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ABSTRACT 

 

Protein function arises from the large scaffold of residue interactions that position 

critical residues to stabilize the fold and to interact with substrates and other proteins or 

co-factors. Any accurate model of the evolution of protein sequences should therefore 

account for the selection pressures to preserve these supporting interactions.  It is 

therefore surprising that the most commonly-used methods for resolving protein sequence 

phylogenies employ models of the evolutionary process that do not account for these 

residue-specific constraints. While structurally constrained models of protein evolution 

have existed for some time, their implementation has been based on complex models that 

attempt to take into account the effects of multiple substitutions in protein sequences 

and/or dependence amongst sites in the alignment. Here we propose an alternative 

approach. We formalize a simple structurally constrained amino acid model of protein 

evolution that maintains the common phylogenetic inference assumption that sites evolve 

independently of each other. Our independence energy model adjusts a standard 

substitution model, such as the Le and Gascuel matrix (LG), on a site-by-site basis in 

order to incorporate the structural constraint that is based on the change in free energy of 

folding that arises from introducing single point substitutions at a site in the wild-type 

protein sequence. We explore the properties of our structurally constrained model as well 

as two extensions aimed at more accurately incorporating structural constraints into our 

model and evaluate how well they fit the evolutionary dynamics of a set of protein 

families.   
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CHAPTER 1 INTRODUCTION 

1.1 CONSTRAINTS ON THE EVOLUTION OF BIOLOGICAL ORGANISMS: 

At the molecular level, the variation that fuels biological evolution of inherited 

traits results from the fixation of unrepaired errors that occur during genome replication. 

Over time, variations in an organism’s phenotype may arise within a population that are 

either neutral, beneficial, or detrimental for the survival of an organism in its 

environment.  Ultimately, these variations are caused at the molecular level by mutations 

and may constitute, for example, partial or complete genome or gene duplications, 

genome insertions, genome-rearrangements or nucleotide mutations in the form of 

insertions, deletions, or substitutions (Koonin and Wolf, 2010).  Once a mutation has 

occurred in a member of a population, it may become fixed or removed from the 

population through either natural selection or genetic drift. Evolutionary ‘constraints’ 

manifest because of selection for maintenance of essential functions and such constraints 

are evident at the level of genome architecture, gene repertoire, and individual gene 

presence, copy number and sequence. In general, sequences encoding structural RNAs 

and non-synonymous nucleotide positions in protein coding sequences are among the 

most strongly constrained when compared to nucleotide positions at synonymous sites in 

protein coding sequences, and sequences coding for regulatory RNAs and non-coding 

regulatory sequences (Koonin and Wolf, 2010).  

 EVOLUTIONARY CONSTRAINTS ON CODING SEQUENCES 1.1.1

 Sequences encoding structural RNAs or protein coding genes with important 

cellular/organismal functions are often subject to purifying selection that ‘prunes’ 

molecular phenotypes that drift too distantly from the original gene sequences. This is 

because, to a first approximation, many of the gene sequences of modern organisms  

encode molecules whose function is nearly ‘optimal’, having been honed by selection for 

function over millions of years. In protein sequences, this purifying selection tends to 

purge nucleotide mutations from the population that would lead to changes to most of the 

other amino acids (non-synonymous changes) at the majority of positions in a protein 

coding gene, compared to those mutations that change the codon specified but do not 

change the amino acid coded (synonymous changes). For example, an examination of 
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15,350 pairs of human and mouse orthologous genes has revealed an average non-

synonymous to synonymous substitution rate ratio of 0.21 (Nei et al., 2010). Similarly, 

examining ~10,000 orthologous genes from the human, chimpanzee and macaque 

genomes demonstrates a similar suppressed rate ratio of 0.25 (Rhesus Macaque Genome 

Sequencing and Analysis Consortium et al., 2007). Assuming that synonymous 

substitutions are effectively neutral, these results would suggest that nearly 75-80% of 

non-synonymous mutations are eliminated by purifying selection (Nei et al., 2010). 

However, there is still a great deal of variation in the rate of evolution across sites in 

taxonomically diverse and homologous protein sequence alignments. A more nuanced 

view of protein evolution is that the majority of sites in the sequence are subject to at 

least some constraints on the identity/properties of an amino acid that can function in that 

context while relatively few, if any, sites are completely unconstrained. 

 BIOPHYSICAL CONSTRAINTS ON PROTEIN CODING GENES: 1.1.2

The observation that most protein sequences are subject to purifying selection 

suggests that there are some functional constraints on the protein sequence. Some of these 

functional constraints are related to the biophysical features of the folded protein product. 

For example, constraints on intra- or inter-molecular contacts and molecular dynamics of 

proteins may exist such that functional interactions with the correct chemical partners are 

maintained. While these constraints for function are on the molecule as a whole, changes 

in protein sequences occur discretely at the amino acid level and each site affected occurs 

within a particular local structural environment. In the context of the final folded protein, 

the suitability of a particular amino acid change and the strength of the constraint depends 

on the functional importance of the structural region within which it is located and to 

what degree the new residue can interact in the same way and/or have the same dynamic 

properties (e.g. flexibility) as the original amino acid (Figure 1.1 a-d).  

In summary, given sufficient evolutionary time, those sites with amino-acid 

identities that are critical and uniquely important in light of these functional constraints 

will be strongly conserved, while sites with amino-acid identities that are not will be  

observed to vary. 



 

 3 

 

 

Figure 1.1: Amino acid sequence changes within a protein structure may have varying effects 
on function. 
Amino acids in a protein sequence are under varying selective constraints depending on the 

relevance of their interactions or local dynamics to the function of the protein. In example (a), we 

portray a two-dimensional cartoon protein structure exhibiting a varying degree of inter- and 

intra-molecular contracts. We illustrate the effect of non-conservative mutations to residues that 

can no-longer fulfill the interactions observed in the wildtype protein structure. (b) Mutations 

located well away from the active site may change the protein structure significantly without 

affecting function. (c) Mutations affecting residues that directly interact with substrates are 

usually under a strong purifying constraint due to their direct role in protein function. (d) 

Mutations within the protein core are much more likely to propagate large changes in protein 

structure and function than mutations at the surface (e).   
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The majority of residues in a protein (or homologous sites in an alignment of 

related proteins with the same function) are not directly involved in interactions with 

chemical partners. For these sites, the degree of evolutionary constraint is related to the 

importance of that site for the local or overall structure of the protein. For this reason, 

solvent accessibility is one of the primary correlates of the rate of evolution at a site 

(Overington et al., 1992). Residue conservation is much higher in solvent inaccessible 

regions, where substitutions are likely to affect larger regions of the protein structure, 

than in solvent accessible regions.  These solvent inaccessible regions represent the 

hydrophobic core of the protein where the satisfaction of hydrogen bonding potential of 

polar side chains is an important constraint in protein evolution (Worth and Blundell, 

2009; Worth and Blundell, 2010). These satisfied polar buried amino acids likely 

contribute significantly to the overall stability of the protein by holding together distinct 

secondary structure elements and lending integrity to the overall fold.  

In fact, hydrogen bonds between the side chains of amino acids and backbone 

atoms in the protein are also generally conserved. Amongst these, the amino acid 

identities of residues involved in interactions between sidechains and main-chain amide 

groups seem to be more strongly conserved than hydrogen bonds to main chain carbonyl 

groups (Overington et al., 1990). Unsurprisingly, hydrogen bonds between main chains 

are also observed, and the sites involved vary a bit more in amino acid composition 

simply because the side-chain is not directly involved in the bonding interaction (Worth 

and Blundell, 2010).  

 These and other biophysical constraints on coding sequences are crucial factors 

influencing their evolutionary trajectories. However, a complete understanding of protein 

evolution includes many more factors in addition to the specification of the final protein 

product. Factors that are relevant include sequence constraints arising from intron 

splicing (Parmley  et al., 2007) for reliable gene expression (Drummond et al., 2005; 

Drummond and Wilke, 2008), correct protein folding (DePristo et al., 2005; James and 

Tawfik, 2003), protein folding kinetics (Plaxco et al, 2000) and the need to avoid 

opportunistic interactions that detract from, or compete with, the primary protein function 

(Yang  et al., 2012) or protein aggregation (Reumers et al., 2009). Protein degradation is 

also finely controlled, especially with respect to recognizing misfolded proteins that may 
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arise as a result of mutations (Goldberg, 2003) providing another potential force 

constraining the evolution of protein sequences.  

Here, we propose a framework that incorporates biophysical constraints on the 

final folded protein product into phylogenetic models that are widely used to infer past 

evolutionary events. To provide a context for these structurally constrained phylogenetic 

models and how they fit within the spectrum of available phylogenetic inference methods 

we introduce some commonly-used methods below.  

1.2 BUILDING PHYLOGENETIC TREES FROM MOLECULAR SEQUENCE DATA: 

Molecular phylogenetics establishes the historical relationships amongst 

sequences of DNA, RNA or proteins that reside within organisms or viruses throughout 

the tree of Life.  These phylogenies are often used to reconstruct the evolutionary tree of 

organisms under the assumption that genetic sequences ‘track’ organismal history (i.e. 

that vertical inheritance of genes is the evolutionarily predominant signal).  For 

multicellular eukaryotes, at least, this is probably largely true, although for prokaryotes 

the assumption is far from proven (Doolittle and Bapteste, 2007). Relationships amongst 

organisms (taxa) are expressed in terms of a bifurcating tree graph where leaves represent 

currently existing sequences and internal nodes represent hypothetical last common 

ancestors. Taxa that group together and share a common ancestral node in the tree that 

excludes the root of the entire phylogeny are known as ‘clades’. 

Constructing a phylogenetic tree from molecular sequence data begins with the 

collection of a set of sequences of interest from the various organisms of interest. These 

sequences are aligned with homologous sequences that are identified through searching 

genetic sequence databases such as those housed at the National Center for 

Biotechnology Information (NCBI at http://www.ncbi.nlm.nih.gov). The phylogenetic 

reconstruction process depends significantly on correctly determining which sites are 

positionally homologous in the overall homologous sequences (i.e. the descendant 

residues/nucleotides at that position in different sequences are positional homologs if 

they descend from the ancestral sequence at that same position and differ only because of 

point substitutions that have occurred over the evolutionary tree). However, because 

homologous sequences will often vary in length because of insertion and deletion events, 
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sequence alignment programs such as MUSCLE (Edgar, 2004 a,b) or HMMER (Finn et 

al., 2011) are used to estimate a multiple sequence alignment. Each column in a multiple 

sequence alignment is assumed to include positionally homologous sites. Gaps, 

corresponding to insertion or deletion events, are added to optimize the score of 

alignments, although the precise details of how this is done and which methods are most 

accurate are beyond the scope of this discussion.   

 PHYLOGENETIC TREES FROM MULTIPLE SEQUENCE ALIGNMENTS: 1.2.1

 Interpreting a phylogenetic tree estimated from a multiple sequence alignment 

requires a deep understanding of the evolutionary process that the molecule in question is 

undergoing. For example, any misspecification in the model of protein evolution (i.e. 

large discrepancies between the true process of evolution and the models’ process 

assumptions) may lead to phylogenetic methods to infer incorrect trees.  

 There are a wealth of different tree estimation methods that vary greatly in their 

speed and accuracy. Simpler methods rely on low complexity heuristics. For example, 

Unweighted Pair Group Method with Arithmetic Means (UPGMA) (Sokal and Michener, 

1958) and Neighbour joining (NJ) (Saitou and Nei, 1987) methods use an iterative 

bottom up clustering approach in which the tree is constructed one taxon at a time by 

choosing the closest sequence according to pairwise ‘distances’ between sequences in the 

alignment (Figure 1.2 a). Another approach is to explore tree space in search of the tree 

that best describes the alignment according to some optimality criterion. Simple 

optimality criteria like ‘minimum evolution’ (Kidd and Sgaramella-Zonta, 1971) and  

‘maximum parsimony’ (Edwards and Cavalli-Sforza,1963) score alternative trees by 

computing a simple metric that describes, in some fashion, the fit of the tree to data. The 

computational simplicity of these metrics comes at the sacrifice of model realism making 

the trees output by these methods, at best, just good starting points for searching tree 

space based on more complex optimality criteria.  

 The current ‘gold standard’ phylogenetic inference methods are likelihood-based. 

These methods treat the individual columns in an alignment as independent outcomes of 

a stochastic process whose probability of occurring under a particular tree topology can 

be inferred by a parameterized Markov model. Likelihood-based optimality criteria can 
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be implemented in either maximum likelihood or Bayesian inference paradigms (Figure 

1.2 b). 

LIKELIHOOD-BASED PHYLOGENETICS: 

In order to account for the many possible evolutionary paths that could generate 

the data from a tree, state of the art statistical inference techniques such as maximum 

likelihood estimation or Bayesian inference are used.  When applied to an alignment and 

given a statistical model of protein evolution, these methods provide estimates for the 

model’s parameters. The ‘goal’ for both methods is to evaluate various tree topologies in 

search of the best tree(s) that explain the alignment given a model of sequence evolution. 

As we have extended the maximum likelihood framework, we focus on this methodology 

here.  

DETERMINING THE MAXIMUM LIKELIHOOD TREE: 

Formally, in maximum likelihood phylogenetic estimation, the objective is to 

search tree space in order to maximize the likelihood of an alignment   containing   sites 

and   taxa arising from an evolutionary model M, a tree   and a set of model-specific 

parameters  .  

     ̂       ̂  ̂  

The calculation of the likelihood is made simpler by the additional assumption that data 

at each site (  ) evolves independently (Figure 1.3 a) from the others allowing    ̂  to 

take the form: 

   ̂  ∏    ̂ 

 

 ∏  (  | ̂  ̂)

 

 

The overall probability for a single site in the alignment (the site likelihood) over 

the tree is then the product of the probability of each substitution event that has occurred 

over each branch leading to the observed amino acids at the leaves. This calculation is 

made simpler by the additional assumption that that once two lineages have split along 

the tree, each branch evolves independently of the others. 
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Figure 1.2: Two alternative paradigms for phylogenetic inference.  

Phylogenetic trees can be resolved either by an (a) iterative bottom up hierarchical 

clustering of sequences into groups based on some pairwise distance metric or  (b) by 

exploring several alternative trees in search of the one that best describes the alignment 

under some optimality criterion.  
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Since these events and hence states at internal nodes are unknown, all possible amino 

acid states (i) are considered at internal nodes and the overall probability is the sum of the 

probability of each evolutionary path involving all possible ancestral states at each node.  

The site likelihood is therefore recursively defined from any internal node   given a set 

of stationary frequencies    for a column k in the alignment containing characters   : 

     |      ∑    
    |      

  

   

 

  Where   
    |          is recursively defined by:  

 

  
    |        (∑         

  (  
  |      )

  

   

)(∑         
  (  

  |      )

  

   

) 

 

for all nodes  , where    and    are children of   and    and    are the lengths of the 

branches connecting them to  .   
   and   

   represent the character states (here, amino 

acids) at the leaves for the sub trees descended from    and    respectively. The 

recursion terminates at the leaves, which have the amino acid states specified by the data.  

       is the probability of a site being in state j after time t, given that the process started 

in state i at time 0.  For a continuous-time Markov process describing the substitution 

process, for the l’th branch in the tree this probability takes the form    |      

   |  |   . Therefore, the underlying Markov model (M) is specified by an instantaneous 

rate matrix Q which, varies in size depending on the sequence alphabets being analyzed: 

DNA models utilize a 4×4 rate matrix, codon models utilize a 61×61 rate matrix and 

amino acid models utilize a 20×20 rate matrix. An interpretation of the instantaneous rate 

matrix Q is that for some small time interval  ,       is is the approximate probability 

that residue i is substituted with residue j.    

