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Abstract

In the 21st century, we are moving ahead in making robots a ubiquitous part of our

everyday life. The need for a robot to interact with the environment has become

a necessity. The interaction with the world requires a sense of it’s pose. Humans

clearly are very good in having a sense of their location in the world around them.

The same task for robots is very difficult due to the uncertainties in the movement,

limitation in sensing of the environment and complexities in the environment itself.

When we close our eyes and walk we have a good estimate of our location but the

same can’t be said for robots. Without the help of external sensors the problem of

localization becomes difficult. Humans use their vestibular system to generate cues

about their movement and update their position. The same can be done for robots

by using acceleration, velocity or odometry as cues to a motion model.

The motion model can be represented as a distribution to account for uncertainties

in the environment. The parameters to the model are typically static in the current

implementation throughout the experiment. Previous work has shown that by having

an online calibration method for the model has improved localization. The previous

work provided a framework to build adaptive motion model and targeted land based

robot and sensors.

The work presented here builds on the same framework to adapt motion models

for Autonomous Underwater Vehicle. We present detailed results of the framework in

a simulator. The work also proposes a method for motion estimation using side sonar

images. This is used as a feedback to the motion model. We validate the motion

estimation approach with real world datasets.
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Chapter 1

Introduction

1.1 Motivation

The core of human environment interaction is the ability of a person to know its

position in a the surrounding environment. The process of estimating the robot’s

position and orientation in the world is termed Localization [34]. As humans we use

our visual and vestibular system to know our surroundings and localize ourselves. A

common approach to determine the location of a robot is through the use of a Global

Positioning System (GPS), which uses a series of satellites in low earth orbit that

use differential positioning to determine a location for a receiver. Another approach

is to provide a prior map of the environment and with the help of sensors a robot

perceives the world and localizes itself in it. These techniques are highly dependant

upon external sensors.

If we close our eyes and walk, we still have a sense of our movement. This is

provided by our vestibular system and help us localize ourselves. These localization

estimates can get noisy with time. Similarly in robots the major challenge is to localize

without the help of external sensors. Sometimes sensing an external environment can

be impossible or incomplete due to unreliability and inaccessibility of the sensors. In

this case the localization estimate can be updated using self-generated cues such as

acceleration and velocity.

The model which predicts localization based on just acceleration, velocity or odom-

etry is called the motion model. In my thesis I propose an algorithm to learn and

adapt the motion model with time. It can also be termed an online self calibration

problem.

A need for a precise motion model is seen in Autonomous Underwater Vehi-

cle(AUV). The AUV’s are primarily dependant upon Inertial Navigation Systems

(INS) which gives an estimate of the velocity, position and orientation. An example

of such a vehicle is Hugin 4500 (Figure 1.1). The absence of external sensors such as

1
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GPS gives rise to the need of having an adaptive motion model.

Input to a motion model such as velocity, acceleration, odometry have uncertain-

ties associated with them. These uncertainties can arise due to noisy and incomplete

sensing of the environment, uncertain movements of a robot in the environment and

changes in the environment itself. To address these issues the motion and sensor

models are represented probabilistically [34]. This helps in having a probability dis-

tribution over a space of guesses instead of relying on a single best guess. To update

the state of a robot probabilistically there are algorithms such as Kalman Filter [20],

Particle Filter [14] which are based on Bayes filter.

The motion and sensors models are represented by a distribution which is defined

by its parameters. The process of determining parameters to kinematic model is

termed as calibration [5] [38]. Generally the parameters to the models are hand tuned

and are derived by conducting calibration experiments. Such calibration methods are

impractical for two reasons. Firstly these processes are labour intensive and require

prior information about the environment and robot. Secondly, changes in robot (e.g.-:

general wear and tear) and environment (e.g.-: moving from fresh water to sea water)

leads to changes in the parameters.

The changes in underwater environments such as change in density or tempera-

ture of water require recalibration of a robot while it is in operation. In such cases

manual recalibration is not possible. The inaccuracies in the models will affect results

for higher level tasks such as path planning [23] and Simultaneous Localization and

Mapping (SLAM) [34] [15]. The need for online recalibration requires an adaptive

motion model and the work presented in my thesis address this problem.

1.2 Previous Work

In this section I give an overview of the methods proposed for online calibration. Roy

and Thrun [29] proposed an online calibration method for land robots which can be

performed without human intervention. They approached the calibration process as

maximum likelihood estimation problem which gives an estimate of parameters for

the given data. The calibration parameters are iteratively estimated by comparing

sensor readings. The algorithm proposed worked well for systematic drifts and the

results showed the position error reduced approximately by 83%.
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Figure 1.1: Hugin 4500 autonomous underwater vehicles. When submerged, the
vehicle uses dead reckoning, incorporating Doppler velocity log and compass input to
maintain an estimate on current positioning.

Alizar and Parr [10] continued the work further by estimating non-systematic

drifts. They proposed an algorithm to learn the right parameters of a motion model

for a land robot using their Expectation Maximization(EM) Framework [7]. This is

an unsupervised machine learning technique that alternates between the expectation

and maximization step. In the Expectation Step it creates an expectation of the log-

likelihood using the current estimate of the parameters. In the Maximization step

the parameters are computed by maximizing the expected log-likelihood found in the

Expectation Step. With very little user input accurate motion models were learnt.

Yap [39] took Alizar and Parr’s [10] work further and proposed an algorithm to

learn the motion and sensor models for land robots. They used the same EM frame-

work to learn the right parameters for the models. To calculate the likely trajectory

of a robot both the algorithms implemented particle filtering [27] [4] and smoothing

[8]. The algorithm started with an estimate of initial parameters and iteratively op-

timized the parameters based on the data collected during robot’s operation. The

work was directed towards land based robots.

The INS systems present in AUV suffer from drift i.e. small errors in measurement

of acceleration and angular velocity that are integrated into progressively larger error.
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To compensate for drift, systems such as Doppler Velocity Log (DVL), surface GPS

etc. are used [22] [24]. Hegrenaes et.ãl [16] pointed out that there are situations

where these systems fail or readings from these sensors need to be discarded due to

poor quality. An example of such a situation is the non-feasibility of the vehicle to

surface. In such situations they proposed to use the self-generated velocity estimates

to aid INS systems. This shows the need to have good estimates from our motion

model which can be used to aid INS systems.

1.3 Contribution

Yap proposed a framework based on expectation maximization to learn a motion

model. Their proposed method was based for land based robots. The method that I

propose is based on the same framework but for velocity based motion models instead

of odometry based. I also add a drift term to the system to simulate water currents.

I perform simulations in which the parameters to the motion model are changed

to simulate changes in the environment. In these simulations the performance of

adaptive motion model is compared to static motion model in terms of localization

error. The estimated parameter values are also compared to ground truth parameter

values which were not done in any of the work before. The relationship of estimated

parameter values with sensor noise is also studied.

In the second section of the thesis I propose an algorithm to estimate motion

using side sonar images. I use keypoint based algorithm to detect features in a side

scan sonar image. These keypoints are matched in consecutive images and used to

detect motion of an AUV. The motion estimation works as feedback to the adaptive

motion model algorithm. The results of motion estimation are compared with distance

estimated by DVL. The work presented in this section is the first step towards building

adaptive motion model for underwater vehicles.

The remainder of the thesis is structured as follows. Chapter 2 will explain the

motion model for AUV as well as give an insight on particle filtering and smoothing.

Chapter 3 will give an overview of EM and show how this framework is used to adapt

parameters for a motion model. Chapter 4 consists results of a simulated experiment

to show the effectiveness of the algorithm. Chapter 5 explains how landmarks are

extracted from side sonar images. The reliability of the landmarks are shown by
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extracting motion information. The algorithm to perform that is described in the

same chapter. The results of comparing motion estimation using side sonar images

to Doppler velocity log (DVL) is shown in Chapter 6.



Chapter 2

Background

In the chapter we start by discussing how motion models are probabilistically rep-

resented as well as give insight about motion models for AUV. This helps us in

understanding, how motion model captures the probabilistic movements of robots.

We then discuss a probabilistic state estimation algorithm such as particle filter [27]

[4] which is at the heart of my algorithm as well as many other robotics systems.

Lastly we discuss about particle smoothing [8] [9] which gives an estimate of ground

truth by calculating the distribution of past states with taking into account all the

evidence to date.

2.1 Motion Models

A motion model captures the relationship between the control input and the change

in the robot’s pose. Thrun, Burgard and Fox [34] models the motion of a robot

probabilistically because the same control inputs will not reproduce identical motion

every time. A good motion model will capture the errors such as drift that are

encountered during the motion of a robot. The motion model is a necessary ingredient

of many algorithms such as localization, mapping etc.

Let X = (x, y, θ) be the initial pose of the robot in x-y space. Mathematically the

motion model can be described as P (X
′ |X, u), where X ′

is the pose after executing

the motion command u. Based on the control input Thrun et al. [34] divided the

motion model in two classes

1. Odometry based motion model -:

This class of motion models are used for robots equipped with wheel encoders.

The encoders gives us an estimate of the distance moved by a robot. This data

is more accurate than velocity.

2. Velocity based motion model -:

6
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These models calculate the new position based on velocities and time elapsed.

These models are implemented for Autonomous Underwater Vehicle(AUV) and

Unmanned Aerial Vehicles(UAV).

Both odometry as well as velocity are subject to drift and slippage therefore the

same control commands will not generally reproduce the same motion.

The velocity motion model proposed by Thrun et al. [34] assumes that the wheeled

robot can be controlled through two velocities, rotational and translational velocity.

The translational velocity at time t is denoted by vt and rotational velocity by wt.

Hence the control input ut can be represented by

ut =
( vt

wt

)

The assumption is that positive rotational velocities wt induce a counterclockwise

rotation whereas positive translational velocities vt correspond to forward motion.

