
A HIERARCHICAL STRUCTURED MACHINE-LEARNING
METHOD FOR LARGE-SCALE MULTI-CLASS PROBLEMS

by

Michael Bernard Butler

Submitted in partial fulfillment of the
requirements for the degree of

Master of Science

at

Dalhousie University
Halifax, Nova Scotia

August 2014

c© Copyright by Michael Bernard Butler, 2014

Table of Contents

List of Tables . iv

List of Figures . v

Abstract . vi

List of Abbreviations Used . vii

Acknowledgements . viii

Chapter 1 Introduction . 1

1.1 Examples of Machine-Learning Methodology in Medicine 3

1.2 Description of the Emergency Department Data 5

1.3 Description of the Zip Code data . 8

Chapter 2 Background Methods . 10

2.1 Support Vector Machines . 10
2.1.1 Optimal Separating Hyperplanes 11
2.1.2 Support Vector Classifier . 15
2.1.3 Support Vector Machines . 19
2.1.4 Using SVMs to Obtain Probability Estimates 21

2.2 Agglomerative Hierarchical Clustering 21

2.3 Hierarchical Mixture of Experts . 23

Chapter 3 Proposed Methodology . 27

3.1 Class Structure Learning . 27
3.1.1 Hierarchical Maximum Margin Learning for Multi-class Classi-

fication . 29
3.1.2 Margin Trees for High-Dimensional Classification 31

3.2 Description of the Proposed Method 33
3.2.1 Construction of the Class Structure Tree 33

3.3 Application of the Method to a Benchmark Dataset 35
3.3.1 The Ranking of the Class Labels 41
3.3.2 The Effect of the Derived Class Structure 41

ii

Chapter 4 Application to the Emergency Department Data 43

Chapter 5 Discussion . 47

5.1 Limitations . 49

5.2 Future Research . 51

5.3 Conclusion . 53

Bibliography . 54

Appendix A: ICD-9 Diagnoses and Correct Classification Rates . . . 57

Appendix B: R-code . 68

iii

List of Tables

Table 3.1 A comparison of correct prediction rates between the different
methods . 39

Table 3.2 Correct classification at each node of the single linkage tree . . 39

Table 3.3 Correct classification of each label in the single-linkage tree . . 40

Table 3.4 Classification rates of digits using a radial basis SVM at each node 40

Table 4.1 Results from the EDIS data . 45

iv

List of Figures

Figure 1.1 An example of the differential diagnosis process 2

Figure 2.1 A linearly separable SVM, with margins plotted 11

Figure 2.2 Schematic of a HME . 24

Figure 3.1 An example of a class structure tree 28

Figure 3.2 Class structure trees produced by the three clustering algorithms 38

Figure 4.1 Class structure tree of the emergency department data 44

Figure 4.2 Classification rate versus number of ranked diagnoses considered 46

v

Abstract

When a clinician diagnoses a patient, they do so by choosing one from many possible

diagnoses. This is a laborious process, one that requires input from many different

sources of information. It would be useful to have an objective tool to give a predic-

tion of a patients diagnosis using readily available clinical information.

Although this would be useful, one needs to still choose from many different

possible choices, a large scale multi-class problem that conventional classification

methods may not be suited to solve. We describe a method that assigns a class label

to an observation from a large number of class possible labels, and gives the probability

of said observation having such. The method uses a combination of support vector

machines, and an agglomerative hierarchical clustering algorithm to perform the task.

We display the performance of the method on a benchmark problem, and a hospital-

based dataset from Halifax, NS.

vi

List of Abbreviations Used

CTAS: Canadian Triage Assessment Scale

ED: Emergency Department

EDIS: Emergency Department Information System

HME: Hierarchical Mixture of Experts

ICD-9: International Statistical Classification of Disease

MSM: Maximum Separating Margin

SVM: Support Vector Machine

vii

Acknowledgements

I would like to recognize the support of my loving wife, Mari Ito, who tolerated the

long nights of my furrowed brow while I completed my thesis. It is only with her

comforting care and ability to feed me takeout food that I ever had the chance to

finish this work. Love is nature’s methamphetamine.

I also need to recognize the wisdom and kindess of my thesis advisor, Dr. Hong

Gu, who held me accountable when I needed to be and guided me gently along my

way. In this work, like others, there are no stupid questions, but certainly not for

my lack of trying. You once told me that you are not a tiger, but I kindly disagree.

Your passion for your students is obvious, and I certainly am the beneficiary of it. I

appreciate your patience and understanding.

I appreciate the advice of my clinical supervisor, Dr. Alix Carter, who guided me

through the research ethics process at the Capital District Health Authority as well

as my grant application with the same institution. Her keen eye for detail, and her

patient-oriented approach consequently has made me more focused as well.

I would be remiss to not mention the support of the Capital District Health Au-

thority Research Fund Trainee Grant, which allowed me to apply this work to a real,

clinical dataset, and provide the foundation for future research.

Finally, I would like to thank my fellow graduate students in the Department of

Mathematics and Statistics: Lihui Liu, Maria Reyes, Dong Lin, Shen Ling, Yun Cai,

David Fey, Mary Roop and Li Li. Your thirst for knowledge and your indomitable

work ethics provided an example for me to follow. Know that my research was as

much an effort to mimic your own qualities as it was for its own sake.

viii

Chapter 1

Introduction

“The art of medicine consists in amusing the patient while nature cures the disease.”

- Voltaire

The unfortunate reality of patient diagnosis is that it is a mottled process, full of

noise, and miscues. A physician needs to, often in a hurried manner, collate infor-

mation about a patient from multiple sources in order to arrive at a specific, clear

diagnosis.

Much as one would like to think of this process as perfectly objective, the truth

is that there is an art to medicine. There is very rarely one clear choice of pathology

for a particular patient presentation. Usually, a physician needs to decide between

several diagnoses, and each of these may have a very different treatment and risks for

the patient in question.

In attempt to lend some objectivity to this decision-making process, we consider

the process of differential diagnosis. In the method of differential diagnosis, possi-

ble pathologies that a patient may be stricken with are given probabilistic weight as

evidence is weighed. As evidence surfaces from clinical exam, radiology results and

clinical lab values, the probability of a given disease increases or decreases in response.

A schematic example from a 2007 study involving infections of the eyelid is below

(Papier et al., 2007).

Eventually though, one needs to decide on a diagnosis. In this method, one chooses

the disease that is most probable given the evidence to that point. One should note

that this does not preclude alternative diagnoses: our decision is simply the one that

is likeliest with the information available.

1

2

Figure 1.1: An example of the differential diagnosis process

Although the process of differential diagnosis is certainly attractive, it is also not

fool-proof. Studies of emergency department patients indicate that the rate of misdi-

agnosis may be as high as fifteen percent(Burroughs et al., 2007). This suggests that

an accurate, efficient and objective system would be invaluable to patient diagnosis

in this setting. Unfortunately, there are specific challenges to the design of such a

system. An obvious stumbling block is the existence of so many diagnoses.

Although the problem of prediction given a high-dimensional predictor space is

well-described, there has been much less consideration given to when the “predicted”

3

space is high-dimensional. Additionally, as noted above, the act of diagnosis is ex-

tremely complex. This likely makes the use of conventional linear methods a poor

choice of methodology. This provides the impetus to attempt the use of machine-

learning methodology, which may provide a better approximation to the messy, non-

linear nature of patient pathology.

Even so, the high-dimensional nature of the problem still poses challenges to accu-

rately predicting the proper class label. As we shall see, there have been attempts to

resolve the difficulty using structured classification, which presumes a structure in the

class labels, namely that they are grouped in logical clusters. Utilizing this structure

may facilitate the accurate prediction of class labels, even in the high-dimensional

case.

It can be easily intuited from the concept of differential diagnosis that there is a

strong analog between the clinical method and structural class learning. With this in

mind, we will attempt to develop our own structural learning method and apply it in

a real, clinical application.

1.1 Examples of Machine-Learning Methodology in Medicine

The field of machine-learning has piqued intense interest in the field of medicine,

specifically in the disciplines of cardiology, radiology and oncology. Here, we present

some examples of applications of data-mining methodology.

A study from Beijing studied the performance of an ensemble data-mining method

to predict the treatment of hypertension in 167 cardiology patients (Chen et al.,

2012). The treatment outcome was stratified into three classes (good treatment, nor-

mal treatment and poor treatment). The investigators used four methodologies: a

back-propagation neural network, a generalized regression neural network, a naive

bayesian classifier and one-versus-one support-vector machines (SVM) with a radial

basis kernel.

4

Ultimately, the predictions of the component classifiers were combined using a

weighted vote, and achieved a correct classification rate of 95.34% with a kappa

multi-rater reliability coefficent of 92.54%. However, it should be noted that the re-

searchers validated these results over ten test sets generated by boot-strapping.

Another study from Germany compared the ability of SVMs the authors had

previously trained in a prior study to differentiate patients with Alzeimer’s disease

from those with dementia associated with normal aging or fronto-temporal lobe de-

generation with experienced radiologists, using a test set of 105 structural magnetic

resonance imaging (MRI) scans (Klöppel et al., 2008). The SVM method outper-

formed or performed at least as well as the radiologists in every case, with the lowest

sensitivity being 83.3%, and the lowest specificity being 85.7%. This study is novel

in that it represents a follow-up to previous work by the authors in an attempt to

give the method a clinical context.

Also from Germany is a paper from a pediatric hospital located in Hannover. In

this paper, the authors evaluated an ensemble machine-learning technique to diagnose

patients that presented to the emergency department with one of eighteen different

abnormalities (Grigull and Lechner, 2012). Their ensemble method included an arti-

ficial neural network, a SVM and fuzzy logics. The predictions were again combined

into a majority weighted vote. The training set included 566 patients’ records, and

the algorithm had a correct classification rate of 97.7%. The test set included 126

patients, and the method showed a correct classification rate of 81.1%.

This should suffice to convince the reader about the general interest in data-mining

in the medical community. However, there are short-comings that are illustrated by

the studies above in the current state of the art. One such limitation is the limited

number of diagnoses the methods above are differentiating between. This naturally

limits the utility of a given classifier, since it assumes some significant pre-knowledge

about a patient’s final diagnosis.

In our MRI study above the researchers are certain of a given patient’s diagnosis.

5

In prospective, clinical application there always exists alternative possibilities. As an

example, neurosyphilis often mimics the symptoms associated with Alzeimer’s such

as progressive cognitive decline and drastic behavioural changes (Mehrabian et al.,

2012). Neurosyphilis is also associated with mesiotemporal atrophy on MRI, and it

is uncertain what the SVM method would predict in this case. To be of maximum

utility, a diagnostic machine-learning method needs to account for these deviations

that could occur in the natural population.

An additional concern also is the nature of the candidate predictors in the studies

above. In both studies by Chen et al. (2012) and Grigull and Lechner (2012), the data

were gathered in a retrospective fashion. A predictive model that is designed for use

in clinical application will not benefit from such a retrospective review. In particular,

Grigull performed a chart review on his patient group, and entered his findings into a

standardized database. Although sufficient as proof-of-concept, the relevant features

for diagnosis in practice must be readily available, ideally in an electronic format.

We hopefully have developed a sense of the utility of machine-learning applied to

the clinical context, specifically using features obtained in real-time by electronic pa-

tient information systems, and differentiating between many possible class labels (in

this case diagnoses). As mentioned above, we have developed our own methodology

to perform this task, and have applied it to a real dataset obtained from the local

emergency department in Halifax, Nova Scotia. However, there are many diagnostic

labels to differentiate, and to make our discussion clear, we have applied the method

to a benchmark problem in machine-learning using a dataset from the United States

Postal Service. We review both below.

1.2 Description of the Emergency Department Data

In 2013, the Capital District Health Authority (CDHA) Emergency Departments

(ED) saw a total of 137,006 adult patient presentations. These hospitals include

the Charles V. Keating Emergency Department in Halifax, the Dartmouth General

Hospital, the Cobequid Health Sciences Centre and the Hants Community Hospital.

6

They serve as the provincial and maritime referral centeres for trauma, burns, critical

care and a number of medical surgical subspecialities, as well as being the community

hospitals that serve the population of the Halifax Regional Municipality, which is

roughly 390,000 people.

The Emergency Department Information System (EDIS) is the central patient

information system for the EDs in the CDHA. It currently contains over a million

patient records, which may be uniquely linked to other clincial laboratory systems,

such as those in the CDHA Lab and Pathology Systems. EDIS also offers the advan-

tage of having these data available in real-time, as all the values in the system are

entered as the patient presents to and proceeds through the ED.

Using EDIS, one can extract the following variables relevant to building a diag-

nostic system for the emergency medicine population:

• Account number of the patient visit, which is a unique value and can be used

to collate information from other CDHA systems.

• Patient age

• Gender

• Vital signs at triage, such as pulse rate, blood pressure, glucose level, Glascow

coma scale(Teasdale and Jennett, 1974)

• Clinical comments, a free-text field the physician uses to add notes about the

patient

• Length-of-stay within the department

• Canadian Triage Assessment Score (CTAS)(Warren et al., 2008; Bullard et al.,

2008)

• Patient’s final ICD-9 diagnosis

7

The remainder of the data elements are obtained from the Lab and Pathology

System, which contains all clinical lab results, such as electrolyte panels, hematology

results, and radiology reports.

For the purpose of this study, we utilized our methodology on a dataset provided

by the Department of Emergency Medicine at CDHA. This dataset included all pa-

tients that presented from May 1st, 2013 to April 30th, 2014 to the departments at

the Halifax Infirmary, the Dartmouth General Hospital, the Cobequid Community

Health Centre and the Hants County Hospital. These totaled 137,006 presentations

in total, with 1581 unique ICD-9 diagnoses within.

All diagnoses that occurred less than 100 times were removed from the dataset.

The reason for this is two-fold: first, there may not be enough data to differentiate

such a diagnosis from the many others in EDIS. The other reason is to protect patient

confidentiality, as particularly rare diagnoses may expose such people to the danger

of unnecessary identification. We also excluded all patients that were trauma team

activations, as their injuries are usually multi-systemic and variable. Also, the utility

of predicting pathology in such a patient population is minimal, as the clinician is

already aware of their pathology.

After these exclusions, 108,870 observations and 287 unique class labels remained.

The observations were stratified by their ICD-9 diagnosis, and then 80% (87,209 pre-

sentations in total) were randomized into a training set and 20% (21,161 in total) were

randomized into a test set to ensure a balanced representativeness of the class labels

in both datasets. A full listing of the diagnostic labels can be seen in the appendix.

