
FIXED-PARAMETER ALGORITHM FOR HYBRIDIZATION
NUMBER OF TWO MULTIFURCATING TREES

by

Zhijiang Li

Submitted in partial fulfillment of the
requirements for the degree of
Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

August 2014

c© Copyright by Zhijiang Li, 2014

Table of Contents

List of Tables . iv

List of Figures . v

Abstract . viii

List of Abbreviations Used . ix

Acknowledgements . x

Chapter 1 Introduction . 1

1.1 Contribution . 5

1.2 Related Work . 7

1.2.1 Approximation Algorithms . 8

1.2.2 Fixed-parameter Algorithms 9

1.3 Organization . 13

Chapter 2 Preliminaries . 14

2.1 Phylogenetic Trees . 14

2.2 Hybridization Number and Agreement Forests 17

2.3 Derived Properties . 20

Chapter 3 A 4-Way Branching Algorithm for SPR Distance . . . 22

3.1 Structural Results of Multifurcating Agreement Forests 23

3.2 Algorithm for Branching Phase . 27

Chapter 4 Preparation for Refinement Phase 31

4.1 Restoring Multifurcations in an AF 32

4.2 Resolving Input Trees . 41

ii

Chapter 5 A First Complete Hybridization Algorithm 43

5.1 Expanded Cycle Graph . 44

5.2 Essential Components and Exit Nodes 49

5.3 Potential Exit Nodes . 52

5.4 A Simple Refinement Algorithm . 53

Chapter 6 An Improved Refinement Algorithm 55

6.1 Improved MAAF Algorithm . 56

6.2 Correctness Proof . 58

6.2.1 Stage One . 58

6.2.2 Stage Two . 66

6.3 Complexity Analysis . 77

6.4 Tightening the Complexity Analysis 77

Chapter 7 Experimental Evaluation 82

7.1 Cluster Reduction . 82

7.2 Efficient Implementation of the MAAF Algorithm 86

7.2.1 Fix Potential Exit Nodes . 87

7.2.2 Check Acyclicity . 87

7.2.3 Constant-Time LCA Queries 88

7.2.4 Only Fix nodes in SCC . 88

7.3 Data Sets . 88

7.4 Results . 89

7.4.1 Correctness Evaluation . 90

7.4.2 Performance Evaluation . 90

Chapter 8 Conclusions and Future Work 95

References . 97

iii

List of Tables

1.1 The previous best algorithms for hybridization number. (Note:

approximation ratio is used to compare approximation algo-

rithms with polynomial running time, while time complexity is

used to compare FPT algorithms.) 11

iv

List of Figures

1.1 A phylogenetic tree built by Woese et al. [1] that separates life

into the three domains Bacteria, Archaea and Eukaryota. . . . 1

1.2 An imaginary phylogenetic network representing the history of

7 taxa. 3

2.1 (a) An X-tree T . (b) The subtree T (V) for V = {2, 5, 6}. (c)

T |V . (d) A hybrid network of two multifurcating X-trees. (e)

A hybrid network of two binary resolutions of the trees in (d). 15

2.2 (a) Two binary rooted X-tree T1 and T2. (b) A cyclic AF F1 of

T1 and T2. (c) An acyclic AF F2 of T1 and T2. (d) The cycle

graph GF1 of F1. (e) The cycle graph GF2 of F2. 18

2.3 (a) Two triplets ab|c and a|b|c. (b) Expansion of a subset of v’s

children. 19

3.1 A sibling group {a1, a2, ..., am} in Ṫ1 such that a1, a2, ..., ar share

a minimal LCA l in Ḟ2; Ḟ2 shows the result of expanding B2. . 23

3.2 4-way branching. 30

4.1 (a) Multifurcating rooted X-trees T1 and T2. (b) An AF F pro-

duced by the 4-way branching algorithm and the corresponding

resolutions of T1 and T2. (c) An MAAF F ′ and the correspond-

ing resolutions of T1 and T2. 31

4.2 (a) Computing a label pair for a non-leaf edge to construct

T1|X i. (b) A lookup table showing the size of every partition

X i. 34

4.3 Labelling of the edges of T1 to indicate their membership in

trees T1(X
1), T1(X

2), ..., T1(X
p). 34

4.4 The trees T1(X
1), T1(X

2), ..., T1(X
p) extracted according to the

labelling in Figure 4.3. 34

v

4.5 The trees T1|X1, T1|X2, ..., T1|Xp obtained from trees T1(X
1),

T1(X
2), ..., T1(X

p) in Figure 4.4. 34

4.6 (a) An “open” set. (A question mark means the set is open.)

(b) A “closed” set. 36

4.7 The inputs Fi, T1|X i and T2|X i for the construction of F i
m in

Figure 4.8. 37

4.8 Detailed steps of collapsing F i to construct F i
m. 38

4.9 F i
m. 38

4.10 (a) Before the resolution from T1 to (T1)m. (The number with a

∗ means the partition that the leaf above belongs to.) (b) After

the resolution from T1 to (T1)m. 41

4.11 Resolve T1 to (T1)m, according to partitions of Fm. 42

5.1 An example for mapping and reverse mapping based on the

expanded cycle graph. 45

5.2 (a) Two trees T1 and T2. (b) A multifurcating agreement forest

F of T1 and T2 and its cycle graph GF . (c) The expanded cycle

graph G∗F . Dashed edges are T1-hybrid edges, dotted ones are

T2-hybrid edges. 46

5.3 (a) Two trees T1 and T2. (b) A multifurcating agreement forest

F of T1 and T2. (c) G∗F (with ρ’s component removed for clarity)

contains a cycle of length 4. Dashed edges are T1-hybrid edges,

dotted ones are T2-hybrid edges. White nodes indicate exit

nodes. (d) Fixing the exit node of component C4 (cutting the

bold edges) destroys the cycle. Note that multifurcations on

the path from an exit node to the root should be resolved. This

doesn’t change the results of our algorithms but it will help

with the proof for Lemma 13. 50

6.1 Scenario 1.2.1 in proof of Lemma 15. 63

6.2 Scenario 1.2.2.1 in proof of Lemma 15. 64

vi

6.3 Scenario 1.2.2.2 in proof of Lemma 15. 65

6.4 Roadmap of the correctness proof. 67

6.5 Illustration for the paths to cut when fixing u and u′. 71

6.6 Roadmap of proving that F ′′ is acyclic. 72

6.7 (a) The structure of F ′C if u′′ and u′ are in different components

of F ′C . (b) The structure of F ′C based on the construction of T ′1. 74

6.8 The structure of FC and F ′C if u′′ is a proper descendant of u′

in component C ′2. 74

7.1 A cluster for two multifurcating trees such that group A =

{a1, a2, ..., ai} and group B = {b1, b2, ..., bj} have the same set

of labelled descendant leaves. 83

7.2 The main steps of our algorithm from Chapter 6. 87

7.3 Performance of our MAAF algorithm with cluster reduction. . 91

7.4 Actual running time of our MAAF algorithm with cluster re-

duction by the hybridization number. 92

7.5 Performance comparison of our MAAF algorithm with and with-

out cluster reduction. 92

7.6 Comparison of running times of our MAAF algorithm with van

Iersel’s MAF algorithm. 94

vii

Abstract

Phylogenetic trees are used to represent the evolution of a set of species. However, this

history may include reticulation events where taxa acquire genes from more than one

ancestor or from contemporaries, which leads to non-tree-like ancestry relationships

that cannot be represented using trees alone. Hybridization networks can be used to

model such histories.

The hybridization number is NP-hard to compute and we present a fixed-parameter

algorithm to compute the hybridization number (and a corresponding network) of two

multifurcating trees. The running time of our algorithm is O(4.83k ·n), where k is the

computed hybridization number, which is more efficient than two previous algorithms

with complexity O(2n · poly(n)) and O((6kk!) · poly(n)), respectively. We verified the

practicality of our algorithm by implementing it and evaluating its performance on

real data. Our algorithm is obtained using a non-trivial combination of novel ideas

with techniques from previous algorithms for multifurcating SPR distance and binary

hybridization number.

viii

List of Abbreviations Used

AAF Acyclic Agreement Forest

AF Agreement Forest

DFVS Directed Feedback Vertex Set

FPT Fixed-Parameter Tractability/Fixed-Parameter Tractable

LCA Lowest Common Ancester

LGT Lateral Gene Transfer

MAAF Maximum Acyclic Agreement Forest

MAF Maximum Agreement Forest

SPR Subtree Prune-and-Regraft

ix

Acknowledgements

First and foremost, I wish to thank my supervisor, Norbert Zeh. I am grateful for

his enlightening advice and detailed collaboration. Particularly, I would like to thank

him for his attention to detail, dedication, passion for research, and most importantly,

his patience with his students.

Special thanks should be given to Chris Whidden for helping with my thesis,

including introducing me to important research background, providing test data, and

offering advice on implementation.

I also want to thank Robert Beiko and the members of the Beiko lab for providing

me with the biological background and some biological data.

Finally, I wish to thank my father and mother for their whole-hearted support of

my graduate studies.

x

Chapter 1

Introduction

Phylogenetic trees (phylogenies, or evolutionary trees) are used to represent the in-

ferred evolutionary relationships among various biological species. In such a tree,

extant species are represented as leaves, common ancestors are represented as inter-

nal nodes. Generally, each node is called a taxonomic unit or taxon, and internal

nodes are called hypothetical taxa because they cannot be directly observed. The

distance between two nodes in an evolutionary tree is related to their evolutionary

distance, such as time or gene mutations. For example, Figure 1.1 shows a phyloge-

netic tree constructed by Woese et al. [1] that separates life into the three domains

Bacteria, Archaea and Eukaryota. For an introduction to phylogenetic trees, see [2–4].

Bacteria

Green
Filamentous
bacteriaSpirochetes

Gram
positives

Proteobacteria

Cyanobacteria

Planctomyces

Bacteroides
Cytophaga

Thermotoga

Aquifex

Halophiles
Methanosarcina

Methanobacterium

Methanococcus

T. celer

Thermoproteus

Pyrodicticum

Entamoebae Slime
molds

Animals
Fungi

Plants

Ciliates

Flagellates

Trichomonads

Microsporidia

Diplomonads

Archaea Eukaryota

Figure 1.1: A phylogenetic tree built by Woese et al. [1] that separates life into the
three domains Bacteria, Archaea and Eukaryota.

1

The most common methods of building phylogenetic trees are parsimony [5], max-

imum likelihood [6], and MCMC-based Bayesian inference [7]. All these methods

depend upon a mathematical model describing the evolutionary relationships of the

species involved. However, there is no way to measure whether a particular phylo-

genetic hypothesis is accurate or not, unless the true relationships among the taxa

being examined are already known. This implies that there is no way to choose an

optimal method to build a phylogenetic tree when different methods lead to different

trees. Moreover, even good phylogenetic inference methods cannot guarantee that

a constructed tree correctly represents their evolutionary history, since the ancestral

history of species may be non-tree-like. This is caused by processes that include hy-

bridization, lateral gene transfer (LGT), and recombination [8,9]. Collectively, these

processes are known as reticulation events. Thus, for each gene involved in reticula-

tion events, phylogenetic methods create a different phylogenetic tree, representing

the evolutionary history of that particular gene. Phylogenetic distance measures are

used to quantify the dissimilarity of two phylogenetic trees, and thus capture how well

the evolutionary hypotheses of two or more phylogenetic trees agree. They can often

also be used to discover putative sequences of reticulation events that can explain

the dissimilarity. To simultaneously display disagreeing tree topologies, phylogenetic

networks (e.g., hybridization networks) can be used, which are a generalization of

phylogenetic trees and allow species to inherit genetic material from more than one

parent. An example of a phylogenetic network is shown in Figure 1.2.

A number of measures are commonly used to define the distance between phy-

logenies. Among them, the subtree prune-and-regraft (SPR) distance [10] and the

hybridization number [11] have attracted particular attention due to their direct evo-

lutionary interpretations. The SPR distance is the minimal number of SPR operations

needed to transform one tree into the other. Each such operation detaches a subtree

by cutting the parent edge of its root and then reattaches this subtree in a different

2

Taxon 1 Taxon 2 Taxon 3 Taxon 4 Taxon 5 Taxon 6 Taxon 7

Figure 1.2: An imaginary phylogenetic network representing the history of 7 taxa.

location in the tree. This directly models the effect of lateral gene transfer because an

LGT event between the endpoints of the SPR operation, in the opposite direction of

the SPR operation, has the effect that, in the tree constructed from the gene involved

in the LGT event, the moved subtree appears more similar to descendants of its new

parent after the SPR operation than to its “real parent” in the initial tree. As such,

the SPR distance models the minimum number of LGT events necessary to explain

the difference between a gene tree and a reference tree. The SPR distance has also

been used as an optimality criterion in the construction of supertrees [12, 13].

Hybrid networks represent the evolutionary history of a set of taxa under the

assumption that the only type of reticulation events in their history is hybridization,

which is common in plants. In this case, each gene common to the underlying set

of extant species evolves in a tree-like fashion, while certain taxa may inherit their

genes from different parents. Thus, while the history of the set of taxa is a network,

the history of each gene is a tree and must be displayed by the network, that is, the

tree must be constructible from the network by removing edges. For reconciling two

different gene trees, this leads to the problem of finding a hybrid network that displays

both trees and, following the parsimony principle, this network should contain the

smallest possible number of hybrid nodes. The hybridization number of the two trees

is this minimum number of hybrid nodes in any hybrid network displaying the two

trees. Algorithms for computing the hybridization number can also construct the

3

corresponding hybrid network [14] and thus are able to find a smallest set of possible

hybridization events necessary to explain the differences between the two input trees

[11]. Both SPR distance and hybridization number are NP-hard to compute [14–16].

To model these two distance measures, two appropriately defined types of agree-

ment forests (AFs) are useful: maximum agreement forest (MAF) for SPR distance,

and maximum acyclic agreement forest (MAAF) for hybridization number. An agree-

ment forest of two phylogenies can be obtained from either tree by cutting an ap-

propriate set of edges. Such a forest is called acyclic if the ancestry relationships of

its components in the two trees do not form cycles. Their formal definitions will be

introduced in Chapter 2. The number of components of an MAF is one more than

the SPR distance [16], so the problem of computing the SPR distance of two trees is

equivalent to the problem of constructing an MAF. Similarly, the number of compo-

nents of an MAAF is one more than the hybridization number [11], so the problem

of computing the hybridization number of two trees is equivalent to the problem of

constructing an MAAF.

A number of previous results have concentrated on computing the SPR distance

and hybridization number of two trees efficiently (see Section 1.2). Most of these

algorithms are restricted to binary trees due to the inherent complexity of comparing

non-binary trees.

Non-binary trees contain multifurcations (polytomies), which are vertices with

three or more children. Often a distinction is made between soft and hard mul-

tifurcations. Soft multifurcations are the result of collapsing bipartitions with low

statistical support: though the lineages diverged in binary phylogenies constructed

using statistical methods (i.e., some descendants are closer relatives than others), the

available data does not allow us to determine with confidence the exact order of these

speciation events. Hard multifurcations on the other hand mean three or more lin-

eages are created during a single speciation event, and the children are equally distant

4

from each other [17]. Simultaneous speciation events are assumed to be rare, so the

common assumption is that all multifurcations are soft. A binary phylogeny consis-

tent with a given multifurcating one can be obtained by resolving each multifurcation

into an arbitrary sequence of bipartitions. However, the inferred binary evolutionary

relationships are not supported by the original data and may be incorrect. This may

lead to the inference of spurious reticulation events from such binary phylogenies.

Thus, since most phylogenies constructed using statistical inference methods include

multifurcations, it is crucial to develop efficient algorithms to compare multifurcating

trees using SPR distance and hybridization number directly. The computation of SPR

distance and hybridization number is NP-hard even on binary trees. Their computa-

tion for non-binary trees is much harder because the number of possible resolutions

grows exponentially with the out-degrees of multifurcating nodes.

1.1 Contribution

The contribution of this thesis is to develop a novel and fast fixed-parameter algorithm

for computing the hybridization number k of two multifurcating phylogenetic trees,

assuming that all multifurcations are soft. As previous algorithms for binary trees [18],

we exploit its relationship with MAAFs to compute the hybridization number. Given

an MAAF, a hybrid network with k hybridization events can be constructed quickly

[14]. Similar to [18], we find an MAAF in two phases. We first use a 4-way branching

algorithm to find a set of agreement forests with at most k+ 1 components, and then

do cut additional edges to break cycles in the ancestry relationships of the components

of each forest. A first simple version of this algorithm has a running time of O(16kn),

where k is the hybridization number and n is the number of taxa. A second improved

version is obtained by applying a number of incremental improvements to reduce the

running time to O(4.83kn). To the best of our knowledge, there are only two existing

FPT algorithms for multifurcating hybridization number, one by van Iersel et al. [19]

5

with a complexity of O(2n · poly(n)), and the other by Piovesan and Kelk [20] with a

complexity of O((6kk!)·poly(n)). The algorithm in [19] itself is not an FPT algorithm,

but it can be combined with known kernelization rules [14] to obtain an algorithm

with running time O(2O(k) + poly(n)) = O(ck + poly(n)). The constant c is large.

In comparison, our solution with a complexity of O(4.83k · poly(n)) is indeed a more

efficient FPT algorithm to compute the hybridization number of two multifurcating

trees.

The work in this thesis is based on previous work on multifurcating SPR distance

[21] and binary hybridization number [18], but it is not a simple combination of both

algorithms. Substantial novel insights are necessary to make this combination work

for multifurcating trees.

• The 4-way branching technique from the multifurcating SPR algorithm [21] gives

us binary agreement forests that may or may not be the right starting point for

computing an MAAF of the two input trees. We developed an efficient algorithm

to compute minimally resolved multifurcating agreement forests that can be refined

to an MAAF of the two input trees.

• In order to determine which edges to cut to break cycles in the AFs computed by

the branching phase, Whidden et al. [18] introduced the notion of an expanded

cycle graph. Their definition depends on the trees being binary, and we had to

extend this definition to multifurcating trees in a way that captures the existence

or non-extistence of cycles in an appropriate binary resolution.

• The refinement phase identifies certain nodes, called exit nodes, in the agreement

forest found in the branching phase so that an MAAF can be found by cutting all

edges on the paths from a subset of these nodes to the roots of their components.

To make the refinement phase faster, Whidden et al. [18] introduced sophisticated

tagging rules in the branching phase that allows them to cut the number of these

candidates in half. We applied the same idea, but multifurcations forced us to

6

completely redesign these tagging rules.

• The correctness proof of the improved refinement phase in Whidden et al.’s algo-

rithm [18] shows that there exists a “canonical” AF found in the branching phase

so that the exit nodes whose ancestor edges need to be cut to obtain an MAAF

are in fact tagged in this forest. This proof becomes substantially more technical

in the case of multifurcating trees, and can easily be considered the main technical

contribution of this thesis.

• We present the first implementation of an FPT algorithm for multifurcating hy-

bridization number. Our experiments show its practicality for moderate hybridiza-

tion numbers. On a 2.4GHz AMD Opteron system, our algorithm can compute

hybridization numbers as large as 17 of trees with 74 taxa in 1 hour.

1.2 Related Work

Bordewich and Semple proved that the SPR distance is NP-hard to compute [16].

They also proved that the hybridization number is NP-hard to compute [14]. Thus, it

is unlikely that either SPR distance or hybridization number can be computed exactly

by an algorithm without exponential running time. Even so, due to their biological

significance, much effort has been made to develop efficient algorithms to compute

these distances. There are two standard algorithmic approaches for solving NP-

hard problems: approximation algorithms and fixed-parameter algorithms. Before

reviewing the previous work further, it is necessary to illustrate the close relationship

between SPR distance and hybridization number.

While the SPR distance and the hybridization number can both be used as mea-

sures of dissimilarity between phylogenies, the SPR distance is also a lower bound

on the hybridization number. It has been shown that the SPR distance can be ob-

tained from an MAF [16] and that hybridization number can be obtained from an

MAAF [11]. An MAAF is a more constraint agreement forest than an MAF. Thus,

7

the algorithms to construct MAFs are very valuable as starting points for algorithms

to construct MAAFs.

1.2.1 Approximation Algorithms

Approximation algorithms are often used to find approximate solutions to NP-hard

problems. Since it is unlikely that there can ever be efficient polynomial-time exact

algorithms solving NP-hard problems, we need to settle for approximate answers if we

insist on polynomial running time. Unlike heuristics, approximation algorithms pro-

vide a guaranteed bound on the ratio between the optimal solution and the one they

compute, which is called the approximation ratio. An introduction to approximation

algorithms can be found in [22].

For the SPR distance problem, Hein et al. [23] first claimed a 3-approximation

algorithm for computing SPR distances, but Rodrigues et al. [24] provided a counter

example that shows that the claimed 3-approximation ratio is incorrect. Both the

algorithms of [23] and [24] compute 5-approximations of the SPR distance between

two rooted binary phylogenies, and the algorithms can be implemented in linear

time. Later, the approximation ratio was improved to 3 by Bordewich et al. [25]

using an algorithm with O(n5) running time, and by Rodrigues et al. [24] using an

algorithm with O(n2) running time. Whidden and Zeh [26] improved the running

time of this algorithm to linear. In the non-binary (multifurcating) case, a linear

time 4-approximation algorithm was proposed by van Iersel et al. [27] and Whidden

et al. [21] independently, but [21] also proposed an O(n log n) time 3-approximation

algorithm for rooted non-binary MAF.

The hybridization number problem was proved to be APX-hard by Bordewich

and Semple [14], which means it does not have a polynomial-time approximation

scheme unless P=NP. Kelk et al. [28] made the first step towards the approximation

of hybridization number for two binary phylogenies. They proved that this problem

8

has a constant factor polynomial-time approximation if and only if the problem of

computing a minimum-size feedback vertex set in a directed graph (DFVS) has a con-

stant factor polynomial-time approximation. Whether DFVS has a polynomial-time

constant factor approximation algorithm is a long standing open problem. Kelk et al.

also provided an O(log k log log k)-approximation algorithm for hybridization number,

which is obtained using an existing approximation algorithm for DFVS and is the first

non-trivial polynomial-time approximation algorithm for hybridization number. Van

Iersel et al. [29] presented CycleKiller, an exponential-time 2-approximation (or

4-approximation in its fastest mode) algorithm. By implementing this algorithm,

they claimed that their actual approximation ratio was often close to 1. In the

non-binary case, van Iersel et al. [30] showed that a c-approximation algorithm for

non-binary MAF and a d-approximation algorithm for the DFVS problem can be

combined to yield a d(c + 3)-approximation for non-binary MAAF, which is also a

d(c+ 3)-approximation for hybridization number.

1.2.2 Fixed-parameter Algorithms

The main idea of fixed-parameter algorithms is to restrict the exponential growth of

the running time to some parameter that is specific to the problem but independent

of the input size. As these algorithms provide exact solutions, they are more appeal-

ing than approximate methods. For an introduction to fixed-parameter tractability

(FPT), see [31].

For the SPR distance problem, the previously best algorithm for the rooted SPR

distance of two binary phylogenies by Whidden and Zeh [13] runs in O(2kn) time.

An earlier version runs in O(2.42kn) time [18]. Both algorithms are based on a

3-way branching algorithm [26] that runs in O(3kn) time. The improvements are

achieved using more detailed branching rules [18] and a novel edge protection scheme

[13], respectively. Before these, Bordewich et al. [25] gave an algorithm that runs

9

in O(4k · k4 + n3). Van Iersel et al. [27] expanded the algorithm of Whidden and

Zeh [26] to compute the SPR distance of two non-binary phylogenies in O(4kn) time.

At the same time, a preprint by Whidden and Zeh [21] proposed the same extension

independently, and introduced improved branch rules to obtain a running time of

O(2.42kn). Recently, Shi et al. [32] introduced algorithms to construct maximum

agreement forest on multiple binary trees for both rooted and unrooted trees. Their

algorithms can solve the rooted-MAF problem inO(3kn) time, and solve the unrooted-

MAF problem in O(4kn) time. Note that n here refers to the number of vertices in

all the input trees, which is different from the common definition as the number of

species.