The complex recursive calculation discussed above, known as the pruning 

algorithm (Figure 1.3 b), was first introduced by Felsenstein (1981).  The location of the 

root of the tree is typically ignored since widely used phylogenetic models are reversible 
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and stationary and the direction on the tree in which site probabilities are calculated by 

the pruning algorithm does not change the final value of the site likelihood. 

BAYESIAN PHYLOGENETIC INFERENCE: 

Differentiating from the ML approach, in Bayesian phylogenetic inference 

evidence in favor of certain parameter values   are considered in light of the posterior 

distribution    |  . 

   |   
       |  

    
 

The goal of Bayesian phylogenetic inference is typically to obtain the tree that contains 

the largest mass in the posterior probability distribution over the space of all possible 

trees. Obtaining this integral can be difficult, given the high dimensionality of the 

parameter space and often involves approximations based on Markov Chain Monte Carlo 

methods. For more details regarding Bayesian phylogenetic inference we refer the reader 

to Felsenstein (2004). 

1.3 MARKOV MODELS OF CODING SEQUENCE EVOLUTION:  

Both statistical inference methods discussed above rely on models of protein 

evolution whose assumptions are supposed to closely match the underlying evolutionary 

process in order for them to provide accurate phylogenetic estimates. As mentioned in 

section 1.2.1, the most widely used models of protein evolution assume evolution to be 

independent across sites and reversible according to a Markov model    .that relies on 

an instantaneous rate matrix Q.  

The reversibility of the underlying Markov model ensures that Q can be 

decomposed into a set of stationary frequencies for the model   as well as a symmetric 

substitution matrix S.    represents the stationary or equilibrium amino acid frequency of 

amino acid i that would arise at any site k if the Markov process were left evolving for a 

sufficiently long period of time. Diagonal entries in Q are obtained as the minus sum of 

the off-diagonals for the row and are thus proportional to the rate at which changes leave 

state i. To ensure that the interpretation of an edge length is the expected number of 

substitutions along that edge, Q is then rescaled so that  ∑       .    
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Figure 1.3:  Summary of the likelihood calculation.  

(a) The likelihood of an alignment under a given phylogenetic model is calculated as the 

product of the site likelihoods for each column in the alignment. (b) The calculation of 

the site likelihood is recursively defined for all possible evolutionary paths arising from 

an arbitrarily chosen root. The recursion ends at the leaves, which must assume the 

observed character state.   
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Q itself may be empirically derived from sequence alignments or may have 

parameters to be optimized during phylogenetic inference. Classically, DNA and codon 

models have typically been highly parameterized while protein models have relied on a 

more empirical approach. However, both codon and protein models have progressed 

more recently to semi-empirical approaches that improve common empirical matrices. 

We briefly examine DNA and codon models before focusing more deeply on amino acid 

models as this thesis primarily concerns the development of a parameterized amino acid 

model.  

 DNA MODELS OF EVOLUTION:  1.3.1

The most general stationary reversible model of DNA, the general time reversible 

model (GTR), includes 4 stationary nucleotide frequency parameters   , 6 

exchangeability parameters between nucleotides (lower diagonal of S) and a rate 

heterogeneity parameter in θ. The rate determines the finite set of evolutionary rates 

under which the sites in the data (columns in the alignment) will be modeled. Early 

models of nucleotide evolution were special cases of the GTR model and the more 

complex models, including GTR itself, were proposed later.  The simplest model is the 

Jukes and Cantor model (1969) which assumes stationary frequencies and uniform 

mutation rates. The Kimura 2-parameter model (1980) includes 2 parameters   and   

allowing the transition rate to vary relative to the transversion rate. The Felsenstein-81 

(F81) (Felsenstein, 1981) and Hasegawa-Kishino-Yano-85 (HKY85) (Hasegawa et al., 

1985) models of DNA evolution extend simpler models by allowing base stationary 

frequencies to vary. F81 is simply an extension of the Jukes and Cantor model while 

HKY85 extends the Kimura two parameter model. 

 CODON MODELS OF PROTEIN EVOLUTION: 1.3.2

 When the DNA sequences being analyzed encode proteins it is more realistic to 

model the data as the codon triplets that each specify one amino acid in the final protein 

sequence.   
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INCORPORATING GENERAL BIOPHYSICAL CONSTRAINTS: GOLDMAN AND YANG (1994) 

Codon models first proposed by Goldman and Yang (1994) employ a 61×61 rate 

matrix     corresponding to the exchangeability between codon triplets          and 

        . Starting from the Kimura two parameter model, codon exchangeabilities are 

adjusted by a factor       in    . Here,     accounts for the differences in the 

physiochemical properties of the resulting substituted amino acid (Grantham, 1974) and   

is a parameter to be optimized during statistical inference.  
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 Codon exchangeabilities can be grouped into those that do not result in an amino 

acid changing substitution (synonymous) and those that do (non-synonymous) and a 

relative rate parameter can be associated with each type (Muse and Gaut, 1994). Yang et 

al. (1998) went one step further in a model (Rev0) by including a parameter (ω) that 

captures the non-synonymous to synonymous rate ratio and κ, from the       model, 

representing the transition to transversion rate.  
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 AMINO ACID MODELS OF PROTEIN EVOLUTION. 1.3.3

While parameter-rich Markov models have often been used to study DNA and 

codon evolution, modeling of amino acid evolution has typically been conducted via an 

empirical approach. Substitution models have classically been developed by counting 

observed amino acid changes between closely related sequences in large sequence 

databases.  The first such substitution model was the accepted point mutation (PAM) 

matrix (Dayhoff and Eck, 1968; Dayhoff et al., 1979; Dayhoff et al., 1983), which was 

derived from relative numbers of different amino acids aligned to each other. A model 
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derived using similar a framework includes the widely used Jones-Taylor-Thornton (JTT) 

model (Jones et al., 1992), a matrix derived from a larger set of protein sequences.  

In contrast to substitution models generated by counting the observed frequencies 

of interchanges between residues in an alignment, more recent methods to estimate 

empirical substitution matrices utilize a general time reversible model of protein 

evolution where all parameters in the model (including     entries,    , the tree topology 

and the branch lengths) are estimated from the database of aligned protein families. The 

goal is to obtain a general S matrix and   vector through maximum likelihood estimation 

in a GTR model framework considering all of the alignments and pre-estimated fixed 

trees in the database jointly. The resulting substitution model, Q (where Q = S  ),  is then 

used as a general fixed model of amino acid interchange that can be applied to potentially 

any protein family to estimate a phylogeny (Figure 1.4 a).  

Due to the complexity of the GTR models, simplifying approximations are often 

necessary in the calculations that utilize these models. By relaxing the requirement for the 

estimation of an optimal tree topology and using instead approximate phylogenies 

derived by neighbor joining (with branch lengths approximated under the JTT model), a 

more accurate substitution model – the Whelan-and-Goldman model (WAG) – has been 

described (Whelan and Goldman, 2001). The current ‘state-of-the-art’ general model of 

protein evolution, the Le and Gascuel matrix (LG) (Le and Gascuel, 2008), was estimated 

using a method similar to that of Whelan and Goldman but also accounting for the 

variability of evolutionary rates across sites during the parameter estimation. This 

improvement, along with a much larger dataset comprising 50000 sequences and 6.5 

million sites utilized by these authors, resulted in a significant improvements in model fit.  

MODIFYING GENERALIZED AMINO ACID SUBSTITUTION MODELS: 

 Markov models such as JTT, LG or WAG are often implemented in the maximum 

likelihood framework along with a few additional model features that are known to 

improve the fit to data. The likelihood for a site is usually evaluated as a mixture model 

averaging over the site probability evaluated under multiple rate categories (Yang, 1994) 

derived from a discretized gamma distribution whose shape parameter  ̂ is optimized by 

ML for all sites in the alignment.  This mixture may also include an ‘invariable sites’ 
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component that accounts for complete conservation of a proportion of sites in the 

alignment;  this proportion is also estimated by ML (Fitch and Margoliash 1967; Fitch 

1986; Shoemaker and Fitch 1989). The Q matrix of the Markov model is also often 

adjusted be a product of the empirical exchangability matrix (S) from JTT, LG or WAG 

and a  ̂ vector approximated by the observed proportion of each amino acid in the 

alignment under analysis (Cao et al., 1994).  

 SPECIALIZED AMINO ACID RATE MATRICES AND THE INNOVATION OF 1.3.4

SEMI-EMPIRICAL CODON MODELS: 

Models of both amino acid and codon substitution have undergone significant 

increases in complexity in recent years. Generalized amino acid substitution models have 

been estimated for proteins encoded by genes on mitochondrial and plastid genomes 

(Adachi and Hasegawa, 1996; Adachi et al., 2000) as well as for viral proteins (Dimmic 

et al., 2002; Dang et al., 2010). Others have attempted to develop mixture models 

incorporating information about physico-chemical similarity (Koshi and Goldstein 1995; 

Dimmic et al., 2000). Newer ‘general’ codon models, which were traditionally 

parameterized like the simpler DNA models, have recently been estimated using an 

empirical approach. For example, Schneider et al. (2005) estimated a ‘general codon 

model’ based on a dataset of 8.3 million aligned codons from vertebrates.. This work has 

spurred the development of a number of semi-empirical codon models that combine these 

empirically derived substitution models with parameters derived from classic parametric 

codon models (Doron-Faigenboim and Pupko, 2007; Kosiol et al., 2007; Zoller and 

Schneider, 2012).  

STRUCTURALLY CONSTRAINED MODELS OF CODING SEQUENCE EVOLUTION 

Ideally, protein evolutionary models should take into account the selection 

pressures that preserve the large scaffold of residue interactions that position critical 

residues to interact with substrates, other proteins or co-factors. Indeed, a multitude of 

structurally constrained models of protein evolution (SCPE’s) have been proposed that 

attempt to incorporate some form of a protein structure-based constraint into various 

phylogenetic models of protein evolution (Fornasari et al., 2002; Parisi and Echave, 

2004; Parisi and Echave, 2005; Fornasari et al., 2007; Juritz  et al., 2012; Robinson et al., 
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2003; Rodrigue et al., 2005; Rodrigue et al., 2006; Kleinman et al., 2006; Rodrigue et al., 

2009; Bonnard et al., 2009; Kleinman et al., 2010). There are several flavours of 

structurally constrained models that differ in how they account for site-wise 

interdependence.  

A variety of amino acid substitution matrices have been produced for different 

secondary structure and solvent accessibility characters (Lüthy et al. 1991; Overington et 

al., 1992; Koshi and Goldstein, 1995; Goldman et al., 1998; Le and Gascuel, 2010; Liò 

and Goldman, 2002) and even for transmembrane proteins (Jones et al., 1994 a,b). 

Recently, structure-based substitution models (SSM) have been incorporated into 

partitioned models and parametric mixture models (Le and Gascuel, 2010), and appear to 

lead to a dramatic improvement in the fit to real data relative to the simpler empirical 

substitution models such as LG (Figure 1.4 b).  

Simulation energy phylogenetic models (SEPM) attempt to incorporate structural 

constraints into popular phylogenetic methods by the estimation of site-specific 

substitution models intended to capture the effects of the structural environment found at 

each site (Fornasari et al., 2002; Parisi and Echave, 2004; Parisi and Echave, 2005; 

Fornasari et al., 2007; Juritz  et al., 2012). These methods are based on simulating protein 

evolution under a structural constraint and are used to generate large alignments that are 

then used in the estimation of a substitution model (Figure 1.4 c). The structural 

constraint typically enters the model through the use of energy potentials measuring the 

free energy of particular sequence-structure fits that is incorporated into a function for 

accepting or rejecting proposed amino acid changes during the simulation. 

Dependence energy models (DEM) models attempt to explicitly account for the 

interdependencies amongst sites due to a structural constraint by replacing the 20 20 

amino acid rate matrix by a rate matrix meant to denote the exchangeability amongst 

sequences of length n from the set of all possible sequences of dimension 4
n
 × 4

n
 for 

DNA models or 20
n
 × 20

n
 for amino acid models (Robinson et al., 2003; Kleinman et al., 

2010; Bonnard et al., 2009; Rodrigue et al., 2005; Rodrigue et al., 2005).  While these 

DEM models can explicitly account for the underlying dependence between amino acids, 

they are computationally complex when compared to either SSM or IEM models (Figure 

1.4 d).  
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Figure 1.4: Phylogenetic models that account for varying degrees of structural constraint. 

Phylogenetic models come in varying degrees of structural constraint. (a) phylogenetic 

models incorporating general substitution models such as JTT, LG and WAG assume that 

all sites are modeled by a general set of physico-chemical constraints. (b) Structure-based 

substitution models (i.e. Le and Gascuel, 2010) may provide substitution models specific 

to structural environments. For example, separate substitution models could be made for 

exposed and buried sites. (c) Simulated protein evolution under a structural constraint can 

be used to create site-specific substitution models (i.e. Parisi and Echave, 2001). (d) 

Dependency energy models explicitly model site-wise interdependence by using a rate 

matrix that models the interchange between entire sequences               . 
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INCORPORATING BIOPHYSICAL CONSTRAINTS INTO PHYLOGENETIC MODELS: 

A detailed introduction to, and discussion of, structurally constrained models will 

be provided in chapter 2 where our own structurally constrained framework is introduced. 

However, given that all structurally constrained phylogenetic models incorporate 

biophysical constraints using existing in silico methods for estimating energy potentials, 

what follows is a brief introduction to how these potentials are derived. There are three 

general types of potentials that could be used to measure the effect of single to multiple 

amino acid substitutions at sites in protein structures: statistical potentials, empirical force 

fields and purely physical force fields.  

STATISTICAL POTENTIALS: 

 A statistical, or knowledge-based, potential is an energy function that traditionally 

uses the Boltzmann law to convert observed frequencies of interactions in protein 

structure databases into potentials (Sippl, 1993). These potentials are obtained as a 

function of the ratio of observed to expected frequencies, where expected frequencies are 

derived from a hypothetical reference state where no interactions occur. Single body 

potentials, such as the solvation potential rely on the distance of a residue to some 

external field. Pairwise or multi-body potentials are based on the frequency of occurrence 

of pairs of amino acids or groups of amino acids. As an example, the interaction potential 

of amino acids i,j distance r apart can be calculated as:  

                             

Where   is the Boltzmann constant, T is the temperature        is the frequency of 

observing amino acid i and j distance r apart and       is the average frequency of the 

reference state.  