The set of equations to compute the next state of a robot for a velocity motion model

per unit time step are

xt = xt−1 + vt−1/wt−1 sin(θt−1) + vt−1/wt−1 cos(θt−1 + wt−1δt) (2.1)

yt = yt−1 + vt−1/wt−1 cos(θt−1)− vt−1/wt−1 sin(θt−1 + wt−1δt) (2.2)

θt = θt−1 + wt−1δt (2.3)

To represent AUV’s motion, 6 independent coordinates are necessary to determine

the position and orientation of the rigid body. The notations used for marine vehicles

are described in Table 2.1.

The pose of AUV can be represented as s = (x, y, z, θ, φ, ψ). The first three

coordinates correspond to the position of an AUV along the x, y, z axes while the

last three coordinates describe the orientation commonly termed as roll, pitch and

yaw. Fossen [12] in his book describes the motion of a marine vehicle in 6 DOF

using two coordinate systems as shown in Figure 2.1. X0, Y0, Z0 represent the
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DOF forces and
moments

linear and
angular vel.

positions and
Euler angles

1 motions in the
x-direction
(surge)

X u x

2 motions in the
y-direction
(sway)

Y v y

3 motions in the
z-direction
(heave)

Z w z

4 rotation about
the x-axis (roll)

K p φ

5 rotation about
the y-axis
(pitch)

M q θ

6 rotation about
the z-axis
(heave)

N r ψ

Table 2.1: Notation used for marine vehicles. Table from [12]

moving coordinate frame and is called the body-fixed reference frame. The earth-

fixed reference frame is denoted by X, Y , Z. The origin of the body-reference frame

is denoted by O and is chosen to coincide with the center of gravity denoted by CG.

To estimate the position of an AUV we need to calculate the velocity at which the

AUV is currently moving. The velocity can be computed in two ways, static motion

model or dynamic motion model.

In the static model the velocity is calculated from a lookup table as further ex-

plained below. In the dynamic model we are computing forces and moments on the

fly but the parameters to these forces are considered to be static. The parameters

such as density, temperature of water can change with time and lead to an inaccu-

rate estimate of velocity in both the models. The change in density of the water can

lead to changed in the trim of the AUV. Similarly, with temperature the buoyancy

of the water can change. Hence the velocity needs to be adapted and Chapter 3.3

explains how it is done in my algorithm. A detailed description on how the velocity

is calculated in both the models is explained in rest of the chapter.

Hegrenaes [17] points out that a way to implement a simple static motion model
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Figure 2.1: The coordinate system of an AUV described in Body-fixed and earth-
fixed reference frames. Figure from [12]

as table look-up based on experimental data.

ur = f(ns) (2.4)

ur, ns are the water relative linear velocity in x direction and control system set

point respectively. In a similar manner an expression can be established for vr.

Another way to implement the motion model is through dynamics. The equation

to implement the motion model is [12]

MRBV . + CRB(V)V = τRB (2.5)

Here V = [u, v, w, p, q, r]T is the body fixed linear and angular velocity and τRB =

[X, Y, Z,K,M,N ] is the vector of external forces and moments. MRB is the rigid

body inertia matrix and CRB is Coriolis and centripetal matrix.

The right hand side of the vector 2.5 represents the external forces and moments

acting on the vehicle. Fossen [12] classifies the forces into 1) Radiation-induced forces

2) Environmental Forces 3) Propulsion Forces. Table 2.2 shows the examples of

various forces acting on an AUV.

τRB can be represented as the sum of these forces.

τRB = τH + τE + τ (2.6)
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Radiation Induced forces Added Inertia, Hydrodynamic damping, Restoring Force
Environmental Forces Ocean currents, Waves, Wind

Propulsion Force Thruster/ Propeller Force, Control surface/ rudder force

Table 2.2: Examples of forces acting on an AUV. Table taken from [12]

Here τH is the radiation induced forces and moments, τE is used to describe

the environmental forces and moments and τ is the propulsion forces and moments.

Equations 2.5 and equation 2.6 can be combined to yield the following representation

of 6 DOF dynamic equations of motion:

MV . + C(V)V +D(V)V + g(η) = τE + τ (2.7)

where

M �MRB +MA ; C(V) � CRB(V + CA(V)
MA is the added inertia matrix CA(V) is the matrix of hydrodynamic Coriolis and

centripetal terms. g(η) is the restoring force. Equation 2.8 can be used to calculate

acceleration from the set of dynamic motion equations. Lammas [22] terms it as a

navigation equation of the underwater vehicle.

V . =M−1(τ − C(V)V −D(V)V − g(η)) (2.8)

The parameters of matrices M and C are determined experimentally. Using the

navigation equation we can determine the position of the AUV.

2.2 Particle Filter

Particle filters is an integral part of my algorithm to learn the right parameters of a

motion model and the way it is used is explained in rest of the section. A particle

Filter is a state estimation algorithm based on a sampling method for approximating

a distribution. Thrun [34] defines particle filter as an alternative non-parametric

implementation of the Bayes filter. It also can be called as a Sequential Monte

Carlo(SMC) algorithm. The first attempt to use SMC was seen in simulations of

growing polymers by M.N Rosenbluth and A.W. Rosenbluth [28]. Gordon et.ãl. [14]

provided the first true implementation of sequential Monte Carlo algorithm.
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Figure 2.2: A temporal Bayesian model with hidden states xt, observations zt and
controls ut. Figure taken from [34]

Thrun [34] stated that the key idea behind particle filter is to represent the pos-

terior bel(xt) by a set of random state samples drawn from this posterior. Instead

of representing the distribution by a parametric form particle filter represents a dis-

tribution by a set of samples drawn from this distribution. The representation is a

approximation but it is nonparametric and therefore there are advantages of using

particle filters as an alternative to Extended Kalman Filter and Unscented Kalman

Filter. Particle Filters can represent a broader space of distributions for example

non-Gaussian and can model non linear transformations of random variables.

The objective of particle filters is to estimate the state of the system given the

observation variables. They are designed for Hidden Markov Models(Fig 2.2), where

the system consists of hidden and observed variables. In this model the state xt is

the hidden random variable as it is not directly observed. The state at time t is only

dependent upon the state at time t−1 and external influences such as control ut. The

measurement zt depends on the state at time t. The knowledge about the influence

of the control on the system can be used to calculate a new expected location and

the measurement can be combined in a Bayesian way.
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The algorithm for particle filters is described below-:

Input: Xt−1: particle set

ut: most recent control

zt: most recent measurement

Output: Xt:particle set

begin

for m=1 to M do do
sample xmt ∼ p(xt|ut, xmt−1)

wm
t = p(zt|xmt )

X−
t = X−

t + (xmt , w
m
t )

end

for m=1 to M do do

draw i with probability ∝ w
[i]
t

add x
[i]
t to Xt

end

return Xt

end

Algorithm 1: Particle Filter Algorithm. xmt is instantiation of the state at time

t. X−
t is a temporary particle set. M is the number of particles. Algorithm taken

from [34]

In Algorithm 1 each particle xmt is instantiation of the state at time t. The

first step is to generate a hypothetical state xmt for time t based on previous state

xmt−1 and control ut. The particles are samples from the state transition distribution

p(xt|ut, xt−1). The importance factor for each particle xmt is calculated and denoted

by wm
t . Importance factor is defined as the probability of measurement zt under the

particle xmt . This probability is defined by a sensor model p(zt|xt), thus importance

factor are used to incorporate the measurements into the particle set. In practice,

the number of particles used are on the order of thousands.

The key part of the algorithm is the re-sampling step in particle filter algorithm.

The algorithm draws M particles with replacement from a temporary particle set

X−
t . The probability of drawing the particles is given by the importance factor. By

re-sampling, particle set is refocussed to regions in state space with higher probability.
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Figure 2.3: Smoothing computes P (Xk|e1:t), the posterior distribution of the state
at some past time k given a complete sequence of observations from 1 to t. Figure
taken from [30]

.

2.3 Particle smoothing

The particle filter algorithm as described before is the first step in the Expectation

process. The next algorithm that completes the Expectation Step is the particle

smoothing. Doucet [9] in his paper stated that filtering based on observations received

up to the current time is used to estimate the distribution of the current state of an

Hidden Markov Model (HMM) whereas smoothing is used to estimate distribution

of state at a particular time given all the observations up to some later time (Figure

2.3). Russell and Norvig [30] showed that the state of the system is better estimated

by smoothing as it incorporates more information than just filtering. We use particle

smoothing algorithm proposed by Yap and Shelton [39] which was based on the

technique presented by Docuet et.ãl [8] and Godsill et.ãl [13].

Particle smoothing is carried out in order to generate samples from the entire joint

smoothing density p(x0:T |u1:T , z1:T ). The equations described by Yap [39] are

p(x0:T |u1:T , z1:T ) =
T∏
t=0

p(xt|xt+1:T , u1:T , z1:T ) (2.9)

where,

p(xt|xt+1:T , u1:T , z1:T ) = p(xt|xt+1, u1:t+1, z1:t) (2.10)

=
p(xt+1|xt, u1:t+1, z1:t)p(xt|u1:t+1, z1:t)

p(xt+1|u1:t+1, z1:t)
(2.11)

=
p(xt+1|xt, ut+1)p(xt|u1:t, z1:t)

p(xt+1|u1:t+1, z1:t)
(2.12)

α p(xt+1|xt, ut+1)p(xt|u1:t, z1:t) (2.13)

Equation 2.13 is used to generate states backwards in time given the future states.
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p(xt+1|xt, ut+1) is the state transition probability and p(xt|u1:t, z1:t) is obtained by

performing particle filtering.