Some time should be spent exploring the final point in the list above. The ICD-9

diagnosis is our target outcome in this particular data problem. The ICD-9 diagno-

sis is a codified field in EDIS. When the physician is ready to diagnose a particular

patient, he or she picks the relevant choice from a list in the system. Herein lies

the complexity of the problem: there exists over a thousand unique ICD-9 codes, or

diagnoses, within this system. This is an extremely high-dimensional problem, and

8

“off-the-shelf” methods may not be successful. Additionally, one can anticipate that

the data may be quite noisy, as patients tend to have a unique presentation even for

the most common of pathologies, and there may often be missing or erroneous data.

In short, it is likely this is a complicated, non-linear problem.

The data reside at the Chase Building at Dalhouise University, with access to the

cluster computing resources, and will remain there for a period of no less than seven

years, in accordance with CDHA ethical procedures. Please note that this study was

supported with Capital District Health Authority Research Fund Trainee Grant of

$5000.00. Full ethical approval for the study came from the CDHA Research Ethics

Board.

1.3 Description of the Zip Code data

The discussion for the remainder of the thesis will be guided using a data set available

from the Elements of Statistical Learning (Hastie et al., 2009). Although the final

model will attempt to differentiate between an extremely large number of classes,

for the purpose of demonstration we will consider a smaller problem with ten classes.

The goal of the resultant method is to be generalizable to a varying number of classes.

The data are a series of handwritten digits that were scanned by the U.S. Postal

Service. The images are deslanted and size-normalized, and each is a 16 pixel x 16

pixel greyscale image. Each observation consists of the digit in question, zero to nine,

and the greyscale values, 256 predictors in total. The original images may be seen at

the website http://cs.nyu.edu/˜rowels/data.html. This dataset had been worked on

since the neural network research group at AT&T research labs in 1990. The training

set includes 7291 observations, and the test set includes 2007 observations.

The zip code data are conveniently split into a training set and test set that offers

a relatively constant ratio of the digits within both datasets:

9

Zero One Two Three Four Five Six Seven Eight Nine

Training 1194 1005 731 658 652 556 664 645 542 644
Test 359 264 198 166 200 160 170 147 166 177

Finally, all data processing was performed using mySQL 6.0 from the Oracle

Corporation, and all programming implementing the method was performed in the

R-statistical computing environment, version 3.10 within the R-studio GUI Version

0.98.501. Additionally, it should be noted that our method used the e1071 package

(Meyer, 2012), the R implementation of the excellent work from MIT on support

vector machines (Chang and Lin, 2011). We also utilized the cluster package from

Maechler et al. (2014), in particular the hclust() function. All R-code can be found

within the appendix.

Chapter 2

Background Methods

“Perfection is achieved, not when there is nothing more to add, but when there is

nothing left to take away.”

- Antoine de Saint-Exupery

To differentiate between the many classes in the large multi-class problem we have

developed an amalgamation of the methodologies associated with support vector ma-

chines, hierarchical mixture of experts and agglomerative clustering. We provide a

brief overview below of each of these methodologies, and integrate them into a com-

prehensible whole at the conclusion. In addition we will introduce “class-structure

learning”, a concept that utilizes the idea that there is an underlying informative

structure underneath the different class labels that enable us to improve the predic-

tive performance of our model.

2.1 Support Vector Machines

Support vector machines play an important role in the formation of the class struc-

ture that is the foundation of our proposed method, so we now briefly review the

concepts associated with them. Support vector machines in their current form are

considered to have been introduced and developed by Cortes and Vapnik (1995),

which itself is a contemporary form of the first algorithm for pattern recognition by

the familiar R.A. Fisher (1936). For the purpose of our discussion we will focus ex-

clusively on the case with only two class labels, as is the case with the application of

our method. We will additionally first focus on the case where the data are linearly

separable, and then extend this to the case where the data are not linearly separable.

This review is primarily based on the description of the method in Hastie et al. (2009).

10

11

2.1.1 Optimal Separating Hyperplanes

Figure 2.1: A linearly separable SVM, with margins plotted

The central concept in support vector machines is finding the hyperplane that

maximizes the distance between the points that constitute either of the class labels.

A useful representation of this is in Figure 2.1. Consider first that we have some

data that consists of N pairs (x1, y1), (x2, y2), · · · , (xN , yN), where xi ∈ Rp and yi ∈
{−1, 1}. Here, xi is the feature space for a particular observation, and yi is the

binary class label, represented by blue points for class 1, and red points for class 2 in

Figure 2.1. Now, consider a hyperplane defined as:

{x : f(x) = xTβ + β0 = 0}

Further note that for any two points x1 and x2 lying on the hyperplane

βT (x1 − x2) = 0, and the vector normal to this hyperplane is given by β∗ = β
||β|| .

Furthermore, for any point, x0 on the hyperplane βTx0 = −β0. Then, the signed

distance of any point x to {x : f(x) = 0} is given by:

12

β∗T (x− x0) =
1

||β||
(βTx− βTx0) =

1

||β||
(βTx+ β0)

Since f(x) = βTx+β0, we can see that f(x) is proportional to the signed distance

from x to the hyperplane defined by f(x) = 0. The significance of the signed portion

is that we can intuit a useful classification rule from the sign of said distance:

G(x) = sign(f(x)) = sign(xTβ + β0)

Put explicitly, if G(x) is less than zero, we classify the observation with feature

vector xT to the class -1. Otherwise we classify it to the class 1. Now, consider

the quantity yi(β
Txi + β0). One can see that for the signed distance f(x) discussed

above, this quantity will be negative should the class label and the prediction given

by the dividing hyperplane not agree. It is obviously in our benefit to maximize this

quantity. This leads us to the idea of optimal separating hyperplanes (Cortes and

Vapnik, 1995). The optimal separating hyperplane separates the two classes and also

maximizes the distance between the closest points of each class and the hyperplane.

Now, if M is the size of the margin between two classes, define the optimization

problem:

max
β,β0,||β||=1

M

subject to yi(x
T
i β + β0) ≥M, i = 1, ..., N

(2.1.1)

The constraints ensure that all of the points are, at minimum, a signed distance M

away from the hyperplane defined by β and β0. Now, we can drop the norm constraint

on ||β|| above by re-expressing (2.1.1) as:

13

max
β,β0

M

subject to yi(x
T
i β + β0) ≥M ||β||, i = 1, ..., N

(2.1.2)

The above inequality can be satisfied by multiplying by any positive constant on

both sides, thus we can set ||β|| to 1
M

, and (2.1.2) becomes:

min
β,β0

1
2
||β||2

subject to yi(x
T
i β + β0) ≥ 1, i = 1, ..., N

(2.1.3)

This defines a margin around the hyperplane f(x) = 0 of thickness 1
||β|| , repre-

sented by the parallel lines in Figure 2.1. Overall, the total width of the margin is

2
||β|| , from bound to bound. One can see that 2.1.3 is a convex optimization problem,

as we are minimizing a quadratic function subject to linear constraints. Define the

Lagrange primal function

Lp =
1

2
||β||2 −

N∑
i=1

αi[yi(x
T
i β + β0)− 1]

(2.1.4)

that we are going to minimize with respect to β and β0. After taking the deriva-

tives and setting them to zero, we see that:

β =
∑N

i=1 αiyixi

(2.1.5)

14

0 =
∑N

i=1 αiyi

(2.1.6)

We then subsequently substitute these in (2.1.4), the Wolfe dual function is ob-

tained as below:

LD =
∑N

i=1 αi −
1
2

∑N
i=1

∑N
k=1 αiαkyiykx

T
i xk

subject to αi≥ 0 and
∑N

i=1 αiyi = 0

(2.1.7)

In addition to the constraints described directly above, the solution by maximizing

LD must satisfy the Karush-Kuhn-Tucker conditions, and also satisfy that for all i:

αi[yi(x
T
i β + β0)− 1] = 0

For the above condition to be true, we can see that either αi = 0, or yi(x
T
i β+β0) =

1. This means that β in (2.1.5) is defined by a linear combination of the xi where the

latter condition is true. These xi’s are on the boundary of the slabs. These points are

known as the support points for their role in defining the margin around the dividing

hyperplane. The circled points in Figure 2.1 represent these points. Heuristically, we

can see the importance of the support points, for if we were to move these points, the

margin would concomitantly enlarge or shrink with their transposition.

15

Now, the solution described above exists when the two classes in question are

linearly separable, and allows no points to overlap across the dividing hyperplane.

This is known as a hard margin. In the case where the classes overlap in their feature

space and are not linearly separable, we can solve this problem by allowing for some

of the points to exist on the wrong side of the margin and is, in contrast, known as a

soft margin. We can do so using the support vector classifier, which we now describe

in more detail.

2.1.2 Support Vector Classifier

Let us return to the convex optimization we first defined in (2.1.1):

max
β,β0,||β||=1

M

subject to yi(x
T
i β + β0) ≥M, i = 1, ..., N

Now, define the variables ξ = (ξ1, ξ2, · · · , ξN), and modify the constraint in (2.1.1)

as:

max
β,β0,||β||=1

M

subject to yi(x
T
i β + β0) ≥M(1− ξi), i = 1, ..., N

(2.1.8)

where, for all i and K being some constant, ξi ≥ 0,
∑N

i=1 ξi ≤ K. The value of ξi

in the above dictates the proportional amount by which the prediction f(xi) is on

the erroneous side of the margin. By modifying the constraint in this way, we may

construct the separating hyperplane, while allowing some of the training examples

to be misclassified. The bounding condition
∑
ξi also bounds the total number of

16

misclassifications during the training procedure. It is convenient, as in 2.1.3 to express

the above while dropping the norm constraint by defining M = 1
||β|| :

min
β,β0

1
2
||β||2

subject to yi(x
T
i β + β0) ≥ 1− ξi, ξi ≥ 0,

∑
ξi ≤ K,

i = 1, . . ., N

(2.1.9)

This is also a convex optimization problem. We turn again to the quadratic

programming solution using the Lagrangian method. Re-express (2.1.9) as:

min
β,β0

1
2
||β||2 + C

∑N
i=1 ξi

subject to ξi ≥ 0, yi(x
T
i β + β0) ≥ 1− ξi ∀i

(2.1.10)

Here, C is a cost parameter that replaces K above. We then form the Lagrange

primal function:

Lp = 1
2
||β||2 + C

∑N
i=1 ξi −

∑N
i=1 αi[yi(x

T
i β + β0)− (1− ξi)]−

∑N
i=1 µiξi

(2.1.11)

We now minimize with respect to β and β0 as before, and also ξi:

17

β =
∑N

i=1 αiyixi

0 =
∑N

i=1 αiyi

αi = C − µi, ∀i
(2.1.12)

Note also that αi, µi, ξi ≥ 0 ∀i. Substituting this, and the quantities from (2.1.12)

into (2.1.11), we obtain the Wolfe dual,

LD =
∑N

i=1

∑
αi − 1

2

∑N
i=1

∑N
k=1 αiαkyiykx

T
i xk

(2.1.13)

We now maximize LD subject to 0 ≥ αi ≥ C and
∑N

i=1 αiyi = 0 and the following

Karush-Kuhn-Tucker conditions:

αi[yi(x
T
i β + β0)− (1− ξi)] = 0,

µiξi = 0,

yi(x
T
i β + β0)− (1− ξi) ≥ 0

(2.1.14)

The collection of (2.1.12) and (2.1.13) will give the solution to the primal and dual

problem. We are, of course, interested in the solution vector β:

β̂ =
∑N

i=1 α̂iyixi

18

(2.1.15)

Now, because from the first condition in (2.1.14), β̂ will only be non-zero for non-

zero α̂ and for which the last constraint in (2.1.14) are met. This means that the

solution β̂ are defined solely, as in the linearly separable case, by those observations

that are on, or within the margin. These points are termed the support vectors for

this reason. Of these observations, for those on the edge of the margin, ξi = 0, and

so:

µiξi = 0⇒ 0 ≤ µi ≤ C

α̂i = C − µi ⇒ 0 ≤ αi ≤ C

since αi ≥ 0. Now, for those points that are in the margin, ξi > 0, we can see

easily that:

µiξi = 0⇒ µi = 0,

α̂i = C − µi = C − 0 = C

After obtaining β̂, we can obtain β̂0 from the first criteria in (2.1.14) using any

the described points, xi, on the margin. Given these quantities, we can now utilize

the familiar decision function:

Ĝ(x) = sign[xT β̂ + β̂0]

(2.1.16)

where again, classifying observations into classes {-1, 1} as dictated by Ĝ(x).

19

It should be noted that C is a “tuning” parameter that is associated with the con-

struction of the SVM, and the solution above depends on the value that we choose.

One usually does so by cross-validation on one’s training examples, and the intuition

is that good performance will generalize well to prediction on the test observations.

We finally note that we have focused on the case where the data can be well-separated

linearly. However, this may not necessarily be the case and a non-linear boundary in

the original feature space may be a better choice for class separation. We now briefly

describe how this may be performed.

2.1.3 Support Vector Machines

It is often easier to find linear separation by enlarging the feature space of the input

variables using basis expansions. This linear separation in the enlarged space usually

result in better predictive performance, and translate to a non-linear boundary in

the original feature space. The elegance of the procedure is that once one selects the

basis functions, such as a set of polynomial functions, the optimization procedure and

derivation of the solution is identical to the process outlined in the last two sections.

Explicitly, we choose basis functions h(x),m = 1, · · · ,M and transform the orig-

inal features xi to h(xi) = (h1(xi), h2(xi), · · · , hM(xi)). We then utilize these trans-

formed feature vectors in the optimization procedure. Define the Lagrange dual:

LD =
∑N

i=1 αi −
1
2

∑N
i=1

∑N
k=1 αiαkyiyk〈h(xi), h(xk)〉

(2.1.17)

As we can see, the only difference between (2.1.17) and (2.1.14) is that the product

xTi xk is replaced by the inner product 〈h(xi), h(xk)〉. The solution function is:

20

f(x) = h(x)Tβ + β0 =
∑N

i=1 αiyi〈h(x), h(xi)〉+ β0

(2.1.18)

From above, we can see that the solutions we are interested in involve the inner

products of the enlarged features. So, we do not need to give h(x), but only the form

of the kernel function

K(x, x′) = 〈h(x), h(x′)〉
(2.1.19)

It is for this reason that this is colloquially known as the “kernel trick”. We can

now re-write (2.1.18) as

f̂(x) =
∑N

i=1 α̂yiK(x, xi) + β̂0

(2.1.20)

There are many choices one can make for the kernel function, but popular can-

didates are polynomials of varying degrees or the Gaussian kernel (e(−γ||x−x′||2), also

known as the radial basis kernel).

