating system terminology. This additional overhead tends to offset
some of the space savings, particularly in dense environments. Furthermore, the
absence of an implicit index implies that an explicit one must be provided. In practice,
this can be a challenge of considerable importance since eflicient multi-dimensional

indexing techniques are notoriously complex.

2.5 The Data Cube

In the previous section, we informally introduced a multi-dimensional structure called
the data cube, describing it as a data abstraction that allows one to view aggregated
data from a number of perspectives. In this section, we will formalize the data cube
concept and introduce a number of important sequential algorithms for its computa-

tion that have been reported in the literature.

27

Before proceeding, however, we introduce some of the basic terminology necessary
for a thorough understanding of the problem. We begin by noting that a standard
OLAP analysis environment consists of a group of dimensions, each of which has been
identified by the data warehouse designers as being of interest to the user community.
Dimensions are also known as attributes; we will use these terms interchangeably
throughout the remainder of the thesis. Attributes can be of two types. Feature
attributes refer to those dimensions that represent entities or concepts central to
the structure of the organization. Examples would be things such as customer and
product. Measure attributes, on the other hand, refer to the items of interest, the
values that will be aggregated in terms of the feature attributes. We note that while
there may be many feature attributes, in most cases there will be a very small number
of measure attributes (often just one). Our example in Section 2.4.2 identified “Total
Sales” as the measure attribute; an aggregate sales figure was associated with each
unique combination of feature attributes in the fact table.

Measure attributes may be calculated using functions from one of three distinct

categories.

e Distributive. Functions in this category have the unique feature that when
computed across independent data partitions, the partial results can be com-

bined into a single aggregate. Examples are sum, min, and max.

e Algebraic. Simply put, an algebraic function is one that can be produced by
combining distributive functions. Examples would include average and standard

deviation.

e Holistic. Functions in this category cannot be decomposed into algebraic func-
tions. Median and rank are common examples. In general, holistic functions
are difficult to compute efficiently and practical implementations often resort

to approximations.

28

For convenience, we will utilize a single distributive measure attribute throughout
the thesis, namely summation. Virtually all data cube related research papers employ
this same simplification.

We also note that with a d-dimension space, each of the d attributes {4;, Ay ... Ay}
has a cardinality that identifies the number of unique values for that attribute. For
example, if one of the data cube dimensions is “Product”, and there are 275 individ-
ual products in our database, then the cardinality of Product, denoted |Product|, is
275. We refer to the group of d cardinalities as the cardinality set C.

In total, a d-dimensional data warehouse is associated with 2¢ views (sometimes
referred to as the view Power Set). In OLAP terminology, views are also known
as cuboids or group-bys. Again, we will use these terms interchangeably throughout
the remainder of the thesis. Each view or cuboid represents a distinct combination
of feature attributes, and can be seen as depicting an aggregation of the measure
attribute at a given level of granularity. For example, given the attribute set ABC,
we say that the aggregated view A is of coarser granularity than the aggregated
view AB. Note that we are interested in attribute combinations, not permutations,
since the order of the attributes does not matter. In practice, we usually substitute
letter labels for the attribute names. For example, Customer may be attribute *A’,
Product may be attribute 'B’, etc. The “Customer/Product” cuboid is therefore
simply referred to as AB.

The relationship between the 2¢ views — in terms of common attributes — is typ-
ically represented by a lattice [57]. See Figure 2.7 for a graphical illustration. Starting
with the base cuboid — the finest granularity view containing the full complement of
d dimensions — the lattice branches out by connecting every parent node with the
set of child nodes/views that can be derived from its dimension list. In other words,
the attributes of a parent view must be a superset of the attributes of a child view.

A parent containing & dimensions can be connected to k views at the next level in

29

Figure 2.7: The data cube lattice consists of all possible attribute combinations. The
“all” node represents the aggregation of all records.
the lattice, each of which contains & — 1 attributes. Conversely, a child view can be
associated with d — k parents (if this is not obvious, note that because the lattice
is perfectly symmetrical, the number of parents for a given view at level k is equiv-
alent to the number of children for a given view at level d — k). Finally, it should
be understood that parent/child relationships are not exclusive — parents can share
comimon children just as children may have common parents.

Conceptually, then, the data cube consists of the base cuboid, surrounded by
a collection of 2¢ — 1 sub-cubes/cuboids that represent the aggregation of the base
cuboid along one or more dimensions. Since the base cuboid contains all feature
attributes, it can be used to compute all of the other coarser cuboids by aggregating
across one or more of its component dimensions. In other words, it may be possible
to initially compute only a subset of all possible views, leaving the materialization of
the remaining views to some later time (if necessary). As such, a data cube can be
described as full if it contains all 2¢ possible views, or partial if only a subset of views

has actually been constructed.

30

Chevy By Make &
By Yesr /

\ By Make
/
White
Bive
By Colour
& Year
By Make & Colour
By Golour

Figure 2.8: A three dimensional data cube.

Figure 2.8 depicts a small, practical data cube example from the automotive
industry. Note that this is actually a partial cube since the single dimension views
are not depicted. This particular data cube has three feature attributes — make,
colour, and year — and a single measure attribute — sales. Sales is computed with
the distributive sum function. By selecting cells (a “point” query), planes (a “slice”
query), or sub-cubes (a “dice” query) from the base cuboid, we can analyze sales
figures at varying granularities.

One final note is in order at this point. We have described the data cube as a
conceptual model. However, in the case of a MOLAP server, it is also the physical
model, as MOLAP stores the cube structure directly as a (possibly compressed) multi-

dimensional array — typically drawn from the Star Schema described in Section 2.4.2.

2.5.1 The Data Cube Operator

Strictly speaking, no special operators or SQL extensions are required to take a raw
data set, composed of detailed transaction-level records, and turn it into a data struc-

ture, or group of structures, capable of supporting subject-oriented analysis. Rather,

31

the SQL group-by and union operators can be used in conjunction with 2¢ sorts of
the raw data set to produce all cuboids. However, such an approach would be both
tedious to program and immensely inefficient, given the obvious inter-relationships
between the various views. Consequently, in 1995, the data cube operator— an SQL
syntactical extension — was proposed by Gray et al. [50] as a means of simplifying

the process of data cube construction.

2.6 Data Cube Algorithms

Subsequent to the publication of the seminal data cube paper, a number of inde-
pendent research projects began to focus on designing efficient algorithms for the
computation of the full data cube [3, 10, 57, 101, 105, 122]. Most were based upon
the exploitation of the data cube lattice. It should be clear from the lattice depiction
that many views share common dimension values and that any efficient computational
mechanism for producing group-bys must exploit these relationships. For example, a
three-dimensional cuboid — say ABC — can be viewed as the parent of three two-
dimensional cuboids — AB, AC, BC — each of which contains a distinct combination
~of two dimensions of the parent. Clearly, it should not be necessary to independently
compute all four views since the parent and one or more of the children may be able
to share some portion of the aggregation workload.

For convenience, we may group the primary data cube algorithms into three gen-
eral categories: top down, bottom up, and array-based. In this section, we will look at
an example of each. We note that it is important to understand the mechanics of the
sequential algorithms — at least from a conceptual standpoint — since parallel coarse

grained algorithms often exploit the strengths of existing single processor techniques.

32

2.6.1 Top Down

The top down methods work directly from the lattice to compute smaller group-
bys from larger parents. For example, the parent view ABCD might be used to
generate ABC, AB and A. Perhaps the most well known technique from this class is
the PipeSort [105]. In fact, the PipeSort forms the basis of our parallel data cube
algorithms in Chapter 3 and Chapter 4. For this reason, we will describe the algorithm
in some detail.

Conceptually, the PipeSort works from fine granularity views to coarse granularity
views. It is a “relational” or ROLAP algorithm in the sense that is works directly
from, and with, standard relational tables. The designers of the algorithm identified
a number of goals or features that should be exploited when determining how to most

efficiently construct a particular view. That list includes:

e Smallest Parent. As the name would suggest, this optimization tries to com-

pute a view from the smallest previously computed parent.

e Cache Results. If views are small enough to fit into memory, we should use

them to compute child views before writing the original view to disk.

e Amortize Scans. Since more than one child contains a subset of the attributes
of a given parent, we should use that parent to compute multiple child views

whenever possible.

e Share Sorts. If a sort-based technique is employed, a single sort should be

shared by output views containing common attributes.

It should be noted that some of these optimization objectives may be contradic-
tory. The goal, then, for an algorithmic implementation is to find effective trade-offs
that are robust across variations in data set size and dimension count. In the case

of the PipeSort, the objective is to extract an appropriate minimum cost spanning

33

tree (MCST) from the original lattice. The PipeSort MCST represents a counected
graph of 2¢ nodes and 2¢ — 1 edges, with each vertex having an in-degree of exactly
one. In other words, the MCST represents a unique “plan” in which the the cost of
traversing edges — and thereby building cuboids — will be minimized.

The PipeSort algorithm is presented in Algorithm 1. The algorithm works by
setting the sort orders for the group-bys at successive levels, starting from the bottom
of the tree and working upwards. We note that although the tree is constructed in
a “bottom-up” fashion, the physical views of the data cube itself will be constructed
top down from the complete MCST. Hence the top-down classification. At each level,
we effectively decide the most efficient way to define the sort orders of level &k + 1,
given the orderings that have been defined for level k in the previous iteration of the
algorithm (Note that level 0 represents the bottom of the lattice). We note that for a
given group-by in level £ + 1, only one child view in level k can share the same sort
order; the parent view must be completely re-sorted in order to construct any other
children. The most “efficient” mapping from level k + 1 to level k must therefore take
into account the costs associated with re-sorting a given view versus simply scanning
an already sorted view. We refer to these two cost measures as the Sort cost and the

Scan cost, respectively.

Algorithm 1 Sequential PipeSort

Input: A lattice of 2¢ nodes augmented with “sort” and “scan” costs.
Output: A minimum cost spanning tree.
1: for level k =0 tolevel d — 1 do
2. Generate-Plan(k + 1 — k)
3: for each group-by ¢ in level & + 1 do
4: Fix the sort order of g as per the order of the group-by in level k that is
connected to g by a “scan” edge
5: end for
6: end for

34

It should be clear that the key step in Algorithm 1 is the call to the Generate-Plan
function. Algorithm 2 explains how Generate-Plan actually works. Any two levels k
and k+ 1 can be represented as a bipartite graph. Note that a bipartite graph G(V, E)
is one in which the vertices v € V' can be divided into two disjoint sets {V,, V;.} such
that there is no edge e(vy,ve) € E with endpoints (vy,ve) € V. or (v1,v3) € V. In
other words, edges never connect vertices in the same partition. Given the bipartite
representation, we may reduce the plan generation to a weighted bipartite matching
problem. We note that a matching on a bipartite graph defines a subset of edges
M C FE such that for all vertices v € {V,, V,.} at most one edge is incident on v, where
“e incident on v” implies e(v,u) or e(u,v). Simply put, no two edges in M share
the same endpoint. A mazimum weighted bipartite matching, then, finds a matching
on G(V, E) such that when a numeric weight w(e) is associated with each edge, the
combined aggregate weight »__.,, w(e) is maximized.

The Generate-Plan function uses the weighted bipartite matching algorithm to
define the minimum cost mapping from level £k + 1 to level k. We note that by
“inverting” the edge weights — w(e) = max(w) — w(e), where maxz(w) is the heaviest
edge in F — a maximum matching becomes a minimum matching. In order to use
the weighted matching algorithm, we augment the bipartite graph by adding k& copies
of each group-by in level k£ + 1 and associating these copies with the sort cost of the
group-by. The original group-by is given the scan cost. Once augmented, the weighted
bipartite matching can be performed, leaving a minimum cost edge set connecting
the two levels. The final step is simply to re-order the attributes of the group-bys in
level k& + 1 to match those already defined on level k. Figure 2.9 provides a graphical
illustration of the Generate-Plan algorithm.

When the PipeSort Algorithm has completed, we are left with a minimum cost
spanning tree in which all sort and scan edges have been defined. Figure 2.10 provides

a simple graphical illustration for a four-dimensional data cube. Note that a series of

35

Algorithm 2 Generate Plan

Input: The nodes of level k and k& + 1.
Output: A minimum cost matching.

1: for level k =0 to level d — 1 do

2: Create k additional copies of each level £ 4+ 1 group-by
3: Connect each new vertex to the same set of child vertices as the original
4: Assign “Sort” costs to the new edges and “Scan” costs to the original.
)
6

Find the minimum cost matching on the augmented bipartite graph.
: end for

ONONRC,
(a) Possible Pathways

.\Q.Q’.

(b) Transtormed Search Lattice

2 10 5

2. 6 @&
.\®\®

(c) Minimum Cost Matching

Figure 2.9: The parent level is augmented to include both sort and scan costs. Bi-
partite matching gives us the “cheapest” way of producing level k from level & + 1.
Note: “scan” edges are dashed, while “sort” edges are solid.

36

Figure 2.10: A four dimensional minimum cost PipeSort spanning tree.

prefix-ordered pathways or pipelines has been identified. As such, it is now possible
to generate all the views in a pipeline — say CBAD — CBA — CB — C — all
— with a single sort and scan. To do so we sort the input set (i.e., fact table)
in the order CBAD. Now we make a linear pass through the sorted set, combining
the measure value of common records into a single composite value. We note that
all common records are contiguous since the set is sorted. Moreover, because all
views in the pipeline share the same prefix-order, we may concurrently compute the
aggregations on each of the views. For example, if a pair of contiguous record r; and
ro have different feature attributes, then we can write the aggregate value for r; to the
output file and initialize the new aggregate with the measure value of 5. At the same
time we can check each of the coarser granularity aggregates in the pipeline to see if
an aggregate needs to be written to their output views. In fact, only one aggregation
variable need be maintained for each group-by. Once the pass is complete, all views
in the pipeline have been generated. The processing of all pipelines results in the

generation of the full data cube.

37

2.6.2 Bottom Up

For each extra dimension that we add to the base cuboid, the total number of views
in the fully materialized data cube exactly doubles. Moreover, as the dimensions
increase, the high-dimension cuboids become increasingly sparse. In other words,
many of the cells in the cube have no values in them. Sparsity ultimately results in
a large number of views that are almost as big as the base cuboid. Since top-down
algorithms tend to utilize views in the upper portion of the lattice as pipeline input
sets (i.e, the parent of some set of views sharing a common prefix), sort costs can
grow significantly in large sparse spaces.

To help reduce the penalty associated with the sorting of many large views, bottom
up methods have been proposed. In this section, we describe one of the most well
known — the BUC or Bottom-Up Computation algorithm [10]. Bottom up algorithms
work by first aggregating (usually with a sort) on a single dimension, then recursively
partitioning the current result set in order to aggregate at successively finer degrees of
granularity. Algorithm 3 describes how this works in the case of BUC. The recursive
algorithm takes as input a relation (i.e, a set of multi-dimensional records), plus the
current dimension. Initially, the input relation is the fact table, while the current
dimension parameter is the first attribute in the complete dimension list. We will
describe how the dimensions are ordered below. In the first step, the input set is
scanned and aggregated into a single output record. Step 2 will be explained shortly
— it will be skipped it for now. In the main algorithm loop, we begin by determining
the cardinality ¢ of the current input set, where the cardinality represents the number
of distinct values for the current dimension to be partitioned. Once we determine the
cardinality, then we arrange the input set into ¢ partitions. BUC uses sorting for this
purpose. When the partitions have been defined, we iterate through the partitions,
recursiely calling the BUC algorithm, this time using the current partition as input,

along with the incremented current dimension variable (so that we examine only

38

the remaining dimensions). When we have finished the current set of partitions,
the algorithm will backtrack and process the next partition at the previous level of

recursion.

Algorithm 3 The BUC Algorithm

Input: The partition to be aggregated, plus the current dimension d
Output: A single record that represents the aggregated input.
: Aggregate input relation
if input count == 1 then
Write ancestor records and return
end if
Write output record from Step 1
{/* process remaining partitions of finer granularity */}
numDims = total number of dimensions in data cube
for dim = d; dim < numDims; dim~++ do
¢ = cardinality of dimension dim
Partition input on its ¢ unique values
10: for each of the ¢ partitions in the input set do

11: Recursively call BUC(partition, dim + 1) using the current partition as input
12: end for
13: end for

Figure 2.11 provides an illustration of the recursive subdivsion of a four dimen-
sional space. In this case, BUC will first partition (i.e., sort) the input set on A. It
will then aggregate on <al> before partitioning <al> into its <albl> and <alb2>
components. This recursive partitioning will continue until the last dimension has
been reached. Eventually, the backtracking will return the algorithm to the <a2>
partition, at which point the whole process is repeated.

The BUC algorithm is well-suited to sparse, high dimension data cube problems

for two main reasons.

1. In Step 2 of the algorithm, we check to see if the size of the current partition
is equal to one. If it is, then we know that there is no value in continuing the

recursion since no further partitioning can be performed. We therefore write

39

atbicl albicidi

aibt ailbicid2

atbic2 albic2di
—

at a1boc alb2cidil

alb2cid2

ailb2c2d1

a2

et a2bicidi

a2 azni az2bic a2bicid2

a2b2 a2b2ci a2b2cidi

§2b202 §2¥6?111

a3bi a3bict adbictdl
agbicid2

a3b2cid1
a3b2cid?
232 adb2c2d1
a3 23262 a3b2c2d2
a3b2c2d3
a3b2c2d4
e

a3b3ci a3b3cidi
a3b3 a3b3cid2
a3b3c2 a3b3c2d1

alb2

alb2c2

a3b2c1

Figure 2.11: The bottom up “perspective”. Partitioning proceeds left to right.

out the aggregates for all ancestors and return immediately. For example, when
we encounter the tuple <alble2>, we know that we can write the aggregate
value for <alblc2d> without further processing. Because many partitions will
in fact have a size of one in sparse spaces, this short circuiting can significantly

improve performance.

2. As it recursively partitions the input set, BUC divides the data into smaller and
smaller segments. Consequently, it is increasingly likely that these partitions
fit entirely into main memory, possibly reducing the reliance on more expensive

external memory sorting.

Asnoted above, the order in which the attributes are partitioned is also important.
Specifically, BUC partitions the attributes in order of decreasing cardinality. In so
doing, it minimizes the use of large sorts since the maximum cardinality dimension
will immediately split the data into as many small partitions as possible.

Experimental results for BUC, reported in [10], demonstrate approximately a fac-
tor of two performance advantage with respect to alternative data cube algorithms in

sparse spaces. We note, however, that the benefit of BUC tends to be limited to these

40

full cube, high dimension problems. When denser views — the kind typically found
in the lower levels of the lattice — are required, the authors themselves acknowledge
that the time to recursively partition input sets can dominate the run time since very
little short-circuiting takes place. As a result, BUC is ill-suited to problems in which

large sparse views either do no exist or are not required.

2.6.3 Array-based

While the PipeSort and BUC algorithms work specifically with relational tables,
another approach is to exploit data sets that have been encoded directly in an array-
based format. This corresponds to the MOLAP model described in Section 2.4.3.
Though much of the existing MOLAP work is associated with commercial products,
and is not well described in the literature, Zhao et al. [122] have published a well-
referenced paper that uses array-based computation. We will refer to their method
as the ArrayCube algorithm.

ArrayCube works directly upon what are known as chunked arrays [106]. By
chunking, we mean that instead of arranging a multi-dimensional array in conven-
tional row magjor order {(e.g, an A x B array would be written as A consecutive vectors
of size |B|), the array is written to disk in block-size units, where each block con-
stitutes a multi-dimensional sub-cube extracted from the parent array. Figure 2.12
provides a graphical example on a 16 x 16 x 16 three-dimensional cube, in which
each sub-cube is made up of a 4 x 4 x 4 sub-array. In this case, the 64 chunks are
stored on disk in the order indicated by the numbering pattern. With chunking, ac-
cess patterns — both during cube computation and at query time — are significantly
improved since one dimension is not “favored” over another. Figure 2.13 illustrates
how chunking “equalizes” retrieval patterns, ensuring that in this case no more than
two blocks are retrieved regardless of the dimension queried.

Unlike the ROLAP algorithms which generally rely upon sorting to identify records

41

61,6263 64
45,46, 47 /48
29,730, 31/32

b3|13 |14 |15 | 16

o2l 9 110 [11 [12] V]

bi| 5| 6| 7| 8 ADL:
c2

bol 1121 3] 4 ct
cO

a0 a1 a3 a4

Figure 2.12: A three-dimensional chunked cube.

0b1

0b1b2b3b4 b5 mhlbzmﬁ

a0 | ... al
at al
a2 | az
a3 a3
aal T a4
a5 a5
a6 ~ ab
2 a7

a8

b2b3b4bs a8
5 9

o0 ao [~ b

d““ ato [0 at0

\a a [a1l

b0 b1b2 [b3bqbs

b0 b1b2 b3b4b5 a0
a0 at[777
al{ 7T [T a2 "7
ag[""" T E I
EI R Y

Original View |:s """""" I :g """
a5
aé

a6 E A
a7 1 [T a8 "]
o a9l 7777 [
-2 N I ato| T 777
EXL R U R XK
alt

Select (A >= 3) Select (B >= 3)

and (A <= 4) and (B <= 4)

Figure 2.13:

Access patterns for chunking versus row major storage.

42

with common attribute values, the ArrayCube uses the structure of the cube itself to
support aggregation operations. Specifically, it “walks” through the array, chunk by
chunk, aggregating values into cuboids at various granularities. No sorting is required
since the indices of the array implicity define the values of the feature attributes. The

chief contributions of the ArrayCube algorithm are :

1. It minimizes the memory required to materialize the various cuboids.

2. It identifies the parent cuboids that should be used to most efficiently compute

child views.

The authors in [122] noted that for a given chunk order, some cuboids/sub-arrays
could be constructed without materializing their entire contents in memory. In other
words, these cuboids could be aggregated in sections. Once a given section or partition
was completed, it could be immediately written to disk and its memory could be used
for the next partition. They further observed that total memory requirements were
minimized when the traversal pattern was ordered so that attributes were arranged
in order of ascending cardinality. For example, if for a three-dimensional cube the
attribute cardinality was given as A = 10, B = 50, C' = 100, then the traversal order
would be A — B — (. This is in fact the traversal order for Figure 2.12 — we walk
along dimension A, then dimension B, then dimension C'. Figure 2.14 illustrates how
this is done for the AB, AC, and BC' cuboids generated from the ABC base cuboid.
As the picture suggests, BC' can be computed with just one buffer since as we walk
the cube in the given order, we can aggregate and write out results after every four
chunks; no subsequent chunks need to be considered. This is not the case with the
other two cuboids — we need to keep more buffers in memory. In fact, the AB cuboid
requires the entire plane to be available.

In addition to the ordering issue, the ArrayCube authors proved that given multi-

ple possible parents views, a child cuboid should always be computed from the parent

43

_.’ “]
o BC aggregation
» buffer
; @

61

Q BC cuboid
4 .
YT ATA * AC aggregation
b3 13|14 {15 |16 @ca buffers

% wm

p2| 9 |10 |11]12
o 5 6 7 8 ‘02 al al a2 a3
c
L AC cuboid
ABC b_ase
cuboid / AB aggregation
g buffers
b3
: hzizl=
. B E
bo
LI HEEE
AB cuboid haiod

Figure 2.14: Generating group-bys with ArrayCube.

that housed the smallest possible prefix of the child. This is important since we do
not want to compute each cuboid from all of the cells in the base cuboid — it is much
more efficient to use smaller intermediate parent views, as is done in PipeSort. As a
concrete example, given an A — B — C traversal order, the cuboid B could be more
efficiently computed (in terms of required memory) from AB than from BC since BC
represents a prefix of size one on B, while AB contains no prefix whatsoever.

The algorithm utilizes these various observations to construct a minimum memory
spanning tree. This MMST defines the ordering of the attributes, as well as the parent
views used to compute each child. The complete process is described in Algorithm 4.

Note the recursive nature of Step 6. Once a cuboid partition has been completely
processed, it is used to compute child cuboids while its cells are still in memory.
In a conceptual sense, the ArrayCube can be seen as being composed of a series of

pipelines, in much the same way as the ROLAP PipeSort uses sorting pipelines.

44

Algorithm 4 The ArrayCube Algorithm

Input: A d-dimensional data set in chunked format.
QOutput: A complete data cube in chunked format.
1: Arrange the dimensions by increasing cardinality.
2: Construct a MMST, obeying (i) the defined ordering and (ii) the minimal prefix
rule
3. for each child view k , starting at the base cuboid do
4: Concurrently aggregate cells into the cuboid buffer(s) for each child k
5. if the current buffer for any k is fully aggregated then
6 Recursively process the children of k
T end if
8
9:

Write the k partition to disk and make its memory available if necessary
end for

On dense data sets, there is little question that the ArrayCube is a very efficient
algorithm. By avoiding sorting operations and thereby reducing data cube compu-
tation to a linear traversal of a chunked array, the ArrayCube provides impressive
experimental numbers [122]. The drawback, however, is that even with the MMST,
memory requirements for the algorithm can be excessive as the number of dimensions,
and their associated cardinalities, grows. And while the algorithm can be re-organized
as a “multi-pass” procedure to try to deal with this problem, it remains memory sen-
sitive. Having said that, given a small dense data set, the algorithm can be effective.
In fact, for data sets of no more than 500,000 records and five dimensions, the authors
demonstrated that they could take relational data, convert it to chunked format, run
the ArrayCube on it, and convert the data cube results back to relational storage

faster than one of the existing ROLAP algorithms could accomplish the same task.

2.7 Conclusions

Decision Support Systems have become a prominent component of most corporate I'T
strategies. At the heart of the DSS sits the powerful combination of data warehousing
and OLAP. In recent years, a significant amount of research has focused upon the

exploitation of algorithms and data structures required to support large scale OLAP

45

functionality. While the industry continues to change — and grow — at a relatively
dramatic pace, it is also true that there are enormous possibilities that remain to be
explored in this area.

In this chapter, we have examined the concepts and functionality at the heart
of On-line Analytical Processing and the data cube. We began with a discussion of
the general area of Decision Support Systems, contrasting the sometimes overlapping
fields of Information Processing, true OLAP, and Data Mining. Core OLAP oper-
ations were illustrated, with a particular emphasis on the multi-dimensional nature
of the data and its associated processing. Finallyy MOLAP and OLAP servers were
examined in the context of the three-tiered DSS.

The data cube, both as a logical and physical construct, was also discussed in
some detail. A number of optimized algorithms for data cube generation currently
exist. The techniques were categorized and an example of each class was presented.
The PipeSort, perhaps the most well-known of the top down techniques, forms the
basis of our work on parallel data cube computation and will be further discussed in

Chapter 3 and Chapter 4.

Chapter 3

Computing Full Data Cubes in
Parallel

3.1 Introduction

One of most important recent research problems in the area of Decision Support
Systems is the efficient implementation of the data cube [3, 10, 50, 57, 101, 105, 122].
In the sequential setting, a significant amount of data cube related work has already
been carried out. As discussed in Chapter 2, the primary focus of that research has
been upon algorithms (i) that reduce computation by sharing sort costs [3, 105], (ii)
that minimize external memory sorting by partitioning the data into memory-size
segments [10, 101], and (iii) that represent the views themselves as multi-dimensional
arrays [50, 122]. By contrast, relatively little research effort has been focused upon
parallel computation. The small amount of work that has been performed to date has
shown itself to be either overly-simplistic or inefficient on existing parallel machines
[48, 54, 84, 86].

In this chapter, we describe in detail the design and evaluation of a load-balanced
and communication efficient parallel algorithm for full data cube construction. Our
approach is to distribute view subsets to individual nodes, where efficient sequential
algorithms can be used to independently calculate their assigned workload. Designed

and optimized for distributed memory parallel machines, the new parallel algorithm

46

47

is suitable for multi-computers with and without a shared disk array.

We also present experimental results that demonstrate the viability of our ap-
proach. Our evaluation explores the impact of parameters such as the number of
processors, the size of the input set, and the total number of views. In short, we
demonstrate that our algorithm produces running times that are near optimal with re-
spect to those of the underlying sequential approach. We also show that the algorithm
scales effectively to larger problems. In fact, in recent testing using a 24-processor
Linux cluster, data cubes exceeding one terabyte in size have been constructed in just
over one hour.

The chapter is organized as follows. Section 3.2 reviews previous research in the
area of parallel data cube construction. In Section 3.3, we present the motivation
for our own work in the field. A detailed description of the new parallel algorithm
is provided in Section 3.4, with Section 3.5 discussing algorithmic and system issues
relevant to high performance. We present the supporting costing model in Section 3.6.
In Section 3.7, we briefly describe the primary features of the physical implementation.
More formal algorithm analysis is then provided in Section 3.8. Our experimental
results are presented in Section 3.9. Section 3.10 is a review the chapter’s objectives,

with final conclusion provided in Section 3.11.

3.2 Related Work

Though a significant amount of data cube research has been performed in the sequen-
tial setting, parallel efforts in the area have been much less common, and arguably
less successful. In this section we review the four most significant methods previously
presented in the literature, and identify the benefits provided by these approaches as
well as those features that might in fact lead to sub-optimal or irregular performance

in practical environments.

48

Some of the most significant work on parallelizing the data cube that has been re-
ported in the literature has been undertaken by Goil and Choudhary {48, 47, 49]. Here,
the authors specifically target the MOLAP environment, constructing and processing
array-based structures rather than relational tables. In terms of their approach to
parallelizing the data cube workload, they have opted for a data partitioning model.
Fundamentally, there are two primary means of parallelizing the data cube problem.
One can either (a) localize view computation so that clusters of individual cuboids
are constructed on each node or (b) fully distribute each view so that every processor
computes a portion of every group-by. Many researchers are attracted to the second
approach because of the apparent simplicity of equitably partitioning array-based
structures across nodes. The Goil and Choudhary work takes this approach.

In [48, 47, 49], partitioning is performed by globally sorting the data set on a given
dimension A such that, for a p processor parallel machine, the original data set is split
into partitions A;, A, ... A,, one per processor. Furthermore, for 1 < i < j < p,
the partitioning guarantees that the value of A in any tuple of the locally sorted
partition A; is less than or equal to the value of A in any tuple of the local partition
A;. We note that there may be a single value of A that straddles partitions A; and
A;, when j =i+ 1. It is important to note that when data partitioning is performed,
partial results computed on distributed views may eventually have to be merged with
the partial results on other nodes. For example, if the data is partitioned across
processors on the attribute A, then all cuboids containing A as their first dimension
(view orderings can be altered to accommodate this requirement) can be computed
almost independently since there is at most one set of contiguous tuples with the same
value of A that can be found on different processors. For cuboids not containing the
attribute A, however, a merge of the partial results must be done. The standard
approach for reducing merge costs is to globally sort/partition the base “A” view

(i.e., the highest dimensional view containing the attribute A) on another attribute,

49

say B, at which point all those remaining views with B as the first attribute can be
computed independently. The process is repeated d times for each distinct dimension.
While this technique can significantly reduce re-partitioning costs, the total amount
of network traffic due to redistribution can still be quite large.

As noted, this parallel design uses array-based structures for cube computation.
For large problems — the ones ideally suited to a parallel machine — the authors
recognized that main memory would simply not be large enough to concurrently
house all of the necessary arrays. This is true even for parallel machines in that
the addition of p processors or memory banks provides only a constant increase in
memory capacity, while an increase in the number of dimensions causes the cardinality
product Hle C; to explode in size. As a result, arrays must be carefully partitioned
and controlled, a task that is supported by a powerful but complex memory manager.
In effect, the memory manager serves as a virtual memory sub-system, swapping
array segments to disk when necessary. For high cardinality spaces, however, even
disk devices are insufficient for materialization of all 2¢ cuboids when those cuboids
are stored in an array format. Consequently, complex chunk compression techniques
are required, with the result being that the data structures actually stored on disk
look very little like traditional arrays.

The build algorithm itself attempts to utilize available memory to construct par-
titioned cuboids. Because of the irregular structure of the compressed arrays, the
minimum memory spanning tree of the ArrayCube — and the simple chunk traversal
pattern associated with it — cannot be used. Instead, the authors use a modified form
of the PipeSort minimum cost spanning tree, employing bipartite matching to deter-
mine appropriate parent/child pairings. In this case, costing decisions must take into
account the size of computed views (a difficult task given the unpredictable form of
compressed chunks), network transfer speed (for re-partitioning distributed cuboids),

and chuck I/O costs. Once data cube build decisions have been made the chunks

20

must be read into memory and aggregated. Since the chunks themselves may be
compressed, additional overhead is required to process their contents. In some sense,
this is akin to tuple hashing, a process shown in [105, 86] to be more expensive than
sorting. Finally, we note that data skew and cluster patterns may result in uneven
construction costs for cuboids of equivalent size. The end result is either sub-optimal
load balancing or further redistribution costs.

The Goil and Choudhary research represents an impressive engineering effort, one
that includes a number of interesting algorithmic observations. However, given the
complexity of their approach and the apparent amount of overhead introduced, it is
unclear how effective their method is likely to be in terms of parallel speedup. In
their experimental results, the authors provide numbers for a group of larger pro-
cessor counts (8 to 64) on an IBM SP2; but fail to list any figures for one to seven
processors. This is an unfortunate omission in the parallel context in that it makes
it impossible to associate speedup or efficiency measures with their work. Given the
considerable processing overhead described above, this is a critical issue since an obvi-
ous concern with the implementation is whether all this overhead limits performance
improvements when moving from a sequential environment. In other words, arbitrary
run-time figures for eight nodes mean very little if these results are only marginally
faster than a competitive sequential algorithm on one node. The absence of this type
of comparison leaves considerable doubt as to the viability of their approach in prac-
tical environments. It also serves as a reminder that the simplest conceptual model
— in this case, partitioned multi-dimensional arrays — is not necessarily the cleanest
design in practice.

In [54], Lu, Huang, and Li describe a parallel data cube implementation for the
Fujitsu AP3000, a high-end multi-computer. While this work is in the relational en-
vironment, it uses hashing for the aggregation of common records, rather than the

sorting model discussed in the previous chapter. Here, the fields of each record are

51

concatenated to form a hash key that, in turn, identifies a unique aggregation bucket.
If the record is associated with a bucket that has not yet been accessed, then the cur-
rent record is added to the table. Otherwise, its value is added to the current total
for that field combination. Of course, if collisions occur (i.e., two or more hash keys
pointing to the same bucket), some form of collision resolution must be employed.
Hashing for data cube computation was in fact first proposed in conjunction with the
PipeHash [105], a sequential algorithm developed by the designers of the PipeSort.
The technique is attractive because it is relatively simple to implement — as opposed
to the somewhat more complicated sort/aggregation pipelines of the PipeSort — and
because the O(n) asymptotic upper bound for hash table construction would ap-
pear to provide a performance advantage over the sort-based methods that typically
rely on 6(nlogn) sorting algorithms. However, experimental results in [105] clearly
demonstrate the performance superiority of the PipeSort. The reason for this some-
what counter-intuitive result is that hashing costs cannot be shared amongst child
group-bys since the field combinations for different views are completely unique, with
the result that 2¢ hash tables must be constructed for the generation of the full cube.
Moreover, the “constants” involved in hashing with such large keys are significant.
These two factors result in slower than expected computation time for hashed-based
cubing.

With respect to the algorithm itself, parallelism was achieved by either (i) having
processors share the costs of producing individual, partitioned hash tables or (ii) com-
puting groups of hash tables on individual nodes (the paper’s algorithm description
is quite vague). Though they recognized that cuboids could be most efficiently com-
puted from the smallest available parent in the lattice, the authors of the algorithm
provided no means by which to achieve this cost reduction. Instead, a single common
parent was used to produce all hash tables during a given iteration, where the group

of available cuboids was drawn from a view list sorted in order of estimated size.

92

(Note: an “iteration” in this context is a computation round limited by the availabil-
ity of main memory). Experimental results showed some performance improvement
on one to five processors, but no advantage beyond this point. Failure to exploit
smaller intermediate group-bys, coupled with the overhead of independently hashing
each cuboid, clearly limited the potential of the approach.

Another hash-based relational research effort was described by Muto and Kit-
suregawa in [84]. In this case, the authors proposed a more efficient parallelization
technique that used a minimum cost spanning tree constructed specifically for hash-
based cube computation (Note: the spanning tree itself was described by the authors
of the PipeHash). Specifically, their approach was to partition individual views on a
given dimension — in a manner similar to Goil and Choudhary — and then indepen-
dently compute child view partitions using hash tables constructed from the smallest
available parent cuboid. Workload imbalances — caused by skew and data clustering
— would be dynamically resolved by migrating partitions from busy processors to idle
processors. However, the authors provide no physical implementation of their design
and instead described simulated results. Given the complexity of parallel data cube
‘implementations — particularly ones that do dynamic load balancing — it is hard to
evaluate this method without true implementation results. Specifically, their sugges-
tion that all communication would be “free” since it could be completely overlapped
with computation is unlikely to be borne out in practice due to the interdependencies
between cuboids. As well, they develop an oversimplified data model in which (a)
the cardinalities of all dimensions are large (making partitioning much easier) and
(b) partitions never have to be split (a likely occurrence in practice that would neces-
sitate the eventual merger of partition segments). Further, we note that they make
no mention of the costs associated with the required O(d) re-partitioning rounds. Fi-

nally, they appear to have underestimated the effect of data sparsity, the result being

53

a significant understatement of the hashing costs associated with views in higher di-
mensions. The near optimal experimental results are consequently of little practical
value. And though they did suggest that a true implementation of the algorithm was
forthcoming, none appears to have been presented in the literature. It is likely that
a working design of this algorithm would require significant augmentation.

In [86], Ng, Wagner and Yin describe four separate algorithms designed specifically
for fully distributed PC-based clusters and large, sparse data cubes. The first two
techniques are based upon the BUC design of [10], and as the name would suggest,
both construct cubes in the direction of coarse granularity cuboids to fine granularity
cuboids. In the first case, algorithm RP (Replicated Parallel BUC) takes the lattice
and carves it into d sub-trees where each sub-tree corresponds to a collection of views
containing the same attribute. For example, exactly half of the views will contain
attribute A, half of the remaining views will contain B, and so on. Parallelization is
achieved by simply distributing the unevenly sized sub-trees across the network in a
round robin fashion. If more than d processors exist, the extras sit idle during the
computation. Not surprisingly, the coarseness of the partitioning produced very poor
performance results. The authors try to improve upon this situation with algorithm
BPP (Breadth First Writing, Partitioned Parallel Buc) . Here, data is partitioned
across all processors. To avoid the sometimes excessive communication costs associ-
ated with the O(d) merge phases required by the Goil and Choudhary design, they
in fact create d distributed copies of the entire fact table, one for every dimension.
However, performance and load balancing results were only marginally better than
RP, largely because the costs associated with computing partitions of equivalent size
tend to vary widely (due to skew and clustering patterns in the data set). Failure
to incorporate this information into the workload scheduler will (and did) result in
unpredictable performance.

In an attempt to create a more responsive scheduling mechanism, the authors

54

designed a pair of algorithms more in keeping with the top down design methodol-
ogy. Here, a dynamic scheduler is employed. Specifically, a master scheduler dictates
which tasks — individual views or clusters of views — are assigned to given proces-
sors at runtime. As with RP, each node contains its own copy of the full fact table.
The first of the two algorithms, ASL (Affinity SkipList), decomposes the lattice into
its 2¢ individual components, and distributes them one by one to the “best” proces-
sor, where the best processor is the one associated with an already computed cuboid
possessing greatest affinity to the candidate view. Here “affinity” essentially refers to
the existence of common attributes. The second algorithm PT, (Partitioned Tree),
recursively divides the lattice into subtrees — partitioned on a particular attribute
— and assigns each sub-tree cluster to an available node where it will actually be
computed with the BUC algorithm. In making its scheduling decisions, the scheduler
tries to exploit any affinity that exists between the root of the current sub-tree and the
nodes already assigned to the target processor. Experimentally, the finer granularity
scheduling of the two algorithms provided better load balancing and, in turn, better
overall performance than their bottom up counterparts. Good speedup was obtained
up to eight processors. However, it declined very quickly after this point. The reason
for the performance degradation is that the type of scheduling used by these algo-
rithms does not capture the “global” cost information of the complete lattice, as did
for example the PipeSort spanning tree. As a result, only limited cost reductions
can be obtained when the workload is highly distributed since computation of the

localized view subsets is poorly coordinated.

3.3 Motivation

Though the research efforts described in the previous section have attempted to ex-
ploit the power of multi-CPU systems to more efficiently compute the data cube, they

have been only a partial success. Each provided performance results that were either

95

unimpressive or suggested that scalability would in fact be quite poor. The most so-
phisticated of these designs (Goil and Choudhary) represents a MOLAP based system
that is tied to proprietary data structures and database management systems. For
these two reasons — performance and accessibility — there is clearly an opportunity
and an impetus for further research in this area.

In approaching the design of new parallel data cube algorithis, we identified the

following six primary objectives:

1. Build upon proven, optimized sequential algorithms for local computation.

2. Exploit well studied problems in the parallel computing literature for the pur-

poses of workload distribution.
3. Minimize the communication costs due to view re-distribution.

4. Employ global costing information to ensure that local computation is parti-

tioned/balanced as equitably as possible.
5. Support straightforward integration with standard relational systems.

6. Minimize the complexity — data structures, algorithms, resource management

— that would likely lead to an unworkable practical implementation.

In the remainder of this chapter, we present the details of a new parallel algorithm
for full data cube computation. Upon the conclusion of the chapter, we will review

the extent to which we have accomplished each of the six basic objectives.

3.4 A New Approach to Parallelizing the Data Cube

In designing a new parallel data cube algorithm, a number of preliminary issues had
to be addressed. What would be the target architecture? Of the many sequential

algorithms available, which would be most amenable to a parallelization effort? And,

56

finally, how should the workload be partitioned across processors? In this section, we
answer these three fundamental questions, and provide the details of the algorithm

that grew out of this analysis.

3.4.1 The Target Architecture

In Appendix A we note that contemporary parallel architectures tend to fall into
one of two categories: distributed memory and SMP-based. Either could serve as
the basis of attempts to design practical parallel data cube algorithms. We have
in fact opted for a distributed memory model for the following reason. Specifically,
distributed memory designs can generally be mapped to SMP architectures since SMP
system builders typically provide efficient mechanisms for running MPI-based code
on a shared memory system. Since no such support exists for mapping in the other
direction (i.e., from OpenMP-based SMP to distributed memory), then a distributed
memory implementation is likely to be portable to a much wider range of parallel
machines.

While the processor/memory architecture is the most fundamental means by which
to classify parallel machines, it is not the only one. In particular, we may also analyze
such architectures in terms of their I/O models. Modern parallel machines may have
either of two basic designs: (i) distributed disk or (ii) shared disk. Distributed disk
is the most intuitive model. Here each processor is associated with one or more
local disk units which can not be directly accessed by other processors. Any disk-
to-disk transfers must be accomplished by way of the shared communication fabric.
Shared disk, on the other hand, stores data on one or more disk arrays. A disk array
is a single logical storage device that is able to stripe files across multiple storage
platters in order to improve read/write times. Moreover, when employed as a storage
component for parallel computers, the array supports I/O operations from any of the

processors in the network. While the variety of storage and striping technologies is

37

significant, in the current context it is necessary to understand only that independent
processors/processes may treat the array as if it were a local storage medium.

We have chosen to target both distributed disk and shared disk with our new
algorithm. The distributed disk environment is an obvious choice in that the ex-
ploitation of a collection of simple, commodity-type disks makes this platform quite
cost effective. In turn, the affordability makes it extremely common. We note, how-
ever, that there may be times when creating multiple copies of the fact table may not
be feasible. For the full data cube problem, this may not be an issue. Specifically,
because the data cube output is much larger in size than the original fact table (often
hundreds of times or more), then the additional storage required for a local copy of
the fact table is not likely to be a serious concern. For the partial cube problem that
we will study in the next chapter, however, it is entirely possible that the subset of
views on each local node would be smaller in size that the fact table. Moreover, if
the fact table is quite large and resources are at all limited, than a single copy of
the fact table may be the only option for these partial cube implementations. For
this reason, we felt it was important to design an algorithm that would be equally at
home in either environment. In doing so, we guarantee that the parallel data cube
algorithm described in the remainder of this chapter — and the partial cube exten-
sions presented in Chapter 4 — are well-suited to today’s practical data warehousing

problems.

3.4.2 A Sequential Base

While the literature describes a significant number of sequential data cube generation
algorithms, we have chosen to build upon the sequential PipeSort as the basis of our

parallel implementation. In fact, there are a number of reasons for this selection.

e Sort-based data cube algorithms have been shown to outperform the hash-based

alternatives [105, 86|.

o8

e Sort-based models can be extended gracefully to handle very large data sets. In
other words, the costing metrics need only be adjusted to reflect the new costs

associated with external memory sorting.

e While other algorithms may perform better on specific data sets (e.g., BUC in
very sparse spaces), the PipeSort provides acceptable performance on a broad

range of problems.

e Because the PipeSort is based directly upon a graph representation of the lattice,
it is possible to explore graph partitioning algorithms for workload distribution.
In fact, this type of distribution mechanism is relatively common in the parallel

computing literature.

e The PipeSort manipulates relational tables rather than proprietary database

structures.

For these reasons, the PipeSort was an appropriate choice for an initial implemen-
tation. We note, however, that from a design perspective, the workload partitioning
model described later in this chapter is adaptable to other sequential algorithms.
While we have not pursued such alternatives, it should be understood that our algo-
rithmic framework may be viewed as both a physical design and a conceptual model.

Finally, we note that in our current research we restrict our attention to internal
memory implementations. This is an unavoidable compromise given the prohibitive
time requirements for the development of optimized parallel external memory sorting
sub-systems. However, as described in Item 2 above, algorithmic extensions to ex-
ternal memory are quite straightforward. All that is required — besides the external
memory code itself — is an augmentation of the costing model for the larger exter-
nal memory sorts. As such, the reader should understand that any restrictions on
input size shall be seen as purely the result of practical limitations, not algorithmic

limitations.

99

3.4.3 Partitioning for Parallel Computation

We begin then with a sequential PipeSort algorithm that generates a minimum
cost spanning tree MCST from the cuboid lattice. Since the PipeSort manipulates
a weighted tree, our primary objective when considering a parallel version of the
original algorithm is to devise a partitioning approach that supports an equitable
distribution of work, given the costing complexity associated with cuboids of radically
different sizes. One approach, taken in [48, 47, 49, 86], is to partition individual views
such that each is partially computed by each one of the p processors in the system.
However, as we saw in Section 3.2, this form of view partitioning can introduce large
communication costs. Moreover, this option is exceedingly complex in practice due
to the fact that for 1 < ¢ < j < p, and a data set distributed as Ay, Ag, ... A,
the size of partition A; may be significantly different than that of A; due to the
characteristics of the data set. Instead, we opt for a partitioning strategy in which a
master processor generates p independent subproblems from sub-trees of the MCST,
each of which can be solved by an independent compute processor using a sequential
pipeline algorithm. There are two chief advantages. First, by partitioning the lattice
in advance, we are able to exploit all available costing information to make global
costing decisions. Second, because individual cuboids will be constructed in their
entirety on a particular node, no view re-distribution or merge costs are required.
In fact, the only node-to-node communication is the single task list that the master
node sends to each compute node.

Since determining an optimal partitioning of a weighted graph is NP-complete
(see Section 3.8), a heuristic approach which generates p subproblems with “some
control” over the sizes of those subproblems holds the most promise. With respect to
partitioning logic, we clearly want the sizes of the p subproblems balanced. However,
we also want to minimize the number of subtrees assigned to a single processor. To

understand why this would be the case, note that when a sub-tree S is created, the

60

root of the new subtree S, cannot be created from its parent F,., in the original
spanning tree since F,,, may have been distributed to another processor. Even though
the use of a shared disk implies that F,,, would be accessible to Syee, the fact that
P,.4 is one of the last cuboids computed in its sub-tree, while Sy, is the first in
its tree, prevents us from exploiting the obvious relationship between the two. As
such, S,.0¢ must be computed from the larger “raw” data set R. We note at this
juncture that, in practice, the use of R as a parent for S,y is not as large a penalty
as one might expect due to the nature of sub-tree generation. Specifically, in almost
all cases the sub-trees are generated such that their root node is in the upper levels
of the lattice and is consequently not significantly smaller than R. Nevertheless, too
many subtrees can result in sub-optimal sorting and I/O performance. The solution
we develop balances the impact of partition size and sub-tree count.

