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Abstract

In order to measure the effects of these errors we measure of the likelihood an erroneous

instance of a Hamiltonian shares the same ground state as the intended Hamiltonian

(resilience). The effects of errors on the spectrum of the instantaneous Hamiltonian

through the evolution of the system is studied through the instantaneous gap as well as

the minimum.

For this work a simplistic model is used. An Ising Spin Glass to model the adiabatic

quantum computer. The structure of the computers spins and allowable couplings are

taken to be in accordance with the D-Wave architecture. The errors are modeled with

Gaussian distributions.

The model allowed for a simple scaling relation to be extracted for resilience. It

was observed that resilience drops quickly as system size grows; although, computational

complexity limited the study of larger systems. A minimal effect on the evolution process

itself was observed through the simulations.
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Chapter 1

Introduction

Computers are ubiquitous in today’s society existing in nearly every home and in most

pockets in the form of smart phones. Tasks we assign to computers vary vastly. Examples

of everyday uses are email and social media, while less common, more fantastic uses include

simulations of the universe [9] and simulations of quantum systems [33]; in this world, the

world of large computations we find ourselves classifying problems based on their difficulty.

The field devoted to the difficulty of problems is Computational Complexity Theory.

Computational Complexity Theory is concerned with the difficulty of computation which

is not the same as algorithmic difficulty. The difficulty of an algorithm is quantified in

terms of the number of how the number basic operates scales as we increase the size of

the input. Computation difficulty is different in that it does not pertain to the particular

instance of the problem but the problem as a whole; to clarify, “What is 15 * 3?” is not

in the realm of complexity theory however “Is 15 * 3 = 45?” is. By restricting the types

of problems to decision problems that involve a binary answer computational complexity

theory circumvents the need to choose a specific algorithm allowing the best possible

algorithm to be chosen [5]. There are essentially two classes of problems that are of

concern for us. Both are a subset of deterministic algorithms. A deterministic algorithm

is one that must execute the exact same given the same input. The two classes of interest

are:

P The class of problems that are efficiently solvable and verifiable. The number of ba-

sic operations scales polynomially with input size for any (known) algorithm. An

example would be integer multiplication.

NP The class of problems that are efficiently verifiable but not efficiently solvable. The

number of basic operations scales exponentially with input size for any (known)

algorithm; however, to verify the solution the number of basic operations scales

polynomially with input size for any (known) algorithm. An example would be

integer factorization.

1
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For more on computational complexity theory refer to [5].

Computers have been growing in power at an exponential rate in accordance to Moore’s

law; however, this trend cannot last forever [21] as thermal and quantum effects will

begin to dominate as the size shrinks; therefore, growing computer power cannot save us

from the immensity of NP problems. The limitation is caused by leakage errors inside

the transistor. Leakage means that some of the charge used to stop current with the

transistor leaks inside the transistor causing it to malfunction. Since many problems of

interest fall into the NP category we are stuck with the problem of developing a computer

capable of doing these calculations. Many believe the answer to this problem may lie

in Quantum Computing. The first example of an algorithm being able to solve an NP

problem in sub NP time is Shor’s algorithm for factorization and discrete logarithms

[47]. Shor’s algorithm is designed for a gate model quantum computer, discussed in

Section 1.3, which was experimentally realized on a small scale [49]. Problems, such as

short decoherence time of the quantum dots, have limited the scale of these machines;

although, new techniques are being developed to extend the decoherence time [52] these

computers are still mainly theoretic with many obstacles to over come. Another form of

quantum computing known as Adiabatic Quantum Computing, discussed in Section 1.4,

offers an alternative to gate model quantum computing with its own set of challenges.

1.1 Fundamentals

In quantum computing the fundamental unit of the computer, the bit, is modified to take

on a key property of quantum mechanics, superposition. In classical computers a bit is

either 1 or 0 at anytime throughout the computation; however, in quantum mechanics

until you measure the bit, which we will now call qubit, it is in a superposition of both

states given by

|Ψqubit〉 = α|0〉+ β|1〉 (1.1)

where as usual in quantum mechanics α and β are complex numbers obeying the normal-

ization relation imposed by |α|2 and |β|2 being probabilities:

|α|2 + |β|2 = 1 (1.2)
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Qubits can become entangle when their combined state is not separable into multiplication

of states just involving individual qubits and in Equation 1.3.

|Ψentangled〉 = α|01〉 − β|10〉 (1.3)

In quantum computing calculation requires the qubits to be in a superposition and en-

tangled throughout the calculation. This requirement can allow for all possible branches

of the calculation to be considered simultaneously such as in Shor’s algorithm [47] for a

gate model quantum computer.

1.2 Decoherence

Coherence is an ideal property of waves that enables stationary interference. Decoherence

is the loss of these interference properties due to various causes. Thermal energy being

introduced or removed through stochastic processes bringing the system to thermal equi-

librium over time scale T1 (average time between energy level occupation changes) can

cause the system to decohere; furthermore, energy can be borrowed from the environment

causing the phases to change and the system to decohere over time scale T2 (average

time between phase changes)[22]. In most cases T1 � T2 (decoherence caused by a single

source) which means that T2 is more important in quantum computing [22].

1.3 Gate Model Quantum Computing

In the gate model of quantum computing quantum equivalents are made of the classical

components of a computer, such as the processor, memory, and bus. The processor now

works by making modifications on quantum states in place of electrical voltages. The

modifications are made through operators as one would expect and can be written down

in matrix form. One example of a quantum gate is the Pauli-X gate which acts on a single

spin and is the quantum equivalent of a not gate:

Not ≡

(
0 1

1 0

)
(1.4)
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which you may recognize as the σx Pauli spin matrix. The remaining two Pauli matrices

act as rotations by π about their respective axis. An example of a two spin gate would

be the controlled not gate:

CNot ≡


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (1.5)

These transformations on the state constitutes the processor of the quantum computer.

Unlike classical logic gate, the nature of quantum mechanics require that each gate be

reversible, meaning that each set of inputs uniquely maps to a set of outputs. Gates with

these properties are constantly in development and recently a full adder with overflow

detection was developed [15]. In classical computing an arbitrary classical function can

be described by a set of And, Or, and Not gates properly strung together. For quantum

computing a similar set exists which consists of CNot, phase,
π

8
, and Hadamard gates

[37].

Hadamard ≡ 1√
2

(
1 1

1 −1

)
(1.6)

Phase ≡

(
1 0

0 i

)
(1.7)

π

8
≡

(
1 0

0 eiπ/4

)
(1.8)

By most definitions in order to have a computer two more aspects are required, a

memory to store information before and after it is processed and a bus to transfer in-

formation throughout the computer. Quantum memory is typically comprised of atoms,

quantum dots, or superconducting junctions such as Josephson junctions [22]. A typical

quantum bus involves photons or phonons [33]. Problems with scaling the gate model

computer architecture are caused by speed limitations and decoherence [33]. There are

several approaches to this style of quantum computing that each use a different unit to

be their base for computation.
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1.3.1 Photons

The polarization state of photons can be used as a qubit and photons have the advantage

that they are relatively free from the decoherence that exists in the other techniques [22].

The one-qubit gates such as those of Equations 1.6, 1.7, and 1.8 can be achieved through

the use of waveplates comprised of birefringent material. A technique known as coherent

photon conversion based on interacting bosonic fields promises to be able to allow for

deterministic multiqubit entanglement gates, high-quality single and multi photon states

free from higher-order imperfections, as well as high-efficiency detection [23].

1.3.2 Trapped Atoms

Due to the excellent coherence time of certain energy levels within atom one can construct

reliable qubits with coherence times on the order of seconds or longer; furthermore, inter-

actions between atoms can provide entangling quantum gates. qubits can be initialized

through optical pumping at nearly 100% efficiency. [22]

The trapped atomic ions can be spatially manipulated with nanometre precision using

electric fields [6, 41]. Trapped ions can be entangled through laser-induced coupling of

spins [24]. Experimentally up to 8 ions have been entangled with this method [6]. Scaling

the trapped ion system becomes difficult when large numbers of ions undergo collective

motion. This can be caused by inefficient laser-cooling, increased susceptibility to noisy

electric fields, and decoherence of the motional modes [22]. One approach to avoid these

issues is to shuttle individual atoms through the system so that entangling gates only need

to operate with a small number of ions [19]. Alternatively one can couple the qubits via

photonic interactions; in-fact, atomic ions have been entangled over macroscopic distances

with this method [38].

Neutral atoms can also be used as qubits similar to ionized atoms. The neutral atoms

are confined in space through a set of lasers forming an optical lattice [35]. Interactions

between atoms can be achieved through the large electric dipole moment of Rydberg

states or bringing the atoms closer together. The main difficulties of this approach is the

initialization, interaction, and measurement of the atomic qubits [22].
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1.3.3 Nuclear Magnetic Resonance

Nuclear spins molecules in liquid solutions have a rapid molecular motion that acts as

a gyroscope causing increased stability which extends their coherence times to seconds,

comparable with trapped atoms [22]. When immersed in a strong magnetic field nuclear

spins can be identified by their Larmor frequencies. Atoms in a molecule have different

Larmor frequencies depending on their local molecular bonds. Single qubit gates can

be obtained through resonant radio-frequency pulses; while two qubit interactions come

from indirect coupling controlled by molecular electrons [22]. A large coil surrounding

the sample allows for measurement. Manipulation of a system of a dozen qubits has been

experimentally demonstrated [36].