An excellent summary of the theory backing statistical potentials and a 

comparison amongst various statistical potentials can be found in Sippl (1995) and 

Rykunov and Fiser, (2010). Some popular statistical potentials that have been employed 

in phylogenetic models are Prosa pairwise and solvation potentials (Sippl, 1993), Bastolla 

contact potentials (Bastolla et al., 2001) and a series of potentials derived in Bonnard et 

al. (2009).  
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EMPIRICAL AND PHYSICAL FORCE FIELDS:  

 A more robust methodology for predicting the stability of a protein structure is 

through the use of physical potentials available in a variety of molecular dynamics 

packages (Bash et al., 1987; Pitera  and Kollman, 2000; Prevost et al., 1991).  However, 

these potentials have, so far, been avoided by the phylogenetics community largely due to 

the extreme computational complexity required to determine   .  Alternatively, 

empirical force fields such as FoldX (Guerois et al., 2002) serve as a kind of compromise 

by combining a physical description of the interactions with experimental data on how 

mutations in specific structural environments have affected   . The FoldX empirical 

force field has a complex physical description that incorporates energy terms associated 

with van der Waals interactions, solvation energy, hydrogen bond formation, water 

bridges, electrostatic contribution of charge group interactions, entropy costs for fixing 

the backbone and entropy costs for fixing the side chain (Guerois et al., 2002).  In 

producing the final potential, the weights for many of these terms were optimized by 

utilizing the ProTherm database that contains thermodynamic information for proteins 

and their mutants (Kumar et al., 2006). As a result FoldX is optimized to predict the 

mutational effect of single or multiple substitutions on a wild type protein, making it 

ideal for approximating the relative exchangeabilities of amino acids at a site. It has since 

been validated through an analysis of rhodopsin in which a highly significant correlation 

between FoldX energy changes and the average age of night blindness and daytime 

vision loss onset was found (Rakoczy  et al., 2011).  

 SYNOPSIS OF THE MODELS AND RESULTS INTRODUCED IN THIS WORK: 1.3.5

 Here we formalize and extend the independence energy model framework. In the 

second chapter, we introduce our model and evaluate its performance across 48 datasets 

containing sites located in a wide variety of structural environments. By implementing a 

series of structurally constrained partition models, we determine if model fit can be 

improved significantly by allowing the structural constraint to vary across different 

secondary structure and solvent exposure categories. Then, we evaluate whether a 

standard general amino acid model of protein evolution, such as LG or JTT, is preferred 
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for each secondary-structure/solvent-exposure category or if perhaps an appropriate 

structurally constrained substitution model performs better (Le and Gascuel, 2010).   
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CHAPTER 2 SITE INDEPENDENT STRUCTURALLY 

CONSTRAINED PHYLOGENETIC MODELS THAT FLEXIBLY FIT 
DIFFERENT STRUCTURAL ENVIRONMENTS. 

2.1 INTRODUCTION: 

An examination of any set of homologous protein sequences reveals that the 

evolutionary process leads to a diverse distribution of sequence patterns across sites. The 

observed exchangeability between amino-acids at a site in an alignment is influenced by 

several factors including: (1) The ease with which one codon can be converted to another 

arising from the number and type of substitutions required to move between them; (2) 

Codon usage biases that vary from species to species (Miyata et al., 1979, Grantham et 

al., 1980) and arise from differential protein expression or differences in the availability 

of translational machinery components (Andersson and Kurland 1990; Sharp et al., 1993; 

Akashi and Eyre-Walker, 1998; Willie and Majewski, 2004; Sharp et al., 2005); and (3) 

The exposure of a mutation to purifying or positive selective forces that preserve or alter 

protein structure or function.  

It is possible to generalize the effects of codon exchangeabilities and codon usage 

biases to the rates of amino-acid interchange across sites in an alignment. However the 

physicochemical constraints on protein sequences visible to selection are site-specific and 

frequently ignored in phylogenetic Markov models of amino acid replacement. 

Probabilistic phylogenetic methods evaluate the likelihood of an alignment given a 

Markov model with parameters that include the topology and branch lengths of the tree, 

and the shape parameter of a gamma distribution that accounts for differing rates across 

sites (Yang, 1994).  In these models, sites are usually treated as independent and 

identically distributed, with observed exchangeabilities amongst amino acids modeled by 

general rate matrices (e.g. the Jones-Taylor and Thornton (JTT), Whelan and Goldman 

(WAG) and Le and Gascuel (LG) models), meant to reflect average rates of amino acid 

replacement, derived from large databases of aligned protein families (Jones et al.,  1992; 

Le and Gascuel, 2008; Whelan and Goldman, 2001).   

The foregoing Markov models are specified by an 20X20 instantaneous rate 

matrix Q, whose off-diagonal entries       are interpretable as the approximate 

probability that amino acid   is substituted with   in a small interval of time  . A 
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conditional probability matrix, with entries     , over a branch  of length   can then be 

calculated by                .   The overall probability for a single site in the alignment 

(herein referred to as the site likelihood) over the tree is then the product of the 

probability of each possible substitution event that could have occurred over each branch 

leading to the observed amino acids at the leaves. Because these events and hence states 

at internal nodes are unknown, all possible states are considered at internal nodes and the 

overall probability is the sum of the probability of each evolutionary path involving all 

possible ancestral states at each node.  This complex calculation is accomplished via an 

efficient ‘pruning algorithm’ that was first introduced by Felsenstein (1981).   

Since evolution is treated as independent across the sites in the sequence the 

overall likelihood for an alignment and tree,     , is the product of the foregoing sitewise 

probabilities (Equation 1).  

(1)      ∏        

Where   denotes all unknown parameters and       is the  ’th site likelihood or, 

equivalently, the probability of the data at the  ’th site.  

Although these models are very useful approximations, particular amino-acid 

substitutions at different sites are known to have different impacts on protein activity 

and/or stability. Therefore model realism demands rate matrices that accurately describe 

the fitness effects of mutations at particular sites. As homologous proteins are often 

structurally very similar (Sander and Schneider, 1991) it is possible to estimate the 

impact of substitutions at individual sites that simply perturb the stability of protein folds 

and to generalize this information to all sequences in an alignment to generate 

‘structurally constrained’ phylogenetic models.  

Structurally constrained phylogenetic models alter   in a site-specific way, 

employing a function              that expresses a relationship between the folding 

energy of two sequences    and     and the instantaneous rate of exchange between 

them.  Approximation of    for a particular protein of known 3-dimensional structure 

can be arrived upon either through the use of statistical potentials (Sippl, 1993; 

Hamelryck et al., 2010), empirical effective energy potentials (Guerois et al., 2002; Yin 
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et al.,2007; Johnston et al., 2011) or physical potentials (Brooks et al., 1983; Van Der 

Spoel et al., 2005; Bueno et al., 2007; Benedix  et al., 2009).  

A multitude of structurally constrained phylogenetic models (SCPM’s) have been 

proposed that incorporate some form of a protein structure constraint into their 

framework. These fall into three general classes that differ in their approach to site-wise 

interdependence: (1) Structure-based substitution models (SSMs) with distinct amino-

acid exchangeability matrices for residues located in different structural environments 

estimated from a database of alignments with assigned structural classes (Le and Gascuel, 

2010), (2) Simulation energy phylogenetic models (SEPMs) where sequences are 

simulated under a conventional independence model but those drifting too far from 

wildtype folding energy are ignored (Parisi and Echave, 2001), giving rise to site-specific 

rate matrices based on the observed accepted substitutions that occurred during 

simulation (Fornasari et al., 2002; Parisi and Echave, 2004; Parisi and Echave, 2005; 

Fornasari et al., 2007; Juritz  et al., 2012) and (3) dependence energy models (DEM) 

models that attempt to explicitly account for the interdependencies amongst sites due to a 

structural constraints by estimating a rate matrix representing the exchangeability 

amongst entire sequences of length N (for nucleotides this matrix is 4
N
x4

N
, and for amino 

acids 20
N
x20

N
) from the set of all possible sequences (Robinson et al., 2003; Rodrigue et 

al., 2005; Rodrigue et al., 2006; Kleinman et al., 2006; Rodrigue et al., 2009; Bonnard et 

al., 2009; Kleinman et al., 2010). While these DEM models can explicitly account for the 

underlying dependence between amino-acids in tertiary structures, they are extremely 

computationally complex when compared to either SSM or SEPM models and require the 

application of methods that approximate the rate matrices. Here, we propose a novel and 

computationally tractable SCPM framework that maintains the computational simplicity 

of SEPM but that incorporates some of the advantages of SSM and DEMs.  

The simplest structurally constrained phylogenetic models of protein evolution 

are those based on structure-based substitution models. Here, alignments containing at 

least one sequence of known structure have been used to build different substitution 

models specific to unique structural environments. The latter models have been 

incorporated into a several phylogenetic estimation programs (Goldman et al., 1998; Le 

and Gascuel, 2010). In a recent example (Le and Gascuel, 2010), 11 structural 
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environment specific substitution models were created from a dataset of alignments 

collected from the HSSP database (Schneider and Sander, 1996). Three sets of models 

were derived from this dataset including: i) a solvent-exposed and a buried pair of 

matrices, ii) a matrix for each of the three secondary structure categories (α-helix, β-sheet 

and other) and, iii) six substitution matrices representing each of the possible 

combinations of solvent exposure and secondary-structure categories (Exposed-α-helix, 

Exposed-β-sheet, Exposed-other, Buried-α-helix, Buried-β-sheet, Buried-other). Their 

work demonstrated statistically significant improvement in model fit when using a 

variety of partition and mixture models based on these categorical substitution models.  

Simulation energy phylogenetic models (SEPMs), are a type of SCPM that 

incorporate a site-specific structural constraint by tracking the energies of sequences 

simulated under an independence model (Parisi and Echave, 2001).  SEPMs (Fornasari et 

al., 2002; Parisi and Echave, 2004; Parisi and Echave, 2005; Fornasari et al., 2007; Juritz 

et al., 2012) employ site-specific rate matrices constructed from proportions of observed 

substitutions in simulations of structurally constrained protein evolution. Starting from a 

protein of known structure, each evolutionary time step of the simulation first mutates the 

sequence, and then assigns a distance score   to the sequence that is used to modify the 

probability of accepting the sequence into an alignment that is then used to infer a site-

specific    
   

 (Parisi and Echave, 2004). Since not all substitutions are observed, the site-

specific rate matrix implied by the energy constraint alone (   
    

) is corrected by an 

established substitution model such as JTT. 

The dependency energy model (DEM) approach is more computationally 

complex than either the SSM or IEM frameworks (Robinson et al., 2003; Rodrigue et al., 

2005; Rodrigue et al., 2006; Kleinman et al., 2006; Rodrigue et al., 2009; Bonnard et al., 

2009; Kleinman et al., 2010). Rodrigue and colleagues (2005) developed an amino-acid 

based DEM where the Markov generator is        . In their Bayesian implementation 

(equation 2), the rate matrix takes the form: 

(2)       {

 ∑                                         
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Here, each column of the rate matrix corresponds to a particular sequence and the 

columns range over all possible sequences. As is usually the case with rate matrices, 

       is interpretable as the approximate probability that sequence    will evolve into 

sequence    in a small interval of time  . Sequences differing by multiple substitutions 

are ignored leading to large numbers of entries in the rate matrix that are 0. With such 

large rate matrices, calculation of substitution probabilities based on eigen-value 

decomposition techniques are infeasible. Instead approximations to entries in this matrix 

are made possible by employing Markov chain Monte Carlo (MCMC) techniques. For 

these studies a simple pairwise ‘contact’ energy potential matrix was used to approximate 

changes in free energy associated with amino acid substitutions for a given fixed 3-

dimensional structure of a single representative sequence. 

2.2 MATERIALS AND METHODS: 

 MODEL DESCRIPTION 2.2.1

The foregoing  SSM, SEPM and DEM frameworks rely on the idea that amino-

acid exchangeabilities at a site are directly dependent on the change in the functional 

‘activity’ associated with substituting some amino acid i to another amino acid j at that 

site. While both the SEPM and DEM approaches account for dependencies amongst sites, 

here, instead, we introduce a computationally tractable independence energy model 

(IEM) that requires only a measure of amino-acid suitability at each site. Similar to the 

frameworks discussed above, our model assumes that the exchangeability between 

amino-acids i and j is related to the change in free energy of the transition by a function 

proportional to          where   is a weighting parameter.  Our model differs from SSM 

by utilizing predicted free energy changes associated with substitutions at individual sites 

in the specific structures under consideration and does not rely on simulation, instead 

incorporating free-energy change directly into a Markov model of sequence change. 

Finally, it differs from the DEM approach by keeping the simplifying assumption of 

independence between sites, while utilizing more sophisticated energy-potential 

calculations for predicting site-specific free energy changes.  

We consider four structurally constrained partitioned Markov models of protein 

evolution that preserve the independence across sites assumption. As the model describes 
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amino acid interchange, rate matrices are 20X20 and, although these matrices vary 

between sites, direct calculation of substitution probabilities through eigen-

decomposition is possible. These four models differ in complexity with regards to the 

number of different structural environments that are taken into account.  

The first model (equations 3-4) pools all sites together in a single class.  Similar to 

the Rodrigue and colleagues (2005) model (equation 2) we use a general substitution 

model, in this case LG or JTT, to form the basis of the model    
   

 for each site. This 

matrix is adjusted by multiplying its entries by    
    

, a rate matrix encompassing the 

energy contribution to exchangeabilities that depends on the particular site k under 

consideration. The structural constraint first enters the model through a function 

  
   

(   ,  )=       
       

        
 where              is a parameter vector 

governing the weight associated with various alternative approximations of the change in 

folding energy terms      
     

     
  at a site. We abbreviate   

   
(   ,  ) as    and 

introduce the term            to represent the overall energetic consequences of 

substituting amino acid i to amino acid j. We have experimented with various alternative 

definitions for     using statistical potentials coming from the PROSA package (   ), 

empirical force fields from FoldX (   ) or a combination of both (   ). The 

parameter    is included to allow variation in the average site-specific stationary 

frequencies.   

Model 1: a general structurally constrained model of protein evolution (LG+  ; 

JTT+  ) 

(3)     
   

    
    

   
   

 

       
    

    
    

   

 

An examination of    
   

 over sites having different structural environments 

reveals that the median value of    
   

 varies amongst the various structural environment 

partitions for both PROSA and FoldX energies (supplementary Figure A1 for PROSA 

energies and supplementary Figure A2 for FoldX energies). It is clear from both of these 

potentials that substitutions in solvent exposed regions result in lower energies for 

hydrophilic amino acids while substitutions in buried regions result in lower energies for 
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hydrophobic amino acids. Furthermore, substitutions in the hydrophobic core of the 

protein structure are more likely to increase    . Similarly, an examination of     values 

across different secondary structures demonstrates that some residues, such as glycine 

and proline, have much lower     values in loops than in beta-sheets and helices.  

 To take advantage of changes in the behavior of our energy potentials amongst 

protein structure categories, we further developed our model by allowing structural 

constraints to vary amongst these different environments (equations 5-6).  We partition 

datasets into P different structural classes and estimate parameters separately for each 

class. The three structurally constrained partitioned models we develop are: (i) a 2 

partition model 2P/2P_LG, which segregates residues into exposed and buried categories 

based on their relative solvent accessibility, (ii) 3P/3P_LG, which segregates residues by 

their secondary structure into extended/helix/other categories; and (iii) 6P/6P_LG, which 

segregates residues by solvent accessibility and secondary structure (see methods for a 

more detailed description). The partitioning here is the same as that employed by Le and 

Gascuel (2010) and the nomenclature here reflects models that incorporate the 

appropriate structure-based substitution model (2P/3P/6P) in    
   

 as opposed to models 

that use LG for each partition (2P_LG/3P_LG/6P_LG).   