Algorithm 2 shows the step involved to sample from the entire joint smoothing

density.
Input: Xt, t = 0, 1, ..., T : particle approximations to the posterior pdfs

p(xt|c1:t, s1:t)
c1:T = (c1, c2, ..., cT ): set of controls from time 1 to time T

Output: x
′
0:T = (x

′
0, x

′
1, ..., x

′
T ): a sample from the entire joint smoothing

density p(x0:T |c1:T , s1:T )
begin

draw i with probability ∝ w
[i]
T x

′
T ← x

[i]
T

for t← T − 1 down to 0 do do

for i← 1 to Ns do do

w
[i]
t|t+1 ← w

[i]
t p(x

′
t+1|x[i]t , ut+1)

end

draw i with probability ∝ w
[i]
t|t+1

x
′ ← x

[i]
t

end

end

Algorithm 2: Sample the entire joint smoothing density p(x0:T |c1:T , s1:T )
In the first step of the algorithm a particle is drawn with probability proportional

to the filtered weight of the particles. The next step is to move a time step back and

modify the weights of the particles by calculating the new smoothed weights. The new

smoothed weights are the product of state transition probability p(x
′
t+1|x[i]t , ut+1) and

the weight of the particle w
[i]
t . The next step in the algorithm is to draw particles with

probability proportional to new smoothed weights w
[i]
t|t+1. The sequence of particles

x
′
drawn from joint smoothing density p(x0:T |c1:T , s1:T ) from time 0 to T , form a

sampled trajectory x
′
0:T � (x

′
0, x

′
1, ....., x

′
T ).



Chapter 3

Learning the motion model

3.1 Previous Work

There is an extensive literature on different methods to calibrate a robot (eg-: [5] [38]).

All the methods discussed before Roy’s work [29] required human intervention and

assumed the world to be static. These methods required a human to have experience

and a device to measure the ground truth. The most important assumption that these

methods made was that the configuration of a robot never changed and operated in

a static environment.

Roy and Thrun first proposed an online self-calibration method [29] in 1999 that

adapted to changes that occurred during the lifetime of a robot. The algorithm was

designed for land robots where the final pose was given by

x
′
= x+Dcos(θ + T ) (3.1)

y
′
= y +Dsin(θ + T ) (3.2)

θ
′
= (θ + T )mod2π (3.3)

D and T are the true translational and rotation of a robot. The measured trans-

lational and rotational is d and t and if robot’s odometry is accurate then D = d and

T = t. In practice there is a difference and Roy represents D and T by equations 3.4

and 3.5 respectively.

D = d+ σtransd+ εtrans (3.4)

T = t+ σrotd+ εrot (3.5)

εtrans and εrot are the random variables with zero mean. σtrans and σrot denote

the systematic errors in the system. An example of such an error is drift. The

systematic errors referred here stay almost constant over a prolonged period of time.

15
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The algorithm proposed by Roy and Thrun aimed at estimating σtrans and σrot using

sensor data collected throughout robot’s motion. They treat the problem as maximum

likelihood estimation problem where the parameters are estimated under a dataset z

as described in equation 3.6.

(σ∗
trans, σ

∗
rot) = argmaxP (σtrans, σrot|z) (3.6)

Austin and Eliazar [10] proposed a different method to achieve the same goals

proposed by Roy and Thrun. Their algorithm was different for two reasons. Firstly,

Austin ad Eliazar used a more general model which incorporated independence of mo-

tion terms. Secondly, the method was able to estimate parameters for non systematic

errors as well. The motion model proposed by them to account for the discretization

error is -:
x

′
= x+Dcos(θ + T/2)

y
′
= y +Dsin(θ + T/2)

θ
′
= (θ + T/2)mod2π

(3.7)

As the turn and drive commands are performed independently therefore to not violate

this assumption this model makes T reasonably small and it is absorbed as part of

noise. To estimate non-systematic errors the true translational(D) and rotation(T )

are represented by normal distribution with mean d and t and the variance will scale

with d2 and t2 as shown in equation 3.8

D ∼ N (dμDd
+ tμDt , d

2σ2
Dd

+ t2σ2
Dt
)

T ∼ N (dμTd
+ tμTt , d

2σ2
Td

+ t2σ2
Tt
)

(3.8)

where μAb
is the coefficient for the contribution of odometry term b to the mean

of the distribution over A. The algorithm is used to learn these set of mean and

variances.

The method by Austin an Eliazar uses the EM framework to learn the parameters

of the motion model for land robots. In the E step, particle filtering and smoothing

were performed to get a set of trajectories. In M step, the maximum likelihood values

of parameters given the trajectories was calculated.

Teddy Yap [39] used the same framework to learn parameters for motion model

and sensor model (Figure 3.1). They adopted the same motion model but with

slightly different noise model as shown in equation 3.9.
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Figure 3.1: Block Diagram for the parameter estimation framework. Figure taken
from [39].

D ∼ N (d, d2σ2
Dd

+ t2σ2
Dt

+ σ2
D1
)

T ∼ N (t, t2σ2
Td

+ t2σ2
Tt
+ σ2

T1
)

(3.9)

The extra constant terms σD1 and σT1 are added to account for the errors that

are not proportional to the translation or rotation of a robot.

Hegrenaes [16] in his work showed the importance of motion model for navigation

in underwater vehicle. They proposed a novel approach for navigation systems in

which knowledge about the vehicle dynamics was used to aid the Inertial Navigation

System(INS). The new navigation system was tested on real dataset collected by an

AUV.

For navigation in AUV’s the velocity of the vehicle needs to be estimated for which

sensors such as IMU, DVL are used. In a traditional INS system the key component is

an IMU and a set of navigation equations. The readings from the accelerometers and

gyroscopes are integrated to get an estimate of velocity, position and orientation. The

reading from such sensors have inherent errors and leads to drift in the INS system.

Generally sensors such as surface GPS, DVL etc. are an aiding system to the INS

(Figure 3.2(a)). Combination of such systems leads to better estimate of velocity,

position and orientation [24].
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(a) Traditional aided INS (b) Model-aided INS

Figure 3.2: High level system outline. The vehicle model can be used in parallel to
external aiding sensors. Figure taken from [16]

Hergreanaes [16] points out alternative velocity information such as velocity es-

timate through vehicle dynamics is required because there are situations where it is

not possible for the AUV to surface and get a GPS reading or DVL measurement

needs to be discarded due to poor quality. The high level system outline for such a

model is shown in Figure 3.2(b).

The system is very similar to traditional INS except that the vehicle model output

in also integrated to the system. The vehicle model output doesn’t require any extra

instruments therefore can be easily applied to any vehicle. An alternative velocity

estimate aids the INS where DVL readings are lacking as well as gives redundancy to

the system.

All the above calibration methods are designed for odometric based motion models

and for land robots. The use of vehicle model to aid the INS for navigation purposes

shows us the importance of an adaptive motion model. The algorithm that I propose

is for underwater vehicles and velocity based motion model. The process to adapt the

motion model is similar to the previous work by Yap and Eliazar and our approach

is described in rest of the chapters.

3.2 General Architecture of new system

In this section we give an overview of the system and point out the differences in my

system as compared to the existing system proposed by Yap [39]. Figure 3.3 is an
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Figure 3.3: Block diagram for the algorithm proposed to adapt motion model.

outline of the proposed system. The motion and sensor models are initialized with a

set of parameters. Given the motion model p(xt|xt−1, ut), sensor model p(zt|xt) and
the pose p(xt−1) of a robot we can perform particle filtering using Algorithm 1. It is

performed to estimate the pose p(xt) of a robot at the next time step.

The key ingredient to learn the motion model is to have an estimate of the move-

ment of a robot. Particle smoothing (Algorithm 2) is performed on the particle set

produced by particle filtering to get an idea of ground truth. The algorithm can be

repeated several times to get a set of trajectories. Particle filtering and smoothing

are the key algorithm for the Expectation Step.

The reported translational and rotational movement of a robot is recorded for

every time step. Based on the trajectories and reported movements the errors are

calculated at each time step. After we have a set of errors, we perform Newton

Conjugate gradient [33] on the error function to estimate parameters. Conjugate

gradient is an iterative method to solve large systems of linear equations [33]. This

completes the Maximization Step.

The learned parameters are reassigned to the motion model and helps in adapting

our model to changes in robot and the environment. The whole algorithm is repeated

at every time step so that we can dynamically learn the right parameters.

The system proposed for parameter estimation is similar to the system by Yap [39].
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I use the same EM framework and conjugate gradient to learn the right parameters

for the model. The difference lies that the motion model learned is a velocity based

motion model as compared to odometry based model. Secondly we use side sonar

images to calculate landmarks on the fly for underwater environments. Therefore the

algorithm doesn’t rely on static maps for reference points.

3.3 Adapting Motion Model in proposed system

3.3.1 Expectation Maximization

EM is an iterative process of finding maximum likelihood of parameters of a model

which depend upon hidden variables. It is used to estimate unknown parameters

θ given the observed data X. Z is the non-observed (hidden, latent) variable. In

practice a complete dataset is not given and only a set of observations or incomplete

dataset X is found. The hidden variables are important to a problem but complicate

the learning process [30]. In order to learn with hidden variables Dempster et.ãl [7]

proposed a method to maximize the probability of the parameters θ given the dataset

X with hidden variables Z that he called as EM.

θ∗ = argmaxθ

∫
p(θ, Z|X)dZ (3.10)

The key idea behind the EM algorithm is to alternate between estimating parame-

ters θ and hidden variable Z. The E step consists of finding the posterior distribution

of hidden variables p(Z|X, θold) given the current estimate of parameters θold. The

posterior distribution is used to find expectation of the data as shown in equation

3.11.

Q(θ, θold) =
∑
Z

p(Z|X, θold) ln p(X,Z|θ) (3.11)

In the M step we maximize the function as shown in equation 3.12 to estimate the

new parameters θnew.

θnew = argmaxthetaQ(θ, θold) (3.12)

The objective as described by Minka [26] is to maximize Q(θ, θold) and we want

an updated estimate of θnew such that

θnew > θold (3.13)
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or we want to maximize the difference,

Q(θnew)−Q(θold) = lnP (X|θnew)− lnP (X|θold) (3.14)

The above equations with hidden variables can be written as

Q(θnew)−Q(θold) = ln(
∑

P (X|z, θnew)P (Z|θnew))− lnP (X|θold) (3.15)

Using Jensen’s Equality it can be show that,

ln
n∑

i=1

λixi ≥
n∑

i=1

λi ln(xi) (3.16)

for constants λi ≥ 0 with
∑n

i=1 λi = 1.