1.3.4 Quantum Dots

Quantum dots remove the need to trap atoms because they are integrated into a solid state

host. Quantum dots are artificial atoms that occur when a small semiconductor nanos-

tructure binds an electron or whole into a localized potential with discrete energy levels

[22, 50]. Quantum dots can be manufactured in various ways. One method is through con-

trolled voltages on lithographically defined metallic gates; alternatively, quantum dots can

self assemble through a stochastic process on a semiconductor that creates the potential

for confining electrons and holes. The former quantum dot can operate at temperatures

below 1 Kelvin and electronically controlled while the latter operate around 4 Kelvin and

optically controlled [22].

It is now possible to make quantum dots with no variation in size, shape, and orienta-

tion by assembling the dots one atom at a time [14]. This is achieved by using a scanning

tunneling microscope to move Indium atoms to precise locations on an InAs substrate.

Although problems with decoherence, atomic-scale gate control, ultrafast read-out and

cost efficient scalability still remain [50]. The stochastic self assembly process does not

share this benefit as the random locations and optical properties cause them to be inher-

ently difficult to work with [22]; however, they can be controlled optically. Decoherence

time of dots are typically on the order of milliseconds.
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1.3.5 Superconductors

A superconducting qubit is formed of an inductor, capacitor, and Josephson junction.

A Josephson junction is a thin insulating layer separating sections of a superconductor.

The behaviour of the qubit is defined by the ratio EJ
EC

, where EC = e2

2C
is the single

electron charging energy of the capacitor and EJ is the Josephson energy which is the the

energy accumulated in a Josephson junction when a supercurrent flows through it [22].

When the charging energy exceeds the Josephson energy (EJ
EC
� 1) the quantum states

of the device approach charge states, the resulting qubit is known as a charge qubit [39].

When the charging energy is kept small you can either have a flux or phase qubit. A flux

qubit has a persistent current and a double well potential, the two minima correspond

to the current going in opposite directions [11]. Each direction corresponds to a state,

either 1 or 0. The depths of each well can be altered using magnetic flux to bias current

flow in one direction or another. In a phase qubit the potential of the wells is biased so

that the qubit uses the two lowest lying eigenstates in a single well [28]. The excitation

energy of these qubits is typically designed between 5-10 GHz to avoid thermal effects at

their operating temperature of around 10 mK [22]. Theoretically the decoherence time of

superconducting qubits was calculated to be on the order of milliseconds [39]; however,

initially their decoherence time was on the order of nanoseconds which has grown to

microseconds over recent years [22, 53].

Neighbouring flux qubits inductively couple naturally [27]; however, to control the cou-

pling between flux qubits one must introduce a time-dependant magnetic flux (TDMF)

[26]. The approach works by initially detuning the qubits to create a non-resonant inter-

action. When a coupling is desired a time-dependant magnetic flux (TDMF) is applied

to one of the flux qubits to counteract the initial detuning and couple the flux qubits

[26]. Evidence was also presented for entanglement between coupled flux qubits [20]. It

is possible to manufacture flux qubits that are scalable and robust against against fab-

rication variations in the Josephson junctions [17]. The flux qubits used by DWave are

rf-SQUID qubits which means they are comprised of a single Josephson junction [7, 17].

Another form of flux qubit that uses 3 or more Josephson junctions is known as as PC

qubit [34, 40].
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1.4 Adiabatic Quantum Computing

Adiabatic Quantum Computing relies on the quantum adiabatic theorem which states

that if a Hamiltonian changes sufficiently gradually from an initial Hamiltonian, Hi, to a

final Hamiltonian, Hf , and the system was in the nth state of Hi ≡ H0 it will also be in the

nth state of Hf ≡ Hp [16], provided there are no crossing energy levels. The theorem was

developed in 1928 by Max Born and Vladimir Fock. In 2004 the validity of the adiabatic

theorem was called into question [29]. The issue was not corrected until 2008 when the

inconsistency was explained as a relic of the difference in the time derivatives of the

solutions obtained from the two approaches [51]. It was argued that the state vector was

physically relevant and not its time derivative, validating the quantum adiabatic theorem.

A proof of the quantum adiabatic theorem is provided in Section 3.1.

An adiabatic computer works by using a collection of spin particles, typically spin-1
2
.

The particles are then subject to a Hamiltonian that is easily prepared, such as all spins

in the +x direction. The Hamiltonian is then evolved adiabatically to a final Hamiltonian

that encodes the desired logic in its ground state(s) and H0 and Hp do not commute.

H(s) = f(s)H0 + [1− f(s)]Hp (1.9)

where s is reduced time and f(s) ranges from 0 to 1.

Hp can be constructed from smaller Hamiltonian’s gluing their logic together [30]. For

instance an AND gate, A ∧B → C, could be made with the Hamiltonian

HAND = −A−B + 2C + AB − 2AC − 2BC (1.10)

which has the ground states of Table 1.1. By fixing A and B the value of C becomes

A B C
1 1 1
1 0 0
0 1 0
0 0 0

Table 1.1: Ground states of HAND
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limited. Chaining these operations together becomes simple, two ANDs have the Hamit-

lonian

H2AND = −A−B + C −D + 2E + AB − 2AC − 2BC + CD − 2CE − 2DE (1.11)

the ground states then becomes that of Table 1.2 by the gluing theorem [30]. Table 1.2

refers to the equation A∧B ∧D → E so it logically reduces to Table 1.3. This is because

C is an auxiliary spin, meaning it is not an input or output spin.

A B C D E
1 1 1 1 1
1 0 0 1 0
0 1 0 0 0
0 0 0 0 0

Table 1.2: Ground states of two HAND combined

A B D E
1 1 1 1
1 0 1 0
0 1 0 0
0 0 0 0

Table 1.3: Ground states of two HAND combined with the carrier spin removed.

The potential of adiabatic quantum computers has been a topic of debate. It was

shown that adiabatic quantum computing is equivilent to the gate model of quantum

computing within a polynomial factor [1, 32]. In order to have a sparse matrix we require

that the Hamiltonian be limited to n-body interactions where n < N where N is the

number of spins in the network. It has been shown that an adiabatic quantum computer

could speed up for searching algorithms by a quadratic factor; furthermore, one cannot

rule out polynomial complexity algorithms for traditionally non-polynomial complexity

problems using the usual query complexity algorithms [48]. The reason for this is because

there are many possible paths, f(s), to transition between the initial and final Hamilto-

nian, each resulting in a their own difficulty [44, 48]. The result of having many choices

could be that the search space requires non-polynomial time to find a function f(s) whose

execution will provide polynomial complexity on an adiabatic quantum computer [12]. It
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has further been argued that proving that you cannot find a suitable Hamiltonian for a

given problem in polynomial time is infeasible [12].

Adiabatic quantum computing is naturally robust against certain unitary perturba-

tions and their perturbations were shown to sometimes even increase the success rate of

calculations [3, 10]. A successful calculation returns a ground state state of the Hamil-

tonian, an implication of this is that an algorithm could remain scalable as long as the

natural frequencies of the Hamiltonian are much larger than the frequencies contained

in the noise [45]. One feature required to further increase the success rate of adiabatic

quantum computing is fault tolerance. Lidar introduced a scheme using dynamical decou-

pling, subsystems, stabalizer codes, and the energy gaps to move towards fault tolerance

in 2008 [25]. In 2014 Mizel presented a hands off approach to fault tolerance that is

capable of scalable universal quantum computation in a non-degenerate ground state, as

well as fault-tolerant against a variety of noise [31].

The nature of adiabatic quantum computation, the smooth transition and finite energy

gap between the ground state and the first excited state, allows the ground state to

maintain its coherence properties much longer than the individual qubits [4]; furthermore,

it has been shown that AQC maintains its properties even in for general non-Markovian

noise larger than the minimum gap [2]. This increased coherence makes AQC easier

than the gate model of quantum computing; furthermore, evidence has been presented to

suggest that during a critical portion of quantum annealing the qubits on D-Wave’s chip

becoming entangled and maintain entanglement as the system reaches equilibrium [24].

Testing a quantum computer to ensure it behaves quantum mechanically is no easy task,

though the concept was explored [57] and recently there has been evidence to suggest that

D-Waves chip is in fact a quantum annealing chip [8]. The D-Wave chip uses flux qubits,

which were discusses in 1.3.5.

1.5 Project Description

This study is focused on taking the theoretic Hamiltonian from an idea to a physical entity

on the hardware. This act will be referred to as programming the AQC. The particular

aspect of programming that will be focussed on is how imprecisions caused by errors or

uncertainties in the field and coupling terms effect the systems likelihood to obtaining the

correct answer. We will also look at how these errors change the spectrum throughout the
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adiabatic evolution process to determine if there are any issues introduced by the errors.

For this endeavour a simplistic model was used; by doing so, the study is limited to

gaining insight into scaling relations where the exact values of constants are not significant.

Important terms for this work are:

Intended Hamiltonian is the Hamiltonian that was desired to be put onto the machine.

Erroneous Hamiltonian is a version of the intended Hamiltonian that has errors in it

according to the model discussed in Chapter 2.