For the hybridization number problem, the hybridization number k is a natural

parameter to choose. In most biological datasets, the number of reticulation events

is relatively small, and thus k is much smaller than n, the number of taxa. The

first fixed-parameter algorithm for the hybridization number of two binary trees was

given by Bordewich and Semple [14] in 2007, with running time O((28k)k +n3). Kelk

et al. [28] provided an improved analysis of the kernel size for hybridization num-

ber, which reduces the running time of the algorithm by Bordewich and Semple to

O((18k)k + n3). Without kernelization, Whidden and Zeh [26] proposed a branching

algorithm for binary hybridization number with running time O(3kn log n), but it

assumed that all cycles have length 2. Combining the O(3kn) branching technique

for agreement forests from Whidden and Zeh [26] with an exhaustive search, Chen

and Wang [33] proposed an algorithm for computing all MAAFs of two binary phy-

logenies. Their algorithm was implemented as a program named HybridNet that

can construct optimal hybridization networks rapidly. Similarly, Scornavacca and

Albrecht [34] combined the O(3kn) branching algorithm with reductions, and imple-

mented a parallel solution [35] of computing hybridization networks for two binary

10

trees. Collins et al. [36] improved the kernelization approach to O((14k)k · n3) us-

ing repeated kernelization steps (called “interleaving”) that are applied throughout

the exhaustive search. So far, the best theoretical result for two rooted binary phy-

logenetic trees is due to Whidden and Zeh [18], with a running time of O(3.18kn)

or O(3.18kk + n3) with kernelization. Algorithms for more than two trees have

also been proposed recently [37–39]. In the non-binary (multifurcating) case, sev-

eral fixed-parameter algorithms for hybridization number have been developed re-

cently [19, 20, 40–42]. However, most of them are of only theoretical value in that

they show hybridization number is in FPT. Only two of these solutions exist can be

considered practical. Linz and Semple [40] used two reductions to prove that the

hybridization number of two (not necessarily binary) trees is in FPT. Kelk et al. [41]

proved that non-binary hybridization for multiple trees is in FPT assuming certain

conditions hold. Van Iersel and Kelk [42] discussed two different kernelization tech-

niques for multiple non-binary trees. The two practical solutions are an O(2n ·poly(n))

time algorithm [19] and an O((6kk!) ·poly(n)) time algorithm [20]. The O(2n ·poly(n))

algorithm makes use of ST-sets (subsets of the set of taxa that are compatible with

all clusters in a phylogeny) and dynamic programming, while the O((6kk!) · poly(n))

algorithm uses a different approach based on analyzing the structure of “terminals”,

which are maximal elements of a natural partial order on species set.

Table 1.1: The previous best algorithms for hybridization number. (Note: approxi-
mation ratio is used to compare approximation algorithms with polynomial running
time, while time complexity is used to compare FPT algorithms.)

Approximation algorithm FPT algorithm

Binary case 4 [29] O(3.18kn) [18]
Non-binary case O(log k log log k) [30] O((6kk!) · poly(n)) [20]

In summary, there are three common techniques for these FPT algorithms: branch-

ing, kernelization, and reduction. The branching technique (or bounded search tree

11

algorithm) was used to compute MAFs [13,18,21,25–27,32] and MAAFs [13,18,33,34].

It was also combined with the kernelization technique [18] and reduction [34,35]. The

kernelization technique was first proposed by Bordewich and Semple [16] for the SPR

distance of two rooted binary trees, with a kernel size 28k. Later, they also proposed a

size 14k kernel for the hybridization number of two rooted binary trees [14]. Then this

technique was used in [18, 28, 36, 39, 42]. The reduction technique first emerged with

kernelization for SPR distance [15] and for hybridization number [14]. Bordewich et

al. [43] introduced a pure reduction algorithm for hybridization number and provided

the first experimental results. Compared with branching and kernelization, reduction

is less powerful because it doesn’t give an exact time bound, but it has been proven

extremely powerful in practice for certain inputs because it divides the original inputs

into several smaller inputs, which decreases the parameter size and the exponential

complexity. In addition, different from these common techniques, there is a different

approach to compute the exact SPR distance and hybridization number, which is

integer linear programming [44, 45]. However, computing the hybridization number

between two large and topologically far apart trees is still challenging.

Above we have discussed theoretical solutions to computing the SPR distance

and hybridization number of two trees. Unfortunately, not each of them has an ex-

isting implementation. For the SPR distance problem, there are implementations

for both binary and non-binary trees. The best three results for binary trees are

due to Wu [44] using integer linear programming, Bonet and John [46] using sat-

isfiability testing, and Whidden et al. [18] using a branching algorithm and reduc-

tion. Recently, van Iersel [47] provided a Java implementation to compute MAFs

for non-binary trees, which can also be used to compute the SPR distance of non-

binary trees. For hybridization number, experimental results are available only for

binary trees to date. As the first program that can compute the binary hybridization

number, HybridNET [43] was developed to construct optimal hybridization networks

12

using Whidden’s branching technique [48]. Later, some faster implementations fol-

lowed using different techniques. SPRDist [45] used the GNU GLPK integer linear

programming solver, or commercial CPLEX solver, to compute hybridization number

quickly. Collins et al. [36] combined reduction and repeated kernelization. Albrecht

et al. [35] applied parallelism and used a combination of reduction techniques and

exhaustive search. These three implementations didn’t vary much in performance

and they were evaluated on different machines.

1.3 Organization

The rest of this thesis is organized as follows. Chapter 2 presents the necessary termi-

nology and notation. Chapter 3 reviews the 4-way branching algorithm that is used

to compute MAFs [21] and some structural results that form the theoretical basis

for the branching phase of our hybridization algorithm for two multifurcating trees.

Chapter 4 introduces an efficient algorithm to restore the multifurcation information

lost in the branching phase. This algorithm is crucial to connect the branching phase

and the refinement phase to form the final algorithm. Its linear time complexity is

also essential to keep the final algorithm efficient. Chapter 5 discusses how to trans-

plant the expanded cycle graph [18] from binary trees to multifurcating trees and

describes a first complete fixed-parameter algorithm for multifurcating hybridization

number. Chapter 6 develops an improved algorithm by adding tagging rules to the

branching phase, and reducing the size of the search space of the refinement phase

using these tags. Chapter 7 discusses the implementation of our algorithm and exper-

imental results. Chapter 8 offers concluding remarks and discusses avenues for future

research.

13

Chapter 2

Preliminaries

This chapter introduces terminology and notations used throughout this thesis. For

the sake of consistency with previous work, we mostly use the definitions and notation

from [16,18,21,25].

2.1 Phylogenetic Trees

A (rooted phylogenetic) X-tree is a rooted tree T whose leaves are the elements of a

label set X and whose non-root internal nodes have at least two children each. The

root of T has label ρ and has only one child. We use n to denote the number of leaves,

that is, the size of the label set X. T is binary (or bifurcating) if all internal nodes

have exactly two children each, otherwise it is multifurcating. For a subset V of X,

T (V) is the smallest subtree of T that connects all nodes in V ; see Figure 2.1(b). T |V

is the smallest tree that can be obtained from T (V) by suppressing degree-2 internal

nodes; see Figure 2.1(c). Suppressing a degree-2 node v deletes v and its incident

edges, and then reconnects its parent u and child w using a new edge (u,w).

For two binary rooted X-trees T1 and T2, the hybridization number is defined

in terms of hybrid networks of the two trees. A hybrid network of T1 and T2 is a

directed acyclic graph H with a single source ρ which has in-degree 0 and out-degree

1, whose leaves (nodes with out-degree 0) are labelled bijectively with the labels in

X\{ρ}, and which displays both T1 and T2. In other words, both T1 and T2, with

their edges directed away from the root, can be obtained from H by deleting and

contracting edges. An example of such a hybrid network is shown in Figure 2.1(e).

14

1 2 3 4 5 6 7

ρ

(a)

2 5 6

(b)
2 5 6

(c)

1 2 3 4 5 6 7

ρ

1 2 3 4 5 6 7

ρ

1 2 3 4 5 6 7

ρ

(d)

1 2 3 4 5 6 7

ρ

1 5 6 7

ρ

1 5 6 7

ρ

2 3 4 2 3 4

(e)

Figure 2.1: (a) An X-tree T . (b) The subtree T (V) for V = {2, 5, 6}. (c) T |V . (d)
A hybrid network of two multifurcating X-trees. (e) A hybrid network of two binary
resolutions of the trees in (d).

The nodes of H with in-degree 2 are called hybrid nodes. (In a hybrid network of k

trees, every node has at most k parent edges or the network contains useless edges

that can be deleted without changing the property that the network displays the k

trees.) The hybridization number of two X-trees T1 and T2 is the minimum number

of hybrid nodes among all hybrid networks of the two trees. Since hybrid nodes

represent hybridization events in the history of the set of taxa in X, minimizing the

15

number of such nodes is equivalent to seeking a most parsimonious explanation of the

differences between the two input trees.

Before defining the hybridization number of two multifurcating X-trees, the signif-

icance of multifurcations should be explained. In phylogenetic trees, multifurcations

are vertices with more than two children. A multifurcation is hard if it indeed repre-

sents a common ancestor that has more than two species as direct descendants; it is

soft if it represents a series of binary speciation events but the order of these events

cannot be determined with sufficient confidence [17]. Since simultaneous speciation

events are assumed to be rare, a common assumption is that all multifurcations are

soft. Similar to the SPR distance of two multifurcating trees [21], hard and soft

multifurcations lead to two different definitions of the hybridization number of two

multifurcating trees. The hard hybridization number of two multifurcating X-trees T1

and T2 is defined as the minimum number of hybrid nodes among all hybrid networks

from which T1 and T2 can be obtained by deleting edges and suppressing degree-2

nodes. These hybrid networks display both trees, including their multifurcations.

The soft hybridization number of two multifurcating X-trees T1 and T2 is defined as

the minimum hybridization number of all pairs of binary resolutions of the two trees.

A resolution of a multifurcating tree T is a tree T ′ from which T can be obtained by

contracting edges. T ′ is a binary resolution if it is a binary tree of two multifurcat-

ing trees simply. An example that hard hybridization number and soft hybridization

number are different is shown in Figures 2.1(d) and 2.1(e). Based on the assumption

that all multifurcations are soft, we focus on the soft hybridization number in this

thesis, and refer to the soft hybridization number of two multifurcating trees as their

hybridization number. We use hyb(T1, T2) to denote this number.

16

2.2 Hybridization Number and Agreement Forests

The hybridization number is related to the size of appropriately defined agreement

forests. For a forest F whose components are rooted phylogenetic trees T1, T2, ..., Tk

with label sets X1, X2, ..., Xk, we say F yields the forest with components T1|X1,

T2|X2, ..., Tk|Xk. For a subset E of edges of F , let F − E be the forest obtained by

deleting the edges in E from F , and let F ÷ E be the forest yielded by F − E. We

say F ÷ E is a forest of F .

F is an agreement forest (AF) of two forests F1 and F2, if F is a forest of both a

binary resolution of F1 and a binary resolution of F2. If there is no AF of F1 and F2

with fewer components than F , then F is a maximum agreement forest (MAF) of F1

and F2. We use m(F1, F2) to denote the number of components in an MAF of F1 and

F2. For a forest F of F2, we use e(F1, F2, F) to denote the size of the smallest edge

set E such that F ÷ E is an AF of F1 and F2. For two rooted X-trees T1 and T2,

we use dSPR(T1, T2) to denote the SPR distance between T1 and T2. Bordewich and

Semple [16] showed that dSPR(T1, T2) = e(T1, T2, T2) = m(T1, T2) − 1 for two binary

rooted X-trees T1 and T2. Moreover, the equation also holds for two multifurcating

rooted X-trees and their soft SPR distance [21]. This is true because dSPR(T1, T2),

e(T1, T2, T2), and m(T1, T2) are taken as the minimum over all binary resolutions of

T1 and T2.

The hybridization number of two binary rooted X-trees T1 and T2 corresponds

to a more constrained type of AF of T1 and T2. To define this AF, we first need to

introduce the concept of cycle graph. For an AF F = {Cρ, C1, C2, ..., Ck} of T1 and T2,

the cycle graph GF of F has one node per component of F , and there is a directed edge

from node Ci to node Cj if component Ci is an ancestor of component Cj in one of the

two trees. An example of cycle graph is shown in Figure 2.2(d). Formally, for every

node x ∈ F and i ∈ {1, 2}, we define φi(x) to be the lowest common ancestor (LCA)

17

1 2 3 4 5 6

ρ

T1

1 2 3 4 5 6

ρ

T2

(a)

1 2 3 4 5 6

ρ

F1

(b)

1 2 3 4 5 6

ρ

F2

(c)

{ρ}

{1, 2}

{3, 4} {5, 6}

(d)

{ρ, 1, 2}

{3} {4} {5} {6}

(e)

Figure 2.2: (a) Two binary rooted X-tree T1 and T2. (b) A cyclic AF F1 of T1 and
T2. (c) An acyclic AF F2 of T1 and T2. (d) The cycle graph GF1 of F1. (e) The cycle
graph GF2 of F2.

in Ti of all labelled leaves that are descendants of x in F . Based on this mapping, GF

contains a directed edge (Ci, Cj) if and only if either φ1(ri) is an ancestor of φ1(rj) or

φ2(ri) is an ancestor of φ2(rj), where ri is the root of component Ci and rj is the root

of component Cj. We say F is cyclic if GF contains at least one cycle. Otherwise, F

is an acyclic agreement forest (AAF) of T1 and T2. In Figure 2.2, F1 is cyclic and F2

is acyclic. If there is no AAF of F1 and F2 with fewer components than F , then F is a

maximum acyclic agreement forest (MAAF) of F1 and F2. We use m̃(F1, F2) to denote

the number of components in an MAAF of F1 and F2, and ẽ(F1, F2, F) to denote the

size of the smallest edge set E such that F ÷ E is an AAF of F1 and F2. Baroni et

al. [11] showed that hyb(T1, T2) = ẽ(T1, T2, T2) = m̃(T1, T2)− 1 for two binary rooted

X-trees T1 and T2. Again, the equation also holds for two multifurcating rooted X-

trees T1 and T2 and the soft hybridization number, because hyb(T1, T2), ẽ(T1, T2, T2),

and m̃(T1, T2)− 1 are taken as the minimum over all binary resolutions of T1 and T2.

Thus, to determine the hybridization number of two multifurcating rooted X-trees,

18

we need to compute a binary MAAF of the two trees.

∼F is a relation derived on the vertices of F where a ∼F b if there exists a path

from a to b. And let F (a, b) be this path from a to b. The nodes of F that are not in

F (a, b) and whose parents are in F (a, b) are called pendant nodes of this path. Their

parent edges are pendant edges of F (a, b). For a node x of F , F x denotes the subtree

of F induced by all descendants of x, including x itself. For two rooted forests F1 and

F2 and a node a ∈ F1, we say that a exists in F2 if there exists a node a′ in F2 such

that F a
1 = F a′

2 . For simplicity, we refer to both a and a′ as a. For forests F1 and F2

and nodes a, c ∈ F1 with a common parent in F1, we say {a, c} is a sibling pair of F1

if a and c exist in F2. We say {a1, a2, ..., am} is a sibling group if {ai, aj} is a sibling

pair of F1, for all 1 ≤ i < j ≤ m, and a1 has no sibling not in the group.

A triplet ab|c of a rooted forest F is defined by three leaves a, b, and c in the same

component of F and such that the path from a to b in F is disjoint from the path from

c to the root of the component. Multifurcating trees also allow triplets a|b|c where a,

b, and c share the same lowest common ancestor. Examples of triplets are shown in

Figure 2.3(a). A triplet ab|c of a forest F1 is compatible (or consistent) with a forest

F2 if it is also a triplet of F2 or F2 contains the triplet a|b|c; otherwise it is incompatible

(or inconsistent) with F2. We say a forest F1 is incompatible (or inconsistent) with

another forest F2 if there is at least one triplet of F1 incompatible with F2; otherwise

F1 is compatible (or consistent) with F2 (but F2 may be incompatible with F1).

a b c a b c

(a)
1 2

3 4

6 7

5

1 2

3

6 7

4 5

v v1

v2

(b)

Figure 2.3: (a) Two triplets ab|c and a|b|c. (b) Expansion of a subset of v’s children.

19

2.3 Derived Properties

The correctness of our algorithms in the next chapters relies on the following two

lemmas and two observations. Lemma 1 was shown by Bordewich et al. [25]. Given

a forest F and a set of edges E, if there is an edge e of F such that F − (E ∪ {e})

has a component without labelled nodes, it shows that we can replace some edge f

in E by e. In other words, the forest F ÷ (E \ {f} ∪ {e}) is the same as F ÷ E.

Lemma 1 (Shifting Lemma). Let F be a forest of an X-tree, e and f edges of F ,

and E a subset of edges of F such that f ∈ E and e /∈ E. Let vf be the end vertex of

f closest to e, and ve an end vertex of e. If (1) vf ∼F−E ve and (2) x 6∼F−(E∪{e}) vf ,

for all x ∈ X, then F ÷ E = F ÷ (E\{f} ∪ {e}).

The following lemma specifies when an expansion does not change the hybridiza-

tion number. An expansion splits a multifurcating node v into two nodes v1 and v2,

such that v1 is the parent of v2, and the children of v are divided into two subsets

that become the children of v1 and v2, respectively. For brevity, we refer to this oper-

ation as expanding the subset of v’s children that become v2’s children; an example

is shown in Figure 2.3(b).

Lemma 2 (Expansion Lemma). Given two rooted X-trees T1 and T2, let F2 be a forest

of T2, and let F ÷E be an MAAF of T1 and T2, where F is a binary resolution of F2.

Let a1, a2, ..., ap, ap+1, ..., am be the children of a node in F2 and let F ′2 be the result of

expanding {ap+1, ap+2, ..., am} in F2. If a′i 6∼F÷E a′j, for all 1 ≤ i ≤ p < j ≤ m and

all leaves a′i ∈ F ai
2 and a′j ∈ F

aj
2 , then ẽ(T1, T2, F2) = ẽ(T1, T2, F

′
2).

Proof . We prove that ẽ(T1, T2, F2) ≤ ẽ(T1, T2, F
′
2) and ẽ(T1, T2, F2) ≥ ẽ(T1, T2, F

′
2)

separately.

The only difference between F2 and F ′2 is the expansion of {ap+1, ap+2, ..., am}.

Thus, the resolutions of F ′2 are a subset of the resolutions of F2, and ẽ(T1, T2, F2) ≤

ẽ(T1, T2, F
′
2).

20

To prove that ẽ(T1, T2, F2) ≥ ẽ(T1, T2, F
′
2), it suffices to prove that F÷E is a forest

of F ′2 because it is an MAAF of T1 and T2. Assume the contrary. By Observation 2,

at least one component of F ÷ E is inconsistent with F ′2, while it is consistent with

F2 because F ÷E is a forest of F2. This component must contain leaves a′i ∈ F ai
2 and

a′j ∈ F
aj
2 for some 1 ≤ i ≤ p < j ≤ m because the expansion is the only difference

between F2 and F ′2. However, this is a contradiction because a′i 6∼F÷E a′j.

The following observation states that agreement forests cannot contain incompat-

ible triplets.

Observation 1. [18] Let F1 and F2 be forests of rooted X-trees T1 and T2, and let F

be an agreement forest of F1 and F2. If ab|c is a triplet of F1 incompatible with F2,

then a 6∼F b or a 6∼F c.

For two forests F1 and F2 with the same label set, two components C1 and C2 of F2

with label sets X1 and X2, respectively, are said to overlap in F1 if F1|X1 and F1|X2

are not edge-disjoint. In particular, there exist leaves u, v ∈ X1 and x, y ∈ X2 such

that the two paths u ∼F1 v and x ∼F1 y share an edge. The following observation

characterizes when one forest is a forest of another forest.

Observation 2. [21] Let F1 and F2 be binary resolutions of forests of rooted X-trees

T1 and T2, and denote the label sets of the components of F1 by X1, X2, ..., Xk and the

label sets of the components of F2 by Y1, Y2, ..., Yl. F2 is a forest of F1 if and only if

(1) for every Yj, there exists an Xi such that Yj ⊆ Xi, (2) no two components of F2

overlap in F1, and (3) no triplet of F2 is incompatible with F1.

21

Chapter 3

A 4-Way Branching Algorithm for SPR Distance

Since the hybridization number of two multifurcating trees is one less than the size of

an MAAF of the two trees, we compute the hybridization number by computing an

MAAF. As in the binary case [18], we do this in two phases: First we compute an AF

that can be refined to an MAAF by cutting additional edges. Then we identify this

set of additional edges that need to be cut. For finding an AF that can be refined

to an MAAF, we use a simple 4-way branching algorithm from [21, 27]. We review

this algorithm in this chapter for completeness and because we need to show that the

edges cut by the algorithm are part of an edge set E such that T2÷E is an MAAF of

T1 and T2, that is, the forest produced by the algorithm can be refined to an MAAF

of T1 and T2 by cutting the remaining edges in E.

Starting with the two input trees T1 and T2, the algorithm cuts edges and resolves

multifurcations in both trees until the two resulting forests are identical. The inter-

mediate state is that T1 and T2 have been partially resolved and reduced to forests

F1 and F2, respectively. F1 consists of a tree Ṫ1 and a forest F0 while F2 consists of

two sets of components Ḟ2 and F0. F0 is the part of F1 that agrees with F2 and will

be part of the final agreement forest. Ṫ1 and Ḟ2 may not agree but share the same

label set. The key in each iteration is deciding which edges in Ḟ2 to cut next or which

nodes to expand, in order to make progress towards an MAAF of T1 and T2. The

results in this chapter identify a set of 4 edges such that cutting one of them makes

progress towards an agreement forest that can be refined to an MAAF. Some of these

edges are introduced by expanding nodes.

22

pa1

a1 a2 am

ρ

F a1
1 F a2

1 F am
1

... F a1
2 F b11

2 F
b1q1
1

... F a2
2 F b21

2 F
b2q2
2

... F ar
2 F br1

2 F
brqr
2

...

l

a1 a2 arb11 b1q1
b2q2b21 b3q3b31

B1 B2 Br...

Ṫ1 Ḟ2

eB2

pa1
pa2 par

Figure 3.1: A sibling group {a1, a2, ..., am} in Ṫ1 such that a1, a2, ..., ar share a minimal
LCA l in Ḟ2; Ḟ2 shows the result of expanding B2.

3.1 Structural Results of Multifurcating Agreement Forests

Let {a1, a2, ..., am} be a sibling group of Ṫ1. Before identifying an edge set to cut, the

branching algorithm ensures ai and aj are not siblings in F2, for all 1 ≤ i < j ≤ m,

and F ai
2 is not a component of F2, for all 1 ≤ i ≤ m. It does this using the following

two transformations: If there exist indices i 6= j such that ai and aj are also siblings

in F2, we expand this sibling pair {ai, aj} and replace ai and aj with the resolving

parent node (ai, aj) in the sibling group. If there exists an index i such that F ai
2

is a component of F2, we cut ai’s parent edge in F1, thereby removing ai from the

sibling group. It is easy to prove that these two transformations do not alter the

number of edges that need to be cut in F2 to obtain an MAAF of F1 and F2. Now,

let Bi = {bi1, bi2, ..., biqi} be the set of siblings of ai in F2, for 1 ≤ i ≤ m. We use

ex to denote the edge between a node x and its parent px, and eBi
to denote the

edge introduced by expanding Bi. For simplicity, we also use Bi to denote the parent

node of bi1, bi2, ..., biqi introduced by expanding Bi. These definitions are illustrated

in Figure 3.1. For a subset {ai1 , ai2 , ..., air} of a sibling group {a1, a2, ..., am}, we

say ai1 , ai2 , ..., air share their lowest common ancestor l if l = LCAF2(ai, aj) for all

i, j ∈ {i1, i2, ..., ir}, i 6= j. If, in addition, LCAF2(ai, aj) is not a proper descendant

23

of l for any 1 ≤ i < j ≤ m, we say that ai1 , ai2 , ..., air share a minimal LCA l;

see Figure 3.1. For simplicity, we assume {ai1 , ai2 , ..., air} is a maximal subset of

{a1, a2, ..., am} such that {ai1 , ai2 , ..., air} share a minimal LCA and we orders these

siblings in {a1, a2, ..., am} so that {ai1 , ai2 , ..., air} = {a1, a2, ..., ar}, a1, a2, ..., ar−1 are

not children of l and ar may be child of l.

Our very first theorem shows that cutting at least one of the edges ea1 , ea2 , eB1

and eB2 makes progress towards an MAAF.