To summarize, a support vector machine attempts to find the maximum margin

between points and a dividing, linear hyperplane that separates observations into two

classes. One can allow some observations to be classified on the wrong side of the

division by utilizing slack variables ξi, the so-called soft margin. To improve predic-

tion, one can attempt to enlarge the feature space utilizing basis transformations and

21

the kernel trick. As we shall see in the next chapter, the length of this margin, 2
||β||

features prominently in our methodology. We now briefly discuss utilizing SVMs to

obtain the probability of being a particular class.

2.1.4 Using SVMs to Obtain Probability Estimates

Up to this point, we have focused on the construction of the decision rule, Ĝ(x), which

assigns a class label based on sign(f̂(x)). Work has been made to extend SVMs to

give estimates of the probability of a particular class label (Wu et al., 2004; Lin and

Weng, 2007; Platt, 2000).

libSVM, the excellent implementation provided by Chang and Lin (2011) imple-

ments these probability estimates and a full treatment of the implementation is given

there. For the purpose of the thesis, we consider the pairwise comparison between

class labels {−1, 1}, we want to estimate P (y = 1|x). For the two-class problem this

is

P (y = 1|x) ≈ 1

(1 + eAf̂(x)+B)

The solution to A and B above are estimated by minimizing the negative log-

likelihood of the training data, using their known class labels yi, and the decision

values f̂(x). As discussed above, f̂(x) is the value at which we assign a class label.

As we can see from the equation above, for values of large magnitude of f̂(x) we be-

come more certain of the class label, as the probability becomes closer to one or zero

for these values. Luckily, P (y = −1|x) is simply the complement of the above for the

two-class problem. We will develop the importance of this probabilistic prediction in

the next chapter.

2.2 Agglomerative Hierarchical Clustering

Clustering techniques fall within the realm of unsupervised statistical learning. Hier-

archical clustering is an attractive subset of these techniques, as it does not require

22

the practitioner to a priori select the number of clusters to which the data may log-

ically belong. In hierarchical clustering, one specifies a measurement of dissimilarity

between groups of the observations, and the groups are merged into clusters based

on these differences. As the merges are performed, they produce a ranked structure

of N − 1 levels, where N is the number of observations, based on the order in which

the groups are combined, hence the name hierarchical clustering.

There are two possible over-arching strategies for deciding how to group the obser-

vations: top-down (divisive) or agglomerative (bottom-up). In the divisive strategy,

all of the observations are grouped initially in a large “master” cluster. What then

occurs is that based on the differences between the observations, this cluster is split

into two clusters that possesses the maximum between-group dissimilarity.

In the agglomerative strategy, which is our focus for the method at hand, all of

the observations begin in their own independent cluster (termed a singleton). At each

step the most similar (or least dissimilar) observations are combined into a cluster.

This process repeats itself until all of the observations and groups are combined into

a single cluster. One must provide a measurement of dissimilarity in order to perform

this task. For the purpose of this thesis, we consider three types of these measure-

ments here.

First consider two groups, G andH. The dissimilarity betweenG andH is denoted

by d(G,H), and is computed by the pairwise dissimilarities between dik, where i is in

G, and k is in H.

Single Linkage

Single linkage agglomerative clustering takes the intergroup dissimilarity to be

that of the closest (most similar) pair.

dSL(G,H) = min
i∈G,k∈H

dik

23

Complete Linkage

Complete linkage agglomerative clustering takes the intergroup dissimilarity to

be that of the furthest (most dissimilar) pair.

dCL(G,H) = max
i∈G,k∈H

dik

Group average

Group average clustering uses the average dissimilarity between the groups.

dGA(G,H) =
1

NGNH

∑
i∈G

∑
k∈H

dik

where NG and NH are the number of observations in G and H respectively.

As we shall see in the ensuing chapters, the use of agglomerative hierarchical clus-

tering is a useful tool to provide structure to a given dataset. However, it has been

noted that the strucutre conferred by these clusterings above are as much a function

of the algorithms as they are of any intrinsic difference in the data (Hastie et al.,

2009). The choice of the algorithm or a small change to the data may result in a

much different dendrogram. As such, it is important to keep this in mind when in-

terpreting the results of any method that uses it and provides motive to utilize many

different measurements of dissimilarity for the purposes of comparison. Although it

pays to be a skeptic about the structure of the hierarchy, it does provide a useful

topology for our proposed method, which may be considered an adaptation of the

technique known as hierarchical mixture of experts.

2.3 Hierarchical Mixture of Experts

Hierarchical mixture of experts (HMEs) is a method that utilizes a topological as-

sortment of splits, and fits a softmax model at each node to provide a probabilistic

24

prediction in multi-classification problems (Jordan, 1994). HMEs can be considered

a variant of the familiar tree-based methods. A schematic of a simple HME model is

presented in Figure 1 below.

Gating Network

Gating Network

g1

Gating Network

Gating Network

g2

Terminal expert

g1|1

Terminal expert

g2|1

Terminal expert

g1|2

Terminal expert

g2|2

Pr(y|x, θ11) Pr(y|x, θ21) Pr(y|x, θ12) Pr(y|x, θ22)

Figure 2.2: Schematic of a HME

In the general configuration of the technique, an observation begins in the most

superficial node of the tree, which also includes every other observation. This node is

termed a gating network. A classifier at this point predicts which branch the observa-

tion takes to the next gating network. This process is repeated until the observation

reaches the terminal node, which is termed the expert network. It is at this node that

the observation is given a classification label.

25

The difference between traditonal tree-based methods and HMEs is that the pre-

diction at each of the nodes is actually a probability. This results in a soft-split as

opposed to the usual hard-split we are enured to in the classical tree-based method.

The top gating network has output:

gj(x, γj) = e
γTj x∑K

k=1 e
γT
k
x
, j = 1, 2, · · · , K.

(2.3.1)

The subsequent gating networks will have a similar expression, that is conditional

on the result from the preceding nodes:

gl|j(x, γjl) = e
γTjlx∑K

k=1 e
γT
jk
x
, l = 1, 2, · · · , K.

(2.3.2)

This culminates at terminal, expert node, wherein there is a classifier (usually

linear logistic regression) that determines the class label of the observation. Where

Ψ denotes the collection of parameters corresponding to the entire model, this leads

to a final expression of:

Pr(y|x,Ψ) =
∑K

j=1 gj(x, γj)
∑K

l=1 gl|j(x, γjl)Pr(y|x, θjl)
(2.3.3)

26

Logically, we predict the label that is the most probable based on the expression

above. Traditionally, a softmax function is utilized at each network as a classifier, and

the parameter estimates for models in the nodes are estimated using the expectation-

maximization algorithm. It has been noted that HMEs are fit with a focus on predic-

tion as opposed to interpretability (Hastie et al., 2009). In this context, it is reasonable

to posit that fitting alternative models in each of the gating networks that also focus

on predictive performance may provide an optimal classification rate. A similar ar-

gument would apply to the expert networks, a subject we explore in the next chapter.

The example given above is the simplest case, and it is possible that the tree struc-

ture can be asymmetric, involve greater than binary splits and have leaves higher in

the structure. It has additionally been noted that there is no good method for deter-

mining an objective tree topology in the HME framework (Hastie et al., 2009). As

shall be seen, our proposed method will offer a possible solution to this problem. Ad-

ditionally, we shall see that soft-split nature of the predictions offers certain benefits

that the hard-splits associated with decision trees do not have.

Finally, it should be noted that there are similarities between the general struc-

ture of Figure 2.1 with that of Figure 1.1. One can see a strong analog between the

two examples. There is also much of an analog between the HME structure, and the

structure described in the hierarchical clustering section. This suggests that it may be

possible to construe a representative structure to solve multi-classification problems,

for example the diagnosis of a patient condition. In the next chapter we develop a

technique to do just that, amalgamating elements from the methods discussed in this

chapter.

Chapter 3

Proposed Methodology

“He made an instrument to know / If the moon shine at full or no.”

- Samuel Butler

In this chapter we will introduce the concept of class structure learning. This

method assumes that there is an underlying structure within the classes of the data

that aids one in determining how to classify the observations. We will discuss some

strategies to determine the optimal configuration of said structure using a measure-

ment of the margin between two classes or groupings as one builds the structure up.

We will then propose a modification on these methods by introducing a variation on

the value of this margin, and the mechanism by which one predicts the final classifi-

cation. At conclusion, we will collate these points to give an overarching description

of the proposed method.

3.1 Class Structure Learning

The problem of multi-class classification is not a particularly new one. A typical ap-

proach is to break the problem into an one-versus-one approach. In this context, one

decomposes the problem down into
(
k
2

)
two-class comparisons. This involves training

the same number of classifiers, each of which predicts a class label for a given obser-

vation. After the predictions are made, the label that receives the most “votes” from

the trained classifiers will be assigned to said observation.

This is a viable approach, however it has been previously noted that the potential

exists for the approach to be too computationally intensive in application (Yang and

Tsang, 2011). The patient diagnosis problem we will discuss in a later chapter is a

multi-class problem composed of 287 unique patient diagnoses. The one-versus-one

27

28

infrastructure would require prediction utilizing
(

287
2

)
= 40, 041 classifiers for a single

observation. This is obviously not a tenable scenario, and a possible solution exists

utilizing class structure prediction.

Within the context of the following two papers that we will discuss, as well as

this thesis, the class structure is assumed to be a binary decision tree. An example

is given in Figure 3.1.

Figure 3.1: An example of a class structure tree

Here, there are ten classes from zero to nine. Using the one-versus-one technique,

we would have to fit
(

10
2

)
= 45 classifiers. If we fit a classifier at each of the splits of

the tree in Figure 3.1 we can reduce this number to (k− 1) = (10− 1) = 9 classifiers,

a fifth of the amount needed in the non-structured case.

So, there is sufficient motivation to utilize class structure learning. A reasonable

question now becomes how to actually establish such a structure. There have been

several attempts to establish how to optimally grow the class structure tree, and we

highlight two such instances here.

29

3.1.1 Hierarchical Maximum Margin Learning for Multi-class

Classification

This paper authored by Jian-Bo Yang and Ivor Tsang from Singapore in 2011 pro-

posed a divisive clustering method to construct the structured classification tree. As

we reviewed in Section 2.2, divisive clustering builds a hierarchical tree based on dif-

ferences between observations. In the context of their problem (and ours), we do not

consider the differences between individual observations, rather we want to differen-

tiate between the classes.

A metric that has been proposed by both Yang and Tsang (2011) and Tibshirani

and Hastie (2007) is to utilize the maximum margin found by the solution to the sup-

port vector machine problem for the difference between individual classes, or nodes

within the class structure tree splits.

For the purpose of the discussion, let us explicitly establish the class structure

tree defined by Yang and Tsang (2011, pg.753):

Definition A tree of k-class structure has d-layers. Its root node is

{1, 2, · · · , k}. At layer t, ∀t = 1, 2, · · · , d, there are nt node(s) where

nt ≥ 1(n1 = 1) and each node Gt
i ⊆ {1, 2, · · · , c},∀i = 1, 2, · · · , nt is a

group of classes. This tree is constrained by: 1) each non-leaf node has

two children and each child node is a subset of its parent node, and 2)

the nodes in the same layer t,∀t > 1, have non-overlapping class indices,

i.e. Gt
i ∩ Gt

j = ∅ for i 6= j, where 1 ≤ i, j ≤ nt. 3) Gt
i is non-empty. 4)

G = G1 ∩G2. 5) All leaves are singletons.

Now, consider any non-leaf node G, which contains k∗ classes, and k∗ is a subset

of the total number of classes k. Now, G’s child nodes G1 and G2 are determined by:

(G1, G2) = max
G̃1,G̃2

{
J(G̃1, G̃2)|all possible(G̃1, G̃2)

}
,

(3.1.1)

30

where J(G̃1, G̃2) is the margin that is found by the support vector machine dis-

cussed in section 2.1. What (3.1.1) amounts to is calculating 2(k∗−1)− 1 margins, and

choosing the (G1, G2) that is the largest. The intuition is that the classes that belong

to G1 share more in common than those in G2. This process is continued until the

child nodes correspond to the leaves of the class structure tree.

There is a severe computational cost to this procedure, especially initially in the

process where all k classes are still contained in the largest node, as one needs to

consider all possible combinations of the k classes in the two child nodes, G1 and

G2. To combat this, the authors offer a similar criteria to (2.1.10) by defining an

additional label variable z ∈ {−1,+1} for each observation xi,∀j ∈ Γ ≡ {i|yi ∈ G}.
This modifies (2.1.10) to

min
z∈Z

min
β,ξ

1
2
||β||2 + C

2

∑
j∈Γ

ξj

subject to zjβ
Tφ(xj) ≥ 1− ξj,∀j ∈ Γ

and any class ωl ∈ G, l = 1, · · · , k∗, is put in G1 or G2 by:

ωl → G1, ifzj = 1

ωl → G2, ifzj = −1

In this case, zi represents what child node an observation should belong to. The

authors go on to describe a process to determine the optimal z utilizing the cutting

plane algorithm (Kelly, 1960), and multiple kernel learning using the SimpleMKL

method (Lanckriet et al., 2004; Rakotomamonjy et al., 2000). Using this modified

process, the authors then grow the class structure tree, fitting the maximum margin

classifier at each node.

The authors compared this method against several others, including the one-

versus-one method, on several benchmark machine-learning problems and found that

31

their method either performed the best, or was competitive, particularly when utiliz-

ing a Gaussian kernel in the support vector architecture. This suggests that there is

both a computational, and predictive benefit to utilizing class structure trees.

Although this result does indicate a certain optimism to using class structure

learning, it does not definitvely answer how to build the structure. Yang et al.’s

process does build the tree in the top-down manner, using the divisive paradigm.

However, it is not certain that this method is better than an agglomerative approach.

The next paper we discuss, looks at this question in great detail.

3.1.2 Margin Trees for High-Dimensional Classification

Similar to Yang and Tsang (2011), Tibshirani and Hastie (2007) focus on using the

margin of the support vector machine to grow the class structure tree. The authors

build the structure using three different clustering methods: complete linkage, single

linkage, and using a proposed “greedy” algorithm, which we will describe below.

In both the single and complete linkage methods, the authors first train
(
k
2

)
sup-

port vector machines, which are the pair-wise comparisons of the k classes. The size

of the margins are utilized as the measurement of how “different” two classes are.