This can be applied to equation 3.15 and λ = P (Z|X, θold). As P (Z|X, θold) is a

probability measure we have P (Z|X, θold) ≥ 0 and
∑

Z P (Z|X, θold) = 1.

Q(θnew)−Q(θold) = ln(
∑
Z

P (X|Z, θne

(3.17)

= ln(
∑
Z

P (X|Z, θnew)P (Z|θ).P (Z|X, θ
old)

P (Z|X, θold))− lnP (X|θold)

(3.18)

= ln(
∑
Z

P (z|X, θold)P (X|Z, θ
new)P (Z|θnew

P (Z|X, θold) )− lnP (X|θnew)

(3.19)

≥
∑
Z

P (Z|X, θold) ln(P (X|Z, θ
new)P (Z|θnew)

P (Z|X, θold) )− lnP (X|θold)

(3.20)

=
∑
Z

P (Z|X, θold) ln(P (X|Z, θ
new)P (Z|θnew)

P (Z|X, θold)P (X|θold) ) (3.21)

� �(θnew|θold) (3.22)

We continue by writing

Q(θnew) ≥ Q(θold) +�(θnew|θold)
and for convenience define,
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q(θnew|θold) � Q(θold) +�(θnew|θold)
The function q(θnew|θold) is bounded by the likelihood functions Q(θnew). We need

to choose values of θnew so that Q(θnew) is maximized. The new updated value is

denoted by θn+1.

θn+1 = argmaxθ{q(θnew|θold)} (3.23)

= argmaxθ{Q(θold) +
∑
Z

P (Z|X, θold) ln(P (X|Z, θ
new)P (Z|θnew)

P (Z|X, θold)P (X|θold) } (3.24)

= argmaxθ{
∑
Z

P (Z|X, θold) ln(P (X|Z, θnew)P (Z|θnew)} (3.25)

= argmaxθ{
∑
Z

P (Z|X, θold) lnP (X,Z|θnew)} (3.26)

(3.27)

We use the EM algorithm as described by Bishop[3] in his book. The steps taken

in EM algorithm are described below -:

1. Have an initial estimate of the parameters θold

2. E Step: Evaluate P (Z|X, θold)
3. M Step: Evaluate θnew = argmaxθL(θ, θ

old)

where L(θ, θold) = ΣZP (Z|X, θold) logP (X,Z|θ)
4. Check for the convergence of either the log likelihood or the parameter values. If

the convergence criterion is not satisfied then let

θ ← θnew

and return to step 2

In our algorithm we use Newton Conjugate Gradient to check for convergence and

estimating the right parameters. Conjugate gradient is a method to determine the

minimum or maximum of a function [33]. It is important to point that EM algorithm

is local optimization technique and there are situations where it can get stuck in local

optimum.

3.3.2 Parameter Estimation

In this section we give a detailed explanation of the method proposed to learn the

motion model of a robot. The framework is similar to the one proposed by Yap [39].

As stated in Chapter 2.1 to calculate the position of an AUV we need to estimate
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velocity and feed it to the navigation equation 2.8. As we are operating in a dynamic

environment various factors can lead to changes in our motion model. To adapt the

motion model we assume a Gaussian distribution to represent velocity. We assume

it to be Gaussian as sum of several random noises leads to a such a distribution.

Another assumption for the algorithm that we represent the pose of an AUV in two

dimension as compared to six.

The velocity based motion model equations used are the following

xt = xt−1 + Vt−1/Wt−1 sin(θt−1) + Vt−1/Wt−1 cos(θt−1 +Wt−1δt) (3.28)

yt = yt−1 + Vt−1/Wt−1 cos(θt−1)− Vt−1/Wt−1 sin(θt−1 +Wt−1δt) (3.29)

θt = θt−1 +Wt−1δt (3.30)

where,

V ∼ N (vt, v
2
t σ

2
Vv

+ w2
t σ

2
Vw

+ σ2
V1
) (3.31)

W ∼ N (wt, v
2
t σ

2
Wv

+ w2
t σ

2
Ww

+ σ2
W1

) (3.32)

The translational(V) and rotational(W) velocity are represented by a Gaussian

distribution. The mean of the distributions are the reported translational v and

rotational w velocity respectively. σV1 and σw1 are added to the motion model to

account for errors that are not directly proportional to the translation and rotation

of a robot. The noise model is similar to the one proposed by Yap [39].

Putting the whole problem of estimating parameters in EM framework, we define

the parameters of the motion model that we want to learn are θ = σ2
Vv
, σ2

Vw
, σ2

V1
, σ2

Wv
, σ2

Wt
, σ2

W1

The data X from which the parameters can be learned is defined as X = u1:T , z1:T

where, u1:T and z1:T are the history of control and sensor readings. The robot’s tra-

jectory is the hidden variable in the system as it not directly observable and can be

defined as Z = x0:T .

The first step in an EM algorithm is to initialize the set of parameters θ with

some initial values. In the E step we calculate the expectation of log p(Z,X|θ) with
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respect to distribution p(Z|X, θ). The distribution can be represented by the entire

join smoothing density p(x0:T |u1:T , z1:T ). To approximate the E step i.e. the joint

smoothing density, particle filtering and smoothing is performed to calculate a set of

robot trajectories as discussed in section 2.3. In the M step the maximum likelihood

of parameters are computed by treating the set of trajectories as ground truth. The

algorithm keeps on alternating between the E and M step until convergence.

For calculating the maximum likelihood values for parameters we need to calculate

the motion errors εVt , εWt based on robot trajectory and the contribution of transla-

tional v and rotational w velocity to the errors. The distribution that represents the

errors are

ε
[j]
Vt
∼ N (0, v2t σ

2
Vv

+ w2
t σ

2
Vw

+ σ2
V1
) (3.33)

ε
[j]
Wt
∼ N (0, v2t σ

2
Wv

+ w2
t σ

2
Ww

+ σ2
W1

) (3.34)

where j is the index for each sampled trajectory.

The likelihood functions are

QεD(σ
2
Vv
, σ2

Vr
, σ2

V1
) = p(ε

[j]
Vv
|u1:T , z[j]0:T ) (3.35)

=
∏
j

T−1∏
t=0

1√
2π(v2t σ

2
Vv

+ r2t σ
2
Vw

+ σ2
V1
)
∗ exp( (ε

[j]
Vt
)2

2(d2tσ
2
Vv

+ w2
t σ

2
Vw

+ σ2
V1
)

(3.36)

QεT (σ
2
Wd
, σ2

Wr
, σ2

W1
) = p(ε

[j]
Wt
|u1:T , z[j]0:T )

=
∏
j

T−1∏
t=0

1√
2π(v2t σ

2
Wv

+ w2
t σ

2
Ww

+ σ2
W1

)
∗ exp( (ε

[j]
Wt
)2

2(v2t σ
2
Wv

+ w2
t σ

2
Ww

+ σ2
W1

)
)

The estimate the parameters we get the maximum likelihood estimates

σ2∗
Vv
, σ2∗

Vr
, σ2∗

V1
= argmaxσ2

Vv
,σ2

Vr
,σ2

V1
Q(σ2

Vv
, σ2

Vr
, σ2

V1
) (3.37)

σ2∗
Wd
, σ2∗

Wr
, σ2∗

W1
= argmaxσ2

Wd
,σ2

Wr
,σ2

W1
Q(σ2

Wd
, σ2

Wr
, σ2

W1
) (3.38)

We maximize the log likelihood function via Newton conjugate gradient method

with respect to motion model parameters. In this method the gradient of the function
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is taken as the first search direction while the next search direction are chosen in such

a way that they are orthogonal to all previous search directions [33]. The gradient of

log likelihood functions are

L(σ2
Vv
, σ2

Vw
, σ2

V1
) = −1

2

∑
j

T−1∑
t=0

[log 2π + log(v2t σ
2
Vv

+ w2
t σ

2
Vw

+ σ2
V1
) +

(ε
[j]
Vt
)2

v2t σ
2
Vv

+ w2
t σ

2
Vr

+ σ2
V1

]

(3.39)

L(σ2
Wv
, σ2

Ww
, σ2

W1
) = −1

2

∑
j

T−1∑
t=0

[log 2π + log(v2t σ
2
Wv

+ w2
t σ

2
Ww

+ σ2
W1

) +
(ε

[j]
Wt
)2

v2t σ
2
Wv

+ w2
t σ

2
Ww

+ σ2
W1

]

(3.40)



Chapter 4

Simulation setup and results

In this chapter we describe the experimental setup of the simulator to test our algo-

rithm. To demonstrate the effectiveness of our approach the results from the simulated

experiment are also shown.

4.1 Simulation setup

To test our algorithm for learning the motion model, we create a simulated world as

shown in Figure 4.1. The world size of our simulation is 400X400 with four landmarks

shown in blue dots. The red ∗ shows the location of the robot and blue triangle is

the location estimate of the robot by the particle filter. The robot is moving with a

constant forward and rotational velocity throughout the simulation. In the following

simulation the robot can measure its distance from all four landmarks at all times.

The sensor noise in the simulation was varied in different experiments. The particle

size is 500 and is constant throughout the simulation. Table 4.1 shows the summary

of variables for the simulation to test the effectiveness of our algorithm to learn a

motion model.

simulation

World Size 400 units X 400 units
Total timesteps 200

No. of sensor readings 200
Translational Velocity 3 units/timestep

Rotational Velocity 0.1 degrees/timestep

Table 4.1: Summary of the parameters of the simulation performed to adapt motion
model.

At the start of the simulation the initial location of the robot and particle filters

are randomly initialized. The robot is moved at a constant velocity and Figure 4.2

shows the updated location of the robot as well as an estimate by particle filters of

26
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Figure 4.1: The simulation environment consisting of the robot(triangle) and the
particle estimate of the location(∗). The blue dots represent the landmarks.

the robot’s location.

4.2 Results

In this section I describe the various simulations that were performed in the simu-

lated world. The external changes in the environment were simulated by changing

the parameters to a robot’s motion model. The parameters can be altered by arti-

ficially introducing a drift in the motion or by changing the variance of the motion

model distribution. As shown in Table 4.1 the total timesteps is 200 and in all the

simulations we simulate the changes at time step 60.