Theorem 1 (4-way Branch). Let F1 and F2 be forests of rooted X-trees T1 and T2,

respectively. Suppose F1 consists of a tree Ṫ1 and a set of components that also exist in

F2. Let {a1, a2, ..., am} be a sibling group of Ṫ1 such that a1, a2, ..., ar share a minimal

LCA l in F2; neither a1 nor a2 is a child of l; ai and aj are not siblings in F2, for

all 1 ≤ i < j ≤ m; and F ai
2 is not a component of F2, for all 1 ≤ i ≤ m. Then

ẽ(T1, T2, F2 ÷ {ex}) = ẽ(T1, T2, F2)− 1, for some x ∈ {a1, a2, B1, B2}.

Proof . Consider an edge set E of size ẽ(T1, T2, F2) and such that F ÷ E is an

MAAF of T1 and T2 for some binary resolution F of F2, and assume E is chosen so

that |E ∩ {ea1 , ea2 , eB1 , eB2}| is maximized. If E ∩ {ea1 , ea2 , eB1 , eB2} 6= ∅, the lemma

holds, so assume E ∩ {ea1 , ea2 , eB1 , eB2} = ∅.

First we prove that there exist leaves b′1 ∈ FB1
2 and x 6∈ FB1

2 such that b′1 ∼F÷E
x. In particular, b′1 ∼F÷E pa1 . Assume the contrary, that is, b′1 6∼F÷E x, for all

leaves b′1 ∈ FB1
2 and x 6∈ FB1

2 . Then, by Lemma 2, expanding B1 does not change

ẽ(T1, T2, F2), so we can assume F contains this expansion. Next we choose arbitrary

leaves b′1 ∈ FB1
2 , x 6∈ FB1

2 and the first edge f ∈ E on the path from b′1 to x. By

Lemma 1, F ÷ E = F ÷ (E \ {f} ∪ {eB1}). This contradicts our choice of E.

We can prove that a′1 ∼F÷E pa1 for at least one leaf a′1 ∈ F a1
2 , b′2 ∼F÷E pa2 for at

least one leaf b′2 ∈ FB2
2 , and a′2 ∼F÷E pa2 for at least one leaf a′2 ∈ F a2

2 , using similar

arguments. Thus, we have a′1 ∼F÷E pa1 ∼F÷E b′1 and a′2 ∼F÷E pa2 ∼F÷E b′2.

24

Recall that a1 and a2 share a minimal LCA l, and neither a1 nor a2 is a child of

l. Since the four subtrees F a1
2 , FB1

2 , F a2
2 and FB2

2 are disjoint, F2 contains the triplet

a′1b
′
1|a′2, while F1 contains the triplet a′1a

′
2|b′1. By Observation 1, this implies that

a′1 ∼F÷E pa1 ∼F÷E b′1 6∼F÷E a′2 ∼F÷E pa2 ∼F÷E b′2. Since F1 contains both a′1a
′
2|b′1

and a′1a
′
2|b′2, this in turn implies that the components of F ÷E containing a′1, b

′
1 and

a′2, b
′
2 overlap in F1. By Observation 2, this contradicts that F ÷ E is an AF of T1

and T2.

Theorem 1 assumes that some minimal LCA l of a subset of the current sibling

group {a1, a2, ..., ar} exists, and that aa and a2 are not children of l. The following

two lemmas cover the cases when l exists (in which case a1 cannot be a child of l) and

a2 is a child of l, and when l does not exist. Note that a2 being a child of l implies

that r = 2.

Lemma 3 (One Child). Let F1 and F2 be forests of rooted X-trees T1 and T2, re-

spectively. Suppose F1 consists of a tree Ṫ1 and a set of components that also exist

in F2. Let {a1, a2, ..., am} be a sibling group of Ṫ1 such that {a1, a2} is a maximal

subset of nodes in {a1, a2, ..., am} that share a minimal LCA l in F2, a1 is not a child

of l, and a2 is a child of l. Then ẽ(T1, T2, F2 ÷ {ex}) = ẽ(T1, T2, F2) − 1, for some

x ∈ {a1, a2, B1}.

Proof . Consider an edge set E of size ẽ(T1, T2, F2) and such that F÷E is an MAAF

of T1 and T2, for some binary resolution F of F2, and assume E is chosen so that

|E ∩{ea1 , ea2 , eB1}| is maximized. Assume E ∩{ea1 , ea2 , eB1} = ∅, because the lemma

holds otherwise.

By the same arguments as in the proof of Theorem 1, there exist leaves a′1 ∈ F a1
2 ,

a′2 ∈ F a2
2 and b′1 ∈ FB1

2 such that a′1 ∼F÷E pa1 ∼F÷E b′1 and a′2 ∼F÷E pa2 .

Since a1 and a2 share a minimal LCA l and a1 is not a child of l, the three

subtrees F a1
2 , FB1

2 and F a2
2 are disjoint. Thus, F2 contains the triplet a′1b

′
1|a′2, while

25

F1 contains the triplet a′1a
′
2|b′1. By Observation 1, this implies that a′1 6∼F÷E a′2

(and thus a′2 6∼F÷E a1) because a′1 ∼F÷E b′1. Thus, we also have a′2 6∼F÷E x, for all

x ∈ F l
2 \ F a2

2 . Indeed, if x ∈ F a1
2 , then a′2 6∼F÷E x because a′2 6∼F÷E a1 and a′2 6∈ F a1

2 .

If x 6∈ F a1
2 , the components of F ÷E containing a′1, b

′
1 and a′2, x would overlap in F1,

which contradicts Observation 2 because F ÷ E is an AF of T1 and T2.

Now we choose an arbitrary leaf x ∈ F l
2 \ F a2

2 and the first edge f ∈ E on the

path from a′2 to x. By Lemma 1, we have F ÷ E = F ÷ (E \ {f} ∪ {ea2}), which

contradicts the choice of E.

Lemma 4 (Isolated Siblings). Let F1 and F2 be forests of rooted X-trees T1 and T2,

respectively. Suppose F1 consists of a tree Ṫ1 and a set of components that also exist

in F2. Let {a1, a2, ..., am} (m ≥ 2) be a sibling group of Ṫ1 such that a1 6∼F2 ai for

all i 6= 1, a2 6∼F2 aj for all j 6= 2, and assume F ai
2 is not a component of F2, for all

1 ≤ i ≤ m. Then ẽ(T1, T2, F2 ÷ {ex}) = ẽ(T1, T2, F2)− 1, for some x ∈ {a1, a2}.

Proof . Consider an edge set E of size ẽ(T1, T2, F2) and such that F÷E is an MAAF

of T1 and T2, for some binary resolution F of F2, and assume E is chosen so that

|E ∩ {ea1 , ea2}| is maximized. Assume E ∩ {ea1 , ea2} = ∅ because the lemma holds

otherwise.

By the same arguments as in the proof of Theorem 1, there exist leaves a′1 ∈ F a1
2

and a′2 ∈ F a2
2 such that a′1 ∼F÷E a1 and a′2 ∼F÷E a2. Since {a1, a2, ..., am} is a sibling

group of F1 but a1 6∼F2 ai for all i 6= 1, and a2 6∼F2 aj for all j 6= 2, we must have

a′1 6∼F÷E x, for all leaves x 6∈ F a1
2 , or a′2 6∼F÷E y, for all leaves y 6∈ F a2

2 . Otherwise,

the components of F ÷E containing a′1, x and a′2, y would overlap in F1, contradicting

Observation 2. W.l.o.g., assume the former is true. Since F a1
2 is not a component of

F2, there exists a leaf z 6∈ F a1
2 such that a1 ∼F2 z and, hence, a′1 ∼F2 z. For each such

leaf z, the path from a′1 to z in F contains an edge in E because a′1 6∼F÷E z, and this

edge does not belong to F a1
2 because a′1 ∼F÷E a1. We pick an arbitrary such leaf z,

26

and let f be the first edge in E on the path from a′1 to z. The edges ea1 and f satisfy

the conditions of Lemma 1, that is, F ÷ E = F ÷ (E\{f} ∪ {ea1}). This contradicts

the choice of E.

For both Lemma 3 and Lemma 4, the candidate edge sets to cut are subsets of the

candidate edge set in Theorem 1. Thus, Lemmas 3 and 4 can be considered special

cases of Theorem 1. In other words, we can always cut one of ea1 , ea2 , eB1 and eB2 to

make progress towards an MAAF of F1 and F2.

3.2 Algorithm for Branching Phase

Whidden et al. [21] and van Iersel et al. [27] used similar arguments as the ones in

the previous section to prove that cutting one of ea1 , ea2 , eB1 and eB2 makes progress

towards an MAF of T1 and T2. They used this to obtain a simple 4-way branching

algorithm to compute the SPR distance between two multifurcating trees. We use

this algorithm as the first phase of our hybridization algorithm and review it here to

highlight the changes necessary to compute an MAAF instead of an MAF.

As is customary for FPT algorithms, we focus on the decision version of the

problem: “Give two multifurcating rooted X-trees T1 and T2 and a parameter kp, is

it possible to get an AF of T1 and T2 by cutting no more than kp + 1 edges from T2?”

To compute the MAF of two trees, we start with kp = 0 and increase it until we receive

an affirmative answer. This does not increase the running time of the algorithm by

more than a constant factor because the running time depends exponentially on kp.

The branching algorithm is recursive. Each invocation takes two forests F1 and F2

of T1 and T2 and a parameter k as inputs. We denote such an invocation by Maf(F1,

F2, k). (Or we denote such an invocation by Maaf(T1, T2, F1, F2, k) with T1 and T2

for refinement phase, when we are computing an MAAF. The difference is shown

in the algorithm’s Step 2 below.) The invocation returns “Yes” if there exists an

27

MAF (MAAF) of F1 and F2 that can be obtained by cutting at most k edges in

F2. Otherwise it returns “No”. We maintain two sets of labelled nodes: Rd (roots-

done) contains the roots of F0, and Rt (roots-todo) contains roots of (not necessarily

maximal) subtrees that agree between Ṫ1 and Ḟ2. We refer to the nodes in these

sets by their labels. For the top-level invocation, F1 = Ṫ1 = T1, F2 = Ḟ2 = T2, and

F0 = ∅; Rd is empty, and Rt contains all leaves of T1. The following are the steps of

the invocation Maf(F1, F2, k) (or Maaf(T1, T2, F1, F2, k)).

1. (Failure) If k < 0, there is no edge set E of at most k edges such that F2 ÷ E is

an AF of T1 and T2. Return “No” in this case.

2. (Success) If |Rt| = 0, then F0 is an AF of T1 and T2.

• If the algorithm is used to compute an MAF, return “Yes” because F0 is such

an MAF.

• If the algorithm is used to compute an MAAF, invoke the refinement phase

(discussed in Chapters 4, 5, and 6) to check whether F0 can be refined to an

MAAF. Return the result of the refinement phase.

3. (Prune maximal agreeing subtrees) If there is a node r ∈ Rt that is a root of Ḟ2,

remove r from Rt and add it to Rd, thereby moving the corresponding subtree of

Ḟ2 to F0; then cut the edge er in Ṫ1 and return to Step 2. If no such root r exists,

proceed to Step 4.

4. (Choose sibling group) Choose a sibling group {a1, a2, ..., am} in Ṫ1 such that

a1, a2, ..., am ∈ Rt. If the sibling group chosen in the parent invocation still has

two or more members in Ṫ1, choose that sibling group.

5. (Grow agreeing subtrees) While there exist indices 1 ≤ i < j ≤ m such that ai

and aj are siblings in Ḟ2, merge ai and aj as follows: remove ai and aj from Rt;

resolve ai and aj in Ṫ1 and Ḟ2; label their new parent in both forests with (ai, aj);

28

and add it to Rt. The new node (ai, aj) becomes a member of the current sibling

group and m decreases by 1. If m = 1 after resolving all such sibling pairs {ai, aj},

contract the parent of the only remaining member of the sibling group and return

to Step 2; otherwise, proceed to Step 6.

6. (Choose minimal LCA) If ai 6∼ aj, for all 1 ≤ i < j ≤ m, proceed to Step 7.

Otherwise there exists a node l in Ḟ2 that is a minimal LCA of a group of nodes

in the current sibling group. If the minimal LCA in the parent invocation still

has two or more members of the current sibling group as descendants, choose l to

be this node; otherwise choose l arbitrarily. Now rename the nodes in the sibling

group {a1, a2, ..., am} so that, for some r ≥ 2, a1, a2, ..., ar are descendants of l; ar

is the only sibling that may be a child of l; and for 1 ≤ i ≤ r < j ≤ m, either the

LCA of ai and aj is a proper ancestor of l or ai 6∼F2 aj.

7. (Cut edges) Make four recursive calls (shown in Figure 3.2):

(i) Maf(F1, F2 ÷ {ea1}, k − 1).

(ii) Maf(F1, F2 ÷ {ea2}, k − 1).

(iii) Maf(F1, F2 ÷ {eB1}, k − 1).

(iv) Maf(F1, F2 ÷ {eB2}, k − 1).

Return “Yes” if one of these recursive calls does; otherwise return “No”.

29

a1 a2 ar
...

l

a3
B1 B2

a1 a2 ar
...

l

a3
B1 B2

a1 a2 ar
...

l

a3
B1 B2

a1 a2 ar
...

l

a3
B1 B2

a1 a2 ar
...

l

a3
B1 B2

(i) (ii)

(iii) (iv)

Figure 3.2: 4-way branching.

30

Chapter 4

Preparation for Refinement Phase

In the previous chapter, we proved that, if the branching phase finds an AF of T1

and T2 at all, then it finds an AF F that is obtained by cutting only edges that also

belong to an edge set E such that T2÷E is an MAAF of T1 and T2. However, it may

be impossible to obtain an MAAF by cutting additional edges in F . The reason is

that F is a binary resolution of the forest T2÷E ′, where E ′ is the set of edges we cut

to produce F , while T2÷E may be a forest of a different binary resolution of T2÷E ′.

a

b

c d e f a b c

d e f

T1 T2

(a)

T ′
1 T ′

2

b c

a

e f

d

e f b c

a

b

c

d

d

e

a

f

F

(b)

f
d e

b c

a

T ′′
1

a

b

c

d e

f

T ′′
2

b c

d e

a

f

F ′

(c)

Figure 4.1: (a) Multifurcating rooted X-trees T1 and T2. (b) An AF F produced by
the 4-way branching algorithm and the corresponding resolutions of T1 and T2. (c)
An MAAF F ′ and the corresponding resolutions of T1 and T2.

31

An example for this is shown in Figure 4.1, where F ′ is an AF of T ′1 and T ′2, but it is

not an AAF of T ′1 and T ′2. The reason why this happens is that the algorithm resolves

matching sibling pairs of the two trees without checking whether this introduces cy-

cles. In fact, it is impossible to avoid creating these cycles because an invocation that

performs a set of such resolutions has multiple descendant leaf invocations produc-

ing different forests and which set of resolutions creates cycles depends on the final

agreement forest we consider. Thus, an intermediate step we employ before invoking

the refinement step on any forest produced by the branching phase is to collapse all

bifurcations in this forest that can be collapsed while maintaining that this forest is

an agreement forest of T2 ÷ E ′. In this chapter, we discuss how we do this.

4.1 Restoring Multifurcations in an AF

In this section, we show how to construct a multifurcating agreement forest Fm from

an agreement forest F that is “minimally resolved” in the sense that it retains all

multifurcations compatible between T1 and T2. Thus, if E is an edge set such that

T2 ÷ E is an MAAF of T1 and T2 and we cut only edges in E to produce F , then

T2 ÷ E can be obtained by cutting additional edges in Fm.

The construction of Fm collapses edges in F as long as the resulting forest re-

mains a forest of T1 and T2. F consists of a set of binary trees, which we denote as

F 1, F 2, ..., F p. Let X1, X2, ..., Xp be the leaf sets of these trees. Fm has p components

F 1
m, F

2
m, ..., F

p
m with the same leaf sets X1, X2, ..., Xp. To construct F i

m from F i, for

1 ≤ i ≤ p, we first extract T1|X i and T2|X i from T1 and T2. Since T1|X i and T2|X i

are computed analogously, we discuss only how to compute T1|X i.

T1|X i can be computed using one post-order traversal and one pre-order traversal

of T1. In fact, these two traversals can be used to compute all T1|X1, T1|X2, ..., T1|Xp

at the same time. The idea is to mark each edge of T1 to show which subtree T1(X
i)

it belongs to. Since F is an AF of T1 and T2, every edge of T1 belongs to at most

32

one such subtree. T1|X i can then be obtained from T1(X
i) by suppressing degree-2

nodes, for all 1 ≤ i ≤ p. We associate a pair (i, di) with each edge of T1, where i is the

index of the subtree T1(X
i) it belongs to, and di is the number of leaves in X i that

are descendants of this edge. To distinguish the component index i and the counter

di, we add a ∗ before the index i in Figures 4.2, 4.3, 4.4 and 4.5. To compute this

labelling of the edges of T1, we need a table (see Figure 4.2(b)) that stores for each

index 1 ≤ i ≤ p, the number of leaves ni in X i. We construct T1|X i as follows.

1. (Edge labelling) This traversal marks each edge of T1 with a pair (i, di). Initially,

we mark the parent edge of each leaf in X i with (i, 1). Then, for every non-leaf

edge e, the pairs of its child edges are computed before processing e. To compute

the pair of e, we construct a list L of length equal to the number of different

component indices below e. Each node of L stores an index i and a value Si

that is the sum of the di labels of all child edges of e whose component labels

equal i. For every node in the list, we compare Si with ni, the number of leaves

in X i. There can be at most one value Si that is smaller than ni (otherwise, two

components of F overlap in T1, contradicting Observation 2). If there is such a

value, e’s label becomes (i, di); otherwise, e remains unlabelled. An example of

this procedure is shown by Figure 4.2(a).

2. (Extraction of subtrees) Given the edge labelling computed in the previous step,

the subtrees T1(X
1), T1(X

2), ..., T1(X
p) are easily constructed using a top-down

traversal of T1. For each i, Ti|X i can be constructed by traversing Ti(X
i) and

suppressing degree-2 internal nodes in T1(X
i). These steps are shown in Figures

4.4 and 4.5.

Lemma 5. T1|X1, T1|X2, ..., T1|Xp can be computed in O(n) time.

Proof . According to our construction steps, T1(X
i) is obtained by connecting nodes

in X i with edges in T1; T1|X i is obtained by suppressing degree-2 internal nodes in

33

(∗1, 1)

∗1 ∗1 ∗2 ∗2
(∗2, 1)

(∗1, 2)

∗2 : 2 = n2

∗1 : 2 < n1

L

(∗1, 1)

(∗2, 1)

i : Si

(a)

∗1 : 4

i : ni

∗2 : 2

∗3 : 1

∗4 : 5

∗5 : 1

(b)

Figure 4.2: (a) Computing a label pair for a non-leaf edge to construct T1|X i. (b) A
lookup table showing the size of every partition X i.

(∗1, 1)

∗1 ∗1 ∗2 ∗2

∗1 ∗1

∗3 ∗4 ∗4 ∗4 ∗5 ∗4 ∗4
(∗2, 1)

(∗3, 1)

(∗4, 3)

(∗4, 1)

(∗5, 1)

(∗4, 2)

(∗1, 2)

T1

(∗1, 1)

(∗2, 1)

(∗1, 1) (∗1, 1)

(∗1, 2)

(∗1, 2)

(∗4, 1) (∗4, 1)

(∗4, 1)
(∗4, 1)

Figure 4.3: Labelling of the edges of T1 to indicate their membership in trees T1(X
1),

T1(X
2), ..., T1(X

p).

∗1 ∗1

∗1 ∗1

∗2 ∗2

∗3 ∗5
∗4 ∗4 ∗4 ∗4 ∗4

Figure 4.4: The trees T1(X
1), T1(X

2), ..., T1(X
p) extracted according to the labelling

in Figure 4.3.

∗4 ∗4 ∗4 ∗4 ∗4∗1 ∗1∗1 ∗1
∗2 ∗2

∗3 ∗5

Figure 4.5: The trees T1|X1, T1|X2, ..., T1|Xp obtained from trees T1(X
1), T1(X

2), ...,
T1(X

p) in Figure 4.4.

34

T1(X
i). The construction is correct, because it simply follows the definitions of T1(X

i)

and T1|X i.

Next, we prove that the construction can be implemented in linear time. For the

first traversal to take linear time, it suffices to prove that the parent edge of every leaf

can be marked in constant time and any other edge e can be marked in O(d) time if

it has d child edges. The former is obvious. For the latter, the only challenge is the

construction of the list L. We scan the child edges of e and decide for each such child

edge with label (i, di) whether the list L already has an entry with index i. If so, we

add di to the counter of this entry. Otherwise, we create a new entry. To do this in

constant time per child edge, we allocate a table of size k whose ith entry points to

the node in list L with index i if such an entry exists; otherwise the pointer is null.

We allocate this table once and initialize all its pointers to null at the beginning of

the traversal. Starting with a table of only null pointers, the construction of L is now

easily implemented in constant time per child edge: if the ith pointer is null, we add

a new node to the end of list L and change the ith pointer in the table to point to

this node; otherwise, we update the value Si of the node referenced by this pointer.

In order to reuse the table for the next edge in the traversal, we have to reset the

pointers to null. This can be done in time proportional to the length of the list L,

which is at most d, by traversing L and for each node (i, Si) in L, setting the ith

pointer in the table to null. In the second traversal, each edge can be visited at most

once as it can only belong to one component; each node can be visited at most once

for contraction. Then this traversal also takes linear time. Thus, the two traversal

takes time linear to size of T1, i.e., O(n) time.

In the remainder of this section, we show that F i
m can be constructed from F i,

T1|X i and T2|X i, in O(|X i|) time.

35

The construction starts with F i and collapses unnecessary bipartitions bottom-

up, based on the structure of T1|X i and T2|X i. We associate a node set Sx with each

node x in the construction procedure. The set may be open or closed. Each such

set contains nodes that are siblings in both T1|X i and T2|X i. An open set Sx is one

whose members have siblings in both T1|X i and T2|X i that are not in Sx; a closed set

is one whose members have no additional siblings in at least one of T1|X i and T2|X i.

Examples are shown in Figure 4.6. We construct these sets and use them to compute

F i
m as follows:

1. (Initial Step) Initially, we replace each leaf label of F i with an open set that only

includes the leaf itself. Throughout the iteration step, we maintain the property

that each leaf of F i is tagged with a node set and F i is a binary resolution for

both T1|X i and T2|X i.

2. (Iteration Step) Choose the deepest leaf a in F i. Its only sibling b must also

be a leaf. Since F i is a binary resolution of both T1|X i and T2|X i, a and b

must also be siblings in T1|X i and T2|X i. Now, we remove a and b from F i,

and tag their parent node pa as follows. There are three cases: (1) if both Sa

and Sb are closed, we set Spa = {Sa, Sb}; (2) if both Sa and Sb are open, we set

Spa = Sa
⋃
Sb; (3) if w.l.o.g. Sa is open and Sb is closed, we set Spa = Sa

⋃{Sb}.
To decide whether set Spa is open or closed, we check the parent nodes of a, b in

T1|X i and T2|X i. If both parent nodes have more than 2 children, Spa is open.

a b a b a b

Fi T1|Xi T2|Xi

{a, b, ?}

(a)

a b a b a b

Fi T1|Xi T2|Xi

{a, b}

(b)

Figure 4.6: (a) An “open” set. (A question mark means the set is open.) (b) A
“closed” set.

36

Otherwise, it is closed.

3. (End Condition) The procedure stops when F i has only one node r. The nesting

of sets in Sr represents the structure of F i
m.

Figures 4.7 and 4.8 show an example of this procedure. Figure 4.9 shows the

resulting F i
m.

1 2

3

4

5

6 7 8 9

1 2 3

6 7 8

4
5

9 1 2 3 4 6 7

8 9

5

Fi

T1|Xi T2|Xi

Figure 4.7: The inputs Fi, T1|X i and T2|X i for the construction of F i
m in Figure 4.8.

The following observation follows immediately from the construction of F i
m. In-

deed, we create a closed set (and hence a node of F i
m) only when we find a node of

T1|X i or T2|X i whose descendant leaves are all in this set.

Observation 3. For each internal node of T1|X i or T2|X i, there is a corresponding

internal node of F i
m that has the same set of descendant leaves.

Two important properties of F i
m can be deduced from Observation 3.

Lemma 6. (1) Every triplet xy|z of T1|X i or T2|X i is also a triplet of F i
m. (2) Every

triplet xy|z of F i
m is also a triplet of at least one of T1|X i and T2|X i.