Model 2/3/4: Structurally constrained partition models of protein evolution  

(5)    
   

    
      

   
   

 

(6)    
      

   
  

    
     

 

 

Here, P indicates the structural partition that site k belongs to and        depends on   

because the   weights in are allowed to vary across partitions. The partitions are defined 

as follows: 
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All of the models considered here are time-reversible. Defining   
   

 as the 

stationary frequency of j for the base model, this can be seen by considering the ratio of 

rates of amino acid exchange: 

(7) 
   

   
 

   
    

   
   

   
    

 
  
   

 [
   

   
 
   

   
   

 
   ] [

  
   

 
 
   ] 

Since the ratio of the entries in the rate matrices can be expressed in the form 
  

  
 , it 

follows that the model is time reversible. Moreover the site-specific stationary 

frequencies   
   

 for the model are equal to   , allowing them to  take the form: 

      
   

    
    

   

  
   

 

for non-partitioned models and for partitioned models: 

(9)   
   

   
  

    
     

  
   

    

 

Finally, each model is implemented with a single rates-across-sites (RAS) mixture model 

for which the relative rates of evolution for sites are assumed to be independent and 

identically distributed from a discretized version of a Γ distribution with 8 rate categories 

defined by a single shape parameter α as in Yang (1994).  

 PARAMETER ESTIMATION:  2.2.2

 Most of the parameters in the model including the edge lengths, the α parameter 

from the Γ distribution and   are estimated through maximum likelihood. 

Multidimensional parameter optimization was performed using the nonlinear 

programming routine E04UCF in the FORTRAN77 libraries of the Numerical 

Algorithms Group. Tree topologies for each data set were estimated using RaxML under 

an LG+4Γ model and were fixed for model testing. 

The    parameters are estimated from the observed amino acid frequencies across 

k sites,  ̂ 
   

, as well as the average energy observed by the substitution of amino acid j at 

a given site. From (8) it follows that  
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Substituting the observed site-specific frequencies,  ̂ 
   

 into (10) and taking averages 

across all   sites we obtain an estimate for  ̂  : 

     ̂      ∑
 ̂ 

    
   

   

  
   

 

 

   

 

Because of potential sparseness issues associated with small partitions, our estimation of 

 ̂    for a partition   with   sites is calculated as a mixture of that obtained for averages 

across sites in the whole alignment and averages obtained across a particular partition. 

(12)  ̂ 
 

  ̂ ∑
 ̂ 

   
 

  
 
     

 
 
   

 
        ̂ ∑

 ̂ 
    

  
 
   

 
 
   

 

 
    

Here,  ̂ is a small positive constant optimized in the range [0,1] and typically estimated 

in the range [0.5,1], chosen to ensure that no  ̂ 
 

  is 0. The proportionality constant  ̂ 
 

  

and  ̂  never requires explicit calculation due to the final Q matrix being rescaled so 

that  ∑         Note that the estimate of    depends on   that is embedded in the Ej
(k)

 

term. As maximum likelihood estimation of these parameters proceeds, every new value 

of the parameters in   leads to a new  ̂ .  

 DATASETS FOR PERFORMANCE EVALUATION. 2.2.3

As a starting dataset we used the 300 test alignments plus structures described by 

Le and Gascuel (2010). These 300 datasets were selected randomly from 1771 non-

redundant datasets obtained from the HSSP database (Le and Gascuel, 2010).  The 

majority of datasets chosen were made up of enzymes involved in anabolic and/or 

catabolic metabolic pathways where loss of function would likely affect organismal 

fitness. The intensive tests we conducted using our model required that we reduce the 

number of datasets further so we took a representative sample of 48 alignments from the 

supplied test dataset (Fig A3). Due to the difficulty assigning an energy score to gaps in 

alignments we ignored all gap-containing sites. The resulting 48 datasets varied in length 

from 103 to 897 non-gap containing sites and contained between 11-and 93 sequences 

each (Table S1). For each dataset a tree was estimated using RAXML (Stamatakis, 2006) 

under the LG+4Γ model. As a measure of the amount of information in each dataset we 

define the ‘information content’ as the number of non-gap sites x the number of 
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sequences x the normalized tree branch length (the total tree length divided by the 

number of branches in the tree).  

Solvent accessibility and secondary structure classifications were obtained using 

DSSP (Kabsch and Sander, 1983; Joosten et al., 2011) with the protein structure for the 

seed sequence in order to determine the solvent accessibility and secondary structure 

classification of each site in the alignment.  As in Le and Gascuel (2010) and Goldman et 

al., (1998), we used a 10% relative accessibility threshold in order to assign sites to 

exposed versus buried categories, which leads to roughly equal numbers of buried and 

exposed residue assignments.  Each dataset was partitioned in three different ways for 

each partition model tested in this paper. For the two partition model (2P/2P_LG) we 

used two solvent accessibility categories exposed and buried and the average dataset had 

61% exposed sites and 39% buried sites. For the three partition model (3P/3P_LG) we 

partitioned the dataset into β-sheet(extended)/α-helix/Other categories with dataset wide 

average occupancies 22%, 28% and 47% sites respectively. Finally for the six partition 

model (6P/6P_LG) we combined the two previous partitions into six secondary 

structure/solvent exposure categories which on average contained around 16% of sites 

per partition. The number of sites found in each category did vary from alignment to 

alignment and has been summarized in supplementary table S1. The protein structures 

considered here ranged in resolution from 1.30Å to 5.00Å. We subjected each of the 48 

structures to several rounds of energy minimization using the FoldX force-field in order 

to correct minor errors that may have resulted from the mis-positioning of side chains due 

to low x-ray crystallographic resolvability. Furthermore, since we were using FoldX 

potentials to evaluate the free energy of each amino acid substituted at each site, and this 

software tool involves a local minimization of amino-acid positions after a mutant is 

generated, this initial minimization maximized the accuracy and consistency of calculated 

changes in the free energy of folding of the protein structure.  

The FoldX empirical physical potential (FoldX), PROSA pairwise β-carbon-based 

side-chain pairwise interaction potentials (P_PROSA), and PROSA combined 

(C_PROSA) pairwise interaction and surface potentials (the combination is performed by 

PROSA using default parameter settings) were used to introduce structural constraints 

into our model. For each site in the alignment, an approximation to        was obtained 
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for substituting each of the 20 amino acids into the wild type protein sequence at the site. 

Creating a protein mutant in FoldX involves first mutating the residue in question to itself 

followed by an adjustment to neighbouring residues in order to find the energy minimum 

for the wiltype folding energy (    ).  We correct for a resulting slight variation in      

across sites by scaling each     values such that                 . PROSA does not 

have the same variations in      across sites, but the same transformation was applied to 

P_PROSA and C_PROSA energy values. The resulting distribution for     across sites 

for P_PROSA β-pairwise potentials (Figure A1) and FoldX (Figure A2) has been 

depicted for an example PDB (1XG2).  

The FoldX, P_PROSA and C_PROSA energies derived above were incorporated 

into our models utilizing       in the calculation of    and     above. To determine if 

a mixed statistical potential/empirical potential based approach would perform better than 

either potential on its own, for the FoldX+C_PROSA mixed potential we associated a 

different  parameter with each kind of potential      . 

 MODEL COMPARISON BY LIKELIHOOD RATIO TESTING AND BY AIC. 2.2.4

Most models presented thus far are nested with the LG + Γ as the simplest basis 

model and parameter estimates required for model nesting are shown in Figure 2.1a for 

    . Partition models generalize to the single partition model when  =0 and energy 

models generalize to their equivalent non-energy models when    .  Model nesting is 

possible as the more complex partitioned models will become equivalent to the simpler 

non-partition (or simpler partitioned models) when the relevant partition-specific τ 

parameters of the more complex models are constrained to have the same values. 

Furthermore, under the simpler null model, the relevant partition-specific  ̂ ’s will tend to 

equality as the number of sites in each partition increases. Nested models permit 

likelihood ratio tests (LRTs) to be used to compare model fits. The likelihood ratio test 

(equation 12) expresses, for two nested models, the increase in log-likelihood expected 

for data under a more complex model.  

(12) Likelihood ratio test statistic (LR)                    
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The significance of an observed improvement by a more complex model is measured by 

calculating a p-value associated with the probability, under the simple model, that the 

observed improvement in likelihood occurred by chance.  For standard LRTs, the p-value 

obtained using that LR is known to be chi-square distributed with degrees of freedom 

equal to the difference in the number of adjustable parameters between the models in 

question (the number of parameters are summarized in supplementary table S2).  For this 

particular setting, the simpler models are on the boundary of parameter space of the more 

complex model and as a result the true null distribution is usually a mixture of chi-

squared distributions with different numbers of degrees of freedom (Self and Liang, 

1987).  It follows that using the standard chi-squared distribution as described above for 

our application, the LRTs will be conservative: the probability of false rejection for an  -

level test is less than  .  For the purpose of this analysis the  -level threshold of 0.01 was 

used to denote a significant LRT.  

For the comparisons of non-nested models, we used the Akaike Information 

Criterion (AIC) (equation 13) to get an absolute ranking of model fit between non-nested 

models.  Below,   refers to the number of free parameters in the model and   is the 

maximized value of the likelihood function for the estimated model. 

(13) Akaike Information Criterion        

  



 

 34 

 

 

 
  



 

 35 

 

Figure 2.1: Allowing structural constraints to vary across structural environments often 
improves SCPMs and always improves non-structurally constrained counter parts. 
  

Likelihood ratio test (LRT) results for nested models amongst the 48 datasets using the 

FoldX force field  or P_PROSA or C_PROSA statistical potentials or both in the 

calculation of    
    

. (a) Conditions for model nesting between the models implemented 

in this paper. Arrows indicate that nesting from a more complicated model to a simpler 

model along with the parameter conditions that satisfy nesting. The number of LRTs 

rejecting the null hypothesis using a p-value of 0.01 along with FoldX (b), P_PROSA(c), 

C_PROSA(d), and FOLDX+C_PROSA (e) in the calculation of    
    

. For Partition 

models, those using partition specific exchangeability matrices as (   
   are in bold (Le 

and Gascuel, 2010) while those using LG are not.  
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 EVALUATING GENERAL TRENDS IN SITE-SPECIFIC MATRICES: 2.2.5

To understand general trends in site-specific rate matrices produced by our four 

models, we have subsampled 1092 Q matrices from sites in our dataset for each 

model/partition combination. Putting these matrices together, each     entry in the matrix 

consists of a distribution of 1092 amino acid exchangeabilities. We obtained the ratio of 

the exchangeability observed for that site compared to the exchangeability observed in a 

general substitution model using LG+8Γ. In this way we obtained a matrix where each i,j 

entry contains 1092    
 :    

    ratios. To understand general trends in how the energy 

model differed from standard phylogenetic models, we obtained a measure of central 

tendency (the median) and variance (the mean average absolute value of the deviation 

from the mean) for each entry in this matrix of ratios. This calculation was completed 

after removing the top 10% and bottom 10% of extreme values to remove any outliers 

that might obscure the general trends we were trying to portray. Heat maps of the median 

Q ratio matrices can be found in Figures 2.3,2.5 A15-A18. Heat maps showing the mean 

absolute deviation from the median Q ratio matrices can be found in figures A19-A22.  

The size of the subsample was chosen to correspond to the size of our least populated 

partition, solvent inaccessible loop regions. 

We also examined stationary frequencies coming from the Q matrices for the 

same subsamples of sites described above. Median stationary frequencies from our 

subsamples have been presented in figure 2.4, and figures A7-A10. An examination of all 

the stationary frequencies coming from these same sites/models/partitions for all 1092 

sites has been presented as boxplots in figures A11-A14.   

 MEASURING PARTITION-SPECIFIC SIGNIFICANCE TOWARDS OBSERVED 2.2.6

LIKELIHOOD GAINS: 

To assess the performance of our nested models across various structural categories we 

define a partition-specific significance factor (PSSF) (equation 13 below) that expresses 

the ratio of the average likelihood difference within a partition C (  ̅ ) between the 

complex model and a simpler model to the same quantity observed across the rest of the 

sites in the dataset D (  ̅ ).  

(13)                                                  ̅    ̅  
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Consider model M1 nested within model M2.  A PSSF>0 implies M2 fits a site category 

best while PSSF<0 suggests the opposite. PSSF 1 indicates that the likelihood gain 

within a site category is on par with the average likelihood gain across the remaining 

sites. PSSF>1 indicates that a site category is particularly well modeled under the 

partition being evaluated while 0<PSSF<1 indicates a smaller contribution to the 

likelihood gain.       

 IDENTIFYING SITES POTENTIALLY INVOLVED IN PROTEIN-2.2.7

PROTEIN/PROTEIN-LIGAND INTERACTIONS.  

 To assess the performance of our model at sites potentially involved in protein-

protein and protein-ligand interactions, we searched the inferred biomolecular interaction 

server (http://www.ncbi.nlm.nih.gov/Structure/ibis/ibis.cgi) for sites amongst our 48 

datasets known to be involved in interactions. We constrained our search to only include 

sites with at least partial conservation of binding sites amongst non-redundant 

homologous members of binding site clusters. For protein-protein interactions, we 

ensured that sites returned were validated by the Protein interfaces, surfaces and 

assemblies service (PISA) at the European Bioinformatics Institute 

(http://www.ebi.ac.uk/pdbe/prot_int/pistart.html). For protein-ligand or protein-ion 

interactions we constrained our search to those flagged as biochemically relevant. 

  

http://www.ncbi.nlm.nih.gov/Structure/ibis/ibis.cgi
http://www.ebi.ac.uk/pdbe/prot_int/pistart.html


 

 38 

 

 

2.3 RESULTS AND DISCUSSION: 

 STRUCTURAL CONSTRAINTS SIGNIFICANTLY IMPROVE INDEPENDENCE 2.3.1

MODELS OF PROTEIN EVOLUTION: 

Our structurally constrained models of protein evolution were applied to the 48 

test datasets and the results are summarized in Figure 2.1 as the number of likelihood 

ratio tests rejecting the simpler models in favour of the more complex structurally 

constrained models.  Models incorporating structural constraints are always significantly 

better than models that do not regardless of the potential used to generate the energies, 

the number of partitions utilized, or the backing substitution matrix chosen for each 

partition.  In every case the single partition LG+ΔG model was significantly better than 

the non-energy alternative with a p-value that decreased as more sites and sequences 

were added to the alignment (Figure 2.2a). Similarly, our partitioned energy models 

utilizing LG for each partition outperformed a partitioned model that was not based on 

energy but only had partition-specific frequencies. The support for our partition energy 

model was high with  ̂ values (the parameter controlling the mixture of 

  
                

        ) greater than 0.5 for the great majority of partition energy 

models (Figure A4).  

 The benefit of partitioning is clear for FoldX (Figure 2.1b), P_PROSA (Figure 

2.1c), and  FoldX+C_PROSA (Figure 2.1e) energies where 45, 37 and 42 of the datasets 

were improved by partitioning sites into the 2 partition solvent exposure categories.   

Combining Prosa β pairwise potentials with surface potentials in the C_Prosa potential 

(Figure 2.1d) reduced the requirement for partitioning but 27 datasets still demonstrated 

significant likelihood gains upon partitioning for solvent exposure. The 6 partition model 

showed a similar trend with 44 datasets performing significantly better than the single 

partition energy model using FoldX energies and 28 performing significantly better using   
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Figure 2.2: Likelihood gains over a standard structurally constrained model can be arrived 
upon with mixed statistical-potential/empirical potential approaches and by partitioning for 
secondary structure and solvent accessibility. 