Our heuristic makes use of a related partitioning problem on trees for which ef-
ficient algorithms exist, namely the k-min-maz partitioning problem. Definition 1

provides a formal description of the fundamental problem.

Definition 1. The min-max problem can be defined as follows: Given a tree T with n
vertices and a positive weight w assigned to each vertex, delete k edges in the tree such
that the total weight Xi_qw; of the | nodes in the largest resulting subtree is minimized.

The k-min-max partitioning problem has been studied in [6, 44, 94]. In our case,
we build upon the Min-Maz Shifting Algorithm described in [6] and presented here as
Algorithm 5. This algorithm is based on a pebble shifting scheme where k pebbles or
cuts are shifted down the tree, from the root towards the leaves. The objective is to
reduce the size of the largest current partition during each pass. Whenever possible,
this partition is minimized by down-shifting the cut above its root node to the child
edge with the heaviest down-component — defined as the weight of a partition beneath
a given node or edge. Once done, we walk back up the tree, checking to see if the

previous downshift has created an unnecessarily large partition above the original

61

root. If so, we reduce its size by side-shifting cuts. The algorithm continues until the

largest partition can no longer be reduced in size.

Algorithm 5 k-min-max Algorithm: Becker, Schach and Perl

Input: A weighted tree T with positive weights assigned to its n vertices.
Output: A set of k sub-trees in which the weight of the largest sub-tree is as small
as possible.
1. Place k — 1 cuts on the edge incident with the root vertex.
2: while rootPartition is lightest partition do

3: if largest partition has one or more vacant edges beneath its root node g then

4 Downshift cut at ¢ to child edge with largest down-component

5 else

6 Terminate

7. end if

8 repeat

9: Get the next node w along the path from ¢ towards the root of T

10: if w has a cut on an incident edge e; whose down-component < down-
component of the current vacant edge e, then

11: side-ghift the cut on e; to e,

12: end if

13: until a cut is encountered on the path towards the root of T
14: end while

We note, however, that min-max algorithms are designed to work on static graphs.
In other words, it is expected that the node weights remain fixed during the execution
of the algorithm. In our case, that is not true. Recall that when a sub-tree S is
extracted from the MCST for the purpose of network distribution, the root node of S
cannot be computed from its designated parent but must be computed instead from
the “raw” data set. As such, min-max cutting dynamically alters the cost structure of
the MCST. Moreover, because any given cut may be shifted many times during the life
time of the algorithm, the estimated cost to compute a particular view may oscillate
frequently before a “stable” configuration is reached. We deal with this problem by
maintaining a cut hash table. When a cut is moved to a new edge — whether by a

down-shift or side-shift — the reference (i.e., pointer) to the target edge is used as

62

cost(e) = original cost cost(e) = raw sort cost(e) = original cost
hash[e] = nil hash[e] = original cost hash[e] = raw sort

Figure 3.1: The use of a “cut” hash table to support dynamic min-max.

a hash key to determine whether that edge has previously “hosted” a cut. If so, the
value from the hash table and the current edge value are swapped. If not, the cost of
sorting the “raw” data set replaces the current cost which is inserted into the hash
table as the value associated with the current edge. We refer to this extended form
of the shifting algorithm as dynamic k-min-maz. An illustration of the algorithm’s
adaptive costing can be seen in Figure 3.1.

We should point out that the inclusion of the cut hash table has no effect upon
the algorithm’s ability to terminate in a stable state. During each iteration, a down-
shift is always performed. Since these shifts are in one direction only and, moreover,
are finite in number given the fixed radius of the tree, the use of dynamic costing
cannot introduce looping behavior. The algorithm must terminate, though of course

the partitioning decisions may be quite different.

3.4.4 The Parallel PipeSort Algorithm

Returning to the partitioning problem itself, we note that because the goal of dynamic
k-min-max is to minimize the weight of the largest sub-tree, the algorithm does not
necessarily result in a partitioning of 7' into subtrees of equal size, nor does it address

tradeoffs arising from the number of subtrees assigned to a processor. Consequently,

63

we use tree-partitioning as the initial phase of a two-part strategy. To achieve a better
distribution of the load we apply an over sampling mechanism: instead of partitioning
the tree 1" into p subtrees, we partition it into s X p subtrees, where s is an integer,
s > 1. Then, we use a packing heuristic to determine which subtrees belong to a given
processor. Essentially, our packing heuristic considers the weights of the subtrees and
uses those weights to combine distinct trees so as to balance the cost of computation
across nodes. It consists of s — 1 matching phases in which the p largest subtrees
(or groups of subtrees) and the p smallest subtrees (or groups of subtrees) are paired
up. In the end, s subtrees are assigned to every processor. Details are described in

Algorithm 6.

Algorithm 6 Tree Partitioning

Input: A spanning tree T of the lattice with positive weights assigned to the nodes
(representing the cost to build each node from it’s ancestor in 7'). Integer param-
eters s (over-sampling ratio) and p (number of processors).

Output: A partitioning of T" into p subsets X1,...,%, of s subtrees each.

1: Use dynamic min-max to compute an s X p-partitioning of T into s X p subtrees
Tla tre :Tsxp

2: Distribute subtrees T1,..., T, among the p subsets 3;,...,%,, s subtrees per
subset, as follows:

3: Create s x p sets of trees named T;, 1 < i < sp, where initially T; = {T;}. The
weight of T, is defined as the total weight of the trees in T;.

4: for j — 1tos—1do

5. Sort the T-sets by weight, in increasing order. W.lo.g., let T1, ..., Top_(j—1)p
be the resuiting sequence.

6: fori¢«+— 1topdo

T Set T, =T, U Tsp—(j—l)p—i+1

8: Remove Tsp—(j—l)p—i—l—l

9: end for

10: end for

11: for i+ 1top do
12: Set X, =17,
13: end for

64

The tree partitioning algorithm is embedded into our parallel data cube construc-
tion algorithm. Algorithm 7 presents the basic model. Like the sequential algorithm,
the lattice must be augmented with appropriate costing values. First, the final size
of the 2¢ proposed cuboids must be estimated. Then, using these figures, we de-
velop a complete pipeline costing framework — including sorting, scanning and in-
put/output estimates — that will eventually allow the bipartite matching mechanism
of the PipeSort to determine the most cost effective means by which to move from
level; to level;,_; in the lattice. Once the minimum cost spanning tree has been ex-
tracted in Step 3, we use dynamic k-min-max with over-sampling to determine the
appropriate sub-tree distribution across the p processors. Finally, when the local pro-
cessors have received their task lists, a local pipeline computation algorithm generates

the assigned output views to complete the distributed data cube computation.

Algorithm 7 Parallel PipeSort

Input: A data set R, with each of its n records composed of d feature attributes and
one measure attribute.
Output: A collection of 2¢ cuboids, each presenting a summarized view of a unique
subset of the d feature attributes.
1: On the master node M, apply a storage estimation method in to determine the
approximate sizes of all 2¢ cuboids in the data cube lattice L.
2: Augment L with the estimated costs of sorting and scanning each of its 2¢ nodes.
3: Using the sequential PipeSort algorithm, extract a minimum cost spanning tree
T from L.
4: Execute Algorithm Tree-partition, creating p sets Xy, .. ., ¥,. Each set ¥; contains
s subtrees of T
for i — 1top do
Distribute X; to p;
end for
Each processor p;, 1 < i < p, performs the following step independently and in
parallel:
9: Compute all group-bys in subset X; using the sequential pipeline computation
algorithm.

G e s

65

3.5 Optimizing Performance

Though the primary focus of our parallel data cube research has been upon optimizing
the load balancing characteristics of the parallel computation, it should be noted that
final performance is ultimately limited by the efficiency of the underlying sequential
algorithms. Within the PipeSort context, this would suggest that the algorithm
for constructing each of the 2¢ cuboids deserves special consideration. We note,
however, that while the PipeSort authors described the algorithm for spanning tree
extraction in some detail, they provided very little information on the computationally
expensive pipeline phase. So though it is true that the views of a given pipeline can
be constructed in a single pass of some sorted input set, it not at all obvious that this
can be done as efficiently as one might expect.

In this section we discuss in detail the fundamental issues that need to be addressed
in constructing an efficient PipeSort-based system. Specifically, we will examine the
parameters, goals, and logic of the pipeline algorithm to determine whether variations
in algorithm design or implementation could tangibly affect runtime performance.
Our analysis lead to the identification of four performance limiters, components of
the pipeline algorithm whose individual design could significantly impact sequential

runtime. The limiters are listed below:

1. Sort Quality. The first step in pipeline processing is a sort of the input view.
Since < .) is a lower bound on the number of sorts required to construct

the full cube, a reduction in sorting costs will be central to improving overall

performance.

2. Data Movement. The PipeSort algorithm is data intensive. Because O(2%)
views may be created, many of which will have entirely different attribute or-
derings (necessitating record permutations), the physical movement/copying of

records and fields can become extremely expensive on large, high dimension

66

problems.

3. Aggregation Operations. At the heart of the pipeline process is the ag-
gregation of partial totals into records of varying granularity. The existence of
unnecessary or redundant aggregation operations results in a needless slowdown

in pipeline execution.

4. Input/OQutput Patterns. The PipeSort algorithm moves enormous amounts
of data to/from disk. In such environments, disk head movement and buffer

flushing are a serious performance issue.

In the remainder of this section, we discuss our approach to the optimization of
each of the performance limiter categories. In Section 3.9, we demonstrate how these

optimizations result in an order of magnitude improvement in performance.

3.5.1 Optimizing Sorting Operations

Sorting can perhaps be viewed as the single most important algorithm class in the
collective fields of computer science. Not surprisingly, the literature identifies a broad
_collection of algorithms for placing objects into ordered sequences. That being said,
practical sorting implementations are typically associated with a small number of
algorithms such as merge sort and Quicksort [22]. The latter, in fact, is almost
always a standard component of language and operating system libraries.

Most generic sorting algorithms have one major feature in common — they are
comparison based. In other words, records are arranged by comparing their values
to other records in the input set. In terms of cost complexity, such algorithms have
a lower bound of Q(nlogn) [22]. In contrast, non-comparison sorts have also been
developed. With an Q(n) lower bound (we must at least look at every record), they
avoid record-to-record comparisons by exploiting some type of a priori knowledge

with respect to the nature of the data set. Such information, for example, might be

67

associated with the domain of the key to be sorted or the uniformity of its distribution.

In [10], the authors of the BUC method use an algorithm called Counting Sort
[22] to reduce the cost of partitioning. Counting sort is an O(n + k) algorithm, with
k equivalent to the range of the key to be sorted, that determines the exact position
of a key in the output array without relying on key comparisons. In particular, it
maintains a table of the number of occurrences of each distinct value within the
domain of a sort key, then uses this information to determine exactly how many
records should be found before this value in the sorted output array. We note that
when £ is O(n), the upper bound for Counting Sort reduces to O(n). In the OLAP
context, k is equivalent to the cardinality of the dimension to be partitioned. Because
the number of distinct values within a dimension A is typically much smaller than
the total number of records n in the fact table, the use of Counting Sort can provide
linear time sorting functionality for the BUC method.

Counting Sort was applicable to the BUC algorithm because BUC’s bottom-up
model relies upon single attribute sorts. Our top-down PipeSort, however, requires
multi-dimensional sorting. While the Counting Sort cannot be utilized directly in this
context, we can extend its sorting model to suit such an environment. Specifically,
we can utilize a Radiz Sort, a multi-pass extension of the Counting Sort. Algorithm
8 describes the technique. Working in reverse order — from least significant digit to
most significant — we perform a series of k& counting sorts on each of the k relevant
(possibly non-contiguous) attributes of the input set. We note that this technique
works only because the underlying Counting sort is stable. Stability refers to the fact
that elements with the same value appear in the same relative position in the output
list as in the input list. With respect to running time, the k-iteration Radix Sort may
be bounded as O(kn).

Nevertheless, because of the k passes, it is not always the case that a Radix

Sort will be preferred over a well-optimized Quicksort. Proposition 1 suggests how

68

Algorithm 8 Data cube Radix Sort

Input: A d-dimensional input set, and a set of k attributes to sort.
Output: An output set, sorted on the & dimensions.

I: fori—ktoldo

2. Perform a Counting Sort on attribute i

3: end for

the performance comparison should be made. Experimental evaluation has in fact
confirmed the accuracy of this observation.

Proposition 1. For a data set of d dimensions and n records, a k-attribute sorting
should be performed with a Radiz Sort rather than o QuickSort if 3k < logn.

Proof. Given the O(kn) runtime of the Radix Sort and the ©(nlogn) bound on the
Quicksort, an initial analysis would suggest that for k < logn, the Radix Sort would
be more cost effective. For practical implementations, however, we must consider the
constants associated with each sort. While overhead is very low with Quicksort, we
note that each iteration of Counting Sort makes two passes of the input set and a
single pass of the intermediate k-record table. With k bounded as O(n), we therefore
see that a Radix Sort is likely to be faster only if 3k < logn.
a
Our pipeline sorting mechanism therefore dynamically determines the appropriate
sort for a view of a given size and dimension count by evaluating this expression for
each input set. We note that while Radix Sort offers relatively little benefit for small
problems, it becomes an increasingly valuable algorithmic component as the data sets
become very large. Furthermore, for the partial cube problems that will be discussed
in the next chapter, the Radix Sort is especially appealing in that we often see large,

high dimension input sets being sorted into pipeline views with significantly lower

dimension counts — a situation ideally suited to Radix Sort.

3.5.2 Data Movement

Given the 2¢ views generated by a full cube computation, and the varied orderings of
attribute values for each pipeline, the movement of data is a significant concern for
an efficient PipeSort implementation. In fact, we can identify two distinct algorithm

components that require the algorithm designer to address this concern. In the first

69

case, we note that both Quicksort and Radix Sort (as well as most other sorting
algorithms) perform a large number of key movements during the course of execution.
Quicksort moves keys after each of its {2(nlogn) comparisons, while Radix Sort must
write the input list to a sorted output list following each of its & iterations. More
importantly, however, data cube keys are actually multi-dimensional records. As
such, a massive amount of data copying must be performed since d + 1 fields (the
complete input record plus its measure attribute) must be moved every time.

In the second case, data movement is associated with pipeline processing. Because
the pipeline aggregation process relies upon a prefix ordering that is by definition
different from that of the input set (this is why a re-sorting is required), then the
order of the attributes in the records of the input set must be permuted to that of the
parent view in the pipeline before aggregation can be performed. We note that while
we could permute the input set by copying it to a fresh buffer, this would effectively
double memory requirements for the application. A more practical “in place” copy
would require two complete data movements — one to permute each record into a
clean buffer and one to copy it back to the original location. Total transfer cost would
therefore be 2n(d + 1).

Our goal in minimizing data movement is to eliminate record copying once the
input set has been read into memory. To accomplish this objective, we have designed
the algorithm to allow it to exploit data indirection. By indirection, we mean that
instead of manipulating data directly, we instead manipulate references to that data.
Within the pipeline algorithm, there are actually two distinct forms of indirection
— and consequently, two types of references. In the first case, we utilize vertical or
record-based indirection. Here, we maintain a table of pointers (memory addresses)
to the records in the sorted input set. For any operation that would require a record
as input, that record is obtained by following a pointer to the record’s location in

the original input buffer. We note that because standard array offset calculation —

70

for example, myArray[i] — actually involves a conversion from a subscripted array
expression to a physical memory address, access by vertical indirection is actually
slightly faster than conventional access.

In the second case, we employ horizontal or attribute-based indirection. Here,
we atterpt to largely eliminate the costs associated with permuting attribute values
within individual records. To do so, we maintain an attribute indirection table of size
k that maps the intended position of each of the k attributes in the pipeline parent
view to its actual position in the original record. Each pipeline has its own unique
map. The cost of horizontal indirection is an additional offset calculation for each
attribute access. We note, however, that during pipeline computation, the heavily
accessed mapping table is likely to be held in the high speed L1/L2 processor caches,
dramatically reducing offset calculation costs. Data permutation, on the other hand,
generates true core-memory to core-memory swapping. Experimental evaluation has
shown that the cost of a full permutation of the input set is at least an order of
magnitude more expensive than that of horizontal indirection.

Figure 3.2 graphically illustrates the use of both forms of indirection. A two
dimensional attribute reference is identified by first following the appropriate pointer
into the input buffer and then mapping the dimension reference to the proper position
in the record array. We note that although the input set does not appear to be sorted
— in fact, the input buffer has been completely untouched since it was first loaded
into memory — it is nonetheless ordered as per the requirements of the application (in
this case by the attribute order defined in the attribute indirection table). The reader
may convince themselves of this by following the pointers and comparing dimensions.

Note that both the sort routines and the pipeline methods utilize both vertical
and horizontal indirection. Radix Sort and Quicksort are both implemented so as to
work with record references. Changes to record positions — whether on the basis

of record comparisons (Quicksort) or counting-oriented re-orderings (Radix Sort) are

71

record indirection attribute indirection
table sorted input set table
;
1|« 3'4'3'8"'1'43|4
T T) T
) \ 1:4:1:1!1:192
3|) 6'6'3'4!8!97|,
o o] 31613161 1,11,
5 &/ 1,6,2,112/71s
6| ¢ 216.1:181216]g [!
ik 11613:4!6'67|; 0123 4M
gl 7 1:4:1,6,1,34|g
ol ¥ 9131216 6!55|q
001 2 3 4 M

record[2][attribute[3]] —* 6

Figure 3.2: Resolving an attribute reference by way of vertical and horizontal indi-
rection.
reflected by changes in reference positions. Once the input set has been (indirectly)
sorted, the record indirection array is passed to the pipeline processing module as
input. The pipeline code makes a linear pass through the reference table, using the
attribute mapping table to identify values relevant to each granularity level in the
pipe.

Because the costs of indirection are negligible in practice, significant runtime re-
ductions are achieved. Theorem 1 formalizes this notion for the case of the Radix
Sort. An analysis for QuickSort could be performed in a similar fashion.

Theorem 1. For an input set of n records with k attributes to be sorted with a Radiz
Sort, vertical and horizontal indirection eliminates up to n(k?+2k+2) attribute copies
from each pipeline computation.

Proof. Data movement for Radix Sort occurs only after each of the k Counting Sort
iterations and involves a single copy of the n input records to a fresh output buffer. We
can therefore bound the movements due to sorting by the & iterations on the n(k+1)
attribute values. In terms of data set permutation, recall that 2n(k + 1) copies are
required. Total possible data movement for what we will call the (S)tandard pipeline
is therefore the summation of the two expressions:

Ts = (k*n(k+1))+ (2*n(k+1))

72

=nk?+nk+2nk+n

Ts = n(k* + 3k +2)

Since the data movement using (I)ndirection is limited to the movement of pointers
(single 32-bit words) during each of the k& Counting Sort passes, then the movement
due to indirection 77 is equivalent to kn. The savings due to indirection is therefore:

Tpirr = Ts — T
=n(k*+3k+2) —kn

TDIFF = TL(I{J2 + 2k + 2)
O

We note that Theorem 1 describes data movement in terms of an upper bound.
A lower bound is not provided due to the possibility that the input set could be pre-
sorted, in which case no data movement would be required. However, such situations
would rarely be encountered in practice.
Proposition 2. Pre-sorted input can be associated with at most one pipeline.

Proof. The construction of a pipeline u produces a set of views whose records are
sorted according to a specific prefix order. Any of these views may later be used as
the input set for some other pipeline v. By definition, the prefix order of v must be
different than the order of u. Otherwise, the views of v would have been part of u
since they would have shared a common prefix. As such, it is not possible for any
view of u to be pre-sorted in the order required for any view in v. In fact, only the
fact table itself can have this property and, even then, can only be pre-sorted in the
order required for a single pipeline.

O

We may apply Theorem 1 to a practical case to give some sense of the potential
performance impact. Counsider, for example, an eight dimensional data set with 10
million records. Using a Radix Sort and indirection, the upper limit for data transfer

costs is 8 x 107. In the absence of indirection, the potential cost balloons to 8.2 x 108,

a difference of over 70,000,000 operations.

73

3.5.3 Aggregation Operations

Once the sorting phase has been completed, the input set is passed to the pipeline
processing module. As per the description of the original PipeSort paper [105], only
a single pass of the input set is required to generate each of the m views in a given
pipeline. As previously noted, however, the details of a pipeline implementation were
never provided. In fact, even though this component of the algorithm is asymptoti-
cally O(n), the constants within each of the n iterations can be very large, with the
result that a naively implemented pipeline algorithm may be unacceptably expensive
in practice.

To see why this might be the case, we need to examine what happens during each
iteration. The algorithm compares two records during each step — the current record
R; and previous record R;_;. It must examine the record R; to find those changes
in attribute values that might affect any of the m cuboids in the current pipe. For a
given attribute d, a change in its value might or might not result in the creation of
a new output record on a view V;, where 1 < i < m, depending on whether or not
d is actually a component of V;. Checking each of the d attributes to determine if it
-affects any of the up to d-attribute views in the m-length pipe produces a O(d?m)
run time for the record checking phase. Doing this for each of the n input records
quickly begins to erode the perceived benefit of a O(n) algorithm.

The number of aggregation operations actually performed is another concern.
Because we are iterating through n records, each of which will contribute its measure
value to the subtotals of each of the m views, there is the potential for n¥m aggregation
operations. For large n and large m — and multiple pipelines — the amount of CPU
time dedicated to aggregation can be large.

Algorithm 9 presents a new pipeline algorithm that has been designed to address
these concerns. In Line 1, we begin by initializing the buffer for the parent view in

the pipeline. We then move on in Line 2 to the main loop that will examine each of

74

the n records for attribute changes. Lines 4-8 simply look for the first attribute —
working from the most significant to the least significant of the attributes relevant to
the current pipeline — on which there is a change. If there has been no change, the
measure attribute is simply aggregated into the buffer of the parent view and we move
on to the next record. However, if there has been a change, we use the change position
j as an implicit indicator of all affected cuboids. For example, given that attribute
checking proceeds from coarse to fine granularity in the prefix order, we know that
a view with at least [feature attributes must be affected if [>= j. Conversely, for
a “coarse” view with less then j attributes, we can be guaranteed that a change has
not occurred on any of its attributes. We may therefore skip any further processing
on this view. For each of the n records, then, the total number of conditional checks
is simply the number required to find j, plus the number required to identify the
affected cuboids. This O(d 4+ m) Pipeline Aggregation method is significantly more
efficient than the naive O(d?m) design described above.

Returning to the issue of the number of aggregation operations, recall that O(mn)
summations may be required. In Lines 13-15 of Algorithm 9, note that aggregation
only occurs on any of the m — 1 views beneath the parent view when a change in
attribute value has occurred on the next coarsest view. In other words, aggregation
on these views is never done from the records of the input set. Instead, we use the
knowledge that a change has occurred on view V1 to trigger an update on the running
sub-total of V;. We refer to this approach as lazy aggregation, a term indicative of
the fact that we hold off on aggregating into V; until absolutely necessary. In fact,
for a given input data set and its associated pipeline, it is possible to show that
lazy aggregation results in the optimal/minimal number of aggregation operations.
Definition 2 and Theorem 2 formalize this notion.

Definition 2. We define a touch on an input set as an access for the purpose of
aggregation.

75

Algorithm 9 Pipeline Aggregation

Input: A sorted input set of n record and d dimensions, and an ordered set of k
dimensions that form a pipeline prefix order.
Output: A set of m output views, each aggregated at a different level of granularity.
1: Initialize parent view output buffer with contents of first input record
2: fori—1tondo
3: Get pointers to CurrentRecord and LastRecord
{Find position of first change in current record}

4: for j«—1tokdo

5: if CurrentRecord[j]! = LastRecord|j] then

6: break

T end if

8 end for

{Enter aggregation phase}

9: if j == k then

10: Aggregate measure value into buffer of parent view

11: else {perform lazy aggregation}

12: for all views m in pipeline, running from finest to coarsest do
13: if j < number of attributes in m then

14: Subtotal for view[m - 1] += subtotal for view[m)]

15: Create new aggregation record for view[m)]

16: else {no more aggregation required on this input record}
17: break

18: end if

19: end for
20: end if

21: end for

76

Theorem 2. For a pipeline P, of length m, lazy aggregation results in the minimum
possible number of touches.

Proof. Each of the m cuboids in the pipeline is computed record-by-record during a
linear pass over the input set. For each such view in the pipeline, we aggregate records
at increasingly finer levels of granularity. For a view V;, 1 < 4 < m, its records can be
seen as an aggregated summary of the records from any of the views above it in the
pipeline. Note that the most concise summary of the records of V; is found in V4,
its immediate parent in the pipeline. Use of this parent view would allow V; to be
computed strictly from the 7 records of V;;;. In other words, V; would be computed
in just j touches. Now, note that during lazy aggregation, the computation of V;
only produces a touch — on V;;; — when a change in attribute value occurs on the
view V;;1. Since each such change is associated with the creation of exactly one new
record in V;, 1, we therefore conclude that the number of touches generated for view
V; by lazy aggregation is exactly equivalent to j, the number of records found in the
most concise aggregation summary available to V;.
O
Again, a practical example may be used to illustrate the potential performance
gain. Consider a data set of one million records, and a collection of & attributes, each
with a cardinality of ten. For a view A, the naive form of aggregation would result
in n = 1,000,000 distinct aggregation operations. With lazy aggregation, however,
summing into A would only occur when triggered by record creation on its immediate
parent, say AB. Since the size of AB is bounded by its cardinality product H?zl G,

we can see that the total number of aggregation operations required to compute A in

this example is just 100.

3.5.4 Input/Output Patterns

The preceding three issues have been associated with computational performance. In
this section, the focus shifts to I/O issues relevant to the view construction phase. We
note that PipeSort is a very I/O intensive application. Specifically, in high dimensions
the output size grows to hundreds of times larger than that of the input. In this
context, careful treatment of I/O issues can lead to significant overall performance

gains. Conversely, without adequate attention to the execution and ordering of disk

7

accesses, particularly write operations, the benefit of algorithmic optimizations may
be seriously undermined.

We have identified two areas in particular that have the potential to affect PipeSort
performance. The first is the problem of disk thrashing, a phenomenon that occurs
when the operating system tries to do a series of small writes to a set of distinct
files stored at different locations on the hard disk unit. Because the time taken to
move the disk head to a non-contiguous block is at least an order of magnitude larger
than the time taken to simply read the next contiguous block, a series of small write
requests can result in significant disk head movement but little actual writing. The
pipeline component of the PipeSort algorithm exhibits exactly this type of structure
as each of the n iterations in the pipeline loop has the potential to generate m output
records, each bound for a different file.

Modern operating systems attempt to limit the effect of this problem by buffering
write operations. In effect, they delay the writing of small output streams in the
expectation that more data may be forthcoming. At some later point, the collective
element set may be written with a single request. Given that the operating system
knows nothing about the characteristics of the PipeSort application, however, it will
likely still thrash to some degree since it doesn’t know how long to delay the writes
and will often flush buffers to disk before it needs to. If it delays the writes too long,
on the other hand, we are presented with a second major problem. The operating
system’s caches eventually become so saturated that a massive amount of “house
cleaning” is required to return the OS to a productive state. This wholesale flushing
is extremely resource intensive and is a serious drain on performance. Worse yet,
because the state of the OS caches depends upon the existence and requirements
of other non-PipeSort applications that may be running on the system, the effect
is largely non-deterministic and may impact the application to varying degrees at

different times.

78

We address these issues with the introduction of an I/O manager specifically
designed for PipeSort. Embedded directly within the PipeSort framework, the job of
the I/O manager is to take over control of input/output operations from the operating
system. In so doing, the application controls the size and rate of disk transfers and
can tune the flow to largely prevent disk thrashing and cache overload. Figure 3.3
illustrates the I/O subsystem. For a pipeline of length m, the I/O manager controls m
“view blocks”, each associated with the resources required to manipulate one cuboid.
One of these resources is an output buffer that houses contiguous chunks of records
destined for disk. When a logical write is issued, the output record actually goes to
the I/O manager which then places it into the next available slot in the appropriate
view buffer. If the current record pointer is equivalent to the mazx record pointer, then
the I/O manager knows that the buffer cannot accept any more records and it will
tell the operating system to write the entire buffer to disk. We note that the write
request is exactly that — a “request”. The operating system may choose to buffer
the current block of data, along with zero or more previous buffer arrays, if it has
adequate resources. This is perfectly acceptable.

For an output view of size j and an application buffer size of [, the use of an
explicit I/O manager reduces the number of write calls — and potential thrashing
instances — from 7 to j/I. However, because the operating system is free to buffer the
PipeSort’s write calls, it is still entirely possible that it will continue to do so until it
is overwhelmed with back-logged 1/0 requests — our second major concern. To deal
with this problem, we introduce a throttling mechanism that prevents the operating
system from ever reaching this point. Specifically, when all processing for a given
pipeline is completed, we issue a system sync() call. The sync (or synchronization)
call flushes all application I/O streams so that the contents of any operating system
buffers are physically written to disk. Because it is a blocking call (it does not return

until the disk operations are complete), we guarantee that the operating system will

79

input Buffer View Block

IO Manager View Name

Dim Count
Record Count
Buffer

Current Record
Max Record
File Pointer

Pipeline
Output

|

View Buffer

Disk
Device

Figure 3.3: An illustration of the data cube I/O manager, showing the resources
managed by one of its view “blocks.”

never be overloaded with outstanding I/0O. In effect, the application uses its knowledge
of its own internal structure to appropriately control system resources.

We note, however, that the use of the sync-based throttle mechanism introduces
an additional problem. Modern disk controllers employ a feature known as Direct
Memory Access (DMA). Instead of requiring the CPU to manage all of the relatively
expensive 1/0 operations, DMA controllers can assume responsibility for moving
segments of data directly from memory to disk, thereby allowing the CPU to return
to other, computationally demanding tasks. It should be clear that the use of a
blocking sync call largely eliminates the benefit of DMA execution since the CPU
stands idle as the I/O call executes. More importantly, its use likely erodes the
performance gains produced by the algorithmic optimizations already discussed.

We address this issue by recasting the PipeSort implementation as a multi-threaded
application. In operating system terminology, a thread is a lightweight process which

shares the resources of a given application with one or more cooperating threads but

80

is given its own control registers so that it may execute program instructions indepen-
dently of the other threads. In the PipeSort, the use of separate I/O and computation
threads allows us to enjoy the benefits of DMA without the penalties of blocking sync
calls. Specifically, we dynamically generate a new I/O thread at the completion of
each pipeline. The sole purpose of this I/O thread is to invoke the blocking sync
call. While the new thread waits for the call to terminate, control returns to the
original thread which then initiates execution of the next pipeline. In this way, we
can concurrently process portions of two pipelines — one doing I/0 and one doing
computation — on a single CPU/DMA architecture. The end result is an I/O system

that is well tailored to the application and the resources is runs upon.

3.6 The Costing Model

In previous sections, we have assumed the existence of a costing model that popu-
lates the lattice with estimates of cuboid construction costs. Developing an accurate
predictive costing model is an important and challenging task. Moreover, it is the
accuracy of the cost metrics, as much as any other component of the system, that dic-
_tates the quality/balance of the workload distribution. Specifically, if the algorithm
does not accurately represent the true cost of constructing pipelines, then there is no
guarantee that the decomposed spanning tree will distribute equivalent workloads to
each of the processors.

We note that while pipeline costing is a component of the sequential algorithm,
its true significance was likely under-appreciated. In particular, costing inaccuracies
are somewhat difficult to quantify in the sequential environment unless, for every
problem instance, one has a description of the optimal spanning tree for comparative
purposes. Since no such optimal result is typically available, it is difficult to judge the
accuracy of costing metrics. In parallel, we have the same challenge with respect to

the spanning tree but, in addition, poor costing metrics lead to poor load balancing

81

which, in turn, leads to poor parallel performance. Therefore, even in the absence of
an optimal spanning tree, the penalty associated with an inaccurate costing model is
both significant and obvious.

More importantly, however, we note that the parallel costing model is in fact sub-
stantially different than the sequential model. In particular, the sequential framework
only concerned itself with the relative costs of sorting and scanning. By incorporating
these costs into a bipartite matching algorithm, it was possible to construct efficient
pipelines. Note that the designers of the PipeSort did not concern themselves with
the I/O costs of the data cube, even though the enormous size of the output makes
such costs substantial. They did not do so because in a sequential environment, the
I/O costs are fixed. In other words, no matter how a view is created (e.g., ABCD
versus DBCA), it always contains the same number of records and, consequently, will
always have the same I/O cost. While this is also true in parallel, note that compu-
tation is no longer associated with a single processor. Instead, just as each processor
will do its own pipeline computation (sorts and scans), it will do its own I/O as well.
Moreover, it must be understood that the cost of I/O is not directly proportional to
pipeline construction. For example, an expensive sort may be used to build a number
of relatively small views, while a cheaper sort may be associated with one or more
large views. For this reason, good load balancing can only be achieved if we can
incorporate 1/0 costs into the costing model. In practice, the resulting parallel cost
model is significantly more complex than its sequential counterpart.

For illustrative purposes, we break the costing infrastructure into two basic phases.
The first deals with the estimation of cuboid sizes while the second takes these size es-
timates and determines pipeline construction costs. In this section we take a detailed

look at both components of the framework.

82

3.6.1 Cuboid Size Estimation

Since the cuboids that populate the lattice have yet to be created, we must estimate
their final sizes. This is in fact a very difficult thing to do accurately in a data
cube context since we know nothing about the distribution of data in the fact table.
Nevertheless, a number of techniques for size estimation have been described in the
literature [58, 110] and will be reviewed in this section. A number of these methods
build upon the notion of a potential space.

Definition 3. For a given view V, we refer to the set of all possible values in that
view as its potential space, denoted S,. If V has k attributes with cardinalities C1,
Cy ... Cy, then the size of the potential space is simply the cardinality product Hle C;.

3.6.1.1 Cardinality-based Estimation

The simplest cuboid size estimator is the cardinality product itself. Since any point in
a k-dimensional view V must be drawn from the potential space S,, then this product
may be used as a crude approximation of the size of the input set. In practice, such
a technique tends to grossly overestimate the size of high dimension cuboids. For
example, in a ten dimension space with a cardinality of ten on each dimension, and a
fact table of one million records, the size estimate for cuboid AB would be 100, likely
a reasonably good guess. For the eight dimensional view ABCDEFGH, however,
our estimate would be 100,000,000, a useless estimate given the size of the original
fact table. We can, of course, limit the scale of the inaccuracy by bounding the size
of a cuboid as min(Hf:l C;, size(parent)), but the basic mechanism is still far too

inaccurate for meaningful pipeline computation.
3.6.1.2 Sample Scaling

Another approach is to extract a random sample from the data set, compute a “mini”
data cube on this sample, and then scale up the results by the ratio of the size of the

fact table to the size of the sample set. The logic here is that the sample provides

83

a more realistic view of the actual fact table than that provided by the cardinality
product. In this case, however, the technique is at least partially defeated by the
impact of record sparsity within the sample set. For example, suppose we have a data
set of one million records, with each of its ten dimensions having a cardinality of ten.
If we extract a sample of 100 records for the purpose of estimating the size of the three
dimension cuboid ABC) it is unlikely than many duplicates would be found, given that
the potential space has size = 103. Let’s assume that the size of ABCsgmpie is 90. We
would therefore create the scaled estimate as ABC = ABCumpie* (107/10%) = 9 x 106,
This is clearly inaccurate since the potential space is only 10®. In other words, sample
scaling tends to underestimate the number of duplicates that will be found in large

data sets.
3.6.1.3 A Probabilistic Method

In [110], the authors propose a view estimation method that builds upon the Proba-
bilistic Counting algorithm first presented in [42]. The Counting-based method works
as follows. During a single linear pass over the data set, it concatenates the d dimen-
sion fields into bit-vectors of length L and then hashes the vectors into the range
0...2% — 1. The algorithm then uses a probabilistic technique to count the number
of distinct records (or hash values) that are likely to exist in each of the 2¢ cuboids.
To improve estimation accuracy, a universal hashing function [22] is used to compute
k hash functions that, in turn, allow the algorithm to average the estimates across k
counting vectors. The end result is a method that can produce very accurate cuboid
size estimates (with a bounded error), even for data sets with significant skew.

We have implemented the algorithm in [110] and verified its accuracy. For ex-
ample, the algorithm produces estimation error in the range of 5—6 % with 256 hash

functions. However, its running time on large problems is disappointing. Specifically,

84

despite an asymptotic bound of O(n *24), the constants hidden inside the inner com-
puting loops are quite large. For the small problems described in previous papers, this
is not an issue. In high dimension space, the running time of the estimator extends
into weeks or even months.

Considerable effort was expended in trying to optimize the implementation of
the algorithm. Despite a factor of 30 improvement in running time, the algorithm
remained far too slow. We also experimented with the GNU-MP (multi-precision)
libraries in an attempt to capitalize on more efficient operations for arbitrary length
bit strings. Unfortunately, the resulting estimation phase was still many times slower
than the construction of the views themselves. At this point, it seems unlikely that

the Counting-based estimator is viable in high dimension space.
3.6.1.4 Our Own Probabilistic Approach

We have developed our own probabilistic cost estimator for data sets whose point
distribution is approximately uniform. We note that, in practice, this assumption will
not always be valid. However, for the purposes of algorithm design and evaluation, it
serves as a very useful starting point. Moreover, our estimator is quite efficient and,
unlike the Counting-based algorithm, can produce estimates in a fraction of the time
required for the build phase.

The fundamental idea is based on a probabilistic analysis that examines the cardi-
nalities of the attributes of the data set. Recall that an input set of size n is reduced
to a view of size r because of the aggregafion that takes place when records with
identical attributes are encountered. Our goal therefore is to accurately estimate the
number of duplicate records likely to be generated for a specific set of attributes.
In the context of the data cube there are 2 such sets, each corresponding to one
cuboid. We note that this approach is similar to the one described in [40], though

the implementation is somewhat different.

85

Theorem 3. For an input set of size n, and a view V with a potential space of size
Sy, we may estimate the number of records r in V' by performing the summation

Sy
P ey

and terminating in one of two possible cases:
1. i>=5,, in which case r = 5,
2. x >=mn, in which case r =1

Proof. The estimation method is formulated as a counting problem in which we make
n random selections from the potential space of V| and replacement is permitted (in
order to represent duplicates). In each iteration ¢ of the summation, we estimate the
number of additional selections — (S, — 4)/S, — that would be necessary to obtain
a non-duplicate, given that ¢ — 1 unique values have already been found. To convert
the raw probabilities into real numbers that may be used to represent the estimated
number of additional selections required, we divide the result by one and add it to
the running summation. The resulting equation is represented as:

1 S,
e=2 (8. — /S, 2 (S, — 1)

=0 1=0

To estimate the number of records required to construct V, we must provide the
two terminating conditions.

1. i >= §,. If this condition is satisfied, we know that the potential space has
been fully saturated — implying that any additional selections from the input
space will simply represent further aggregation. In such cases, we can estimate
the size of V as S,,.

2. & >= n. In this case, we have used all n records without saturating the potential
space. If this happens, then some degree of aggregation may have taken place
and the number of unique records r in V' formed by n random selections in the
potential space can therefore be estimated as 1.

O

We can use a simple example to illustrate our approach. Assume that five balls,
each of a different colour, have been placed into a bag. We would like to determine
the number of draws of a single ball required before three unique balls have been
seen, given that the selected ball is returned to the bag after each retrieval. Using

Theorem 3, the probability of obtaining a non-duplicate in each of the first three

86
iterations is == = (5 —0)/6 =1, =% = (5—-1)/5 = 0.8, and *=* = (5 — 2)/5 = 0.6.
Incorporating these probabilities into the running summation, this would imply that
we would require one selection to obtain one unique ball, approximately 2.25 selections
to obtain two unique balls, and approximately 3.91 selections to find three unique
balls.

In the context of the data cube, the expression can be interpreted as an estimate
of the number of (unique) records found in a view V when drawn from a data set
R. Since all records in V' are unique (i.e., the objective of the cube operation is to
aggregate duplicates into a single value), then the summation serves as a probabilistic
estimate of the size of V. Because of its accuracy and efficiency, it is well suited to

the costing model that we have developed for our PipeSort method.

3.6.2 Pipeline Cost Estimation

In the previous section, we described how the sizes of views in the lattice might be
estimated. In this section, we describe a cost model that, given estimates of view
sizes, estimates the time required to generate those views. The model takes into

account the contribution of the following three fundamental processes:

1. Input/Output: One of the most expensive aspects of data cube generation is
the writing of cuboids to disk. We must be able to capture this hardware-based

cost, particularly in terms of its impact “relative” to RAM-based computation.

2. Pipeline Scanning: Each cuboid is constructed as the result of a scan through the
sorted input set. Because the “scan” is shared by all views in a single pipeline,

however, we must be able to describe the contribution of each individual cuboid.

d
3. Sorting: For each of the Q((/2])) pipelines in the spanning tree, we must

represent the costs of either Radix Sort or Quicksort on the appropriate input

set.

87

When modelling the costs of the algorithm, we must strike a balance between
mapping granularity and model transparency. In other words, our costing framework
must be sufficiently detailed to capture the salient features of the algorithms, but
not so detailed that it becomes unwieldy and difficult to modify. In the remainder
of this section, we provide a complete description of the current data cube costing

infrastructure.
3.6.2.1 Input/Output

The 1/O metric is the one component of the cost model that is heavily influenced
by the architecture of the machine being used. Specifically, I/O costs are intimately
related to the hardware and supporting software upon which the data cube imple-
mentation actually runs. As such, it is necessary to experimentally define the relative
impact of reading/writing data to disk. That being said, the impact cannot be defined
in “absolute” terms; it must instead be a relative definition that can be measured
against the scanning and sorting costs.
To represent 1/O impact, we define what we call the Write I/0O Factor. This
expression represents the degree to which a “write” to the local physical disk unit
‘is more expensive than a comparable write to a RAM buffer. In a generic appli-
cation environment, such a measure would be virtually impossible to capture given
the impact of random disk head movements and OS intervention. Recall, however,
that our I/O manager assumes control of application input and output and reduces
disk access to a finely coordinated sequence of streaming reads and writes. We can
therefore accurately capture the I/O factor by experimentally comparing the cost of
a RAM-to-RAM “write” versus a RAM-to-disk “write” for data sets of sufficient size
(small writes can be dominated by the initial disk head movement). The Write 1/0O
Factor for our local Linux cluster, for example, is 120. In other words, for streaming

writes the cost of sending data to disk is a little more than two orders of magnitude

88

greater than that of accessing the same records in a memory buffer.

Since each individual record is composed of k feature attributes and a single
measure value, the write cost for a k-dimensional data cube view with an estimated
size of n is equivalent to n(k + 1) x Write IO Factor. The reader will note that this
form of 1/O metric can be deemed “relative” in that it is defined only in terms of n
and k, parameters that will also be used by the sorting and scanning cost functions.

Finally, we note that there is actually a second I/O cost that must be captured
in the cost model. In particular, views that are to be sorted must first be read into
memory. “Read” 1/0, however, is significantly less expensive than write I/O. For
example, the Read I/0 Factor on our current machine has been shown experimentally

to be equal to 10, or approximately 1/12 of the Write I/O Factor.
3.6.2.2 Scanning

Though conceptually we think of scanning as representing the process of linearly
passing through a parent view in order to compute a child, this is in fact not the case.
Recall that the pipeline algorithm uses a single scan of the input set to compute all
child views in the pipeline. In Section 3.5, we suggested that the scanning/aggregation
phase could be bounded as O(n * (k + m)), where n was the number of records, k
was the number of attributes, and m was the number of views in the pipeline. While
this bound is valid, we cannot model scan costs in this fashion because during the
spanning tree construction and partitioning phases, we do not actually know how
many views will end up in a given pipeline. In other words, we do not know the value
of m.

We deal with this problem by decomposing the scanning process into two com-
ponents. First, there is the portion of the scan cost that is associated with passing
through the input view and identify the it attribute in the set of k dimensions that

represents an attribute change on contiguous records. We will in fact incorporate

89

this cost into the sort metric (discussed below). Second, there is the component of
the scan that is associated with identifying a new record for view V (based upon
the position of the attribute change), and moving that aggregated record to the I/O
manager’s output buffer. For a view V of size n, this cost is exactly equivalent to
n(k+1). Furthermore, this cost does not depend upon the number of views that end
up in the final pipeline. Instead, each view must always be associated with this cost,

regardless of its position in the pipeline or how it was created.
3.6.2.3 Sorting

Each pipeline is associated with a sort on some input view. We have described the
process of dynamically choosing the appropriate sorting algorithm (Radix Sort or
Quicksort). However, estimating the sort cost involves the computation of two other
metrics. First, we must include the read cost of the input view, defined above as
n(k+1) x ReadI/O factor. Second, we must capture the cost of finding the position
of the first attribute that differs in contiguous records, the second component of the
pipeline scan. While we cannot know where that position will be for an individual
record (e.g, 1 < pos < k), we can define the average or amortized position as k/2.
In other words, we expect that, on average, we will have to look at half of the k
attributes to find a change. The full cost of this portion of the scan is therefore
n* (k/2). We will refer to this cost as the dim check metric. Putting the three sort
components together, we have sort = read cost + (Radix | Quicksort) + dim check.
We note that for the Standard pipeline implementation, costing of the Radix and
Quicksort algorithms would be quite cumbersome due to the effect of data movement.
Recall, however, that the use of vertical and horizontal indirection virtually eliminates
such costs, allowing us to work with the much more manageable and more familiar

3kn and nlogn metrics. Thus, the fully materialized sort metric is defined as:

90

(n(k 4+ 1) x Read I/O Factor) + ((3kn) | (nlogn)) + (n x (k/2))

As a final point, we must be careful to identify the appropriate input set for each
cost metric. In the case of the sort, each of the three components is computed in
terms of the existing view that must be resorted in order to compute the current
pipeline. It is not in the pipe itself since it has already been created. The 1/O and
scan costs, however, are associated with views in the pipeline, the ones that are to be

created from a scan of the sorted input set.

3.6.3 Putting it all together

While the previous sections have defined the cost functions that make up the larger
model, the careful reader may have noticed that there is still one slight problem
with the direct application of these metrics. Specifically, as described in Section
3.5, the I/O manager uses separate computation and I/O threads to exploit the
functionality of modern DMA controllers. The result is that I/O and computation
are to a large degree overlapped. We note that this does not mean that we can ignore
I/0 costs. Doing so would “suggest” to the bipartite matching algorithm that I/0
costs were effectively zero — an assumption that is most definitely untrue — leading
to a partitioning of work that would likely be poorly balanced.

At first glance, it would seem difficult to incorporate this knowledge into the
model. Specifically, the I/O costs for a given partition are not known until the
spanning tree has been cut; however, the cutting process itself relies upon accurate
knowledge of the I/O costs. We deal with this problem by further augmenting the
min-max partitioning algorithm. Recall that during each iteration of min-max, we
evaluate the current cost of each partition in order to ascertain if the root partition is

still the lightest. The algorithm generates these costs by summing the edge weights

91

raw DBCA ifo: n(k + 1) x Write 1/0 factor
15000 12500 read: n(k + 1) x Read /O factor
ik Bt R bl scan: n(k + 1)
sort = 246,000 1 sort = 205,000
ilo = 67,200 , ifo = 67,200 dim check: n x (k/2)
A
sort: read + [(3kn) | (n logn)] + dim check
ABC
1400

Natural Weight
pipe weight: 261,420
+ 1/O weight: 75,840

=450 sort = 14,940
o= 5400 / \"0 =2.880

!, AB BC
' 150 80

= partition weight: 337,260
scan = 30
ifo = 360 /

min/max Weight
max{pipe weight, /O weight}
_______________________________ = actual weight: 261,420

Figure 3.4: Dynamic cost calculations for a sample partition from a four dimensional
space. The numeric values inside each view represent the estimated sizes.

of the current partitions, where the edge weights represent the costs of sorting, scan-
ning and performing I1/0. Let Zé:l eruy denote the total cost for a partition with [
edges, where all construction costs (i.e., sorting, scanning, and I/0) are serialized.
To accurately represent the construction costs in the new multi-threaded design, the
pipe weight Zé:] epipe and the 1/0 weight Zizl ero are generated by decomposing
2221 e into its constituent components. We then define the actual partition weight
as max{Zézl Epipes Zi:l ero}. In other words, for the current partition we dynami-
cally decide which of the two components, each with its own execution threads, will
dominate or bound the cost of the current computation. Since the execution threads
almost completely overlap, we know that the smaller of the two costs will be mostly
“absorbed” by the larger cost and will have little effect upon final run-time.