Proof . For Property (1), we prove that every triplet xy|z of T1|X i is also a triplet

of F i
m. (The proof for T2|X i is analogous.) F i is a binary resolution of T1|X i, so

every triplet xy|z of T1|X i is also a triplet of F i. As F i
m is constructed by contracting

edges in F i, every triplet xy|z of F i becomes a triplet xy|z or x|y|z in F i
m. Thus,

every triplet xy|z of T1|X i should be of the form xy|z or x|y|z in F i
m. Now assume

for the sake of contradiction that some triplet xy|z of T1|X i becomes a triplet x|y|z

37

1 2

3

4

5

6 7 8 9

(a)

{1, ?} {2, ?}
{3, ?}

{4, ?}
{5, ?}

{6, ?} {7, ?} {8, ?} {9, ?}

(b)

{3, ?}
{4, ?}

{5, ?}
{6, ?} {7, ?} {8, ?} {9, ?}

{1, 2, ?}

(c)

{1, 2, 3} {4, ?}
{5, ?}

{6, ?} {7, ?} {8, ?} {9, ?}

(d)

{{1, 2, 3}, 4} {5, ?}
{6, ?} {7, ?} {8, ?} {9, ?}

(e)

{{1, 2, 3}, 4} {5, ?}{6, 7, ?}
{8, ?} {9, ?}

(f)

{{1, 2, 3}, 4} {5, ?} {6, 7, ?} {8, 9}

(g)

{{{1, 2, 3}, 4}, 5, ?}
{6, 7, ?} {8, 9}

(h)

{{{1, 2, 3}, 4}, 5, ?} {6, 7, {8, 9}}

(i)

{{{1, 2, 3}, 4}, 5, {6, 7, {8, 9}}}

(j)

Figure 4.8: Detailed steps of collapsing F i to construct F i
m.

1 2 3

4

5

6 7

8 9

Figure 4.9: F i
m.

in F i
m. Let lxy be the LCA of x and y in T1|X i. Note that z is not a descendant

of lxy. According to Observation 3, there is a corresponding internal node l′xy of F i
m

with the same set of descendant leaves as lxy. In particular, x and y are descendants

38

of l′xy and z is not. Thus, F i
m contains the triplet xy|z, a contradiction.

Similarly, for Property (2), every triplet xy|z of F i
m is also a triplet of F i, and

every triplet xy|z of F i should be of the form xy|z or x|y|z in T1|X i and T2|X i. Thus,

a triplet xy|z of F i
m can only be of the form xy|z or x|y|z in T1|X i and T2|X i. Now

assume for the sake of contradiction that some triplet xy|z of F i
m is of the form x|y|z

in both T1|X i and T2|X i. Then neither T1|X i nor T2|X i has an internal node that

is an ancestor of x and y but not of z. Let lxy be the LCA of x and y in F i, and

let lxyz be the LCA of x, y and z in F i. The bottom-up traversal of F i processes lxy

before lxyz and creates a set Slxy containing x and y but not z. The children x′ and

y′ of lxy at this time are siblings also in T1|X i and T2|X i. Let l1 and l2 be the LCAs

of x, y and z in T1|X i and T2|X i, respectively. Then x′ and y′ are children of l1 and

l2, because T1|X i and T2|X i both have the triplet x|y|z. Since z is a descendant of

neither x′ nor y′, l1 and l2 have additional siblings at the time we process lxy, so the

set Slxy is open. The same argument applies to any ancestor u of lxy that is a proper

descendant of lxyz because Su contains x and y but not z. So l1 and l2 are also the

parents of the children of u in T1|X i and T2|X i at the time we process u, and l1 and

l2 must have at least one ancestor of z as an additional child. Therefore, Su is open.

This shows that the construction of F i
m does not create a closed set containing x and

y but not z, which contradicts that F i
m contains the triplet xy|z.

Lemma 7. F 1
m, F

2
m, ..., F

p
m can be computed in O(n) time.

Proof . To show the correctness of the procedure above, we need to prove the fol-

lowing three statements.

(i) F i
m is a resolution of both T1|X i and T2|X i.

(ii) F i
m is minimally resolved, that is, there is no trees with fewer edges that satisfies

(i).

39

(iii) There is only one minimal resolution for T1|X i and T2|X i.

Statement (i) follows from Observation 3. For statement (ii), assume for the sake

of contradiction that there is a less resolved tree (F i
m)′ that satisfies (i). Then F i

m

is a resolution of (F i
m)′ and there exists a triplet xy|z of F i

m whose leaves form the

triplet x|y|z in (F i
m)′. According to Property (2) in Lemma 6, xy|z is a triplet of at

least one of T1|X i and T2|X i. Thus, (F i
m)′ cannot be a resolution of both T1|X i and

T2|X i, a contradiction. Statement (iii) can be proved analogously. Assume there are

two different minimal resolutions (F i
m)1 and (F i

m)2 of T1|X i and T2|X i. Since (F i
m)1

is a minimal resolution, every triplet of (F i
m)1 is either a triplet of T1|X i or of T2|X i.

As (F i
m)1 and (F i

m)2 are two different minimal resolutions, there exists such a triplet

in (F i
m)1 that is not a triplet in (F i

m)2. Since this triplet is a triplet of at least one of

T1|X i and T2|X i, say T1|X i, (F i
m)2 cannot be a resolution of T1|X i, a contradiction.

Next we prove that the construction of each tree F i
m can be implemented inO(|X i|)

time, so the construction for all F 1
m, F

2
m, ..., F

p
m takes linear time.

We perform at most |X i| merge operations (iteration steps), because each such

operation decreases the number of leaves of F i by one. If the merge operation’s cost

is constant, this proves that the cost of the whole procedure is O(|X i|). To achieve

this, two data structures are necessary. (1) An array of linked lists to keep track of

the deepest leaves. The length of the array is equal to the depth of F i. The linked list

at index i records the leaves at depth i. Thus, we can start from the last element of

the array and keep track of the deepest leaves. To keep the time complexity constant,

insertions are done at the head of each list. To achieve constant deletion in linked

lists, a flag is used to mark if a node is deleted. In other words, we don’t scan for a

node in list to delete it immediately, the node will be deleted when we meet it. (2) A

doubly linked list for each node set Sx. This allows us to merge these sets in constant

time by concatenating their lists. Note that nested set can be represented by taking

one linked list as another linked list’s element.

40

Combining Lemmas 5 and 7, we can construct Fm from an agreement forest F in

O(n) time.

4.2 Resolving Input Trees

A second preparation for the refinement step is to resolve T1 and T2 so that every

internal node has the property that either all its children belong to the same tree

T1(X
i) or T2(X

i), or they all belong to different such trees. Let (T1)m be the resolution

from T1 and (T2)m be the resolution from T2. An example is shown in Figure 4.10.

There is an internal node x of Ti that has a group of children {a1, a2, a3, a4, a5}, whose

membership in trees T1(X
i) and T2(X

i) is as shown. We resolve {a1, a2, a3, a4, a5}

into two branches as shown in Figure 4.10(b). This kind of resolutions are in fact

reducing the search space of refinement phase, since they exclude those resolutions of

T1 and T2 which are inconsistent with Fm.

a1 a2 a3 a4 a5

x

∗1 ∗1 ∗2 ∗2 ∗2

(a)

a1 a2 a3 a4 a5

x

∗1 ∗1 ∗2 ∗2 ∗2

(b)

Figure 4.10: (a) Before the resolution from T1 to (T1)m. (The number with a ∗ means
the partition that the leaf above belongs to.) (b) After the resolution from T1 to
(T1)m.

(T1)m can be computed from the labelled tree T1 in Figure 4.3, using a post-order

traversal on T1. For each node x encountered, if it is a multifurcating node, we

check the label pair (i, di) of all its child edges ea1 , ea2 , ..., eam . First, we divide these

child edges into groups according to their partition indices i. Correspondingly, x’s

children a1, a2, ..., am are also divided into groups. Let A1, A2, ..., Ap be these groups

of children. For 1 ≤ j ≤ p, if Aj only has one member, there is no need to expand

41

it; otherwise, we resolve Aj. The result of resolving T1 into (T1)m is shown in Figure

4.11. The computation of (T2)m is similar.

A B B

A A

C D D D E D D

(T1)m

A

Figure 4.11: Resolve T1 to (T1)m, according to partitions of Fm.

For each node we traverse on T1, the cost can be paid by its children and each

child pays for a constant cost. Note that the grouping requires some lookup table

that is similar to the one for grouping child edges to compute the edge labels. In

total, this post-order traversal takes O(n) time. Hence, we have the following result.

Lemma 8. (T1)m and (T2)m can be computed in O(n) time.

The following observation is an immediate consequence of the construction of

(T1)m and (T2)m.

Observation 4. For every internal node in (Ti)m, i ∈ {1, 2}, either all the children

belong to the same tree (Ti)m(X i), or each of them belongs to a different such tree.

42

Chapter 5

A First Complete Hybridization Algorithm

In this chapter, we introduce the refinement algorithm and combine it with the 4-way

branching algorithm from Chapter 3 to obtain a first complete FPT algorithm for

computing the hybridization number of two multifurcating rooted X-trees. It will be

obvious from the description of the algorithm that it also produces a corresponding

MAAF. In the remainder of this chapter, we focus only on computing hyb(T1, T2).

Similar with the 4-way branching algorithm in Section 3.2, we focus on the decision

version of the problem: “Give two multifurcating rooted X-trees T1 and T2 and a

parameter kp, is hyb(T1, T2) ≤ kp?” To compute the hybridization number of two

trees, we start with kp = 0 and increase it until we receive an affirmative answer.

Every AAF of T1 and T2 can be computed by first computing an AF F of T1

and T2, and then cutting additional edges in F as necessary to break cycles in F ’s

cycle graph. This suggests the following strategy to decide whether hyb(T1, T2) ≤ kp:

First we use the branching algorithm to compute a set of AFs. As we proved in

Chapter 3, this algorithm ensures that at least one AF it finds can be refined to an

MAAF of T1 and T2. Second we try to refine each of the AFs to an AAF with at

most kp + 1 components by cutting additional edges, and return “Yes” if and only if

this succeeds for at least one of the AFs.

Now let us call an invocation Maaf(T1, T2, F1, F2, k) viable if there exists an

MAAF F of T1 and T2 that is a forest of F2. The top-level invocation Maaf(T1, T2,

T1, T2, kp) is always viable and by Theorem 1, we have the following observation.

Observation 5. Every viable invocation Maaf(T1, T2, F1, F2, k) that is not a leaf

43

invocation has a viable child invocation.

In the remainder of this chapter, we introduce the refinement procedure Refine(·)

that works on the multifurcating agreement forest Fm, and partially resolved trees

(T1)m and (T2)m obtained from Fm, T1, and T2 using the procedure in Section 4.2. To

make notation easier, we simply use F to refer to Fm, T1 to refer to (T1)m, and T2 to

refer to (T2)m in this chapter. The organization is as following: Section 5.1 introduces

an expanded cycle graph G∗F based on an AF F and correspondingly resolved T1, T2.

Section 5.2 defines essential components for cycles in G∗F , and their exit nodes. It

shows that for some essential component C in a cycle O, cutting all edges from C’s exit

node in O to C’s root makes progress towards an MAAF. We call cutting these edges

fixing the exit node. Section 5.3 identifies potential exit nodes and fixes a subset

of them to break cycles in G∗F . Section 5.4 summarizes the refinement algorithm

and includes the analysis and correctness proof of the algorithm. The refinement

procedure, including the definition of the expanded cycle graph, is directly inspired

by the refinement procedure in the hybridization algorithm for binary trees of [18].

However, multifurcations complicate the correctness proof substantially.

5.1 Expanded Cycle Graph

The expanded cycle graph G∗F of a multifurcating agreement forest F of two multifur-

cating rooted trees T1 and T2 is a supergraph of F with the same vertex set as F , i.e.

G∗F ⊇ F ; see Figure 5.2(c). In addition to the edges of F , G∗F contains two hybrid

edges per component (except the component with root ρ) in F , one induced by T1 and

one induced by T2. To define the hybrid edges, we define mappings from nodes of F

to nodes of T1 and T2 and vice versa. As in the binary case [18], we map each node

x in F to nodes φ1(x) in T1 and φ2(x) in T2 such that φi(x) is the lowest common

ancestor of all labelled leaves in Ti that are descendants of x in F , for i ∈ {1, 2}.

44

The difference to the binary case is that several nodes in F may be mapped to the

same multifurcating node in T1 (see Figure 5.1). For the reverse mapping, we define a

function φ−1i (·) mapping nodes in Ti to nodes in F . φ−1i (x) is defined if and only if x

is labelled or belongs to the path between two labelled nodes a and b in Ti such that

a ∼F b. In this case, φ−1i (x) is the node in F that is the lowest common ancestor of

all labelled leaves y in T xi such that x ∼F y. Note that, different from the binary case,

φ−1i (φi(x)) might be different from x, but φ−1i (φi(x)) is always defined. Observation

4 guarantees that the reverse mapping φ−1i (·) is well defined.

1 2 3

1

2 3

φi(a) = x

φi(b) = x

φ−1
i (x) = a

x

Ti F

a

b

φ−1
i (φi(b)) = a

Figure 5.1: An example for mapping and reverse mapping based on the expanded
cycle graph.

The hybrid edges in G∗F are now defined as follows. There are two such edges per

root node y of F , except ρ, one induced by T1 and one induced by T2. Let zi be the

lowest ancestor of φi(y) in Ti such that φ−1i (zi) is defined. Then (φ−11 (z1), y) is a T1-

hybrid edge and (φ−12 (z2), y) is a T2-hybrid edge. See Figure 5.2(c) for an illustration

of these edges. Our first lemma shows that neither φ−11 (z1) nor φ−12 (z2) is a root of F .

Lemma 9. A root of F cannot be the tail of a hybrid edge.

Proof . Assume there is a root φ−1i (zi) in F that is the tail of a hybrid edge (φ−1i (zi), y).

Since zi is the lowest ancestor of φi(y) in Ti such that φ−1i (zi) is defined, let y′ be a

child of zi in Ti such that y′ is an ancestor of φi(y) in Ti. Note that either φ−1i (y′)

is not defined or y′ = φi(y). Because φ−1i (zi) is a root in F , it has at least two chil-

dren a1, a2. These two children correspond to children a′1 and a′2 of zi in Ti, that is,

φ−1i (a′1) = a1 and φ−1i (a′2) = a2. Thus, in Ti, zi has at least three children a′1, a
′
2 and y′

because φ−1i (a′1) and φ−1i (a′2) are defined and y 6∼F φ−1i (zi) but a1 ∼F φ−1i (zi) ∼F a2.

45

Thus, however, zi has two children in the same tree Ti(X
j) and one not in this tree.

This contradicts Observation 4.

Our next lemma shows that the forest F is an AAF of T1 and T2 if and only if G∗F

contains no cycles, that is, we can use G∗F in place of GF to test whether F is acyclic.

This lemma was shown by Whidden et al. [18] for binary trees. Their proof trivially

extends to multifurcating trees.

Lemma 10. G∗F contains a cycle if and only if GF does.

ρ

1

2 3

5

6 7

4 8

9 10 11

ρ

1

2 3 6 7

4 5

8 9 10 11

T1 T2

(a)

1

2 3

9 10 11

4 5 6 7

8

ρ

(b)

1

2 3

9 10 11

4 5 6 7

8

ρ

(c)

Figure 5.2: (a) Two trees T1 and T2. (b) A multifurcating agreement forest F of T1
and T2 and its cycle graph GF . (c) The expanded cycle graph G∗F . Dashed edges are
T1-hybrid edges, dotted ones are T2-hybrid edges.

The final lemma of this section shows that G∗F can be constructed from T1, T2,

and F in linear time.

Lemma 11. The expanded cycle graph G∗F of a multifurcating agreement forest F of

two multifurcating rooted trees T1 and T2 can be computed in O(n) time.

46

Proof . We construct G∗F by adding hybrid edges to F . To add the hybrid edges

induced by T1, we perform a post-order traversal of T1 to compute the mappings φ1(·)

and φ−11 (·), and the hybrid edges induced by T1. Similarly, a post-order traversal of

T2 can be performed to compute φ2(·), φ−12 (·), and the hybrid edges induced by T2.

We assume that each labelled node of T1 or T2 stores a pointer to its counterpart

in F and vice versa. Thus, for each leaf x, φ1(x), φ2(x), φ−11 (x), and φ−12 (x) are given.

In addition, we associate a set Lx with each leaf x, where Lx = {x} if x is a root

of F , and Lx = ∅ otherwise. In general, after processing a node x of T1, Lx stores

the set of roots of F that map to descendants of x and have proper ancestors of x

as the tails of their T1-hybrid edges. All the roots in Lx share the same tail for their

T1-hybrid edges.

After initializing the information for the leaves of T1, the post-order traversal

computes the same information for the non-leaf nodes of T1 and uses it to compute

the T1-hybrid edges in G∗F . For a non-leaf node x with children a1, a2, ..., am (m ≥ 2),

the mapping φ−11 (ai) and the root set Lai of ai are computed before processing x, for

all 1 ≤ i ≤ m. Hence, we can use them to compute the mapping φ−11 (x) and the root

set Lx. There are four cases.

(1) If each of φ−11 (a1), φ
−1
1 (a2), ..., φ

−1
1 (am) is undefined or a root of F , then φ−11 (x)

is undefined (as x can belong to the path between two labelled nodes a and b in

T1 such that a ∼F b only if this is true for at least one of its children) and we set

Lx = La1 ∪ La2 ∪ ... ∪ Lam .

(2) If each of φ−11 (a1), φ
−1
1 (a2), ..., φ

−1
1 (am) is defined and not a root of F , φ−11 (a1),

φ−11 (a2), ..., φ
−1
1 (am) must be in the same component of F (because of Observation 2)

and their LCA p in F exists. We set φ−11 (x) = p. If p is a root other than ρ, we set

Lx = {p}; otherwise Lx = ∅.

(3) If only one of φ−11 (a1), φ
−1
1 (a2), ..., φ

−1
1 (am) is defined and not a root of F , let

aj be this child for some 1 ≤ j ≤ m. We set φ−11 (x) = φ−11 (aj) and add a T1-hybrid

47

edge (φ−11 (x), y) to G∗F for every root y in Lai , for 1 ≤ i ≤ m and i 6= j. Then we set

Lx = ∅.

(4) If more than one of φ−11 (a1), φ
−1
1 (a2), ..., φ

−1
1 (am) (but not all of them) is defined

and not a root of F , assume φ−11 (a1) and φ−11 (a2) satisfy this condition. Then either

φ−11 (a1) and φ−11 (a2) are in the same component of F , or φ−11 (a1) and φ−11 (a2) are

in two different components of F . In the former case, we obtain a contradiction to

Observation 4. In the latter case, the two components of F overlap in T1, contradicting

Observation 2. Therefore, this case cannot happen.

Correctness: The procedure correctly constructs G∗F because it directly follows

the definition of G∗F . In particular, the correctness relies on the invariant that, after

processing a node x, Lx stores the set of roots of F that map to descendants of x

and have proper ancestors of x as the tails of their T1-hybrid edges. Initially, for

each leaf x, Lx = {x} if x is a root of F ; Lx = ∅ otherwise. So the invariant holds.

Then for each non-leaf node x, the invariant is kept in all 3 possible cases. For

Case (1), since φ−11 (x) is undefined, we keep looking for hybrid edges for the roots in

La1 ∪ La2 ∪ ... ∪ Lam by setting Lx = La1 ∪ La2 ∪ ... ∪ Lam . For Case (2), a possible

new root p is introduced for which we have to find a hybrid edge, so we need to set

Lx = La1 ∪La2 ∪ ...∪Lam ∪ {p}. However, since φ−11 (a1) is defined for all ai, we have

Lai = ∅ for all ai. So we handle this case correctly. For Case (3), since φ−11 (x) is

defined, we set Lx = ∅ because Laj = ∅ and every root y in Lai , for 1 ≤ i ≤ m and

i 6= j, has the hybrid edge (φ−11 (x), y).

Running time: To compute the mapping φ−11 (x) from the children of x, we have

to check the reverse mapping of each child. The cost is O(1) per child. Since there

are in total less than n children, the total cost is O(n). Since the number of hybrid

edges is twice the number of roots in F , and adding a hybrid edge takes constant

time, the total cost of adding hybrid edges to F is no more than O(n). When Lx is

computed as the union of the root sets of x’s children, the cost of concatenating these

48

lists can also be paid by each child involved. As each node can be involved in the

concatenation at most once, the cost is constant for each node, O(n) in total. The

running time of the traversal of T2 is bounded by O(n) using the same arguments.

Hence, the entire algorithm takes linear time.

5.2 Essential Components and Exit Nodes

In this section, we define the essential components of a cycle in G∗F and their exit

nodes. There two concepts are crucial for deciding which edges to cut in order to

break cycles in G∗F . We prove that, if F can be refined to an AAF of T1 and T2 with

at most kp + 1 components, this can be achieved by cutting only edges on the paths

from exit nodes to the roots of their components in F .

Let H1 be the set of T1-hybrid edges in G∗F , and let H2 be the set of T2-hybrid

edges in G∗F . Assume G∗F contains a cycle O. Let h0, h1, ..., hm−1 be the hybrid edges

in O, and let C0, C1, ..., Cm−1 be the components of F connected by these hybrid

edges. More precisely, using index arithmetic modulo m, we assume the tail and head

of edge hi belong to components Ci and Ci+1, respectively. The cycle O enters each

component Ci at the head of edge hi−1 and leaves it at the tail of edge hi. We say

a component Ci is essential to O if hi−1 ∈ H1 and hi ∈ H2 or vice versa. We say a

component C is essential if it is essential to at least one cycle in G∗F . A node x in a

component C of F is an exit node of C, if C is essential to some cycle O in G∗F and

x is the tail of a hybrid edge in this cycle. Figure 5.3(c) illustrates these concepts.

Our first lemma in this section shows that there exits an exit node of an essential

component such that cutting its parent edge in F reduces ẽ(T1, T2, F) by one, i.e., by

cutting this edge, we make progress towards an MAAF of T1 and T2. This lemma was

proved by Whidden et al. [18] for binary trees, and we verified that it also applies to

multifurcating trees.

49

ρ

C1 C3

C2

C4

T1

ρ

C2

C3

T2

C4

C1

(a)

ρ

C2

C3

F

C4

C1

(b)

C2

C3

G∗
F

C4

C1

(c)

C2

C3

G∗
F

C4

C1

C2

C3

G∗
F

C4

C1

(d)

Figure 5.3: (a) Two trees T1 and T2. (b) A multifurcating agreement forest F of T1
and T2. (c) G∗F (with ρ’s component removed for clarity) contains a cycle of length
4. Dashed edges are T1-hybrid edges, dotted ones are T2-hybrid edges. White nodes
indicate exit nodes. (d) Fixing the exit node of component C4 (cutting the bold
edges) destroys the cycle. Note that multifurcations on the path from an exit node
to the root should be resolved. This doesn’t change the results of our algorithms but
it will help with the proof for Lemma 13.

Lemma 12. Let O be a cycle in G∗F , let C0, C1, ..., Cm−1 be its essential components,

and let vi be the exit node of component Ci in O, for all 0 ≤ i ≤ m − 1. Then

ẽ(T1, T2, F ÷ {evi}) = ẽ(T1, T2, F)− 1, for some 0 ≤ i ≤ m− 1.

The following lemma is a more powerful version of Lemma 12. It shows that we

can in fact make progress towards an MAAF by cutting all edges on the path from an

appropriate exit node to the root of its component. And we resolve multifurcations

on the path, which will be useful for Lemma 13’s proof. We call this fixing the exit

node. Breaking a cycle by fixing an exit node is illustrated in Figure 5.3(d).

Lemma 13. Let O be a cycle in G∗F , let C0, C1, ..., Cm−1 be its essential components,

50

let vi be the exit node of component Ci in O, let F i be the forest obtained from F by

fixing vi, and let li be the length of the path in Ci from vi to the root of Ci, for all

0 ≤ i ≤ m− 1. Then ẽ(T1, T2, F
i) = ẽ(T1, T2, F)− li, for some 0 ≤ i ≤ m− 1.