Also errors and noise will be used synonymously in this work. Using these terms we can

heuristically describe the key quantities of interest in this study:

Resilience is a measure of the probability that the ground state of the intended Hamil-

tonian will be the ground state of erroneous Hamiltonian that gets programmed into

the system.

Crossover is an indicator of where the ground state of the intended Hamiltonian will lie

in the spectrum of the erroneous Hamiltonian.

End Gap measures the change in energy between the ground state of the theoretic

Hamiltonian.

These quantities combine to give a complete insight into how the lowest lying eigenstates

of the spectrum of a Hamiltonian are affected by errors in the programming process. For

an ideal AQC only the resilience is relevant as there is no chance that the computer will

return an excited state. For a non-ideal AQC there is a probability related to the gap and

cross over that the correct eigenstate will be returned erroneously, which is not explored

in this work.

Chapter 2 is concerned with the models used throughout this work. Section 2.1 deals

with how the hardware of the adiabatic quantum computer is modeled and Section 2.2

deals with how the errors were modeled. In Chapter 3 we look at the adiabatic theorem

of quantum mechanics. In Chapter 4 the results are presented and discussed. Sections 4.1

and 4.2 deal with errors in the field terms while Sections 4.3 and 4.4 deal with errors in the

coupling terms only. In Section 4.5 errors are considered in both terms simultaneously.

Finally in Section 4.6 the effects of these errors on the adiabatic evolution is explored. In
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Appendix A degeneracy is introduced into the Hamiltonians and the definition of resilience

split into two cases. In Appendix C the programs used to gather the results are outlined.

Appendix B pertains to how Hamiltonians with the same ground state are related.



Chapter 2

Model

In this thesis a simple model was used in order to gain insight into scaling relations of

quantities interest, as mentioned in Section 1.5. In Section 2.1 the model for the hardware

is examined and in Section 2.2 the model of the programming errors is discussed.

2.1 Ising Spin Glass

The fundamental model for this thesis is an Ising Spin Glass, which models a collection

of spin particles that can take a spin-up or spin-down configuration and have arbitrary

couplings(J) and field (b) terms. The Hamiltonian of an Ising Spin Glass can be written

as:

H = −
∑
i

biσi +
∑
i<j

Jijσiσj (2.1)

where we are assuming the interactions involve no more than 2 bodies otherwise more

terms would haveto be added to account for 3 body interactions and so forth. For this

thesis we will further restrict the Hamiltonian to be classical and only include σz terms:

H =
∑
i

biσ
z
i +

∑
i<j

Jijσ
z
i σ

z
j (2.2)

This model was chosen because it can sufficiently capture the behavior of current adiabatic

quantum computers. It is also possible to use a harmonic oscillator model for an adiabatic

quantum computer [56]; however, this model gives a series of evenly distributed energy

levels; meaning, in order to insert errors one would have-to either cause random shifts

in the energy levels or add terms to the oscillator Hamiltonian. Neither option is ideal

for this study as the errors are in programming the Hamiltonian. This means that the

errors come before those perturbations would have-to be made. Furthermore, the Ising

Spin Glass model has been used in other studies of AQCs [8, 24, 42, 46, 54, 55].

In an effort to map closer the experiment the Hamiltonians used in this study use the

13
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Figure 2.1: Schematic of the K4,4 set-up which we use as a template for all Hamiltonians
considered in this study. These were chosen due to their appropriateness in size for
computational difficulty as well as their real world relevance as the fundamental block of
the D-Wave computers. On the right we show how the K4,4’s are connected.

template of a K4,4 (shown in Figure 2.1), which is the fundamental block of spins used in

the D-Wave’s quantum hardware [18]. A K4,4 consists of two columns of four spins. Each

spin on one column is connected with all the spins on the opposing column, but none of

the spins in its own column. K4,4’s are strung together using the spins in the left column

vertically or the right column for horizontal connections. These were chosen because their

size allows efficient simulations to be run and they also have real world significance. Each

of the couplings and field terms were chosen at random from a set of values defined by

the Hamiltonian’s resolution. The values of the fields and coupling terms fall in the range

[−1, 1] and a Hamiltonian’s resolution specifies how many available evenly spaced values

lie in the interval; for instance, a Hamiltonian of resolution 7 has possible field and couple

term values of

±
{

3

3
,
2

3
,
1

3
,
0

3

}
where a Hamiltonian of resolution 15 would have values ranging from

±
{

7

7
,
6

7
,
5

7
,
4

7
,
3

7
,
2

7
,
1

7
,
0

7

}
The restriction to the interval [−1, 1] is again to be closer to the D-Wave machine which

has a fixed interval over which the values of field and coupling terms can be drawn. To

achieve different resolutions they splice this interval accordingly. For generality, we assume

that each value is equally likely to be in the Hamiltonian and thus the distribution that
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Figure 2.2: Left: Distribution that the field and coupling values were chosen from in the
noise free model of the Hamiltonian. The distribution is simply delta spikes at each of
the possible values. Right: Distribution that the field and coupling values were chosen
from in the noisy model of the Hamiltonian. What were once delta spikes have become
Gaussian distributions.

the terms are sampled from simply has delta spikes at each of the possible values, shown

on the left of Figure 2.2. In actuality this may not be the case for a given Hamiltonian

or class of Hamiltonians; however, Hamiltonians from any set that does not draw evenly

from the set of allowed values for field and coupling terms can also be drawn from the

set of Hamiltonians that draw with an even probability (in fact provided there are no 0

probabilities and Hamiltonian can be drawn from any set). In this way our results are

not skewed to value a particular kind of Hamiltonian.

2.2 Errors or Uncertainties

The errors in this thesis took on the form of a normal distribution given by

p(x|µ, σ) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (2.3)

to obtain random numbers according to this distribution the std::normal distribution class

was used in C++, analogues of this class were used in the other languages. As an input

these functions take µ and σ and return an x with the proper probability. In C++ the

std::normal distribution was chosen as it was faster than the function offered in the boost

library. Though the details of the method to which the random numbers are generated

are not specified in the C++ standard, the algorithm is likely using the Box-Muller

transformation, or a variant of it. The Box-Muller transformation works by generating

two random numbers, x1 and x2 between 0 and 1 from a uniform distribution. Then z1
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Figure 2.3: The shape of the approximate Gaussian distribution obtained by sampling
various many times. As can be seen as you increase the number of samples you increase
the smoothness of the distribution. This is important as to get meaningful statistics it is
important to properly sample each Gaussian distribution. As you can see 10,000 samples
appears to be sufficient, but not ideal. The typical data point in this study uses 10,000,000
samples.

and z2, defined below, will have a normal distribution with µ = 0 and σ = 1.

z1 =
√
−2 lnx1 cos(2πx2) (2.4)

z2 =
√
−2 lnx1 sin(2πx2) (2.5)

A normal distribution is a reasonable model for there errors as they are likely to be

caused by things such as unbiased fluctuations or uncertainty in electromagnetic fields.

The number of samples required to accurately sample a normal distribution is atleast

10,000 as illustrated in Figure 2.3. Once the errors are introduced the effect is to turn

each of the delta spikes for the field and coupling terms into Gaussian distributions as

shown on the right of Figure 2.2.



Chapter 3

Theory

3.1 Quantum Adiabatic Theorem

Here we provide a proof of the quantum adiabatic theorem taken from [16]. The proof

assumes a non-degenerate Hamiltonian. When the system becomes degenerate the com-

plexity increases and there is a set of conditions, one necessary and two sufficient in order

for the theorem to hold, for details on these conditions see [43].

Given a time dependent Hamiltonian H(t) we can write Schödingers equation as such:

ih̄
δΨ(t)

δt
= H(t)Ψ(t) (3.1)

where Ψ(t) is a linear superposition of all the ψn(t) terms

Ψ(t) =
∑
n

cn(t)ψn(t)eiθn(t) (3.2)

where

θn(t) ≡ −1

h̄

∫ t

0

En(t′)dt′. (3.3)

And H(t) is such that

H(t)ψn(t) = En(t)ψn(t) (3.4)

where the eigenfunctions ψn(t) constitute an orthonormal set

〈ψn(t)|ψm(t)〉 = δnm (3.5)

Now substituting Equation 3.2 into Equation 3.1 and using the chain rule we obtain

ih̄
∑
n

(
δcn
δt
ψn + cn

δψn
δt

+ icnψn
δθn
δt

)
eiθn =

∑
n

cn(Hψn)eiθn (3.6)

17
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now taking into consideration Equation 3.4 and Equation 3.3 Equation 3.6 reduces to

∑
n

δcn
δt
ψne

iθn = −
∑
n

cn
δψn
δt

eiθn (3.7)

Taking the inner product with ψm and using Equation 3.5 Equation 3.7 becomes

∑
n

δcn
δt
δnme

iθn = −
∑
n

cn〈ψm|
δψn
δt
〉eiθn (3.8)

which can be written
δcm(t)

δt
= −

∑
n

cn〈ψm|
δψn
δt
〉ei(θn−θm). (3.9)

Now differentiating Equation 3.4 with respect to time gives

δH(t)

δt
ψn(t) +H(t)

δψn(t)

δt
=
δEn(t)

δt
ψn(t) + En(t)

δψn(t)

δt
(3.10)

once again taking the inner product with ψm

〈ψm|
δH

δt
|ψn〉+ 〈ψm|H|

δψn
δt
〉 =

δEn
δt

δnm + En〈ψm|
δψn
δt
〉 (3.11)