Figure 3.4 provides an illustration of the complete model for a sample partition
defined on a four dimensional space, including the cost metrics for each of the relevant

computational components. The following costing features can be observed:

e First, note that the existence of the “parent” cut requires that the “raw” data

92

set be used as input for the initial sort.

e Edges from prefix-ordered pipelines are associated with scan and 1/O costs,

while non-prefix views are associated with sort and I/O costs.

o The actual partition weight in this example is bounded by the pipeline costs.

Finally, we note that the reader should not assume that the relative weights in
this particular example are indicative of general trends. Each data cube problem is
unique, and the size and nature of the data set, coupled with the number of feature

attributes, will produce different partitioning patterns.

3.7 Implementation

In total, approximately 20,000 lines of code support the full data cube system, includ-
ing the partial cube and indexing facilities described in subsequent chapters. Though
some initial coding was done in C, we chose to move to a C++ platform in order
to more efficiently support the growth of the project. With the expansion of the
code base and the involvement of a number of independent developers, several of
whom were in geographically distinct locations, it made more sense to employ an
object-oriented language that allowed for data protection and class inheritance.

A number of third-party software libraries were also utilized. Node-to- node com-
munication is supported by LAM’s Message Passing Interface (MPI) [83]. Recall that
efficient MPI implementations exist for both SMP and distributed memory architec-
tures. Thread functionality is provided by the Pthreads (POSIX Threads) libraries
[97]. Finally, we have also incorporated the LEDA graph libraries into our data cube
code base [74]. We selected LEDA because of its rich collection of fundamental data
structures (including linked lists, hash tables, arrays, and graphs), the extensive im-

plementation of supporting algorithms, and the C++ code base [74]. Though there

93

is a slight learning curve associated with LEDA, the package has proven to be both
efficient and reliable.

Having incorporated the LEDA libraries into our system, we were able to imple-
ment the lattice structure as a LEDA graph, thus allowing us to draw upon a large
number of built-in graph support methods. In this case, we have sub-classed the
graph template to permit the construction of algorithm-specific structures for node
and edge objects. As such, a robust implementation base has been established; ad-
ditional algorithms can be “plugged in” to the framework simply by sub-classing the
lattice template and (a) over-riding or adding methods and (b) defining the new node
and edge objects that should be used as template parameters.

The final system, though large, has been constructed to be as modular and ex-
tensible as possible. Extensions to the core algorithms may treat the current system
as a data cube back-end, using its core methods as an API. Because of the emphasis
on fundamental software engineering principles, the current data cube engine is more
than a mere “proof of concept”. It is a robust parallel OLAP engine that should

continue to support related research projects for a number of years to come.

3.7.1 Generating Data Cube Input

In order to effectively evaluate the data cube algorithms, it is necessary to utilize a
wide variety of test sets that reflect the patterns and idiosyncracies one is likely to
encounter in practical settings. As such, we have designed our own data generator that
produces user-defined integer-based records (non-integer records would typically be
mapped to integers in an industrial application). The generator accepts parameters
for such things as the number of records in the data set, the number of feature
attributes, and the number of unique values in each dimension. Appendix D provides

a detailed description of the data generation sub-system.

94

3.8 Analysis

Algorithm designers seek not only to produce elegant computational mechanisms,
but also ones that demonstrate acceptable performance characteristics on working
systems. In the sequential design world, this second theme is typically associated
with some form of asymptotic analysis that attempts to bound the run-time of the
algorithm in terms of its key parameters, most often the size of its input. In Ap-
pendix A, we note that the analysis of parallel algorithms tends to be more complex
in that a number of additional parameters are involved. Analysis of message passing
systems, in particular, must be able to incorporate the impact of slow communication
fabrics. Models for the analysis of coarse grained parallel algorithms, such as BSP
[121], CGM ([33], and logP [23], might do this by bounding the computation on each
node relative to that of the original input on a single processor and bounding the
number of communication rounds required.

Given that one of the principle tenets of coarse grained design is the decomposition
of the algorithm into a series of “supersteps”, it should be clear that the current data
cube algorithmn fits this general design model quite well. Specifically, we reduce the
‘number of such rounds to exactly one — task list distribution, followed by pipeline
computation. Moreover, the communication in this superstep has total size of only
O(2%) since it is used to pass each view in the spanning tree to one of the p processors.
Subsequent to the communication phase of the superstep, each processor computes
independently until the algorithm terminates.

Having said this, our parallel data cube algorithm does not lend itself to a stan-
dard coarse grained analysis. There are several reasons for this. First, the data cube
algorithm is in fact a collection of sequential algorithms, making a concise (i.e., read-
able) analytic bound somewhat difficult. Second, the algorithm is a combination of
in-memory algorithmic computation and large scale input/output phases. It is quite

difficult to combine internal and external memory bounds within a single meaningful

95

expression. Finally, in order to provide asymptotic bounds on parallel computation,
it is expected that one can say something precise about the balance of input parti-
tioning across processors. Because weighted graph partitioning is NP-complete, and
we must therefore rely upon heuristic solutions, it may not be possible to make such
an assumption.

As a result, we must take a less direct approach to the analysis of our parallel

data cube implementation. Specifically, we attempt to provide the following support:

1. Determine if the addition of the graph partitioning algorithm has altered the

asymptotic bound of the scheduling phase.

2. Justify the use of the partitioning scheme, both logically and experimentally.

We will address these two issues in the remainder of this section. First, however,
we make the following observation with respect to the algorithmic model. Occa-
sionally, it is possible to design a parallel algorithm in which the workload is divided
evenly between processors, which then independently compute their share of the work-
load. Such algorithms are often referred to as embarrassingly parallel to indicate the
simplicity of their construction. The parallel data cube algorithm, despite its use
of independent pipeline computation, is NOT such a design. Specifically, we exploit
global information to make “up front” load balancing decisions rather than real-time
local decisions, as is often done. In effect, by building an explicit cost model that
takes into account the properties of the data and the underlying parallel machine,
we simply migrate the load balancing logic from its traditional position within the

run-time component of the algorithm to a distinct pre-processing phase.

3.8.1 The Scheduling Phase

We begin by examining the scheduling phase in Steps 1-4 of Algorithm 7. Here, we

have taken the original sequential algorithm and extended it with a tree partitioning

96

algorithm. Clearly, run-time of the scheduling phase is now bounded as the concate-
nation of the sequential run-times for tree construction and tree partitioning. If the
parallel algorithin is to be effective in practice, however, its running time (for typical
parameter settings) should not be much larger than the run-time of the schedul-
ing phase of the original algorithm. Otherwise, the increased cost of the sequential
scheduling phase will make it difficult to obtain acceptable parallel speedup. More
directly, we would like to know if the scheduling phase is bounded asymptotically by

spanning tree construction or by tree partitioning?

Theorem 4. For o lattice L of maximum width W, and o tree T extracted from L, the
time complexity T, of the tree partitioning algorithm dominates the time complezity T,

of the tree construction algorithm if, for p processors and d dimensions, p(p*d+2%) >
d*W2(d + log dW).

Proof. The time complexity of the tree construction algorithm is bounded by the d
iterations (one for each level in the tree) of its bipartite matching algorithm. For a
bipartite graph with n nodes and m edges this algorithm is O(n * (m + nlogn)) [80].
Recall that during each iteration of bipartite matching, we augment the original lattice
by generating k copies of each view at the parent level, each of which is connected with
an edge to k children at the child level. We note that while the number of nodes at

a given level k can be represented by the combinatorial expression = Zd——%mv

incorporating d such expressions into a single bound creates a very awkward result.

Instead, we let W denote the maximum value of for 1 < k < d. Simply put,

d
k
W represents the widest level of the lattice. We will bound the algorithm as the cost
of computing this one round of bipartite matching, rather than the cost of computing
d rounds. While this understates the upper bound, it is perfectly acceptable in this
context since our aim is to show that spanning tree partitioning is cheap relative to
tree construction, even in this restricted form.

The number of nodes and edges for level W when it is augmented by the bipartite
matching algorithm can now be written as n = dW and m = d*W, respectively.
The final upper bound for tree construction can be expressed as T, = O(dW (d*W +
dW log dW)) = O(d*W?(d + log dW)).

The second sequential algorithm, tree-partitioning, is bounded by the cost com-
plexity of k-min-max [6]. The upper bound is O(p®H + pn) where p is the parti-
tion/processor count, H is the height of the tree, and n is the node count. With H =
d and n = 2¢, we have an bound of T, = O(p*d + p2?) = O(p(p*d +2%)). We add that
the “dynamic” extensions to k-min-max do not increase its asymptotic complexity.
The use of both the “cut” hash table and overlap-based costing add only a constant
number of operations to algorithmic steps that would be executed in the non-dynamic
version.

97

| lp=4]|p=8]p=16|p=32|p=064|p=128]
d=4 C C P P P P
d=6 C C C P P P
d=38 C C C C C P
=10 C C C C C C
d=12] C C C C C C
d=1] C C C C C C

Table 3.1: Evaluation of scheduling phase for reasonable values of d and p. The
dominant cost is listed as either C (spanning tree construction) or P (spanning tree
partitioning).

Given the bounds of the two core sequential algorithms, we can conclude that the
O(p(p*d + 2%)) min-max component will asymptotically dominate the O(d?W?(d +
log dW)) spanning tree component only when p(pd + 2¢) > d®*W?2(d + log dW).

O

In Table 3.1, we analyze the inequality for typical values of p and d. Observe that
the tree partitioning phase only dominates the construction phase when very high
processor counts are combined with low dimension counts. However, this combination
is unrealistic in practice since such small data cube problems simply do not require
this degree of parallelism. Note as well that because we have understated the upper
bound for tree construction, there may in practice be even fewer situations in which
tree partitioning dominates. As such, we can say with some confidence that our

parallel extensions to the scheduling phase are unlikely to distort the performance

characteristics of the original scheduling algorithm for reasonable values of p and d.

3.8.2 Workload Partitioning

We judge coarse grained parallel algorithms not only on the quality of their sequential
components, but upon their ability to effectively utilize available parallel resources.
In other words, the goal is to equally distribute the workload across the p processors of
our parallel machine. In Appendix B, we note that when the algorithm’s workload is
represented by a task graph, the resulting partitioning problem is often NP-complete.

In such situations, we must resort to heuristic solutions which are expected to provide

98

“reasonably good” results in tractable time. This is the approach that we have taken
with our parallel PipeSort.

Because provably optimal solutions are not available, however, it is important
to provide reasoned support for the design decisions that have been made. In the
remainder of this section, we discuss the rational behind the partitioning model that
is at the heart of the Parallel PipeSort (Algorithm 6).

We first consider the following basic tree partitioning problem.

Problem 1. Partition the spanning tree T' into p sub-trees such that the size of the
largest sub-tree is minimized.

Note that an optimal solution to this problem is not defined as a perfect parti-
tioning, where perfect indicates a partitioning in which the size of each sub-tree is
identical. In fact, such a partitioning is unlikely to exist given the arbitrary weights
of the individual edges.

In any case, given a solution to Problem 1, we could then consider giving each
processor a single sub-tree for local execution. In the context of the PipeSort, mini-
mizing the size of the largest partition would therefore correspond to minimizing the
time taken on any single processor.

With respect to an algorithmic solution for Problem 1, note that an optimal
partitioning of a weighted graph is in fact NP-complete. A trivial reduction from
the NP-complete Multiprocessor Scheduling problem [46] provides the basis of this
proof. We note that the Multiprocessor Scheduling problem consists of some number
of time-limited (i.e., weighted) tasks that must be distributed across a multiprocessor
system before the expiration of some fixed deadline.

In the case of the PipeSort, however, an ordering on the construction of views
(i.e., children are constructed after parents) limits the distribution pattern of these
views. The PipeSort partitioning problem can therefore be reduced from the processor

scheduling problem known as Precedence Constrained Scheduling. While this related

99

problem is also NP-complete [46], there is in fact one special case of the general
problem that has proven to be solvable in polynomial time. Specifically, if the task
ordering takes the form of a spanning tree, then the partitioning problem belongs
to the complexity class P. An optimal polynomial time solution for minimizing the
size of the largest partition is therefore possible. In fact, the k-min-max algorithm
provides this optimal solution.

However, while k-min-max produces an optimal partitioning of the schedule tree
into p pieces, we note that the partitons/sub-trees may still be quite uneven in size.
We therefore define a second problem in which the goal is to improve upon the basic
partitioning provided by k-min-max.

Problem 2. Partition the spanning tree T into B sub-trees and then group these sub-
trees into p partitions (sets of sub-trees) such that the weight of the heaviest partition
s minimized.

Unfortunately, combining sub-trees in an optimal manner is also NP-complete.
In fact, if we consider a sub-tree with j edges to represent a single task of weight
E{zlweight(j), and we remove the precedence ordering, we can reduce the problem
of optimal sub-tree combination to the original Multiprocessor Scheduling problem.

We address this new problem with the approximation technique described in Algo-
rithm 6. This algorithm is an example of a heuristic approach to approximation. By
this we mean that, while a provably optimal algorithm may not be possible, we can
use our knowledge of the problem space to provide a solution that is likely to be good
in practice. Specifically, we note that while tree-partitioning in the general case can
produce partitions of widely varying sizes, the situation for PipeSort spanning trees
tends to be somewhat more predictable. Typically, the edge weights of the PipeSort
schedule trees grow gradually smaller towards the leaf nodes/views. Because there
are no radically disproportionate costs associated with single edges (as there might be
in the general case), k-min-max partitioning tends to produce an initial set of s x p

partitions that are quite well balanced, typically within 20% to 30% of the mean.

100

We can effectively exploit this feature of the problem using the “high-low pairing”
technique in Steps 4-10 of Algorithm 6. In fact, if we restrict our attention to the
case where the over sampling factor is two — a very important practical case — we

can show the following.

Proposition 3. For an over-sampling factor of two and a partitioning where
|[subTreemes| < 2|subTreem,|, Algorithm 6 produces an optimal combination of sub-
problems.

Proof. The proof has two components. First, we show that there is no strategy for
combining sub-trees in groups of two that is better than high-low pairing. Then we
show that if we allow combinations of more or legs than two sub-trees, we still do not
get a better result.

We look first at the case where every tree consists of exactly two sub-trees. Note
that an optimal pairing of two trees per node is equivalent to minimizing the size
of the largest two-tree combination. Now, assume that we have used the high-low
approach to partition the 2 X p sub-trees into p pairs, each with a high and low
element. For 1 <4 < j < p, we have high, > high; and low; < low;. One of these
pairings represents the largest partition. We will denote the position of this partition
as k, where 1 < k < p. To reduce the size of the largest partition, we must move
the lowy value to a new partition. If we move low, to a new position [, such that
[> k, observe that because low; > lowy, we will create a new partition at k that is
at least as large as the original. Conversely, we can move lowy, to a position [, where
I < k. This will create a smaller partition at k. However, in doing so, we create a
partition at [that is at least as large as the original at k since high, > highy. We
therefore conclude that it is not possible to produce better two-tree pairings than
those produced by the high-low method.

We now look at combination strategies that allow arbitrary numbers of sub-trees
per partition. We note that if high-low partitioning has not been used to combine two
sub-trees on each processor, then there must be at least one processor that receives
only one sub-tree and at least one processor that receives three or more. Now, even
if the three smallest sub-trees are placed into one partition and the largest single
sub-tree is placed in another, we know that the difference in size between the largest
and smallest partition can be no less than the difference between the size of this
three-tree partition and the one containing only the largest sub-tree. Given that the
largest sub-tree can be no more than twice the size of the smallest sub-tree, we can
conclude that the difference between the largest and smallest partition is at least
3|subTreemmn| — 2|subTreemi| = |subTree .

For high-low partitioning, we have a maximum size high-low pair at position k& and
a minimum size high-low pair at position [, 1 < k,! < p. Let us assume first that k < [.
Note that since both high; and low; are at least as large as lowy, the difference be-
tween the sizes of the two partitions is maximized by setting lowy = high; = low; and
highy to twice the size of the three smaller sub-trees. We therefore have a maximum
partition whose size is at most 2|subTreeni| + |subTreemm| = 3|subTreem:,| and a

101

minimuim partition whose size is at least |subTreemin|+|subTreemin| = 2|subTreemm|-
Thus, the difference between the two is at most |subTreem:|. We now consider
the case when k > [. Note here that since high; is at least as large as both
highy and lowy, the difference between the sizes of the two partitions is maxi-
mized by setting high, = highy = low, and low; to half the size of the three
larger partitions. We therefore have a maximum partition whose size is at most
2|subTreemn| + 2|subTreemn| = 4|subTreem:y,| and a minimum partition whose size
is at least 2|subTreem| + |subTreemn| = 3|subTreem,|. Thus, the difference be-
tween the two is again at most |subTreen,|. We can therefore conclude that the
partitioning produced by high-low pairings is at least as good as that produced by
arbitrary combinations of sub-trees on each processor.

Since both cases have now been proven, we have demonstrated that Algorithm 6
produces an optimal combination of sub-problems for an over-sampling factor of two
and a partitioning where |subTree, .| < 2|subTreemm|.

O

As we will see in Section 3.9.4, application of the high/low technique significantly

reduces the balancing error and is particularly effective when sf = 2.

3.9 Experimental Evaluation

In this section, we discuss the performance of our parallel PipeSort implementation
under a variety of test scenarios. Evaluation was conducted on the two systems

previously described in Chapter 1:

1. Linux Cluster. The Linux system (kernel version 2.4.9-13) is a 64-processor (1.8
GHz), 32-node Beowulf configuration, with a 100-Mb/sec switch supporting
the interconnect. Each node has its own pair of 40 GB IDE disks. (We note,
however, that to simplify the interpretation of results, only one CPU and one

disk were utilized on each node.)

2. SunFire 6800 Cluster. The SunFire 6800 is a very recent SUN multiprocessor
that runs the Solaris 8 operating system. It uses SUN 900 MHz UltraSPARC III
processors with one GB of RAM per CPU. Finally, the SunFire comes equipped
with and a SUN T3 shared disk array.

102

The majority of our testing is conducted on the Linux cluster. This is largely due
to the limited access we had to a shared disk machine. Data cube evaluation is an
extremely time consuming process. Not only do a very large number of individual
tests have to be run, but the tests themselves can be very long running. Moreover,
direct access to the file system is often useful. Since available time on the more
expensive multiprocessor was quite limited, and because low level access to resources
was not possible, the use of our own Linux cluster allowed for a much more complete
suite of tests than would otherwise be possible. Having said that, it was imperative
that we confirm the applicability of the algorithm to shared disk architectures as well
as fully distributed clusters. As such, parallel Speedup and Efficiency graphs are
provided for both physical targets.

We will look at a sequence of data cube tests, each designed to highlight one
important characteristic or parameter of the model. In effect, we utilize a set of base
parameters and then vary exactly one of these parameters in each of the tests. These

base parameters are (with defaults listed in parenthesis):

1. Processor Count (16)

N

. Fact Table Size (2 million rows)

3. Dimension Count (10)

W

. Over-sampling Factor (2)

5. Skew (uniform distribution)

When default values are not, or cannot, be used for a particular test, this fact will
be clearly noted. Finally, we add that each point in the graphs represents the mean
value of three separate test runs. Note that in general the variation between runs was

less then 3%.

103

3.9.1 Parallel Speedup

The most fundamental, and arguably the most important, of all parallel computing
tests is the Speedup/Efficiency evaluation. Simply put, it is the primary measure of
the value or usefulness of the parallel algorithm or system. Not only does it provide a
snapshot of the quality of the workload balance, but it allows us to understand how the
potential sources of overhead can affect run-time as we move beyond a single processor.
It would have been nice to compare the speedup results produced by Algorithm 7 with
the work of Goil and Choudhary [48, 49, 49]; however, they unfortunately do not give
any speedup numbers.

Note that because we are using a coarse-grained parallel computing model, one
that directly exploits existing sequential algorithms, it is possible for us to accurately
compare parallel performance to that of efficient sequential techniques. Specifically,
we run the the sequential component of the parallel code on a single processor to
obtain accurate benchmarks.

The first Speedup test analyzes the performance of Algorithm 7 on the Linux
cluster as processor count increases from 1 to 24. Figure 3.5 depicts the performance
curve. Also shown is the optimal curve, calculated as Ty = Tiequential/p- Note
that the actual performance tracks the optimal curve closely. For 24 processors, our
method achieves a Speedup of 20.18. In Figure 3.6, we provide the corresponding
efficiency ratings. With smaller processor counts (i.e., p < 12), efficiency values lie
somewhere between 90% - 95%, while for processor counts beyond this point, the
ratings are between 83% and 90%. Given the complexity of the data cube problem,
these results represent an extremely efficient use of parallel resources. Moreover,
the relatively mild decrease in efficiency at 16+ processors suggests that even higher
processor counts are likely to provide acceptable efficiency.

It is interesting to note that the efficiency curve has a slightly ragged shape. In

other words, the curve from one to 24 processors is not strictly linear. In fact, this is

Run Time (sec)

1800
1600
1400
1200
1000
800
600
400
200

Figure 3.5:

Efficiency (%)

Actual ——
Optimal ----x----

Speedup test for 1 to 24 processors on a Linux cluster.

Number of Processors

12

16

20

24

100
90
80
70
60
50
40
30
20
10

4

Number of Processors

8

12

16

20

24

Figure 3.6: Efficiency ratings for the Linux cluster.

104

105

exactly as we would expect since the algorithm must provide a unique partitioning of
the spanning tree for each processor count. Note that in this test, all evaluation runs
use the same input set to ensure an “apples-to-apples” comparison. Consequertly,
it is possible for a larger processor count to get a slightly better partitioning than a
smaller count (e.g., 12 versus 8).

In the second round of testing, we evaluate Speedup and Efficiency on the SunFire
6800 (note: only 16 processors were available for testing on the SunFire). Figure 3.7
shows the Speedup curve, while Figure 3.8 provides the efficiency ratings. From two
to eight processors, the efficiency again exceeds 90%. At 16 processors, efficiency slips
to about 80%. Since this is slightly more noticeable than the decrease on the Linux
cluster, it begs the question, “Is this an algorithmic issue?” Our analysis suggests
that the answer is likely no. Rather, it is the nature of the SunFire disk array itself
that is beginning to affect performance. Specifically, the disk array houses a fixed
number of independent disk units that may respond in parallel to I/O requests. This
occurs for any number of application processes. In other words, even a sequential
algorithm benefits from parallel 1/O with a disk array. However, the fact that the
number of disk units is fixed means that a “law of diminishing returns” eventually
comes in to effect. By this we mean that on the SunFire, unlike the Linux cluster
where the addition of a processor implies the addition of a disk unit, eventually the
number of processors involved in the computation will exceed the number of disks in
the array. Now, if the application does a significant amount of I/O, then this I/0O
may eventually become a bottleneck because the parallel system’s ability to reduce
I/O costs is more limited than its ability to reduce computation costs. Simply put, at
higher processor counts, the I/O costs for the data cube can no longer be completely
hidden by the pipeline computation costs.

These results, then, would suggest that shared disk data cube implementations

would be best suited to parallel settings with a small to moderate processor count.

106

3500 —T T T

Actual -
Optimal ----»---

3000 |

2500 t

2000 r

1500 r

Run Time (sec)

1000 r

500 f

Number of Processors

Figure 3.7: Speedup test for one to 16 processors on the SunFire 6800.

We note that, in practice, this observation would not likely be seen as a significant re-
striction. Specifically, because data warehouses would almost certainly be constructed
as dedicated systems, unlike the multi-purpose MPPs often seen in scientific comput-
ing environments, small to moderate parallel systems would often be the platform of

choice.

3.9.2 Data Set Size

In this section, we analyze the effect on performance as we increase the size of the input
set, holding other parameters constant. Figure 3.9 depicts the running time on the
Linux cluster for data sets ranging in size from 500,000 records to 10,000,000 records.
Before examining the curve, we note the following. As we increase problem size, the
performance of the I/O component of the algorithm will effectively increase at a linear
rate since it essentially performs streaming writes to disk. On the computational side,
however, run-time is bounded by the time to perform sorting. Recall that we may
either use QuickSort of Radix Sort for this purpose. In higher dimensional space

(e.g., the 10-dimensional set used for the test), Quicksort will generally be chosen for

107

100 + A
90 |] []] 1
80 —— _
70 :
60 + .
50 8
40 L p
30 + 8
20 t .
10 r 8

Efficiency (%)

1 2 4 8 16
Number of Processors

Figure 3.8: Efficiency ratings for the SunFire 6800.

smaller data sets, but will give way to Radix Sort once the sets become very large.
Thus, we would expect to see a slightly super-linear growth pattern for the smaller
sets (due to the O(nlogn) Quicksort), but then a more or less linear pattern after a
certain point (due to the asymptotically linear bound of Radix Sort).

Returning to Figure 3.9, we see a curve that closely resembles the expected shape.
On small sets, there is a modest super-linear increase in run-time. Between 5 million
and 10 million records, however, we see a, curve that is almost perfectly linear in shape.
At this point, almost all of the sorting is performed by Radix Sort. Consequently,
the curve begins to flatten out. This, in fact, is a very encouraging sign for data cube

implementations that will deal with even larger fact tables.

3.9.3 Dimension Count

In this test, we examine the effect on increasing the number of dimensions for data
sets with a fixed row count (the default of 2,000,000). Figure 3.10 illustrates the
effect of increasing the number of dimensions in the problem space from six to 14.

Recall that an increase of one in the dimension count corresponds to a doubling in

108

©
[=3
=1

Run Time (sec)
w B o o] -~ ©
Q [=] [=] o (=] (=]
o o o o o o

N
=3
o

=]
S

0 o o L .
500K1M M 5M 10M
Number of Records

Figure 3.9: Record count evaluation.

the number of views to be produced. Interestingly, the general shape of the curve is
quite similar to that of the Record Count test. The explanation for this, however,
is slightly different. In this case, the combination of data set size and dimension
count is likely to favour the QuickSort for most of the large sorts. It is important,
incidentally, to distinguish between large and small sorts because even though most
of the views in the lattice would have smaller dimension counts and would thus be
sorted with Radix Sort, it is the large views at the top of the pipelines that dominate
‘overall sorting costs. In any case, based upon this observation one might expect
this curve to continue to increase at a super-linear rate. It does not do this because
I/O costs become increasingly important as we pass 10 dimensions. This is the case
because in high dimensional space a large percentage of the views are almost as large
as the original fact table. Given the the significantly penalty of writing all of this
data to slow secondary storage, the I/O phase of the algorithm begins to dominate
the in-memory computation. Since the I/O in this system is strictly linear (i.e., it
is streaming, not random access), the growth curve again begins to flatten out. We
may therefore conclude that for significantly large problems, either in terms of data
set size or dimension count, increases in input parameters result in a roughly linear

increase in run-time performance.

109

8192 . — —
4096 |
2048
1024 |
512
256 |
128 |
64
32}
16 |

8 L 1) 1
6 8 10 12 14

Dimension Count

Run Time (sec)

Figure 3.10: Dimension test

3.9.4 Over-Sampling Factor

Recall that the use of a sample factor represents an attempt to reduce run-time by
improving the quality of workload partitioning. Figure 3.11 provides experimental
evidence that our approach is justified. In both test cases, we vary the sampling
factor sf from one (i.e., no over-sampling) to four. Figure 3.11(a) presents results for
the default data set of two million records, while Figure 3.11(b) looks at 10 million
records. The results are virtually identical. In both cases, the use of an over-sampling
factor, with sf = 2, reduces the base run-time by approximately 35%. This reduction
in run-time is entirely the result of improved partitioning. For larger values of sf,
however, performance actually begins to decline. There are two reasons for this. First,
as previously noted, each additional partition on each compute node is associated with
a slightly more expensive sort of the raw data set. Second, as we continue to partition
the original tree, we create sub-trees with increasingly shorter pipelines. The effect
is to reduce the degree to which sorts can be shared by multiple views. As such, it
appears quite likely that an over-sampling factor of two will be optimal for virtually

all practical parallel architectures.

110

1200

2
S
q

]
140 o 1000 }»
120 — —
g 10 § %
g 80 600 +
e =
5w i
400 [
40
200 +
20
0 0 L -
1 2 3 4 1 2 3 4
Over Sampling Factor Over Sampling Factor
(a) (b)

Figure 3.11: (a) Sample factor: two million records. (b) Sample factor: 10 million
records.

3.9.5 Record Skew

In this section we present tests that are designed to illustrate the impact of record
skew on the algorithm’s costing model. Recall that the current size estimator assumes
a uniform distribution of data. One would expect then that as the values of each di-
mension become increasingly skewed (i.e., many more occurrences of some dimension
values than others), the size estimates would become increasingly inaccurate. By
extension, load balancing decisions would suffer, resulting in larger run-times. Fig-
ure 3.12 presents performance results for data sets that have been created with varying
degrees of skew. We note that skew is produced with a zipfian function [123], a tech-
nique commonly employed in the data cube literature [110, 10] (see Appendix D for
a description of the estimator application). In this case, zipf = 0 corresponds to no
skew, zipf = 0.5 to moderate skew, and zipf = I to heavy skew. As the graph demon-
strates, however, there is relatively little difference between the results for uniformly
distributed data and those of the skewed sets.

In fact, there are two reasons for this. First, though estimation quality does
decrease, resulting in sub-optimal load balancing, this degradation is partly offset by
reductions in 1/O costs for skewed data. Specifically, the introduction of significant

skew creates more clustered data cube output, thereby reducing view size and, in

111

120 T -

100 1

80 E

Run Time {sec)
(2]
(=)

40 +

ZOT

0.0 0.5 1.0
Zipf Skew Factor

Figure 3.12: Skew test

turn, reducing run-time. Second, the use of the zipf function for data cube input sets
tends to create a very regular pattern of skew. In particular, all dimensions are skewed
to the same degree, with the result that the associated errors in size estimation tend
to be “amortized” across the network. In other words, costing errors are unlikely to
be disproportionately associated with any one node. The result, then, at least with
this form of synthetic skew pattern, is that the algorithm handles estimation errors
somewhat better than one might expect.

Having said that, it is clear that not all data sets would exhibit this kind of
regularity in their skew patterns. Specifically, real world data sets are much more
likely to have arbitrary clusters and pockets of skew that might lead to more irregular
workload partitioning. We have therefore obtained a one million record data set
containing information on weather patterns. While not a typical OLAP subject, the
weather set makes an appropriate test set in that it consists of categorical attributes of
reasonably low cardinality, and it has a meaningful “total” field that can serve as the
measure attribute. In our case we have extracted the following 10 feature attributes
from the 20-attribute records (cardinality in parenthesis): hour of day (24), brightness
(2), present weather (101), lower cloud amount (10), lower cloud base height (11), low

cloud type (12), middle cloud type (13), high cloud type (11), solar altitude (1800),

112

" Actual —— 100 F — :
Optimal ---»----
600 P 1 90 t+ v—‘] 1
80 ™ 1
500 i r
T - 70}
3 g
~ 400 E 60
E 50
= 300 | é
| &5 40
200 30
20
100
10
0 0 L s . N
12 4 8 12 16 1 2 4 8 16
Number of Processors Number of Processors
(a) (b)

Figure 3.13: (a) Speedup: 1 to 16 processors. (b) Corresponding parallel efficiency.

and relative illuminance (218). The measure attribute is total cloud cover (9).
Figure 3.13(a) depicts the parallel speedup on the weather data set for one to
16 processors (both actual and optimal), while Figure 3.13(b) provides the efficiency
ratings. Observe that as the processor count increases to 16 processors, there is a
slightly more noticeable decline in efficiency than was seen in the original cluster
testing in Section 3.9.1. We believe this to be the result of estimation error than is
not evenly distributed to each of the p nodes. Nevertheless, given that the current
size estimator is not designed to handle this situation, parallel efficiency still exceeds
80% at 16 processors. This suggest that a skew conscious estimator might provide

resource utilization similar to that obtained on uniformly distributed data sets.

3.9.6 Pipeline Performance

In this final test, we examine the performance benefits produced by the inclusion
of the optimizations described in Section 3.5. Since we are specifically dealing with
the sequential algorithm in this case, we provide performance results on a single
processor. In particular, we contrast the run-time of the pipeline construction phase
for the Standard algorithm with that of the Optimized Algorithm. We note that the
Standard algorithm represents the high level description of the PipeSort, as presented

in [105] and consists of:

113

—

Optimi'zed — Optimized —

800 | Standard -—--x-- ’ . 7000 ¢ Standard e
700 6000
q 500
i § so00
g 500 L
b £ 4000
£ 400 e
3
E 300 é 000
2000)
200 . P
100 // 1000
0 o e .
6 7 8 9 10 [7 8 9 10
Number of Dimensions Number of Dimensions
(a) (b)

Figure 3.14: (a) Performance comparison for sequential PipeSort on 10° records. (b)
The same comparison for 10® records.

Quicksort-based sorting of all input sets

Direct record-oriented operation (i.e., no use of vertical or horizontal indirection)

Nuaive aggregation policies

L]

Operating system controlled I/O

Figure 3.14(a) contrasts the performance of the two sequential algorithms on
100,000 records, while Figure 3.14(b) looks at a data set of 1,000,000 records. The
curves are very similar in both cases and clearly demonstrate the runtime reductions
achieved with the Optimized algorithm. At ten dimensions, for example, the run-
time for the Standard algorithm is approximately 1000% greater than that of the
Optimized algorithm (808 seconds versus 98.4 seconds on 10° records, and 7548 sec-
onds versus 724 seconds on 10 records). Another way of saying this is that a single
processor machine running the new algorithm (assuming adequate resources) would

likely beat a 10-processor parallel machine running the original code.

3.10 Review of Research Objectives

In Section 3.3, we identified a number of objectives for this phase of the research. We

now review those goals to confirm that they have in fact been accomplished.

114

. Build upon proven, optimized sequential algorithms for local compu-
tation. In our case, we incorporate the sequential PipeSort algorithm into our
parallel design. The PipeSort is one of the best known top-down methods for

computing the data cube.

. Exploit well studied problems in the parallel computing literature
for the purposes of workload distribution. We represent the data cube
workload as a task graph. Though general graph partitioning is NP-complete,
a k-min-max algorithm, coupled with a technique for over-sampling, provides

impressive load balancing.

. Minimize the communication costs due to view re-distribution. A
subset of views is computed locally on each node. As such, once the task lists

are distributed, no further communication is required.

. Employ global costing information to ensure that local computation is
partitioned /balanced as equitably as possible. Partitioning is performed
“up-front” on the full task graph. All costing information is therefore available

when partitioning decisions are made.

. Support straightforward integration with standard relational systems.
The algorithm is an example of a ROLAP data cube method, meaning that its

input and output are standard relational tables.

. Minimize the complexity — data structures, algorithms, resource
management — that would likely lead to an unworkable practical
implementation. The algorithmic model is structured around “streaming”
I/O and sorting/scanning of contiguous records, and thus avoids page-based
data access. Efficient memory and 1/O management is further streamlined by

a relatively simple I/O manager that is embedded directly into the PipeSort

115

framework.

3.11 Conclusions

In this chapter, we have described a new method for the parallelization of the data
cube, a fundamental component of contemporary OLAP systems. We have described
an approach that models computation as a task graph, then uses graph partitioning
algorithms to distribute portions of the task graph to each node. Locally, a view
generation algorithm efficiently computes its portion of the workload.

As noted in Section 3.1, relatively little work in the area of parallel data cube
construction has been published. Given the significance and size of the underlying
problem, there would appear to be a genuine need for this type of research. In our
case, we have contributed to the literature by providing one of the most comprehensive
frameworks for the computation of the full cube. Of particular significance is the fact
that we have grounded our algorithmic work with extensive experimental evaluation
on commonly used parallel machines. We have shown that our approach is load
balanced, communication efficient, viable in higher dimensions, and capable of being

_seamlessly integrated into standard relational database management systems.

Chapter 4

Computing Partial Cubes in
Parallel

4.1 Introduction

In Chapter 3, we described a parallel algorithim for the generation of the full or
complete data cube. Recall that the full data cube is one in which all 2¢ possible
cuboids are physically materialized. In this chapter, we describe a new algorithm
for generating partial cubes, that is, data cubes in which a given subset of views are
materialized. Partial cubes are of particular interest when the number of dimensions
and/or the number of records is high. In such cases, the fully materialized data
cube would be hundreds, if not thousands, of times larger than the original fact
table, making it infeasible in terms of both compute time and storage requirements.
Moreover, there are some settings in which users simply don’t require all of the
materialized cuboids. This would be the case, for example, when the primary role of
the data cube was to support OLAP visualization functions. In such environments
it would clearly be difficult to represent or even interpret high dimensional views in
the upper part of the lattice. For both of these reasons, then, it is imperative that
algorithms for the construction of view subsets be developed.

Perhaps surprisingly, very little research has been published on the generation of

partial cubes. The few approaches that have been suggested [49, 10, 105] are either

116

117

infeasible, inapplicable, or limited in scope. In this chapter, we present a new greedy
approach that can be used to efficiently generate scheduling trees for the construction
of partial cubes. In combination with the parallel partitioning model discussed in the
previous chapter, the new approach leads to efficient algorithms for both single and
multi-processor architectures.

The chapter is organized as follows. In Section 4.2, we examine the previous
work on partial cubes. The motivation for the new research is briefly summarized
in Section 4.3, with the algorithmic foundation of the new partial cube framework
presented in Section 4.4. In Section 4.5, we investigate performance and optimality
issues, and present heuristic extensions that permit the algorithm to be pushed into
high dimension spaces. Section 4.6 describes the method for parallelizing the partial
cube method. Experimental results are highlighted in Section 4.7. Section 4.8 re-
visits the list of objectives identified in Section 4.3, while Section 4.9 offers some final

observations.

4.2 Related Work

As noted in the introduction, there has only been a couple of results regarding partial
cubes reported upon in the literature. In this section we examine the work that has
been presented and explore in some detail a proposal for a PipeSort-oriented partial
cube algorithm suggested by the authors of the original PipeSort paper. We begin,
however, with partial cube solutions for two of the competing data cube algorithms
presented in previous chapters.

In Chapter 2, we described a bottom up algorithm known as BUC [10] that was
specifically tailored to large sparse spaces. Recall that BUC proceeded from low
dimensional cuboids to high dimensional cuboids, recursively subdividing the current
partition to sort/aggregate on increasingly smaller, finer granularity partitions. In so

doing, BUC was able to minimize the size and cost of intermediate sorting operations

118

and thereby reduce its final run time. As a second benefit, the authors of BUC
suggested that by terminating the recursion once the algorithm reached a specified
granularity (i.e., number of attributes), they could in fact materialize only a portion
of all cuboids. In other words, BUC can be adapted to compute a partial cube.
There are, however, two significant problems with the use of BUC as a partial cube
algorithm. First, generating partial cubes by terminating the recursion effectively
produces a computational “fence”. In other words the algorithm produces a logical
line that divides the lattice into two pieces. All cuboids below the line are computed,
while all cuboids above the line are not. Though appropriate for some partial cube
problems, the solution is clearly quite limited since it is not possible to specify an
arbitrary subset of views that would be most appropriate for a particular environment.
Even when the general solution is appropriate — when low dimensional visual-
ization is the primary goal, for example — a second problem arises. Specifically, the
authors of BUC explicitly acknowledge that their algorithm performs most effectively
in sparse environments requiring relatively little aggregation. For cuboids with fewer
dimensions (say, five or less), the BUC algorithm performs poorly and is likely to be
significantly outperformed by a number of competing solutions, including PipeSort.
We can therefore conclude that while the algorithm can be adapted to produce partial
cubes in the lower levels of the lattice, it is not particularly well suited to this task.
A second partial cube proposal was suggested by Goil and Choudhary [49]. Recall
from Chapter 3 that this research focused on parallel MOLAP computation. Never-
theless, the authors also used a bipartite matching algorithm to determine the manner
in which cuboids would be computed. Recognizing the obvious importance of partial
cube computation, they suggested that their bipartite matching technique could be
replaced with a second algorithm that builds partial cube scheduling trees as follows.
Parent-child pairings would be established by eliminating unnecessary intermediate

views from the tree. This would be accomplished during a bottom-up, level-by-level

119

traversal of the graph, in which only those views from level £ + 1 required to build
views at level k& would be included in the tree. This iterative process would continue
until the base cuboid was reached.

Unfortunately, while this method does produce a partial cube schedule tree, the
quality of that tree is in some doubt. The problem is that no attempt is made to select
the “most appropriate” parent views at level &k + 1. Whereas a bipartite matching
algorithm was used in the original model to find the cheapest means by which to
construct the required set of child views, the new algorithin suggests that we make
a linear scan of the views at level k + 1, simply eliminating potential parents whose
children can be computed from a previously included parent. While this approach
does indeed eliminate unnecessary intermediate views, no attempt has been made
to find the parent set that most reduces scheduling costs. The authors acknowledge
that such a cost driven method would be desirable, but provide no means by which
to accomplish this.

A second important observation about the partial cube approach in [49)] is that the
notion of automatically including non-essential parent views at level k + 1 solely in
order to compute views at level & is in fact fundamentally flawed. By “non-essential”,
we mean views that have not been identified by the user as necessary, but whose
inclusion might reduce the construction cost of the selected set. We note that while
a parent v at level k + 1 may have a number of potential children at level k, we do
not know in advance which, if any, of these children will actually use v as a parent.
Quite often, such a parent might only be useful for the computation of a single child
in the final version of the schedule tree. In such cases, it may actually be more
expensive to compute a child from a parent at level £ + 1 than from a potentially
larger parent at level k + 2. Figure 4.1 provides a simple illustration. Here, the
algorithim automatically includes the non-essential view ABC, the logic being that

it will be used to more efficiently compute AB. However, in this case, AB is the

120

ABCD ABCD

1000

1000

‘ 500

Figure 4.1: Two options for construction of the “essential” view AB.

only child of ABC and we are now effectively processing two parents in order to
generate a single child. This type of blind inclusion has the potential to seriously
inflate scheduling costs in partial cube settings. As such, it is unlikely that the Goil
and Choudhary model would be an effective option for partial cube generation. In
a parallel environment, in particular, much of the benefit provided by an increase in
resources would be offset by poor scheduling.

Finally, a third approach to partial cube generation was provided by the authors of
the original PipeSort algorithm [105]. Recall that for full cube computation, bipartite
matching was used to select the sort /scan edges between successive levels of the lattice.
Since the schedule tree for a partial cube may require edges between nodes at arbitrary
levels of the lattice the authors suggest augmenting the lattice with Steiner vertices
and edges. We note that in this context a “Steiner” node (or edge) is simply one
that is not part of the original lattice. Because we are not able to set the sort paths
using the level-by-level progression, we must allow for all possible paths in the Steiner
representation. We therefore build a graph in which all possible permutations of each

attribute ordering are represented. Furthermore, every permutation of every node

121

Figure 4.2: A three-dimensional lattice augmented so as to support a minimum Steiner
tree algorithm.

must have an edge connecting it to every possible descendant. Figure 4.2 illustrates
the graph for a “small” three-dimensional space.

The authors then apply a minimum Steiner tree approximation algorithm to the
augmented lattice in order to create a schedule tree. The main problem with this
approach, besides the fact that the minimum Steiner tree problem is NP-complete,
is that the augmented lattice can become extraordinarily large. Equation 4.1, below,
depicts the node count for the original lattice, while Equation 4.2 gives the edge
count. Note that d is the number of dimensions in the lattice and k is the number of
dimensions in each view at a given level, 1 < k < d. For the Steiner augmentation,

Equation 4.3 provides the node count, while Equation 4.4 gives the number of edges.

d
D (Z) (4.1)
k=0

122

1e+14 ', r ' ' ' -
Steiner Nodes ———
Steiner Edges -
1e+12 | Lattice Nodes - < 7
Lattice Edges o o
§ 1e+10 b ’/,X”/’ -
3
g 10408 | P]
8 .
S tet06
3
Z 10000 |
100 ¥
1 A 1. 1 i L 1
3 4 5 6 7 8 9 10

Dimensions

Figure 4.3: Growth patterns for Steiner graph versus original lattice. Note the loga-
rithmic scale.

4 (d
Z(k_)k! (43)

d d ok
Z{(k)k'gu——-l_)'} (4.4)

Figure 4.3 graphically illustrates the effect of applying the Steiner augmentations
in three to ten dimensions. Table 4.1 provides the same information in tabular form.
The number of Steiner edges is greater than 79,000,000 for d = 7 and reaches almost
40 trillion for d = 10. This makes such an approach impractical for data sets with
more than just a very small number of dimensions. These examples suggest that, in
order to handle high dimensional data sets, it is important to find approaches that

do not require Steiner vertices and edges in the lattice.

123

[Dimensions | Lattice Nodes | Lattice Edges | Steiner Nodes Steiner Edges I
3 8 12 16 117
4 16 32 65 1948
5 32 80 326 47665
6 64 192 1957 1667286
7 128 448 13700 79777285
8 256 1024 109601 5013145600
9 512 2304 986000 400328720384
10 1024 5120 9864101 | 39581776871424

Table 4.1: Growth patterns for Steiner graph versus original lattice in tabular form.

4.3 Motivation

While the computation of the full data cube has attracted considerable attention
within the research community, it is nonetheless true that full cube generation for
dimension counts above seven or eight is prohibitively expensive in many real world
settings. Moreover, as noted in the preceding section, many of the views within a
high dimension space may be of little practical benefit since high dimension cuboids
may be difficult to visualize and interpret. Having said this, many data warehouses do
consist of more than seven or eight attributes. For data cube algorithms to be relevant
in practice, we must therefore find ways of applying the principles and benefits of full
cube algorithms to the partial cube problem.

In designing these new partial cube algorithims, we attempt to satisfy the following

fundamental goals:

1. Compute an efficient scheduling tree for the set of cuboids selected by the user.

2. The schedule tree should include “non-essential” views if they reduce the global

cost.

3. The algorithm should be computable/tractable in high dimensional spaces —

for example, those of 12 or even 14 dimensions.

4. The algorithm must be amenable to parallelization.

124

While this list of requirements is relatively brief, it must be noted that none of
the three partial cube algorithms described in Section 4.2 is able to satisfy all of
them. At the conclusion of this chapter, we will return to this list and confirm that

its objectives have been reached.

4.4 A New Partial Cube Method

In this section, we present the details of a new algorithmic model for the construction
of efficient partial cube scheduling trees. We note that although we have identified a
number of general objectives in Section 4.3, our initial focus will be upon the process
of building the tree and its associated partial cube. In subsequent sections, we will
return to the issues of performance and scalability.

Before proceeding with a presentation of the new algorithms, we first comment
on the complexity of the underlying problem. At present, it is not known whether
an optimal solution for PipeSort schedule tree construction — full or partial — is
possible in polynomial time. In fact, the authors of the original PipeSort algorithm
explicitly acknowledged that their full cube algorithm was not provably optimal since
it could not consider the inclusion of edges that spanned multiple levels in the lattice.
Moreover, their partial cube approach was based upon an approximation algorithm
for the NP-complete Minimum Steiner Tree problem. We note as well that while its
complexity remains an open issue, PipeSort spanning tree construction is an example
of a graph optimization problem, a general class of problems noted for the number of
NP-complete instances it contains. Indeed, the problem is quite similar to Multiple
Choice Branching, another optimization problem already known to be NP-complete
[46].

Given the strong possibility that an optimal polynomial time solution for PipeSort
spanning tree construction does not exist, we can therefore conclude that an approach

based upon the identification of an approximate solution is well justified. In the

125

remainder of this section, we present a suite of heuristic algorithms for the generation
of partial cube schedule trees. Extensive experimental support for the choices we

have made will be provided in Section 4.7.