This provides an overall measurement of how different each class is from each other.

At this point, one applies the single- or complete-linkage clustering algorithm, succes-

sively merging classes and groups based on the minimum dissimilarity (least different)

or maximum dissimilarity (most different) until all of the k initial classes are merged

together in the largest cluster at the top of hierarchical tree.

The authors also propose a hybrid top-down and bottom-up method using a

“greedy” approach. They begin with the same idea considered in Yang and Tsang

(2011) in that they consider all partitions between the classes possible, and then

choose the split that has the maximum margin among them. As before, for a node

that contains k∗ classes, this requires the consideration of 2k
∗−1− 1 margins. For the

32

multi-class problems, this can quickly become computationally strenuous. To com-

pensate for this they combine the idea of computing the maximum margin amongst

all the possible groupings with the construction of the complete-linkage hierarchical

clustering tree. We outline the procedure below from Tibshirani and Hastie (2007).

1. Construct the complete linkage clustering tree based on the
(
k
2

)
margins.

2. Starting with all classes at the top of the tree, find the partition of each indi-

vidual class versus the rest, and also the partitition that produces two classes

in the complete linkage tree (that is, make a horizontal cut in the tree to pro-

duce two classes). Let M0 be the largest margin achieved amongst all of these

competitors.

3. Cut the complete linkage tree at height M0, and collapse all nodes at the height.

4. Consider all partitions of all classes that keep the collapsed nodes intact, and

choose the one that gives the maximal margin M̂ .

This process cuts down considerably on the number of margins one needs to calcu-

late in order to construct the class structure tree in the greedy fashion. The authors

then applied their technique to a number of cancer-classification studies, that tried

to classify cancer types using gene expressions. The number of features ranged from

2308 to 16063 and the number of observations ranged from 22 to 261. These multi-

class problems also ranged from k = 9 to k = 14, and they also compared their

method with the one-versus-one support vector machine framework, and a previous

method developed by the authors called “nearest centroids”. The findings were that

all three of the class structure methods as well as the one-versus-one method per-

formed roughly the same, and better than nearest centroids.

One notable point that the authors make in the discussion is that they have

restricted their attention to the cases where there were many more features than

observations (p >> N). This means that the classes are separable by a hyperplane,

specifically a linear support vector machine, further nothing that “When p ≤ N and

the classes may not be separable, our approach can be modified to work in principle

33

but may not perform well in practice.” (Tibshirani and Hastie, 2007, pg. 650) In the

next section, we attempt to do just that.

3.2 Description of the Proposed Method

We now briefly describe an overview of our proposed method, and attempt to tie

it back to work previously cited in chapters one and two. First, we describe the

construction of the class structure tree, and define the difference metric we utilize in

the study. Finally, we describe the method utilized in the top-down classification of

the data, as an observation is assigned a class label.

3.2.1 Construction of the Class Structure Tree

In this work we utilize the agglomerative paradigm that was reviewed in section 2.2

in the same manner as Tibshirani and Hastie (2007). We first construct
(
k
2

)
SVM

classifiers for each pairwise comparison i and j between the k classes, i 6= j. However,

we do not always take the maximum margin found by the SVM between the two

classes as the measurement of the difference between the two classes. Explicitly, we

fit the maximum margin classifier, utilizing a linear basis kernel (e.g. the original

feature space) and a cost parameter C of 1. Then, for a given pairwise comparison

define the difference between these two classes as Dij. Further, let DLS
ij be the case

where the data are completely linearly separable, and DNLS
ij be the case where they

are not. Then, the difference is given as:

If there are no misclassified observations in the training examples

Dij = DLS
ij =

2

||β||
+

number of correct classifications

total number of predictions

If there are any misclassifications in the training examples

Dij = DNLS
ij =

number of correct classifications

total number of predictions

The first definition is the sum of the maximum margin found by the SVM and the

34

correct classification rate, which is always unity. The second definition has to be less

than one, and it is easy to see that, since 2
||β|| > 0:

DLS
ij > DNLS

ij

By this definition, any two classes i and j in the training examples that can be

completely linearly separated by a hyperplane will always be defined as being more

different than any two that cannot be. This is in contrast to the work of Yang and

Tsang (2011) and Tibshirani and Hastie (2007) where this measurement of the differ-

ence was entirely dependent on the maximum margins. It is possible to have a large

margin with many support vectors, and have training data that are not well-classified

by said margin. Our metric incorporates the idea of two classes being more “differ-

ent” given a larger margin along with the effectiveness of said margin separating the

observations.

Now, we can construct the Dij into a k× k matrix, and apply a chosen agglomer-

ative clustering algorithm. For the purpose of the zip code data, we will compare the

performance of the three paradigms described in section 2.2, and for the purpose of

the emergency department data, we will utilize the single linkage clustering algorithm

for a reason that will become clear. Finally, once we have constructed the topology

of the class structure tree, we now construct a classifier at each node of the splits in

a top-down manner in order to interpret the prediction of the final structure of the

tree, as in Tibshirani and Hastie (2007). We now deviate. Where both Tibshirani and

Yang constructed a SVM at each of the nodes of the tree, we do not limit ourselves

to such a model. We allow any classifier at any node, in particular any classifier that

gives a prediction of the probability of belonging to a given class, or child node.

Now, within this framework, each class label has a unique path in the class struc-

ture tree, and any observation with this class label must belong to a specific set of

nodes. Define this set of nodes as Gl, and each node within as Glj. Thus, for a

given class label l, it will have a Gl = {Gl1, Gl2, · · · , Glj, Gl(j+1)}, where Gl(j+1) indi-

cates belonging to the singleton, l. Then, for a given class label, l, we calculate the

35

probability of an observation, xi, belonging to class l as

P(xi ∈ l) =
∏j

k=1 P (xi ∈ Gl(k+1)|xi ∈ Glk)

(3.2.1)

Equation (3.2.1) is inspired by the hierarchical mixture of experts from section

2.3, and the soft-split prediction at each of the gating networks. Here we can consider

each of models fit at each of the nodes as an “expert”. What this means is that we

can also calculate the probability of any class label l = 1, 2, · · · , k, and subsequently

rank them. This constitutes the final step of the method: we simply predict the class

label, l, that is the most probable amongst these labels. However, we also retain the

remainder of the predictions, and know the second-most probable label, the third-

most, and so on. This information is beneficial, as we shall demonstrate in a later

section with the emergency department data. One can see an overview of the method

proposed in algorithm 3.1 below.

We now present an application of the method to the zip code data discussed in

chapter one. This dataset was chosen for its accessibility and completeness. It also

offers the advantage that Yang and Tsang (2011) applied their method to it, so we

can use their result as a basis of comparison.

3.3 Application of the Method to a Benchmark Dataset

To refresh the reader, the zip code data was composed of 7291 training observations,

and 2007 test observations. Each of the observations was a 16× 16 grey-scale image

of the digits 0 to 9, and were processed specifically for analysis. Some notes: for

each of the
(

10
2

)
= 45 SVM comparisons used to construct the class structure tree,

we used a cost parameter equal to one, and a linear basis kernel. We also weighted

the observations to counteract unbalanced node membership sizes at each split. We

36

Algorithm 3.1: Overview of fitting the structure

Part A: Fitting the structure

Step One: Construct
(
k
2

)
SVM models for one-versus-one class comparisons.

Step Two: Calculate the distance Dij for each of the
(
k
2

)
class comparisons.

Step Three: Amalgamate the distances into a k × k distance matrix.

Step Four: Use the distance matrix to construct the hierarchical cluster tree structure.

Step Five: For each of the splits dictated by the topology of the tree, place a classifier
to decide which node an observation should belong to.

Part B: Observation classificaton
Step One: Obtain the probability of belonging to each node that leads to the terminal

classification.

Step Two: Calculate the probability of belonging to a particular classification
by calculating the conditional probabilities of belonging to each node on the path.

Step Three: Rank the class labels from most probable to least probable.

Step Four: Predict the most probable class label.

constructed three different class structure trees: one using single-linkage, one using

complete-linkage, and the last using the average algorithm, as outlined in section 2.2.

One can refer to these different trees on the following page. A common theme

by all three methods was to merge zero and one late in the process, showing they

were quite different than the other digits. Additionally, all three methods found a

cluster that included (2, 3, 4, 5), and one that was composed of (6, 7, 8, 9). The

largest difference in the configuration seemed to be when individual digits were split

into singletons. The complete method seemed to produce the “balanced” tree, as

compared to the “stringy” appearance we see in the single-linkage tree, a general sen-

timent echoed by Tibshirani and Hastie (2007). This impression also seems to have

been created by the tree created by the average method.

If the reader will refer to Table 3.1 we compare the performance of the various

37

clustering methods against the result found using the maximum separating margin

(MSM) technique in Yang and the one-versus-one method (again using C = 1). What

we see is that our method is competitive with the MSM method in all three of the

linkages examined, and all of the class structure methods were outperformed by the

one-versus-one setting.

38

Figure 3.2: Class structure trees produced by the three clustering algorithms

39

Method Training Classification Test Classification

Single Linkage 95.57% 85.35%
Complete Linkage 93.29% 84.35%
Average 95.31% 84.90%
MSM Unknown 84.30%
1vs1 99.99% 92.97%

Table 3.1: A comparison of correct prediction rates between the different methods

Of the three clustering algorithms, the single-linkage seemed to do the best, so we

will focus on using this class structure tree for the remainder of the discussion. Below,

in Table 3.3 show the correct classification rate of each node model when assigning

to their child node or class label. The nodes are numbered in a top-down manner,

such that the first split from the cluster that contains all the classes is “one”, and

the second split is “two”, and so on. Addtionally, we see from the first split of the

single-linkage tree that node one splits the digit (0) from (1, 2, 3, 4, 5, 6, 7, 8, 9).

In the same way, node two splits the digit (1) off from the remainder of the digits (2

through 9).

Node Training Test

One 0.999 0.992
Two 0.999 0.993
Three 0.911 0.897
Four 0.807 0.784
Five 0.764 0.766
Six 0.699 0.697
Seven 0.873 0.850
Eight 0.811 0.815
Nine 0.683 0.677

Table 3.2: Correct classification at each node of the single linkage tree

As one can see, the classifiers higher (one and two) in the tree correctly predict

the vast majority of the observations. As we descend down the tree we reach the

clusters that contain observations that were judged by the algorithm as being the

least different. Concomitantly, the correct classification rate drops. Table 3.3 shows

the correct classification of each of the digits.

40

Digit Training Test

Zero 0.999 0.953
One 1.000 0.943
Two 0.940 0.773
Three 0.961 0.825
Four 0.914 0.790
Five 0.923 0.756
Six 0.920 0.829
Seven 0.971 0.850
Eight 0.899 0.765
Nine 0.960 0.904

Table 3.3: Correct classification of each label in the single-linkage tree

We note that the digits we identified as being merged last (0 and 1) have excellent

rates of correct classification. However, digits that we found were alike (6, 7, 8, 9),

and (2, 3, 4, 5) showed lower rates of correct classification. This is to be expected, as

a given classifier would have more trouble differentiating between those classes that

were more alike, and thus further down in the class structure tree.

Digit Training Rate Test Rate
Zero 0.999 0.978
One 0.996 0.950
Two 0.990 0.924
Three 0.991 0.916
Four 0.983 0.900
Five 0.984 0.900
Six 0.991 0.935
Seven 0.984 0.918
Eight 0.980 0.886
Nine 0.981 0.972

Table 3.4: Classification rates of digits using a radial basis SVM at each node

After much trial-and-error, the optimal model at each node seemed to be a SVM

with a radial basis kernel using a cost parameter of 1, and a gamma parameter of

0.00390625. The overall correct test classification rate was 93.37%. Table 3.4 out-

lines the classification rate for each of the digits. Although the prediction rate has

improved, the effect where higher nodes tend to predict more of the observations

correctly than those lower in the class structure tree persists. This seems to not be

41

a phenomenon unique to our method, as the concern was echoed by Tibshirani and

Hastie (2007).

3.3.1 The Ranking of the Class Labels

It should be noted that the method as outlined above officially predicts the class label

as the most probable one of all those considered. However, in step eight of algorithm

3.1, we rank the class labels from most probable to least probable. If there is truly an

underlying structure within the data, it is reasonable to expect that expanding the

prediction to include the increasingly probable class labels will increase the classifica-

tion rate. In the case of our initial single-linkage class structure tree, using only the

linear basis kernel at each node, if we expand to the top three most probable digits,

the method includes the right digit in 96.26% of cases. In the radial basis case, the

rate was 98.11%.

This may not seem to be applicable in the classification of hand-written digits,

and one would be right. However, in the case of the emergency department data,

the application of this expansion of choice in the class labels serves a viable purpose.

Specifically, each patient may only have a single diagnosis, and ultimately it is the

physician that must choose it. This perceived over-inclusion actually serves the pur-

pose of providing the physician additional information to aid in their decision-making

process. Specifically, it gives them the probability of a particular diagnosis, which

they may correlate with the patient’s pre-test probability of having the same pathol-

ogy, a feature that we shall see in the emergency department data.

3.3.2 The Effect of the Derived Class Structure

A final point of consideration is whether or not the structure of the tree enabled the

best predictive value when compared to alternative structures. In an effort to respond

to this question, we re-ran the model-fitting process, randomizing the class labels that

were placed in the terminal experts. We then used the new model to predict the test

set data. We repeated this procedure fifty times. The original structured model

42

performed worse in thirty of the fifty cases. The maximum predictive performance

was 88.14%, and the minimum was 82.86%, with a mean correct classification rate

of 85.79%. Our original fitting process does not seem to have a strong effect on the

predictive performance of the model. However, it is unknown whether this is due to

a lack of hierarchical structure in the zip code data or due to the algorithm itself.

Chapter 4

Application to the Emergency Department Data

“There’s more beauty in truth, even if it’s dreadful beauty.”

- John Steinbeck

We now present the results from the daunting 287 diagnostic label problem. One

can refer to Figure 4.1 on the next page for the class structure tree. We can see that

the mergings tend to exhibit the stringy nature that we have come to expect by now.

The last merge occurred between “diabetic ketoacidosis” and the remainder of the

diagnostic labels. This is probably due to a combination of an abnormal blood glucose

level, and an acidic blood pH level that is not typically present in most diagnostic

morphologies.