Since H is Hermitian we can write 〈ψm|H| δψnδt 〉 + Em〈ψm| δψnδt 〉 and it follows that (for

n 6= m)

〈ψm|
δH(t)

δt
|ψn〉 = (En − Em)〈ψm|

δψn(t)

δt
〉 (3.12)

substituting this into Equation 3.9 and making an assumption that the energy levels are

non-degenerate it follows that

δcm(t)

δt
= −cm〈ψm|

δψm
δt
〉 −

∑
n6=m

cn
〈ψm| δHδt |ψn〉
En − Em

e
1
ih̄

t∫
0

(En(t′)−Em(t′))dt′

(3.13)

Now making the adiabatic approximation δH
δt
→ 0 Equation 3.13 simplifies to

δcm(t)

δt
= −cm〈ψm|

δψm
δt
〉 (3.14)
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which has the solution

cm(t) = cm(0)eiγm(t) (3.15)

where

γm(t) ≡ i

t∫
0

〈ψm(t′)|δψm(t′)

δt′
〉dt′ (3.16)

This means we can write the eigenstates as

ψn(t) = eiθn(t)eiγn(t)ψn(0) (3.17)

where the coefficients only pick up phase factors and thus a particle that starts out in

the nth eigenstate will remain in the nth eigenstate. The smaller the gap between the two

states the slower the rate δH
δt

must be.



Chapter 4

Results and Discussion

The Hamiltonian of an Ising spin glass, such as the ones used in Adiabatic Quantum

Computing, have the form:

Hp =
∑
i

biσ
z
i +

∑
i<j

Jijσ
z
i σ

z
j (4.1)

where bi represent the field terms and the Jijs represent the coupling terms. We will look at

three different quantities to determine the effect of programming errors, i.e. uncertainties,

on the resulting Hamiltonian: resilience, cross over, and final gap. These quantities are

described heuristically in Section 1.5 and quantitatively below. For the next few sections

we will restrict our attention to single K4,4 Hamiltonians (see Section 2.1) that are non-

degenerate. Degenerate Hamiltonians are considered in Appendix A.

In Section 4.1 errors are only in the field terms and are independent of the magnitude

of the individual coupling. Section 4.2 the errors in the field term are made dependant

on the magnitude of the errors. Sections 4.3 and 4.4 do the same for errors only in the

coupling terms. Section 4.5 introduces errors into both terms simultaneously. Finally,

Section 4.6 explores the effects of the errors on the Hamiltonian through its evolution.

4.1 Absolute Field Noise

In this section we will focus on errors in the field terms, bi. The Hamiltonian will thus

take the form:

Hp =
∑
i

(bi +N(µ, σ2)i)σ
z
i +

∑
i<j

Jijσ
z
i σ

z
j (4.2)

Where N(µ, σ2) is a random number drawn from a normal distribution centred at µ, with

width σ. See Figure 2.3. Throughout this work µ = 0 while σ is varied. Note that σ is

the width of the distribution and is not the same as σi which is a Pauli spin matrix. Since

µ = 0 for the entirety of the work here we can write N(µ, σ2)→ N(σ).

20



21

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

r

σ

r vs σ
Single K4,4; Absolute Field Noise

R = 3
R = 5
R = 7
R = 9

R = 11
R = 13
R = 15

Figure 4.1: Resilience (r) shown as a function of σ for various resolutions (R). We see
that the resilience drops with increasing resolution as expected. As σ increases the errors
cause the field and coupling terms to displace, on average, further from their intended
values which causes the resilience to drop. Increasing the resolution makes the spacing
between the field and coupling terms smaller and thus it takes less displacement to cause
the resilience to drop.
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Figure 4.2: Cross over as a function of σ shown for various resolutions. It is easy to
see that there is a correlation between cross over and resilience, as the resilience drops
the cross over climbs. The increase will plateau as the erroneous Hamiltonians approach
randomness.
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4.1.1 Resilience

Resilience is a measure of the probability that the ground state of the erroneous Hamilto-

nian remains the same as the intended (error-free) Hamiltonian. It is calculated compu-

tationally by averaging over a large number of instances of erroneous Hamiltonians drawn

from the noise distribution given by N(σ). Let

Equiv(H1, H2) =

{
1 GSH1 = GSH2

0 otherwise
(4.3)

where GS indicates the ground state of a Hamiltonian. We determine the resilience, r, of

a Hamiltonian by

r =
1

N

N∑
i

Equiv(Hp, H
i
p) (4.4)

using N instances of erroneous Hamiltonians denoted by H i
p. Here Hp is an error free

Hamiltonian and each H i
p is an erroneous instance of that Hamiltonian. It is desired

that r be independent of any particular Hamiltonian instance. We further average across

different randomly generated noise-free Hamiltonians. The resilience then becomes

ravg =
1

NhamNinst

Nham∑
p

Ninst∑
i

Equiv(Hp, H
i
p) (4.5)

with typical values of Ninst and Nham being 10,000 and 1,000 respectively; thus, each data

point is an average of 10 million Hamiltonians.

Computationally the results are calculated by first selecting a resolution. A Hamil-

tonian is then generated according to the K4,4 topology, and its ground state computed.

Then 10,000 independent instances of erroneous versions of the original Hamiltonian are

generated and their ground states calculated and compared via Equation 4.3 for each σ

value. The averaging of these runs is done in accordance to Equation 4.4. This is repeated

for 1,000 error-free Hamiltonians and averaged via Equation 4.5. This process is repeated

for each resolution.

The results of these computations for various resolutions are shown in Figure 4.1. The

behaviour of the resilience is as expected. Increasing σ causes more error in the system

resulting in the field and coupling terms to be displaced further from their intended

values, on average. Increasing the resolution causes the field and coupling terms to be
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Figure 4.3: The gap versus σ for various resolutions. We again see that this is, as expected,
correlated to the resilience, Figure 4.1, and the cross over, Figure 4.2. As the resilience
drops, the gap goes more negative and exhibits the same plateau behaviour.

closer together (reduces ∆J & ∆b) making the Hamiltonian more susceptible to errors.

Fitting of resilience curves is done in Section 4.5.1.

4.1.2 Cross over

Cross over, C, counts the number of eigenstates that cross below the ground state of the

intended Hamiltonian. Quantitatively it is measured by determining where the original

ground state lies in the spectrum of the erroneous Hamiltonian. The averaging for this

quantity is done the same as it was for resilience. A cross over of 1 means that the original

ground state is now the first excited of the erroneous Hamiltonian. Figure 4.2 shows the

behaviour of C versus σ for various resolutions with errors occurring in the field terms.

Comparing Figure 4.2 with Figure 4.1 we see that there is a correlation between resilience

and cross over, as would be expected. As resilience drops the cross over climbs with

similar relations between the resolutions.
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Figure 4.4: Resilience as a function of σ for various resolutions. We can see that the same
behaviour is seen as was in Figure 4.1 that describes a system of absolute noise.

4.1.3 End Gap

End gap is a measure of the spectral properties of the erroneous Hamiltonians in relation

to the intended Hamiltonian. Quantitatively this can be described by defining SHi as the

spin configuration of the ith energy level of Hamiltonian H. We will call the problem

Hamiltonian Hp and the erroneous instance of the problem Hamiltonian Hn. We will

define functions

Lowest(H,S) = Lowest lying eigenstate of H that is not S (4.6)

Energy(H,S) = Energy of eigenstate S according to H (4.7)

which then allows us to define the gap as

Gap(Hp, Hn) = energy(Hn, GSHp)− energy(Hn, Lowest(Hn, GSHp)). (4.8)

If Hp = Hn, Equation 4.8 gives the usual definition of the gap as the energy separation

between the ground and first excites states. If Hp 6= Hn, and if the ground state of Hp
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Figure 4.5: A graph of resilience versus σ for various resolutions where there is noise
only in the coupling terms that is independent of the strength of the individual terms.
Comparing with Figure 4.1 we see that the resilience is lower when there is noise in the
coupling terms. This is partially because there are 16 coupling terms versus just 8 field
terms; furthermore, coupling terms effect the relative orientation of the spins.

has been moved to an excited state of the erroneous Hamiltonian (Hn) this definition of

Gap will give a negative result. Figure 4.3 shows the behaviour of the gap versus σ for

various resolutions. Note that an average gap of 0 does not mean the gap closed, it is

an effect of the averaging. The averaging was done as it was in the previous sections.

We see that the gap exhibits a correlation between the resilience and cross over which

are shown in Figure 4.1 and Figure 4.2 respectively. Since there is a strong correlation

between these three quantities from this point on we will restrict our attention to just

resilience, knowing we can infer the behaviour of the other quantities from the resilience.