4.4.1 Adding Non-Essential Nodes to the Selected Set

We begin by reiterating that a final scheduling tree T should contain not only the
views of the selected set S, but any additional nodes from the lattice L that might
lower the global cost of T'. This is in fact more than a semantic distinction. Specifi-
cally, there is no implicit guarantee that the logic used to add a node ¢ from S is, or
should be, the same as that used to add a non-essential node h from the set L — S.
As such, we will find it advantageous to model the partial cube algorithm as a pair of
cooperating algorithms, one for building an essential spanning tree E — consisting of
the nodes found in S — and the other for adding non-essential nodes to E to produce
a reduced tree R.

It is the addition of non-essential nodes that we will discuss first. In other words,
we will for the time being assume that all of the nodes in S have already been arranged
in a spanning tree £ such that the cost of producing each node has been minimized.
As such, our current objective is to examine the list of non-essential nodes — taken
from the original lattice L — in order to determine if it is possible to add them to E,
producing a new tree R, where cost(R) < cost(E).

To accomplish this goal, we will utilize a greedy algorithm. Greedy approaches are
common to optimization problems [22]. Here, at each decision point, the algorithm
proceeds by making a locally optimal selection; it does not explicitly consider the
global state of the system. In some cases, greedy algorithins can be shown to actually
produce globally optimal solutions. Such is the case, for example, with Dijkstra’s Sin-
gle Source Shortest Path algorithm [22]. When the solution is not provably optimal,

it is often possible to demonstrate experimentally that the greedy algorithm produces

126

solutions that are good in practice.

Our new greedy method for adding non-essential nodes to a schedule tree in order
to reduce its total cost is described in Algorithm 10, AddNonEssentialViews. The algo-
rithm builds upon the concept of “plan” variables, objects that maintain information
about the costs of adding a given node to the current version of E. More precisely, a
plan variable contains the following fields: (1) node: the node v being considered for
insertion, (2) parent: the chosen parent of v, (3) parent mode: the chosen construction
mode (scan or sort) for computing v from its parent, (4) scan child: the chosen child
of v that is computed via a scan, (5) insertion scan child: the chosen scan child of
v in the case of scan insertion (the term “scan insertion” will be explained shortly),
(6) sort children: the chosen children of v that are computed via sort, (7) benefit: the

improvement in total cost obtained by inserting v.

Algorithm 10 Add Non Essential Views

Input: A tree E consisting of the selected group-bys, and a guiding graph G. Also
used are auxiliary variables BP (best plan) and CP (current plan).
Output: Reduced tree R.
{Add nodes from G — R to F as long as the total cost improves}
1: repeat
2: clear BP
3: foreveryvinG — R do
4: clear CP
5: CP.node = v
6
7
8
9

FindBestParent(R, CP)
FindBestChildren(R, CP)
if CP.benefit > BP.benefit then
: BP=CP
10: end if
11: end for
12: if BP.benefit > 0 then
13: add BP.node to R and update R accordingly
14: end if
15: until BP.benefit <=0

127

We use plan variables to identify the view whose inclusion would most significantly
lower the cost of tree scheduling. During each round, the loop beginning on Line 3
searches through the list of candidate views in G — R and calculates the unique
inclusion cost of each. We note that G represents a guiding graph, a data structure
that captures the valid parent/child relationships for the views of a specific partial
cube problem. Its construction will be discussed in Section 4.4.2. The inclusion cost is
calculated by determining the most appropriate parent and children for the candidate.
Inclusion will either result in a net benefit or a net penalty to the scheduling tree. If a
benefit is identified, its value is compared to that of the current best plan; the current
plan becomes the best plan if its benefit is greater than that of the current best plan.
At the end of the current round the most cost effective view is added to R, using the
relevant plan information. We then return to the loop on Line 1 to find the next view
to add to R. This process continues until it is no longer possible to identify a view
whose net cost is a benefit to the scheduling tree.

The key to the success of Algorithm 10 is the supporting methods FindBestParent
and FindBestChildren. Before describing the two methods, we introduce the following
notation. A node u can be created from v iff the attributes of u are a subset of the
attributes of v. Let mode(v,u) be “scan” for v,u € G if u can be created from v via a
scan, and “sort” otherwise. Let cost(v,u) be scan cost(v,u) if mode(v,u) = “scan”, and
sort cost(v,u) otherwise. Further, let RawDataSet denote the original data set and let
parent(v,T) be the parent node of v in a given tree 7. Finally, for a plan variable P,
the procedure Clear(P) sets P.benefit to —oo and all other fields to NIL.

The first method, FindBestParent, is presented in Algorithm 11. The objective
of the algorithm is to identify, for a given candidate node v, the least expensive
node w already in R from which v can be computed. While the cheapest cost for the
construction of v can be trivially guaranteed by ordering the attributes of v as a prefix

of the smallest possible parent w — so that a simple scan of w can be used to compute

128

v — the computation of v in this manner would be inappropriate. Specifically, w may
already have a scan child beneath it, one that has previously been identified as the
most cost-effective scan child for w. If we blindly insert v as a scan child, we may

break the current pipeline, significantly disrupting the tree beneath this point.

Algorithm 11 Find Best Parent

Input: Current tree R and a current plan CP.

Output: Sets the fields C'P.parent, CP.parentMode and CP.benefit to represent

best parent of CP.node.

{Initialize best parent to RawDataSet}

CP.parent = RawDataSet

CP.benefit = 0 — cost(RawDataSet, C P.node)

C P.parentmode = mode(Raw DataSet, C P.node)

{Improve best parent, if possible}

4: for all w in R — RawDataSet where the attributes of C'P.node are a subset of
the attributes of w do

5. if w has no scan child AND scancost(w,CP.node) < abs(CP.benefit) then

{Case 1: C'P.node is inserted at the end of a pipeline}

@ oo

6: CP.parent = w

7: CP.benefit = 0 — scancost(w, C P.node)

8: C P.parentmode = “scan”

9. else if w has a scan child u AND mode(w,CPnode) = *“scan” AND
mode(CP.node,u) = “scan” AND scancost(w,CP.node) < abs(CP.benefit)
then {Case 2: C'P.node is inserted into an existing pipeline}

10: CP.parent = w

11: CP.insertionscanchild = u

12: CP.benefit = 0 — scancost(w, C' P.node)
13: C P.parentmode = “scan”

14: else if sortcost(w,CP.node) < abs(CP.benefit) then {Case 3: CP.node be-
come the start of a new pipeline}

15: CP.parent = w

16: CP.benefit = 0 — sortcost(w, C P.node)
17: CP.parentmode = “sort”

18: end if

19: end for

To address this issue, we identify three distinct cases that the algorithm must

consider, as illustrated in Figure 4.4. In the first case, we determine that the candidate

129

e @ @
N a8 < TN
600 g l
. v u]

L ® B

Case 1 Case 2 Case 3

Figure 4.4: The three options for the insertion of AB in FindBestParent. Case (1)
Pipeline tail insertion. Case (2) Pipeline scan insertion. Case (3) Re-Sort. Note: The
emphasized lines represent new edges.
node v — here represented as the node AB — can be added as the tail node of an
existing pipeline. This is in a sense the “best” solution since it is both cheap (no
re-sorting is required) and simple (no nodes other than u, the current scan child, are
affected). In the second case, we determine that the candidate can be inserted into an
existing pipeline between two other pipeline nodes, a parent w and its current scan
child w. This is also quite appealing from a cost perspective since additional sorting
is not required. It is, however, somewhat more complex since a number of potential
changes have to be recorded in the current plan object. In the final case, we accept
the fact that the candidate cannot be incorporated into an existing scan pipeline, and
we simply search for the smallest parent w to re-sort.

The second key method, FindBestChildren, is described in Algorithm 12. For a
given node v, the method identifies the set of children that would create the largest
benefit if they were created from the candidate node rather than their current parents
in R. We begin by identifying the node in R that would best serve as a scan child
for the candidate. Effectively, we have two choices for a scan child. First, if a “scan
insertion” has been initiated in FindBestParent (i.e., case 2), then our scan child for
the candidate node has already been identified in the CP.insertionScanChild field

of the current plan object. If this isn’t the case, then we look for potential child

130

nodes that are currently being sorted from other parents in R. We “steal” the one
which, when converted into a scan child of the candidate, would provide the greatest
savings. Finally, we examine the remaining potential children of the candidate, and
select any that could be more efficiently sorted from the candidate than from their
current parents. The best scan child and the list of new sort children are added to
the current plan, and the benefit field is incremented by the savings associated with
the new construction plan.

At the conclusion of a given costing round, the best plan is passed to a plan im-
plementation method that physically adds the candidate to R. The ImplementPlan
method takes its “instruction” from the plan data added by FindBestParent and Find-
BestChild. We consider R fully reduced once AddNonEssentialViews fails to produce a

best plan with positive benefit.

4.4.2 Building the Complete Schedule Tree

In this section we describe a method for building the complete schedule tree, one that
includes both essential and non-essential views. Note that in the previous section,
we began with the assumption that the views of the selected set S had already been
arranged within a tree of minimum cost, and that our goal was to add those non-
essential nodes that would lower the cost of the original tree. Of course, in reality
no such tree yet exists. Moreover, as noted by the authors of the PipeSort [105], an
iterative bipartite matching algorithm cannot be used in the context of partial cube
construction since parent/child pairings may be connected across arbitrary levels of
the partial cube tree.

Recall that we used a greedy strategy to incrementally add non-essential views
to the existing tree R. Our objective during each round was to identify those views
which represented a net cost reduction, where only positive reductions — or benefits

— were considered for inclusion in the tree. It is, however, possible to redefine the

131

Algorithm 12 Find Best Children

Input: Current version of the reduced tree R and a guiding graph G.
Output: Sets the fields C'P.scanChild, CP.sortChildren and CP.benefit to repre-

o

10:
11:
12:

13:
14:
15:
16:
17:

18:

19:
20:
21:
22:
23:

sent best children of C'P.node.
{Find the best scan child}

if CP.insertionScanChild! = nil then
bestScanChild = C P.insertionScanChild
else
for all w in R where the attributes of w are a subset of the attributes of
CP.node do
if mode(parent(w, R),w) = “sort” then
if cost(parent(w, R),w) — cost(CP.node,w) > bestScanChild benefit
then
bestScanChild = w
bestScanChild bene fit = cost(parent(w, R),w) — cost(C P.node, w)
end if
end if
end for
end if

{If no best scan child is found, we can return immediately since the candidate
node will have no children in R}
if bestScanChild == nil then
return
end if
CP.benefit + = cost(parent(w, R), w) — cost(C P.node, w)
CP.scanChild = bestScanChild
{Find other children with positive benefit}
for all w in R where the attributes of w are a subset of the attributes of C' P.node
AND w # bestScanChild AND mode(parent(w, R),w) = “sort” do
if cost(parent(w, R), w) > cost(C P.node, w) then
CP.benefit + = cost(parent(w, R),w) — cost(CP.node, w)
CP.sortChildren + = w
end if
end for

132

concept of net benefit to include alternate costing strategies. Specifically, “greatest
net benefit” may be redefined to include negative as well as positive benefits. In this
context, the algorithm would effectively search for the view that would be associated
with the “smallest penalty” during a given round. We note that in the special case of
the AddNonEssentialViews method, the smallest penalty is exactly equivalent to the
greatest net benefit.

Why would the redefinition of net benefit be useful? When constructing an essen-
tial spanning tree E it is likely the case that the cost of adding an essential view v
exceeds the cost reductions it brings to potential children (if any children even exist).
However, it is also true that while building E, it might be much more effective —
during a given iteration — to incorporate v into an existing pipeline rather than an
alternate essential view v’. In other words, even though both v and v’ represent a
negative benefit, the penalty associated with v is much smaller than that associated
with v/, In this context, v is the best choice that we can make at this point in time.

Algorithm 13 describes the process of building the essential tree E. Logically,
it is very similar to AddNonEssentialViews. The key difference is that instead of
scanning the guiding graph G for a list of candidate nodes, the algorithm obtains
them directly from S’, a list that is initialized with the views in S. Moreover, during
each iteration, the algorithm must add one of the nodes from S’. Because it may
not be possible to find a node that actually reduces the current cost of E, the less
restrictive costing model accepts the view that represents the smallest penalty. The
algorithm terminates after exactly |S| rounds, once S’ is empty.

Now that we have described the process of adding both essential and non-essential

views to the scheduling tree, we return to the problem of guiding graph generation.

133

Algorithm 13 Build Essential Tree

Input: Set S of selected group-bys.
Output: An essential schedule tree E consisting solely of the views in S.
{Initialize E with nodes from S}
. S=S
2: E = emptyset
3: while S’ not empty do
4: clear BP
5. for every vin S’ do
6: clear CP
7: CP.node = v
8
9

FindBestParent(E, CP)
: FindBestChildren(E, CP)
10: if CP.benefit > BP.benefit then
11: BP=CP
12: end if
13: end for
14: update E according to BP
15: remove BP.node from S’
16: end while

Recall from Section 4.4.1 that a guiding graph G provides a description of the par-
ent /child relationships which may be considered by the FindBestParent and Find-
BestChildren methods when attempting to insert non-essential views into the schedul-
ing tree. In fact, we examine two distinct methods for producing G. In the first case,
G is the spanning tree T produced by the original bipartite matching algorithm. As
such we use the power of that technique to shape or guide the choices made by the
greedy algorithm, the rationale being that bipartite matching has already identified
cost effective relationships between various views in the lattice. The disadvantage, of
course, is that with a partial cube many of the original views may not be selected. As
such, it is possible that better pipelines exist within the partial cube context. Given
this observation, we also examine a second guiding graph definition. Here, the guid-
ing graph is simply the complete lattice L. In other words, the greedy algorithm is
completely unrestricted in its choices — other than ensuring that child views contain

a subset of the attributes of their parents.

134

It is now possible to present complete solutions for partial cube construction.
Algorithm 14 provides the details of the technique that builds upon the lattice-based
guiding graph. We begin by creating a guiding graph G from the lattice L. We
then use BuildEssentialTree to construct from the views of S an essential spanning
tree, and then add appropriate non-essential nodes with AddNonEssentialViews. The
method EstablishAttributeOrderings — to be described shortly — identifies the scan
pipelines implicit in R. Finally, the reduced scheduling tree is passed to the pipeline
construction module that will actually generate the output. We note that this module

is exactly the same as the one used to process the pipelines of the full cube.

Algorithm 14 Build Partial Cube: Lattice-Derived

Input: A lattice L and a set S of selected group-bys.
Output: A partial cube PC.
1: Prune L by deleting all nodes which have no descendent in S. Let G denote the
result.
Execute BuildEssentialTree(E) to generate an essential spanning tree E.
Execute AddNonEssentialViews(G,E) to produce a reduced scheduling tree R.
Execute EstablishAttributeOrderings(R).
Build the partial data cube PC' according to the reduced schedule tree R.

The reader will note the reliance upon two supporting algorithms in BuildPartial-
Cube: Lattice-Derived. The first, in Step 1, is the method used to prune the Guiding
Graph G created from the original lattice L. Before passing the PipeSort tree to
the greedy algorithm, we want to ensure that it has been pruned of any unnecessary
nodes. In short, we remove any node from the graph whose attributes are not a
superset of at least one selected node. The process is described in Algorithm 15 and
illustrated in Figure 4.5.

The second method, EstablishAttributeOrderings(R), is a post processing algorithm
that has the task of identifying pipelines, or scan orderings, implicit in the reduced

tree R. Note that, while all edges in R have been identified as either “scan” or “sort”

135

Algorithm 15 Graph Pruning Algorithm

Input: A lattice L and a set S of selected group-bys.
Output: A guiding graph G

1: for every node¢in V - S do
2. for all nodes j of S do
3 if the attributes of ¢ are a superset of the attributes of j then
4 add node 7 to G
5: break
6
7
8:

end if
end for
end for

e
YAANN /\
otlcice @ e
LR ST

() () (®) (=) (» (=) 090
Polotoro RS
N\ /7

Figure 4.5: Graph Pruning, where bolded views belong to the selected set S.

136

@ &
.7 N Vi N,
’ * Ve AS
. N
» \ # 4

| |

Figure 4.6: Illustration of EstablishAttributeOrderings(R). The emphasized nodes rep-
resent views whose attributes had to be re-arranged into a prefix order.

edges, the attribute orderings for the vertices, i.e. views, have yet to be established.
The method EstablishAttributeOrderings(R) identifies all leaves in the reduced schedule
tree R that are scan children. These leaves mark the bottoms of existing pipelines. '
For each such leaf u, a method FixAttributes(u) is called which recursively walks up
the pipeline, starting at w. As the parent/child scan relationships are examined,
the attribute order of the parent is modified to reflect the ordering of its child. For
example, a pathway such as B — CB — CGB — DGBC would be re-ordered as B
— BC — BCG — BCGD. See Figure 4.6 for an illustration.

As noted, the second alternative when constructing a guiding graph is to use the
PipeSort spanning tree. Algorithm 16 describes this second partial cube approach.
Besides the exploitation of the new guiding graph, the key difference is the post-
processing method FixPipelines(R). This function has the task of (i) identifying nodes
that have no scan child, (ii) creating a scan child for such nodes, and (iii) fixing the
attribute orderings. Note that, since in Algorithm 16 the guiding graph is a subgraph
of the PipeSort tree for the entire cube, the scan child u of a view v in the guiding
graph may not be in R and therefore v may not have a scan child at this point. The

method FixPipelines identifies all views v with at least one child but no scan child.

137

Figure 4.7: Illustration of FixPipelines(R). The dashed view is not included in the
reduced tree. The bolded nodes represent views (i) whose attributes had to be re-
arranged and/or (ii) were given a new scan child.

For each such node v, one arbitrary child u is made its scan child and FixAttributes(v)
is invoked to correctly set the attribute orderings. See Figure 4.7. Note that it does

not matter which child is chosen as the scan child since the scan cost is function of

the size of v, not the child u.

Algorithm 16 Build Partial Cube: PipeSort-derived

Input: A PipeSort spanning tree T and a set S of selected group-bys.
Output: A partial cube PC.
1: Prune T by deleting all nodes which have no descendent in S. Let G denote the
result.
Execute BuildEssentialTree(E) to generate an essential spanning tree E.
Execute AddNonEssentialViews(G,E) to produce a reduced scheduling tree R.
Execute FixPipelines(R).
Build the partial data cube PC according to the reduced schedule tree R.

This concludes the description of our basic partial cube method. To summarize,
we provide a greedy method that makes locally optimal choices with respect to the
inclusion of new spanning tree nodes. The algorithm is executed in two phases:

(1) construction of an essential spanning tree and (2) transformation of the initial

138

spanning tree into a reduced spanning tree. We propose two alternatives for the
implementation of the approach — an unconstrained lattice-based algorithm and a
more “directed” PipeSort design. In both cases, the final reduced spanning tree is

then processed by the existing pipeline architecture.

4.5 Analysis and Optimization

In Section 4.4, we described our algorithm for the construction of a partial cube
scheduling tree. Specifically, we showed how to construct a tree in which we seek to
minimize the costs associated with producing the views identified in the set S, plus
any non-essential views that might lower the overall cost of the tree. In this section,
we discuss the computational cost of producing this tree, and comment on the quality

of results obtained by using the greedy method.

4.5.1 Complexity

We first provide an analysis of the running time of the new partial cube scheduling
method (Algorithm 10 and Algorithm 13). While the processing of plan variables

introduces a certain degree of “constant”

overhead into the algorithm, we note that
from an asymptotic perspective, the model can be reduced to a sequence of nested
loops. Moreover, both component algorithms — BuildEssential Tree and AddNonEssen-

tialViews — are structurally identical and thus will be bounded in exactly the same

manner. In terms of the nested loops we can summarize their structure as:

(1) Repeat “best plan” costing iterations until no longer justified
(2) Consider every candidate view during current iteration

(3) For every candidate node, find best parent and best children

139

We note that each of these three “loops” has the potential to run in O(n) time,
where n refers to the number of views in the lattice. As such the upper bound on the
partial cube algorithm is simply O(n®). How should we assess this bound? In many
cases an O(n?) solution will be quite acceptable in practice. For example, in an eight
dimensional space, the O(n?®) algorithm requires at least (28)3 = 22* = 16,777,216
steps. While certainly not a trivial number of steps, the associated schedule tree can
be computed in just a few seconds on a contemporary system of modest capability.

Still, in Section 4.3 we indicated that to be considered a success, any partial
cube algorithm should be scalable to a larger number of dimensions. Consider, for
example, d = 14. Our current O(n3) partial cube algorithm would run in (2!4)3 =
242 = 4,398,046, 511, 104 steps. Clearly, this is too large a number of steps, even for

more powerful computing systems. A more efficient solution is required.

4.5.2 Reducing the Cost of Building the Essential Tree

In this section, we will present a pair of alternative strategies for building the essential
tree, each of which is capable of producing spanning trees in significantly less time
than Algorithm 13. In Section 4.7, we will compare the quality of the results they

obtain.
4.5.2.1 Recursive Pipeline Generation

We begin our search for a more cost effective solution by considering the simpler case
of full data cube computation. Here, our objective is to construct a series of pipelines
such that for 1 < i < d, the various pipelines drawn from L allow for the most cost
effective construction of the views at level i from those at level i + 1. Our general
goal, of course, is to minimize the sorting costs associated with the construction of
the views at level i. Because the cost of sorting is directly dependent upon the sizes
of the “input” views at level ¢ + 1, we want to identify a tree that uses the smallest

views at each level when re-sorting is required. This, of course, is exactly the function

140

of bipartite matching.

In fact, there is an interesting general observation that can be made with respect
to the construction of pipelines. Multiple views at level 7 + 1 can share common
children at level i. Likewise, each view v at level ¢ can have a number of possible
parents at level i+ 1. We note that the parents at level i+ 1 of a view v at level ¢ must
be at least as large as v. By extension, for a view v’ at level ¢ that is smaller than v,
we can say that the minimum required size of its parents at level ¢ + 1 is strictly less
than that of v. Why would this be important? The number of scan pipelines in a

given lattice (full or partial) is finite — the minimal number being exactly equivalent

to the number of views in the widest level of L, < > . Since a minimum amount

d/2
of sorting is required (each pipeline begins with I;l éo]‘t), and since re-sorting is the
most expensive form of view creation, we would like to ensure that when sorting is
performed, we are consistently using the smallest views for this purpose. Therefore,
if parent views are connected via scan edges to views in the set) of their largest
children, we will eventually be left with “required sorts” for the views of M, the set
of smallest children. Since, by definition, the minimum required size of the parents
of the views of M is smaller than that of their larger siblings in @), global sort costs
should be significantly reduced.

This observation can be used as the basis of a new greedy algorithm for the
construction of the full data cube. The details are provided in Algorithm 17. This
is a top-down scheduling algorithm in the sense that we will be adding views to the
essential tree F in a top to bottom order. Before explaining the new approach, it will
be useful to introduce the notion of free views. By a free view, we mean a group-by
that is found in the lattice L but that has not yet been added to the essential tree E.
It is therefore a candidate for immediate inclusion.

The algorithm proceeds by first identifying the largest free view v in the lattice.

Our objective is to build an entire pipeline beneath this point. We select the parent

141

w of v by identifying the smallest view w at the preceding level that contains a
superset of the attributes of v. The view w becomes the “sort” parent of v. Next, we
recursively descend down through the lattice, selecting a free view at each level. At
each step we select the largest view amongst the available candidates and incorporate
it into the current pipe. This process continues until the pipeline can be extended no
further; i.e., there are no “free” children for the current tail node. We then execute
the next iteration of the main loop, selecting the next largest view in the lattice and
building another pipeline. The algorithm terminates once all the nodes of L have

been added to F.

Algorithm 17 Optimized BuildEssentialTree

Input: A lattice L.
Output: An essential tree F.
1. Sort the views of the lattice by size, in descending order.
2: repeat
3: Select the next largest “free” view v. This view will form the start point for
the new pipe.
smallest Parent = NIL; smallestSize = maxINT
for all “free” views w at previous level that contain a superset of the attributes
of v do
if sizeof(w) < smallestSize then
smallest Parent = w
smallestSize = sizeof (w)
end if
10: end for
11: Connect smallest Parent to v with a “sort” edge.
122 ExtendPipeline(v)
13: until all nodes have been added to F

In comparing the new optimized algorithm to bipartite matching, we note the
following. By design, a greedy algorithm makes decisions based solely upon local
benefit. While, in some cases, locally optimal choices are also globally optimal, for
many problems this is not true. If the current local choices are not globally optimal,

the choices available during subsequent rounds may be unacceptably poor. One of

142

Algorithm 18 Extend Pipeline

Input: A view v representing the tail node of an existing pipeline.
Output: An extended pipeline, with v as the new tasl node.
1: largestChild = NIL;largestSize =0
2: for all “free” views u at succeeding level that contain a subset of the attributes
of v do

3. if sizeof(u) < largestSize then

4: largestChild = u

5: largestSize = sizeof(largestChild)
6: end if

7: end for

& if no “free” views found then

9: return

10: else

11: Connect v to largestChild with a “scan” edge.
12: Extend Pipeline(largestChild)
13: end if

the strengths of bipartite matching, in fact, is that it is able to consider costing
“trade-offs.” In other words, it may accept a slightly sub-optimal option for decision
A if this leads to significantly better options for decisions B and C. In effect, the new
algorithm attempts to incorporate a degree of this same logic into a greedy model.
Specifically, it first seeks out the largest views as scan children so that when sorts are
subsequently required, it is the smallest children — with parents of minimum required
size— that will be used for this purpose. In this sense, we may say that the algorithm
makes local decisions, but with a global influence.

We cannot of course guarantee that the recursive algorithm will always make
decisions that are as effective as those of bipartite matching, since the latter is prov-
ably optimal between contiguous levels. For example, Figure 4.8 illustrates a case
in which a greedy approach produces a sub-optimal number of scans (three versus
four). In this case, the greedy algorithm initially selects three children for scans,
none of which contain the attribute C. Because none of the remaining views contain
this same attribute, the view C in the lower level must be computed with a sort.

Bipartite matching, on the other hand, is able to identify a solution with four scan

143

OJONOXO. OOOE

Greedy Selection Bipartite Matching

Figure 4.8: An example of how the greedy algorithm might identify fewer scan edges
than the bipartite matching approach. In this case, the greedy method did not
produce a scan edge for C.
edges. While this shortcoming of the new greedy algorithm might appear to be a
significant problem, a closer analysis of this scenario suggests otherwise. Specifically,
we note that when connecting level i 4+ 1 to level ¢, the parents views at level ¢ + 1
are the largest available (i.e., the algorithm always absorbs the largest children when
building a pipeline). By extension, their potential children (i.e., the views at level ¢
containing a subset of their attributes) are likely to be the largest children at level i.
In the case of Figure 4.8, this would suggest that since the three largest parents all
contain the attribute C, then the view C is likely to be quite large as well and would
consequently have been taken first during pipeline construction. As a consequence,
sub-optimal arrangements such as these, while possible, are unlikely in practice.
Having described the motivation behind the algorithm, we return to the original
problem — complexity. It remains to be shown that the cost of the recursive greedy
algorithm is in fact an improvement over the O(n®) run-time of the original approach.
The new algorithim begins by sorting the n views of the lattice. We note that radix sort
is not applicable here since the view weights are unrestricted in size. The 8(nlogn)
sorting step is followed by a REPEAT loop, in which we add a new pipeline. Moreover,
during each iteration of the main pipeline loop, we first select a “parent” view for
the pipeline, then recursively extend the pipeline one view at a time. Now, for each

of the O(n) views included in this fashion, we must either find its best child and/or

144

its best parent. In the context of the full cube, there are O(d) choices for each. As a
result, we can conclude that the run-time of the new greedy algorithm is bounded as
O(nlogn + dn). We note that since logn = log2¢ = d, the bound can be re-written
as O((n *d) + dn)) = O(dn).

Of course, our objective in this chapter is to produce scheduling trees for partial
cube problems. Recall that a bipartite matching model cannot be used for partial
cube construction because of the fact that parent/child edges have the potential
to skip levels in the lattice. Algorithm 17 and Algorithm 18, however, can easily
be adapted to this environment. Specifically, we merely have to change Steps 5-10
of Algorithm 17 so that we consider all nodes above the current view v (with the
appropriate attributes) as potential parents and Steps 2-7 of Algorithmm 18 so that
we consider all views below v (with the appropriate attributes) as potential children.
The logic remains exactly the same. In short, we iteratively build up pipelines by
incorporating the largest views into the pipes, this time allowing pipelines to skip
levels. We note that level skipping can be utilized even on the full cube problem,
something bipartite matching could not do.

In terms of cost complexity, we simply note that instead of O(d) potential parents
and children for each node v, we have O(n) such candidates. Consequently, the run-
time for the modified recursive partial cube algorithm is O(nlogn + n?) = O(n?),

still a significant improvement over the original O(n3) method.
4.5.2.2 An Aggressive Quadratic Time Algorithm

In this section, we describe an alternate approach to building an essential tree that
relies upon an aggressive search for the best parent of a new view. Recall that in the
preceding section, pipelines were extended by recursively incorporating the largest
available child view into the pipeline. The model assumed that once a view was added

to the pipe, we would always want to use it as a scan parent in the succeeding iteration.

145

w’ W w w
20000 1000 20000 1000

4
I
4

® @ » ®

Non-optimal Optimal

Figure 4.9: An illustration demonstrating that the minimal number of sorts may not
always be optimal.

In fact, this may not always be the case. Figure 4.9 demonstrates that when there
are large imbalances in size between parents, it may occasionally be cheaper to sort
a parent w rather than scanning a larger “free” view w'. Again, bipartite matching
is able to identify this sort of situation, while the recursive pipeline algorithm is not.

With respect to practical applications, we make the following general observation.
Observation 1. For a lattice L and a selected set S, the impact of counter-productive
scans decreases as the ratio of |L|/|S| decreases.

This is the case because, with a complete cube, the weight of the extracted span-
ning tree is disproportionately represented in the top of the graph where the large
sparse views are located. Furthermore, differences in sizes between potential parents
are small since extreme view sparsity produces views that are all very close in size to
that of the raw data set. As a result, it is extremely unlikely that sorts will be less
expensive than scans in this part of the tree. Though this situation changes as we
move towards the base of the tree — as depicted in Figure 4.9 — the construction
cost of these views represents a relatively small portion of the global cost.

Partial cubes, on the other hand, can present a different scenario. Since the goal

is often to eliminate many potential parents views, it is possible that there may be

146

wider differences between the sizes of potential parents since these parents may come
from many different levels. In such cases, it may be cheaper to sort a parent w than to
scan a much larger parent w’. For this reason, we present a second greedy algorithm,
Algorithm 19, that is designed to specifically address this concern. Here, we first sort
the views in descending order by size. Working from largest to smallest, we add each
view v to the spanning tree. When adding, we only concern ourselves with how to
connect v to its most appropriate parent w. The parent is chosen by “aggressively”
searching for the very best parent at this point, where the best parent is equated with
the cheapest possible scan or, if no scan is possible, with the cheapest possible sort.
Note the difference between this algorithm and the recursive pipeline version. In the
latter case, large parents “absorbed” large children, leaving smaller parents available
for smaller children. In the aggressive version, very large scans will be avoided in
favour of smaller sorts. The risk of, of course, is that we will “use up” the available
scans prematurely — by missing the opportunity to use slightly larger parents for
scan pipelines — leaving us to sort unnecessarily. The experimental results presented

in Section 4.7 will compare the two techniques on practical problems.

4.5.3 Reducing the Cost of Adding Non Essential Views

In this section, we describe a more efficient approach for adding non essential views
to the initial spanning tree. We note that while the algorithm for building the es-
sential tree, described in the previous section, runs in O(n?), the run-time of the
“combined algorithm” is still O(n®) since the current version of AddNonEssentialViews
requires O(n?) time. In other words, we must be able to produce an O(n?) version of
AddNonEssentialViews; otherwise, a quadratic time BuildEssentialTree algorithin pro-
vides no advantage in an asymptotic sense.

We propose a technique by which views can be added directly to the tree, with-

out the need to review all candidate nodes before selecting a single “best view” in

147

Algorithm 19 Aggressive Essential Build

Input: A lattice L and a selected set S.

Output: An Essential scheduling tree E.
1: Sort the views of S in descending order
2: repeat

3:

o

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

Get largest “free” view v in §
{Initialize smallestParent variables}
smallestSortParent = smallestScanParent = NIL
smallestScanCost = smallestSortCost = intMAX
{aggressively add next largest “free” view}
for all possible parents w of v do
if w has no scan child AND scanCost(w) < smallestScanSize then
smallestScanParent = w
smallestScanCost = scanCost(w)
end if
if sortCost(w) < smallestSortCost then
smallestSort Parent = w
smallestSortCost = sortCost(w)
end if
end for
add v to K
if scan child was found then
connect smallestScanParent to v with a “scan” edge
else
connect smallestSort Parent to v with a sort edge
end if '

22: until all views in S have been added to E

148

ABCDE)=» 100000 ABCDE ABCDE
1 i
i I
S o O
1 i 1
I' \ /I l:
) \ / (ABcD) =3 10000 / ->1ooo
\
N ! / : / .
A A \
| \ ‘
s . \
\ . \
\ .
\ \
[‘\ \‘
l ! l v l N

(@) (b) ()

[y

Figure 4.10: Significance of the order of addition. Case (a) shows the original tree.
In case (b) we decide to add ABCD with a scan insertion. However, case (c) demon-
strates that a more cost effective solution was actually available.

a round-by-round manner. In so doing, we collapse the outer loop of the original
AddNonEssentialViews algorithm in order to convert an O(n?) algorithm into an O(n?)
one. Specifically, the new algorithm greedily adds candidate views as soon as it de-
termines that a new node has the potential to produce any reduction in the global
tree cost. We will not wait to find the very best new node, but instead will add views
with a net benefit immediately. The obvious question, of course, is “does the order
of addition matter?” The simple answer is “yes.” Clearly, it is possible to commit to
an alteration to a pipeline — say with a scan insertion — only to later find a much
smaller non-essential view that could have more cheaply supported the same child

set. Figure 4.10 provides a simple example.

Consider the following three policies with respect to ordering the inclusion of

beneficial free views:

1. Consider views in a first-come, first-serve order.

2. Identify the largest viable free view (top-down).

149

3. Identify the smallest viable free (bottom-up).

It should be clear that the first choice, first-come first-serve, is effectively equiv-
alent to the appfoach depicted in Figure 4.10. As such, it cannot be expected to
produce consistently good results.

The remaining two-policies consider views in an order based upon size. We note
that this is not the same as adding views based upon size — as was done with the
optimized BuildEssentialTree algorithm. Here, our goal is to re-structure the search
strategy in such a way that the most beneficial views are likely to be examined first.
As one option, we may choose to consider the largest views first. Because views
decrease in size towards the bottom of the tree, this approach can be described as
a top down search strategy. Conversely, the smallest-to-largest model represents a
bottom-up traversal of G.

While it might not be immediately obvious how the two approaches would differ,
we observe the following.

Observation 2. The potential for error when greedily adding non-essential views is

most pronounced when selecting views from the guiding graph in a top down fashion.

There are four facts that support this observation.

1. Adding the largest nodes first can clearly result in the non-optimal situation

depicted in Figure 4.10.

2. The views in the upper lattice are simply far larger than the views lower in the
graph; unnecessary additions therefore represent a larger penalty relative to the

global cost.

3. Costing decisions are more significantly impacted by the accuracy of the “best
children” phase than the “best parent” phase in that a candidate may have

many children but only one parent.

150

4. If views are sorted and then evaluated by size, we can be certain that all possible
children of v have been added to R by the time v is considered for inclusion

since a view u can only be a child of v if size(u) < size(v).

If we proceed top-down, then, we must make greedy decisions about the additions
of a node v without an appreciation of possibly cheaper alternatives. Moreover, we
must do so without knowing the final state of the tree below v. Conversely, if we
move bottom-up, we are presented with the cheapest alternatives first and, perhaps
more importantly, the decisions regarding “best children” will be more accurate since
we are guaranteed to have complete knowledge of the views beneath v.

Given these observations, we now present a new algorithm for adding non essential
views. Details are provided in Algorithm 20. As was the case with the original
AddNonEssentialViews algorithm, we take as input an essential spanning tree E and a
guiding graph G. To begin, the views of G are sorted by size, this time in ascending
order. Once the sorted list is created, we proceed by processing each candidate v
in terms of the existing FindBestParent and FindBestChildren methods. If a positive
benefit is calculated, we add v to R immediately and move on to the next view in the

‘list. The algorithm terminates when we have examined all views from G.

Algorithm 20 Optimized Add Non Essential Views

Input: An essential spanning tree E and a guiding graph G.
Output: A reduced scheduling tree R.
1: Sort the views of GG in ascending order by size.

2: repeat
3: clear CP
4: CPnode=v

5. FindBestParent(R, CP)

6: FindBestChildren(R, CP)

7. if CP.benefit > 0 then

8 add CP.node to T as per C'P plan description
9: end if

10: until all views from G have been considered

151

With respect to the cost complexity of the new model, note that the algorithm
consists of a sorting phase, followed by a view inclusion phase. The sorting phase
requires time 6(nlogn), where n is equivalent to the number of views in G. In the
inclusion phase, we simply execute the O(n) BestParent/BestChild combination for
each of the O(n) views in G. The result is an O(n?) bound for the second phase.
With this cost dominating the §(nlogn) cost of the sort phase, we conclude that the
run-time of the new algorithm has an upper bound of O(n?). We can therefore say
that we have accomplished our primary performance objective — both BuildEssen-
tialTree and AddNonEssentialViews run in O(n?), giving us a quadratic time solution
for partial cube construction. Proposition 4 quantifies the run-time advantage of the
new algorithms.

Proposition 4. For a partial cube problem whose input is an n-node graph, the run-
time of an O(n?) solution will exceed that of an O(n3) solution if the dimension count
for the quadratic solution is increased by 50%.

Proof. We need to determine the degree to which d must be increased so that the
cost of a quadratic time algorithm using this larger value for d will be > the cost of
a cubic time algorithm on the original value of d. Let us denote this multiplicative
factor as 3. Further, we note that in the context of the data cube, the input size n
for a d-dimensional data cube can be equivalently expressed as 2¢. We are therefore
interested in solving the following inequality:

(Qdﬁ)2 _>_ (2d)3
22d[3 > 23d
log(22%) > log(2%?)
2483 > 3d

B8 >3/2
a

The practical significance of Proposition 4 is that it gives us a precise means

by which to determine the direct benefit that our new solution provides on real

152

architectures. For example, experimental testing has shown that the O(n®) solution
is practically feasible on the Linux cluster at between eight and ten dimensions. This
would imply then that the new O(n?) algorithm would be feasible in the range of 12
to 15 dimensions on this same machine.

Finally, we note that in addition to confirming a performance advantage, we must
also assess the quality of the trees generated by the new methods. This evaluation

will be provided in Section 4.7.

4.5.4 Extending the Algorithm into High Dimensions

An O(n?) algorithm for the partial cube allows us to handle higher dimension prob-
lems than would otherwise have been possible. In this section we explore the problem
of extending these algorithms to work in yet higher dimensional spaces.

Given the structural approach that we have taken with our partial cube methods
— for each of O(n) views, the algorithms find best parents and best children from
O(n) candidates — it is unlikely that a sub-quadratic time version of our current
algorithms is possible. As such, we must take another approach to run-time reduction
in high dimensions.

If we cannot reduce the asymptotic complexity of the algorithm, then the obvious
alternative is to reduce the input size n. With most computational problems, this is
of course not possible since the input size is an unalterable parameter of the problem
instance. In the context of the partial cube, however, we have already described a
pruning algorithm that reduces the size of the candidate space prior to execution of
the main loops. Our goal, then, is to improve upon the pruning technique to further
reduce the size of the candidate set without significantly compromising the quality of
the solution.

Recall that the objective of the original O(n?) pruning algorithm was to remove

any candidate nodes that could not possibly serve as an ancestor of any of the selected

153

views in S. We note that as the size of S increases, the ability of the algorithm to
prune candidates diminishes significantly since it becomes much more difficult to find
views that cannot be an ancestor of at least one view in .S. In fact, for one of the most
important partial cube special cases, the current pruning algorithm is guaranteed to
prune nothing. Specifically, if we construct S such that it contains only those views
below a certain level in the lattice, it is not possible to find any candidates that are
not ancestors of at least one view in S. If this is not clear, consider that the first (i.e.,
lowest) level of the lattice contains d views, each consisting of one of the d attributes
in the problem space. Clearly, all candidates must be made up of combinations of
these same attributes and can thus theoretically serves as ancestor views for one or
more views in 5.

Our approach therefore is to develop a different mechanism for dealing with high
dimensional spaces. To begin, we re-iterate that a candidate node is added to the
current spanning tree if and only if the cost of its physical creation is less than that
of the savings it bring to the generation of its potential children.

Theorem 5. A candidate node v will not be added to the spanning tree R if it cannot
improve the construction cost of at least two child nodes already in R.

Proof. Let us assume that a child node v in R currently has a parent node w. Further,
let us assume that a candidate v is inserted into R and replaces w as the parent of u,
and that wu is the only child of w. There are in fact two cases in which v can become
a parent. First, it can be used as a scan parent. In other words, it can be inserted
into an existing pipeline with a scan insertion. Recall from Chapter 3 that the scan
cost of u is bounded by the size of its parent, in this case |w|. Though the new cost
of computing u from v may be smaller, since |u| < |v| < |w]|, the scan cost for v is
once again bounded by |w|. Consequently, scan insertion can never be beneficial if v
has just one child.

In the second case, v replaces w as a sort parent of u. If v is smaller than w, then
u can clearly be sorted more cheaply from v. However, we must now include the cost
of computing v. If v is not inserted via a scan insertion (described above), it must
be constructed with a sort of its new parent ¢. In other words, it cannot be inserted
at the end of an existing pipe. If that were true, then u could have previously been
inserted at the end of this same pipe, again making this a scan insertion case. As
such, v must be sorted from a parent ¢ that is at least as large as w. If this were not
the case, ¢ would have been the sort parent of u, not w. The cost of adding v with

154

a sort is therefore the cost of computing u as a scan of v, plus the cost of re-sorting
g to produce v. Since q is at least as large as the original parent w of u, the cost of
computing v is at least as large as the original cost of generating u. Again, we can
conclude that this form of view inclusion cannot lead to a net benefit.

a

Theorem 5 demonstrates that in order for a non-essential view to be added to R,
it must become the parent of at least two children. Since a given parent can only
have one scan child, the remaining children would be computed by re-sorting v.

We note as well that the likelihood of inclusion in the spanning tree is a function

of the position of v within the guiding graph. Observation 3 formalizes this notion.

Observation 3. As we move from the bottom to top of G it becomes progressively
more unlikely that a candidate v will be able to reduce the global tree cost.

The veracity of the observation rests upon an understanding of the sparsity of can-
didate views. As we move upwards through G, we incrementally increase the number
of dimensions in v. Recall that as dimension count increases, so too does the sparsity
of the view. Eventually, v will be almost identical in size to its potential parent views.
This is significant since parent views consist of a superset of the attributes in v and
can thus also serve as parents for any of the potential children of v. In other words,
the value of v as a non-essential addition declines as we move towards the top of G
since it is increasingly unlikely that it will be more cost effective than any number
of other candidates. Figure 4.11 depicts alternative scenarios for the inclusion of a
particular view, ABC. In case (b), we see a scan insertion in which the candidate
for inclusion, ABC, is considerably smaller than its parent, ABCD. This example
is typical of the situation in the lower, more dense, portion of the lattice. Clearly,
there is an advantage to adding ABC in this case. Conversely, in case (c), we have an
ABC that is very close in size to its parent ABC D, a situation that is very common
in the upper regions of the lattice. Here, it is actually a penalty to add ABC.

Algorithm 21 incorporates Theorem 5 and Observation 3 into an effective heuristic

solution. Beginning at the base cuboid, the method moves downwards through the

155

‘\\ 100 100
‘\
100 \700
1
| 50 v 300 95 "\, 650

\ N N

Cost = 800 Cost = 450 Cost = 845
(@ (b) (c)

Figure 4.11: Pruning ineffective nodes. Case (a) shows the original tree. In case (b),
a more dense ABC node offers great benefit. However, in case (c), we see that a
sparse ABC node actually increase the cost.

lattice, selecting potentially “useful” views and adding them to the guiding graph G
that will be used to provide candidate nodes to our greedy algorithm. The logic for
inclusion is as follows. For a given candidate node v in L, we will assume that its
largest parent is already in G. We do this since (i) we know that any parent of v can
also serve as a parent of the children of v, and (ii) the largest parent would produce
the maximum possible benefit for v. Now, we have already determined that the
inclusion of v requires that v have at least two child nodes. Furthermore, one of these
will be created with a scan and the other with a sort. Though there are a number of
options for the creation of v (i.e., scanning and sorting), we again want to ensure that
we assess the potential of v in terms of its maximum possible benefit. We therefore
assume that v can be added simply with a scan insertion (as depicted in Figure 4.11).
Now, let us also make the assumption that v will be used as a replacement parent
for an existing parent w, and further that this will only happen if w currently has
two current children. Consequently, we can say that the current cost of computing

these two children is scanCost(w) + sortCost(w), while the cost associated with the

156

replacement parent v is scanCost(w) + scanCost(v) + sortCost(v). Since a scan of
w 18 common to both functions, we can conclude that in this scenario, v will only be

useful if scanCost(v) + sortCost(v) < sortCost(w).

Algorithm 21 Pruning for High Dimensions

Input: A lattice L, and a confidence factor 3.

Output: A guiding graph G.
1: for all candidate nodes v in L do
2: From the O(d) potential parents in L, find the smallest parent w of v
3. if scanCost(v) + (8 * sortCost(v)) < 3 x sortCost(w) then
4: add v to G
5. end if
6: end for

This is exactly the logic utilized in Algorithm 21 to determine if a view v should
be added to the guiding graph. For the sake of flexibility, the metric is extended
by way of a user-defined confidence factor (3 that determines how aggressively the
algorithm will prune the lattice. A § value of one implies the assumption that v will
only have two children. With increasing values of 3, the algorithm becomes more
conservative in that it allows for the possibility that v may have many children. In
this regard, we note that even a minor size difference between the original parent w
and the candidate v eventually produces enough savings in the sorts to outweigh the
added scan cost of v. The confidence factor therefore allows the user to determine
his/her degree of risk, that is, the willingness to occasionally prune a candidate that
may actually have some benefit.

We re-iterate that this new pruning technique is a heuristic solution. In other
words, it should be understood that we are trying to efficiently approrimate the
guiding graph G with a small number of views. As noted, it is possible that a small
0 factor might occasionally result in the pruning of a candidate that could actually

provide some benefit. Proposition 5 defines the potential error.

157

Proposition 5. For a view v that has been unnecessarily pruned by Algorithm 21,
the mazimum error is bounded as (k — 1)scanCost(v), where k is the number of sort
children that v would have had if included in the guiding graph.

Proof. If we assume the most aggressive confidence factor (i.e., § = 1), then we
know that v was pruned because scanCost(v) > sortCost(w) — sortCost(v). This
could only have produced an error if the number of sort children % for v was actually
greater than one. So while scanCost(v) > sortCost(w) — sortCost(v) is correct,
scanCost(v) > k(sortCost{w) — sortCost(v)) for k > 1 is not. Thus the error is
bounded as (k — 1)scanCost(v).

O

We observe that while the potential error is real, the risk of producing it in high
dimensional spaces is low when the size of the selected set is small relative to 2.
This is the case simply because the restricted size of the selected set S in partial
cube problems rarely results in parents with large child counts. Consequently, small
confidence factors are unlikely to unnecessarily prune many “useful” views. This
observation is supported by the experimental results in Section 4.7.

Finally, we address the issue of the cost complexity for the pruning algorithm.
Recall that the original pruning algorithm was an O(n?) solution. In fact, even if
that algorithm were more effective it would be worthless in the current context since
“the objective of the new algorithm is to reduce the input space so that an O(n?) greedy
partial cube algorithm can tackle larger problems. If the pruning algorithm itself is
O(n?) on the n nodes of the full lattice, then we accomplish nothing by pruning.