LHS:  –              obtained for the likelihood ratio test of the (a) 1-partition (LG+ΔG), (b) 2-

partition 2P+ΔG, (c) 3-Partition (3P+ΔG) and  (d) 6-Partition (6P+ΔG) structurally constrained 

models when compared to LG (LG+ΔG) or LG+ΔG (2P+ΔG, 3P+ΔG, 6P+ΔG). The gray 

horizontal bar corresponds to a p-value of 0.01. (Alignment information = [number of taxa] × 

[number of sequences] × [normalized branch length])  RHS:  Mean likelihood differences for 

sites binned into 10% identity categories when compared to an equivalent P_PROSA model, 

which tended to be worst performing. Plots are shown for the 1 partition (e), 2 partition (f), 3-

partition(g) and 6 partition(h)  model. 
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P_PROSA energies, 22 with C_PROSA and 36 performing better when combining the 

two. While substantially fewer partitioned models appear to be preferred to simpler 

unpartitioned (or less partitioned) models when P_PROSA and C_PROSA energies are 

used, it should be noted that with so many partitions some categories were sparse (Table 

S1).  9/10 and 8/10 datasets that had more than 30 sequences and at least 20 sites per 

partition class preferred the 6 partition model over the single partition model using 

P_PROSA or C_PROSA potentials.  Indeed a clear trend can be observed demonstrating 

that datasets containing more information (Figure 2.2b,c,d) were more likely to be 

associated with smaller p-values for LRTs. This trend continued with the 3 partition 

model only for FoldX and FoldX+C_PROSA where 37 and 26 of the datasets were better 

modeled respectively by the 3 partition secondary structure model. For most models 

tested, the estimates of the rates-across-sites parameters, the     (Figure A5) and 

normalized tree branch lengths (Figure A6) remain relatively unperturbed by the 

introduction of the energy potentials into the site-specific models.   

It should be noted that there is a fundamental difference between utilizing FoldX 

and Prosa pairwise potentials. The calculation of  ̂  (equation 11) relies in part on the 

averaging of the term  
   

   

 that reflects the average effect of mutating to an amino acid j 

over the entire dataset. P_PROSA and C_PROSA potentials are a simpler approximation 

to           that benefit somewhat from partitioning for solvent exposure but can not 

easily generalize trends across secondary structures. FoldX on the other hand is much 

more heterogeneous amongst these differing structural environments. It makes sense then 

that models using FoldX are greatly assisted by the calculation of  ̂ 
  across specific 

structural categories where a more accurate value for the average effect of mutating to an 

amino acid j can be obtained.   

 A HYBRID FOLDX+C_PROSA POTENTIAL ACCOMMODATES 2.3.2

DATASETS WITH VARYING EVOLUTIONARY RATES AND BIOPHYSICAL 

CONSTRAINTS:  

 Force fields have typically been avoided in the construction of SCPMs due to 

their computational complexity and the assumption that they might bias sequences too 

strongly towards the reference structure used to generate them. Here, we more closely 
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examine the effects of adding more realism into the SCPM through the use of empirical 

physical potentials as well as our mixed physical/statistical potential approach.  

 The LRT p-values obtained across the 48 datasets (Figure 2.2a) indicate that 

models based on the FoldX potential and the mixed FoldX+C_PROSA potentials are 

most often preferred to models using P_PROSA or C_PROSA Energies. AIC test score 

results show a broadly similar pattern (Supplementary document 1). To better understand 

how the two methods of obtaining    
    

 differ in their performance, we examined the 

distribution of average site-wise likelihood differences between our various    

approximations compared to P_PROSA (our worst performing model) binned across 

varying degrees of conservation (Figure 2.2e). For the general LG+ΔG model, it is clear 

that PROSA is better able to model highly variable sites where the same amino acid 

appeared in <50% of sequences, which represents 17% of the sites over all the 48 

datasets. The remaining 83% of sites displaying >50% identity were better modeled by 

FoldX energies. This suggests that the FoldX empirical force field tends to bias the model 

towards the reference structure (and sites that are identical to this structure in homologs) 

while P_PROSA and C_PROSA more flexibly model variable sites. The hybrid statistical 

potential/empirical force field was generally observed to perform at least as well as 

P_PROSA and C_PROSA on these highly variable sites while surpassing all models for 

more conserved sites. Thus, the hybrid statistical potential/empirical force field approach 

appears to strike a balance between structural specificity and flexibility across sequences 

in the alignment.   

 PARTITIONING FOR SOLVENT ACCESSIBILITY AND SECONDARY 2.3.3

STRUCTURE.  

 We investigated if allowing biophysical constraints to vary across different 

secondary structure and solvent accessibility categories would improve model fit when 

assessed over different levels of sequence conservation. Our partitioned models 

performed better on the more variable sites as can be observed by average site-likelihood 

differences tending to become more positive, with respect to P_PROSA, across both 

variable and invariable sites (Figure 2.2f,g,h). Notably, partitioning for solvent exposure 

improved the performance FoldX-based analyses across highly variable sites. Again, the 

rationale for this behaviour is likely that partitioned structurally constrained phylogenetic 
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models utilizing FoldX take into account environment-specific properties of the energy 

function leading to a model that better accounts for environment-specific sources of 

amino-acid variability. 

 PARAMETER ESTIMATES FOR A GENERAL STRUCTURALLY 2.3.4

CONSTRAINED MODEL OF PROTEIN EVOLUTION. 

STATIONARY FREQUENCIES:  

 Parameter estimates in the absence of partitioning have been summarized in Figure 

2.3.  Median stationary frequencies reported for a subsample of 1092 sites (Figure 2.3a-d) 

are in general comparable to those of the standard LG model. However, a sign test 

reveals that many of the differences although slight are statistically significant (  

    ). Proline, for example, displays a depressed stationary frequency that is most likely 

the result of its generally unfavourable impact on protein stability. Boxplots for the 

stationary frequencies calculated for these 1092 sites display a high degree of variation 

about the median Figure A7-A10 (LG+ΔG). In general P_PROSA and C_PROSA 

stationary frequencies tended to be much less variable than FoldX or FoldX+C_PROSA 

stationary frequencies. The distribution of stationary frequencies amongst different amino 

acid types shows a clear bias to stationary frequencies between 0 and 0.2. Nearly all 

residue types were represented in at least some sites with stationary frequencies greater 

than 0.2, which is significantly greater than the median stationary frequency of a residue 

in the standard LG model (Also depicted in Figure 2.3). Residues showing the highest 

degree of variation in stationary frequency were small aliphatic amino acids glycine, 

alanine and the branched-chain amino acids leucine and valine. The wider range of amino 

acid stationary frequencies observed when using FoldX and FoldX+C_PROSA energies 

demonstrates the improved plasticity of these energy potentials to model the diversity of 

site patterns in an alignment.  Interestingly, glycine appeared to be the most versatile 

amino acid in terms of stationary frequencies having, for a minority of sites, stationary 

frequencies approaching 1. On average, sites containing at least one amino-acid 

stationary frequency >0.2 were well modeled by our structurally constrained model of 

protein evolution as the median value for the likelihood difference between the energy 

model at these sites and the no-energy model was always positive (data not shown). 

Again glycine is unique in exhibiting a large tail away from the median stationary 
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frequency when using FoldX energies with one site even assuming a stationary frequency 

near 1.  A mutation to a glycine can be quite a significant change as exemplified by the 

broad range of energy values assigned by FoldX to these mutations in Figure A2 although 

these large stationary frequencies for glycine were mostly associated with significant 

likelihood gains at the site.  

 The median stationary frequencies of amino acids for our structurally constrained 

partitioned models are plotted against those obtained for a single partition energy model 

across 1092 randomly selected sites for models using FoldX+C_PROSA in Figure 2.4 

(this model shows the same general patterns as P_PROSA (Figure A11), C_PROSA 

(Figure A12), FoldX (Figure A13)). The single partition model displayed a range of 

median frequencies with the lowest frequencies corresponding to rare amino-acids such 

as “W” or “C” having median frequencies near 0.01 while the most frequent amino acids 

are small hydrophobic “LVA” having median frequencies near 0.1.  The 2P_LG+ΔG and 

6P_LG+ΔG models show a clear trend where the larger hydrophilic amino-acids 

“RKQHNEDY” have much smaller stationary frequencies in partition models evaluated 

over buried categories (X) than exposed categories (E). Conversely, though perhaps not 

as clear in the case of 6P_LG, the hydrophobic amino-acids “AMVIL” display higher 

frequencies in buried categories than when exposed to solvent.  We limit our discussion 

of the 3 partition model to those incorporating FoldX energies, which were the analyses 

that showed the clearest likelihood gains. Here, 3P_LG displayed several trends in 

agreement with the literature (Costantini et al., 2006; Jiang et al., 1998).  Residues 

typically associated with β-sheets (B) displayed median stationary frequencies similar 

“TMFYCW” or larger “VIL” than their equivalent calculated in the general energy 

model. Residues typically observed in α-helices (H) displayed a similar trend 

(“MALEK”). Furthermore residues often observed to be destructive to secondary 

structure formation (“GP”) displayed lower median stationary frequencies in both the α-

helix category and β-sheet category while larger stationary frequencies were observed in 

the Other category (O). Similar to the single partition models, a larger variation in the 

stationary frequencies was observed for models incorporating FoldX energies over 

models utilizing P_PROSA or C_PROSA energies (Figure A7-A10).  
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Figure 2.3 The general structurally constrained model: Effects on stationary frequencies and 
the median Q.  

Stationary frequencies sampled from single partition models utilizing P_PROSA 

potentials (a), C_PROSA potentials (b), FoldX potentials (c), FoldX+C_PROSA 

potentials (d). Columns with bold lettering represent statistically significant differences 

by the sign test at a p-value threshold of 0.01. Median stationary frequencies were 

obtained from randomly sampling 1092 sites from amongst 15028 sites in our dataset. 

We calculate the median ratio of    
   

 entries found using the LG+ΔG to those found 

when using the standard LG model.  
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Figure 2.4: General trends in the stationary frequencies derived for partition-specific models. 
 

We plot the median stationary frequencies derived from 1092 sites randomly sampled 

from the 48 datasets in this paper using both FoldX+C_PROSA energies when compared 

to the stationary frequencies observed under the LG+ΔG model for the 2 partition (a), 3 

partition (b) and 6 partition (c) model. Section 2.2.5 details the methodology used to 

produce this figure.  
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THE SUBSTITUTION MODEL: 

The median ratio of amino-acid exchangeabilities     
   

    
   for subsamples of 1092 sites 

are shown for the four single partition models in this dataset (Figure 2.3e-h). Models 

utilizing P_PROSA and C_PROSA potentials displayed differing patterns with respect to 

LG than FoldX. In particular, P_PROSA and C_PROSA tend to show an increased 

probability of exchange away from smaller hydrophobic amino-acids such as “AMVILF” 

to a variety of hydrophilic and hydrophobic amino acids while FoldX tends to favour 

transitions away from the hydrophilic residues “RNDQEHKS” to hydrophobic amino 

acids. However, many similarities also exist, such as a uniform depression in 

exchangeabilities to both aspartate and proline. Our mixed statistical potential/empirical 

potential approach (Figure 2.3h) has median ratios that significantly resemble those 

observed for FoldX (Figure 2.3f). However, close examination reveals a clear influence 

of C_PROSA (Figure 2.3g) on Q. For example, exchangeabilities to hydroxylated amino 

acids (“ST”) are enhanced in both C_PROSA  (Figure 2.3g) and FoldX+C_PROSA 

(Figure 2.3h) relative to FoldX alone (Figure 2.3f). 

 In order to better understand the site-to-site variability (plasticity) of the entries in 

the Q matrices presented in Figure 2.3, we examined the mean absolute deviation away 

from the median    
   

    
   in the LG+G panel of supplementary figures A19-A22. 

These 4 panels show that residues near the diagonal, which are similar in terms of 

hydrophilicity and size, tend to display large variances in their exchangeability from site 

to site in the alignment. This variance quickly drops as residues become more and more 

physiochemically distinct.  

 The effect of median stationary frequency variation amongst the various structural 

categories is evident upon inspecting the resulting median    
     

   matrices for the 

partitioned FoldX+C_PROSA models (Figure 2.5). In general, median Q matrices 

become more heterogeneous moving from the 2-partition and 3-partition models to the 6 

partition model. The two partition model and the 6 partition models clearly show that the 

exchangeabilities to hydrophilic amino acids has increased in the exposed categories 

while the opposite is true for buried categories. Amino-acid propensities for various 

secondary structure classes is known to vary amongst fold types (Costantini et al., 2006; 
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Jiang et al., 1998).  Despite the pooling of sites from different fold classes here, the 3-

partition model does display some expected trends, such as an increased propensity of 

hydrophobic amino-acids such as “CVLIMFY” in beta-sheets, a suppression of prolines 

and glycines in both sheets and helices, and their more probable incorporation in loops.  

Amino-acid propensities have been shown to vary amongst secondary structure classes in 

different solvent exposures (Momen-Roknabadi et al., 2008), thus it is interesting to see 

here that while the 6 partition model has some similarities the 2 partition model, there are 

differences due to the additional incorporation of partitioning by secondary structure.  

These differences increase the ability of the models to better fit a wide range of 

exchangeabilities observed in these specific structural environments. The mean average 

deviation about these median ratios reveals that the same general trends are observed as 

in the single partition model with similar amino-acids in general showing more variability 

in    
   

 than dissimilar amino acids (figures A19-A22).  
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Figure 2.5: Median Q matrices for models utilizing a combination of FoldX and C_PROSA 
energies. 

After running our structurally constrained partition models in all 48 datasets we randomly 

sampled 1092 sites being analyzed under a particular partition category/model 

combination. We calculate the median ratio    
      

    
    entries found using the various 

models (M) analyzed in this paper.  
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 FOLDX OUTPERFORMS PROSA IN THE HYDROPHOBIC PROTEIN 2.3.5

CORES WHILE MAINTAINING A COMPARABLE PERFORMANCE ON THE 

SURFACE. 

The 48 datasets analyzed here constitute 15028 sites without gaps. Each site can 

be categorized into the various structural environments analyzed in this paper. The PSSF 

and percent of sites with likelihood differences greater than 0 obtained between the 

various energy models compared to LG and LG+ΔG or back to the same partition model 

but without energies has been summarized in Table 2.1 for models tested. A main 

difference between PROSA-based and FoldX-based models appears to be with regards to 

the enhanced ability for FoldX to model the hydrophobic core of the protein structure.  

The comparison between LG+ΔG and LG reveals that 89% of buried sites are modeled 

better by LG+ΔG:FoldX than LG while only 64% and 66% of sites are better modeled 

when using the P_PROSA or the C_PROSA in LG+ΔG.  On the other hand, C_PROSA 

performs best on 64% of solvent exposed sites while P_PROSA and FoldX have similar 

performance for these sites. The best performing model combines both FoldX and 

PROSA energies. While its performance in the hydrophobic core of the protein structure 

is not quite as good as FoldX, it is still significantly improved with respect to C_PROSA 

with 82% of sites being modeled better than LG. Exposed sites are generally improved 

for both FoldX and C_PROSA energies with 70% being better modeled by the 

FoldX+C_PROSA combined potential over LG which is greater than the 62-64% arrived 

at from the other energy potentials on their own.  

This bias towards modeling the protein core induced by utilizing more complex 

potentials like FoldX is what we strive to correct for by allowing the parameter  ̂ 
  to 

vary between significant structural environments by partitioning. Since the bulk of the 

likelihood gains of LG+ΔG models over the standard LG model come from sites in the 

hydrophobic core, parameter estimates will favour increasing the likelihood of these sites 

to the possible detriment of sites exposed to the surface. While C_PROSA energies do 

not suffer from this imbalance, modeling approximately 63-64% of sites better than LG 

for both exposed and buried sites, it is important to note that likelihood gains associated 

with C_PROSA energies are significantly smaller regardless (Figure 2.2a).   
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Table 2.1: Comparing LG+   models to LG. 
Partition-specific significance factors and the % of likelihood differences greater than 0.  