4.2 Relative Field Noise

In the last section the magnitude of errors was independent of the magnitude of the field

strength. Here we look at the behaviour of the system when the Hamiltonian takes the
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Figure 4.6: Graph of resilience versus σ for various resolutions where the noise is only in
the coupling terms and proportional to each coupling term.

form

Hp =
∑
i

bi(1 +N(σ)i)σ
z
i +

∑
i<j

Jijσ
z
i σ

z
j . (4.9)

For brevity, as previously mentioned, we will restrict our attention to resilience knowing

that there is a correlation between resilience and gap and cross over. Figure 4.4 shows the

behaviour of the resilience when the noise is as in Equation 4.9. We can see that the general

behaviour matches that of the absolute noise seen in Figure 4.1. The resilience drops more

slowly as the magnitudes of errors is in general lessened by making the errors relative. For

absolute errors sigma describes the percentage of the error relative to the maximum value

and for relative errors sigma describes the errors relative to the instantaneous magnitude,

and the instantaneous magnitude of the field terms is likely to be less than one.
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4.3 Absolute Coupling Noise

Focusing now on the terms Jij we will explore how inaccuracies or noise effect the resilience

of a Hamiltonian. The Hamiltonians now take the form:

Hp =
∑
i

biσ
z
i +

∑
i<j

(Jij +N(σ)ij)σ
z
i σ

z
j (4.10)

Figure 4.5 shows the resilience versus σ for various resolutions for absolute errors in the

coupling terms. Comparing Figure 4.5 with Figure 4.1 we see that the resolution is less

when there is coupling noise. This is partially because, for a single K4,4, there are 8

field terms and 16 coupling terms. The increased number of terms leads to more noise

in the system. Note the introduction of an apparent lower plateau (high σ, low r) in

the resilience (this is reflected in the other quantities). In Appendix B histograms are

presented showing the probability of Hamiltonians of a given difference having the same

ground state. The lower plateau is believed to be a relic of the Gaussian nature of these

distributions coupled with the probability of obtaining the correct ground state with a

randomly chosen Hamiltonian. The suspected reason for the appearance of the plateau

here and not in the previous section is the increased number of coupling terms increases

the amount of errors and thus increases the difference between the intended and erroneous

Hamiltonians, see Appendix B for definitions of difference and further details.

4.4 Relative Coupling Noise

Making the noise relative to the strength of the coupling terms as we did for field terms

in Section 4.2 we obtain a Hamiltonian of the form:

Hp =
∑
i

biσ
z
i +

∑
i<j

Jij(1 +N(σ)ij)σ
z
i σ

z
j (4.11)

Here the strength of the coupling noise depends on each coupling term itself. In Figure 4.6

we see the same qualitative behaviour as before in Figure 4.5 for coupling noise that is

independent of each coupling’s strength; however, the decline in resilience is lessened, as

it did for relative field noise, and the plateau effect appears to be displaced further right.

The displacement of the plateau makes sense as the relative errors decrease the magnitude
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Figure 4.7: Resilience versus σ for various resolutions when there is noise in both the field
and coupling terms that is of equal strength and independent of the strength of the field
or coupling term.
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Figure 4.8: This figure compares the resilience of the combined noise system (Equa-
tion 4.13) with the resilience of the Hamiltonians with just field and coupling noises alone
(Equations 4.2 and 4.10 respectively) and their multiple.
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Figure 4.9: Three different attempt to fit the resilience curves, the graph on the left is
of resolution 3 while the one on the right is of resolution 15. The three fits are given in
Equations 4.14, 4.15 & 4.16. All three first work well away from the resilience = 1 plateau
or when it is small as in the figure on the right.

of the errors by a factor of

〈J〉 = 〈b〉 =
R + 1

2R
(4.12)

on average, which is the average field or coupling value when the terms are chosen from a

uniform distribution. This reduction in the average magnitude of the errors means that

the average difference between the intended and erroneous Hamiltonian is lessened and

thus the plateau moved to larger σ’s.

4.5 Combined Field and Coupling Noise

To this point errors only in either the field or coupling terms have been considered. This

section considers errors in both terms simultaneously.

4.5.1 Absolute Combined Errors

The Hamiltonian will now take the form:

Hp =
∑
i

(bi +N(σ)i)σ
z
i +

∑
i<j

(Jij +N(σ)ij)σ
z
i σ

z
j (4.13)

Where the error in the field terms and coupling terms is of identical magnitude, in Sec-

tion 4.5.3 we will consider what happens when the errors are independent. Considering

Figure 4.7 and comparing it with Figures 4.1 and 4.5 it is apparent that the resilience of
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x
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inverse relationship between resolution and the spacing between the field and coupling
terms. There are only odd points because for any resolution there must be an equal
number of terms on both sides of 0, plus 0 in the allowed values for the field and coupling
terms. Alternate definitions are allowed, but not considered here.

the combined errors is not simply the multiplication of the two resiliences of the previous

sections. This fact is emphasized in Figure 4.8 where we show the difference between

the multiple of the two resiliences from the individual noises compared to the measured

resilience. The lower plateau has shifted to lower values of σ due to the increased number

of terms for errors to enter increasing the difference between the Hamiltonians on average.

Attempting to fit the resilience curves is difficult due to the plateau at resilience = 1.

Figure 4.9 shows attempts to fit the curves at resolution 3 (left) and resolution 15

(right) to three different functions:

f(x) =
a

b+ e−cx
+ d (4.14)

g(x) =
ax√
b+ cx2

+ d (4.15)
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h(x) =
6∑
i

N(µi, σ
2
i ) (4.16)

All three fits work well away from the r = 1 plateau. Focusing on the value of final value

of σ that r > 0.99 ≈ 1 an inverse relationship appears, which is shown in Figure 4.10.

The fit is given by

σ(R) =
0.513316

1.3755R
+ 0.00266851. (4.17)

To improve the accuracy of the data one would need to write a simulation to precisely find

the location of the end of the plateau. Methods used here were only accurate to within

±0.005 in sigma. It is possible to rewrite this to be a relation between the spacing between

field and coupling terms, ∆b and ∆J respectively. Note that, for simplicity, throughout

this study

∆J = ∆b, (4.18)

because

RJ = Rb. (4.19)

This is not a requirement of adiabatic quantum computing, and in-fact it is probable that

there are benefits to having these values independent of each other; however, that is left

for future studies to determine. The relationship between R and ∆J is

R =
2

∆J
+ 1. (4.20)

Thus we can rewrite Equation 4.17 as

σ(∆J) =
0.373185∆J

∆J + 2
+ 0.00266851. (4.21)

A lower bound on the maximum magnitude of errors that are permitted in the system

(while it maintains r = 1) can be approximated through

σ(∆J) =
Nspins

Nterms

∆J

∆J + 2
. (4.22)

Which for a single K4,4 gives

σ(∆J) =
1

3

∆J

∆J + 2
. (4.23)
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Figure 4.12: Resilience versus σ graph for 4K4,4’s and various resolutions. The statistics
here are not nearly as good as before at the problem contains 32 spins which is roughly
232−8 ≈ 17, 000, 000 times more computationally demanding. Comparing with Figure 4.7
we see that the resilience drops off much quicker. This is partially because there are 112
terms for noise to effect which is much more than a single K4,4 and also the increased
number of spins allows for more frustration which brings the energy levels closer together.
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Equation 4.23 is reasonably close to Equation 4.21; furthermore, the values from Equa-

tion 4.23 are always less than Equation 4.21 so there will be no overestimating. As for

the constant term, it seems reasonable to assume that it is the chance that the ground

state will remain the same out of random luck. In Appendix B the probabilities of this

are measured and all ground states are found to be equally likely. Equation 4.22 thus

becomes

σ(∆J) =
Nspins

Nterms

∆J

∆J + 2
+

1

2Nspins
. (4.24)

Which for a single K4,4 gives

σ(∆J) =
1

3

∆J

∆J + 2
+ 0.0039. (4.25)

In Figure 4.10 shows how Equation 4.25 fits the data. We see that is it an good lower

bound for the fit, the quantitative values are shown in the table below; however, it is also

a good fit for high resolutions.

∆J Equation 4.21 Equation 4.24
1/2 0.0773055 0.0610491
1/4 0.0441335 0.0356523
1/5 0.0365944 0.0298803
1/7 0.0275475 0.0229539

Table 4.1: Comparing values from Equation 4.21 with those from the theoretical lower
bound model Equation 4.24.

When one applies Equation 4.24 to the 4K4,4 system the relation is

σ(∆J) =
32

112

∆J

∆J + 2
+

1

232
≈ 32

112

∆J

∆J + 2
. (4.26)

This gives values of

σ(
1

4
) ≈ 0.032 (4.27)

σ(
1

5
) ≈ 0.026 (4.28)

σ(
1

7
) ≈ 0.019 (4.29)

which is within reason of the values observed in Figure 4.12; noting, the statistics in
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Figure 4.12 are lower quality than the single K4,4 graphs, so the uncertainties are greater.

If this approximation holds to larger systems like the Vesuvius chip from DWave then the

equation will take the form

σ(∆J) =
512

1984

∆J

∆J + 2
+

1

2512
≈ 512

1984

∆J

∆J + 2
. (4.30)

Thus the estimated error tolerance is

σ(
1

4
) ≈ 0.029 (4.31)

σ(
1

5
) ≈ 0.023 (4.32)

σ(
1

7
) ≈ 0.017 (4.33)

Further studies are required to determine the accuracy of these estimates.