The results are presented in the Table 4.1 below. We utilized the method outlined

in chapter three, again using the SVM with a linear basis kernel, and a cost param-

eter of 1, both to construct the class structure tree, and for the models at each of

the nodes. As one can see, the predictive performance of the algorithm is markedly

worse than in the zip code example. It should be noted that the performance is still

measuredly better than random guessing, which would correspond to a classification

rate of 0.35%. If one would predict the most numerous class label would achieve

7.18%, so the method is still better than that. However the sensitivity of such a

result would not be useful in practice to a physician. It is informative to view the

correct classification rates of each of the diagnostic labels, which are placed in the

appendix.

The most commonly cited diagnosis by the algorithm was abdominal pain not-

yet-diagnosed. This is not an entirely surprisingly result. Anecdotally, roughly a

fourth of all emergency department presentations are for abdominal pain. A large

portion of these are undiagnosed as the patient improves spontaneously in the course

43

44

Figure 4.1: Class structure tree of the emergency department data

45

Correct on first rank Correct in first ten ranks

Training set Absolute number correct 8849 31117
(n = 87209) Classification rate 10.15% 35.68%
Test set Absolute number correct 2175 7470
(n = 21661) Classification rate 10.04% 34.49%

Table 4.1: Results from the EDIS data

of their care without explanation, or are discharged from the department with the

expectation they will return if their conditions worsens. This phenomenon is reflected

in this class label being the most populous in our dataset. Given so many examples,

it is encouraging that the method identified over ninety percent of these diagnoses in

both the training and test sets.

A similar phenomenon is observed in the diagnosis of chest pain not-yet-diagnosed

for the same reasons cited above, although the method was not quite as successful as

above. It would seem that a large number of examples for each class label is required

to improve predictive performance. As noted above, the remainder of the diagnostic

labels were not so easily identified, which is probably a result of a combination of a

sparsity of training examples, as well as inappropriate features within the data. We

shall explore this in the discussion.

Although the class structure tree only predicted the right diagnosis as most prob-

able 10.04% of the time, it is heartening to see that the tree correctly identified the

right diagnostic label in the top ten more than a third of the time. This may be

an indication that there is some hierarchical structure in the data, and that we may

be able to use it to accurately predict patient diagnosis. If the reader will refer to

Figure 4.2 it shows the classification rate as we consider an expanding ranked list

of probable diagnoses. One can see that there is a steep initial gain in the correct

classification rate, and it slows as the number of ranks increases.

This suggests that there is an effect conferred on the larger problem by our prob-

abilistic approach. Even if the method does not correctly identify the right diagnosis

in the first instance, the probabilistic predictions of the method show a good chance

46

Figure 4.2: Classification rate versus number of ranked diagnoses considered

in ranking the right diagnosis closer to the top of the list than the bottom. In ap-

plication, this allows the clinician to pick from a number of ICD-9 classes that the

method has deemed consistent with the patient record up to this point. However,

one cannot ignore that it is still ideal for the class structure tree to predict the right

diagnosis as the most probable. This focus may also rank the right diagnosis higher

on the list, even if it does not obtain the top ranking. In the next chapter we discuss

reasons the method may not have performed this task, and what one should do in

order to improve the accuracy of it.

Chapter 5

Discussion

“If you don’t know, the thing to do is not to get scared, but to learn.”

- Ayn Rand

The effect of our approach is competitive with the approach suggested by Yang

and Tsang (2011), and consistent with the impressions given by Tibshirani and Hastie

(2007). However, some cautious ruminating may be warranted about our results. One

point emphasized by the proposed technique is the underlying complexity in deter-

mining the class structure tree, the models fit at each of the splits, and how to choose

the parameters for the models that we have chosen.

Ideally, there would be an objective way to do so. The best case scenario would be

to simply rely on the subject-matter expert to settle the matter, such as the example

presented in the introduction. Indeed, Vapnik himself suggested that the parameters

of the SVM model should be set by the expert directly (Vapnik, 1999). However, an

intellectual exercise demonstrates the limitation of this approach. It is unlikely that

a physician would be able to provide a logical class structure for approximately one

thousand different diagnoses, and simultaneously be able to suggest a logical value

for the cost parameter C in each of the SVMs, as an example.

One would be able to heuristically dictate that abdominal pathologies likely are

clustered together. In a higher node, psychiatric disorders would likely congregate

with acute intracranial pathology. However, when differentiating within abdominal

pathology, it becomes much more difficult to differentiate between acute cholecystitis

and transient cholelithiasis, for example. Similarly, it may be more difficult to differ-

entiate the structure between a subarachnoid hemorrhage and a subdural hemorrhage

for the confused patient with head trauma.

47

48

In the author’s opinion, the grand advantage of machine-learning is to perceive

patterns where the human mind may miss them. This notion is at the heart of

our methodology. The groupings seem to theoretically offer accurate predictive per-

formance, which is the optimal outcome any physician seeks in the evolution of a

patient’s care plan.

Much of the discussion in the preceding sections focus on the efficency of the

structured learning. An important point to make is to illustrate the difference be-

tween training the model and using said model to predict class labels. Training the

class structure tree as described is labourious in nature. First, one must train
(
k
2

)
SVM comparisons to determine the tree topology. Following this, one must place a

classifier of one’s own choosing at each node.

Since one fits a classifier at each node, there is a flexibility granted that is not

offered by previous work in this area. By optimizing the performance of a given

classifier, one improves the performance of the overall model. One cannot stress the

importance of each step, as it is likely that performance in nodes at greater height

may have drastic effects on the child nodes below. In this particular case, it indeed

takes a village to predict accurately.

This amounts to tailoring each node classifier for each classification task. Good

prediction requires significant handiwork on the part of the statistician. Once this

work has been put in, prediction is faster than the non-structured methods, and com-

petitive in predictive performance, which is a significant consideration in application.

However, one cannot discount the challenge of constructing the model. Significant

time was spent utilizing the grid-search method to find the optimal parameters of the

SVMs fit at each of the nodes of the zip code example, however it has been noted

that “ . . . such searches may be computationally expensive and the precision of the

results is subject to the chosen granularity of the grid.”(Boardman and Trappenberg,

2006). This suggests that it may be beneficial to consider attempts to objectively

select these parameters, such as in Boardman and Trappenberg (2006) or Chapelle

49

et al. (2002).

An interesting phenomenon that arises from the soft-split nature of our method

is that modifying the performance of a given child node also has an effect on the

entire prediction. As an example, if the class structure tree gave the most probable

digit as being zero in our zip code example above, and we changed the classifier at

a deeper split, it is wholly possible that the most probable prediction could change

to another digit. This is a phenomenon not present in the hard-split nature of the

other techniques we have discussed. In those frameworks, if the initial prediction was

a zero, no effort on the deeper splits would ever change this label assignment.

I feel this demonstrates a salient and relevant feature of the method. The ability

to indicate each diagnosis by the probability that it can occur is informative, and

may reflect the overall structure of pathology in the emergency department popula-

tion in general. Although it is ideal that the method predict the right diagnosis as

the most probable, it is important in clinical application to handicap the chance of

other diagnoses for a particular patient presentation.

5.1 Limitations

Although the author is an eternal optimist, one cannot ignore a determinable fact:

one cannot methodology away irrelevant features. Previous work by the author has

accentuated that one is only as good as one’s data (Butler et al., 2014). In our pa-

tient data, complications arise in the data itself. As a working example, consider the

patient with chest pain, who may have acute coronary syndrome.

Standard of care dicates that said patient should have serial troponin levels drawn

(Alpert et al., 2000; Collinson et al., 2013; Diercks et al., 2013). Troponin is a cardiac

enzyme that is only detectable in the blood should damage occur to the myocardium.

However, it is possible that a patient has a spurious positive result. So, samples are

taken repeatedly to ensure the authenticity of the result.

50

Our dataset only utilizes the first troponin level (if one was drawn at all). Our

final data extract from the Department of Emergency Medicine is extremely inclusive,

with over 800,000 patient visits. This shifts the onus on the author to process the

data such that the relevant features are available to the methodology. Addtionally,

it can be seen in the test set of the EDIS data that many of the musculoskeletal

pathologies (e.g. fractures and sprains) are ill-detected. An important feature of

musculoskeletal injury management involves diagnostic imaging. With this in mind,

although the result of each diagnostic imaging test is available, it is in a free-text

format. Some efforts on developing text-mining methods to derive relevant patient

features from this information. Moreover, to be of utmost utility, it may be more

informative to derive said features from the images themselves. As noted in the first

chapter, Klöppel et al. (2008) do exactly this with functional MRI images.

Another example of the importance of relevant features that is easily cited from

our data is that of the diagnosis of alcohol intoxication. In our data, patients that

were given this diagnosis had an alcohol level drawn 137 times (33.7% of the time).

This is in contrast to those in all other diagnostic labels, who had an alcohol level

drawn 336 times (a mere 0.4% of the time). It is obvious that the presence of this

positive value contributes to the correct classification of a patient that is intoxicated

in the ED. This is probably the case with many of the diagnostic labels, and the

patient features. This only further enforces the necessity of good feature selection.

A point of consideration is to also acknowledge that our method may “. . . im-

pose hierarchical structure whether or not such a structure exists in the data.”(Hastie

et al., 2009) We have made the tacit assumption that the method of differential di-

agnosis is predicated on the variables we have included in our dataset. A different

structure may result with the inclusion of further data elements, as well as more

training examples. The structure we have found may not be the optimal one, and

healthy skepticisim is warranted until we can improve on our results.

Finally, it is unknown whether or not this method would be generalizable to other

51

patient populations. The method was trained specifically on adult patients that pre-

sented to emergency departments in the most densely populated portion of Nova

Scotia, one of which is the leading trauma and tertiary care centre for the Maritimes

in Canada. The result may not be applicable to patients in the pediatric set, as

well as centres that predominantly serve a rural area and may not have access to the

full-range of diagnostic testing available at CDHA facilities.

5.2 Future Research

This study represents the foundation of a comprehensive research program here at

Dalhousie University. Dalhousie is intimately linked with the Department of Emer-

gency Medicine at the Capital District Health Authority, since this is the teaching

hospital for the medical school. This association provides the unique opportunity to

translate research into practice at the emergency department.

This coincides with an increased prevalence of the electronic patient record (Baker

et al., 2014). As electronic systems proliferate, the opportunities to utilize these read-

ily available data will increase the importance of this research. A great effort must

be expended to ensure that a system built in Halifax is generalizable to other parts

of the nation, and the world.

Another aspect to explore is that the method described has limited itself to binary

splits at each of the nodes. It is feasible that the class structure applicable to this

problem may not be relegated to such a confined structure. Generalization of the

technique above to multiple splits at each node may represent increased flexibility.

Tibshirani and Hastie (2007) also note that “The construction of the margin tree

could also be done using other kernels . . . however in the p > N case considered in

this paper, a linear SVM can separate the data, so the utility of a non-linear kernel is

not clear.” Since we have constructed the class structure tree in a similar manner, this

is a question that is well worth answering. In particular, our distance metric empha-

sizes the difference between linearly separable (e.g. very different) classes, and those

that are not. If, in an enlarged feature space, the classes would be more separable it

52

would lead to a much different configuration of the class structure tree. Whether or

not this mitigates the misclassification rate is unanswered.

Additionally, it is likely that for each node, not all of the data are applicable

to the decision a physician would make at that step. We may gain predictive and

computational benefits from limiting the amount of features we consider at any given

step. Tibshirani and Hastie (2007) explore this very issue noting that “ . . . it would

be clearly beneficial to reduce the set of [features] to a smaller set, if one can improve,

or least not significantly worsen, its accuracy.” They apply a method termed “hard

thresholding” to several datasets, and show experimentally that there is some benefit

to their procedure, with very little loss in accuracy.

As cited above, it is probable that the method would achieve greater performance

with more training examples. We are in the process of acquiring approximately

500,000 more records to add to our dataset, one that will be more comprehensive

than presented in this study. It is only important to note that this dataset does not

include results from diagnostic imaging. This is an important part of the diagnostic

process, and determining a way to include these results will only aid in our efforts.

The combination of more data and a more robust collection of patient features will

allow us make firmer conclusions about the validity of the methodology.

The close association with the Department of Emergency Medicine above allows

for the opportunity of online learning, wherein the method is constantly learning and

adapting to data as it is collected by EDIS. This interactivity would fine-tune the

method as time elapsed, constantly improving it’s prediction. In the long-term, in-

tegration of the method into the EDIS system would make the tool available to the

physicians. It also allows the system to be reactive to changes in the underlying pa-

tient population. Monitoring of the system output may allow us to determine when

the system is detecting novel presentations in the emergency department. This may

allow us to delineate when diagnoses that have not yet presented to the emergency

department are arriving in force, so there may be epidemiological applications to the

method as well.

53

Additionally, once the learning method has been tuned to a reliable amount of

sensitivity and specificity, there may be ready applications to bench clinical research.

Consider that there are many patients with the diagnosis “abdominal pain, not yet

diagnosed”. A study of great value would be to see how many of these patients return

and subsequently are diagnosed with definitive abdominal pathology, then compare

with how our method predicted the original visit. Such a metric may allow clinicians

to determine what factor may lead to the definitive diagnosis on the original visit.

5.3 Conclusion

The candidate structured learning method is competitive with non-structured learn-

ing methodology in predictive performance, with a performance of 93.37% in the

test set of the zip code data. The flexibility of fitting individualized classifiers at

each of the nodes increase predictive performance, allowing us to raise the predictive

performance by fitting different models to each of the nodes in the class structure tree.

In the emergency department data the predictive performance was 10.15% in the

training set, and 10.04% in the testing set. The use of structural class learning pro-

vides a foundation for high-dimensional multi-class learning. Future directions for

the research may allow us to improve the predictive performance and the efficiency

of the learning method.

Bibliography

JS Alpert, Thygesen K, Antman E, and JP Bassand. Myocardial infarction redefined–
a consensus document of the joint european society of cardiology/american college
of cardiology committee for the redefinition of myocardial infarction. J Am Coll
Cardiol, 36(3):959–69, Sept 2000.

DB Baker, JB Perlin, and J3 Halamka. Evaluating and classifying the readiness of
technology specifications for national standardization. J Am Med Inform Assoc.,
May 2014.

M Boardman and T Trappenberg. A heuristic for free parameter optimization with
support vector machines. 2006 International Joint Conference on Neural Networks,
2006.

M Bullard, B Unger, J Spence, and E Grafstein. Revisions to the canadian triage
and acuity scale (ctas) adult guidelines. CJEM, 10(2):136–142, 2008.

TE Burroughs, AD Waterman, TH Gallagher, B Waterman, DB Jeffe, WC Dunagan,
J Garbutt, MM Cohen, J Cira, and VJ Fraser. Patients’ concerns about medical
errors during hospitalization. Jt Comm J Qual Patient Safety, 33(1):5–14, 2007.