Proof . This statement can be proved by induction on ẽ(T1, T2, F). By Lemma 12,

there exists some exit node vi such that ẽ(T1, T2, F
′) = ẽ(T1, T2, F) − 1, where F ′ =

F ÷ {evi}. Cutting evi splits Ci into two components Ai and Bi that contain the

leaves in Cvi
i and in Ci \ Cvi

i , respectively. Before cutting evi , we resolve vi’s siblings

so that vi’s parent node pvi becomes binary. This won’t cause any problem because

of Lemma 2.

If ẽ(T1, T2, F) = 1, then ẽ(T1, T2, F
′) = ẽ(T1, T2, F) − 1 = 0. This means F ′ is

an AAF of T1 and T2, and hence the path from vi to ri only contains evi . Thus, the

statement holds for ẽ(T1, T2, F) = 1.

If ẽ(T1, T2, F) > 1, the lemma holds for F ′ with inductive hypothesis. If li = 1,

then the path from vi to ri only contains evi . Since F ′ = F i and ẽ(T1, T2, F
′) =

ẽ(T1, T2, F)− 1, the lemma holds in this case. If li > 1, then C ′0, C
′
1, ..., C

′
i−1, C

′
i, C

′
i+1,

..., C ′m−1 = C0, C1, ..., Ci−1, Bi, Ci+1, ..., Cm−1 is a cycle O′ in G∗F ′ . For j 6= i, the exit

node v′j of C ′j is vj; the exit node v′i of C ′i is vi’s sibling in Ci (note that pvi is resolved

to binary right before cutting evi). By the inductive hypothesis, ẽ(T1, T2, F
′j) =

ẽ(T1, T2, F
′)− l′j for some j. We distinguish two cases. If j 6= i, then l′j = lj and F ′j =

F j ÷ {evi}. Then we have ẽ(T1, T2, F
j)− 1 ≤ ẽ(T1, T2, F

j ÷ {evi}) = ẽ(T1, T2, F
′j) =

ẽ(T1, T2, F
′)− l′j = ẽ(T1, T2, F)− lj − 1. Hence, ẽ(T1, T2, F

j) ≤ ẽ(T1, T2, F)− lj. Since

F j is obtained by cutting lj edges in F , we also have ẽ(T1, T2, F
j) ≥ ẽ(T1, T2, F)− lj.

Thus, the statement holds in this case. If j = i, then lj = l′j + 1 and F ′j = F j.

Thus, ẽ(T1, T2, F
j) = ẽ(T1, T2, F

′j) = ẽ(T1, T2, F
′) − l′j = ẽ(T1, T2, F) − 1 − l′j =

ẽ(T1, T2, F)− lj. Therefore, the statement holds in this case as well.

51

5.3 Potential Exit Nodes

Exit nodes of F are defined as the tails of hybrid edges in G∗F that belong to some

cycle O in G∗F . Hence, the set of exit nodes is a subset of tails of hybrid edges in G∗F ,

and we call the tails of hybrid edges potential exit nodes. If F has k′+ 1 components,

there are 2k′ potential exit nodes because the component with root ρ doesn’t have

any incoming hybrid edges. If F is a forest produced by the branching phase of our

algorithm, it has at most kp + 1 components, and thus at most 2kp potential exit

nodes. The following lemma shows that the set of potential exit nodes of the forest

obtained by fixing a potential exit node in F is a subset of F ’s potential exit nodes.

This property is very important because it guarantees that we are not creating new

potential exit nodes when fixing potential exit nodes. In particular, this lemma will

be used to prove that, if F can be refined to an AAF with at most kp+1 components,

then fixing an appropriate subset of potential exit nodes produces such a forest.

Lemma 14. Let F be an agreement forest of two trees T1 and T2, let V be the set of

potential exit nodes of F , and let v be an arbitrary node in V . Let F ′ be the forest

obtained from F by fixing v, and let V ′ be the set of its potential exit nodes. Then

V ′ ⊂ V .

Proof . Let r be the root of the component of F containing v. Let (u1, r) and (u2, r)

be hybrid edges in G∗F induced by T1 and T2, respectively. In other words, u1 and

u2 are the potential exit nodes for root r. By fixing v, the root r is removed while v

becomes a new root in F ′, as do the pendent nodes r1, r2, ..., rp of the path from v

to r in F . Let V ′1 be the set of potential exit nodes corresponding to roots that F ′

shares with F . Let V ′2 be the set of potential exit nodes corresponding to new roots

of F ′ (r1, r2, ..., rp and v). Clearly, V ′1 ∪ V ′2 = V ′. For any root shared by F ′ and

F , its two potential exit nodes will not change unless the potential exit nodes are

on the path from v to r in F and these nodes are contracted when fixing v. In that

52

case, the new potential exit nodes are u1 and u2 because of the definition of hybrid

edges. Thus, V ′1 ⊆ V . For any new root, its two potential exit nodes are u1 and u2,

according to the definitions of hybrid edges and potential exit nodes. Thus, V ′2 ⊆ V .

This shows that V ′ ⊆ V . To finish the proof, it suffices to observe that v ∈ V but

v 6∈ V ′ because v is a root of F ′ and thus, by Lemma 9, cannot be the tail of a hybrid

edge. Thus, V ′2 ⊆ V and V ′2 6= V , that is V ′ ⊂ V .

5.4 A Simple Refinement Algorithm

By Lemma 13, if F can be refined to an AAF F ′ with at most kp + 1 components, we

can do so by fixing an appropriate exit node in F0 = F , then fixing an appropriate exit

node in the resulting forest F1, and so on until we obtain F ′. Let F0 = F, F1, ..., Fq =

F ′ be the sequence of forests produced in this fashion. For 0 ≤ i ≤ q, the exit nodes

of Fi are included in the set of Fi’s potential exit nodes and, by Lemma 14, these

potential exit nodes of Fi are included in the set of F0’s potential exit nodes. Thus,

F ′ can be obtained from F by choosing an appropriate subset of F ’s potential exit

nodes and fixing them. Moreover, fixing a subset of exit nodes one node at a time

produces the same forest as simultaneously cutting all edges in the union of the paths

from these exit nodes to the roots of their components in F . Thus, our strategy to

decide whether F can be refined to an AAF with at most kp + 1 components is to

consider every subset of potential exit nodes and check whether cutting the edges

on the paths to the roots of their components yields such an AAF. The resulting

algorithm is shown as Algorithm 1.

If F cannot be refined to an AAF with at most kp + 1 components, G∗F cannot be

made acyclic by fixing any subset of potential exit nodes, and Algorithm 1 returns

“No” in this case. Otherwise, G∗F can be made acyclic for at least one subset of

potential exit nodes. Thus, this implementation of Refine(T1, T2, F , kp) is correct.

53

Algorithm 1 Refine(T1, T2, F , kp)

Build the expanded cycle graph G∗F from F , T1 and T2, mark all the potential exit
nodes in G∗F , and use V to denote the set of these nodes;
for each subset Vsub of the marked node set V do

Fix every node v in Vsub;
if the number of components in the resulting forest F ′ is no more than kp + 1
and G∗F ′ is acyclic then

Return “Yes”;
end if

end for
Return “No”;

If F has k′ + 1 ≤ kp + 1 components, there are at most 22k′ ≤ 22kp = 4kp subsets

of potential exit nodes to test by Refine(T1, T2, F , kp). Thus, the running time

of Refine(T1, T2, F , kp) is O(4kpn). Furthermore, since we use Algorithm 1 as a

subroutine of Maaf(T1, T2, F1, F2, kp), we call Refine(T1, T2, F , kp) for each of the

up to 4kp leaves of the recursion tree of the branching phase. This results in a complete

fixed parameter algorithm with a running time of O(4kp(n + 4kpn)) = O(16kpn).

Hence, we obtain the following result.

Theorem 2. For two multifurcating rooted trees T1, T2 and a parameter kp, it takes

O(16kpn) time to decide whether ẽ(T1, T2, T2) ≤ kp.

54

Chapter 6

An Improved Refinement Algorithm

In the simple refinement algorithm, we test every subset of potential exit nodes. To

reduce the running time of the refinement phase from O(4kpn) to O(2kpn), and hence

the running time of the entire MAAF algorithm from O(16kpn) to O(8kpn), we show

how to mark only half of the potential exit nodes chosen so that an MAAF, if it

exists, can be found by fixing a subset of marked potential exit nodes. This is the

same idea used in [18] for binary trees, but multifurcations in our case pose some new

challenges.

Marking only part of the potential exit nodes may create a situation where the

branching phase finds an AF F of T1 and T2 that can be refined to an AAF F ′ of

T1 and T2 with at most kp + 1 components but cannot be refined to such a forest F ′

by fixing a subset of the marked potential exit nodes. The intuition why this isn’t a

problem is that, whenever there is a potential exit node u that should be fixed but is

not marked, there is another branch in the branching phase that cuts eu. Although

the two branches lead to different AFs, the second branch can end with the AAF that

the first branch has missed. While this is the intuition, we in fact cannot guarantee

that for any missed AAF, there always exists another branch that allows us to find

it. What we prove is that, if ẽ(T1, T2, T2) ≤ kp, then there exists a “canonical” AF

FC produced by the branching phase of our algorithm such that it can be refined to

an AAF F ′′ of T1 and T2 with at most kp + 1 components by fixing a subset of the

marked potential exit nodes in FC .

The rules for marking half of the potential exit nodes are as follows. The branching

55

phase assigns a tag “T1” or “T2” to each component root other than ρ of each AF

F it produces. Then, after constructing the expanded cycle graph G∗Fm
, we mark a

potential exit node u if there is a Ti-hybrid edge (u,w) in G∗Fm
such that w is tagged

with “Ti”. Since each component root w is tagged with either “T1” or “T2”, only one

potential exit node is marked per component while there are two potential exit nodes

per component. Thus, we mark only half of the potential exit nodes.

We implement the tagging of component roots by augmenting Step 7 of the 4-way

branching algorithm to tag the bottom endpoints of the edges cut in F2. When a

tagged root x loses a child c by cutting its parent edge ec, x’s tag is unchanged if

x still has at least two children; otherwise, x is contracted into the remaining child

and that child inherits x’s tag. This guarantees that exactly the roots in the current

forest F2 are tagged.

6.1 Improved MAAF Algorithm

The following is the pseudo-code of the MAAF algorithm, which shows how to tag

the component roots produced in Step 7. In the description of the algorithm, k is

used to denote the parameter passed to the current invocation, while kp is used to

denote the parameter of the top-level invocation Maaf(T1, T2, kp). Thus, kp + 1 is

the maximal number of components that the final AAF is allowed to have.

1. (Failure) If k < 0, there is no edge set E of at most k edges such that F2 ÷ E is

an AF of T1 and T2. Return “No” in this case.

2. (Refinement) If |Rt| = 0, then F0 is an AF of T1 and T2. Then transform F0 to

Fm and resolve T1, T2 into (T1)m, (T2)m, as described in Chapter 4. Invoke an

algorithm Refine((T1)m, (T2)m, Fm, kp) to decide whether Fm can be refined to

an AAF of T1 and T2 with at most kp + 1 components. Return the answer of

Refine((T1)m, (T2)m, Fm, kp).

56

3. (Prune maximal agreeing subtrees) If there is a node r ∈ Rt that is a root of Ḟ2,

remove r from Rt and add it to Rd, thereby moving the corresponding subtree of

Ḟ2 to F0; then cut the edge er in Ṫ1 and return to Step 2. If no such root r exists,

proceed to Step 4.

4. (Choose sibling group) Choose a sibling group {a1, a2, ..., am} in Ṫ1 such that

a1, a2, ..., am ∈ Rt. If the sibling group chosen in the parent invocation still has

two or more members in Ṫ1, choose that sibling group.

5. (Grow agreeing subtrees) While there exist indices 1 ≤ i < j ≤ m such that ai

and aj are siblings in Ḟ2, merge ai and aj as follows: remove ai and aj from Rt;

resolve ai and aj in Ṫ1 and Ḟ2; label their new parent in both forests with (ai, aj);

and add it to Rt. The new node (ai, aj) becomes a member of the current sibling

group and m decreases by 1. If m = 1 after resolving all such sibling pairs {ai, aj},

contract the parent of the only remaining member of the sibling group and return

to Step 2; otherwise, proceed to Step 6.

6. (Choose minimal LCA) If ai 6∼ aj, for all 1 ≤ i < j ≤ m, proceed to Step 7.

Otherwise there exists a node l in Ḟ2 that is a minimal LCA of a group of nodes

in the current sibling group. If the minimal LCA in the parent invocation still

has two or more members of the current sibling group as descendants, choose l to

be this node; otherwise choose l arbitrarily. Now rename the nodes in the sibling

group {a1, a2, ..., am} so that, for some r ≥ 2, a1, a2, ..., ar are descendants of l; ar

is the only sibling that may be a child of l; and for 1 ≤ i ≤ r < j ≤ m, either the

LCA of ai and aj is a proper ancestor of l or ai 6∼F2 aj.

7. (Cut edges) Make four recursive calls (shown in Figure 3.2):

(i) Maaf(F1, F2 ÷ {ea1}, k − 1), and tag a1 with “T2” in F2 ÷ {ea1}.

(ii) Maaf(F1, F2 ÷ {ea2}, k − 1), and tag a2 with “T2” in F2 ÷ {ea2}.

57

(iii) Maaf(F1, F2 ÷ {eB1}, k − 1), and tag B1 with “T1” in F2 ÷ {eB1}.

(iv) Maaf(F1, F2 ÷ {eB2}, k − 1), and tag B2 with “T1” in F2 ÷ {eB2}.

Return “Yes” if one of these recursive calls does; otherwise return “No”.

6.2 Correctness Proof

We assume from here on that hyb(T1, T2) ≤ kp because otherwise Refine ((T1)m,

(T2)m, Fm, kp) returns “No” for any AF F found in the branching phase. It means,

the algorithm gives the correct answer if hyb(T1, T2) > kp. Thus, it suffices to prove

that the algorithm returns “Yes” if hyb(T1, T2) ≤ kp to finish the correctness proof.

The proof is divided into two stages. In the first stage, we prove that Maaf(T ′1,

T2, kp) returns “Yes” if hyb(T ′1, T2) ≤ kp, where T ′1 is a binary resolution of T1 that

has a particular MAAF of T1 and T2 as a forest. In the second stage, we argue that,

if the algorithm is correct for T ′1 and T2, it must also be correct for T1 and T2.

6.2.1 Stage One

To prove that Maaf(T ′1, T2, kp) returns “Yes” if hyb(T ′1, T2) ≤ kp, we introduce the

concept of a canonical agreement forest and modify the algorithm slightly.

First, we discuss the modification of the algorithm. This modification does not

change its behaviours significantly but helps us with reasoning about its correctness.

In the original algorithm, when cutting an edge ex, x ∈ {a1, a2}, in Step 7, x becomes

a component root of F2 that agrees with a subtree of F1. Hence, the first thing Step

3 of the next recursive call does is to cut the parent edge of x in F1. In the modified

algorithm, we cut the parent edge of x in F1 immediately after cutting the parent

edge of x in F2, as part of Step 7, instead of postponing the cutting of x’s parent edge

in F1 to Step 3 of the next recursive call. Clearly, this modification does not change

58

the set of AFs produced by the branching phase or the set of potential exit nodes

that are marked in them.

Now, recall that not every AF found by the branching phase can be refined to an

AAF of T ′1 and T2 by fixing marked potential exit nodes. We choose a canonical AF

F ′C from among these AFs and prove that F ′C can be refined to an AAF of T ′1 and T2

with at most kp + 1 components by fixing a subset of its marked potential exit nodes.

We choose F ′C by specifying a sequence of recursive calls of procedure Maaf(·) that

produce F ′C from T2. This sequence of invocations form a path in the recursion tree

of Maaf(·). Let F i
1, F

i
2 and ki be the inputs to the ith invocation Maaf(F i

1, F
i
2, ki)

along this path. The first invocation is Maaf(T ′1, T2, kp), so F 1
1 = T ′1, F

1
2 = T2, and

k1 = kp. Assume we have constructed the path up to the ith invocation. The (i+1)st

invocation is made in Step 7 of the ith invocation. Invocation Maaf(T ′1, T2, kp) is

viable and by Observation 5, every viable invocation that is not a leaf invocation (an

invocation that returns in Step 1 or 2) has at least one viable child invocation. If there

is only one viable invocation made in Step 7 of the ith invocation Maaf(F i
1, F

i
2, ki),

then we choose this invocation as the (i + 1)st invocation Maaf(F i+1
1 , F i+1

2 , ki+1).

Otherwise we apply the following rules to choose Maaf(F i+1
1 , F i+1

2 , ki+1) from among

the viable child invocations of Maaf(F i
1, F

i
2, ki).

Case 1: If both Maaf(F i
1 ÷ {ea1}, F i

2 ÷ {ea1}, ki − 1) and Maaf(F i
1 ÷ {ea2}, F i

2 ÷

{ea2}, ki − 1) are viable, we choose Maaf(F i+1
1 , F i+1

2 , ki+1) from among them as fol-

lows: For x ∈ {a1, a2}, let Fx be the agreement forest found by tracing a path from

Maaf(F i
1 ÷ {ex}, F i

2 ÷ {ex}, ki − 1) to a viable leaf invocation using recursive appli-

cation of these rules, and let Ex be an edge set such that Fx = F i
1 ÷ Ex. Let y = a2

if x = a1, and y = a1 if x = a2. Now let φ1(y) once again be the LCA in T ′1 of all

labelled leaves that are descendants of y in F i
2, and let φx(y) be the LCA in Fx of

all labelled leaves l that are descendants of y in F i
1 and such that the path from l to

y does not contain an edge in Ex. In other words, φx(y) is the node of Fx that y is

59

merged into by suppressing nodes during the sequence of recursive calls that produce

Fx from F i
2. Finally, let d1(y) = 0 if φx(y) is a component root of Fx; otherwise,

let d1(y) > 0 be the distance from the root ρ of T1 to φ1(p(φx(y))), where, p(φx(y))

refers to the parent node of φx(y) in Fx. If d1(a1) > d1(a2), we choose the invocation

Maaf(F i
1 ÷ {ea1}, F i

2 ÷ {ea1}, ki − 1) as the (i + 1)st invocation, i.e., F ′C = Fa1 ; if

d1(a1) < d1(a2), we choose the invocation Maaf(F i
1÷{ea2}, F i

2÷{ea2}, ki− 1) as the

(i+1)st invocation, i.e., F ′C = Fa2 ; if d1(a1) = d1(a2), we define d2(x) for x ∈ {a1, a2},

analogously to d1(x), using T2 in place of T ′1. The only difference is that T2 may be

multifurcating while T ′1 is binary. When a1 and a2 share the same minimal LCA l,

a2 is a child of l, and l has at least 3 children, let C be the set of children of l that

are not ancestors of a1 or a2. We resolve l so that a2 and the nodes in C are siblings

(shown in Figures 6.3(a) and 6.3(b)), and define d2(a1) and d2(a2) with respect to the

resulting tree in this case. Note that this resolution is used only in the definition of

d2(a1) and d2(a2), not in the algorithm. If d2(a1) > d2(a2), we choose the invocation

Maaf(F i
1 ÷ {ea1}, F i

2 ÷ {ea1}, ki − 1) as the (i+1)st invocation, i.e., F ′C = Fa1 ; if

d2(a1) < d2(a2), we choose the invocation Maaf(F i
1÷{ea2}, F i

2÷{ea2}, ki− 1) as the

(i + 1)st invocation, i.e., F ′C = Fa2 ; if d1(a1) = d1(a2), choose an arbitrary one from

among them as the (i+ 1)st invocation.

Case 2: If exactly one of Maaf(F i
1 ÷ {ea1}, F i

2 ÷ {ea1}, ki − 1) and Maaf(F i
1 ÷

{ea2}, F i
2 ÷ {ea2}, ki − 1) is viable, choose it.

Case 3: If neither Maaf(F i
1÷{ea1}, F i

2÷{ea1}, ki−1) nor Maaf(F i
1÷{ea2}, F i

2÷

{ea2}, ki − 1) is viable, both Maaf(F i
1 ÷ {eB1}, F i

2 ÷ {eB1}, ki − 1) and Maaf(F i
1 ÷

{eB2}, F i
2 ÷ {eB2}, ki − 1) must be viable. Then, choose one of these two invocations

arbitrarily.

Lemma 15. If hyb(T ′1, T2) ≤ kp, then F ′C can be refined to an AAF of T ′1 and T2 with

at most kp+1 components by fixing a subset of the marked potential exit nodes in F ′C.

60

Proof . Let E ′ be an edge set such that F ′ = F ′C ÷E ′ is an AAF of T ′1 and T2 with

at most kp + 1 components. By Lemma 13 and Lemma 14, we can assume E ′ is the

union of paths from a subset of potential exit nodes to the roots of their respective

components in F ′C . These potential exit nodes may or may not be marked. Note that

since T ′1 is binary, F ′C , as its forest, is also binary. We say an edge is marked if it

belongs to the path from a marked potential exit node to the root of its component,

or it belongs to the path from the sibling of a marked potential exit node to the root

of its component. Next, we prove that all edges in E ′ are marked. This implies that

F ′ can be produced by fixing a subset of marked potential exit nodes in F ′C , so the

lemma holds.

Assume for the sake of contradiction that there is an unmarked edge in E ′. Since

all ancestor edges of a marked edge are marked, there must exist a potential exit node

u such that both u and its sibling u′ are unmarked. The sequence of invocations that

produce F ′C from T ′1 and T2 gives rise to a sequence of edge cuts. We use F i
1 and F i

2

to refer to the forests obtained from T ′1 and T2 after cutting the first i edges. (This is

a change of notation, different from the definition of F ′C , where we used F i
1 and F i

2 to

denote the input forests to the ith invocation.) Since F ′C is a refinement of F i
1 and F i

2,

every node x ∈ F ′C maps to the node in F i
j which is the LCA of all descendant leaves

of x in F ′C . This is analogous to the mappings φ1(·) and φ2(·) from F ′C to T ′1 and T2.

To avoid excessive notation, we refer to the nodes in F i
1 and F i

2 a node x ∈ F ′C maps

to simply as x.

With this notation, the common parent pu of u and u′ in F ′C is the LCA of both

nodes in any forest F i
j . Since u is a potential exit node of F ′C , there is at least one

hybrid edge in G∗F ′C
induced by cutting a pendant edge ez of the path from u to pu in

some forest F i
j . There may also be a hybrid edge induced by cutting a pendant edge

ez′ of the path from u′ to pu in some forest F i
j . Either of the two types of edges are

pendant to the path from u to u′ in F i
j . Let i be the highest index such that the ith

61

edge we cut is pendant to the path from u to u′ in F i−1
1 or F i−1

2 , and let ey be this

edge. Let j ∈ {1, 2} so that we cut ey in F i−1
j . The choice of index i implies that u

and u′ are siblings in F i
1 and F i

2, and either u or u′ is y’s sibling in F i−1
j . We use x to

refer to this sibling, and x′ to refer to x’s sibling in F ′C (i.e. x′ = u′ if x = u and vice

versa). We make two observations about x, x′, and y:

(i) Since every exit node in F ′C has a binary parent node, fixing an exit node or

its sibling produces the same forest. Hence F ′ can be obtained from F ′C by

fixing a set of nodes that includes x or x′. In particular, ẽ(T ′1, T2, F
i
j ÷ {ex}) =

ẽ(T ′1, T2, F
i
j ÷ {ex′}) = ẽ(T ′1, T2, F

i
j)− 1, for j ∈ {1, 2}.

(ii) Since neither u nor u′ is marked, x is not marked in F ′C , and hence, y is not

tagged with “Tj” in F ′C .

Now we check each of the steps in the algorithm in which we cut ey and prove

that these observations lead to a contradiction. Thus, E ′ cannot contain an unmarked

edge, and the lemma follows.

We consider a number of cases depending on whether we cut ey in F i−1
1 or F i−1

2

and which step of the algorithm cuts this edge.

Scenario 1: If ey is cut from F i−1
1 , y cannot be tagged with “T1”. Also note that

F i−1
1 is binary, since T ′1 is binary.