  All sites 
 

Exposed Buried 

Energy type Residue Hydrophobicity Classa PSSFb %>0c PSSFb %>0c PSSFb %>0c 

P_PROSA 

All Sites 1.00 63% 
1.02 62% 0.97 64% 

Hydrophillic 1.11 66% 
1.31 68% 0.59 61% 

Hydrophobic 0.77 60% 
0.11 49% 1.08 65% 

Other 1.53 63% 
1.58 64% 1.39 62% 

C_PROSA 

All Sites 1 65% 
1.02 64% 0.98 66% 

Hydrophillic 1.02 66% 
1.33 70% 0.24 55% 

Hydrophobic 0.87 63% 
0.06 50% 1.25 70% 

Other 1.46 66% 
1.53 66% 1.26 65% 

FoldX 

All Sites 1 74% 
0.5 62% 1.59 89% 

Hydrophillic 0.5 63% 
0.28 55% 1.08 82% 

Hydrophobic 1.48 87% 
0.87 75% 1.77 93% 

Other 1 69% 
0.69 63% 1.84 84% 

FoldX+C_PROSA 

All Sites 1 76% 0.76 70% 1.28 82% 

Hydrophillic 0.77 72% 0.79 72% 0.71 72% 

Hydrophobic 1.18 81% 0.54 67% 1.48 87% 

Other 1.19 72% 1.06 70% 1.53 78% 

  All sites Exposed Buried 

Counts 

All Sites 15028 8106 6922 

Hydrophillic 6605 4757 1848 

Hydrophobic 6826 2181 4645 

Other 1597 1168 429 

a: Sites containing > 80% hydrophobic/hydrophilic residues labeled as such. All other sites pooled into an 
Other category.  

b: partition-specific significance factor =  ̅̅ ̅
    ̅̅ ̅

 .  
c: % of sites in the category with likelihood differences greater than 0.  
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Table 2.2: Comparing 2P+   models to LG. 
Partition-specific significance factors and the % of likelihood differences greater than 0. 
  All sites Exposed Buried 

Energy type Residue Hydrophobicity Classa PSSFb %>0c PSSFb %>0c PSSFb %>0c 

P_PROSA 

All Sites 1 67% 1.02 65% 0.98 70% 

Hydrophillic 1.15 70% 1.49 75% 0.28 59% 

Hydrophobic 0.8 65% -0.18 44% 1.26 75% 

Other 1.23 64% 1.34 62% 0.96 68% 

C_PROSA 

All Sites 1 68% 1.04 66% 0.95 70% 

Hydrophillic 1.08 69% 1.48 75% 0.06 53% 

Hydrophobic 0.85 67% -0.11 46% 1.31 77% 

Other 1.29 66% 1.42 65% 0.93 68% 

FoldX 

All Sites 1 78% 0.9 73% 1.12 84% 

Hydrophillic 0.82 74% 0.96 77% 0.48 68% 

Hydrophobic 1.18 85% 0.77 69% 1.38 92% 

Other 0.95 69% 0.9 67% 1.08 74% 

FoldX+C_PROSA 

All Sites 1 78% 0.95 74% 1.06 82% 

Hydrophillic 0.88 75% 1.04 78% 0.48 68% 

Hydrophobic 1.08 82% 0.65 68% 1.29 89% 

Other 1.14 72% 1.12 71% 1.19 75% 

  All sites Exposed Buried 

Counts 

All Sites 15028 8106 6922 

Hydrophillic 6605 4757 1848 

Hydrophobic 6826 2181 4645 

Other 1597 1168 429 

a: Sites containing > 80% hydrophobic/hydrophilic residues labeled as such. All other sites pooled into an 
Other category.  

b: Partition-specific significance factor =  ̅̅ ̅
    ̅̅ ̅

 . 
c: % of sites in the category with likelihood differences greater than 0.  
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 HIGHLY VARIABLE SITES IN EXPOSED REGIONS OF THE PROTEIN ARE 2.3.6

BETTER MODELED BY PARTITIONED SCPMS 

For models using FoldX or FoldX+C_PROSA energies, partitioning the dataset 

into solvent-exposure and secondary structure based categories improves the performance 

of exposed residues to the mild detriment of buried residues.  While only 62%/70% 

(FoldX/FoldX+C_PROSA) of residues exposed to solvent were modeled well by LG+ΔG 

when compared to LG (Table 2.1), 73%/74% and 74%/76% of exposed residues were 

better modeled by the 2P_LG+ΔG  and 6P_LG+ΔG models (Table 2.2, Table A4).  

While partitioning on secondary structure only showed mild gains, all three partitions 

showed approximately a 5% improvement in residues having a positive likelihood 

difference (see Table A3).  

 LE AND GASCUEL MATRICES:  2.3.7

Despite the clear likelihood gain reported by Le and Gascuel (2010) when using the Le 

and Gascuel partition-specific substitution matrices without a structural constraint, there 

was still a significant amount more to gain from incorporating structural constraints into 

the model.  Indeed all 48 datasets were significantly improved by adding either PROSA, 

C_PROSA, FoldX or FoldX+C_PROSA structural constraints to the 2P, 3P and 6P Le 

and Gascuel partition-specific basis matrices  (Figure 2.1).  Of further interest, comparing 

the AIC of models that used partition-specific basis matrices (Le and Gascuel, 2010) and 

models that used the single LG basis matrix showed that partition-specific basis matrices 

were more often preferred by SCPMs utilizing P_PROSA and C_PROSA energies but 

less often preferred by models incorporating FoldX or mixed FoldX+C_PROSA energies 

(Table 2.3).  Here, 2P_LG+    was favoured over 2P +   only 18/19 times out of 48 

for P_PROSA/C_PROSA energies respectively and 27/28 times out of 48 for 

FoldX/FoldX+C_PROSA energies. The same was not true for 3P+   vs 3P_LG+    

where, in general, almost all models preferred utilising LG as    
      instead of the 

partition-specific basis matrices. Finally, following a similar pattern as the 2 partition 

model, for the 48 datasets 6P_LG+   was favoured over 6P+   18/19 times for 

P_PROSA/C_PROSA and 28/31 times for FoldX/FoldX+C_PROSA. Even the single 

partition energy model LG+   was often preferred by AIC over any of the Le and 

Gascuel partition-specific basis matrices without structural constraints.  
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While the foregoing results were unexpected, they can be rationalized as follows. 

The Le and Gascuel partition-specific matrices capture generalized substitution rates 

observed amongst secondary structure classes at different solvent accessibilities and it 

seems that the FoldX and FoldX+C_PROSA models, in most cases, are able to capture 

the similar information in a partition-specific context. Moreover, using PROSA or FoldX 

energy constraints provide additional model fit gains by taking into account site-specific 

features beyond secondary structure and solvent accessibility such as residue packing and 

side chain neighbouring interactions.    

Table 2.3: Number of times out of 48 that a model using LG basis matrices was preferred by AIC to a 
model using appropriate secondary structure/solvent accessibility matrices from Le and Gascuel, 2009.  

 

 2P 3P 6P 

P_PROSA 19 40 18 
C_PROSA 18 39 19 
FoldX 27 44 28 
FoldX+C_PROSA 29 43 31 

 

 THE PERFORMANCE OF SCPES IN THE VICINITY OF PROTEIN-PROTEIN, 2.3.8

PROTEIN-LIGAND INTERACTIONS. 

 Important protein-protein and protein-ligand interaction sites as well as sites that 

were not structurally constrained at all were expected to be poorly modeled by SCPEs 

compared to sites involved in interactions that stabilized the overall protein fold. We 

assessed whether our structurally constrained partition models could be used to highlight 

areas where structural constraints are not sufficient to model the evolutionary dynamics at 

sites of interaction. 

Figure 2.6 illustrates how our model could be used in identifying sites involved in 

functional interactions to other molecules using the example of pectin methylesterase. 

Pectin, one of the main components of the plant cell wall, is secreted in a methyl 

esterified form and later de-esterified by pectin methylesterases. We used the crystal 

structure of pectin methyl-esterase (PDBID 1XG2) from our dataset and examined the 

differences in the                       between LG+ΔG and LG (Figure 2.6a). This 

initial mapping demonstrates that our general 1 partition energy model may not be 

sufficient to highlight regions involved in extra-protein interactions as there are many 
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poorly modeled regions well away from the active site. The additional improvement 

observed when comparing 6P_LG+ΔG to LG (Figure 2.6b) reveals that residues involved 

in the binding to substrate (Figure 2.6c), product (Figure 2.6d) or a protein inhibitor 

(Figure 2.6e) are generally worse modeled compared to the rest of the protein surface 

(Figure 2.6f). Interestingly, this type of analysis also revealed some evidence of problems 

with the structural constraints implied by our energy models. Sites involved in 

interactions with the inhibitor (Figure 2.6e) are modeled quite well by our general 

structural constraint model (Figure 2.6a) despite the fact that the conservation in the 

sequence here arises from interactions with the inhibitor and not a constraint for the 

overall protein fold. Figure A23 that compares 6P_LG+ΔG to LG+ΔG reveals that the 

active site and inhibitor binding site are much more poorly modeled for the 6 partition 

model relative to the single partition model. Although the 6 partition model fits better 

than LG at these sites, many residues on the fringes of the active site are poorly modeled 

with respect to LG+ΔG.  This indicates that the additional structural specificity of 

information harvested by 6 partition models will lead to this model being ‘positively 

misled’ if there are important structural/functional features constraining sites that are not 

included in the energy calculations.  

Similar analyses of the distributions of the PSSF for datasets containing 

interacting sites meeting our criteria inferred from the biomolecular interaction server 

(see methods) are summarized in Figure 2.7. We inspected all interacting sites in our 

protein structures and often found that at least one of our four models would highlight 

some of the residues involved in the binding sites defined by PISA. However, it is most 

often the case that these binding sites are relatively conserved and show at least some 

improvement in fit (0<PSSF<1) for all our structurally constrained models relative to 

non-energy models. Thus, we caution that, while our method can be used to illuminate 

sites involved extra-protein interactions, some sites may still be missed if negative site 

likelihood differences relative to non-energy models are the only criteria used to 

determine them.   
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Figure 2.6: Using structurally constrained models of protein evolution to identify interaction 
sites.       

Using FoldX + C_PROSA energies, we plot log(Site likelihood) differences (ld) between 

the same site modeled under two models  and map the result onto the structure of pectin 

methyl-transferase (1XG2). (a) Compares LG to LG+ΔG to examine the effect of 

incorporating energies into the model. (b) Compares LG to          to establish the 

effect of partitioning on the model. Blue regions have ld>1 implying the more complex 

model gave a greater site-likelihood.  Red regions indicate ld<0 LG fit that site best. 

Colors in between have 0<ld<1. Partitioning reveals a poorly modeled patch on the 

surface that corresponds well to substrate and product binding sites [(c) ,(d)]  inferred by 

superposition from related protein structures (PDBID: 2NTB and 2NSP) as well as an 

inhibitor binding site present in the original crystal structure (e). (f) Residues potentially 

engaged in hydrogen bonds (cut-off: 3.4Ȧ), hydrophobic interactions (cut-off: 5Å), or 

simply making space for these interaction partners (cut-off: small residues 

“GASPVTCILN” within 5Å) seem to be poorly modeled with respect to the rest of the 

protein. 
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Figure 2.7: PSSF factors for interacting sites plotted against alignment information. 

By treating sites involved in interactions as a structural partition, we plot the PSSF (see 

methods) for sites identified to have interacting partners to ligands or other proteins in 23 

alignments from our dataset. We plot the PSSF against alignment information ([number 

of taxa] × [number of sequences] × [normalized branch length]) to illustrate a slight 

tendency for the PSSF to decrease with increasing alignment information. Plots are 

presented for LG+ΔG (LG+ΔG) and 2P_LG (2P) models utilizing P_ PROSA, 

C_PROSA, FoldX and FoldX+C_PROSA energies.  
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2.4 CONCLUSION: 

We have developed a novel structurally constrained model of protein evolution 

that formalizes the independence energy model framework. Our model is implemented as 

a standard maximum likelihood phylogenetic model in which sites are assumed to evolve 

independently. In four models, we allow parameters to be estimated over the entire 

dataset or separately by solvent accessibility, secondary structure or both. In 16 variants 

of our model we tested each of these models using estimates for    obtained from 

PROSA pairwise β-carbon-based pairwise statistical potentials (P_PROSA), combined 

PROSA pairwise and surface potentials (C_PROSA), the FoldX physics-based empirical 

force field (FoldX) and a combination of both FoldX and C_PROSA potentials 

(FoldX+C_PROSA).  

Regardless of the potential used, we find statistically significant likelihood gains 

over LG from our simple energy model. Models using a combination of physical and 

statistical potentials (FoldX+C_Prosa) tended to outperform models using either potential 

on its own. The FoldX potential better modeled conserved residues and for residues in the 

hydrophobic core of the protein structure, while PROSA performed better at capturing 

more variable sites and on the hydrophilic exterior. Our mixture of potentials approach 

provides the best fit to both the hydrophobic core and solvent accessible region. Allowing 

parameters to be estimated separately for residues on the surface also helps to resolve 

biases in parameter estimates found within the protein core.  

We implemented three additional variants of our models incorporating 

environment-specific substitution models (Le and Gascuel, 2010) as the base substitution 

model instead of LG. While the latter models do not generally perform as well as 

‘backing matrices’ for the energy model as models utilizing LG we find that there still 

significant likelihood gains to be made by incorporating our structurally constrained 

model of protein evolution over these already structurally constrained general substitution 

models.  

Amongst our models, we believe that the 2P_LG model is likely the best 

candidate model to extend in future implementations if the proteins of interest do not 

contain many sites and are very highly conserved. On the other hand, 6P_LG model 

heavily partitions the alignment (Table SI) and while it is generally the best performing 
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model, it requires more data (i.e. variable sites and sequences) to justify the additional 

adjustable parameters that must be estimated from the data. Of all the partitioned models, 

the 3P_LG model improves model fit over the non-partitioned energy model the least. 

The structurally constrained model we have implemented is a comparatively 

simple SCPM because it is based on single point substitutions at a site and it cannot 

handle multiple substitution scenarios that are accounted for by both SEPMs and DEMs. 

This is not necessarily a negative feature however, as the accuracy of the free energy 

calculations is likely to become inaccurate as the sequence in question drifts away from 

that of the template structure used (Khatun et al., 2004). This is especially likely for 

empirical effective energy potentials which are trained to approximate experimental free 

energy changes in databases, such a ProTherm, of proteins with single to just a few 

substitutions (Kumar et al., 2006).  Furthermore, by simplifying the process of generating 

rate matrices, we have the ability to explore the development of non-stationary 

structurally constrained models that allow drift in the protein structure across the tree. 

Such models could be invaluable in the development of more accurate methods for 

ancestral protein reconstruction and to serve as a null model upon which to detect 

instances of positive evolution.  
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CHAPTER 3  DISCUSSION 

3.1 MODELS IMPLEMENTED: 

 EVOLUTIONARY CONSTRAINTS ON CODING SEQUENCES: 3.1.1

 We have implemented and explored a variety of structurally constrained 

phylogenetic models that attempt to accommodate different biophysical constraints. We 

first introduced a structural constraint using a single parameterization across the entire 

dataset measuring the strength of the structural constraint (Equations 3-4). In this model, 

each site in an alignment is fit using a general substitution model adapted on a site-by-site 

basis to reflect structure-specific constraints on amino-acid replacement. Although this 

specification performs quite well with respect to a model not incorporating structural 

constraints at all, it has a problematic underlying assumption: that constraints can be 

uniformly applied to all sites in protein substructures in the same way. 