As described in Chapter 2.1, the noise model for our simulated experiment is

Vt ∼ N (vt, v
2
t σ

2
Vv

+ w2
t σ

2
Vw

+ σ2
V1
) (4.1)

Wt ∼ N (wt, v
2
t σ

2
wv

+ w2
t σ

2
Vw

+ σ2
W1

) (4.2)

In the first simulation we change σ2
Vv

at time step 60 as shown in Table 4.2. The

changed values of the parameter for the first and second case are 0.5 and 1.0 respec-

tively. The number of trajectories is 3 and is kept constant for both cases. In this

simulation we keep the sensor noise constant as well. This simulation was used to

mimic the change in the environment by changing the noise of the motion model.
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Figure 4.2: Particle Filters estimating the position of the robot. The robot is moved
at a constant velocity of 3 units/timestep in each case. The particle filters estimate
the location of the robot by integrating the motion and sensor models.

The change in environment doesn’t affect the ability of the robot to sense the envi-

ronment, therefore the sensor noise is kept constant throughout the simulation. I was

looking for the performance of both the models when there is big change in the noise

for example from 0.05 to 1.0.

Initial
Parameter
Values

Changed
Parameter
Values

(after 60)

Estimated
Parameter
Values

Sensor
Noise

Trajectories

1 2 1 2
σ2
Vv

0.05 0.5 1.0 0.707 1.868 1.0 3
σ2
Vw

0.05 0.05 0.05 0.05 0.05 1.0 3
σ2
V1

0.05 0.05 0.05 0.123 0.252 1.0 3
σ2
Wv

0.05 0.05 0.05 1.476 1.496 1.0 3
σ2
Ww

0.05 0.05 0.05 0.05 0.05 1.0 3
σ2
W1

0.05 0.05 0.05 0.208 0.210 1.0 3

Table 4.2: Initial and estimated values of parameters of a motion model with constant
sensor noise and trajectories

As shown in Table 4.2 the estimated value of σ2
Vv

are 0.707 and 1.868 which

are greater than the actual values and could lead to better localization. In order to
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demonstrate that, the localization error (euclidean error between the robot’s actual

position and location estimate of particle filters) is plotted for different times.
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Figure 4.3: Plot showing the localization error between robot and the estimate of the
robot’s location by particle filters. The σ2

Vv
is changed from 0.05 to 0.5 at timestep

60. The sensor noise is 1.0.

In Figure 4.3 the red and blue line shows the error with a static motion model

and adaptive motion model respectively. At the start of the simulation the parameter

values for the robot’s motion model and static motion model for particle filters are

initialized with the same value. The adaptive motion model starts estimating the

parameters from time step 0. In Figure 4.3 in the first 20 timesteps there is no

change and we can see that the adaptive motion model performs better than the

static. In theory the static motion model has the best estimate of robot’ motion as

they are initialized with the same parameter value so the error should be less for

static motion model. We don’t see this because the location of particles are randomly

initialized therefore it might be at different location to robot’s start position. It needs

the sensor model to decrease the error and as the sensor noise is high, it takes time

to build the weight of particles. In the adaptive motion model to compensate for

the sensor noise the distribution of motion model gets wider which helps in a better

spread of the particle set.

In Figure 4.4 we plot the difference between the maximum weight and average

weight of the particle set at each time step. This gives us an indication of the width
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Figure 4.4: Difference between the maximum weight and average weight of the
particle set. The motion model noise σ2

Vv
is changed from 0.05 to 0.5 at timestep

60. The sensor noise is 1.0. The blue line and red line represents adaptive and static
motion model respectively.

of the distribution of the particle set. If we have a higher difference it means that

the particle set contains particle which are sure about robot’s location or vice versa.

When the weights of particle are higher we can see the static motion model performing

better. This is due to the resampling step of particle filters where they choose the

most probable particles based on motion and sensor models. As soon as the algorithm

starts picking the most probable particles, the error goes down. In the case of adaptive

motion model the distribution of motion model gets wider right from the start which

leads to higher difference thereby resulting in a decrease of localization error. After

time step 60 we change the motion model noise and we can see that adaptive motion

model performing much better as compared to the static motion model. The difference

in the weights of particles in Figure 4.4 also goes down.

In Figure 4.5 we don’t see a jump in the red line or green line at time step 60 and

this due to the fact that the estimate of parameters before the change was greater

than the change after time step 60.

In the next simulation σ2
Vv

is changed from 0.05 to 1.0 and the errors, estimation

of parameters and average weight are shown in Figure 4.6, Figure 4.7 and Figure

4.8 respectively.



31

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Va
lu

e
σ2Vv

σ2Vw

σ2V1

(a)

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190
Timesteps

0.0

0.5

1.0

1.5

2.0

Va
lu

e

σ2Wv

σ2Ww

σ2W1

(b)

Figure 4.5: Estimate of parameter values a) σ2
Vv
, σ2

Vw
, σ2

V1
b) σ2

Wv
, σ2

Ww
, σ2

W1
at every

time step. The motion model noise σ2
Vv

is changed from 0.05 to 0.5 at timestep 60.
The sensor noise is 1.0.

In both the simulations the robot’s σ2
V1

is 0.05 and is not changed throughout the

simulation. Table 4.2 shows that in the adaptive motion model the estimated value
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Figure 4.6: Plot showing the localization error between robot and the estimate of the
robot’s location by particle filters. The σ2

Vv
is changed from 0.05 to 1.0 at timestep

60. The sensor noise is 1.0.

of σ2
V1

changes from the initialization value. Similarly other parameters such as σ2
WV

and σ2
W1

are also changed. This error in estimation is not of much concern as the

main goal of the algorithm proposed was to learn the motion model to decrease the

localization error.

In the first two simulations to simulate changes in the environment we changed

σ2
Vv
. In the next two simulations we induce drift in the system and compare both

motion models in terms of localization error. Drift is a common problem found in all

robots. In AUV we get drift from INS systems. On land based robots there is drift

present in the wheel encoders. In this simulation we subtract a constant number from

the reported movement. This was also done to mimic the affects of water currents on

AUV.

In order to simulate drift we describe the translational and rotational movement

as

Vt ∼ N (vt − a, v2t σ2
Vv

+ w2
t σ

2
Vw

+ σ2
V1
) (4.3)

Wt ∼ N (wt − b, v2t σ2
wv

+ w2
t σ

2
Vw

+ σ2
W1

) (4.4)

where a and b are constants representing drifts in the system.

Table 4.3 gives a summary of the simulations performed to demonstrate the



33

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190
Timesteps

0

1

2

3

4

5

6

Va
lu

e

σ2Vv

σ2Vw

σ2V1

(a)

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190
Timesteps

0.0

0.5

1.0

1.5

2.0

2.5

Va
lu

e

σ2Wv

σ2Ww

σ2W1

(b)

Figure 4.7: Estimate of parameter values a) σ2
Vv
, σ2

Vw
, σ2

V1
b) σ2

Wv
, σ2

Ww
, σ2

W1
at every

time step. The motion model noise σ2
Vv

is changed from 0.05 to 1.0 at timestep 60.
The sensor noise is 1.0.

effectiveness of the algorithm to account for drift. To account for the drift we don’t

include an extra parameter in the motion model as the variances σV 2
v
, σV 1

v
should
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Figure 4.8: Difference between the maximum weight and average weight of the
particles. The motion model noise σ2

Vv
is changed from 0.05 to 1.0 at timestep 60.

The sensor noise is 1.0. The blue line and red line represents adaptive and static
motion model respectively.

account for drift and we see that in Table 4.3. The rest of the parameters remain

unchanged.

The drift is present throughout the simulation. The performance of the algorithm

is shown in Figure 4.9. The red line i.e. static motion model performs worse as

compared to the adaptive motion model. The model adjusts its parameters as shown

in Figure 4.10 to account for the drift in the system. The sensor model works to

contain the drift in the system. Over time as it builds sufficient amount of particles

Initial
Parameter
Values

Changed
Parameter
Values

Estimated
Parameter
Values

Drift Trajectories Sensor
noise

σ2
Vv

0.05 0.05 0.461 2.0 3 1.0
σ2
Vw

0.05 0.05 0.05 2.0 3 1.0
σ2
V1

0.05 0.05 0.095 2.0 3 1.0
σ2
Wv

0.05 0.05 1.460 2.0 3 1.0
σ2
Ww

0.05 0.05 0.05 2.0 3 1.0
σ2
W1

0.05 0.05 0.206 2.0 3 1.0

Table 4.3: Initial and estimated values of parameters with drift
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Figure 4.9: Plot showing the localization error between robot and the estimate of
the robot’s location by particle filters. The drift is present throughout the simulation
described by equation 4.3 with a=2 . The rest of the parameters remain the same
and the sensor noise is 1.0.

to be confident of robot’s location it then relocates the robot. This characteristic of

sensor model leads to a sinusoidal pattern in red line.

Another way to include drift in the system is

Vt ∼ N (vt ∗ a, v2t σ2
Vv

+ w2
t σ

2
Vw

+ σ2
V1
) (4.5)

Wt ∼ N (wt ∗ b, v2t σ2
wv

+ w2
t σ

2
Vw

+ σ2
W1

) (4.6)

The results are described in Figure 4.11 and in this case as well the drift is present

throughout the simulation. The static motion model performs worse as compared to

adaptive motion model. In the figure we can see the red line coming down for a short

time as the robot gets relocated based the estimate of the sensor model.

In all the simulations above we assume that the sensor noise is constant through

out the simulation. In real world simulations we find that the quality of sensor read-

ings varies with environment. For example, in an AUV we won’t get sonar readings

throughout the mission. This could be because sometimes its difficult to find the

bottom of the sea floor or sonar sensor could be switched off for some time periods

to save power on the battery.

In the next simulation, shown in Figure 4.12 there are two changes at time steps
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Figure 4.10: Estimate of parameter values a) σ2
Vv
, σ2

Vw
, σ2

V1
b) σ2

Vv
, σ2

Vw
, σ2

V1
at every

time step. The drift is present throughout the simulation described by equation 4.3
with a=2 . The rest of the parameters remain same and the sensor noise is 1.0.