An examination of the logic of the new algorithm demonstrates that we make a
linear pass through the lattice, looking for views to prune. At each step, we check the
O(d) possible parents of v. Note that because we are pruning the complete lattice,
there are only O(d) possibilities, not O(n). Thus the upper bound is O(d * n).

It is perhaps useful to conclude this section by placing the optimized algorithms
into a single context. We began by describing new algorithms, Algorithm 17 and

Algorithm 19, for the generation of the initial spanning tree. While these algorithms

runs in O(n?), it is important to understand that the input n in this case represents

158

only the views in the selected set S, not the full lattice. Where || is small, it is likely
to be fast in practice. The second algorithm, Algorithm 20, is also O(n?), but takes
as input the views in the set L — S. Since this space is potentially very large, we use
the new pruning algorithm, Algorithm 21, to reduce the input size. Note that the
only component algorithm of the partial cube method that actually computes over
the complete lattice is the pruning algorithm, and though it actually processes all of

the lattice, it does so in O(dn) time.

4.6 Parallel Partial Data Cubes

Thus far, we have described the process of generating a partial cube scheduling tree
for uni-processor implementations. As noted previously, the pipelines of this tree can
then be processed in exactly the same manner as those of a full cube. Recall from
Chapter B that the parallelization of the full data cube is based upon a partitioning
of the underlying scheduling tree. Since the partial cube algorithm also produces
a scheduling tree, it is a relatively simple task to produce a parallel version of the
algorithm, one that builds completely upon the existing data cube infrastructure.
Algorithm 22, ParalielPartialCube(p, S, PC) describes the extended model. In short,
our approach is to (1) generate the reduced partial cube schedule tree R, (2) partition
R into subtrees representing workloads of equal size and (3) distribute the workload
over the p processors P, ..., FP,. We note that this model is applicable to any of the
partial cube scheduling algorithms discussed in this chapter.

We note that by exploiting a “generic” parallel model, we avoid having to design
two distinct parallel data cube algorithms, one for full cubes and the other for partial
cubes. In effect, we have restricted the necessary changes to the sequential component
of both models. Given that parallel algorithm design can be more complex and time
consuming than similar work in a sequential context, the ability to re-use this generic

architecture is a significant benefit of our research.

159

Algorithm 22 Parallel Partial Cube

Input: Set S of selected group-bys, a number of processors, p, an over-sampling
factor s, and a guiding graph G.
Output: Distributed partial data cube PCly;.
1: for processor Fy: do
2: Prune G by deleting all nodes which have no descendent in S. Let G denote
the result.
3. Execute BuildEssential Tree(E) to generate an essential spanning tree E.
4: Execute AddNonEssentialViews(G,E) to produce a reduced scheduling tree R.
5. Execute EstablishAttributeOrderings(R).
6: Execute TreePartition(R, p, s) to produce p sub-tree subsets ¥y, ..., X,.
7
8
9

. end for
. for all processor F;, in parallel: do
Compute all group-bys in subset ¥; on processor P; according to the relevant
schedules.
10: end for

4.7 Experimental Evaluation

In this section, we present experimental results for the partial cube algorithms dis-
cussed throughout the chapter. We will focus on both run-time performance of the
algorithms and the quality of the schedule trees produced. Unless otherwise stated,
the default parameters and testing methodology for the experiments described in this
chapter are the same as Chapter 3.

We will present two distinct types of results. In the first case, we look directly
at the quality and run-time performance of the new partial cube algorithms. In
particular, we will compare the “optimized” scheduling tree algorithms with both
the non-optimized cubic time versions and the original bipartite matching algorithm.
In the second case, we look at the performance of the complete parallel partial data
cube framework, including not just schedule tree generation but partitioning and view

construction as well.

160

4.7.1 Evaluation of Schedule Tree Generation Algorithms

In this first section, we examine the performance of the sequential schedule tree com-
ponent. Though we could evaluate these algorithms on any single-processor machine,
for consistency we utilize a single CPU on the local Linux cluster, described in Chap-

ter 3, for this purpose.
4.7.1.1 Quality of Generated Trees

Recall that while it is not possible to identify an optimal solution for partial cube
schedule tree construction (at least not in polynomial time) we do have a full cube
algorithm — based upon bipartite matching — that is known to produce extremely
good spanning trees for all 2¢ views [105]. As such, by running the partial cube
algorithms on the complete lattice, it is possible to experimentally study the quality
of their solutions relative to the best known comparable algorithm from the data cube
literature.

Figure 4.12 describes the quality/weight of the spanning trees generated by the
new partial cube algorithms relative to the trees produced by bipartite matching.
Note that all of the greedy partial cube algorithms produce trees that are less than
six percent larger than those of bipartite matching for dimension counts between six
and twelve. This is a significant observation in that it clearly justifies the choice to
employ a greedy model in the current context.

With respect to the partial cube alternatives, the results suggest that the best
trees were consistently produced by the algorithm based upon recursive pipeline con-
struction. Recall that this is a quadratic time algorithm, demonstrating that the
fastest algorithm also produces the best trees. In fact, from six to 12 dimensions,
the trees produced by this O(n?) technique were less than one tenth of one percent

larger than those generated via bipartite matching. As such, we can conclude that

161

6 T T —t- — ' ‘
PipeSort Derived
Lattice Derived --------
Recursive --------
g 5T Aggressive]
g
g 4 | N |
2
£
2
[
2
2
5 _
[+4
0 fhe e e iy i " L
6 7 8 9 10 " -

Dimension Count

Figure 4.12: The cost of the spanning tree in relation to the cost of those generated
by bipartite matching. The cubic time algorithms were not computed for 11 and 12
dimensions.

the “globally influenced” local decisions of the recursive algorithm appear to be some-
what more powerful than the purely local decisions of the original cubic time greedy
models.

Finally, we note that results were not charted for the cubic time algorithms beyond
10 dimensions. This is simply because the run time in these larger spaces made testing

too time-consuming. This is an issue addressed in the following section.
4.7.1.2 Run Time Performance on the Full Cube

Figure 4.13 depicts the run time for the four partial cube alternatives and bipartite
matching on the test cases depicted in the previous section. The reader should note
the use of a logarithmic axis to represent run time. This was necessary since the run-
time for the O(n?) algorithms grew extremely quickly beyond eight dimensions. For
example, at 10 dimensions the run-time for the cubic time algorithms was just over
2800 seconds, with the non-cubic time algorithms completing in under 20 seconds.

Beyond 10 dimensions, we used extrapolation to estimate the run time for the cubic

162

1e+06 —— T T T T T T
Bipartite Matching —+—
PipeSort Derived ---»--- *
Lattice Derived ----%--- L
Recursive ©
100000 Aggressive - -m-- . E
,;"'*;I
g 10000 | 4 J
;
E 1000 | A _
E ,—;"};’
100 | J
10t J

Dimension Count

Figure 4.13: Run time performance for schedule tree generation on the full cube. At
11 and 12 dimensions, the times for the cubic time algorithms are estimated.

time algorithms. At 12 dimensions, they are expected to take more than 330,000 sec-
onds (approximately 3 days, 19 hours). In this same space, the three non-cubic time
algorithms produced their spanning trees in just over one minute. The differences at
higher dimensions, of course, become even more striking. For example, at 14 dimen-
sions the comparison would be 14 months (O(n?)) versus 5 minutes (O(n?)). Finally,
it is interesting to note that the performance curves for the quadratic algorithms are

very similar to that of the original bipartite matching algorithm.
4.7.1.3 Computing Partial Cubes

In this section, we compare the schedule trees produced by the four partial cube
algorithms on selected sets of view. The quality of the final tree is represented relative
to a baseline solution. In the current context, the baseline represents the cost/weight
of a tree in the absence of a partial cube algorithm. In fact, without such an algorithm,
there are essentially two possible approaches to build a partial cube: (1) build the
full data cube and then return the selected views only, or (2) calculate each of the

selected views by a separate sort of the raw data set. Which of these two approaches

163

is better depends essentially on the percentage of selected views. For a small number
of selected views, the individual sorts will often be faster, while building the full
data cube is often a better option when the percentage of selected views is high.
Algorithm 23, which always selects the faster of these two approaches, will be used

as the baseline against which the four partial cube algorithms will be compared.

Algorithm 23 Simple Partial Cube

Input: Set S of selected group-bys.
Output: Partial data PC.
1: Compute the Pipesort spanning tree of full lattice L.
2: Compute the cost of an individual sort and scan of the raw data set for each view
in S.
3: Select the cheapest alternative from Step 1 and Step 2.

To evaluate the partial cube algorithms, we have randomly selected subsets con-
sisting of 10%, 25%, 50%, and 75% of the views in the full space (Note that the
selected percentage cannot be equated directly with the work to be performed. For
example, given the widely varying weights of each view, a randomly chosen subset
of 25% of the views could represent 50% of the total weight of the lattice). Because
we are interested in comparing the quality of the quadratic time solutions to the
cubic time solutions, we restrict ourselves to dimension counts in the range of six
to nine. Figure 4.14 presents the results. For the 10%, 25%, and 50% selections,
we note the gradual decrease of relative weight reduction as we move toward higher
dimensions. This is to be expected since an increase in dimension count implies an
increase in the sparsity of intermediate views. Since an increase in sparsity in turn
implies an increase in size relative to the raw data set, we can conclude that the cost
savings will decline slightly in higher dimensions since the cost reductions related to
the sorting/scanning of intermediate pipeline views are less dramatic. Nevertheless,

cost savings of between 20% and 60% are generated by the new algorithms.

(%)
3

Y Versus B
[
o

Waight Red!

|
=3

Relative Waeight Reduction Versus Baseline (%)

PipeSort Derived ~———

Lattice Derived ---»-—

Recursive - ~» -
Aggressive e

6 7 8 9
Dimension Count

(a)

60

50 |

40t

30t

20

Lattice Derived ----w----
Recursive - -
Aggressive o

PipeSort Derived —— |

6 7 3 9
Dimension Count

()

(%)

Waeight Reduction Versus

.

Versus B: (%)

Weight R

50

45 ¢

40
35
30
25
20
15

10

60

50 +

40 |

30

20

164

., PipeSort Derived ——
RS Lattice Derived ---=-- 4
RN Recursive - »-
™. Aggressive ®

6 7 8 9
Dimension Count

(b)

PipeSort Derived --——

Lattice Derived ----+---
Recursive - =
Aggressive @

8 7 8 9
Dimension Count

(d)

Figure 4.14: Relative weight reduction for the schedule trees produced on subsets of
size (a) 10% (b) 25% (c) 50% (d) 75%. The baseline in this case is chosen as the
smaller of (i) a sort of the raw data set for each view or (ii) computation of the full

cube.

165

At 75%, the situation is slightly different. Here, the partial cube problem starts
to look more like a full cube problem. Consequently, given the large number of views
to compute, the relative cost reduction starts to rise as we move into larger spaces.
Savings of between 25% and 35% are depicted.

Beyond the baseline comparisons, it is also important to note that there is rela-
tively little difference between the cost reductions generated by each of the greedy
algorithms. Moreover, across the four graphs, we can discern a slight advantage for
the quadratic time recursive algorithm, a result in keeping with the trend demon-
strated for the full cube evaluation. We do note that the “aggressive” quadratic
algorithm does provide some benefit for lower dimension counts on small subsets. In
fact, this was exactly its objective. Specifically, when many views are absent from
the guiding graph, it is expected that automatically choosing the largest children for
inclusion in scan pipelines might occasionally lead to unnecessarily large scans. The
aggressive algorithm avoids these “mistakes” by selecting the smallest computable
child at every point. Thus, it is able to produce slightly better trees on small dense
subsets. Nevertheless, as a general purpose algorithm — one combining performance
and consistency — the quadratic time recursive algorithm would appear to be the
clear choice.

Finally, we note that the use of randomly selected subsets may underestimate the
cost savings for an important class of partial cube problems. Specifically, in high
dimension spaces, users and administrators often want to select the majority of views
from the lower portion of the lattice since such views are more intuitive to visualize
and interpret. Figure 4.15 illustrates the relative cost reductions when the selected
views are limited to those containing three attributes or less (the algorithin, of course,
is free to add larger, non-essential views). For simplicity, we restrict the experiment
to the quadratic time recursive algorithm. Under these circumstances, the algorithm

consistently reduces the weight of the schedule tree by 60% to 70% for dimension

166

100 T T T T T

Relative Weight Reduction Versus Baseline (%)

0 ") e . .
6 8 10 12 14
Dimension Count

Figure 4.15: Weight reductions for the recursive quadratic time algorithm when the
essential set contains views with three or less attributes.

counts up to 14.
4.7.1.4 Addition of Non-Essential Views

The partial cube algorithms each consist of a pair of cooperating processes, one for
building the essential schedule tree, the other for adding non-essential views. Inter-
estingly, for randomly selected subsets, cost-effective non-essential views are generally
quite rare. In fact, testing has consistently shown that for such subsets, the number
of useful non-essential nodes almost never exceeds ten, even for higher dimensions.
More importantly, the global reduction in cost tends to be small, typically no more
than five percent. In some situations, it might therefore be useful to simply run the
BuildEssential Tree algorithm and trade-off a certain degree of optimality for signifi-
cantly faster execution. Recall that BuildEssentialTree is quadratic on the selected set;
its portion of the run-time is consequently quite small.

However, as noted in the previous section, one of the most important cases for
partial cube execution is the selection of views in the lower regions of the lattice.

Here, it is both possible and productive to add larger numbers of non-essential views.

167

In particular, though relatively few non-essential views may be added from the lowest
levels of the lattice, many intermediate views will be added in the levels immediately
above the selected views. In so doing, the algorithm significantly reduces the cost of
building the largest selected views, since all of these group-bys would otherwise be
computed directly from the raw data set.

Figure 4.16 illustrates the effect of adding non selected views when the selected
set consists entirely of views with three or less attributes. Note that, for this test,
we have restricted the evaluation to the lattice-derived cubic time algorithm and the
recursive quadratic time algorithm. Notice first that the addition of non essential
views reduces the cost of the essential spanning tree by an additional 30% to 50%.
Moreover these weight reductions are consistently large from 6 to 14 dimensions.

The second point to make is that there is no benefit in using a cubic time greedy
algorithm to add non-essential nodes since the cost reductions are virtually identical
on common problem sets (again, the cubic time algorithms were not run on high
dimension counts). An earlier graph demonstrated that performance for full cube
computation was actually better for the quadratic time algorithm. In that case, the
BuildEssential Tree method was used to add all views to the schedule tree. We can
therefore conclude that from the perspective of schedule tree “quality” there is no

reason to choose the slower cubic time algorithms.
4.7.1.5 Pruning the Guiding Graph

As we move into higher dimensions, it becomes increasingly important to limit the
size of the input set. Our pruning algorithm performs this task by eliminating those
views which are unlikely to provide significant benefit to the schedule tree. To permit
users to adjust the level of risk that they are will to assume, a confidence factor
has been added. Our objective in this section is to (a) determine how significantly

the guiding graph can be pruned and (b) understand the impact of adjusting the

168

60 T T T Y -
Cubic
Quadratic --------

50 b - .
40 | i 4
30t -]

20 h

Relative Reduction via Non-essential Views (%)

6 8 10 12 14
Dimension Count

Figure 4.16: The impact of adding non-essential views when the essential set contains
views with three or less attributes.

confidence factor.

Figure 4.17 addresses the first issue. As we increase the dimension count —
assuming a confidence factor of one — the percentage of views pruned increases
steadily from a low of 2% (one of 64 views) at six dimensions to a high of 74%
(48,496 of 65,536) at 16 dimensions. Another way of looking at this is that while
the ratio of the complete guiding graphs at 6 and 16 dimensions is 1:256, the ratio
for the pruned guiding graphs is just 1:67. Not surprisingly, the practical benefit is
significant. At 16 dimensions, for example, the pruned input size is just 1/4 the size of
the original guiding graph. With an O(n?) algorithm, this translates into a factor of
16 performance improvement — roughly the same improvement that we would see by
running the un-pruned guiding graph on a 16-node parallel machine. Alternatively,
we can say that the pruning algorithm allows us to treat a 16 dimension space as
though it contained just 14 dimensions.

The second issue we address in this section is the effect of increasing the confidence
factor. The default value of one was used for the preceding graph. Figure 4.18 presents

results in 14 dimensions for confidence factors from one to three (and views with three

169

70 T T T T T

N
o
T
1

o
o
T

A

S

(=)

—T
s

w

(=

T
1

Percentage of Views Pruned

(8]

(=]

T
i

0)) L L N
6 8 10 12 14
Dimension Count

Figure 4.17: Number of views pruned with an increase in dimension count (assuming
confidence factor = one).

attributes or less). We note that as the confidence factor increases, there is a huge
drop off in the number of views pruned, from 56% to 34% to almost zero when the
confidence factor is three. Clearly, a conservative approach to pruning will have a
significant impact upon run time performance. More importantly, however, there is
virtually no impact upon the quality of the tree as we become more conservative; the
relative reduction in cost versus the appropriate baseline is virtually unchanged. As
such, we can conclude that aggressive pruning is a low-risk option for improving the

run time performance of the partial cube algorithms.

4.7.2 Performance of the Parallel Partial Cube Algorithm

Once a partial cube schedule tree has been computed, it is passed directly to the
tree partitioning and pipeline construction modules presented in the previous chap-
ter. In Figure 4.19, we present parallel results on a 14 dimension space in which
views of three attributes or less were selected for materialization. The quadratic time
recursive algorithm is used for schedule tree construction throughout. Subfigure (a)

presents the actual wall clock run time for the complete build, while Subfigure (b)

170

70 T T T
Views Pruned
Tree Weight --------
60 1
50 b ﬁ
g
c
8 40 ¢ 4
2} 4
]
o
20 1
10 | g
0 L L L
1 2 3

Confidence Factor

Figure 4.18: The impact upon schedule tree weight reduction as the confidence factor
is increased. Note that (i) reduction is relative to the baseline algorithm, and (ii)
with a confidence factor = 3, no views are pruned.

presents the efficiency ratings for the same set of experiments. We note that while
the general shape of the performance curve in (a) is appropriate, the accompanying
efficiency chart shows a rather marked decline to just 68% at 16 processors. Though
“acceptable” efficiency measures are somewhat subjective, 68% is quite low relative
to our full cube results.

In fact, the decline in efficiency has little to do with sub-par performance by
any individual component of the algorithm. Rather, it is indicative of the impact
of the larger problem space upon which the scheduling algorithm must run. With a
14 dimension space, the O(n?) scheduling algorithm took approximately 132 seconds
to complete. Furthermore, we note that this time component is constant across all
processor counts since the scheduling algorithm runs sequentially on the front-end
node. So while the 132 seconds means very little for a sequential build phase that
takes almost 5000 seconds, it is a serious performance constraint for a 16-processor
test with a 320 second build phase. In Figure 4.20, we present efficiency measurements

for the same test, this time with the scheduling component removed. Here, we again

171

5500 —— T T T . v T T T ——
Actual —— 100 1

5000 Optimal - 1 A—‘
4500

& 4000
3500
i 3000
g 2500
2000
& 1500
1000
500

12 4 8 16 1 2 4 8 16
Processor Count Processor Count

(a) (b)

Figure 4.19: Parallel performance on a data set of 14 dimensions with selected views
having three attributes or less. Results for one to 16 processors are plotted as (a)
wall clock time in seconds and (b) efficiency ratings.

100F

80 b

60

Efficlency (%)

w0} :

20

L s L
1 2 4 8 16
Processor Count

Figure 4.20: Efficiency ratings when considering “build” times only.

see the 90%+ efficiency ratings that were associated with the full cube computation.

Of course, the scheduling component must be included within the partial cube
framework. Clearly, however, acceptable parallel speedup cannot be achieved if the
sequential scheduling component represents a significant portion of the run time on
multi-processor implementations. The “obvious” solution here would be to parallelize
the scheduling component so that 1/p of its execution time was associated with each
processor. While this would work, we note that doing so is probably not necessary.
In particular, for runs on larger data sets the time taken for the build phase would

grow significantly. Conversely, the time taken for the scheduling phase would not

172

change at all since it is independent of the number of records in the fact table. The
efficiency results in Figure 4.20 are therefore likely to represent a better assessment

of the algorithm’s performance than the results of Figure 4.19(b).

4.8 Review of Research Objectives

In Section 4.3, we identified four objectives for partial cube construction. We now

review those goals.

1. Compute an efficient scheduling tree for the selected cuboid set.
We have provided a suite of algorithms for computing schedule trees for user-
specified views subsets. Experimentally, our results demonstrated that the par-
tial cube solutions were competitive with bipartite matching on the full data
cube problem and offered significant performance advantages relative to baseline

solutions when subsets were required.

2. The schedule tree should include any non-essential views that reduce
the global cost. Our AddNonEssentialViews method(s) identifies those nodes
that are capable of reducing the global cost of the schedule tree. This technique
is particularly important for those cases in which the selected views are primarily

chosen from the lower levels in the lattice.

3. The algorithm should be computable/tractable in large spaces. Though
the original model utilized O(n?) algorithms, we were able to augment the fun-
damental design so that O(n?) solutions were possible. These extensions are
able to increase the practical feasibility of the model by approximately 50%.
Moreover, a pruning algorithm was added, further reducing the size of the in-
put set and allowing even larger input sets to be processed. Schedule trees for

fact tables with 14 dimensions or more are now easily computed.

173

4. The algorithm must be amenable to parallel computing architectures.
By developing new schedule tree algorithms, we were able to plug the resulting
graphs directly into the existing parallel partitioning and distribution model.

New parallel partial cube algorithms were not required.

4.9 Conclusions

In this chapter we have discussed the design of a suite of algorithms for the con-
struction of partial data cubes. We began with an approach that used “plan” objects
to iteratively identify the best candidate views for inclusion within a partial cube
schedule tree. Because this method runs in O(n?) time, which might be prohibitively
expensive on larger problems, we then presented algorithmic extensions that allowed
schedule trees to be constructed in O(n?) time, and to be applied to high dimen-
sional spaces. Experimental evaluation confirmed the performance advantage for the
quadratic time algorithms, and also suggested than that the Recursive O(n?) algo-
rithm produced the cheapest schedule trees.

To our knowledge the algorithms presented in this section represent the only such
methods for top-down partial cube generation. Recall that while a bottom up method
has been proposed [10], it is unlikely to be effective on the dense cuboids often found
in partial cube sets. As such, it is likely that our methods represent the most effective
partial cube algorithms in the current literature.

In terms of parallel computation, we note that our parallel partial cube method —
building upon the partitioning technique presented in Chapter 3 — is the only such
solution for ROLAP settings. With respect to the MOLAP context, parallel partial
cubes have been presented in [48, 47]. In that case, however, recall that very little
attempt had been made to actually reduce the construction costs for the partial cube.

Our experimental evaluation clearly supports the design choices that we have

made. Specifically, the combination of the O(n?) recursive algorithm and heuristic

174

pruning allows us to efficiently compute partial cubes using parameters and problem
sizes that would be meaningful in practical environments. The addition of a support-
ing parallel infrastructure furthers extends the range of the proposed methods. In
short, the research presented in this chapter represents not only an important contri-

bution to the data cube literature, but a powerful solution for real-world problems in

the OLAP domain.

Chapter 5

Distributed Data Cube Indexing

5.1 Introduction

In the previous two chapters our primary focus has been the computation of the
data cube. Specifically, we have presented new parallel algorithms for the construc-
tion of both full and partial cubes. The motivation for generating the cuboids is to
subsequently use them to support efficient user-directed queries. While cuboids can
be sequentially scanned, in a record by record fashion, the linear time resolution of
OLAP queries in this manner would be impractical in the context of production data
warehouses given their enormous size. In this chapter we describe a new parallel data
cube indexing structure called the RCUBE that supports efficient index construction,
bulk updating, and querying in an OLAP context.

In [52], Gupta et al. propose, for the sequential setting, a data cube indexing
model composed of a collection of b-trees. While adequate for low-dimensional data
cubes, b-trees are inappropriate for higher dimensions in that (a) their performance
deteriorates rapidly with increased dimensionality and (b) multiple, redundant at-
tribute orderings are required to support arbitrary user queries. A more interesting
option was presented by Roussopoulos et al. [103]. The authors describe the cubetree,
an indexing model based upon the concept of a packed R-tree [102]. The advantage
of the sequential cubetree is that it not only provides compact storage and fast query

response time, but that it also supports very efficient bulk incremental updates, a key

175

176

benefit given the size and fluidity of today’s data warehouses.

As data warehouses continue to grow in size and complexity, however, so too does
the need to explore opportunities for the parallelization of fundamental construction
and querying functionality. While significant work has been done on the former —
including the work described in this thesis — there has been no attempt to date
to provide parallel or distributed algorithms and data structures for relational data
cube indexing. With respect to the parallelization of the R-tree — the fundamental
cubetree component — a number of researchers have presented solutions for gen-
eral purpose environments. In [71], Koudas, Faloutsos and Kamel present a Master
R-tree model that employs a centralized index and a collection of distributed data
files. Schnitzer and Leutenegger’s Master-Client R-tree [107] improves upon the ear-
lier model by partitioning the central index into a smaller master index and a set
of associated client indexes. While offering significant performance advantages in
generic indexing environments, neither approach is particularly well-suited to OLAP
systems. In addition to the sequential bottleneck on the main server node, both uti-
lize partitioning schemes that in the worst case can lead to highly localized searches.
In addition, of course, neither approach was designed with OLAP processing in mind
and cannot be easily adapted to handle OLAP hierarchies or to support efficient
incremental updates.

In this chapter, we describe the RCUBE framework for distributed, high perfor-
mance data cube indexing in the ROLAP context. Based upon the packed R-tree
paradigm, our indexing algorithms and data structures provide load balanced and
communication efficient functionality for the construction, maintenance, and access
of the relevant cuboid indexes. We also provide a simple but elegant model for the
integration of OLAP-specific functionality with the basic retrieval mechanisms. In
particular, we address the crucial issues of partial cube indexing and the computation

of view hierarchies. Together, these two features provide the basis of a virtual data

177

cube, a powerful data cube abstraction that provides a rich OLAP interface while
hiding the details of the underlying storage mechanisms.

The chapter is organized as follows. We review related work in Section 5.2. In
Section 5.3, we formalize the motivation for our work and then, in Section 5.4, we
present the algorithmic basis for a new distributed data cube indexing framework
called the RCUBE. Section 5.5 discusses the distributed query engine in great detail,
including the components that form the core of the virtual data cube model. Exten-
sive experimental results are provided in Section 5.6, while a review of the chapter’s

objectives are presented in Section 5.7. Final conclusions are provided in Section 5.8.

5.2 Related Work

The fundamental motivation for the data cube is to provide pre-computed summary
tables that can be used to efficiently support arbitrary range queries. Referring to

Figure 5.1 we might, for example, want to answer queries of the type:

e For the year 1992 provide total sales figure for each car model, broken down by

color (three dimensional).

e Provide total sales for white automobiles for the years 1990-1991 (two dimen-

sional).

Though sequential scanning can certainly be used to resolve such queries, it pro-
vides acceptable performance only when the query requires the retrieval of a large
percentage of the view’s records. For fast response time on small to moderate queries,
some form of efficient indexing is required. As noted in Section 5.1, b-trees are some-
times used for this purpose. However, in order to support concurrent indexing on
more than one attribute, multiple b-trees — one for each attribute — must be cre-
ated and maintained. Furthermore, the physical layout of records on disk can only be

ordered (i.e., sorted) according to one of these indexes, so that while the supporting

178

By Make &
Year

By Make

\ o
Red
/ §
/ White
Bive

By Golour \
& Year
By Make & Colour

By Golour

Figure 5.1: A three dimensional data cube depicting automobile sales data.

indexes can be used to identify the records that may belong to the result set (as per
the specified dimension), these records will be scattered randomly across the entire
disk file. Retrieval performance will therefore be quite poor.

The alternative, of course, is to build upon indexing techniques that have been
expressly designed for multi-dimensional spaces. Specifically, we can map the feature
attributes of the data cube to the axes of a multi-dimensional grid, while the measure
attribute (“total sales” in the previous example) is associated with the cells within
the grid. Within the data cube context, it is the R-tree that has attracted the most
attention in this regard.

In the remainder of this section we (1) review the sequential R-tree based model
for data cube storage and indexing, and (2) discuss techniques for parallelization of
the R-tree. While this second group of algorithms is not specifically designed for the

data cube problem, the techniques and results described in the associated research

179

papers are relevant to our own data cube parallelization objectives.

5.2.1 Sequential ROLAP Indexing

In [103], the authors present the cubetree model as a means of answering queries
on the summary tables of the data cube. R-trees were chosen as the basis of the
implementation because (a) a single index supports all dimensions of the view; (b)
efficient update algorithms were possible with the packed version of the index; and
(c) the R-tree is one of the few multi-dimensional indexes to have been found efficient
enough in practice to support commercial products. In the remainder of this section

we briefly describe the salient features of the packed R-tree model.
5.2.1.1 The R-tree

As noted in Section C.3, the R-tree is a hierarchical, tree-based index that organizes
the query space as a collection of possibly over-lapping hyper-rectangles [53]. The
tree is balanced and has a height of [log,, |n|], where M is the branching factor and
n is the size of the data set. A query is answered by comparing the values on each of
the relevant query attributes with the coordinates of the rectangle that surrounds the
points in each data page. The search algorithm descends through successive levels
of the index until valid leaf nodes are identified. Because the boxes may sometimes

overlap, multiple traversals may be necessary.
5.2.1.2 Packed R-trees

Essentially, the cubetree is a variant of the R-tree that has been packed in order to
achieve high space utilization and improved query performance. By “packing”, we
mean that each node of the tree contains as many child references as will fit into a
disk block. Though there are a number of different packing algorithms — described

in the next section -— they all utilize the same general principles.

1. Pre-process the data — usually by sorting — so that the n points are associated

180

with m pages of size [2]. The page size is chosen so as to be a multiple of the
disk’s physical block size. We use the term Bounding Boz to refer to the space

encapsulated by a given page.

2. Associate each of the [2] leaf node pages with an ID that will be used as a file

offset by parent bounding boxes. Write the pages to disk as consecutive blocks.

3. Construct the remainder of the index by recursively packing the bounding boxes

of lower levels until the root node is reached.

Note that packing is only a viable option if the bulk of the data is available “up-
front”. Since this is true for data warehousing environments, we can use the packed
model to dramatically reduce construction times by avoiding point by point insertions.
In addition, we guarantee improved storage by fully saturating disk blocks, as well as
improved response time by virtue of the fact that points have been pre-processed in a

favorable order. Experimental confirmation of these advantages is provided in [102].
5.2.1.3 Packing Algorithms

Central to the packed R-tree is the algorithm used to order data points before they

are loaded into individual blocks. Three primary techniques have been developed.

1. lowX [102]: Data is ordered using a conventional multi-dimensional sort.

2. Hilbert-curve [70, 38]: A space filling curve is used to order the data such that
points near one another in the original space are more likely to be close to one

another in the linearly ordered space.

3. Sort Tile Recursion [107}: The point space is recursively partitioned into tiles
or slabs. We note, however, that this method cannot be updated with a linear
merge and is thus suitable only for static data sets. Consequently, we will not

consider it further in this paper.

181

The authors of the cubetree chose to employ lowX for their pre-processing algo-
rithm, suggesting that it should outperform Hilbert-based methods on slice queries.
Slice queries are fairly common in OLAP environments and allow users to view one
of the values of a dimension 7 in terms of a range of values on the remaining d — 1
attributes. While lowX should indeed perform well on some slice queries, Section
5.4.1 demonstrates that it is unlikely to be the best choice for practical index imple-

mentations.
5.2.1.4 Packed R-tree Updates

One of the most important features of the cubetree is its ability to efficiently update
the original packed R-tree. By exploiting the bulk incremental update model that is
common in decision support environments, the authors of the cubetree are able to
provide an efficient, single pass update mechanism. The update algorithm can be

summarized as follows:

1. Collect the “update” data — whose size is typically some fraction of the original
input size — and pre-process it in the same manner as that used for the original
data. In other words, the algorithm creates a “miniature” version of the data

cube using the new data only.

2. Merge the new records into the old set with a simple linear scan. This, of course,
must be done for each view independently. In addition, the merged set can be
written to fresh storage to allow the existing index/data set to remain online

until Step 3 has been completed.

3. Build a fresh R-tree index(s) using the techniques describe above. If the original
index/data set has been maintained during the update process, it can now be

safely deleted.

182

Bulk updates avoid record-by-record updates, each of which might warrant an
external index/block re-organization. Excessive re-organization limits the amount of
CPU time available for query support. In the worst case, dynamic updates can render

a large data warehouse almost unusable.

5.2.2 Distributed Relational Indexing

In the parallel setting we can find no previous work on parallel indexes for RO-
LAP. However, there has been some work on parallel R-tree based indexing. In [69],
Faloutsos and Kamel present a parallel R-tree model that employs a single CPU and
multiple disks. While appropriate for small indexes, the single CPU approach does
not scale well to large OLAP databases. Multi-CPU models are described in [71] and
[107]. In the first case Koudas, Faloutsos and Kamel develop a Master R-tree model
that places a single R-tree index on the master server and the leaf nodes on auxiliary
servers. Designed specifically for a cluster of workstations, the index resolves all hits
by following pointers to the leaf nodes on the supporting machines. Though more
scalable than the single CPU model, the Master R-tree would generate enormous net-
work traffic for the Terabyte-size warehouses in current use. In addition the Master
node would become a significant bottleneck in a busy environment.

Schnitzer and Leutenegger improve upon the earlier approach with the Master-
Client R-tree model [107]. Here, the global R-tree is augmented with local R-trees on
the supporting servers that index their portion of the data. Pointers to remote disk
blocks are not required. As a result, almost all of the network traffic is eliminated
since the master server only needs to know that at least one leaf node will be found on
a given machine. If so, the original query is passed to that server where it is resolved
locally.

Since the Master-Client R-tree was designed for a loosely coupled (i.e., general

purpose) network of workstations, it was important to only engage a secondary server

183

if absolutely necessary. The R-tree on the Master node provides this guarantee since
it does not contact supporting indexes unless one or more leaf nodes intersect the
query space. In real-world high performance OLAP environments, however, it is very
likely that the data cube query engine runs on a dedicated back-end. In other words,
the OLAP server would be the primary application. The Master node therefore
creates unnecessary overhead during query resolution. With respect to updates, we
note that the Master-Client R-tree model does not support the efficient bulk update
mechanisms that would be required in OLAP environments. For these two reasons,

performance and maintainability, a more efficient and flexible model is required.

5.3 Motivation

Construction of a distributed OLAP query engine is a complex task, involving not
only disk-oriented indexing models, but also the logic for parallel processing and
OLAP-centric data representation. In the remainder of this chapter, we present a

distributed data cube indexing model that seeks to satisfy the following seven goals:

1. Guarantee the simultaneous involvement of all processors in query resolution.

2. Partition the data such that the number of records retrieved per node is as

balanced as possible.
3. Minimize the number of disk seeks required in order to retrieve these records.
4. Provide efficient, parallel post-processing functionality.

5. Support the use of partial cubes, such that queries on non-materialized views

can be resolved.

6. Support view hierarchies, such that users may query a particular attribute at

any available level of granularity.

184

7. Support efficient bulk updates on the full or partial cubes.

At the conclusion of this chapter, we will return to this list and review the degree

to which these objectives have indeed been reached.

54 The RCUBE: A New Distributed Data Cube
Index Model

In this section, we present a new model for distributed index generation called the
RCUBE that not only builds upon existing work in the field but that also adds features
uniquely suited to the OLAP environment. To our knowledge, no comparable model
has been described in the data cube literature.

The indexing scheme is based on a parallelized R-tree design. Note that the
Master-Client R-tree discussed in the previous section consists of a collection of local
partial R-tree indexes and a master R-tree that is stored on the front-end and is
used to identify which local R-trees must be searched. This hierarchical approach
is necessary because it is unclear a priori which local subtrees will have data points
to report. Our approach, as described in the remainder of this section, is also based
on a forest of R-trees, but manages to remove the front-end bottleneck and ensure
approximately even balancing of the workload through a judicious combination of
disk striping and a packing strategy based on space filling curves. The basic model

is illustrated in Figure 5.2.

5.4.1 Packing the Data

The authors of the original packed R-tree paper use a technique that is referred to as
lowX (or sometimes nearest-X). lowX is simply a standard multi-dimensional sorting
of the view attributes such that for the attribute set A;, Ao, As... Ag, attribute A4,
becomes the primary index, As becomes the secondary index, and so on. From a per-

formance perspective, the chief disadvantage of this approach is that query response

185

Master
Node

Distribute Query / Receive Results

Node 1_ /\) Node p

A A
/
Dala ‘ ABC2 H ABC3 Dala

DEA
1 \DEA DEA
- Dala

Node2 CDFZ CDF3 . Node3

Figure 5.2: The distributed data cube R-tree model.

time deteriorates rapidly when non-primary indexes are required since relevant points
are dispersed broadly across the entire data set.

In [70, 38], space-filling curves are used to order data points — prior to R-tree
packing — such that values close to one another in the original space are much
more likely to be placed into the same disk block (or possibly adjacent blocks). In
practice, the Hilbert-curve has been shown to be most effective in this regard and
the authors of [70] provide evidence of a significant performance advantage over the
lowX algorithm on arbitrary range queries. Figure 5.3 illustrates why. While lowX
“is likely to work well with slice queries on the X axis, queries favoring the Y axis
will touch an unacceptable number of blocks. More specifically, for a d-dimensional
view, there are d! possible orderings of the attributes. Only one of these orderings
will ideally support a given query; queries with any other order will show varying
degrees of deterioration, many far worse than a simple linear scan of the data! In
higher dimensions, the problem is only exacerbated. Hilbert-based packing, on the
other hand, favors no single dimension and is therefore very well suited to arbitrary

range queries.

186

f et 7
i P3 2 H
B A
! [J < I '
' P9 P i
'] o _|
lowX Packing Hiibert Packing

Figure 5.3: Hilbert curve packing versus lowX on a slice query along the “Y” dimen-
sion. Note that all blocks intersecting the query rectangle must be retrieved.

5.4.2 Data Partitioning

Given that our aim is to balance the retrieval times for arbitrary queries across all
p processors, an intelligent partitioning mechanism is a necessity. We note that for
dynamically generated R-trees, this problem is very difficult since the insertion of
arbitrary records will either destroy the balance or necessitate significant re-balancing
costs across nodes. For packed R-trees, however, a much better approach is possible.

The fundamental technique is described below.
1. Sort the original data set in Hilbert order.

2. Stripe the data across all processors in a round robin fashion such that successive
records are sent to the next processor in the sequence. For a network with p
processors, a data set of n records, and 0 < ¢ < p — 1, processor P; receives
records R;, Ry, Ropti, - - Rjn/pp+: 38 a single partial set. When n mod p # 0,

a subset of processors receives one additional record.

3. For each processor, build the local R-tree partial index from the local striped

partition.

The motivation for this striping pattern is that it dramatically increases the like-

lihood that the space delimited by the hyper-rectangle of an arbitrary user query will

187

Original Space Node 1 Node 2

Figure 5.4: Striping the data across two nodes. (Block capacity = 3)

be proportionally distributed across each of the processors in the multi-computer.
Figure 5.4 provides a graphical illustration of the intuition. The diagram shows the
effect of striping the original space across two nodes. The user query — shown as a
dashed rectangle — results in the retrieval of eight points, with each node contribut-
ing four points from a pair of contiguous blocks. It is also worth noting that this same
example would require four accesses with a sequential implementation of the R-tree,
exactly twice the number for a two-node distributed index. The effectiveness of this
packing and striping scheme is confirmed by the experimental analysis in Section 5.6.

We note that this method makes no assumptions about the initial distribution of
data cube views. While the output of the data cube generation algorithms described in
Chapters 3 and 4 consists of a set of complete cuboids on each node, other distribution
patterns are possible. For example, a data cube algorithm could generate cuboids
individually partitioned across the p nodes. Regardless of the initial location of the
cuboids, however, the RCUBE generation process is the same — the data must be
striped across the nodes in Hilbert order. In Appendix E, we present the details of
the algorithm that is used to build the RCUBE from the output of the data cube

generation algorithms described in this thesis.

5.4.3 Updating the Indexes

The parallelization of the RCUBE builds upon (i) the parallel data cube generation

algorithm; (ii) the striping mechanism described in the previous section; and (iii)

188

the sequential update algorithm outlined in Section 5.2.1.4. Algorithm 24 shows how

these modules work together.

Algorithm 24 Updating Distributed Indexes

Input: An existing set of indexed views S, distributed across each of p nodes, plus
a, set of new records U representing the update set.
Output: New indexes that have had U integrated into them.
1: Using the parallel data cube generation algorithm and the original schedule tree,
construct a meni-data cube on U.
2: Using functionality provided in Algorithm 30, stripe the mini-data cube across
the p nodes.
3: Using the technique outlined in Section 5.2.1.4, integrate the striped update
records into the existing R-trees.

By constructing a mini-cube, we exploit the power of the parallel generation algo-
rithm to efficiently compute summarized records that are ready for integration. We
note that the schedule tree for the mini-cube must be identical to that of the original
schedule tree. This is necessary because the merge in Step 3 requires that the records
in the update set and the original set be sorted in exactly the same order. To accom-
plish this, the original data cube generation algorithm is augmented so that it stores
an encoded version of its schedule tree to disk at the time of creation. When the
mini-cube algorithm later runs, it recognizes that it is executing in update mode and
consequently reads the stored encoding rather than computing its own schedule tree.
In so doing, we avoid the possibility that new pipelines, with conflicting sort /attribute
orders, could be generated.

Once the scheduling phase has concluded, the appropriate mini-cube is computed
and its views are striped across the network. The sequential R-tree update code
on each of the p nodes then concurrently merges the records into new collections of

indexes, aggregating any duplicates that it finds in the mini-cube “update” partitions.

189

5.5 The Distributed Query Engine

Previous R-tree parallelization papers [70, 69, 71, 38| have focused exclusively on
the retrieval characteristics of the R-tree structures themselves. In an OLAP envi-
ronment, however, accessing disk blocks is only the first phase of query resolution.
More specifically, some form of post-processing is almost certainly required to fully
resolve the original query. Two of the most important forms of such processing are
(a) partial cube extrapolation and (b) computation of hierarchies. In the first case,
the construction of a partial cube implies that some number of views will not be
physically materialized on disk. There must be an efficient mechanism for querying
against these non-existent views. In the latter case, we note that many attributes
can be broken down into a hierarchy of sub-attributes, any of which may actually
be more interesting to the user than the parent dimension. Again, the query engine
must provide the functionality to address this issue.

In this section, we describe a distributed data cube query engine based on the
RCUBE. A general framework for post-processing is presented, along with specific

algorithms for handling partial cube indexing and attribute hierarchies.

5.5.1 The Query Engine Model

As noted, the RCUBE has been designed so as to balance the retrieval of query
records across all p nodes. Once the records have been obtained, additional OLAP
processing is often necessary. The fundamental model — outlined in Algorithm 25
— provides the means by which both forms of computation may be carried out in an
efficient, load balanced manner.

In Step 1, the query is broadcast to each of the p processors, thereby avoiding
unnecessary bottlenecks on the frontend. The query usually cannot be executed in
its native form, however, since the user’s request is not likely to match the physi-

cal ordering of attributes that was determined by the original data cube generation

190

Algorithm 25 Distributed Query Resolution

Input: A set of indexed views .S, striped evenly across p nodes.

Output: Fully resolved query.

: Pass query () to each of the p processors.

Locate target view T

Transform @ into Q)" as per the physical ordering of the records in T.

In parallel, each processor j retrieves the record set R; matching Q'

for i = 1 to |R;| on processor j do
Re-order the attributes of each record i as per the ordering of). The trans-
formed records become part of the partial set R;-.

end for

8: Perform a parallel sort of R’ across each of the p processors. Each processor j
now contains a sorted partition SFP;.

9: If required, collect each SP; into a contiguous buffer on the frontend, ordered SP;
to SP,.

o

algorithm. For example, the user may request a three-dimensional view sorted and
presented as A x B x C, while the build algorithm may have generated that view
as C x B x A. In Steps 2 and 3, we identify that view whose dimensions represent
a permutation of the dimensions of the user request and then transform the origi-
nal query so as to match the physical attribute order of the index/view. It is this
transformed query that is passed to the query resolution engine. Since the retrieved
records are not guaranteed to be either ordered (by attribute) or sorted (by record)
as per the original query, further processing is almost certainly necessary. In Steps
5-7, the attributes of each record are permuted if necessary during a single linear pass
of the partial set. Once this step is completed, a Parallel Sample Sort is executed
across the parallel machine to produce the sorted order specified by the user. At this
point, the view may be returned directly to the user or made available for further
OLAP processing. In the former case, a final Collective Gather operation pulls the
sorted records back into a single buffer. The resulting set is returned directly to the
user — no further sequential processing is necessary.

Since there are so many “folk” versions of parallel sorts in the literature, we provide

the details of our own Sample Sort implementation in Algorithm 26. It is based upon

191

the technique originally described in [109]. Informally, a Sample Sort works by having
each of the p processors select a collection of p “splitters” from its local data partition.
From this splitter set, a single root processor selects a set of p global splitters which
best divide the total record space. Using these splitter values, each node partitions its
data and sends the subsets to the processors that will be responsible for sorting the
relevant portion of the full space. Upon completion of these local sorts, the original

data set is fully sorted.

Algorithm 26 Parallel Sample Sort

Input: A k-dimensional set X distributed across p processors, such that for j <
0 < p — 1, the partitions Xo,..., X,—1 are stored on processors Fy, ..., FPp_1,
respectively.

Output: Sets Xo,..., X,_; globally sorted by dimensions Dj,,..., D;,.

1: Each processor P; locally sorts X; by D;,, ..., D;, and selects a set of p local pivots
(or samples) consisting of the elements with rank 0, (n/p?), ... ((p—1)n/p?), where
n = |X;|. Each processor P; then sends its local pivots to processor Fp.

2: Processor P, sorts the p? local pivots received in the previous step. Processor
Fy then selects a set of p — 1 global pivots consisting of the elements with rank
(p+p/2]), 2p+ [p/2]) ... (p— 1)p+ |p/2]) and broadcasts the p global pivots
to all other processors.

3: Using the p—1 global pivots received in the previous step, each processor P; locally
partitions X (sorted by D;,,..., D;, from Step 1) into p — 1 subsequences XJQ -
Xt

4: Using one global all to all exchange, every processor P; sends each X;, 1 <0<
p — 1, to processor P;.

5. Each processor P; receiving p sorted sequences X,g in the previous step, locally
merges those sequences into a single sorted sequence Y;. The distributed data set
is now fully sorted across the p processors.

We note as well that a number of optimizations are included in the current im-
plementation. For example, in Step 4 we retrieve the partial result set and then, in
Steps 5-7, re-order the attributes to correspond to the original user query. In fact, the
query engine actually combines these steps into a single phase. Specifically, once a

disk page has been retrieved into the local application buffer, the query engine must

192

identify those records within the page that match the query parameters. The match-
ing records are then transferred to a query result buffer for further processing. Our
query engine performs the record permutation as the transfer is taking place, thereby
entirely eliminating the requirement for a separate, and possibly costly, permutation
phase.

We also employ a threshold factor o to determine whether or not a full parallel
sort is required. For very small result sets, a p-node sort would introduce unnecessary
communication overhead. If the number of records in the result set is below «, then
the partial result sets are sent directly to a single node for sorting. The threshold
factor can be tuned to the physical characteristics of the architecture.

In summary, the model represents a fully parallelized data cube query engine.
Given an equitable distribution of the result set R across each of the p nodes, the
post-processing framework supports re-ordering and sorting operations that are both

efficient and load balanced.

5.5.2 The Search Strategy

Much of the previous work in the area of disk-based indexing has focused on the
Vnumber of blocks retrieved as a metric of index performance {77, 70, 71, 102]. This
would appear to be a logical choice since we would expect the increased density of
the packed disk blocks to result in fewer disk accesses than would be the case with
a conventional R-tree. However, a “raw” count of accessed blocks can be somewhat
misleading since the true response time is dependant not just upon the number of
accesses but upon the type of access. In particular, we must be able to distinguish
between (i) blocks that are read following an independent seek — denoted intra-file
seeks — and (ii) blocks that are read following a read of the previous physical block.
We use the term intra-file seek to distinguish indexing seeks from benchmark seeks.