M Butler, S MacPhee, and S Newton. Chirpp: A characterization of captured injuries
versus uncaptured injuries for patients presenting at a pediatric tertiary care centre.
CJEM, 16, 2014.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector ma-
chines. ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27,
2011. Software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.

O Chapelle, V Vapnik, O Bousquet, and S Mukherjee. Choosing multiple parameters
for support vector machines. Machine Learning, 2002.

Longfeng Chen, Guixia Kang, Xidong Zhang, Lichen Lee, and Xiangyi Li. Hybrid
decision making in the monitoring of hypertensive patients. e-Health Networking,
Applications and Services (HealthCom), IEEE 14th International Conference, pages
32–37, 2012.

P Collinson, D Gaze, P Thokala, and S Goodacre. Randomised assessment of treat-
ment using panel assay of cardiac markers - contemporary biomarker evaluation
(ratpac cbe). Health Technol Assess, 17(15):1–122, Apr 2013.

C Cortes and V Vapnik. Support-vector networks. Machine Learning, 20:273–295,
1995.

54

55

DB Diercks, BE Mumma, W Frank-Peacock, JE Hollander, B Safdar, and SA Mahler.
Incremental value of objective cardiac testing in addition to physician impression
and serial contemporary troponin measurements in women. Acad Emerg Med, 20(3),
Mar 2013.

R.A. Fisher. The use of multiple measurements in taxonomic problems. Annals of
Eugenics, 7:111–132, 1936.

L Grigull and WM Lechner. Supporting diagnostic decisions using hyrid and comple-
mentary data mining applicatins: a pilot study in the pediatric emergency depart-
ment. Pediatric Research, Jun; 71(6):725–31, 2012.

T Hastie, R Tibshirani, and J Friedman. The Elements of Statistical Learning.
Springer, 2nd edition, 2009.

M Jordan. Hierarchical mixture of experts and the em algorithm. Neural Computa-
tion, 6:181–214, 1994.

J.E. Kelly. The cutting plane method for solving convex programs. Journal of the
SIAM, 8:703–712, 1960.

S Klöppel, CM Stonnington, J Barnes, F Chen, C Chu, CD Good, I Mader,
LA Mitchell, AC Patel, CC Roberts, NC Fox, CR Jr Jack, J Ashburner, and
RS Frackowiak. Accuracy of dementia diagnosis: a direct comparison between
radiologists and a computerized method. Brain, 131(Pt 11):2969–74, 2008.

G Lanckriet, N Cristianni, P Bartlett, and L El-Ghaoui. Learning the kernel matrix
semi-definite programming. Journal of Machine Learning Research, 5:27–72, 2004.

C.-J. Lin and R.-C. Weng. A note on platt’s probabilistic outputs for support vector
machines. Machine Learning, 68:267–276, 2007.

Martin Maechler, Peter Rousseeuw, Anja Struyf, Mia Hubert, and Kurt Hornik.
cluster: Cluster Analysis Basics and Extensions, 2014. R package version 1.15.2 —
For new features, see the ’Changelog’ file (in the package source).

Shima Mehrabian, Margarita Raycheva, Martina Traykova, Tonya Stankova,
Latchezar Penev, Olga Grigorova, and Latchezar Traykov. Neurosyphilis with de-
mentia and bilateral hippocampal atrophy on brain magnetic resonance imaging.
BMC Neurology, pages 12–96, 2012.

D Meyer. Support vector machines: The interface to libsvm in package e1071. Tech-
nical report, CRAN, 2012.

A Papier, D Tuttle, and T Mahar. Differential diagnosis of the swollen red eyelid.
Am Fam Physician, 76(12):1815–1824, 2007.

J.C. Platt. Probabilistic outputs for support vector machines and comparison to
regularized likelihood methods. Advances in Large Margin Classifiers, 2000.

56

A Rakotomamonjy, F Bach, S Cann, and Y Grandvalet. Simplemkl. Journal of
Machine Learning Research, 9:2491–2521, 2000.

G Teasdale and B Jennett. Assessment of coma and impaired consciousness. a prac-
tical scale. Lancet, Jul 13;2(7872):81–4, 1974.

R Tibshirani and T Hastie. Margin trees for high-dimensional classification. Journal
of Machine Learning Research, 6:637–652, 2007.

V.N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, 2nd edition,
1999.

D Warren, A Jarvis, L Leblanc, and J Gravel. Revisions to the canadian triage and
acuity scale paediatric guidelines. CJEM, 10(3):224–232, 2008.

T.-F. Wu, C.-J. Lin, and R.C. Weng. Probability estimates for multi-class classifi-
cation by pairwise coupling. Journal of Machine Learning Research, 5:975–1005,
2004.

J Yang and I Tsang. Hierarchical maximum margin learning for multi-class classifi-
cation. Uncertainity in Artifical Intelligence, 6:753–760, 2011.

Appendix A: ICD-9 Diagnoses and Correct Classification

Rates

Diagnosis Code Count Training Test

ABDOMINAL PAIN NYD 1 7813 0.905 0.923

ABSCESS BUTTOCK 2 100 0 0

ABSCESS SKIN 3 112 0 0

ACUTE APPENDICITIS 4 357 0 0

ACUTE CHOLECYSTITIS 5 446 0 0

ACUTE CORONARY SYNDROME 6 318 0.012 0

ACUTE GASTRITIS 7 351 0 0

ACUTE OTITIS MEDIA 8 173 0 0

ADJUSTMENT REACTION 9 475 0 0

ALCOHOL INTOXICATION 10 507 0.079 0.059

ALCOHOL WITHDRAWAL 11 142 0 0

ALCOHOLISM 12 267 0 0

ALLERGIC RASH 13 294 0 0

ALLERGY - UNSPECIFIED 14 285 0 0

ANEMIA NYD 15 393 0.076 0.026

ANGINA-STABLE 16 104 0 0

ANGINA UNSTABLE 17 288 0 0

ANXIETY 18 713 0 0

ANXIETY ATTACK 19 193 0 0

ARTHRALGIA KNEE 20 145 0 0

ARTHRITIS KNEE 21 209 0 0

ASTHMA 22 772 0.005 0

ASTHMATIC BRONCHITIS 23 138 0 0

ATRIAL FIBRILLATION (CONTROLLED) 24 442 0.014 0.034

ATRIAL FLUTTER 25 107 0 0

continued on next page . . .

57

58

. . . continued from last page

Diagnosis Code Count Training Test

ATYPICAL PNEUMONIA 26 104 0 0

BACK PAIN 27 2329 0 0

BACTERIAL PNEUMONIA 28 1051 0 0

BELL’S PALSY 29 103 0 0

BENIGN POSITIONAL VERTIGO 30 489 0 0

BILIARY COLIC 31 373 0 0

BITE WOUND HAND 32 188 0 0

BLEEDING (PO) 33 169 0 0

BLEEDING IN EARLY PREGNANCY 34 399 0 0

BORDERLINE PERSONALITY DISORDER 35 174 0 0

BRONCHITIS 36 922 0 0

BURN HAND 37 130 0 0

CARDIAC ARREST 38 118 0 0

CAST 39 314 0 0

CATHETER 40 136 0 0

CELLULITIS - OTHER 41 410 0 0

CELLULITIS ARM (NOT HAND) 42 674 0 0

CELLULITIS FACE 43 324 0 0

CELLULITIS FINGER/THUMB 44 182 0 0

CELLULITIS FOOT 45 668 0 0

CELLULITIS HAND 46 384 0 0

CELLULITIS LEG 47 1679 0.095 0.099

CELLULITIS TOE 48 136 0 0

CERUMEN IMPACTION EAR 49 100 0 0

CERVICAL STRAIN 50 390 0 0

CHEST PAIN NYD 51 4649 0.37 0.395

CHOLELITHIASIS 52 253 0 0

CHRONIC BACK PAIN 53 107 0 0

continued on next page . . .

59

. . . continued from last page

Diagnosis Code Count Training Test

CHRONIC PAIN (MISC) 54 172 0 0

COLITIS 55 207 0 0

COLLES’ FRACTURE 56 203 0 0

COMPLETE ABORTION 57 116 0 0

CONCUSSION 58 685 0 0

CONFUSION NYD 59 167 0 0

CONGESTIVE HEART FAILURE 60 702 0.025 0.029

CONJUNCTIVITIS NYD 61 148 0 0

CONSTIPATION 62 606 0 0

CONTUSION ARM 63 108 0 0

CONTUSION BACK 64 203 0 0

CONTUSION ELBOW 65 119 0 0

CONTUSION FOOT 66 237 0 0

CONTUSION HAND 67 268 0 0

CONTUSION HIP 68 135 0 0

CONTUSION KNEE 69 240 0 0

CONTUSION LOWER LEG 70 137 0 0

CONTUSION RIBS 71 790 0 0

CONTUSION SHOULDER 72 193 0 0

CORNEAL ABRASION 73 477 0 0

COSTOCHONDRITIS 74 219 0 0

CROHN’S DISEASE 75 185 0 0

CYSTITIS 76 220 0 0

DECREASED VISION NYD 77 134 0 0

DEEP VEIN THROMBOSIS 78 370 0.014 0

DEHYDRATION 79 238 0 0

DELIRIUM 80 193 0 0

DEMENTIA 81 103 0 0

continued on next page . . .

60

. . . continued from last page

Diagnosis Code Count Training Test

DENTAL ABSCESS 82 620 0 0

DENTAL CARIES 83 189 0 0

DEPRESSION 84 491 0 0

DIABETIC KETOACIDOSIS 85 122 0 0

DIARRHEA 86 663 0 0

DISLOCATION SHOULDER 87 220 0 0

DIVERTICULITIS 88 573 0 0

DIZZY NYD (NEURO) 89 459 0 0

DRUG ALLERGY 90 129 0 0

DYSFUNCTIONAL UTERINE BLEEDING 91 126 0 0

EAR PAIN 92 139 0 0

EFFUSION KNEE 93 129 0 0

EPIDIDYMITIS 94 135 0 0

EPISTAXIS 95 444 0 0

EXACERBATION COPD 96 1586 0 0

FALLS (GER) 97 275 0 0

FATIGUE/MALAISE UNSPECIFIED 98 210 0 0

FEBRILE NEUTROPENIA 99 123 0 0

FEVER NYD (MISC) 100 525 0.002 0

FLU LIKE ILLNESS 101 178 0 0

FOREIGN BODY CORNEA 102 161 0 0

FOREIGN BODY EYE 103 229 0 0

FOREIGN BODY SENSATION EYE 104 136 0 0

FRACTURE 5TH METACARPAL SHAFT 105 112 0 0

FRACTURE 5TH METATARSAL 106 186 0 0

FRACTURE CLAVICLE 107 107 0 0

FRACTURE DISTAL RADIUS 108 322 0 0

FRACTURE FEMUR 109 102 0 0

continued on next page . . .

61

. . . continued from last page

Diagnosis Code Count Training Test

FRACTURE FIBULA 110 178 0 0

FRACTURE HIP 111 539 0.009 0

FRACTURE HUMERUS 112 226 0 0

FRACTURE LATERAL MALLEOLUS 113 165 0 0

FRACTURE METATARSAL 114 152 0 0

FRACTURE NOSE 115 106 0 0

FRACTURE PHALANX SHAFT 116 175 0 0

FRACTURE RADIAL HEAD 117 157 0 0

FRACTURE RIB 118 191 0 0

FRACTURE RIBS 119 116 0 0

FRACTURE SHAFT METACARPAL 120 113 0 0

FRACTURE TIBIA 121 106 0 0

FRACTURE TOE 122 213 0 0

FRACTURE WRIST 123 175 0 0

GASTROENTERITIS 124 1168 0 0

GASTROINTESTINAL BLEED 125 503 0 0

GOUT 126 162 0 0

GOUT, ACUTE 127 144 0 0

HEADACHE, MIGRAINE 128 1091 0 0

HEADACHE, OTHER 129 1267 0 0.004

HEMATURIA 130 529 0.005 0

HEMOPTYSIS 131 110 0 0

HEMORRHOIDS 132 204 0 0

HYPERGLYCEMIA 133 249 0 0

HYPERTENSION 134 550 0 0

HYPOGLYCEMIC REACTION 135 110 0 0

HYPOKALEMIA 136 192 0 0

HYPONATREMIA 137 131 0 0

continued on next page . . .

62

. . . continued from last page

Diagnosis Code Count Training Test

INCOMPLETE ABORTION 138 178 0 0

INFECTED SEBACEOUS CYST 139 118 0 0

INFLUENZA 140 104 0 0

INGUINAL HERNIA 141 131 0 0

INSECT BITES 142 133 0 0

INTERNAL DERANGEMENT KNEE 143 116 0 0

LACERATION EYEBROW 144 185 0 0

LACERATION FINGER (NO TENDON) 145 1344 0 0

LACERATION FINGER WITH TENDON 146 106 0 0

LACERATION FOREARM 147 171 0 0

LACERATION FOREHEAD 148 222 0 0

LACERATION HAND 149 536 0 0

LACERATION LIP 150 159 0 0

LACERATION PALM 151 105 0 0

LACERATION SCALP 152 400 0 0

LACERATION SHIN 153 150 0 0

LACERATION THUMB 154 364 0 0

LIGAMENTOUS INJURY KNEE 155 120 0 0

LOW BACK STRAIN 156 430 0 0

LUNG CA 157 139 0 0

MANIC DEPRESSIVE ILLNESS 158 112 0 0

MECHANICAL LOW BACK PAIN 159 523 0 0

MEDICAL DEVICE SUPPORT 160 247 0 0

MEDICATION CONCERNS/PROBLEMS 161 710 0 0

MENORRHAGIA 162 110 0 0

METASTATIC CANCER 163 376 0 0

MILD CLOSED HEAD INJURY 164 553 0 0

MULTIPLE CONTUSIONS 165 308 0 0

continued on next page . . .