1.1 If ey is cut by an application of Step 3, y must be a root in F i−1
2 . It implies that

there exists an i′ < i such that the i′th edge we cut is y’s parent edge e′y in F i′−1
2

or an edge ez such that z is an ancestor of y in F i′−1
2 . In the first case, e′y must

be cut as a B-type edge (eB1 or eB2). Otherwise, ey would be cut immediately

after e′y in Step 7 rather than in Step 3. Therefore, y is tagged with “T1”, a

contradiction. In the second case, ez must also be cut as a B-type edge and

hence, z is tagged with “T1”. Otherwise, if z ∈ {a1, a2}, the subtree of z would

62

(a2)

y

x′

F i−1
1

a1 a2B1 B2

F i−2
2

x

(a1) (y) (x)

Figure 6.1: Scenario 1.2.1 in proof of Lemma 15.

be a component of F i′−1
2 that agrees with F i′−1

1 and we would not cut edge ey in

F i−1
1 . We choose i′ maximal such that we cut an ancestor edge ez of y in F i′−1

2 .

This implies that no edges on the path from z to y are cut but all pendant edges

of this path are cut because y is a root of F i−1
2 . Thus, y inherits z’s “T1” tag, a

contradiction.

1.2 If ey is cut by an application of Step 7, ey is the parent edge in F i−1
1 of a node

y ∈ {a1, a2} whose parent edge in F i−2
2 is the (i− 1)st edge we cut.

1.2.1 Assume a1, a2 are in separate components in F i−2
2 . W.l.o.g., let y = a1 and x =

a2. In the invocation Maaf(F i−2
1 , F i−2

2 , k), cutting ea1 is viable by the choice of

F ′C and cutting ea2 is also viable because ẽ(T ′1, T2, F
i−2
2 ÷{ex}) = ẽ(T ′1, T2, F

i−2
2)−

1. Since x and x′ are siblings in F ′C , and F ′C is a refinement of F i−2
2 , we have

y 6∼F i−2
2

x ∼F i−2
2

x′. Since Fx is also a refinement of F i−2
2 , this implies that

y 6∼Fx x
′. In particular, x′ and y are not siblings in Fx. Because ey is the only

pendant edge of the path from x to x′ in F i−1
1 and F i−1

1 is binary, this implies (see

Figure 6.1) that either y is a root in Fx or the parent of y in Fx is a proper ancestor

in F i−1
1 of the common parent of x and x′ in Fy = F ′C . In both cases, d1(y) <

d1(x), which means we would have chosen invocation Maaf(F i−2
1 ÷{ex}, F i−2

2 ÷

{ex}, k − 1) instead of invocation Maaf(F i−2
1 ÷ {ey}, F i−2

2 ÷ {ey}, k − 1) to be

on the path to F ′C , a contradiction.

1.2.2 Assume a1, a2 are in the same component in F i−2
2 . If x′ and y are not siblings

in Fx, then the same arguments as in Scenario 1.2.1 also hold here. So assume

63

x′ and y are siblings in Fx. Then, d1(y) = d1(x). Since ey is the last pendant

edge of the path from x to x′ in F i−1
1 , x and x′ are siblings in F i−1

2 . There are

two possibilities: either x and x′ are siblings in F i−2
2 already or ey is the last

pendant edge of the path from x to x′ in F i−2
2 .

(a2)

y

x′

F i−1
1

a1 a2B1 B2

F i−2
2

x

(a1) (y) (x)(x′)

(a) x and x′ are siblings in F i−2
2 .

(a2)

y

x′

F i−1
1

a1 a2B1 B2

F i−2
2

x

(a1) (y) (x)(x′)

(b) y and x′ are siblings in F i−2
2 .

Figure 6.2: Scenario 1.2.2.1 in proof of Lemma 15.

1.2.2.1 Assume a2 is not a child of the minimal LCA l of a1 and a2 in F i−2
2 . First

consider the case that x and x′ are siblings in F i−2
2 already, and assume w.l.o.g.

that y = a1 and x = a2. This is shown in Figure 6.2(a). Since x and x′ are

siblings in F i−2
2 , x′ has to be in B2. Thus in F i−2

2 , the common parent in Fx of x′

and y is a proper ancestor of the common parent in Fy of x and x′. Thus, d2(y) <

d2(x), which means we would have chosen invocation Maaf(F i−2
1 ÷{ex}, F i−2

2 ÷

{ex}, k − 1) instead of invocation Maaf(F i−2
1 ÷ {ey}, F i−2

2 ÷ {ey}, k − 1) to be

on the path to F ′C , a contradiction. Now consider the case that ey is the last

pendant edge of the path from x to x′ in F i−2
2 . This implies that either y and

x or y and x′ are siblings in F i−2
2 . The first topology is impossible because

there are at least two pendant edges eB1 and eB2 on the path from y to x. The

second topology, shown in Figure 6.2(b), is also impossible. The reason is that,

after cutting ey, the path from x to x′ would still have a pendant node in B2, a

contradiction because ey is the last pendant edge of this path we cut and x to

x′ are siblings after cutting this edge.

1.2.2.2 The last case is that a2 is a child of the minimal LCA l of a1 and a2 in F i−2
2 .

In this case, let a′1 be the child of l that is an ancestor of a1, and let C be the set

64

(a2)

y

x′

F i−1
1

x

(a1)

F i−2
2

(y)
B1

a2

a1

(x)

C

(x′)

(a) x and x′ are siblings in F i−2
2 when x =

a2.

(a2)

y

x′

F i−1
1

x

(a1) (y)
B1a1 a2

(x)

F i−2
2

C

(x′)

(b) The resolution to compare d2(y) and
d2(x) in Scenario 1.2.2.2.

(a1)

y

x′

F i−1
1

x

(a2) (x)

B1

a1 a2
(y)

F i−2
2

C(x′)

(c) x and x′ are siblings in F i−2
2 when y =

a2.

(a2)

y

x′

F i−1
1

x

(a1) (y)

B1

a1 a2
(x)

F i−2
2

C(x′)

(d) ey is the last pendant edge on path from
x to x′ in F i−2

2 .

Figure 6.3: Scenario 1.2.2.2 in proof of Lemma 15.

of children of l other than a′1 and a2. First consider the case that x and x′ are

siblings in F i−2
2 already. If y = a1, then x = a2 (see Figure 6.3(a)). In this case,

x′ has to be in C. By the rules for choosing the path to F ′C , we compare d2(y)

and d2(x) in Figure 6.3(b). Since in F i−2
2 , the common parent in Fx of x′ and

y is a proper ancestor of the common parent in Fy of x and x′, d2(y) < d2(x).

Thus, we would have chosen invocation Maaf(F i−2
1 ÷ {ex}, F i−2

2 ÷ {ex}, k − 1)

instead of invocation Maaf(F i−2
1 ÷ {ey}, F i−2

2 ÷ {ey}, k − 1) to be on the path

to F ′C , a contradiction. If y = a2 and x = a1 (see Figure 6.3(c)), then x′ has

to be in B1. Thus, in F i−2
2 , the common parent in Fx of x′ and y is a proper

ancestor of the common parent in Fy of x and x′. Thus, d2(y) < d2(x), which

means we would have chosen invocation Maaf(F i−2
1 ÷ {ex}, F i−2

2 ÷ {ex}, k− 1)

instead of invocation Maaf(F i−2
1 ÷ {ey}, F i−2

2 ÷ {ey}, k − 1) to be on the path

to F ′C , a contradiction. Now consider the case that ey is the last pendant edge

of the path from x to x′ in F i−2
2 . If y = a1 and x = a2 (see Figure 6.3(d)), then

B1 = {x′} to make ey the last pendant edge of the path from x to x′ in F i−2
2 .

65

However, cutting y tags y with “T2” in F2 and therefore marks x′, contradicting

our assumption that both x and x′ are unmarked. If y = a2 and x = a1, there

is at least one pendant edge eB1 on the path from x to y and ey cannot be the

last pendant edge of the path from x to x′ in F i−2
2 . Therefore, this case is also

impossible.

Scenario 2: If ey is cut from F i−1
2 , y cannot be tagged with “T2”.

2.1 If y ∈ {a1, a2}, y is tagged with “T2”, a contradiction.

2.2 If y ∈ {B1, B2}, the sibling of y in F i−1
2 is a1 or a2. Cutting the sibling of y

must be viable as it is x. However, according to the rules we use to find F ′C ,

we do not choose Maaf(F i−1
1 ÷ {eB1}, F i−1

2 ÷ {eB1}, k − 1) or Maaf(F i−1
1 ÷

{eB2}, F i−1
2 ÷{eB2}, k− 1) to be on the path to F ′C unless neither Maaf(F i−1

1 ÷

{ea1}, F i−1
2 ÷{ea1}, k− 1) nor Maaf(F i−1

1 ÷{ea2}, F i−1
2 ÷{ea2}, k− 1) is viable,

a contradiction.

6.2.2 Stage Two

In this stage, we prove that if our MAAF algorithm can find an MAAF of T ′1 and T ′2

by only fixing marked potential exit nodes, then our MAAF algorithm can also find

an MAAF of T1 and T2 by only fixing marked potential exit nodes. In other words,

we prove that Maaf(T1, T2, kp) returns “Yes” if hyb(T1, T2) ≤ kp.

As a reminder, T ′1 is defined as a binary resolution of T1 and this resolution is

based on an arbitrary MAAF FAA of (T1, T2). Formally, let FAA be an MAAF of

(T1, T2), and let (FAA)b be a binary resolution of FAA. Then T ′1 is a binary resolution

of T1 with the following property: For every maximal set S of at least two siblings

in T1 that belong to the same subtree T1(X
i), there exists a node in T ′1 whose set of

descendant leaves is exactly the set of descendant leaves of this set of siblings. (FAA)b

is an AF of (T ′1, T2) and is acyclic because the construction of T ′1 from T1 does not

66

create any ancestry relationships of components of (FAA)b in T ′1 that are not present

between the corresponding components of FAA in T1. (FAA)b is also an MAAF of

(T ′1, T2) because FAA is an MAAF of (T1, T2).

Lemma 16. Any MAAF of (T ′1, T2) is also an MAAF of (T1, T2).

Proof . Consider an MAAF F ′AA of (T ′1, T2). Since T ′1 is a resolution of T1, F
′
AA is an

AF of (T1, T2). F
′
AA must be an AAF of (T1, T2) because otherwise the cycle graph

GF ′AA
of F ′AA w.r.t. (T1, T2) has a cycle in it, which implies that the cycle graph G′F ′AA

of F ′AA w.r.t. (T ′1, T2) also contains a cycle. F ′AA has the same number of components

as (FAA)b because both of them are MAAFs of (T ′1, T2). Since (FAA)b is an MAAF of

(T1, T2) and F ′AA has no more components than (FAA)b, then F ′AA is also an MAAF

of (T1, T2).

The roadmap of our proof that Maaf(T1, T2, kp) returns “Yes” if hyb(T1, T2) ≤ kp

is shown in Figure 6.4. Let F ′C be the canonical AF found by the branching phase of

Maaf(T ′1, T2, kp). Clearly, F ′C is an AF of (T1, T2). Let FC be the result of collapsing

F ′C as much as possible as long as FC is an AF of (T1, T2). We proved that F ′C can

be refined to an MAAF of (T ′1, T2) by fixing marked potential exit nodes. We need

to prove that the branching phase of Maaf(T1, T2, kp) finds FC and that FC can be

refined to an MAAF of (T1, T2) by fixing marked potential exit nodes.

(T1, T2) (T ′
1, T

′
2)

FC F ′
C

T ′
1 is a binary resolution of T1

T ′
2 is just T2

Collapse as much as possible
F ′′ F ′Refine Refine

Figure 6.4: Roadmap of the correctness proof.

67

Theorem 3. If F ′C, the canonical AF found by Maaf(T ′1, T2, kp), can be refined to

an MAAF F ′ of (T ′1, T2) by fixing marked potential exit nodes, then one of the AFs

found by Maaf(T1, T2, kp) can also be refined to an MAAF F ′′ of (T1, T2) by fixing

marked potential exit nodes.

Proof . We divide this proof into three claims we prove separately.

Claim 1. FC is one of the AFs found by the branching phase of Maaf(T1, T2, kp).

Claim 2. The roots of FC and F ′C have the same tags.

Claim 3. Let V ′ be a subset of marked potential exit nodes in F ′C that gives us an

MAAF F ′ of (T ′1, T2). Then there exists a subset V of marked potential exit nodes in

FC that also gives us an AAF F ′′ of (T1, T2) and fixing it cuts no more edges than

fixing V ′.

With the first claim, if FC can be refined to an MAAF of (T1, T2) by fixing marked

potential exit nodes, then the theorem holds. The second claim will be used to support

the proof of the third claim. By the third claim, we know that F ′′ is an AAF of (T1, T2)

and F ′′ has no more components than F ′. Since F ′ is an MAAF of (T1, T2) (because

of Lemma 16), F ′′ is an MAAF of (T1, T2). Therefore, this theorem holds.

Let’s prove the three claims one by one.

Proof of Claim 1. According to the correctness proof of the branching phase (The-

orem 1, Lemma 3, and Lemma 4), for any agreement forest F of the input two

trees, we can always make progress to F by cutting one of ea1 , ea2 , eB1 , eB2 . Thus,

Maaf(T1, T2, kp) finds all AFs of T1 and T2 with no more than kp + 1 components.

Since F ′ has no more than kp + 1 components, so does F ′C because F ′ is a refined

forest of F ′C . Since collapsing F ′C to FC doesn’t change the number of components, FC

also has no more than kp + 1 components. Therefore, FC is found by the branching

phase of Maaf(T1, T2, kp).

68

Proof of Claim 2. To prove Claim 2, we modify the procedure Maaf(T ′1, T2, kp)

slightly without changing its result. Each internal node v in T1 gives rise to a sibling

group Gv that is considered in procedure Maaf(T1, T2, kp). To “simulate” such a

sibling group in Maaf(T ′1, T2, kp), let v′ be the node in T ′1 that has the same set of

descendant leaves as v does in T1. Then each sibling group Gv in T1 corresponds to a

subtree T ′v
′

1 in T ′1. The modification to procedure Maaf(T ′1, T2, kp) is the following:

each time we need to pick a sibling pair, we pick a pair in the previous subtree T ′v
′

1

as long as v′ is not a leaf. Originally, the order of picking sibling groups (for T ′1, it’s

picking sibling pairs because T ′1 is binary) is arbitrary. Thus, our modification has no

impact on the result of procedure Maaf(T ′1, T2, kp).

Let I be the invocation path in the recursion tree of Maaf(T1, T2, kp) that leads

to FC . Let I ′ be the invocation path in the recursion tree of Maaf(T ′1, T2, kp) that

leads to F ′C . We say that two edge cuts are the same if (1) the two cut edges have

the same set of descendant leaves and (2) the two cut edges are either both cut as

a-type edges (ea1 or ea2) or they are both cut as B-type edges (eB1 or eB2). We prove

that the edge cuts performed along I and I ′ are the same though these cuts may be

made in different orders.

Assume that until now, I and I ′ have made the same cuts (possibly in a different

order). Let Gv be the sibling group considered by I at this moment. There is a

corresponding binary subtree T ′v
′

1 that can be chosen by I ′. Let E ′ be the edge set

cut by I ′ while it processes the sibling pairs in T ′v
′

1 . We prove that, every invocation

in I that considers the sibling group Gv always has the option to cut an edge in E ′ as

one of its 4 choices. Thus, once we are done processing Gv, I and I ′ will once again

reach a state where they’ve made the same edge cuts.

For any pair (ai, aj) in sibling group Gv considered by an invocation in I, there

are three difference cases:

(i) If eai ∈ E ′, we cut eai as the next edge on I.

69

(ii) If eaj ∈ E ′, we cut eaj as the next edge on I.

(iii) If eai 6∈ E ′ and eaj 6∈ E ′, we cut eBi
unless ai is a child of the LCA of ai

and aj. In this case, we cut eBj
.

In the first two cases, we clearly cut an edge in E ′. In the third case, since eai 6∈ E ′

and eaj 6∈ E ′, ai and aj must become siblings in T2 while processing subtree T ′v
′

1 by

I. To merge ai and aj, all pendant edges on the path from ai to aj must be cut. In

other words, E ′ includes both eBi
and eBj

, and cutting one of them thus cuts an edge

in E ′. Therefore, after processing sibling group Gv, I and I ′ have made the same

cuts.

Since this invariant holds trivially at the beginning of I and I ′, because neither

has made any cuts. Thus, the inductive step above shows that when I and I ′ reach

FC and F ′C respectively, they have made exactly the same cuts. This implies that FC

and F ′C have the same roots and each of them has the same tag in FC and F ′C .

Proof of Claim 3. Since FC is the result of collapsing F ′C , there is a one-to-one

mapping between roots of FC and F ′C . Any two roots that are mapped to each

other have the same set of leaves. Let r1 be an arbitrary root in FC , and r′1 be the

counterpart in F ′C . r1 and r′1 have the same tag, according to the second claim. Let

the tag be “Ti”, i ∈ {1, 2}. r1 marks a potential exit node u in FC , and r′1 marks a

potential exit node u′ in F ′C . We call u the surrogate of u′ in FC . Let r2 and r′2 be

the roots of the components containing u and u′ in FC and F ′C , respectively. These

definitions are illustrated in Figure 6.5.

Let u′′ be the node in F ′C that is the LCA of all descendant leaves of u in FC .

Then we make the following three claims, which we prove separately below.

Claim 4. u′′ and u′ are in the same component of F ′C.

Claim 5. u′′ is the same node as u′ or u′′ is an ancestor of u′.

70

FC

r1

u

r2

F ′
C

r′1

u′

r′2

u′′

Figure 6.5: Illustration for the paths to cut when fixing u and u′.

Claim 6. There are no more edges on the path from u to r2 than on the path from

u′′ to r′2.

Claim 4 will support the proof of Claim 5. Claim 5 and 6 imply that fixing u cuts

no more edges than fixing u′. Next, we construct a subset V of marked potential exit

nodes in FC that can be fixed to produce an AAF F ′′ of (T1, T2). Let V ′ be a subset

of marked potential exit nodes in F ′C that can be fixed to produce an MAAF F ′ of

(T ′1, T
′
2). We choose V to be the set of surrogates of nodes in V ′. V contains no more

nodes than V ′. Therefore, by Claim 5 and 6, fixing the nodes in V cuts no more

edges than fixing the nodes in V ′. To finish the proof, we need to show that fixing

the nodes in V gives an AAF of T1 and T2.

Let Ci and C ′i, for 1 ≤ i ≤ m, be the components of FC and F ′C , respectively.

Ci and C ′i have the same set of leaves. We also use Ci and C ′i to denote the nodes in

GFC
and GF ′C

corresponding to Ci and C ′i. Let GF ′′ be the cycle graph of F ′′ = FC÷V

(as FC÷E is defined as the resulting forest after cutting edge set E, similarly FC÷V

is defined as the resulting forest after fixing V in FC) and let C̄i, for 1 ≤ i ≤ m′′, be

the components of F ′′. To prove that fixing V gives us an AAF F ′′ of (T1, T2), the

following three claims are necessary. The flow of proof is shown in Figure 6.6.

Claim 7. Let C̄i and C̄j be two components in F ′′. If C̄i is an ancestor of C̄j in T1

or T2, i.e., GF ′′ contains the edge (C̄i, C̄j), then there exist components Ci ⊇ C̄i and

Cj ⊇ C̄j such that (1) Ci is an ancestor of Cj in T1 or T2, or (2) Ci = Cj (i.e., C̄i

71

and C̄j are produced by breaking up a component of FC).

Claim 8. Let FA be an AF of (T1, T2), and let F ′A be an AF of (T ′1, T
′
2) such that F ′A

is a binary resolution of FA. Then FA’s cycle graph GFA
is a subgraph of F ′A’s cycle

graph GF ′A
(considering the node Ci ∈ GFA

and its corresponding node C ′i ∈ G′FA
to

be the same node).

Claim 9. Let Ci and Cj be components of FC such that Ci is an ancestor of Cj in

T1 or T2, C ′i is an ancestor of C ′j in T ′1 or T ′2, and C ′i has a node u′ ∈ V ′ such that

fixing u′ will cut all edges in C ′i that are ancestors of C ′j. Let u be u′’s surrogate in

Ci. Any edge e in Ci that is an ancestor of Cj in T1 or T2 must be an ancestor of u,

that is it is cut by fixing u.

A cycle Ō in GF ′′ A cycle O in GFC
A cycle O′ in GF ′

C

Cycle O′ gets broken

after fixing V ′
Cycle O gets broken

after fixing V

Cycle Ō cannot exist

in GF ′′

Figure 6.6: Roadmap of proving that F ′′ is acyclic.

Now assume for the sake of contradiction that there exists a cycle Ō in the cycle

graph GF ′′ . Let C̄1, C̄2, ..., C̄p be the components that compose Ō. By Claim 7, there

is a cycle O in GFC
that consists of components C1, C2, ..., Cp, where some pairs of

consecutive components may be the same. By Claim 8, for every edge (C1, C2) in GFC
,

there is an edge (C ′1, C
′
2) in GF ′C

. Thus, there is a cycle O′ in GF ′C
that corresponds to

the cycle O in GFC
. Since F ′ = F ′C ÷ V ′ is acyclic, fixing V ′ breaks O′. Then among

the components composing cycle O′, there exists at least one pair of components C ′i

and C ′i+1 such that (1) C ′i is an ancestor of C ′i+1 in, say T1, and (2) C ′i has a node

u′ ∈ V ′ such that fixing u′ cuts all edges in C ′i that are ancestors of C ′i+1. By Claim 9,

fixing u′’s surrogate u in Ci also cuts all edges in Ci that are ancestors of Ci+1. This

72

implies that no component C̄i ⊆ Ci of F ′′ can be an ancestor of Ci+1 after fixing u.

Thus, we cannot find C̄i ⊆ Ci and C̄i+1 ⊆ Ci+1 in F ′′ such that C̄i is an ancestor of

C̄i+1. This means that the edge (C̄i, C̄i+1) doesn’t exist, which contradicts our initial

assumption that C̄1, C̄2, ..., C̄p forms a cycle. Therefore, the cycle graph GF ′′ is acyclic

and F ′′ is an AAF of (T1, T2).

Proof of Claim 4. Assume for the sake of contradiction that u′′ and u′ are in dif-

ferent components of F ′C . Let C1 and C ′1 be the components with roots r1 and r′1,

respectively, let C ′2 be the component of F ′C that contains u′, and let C3 be the com-

ponent of FC that contains u. Let C ′3 be the counterpart of C3 in F ′C and let C2 be the

counterpart of C ′2 in FC . We denote the roots of C2, C3, C
′
2, and C ′3 by r2, r3, r

′
2, and

r′3, respectively. Then C ′3 6= C ′2. Since r1 marks u, C3 is an ancestor component of

C1, which implies that C ′3 is also an ancestor component of C ′1. Thus, since C ′2 6= C ′3,

C ′2 contains an edge on the path P ′ from C ′1 to C ′3 (see Figure 6.7(a)). Since u ∈ C3,

C2 does not contain an edge on the path P from C1 to C3. Now, if C2 does not even

have a node on P , then no matter how we resolve C2 to obtain C ′2, C
′
2 cannot have

an edge on P ′, a contradiction. If C2 has a node but no edge on P , the node must

be the root r2 of C2. Let e be the edge on P that has r2 as its top endpoint and

thus does not belong to C2. Since r2 is the root of C2, r2 has at least two child edges

e1 and e2 that do belong to C2. Thus, by the definition of T ′1, the set of descendant

leaves of r′2 in T ′1 is the set of descendant leaves of all child edges of r2 that belong to

C2. In particular, no descendant leaf of edge e is a descendant leaf of r′2 and, thus, no

descendant leaf of r′1 is a descendant leaf of r′2 (see Figure 6.7(b)). This contradicts

the assumption that C ′2 contains an ancestor edge of r′1.

Proof of Claim 5. By Claim 4, u′′ and u′ both belong to the component C ′2 with

root r′2. Assume for the sake of contradiction that u′′ is not an ancestor of u′. Then

there exists at least one leaf x ∈ C ′2 that is a descendant of u′ but not a descendant

73

C ′
1

C ′
2

C ′
3

r′1

r′2

u′

u′′

r′3

(a)

C ′
1

C ′
3

r′1

u′′

C ′
2

r′2

u′

r′3

(b)

Figure 6.7: (a) The structure of F ′C if u′′ and u′ are in different components of F ′C .
(b) The structure of F ′C based on the construction of T ′1.

of u′′ (see Figure 6.8). Since u and u′′ have the same set of descendant leaves, x is

not a descendant of u either. Let l be the lowest ancestor of r1 in T1 that belongs

to C2, and let l′ be the lowest ancestor of r′1 in T ′1 that belongs to C ′2. Since l′ is an

ancestor of u′, x is a descendant leaf of l′. In C2, x is a descendant leaf of l because

C ′2 is a binary resolution of C2 and T ′1 is a binary resolution of T1. This implies that

there exists a proper ancestor of u that is a descendant of l and has two children in

C2, one an ancestor of x, the other an ancestor of u. This, however, is a contradiction

because r1 would mark this ancestor instead of u in C2.