Specifically, the published average seek time for a given disk — calculated as %(number

193

of tracks per surface - 1) * (track-to-track seek time) — tends to overstate intra-file
seek times since (i) blocks from the same file are generally stored on contiguous
cylinders and, as such, do no generate long head movements and (ii) the read ahead
caching mechanism employed on modern disks tends to hide the penalty associated
with short seeks. Nevertheless, intra-file seeks can, and do, have a tangible effect
upon query resolution performance. For this reason, the simple “blocks retrieved”
metric is not an entirely adequate benchmark in our context.

More importantly, however, the scan/seek issue suggests that the standard Depth
First R-tree search strategy may be poorly suited to the packed R-tree model. Specif-
ically, by searching up and down the R-tree index, we move the read head back and
forth along the disk cylinder, thereby increasing the overhead of intra-file seeks. As
the size and complexity of the query increases, the growing number of random head
movements can lead to some degree of thrashing.

Algorithm 27 describes an alternative search strategy that is tailored to the unique
structure of the packed R-tree. We refer to this strategy as Linear Breadth First
Search. The basic idea with Linear BFS is to visit the same nodes that would be
visited by the standard depth first search but to do so in a breadth first manner such
that nodes at the same level of the R-tree index are visited in a “left-to-right” fashion.
This traversal pattern will correspond to the linear order of blocks on disk.

Before discussing the search algorithm in detail, we briefly review the process
of building a packed R-tree. Construction proceeds by recursively packing the [Z]
blocks into a sequence of hierarchical levels, such that all blocks of level i in the tree
are constructed before those of i + 1 (Note that in this discussion, level O represents
the root node in the tree). The blocks at each level are then written to disk in reverse
order so that the root block is the first page written to disk and the leaf/data nodes
are written last. Further, at each level of the tree, the page IDs associated with its &

blocks run in consecutive order 1D, ID,, ... IDy.

194

Algorithm 27 Linear Breadth First Search

Input: A packed R-tree index, its associated data, and a user query Q.
Output: Fully resolved query.
1: Create empty list pageList

2:

11:
12:
13:
14:

Initialize pageList with ID of first index block
{traverse the index}
while not at the leaf level do
childList = new empty list
for each page ID i in the pageList do
Using i as an offset, read the relevant disk block B into memory.
for each child block j of B do
if () intersects the bounding box of j then
Add page ID of j to childList
end if
end for
end for
pagelList = childList
end while
{process the data blocks}

. for each page ID i in the current pageList do
16:
17:
18:

Using i as an offset, read the relevant disk block B into memory.
Process B for records matching Q.
end for

195

User Query
—’ Engine - @

Physical Traversal Path 0—»2/3 — 10/11/42 ~—»14/15

Figure 5.5: Query resolution using Linear BFS. The query is passed to the query
engine which, in turn, uses a sequence of page lists to eventually identify relevant
records in the leaves/data blocks.

In Algorithm 27, queries are resolved as follows. For the current level ¢ of the tree,
the query engine successively identifies the j nodes at level ¢+ 1 whose bounding boxes
intersect the query. It places these page 1Ds into a working list. We note that because
of the way the R-trees are built these page IDs are sorted in ascending order. Using
the list of j page IDs, the query engine traverses the blocks at level ¢ + 1 and replaces
the current working list with a new list containing the relevant blocks for level ¢ + 2.
It repeats this procedure until it has reached the data blocks at the base of the tree.
At this point, the algorithm simply identifies and returns the k-dimensional records
encapsulated within the query hyper-rectangle. Figure 5.5 provides an illustration of
the application of Linear BFS on a simple query.

The worst case performance of Linear BFS is dramatically superior to the more
common Depth First Search strategy on a packed R-tree.

Theorem 6. The worst case 1/0 performance of a packed R-tree using Linear BFS
18 equivalent to

linear scan of the index + linear scan of the data set

Proof. The construction mechanism of the packed R-tree implies that for an m-page
index, the page ID values will run from 0...m — 1, with the IDs strictly increasing in
value in a top-to-bottom/left-to-right fashion. Moreover, the blocks of the data set

196

also obey this linear ordering. Since the Linear BFS search pattern maps directly to
this top-to-bottom/left-to-right physical ordering, it is possible to identify all inter-
sected index/data bounding boxes without ever moving the disk head backwards. The
worse case 1/0 performance is therefore equivalent to the time taken to sequentially
scan the index, followed by the time taken to sequentially scan the data set.

O
To illustrate the impact of Theorem 6, we issued a query on a pair of ten dimen-
sional data sets. The first contained one million records (43,479 blocks) while the
second represented a larger “real world” group-by and consisted of 10,000,000 records
(434,783 blocks). The hyper-rectangle of the query was designed to encapsulate the
entire space of the set. With a straight sequential scan, the recorded I/O time on the
first set was 1.04 seconds and was associated with a single seek to the beginning of the
file and 43,478 contiguous scans. Using Linear BEF'S, the I/O time was 1.17 seconds,
with the 12.9% increase tied to the scan of the R-tree index. With a standard Depth
First strategy, however, the recorded time was 1.33 seconds, a 28.3% increase over
the sequential scan. The additional 0.16 seconds relative to Linear BF'S is associated
with intra-file seek time generated by 3925 non-contiguous reads. One might expect
the results on the larger set to follow a similar pattern. However, it is important to
note that the non-contiguous intra-file seeks in very large data warehousing views are
much more likely to cross cylinders. As such, intra-file seek time becomes much more
of an issue in practice. With the sequential traversal, read time on the larger file was
11.2 seconds. Linear BFS — gracefully degrading to a linear scan of the index and
the data file — was once again competitive with an I/O time of 12.8 seconds. The
standard Depth First Traversal, on the other hand, generated 39,228 non-contiguous
reads and caused the read time to explode to 61.73 seconds, a 550% increase over the
sequential scan.
Note that the impact of Linear BFS is related not just to massive queries that
are likely to touch all disk blocks, but, more importantly, to the smaller queries that

users are most likely to issue. Specifically, it orders the relevant blocks into clusters

197

of contiguous blocks, each requiring only a single seek and a linear scan. Because
the primary strength of the Hilbert space filling curve is its ability to cluster blocks
into contiguous chunks, the combination of Hilbert packing and Linear BFS provides
tangible reductions in resolution times for most typical queries.

Finally, we should point out that Linear BFS is only beneficial if the logical
ordering of disk blocks is equivalent to the physical ordering of blocks. This would
not be true in the general R-tree/b-tree case because the dynamic restructuring of the
tree due to arbitrary insertions and deletions would quickly permute the original order
of the blocks. A Breadth First Search strategy on the logical tree would consequently
be no more effective at reducing seek time than a Depth First Search. In the current
context, however, this is not the case. For packed data cube R-trees we build the index
and data sets in a single phase using all of the values of the underlying data warehouse.
We can therefore guarantee that the blocks are written to disk in a completely linear
order. Furthermore, because we are using a batch update mechanism for new records,

the modified R-trees continue to maintain this same order.

5.5.3 Querying the Partial Cube

As discussed in Chapter 4, it is sometimes desirable to compute just a subset of
the 2¢ views of the full data cube. Should partial cube generation algorithms be
utilized, however, there are two fundamental questions that must be answered. First,
by materializing only a portion of the space, how much “information” is lost? And,
second, is it possible to efficiently answer queries on non-materialized views? In the

remainder of this section, we address these two key issues.
5.5.3.1 An Analysis of Sparsity in High Dimensions

Recall that data cube processing costs are skewed heavily towards the upper portion

of the lattice, where the largest views are found. Figure 5.6(a) depicts the relationship

198

w
@

Storage Required =~ ——— T wo T HR S SN,
View Count s N
30 +
- g 80r
§2 &
2 b £
% 20 i i - 60}
§ | :
15 i
§ _ ; g af
1 i I
a 10 i H :
i -4
! 20
5 | i .
DO PO 4T 1 ol v v WLV LD
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Number of Dimensions (0 - 10} Number of Dimensions (0 - 10}
(a) (b)

Figure 5.6: (a) Comparison of view count and storage requirements by dimension.
(b) Analysis of record sparsity by dimension.

d
between the number of views at a given level k of the graph — represented as (N)

— and the size of those views for a 10-dimensional data set with mixed cardinality
and one million records. Virtually all of the weight is associated with views of five to
ten dimensions. At seven dimensions, for example, 12% of the views represent 22% of
the weight, while the three-dimensional level has the same number of group-bys but
less than one percent of the total weight. However, the skew is even more pronounced
than Figure 5.6(a) might suggest since it is actually the number of records within a
view rather than the view’s physical size which is important. This is the case because
the views in higher dimensions must store additional attribute values even if they
contain the same number of records as a lower dimensional view, thereby making
them only appear to contain additional information.

In Figure 5.6(b), we look more closely at the record distribution for the same
problem instance. The total number of records in the aforementioned data cube is
642,197,905 — almost 650 times greater than the one million records in the input set.
More striking is the effect of sparsity on the average record counts of views at each
dimension. We can see that by six dimensions, the average view contains almost 97%
of all records in the original input set, while at seven dimensions the ratio approaches

99.9%. In other words, in the upper portion of the lattice almost no aggregation takes

199

place and the views are virtually identical to one another.

Of course, an increase in data set size also has an effect on record sparsity. One
might imagine, then, that very large data sets might produce dense views at much
higher levels in the lattice. To address this issue, we have developed a simple model
that, for arbitrary fact tables, allows us to approximate the density threshold, the
point at which the lattice becomes dramatically more sparse. This method is an
approximation since the mixed cardinalities and inherent skew of specific data sets
produce a density threshold that may, in practice, straddle several levels in the lat-
tice. Nevertheless, it provides a very useful and informative picture of the degree of
aggregation in the views of the complete lattice.

The model is based upon the notion of the “average” cardinality Cq,, of the data
cube. We use Cy,, to then compute the potential space of a “typical” view at level &
(i.e., a view with k attributes) of the lattice. Once this approzimate potential space
is defined, it can be passed to the probabilistic size estimator described in Chapter 3,
Section 3.6 to compute the expected size of such a view for the given problem instance.
With respect to the approximate potential space, it is defined as follows.

Definition 4. For a d-dimensional data cube with attribute cardinalities of C1, Ca ... Cy,
we define the approxrimate potential space ay of a view V with k attributes as

k

i=d

e

=

—_

Recall that the cardinality set Cy,Csy ... Cy can be used to form Sy, the potential
space for the entire data cube. In turn, we can approximate the “average value” within
the cardinality set for the full space by taking the d-th root of S;. We note that the
mean average of C' cannot be used for this purpose since one or more large cardinality
values will produce a mean that dramatically over estimates the cardinalities. The
k-th power of this approximated cardinality can then be used to estimate the size of

the potential space for any view with k attributes.

200

Now, for an approximated space a; on a view V with k attributes, we may use

the probabilistic estimation model to approximate the number of records » in V' as

1
2 (ar —1)/ak

i=0
The significance of this simple analytical model is that its output is a function of

all of the relevant data cube parameters: d, k, C, and n. When applied to practical
data cube problems, it can be used to predict the density threshold with surprising
accuracy. For example, given the parameters of the problem represented by Figure
5.6(b), the model predicts a proportional size of 34% at 4 dimensions, 72% at 5
dimensions, and 95% at 6 dimensions. These predicted values are within 3% of the
observed values — quite impressive given that the data set only approximates a
uniform distribution.

As previously noted, however, its real significance is that it permits us to assess the
impact of data set size and dimension count on the position of the density threshold.
Figure 5.7 provides an illustration of these inter-relationships. Specifically, it depicts
the density threshold on data sets of 8, 10, 12, and 14 dimensions, ranging in size
from 100,000 to 100 million records. We note that for the purposes of this evaluation,
we have defined the density threshold very conservatively. Specifically, a view is
considered to be sparse only when it contains at least 99% of the records of the
original fact table. Given this definition, the graph illustrates two very important
points. First, it confirms the assertion that the density threshold does not increase
with an increase in dimension count. In other words, for a fact table of a given size and
dimensionality between 8 and 14, the density threshold remains constant. Second,
for a given dimension count, it takes a massive increase in input size to significantly
increase the threshold. In fact, an order of magnitude size increase is required to
move the threshold by a single level.

In the context of data cube indexing, an understanding of the density threshold is

201

Threshold Dimension
(o]
)

Dimension Count

Figure 5.7: The density threshold for varying dimension counts and data set sizes.
Note that a data set is considered sparse only when it contains at least 99% of the
records in the original fact table.

extremely important. Specifically, it suggests that not only is full cube computation
prohibitively expensive but that it may also be almost completely unnecessary since,
above a certain point in the lattice, an index on a parent view is likely to be almost as
effective as an index on a child view that contains a nearly equivalent record set. In
practice, this implies that an effective partial cube will often consist of the base cuboid
— the d-dimensional group-by that serves as a parent for all views — and some or
all of the dense views below the fifth or sixth level of the lattice. The feasibility of
partial cube indexing depends of course on the capabilities of the query engine, an

issue that is addressed in the following section.
5.5.3.2 The Partial Cube Algorithm

In Section 5.5.3, we discussed the motivation for partial cube generation and indexing.
In this section, based upon those observations, we describe how to efficiently answer
queries on views in a partial cube when those views have not been materialized.
Algorithm 28 describes the extensions to the original model that are required for

partial cube query resolution, while Figure 5.8 provides a graphical illustration of the

202

process.

Algorithm 28 Distributed Partial Cube Query Resolution

Input: A partial set of indexed views S, striped evenly across p nodes.
Output: Fully resolved query.
1: Pass query @ to each of the p processors.
2: Locate surrogate view T.
3: Transform @ into @)’ as per (i) the physical ordering of the records in T" and (ii)
the peripheral attributes of T.
4: In parallel, each node j retrieves the records set R; matching .
5: for i = 1 to |R;| on processor j do
Re-order the attributes of each record i as per the ordering of). The trans-
formed records become part of the partial set R..
7. if |T] > |@]| then
: Compress each record i as the re-ordering is taking place.
9: end if
10: end for
11: Perform a parallel sort of R’ across each of the p processors. Each node j now
contains a sorted partition SF;.
12: In parallel, each processor aggregates duplicate records that have been introduced
by processing the surrogate view.

13: If required, collect each SF; into a contiguous buffer on the frontend, ordered SP,
to SP,.

There are a number of key differences between the new algorithm and the original.
First, a surrogate view is used as the basis of query resolution. A surrogate is an
alternate view that will be used to answer the query on the view requested by the
user — termed the primary view. To select a surrogate, each node scans its local disk
to find those views whose dimensions represent a superset of the dimensions specified
by the user. Of the views in this surrogate pool, it selects the view of minimum size.
We note that since this surrogate view contains even more detailed information than
the original view, it can answer all queries associated with the original (the reverse, of
course, is not true). Furthermore, we note that because Hilbert-based R-tree packing
has been used, we do not have to concern ourselves with the physical ordering of the

records in the view, since the Hilbert curve does not favor any particular order. As

203

Initial User C':ee;‘:gsl Surrogate Pool
Query on the Pyon
View ABC Query rogate
- * Engine CDAB
A= 10/20
B=1/6
C = 15/50 [

Resolve Transformed
Query on Surrogate

|

C = 15/50

D = min/max
A

B

ACBDE

=10/20
=1/6

|
ooy
|

Permute Partial Result

------------- Sort and

i intermediate Aggreg
. Superset 1 ——— s Final Result;
 on ABCD E ABC

Figure 5.8: The process of resolving a user query on a non-existent view.

noted in [111], if data is sorted according to the more traditional lowX ordering, the
only view () that could be used to efficiently answer queries on an alternative view
T is one in which the attributes of () represent a prefix of T'. Since this situation is
unlikely to occur often in practice, the resolution of such queries can be quite costly.

Once the surrogate has been determined, the query is transformed by (i) re-
arranging the attributes of the query to match the order of the surrogate and (ii)
adding the peripheral attributes of the surrogate to the the original query. A pe-
ripheral attribute is a dimension that is not part of the user query but that must
be passed to the query engine in order tov resolve the query on the surrogate. In
particular, the low/high query values for the peripheral dimensions are equated with
the minimal and maximal values in the database. In other words, the query engine
is told to match records according to just the ranges of the attributes in the original
user query; records are never rejected based upon the values of the peripheral dimen-

sions. The end result is a superset of the records that would have been retrieved had

204

the primary view actually existed. We add that since partial cube indexing is most
attractive within environments in which data sparsity creates large views of almost
identical size, then the difference between the sizes of the surrogate result and the
primary result are likely to be small. In addition, since the goal of the R-tree is to
arrange blocks so as to support contiguous retrieval of disk blocks, the time taken to
answer the query on a surrogate view will be even less influenced by the use of this
alternate view than one might think, as the additional blocks are likely to be accessed
with contiguous scans rather than costly seeks.

Once the records have been retrieved, they must be transformed as per the user
query. If surrogates are used, the peripheral attributes are dropped from the result
set when the re-ordering is performed. The measure attribute is not modified in any
way and is retained in the transformed set. The direct elimination of the peripheral
attribute is perfectly acceptable since the information it represents is irrelevant to the
user query and will not be used again. Moreover, the elimination of the peripheral
attributes introduces no additional overhead into the process.

At the conclusion of the parallel sort of the fully transformed partial result set, we
extend the original algorithm with an aggregation step. This final piece of processing
is necessary because the use of a surrogate may introduce multiple records at the level
of granularity represented by (J, even though no such duplication exists within the
surrogate. For example, the records < a1, b3, c3 > and < aq, bs, ¢4 > would be unique
within the surrogate view ABC, but would require aggregation into a single < a, bs >
record for the primary view AB. We note that the pseudo-code of Algorithm 28
describes this operation as a distinct O(n) step. In actual fact, the aggregation is
integrated directly into the parallel Sample Sort. As was the case with the sorting
components of the data cube generation algorithms, we use optimized pointer-based
sorting techniques within the Sample Sort framework. Once the partial result set has

been “indirectly sorted”, it must be physically re-arranged as per the sorted pointer

205

list. During this O(n) pass, we may compare the record referenced by pointer i with
the record referenced by pointer ¢ + 1. When a duplicate in position ¢ + 1 is detected,
its measure value is simply aggregated into the measure value of record 7 in the result
buffer. As a result, we only require a single pass through the sorted partial set to
produce the result buffer, rather than the two passes of a more naive implementation.

The partial cube indexing extensions build directly upon the model designed for
standard queries. Given the use of Hilbert-based R-trees, very little overhead is
generated by the access phase since any additional blocks from the surrogate are
very likely to be retrieved with contiguous seeks. Moreover, the additional OLAP
processing — to transform the surrogate query — is primarily associated with a pair
of O(n) scans that have been directly integrated into existing processing loops. The
end result is a distributed query engine that is almost as efficient on surrogate views

as it is on ones that actually exist, as demonstrated experimentally in Section 5.6.

5.5.4 Querying Hierarchical Attributes

In practical data warehousing environments it is often the case that an attribute may
be sub-divided into a number of hierarchical levels. For example, the Product Number
dimension may be decomposed into a Product Type sub-attribute that, in turn, may
be rolled up into a Product Category sub-attribute. While many research papers have
simply remained silent on this topic [10, 50, 57, 101, 122], a number of others [110, 105]
have proposed treating the sub-attributes as additional “standalone” attributes, in
which case the number of views to be materialized would grow dramatically. In [110],
the total number of group-bys in the presence of hierarchies is given as Hle(hi +1)
when constructed from a data cube with &k attributes, each with hierarchies of size h.
For example, while a 10-dimensional data cube without hierarchies would generate
210 — 1024 views, the same data cube with three-level hierarchies on each dimension

would produce over one million group-bys. Dealing with hierarchies during the data

206

cube generation phase is therefore extremely expensive in terms of time and space,
even if a partial cube approach is taken. Our approach is to map queries on sub-
attributes in an attribute hierarchy to queries on the base or most detailed attribute
in the hierarchy. Note that by taking this approach, we are able to exploit the
aggregation work performed by the data cube algorithms such that the overhead
associated with managing hierarchies is reduced to a small run-time computation

phase.
5.5.4.1 Hierarchical Attribute Representation

Contrary to the existing proposals in [110, 105], we address the issue of attribute
hierarchies during the query phase by further extending the query model described
in Section 5.5.3.2. Before presenting the augmented algorithm, however, we provide
some additional background information on attribute hierarchies and their physical
representation.

A hierarchy is constructed on top of a base attribute Ay, which can be interpreted
as the finest level of granularity on that dimension. With our earlier example, the
base attribute would be Product Number. The secondary attribute Ay would be
Product Type, while the tertiary attribute A3y would be Product Category. For a
hierarchical attribute A, information captured by the attribute A can always be
obtained from Ag;) when ¢ > j > 1. This understanding is fundamental to the model
presented in the remainder of this section, in that data will be stored only for the
primary attribute. As we will see, queries on other sub-attributes are “mapped” to
this granularity level.

We work with both implicit and explicit hierarchies. An implicit hierarchy exists
irrespective of the database contents. The most obvious example would be the “Time”
hierarchy — for example, day, month, quarter. An explicit hierarchy, on the other

hand, exists only in the context of the current database. An alphanumeric Product

207

O day

week O O month

\

O quarter

O year

Figure 5.9: The Time hierarchy. Note the two distinct branches.

Number might be one such example since these identifiers are typically defined by the
corporate or organizational user. Note that for both explicit and implicit hierarchies
the OLAP system requires meta data that describes the structure of the attribute
hierarchy.

Figure 5.9 depicts the hierarchical representation of the Time hierarchy. In this
case, the primary attribute is “days” — the time hierarchy will be physically repre-
sented on disk in this form. Note that “weeks” is contained in its own distinet branch
since it cannot be computed in terms of any of the other sub-attributes.

We now describe the notion of hierarchy linearity. First, note that A is con-
sidered a direct descendant of A if Ay is the child of Ag;) in the hierarchy. A
hierarchy is linear if for all direct descendants A(;) of A there are |A(;| + 1 values,

T1 < Tz... < T4, in the range 1. .. |A;)| such that

Tp41

Akl =" Apll]

=z

Informally, we can say that if a hierarchy is linear, there is a contiguous range
of values R(;) on A(; that may be aggregated into a contiguous range R(; on Ag).
As a concrete example, the Time hierarchy is linear in that a contiguous range of

“day” values — say, 15 to 41 — can always be aggregated into a contiguous range of

208

| || |]
vee T NN

P
day l Il
(primary
attribute) IH

month |L l

l’ v
”
s

—

1
R
v
v
_—

y =

quarter

year

Figure 5.10: The linear relationship of sub-attributes in the Time hierarchy.

“month” values — in this case 1 to 2. Figure 5.10 illustrates the concept of linearity
on the Time hierarchy. Note how contiguous ranges of values on sub-attributes always
map to ranges of values on their direct descendants.

While it is relatively easy to understand the relationship of sub-attributes within
the Time hierarchy, the linearity of other attributes is not always immediately evident.
With an alphanumeric Product Number, for example, it is not even clear how a
Product Number such as “BY26T7999” compares to one like “GT45J7586” (in terms
of < or > operations). The process of mapping ranges of Product Category or
Product Type sub-attribute values to a corresponding range of Product Number
values is therefore not clearly defined.

In the remainder of this section, we describe how query processing is performed
on linear attribute hierarchies. To do so, we must actually step back from the index-
ing problem temporarily to address the problem of OLAP encoding. An attribute
encoding is the form taken by an attribute value when it is stored in the fact table.
Specifically, the format of categorical or discreet attributes is typically converted from
its native form in the operational data base into a more compact integer format in

the data warehouse fact table. For example, a 64-character Customer string might be

209

mapped to a 32-bit integer so that “David Witherspoon” becomes Customer “123”.
Not only does this dramatically decrease storage requirements (from 64 bytes to 4
bytes in this case) but it significantly improves performance for key operations such
as conditional checks.

Attribute encoding implies that a mapping system must be employed to allow
the query engine to move between encoding models. Specifically, it must be able to
translate a user’s native attribute value specification A,q; into an encoded specifica-
tion Ae,. This is accomplished with a mapping table that records the correspondence
between A,q and Agp.

Note that we cannot simply make a linear pass through the native data set and
give records IDs simply based upon the order in which they appear. Hierarchical
attributes mapped in this manner would be non-linear since an arbitrary mapping
at the level of the primary attribute would lead to non-contiguous ranges of non-
primary attributes. Instead, we enforce linearity by building mapping tables that are
ordered by dimensions Ay X Ak_1) ... Aq). Figure 5.11 illustrates the mechanism
for a three-level Product hierarchy — Product Number (primary), Product Type
(secondary), and Product Category (tertiary). The mapping table consists of a set of
n records, with n equivalent to the cardinality C of the primary attribute Ay (i.e.,
Product Number). That is, for each product number, we create a record containing
the Product Number and the corresponding Type and Category. A k-dimensional sort
— with primary attribute Category, secondary attribute Type, and tertiary attribute
Number — is performed on the n records. Upon completion, we associate the distinct
values of each column with consecutive integer 1 Ds.

For each sub-attribute in the hierarchy, we now create an ID Mapping Table. For
all attributes A;) other than the primary attribute (i.e., A(y)), we create a mapping
table that associates each encoded value A,, with a native representation A,,; and

two min/max ranges. The first min/max range represents the corresponding encoded

210

Hierarchical Mapping Set

Category D Type ID | Product| ID
r== | X627 | 1
Brakes 1 i xv53 2
Automotive 1 L_-_ Category ID Map
Endi 2 g;;g i I 1] Automotive l 1] 7 l 1 I 3]
ngine
2 | Household | 8 |11 | 4 | 5 |
RT91 5 L
. T Ha4s | 6 Category Hash Table
Interior 3 I Hyas | 7
- [hstomotve_|—=[1]
“—— et
Appliances 4 | HK46 8
Household 2 LUJ67 | 9
-
Furniture 5 | JWe0) 10
- L NH22 | 11
Type ID Map Product Hash Table
1 Brakes 1 2 1 2
Py Engine 3 5 3 5 Product ID Map
3 Interior 6 7 6 7 1 XG27 1 1 XG27
4 Appliances 8 9 8 9 2 XYS53 1 1 XY53
5 Furniture 10 11 10 | 11 3 GL75 2 1 GL75
4 RT57 2 1 RT57
Type Hash Table 5 RTO1 2 1 RT91
6 HJ45 3 1 HJ45
/ 7 HY35 | 3 1 HY35
Brakes - 8 HK46 | 4 2 HK46
Engine 9 | wier | 4] 2 UJ67
Interior 10| Jwao] 5 | 2 JW30
Appliances 11 § NH22 | 5 | 2 NH22
Furniture

Figure 5.11: The mapping tables.

211

range in the primary (i.e., physically stored) attribute. The second range corresponds
to the encoded range at the next level of the hierarchy. Note that storing both value
ranges is not strictly necessary but is likely to improve performance in practice.

For the primary attribute, the mapping table is slightly different. In addition to
the native encoding, each record contains k — 1 translation fields, each corresponding
to the encoded value of the associated non-primary sub-attributes. We note that for
all mapping tables, we get O(1) access time to the records in any other mapping
table.

The mapping tables are physically stored on the local disks of each node. When
hierarchies are being processed, they are (i) read into memory and (ii) used to create
an associated hash table. The hash table is simply used to provide O(1) conversion
of native, user-supplied values to encoded system-specific values.

In summary, our native-to-encoded mapping model provides the means by which
to define explicit representations of arbitrary hierarchical data cube attributes. More-
over, it guarantees a linear encoding of the hierarchy such that contiguous ranges of
values at a granularity level ¢ map to contiguous ranges at granularity level j. In the
following section, we will describe exactly how the query engine uses this model to

efficiently answer queries on linear attribute hierarchies.
5.5.4.2 An Algorithm for Querying Views with Hierarchical Attributes

The augmentations to Algorithm 25 required for hierarchical attribute processing are
presented in Algorithm 29. Figure 5.12 graphically illustrates the process. There
are three primary extensions to the original algorithm. The first extension is actu-
ally associated with the data cube build algorithm where, as noted in the previous
section, we require (a) that hierarchical mapping tables be created and (b) that the
hierarchical attribute always be stored and indexed in its primary or base form.

Returning to the query algorithm itself, each query defined by the user in terms

212

Algorithm 29 Distributed Query Resolution for Hierarchical Attributes

Input: A set of indexed views S, striped evenly across p nodes. For views constructed

from hierarchical attributes, the base attribute representation is used. Each node
also contains a copy of the appropriate mapping tables.

Output: Fully resolved query.

1:

Pass query @) to each of the p processors. The query includes a hierarchy level
specification for the relevant attribute(s).

2: Locate target view T.
3: Transform @ into @ as per (i) the physical ordering of the records in T and (ii)

10:
11:

12:

13:

the base attribute(s) of T, using the mapping tables.
In parallel, each processor j retrieves the record set R; matching ¢’ on the primary
attribute.
for ¢ = 1 to |R;| on processor j do
Re-order the attributes of each record ¢ as per the ordering of). The trans-
formed records become part of the partial set R..
if attribute level A in T != attribute level of A in () then
For each record i, use the Primary Mapping Table to translate the relevant
value back to the appropriate level of the hierarchy.
end if
end for
Perform a parallel sort of R’ across each of the p processors. Each node j now
contains a sorted partition SP;.
In parallel, each processor aggregates duplicate records that have been introduced
by processing the base attribute.
If necessary, collect each SP; into a contiguous buffer on the frontend, ordered

SP] to SPp

213

Identi
Initial User Apgrop:ii{-xte

Query on the Query Stored View
Engine D —

View ABC(3) —_———
—

A= 10120
B=1/6
C(3)= 35

C(1) =12/26
A=10/20
B=1/8

|
0000

— —— —]
- ~———= Permute and Translate
Partial Result

............ Sort and

s Intermediate | Aggregate Final Result:
| Superset , ——————— ABC(3)
| onABC(3) |

Figure 5.12: The process of resolving a user query containing a hierarchical attribute.

of sub-attributes is transformed into an equivalent query on the primary attribute. A
query transformation function is used for this purpose. In turn, the transformation
function relies upon the meta data and the mapping tables. The tables presented
in Figure 5.11 can be used to demonstrate this process. We will assume that the
user has specified a query on the product dimension, but has asked only for products
belonging to the “Household” category. The query engine uses the Category Hash
Table to determine that the system views “Household” as Category “2”. The category
value is used as an index into the Category ID Mapping table. There, the Household
category maps to the contiguous range 8 — 11 on the primary attribute. This is the
min/max range passed to the query resolution module.

Once the records have been retrieved from disk, they must be re-ordered to match
the user query as follows. Upon retrieving a disk block, the query module identifies
all records intersecting the query rectangle. In our example, this set would include

those records containing a value between 8 and 11 in the Product field. The system

214

then uses the Product ID Map to translate the primary value into the appropriate
Category value. Again, we note that Steps 5 — 10 of Algorithm 29 are performed
in a single pass of the partial result set, leaving a fully transformed table in the
application’s result buffer.

Once the mapping/transformation is completed, the records are sorted across the
p nodes and the partial sets are aggregated to remove any duplicates that were gen-
erated by the hierarchy compression. This phase is identical to that of the surrogate
processing algorithm.

Algorithm 29, in combination with our mapping model, provides an effective so-
lution to the problem of data cube representation for views with linear attribute
hierarchies. We further note that Algorithm 29 and Algorithm 28 are not mutually
exclusive. They can be integrated into a single query engine so that we can, for ex-
ample, compute hierarchies on views that do not exist on disk. Finally, we add that
a fully developed data cube system would also want to cache computed results on

sub-attributes to avoid re-computation whenever possible.

5.5.5 The Virtual Data Cube

One of the fundamental principles underlying relational database systems is that the
intricacies of file storage and management should be largely transparent to the user.
In fact, three of the twelve “Rules” of Relational Database systems described by
E.F. Codd [18] refer to transparency. In the current context two of the transparency
rules are particularly relevant. Specifically, the relational data model should support
(i) physical data independence (storage and indexing formats) and (ii) distribution
independence (the number of processing/storage units).

Note that our data cube model supports these forms of transparency in an OLAP
context. The user is not required to understand or even be familiar with the Hilbert-

based packed R-tree format of the model or the attribute order of the data sets.

215

Moreover, the parallel nature of the system is also hidden to the user since the index-
ing/storage model is managed entirely by the query engine.

More importantly, however, the user does not have to be concerned with the
number of views that have actually been materialized (full versus partial cube) or
the storage of hierarchical sub-attributes. Instead, they may issue queries under the
assumption that all views and all hierarchies are stored on disk and, furthermore,
that the data is available in any attribute order. We refer to this conceptual view as
the Virtual Data Cube. In fact, this powerful form of data cube transparency is one

of the primary contributions of this thesis.

5.6 Experimental Results

We have implemented our distributed data cube indexing prototype using C++,
STL (the Standard Template Library), and the MPI communication libraries. As
noted, the current design has been targeted specifically at fully distributed, “shared
nothing” parallel environments. Extensive evaluation has consequently been carried
out on the Linux cluster described in a previous chapter. We note that on this
machine communication speed is quite slow in comparison to computation speed. We
will shortly be replacing our 100 Megabit interconnect with a 1 Gigabit Ethernet
interconnect and expect that this will further improve performance results obtainable
on this platform.

In the remainder of this section we discuss the results of a series of tests, each
designed to explore a particular feature of the indexing model. All tests are carried
out on a 10-dimensional data set of 1,000,000 records that has been indexed and
distributed across 16 processors. We note that the testing of practical indexing sys-
tems is a particularly difficult undertaking. There are two primary reasons for this.

First, the resolution time of a single query is typically very short, making it difficult

216

to meaningfully interpret comparisons on this scale. Second, modern operating sys-
tems are very good at caching recently used disk blocks, with the result being that
resolution times can vary dramatically from one run to another.

To counter these problems, we utilize a pair of techniques often employed in the
database literature. The first is to perform query tests on batches of queries rather
than single queries. To this end, we have designed a query generator that (i) randomly
selects views to search (ii) randomly orders the attributes of that view (iii) randomly
generates range values on each of the relevant attributes. The resulting batch list is
passed to the query engine as a single “job”. In the experiments that follow, batches
of 100 queries are used, unless otherwise noted.

To help minimize the effect of page caching, we saturate the page caches on each
node prior to every test run. To do so, a number of very large “dummy” files are
read into memory. As a consequence, the index/data files of previous runs tend to
get expunged from the caches.

The end result is a testing environment that is fair and consistent across all com-
parative evaluations. Moreover, the results obtained are more representative of real-

world, high use systems than would be the case with single query testing.

5.6.1 Index Construction

Figure 5.13(a) shows the parallel wall clock time observed for index construction as a
function of the number of processors used. Figure 5.13(b) presents the corresponding
speedup.

There are two points to be made. First, from one to 16 processors, our construction
method achieves close to optimal speedup — 15.57 on 16 processors. Second, the
construction time for 16 processors is just under one minute. In this particular case,
the fully materialized data cube consists of ~640 million rows and 17 Gigabytes of

total data.

217

1600 T T T '
Ideat Speedup ———

'g e 14 Observed Speedup -+
tg 1200 .
£
2 1000 Cw
3 E
-§ 800 ; i y“
’;: 600 .
; 400)
5 200)
’ 0
0 0 2 4 6 s 10 12 14 1
e Processors
(a) o)

Figure 5.13: (a) Parallel wall clock time for index construction, and (b) the corre-
sponding Speedup.

5.6.2 Relative Speedup

Figure 5.14(a) shows parallel wall clock time for distributed query resolution as a
function of the number of processors used, while Figure 5.14(b) presents the cor-
responding speedup. We observe that for distributed query resolution the speedup
values are quite good. For example, on 16 processors, a speedup of 13.28 is achieved.
The source of the difference between this speedup and “perfect” speedup is interesting.
Perhaps surprisingly, it does not arise from the queries returning different numbers of
data points on different processors. As we will see in Section 5.6.4, Hilbert ordering
combined with round-robin striping almost perfectly balances the query results over
the parallel machine. The small work imbalance observed actually results from the
Parallel Sample Sort used to order the query results. Specifically, during its record
re-distribution phase, the sorting mechanism does not always partition records as
evenly as was the case during the original round-robin striping. This suggests that
these speedup results might be further improved by the use of a more balanced sort

code.

218

18 T T T 16 T —— T T
Query Time —+— Ideal Speedup —_
-g 16 14 Observed Speedup -+
3 14 12
£ 12 a
g 10
= 10
% 30
K}
o F-
® 6 & K
2 Wl
s 4 e
e o
g 2 2
0 L L . . L . . 0 . . — N
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Processors Processors
(a) (b)

Figure 5.14: (a) Wall clock time for distributed query resolution, and (b) the corre-
sponding Speedup.

5.6.3 An Analysis of Scans and Seeks

While wall-clock time serves as a basic measure of performance, it is only a partial
representation. Often, the scan and seek counts may be more informative. Previous
R-tree papers have tended to treat all block accesses as interchangeable. By simply
counting the number of retrieved blocks, however, they at least partially obscure one
of the primary benefits of the R-tree. Specifically, not only does the packed R-tree
define the order within a block, it defines the order of the blocks themselves. As
such, the number of seeks should be dramatically reduced when answering a query
on a properly constructed packed R-tree. This is crucial given the significant time
difference between a contiguous read and one that requires a seek.

By tagging each block with an incremental ID, we can determine the numnber of
seeks that were actually required to obtain a set of disk blocks. Figure 5.15(a) shows
the number of disk blocks retrieved and the corresponding number of disk seeks
required in performing distributed query resolution on views of differing sparsity.
Note the logarithmic y-axis. Again, we observe the benefit of using Hilbert ordering
combined with round-robin striping in our distributed model. Even when a large
number of blocks needs to be retrieved, the number of disk seeks across our parallel

machine is very small.

219

1024 — - 160 .
Blocks Retrieved m
512 Required Seeks -~ 140
256 — -g ’—
128 310
'§ 64 § 100
3 32 £ 80
2 16 80 |
8 40
4 §
) 2 2
1 H o 0 n "
Low Medium High Low Medium High
View Sparsity View Sparsity
(a) (b)

Figure 5.15: (a) Disk blocks received vs. number of disk seeks required on 16 proces-
sors, and (b) The ratio of block retrievals to block seeks.

Figure 5.15(b) presents the same information but specifically graphs the ratio
between the average number of retrievals and the average number of scans. On large
sparse sets, for example, the retrieval /scan ratio is 140 (770 blocks retrieved but only

five scans on average).

5.6.4 Retrieval Balance

Figure 5.16 depicts the relative record imbalance. That is, for the experiments de-
scribed in Figure 5.15, we plot the maximum percentage variation between the size
of the partial result set returned on each processor. We observe that the Hilbert
ordering combined with round-robin striping leads to a maximum imbalance of less
than 0.3% with up to 16 processors. In other words, the model produces a record
distribution pattern that, for arbitrary range queries, almost perfectly divides the

indexing workload between compute nodes.

5.6.5 Hilbert Packing Versus lowX

To demonstrate the superiority of the Hilbert-based R-tree versus the lowX R-tree,
we constructed and queried a full data cube using both packing mechanisms. We
note that virtually any sorting algorithm can be “plugged in” to the prototype.

Figure 5.17(a) presents a comparison of the number of blocks retrieved using the

220

08
06

04 r

02-//

Processors

Relative Record imbalance (%)

Figure 5.16: The relative imbalance with respect to the number of records retrieved
on each node.

3500 - —
Hilbert blocks
lowx blocks -

~

Hilbert
L lowx o

3000

o

2500

o

N
=3
=3
o
IS

1500

5 10 5 10
Maximum View Size (in dimensions) Maximum View Size (in dimensions)

(a) (b)

Blocks Retrieved

[N}

Paratle! Wall Clock Time in Seconds
w

o

Figure 5.17: (a) Comparison of number of blocks retrieved for Hilbert versus lowX
and (b) wall clock read time for the same queries

two indexing methods. Query batches were divided into two groups: (i) those con-
taining five attributes or less, and (ii) those drawn from the complete 10-dimensional
space. The graph suggests that lowX indexing results in more than three times as
many block retrievals on both dense and sparse views.

In Figure 5.17(b), we see a comparison of the read or access times for the two
alternatives (post processing would be the same for both). For the smaller views,
there is a factor of two increase in read time for the lowX indexing method. When we
move up to ten dimensions, this penalty increases to a factor of four. We note that in
addition to the increase in blocks retrieved, the lowX index generates a larger number

of seeks due to reduced block contiguity. In high dimensions, this can produce poor

221

Seq'uential Scan
Hilbert Indexing -----------

.......

Paralle! Wal! Clock Time in Seconds
o - N (5 £ (4] @D ~ [=-] [{=]

Size of Space (in dimensions)

Figure 5.18: Sequential Scans versus Hilbert indexing.
disk access performance.

5.6.6 Indexing Versus Straight Sequential Scans

In the absence of a multi-dimensional indexing mechanism, sequential scans of the
data set must be used. In fact, for poorly constructed indexes, sequential scans can
often be competitive with respect to performance since they completely eliminate the
need for random seeks.

We have designed our prototype with the capacity to retrieve records based upon
either indexed access or sequential scans. Figure 5.18 illustrates the performance of
the query engine for R-tree indexing and sequential scans for three data cube density
levels. Observe that query resolution time for batches of arbitrary queries is between
six and nine times faster for indexed views.

We note that as the size of a query relative to the underlying data set increases,
there comes a point at which no index can improve upon a sequential scan. In our
testing this occurred when the query set exceeded 10% to 15% of all of the records
in the data set. However, because of the use of Linear BF'S, the penalty associated
with unusually large queries is so small that sequential scans would almost never be

necessary with our model.

222

5.6.7 Using Surrogate Views

In this test we evaluate the performance penalty imposed by the use of surrogate
views. A query batch was defined and evaluated on a set of existing, materialized
views. The materialized views were then deleted and the batch was re-submitted
to the query engine so that surrogates were employed on every view. We have, in
this case, evaluated the surrogate model by comparing parallel wall clock times for
query resolution of primary and surrogate group-bys as a function of the number
of processors used. This allows us to see not only the relative effect of employing
surrogates, but also any trends that might be related to the distribution of views.
Figure 5.19(a) presents the timings results, while Figure 5.19(b) shows the corre-
sponding relative cost of surrogate-based query resolution over the same search in the
materialized primary group-bys. We observe that the overhead of using surrogates is
reasonably small, ranging from just over 20% on a single processor to less than 10%
on the full 16-node parallel machine. Figure 5.19(b) actually illustrates an interest-
ing trend. As the number of processors grows, the relative cost of using surrogate
group-bys decreases. This phenomenon is caused by increased efficiency on the disk
accesses when the data is distributed more thinly. Specifically, a smaller partial data
set leads to improved clustering of points which, in turn, produces fewer disk head

movements.

5.6.8 Querying Hierarchical Attributes

Our prototype has been extended to allow performance testing of hierarchical at-
tributes. Specifically, the prototype can be instructed to treat a particular dimension
as the base attribute of the Time hierarchy (i.e., days of the year), but to accept
user queries at the secondary or tertiary level. The final results returned to the user
will therefore be presented in terms of months or quarters. We note that although

the prototype does not currently support the mapping tables required for explicit

223

22

R

"Actual View —t— Relative costin % —+—

20 % Surrogate View -5
B
16
14
12
10

4

- NN
© O N

Parcantage cost of using surrogate view
>

Parallel Wall Clock Time in
o

14 L
6 12
4
2 10
0 \ \ R . L \ L 8 R .) A R
0 2 4 6 8 10 12 14 16 4] 2 4 6 8 10 12 14 16
Processors Processors
(a) (b)

Figure 5.19: (a) Distributed query resolution in surrogate group-bys, and (b) Relative
percentage cost of using surrogate view instead of materialized primary view.
hierarchies, much of the computational complexity associated with that form of hier-
archical representation is tied directly to the creation and management of the tables
themselves. In other words, query performance using explicit hierarchies — and its
O(1) mappings — would be quite similar to the results presented in this section.

Parallel wall clock times (16 nodes) for dense and sparse views containing a hi-
erarchical attribute are presented in Figure 5.20. Essentially, the graphs depict the
penalty associated with supporting a query on a secondary attribute, as opposed to
the same query on the base attribute. Each bar of the histogram is broken down into
read time and post processing time (“total” time is the combination of read time and
post processing time). To ensure fairness, a batch of random queries specifying the
base attribute was first passed to the query engine. This same set of queries was then
hand-modified so that the high/low range on the relevant attribute was transformed
into an identical range on the secondary attribute. For example, a range of 1/85
(days) would be re-written as 1/3 in the new query set.

The results show a penalty of about 17% for small, dense views, and a penalty
of just 6% for larger data cube spaces. In fact, this is the trend one would expect.

For views with a small number of dimensions, any additional processing produces a

224

v
Base Access
Base Total --=-=--- pmeeemeeeeen,
0.9 F Secondary Access -
Secondary Total

08 [-
07

06

05 |

04}

03

Paralle! Wall Ciock Time in Seconds

02}

P N
5 10
Maximum View Size (In dimensions)

Figure 5.20: Querying performance using hierarchical attributes.

tangible effect. In high dimensions, with much longer disk access time and many at-
tributes to process — both during the record re-ordering and equality checking — the
additional cost of a linear number of O(1) mapping operations is relatively insignifi-
cant. By extension, of course, we can conclude that the use of multiple hierarchical
attributes in the same query would likely create an additional penalty. However, rel-
ative to the alternative — computing and storing attributes as separate dimensions

— a small run-time penalty on sub-second queries is an enormous advantage.

5.7 Review of Research Objectives

In Section 5.3, we identified a number of objectives for this phase of the research. We

now review those goals to confirm the degree to which they have been satisfied.

1. Guarantee the simultaneous involvement of all processors in query
resolution. The model does not generate parallelism by distributing one or
more queries to individual nodes, where they would be subsequently resolved
in their entirety. While suitable for very high volume query environments (e.g,
Web search engines), this kind of approach would provide relatively poor results
when the query volume was low to moderate. Our model uses p partial indexes

to ensure that all nodes contribute to the resolution of every query.

225

. Partition the data such that the number of records retrieved per node
is as balanced as possible. We combine Hilbert-order sorting and round-
robin striping to create our partial indexes. The model produces a distribution
of points such that arbitrary query rectangles select an almost identical number

of records from each node.

. Minimize the number of disk seeks required in order to retrieve these
records. By packing our R-trees with a Hilbert space filling curve, we signif-
icantly increase the likelihood that the records of arbitrary range queries are

very close to one another on the physical storage device.

. Provide efficient, parallel post-processing functionality. We utilize the
same sorting optimizations described in previous chapters when manipulating
partial result sets — this time incorporated into an efficient Parallel Sample
Sort. Furthermore, O(n) record transformations and aggregation passes are
layered on top of other, required operations to further reduce post processing

overhead.

. Support the use of partial cubes, such that queries on non-materialized
views can be resolved. We utilize a powerful surrogate model for resolving
queries on non-existing views. On a parallel machine, the overhead is typically

less them 10%.

. Support view hierarchies, such that users may query a particular
attribute at any available level of granularity. By storing data at the base
attribute level, and providing appropriate mapping functionality, we are able
to dynamically transform queries at arbitrary levels of the attribute hierarchy.

Overhead for hierarchical attributes is less than 10% for large views.

226

7. Support efficient bulk updates on the full or partial cubes. We combine
the core algorithms for data cube generation (full or partial) with an O(n)
merge-update operation to allow efficient bulk updates on the indexed virtual

data cube.

5.8 Conclusions

In this chapter, we have presented a comprehensive framework for indexing and query
processing in a distributed OLAP environment. The model is based upon the R-tree,
one of the most successful multi-dimensional disk-based indexing methods. In our
case, we have exploited the fact that the data warehouse is available “up-front” to
produce packed R-trees that maximize storage capacity and indexing performance.
For packing purposes, we build upon the notion of space filling curves that seek to
preserve multi-dimensional locality in a single dimension. We use the well-studied
Hilbert curve for this purpose.