A similar inverse behaviour is seen in the resilience of a system when sigma is fixed

and the resolution increased. See Figure 4.11. The relationship between resilience and

resolution appears to be of the form of 1
x

which makes sense as the spacing between the

field and coupling terms has an inverse relationship to the resolution. In Appendix C.5

the relationship between Hamiltonians with the same ground state is explored; however,

a link between the behaviour in Figure 4.11 was not found. This suggested the behaviour

stems from the change in spacing of the field and coupling terms as the resolution is

increased. For σ = 0.5 the curve can be well approximated by:

r =
4957

6339R
+ 0.19281 (4.34)

When the problem size is increased to 4K4,4’s the resilience drops off much quicker, as

shown in Figure 4.12. Comparing with Figure 4.7 we see that the resilience drops off much

quicker. This is partially because there are 112 terms for noise to effect which is much

more than a single K4,4 and also the increased number of spins allows for more frustration

which brings the energy levels closer together. Limited computational resources bounded

the amount of work that could be done on this system size. The algorithms required to

exactly solve for the ground state scale exponentially, which makes 4K4,4’s roughly 17

million times more computationally demanding.
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Figure 4.13: The distribution of resiliences from independent simulations. The distribu-
tion appears to be a skewed Gaussian with a small width.
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Figure 4.14: Resilience versus σ for various resolutions when there is noise in both the
field and coupling terms that is of equal strength and are dependant on the strength of
the field or coupling term.

Uncertainty

The statistics gathered for the graphs for single K4,4’s were gathered by running simula-

tions a large number of times to maximize their statistical significance. Figure 4.13 shows

a distribution of resiliences calculated from 1000 independent simulations, the spread is

minimal and therefore error bars have been omitted from this thesis. Uncertainty intro-

duced from the simplistic model is likely more significant than the spread from statistical

error. Similar graphs can be produced for other resolutions, lower resolutions yield a

tighter distribution.

4.5.2 Relative Combined Errors

For completeness we look at a Hamiltonian of the form:

Hp =
∑
i

bi(1 +N(σ)i)σ
z
i +

∑
i<j

Jij(1 +N(σ)ij)σ
z
i σ

z
j (4.35)
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Figure 4.15: Length of the resilience = 1 plateau versus resolution for relative errors.
There appears to be a 1

x
relation. The roughness is again due to the data being mined

from other simulations that were not designed to measure this quantity.

to see what the resilience looks like with relative errors in both terms. We see the same

general shape of the curves as we did in Figure 4.13 but with a slower decline and post-

poned plateau as would be expected from results in previous sections. This suggests the

noise in Hamiltonians will always have the same decay properties with different limits and

rates.

Focusing again on the length of the plateau at r = 1, Figure 4.15, a familiar inverse

relationship appears, which reworked for ΔJ looks like

σ(ΔJ) =
0.443633ΔJ

ΔJ + 2
+ 0.0223849. (4.36)

The difference between Equation 4.21 and Equation 4.36 stems from the fact that the

relative errors are smaller on average. This can be adjusted by realizing that the average

field and coupling value for a Hamiltonian of resolution R is

R + 1

2R
=

ΔJ + 1

ΔJ + 2
. (4.37)
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Taking this into account Equation 4.24 for absolute errors becomes

σ(∆J) =
∆J + 2

∆J + 1

(
Nspins

Nterms

∆J

∆J + 2
+

1

2Nspins

)
. (4.38)

Equation 4.38 has good agreement with Equation 4.36 as illustrated in Table 4.2 and

Figure 4.15.

∆J Equation 4.36 Equation 4.38
1/2 0.1111120 0.117622
1/4 0.0716775 0.073698
1/5 0.0627152 0.062717
1/7 0.0519604 0.048991

Table 4.2: Comparing values from Equation 4.36 with those from the theoretical lower
bound model Equation 4.38.

4.5.3 Independent Absolute

Now we will consider what happens when the strength of the errors in field and coupling

terms independent of one another. Restricting our attention to noise that is independent

of the individual field and coupling values the Hamiltonian will take the form:

Hp =
∑
i

(bi +N(µ, σ2
b )i)σ

z
i +

∑
i<j

(Jij +N(µ, σ2
J)ij)σ

z
i σ

z
j (4.39)

The graphs will now take the form of heat maps where the x and y values represent σb

and σJ respectively and the z value represents the resilience or other quantity of interest.

Figure 4.16 shows a set of heat maps of the resilience versus σb and σJ each with different

resolutions. We can see that there is more tolerance to noise in the field terms than

there is in the coupling terms, which is in line with previous observations. Similar to in

Section 4.1 we can look at the other quantities of interest, namely the cross over and end

gap, and see the same type of correlations as before, see Figure 4.18.

Measuring the length of the plateau of resilience 1 leads to Figure 4.17. The errors

in precisely finding the value there the drop begins becomes more apparent and leads to

difficulty in fitting the curves, which are most likely elliptical curves; however, attempts

to fit them as elliptical curves leads to large errors.
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Figure 4.16: Set of heat maps of the resilience versus σb and σJ each with different
resolutions. We can see that there is more tolerance to noise in the field terms than
there is in the coupling terms. This asymmetry can partially be explained by the relative
number of field and coupling terms, 8 and 16 respectively, along with the fact that the field
terms effect single spin orientation while coupling terms effect their relative orientations.
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4.6 Adiabatic Spectrum

This section will focus at how errors effect the spectrum of the instantaneous Hamiltonian

throughout the evolution. This is accomplished by the measuring instantaneous gap and

its minimum. The gap here will be defined in the traditional way as the spacing between

the instantaneous ground and first excited states. To model the adiabatic evolution we

will use a linear evolution path and thus the instantaneous Hamiltonian can be written:

H(s) = (1− s)H0 + sHp (4.40)

Where Hp takes the form of Equation 4.13 and H0 is a Hamiltonian with a ground

state that is easy to prepare and does not commute with the problem Hamiltonian.

4.6.1 Gap Versus s

Figure 4.19 shows how, on average, the gap behaves for various σ’s. There is a general

trend that increasing the noise raises the gap and makes the well-like feature more shallow.

Examining Figure 4.20 shows that these changes in path have essentially no effect on the
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Figure 4.18: Comparative of the resilience, cross over, and end gap when the field and
coupling noises are independent. The resilience is overlaid on each graph in the form of
contour lines. We observe the same type of correlations that were seen in Section 4.1.

probability of the computer obtain the ground state of the programmed Hamiltonian.

4.6.2 Minimum Gap

Now we consider the minimum gap alone. The gap is averaged over 1,000 instances of

intended and erroneous Hamiltonians. The computationally demands of these simulations

were also quite great which limited the amount of data that could be obtained. For small

amounts of noise the system begins to close the minimum gap, on average, before the noise

start to cause the energy levels to spread, see Figure 4.21. By the time the spreading takes

effect the erroneous Hamiltonian is unlikely to share the same ground state as the intended

Hamiltonian.
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evolution path for various values of σ. H0 is Pauli spin-x matrix expanded to 8 spins.
Hp is a randomly generate Hamiltonian according to the K4,4 topology with resolution 7.
The time-step ∆s = 0.01. A linear evolution trajectory was used, (1− s)H0 + sHp. Each
The computational intensity of this simulation restricted the number of Hamiltonians
averaged over to 3, each with 10,000 erroneous instances.
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approximation obtained from reference [56]. The probability of being in the ground state

is estimate via 1 −
1∫
0

exp
(
−cs
g2

)
cg2 ds. Due to the reduced units c must be estimated. It is

set such that the probability of being in the ground state at s = 0 is 1. The integral
is estimated using ∆s = 0.01. The effect of errors is to make the evolution path have
a more shallow minimum (see Figure 4.19), the result is that there is less of a dip in
the probability curve seen in this figure. This may be miss leading as it is very unlikely
the correct Hamiltonian was programmed into the computer at σ = 1, but the effect is
negligible on the computers ability to obtain the systems ground state, as expected.
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Figure 4.21: Minimum Gap versus σ for various resolutions. The errors are now inde-
pendent of one another as in Equation 4.39. The results shown in this figure are obtain
by averaging 10 Hamiltonians with 1,000 erroneous instances each. The minimum is cal-
culated by going through the evolution and generating curves similar to those seen in
Figure 4.19. The minimum is then found of each of these curves and averaged.



Chapter 5

Conclusion

We have studied how errors in setting the field and coupling terms can effect the success

of adiabatic quantum computing. Equations 4.21 and 4.36 give an upper bound on the

amount of error aloud in the system before the resilience drops off from 100% for a

single K4,4, where the errors in the field and coupling terms are of equal magnitude.

Increasing the size of the network to 4K4,4’s shows a much more rapid decline in resilience.

Unfortunately the statistics gathered for the larger system were not sufficient to extract

a reliable scaling relation; though, one would expect the same form as Equations 4.21

and 4.36 with different coefficients. We put forth Equation 4.24 and 4.38 to estimate the

maximum amount of error a system of arbitrary size and resolution can have; though,

more study is required to determine the validity of these equations. They are consistent

with results in this paper. Attempts to fit the curves for independent errors resulted in

large errors that prohibited a relation from being extracted.

To connect the values of σ to experiment details of Vesuvius become important. Vesu-

vius has a resolution of 15 (∆J = ∆b = 1
7
). A field or coupling term of 1 corresponds to

33.8 GHz; therefore, according to Equation 4.33 errors up to 0.5746GHz can be tolerated.

The spacing ∆J = ∆b ≈ 4.8286GHz.

When considering how these errors effect the evolution process it is evident that for

errors small enough to retain a high resilience, there is minimum change in the evolution

path and essentially no change in the computer’s probability of obtaining the ground state

of the programmed Hamiltonian; though, more a detailed simulation may be required to

accurately measure the effects on the evolution.