60 and 100. At time step 60 we change the motion model noise σ2
Vv

from 0.05 to

0.5. We change the sensor noise from 1.0 to 10.0 at time step 100 and compare
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Figure 4.11: Plot showing the localization error between robot and the estimate of
the robot’s location by particle filters. The drift is present throughout the simulation
described by equation 4.5 with a=2. The rest of the parameters remain same and
the sensor noise is 1.0.
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Figure 4.12: Plot showing the localization error between robot and the estimate of
the robot’s location by particle filters. The σ2

Vv
is changed from 0.05 to 0.5 at timestep

60. The sensor noise is changed from 1.0 to 10.0 at timestep 100.

the behavior of static and adaptive motion model. After time step 100 we can see

the error growing in adaptive and static motion model. The adaptive motion model

quickly learns the sensor noise is high and starts relying on its motion model. This
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Figure 4.13: Estimate of parameter values a) σ2
Vv
, σ2

Vw
, σ2

V1
b) σ2

Wv
, σ2

Ww
, σ2

W1
at every

time step. The σ2
Vv

is changed from 0.05 to 0.5 at timestep 60. The sensor noise is
changed from 1.0 to 10.0 at timestep 100.

helps in decreasing the localization error and can be seen in Figure 4.12. In learning

with a high sensor noise we are adjusting our motion model to compensate for the
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noise in the sensor model therefore we see an increasing estimate of the parameters

(Figure 4.13).

In this chapter we have shown results for both static and adaptive motion model.

In all the cases tested in my thesis the adaptive motion has performed better. The

localization error was less in adaptive as compared to static motion model. In the first

two simulations where we changed the noise in the motion model adaptive motion

quickly adapted to those changes. Even with low sensor noise, static motion model

couldn’t decrease the localization error. This shows that even with low sensor noise

and to cope with changes in the motion model, adaptive motion model is a better

choice.

Similarly with low sensor noise when drift was present in the system, we saw adap-

tive motion model easily adapting to the drift. In static motion model occasionally

we saw the sensor model pulling back localization error. Although the parameter es-

timates are not that accurate, the result is good in terms of localization performance.

The parameters estimates take into account the noise in sensor model. Therefore we

don’t see the estimated parameters being highly accurate. With high sensor noise

we over estimate the parameters. This helps in distributing the mass in the particle

filters and gives the algorithm more chance to pick particles which are near to the

robot. The over estimation of parameters helps in decreasing localization error even

with high sensor noise.

In this section we studied the adaptive motion model in more detail and showed

that the adaptive motion model is a better choice. To our knowledge we haven’t

seen any detailed study of adaptive motion model as well as comparison of estimated

parameters to real parameters.



Chapter 5

Landmarks extraction using Side Sonar Images

5.1 Introduction

The sensor model p(zt|xt) is the probability of a measurement z given the robot is at

position x. Thrun [34] divides the sensors for mobile robots in five classes which are

contact sensors, internal sensors, proximity sensors, visual sensors and satellite-based

sensors. Examples for various classes are shown in Table 5.1.

Classes of Sensors Examples of each class
Contact Sensors Bumpers
Internal Sensors Accelerometers, Gyroscopes, Compasses
Proximity Sensors Sonar, Radar, Laser range-finders, Infra-red
Visual Sensors Cameras

Satellite Based Sensors GPS

Table 5.1: Sensors for Mobile robots. Table taken from [34]

The measurements from these sensors in a particle filter algorithm are used to

assign weights aka importance factor to particles. The most common way of sensing

the environment is through landmarks. The sensors measure the distance, bearing or

both from the landmarks to estimate their position in the environment.

In our simulated experiment the sensor model assumes to have four static land-

marks and at all times we can measure the distance from them. For our algorithm to

work on AUV we need some sort of reference points to measure the movement of the

vehicle against. These reference points need to be computed on the fly as we don’t

have the luxury of having static maps for underwater environments. As my algorithm

targets cases in which AUV doesn’t loop back and we have limited field of view we

need dynamic landmarks for our sensor model. To extract dynamic landmarks we

used side sonar images and run feature extraction techniques such as SIFT on the

images. These extracted landmarks can be used as reference points for our algorithm

to adapt motion model for AUV.

40
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The dynamic landmarks algorithm for side sonar images is not integrated in the

simulated experiment described in Chapter 4. This is because of the unavailability

of the motion data such as recording of IMU, DVL etc for AUV. To validate our

algorithm for dynamic landmarks we extract motion information from real side sonar

data and compare it to the total distance moved by the AUV. In the next two sections I

describe side scan sonar and SIFT. In section 5.2 the algorithm to compute landmarks

is presented. Chapter 6 contains the results of the algorithm.

5.1.1 Side Scan Sonar

Figure 5.1: Side scan sonar sensor using dual frequency made by JW Fishers . Image
taken from [11]

Side scan sonar is used to create an acoustic image of the sea floor. Sound waves

travel very effectively in water as compared to light therefore at lower depths sonar

is used to image the sea floor instead of cameras. A side scan sonar sensor is shown

in Figure 5.1. It measures how ”loud” the return echo is and assembles an image

as shown in Figure 5.2. In the sea floor there are hard areas such as rock and soft

areas such as sand. The hard areas are represented by darker areas in the image as

they return a stronger signal as compared to a soft area. Side scan sonar is the only

imaging tool that works at low depth therefore we use it to extract landmarks for

adapting the motion model.

Side-scan transmits sound energy and analyses the echo that is bounced off from

the sea floor or other objects. It typically consists of three basic components: towfish,

transmission cable and topside processing unit. It emits pulses in the shape of cone

or fan to either sides of the towfish, typically to a distance of 100 meters. The
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Figure 5.2: Side scan sonar image of the wreck. Image taken from [1]

Figure 5.3: Working of a side scan sonar. Image taken from [1]

angular dimensions of these beams are designed to be narrow along-track and wide

across track to cover as much seabed range as possible. The echoed sound waves are

received by transducers and are continuously recorded. Each pulse shows a narrow

strip below and to the sides of the transducers. The recorded echoes are put together

along the direction of motion to form images of the seafloor. The sound frequencies

typically range from 100 to 900 Khz in side scan sonar; higher frequencies yield
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Sidescan Sonar Type Frequency Wavelength Range
”Low” 5 kHz 30 cm > 50 km
”Low” 10 kHz 15 cm 10 km
”Low” 25 kHz 6 cm 3 km

”Medium” 50 kHz 3 cm 1 km
”Medium” 100 kHz 1.5 cm 600 m
”Medium” 200 kHz 0.75 cm 300 m
”High” 500 kHz 3 mm 150 m
”High” 1 mHz 1.5 mm 50 m

Table 5.2: Characterization of Sidescan system according to their operating fre-
quency. Table taken form [35]

better resolution but less range. Currently on the market there are systems with dual

frequency which allow the operator to use high frequency to produce sharper images

or lower frequencies to cover greater depths. Side scan systems can be characterized

according to their operating frequency [35].

Sonar are useful instruments in fisheries research, environmental studies and mil-

itary applications such as mine detection.

5.1.2 SIFT

SIFT is a popular algorithm in computer vision to detect and describe local features of

an image that are not affected by scaling and rotation. It was proposed by David Lowe

in 1999 [25] and has been used for object recognition, robotic mapping and navigation,

image stitching, video tracking and others. The various steps for extracting SIFT

feature as described by David Lowe are explained in this section.

The first step in SIFT algorithm is to construct scale space i.e. create internal

representations of the original image to ensure scale variance. In SIFT, progressively

blurred out images are generated using the original image. In next step you the

original image is resized to half of its size and again blurred out images are generated.

Images of same size are grouped together and belong to an octave. In Figure 5.4

there are four octave and each octave has five images. The number of octaves depends

upon the original size of the image. The blurring of images in each octave can be

represented mathematically by
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Figure 5.4: Representation of what Octaves look like in SIFT. Image taken from [36]

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (5.1)

where L is the blurred image, G is the Gaussian blur operator, I is an image, x,y are

the location coordinates and σ is the scale parameter. The symbol ∗ represents the
convolution operator. The next step is to find another set of images by Difference of

Gaussian (DOG) which finds out interesting keypoints in the image. In this step the

difference between two consecutive scales is calculated as shown in Figure 5.5. This

process is done at every octave. As an example the DOG is applied to cat images

and the output is shown in Figure 5.6.

After calculating the DOG images we can find the keypoints in two steps. We first

locate the maxima/minima in DOG images. Secondly find subpixel maxima/minima.

In the first step the algorithm iterates through each pixel and all the neighbors are

checked. This process is explained in Figure 5.7

In Figure 5.7, X is the current pixel and the green circles represent the neighbors.

X is marked as a keypoint if it is the greatest or least of all neighbours. These are

approximate as mostly the maxima/minima never lies on a pixel. To access the data

”between” pixels we need to calculate the subpixel location. This can be done by

Taylor expansion of the image around the approximate keypoint.
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Figure 5.5: Difference of Gaussian done to calculate keypoints in the image. Image
taken from [36]

Figure 5.6: Applying DOG on a set of images present in a single octave. Image
taken from [36]
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Figure 5.7: Locate maxima/minima in DOG images. X marks the current pixel and
it is compared with its 26 neighbors. Image taken from [36]

After generating a set keypoints we need to eliminate points which have low con-

trast features and are present on an edge. The algorithm checks for intensity value

at the pixel location of the keypoint and if it is less than a certain value if is rejected.

To remove edges the perpendicular gradients are calculated at the keypoint. If both

the gradients are small it is a flat region. If one gradient is big and other is small

it is an edge. If both the gradients are big then it is a corner. The keypoints with

both big gradients are considered to be a keypoint otherwise they are rejected. The

SIFT algorithm can check if a point is a corner or not by using a Hessian matrix.

After completing this step we have a set of legitimate keypoints which are scale in-

variant. The next step is assign orientation to each keypoint so that they are rotation

invariant.