Since we seek to construct a high performance parallel query engine, the basic
model has been parallelized by striping the data across p nodes. Partial indexes are
constructed from each partial set. Queries are distributed to each compute node
where partial result sets are computed and then sorted and merged to produce a final
result.

We have extended the basic model to allow it to support queries on non materi-
alized views, as well as attribute hierarchies. These are two crucial real-world query
tasks that are not well studied or supported in the data cube literature. By com-
bining this functionality with that of the original data cube generation algorithms,
we introduce the notion of the Virtual Data Cube. By this we mean that the user is
freed from the requirement of having to understand many of the physical details of
the data cube implementation.

Experimentally, our results support the design decisions that we have made. The

227

system demonstrates good speedup on parallel testing, impressive load balancing, and
low computational overhead on surrogate and hierarchy extensions.

In summary, our virtual data cube indexing framework complements the gen-
eration algorithms by providing the final piece of an “end-to-end” model for high-

performance data cube computing within the ROLAP context.

Chapter 6

Conclusions

6.1 Summary

In this thesis our focus has been the parallelization of the data cube, a data warehous-
ing construct that supports the generation and manipulation of multi-dimensional

views of summary data. Specifically, we have addressed the following three issues:

1. Parallelization of the complete data cube. Using a coarse grained com-
puting model, we have developed a powerful algorithmic framework for the
parallel construction of all 2¢ views or group-bys in a d-dimensional space. The
fundamental approach has been to distribute the workload between processors
by partitioning a weighted schedule tree. We have provided the details of an
algorithm for workload partitioning, along with the costing model used to cre-
ate the underlying schedule tree. In addition we define the issues relevant to
high performance pipeline computation and discuss the associated algorithms
and data structures. Justification for our design choices is provided by way of
analysis and experimentation. In both cases we have demonstrated that, for
existing parallel architectures and reasonable problem parameters, our model

performs effectively and produces impressive parallel speedup.

2. Parallelization of the partial data cube. Contemporary data warehousing

systems are often so large that a complete materialization of all 2¢ views would

228

229

be cost and storage prohibitive. However, the problem of generating partial
cubes has not been well studied in the literature. In Chapter 4, we provide a
suite of algorithms for the efficient construction of partial cube scheduling trees.
After introducing a basic approach to partial cube generation that requires
O(n3) time, we provide refinements of the core algorithms that ultimately lead
to new O(n?) solutions. We further extend this design with a heuristic technique
that permits us to address problems in even higher dimensional spaces. By
combining the schedule tree generation algorithms with the existing parallel
data cube construction framework, we achieve performance and speedup results
that are competitive with the bipartite matching “benchmark” on full cubes

and vastly superior to more naive approaches on partial cube problems.

. Parallel data cube indexing. Modern OLAP systems require timely access
to requested data. Though sequential scanning can be used to resolve query
requests, the size of many decision support systems makes such an approach in-
feasible. We have described a rich parallel model for multi-dimensional OLAP
indexing. Our RCUBE index, building upon the widely studied R-tree, uses
the Hilbert space filling curve to pre-pack data points into disk blocks. Par-
allelization is achieved by striping the Hilbert ordered data in a round robin
fashion and then generating partial R-tree indexes on the local record subsets.
Indexes are then utilized by a parallel query engine. We have extended the core
model with support for queries on non-materialized views, as well as views that
contain hierarchical dimensions. Extensive testing of the new parallel model
demonstrated both impressive speedup on standard queries, and low overhead

on surrogate and hierarchy-based processing.

230

6.2 Future Work

The research described in this thesis represents the core of a robust parallel data cube
model. However, the work undertaken to date also points to new research initiatives
that would significantly extend the functionality of the current design. Below we

identify a number of these possibilities.

o Automated partial cube specification. As noted in the previous chapter, one
of the goals of DBMS implementors is to hide the physical complexity of the
system from end users. While our current model accomplishes this objective in
terms of view storage and indexing, it is still necessary for a data base adminis-
trator to manually select a cost effective partial cube subset for materialization.
This assessment might be based upon such things as the availability and scope
of resources as well as the characteristics of the fact table. By supplying an
intelligent and efficient algorithmic mechanism for this same purpose, it would
be possible to produce a fully automated OLAP environment that selects, con-
structs, indexes, updates, and queries the data cube without any human in-
tervention. Initial, very preliminary steps in this direction were described by

Ullman et al. in [57].

e Parallel Query Optimization. Our current indexing model provides efficient
support for point and range queries. Of course, not all OLAP queries can
be represented by contiguous ranges on each dimension. Queries specifying
collections of contiguous ranges might also be useful. As well, we note that
while our indexing model can comfortably handle high volume environments
due to the fact that each and every query is processed in parallel, even better
performance might be possible by handling multiple queries concurrently. This
would involve “piggy-backing” ancillary queries on top of a primary query so

that the ancillary query would obtain many of its blocks “for free”.

231

o OLAP wvisualization. Perhaps the most natural means by which to interpret
OLAP query results is through some form of multi-dimensional visualization en-
gine. Though commercial OLAP systems sometimes provide such functionality,
it often comes by way of “heavy”, expensive to maintain, client-side applications
and/or inflexible and limited graphical interfaces. It might be interesting to de-
velop a thin, browser-based interface that operates in concert with an extensible

server-side OLAP visualization engine.

o Parallel external memory algorithms. Recall that our current approach and
prototype assumes the existence of an initial input set that can fit entirely into
main memory. In practice, on extremely large data sets, this assumption may
not be true. To properly support such large initial data sets, it will be necessary
to extend the current algorithms — both data cube construction and indexing
— into external memory. Although conceptually straightforward, the “systems”

work required would be quite significant.

6.3 Final Thoughts

Taken as a whole, the research presented in this thesis supports the notion of what we
have called the Virtual Data Cube. In keeping with the general philosophy of database
management systems, our model provides sophisticated computational functionality
in a largely transparent fashion. Moreover, it does so by way of a scalable, paral-
lel, high performance algorithmic framework. Given the importance of the problem
itself, both from a commercial and academic perspective, we are confident that the
current research represents a significant and meaningful contribution to the data cube

literature.

Appendix A

An Introduction to Parallel
Computing

A.1 Introduction

Throughout the history of computing, researchers have sought ways of increasing the
computing power of existing devices and architectures. Parallel computation has been
one of the most obvious means by which to accomplish this. However, the algorithms
and computational paradigms in parallel environments demonstrate a much greater
diversity than those in the sequential setting. Not only do we have to concern ourselves
with more complex hardware, but we must pay considerable attention to such things
as cost models, network topology, non-determinism, and data integrity. To further
complicate matters, market pressures and technological innovation continue to affect
the direction of parallel computing initiatives.

This appendix examines those issues that are most relevant to the current field of
parallel computing, particularly as it relates to the development of practical parallel
algorithms (for a detailed explanation of these issues, see [14, 15, 24, 72]). Section A.2
begins by examining taxonomies of parallel architectures. In Section A.3, the issue of
memory utilization is explored, while Section A.4 reviews the common interconnection
fabrics found in parallel environments. Current trends in system design are discussed

in Section A.5, focusing on Symmetric Multiprocessors (SMP) designs and Beowulf

232

233

clusters. Algorithmic models are presented in Section A.6, with Section A.7 dealing
with the issue of performance analysis. In Section A.8, the software currently available
for the implementation of parallel algorithms is discussed. Section A.9 concludes with

a few final observations.

A.2 A Taxonomy of Parallel Architectures

In 1966, Michael Flynn proposed what has since become the classic taxonomy of
parallel computing architectures [43]. Flynn based his classification system on the
notion that all computers — both sequential and parallel — could be distinguished
in terms of two fundamental elements: the number of data streams and the number
of instruction streams. Bearing this distinction in mind, the following four machine

classes can be established:

e Single Instruction Single Data (SISD). This is the classical von Neumann ar-
chitecture. It consists of a CPU (control unit and arithmetic-logic unit) and
a main memory that holds both program and data. Instructions and data are
transferred from memory to high speed registers where they are processed in a

sequential fashion.

o Single Instruction Multiple Data (SIMD). In many cases, it is possible to per-
form common operations on distinct blocks of data. This basic observation led
to the development of SIMD machines. SIMD architectures use a single control
unit to dispatch instructions to a collection of independent processing units. The
instructions are then executed concurrently by each of the units (note: some
may actually be idle during a given iteration). For applications with a very
regular structure, SIMD machines can be quite effective. Prominent examples

of this class include MasPar’s MP-1 [81] and MP-2 [82].

234

o Multiple Instruction Single Data (MISD). Though this design is technically vi-
able, practical systems are unlikely to be built this way. It is included only for

completeness.

o Multiple Instruction Multiple Data (MIMD). In this final class, we find those
machines that allow independent instruction streams — executed on indepen-
dent processors — to manipulate distinct blocks of data (see Figure A.1 for
an illustration of the difference between MIMD and the aforementioned SIMD
machines). We must note here that “independent instruction stream” does not
necessarily imply that the instructions themselves are unique. More often, a sin-
gle program is executed on each processor, a model known as Single Program
Multiple Data or SPMD. In any case, MIMD architectures exploit processors
that utilize their own control unit and processing element. Resources may either
be under the control of a single operating system or may be managed concur-
rently by independent copies of the operating system. Examples of parallel
machines in this class include the Paragon from Intel [92], the T3E from Cray
[117], the SP2 from IBM [114], the Power Challenge from SGI [108], and the

new workstation clusters [95].

During the 1960s and 1970s, it was the SIMD model that came to dominate
the field of parallel computing. Scientific applications, commonly associated with
highly structured array-based computing, were ideally suited to the SIMD’s tightly
coupled, common control unit design. Specifically, parallelism could by achieved
by the compiler, rather than by sophisticated coding. In practice, the individual
PE elements of Figure A.1(a) — each with their own local memories — eventually
gave way to the vector processor. While still an SIMD machine, the vector design
consisted of a powerful scalar processor, a vector of associated function units, and a

common memory. Though expensive, the model can provide tremendous performance

235

PE
+

Control Uni

PE
+

Control Uni

Global
Control
Unit

PE
+

Control Unil

NIOMIBN UORI8ULC-JaU]
}oMeN uoRdaLLea e

PE
+

Control Unil

—
o

N

—_

b)

Figure A.1: (a) SIMD Architecture. (b) MIMD Architecture.

on certain application classes. In fact, the term “supercomputer” has historically been
used in reference to the vector design. The Hitachi S3600 [60] is an example of the
vector model.

While vector based processors are still used for massive scientific applications, the
rise of the microprocessor eventually produced more varied and more flexible designs
— and a whole new generation of multi-processor systems. By the mid-1990s these
“massively parallel processors” (MPPs) were dominating the world of general purpose
parallel computing. In fact, in the most recent listing of the TOP 500 — a ranking
of the world’s fastest computer systems — only 7.4% of the machines had a vector
design [120]. Given the potential range of parallel applications, and the continued
investment in commodity processors, this trend is unlikely to change in the near term.

In the remainder of this chapter, we will discuss the MIMD model in greater
detail. It is worth noting that despite the ubiquity of the MIMD design, there is
in fact great diversity with respect to implementation [72, 73, 76, 95, 24, 14]. In
the current context, emphasis will be placed upon those features, both physical and
conceptual, that are most relevant to those designing efficient algorithms for parallel

applications.

236

P "]
d

MIOMJSN UO[IDBLIUOI-IBM|
=
MIOMION LIO[}90ULIOI-133U)
FOMION LORDBULIOD-Ieju)|

(2) (b)

E—l—ﬂ

Figure A.2: (a) All memory is global. (b) Processors have a mix of local and global
memory. (c¢) All memory is local. Hardware provides remote memory access.

A.3 The Memory Model

One of the most fundamental distinctions between the sub-classes of the MIMD model
relates to how core (i.e., primary) memory is structured and how that memory is
accessed by processing units. In particular, there are two very different approaches to
the organization of the address space when multiple instruction streams are employed,

namely shared memory and distributed memory.

A.3.1 Shared Memory MIMD

With a shared memory parallel design, all processors have equal access to at least
some segment of shared memory. These types of machines are sometimes known as
multi-processors (Note: this term is often applied to parallel machines in general).

Figure A.2 illustrates the three basic shared memory configurations:
1. One single pool of shared memory (Figure A.2(a)).
2. A mix of shared global memory and local processor memories (Figure A.2(b)).

3. Local memories only (Figure A.2(c)). It is important to note that in this case

237

the location of data is transparent to the programmer. In other words, the

hardware is responsible for resolving non-local references.

When all memory is global, it is very likely that access times are consistent across
processors. Such machines are known as Uniform Memory Access (UMA) computers.
Most current shared memory machines, however, are actually Non-uniformm Memory
Access (NUMA) computers (as in Item 2 and Item 3 in the previous list). On such
machines, there may be significant differences in access times for local versus remote
memories. A common example is the SGI Power Challenge [108].

To effectively support the shared memory interface, vendors must provide signifi-
cant hardware support (whether UMA or NUMA). For example, with all processors
having equal access to shared data, it becomes necessary to arbitrate access to that
data when concurrent reads and writes are encountered. Furthermore, in an attempt
to increase processor memory bandwidth, most shared memory machines provide
some form of local cache. As a result, cache coherency protocols are required to
ensure that the local processors do not employ local variables that are no longer

consistent with the global versions.

A.3.2 Distributed Memory MIMD

In contrast to the shared memory computer, a distributed memory system, or multi-
computer, provides local storage only and may offer no mechanisms for directly ac-
cessing the memory associated with remote processors. Instead, data is typically
shared by means of explicit message passing. In other words, communication soft-
ware is provided so that the programmer can both send and receive packets of data.
Figure A.3 illustrates the generic message passing model.

While message passing machines require less sophisticated hardware and offer the

programmer tremendous control over the application’s execution profile, they can also

238

Inter-connection Network

Figure A.3: Each node in a distributed memory parallel machine contains its own
CPU and local memory store.

be exceedingly difficult to program efficiently. Because of the significant time differ-
ence between local and global access, it is quite possible that badly written programs
— or poorly designed algorithms — will result in unacceptable communication delays.
Consequently, considerable effort is expended upon both reducing the number and
size of communication rounds and hiding communication latency by ensuring that the
local CPU has useful work to do during the time it takes for data to travel between

processing elements.

A.4 The Interconnection Fabric

Because of the way memory is employed in the two types of MIMD machines, it is
perhaps not surprising that the means by which that memory is accessed can also be
dramatically different. In this section, we look at the two interconnection architec-

tures, with a particular emphasis on the more varied message passing environments.

A.4.1 Dynamic Interconnection Networks

On shared memory platforms, each processor must be given the opportunity to access
some or all of the global memory store. Consequently, the emphasis is on incorpo-
rating some measure of redundancy into the processor/memory channels such that a
given processor can easily find an “open” memory bank. In other words, should one

processor be accessing a given bank, another processor should not be prevented or

239

A Switching

E’] L B N N S— Element

Figure A.4: A crossbar switch.

blocked from dynamically reaching an open bank.

A common means of achieving this is through a crossbar switch (see Figure A.4).
With a crossbar, a grid of switching elements allows each of p processors access to any
of b memory banks, where b is assumed to be at least as large as p (otherwise, some
processors would not have access to any banks). Unfortunately, this Q(p?) crossbar
grid can be extremely expensive in practice, even for a network with just a few dozen
processors.

The prohibitive cost of the crossbar switch eventually led to the design of the multi-
stage network. Here, we trade off performance against cost by constructing a series
of intermediate switching elements between memory and processors. Figure A.5(a)
illustrates the basic design. The network consists of a number of levels, and data
transfer is accomplished by routing bytes/words across the fabric.

Finally, at the opposite end of the price performance spectrum is the bus-based
access model. See Figure A.5(b). In this case, a single memory bus is shared between
each of the processors in the system. While the design is relatively simple, and thus
inexpensive, total bandwidth is fixed. As such, bus-based designs do not scale to
very large numbers of processors since bus saturation will prevent full utilization of

processing resources.

240

J0E PREE

(a
Figure A.5: (a) A multi-stage shared memory network (The “S” nodes indicate ded-
icated switching units). (b) Shared memory with a common bus.

A.4.2 Static Interconnection Networks

In contrast, message passing architectures typically employ a static interconnection
fabric consisting of some number of hard-wired point-to-point links. The following

list describes some of the traditional fabric designs:

e In the simplest case, a static network can simply be a linear array of nodes
connected by a sequence of p — 1 lines. By connecting the first and last nodes,
the array is transformed into the slightly more powerful ring model (see Fig-
ure A.6 for an illustration of the array and ring). Not surprisingly, these two
simple designs provide relatively poor communication characteristics when non-
contiguous nodes need to share data since the message may have to traverse

many links.

e A somewhat more compelling network option is the star network topology.
With a star, a single node acts as a central hub, routing packets between any
two points. This design provides clean point-to-point access but does increase
the risk of failure due to its single point of failure. Note that the central node in
the star is a standard compute node, not a dedicated switching element. A more

sophisticated version of the star network is the fat-tree. It utilizes a hierarchical

241

oo (OO0
(a) (b)

Figure A.6: (a) A simple array. (b) A ring formed by joining the first and last node
of the array.
switching fabric and, in so doing, eliminates the single point of failure. As well,
the broad bandwidth provided at the top of the tree reduces the bottlenecks
that can be created in the simple star network. See Figure A.7 for an illustration

of the two designs.

e Another popular interconnection fabric for distributed memory machines is the
mesh. A multi-dimensional extension of the array, the mesh provides every
node with two connections in each of the d dimensions (fewer, of course, at the
edges). By connecting nodes on the periphery of the mesh, we obtain what is

called a torus, the multi-dimensional counterpart of the ring (see Figure A.8).

e When even higher levels of connectivity are required, the hypercube is often
the network of choice. The hypercube is a multidimensional grid of processors
with exactly two processors in each dimension. In other words, a d-dimensional
hypercube is made up of a total of 2¢ processing units. In the general case,
a (d + 1)-dimensional hypercube can be constructed recursively by connecting
the corresponding processors of a pair of d-dimensional hypercubes. Figure A.9
provides a comparison between the hypercube and the fully connected design.
It should be noted that although the fully connected network offers complete

node to node access, it is generally too expensive to be used in practice.

As noted above, not all interconnection fabrics are equally attractive. In general,
we trade off cost for greater connectivity and stability. In this respect a number of

metrics have been proposed which more precisely define the power and complexity

242

(a) (b)

Figure A.7: (a) The star design. (b) The more sophisticated fat-tree.

o0 SLAAE
Rasaeais
RaseLais

Figure A.8: (a) A four-by-four mesh. (b) The wraparound mesh or torus.

(a) (b)

Figure A.9: (a) A four-dimensional hypercube. (b) The fully connected network.

243

of a given fabric. The following list describes some of the more important (with

examples chosen from the previous list):

o Diameter. If we define the distance between any two nodes as the smallest num-
ber of links between them, then the diameter is simply the maximum distance
between any two nodes. For example, the diameter of a star network is two,
while that of a wraparound mesh is 2|,/p/2]. Ideally, we would like the diam-
eter to be as small as possible since this reduces communication time between

any two nodes.

e Arc Connectivity. Connectivity is a measurement of the number of paths be-
tween any two processors. By arc connectivity, then, we mean the minimum
number of links that must be removed so that that network is divided into two
independent networks. In this case, we would like the connectivity value to be
as high as possible since this increases both reliability and communication con-
currency. The arc connectivity of a completely connected network for example

is p — 1, while a hypercube has connectivity of log p.

e Bisection Bandwidth. Bisection bandwidth is defined as the product of bisec-
tion width and channel bandwidth. By bisection width we mean the number of
links that have to be removed in order to partition the network into two equal
halves. For example, a fully connected network would have a bisection width
of p?/4, while a ring would have a bandwidth of two. Channel bandwidth, on
the other hand, is essentially a measurement of the peak rate at which bits
can be transferred between a pair of network nodes. So bisection bandwidth,
then, is a measure of the minimum volume of data that can be communicated
between any two halves of the connection fabric. For algorithms that require
global operations (i.e., all nodes communicating simultaneously), this is par-

ticularly important since it places an upper limit on the speed at which the

244

communication round can be completed.

e (Cost. Though a number of cost measures can be used, one of the most common
is simply the link count. The link count of a completely connected network
is p(p — 1)/2, for example, while a two-dimensional mesh without wraparound
has a link count of 2(p — ,/p). Ultimately, we can only adjust the first three

measures if the cost of adding the required links does not become prohibitive.

A.5 Contemporary Trends

As noted in Section A.2, there has been a general movement over the past 15 years
towards the more flexible MIMD machines. Even here, however, the state of the art
continues to evolve at a rapid rate. This section examines current trends in MIMD

system design.

A.5.1 The Symmetric Multi-Processor

At present the most common multi-programming platform is the commodity-based
symmetric multi-processor or SMP. In the broadest sense, an SMP is any system
that allows the OS to schedule any available process or thread on any of its identical
CPUs. A more precise definition, however, is that an SMP is a shared memory multi-
processor in which the cost of accessing any element or bank of memory is the same
for all processing units. Today, the most common form of SMP is the shared bus,
single board systems constructed from cheap but powerful micro-processors, though
larger solutions also exist.

We have referred to these machines as multi-programming systems to emphasize
the fact that they are also very popular for non-parallel codes. For example, they can
be used to concurrently run sequential programs or to exploit multi-threaded servers.
Their cost, coupled with the relatively simple interface they present to users, makes

them well-suited to this role. It should be noted of course that improved sequential

245

performance can only be obtained if there are many programs available. A single
sequential code runs no faster on an SMP since the OS simply loads and runs it on a
single processor.

In terms of parallel computing, the SMP is also quite popular. For small, neatly
structured problems, relatively simple parallel codes can produce impressive reduc-
tions in run-time on these shared memory, single OS platforms. For larger problems
requiring much greater computing power, single board SMP modules can be wired
together to form larger SMP systems. Technically, such machines are known as cc-
NUMA designs, or cache coherent NUMA. As noted is Section A.3.1, cache coherency
refers to the fact that protocols are used to ensure that local caches (i.e., on the local
board) do no get out of sync with the values in a remote memory bank. For SMP
models, bus snooping is the simplest such design [24]. Here, each processor observes
read and write requests on the bus and takes appropriate action when it realizes that
the current bus transaction may have some impact on the data in its local cache. In
so doing, the OS/hardware can ensure that the programmer “sees” a single consistent
memory image across all boards in the cluster.

Because of the simplicity of the programming model for shared memory machines,
it seems very likely that the SMP model of parallel design will continue to thrive and
evolve. At present, the two real drawbacks with such systems are (i) that they are
still somewhat limited in scalability, and (ii) at the high end of SMP performance,

the ccNUMA machines remain quite expensive.

A.5.2 The Cluster Alternative

As noted in the previous section, high performance parallel computing is still of-
ten associated with cost prohibitive hardware designs. As a result, the performance

to be garnered from parallel computation is often reserved for a select group of

246

heavily funded organizations. In recent years, however, that environment has be-
gun to change. Besides the introduction of commodity SMP boards, a new genera-
tion of “commodity-off-the-shelf” (COTS) distributed memory solutions has begun
to emerge. In the realm of parallel computing, this has led to the deployment of sys-
tems built entirely of inexpensive PCs and network components. Known informally
as Beowulf class clusters, the new fully distributed platforms have opened up the field
of parallel computing to a wider audience than ever before [14, 15, 95, 115, 99].

In the mid-1990s, with the maturation of the commodity market (i.e., inexpensive,
mass-produced products), the move to simple, low-cost cluster computing really be-
gan. These first systems were relatively low-powered, constructed mainly from x486
machines and 10Mb Ethernet; for the most part, the processors were too slow to keep
up with even this simple arrangement. However, within a couple of years, the x486
machines were replaced by Pentium processors, and the network was scaled up to
Fast Ethernet (100 Mb). More importantly, perhaps, the awkward “channel bonded”
interconnects of the early clusters were replaced by more powerful “full wire speed”

switches that have offered extremely cost-effective communication performance.
A.5.2.1 Remaining Hurdles

It should be noted, however, that the commodity market provides only a subset of the
components necessary for a parallel computer, namely the CPU, memory modules,
and disk storage. While these elements are important, they are not sufficient in
themselves to support true high performance computing. In fact, there are several
areas of active research that aim to partially, or even completely, close the gap between
commodity cluster performance and that of the traditional MPP machines. The

following list highlights the most important.

e Recently, bandwidth-hungry Internet applications have pushed down the price

for network interconnects. In addition to the aforementioned Fast Ethernet

247

NAS Benchmark || Fast Ethernet | Gigabit Ethernet | Myrinet |
BT 297.53 387.31 302.5
CG 81.54 127.58 154.1
MG 208.19 314.92 269.0
SP 208.87 286.07 236.2

Table A.1: NAS parallel performance in MFLOPS on 8 processors [78].

(100Mb/s), new clusters have also been built with Gigabit Ethernet (1000 Mb/s)
and the even more powerful Myrinet (1.28 Gb/s). It is important to note
that, unlike the broadcast-based Classical Ethernet, these new technologies can
be run in full duplex mode. In short, this allows data to be transferred in
both directions simultaneously, thereby doubling bandwidth for point-to-point
connections. Table A.1 lists the MFlops performance on a number of common

NAS benchmarks used for assessing parallel computation [78].

Unfortunately, arbitrarily increasing the power of individual components in a
complex system often leads to bottlenecks [118, 39]. In the current context, one
of the primary bottlenecks has become the communications stack (i.e., TCP/IP
in most LAN environments). Table A.2 provides a breakdown of the processing
overhead associated with conventional network operations [116]. As illustrated,
the dominant portion of overhead is TCP /IP processing — accounting for 48.4%
of the load. [Note that the next highest total, interrupt handling (34.6%), is also
affected by software]. The point to be taken here is that, no matter how fast
the underlying network, the protocol stack must be able to efficiently accept,
process, and transfer all data that it receives; otherwise, the gains associated
with the physical layer don’t translate into faster run times. Consequently, a
number of lightweight communication frameworks have been proposed in the
past ten years or so. Though each differs somewhat in logic and implementa-

tion, the common theme is the replacement of a multi-layered network kernel

248

| Processing [Overhead | % |
System call and socket 1.6 usec | 3.6
TCP 15.5 usec | 34.6
P 6.2 usec {13.8
Protocol handler invocation | 3.2 pusec | 7.1
Device driver 4.7 pusec | 10.5
Hardware interrupt 5.9 psec | 13.2
NIC+Media 7.7 usec | 17.2
Total 44.8 psec | 100

Table A.2: TCP/IP Overhead [116].

with zero-copy protocols that transfer data directly from user space to the net-
work interface. At present the most important standards for cluster computing
include Myrinet GM [85] and the Virtual Interface Architecture (VIA) [35, 36].
Figure A.10 illustrates the performance of VIA relative to the more traditional
UDP [35]. We can clearly see the advantage of using VIA over the conven-
tional protocol at packet sizes from 32 to 1024 bytes. For cluster architectures
requiring high performance — particularly when large message sizes cannot be
guaranteed — communication layers like VIA and Myrinet GM offer consider-

able promise.

While the previous two issues relate directly to the supporting network, another
key issue involves the transfer patterns associated with disk storage. In this re-
spect, traditional MPPs have always had a distinct advantage. A wide variety
of parallel, disk-striping file systems have been developed for proprietary archi-
tectures, including PF'S (Intel Paragon), PIOFS and GPFS (IBM SP), HF'S (HP
Exemplar), and XFS (SGI Origin). Recently, however, parallel file systems for
cluster computing have begun to emerge. Perhaps the most significant of these
is the Parallel Virtual File System (PVFS), a joint project of Clemson Univer-
sity and NASA’s Goddard lab [16]. PVFS offers transparent disk striping (i.e.,

parallel) across optimized local file systems (i.e., virtual). Figure A.11 presents

249

12 A

100 | — M oo A —

Bandwidth
Mbps

0 32 64 128 256 512 1024 2048

Data payload size (bytes)

Figure A.10: Bandwidth Comparison: VI vs UDP.

Compute . » [MetaDat
Node Manager|>~_ ‘Fl-l
Compute} < |0 Nodé|
Node \ @
|5
Compute| o 4 | 2 | «——s [I/ONode
Node (5] ~—
2 =
Computel ___, <«— |I/O Node]
Node ~—— @

Figure A.11: The PVFS architecture.

the PVFS architecture. In short, local applications communicate directly with
I/O daemons to read and write to disk files. A single metadata manager pro-
vides partitioning information for the entire parallel file system. Experimental
results over both Fast Ethernet and Myrinet, reported in [16], have been very

impressive.

250

A.6 Parallel Computing Models

A parallel computing model represents an abstraction of a class of parallel machines
that attempts to capture the computational and communication capabilities of this
class in terms of a small number of key parameters. In turn, these parameters rep-
resent a means by which to evaluate parallel algorithms that will be executed on
the corresponding physical architectures. In the sequential setting, the ubiquity of
machines adopting the basic von Neumann model has led to the wide adoption of a
single, relatively simple analytic paradigm. Essentially, designers consider a platform
consisting of an unlimited memory store that supports constant time access to any
and all program data. Not surprisingly, this model does not work well for parallel sys-
tems; the sheer variety of such platforms precludes any single algorithmic cost model.
Instead, a number of models have been suggested, each attempting to capture the
salient features of a class of parallel machines [79, 91, 13, 15, 55, 72, 73, 112]. The
remainder of this section discusses some of the most common parallel machine models

and their application to algorithm design.

A.6.1 The PRAM

The Parallel Random Access Memory computer or PRAM [68] is an extension of the
standard von Neumann model that is used so widely in the sequential setting. It is an
architectural abstraction consisting of a set of p processors that access an unlimited
store of global memory; any single memory word can be accessed by any processor
in constant time. In addition, it has a global clock. The model can consequently
be described as a synchronous (i.e., coordinated), shared memory multiprocessor. A
strength of the PRAM model is that it allows the algorithm designer to focus on
the challenge of task decomposition without having to worry about synchronization,
communication, and the mapping of tasks to processors. There are four variants of

the basic PRAM model depending upon how global memory is accessed and updated.

251

1. Exclusive-read, exclusive-write (EREW)
2. Concurrent-read, exclusive-write (CREW)
3. Exclusive-read, concurrent-write(ERCW)

4. Concurrent-read, concurrent-write (CRCW)

The list proceeds from most restrictive to least restrictive. In practice, it is CREW
that represents the most common PRAM model for algorithm design. We further
note that as write concurrency is added, the system becomes more complicated and
“logic” is added to determine how to update memory in the face of concurrent write
attempts. Typical standards are the arbitrary protocol (randomly choose one of the
alternatives) and the prioritized protocol (a pre-defined prioritization is used).

Given that the main features of the PRAM are (i) O(1) memory access and (ii)
clock synchronization, it is an abstraction that most accurately models the contem-
porary SMP architecture. Unfortunately, even with the support of concurrency pro-
tocols, such a model is not well-suited to the distributed memory MIMD machines
that are becoming more and more common. In particular, the notion that all proces-
sors have constant time access to all variables in the global memory space is clearly
untrue. Use of the PRAM for distributed memory machines may lead to sub-optimal
algorithm design in that the “penalty” for node-to-node communication is not ade-
quately captured. For this reason, models representing additional classes of realistic

machines have been suggested.

A.6.2 Bulk Synchronous Parallel

The BSP model was one of the first — and most significant — attempts to produce
a robust cost model for practical parallel machines [121, 12]. In effect, BSP was
intended as a bridging model between the areas of algorithm design and hardware

implementation. A BSP algorithm consists of a sequence of supersteps, where a

252

superstep is defined as a local computation phase, a global communication phase,
and finally a barrier synchronization. The synchronization prevents processes from
proceeding beyond the barrier until all processes have reached this same point. This is
important because it allows the local process to proceed with its computation phase,
knowing that it has received all necessary data from its neighboring processes and,
conversely, that they have received its messages. BSP attempts to realistically model

parallel computation with three parameters.

e 1. The time taken for a barrier synchronization. Perhaps more intuitively, it
can be taken as a representation of the network latency cost since it typically

represents the time for a message of minimal size to traverse the network.

e g: The “gap”. This is the ratio of the time taken to perform a single local
computational step T, — where a step is in unit time — versus the time required
to transmit a message Ty; of minimal size. Intuitively, when the ratio %L
is large, we know that we must minimize the size and quantity of message

transfers within the application since communication is expensive relative to

computation.
e P: The number of processors.

Given these three parameters, the time required for a single superstep in a BSP
algorithm is formally expressed as w + hg + [. Here, w refers to local computation
time, A to the maximum number of messages/ packets sent or received during the
superstep, g to the gap, and [to the time for a synchronization. The complete
parallel run-time Tp for a BSP algorithm with S supersteps is simply the summation
of the time required for each of the S supersteps.

BSP is notable for a couple of reasons. First, it encourages the use of latency hid-
ing. In the most general sense, latency hiding refers to the capacity to mask the costs

that would be associated with message transfers between concurrent tasks — the very

253

ones that might be identified by the PRAM model. In practice, there are a number of
ways of doing this. For example, one can overlap communication with computation
by sending data before it is actually required and having the processors continue to
work on local tasks during the send phase. As well, one can associate groups of tasks
with separate processors so that task-to-task communication occurs in an intra-node
fashion (this is sometimes described by way of wvirtual processes). No matter what
form latency hiding takes, the ultimate goal is the same — to exploit the fact that
not all of the “atomic tasks” need be associated with concurrent communication. In
parallel computing terminology, this concept is known as parallel slackness.

The second factor of note is that BSP makes no attempt to model the very real
setup costs for message transfers. In other words, it does not explicitly discourage
the use of shorter messages; they are seen as proportionally more efficient than longer
ones. For this reason, we can describe BSP as a model with coarse-grained computa-

tion but (possibly) fine-grained communication.

A.6.3 LogP

A derivative of BSP, the LogP model attempts to more accurately reflect the costs of
message passing architectures [23]. LogP is itself an acronym for the four parameters

it supports.

e L: Network latency. It must be noted, however, that latency does not refer to
barrier synchronization as LogP is an asynchronous model (i.e., the processors

are free to proceed at their own pace).

e 0: Message overhead. LogP tries to capture the cost of setting up a message
transfer. In a sense, this is a cost that cannot be hidden; the processor must be

involved in preparing the send buffer.

e g: The gap ratio (same as BSP).

254

e P: Again, the number of processors.

A number of studies have been performed on the relative value of LogP versus
BSP [11]. In general, the two have been found to have roughly equivalent modelling
power, though the somewhat less constrained BSP model is significantly simpler to
employ in algorithm design. For this reason, LogP may ultimately be more useful as

a costing model than a design paradigm.

A.6.4 CGM

Another BSP-style model is the Coarse Grained Multicomputer or CGM [33]. Like
BSP, CGM builds upon the idea of computation and communication phases, followed
by a barrier synchronization. However, it does not try to explicitly model the ratio
of computation to communication. Instead, it assumes the existence of an arbitrary
interconnection fabric that is significantly slower than local memory — making mes-
sages of any size relatively expensive. In addition, it assumes that each processor is
associated with a standard local memory of size O(%), where O(%) > O(1). During
each superstep, a single h-relation of size O(%) can be routed. The implication in
terms of algorithm design is that CGM explicitly discourages the use of many small
data transfers during a given communication round. In this sense, it favours both
coarse-grained computation and coarse-grained communication.

There are a number of benefits to the CGM model. First, by abstracting away
the details of the network, CGM lends itself to a portable design model. The coarse
grained communication paradigm significantly diminishes the importance of propri-
etary interconnects since a constant (or at most a very low degree polynomial) number
of communication rounds provides such a high degree of latency hiding that the exact
parameters of the network become less important.

Second, modern routing technologies have made the details of the network inter-

connect somewhat less significant. The older store and forward style of routing, in

255

which entire messages are collected on the switch, made hop count — and by extension
network topology — a significant concern. With contemporary cut-through routing,
however, a message is able to stream through a switch channel without collecting in
a buffer, making the hop count less of a concern. As such, CGM can abstract away
the network details while still providing an effective cost model.

Note that all CGM algorithms are BSP algorithms but it is not the case that all
BSP algorithms are CGM algorithms. CGM is a more restrictive model that requires
coarse-grained communication on those machines which are capable of efficient fine-

grained communication. As such, BSP is likely to be more applicable in these cases.

A.7 Performance Measurement

Just as design methodology must be extended to account for the differences between
sequential and parallel architectures, so too do the metrics for measuring algorithm
performance. The two simplest — and the most commonly used measures of parallel

performance — are listed below:

e Speedup. Speedup is simply the ratio of the sequential time Tg versus the
parallel time Tp on a given number of processors p. Optimal speedup is equal
to p. Theoretically, speedup can never be greater than p, though in practice this
limit is sometimes violated by a phenomenon known as super linear speedup.
Super linear speedup typically occurs when resources on the parallel machine
provide the parallel algorithm with an “unfair” advantage. For example, massive
memory capacity may allow the parallel algorithm to avoid the page swapping

that plagues a sequential implementation.

e Efficiency. A second metric is the efficiency function. Expressed as %, the
ratio of speedup to the number of processors, efficiency indicates the degree to

which processors were usefully employed. A perfectly efficient algorithm has an

256

efficiency ratio of 1.0. For some, the efficiency metric is more “obvious” since
it does not require the reader to manually factor in the processor count — the

ratio “speaks for itself”.

A.7.1 Non-Optimality

In practice, parallel algorithms rarely exhibit optimal speedup — 50% of optimal
may be considered a success in some cases. The following list highlights the four
primary factors limiting the efficiency of parallel algorithms, each of which must be

understood and respected by the algorithm designer.

e Computational Load Imbalance. While in trivial cases perfect workload
partitioning may be possible, real world algorithms are rarely this cooperative.
Often, because of parameters that cannot be known or controlled at run time,

certain processors may end up with a disproportionate amount of the work.

e Inter-processor Communication. This is pure overhead since sequential

applications do no such work.

e Redundant Computation. Often more subtle than the first two items in the
list, redundant processing typically occurs when distinct processors are not able
to share the costs of specific calculations. On distributed memory machines, for
example, re-calculation is often necessary since there is no way to directly access

results and /or data structures on another board.

e Inherently Sequential Computation. Optimal speedup is only possible if
100% of the algorithm is capable of being parallelized. This is rarely true in

practice (see below).

257

A.7.2 Scalability of Parallel Algorithms

A related performance issue is the scalability of the parallel algorithm. By scalability,
we refer to the capacity of the algorithm to provide adequate performance as additional
processing elements are added. The term “adequate” is used because desired or
acceptable speedup can be an entirely subjective standard. In the most general sense
we would like to see the efficiency ratio E remain relatively stable with an increase
in resources. It must be understood, however, that scalability tests do not require
mput size to remain constant. On the contrary, for increases in processing resources,
we allow proportional increases in input units. This is necessary due to the effect
of something called Amdahl’s Law [4]. In short Amdahl’s Law says that parallel
speedup cannot increase beyond the ratio of the algorithm’s sequential computation
to its parallel computation. In other words, speedup is fundamentally limited by the
proportion of the code that is inherently sequential. So if, for example, 20% of the
original algorithm exhibits no exploitable concurrency, then the maximum speedup

is 1/0.2 = 5, regardless of the number of processors available.

A.8 Application Support

Traditionally, vendors of parallel hardware systems have also provided compilers,
development tools, and communications libraries with their products. Optimized
for the underlying hardware, they represented an efficient but non-portable means
by which to develop parallel applications. For this reason, attempts to standardize
programming models were undertaken. Perhaps the most significant achievement in
this respect is the Message Passing Interface (MPI) [83]. MPI is an industry-backed
standard that defines a communications API for distributed memory architectures.
It is not a software product itself, but instead defines the components, functions, and
parameters that must be present in an MPI implementation. Vendors are free to

implement the library in system-specific ways, but code compiled for one platform

258

is guaranteed to run on any other platform that conforms strictly to the standard.
This uniformity and portability has been a tremendous boon to developers of parallel

programs.

A.8.1 MPI Primitives

As noted, MPI is not a language. Instead, it is a rich collection of functions combined
into a library that may be linked to user code. At its core, MPI exploits an intu-
itive send/receive communication model. Processes manage their own local memory
spaces and communicate explicitly with other remote processes when data sharing is
required. For maximum flexibility, transfers may be either blocking (the call returns
when the appropriate buffer is ready for re-use) or non-blocking (control is returned
immediately to the calling program which must later check to see if the call has
completed).

The original MPI-1 standard, published in 1994, extends this simple concept with
support for collective communication operations (i.e., many nodes participating in a
single logical exchange). Such operations are fundamental to MIMD programs and

include:
e broadcast: Distribute a message from one process to all cooperating processes.

e reduce: Combine values from p processes into a single value on the local node

using a binary operator. Global sum is an example.
e gather: Collect values from p processes into a local array of size p.

e scatter: Distribute the local values of an array of size p to p cooperating

processes.

In response to user requests, the standard was extended again in 1997, with MPI-
2 providing additional functionality with respect to such things as dynamic process

creation, parallel I/0, and one-sided remote memory access.

259

With its broad support amongst users, researchers, and vendors alike, MPI has
become the de facto standard for distributed memory parallel computing. It should
be noted, however, that while MPI is very well-suited to distributed memory systems,
it has also been implemented on most high-end SMP or ccNUMA machines as well.
On such systems, explicit TCP/IP message passing does not take place. Instead,
portions of the global address space are reserved as local transmission buffers and

message transfers are executed efficiently as memory-to-memory copies.

A.8.2 MPI Alternatives

In addition to MPI and the vendor-specific offerings, a number of other programining
models are currently being employed. A precursor of MPI, the Parallel Virtual Ma-
chine (PVM) [98] , is a communication subsystem that originated in the academic
community. Despite offering functionality that is roughly equivalent to MPI, PVM is
becoming somewhat less popular due to the fact that it does not support a recognized

standard.

A.8.3 SMP Support

For shared memory architectures, standardization efforts have led to the OpenMP
specification [89], begun in 1997. Like MPI, OpenMP has the support of a broad
collection of industrial partners and is rapidly gaining acceptance within the multi-
processor community. Unlike MPI, with its rich collection of callable library functions,
OpenMP uses compiler-based directives in combination with a run-time library to ex-
ploit parallel resources. Specifically, a fork-join model is used. An OpenMP program
executes as a single program until a programmer-designated parallel region is en-
countered. The code “forks” into multiple threads which then execute independently
across processors, each using some portion of the global address space. When the

threads complete their work, they are terminated and the original master program

260

continues execution until either it finishes itself or another group of threads is re-
quired. As a simple example of such a model, programmers may thread the iterations
of a loop if the computation within each iteration is independent of that of other
iterations.

In using shared memory, OpenMP can, in theory at least, provide a decidedly less
demanding programming paradigm. However, it should be understood that OpenMP
and MPI are associated with fundamentally different architectural foundations. Just
as MPI may be overkill on a shared memory model due to the coding complexity of
explicit memory accesses, OpenMP is not applicable in a shared-nothing environment.

As such, we can expect both models to continue to flourish in the near term.

A.9 Conclusion

This chapter has examined the historical foundations of parallel computation, as well
as the issues particularly relevant to the research described in this thesis. Unlike
the sequential programming paradigm, which has enjoyed an enviable uniformity of
design and implementation patterns, its parallel counterpart exhibits much greater
variability. Algorithm designers must not only be familiar with the basic princi-
ples of asymptotic analysis, but they must also understand the performance impact
of such things as memory architectures, network design, and communication char-
acteristics. In short, parallel software implementation can be a more complex and
challenging process. Having said that, the benefits can also be significant. Not only
do parallel implementations allow researchers to compute solutions more quickly but
they also permit new computational research that would likely not have been un-
dertaken in their absence. The data cube research discussed in this thesis is one
such example. By exploiting parallel computing models, both from an algorithmic
and implementation-oriented perspective, we are able to more effectively address the

enormous computational and I/O requirements often associated with current data

warehousing problems.

261

Appendix B

The Theory of NP-Completeness

In Appendix A, Section A.7, we noted that load imbalance is one of the primary
sources of non-optimality in a parallel algorithm or application. In many cases, finding
a good load balancing can be reduced to finding a good partitioning of some form of
task graph into p equal-sized pieces. Unfortunately, many such partitioning problems
are known to be NP-complete. Because our own partitioning/scheduling strategies
rely upon task graphs, and because NP-completeness has important implications for
algorithm design, this appendix provides a brief introduction to the theory.

To analyze an algorithm is to formalize the performance characteristics of the
algorithm in terms of key parameters. Most often, we bound the run-time of an
algorithm as a function of its input size n. If that function is polynomial in n — O(n*)
where k is a constant — we can assume that the associated algorithm is tractable on
real systems. (We note that while O(n5?) is polynomial but likely intractable, virtually
all common polynomial time algorithms are of low degree). Polynomial time bounds
therefore provide us with a convenient yardstick by which to compare the performance
of alternative algorithmic designs.

While the majority of computing problems that one is likely to encounter in prac-
tice are amenable to such polynomial time algorithms, there is in fact a sizable group
of important problems that have resisted all attempts to design tractable algorith-

mic solutions. We note that while “algorithms” for these problems do exist, these

262

263

algorithms typically consist of some form of “brute force” or exhaustive search of the
solution space and consequently run in exponential or factorial time. More impor-
tantly, however, not only have no polynomial time solutions been found, but no one
has been able to determine whether tractable algorithms are even possible. In other
words, it is not yet certain whether this set of problems is intrinsically distinct from
the polynomially solvable problems.

Despite this, a formal model has been developed that allows researchers to say
something meaningful about the relative “hardness” of computational problems [46,
61, 22]. Specifically, the model considers what are known as decision problems, those
problems whose output can be represented in the form of a “yes/no” answer. (We
note that while this requirement may seem somewhat artificial, it poses no practical
problem since most common algorithms can be recast in this manner.) Within this
context, we may define the complezity class P as consisting of the set of languages
L C {0,1}* such that there exists an algorithm A that decides L in polynomial time.
Because a full treatment of language theory is beyond the scope of this thesis, we sim-
ply note the following about the preceding definition. First, a language L consists of
a set of strings defined on the binary alphabet {0, 1}*. Second, an algorithm decides
a language L if for any such binary string, it either accepts or rejects that string as
belonging to L. Finally, since a computational problem is ultimately associated with
a concrete encoding — typically represented as a binary string — we may for con-
venience use the terms “language” and “problem” interchangeably. The complexity
class P, therefore, represents exactly those decision problems whose solutions can be
provided by polynomial time algorithms.

As noted, however, there exists a large collection of problems for which polyno-
mial time solutions are not known. To deal with this issue, the complexity model is
extended by introducing the concepts of certificates and verification algorithms. Ef-

fectively, a certificate is a string that can be used to prove that a particular decision

264

problem has an affirmative answer. In turn, a verification algorithm is one that, given
a problem instance and a certificate, provides such a proof in polynomial time. As a
very simple concrete example, consider the decision problem, “Does a directed graph
G have a path whose length is exactly four?” Clearly, given the graph G and a pur-
ported example of a four-edge path as input, the verification algorithm can determine
in polynomial time whether the original question has an affirmative answer.

We now define the complexity class NP as consisting of those problems (formally,
languages) for which a polynomial time verification algorithm exists. Simply put,
a decision problem belongs to the class NP if it is possible to determine in polyno-
mial time whether a potential solution actually solves the problem. (We should note
that the term NP is an acronym for non-deterministically polynomial. Formal lan-
guage theory describes such an algorithm as one that is capable of guessing possible
solutions and then confirming them in polynomial time. An indefinite number of
guesses can be carried out concurrently/non-deterministically; it is important only
that the confirmation procedure be polynomially bounded. Conceptually, however,
this definition is equivalent to the one used in this thesis). It should be clear that all
problems belonging to the complexity class P fit this definition since we can obtain
a valid certificate for these problems simply by executing their existing polynomial
time algorithms. Formally, then, P C NP. The open question, of course, is whether
P=NP?