Future studies could use more sophisticated techniques to find the ground state of

larger networks. A problem with doing a study on large systems would be that these

techniques would have-to be probabilistic so the ground state would have to be easily

confirmed.
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Appendix A

Degeneracy

Until this point we restricted our attention to Hamiltonians that were non-degenerate. We

will now lift this restriction and consider general Hamiltonians. Our previous definition

of resilience is no longer sufficient, nor our definitions of cross over and end gap. We

therefore, for simplicity, will look solely at resilience and provide two new definitions of

resilience:

Hard Resilience is defined as the probability that all the original ground states will

remain the lowest lying eigenstates of the new Hamiltonian.

Soft Resilience is defined as the probability that the new ground state will be a ground

state of the original Hamiltonian.

Hard Resilience is of importance when one it is required to obtain all the ground states

of the Hamiltonian while Soft Resilience is appropriate when only a single ground state

is required.

A.1 Hard Resilience

Figure A.1 shows how hard resilience changes versus σ with increasing resolution for a

doubly degenerate Hamiltonian. The drop in resilience is much faster than that of a

non-degenerate Hamiltonian. This is expected as the condition is much more stringent.

In Figure A.2 the degeneracy is varied for a Hamiltonian of resolution 7; as expected,

as degeneracy increases hard resilience drops as the condition becomes more difficult to

full-fill.

When the field and coupling errors are independent of one another the picture is much

the same as it was in the non-degenerate case as shown in Figures A.3 and A.4.
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Figure A.1: Hard Resilience versus σ for various resolutions for a doubly degenerate
Hamiltonian. Compared to resilience non-degenerate Hamiltonians hard resilience drops
off significantly faster.
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Figure A.3: Hard Resilience versus independent σ for various resolutions.
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Figure A.4: Hard Resilience versus independent σ for various degeneracies.
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Figure A.5: Soft Resilience versus σ for various resolutions for a doubly degenerate Hamil-
tonian. Compared to resilience non-degenerate Hamiltonians hard resilience drops off
significantly slower.

A.2 Soft Resilience

Figure A.5 shows how soft resilience changes versus σ with increasing resolution for a

doubly degenerate Hamiltonian. The drop in resilience is much slower than that of a

non-degenerate Hamiltonian. This is expected as the condition is easier to full-fill. In

Figure A.6 the degeneracy is varied between curves; as expected, as degeneracy increases

soft resilience increases as the condition becomes easier.

When the field and coupling errors are independent of one another the picture is much

the same as it was in the non-degenerate case as shown in Figures A.7 and A.8.
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Figure A.6: Soft Resilience versus σ for various degeneracies.
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Figure A.7: Soft Resilience versus independent σ for various resolutions.
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Figure A.8: Soft Resilience versus independent σ for various degeneracies.



Appendix B

Hamiltonian and State Space

In this section we look at how Hamiltonians with the same ground state are related to

one another. To do this a metric must be defined to assess their similarity. There are

many ways to define such a metric but we will define it

d = |Ha −Hb| (B.1)

where Ha and Hb are in the form of Equation 4.13, and

|Ha −Hb| =
∑
i

|bai − bbi |+
∑
ij

|Jaij − J bij| (B.2)

For an N -spin system, there are 2N possible states. We will label each state by Gi

where i ranges from [0, 2N). Each state, Gi, is the ground state of a set of Hamilto-

nians, denoted by {Gi}. The graphs here are done by first generating a large number

of Hamiltonians (between 100,000 and 10,000,000) and classifying them by their ground

state, making the sets {Gi}. Then for each {Gi} draw an even larger number of ran-

domly chosen pairs (between 1,000,000 and 100,000,000) and measure their distance, d.

A histogram of the distances is then made for all {Gi}.
We see that within a given resolution each ground state has an identical distribution,

see Figure B.1; furthermore, the distributions across multiple resolutions has the same

relative shape, see Figure B.2. The shape of the curves in Figures B.1 and B.2 indicate

that when shifting the Hamiltonian by a small amount it is unlikely to maintain the

same ground state. When considering Hamiltonians of differing resolutions the structure

of the curve becomes more difficult, but the general shape remains the same, as seen

in Figure B.3. In Figure B.3 there are 5 distinct overlapping Gaussians, each of which

likely correspond to one of the resolutions available between the resolutions 7 and 5

(R ε {7, 9, 11, 13, 15}).
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Figure B.1: A histogram of the distance between Hamiltonians in set {Gi} for all i.
100,000 Hamiltonians comprise the set of {Gi}s. Each set was sampled from 1,000,000
times, making the total number of distances sampled to build this graph 256,000,000.
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Figure B.2: A histogram of the distance between Hamiltonians in set {Gi} for all i = 0 for
various resolutions. The points inside the skewed Gaussian are a relic of the Monte Carlo
simulation used to create the Gaussian not using a large enough dataset to properly sample
the entire set. The histograms have been normalized to have the same amplitude. For each
resolution 100,000 Hamiltonians were developed, and 1,000,000 distance measurements
from each set G0.
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Figure B.3: A histogram of the distance between Hamiltonians with the same ground state
where the Hamiltonians have different resolutions. The resolutions used in this calculation
are 7 and 15. There appears to be multiple Gaussians overlaid on one another. This is
not an effect of overlaying all the groundstates as individual groundstate histograms also
appear to have multiple Gaussians. Interestingly there are 5 distinct Gaussians overlaid
on top of one another. This is the same number of available resolutions within this range:
7, 9, 11, 13, 15. It seems reasonable to draw the conclusion that there is one Gaussian
per resolution available. To build this 10,000,000 Hamiltonians were developed to build
the set of {Gi}s. Then 100,000,000 distances measurements made and a histogram made
of the results.



Appendix C

Programs

The algorithms described in Sections C.1-C.3 are all different engines for essentially the

same program. Here the general program is laid out. Note that the eigenstates function

is unique to each implementation.

Data: Number of Hamiltonians (nHam), Number of Runs per Hamiltonian

(nRuns), Resolution, Degeneracy, Sigma

Result: Resilience, Crossover, Gap

for h in nHam do

Fields ← genFields(Resolution);

Spectrum ← eigenstates(Fields);

for r in nRuns do

ErroneousFields ← addErrors(Fields, Sigma);

ErroneousSpectrum ← eigenstates(ErroneousFields);

Resilience += isResilient(Spectrum, ErroneousSpectrum);

CrossOver += whichEigenstate(Spectrum.groundState,

ErroneousSpectrum);

Gap += gap(Spectrum, ErroneousSpectrum);

end

end

Resilience /= nRuns * nHam ;

CrossOver /= nRuns * nHam ;

Gap /= nRuns * nHam ;

return Resilience, CrossOver, Gap;

Algorithm 1: General Program Layout for Sections C.1-C.3.

Algorithm 1 was originally written in Python; however, when the time came for massive

data collection on a single K4,4 Python’s speed limitations became evident. The program
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was then ported to Java where a speed up of more than a factor of 600 was observed.

After the port to Java the runs times of the program was still too high for efficient data

collection so the program was ported to C++ where a factor of 2 speed increase was

observed. Later parallel implementations observed even more speed up.

The genFields(Resolution) function is given by

Data: Resolution

Result: Set of Field and Coupling terms

for b in NumberOfSpins do

Fields.add(randomField(Resolution));

end

for j in NumberOfCouplings do

Fields.add(randomField(Resolution));

end

return Fields ;

Algorithm 2: genFields: Generate set of random field and coupling terms

Where randomField(Resolution) is

Data: Resolution

Result: Random number from set of allowable numbers, see Section 2.1

split = (Integer) Resolution / 2;

N = Random() % Resolution ;

N -= split;

N /= (float)split;

return N ;

Algorithm 3: randomField: Generate a random field or coupling term

The addErrors function is simply
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Data: Fields, Sigma

Result: Add errors according to a Gaussian distribution to field and coupling

terms

for f in Fields do

if Counter greater than NumberOfSpins then

ErroneousFields.add(f + randomGaus(Sigma.J));

Continue;

end

ErroneousFields.add(f + randomGaus(Sigma.b));

Counter++;

end

return Fields ;

Algorithm 4: addErrors: Add errors to the field and coupling terms according to a

Gaussian distribution

The resilience is calculated by adding 0 and 1’s dependant on whether the ground

state of the erroneous Hamiltonian is the same as the intended.

Data: Spectrum, ErroneousSpectrum

Result: 0 or 1 dependent on equivalence of groundstates.

if Spectrum.groundstate ≡ ErroneousSpectrum.groundstate then

return 1 ;

end

return 0 ;

Algorithm 5: isResilient: return 0 or 1 dependent on whether the ground states are

the same.

The cross over:
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Data: Spectrum, ErroneousSpectrum

Result: Position of the intended groundstate in the erroneous Hamiltonian’s

spectrum.

n = 0;

for S in ErroneousSpectrum ascending do

if S ≡ Spectrum.groundstate then

return n;

end

n++;

end

Algorithm 6: whichEigenstate: return the position of the groundstate of the intended

Hamiltonian in the erroneous Hamiltonian’s spectrum.
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The gap function:

Data: Spectrum, ErroneousSpectrum

Result: Gap between the intended groundstate in the erroneous Hamiltonian’s

spectrum first state other than the intended groundstate.

if Spectrum.groundstate 6= ErroneousSpectrum.groundstate then

for S in ErroneousSpectrum ascending do

if S ≡ Spectrum.groundstate then

State1 = S;

break;

end

end

State2 = ErroneousSpectrum.groundstate;

end

else

State1 = ErroneousSpectrum.groundstate;

State2 = ErroneousSpectrum.firstExcitedState;

end

return State1.energy - State2.energy;

Algorithm 7: gap: return the gap between the intended groundstate in the erroneous

Hamiltonian’s spectrum first state other than the intended groundstate.