In this step, SIFT calculates gradient magnitudes and directions around each

keypoint. To perform this, a histogram is created with 36 bins (each 10 degrees)

representing 360 degrees of orientation. Suppose the gradient direction at a certain

point is 20.56 degrees then it will go in 20-29 degree bin. The amount that is added

to the bin is proportional to the magnitude of the gradient of the point. This process

is repeated for all the pixels around the keypoint and the maximum bin is used to

describe the keypoint. In Figure 5.8 it peaks at 20-29 degrees therefore the keypoint
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Figure 5.8: Histogram describing the bins for assigning orientation to the keypoint.
Image taken from [36]

is assigned to third bin. In the Figure we also see that there is another peak which is

above 80% of the highest peak. In this case the peak converted into a new keypoint.

This new keypoint has the same location and scale as the original but has a different

orientation.

In the final step of the SIFT algorithm, a unique fingerprint for a keypoint aka

descriptor is calculated. To calculate the gradient we take 16 × 16 window around

the each keypoint. This 16× 16 window is broken into sixteen 4× 4 windows (Figure

5.9).

In each window gradient magnitudes and orientations are calculated and are put

in a 8 bin histogram (Figure 5.10). For examples a gradient orientation in the range

of 0-44 degrees is put in the first bin. The amount added to the bin depends upon

the magnitude of the gradient and the distance from the keypoint. The gradients

that are far away from the keypoint will add smaller values to the bin. This can be

performed using ”Gaussian weighting function”.

This is done for all 16 pixels, therefore we end up with 4× 4× 8 = 129 numbers.

The numbers are normalized and form the feature vector. This feature vector gives

a unique identity to the keypoint. To achieve rotation independence, the keypoint

rotation is subtracted from each orientation. Therefore each gradient orientation is
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Figure 5.9: A 16 × 16 window is taken around a keypoint. This window is broken
into sixteen 4× 4 windows. Image taken from [36]

Figure 5.10: The gradient orientation is assigned to 8 bin histogram. The value
depends upon the magnitude of the orientation and distance from the keypoint. Image
taken from [36]
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relative to the keypoints orientation. For illumination independence we threshold any

numbers that are big and the resultant feature vector is normalized again.

After we calculate the descriptors for each keypoint, we have a set of features that

describes the image and these can be used for various image processing tasks such as

image matching, stitching etc.

SIFT has been widely used in various robotic applications. Stephen Se et.ãl [32]

proposed an vision based algorithm to localize a robot and map the environment

using SIFT features. Various algorithm have been proposed to estimate motion from

camera images using SIFT features [2] [31]. Similar algorithms have been proposed

to estimate motion underwater using camera images [6].

SIFT has been compared to self-organized features from restricted Boltzmann

machines(RBM) in Hollensen [18]. Vardy et.ãl [37] compared various image registra-

tion techniques for side sonar images such as maximization of mutual information,

log-polar cross-correlation, SIFT and phase correlation. He presented results and

concluded that SIFT and phase-correlation provide the best performance among all

the techniques. Peter King [21] described an algorithm to generate images from side

scan sonar pings in real time. There implementation can be used as a black box to

my algorithm.

5.2 Dynamic Landmarks

As stated above we need reference points to adapt our motion model. These reference

points need to be dynamic as the learning algorithm is online. Secondly, we also

assume that the AUV can’t loop back on its route. To generate landmarks on side

sonar images, a preprocessing step is required to get rid of horizontal lines produced

by spurious electrical noise in the transducers. The noisy side sonar images is shown

in Figure 5.11.

The preprocessing step involves using a median filter on the image to get rid of

the noise. The preprocessed image is shown in Figure 5.12.

The disadvantage of filtering is that we loose information because the image is

blurred. The blurred image won’t give us meaningful keypoints therefore in the

preprocessed image we see some horizontal lines due to restricted use of the filter. In

order to get rid of all the lines we can increase the size of filter but the image will be
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Figure 5.11: Image produced by Side scan sonar. Images produced from dataset
provided by DRDC.

Figure 5.12: Median filter applied to side sonar image.
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Figure 5.13: Median filter with high size applied to side sonar image.

Figure 5.14: SIFT features on a side sonar image.

very blurred as shown in Figure 5.13.

The preprocessed image is used to extract landmarks for the AUV. To generate

landmarks we use feature extraction techniques such as SIFT. Figure 5.14 shows the

keypoints generated by SIFT using a high Hessian threshold. These keypoints can be

used as landmarks to adapt our motion model. We need to keep in mind that we need

a high Hessian threshold or else the algorithm will generate hundreds of landmarks

as shown in Figure 5.15.

The distance of the AUV to landmarks in x-y plane can be measured. Similarly

the distance of the particle filter estimate to the landmarks can be measured. Both

the measured distances can be compared and used to assign weights to the particles.
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Figure 5.15: SIFT features on a side sonar image with low Hessian threshold.

Using dynamic landmarks allows our adaptive motion model algorithm indepen-

dence from a static map and helps us in learning on the fly.

5.3 Motion Estimation using side sonar images

In many advanced land-based robots the position and orientation is determined

through wheel encoders and velocity estimates. These techniques do not general-

ize well for marine environments [6]. Motion estimation using visual sensors such

as camera are not restricted to particular locomotion and doesn’t suffer from drift.

There has been a lot of work done in estimating motion using camera images on land

robots [2] [31]. Silvia [6] proposed an algorithm for AUV which used camera images

and SIFT to estimate motion.

Hegreneas [16] combined the knowledge of vehicle dynamics to aid INS systems.

In a similar manner visual motion information can be used to aid INS systems. The

visual input to the dead reckoning algorithm has its pros and cons. The main ad-

vantage of using a visual estimate is that it doesn’t suffer from drift which is prime

concern for underwater vehicles. The disadvantage lies in the fact that we don’t have

side sonar images available every time. The second disadvantage is the computational

power available on AUV. To specifically deal with the problems we use a high Hes-

sian threshold to extract maximum of 4 landmarks so that feature matching is not

computationally expensive.
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(a) a (b) b

Figure 5.16: Two consecutive side sonar images. The white circles represent the
landmarks and the black circle in next image shows the matched keypoints.

We verify our dynamic landmark approach by estimating motion information from

side sonar images and compare it to reported movement by DVL. To generate key-

points we run SIFT on the side sonar images. We use a high Hessian threshold so that

we can restrict the amount of keypoints. These keypoints are matched with keypoints

of the next consecutive image using a KNN based matcher. This matcher is based

on k-nearest neighbour based algorithm. As the name suggest the object is classified

according to its k-nearest neighbours. Figure 5.16 shows two consecutive images

that are used to estimate motion of the AUV. In the first image the keypoints are

marked in white circles. These keypoints are matched with the second image and the

matched keypoints are marked in black circles. The x and y position of the matched

keypoints is compared to the original keypoints. This gives us motion estimate of the

AUV.

The method to estimate motion is a very simple one with assumptions that AUV

moves in a straight line at the same depth. The method proposed in the section

was to verify the dynamic landmark approach instead of proposing an algorithm for

estimating motion.

The performance of the algorithm is evaluated on real side sonar data. The

results of the algorithm are compared to real motion information of the AUV and are

discussed in the next chapter.



Chapter 6

Results

6.1 Motion estimation using side sonar images

We validate our algorithm on datasets consisting of side sonar images and the total

distance the AUV moves. The datasets are provided by Defence Research and Devel-

opment Canada(DRDC). The SIFT features that are applied to side sonar images are

implemented using popular vision library(Opencv) in python. The motion estimation

algorithm and feature matching is also implemented in python. The video datasets

provided could only be read by a specific software called sonar data reader. To test

our algorithm we extracted a set of images from the video and used it as an input to

our motion estimation algorithm.

Datasets Distance
estimated by
DVL(m)

Distance
estimated

through Side
sonar images(m)

1 234.06 228.88
2 232.17 237.53
3 226.45 229.35
4 231.17 233.70
5 235.98 231.72
6 232.17 225.65
7 218.84 229.15

Table 6.1: Results of motion estimation using side sonar images. The results are
compared to estimated distance by DVL, which is treated as ground truth.

Table 6.1 shows the results of motion estimation using side sonar images. The

distance is compared to DVL. It is used to estimate the speed of the vehicle. This

can be combined with a position fix, compass heading, and data from the acceleration

sensors the position of the vehicle can be determined. These estimates can be noisy

but at the same time there is no practical noise free way to measure how much the
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Frequency Long term accuracy Range
150 kHz ±0.5% o.s. ± 2 mm/s 425-500 m
300 kHz ±0.4% o.s. ± 2 mm/s 200 m
600 kHz ±0.2% o.s. ± 1mm/s 90 m
1200 kHz ±0.2% o.s. ± 1 mm/s 30 m

Table 6.2: RDI Workhorse Navigator Doppler Velocity Log and range specifications.
o.s. - of speed. Table taken from [19]. This DVL is used in Hugin 1000.

AUV actually moved.

The accuracy of DVL is dependent upon the frequency at which it operates. Higher

frequency leads to better accuracy as shown in Table 6.1.

The algorithm gives us a decent estimate of the movement. The results are within

5% of the ground truth estimated by DVL. The movement from side sonar images

can be coupled with DVL through a Kalman filter to give a better estimation of the

movement. Hegeranes [16] in his paper pointed out the use of external sensors to

aid INS and estimation of movement from side sonar images can be used to contain

the drift inherent in INS systems. The results presented shows the accuracy of our

motion estimation algorithm.



Chapter 7

Conclusion

The work presented here is a step towards building adaptive systems for AUV. As

these systems take into account changes in the robot and the environment they are

particularly useful for robotic missions over long duration. Adaptive systems can

get rid of the need for labor intensive calibration process. They can also reduce the

frequency of recalibration of a robot while on a mission.

Probabilistic robotics has been the way to approach robotics for a long time.