C ′
1

C ′
2

r′2

r′1

u′

u′′

x

l′

C1

C2

r2

r1

u l

x

Figure 6.8: The structure of FC and F ′C if u′′ is a proper descendant of u′ in component
C ′2.

Proof of Claim 6. This is trivially true because the component rooted at r′2 is a

binary resolution of the component rooted at r2. More precisely, the path from u′′

74

to r′2 contains all edges on the path from u to r2, but may contains additional edges

introduced by resolving mutlfurcations on this path.

Proof of Claim 7. Since F ′′ is a refined forest of FC , F ′′ is a subgraph of FC . Thus,

we can always find components Ci ⊇ C̄i and Cj ⊇ C̄j. If Ci = Cj, the claim holds. If

Ci 6= Cj and w.l.o.g. C̄i is an ancestor of C̄j in T1, we prove that Ci is an ancestor of

Cj in T1. Since C̄i is an ancestor of C̄j, there exists an edge e in C̄i that is an ancestor

of C̄j. Ci, as a supergraph of C̄i, must also contain this edge e. Moreover, the edge

e must be an ancestor of Cj, otherwise e is part of Cj, which is impossible because

Ci 6= Cj and two components of FC do not overlap. In summary, Ci contains an edge

e that is an ancestor of Cj. Therefore, Ci is an ancestor of Cj.

Proof of Claim 8. Let Ci and C ′i, for 1 ≤ i ≤ m, be the components in FA and

F ′A, respectively. Since F ′A is a binary resolution of FA, they have the same set of

components if we consider Ci and C ′i to be the same component for all 1 ≤ i ≤ m.

Thus, GFA
and GF ′A

have the same vertex set. To prove that GFA
is a subgraph of

GF ′A
, it is sufficient to prove that for any edge (Ci, Cj) in GFA

, there exists an edge

(C ′i, C
′
j) in GF ′A

. If (Ci, Cj) is a T1-hybrid edge, then there exists an edge e in Ci such

that e is an ancestor edge of Cj in T1. As a binary resolution of T1, T
′
1 has all the

edges that T1 has. Thus, e also belongs to C ′i and is an ancestor edge of C ′j. This

implies that GF ′A
contains the edge (C ′i, C

′
j). If (Ci, Cj) is a T2-hybrid edge, the claim

trivially holds because GFA
and GF ′A

are based on the same T2. Therefore, the claim

is true.

Proof of Claim 9. Assume w.l.o.g. that Ci is an ancestor of Cj in T1 and, thus,

that C ′i is an ancestor of C ′j in T ′1. Since u′ ∈ V ′, there exists a component C ′k whose

root rk has a tag that causes u′ to be marked. Let the tag of rk be “Th” and let l′k

be the lowest ancestor of rk in T ′h that belongs to C ′i. Then u′ is a descendant of l′k.

Similarly, let l′j be the lowest ancestor of rj in T ′1 that belongs to C ′i. Since fixing u′

75

cuts all ancestor edges of C ′j in C ′i, l
′
j is an ancestor of u′. Now let lj and lk be the

nodes in Ci with the same set of descendant leaves as l′j and l′k. Then lk is the lowest

ancestor of rk in Th that belongs to Ci and lj is the lowest ancestor of rj in T1 that

belongs to Ci. The surrogate u of u′ in Ci is the node in Ci marked by rk and thus

is a descendant of lk. If lj is an ancestor of u, then fixing u cuts all ancestor edges of

Cj in Ci, so the claim holds. Assume therefore that lj is not an ancestor of u, which

is possible only if lj is a proper descendant of lk. Since u is a descendant of lk, we

distinguish two cases:

If u is a proper ancestor of lj, then let u′′ be the node in C ′i that has the same set

of descendant leaves as u and let U be the subtree of C ′i that has u′′ as its root and

contains all nodes introduced by resolving the multifurcation at u into bifurcations.

(If u is bifurcating or a leaf, then U has a single node, namely u′′.) Since C ′i is a binary

resolution of Ci, u
′′ and U exist. For the same reason, since u is a proper ancestor

of lj and a descendant of lk, u
′′ is a proper ancestor of l′j and a proper descendant of

l′k. Since u is marked by rk, u has at least two children with descendant leaves in Ci.

This implies that there exists a node u′′′ in U that has two children with descendant

leaves in C ′i. Since u is a proper ancestor of lj, the highest such node u′′′ is a proper

ancestor of l′j and thus of u′ because u′ is a descendant of l′j. This contradicts the

assumption that rk marks u′ in C ′i.

If u is neither a descendant nor an ancestor of lj, then because u and lj are

descendants of lk, there exists a descendant x of lk that is the LCA of u and lj in Ci.

Since u and lj both have descendant leaves in Ci and belong to different subtrees of

x, x has two children with descendant leaves in Ci. This contradicts the assumption

that u is the node in Ci marked by rk because x is a proper ancestor of u and every

proper ancestor of u that belongs to the path from lk to u can have only one child

with descendant leaves in Ci for rk to mark u.

76

By Theorem 3, the MAAF algorithm returns “Yes” if hyb(T1, T2) ≤ kp, and it

returns “No” if hyb(T1, T2) > kp. Thus, our algorithm is correct.

6.3 Complexity Analysis

In the branching phase, each invocation that is not a leaf invocation has 4 child

invocations and the height of the recursion tree is no more than kp. Thus, there are

O(4kp) invocations in the branching phase, with total cost O(4kpn). In the refinement

phase, we mark only one potential exit node per root (other than ρ). Thus, there

are at most kp marked potential exit nodes, and Refine((T1)m, (T2)m, Fm, kp) takes

O(2kpn) time to test whether fixing any subset of these marked potential exit nodes

yields an AAF of T1 and T2 with at most kp + 1 components. Thus, the total running

time of the algorithm is O(4kp(n+ 2kpn)) = O(8kpn).

Theorem 4. For two multifurcating rooted trees T1 and T2 and a parameter kp, it

takes O(8kpn) time to decide whether ẽ(T1, T2, T2) ≤ kp.

6.4 Tightening the Complexity Analysis

Our improved MAAF algorithm consists of two phases. The first phase uses the 4-way

branching to find a set of agreement forests with marked potential exit nodes such

that at least one of these AFs F can be refined to an MAAF F ′ by fixing a subset

of the marked potential exit nodes in F . The second phase then fixes every subset

of the marked potential exit nodes for each AF F found in the first phase. Let k′ be

the number of edges we cut in the first phase. Then there are k′ marked potential

exit nodes and 2k
′

subsets of marked potential exit nodes to check. If k′ is small, the

refinement phase’s cost of O(2k
′
n) is substantially smaller than the naive bound of

O(2kpn) that we used so far. If k′ is large, then the number k′′ of edges we can still

cut in the second phase is small. Indeed, cutting k′′ edges in the refinement phase

77

increases the number of components by k′′, so k′′ = kp−k′. Since fixing one potential

exit node cuts at least one edge, the number of potential exit nodes we can fix in the

refinement phase is no more than k′′ = kp − k′. Since there are k′ marked potential

exit nodes to choose from, this reduces the running time of the refinement phase on

F to O(Σk′′
j=0(

k′
j)n). Since k′′ is substantially less than kp, this sum is significantly less

than O(2k
′
n) = O(2kpn). Thus, no matter whether k′ is small or large, it should be

possible to achieve a running time better than O(2kpn) for the refinement phase.

To achieve this improvement, the only change to our MAAF algorithm in Sec-

tion 6.1 is to inspect all subsets of at most k′′ marked potential exit nodes in the

refinement phase, where k′′ = min(k′, kp − k′). The new refinement subroutine is

shown in Algorithm 2.

Algorithm 2 Refine(T1, T2, F , kp)

Build the expanded cycle graph G∗F from F , T1 and T2, mark half of the potential
exit nodes in G∗F according to the tags of component roots, and use V to denote
the set of marked potential exit nodes;
for each subset Vsub of V of size at most k′′ do

Fix every node v in Vsub;
if the number of components in the resulting forest F ′ is no more than kp + 1
and G∗F ′ is acyclic then

Return “Yes”;
end if

end for
Return “No”;

To analyze the running time of the resulting MAAF algorithm, we split each

refinement invocation into several refinement steps. A refinement invocation that

inspects all subsets of at most k′′ marked potential exit nodes is divided into k′′ + 1

refinement steps: for 0 ≤ j ≤ k′′, the jth refinement step inspects all subsets of

exactly j marked potential exit nodes. Its running time is therefore O((k
′
j)n). Now

we partition all the refinement steps invoked for the different AFs found during the

branching phase into kp + 1 groups. For 0 ≤ h ≤ kp, the hth group contains a

78

refinement step applied to an AF F if the number k′ of edges cut to obtain F and

the number j of marked potential exit nodes the refinement step inspects satisfy

k′ + j = h. We prove that the running time of all refinement steps in the hth

group is O(4.83hn). Hence, the total running time of all refinement steps in all

groups is O(Σ
kp
h=04.83hn) = O(4.83kpn), which dominates the O(4kpn) time bound of

the branching phase. Therefore, the running time of the entire MAAF algorithm is

O(4.83kpn).

To obtain the time bound of all refinement steps in the hth group, we first consider

the tree of recursive calls made in the branching phase. Let Maaf(F1, F2, k
′′) be an

invocation in the recursion tree, and let k′ be the number of edges cut before this

invocation. Hence, k′+k′′ = kp. Since every refinement step in the hth group satisfies

k′ + j = h and thus k′ ≤ h, refinement steps in the hth group can be invoked only

for agreement forests that can be produced by cutting at most h edges in T2. Thus,

we can restrict our attention to the subtree of Maaf(F1, F2, k
′′) such that F2 can be

obtained from T2 by cutting at most h edges, which means k′′ = kp−k′ ≥ kp−h = d.

Now we bound the running time of the refinement steps in the hth group in two steps.

First, we construct a maximized recursion tree without refinement steps. For each

invocation Maaf(F1, F2, k
′′), according to the branching algorithm in Section 3.2, it

has a subtree of Θ(4k
′′−d) recursive calls below it. The size of the entire recursion tree

is thus O(4kp−d) = O(4h) because the top invocation is Maaf(T1, T2, kp). Second,

we choose a subset of recursive calls in this tree which are not made because the

refinement step is invoked instead. We charge the cost of the refinement step equally

to the nodes in the recursion subtree it replaces. To be specific, for each invocation

with parameter k′′, we replace its subtree of Θ(4k
′′−d) recursive calls with a single

refinement step of cost O((k
′
j)n), where k′′ − d = k′′ − (k′ + k′′ − h) = h− k′ = j. By

charging the cost of this refinement step equally to the nodes in the replaced subtree,

each node pays a cost of O((k
′
j)n/(4k

′′−d)) = O((k
′
j)n/(4j)). Hence, the total running

79

time of all refinement steps in the hth group is bounded by the sum of the charges of

all nodes replaced in the size O(4h) recursion tree. Since at most O(4h) nodes can be

replaced, the total cost is therefore

O

(
4h · (k

′
j)n

4j

)
= O

(
4k
′ · (k′j)n

)
(6.1)

To bound Expression (6.1), we consider three cases: k′ ≤ h/2, h/2 < k′ < h,

and k′ = h. In the first case, (k
′
j) is bounded by 2k

′
, so 4k

′ · (k
′
j) is bounded by

8k
′ ≤ 8h/2 ≤ 2.83h. This implies that Expression (6.1) is bounded by O(2.83hn). In

the third case, k′ = h implies that j = 0. Thus 4k
′ · (k′j) = 4h · (h0) = 4h, that is,

Expression (6.1) is bounded by O(4hn). For the case when h/2 < k′ < h, we make

use of the following observation, which is taken from [18].

Observation 6.
(
x
y

)
= O

((
x
y

)y (
x
x−y

)x−y)
.

Observation 6 allows us to bound Expression (6.1) by

O

(
4k
′ ·
(
k′

j

)j (
k′

k′ − j

)k′−j
n

)
= O

(4α ·
(

α

1− α

)1−α(
α

2α− 1

)2α−1
)h

n

 ,

(6.2)

where α = k′/h and hence, k′ = αh and j = (1 − α)h. It remains to find the

maximal value of the following function when 1/2 < α < 1.

f(α) = 4α ·
(

α

1− α

)1−α(
α

2α− 1

)2α−1
(6.3)

Taking the derivative and setting it to zero, we obtain that f(α) is maximized

when α = 1
2

+ 1
2
√
2
≈ 0.854, which implies that f(α) ≤ 2(1 +

√
2) < 4.829. This

finishes the proof that the running time of all refinement steps in the hth group is

O(4.83hn). As we argued already, it implies that the running time of the entire MAAF

80

algorithm is O(4.83kpn). Thus, we have the following theorem.

Theorem 5. For two multifurcating rooted trees T1 and T2 and a parameter kp, it

takes O(4.83kpn) time to decide whether ẽ(T1, T2, T2) ≤ kp.

81

Chapter 7

Experimental Evaluation

In this chapter, we demonstrate the practical efficiency of our fixed-paramenter al-

gorithm for computing the hybridization number of two multifurcating trees. The

O(4.83kn) time algorithm described in Chapter 6 was implemented in C++, and

benchmarked on a 2.4GHz AMD Opteron processor with 16GB of RAM running

Debian GNU/Linux 7. The source code is available upon request. Before the exper-

imental results, Section 7.1 introduces a very important and useful optimization in

practice, cluster reduction. It often allows an input instance to be divided into smaller

instances that can be solved independently. Since these smaller instances often also

have much smaller hybridization numbers, it has the potential to speed up the algo-

rithm exponentially. This technique was introduced by Linz and Semple [49]. Section

7.2 discusses several important details of how to implement the O(4.83kn) MAAF

algorithm and proposes another practical optimization that decreases the number of

potential exit nodes to fix. Finally, Sections 7.3 and 7.4 provide the experimental

evaluation of our algorithm implementation, and discuss the data sets and system

details used for this evaluation. These experiments shows the correctness of our im-

plementation and the practical efficiency of our algorithm based on real biological

data.

7.1 Cluster Reduction

Cluster reduction partitions two input trees into pairs of subtrees, or clusters, which

can be solved independently and reassembled into a full solution for the original input

82

a1 a2 ai

... ...

b1 b2 bj

T1

... ...

T2

A B

Figure 7.1: A cluster for two multifurcating trees such that group A = {a1, a2, ..., ai}
and group B = {b1, b2, ..., bj} have the same set of labelled descendant leaves.

trees. Cluster reduction has been used to compute weighted MAFs [49], ordinary

MAFs [12], and binary hybridization number [43]. Here, we apply it to computing

multifurcating hybridization number. In the binary case, a cluster of two trees T1

and T2 [49] is defined as a pair of subtrees T u1 and T v2 , for appropriate nodes u in

T1 and v in T2 such that both subtrees have the same set of labelled descendant

leaves. In the multifurcating case, we define a cluster of two trees T1 and T2 as a pair

of sibling sets {a1, a2, ..., ai} and {b1, b2, ..., bj}, such that both sibling sets have the

same set of labelled descendant leaves (shown in Figure 7.1). Since all multifurcations

are assumed to be soft, this definition corresponds to finding clusters in appropriate

binary resolutions of the input trees. Note that a cluster has at least two leaves. A

cluster can be used to speed up the computation of hybridization number because of

the following property (one of the reduction rules in [43]).

Lemma 17. Let A be a cluster of two multifurcating trees T1 and T2 and with at least

two leaves and define two pairs of new trees as follows:

(i) T ′1 and T ′2 are obtained from T1 and T2 by replacing the cluster with a new leaf

labelled A.

(ii) TA1 and TA2 are the subtrees of T1 and T2 with leaf set A.

Then hyb(T1, T2) = hyb(T ′1, T
′
2) + hyb(TA1 , T

A
2).

83

By Lemma 17, we can compute the hybridization number of T1 and T2 by comput-

ing the hybridization number of T ′1 and T ′2, and of TA1 and TA2 . Moreover, assuming

TA1 and TA2 is the minimal cluster such that no other cluster A′ has a smaller leaf

set than A does, we can take T ′1 and T ′2 as the new input and apply Lemma 17 to

T ′1 and T ′2 recursively until no further clusters are found. This produces a partition

of (T1, T2) into a cluster sequence of tree pairs (TA1
1 , TA1

2), (TA2
1 , TA2

2), ..., (T
Ap

1 , T
Ap

2)

such that hyb(T1, T2) = hyb(TA1
1 , TA1

2) + hyb(TA2
1 , TA2

2) + ... + hyb(T
Ap

1 , T
Ap

2). Since

our hybridization algorithm’s complexity is O(4.83kn), where k is the hybridization

number, cluster reduction may decrease the cost of computing the hybridization num-

ber of T1 and T2 exponentially if we find a sufficient number of non-trivial clusters.

Next, we discuss how to construct such a cluster sequence efficiently.

To maximize the benefit of cluster reduction, T1 and T2 should be partitioned into

as many clusters as possible. Thus, a cluster sequence of minimal clusters should be

constructed. The problem is: “Given two trees T ′1 and T ′2, how can we find a minimal

cluster?” A naive approach is the following: For every node u in T ′1 and every node v

in T ′2, we compare every subset of children of u with every subset of children of v to

see whether they have the same set of leaves. Let n be the leaf set size of T ′1 and T ′2,

and d be the maximal degree of all nodes in T ′1 and T ′2. Since T ′1 and T ′2 both have

O(n) nodes, each node has O(2d) subsets of children, and comparing two subsets’

leaf sets takes O(n) time, this approach takes O(n3 · 2d · 2d) time. In theory, this is

inefficient, especially when d is large. In practice, there are many possible strategies

to bound the cost of cluster reduction. The price is that the algorithm may fail to

recognize some clusters, but our experiments confirm that the clusters found by our

cluster reduction algorithm still yield substantial improvements of the running time.

The first type of cluster our algorithm is able to recognize is a pair of subtrees

with the same set of labelled leaves in T1 and T2. This is similar to the binary case. A

84

Algorithm 3 ClusterReduction(T1, T2, Qclusters)

Preprocess T1 and T2 for constant-time LCA queries;
Preprocess T1 and T2 such that every node u has a counter u.size that records the
number of descendant leaves under u;
Map every node u in T1 and T2 to its counterpart in the other tree, which is the
LCA of its descendant leaves;
for each node u in T1 (in reverse level order) do

for each subset of children of u of size at least 2 do
Compute the LCA v of these children’s mappings in T2;
if v.size == sum of the sizes of these children then

Add v and this set of u’s children as a cluster into Qclusters;
end if

end for
end for
Do the same check to nodes of T2;

sequence of such clusters can be constructed in O(n) time with the help of constant-

time LCA queries that are borrowed from the binary case [12,50] is to build a mapping

between nodes in T1 and T2 first. For a node u in T1, its mapping in T2 is the LCA

of all of u’s descendant leaves; the mapping from T2 to T1 is defined analogously. If

two nodes are mapped to each other, they form a cluster.

The second type of cluster we are able to recognize is a node u in T1 (T2) and a

subset of children of v in T2 (T1) such that the descendant leaves of these children

of v are exactly the descendant leaves of u. A sequence of such clusters can be

constructed in O(2d · n) time also with the help of constant-time LCA queries and

linear-time preprocessing.

The details of our cluster reduction algorithm are given in Algorithm 3. The

procedure ClusterReduction(T1, T2, Qclusters) finds all the clusters using a linear

scan of both T1 and T2. The resulting cluster sequence is stored in Qclusters. The

hybridization number of T1 and T2 can be computed by summing the hybridization

numbers of all tree pairs in Qclusters.

85

7.2 Efficient Implementation of the MAAF Algorithm

This section reviews the main steps of our MAAF algorithm described in Chapter 6

(see Figure 7.2), and explains some of the implementation details. A simple optimiza-

tion is proposed at the end of this section. The implementation should consist of k+1

iterations, where k is the hybridization number of the two given multifurcating rooted

X-trees T1 and T2. Each iteration is given a parameter kp, starting from kp = 0, and

answers the question: “Is hyb(T1, T2) ≤ kp ?”

Let procedure Maaf(T1, T2, kp) be the implementation of an iteration with pa-

rameter kp. It consists of two main phases and one intermediate phase.

• The first phase is the 4-way branching phase, which is described in detail in

Chapter 3. It cuts edges from T2 and makes 4 recursive invocations unless the

given forest F2 is an AF of T1 and T2. It guarantees that at least one of the

AFs found can be refined to an MAAF of T1 and T2.

• For each AF F found in the first phase, it enters the intermediate phase in

preparation for the second phase. The intermediate phase is described in Chap-

ter 4. F is collapsed to Fm to restore useful multifurcations. T1 and T2 are

resolved to (T1)m and (T2)m to match the components of Fm.

• The second phase is the refinement phase, which is described in Chapter 5 and

improved in Section 6.4. It traverses the expanded cycle graph G∗F to collect

all marked potential exit nodes as set V according to the tagging from the first

phase. Then it iterates through the subsets Vsub of V of size at most k′′. In

each iteration, we fix the nodes in Vsub and check whether the resulting forest

is acyclic and has at most kp + 1 components.

The 4-way branching phase’s implementation is described in detail in Section 3.2

and Section 6.1. The implementation of the intermediate phase is discussed step by

86

Inputs: T1, T2, and kp

4-way branching

An agreement forest F

F → Fm

T1 → (T1)m

T2 → (T2)m

Refinement

Collect (marked) potential exit nodes as a set V ;

Iterate through subsets Vsub of V :

Fix each node in Vsub;

Check the acyclicity of the resulting forest;

Output:

Return “Yes” if one of the tested forest is found to

be acyclic; otherwise return “No”.

...

Figure 7.2: The main steps of our algorithm from Chapter 6.

step in Chapter 4. Now, we discuss how to fix a subset of potential exit nodes, how

to check the acyclicity of a forest within the claimed time bound for the refinement

phase, and how to support constant-time lowest common ancestor (LCA) queries,

which is the most important subroutine for cluster reduction.

7.2.1 Fix Potential Exit Nodes

To fix a given set of potential exit nodes, we fix them all together: first we mark all the

edges to cut, then we remove these edges, and finally we contract nodes with only one

child and discard empty components (components without any labelled leaves). Since

it is not easy and not necessary to maintain the expanded cycle graph when fixing

potential exit nodes, we compute the expanded cycle graph of the forest obtained by

fixing the chosen set of potential exit nodes from scratch.

7.2.2 Check Acyclicity

Instead of traversing the whole expanded cycle graph, which costs O(n), we implement

a sub-linear solution by building a graph G with each component as a super node

and hybrid edges as the edge set. Since each component cannot contain any cycles,

87

the G is acyclic if and only if G∗F is. The construction of G takes time linear to the

number of components, because each component contributes at most two edges to G

corresponding to the hybrid edges of this component. The number of components in

G∗F is less than O(n). We check whether G is acyclic by trying to topological sort [51]

it.

7.2.3 Constant-Time LCA Queries

The constant-time lowest common ancestor (LCA) query of two nodes with linear time

preprocessing used to construct clusters comes from Michael A.Bender and Martin

Farach-Colton [50].

7.2.4 Only Fix nodes in SCC

What the refinement phase does is to break cycles in the cycle graph GF . Clearly,

these cycles form strongly connnected components (SCC) in GF . For components

of the agreement forest F not involved in any SCCs of GF , there is no need to fix

the potential exit nodes in these components. This has the potential to decrease the

number of potential exit nodes we add into set V . Since the running time of the

refinement phase is exponential in the size of V , this change is a useful optimization

in practice.

7.3 Data Sets

To demonstrate our algorithm’s performance for true biological data, we tested our

implementation on two biological datasets:

Aquificae dataset [52]. It has been shown that LGT plays an important role in

the evolution of microbial communities [53, 54], especially for the phylum Aquificae

[55]. Researchers believe that Aquificae have high rates of reticulation events to

facilitate their adaption to new habitats. Thus, a data set consisting of phylogenies

88

covering taxa in this phylum provides an ideal test bed for our algorithm. Robert

Beiko [52] provided phylogenetic trees generated from 1173 sequenced bacterial and

archaeal genomes. Chris Whidden [12] used 40463 trees among them with 1251 taxa to

construct an MRP supertree and an SPR supertree. Multifurcations were introduced

in these trees by collapsing bipartitions with less than 0.8 support. Then these trees

were rooted to match the MRP supertree and the SPR supertree, respectively. We

used each of these sets of trees as one data set whose trees we compared pairwise.