 It is not entirely clear that the relationship between structure and function, and 

more specifically the relationship between    and protein fitness should be uniform 

across all structural environments. On one hand, the argument could be made that the 

relationship is negligible only at sites where substitutions could have small effects on   , 

as is the case for many residues on the surface of the protein. However, destabilizing 

mutations do arise in our potentials at the protein surface that, if they are reliably 

calculated, may not affect the overall fold but instead induce only local structural 

rearrangements.  If these substitutions are located distantly from the functional centers of 

a protein, they may have relatively insignificant effects on protein function and be 

considered neutral. In contrast, similarly destabilizing substitutions in the protein core, 

are more likely to affect not only the final protein product but also the kinetics of the 

folding process itself.  

 STRUCTURALLY CONSTRAINED PARTITION MODELS: 3.1.2

In Chapter 2 we challenged an underlying assumption made by all currently 

existing structurally constrained phylogenetic models that structural constraints can be 

applied uniformly across sites. We focused on the development of a series of structurally 

constrained partition models that allow for alternative parameterizations of our general 

model in differing secondary structure and solvent accessibility categories (Equations 5-
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6).  The improvements in model by these partitioned models is consistent with the notion 

that the relationship between    and fitness differs across structural environments 

including solvent exposure and secondary structure. Additionally, while each site may be 

subject to its own substitution process, sites located within specific structural 

environments may share some similarities in their energetic preferences for (or against) 

certain amino acids. For example, sites located within alpha helices will probably exhibit 

low preference for transitions to proline while sites located within the core of a protein 

structure will exhibit elevated transitions between hydrophobic amino-acids and 

potentially reduced transitions to hydrophilic amino-acids. Therefore, another 

contributing factor towards the likelihood improvements we observe in partitioned 

structurally constrained models is in correcting potential errors in potentials by factoring 

in these general trends.  

Understanding that the relationship between folding energy and function differs 

across structural environments opens the possibility for future research directions where 

mixture models that allow several alternative weightings on the structural constraints are 

used to model the evolution of sites in an unsupervised way.  

3.2 OTHER CONSTRAINTS ON PROTEIN EVOLUTION IGNORED BY OUR 

MODELS. 

 MAINTENANCE OF EXTRA-PROTEIN INTERACTIONS REPRESENT 3.2.1

ANOTHER SELECTIVE CONSTRAINT ON SITES. 

 Proteins must interact with other molecules such as ligands, metal co-factors, 

prosthetic-groups or other proteins in order to carry out their function. These interactions 

may be obligate or transient.  Examples of obligate interactions include coordinated metal 

co-factors, prosthetic groups and the alternative domains of oligomeric-proteins, whereas 

transient interactions are exemplified by substrate (ligand) binding and many types of 

protein-protein interactions. Because they are usually directly related to the primary 

function of a protein, interacting sites are constrained to a degree that likely varies 

according to the importance of the interaction (Franzosa and Xia, 2009; Valdar WS and 

Thornton, 2001; Kim et al., 2006; Eames and Kortemme, 2007). While maintaining 

functional interactions to other molecules and proteins is important, some have 

speculated that there is a related constraint to avoid potentially toxic interactions and 
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secondary activities with other molecules or other proteins in the cell (Zhang et al., 2008; 

Deeds et al., 2007).  

 INTRINSIC CONSTRAINTS ON TRANSLATIONAL ACCURACY AND THE 3.2.2

FIDELITY OF PROTEIN FOLDING: 

Translational accuracy and the fidelity of protein folding may also influence 

protein sequence evolution (Gingold and Pilpel, 2011; Yang et al., 2010).  Errors can 

occur during translation whereby the ribosome erroneously incorporates an amino acid 

into the growing polypeptide from a charged tRNA that has a one base mismatch relative 

to the correct codon on the mRNA. Such errors have been postulated to occur in yeast in 

the order of      errors per codon (Stanfields et al., 1998 ) and      errors per codon in 

B. subtilis (Meyerovich et al., 2010). Mistranslation errors that occur when tRNAs are 

incorrectly charged with the wrong amino acid are also postulated to occur at a frequency 

of      errors per amino-acyl tRNA synthesis reaction (Ibba and Sol, 2000). This 

potential for mistranslation error, along with the observation that, in Drosophila, sites 

that are strongly evolutionarily conserved tend to utilize optimal codons, has led to the 

proposal that selection favors optimal codons at sites where mistranslation errors could 

most greatly compromise protein function (Akashi, 1994).  Mistranslation errors may not 

always be significant but can lead to missense substitutions or premature termination that 

can disrupt protein folding, leading to selection for coding sequences that translate with 

reduced translational error rates (Drummond et al., 2005; Drummond and Wilke, 2008; 

Drummond and Wilke, 2009). Even error-free proteins can have a propensity to misfold 

(Dobson, 2003), and thus the fidelity of protein folding has also been suggested as a 

significant constraint on protein evolution (Drummond et al., 2005; Drummond and 

Wilke, 2008; Drummond and Wilke, 2009; Yang et al., 2010). 

 PROTEIN EXPRESSION LEVEL INCREASES THE RELEVANCE OF 3.2.3

STRUCTURAL CONSTRAINTS ON PROTEIN EVOLUTION: 

 The rate at which different proteins accumulate substitutions over time varies. The 

most significant predictor of overall evolutionary rate appears to be the expression level 

of a protein; the more highly expressed a gene is, the slower it tends to evolve (Pal et al., 

2001; Krylov et al., 2003; Drummond et al., 2005; Lemos et al., 2005). It is thought that 
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the strength of the various constraints imposed on protein sequences discussed above are 

amplified with increased expression level (Wolf et al., 2010).   

3.3 FUTURE RESEARCH DIRECTIONS: 

The SSM, IEM and DEM structurally constrained protein evolution frameworks 

presented in the literature thus far rely on the idea that amino-acid exchangeabilities at a 

site remain constant across the tree.  However, this is a problematic assumption because 

protein structures ‘drift’ over evolutionary time. Therefore, as these models are extended 

to problems involving more and more diverse sequences, the substitution model will fit 

less well to those sequences that are evolutionarily distant to the sequence of the 

reference structure. One simple way to address this problem of structural drift that should 

be explored would be to average substitution models generated from different structures 

in the alignment corresponding to relatively distantly-related sequences. However, there 

will still be a point at which sequences will have drifted too far to be fit well by even 

these averaged models. An alternative, more sophisticated, solution is to construct non-

stationary models that ‘drift’over the phylogenetic tree, allowing the substitutions in that 

part of the tree to be preferentially modeled by the nearest structure. Fortunately, the fact 

that we only work with 20 substitutions at each site in our model (in contrast to the DEM 

models) makes the generation of these non-stationary structural constraint models 

feasible. 

 A NON-STATIONARY STRUCTURALLY CONSTRAINED MODEL: 3.3.1

The premise behind the non-stationary structurally constrained model described 

above is that the model implied by a given structure will best ‘fit’ the sequences that are 

closest in sequence to the structure sequence in the phylogenetic tree.   Furthermore, 

multiple sequences whose structures are available could be included in an analysis and 

each of these structures can be used to generate a substitution model. Then the resulting 

substitution models could be mixed in some way proportional to their distance away from 

the leaf structure used to generate the model for a given branch in the phylogenetic tree.   

In such a bottom-up inference of the substitution process, the matrix Q would 

have to change across the tree as the likelihood is evaluated from the leaves to the root 
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node   . Consider a branch    in a rooted tree with node   ancestral to   and having 

branch length  . In our classic structurally constrained model we calculate    (   across 

the tree with the same   used to model each branch for a given site. However, in a non-

stationary model we wish to specify       at   as a mixture of m structurally constrained 

models originating from the subset of leaf taxa that have structures available.  

One possibility is to model each branch as a mixture of alternative structurally 

constrained models in a way similar to that used to deal with rate categories across sites 

(Yang, 1994).  The likelihood for a given site at a given branch would then be computed 

as the weighted average of the likelihoods calculated under each of m distinct models. 

The weights on each alternative model would have to be optimized as separate 

parameters for each branch. However, this is a very computationally complex solution 

and requires the estimation of (2T-3)(m-1) additional parameters for T taxa, requiring a 

large amount of data to obtain reliable parameter estimates. 

Another alternative is to instead optimize a single parameter per structurally 

constrained model that determines a ‘decay rate’ of the structural constraint associated 

with a given model away from the leaf its sequence occupies. Below we demonstrate how 

our structurally constrained model could be used to determine the best weighted average 

of a set of structural constraints emanating from the sequences at the leaf taxa 

              and we then increase the realism, hence complexity, of this model. We 

start with the model specification:   

        
    

   

Where    
  is defined identically to Chapter 2. To obtain the best average of m 

structural constraints  we could optimize a parameter set                  with the 

calculated values of     for each alternative structural constraint such that    

       
        

        
  …       

  .  Optimizing   over the entire alignment 

would lead to the best weighted average of several structural constraints across the tree, 

but this model would be stationary across the tree and not vary across branches.  

We now convert the weighted average model described above to a model 

accounting for structural divergence from one sequence in an alignment to another across 

the tree. Modifying this weighted average involves making the strength of the structural 
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constraint   depend on the distance  =[           ] from leaves containing a 

structural constraint to the most ancestral node (   in the branch    being evaluated.  As 

an example, each structural constraint could take one additional parameter 

(           ) to allow for an exponential decay rate for the m’th energy term in   . The 

resulting non-stationary model would have    at v decay with distance and therefore be of 

the form:  

           
        

      
        

      
        

  …             
   

 APPLICATIONS OF NON-STATIONARY STRUCTURALLY CONSTRAINED 3.3.2

PHYLOGENETIC MODELS:  

ANCESTRAL PROTEIN SEQUENCE RECONSTRUCTION AND PROTEIN STRUCTURE PREDICTION: 

A non-stationary model of this sort would represent a landmark advance in 

phylogenetic modeling capable of more accurately inferring ancestral protein structure 

constraints from a set of present-day known protein structures. Here, ancestral states at a 

node can be estimated by finding the state that maximizes the partial likelihood at that 

node. It would be interesting to see how our non-stationary structurally constrained 

model would perform in ancestral sequence reconstruction when compared to a variety of 

available methods.  

A non-stationary structurally constrained phylogenetic model represents the first 

attempt to make a structural constraint leaf-specific. This affords an opportunity to treat 

the actual protein structure as partially unknown and optimized by the ML. Homology 

modeling, a technique used to infer a protein structure from closely-related sequences, 

typically produces a set of closely scoring protein structures that are similar to correct 

protein structure. This methodology could be extended by first resolving a set of protein 

structure decoys at a taxon and then ranking these decoys according to the likelihood that 

the structural constraints that they imply would lead to the substitution patterns observed 

in the sequence alignment. This could be applied to infer the structure of the protein at 

leaves where no structure is known but where a set of known structures is available for 

the alignment.  
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BENEFITS TO THE STRUCTURAL BIOLOGY COMMUNITY: 

Non-stationary structurally constrained models benefit the structural biology 

community as well. From a structural biology perspective, arguments about biological 

function arise as a discussion of the critical intermolecular contacts that give rise to the 

dynamics and activity of a protein. There are readily available tools incorporated in 

molecular dynamics packages as well as a plethora of experimental methods that allow 

experimenters to test these biophysical hypotheses for any given protein structure. 

However, there is no similar package that assesses whether these biophysical hypotheses 

translate into structural constraints that leave an evolutionary ‘footprint’ in an alignment.   

Non-stationary structurally constrained models could also be used to better 

capture the shifts in substitution patterns frequently observed to occur at functionally 

divergent sites. One of the greatest unfulfilled promises of the structurally constrained 

model framework is to find a way to take into account varying constraints for function 

across the tree. Known functional constraints could be also defined at each leaf and 

allowed to decay with increasing distance from the leaves only to eventually be replaced 

by functional constraints known to exist at other structurally constrained leafs. 

Perhaps the most helpful feature of our model is the ability to test the structural 

constraint hypothesis on a site by site basis. As discussed in Chapter 2, sites with larger 

site likelihoods under our models when compared to non-structurally constrained models 

are likely to be under a structural constraint. However, sites where the improvement in 

model fit is small, or where non-structurally constrained models fit best are either 

evolving under a differing evolutionary process or are poorly modeled due to errors in the 

potentials used to postulate free energy changes.  A non-stationary structurally 

constrained model would improve the performance of these models by helping to identify 

sites where a change in the substitution model is observed simply because of the change 

in a structural constraint.  

 IMPROVING STATISTICAL POTENTIALS FOR STRUCTURALLY 3.3.3

CONSTRAINED PHYLOGENETIC MODELS. 

A complete understanding of how a protein’s overall three dimensional fold 

constrains its sequence depends on the accuracy with which biophysical characteristics 
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can be translated from known protein structures into evolutionary constraints. However, 

it is not always clear how a single point mutation might affect the function of a protein 

and the impact of multiple substitutions is even less predictable. Outside of a few model 

systems, very little is known about the mechanistic details of protein folding, or the 

dynamics required for function. This is true even without considering amino-acid 

substitutions, and the error associated with these kinds of predictions increases as more 

and more substitutions are taken into account at once.  For this reason, the results 

obtained by phylogenetic energy models (including our own described in Chapter 2) 

should be treated with a degree of caution. In our own research, we have limited our 

models to incorporating biophysical constraints arising only from single point mutations 

to try to limit this source of error.  

 The focus of the research presented in this thesis has been on advancing the 

structurally constrained model framework as opposed to improving the accuracy with 

which biophysical traits of proteins can be expressed as a structural constraint. However, 

a reader interested in this area should consult Kleinman et al. (2010) where a series of 

statistical potentials were developed with terms related to a variety of biophysical 

constraints such as pairwise distance interactions, torsion angles, solvent accessibility, 

and flexibility of the residues. 

  Perhaps the most practical yet unaccounted biophysical constraint in structurally 

constrained models is a constraint to preserve critical contact between a protein and other 

ligands, co-factors or prosthetic groups. The reason that this has not been accounted for to 

date is that there are very few residues involved in explicit functional contacts relative to 

the number of residues involved in supporting interactions; Therefore, including a 

structural constraint for function would lead to minimal likelihood gains after exhausting 

attempts to create a generalized framework to deal with these molecular interactions. 

Perhaps a more interesting constraint to explore would be a constraint to avoid potentially 

toxic protein-protein or protein-ligand interactions.  Such a constraint has been discussed 

in a review by Liberles (2012) but has yet to be incorporated in to a structurally 

constrained phylogenetic model due to the difficulty in determining how a constraint with 

so many unknowns might be visible to selection via single amino-acid replacements.  
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 FINAL REMARKS 3.3.4

 As a final word of advice to future researchers in the field of structural 

constrained phylogenetic modeling. Advancements in this field come from two types of 

innovation. The first is from improvements in the potentials used to infer relative fitness 

profiles for amino-acids on a site by site basis. As described above, there are many 

aspects outside of simply maintaining the protein fold to be explored when improving 

existing site-independent/dependent structurally constrained frameworks. The second is 

through innovations in the way these fitness profiles are included into existing 

phylogenetic models. Structurally constrained models have yet to adopt a philosophy of 

structural drift across the derived phylogeny. Success in this field requires a unique 

person with a clear understanding of mathematical modeling, numerical methods, protein 

structure and evolution. I highly recommend both these research directions to patient, 

enthusiastic and skilled bio-physicists, mathematicians or mathematically competent 

computer scientists.  
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APPENDIX A- SUPPLEMENTARY FIGURES AND TABLES FOR 
CHAPTER 2 

Supplementary Figure Legends: 

Figure A1-A2:     distributions obtained across all sites in 1XG2 to the 20 amino 

acids. Approximations to       values obtained across sites when introducing point 

mutations into the wildtype pectin methyl-transferase (PDBID 1XG2) sequence using 

P_PROSA (A1) or FoldX (A2).   The distributions of      energy values  are graphed 

for the 6 structural environments studied in this paper: Exposed Extended (B), Exposed 

Helix (H), Exposed Other (O), Buried Extended (b), Buried Helix (h) and Buried Other 

(o). 