While the answer to this question is not currently known, there is compelling
support for the belief that P and NP are distinct. This support comes by virtue
of the NP-complete problems/languages. A problem @ is considered NP-complete
if (i) Q@ € NP and (il) every other problem in NP is polynomial time reducible
to). We note that a problem)/ is reducible to a problem @) if there exists an
algorithm that transforms the encoding of)7 into an encoding for . A solution to

Q is therefore a solution to @/ within a polynomial factor (in terms of time). Given

265

this definition, the second criterion for NP-completeness would seem to be virtually
impossible to satisfy. In 1971, however, Stephen Cook showed that any problem
in NP could be reduced in polynomial time to one specific problem in NP, namely
the logic-oriented Satisfiability problem [21]. As such, Satisfiability became the first
NP-complete problem. The existence of one NP-complete problem provided a much
simpler mechanism for proving NP-completeness for other problems. Specifically, a
problem () can be proven NP-complete simply by demonstrating a reduction from
any other NP-complete problem @/ (originally the Satisfiability problem) since),
by definition, is reducible from any other problem in NP.

The true significance of NP-completeness theory, however, is that it implies that
a polynomial time solution for any problem in NP would imply a solution for all
problems in NP. This is so, of course, since a problem in NP without a polynornial
time solution could simply be reduced to a problem with a polynomial time solution.
However, since no polynomial time solution has ever been found for an NP-complete
problem, it appears extremely unlikely that such problems can be solved in a tractable
amount of time. By extension, we regard the NP complete problems as the “hardest”
problems in NP, since solving any of them in polynomial time is at least as hard as
solving any other problem in NP.

This understanding has important implications for researchers and algorithm de-
signers. It suggests that if a new problem is provably NP-complete, then attempting
to find an optimal solution is almost certain to be unsuccessful. Techniques for dealing

with such problems in practical settings might include:

1. If the problem size is very small, an exhaustive search of the solution space may

be feasible.

2. Identify a given problem as a special case of a general NP-complete problem,

where the special case is amenable to a polynomial time solution.

266

3. Develop an approximation algorithm that attempts to find a solution that, while

not provably optimal, is both efficient and provides acceptably good answers.

In practice, then, by using one of these approaches, it is often possible to provide
good solutions to problems that would appear to be intractable. In fact, in this thesis
we see how both Item 2 and Item 3 in the preceding list are used to tackle partitioning

and scheduling problems.

Appendix C

Multi-dimensional Indexing
Techniques

Chapter 5 presented the details of a fully distributed. high performance indexing
framework for the OLAP setting. The RCUBE was, in fact, based upon a multi-
dimensional indexing structure known as the R-tree. In this appendix, we review
some of the most important approaches to multi-dimensional indexing, with a par-
ticular emphasis on those techniques designed for disk-based indexing in relational

environments.

C.1 The Origin of Indexing

Almost since their inception, one of the most important applications of computer
systems has been for the storage and processing of vast amounts of collected data.
To support such processing, it quickly became apparent that linear searches of the
accumulated data records would be a terribly inefficient means by which to query the
data. What was needed, then, was an indexing scheme that could be used to quickly
locate selected records.

As it turned out, however, indexing was not a challenge to be taken lightly. In
addition to the daunting size of even the early databases, one of the key problems was

generating indexes that could respond to the dynamic nature of practical systems.

267

268

In fact, it was not until 1963 that Adel’son-Vel’skii and Landis developed a self-
adjusting tree that could be used to retrieve leaf/data nodes in logarithmic time [2].
By guaranteeing that the height of the left and right children in the modified binary
tree could differ by at most one, the AVL tree became an effective indexing mechanism
for main memory.

Nonetheless, it took another decade for researchers to find disk-based methods that
could work appropriately for much larger datasets. In 1972, Bayer and McCreight
proposed the b-free, a broad shallow search tree — similar in flavour to a binary search
tree — that could be optimized for disk-block retrievals [5]. During the same time
period, various hashing techniques (e.g., linear hashing, extendible hashing) were also
proposed and found their way into commercial implementations.

The story of multi-attribute indexing mechanisms, on the other hand, continues
to unfold. As it turns out, the single dimension methods just described do not extend
terribly well, if at all, to higher dimensions. Instead, what is needed are new mecha-
nisms that can support orthogonal range queries (among other types of queries) that
concurrently identify the boundaries of that query in each of the d dimensions. An
example of a simple multi-dimensional query is given in Figure C.1.

This geometric interpretation of the data space has proven to be extremely difficult
to model. A variety of techniques, most based in some way on single dimension or in-
memory models, have been developed and used with moderate success [45]. In general,
we can say that each method enjoys some success in a particular environment. Beyond
that we can also say with certainty that no existing technique has been consistently
successful in high dimension spaces. This so-called “curse of dimensionality” has
resisted the efforts of the best researchers for more than twenty years.

Nevertheless, despite the limitations of the current methods for orthogonal range
searching, there are still plenty of environments in which they are indispensable.

Such areas include GIS systems, data warehousing, multi-media databases, and even

269

$5000

$4000 === e, T

$3000 fommm e !

Sales
$2000

$1000

& @'bd «5\9‘\@5\’(\ §‘Q &o° §° &

Ny Lol e
& iy o 0"‘9
Month
Figure C.1: A simple multi-dimensional query. In this case the query identifies those

sales made during the third quarter whose individual value was between 3000 and
4000 dollars.

Web indexing. In the remainder of this section, we look at a number of the more
common, and successful, techniques. We note that the focus will be on the conceptual
underpinnings of the access methods rather than a review of pseudocode for particular
algorithms. We look initially at the original indexing methods designed primarily
for main memory. The more important (at least in the current context) disk-based
methods will then be discussed, with a particular emphasis on grid-based, hierarchical,

and space-filling curve methods.

C.2 In-core methods

As mentioned above, the AVL-tree was one of the first techniques that could be used
to efficiently manage data housed within a computer’s core memory. Since then a
number of other indexes have been developed, each meeting with a certain measure
of success. In this section, we will look at the main features of three of the most
familiar of these mechanisms.

The quadtree [104, 41] is one of the more common designs and can be described as

270

AN
//L\ A AN

cgC4py G5 P2
C10 P10 /': ‘ ‘; l'

Figure C.2: The point quad-tree.

a multi-dimensional generalization of the simple binary (i.e., one parent-two children)
search tree. In this case, however, the interior nodes have 2¢ descendants, each
corresponding to an interval shaped partition of the given subspace. Figure C.2
provides a graphical illustration. In a quadtree each node has seven fields (four child
pointers, X and Y coordinates, and a key name). In k dimensions — the three
dimensional version is known as an oct-tree — the node size becomes k + 2k + 1. As
with the binary tree, points are used as partitioning values as well as data values.

Insertion algorithms use X and Y values to find the proper partition. The new
data point is then used to divide the vacant region into four sub-regions, generally of
unequal size. In the average case, the cost of insertion (and the simpler search) are
equivalent to the total path length (TPL) which is O(log, n). In the worst case, each
point is inserted into the deepest node and we have O(n). For the search, worst case
time is O(n'~'/* + d) where d is the number of points reported.

In some cases, the impact of the worst case can be reduced. If all data is known
beforehand, a multi-feature sort can ensure that the tree doesn’t reduce to a “linked
list” type of architecture. It is also possible to dynamically re-order the tree by
partially rebuilding it when some pre-defined balance criterion is violated. For larger
spaces, point quadtrees require testing of all k keys at each accessed node. Also, the
node sizes become quite large.

While insertion is relatively straightforward, deletion can be quite expensive —

271

even for two dimensions — since the data points are used to partition the space. If
such points are removed, major re-adjustments are required to restructure the subtree
below that node.

The k-d-tree [7] is another variation on the binary search tree in which the “test”
attribute at successive levels varies from d; to di (see Figure C.3 for an illustration).
Each node in a 2% k-d-tree contains six fields (two pointers to the left and right son,
the X and Y coordinates, a key name, and the name of the appropriate test attribute).
In k dimensions, we have 4 -+ k fields, where k is the number of coordinates.

For the most part, insertion is similar to that required in binary search trees. We
split the parent region on X, then split the child on Y, etc. Average cost of inserting
is O(log;, n). Again, the worst case results in O(n) time. Like the quad-tree, a priori
knowledge of the data set can minimize the impact of worst case insertion (this
requires sorting). In terms of searching, the worst case can be given as O(n!='/* 4+ d)
where d is the number of points reported (i.e., the same as the quadtree).

A second static approach is the “adaptive k-d tree”. Here, data is stored only
at the leaf nodes and the interior nodes contain the median of the set along a given
dimension. The discriminator key is the one that provides the greatest “spread”
across all values. (The same key may be used at successive levels). We recursively
break the set down until only a small number of values remain — these are then
placed into a linked list. In general, the tree is more balanced but, still, imbalances
can and do result when several nodes have a tie on some value.

Deletion in adaptive k-d trees is quite complicated since we may need to repartition
the data. In fact, deletion is quite involved for any type of k-d tree.

Generally speaking, the k-d-tree is faster than the point quadtree since only one
key comparison is done at each level. As well, it has more efficient storage — only
two pointers per node instead of 2¥.

A somewhat more complex extension of the binary search tree is the range tree

272

p7 / \
P10 c7
c1 c1o co
8 5 P8 p / \
2 6
-—‘-! e c4 c2 P2 Co
P10 / / /\
P ¢l P C5 P5 P8 G
P1 c10 P4 Cs 7
P3 P6

Figure C.3: The k-d-tree.

[8]. We construct the data structure by first sorting along one of the dimensions and
then building a balanced binary search tree in which the leaf nodes are connected
as a doubly linked list. Figure C.4 provides an illustration. For each of the interior
nodes, we build another binary search tree in which we sort all children of the interior
node along the next, dimension. We continue recursively in this fashion until we have
moved through all £ dimensions.

To perform a range search, we select the ancestor node that is closest to the node
delimiting the “low” range value and the“high” range value (i.e., the most recent
common ancestor). For children in the left sub-tree, we select those nodes whose left
child is also greater than the low value. For each of these nodes we recursively search
on the right sub-tree. For all children in the right sub-tree of the common ancestor,
we apply the same process (in reverse, of course). In k dimensions, range search takes
O((logyn)* + F), where F is the number of points found.

The performance comes at a price, of course. Namely, the total storage for all
these binary search trees is O(nlog, n)*~1). In short, the range tree is fast but very

large in k dimensions.

273

b

N

®
pal P19

%
P8
|
1P10
L--l_--- S i I _.._]___-_

range-tree partitioning

/\Ps
/\ I\

AN A

P11 P3 Pt2 P5 P6 P8

AR

P10 Pt P7 P11 P4 P3 P2 P9

search tree on X

P12

P5 P8 P12 P& P5 P12 P8 P8

partial list of search trees on Y

Figure C.4: The range tree. The upper figure shows the space partitioned by x-value.
The thickness of the vertical lines denotes the level of the binary tree.

274

C.3 Disk-based Methods

It might seem rather logical to extend the above methods into environments in which
the data sets are large enough to require permanent disk storage. Unfortunately, this
does not work due to the access characteristics of mechanical hard disk units. In
particular, bits are retrieved from disk in a block-by-block fashion in order to reduce
the average cost of satisfying a disk request. In other words, when a byte or group of
bytes is required, the operating system reads an entire disk block into memory. This
makes sense, of course, when we consider the fact that the most expensive component
of a disk access is the time taken to position the read/write head; once in place, the
transmission proceeds quite quickly. Furthermore, since it is likely that the data/bytes
surrounding the original request will also be required, significant performance gains
can be had by dumping a contiguous chunk of data into main memory at one time.

With this in mind, it is clear that indexing methods that operate in disk-based
environments must be constructed so as to exploit this feature. For example, a binary
tree would give terrible performance if ported directly to disk-oriented environments in
that a branching factor of two would introduce a large number of disk head movements
when traversing the tree.

Loosely speaking, we can place the relevant techniques into three general classes
— those based upon grids, those based upon trees, and those based upon space filling

curves. In this section, we will look at examples of each.

C.3.1 Multi-dimensional Hashing

Perhaps the most natural or intuitive manner in which to divide a space is to partition
it into some form of grid. A query can then be answered by “hashing” the request to
produce a pointer to a data bucket that contains (or may contain) the actual record.
The data bucket in this case corresponds to a disk block.

The grid file [87] super-imposes a k-dimensional irregular grid over the data set.

275

C9,
® .cw Pa.
C P9 . c7
P10 2@
® ¢ °

A

A o4
y-scale \ grid direclory/

¢ ! és. = o
® .010 g S
Fg ci .Pe ® o .0 @
T cl cs @
| 04. \ca .cs\ .P2 | /L.P2
P .P3 @Fs
aANEN s
ST T . @ @
A \
RN A
o o °

P1.

data bucket

Figure C.5: The grid file.

Each cell in the set is associated with a block-sized bucket on disk; the bucket, in turn,
may contain more than one cell. A directory (i.e., a k-dimensional array) locates the
cell within a given bucket. Since there are more cells than buckets, this grid array can
grow relatively large and is typically stored on disk. See Figure C.5 for an illustration
of the basic technique.

For performance reasons, we would like to keep some portion of the directory in
main memory. Consequently, the directory actually consists of two components: (a)
the aforementioned array and (b) k one-dimensional arrays called scales. The scales
break the grid array into sections corresponding to the width of each cell along a
given dimension.

When a point search is specified, we look at the in-memory scales to determine
the coordinates of the relevant cell in the grid array. A single disk access is necessary
to retrieve the proper segment of the array. Using the grid array, we then obtain a
pointer to the disk bucket and retrieve the block with a second disk access. In general,
the grid file guarantees a maximum of two disk accesses for any given point.

For range queries, we must retrieve all blocks that overlap the search area. Since

276

the range may be of arbitrary size and the cells are not of fixed width, there is no
meaningful boundary on the number of disk blocks that must be retrieved.

When a bucket overflows, it needs to be split. With a grid file, this means that a
new hyper-plane (of size k — 1) will have to be inserted into the grid array in order
to reduce the size of the bucket. However, this also means that all cells/buckets
along this plane will be divided as well, resulting in the “global” modification of the
grid array (the same is true for deletion). In the worst case, there may be O(n*)
grid entries. This property can introduce a super-linear size increase in the directory
when individual points are added to the data set. In the case of a range search, more
blocks may be accessed to read the directory than to read the final data blocks.

The grid file’s average directory size for uniformly distributed data is O (n!+(k—1)/(kbt+1))
where k is the bucket size. The average space occupancy of the buckets is 69% — as
indicated by the original authors (note: testing was only conducted in two and three
dimensions).

The grid-file is the earliest and perhaps most well known of the hashing techniques.
Various modifications have been developed, however. These include the EXCFELL

“method [119] which decomposes the point universe into a regular grid (as opposed to
the arbitrary hyperplanes of the conventional grid file), the two-level grid file [59] that
uses a second grid file to manage the grid directory, and the twin grid file [63] which
uses a pair of balanced grid files to span the entire space (unlike the two-level grid
file that arranges the two files hierarchically). While each of these methods may offer
marginal improvements in given environments, their merits have not been significant

enough to elevate the grid-file to the position of a de facto indexing standard.

C.3.2 Hierarchical Tree-based Methods

Because the hashing methods often lead to very large directory structures, a more ap-

pealing option for higher dimensions may be the exploitation of hierarchical indexing

277

X2 X4
To
C10 ®
AN P8 P7
co| @|® 7| cCo@®
P P9] N\
P10 Ts_ Y Y2
Y1 []
o | e, &l B
o c3 @ s
P1 o,
Xt X3
X2 X4
S $° C C‘W
P8 .| C6
C2| o ® Scr| %%
.P1o Y2 } L tve
Y1
‘g ® P2 e
c3 s ® ARG
P1y / e Hs
l \X: N X;/ / - \« X1l \

[proci collpi cacallcio pol [cse2]lea pe callea ps] [ca pa ciflcs 7l

Figure C.6: The k-d-b-tree.

techniques. Here, our goal is to produce a tree-like structure that can support loga-
rithmic access time, even on secondary memory devices. Generally speaking, each of
the methods discussed below represents some form of binary tree or b-tree extension
to higher dimensional space.

A k-d-b-tree [100] partitions the space in the style of the adaptive k-d-tree (i.e.,
it uses median values to recursively partition the space into two equal sub-spaces).
Figure C.6 provides an illustration. Each interior node represents an interval shaped
region and data points are stored in the leaf nodes.

Like b-trees, the tree grows from the leaves upward. Points are added until a
region exceeds the upper limit. When it does, the area is split along the dimension
that offers the broadest distribution of points (i.e., we try to split the node so that the
area, as well as the number of points, is equalized). As a result, it is height balanced.

In practice, the k-d-b tree does not grow as cleanly as one would like. There are
two reasons for this. First, though it is assumed that a space can always be split more
or less evenly along a given dimension, this is not always the case (e.g., think of a set

of points that form a “plus” shape). The resulting split creates unbalanced sub-trees.

278

I SR - P
e e i@ il (R i
LRIORIA G P17 g 12 i
Rl 2 P e i

®--od

REELSELEE R BEEs 31
- TR G N S
H P10 P9 :
: . s

er ®rg
Pue| rag §| (FTPLEFE (e FEtiE)
...... (B (FE P Pis Bl

P s [FEwzwanaan| TFauar]

R?

Figure C.7: The R-tree.

Second, and more importantly, the k-d-b-tree exhibits what are called cascading splits.
When a group of child nodes exceeds some maximum limit, the parent node must be
split in half. If this happens, however, the new split will almost certainly cut through
the boundaries of its children. The end result is that splits will cascade down through
the tree, carving children into non-optimal blocks. Since the blocks may be severely
under-sized, the k-d-b-tree can guarantee no minimum space requirements (except in
the special case of a one-dimensional b-tree).

The R-tree [53] is another multi-dimensional implementation of the b-tree. In this
case, nodes in the tree represent maximum bounding boxes (MBB) that recursively
include either smaller MBBs or the data points themselves. Figure C.7 provides a
graphical illustration.

MBBs within a given parent may represent non-contiguous regions. Likewise, they
are free to overlap or intersect one another. A MBB contains M references to child
MBBs. When a node exceeds this limit it is split into two new nodes, each of size m,
where m = M/2. On the other hand, should deletions reduce the child count to less
than m, the node is split and the child boxes are re-distributed to nearby MBBs.

When existing boxes must be expanded in order to encapsulate a new point, the
algorithm is constructed so as to minimize the area covered by the new configuration.
Three techniques are presented in the original paper: an exponential, quadratic, and

linear mechanism. In general, the quadratic approach is the one taken for practical

279

implementations.

As such, we can say that the maximum fan-out of a node is M, while the minimum
or worst-case fan-out is m = M/2 (note: the denominator in this expression can be
varied but 2 is a common setting).

The height of the tree can now be easily established. In the best case, it is
O(logy n). Conversely, in the worst case, it will be O(logy /s).

The R-tree is attractive because of its clean worst-case storage bounds and the
simplicity of its insertion, deletion, and splitting routines. However, it suffers from
the fact that searches often require an excessive number of path traversals due to
the fact that MBBs can overlap. This is particularly expensive when doing range
searches. The original author downplayed this fact by providing experimental results
that showed very good search performance characteristics. It must be noted, however,
that the results were produced on just two dimensions and with very small data sets

(less than 5000 rectangles).

C.3.3 Space-filling Curves

In order to index high dimensional space, both grid-files and tree-based methods rely
upon data structures and algorithms that work directly within the d-dimensional
universe. An alternative approach is to compress the larger space down into a single
dimension and then use a standard index like a b-tree [22] to answer user queries.
Conceptually, a space filling curve is like a thread that winds its way through a d-
dimensional spatial grid such that (i) the thread intersects every point in the grid and
(ii) every grid point is visited exactly once. The order of traversal represents a linear
ordering on the point space that can then be indexed by way of the b-tree.

Ideally, a good space filling curve should locate points in this one dimensional space

such that immediate neighbours would have been neighbours in the d-dimensional

280

space as well. While there is no total order that completely preserves spatial proxim-
ity, a primary objective of any space filling curve is to minimize the size of “jumps”
between any two consecutive points since long jumps ultimately place un-related
points into the same disk block. The following list describes four common space fill-
ings curves in terms of their distinguishing features (see Figure C.8 for a graphical

illustration of the techniques):

e Row-wise scan: A very simple mechanism that is likely to be inappropriate for
anything but raster images, as the jumps between grid points can be extremely

long.

e Peano or Z-ordering: An interleaving of the bits of the binary representation
of the X and Y coordinates in two-dimensional space (this, of course, can be

extended to higher dimensions).

e Gray-coding: Here, the grid points are coded into binary representations such
that successive/contiguous locations on the curve differ in exactly one bit posi-

tion.

e The Hilbert curve: Formally, the Hilbert curve is drawn by way of a string re-
writing grammar [93] that identifies a recursive sequence of forward/backward,
left /right movements, along with angle transitions. Informally, it is a very tight

curve that produces jumps whose length never exceeds three.

For point queries, space filling curves provide very good response time since a
d-dimensional point can be directly mapped to a scalar value — the index of the
space filling curve — which can then be retrieved in logarithmic time from the b-
tree structure. For range queries, however, the mapping is much more complex.
Specifically, because the curve may wind in and out of the query rectangle, it is

necessary to identify the blocks containing points that may lay inside the query space.

281

row-wise Peano
\
\
\
i
Hilbert Gray

o

Figure C.8: Common space filling curves.

This requires a large number of expensive “spaced-filling curve to scalar” mapping
operations that can seriously affect performance, particularly in high dimensions.

A further problem in high dimensions is that the size of the “key” values may
exceed the capacity of standard machine words. In particular, since the range of the
scalar index values is equivalent to the cardinality product Hle C;, the index may
have to maintain and process arbitrary length integers, again negatively affecting

performance.

C.4 Comparative Results

While the number of multi-dimensional indexing techniques described in the literature
probably exceeds 100 [45], most are not widely used. Only a few, for example, have
found their way into commercial products. The most obvious of these include the
R-tree (Informix [64]) and the z-order space filling curve (Oracle [90]).

In terms of comparative evaluation, a number of researchers have undertaken

282

“head-to-head” studies. Unfortunately, definitive conclusions are difficult due to the
absence of a standard benchmark, as well as variations in implementation quality.
Nevertheless, a number of general observations can be made. The R-tree (and its
variants) are by far the most heavily studied of all multi-dimensional access methods.
Furthermore, the R-tree often serves as the benchmark by which more experimental
methods are evaluated, suggesting that the R-tree has received the widest level of
acceptance in the research community. In terms of specific evaluations, Smith and
Gao [113] demonstrate that the R-tree provides significantly better query performance
than the grid file and z-order based indexes, while Greene [51] shows that the R-tree
is vastly superior to the k-d-b-tree. With respect to the space filling curves, most
research seems to indicate that the z-order and Hilbert curves are most appropriate

for the purposes of database indexing [67, 1].

Appendix D

The Data Generator

In order to support a robust experimental environment, we have written our own
data generation sub-system. In fact, the data generator has evolved into a significant
application in its own right. Because of the number of optional parameters that
need to be passed to the generator application, coupled with the desire to maintain
a permanent record of specific data set “schemas”, we have constructed the data
generator with the compiler tools FLEX and BISON, the GNU equivalent of LEXX
(lexical analysis) and YACC (statement parsing). In so doing, we allow users to
define a data set schema — in the form of an ASCII text file — that identifies data
‘set parameters as key/value pairs. This file is parsed by the generator front-end to
produce a final specification set that, in turn, is passed to the back-end component
that actually produces the data set. In other words, we have defined a small data set
specification language (DSSL) that provides tremendous flexibility in terms of defining
data characteristics. More importantly perhaps, the language-based mechanism can
be extended in the future to provide even more sophisticated specification options.
Figure D.1 lists the current BISON DSSL specification. As noted, the job of
the BISON system is to parse the contents of the input file by breaking it into a
sequence of valid DSSL statements. Formally, the specification is what is known as a
grammar. BISON, in fact, accepts languages that can be represented by a particular

type of grammar, namely the contexrt free grammars. BISON-compatible languages

283

284

START:
/* empty */
| line

line:
spec
| line spec

spec:

W IN_FILE {strcpy(out_file, $2)};

| R NUM {row = $2};

| D NUM {dimension = $2 + 1};

|' S NUM {seed = $2};

| Z NUM {zipf_alpha = (double)$2};

| Z FLOAT {
strepy(zipf_string, $2};
atof(zipf_string);

}
| COLUMN DIM {cardinality[$1 - 1] = $2);

Figure D.1: The current BISON DSSL specification.

are therefore known as context free languages. (Note: formally, BISON actually
accepts a subset of context free languages known as LALR(1), but a full treatment
of this distinction is far beyond the scope of this thesis). Very briefly, a context
free language can be represented as a set of rules or productions, which in turn are
composed of a finite set (V UT) of variables V and terminals T. A terminal can be
defined as the simplest element of a language — a native word. By contrast, variables
are defined recursively in terms of terminals and other variables. In a context free
language, a production defines the relationships between the variables and terminals
and has the form A = [(read A derives). Here, A represents a variable, while
0 defines a string of variables and terminals. A BISON-generated parser accepts
a language L by recursively decomposing or reducing an input set (i.e., a string of
terminals) to a special START symbol.

As a simple but concrete example, let’s assume that our user-defined schema
contains the string “r 10000”. Since the BISON DSSL grammar contains a production
of the form spec = R NUM, then the string “r 10000” can be reduced to the variable

symbol spec when R is substituted for “r” and NUM is substituted for “10000”. A

285

sequence of such transformations reduces the input set to a collection of line variables,
which in turn are finally reduced to the START symbol. We note that, in order to
perform these production reductions, the BISON parser relies upon a supporting
mechanism that tokenizes the input into its constituent terminal symbols (e.g., R
and NUM). In the current case, this lexical analysis facility is provided by FLEX, a
GNU tool that uses a regular expression paradigm to define the format of all terminals.
Finally, we add that once the input file has been accepted and all data set parameters
have been captured, the code fragments associated with each production in the BISON
grammar are then responsible for replacing the default parameter values with those
defined in the schema file.

A typical data cube schema file is presented in Figure D.2. In this example, we
define a data set with 100,000 rows, 8 dimensions (plus an implicit 9** dimension for
the measure attribute), an output (or write) file called “sample.dat”, a mildly skewed
zipf distribution, and a range of cardinalities defined on each of the nine fields in each
record. The skew component itself utilizes the zipf power-law function [123]. Here,
we express the probability of encountering a particular value ¢ in a given dimension
d as P, ~ 1/i% where 1 < ¢ < C4 and the probability P is normalized into the range
0...1. Recall that Cjy is the cardinality of d. As the zipf factor a is incremented from
zero, the data set becomes more skewed. Typical values of a are 0.0 to 1.0.

As noted, we can easily extend the grammar to include more sophisticated pa-
rameter specifications. For example, the line “c01 [¢ 14 z 0.2]” could indicate an
attribute with a uniquely defined cardinality and a uniquely defined skew pattern.
In summary, the current data set generation facilities are both rich and flexible, and

permit thorough evaluation of all of the algorithms we currently study.

286

r 100000 d 8
w sample.dat
z 0.1

c01 10

c02 4

c03 50

c04 12

c05 12

c06 2

c07 25

c08 8

c09 100

Figure D.2: Example of data set schema.

Appendix E

An Algorithm for Distributed
Index Generation

In this appendix, we describe a parallel algorithm for building the distributed indexes
described in Chapter 5, Section 5.4. Here, we assume that each individual view starts
out localized on a single processor, that is, as part of the output of the generation
algorithms in Chapters 3 and 4. The details are presented in Algorithm 30.

Much of the complexity of the algorithm is actually associated with the striping
phase. While we could simply stripe each of the views of the data cube in sequence
(i.e., one at a time), such an approach would generate a series of p * j point to point
communication rounds, where j is the total number of views to be indexed. (For the
full data cube, j = 2%). In such a model, p — 1 links would go unused during each
stripe transfer as a single partition was being sent from the source node to exactly
one of the destination nodes. We improve network utilization by overlapping the
striping traffic across each of the p processors. To do so, we order the views to be
striped in decreasing order by size. Each node informs its neighbors of the number of
views on its local disk; the maximum local view count represents the total number of
striping rounds. During each of these rounds, each node partitions its current view
and, in p communication phases, sends its p stripes to the appropriate destination
processors. In a synchronized fashion, it receives a distinct stripe from each of its

p— 1 neighbors, and uses them to create p partial R-tree indexes (the local processor

287

288

Algorithm 30 Distributed Index Generation

Input: A subset of views S on each of p nodes, generated by the existing Parallel

Data Cube Generation algorithm. Collectively, the p subsets form a set B.

Output: Distributed R-tree indexes for each of the views of B.

1:
2:
3
4:
5:
6:
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

22:

23:

On each node, create a list L of the views in S.
Sort L in descending order by view size.
listSize < number of views in L
Collect listSize from neighboring p — 1 processors
maxCount < maximum listSize of neighbors
for i = 1 to maxCount do
if ¢ < mazCount then
viewT oSend <= yes
Sort the view in Hilbert order
end if
source < dest <= myRank
for each processor p do
if viewToSend then
Distribute stripe, to dest
end if
if listSize of source < maxrCount then
Collect data stripe into buffer
Construct R-tree Index from buffer
end if
source incremented clockwise
dest decremented counter-clockwise
end for
end for

289

creates a partial index from a portion of its current view as well). To avoid deadlock,
the communication transfer pattern is ordered as a pair of concurrent loops — source
processors in a clockwise sequence and destination processors in a counter-clockwise
sequence.

We note that most good MPI implementations should provide an all to all col-
lective operation that is structured in this manner. However, these library functions
cannot be used in this context because the data cube generation algorithm described

bii

in this thesis only seeks to balance the total “workload” assigned to each processor
— it does not necessarily guarantee an identical number of views on each node. Typ-
ically, there will be a difference of one or two small views from node to node. As a
result, a hand rolled collective striping operation must be written so as to allow spe-
cific nodes to opt in or out of the final few striping rounds, depending upon whether
(i) the local node has any views remaining to be partitioned and (ii) the designated
source node has any views left to send to the local node. The viewToSend flag and
the (listSize of source < maxCount) conditional comparison are used for this purpose.

We note that the algorithm described here has a non-optimal number of rounds.
Specifically, the number of communication rounds is a function of p. Recall that
a fundamental goal of the CGM model of parallel algorithm design is to produce
algorithms with a fixed number of communication rounds. In so doing, the overhead
for message setup and delivery of the first byte (i.e., latency) is minimized. In fact,
the striping algorithm can be written so as to consist of a number of communication
rounds independent of p. For example, it is possible to first sort all views on each node,
then package the sorted results into a single list to be distributed to each processor.
However, because the size of the sorted list of views is likely to be far larger than
main memory, the list would have to be incrementally stored to disk and read back
in to memory prior to transfer. The 1/O cost would be significant and would almost

certainly exceed the setup costs for the additional messages required of the current

290

algorithm.

Bibliography

1]

[4]

[5]

D. Abel and D. Mark. A comparative analysis of some two-dimensional or-
derings. International Journal of Geographic Information Systems, 4(1):21-31,

1990.

G. Adelson-Velskii and E. Landis. An algorithm for the organization of infor-

mation. Soviet Math Doklady 3, 3:1259-1263, 1962.

S. Agarwal, R. Agrawal, P. Deshpande, A. Gupta, J. Naughton, R. Ramakr-
ishnan, and S. Sarawagi. On the computation of multidimensional aggregates.

Proceedings of the 22nd International VLDB Conference, pages 506-521, 1996.

G. Amdahl. Validity of the single processor approach to achieving large scale

computing capabilities. AFIPS Conference Proceedings, pages 483-485, 1967.

R. Bayer and M. McCreight. Organization and maintenance of large ordered

indices. Acta Informatica, 1:173-189, 1972.

R. Becker, S. Schach, and Y. Perl. A shifting algorithm for min-max tree
partitioning. Journal of the ACM, 29:58-67, 1982.

J. Bentley. Multidimensional binary search trees used for associative searching.

Communications of the ACM, 18:509-517, 1975.

J. Bentley. Decomposable searching problems. Information processing letters,

8:244-251, 1979.

K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is nearest-
neighbour meaningful? Lecture Notes in Computer Science, 1540:217-235,
1999.

201

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

292

K. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and iceberg
cubes. Proceedings of the 1999 ACM SIGMOD Conference, pages 359-370,
1999.

G. Bilardi, K. Herley, A. Pietracaprina, G. Pucci, and P. Spirakis. BSP vs LogP.
ACM Symposium on Parallel Algorithms and Architectures, pages 25-32, 1996.

R. Bisseling and W. McColl. Scientific computing on bulk synchronous parallel
architectures. IFIP Congress, pages 509-514, 1994.

G. Blelloch and B. Maggs. Parallel algorithms. ACM Computing Surveys,
28(1):51-54, 1996.

R. Buyya, editor. High Performance Cluster Computing: Architectures and

Systems, volume 1. Prentice, 1999.

R. Buyya, editor. High Performance Cluster Computng: Analysis of Algorithms,
volume 2. Prentice Hall, 1999.

P. Carns, W. Ligon, R. Ross, and R. Thakur. PVFS: A parallel file system for
Linux clusters. In Proceedings of the 4th Annual Linux Showcase and Confer-

ence, 2000.

S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP
technology. ACM SIGMOD Record, 26:65-74, 1997.

E. Codd. Is your DBMS really relational? and Does your DBMS run by the
rules? Computer World, 1985.

E. Codd, S. Codd, and C. Salley. Providing OLAP (on-line analytical pro-
cessing) to user-analysts: An IT mandate. Technical report, E.F. Codd and

Associates, 1992.
Comshare. http://www.comshare.com/.

S. Cook. The complexity of theorem proving procedures. ACM Symposium on

Theory of Computing, pages 151-158, 1971.

[22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

293

T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. The MIT
Press, 1996.

D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser, E. Santos, R. Subra-
monian, and T. Eicken. LogP: towards a realistic model of parallel computation.
ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, pages 1-12, 1993.

D. Culler, J. Singh, and A. Gupta. Parallel Computer Architecture: A Hard-
ware/Software Approach. Morgan Kaufmann Publishers, 1998.

F. Dehne, T. Eavis, S. Hambrusch, and A. Rau-Chaplin. Parallelizing the

datacube. International Conference on Database Theory, 2001.

F. Dehne, T. Eavis, and A. Rau-Chaplin. A cluster architecture for parallel
data warehousing. International Conference on Cluster Computing and the

Grid (CCGRID 2001), 2001.

F. Dehne, T. Eavis, and A. Rau-Chaplin. Coarse grained parallel on-line analyt-
ical processing (OLAP) for data mining. Proceedings of the 2001 International
Conference on. Computational Science (ICCS 2001), pages 589-598, 2001.

F. Dehne, T. Eavis, and A. Rau-Chaplin. Computing partial data cubes for
parallel data warehousing applications. Furo PVM/MPI 2001, 2001.

F. Dehne, T. Eavis, and A. Rau-Chaplin. Parallelizing the datacube. Distributed
and Parallel Databases Journal: Special Issue on Parallel and Distributed Data

Mining, 2001.

F. Dehne, T. Eavis, and A. Rau-Chaplin. Top-down computation of partial
ROLAP data cubes. Submitted for publication, 2003.

F. Dehne, T. Eavis, and A. Rau-Chaplin. Top-down computation of partial
ROLAP data cubes. Journal Version: Submitted for publication, 2003.

[32]

[34]

[35]

[40]

[41]

[42]

294

F. Dehne, Todd Eavis, and A. Rau-Chaplin. Distributed multi-dimensional RO-
LAP indexing for the data cube. The 3rd IEEE/ACM International Symposium
on Cluster Computing and the Grid (CCGrid 2003), 2003.

F. Dehne, A. Fabri, and A. Rau-Chaplin. Scalable parallel computational ge-
ometry for coarse grained multicomputers. ACM Symposium on Computational

Geometry, pages 298-307, 1993.

B. Dinter, C. Sapia, G. Hofling, and M. Blaschka. The OLAP market: State
of the art and research issues. ACM First International Workshop on Data
Warehousing and OLAP, pages 22-27, 1998.

D. Dunning, G. Regnier, G. McAlpine, D. Cameron, B. Shubert, F. Berry,
A. Merritt, E. Gronke, and C. Dodd. The Virtual Interface Architecture. IEEE
Micro, 18(2):66-76, 1998.

T. Eicken and W. Vogels. Evolution of the Virtual Interface Architecture.
Computer, 31(11):61-88, 1998.

Oracle Express. http://otn.oracle.com/products/express/content.html.

C. Faloutsos and S. Roseman. Fractals for secondary key retrieval. Symposium

on Principles of Database Systems, pages 247-252, 1989.

P. Farrell and H. Ong. Communication performance over a gigabit ethernet net-
work. The IEEFE International Performance, Computing, and Communications

Conference, pages 181-189, 2000.

W. Feller. An Introduction to Probability Theory and its Applications. John
Wiley and Sons, 1957.

R. Finkel and J. Bentley. Quadtrees: A data structure for retrieval of composite

keys. Acta Informatica, 4(1):1-9, 1974.

P Flajolet and G. Martin. Probabilistic counting algorithms for database ap-
plications. Journal of Computer and System Sciences, 31(2):182-209, 1985.

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

295

M Flynn. Very high speed computing systems. Proceedings of the IEEE,
54:1901-1909, 1966.

G.N. Frederickson. Optimal algorithms for tree partitioning. In Proceedings of
the ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 168-177,
1991.

V. Gaede and O. Gunther. Multidimensional access methods. ACM Computing
Surveys, 30(2):170-231, 1998.

M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, 1979.

S. Goil and A. Choudhary. High performance OLAP and data mining on parallel
computers. Journal of Data Mining and Knowledge Discovery, (4), 1997.

S. Goil and A. Choudhary. High performance multidimensional analysis of
large datasets. Proceedings of the First ACM International Workshop on Data
Warehousing and OLAP, pages 34-39, 1998.

S. Goil and A. Choudhary. A parallel scalable infrastructure for OLAP and
data mining. International Database Engineering and Application Symposium,

pages 178-186, 1999.

J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A relational
aggregation operator generalizing group-by, cross-tab, and sub-totals. Proceed-
ing of the 12th International Conference On Data Engineering, pages 152-159,
1996.

D. Greene. An implementation and performance analysis of spatial data access
methods. In Proceedings of the Fifth IEEE International Conference on Data
Engineering, pages 606-615, 1989.

H. Gupta, V. Harinarayan, A. Rajaraman, and J. Ullman. Index selection for
OLAP. Proceeding of the 18th International Conference on Data Engineering,
pages 208-219, 1997.

296

[53] A. Guttman. R-trees: A dynamic index structure for spatial searching. Pro-

ceedings of the 1984 ACM SIGMOD Conference, pages 47-57, 1984.

[54] X. Huang H. Lu and Z. Li. Computing data cubes using massively parallel
processors. 7th Parallel Computing Workshop (PCW ’97), 1997.

[55] S. Hambrusch. Models for parallel computation. Proceedings of Workshop
on Challenges for Parallel Processing: International Conference on Parallel

Processing, 1996.

[56] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan
Kaufmann Publishers, 2000.

[57] V. Harinarayan, A. Rajaraman, and J. Ullman. Implementing data cubes.

Proceedings of the 1996 ACM SIGMOD Conference, pages 205-216, 1996.

[58] P. Hass, J. Naughton, S. Seshadri, and L. Stokes. Sampling based estimation
of the number of distinct values of an attribute. Proceedings of International

VLDB Conference, pages 311-322, 1995.

[59] K. Hinrichs. Implementation of the grid file: Design concepts and experience.

BIT, pages 569-592, 1985.
[60] Hitachi, 2003. http://www.top500.0org/ORSC/1996/nodel0.html.

61] J. Hoperoft and J. Ullman. Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, 1979.

162] HPCVL, 2003. http://www.hpcvl.org.

63] A. Hutflesz, H. Six, and P. Widmayer. Twin grid files: Space optimizing access
schemes. ACM SIGMOD International Conference on Management of Data,
pages 183-190, 1988.

64] INFORMIX INC. The DataBlade architecture, 1997.

http:/ /www.informix.com.

165] W. Inmon. Building the Data Warehouse. John Wiley, 1992.

[66]

[67]

68]

[69]

[70]

[71]

[72]

[73]

74

[75]

[76]

[77]

297

K. Iverson. A Programming Language. John Wiley, 1962.

H. Jagadish. Linear clustering of objects with multiple attributes. ACM SIG-
MOD International Conference on Management of Data, pages 332-342, 1990.

J. Jaja. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.

I. Kamel and C. Faloutsos. Parallel r-trees. Proceedings of ACM SIGMOD,
pages 195-204, 1992.

I. Kamel and C. Faloutsos. On packing r-trees. Proceedings of the Second
International Conference on Information and Knowledge Management, pages

490-499, 1993.

N. Koudas, C. Faloutsos, and I. Kamel. Declustering spatial databases on a
multi-computer architecture. In Proceedings of Fxtended Database Technologies,

pages 592-614, 1996.

V. Kumar, A. Grama, A. Gupta, and G. Karypsis. Introduction to Parallel
Computing: Design and Analysis of Algorithms. The Benjamin/Cummings
Publishing Company, Inc., 1994.

V. Kumar and A. Gupta. Analysis of scalability of parallel algorithms and
architectures: A survey. International Conference on Supercomputing, pages

396405, 1991.
LEDA, 2003. http://www.mpi-sb.mpg.de/LEDA/.

R. Lehn, V. Lambert, and M. Nachouki. Data warehousing tool’s architecture:
From multidimensional analysis to data mining. Workshop on Database and

Expert Systems Applications, pages 636—-643, 1997.

T. Leighton. Methods for message routing in parallel machines. ACM Sympo-
sium on Theory of Computing, pages 77-96, 1992,

S. Leutenegger, M. Lopez, and J. Eddington. STR: a simple and efficient algo-
rithm for r-tree packing. Proceedings of the 14th International Conference on

Data Engineering, pages 497-506, 1997.

298

[78] J. Mache. An assessment of gigabit ethernet as a cluster interconnect. IEEE

International Workshop on Cluster Computing, pages 36-42, 1999.

[79] B. Maggs, L. Matheson, and R. Tarjan. Models of parallel computation: A
survey and synthesis. Proc. of the 28th Hawaii International Conference on

System Sciences (HICSS), 2:61-70, 1995.

[80] K. Mehlhorn and S. Naher. LEDA: A Platform for Combinatorial and Geomet-
ric Computing. Cambridge University Press, 1999.

[81] MP1, 2003. http://www.top500.org/ORSC/1996/nodel5.html.
[82] MP2, 2003. http://www.top500.org/ORSC/1996 /nodel6.html.

[83] The Message Passing Interface standard, 2003. http:/ /www-

unix.mes.anl.gov/mpi/.

[84] S. Muto and M. Kitsuregawa. A dynamic load balancing strategy for parallel
datacube computation. ACM 2nd Annual Workshop on Data Warehousing and
OLAP, pages 67-72, 1999.

[85] Myrinet GM, 2003. http://www.myri.com.

[86] R. Ng, A. Wagner, and Y. Yin. Iceberg-cube computation with PC clusters.
Proceedings of 2001 ACM SIGMOD Conference on Management of Data, pages
25-36, 2001.

[87] J. Nievergelt, H. Hinterberger, and K. Sevcik. The grid file: An adaptable,
symmetric multikey file structure. ACM Transactions on Database Systems,

9(1):38-71, 1984.
[88] The OLAP Report. http://www.olapreport.com.
[89] OpenMP, 2003. http://www.openmp.org.

[90] ORACLE INC. Advances in relational database technology for spatial data
management: A White Paper, 1995.

299

[91] C. Papadimitriou and M. Yannakakis. Towards an architecture-independent
analysis of parallel algorithms. ACM Symposium on Theory of Computing,
pages 510-513, 1998.

[92] Paragon, 2003. http://www.top500.0org/ORSC/1996 /node35.html.

[93] H. Peitgen and D. Saupe. String rewriting systems. The Science of Fractal
Images, pages 273275, 1988.

[94] Y. Perl and U. Vishkin. Efficient implementation of a shifting algorithm. Dis-
crete Applied Mathematics, (12):71-80, 1985.

[95] G. Pfister. In search of clusters. Prentice Hall, 1998.

[96] Pilot. http://www.marketwave.com/products_solutions/pilot_suite/pas.html.
[97] Programming POSIX threads. http://www.humanfactor.com/pthreads.

[98] The Parallel Virtual Machine, 2003. http://www.epm.ornl.gov/pvim/.

[99] D. Ridge, D. Becker, P. Merkey, and T. Sterling. Beowulf: Harnessing the power
of parallelism in a Pile-of-PCs. Proceedings of the IEEE Aerospace Conference,
1997.

[100] J. Robinson. The K-D-B-tree: A search structure for large multidimensional
dynamic indexes. ACM SIGMOD International Conference on Management of
Data, pages 10-18, 1981.

[101] K. Ross and D. Srivastava. Fast computation of sparse data cubes. Proceedings

of the 23rd VLDB Conference, pages 116-125, 1997.

[102] N. Roussopolis and D. Leifker. Direct spatial search on pictorial databases using
packed r-trees. Proceedings of the 1985 ACM SIGMOD Conference, pages 17—
31, 1985.

[103] N. Roussopoulos, Y. Kotidis, and M. Roussopolis. Cubetree: Organization of
the bulk incremental updates on the data cube. Proceedings of the 1997 ACM
SIGMOD Conference, pages 89-99, 1997.

[104]

[103]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

115

300

H. Samet. The quadtree and related hierarchical data structure. ACM Com-

puting Surveys, 16(2):187-260, 1984.

S. Sarawagi, R. Agrawal, and A. Gupta. On computing the data cube. Technical
Report RJ10026, IBM Almaden Research Center, San Jose, California, 1996.

S. Sarawagi and M. Stonebraker. Efficient organization of large multi-
dimensional arrays. International Conference on Data Engineering, pages 328—

336, 1994.

B. Schnitzer and S. Leutenegger. Master-client r-trees: A new parallel archi-
tecture. 11th International Conference of Scientific and Statistical Database

Management, pages 68-77, 1999.

SGIPC, 2003. http://www.top500.org/ORSC/1996 /node23.html.

H. Shi and J. Schaeffer. Parallel sorting by regular sampling. Journal of Parallel
and Distributed Computing, 14:361-372, 1990.

A. Shukla, P. Deshpande, J. Naughton, and K. Ramasamy. Storage estimation
for multidimensional aggregates in the presence of hierarchies. Proceedings of

the 22nd VLDB Conference, pages 522-531, 1996.

Y. Sismanis, A. Deligiannakis, N. Roussopoulos, and Y. Kotidis. Dwarf: shrink-
ing the PetaCube. Proceedings of the 2002 ACM SIGMOD Conference, pages
464475, 2002.

D. Skillicorn and D. Talia. Models and languages for parallel computation.

ACM Computing Surveys, 30(2):123-169, 1998.

T. Smith and P. Gao. Experimental performance evaluations on spatial access
methods. In Proceedings of the Fourth International Symposium on Spatial Data

Handling, pages 991-1002, 1990.
SP2, 2003. http://www.top500.0org/ORSC/1996 /node34.html.

T. Sterling, J. Salmon, D. Becker, and D. Saverese. How to build o Beowulf.
The MIT Press, 1999.

301

[116] S. Sumimoto, H. Tezuka, A. Hori, T. Takahashi, and Y. Ishikawa. High per-
formance communication using a commodity network for cluster systems. The
Ninth International Symposium on High-Performance Distributed Computing,

pages 139-146, 2000.
[117) T3E, 2003. http://www.top500.0org/ORSC/1996 /node29.html.

[118] T. Tam and C. Wang. Contention-free complete exchange algorithms on clus-

ters. IEEE International Conference on Cluster Computing, pages 57-64, 2000.

[119] M. Tamminen. The extendible cell method for closest point problems. BIT,
22:27-41, 1982.

[120] TOP500, 2002. http://www.top500.org.

[121} L. Valiant. A bridging model for parallel computation. Communication of the
ACM, 33(8):103-111, 1990.

[122] Y. Zhao, P. Deshpande, and J. Naughton. An array-based algorithm for simul-
taneous multi-dimensional aggregates. Proceedings of the 1997 ACM SIGMOD
Conference, pages 159-170, 1997.

[123] W. Zipf. The Psycho-Biology of Language: An Introduction to Dynamic Philol-
ogy. Houghton Mifflin, 1935.