63

. . . continued from last page

Diagnosis Code Count Training Test

MULTIPLE TRAUMA 166 120 0 0

MUSCLE SPASM BACK 167 270 0 0

MUSCULAR NECK PAIN 168 318 0 0

MUSCULOSKELETAL PAIN 169 265 0 0

NORMAL EXAM 170 397 0 0

NSTEMI 171 448 0 0

OLECRANON BURSITIS 172 136 0 0

OSTEOARTHRITIS 173 121 0 0

OTHER CELLULITIS/ABSCESS 174 228 0 0

OTHER DENTAL/ORAL 175 273 0 0

OTHER ENT 176 202 0 0

OTHER ESOPHAGEAL 177 150 0 0

OTHER FRACTURE ANKLE/FOOT 178 347 0 0

OTHER FRACTURE WRIST/HAND 179 111 0 0

OTHER INTESTINAL 180 178 0 0

OTHER MSK 181 100 0 0

OTHER NEURO 182 555 0.018 0.009

OTHER OPHTHALMOLOGIC 183 166 0 0

OTHER PREGNANCY RELATED 184 384 0 0

OTHER PSYCHIATRIC 185 224 0 0

OTHER RESPIRATORY 186 475 0.011 0.011

OTHER SKIN LESION 187 108 0 0

OTHER SPRAIN/STRAIN TRUNK 188 112 0 0

OTHER SYNCOPE 189 155 0 0

OTHER UROLOGIC 190 411 0 0

OTHER VASCULAR 191 143 0 0

OTITIS EXTERNA 192 195 0 0

OVARIAN CYST 193 227 0 0

continued on next page . . .

64

. . . continued from last page

Diagnosis Code Count Training Test

PAIN - ABD NYD 194 633 0 0

PAIN - BACK NYD 195 547 0 0

PAIN - CHEST NYD 196 2273 0.007 0

PAIN - HEAD NYD 197 159 0 0

PAIN - HIP NYD 198 217 0 0

PAIN - NECK NYD 199 229 0 0

PAIN ANKLE 200 192 0 0

PAIN ARM 201 250 0 0

PAIN CALF 202 135 0 0

PAIN EYE NYD 203 131 0 0

PAIN FINGER 204 113 0 0

PAIN FOOT 205 451 0 0

PAIN HAND 206 161 0 0

PAIN LEG 207 809 0.002 0

PAIN NYD (MISC) 208 118 0 0

PAIN SHOULDER 209 460 0 0

PAIN WRIST 210 210 0 0

PALPITATIONS 211 828 0.006 0

PANCREATITIS 212 323 0 0

PARESTHESIA, NYD 213 276 0 0

PELVIC PAIN NYD 214 379 0 0

PERIRECTAL ABSCESS 215 138 0 0

PHARYNGITIS 216 650 0 0

PILONIDAL ABSCESS 217 157 0 0

PLEURAL EFFUSION 218 215 0.012 0

PNEUMONIA NOS 219 890 0.185 0.112

PNEUMOTHORAX 220 194 0 0

POST OP CHECK (PO) 221 671 0 0

continued on next page . . .

65

. . . continued from last page

Diagnosis Code Count Training Test

PREGNANCY PV SPOTTING 222 140 0 0

PRESYNCOPE 223 306 0 0

PSYCHOSIS NYD 224 244 0 0

PULMONARY EMBOLUS 225 230 0 0

PYELONEPHRITIS 226 400 0 0

RASH NYD 227 412 0 0

RECTAL BLEEDING 228 353 0 0

REFLUX ESOPHAGITIS 229 280 0 0

RENAL COLIC 230 1772 0.106 0.054

RENAL FAILURE ACUTE 231 195 0 0

ROTATOR CUFF SYNDROME 232 140 0 0

SCHIZOPHRENIA 233 135 0 0

SCIATICA 234 437 0 0

SEIZURE 235 587 0 0

SEPSIS 236 137 0.009 0

SHINGLES 237 210 0 0

SINUSITIS - ACUTE 238 337 0 0

SITUATIONAL ANXIETY 239 244 0 0

SITUATIONAL DEPRESSION 240 107 0 0

SMALL BOWEL OBSTRUCTION 241 553 0 0

SOB NYD 242 679 0 0

SOCIAL PROBLEM 243 111 0 0

SPRAIN ANKLE 244 1432 0 0

SPRAIN FOOT 245 361 0 0

SPRAIN MEDIAL COLLATERAL LIG. KNEE 246 120 0 0

SPRAIN SHOULDER LIGAMENTS/CAPSULE 247 217 0 0

SPRAIN THUMB 248 118 0 0

SPRAIN WRIST 249 392 0 0

continued on next page . . .

66

. . . continued from last page

Diagnosis Code Count Training Test

SPRAINED KNEE 250 549 0 0

STRAIN CALF MUSCLE 251 104 0 0

STRAIN INTERCOSTAL MUSCLE 252 175 0 0

STREPTOCOCCAL PHARYNGITIS 253 122 0 0

STROKE, ISCHEMIC 254 407 0 0

SUBCONJUNCTIVAL HAEMORRHAGE 255 115 0 0

SUBSTANCE ABUSE 256 204 0 0

SUICIDAL IDEATION 257 272 0 0

SUPERFICIAL THROMBOPHLEBITIS 258 130 0 0

SUPRAVENTRICULAR TACHYCARDIA 259 121 0 0

SUTURE/STAPLE REMOVAL(PO) 260 112 0 0

SWELLING KNEE 261 186 0 0

SWELLING LEG 262 354 0 0

SYNCOPE NYD (CARD) 263 159 0 0

SYNCOPE NYD (MISC) 264 409 0 0

TENDON INJURY 265 103 0 0

THROAT PAIN 266 130 0 0

TIA 267 415 0 0

TONSILLITIS 268 131 0 0

TOOTHACHE 269 194 0 0

TOXICOLOGY - ALCOHOL 270 123 0 0

TRANSIENT SYMPTOMS NYD 271 390 0 0

UNCONTROLLED ATRIAL FIBRILLATION 272 444 0 0

UPPER RESPIRATORY INFECTION/ COLD 273 842 0 0

URETERAL CALCULUS 274 229 0 0

URINARY RETENTION 275 588 0 0

URINARY TRACT INFECTION 276 2501 0 0

UROSEPSIS 277 220 0 0

continued on next page . . .

67

. . . continued from last page

Diagnosis Code Count Training Test

URTICARIA 278 123 0 0

VAGINAL BLEEDING 279 383 0 0

VASOVAGAL SYNCOPE 280 422 0 0

VERTIGO (NEURO) 281 253 0 0

VIRAL ILLNESS 282 823 0 0

VOMITING 283 772 0 0

WEAKNESS NYD 284 870 0 0

WHIPLASH INJURY 285 124 0 0

WOUND INFECTION (PO) 286 302 0 0

Z-POST OP OTHER 287 255 0 0

Appendix B: R-code

68

> #Function that calculates the "distance" of two classes using an SVM

>

> #We define distance here as the sum of the Euclidian distance of the margin

> #2/||B||, where B is the vector of coefficients associated with the SVM in question,

> #and the proportion of misclassification.

>

> #Distance = size of margin + misclassification proportion

>

> #For the function need to specify an SVM object (from e1071 implementation),

> #the first and second class for comparison, and the data source.

>

> marginCalculator <- function(svm, class1, class2, data){

+

+ #margin size (from Elements)

+ margin <- 2 / sqrt(sum(svm$coefs^2))

+

+ #Rate of misclassification for the i,jth comparison

+ tab <- xtabs(~ predict(svm) + subset(data[,1],

+ xor(data[,1] == class1,

+ data[,1] == class2)))

+

+ #Correct Classification rate

+ error <- sum(diag(tab))/sum(tab)

+

+ if(error == 1){

+

+ return(margin + error)

+ }

+

+ else{

+

+ return(error)

+ }

+

+ }

1

69

Appendix: R code (marginCalculator)

> #Function that takes a given data set, and makes n-choose-2 SVM comparisons, and

> #places them in a list object for reference later to build dissidence matrix.

>

> #Three parameters:

>

> #classData: the data we are building the structure on

>

> #startClass: the first numbered class to start with

> #added so that one can divide the computationally

> #intensive task up between workers.

>

> #numClasses: the total number of classes in the dataset

> #so that we do not miss pairwise comparisons.

>

> #Requires the following functions:

>

> #marginCalculator: This calculates the value of interest,

> #the distance between the two class labels

>

> hierarchyTrain <- function(classData, startClass, endClass, numClasses){

+

+ #Empty matrix to place margins into

+ marginMat <- matrix(,nrow = choose(numClasses, 2))

+

+ #Initialize count variable for matrix reference

+ k = 1

+

+ #Initialize count variable to stop process when

+ #the prescribed number of classes is reached.

+ l = startClass

+

+ while(l < endClass){

+

+ for(i in l:(endClass - 1)){

+

+ for(j in (i + 1):(numClasses)){

+

+ #Train an SVM on the features, subsetting the data for training purposes

+

+ #Want to weight the observations to eliminate asymmetric effect of

+ #different class sizes

+

+ tempData <- subset(classData, xor(classData[,1] == i,

+ classData[,1] == j))

+

+ classOneNum <- nrow(subset(tempData, tempData[,1] == i))

1

70

Appendix: R code (hierarchyTrain)

+ classTwoNum <- nrow(subset(tempData, tempData[,1] == j))

+

+ maxNum <- max(classOneNum, classTwoNum)

+

+ #Sets the class with the most observations

+ #to a weight of one, and upweights the

+ #smaller class to equivalence.

+ wts <- maxNum /c(classOneNum, classTwoNum)

+

+ #Add in variables that are always present.

+ for(m in 2:4){

+

+ newFormula <- paste0(newFormula, names(tempData)[m], " + ")

+

+ }

+

+ for(m in 1:length(which(colSums(tempData[,5:195]) != 0))){

+

+ if(m == length(which(colSums(tempData[,5:195]) != 0))){

+

+ newFormula <- paste0(newFormula,

+ attr(which(colSums(tempData[,5:195]) != 0)[m],

+ "names"))

+

+ }

+

+ else{

+

+ newFormula <- paste0(newFormula,

+ attr(which(colSums(tempData[,5:195]) != 0)[m],

+ "names")," + ")

+

+ }

+ }

+

+

+ svmNow <- svm(subset(classData[,1],

+ xor(classData[,1] == i,

+ classData[,1] == j)) ~.,

+ scale = TRUE,

+ kernel = "linear",

+ class.weights = c(i = wts[1], j = wts[2]),

+ type = "C-classification",

+ data = subset(classData,

+ xor(classData[,1] == i,

+ classData[,1] == j)))

2

71

Appendix: R code (hierarchyTrain)

+

+ #Place trained SVM in the list for access later.

+ marginMat[k] <- marginCalculator(svmNow, i,

+ j, classData)

+

+ #Indictator to see how far along the program is

+ print(k)

+

+ #Increment placement reference

+ k = k + 1

+

+ #Remove current svm model to free up memory

+ rm(svmNow)

+

+ #Run the garbage collector to ensure freed up

+ #RAM

+ gc()

+ }

+

+ l = l + 1

+

+ }

+

+ }

+

+ return(marginMat)

+

+ }

3

72

Appendix: R code (hierarchyTrain)

> #Function to calculate distance matrix for hClust

> #Requires the matrix of the distances that come from

> #the hierarchyTrain function. The return value

> #from this is passed into the dist() function for

> #preparation to use in the hclust() function.

>

> distanceMatrix <- function(marginMat, numClasses){

+

+ distance <- matrix(,nrow = numClasses, ncol = numClasses)

+

+ diag(distance) <- 0

+

+ k <- 1

+

+ for(i in 1:(numClasses-1)){

+

+ for(j in (i+1):numClasses){

+

+ if(i != j){

+

+ distance[j, i] <- marginMat[k]

+

+ distance[i, j] <- marginMat[k]

+

+ k <- k + 1

+ }

+

+ if(i == j){

+

+ distance[j, i] <- 0

+

+ }

+

+ }

+

+ }

+

+ return(distance)

+ }

1

73

Appendix: R code (dissidenceMatrix)

> #Function that gives the node membership of a particular classification

> #in the hierarchy

>

> tracer <- function(hclustObject, class){

+

+ trMatrix <- matrix(, nrow=length(hclustObject$merge[,1]))

+

+ k = 1

+

+ #Need an indicator variable to tell us when we've reached the terminal node

+ stopRule=1

+

+ while(length(stopRule) != 0){

+

+ #Set class to the index in the merge list. This is the same as

+ #node membership

+ class <- which(hclustObject$merge == class, arr.ind = TRUE)[,1]

+

+ #Place in a matrix that we can use as a list

+ trMatrix[k] <- class

+

+ #Update stop value

+ stopRule <- which(hclustObject$merge==class, arr.ind=TRUE)[,1]

+

+ k = k+1

+ }

+ return(rev(na.omit(trMatrix)))

+ }

1

74

Appendix: R code (tracer)

> #Modified function that uses modified merge list to assess structure effect.

>

> structTracer <- function(merge, class){

+

+ trMatrix <- matrix(,nrow = length(merge[,1]))

+ k <- 1

+

+ #Need an indicator variable to tell us when we've reached the terminal node

+ stopRule <- 1

+

+ #Make sure we're not at the end of the list, so it does not throw an error

+ while(length(stopRule) != 0){

+

+ #Set class to the index in the merge list. This is the same as node membership

+ class <- which(merge == class, arr.ind = TRUE)[,1]

+

+ #Place in a matrix that we can use as a list

+ trMatrix[k] <- class

+

+ #Update stop value

+ stopRule <- which(merge == class,arr.ind=TRUE)[,1]

+ k <- k+1

+ }

+

+ #Get rid of parts of the list that do not matter

+ return(rev(na.omit(trMatrix)))

+ }

1

75

Appendix: R code (structTracer)

> #EDIS data randomization

>

> edis <- read.csv("filteredData.csv")

> #Set diagnostic labels as numbers to work

> #in the functions

>

> edis$Diagnosis <- as.numeric(edis$Diagnosis)

> #Create list of diagnosises and their numeric code

> write.table(edis$Diagnosis, file = "numLabel.txt", sep = " ")

> #Split data into training set and test set

>

> #Set reproducible random seed

> set.seed(256)

> #Empty dataframes with same column names

> #$Diagnosis$ is a value known to not be true

> #here

>

> train.edis <- subset(edis, Diagnosis == 304)

> test.edis <- subset(edis, Diagnosis == 304)

> #Iterate through each diagnosis label

>

> for(i in 1:287){

+

+ tempData <- subset(edis, Diagnosis == i)

+

+ #Sample indexes and use these

+ #to subset and separate data so there are an

+ #even distribution of the diagnostic labels

+

+ indexes <- sample(1:nrow(tempData), size = 0.2*nrow(tempData))

+

+ test.edis <- rbind(test.edis, tempData[indexes,])

+

+ train.edis <- rbind(train.edis, tempData[-indexes,])

+ }

1

76

Appendix: R code (randomization)

> #Function that automatically fits SVM models based on the merge list,

> #and places them in a structure to refer to later.