The motion and sensor model are key ingredients to any algorithms for navigation,

localization and map building. These models are treated as Gaussian distribution with

static parameters. The questions that arises is how these models react to changes in

the environment and robots. Higher level task such as navigation and path planning

are dependent upon the accuracy of these models. To adapt to these changes we need

to change our parameters to a model with time.

The goal of the work presented in this thesis was to present an algorithm that can

adapt the parameters of an AUV’s motion model. The work was primarily focused

on developing and comparing an adaptive motion model to a static motion model.

The use of side sonar images as a feedback to the algorithm enabled the algorithm

to learn on the fly. Expectation maximization was used to learn the parameters

in an unsupervised manner. The second part of the thesis focused on validating

our dynamic landmark approach. This was done by estimating motion from side

sonar images and comparing it to DVL. The results of the first section is illustrated

in an simulation to produce pose estimates by integrating the motion and sensor

models. The pose estimates of static and adaptive motion model are compared and

the localization error is plotted. The estimated distances by the algorithm on real

side sonar datasets are presented in the results of the second section.

Overall the work illustrated that adapting motion model can be extremely advan-

tageous in decreasing the localization error which can in turn help a robot in better
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navigation and path planning. The estimated parameters accuracy depends upon the

sensor noise. It can be low but the goal of the thesis was to decrease the localization

error over time with changes in environment. The method doesn’t require any pre

learning phase and helps in getting rid of the manual labour associated with the cal-

ibration process. The algorithm doesn’t require the AUV to loop back in its path to

learn the right parameters for the model.

Adaptive systems suffer from stability-plasticity dilemma. Plasticity helps in

learning new information whereas stability prevents forgetting previous knowledge.

To perfectly adapt the systems there needs to equilibrium between the two. My al-

gorithm gives equal importance to every dataset acquired at any timestep. In the

future, I would like to have a time decay function applied on the side sonar dataset.

This would help up in adapting our model to most current changes. The algorithm

as per now is limited to two dimensions and work needs to be done to get it working

for six degrees of freedom. The work presented here is in a simulator and I feel there

needs to be some extra work done in terms of testing and porting the algorithm. The

compatibility of my algorithm with Andrew Vardy’s [37] algorithm to generate side

sonar images needs to be tested. The learning algorithm assumes the noise to be

Gaussian. In the future, I would like to experiment with various noise distributions

that are more suited for underwater noise. Overall the work presented here shows the

importance of having an adaptive motion model for better localization of robots.



Bibliography

[1] Side Scan Sonar. http://www.nauticalcharts.noaa.gov/hsd/SSS.html/.

[2] Timothy D Barfoot. Online visual motion estimation using fastslam with sift
features. In Intelligent Robots and Systems, 2005.(IROS 2005). 2005 IEEE/RSJ
International Conference on, pages 579–585. IEEE, 2005.

[3] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine
learning, volume 1. springer New York, 2006.

[4] Zhe Chen. Bayesian filtering: From Kalman filters to particle filters, and beyond.
Statistics, 182(1):1–69, 2003.

[5] Ingemar J Cox and Gordon Thomas Wilfong. Autonomous robot vehicles, volume
447. Springer-Verlag New York, 1990.

[6] Silvia Silva da Costa Botelho, P Drews, Gabriel Leivas Oliveira, and
da Silva Figueiredo. Visual odometry and mapping for underwater autonomous
vehicles. In Robotics Symposium (LARS), 2009 6th Latin American, pages 1–6.
IEEE, 2009.

[7] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the Royal Statistical
Society. Series B (Methodological), pages 1–38, 1977.

[8] Arnaud Doucet, Simon J Godsill, and Mike West. Monte Carlo filtering and
smoothing with application to time-varying spectral estimation. In Acoustics,
Speech, and Signal Processing, 2000. ICASSP’00. Proceedings. 2000 IEEE Inter-
national Conference on, volume 2, pages II701—-II704. IEEE, 2000.

[9] Arnaud Doucet and Adam M Johansen. A tutorial on particle filtering and
smoothing: Fifteen years later. Handbook of Nonlinear Filtering, 12:656–704,
2009.

[10] Austin I Eliazar and Ronald Parr. Learning probabilistic motion models for
mobile robots. In Proceedings of the twenty-first international conference on
Machine learning, page 32. ACM, 2004.

[11] J W Fishers. Side Scan Sonar. http://www.jwfishers.com/sss.htm/.

[12] Thor I Fossen. Guidance and control of ocean vehicles, volume 199. Wiley New
York, 1994.

58



59

[13] Simon J Godsill, Arnaud Doucet, and Mike West. Monte Carlo Smoothing
for Nonlinear Time Series. Journal of the American Statistical Association,
99(465):156–168, March 2004.

[14] Neil J Gordon, David J Salmond, and Adrian F M Smith. Novel approach
to nonlinear/non-Gaussian Bayesian state estimation. In IEEE Proceedings F
(Radar and Signal Processing), volume 140, pages 107–113. IET, 1993.

[15] G Grisettiyz, Cyrill Stachniss, and Wolfram Burgard. Improving grid-based
slam with rao-blackwellized particle filters by adaptive proposals and selective
resampling. In Robotics and Automation, 2005. ICRA 2005. Proceedings of the
2005 IEEE International Conference on, pages 2432–2437. IEEE, 2005.

[16] Oyvind Hegrenaes, Einar Berglund, and Oddvar Hallingstad. Model-aided in-
ertial navigation for underwater vehicles. In Robotics and Automation, 2008.
ICRA 2008. IEEE International Conference on, pages 1069–1076. IEEE, 2008.

[17] O Hegrenses, Oddvar Hallingstad, and Bjørn Jalving. Comparison of mathemat-
ical models for the hugin 4500 auv based on experimental data. In Underwater
Technology and Workshop on Scientific Use of Submarine Cables and Related
Technologies, 2007. Symposium on, pages 558–567. IEEE, 2007.

[18] Paul Hollesen, Warren A Connors, and Thomas Trappenberg. Comparison of
learned versus engineered features for classification of mine like objects from raw
sonar images. In Advances in Artificial Intelligence, pages 174–185. Springer,
2011.

[19] Bjorn Jalving, Kenneth Gade, Kristian Svartveit, and Robert Sorhagen. DVL Ve-
locity Aiding in the HUGIN 1000 Integrated Inertial Navigation System HUGIN
1000 Navigation System Philosophy. (2027).

[20] Rudolph Emil Kalman. A new approach to linear filtering and prediction prob-
lems. Journal of basic Engineering, 82(1):35–45, 1960.

[21] Peter King, Andrew Vardy, Peter Vandrish, and Benjamin Anstey. Real-time
side scan image generation and registration framework for auv route following.
In Autonomous Underwater Vehicles (AUV), 2012 IEEE/OES, pages 1–6. IEEE,
2012.

[22] Andrew Lammas, Karl Sammut, and Fangpo He. 6-DoF Navigation Systems for
Autonomous Underwater Vehicles. 2004.

[23] Steven Michael LaValle. Planning algorithms. Cambridge university press, 2006.

[24] John J Leonard, Andrew A Bennett, Christopher M Smith, and H Feder. Au-
tonomous underwater vehicle navigation. In IEEE ICRA Workshop on Naviga-
tion of Outdoor Autonomous Vehicles, 1998.



60

[25] David G Lowe. Object recognition from local scale-invariant features. In Com-
puter vision, 1999. The proceedings of the seventh IEEE international conference
on, volume 2, pages 1150–1157. IEEE, 1999.

[26] Thomas Minka. Expectation-maximization as lower bound
maximization. Tutorial published on the web at http://www-
white.media.mit.edu/tpminka/papers/em.html, 1998.

[27] Branko Ristic, Sanjeev Arulampalm, and Neil James Gordon. Beyond the
Kalman filter: Particle filters for tracking applications. Artech House Publishers,
2004.

[28] Marshall N Rosenbluth and Arianna W Rosenbluth. Monte Carlo calculation
of the average extension of molecular chains. The Journal of Chemical Physics,
23:356, 1955.

[29] Nicholas Roy and Sebastian Thrun. Online self-calibration for mobile robots. In
Robotics and Automation, 1999, volume 3, pages 2292–2297. IEEE, 1999.

[30] Stuart Jonathan Russell, Peter Norvig, John F Canny, Jitendra M Malik, and
Douglas D Edwards. Artificial intelligence: a modern approach, volume 2. Pren-
tice hall Englewood Cliffs, 1995.

[31] Davide Scaramuzza and Roland Siegwart. Appearance-guided monocular omni-
directional visual odometry for outdoor ground vehicles. Robotics, IEEE Trans-
actions on, 24(5):1015–1026, 2008.

[32] Stephen Se, David Lowe, and Jim Little. Vision-based mobile robot localization
and mapping using scale-invariant features. In Robotics and Automation, 2001.
Proceedings 2001 ICRA. IEEE International Conference on, volume 2, pages
2051–2058. IEEE, 2001.

[33] Jonathan Richard Shewchuk. An introduction to the conjugate gradient method
without the agonizing pain, 1994.

[34] Sebastian Thrun, Wolfram Burgard, Dieter Fox, and Others. Probabilistic
robotics, volume 1. MIT press Cambridge, MA, 2005.

[35] USGS. WHSC Sidescan Sonar Systems. http://woodshole.er.usgs.gov/

operations/sfmapping/sonar.htm/.

[36] Utkarsh. SIFT: Scale Invariant Feature Transform. http://aishack.in/2010/
05/sift-scale-invariant-feature-transform/, 2010.

[37] Peter Vandrish, Andrew Vardy, Dan Walker, and O A Dobre. Side-scan sonar
image registration for AUV navigation. In Underwater Technology (UT), 2011
IEEE Symposium on and 2011 Workshop on Scientific Use of Submarine Cables
and Related Technologies (SSC), pages 1–7. IEEE, 2011.



61

[38] Miomir Vukobratovic. Introduction to robotics. Springer-Verlag New York, Inc.,
1988.

[39] Teddy N. Yap and Christian R. Shelton. Simultaneous learning of motion and
sensor model parameters for mobile robots. 2008 IEEE International Conference
on Robotics and Automation, pages 2091–2097, May 2008.