Below is the energy calculation function for a single K4,4. Only slight modifications

are required for multiple K4,4’s:
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Data: Fields, Spins

Result: Eigenvalue

H = 0;

for s in Spins do

H -= s * Fields.nextField();

end

for s1 in Spins[0:4) do

for s2 in Spins[4:8) do

H -= s1 * s2 * Fields.nextField();

end

end

return H

Algorithm 8: eigenvalue: Returns the eigenvalue of a given state subject to given fields.

Assumes K4,4 structure. Spin values are ±1.

C.1 Sequential Exhaustive Search

This algorithm works by enumerating all the possible configurations of the spins and

iterating through them to create a full eigenvalue, eigenvector pair list.

Data: Fields

Result: Eigenstates, Eigenvalues

# N is the number of spins ;

for i in 0..(2N -1) do

state ← bitVector(i);

states.add(eigenvalue(Fields, state),i);

end

sort(states);

return states ;

Algorithm 9: eigenstates: uses sequential exhaustive search on CPU. Scales as O(2N).

Where the sort algorithm in C++ was a modified Tim sort to take on key value pairs.

The other languages had built in functions.
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C.2 Parallel Exhaustive Search

At this point the details of programming GPUs becomes central to a detailed understand-

ing of the algorithms. The interested reader is referred to [13]. The algorithms will be

presented in pseudo-code that is as readable as possible with minimal discussion on why

they are crafted the manner they are. Details of the algorithms that are not central to

the understanding of the general function are omitted.

Data: Fields

Result: Eigenstates, Eigenvalues

# N is the number of spins ;

# P is the number of Processes (1 per GPU);

# pId is process id which is unique and in the range [0, P − 1];

pStart = 2N / P * pId;

states ← cudaEigenstates(pStart, 2N/P, Fields);

states ← cudaSortStates(states);

Gather(states);

sort(states);

return states ;

Algorithm 10: eigenstates: uses MPI to divide up the task to P processors and each

processors uses a GPU to calculate the eigenstates and eigenvalues of its branch. The

results are then gathered back and sorted using a modified version of Tim sort.

Data: start, length, Fields

Result: Eigenstates, Eigenvalues

# gId is threads global id on the GPU.;

blockLoadToShared(Fields);

state ← bitVector(gId + start);

eigenval[gId] = eigenvalue(state);

eigenvec[gId] = gId + start;

Algorithm 11: cudaEigenstates: cuda kernel for determining the eigenstates and eigen-

values.
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Speed up compared the sequentially algorithm on C++ was approximately 1000x.

C.2.1 Sorting With Cuda

Due to the large number of memory accesses required to sort a list, efficient sorting is

difficult on a GPU. Because we are only concerned with the lowest lying energy eigenstates

efficient sorting is possible through reduction. The general idea is to take a list of length

N and reduce it to a short list, say of length 16 that is sorted. One can guarantee to get

the bottom n states globally by finding the bottom n on each group of states. To do the

sorting of the smaller list a modified insertion sort algorithm is used.

Data: States

Result: bottom16States

bottom16 ← states[0:15];

insertionSort(bottom16);

for s in States[16:N-1] do

if s.energy greater than bottom16[15].energy then

bottom16[15] = s;

insertionSort(bottom16);

end

end

return bottom16

Algorithm 12: cudaSortStates

Speed up versus the same algorithm sequentially executed in C++ was around 20x.

C.3 Parallel Branch and Bound

Branch and bound is faster way to find the lowest lying energy eigenstate, or states if

degenerate. This is useful for calculations that are only concerned with resilience. Branch

and bound algorithms work by progressively traversing through the possible configurations

in an order and checking to see if it is possible to reach the desired state from this point, if

not the algorithm prunes that tree and moves over to another branch. Branch and bound

is a simplification of the A* search algorithm used ubiquitously in artificial intelligence.
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There are two types of branch and bound algorithms classified by their search tech-

nique: breadth first and depth first. Breadth first expands all nodes at a given depth

simultaneously and prunes all branches possible before expanding. This is a good ap-

proach when one is concerned with all possible answers; however, it comes with a high

memory cost of storing all the states at each level which typically grow exponentially.

Depth first search traverses completely down one branch before moving onto the next

(given that the branch isn’t pruned). This is a good approach when one only requires

one state or if there are memory limitations. It also has the benefit of updating its own

heuristics every time it reaches the end of a branch.

Depth first branch and bound is not well suited for the GPU due to its recursive

style and limitations on programming on GPUs memory access wise. The breadth first

algorithm naturally works on a GPU; however, one looses the benefits of memory flexibility

and self-updating heuristics of the depth first algorithm.

A solution to this is to bundle groups of branches together. Each bundle is then

considered an independent problem that is subject to a breadth first search on the GPU.

The group of bundles is then another network that is searched depth first (by nature of

finishing one bundle without interference from the others) and communicates heuristic

updates.

This algorithm as well as the parallel exhaustive search were used to gain statistics on

4K4,4’s. This algorithm was roughly 30 times faster than the parallel exhaustive search

but could only be used to gain insight into resilience. For simplicity in Algorithm 13 it is

assumed that the number of bundles equals the number of processors and GPUs. This is

rarely the case and a cuing system must be implemented.

The bound function can be implemented in many ways, including through the use of

the cudaSort algorithm; however, it will suffice to say here that it simply iterates through

all the states pruning any states that cannot reach the ground state energy estimate.

The remaining possible energy in the network is estimated using a heuristic that always

overestimates, this way no branches are prematurely pruned. For this application the

remaining energy is estimated as the negative sum of the magnitudes of the remaining

coupling and field terms to be assigned.
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Data: Fields

Result: Ground state(s)

# N is the number of spins ;

# P is the number of Processes (1 per GPU);

# pId is process id which is unique and in the range [0, P − 1];

initialDepth = P-1;

pStart = 2N / P * pId;

states ← expand12Levels(pStart, Fields);

currentDepth = initialDepth + 12;

for currentDepth less than N do

states ← cudaBranch(states, Fields);

states ← bound(states, minEnergyGuess);

if is empty states then

break;

end

N++;

end

Gather(states);

sort(states);

return states ;

Algorithm 13: eigenstates: Return the ground state(s) of the given Hamiltonian.

cudaBranch works by expanding all the nodes in the set of states. Each state then has

its energy updated by calculating the field and coupling terms introduced by the newly

assigned spin.

C.4 Adiabatic Evolution

The program to gain insight into the evolution spectrum was only written in C++ with

MPI parallelism. It used the Eigen 3.0 C++ framework to do the required linear algebra.

The algorithm works by discretizing s in

H(s) = (1− s)H0 + sHp (C.1)
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into 100 time steps. The Hamiltonian at that time step is calculated and its eigenstates

found. The bottom N eigenstates of interest recorded before moving onto the next time

step. A 3 time-step correlation function is used to track the eigenstates evolution trajec-

tory around crossings.
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Data: Fields, Sigma

Result: A set of histories of the eigenstates of the instantaneous Hamiltonians.

H0 ← SpinXHamiltonian();

HP ← K44Hamiltonian(Fields);

s = 0;

for s less than 1 do

H = (1 - s)H0 + s HP ;

eigenstates ← eigenSolve(H);

insertionSort(eigenstates);

s += 0.1;

history.add(eigenstates);

end

nextHistory();

for i less than N do

HP ← K44Hamiltonian(addErrors(Fields));

s = 0;

for s less than 1 do

H = (1 - s)H0 + s HP ;

eigenstates ← eigenSolve(H);

insertionSort(eigenstates);

s += 0.1;

history.add(eigenstates);

end

nextHistory();

end

Algorithm 14: Program generates a set of histories of the eigenstates of the instanta-

neous Hamiltonians through the evolution. The set of histories can be used to calculate

quantities such as the average gap at each value of s and the minimum gap.



73

C.5 Hamiltonian Distance

This program was designed to get data for Section C.5. The program first generates a

large number of Hamiltonians and classifies them according to their ground state. After

a sufficient number of Hamiltonians have been classified the algorithm then goes through

each set of Hamiltonians (classified by their ground state) and draws n random pairs of

Hamiltonians and measures their distance. After n pairs have been measured a histogram

is made of the results.

Data: Resolution

Result: Set of histrograms of the distance between Hamiltonians with the same

ground state.

for i less than N do

Fields ← genFields(Resolution);

states ← eigenstates(Fields);

hamiltonians[states.groundstate()].add(Fields)];

i++;

end

for g less than 28 do

for p less than n do
distances.add(distance(hamiltonians[g].getRandom(),

hamiltonians[g].getRandom());

p++;

end

g++;

histograms.add(histrogram(distances);

end

Algorithm 15: Algorithm generates a set of histograms of the distance between Hamil-

tonians with the same ground state.
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