We refer to the two data sets as MRP-Aquificae and SPR-Aquificae. The number of

taxa of these trees ranges from 4 to 74.

Poaceae dataset. This dataset is provided by the Grass Phylogeny Working

Group [56]. The dataset contains sequences for six loci: internal transcribed spacer

of ribosomal DNA (ITS); NADH dehydrogenase, subunit F (ndhF); phytochrome B

(phyB); ribulose 1, 5−biphosphate carboxylase/oxygenase, large subunit (rbcL); RNA

polymerase II, subunit β′′ (rpoC2); and granule bound starch synthase I (GBSSI or

waxy). The six trees were previously analyzed by Heiko Schmidt [57], who generated

the rooted binary trees for these loci. Bordewich et al. [43], Collins et al. [36] and

Wu et al. [45] computed the hybridization number for each of the 15 pairs of binary

trees. To compare our multifurcating solution with the binary solution, we ran our

multifurcating algorithm for the same 15 pairs of trees.

7.4 Results

Our hybridization algorithm solved all instances in the given two data sets, which in

total have about 800 thousand pairs of phylogenies. The longest running time for a

single instance was 3 hours. The memory consumption was below 20 MB for every

instance.

89

7.4.1 Correctness Evaluation

Until now, we haven’t found any implementation for hybridization number of two

multifurcating trees in the phylogenetics literature. Thus, it is impossible to ver-

ify the correctness of our implementation by comparing our results with other im-

plementation’s results. However, we found Dendroscope 3 [58] is able to compute

the hybridization number between two multifurcating trees. We picked 20 pairs of

trees with different numbers of taxa from the Aquificae dataset and compared our

algorithm’s results with the ones from Dendroscope 3. They all returned the same

hybridization number. Since implementations of algorithms for computing binary hy-

bridization number are available, we also ran our algorithm on the Poaceae dataset,

which consists of binary trees, to compare our results with the ones obtained using

Wu’s implementation of an algorithm for binary hybridization number [45]. Our im-

plementation produced the same answers as Wu’s binary implementation. Thus, in

both the multifurcating and the binary case, we have gained some confidence in the

correctness of our implementation.

7.4.2 Performance Evaluation

Although there is no other implementation for hybridization number of two multi-

furcating trees to compare with, we can still validate its theoretical running time

by regression and compare its running time to that of existing implementations of

algorithms for multifurcating SPR distance with similar running times. To show our

algorithm’s running time is exponential in the parameter k (hybridization number),

but linear in the input size n (number of taxa), we created Figure 7.3. The Aquificae

dataset was used here. As most of the tree pairs in the Aquificae dataset have very

small hybridization number (less than 5), most problem instances could be solved

in several milliseconds. Therefore, we only used the 100 problem instances with the

90

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+006

 0 2 4 6 8 10 12 14

tim
e

pe
r

no
de

 (
m

s/
n)

max_k

MAAF+CR
f(x) = 0.00004936 * (4.83^x)

Figure 7.3: Performance of our MAAF algorithm with cluster reduction.

longest running time. Their number of taxa ranges from 8 to 74. Since we used clus-

ter reduction to divide the original problem into smaller subproblems, theoretically,

the algorithm’s running time would be dominated by the cluster with the maximal

hybridization number max k. Thus, the running time is expected to be exponential

in max k among these subproblems. Therefore, in Figure 7.3, we chose t
n

as y-axis

and max k as x-axis, where t is the running time in milliseconds. We performed a

regression analysis on these data points with function f(x) = a∗(4.83x). From Figure

7.3, the regression line matches our data points well, which shows a growth exponen-

tially in max k, the maximal hybridization number among all subproblems. This

matches the theoretical complexity of O(4.83kn). The deviation from the regression

line for small values of max k is likely due to the cost of cluster reduction and the

very low cost of computing the hybridization number for very small values of k.

The same result from the Aquificae dataset was used again to create Figure 7.4,

which shows the running time as a function of the hybridization number of the entire

input. Running time in milliseconds was chosen as y-axis and the hybridization k was

chosen as x-axis. The large problem instances solved by our MAAF algorithm have a

hybridization number of 17 of two trees with 74 taxa, which lasted for from 11 minutes

to 1 hour. The longest run was from an instance with a hybridization number of 16 of

91

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 1e+008

 0 2 4 6 8 10 12 14 16 18

tim
e

(m
s)

k

MAAF+CR

Figure 7.4: Actual running time of our MAAF algorithm with cluster reduction by
the hybridization number.

 0.1

 1

 10

 100

 1000

 10000

 100000

 5 6 7 8 9 10 11 12

tim
e

pe
r

no
de

 (
m

s/
n)

k

MAAF+CR
MAAF

Figure 7.5: Performance comparison of our MAAF algorithm with and without cluster
reduction.

two trees with 70 taxa, which lasted for about 3 hours. The reason why this happened

is because some problem with bigger input size and bigger parameter may have better

clusters, that is, the taxa and parameter divided to each cluster is significantly less

than the original input.

To show the acceleration of cluster reduction on our MAAF algorithm, a subset of

the 100 problem instances used in Figures 7.3 and 7.4 were solved using our MAAF

algorithm without cluster reduction. If cluster reduction is not applied, by the the-

oretical complexity of O(4.83kn) and the fact that an instance with a hybridization

number 11 of trees of 20 taxa ran for 10 minutes, an instance with a hybridization

92

number 17 can run as long as 88 days. To finish this experiment in a reasonable time,

we picked problem instances with hybridization numbers from 5 to 12. Let t again

be the running time in milliseconds. In Figure 7.5, t
n

was chosen as y-axis and k

was chosen as x-axis but note that t
n

was taken as the average of multiple instances

with the same hybridization number. By Figure 7.5, the combination of our MAAF

algorithm was always about 2 orders of magnitude faster than our MAAF algorithm

only. This verified our speculation that cluster reduction can accelerate our MAAF

algorithm in an exponential way.

Although there is no other implementation of multifurcating hybridization number

to compare with, we compared our implementation with van Iersel’s multifurcating

MAF algorithm [47], which was implemented in Java with source code available from

http://homepages.cwi.nl/~iersel/MAF/. This comparison is meaningful because

our MAAF algorithm and van Iersel’s MAF algorithm used the same 4-way branching

and its complexity of O(4kn) is close to our algorithm’s complexity of O(4.83kn).

Moreover, van Iersel’s implementation also applied cluster reduction. Again, we ran

our MAAF algorithm and van Iersel’s MAF algorithm on Aquificae dataset. We

chose the 100 problem instances with the longest running time to generate Figure

7.6. Again, t
n

was chosen as y-axis and k was chosen as x-axis, where t is the running

time in milliseconds, and k is the hybridization number for the MAAF algorithm and

the SPR distance for the MAF algorithm.

The result in Figure 7.6 shows that the performance of our MAAF algorithm is

almost the same as the one of van Iersel’s MAF algorithm, while the MAAF algorithm

has a theoretical complexity of O(4.83kn) and the MAF algorithm has a theoretical

complexity of O(4kn). It may be caused by the fact that our MAAF algorithm was

implemented in C++ but van Iersel’s MAF algorithm was implemented in Java, or our

MAAF algorithm may be better implemented resulting in smaller constant factors.

93

http://homepages.cwi.nl/~iersel/MAF/

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 0 5 10 15 20

tim
e

pe
r

no
de

 (
m

s/
n)

k (hybrid_num for MAAF, SPR for MAF)

MAAF+CR
van_Iersel_MAF+CR

Figure 7.6: Comparison of running times of our MAAF algorithm with van Iersel’s
MAF algorithm.

94

Chapter 8

Conclusions and Future Work

In this thesis, we presented a fixed-parameter algorithm for hybridization number

of two multifurcating phylogenetic trees, which also computes an MAAF of the two

trees. Theoretically, our MAAF algorithm runs in O(4.83kn) time, where k is the

soft hybridization number of the two trees. It is the first algorithm with a running

time bounded by O(ckn), where c is a small constant. Practically, our implementation

demonstrates that the FPT algorithm can efficiently compute moderate hybridization

numbers. For example, our implementation took less than 1 hour to compute a

hybridization number of 17 between trees with 74 taxa. Unfortunately, there is no

other implementation to compare with in the phylogenetics literature until now.

A natural extension of our algorithm is to compare more than two phylogenies

at the same time, either by computing an MAAF of these trees or by computing a

hybridization network. Several results [37–39] are available for multiple binary trees,

but there exists only one result [42] for multiple non-binary trees, which proposed two

non-polynomial kernels. It is still unknown whether hybridization number for multiple

non-binary trees is fixed-parameter tractable, and even for multiple binary trees,

hybridization number poses numerous challenges due to the more tenuous relationship

to MAAFs in the case of more than two trees. Several other directions for future work

are the following:

• In Section 3.1, we discussed the structural results of multifurcating agreement

forests. Lemmas 3 and 4 show that a 4-way branching is not always necessary.

A 3-way branching is sufficient when one sibling is a child of the minimal LCA,

95

and a 2-way branching is sufficient when no minimal LCA exists. Reducing the

4-way branching to 3-way or 2-way will decrease the size of the recursion tree of the

branching phase and thus improve the efficiency of the whole MAAF algorithm.

However, it is unclear whether any provable improvements can be obtained in this

way and whether can be combined with the improved refinement step that considers

only a subset of the potential exit nodes.

• In Section 7.1, we mentioned that the effect of cluster reduction is maximized when

two trees are partitioned into the longest cluster sequence consisting of minimal

clusters, but we failed to develop an efficient algorithm to construct such an optimal

cluster sequence. The problem is how to find a pair of sibling sets {a1, a2, ..., ai} in

T1 and {b1, b2, ..., bj} in T2 such that both sibling sets have the same set of labelled

leaves and this shared set is minimized. We believe this will further improve the

algorithm’s performance but also believe that this problem is hard.

• As discussed in Chapter 7, we didn’t find any implementation of multifurcating

hybridization number in the phylogenetics literature, but recently, we found one

implementation for multifurcating hybridization number in Dendroscope 3 [58], us-

ing Autumn algorithm [59]. However, the source code is not available and [59] is still

under review. It would be very valuable to perform a comprehensive comparison

between our MAAF algorithm and the Autumn algorithm once [59] is published.

• Another possible improvement for our MAAF algorithm is to extend Bordewich

and Semple’s kernelization rules [14] for binary hybridization to our multifurcating

case. Ideally, it will decrease our algorithm’s running time from O(4.83kn) to

O(4.83kk + n3). However, it may be challenging to apply the maximal n-chain

replacement to two multifurcating trees, or this extension may lead to a kernel

different from the binary case.

96

References

[1] C. R. Woese, O. Kandler, and M. L. Wheelis, “Towards a natural system of
organisms: proposal for the domains archaea, bacteria, and eucarya.” Proceedings
of the National Academy of Sciences, vol. 87, no. 12, pp. 4576–4579, 1990.

[2] O. Gascuel, Mathematics of evolution and phylogeny. Oxford University Press,
2005.

[3] O. Gascuel, M. Steel et al., “Reconstructing evolution. new mathematical and
computational advances,” AMC, vol. 10, p. 12, 2007.

[4] C. Semple and M. A. Steel, Phylogenetics. Oxford University Press, 2003, vol. 24.

[5] W. M. Fitch, “Toward defining the course of evolution: minimum change for a
specific tree topology,” Systematic Biology, vol. 20, no. 4, pp. 406–416, 1971.

[6] Z. Yang, “Paml: a program package for phylogenetic analysis by maximum like-
lihood,” Computer applications in the biosciences: CABIOS, vol. 13, no. 5, pp.
555–556, 1997.

[7] B. Larget and D. L. Simon, “Markov chain monte carlo algorithms for the
bayesian analysis of phylogenetic trees,” Molecular Biology and Evolution,
vol. 16, pp. 750–759, 1999.

[8] D. H. Huson, R. Rupp, and C. Scornavacca, Phylogenetic networks: concepts,
algorithms and applications. Cambridge University Press, 2010.

[9] L. Nakhleh, “Evolutionary phylogenetic networks: models and issues,” in Prob-
lem Solving Handbook in Computational Biology and Bioinformatics. Springer,
2011, pp. 125–158.

[10] D. M. Hillis, C. Moritz, B. K. Mable, and R. G. Olmstead, Molecular systematics.
Sinauer Associates Sunderland, MA, 1996, vol. 23.

[11] M. Baroni, S. Grünewald, V. Moulton, and C. Semple, “Bounding the number
of hybridisation events for a consistent evolutionary history,” Journal of mathe-
matical biology, vol. 51, no. 2, pp. 171–182, 2005.

[12] C. Whidden, N. Zeh, and R. G. Beiko, “Supertrees based on the subtree prune-
and-regraft distance,” PeerJ PrePrints, Tech. Rep., 2013.

[13] C. Whidden, “Efficient computation of maximum agreement forests and their
applications,” Ph.D. dissertation, Dalhousie University, 2013.

97

[14] M. Bordewich and C. Semple, “Computing the hybridization number of two
phylogenetic trees is fixed-parameter tractable,” IEEE/ACM Transactions on
Computational Biology and Bioinformatics (TCBB), vol. 4, no. 3, pp. 458–466,
2007.

[15] B. L. Allen and M. Steel, “Subtree transfer operations and their induced metrics
on evolutionary trees,” Annals of combinatorics, vol. 5, no. 1, pp. 1–15, 2001.

[16] M. Bordewich and C. Semple, “On the computational complexity of the
rooted subtree prune and regraft distance,” Annals of Combinatorics, vol. 8,
no. 4, pp. 409–423, 2005. [Online]. Available: http://dx.doi.org/10.1007/
s00026-004-0229-z

[17] W. Maddison, “Reconstructing character evolution on polytomous cladograms,”
Cladistics, vol. 5, no. 4, pp. 365–377, 1989. [Online]. Available: http:
//dx.doi.org/10.1111/j.1096-0031.1989.tb00569.x

[18] C. Whidden, R. G. Beiko, and N. Zeh, “Fixed-parameter algorithms for maxi-
mum agreement forests,” SIAM Journal on Computing, vol. 42, no. 4, pp. 1431–
1466, 2013.

[19] L. van Iersel, S. Kelk, N. Lekic, and L. Stougie, “A short note on exponential-time
algorithms for hybridization number,” arXiv preprint arXiv:1312.1255, 2013.

[20] T. Piovesan and S. Kelk, “A simple fixed parameter tractable algorithm
for computing the hybridization number of two (not necessarily binary)
trees,” IEEE/ACM Transactions on Computational Biology and Bioinformat-
ics (TCBB), vol. 10, no. 1, pp. 18–25, 2013.

[21] C. Whidden, R. G. Beiko, and N. Zeh, “Fixed-parameter and approximation
algorithms for maximum agreement forests of multifurcating trees,” CoRR, vol.
abs/1305.0512, 2013.

[22] V. V. Vazirani, Approximation algorithms. springer, 2001.

[23] J. Hein, T. Jiang, L. Wang, and K. Zhang, “On the complexity of comparing
evolutionary trees,” Discrete Applied Mathematics, vol. 71, no. 1, pp. 153–169,
1996.

[24] E. M. Rodrigues, M.-F. Sagot, and Y. Wakabayashi, “The maximum agreement
forest problem: Approximation algorithms and computational experiments,”
Theoretical Computer Science, vol. 374, no. 1, pp. 91–110, 2007.

[25] M. Bordewich, C. McCartin, and C. Semple, “A 3-approximation algorithm
for the subtree distance between phylogenies,” Journal of Discrete Algorithms,
vol. 6, no. 3, pp. 458 – 471, 2008. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S1570866707000627

98

http://dx.doi.org/10.1007/s00026-004-0229-z
http://dx.doi.org/10.1007/s00026-004-0229-z
http://dx.doi.org/10.1111/j.1096-0031.1989.tb00569.x
http://dx.doi.org/10.1111/j.1096-0031.1989.tb00569.x
http://www.sciencedirect.com/science/article/pii/S1570866707000627
http://www.sciencedirect.com/science/article/pii/S1570866707000627

[26] C. Whidden and N. Zeh, A unifying view on approximation and FPT of agree-
ment forests. Springer, 2009.

[27] L. van Iersel, S. Kelk, N. Lekić, and L. Stougie, “Approximation algorithms for
nonbinary agreement forests,” ArXiv e-prints, Oct. 2012.

[28] S. Kelk, L. van Iersel, N. Lekic, S. Linz, C. Scornavacca, and L. Stougie, “Cycle
killer... qu’est-ce que c’est? on the comparative approximability of hybridization
number and directed feedback vertex set,” SIAM Journal on Discrete Mathe-
matics, vol. 26, no. 4, pp. 1635–1656, 2012.

[29] L. van Iersel, S. Kelk, N. Lekić, and C. Scornavacca, “A practical approximation
algorithm for solving massive instances of hybridization number,” in Algorithms
in Bioinformatics. Springer, 2012, pp. 430–440.

[30] L. van Iersel, S. Kelk, N. Lekic, and L. Stougie, “Approximation algorithms for
nonbinary agreement forests,” SIAM Journal on Discrete Mathematics, vol. 28,
no. 1, pp. 49–66, 2014.

[31] R. Niedermeier, “Invitation to fixed-parameter algorithms,” 2006.

[32] F. Shi, J. Wang, J. Chen, Q. Feng, and J. Guo, “Algorithms for parameterized
maximum agreement forest problem on multiple trees,” Theoretical Computer
Science, 2014.

[33] Z.-Z. Chen and L. Wang, “Hybridnet: a tool for constructing hybridization net-
works,” Bioinformatics, vol. 26, no. 22, pp. 2912–2913, 2010.

[34] C. Scornavacca, S. Linz, and B. Albrecht, “A first step toward computing all
hybridization networks for two rooted binary phylogenetic trees,” Journal of
Computational Biology, vol. 19, no. 11, pp. 1227–1242, 2012.

[35] B. Albrecht, C. Scornavacca, A. Cenci, and D. H. Huson, “Fast computation of
minimum hybridization networks,” Bioinformatics, vol. 28, no. 2, pp. 191–197,
2012.

[36] J. Collins, S. Linz, and C. Semple, “Quantifying hybridization in realistic time,”
Journal of Computational Biology, vol. 18, no. 10, pp. 1305–1318, 2011.

[37] L. van Iersel, S. Kelk, N. Lekić, C. Whidden, and N. Zeh, “Hybridization number
on three trees,” arXiv preprint arXiv:1402.2136, 2014.

[38] Z.-Z. Chen and L. Wang, “Algorithms for reticulate networks of multiple phylo-
genetic trees,” IEEE/ACM Transactions on Computational Biology and Bioin-
formatics (TCBB), vol. 9, no. 2, pp. 372–384, 2012.

[39] L. Van Iersel and S. Linz, “A quadratic kernel for computing the hybridization
number of multiple trees,” Information Processing Letters, vol. 113, no. 9, pp.
318–323, 2013.

99

[40] S. Linz and C. Semple, “Hybridization in nonbinary trees,” Computational Bi-
ology and Bioinformatics, IEEE/ACM Transactions on, vol. 6, no. 1, pp. 30–45,
2009.

[41] S. Kelk and C. Scornavacca, “Towards the fixed parameter tractability of con-
structing minimal phylogenetic networks from arbitrary sets of nonbinary trees,”
arXiv preprint arXiv:1207.7034, 2012.

[42] L. van Iersel and S. Kelk, “Kernelizations for the hybridization number problem
on multiple nonbinary trees,” arXiv preprint arXiv:1311.4045, 2013.

[43] M. Bordewich, S. Linz, K. S. John, and C. Semple, “A reduction algorithm for
computing the hybridization number of two trees,” Evolutionary bioinformatics
online, vol. 3, p. 86, 2007.

[44] Y. Wu, “A practical method for exact computation of subtree prune and regraft
distance,” Bioinformatics, vol. 25, no. 2, pp. 190–196, 2009.

[45] Y. Wu and J. Wang, “Fast computation of the exact hybridization number of
two phylogenetic trees,” in Bioinformatics Research and Applications. Springer,
2010, pp. 203–214.

[46] M. L. Bonet and K. S. John, “Efficiently calculating evolutionary tree mea-
sures using sat,” in Theory and Applications of Satisfiability Testing-SAT 2009.
Springer, 2009, pp. 4–17.

[47] L. van Iersel, “Maf: Maximum agreement forests for nonbinary trees,” http:
//homepages.cwi.nl/∼iersel/MAF/, 2012.

[48] C. Whidden, R. G. Beiko, and N. Zeh, “Fast fpt algorithms for computing
rooted agreement forests: Theory and experiments,” in Experimental Algorithms.
Springer, 2010, pp. 141–153.

[49] S. Linz and C. Semple, “A cluster reduction for computing the subtree distance
between phylogenies,” Annals of Combinatorics, vol. 15, no. 3, pp. 465–484,
2011.

[50] M. A. Bender and M. Farach-Colton, “The lca problem revisited,” in LATIN
2000: Theoretical Informatics. Springer, 2000, pp. 88–94.

[51] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein et al., Introduction to
algorithms. MIT press Cambridge, 2001, vol. 2.

[52] R. G. Beiko, “Telling the whole story in a 10,000-genome world,” Biol Direct,
vol. 6, p. 34, 2011.

[53] R. G. Beiko, T. J. Harlow, and M. A. Ragan, “Highways of gene sharing in
prokaryotes,” Proceedings of the National Academy of Sciences of the United
States of America, vol. 102, no. 40, pp. 14 332–14 337, 2005.

100

http://homepages.cwi.nl/~iersel/MAF/
http://homepages.cwi.nl/~iersel/MAF/

[54] B. Boussau, L. Guéguen, and M. Gouy, “Accounting for horizontal gene trans-
fers explains conflicting hypotheses regarding the position of aquificales in the
phylogeny of bacteria,” BMC evolutionary biology, vol. 8, no. 1, p. 272, 2008.

[55] R. J. Eveleigh, C. J. Meehan, J. M. Archibald, and R. G. Beiko, “Being aquifex
aeolicus: Untangling a hyperthermophiles checkered past,” Genome biology and
evolution, vol. 5, no. 12, pp. 2478–2497, 2013.

[56] G. P. W. Group, N. P. Barker, L. G. Clark, J. I. Davis, M. R. Duvall, G. F.
Guala, C. Hsiao, E. A. Kellogg, H. P. Linder et al., “Phylogeny and subfamilial
classification of the grasses (poaceae),” Annals of the Missouri Botanical Garden,
pp. 373–457, 2001.

[57] H. A. Schmidt, “Phylogenetic trees from large datasets,” 2003.

[58] D. H. Huson and C. Scornavacca, “Dendroscope 3: an interactive tool for rooted
phylogenetic trees and networks,” Systematic biology, p. sys062, 2012.

[59] D. H. Huson and S. Linz, “Computing minimum hybridization networks from
real phylogenetic trees,” Under Review, 2012.

101

	List of Tables
	List of Figures
	Abstract
	List of Abbreviations Used
	Acknowledgements
	Introduction
	Contribution
	Related Work
	Approximation Algorithms
	Fixed-parameter Algorithms

	Organization

	Preliminaries
	Phylogenetic Trees
	Hybridization Number and Agreement Forests
	Derived Properties

	A 4-Way Branching Algorithm for SPR Distance
	Structural Results of Multifurcating Agreement Forests
	Algorithm for Branching Phase

	Preparation for Refinement Phase
	Restoring Multifurcations in an AF
	Resolving Input Trees

	A First Complete Hybridization Algorithm
	Expanded Cycle Graph
	Essential Components and Exit Nodes
	Potential Exit Nodes
	A Simple Refinement Algorithm

	An Improved Refinement Algorithm
	Improved MAAF Algorithm
	Correctness Proof
	Stage One
	Stage Two

	Complexity Analysis
	Tightening the Complexity Analysis

	Experimental Evaluation
	Cluster Reduction
	Efficient Implementation of the MAAF Algorithm
	Fix Potential Exit Nodes
	Check Acyclicity
	Constant-Time LCA Queries
	Only Fix nodes in SCC

	Data Sets
	Results
	Correctness Evaluation
	Performance Evaluation

	Conclusions and Future Work
	References