Figure A3: Subsample selected from the 300 test sets used in Le and Gascuel, 2009.  
A representative subsample of 48 sequence alignments (large black points) was selected 

from amongst the 300 test alignments used in Le and Gascuel (2009) (small black 

points).   

Figure A4: Dominance of partition models over standard single partition models : 

(a)  ω Determines the weight given to a partition-specific model in the evaluation of the 

rate matrix and stationary frequencies.  Estimates for ω tend to be highest for 2 partition 

models, lowest for 3 partition models and intermediate for 6 partition models. While 

incorporating energies into the model tended to reduce the magnitude of ω, ω tended to 

be large indicating that a partition-specific model was often preferred to a model without 

partitioning.    

Figure A5: mean and standard deviation of       : each model M studied in the 

paper resulted in a maximum likelihood estimate for an    rates across sites parameter 

  . We graph the ratio of    to that obtained using the standard LG model for models 

utilizing P_PROSA, FoldX, C_PROSA and FoldX+C_PROSA energies. No significant 

effect on alpha was determined.  

Figure A6: mean and standard deviation of the 

                                                    : each model M 

studied in the paper resulted in a maximum likelihood estimate for the branch lengths. 

We graph the ratio of the average branch length (    ) under a model M to that obtained 

using the standard LG model (          ).  

Figure A7-A10: Median stationary frequencies obtained for the 2P_LG, 3P_LG and 

6P_LG partition models utilizing P_PROSA (A7), C_PROSA (A8), FoldX (A9) or 

FoldX+C_PROSA (A10) energies:  

(a) Median stationary frequencies derived for the 2P_LG model in exposed  and buried 

structural classes obtained from a subsample of 1092 sites from each structural category. 

(b) Median stationary frequencies derived for the 3P_LG model derived similarly for 

subsamples of 1092 sites from each structural category. (c) Median stationary frequencies 

derived for the 6P_LG model derived similarly for subsamples of 1092 sites from each 

structural category. Median stationary frequencies are again presented for the LG+ΔG 

model (Black dashed lines). In each case, we compare to the median stationary frequency 

from 1092 sites sampled randomly from our dataset under the LG+ΔG model (Black 

dashed lines). 
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Figure A11-A14: Boxplots for the distributions of stationary frequencies: Boxplots 

of the stationary frequency distributions observed for various amino acids for the 4 

models analyzed. The stationary frequencies have been presented separately for each 

structural category evaluated by the model. Each figure was generated by subsampling 

1092 sites from the appropriate model/structural category combination. Boxplots are 

presented for P_PROSA  (A11), C_PROSA (A12), FoldX (A13) or FoldX+C_PROSA 

(A14) energies. 

Figure A15-A18: Median Q ratio matrices for models utilizing a combination of 

FOLDX and PROSA energies.  After running our structurally constrained partition 

models in all 48 datasets we randomly sampled 1092 sites being analyzed under a 

particular structural-category/model combination. We calculate the ratio of the median 

    entries found using the various models analyzed in this paper to the median entries 

found when using the standard LG model. For these figures we removed the top 5% of 

outliers to ensure the median as a measure of central tendency. Clearly the major 

contributor to model improvement is solvent accessibility. Plots are presented for 

P_PROSA (A15), C_PROSA (A16), FoldX (A17) or FoldX+C_PROSA (A18) energies. 

Figure A19-A22: mean average deviation away from the median     matrices.  After 

running our structurally constrained partition models in all 48 datasets we randomly 

sampled 1092     matrices  from sites being analyzed under a particular structural-

category/model combination. We calculate the mean average deviation from the median 

    as a measure of variance for the model. For these figures we removed the top 5% of 

outliers  to ensure the median as a measure of central tendency. Clearly the major 

contributor to model improvement is solvent accessibility. Plots are presented for 

P_PROSA (A19), C_PROSA (A20), FoldX (A21) or FoldX+C_PROSA (A22) energies. 

 Figure A23: Comparing back to the general structurally constrained model can 

more boldly reveal regions of the protein structure selected for function.    Looking 

for patches on the protein surface that are poorly modeled under our model may lead to 

functionally relevant insights. Using FoldX + C_Prosa energies, we  plot  log(Site 

likelihood) differences (ld) between the same site modeled under two models  and map 

the result onto the structure of pectin methyl-transferase (1XG2).  In  (a) we examine the 

effect of incorporating energies into the model by comparing LG to LG+ΔG while  in (b) 

we examine the effect of partitioning by comparing LG    to         . Blue 

regions represent regions where ld>1  indicating that the more complex model gave a 

greater likelihood for that site.  Red regions indicate ld<0 indicating that the simpler 

model fit that site best. Colors in between have 0<ld<1.  Partitioning reveals a large 

poorly modeled patch on the surface that corresponds well to substrate and product 

binding sites [(c) ,(d)]  inferred by superposition from related protein structures (PDBID: 

2NTB and 2NSP) as well as an inhibitor binding site present in the original crystal 

structure (e). (f) Residues potentially engaged in hydrogen bonds (cut-off: 3.4Ȧ), 

hydrophobic interactions (cut-off: 5Å), or simply making space for these interaction 

partners (cut-off: small residues “GASPVTCILN” within 5Å) seem to be poorly modeled 

with respect to the rest of the protein. Many more sites here seem poorly modeled when 

compared to those in figure 6.  
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Table A1: Alignment statistics for datasets used in to assess structurally constrained 

models.  
PDB #sites #Taxa ntbl Ex Bu Β α O Exβ Exα ExO Buβ Buα BuO 

1ONL 103 53 0.14 60 43 42 15 45 17 11 31 25 4 14 

1QUP 121 18 0.14 85 36 47 19 55 23 14 48 24 5 7 

1QWD 121 61 0.13 86 35 62 4 46 37 3 37 25 1 9 

1S0L 122 33 0.09 82 40 56 0 66 22 0 60 34 0 6 

1BYR 126 25 0.16 76 50 38 41 46 14 24 37 24 17 9 

2F1F 131 74 0.08 83 48 55 38 37 24 27 31 31 11 6 

1QQ0 146 35 0.14 110 36 37 0 70 16 0 55 21 0 15 

1VDD 151 93 0.09 97 54 17 56 78 4 32 61 13 24 17 

1Y1O 153 41 0.12 103 50 50 28 42 20 15 35 30 13 7 

2DKF 163 88 0.16 75 88 46 31 86 13 15 47 33 16 39 

1C8U 165 84 0.12 110 55 55 36 74 28 20 62 27 16 12 

1H4U 172 12 0.16 111 61 75 14 75 45 2 56 30 12 19 

2A8E 194 14 0.12 125 69 37 78 78 10 54 60 27 24 18 

1HG3 209 22 0.22 102 107 35 79 94 1 42 58 34 37 36 

1HYN 213 35 0.08 154 59 38 47 73 13 27 59 25 20 14 

1XNF 230 34 0.16 150 80 0 166 58 0 96 48 0 70 10 

1L9X 243 14 0.19 132 111 64 72 80 17 39 49 47 33 31 

2DP5 256 21 0.04 248 8 10 21 225 7 20 221 3 1 4 

1E6E 265 44 0.15 150 115 37 101 124 15 50 82 22 51 42 

2GA9 267 18 0.13 178 89 32 126 85 15 70 69 17 56 16 

1XG2 282 89 0.09 144 138 103 7 172 26 4 114 77 3 58 

1Q2B 293 68 0.09 165 128 110 7 175 45 5 114 65 2 61 

2H85 303 28 0.07 209 94 72 65 166 41 37 131 31 28 35 

1WUF 304 33 0.15 163 141 68 101 117 29 51 65 39 50 52 

1CRZ 306 47 0.10 198 108 118 33 155 55 16 127 63 17 28 

2DGK 310 57 0.12 140 170 40 97 159 11 45 70 29 52 89 

1HYO 316 46 0.14 172 144 79 63 172 22 35 113 57 28 59 

1T4D 327 91 0.09 186 141 59 129 139 12 73 101 47 56 38 

1QZ9 332 42 0.13 199 133 37 122 172 8 72 118 29 50 54 

3GLY 337 37 0.12 169 168 12 164 161 4 58 107 8 106 54 

1O98 339 93 0.15 182 157 52 119 167 10 65 106 42 54 61 

2GLF 352 34 0.15 180 172 86 81 185 24 44 112 62 37 73 

1Q78 354 40 0.09 236 118 34 133 167 17 73 126 17 60 41 

2F82 357 43 0.08 184 173 72 138 147 17 66 101 55 72 46 

1R9Z 364 57 0.10 209 155 70 128 159 18 78 106 52 50 53 

1CIY 383 38 0.10 234 149 70 179 130 38 93 99 32 86 31 

1ZVL 388 47 0.07 231 157 50 130 208 21 68 142 29 62 66 

1DKM 392 16 0.08 233 159 63 147 182 24 70 139 39 77 43 

2BH9 392 48 0.10 245 147 90 108 194 29 59 157 61 49 37 

2F7F 432 56 0.14 258 174 95 148 186 37 82 136 58 66 50 

2A3L 439 49 0.10 323 116 29 127 198 4 73 161 25 54 37 

1BFD 453 38 0.16 251 202 75 159 218 17 78 155 58 81 63 

2OLB 472 44 0.14 263 209 89 140 243 45 72 146 44 68 97 

2H4M 477 20 0.13 317 160 0 294 145 0 156 123 0 138 22 

1QBA 520 40 0.09 289 231 123 113 284 58 54 177 65 59 107 

1LNS 617 15 0.17 338 279 99 182 336 32 86 220 67 96 116 

1QLN 739 11 0.20 473 266 46 355 317 18 200 234 28 155 83 

2GHO 897 44 0.06 534 363 94 76 727 41 28 465 53 48 262 
* Abbreviations: exposed (Ex), buried (Bu), Extended (β), Helix (α), Other (O), buried extended (Buβ), buried helix (Buα), 

buried other (BuO), exposed extended (Exβ), exposed helix (Exα) and exposed (ExO).   
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Table A2: 

 
Model 

Number of 
parameters 

| |    

Number of 
parameters 

| |    

1P 1 1 
1P+ΔG 2 3 
2P 40 40 
2P+ΔG 42 44 
3P 62 62 
3P+ΔG 62 65 
6P 116 116 
6P+ΔG 122 128 
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Table A3: Comparing 3P+   models to LG: Partition-specific significance factors 

and the % of likelihood differences greater than  0. 

  All sites Extended Helix Other 

Energy type Residue 
Hydrophobi
city Classa 

PSSFb %>0c PSSFb %>0c PSSFb %>0c PSSFb %>0c 

P_PROSA 

All Sites 1 65% 1.19 67% 1.18 66% 0.78 63% 
Hydrophillic 1.05 67% 0.31 55% 1.03 65% 1.28 71% 
Hydrophobi
c 0.85 63% 1.71 75% 1.01 65% 0.12 54% 
Other 1.42 65% 1.1 62% 2.4 71% 0.73 60% 

C_PROSA 

All Sites 1 66% 1.14 68% 1.2 68% 0.79 64% 

Hydrophillic 0.99 67% 0.21 53% 1.02 65% 1.2 71% 
Hydrophobi
c 0.92 66% 1.69 77% 1.08 69% 0.24 56% 
Other 1.39 65% 1.04 64% 2.3 72% 0.77 61% 

FoldX 

All Sites 1 76% 1.4 79% 1.05 78% 0.78 72% 

Hydrophillic 0.57 67% 0.49 65% 0.51 65% 0.63 69% 
Hydrophobi
c 1.41 85% 1.95 90% 1.45 89% 1.01 79% 
Other 1.02 70% 1.21 69% 1.27 77% 0.74 65% 

FoldX + C_PROSA 

All Sites 1 77% 1.26 80% 1.04 79% 0.85 75% 
Hydrophillic 0.75 72% 0.52 66% 0.67 70% 0.86 75% 
Hydrophobi
c 1.20 83% 1.68 88% 1.25 85% 0.84 76% 
Other 1.17 73% 1.33 71% 1.50 80% 0.85 68% 

  All sites Extended Helix Other 

Counts 

All Sites 15028 3087 5019 6922 
Hydrophillic 6605 1024 2016 3565 
Hydrophobi
c 6826 1793 2408 2625 
Other 1597 270 595 732 

a: Sites containing > 80% hydrophobic/hydrophilic residues labeled as such. All other sites 

pooled into an Other category.  

b: partition-specific significance factor =           

c: % of sites in the category with likelihood differences greater than 0.  
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Table A4: Comparing 6P+   models to LG: Partition-specific significance factors 

and the % of likelihood differences greater than 0. 

  All sites Exposed Buried 

Energy type Residue 
Hydrophobicity Classa 

PSSF
b 

%>0c PSSFb %>0c PSSFb %>0c 

P_PROSA 

All Sites 1 66% 1.06 64% 0.93 68% 
Hydrophillic 1.11 66% 1.45 70% 0.23 56% 
Hydrophobic 0.9 67% 0.14 52% 1.26 73% 
Other 0.97 60% 1.18 60% 0.42 60% 

C_PROSA 

All Sites 1 70% 1.05 69% 0.94 71% 
Hydrophillic 1.05 71% 1.38 76% 0.22 57% 
Hydrophobic 0.88 69% 0.14 54% 1.22 77% 

Other 1.31 66% 1.45 66% 0.94 64% 

FoldX 

All Sites 1 79% 0.9 74% 1.12 85% 

Hydrophillic 0.79 75% 0.87 75% 0.6 73% 
Hydrophobic 1.17 85% 0.86 75% 1.32 90% 
Other 1.11 71% 1.08 69% 1.21 76% 

FoldX+C_PROSA 

All Sites 1 80% 0.93 76% 1.08 84% 
Hydrophillic 0.85 76% 0.96 78% 0.56 72% 
Hydrophobic 1.10 84% 0.72 73% 1.28 90% 
Other 1.21 74% 1.19 73% 1.25 77% 

  All sites Exposed Buried 

Counts 

All Sites 15028 8106 6922 

Hydrophillic 6605 4757 1848 

Hydrophobic 6826 2181 4645 

Other 1597 1168 429 
a: Sites containing > 80% hydrophobic/hydrophilic residues labeled as such. All other sites 

pooled into an Other category.  

b: partition-specific significance factor =           

c: % of sites in the category with likelihood differences greater than 0.  
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Figure A1: C_PROSA energies 
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Figure A2: FoldX energies 
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Figure A3 
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Figure A4  
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Figure A5 
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Figure A6 
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Figure A7 
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Figure A8 
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Figure A9 
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Figure A10 
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Figure A11 
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Figure A12 
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Figure A13 
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Figure A14 

 
  



 

 105 

 

Figure A15 
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Figure A16  
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Figure A17 
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Figure A18 
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Figure A19: 
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Figure A20: 
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Figure A21: 
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Figure A22: 
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Figure A23 

 
 