>

> #This function is specific to the emergency department data.

> #Requires the dataframe produced by the prepareMatrix() function

>

> #Other arguments required:

>

> #mergeList: the merge list from the hclust object fit during the

> #initial structural learning.

>

> #numCol: the number of columns of the original data. This is to

> #point the model to classify on the right outcome variable.

>

> #start: Tells the function which node to focus on first.

> #finish: Tells the function the last node to focus on.

> #These two values allow you to split the computations up amonst

> #different workers to finish faster.

>

> #Note that it took almost a month to train all of the EDIS data,

> #so only run a large fitting if one is comfortable waiting.

>

> modelFit <- function(dataframe, mergeList, numCol, start, finish){

+

+ k = start

+

+ for(i in start:finish){

+

+ #Subset the data that is appropriate for the pair-wise comparison

+ tempData <- subset(dataframe, dataframe[,(numCol+i)] == TRUE)

+

+ #if clause to account for having a superficial split

+

+ if(mergeList[i,1]<0){

+

+ #Define weights to counteract unbalanced data

+ classOneNum <- sum(tempData[, numCol + (numClasses - 1) - mergeList[i,1]] == TRUE)

+ classTwoNum <- sum(tempData[, numCol + (numClasses - 1) - mergeList[i,1]] == FALSE)

+

+ maxNum <- max(classOneNum, classTwoNum)

+

+ wts <- maxNum/c(classOneNum, classTwoNum)

+

+ #Make formula

+ newFormula <- paste0(names(tempData)[numCol + 286 - mergeList[i, 1]], " ~ ")

+

1

77

Appendix: R code (modelFit)

+ #Add in variables that are always present.

+ for(j in 2:4){

+

+ newFormula <- paste0(newFormula, names(tempData)[j], " + ")

+

+ }

+

+ for(l in 1:length(which(colSums(tempData[,5:195]) != 0))){

+

+ if(l == length(which(colSums(tempData[,5:195]) != 0))){

+

+ newFormula <- paste0(newFormula,

+ attr(which(colSums(tempData[,5:195]) != 0)[l],

+ "names"))

+ newFormula <- as.formula(newFormula)

+ }

+

+ else{

+

+ newFormula <- paste0(newFormula,

+ attr(which(colSums(tempData[,5:195]) != 0)[l],

+ "names")," + ")

+ newFormula <- as.formula(newFormula)

+ }

+ }

+

+ #Utilize this formula to train model

+ trainedModel <- svm(newFormula,

+ data = tempData, kernel = "linear",

+ type = "C-classification", probability = TRUE,

+ class.weights = wts)

+

+ #Save the model to the hard memory for reference later

+ save(trainedModel, file = paste0("Model", k,".rda"))

+

+ #Print the iteration so we know the progress

+ print(paste0("Model", k, ".rda"))

+ k = k + 1

+

+ #Free up RAM by removing the model from the workspace

+ rm(trainedModel)

+

+ }

+

+ #Fit a model at each node

+ else{

2

78

Appendix: R code (modelFit)

+

+ #Define weights to counteract unbalanced data

+ classOneNum <- sum(tempData[, numCol + (numClasses - 1) - mergeList[i,1]] == TRUE)

+ classTwoNum <- sum(tempData[, numCol + (numClasses - 1) - mergeList[i,1]] == FALSE)

+

+ maxNum <- max(classOneNum, classTwoNum)

+

+ wts <- maxNum/c(classOneNum, classTwoNum)

+

+ #Make up the formula for the model

+ newFormula <- paste0(names(tempData)[195 + mergeList[i, 1]], " ~ ")

+

+ #Add in variables that are always present.

+ for(j in 2:4){

+

+ newFormula <- paste0(newFormula, names(tempData)[j], " + ")

+

+ }

+

+ for(l in 1:length(which(colSums(tempData[,5:195]) != 0))){

+

+ if(l == length(which(colSums(tempData[,5:195]) != 0))){

+

+ newFormula <- paste0(newFormula,

+ attr(which(colSums(tempData[,5:195]) != 0)[l],

+ "names"))

+ newFormula <- as.formula(newFormula)

+ }

+

+ else{

+

+ newFormula <- paste0(newFormula,

+ attr(which(colSums(tempData[,5:195]) != 0)[l],

+ "names")," + ")

+ newFormula <- as.formula(newFormula)

+ }

+ }

+ #Utilize this formula to train model

+ trainedModel <- svm(newFormula,

+ data = tempData, kernel = "linear",

+ type = "C-classification", probability = TRUE,

+ class,weights = wts)

+

+ #Save the model to the hard memory for reference later

+ save(trainedModel, file = paste0("Model", k,".rda"))

+

3

79

Appendix: R code (modelFit)

+ #Free up RAM by removing the model from the workspace

+ rm(trainedModel)

+

+ #Print the iteration so we know the progress

+ print(paste0("Model", k, ".rda"))

+ k = k + 1

+ }

+

+ }

+

+ }

4

80

Appendix: R code (modelFit)

> #Collecting the predictions from the models

> #To not use up all the RAM, need to bring the

> #model in, take the predictions (probabilities)

> #and then remove the model from the workspace.

>

> #Need to tell the function how many node memberships

> #there are, number of observations to predict,

> #which node membership you want to start on, and

> #which node to stop (so you can parcel out the

> #predictions in the high-computational case.

>

> #Also requires df, which is the dataframe of observations

> #to make the predictions on.

>

> probsMatrixMake <- function(numCol, numRow, startCol, endCol, mergeList, df){

+

+ #Create matrix to contain the predicted probs

+ probMat <- matrix(ncol = numCol, nrow = numRow)

+

+ #Cycle through all of the membership models

+ for(i in startCol:endCol){

+

+ #Since class labels are negative, test for less than zero here.

+

+ for(j in 1:2){

+

+ #Read in model structure from outside source, all are named

+ #"trainedModel", so can refer to and overwrite as needed

+ load(paste0("Model", i, "c", j,".rda"))

+

+ print(paste0("Model", i, "c", j,".rda"))

+

+ preds <- attr(predict(trainedModel, df, probability = TRUE), "probabilities")

+

+

+ if(mergeList[i,j] < 0){

+

+ #Places predictions of node membership in same column as is in the

+ #dataframe

+ if(dimnames(preds)[[2]][1] == TRUE){

+

+ probMat[,(length(mergeList[,1]) - 1) - mergeList[i, j]] <- preds[,1]

+ }

+

+ else{

+

1

81

Appendix: R code (probMatrixMake)

+ probMat[, (length(mergeList[,1]) - 1) - mergeList[i, j]] <- preds[,2]

+

+ }

+ }

+

+ #If membership of node rather than class label, place in same relative position

+ #as the dataframe.

+ else{

+

+ if(dimnames(preds)[[2]][1] == TRUE){

+

+ probMat[, mergeList[i, j]] <- preds[,1]

+

+ }

+

+ else{

+

+ probMat[, mergeList[i, j]] <- preds[,2]

+

+ }

+ }

+ }

+

+ #Sometimes takes a great deal of time, so a counter

+ #to mark progress

+

+ print(i)

+ }

+

+ return(probMat)

+ }

2

82

Appendix: R code (probMatrixMake)

> #Code to calculate how probable each class is for each observation

>

> #Requires the following arguments:

>

> #OriginalData: the dataframe produced by the PrepareMatrix function

>

> #ProbabilityMatrix: the matrix of the probabilities of node membership

> # for each observation produced by the probMatrixMake

> # function.

>

> #mergeList: the list of merges from the hierarchical structure of the data

> # which is given by the hierarchyTrain function

>

> #Requires the following functions in your workspace:

>

> #makeConfusionMatrix, structTracer

>

> makePredictions <- function(originalData, probabilityMatrix,

+ numCol, mergeList, endM){

+

+ #Saving number of rows of the data for use later

+ numRow <- nrow(originalData)

+

+ #Empty matrix to store probabilities of a given

+ #class label, with each row an observation

+ predictionMatrix <- matrix(ncol = max(originalData[,1]), nrow = numRow)

+

+ for(i in 1:max(originalData[,1])){

+

+ #Path gives the references for the predicted

+ #probability matrix. Take off the first entry

+ #since it refers to the probability of being

+ #in the most superior cluster, which is unity.

+

+ path <- c(structTracer(mergeList, -i),

+ length(mergeList[,1]) + i -1)[-1]

+

+ #Now simply place the product of these probabilities

+ #into the prediction matrix for each observation

+

+ for(j in 1:numRow){

+

+ predictionMatrix[j,i] <- prod(probabilityMatrix[j,path])

+

+ }

+

1

83

Appendix: R code (makePredictions)

+ }

+

+ #Now that the probability of each class label is given

+ #for each observation, order them to give the rankings

+ #of each class label

+

+ orderedPredictions <- matrix(ncol = numCol, nrow = numRow)

+

+ for(k in 1:numRow){

+

+ orderedPredictions[k,] <- order(predictionMatrix[k,], decreasing = TRUE)

+ }

+

+ #Create confusion matrix for the rest of the program

+ conf.matrix <- makeConfusionMatrix(originalData[,1],

+ orderedPredictions[,1])

+

+ #Gives the total number correct

+ totalFirstCorrect <- sum(diag(conf.matrix))

+

+ #Initialize variable to collect number correct

+ totalTenCorrect <- 0

+

+ #Loop collects the first most probable class label, the next, and so on.

+ responseCurveData <- matrix(nrow = 287)

+

+ for(m in 1:endM){

+

+ totalTenCorrect <- totalTenCorrect +

+ sum(diag(makeConfusionMatrix(originalData[,1],

+ orderedPredictions[,m])))

+

+ responseCurveData[m] <- totalTenCorrect/numRow

+ }

+

+ #Matrix for presentation of the results. Store in return list for reference.

+ returnMatrix <- matrix(c(totalFirstCorrect, totalFirstCorrect/numRow,

+ totalTenCorrect, totalTenCorrect/numRow),

+ nrow = 2)

+

+ colnames(returnMatrix) <- c("Correct first rank",

+ "Correct in ten ranks")

+ rownames(returnMatrix) <- c("Absolute number",

+ "Correct rate")

+

+ #Place everything into a list for the return statement

2

84

Appendix: R code (makePredictions)

+ returnList <- list()

+ returnList[[1]] <- returnMatrix

+ returnList[[2]] <- conf.matrix

+ returnList[[3]] <- responseCurveData

+

+ return(returnList)

+ }

3

85

Appendix: R code (makePredictions)

> #Script to randomly modify the tree structure, retrain the models,

> #and give the predictions

>

> #Note: takes a long time to run, so do not execute unless one is

> #sure.

>

> #Place predictions into a matrix

> newErrors <- function(){

+

+ matrix(,nrow=30)

+

+ for(h in 1:30){

+

+ #Randomize the predictions in the merge list to randomize terminal

+ #experts

+ newMer <- randomMerge(zip.Cluster)

+

+ #Append outcome variables to the dataframe

+ newTrainingData <- prepareMatrix(zip.train, 10, newMer)

+

+ #For the sake of reference, give the names of the variables in the

+ #dataframe

+ names(newTrainingData)[258:276] <- names(test.df)[258:276]

+

+ #Refit the SVMs with said models

+ newModels <- modelFit(newTrainingData, newMer, 257)

+

+ #Prepare the test data

+ newTestSet <- prepareMatrix(zip.test, 10, newMer)

+

+ #Rename the columns for the sake of reference

+ names(newTestSet)[258:276] <- names(test.df)[258:276]

+

+ #Calculate the probability of each class for each observation

+ newProbs <- predictionProbs(newTestSet, newMer, newModels, 10)

+

+ #Empty matrix to contain predicted class labels

+ predictionsMat <- matrix(nrow=2007,ncol=10)

+

+ #Placing predictions in said matrix

+ for(j in 1:2007){

+

+ predictionsMat[j,] <- order(-newProbs[j,])-1

+

+ }

+

1

86

Appendix: R code (randomMerge)

+ #Place classification rate in the errors matrix

+ newErrors[h] <- sum(diag(xtabs(~ newTestSet[,1] + predictionsMat[,1])))/2007

+

+ }

+ }

2

87

Appendix: R code (randomMerge)

> #Script to randomly modify the tree structure, retrain the models,

> #and give the predictions

>

> #Note: takes a long time to run, so do not execute unless one is

> #sure.

>

>

> newErrors <- function(){

+

+ #Place predictions into a matrix

+ matrix(,nrow=30)

+

+ for(h in 1:30){

+

+ #Randomize the predictions in the merge list to randomize terminal

+ #experts

+ newMer <- randomMerge(zip.Cluster)

+

+ #Append outcome variables to the dataframe

+ newTrainingData <- prepareMatrix(zip.train, 10, newMer)

+

+ #For the sake of reference, give the names of the variables in the

+ #dataframe

+ names(newTrainingData)[258:276] <- names(test.df)[258:276]

+

+ #Refit the SVMs with said models

+ newModels <- modelFit(newTrainingData, newMer, 257)

+

+ #Prepare the test data

+ newTestSet <- prepareMatrix(zip.test, 10, newMer)

+

+ #Rename the columns for the sake of reference

+ names(newTestSet)[258:276] <- names(test.df)[258:276]

+

+ #Calculate the probability of each class for each observation

+ newProbs <- predictionProbs(newTestSet, newMer, newModels, 10)

+

+ #Empty matrix to contain predicted class labels

+ predictionsMat <- matrix(nrow=2007,ncol=10)

+

+ #Placing predictions in said matrix

+ for(j in 1:2007){

+

+ predictionsMat[j,] <- order(-newProbs[j,])-1

+

+ }

1

88

Appendix: R code (newErrors)

+

+ #Place classification rate in the errors matrix

+ newErrors[h] <- sum(diag(xtabs(~ newTestSet[,1] +

+ predictionsMat[,1])))/2007

+

+ }

+ }

2

89

Appendix: R code (newErrors)

> # Create a confusion matrix from the given outcomes, whose rows correspond

> # to the actual and the columns to the predicted class labels.

> makeConfusionMatrix <- function(dataLabels, predictedLabels) {

+

+ #Declare max number of classes to make the matrix

+ numClasses <- max(dataLabels, predictedLabels)

+

+ #Order the labels for the rows and columns

+ predictedLabels <- predictedLabels[order(dataLabels)]

+ dataLabels <- dataLabels[order(dataLabels)]

+

+ sapply(split(predictedLabels, dataLabels), tabulate, nbins = numClasses)

+ }

1

90

Appendix: R code (makeConfusionMatrix)

